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SUMMARY

Biological cells are complex dynamic systems. Intracellular molecular
interactions can be categorized into different interaction networks based on the nature
of interactions and their function. Gene regulatory networks, protein-protein interaction
networks and metabolic networks are examples of frequently studied and addressed
networks in the community of systems and synthetic biology. It is necessary to study
such complex systems in both experimental and theoretical playgrounds. In this
research, the focus is on the analytical study of the metabolic networks and the
construction of computational tools that can help to model, study and analyze cellular
metabolism. Computational methods for determination of the active metabolic networks
at different cellular conditions/contexts are broadly categorized into two groups.
Bottom-up approach in the context of metabolism is referred to those methods that use
a metabolic model of the organism as an input to estimate the active reactions at the
specified condition/context through optimization, while constraining the solution space
based on the available experimental data. On the other hand, top-down approach is
referred to those methods that aim to infer the active metabolic network at a specified
condition/context by analyzing the corresponding metabolome data. In this work,
“JacLy” is introduced as a top-down Jacobian-based method that is developed to infer
metabolic interactions of small networks from the covariance of steady-state
metabolome data. Kinetic models of intracellular biochemical reactions are very
suitable tools to study and analyze cellular metabolism. However, it is not an easy task
to make reliable kinetic models of metabolic networks and there are many challenging
obstacles in the procedure. As an effort to ease kinetic modeling of biochemical reaction
networks and also to provide a suitable platform to reconcile top-down and bottom-up
approaches, “Kinescope” is introduced as a computational tool developed in MATLAB
for semi-automatic construction, simulation and analysis of kinetic models of
metabolism. Applicability of both computational tools developed in this work, JacLy

and Kinescope, is verified through in silico experiments.

Keywords: Computational Systems Biology, Dynamic Systems, Jacobian,
Metabolic Network Inference, Elementary Reactions, Kinetic Modeling.



OZET

Biyolojik hiicreler karmasik dinamik sistemlerdir. Hiicre i¢i molekiiler
etkilesimler, bu etkilesimlerin dogas1 ve islevine bagl olarak farkli etkilesim aglari
seklinde siniflandirilabilirler. Gen regiilasyon aglari, protein-protein etkilesim aglar1 ve
metabolik aglar, sistem biyolojisi ve sentetik biyoloji alanlarinda siklikla ele alinan ve
calisilan aglara ornek teskil eder. Boylesi karmasik sistemlerin hem teorik hem de
deneysel alanda galisilmasi gerekmektedir. Bu aragtirmanin odaginda, metabolik aglarin
analiz edilmesi ve hiicresel metabolizmanin modellenmesinde, calisilmasinda ve
incelenmesinde yardimci olacak hesaplamali araglarin olusturulmasi bulunmaktadir.
Belirli bir kosulda aktif olan metabolik agin belirlenmesi i¢in kullanilabilecek
hesaplamal1 yontemler iki ana grupta siniflandirilabilir. Asagidan-yukariya yontemler,
bir organizmanin metabolik modelini girdi olarak kullanarak ilgili kosulda aktif olan
tepkimeleri optimizasyon yontemiyle ve ¢6ziim kiimesini deneysel verilerle kisitlayarak
belirler. Yukaridan-asagiya yontemler ise belli bir kosula ait metabolom verisini
isleyerek o kosula ait aktif metabolik ag1 belirlemeyi hedefler. Bu tez calismasi
kapsaminda, “JacLy” ismindeki yukaridan-asagiya yaklasima dayali ve Jacobi temelli
yontem, kararli-hal metabolom verisinin kovaryansindan kii¢iikk aglarin metabolik
etkilesimleri tahmin etmek i¢in gelistirildi. “Kinescope” isimli arag¢ iseyari-otomatik
modelleme, simulasyon ve Kkinetik metabolik modellerin analizi icin yeni bir
hesaplamali aragc MATLAB’da gelistirildi. Bu tez ¢alismasi kapsaminda gelistirilen
Jacly ve Kinescope araclarinin in silico deney verilerine uygulanarak validasyonu

yapilarak uygulanabilirlikleri gosterildi.

Anahtar Kelimeler: Hesaplamal Sistem Biyolojisi, Dinamik Sistemler, Jacobi,
Metabolik Ag Cikarimi, Elementer Tepkimeler, Kinetik Modelleme.
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1. INTRODUCTION

Metabolic network is the outmost layer of cellular activity from the genome. The
genome of a cell is a comprehensive and condensed information base, defining a
boundary for the biochemical capacity of the cell. The processing of genetic
information passes through several layers of fabrication and regulation before reaching
their end products. This is from information to the function, from genotype to the
phenotype. Metabolic enzymes count for a significant percentage of the end products
of genes, and their activity sets the physiology of the cell. Since metabolic network
activity is the major representative of cell functionality, it is of great importance to
gain as much knowledge as possible on the active metabolic network at a specific
cellular state.

Systems-based approach to molecular biology has contributed to an increased
knowledge of metabolic pathways for an increasing number of organisms and led to
almost complete metabolic networks for a number of major organisms, from yeast to
human. Such static networks are available in a condition-independent manner through
web-based databases such as KEGG or MetaCyc [1], or reconstructed in a format
suitable for simulation by several researchers at genome scale [2, 3]. There are several
mathematical approaches to process such networks to come up with condition-specific
networks, the most common one being the Flux-Balance Analysis (FBA) framework
[4]. This is a bottom-up direction toward the active network since already-known
“parts,” interactions, are used as inputs [5, 6].

In parallel to the developments on the knowledge of metabolic networks,
techniques to measure metabolite levels at high throughput, termed metabolomics,
have arisen [7, 8]. Quantitative or semi-quantitative metabolome data, although one of
the most challenging compared to other omic sciences, have come a long way in a
decade, from the detection and quantification of about 50 metabolites [9] to more than
1000 metabolites [10]. Metabolome data are a snapshot of the condition-specific status
of the investigated organisms. Reverse-engineering metabolome data to discover the
underlying network structure is the goal behind metabolic network inference
approaches [11, 12]. The information content of metabolome data is revealed by
processing it with correlation or optimization-based methods [13-15]. Such an
approach to discover metabolic network structure is termed top-down approach since
the parts, interactions, are not known a priori, and predicted from the whole set of
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available biomolecules [5, 6]. Figure 1.1 illustrates the two alternative network

discovery approaches.

Top-down
Approach

(a) A—B (undirected)
(b) A—-B (directed)

(c) A — 2B (directed +
stoichiometric)
(d) A — 2B (kinetic)
r=k.C,/(K + Cg),
R: Regulator

Bottom-up
Approach

Figure 1.1: Comparative demonstration of bottom-up and top-down approaches to
discover active metabolic network.

The research in this thesis can be mainly divided into two parts. The first part is
about top-down and bottom-up approaches in discovery and analysis of metabolic
networks. Chapter 3 presents “JacLy: a Jacobian-based method for the inference of
metabolic interactions from the covariance of steady-state metabolome data” as a
product of our research in this part. The second part focuses on design and production
of a computational tool for semi-automatic construction, simulation and analysis of
kinetic metabolic models, believing that kinetic models can provide an efficient
platform to reconcile top-down and bottom-up methods in studying metabolic
networks. Hence, the MATLAB-based computational tool “Kinescope” is presented
in Chapter 4.



2. LITERATURE REVIEW

2.1. Bottom-Up Approaches

Different methods and algorithms have been used for the discovery and
characterization of active metabolic networks at different states of cells and culture
environments. In the bottom-up approach, everything starts from an already available
network of biochemical transformations that covers all possible scenarios in the
distribution of metabolic fluxes and sets an upper bound for the existence of reactions
in the active metabolic network. Such a network is termed a static metabolic network.
A static metabolic network can be provided either by a previously reconstructed
genome-scale stoichiometric model or by a collection of all reactions whose existence
in the organism of interest has been certified in literature and databases. Most popular
among such databases are KEGG [16], MetaCyc [17], and Reactome [18]. Other
efforts with more curated databases such as Rhea [19] and MetRxn [20] are also
available. A genome-scale stoichiometric model is reconstructed based on the
annotation of all genes in the genome of one organism to their end products and then
to the corresponding reactions, leading to a list of Gene- Protein-Reaction (GPR) rules
[21]. In this way, the minimum information content of a genome-scale model is (i) a
list of reactions, and (ii) a list of gene-protein-reaction rules. The presence of gene-
protein-reaction rules in stoichiometric models has enabled the opportunity for
transcriptome and proteome data to be incorporated into the discovery methods of
active metabolic networks [22].

Given a genome-scale reaction network, the aim is to find the active reaction
network at a specific condition or for a specific cell type in a multicellular organism.
The core of all such discovery approaches is a stoichiometric matrix. Each row of the
stoichiometric matrix represents a metabolite and each column stands for a reaction,
the corresponding element being the stoichiometric coefficient of that metabolite in
that reaction. The relationship between the reaction rates in the network and the

dynamic change in the concentration of metabolites is represented as given below:

dc _

ac_ o 21
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where S is the stoichiometric matrix, C is the vector of intracellular metabolite
concentrations, and v is a column vector of metabolic reaction rates (fluxes) to be
determined. Under the assumption of steady state, the concentration of each
intracellular metabolite is not going to change with time, meaning the sum of rate of
reactions producing that metabolite is equivalent to the sum of rate of reactions
consuming that metabolite (metabolic fluxes around each metabolite are balanced).

This is represented mathematically as following:

Sv=0 (2.2)

This is an algebraic system of linear equations with all fluxes being zero as a
trivial solution. In order to escape from the trivial solution, the value of at least one of
the fluxes must be set to a non- zero value, that flux usually being an exchange flux
between the intracellular and extracellular environment since the experimental
measurement of exchange fluxes is relatively easier. The system is almost always
underdetermined with a large solution space, mainly because of the existence of branch
points in the metabolic network.

There are both experimental and computational approaches to estimate a
condition-specific network for such a system. The experimental approach is based on
stable-isotope (mostly 3C) labeling of the major carbon source, and then tracing the
propagation of the labeled carbon atoms down to protein-bound amino acids at isotopic
steady state by using mass spectrometry or NMR spectroscopy [23-25]. The
qualitative isotopic labeling information is then used as an input to two alternative
methods. In one method, termed isotopomer modeling, a total flux distribution is
estimated based on the experimental labeling results through a computationally
demanding non-linear optimization formulation, which employs global iterative fitting
and statistical analysis [23, 26]. The other $3C- labeling assisted method is based on
the estimation of the local ratios of fluxes emerging from a branch point [24, 27] rather
than the absolute quantification of all fluxes. These experimental flux split ratios can
be used to shrink the solution space of Equation 2.2 in a complementary flux
calculation, leading to the discovery of a condition-specific network [28, 29].
Softwares are available for the rather sophisticated calculation of experimental fluxes
(or flux ratios) from carbon labeling data for both methods [30-32]. A new trend in
this area is to collect data at the non-stationary phase of isotopic labeling rather than
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at the isotopic steady state, which was shown to be more informative in terms of
predicting the flux-weighted active metabolic network structure [33-35]. Works on
the tracing of intracellular metabolites rather than only 10-15 protein-bound amino
acids have also appeared due to the higher coverage of metabolic pathways despite the
inherent experimental difficulties in terms of higher turnover rates as well as stability
issues [36-38].

The computational approach for the discovery of condition-specific metabolic
network based on Equation 2.2 is known as constraint-based modeling. Constraint-
based modeling methods aim to shrink the solution space of the equation as much as
possible by putting relevant constraints on the system. The most common method,
FBA, treats the problem in Equation 2.2 as an optimization problem and linear
programing is applied to solve it. The stoichiometry of metabolic reactions
(stoichiometric matrix), reaction directionality information, a physiologically relevant
objective function, and the value of at least one of the exchange fluxes are all that are
required for FBA to return a condition-specific flux distribution. The flux distribution
returned by FBA is not necessarily unique, and there may be a variety of flux
distributions all leading to the same optimum value of the objective function.
Therefore, Flux Variability Analysis (FVA) must be used together with FBA, to
determine the variability, if any, on each metabolic flux in regard to the condition of
interest [39, 40]. The maximization of biomass production has been successfully
applied as a reliable objective function for FBA to predict flux distributions in a variety
of microorganisms [41, 42]. In some studies, it has been hypothesized that one
objective function alone may not capture the metabolic behavior of the cell
comprehensively. Therefore, multiobjective optimization platforms have been
designed and utilized to come up with more specific flux distributions. Several
modified versions of FBA including parsimonious FBA (pFBA) [43], and flexible-
optimality FBA (flexoFBA) [29], have been developed in this manner. On the other
hand, some research groups have developed methods based on the availability of
additional omics data, which are discussed below. For a thorough review of a number
of FBA-derived flux calculation methods, the readers are referred to another resource
[44].



2.1.1. Constraints Based on Transcriptome or Proteome Data

The rate of an enzymatic reaction inside the cell is a function of several different
factors, such as the concentration of substrates, products, and regulators of the enzyme
and also the amount of available active enzyme for that reaction. Among these factors,
the concentration of active enzymes can be related to the activity of genes through
layers of transcription, translation, and post-translational modifications.
Transcriptome data are much more accessible and comprehensive compared to the
other omics data. Several different research groups have developed different strategies
to incorporate transcriptome data into constraint-based models. The idea behind this is
that the amount of MRNASs (gene activities) may be correlated with the concentration
of active enzymes, and hence this can be utilized to provide additional constraints on
metabolic fluxes. At the bottom line, if an enzyme coding gene is not transcribed at
steady state, the corresponding reaction should be inactive at that steady state, if there
is no other enzyme catalyzing that reaction. This idea was first used by Akesson et al.
to set the flux values to zero for those reactions whose corresponding genes were
expressed at low levels [45]. More sophisticated and structured versions of this
approach appeared later, under the names of GIMME [46] and iIMAT [47]. These
approaches classify some reactions as inactive reactions based on the low expression
levels of their associated genes. Then, they employ a computational framework which
minimizes the contradiction between the classification and an active physiological flux
distribution since some of these classifications may render the flux state unrealistic
(such as zero growth rate). Several other alternative methods appeared recently to
incorporate transcriptome data into the prediction of active metabolic network and flux
distribution. In an interesting study for example, mMRNA levels from transcriptome data
were used as weights for the corresponding reactions to predict a flux distribution
without using a conventional objective function such as the maximization of biomass
growth [48]. A study [49] evaluated these methods systematically for the prediction of
flux distributions, and the results were compared to that of parsimonious FBA as a
reference method that does not consider the transcriptome data. In general, none of the
methods could significantly improve the results of pFBA and none of them
outperformed the others for the tested cases (S. cerevisiae and E. coli). Instead of the
prediction of flux distributions, these methods, however, may significantly help in the

discovery of active metabolic networks in context/tissue-specific cells and in the



conditions where a relevant objective function cannot be hypothesized. Transcriptome
data are not necessarily correlated with the rate of corresponding reactions.
Inconsistency between mRNA levels and reaction rates is a result of influence of
several other factors in the regulation of enzymatic reactions. Therefore, if proteome
data are available, it can be used instead of transcriptome data as a better representative
for the concentration of active enzymes since proteome is hierarchically closer to the
enzyme states than transcriptome data. The methods that are developed to integrate
transcriptome data with the FBA method can all be used for the purpose of integrating
proteome data. For example, GIMMEp [50] is the proteome equivalent version of
GIMME. Some of such integrative methods were primarily tested with proteome data.
INIT [51], for example, was developed by using proteome abundance data from
Human Protein Atlas database. However, it was shown that utilizing proteome data
instead of transcriptome data could not improve the prediction of flux distributions for
the tested cases (S. cerevisiae and E. coli) [49]. In a study which used metabolome and
proteome data in the flux calculation method, on the other hand, even the use of only
proteome data was shown to improve the results compared to the traditional FBA [52].

Substrate concentrations, the concentration of enzyme regulators, the turn over
number of the catalyzing enzyme, and the concentration of the active enzyme are all
playing significant roles in the determination of reaction rates, and among them only
the concentration of the active enzyme may be represented by the corresponding
protein or mRNA concentration. Translated proteins are not necessarily active
enzymes, and they may need to undergo post-translational modifications (e.g.,
phosphorylation/acetylation) to become capable of catalyzing the reactions. This is one
of the main reasons behind inconsistency between protein levels and reaction rates. On
the other hand, the turn over number (catalytic power) of one enzyme may differ by
several orders of magnitude from the turn over number of another enzyme [53]. It
means that although the concentration of one enzyme may be much less than the others
in the network, the reaction catalyzed by that enzyme can proceed much faster than
others. According to this fact, the use of the absolute concentrations of proteins or
MRNAS to constrain reaction rates does not seem promising. However, the turnover
number of one enzyme in an individual is an intrinsic parameter of the enzyme that
does not change from one condition to another except by effective mutations that rarely
occur. Because of this, the relative levels of proteins or mMRNAs can be utilized to

overcome the problem of big differences in turn over numbers. One steady-state

7



condition with available data on flux values and protein/mRNA levels can be taken as
the reference state, and then the relative/differential levels of proteins/mRNAs to that
reference state can be used to predict the flux distributions at the new conditions. Based
on this approach, algorithms have been developed to incorporate relative/differential
transcriptome data into metabolic-flux analysis, among which are MADE [54] and
GX-FBA [55]. One other main reason for the inconsistency between protein levels and
reaction rates is the distribution of flux control among different layers from genotype
to phenotype. Metabolic fluxes can be regulated hierarchically (through gene
expression levels) or metabolically (through metabolic interactions) [56-59]. Use of
transcriptome or proteome data will not be helpful if the metabolic fluxes are

controlled at the metabolic level.

2.1.2. Constraints Based on Metabolome Data

One approach to find more specific and physiologically relevant flux
distributions is to provide additional constraints by specifying the directionality of
reversible reactions. This can be done by taking Gibbs free energies of metabolites into
consideration. The Gibbs free energy change of a reversible biochemical trans-
formation (one reaction or a series of reactions) determines the direction of that
transformation and its departure from reversibility. The earlier studies assumed
standard conditions (all metabolite concentrations were assumed to be 1 M) and did
not explicitly consider metabolite concentrations in the calculation of Gibbs energy
changes of reactions due to the scarcity of metabolome data [60]. Recent studies,
however, take the concentration of metabolites into account, when available, to
perform thermodynamic-based metabolic flux analysis, leading to more reliable
predictions [61-64].

Extracellular metabolome data can be used to constrain genome-scale metabolic
models for the calculation of intracellular flux distributions by simply constraining the
secretion and uptake rates of extracellular metabolites based on such data [65, 66]. In
a different approach, Michaelis—Menten-based kinetics was used for the estimation of
reaction rates for the reactions for which appropriate intracellular metabolome (and
proteome) data are available [52]. The FBA framework was designed in such a way
that the calculated fluxes are as consistent as possible with the kinetically derived

reaction rates, if available. The simultaneous use of metabolome and proteome data



for this purpose significantly improved the results. The use of metabolome data alone
also resulted in better predictions than the traditional FBA. In a recent study, a kinetic
platform was established based on Michaelis—Menten equation to bridge gene
expression levels, metabolite concentrations and metabolic fluxes without requiring
the knowledge of kinetic parameters [67]. They could show that changes in metabolite
concentrations relative to a reference steady state can be predicted by their formulation
that includes information on network connectivity in addition to differential mMRNA
expression levels. All those works utilizing kinetic information demonstrate the
necessity of dynamic models for a more comprehensive analysis of metabolic
networks.

Kinetic models of biochemical reactions not only provide a rational platform for
omics data —especially metabolomics — to be incorporated in the estimation of
metabolic fluxes, but also, they enable the prediction and study of the dynamics of
metabolic networks far beyond the steady state. Such models were only possible for
small-scale metabolic networks until recently [68, 69], since they require detailed
information on the enzyme kinetics of each individual reaction. Estimation of kinetic
parameters is a major obstacle in the applicability of dynamic modeling of metabolic
networks. New platforms and algorithms were established to circumvent this problem
so that the estimation of explicit kinetic parameters is not a prerequisite to study the
dynamic capacity and behavior of the system [70]. Approximative kinetic models (lin-
log, power-law, mass action) on the other hand, try to fit a standard rate expression
formula to all reactions of the network to increase the range of their applicability to
larger networks [71, 72]. Thanks to approximative Kinetics, attempts to reconstruct
large-scale kinetic metabolic models with more than 100 reactions were recently
presented [73-75], but their prediction power is limited to the conditions adequately
close to the corresponding steady state.

As a better alternative to approximative kinetics, an approach was established
and utilized based on the concept of parametric Jacobian, which covers the behavior
of all possible kinetic models that are consistent with an experimentally observed
operating point [76]. This approach provides an opportunity to detect and analyze
bifurcation characteristics of the metabolic network without the need for explicit
determination of kinetic parameters. Ensemble modeling of metabolic networks [77]
is an elegant idea for large-scale kinetic modeling of biochemical reaction networks.

