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ÖZET 

 

Bu yüksek lisans tezi, dört ana bölümden oluşmaktadır. İlk bölümde, tezin konusu ile 

ilgili tarihsel bir perspektif sunulmuştur. İkinci bölümde ise ilerleyen bölümlerde bize 

yardımcı olacak temel tanımlar, teoremler ve örnekler yer almaktadır. 

 

Üçüncü bölümde, ilk olarak kompleks geometri çerçevesinde, hemen hemen Hermityen 

manifoldlardan Riemann manifoldlarına tanımlanacak noktasal yarı-eğik Riemann 

dönüşümünün tanımı yapılmış ve bu dönüşümün varlığına ilişkin örnekler sunulmuştur. 

Ardından, hemen hemen Hermityen manifoldlardan Riemann manifoldlarına tanımlanan 

noktasal yarı- eğik Riemann dönüşümlerin aracılığı ile kaynak ve hedef manifoldların 

geometrisi ele alınmıştır. Ayrıca,  noktasal Riemann dönüşümleri ile tanımlanan 

distribüsyonlar için ayrışım teoremleri sunulmuştur. Bölümün devamında, kompleks uzay 

formlarından Riemann manifoldlarına tanımlanan noktasal yarı-eğimli Riemann 

dönüşümleri için Chen-Ricci eşitsizliklerini içinde barındıran eğrilik ilişkileri ele 

alınmıştır. 

 

Son bölümde, kompleks geometri çerçevesinde, Riemann manifoldlarından hemen hemen 

Hermityen manifoldlara tanımlanan noktasal yarı-eğik Riemann dönüşümleri ele alınmış 

ve bu dönüşümlerle ilgili örnekler sunulmuştur. Ardından, bu dönüşümlerin varlık şartları 

incelenmiş ve dönüşümlerin tamamen jeodezikliği ve harmonik olup olmadığı 

araştırılmıştır. Ayrıca, noktasal yarı-eğik Riemann dönüşümlerin tamamen jeodezik 

olabilmesi için gereken önemli şartlar belirtilmiştir. Bölümün devamında, Riemann 

manifoldlarından kompleks uzay formlarına tanımlanan noktasal yarı-eğik Riemann 

dönüşümleri için Casorati eşitsizliklerini içinde barındıran eğrilik ilişkileri ele alınmıştır. 

 

 

Anahtar Kelimeler: Manifold, Riemann Dönüşümler, Noktasal Yarı-Eğik Riemann 

Dönüşümler, Hemen Hemen Hermityen Manifold, Eğik Fonksiyon, Noktasal Yarı-Eğik 

Fonksiyon, Distribüsyon. 
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ON POINTWISE SEMİ-SLANT RIEMANNIAN MAPS 

 

 

 

ABSTRACT 

 

The master's thesis being worked on consists of four main chapters. In the first chapter, a 

historical perspective related to the subject of the thesis is presented. In the second 

chapter, fundamental definitions, theorems, and examples are provided, which will be 

helpful in the following chapters. 

 

In the third section, the definition of the pointwise semi-slant Riemannian transformation, 

which is mapped from almost Hermitian manifolds to Riemannian manifolds within the 

framework of complex geometry, is first introduced, accompanied by examples 

demonstrating the existence of such transformations. Subsequently, the geometry of 

source and target manifolds is examined through pointwise semi-slant Riemannian 

transformations defined from almost Hermitian manifolds to Riemannian manifolds. 

Additionally, decomposition theorems are presented for distributions defined by 

pointwise Riemannian transformations. Later in the section, curvature relations involving 

Chen-Ricci inequalities are explored for pointwise semi-slant Riemannian 

transformations defined from complex space forms to Riemannian manifolds. 

 

In the fourth section, pointwise semi-slant Riemannian transformations defined from 

Riemannian manifolds to almost Hermitian manifolds within the framework of complex 

geometry are discussed, and examples related to these transformations are provided. 

Subsequently, the existence conditions of these transformations are examined, and their 

total geodesicity and harmonicity are investigated. Furthermore, key conditions required 

for pointwise semi-slant Riemannian transformations to be totally geodesic are specified. 

Later in the section, curvature relations involving Casorati inequalities are explored for 

pointwise semi-slant Riemannian transformations defined from Riemannian manifolds to 

complex space forms. 

 

 

Keywords: Manifold, Riemannian Maps, Pointwise Semi-Slant Riemannian Maps, 

Almost Hermitian Manifolds, Slant Function, Pointwise Semi-Slant Function, 

Distribution.
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1.  GİRİŞ 

 

 

 

Diferansiyel geometri çerçevesinde, Riemann manifoldları (veya yarı-Riemann 

manifoldları) üzerinde tanımlanan temel dönüşümler izometrik immersiyonlar (Riemann 

altmanifoldları) ve Riemann submersiyonlarıdır. Bu dönüşümlerin daha genel bir türü ise 

Riemann dönüşümleri olarak adlandırılır. Bu tür dönüşümler, iki manifold arasındaki 

geometrik yapıları karşılaştırmak amacıyla yaygın bir biçimde kullanılmaktadır. 

İzometrik immersiyonlar (Riemann altmanifoldları), Riemann manifoldları, Riemann 

metrikleri ve Jakobiyen matrisleri ile birlikte tanımlanan özel dönüşümlerdir. Bu 

dönüşümler, rank değeri serbest (keyfi) olan dönüşümlerle kıyaslandığında daha spesifik 

dönüşümlerdir. Bu özellik nedeniyle, Fischer, izometrik immersiyonlar ve Riemann 

submersiyonlar kavramlarını da içeren Riemann dönüşümü kavramını tanımlamıştır. Bir 

Riemann dönüşümü, ne izometrik immersiyon ne de Riemann submersiyon koşullarını 

sağlamasa da, kısmi izometri koşulunu yerine getiren bir dönüşümdür. Bu şekilde, iki 

manifold arasındaki en genel izometri tanımlanmış bulunmaktadır. 

 

Altmanifoldların geometrisi açısından, en dikkat çekici altmanifold türlerinden biri 

kompleks manifoldlardır. Bu manifoldların altmanifoldları, tanjant uzayının, manifoldun 

kompleks yapısı altında nasıl davrandığına göre ifade edilir. Bu tür altmanifoldlardan 

bazı örnekler şu şekilde verilebilir: Holomorfik altmanifold (invaryant altmanifold), 

tamamen reel altmanifold ve eğik altmanifoldlardır. Son yıllarda, eğik altmanifoldlar ve 

bu tür altmanifoldların tümünü kapsayan noktasal eğik altmanifoldlar, Chen ve Garay 

(2012) tarafından tanımlanmıştır. Kompleks manifoldların altmanifoldu üzerinde 

tanımlanan bu  bahsi geçen yapıların, Riemann submersiyonlarındaki karşılıkları arasında 

holomorfik submersiyon, anti-invaryant Riemann submersiyon, yarı-invaryant Riemann 

submersiyon ve eğik Riemann submersiyon gibi kavramlar yer almaktadır. Bu 

karşılıklardan holomorfik submersiyon Watson tarafından 1976’da, anti-invariant 

Riemann submersiyon, yarı-invariant Riemann submersiyon ve eğik Riemann 

submersiyon kavramları ise Şahin tarafından 2017’de tanımlanmış olup bu yapıların 

Riemann submersiyonlarındaki karşılıkları değişik uzaylarda birçok araştırmacı 

tarafından incelenmiştir. Diğer yandan, holomorfik altmanifoldlar, tamamen reel 
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altmanifoldlar ve eğik altmanifoldları özel altgruplar olarak içinde barındıran ve herhangi 

bir Riemann manifoldundan hemen hemen Hermityen manifolda tanımlanan invaryant 

Riemann dönüşümleri, anti-invaryant Riemann dönüşümleri ve eğik Riemann 

dönüşümleri Şahin tarafından 2017’de tanımlanmış olup, bu dönüşümlerin özellikle hedef 

manifoldun geometrisini analiz etmede son derece faydalı olduğu gözlemlenmiştir.Bu 

dönüşümler aynı zamanda harmonik morfizmler teorisinde de yeni sonuçlar elde 

edilmesinde önemli bir rol oynamaktadır. Ayrıca, holomorfik submersiyonlar, anti-

invaryant submersiyonlar ve eğik submersiyonları özel sınıflar olarak kapsayan ve hemen 

hemen Hermityen bir manifolddan Riemann manifolduna tanımlanan holomorfik 

Riemann dönüşümleri, anti-invaryant Riemann dönüşümleri ve eğik Riemann 

dönüşümleri üzerine de çeşitli çalışmalar yapılmıştır. 

 

Bu çalışmada, altmanifoldlar, Riemann submersiyonları ve Riemann dönüşüm 

kavramlarını özel sınıflar olarak kapsayan noktasal yarı-eğik Riemann dönüşümü 

tanımlanacaktır. Bu dönüşüm aracılığıyla, kaynak ve hedef manifoldlarının geometrisi 

detaylı bir şekilde incelenecek ve iki manifold arasındaki geometrik yapılar 

incelenecektir. 

 

Bu yüksek lisans tezindeki temel amacımız, öncelikle kompleks geometri açısından 

önemli bir yer tutan hemen hemen Hermityen manifoldlardan Riemann manifoldlarına ve 

Riemann manifoldlarından hemen hemen Hermityen manifoldlara tanımlanan noktasal 

yarı-eğik Riemann dönüşümlerinin tanımlarını ele alarak, bu dönüşümlerden elde edilen 

distribüsyonların geometrisini incelemek ve bu dönüşümlerle ilgili örnekler sunmaktır. 

Ardından, kaynak manifold, hedef manifold ve liflerin geometrilerini detaylı bir şekilde 

analiz etmek, ayrıcakompleks uzay formlarından Riemann manifoldlarına ve Riemann 

manifoldlarından kompleks uzay formlarına tanımlanan noktasal yarı-eğik Riemann 

dönüşümleri için Chen-Ricci ve Casorati eşitsizliklerini içinde barındıran eğrilik 

ilişkilerini ele almaktır. 
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2. TEMEL KAVRAMLAR 
 

 

 

2.1. Riemann Manifoldlar 

 

Tanım 2.1.1. 𝒩 bir diferansiyellenebilir manifold ve 𝒳(𝒩)’ de 𝒩 manifoldu üzerindeki 

diferansiyellenebilir vektör alanlarının kümesi olsun. ∀𝑋, 𝑌, 𝑍 ∈ 𝒳(𝒩) ve 𝑐, 𝑑 ∈ ℝ için, 

𝑔𝒩:𝒳(𝒩) × 𝒳(𝒩) → ℂ
∞(𝒩,ℝ) 

dır. Ve 

i. 𝑔𝒩(𝑋, 𝑌) = 𝑔𝒩(𝑌, 𝑋)(simetrik) 

ii. 𝑔𝒩(𝑋, 𝑋) ≥ 0, ∀ 𝑋 ∈ 𝒳(𝒩) için 𝑔𝒩(𝑋, 𝑋) = 0 ⟺ 𝑋 = 0, (pozitif tanımlılık) 

iii. Bilineer; 

 

𝑔𝒩(𝑐𝑋 + 𝑑𝑌, 𝑍) = 𝑐𝑔𝒩(𝑋, 𝑍) + 𝑑𝑔𝒩(𝑌, 𝑍) 

ve 

𝑔𝒩(𝑋, 𝑐𝑌 + 𝑑𝑍) = 𝑐𝑔𝒩(𝑋, 𝑌) + 𝑑𝑔𝒩(𝑋, 𝑍) 

 

koşullarını sağlayan 𝑔𝒩 dönüşümü Riemann metriği (veya metrik tensör) ve (𝒩, 𝑔𝒩) 

ikilisi ise Rieamann manifoldu olarak adlandırılır (Gudmundsson, 2006). 

 

Tanım 2.1.2. 𝒩 Riemann manifoldunun metrik tensörü  𝑔𝒩 olsun. Bir 𝑋p ∈ 𝑇p𝒩 tanjant 

vektörünün uzunluğu (boyu), 

 

   ‖𝑋p‖ = √𝑔𝒩(𝑋p, 𝑋p)                                               (2.1) 

 

eşitliği ile hesaplanmaktadır (Gundmundson, 2006). 

 

Tanım 2.1.3. 𝒩 Riemann manifoldunun metrik tensörü 𝑔𝒩 olsun. Sıfırdan farklı 

𝑋p, 𝑌p ∈ 𝑇p𝒩 tanjant vektörleri arasındaki 𝜃 açısı, 

 

𝑔𝒩(𝑋p, 𝑌p) = ‖𝑋p‖‖𝑌p‖ cos 𝜃                                           (2.2) 



4 
 

 

 

eşitliği şeklinde yazılır. Mevcut 𝜃 açısı [0, 𝜋] kapalı aralığındadır (Hacısalihoğlu, 2003). 

 

Tanım 2.1.4. 𝜇, bir ℳ  manifoldundan bir  𝒩 manifolduna tanımlanan 

diferansiyellenebilir 𝜇:ℳ → 𝒩 bir dönüşüm olsun. 𝑋 ∈ 𝑇pℳ için, ℳ de seçilen 𝛼(𝘵) 

eğrisine 𝛼(𝘵0) = p noktasında  𝑋 vektörü teğet olsun. Bu durumda 𝜇(p) = 𝜇(𝛼(𝘵0)) 

noktasında 𝜑 = 𝜇(𝛼(𝘵)) eğrisine teğet olacak biçimde 𝜇∗ (𝑋(𝛼(𝘵))) vektörünü karşılık 

getiren dönüşüme 𝜇 dönüşümünün türev dönüşümü denir ve 𝜇∗: 𝑇𝑋ℳ → 𝑇𝜇(𝑋)𝒩 

biçimindeifade edilir (Şahin, 2012). 

 

Tanım 2.1.5. (ℳ, 𝑔ℳ), (𝒩, 𝑔𝒩) Riemann manifoldları olsun ve 

 

𝜇: (ℳ, 𝑔ℳ) → (𝒩, 𝑔𝒩) 

 

bir ℂ∞dönüşümü olmak üzere; ∀ s ∈ ℳ ve Us, Vs ∈ 𝑇sℳ  için, 

 

𝑔ℳ(Us, Vs) = 𝑔𝒩(𝜇∗(Us), 𝜇∗(Vs))                                        (2.3) 

 

eşitliği mevcut ise ℳ den 𝒩 ye tanımlanan 𝜇 dönüşümüne bir izometri denir (Baird ve 

Wood, 2003; Gündüzalp, 2007). 

 

Tanım 2.1.6. 𝑋 ve 𝑌, 𝒩 manifoldu üzerinde tanımlı iki vektör alanı kabul edilsin. 

ℂ∞(𝒩,ℝ) kümesinden alınmış bir 𝑓 fonksiyonu olsun. 

 

[ , ]:𝒳(𝒩) × 𝒳(𝒩) → 𝒳(𝒩) 

 

[𝑋, 𝑌]𝑓 = 𝑋(𝑌𝑓) − 𝑌(𝑋𝑓)                                                 (2.4) 

 

biçiminde tanımlanan [ , ] fonksiyonuna 𝑋 ile 𝑌 nin Lie (parantez) operatörü denir. Bu 

operatörde alttaki koşulları sağlar (Carmo, 2003). 
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∀ 𝑋, 𝑌, 𝑍 ∈ 𝒳(𝒩), 𝑓, 𝑓1 ∈ ℂ
∞(𝒩,ℝ) ve 𝑎, b ∈ ℝ olmak üzere; 

 

i. [𝑋, 𝑌] =  −[𝑌, 𝑋] 

 

ii. [𝑎𝑋 + b𝑌, 𝑍] = 𝑎[𝑋, 𝑍] + b[𝑌, 𝑍] 

 

iii. [𝑋, [𝑌, 𝑍]] + [𝑌, [𝑍, 𝑋]] + [𝑍, [𝑋, 𝑌]] = 0, (𝑗𝑎𝑐𝑜𝑏𝑖 ö𝑧𝑑𝑒ş𝑙𝑖ğ𝑖) 

 

iv. [𝑓𝑋, 𝑓1𝑌] =  𝑓[𝑋, 𝑌] + 𝑓(𝑋𝑓1)𝑌 − 𝑓1(𝑌𝑓)𝑋 

dır. 

 

Tanım 2.1.7. 𝒩 bir manifold ve 𝛤(𝑇𝒩) de bu manifold üzerinde tanımlı olan 

diferansiyellenebilir vektör alanlarının kümesi olmak üzere; ∀𝑋, 𝑌, 𝑍 ∈ 𝛤(𝑇𝒩) ve 𝑓 ∈

ℂ∞(𝒩,ℝ) için, 

 

∇: 𝛤(𝑇𝒩) → 𝛤(𝑇𝒩) 

 

ile birlikte tanımlanan ve 

 

i. ∇𝑋+𝑌𝑍 = ∇𝑋𝑍 + ∇𝑌𝑍 

 

ii. ∇𝑋(𝑌 + 𝑍) = ∇𝑋𝑌 + ∇𝑋𝑍 

 

iii. ∇𝑓𝑋𝑌 = 𝑓∇𝑋𝑌 

 

iv. ∇𝑋𝑓𝑌 = 𝑋[𝑓]𝑌 + 𝑓∇𝑋𝑌 

 

koşullarını gerçekleştiren ∇ dönüşümüne 𝒩 üzerinde bir afin konneksiyon (veya lineer 

konneksiyon) olarak adlandırılır ve ∇𝑋 ifadesine de 𝑋 vektör alanına göre kovaryant türev 

denir (Carmo, 2003). 
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Tanım 2.1.8. ℳ bir manifold, ∇ afin konneksiyon ve [ , ] Lie braketi olsun. Bu durumda 

𝑋, 𝑌 ∈ 𝛤(𝑇ℳ) için, 

 

T: 𝛤(𝑇ℳ) × 𝛤(𝑇ℳ) → 𝛤(𝑇ℳ) 

 

(𝑋, 𝑌) → T(𝑋, 𝑌) = ∇𝑋𝑌 − ∇𝑌𝑋 − [𝑋, 𝑌]                                   (2.5) 

 

tensörü torsiyon tensörü olarak tanımlanır (Yano and Kon 1984). 

