
MARMARA UNIVERSITY
INSTITUTE FOR GRADUATE STUDIES
IN PURE AND APPLIED SCIENCES

ADAPTIVE METHODS FOR
PHOTOREALISTIC IMAGE SYNTHESIS

M. SENCER ÇAVUŞ

MASTER THESIS
Department of Computer Science and Engineering

Thesis Supervisor
Asst. Prof. Mehmet BARAN

ISTANBUL, 2020

MARMARA UNIVERSITY
INSTITUTE FOR GRADUATE STUDIES
IN PURE AND APPLIED SCIENCES

ADAPTIVE METHODS FOR
PHOTOREALISTIC IMAGE SYNTHESIS

M. SENCER ÇAVUŞ
(524116037)

MASTER THESIS
Department of Computer Science and Engineering

Thesis Supervisor
Asst. Prof. Mehmet BARAN

ISTANBUL, 2020

ACKNOWLEDGEMENTS

I would like to thank my parents for their invaluable support, and my grandparents, the

most selfless people I have ever known, for their unconditional love and for everything

they have done for me, my debts to them cannot be repaid. I would also like to express

my sincere gratitude to my advisor Asst. Prof. Mehmet Baran for letting me work on a

research topic I am interested in, for always encouraging me, and for being a genuine and

friendly person.

i

TABLE OF CONTENTS

ÖZET v

ABSTRACT vi

ABBREVIATIONS vii

LIST OF FIGURES viii

LIST OF TABLES x

1 INTRODUCTION 1

2 MATERIAL AND METHOD 3

2.1 Elements of Light Transport Theory . 3

2.1.1 Radiometry . 3

2.1.1.1 Radiant Flux Φ . 3

2.1.1.2 Irradiance � . 3

2.1.1.3 Radiance ! . 4

2.1.2 The Light Transport Equation 5

2.1.2.1 Emitted Radiance !4 6

2.1.2.2 Bidirectional Scattering Distribution Function (BSDF) 5B 7

2.1.2.3 Geometry Term � . 9

2.2 Estimating the Light Transport Equation 10

2.2.1 Monte Carlo Integration . 10

2.2.2 Light Tracing . 11

ii

2.2.3 Path Tracing . 12

2.2.3.1 Next Event Estimation 15

2.3 Improved Sampling for Monte Carlo Integration and Variance Reduction . 18

2.3.1 Importance Sampling . 18

2.3.1.1 Path Tracing with Importance Sampling 19

2.3.2 Multiple Importance Sampling 20

2.3.2.1 Next Event Estimation with MIS 21

2.4 Improved Estimators . 23

2.4.1 Bidirectional Path Tracing . 23

2.4.2 Metropolis Light Transport . 26

2.4.2.1 Metropolis Sampling 27

2.4.2.2 Primary Sample Space Metropolis Light Transport . . . 28

2.4.2.3 Anisotropic Proposals through Hamiltonian Monte Carlo 31

2.5 An Adaptive Approach to Sampling: Guided Path Tracing 33

2.5.1 Histogram Based Path Guiding 34

2.5.2 Gaussian Mixture Model Based Path Guiding 35

2.5.3 Path Guiding through Reinforcement Learning 37

2.5.4 Tree-based Path Guiding . 39

2.5.4.1 5D-tree . 39

2.5.4.2 Practical Path Guiding 40

2.5.5 Extending Practical Path Guiding for Product Importance Sampling 42

2.5.5.1 View-dependent SD-tree 43

2.5.5.2 Training . 44

2.5.5.3 Sampling . 44

iii

3 RESULTS AND DISCUSSION 45

4 CONCLUSIONS AND FUTUREWORK 52

REFERENCES 53

iv

ÖZET

FOTOGERÇEKÇİ İMAJ SENTEZLEME İÇİN UYARLANABİLİR
YÖNTEMLER

Fotogerçekçi imaj sentezlemede kullanılan ışık yayılımı simülasyonu algoritmalarında ver-

imli örnekleme çözülememiş bir problemdir. Bu tezde öncelikle ışık yayılımı simülasy-

onunun temellerini ve verimli örneklemeye engel olan zorlukları açıklıyoruz. Bu zor-

luklara çare olmaya aday olan bir yaklaşım olan uyarlanabilir önem örnekleme üzerinde

duruyoruz. Bunun için, daha önce yayınlanmış, uyarlanabilir önem örneklemeyi mümkün

kılan ışık yolu yöneltme metodlarını inceliyoruz. Bu yöneltme metodlarının çoğunun

sadece sahne yüzeylerindeki noktalara gelen radyansı yaklaşık olarak değerlendirdiği ve

bu yaklaşık değere göre örnekler oluşturduğunu belirtiyoruz. Bu yaklaşım, ışığı her yöne

dağıtan yüzeyler için göreceli olarak iyi çalışsa da, bu yolla oluşturulan örnekler parlak

yüzeyler için işe yaramaz hale gelebiliyor, çünkü parlak materyaller bakış açısına bağlı

olduğundan, gelen ışığın sadece belli bir kısmı yansıyor. Bu tezde, daha önce yayınlanmış

ağaç tabanlı bir yöneltme metoduna, bakış açısına bağlı ışık yayılımını hesaba katması

için yapılan basit bir ilaveyi sunuyoruz. Önceki metodda olduğu gibi, sahne uzayı uyarla-

malı olarak bölgelere bölünüyor. Her bölgeye, gelen radyansı kaydeden bir dörtlü ağaç

iliştiriliyor. Bizim metodumuzda bu dörtlü ağaçlar sadece ışığı her yöne dağıtan yüzeyler

için kullanılıyor. Ek olarak, her bölgeye, bakış yönlerinin uzayını bölen, ve gelen radyansı

kaydeden dörtlü ağaçlar içeren bir dörtlü ağaç iliştiriyoruz. Bu dörtlü ağaçlar da parlak

yüzeyler için kullanılıyor. Yaptığımız ilaveyle, çok sayıda parlak yüzey bulunduran sah-

nelerde iyileşmeler ve bakış açısına bağlı ışık yayılımı bulundurmayan sahnelerde asgari

düzeyde ek hafıza kullanımı gözlemliyoruz.

v

ABSTRACT

ADAPTIVE METHODS FOR PHOTOREALISTIC IMAGE SYN-
THESIS

Efficient sampling in light transport simulation algorithms used for photorealistic image

synthesis remains an unsolved problem. In this thesis, we first explain the basics of light

transport simulation and main challenges that prevent efficient sampling. We emphasize

adaptive importance sampling, which is a promising approach to overcome these chal-

lenges. Thus, we review previously published light path guiding methods that enable

adaptive importance sampling. We state that most of these guiding methods only approx-

imate incident radiance at points of scene’s surfaces and generate samples according to

this approximation. This approach works relatively well for diffuse surfaces. However,

samples generated in this way at points on glossy surfaces may become invalid, since only

a subset of incident light is reflected as glossy materials are view-dependent. In this thesis,

we propose a simple extension to a previous tree-based guiding method to make it aware

of view-dependent light transport. As in the previous work, spatial domain of the scene is

adaptively partitioned into regions. To each of these regions, a quadtree that records inci-

dent radiance is attached. In our method these quadtrees are used only for diffuse surfaces.

We attach to each spatial region an additional quadtree that partitions the space of view

directions and stores quadtrees that record incident radiance. These quadtrees are then

used for glossy surfaces. With our extension, we observe improvements in scenes with

many glossy surfaces and minimal memory overhead in scenes without view-dependent

light transport.

vi

ABBREVIATIONS

AD : Automatic Differentiation

BDPT : Bidirectional Path Tracing

BSDF : Bidirectional Scattering Distribution Function

EM : Expectation-Maximization

GMM : Gaussian Mixture Model

HMC : Hamiltonian Monte Carlo

LTE : Light Transport Equation

MCMC : Markov Chain Monte Carlo

MIS : Multiple Importance Sampling

MLT : Metropolis Light Transport

NDF : Normal Distribution Function

NEE : Next Event Estimation

PDF : Probability Distribution Function

PPG : Practical Path Guiding

PSSMLT : Primary Sample Space Metropolis Light Transport

RMSE : Root Mean Square Error

UDPT : Unidirectional Path Tracing

vii

LIST OF FIGURES

2.1 Radiant flux. 3

2.2 Irradiance. 4

2.3 Radiance. 4

2.4 Visualization of measurement contribution function. 6

2.5 Microfacets. 7

2.6 Visualization of geometry term. 9

2.7 In light tracing, paths are traced from light sources to the camera. 12

2.8 In path tracing, paths originate from the camera. 13

2.9 A scene rendered using UDPT. Increasing the number of samples per pixel

reduces the error and produces cleaner images. 14

2.10 UDPTwith next event estimation. Dashed lines show explicit connections

to the light source. 16

2.11 A scene rendered using UDPT with NEE. 17

2.12 NEE with multiple importance sampling. 22

2.13 In BDPT vertices of eye path and light path are combinatorially connected

to construct many new paths. 24

2.14 A scene rendered with UDPT and BDPT using # = 32 samples per pixel. 26

2.15 Metropolis sampling used to generate samples from an arbitrary target

distribution c (shown with dashed line). As the number of samples #

increases, distribution of samples converges to the target distribution. . . . 28

2.16 PSSMLT generates proposals in a unit hypercube, which corresponds to

full paths in path space. 29

viii

2.17 Two mutation strategies are used in PSSMLT. (1) the small-step mutation

and (2) the large-step mutation. 31

3.1 Visual quality comparison of our method and PPG in a scene with many

glossy surfaces. U = 0.5 . 46

3.2 Visual quality comparison of our method and PPG in a scene with many

glossy surfaces. U = 0.1 . 47

3.3 Visual quality comparison of our method and PPG in a scene with rela-

tively lesser number of glossy surfaces. U = 0.5 49

ix

LIST OF TABLES

3.1 Nonzero path percentage and memory usage statistics of our method and

PPG in a scene with many glossy surfaces. U = 0.5 48

3.2 Nonzero path percentage and memory usage statistics of our method and

PPG in a scene with many glossy surfaces. U = 0.1 48

3.3 Nonzero path percentage and memory usage statistics of our method and

PPG in a scene with relatively lesser number of glossy surfaces. U = 0.5 . 50

3.4 Memory usages of our method and PPG in a diffuse-only scene. 51

x

1. INTRODUCTION

Photorealistic image synthesis or rendering is the process of simulating light transport in

space, which aims to create lifelike images using data that describe a three dimensional

virtual scene containing objects or media, namely polygons, materials, textures, light

sources, by obeying the laws of physics. It is widely used in visual effects for feature films,

architecture and engineering.