In this method, each enzymatic reaction is broken down to its elementary reactions
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that all follow mass-action kinetics. An ensemble of thermodynamically consistent
kinetic models with different dynamic behavior that all converge to a reference steady
state is collected with the help of intracellular metabolome data. This ensemble is then
filtered by the results of perturbation experiments to filter out inconsistent models from
the ensemble and to increase the predictability of remaining models. The approach was
successfully applied, among others, to construct kinetic models of E. coli [78] and
cancer metabolisms [79], leading to promising flux predictions. Table 2.1 summarizes
different levels of information one might obtain about a metabolic network based on

different modeling approaches and availability of experimental data.

2.2. Top-Down Approaches

Time series of metabolite concentrations in response to a perturbation, and also
replicates of metabolome data at a specific steady state, both implicitly contain
information on the structure of active metabolic network. Reverse engineering of these
data to infer the condition-specific metabolic network without necessarily prior
knowledge on the genome of the organism and its static metabolic network is an
alternative to all bottom-up approaches that are based on the availability of a large-
scale stoichiometric model of the organism. Although promising, less attention has
been paid to these top-down approaches compared to bottom-ups mainly because of
the technical obstacles in gathering reliable metabolome data in large scale. This
limitation will be removed with future advancements in the detection and
quantification of intracellular metabolites such as higher coverage and temporal
resolution. At this stage, however, several research groups have established algorithms
and methods for reverse engineering of metabolic networks by using either time series

or steady-state replicates of metabolite concentrations [14, 80-82].

2.2.1. Network Discovery Based on Time Series Data

The use of time-series metabolite concentration data to predict the underlying
network connectivity information first appeared in the literature about two decades
ago. Time-lagged correlations combined with a projection technique called
multidimensional scaling were shown to construct the structure of generic biochemical

networks with few nodes [83].
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Table 2.1: Different levels of information on metabolic networks.

At the lowest level of information, one wants to know what the structure
of the network is, representing it with an undirected (or directed, if the
reversibility information is available) graph in which each node stands for
a metabolite and each edge stands for a biochemical transformation.
1 Alternative to the retrieval from the metabolic reaction databases, the
structure of the network — both directed and undirected — can also be
estimated to some extent by analyzing and reverse engineering the
metabolome data without the use of a priori database information on the
reactions.

At a higher level, the information on the stoichiometry of reactions can be
incorporated, leading to a directed stoichiometric biochemical network.

Having the stoichiometric structure of the network, one can characterize
the metabolic state in more detail by quantifying the metabolic fluxes. In
most cases, rather than a unique flux distribution, constraints are set on
flux values to shrink the solution space. Such modeling approaches are
known as Constraint-Based Modeling. This level of understanding the
3 active metabolic network (structure + flux distribution) has been the area
of focus in the research community for more than a decade. In most cases,
the information provided at this level has been satisfactory for engineering
research to design more efficient cell factories and also recently for
medical research to distinguish significant differences between healthy
and disease states.

There are however certain limitations at the above level although it
provides a network activity structure weighted with fluxes. The dynamic
behavior of the system cannot be captured, and the predictability power of
such models is hampered mainly because they are not considering the role
of regulatory mechanisms in controlling the rate of biochemical reactions.
In some cases, the regulation of reaction rates plays such a dominant role
that it would be hard to make any prediction by just considering the flux-
based network activity structure. Here come the kinetic models into the
picture, which take enzymatic regulations and metabolite concentrations
into account for a dynamic and better prediction of network structure.

Correlation between time-series profiles of metabolites, with the consideration
of the delay in the influence of one metabolite on the next, is the basis of the time-
lagged correlation method for the inference of metabolic networks. The approach,
called correlation metric construction, was later experimentally verified in vitro by
inferring the first steps of glycolytic pathway in a 14-metabolite system [84]. Modified

versions of the approach appeared later [85, 86]. In the latter, metabolic pathway of an
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anticancer drug was deduced from the time-lagged correlations of corresponding
metabolite concentration measurements. The modification introduced by the former
work was recently improved by using mutual information similarity score rather than
simple linear correlation [87]. The authors compared their method, called MIDER,
with several other methods by applying it to different types of cellular networks,
including in vitro glycolytic pathway data. The approach outperformed the other
methods.

Another method to reconstitute a network using time-series data is based on
perturbation experiments around steady state. The initial curve of concentration
changes of metabolites in response to a pulse change on the concentration of a
metabolite is processed with the method of zero initial slopes [88]. The method
successfully inferred the structure of glycolysis based on in vitro experimental data
[89]. Performance comparison of the method with the correlation metric construction
approach was later provided based on in silico data of S. cerevisiae and E. coli central
metabolic networks [14]. An approach based also on perturbation experiments, but
with a different formulation aiming to calculate Jacobian matrix from time derivatives
of concentration data, was first applied to gene networks [90]. A modified version of
the approach recently used in vivo metabolite concentration measurements from
tomato seedlings to reconstruct quercetin glycosylation pathway [91].

Apart from such model-free structure identification methods, model-based
methods use time-series metabolite concentration data not only to identify network
structure but also to estimate proper model parameters such as rate constants of kinetic
expressions [81]. Majority of these approaches use power-law (also called S-system)
formulation [92] to approximate reaction kinetics. An approach, for example, used S-
system modeling with a multi-objective optimization by simultaneously minimizing
the number of interactions and the error in the fitting [93]. They applied their method
to major metabolites involved in ethanol fermentation. An earlier work analyzed a
small three-metabolite network of phospholipid metabolism by combining S-system
modeling and an evolutionary modeling method, genetic programing [94]. Later, a
new representation of S-system approach, called S-trees, was combined with genetic
programing to reverse-engineer yeast fermentation pathway in a more efficient manner
by using in silico time-series concentration data of five metabolites [95]. In a
sophisticated approach, others used symbolic regression based on genetic programing

to infer both the structure and the model of yeast glycolytic oscillations from in silico
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data [96]. Their use of acyclic graph encoding rather than tree-based encoding together
with symbolic regression approach ensured the identification of parsimonious (sparse)
models. Rather than S-system formulation, mass-action kinetics can also be used to
infer pathway connectivity and reaction mechanism [11]. This minimizes the
computational burden on the algorithm since only rate constants are to be estimated as
parameters in the mass-action formulation. The authors tested their method with real
time course experimental metabolome data of Lactococcus lactis glycolysis. A
graphical user interface was later made available by the same group to ease the
inference of kinetics and network architecture from dynamic data of biochemical
pathways [97]. Genetic programing was also combined with mass-action Kinetics in
an algorithm, which ensures the estimation of biochemically more plausible models
[98]. The small phospholipid network of [94] was inferred in a more compact way by

this algorithm.

2.2.2. Network Discovery Based on Steady-State Data

The use of steady-state metabolome data to infer metabolic network structure
has also drawn attention in the last decade. The biological variability in the metabolism
of the organisms at around steady state is a known phenomenon due to slight variations
in the enzyme levels or due to slight natural or environment-induced fluctuations
within cellular processes. Slight variations in the steady-state measurements of
metabolite levels can be informative on the network structure [12, 99, 100]. The most
common approach here is to use the similarity measures such as Pearson correlation
to assign edges between metabolites. One should note that such correlations are not
necessarily strong among neighboring metabolites whereas there could be strong
correlations among distant metabolites in the network [100]. In a comprehensive study,
different alternative similarity measures (linear vs. nonlinear, and full vs. partial) were
applied to in silico metabolome data belonging to two microorganisms to
systematically analyze method performances [12]. The results revealed no clear
superiority between linear (Pearson correlation) and nonlinear (mutual information)
similarity measures. The best performing method was identified as nth order partial
Pearson correlation, known also as Graphical Gaussian Modeling (GGM). Graphical
Gaussian Modeling was also applied to metabolome data from blood serum samples

to reconstruct human fatty acid metabolism [101]. Others [102] analyzed in silico
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metabolome data of red blood cell metabolism by ARACNE approach [103], which is
based on pruning mutual information scores. An elegant improvement on ARACNE
based reverse engineering of metabolic profiling data was suggested later [104]. The
approach puts a constraint on the possible metabolic transformations to satisfy the
mass conservation between the connected metabolites. Synthetic data covering up to
about 200 metabolites were generated to test the approach. One issue in such
similarity-based approaches is that only pairwise interactions are aimed to be found.
However, a metabolic reaction can involve more than two metabolites. Based on this
reasoning, an attempt to also deduce triple interactions by using ternary mutual
information was suggested [105]. Analysis of synthetic yeast glycolysis data and red
blood cell data showed the success of this approach in capturing higher order
interactions.

A different approach to discover active metabolic networks from steady-state
data is based on Lyapunov equation. In Equation 2.1, the rate vector, v, is a complex
non-linear function of concentrations, C. For systems around steady state, the equation
can be expressed in terms of Jacobian matrix, J, by the help of linear approximation:

dXx
T JX (2.3)
With X = C — Cs, and Cs shows the steady-state metabolite concentrations.
Jacobian matrix stores detailed information on the structure of the underlying network;
such as the directionality of interaction, strength of interaction, and regulation type of
interaction. For small fluctuations around steady-state, the right-hand side of Equation
2.3 becomes zero, and the left-hand side can be expressed in such a way that a link
between the covariance matrix of metabolome data, I', and Jacobian matrix is

provided. The details of the derivation are given elsewhere [99, 106].
JT+T1JT =-2D (2.4)

D in the equation shows the extent of fluctuations. Equation 2.4, known as
Lyapunov equation, can be used to infer metabolic network structure since it provides
a link between the data-based covariance matrix and network connectivity stored in J.

Reverse-engineering metabolome data by using the Lyapunov equation was first
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discussed via a hypothetical three-metabolite system [99]. In Chapter 3, a novel
computational tool, JacLy, is introduced, which was developed during this thesis study
for the inference of small-scale metabolic pathways. JacLy takes the replicates of
steady-state data from repeated measurements at the same steady-state condition and
then utilizes the Lyapunov equation to estimate the Jacobian matrix of the system at

that condition.

2.3. Kinetic Modeling of Metabolic Networks

Kinetic models of cellular metabolism are valuable tools for rational design of
metabolic engineering strategies and to describe complex behavior of biological
systems. Kinetic models have been used for a large variety of applications such as
redesign of metabolic systems [71, 107-110], in synthetic biology [111] and for the
estimation of optimal drug concentrations [112]. Although in theory kinetic models
are better representatives of biochemical reaction networks compared to the
stoichiometric models, their usage in practice has been hindered because of several
issues among which the following two are the major ones: (i) lack of sufficient reliable
data suitable for kinetic modeling [113, 114] (mainly due to the absence of a standard
technology and protocol to monitor, measure and quantify dynamics of metabolism),
and (ii) the fact that kinetic parameters measured in-vitro are not applicable to the
modeling of intracellular biochemical reactions [115] (mainly due to the harsh
differences between the intracellular micro-environment and the micro-environment
in the test tubes where isolated enzymes are characterized). To circumvent this issue,
some researchers utilized in-vivo data that usually includes fast measurement of
intracellular metabolite concentrations at different time points after a stimulus
experiment [69, 116, 117]. They used such data as input to parameter estimation
algorithms to find appropriate kinetic parameters for their models. However,
computational estimation of in-vivo kinetic parameters has also been proven to be a
very difficult task with a very low success rate [118, 119]. Below, a brief review on
the history of development of kinetic modeling of biochemical reactions will be
provided and recent approaches towards kinetic modeling of large-scale networks
along with their limitations and challenges will be discussed.

First publications on the study of rates of enzymatic reactions appeared in the

scientific literature more than a century ago [120]. The work of Henry [121], Michaelis
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and Menten [122] and others [120] had a significant impact on enzymology and
biochemistry. The well-known rate expression of Michaelis and Menten and their
experimental design based on the in-vitro measurement of the initial reaction rates at
different substrate and/or inhibitor concentrations have been frequently used for
kinetic characterization of many enzymes. Corresponding measured Kinetic
parameters are available in enzyme databases such as BRENDA [123]. These
parameters and underlying Michaelis-Menten (MM) based rate expressions have
proved useful in several fields such as Enzymatic Membrane Reactors [124], Enzyme
Biosensors [125, 126] and others that deal with a limited number of isolated enzymes.
However, the use of MM-based kinetics and corresponding parameters does not seem
promising for the modeling of cellular metabolism [115, 118, 119]. Major reasons are
given below for why the MM-based kinetic modeling approach might not be suitable
for kinetic modeling of metabolic networks, especially the large-scale networks.

The first reason is that each of the MM-based rate expressions are deduced based
on one or more simplifying assumptions that might not hold true at intracellular
conditions. For instance, MM rate law itself assumes that among the elementary steps,
“release of the product” is the rate limiting step. Also, it comes with the assumption
that there is no difference between the enzyme-substrate and enzyme-product
complexes. That is why both complexes are lumped into a single intermediate in the
derivation of the MM rate law. Equations 2.5 to 2.7 show the complete set of
elementary reactions for an irreversible mono-substrate enzymatic reaction that is not

regulated by any means.

E+S2ES (2.5)
ES - EP (2.6)
EP>E+P 2.7)

E stands for the free enzyme, ES and EP are enzyme-substrate and enzyme-
product complexes respectively and P stands for the product. The same reaction is

described in the following elementary steps according to Michaelis and Menten:

E+S2X (2.8)
X->E+P (2.9)
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X is the common intermediate during transformation of S to P, representing
lumped form of ES and EP complexes. Although such simplifying assumptions might
be appropriate for most of the enzymatic reactions, in cases where they are not valid
for a few reactions, they can lead to very large deviations from the inherent dynamics
of metabolism while simulating networks of biochemical reactions. This is mainly
because the error in the calculation of the rate of even one reaction at each time point
of the simulation can be propagated, influencing the dynamics of the whole network
during the course of simulation. It must be mentioned that such assumptions made it
possible for Michaelis-Menten and others to mathematically describe the rate of
enzymatic reactions without any need for measurement of concentration of different
enzyme forms (free enzyme and its different complexes), which otherwise would not
be possible.

The second reason is that the MM-based rate expressions for multi-substrate
enzymes that are also regulated by one or more regulators are highly nonlinear with
many unknown parameters, leading to very complex and stiff sets of differential
equations. Even if parametrically identifiable, parameter estimation takes a great deal
of time and effort. Also, those kinetic parameters that were measured in-vitro cannot
be directly used in the modeling of biochemical reactions in the intracellular
conditions, as it was discussed at the beginning of this section.

Even after a successful parameter estimation, these models are not systematically
open to investigate the uncertainties regarding the kinetic mechanisms (the elementary
steps and their order) of one or more reactions. Considering the above-mentioned
reasons and also outstanding advancements in both wet-lab technologies and
computational platforms (both hardware and software), kinetic modeling of cellular
metabolism asks for new modeling strategies and their corresponding experimental
design. Regardless of the above-mentioned limitations, MM-based kinetic modeling
approach has been commonly practiced for the modeling of different metabolic
pathways in different organisms. Several MM-based models that have been
successfully applied for metabolic engineering purposes are addressed in the next

section.
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2.3.1. Applications of Kinetic Models

Genetic manipulation of unicellular organisms such as yeast and bacteria to
increase the production yield of specific metabolites is a common practice in metabolic
engineering. The modified strains are called “cell factories” and they play a crucial
role in the reduction of the total production cost in biotechnology industries. Design
and creation of efficient cell factories have made it possible for biotechnology-based
productions to compete with others (mainly chemical industry products) in the market.
Metabolic models that are able to predict the desired phenotypes are crucial for rational
design of cell factories. There has been successful applications of kinetic models for
the production of organic compounds such as glycerol [127], ethanol [128], succinate
[129] and 2,3-butanodiol [130] in food industry, as well as aromatic amino acids [131,
132]. The earlier kinetic models that have been used in metabolic engineering are
based on mechanistic expression of some of central carbon metabolism reactions by
using MM-based rate laws and are usually analyzed by Metabolic Control Analysis
(MCA) framework. In an attempt to increase the production of acetoin and diacetyl in
L. lactis, MCA was successfully applied on a small MM-based model (built using in-
vitro kinetics) to identify suitable strain designs [109]. A detailed glycolytic model of
L. lactis was constructed later [133] and MCA was used to identify the metabolites
affecting fluxes of L-Lactate dehydrogenase, pyruvate dehydrogenase and hexose
transporter. The same modeling approach coupled with MCA has also been used for
the identification of strain designs that decrease the glycerol production in S. cerevisiae
[127]. Kinetic models have also been used to increase the uptake rate of specific
substrates. Nishio et al. [134] used a kinetic model to improve glucose uptake rate of
E. coli. An unexpected combination of ptsl gene overexpression and mlc knockout was
suggested by the model. However, when tried experimentally, it could greatly increase
the specific rate of glucose uptake. Kinetic models were also used to increase the

uptake rate of xylose in S. cerevisiae [108] and in L. lactis [107].

2.3.2. Towards Large-Scale Kinetic Modeling of Metabolism

Genome-scale stoichiometric models of metabolism are available for hundreds
of organisms. These models do not contain any kinetic information and cannot
simulate the dynamic behavior of metabolism in response to different signals, neither

they provide any means for stability analysis or to understand the dynamic
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characteristics of the system in general. Although they have been widely used in the
prediction of active metabolic networks and/or corresponding metabolic flux
distributions at steady-state conditions, their prediction power is limited because of not
taking the enzyme kinetics into account. Kinetic models are better representatives of
metabolic activity, but there are several big obstacles and challenges in constructing
reliable kinetic models for significantly large metabolic networks. To alleviate the gap
between stoichiometric constraint-based models and kinetic modeling, integration of
kinetic expressions and/data has been proposed as one possible solution. To this aim,
a few methods were presented by different researchers in recent years. Machado et al.
[135] used randomly generated parameter samples to create a set of steady-state
solutions for the central carbon metabolism of E. coli. The steady-state solution of the
kinetic model could be mapped into the flux bounds of the constraint-based model,
restricting the solution space. In another research, a simplified kinetic model was
constructed by Cotten and Reed [136]. They integrated fluxomic, proteomic and
metabolomics data to estimate kinetic parameters. Afterward, they incorporated the
flux distributions as additional constraints into a constraint-based model to improve
predictions over FBA.

In recent years, there has been an increase in the number of attempts to create
alternative kinetic modeling approaches for large-scale networks. Some have tried to
make Kkinetic models of relatively large networks by using a generalized Kinetic
expression for all the reactions in the model. Such kinetic expressions are not
mechanistic, and they are also known as ‘“approximative kinetics”. Different
approximative kinetic formats such as logarithmic-linear, power law S-systems,
Generalized Mass Action (GMA) and linear-logarithmic were evaluated in literature
[137], and it was concluded that linear-logarithmic format combines all desired
properties and seems the most appropriate kinetic format. Approximative Kinetic
formats require less kinetic information than mechanistic rate laws, and they facilitate
the development and analysis of large-scale models but ignoring many real kinetic
behaviors. One must pay attention that the prediction power of approximative kinetic
models is limited to the conditions close to the corresponding steady state around
which the model is constructed. Mass Action Stoichiometric Simulation (MASS) is
another method that has been developed to incorporate kinetic information and
experimental data into stoichiometric reconstructions [138, 139]. One of the major

limitations of MASS is that it does not consider the uncertainties in the calculation of
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kinetic parameters based on high-throughput omics data. Such a limitation however
has been alleviated in the Ensemble Modeling approach [77], in which the parameter
space is sampled while still constrained by the thermodynamics of the reactions and a
reference steady-state flux distribution. Among all other approaches, the ensemble
modeling approach has a very high potential for kinetic modeling of large-scale
metabolic networks.