 

Tanım 2.1.9. 𝒩 bir manifold ve ∀𝑋, 𝑌 ∈ 𝛤(𝑇𝒩) için T(𝑋, 𝑌) = 0 ise ∇ konneksiyonu 

simetrik veya sıfır torsiyonlu (torsiyonsuz) denir (Yano ve Kon, 1984). 

 

Tanım 2.1.10. 𝒩 bir manifold, 𝑔𝒩 simetrik ve non-singüler bilineer form olsun. Eğer ∇ 

konneksiyonu aşağıdaki özellikleri sağlıyorsa bu konneksiyona Riemann konneksiyonu 

veya Levi-Civita konneksiyonu denir (O’Neill, 1983).  

 

i. [𝑋, 𝑌] = ∇𝑋𝑌 − ∇𝑌𝑋 

 

ii. 𝑋𝑔𝒩(𝑌, 𝑍) = 𝑔𝒩(∇𝑋𝑌, 𝑍) + 𝑔𝒩(𝑌, ∇𝑋𝑍)(konneksiyonun metrikle bağdaşabilme 

özelliğidir). 

 

Tanım 2.1.11. 𝒩 üzerinde tanımlı bir Levi-Civita konneksiyonu ∀ 𝑋, 𝑌, 𝑍 ∈ 𝛤(𝑇𝒩) için 

 

2𝑔𝒩(∇𝑋𝑌, 𝑍) = 𝑋𝑔𝒩(𝑌, 𝑍) + 𝑌𝑔𝒩(𝑍, 𝑋) − 𝑍𝑔𝒩(𝑋, 𝑌)  − 𝑔𝒩(𝑋, [𝑌, 𝑍]) 

 

 + 𝑔𝒩(𝑌, [𝑍, 𝑋]) + 𝑔𝒩(𝑍, [𝑋, 𝑌])                                                    (2.6) 

 

eşitliği bulunur. Bu eşitliğe koszul eşitliği denir (O’Neill, 1983). 

 

Teorem 2.1.1. Bir Riemann manifoldu üzerinde bir tek Riemann konneksiyonu 

bulunmaktadır (Chen, 1973; Boothby, 1986). 
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Tanım 2.1.12. (𝒩, 𝑔𝒩) bir Riemann manifoldu ve 𝜑: 𝛪 → 𝒩 bir eğri olsun. 𝑋 ∈ 𝛤(𝑇𝒩) 

vektör alanı için 𝜑̇ = 𝜑∗ (
𝜕

𝜕𝚝
) olmak üzere ∇𝜑̇𝑋 = 0 ise 𝑋 vektör alanına 𝜑 boyunca 

paraleldir denir (Boothby, 1986). 

 

Tanım 2.1.13. (𝒩, 𝑔𝒩) bir Riemann manifold olsun. 𝛽: 𝛪 → 𝒩eğrisinin teğet vektör 

alanı 𝛽 boyunca paralel oluyorsa 𝛽’ya geodezik eğri denir (Boothby, 1986). 

 

2.1.1. Altmanifoldlar 

 

Tanım 2.1.1.1. Eğer 𝛾 immersiyonu birebir (1-1) oluyorsa 𝛾 ya immedding (gömme), ℳ 

ye de 𝒩 nin (gömülen) altmanifoldu denir (Hacısalihoğlu 1982, 2003). 

 

Tanım 2.1.1.2. ℳ𝘮 ve 𝒩𝘯 Riemann manifoldları olsun.  

 

𝛾:ℳ𝘮 → 𝒩𝘯 

 

ℂ∞ dönüşümü için 𝑏𝑜𝑦 (𝛾∗(𝑇pℳ)) = 𝘮 oluyorsa 𝛾 nin p ∈ ℳ noktasındaki rankı 𝘮 

olmak üzere 𝑟𝑎𝑛𝑘(𝛾) = 𝘮 ile ifade edilir. Eğer 𝑏𝑜𝑦(ℳ) = 𝑟𝑎𝑛𝑘(𝛾) oluyorsa 𝛾 

dönüşümü immersiyon (daldırma) olur. Bu durumda ℳ ye de 𝒩 nin immersed 

altmanifoldu denir (Hacısalihoğlu 1982, 2003). 

 

Tanım 2.1.1.3. (ℳ, 𝑔ℳ) ve (𝒩, 𝑔𝒩) sırasıyla 𝘮 ve 𝘯 boyutlu Riemann manifoldları ve  

𝛾:ℳ → 𝒩 bir immersiyon olsun. ∀ 𝑋, 𝑌 ∈ 𝛤(𝑇pℳ) için 

 

𝑔𝒩(𝛾∗𝑋, 𝛾∗𝑌) = 𝑔ℳ(𝑋, 𝑌)                                          (2.1.1) 

 

oluyorsa 𝛾 izometrik immersiyon (metrik koruyan immersiyon) olarak adlandırılır (Chen, 

1973). 

Tanım 2.1.1.4. ℳ ve 𝒩 sırasıyla 𝘮 ve 𝘯 boyutlu Riemann manifoldları olsun. 𝒩 

manifoldunun altmanifoldu ℳ olsun. ∇̃ ve ∇ sırasıyla ℳ ve 𝒩 manifoldlarının Levi-

Civita konneksiyonları olsun. ∀𝑋, 𝑌 ∈ 𝛤(𝑇ℳ) olmak üzere, 
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ℎ:𝒳(ℳ) ×𝒳(ℳ) → 𝒳⟘(ℳ) 

 

    ∇̃𝑋𝑌 = ∇𝑋𝑌 + ℎ(𝑋, 𝑌)                                               (2.1.2) 

 

ile ifade edilen denklem gauss denklemi olarak adlandırılır. Burada ∇𝑋𝑌 ve ℎ(𝑋, 𝑌) 

sırasıyla ∇̃𝑋𝑌 nin teğet ve normal bileşenleri olur. ℎ ye de ℳ nin ikinci temel formu denir 

(Chen, 1973). 

 

Tanım 2.1.1.5.  (2.1.2) denkleminde eğer ℎ = 0 oluyorsa ℳ manifolduna tamamen 

geodezik altmanifold denir (Chen, 1973). 

 

Tanım 2.1.1.6. ℳ ve 𝒩 sırasıyla 𝘮 ve 𝘯 boyutlu Riemann manifoldları olmak üzere,  𝒩 

manifoldunun altmanifoldu ℳolsun. ℳ nin normal birim vektör alanı 𝚅 ve  −𝘈𝚅𝑋  ve  

∇𝑋
⟘𝚅  sırasıyla ∇̃𝑋𝚅 nin teğet ve normal bileşenleri olmak üzere, 

 

𝘈:𝒳⟘(ℳ) × 𝒳(ℳ) → 𝒳(ℳ) 

  

∇̃𝑋𝚅 = −𝘈𝚅𝑋 + ∇𝑋
⟘𝚅                                                    (2.1.3) 

 

biçiminde belirtilen eşitliğe weingarten denklemi denir. Burada 𝘈𝚅 ye, 𝚅 ye bağlı şekil 

operatörü, ∇⟘ konneksiyonuna da ℳ in 𝑇⟘ℳ normal konneksiyonu olarak ifade edilir 

(Şahin, 2012). 

 

İkinci temel form ve şekil operatörü arasında 

 

                    𝑔ℳ(ℎ(𝑋, 𝑌), 𝚅) = 𝑔ℳ(𝑌, 𝘈𝚅𝑋)                                        (2.1.4) 

 

eşitliği vardır. 
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2.1.2. Distribüsyon 

 

Tanım 2.1.2.1. ℳ bir manifold olmak üzere ∀𝓏 ∈ ℳ noktasına 𝑇𝓏ℳ nin bir 𝒟𝓏 alt 

uzayını karşılık getiren dönüşüme distribüsyon denir. 

 

𝒟:ℳ → 𝑇𝓏ℳ 

 

𝓏 → 𝒟𝓏 ⊂ 𝑇𝓏ℳ 

 

∀𝓏 noktasında 𝒟𝓏 geren 𝗋  tane diferansiyellenebilir vektör alanları varsa 𝒟𝓏 

diferansiyellenebilir 𝗋-boyutlu distribüsyon olarak adlandırılmaktadır (Chen, 1973; Şahin, 

2012). 

 

Örnek 2.1.2.1. Her vektör alanı 1-boyutlu distribüsyon tanımlar (Şahin, 2012). 

 

Tanım 2.1.2.2. ℳ bir ℂ∞manifold olmak üzere, ℳ manifoldu üzerinde 𝒟; 𝑟-boyutlu bir 

ℂ∞ distribüsyonu ve ℳ nin altmanifoldu  ℳ̃ olsun. Eğer  ∀x ∈ ℳ̃ noktasında ℳ̃ 

altmanifoldunun tanjant uzayı ile 𝒟𝓍 aynı oluyorsa ℳ̃ manifolduna 𝒟 nin integral 

altmanifoldu denir (Chen, 1973). Özetle, 

 

δ: ℳ̃ → ℳ 

 

bir immedding olmak üzere ∀𝓍 ∈ ℳ için  

 

δ𝓍(𝑇𝓍ℳ̃) = 𝒟𝓍                                                      (2.2.1) 

 

olur. Eğer 𝒟 distribüsyonunun ℳ manifoldunu kapsayan başka bir integral manifoldu 

yoksa ℳ manifolduna 𝒟 nin bir maksimal integral manifoldu (leaf) denir (Chen, 1973). 

 

Tanım 2.1.2.3. ℳ bir ℂ∞ manifold ve ℳ nin altmanifoldu  ℳ̃ olsun. Eğer ∀𝓏 ∈ ℳ̃ için 

𝒟 distribüsyonunun 𝓏 noktasını kapsayan bir maksimal integral manifoldu mevcutsa 𝒟 

distribüsyonuna integrallenebilirdir denir (Gündüzalp, 2007). 



10 
 

 

 

Örnek 2.1.2.2. 1-boyutlu her distribüsyon integrallenebilirdir (Şahin, 2012). 

 

Tanım 2.1.2.4. 𝒟 bir distribüsyon ve 𝑋, 𝑌 ∈ 𝒟 olsun. Eğer [𝑋, 𝑌] ∈ 𝒟 oluyorsa 𝒟 

distribüsyonu involutivedir denir (Şahin, 2012). 

 

Teorem 2.1.2.1. (Frobenius Teoremi) 𝒩 bir ℂ∞ manifold ve 𝒟, 𝒩 üzerinde 𝗋-boyutlu 

bir distribüsyon olsun. Bu durumda her involutive distribüsyonu integrallenebilirdir. 

Üstelik 𝒟 distribüsyonunun 𝑝 ∈ 𝒩 noktasından geçen bir tek maksimal integral 

manifoldu vardır ve 𝑝 noktasını belirten diğer bütün integral manifoldlar bu maksimalin 

bir açık altmanifoldudur (Şahin, 2012). 

 

Tanım 2.1.2.5.  (𝒩, 𝑔𝒩) bir Riemann manifoldu ve (𝒩, 𝑔𝒩) Riemann manifoldu 

üzerindeki lineer konneksiyonuda ∇ olsun. Eğer ∀𝑋 ∈ 𝛤(𝑇𝒩), 𝑌 ∈ 𝛤(𝒟)için  

 

∇𝑋𝑌 ∈ 𝛤(𝒟) 

 

ise 𝒟 disribüsyonu 𝒩 de paraleldir denir (Gündüzalp, 2007). 

 

Tanım 2.1.2.6. (ℳ𝘮, 𝑔ℳ) ve (𝒩𝘯, 𝑔𝒩) Riemann manifoldları ve 𝘯 < 𝑚 olmak üzere 

 

𝜋: (ℳ, 𝑔ℳ) → (𝒩, 𝑔𝒩) 

örten ℂ∞dönüşümü için  

𝑟𝑎𝑛𝑘𝜋∗𝓍 = 𝑏𝑜𝑦𝒩 

 

oluyorsa 𝜋 , 𝓍 ∈ ℳ noktasında bir submersiyon olur. ∀𝓍 ∈ ℳ için 𝜋 bir submersiyon ise 

ℳ üzerindeki 𝜋 dönüşümü submersiyon olarak ifade edilir (Falcitelli, Ianus and Pastore, 

2004; Gündüzalp, 2007). 

 

Tanım 2.1.2.7.  (ℳ𝘮, 𝑔ℳ) ve (𝒩𝘯, 𝑔𝒩) Riemann manifoldları olmak üzere 

 

𝜋: (ℳ, 𝑔ℳ) → (𝒩, 𝑔𝒩) 
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bir ℂ∞dönüşümü olsun. 𝓍 ∈ ℳ için  

 

𝒱𝓍 = 𝒱𝓍(𝜋) = ç𝑒𝑘𝜋∗𝓍 = {𝓍 ∈ 𝑇𝓍ℳ:𝜋∗𝓍(𝑋) = 0} ⊂ 𝑇𝓍ℳ 

ve 

ℋ𝓍 = 𝒱𝓍
⟘ ⊂ 𝑇𝓍ℳ 

 

olarak tanımlayalım. 𝒱𝓍 uzayı 𝜋 dönüşümünün 𝓍 noktasındaki dikey uzayı olarak 

adlandırılır. 𝒱𝓍 dikey uzayının dik tümleyen uzayı olan ℋ𝓍 e de 𝜋 dönüşümünün 𝓍 

noktasındaki yatay uzayı denir (Baird ve Wood, 2003; Gündüzalp, 2007). 

Böylece ℳ Riemann manifoldu  𝓍 ∈ ℳ için 

 

   𝑇𝓍ℳ = 𝒱𝓍 ⨁ ℋ𝓍 = 𝒱𝓍 ⨁ 𝒱𝓍
⊥                                       (2.7) 

 

ortogonal ayrışımı mevcuttur (Gündüzalp, 2007). 

 

Tanım 2.1.2.8.  (ℳ𝘮, 𝑔ℳ) ve (𝒩𝘯, 𝑔𝒩) Riemann manifoldları olmak üzere 

 

𝜋: (ℳ, 𝑔ℳ) → (𝒩, 𝑔𝒩) 

 

bir ℂ∞ dönüşümü olsun. 𝓍 ∈ ℳ noktasına sırasıyla 𝒱𝓍 ve ℋ𝓍 altuzaylarını karşılayan 

 

𝓍 → 𝒱𝓍 

ve 

𝓍 → ℋ𝓍 

 

dönüşümleri ℳ ⧵ ∁𝜋 üzerinde sırasıyla 𝒱 = 𝒱(𝜋)  ve  ℋ = ℋ(𝜋) ile gösterilen 

∁∞disribüsyonlarını tanımlar. 𝒱 = 𝒱(𝜋), 𝜋 nin dikey distribüsyonu veya dikey alt demeti 

olarak adlandırılır, ℋ = ℋ(𝜋) ise yatay distribüsyonu veya yatay alt demeti olarak ifade 

edilir (Baird and Wood, 2003; Gündüzalp, 2007). 
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Tanım 2.1.2.9.  𝒩 manifoldu üzerindeki herhangi bir 𝑋 vektör alanı yatay distribüsyona 

ait ise 𝑋 vektör alanı yatay vektör alanı olarak adlandırılır ve yatay vektör alanlarının 

kümesi  𝒳ℎ(𝒩) ile gösterilir (Şahin, 2012). 

 

Tanım 2.1.2.10.  𝒩 üzerindeki herhangi bir 𝑋 vektör alanı dikey distribüsyona ait 

oluyorsa 𝑋 vektör alanı dikey vektör alanı olarak isimlendirilir ve dikey vektör 

alanlarının kümesi 𝒳𝑣(𝒩) biçiminde ifade edilir (Şahin, 2012). 

          Herhangi bir E ∈ 𝛤(𝑇𝓍𝒩) vektör alanının dikey ve yatay bileşenleri sırasıyla 𝑣E  

ve ℎE ile ifade edilir (Şahin, 2012). 

 

Tanım 2.1.2.11.  (ℳ𝘮, 𝑔ℳ), (𝒩
𝘯, 𝑔𝒩) Riemann manifoldları arasında 

 

𝜋: (ℳ, 𝑔ℳ) → (𝒩, 𝑔𝒩) 

 

∁∞ submersiyonu için  ∀𝗉 ∈ ℳ noktasında 𝜋∗𝗉 türev dönüşümü yatay vektörlerin 

uzunluğunu (boyunu) koruyor ise yani kısaca; U,W ∈ ℋ𝗉, s1 ∈ ℳ için, 

 

𝑔ℳs1
(U,W) = 𝑔𝒩𝜋(s1)

(𝜋∗s1(U), 𝜋∗s1(W))                          (2.8) 

 

ise 𝜋 dönüşümü bir Riemann submersiyon olarak adlandırılır (Falcitelli, Ianus ve Pastore, 

2004; Gündüzalp, 2007). 