One of the practical problems of photorealistic rendering is that it takes too much time

to render even a single frame. This is because many samples are required to produce a

noise-free image due to the stochastic nature of physically based rendering algorithms.

Using better hardware is not a solution as the scene complexity also increases to push

the boundaries of realism and the hardware is generally used to its limit. While GPU

acceleration can certainly improve the render times for some workloads, the high memory

demand of the scenes created, for instance in film production, do not allow them to be

used in every case. The production quality final renders are done using CPUs, whereas

GPUs are tend to be used in less detailed interactive preview renders where artists have an

approximation of how the final image will look in the end.

Hence we try to devise more efficient and robust rendering methods. One way to

achieve efficiency is to implement existing methods in a way that is more conformant to

the target hardware. Such as vectorizing the existing methods to utilize SIMD instructions

or making it more GPU-friendly. Another way is to develop more robust numerical

methods by studying the theory behind rendering. Adaptive rendering methods try to

achieve this. This is a good opportunity to apply statistical learning, which gained traction

in recent years, since adaptive methods produce better results by utilizing given input data

or the data generated during runtime. Adaptive rendering methods generally fall into one

of the two main categories; (1) adaptive reconstruction and filtering, where the aim is to

reconstruct a clean image from a noisy rendered image by adaptively assigning weights

to image filters, and (2) adaptive importance sampling or path guiding methods, where

the aim is to improve sample quality by constructing distribution functions adaptive to the

1

given scene, learning from the data generated during rendering. Our treatise will be of the

second category.

Remaining part of this thesis is organized as follows: In Chapter 2 we first give a

theoretical background of physically based rendering, defining basic units and quantities,

introducing governing equations and the computational problem of light transport simula-

tion. We then present basic numerical methods and algorithms used to solve this problem.

These are not given in-depth but just enough to appreciate the main ideas and notions

behind our work. After the basics, we touch upon some improved and more advanced

rendering methods. Finally we give a brief survey of path guiding methods which consti-

tute the main topic of this thesis, and explain our contribution. In Chapter 3 we share the

results of our method as to how it performs in variety of cases. And in Chapter 4 we give

our concluding remarks.

2

2. MATERIAL AND METHOD

2.1 Elements of Light Transport Theory

2.1.1 Radiometry

Before starting to talk about light transport simulation, we must first define some physical

quantities about light. We shall briefly explain the radiometric quantities.

2.1.1.1 Radiant Flux Φ

Radiant flux is the most basic radiometric quantity. It is the radiant energy per unit time.

Φ =
m&

mC
(2.1)

where & denotes energy and C the time. It is measured in watts (, = �/B).

Figure 2.1: Radiant flux.

2.1.1.2 Irradiance �

Irradiance is the light flux coming from all directions per unit surface area.

� =
mΦ

m�
(2.2)

where � is the surface area. It is measured in watts per square meter (, × <−2).

3

Figure 2.2: Irradiance.

2.1.1.3 Radiance !

Radiance is the most important quantity in our case. It is the light flux per unit surface

area per direction.

! =
m2Φ

mlm�⊥
(2.3)

where, l is the solid angle and �⊥ is projected area defined as �⊥ = �2>B\, \ being the

angle between surface normal and direction l. Its unit of measure is watts per steradian

per square meter (, × BA−1 × <−2).

Figure 2.3: Radiance.

Notice that one can derive other radiometric quantities from radiance simply by inte-

grating over a respected domain. For example, integrating over hemisphere of directions,

we arrive at irradiance as shown below:

� =
mΦ

m�
=

∫
H2

m2Φ

mlm�⊥
2>B\3l.

4

2.1.2 The Light Transport Equation

Central to the photorealistic rendering is the light transport equation (LTE). There are two

formulations of LTE, which we will use throughout this thesis. First of them, the solid

angle formulation due to Kajiya [8], is a recursive integral equation

!> (x, l>) = !4 (x, l>) +
∫
H2 (x)

5B (x, l8 → l>)!8 (x, l8) cos \83l8, (2.4)

evaluated with differential solid angles over the hemisphere H2 at point x. Here !>

denotes the total radiance leaving a point x on a surface of an object through direction l>,

!4 the emitted radiance at x through l>, !8 the incident radiance at x coming from l8,

5B the bidirectional scattering distribution function (BSDF), informally it describes how

much of the incoming light from l8 is scattered through l>, and \8 is the angle between

l8 and the surface normal at x.

Second formulation, namely the path integral formulation due to Veach [23], is a

Lebesgue integral based on differential areas on scene’s surfaces, and integration is on the

measure space (P, `) of paths which is the disjoint union of spaces of paths of all lengths:

P =
∞⊔
:=2
P: . (2.5)

Let 9 be the pixel index on the sensor, we write the LTE describing the total light

arriving at 9-th pixel of the sensor as

� 9 =

∞∑
:=2

∫
P:
5 (Ḡ)3`(Ḡ), (2.6)

where 5 : P: → '≥0, the measurement contribution function denotes the light energy

carried by path Ḡ.

Since P consists of disjoint subsets, we separately evaluate the integral in subset

domains P: ⊂ P ∀: ≥ 2 1 and take the sum of the results.

5 consists of other terms, namely the emitted radiance !4, the BSDF 5B and the
1In practice : is bounded by a maximum value, as longer paths carry less energy and their contributions

become negligible.

5

geometry term �:

5 (Ḡ) = 5 (x0, x1, . . . , x:) = !4 (x0 → x1)
:∏
;=1

5B (x;−1 → x; → x;+1)� (x;−1 ↔ x;).

(2.7)

Here, each path vertex x; is an element of a setM called the scene manifold (i.e. x; ∈ M),

which is the union of all surfaces in a scene, so each path vertex is a point on a surface

in the scene. This function can be visualized as in Fig. 2.4, which illustrates the light

transport originating from point x0 on a light source, reflecting off of x1, and arriving at

x2. The product of terms 5B and �

f(Ḡ) =
:∏
;=1

5B (x;−1 → x; → x;+1)� (x;−1 ↔ x;)

is called the path throughput.

Figure 2.4: Visualization of measurement contribution function.

We will now explain the terms in LTE.

2.1.2.1 Emitted Radiance !4

!4 : M ×M → R≥0 is a function that returns the radiance emitted from a point x4 on

the emitter to another point x on a surface in the scene. For most basic area light sources,

6

this is a constant function, though more complex light sources also exist where it is not

constant.

2.1.2.2 Bidirectional Scattering Distribution Function (BSDF) 5B

BSDF gives the material properties to the objects in the scene. It describes the way light

rays reflect or refract at a surface. This effects the look of that surface. For instance, the

surface may look rough like wood, or it may have a glossy, metallic look.

While the materials in the physical world can be multilayered and arbitrarily complex,

single layered materials cover a lot of cases and can be described with varying degrees of

roughness. On the one hand there are extremely rough, diffuse surfaces, usually modelled

by the Lambertian BSDF. A diffuse surface can reflect an incoming light ray in any

direction of the hemisphere. On the other hand there is the perfectly specular surfaces

such as mirrors or glass surfaces. A specular surface just reflects or refracts the incoming

ray along the surface normal in only one direction.

In between these two extremes, there are glossy surfaces. These kind of surfaces

can be approximated with the help of microfacet theory. Microfacet theory assumes a

microsurface underlying a seemingly flat macrosurface (see Fig. 2.5). This microsurface

is assumed to have many small specular mirror-like facets that reflects the light along their

normals. The distribution of these normals, along with a shadowing-masking function

which we will explain later, controls the roughness of the material.

Figure 2.5: Microfacets.

One of the most frequently used BSDF models that is based on the microfacet theory

7

is the Cook-Torrance model [1]. The Cook-Torrance model for reflections is written as

5A (i, o, n) =
� (i, h)� (i, o, h)� (h)

4|i · n| |o · n| . (2.8)

Here, � is the Fresnel function describing whether l> should reflect or refract, given

l8. � is the shadowing-masking function, which accounts for the directions l> that may

be blocked by microfacets. � is the microfacet distribution function, sometimes called

the normal distribution function (NDF); given l8, it assigns l> a density value. Given a

parameter that effectively describes the roughness of the surface, it models the distribution

of microfacet normals. What this means is that some directions carry more energy than

the others, and some directions may not be able carry any energy at all, because reflecting

or refracting to that direction may be impossible, hence that direction is not in the support

of �, namely l> ∉ supp�.

We are free to choose between different distributions or shadowing-masking functions,

each resulting in slightly different looks and we may also use different approximations to

Fresnel function. Now we shall give some examples to these terms.

A fast approximation to Fresnel function [20] is used frequently:

� (i, h) = �Schlick(i, h) = �0 + (1 − �0) × (1 − (h · i))5�0 =
(=1 − =2)2
(=1 + =2)2

, (2.9)

where =1 and =2 are indices of refraction of the media.

A popular choice for distribution function is the GGX distribution [29]. Let U be the

width parameter controlling the roughness of the surface, \< be the angle between h and

n, \E between v and n and let

j+(0) =


1 if 0 > 0

0 otherwise
,

the GGX microfacet distribution function is given as

� (h) = �GGX(h) =
U2j+(h, n)

c cos4 \< (U2 + tan2 \<)2
. (2.10)

8

It is used together with the appropriate shadowing-masking function

� (i, o, h) ≈ �1(i, h)�1(o, h) (2.11)

where

�1(v, h) = j+
(
v · h
v · n

)
2

1 +
√

1 + 02 tan2 \E
. (2.12)

is derived from the microfacet distribution function.

2.1.2.3 Geometry Term �

� (x0, x1) = � (x0 ↔ x1) = + (x0 ↔ x1)
����cos \0 cos \1

A2

���� (2.13)

Here, + :M×M → {0, 1} is the binary valued visibility function which maps to 1 if the

ray from x0 to x1 does not intersect any surface in the scene, otherwise it maps to 0. Other

terms are illustrated in Fig. 2.6.

Figure 2.6: Visualization of geometry term.