In Chapter 4 a computational tool, “Kinescope”, is introduced, which was
developed within the scope of this thesis study for the semi-automatic construction of
kinetic models of metabolic pathways. Kinescope is mainly constructed based on the
idea of ensemble modeling, however the algorithm presented in the original article
[77] was revised and several modifications were made to the algorithm. For example,
one of the main flaws in the original algorithm is that it does not count for the changes
in the transcription pattern between the two strains (e.g. wild type and gene deletion
mutant) and so the relative changes in the total enzyme concentrations of different
reactions are ignored, which can lead to large deviations in reaction rates. Also, the
relative ratios of different forms of an enzyme (e.g. free enzyme, enzyme-substrate
complex, enzyme-inhibitor complex, etc.) can change between two different steady-
state conditions, however it is not considered in the original algorithm. Therefore,
simulating the models with initial conditions based on the same ratios as the reference
steady-state can lead to significant errors. In the revised algorithm presented in this
thesis study, both of the above issues were considered. Moreover, an experimental
setup is suggested that is appropriate for this modeling approach and can facilitate

filtering of the ensemble until a handful of reliable models are found.
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3. JACLY: AJACOBIAN BASED METHOD FOR
INFERENCE OF METABOLIC INTERACTIONS
FROM THE COVARIANCE OF STEADY STATE
METABOLOME DATA

Reverse engineering metabolome data to infer metabolic interactions is a
challenging research topic. Here, a Jacobian-based method (JacLy) to infer metabolic
interactions of small networks (< 20 metabolites) from the covariance of steady-state
metabolome data is introduced. The approach was applied to two different in silico
small-scale metabolome datasets. The power of JacLy lies on the use of steady-state
metabolome data to predict the Jacobian matrix of the system, which is a source of
information on structure and dynamic characteristics of the system. Besides its
advantage of inferring directed interactions, its superiority over correlation-based
network inference methods was especially clear in terms of the required number of
data replicates and the effect of the use of a priori knowledge in the inference.
Additionally, Jacly uses the standard deviation of the replicate data as a suitable
approximation for the magnitudes of metabolite fluctuations inherent in the system.

Inference of cellular interactions by processing biomolecular data is a widely
used approach to investigate functional properties of cellular systems. Perturbations
due to genetic/environmental alterations and diseases lead to changes in functionality
due to change in cellular network structure, and network inference using the
biomolecular data of the perturbation states uncovers the changes in network structure.
When applied to the data of metabolite levels, the approach infers metabolic
interaction [11, 12, 140, 141]. The general trend is to use dynamic data to infer directed
metabolic networks, and steady-state data to infer undirected networks. On the other
hand, there are approaches that infer directed metabolic interactions from steady-state
metabolome data by utilizing inherent intrinsic variability in such data [15, 99].

While the principles of conservation of mass and conservation of energy set the
boundaries for deterministic behavior of the metabolic network, the inherent
randomness in this network, as it exists in other biological networks, leads to small
variability in the steady-states of the system at equivalent macroscopic conditions
[142, 143]. From a microscopic point of view, the inherent randomness is believed to
be the result of existence of discrete particles in the system, and molecular fluctuations

are inherent in the mechanism by which the system evolves [106]. Continuous change
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in micro-environment as well as multilevel complex regulatory mechanisms in the
metabolic network are also the causes of observed variability in the steady-states of
the system [99]. Although this intrinsic randomness introduces a great obstacle and
difficulty in modeling and simulation of metabolic networks, at the same time it
provides an opportunity to infer and estimate the active metabolic network at a specific
condition/context just by reverse engineering the corresponding replicates of
metabolome data at steady state. Considering the fact that information on interactions
between metabolites and hence the structure of the active metabolic network is implicit
in these data, the main questions are (i) how much information on the structure of the
network is hidden in the data, and (ii) how one may extract as much as possible of that
information from the data.

One common approach that utilizes inherent variability in steady-state data is
correlation-based inference methods, especially the Gaussian Graphical Model (GGM)
approach. Correlation based approaches are capable of detecting strong interactions in
the metabolic network to some extent. However, they infer interactions only in
undirected manner, and they have limited power in the detection of weak interactions
[12]. A directed network inference approach from steady-state metabolome data is also
available in the literature [15, 99, 141]. The approach is based on the prediction of
interaction strengths from the covariance of the data. The network structure
information stored in the inherent variability of the data is reflected on the covariance
of the data, and later used in the prediction of interaction strengths in the form of a
Jacobian matrix. The Jacobian matrix of a cellular interaction system contains a
significantly high amount of valuable information both on the structure and dynamic
characteristics of the system. Numbers in this matrix easily provide us with detailed
information on the underlying interactions in the network, such as direction of
interactions, nature of interactions (positive or negative effects), and strengths of
interactions [15, 99]. The Lyapunov equation provides a link between the Jacobian
matrix of a cellular system and the covariance matrix of the replicates of steady-state
data. This equation is the result of a Langevin type approach for description of
stochastic processes at macroscopic level [144]. The Lyapunov equation was also used
previously to infer differential changes in a Jacobian matrix rather than the inference
of the network structure itself [145, 146]. In another work [147], a comparison of
several least square and regularization methods in solving the Lyapunov equation for

the Jacobian matrix is provided. However, in that work, the structure of the Jacobian
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(zero and non-zero elements) is specified a priori by the stoichiometric matrix of the
metabolic network. Therefore, the problem is reduced to the estimation of magnitudes
for non-zero elements in the Jacobian matrix, which might not be considered as a

network inference.

3.1. Methods

3.1.1. Problem Definition

Provided that replicates of metabolome data are available for an organism in a
specific condition, and considering the fact that information on interactions between
metabolites and hence the structure of the metabolic network is implicit in these data,
the problem is to extract from the data as much knowledge as possible to infer the
active metabolic network in that condition. A metabolic reaction network can be
mathematically represented by writing mole-balance equations around its metabolites.
This leads to a system of differential equations that can be summarized as in the

following equation, where C is a vector of metabolite concentrations:

“_ro (3.)

dt
For a system around steady-state, a linear approximation can be made to express
the equations in terms of a Jacobian matrix, J [99, 138]:

dX
— = X 3.2
o~ (32)
with X=C-Cs, and C shows concentrations fluctuating around steady-state
values, Cs. Equation 3.2 can further be expressed as a Langevin-type equation to

explicitly account for small fluctuations [99]:

dx,
i Z]inj +y2D;6;(t) (3.3)
]
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Jij ac,

Where Di shows the extent of fluctuation and &; is a random number from unit
normal distribution. As demonstrated in the literature [106], Equation 3.3 can be

written as follows at steady-state:

JT+T1JT =—-2D (3.5)

Equation 3.5 is known as the Lyapunov equation, and it provides a link between

the Jacobian matrix of the network (J) and the covariance matrix of the replicate
metabolome data (T") [15, 99].

The fluctuation matrix (D) accounts for the inherent randomness in the system.
The diagonal elements of D reflect the magnitude of fluctuations observed on each

metabolite, and the nondiagonal elements can be assumed as zero [99]. The equation
is determined in terms of calculating the covariance matrix (') while the Jacobian
matrix (J) is provided, however, it is underdetermined in the case of calculating J while
T is available. This is because there are n(n+1)/2 independent entries in T for an n-

metabolite system due to the symmetric nature of the covariance matrix, whereas the
Jacobian matrix has n? independent entries. This equation can be rearranged to a
standard linear system of equations [15] and be represented as following:

Aj+2d=0 (3.6)

In this equation, A is a square matrix of size n?xn? derived from the covariance
matrix, j is the vectorized form of the Jacobian matrix with size n?x1, and d is the
vectorized form of fluctuation matrix with size n?x1, where n is the number of
metabolites. Oksiiz et al. used Equation 3.6 to solve for Jacobian matrix in an
optimization platform using Genetic Algorithm (GA) [15]. Beside the minimization of
the residual of Lyapunov equation, they used sparsity as a rational objective function
to select Jacobians from the solution space that have a high number of zeros and satisfy

Equation 3.6 as well. The multi-objective function that simultaneously maximizes the

24



number of zeros (sparsity) in the Jacobian matrix to be determined and minimizes the

residual of Equation 3.6 can be represented as following:

f = (number of zeros) x 1 —logqo(||4j + 2d]|) (3.7)

The first term in the equation counts for the number of zeros in the Jacobian
matrix that needs to be maximized, the second term counts for the residual of
Lyapunov equation that needs to be minimized, and in total the objective function f is
to be maximized. Lambda (1) is a scaling factor discussed in detail in a section below.
In order to balance between the two goals in the objective function, and also to refrain
the solution from going to a very high number of zeros, the scaling factor was
introduced in the objective function.

Using the exact covariance and predefined fluctuation vector as inputs to the
algorithm, Oksiiz et al. [15] validated the theoretical applicability of this approach.
The same objective function was used in this study, however, after careful examination
of the problem, an extensively modified algorithm was developed. The new algorithm
is highly robust and could be applied to the replicates of in-silico metabolome data
generated by simulating stochastic dynamic models of metabolism using stochastic
differential equation (SDE) solvers.

Simulations and optimizations were performed in MATLAB (R2017a) on a
desktop computer equipped with a 3.2GHz CPU and 4GB RAM. SDE simulations
were performed using the SDE toolbox that is freely available as an external MATLAB
toolbox [148]. Genetic Algorithm (GA) was implemented using the ga function in
MATLAB’s global optimization toolbox. A built-in parallelized version of ga was
used with the help of MATLAB’s parallel computing toolbox. Custom MATLAB
functions were written for creation, crossover and mutation fields of GA. Maximum
number of generations was set to 800 and a mutation rate of 5% was selected after
careful examination of GA’s behavior. The MATLAB codes for JacLy are available

in appendices.

3.1.2. Optimization Pipeline

Genetic Algorithm (GA) was used to solve Equation 3.6 for j while A and d are

settled. At each generation of GA, bit string vectors are generated for j as individuals.
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With a candidate bit string for the structure of the Jacobian vector (zero and nonzero
elements in j), Equation 3.6 can be reduced to a lower dimensional system of equations

by removing the zeros in the j and also removing the corresponding columns in A.

Arjr+2d =0 (3.8)

Since the Jacobian vector is sparse in structure (r<<n), this leads to considerable
reduction in the number of unknowns to be determined, and increases the speed of the
inference algorithm compared to the original algorithm in [15]. In Equation 3.8, jr is
the reduced form of Jacobian vector, obtained by removing those elements
corresponding to zeros in the suggested individual, and A, is formed by removing the
corresponding columns in A. Equation 3.8 can be easily treated and solved as a line
fitting problem, in which the elements of j: are factors of the line equation and are
estimated to make the best fit to the data. Minimizing the Euclidean norm of this fitting
is one of the terms in the optimization objective function defined in Equation 3.7. The
other objective is to maximize the number of zeros in the Jacobian matrix, considering

the fact that metabolic networks are sparse networks (discussed in a section below).

3.1.3. Constraining the Solution Space by Generating Sparse
Individuals

As the number of metabolites and hence size of the network increases, the
solution space expands exponentially and the probability of finding the true candidate
for Jacobian vector through a stochastic algorithm decreases significantly. Moreover,
the computational time and effort increases dramatically with the size of the network
[14]. In these situations, it is very important to constrain the solution space as much as
possible to solve the problem (Equation 3.8) in a manageable time. One way to
constrain the solution space meaningfully is to control the generation and reproduction
of candidate individuals in GA such that those individuals with unwanted
characteristics are not produced at all to be tested. Since metabolic networks are
naturally sparse networks, setting a minimum sparsity parameter for the generated
individuals can be used as a controlling parameter. This was another novelty in the
algorithm compared to the original one [15].

It is known that metabolic networks are highly sparse, meaning that there are

much less interactions (edges) in the network compared to the maximum possible
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number of edges (fully connected network). The natural sparsity in several known
metabolic networks was calculated, and it was observed that all the tested networks
have a sparsity larger than 0.55. As a result, a minimum sparsity of 50% was selected
as the default value in the algorithm. Just by definition of such a parameter, the solution
space to search for non-zero values of Jacobian is greatly reduced. Sparsity parameter

was defined as the following:

Total number of possible edges in the network — number of edges in the network (39)

S ity =
parsity Total number of possible edges in the network

Number of zeros in the Jacobian

~ Total number of elements in the Jacobian

Based on this definition, a sparsity value of one will mean a network with not
even a single edge whereas a value of zero will correspond to a complete digraph. It
must be considered that the sparsity calculated from the Jacobian and the one
calculated from the biochemical reaction network are not necessarily the same, since
the Jacobian also counts for the regulatory interactions which are absent in the
biochemical reaction network, but since the number of regulatory interactions is
usually insignificant compared to the number of reactions, the two values are very
close.

In order to minimize the computational effort and time, the minimum sparsity
parameter was used as the control parameter in the creation of the initial population in
GA, and then in the production of individuals at subsequent generations. To this aim,
custom MATLAB functions were written and used for creation, crossover and
mutation fields of GA in MATLAB. This was another novelty over the previous
algorithm [15]. With this supervised control of individuals, bit-strings with unwanted
characteristics had no chance to appear as the candidates for Jacobian vector, and it
provided a significant contribution in constraining the solution space. The custom
functions for GA were written in such a way that minimum sparsity is intrinsic in the
generation of individuals and no time is consumed for control and filtering of the

generated bit-strings.
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3.1.4. Scanning for The Scaling Factor

The objective function (Equation 3.7) consists of two terms, one is the residual
of Equation 3.8 to be minimized and the other is the number of zeros in the Jacobian
vector to be maximized. In order to balance between these two values and also to
prevent the optimization algorithm from converging to the too sparse solutions, a
scaling factor (A) is multiplied with the term for the number of zeros in the Jacobian
vector. Since this parameter directly affects the magnitude of the objective function, it
is important to find a range of lambda that leads to sensible solutions. Selecting very
small values for the scaling factor leads to the conditions in which the optimization
will not be very sensitive to the number of zeros in the Jacobian vector, and
minimization of the residual of Equation 3.8 would be dominant in the objective
function. On the other hand, large magnitudes of the scaling factor lead to the solutions
with very high number of zeros in the Jacobian vector, with almost no sensitivity to
the residual of Equation 3.8. There is always a narrow interval for the scaling factor,
in which the optimization problem can find a Jacobian vector with optimum number
of zeros that also leads to insignificant residual value for Equation 3.8. This interval
for the scaling factor varies from problem to problem [15], depending on several
factors among which are the size of the network and the accuracy and number of data
replicates from which covariance matrix is calculated. Constant problem-specific A
values were used in the previous algorithm [15]. In order to circumvent the obstacles
due to selection of a proper value for the scaling factor, it was decided to scan a range
of values for the scaling factor in an unsupervised manner, instead of estimating a
constant value for each specific problem. A range between 0.01-0.10 with increments
of 0.005 was scanned. Since the algorithm is repeated 10 times due to the stochastic
nature of genetic algorithm, it leads to a total of about 200 solutions per network
inference problem. In this way, the optimization algorithm works repeatedly for each
value of the scaling factor, and the optimum solution would have chance to appear
among the candidate solutions. This was another improvement over the previous

algorithm.

3.1.5. Fluctuation Vector

One of the major obstacles in utilizing the Lyapunov equation is introduced by

the fluctuation matrix D since it may contain non-observable quantities [146]. The

28



fluctuation matrix plays a critical role in this equation, and the computed Jacobian
matrices are highly sensitive to the values in the fluctuation matrix. After a reasonable
fluctuation matrix is selected, the problem of solving the underdetermined equation to
find the Jacobian can be formulated as an optimization problem.

The existence of a non-zero fluctuation vector is both physically and
mathematically meaningful. Fluctuation vector represents the intrinsic noise in the
molecular interactions that are the source of stochasticity in the replicates of data
through which the information on the structure of the network is going to be extracted.
A non-zero fluctuation vector also prevents the equation (6) to have null space, that
otherwise would be problematic. On the other hand, it is not very clear how to find and
how to set the values for the fluctuation vector in equation (6). In a previous work [15],
a constant problem non-specific small value of 0.005 was used for all metabolites to
mimic small fluctuations around metabolites. Here, it is hypothesized that standard
deviation of the data replicates would be an acceptable resource to be used for
estimation of the diagonal elements of the vectorized fluctuation matrix. The use of
data-specific fluctuation vector elements in this manner rather than using a constant
value for all problems is another improvement in this algorithm compared to the

original algorithm [15].

3.1.6. Using a Community of Estimated Jacobians Instead of Only
One Elite Jacobian to Infer Structure of The Network

JacLy scans a range of scaling factors (A) in the objective function (Equation
3.7). For each scaling factor, optimization is performed 10 times, leading to hundreds
of optimizations. The end result of each optimization is a Jacobian vector that has the
maximum objective function value among thousands of other individuals. This
Jacobian is called the best-found Jacobian for each optimization. Among all the best-
found Jacobians, one can be selected as the elite Jacobian vector based on both sparsity
and residual of Equation 3.8. In all the test studies, it was observed that if, instead of
the elite Jacobian, a community of the best-found Jacobians in a bounded area around
the elite Jacobian are combined and used to infer the structure of the final Jacobian,
the accuracy of inference significantly increases. To do so, first a bounded area is
defined around the elite Jacobian based on the number of zeros and the residual of
Equation 3.8. For all of the tests in this study, -/+ 5% of the number of zeros in the

elite Jacobian was selected to set the lower and upper vertical boundaries and -5% of
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the residual of Equation 3.8 for the elite Jacobian was selected to set the lower
horizontal boundary (see Figure 3.1). The Jacobian vectors in the bounded area are
then binarized by setting their non-zero elements to one. The binarized vectors are then
aligned on top of each other to form a binary matrix. Taking average over columns of
this matrix leads to a new vector including fractional numbers between 0 and 1. The
structure of the final Jacobian vector is then determined by setting a threshold of 0.5
to decide for zero and non-zero values. Those elements that are smaller than the
threshold are set to zero and others to one. A looser threshold of 0.4 increases both
TPR and FPR. It was also observed that selecting 0.4 as the threshold leads to better
g-scores in general, however, there is the risk of sparsity being dropped to significantly
lower values. As a result, while selecting a threshold for the combination of best-found
Jacobians, the use of sparsity check as a caution is advised. Figure 3.2 provides a

schematic of this procedure.
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Figure 3.1: Selecting a bounded area around the elite Jacobian based on a percentage
of the number of zeros in the elite Jacobian and the residual of Equation 3.8.
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Figure 3.2: A schematic example of alignment and combination of Jacobian vectors
in the selected community to come up with the final structure.

In this study, a mathematical proof is not provided to prove how using a
community of best-found Jacobians around the elite Jacobian can improve the
inference results. However, as far as tested with different in-silico datasets and noisy
covariances, using such combinatorial approach not only leads to better inference
results, but also it stabilizes the final output of the algorithm when applied to the same
problem repeatedly. The use of a community of best-found Jacobians is another
novelty over our previous work [15], which reported the results based on only the elite

Jacobian.

3.1.7. Quantification of Inference Performance

While True Positive Rate (TPR) and False Positive Rate (FPR) are two quantities
suitable for the evaluation and comparison of network inference results, g-score can
be used as a single parameter to quantify performance of any inference method. g-

score is calculated by the following equation:

g —score = \/(TPR x (1 — FPR)) (3.10)

31



3.2. Results

3.2.1. Use of in silico Covariance Matrices for Metabolic Models of
S. cerevisiae and E. coli

The Lyapunov equation (Equation 3.5, and Equation 3.6 in the rearranged form)
is underdetermined in terms of calculating the Jacobian matrix J given T and D as
inputs, meaning that there is more than one Jacobian matrix satisfying the Lyapunov
equation for each pair of T and D (see Methods section). To evaluate the applicability

and performance of our method (JacLy) in predicting the network structure through
the prediction of the Jacobian matrix, two kinetic models that are well known in the
literature were used. The first model covers 13 metabolites of yeast glycolysis [68],
and the second model covers 18 metabolites of central carbon metabolism in E. coli
[69]. True Jacobian matrix was calculated for each kinetic model around its
corresponding steady-state by using the detailed rate expressions and parameters in the
models. Here, the same strategy as in the previous work [15] was followed, however,
the highly improved genetic-algorithm-based dual objective formulation was tested by
the in silico generated metabolome data, instead of using the exact covariance
matrices. The purpose of this section is to demonstrate the improvements in the current
version of the algorithm compared to the previously published one [15]. Having the
true Jacobian matrix and predefined fluctuation matrices, the exact covariance matrix
was calculated from equation (5). These covariance matrices are called “exact”
covariances since they hold true to the Lyapunov equation. Exact covariances and
corresponding fluctuation matrices were used as inputs to JacLy to evaluate its
performance in finding J.

JacLy uses genetic algorithm for optimization, which is a stochastic optimization
algorithm. Therefore, it is important to solve for the equation for enough number of
times until a constant reproducibility parameter is achieved. For both models, a
constant reproducibility is obtained after 20 runs. Out of 20 repetitive runs for each
model, 19 and 18 of them could find Jacobian matrices that are in complete agreement
(100% TPR and 0% FPR) with the true networks of yeast and E. coli models,
respectively. These results show a great improvement over the previous work [15],
which had a reproducibility parameter of 50% and 5% for yeast and E. coli models,
respectively. On our desktop computer, each run takes around two minutes for the
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yeast model and six minutes for E. coli, showing a 10 fold increase in computational
speed over the previous work [15]. Such significant improvements in reproducibility
and computational speed have been achieved solely by modifying the algorithm and
corresponding functions (see Methods section). One should note that since JacLy
incorporates a A scan with 10 replicate solutions, the whole process of generating 200
solutions for S. cerevisiae took one hour while the time in the case of E. coli was two
hours.

