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SUMMARY 

 

 
Biological cells are complex dynamic systems. Intracellular molecular 

interactions can be categorized into different interaction networks based on the nature 

of interactions and their function. Gene regulatory networks, protein-protein interaction 

networks and metabolic networks are examples of frequently studied and addressed 

networks in the community of systems and synthetic biology. It is necessary to study 

such complex systems in both experimental and theoretical playgrounds. In this 

research, the focus is on the analytical study of the metabolic networks and the 

construction of computational tools that can help to model, study and analyze cellular 

metabolism. Computational methods for determination of the active metabolic networks 

at different cellular conditions/contexts are broadly categorized into two groups. 

Bottom-up approach in the context of metabolism is referred to those methods that use 

a metabolic model of the organism as an input to estimate the active reactions at the 

specified condition/context through optimization, while constraining the solution space 

based on the available experimental data. On the other hand, top-down approach is 

referred to those methods that aim to infer the active metabolic network at a specified 

condition/context by analyzing the corresponding metabolome data. In this work, 

“JacLy” is introduced as a top-down Jacobian-based method that is developed to infer 

metabolic interactions of small networks from the covariance of steady-state 

metabolome data. Kinetic models of intracellular biochemical reactions are very 

suitable tools to study and analyze cellular metabolism. However, it is not an easy task 

to make reliable kinetic models of metabolic networks and there are many challenging 

obstacles in the procedure. As an effort to ease kinetic modeling of biochemical reaction 

networks and also to provide a suitable platform to reconcile top-down and bottom-up 

approaches, “Kinescope” is introduced as a computational tool developed in MATLAB 

for semi-automatic construction, simulation and analysis of kinetic models of 

metabolism. Applicability of both computational tools developed in this work, JacLy 

and Kinescope, is verified through in silico experiments. 

 

 

Keywords: Computational Systems Biology, Dynamic Systems, Jacobian, 

Metabolic Network Inference, Elementary Reactions, Kinetic Modeling.  
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ÖZET 

 

 
Biyolojik hücreler karmaşık dinamik sistemlerdir. Hücre içi moleküler 

etkileşimler, bu etkileşimlerin doğası ve işlevine bağlı olarak farklı etkileşim ağları 

şeklinde sınıflandırılabilirler. Gen regülasyon ağları, protein-protein etkileşim ağları ve 

metabolik ağlar, sistem biyolojisi ve sentetik biyoloji alanlarında sıklıkla ele alınan ve 

çalışılan ağlara örnek teşkil eder. Böylesi karmaşık sistemlerin hem teorik hem de 

deneysel alanda çalışılması gerekmektedir. Bu araştırmanın odağında, metabolik ağların 

analiz edilmesi ve hücresel metabolizmanın modellenmesinde, çalışılmasında ve 

incelenmesinde yardımcı olacak hesaplamalı araçların oluşturulması bulunmaktadır. 

Belirli bir koşulda aktif olan metabolik ağın belirlenmesi için kullanılabilecek 

hesaplamalı yöntemler iki ana grupta sınıflandırılabilir. Aşağıdan-yukarıya yöntemler, 

bir organizmanın metabolik modelini girdi olarak kullanarak ilgili koşulda aktif olan 

tepkimeleri optimizasyon yöntemiyle ve çözüm kümesini deneysel verilerle kısıtlayarak 

belirler. Yukarıdan-aşağıya yöntemler ise belli bir koşula ait metabolom verisini 

işleyerek o koşula ait aktif metabolik ağı belirlemeyi hedefler.  Bu tez çalışması 

kapsamında, “JacLy” ismindeki yukarıdan-aşağıya yaklaşıma dayalı ve Jacobi temelli 

yöntem, kararlı-hal metabolom verisinin kovaryansından küçük ağların metabolik 

etkileşimleri tahmin etmek için geliştirildi. “Kinescope” isimli araç iseyarı-otomatik 

modelleme, simulasyon ve kinetik metabolik modellerin analizi için yeni bir 

hesaplamalı araç MATLAB’da geliştirildi. Bu tez çalışması kapsamında geliştirilen 

Jacly ve Kinescope araçlarının in silico deney verilerine uygulanarak validasyonu 

yapılarak uygulanabilirlikleri gösterildi. 

 

 

 

 

 

 

 

Anahtar Kelimeler: Hesaplamalı Sistem Biyolojisi, Dinamik Sistemler, Jacobi, 

Metabolik Ağ Çıkarımı, Elementer Tepkimeler, Kinetik Modelleme.  
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1. INTRODUCTION 

Metabolic network is the outmost layer of cellular activity from the genome. The 

genome of a cell is a comprehensive and condensed information base, defining a 

boundary for the biochemical capacity of the cell. The processing of genetic 

information passes through several layers of fabrication and regulation before reaching 

their end products. This is from information to the function, from genotype to the 

phenotype. Metabolic enzymes count for a significant percentage of the end products 

of genes, and their activity sets the physiology of the cell. Since metabolic network 

activity is the major representative of cell functionality, it is of great importance to 

gain as much knowledge as possible on the active metabolic network at a specific 

cellular state. 

Systems-based approach to molecular biology has contributed to an increased 

knowledge of metabolic pathways for an increasing number of organisms and led to 

almost complete metabolic networks for a number of major organisms, from yeast to 

human. Such static networks are available in a condition-independent manner through 

web-based databases such as KEGG or MetaCyc [1], or reconstructed in a format 

suitable for simulation by several researchers at genome scale [2, 3]. There are several 

mathematical approaches to process such networks to come up with condition-specific 

networks, the most common one being the Flux-Balance Analysis (FBA) framework 

[4]. This is a bottom-up direction toward the active network since already-known 

“parts,” interactions, are used as inputs [5, 6]. 

In parallel to the developments on the knowledge of metabolic networks, 

techniques to measure metabolite levels at high throughput, termed metabolomics, 

have arisen [7, 8]. Quantitative or semi-quantitative metabolome data, although one of 

the most challenging compared to other omic sciences, have come a long way in a 

decade, from the detection and quantification of about 50 metabolites [9] to more than 

1000 metabolites [10]. Metabolome data are a snapshot of the condition-specific status 

of the investigated organisms. Reverse-engineering metabolome data to discover the 

underlying network structure is the goal behind metabolic network inference 

approaches [11, 12]. The information content of metabolome data is revealed by 

processing it with correlation or optimization-based methods [13–15]. Such an 

approach to discover metabolic network structure is termed top-down approach since 

the parts, interactions, are not known a priori, and predicted from the whole set of 
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available biomolecules [5, 6]. Figure 1.1 illustrates the two alternative network 

discovery approaches. 

 

 

Figure 1.1: Comparative demonstration of bottom-up and top-down approaches to 

discover active metabolic network. 

 

The research in this thesis can be mainly divided into two parts. The first part is 

about top-down and bottom-up approaches in discovery and analysis of metabolic 

networks. Chapter 3 presents “JacLy: a Jacobian-based method for the inference of 

metabolic interactions from the covariance of steady-state metabolome data” as a 

product of our research in this part. The second part focuses on design and production 

of a computational tool for semi-automatic construction, simulation and analysis of 

kinetic metabolic models, believing that kinetic models can provide an efficient 

platform to reconcile top-down and bottom-up methods in studying metabolic 

networks. Hence, the MATLAB-based computational tool “Kinescope” is presented 

in Chapter 4.  
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2. LITERATURE REVIEW 

2.1. Bottom-Up Approaches 

Different methods and algorithms have been used for the discovery and 

characterization of active metabolic networks at different states of cells and culture 

environments. In the bottom-up approach, everything starts from an already available 

network of biochemical transformations that covers all possible scenarios in the 

distribution of metabolic fluxes and sets an upper bound for the existence of reactions 

in the active metabolic network. Such a network is termed a static metabolic network. 

A static metabolic network can be provided either by a previously reconstructed 

genome-scale stoichiometric model or by a collection of all reactions whose existence 

in the organism of interest has been certified in literature and databases. Most popular 

among such databases are KEGG [16], MetaCyc [17], and Reactome [18]. Other 

efforts with more curated databases such as Rhea [19] and MetRxn [20] are also 

available. A genome-scale stoichiometric model is reconstructed based on the 

annotation of all genes in the genome of one organism to their end products and then 

to the corresponding reactions, leading to a list of Gene- Protein-Reaction (GPR) rules 

[21]. In this way, the minimum information content of a genome-scale model is (i) a 

list of reactions, and (ii) a list of gene-protein-reaction rules. The presence of gene-

protein-reaction rules in stoichiometric models has enabled the opportunity for 

transcriptome and proteome data to be incorporated into the discovery methods of 

active metabolic networks [22]. 

Given a genome-scale reaction network, the aim is to find the active reaction 

network at a specific condition or for a specific cell type in a multicellular organism. 

The core of all such discovery approaches is a stoichiometric matrix. Each row of the 

stoichiometric matrix represents a metabolite and each column stands for a reaction, 

the corresponding element being the stoichiometric coefficient of that metabolite in 

that reaction. The relationship between the reaction rates in the network and the 

dynamic change in the concentration of metabolites is represented as given below: 

 

 𝑑𝐶

𝑑𝑡
= 𝑆. 𝑣 (2.1) 
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where S is the stoichiometric matrix, C is the vector of intracellular metabolite 

concentrations, and v is a column vector of metabolic reaction rates (fluxes) to be 

determined. Under the assumption of steady state, the concentration of each 

intracellular metabolite is not going to change with time, meaning the sum of rate of 

reactions producing that metabolite is equivalent to the sum of rate of reactions 

consuming that metabolite (metabolic fluxes around each metabolite are balanced). 

This is represented mathematically as following: 

 

 𝑆. 𝑣 = 0 (2.2) 

 

This is an algebraic system of linear equations with all fluxes being zero as a 

trivial solution. In order to escape from the trivial solution, the value of at least one of 

the fluxes must be set to a non- zero value, that flux usually being an exchange flux 

between the intracellular and extracellular environment since the experimental 

measurement of exchange fluxes is relatively easier. The system is almost always 

underdetermined with a large solution space, mainly because of the existence of branch 

points in the metabolic network. 

There are both experimental and computational approaches to estimate a 

condition-specific network for such a system. The experimental approach is based on 

stable-isotope (mostly 13C) labeling of the major carbon source, and then tracing the 

propagation of the labeled carbon atoms down to protein-bound amino acids at isotopic 

steady state by using mass spectrometry or NMR spectroscopy [23–25]. The 

qualitative isotopic labeling information is then used as an input to two alternative 

methods. In one method, termed isotopomer modeling, a total flux distribution is 

estimated based on the experimental labeling results through a computationally 

demanding non-linear optimization formulation, which employs global iterative fitting 

and statistical analysis [23, 26]. The other 13C- labeling assisted method is based on 

the estimation of the local ratios of fluxes emerging from a branch point [24, 27] rather 

than the absolute quantification of all fluxes. These experimental flux split ratios can 

be used to shrink the solution space of Equation 2.2 in a complementary flux 

calculation, leading to the discovery of a condition-specific network [28, 29]. 

Softwares are available for the rather sophisticated calculation of experimental fluxes 

(or flux ratios) from carbon labeling data for both methods [30–32]. A new trend in 

this area is to collect data at the non-stationary phase of isotopic labeling rather than 



5 
 

at the isotopic steady state, which was shown to be more informative in terms of 

predicting the flux-weighted active metabolic network structure [33–35]. Works on 

the tracing of intracellular metabolites rather than only 10–15 protein-bound amino 

acids have also appeared due to the higher coverage of metabolic pathways despite the 

inherent experimental difficulties in terms of higher turnover rates as well as stability 

issues [36–38]. 

The computational approach for the discovery of condition-specific metabolic 

network based on Equation 2.2 is known as constraint-based modeling. Constraint-

based modeling methods aim to shrink the solution space of the equation as much as 

possible by putting relevant constraints on the system. The most common method, 

FBA, treats the problem in Equation 2.2 as an optimization problem and linear 

programing is applied to solve it. The stoichiometry of metabolic reactions 

(stoichiometric matrix), reaction directionality information, a physiologically relevant 

objective function, and the value of at least one of the exchange fluxes are all that are 

required for FBA to return a condition-specific flux distribution. The flux distribution 

returned by FBA is not necessarily unique, and there may be a variety of flux 

distributions all leading to the same optimum value of the objective function. 

Therefore, Flux Variability Analysis (FVA) must be used together with FBA, to 

determine the variability, if any, on each metabolic flux in regard to the condition of 

interest [39, 40]. The maximization of biomass production has been successfully 

applied as a reliable objective function for FBA to predict flux distributions in a variety 

of microorganisms [41, 42]. In some studies, it has been hypothesized that one 

objective function alone may not capture the metabolic behavior of the cell 

comprehensively. Therefore, multiobjective optimization platforms have been 

designed and utilized to come up with more specific flux distributions. Several 

modified versions of FBA including parsimonious FBA (pFBA) [43], and flexible-

optimality FBA (flexoFBA) [29], have been developed in this manner. On the other 

hand, some research groups have developed methods based on the availability of 

additional omics data, which are discussed below. For a thorough review of a number 

of FBA-derived flux calculation methods, the readers are referred to another resource 

[44]. 
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2.1.1. Constraints Based on Transcriptome or Proteome Data 

The rate of an enzymatic reaction inside the cell is a function of several different 

factors, such as the concentration of substrates, products, and regulators of the enzyme 

and also the amount of available active enzyme for that reaction. Among these factors, 

the concentration of active enzymes can be related to the activity of genes through 

layers of transcription, translation, and post-translational modifications. 

Transcriptome data are much more accessible and comprehensive compared to the 

other omics data. Several different research groups have developed different strategies 

to incorporate transcriptome data into constraint-based models. The idea behind this is 

that the amount of mRNAs (gene activities) may be correlated with the concentration 

of active enzymes, and hence this can be utilized to provide additional constraints on 

metabolic fluxes. At the bottom line, if an enzyme coding gene is not transcribed at 

steady state, the corresponding reaction should be inactive at that steady state, if there 

is no other enzyme catalyzing that reaction. This idea was first used by Akesson et al. 

to set the flux values to zero for those reactions whose corresponding genes were 

expressed at low levels [45]. More sophisticated and structured versions of this 

approach appeared later, under the names of GIMME [46] and iMAT [47]. These 

approaches classify some reactions as inactive reactions based on the low expression 

levels of their associated genes. Then, they employ a computational framework which 

minimizes the contradiction between the classification and an active physiological flux 

distribution since some of these classifications may render the flux state unrealistic 

(such as zero growth rate). Several other alternative methods appeared recently to 

incorporate transcriptome data into the prediction of active metabolic network and flux 

distribution. In an interesting study for example, mRNA levels from transcriptome data 

were used as weights for the corresponding reactions to predict a flux distribution 

without using a conventional objective function such as the maximization of biomass 

growth [48]. A study [49] evaluated these methods systematically for the prediction of 

flux distributions, and the results were compared to that of parsimonious FBA as a 

reference method that does not consider the transcriptome data. In general, none of the 

methods could significantly improve the results of pFBA and none of them 

outperformed the others for the tested cases (S. cerevisiae and E. coli). Instead of the 

prediction of flux distributions, these methods, however, may significantly help in the 

discovery of active metabolic networks in context/tissue-specific cells and in the 
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conditions where a relevant objective function cannot be hypothesized. Transcriptome 

data are not necessarily correlated with the rate of corresponding reactions. 

Inconsistency between mRNA levels and reaction rates is a result of influence of 

several other factors in the regulation of enzymatic reactions. Therefore, if proteome 

data are available, it can be used instead of transcriptome data as a better representative 

for the concentration of active enzymes since proteome is hierarchically closer to the 

enzyme states than transcriptome data. The methods that are developed to integrate 

transcriptome data with the FBA method can all be used for the purpose of integrating 

proteome data. For example, GIMMEp [50] is the proteome equivalent version of 

GIMME. Some of such integrative methods were primarily tested with proteome data. 

INIT [51], for example, was developed by using proteome abundance data from 

Human Protein Atlas database. However, it was shown that utilizing proteome data 

instead of transcriptome data could not improve the prediction of flux distributions for 

the tested cases (S. cerevisiae and E. coli) [49]. In a study which used metabolome and 

proteome data in the flux calculation method, on the other hand, even the use of only 

proteome data was shown to improve the results compared to the traditional FBA [52]. 

Substrate concentrations, the concentration of enzyme regulators, the turn over 

number of the catalyzing enzyme, and the concentration of the active enzyme are all 

playing significant roles in the determination of reaction rates, and among them only 

the concentration of the active enzyme may be represented by the corresponding 

protein or mRNA concentration. Translated proteins are not necessarily active 

enzymes, and they may need to undergo post-translational modifications (e.g., 

phosphorylation/acetylation) to become capable of catalyzing the reactions. This is one 

of the main reasons behind inconsistency between protein levels and reaction rates. On 

the other hand, the turn over number (catalytic power) of one enzyme may differ by 

several orders of magnitude from the turn over number of another enzyme [53]. It 

means that although the concentration of one enzyme may be much less than the others 

in the network, the reaction catalyzed by that enzyme can proceed much faster than 

others. According to this fact, the use of the absolute concentrations of proteins or 

mRNAs to constrain reaction rates does not seem promising. However, the turnover 

number of one enzyme in an individual is an intrinsic parameter of the enzyme that 

does not change from one condition to another except by effective mutations that rarely 

occur. Because of this, the relative levels of proteins or mRNAs can be utilized to 

overcome the problem of big differences in turn over numbers. One steady-state 
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condition with available data on flux values and protein/mRNA levels can be taken as 

the reference state, and then the relative/differential levels of proteins/mRNAs to that 

reference state can be used to predict the flux distributions at the new conditions. Based 

on this approach, algorithms have been developed to incorporate relative/differential 

transcriptome data into metabolic-flux analysis, among which are MADE [54] and 

GX-FBA [55]. One other main reason for the inconsistency between protein levels and 

reaction rates is the distribution of flux control among different layers from genotype 

to phenotype. Metabolic fluxes can be regulated hierarchically (through gene 

expression levels) or metabolically (through metabolic interactions) [56–59]. Use of 

transcriptome or proteome data will not be helpful if the metabolic fluxes are 

controlled at the metabolic level. 

2.1.2. Constraints Based on Metabolome Data 

One approach to find more specific and physiologically relevant flux 

distributions is to provide additional constraints by specifying the directionality of 

reversible reactions. This can be done by taking Gibbs free energies of metabolites into 

consideration. The Gibbs free energy change of a reversible biochemical trans-

formation (one reaction or a series of reactions) determines the direction of that 

transformation and its departure from reversibility. The earlier studies assumed 

standard conditions (all metabolite concentrations were assumed to be 1 M) and did 

not explicitly consider metabolite concentrations in the calculation of Gibbs energy 

changes of reactions due to the scarcity of metabolome data [60]. Recent studies, 

however, take the concentration of metabolites into account, when available, to 

perform thermodynamic-based metabolic flux analysis, leading to more reliable 

predictions [61–64]. 

Extracellular metabolome data can be used to constrain genome-scale metabolic 

models for the calculation of intracellular flux distributions by simply constraining the 

secretion and uptake rates of extracellular metabolites based on such data [65, 66]. In 

a different approach, Michaelis–Menten-based kinetics was used for the estimation of 

reaction rates for the reactions for which appropriate intracellular metabolome (and 

proteome) data are available [52]. The FBA framework was designed in such a way 

that the calculated fluxes are as consistent as possible with the kinetically derived 

reaction rates, if available. The simultaneous use of metabolome and proteome data 
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for this purpose significantly improved the results. The use of metabolome data alone 

also resulted in better predictions than the traditional FBA. In a recent study, a kinetic 

platform was established based on Michaelis–Menten equation to bridge gene 

expression levels, metabolite concentrations and metabolic fluxes without requiring 

the knowledge of kinetic parameters [67]. They could show that changes in metabolite 

concentrations relative to a reference steady state can be predicted by their formulation 

that includes information on network connectivity in addition to differential mRNA 

expression levels. All those works utilizing kinetic information demonstrate the 

necessity of dynamic models for a more comprehensive analysis of metabolic 

networks. 

Kinetic models of biochemical reactions not only provide a rational platform for 

omics data –especially metabolomics – to be incorporated in the estimation of 

metabolic fluxes, but also, they enable the prediction and study of the dynamics of 

metabolic networks far beyond the steady state. Such models were only possible for 

small-scale metabolic networks until recently [68, 69], since they require detailed 

information on the enzyme kinetics of each individual reaction. Estimation of kinetic 

parameters is a major obstacle in the applicability of dynamic modeling of metabolic 

networks. New platforms and algorithms were established to circumvent this problem 

so that the estimation of explicit kinetic parameters is not a prerequisite to study the 

dynamic capacity and behavior of the system [70]. Approximative kinetic models (lin-

log, power-law, mass action) on the other hand, try to fit a standard rate expression 

formula to all reactions of the network to increase the range of their applicability to 

larger networks [71, 72]. Thanks to approximative kinetics, attempts to reconstruct 

large-scale kinetic metabolic models with more than 100 reactions were recently 

presented [73–75], but their prediction power is limited to the conditions adequately 

close to the corresponding steady state. 

As a better alternative to approximative kinetics, an approach was established 

and utilized based on the concept of parametric Jacobian, which covers the behavior 

of all possible kinetic models that are consistent with an experimentally observed 

operating point [76]. This approach provides an opportunity to detect and analyze 

bifurcation characteristics of the metabolic network without the need for explicit 

determination of kinetic parameters. Ensemble modeling of metabolic networks [77] 

is an elegant idea for large-scale kinetic modeling of biochemical reaction networks. 

In this method, each enzymatic reaction is broken down to its elementary reactions 
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that all follow mass-action kinetics. An ensemble of thermodynamically consistent 

kinetic models with different dynamic behavior that all converge to a reference steady 

state is collected with the help of intracellular metabolome data. This ensemble is then 

filtered by the results of perturbation experiments to filter out inconsistent models from 

the ensemble and to increase the predictability of remaining models. The approach was 

successfully applied, among others, to construct kinetic models of E. coli [78] and 

cancer metabolisms [79], leading to promising flux predictions. Table 2.1 summarizes 

different levels of information one might obtain about a metabolic network based on 

different modeling approaches and availability of experimental data. 

2.2. Top-Down Approaches 

Time series of metabolite concentrations in response to a perturbation, and also 

replicates of metabolome data at a specific steady state, both implicitly contain 

information on the structure of active metabolic network. Reverse engineering of these 

data to infer the condition-specific metabolic network without necessarily prior 

knowledge on the genome of the organism and its static metabolic network is an 

alternative to all bottom-up approaches that are based on the availability of a large-

scale stoichiometric model of the organism. Although promising, less attention has 

been paid to these top-down approaches compared to bottom-ups mainly because of 

the technical obstacles in gathering reliable metabolome data in large scale. This 

limitation will be removed with future advancements in the detection and 

quantification of intracellular metabolites such as higher coverage and temporal 

resolution. At this stage, however, several research groups have established algorithms 

and methods for reverse engineering of metabolic networks by using either time series 

or steady-state replicates of metabolite concentrations [14, 80–82]. 