 

Tanım 2.1.2.12. (ℳ𝘮, 𝑔ℳ), (𝒩
𝘯, 𝑔𝒩) Riemann manifoldları ve  

 

𝜇: (ℳ, 𝑔ℳ) → (𝒩, 𝑔𝒩) 

 

dönüşümü Riemann submersiyon olsun. Bu durumda (1,2) mertebeli Τ temel tensör alanı  

𝑋, 𝑌 ∈ 𝛤(Τℳ) olmak üzere 

   Τ𝑋𝑌 = ℎ∇𝑣𝑋𝑣𝑌 + 𝑣∇𝑣𝑋ℎ𝑌                                               (2.9) 

 

ile tanımlanır (O’Neill, 1966; Gündüzalp, 2007). 
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Τ temel tensör alanı aşağıdaki nitelikleri taşır. 

 

i. 𝑋, 𝑌, 𝑍 ∈ 𝛤(𝑇ℳ) için Τ𝑋 anti-simetriktir ve lineer operatördür. Başka bir deyişle, 

 

𝑔ℳ(Τ𝑋𝑌, 𝑍) = −𝑔ℳ(Τ𝑋𝑍, 𝑌) dir. 

 

ii. 𝑋 ∈ 𝛤(𝑇ℳ) için Τ𝑋 yatay ve dikey altuzayların rollerini değiştirir. 

 

iii. Τ dikey tensör alanıdır. Yani, 𝑋 ∈ 𝛤(𝑇ℳ) için Τ𝑋 = Τ𝑣𝑋 olur. 

 

iv. Τ dikey tensör alanı simetriktir. Yani, 𝑋, 𝑌 ∈ 𝛤(𝒱) için  

Τ𝑋𝑌 = Τ𝑌𝑋 olur. 

 

Tanım 2.1.2.13. (ℳ𝘮, 𝑔ℳ), (𝒩
𝘯, 𝑔𝒩) Riemann manifoldları ve  

 

𝜇: (ℳ, 𝑔ℳ) → (𝒩, 𝑔𝒩) 

 

dönüşümü Riemann submersiyon olsun. Bu durumda (1,2) mertebeli Α temel tensör alanı 

ve 𝑋, 𝑌 ∈ 𝛤(Τℳ) olmak üzere 

 

    Α𝑋𝑌 = ℎ∇ℎ𝑋𝑣𝑌 + 𝑣∇ℎ𝑋𝑣𝑌                                          (2.10) 

 

ile tanımlanır (O’Neill, 1966; Gündüzalp, 2007). 

 

A temel tensör alanı aşağıdaki nitelikleri taşır. 

 

i. 𝑋, 𝑌, 𝑍 ∈ 𝛤(𝑇ℳ) için Α𝑋  anti-simetriktir ve lineer operatördür. 

 

𝑔ℳ(Α𝑋𝑌, 𝑍) = −𝑔ℳ(Α𝑋𝑍, 𝑌). 

 

ii. 𝑋 ∈ 𝛤(𝑇ℳ) için Α𝑋 yatay ve dikey altuzayların rollerini değiştirir. 

 

iii. Α yatay tensör alanıdır. Başka bir ifadeyle, 𝑋 ∈ 𝛤(𝑇ℳ) için  Α𝑋 = Αℎ𝑋 olur. 
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iv. Α yatay tensör alanı alterneleyendir. Yani, 𝑋, 𝑌 ∈ 𝛤(ℋ) için Α𝑋𝑌 = −Α𝑌𝑋 olur. 

 

 

Lemma 2.1.2.1. (ℳ𝘮, 𝑔ℳ), (𝒩
𝘯, 𝑔𝒩) Riemann manifoldları arasında tanımlanan  

 

𝜇: (ℳ, 𝑔ℳ) → (𝒩, 𝑔𝒩) 

 

dönüşümü bir Riemann submersiyon olmak üzere 𝑋, 𝑌 ∈ 𝒳ℎ(ℳ) ve V,𝖶 ∈ 𝒳𝑣(ℳ) için 

 

∇V𝖶 = ΤV𝖶+ 𝛻̂V𝖶,                                                  (2.11) 

 

 ∇V𝑋 = ℎ∇V𝑋 + ΤV𝑋,                                                  (2.12) 

 

 ∇𝑋V = Α𝑋V + 𝑣∇𝑋V,                                                  (2.13) 

 

 ∇𝑋𝑌 = ℎ∇𝑋𝑌 + Α𝑋𝑌                                                   (2.14) 

 

dır (Gündüzalp, 2007). 

 

Tanım 2.1.2.14. (ℳ𝘮, 𝑔ℳ), (𝒩
𝘯, 𝑔𝒩) Riemann manifoldları ve 

 

𝜇: (ℳ, 𝑔ℳ) → (𝒩, 𝑔𝒩) 

 

dönüşümü bir Riemann submersiyon olsun. Eğer tensör alanı Τ sıfır oluyorsa 𝜇 

dönüşümünün herhangi bir 𝜇−1(𝓍) lifine ℳ manifoldunun tamamen jeodezik 

altmanifoldu denir (Falcitelli, Ianus and Pastore, 2004; Gündüzalp, 2007). 

 

Tanım 2.1.2.15.  𝜇, ℳ manifoldundan  𝒩 manifolduna tanımlı bir dönüşüm olsun. 𝒩 

manifoldu üzerindeki bir konneksiyon ∇̆ olsun.  𝜇 boyunca 𝒩 manifoldu üzerindeki ∇̆ 

konneksiyonuna 𝜇 boyunca ∇̆ konneksiyonunun geri çekme (pullback) konneksiyonu adı 

verilir (Garcia-Rio and Kupeli, 1999) 
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Tanım 2.1.2.16.  (ℳ𝘮, 𝑔ℳ), (𝒩
𝘯, 𝑔𝒩) Riemann manifoldları ve 

 

𝜇: (ℳ, 𝑔ℳ) → (𝒩, 𝑔𝒩) 

bir dönüşüm olsun. ∇̃ konneksiyonunun 𝜇 boyunca geri çekme konneksiyonu ∇̃𝜇 olmak 

üzere, ∀ 𝑋, 𝑌 ∈ 𝛤(𝑇ℳ) için 

 

∇𝜇∗: 𝛤(𝑇ℳ) × 𝛤(𝑇ℳ) → 𝛤𝜇(𝑇𝒩) 

 

(∇𝜇∗)(𝑋, 𝑌) = ∇̃ 𝑋
 𝜇
𝜇∗(𝑌) − 𝜇∗(∇𝑋

ℳ𝑌)                                    (2.15) 

 

ile gösterilen ∇𝜇∗ dönüşümüne 𝜇 dönüşümünün ikinci temel formu adı verilir (Garcia-Rio 

and Kupeli, 1999; Şahin, 2012) 

 

Önerme 2.1.2.1. 𝜇: (ℳ, 𝑔ℳ) → (𝒩, 𝑔𝒩) bir dönüşüm olsun. 𝑋, 𝑌 ∈ 𝛤(𝑇ℳ) için, 

 

(∇𝜇∗)(𝑋, 𝑌) = (∇𝜇∗)(𝑌, 𝑋) 

 

dır. Yani, ikinci temel form simetriktir (Fischer, 1992; Şahin, 2012). 

 

Tanım 2.1.2.17.  𝜇: (ℳ𝘮, 𝑔ℳ) → (𝒩
𝘯, 𝑔𝒩) bir dönüşüm olsun. {𝑒1, 𝑒2, . . . , 𝑒𝑚}, 𝛤(𝑇ℳ) 

için bir ortonormal yerel çatısı olsun. 𝜇 dönüşümünün tensiyon alanı τ(𝜇), ∇𝜇∗ ikinci 

temel formun izine eşittir. Yani, 

 

                                                τ(𝜇) = 𝑖𝑧(∇𝜇∗) =∑(∇𝜇∗)(𝑒𝑖, 𝑒𝑖)                                     (2.16)

𝑚

𝑖=1

 

 

dır. Bir 𝜇: (ℳ𝘮, 𝑔ℳ) → (𝒩
𝘯, 𝑔𝒩) dönüşümünün tensiyon alanı 𝜇 boyunca bir vektör 

alanıdır. Yani, τ(𝜇) ∈ 𝛤𝜇(𝑇𝒩) dır (Fischer, 1992; Şahin, 2012).  

 

Tanım 2.1.2.18. Eğer τ(𝜇) = 0 oluyorsa  𝜇: (ℳ, 𝑔ℳ) → (𝒩, 𝑔𝒩) dönüşümüne 

harmonik dönüşüm denir (Fischer, 1992; Şahin, 2012).     
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Tanım 2.1.2.19. (ℳ𝘮, 𝑔ℳ), (𝒩
𝘯, 𝑔𝒩) Riemann manifoldları ve     

            

     𝜇: (ℳ, 𝑔ℳ) → (𝒩, 𝑔𝒩) 

 

bir dönüşüm olsun. O halde s ∈ ℳ noktasında 𝜇 dönüşümünün türev dönüşümü  𝜇∗s 

olmak üzere 𝑋 ∈ 𝑇s ℳ ve 𝑌 ∈ 𝑇𝜇(s)𝒩 için, 

 

   𝑔𝒩(𝜇∗s(𝑋), 𝑌) = 𝑔ℳ(𝑋, 𝜇
∗s(𝑌))                                    (2.17) 

 

ile tanımlanan 𝜇∗s dönüşümüne s ∈ ℳ noktasındaki 𝜇∗s dönüşümünün adjoint dönüşümü 

denir (Şahin, 2012).      

 

2.2. Kompleks Manifoldlar 

 

Tanım 2.2.1. ℳ bir Hausdorff uzayı ve  ℳ de bir açık  {𝘜𝛼}𝛼∈𝙸 olsun. Eğer ∀s ∈ ℳ için 

𝜇𝛼: 𝘜𝛼 ⊂ ℳ →𝘞𝛼 ⊂ ℂ
𝘯 

 

homeomorfizması mevcut ve 𝘜𝛼 ∩ 𝘜𝛽 ≠ ∅  olmak üzere 

 

𝜙𝛼𝛽 = 𝜇𝛼𝜊𝜇𝛽
−1: 𝜇𝛽(𝘜𝛼 ∩ 𝘜𝛽) → 𝜇𝛼(𝘜𝛼 ∩ 𝘜𝛽) 

     

𝜙𝛽𝛼 = 𝜇𝛽𝜊𝜇𝛼
−1: 𝜇𝛼(𝘜𝛼 ∩ 𝘜𝛽) → 𝜇𝛽(𝘜𝛼 ∩ 𝘜𝛽) 

 

dönüşümleri holomorfik oluyorsa ℳ manifolduna kompleks manifold adı verilir. ℂ𝘯 ve 

ℝ2𝘯 özdeş olduğundan ℳ manifoldu 2𝘯 − boyutlu bir reel analitik manifolddur. Burada 

{𝘜𝛼, 𝜇𝛼}𝛼∈𝙸 ya da ℳ manifolduna holomorfik koordinat komşuluğu denir (Matsushima, 

1972). 

 

Tanım 2.2.2. 𝒩 manifoldu 2𝑚 − boyutlu bir reel manifold olmak üzere 𝒩 manifoldu 

üzerinde (1,1) mertebeli tensör alanı 𝐽 olsun. O helde ∀𝑝1 ∈ 𝒩 için, 

 

𝐽𝑝1: 𝑇𝑝1𝒩 → 𝑇𝑝1𝒩, 𝐽𝑝1
2  = −𝙸2𝑚 
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ile belirtilen 𝐽 endomorfizmi (lineer dönüşümü) mevcutsa 𝐽 ye 𝒩 manifoldu üzerinde 

hemen hemen kompleks yapı denir. 𝒩 manifolduna ise 𝐽  kompleks yapısı ile birlikte 

hemen hemen kompleks manifold denir (Yano ve Kon, 1984; Şahin, 1996). 

 

Tanım 2.2.3. 𝒩, hemen hemen kompleks manifold olmak üzere, eğer 𝑈 ⊂ 𝒩 açığı 

üzerinde          

𝐽 (
𝜕

𝜕𝑥𝛼
) =

𝜕

𝜕𝑦𝛼
  , 𝐽 (

𝜕

𝜕𝑦𝛼
) = −

𝜕

𝜕𝑥𝛼
 

 

olacak biçimde 𝑈 nin {𝑥𝛼 , 𝑦𝛼} koordinat sistemi varsa 𝒩manifoldu kompleks manifold 

olarak adlandırılır (Yano and Kon; 1984). 

 

Sonuç 2.2.1. 𝒩 bir hemen hemen kompleks manifoldu ise 𝑛 = 2𝑚 olur. Burada 𝑛, 𝒩 

nin kompleks boyutu, 2𝑚 ise 𝒩 nin reel boyutudur (Kobayashi ve Nomizu, 1963). 

 

Tanım 2.2.4. 𝒩 bir hemen hemen kompleks manifold ve 𝒩nin hemen hemen kompleks 

yapısı 𝐽𝒩 olsun. 𝒩 üzerinde bir Riemann metriği 𝑔𝒩 olmak üzere, ∀𝑈, 𝑉 ∈ 𝒳(𝒩)için 

            

   𝑔𝒩(𝐽𝒩𝑈, 𝐽𝒩𝑉) = 𝑔𝒩(𝑈, 𝑉)                                          (2.18) 

 

ise 𝑔𝒩 bilineer dönüşümüne Hermityen metrik denir (Yano ve Kon; 1984). 

 

Tanım 2.2.5. 𝒩 bir hemen hemen kompleks manifold olsun, eğer 𝒩 manifoldu üzerinde 

bir 𝑔 Hermityen metriği tanımlı ise 𝒩 ye hemen hemen Hermityen manifold denir. 𝒩 bir 

kompleks manifold ve 𝒩 üzerinde 𝑔𝒩 ,  hermityen metriği tanımlı ise 𝒩 ye hermityen 

manifold denir. Bu hemen hemen Hermityen manifold ∀𝑈, 𝑉 ∈ 𝒳(𝒩)için, 

 

𝐽𝒩
2 = −𝙸 𝑣𝑒 𝑔𝒩(𝑈, 𝑉) = 𝑔𝒩(𝐽𝒩𝑈, 𝐽𝒩𝑉)                         (2.19) 

 

eşitliğini sağlar (Yano and Kon; 1984). 
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Tanım 2.2.6. 𝒩 hemen hemen Hermityen manifold, 𝑔𝒩 ve 𝐽𝒩 ,  𝒩 üzerinde sırasıyla 

Hermityen metrik ve hemen hemen kompleks yapı olsun.  

∀𝑈, 𝑉 ∈ 𝒳(𝒩) için, 

 

𝜆(𝑈, 𝑉) = 𝑔𝒩(𝑈, 𝐽𝒩𝑉)                                                 (2.20) 

 

ile tanımlı tensöre temel 2-form denir. Bu manifold üzerinde tanımlı Hermityen metriği 

𝑔𝒩 ve hemen hemen kompleks yapısı 𝐽𝒩 olsun. Bu durumda 𝒩, hemen hemen 

Hermityen manifoldu (𝒩, 𝑔𝒩 , 𝐽𝒩) ile gösterilir (Yano and Kon; 1984). 

 

Tanım 2.2.7. 𝒩 bir hemen hemen kompleks manifold ve 𝑔𝒩, 𝒩 üzerinde bir Hermityen 

metrik olsun. Eğer 𝒩 üzerinde tanımlanan 𝜆 temel 2-formu kapalı ise yani 𝑑𝜆 = 0 ise 

𝑔𝒩 Hermityen metriğine Kaehler metrik denir (Yano and Kon; 1984). 

 

Tanım 2.2.8. Eğer 𝒩  kompleks manifold ve 𝒩 üzerinde 𝑔𝒩,  Kaehler metriği tanımlı 

ise (𝒩, 𝑔𝒩 , 𝐽𝒩) ye Kaehler manifoldu denir (Yano ve Kon; 1984). 

 

Teorem 2.2.1. (𝒩, 𝑔𝒩 , 𝐽𝒩)  hemen hemen Hermityen manifoldun Kaehler manifold 

olması için gerek ve yeter şart  

 

  ∇𝐽𝒩 = 0                                                          (2.21) 

 

dır (Yano and Kon; 1984). 

 

Teorem 2.2.2. (𝒩, 𝑔𝒩 , 𝐽𝒩) bir hemen hemen Hermityen manifoldu bir Kaehler 

manifoldu ise ∀𝑋, 𝑌 ∈ 𝑇𝒩 için, 

 

∇𝑋𝐽𝒩𝑌 = (∇𝑋𝐽𝒩)𝑌 + 𝐽𝒩∇𝑋𝑌
(∇𝑋𝐽𝒩)𝑌=0
→       ∇𝑋𝐽𝒩𝑌 = 𝐽𝒩∇𝑋𝑌                        (2.22) 

 

dir (Yano ve Kon; 1984).  
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Tanım 2.2.9. (ℳ𝘮, 𝑔ℳ , 𝐽𝐽ℳ) ve (𝒩𝘯, 𝑔𝒩 , 𝐽𝒩)(𝘮 > 𝑛) olacak şekilde bir hemen hemen 

Hermityen manifoldlar olmak üzere, 𝛽: (ℳ𝘮, 𝑔ℳ , 𝐽ℳ) → (𝒩
𝘯, 𝑔𝒩 , 𝐽𝒩) bir ℂ∞ 

submersiyonu aşağıdaki koşulları sağlıyorsa bu 𝛽 dönüşümüne hemen hemen Hermityen 

submersiyon veya Holomorfik submersiyon adı verilir (Yano and Kon; 1984). 

 

i. 𝛽 bir Riemann submersiyon, 

 

ii. 𝛽 bir hemen hemen kompleks dönüşümdür. Yani, 

 

  𝛽∗𝐽ℳ = 𝐽𝒩𝛽∗                                                         (2.23) 

 

dır (Yano and Kon, 1984). 