The performance of JacLy was also evaluated by using noisy covariances as
input. To this aim, the same procedure as in the previous work [15] was used to add
noise to the exact covariance of the yeast model. Random numbers were sampled from
a normal distribution with a mean of 1 and a standard deviation of 0.005. This
corresponds to a dataset with 50% noise [149]. The random numbers were then
symmetrically multiplied with the elements of the exact covariance to generate a noisy
covariance matrix. This was repeated to generate ten different noisy covariances and
JacLy was applied on each. The average TPR and FPR are 74% and 5%, respectively.
These numbers were 73% TPR and 11% FPR in the previous work [15]. These results
show a considerable increase in the performance of JacLy compared to its ancestor in
terms of the FPR value since exactly the same problem was solved with only
improvements in the algorithm based on (i) the use of reduced form of the Lyapunov
equation, (ii) the use of sparsity constraint, (iii) scanning the scaling factor and (iv) the
use of a community of candidate Jacobian vectors, as discussed in detail in the
Methods section. Additionally, note that a threshold of 0.4 in the combination of
Jacobian vectors rather than 0.5 leads to a TPR of 84% and an FPR of 8%.

It was reported in the literature that statistical methods such as LASSO and
Tikhonov regularization fail to solve Equation 3.6 whenever the condition number of
matrix A is significantly large [147]. In order to evaluate the sensitivity of the method
to the condition number of A, different fluctuation matrices along with the true
Jacobians of yeast and E. coli models were used as inputs to Equation 3.5, and different
exact covariances were calculated leading to different A matrices covering a range of
condition numbers from 106 to 1025. JacLy was applied to each of those covariance
matrices along with their corresponding fluctuation matrices. It was observed that the
condition number of A doesn’t have any influence on the performance of JacLy. Even
for the largest condition numbers, JacLy was able to find the true Jacobian with similar

computational time and reproducibility parameters. It should be kept in mind that not
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being sensitive to the condition number of A in solving Equation 3.6 doesn’t mean that
the calculated Jacobian matrix is not sensitive to the changes in the fluctuation matrix.
Indeed, Equation 3.6 is frequently ill-conditioned as it is also reported in other studies
[147]. Small changes in the fluctuation matrix D lead to big changes in the calculated

Jacobian matrix.

3.2.2. Use of in silico Metabolome Data for Metabolic Models of
S. cerevisiae and E. coli

At this stage, JacLy was applied to the replicates of in silico metabolome data.
Stochastic versions of yeast [68] and E. coli [69] models were used to generate 1000
replicates of steady-state metabolome data in silico. In this case, it was necessary to
come up with a fluctuation matrix to be used as input to the method along with the
covariance of metabolome data. As it was mentioned in the Methods section, it was
hypothesized that standard deviation of data might be a reasonable source to be used
for the construction of a fluctuation matrix. In a stochastic dynamic system, all or some
of the sources of stochasticity are usually unknown. In the Lyapunov equation the
fluctuation matrix D is the parameter counting for sources of stochasticity. Since
standard deviation is a measure of variation in data, it was used as a reasonable source
to construct the fluctuation matrix. Table 3.1 shows the inference results of JacLy
applied to in-silico data for the yeast and E. coli with a comparison to GGM-based
inference results. In GGM analysis a cut-off of 0.01 was used for p-values to decide
on the significance of partial Pearson correlation values. The networks predicted by
JacLy are directed while those estimated by GGM are undirected.

It must be considered that solving Equation 3.6 for the Jacobian vector is highly
sensitive to the fluctuation vector d, and so it is of critical importance to come up with
a fluctuation vector that is most reasonable for data replicates. Normalization of the

data was thought as a way that might improve the correspondence between the
covariance matrix T and the fluctuation matrix D in the Lyapunov equation. Data

normalization doesn’t have any effect on the results of similarity-based inference
methods such as GGM. In-silico metabolome data for the yeast and E. coli were

normalized to between 0 and 1 by dividing each value to the maximum value in the
dataset. Normalized data was then used to make both covariance matrix T and

fluctuation matrix D. When applied to the normalized data, JacLy showed a significant
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improvement in inference results for the yeast data (0.95 TPR and 0.13 FPR, with a g-

score of 0.91) while it had no effect on the inference results of E. coli data.

Table 3.1: Inference results for the in silico metabolome data, comparison of JacLy
and GGM.

In-silico data for Yeast In-silico data for E. coli

TPR FPR g-score TPR FPR g-score
JacLy 0.66 0.08 0.78 0.69 0.29 0.70
GGM 0.76 0.12 0.82 0.63 0.12 0.74

Another parameter influential on the result of network inference is the number
of replicates in the data. Previous GGM-based analysis for the inference of metabolic
interactions using in silico metabolome data for the same networks analyzed here
showed a sharp decrease in the quality of the inference after the number of replicates
decreased below 200 [12]. Here, the effect of number of datapoints on the inference
results of JacLy was tested. Of 1000 replicates initially generated by stochastic
differential equations, 100 randomly chosen replicates were used in the inference of
the network for S. cerevisiae. Repeating this 10 times and taking the average, a TPR
of 0.73 and an FPR of 0.16 was obtained by using JacLy, corresponding to a g-score
of 0.78. On the other hand, GGM-based inference for the same randomly chosen 100
replicates resulted in average TPR and FPR values of 0.42 and 0.03, respectively, with
a g-score of 0.63. Therefore, an advantage of JacLy over GGM is its considerable
robustness in terms of the number of replicate datapoints used in the
covariance/correlation calculation.

In the process of inferring a network for a set of metabolites, there are cases
when existence (true positive) or non-existence (true negative) of an edge between two
metabolites might be available as prior knowledge. Such information can be used as
additional input to inference algorithms, resulting in a shrinkage of the solution space
and so enhancing the computational speed and performance of the algorithm. The
effect of using prior knowledge about non-existent edges on the performance of JacLy
was tested. To this aim, 7 and 20 zeros of the true Jacobian matrices were selected as
priorly known true negatives for yeast and E. coli models, respectively. This
corresponds to 5% and 7% of the total number of elements in Jacobian matrices for

yeast and E. coli models. This procedure was repeated 10 times for each model and

35




JacLy was applied to data each time. The average TPR and FPR over 10 repetitions
for the yeast model are 0.75 and 0.08, respectively, leading to a g-score of 0.83. For E.
coli, an average TPR of 0.79 and an average FPR of 0.31 was obtained, leading to a g-
score of 0.74. These results show a significant improvement compared to the
corresponding values in Table 3.1. Based on the results, JacLy performs considerably
better when a very small portion of true negatives is introduced as prior knowledge.
Specifying true negatives contributed to a better prediction of true positives. The
correlation-based GGM approach, on the other hand, is not suitable for the use of prior
knowledge.

In addition to the binary structure of estimated Jacobians, which is the main
output in inferring the structure of an active metabolic pathway, the best-found
Jacobians in the selected area around the elite Jacobian - before binarization and
combination — were also compared with the true mechanistic Jacobians of the kinetic
models, calculated by using detailed rate expressions and parameter values in those
models. Since JacLy has a stochastic nature, the optimization was repeated three times
on each SDE data. Afterward, the Spearman correlation was used to make the
comparisons. The medians of correlations are around 0.45 and 0.25 for yeast and E.
coli models, respectively while the medians of p-values are less than 0.0001 in all cases
(See Figure 3.3).

The kinetic-model-based true Jacobian matrices, together with SDE-data-based
covariance matrices were used as inputs to the Lyapunov equation to calculate an exact
fluctuation matrix. The exact fluctuation matrix was then compared to the
approximated one estimated by JacLy. It was observed that the exact D contained off-
diagonal non-zero elements as opposed to the estimated one. Some of the elements had
the same magnitude as the diagonal elements. On the other hand, our very simple
method of estimating D led to quite acceptable TPR and FPR values in those case
studies, and the standard deviation of data is logically related to the source of natural
fluctuation in the system. Therefore, our estimation approach can be used because of
its simplicity and applicability. However, research should be performed to develop a
more accurate method of estimating D. On the other hand, one should note that SDE
simulator algorithms and toolboxes, such as the one used in this study, have stability
problems in terms of the generated noise when applied to highly nonlinear systems.
This could also be another reason behind the inconsistency between the covariance of
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SDE data and the true Jacobian matrix, which directly affects calculation of the

fluctuation matrix from the Lyapunov equation.
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Figure 3.3: The Spearman correlation between the predicted Jacobian matrix values
by JacLy and the calculated values from the kinetic models are shown here for both
Yeast and E.coli. JacLy was applied three times (due to its stochastic nature) for each
organism, and the correlation was calculated for each of the best-Jacobians
determined around the elite Jacobians. The results are given below in the form of
boxplots. (a) The results for the yeast. 1: 60 best-found Jacobians, 2: 100 best-found
Jacobians, 3: 96 best-found Jacobians. (b) The results for E. coli. 1: 12 best-found
Jacobians, 2: 100 best-found Jacobians, 3: 11 best-found Jacobians.

37



3.3. Discussion

JacLy is a network inference algorithm with specific focus on the inference of
small-scale metabolic networks from steady-state data. It has significant advantages
over its ancestor [15]. Here, algorithmic improvements which led to significant
improvements in the runtime and prediction power of JacLy are reported. Major
improvements were (i) Vectorizing all possible computations, significantly improving
the runtime, (ii) the use of the reduced form of the Lyapunov equation by removing
the columns corresponding to zero Jacobian vector entries, improving the runtime, (iii)
the use of sparsity constraint in genetic algorithm to improve the runtime by
eliminating the possibility of generating low-sparsity individuals, (iv) scanning the
scaling factor rather than fixing it for each specific problem, making the algorithm
more flexible and independent from the effect of chosen parameter value and
improving the prediction power, and (v) the use of a community of candidate Jacobian
vectors rather than using the elite Jacobian vector in the inference, improving the
prediction power of the results. Inferring metabolic pathways via prediction of
Jacobian matrices is also useful in estimating dynamic and mechanistic characteristics
of the system under investigation.

One issue that is worth mentioning at this stage is the applicability of the
approach in terms of the size of the network to be inferred. For example, each run for
the E. coli model consumed about twice more computational time compared to that of
yeast, while the E. coli model has only five more metabolites compared to the yeast
model, an almost 40% increase in the number of network nodes. This dramatic increase
in computational time with respect to network size — whenever the calculation of
Jacobian matrix is involved in a network inference method — was observed and
explained in previous studies [14], and it is indeed one of the major drawbacks of using
such methods to infer larger networks. From this aspect, JacLy is more suitable as a
small-scale (< 20 metabolites) network inference method. There are several network
inference methods in the literature with a specific focus on small-scale networks [150,
151]. Since different cellular functions are biologically attached to smaller metabolic
pathways or subnetworks, it still makes sense to be able to infer active subnetworks
for a specific cellular condition rather than inferring the whole network. Table 3.2
summarizes some characteristics of JacLy through a comparison with GGM as one of

the most common methods in inference of biological networks.
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Table 3.2: A summarized comparison of JacLy with GGM.

JacLy GGM
- NP-hard problem
- Computational time No sensible change in the
Computational time versus increases computational time from
network size exponentially by very small to very large
increasing the network | networks
size
- Accuracy is a very
- Accuracy isa strong function of
moderate function of number of data
number of data replicates
Accuracy versus number replicates - Reduction in the
- For lower number of number of data
of data replicates . . .
data replicates, it replicates has a
outperforms very high negative
correlation-based impact on the
methods quality of inferred
network
Directionality of inferred
Directed Undirected
network
- Mechanistically
meaningful
- Inferred values for the - Correlation values
Jacobian elements are cannot be used as
Meaningfulness of measures of any physical or
inferred edge’s weights interaction strengths mechanistical
and their sign parameter of the
(positive/negative) system
points into the nature
of interaction

Currently, steady-state metabolome measurement data that are reported in the
literature are limited in terms of the number of replicates. This limitation is not specific

to our method; commonly used correlation-based inference methods are also suffering
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from low number of data replicates and usually lead to significantly high number of
false positives. Also, in case of real metabolome data, experimental measurement
errors interfere with natural stochasticity of the system leading to lower quality in
predicted networks. Moreover, since our method relies on the fluctuation matrix (D)
as one of the inputs, this external noise is more troublesome. To test the applicability
of our approach to the real metabolome data, random noises were introduced to the
SDE data of the yeast model by following the approach presented by Fuente et al.
[149]. For each metabolite, the random noise was sampled from a normal distribution
with mean zero and a standard deviation equal to 10% of the variance in the steady
state concentration of that metabolite. Ten sets of noisy data were generated by using
this approach. The in-silico data already includes randomness due to natural
stochasticity since it was generated using an SDE simulation toolbox. This random
noise was still added to the data to count for the other sources of error such as
measurement errors. Afterward, Jacly and GGM were both applied to the noisy data
sets and the inference results were compared with those obtained from the noise-free
SDE data. The average g-score dropped from 0.78 (noise-free data) to 0.71 (noisy
datasets) for JacLy and from 0.82 to 0.79 for GGM. These results provide a theoretical
base for applicability of our approach to real metabolome data that includes other
sources of randomness in addition to the natural stochasticity of the system. Although
these results show that GGM is less sensitive to the noisy data (as expected) but one
should remember that these tests were performed using a 1000 replicate SDE data, that
is a very high and unrealistic number to repeat same measurements to obtain
metabolome data. As it was shown in section 3.2, JacLy clearly outperforms GGM for

lower number of data replicates.
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4. KINESCOPE: A TOOL TO EASE KINETIC
MODELING OF METABOLIC PATHWAYS

Dynamism is undoubtedly a major aspect of life. All organisms dynamically
interact with their environment. Whether it is a single-celled form of life such as
bacteria or a complex multicellular organism such as human, they continuously receive
signals from their environment and respond to those signals as needed. From a systems
point of view, living things are “dynamical systems”. To study a system, both
experimental and theoretical playgrounds are needed. Mathematical models are
required for theoretical analysis of the system. Originally, to model something means
to describe it in another language or format. Mathematics is the language of logic,
formalism, intuition and quantity, hence mathematical modeling of a system makes it
easier to analyze that system. All mathematical models come with “abstraction and
simplifications” of the real system under study. As a result, there isn’t any model that
can exactly and precisely describe a system and its behavior in different conditions. In
other words, there is no “perfect” model. This is specially the case for more “complex
systems” which include significantly higher number of interacting components, while
both the components and the interactions among them may be of different natures and
follow different mechanisms. In addition, the aggregate behavior of such a system,
although being a function of the behavior of its individual components, may not be
derivable from a linear combination of those individual behaviors. Figure 4.1 is a
schematic representation of a complex system with a limited number of components.
The more the number of simplifying assumptions in a model, the less would be its
applicability to describe the real system in different conditions. Indeed, the models are
not meant to be perfect. As it was mentioned, a mathematical model is a tool for
theoretical analysis of a system. It leads to generation of hypotheses, through which
new experiments can be designed, and based on the results of the experiments the
model will be modified to be a better representative of the system. The modified model
then can be used for the generation of a new hypothesis, and this cycle (Figure 4.2)
can continue until the model is good enough to reliably represent the system at
conditions of interest. (i) Not being able to experimentally verify a hypothesis, and (ii)
not being able to simulate a model in a manageable time are two major barriers in the
above-mentioned cycle and both can be circumvented by advancements in

experimental and computational technologies.
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Figure 4.1: An example of a complex system with limited number of components.
The response of the system (H) depends on the input signals and the state of the
system at the time of receiving those signals. The aggregate behavior of the system
(®), although can be a function of the behavior of individual components (f1, f2, ...),
it may not be derivable by using a linear combination. The figure is intended to be a
general representation of a complex system, but as an special example, m, x, eand r
can be interpreted to be metabolites, cofactors, enzymes and reaction rates
respectively.
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Figure 4.2: Modeling Cycle. Theory and experiment are complementary. Through
the modeling cycle that makes a link between theoretical and experimental
playgrounds, the knowledge about a system can be increased.
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When presenting a model, it is moral to clearly state the conditions in which it
can represent the behavior of the system fairly well, and also the conditions in which
the model may behave completely different from the real system. Also, whenever
using a model, it is critical to pay attention to those conditions. Using a model in
conditions where it is not meant to represent the system can lead to generation of false
hypotheses and subsequent confusion. Metabolism is a dynamical system. The
network of biochemical transformations continuously responds to the concentration of
metabolites and enzymes. Sensitivity and specificity of the enzymes to their substrates
and regulators is an important factor in this process. However, since transcriptional
regulation of the metabolism and the subsequent changes in total enzyme
concentrations play a major role in the determination of the metabolic fluxes, a model
that only includes kinetics of the enzymatic reactions cannot represent the dynamic
behavior of the metabolism shifting from one steady-state to another, even if it is
comprehensively covering the kinetics of all reactions. Hence, kinetic models of
metabolic pathways are applicable to the situations where the dynamic response of the
metabolism is the result of enzyme kinetics only, such as when the perturbation is not
strong enough to change the transcription pattern. However, even in cases where
changes in the transcription significantly contribute to the determination of the new
state, the first few seconds of the dynamic response can be fairly represented by the
kinetics of enzymatic reactions alone. It is mainly because the enzymes in the
corresponding metabolic pathways respond (primary response) to the perturbations
much faster than the transcriptional regulatory network (secondary response), and it
takes a little time for the signal to be transduced to the changes in the transcriptional
pattern and subsequently to the changes in the total enzyme concentrations.

A brief introduction on how modeling can help with theoretical analysis of a
system and how it provides a link between theory and experiment was given above.
The system under study in this research is a metabolic network (a network of
intracellular biochemical reactions). Definitions and concepts that are required for
mathematical modeling of the dynamics of a metabolic network are provided in the
following section. Further, the algorithm and mathematics behind “Kinescope™ are
comprehensively covered. Kinescope is a computational tool with a graphical user
interface (GUI) that was developed in MATLAB as another product of this research.
The main idea behind design and development of Kinescope is to create a tool that can

be used for semi-automatic construction and analysis of kinetic models of biochemical

43



reaction networks, and to take a further step towards large-scale kinetic modeling of
metabolic networks. The algorithm behind Kinescope was designed mainly based on
the idea of ensemble modeling [77]. Metabolic ensemble modeling was introduced in
2008 as a novel approach for kinetic modeling of biochemical reaction networks. The
approach relies mainly on a steady-state metabolic flux distribution vector as a
necessary input to the algorithm and benefits from mass action kinetics as a well-
known rate expression by breaking the enzymatic reactions into their elementary
reaction steps. Many different parameter vectors are calculated in a way that, when
simulated, all converge to the same reference steady state flux distribution. Collected
models are then screened based on the additional experimental data from different
experiments. Major and minor additions and changes were made to the original work,
as they will be discussed in next sections. A major modification for example, was
automatic construction of a symbolic Jacobian matrix that can be used to
mathematically verify stability of each kinetic model without any need for simulations.
Such a modification had a great impact on the required time for collection of stable
models in the ensemble and on the reliability of the collected models as well.
Kinescope is made upon 16 computational functions for collection and screening of
kinetic models, a core script with several functions for GUI objects creation and
interactions, and in total, several thousand lines of coding in MATLAB. All the
functions and scripts have been written from scratch. In the final sections of this
chapter, two case studies will be provided as examples of applying Kinescope to small

scale networks with different regulatory mechanisms, and results will be discussed.

4.1. Method

Before constructing a mathematical model, it is better to clearly determine the

following objects for the system under study:

e System Components and their Features: Components of a system are those
elements that can interact with each other, and the behavior of the system is
determined through those interactions. In a graphical representation of a system,
the components are represented as graph nodes, and the interactions among the
components can be shown by connecting the corresponding nodes to each other
with directed or undirected edges. Components of a system may be of different

categories, and every single component in a category can still have its own
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individual identity. Each category may have one or more features assigned to it.
When modeling a system, one must determine “what the required features are
for each category of the components”. These two questions can help to find the
required features: (i) What “data” is being used to make the model? and (ii) What
are the “variables” of the system and how they relate the system inputs to the
outputs? In the case of metabolic networks, metabolites and enzymes are two
categories of the components. In the classical modeling approach that is based
on Michaelis-Menten type rate expressions, intracellular abundance of
metabolites (C,,) is usually the only feature assigned to the metabolites, while
the enzyme abundance (C,), rate of the reaction it catalyzes (v), and a kinetic
rate expression (f) can be three suitable features for the enzymes. C,,, C, and v
are quantities while f is a mathematical expression. Figure 4.3 is an abstract
representation of a Michaelis-Menten (MM)-based kinetic model of a small
metabolic network.

System Boundary: A real (physical) or imaginary boundary that separates the
system under study and all of its components from the rest of the universe. In the
case of metabolic networks, the real boundaries can be cell membrane or the
membrane of the organelles such as mitochondria, but usually it is an imaginary
boundary around the metabolites and enzymes of the pathway under study in
kinetic modeling.