2.2.1. Network Discovery Based on Time Series Data 

The use of time-series metabolite concentration data to predict the underlying 

network connectivity information first appeared in the literature about two decades 

ago. Time-lagged correlations combined with a projection technique called 

multidimensional scaling were shown to construct the structure of generic biochemical 

networks with few nodes [83]. 
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Table 2.1: Different levels of information on metabolic networks. 

1 

At the lowest level of information, one wants to know what the structure 

of the network is, representing it with an undirected (or directed, if the 

reversibility information is available) graph in which each node stands for 

a metabolite and each edge stands for a biochemical transformation. 

Alternative to the retrieval from the metabolic reaction databases, the 

structure of the network – both directed and undirected – can also be 

estimated to some extent by analyzing and reverse engineering the 

metabolome data without the use of a priori database information on the 

reactions. 

2 
At a higher level, the information on the stoichiometry of reactions can be 

incorporated, leading to a directed stoichiometric biochemical network. 

3 

Having the stoichiometric structure of the network, one can characterize 

the metabolic state in more detail by quantifying the metabolic fluxes. In 

most cases, rather than a unique flux distribution, constraints are set on 

flux values to shrink the solution space. Such modeling approaches are 

known as Constraint-Based Modeling. This level of understanding the 

active metabolic network (structure + flux distribution) has been the area 

of focus in the research community for more than a decade. In most cases, 

the information provided at this level has been satisfactory for engineering 

research to design more efficient cell factories and also recently for 

medical research to distinguish significant differences between healthy 

and disease states. 

4 

There are however certain limitations at the above level although it 

provides a network activity structure weighted with fluxes. The dynamic 

behavior of the system cannot be captured, and the predictability power of 

such models is hampered mainly because they are not considering the role 

of regulatory mechanisms in controlling the rate of biochemical reactions. 

In some cases, the regulation of reaction rates plays such a dominant role 

that it would be hard to make any prediction by just considering the flux-

based network activity structure. Here come the kinetic models into the 

picture, which take enzymatic regulations and metabolite concentrations 

into account for a dynamic and better prediction of network structure. 

 

Correlation between time-series profiles of metabolites, with the consideration 

of the delay in the influence of one metabolite on the next, is the basis of the time-

lagged correlation method for the inference of metabolic networks. The approach, 

called correlation metric construction, was later experimentally verified in vitro by 

inferring the first steps of glycolytic pathway in a 14-metabolite system [84]. Modified 

versions of the approach appeared later [85, 86]. In the latter, metabolic pathway of an 
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anticancer drug was deduced from the time-lagged correlations of corresponding 

metabolite concentration measurements. The modification introduced by the former 

work was recently improved by using mutual information similarity score rather than 

simple linear correlation [87]. The authors compared their method, called MIDER, 

with several other methods by applying it to different types of cellular networks, 

including in vitro glycolytic pathway data. The approach outperformed the other 

methods. 

Another method to reconstitute a network using time-series data is based on 

perturbation experiments around steady state. The initial curve of concentration 

changes of metabolites in response to a pulse change on the concentration of a 

metabolite is processed with the method of zero initial slopes [88]. The method 

successfully inferred the structure of glycolysis based on in vitro experimental data 

[89]. Performance comparison of the method with the correlation metric construction 

approach was later provided based on in silico data of S. cerevisiae and E. coli central 

metabolic networks [14]. An approach based also on perturbation experiments, but 

with a different formulation aiming to calculate Jacobian matrix from time derivatives 

of concentration data, was first applied to gene networks [90]. A modified version of 

the approach recently used in vivo metabolite concentration measurements from 

tomato seedlings to reconstruct quercetin glycosylation pathway [91]. 

Apart from such model-free structure identification methods, model-based 

methods use time-series metabolite concentration data not only to identify network 

structure but also to estimate proper model parameters such as rate constants of kinetic 

expressions [81]. Majority of these approaches use power-law (also called S-system) 

formulation [92] to approximate reaction kinetics. An approach, for example, used S-

system modeling with a multi-objective optimization by simultaneously minimizing 

the number of interactions and the error in the fitting [93]. They applied their method 

to major metabolites involved in ethanol fermentation. An earlier work analyzed a 

small three-metabolite network of phospholipid metabolism by combining S-system 

modeling and an evolutionary modeling method, genetic programing [94]. Later, a 

new representation of S-system approach, called S-trees, was combined with genetic 

programing to reverse-engineer yeast fermentation pathway in a more efficient manner 

by using in silico time-series concentration data of five metabolites [95]. In a 

sophisticated approach, others used symbolic regression based on genetic programing 

to infer both the structure and the model of yeast glycolytic oscillations from in silico 
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data [96]. Their use of acyclic graph encoding rather than tree-based encoding together 

with symbolic regression approach ensured the identification of parsimonious (sparse) 

models. Rather than S-system formulation, mass-action kinetics can also be used to 

infer pathway connectivity and reaction mechanism [11]. This minimizes the 

computational burden on the algorithm since only rate constants are to be estimated as 

parameters in the mass-action formulation. The authors tested their method with real 

time course experimental metabolome data of Lactococcus lactis glycolysis. A 

graphical user interface was later made available by the same group to ease the 

inference of kinetics and network architecture from dynamic data of biochemical 

pathways [97]. Genetic programing was also combined with mass-action kinetics in 

an algorithm, which ensures the estimation of biochemically more plausible models 

[98]. The small phospholipid network of [94] was inferred in a more compact way by 

this algorithm. 

2.2.2. Network Discovery Based on Steady-State Data 

The use of steady-state metabolome data to infer metabolic network structure 

has also drawn attention in the last decade. The biological variability in the metabolism 

of the organisms at around steady state is a known phenomenon due to slight variations 

in the enzyme levels or due to slight natural or environment-induced fluctuations 

within cellular processes. Slight variations in the steady-state measurements of 

metabolite levels can be informative on the network structure [12, 99, 100]. The most 

common approach here is to use the similarity measures such as Pearson correlation 

to assign edges between metabolites. One should note that such correlations are not 

necessarily strong among neighboring metabolites whereas there could be strong 

correlations among distant metabolites in the network [100]. In a comprehensive study, 

different alternative similarity measures (linear vs. nonlinear, and full vs. partial) were 

applied to in silico metabolome data belonging to two microorganisms to 

systematically analyze method performances [12]. The results revealed no clear 

superiority between linear (Pearson correlation) and nonlinear (mutual information) 

similarity measures. The best performing method was identified as nth order partial 

Pearson correlation, known also as Graphical Gaussian Modeling (GGM). Graphical 

Gaussian Modeling was also applied to metabolome data from blood serum samples 

to reconstruct human fatty acid metabolism [101]. Others [102] analyzed in silico 
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metabolome data of red blood cell metabolism by ARACNE approach [103], which is 

based on pruning mutual information scores. An elegant improvement on ARACNE 

based reverse engineering of metabolic profiling data was suggested later [104]. The 

approach puts a constraint on the possible metabolic transformations to satisfy the 

mass conservation between the connected metabolites. Synthetic data covering up to 

about 200 metabolites were generated to test the approach. One issue in such 

similarity-based approaches is that only pairwise interactions are aimed to be found. 

However, a metabolic reaction can involve more than two metabolites. Based on this 

reasoning, an attempt to also deduce triple interactions by using ternary mutual 

information was suggested [105]. Analysis of synthetic yeast glycolysis data and red 

blood cell data showed the success of this approach in capturing higher order 

interactions. 

A different approach to discover active metabolic networks from steady-state 

data is based on Lyapunov equation. In Equation 2.1, the rate vector, v, is a complex 

non-linear function of concentrations, C. For systems around steady state, the equation 

can be expressed in terms of Jacobian matrix, J, by the help of linear approximation: 

 

 𝑑𝑋

𝑑𝑡
≈ 𝐽𝑋 (2.3) 

 

With X = C – Cs, and Cs shows the steady-state metabolite concentrations. 

Jacobian matrix stores detailed information on the structure of the underlying network; 

such as the directionality of interaction, strength of interaction, and regulation type of 

interaction. For small fluctuations around steady-state, the right-hand side of Equation 

2.3 becomes zero, and the left-hand side can be expressed in such a way that a link 

between the covariance matrix of metabolome data, Γ, and Jacobian matrix is 

provided. The details of the derivation are given elsewhere [99, 106]. 

 

 𝐽Γ + Γ𝐽𝑇 = −2𝐷 (2.4) 

 

D in the equation shows the extent of fluctuations. Equation 2.4, known as 

Lyapunov equation, can be used to infer metabolic network structure since it provides 

a link between the data-based covariance matrix and network connectivity stored in J. 

Reverse-engineering metabolome data by using the Lyapunov equation was first 
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discussed via a hypothetical three-metabolite system [99]. In Chapter 3, a novel 

computational tool, JacLy, is introduced, which was developed during this thesis study 

for the inference of small-scale metabolic pathways. JacLy takes the replicates of 

steady-state data from repeated measurements at the same steady-state condition and 

then utilizes the Lyapunov equation to estimate the Jacobian matrix of the system at 

that condition. 

2.3. Kinetic Modeling of Metabolic Networks 

Kinetic models of cellular metabolism are valuable tools for rational design of 

metabolic engineering strategies and to describe complex behavior of biological 

systems. Kinetic models have been used for a large variety of applications such as 

redesign of metabolic systems [71, 107–110], in synthetic biology [111] and for the 

estimation of optimal drug concentrations [112]. Although in theory kinetic models 

are better representatives of biochemical reaction networks compared to the 

stoichiometric models, their usage in practice has been hindered because of several 

issues among which the following two are the major ones: (i) lack of sufficient reliable 

data suitable for kinetic modeling [113, 114] (mainly due to the absence of a standard 

technology and protocol to monitor, measure and quantify dynamics of metabolism), 

and (ii) the fact that kinetic parameters measured in-vitro are not applicable to the 

modeling of intracellular biochemical reactions [115] (mainly due to the harsh 

differences between the intracellular micro-environment and the micro-environment 

in the test tubes where isolated enzymes are characterized). To circumvent this issue, 

some researchers utilized in-vivo data that usually includes fast measurement of 

intracellular metabolite concentrations at different time points after a stimulus 

experiment [69, 116, 117]. They used such data as input to parameter estimation 

algorithms to find appropriate kinetic parameters for their models. However, 

computational estimation of in-vivo kinetic parameters has also been proven to be a 

very difficult task with a very low success rate [118, 119]. Below, a brief review on 

the history of development of kinetic modeling of biochemical reactions will be 

provided and recent approaches towards kinetic modeling of large-scale networks 

along with their limitations and challenges will be discussed. 

First publications on the study of rates of enzymatic reactions appeared in the 

scientific literature more than a century ago [120]. The work of Henry [121], Michaelis 
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and Menten [122] and others [120] had a significant impact on enzymology and 

biochemistry. The well-known rate expression of Michaelis and Menten and their 

experimental design based on the in-vitro measurement of the initial reaction rates at 

different substrate and/or inhibitor concentrations have been frequently used for 

kinetic characterization of many enzymes. Corresponding measured kinetic 

parameters are available in enzyme databases such as BRENDA [123]. These 

parameters and underlying Michaelis-Menten (MM) based rate expressions have 

proved useful in several fields such as Enzymatic Membrane Reactors [124], Enzyme 

Biosensors [125, 126] and others that deal with a limited number of isolated enzymes. 

However, the use of MM-based kinetics and corresponding parameters does not seem 

promising for the modeling of cellular metabolism [115, 118, 119]. Major reasons are 

given below for why the MM-based kinetic modeling approach might not be suitable 

for kinetic modeling of metabolic networks, especially the large-scale networks. 

The first reason is that each of the MM-based rate expressions are deduced based 

on one or more simplifying assumptions that might not hold true at intracellular 

conditions. For instance, MM rate law itself assumes that among the elementary steps, 

“release of the product” is the rate limiting step. Also, it comes with the assumption 

that there is no difference between the enzyme-substrate and enzyme-product 

complexes. That is why both complexes are lumped into a single intermediate in the 

derivation of the MM rate law. Equations 2.5 to 2.7 show the complete set of 

elementary reactions for an irreversible mono-substrate enzymatic reaction that is not 

regulated by any means. 

 

 𝐸 + 𝑆 ⇄ 𝐸𝑆 (2.5) 

 𝐸𝑆 → 𝐸𝑃 (2.6) 

 𝐸𝑃 → 𝐸 + 𝑃 (2.7) 

 

E stands for the free enzyme, ES and EP are enzyme-substrate and enzyme-

product complexes respectively and P stands for the product. The same reaction is 

described in the following elementary steps according to Michaelis and Menten: 

 

 𝐸 + 𝑆 ⇄ 𝑋 (2.8) 

 𝑋 → 𝐸 + 𝑃 (2.9) 
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X is the common intermediate during transformation of S to P, representing 

lumped form of ES and EP complexes. Although such simplifying assumptions might 

be appropriate for most of the enzymatic reactions, in cases where they are not valid 

for a few reactions, they can lead to very large deviations from the inherent dynamics 

of metabolism while simulating networks of biochemical reactions. This is mainly 

because the error in the calculation of the rate of even one reaction at each time point 

of the simulation can be propagated, influencing the dynamics of the whole network 

during the course of simulation. It must be mentioned that such assumptions made it 

possible for Michaelis-Menten and others to mathematically describe the rate of 

enzymatic reactions without any need for measurement of concentration of different 

enzyme forms (free enzyme and its different complexes), which otherwise would not 

be possible. 

The second reason is that the MM-based rate expressions for multi-substrate 

enzymes that are also regulated by one or more regulators are highly nonlinear with 

many unknown parameters, leading to very complex and stiff sets of differential 

equations. Even if parametrically identifiable, parameter estimation takes a great deal 

of time and effort. Also, those kinetic parameters that were measured in-vitro cannot 

be directly used in the modeling of biochemical reactions in the intracellular 

conditions, as it was discussed at the beginning of this section. 

Even after a successful parameter estimation, these models are not systematically 

open to investigate the uncertainties regarding the kinetic mechanisms (the elementary 

steps and their order) of one or more reactions. Considering the above-mentioned 

reasons and also outstanding advancements in both wet-lab technologies and 

computational platforms (both hardware and software), kinetic modeling of cellular 

metabolism asks for new modeling strategies and their corresponding experimental 

design. Regardless of the above-mentioned limitations, MM-based kinetic modeling 

approach has been commonly practiced for the modeling of different metabolic 

pathways in different organisms. Several MM-based models that have been 

successfully applied for metabolic engineering purposes are addressed in the next 

section. 
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2.3.1. Applications of Kinetic Models 

Genetic manipulation of unicellular organisms such as yeast and bacteria to 

increase the production yield of specific metabolites is a common practice in metabolic 

engineering. The modified strains are called “cell factories” and they play a crucial 

role in the reduction of the total production cost in biotechnology industries. Design 

and creation of efficient cell factories have made it possible for biotechnology-based 

productions to compete with others (mainly chemical industry products) in the market. 

Metabolic models that are able to predict the desired phenotypes are crucial for rational 

design of cell factories. There has been successful applications of kinetic models for 

the production of organic compounds such as glycerol [127], ethanol [128], succinate 

[129] and 2,3-butanodiol [130] in food industry, as well as aromatic amino acids [131, 

132]. The earlier kinetic models that have been used in metabolic engineering are 

based on mechanistic expression of some of central carbon metabolism reactions by 

using MM-based rate laws and are usually analyzed by Metabolic Control Analysis 

(MCA) framework. In an attempt to increase the production of acetoin and diacetyl in 

L. lactis, MCA was successfully applied on a small MM-based model (built using in-

vitro kinetics) to identify suitable strain designs [109]. A detailed glycolytic model of 

L. lactis was constructed later [133] and MCA was used to identify the metabolites 

affecting fluxes of L-Lactate dehydrogenase, pyruvate dehydrogenase and hexose 

transporter. The same modeling approach coupled with MCA has also been used for 

the identification of strain designs that decrease the glycerol production in S. cerevisiae 

[127]. Kinetic models have also been used to increase the uptake rate of specific 

substrates. Nishio et al. [134] used a kinetic model to improve glucose uptake rate of 

E. coli. An unexpected combination of ptsI gene overexpression and mlc knockout was 

suggested by the model. However, when tried experimentally, it could greatly increase 

the specific rate of glucose uptake. Kinetic models were also used to increase the 

uptake rate of xylose in S. cerevisiae [108] and in L. lactis [107]. 

2.3.2. Towards Large-Scale Kinetic Modeling of Metabolism 

Genome-scale stoichiometric models of metabolism are available for hundreds 

of organisms. These models do not contain any kinetic information and cannot 

simulate the dynamic behavior of metabolism in response to different signals, neither 

they provide any means for stability analysis or to understand the dynamic 
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characteristics of the system in general. Although they have been widely used in the 

prediction of active metabolic networks and/or corresponding metabolic flux 

distributions at steady-state conditions, their prediction power is limited because of not 

taking the enzyme kinetics into account. Kinetic models are better representatives of 

metabolic activity, but there are several big obstacles and challenges in constructing 

reliable kinetic models for significantly large metabolic networks. To alleviate the gap 

between stoichiometric constraint-based models and kinetic modeling, integration of 

kinetic expressions and/data has been proposed as one possible solution. To this aim, 

a few methods were presented by different researchers in recent years. Machado et al. 

[135] used randomly generated parameter samples to create a set of steady-state 

solutions for the central carbon metabolism of E. coli. The steady-state solution of the 

kinetic model could be mapped into the flux bounds of the constraint-based model, 

restricting the solution space. In another research, a simplified kinetic model was 

constructed by Cotten and Reed [136]. They integrated fluxomic, proteomic and 

metabolomics data to estimate kinetic parameters. Afterward, they incorporated the 

flux distributions as additional constraints into a constraint-based model to improve 

predictions over FBA. 

In recent years, there has been an increase in the number of attempts to create 

alternative kinetic modeling approaches for large-scale networks. Some have tried to 

make kinetic models of relatively large networks by using a generalized kinetic 

expression for all the reactions in the model. Such kinetic expressions are not 

mechanistic, and they are also known as “approximative kinetics”. Different 

approximative kinetic formats such as logarithmic-linear, power law S-systems, 

Generalized Mass Action (GMA) and linear-logarithmic were evaluated in literature 

[137], and it was concluded that linear-logarithmic format combines all desired 

properties and seems the most appropriate kinetic format. Approximative kinetic 

formats require less kinetic information than mechanistic rate laws, and they facilitate 

the development and analysis of large-scale models but ignoring many real kinetic 

behaviors. One must pay attention that the prediction power of approximative kinetic 

models is limited to the conditions close to the corresponding steady state around 

which the model is constructed. Mass Action Stoichiometric Simulation (MASS) is 

another method that has been developed to incorporate kinetic information and 

experimental data into stoichiometric reconstructions [138, 139]. One of the major 

limitations of MASS is that it does not consider the uncertainties in the calculation of 
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kinetic parameters based on high-throughput omics data. Such a limitation however 

has been alleviated in the Ensemble Modeling approach [77], in which the parameter 

space is sampled while still constrained by the thermodynamics of the reactions and a 

reference steady-state flux distribution. Among all other approaches, the ensemble 

modeling approach has a very high potential for kinetic modeling of large-scale 

metabolic networks. 

In Chapter 4 a computational tool, “Kinescope”, is introduced, which was 

developed within the scope of this thesis study for the semi-automatic construction of 

kinetic models of metabolic pathways. Kinescope is mainly constructed based on the 

idea of ensemble modeling, however the algorithm presented in the original article 

[77] was revised and several modifications were made to the algorithm. For example, 

one of the main flaws in the original algorithm is that it does not count for the changes 

in the transcription pattern between the two strains (e.g. wild type and gene deletion 

mutant) and so the relative changes in the total enzyme concentrations of different 

reactions are ignored, which can lead to large deviations in reaction rates. Also, the 

relative ratios of different forms of an enzyme (e.g. free enzyme, enzyme-substrate 

complex, enzyme-inhibitor complex, etc.) can change between two different steady-

state conditions, however it is not considered in the original algorithm. Therefore, 

simulating the models with initial conditions based on the same ratios as the reference 

steady-state can lead to significant errors. In the revised algorithm presented in this 

thesis study, both of the above issues were considered. Moreover, an experimental 

setup is suggested that is appropriate for this modeling approach and can facilitate 

filtering of the ensemble until a handful of reliable models are found. 
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3. JACLY: A JACOBIAN BASED METHOD FOR 

INFERENCE OF METABOLIC INTERACTIONS 

FROM THE COVARIANCE OF STEADY STATE 

METABOLOME DATA 

Reverse engineering metabolome data to infer metabolic interactions is a 

challenging research topic. Here, a Jacobian-based method (JacLy) to infer metabolic 

interactions of small networks (< 20 metabolites) from the covariance of steady-state 

metabolome data is introduced. The approach was applied to two different in silico 

small-scale metabolome datasets. The power of JacLy lies on the use of steady-state 

metabolome data to predict the Jacobian matrix of the system, which is a source of 

information on structure and dynamic characteristics of the system. Besides its 

advantage of inferring directed interactions, its superiority over correlation-based 

network inference methods was especially clear in terms of the required number of 

data replicates and the effect of the use of a priori knowledge in the inference. 

Additionally, Jacly uses the standard deviation of the replicate data as a suitable 

approximation for the magnitudes of metabolite fluctuations inherent in the system. 

Inference of cellular interactions by processing biomolecular data is a widely 

used approach to investigate functional properties of cellular systems. Perturbations 

due to genetic/environmental alterations and diseases lead to changes in functionality 

due to change in cellular network structure, and network inference using the 

biomolecular data of the perturbation states uncovers the changes in network structure.  

When applied to the data of metabolite levels, the approach infers metabolic 

interaction [11, 12, 140, 141]. The general trend is to use dynamic data to infer directed 

metabolic networks, and steady-state data to infer undirected networks. On the other 

hand, there are approaches that infer directed metabolic interactions from steady-state 

metabolome data by utilizing inherent intrinsic variability in such data [15, 99]. 

While the principles of conservation of mass and conservation of energy set the 

boundaries for deterministic behavior of the metabolic network, the inherent 

randomness in this network, as it exists in other biological networks, leads to small 

variability in the steady-states of the system at equivalent macroscopic conditions 

[142, 143]. From a microscopic point of view, the inherent randomness is believed to 

be the result of existence of discrete particles in the system, and molecular fluctuations 

are inherent in the mechanism by which the system evolves [106]. Continuous change 
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in micro-environment as well as multilevel complex regulatory mechanisms in the 

metabolic network are also the causes of observed variability in the steady-states of 

the system [99]. Although this intrinsic randomness introduces a great obstacle and 

difficulty in modeling and simulation of metabolic networks, at the same time it 

provides an opportunity to infer and estimate the active metabolic network at a specific 

condition/context just by reverse engineering the corresponding replicates of 

metabolome data at steady state. Considering the fact that information on interactions 

between metabolites and hence the structure of the active metabolic network is implicit 

in these data, the main questions are (i) how much information on the structure of the 

network is hidden in the data, and (ii) how one may extract as much as possible of that 

information from the data. 