 

Tanım 2.2.10. (ℳ1
𝘮, 𝑔ℳ1

, 𝐽ℳ1
) ve (ℳ2

𝘯, 𝑔ℳ2
, 𝐽ℳ2

) hemen hemen Hermityen 

manifoldlar olmak üzere, 

 

𝛽: (ℳ1, 𝑔ℳ1
, 𝐽ℳ1

) → (ℳ2, 𝑔ℳ2
, 𝐽ℳ2

) 

 

dönüşümü bir Riemann dönüşümü olsun. Eğer 

 

   𝛽∗𝐽ℳ1
= 𝐽ℳ2

𝛽∗                                                          (2.24) 

 

ise 𝛽 dönüşümüne p1 ∈ ℳ noktasında bir Holomorfik Riemann submersiyon denir (Lee 

and Şahin, 2014). 

 

Tanım 2.2.11. (ℳ, 𝑔ℳ , 𝐽ℳ) hemen hemen Hermityen manifold ve (𝒩, 𝑔𝒩) Riemann  

manifold olsun. 

𝛽: (ℳ𝘮, 𝑔ℳ , 𝐽ℳ) → (𝒩
𝘯, 𝑔𝒩) 

 

dönüşümü (𝘯 < 𝑚) şartını sağlayan bir Riemann submersiyon olsun. Eğer dikey 

distribüsyon 𝐽ℳ e göre invaryant ise 𝛽 dönüşümüne bir invaryant Riemann submersiyon 

denir. Yani, 



20 
 

 

𝐽ℳ(ç𝑒𝑘𝛽∗) = ç𝑒𝑘𝛽∗                                                  (2.25) 

 

dır (Şahin, 2013). 

 

Tanım 2.2.12. 𝛽, (ℳ, 𝑔ℳ , 𝐽ℳ) hemen hemen Hermityen manifolddan (𝒩, 𝑔𝒩) Riemann 

manifolduna tanımlanan 

 

𝛽: (ℳ𝘮, 𝑔ℳ , 𝐽ℳ) → (𝒩
𝘯, 𝑔𝒩) 

 

dönüşümü (𝘯 < 𝑚) şartını sağlayan bir Riemann submersiyon olsun. Eğer ç𝑒𝑘𝛽∗𝐽ℳ e 

göre anti-invaryant ise 𝛽 dönüşümüne anti-invaryant Riemann submersiyon denir (Şahin, 

2010).  

𝐽ℳ(ç𝑒𝑘𝛽∗) ⊆ (ç𝑒𝑘𝛽∗)
⟘                                             (2.26) 

 

Tanım 2.2.13. 𝛽,  (ℳ, 𝑔ℳ , 𝐽ℳ) hemen hemen Hermityen manifolddan  (𝒩, 𝑔𝒩) 

Riemann manifolduna tanımlanan 

 

𝛽: (ℳ𝘮, 𝑔ℳ , 𝐽ℳ) → (𝒩
𝘯, 𝑔𝒩) 

 

dönüşümü (𝘯 < 𝑚) koşulunu gerçekleştiren bir Riemann submersiyon olsun.  

𝒟1 ⊆ ç𝑒𝑘𝛽∗ distribüsyonu var, 

 

ç𝑒𝑘𝛽∗ = 𝒟1⨁𝒟2 

 

𝐽ℳ(𝒟1) = 𝒟1, 𝐽ℳ(𝒟2) ⊆ (ç𝑒𝑘𝛽∗)
⟘                                (2.27) 

 

ise 𝛽 dönüşümüne yarı-invaryant Riemann submersiyon denir. Burada 𝒟2, ç𝑒𝑘𝛽∗ da 𝒟1 

distribüsyonunun ortogonal tamamlayıcısıdır (Şahin, 2013). 

 

Tanım 2.2.14. 𝛽,  (ℳ, 𝑔ℳ , 𝐽ℳ) hemen hemen Hermityen manifolddan  (𝒩, 𝑔𝒩) 

Riemann manifolduna tanımlanan 

 

𝛽: (ℳ𝘮, 𝑔ℳ , 𝐽ℳ) → (𝒩
𝘯, 𝑔𝒩) 
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dönüşümü (𝘯 < 𝑚) şartını sağlayan bir Riemann submersiyon olmak üzere, eğer  s1 ∈

ℳ noktasında sıfırdan farklı  𝑋 ∈ ç𝑒𝑘𝛽∗s1  vektörü için  ç𝑒𝑘𝛽∗s1  ve  𝐽ℳ𝑋 arasındaki 

𝜃(𝑋) açısı sabit yani, s1 ∈ ℳ ve ç𝑒𝑘𝛽∗s1 deki 𝑋 tanjant vektörlerinin seçiminden 

bağımsız ise 𝛽 dönüşümüne eğik submersiyon denir. Burada 𝜃 açısına da eğik 

submersiyonun eğik açısı denir (Şahin, 2011).  

 

Tanım 2.2.15. (𝐵, 𝑔𝐵 , 𝐽) bir hemen hemen Hermityen manifold ve (𝑁, 𝑔𝑁) bir Riemann 

manifoldu olsun. 𝜋 ∶  (𝐵, 𝑔𝐵 , 𝐽) →  (𝑁, 𝑔𝑁) şeklinde yazılan bir Riemann 

submersiyonudur eğer, 𝐷1 ⊂ 𝑘𝑒𝑟𝜋∗ olacak biçimde bir distribüsyon mevcutsa ve  

 

𝑘𝑒𝑟𝜋∗  =  𝐷1⊕𝐷2, 𝐽(𝐷1) =  𝐷1                                    (2.28) 

 

şartlarını sağlıyorsa, bu submersiyon yarı-eğik submersiyon olarak ifade edilir. Bu 

durumda, 𝐷2, 𝑘𝑒𝑟𝜋∗ içinde 𝐷1'in ortogonal tamamlayıcısı olur. 

𝑌 ∈ (𝐷2)𝑝  ve 𝑝 ∈ 𝐵 için 𝐽𝑌 ile (𝐷2)𝑝  arasındaki açı olan 𝜃 = 𝜃(𝑌), sıfırdan farklı 

𝑌 değerleri için sabit olur (Park and Prasad, 2013). 

      

2.3. Riemann Dönüşümler 

  

Tanım 2.3.1. 𝛽, (ℳ, 𝑔ℳ) Riemann manifoldundan (𝒩, 𝑔𝒩) Riemann manifolduna  

 

𝛽: (ℳ, 𝑔ℳ) → (𝒩, 𝑔𝒩) 

 

diferansiyellenebilir bir dönüşüm olsun. p1 ∈ ℳ noktasında 𝛽∗ lineer dönüşümünün 

çekirdek uzayını ç𝑒𝑘𝛽∗p1 ve ortogonal tümleyen uzayını da ℋp1 = (ç𝑒𝑘𝛽∗)
⟘ ile 

gösterelim. ℳ manifoldunun p1 ∈ ℳ noktasındaki tanjant uzayı  

 

𝑇p1ℳ =  ç𝑒𝑘𝛽∗p1⨁(ç𝑒𝑘𝛽∗)
⟘                                       (2.29) 

 

ayrışımına sahip olur.  p1 ∈ ℳ noktasında  𝛽∗ lineer dönüşümünün görüntüsü 𝑔ö𝑟𝛽∗p1 

ve ortogonal tümleyen uzayını da (𝑔ö𝑟𝛽∗p1)
⟘

 ile gösterelim. Böylelikle  𝒩 nin 𝑇𝛽(p1)𝒩 

tanjant uzayı p1 ∈ ℳ  noktasında  
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            𝑇𝛽(p1)𝒩 = 𝑔ö𝑟𝛽∗p1⨁(𝑔ö𝑟𝛽∗p1)
⊥
                                    (2.30) 

 

ayrışımına sahip olur. p1 ∈ ℳ noktasında p2 = 𝛽(p1) olmak üzere 

 

((ç𝑒𝑘𝛽∗p1)
⟘
, 𝑔ℳ(p1)) |(ç𝑒𝑘𝛽∗p1)

⟘ 

ve 

((𝑔ö𝑟𝛽∗p1), 𝑔𝒩(p2)) |(𝑔ö𝑟𝛽∗p1)
 

 

iç çarpım uzayları arasında 

 

   𝛽∗p1
ℎ : (ç𝑒𝑘𝛽∗p1)

⟘
→ (𝑔ö𝑟𝛽∗p1)                                        (2.31) 

 

ile tanımlanan dönüşüm bir lineer izometri ise 

 

𝛽: (ℳ, 𝑔ℳ) → (𝒩, 𝑔𝒩) 

 

diferansiyellenebilir dönüşümüne p1 ∈ ℳ noktasındaki Riemann dönüşümü adı verilir  

(Fischer, 1992). 

 

Lemma 2.3.1. 𝛽,  (ℳ, 𝑔ℳ) Riemann manifoldundan (𝒩, 𝑔𝒩) Riemann manifolduna 

tanımlanan  

𝛽: (ℳ, 𝑔ℳ) → (𝒩, 𝑔𝒩) 

 

Riemann dönüşümü olsun. ∀𝑋, 𝑌, 𝑍 ∈ 𝛤((ç𝑒𝑘𝛽∗)
⟘) için 

 

   𝑔𝒩((∇𝛽∗)(𝑋, 𝑌), 𝛽∗(𝑍)) = 0                                          (2.32) 

 

eşitliği vardır (Şahin, 2012). 

 

İspat: 𝛽 bir Riemann dönüşümü olduğu için (2.1.17) denkleminden faydalanarak, 
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𝑔𝒩((∇𝛽∗)(𝑋, 𝑌), 𝛽∗(𝑍)) = 𝑔𝒩 (∇𝑋
𝛽
𝛽∗(𝑌), 𝛽∗(𝑍)) − 𝑔𝒩 (𝛽∗(∇𝑋

ℳ𝑌), 𝛽∗(𝑍)) 

 

elde edilir ve 𝛽 nin özelliğinden dolayı, 

 

𝑔𝒩((∇𝛽∗)(𝑋, 𝑌), 𝛽∗(𝑍)) = 𝑔𝒩 (∇𝑋
𝛽
𝛽∗(𝑌), 𝛽∗(𝑍)) − 𝑔ℳ(∇𝑋

ℳ𝑌, 𝑍)                (2.33) 

 

elde edilir. Diğer yandan  ∇ℳ, ℳ nin bir Levi-Civita konneksiyonu olduğu için, koszul 

eşitliğinden yararlanarak; 

 

2𝑔ℳ(∇𝑋
ℳ𝑌, 𝑍) = 𝑋𝑔𝒩(𝛽∗(𝑌), 𝛽∗(𝑍)) + 𝑌𝑔ℳ(𝑋, 𝑍) − 𝑍𝑔ℳ(𝑋, 𝑌) 

 

                           +𝑔ℳ([𝑋, 𝑌], 𝑍) + 𝑔ℳ([𝑍, 𝑋], 𝑌) − 𝑔ℳ([𝑌, 𝑍], 𝑋) 

 

yazılır. 𝛽∗([𝑋, 𝑌]) = [𝛽∗(𝑋), 𝛽∗(𝑌)] olduğu için, 𝑔ℳ(𝑋, 𝑌) = 𝑔𝒩(𝛽∗(𝑋), 𝛽∗(𝑌)) ifadesi 

kullanılarak;  

 

(∇𝑋
ℳ𝑌, 𝑍) = 𝑋𝑔𝒩(𝛽∗(𝑌), 𝛽∗(𝑍)) + 𝑌𝑔𝒩(𝛽∗(𝑋), 𝛽∗(𝑍)) − 𝑍𝑔𝒩(𝛽∗(𝑋), 𝛽∗(𝑌)) 

  +𝑔𝒩([𝛽∗(𝑋), 𝛽∗(𝑌)], 𝛽∗(𝑍)) + 𝑔𝒩([𝛽∗(𝑍), 𝛽∗(𝑋)], 𝛽∗(𝑌)) 

                          −𝑔𝒩([𝛽∗(𝑌), 𝛽∗(𝑍)], 𝛽∗(𝑋)) 

 

elde edilir. Ayrıca, ∇𝒩, 𝒩 üzerinde bir Levi-Civita konneksiyonu olduğu için, 

 

𝑔ℳ(∇𝑋
ℳ𝑌, 𝑍) = 𝑔𝒩 (∇𝑋

𝛽
𝛽∗(𝑌), 𝛽∗(𝑍))                             (2.34) 

 

eşitliği elde edilir. (2.32) ve (2.33) eşitlikleri kullanılarak, 

 

𝑔𝒩((∇𝛽∗)(𝑋, 𝑌), 𝛽∗(𝑍)) = 0 

elde edilir. Buradan da, 

 

(∇𝛽∗)(𝑋, 𝑌) ∈ 𝛤((𝑔ö𝑟𝛽∗)
⟘), ∀𝑋, 𝑌 ∈ 𝛤((ç𝑒𝑘𝛽∗)

⟘)                    (2.35) 

olur. 
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Altmanifoldlardaki weingarten denklemi Riemann dönüşümlere uygulanırsa 

            

   ∇𝛽∗𝑋
𝛽
𝚅 = −𝘚𝚅𝛽∗𝑋 + ∇𝑋

𝛽⟘
𝚅                                                 (2.36) 

 

eşitliğini elde ederiz. Burada, 𝘚𝚅𝛽∗𝑋, ∇𝛽∗𝑋
2 𝚅 nin 𝛽 vektör alanı boyunca teğet bileşenidir. 

𝘚𝚅𝛽∗𝑋,  𝚅 üzerinde bilineerdir. 𝑋, 𝑌 ∈ 𝛤((ç𝑒𝑘𝛽∗)
⟘) ve 𝚅 ∈ 𝛤((𝑔ö𝑟𝛽∗)

⟘) için, 

 

(∇𝛽∗)(𝑋, 𝑌) = ∇𝛽∗𝑋
𝛽
𝛽∗(𝑌) − 𝛽∗(∇𝑋

ℳ𝑌) 

 

dır. Burada 𝛽∗𝑌 ∈ 𝛤(𝑔ö𝑟𝛽∗) olduğundan 

 

𝑔𝒩((∇𝛽∗)(𝑋, 𝑌), 𝚅) = 𝑔𝒩(𝛽∗(𝑌), 𝘚𝚅𝛽∗𝑋)                               (2.37) 

 

eşitliği vardır. (2.36) eşitliği, Riemann dönüşümler için dönüşümün ikinci temel formu 

ile şekil operatörü arasındaki bağlantıyı verir. (∇𝛽∗) simetrik olduğu için 𝘚𝚅 de (𝑔ö𝑟𝛽∗) 

ın bir simetrik lineer dönüşümüdür (Şahin, 2012). 

Şimdi (2.9), (2.10) ve (2.11) denklemlerinden faydalanarak bir Riemann dönüşümün 

tamamen geodezik olması için bir tanıma yer verilecektir. 

 

Tanım 2.3.2. 𝛽,  (ℳ, 𝑔ℳ) Riemann manifoldundan (𝒩, 𝑔𝒩) Riemann manifolduna 

tanımlanan 

𝛽: (ℳ, 𝑔ℳ) → (𝒩, 𝑔𝒩) 

 

diferansiyellenebilir bir dönüşüm olsun. ∀𝑋1, 𝑋2 ∈ 𝛤(𝑇ℳ) için, 

 

(∇𝛽∗)(𝑋1, 𝑋2) = 0 

 

ise bu 𝛽 dönüşümüne tamamen geodezik dönüşüm denir (Şahin, 2012). 

 

Teorem 2.3.1. 𝛽,  (ℳ, 𝑔ℳ) Riemann manifoldundan (𝒩, 𝑔𝒩) Riemann manifolduna 

tanımlanan 

𝛽: (ℳ, 𝑔ℳ) → (𝒩, 𝑔𝒩) 
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Riemann dönüşüm olsun. 𝛽 dönüşümünün tamamen geodezik olması için gerek ve yeter 

şart, 

 

i. 𝘈𝑋𝑌 = 0 

 

ii. 𝘚𝚅β∗𝑋 = 0 

 

iii. 𝑋, 𝑌 ∈ 𝛤((ç𝑒𝑘β∗)
⟘) ve  𝚅 ∈ 𝛤((𝑔ö𝑟β∗)

⟘) için lifler tamamen geodeziktir (Şahin, 

2012). 