Functional Units: Functional units of a system are those components that make
an operation on what they receive as inputs, and their outputs depend on that
operation. The operation can be represented in the form of a mathematical
expression, and it is usually where the essence of mathematical modeling resides.
In the case of the metabolic system modeled in Figure 4.3, the functional units
are the enzymes.

Model Variables: Model variables are those features that can change during
simulation of the model. They may be independent or dependent variables. In the
model represented in Figure 4.3, concentration of the metabolites (C,,) are
independent variables while rate of the reactions (v) are dependent variables.
Consider that model variables are not necessarily the same as the system
variables. For example, enzyme abundance (C,) is a variable of the system in a

metabolic network, and it can change according to the changes in the
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transcription, translation and post-translational modification processes. But since
there is no mathematical expression to count for those changes, it is not
considered as a variable of the model in MM-based model of Figure 4.3.

Model Parameters: Model parameters are those quantitative values that do not
change during the simulation of the model. There can be two types of parameters:
(i) “Model-wide parameters” are those that belong to the model as a whole. They
usually set a condition for all the components of the system and changing them
can lead to changes in the aggregate behavior of the system. When coding a
model into a computational language, model-wide parameters can be defined as
“global parameters” in the code. (ii) Local parameters are usually the constants
in mathematical expressions that represent the operation of the functional units
in the system. In the case of the MM-based model of Figure 4.3, maximum
reaction rates (v**) and Michaelis-Menten constants (K,,,,) are among local
parameters of the model. Consider that, although the parameter values do not
change during a simulation, they can be tuned before each simulation to study
how the changes in those parameters (if practically possible) affect the behavior
of the system.

System Features: Any quality or quantity that can identify the system and its
behavior as a whole, without focusing on its individual components, can be a
feature of the system. Cell morphology, growth rate and transcription pattern are
among other features that can be used in the study of unicellular organisms as
systems. In the case of a metabolic system, a suitable feature is the metabolic
flux distribution vector, which is a vector containing the rates of all the reactions
in the corresponding network.

System State: The state of a system can be represented as a collection of the
variable values for one or more types of system variables. In the case of the
metabolic system presented in Figure 4.3, the state of the system can be
determined by the vector of metabolite concentrations (C,,), or with a set that
includes both metabolite concentrations and reaction rates ({C,,,, v}). For a
dynamic system, the concept of state has a tighter relation with the concept of
time. The system can be either in a transition state or in a steady state. To
determine the state of the system at a specific time point is similar to taking a

snapshot of the system and looking at the values of its variables at that instant.

46



System Components = {m, e}

€s

m: metabolite
e: enzyme

(6 V.
Component Features: (] vl
m: Abundance (e.g. concentration) C,, _ Cmy v§
e: Abundance C,, Reaction rate v, Rate expression f Cm = |Cms| V= vy
: _— C v
Model Variables: C,,, v Cm4 vs
o= - ms 6
System Feature = v System State = {C,,,, V}
Mathematical Model
Model Reactions and Rate Expressions:
. V{Tl(l.’l'c’n
I 1my - 1m, V1 = f1(Cnyp Cng) = ———— g
Cm1+KMM1(1+K1m )
5
v} % (Cm,)?
2: 2m,—>1m v, =G ) = <
. g 2 = fo(Cina) (Cmy) 2 +KMM, +2K2p, Cmy
vma.x G
_L( i __m4_)
i Kamy ™3 Kseq
3 17TI3<—>177’l4 U3 =f3(Cm3,Cm4)=W
K3m3 K37n4
4: 1m,->1m 1, =h(C )—M
> 3 5 4 4\~*ms3 Cina KM,
5 1m,-1m vs = f5(C )—M
& 4 5 5 5\~my Cm4+KMM5
6 1m, - Vg = fy(C,) = 2ocms
. 4 6 6\lmy T
. 5 7 = 4ZN\msd T Cm5+KMM7
Balance Equations around each Metabolite: S: Stoichiometric Matrix
dc N §: Counts for any “external” sources or
d1tnl =—v, +6 sinks that affect the abundance of the
i metabolites. For example, a constant
ACrm, L _ (5545 £ ded j
=v, —2v, +6, . S.v)+6 amount of m; provided to a continuous
dgt reactor (a non-zero 6, ).
m.
at 2= v, — V3= + 8, Vi Uy V3 Uy Vs Vg Uy
dc 61 1|ofo]o|ofo]o|m
m.
T":'v3—v5—vé+64 |82 1|2]o]o]ofofo]m,
dCp, 6 =03 S=|o]1]|af1]o|of0]|m;s
dt5=2v4+2v5—v7+65j 84 oflo|1]ofaf1]o|m,
05 ofofof1f1fof-1|mg

Figure 4.3: MM-based kinetic modeling of a small metabolic network.

A literature review on the kinetic modeling of metabolic networks was given in

Section 3 of Chapter 2. The limitations of classical MM-based modeling and the
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obstacles in front of such modeling approach were highlighted. A few approaches
towards large-scale kinetic modeling of metabolism were also reviewed, among which
the Ensemble Modeling (EM) approach [77] seems very potent and was selected as
the template algorithm to make Kinescope. As a part of this research, the original
algorithm of EM went through several revisions and modifications. For example, a
few simplifying assumptions are used to automatically break down each enzymatic
reaction of a given stoichiometric metabolic model into a series of elementary
(association/dissociation) reactions that their combination governs the catalytic
mechanism of the bulk reaction. Such simplifying assumptions that are necessary for
automatic construction of the structure of the kinetic model at the elementary reactions
level out of a stoichiometric model, and the reasoning behind them, has never been
clearly stated in previous works. Also, after automatic construction of the model at the
elementary reactions level, Kinescope provides an interface for the user to manually
edit and curate the elementary steps of those reactions whose catalytic mechanisms are
well studied in the literature and the simplifying assumptions may not apply to them.
Another novelty that greatly enhances the process of collecting stable parameter sets
(parameter sets that lead to a stable steady state) is automatic construction of the
symbolic Jacobian matrix of the kinetic model. Since all the elementary reactions
naturally follow the mass action Kinetics, it is possible to have a symbolic Jacobian
matrix of the model through symbolic derivation of the balance equations around each
molecule. This matrix is then used to evaluate the stability of the model for each
parameter set, making it possible to reject those parameter sets that mathematically
lead to unstable models, without any need for simulating them. This modification not
only leads to collection of more reliable models, but also it decreases the required time
for construction of the ensemble by several times. Another issue that is worth
mentioning is the possible change in the relative abundance of different forms of an
enzyme between two different steady states. For instance, after a gene deletion, not
only the total enzyme concentrations may change, but also the distribution among its
different forms (e.g. free enzyme, enzyme-substrate complex, ...) may also change.
Since each steady state has a finite threshold of stability within which the model
simulations can converge back to that state, simulating the models for a new state (e.qg.
after gene deletion) with the same initial condition as the reference state may not work
even for true parameter sets. In the following sections, the algorithm behind Kinescope

is comprehensively explained.
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4.1.1. Construction of the Ensemble

Based on the ensemble modeling approach, suitable dynamic models for a
metabolic network are found through two main modules. The first module is to collect
so many different models (or the same model structure but with different parameter
sets) that, regardless of their dynamic behavior, all converge to a reference steady-state
and are mathematically stable at that state (Figure 4.4). The collection is called the
“Ensemble” and this first module is titled “Construction of the Ensemble” in this text.
The second main module is to use the experimental data from different experiments to
reduce the size of the ensemble. The conditions of each experiment are applied to all
models in the ensemble, each model is simulated, and the corresponding model
variables are compared to those observed/measured in the experiment. If the model
output is not in agreement with the experimental observation, that model will be
rejected from the ensemble. This procedure can continue until a handful of reliable
models remain. In this manner, each experiment acts as a filter to screen the models in
the ensemble (Figure 4.5). This module is titled “Screening the Ensemble”.

The submodules for construction of the ensemble are explained in the following
subsections. But before that, essential and optional inputs to the module are introduced.
The optional inputs, whenever available, can efficiently constrain the sampling space
for the parameters, hence effectively avoiding the unwanted models to be collected in
the ensemble. Figure 4.6 is a schematic representation of how different submodules

are organized to construct the ensemble.
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Figure 4.5: Screening the ensemble. The same condition/perturbation (e.g. change in
the substrate concentration) as the experiment is introduced to all the models in the
ensemble. Only those models that have a similar response (e.g. change in the
secretion rate of a specific metabolite) to the experimental observation remain in the
ensemble, others are rejected.
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Essential Inputs:

i)

Stoichiometric model of the metabolic network (including the

stoichiometric matrix and corresponding list of metabolites and reactions).

i) A reliable metabolic flux distribution vector, obtained from a reference

experiment at a stable steady-state condition.

Optional Inputs:

i)

A regulatory matrix, containing information on which enzymatic reactions
are regulated (inhibited/activated) by which molecules, and what the
mechanism of the regulation is. This matrix can be the same size as the
stoichiometric matrix with the same row and column labels for metabolites
and reactions. However, instead of the stoichiometric coefficients, the
corresponding numbers are some predefined codes (Table 4.1) to determine
the type of regulation. By default, this matrix is considered as an empty
matrix in Kinescope. Since it directly influences the structure of the model
at the elementary reactions level, it is highly recommended to provide this
matrix for known regulatory interactions in the network. For example, the
regulatory matrix of the model shown in Figure 4.3 would be a 5x6 matrix
in which the only non-zero element is the one corresponding to metabolite

ms and reaction v, (element (5,1)), with a value of -1.

Table 4.1: Codes for different regulation mechanisms.

Regulation Mechanism Code
Competitive Inhibition -1
Uncompetitive Inhibition -2
Mixed Inhibition -3
Allosteric Inhibition -4
Allosteric Activation +4

Standard Gibbs free energy of the reactions, whenever available, can
constrain the parameter sampling space through the expressions that are
given in Section 4.1.6. This data does not need to be provided for all the
reactions. By default, Kinescope assigns “NaN” values to the Gibbs energy

feature of each reaction. This data can be partially provided only for those
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reactions with a known Gibbs energy, to constrain the parameter sampling

space as much as possible.

i)

Lower and Upper bounds for metabolite concentrations are needed to

calculate lower and upper values of the Gibbs free energies of the reactions

(Section 4.1.6). By default, the lower bound for the concentration of all

metabolites is zero and the upper bound is 100 mM, which is much higher

than the frequently reported concentrations for most of the metabolites in

different metabolome datasets. Whenever experimental data is available on

the intracellular concentration of some metabolites in several different cell

conditions, such data can be used to come up with tighter boundaries for

those metabolites.
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Figure 4.6: Flowchart of the algorithm for construction of the ensemble.
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4.1.2. Automatic Break Down of the Enzymatic Reactions to their
Elementary Steps

Kinescope automatically generates a set of elementary reactions for each
enzymatic reaction of the stoichiometric model based on the following three
assumptions:

Assumption 1: The “biochemical transformation step” can be ignored in many
enzymatic reactions (Figure 4.7.a). After the attachment of all the required substrates
and cofactors to their respective positions on the enzyme, reactants are transformed
into the products of the reaction through manipulation of their chemical bonds. This is
the transformation step which is in the middle of attachment of reactants and release
of products. When dealing with the kinetics of the enzymatic reaction, the
transformation step can be ignored in many cases, either because the quasi steady-state
assumption of Briggs and Haldane [152] applies to the condition, or because the rapid

equilibrium approximation of Michaelis and Menten [122] can be applied.
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Figure 4.7: Automatic break down of enzymatic reactions to their elementary steps.
a) Assumption 1, Biochemical transformation step is ignored. b) Assumption 2,
Multi-substrate reactions are assumed to be random sequential. ) In the case of

irreversible reactions, all the elementary steps before the transformation step are still

reversible. d) Reforming the model to elementary reactions expands the
stoichiometric matrix. Number of molecules and reactions increase significantly.
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Assumption 2: Multi-substrate reactions are assumed to follow a random
sequential mechanism. Unlike reactions with Ping-Pong mechanism, in a sequential
mechanism, all reactants are first attached to the enzyme and the transformation
happens afterward. Sequential reactions can be ordered or random. In ordered
reactions, some reactants cannot attach to the enzyme unless the specific reactants
attach first. In this case, the number of possible scenarios to reach to the final complex
for the transformation is restricted. The random sequential is the more general case, in
which different reactants can attach to the free enzyme, leading to different complexes
that are able to become the final complex for the transformation (Figure 4.7.b).

Assumption 3: For irreversible reactions, the elementary steps before the
transformation step are considered reversible, while all the other steps are irreversible
(Figure 4.7.c). The idea behind this assumption is that the reactants can leave the
enzyme before any transformation occurs.

Each column of the stoichiometric matrix in the original model becomes a matrix
with several columns and rows in the elementary reactions model (Figure 4.7.d). It
must be considered that, although the number of molecules and reactions increase
significantly in the elementary reactions model, it is not an exponential increase and
follows a linear manner. As the elementary reaction steps are constructed for each
reaction of the stoichiometric model, they are categorized into two groups. Those
elementary reactions that can be lined up in the form of a series of steps, starting from
attachment of the first reactant to the enzyme and ending with release of the last
product, are categorized as the “Main Elementary Reactions” (MER). Those
elementary reactions that occur in parallel to the main steps, such as attachment of a
competitive inhibitor to the free enzyme, are categorized as the “Side Elementary
Reactions” (SER). This categorization helps with calculation of the rate constants

(demonstrated in section 4.1.7).

4.1.3. Manual Curation of the Elementary Steps

Since the assumptions used for automatic construction of the elementary
reactions do not apply to all enzymatic reactions, the possibility to manually curate
and edit those elementary steps for reactions of choice is a necessity. Whenever
information on the kinetic mechanism of a reaction is available in the literature, its

elementary steps must be evaluated, and if the automatically generated ones are
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different from the available information, they must be edited accordingly. Kinescope
provides an interface to make it possible for the user to manually edit the elementary
steps of such reactions. (Figure 4.8.b). An example of a reaction that would need
manual curation is fermentation of pyruvate to lactic acid by the lactate dehydrogenase
enzyme. This reaction follows an ordered sequential mechanism in which NADH is
the first molecule to attach to the enzyme, after that it is possible for the pyruvate to
associate. A comparison of the automatically generated elementary steps for this
reaction with the one based on the literature is presented in Figure 4.8.a. The
corresponding screen shots of the graphical interface of Kinescope for this task are

also provided.
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5 [e1m1m2] <> [@1m3] + [m4]
6 [e1m3] <—-> [e1] + [m3]
7 [e1m1m2] <> [e1m4] + [m3]
¢ [e1md] <—> [e1] + [m4]
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Formwda

+ mé4

Lactate

B Z
NADH + Pyruvate < » NAD + Lactate
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Figure 4.8: Manual curation of the elementary steps. a) Reaction catalysed by lactate
dehydrogenase, example of an ordered sequential mechanism. b) Screen shots of the
graphical interface of Kinescope to evaluate and edit the elementary steps.
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4.1.4. Automatic Construction of the Kinetic Model

Direct attachment of two molecules to form a complex and direct detachment of
a molecule from a complex are the most basic events in molecular interactions. An
elementary reaction is a chemical reaction in which one or two chemical species react
directly to form products in a single reaction step. Elementary reactions are hence the
most fundamental kinetic events at the molecular level. The rate of any elementary
reaction fundamentally follows the law of mass action. Based on the law of mass
action, the rate of the reaction is directly proportional to the product of the
concentrations of the reactants. A rate constant is then multiplied by the product of the
concentrations of the reactants to make the proportionality relation into an equality
relation.

After the model structure at the elementary reactions level is constructed through
previous steps, a mass action rate expression is assigned to each elementary reaction
in the model. Using these rate expressions and the stoichiometric matrix of the model
(automatically constructed by scanning all the elementary reactions), mass balance
equations are written around each molecule of the model, including both metabolites
and enzyme fractions. However, all the metabolite concentrations are scaled by their
corresponding concentrations at the reference steady-state, and those of free enzyme
and enzyme complexes are scaled by the total concentration of the corresponding
enzyme. Consider the following reaction being the i*"reaction in the stoichiometric
model, in which the molecule S is isomerized to the molecule P by catalytic activity

of enzyme E;:

E;
SoeP (4.1)

The elementary mechanism for this reaction is:

Uiy Vi3
S+E S ES<SE+P 4.2)
Vi Vig

The mass action rate law assigned to the first elementary reaction would be:
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vin = ki [E{][S] (4.3)

k;, is the rate constant and brackets around a molecule indicate the concentration
of that molecule. The right side of each mass action rate expression can be multiplied
and divided by to the product of the total concentration of the corresponding enzyme
(E; in this case) and the concentration of the corresponding metabolite (S in this case)

at the reference steady-state:

E] [S
Viy = kis[E;r][S]rer [}[5.3] [S[]r]ef (4.4)
v = kip[el][s] (4.5)
& s
kiy = ki [Eir][Slyer & [ei] = [EE ]] & [s] = [S[]r]ef (4.6)

Normalizing the variables or scaling them by a reference state to make them
dimensionless is a common practice in physics and engineering and the original work
of ensemble modeling [77] also made use of such practice. Concentration of the
corresponding metabolite at the reference steady-state ([S],..; in this example) and the
total concentration of the corresponding enzyme ([E; ;o¢q:] in this example) are now
intrinsic to the lumped rate constant (k;; in this example). Since concentrations of the
metabolites at the reference state are constant values and do not change under any
circumstance, they do not introduce any challenge in using the normalized equations
for simulation of the kinetic model around steady-states other than the reference state.
Simulating the model around the reference steady-state leads to the convergence of all
the normalized metabolite concentrations (such as [s]) to 1. Convergence to other
values around other steady-state conditions represents the fold change in the
concentration of the metabolites with respect to the reference state. The total
concentration of the enzyme ([E; ;,:q:]) however, can change from one condition to
another (e.g. as a result of change in transcription and translation). Although it does
not introduce any challenge to simulate the model around the reference steady-state (it
does not introduce any problem in the stage of collecting different models in the
ensemble), using the same value to simulate conditions other than the reference state
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(e.g. when filtering the collected models in the ensemble by using experiments that
have different conditions than the reference state) is not rational. To take this fact into
consideration, the fold change in the total enzyme concentration with respect to the
reference state is multiplied by the lumped rate constants. For example, the rate

expression of the Equation 4.5 is modified as follows:

Vip = killel-‘T [e;][s] (4.7)
_ [Eir]
fEi,T [Ei,T]ref (4.8)

fe, equals 1 at the reference state. The format of Equation 4.7 is used as the

universal format for the rate expressions in the construction of the kinetic models in
Kinescope. Whenever proteomics data is available for the both states, it can be used

for the calculation of fg . parameters to simulate the models around a steady-state

other than the reference state. In the absence of proteomics data, transcriptomics data
can be used under the assumption that protein expression is roughly proportional to
gene expression. As a result, having proteomics and/or transcriptomics data for the
reference state is highly recommended although they are not necessary to construct the
ensemble. Also, perturbation-observation experiments can be designed around the
reference state to filter the collected models in the ensemble without any need for
proteomics or transcriptomics data. For instance, the dynamic change in the
concentration of one or more metabolites in the first few seconds/minutes after a
perturbation can be used as an observation to filter the collected models. It is mainly
because, even if there would be a change in the total enzyme concentration in response
to a perturbation, it can be ignored for the first few seconds/minutes after the
perturbation is introduced.

In Kinescope, all the rate expressions and the balance equations, along with other
required commands, are automatically written into a text file and saved as an m-file of
MATLAB, which can be directly used as the input model file to an ODE solver for
simulation. A schematic of the automatically constructed kinetic model at the
elementary reactions level is presented in the Figure 4.9, which can be compared to

the Figure 4.3. Both kinetic models are for the same stoichiometric metabolic model,
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however the one in Figure 4.3 is MM-based while the latter is at the elementary

reactions level.

Assignment of mass action rate law to each elementary reaction
Reaction 1: 1 my — 1my competitively inhibited by ms
Main Elementary Reactions Side Elementary Reaction
2 ) ; Vi — 1
e +my ;}—2917"1 V11 = ki fe,p led][mu] via = kiafe, p[eamy] e + 7n5V<—5 eims Uiy = kiyfe, o [e1][ms]
- ¢ 1
v Vi = ki e,m
exmy Se; +my viz = kisfe, [eim] 15 15/5, r[e1ms]
Reaction 2: 2my —» 1 m3 e
1
Vay [ezmy]
e; +m; 1;__) exmy Vo1 = ko fp, [ex][me] Voo = kaof,[eams] [exms]
22
"
Va3 ; ; [e2] L
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Figure 4.9: Representation of the automatically constructed kinetic model at the
elementary reactions level for the stoichiometric model of Figure 4.3.
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In Kinescope, there is a dynamic relation between the model and the
corresponding m-files so that the changes made in the model are directly translated
into the m-files. Such characteristic of Kinescope, in addition to the semi-automatic
construction of models at the elementary reactions level, makes it a valuable tool for

studying the dynamism of biochemical reaction networks.