9

2.2 Estimating the Light Transport Equation

LTE includes an integral term which cannot be computed analytically. Therefore we aim

to compute it using a numerical algorithm. While quadrature based integration methods

such as the trapezoidal rule or the Gaussian quadrature may work well for the integrals

with one to three dimensional domains, they suffer from the curse of dimensionality in

high dimensional domains. The domain of the light transport integral P is potentially an

infinite dimensional space, even though in practice we do not let the paths bounce infinitely.

Nevertheless since P: ∈ P where : may be a sufficiently big number, we cannot utilize

the aforementioned integration methods. To cope with the curse of dimensionality, we use

the well-known Monte Carlo integration [14]. Below we briefly explain the Monte Carlo

integration and show direct applications of it to the light transport problem.

2.2.1 Monte Carlo Integration

Let (X, `) be a measure space. For the sake of simplicity let X ⊂ R3 be an interval in

3-dimensional euclidean space (i.e. X = [0, 1] ⊂ R if 3 = 1) and ` be the volume of that

interval (i.e. `(X) = 1 − 0 if 3 = 1). Let

� =

∫
X
5 (G)3G

be the integral we want to evaluate. Given a set of # samples {G1, . . . , G8, . . . , G# } drawn

uniformly from the integral domain the Monte Carlo estimator of this integral is written

as

〈�〉# = `(X)
#

#∑
==1

5 (G=). (2.14)

10

with the property that �
[
〈�〉#

]
= � which we can easily observe:

�
[
〈�〉#

]
= �

[
1
#

#∑
==1

5 (G=)
]

=
`(X)
#

#∑
==1

� [5 (G=)]

=
`(X)
#

#∑
==1

∫
X
5 (G=)?(G=)3G

=

∫
X
5 (G=)3G

= � .

Monte Carlo estimator also has another important property which tells us that, as long

as we increase the number of samples # , the estimation draws closer to the integral value

we want to compute, eventually converging in the limit:

lim
#→∞
〈�〉# = � .

Since the estimator is unbiased, the convergence rate of the estimator depends on the

variance which decreases with the rate of O(1/
√
#).

2.2.2 Light Tracing

Light tracing is a direct application of Monte Carlo integration to the light transport

problem. We simply write the estimator as

〈� 9 〉# =
∞∑
:=2

1
#

#∑
==1

5 (Ḡ=) ≈
∞∑
:=2

∫
P:
5 (Ḡ)3`(Ḡ).

Since the domain of the integrand is the path space P we need to sample paths in the form

Ḡ = x0x1 . . . x:

where x0 is on a light source. We uniformly sample a point x0 and a direction l0 on a

light source and trace a ray with origin x0 and direction l0 which hits a point on the scene

manifold x1 ∈ M. We again sample a direction l1 ∈ H2 at x1 and evaluate � and 5B

terms. If one of them results in zero value, we stop and start sampling a new path from

11

the light source. Otherwise we continue sampling directions and evaluating the terms.

However, this estimator is very inefficient in most cases as probability of connecting a

path vertex to the camera is extremely low, hence we use a different method in practice,

which we will introduce next.

Figure 2.7: In light tracing, paths are traced from light sources to the camera.

2.2.3 Path Tracing

It was believed in ancient times that people see due to the rays coming out of their eyes. This

is of course very far from the truth. But unidirectional path tracer (UDPT), or usually called

simply as path tracing, works exactly like that, which is an interesting observation in itself.

This is possible thanks to the terms in the throughput of LTE being symmetric functions

for incoming and outgoing directions. Which means that � (x0 ↔ x1) = � (x1 ↔ x0) and

5B (x0 → x1 → x2) = 5B (x2 → x1 → x0). As a result, we can flip the directions between

12

path vertices as depicted in Fig. 2.8, constructing paths as

H̄ = x0x1 . . . x:

Ī = x:x:−1 . . . x0,

and get the same throughput value f(H̄) = f(Ī).

Figure 2.8: In path tracing, paths originate from the camera.

This new estimator we have by trivial modification of light tracing produces a cleaner

image, as the probability of a path hitting a light source with finite surface area is much

higher than hitting the camera. A pseudocode of path tracing is given in Algorithm 1. As

can be seen in Fig. 2.9, by increasing the number of paths traced per pixel, we decrease

the root mean square error (RMSE) of the rendered images and reduce the noise.

13

(a) # = 8, RMSE 0.476 (b) # = 32, RMSE 0.383

(c) # = 128, RMSE 0.220 (d) # = 512, RMSE 0.108

(e) Reference

Figure 2.9: A scene rendered using UDPT. Increasing the number of samples per pixel #

reduces the error and produces cleaner images.

14

Algorithm 1 Path Tracing
1: for all 9 ∈ {1, . . . , �} do

2: for all = ∈ {1, . . . , #} do

3: p← SamplePointInsidePixel(9)

4: x′← TraceRay((x, l8))

5: : ← 0

6: while (!4 (x′→ x) = 0) ∧ (: <) do

7: x← x′

8: l> ← −l8
9: l8 ∼ (H2

10: f← f × 5B (x, l8 → l>) × |n(x) · l8 |

11: G′← TraceRay((G, l8))

12: : ← : + 1

13: end while

14: ! 9 ← ! 9 + !4 (x′→ x) × f

15: end for

16: 〈� 9 〉# ←
! 9
#

17: end for

2.2.3.1 Next Event Estimation

In the basic version of UDPT, we only sample random directions and hope that following

those directions brings paths to light sources. While hitting a light source has a much

higher probability than hitting the camera, we can still do much better by utilizing the light

source information in the scene.

In next event estimation (NEE) we utilize this information in path sampling process as

follows: At each path vertex x= we randomly sample a point p on a light source. We then

trace a ray from x= to p. This constructs a path of length =+1. Instead of blindly sampling

a direction and hoping that it hits a light source, we exploit the fact that we know where

all the light sources are and at each step try to explicitly connect the paths to them. This

is shown in Fig. 2.10.

15

As a result, this considerably shrinks the search space of sampling non-zero valued

paths, even though it is not guaranteed, as the ray x= → p may be occluded or x=−1 →

x= → p may not be in the support of 5B causing the contribution to be zero.

Figure 2.10: UDPT with next event estimation. Dashed lines show explicit connections

to the light source.

16

(a) # = 8, RMSE 0.088 (b) # = 32, RMSE 0.046

(c) # = 128, RMSE 0.023 (d) # = 512, RMSE 0.011

Figure 2.11: A scene rendered using UDPT with NEE.

17

2.3 Improved Sampling for Monte Carlo Integration and Variance

Reduction

While Monte Carlo integration is a generally applicable and a simple to implement numer-

ical integration technique that gives unbiased estimations, it suffers from slow convergence

due to the slow decrease rate of variance with respect to the number of samples. In the

context of rendering, the estimates we get are noisy unless we use very high number of

samples. In this section we review some of the techniques that can improve the sam-

pling quality such that the variance reduces faster and the estimates become cleaner with

relatively less number of samples.

2.3.1 Importance Sampling

The standard Monte Carlo estimator given in Eq. 2.14 works with samples taken from the

uniform distribution. But we need not sample strictly from the uniform distribution, we

can sample from an arbitrary PDF, the estimator then becomes

〈�〉# = 1
#

#∑
==1

5 (G=)
?(G=)

. (2.15)

and its expected value again equals to the original integral:

�
[
〈�〉#

]
= �

[
1
#

#∑
==1

5 (G=)
?(G=)

]
=

1
#

#∑
==1

�

[
5 (G=)
?(G=)

]
=

1
#

#∑
==1

∫
X

5 (G=)
?(G=)

?(G=)3G

=

∫
X
5 (G=)3G

= � .

This is essentially the same as the standard estimator, when ? is chosen to be a uniform

distribution, it becomes a constant and can be taken outside of the integral as it was done

in Eq. 2.14, where ?(G) = 1/`(X).

18

Notice that ifwe sample fromahypothetical PDFperfectly proportional to the integrand

?(G) = 5 (G)∫
X 5 (G′)3G′

=
5 (G)
�
,

and substitute it into Eq. 2.15

〈�〉# = 1
#

#∑
==1

5 (G=)
5 (G=)
�

〈�〉# = 1
#

#∑
==1

�

〈�〉# = �,

the estimator becomes equal to the value of the integral and has zero variance. This implies

that we could have estimated the integral without error with a single sample, i.e. # = 1,

if we had access to an ideal PDF. Although this is generally impossible in practice, we

still strive for PDFs with shapes as close to the shape of the integrand as possible, for such

PDFs increase the convergence rate of the estimator, with its variance decreasing faster

than O(1/
√
#) in comparison to uniform-only sampling.

2.3.1.1 Path Tracing with Importance Sampling

It is impossible to derive a PDF that is perfectly proportional to the LTE integrand.

Therefore we try to sample from PDFs that are as proportional as possible to the integrand.

To this end, PDFs proportional to BSDFs are usually used. While uniform sampling from

the hemisphere is proportional to the Lambertian BSDF, it is not for other view-dependent

microfacet-based BSDFs. Nevertheless, it is generally possible to derive PDFs that have

shapes similar to microfacet-based BSDFs. For instance, a PDF used when importance

sampling from the BSDF (reflection only) with GGXmicrofacet distribution from §2.1.2.2

is given by

?(m) = � (m) |m · n|
4|o · h| . (2.16)

BSDF importance sampling lowers the variance, and reduces noise as a result, in

comparison to uniform sampling.

19

2.3.2 Multiple Importance Sampling

Importance sampling allows us to sample from a single PDF that is approximately pro-

portional to the integrand. This PDF may have a shape similar to that of integrand in a

subset of the integral domain, but other alternative PDFs, each being proportional to the

integrand in different subsets of the domain, may also exist. The question then arises:

How can we combine multiple estimators that use different PDFs into a superior estimator

in an unbiased manner? Multiple importance sampling (MIS) [26] is a solution to this

problem.

We shall intuitively explain the technique by giving a simple example: Let ?1 ∝ 51

and ?2 ∝ 52 be probability distributions with arbitrary domain X and proportional to 51

and 52 respectively and let G ∈ X be sampled from ?1, G ∼ ?1. But we could have sampled

G from ?2, and that might have resulted in lower variance, when ?2(G) > ?1(G). What we

want to achieve is to weight 51 (G) 52 (G)
?1 (G) with F1 and 51 (G) 52 (G)

?2 (G) with F2 that results in effect

as if G was sampled from an ideal hypothetical distribution ?∗ ∝ 51(G) 52(G):

F1
51(G) 52(G)
?1(G)

+ F2
51(G) 52(G)
?2(G)

≈ 51(G) 52(G)
?∗(G) . (2.17)

What MIS does is to determine these weights F1 and F2 through heuristic functions, such

that F1 + F2 = 1 and F2 > F1 whenever ?2 > ?1 and vice versa.