 

İspat: İlk olarak 𝛽,  (ℳ, 𝑔ℳ) Riemann manifoldundan (𝒩, 𝑔𝒩) Riemann manifolduna 

tanımlanan  

𝛽: (ℳ, 𝑔ℳ) → (𝒩, 𝑔𝒩) 

 

dönüşümünün tamamen geodezik olması için gerek ve yeter şart  ∀ 𝘜, 𝘜1, 𝘜2 ∈ 𝛤(ç𝑒𝑘𝛽∗) 

ve ∀𝑋, 𝑌 ∈ 𝛤((ç𝑒𝑘𝛽∗)
⟘) için 

 

(∇𝛽∗)(𝑋, 𝑌) = 0, (∇𝛽∗)(𝑋, 𝘜) = 0     𝑣𝑒    (∇𝛽∗)(𝘜1, 𝘜2) = 0           (2.38) 

 

olmasıdır. (∇𝛽∗)(𝑋, 𝘜) ∈ 𝛤(𝑔ö𝑟𝛽∗) olduğu için 

 

(∇𝛽∗)(𝑋, 𝘜) = 0 

 

ifadesinin sağlanabilmesi için gerek ve yeter şart  𝑌 ∈ 𝛤((ç𝑒𝑘𝛽∗)
⟘) için  

 

𝑔𝒩((∇𝛽∗)(𝑋, 𝘜), 𝛽∗(𝑌)) = 0                                         (2.39) 

 

eşitliğinin sağlanmasıdır. Burada (2.15) ifadesi kullanılarak, 

 

(∇𝛽∗)(𝑋, 𝘜) = −𝛽∗(∇𝑋
ℳ𝘜) 

 

elde edilir. (2.13) ifadesini kullanılarak, 
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(∇𝛽∗)(𝑋, 𝘜) = −𝛽∗(𝘈𝑋𝘜)                                             (2.40) 

 

elde edilir. (2.38) ve (2.39) ifadelerinden yararlanılarak, 

 

𝑔𝒩(𝛽∗(𝘈𝑋𝘜), 𝛽∗(𝑌)) = −𝑔𝒩((∇𝛽∗)(𝑋, 𝘜), 𝛽∗(𝑌)) = 0 

 

eşitliği yazılır. 𝛽 bir Riemann dönüşüm olduğundan, 

 

𝑔ℳ(𝘈𝑋𝘜, 𝑌) = −𝑔𝒩((∇𝛽∗)(𝑋, 𝘜), 𝛽∗(𝑌)) = 0                       (2.41) 

 

eşitliği bulunur. Buradan, 

𝑔ℳ(𝘈𝑋𝘜, 𝑌) = −𝑔ℳ(𝘜, 𝘈𝑋𝑌) = 0        

olup 

𝘈𝑋𝑌 = 0    

 

olur. Benzer biçimde (∇𝛽∗)(𝘜, 𝚅) ∈ 𝛤(𝑔ö𝑟𝛽∗) için 

 

(∇𝛽∗)(𝘜, 𝚅) = 0         

 

olması için gerek ve yeter şart 𝑋 ∈ 𝛤((ç𝑒𝑘𝛽∗)
⟘) için 

 

𝑔𝒩((∇𝛽∗)(𝘜, 𝚅), 𝛽∗(𝑋)) = 0                                            (2.42) 

 

olmasıdır. Buradan yine (2.15) eşitliğinden faydalanılarak, 

(∇𝛽∗)(𝘜, 𝚅) = −𝛽∗(∇𝘜
ℳ𝚅) 

 

eşitliği elde edilir. (2.11) eşitliği kullanılarak, 

 

(∇𝛽∗)(𝘜, 𝚅) = −𝛽∗(Τ𝘜𝚅)                                               (2.43) 

 

elde edilir. (2.41) ve (2.42) eşitliklerinden, 



27 
 

 

 

𝑔𝒩(𝛽∗(Τ𝘜𝚅), 𝛽∗(𝑋)) = −𝑔𝒩((∇𝛽∗)(𝘜, 𝚅), 𝛽∗(𝑋)) 

 

elde edilir. 𝛽 bir Riemann dönüşümü olduğundan ötürü 

 

𝑔ℳ(Τ𝘜𝚅, 𝑋) = −𝑔𝒩((∇𝛽∗)(𝘜, 𝚅), 𝛽∗(𝑋))                            (2.44) 

 

elde edilir. Son olarak, 𝑋, 𝑌 ∈ 𝛤((ç𝑒𝑘𝛽∗)
⟘) için 

 

(∇𝛽∗)(𝑋, 𝑌) = 0 

 

olması için gerek ve yeter şart 𝚅 ∈ 𝛤((𝑔ö𝑟𝛽∗)
⟘) için  

 

𝑔𝒩((∇𝛽∗)(𝑋, 𝑌), 𝚅) = 0 

 

dır. (2.36) eşitliği kullanılarak, 

 

𝑔𝒩((∇𝛽∗)(𝑋, 𝑌), 𝚅) = 𝑔𝒩(𝛽∗(𝑌), 𝘚𝚅𝛽∗𝑋) = 0                      (2.45) 

 

elde edilir. Buradan da  𝘚𝚅𝛽∗𝑋 = 0  bulunur. Böylece ispat tamamlanmış olur. 

 

Şimdi, Riemann eğrilik tensörleriyle ilgili bazı denklemler verelim. 

𝑅, 𝑅′, 𝑅̂ 𝑣𝑒 𝑅∗ ; 𝑀 𝑣𝑒 𝑁 Riemann manifoldlarının Riemannian eğrilik tensörleri olsun. 

𝑘𝑒𝑟𝛽∗ ve (𝑘𝑒𝑟𝛽∗)
⊥ sırasıyla dikey distribüsyon ve yatay distribüsyon olsun. Sonrasında, 

Gauss-Codazzi tipi denklemler şu şekilde verilir: 

 

𝑅(𝑈, 𝑉, 𝐹,𝑊) = 𝑅̂ (𝑈, 𝑉, 𝐹,𝑊) + 𝑔(𝒯𝑈𝑊,𝒯𝑉𝐹) − 𝑔(𝒯𝑉𝑊,𝒯𝑈𝐹)         (2.46) 

 

𝑅(𝑋, 𝑌, 𝑍, 𝐻) = 𝑅∗(𝑋, 𝑌, 𝑍, 𝐻) − 2𝑔(𝒜𝑋𝑌,𝒜𝑍𝐻) 

                                                             +𝑔(𝒜𝑌𝑍,𝒜𝑋𝐻) − 𝑔(𝒜𝑋𝑍,𝒜𝑌𝐻)                          (2.47) 

 

𝑅(𝑋, 𝑉, 𝑌,𝑊) = 𝑔((∇X𝒯)(𝑉,𝑊), 𝑌) + 𝑔((∇V𝒜)(𝑋, 𝑌),𝑊) 
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                                               − 𝑔(𝒯𝑉𝑋, 𝒯𝑊𝑌) + 𝑔(𝒜𝑌𝑊,𝒜𝑋𝑉)                                   (2.48)  

 

𝛽∗(𝑅
∗(𝑋, 𝑌)𝑍)) = 𝑅′(𝛽∗𝑋, 𝛽∗𝑌)𝛽∗𝑍                               (2.49) 

 

∀ 𝑈, 𝑉, 𝐹,𝑊 ∈ 𝛤(𝑘𝑒𝑟𝛽∗) ve 𝑋, 𝑌, 𝑍, 𝐻 ∈ 𝛤((𝑘𝑒𝑟𝛽∗)
⊥) . 

Ayrıca, 𝛽 Riemann submersiyonunun herhangi bir lifinin ortalama eğrilik vektör alanı ℋ 

aşağıdaki gibidir. 

 

ℋ =
1

𝑟
∑𝒯𝑈𝑗𝑈𝑗

r

𝑗=1

                                                  (2.50) 

 

burada, {𝑈1, … , 𝑈𝑟} dikey distribüsyon olan 𝑘𝑒𝑟𝛽∗ nin ortogonal bazıdır. Ayrıca, 𝛽, 𝒯 nin 

sıfır olması durumunda tamamen geodezik liflere sahip olur (Akyol vd., 2022). 

Tanım 2.3.3. 𝒦, (𝐵1, 𝑔𝐵1 , 𝐽𝐵1) hemen hemen Hermityen manifoldundan (𝐵2, 𝑔𝐵2) 

Riemann manifolduna tanımlanan 

 

𝒦: (𝐵1, 𝑔𝐵1 , 𝐽𝐵1) → (𝐵2, 𝑔𝐵2) 

 

bir Riemann dönüşüm olsun. ∀ q1 ∈ 𝐵1 ve sıfırdan farklı  

Y ∈ 𝛤(ç𝑒𝑘𝒦∗)q1vektörü olup  𝐽𝐵1Y ve (ç𝑒𝑘𝒦∗)q1 uzayı arasındaki 𝜃(Y) wirtinger açısı,  

sabit bulunuyorsa 𝒦 dönüşümü eğik Riemann dönüşüm olarak adlandırılır. Bu durumda 

𝜃 açısına da eğik Riemann dönüşümün eğik açısı adı verilir (Şahin, 2017). 

 

Tanım 2.3.4. (𝐵1, 𝑔𝐵1) Riemann manifold olsun ve (𝐵2, 𝑔𝐵2 , 𝐽𝐵2) hemen hemen 

Hermityen manifold olmak üzere; 

 

𝒦: (𝐵1, 𝑔𝐵1) → (𝐵2, 𝑔𝐵2 , 𝐽𝐵2) 

bir Riemann dönüşüm olsun. Eğer  ∀ q1 ∈ 𝐵2 noktası için sıfırdan farklı olan bir 

𝒦∗(𝑌)  ∈ Γ(𝑟𝑎𝑛𝑔𝑒𝒦∗)q1 vektörü için  𝐽𝐵2𝒦∗(𝑌) ve (𝑟𝑎𝑛𝑔𝑒𝒦∗)q1 uzayı arasındaki 𝜃(𝑌) 

wirtinger açısı, sabit bulunuyorsa 𝒦 dönüşümü eğik Riemann dönüşüm olarak 

adlandırılır. Bu durumda 𝜃 açısına da eğik Riemann dönüşümün eğik açısı adı verilir 

(Şahin, 2017). 
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Tanım 2.3.5. (𝑁1, 𝑔𝑁1 , 𝐽1) bir hemen hemen Hermityen manifoldu ve (𝑁2, 𝑔𝑁2) bir 

Riemann manifoldu olsun. Eğer 𝑘𝑒𝑟𝛽∗ üzerinde bir çift ortogonal 𝐷𝜙 ve 𝐷⊤ 

distribüsyonu mevcutsa ve aşağıdaki şartları sağlıyorsa 𝛽:𝑁1 → 𝑁2 yarı-eğimli bir 

Riemann dönüşüm olur.  

 1. 𝑘𝑒𝑟𝛽∗ uzayı, D𝜙⊕D⊤ ortogonal direkt ayrışımıdır. 

 2. D⊤ distribüsyonu invaryanttır. 

Burada, 𝜙 açısı yarı-eğimli bir Riemann dönüşümünün sabit açısıdır (Park, 2018). 

 

Tanım 2.3.6. (𝐵2, 𝑔2 , 𝐽2) bir hemen hemen Hermityen manifoldu ve (𝐵1, 𝑔1) bir 

Riemann manifoldu olsun. Eğer 𝑘𝑒𝑟𝛽∗ üzerinde aşağıdaki şartlar mevcutsa,  𝐷𝜙 ve 𝐷⊤ 

ortogonal distribüsyonlar olmak üzere, 𝛽: 𝐵1 → 𝐵2  Riemann dönüşümüne, yarı-eğimli 

bir Riemann dönüşümü denir: 

 1.  𝑟𝑎𝑛𝑔𝑒𝛽∗ uzayı, Dϕ ⊕D⊤ ortogonal direkt ayrışımına denktir. 

 2. D⊤ distribüsyonu invaryant olur. 

Bu koşulda, 𝜙 açısı, yarı-eğimli bir Riemann dönüşümünün sabit açısıdır (Park, 2018). 

 

2.4.  Noktasal Eğik Riemann Dönüşümler 

 

Tanım 2.4.1. 𝒦, (𝐵1, 𝑔𝐵1 , 𝐽𝐵1) hemen hemen Hermityen manifoldundan (𝐵2, 𝑔𝐵2) 

Riemann manifolduna tanımlanan 

 

𝒦: (𝐵1, 𝑔𝐵1 , 𝐽𝐵1) → (𝐵2, 𝑔𝐵2) 

 

bir Riemann dönüşüm olsun. ∀ q1 ∈ 𝐵1 ve sıfırdan farklı Y ∈ 𝛤(ç𝑒𝑘𝒦∗)q1vektörü olmak 

üzere  𝐽𝐵1Y ve (ç𝑒𝑘𝒦∗)q1 uzayı arasındaki 𝜃(Y) wirtinger açısı, Y ∈ 𝛤(ç𝑒𝑘𝒦∗)q1 vektör 

alanı ve q1 ∈ 𝐵1 noktasının seçiminden bağımsız olur. Burada 𝒦 bir noktasal eğik 

Riemann dönüşümü olur. 𝜃,  𝐵1 üzerinde bir fonksiyon olur, bu fonksiyona da noktasal 

eğik Riemann dönüşümün eğik fonksiyonu adı verilir (Gündüzalp ve Akyol, 2022). 

 

Eğer  q1 ∈ 𝐵1 noktası için eğik fonksiyon 𝜃 =
𝜋

2
  ise noktasal eğik Riemann dönüşümü 

tamamen reel olur. Benzer biçimde bir q1 ∈ 𝐵1 noktası için eğik fonksiyon  𝜃 = 0  ise bu 

nokta kompleks nokta olarak isimlendirilir. Eğer bir noktasal eğik Riemann 
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dönüşümünde kompleks nokta ve de tamamen reel nokta mevcut değilse bu dönüşüm 

uygun dönüşüm olarak adlandırılır (Şahin, 2017). 

 

Bu dönüşüm bir alt immersiyon olduğundan dönüşümün rankı kaynak manifold  

üzerinde sabit olur. Buradan da bu dönüşüm için rank teoremi kaynak manifoldun  

dikey distribüsyonu, kaynak manifoldun tanjant demetinin bir  

integrallenebilir alt manifoldu anlamı taşır (Abraham et al. 1988), sayfa 205). 

 

Şimdi noktasal eğik Riemann dönüşümler için bazı örnekler verelim. 

 

Örnek 2.4.1. Hemen hemen Hermityen manifolddan bir hemen hemen Hermityen  

manifolduna tanımlanan hemen hemen Hermityen submersiyonu, (𝑔ö𝑟𝒦∗)
⟘ = {0}  ve 

𝜃 = 0 ile birlikte bir noktasal eğik Riemann dönüşümdür (Gündüzalp ve Akyol, 2022). 

 

Örnek 2.4.2. Hemen hemen Hermityen manifolddan bir Riemann manifolduna 

tanımlanan her anti-invaryant Riemann submersiyonu,  𝜃 =
𝜋

2
  ve (𝑔ö𝑟𝒦∗)

⟘ = {0}  ile 

birlikte bir noktasal eğik Riemann dönüşümdür (Gündüzalp ve Akyol, 2022). 

 

Örnek 2.4.3. (ℝ4, 𝑔ℝ4) bir Riemann manifold ve (ℝ4, 𝐽, 𝑔ℝ4) bir hemen hemen 

Hermityen manifold olsun. Verilen hemen hemen Hermityen manifold üzerinde  𝐽1, 𝐽𝟐 ve 

𝐽𝜔 hemen hemen kompleks yapılarını  𝐽1𝐽2 = −𝐽2𝐽1 ve  𝐽𝜔 = (cos𝜔) 𝐽1 + (sin𝜔)𝐽2  

koşullarını sağlayacak biçimde tanımlayalım.  ℝ4 üzerindeki {𝐽𝟏, 𝐽𝟐} hemen hemen 

kompleks yapıları  

 

𝐽1(𝑑1, 𝑑2, 𝑑3, 𝑑4, ) = (−𝑑3, −𝑑4, 𝑑1, 𝑑2) ve 𝐽2(𝑑1, 𝑑2, 𝑑3, 𝑑4, ) = (−𝑑2, 𝑑1, 𝑑4, −𝑑3) şeklinde 

olup    

 

 𝐽1𝐽2 = 𝐽1(−𝑑2, 𝑑1, 𝑑4, −𝑑3)  = (−𝑑4, 𝑑3, −𝑑2, 𝑑1) 

𝐽2𝐽1 = 𝐽2(−𝑑3, −𝑑4, 𝑑1, 𝑑2)  = (𝑑4, −𝑑3,, 𝑑2, −𝑑1) olduğundan  𝐽1𝐽2 = −𝐽2𝐽1 sağlanır. 

Şimdi   𝐽𝜔
2 = −𝙸 olduğunu gösterelim. 
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𝐽𝜔
2 = 𝐽𝜔(𝐽𝜔) = 𝐽𝜔((cos𝜔) 𝐽1 + (sin𝜔)𝐽2) = 𝐽𝜔((cos𝜔) 𝐽1) + 𝐽𝜔((sin𝜔)𝐽2) 

                       = cos𝜔𝐽𝜔(−𝑑3, −𝑑4, 𝑑1, 𝑑2) + sin𝜔 𝐽𝜔(−𝑑2, 𝑑1, 𝑑4, −𝑑3) 

                       = cos𝜔(cos𝜔)((−𝑑1, −𝑑2, −𝑑3, −𝑑4)) + cos𝜔(sin𝜔)(𝑑4, −𝑑3,, 𝑑2, −𝑑1) 

                          +sin𝜔 cos𝜔(−𝑑4, 𝑑3, −𝑑2, 𝑑1)  + sin𝜔 ((sin𝜔)(−𝑑1, −𝑑2, 𝑑3, 𝑑4)) 

                       = (−𝑑1, −𝑑2, −𝑑3, −𝑑4)(cos
2𝜔 + 𝑠𝑖𝑛2𝜔) 

                          +(−𝑑4, 𝑑3, 𝑑2, −𝑑1)(cos𝜔 sin𝜔 − sin𝜔 cos𝜔) 

                       = (−𝑑1, −𝑑2, 𝑑3, 𝑑4) = −(𝑑1, 𝑑2, 𝑑3, 𝑑4) 

 

olduğundan 𝐽𝜔 hemen hemen bir kompleks yapıdır. 𝒦, bir hemen hemen Hermityen 

manifolddan bir Riemann manifolduna tanımlanan  

 

𝒦: (ℝ4, 𝐽, 𝑔ℝ4) → (ℝ
4, 𝑔ℝ4) 

 

Riemann dönüşümünü 

 

𝒦(𝘹, 𝘺, 𝘻, 𝘵) = (𝘹 sin 𝛽 + 𝘻 cos 𝛽 , 10, √10,
𝘺 − 𝘵

√2
) 

şeklinde yazalım. 