4.1.5. Automatic Construction of the Symbolic Jacobian Matrix

A Jacobian matrix contains valuable information on dynamic characteristics of
a dynamic system. It is especially useful to evaluate the stability of a system at any of
its steady states (equilibrium points). A dynamic system can be represented with the

following equation:

dy  _
A fo (4.9)

In the case of a metabolic network being the system, y would be a vector
containing the abundance data of the molecules (as in Figure 4.9). The steady states of

the system can be found as solutions to the following equation:

f@ =0 (4.10)

A system can have more than one steady-state, as it is usually the case for the
metabolic networks. However, not all steady states of a system are “stable”. Around a
stable steady state, the system has the tendency to keep that state. In other words, it
has the tendency to converge back to that state in response to perturbations. On the
other hand, when a steady state is unstable, the system has no tendency to keep that
state. That means it will diverge from that state in response to the slightest
perturbations. Having a stable steady-state experimental condition as the reference
point to collect the kinetic models in the ensemble, those parameter sets that lead to
mathematically unstable models are of no interest and must be rejected. The stability
of a model at a given steady state can be mathematically evaluated by calculating the
eigenvalues of the Jacobian matrix of the model. If all the eigenvalues have a negative

real part, the model is mathematically stable at that state. On the other hand, even if
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only one of the eigenvalues has a positive real part, the model is unstable. If the largest
real part of the eigenvalues is zero, the stability of the model at that state is unknown
and further investigation is required. For a dynamic system represented by Equation
4.9, elements of the Jacobian matrix can be determined by the following equation:

dy;
23

Iy = (4.11)

Jij is the element of the Jacobian matrix at row i and column j. For example, the

first element of the symbolic Jacobian matrix of the model in Figure 4.9 is as the

following:

ot 4.12
oy = fer il + Kialms]) (4.12)

Since mass action kinetics is used as the rate expression for all the elementary
reactions, a symbolic Jacobian matrix of the model can be automatically constructed
by symbolic differentiation of the balance equations with respect to the concentration
of each molecule. Having the symbolic Jacobian matrix, each parameter set sampled
from the parameter space can then be used to come up with a numerical Jacobian
matrix. In this way, the unstable parameter sets can be easily rejected without any need
for simulations. In Kinescope, if the largest real part of the eigenvalues is zero, the
corresponding parameter set is still added to the ensemble, since it still has the potential
to make a stable model. But all the parameter sets that lead to eigenvalues with positive
real parts are rejected. Based on our experience, only a small percentage of the sampled
parameter sets lead to stable models. For example, out of 10000 sampling for the
kinetic model of Figure 4.9, between 100 to 200 stable models can be collected, that
is less than 2%. In addition, the required time to evaluate the stability of the models is
incredibly reduced by using the symbolic Jacobian compared to collection of stable
models through simulation. For example, evaluating the stability of 10000 parameter
sets for the model of Figure 4.9 takes around 30 seconds by using the Jacobian matrix,

while it takes more than 75 minutes to simulate those 10000 models on the same
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computer. This equals to 150 times reduction in the required time for collection of

stable models in the ensemble.

4.1.6. Thermodynamic Constraint

In biochemistry, the degree to which a substance tends to combine with another
is defined as “affinity”. For each elementary reaction, the association and dissociation
rate constants are directly related to the affinities between the involved molecules.
Affinities, and hence the rate constants, cover a wide range of values in the real number
system. In addition, the dynamic behavior of a biochemical reaction can be extremely
sensitive to some rate constants. Considering these facts, it is not a wonder that the
Kinetic space is extremely huge, even for a small metabolic model, covering so many
different dynamic behaviors. Rational constraints, however, can be exerted on the
kinetic space to reduce its size, making it more feasible to find the appropriate rate
constants. Anchoring the dynamic models to a reliable steady-state flux distribution,
obtained from the reference experiment (explained in the next section), is a very
effective method to constrain the kinetic space [129]. In addition, for the reversible
reactions in the stoichiometric model, standard Gibbs energy change of the reactions
along with the lower and upper bounds on the metabolite concentrations can be used
as a further constraint in calculating the corresponding rate constants. Consider the
reversible reaction of Equation 4.1 as an example, with standard Gibbs energy change

of reaction AG;and reference steady-state flux value V; £

i

E o
S& P AG; Vi rer (4.13)

The standard Gibbs energy change of a reaction is a measure of how far the
standard-state (for substances in liquid solutions: 1 bar pressure and 1 Molar
concentration) is from the equilibrium, and is related to the equilibrium constant of the

reaction (K,,) through the following equation in thermodynamics:

o

AG
=T —In (K,q) (4.14)
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R being the universal gas constant and T stands for the temperature. The Gibbs
energy change of reactions in liquid solutions is not a strong function of the pressure
(even if it was, the pressure is not that different from the standard-state in almost all
studies of biological cells). However, by changes in the concentrations of the involving
molecules, the Gibbs energy change of a reaction (AG) can deviate significantly from
its value at the standard-state (AG"). The following equation links the Gibbs energy

change of the reaction to the concentration of the reactants and products:

AG
27 = In(@) —In (Keo) (4.15)

Q is the reaction quotient. The following equations can be written for the

example reaction of Equation 4.13:

AG;
RT - In(Q;) —In (K;¢q) (4.16)
0; = % 4.17)

Using the lower and upper boundaries for the metabolite concentrations, two
extreme cases can be determined for the reaction quotient. One is when the
concentration of the products of the reaction are at the minimum ([P];,) and the
concentration of the reactants are at the maximum ([S],;), and the other one is when
the concentration of the products is at the maximum ([P],;) while the concentration
of the reactants being at the minimum ([S];;). Using Equations 4.14, 4.16 and 4.17,

the two extreme cases for the example reaction can be represented as the following:

AG; [Pl AG;
(RT)lb = ln< [S]ub> + BT (4.18)
AG; [Plup) . AG;

(ﬁ)ub =n < ST ) T RT (4.19)
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On the other hand, the elementary reaction steps of the example reaction

(Equation 4.13) can be written as the following:

Vi1
S+E; € ES Ri1 (4.20)
Vi2
Vi3
ES<S E+P R;» (4.21)
Vig

R;; and R;, are the reversibility parameters for the 2 elementary steps of reaction
i in the stoichiometric model. The reversibility parameter for each elementary reaction

step is defined as the following:

_ min (Vizj-1), Vizj))
max (Vi2j-1), Vi(2j))

Ry (4.22)

Based on the definition, the reversibility parameter is always greater than or
equal to 0 and less than or equal to 1. It equals to O for an elementary step that is not
reversible and equals to 1 when the corresponding elementary step is at the chemical
equilibrium (Veorwara = Vbackwara)- At the reference steady-state, the sign of the

corresponding metabolic flux (V;,., in this example) can be used to reformulate

Equation 4.22 to the following:

Vi2)), - ,
Rijrey = (XL ysianCirep) (4.23)
Vi(2j-1),ref
Taking the logarithm of both sides leads to:
I(Rjjrer) = Sign(Virer) In(Viczyrer) = In (Vigzj-1)rer)) (4.24)

Summing up Equation 4.24 over all the elementary steps of reaction i and

substituting the elementary rates as defined by Equation 4.7 leads to:
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n; n; n;
Z ln(Rij.ref) = Sign(vi,ref) (Z ln(vi(Zj),ref) - Z 1n(vi(2j1).ref)>
=1 =1 =1

= sign(Viref) (Z In(ki(,j) — Z In(ki(,;_q)) + In([p]) —In ([S])>
j=1 j=1

(4.25)

n; is the number of elementary reaction steps for reaction i, while [p] and [s] are
the normalized concentrations (see Equation 4.6) and equal to 1 at the reference steady-

state. So, Equation 4.25 becomes:

n; ng n;
Z ln(Rij'ref) = sign(Vi,ref) (Z ln(kl{(zj)) - Z ln(k{(zjl))> (4.26)
=1 =1 =1

On the other hand, based on the elementary steps (Equations 4.20 and 4.21), the

equilibrium constant of the example reaction i can be written as the following:

Kieq = Ziji (4.27)
Substituting for the rate constants by using Equation 4.6 leads to:
O AL
Taking logarithm of both sides and rearranging the terms gives:
n; n;
Z In(kji,)) — Z In(klz 1)) = IN(Qurer) — In (Kieq) (4.29)
j=1 j=1

Combining Equations 4.26 and 4.29 while considering Equation 4.16 leads to

the following equation:
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n;

AG;
z ln(Rij'ref) = Sign(Vi,ref) Rl:;ef (430)
j=1

Since the exact values for the Gibbs energy change of reactions at the reference
steady-state are not known, and to take the uncertainties into account, the equality
constraint of Equation 4.30 can be transformed to the following inequality constraint

by using Equations 4.18 and 4.19:

n;
AG, _ AG,
(R_Tl)lb < Slgn(Vi,ref) Z ln(Rij,Tef) < (R_Tl>ub (431)

Jj=1

Equation 4.31 can be used to verify if the direction of the net flux (V;,.f) is

thermodynamically allowable, and it can be reformulated to the following:

ng
_Gi,lb < 2 ln(Rij_ref) < _Gi,ub (432)
j=1

While gy, and g ,,;, are defined as:

(7). |(77)
RT /1" I\RT /

= max(| (7))
NV B VT

For each reversible reaction in the stoichiometric model, Equation 4.32 can be

) (4.33)

O—i,lb = mm(

) (4.34)

used to put a constraint on the reversibility parameters of its elementary reactions. How
this thermodynamic constraint affects the kinetic space in which the rate constants are

calculated is demonstrated in the next section.

4.1.7. Calculating the Elementary Reactions Rates

In Kinescope, the elementary steps for each reaction are categorized into two
groups (as can be also seen in Figure 4.9). Those elementary reactions that can be lined
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up in the form of a series of steps, starting from attachment of the first reactant to the
enzyme and ending with release of the last product, are categorized as the “Main
Elementary Reactions (MER)”. Those elementary reactions that occur in parallel to
the main steps, such as attachment of a competitive inhibitor to the free enzyme, are
categorized as the “Side Elementary Reactions (SER)” (Not every reaction may have
side elementary steps). At a steady-state condition, the net rate of each main
elementary reaction step (Vrorwara — Vbackwara) €9uals the steady-state flux value of
the corresponding bulk reaction in the stoichiometric model. So, the following
equation holds true for the MERSs at the reference steady-state:

Vi2j-1)MER — Vij)mER = Virer V(@ €{1,..,M}&j€{1,..,N;}) (4.35)

M is the number of reactions in the stoichiometric model and N; is the number
of the main elementary steps for the corresponding reaction i. Equation 4.35 is an
algebraic system of linear equations with N; independent equations and 2N; unknowns.
N; more independent equations are required to solve for the elementary reaction rates.
The reversibility parameters defined for each elementary reaction step in the previous
section (Equations 4.22 and 4.23) can be used to provide the remaining required
equations. By combining Equations 4.23 and 4.35, the following formulas can be

obtained for the calculation of the MER rates at the reference state:

_ Vi,ref
Vi(2j-1),MER = SInNVirer) (4.36)

ijref

sign(Virer)

_ Rij,ref Vi,ref

Vizj)MER = )
- ijref

(4.37)

For the reversible reactions in the stoichiometric model, the reversibility
parameters can be sampled according to the inequality constraint of Equation 4.32,
Otherwise, they are sampled randomly between 0 and 1. Using the sampled
reversibility parameters in Equations 4.36 and 4.37, different elementary reactions
rates are calculated in a way that the reference steady-state flux distribution is satisfied.
Unlike MERs, the SER rates are not bound to the steady-state fluxes of bulk reactions,
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and they cannot be calculated in the same manner as mentioned above. However, the
net flux for each SER step must be equal to zero at any steady-state (e.g. the
concentration of dead-end molecules such as enzyme-inhibitor complexes does not
change at a steady-state). As a result, the following equation holds true for SERs at the

reference steady-state:

Vi(2j-1),SER — Vi(2j),SER = 0 (4.38)

In the current version of Kinescope, v;;;-1)sgr rates are randomly sampled
between a lower and upper bound and Equation 4.38 is used to calculate v;(; ) sgr
rates. Bimolecular rate constants have an upper limit that is determined by how
frequently molecules can collide, and the fastest such processes are limited by
diffusion. In general, a bimolecular rate constant has an upper limit of 101° M~1s1,
As a result, v;,;_1)spr rates are sampled according to the following inequality

constraint:

0 < vizj—1),ser < 10"°[X]up [Eilus (4.39)

[X],, and [E;],, are the upper bound concentrations for the corresponding
metabolite (e.g. a competitive inhibitor) and corresponding enzyme respectively. The
default upper bound (if an upper bound vector is not provided as input) for all
molecules in the system is 100 mM (Section 4.1.1). The highest ever reported value
for the total protein content of biological cells has been 4 million proteins per cubic
micron (1 fL) cell volume [153]. Using Avogadro number, this equals to a
concentration of almost 6.6 mM. Consider that this concentration is for the total
protein content of the cell and not for an individual protein. On the other hand, the
most abundant protein found in a cell has been reported to be RplL in E. coli with an
estimated value of 110,000 copies per cell [154], that is roughly equal to 167 uM.
Considering these numbers, a concentration of 300 uM was selected as the default
upper bound for each enzyme. Using these default upper bound values for the
metabolites (100 mM) and enzymes (300 uM), the inequality constraint of Equation

4.39 becomes:
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0 < Vizj-1),s5r < 3 X 103 Ms™! (4.40)

The above inequality is used as the default constraint to sample the SER rates.
Whenever a specific vector can be provided as the upper bound for the metabolites
(e.g. from the metabolomics datasets), and/or proteomics data is available at the
reference steady-state condition, such data can be utilized through Equation 4.39 to
come up with more specific constraints than Equation 4.40.

At this point, the rates of all the elementary reactions in the model can be
determined for different samples of reversibility parameters and SER rates.

Calculation of the corresponding rate constants is explained in the next section.

4.1.8. Sampling the Enzyme Fractions and Calculating the Rate
Constants

At the reference steady-state, normalized metabolite concentrations (e.g. [s]) and

the fold change in the total enzyme concentration (fz, ) are equal to 1. As a result,
Equation 4.7 can be used in the following way to calculate the elementary rate
constants:

vij

kl{j = m (4.41)

[e;;] is the fractional concentration of the corresponding form of enzyme i at the
elementary reaction j. For example, [e;;] is the fractional concentration of the free
form of enzyme i (represented as [e;] in Equation 4.7), and [e;,] is the fractional
concentration of the “enzyme i-first substrate” complex (e.g. E;S in the example
reaction of Equation 4.1). While the elementary reaction rates are provided according
to the previous section, fractional concentrations for each enzyme are sampled

according to the following constraints:

n

(Vij:0<[e;]<1)& z[eﬁ] =1 V(@e{l,.,.M}&je{l,..,n})| (442

j=1
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M being the number of total reactions in the stoichiometric model and n; being
the number of elementary steps for the corresponding reaction i. In the current version
of Kinescope, fractional concentrations are sampled randomly from a uniform
distribution while satisfying the constraints of Equation 4.42. More sophisticated
sampling methods may improve the computational efficiency and may be applied in

the future versions.

4.1.9. Collecting Stable Models in the Ensemble

After the structure of the kinetic model at the elementary reactions level is
constructed, as demonstrated in sections 4.1.2 to 4.1.4, different sets of rate constants
are calculated through the methodology described in sections 4.1.7 and 4.1.8, leading
to generation of kinetic models with different dynamic characteristics. Although all
the generated kinetic models satisfy the reference flux distribution as their steady-state
solution (Equation 4.10), only those models that are stable at the reference state are
meant to be collected in the ensemble. The stability of each model is first evaluated
mathematically by using the symbolic Jacobian matrix (constructed according to the
Section 4.1.5). For each generated kinetic model, the calculated rate constants and
corresponding sampled enzyme fractions are substituted in the symbolic Jacobian to
come up with a numerical Jacobian matrix at the reference steady-state. The
mathematical stability of each model is then judged based on the eigenvalues of the
numerical Jacobian, as explained in Section 4.1.5. A mathematically stable model
means that it has the tendency to keep its state in response to the smallest possible (&)
perturbations. Since each stable condition has a practical threshold, and since the
models that are not practically stable (based on the reference steady-state experiment)
are of no interest, mathematically stable collected models are simulated in response to
a small perturbation, and those models that do not converge back to the reference state
are further rejected. In this way, an ensemble of different kinetic models that not only
satisfy the reference steady-state experiment, but also are practically stable at that state,
is constructed. The more the number of models that are collected in such an ensemble,
the higher will be the probability of catching those kinetic models that behave as close

as possible to the real metabolic system.
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4.1.10. Screening the Ensemble

As already mentioned in Section 4.1.1, ensemble modeling of a metabolic
network consists of two main modules. In the first module, different kinetic models
that are all consistent with a reference steady-state are collected (Figure 4.6).
Fundamentally, it is impossible for a single physical system to be at more than one
state (e.g. metabolite concentrations and/or metabolic fluxes) at a specified time and
space (Section 4.1). Hence, the dynamic behavior of a metabolic pathway in a single
cell can be ideally represented with only a single kinetic model. However, there are
uncertainties regarding the structure of the metabolic model (some undiscovered
interactions that are present in the real metabolic system, especially regulatory
interactions, may be missing in the models), and also regarding the elementary
mechanism of some enzymatic reactions. Taking such uncertainties into account, all
the models whose simulation results are in agreement with experimental observations
are considered as potentially valid models. On the other hand, most of the experiments
and studies in practice (such as in metabolic engineering applications) are not based
on a single cell, but instead on a community of cells usually in a continuous culture.
In such cases, an ensemble of different kinetic models that all satisfy the bulk
experimental observations (e.g. biomass production, substrate uptake rates, product
secretion rates, etc.) can be preferred over a single model, since it can cover for the
heterogeneity of the cellular states in the culture (to be more specific, different
combinations of enzyme fractions in this modeling approach).

After using the first module to construct the ensemble of kinetic models,
available experimental observations can be used in the second module to screen the
collected models. Figure 4.10 is a schematic representation of this process. At this
stage, it is very important to use the experiments that are compatible with the criteria
and conditions based on which the kinetic models were constructed. For example, an
experiment in which the metabolism shifts from one steady state to another in response
to a perturbation, with changing total enzyme concentrations during that shift (e.g. as
a result of change in the transcription), cannot be simulated by the kinetic models
constructed according to the procedure of the first module. In the current version of
Kinescope, the fold change in the total enzyme concentrations with respect to the
reference experiment can be provided as one of the inputs to the simulations, but they

are treated as constant factors during simulations, and their temporal changes are not
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mathematically represented in the models. However, the first few seconds/minutes of
the metabolism dynamics in such experiments can still be simulated, based on the
assumption that it takes some time for the total enzyme concentrations to change in
response to a perturbation. According to the procedure presented in Figure 4.10 for the
second module, different experiments can be used as filters to screen the collected
models in the ensemble. For each filter, the corresponding experimental conditions are
introduced as inputs and/or rules to the kinetic models in the ensemble. Each model is
then simulated, and the simulation outputs are compared with the corresponding
experimental observations. Those models that are not in acceptable agreement with the
experiments are then rejected, reducing the number of potentially valid models in the
ensemble and increasing the reliability of remaining models at the same time. Finally,
the remaining models in the ensemble can be used for predictions. They can all be
simulated in response to a specific perturbation, and their simulation results provide a
statistical base for predictions. Probability values can be calculated for each different

outcome based on the percentage of the models that lead to each outcome.

Ensemble of
kinetic models
Experiment Simulate each model
conditions based on the experiment
conditions

Is the simulation
result in agreement with the
experimental observation?

Keep the model in
the ensemble

Experimental
observation

Exclude the model

Figure 4.10: Flowchart of the algorithm for screening the ensemble.

At some point, it might happen that none of the models in the ensemble can

satisfy an experiment. When this happens, any or a combination of the following three
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issues can be the reason behind the inconsistency between the experimental results and

simulations:

1) The kinetic space has not been sampled sufficiently, and models with suitable
Kinetic parameters have not been collected in the ensemble.

i)  Metabolic network structure is incomplete. One or more reactions and/or
regulatory interactions are missing in the models.

iii)  The elementary reaction steps or mechanistic rate equations are not valid for

one or more reactions.