There are several heuristics devised to assign weights. Two of them are most frequently

used; (1) the balance heuristic

F8 (G) =
#8?8 (G)∑
9 # 9 ? 9 (G)

, (2.18)

and (2) the power heuristic

F8 (G) =
(#8?8 (G))V∑
9 (# 9 ? 9 (G))V

. (2.19)

These heuristics guarantee the unbiasedness of combined estimators. Proofs of unbiased-

ness are given in [23].

20

2.3.2.1 Next Event Estimation with MIS

Previously we have stated that NEE is one of the most basic methods to improve path

tracing and it is usually implemented as an application of MIS. Assume that we are tracing

a path in a scene with a single light source and the current path vertex is x. Let ?1 = ?!4

be the PDF used to sample the light source and let ?2 = ? 5B be the PDF used to sample the

BSDF at x. In the version of NEE with MIS, we sample a direction l as in the original

version of NEE from ?1, but sampling l from ?2 might have been more robust. Thus we

have two estimators that are combined

〈�〉 = F1
!4 · f
?1
+ F2

!4 · f
?2

by weighting the path throughput value f with PDF values ?1, ?2 and their respective MIS

weights, where F8 is the arbitrary MIS heuristic.

This is beneficial especially in cases such as; (1) the light source has a relatively large

surface area, but the BSDF at x is highly glossy, where sampling according to BSDF may

be more beneficial, and (2) the light source has a relatively small surface area, but the

BSDF at x is very smooth, where sampling the light source may be more beneficial. MIS

heuristics then assign a bigger weight, in case (1) to ?2, and in case (2) to ?1. This is

demonstrated in Fig. 2.12 below.

21

(a) BSDF-only

(b) Emitter-only

(c) MIS

(d) Reference

Figure 2.12: NEE with multiple importance sampling.

22

2.4 Improved Estimators

Apart from importance sampling, another way to reduce variance is to employ more so-

phisticated estimators tailored for the problem at hand. Naturally, implementing these

estimators is more involved and iterations take more time than simple estimators such as

UDPT. But in certain scenes with complex visibility conditions or with a lot of near-

specular surfaces, these improved estimators may produce cleaner images in shorter

amounts of time. While some of these are unbiased like UDPT, there are also biased

estimators. Here we briefly introduce some of the unbiased ones.

2.4.1 Bidirectional Path Tracing

Previously in §2.2 we have seen that there are two basic ways to estimate the integral of

light transport. One of them, UDPT, constructs paths starting from the camera origin, and

the alternative, light tracing, starts the construction from a light source in the scene. It

would be advantageous to somehow effectively combine these two estimators especially

in scenes with difficult visibility conditions. Bidirectional path tracing (BDPT) [11, 24]

is an estimator that does exactly this.

Intuitively, in BDPT, we trace two independent paths for each pixel in every iteration,

one from the camera as in UDPT and another from an arbitrary light source as in light

tracing, and combine these two paths in multiple ways.

We denote each full path Ḡ by dividing it into two sub-paths as below:

Ḡ = H̄Ī.

Here, H̄ and Ī denote vertices of sampled sub-paths starting from a point on a light source,

and from the camera respectively. Henceforth we will call H̄ the light sub-path and Ī the

eye sub-path.

23

Figure 2.13: In BDPT vertices of eye path and light path are combinatorially connected

to construct many new paths.

Assuming the length of a path is measured in number of vertices, let be the length

of the path H̄ sampled by light tracing and ! be the length of path Ī sampled by UDPT,

and let 0 ≤ : < and 0 ≤ ; < !. We denote a full path of length : + ; we can construct

by combining sub-paths —and by sub-paths we mean the paths consisting of the first :

and ; vertices of H̄ and Ī respectively— as below:

Ḡ:; = y0y1 . . . y:−1z;−1 . . . z0.

Consider a simple case with : + ; = 3, for which we may have 4 different paths by

24

connecting the sub-path endpoints;

Ḡ3
0 = y0y1y2

Ḡ2
1 = y0y1z0

Ḡ1
2 = y0z1z0

Ḡ0
3 = z2z1z0.

Out of these paths, Ḡ3
0, Ḡ

0
3, Ḡ

1
2, or in general, the paths Ḡ:0 , Ḡ

0
;
, and Ḡ1

;
correspond to light

tracing, path tracing and path tracing with NEE respectively.

This is very beneficial as we can construct 2 new paths of length 3 by only tracing 2

rays instead of 4, because we reuse the sub-paths of previously sampled paths H̄ and Ī.

And in general by reusing sub-paths, we can construct : + ; − 1 new paths of length : + ;

by only tracing : + ; − 1 rays.

In the end, the contributions from newly constructed paths are weighted and combined:

� =
∑
:≥0

∑
;≥0

F:;

5 (Ḡ:
;
)

?:
;
(Ḡ:
;
)
. (2.20)

where theweightsF:
;
are computed throughMIS to increase the robustness of the estimator.

While UDPT works well in outdoor scenes with environment lights, BDPT is better

suited for indoor scenes with relatively difficult illumination (see Fig. 2.14).

25

(a) UDPT, RMSE 0.105

(b) BDPT, RMSE 0.058

Figure 2.14: A scene rendered with UDPT and BDPT using # = 32 samples per pixel.

2.4.2 Metropolis Light Transport

So far, all of the estimators we have presented estimate the LTE by sampling explicitly

from predefined PDFs. In this section we present a different sampling method that do not

need sampling functions derived from PDFs to generate samples, and estimators based on

it.

26

2.4.2.1 Metropolis Sampling

Metropolis sampling [15] is a general and simple Markov-chain Monte Carlo (MCMC)

method used when sampling from a target distribution c with an unknown inverse cumu-

lative distribution function (CDF) %−1 that may be impossible to derive analytically.

Let c : X → R≥0 be a potentially unnormalized PDF and let G, G′ ∈ X with G being

the current sample. In Metropolis sampling, a new potential sample G′ is generated

using a proposal distribution in the neighborhood of the current sample G, usually from a

symmetric Gaussian distribution centered at G. In rendering literature this is also called a

mutation. This new sample G′ is then assigned an acceptance probability with

0(G′|G) = c(G
′)

c(G) (2.21)

and either accepted as the next sample or rejected:

G =


G′ 0(G′|G) > b

G otherwise
(2.22)

where b ∈ [0, 1] is a random number.

A more general version of this method, namely the Metropolis-Hastings sampling [4],

allows non-symmetric proposal distributions. For instance, we may use anisotropic Gaus-

sian distributions with non-symmetric covariance matrices. This way, we can generate

proposals that are conformal to the geometry of target distribution.

The acceptance ratio for Metropolis-Hastings is

0(G′|G) = c(G
′)) (G′|G)

c(G)) (G |G′) . (2.23)

It is easy to see that Metropolis sampling is a special case of Metropolis-Hastings

sampling, where proposal distributions are symmetric, implying) (G |G′) =) (G′|G), and

thus cancel each other out.

Shown below, is an example of using Metropolis sampling to generate samples from a

distribution.

27

= 500 # = 1000

= 2000 # = 50000

Figure 2.15: Metropolis sampling used to generate samples from an arbitrary target dis-

tribution c (shown with dashed line). As the number of samples # increases, distribution

of samples converges to the target distribution.

2.4.2.2 Primary Sample Space Metropolis Light Transport

Use of Metropolis sampling in the context of rendering is first proposed in the seminal

work by Veach and Guibas [25]. Now, in light transport simulation, the target distribution

c becomes the measurement contribution function 5 . New samples are generated through

mutations in the path space. A path Ḡ is mutated using one of the specifically designed

mutation strategies, into a new path Ḡ′. This path is either accepted or rejected depending

on the acceptance probability

0(Ḡ′|Ḡ) = 5 (Ḡ′)) (Ḡ′|Ḡ)
5 (Ḡ)) (Ḡ |Ḡ′) .

In practice, a path of length : , Ḡ ∈ P: is sampled with a vector of O(:) random

numbers D̄ ∈ [0, 1]O(:) ⊆ UO(:) . Here, O(:) denotes the number of random numbers

needed to sample a path of length : , and is usually taken as 2: or 3: depending on the

28

implementation. This random vector is fed into a joint importance sampling function

(: UO(:) → P: such that ((D̄) = %−1(D̄) = Ḡ. (may be composed of any sampling

function, such as the BSDF sampling functions 2 or geometric shape sampling functions.

In primary sample space Metropolis light transport (PSSMLT) [9], we build upon this

simple fact to sample paths usingMCMC state vector D̄ = (D1, . . . , DO(:)). Unlike Veach’s

algorithm which makes changes directly in the path space, PSSMLT works by mutating

this vector which is in a space traditionally called the primary sample spaceU, basically

a hypercube of random numbers [0, 1]O(:) , and lets the importance sampling functions (

automatically generate the paths (see Fig. 2.16).

Figure 2.16: PSSMLT generates proposals in a unit hypercube, which corresponds to full

paths in path space.

Since we are working on a different space (U rather than P), we have to redefine our

measurement contribution function and light transport equation. We redefine our new

measurement contribution function in primary sample space as

5̂ (D̄) = 5 (((D̄)) = 5 (Ḡ).

Next, we redefine the integral:∫
U
5̂ (D̄)

����3`(Ḡ)3D̄

���� 3D̄ = ∫
P
5 (Ḡ)3`(Ḡ).

Here,
��� 3`(Ḡ)3D̄

��� is the Jacobian determinant arising from the change of variables between

2Note that BSDF sampling functions generate directional vectors which are then used to trace a ray in

that direction, eventually hitting a point on the scene surface, making that hit point the sampled path vertex.

29

U and P. Its value is simply 1
?̂(D̄) as we will show now.

For the sake of simplicity let us assume that 38<(U) = 1. From the previous

redefinition we know that ����3`(Ḡ)3D̄

���� = ����3%−1

3D̄

���� .
The CDF % is defined as

%(D̄) =
∫ D̄

0
?̂(D̄)3D̄.