𝒦∗ =

[
 
 
 
 
 
 
 
 
𝜕𝑘1
𝜕𝘹

𝜕𝑘1
𝜕𝘺

𝜕𝑘1
𝜕𝘻

𝜕𝑘1
𝜕𝘵

𝜕𝑘2
𝜕𝘹

𝜕𝑘2
𝜕𝘺

𝜕𝑘2
𝜕𝘻

𝜕𝑘2
𝜕𝘵

𝜕𝑘3
𝜕𝘹

𝜕𝑘3
𝜕𝘺

𝜕𝑘3
𝜕𝘻

𝜕𝑘3
𝜕𝘵

𝜕𝑘4
𝜕𝘹

𝜕𝑘4
𝜕𝘺

𝜕𝑘4
𝜕𝘻

𝜕𝑘4
𝜕𝘵 ]
 
 
 
 
 
 
 
 

 =

[
 
 
 
 
sin 𝛽 0 cos 𝛽 0
0 0 0 0
0 0 0 0

0 1
√2
⁄ 0 −1

√2
⁄ ]

 
 
 
 

 

 

Buradan rank(𝒦∗) =2’dir. Şimdi, dikey ve yatay distribüsyonları 

𝒱 = çek𝒦∗ = 𝑠𝑝𝑎𝑛 {W1 = (−cos𝛽, 0, sin 𝛽 , 0),  W2 = (0,
1
√2
⁄ , 0, 1

√2
⁄ )} 

ℋ = (çek𝒦∗)
⟘ = 𝑠𝑝𝑎𝑛 {L1 = (sin𝛽 , 0, cos 𝛽 , 0),    L2 = (0,

1
√2
⁄ , 0, −1

√2
⁄ )} 

şeklinde seçelim. Buradan da 

𝑔ℝ4(L1, L1) = 𝑔ℝ4(𝒦∗L1, 𝒦∗L1) ve  𝑔ℝ4(L2, L2) = 𝑔ℝ4(𝒦∗L2,𝒦∗L2) olduğunu 

gösterelim. 
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𝑔ℝ4(L1, L1) = ((sin 𝛽 , 0, cos 𝛽 , 0), (sin 𝛽 , 0, cos 𝛽 , 0)) = 1 

 

𝒦∗L1 =

[
 
 
 
 
 
sin 𝛽 0 cos𝛽 0
0 0 0 0
0 0 0 0
0 0 0 0

0 1
√2
⁄ 0 −1

√2
⁄ ]

 
 
 
 
 

[

sin 𝛽
0

cos𝛽
0

] = [

1
0
0
0

] 

 

𝑔ℝ4(𝒦∗L1,𝒦∗L1) = ((1,0,0,0), (1,0,0,0)) = 1 olup eşitlik sağlanır. Benzer şekilde 

𝑔ℝ4(L2,L2) = 𝑔ℝ4(𝒦∗L2,𝒦∗L2)  eşitliği sağlandığından yatay vektörlerin uzunluğu (boyu)  

korunur. Şimdi   cos 𝜃 =
𝑔
ℝ6
(𝐽𝜔W1, W2)

‖𝐽𝜔W1‖‖ W2‖
   ifadesini bulalım. Daha sonra 

 𝐽𝜔 = (cos𝜔) 𝐽1 + (sin𝜔)𝐽2 eşitliğinden faydalanarak  𝐽𝜔W1’i yazalım. 

 

𝐽𝜔W1 = ((cos𝜔) 𝐽1 + (sin𝜔)𝐽2)(−cos𝛽, 0, sin 𝛽 , 0) 

            = (cos𝜔) 𝐽1 (−cos𝛽, 0, sin 𝛽 , 0) + (sin𝜔)𝐽2(0, −cos𝛽, 0, −sin 𝛽) 

            = (−cos𝜔 sin 𝛽 ,− sin𝜔cos𝛽 , cos𝜔cos𝛽, −sin𝜔 sin 𝛽) 

 

‖𝐽𝜔W1‖ = 1,  ‖W2‖ = 1 

𝑔ℝ4(𝐽𝜔W1,  W2) = 𝑔ℝ4 ((−cos𝜔 sin𝛽 , − sin𝜔cos𝛽 , cos𝜔cos𝛽, −sin𝜔 sin𝛽), (0,
1

√2
, 0,

1

√2
)) 

                            = −
1

√2
sin𝜔 (cos𝛽+ sin𝛽) 

 

eşitlikleri kullanılarak cos 𝜃 = −
1

√2
sin𝜔 (cos𝛽 + sin𝛽) 𝑖𝑠𝑒  𝜃 =

arccos (−
1

√2
sin𝜔 (cos𝛽 + sin𝛽)) bulunur. Buradan hareketle, 𝒦 eğik fonksiyonu 𝜃 =

arccos (−
1

√2
sin𝜔 (cos𝛽 + sin𝛽)) ile birlikte noktasal eğik Riemann dönüşümdür 

(Demir, 2023). 

 

Tanım 2.4.2. (𝐵1, 𝑔𝐵1) Riemann manifold olsun ve (𝐵2, 𝑔𝐵2 , 𝐽𝐵2) hemen hemen 

Hermityen manifold olmak üzere; 

 

𝒦: (𝐵1, 𝑔𝐵1) → (𝐵2, 𝑔𝐵2 , 𝐽𝐵2) 
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bir Riemann dönüşüm olsun. Eğer  ∀ q1 ∈ 𝐵2 noktası için sıfırdan farklı olan bir 

𝒦∗(𝑌)  ∈ Γ(gör𝒦∗)q1 vektörü için  𝐽𝐵2𝒦∗(𝑌) ve (gör𝒦∗)q1 uzayı arasındaki 𝜃(𝑌) 

wirtinger açısı 𝑌 ∈ Γ(gör𝒦∗)q1 vektör alanından bağımsız ve aynı zamanda da  q1 ∈ 𝐵2 

noktasının seçiminden de bağımsız oluyorsa  𝒦 dönüşümü bir noktasal eğik Riemann 

dönüşüm olarak adlandırılır  (Akyol ve Gündüzalp, 2023).  

 

Buradan hareketle 𝜃 açısı 𝐵2 üzerinde noktasal eğik Riemann dönüşümünün eğik 

fonksiyonu olarak isimlendirilir. Eğer 𝐵1′nin her noktası tamamen gerçek nokta oluyorsa,  

𝒦 noktasal eğik Riemann dönüşümü tamamen gerçek dönüşüm olarak isimlendirilir 

(Akyol ve Gündüzalp, 2023). 

 

Örnek 2.4.4. (ℝ4, 𝑔ℝ4) bir Riemann manifold ve (ℝ4, 𝐽𝜔 , 𝑔ℝ4) bir hemen hemen 

Hermityen manifold olsun. Bu hemen hemen Hermityen manifold üzerinde  𝐽1, 𝐽𝟐 ve 𝐽𝜔 

hemen hemen kompleks yapılarını 𝐽1𝐽2 = −𝐽2𝐽1ve 𝐽𝜔 = (cos𝜔) 𝐽1 + (sin𝜔)𝐽2 koşullarını 

sağlayacak biçimde tanımlansın. ℝ4 üzerindeki {𝐽1, 𝐽2} hemen hemen kompleks 

yapılarını, 

𝐽1(𝑑1, 𝑑2, 𝑑3, 𝑑4) = (−𝑑3, −𝑑4, 𝑑1, 𝑑2) 

 

𝐽2(𝑑1, 𝑑2, 𝑑3, 𝑑4) = (−𝑑2, 𝑑1, 𝑑4, −𝑑3) 

şeklinde seçelim. 

 

𝒦:   (ℝ3, 𝑔𝐵2) → (ℝ𝜔
4 , 𝑔𝐵1 , 𝐽), 𝒦(𝑧1, 𝑧2, 𝑧3) = (𝑧1,

𝑧2 + 𝑧3

√3
,
𝑧2 + 𝑧3

√6
,−4) 

 

ile verilen bir 𝒦 ∶ (ℝ3 → ℝ𝜔
4 ) Riemann dönüşümü ele alalım. Bu durumda, rank𝒦 = 2  

ve  𝜃 = arccos
1

√3
(√2 sin𝜔 + cos𝜔) ve 𝒦, eğik fonksiyonu 𝜔 olan bir noktasal eğik 

Riemann dönüşümdür (Akyol ve Gündüzalp, 2023). 

 

Örnek 2.4.5. (ℝ8, 𝑔ℝ8) bir Riemann manifold ve (ℝ8, 𝐽𝜔 , 𝑔ℝ8) bir hemen hemen 

Hermityen manifold olsun. Bu hemen hemen Hermityen manifold üzerinde  𝐽1, 𝐽𝟐  ve 𝐽𝜔 

hemen hemen kompleks yapılarını 𝐽1𝐽2 = −𝐽2𝐽1 ve  
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𝐽𝜔 = (cos𝜔) 𝐽1 + (sin𝜔)𝐽2 koşullarını sağlayacak şekilde tanımlansın. ℝ8 üzerindeki 

{𝐽1, 𝐽2} hemen hemen kompleks yapıları 

𝐽1(𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6, 𝑡7, 𝑡8) = (−𝑡8, −𝑡7, −𝑡6, −𝑡5, 𝑡4, 𝑡3, 𝑡2, 𝑡1) 

ve 

𝐽2(𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6, 𝑡7, 𝑡8) = (−𝑡2, 𝑡1, −𝑡4, 𝑡3, −𝑡6, 𝑡5, −𝑡8, 𝑡7) 

biçimde tanımlansın. Şimdi  𝐽1𝐽2 = −𝐽2𝐽1 olduğunu gösterelim. 

 𝐽1(−𝑡2, 𝑡1, −𝑡4, 𝑡3, −𝑡6, 𝑡5, −𝑡8, 𝑡7) = (𝑡7, −𝑡8, 𝑡5, −𝑡6, −𝑡3, 𝑡4, −𝑡1, 𝑡2) 

 𝐽2(−𝑡8, −𝑡7, −𝑡6, −𝑡5, 𝑡4, 𝑡3, 𝑡2, 𝑡1)  = (−𝑡7, 𝑡8, −𝑡5, 𝑡6, 𝑡3, −𝑡4, 𝑡1, 𝑡2) 

olup  𝐽1𝐽2 = −𝐽2𝐽1 eşitliği sağlanmış olur. 

 

𝐽𝜔 = cos𝜔 𝐽1 + sin𝜔 𝐽2 

eşitliğindeki 𝐽𝜔, ℝ8 üzerindeki hemen hemen kompleks yapıdır. 

𝒦, bir Riemann manifoldundan bir hemen hemen Hermityen manifolda tanımlanan 

 

𝒦:   (ℝ8, 𝑔ℝ8) → (ℝ𝜔
8 , 𝐽𝜔 ,𝑔ℝ8) 

bir Riemann dönüşümü  

𝒦(𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5, 𝑧6, 𝑧7, 𝑧8) = (cos 𝛿 𝑧1 − sin 𝛿 𝑧8, sin 𝛿 , 1,√80, 0,√11, 0,
2𝑧2 + √3𝑧7

√7
) 

şeklinde seçelim. 

𝒦∗ =

[
 
 
 
 
 
 
 
 
cos 𝛿 0 0 0 0 0 0 − sin 𝛿
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 2
√7
⁄ 0 0 0 0 √3

√7
⁄ 0

]
 
 
 
 
 
 
 
 

 

Bu durumda, 𝑟𝑎𝑛𝑘𝒦∗ = 2 olup 

(ç𝑒𝑘𝒦∗)
⟘ = {𝑈1 = cos 𝛿

𝜕

𝜕𝑧1
− sin 𝛿

𝜕

𝜕𝑧8
    , 𝑈2 =

2

√7

𝜕

𝜕𝑧2
+
√3

√7

𝜕

𝜕𝑧7
} 

𝑔ö𝑟𝒦∗ = {𝐿1
∗ = cos 𝛿

𝜕

𝜕𝑦
1

− sin 𝛿
𝜕

𝜕𝑦
8

, 𝐿2
∗ =

2

√7

𝜕

𝜕𝑦
2

+
√3

√7

𝜕

𝜕𝑦
7

} 

𝐽𝐿1
∗ = cos𝜔𝐽1(cos 𝛿 , 0,0,0,0,0,0,− sin 𝛿) + sin𝜔𝐽2(cos 𝛿 , 0,0,0,0,0,0, − sin 𝛿) 

                = cos𝜔(sin 𝛿 , 0,0,0,0,0,0, cos 𝛿) + sin𝜔(0,− cos 𝛿 , 0,0,0,0, − sin 𝛿 , 0) 
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                = (cos𝜔 sin 𝛿 , −sin𝜔 cos 𝛿 , 0,0,0,0, −sin𝜔 sin 𝛿 , cos𝜔 cos 𝛿) 

 

 𝑔ℝ8(𝐽𝐿1
∗, 𝐿2

∗)

=  𝑔ℝ8 ((cos𝜔 sin 𝛿 , −sin𝜔 cos 𝛿 , 0,0,0,0, −sin𝜔 sin 𝛿 , cos𝜔 cos 𝛿), (0,
2

√7
, 0,0,0,0,

√3

√7
, 0)) 

= −
sin𝜔

√7
(2 cos 𝛿 + √3 sin 𝛿) 

elde edilir. Buradan,  

cos 𝜃 =
 𝑔  ℝ8(𝐽𝐿1

∗, 𝐿2
∗)

‖𝐽𝐿1
∗‖‖𝐿2

∗‖
=
−
sin𝜔

√7
(2 cos 𝛿 + √3 sin 𝛿)

1
= −

sin𝜔

√7
(2 cos 𝛿 + √3 sin 𝛿) 

olup 

𝜃 = 𝑎𝑟𝑐 cos (−
sin𝜔

√7
(2 cos 𝛿+ √3 sin 𝛿)) 

yazılabildiğinden 𝒦 bir noktasal eğik Riemann dönüşümdür (Demir, 2023). 
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3. HEMEN HEMEN HERMİTYEN MANİFOLDLARINDAN 

RİEMANN MANİFOLDLARINA NOKTASAL YARI-EĞİK 

RİEMANN DÖNÜŞÜMLER 
 

 

 

Bu bölümde kompleks geometri alanında, hemen hemen Hermityen manifoldlarından 

Riemann manifoldlarına tanımlanan noktasal yarı-eğik Riemann dönüşümleriyle ilgili 

tanımlar, teoremler ve örnekler sunulacaktır. Noktasal yarı-eğik Riemann dönüşümlerinin 

doğurduğu distribüsyonların geometrisi incelenerek ayrışım teoremleri üzerinde 

durulacaktır. 

 

3.1. Hemen Hemen Hermityen Manifoldundan Riemann Manifolduna Tanımlı Yarı- 

Eğik Riemann Dönüşümler 

 

Tanım 3.1.1. (𝑁1, 𝑔𝑁1 , 𝐽1) bir hemen hemen Hermityen manifoldu ve (𝑁2, 𝑔𝑁2) bir 

Riemann manifoldu olsun. Bu durumda, eğer 𝑘𝑒𝑟𝛿∗ üzerinde bir çift ortogonal 𝐷𝜙 ve 𝐷⊤ 

distribüsyonu varsa, bir Riemann dönüşümü 𝛿:𝑁1 → 𝑁2 noktasal yarı-eğimli bir Riemann 

dönüşümdür. Öyle ki, 

 1. 𝑘𝑒𝑟𝛿∗ uzayı, D𝜙⊕D⊤ ortogonal direkt ayrışımı olarak tanımlanır. 

 2. D⊤ distribüsyonu invaryanttır. 

 3. D𝜙 distribüsyonu 𝜙 yarı-eğim fonksiyonu ile noktasal eğik bir yapıdadır. 

Bu durumda, 𝜙 açısı, noktasal yarı-eğimli bir Riemann dönüşümünün yarı-eğim 

fonksiyonu olarak adlandırılır. Ve bu fonksiyon 𝑁1 üzerindeki bir fonksiyon olarak 

değerlendirilir (Gündüzalp ve Akyol, 2023). 

Şimdi, has noktasal yarı-eğimli bir Riemann dönüşümleri için örnekler vereceğiz. 𝐽1,  𝑅
8 

üzerindeki bir hemen hemen kompleks yapı olsun. 

𝐽1(𝑎1, . . . , 𝑎8) = (𝑎2, −𝑎1, . . . , 𝑎8, −𝑎7).                             (3.1.1)  

 

Örnek 3.1.1. 𝑥, 𝑦: 𝑅8 → 𝑅 ‘nin reel değerli fonksiyonlar olduğu yerde, bir 

dönüşüm 𝛿: 𝑅8 → 𝑅6 şu şekilde verilsin: 

𝛿(𝑧1, . . . , 𝑧8) = (𝑧1cos𝑥 − 𝑧3sin𝑥, 𝑧2sin𝑦 − 𝑧4cos𝑦, 𝑧5, 𝑧6, 0, −10)        (3.1.2) 
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ile tanımlansın. Bu durumda, 𝛿 dönüşümü noktasal yarı-eğimli bir Riemann 

dönüşümüdür. Öyle ki, cos𝜙 = sin(𝑥 + 𝑦) olan 𝜙 yarı-eğim fonksiyonu ile 

D⊤ =<
𝜕

𝜕𝑧7
,
𝜕

𝜕𝑧8
> 

𝑣𝑒 

D𝜙 =< 𝑠𝑖𝑛𝑥
𝜕

𝜕𝑧1
+ cos𝑥

𝜕

𝜕𝑧3
, cos𝑦

𝜕

𝜕𝑧2
+ sin𝑦

𝜕

𝜕𝑧4
>                      (3.1.3) 

 

olur (Gündüzalp ve Akyol, 2023). 