One common approach that utilizes inherent variability in steady-state data is 

correlation-based inference methods, especially the Gaussian Graphical Model (GGM) 

approach. Correlation based approaches are capable of detecting strong interactions in 

the metabolic network to some extent. However, they infer interactions only in 

undirected manner, and they have limited power in the detection of weak interactions 

[12]. A directed network inference approach from steady-state metabolome data is also 

available in the literature [15, 99, 141]. The approach is based on the prediction of 

interaction strengths from the covariance of the data. The network structure 

information stored in the inherent variability of the data is reflected on the covariance 

of the data, and later used in the prediction of interaction strengths in the form of a 

Jacobian matrix. The Jacobian matrix of a cellular interaction system contains a 

significantly high amount of valuable information both on the structure and dynamic 

characteristics of the system. Numbers in this matrix easily provide us with detailed 

information on the underlying interactions in the network, such as direction of 

interactions, nature of interactions (positive or negative effects), and strengths of 

interactions [15, 99]. The Lyapunov equation provides a link between the Jacobian 

matrix of a cellular system and the covariance matrix of the replicates of steady-state 

data. This equation is the result of a Langevin type approach for description of 

stochastic processes at macroscopic level [144].  The Lyapunov equation was also used 

previously to infer differential changes in a Jacobian matrix rather than the inference 

of the network structure itself [145, 146]. In another work [147], a comparison of 

several least square and regularization methods in solving the Lyapunov equation for 

the Jacobian matrix is provided. However, in that work, the structure of the Jacobian 
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(zero and non-zero elements) is specified a priori by the stoichiometric matrix of the 

metabolic network. Therefore, the problem is reduced to the estimation of magnitudes 

for non-zero elements in the Jacobian matrix, which might not be considered as a 

network inference. 

3.1. Methods 

3.1.1. Problem Definition 

Provided that replicates of metabolome data are available for an organism in a 

specific condition, and considering the fact that information on interactions between 

metabolites and hence the structure of the metabolic network is implicit in these data, 

the problem is to extract from the data as much knowledge as possible to infer the 

active metabolic network in that condition. A metabolic reaction network can be 

mathematically represented by writing mole-balance equations around its metabolites. 

This leads to a system of differential equations that can be summarized as in the 

following equation, where C is a vector of metabolite concentrations: 

 

 𝑑𝐶

𝑑𝑡
= 𝑓(𝐶) (3.1) 

 

For a system around steady-state, a linear approximation can be made to express 

the equations in terms of a Jacobian matrix, J [99, 138]: 

 

 𝑑𝑋

𝑑𝑡
≈ 𝐽𝑋 (3.2) 

 

with X=C-Cs, and C shows concentrations fluctuating around steady-state 

values, Cs. Equation 3.2 can further be expressed as a Langevin-type equation to 

explicitly account for small fluctuations [99]: 

 

 𝑑𝑋𝑖

𝑑𝑡
= ∑ 𝐽𝑖𝑗𝑋𝑗 + √2𝐷𝑖𝛿𝑖(𝑡)

𝑗

 (3.3) 
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𝐽𝑖𝑗 =
𝜕(

𝑑𝐶𝑖

𝑑𝑡
)

𝜕𝐶𝑗
 (3.4) 

 

Where Di shows the extent of fluctuation and δi is a random number from unit 

normal distribution. As demonstrated in the literature [106], Equation 3.3 can be 

written as follows at steady-state: 

 

 𝐽Γ + Γ𝐽𝑇 = −2𝐷 (3.5) 

 

Equation 3.5 is known as the Lyapunov equation, and it provides a link between 

the Jacobian matrix of the network (J) and the covariance matrix of the replicate 

metabolome data (ᴦ) [15, 99]. 

The fluctuation matrix (D) accounts for the inherent randomness in the system. 

The diagonal elements of D reflect the magnitude of fluctuations observed on each 

metabolite, and the nondiagonal elements can be assumed as zero [99]. The equation 

is determined in terms of calculating the covariance matrix (ᴦ) while the Jacobian 

matrix (J) is provided, however, it is underdetermined in the case of calculating J while 

ᴦ is available. This is because there are n(n+1)/2 independent entries in ᴦ for an n-

metabolite system due to the symmetric nature of the covariance matrix, whereas the 

Jacobian matrix has n2 independent entries. This equation can be rearranged to a 

standard linear system of equations [15] and be represented as following: 

 

 𝐴𝑗 + 2𝑑 = 0 (3.6) 

 

In this equation, A is a square matrix of size n2×n2 derived from the covariance 

matrix, j is the vectorized form of the Jacobian matrix with size n2×1, and d is the 

vectorized form of fluctuation matrix with size n2×1, where n is the number of 

metabolites. Öksüz et al. used Equation 3.6 to solve for Jacobian matrix in an 

optimization platform using Genetic Algorithm (GA) [15]. Beside the minimization of 

the residual of Lyapunov equation, they used sparsity as a rational objective function 

to select Jacobians from the solution space that have a high number of zeros and satisfy 

Equation 3.6 as well. The multi-objective function that simultaneously maximizes the 
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number of zeros (sparsity) in the Jacobian matrix to be determined and minimizes the 

residual of Equation 3.6 can be represented as following: 

 

 𝑓 = (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑧𝑒𝑟𝑜𝑠) × 𝜆 − log10(‖𝐴𝑗 + 2𝑑‖) (3.7) 

 

The first term in the equation counts for the number of zeros in the Jacobian 

matrix that needs to be maximized, the second term counts for the residual of 

Lyapunov equation that needs to be minimized, and in total the objective function f is 

to be maximized. Lambda (λ) is a scaling factor discussed in detail in a section below. 

In order to balance between the two goals in the objective function, and also to refrain 

the solution from going to a very high number of zeros, the scaling factor was 

introduced in the objective function. 

Using the exact covariance and predefined fluctuation vector as inputs to the 

algorithm, Öksüz et al. [15] validated the theoretical applicability of this approach. 

The same objective function was used in this study, however, after careful examination 

of the problem, an extensively modified algorithm was developed. The new algorithm 

is highly robust and could be applied to the replicates of in-silico metabolome data 

generated by simulating stochastic dynamic models of metabolism using stochastic 

differential equation (SDE) solvers. 

Simulations and optimizations were performed in MATLAB (R2017a) on a 

desktop computer equipped with a 3.2GHz CPU and 4GB RAM. SDE simulations 

were performed using the SDE toolbox that is freely available as an external MATLAB 

toolbox [148]. Genetic Algorithm (GA) was implemented using the ga function in 

MATLAB’s global optimization toolbox. A built-in parallelized version of ga was 

used with the help of MATLAB’s parallel computing toolbox. Custom MATLAB 

functions were written for creation, crossover and mutation fields of GA. Maximum 

number of generations was set to 800 and a mutation rate of 5% was selected after 

careful examination of GA’s behavior. The MATLAB codes for JacLy are available 

in appendices. 

3.1.2. Optimization Pipeline 

Genetic Algorithm (GA) was used to solve Equation 3.6 for j while A and d are 

settled. At each generation of GA, bit string vectors are generated for j as individuals. 
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With a candidate bit string for the structure of the Jacobian vector (zero and nonzero 

elements in j), Equation 3.6 can be reduced to a lower dimensional system of equations 

by removing the zeros in the j and also removing the corresponding columns in A. 

 

 𝐴𝑟𝑗𝑟 + 2𝑑 = 0 (3.8) 

 

Since the Jacobian vector is sparse in structure (r<<n), this leads to considerable 

reduction in the number of unknowns to be determined, and increases the speed of the 

inference algorithm compared to the original algorithm in [15]. In Equation 3.8, jr is 

the reduced form of Jacobian vector, obtained by removing those elements 

corresponding to zeros in the suggested individual, and Ar is formed by removing the 

corresponding columns in A. Equation 3.8 can be easily treated and solved as a line 

fitting problem, in which the elements of jr are factors of the line equation and are 

estimated to make the best fit to the data. Minimizing the Euclidean norm of this fitting 

is one of the terms in the optimization objective function defined in Equation 3.7. The 

other objective is to maximize the number of zeros in the Jacobian matrix, considering 

the fact that metabolic networks are sparse networks (discussed in a section below). 

3.1.3. Constraining the Solution Space by Generating Sparse 

Individuals 

As the number of metabolites and hence size of the network increases, the 

solution space expands exponentially and the probability of finding the true candidate 

for Jacobian vector through a stochastic algorithm decreases significantly. Moreover, 

the computational time and effort increases dramatically with the size of the network 

[14]. In these situations, it is very important to constrain the solution space as much as 

possible to solve the problem (Equation 3.8) in a manageable time. One way to 

constrain the solution space meaningfully is to control the generation and reproduction 

of candidate individuals in GA such that those individuals with unwanted 

characteristics are not produced at all to be tested. Since metabolic networks are 

naturally sparse networks, setting a minimum sparsity parameter for the generated 

individuals can be used as a controlling parameter. This was another novelty in the 

algorithm compared to the original one [15]. 

It is known that metabolic networks are highly sparse, meaning that there are 

much less interactions (edges) in the network compared to the maximum possible 
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number of edges (fully connected network). The natural sparsity in several known 

metabolic networks was calculated, and it was observed that all the tested networks 

have a sparsity larger than 0.55. As a result, a minimum sparsity of 50% was selected 

as the default value in the algorithm. Just by definition of such a parameter, the solution 

space to search for non-zero values of Jacobian is greatly reduced. Sparsity parameter 

was defined as the following: 

 

 Sparsity ≡
Total number of possible edges in the network − number of edges in the network

Total number of possible edges in the network
 

 

(3.9) 

≅
Number of zeros in the Jacobian

Total number of elements in the Jacobian
 

 

Based on this definition, a sparsity value of one will mean a network with not 

even a single edge whereas a value of zero will correspond to a complete digraph. It 

must be considered that the sparsity calculated from the Jacobian and the one 

calculated from the biochemical reaction network are not necessarily the same, since 

the Jacobian also counts for the regulatory interactions which are absent in the 

biochemical reaction network, but since the number of regulatory interactions is 

usually insignificant compared to the number of reactions, the two values are very 

close. 

In order to minimize the computational effort and time, the minimum sparsity 

parameter was used as the control parameter in the creation of the initial population in 

GA, and then in the production of individuals at subsequent generations. To this aim, 

custom MATLAB functions were written and used for creation, crossover and 

mutation fields of GA in MATLAB. This was another novelty over the previous 

algorithm [15]. With this supervised control of individuals, bit-strings with unwanted 

characteristics had no chance to appear as the candidates for Jacobian vector, and it 

provided a significant contribution in constraining the solution space. The custom 

functions for GA were written in such a way that minimum sparsity is intrinsic in the 

generation of individuals and no time is consumed for control and filtering of the 

generated bit-strings. 
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3.1.4. Scanning for The Scaling Factor 

The objective function (Equation 3.7) consists of two terms, one is the residual 

of Equation 3.8 to be minimized and the other is the number of zeros in the Jacobian 

vector to be maximized. In order to balance between these two values and also to 

prevent the optimization algorithm from converging to the too sparse solutions, a 

scaling factor (λ) is multiplied with the term for the number of zeros in the Jacobian 

vector. Since this parameter directly affects the magnitude of the objective function, it 

is important to find a range of lambda that leads to sensible solutions.  Selecting very 

small values for the scaling factor leads to the conditions in which the optimization 

will not be very sensitive to the number of zeros in the Jacobian vector, and 

minimization of the residual of Equation 3.8 would be dominant in the objective 

function. On the other hand, large magnitudes of the scaling factor lead to the solutions 

with very high number of zeros in the Jacobian vector, with almost no sensitivity to 

the residual of Equation 3.8. There is always a narrow interval for the scaling factor, 

in which the optimization problem can find a Jacobian vector with optimum number 

of zeros that also leads to insignificant residual value for Equation 3.8. This interval 

for the scaling factor varies from problem to problem [15], depending on several 

factors among which are the size of the network and the accuracy and number of data 

replicates from which covariance matrix is calculated. Constant problem-specific λ 

values were used in the previous algorithm [15]. In order to circumvent the obstacles 

due to selection of a proper value for the scaling factor, it was decided to scan a range 

of values for the scaling factor in an unsupervised manner, instead of estimating a 

constant value for each specific problem. A range between 0.01-0.10 with increments 

of 0.005 was scanned. Since the algorithm is repeated 10 times due to the stochastic 

nature of genetic algorithm, it leads to a total of about 200 solutions per network 

inference problem. In this way, the optimization algorithm works repeatedly for each 

value of the scaling factor, and the optimum solution would have chance to appear 

among the candidate solutions. This was another improvement over the previous 

algorithm. 

3.1.5. Fluctuation Vector 

One of the major obstacles in utilizing the Lyapunov equation is introduced by 

the fluctuation matrix D since it may contain non-observable quantities [146]. The 
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fluctuation matrix plays a critical role in this equation, and the computed Jacobian 

matrices are highly sensitive to the values in the fluctuation matrix. After a reasonable 

fluctuation matrix is selected, the problem of solving the underdetermined equation to 

find the Jacobian can be formulated as an optimization problem. 

The existence of a non-zero fluctuation vector is both physically and 

mathematically meaningful. Fluctuation vector represents the intrinsic noise in the 

molecular interactions that are the source of stochasticity in the replicates of data 

through which the information on the structure of the network is going to be extracted. 

A non-zero fluctuation vector also prevents the equation (6) to have null space, that 

otherwise would be problematic. On the other hand, it is not very clear how to find and 

how to set the values for the fluctuation vector in equation (6). In a previous work [15], 

a constant problem non-specific small value of 0.005 was used for all metabolites to 

mimic small fluctuations around metabolites. Here, it is hypothesized that standard 

deviation of the data replicates would be an acceptable resource to be used for 

estimation of the diagonal elements of the vectorized fluctuation matrix. The use of 

data-specific fluctuation vector elements in this manner rather than using a constant 

value for all problems is another improvement in this algorithm compared to the 

original algorithm [15]. 

3.1.6. Using a Community of Estimated Jacobians Instead of Only 

One Elite Jacobian to Infer Structure of The Network 

JacLy scans a range of scaling factors (λ) in the objective function (Equation 

3.7). For each scaling factor, optimization is performed 10 times, leading to hundreds 

of optimizations. The end result of each optimization is a Jacobian vector that has the 

maximum objective function value among thousands of other individuals. This 

Jacobian is called the best-found Jacobian for each optimization. Among all the best-

found Jacobians, one can be selected as the elite Jacobian vector based on both sparsity 

and residual of Equation 3.8. In all the test studies, it was observed that if, instead of 

the elite Jacobian, a community of the best-found Jacobians in a bounded area around 

the elite Jacobian are combined and used to infer the structure of the final Jacobian, 

the accuracy of inference significantly increases. To do so, first a bounded area is 

defined around the elite Jacobian based on the number of zeros and the residual of 

Equation 3.8. For all of the tests in this study, -/+ 5% of the number of zeros in the 

elite Jacobian was selected to set the lower and upper vertical boundaries and -5% of 
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the residual of Equation 3.8 for the elite Jacobian was selected to set the lower 

horizontal boundary (see Figure 3.1). The Jacobian vectors in the bounded area are 

then binarized by setting their non-zero elements to one. The binarized vectors are then 

aligned on top of each other to form a binary matrix. Taking average over columns of 

this matrix leads to a new vector including fractional numbers between 0 and 1. The 

structure of the final Jacobian vector is then determined by setting a threshold of 0.5 

to decide for zero and non-zero values. Those elements that are smaller than the 

threshold are set to zero and others to one. A looser threshold of 0.4 increases both 

TPR and FPR. It was also observed that selecting 0.4 as the threshold leads to better 

g-scores in general, however, there is the risk of sparsity being dropped to significantly 

lower values. As a result, while selecting a threshold for the combination of best-found 

Jacobians, the use of sparsity check as a caution is advised. Figure 3.2 provides a 

schematic of this procedure.  

 

 

Figure 3.1: Selecting a bounded area around the elite Jacobian based on a percentage 

of the number of zeros in the elite Jacobian and the residual of Equation 3.8. 
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Figure 3.2: A schematic example of alignment and combination of Jacobian vectors 

in the selected community to come up with the final structure. 

 

In this study, a mathematical proof is not provided to prove how using a 

community of best-found Jacobians around the elite Jacobian can improve the 

inference results. However, as far as tested with different in-silico datasets and noisy 

covariances, using such combinatorial approach not only leads to better inference 

results, but also it stabilizes the final output of the algorithm when applied to the same 

problem repeatedly. The use of a community of best-found Jacobians is another 

novelty over our previous work [15], which reported the results based on only the elite 

Jacobian. 

3.1.7. Quantification of Inference Performance 

While True Positive Rate (TPR) and False Positive Rate (FPR) are two quantities 

suitable for the evaluation and comparison of network inference results, g-score can 

be used as a single parameter to quantify performance of any inference method. g-

score is calculated by the following equation: 

 

 𝑔 − 𝑠𝑐𝑜𝑟𝑒 = √(𝑇𝑃𝑅 × (1 − 𝐹𝑃𝑅)) (3.10) 
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3.2. Results 

3.2.1. Use of in silico Covariance Matrices for Metabolic Models of 

S. cerevisiae and E. coli 

The Lyapunov equation (Equation 3.5, and Equation 3.6 in the rearranged form) 

is underdetermined in terms of calculating the Jacobian matrix J given ᴦ and D as 

inputs, meaning that there is more than one Jacobian matrix satisfying the Lyapunov 

equation for each pair of ᴦ and D (see Methods section). To evaluate the applicability 

and performance of our method (JacLy) in predicting the network structure through 

the prediction of the Jacobian matrix, two kinetic models that are well known in the 

literature were used. The first model covers 13 metabolites of yeast glycolysis [68], 

and the second model covers 18 metabolites of central carbon metabolism in E. coli 

[69]. True Jacobian matrix was calculated for each kinetic model around its 

corresponding steady-state by using the detailed rate expressions and parameters in the 

models. Here, the same strategy as in the previous work [15] was followed, however, 

the highly improved genetic-algorithm-based dual objective formulation was tested by 

the in silico generated metabolome data, instead of using the exact covariance 

matrices. The purpose of this section is to demonstrate the improvements in the current 

version of the algorithm compared to the previously published one [15]. Having the 

true Jacobian matrix and predefined fluctuation matrices, the exact covariance matrix 

was calculated from equation (5). These covariance matrices are called “exact” 

covariances since they hold true to the Lyapunov equation. Exact covariances and 

corresponding fluctuation matrices were used as inputs to JacLy to evaluate its 

performance in finding J. 

JacLy uses genetic algorithm for optimization, which is a stochastic optimization 

algorithm. Therefore, it is important to solve for the equation for enough number of 

times until a constant reproducibility parameter is achieved. For both models, a 

constant reproducibility is obtained after 20 runs. Out of 20 repetitive runs for each 

model, 19 and 18 of them could find Jacobian matrices that are in complete agreement 

(100% TPR and 0% FPR) with the true networks of yeast and E. coli models, 

respectively. These results show a great improvement over the previous work [15], 

which had a reproducibility parameter of 50% and 5% for yeast and E. coli models, 

respectively. On our desktop computer, each run takes around two minutes for the 
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yeast model and six minutes for E. coli, showing a 10 fold increase in computational 

speed over the previous work [15]. Such significant improvements in reproducibility 

and computational speed have been achieved solely by modifying the algorithm and 

corresponding functions (see Methods section). One should note that since JacLy 

incorporates a λ scan with 10 replicate solutions, the whole process of generating 200 

solutions for S. cerevisiae took one hour while the time in the case of E. coli was two 

hours. 

The performance of JacLy was also evaluated by using noisy covariances as 

input. To this aim, the same procedure as in the previous work [15] was used to add 

noise to the exact covariance of the yeast model. Random numbers were sampled from 

a normal distribution with a mean of 1 and a standard deviation of 0.005. This 

corresponds to a dataset with 50% noise [149]. The random numbers were then 

symmetrically multiplied with the elements of the exact covariance to generate a noisy 

covariance matrix. This was repeated to generate ten different noisy covariances and 

JacLy was applied on each. The average TPR and FPR are 74% and 5%, respectively.  

These numbers were 73% TPR and 11% FPR in the previous work [15]. These results 

show a considerable increase in the performance of JacLy compared to its ancestor in 

terms of the FPR value since exactly the same problem was solved with only 

improvements in the algorithm based on (i) the use of reduced form of the Lyapunov 

equation, (ii) the use of sparsity constraint, (iii) scanning the scaling factor and (iv) the 

use of a community of candidate Jacobian vectors, as discussed in detail in the 

Methods section. Additionally, note that a threshold of 0.4 in the combination of 

Jacobian vectors rather than 0.5 leads to a TPR of 84% and an FPR of 8%. 

It was reported in the literature that statistical methods such as LASSO and 

Tikhonov regularization fail to solve Equation 3.6 whenever the condition number of 

matrix A is significantly large [147]. In order to evaluate the sensitivity of the method 

to the condition number of A, different fluctuation matrices along with the true 

Jacobians of yeast and E. coli models were used as inputs to Equation 3.5, and different 

exact covariances were calculated leading to different A matrices covering a range of 

condition numbers from 106 to 1025. JacLy was applied to each of those covariance 

matrices along with their corresponding fluctuation matrices. It was observed that the 

condition number of A doesn’t have any influence on the performance of JacLy. Even 

for the largest condition numbers, JacLy was able to find the true Jacobian with similar 

computational time and reproducibility parameters. It should be kept in mind that not 
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being sensitive to the condition number of A in solving Equation 3.6 doesn’t mean that 

the calculated Jacobian matrix is not sensitive to the changes in the fluctuation matrix. 

Indeed, Equation 3.6 is frequently ill-conditioned as it is also reported in other studies 

[147]. Small changes in the fluctuation matrix D lead to big changes in the calculated 

Jacobian matrix. 

3.2.2. Use of in silico Metabolome Data for Metabolic Models of      

S. cerevisiae and E. coli 

At this stage, JacLy was applied to the replicates of in silico metabolome data. 