Differentiating both sides with respect to D̄,

3%(D̄)
3D̄

= ?̂(D̄).

From elementary calculus,

3%(D̄)
3D̄

=
1

3%−1 (D̄)
3D̄

,

thus,
��� 3%−1 (D̄)

3D̄

��� = ��� 3`(Ḡ)3D̄

��� = 1
?̂(D̄) .

PSSMLT defines two different mutation strategies; (1) the small-step strategy, which

generates a new sample vector D̄′ by sampling from a symmetric probability distribution,

usually a Gaussian distribution N with small covariance, centered at the current sample

vector D̄, and (2) the large-step strategy, which completely discards the current sample

vector D̄ and generates the new sample vector D̄′ by uniformly sampling the hypercube.

These two strategies are designed to address the exploration-exploitation dilemma. (1)

exploits the information on previous sample vector D̄, which may correspond to a path with

high contribution value, by generating the new sample vector D̄′ in the neighborhood of D̄,

hoping that D̄′ also corresponds to a path with contribution value closer to, or even higher

than the previous one. This way, we can sample paths with high energy more frequently.

The benefits of (2) is twofold. By occasionally generating a completely random

sample vector D̄′ regardless of D̄, new high energy regions in the domain can be explored.

In addition, as a consequence, the ergodicity condition of MCMC is also obeyed. If one

uses only the strategy (1), the method may get stuck in isolated regions. These regions,

30

sometimes informally called islands, are surrounded by zero-energy regions. And hence

we need bigger jumps as used in (2) to escape them (see Fig. 2.17).

Figure 2.17: Two mutation strategies are used in PSSMLT. (1) the small-step mutation

and (2) the large-step mutation.

2.4.2.3 Anisotropic Proposals through Hamiltonian Monte Carlo

As shown previously, rendering algorithms based on MCMC methods often use simple

isotropic Gaussian distributions for local sample propositions with the same covariance

matrix throughout the whole domain of the target function. This simplifies the calculation

of acceptance ratio as the transition probabilities in Eq. 2.23 cancel each other out.

However, symmetric distributions are suboptimal in cases where the target distribution

has isolated nonzero regions with uneven shapes. In such cases, utilizing anisotropic

proposal distributions becomes more appropriate. In recently published paper [12], the

authors use Hamiltonian Monte Carlo (HMC), taking the geometry of target distribution

into account to more adaptively sample from it.

HMC views the current sample as a particle which resides on the landscape of the

negative target function, applies a randommomentum to this particle and finds its position

after C time units by solving a Hamiltonian mechanics problem, and this new position

becomes the proposed sample. This way, better proposals can be generated, since HMC

usesmore information compared to previous classicalMLTmethods by generating samples

according to the underlying manifold of light transport.

Solving this problem requires relatively slow numerical integration methods. As a

31

remedy to inefficiency, the authors approximate the target function with second-order

Taylor expansion and derive closed form solutions to the underlying mechanics problem.

The resulting algorithm outperforms other MCMC based rendering methods in com-

plex scenes with highly glossy materials. Because it needs the automatic differentiation

(AD) of rendering system, it is hard to implement the algorithm in an existing rendering

library or framework without AD support. AD is also slower to compute which may cause

the algorithm to perform worse in simpler scenes.

32

2.5 An Adaptive Approach to Sampling: Guided Path Tracing

Heretofore we have talked about Monte Carlo estimators that sample from fixed, a priori

distributions or from a combination of them through MIS. However, none of these a priori

distributions are ideal in that they are not perfectly proportional to the integrand. The

ideal distribution depends on the parameters of the scene being rendered, and thus it is

different for each scene. As we cannot derive this ideal distribution analytically, how can

we approximate it better than a priori distributions?

In this section we answer this question by giving a brief overview of previously

published scene-adaptive sampling techniques known as path guiding methods. After

reviewing previous work, in §2.5.5 we present our contribution, which is an extension to a

previous path guiding method. The leitmotif behind these methods is that, influenced by

the principles of statistical learning from data, they all gather and encode information from

previously sampled paths about the scene (or the integral domain) and use that information

to guide new paths so as to enable improved adaptive importance sampling. 3

Recall the solid angle formulation of LTE:

!> =

∫
H2
!8 5B cos \83l.

Standard UDPT estimates the integral by importance sampling the PDF derived from

BSDF 5B. However we cannot generate samples according to !8, as deriving a PDF

proportional to it

? ∝ !8∫
H2 !83l

,

requires evaluation of an integral which is impossible to evaluate analytically. Except for

very simple, specifically modelled scenes, we are simply unable to construct an analytic

form of !8, as we need to trace paths to evaluate it. Hence, unlike the PDF derived from

5B, we do not have access to an a priori PDF derived from !8. The aim of most of the path
3We can also view MLT as an adaptive sampling method, or even as a path guiding method which only

leverages local information, namely the the local neighborhood of the previously sampled path. That is

exploiting the fact that previously sampled path carries a lot of energy and samples the next path Ḡ ′ that is

in the neighborhood of the current path Ḡ in path space.

33

guiding methods is then to learn PDFs that are as proportional to !8 as possible.

2.5.1 Histogram Based Path Guiding

One of the very first path guiding methods is proposed by Jensen [7] and it was influential

for the path guiding methods that were published after it. It is a relatively simple method

that tries to approximate !8 at various points in the scene, and derives discrete PDFs from

those approximations which are then used to sample directions, from where most of the

direct or indirect illumination comes, by only utilizing a :-d tree and histograms.

First, light paths traced from light sources and each vertex position of these paths

together with the incoming direction and carried radiance are recorded in a :-d tree.

Then, while tracing paths from camera, at each path vertexwe query its : nearest neighbors

using the :-d tree and build a histogram of incoming directions, accumulating the carried

radiance values. We then sample a new direction according to a CDF derived from this

histogram. In effect, this results in better importance sampling, as at each point we have

access to the approximate information of the directions where most of the illumination is

coming from.

While the idea of using information gathered from previous samples to enable better

sampling in the next iterations seems better than just using fixed, handcrafted a priori

PDFs, it is not without flaws. Weaknesses of this method result mainly from the use

of the parameter-free histogram-based model that approximates the irradiance at a cache

point in the scene. Since the model is parameter-free, all samples must be stored in

memory at all times, which are used in : nearest neighbors queries at path vertices to build

histograms. This becomes a significant problem especially in more complex scenes where

relatively larger amounts of samples may be needed to gain information to properly guide

paths. Limited amount of memory is not enough to record all these samples, causing the

robustness of the method to decrease drastically.

Another point of concern arises from the fact that no view-dependent information is

recorded. That is because only the incident radiance !8 is encoded in histograms and not

the product of incident radiance and the BSDF value !4 × 5B. As a result, this method is

better suited for scenes abundant with view-independent, diffuse surfaces.

34

2.5.2 Gaussian Mixture Model Based Path Guiding

To cope with the limitations of the histogram based guiding method, in [27] the authors

build upon it by utilizing a parameterizedmodel. To be precise, they trainGaussianmixture

models (GMM) to encode, at finite set of points {x1, x2 . . . x# } ⊂ M, the information

gathered from previous samples to build PDFs approximately proportional to !8:

?x(.) =
∑
8

c8N(.|`8, Σ8) ≈
!8∫

H2 !83l
.

This way, information from previous samples can be captured by a relatively small

number of parameters and need not be stored in thememory at all times. However, standard

Expectation-Maximization (EM) method [16] (see Algorithm 2) used to compute GMM

weights do not work in on-line scenarios, meaning that previously sampled data must be

stored in the memory together with newly sampled data to recompute the parameters. This

of course eliminates the promised memory usage improvement. Another important point

to address is learning from weighted data, due to the training data consisting of direction

vectors with associated radiance values. Unfortunately, standard EM cannot account for

weighted data.

To address the first issue they consider the step-wise EM algorithm [13] (see Algorithm

3). Step-wise EM can be easily modified to train GMM on-line, but again, it cannot be

used to learn from weighted data. To learn from weighted data and therefore to address

the second issue they further modify the online version of step-wise EM algorithm. Hence

they use this modified step-wise EM algorithm to address both of these issues.

Algorithm 2 Standard Expectation-Maximization algorithm

1: W@ 9 =
c 9N(B@ |\>;39)∑
ℎ=1 cℎN(B@ |\>;3ℎ)

2: repeat

3: D
9

#−1 ←
1
#

∑#−1
@=0 W@ 9D(B@)

4: \=4F ← \̄ (D 9
#−1 . . . D

#−1)

5: until convergence

35

Algorithm 3 Step-wise Expectation-Maximization algorithm
1: 8 ← 0

2: repeat

3: for all @ ∈ 0, . . . , # − 1 do

4: D
9

8
← (1 − [8)* 9

8−1 + [8W@ 9D(B@)

5: if (8 + 1) mod < = 0 then

6: \=4F ← \̄ (D 9
#−1 . . . D

#−1)

7: end if

8: 8 ← 8 + 1

9: end for

10: until convergence

The method works as follows: Similar to the photon map based method, in a learning

phase we trace paths from light sources and also from the camera, and record vertices,

incoming directions and radiance values in :-d trees. Then, in rendering phase while

tracing paths, we look for nearby caches at points G2 in the neighborhood of the current

path vertex G2 ∈ B(G8). If there exist none, we build a GMM cache at that vertex G8 by

gathering nearby data stored in :-d trees, and using the aforementioned modified step-

wise EM algorithm. If there exist caches in the neighborhood of the current vertex, we

interpolate parameters of GMMs in these caches, and sample a new direction using this

GMM with interpolated parameters.

Caches that use data from light paths are called photon caches and from camera paths

are called importon caches. Intiuitively, photon caches guide paths closer to light sources

and importon caches guide paths visually important regions of the scene, i.e. the regions

in direct view of the camera. These caches are respectively stored in separate :-d trees.

Recording both photons and importons allows us to combine this method with bi-

directional light transport algorithms such as BDPT which we introduced in §2.4.1.

Extending the method to guide paths in a bi-directional light transport setting is fairly

straightforward: Light paths are guided by sampling appropriate importon caches, and eye

paths are guided, as in standard guided path tracing presented above, by sampling photon

caches.