 

Örnek 3.1.2. (ℝ6, 𝑔ℝ6) bir Riemann manifold ve (ℝ8, 𝐽𝜔 , 𝑔ℝ8) bir hemen hemen 

Hermityen manifold olsun. Bu durumda hemen hemen Hermityen manifold üzerinde  

𝐽𝜔(𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6, 𝑡7, 𝑡8) = (−𝑡2, 𝑡1, −𝑡4, 𝑡3, −𝑡6, 𝑡5, −𝑡8, 𝑡7) biçiminde tanımlansın. 

ℝ8 üzerindeki 𝐽𝜔 hemen hemen kompleks yapıdır.  

𝒦, bir hemen hemen Hermityen manifolddan bir Riemann manifolduna tanımlanan 

 

𝒦: (ℝ𝜔
8 , 𝐽𝜔 ,𝑔ℝ8) → (ℝ

6, 𝑔ℝ6) 

bir Riemann dönüşümü olup  

 

𝒦(𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5, 𝑧6, 𝑧7, 𝑧8)               

= (
𝑐𝑜𝑡 𝛽

𝑐𝑜𝑠𝑒𝑐𝛽
𝑧1 −

1

𝑐𝑜𝑠𝑒𝑐𝛽
𝑧3,

1

𝑐𝑜𝑠𝑒𝑐𝛽
𝑧2 −

𝑐𝑜𝑡 𝛽

𝑐𝑜𝑠𝑒𝑐𝛽
𝑧4, 13, √82, 𝑧7, 𝑧8) 

 

 

biçiminde yazalım. 𝒦 nın Jakobiyen matrisi, 

𝒦∗ =

[
 
 
 
 
 
 
 
𝑐𝑜𝑡 𝛽

𝑐𝑜𝑠𝑒𝑐𝛽
0 −

1

𝑐𝑜𝑠𝑒𝑐𝛽
0 0 0 0 0

0
1

𝑐𝑜𝑠𝑒𝑐𝛽
0 −

𝑐𝑜𝑡 𝛽

𝑐𝑜𝑠𝑒𝑐𝛽
0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1]

 
 
 
 
 
 
 

 

 

Buradan, 𝑟𝑎𝑛𝑘𝒦∗ = 4 bulunup 
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𝑘𝑒𝑟𝒦∗ = 𝑠𝑝𝑎𝑛 {𝑉1 = 𝑡𝑎𝑛𝛽
𝜕

𝜕𝑧1
+
𝜕

𝜕𝑧3
   , 𝑉2 =

𝜕

𝜕𝑧2
+ 𝑡𝑎𝑛𝛽

𝜕

𝜕𝑧4
   , 𝑉3 =

𝜕

𝜕𝑧5
  , 𝑉4 =

𝜕

𝜕𝑧6
} 

(𝑘𝑒𝑟𝒦∗)
⟘ = 𝑠𝑝𝑎𝑛

{
 

 𝑈1 =
cot 𝛽

𝑐𝑜𝑠𝑒𝑐𝛽

𝜕

𝜕𝑧1
−

1

𝑐𝑜𝑠𝑒𝑐𝛽

𝜕

𝜕𝑧3
,    𝑈2 =

1

𝑐𝑜𝑠𝑒𝑐𝛽

𝜕

𝜕𝑧2
−
cot 𝛽

𝑐𝑜𝑠𝑒𝑐𝛽

𝜕

𝜕𝑧4
,

𝑈3 =
𝜕

𝜕𝑧7
 ,       𝑈4 =

𝜕

𝜕𝑧8 }
 

 

 

şeklinde yazılır. 

 

𝑈1 =
𝑐𝑜𝑡 𝛽

𝑐𝑜𝑠𝑒𝑐𝛽

𝜕

𝜕𝑧1
−

1

𝑐𝑜𝑠𝑒𝑐𝛽

𝜕

𝜕𝑧3
  olup  𝑔ℝ8(𝑈1, 𝑈1) = 1 

𝒦∗(𝑈1) = (
𝑐𝑜𝑡2𝛽

𝑐𝑜𝑠𝑒𝑐2𝛽
+

1

𝑐𝑜𝑠𝑒𝑐2𝛽
, 0,0,0,0,0) olup  𝑔ℝ6(𝒦∗(𝑈1),𝒦∗(𝑈1)) = 1 bulunur.  

 

Benzer işlemlerle 𝑈2 , 𝑈3 𝑣𝑒 𝑈4  yatay vektörlerinin uzunluklarının (boylarının) 

korunduğu açıktır. Şimdi, 

𝐽𝜔(𝑉1) = 𝑡𝑎𝑛𝛽
𝜕

𝜕𝑧2
+
𝜕

𝜕𝑧4
 

bulunup, 

 𝑔ℝ8(𝐽𝜔(𝑉1), 𝑉2) =  𝑔ℝ8((0, 𝑡𝑎𝑛𝛽, 0,1,0,0,0,0), (0,1,0, 𝑡𝑎𝑛𝛽, 0,0,0,0)) = 2𝑡𝑎𝑛𝛽 

bulunur. Buradan,  

cos 𝜃 =
 𝑔ℝ8(𝐽𝜔(𝑉1), 𝑉2)

‖𝐽𝜔(𝑉1)‖‖𝑉2‖
=

2𝑡𝑎𝑛𝛽

(√𝑡𝑎𝑛2𝛽 + 1). (√𝑡𝑎𝑛2𝛽 + 1)
=
2𝑡𝑎𝑛𝛽

𝑠𝑒𝑐2𝛽
= 2𝑠𝑖𝑛𝛽. 𝑐𝑜𝑠𝛽 = sin (2𝛽) 

𝜃 = arccos (sin(2𝛽)) 

olur. 

𝐽𝜔(𝑉3) =
𝜕

𝜕𝑧8
= 𝑉4 

Bulunduğundan 

𝐷𝜃 = 𝑠𝑝𝑎𝑛{𝑉1, 𝑉2}  , 𝐷
⊤ = 𝑠𝑝𝑎𝑛{𝑉3, 𝑉4}   

 

olur. Buradan  𝑘𝑒𝑟𝒦∗ = 𝐷
𝜃⊕𝐷⊤  yazılır. 𝒦 bir noktasal yarı-eğimli Riemann 

dönüşümdür. 

 

Örnek 3.1.3. (ℝ6, 𝑔ℝ6) bir Riemann manifold ve (ℝ8, 𝐽𝜔 , 𝑔ℝ8) bir hemen hemen 

Hermityen manifold olsun. Bu durumda hemen hemen Hermityen manifold üzerinde  
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𝐽𝜔(𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6, 𝑡7, 𝑡8) = (−𝑡2, 𝑡1, −𝑡4, 𝑡3, −𝑡6, 𝑡5, −𝑡8, 𝑡7) biçiminde tanımlansın. 

ℝ8 üzerindeki 𝐽𝜔 hemen hemen kompleks yapıdır.  

𝒦, bir hemen hemen Hermityen manifolddan bir Riemann manifolduna tanımlanan 

 

𝒦: (ℝ𝜔
8 , 𝐽𝜔 ,𝑔ℝ8) → (ℝ

6, 𝑔ℝ6) 

bir Riemann dönüşümünü 

 

𝒦(𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5, 𝑧6, 𝑧7, 𝑧8)

= (
𝑠𝑖𝑛ℎ 𝛼

√𝑐𝑜𝑠ℎ2𝛼
𝑧1 +

𝑐𝑜𝑠ℎ𝛼

√𝑐𝑜𝑠ℎ2𝛼
𝑧3,

𝑠𝑖𝑛ℎ𝛼

√𝑐𝑜𝑠ℎ2𝛼
𝑧2 −

𝑐𝑜𝑠ℎ𝛼

√𝑐𝑜𝑠ℎ2𝛼
𝑧4, 5,10, 𝑧7, 𝑧8) 

 

biçiminde yazalım. 𝒦 nın Jakobiyen matrisi, 

𝒦∗ =

[
 
 
 
 
 
 
 
𝑠𝑖𝑛ℎ𝛼

√𝑐𝑜𝑠ℎ2𝛼
0

𝑐𝑜𝑠ℎ𝛼

√𝑐𝑜𝑠ℎ2𝛼
0 0 0 0 0

0
𝑠𝑖𝑛ℎ 𝛼

√𝑐𝑜𝑠ℎ2𝛼
0 −

𝑐𝑜𝑠ℎ𝛼

√𝑐𝑜𝑠ℎ2𝛼
0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1]

 
 
 
 
 
 
 

 

Buradan, 𝑟𝑎𝑛𝑘𝒦∗ = 4 bulunup 

𝑘𝑒𝑟𝒦∗ = 𝑠𝑝𝑎𝑛

{
 

 𝑉1 = 𝑐𝑜𝑠ℎ𝛼
𝜕

𝜕𝑧1
− 𝑠𝑖𝑛ℎ 𝛼

𝜕

𝜕𝑧3
    , 𝑉2 = 𝑐𝑜𝑠ℎ𝛼

𝜕

𝜕𝑧2
+ 𝑠𝑖𝑛ℎ𝛼

𝜕

𝜕𝑧4
   ,

𝑉3 =
𝜕

𝜕𝑧5
  , 𝑉4 =

𝜕

𝜕𝑧6 }
 

 

 

(𝑘𝑒𝑟𝒦∗)
⟘ = 𝑠𝑝𝑎𝑛

{
 
 

 
 𝑈1 =

𝑠𝑖𝑛ℎ 𝛼

√𝑐𝑜𝑠ℎ2𝛼

𝜕

𝜕𝑧1
+

𝑐𝑜𝑠ℎ𝛼

√𝑐𝑜𝑠ℎ2𝛼

𝜕

𝜕𝑧3
, 𝑈2 =

1

𝑐𝑜𝑠𝑒𝑐𝛽

𝜕

𝜕𝑧2
−

𝑐𝑜𝑠ℎ𝛼

√𝑐𝑜𝑠ℎ2𝛼

𝜕

𝜕𝑧4
,

𝑈3 =
𝜕

𝜕𝑧7
, 𝑈4 =

𝜕

𝜕𝑧8 }
 
 

 
 

 

şeklinde yazılır. 

𝑈1 =
𝑠𝑖𝑛ℎ 𝛼

√𝑐𝑜𝑠ℎ2𝛼

𝜕

𝜕𝑧1
+

𝑐𝑜𝑠ℎ𝛼

√𝑐𝑜𝑠ℎ2𝛼

𝜕

𝜕𝑧3
  olup  𝑔ℝ8(𝑈1, 𝑈1) = 1 

𝒦∗(𝑈1) = (
(𝑠𝑖𝑛ℎ𝛼)2

𝑐𝑜𝑠ℎ2𝛼
+
(𝑐𝑜𝑠ℎ𝛼)2

𝑐𝑜𝑠ℎ2𝛼
, 0,0,0,0,0) olup  𝑔ℝ6(𝒦∗(𝑈1),𝒦∗(𝑈1)) = 1 bulunur.  

Benzer işlemlerle 𝑈2 , 𝑈3 𝑣𝑒 𝑈4 yatay vektörlerinin uzunluklarının (boylarının) 

korunduğu açıktır.  

𝐽𝜔(𝑉1) = 𝑐𝑜𝑠ℎ𝛼
𝜕

𝜕𝑧2
− 𝑠𝑖𝑛ℎ𝛼

𝜕

𝜕𝑧4
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 𝑔ℝ8(𝐽𝜔(𝑉1), 𝑉2) =  𝑔ℝ8((0, 𝑐𝑜𝑠ℎ𝛼, 0, −𝑠𝑖𝑛ℎ𝛼, 0,0,0,0), (0, 𝑐𝑜𝑠ℎ𝛼, 0, 𝑠𝑖𝑛ℎ𝛼, 0,0,0,0)) 

                              = (𝑐𝑜𝑠ℎ𝛼)2 − (𝑠𝑖𝑛ℎ𝛼)2 = 1 

bulunur. Buradan hareketle,  

cos 𝜃 =
 𝑔
ℝ8
(𝐽𝜔(𝑉1), 𝑉2)

‖𝐽𝜔(𝑉1)‖‖𝑉2‖
=

1

(𝑐𝑜𝑠ℎ𝛼)2 − (𝑠𝑖𝑛ℎ𝛼)2
=

1

𝑐𝑜𝑠ℎ2𝛼
 

𝜃 = arccos(
1

𝑐𝑜𝑠ℎ2𝛼
) 

olur. 

𝐽𝜔(𝑉3) =
𝜕

𝜕𝑧8
= 𝑉4 

bulunduğundan  𝐷𝜃 = 𝑠𝑝𝑎𝑛{𝑉1, 𝑉2}  , 𝐷
⊤ = 𝑠𝑝𝑎𝑛{𝑉3, 𝑉4}  yazılır. 𝑘𝑒𝑟𝒦∗ = 𝐷

𝜃⊕𝐷⊤  

olur.  𝒦 bir noktasal yarı-eğimli Riemann dönüşümdür. 

 

Örnek 3.1.4. (𝑅8, 𝑔𝑅8) Öklid uzayı olsun. 𝐽1𝐽2 = −𝐽2𝐽1’yi sağlayacak şekilde, 𝑅8 

üzerindeki bir çift {𝐽1, 𝐽2} hemen hemen kompleks yapıları göz önüne alalım. Buradan 

hareketle, 

 

𝐽1(𝑏1, . . . , 𝑏8) = (−𝑏3, −𝑏4, 𝑏1, 𝑏2, −𝑏7, −𝑏8, 𝑏5, 𝑏6)                  (3.1.4) 

ve 

𝐽2(𝑏1, . . . , 𝑏8) = (−𝑏2, 𝑏1, 𝑏4, −𝑏3, −𝑏6, 𝑏5, 𝑏8, −𝑏7)                   (3.1.5) 

 

olur. 

Herhangi reel değerli 𝛼: 𝑅8 → 𝑅 fonksiyonu için,  𝐽𝛼 = (cos𝛼)𝐽1 + (sin𝛼)𝐽2 ile, 𝑅8 

üzerinde yeni 𝐽𝛼 hemen hemen kompleks yapısı yazalım. Bu durumda,  

𝑅𝛼
8 = (𝑅8, 𝐽𝛼 , 𝑔𝑅8) bir hemen hemen Hermityen manifold olur.  

 

𝛿(𝑧1, . . . , 𝑧8) = (0,0,0,0,0, 𝑧6, 0, 𝑧8)                                    (3.1.6) 

 

ile bir 𝛿: 𝑅𝛼
8 → 𝑅8 Riemann dönüşümü göz önüne alalım. 

Bu durumda,  

(𝑘𝑒𝑟𝛿∗)
⟘ =< 𝑋1 =

𝜕

𝜕𝑧6
, 𝑋2 =

𝜕

𝜕𝑧8
>                                  (3.1.7) 

Ve 
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𝑘𝑒𝑟𝛿∗ =< 𝑉1 =
𝜕

𝜕𝑧5
, 𝑉2 =

𝜕

𝜕𝑧7
, 𝑉3 =

𝜕

𝜕𝑧1
, 𝑉4 =

𝜕

𝜕𝑧2
, 𝑉5 =

𝜕

𝜕𝑧3
, 𝑉6 =

𝜕

𝜕𝑧4
>          (3.1.8) 

bulunur.  

Öte yandan, 𝐽𝛼(𝑉3) = sin𝛼𝑉4 + cos𝛼𝑉5,       𝐽𝛼(𝑉4) = −sin𝛼𝑉3 + cos𝛼𝑉6, 

𝐽𝛼(𝑉5) = −cos𝛼𝑉3 − sin𝛼𝑉6,      𝐽𝛼(𝑉6) = −cos𝛼𝑉4 + sin𝛼𝑉5 olur. Böylece,  

D𝜙 =< 𝑉1, 𝑉2 > ve D⊤ =< 𝑉3, 𝑉4, 𝑉5, 𝑉6 > olan 𝜙 = 𝛼 yarı-eğim fonksiyonu ile 𝛿  

noktasal yarı-eğimli bir Riemann dönüşümüdür (Gündüzalp ve Akyol, 2023). 

 

𝛿: (𝑁1, 𝑔𝑁1 , 𝐽1) → (𝑁2, 𝑔𝑁2) noktasal yarı-eğimli bir Riemann dönüşümü olsun. Bu 

durumda, 𝑉 ∈ 𝑘𝑒𝑟𝛿∗ için, 

 

𝐽1𝑉 = 𝑄1𝑉 + 𝑄2𝑉                                                     (3.1.9) 

 

ifade edilebilir, burada 𝑄1𝑉 ∈ D
⊤ ve 𝑄2𝑉 ∈ D

𝜙.    𝑉 ∈ 𝑘𝑒𝑟𝛿∗ için, 

 

𝐽1𝑉 = 𝜁𝑉 + 𝜂𝑉,                                                      (3.1.10) 

 

burada 𝜁𝑉 ∈ 𝑘𝑒𝑟𝛿∗ ve 𝜂𝑉 ∈ (𝑘𝑒𝑟𝛿∗)
⊥. Ayriyeten, 𝑌 ∈ (𝑘𝑒𝑟𝛿∗)

⊥ için, 

 

𝐽1𝑌 = 𝜁𝑌̅ + 𝜂̅𝑌                                                        (3.1.11) 

 

olur, burada 𝜁𝑌̅ ∈ 𝑘𝑒𝑟𝛿∗ ve 𝜂̅𝑌 ∈ (𝑘𝑒𝑟𝛿∗)
⊥.     𝐶 ∈ 𝛿−1𝑇𝑁2 için, 

 

𝐶 = 𝑄̅1𝐶 + 𝑄̅2𝐶,                                                       (3.1.12) 

 

elde edilir, burada 𝑄̅1𝐶 ∈ 𝑟𝑎𝑛𝑔𝑒𝛿∗ ve 𝑄̅2𝐶 ∈ (𝑟𝑎𝑛𝑔𝑒𝛿∗)
⊥. Bu durumda, 

 

(𝑘𝑒𝑟𝛿∗)
⊥ = 𝜂D𝜙⊕𝜈,                                              (3.1.13) 

 

burada 𝜈, (𝑘𝑒𝑟𝛿∗)
⊥ içinde 𝜂D𝜙 ortogonal tamamlayıcısı ve 𝐽1 altında invaryanttır. 