The first issue can be circumvented by increasing the number of samples from
the Kinetic space, collecting as much as possible different kinetic models in the
ensemble. The bigger the size of the ensemble, and the higher the diversity of sampled
kinetic parameter sets, the less will be the probability of missing suitable models in the
ensemble. The other two issues are the key points in hypothesis generation for
discovery of new interactions in the corresponding metabolic network, or for deduction
of valid kinetic mechanisms for corresponding reactions in the network. In this
manner, they provide a link between the theoretical and experimental playgrounds as

demonstrated in Figure 4.2.

4.2. Results

To validate applicability of Kinescope in the construction of stable kinetic
models for a desired reaction network, and to demonstrate the methodology,
ToyModel of Figure 4.3 was used as a reference model. This ToyModel includes 5
metabolites and 7 reactions (1 input, 3 irreversible, 1 reversible, 2 outputs) with
feedback inhibition of the uptake reaction by one of the secretion metabolites. The
ToyModel was constructed manually by assigning MM-based rate expression to each
reaction. An irreversible MM equation including competitive inhibition was assigned
to the uptake reaction. The second reaction follows an irreversible MM-based
mechanism with two identical molecules as the substrates. A reversible MM equation
was assigned to the third reaction, and other reactions all follow simple irreversible
MM rate expression. The structure and equations of the ToyModel can be seen in the
Figure 4.3, and the corresponding MATLAB files including the ODE function of the
model are provided in Appendix A (digital format). Biologically meaningful values
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(reported in the literature and enzyme/reaction databases) were assigned to all the
Kinetic parameters in the MM-based rate expressions except for the 1,4, ones. An
already balanced and biologically meaningful (in terms of reaction rates) metabolic
flux distribution was then used to calculate the V},,, parameters. This guaranteed the
convergence of the ToyModel to a valid steady state.

First, ToyModel is simulated and a stable steady state is captured as the reference
state. The steady-state flux distribution at the reference state along with the
stoichiometric model of the ToyModel are then used as inputs to the first module of
Kinescope to construct a kinetic model and collect as many stable models as possible.
Originally, Kinescope would automatically make a kinetic model at the elementary
reactions level for the given reaction network (Section 4.1.4), but it can also be used
to scan the kinetic space and collect stable models if lumped-kinetic rate expressions
are provided for each reaction in the network. This is a better alternative to the
parameter estimation approach, mainly because it makes the parameter uncertainty
issue (associated with estimated parameters) to fade away and prevents from
overfitting of the model to a certain dataset. At the same time, samples taken uniformly
from the parameter space provide a theoretical basis to study and analyze the
biotransformation potential of a biochemical reaction network at the reaction kinetics
level. As mentioned before, different steady states of a dynamic system could be
determined as solutions to Equation 4.10. However, using a rational initial condition,
simulation of the dynamic model over a large time span can also be used to find a
steady state of the system. Simulation results and verification of the stability of the
achieved steady state for the ToyModel are presented in Figure 4.11. Stoichiometric
model of the ToyModel and the corresponding regulatory matrix are provided as the
primary inputs to the Kinescope through the “Construction” tab (Figure 4.12). At this
stage, “Prepare the Elementary Reactions Model” button can be clicked to

automatically construct the kinetic model structure at the elementary reactions level.
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Figure 4.11: Reference Steady State. a) Simulation profiles. b) Steady state
metabolite concentrations and reaction rates and corresponding eigenvalues.

Detailed stoichiometric information on the metabolites and the reactions are

provided within the tables at the right side of the window under the construction tab.

Under the “Curation” tab of Kinescope (Figure 4.13), it is possible to view the

elementary reaction steps. Required changes on the reaction mechanisms can be made

through this interface as described in Section 4.1.3. In the right panel in the curation

window (ODE Set and Simulation File), a name is given for the corresponding m-files

that are automatically created and used for the ODE simulations and Jacobian

calculations. Required changes in the ODE simulation file, such as addition of the

feed-stream influxes to the corresponding uptake molecules, can be made within this

panel.
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Figure 4.13: Kinescope, curation tab.

At this stage, the reference steady-state flux distribution vector along with other
available data are provided through the “Inputs” panel in the construction window
(Figure 4.12). 1t is now possible to construct an ensemble of kinetic models by
sampling the Kinetic space. In the “Parameter Set Collection” panel under the

“Simulation/Filtration” tab, the maximum number of samples to be taken from the
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Kinetic space can be set by the user, and the stable models will be collected accordingly
after pressing the “START” button (Figure 4.15). Afterwards, different experiments
can be used to screen the collected models in the ensemble. For example, an impulse
change (Figure 4.14.a) in the concentration of the uptake molecule (x;) was introduced
as a perturbation to the reference model ToyModell. The simulation results were
recorded as the system response (Figures 3.14.b and c). Any of the recorded responses
may be selected as the experimental observation (Figure 4.14.d). The selected
experimental observation is imported to the Kinescope by clicking the “Import
Reference Observed Data” button under the “Simulation/Filtration” tab (Figure 4.15).
Under the “Curation” tab, the “ODE Set and Simulation File” panel can be used to
introduce the same perturbation to the kinetic models in the ensemble. In the end, the
“SCREEN” button can be clicked to compare the simulation result of each model in
the ensemble with the experimentally observed data (Figure 4.15). Those models with
a similar response to the experimental data are kept in the ensemble, while the others

are excluded.
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Figure 4.14: ToyModel response to a perturbation-observation experiment. a) The

impulse function introduced to the uptake molecule. b) Metabolite concentration

profiles. ¢) Reaction rate profiles. d) Selected reaction rate profile as experimental

observation.
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4.2.1. Using Kinescope to Collect Stable Kinetic Models Satisfying
Different Reaction Deletion Studies while Lumped-Kinetic Rate
Expressions are Available

Gene deletion studies play a central role in metabolic engineering. One of the
major questions for a metabolic engineer is, “what is the optimum gene deletion
strategy to increase the yield of a desired metabolite in a specified organism?”. Such
organisms (usually unicellular such as bacteria or yeast) are known as cell factories in
metabolic engineering. Traditionally, such studies were carried out by introducing
random mutations to the cells and screening them based on their capacity in the
production of the desired metabolite. As soon as genome-scale stoichiometric models
of metabolism became available, many researchers started using them for metabolic
engineering purposes, especially for the prediction of the optimum set of genes whose
deletion would maximize the production yield. “How much the prediction results may
be improved if the reaction Kinetics are also taken into account?” has been a question
in the research community for more than a decade. Because of the difficulties in kinetic
modeling of large reaction networks, there has not been a clear answer to the above
question. In this section, Kinescope is used to collect stable kinetic models that are in
agreement with gene deletion experiments. The ToyModel from Figure 4.3 (also used

in the previous section) is used as a reference model to generate in-silico data for
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reaction deletion experiments. Figure 4.16 is a schematic representation of the in-silico

reaction deletion experiments.
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Figure 4.16: Schematic representation of the in-silico reaction deletions in the
ToyModel.

Each in-silico reaction deletion experiment is carried out by setting the total
concentration of the corresponding enzyme in the ToyModel to zero and simulating
the model until a new steady-state is achieved. Figures 4.17.a and 4.17.b represent the
steady-state values obtained in different experiments for the metabolite concentrations
and reaction rates respectively. All the required MATLAB codes to reproduce the
work (simulations, analyses, model collection and figures) presented in this section are

provided in Appendix A (digital format).
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Figure 4.17: In-silico reaction deletion experiments. a) Final steady state
concentration values. b) Final steady state reaction rate values.
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In this section, lumped-kinetic rate expressions are provided for each reaction in
the model, so the problem is reduced to the sampling of the kinetic parameter space
and collecting those stable models that are in good agreement with reaction deletion
experiments. The lower bound for all the kinetic parameters in the rate expressions
was set to 0 and the upper bound to 20. Parameters are then sampled uniformly
between the lower and upper boundaries. Ten thousand samples were taken in this
study, out of which 9520 were stable according to the eigenvalues of their Jacobian
matrices. This takes less than a minute on a workstation with the following

characteristics:

- System Model: HP Z640 Workstation

- 2x Processors: Intel(R) Xeon(R) CPU E5-2620 v4 @2.1GHz, 8 Cores, 16
logical processors

- Physical Memory (RAM): 64 GB

- Operating System: Microsoft Windows 10 Pro

- MATLAB Version: R2019a Update 6 (academic version)

All the simulations and other computations reported in Chapters 3 and 4 were
carried out on the same system with the above characteristics. Figure 4.18.a is a
representation of the sampled parameter sets in the principal component space (first 3
principal components explaining 30% of variability in the 18 kinetic parameters of the
model). One important question at this stage is, “In a relative comparison between the
non-zero elements of the Jacobian matrix, how sensitive the stability of the kinetic
model at the reference steady-state is to the changes in each Jacobian element?”. To
answer this question, the calculated values for each non-zero Jacobian element (one
value for each collected stable model from the uniform sampling, 9520 values in total)
are scaled to an interval of 0 to 100 (minimum value to zero and maximum to 100).
The number of stable models in each percentile is then counted and the standard
deviation is calculated. Figure 4.18.b is a heatmap representation of such data. Based
on this heatmap, the stability is most sensitive to the variables and parameters that
appear in the mole balance equations around x5 and x, (labeled as m5 and m, during

the model construction in Kinescope).

80



a b]

d[m1]/ dt ; 0.02423 0.02427 009

PC1 to PC3 Space
Unsupervised Uniform Sampling of Kinetic Space
9520 Stable Models were Collected among 10000 Samples.

— | T 0.08

d[m2]/dt| 0.02423 0.01119 0.02427 007

d[m3]/ dt 0.01119 0.09916

d[ma] / dt 0.099

0.0254 0.02497

d[ms] / dt 0.02505

| [[] Always zero elements
m1 m2 m3 ma m5

Figure 4.18: Unsupervised uniform sampling of the kinetic parameter space. a)
Distribution of the sampled parameter vectors in the principal components (PC1 to
PC3) space. b) Heatmap representation of the variance in the scaled values of
Jacobian elements.

Next step is to analyze the sampled parameter space by comparing the simulation
results of the collected stable models with their corresponding experimental values.
For each reaction deletion experiment, total concentration of the corresponding
enzyme is set to zero, and all the collected stable models are simulated over a large
time span. For those models that successfully reach a new steady-state, fold changes
in the concentrations of the metabolites are calculated (with respect to their steady-
state values before the reaction deletion). The absolute relative errors between the
calculated fold changes (from simulations) and their corresponding experimental
values are determined. Collected stable models are then sorted based on their
maximum relative error. This procedure is done independently for each reaction
deletion experiment. The idea is to find those areas in the kinetic parameter space that
lead to generation of models that their simulation results are in good agreement with
all available experiments. A threshold is defined to distinguish good models with
respect to each experiment. This threshold is called “Good Models Error Cutoff
(GMEC)”. If the maximum absolute relative error between the simulation results of a
model and the corresponding experimental values is less than the GMEC, that model
is labeled as a good model for that experiment. GMEC is the same for all experiments,
and the number of good models may differ from one experiment to another. A
threshold is also defined to distinguish the elite models and it is called “Elite Models
Error Cutoff (EMEC)”. In addition to the cutoff, there is also a limited quota available

for the number of elite models that can be assigned to an experiment and there cannot
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be more than 10 elite models for each experiment. If there are more than 10 models
leading to a maximum absolute relative error less than the EMEC, only the best 10
will be selected as the elite ones. In this study, GMEC is set to 0.1 and EMEC to 0.01.
Among the 9520 collected stable models, 5802 and 5235 models were detected as good
models for experiment one and two respectively. But only 249 models were detected
as good models with respect to the experiment three. Figure 4.19 shows the distribution
of good models for the first experiment, based on the first two principal components
(explaining 18.9% of variability in the kinetic parameters). Good models are shown

with little yellow stars.
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Figure 4.19: Distribution of the good models based on the first experiment.

As it can be seen, good models are dispersed evenly in the space. A similar graph
was obtained for the second experiment. In comparison, good models collected based
on the third experiment present a different distribution. As represented in Figure 4.20,
although the first two principal components explain only 18.9% of the variability in
the parameters, a clustering of good models based on the third experiment seems
possible. They are more concentrated in the area with positive values for the first

principal component and negative values for the second. Figures 4.21 and 4.22 present
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the distribution of elite models for the first and second experiments respectively (there
wasn’t any elite model detected for the third experiment). Such analyses provide
insight for development of algorithms that may detect suitable areas in the kinetic
space and hence sampling that space more efficiently in a supervised manner. As
mentioned earlier, the idea is not to fit the models to the experiments, but to find as
many different patterns as possible in the parameters vector that lead to generation of
reliable kinetic models. From this point of view, the problem is reformed to a pattern
recognition problem, while each parameter is a feature of the system, and machine

learning methods can be employed to find the interested patterns.
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Figure 4.20: Distribution of the good models based on the third experiment.
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Figure 4.22: Distribution of the elite models based on the second experiment.
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Utilization of machine learning methods for unsupervised classification of the
sampled parameter vectors is not implemented in the Kinescope yet. For the time
being, a different approach was practiced for supervised resampling of the kinetic
space. An evaluation table is constructed based on the number of models that could
satisfy different experiments (Table 4.2). Evaluation table helps in selection of a set of

parameter vectors to be used in generation of seed for supervised sampling.

Table 4.2: Evaluation table after unsupervised sampling of the parameter space.

Number of models with a maximum absolute relative error less than
Experiment 20% 10% 5% 1%
5 deletion 7750 5802 3309 30
T4 deletion 7337 5235 1588 17
1T deletion 1832 249 1 0
All experiments 1600 201 1 0

Selected parameter vectors from the evaluation table (yellow shaded cell with
201 models in this study) are aligned on top of each other (as row vectors) to form a
matrix. Each column of this matrix represents one of the kinetic parameters. The mean
and standard deviations are then calculated for each parameter. At this stage, the goal
is to use the characteristics of those parameter vectors that lead to promising simulation
results with respect to all the experiments (e.g. the yellow shaded cell is selected in
this case), for a supervised resampling of the kinetic parameter space, to increase the
chance of collecting more models that are in better agreement with all the experimental
observations. Hence, it is a good idea to make use of machine learning methods to
recognize the patterns in those promising parameter vectors and use those patterns for
supervised resampling of the parameter space. However, it is not the case in the current
version of Kinescope, and a simpler approach is followed. The calculated mean and
standard deviations mentioned above are being used to resample the parameter space
so that, instead of sampling the parameters from a uniform distribution between their
lower and upper bounds, parameters are sampled from a normal distribution with the
corresponding calculated mean and standard deviation values for each parameter.
Following this procedure led to collection of more models that are in better agreement

with all the experiments (Table 4.3).
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Table 4.3: Evaluation table after the supervised sampling of the parameter space.

Number of models with a maximum absolute relative error less than
Experiment 20% 10% 5% 1%
15 deletion 9435 8594 6953 82
14 deletion 9276 8706 4112 98
1 deletion 7731 2213 19 0
All experiments 7401 2053 13 0

After supervised sampling, thirteen models were identified to have less than 5%

relative error in their simulation results compared to the all three reaction deletion

experiments (green shaded cell in Table 4.3). The variability in the magnitude of each

kinetic parameter in these thirteen models is evaluated. As can be seen in Figure 4.23,

all the parameters show a significantly high variance with more than 50% variation

above and below their average value. This is an evidence that collected parameter

vectors that satisfy the reaction deletion studies are not necessarily similar. In Figure

4.24, the simulation profiles of the fold change in the concentration of each metabolite

based on the experiment 3 (deletion of ry) are provided.
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Figure 4.23: Boxplots for the kinetic parameters based on their values in

the collected thirteen models.
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Figure 4.24: Simulation profiles of the fold changes in the concentration of
metabolites based on the experiment 3. The simulation profiles for the
collected 13 models with less than 5% relative error can be compared with
eachother and with that of the reference model.

4.2.2. Using Kinescope for Automatic Construction and Collection of
Stable Kinetic Models at the Elementary Reactions Level that
Satisfy Different Reaction Deletion Studies

The same reference steady-state and reaction deletion experiments are used in
this section as were used in the previous one. However, lumped-kinetic rate
expressions are not provided, and the kinetic model structure is automatically created
at the elementary reactions level. The elementary reaction sets are provided in excel
format in Appendix A. All the required MATLAB codes to reproduce the results
obtained in this section are provided in Appendix A. Figure 4.25.a represents the
unsupervised sampling of the kinetic parameters in the principal component space. Its
difference with Figure 4.18.a is obvious. It is mainly because the kinetic parameters
for the elementary reactions are not directly sampled between some lower and upper
bounds. Instead, they are being calculated based on the samples taken for the
reversibility parameters (constrained by the reaction thermodynamics), enzyme
fraction samples (constrained by a linear equality for each enzyme), and the reference

steady-state fluxes.
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Figure 4.25: Unsupervised sampling of the kinetic space for kinetic models at the
elementary reactions level. a) Distribution of the sampled parameter vectors in the
principal components (PC1 to PC3) space. b) Heatmap representation of the variance
in the scaled values of Jacobian elements.

More than seventy-one thousand stable models were collected from twelve
million samples (3464 reversibility samples and 3464 enzyme fraction sampling for
each reversibility set). The evaluation table after unsupervised sampling is presented
below (Table 4.4).

Table 4.4: Evaluaiton table after the unsupervised sampling of the kinetic space for
the models at the elementary reactions level.

Number of models with a maximum absolute relative error less than
Experiment 20% 10% 5% 1%
15 deletion 1826 177 0 0
14 deletion 81 2 0 0
1 deletion 0 0 0 0
All experiments 0 0 0 0

These results are primarily interpreted as a failure in rational sampling of the
kinetic space and suggest development of an algorithm for efficient sampling of
reversibility parameters and enzyme fractions. Regardless of such failure, two stable
kinetic models were collected (yellow shaded cell in Table 4.4), which not only satisfy
the reference steady-state, but also are in good agreement with two different reaction
deletion experiments (less than 10% relative error). Considering that these models

were constructed automatically at the elementary reactions level (the only inputs to the
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Kinescope was the stoichiometric model and the reference steady-state flux
distribution), and also considering the hardships in manual construction of Kinetic
models that could satisfy reaction deletion experiments, this can be counted as a
significant achievement. No algorithm has yet been developed for supervised sampling

of the kinetic space for models constructed at the elementary reactions level.

4.3. Discussion

The importance of kinetic modeling of metabolic reactions is well recognized.
However, the difficulty in developing kinetic models for metabolic systems due to lack
of kinetic parameters has been repeatedly reported by many researchers. The need for
an efficient and standard methodology for construction and analysis of kinetic models
has been long recognized and is becoming more obvious. A methodology that has the
potential to become a standard for construction of kinetic models of biochemical
reaction networks was presented in this chapter. A computational tool (Kinescope) was
developed in MATLAB based on this methodology. The idea of ensemble modeling
was used as a template, modified and expanded significantly during the development
of Kinescope. The algorithms behind different functions of Kinescope were explained
in detail through sections 4.1.2 to 4.1.10. Applicability of Kinescope in construction
of stable kinetic models for small-scale reaction networks that satisfy reaction
deletion/overexpression studies was validated by in-silico experiments (Section 4.2).
Whenever lumped-kinetic rate expressions are available (Section 4.2.1), Kinescope
can be used to scan the parameter space and collect as many mathematically stable
models that all converge to a reference steady-state. Dynamic characteristics of the
collected models can be evaluated by analyzing their Jacobian matrices. Afterward,
Different experiments (such as gene deletion/overexpression experiments) can be used
to screen the collected models and identify different patterns in the parameter vector
that lead to generation of promising models. Hence, a handful of kinetic models with
different dynamic characteristics that all satisfy the experiments may be collected.
Whenever rate expressions are not available (Section 4.2.2), Kinescope uses a few
assumptions to automatically break down each reaction in the stoichiometric model
into a series of elementary reactions. If information on the kinetic mechanism of an
enzyme is available, the automatically generated elementary reaction series for the

corresponding reaction can be manually edited through a graphical user interface.
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Elementary reactions intrinsically follow mass action rate expressions. Unlike other
simplified (e.g. Michaelis-Menten) or generalized (e.g. lin-log and S-systems) rate
expressions, elementary reactions are not based on any simplifying assumption on the
enzyme kinetics and are the closest mathematical representation of the molecular
associations and dissociations. However, by breaking each reaction into its elementary
steps, the number of model variables (in addition to the metabolites, each enzyme
fraction would be a new variable) and kinetic parameters increases significantly (Not
exponentially but linearly, 7-10 elementary steps for each reaction in average). As a
result, development of algorithms that can efficiently sample the kinetic space to
collect stable models with diverse patterns in their parameter vectors is critical (one of
the future works), especially in case of constructing kinetic models for larger reaction
networks. Another advantage of modeling at the elementary reactions level is that, in
cases when none of the collected models can satisfy an experiment, it is easier to
generate hypothesis for the reason behind the disagreement between the model
simulations and the experimental observation (as explained in Section 4.1.10). It may
be possible to develop an algorithm that can automatically generate, and rank order
such hypotheses.