36

As in the histogram based method, the main focus of this method is to approximate the

incident radiance term !8, thus it cannot handle the view-dependent domain properly and

it offers no improvement over the histogram based method in this matter. GMMs are better

suited to model smooth functions. As the scene geometry may change abruptly, trained

GMMs may not be sharp enough to guide paths correctly, whereas piecewise functions

may be better suited.

2.5.3 Path Guiding through Reinforcement Learning

The method proposed by [2] is in a similar vein to GMM based method, with the main

exception that it uses Q-learning [30], a tabular reinforcement learning method, to guide

paths. Reinforcement learning is a class of machine learning techniques, initially influ-

enced by ideas from psychology of animal learning [22]. The basic idea is this: By

interacting with a given environment, an agent learns to take the actions that, based upon

the feedbacks taken from the environment, benefits her the most in the end. Put formally,

let S be the set of states that an agent can be in and letA be the set of actions that an agent

can take in an environment with a reward function ' : S × A → R. At time C the agent

at a state BC ∈ S takes an action 0C ∈ A, arrives at a new state BC ∈ S and gets a reward

value '(BC , 0C). The objective of the agent then is to learn to take the actions 0C at states

BC , such that the cumulative reward is maximized.

Q-learning, the reinforcement learning technique employed in this paper is formulated

by the following recursive equation:

&(B, 0) = (1 − U)&(B, 0) + U
(
'(B, 0) + Wmax

0′∈A
&(B′, 0′)

)
. (2.24)

As our main purpose is to guide paths by sampling a direction l from a path vertex

G, an environment of light transport simulation can be trivially described in the context of

reinforcement learning:

S =M,

A = (2,

' = !8

37

Where the set of states corresponds to the set of surface points, set of actions corresponds

to the set of directions defined by hemisphere. Indeed, this maps quite naturally to the

essence of reinforcement learning. We can now describe the light transport in terms of

reinforcement learning: At each state G8 ∈ M, take an action l ∈ (2 and arrive at a new

state G8+1 and get the reward !8.

However, there is a pressing issuewith this direct application of reinforcement learning,

as in light transport we do not seek to construct a path that carries the highest energy, but

want to sample the paths proportional to a term in the integrand, or ideally proportional

to the whole integrand. To remedy this, the authors stress that Eq. 2.24 can be modified

to update the Q-function. Instead of the maximum & value of actions, it can be updated

with the value computed by averaging & values with a kernel c

&(B, 0) = (1 − U)&(B, 0) + U
(
'(B, 0) + W

∑
0′∈A

c(B′, 0′)&(B′, 0′)
)

(2.25)

which can be rewritten as

&(B, 0) = (1 − U)&(B, 0) + U
(
'(B, 0) + W

∫
A
c(B′, 0′)&(B′, 0′)30′

)
(2.26)

if the domain is continuous, as in the case of light transport.

Now, observe that the second term in the left hand side of Eq. 2.26 looks interchange-

able with the right hand side of the rendering equation. After substituting, the new Q

function compatible with light transport thus becomes

&(x, l) = (1 − U)&(G, l) + U
(
!4 + W

∫
H2

5B&(x′,−l)3l′
)

(2.27)

where in essence, it approximates the incident radiance !8. A PDF derived from this

function then can be used to generate samples proportional to !8, guiding the paths to light

sources.

In practice, the authors discretize this function by approximating the state and action

spaces with finite sets. They discretize the state space with a fixed grid. Furthermore for

each cell inside that grid they discretize the action space likewise with finite number of

strata. Consequently, theQ-function becomes theQ-table so that in&(x, l), x corresponds

to a cell of the grid and l to a stratum.

38

As the data structure used to discretize the Q-function is not adaptive, it may not

approximate the Q-function well, especially in more complex scenes where more refined

data structures are needed, which guarantees a high memory consumption. This easily

becomes the main drawback of this method.

2.5.4 Tree-based Path Guiding

The use of tree data structures is a recurring theme in path guiding methods. Tree

based data structures are generally used to partition the spatial dimensions of training

data. Usually the statistical models such as histograms or GMMs are used to learn the

directional distributions as mentioned in previous sections. In this section we cover two

methods, out of which the second one is influenced by the first, that use trees both for

partitioning of the spatial dimensions and to learn directional distributions.

2.5.4.1 5D-tree

One of the very first algorithms to build a tree data structure that encodes data for adaptive

importance sampling is presented in [10]. They approximate the incident radiance !8

by recording the incident radiance at each path vertex in a 5D tree which partitions the

spatio-directional domain of the radiance field. This is analogous for instance to the octree

which is used to partition the 3D space, where each node is partitioned to 23 child nodes

with equal volumes. The 5D tree then has a branching factor of 25. The incident radiance

!8 from directionl at path vertex x is accumulated in the nodes that contain (x, l). Nodes

in this tree are partitioned when the number of radiance values accumulated in that node

is above a threshold. When tracing paths this tree is then used to derive at each path

vertex x a piecewise constant PDF approximately proportional to !8. And from that PDF,

a new direction l is sampled to continue tracing the path. As a result, similar to the

previously presented guiding methods, paths are guided to regions of the scene with more

illumination.

Because of the high branching factor this method tends to use too much memory and

traversing the tree to construct piecewise-constant PDFs is relatively inefficient. The next

method aims to solve these problems with a better designed tree-based data structure.

39

2.5.4.2 Practical Path Guiding

The data structure called SD-tree (spatio-directional tree) proposed by Müller et al. [18]

approximates !8 more efficiently. Instead of partitioning the whole 5D spatio-directional

domain with a single tree, the spatial and directional domains are partitioned with different

trees with low branching factors. Specifically, the 3D spatial domain is partitioned with

a binary tree, where at each level, the nodes are split according to a partition axis, which

cycles through the principal axes G, H or I. Each leaf node of this binary tree holds a

quadtree, which partitions the 2D directional domain. The resulting tree effectively covers

the 5D domain of the radiance field, while lowering the branching factor substantially.

Two trees are used while rendering. T :sampling is used for sampling, T :building is used to

record new data. Let T (G) denote the quadtree connected to the spatial binary tree leaf

node containing the point G, and T (x, l) the leaf node of that quadtree containing the

direction l. At each path vertex x; , a direction l is sampled from the piecewise-constant

PDF derived from T :sampling(x;). After a full path with nonzero contribution is traced, for

each vertex G8 of the path, incident radiance from l is accumulated into the quadtree leaf

node T :building(x; , l) and the nodes accessed during the traversal to reach that leaf node. A

pseudocode of this method is given in Algorithm 4.

The method works in iterations with exponentially increasing samples per pixels.

Specifically, in iteration : , 2: paths are traced per pixel. Prior to each iteration : , the new

sampling tree T :sampling is constructed from T
:−1

building. First, quadtrees are refined in parallel.

If the accumulated energy ! in a leaf node of the quadtree is above a predetermined

threshold, then that node is split into four child nodes with equal energy adding up to !.

This process continues until the energies stored in new leaf nodes are below the threshold.

Then, the binary tree is refined. Refinement condition is based on the number of samples

recorded in quadtrees. If the number of samples recorded in a quadtree is more than a

predetermined threshold, then the binary tree leaf node containing that quadtree is split

according to the partition axis of that level, and the quadtree is copied to the new leaf

node.

Notable drawbacks of this method are (1) as in other path guiding methods, it only

approximates !8, and (2) the algorithm works incrementally: In each iteration : , rendering

40

starts from scratch and the samples from previous iterations are wasted. Also, during the

iteration, T :sampling is kept constant and not updated until the end of the iteration.

Algorithm 4 Path Tracing with Practical Path Guiding
1: for all : ∈ {1, . . . , } do

2: (T :sampling,T
:

building) ← RebuildSDTree(T :−1
building)

3: for all 9 ∈ {1, . . . , �} do

4: for all = ∈ {1, . . . , 2: } do

5: p← SamplePointInsidePixel(9)

6: x′← TraceRay((x, l8))

7: < ← 0

8: vertices← []

9: while (!4 (x′→ x) = 0) ∧ (< < ") do

10: x← x′

11: l> ← −l8
12: l8 ∼ (T :sampling

13: f← f × 5B (G,l8→l>)×|n(G)·l8 |
?T:sampling

(l8)

14: Append(vertices, (G, l8, f))

15: x′← TraceRay((x, l8))

16: < ← < + 1

17: end while

18: ! 9 ← ! 9 + !4 (x′→ x) × f

19: if !4 (x′→ x) > 0 then

20: Record(T :building, !4 (x
′→ x), vertices)

21: end if

22: end for

23: 〈� 9 〉# ←
! 9
#

24: end for

25: : ← : + 1

26: end for

41

2.5.5 ExtendingPractical PathGuiding forProduct ImportanceSam-

pling

One common shortcoming of previous guiding methods is that in essence they only

approximate the incident radiance !8 and importance sample the PDF derived from that

approximation. Informally this means to sample, at a point in the scene, directions

where most of the light is coming from more frequently. This is perfectly viable where

that point is on a surface with view-independent, Lambertian BSDF. But if that point is

on a surface with view-dependent, glossy BSDF, depending on the view direction, the

direction sampled according only to !8 may cause the BSDF to take a zero value, making

the contribution of the path to be zero. We emphasize this problem and develop a path

guiding method that considers view-dependent BSDFs in addition to the incident radiance

to make product importance sampling possible.

Path guiding methods we have reviewed in previous sections try to get around this

problem typically by employing MIS. While rendering, they sample directions with a

predefined probability U using the PDF proportional to the BSDF, and with probability

1−U using the learned PDF that is approximately proportional to incident radiance. These

two sampling techniques are then combined through MIS.

Previously, only a few attempts have been made to guide paths according to the product

of incident radiance and the BSDF. Steinhurst and Lastra [21] extend the histogram based

guiding method of Jensen [7], and Herholz et al. [5] extend the GMM based guiding

method of Vorba et al. [27] to enable product importance sampling. Unlike our method,

both of these methods preprocess BSDFs. Guo et al. [3] adaptively partition the primary

sample space with a :-d tree using the energy carried by the paths constructed from

primary sample vectors, and generate primary samples according to this tree. Recently,

the use of generative neural networks to approximate a PDF proportional to the integrand

of LTE is explored in [19].

For our approach, we have considered several design decisions. Specifically, our

method (1) most importantly should handle view-dependent sampling according to !8 × 5B
and therefore should make product importance sampling possible, (2) should not have a

42

significant performance or memory overhead over the previous work in scenes with mainly

diffuse surfaces, and (3) should be easy to implement.