Stochastic versions of yeast [68] and E. coli [69] models were used to generate 1000 

replicates of steady-state metabolome data in silico. In this case, it was necessary to 

come up with a fluctuation matrix to be used as input to the method along with the 

covariance of metabolome data. As it was mentioned in the Methods section, it was 

hypothesized that standard deviation of data might be a reasonable source to be used 

for the construction of a fluctuation matrix. In a stochastic dynamic system, all or some 

of the sources of stochasticity are usually unknown. In the Lyapunov equation the 

fluctuation matrix D is the parameter counting for sources of stochasticity. Since 

standard deviation is a measure of variation in data, it was used as a reasonable source 

to construct the fluctuation matrix. Table 3.1 shows the inference results of JacLy 

applied to in-silico data for the yeast and E. coli with a comparison to GGM-based 

inference results. In GGM analysis a cut-off of 0.01 was used for p-values to decide 

on the significance of partial Pearson correlation values. The networks predicted by 

JacLy are directed while those estimated by GGM are undirected. 

It must be considered that solving Equation 3.6 for the Jacobian vector is highly 

sensitive to the fluctuation vector d, and so it is of critical importance to come up with 

a fluctuation vector that is most reasonable for data replicates. Normalization of the 

data was thought as a way that might improve the correspondence between the 

covariance matrix ᴦ and the fluctuation matrix D in the Lyapunov equation. Data 

normalization doesn’t have any effect on the results of similarity-based inference 

methods such as GGM. In-silico metabolome data for the yeast and E. coli were 

normalized to between 0 and 1 by dividing each value to the maximum value in the 

dataset. Normalized data was then used to make both covariance matrix ᴦ and 

fluctuation matrix D. When applied to the normalized data, JacLy showed a significant 
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improvement in inference results for the yeast data (0.95 TPR and 0.13 FPR, with a g-

score of 0.91) while it had no effect on the inference results of E. coli data. 

 

Table 3.1: Inference results for the in silico metabolome data, comparison of JacLy 

and GGM. 

 In-silico data for Yeast In-silico data for E. coli 

 TPR  FPR  g-score TPR  FPR  g-score 

JacLy 0.66 0.08 0.78 0.69 0.29 0.70 

GGM 0.76 0.12 0.82 0.63 0.12 0.74 

 

Another parameter influential on the result of network inference is the number 

of replicates in the data. Previous GGM-based analysis for the inference of metabolic 

interactions using in silico metabolome data for the same networks analyzed here 

showed a sharp decrease in the quality of the inference after the number of replicates 

decreased below 200 [12]. Here, the effect of number of datapoints on the inference 

results of JacLy was tested. Of 1000 replicates initially generated by stochastic 

differential equations, 100 randomly chosen replicates were used in the inference of 

the network for S. cerevisiae. Repeating this 10 times and taking the average, a TPR 

of 0.73 and an FPR of 0.16 was obtained by using JacLy, corresponding to a g-score 

of 0.78. On the other hand, GGM-based inference for the same randomly chosen 100 

replicates resulted in average TPR and FPR values of 0.42 and 0.03, respectively, with 

a g-score of 0.63.  Therefore, an advantage of JacLy over GGM is its considerable 

robustness in terms of the number of replicate datapoints used in the 

covariance/correlation calculation. 

In the process of inferring a network for a set of metabolites, there are cases 

when existence (true positive) or non-existence (true negative) of an edge between two 

metabolites might be available as prior knowledge. Such information can be used as 

additional input to inference algorithms, resulting in a shrinkage of the solution space 

and so enhancing the computational speed and performance of the algorithm. The 

effect of using prior knowledge about non-existent edges on the performance of JacLy 

was tested. To this aim, 7 and 20 zeros of the true Jacobian matrices were selected as 

priorly known true negatives for yeast and E. coli models, respectively. This 

corresponds to 5% and 7% of the total number of elements in Jacobian matrices for 

yeast and E. coli models. This procedure was repeated 10 times for each model and 
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JacLy was applied to data each time. The average TPR and FPR over 10 repetitions 

for the yeast model are 0.75 and 0.08, respectively, leading to a g-score of 0.83. For E. 

coli, an average TPR of 0.79 and an average FPR of 0.31 was obtained, leading to a g-

score of 0.74. These results show a significant improvement compared to the 

corresponding values in Table 3.1. Based on the results, JacLy performs considerably 

better when a very small portion of true negatives is introduced as prior knowledge. 

Specifying true negatives contributed to a better prediction of true positives. The 

correlation-based GGM approach, on the other hand, is not suitable for the use of prior 

knowledge. 

In addition to the binary structure of estimated Jacobians, which is the main 

output in inferring the structure of an active metabolic pathway, the best-found 

Jacobians in the selected area around the elite Jacobian - before binarization and 

combination – were also compared with the true mechanistic Jacobians of the kinetic 

models, calculated by using detailed rate expressions and parameter values in those 

models. Since JacLy has a stochastic nature, the optimization was repeated three times 

on each SDE data. Afterward, the Spearman correlation was used to make the 

comparisons. The medians of correlations are around 0.45 and 0.25 for yeast and E. 

coli models, respectively while the medians of p-values are less than 0.0001 in all cases 

(See Figure 3.3). 

The kinetic-model-based true Jacobian matrices, together with SDE-data-based 

covariance matrices were used as inputs to the Lyapunov equation to calculate an exact 

fluctuation matrix. The exact fluctuation matrix was then compared to the 

approximated one estimated by JacLy. It was observed that the exact D contained off-

diagonal non-zero elements as opposed to the estimated one. Some of the elements had 

the same magnitude as the diagonal elements. On the other hand, our very simple 

method of estimating D led to quite acceptable TPR and FPR values in those case 

studies, and the standard deviation of data is logically related to the source of natural 

fluctuation in the system. Therefore, our estimation approach can be used because of 

its simplicity and applicability. However, research should be performed to develop a 

more accurate method of estimating D. On the other hand, one should note that SDE 

simulator algorithms and toolboxes, such as the one used in this study, have stability 

problems in terms of the generated noise when applied to highly nonlinear systems. 

This could also be another reason behind the inconsistency between the covariance of 
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SDE data and the true Jacobian matrix, which directly affects calculation of the 

fluctuation matrix from the Lyapunov equation. 

 

 

Figure 3.3: The Spearman correlation between the predicted Jacobian matrix values 

by JacLy and the calculated values from the kinetic models are shown here for both 

Yeast and E.coli. JacLy was applied three times (due to its stochastic nature) for each 

organism, and the correlation was calculated for each of the best-Jacobians 

determined around the elite Jacobians. The results are given below in the form of 

boxplots. (a) The results for the yeast. 1: 60 best-found Jacobians, 2: 100 best-found 

Jacobians, 3: 96 best-found Jacobians. (b) The results for E. coli. 1: 12 best-found 

Jacobians, 2: 100 best-found Jacobians, 3: 11 best-found Jacobians. 
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3.3. Discussion 

JacLy is a network inference algorithm with specific focus on the inference of 

small-scale metabolic networks from steady-state data. It has significant advantages 

over its ancestor [15]. Here, algorithmic improvements which led to significant 

improvements in the runtime and prediction power of JacLy are reported. Major 

improvements were (i) Vectorizing all possible computations, significantly improving 

the runtime, (ii) the use of the reduced form of the Lyapunov equation by removing 

the columns corresponding to zero Jacobian vector entries, improving the runtime, (iii) 

the use of sparsity constraint in genetic algorithm to improve the runtime by 

eliminating the possibility of generating low-sparsity individuals, (iv) scanning the 

scaling factor rather than fixing it for each specific problem, making the algorithm 

more flexible and independent from the effect of chosen parameter value and 

improving the prediction power, and (v) the use of a community of candidate Jacobian 

vectors rather than using the elite Jacobian vector in the inference, improving the 

prediction power of the results. Inferring metabolic pathways via prediction of 

Jacobian matrices is also useful in estimating dynamic and mechanistic characteristics 

of the system under investigation. 

One issue that is worth mentioning at this stage is the applicability of the 

approach in terms of the size of the network to be inferred. For example, each run for 

the E. coli model consumed about twice more computational time compared to that of 

yeast, while the E. coli model has only five more metabolites compared to the yeast 

model, an almost 40% increase in the number of network nodes. This dramatic increase 

in computational time with respect to network size – whenever the calculation of 

Jacobian matrix is involved in a network inference method – was observed and 

explained in previous studies [14], and it is indeed one of the major drawbacks of using 

such methods to infer larger networks. From this aspect, JacLy is more suitable as a 

small-scale (< 20 metabolites) network inference method. There are several network 

inference methods in the literature with a specific focus on small-scale networks [150, 

151]. Since different cellular functions are biologically attached to smaller metabolic 

pathways or subnetworks, it still makes sense to be able to infer active subnetworks 

for a specific cellular condition rather than inferring the whole network. Table 3.2 

summarizes some characteristics of JacLy through a comparison with GGM as one of 

the most common methods in inference of biological networks. 
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Table 3.2: A summarized comparison of JacLy with GGM. 

 

Currently, steady-state metabolome measurement data that are reported in the 

literature are limited in terms of the number of replicates. This limitation is not specific 

to our method; commonly used correlation-based inference methods are also suffering 

 JacLy GGM 

Computational time versus 

network size 

- NP-hard problem 

- Computational time 

increases 

exponentially by 

increasing the network 

size 

No sensible change in the 

computational time from 

very small to very large 

networks 

Accuracy versus number 

of data replicates 

- Accuracy is a 

moderate function of 

number of data 

replicates 

- For lower number of 

data replicates, it 

outperforms 

correlation-based 

methods 

- Accuracy is a very 

strong function of 

number of data 

replicates 

- Reduction in the 

number of data 

replicates has a 

very high negative 

impact on the 

quality of inferred 

network 

Directionality of inferred 

network 
Directed Undirected 

Meaningfulness of 

inferred edge’s weights 

- Mechanistically 

meaningful 

- Inferred values for the 

Jacobian elements are 

measures of 

interaction strengths 

and their sign 

(positive/negative)  

points into the nature 

of interaction 

- Correlation values 

cannot be used as 

any physical or 

mechanistical 

parameter of the 

system 
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from low number of data replicates and usually lead to significantly high number of 

false positives. Also, in case of real metabolome data, experimental measurement 

errors interfere with natural stochasticity of the system leading to lower quality in 

predicted networks. Moreover, since our method relies on the fluctuation matrix (D) 

as one of the inputs, this external noise is more troublesome. To test the applicability 

of our approach to the real metabolome data, random noises were introduced to the 

SDE data of the yeast model by following the approach presented by Fuente et al. 

[149]. For each metabolite, the random noise was sampled from a normal distribution 

with mean zero and a standard deviation equal to 10% of the variance in the steady 

state concentration of that metabolite. Ten sets of noisy data were generated by using 

this approach. The in-silico data already includes randomness due to natural 

stochasticity since it was generated using an SDE simulation toolbox. This random 

noise was still added to the data to count for the other sources of error such as 

measurement errors. Afterward, Jacly and GGM were both applied to the noisy data 

sets and the inference results were compared with those obtained from the noise-free 

SDE data. The average g-score dropped from 0.78 (noise-free data) to 0.71 (noisy 

datasets) for JacLy and from 0.82 to 0.79 for GGM. These results provide a theoretical 

base for applicability of our approach to real metabolome data that includes other 

sources of randomness in addition to the natural stochasticity of the system. Although 

these results show that GGM is less sensitive to the noisy data (as expected) but one 

should remember that these tests were performed using a 1000 replicate SDE data, that 

is a very high and unrealistic number to repeat same measurements to obtain 

metabolome data. As it was shown in section 3.2, JacLy clearly outperforms GGM for 

lower number of data replicates. 
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4. KINESCOPE: A TOOL TO EASE KINETIC 

MODELING OF METABOLIC PATHWAYS 

Dynamism is undoubtedly a major aspect of life. All organisms dynamically 

interact with their environment. Whether it is a single-celled form of life such as 

bacteria or a complex multicellular organism such as human, they continuously receive 

signals from their environment and respond to those signals as needed. From a systems 

point of view, living things are “dynamical systems”. To study a system, both 

experimental and theoretical playgrounds are needed. Mathematical models are 

required for theoretical analysis of the system. Originally, to model something means 

to describe it in another language or format. Mathematics is the language of logic, 

formalism, intuition and quantity, hence mathematical modeling of a system makes it 

easier to analyze that system. All mathematical models come with “abstraction and 

simplifications” of the real system under study. As a result, there isn’t any model that 

can exactly and precisely describe a system and its behavior in different conditions. In 

other words, there is no “perfect” model. This is specially the case for more “complex 

systems” which include significantly higher number of interacting components, while 

both the components and the interactions among them may be of different natures and 

follow different mechanisms. In addition, the aggregate behavior of such a system, 

although being a function of the behavior of its individual components, may not be 

derivable from a linear combination of those individual behaviors. Figure 4.1 is a 

schematic representation of a complex system with a limited number of components. 

The more the number of simplifying assumptions in a model, the less would be its 

applicability to describe the real system in different conditions. Indeed, the models are 

not meant to be perfect. As it was mentioned, a mathematical model is a tool for 

theoretical analysis of a system. It leads to generation of hypotheses, through which 

new experiments can be designed, and based on the results of the experiments the 

model will be modified to be a better representative of the system. The modified model 

then can be used for the generation of a new hypothesis, and this cycle (Figure 4.2) 

can continue until the model is good enough to reliably represent the system at 

conditions of interest. (i) Not being able to experimentally verify a hypothesis, and (ii) 

not being able to simulate a model in a manageable time are two major barriers in the 

above-mentioned cycle and both can be circumvented by advancements in 

experimental and computational technologies. 
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Figure 4.1: An example of a complex system with limited number of components. 

The response of the system (H) depends on the input signals and the state of the 

system at the time of receiving those signals. The aggregate behavior of the system 

(Ф), although can be a function of the behavior of individual components (f1, f2, ...), 

it may not be derivable by using a linear combination. The figure is intended to be a 

general representation of a complex system, but as an special example, m, x, e and r 

can be interpreted to be metabolites, cofactors, enzymes and reaction rates 

respectively. 

 

 

Figure 4.2: Modeling Cycle. Theory and experiment are complementary. Through 

the modeling cycle that makes a link between theoretical and experimental 

playgrounds, the knowledge about a system can be increased. 
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When presenting a model, it is moral to clearly state the conditions in which it 

can represent the behavior of the system fairly well, and also the conditions in which 

the model may behave completely different from the real system. Also, whenever 

using a model, it is critical to pay attention to those conditions. Using a model in 

conditions where it is not meant to represent the system can lead to generation of false 

hypotheses and subsequent confusion. Metabolism is a dynamical system. The 

network of biochemical transformations continuously responds to the concentration of 

metabolites and enzymes. Sensitivity and specificity of the enzymes to their substrates 

and regulators is an important factor in this process. However, since transcriptional 

regulation of the metabolism and the subsequent changes in total enzyme 

concentrations play a major role in the determination of the metabolic fluxes, a model 

that only includes kinetics of the enzymatic reactions cannot represent the dynamic 

behavior of the metabolism shifting from one steady-state to another, even if it is 

comprehensively covering the kinetics of all reactions. Hence, kinetic models of 

metabolic pathways are applicable to the situations where the dynamic response of the 

metabolism is the result of enzyme kinetics only, such as when the perturbation is not 

strong enough to change the transcription pattern. However, even in cases where 

changes in the transcription significantly contribute to the determination of the new 

state, the first few seconds of the dynamic response can be fairly represented by the 

kinetics of enzymatic reactions alone. It is mainly because the enzymes in the 

corresponding metabolic pathways respond (primary response) to the perturbations 

much faster than the transcriptional regulatory network (secondary response), and it 

takes a little time for the signal to be transduced to the changes in the transcriptional 

pattern and subsequently to the changes in the total enzyme concentrations. 

A brief introduction on how modeling can help with theoretical analysis of a 

system and how it provides a link between theory and experiment was given above. 

The system under study in this research is a metabolic network (a network of 

intracellular biochemical reactions). Definitions and concepts that are required for 

mathematical modeling of the dynamics of a metabolic network are provided in the 

following section. Further, the algorithm and mathematics behind “Kinescope” are 

comprehensively covered. Kinescope is a computational tool with a graphical user 

interface (GUI) that was developed in MATLAB as another product of this research. 

The main idea behind design and development of Kinescope is to create a tool that can 

be used for semi-automatic construction and analysis of kinetic models of biochemical 
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reaction networks, and to take a further step towards large-scale kinetic modeling of 

metabolic networks. The algorithm behind Kinescope was designed mainly based on 

the idea of ensemble modeling [77]. Metabolic ensemble modeling was introduced in 

2008 as a novel approach for kinetic modeling of biochemical reaction networks. The 

approach relies mainly on a steady-state metabolic flux distribution vector as a 

necessary input to the algorithm and benefits from mass action kinetics as a well-

known rate expression by breaking the enzymatic reactions into their elementary 

reaction steps. Many different parameter vectors are calculated in a way that, when 

simulated, all converge to the same reference steady state flux distribution. Collected 

models are then screened based on the additional experimental data from different 

experiments. Major and minor additions and changes were made to the original work, 

as they will be discussed in next sections. A major modification for example, was 

automatic construction of a symbolic Jacobian matrix that can be used to 

mathematically verify stability of each kinetic model without any need for simulations. 

Such a modification had a great impact on the required time for collection of stable 

models in the ensemble and on the reliability of the collected models as well. 

Kinescope is made upon 16 computational functions for collection and screening of 

kinetic models, a core script with several functions for GUI objects creation and 

interactions, and in total, several thousand lines of coding in MATLAB. All the 

functions and scripts have been written from scratch. In the final sections of this 

chapter, two case studies will be provided as examples of applying Kinescope to small 

scale networks with different regulatory mechanisms, and results will be discussed. 

4.1. Method 

Before constructing a mathematical model, it is better to clearly determine the 

following objects for the system under study: 

• System Components and their Features: Components of a system are those 

elements that can interact with each other, and the behavior of the system is 

determined through those interactions. In a graphical representation of a system, 

the components are represented as graph nodes, and the interactions among the 

components can be shown by connecting the corresponding nodes to each other 

with directed or undirected edges. Components of a system may be of different 

categories, and every single component in a category can still have its own 
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individual identity. Each category may have one or more features assigned to it. 

When modeling a system, one must determine “what the required features are 

for each category of the components”. These two questions can help to find the 

required features: (i) What “data” is being used to make the model? and (ii) What 

are the “variables” of the system and how they relate the system inputs to the 

outputs? In the case of metabolic networks, metabolites and enzymes are two 

categories of the components. In the classical modeling approach that is based 

on Michaelis-Menten type rate expressions, intracellular abundance of 

metabolites (𝐶𝑚) is usually the only feature assigned to the metabolites, while 

the enzyme abundance (𝐶𝑒), rate of the reaction it catalyzes (𝑣), and a kinetic 

rate expression (𝑓) can be three suitable features for the enzymes. 𝐶𝑚, 𝐶𝑒 and 𝑣 

are quantities while 𝑓 is a mathematical expression. Figure 4.3 is an abstract 

representation of a Michaelis-Menten (MM)-based kinetic model of a small 

metabolic network. 

• System Boundary: A real (physical) or imaginary boundary that separates the 

system under study and all of its components from the rest of the universe. In the 

case of metabolic networks, the real boundaries can be cell membrane or the 

membrane of the organelles such as mitochondria, but usually it is an imaginary 

boundary around the metabolites and enzymes of the pathway under study in 

kinetic modeling. 

• Functional Units: Functional units of a system are those components that make 

an operation on what they receive as inputs, and their outputs depend on that 

operation. The operation can be represented in the form of a mathematical 

expression, and it is usually where the essence of mathematical modeling resides. 

In the case of the metabolic system modeled in Figure 4.3, the functional units 

are the enzymes. 

• Model Variables: Model variables are those features that can change during 

simulation of the model. They may be independent or dependent variables. In the 

model represented in Figure 4.3, concentration of the metabolites (𝐶𝑚) are 

independent variables while rate of the reactions (𝑣) are dependent variables. 

Consider that model variables are not necessarily the same as the system 

variables. For example, enzyme abundance (𝐶𝑒) is a variable of the system in a 

metabolic network, and it can change according to the changes in the 
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transcription, translation and post-translational modification processes. But since 

there is no mathematical expression to count for those changes, it is not 

considered as a variable of the model in MM-based model of Figure 4.3. 

• Model Parameters: Model parameters are those quantitative values that do not 

change during the simulation of the model. There can be two types of parameters: 

(i) “Model-wide parameters” are those that belong to the model as a whole. They 

usually set a condition for all the components of the system and changing them 

can lead to changes in the aggregate behavior of the system. When coding a 

model into a computational language, model-wide parameters can be defined as 

“global parameters” in the code. (ii) Local parameters are usually the constants 

in mathematical expressions that represent the operation of the functional units 

in the system. In the case of the MM-based model of Figure 4.3, maximum 

reaction rates (𝑣𝑚𝑎𝑥) and Michaelis-Menten constants (𝐾𝑀𝑀) are among local 

parameters of the model. Consider that, although the parameter values do not 

change during a simulation, they can be tuned before each simulation to study 

how the changes in those parameters (if practically possible) affect the behavior 

of the system. 

• System Features: Any quality or quantity that can identify the system and its 

behavior as a whole, without focusing on its individual components, can be a 

feature of the system. Cell morphology, growth rate and transcription pattern are 

among other features that can be used in the study of unicellular organisms as 

systems. In the case of a metabolic system, a suitable feature is the metabolic 

flux distribution vector, which is a vector containing the rates of all the reactions 

in the corresponding network. 

• System State: The state of a system can be represented as a collection of the 

variable values for one or more types of system variables. In the case of the 

metabolic system presented in Figure 4.3, the state of the system can be 

determined by the vector of metabolite concentrations (𝐶𝑚), or with a set that 

includes both metabolite concentrations and reaction rates ({𝐶𝑚, 𝑣}). For a 

dynamic system, the concept of state has a tighter relation with the concept of 

time. The system can be either in a transition state or in a steady state. To 

determine the state of the system at a specific time point is similar to taking a 

snapshot of the system and looking at the values of its variables at that instant. 
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Figure 4.3: MM-based kinetic modeling of a small metabolic network. 

 

A literature review on the kinetic modeling of metabolic networks was given in 

Section 3 of Chapter 2. The limitations of classical MM-based modeling and the 
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obstacles in front of such modeling approach were highlighted. A few approaches 

towards large-scale kinetic modeling of metabolism were also reviewed, among which 

the Ensemble Modeling (EM) approach [77] seems very potent and was selected as 

the template algorithm to make Kinescope. As a part of this research, the original 

algorithm of EM went through several revisions and modifications. For example, a 

few simplifying assumptions are used to automatically break down each enzymatic 

reaction of a given stoichiometric metabolic model into a series of elementary 

(association/dissociation) reactions that their combination governs the catalytic 

mechanism of the bulk reaction. Such simplifying assumptions that are necessary for 

automatic construction of the structure of the kinetic model at the elementary reactions 

level out of a stoichiometric model, and the reasoning behind them, has never been 

clearly stated in previous works. Also, after automatic construction of the model at the 

elementary reactions level, Kinescope provides an interface for the user to manually 

edit and curate the elementary steps of those reactions whose catalytic mechanisms are 

well studied in the literature and the simplifying assumptions may not apply to them. 