Successful utilization of the ensemble modeling approach, mainly for metabolic
engineering purposes, has been reported in the literature [79, 131, 132]. However,
there has not been any report of a computational tool for semi-automatic construction
of kinetic models of biochemical reaction networks based on the idea of ensemble
modeling. In addition, unlike the previously reported works that rely on qualitative
screening of the models (increase, decrease or no change in the abundance of the
observed molecule or rate of the observed reaction), successful screening and
collection of models that are in quantitative agreement with a reference scenario is the

first to be reported in this study.

4.3.1. A Note on Parameter Identifiability

Identifiability analysis considers the question of whether it is possible to
determine the parameters of a model from data. Those parameters that cannot be
learned from data are said to be unidentifiable. There are two types of unidentifiability,
1) Structural Unidentifiability and 2) Practical Unidentifiability. If parameters cannot

be inferred from an infinite amount of perfect data, the model is structurally
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unidentifiable. Structurally unidentifiable models tend to make the same predictions
for different parameter values. On the other hand, a model may be structurally
identifiable, that is, in theory it is possible to learn all of its parameters from data, but
it may not be practical to do so. For example, it may require an unreasonable amount
of data. Based on the following theorem, Fisher Information Matrix (FIM) can be used
to evaluate the structural identifiability of a model:

“A model is locally structurally identifiable at 8, if and only if its fisher
information matrix is non-singular at 6,”.

This method needs an estimate of the parameter values (6,) as an input and
evaluates the structural identifiability of the model around the given parameter values,
hence the identifiability evaluation being local and not global. If the Fisher Information
Matrix has a zero eigenvalue, then the model is structurally unidentifiable. A possible
extension for the evaluation of the practical identifiability can be as follows: “If FIM
of a model has small eigenvalues, then the model is practically unidentifiable”. This
way of thinking about practical identifiability is useful but is not necessarily correct.

Currently, a major obstacle in classical kinetic modeling of biochemical reaction
networks is the parameter estimation step. Such models are usually very non-linear
and include many parameters. Some of those parameters are often practically
unidentifiable, that is, their values cannot be “uniquely” determined from the available
data. Possible causes can be lack of influence on the model outputs, interdependence
among parameters, and poor data quality. From this perspective, uncorrelated
parameters are the key tuning knobs of a predictive model. Therefore, before
attempting to perform parameter estimation, it is important to characterize the subsets
of identifiable parameters and their interplay. Once this is achieved, it is still necessary
to perform parameter estimation, which poses additional challenges. One must
consider that, even after solving the parameter identifiability and parameter estimation
problems and finding a set of parameters that best fit available experimental data, it
does not guarantee that the estimated parameters are the true parameters of the system
as it is often observed that many models which have been calibrated based on a set of
experimental data fail to represent (predict) a new experiment. This is usually due to
the incompleteness of the models. That is, one or more elements that play a significant
role in the new experiment do not exist in the model. However, even a complete model
may fail to predict a new experiment, and this is closely related to the topic of

parameter uncertainty. As it was mentioned earlier, an advantage of the methodology
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presented in this chapter is minimization of the parameter uncertainty by unsupervised
uniform sampling of the parameter space and collecting as many as diverse parameter
sets that all satisfy a reference steady state experiment and are the potential candidates
to be the true system parameters. This approach not only circumvents the problems
that arise during parameter identifiability and parameter estimation, but also provides
a suitable platform for hypothesis generation whenever the collected models fail to

predict a new experiment.

4.3.2. A Note on the Required Computational Time and Curse of
Dimensionality

To evaluate the required time for Kinescope to construct and screen an ensemble
of kinetic models for a small-scale network, and also to evaluate its dependency on the
number of samples taken from the parameter space, analyses of Section 4.2.1 were
repeated for different number of samples. Table 4.5 provides a summary of the

information collected from the repeated analyses.

Table 4.5: Computational time and number of successfully screened models versus
the number of samples taken from the parameter space.

) Number of screened models with less
Number of Elapsed Time ]
) than 5% error for all three experiments
samples (minutes) : i
Unsupervised Supervised
1000 1 0 2
5000 4 1 8
10000 7 1 13
20000 14 3 32
30000 21 3 39
50000 34 3 65
80000 57 4 116
100000 78 5 144

As it can be seen, both the required computational time and the number of
models with less than 5% error after supervised sampling are increased in a linear

manner with respect to the number of samples. One must consider that although the
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number of successfully screened models increases by increasing the number of
samples, the diversity among the collected parameter sets may not necessarily
increase. After some point, as the number of samples increases, it is expected to collect
parameter vectors that are very similar to the already collected ones.

Another topic worth mentioning at this stage is “curse of dimensionality”. Curse
of dimensionality refers to the difficulties that arise when dealing with data in high-
dimensional space, for example when the data has too many features. Among several
other domains such as combinatorics and optimization, sampling is one of the domains
that frequently suffers from the curse of dimensionality. The common problem is that
when the dimensionality increases, the volume of the space increases so fast that the
available data become sparse. There is an exponential increase in the volume
associated with adding extra dimensions to a mathematical space. In the case of the
methodology presented in this chapter, as the number of the parameters (length of the
parameter vector) increases with the size of the biochemical reaction network, the
number of samples that must be taken from the kinetic parameter space to provide a
suitable initial ensemble of collected stable models increases exponentially. As a
result, although the required computational time is a linear function of the number of
samples (as can be seen in Table 4.5), since the number of required samples increases
exponentially with the size of the reaction network, the unsupervised uniform sampling
of the parameter space becomes exponentially time-intensive. One must consider that
the curse of dimensionality and the data provided in Table 4.5 are two different things.
While Table 4.5 shows the linear increase in the computational time with respect to
the number of samples for the same small-scale biochemical reaction network, curse
of dimensionality points into the exponential increase in the number of required

samples as the size of the network increases.
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5. USING KINESCOPE FOR KINETIC
MODELING OF THE CENTRAL CARBON
METABOLISM OF E. COLI AND FUTURE
WORKS

Constraint-based stoichiometric models of metabolic networks do not deal with
the concentrations of the metabolites. To make it feasible for these models to have a
steady-state solution, pseudo reactions are added to them to supply the uptake
molecules (such as extracellular glucose and oxygen) that otherwise would only be
consumed by the uptake reactions without any source to replenish them. Such pseudo
reactions are introduced to the stoichiometric models in the form of Equation 5.1 or
4.2, the standard usually being the latter with a negative flux value for the uptake
molecules and a positive value for the secreted ones.

— "extracellular molecule" (5.1)

"extracellular molecule" < (5.2)

However, one can hardly find any organism operating at a steady state in natural
ecosystems. They may be represented better as discreet fed-batch systems.
Nevertheless, many processes in the biochemical and biotechnology industries are
carried out at steady-state conditions by using continuous bioreactors. A significant
amount of experimental protocols and techniques are also designed based on the
steady-state conditions. Continuous stirred tank bioreactors (CSTBRs) are frequently
used in laboratories to culture cells at controlled steady-state conditions (chemostat
and turbidostat cultures). Figure 5.1 is a schematic representation of a CSTBR.

When making a kinetic model out of a stoichiometric model, the source reactions
for the extracellular substrates (e.g. glucose) and the sink reactions for the secreted
molecules (e.g. ethanol), and in general reactions in the form of Equation 5.1 or 4.2,
must be removed from the model and replaced by the balance equations that consider
the input/output of such molecules to/from the culture media through influxes and
outfluxes. The general balance equation for such extracellular molecules can be written

in the form of the following equation:
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dc; 1
E =5 (Ci,feeinnflux - CiQoutflux) + 2 vinj (5'3)
J

V;'xn

C; is the extracellular concentration of the corresponding molecule in the reaction

solution, C; f..q is the concentration of that molecule in the stream fed to the media
with the volumetric flowrate Qi Vrxn is the volume of the reaction solution, v;; is

the stoichiometric coefficient of the corresponding extracellular molecule in the

reaction j, while R; stands for any reaction that uptakes or exerts that molecule, and
Qoutsiux 1S the volumetric flowrate of the stream leaving the media. Equation 5.3 is

written based on the assumption of a homogenous reaction solution.

—
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Figure 5.1: Schematic representation of a continuous stirred
tank bioreactor.

5.1. Using Kinescope for Kinetic Modeling of the Central
Carbon Metabolism of E. coli at the elementary reactions
level

Kinescope was used to construct and collect kinetic models at the elementary
reactions level for the central carbon metabolism of E. coli. The stoichiometric model
was taken from the online metabolic model database of University of California San
Diego [155], including 72 metabolites and 95 reactions. The reactions that could not

carry any flux both at aerobic and anaerobic conditions were detected (using flux
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balance and flux variability analysis) and removed from the model. Dead end
molecules were also detected and removed from the model. The reduced model
contains 61 reactions and 59 metabolites (provided in Appendix A). The measured
metabolic flux values by *C labeling experiments for the wild type strain in a study
[156] were used to constrain the corresponding reactions while using parsimonious
flux balance analysis method to calculate the reference steady-state flux distribution
for all reactions. Metabolic fluxes were calculated for a partially aerobic glucose
limited condition (maximum possible rate of oxygen uptake and glucose uptake were
constrained to 10 mmol/gDW/h) so that all the reactions in the model carry flux (the
minimum being 0.1% of the glucose uptake rate). The biomass production reaction

(Equation 5.4) was broken down to its constituent reactions according to Table 5.1.

1.496 * 3pg + 3.7478 x accoa + 59.81 * atp + 0.361 * edp + (5.4)
0.0709 = fép + 0.129 * g3p + 0.205 * g6p + 0.2557 * gln +

49414 * glu + 59.81 * hy,0 + 3.547 * nad + 13.028 * nadph +

1.7867 oaa + 0.5191 * pep + 2.8328 * pyr + 0.8977 * r5p —

59.81 x adp + 4.1182 * akg + 3.7478 * coa + 59.81 * h + 3.547 *

nadh + 13.028 * nadp + 59.81 * pi

The reference steady-state fluxes for the biomass related reactions (e.g. depletion
of biomass precursors such as gé6p into biomass synthesis) were calculated by using
the corresponding stoichiometric coefficients multiplied by the reference steady-state
flux value for the biomass reaction (calculated from flux balance analysis). This new
stoichiometric model (provided in Appendix A), containing 71 reactions and 59
metabolites, and the corresponding flux distribution vector were used as inputs to the
Kinescope for automatic construction of the kinetic models.

Thirty thousand different kinetic parameter vectors were sampled from the
kinetic space, out of which none of them could lead to a mathematically stable model.
Such an outcome was expected because of the previous experience with the ToyModel
at the elementary reactions level (Section 4.2.2). The ToyModel at the elementary
reactions level had 26 eigenvalues, and 71 thousand stable models were collected out
of 12 million samples (less than 1% of sampled parameter vectors led to stable
models). There are 390 eigenvalues for the kinetic model of the central carbon
metabolism at the elementary reactions level (15-fold increase in the number of
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eigenvalues), and the probability of sampling parameter vectors that lead to a Jacobian

matrix with non-positive real parts in all of its 390 eigenvalues is very low.

Table 5.1: Breaking down the biomass production reaction to its constituent

reactions.

Reaction tag Formula Steady state rate
ToBiomass_atp atp + h,o — adp + h + pi 59.81 X "yiomass
ToBiomass_accoa accoa — coa 3.7478 X yiomass
ToBiomass_nad nad - nadh 3.547 X yiomass
ToBiomass_nadph nadph — nadp 13.028 X 1hiomass
ToBiomass_3pg 3pg — 1.496 X Thiomass
ToBiomass_e4p edp — 0.361 X Thiomass
ToBiomass_f6p fép - 0.0709 X 7hiomass
ToBiomass_g3p g3p - 0.129 X Thiomass
ToBiomass_g6p gép — 0.205 X Thiomass
ToBiomass_gin gln - 0.2557 X Thiomass
ToBiomass_glu glu - 4.9414 X Tpiomass
ToBiomass_oaa oaa — 1.7867 X Thiomass
ToBiomass_pep pep — 0.5191 X 7ipmass
ToBiomass_pyr pyr - 2.8328 X Tpiomass
ToBiomass_r5p r5p - 0.8977 X Tpiomass
FromBiomass_akg - akg 4.1182 X Tpiomass

It is probable to collect one or a few stable models if the number of samples is
increased significantly, however this won’t be acceptable as a general solution to this
issue. Constructing an initial ensemble of stable models with diverse kinetic parameter
vectors that all satisfy a reference steady-state experiment is a fundamental step in this
modeling approach. As it was also mentioned in the previous chapter, for efficient
sampling of the kinetic parameter space, an algorithm is required to be developed that
directly samples stable models only while maximizing the diversity in the sampled
parameter vectors as well.

Although none of the sampled models were mathematically stable based on the

eigenvalues of their Jacobian, it was observed that more than eight thousand models
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could reach a steady-state based on the following condition defined to detect a steady-
state convergence:

“After passage of 100 simulation time points, the concentration of each molecule
at each time point is compared with its corresponding value at all previous 100 time
points. The absolute relative changes are calculated and summed up for each molecule.
If the maximum of summation of relative changes (among all molecules in the model)
is less than 0.1%, it is considered that the corresponding model has reached a steady-
state.”

The models that could reach a steady state based on the above condition were
further investigated by simulating them over a much larger time interval. It was
observed that many of these models suddenly start to diverge at some point even
though they display an apparent steady state for a significantly large interval (Figure
5.2). However, there are also models that keep their apparent steady state even when
simulated over very large time intervals. To further investigate these models, an
impulse was introduced to the concentration of the extracellular glucose (a sudden
increase in the concentration of the glucose in the feed stream during a very short time
interval, e.g. injection of a highly concentrated glucose solution to the feed stream in
a second), and they were simulated in response to the glucose impulse. Interestingly,
many of these models could converge back towards their apparent steady state (Figure
5.3), presenting an apparent stability regarding the changes in the extracellular glucose
concentration. At this point, the reliability of such models and the reason behind their

apparent stability even though their Jacobian tells different remain as open questions.
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Figure 5.2: Unstable models with an apparent
steady-state may start to diverge when simulated
for a longer time.
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Figure 5.3: Response of one of the models with apparent stability to an impulse to

the concentration of the extracellular glucose.

5.2. Future Works

i)

i)

Development of an algorithm for efficient unsupervised sampling of the kinetic
parameter space, so that each sampled parameter vector is guaranteed to make the
kinetic model being mathematically stable at the reference steady-state, while at
the same time the diversity in the sampled parameter vectors is maximized. Such
an algorithm can significantly improve the quality of the initial ensemble of the
kinetic models that satisfy the reference steady-state experiment.

Using machine learning methods for unsupervised clustering of the sampled
kinetic parameter vectors based on the comparison of the simulation results with
the corresponding experimental observations, hence recognizing those patterns in
the parameter vectors that make the kinetic models being in acceptable agreement
with different experimental observations. Such information/data can be used for
supervised resampling of the kinetic parameter space, increasing the chance of
collecting more kinetic models that are in better agreement with all experimental
observations.

Design and construction of a wet lab device for determination of the elementary

reaction steps related to the function of a given enzyme. The input material to the
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device would be the free enzyme, the known reactants and products of the
reactions catalyzed by the corresponding enzyme, the known regulators of the
corresponding enzyme, and any other molecule that is hypothesized to associate
with the free enzyme or any of its complex forms. The output would be a table of
all possible elementary reactions (associations and dissociations) related to the
corresponding enzyme, leading to the generation of the elementary reaction series
for both catalytic and regulatory interactions. Such information can be archived
for each enzyme and used by Kinescope, hence minimizing the reliance of the
Kinescope on the assumptions used for the automatic construction of the kinetic
models at the elementary reactions level. The association and dissociation rate
constants can be different even for the same enzyme in the same organism but at
different physiological conditions. However, the elementary reaction steps and
mechanism are usually the same even for the enzymes’ homologues and
orthologues among different organisms. As a result, construction of a database
containing the above-mentioned information archived for each enzyme can be of
a great value.

Linking Kinescope to a database of the standard Gibbs free energy changes of
reactions will make it much easier to benefit from the thermodynamic constraints
while sampling the reversibility parameters (Section 4.1.6).

Development of an algorithm for automatic generation of hypotheses whenever
the collected kinetic models are not in acceptable agreement with an experimental
observation. Such an algorithm will recommend a set of rank ordered changes
(e.g. addition of a reaction or regulatory interaction to the model, see Section
4.1.10) that might improve the agreement between the model simulations and all
available experimental observations. Such changes can be made to the models,
and, if there is a significant positive impact on the simulation results, they are
considered as the potential in-silico discoveries, and one may try to validate them
experimentally. Development of such an algorithm would make it much easier for

a researcher to follow the modeling cycle represented in Figure 4.2.
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6. CONCLUSIONS

Living things are complex systems. Although multicellular organisms and
communities are more complex compared to the unicellular ones, the major
complexity in studying the living things comes from the intracellular molecular
interactions, which is something shared among all the organisms regardless of their
taxonomy. A biological cell is the smallest unit of life. All the cells discovered on the
earth until now use the same alphabet (A, C, G, T) to store the information in their
library, which is DNA. They also use the same alphabet (22 amino acids) to construct
the proteins. The basic machinery and mechanisms that they use to read the
information from DNA until proteins are constructed are also very similar. However,
there are too many molecules packed in a single cell, and the interaction possibilities
are vast, leading to an extremely flexible system with too many possible outcomes. To
study such complex systems, mathematics and computers are needed. In this research,
the focus is on the analytical study of the metabolic networks and the construction of
computational tools that can help to model, study and analyze cellular metabolism.
Two independent computational tools, JacLy (Chapter 3) and Kinescope (Chapter 4),
were developed in MATLAB during this research.

JacLy is a network inference algorithm with specific focus on the inference of
small-scale metabolic networks from steady-state data. Thanks to the improvements
introduced to the network inference algorithm, results reported in the previous work
[15] could be obtained much faster, with much higher reproducibility, and with a
higher prediction power. In addition, by applying the approach to the in silico
metabolome data, it was shown that the use of standard deviation of replicates is a
suitable approximation for the fluctuation matrix as one of the inputs to the algorithm.
However, there might be more sophisticated ways of estimating a fluctuation matrix
that better represent the nature of stochasticity in cellular metabolism. Finding more
relevant fluctuation matrices for different biological networks can be an altogether
separate research topic and can lead to an increase in accuracy and applicability of
Lyapunov based inference methods such as JacLy. Also, the power of JacLy was
especially obvious when a considerably lower number of replicates were used, or when
a small portion of non-existent edges were introduced as prior knowledge. Prediction
of the Jacobian matrix from steady-state data is another power of JacLy over GGM

since Jacobian matrix is much more informative and biologically relevant in terms of
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the network structure. In addition, albeit its remarkably better performance for lower
number of replicates compared to a correlation-based inference as shown in this work,
the use of JacLy for datasets with lower than 100 replicates should be cautioned.

Kinescope was introduced in Chapter 4 as a tool to ease the construction of
kinetic models of biochemical reaction networks by following a standard and clear
methodology. The main driving force behind development of Kinescope is to make a
rational link between the theoretical and experimental playgrounds in the area of
kinetic modeling of metabolism so that any researcher can unambiguously follow the
modeling cycle of Figure 4.2. However, a major obstacle in this methodology is the
uncertainty in the mechanism of action of the less studied enzymes at the elementary
reactions level. Design and construction of a device for experimental determination of
the elementary reaction steps of enzymatic reactions will help to overcome this
obstacle to a great extent and is a major step that must be taken in the experimental
playground, towards development of the standard protocol for kinetic modeling of
metabolic pathways. The experimentally determined elementary steps for each
enzymatic reaction can be archived in the form of a database. As it was mentioned in
Section 5.2, development of such a database would be of a great value. Another step
that would greatly contribute to the aforementioned standard protocol is development
of an algorithm for automatic generation of hypotheses in cases when none of the
model simulations is in agreement with experimental observations. A reasonable initial
point for the development of such an algorithm can be careful examination of the
Jacobian matrices, both the structure (zero and nonzero elements) and the interaction
magnitudes, and comparing the Jacobian matrices of the relatively more successful
models in simulating the system behavior with the rest of the Jacobian matrices.

All in all, kinetic modeling of the intracellular reactions must be looked from a
new perspective, both at the experimental and theoretical playgrounds, and
development of Kinescope has been initiated by such motivation to provide a suitable
computational and analytical platform. It needs constant improvement until the

modeling cycle of Figure 4.2 can be unambiguously followed.
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