We build our method upon the path guiding method of Müller et al. reviewed in

§2.5.4.2. From now on we will refer to this method as PPG. Our method can be seen as

an extended version of PPG that takes the aforementioned design decisions into account.

Other extensions to PPG have been presented in [17, 28]. These are orthogonal to our

contribution and thus can be used in conjunction with our method.

2.5.5.1 View-dependent SD-tree

To record the light field in the (2 × (2 domain and consequently enable view-dependent

product importance sampling, one may replace the directional quadtree that covers only

the two dimensional spherical domain (2 with a four dimensional tree that is an analogue

of the quadtree. The four dimensional tree naturally has a relatively high branching factor

of O(243) where 3 is the depth of the tree. This increases the memory consumption

substantially and also uses unnecessary memory in the scenes where the majority of the

surface materials are diffuse. A quadtree is enough to capture the spherical domain of

incident radiance on diffuse surfaces, and it learns the light field more robustly in this case,

since in 4D tree, the data are scattered into more branches.

Instead of using a single tree both for view-dependent and view-independent light

transport, we use separate structures for each. We keep the same quadtree structure for

Lambertian surfaces from the previous work. In addition to that, to handle view-dependent

surfaces, we introduce a hierarchical tree. This tree is comprised of an upper quadtree

and lower quadtrees connected to the leaf nodes of the upper quadtree. The upper tree

covers the spherical domain of view directions and lower trees record radiance and used

for sampling directions. Formally, we will refer to the quadtree inherited from PPG as

T1(x), to its leaf nodes as T1(x, l8), to the upper quadtree of our hierarchical tree as T2(x),

to its lower quadtree given a view direction l> as T2(x, l>), and to the leaf node of that

lower quadtree as T2(x, l>, l8).

43

2.5.5.2 Training

The training proceeds in iterations with increasing number of samples as described in

§2.5.4.2. Once a full path with nonzero contribution is traced, for each path vertex x; we

record radiance in the appropriate quadtree depending on the BSDF at x; . If x; is on a

diffuse surface, then the incident radiance is recorded in the respective nodes in quadtree

T :1,building(x;) as in PPG. If x; is on a glossy surface, then the incident radiance is recorded,

depending on the view direction l>, in the quadtree leaf node T :2,building(x; , l>, l8) and in

its parent nodes. This way, depending on the material properties of the scene, our modified

SD-tree does not use too much unnecessary memory where there are no view-dependent

BSDFs.

In PPG, during the refinement phase of SD-tree, each leaf node of the spatial binary

tree is recursively split whenever the number of path vertex data recorded through that

leaf node is above the threshold 2 ·
√

2: . This threshold increases with each iteration : ,

proportional to the number of paths traced per pixel in that iteration, and 2 is chosen to

be 12000 by default. We keep the same threshold for the binary tree and also use it as the

subdivision threshold of our upper quadtree. We set 2 = 4000 for our upper quadtree, and

because of the memory consumption concerns, upper quadtree leaf nodes that are eligible

for refinement are split only once per iteration.

2.5.5.3 Sampling

Sampling is very trivial aswe reuse the same quadtree structure to sample directions. While

tracing a path, at each path vertex x; we sample a new direction l8 through T :1,sampling(x;)

if the BSDF at x; is view-independent as in PPG, and through T :2,sampling(x; , l>) if the

BSDF at x; is view-dependent.

44

3. RESULTS AND DISCUSSION

We implemented our method by modifying the openly available PPG plugin for Mitsuba

renderer [6]. All tests are done using a computer equipped with Intel i7-4700MQ CPU.

We evaluate our method by considering three cases; (1) a scene with many glossy surfaces,

(2) a scene with glossy and diffuse surfaces and (3) a scene with only diffuse surfaces.

Glossy scene. We first evaluate our method against PPG in a scene with many glossy

surfaces and thus with many glossy-to-glossy light transport. In addition to RMSE of

produced images, we also evaluate the ratio of number of sampled paths with nonzero

contribution to total number of sampled paths. This ratio is correlated to variance and thus

an indicator of how noisy the image produced will be. In the glossy scene, most of the

paths are terminated because their BSDF values become zero at some vertex. Furthermore,

we also compare memory usages. We run both our method and PPGwith a budget of 1024

samples per pixel. In both methods, next event estimation is enabled only for the first few

passes (passes 1-5 in tables below, pass 0 omitted). Default parameters are used for PPG

unless stated otherwise. By default, PPG uses U = 0.5 as BSDF sampling probability. We

also make comparisons by setting this probability to a lower value.

Our method clearly shows improvement in nonzero path percentages with the expense

of memory usage in this extreme case (see Table 3.1). Consequently, this is reflected in

the rendered images shown in Fig. 3.1. Difference between our method and PPG becomes

even more apparent when we lower the BSDF sampling probability U to 0.1, as can be seen

in Fig. 3.2 and from per pass statistics in Table 3.2. This is because unlike our method,

PPG only learns the incident radiance and thus has to rely on BSDF sampling more when

the surface is glossy.

45

(a) PPG, 1024 spp (24 minutes), RMSE 0.567

(b) Our, 1024 spp (28 minutes), RMSE 0.504

Figure 3.1: Visual quality comparison of our method and PPG in a scene with many glossy

surfaces. U = 0.5

46

(a) PPG, 1024 spp (16 minutes), RMSE 0.614

(b) Our, 1024 spp (22 minutes), RMSE 0.506

Figure 3.2: Visual quality comparison of our method and PPG in a scene with many glossy

surfaces. U = 0.1

47

Table 3.1: Nonzero path percentage and memory usage statistics of our method and PPG

in a scene with many glossy surfaces. U = 0.5

Nonzero Path % Memory Usage (MB)

Pass # PPG Our PPG Our

1 3.558 3.949 2.195 4.57

2 6.526 9.716 3.912 8.855

3 16.828 22.733 5.307 13.522

4 21.71 27.473 6.549 27.04

5 25.029 32.196 10.053 45.964

6 0.14 0.203 14.727 76.725

7 0.275 0.536 36.592 228.602

Table 3.2: Nonzero path percentage and memory usage statistics of our method and PPG

in a scene with many glossy surfaces. U = 0.1

Nonzero Path % Memory Usage (MB)

Pass # PPG Our PPG Our

1 1.264 1.804 2.195 4.57

2 3.255 7.887 3.352 7.122

3 10.351 21.1 3.834 10.342

4 14.021 29.406 4.923 17.628

5 20.956 36.266 5.325 32.625

6 0.089 0.33 8.578 55.911

7 0.285 1.126 20.836 156.522

Mixed scene. In this case we repeat the previous experiment on a scene with many

large diffuse surfaces and some relatively smaller glossy surfaces. As can be seen in Fig.

3.3 and Table 3.3, our method did not bring any improvement over PPG, albeit consuming

48

more memory.

(a) PPG, 1024 spp, RMSE 0.0336

(b) Our, 1024 spp, RMSE 0.0334

Figure 3.3: Visual quality comparison of our method and PPG in a scene with relatively

lesser number of glossy surfaces. U = 0.5

49

Table 3.3: Nonzero path percentage and memory usage statistics of our method and PPG

in a scene with relatively lesser number of glossy surfaces. U = 0.5

Nonzero Path % Memory Usage (MB)

Pass # PPG Our PPG Our

1 41.862 42.078 2.195 9.141

2 64.731 66.128 3.781 14.069

3 68.362 69.468 6.13 19.259

4 72.291 73.279 8.99 21.997

5 73.968 74.457 11.879 30.287

6 49.216 49.693 17.22 42.83

7 51.489 51.991 34.03 84.168

Diffuse scene. Finally we test our method in a scene that has only diffuse surfaces.

The main purpose of this scenario is to evaluate the memory overhead of our method in a

casewhere it is not designed for and to seewhether it can perform similar to PPG. In theory,

the memory and runtime overhead of our method should be negligible in comparison with

PPG, as the view-dependent tree is not used and no data is recorded in it in this case.

Indeed, as shown in Table 3.4, memory usage of our tree is only slightly higher than the

previous work.

50

Table 3.4: Memory usages of our method and PPG in a diffuse-only scene.

Memory Usage (MB)

Pass # PPG Our

1 1.0976 2.2851

2 2.0265 3.7051

3 3.2196 6.2974

4 5.3281 10.3316

5 8.2614 15.8805

6 11.4196 22.2428

51

4. CONCLUSIONS AND FUTUREWORK

In this work, we presented adaptive rendering techniques, focusing on path guiding meth-

ods. We stressed that most of the path guiding methods do not consider the product

importance sampling of BSDF and incident radiance terms in the integrand of LTE,

approximating only the incident radiance and emulating product importance sampling

through MIS. We attempted to solve this problem with a simple extension to the PPG

method. While our contribution did not solve the problem completely, it gave promising

results in scenes where the majority of light transport happens between glossy surfaces.

As future work, we would like to combine a proper reinforcement learning technique

such as Q-learning with our method, and explore different approaches to make our path

guiding method learn faster and more robustly. Our method also inherits some of the

disadvantages of PPG. The main issue is that it wastes a lot of samples, as it updates the

trees only at the end of each pass, and at the beginning of each pass, starts to render the

image from scratch. The question remains as to how it can be turned into a method that

works continuously without passes.

52

REFERENCES

[1] Robert L. Cook and Kenneth E. Torrance. “A Reflectance Model for Computer

Graphics”. In: 15.3 (Aug. 1981), pp. 307–316. issn: 0097-8930. doi: 10/br5ps6.

[2] Ken Dahm and Alexander Keller. “Learning Light Transport the Reinforced Way”.

In: (Los Angeles, California). 2017, 73:1–73:2. isbn: 978-1-4503-5008-2. doi:

10/gfzsm4.

[3] Jerry Guo et al. “Primary sample space path guiding”. In: Eurographics Symposium

on Rendering. Vol. 2018. The Eurographics Association. 2018, pp. 73–82.

[4] Wilfred K. Hastings. “Monte Carlo Sampling Methods Using Markov Chains and

Their Applications”. In: 57.1 (Apr. 1, 1970), pp. 97–109. issn: 0006-3444. doi:

10/dkbmcf.

[5] Sebastian Herholz et al. “Product Importance Sampling for Light Transport Path

Guiding”. In: (2016). issn: 1467-8659. doi: 10/f842dt.