Another novelty that greatly enhances the process of collecting stable parameter sets 

(parameter sets that lead to a stable steady state) is automatic construction of the 

symbolic Jacobian matrix of the kinetic model. Since all the elementary reactions 

naturally follow the mass action kinetics, it is possible to have a symbolic Jacobian 

matrix of the model through symbolic derivation of the balance equations around each 

molecule. This matrix is then used to evaluate the stability of the model for each 

parameter set, making it possible to reject those parameter sets that mathematically 

lead to unstable models, without any need for simulating them. This modification not 

only leads to collection of more reliable models, but also it decreases the required time 

for construction of the ensemble by several times. Another issue that is worth 

mentioning is the possible change in the relative abundance of different forms of an 

enzyme between two different steady states. For instance, after a gene deletion, not 

only the total enzyme concentrations may change, but also the distribution among its 

different forms (e.g. free enzyme, enzyme-substrate complex, …) may also change. 

Since each steady state has a finite threshold of stability within which the model 

simulations can converge back to that state, simulating the models for a new state (e.g. 

after gene deletion) with the same initial condition as the reference state may not work 

even for true parameter sets. In the following sections, the algorithm behind Kinescope 

is comprehensively explained. 
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4.1.1. Construction of the Ensemble 

Based on the ensemble modeling approach, suitable dynamic models for a 

metabolic network are found through two main modules. The first module is to collect 

so many different models (or the same model structure but with different parameter 

sets) that, regardless of their dynamic behavior, all converge to a reference steady-state 

and are mathematically stable at that state (Figure 4.4). The collection is called the 

“Ensemble” and this first module is titled “Construction of the Ensemble” in this text. 

The second main module is to use the experimental data from different experiments to 

reduce the size of the ensemble. The conditions of each experiment are applied to all 

models in the ensemble, each model is simulated, and the corresponding model 

variables are compared to those observed/measured in the experiment. If the model 

output is not in agreement with the experimental observation, that model will be 

rejected from the ensemble. This procedure can continue until a handful of reliable 

models remain. In this manner, each experiment acts as a filter to screen the models in 

the ensemble (Figure 4.5). This module is titled “Screening the Ensemble”. 

The submodules for construction of the ensemble are explained in the following 

subsections. But before that, essential and optional inputs to the module are introduced. 

The optional inputs, whenever available, can efficiently constrain the sampling space 

for the parameters, hence effectively avoiding the unwanted models to be collected in 

the ensemble. Figure 4.6 is a schematic representation of how different submodules 

are organized to construct the ensemble. 
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Figure 4.4: Collecting stable models with different parameter sets that all converge 

back to the reference steady state after a small perturbation. 

 

 

Figure 4.5: Screening the ensemble. The same condition/perturbation (e.g. change in 

the substrate concentration) as the experiment is introduced to all the models in the 

ensemble. Only those models that have a similar response (e.g. change in the 

secretion rate of a specific metabolite) to the experimental observation remain in the 

ensemble, others are rejected. 
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• Essential Inputs: 

i) Stoichiometric model of the metabolic network (including the 

stoichiometric matrix and corresponding list of metabolites and reactions). 

ii) A reliable metabolic flux distribution vector, obtained from a reference 

experiment at a stable steady-state condition. 

• Optional Inputs: 

i) A regulatory matrix, containing information on which enzymatic reactions 

are regulated (inhibited/activated) by which molecules, and what the 

mechanism of the regulation is. This matrix can be the same size as the 

stoichiometric matrix with the same row and column labels for metabolites 

and reactions. However, instead of the stoichiometric coefficients, the 

corresponding numbers are some predefined codes (Table 4.1) to determine 

the type of regulation. By default, this matrix is considered as an empty 

matrix in Kinescope. Since it directly influences the structure of the model 

at the elementary reactions level, it is highly recommended to provide this 

matrix for known regulatory interactions in the network. For example, the 

regulatory matrix of the model shown in Figure 4.3 would be a 5×6 matrix 

in which the only non-zero element is the one corresponding to metabolite 

𝑚5 and reaction 𝑣1 (element (5,1)), with a value of -1. 

 

Table 4.1: Codes for different regulation mechanisms. 

Regulation Mechanism Code 

Competitive Inhibition -1 

Uncompetitive Inhibition -2 

Mixed Inhibition -3 

Allosteric Inhibition -4 

Allosteric Activation +4 

 

ii) Standard Gibbs free energy of the reactions, whenever available, can 

constrain the parameter sampling space through the expressions that are 

given in Section 4.1.6. This data does not need to be provided for all the 

reactions. By default, Kinescope assigns “NaN” values to the Gibbs energy 

feature of each reaction. This data can be partially provided only for those 
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reactions with a known Gibbs energy, to constrain the parameter sampling 

space as much as possible. 

iii) Lower and Upper bounds for metabolite concentrations are needed to 

calculate lower and upper values of the Gibbs free energies of the reactions 

(Section 4.1.6). By default, the lower bound for the concentration of all 

metabolites is zero and the upper bound is 100 mM, which is much higher 

than the frequently reported concentrations for most of the metabolites in 

different metabolome datasets. Whenever experimental data is available on 

the intracellular concentration of some metabolites in several different cell 

conditions, such data can be used to come up with tighter boundaries for 

those metabolites. 

 

 

Figure 4.6: Flowchart of the algorithm for construction of the ensemble. 
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4.1.2. Automatic Break Down of the Enzymatic Reactions to their 

Elementary Steps 

Kinescope automatically generates a set of elementary reactions for each 

enzymatic reaction of the stoichiometric model based on the following three 

assumptions: 

Assumption 1: The “biochemical transformation step” can be ignored in many 

enzymatic reactions (Figure 4.7.a). After the attachment of all the required substrates 

and cofactors to their respective positions on the enzyme, reactants are transformed 

into the products of the reaction through manipulation of their chemical bonds. This is 

the transformation step which is in the middle of attachment of reactants and release 

of products. When dealing with the kinetics of the enzymatic reaction, the 

transformation step can be ignored in many cases, either because the quasi steady-state 

assumption of Briggs and Haldane [152] applies to the condition, or because the rapid 

equilibrium approximation of Michaelis and Menten [122] can be applied. 

 

 

Figure 4.7: Automatic break down of enzymatic reactions to their elementary steps. 

a) Assumption 1, Biochemical transformation step is ignored. b) Assumption 2, 

Multi-substrate reactions are assumed to be random sequential. c) In the case of 

irreversible reactions, all the elementary steps before the transformation step are still 

reversible. d) Reforming the model to elementary reactions expands the 

stoichiometric matrix. Number of molecules and reactions increase significantly. 
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Assumption 2: Multi-substrate reactions are assumed to follow a random 

sequential mechanism. Unlike reactions with Ping-Pong mechanism, in a sequential 

mechanism, all reactants are first attached to the enzyme and the transformation 

happens afterward. Sequential reactions can be ordered or random. In ordered 

reactions, some reactants cannot attach to the enzyme unless the specific reactants 

attach first. In this case, the number of possible scenarios to reach to the final complex 

for the transformation is restricted. The random sequential is the more general case, in 

which different reactants can attach to the free enzyme, leading to different complexes 

that are able to become the final complex for the transformation (Figure 4.7.b). 

Assumption 3: For irreversible reactions, the elementary steps before the 

transformation step are considered reversible, while all the other steps are irreversible 

(Figure 4.7.c). The idea behind this assumption is that the reactants can leave the 

enzyme before any transformation occurs. 

Each column of the stoichiometric matrix in the original model becomes a matrix 

with several columns and rows in the elementary reactions model (Figure 4.7.d). It 

must be considered that, although the number of molecules and reactions increase 

significantly in the elementary reactions model, it is not an exponential increase and 

follows a linear manner. As the elementary reaction steps are constructed for each 

reaction of the stoichiometric model, they are categorized into two groups. Those 

elementary reactions that can be lined up in the form of a series of steps, starting from 

attachment of the first reactant to the enzyme and ending with release of the last 

product, are categorized as the “Main Elementary Reactions” (MER). Those 

elementary reactions that occur in parallel to the main steps, such as attachment of a 

competitive inhibitor to the free enzyme, are categorized as the “Side Elementary 

Reactions” (SER). This categorization helps with calculation of the rate constants 

(demonstrated in section 4.1.7). 

4.1.3. Manual Curation of the Elementary Steps 

Since the assumptions used for automatic construction of the elementary 

reactions do not apply to all enzymatic reactions, the possibility to manually curate 

and edit those elementary steps for reactions of choice is a necessity. Whenever 

information on the kinetic mechanism of a reaction is available in the literature, its 

elementary steps must be evaluated, and if the automatically generated ones are 
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different from the available information, they must be edited accordingly. Kinescope 

provides an interface to make it possible for the user to manually edit the elementary 

steps of such reactions. (Figure 4.8.b). An example of a reaction that would need 

manual curation is fermentation of pyruvate to lactic acid by the lactate dehydrogenase 

enzyme. This reaction follows an ordered sequential mechanism in which NADH is 

the first molecule to attach to the enzyme, after that it is possible for the pyruvate to 

associate. A comparison of the automatically generated elementary steps for this 

reaction with the one based on the literature is presented in Figure 4.8.a. The 

corresponding screen shots of the graphical interface of Kinescope for this task are 

also provided. 

 

 

Figure 4.8: Manual curation of the elementary steps. a) Reaction catalysed by lactate 

dehydrogenase, example of an ordered sequential mechanism. b) Screen shots of the 

graphical interface of Kinescope to evaluate and edit the elementary steps. 
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4.1.4. Automatic Construction of the Kinetic Model 

Direct attachment of two molecules to form a complex and direct detachment of 

a molecule from a complex are the most basic events in molecular interactions. An 

elementary reaction is a chemical reaction in which one or two chemical species react 

directly to form products in a single reaction step. Elementary reactions are hence the 

most fundamental kinetic events at the molecular level. The rate of any elementary 

reaction fundamentally follows the law of mass action. Based on the law of mass 

action, the rate of the reaction is directly proportional to the product of the 

concentrations of the reactants. A rate constant is then multiplied by the product of the 

concentrations of the reactants to make the proportionality relation into an equality 

relation. 

After the model structure at the elementary reactions level is constructed through 

previous steps, a mass action rate expression is assigned to each elementary reaction 

in the model. Using these rate expressions and the stoichiometric matrix of the model 

(automatically constructed by scanning all the elementary reactions), mass balance 

equations are written around each molecule of the model, including both metabolites 

and enzyme fractions. However, all the metabolite concentrations are scaled by their 

corresponding concentrations at the reference steady-state, and those of free enzyme 

and enzyme complexes are scaled by the total concentration of the corresponding 

enzyme. Consider the following reaction being the 𝑖𝑡ℎreaction in the stoichiometric 

model, in which the molecule 𝑆 is isomerized to the molecule 𝑃 by catalytic activity 

of enzyme 𝐸𝑖: 

 

 𝑆
𝐸𝑖
↔ 𝑃 (4.1) 

 

The elementary mechanism for this reaction is: 

 

 
𝑆 + 𝐸𝑖 

𝑣𝑖1

⇄
𝑣𝑖2

 𝐸𝑖𝑆 

𝑣𝑖3

⇄
𝑣𝑖4

 𝐸𝑖 + 𝑃 (4.2) 

 

The mass action rate law assigned to the first elementary reaction would be: 
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 𝑣𝑖1 = 𝑘𝑖1[𝐸𝑖][𝑆] (4.3) 

 

𝑘𝑖1 is the rate constant and brackets around a molecule indicate the concentration 

of that molecule. The right side of each mass action rate expression can be multiplied 

and divided by to the product of the total concentration of the corresponding enzyme 

(𝐸𝑖 in this case) and the concentration of the corresponding metabolite (𝑆 in this case) 

at the reference steady-state: 

 

 
𝑣𝑖1 = 𝑘𝑖1[𝐸𝑖,𝑇][𝑆]𝑟𝑒𝑓

[𝐸𝑖]

[𝐸𝑖,𝑇]
 

[𝑆]

[𝑆]𝑟𝑒𝑓
 (4.4) 

 

 𝑣𝑖1 = 𝑘𝑖1
′ [𝑒𝑖][𝑠] (4.5) 

 

 
𝑘𝑖1

′ = 𝑘𝑖1[𝐸𝑖,𝑇][𝑆]𝑟𝑒𝑓 & [𝑒𝑖] =
[𝐸𝑖]

[𝐸𝑖,𝑇]
 & [𝑠] =

[𝑆]

[𝑆]𝑟𝑒𝑓
 (4.6) 

 

Normalizing the variables or scaling them by a reference state to make them 

dimensionless is a common practice in physics and engineering and the original work 

of ensemble modeling [77] also made use of such practice. Concentration of the 

corresponding metabolite at the reference steady-state ([𝑆]𝑟𝑒𝑓 in this example) and the 

total concentration of the corresponding enzyme ([𝐸𝑖,𝑡𝑜𝑡𝑎𝑙] in this example) are now 

intrinsic to the lumped rate constant (𝑘𝑖1
′  in this example). Since concentrations of the 

metabolites at the reference state are constant values and do not change under any 

circumstance, they do not introduce any challenge in using the normalized equations 

for simulation of the kinetic model around steady-states other than the reference state. 

Simulating the model around the reference steady-state leads to the convergence of all 

the normalized metabolite concentrations (such as [𝑠]) to 1. Convergence to other 

values around other steady-state conditions represents the fold change in the 

concentration of the metabolites with respect to the reference state. The total 

concentration of the enzyme ([𝐸𝑖,𝑡𝑜𝑡𝑎𝑙]) however, can change from one condition to 

another (e.g. as a result of change in transcription and translation). Although it does 

not introduce any challenge to simulate the model around the reference steady-state (it 

does not introduce any problem in the stage of collecting different models in the 

ensemble), using the same value to simulate conditions other than the reference state 
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(e.g. when filtering the collected models in the ensemble by using experiments that 

have different conditions than the reference state) is not rational. To take this fact into 

consideration, the fold change in the total enzyme concentration with respect to the 

reference state is multiplied by the lumped rate constants. For example, the rate 

expression of the Equation 4.5 is modified as follows: 

 

 𝑣𝑖1 = 𝑘𝑖1
′ 𝑓𝐸𝑖,𝑇

[𝑒𝑖][𝑠] (4.7) 

 

 
𝑓𝐸𝑖,𝑇

=
[𝐸𝑖,𝑇]

[𝐸𝑖,𝑇]
𝑟𝑒𝑓

  (4.8) 

 

𝑓𝐸𝑖,𝑇
 equals 1 at the reference state. The format of Equation 4.7 is used as the 

universal format for the rate expressions in the construction of the kinetic models in 

Kinescope. Whenever proteomics data is available for the both states, it can be used 

for the calculation of 𝑓𝐸𝑖,𝑇
 parameters to simulate the models around a steady-state 

other than the reference state. In the absence of proteomics data, transcriptomics data 

can be used under the assumption that protein expression is roughly proportional to 

gene expression. As a result, having proteomics and/or transcriptomics data for the 

reference state is highly recommended although they are not necessary to construct the 

ensemble. Also, perturbation-observation experiments can be designed around the 

reference state to filter the collected models in the ensemble without any need for 

proteomics or transcriptomics data. For instance, the dynamic change in the 

concentration of one or more metabolites in the first few seconds/minutes after a 

perturbation can be used as an observation to filter the collected models. It is mainly 

because, even if there would be a change in the total enzyme concentration in response 

to a perturbation, it can be ignored for the first few seconds/minutes after the 

perturbation is introduced. 

In Kinescope, all the rate expressions and the balance equations, along with other 

required commands, are automatically written into a text file and saved as an m-file of 

MATLAB, which can be directly used as the input model file to an ODE solver for 

simulation. A schematic of the automatically constructed kinetic model at the 

elementary reactions level is presented in the Figure 4.9, which can be compared to 

the Figure 4.3. Both kinetic models are for the same stoichiometric metabolic model, 
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however the one in Figure 4.3 is MM-based while the latter is at the elementary 

reactions level.  

 

 

Figure 4.9: Representation of the automatically constructed kinetic model at the 

elementary reactions level for the stoichiometric model of Figure 4.3. 
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In Kinescope, there is a dynamic relation between the model and the 

corresponding m-files so that the changes made in the model are directly translated 

into the m-files. Such characteristic of Kinescope, in addition to the semi-automatic 

construction of models at the elementary reactions level, makes it a valuable tool for 

studying the dynamism of biochemical reaction networks. 

4.1.5. Automatic Construction of the Symbolic Jacobian Matrix 

A Jacobian matrix contains valuable information on dynamic characteristics of 

a dynamic system. It is especially useful to evaluate the stability of a system at any of 

its steady states (equilibrium points). A dynamic system can be represented with the 

following equation: 

 

 𝑑𝑦

𝑑𝑡
= 𝒇(𝑦) (4.9) 

 

In the case of a metabolic network being the system, 𝑦 would be a vector 

containing the abundance data of the molecules (as in Figure 4.9). The steady states of 

the system can be found as solutions to the following equation: 

 

 𝒇(𝑦) = 𝟎 (4.10) 

 

A system can have more than one steady-state, as it is usually the case for the 

metabolic networks. However, not all steady states of a system are “stable”. Around a 

stable steady state, the system has the tendency to keep that state. In other words, it 

has the tendency to converge back to that state in response to perturbations. On the 

other hand, when a steady state is unstable, the system has no tendency to keep that 

state. That means it will diverge from that state in response to the slightest 

perturbations. Having a stable steady-state experimental condition as the reference 

point to collect the kinetic models in the ensemble, those parameter sets that lead to 

mathematically unstable models are of no interest and must be rejected. The stability 

of a model at a given steady state can be mathematically evaluated by calculating the 

eigenvalues of the Jacobian matrix of the model. If all the eigenvalues have a negative 

real part, the model is mathematically stable at that state. On the other hand, even if 
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only one of the eigenvalues has a positive real part, the model is unstable. If the largest 

real part of the eigenvalues is zero, the stability of the model at that state is unknown 

and further investigation is required. For a dynamic system represented by Equation 

4.9, elements of the Jacobian matrix can be determined by the following equation: 

 

 

𝐽𝑖𝑗 =
∂(

𝑑𝑦𝑖

𝑑𝑡
)

𝜕𝑦𝑗
 (4.11) 

 

𝐽𝑖𝑗 is the element of the Jacobian matrix at row 𝑖 and column 𝑗. For example, the 

first element of the symbolic Jacobian matrix of the model in Figure 4.9 is as the 

following: 

 

 
∂(

𝑑[𝑒1]
𝑑𝑡

)

𝜕[𝑒1]
= −𝑓𝐸1,𝑇

( 𝑘11
′ [𝑚1] +  𝑘14

′ [𝑚5]) (4.12) 

 

Since mass action kinetics is used as the rate expression for all the elementary 

reactions, a symbolic Jacobian matrix of the model can be automatically constructed 

by symbolic differentiation of the balance equations with respect to the concentration 

of each molecule. Having the symbolic Jacobian matrix, each parameter set sampled 

from the parameter space can then be used to come up with a numerical Jacobian 

matrix. In this way, the unstable parameter sets can be easily rejected without any need 

for simulations. In Kinescope, if the largest real part of the eigenvalues is zero, the 

corresponding parameter set is still added to the ensemble, since it still has the potential 

to make a stable model. But all the parameter sets that lead to eigenvalues with positive 

real parts are rejected. Based on our experience, only a small percentage of the sampled 

parameter sets lead to stable models. For example, out of 10000 sampling for the 

kinetic model of Figure 4.9, between 100 to 200 stable models can be collected, that 

is less than 2%. In addition, the required time to evaluate the stability of the models is 

incredibly reduced by using the symbolic Jacobian compared to collection of stable 

models through simulation. For example, evaluating the stability of 10000 parameter 

sets for the model of Figure 4.9 takes around 30 seconds by using the Jacobian matrix, 

while it takes more than 75 minutes to simulate those 10000 models on the same 
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computer. This equals to 150 times reduction in the required time for collection of 

stable models in the ensemble. 

4.1.6. Thermodynamic Constraint 

In biochemistry, the degree to which a substance tends to combine with another 

is defined as “affinity”. For each elementary reaction, the association and dissociation 

rate constants are directly related to the affinities between the involved molecules. 

Affinities, and hence the rate constants, cover a wide range of values in the real number 

system. In addition, the dynamic behavior of a biochemical reaction can be extremely 

sensitive to some rate constants. Considering these facts, it is not a wonder that the 

kinetic space is extremely huge, even for a small metabolic model, covering so many 

different dynamic behaviors. Rational constraints, however, can be exerted on the 

kinetic space to reduce its size, making it more feasible to find the appropriate rate 

constants. Anchoring the dynamic models to a reliable steady-state flux distribution, 

obtained from the reference experiment (explained in the next section), is a very 

effective method to constrain the kinetic space [129]. In addition, for the reversible 

reactions in the stoichiometric model, standard Gibbs energy change of the reactions 

along with the lower and upper bounds on the metabolite concentrations can be used 

as a further constraint in calculating the corresponding rate constants. Consider the 

reversible reaction of Equation 4.1 as an example, with standard Gibbs energy change 

of reaction ∆𝐺𝑖
°and reference steady-state flux value 𝑉𝑖,𝑟𝑒𝑓: 

 

 𝑆
𝐸𝑖
↔ 𝑃           ∆𝐺𝑖

° , 𝑉𝑖,𝑟𝑒𝑓 (4.13) 

 

The standard Gibbs energy change of a reaction is a measure of how far the 

standard-state (for substances in liquid solutions: 1 bar pressure and 1 Molar 

concentration) is from the equilibrium, and is related to the equilibrium constant of the 

reaction (𝐾𝑒𝑞) through the following equation in thermodynamics: 

 

 ∆𝐺°

𝑅𝑇
= −ln (𝐾𝑒𝑞) (4.14) 
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𝑅 being the universal gas constant and 𝑇 stands for the temperature. The Gibbs 

energy change of reactions in liquid solutions is not a strong function of the pressure 

(even if it was, the pressure is not that different from the standard-state in almost all 

studies of biological cells). However, by changes in the concentrations of the involving 

molecules, the Gibbs energy change of a reaction (∆𝐺) can deviate significantly from 

its value at the standard-state (∆𝐺°). The following equation links the Gibbs energy 

change of the reaction to the concentration of the reactants and products: 

 

 ∆𝐺

𝑅𝑇
= ln(𝑄) − ln (𝐾𝑒𝑞) (4.15) 

 

𝑄 is the reaction quotient. The following equations can be written for the 

example reaction of Equation 4.13: 

 

 ∆𝐺𝑖

𝑅𝑇
= ln(𝑄𝑖) − ln (𝐾𝑖,𝑒𝑞) (4.16) 

 

 
𝑄𝑖 =

[𝑃]

[𝑆]
 (4.17) 

 

Using the lower and upper boundaries for the metabolite concentrations, two 

extreme cases can be determined for the reaction quotient. One is when the 

concentration of the products of the reaction are at the minimum ([𝑃]𝑙𝑏) and the 

concentration of the reactants are at the maximum ([𝑆]𝑢𝑏), and the other one is when 

the concentration of the products is at the maximum ([𝑃]𝑢𝑏) while the concentration 

of the reactants being at the minimum ([𝑆]𝑙𝑏). Using Equations 4.14, 4.16 and 4.17, 

the two extreme cases for the example reaction can be represented as the following: 

 

 
(

∆𝐺𝑖

𝑅𝑇
)

𝑙𝑏
=  𝑙𝑛 (

[𝑃]𝑙𝑏

 [𝑆]𝑢𝑏
) +

Δ𝐺𝑖
°

𝑅𝑇
 (4.18) 

 

 
(

∆𝐺𝑖

𝑅𝑇
)

𝑢𝑏
= 𝑙𝑛 (

[𝑃]𝑢𝑏

[𝑆]𝑙𝑏
) +

Δ𝐺𝑖
°

𝑅𝑇
 (4.19) 
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On the other hand, the elementary reaction steps of the example reaction 

(Equation 4.13) can be written as the following: 

 

 
𝑆 + 𝐸𝑖 

𝑣𝑖1

⇄
𝑣𝑖2

 𝐸𝑖𝑆         𝑅𝑖1 (4.20) 

 𝐸𝑖𝑆 

𝑣𝑖3

⇄
𝑣𝑖4

 𝐸𝑖 + 𝑃         𝑅𝑖2 (4.21) 

 

𝑅𝑖1 and 𝑅𝑖2 are the reversibility parameters for the 2 elementary steps of reaction 

𝑖 in the stoichiometric model. The reversibility parameter for each elementary reaction 

step is defined as the following: 

 

 
𝑅𝑖𝑗 =

min (𝑣𝑖(2𝑗−1), 𝑣𝑖(2𝑗))

max (𝑣𝑖(2𝑗−1), 𝑣𝑖(2𝑗))
 (4.22) 

 

Based on the definition, the reversibility parameter is always greater than or 

equal to 0 and less than or equal to 1. It equals to 0 for an elementary step that is not 

reversible and equals to 1 when the corresponding elementary step is at the chemical 

equilibrium (𝑣𝑓𝑜𝑟𝑤𝑎𝑟𝑑 = 𝑣𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑). At the reference steady-state, the sign of the 

corresponding metabolic flux (𝑉𝑖,𝑟𝑒𝑓 in this example) can be used to reformulate 

Equation 4.22 to the following: 

 

 𝑅𝑖𝑗,𝑟𝑒𝑓 = (
𝑣𝑖(2𝑗),𝑟𝑒𝑓

𝑣𝑖(2𝑗−1),𝑟𝑒𝑓
)𝑠𝑖𝑔𝑛(𝑉𝑖,𝑟𝑒𝑓) (4.23) 

 

Taking the logarithm of both sides leads to: 

 

 ln(𝑅𝑖𝑗,𝑟𝑒𝑓) = 𝑠𝑖𝑔𝑛(𝑉𝑖,𝑟𝑒𝑓)(ln(𝑣𝑖(2𝑗),𝑟𝑒𝑓) − ln (𝑣𝑖(2𝑗−1),𝑟𝑒𝑓)) (4.24) 

 

Summing up Equation 4.24 over all the elementary steps of reaction 𝑖 and 

substituting the elementary rates as defined by Equation 4.7 leads to: 
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∑ ln(𝑅𝑖𝑗,𝑟𝑒𝑓)

𝑛𝑖

𝑗=1

= 𝑠𝑖𝑔𝑛(𝑉𝑖,𝑟𝑒𝑓) (∑ ln(𝑣𝑖(2𝑗),𝑟𝑒𝑓)

𝑛𝑖

𝑗=1

− ∑ ln(𝑣𝑖(2𝑗−1),𝑟𝑒𝑓)

𝑛𝑖

𝑗=1

) 

= 𝑠𝑖𝑔𝑛(𝑉𝑖,𝑟𝑒𝑓) (∑ ln(𝑘𝑖(2𝑗)
′ )

𝑛𝑖

𝑗=1

− ∑ ln(𝑘𝑖(2𝑗−1)
′ )

𝑛𝑖

𝑗=1

+ ln([𝑝]) − ln ([𝑠])) 

(4.25) 

 

𝑛𝑖 is the number of elementary reaction steps for reaction 𝑖, while [𝑝] and [𝑠] are 

the normalized concentrations (see Equation 4.6) and equal to 1 at the reference steady-

state. So, Equation 4.25 becomes: 

 

 

∑ ln(𝑅𝑖𝑗,𝑟𝑒𝑓)

𝑛𝑖

𝑗=1

= 𝑠𝑖𝑔𝑛(𝑉𝑖,𝑟𝑒𝑓) (∑ ln(𝑘𝑖(2𝑗)
′ )

𝑛𝑖

𝑗=1

− ∑ ln(𝑘𝑖(2𝑗−1)
′ )

𝑛𝑖

𝑗=1

) (4.26) 

 

On the other hand, based on the elementary steps (Equations 4.20 and 4.21), the 

equilibrium constant of the example reaction 𝑖 can be written as the following: 

 

 
𝐾𝑖,𝑒𝑞 =

𝑘𝑖1𝑘𝑖3

𝑘𝑖2𝑘𝑖4
 (4.27) 

 

Substituting for the rate constants by using Equation 4.6 leads to: 

 

 
𝐾𝑖,𝑒𝑞 =

𝑘𝑖1
′ 𝑘𝑖3

′

𝑘𝑖2
′ 𝑘𝑖4

′ ×
[𝑃]𝑟𝑒𝑓

[𝑆]𝑟𝑒𝑓
=

𝑘𝑖1
′ 𝑘𝑖3

′

𝑘𝑖2
′ 𝑘𝑖4

′ × 𝑄𝑖,𝑟𝑒𝑓 (4.28) 

 

Taking logarithm of both sides and rearranging the terms gives: 

 

 
∑ ln(𝑘𝑖(2𝑗)

′ )

𝑛𝑖

𝑗=1

− ∑ ln(𝑘𝑖(2𝑗−1)
′ )

𝑛𝑖

𝑗=1

= ln(𝑄𝑖,𝑟𝑒𝑓) − ln (𝐾𝑖,𝑒𝑞) (4.29) 

 

Combining Equations 4.26 and 4.29 while considering Equation 4.16 leads to 

the following equation: 
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∑ ln(𝑅𝑖𝑗,𝑟𝑒𝑓)

𝑛𝑖

𝑗=1

= 𝑠𝑖𝑔𝑛(𝑉𝑖,𝑟𝑒𝑓)
∆𝐺𝑖,𝑟𝑒𝑓

𝑅𝑇
 (4.30) 

 

Since the exact values for the Gibbs energy change of reactions at the reference 

steady-state are not known, and to take the uncertainties into account, the equality 

constraint of Equation 4.30 can be transformed to the following inequality constraint 

by using Equations 4.18 and 4.19: 

 

 
(

∆𝐺𝑖

𝑅𝑇
)

𝑙𝑏
≤ 𝑠𝑖𝑔𝑛(𝑉𝑖,𝑟𝑒𝑓) ∑ ln(𝑅𝑖𝑗,𝑟𝑒𝑓)

𝑛𝑖

𝑗=1

≤ (
∆𝐺𝑖

𝑅𝑇
)

𝑢𝑏
 (4.31) 

 

Equation 4.31 can be used to verify if the direction of the net flux (𝑉𝑖,𝑟𝑒𝑓) is 

thermodynamically allowable, and it can be reformulated to the following: 

 

 

−𝜎𝑖,𝑙𝑏 ≤ ∑ ln(𝑅𝑖𝑗,𝑟𝑒𝑓)

𝑛𝑖

𝑗=1

≤ −𝜎𝑖,𝑢𝑏 (4.32) 

 

While 𝜎𝑖,𝑙𝑏 and 𝜎𝑖,𝑢𝑏 are defined as: 

 

 
𝜎𝑖,𝑙𝑏 = min (|(

∆𝐺𝑖

𝑅𝑇
)

𝑙𝑏
| , |(

∆𝐺𝑖

𝑅𝑇
)

𝑢𝑏
|) (4.33) 

 

 
𝜎𝑖,𝑢𝑏 = max (|(

∆𝐺𝑖

𝑅𝑇
)

𝑙𝑏
| , |(

∆𝐺𝑖

𝑅𝑇
)

𝑢𝑏
|) (4.34) 

 

For each reversible reaction in the stoichiometric model, Equation 4.32 can be 

used to put a constraint on the reversibility parameters of its elementary reactions. How 

this thermodynamic constraint affects the kinetic space in which the rate constants are 

calculated is demonstrated in the next section. 

4.1.7. Calculating the Elementary Reactions Rates 

In Kinescope, the elementary steps for each reaction are categorized into two 

groups (as can be also seen in Figure 4.9). Those elementary reactions that can be lined 
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up in the form of a series of steps, starting from attachment of the first reactant to the 

enzyme and ending with release of the last product, are categorized as the “Main 

Elementary Reactions (MER)”. Those elementary reactions that occur in parallel to 

the main steps, such as attachment of a competitive inhibitor to the free enzyme, are 

categorized as the “Side Elementary Reactions (SER)” (Not every reaction may have 

side elementary steps). At a steady-state condition, the net rate of each main 

elementary reaction step (𝑣𝑓𝑜𝑟𝑤𝑎𝑟𝑑 − 𝑣𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑) equals the steady-state flux value of 

the corresponding bulk reaction in the stoichiometric model. So, the following 

equation holds true for the MERs at the reference steady-state: 

 

 𝑣𝑖(2𝑗−1),𝑀𝐸𝑅 − 𝑣𝑖(2𝑗),𝑀𝐸𝑅 = 𝑉𝑖,𝑟𝑒𝑓   ∀ (𝑖 ∈ {1, … , 𝑀} & 𝑗 ∈ {1, … , 𝑁𝑖}) (4.35) 

 

𝑀 is the number of reactions in the stoichiometric model and 𝑁𝑖 is the number 

of the main elementary steps for the corresponding reaction 𝑖. Equation 4.35 is an 

algebraic system of linear equations with 𝑁𝑖 independent equations and 2𝑁𝑖 unknowns. 

𝑁𝑖 more independent equations are required to solve for the elementary reaction rates. 

The reversibility parameters defined for each elementary reaction step in the previous 

section (Equations 4.22 and 4.23) can be used to provide the remaining required 

equations. By combining Equations 4.23 and 4.35, the following formulas can be 

obtained for the calculation of the MER rates at the reference state: 

 

 
𝑣𝑖(2𝑗−1),𝑀𝐸𝑅 =

𝑉𝑖,𝑟𝑒𝑓

1 − 𝑅
𝑖𝑗,𝑟𝑒𝑓

𝑠𝑖𝑔𝑛(𝑉𝑖,𝑟𝑒𝑓)
 (4.36) 

 

 

𝑣𝑖(2𝑗),𝑀𝐸𝑅 =
𝑅

𝑖𝑗,𝑟𝑒𝑓

𝑠𝑖𝑔𝑛(𝑉𝑖,𝑟𝑒𝑓)
𝑉𝑖,𝑟𝑒𝑓

1 − 𝑅
𝑖𝑗,𝑟𝑒𝑓

𝑠𝑖𝑔𝑛(𝑉𝑖,𝑟𝑒𝑓)
 (4.37) 

 

For the reversible reactions in the stoichiometric model, the reversibility 

parameters can be sampled according to the inequality constraint of Equation 4.32. 

Otherwise, they are sampled randomly between 0 and 1. Using the sampled 

reversibility parameters in Equations 4.36 and 4.37, different elementary reactions 

rates are calculated in a way that the reference steady-state flux distribution is satisfied. 

Unlike MERs, the SER rates are not bound to the steady-state fluxes of bulk reactions, 
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and they cannot be calculated in the same manner as mentioned above. However, the 

net flux for each SER step must be equal to zero at any steady-state (e.g. the 

concentration of dead-end molecules such as enzyme-inhibitor complexes does not 

change at a steady-state). As a result, the following equation holds true for SERs at the 

reference steady-state: 

 

 𝑣𝑖(2𝑗−1),𝑆𝐸𝑅 − 𝑣𝑖(2𝑗),𝑆𝐸𝑅 = 0 (4.38) 

 

In the current version of Kinescope, 𝑣𝑖(2𝑗−1),𝑆𝐸𝑅 rates are randomly sampled 

between a lower and upper bound and Equation 4.38 is used to calculate 𝑣𝑖(2𝑗),𝑆𝐸𝑅 

rates. Bimolecular rate constants have an upper limit that is determined by how 

frequently molecules can collide, and the fastest such processes are limited by 

diffusion. In general, a bimolecular rate constant has an upper limit of 1010 𝑀−1𝑠−1. 

As a result, 𝑣𝑖(2𝑗−1),𝑆𝐸𝑅 rates are sampled according to the following inequality 

constraint: 

 

 0 < 𝑣𝑖(2𝑗−1),𝑆𝐸𝑅 < 1010[𝑋]𝑢𝑏[𝐸𝑖]𝑢𝑏 (4.39) 

 

[𝑋]𝑢𝑏 and [𝐸𝑖]𝑢𝑏 are the upper bound concentrations for the corresponding 

metabolite (e.g. a competitive inhibitor) and corresponding enzyme respectively. The 

default upper bound (if an upper bound vector is not provided as input) for all 

molecules in the system is 100 𝑚𝑀 (Section 4.1.1). The highest ever reported value 

for the total protein content of biological cells has been 4 million proteins per cubic 

micron (1 𝑓𝐿) cell volume [153]. Using Avogadro number, this equals to a 

concentration of almost 6.6 𝑚𝑀. Consider that this concentration is for the total 

protein content of the cell and not for an individual protein. On the other hand, the 

most abundant protein found in a cell has been reported to be RplL in E. coli with an 

estimated value of 110,000 copies per cell [154], that is roughly equal to 167 𝜇𝑀. 

Considering these numbers, a concentration of 300 𝜇𝑀 was selected as the default 

upper bound for each enzyme. Using these default upper bound values for the 

metabolites (100 𝑚𝑀) and enzymes (300 𝜇𝑀), the inequality constraint of Equation 

4.39 becomes: 
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 0 < 𝑣𝑖(2𝑗−1),𝑆𝐸𝑅 < 3 × 103 𝑀𝑠−1 (4.40) 

 

The above inequality is used as the default constraint to sample the SER rates. 

Whenever a specific vector can be provided as the upper bound for the metabolites 

(e.g. from the metabolomics datasets), and/or proteomics data is available at the 

reference steady-state condition, such data can be utilized through Equation 4.39 to 

come up with more specific constraints than Equation 4.40. 

At this point, the rates of all the elementary reactions in the model can be 

determined for different samples of reversibility parameters and SER rates. 

Calculation of the corresponding rate constants is explained in the next section. 

4.1.8. Sampling the Enzyme Fractions and Calculating the Rate 

Constants 

At the reference steady-state, normalized metabolite concentrations (e.g. [𝑠]) and 

the fold change in the total enzyme concentration (𝑓𝐸𝑖,𝑇
) are equal to 1. As a result, 

Equation 4.7 can be used in the following way to calculate the elementary rate 

constants: 

 

 𝑘𝑖𝑗
′ =

𝑣𝑖𝑗

[𝑒𝑖𝑗]
 (4.41) 

 

[𝑒𝑖𝑗] is the fractional concentration of the corresponding form of enzyme 𝑖 at the 

elementary reaction 𝑗. For example, [𝑒𝑖1] is the fractional concentration of the free 

form of enzyme 𝑖 (represented as [𝑒𝑖] in Equation 4.7), and [𝑒𝑖2] is the fractional 

concentration of the “enzyme 𝑖-first substrate” complex (e.g. 𝐸𝑖𝑆 in the example 

reaction of Equation 4.1). While the elementary reaction rates are provided according 

to the previous section, fractional concentrations for each enzyme are sampled 

according to the following constraints: 

 

 

(∀ 𝑖, 𝑗: 0 < [𝑒𝑖𝑗] < 1) & (∑[𝑒𝑖𝑗]

𝑛𝑖

𝑗=1

= 1     ∀ (𝑖 ∈ {1, … , 𝑀} & 𝑗 ∈ {1, … , 𝑛𝑖})) (4.42) 
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𝑀 being the number of total reactions in the stoichiometric model and 𝑛𝑖 being 

the number of elementary steps for the corresponding reaction 𝑖. In the current version 

of Kinescope, fractional concentrations are sampled randomly from a uniform 

distribution while satisfying the constraints of Equation 4.42. More sophisticated 

sampling methods may improve the computational efficiency and may be applied in 

the future versions. 

4.1.9. Collecting Stable Models in the Ensemble 

After the structure of the kinetic model at the elementary reactions level is 

constructed, as demonstrated in sections 4.1.2 to 4.1.4, different sets of rate constants 

are calculated through the methodology described in sections 4.1.7 and 4.1.8, leading 

to generation of kinetic models with different dynamic characteristics. Although all 

the generated kinetic models satisfy the reference flux distribution as their steady-state 

solution (Equation 4.10), only those models that are stable at the reference state are 

meant to be collected in the ensemble. The stability of each model is first evaluated 

mathematically by using the symbolic Jacobian matrix (constructed according to the 

Section 4.1.5). For each generated kinetic model, the calculated rate constants and 

corresponding sampled enzyme fractions are substituted in the symbolic Jacobian to 

come up with a numerical Jacobian matrix at the reference steady-state. The 

mathematical stability of each model is then judged based on the eigenvalues of the 

numerical Jacobian, as explained in Section 4.1.5. A mathematically stable model 

means that it has the tendency to keep its state in response to the smallest possible (𝜀) 

perturbations. Since each stable condition has a practical threshold, and since the 

models that are not practically stable (based on the reference steady-state experiment) 

are of no interest, mathematically stable collected models are simulated in response to 

a small perturbation, and those models that do not converge back to the reference state 

are further rejected. In this way, an ensemble of different kinetic models that not only 

satisfy the reference steady-state experiment, but also are practically stable at that state, 

is constructed. The more the number of models that are collected in such an ensemble, 

the higher will be the probability of catching those kinetic models that behave as close 

as possible to the real metabolic system. 
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4.1.10.  Screening the Ensemble 

As already mentioned in Section 4.1.1, ensemble modeling of a metabolic 

network consists of two main modules. In the first module, different kinetic models 

that are all consistent with a reference steady-state are collected (Figure 4.6). 

Fundamentally, it is impossible for a single physical system to be at more than one 

state (e.g. metabolite concentrations and/or metabolic fluxes) at a specified time and 

space (Section 4.1). Hence, the dynamic behavior of a metabolic pathway in a single 

cell can be ideally represented with only a single kinetic model. However, there are 

uncertainties regarding the structure of the metabolic model (some undiscovered 

interactions that are present in the real metabolic system, especially regulatory 

interactions, may be missing in the models), and also regarding the elementary 

mechanism of some enzymatic reactions. Taking such uncertainties into account, all 

the models whose simulation results are in agreement with experimental observations 

are considered as potentially valid models. On the other hand, most of the experiments 

and studies in practice (such as in metabolic engineering applications) are not based 

on a single cell, but instead on a community of cells usually in a continuous culture. 

In such cases, an ensemble of different kinetic models that all satisfy the bulk 

experimental observations (e.g. biomass production, substrate uptake rates, product 

secretion rates, etc.) can be preferred over a single model, since it can cover for the 

heterogeneity of the cellular states in the culture (to be more specific, different 

combinations of enzyme fractions in this modeling approach). 

After using the first module to construct the ensemble of kinetic models, 

available experimental observations can be used in the second module to screen the 

collected models. Figure 4.10 is a schematic representation of this process. At this 

stage, it is very important to use the experiments that are compatible with the criteria 

and conditions based on which the kinetic models were constructed. For example, an 

experiment in which the metabolism shifts from one steady state to another in response 

to a perturbation, with changing total enzyme concentrations during that shift (e.g. as 

a result of change in the transcription), cannot be simulated by the kinetic models 

constructed according to the procedure of the first module. In the current version of 

Kinescope, the fold change in the total enzyme concentrations with respect to the 

reference experiment can be provided as one of the inputs to the simulations, but they 

are treated as constant factors during simulations, and their temporal changes are not 
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mathematically represented in the models. However, the first few seconds/minutes of 

the metabolism dynamics in such experiments can still be simulated, based on the 

assumption that it takes some time for the total enzyme concentrations to change in 

response to a perturbation. According to the procedure presented in Figure 4.10 for the 

second module, different experiments can be used as filters to screen the collected 

models in the ensemble. For each filter, the corresponding experimental conditions are 

introduced as inputs and/or rules to the kinetic models in the ensemble. Each model is 

then simulated, and the simulation outputs are compared with the corresponding 

experimental observations. Those models that are not in acceptable agreement with the 

experiments are then rejected, reducing the number of potentially valid models in the 

ensemble and increasing the reliability of remaining models at the same time. Finally, 

the remaining models in the ensemble can be used for predictions. They can all be 

simulated in response to a specific perturbation, and their simulation results provide a 

statistical base for predictions. Probability values can be calculated for each different 

outcome based on the percentage of the models that lead to each outcome. 

 

 

Figure 4.10: Flowchart of the algorithm for screening the ensemble. 

 

At some point, it might happen that none of the models in the ensemble can 

satisfy an experiment. When this happens, any or a combination of the following three 
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issues can be the reason behind the inconsistency between the experimental results and 

simulations: 

i) The kinetic space has not been sampled sufficiently, and models with suitable 

kinetic parameters have not been collected in the ensemble. 

ii) Metabolic network structure is incomplete. One or more reactions and/or 

regulatory interactions are missing in the models. 

iii) The elementary reaction steps or mechanistic rate equations are not valid for 

one or more reactions. 

The first issue can be circumvented by increasing the number of samples from 

the kinetic space, collecting as much as possible different kinetic models in the 

ensemble. The bigger the size of the ensemble, and the higher the diversity of sampled 

kinetic parameter sets, the less will be the probability of missing suitable models in the 

ensemble. The other two issues are the key points in hypothesis generation for 

discovery of new interactions in the corresponding metabolic network, or for deduction 

of valid kinetic mechanisms for corresponding reactions in the network. In this 

manner, they provide a link between the theoretical and experimental playgrounds as 

demonstrated in Figure 4.2. 