[6] Wenzel Jakob. Mitsuba Renderer. 2013. url: http://www.mitsuba-renderer.

org.

[7] Henrik Wann Jensen. “Importance Driven Path Tracing Using the Photon Map”.

In: ed. by Patrick M. Hanrahan and Werner Purgathofer. 1995, pp. 326–335. isbn:

978-3-7091-9430-0. doi: 10/gf2hcr.

[8] James T. Kajiya. “The Rendering Equation”. In: 20.4 (Aug. 1986), pp. 143–150.

issn: 0097-8930. doi: 10/cvf53j.

[9] Csaba Kelemen et al. “A Simple and Robust Mutation Strategy for the Metropolis

Light Transport Algorithm”. In: 21.3 (Sept. 1, 2002), pp. 531–540. issn: 0167-7055.

doi: 10/bfrsqn.

[10] Eric P. Lafortune andYvesD.Willems. “A 5DTree to Reduce theVariance ofMonte

Carlo Ray Tracing”. In: ed. by Patrick M. Hanrahan and Werner Purgathofer. NY,

June 1995, pp. 11–20. isbn: 978-3-7091-9430-0. doi: 10/gfz5ns.

53

https://doi.org/10/br5ps6
https://doi.org/10/gfzsm4
https://doi.org/10/dkbmcf
https://doi.org/10/f842dt
http://www.mitsuba-renderer.org
http://www.mitsuba-renderer.org
https://doi.org/10/gf2hcr
https://doi.org/10/cvf53j
https://doi.org/10/bfrsqn
https://doi.org/10/gfz5ns

[11] Eric P. Lafortune and Yves D. Willems. “Bi-Directional Path Tracing”. In: (Alvor,

Portugal). Vol. 93. Alvor, Portugal, Dec. 1993, pp. 145–153.

[12] Tzu-Mao Li et al. “Anisotropic Gaussian Mutations for Metropolis Light Transport

throughHessian-HamiltonianDynamics”. In: 34.6 (Oct. 2015), 209:1–209:13. issn:

0730-0301. doi: 10/f7wrcs.

[13] Percy Liang and Dan Klein. “Online EM for unsupervised models”. In: Proceed-

ings of human language technologies: The 2009 annual conference of the North

American chapter of the association for computational linguistics. 2009, pp. 611–

619.

[14] Nicholas Metropolis and Stanisław M. Ulam. “The Monte Carlo Method”. In:

44.247 (Sept. 1, 1949), pp. 335–341. issn: 01621459. doi: 10/dvn2n8.

[15] Nicholas Metropolis et al. “Equation of State Calculations by Fast Computing

Machines”. In: 21.6 (June 1, 1953), pp. 1087–1092. issn: 0021-9606. doi: 10/

ds736f.

[16] Todd K Moon. “The expectation-maximization algorithm”. In: IEEE Signal pro-

cessing magazine 13.6 (1996), pp. 47–60.

[17] Thomas Müller. ““Practical Path Guiding” in Production”. In: ACM SIGGRAPH

Courses: Path Guiding in Production, Chapter 10. Los Angeles, California: ACM,

2019, 18:35–18:48. doi: 10.1145/3305366.3328091.

[18] ThomasMüller,Markus Gross, and Jan Novák. “Practical Path Guiding for Efficient

Light-Transport Simulation”. In: 36.4 (June 2017), pp. 91–100. doi: 10/gbnvrs.

[19] Thomas Müller et al. “Neural Importance Sampling”. In: (Aug. 11, 2018). arXiv:

1808.03856 [cs, stat].

[20] Christophe Schlick. “An inexpensive BRDFmodel for physically-based rendering”.

In: Computer graphics forum. Vol. 13. 3. Wiley Online Library. 1994, pp. 233–246.

[21] Joshua Steinhurst and Anselmo Lastra. “Global importance sampling of glossy

surfaces using the photon map”. In: 2006 IEEE Symposium on Interactive Ray

Tracing. IEEE. 2006, pp. 133–138.

54

https://doi.org/10/f7wrcs
https://doi.org/10/dvn2n8
https://doi.org/10/ds736f
https://doi.org/10/ds736f
https://doi.org/10.1145/3305366.3328091
https://doi.org/10/gbnvrs
https://arxiv.org/abs/1808.03856

[22] Richard S Sutton and Andrew G Barto. “Reinforcement learning: an introduction

MIT Press”. In: Cambridge, MA (1998).

[23] Eric Veach. “Robust Monte Carlo Methods for Light Transport Simulation”. Ph.D.

Thesis. Stanford University, Dec. 1997.

[24] Eric Veach and Leonidas J. Guibas. “Bidirectional Estimators for Light Transport”.

In: 1995, pp. 145–167. isbn: 978-3-642-87825-1. doi: 10/gfznbh.

[25] Eric Veach and Leonidas J. Guibas. “Metropolis Light Transport”. In: vol. 31. Aug.

1997, pp. 65–76. isbn: 978-0-89791-896-1. doi: 10/bkjqj4.

[26] Eric Veach and Leonidas J. Guibas. “Optimally Combining Sampling Techniques

for Monte Carlo Rendering”. In: vol. 29. Aug. 1995, pp. 419–428. isbn: 978-0-

89791-701-8. doi: 10/d7b6n4.

[27] Jiří Vorba et al. “On-Line Learning of Parametric Mixture Models for Light Trans-

port Simulation”. In: 33.4 (Aug. 2014), 101:1–101:11. issn: 0730-0301. doi: 10/

f6c2cp.

[28] Jiří Vorba et al. “Path Guiding in Production”. In: ACM SIGGRAPH Courses. Los

Angeles, California: ACM, 2019, 18:1–18:77. doi: 10.1145/3305366.3328091.

[29] Bruce Walter et al. “Microfacet Models for Refraction through Rough Surfaces”.

In: (Grenoble, France). June 2007, pp. 195–206. isbn: 978-3-905673-52-4. doi:

10/gfz4kg.

[30] Christopher JCH Watkins and Peter Dayan. “Q-learning”. In: Machine learning

8.3-4 (1992), pp. 279–292.

55

https://doi.org/10/gfznbh
https://doi.org/10/bkjqj4
https://doi.org/10/d7b6n4
https://doi.org/10/f6c2cp
https://doi.org/10/f6c2cp
https://doi.org/10.1145/3305366.3328091
https://doi.org/10/gfz4kg

M. Sencer ÇAVUş
PERSONAL DATA
EMAIL: scavus@protonmail.com
GITLAB: https://gitlab.com/scavus

RESEARCH INTERESTS
MAIN INTERESTS: Offline & Real-time Rendering, Machine Learning

OTHER MISC. INTERESTS: Physics-basedAnimation, Differential Geometry& Topology, GeometricMechan-
ics, Category Theory & Functional Programming

EDUCATION
SEPT. 2016 – FEB. 2020 Master of Science in COMPUTER SCIENCE, Marmara University, Istanbul

Thesis: “Adaptive Methods for Photorealistic Image Synthesis”
Researchedmethods that applymachine learning techniques to enablemore robust, adap-
tive sampling of paths in light transport simulation. Based upon a previously published
tree-based path guiding method, developed a simple extension that improves the sam-
pling quality in scenes dominated by glossy surfaces.
Classes taken: MACHINE LEARNING, REINFORCEMENT LEARNING, DIGITAL IMAGE PROCESSING,
COMPUTER VISION, PATTERN RECOGNITION, PARALLEL PROCESSING, EVOLUTIONARY COMPUTING
GPA: 3.93/4.0

SEPT. 2011 – OCT. 2015 Bachelor of Science in COMPUTER SCIENCE,Marmara University, Istanbul
Final year project: “A GPU-Accelerated Physically Based Renderer”
Developed a GPU-based uni-directional path tracer (UDPT) to learn; (1) the theoretical
foundations and implementation details of physically based rendering and (2) GPU pro-
gramming by writing code optimized for it. Specifically, implemented a naïve version of
UDPT for the GPU and a GPU-optimized version of it, namely wavefront path tracing,
and compared their performances.
Link to Code: https://gitlab.com/scavus/Wisard
GPA: 2.75/4.0

WORK EXPERIENCE
SUMMER 2013 Intern at SIGMARD, Istanbul

Developed and documented introductory tutorials for depth sensors utilizing OpenNI
and Kinect SDK.
C++, OpenGL, OpenNI, Kinect

TECHNICAL SKILLS
PROGRAMMING LANGUAGES: Proficient in C, C++98, PYTHON, JULIA

Familiarity with HASKELL, F#, OCAML, RUST
FRAMEWORKS & APIS: OPENGL 3.3, DIRECT3D 11, VULKAN, CUDA, OPENCL, MPI
OPERATING SYSTEMS: LINUX, WINDOWS

LANGUAGES
ENGLISH: C1
GERMAN: B1 (Deutsches Sprachdiplom der Kultusministerkonferenz (DSD I) – 2010)
TURKISH: Native

	ÖZET
	ABSTRACT
	ABBREVIATIONS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	MATERIAL AND METHOD
	Elements of Light Transport Theory
	Radiometry
	Radiant Flux
	Irradiance E
	Radiance L

	The Light Transport Equation
	Emitted Radiance Le
	Bidirectional Scattering Distribution Function (BSDF) fs
	Geometry Term G

	Estimating the Light Transport Equation
	Monte Carlo Integration
	Light Tracing
	Path Tracing
	Next Event Estimation

	Improved Sampling for Monte Carlo Integration and Variance Reduction
	Importance Sampling
	Path Tracing with Importance Sampling

	Multiple Importance Sampling
	Next Event Estimation with MIS

	Improved Estimators
	Bidirectional Path Tracing
	Metropolis Light Transport
	Metropolis Sampling
	Primary Sample Space Metropolis Light Transport
	Anisotropic Proposals through Hamiltonian Monte Carlo

	An Adaptive Approach to Sampling: Guided Path Tracing
	Histogram Based Path Guiding
	Gaussian Mixture Model Based Path Guiding
	Path Guiding through Reinforcement Learning
	Tree-based Path Guiding
	5D-tree
	Practical Path Guiding

	Extending Practical Path Guiding for Product Importance Sampling
	View-dependent SD-tree
	Training
	Sampling

	RESULTS AND DISCUSSION
	CONCLUSIONS AND FUTURE WORK
	REFERENCES