4.2. Results 

To validate applicability of Kinescope in the construction of stable kinetic 

models for a desired reaction network, and to demonstrate the methodology, 

ToyModel of Figure 4.3 was used as a reference model. This ToyModel includes 5 

metabolites and 7 reactions (1 input, 3 irreversible, 1 reversible, 2 outputs) with 

feedback inhibition of the uptake reaction by one of the secretion metabolites. The 

ToyModel was constructed manually by assigning MM-based rate expression to each 

reaction. An irreversible MM equation including competitive inhibition was assigned 

to the uptake reaction. The second reaction follows an irreversible MM-based 

mechanism with two identical molecules as the substrates. A reversible MM equation 

was assigned to the third reaction, and other reactions all follow simple irreversible 

MM rate expression. The structure and equations of the ToyModel can be seen in the 

Figure 4.3, and the corresponding MATLAB files including the ODE function of the 

model are provided in Appendix A (digital format). Biologically meaningful values 
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(reported in the literature and enzyme/reaction databases) were assigned to all the 

kinetic parameters in the MM-based rate expressions except for the 𝑉𝑚𝑎𝑥 ones. An 

already balanced and biologically meaningful (in terms of reaction rates) metabolic 

flux distribution was then used to calculate the 𝑉𝑚𝑎𝑥 parameters. This guaranteed the 

convergence of the ToyModel to a valid steady state.  

First, ToyModel is simulated and a stable steady state is captured as the reference 

state. The steady-state flux distribution at the reference state along with the 

stoichiometric model of the ToyModel are then used as inputs to the first module of 

Kinescope to construct a kinetic model and collect as many stable models as possible. 

Originally, Kinescope would automatically make a kinetic model at the elementary 

reactions level for the given reaction network (Section 4.1.4), but it can also be used 

to scan the kinetic space and collect stable models if lumped-kinetic rate expressions 

are provided for each reaction in the network. This is a better alternative to the 

parameter estimation approach, mainly because it makes the parameter uncertainty 

issue (associated with estimated parameters) to fade away and prevents from 

overfitting of the model to a certain dataset. At the same time, samples taken uniformly 

from the parameter space provide a theoretical basis to study and analyze the 

biotransformation potential of a biochemical reaction network at the reaction kinetics 

level. As mentioned before, different steady states of a dynamic system could be 

determined as solutions to Equation 4.10. However, using a rational initial condition, 

simulation of the dynamic model over a large time span can also be used to find a 

steady state of the system. Simulation results and verification of the stability of the 

achieved steady state for the ToyModel are presented in Figure 4.11. Stoichiometric 

model of the ToyModel and the corresponding regulatory matrix are provided as the 

primary inputs to the Kinescope through the “Construction” tab (Figure 4.12). At this 

stage, “Prepare the Elementary Reactions Model” button can be clicked to 

automatically construct the kinetic model structure at the elementary reactions level. 
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Figure 4.11: Reference Steady State. a) Simulation profiles. b) Steady state 

metabolite concentrations and reaction rates and corresponding eigenvalues. 

 

Detailed stoichiometric information on the metabolites and the reactions are 

provided within the tables at the right side of the window under the construction tab. 

Under the “Curation” tab of Kinescope (Figure 4.13), it is possible to view the 

elementary reaction steps. Required changes on the reaction mechanisms can be made 

through this interface as described in Section 4.1.3. In the right panel in the curation 

window (ODE Set and Simulation File), a name is given for the corresponding m-files 

that are automatically created and used for the ODE simulations and Jacobian 

calculations. Required changes in the ODE simulation file, such as addition of the 

feed-stream influxes to the corresponding uptake molecules, can be made within this 

panel. 
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Figure 4.12: Kinescope, construction tab. 

 

 

Figure 4.13: Kinescope, curation tab. 

 

At this stage, the reference steady-state flux distribution vector along with other 

available data are provided through the “Inputs” panel in the construction window 

(Figure 4.12). It is now possible to construct an ensemble of kinetic models by 

sampling the kinetic space. In the “Parameter Set Collection” panel under the 

“Simulation/Filtration” tab, the maximum number of samples to be taken from the 
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kinetic space can be set by the user, and the stable models will be collected accordingly 

after pressing the “START” button (Figure 4.15). Afterwards, different experiments 

can be used to screen the collected models in the ensemble. For example, an impulse 

change (Figure 4.14.a) in the concentration of the uptake molecule (𝑥1) was introduced 

as a perturbation to the reference model ToyModel1. The simulation results were 

recorded as the system response (Figures 3.14.b and c). Any of the recorded responses 

may be selected as the experimental observation (Figure 4.14.d). The selected 

experimental observation is imported to the Kinescope by clicking the “Import 

Reference Observed Data” button under the “Simulation/Filtration” tab (Figure 4.15). 

Under the “Curation” tab, the “ODE Set and Simulation File” panel can be used to 

introduce the same perturbation to the kinetic models in the ensemble. In the end, the 

“SCREEN” button can be clicked to compare the simulation result of each model in 

the ensemble with the experimentally observed data (Figure 4.15). Those models with 

a similar response to the experimental data are kept in the ensemble, while the others 

are excluded. 

 

 

Figure 4.14: ToyModel response to a perturbation-observation experiment. a) The 

impulse function introduced to the uptake molecule. b) Metabolite concentration 

profiles. c) Reaction rate profiles. d) Selected reaction rate profile as experimental 

observation. 
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Figure 4.15: Kinescope, simulation/screening tab. 

 

4.2.1. Using Kinescope to Collect Stable Kinetic Models Satisfying 

Different Reaction Deletion Studies while Lumped-Kinetic Rate 

Expressions are Available 

Gene deletion studies play a central role in metabolic engineering. One of the 

major questions for a metabolic engineer is, “what is the optimum gene deletion 

strategy to increase the yield of a desired metabolite in a specified organism?”. Such 

organisms (usually unicellular such as bacteria or yeast) are known as cell factories in 

metabolic engineering. Traditionally, such studies were carried out by introducing 

random mutations to the cells and screening them based on their capacity in the 

production of the desired metabolite. As soon as genome-scale stoichiometric models 

of metabolism became available, many researchers started using them for metabolic 

engineering purposes, especially for the prediction of the optimum set of genes whose 

deletion would maximize the production yield. “How much the prediction results may 

be improved if the reaction kinetics are also taken into account?” has been a question 

in the research community for more than a decade. Because of the difficulties in kinetic 

modeling of large reaction networks, there has not been a clear answer to the above 

question. In this section, Kinescope is used to collect stable kinetic models that are in 

agreement with gene deletion experiments. The ToyModel from Figure 4.3 (also used 

in the previous section) is used as a reference model to generate in-silico data for 
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reaction deletion experiments. Figure 4.16 is a schematic representation of the in-silico 

reaction deletion experiments. 

 

 

Figure 4.16: Schematic representation of the in-silico reaction deletions in the 

ToyModel. 

 

Each in-silico reaction deletion experiment is carried out by setting the total 

concentration of the corresponding enzyme in the ToyModel to zero and simulating 

the model until a new steady-state is achieved. Figures 4.17.a and 4.17.b represent the 

steady-state values obtained in different experiments for the metabolite concentrations 

and reaction rates respectively. All the required MATLAB codes to reproduce the 

work (simulations, analyses, model collection and figures) presented in this section are 

provided in Appendix A (digital format). 

 

 

Figure 4.17: In-silico reaction deletion experiments. a) Final steady state 

concentration values. b) Final steady state reaction rate values. 
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In this section, lumped-kinetic rate expressions are provided for each reaction in 

the model, so the problem is reduced to the sampling of the kinetic parameter space 

and collecting those stable models that are in good agreement with reaction deletion 

experiments. The lower bound for all the kinetic parameters in the rate expressions 

was set to 0 and the upper bound to 20. Parameters are then sampled uniformly 

between the lower and upper boundaries. Ten thousand samples were taken in this 

study, out of which 9520 were stable according to the eigenvalues of their Jacobian 

matrices. This takes less than a minute on a workstation with the following 

characteristics: 

 

- System Model: HP Z640 Workstation 

- 2x Processors: Intel(R) Xeon(R) CPU E5-2620 v4 @2.1GHz, 8 Cores, 16 

logical processors 

- Physical Memory (RAM): 64 GB 

- Operating System: Microsoft Windows 10 Pro 

- MATLAB Version: R2019a Update 6 (academic version) 

 

All the simulations and other computations reported in Chapters 3 and 4 were 

carried out on the same system with the above characteristics. Figure 4.18.a is a 

representation of the sampled parameter sets in the principal component space (first 3 

principal components explaining 30% of variability in the 18 kinetic parameters of the 

model). One important question at this stage is, “In a relative comparison between the 

non-zero elements of the Jacobian matrix, how sensitive the stability of the kinetic 

model at the reference steady-state is to the changes in each Jacobian element?”. To 

answer this question, the calculated values for each non-zero Jacobian element (one 

value for each collected stable model from the uniform sampling, 9520 values in total) 

are scaled to an interval of 0 to 100 (minimum value to zero and maximum to 100). 

The number of stable models in each percentile is then counted and the standard 

deviation is calculated. Figure 4.18.b is a heatmap representation of such data. Based 

on this heatmap, the stability is most sensitive to the variables and parameters that 

appear in the mole balance equations around 𝑥3 and 𝑥4 (labeled as 𝑚3 and 𝑚4 during 

the model construction in Kinescope). 
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Figure 4.18: Unsupervised uniform sampling of the kinetic parameter space. a) 

Distribution of the sampled parameter vectors in the principal components (PC1 to 

PC3) space. b) Heatmap representation of the variance in the scaled values of 

Jacobian elements. 

 

Next step is to analyze the sampled parameter space by comparing the simulation 

results of the collected stable models with their corresponding experimental values. 

For each reaction deletion experiment, total concentration of the corresponding 

enzyme is set to zero, and all the collected stable models are simulated over a large 

time span. For those models that successfully reach a new steady-state, fold changes 

in the concentrations of the metabolites are calculated (with respect to their steady-

state values before the reaction deletion). The absolute relative errors between the 

calculated fold changes (from simulations) and their corresponding experimental 

values are determined. Collected stable models are then sorted based on their 

maximum relative error. This procedure is done independently for each reaction 

deletion experiment. The idea is to find those areas in the kinetic parameter space that 

lead to generation of models that their simulation results are in good agreement with 

all available experiments. A threshold is defined to distinguish good models with 

respect to each experiment. This threshold is called “Good Models Error Cutoff 

(GMEC)”. If the maximum absolute relative error between the simulation results of a 

model and the corresponding experimental values is less than the GMEC, that model 

is labeled as a good model for that experiment. GMEC is the same for all experiments, 

and the number of good models may differ from one experiment to another. A 

threshold is also defined to distinguish the elite models and it is called “Elite Models 

Error Cutoff (EMEC)”. In addition to the cutoff, there is also a limited quota available 

for the number of elite models that can be assigned to an experiment and there cannot 
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be more than 10 elite models for each experiment. If there are more than 10 models 

leading to a maximum absolute relative error less than the EMEC, only the best 10 

will be selected as the elite ones. In this study, GMEC is set to 0.1 and EMEC to 0.01. 

Among the 9520 collected stable models, 5802 and 5235 models were detected as good 

models for experiment one and two respectively. But only 249 models were detected 

as good models with respect to the experiment three. Figure 4.19 shows the distribution 

of good models for the first experiment, based on the first two principal components 

(explaining 18.9% of variability in the kinetic parameters). Good models are shown 

with little yellow stars. 

 

 

Figure 4.19: Distribution of the good models based on the first experiment. 

 

As it can be seen, good models are dispersed evenly in the space. A similar graph 

was obtained for the second experiment. In comparison, good models collected based 

on the third experiment present a different distribution. As represented in Figure 4.20, 

although the first two principal components explain only 18.9% of the variability in 

the parameters, a clustering of good models based on the third experiment seems 

possible. They are more concentrated in the area with positive values for the first 

principal component and negative values for the second. Figures 4.21 and 4.22 present 
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the distribution of elite models for the first and second experiments respectively (there 

wasn’t any elite model detected for the third experiment). Such analyses provide 

insight for development of algorithms that may detect suitable areas in the kinetic 

space and hence sampling that space more efficiently in a supervised manner. As 

mentioned earlier, the idea is not to fit the models to the experiments, but to find as 

many different patterns as possible in the parameters vector that lead to generation of 

reliable kinetic models. From this point of view, the problem is reformed to a pattern 

recognition problem, while each parameter is a feature of the system, and machine 

learning methods can be employed to find the interested patterns. 

 

 

Figure 4.20: Distribution of the good models based on the third experiment. 
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Figure 4.21: Distribution of the elite models based on the first experiment. 

 

 

Figure 4.22: Distribution of the elite models based on the second experiment. 
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Utilization of machine learning methods for unsupervised classification of the 

sampled parameter vectors is not implemented in the Kinescope yet. For the time 

being, a different approach was practiced for supervised resampling of the kinetic 

space. An evaluation table is constructed based on the number of models that could 

satisfy different experiments (Table 4.2). Evaluation table helps in selection of a set of 

parameter vectors to be used in generation of seed for supervised sampling.  

 

Table 4.2: Evaluation table after unsupervised sampling of the parameter space. 

 Number of models with a maximum absolute relative error less than 

Experiment 20% 10% 5% 1% 

𝒓𝟓 deletion 7750 5802 3309 30 

𝒓𝟒 deletion 7337 5235 1588 17 

𝒓𝟔 deletion 1832 249 1 0 

All experiments 1600 201 1 0 

 

Selected parameter vectors from the evaluation table (yellow shaded cell with 

201 models in this study) are aligned on top of each other (as row vectors) to form a 

matrix. Each column of this matrix represents one of the kinetic parameters. The mean 

and standard deviations are then calculated for each parameter. At this stage, the goal 

is to use the characteristics of those parameter vectors that lead to promising simulation 

results with respect to all the experiments (e.g. the yellow shaded cell is selected in 

this case), for a supervised resampling of the kinetic parameter space, to increase the 

chance of collecting more models that are in better agreement with all the experimental 

observations. Hence, it is a good idea to make use of machine learning methods to 

recognize the patterns in those promising parameter vectors and use those patterns for 

supervised resampling of the parameter space. However, it is not the case in the current 

version of Kinescope, and a simpler approach is followed. The calculated mean and 

standard deviations mentioned above are being used to resample the parameter space 

so that, instead of sampling the parameters from a uniform distribution between their 

lower and upper bounds, parameters are sampled from a normal distribution with the 

corresponding calculated mean and standard deviation values for each parameter. 

Following this procedure led to collection of more models that are in better agreement 

with all the experiments (Table 4.3). 
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Table 4.3: Evaluation table after the supervised sampling of the parameter space. 

 Number of models with a maximum absolute relative error less than 

Experiment 20% 10% 5% 1% 

𝒓𝟓 deletion 9435 8594 6953 82 

𝒓𝟒 deletion 9276 8706 4112 98 

𝒓𝟔 deletion 7731 2213 19 0 

All experiments 7401 2053 13 0 

 

After supervised sampling, thirteen models were identified to have less than 5% 

relative error in their simulation results compared to the all three reaction deletion 

experiments (green shaded cell in Table 4.3). The variability in the magnitude of each 

kinetic parameter in these thirteen models is evaluated. As can be seen in Figure 4.23, 

all the parameters show a significantly high variance with more than 50% variation 

above and below their average value. This is an evidence that collected parameter 

vectors that satisfy the reaction deletion studies are not necessarily similar. In Figure 

4.24, the simulation profiles of the fold change in the concentration of each metabolite 

based on the experiment 3 (deletion of 𝑟6) are provided. 

 

 

Figure 4.23: Boxplots for the kinetic parameters based on their values in 

the collected thirteen models. 

 



87 
 

 

Figure 4.24: Simulation profiles of the fold changes in the concentration of 

metabolites based on the experiment 3. The simulation profiles for the 

collected 13 models with less than 5% relative error can be compared with 

eachother and with that of the reference model. 

4.2.2. Using Kinescope for Automatic Construction and Collection of 

Stable Kinetic Models at the Elementary Reactions Level that 

Satisfy Different Reaction Deletion Studies 

The same reference steady-state and reaction deletion experiments are used in 

this section as were used in the previous one. However, lumped-kinetic rate 

expressions are not provided, and the kinetic model structure is automatically created 

at the elementary reactions level. The elementary reaction sets are provided in excel 

format in Appendix A. All the required MATLAB codes to reproduce the results 

obtained in this section are provided in Appendix A. Figure 4.25.a represents the 

unsupervised sampling of the kinetic parameters in the principal component space. Its 

difference with Figure 4.18.a is obvious. It is mainly because the kinetic parameters 

for the elementary reactions are not directly sampled between some lower and upper 

bounds. Instead, they are being calculated based on the samples taken for the 

reversibility parameters (constrained by the reaction thermodynamics), enzyme 

fraction samples (constrained by a linear equality for each enzyme), and the reference 

steady-state fluxes. 
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Figure 4.25: Unsupervised sampling of the kinetic space for kinetic models at the 

elementary reactions level. a) Distribution of the sampled parameter vectors in the 

principal components (PC1 to PC3) space. b) Heatmap representation of the variance 

in the scaled values of Jacobian elements. 

 

More than seventy-one thousand stable models were collected from twelve 

million samples (3464 reversibility samples and 3464 enzyme fraction sampling for 

each reversibility set). The evaluation table after unsupervised sampling is presented 

below (Table 4.4). 

 

Table 4.4: Evaluaiton table after the unsupervised sampling of the kinetic space for 

the models at the elementary reactions level. 

 Number of models with a maximum absolute relative error less than 

Experiment 20% 10% 5% 1% 

𝒓𝟓 deletion 1826 177 0 0 

𝒓𝟒 deletion 81 2 0 0 

𝒓𝟔 deletion 0 0 0 0 

All experiments 0 0 0 0 

 

These results are primarily interpreted as a failure in rational sampling of the 

kinetic space and suggest development of an algorithm for efficient sampling of 

reversibility parameters and enzyme fractions. Regardless of such failure, two stable 

kinetic models were collected (yellow shaded cell in Table 4.4), which not only satisfy 

the reference steady-state, but also are in good agreement with two different reaction 

deletion experiments (less than 10% relative error). Considering that these models 

were constructed automatically at the elementary reactions level (the only inputs to the 
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Kinescope was the stoichiometric model and the reference steady-state flux 

distribution), and also considering the hardships in manual construction of kinetic 

models that could satisfy reaction deletion experiments, this can be counted as a 

significant achievement. No algorithm has yet been developed for supervised sampling 

of the kinetic space for models constructed at the elementary reactions level. 

4.3. Discussion 

The importance of kinetic modeling of metabolic reactions is well recognized. 

However, the difficulty in developing kinetic models for metabolic systems due to lack 

of kinetic parameters has been repeatedly reported by many researchers. The need for 

an efficient and standard methodology for construction and analysis of kinetic models 

has been long recognized and is becoming more obvious. A methodology that has the 

potential to become a standard for construction of kinetic models of biochemical 

reaction networks was presented in this chapter. A computational tool (Kinescope) was 

developed in MATLAB based on this methodology. The idea of ensemble modeling 

was used as a template, modified and expanded significantly during the development 

of Kinescope. The algorithms behind different functions of Kinescope were explained 

in detail through sections 4.1.2 to 4.1.10. Applicability of Kinescope in construction 

of stable kinetic models for small-scale reaction networks that satisfy reaction 

deletion/overexpression studies was validated by in-silico experiments (Section 4.2). 

Whenever lumped-kinetic rate expressions are available (Section 4.2.1), Kinescope 

can be used to scan the parameter space and collect as many mathematically stable 

models that all converge to a reference steady-state. Dynamic characteristics of the 

collected models can be evaluated by analyzing their Jacobian matrices. Afterward, 

Different experiments (such as gene deletion/overexpression experiments) can be used 

to screen the collected models and identify different patterns in the parameter vector 

that lead to generation of promising models. Hence, a handful of kinetic models with 

different dynamic characteristics that all satisfy the experiments may be collected. 

Whenever rate expressions are not available (Section 4.2.2), Kinescope uses a few 

assumptions to automatically break down each reaction in the stoichiometric model 

into a series of elementary reactions. If information on the kinetic mechanism of an 

enzyme is available, the automatically generated elementary reaction series for the 

corresponding reaction can be manually edited through a graphical user interface. 
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Elementary reactions intrinsically follow mass action rate expressions. Unlike other 

simplified (e.g. Michaelis-Menten) or generalized (e.g. lin-log and S-systems) rate 

expressions, elementary reactions are not based on any simplifying assumption on the 

enzyme kinetics and are the closest mathematical representation of the molecular 

associations and dissociations. However, by breaking each reaction into its elementary 

steps, the number of model variables (in addition to the metabolites, each enzyme 

fraction would be a new variable) and kinetic parameters increases significantly (Not 

exponentially but linearly, 7-10 elementary steps for each reaction in average). As a 

result, development of algorithms that can efficiently sample the kinetic space to 

collect stable models with diverse patterns in their parameter vectors is critical (one of 

the future works), especially in case of constructing kinetic models for larger reaction 

networks. Another advantage of modeling at the elementary reactions level is that, in 

cases when none of the collected models can satisfy an experiment, it is easier to 

generate hypothesis for the reason behind the disagreement between the model 

simulations and the experimental observation (as explained in Section 4.1.10). It may 

be possible to develop an algorithm that can automatically generate, and rank order 

such hypotheses. 

Successful utilization of the ensemble modeling approach, mainly for metabolic 

engineering purposes, has been reported in the literature [79, 131, 132]. However, 

there has not been any report of a computational tool for semi-automatic construction 

of kinetic models of biochemical reaction networks based on the idea of ensemble 

modeling. In addition, unlike the previously reported works that rely on qualitative 

screening of the models (increase, decrease or no change in the abundance of the 

observed molecule or rate of the observed reaction), successful screening and 

collection of models that are in quantitative agreement with a reference scenario is the 

first to be reported in this study. 

4.3.1. A Note on Parameter Identifiability 

Identifiability analysis considers the question of whether it is possible to 

determine the parameters of a model from data. Those parameters that cannot be 

learned from data are said to be unidentifiable. There are two types of unidentifiability, 

1) Structural Unidentifiability and 2) Practical Unidentifiability. If parameters cannot 

be inferred from an infinite amount of perfect data, the model is structurally 
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unidentifiable. Structurally unidentifiable models tend to make the same predictions 

for different parameter values. On the other hand, a model may be structurally 

identifiable, that is, in theory it is possible to learn all of its parameters from data, but 

it may not be practical to do so. For example, it may require an unreasonable amount 

of data. Based on the following theorem, Fisher Information Matrix (FIM) can be used 

to evaluate the structural identifiability of a model: 

“A model is locally structurally identifiable at 𝜃0 if and only if its fisher 

information matrix is non-singular at 𝜃0”. 

This method needs an estimate of the parameter values (𝜃0) as an input and 

evaluates the structural identifiability of the model around the given parameter values, 

hence the identifiability evaluation being local and not global. If the Fisher Information 

Matrix has a zero eigenvalue, then the model is structurally unidentifiable. A possible 

extension for the evaluation of the practical identifiability can be as follows: “If FIM 

of a model has small eigenvalues, then the model is practically unidentifiable”. This 

way of thinking about practical identifiability is useful but is not necessarily correct. 

Currently, a major obstacle in classical kinetic modeling of biochemical reaction 

networks is the parameter estimation step. Such models are usually very non-linear 

and include many parameters. Some of those parameters are often practically 

unidentifiable, that is, their values cannot be “uniquely” determined from the available 

data. Possible causes can be lack of influence on the model outputs, interdependence 

among parameters, and poor data quality. From this perspective, uncorrelated 

parameters are the key tuning knobs of a predictive model. Therefore, before 

attempting to perform parameter estimation, it is important to characterize the subsets 

of identifiable parameters and their interplay. Once this is achieved, it is still necessary 

to perform parameter estimation, which poses additional challenges. One must 

consider that, even after solving the parameter identifiability and parameter estimation 

problems and finding a set of parameters that best fit available experimental data, it 

does not guarantee that the estimated parameters are the true parameters of the system 

as it is often observed that many models which have been calibrated based on a set of 

experimental data fail to represent (predict) a new experiment. This is usually due to 

the incompleteness of the models. That is, one or more elements that play a significant 

role in the new experiment do not exist in the model. However, even a complete model 

may fail to predict a new experiment, and this is closely related to the topic of 

parameter uncertainty. As it was mentioned earlier, an advantage of the methodology 
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presented in this chapter is minimization of the parameter uncertainty by unsupervised 

uniform sampling of the parameter space and collecting as many as diverse parameter 

sets that all satisfy a reference steady state experiment and are the potential candidates 

to be the true system parameters. This approach not only circumvents the problems 

that arise during parameter identifiability and parameter estimation, but also provides 

a suitable platform for hypothesis generation whenever the collected models fail to 

predict a new experiment. 

4.3.2. A Note on the Required Computational Time and Curse of 

Dimensionality 

To evaluate the required time for Kinescope to construct and screen an ensemble 

of kinetic models for a small-scale network, and also to evaluate its dependency on the 

number of samples taken from the parameter space, analyses of Section 4.2.1 were 

repeated for different number of samples. Table 4.5 provides a summary of the 

information collected from the repeated analyses. 

 

Table 4.5: Computational time and number of successfully screened models versus 

the number of samples taken from the parameter space. 

Number of 

samples 

Elapsed Time 

(minutes) 

Number of screened models with less 

than 5% error for all three experiments 

Unsupervised Supervised 

1000 1 0 2 

5000 4 1 8 

10000 7 1 13 

20000 14 3 32 

30000 21 3 39 

50000 34 3 65 

80000 57 4 116 

100000 78 5 144 

 

As it can be seen, both the required computational time and the number of 

models with less than 5% error after supervised sampling are increased in a linear 

manner with respect to the number of samples. One must consider that although the 
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number of successfully screened models increases by increasing the number of 

samples, the diversity among the collected parameter sets may not necessarily 

increase. After some point, as the number of samples increases, it is expected to collect 

parameter vectors that are very similar to the already collected ones. 

Another topic worth mentioning at this stage is “curse of dimensionality”. Curse 

of dimensionality refers to the difficulties that arise when dealing with data in high-

dimensional space, for example when the data has too many features. Among several 

other domains such as combinatorics and optimization, sampling is one of the domains 

that frequently suffers from the curse of dimensionality. The common problem is that 

when the dimensionality increases, the volume of the space increases so fast that the 

available data become sparse. There is an exponential increase in the volume 

associated with adding extra dimensions to a mathematical space. In the case of the 

methodology presented in this chapter, as the number of the parameters (length of the 

parameter vector) increases with the size of the biochemical reaction network, the 

number of samples that must be taken from the kinetic parameter space to provide a 

suitable initial ensemble of collected stable models increases exponentially. As a 

result, although the required computational time is a linear function of the number of 

samples (as can be seen in Table 4.5), since the number of required samples increases 

exponentially with the size of the reaction network, the unsupervised uniform sampling 

of the parameter space becomes exponentially time-intensive. One must consider that 

the curse of dimensionality and the data provided in Table 4.5 are two different things. 

While Table 4.5 shows the linear increase in the computational time with respect to 

the number of samples for the same small-scale biochemical reaction network, curse 

of dimensionality points into the exponential increase in the number of required 

samples as the size of the network increases. 
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5. USING KINESCOPE FOR KINETIC 

MODELING OF THE CENTRAL CARBON 

METABOLISM OF E. COLI AND FUTURE 

WORKS 

Constraint-based stoichiometric models of metabolic networks do not deal with 

the concentrations of the metabolites. To make it feasible for these models to have a 

steady-state solution, pseudo reactions are added to them to supply the uptake 

molecules (such as extracellular glucose and oxygen) that otherwise would only be 

consumed by the uptake reactions without any source to replenish them. Such pseudo 

reactions are introduced to the stoichiometric models in the form of Equation 5.1 or 

4.2, the standard usually being the latter with a negative flux value for the uptake 

molecules and a positive value for the secreted ones. 

 

 → "𝑒𝑥𝑡𝑟𝑎𝑐𝑒𝑙𝑙𝑢𝑙𝑎𝑟 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒" (5.1) 

 

 "𝑒𝑥𝑡𝑟𝑎𝑐𝑒𝑙𝑙𝑢𝑙𝑎𝑟 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒" ↔  (5.2) 

 

However, one can hardly find any organism operating at a steady state in natural 

ecosystems. They may be represented better as discreet fed-batch systems. 

Nevertheless, many processes in the biochemical and biotechnology industries are 

carried out at steady-state conditions by using continuous bioreactors. A significant 

amount of experimental protocols and techniques are also designed based on the 

steady-state conditions. Continuous stirred tank bioreactors (CSTBRs) are frequently 

used in laboratories to culture cells at controlled steady-state conditions (chemostat 

and turbidostat cultures). Figure 5.1 is a schematic representation of a CSTBR. 

When making a kinetic model out of a stoichiometric model, the source reactions 

for the extracellular substrates (e.g. glucose) and the sink reactions for the secreted 

molecules (e.g. ethanol), and in general reactions in the form of Equation 5.1 or 4.2, 

must be removed from the model and replaced by the balance equations that consider 

the input/output of such molecules to/from the culture media through influxes and 

outfluxes. The general balance equation for such extracellular molecules can be written 

in the form of the following equation: 
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 𝑑𝐶𝑖

𝑑𝑡
=

1

𝑉𝑟𝑥𝑛
(𝐶𝑖,𝑓𝑒𝑒𝑑𝑄𝑖𝑛𝑓𝑙𝑢𝑥 − 𝐶𝑖𝑄𝑜𝑢𝑡𝑓𝑙𝑢𝑥) + ∑ 𝑣𝑖𝑗𝑅𝑗

𝑗

  (5.3) 

 

𝐶𝑖 is the extracellular concentration of the corresponding molecule in the reaction 

solution, 𝐶𝑖,𝑓𝑒𝑒𝑑 is the concentration of that molecule in the stream fed to the media 

with the volumetric flowrate 𝑄𝑖𝑛𝑓𝑙𝑢𝑥. 𝑉𝑟𝑥𝑛 is the volume of the reaction solution, 𝑣𝑖𝑗 is 

the stoichiometric coefficient of the corresponding extracellular molecule in the 

reaction j, while 𝑅𝑗 stands for any reaction that uptakes or exerts that molecule, and 

𝑄𝑜𝑢𝑡𝑓𝑙𝑢𝑥 is the volumetric flowrate of the stream leaving the media. Equation 5.3 is 

written based on the assumption of a homogenous reaction solution. 

 

 

Figure 5.1: Schematic representation of a continuous stirred 

tank bioreactor. 
 

5.1. Using Kinescope for Kinetic Modeling of the Central 

Carbon Metabolism of E. coli at the elementary reactions 

level 

Kinescope was used to construct and collect kinetic models at the elementary 

reactions level for the central carbon metabolism of E. coli. The stoichiometric model 

was taken from the online metabolic model database of University of California San 

Diego [155], including 72 metabolites and 95 reactions. The reactions that could not 

carry any flux both at aerobic and anaerobic conditions were detected (using flux 
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balance and flux variability analysis) and removed from the model. Dead end 

molecules were also detected and removed from the model. The reduced model 

contains 61 reactions and 59 metabolites (provided in Appendix A). The measured 

metabolic flux values by 13C labeling experiments for the wild type strain in a study 

[156] were used to constrain the corresponding reactions while using parsimonious 

flux balance analysis method to calculate the reference steady-state flux distribution 

for all reactions. Metabolic fluxes were calculated for a partially aerobic glucose 

limited condition (maximum possible rate of oxygen uptake and glucose uptake were 

constrained to 10 mmol/gDW/h) so that all the reactions in the model carry flux (the 

minimum being 0.1% of the glucose uptake rate). The biomass production reaction 

(Equation 5.4) was broken down to its constituent reactions according to Table 5.1. 

 

 1.496 ∗ 3𝑝𝑔 + 3.7478 ∗ 𝑎𝑐𝑐𝑜𝑎 + 59.81 ∗ 𝑎𝑡𝑝 + 0.361 ∗ 𝑒4𝑝 +

0.0709 ∗ 𝑓6𝑝 + 0.129 ∗ 𝑔3𝑝 + 0.205 ∗ 𝑔6𝑝 + 0.2557 ∗ 𝑔𝑙𝑛 +

4.9414 ∗ 𝑔𝑙𝑢 + 59.81 ∗ ℎ2𝑜 + 3.547 ∗ 𝑛𝑎𝑑 + 13.028 ∗ 𝑛𝑎𝑑𝑝ℎ +

1.7867 𝑜𝑎𝑎 + 0.5191 ∗ 𝑝𝑒𝑝 + 2.8328 ∗ 𝑝𝑦𝑟 + 0.8977 ∗  𝑟5𝑝 →

59.81 ∗ 𝑎𝑑𝑝 + 4.1182 ∗ 𝑎𝑘𝑔 + 3.7478 ∗ 𝑐𝑜𝑎 + 59.81 ∗ ℎ + 3.547 ∗

𝑛𝑎𝑑ℎ + 13.028 ∗ 𝑛𝑎𝑑𝑝 + 59.81 ∗ 𝑝𝑖  

(5.4) 

 

The reference steady-state fluxes for the biomass related reactions (e.g. depletion 

of biomass precursors such as 𝑔6𝑝 into biomass synthesis) were calculated by using 

the corresponding stoichiometric coefficients multiplied by the reference steady-state 

flux value for the biomass reaction (calculated from flux balance analysis). This new 

stoichiometric model (provided in Appendix A), containing 71 reactions and 59 

metabolites, and the corresponding flux distribution vector were used as inputs to the 

Kinescope for automatic construction of the kinetic models. 

Thirty thousand different kinetic parameter vectors were sampled from the 

kinetic space, out of which none of them could lead to a mathematically stable model. 

Such an outcome was expected because of the previous experience with the ToyModel 

at the elementary reactions level (Section 4.2.2). The ToyModel at the elementary 

reactions level had 26 eigenvalues, and 71 thousand stable models were collected out 

of 12 million samples (less than 1% of sampled parameter vectors led to stable 

models). There are 390 eigenvalues for the kinetic model of the central carbon 

metabolism at the elementary reactions level (15-fold increase in the number of 
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eigenvalues), and the probability of sampling parameter vectors that lead to a Jacobian 

matrix with non-positive real parts in all of its 390 eigenvalues is very low. 

 

Table 5.1: Breaking down the biomass production reaction to its constituent 

reactions. 

Reaction tag Formula Steady state rate 

ToBiomass_atp 𝑎𝑡𝑝 + ℎ2𝑜 → 𝑎𝑑𝑝 + ℎ + 𝑝𝑖 59.81 × 𝑟𝑏𝑖𝑜𝑚𝑎𝑠𝑠 

ToBiomass_accoa 𝑎𝑐𝑐𝑜𝑎 → 𝑐𝑜𝑎 3.7478 × 𝑟𝑏𝑖𝑜𝑚𝑎𝑠𝑠 

ToBiomass_nad 𝑛𝑎𝑑 → 𝑛𝑎𝑑ℎ 3.547 × 𝑟𝑏𝑖𝑜𝑚𝑎𝑠𝑠 

ToBiomass_nadph 𝑛𝑎𝑑𝑝ℎ → 𝑛𝑎𝑑𝑝 13.028 × 𝑟𝑏𝑖𝑜𝑚𝑎𝑠𝑠 

ToBiomass_3pg 3𝑝𝑔 → 1.496 × 𝑟𝑏𝑖𝑜𝑚𝑎𝑠𝑠 

ToBiomass_e4p 𝑒4𝑝 → 0.361 × 𝑟𝑏𝑖𝑜𝑚𝑎𝑠𝑠 

ToBiomass_f6p 𝑓6𝑝 → 0.0709 × 𝑟𝑏𝑖𝑜𝑚𝑎𝑠𝑠 

ToBiomass_g3p 𝑔3𝑝 → 0.129 × 𝑟𝑏𝑖𝑜𝑚𝑎𝑠𝑠 

ToBiomass_g6p 𝑔6𝑝 → 0.205 × 𝑟𝑏𝑖𝑜𝑚𝑎𝑠𝑠 

ToBiomass_gln 𝑔𝑙𝑛 → 0.2557 × 𝑟𝑏𝑖𝑜𝑚𝑎𝑠𝑠 

ToBiomass_glu 𝑔𝑙𝑢 → 4.9414 × 𝑟𝑏𝑖𝑜𝑚𝑎𝑠𝑠 

ToBiomass_oaa 𝑜𝑎𝑎 → 1.7867 × 𝑟𝑏𝑖𝑜𝑚𝑎𝑠𝑠 

ToBiomass_pep 𝑝𝑒𝑝 → 0.5191 × 𝑟𝑏𝑖𝑜𝑚𝑎𝑠𝑠 

ToBiomass_pyr 𝑝𝑦𝑟 → 2.8328 × 𝑟𝑏𝑖𝑜𝑚𝑎𝑠𝑠 

ToBiomass_r5p 𝑟5𝑝 → 0.8977 × 𝑟𝑏𝑖𝑜𝑚𝑎𝑠𝑠 

FromBiomass_akg → 𝑎𝑘𝑔 4.1182 × 𝑟𝑏𝑖𝑜𝑚𝑎𝑠𝑠 

 

It is probable to collect one or a few stable models if the number of samples is 

increased significantly, however this won’t be acceptable as a general solution to this 

issue. Constructing an initial ensemble of stable models with diverse kinetic parameter 

vectors that all satisfy a reference steady-state experiment is a fundamental step in this 

modeling approach. As it was also mentioned in the previous chapter, for efficient 

sampling of the kinetic parameter space, an algorithm is required to be developed that 

directly samples stable models only while maximizing the diversity in the sampled 

parameter vectors as well. 

Although none of the sampled models were mathematically stable based on the 

eigenvalues of their Jacobian, it was observed that more than eight thousand models 
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could reach a steady-state based on the following condition defined to detect a steady-

state convergence: 

“After passage of 100 simulation time points, the concentration of each molecule 

at each time point is compared with its corresponding value at all previous 100 time 

points. The absolute relative changes are calculated and summed up for each molecule. 

If the maximum of summation of relative changes (among all molecules in the model) 

is less than 0.1%, it is considered that the corresponding model has reached a steady-

state.” 

The models that could reach a steady state based on the above condition were 

further investigated by simulating them over a much larger time interval. It was 

observed that many of these models suddenly start to diverge at some point even 

though they display an apparent steady state for a significantly large interval (Figure 

5.2). However, there are also models that keep their apparent steady state even when 

simulated over very large time intervals. To further investigate these models, an 

impulse was introduced to the concentration of the extracellular glucose (a sudden 

increase in the concentration of the glucose in the feed stream during a very short time 

interval, e.g. injection of a highly concentrated glucose solution to the feed stream in 

a second), and they were simulated in response to the glucose impulse. Interestingly, 

many of these models could converge back towards their apparent steady state (Figure 

5.3), presenting an apparent stability regarding the changes in the extracellular glucose 

concentration. At this point, the reliability of such models and the reason behind their 

apparent stability even though their Jacobian tells different remain as open questions. 

 

 

Figure 5.2: Unstable models with an apparent 

steady-state may start to diverge when simulated 

for a longer time. 
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Figure 5.3: Response of one of the models with apparent stability to an impulse to 

the concentration of the extracellular glucose. 

 

5.2. Future Works 

i) Development of an algorithm for efficient unsupervised sampling of the kinetic 

parameter space, so that each sampled parameter vector is guaranteed to make the 

kinetic model being mathematically stable at the reference steady-state, while at 

the same time the diversity in the sampled parameter vectors is maximized. Such 

an algorithm can significantly improve the quality of the initial ensemble of the 

kinetic models that satisfy the reference steady-state experiment. 

ii) Using machine learning methods for unsupervised clustering of the sampled 

kinetic parameter vectors based on the comparison of the simulation results with 

the corresponding experimental observations, hence recognizing those patterns in 

the parameter vectors that make the kinetic models being in acceptable agreement 

with different experimental observations. Such information/data can be used for 

supervised resampling of the kinetic parameter space, increasing the chance of 

collecting more kinetic models that are in better agreement with all experimental 

observations. 

iii) Design and construction of a wet lab device for determination of the elementary 

reaction steps related to the function of a given enzyme. The input material to the 
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device would be the free enzyme, the known reactants and products of the 

reactions catalyzed by the corresponding enzyme, the known regulators of the 

corresponding enzyme, and any other molecule that is hypothesized to associate 

with the free enzyme or any of its complex forms. The output would be a table of 

all possible elementary reactions (associations and dissociations) related to the 

corresponding enzyme, leading to the generation of the elementary reaction series 

for both catalytic and regulatory interactions. Such information can be archived 

for each enzyme and used by Kinescope, hence minimizing the reliance of the 

Kinescope on the assumptions used for the automatic construction of the kinetic 

models at the elementary reactions level. The association and dissociation rate 

constants can be different even for the same enzyme in the same organism but at 

different physiological conditions. However, the elementary reaction steps and 

mechanism are usually the same even for the enzymes’ homologues and 

orthologues among different organisms. As a result, construction of a database 

containing the above-mentioned information archived for each enzyme can be of 

a great value. 

iv) Linking Kinescope to a database of the standard Gibbs free energy changes of 

reactions will make it much easier to benefit from the thermodynamic constraints 

while sampling the reversibility parameters (Section 4.1.6). 

v) Development of an algorithm for automatic generation of hypotheses whenever 

the collected kinetic models are not in acceptable agreement with an experimental 

observation. Such an algorithm will recommend a set of rank ordered changes 

(e.g. addition of a reaction or regulatory interaction to the model, see Section 

4.1.10) that might improve the agreement between the model simulations and all 

available experimental observations. Such changes can be made to the models, 

and, if there is a significant positive impact on the simulation results, they are 

considered as the potential in-silico discoveries, and one may try to validate them 

experimentally. Development of such an algorithm would make it much easier for 

a researcher to follow the modeling cycle represented in Figure 4.2. 
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6. CONCLUSIONS 

Living things are complex systems. Although multicellular organisms and 

communities are more complex compared to the unicellular ones, the major 

complexity in studying the living things comes from the intracellular molecular 

interactions, which is something shared among all the organisms regardless of their 

taxonomy. A biological cell is the smallest unit of life. All the cells discovered on the 

earth until now use the same alphabet (A, C, G, T) to store the information in their 

library, which is DNA. They also use the same alphabet (22 amino acids) to construct 

the proteins. The basic machinery and mechanisms that they use to read the 

information from DNA until proteins are constructed are also very similar. However, 

there are too many molecules packed in a single cell, and the interaction possibilities 

are vast, leading to an extremely flexible system with too many possible outcomes. To 

study such complex systems, mathematics and computers are needed. In this research, 

the focus is on the analytical study of the metabolic networks and the construction of 

computational tools that can help to model, study and analyze cellular metabolism. 

Two independent computational tools, JacLy (Chapter 3) and Kinescope (Chapter 4), 

were developed in MATLAB during this research. 

JacLy is a network inference algorithm with specific focus on the inference of 

small-scale metabolic networks from steady-state data. Thanks to the improvements 

introduced to the network inference algorithm, results reported in the previous work 

[15] could be obtained much faster, with much higher reproducibility, and with a 

higher prediction power. In addition, by applying the approach to the in silico 

metabolome data, it was shown that the use of standard deviation of replicates is a 

suitable approximation for the fluctuation matrix as one of the inputs to the algorithm. 

However, there might be more sophisticated ways of estimating a fluctuation matrix 

that better represent the nature of stochasticity in cellular metabolism. Finding more 

relevant fluctuation matrices for different biological networks can be an altogether 

separate research topic and can lead to an increase in accuracy and applicability of 

Lyapunov based inference methods such as JacLy. Also, the power of JacLy was 

especially obvious when a considerably lower number of replicates were used, or when 

a small portion of non-existent edges were introduced as prior knowledge. Prediction 

of the Jacobian matrix from steady-state data is another power of JacLy over GGM 

since Jacobian matrix is much more informative and biologically relevant in terms of 
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the network structure. In addition, albeit its remarkably better performance for lower 

number of replicates compared to a correlation-based inference as shown in this work, 

the use of JacLy for datasets with lower than 100 replicates should be cautioned. 

Kinescope was introduced in Chapter 4 as a tool to ease the construction of 

kinetic models of biochemical reaction networks by following a standard and clear 

methodology. The main driving force behind development of Kinescope is to make a 

rational link between the theoretical and experimental playgrounds in the area of 

kinetic modeling of metabolism so that any researcher can unambiguously follow the 

modeling cycle of Figure 4.2. However, a major obstacle in this methodology is the 

uncertainty in the mechanism of action of the less studied enzymes at the elementary 

reactions level. Design and construction of a device for experimental determination of 

the elementary reaction steps of enzymatic reactions will help to overcome this 

obstacle to a great extent and is a major step that must be taken in the experimental 

playground, towards development of the standard protocol for kinetic modeling of 

metabolic pathways. The experimentally determined elementary steps for each 

enzymatic reaction can be archived in the form of a database. As it was mentioned in 

Section 5.2, development of such a database would be of a great value. Another step 

that would greatly contribute to the aforementioned standard protocol is development 

of an algorithm for automatic generation of hypotheses in cases when none of the 

model simulations is in agreement with experimental observations. A reasonable initial 

point for the development of such an algorithm can be careful examination of the 

Jacobian matrices, both the structure (zero and nonzero elements) and the interaction 

magnitudes, and comparing the Jacobian matrices of the relatively more successful 

models in simulating the system behavior with the rest of the Jacobian matrices. 

All in all, kinetic modeling of the intracellular reactions must be looked from a 

new perspective, both at the experimental and theoretical playgrounds, and 

development of Kinescope has been initiated by such motivation to provide a suitable 

computational and analytical platform. It needs constant improvement until the 

modeling cycle of Figure 4.2 can be unambiguously followed. 
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