İlave olarak, 
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𝜁D⊤ = D⊤, 𝜂D⊤ = 0, 𝜁D𝜙 ⊂ D𝜙, 𝜁(̅(𝑘𝑒𝑟𝛿∗)
⊥) = D𝜙 

                    𝜁2 + 𝜁𝜂̅ = −𝐼, 𝜂̅2 + 𝜂𝜁̅ = −𝐼, 𝜂𝜁 + 𝜂̅𝜂 = 0, 𝜁𝜂̅̅ + 𝜁𝜁̅ = 0.              (3.1.14) 

 

Ayrıca, 𝑉1, 𝑉2 ∈ 𝑘𝑒𝑟𝛿∗ için (𝑁1, 𝑔𝑁1 , 𝐽1) Kaehler ise, aşağıdakilere ulaşmak mümkündür. 

 

(∇𝑉1𝜂)𝑉2 = 𝜂̅𝑇𝑉1𝑉2 − 𝑇𝑉1𝜁𝑉2                                            (3.1.15) 

 

(∇𝑉1𝜁)𝑉2 = 𝜁𝑇̅𝑉1𝑉2 − 𝑇𝑉1𝜂𝑉2,                                           (3.1.16) 

 

Buradaki ∇, 𝑁1 üzerindeki Levi-Civita konneksiyonudur ve 

 

(∇𝑉1𝜂)𝑉2 = ℎ∇𝑉1𝜂𝑉2 − 𝜂∇̂𝑉1𝑉2                                          (3.1.17) 

 

(∇𝑉1𝜁)𝑉2 = ∇̂𝑉1𝜁𝑉2 − 𝜁∇̂𝑉1𝑉2                                             (3.1.18) 

 

(Gündüzalp ve Akyol, 2023). 

 

Aşağıdaki teorem yazılabilir. 

Teorem 3.1.1. 𝛿, 𝜙 yarı-eğim fonksiyonu ile (𝑁1, 𝑔𝑁1 , 𝐽1) hemen hemen Hermityen 

manifoldundan (𝑁2, 𝑔𝑁2) Riemann manifolduna noktasal yarı-eğimli bir Riemann 

dönüşümü olsun. Bu durumda, 

 

𝜁2𝑉1 = −(cos
2𝜙)𝑉1,      𝑉1 ∈ D

𝜙.                                     (3.1.19) 

 

olur. 𝑉1, 𝑉2 ∈ D
𝜙 için aşağıdaki eşitlikler yazılabilir. 

 

𝑔𝑁1(𝜁𝑉1, 𝜁𝑉2) = cos
2𝜙𝑔𝑁1(𝑉1, 𝑉2)                                   (3.1.20) 

 

𝑔𝑁1(𝜂𝑉1, 𝜂𝑉2) = sin
2𝜙𝑔𝑁1(𝑉1, 𝑉2)                                   (3.1.21) 

 

Yarı-eğim fonksiyonu 𝜙 iken, 𝑇𝑁1‘in  
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{𝑋1, 𝐽1𝑋1, … , 𝑋𝑘, 𝐽1𝑋𝑘, 𝑋̅1, sec𝜙𝜁𝑋̅1, 𝑐𝑠𝑐𝜙𝜂𝑋̅1, … , 𝑋̅𝑠, sec𝜙𝜁𝑋̅𝑠, 𝑐𝑠𝑐𝜙𝜂𝑋̅𝑠, 𝑋⏞1 , 𝐽1 𝑋⏞1 , … , 

𝑋⏞𝑡 , 𝐽1 𝑋⏞𝑡} ortonormal çatısını yerel olarak yazabiliriz. Öyle ki, {𝑋1, 𝐽1𝑋1, . . . , 𝑋𝑘, 𝐽1𝑋𝑘}, 

D⊤‘nin bir ortonormal çatısıdır, {𝑋̅1, sec𝜙𝜁𝑋̅1, . . . , 𝑋̅𝑠, sec𝜙𝜁𝑋̅𝑠}, D
𝜙 nin bir ortonormal 

çatısıdır, {𝑐𝑠𝑐𝜙𝜂𝑋̅1, . . . , 𝑐𝑠𝑐𝜙𝜂𝑋̅𝑠}, 𝜂D
𝜙 nin bir ortonormal çatısıdır, 

{𝑋⏞1 , 𝐽1 𝑋⏞1 , . . . , 𝑋⏞𝑡 , 𝐽1 𝑋⏞𝑡}, 𝜈’nin bir ortonormal çatısıdır (Gündüzalp ve Akyol, 2023). 

Buradan aşağıdaki sonucu ifade edebiliriz. 

 

Lemma 3.1.1. 𝛿, 𝜙 yarı-eğim fonksiyonu ile (𝑁1, 𝑔𝑁1 , 𝐽1) Kaehler manifoldundan 

(𝑁2, 𝑔𝑁2) Riemann manifolduna noktasal yarı-eğimli bir Riemann dönüşümü olsun. 𝜂 

paralel iken, 𝑉1 ∈ 𝐷
𝜙 için, 

 

𝑇𝜁𝑉1𝜁𝑉1 = −cos
2𝜙𝑇𝑉1𝑉1                                              (3.1.22) 

 

olur (Gündüzalp ve Akyol, 2023). 

Aşağıdaki teoremler verilebilir: 

 

Teorem 3.1.2. 𝛿, 𝜙 yarı-eğim fonksiyonu ile (𝑁1, 𝑔𝑁1 , 𝐽1) Kaehler manifoldundan 

(𝑁2, 𝑔𝑁2) Riemann manifolduna noktasal yarı-eğimli bir Riemann dönüşümü olsun. Bu 

durumda, sadece ve sadece 𝑉1, 𝑉2 ∈ 𝐷
⊤ için  𝐷⊤  distribüsyonu integrallenebilirdir ve 

 

𝜂(∇̂𝑉1𝑉2 − ∇̂𝑉2𝑉1) = 0                                               (3.1.23) 

 

elde edilir (Gündüzalp ve Akyol, 2023). 

 

Teorem 3.1.3. 𝛿, 𝜙 yarı-eğim fonksiyonu ile (𝑁1, 𝑔𝑁1 , 𝐽1) Kaehler manifoldundan 

(𝑁2, 𝑔𝑁2) Riemann manifolduna noktasal yarı-eğimli bir Riemann dönüşümü olsun, öyle 

ki 𝐷⊤ integrallenebilirdir. Bu durumda, sadece ve sadece 𝐷𝜙 üzerindeki 𝑡𝑟𝑎𝑐𝑒(∇𝛿∗) = 0 

ve 𝐻̅ = 0 olursa 𝛿  harmonik olur. Burada 𝐻̅ = 0, 𝑟𝑎𝑛𝑔𝑒𝛿∗’nin ortalama eğrilik vektör 

alanınını ifade eder (Gündüzalp ve Akyol, 2023). 

Bu sebeple aşağıdaki sonuca varırız. 
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Sonuç 3.1.1. 𝛿, (𝑁1, 𝑔𝑁1 , 𝐽1) Kaehler manifoldundan (𝑁2, 𝑔𝑁2) Riemann manifolduna 

noktasal yarı-eğimli bir Riemann dönüşümü olsun, öyle ki 𝐷⊤ integrallenebilir ve 𝜙 yarı-

eğim fonksiyonudur. Kabul edilsin ki, tensör 𝜂 paraleldir. Bu durumda, sadece ve sadece 

𝐻̅ = 0 olursa 𝛿 harmonik olur (Gündüzalp ve Akyol, 2023). 

Teorem 3.1.4. 𝛿, 𝜙 yarı-eğim fonksiyonu ile (𝑁1, 𝑔𝑁1 , 𝐽1) Kaehler manifoldundan 

(𝑁2, 𝑔𝑁2) Riemann manifolduna noktasal yarı-eğimli bir Riemann dönüşümü olsun. Bu 

durumda,  𝑈1, 𝑈2 ∈ D
⊤, 𝑈3 ∈ D

𝜙 ve 𝑌 ∈ (𝑘𝑒𝑟𝛿∗)
⊥ için, sadece ve sadece 

 

𝑔𝑁1(∇̂𝑈1𝐽1𝑈2, 𝜁𝑌̅) = 𝑔𝑁2((∇𝛿∗)(𝑈1, 𝐽1𝑈2), 𝛿∗𝜂̅𝑌)                    (3.1.24) 

  ve 

−cos2𝜙𝑔𝑁1(∇̂𝑈1𝑈2, 𝑈3) = 𝑔𝑁2((∇𝛿∗)(𝑈1, 𝑈2), 𝛿∗𝜂𝜁𝑈3) 

                                                                    +𝑔𝑁1(T𝑈1𝐽1𝑈2, 𝜂𝑈3)                                (3.1.25) 

 

olursa 𝐷⊤, 𝑁1 üzerinde tamamen jeodezik bir foliasyon tanımlar (Gündüzalp ve Akyol, 

2023). 

 

Teorem 3.1.5. 𝛿, 𝜙 yarı-eğim fonksiyonu ile (𝑁1, 𝑔𝑁1 , 𝐽1) Kaehler manifoldundan 

(𝑁2, 𝑔𝑁2) Riemann manifolduna noktasal yarı-eğimli bir Riemann dönüşümü olsun. Bu 

durumda,  𝑈1, 𝑈2 ∈ D
𝜙, 𝑈3 ∈ D

⊤ ve 𝑌 ∈ (𝑘𝑒𝑟𝛿∗)
⊥ için, sadece ve sadece 

 

sin2𝜙𝑔𝑁1([𝑈1, 𝑌], 𝑈2) = sin2𝜙𝑌(𝜙)𝑔𝑁1(𝑈1, 𝑈2) + 𝑔𝑁1(A𝑌𝜂𝜁𝑈1, 𝑈2) 

                                                     −𝑔𝑁1(A𝑌𝜂𝑈1, 𝜁𝑈2) − 𝑔𝑁2(𝛿∗ℎ∇𝑌𝜂𝑈1, 𝛿∗𝜂𝑈2)    (3.1.26) 

ve 

0 = −𝑔𝑁1(T𝑈1𝜂𝜁𝑈2, 𝑈3) + 𝑔𝑁1(T𝑈1𝜂𝑈2, 𝐽1𝑈3)                       (3.1.27) 

 

eşitlikleri mevcutsa 𝐷𝜙, 𝑁1 üzerinde tamamen jeodezik bir foliasyon tanımlar 

(Gündüzalp ve Akyol, 2023). 

 

Teorem 3.1.6. 𝛿, 𝜙 yarı-eğim fonksiyonu ile (𝑁1, 𝑔𝑁1 , 𝐽1) Kaehler manifoldundan 

(𝑁2, 𝑔𝑁2) Riemann manifolduna noktasal yarı-eğimli bir Riemann dönüşümü olsun. 

Bu durumda,  𝑈1, 𝑈2 ∈ 𝑘𝑒𝑟𝛿∗    ve     𝑌 ∈ (𝑘𝑒𝑟𝛿∗)
⊥ için, sadece ve sadece 
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𝑔𝑁1(A𝑌𝐽1𝑄2𝑈1, 𝐽1𝑈2) = −sin
2𝜙𝑔𝑁1([𝑈1, 𝑌], 𝑈2) + cos

2𝜙𝑔𝑁1(𝑣∇𝑌𝑄2𝑈1, 𝑈2)  

                                      +sin2𝜙𝑌(𝜙)𝑔𝑁1(𝑄1𝑈1, 𝑈2) + 𝑔𝑁1(A𝑌𝜂𝜁𝑄1𝑈1, 𝑈2) 

                                −𝑔𝑁1(A𝑌𝜂𝑄1𝑈1, 𝐽1𝑈2) − 𝑔𝑁1(ℎ∇𝑌𝜂𝑄1𝑈1, 𝐽1𝑈2) 

                                                       −𝑔𝑁1(𝑣∇𝑌𝐽1𝑄2𝑈1, 𝐽1𝑈2)                                                ( 3.1.18) 

 

eşitliği mevcutsa (𝑘𝑒𝑟𝛿∗) uzayı, 𝑁1 üzerinde tamamen jeodezik bir foliasyon tanımlar 

(Gündüzalp ve Akyol, 2023). 

 

Teorem 3.1.7. 𝜑, 𝜙 yarı-eğim fonksiyonu ile (𝐵1, 𝑔𝐵1 , 𝐽1) Kaehler manifoldundan 

(𝐵2, 𝑔𝐵2) Riemann manifolduna noktasal yarı-eğimli bir Riemann dönüşümü olsun. Bu 

durumda, 𝑉2 ∈ D
𝜙, 𝑉1 ∈ D

⊤ ve 𝑈1, 𝑈2 ∈ (𝑘𝑒𝑟𝜑∗)
⊥ için, sadece ve sadece 

 

                                            (3.1.29) 

ve 

         (3.1.30) 

 

olursa (𝑘𝑒𝑟𝜑∗)
⊥ uzayı, 𝐵1 üzerinde tamamen jeodezik bir foliasyon tanımlar (Gündüzalp 

ve Akyol, 2023). 

 

Bu bölümde, kompleks uzay formlardan Riemann manifoldlarına noktasal yarı-eğimli 

Riemann dönüşümleri için Chen-Ricci eşitsizliklerini içinde barındıran eğrilik ilişkileri 

ele alınmıştır. 

 (𝐵1, 𝑔𝐵1 , 𝐽1) bir Kaehler manifoldu olsun. 𝑣 sabit holomorfik kesitsel eğriliğin karmaşık 

bir 𝐵1(𝑣) uzay formunun Riemann Christoffel eğiklik tensörü, tüm  

𝑌1, 𝑌2, 𝒴3, 𝒴4 ∈ Γ(𝑇𝐵1) vektör alanları için aşağıdaki eşitliği sağlar (Yano ve Kon, 1985). 

 

 

                      

                                                                                        (3.1.31) 

(Yano ve Kon, 1985). 
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 (𝐵1
𝑛1(𝜈), 𝑔𝐵1) kompleks uzay formu, (𝐵2, 𝑔𝐵2) bir Riemann manifoldu,  

(𝑟𝑎𝑛𝑔𝑒𝛿∗)
⊥ = {0} ve 𝑑𝑖𝑚(𝑘𝑒𝑟𝛿∗) = 𝑡 = 2𝑘1 + 2𝑘2 ile 𝛿: 𝐵1(𝜈) → 𝐵2 noktasal yarı-

eğimli bir Riemann dönüşümü olsun.  

Her 𝑞 ∈ 𝐵1 için, {𝑋1, 𝑋2 = 𝐽1𝑋1, . . . , 𝑋2𝑘1−1, 𝑋2𝑘1 = 𝐽1𝑋2𝑘1−1, 𝑋2𝑘1+1, 𝑋2𝑘1+2 =

sec𝜙𝜁𝑋2𝑘1+1. . . , 𝑋2𝑘1+2𝑘2−1, 𝑋𝑡 = sec𝜙𝜁𝑋2𝑘1+2𝑘2−1} ve {𝑋𝑡+1, 𝑋𝑡+2, . . . , 𝑋𝑛1} sırasıyla, 

(𝑘𝑒𝑟𝛿∗) ve (𝑘𝑒𝑟𝛿∗)
⊥‘nin ortonormal bazları olarak yazılabilir.  

Aşağıdakine kolaylıkla ulaşılabilir. 

 

𝑔𝐵1
2 (𝐽1𝑋𝑘, 𝑋𝑘+1) = {

1, 𝑓𝑜𝑟   𝑘 ∈ {1,2, . . . ,2𝑘1 − 1};

cos2𝜙, 𝑓𝑜𝑟   𝑘 ∈ {2𝑘1 + 1, . . . ,2𝑘1 + 2𝑘2 − 1}.          (3.1.32)
 

 

Bu şartlarda, 

∑

𝑡

𝑘,𝑠=1

𝑔𝐵1
2 (𝐽1𝑋𝑘, 𝑋𝑘+1) = 2(𝑘1 + 𝑘2cos

2𝜙)                            (3.1.33) 

 

1 ≤ 𝑘, 𝑠 ≤ 𝑡 ve 𝑡 + 1 ≤ 𝜔 ≤ 𝑛1 olduğu yerde, 𝒯𝑘𝑠
𝜔 aşağıdaki gibi tanımlansın. 

 

𝒯𝑘𝑠
𝜔 = 𝑔𝐵1(𝒯𝑋𝑘𝑋𝑠, 𝑋𝜔)                                             (3.1.34) 

 

Şimdi, (Falcitelli vd. 2004)’nın (1.27)’si ve (3.1.31) kullanılarak 𝑘𝑒𝑟𝛿∗ için, 

(𝑟𝑎𝑛𝑔𝑒𝛿∗)
⊥ = {0} ile 𝛿 noktasal yarı-eğimli bir Riemann dönüşümü olduğundan dolayı 

her bir 𝐿1 ∈ 𝑘𝑒𝑟𝛿∗ birim vektörü için ulaşılan sonuç: 

 

𝑅𝑖𝑐𝑘𝑒𝑟𝛿∗(𝐿1) =
𝜈

4
[𝑡 + 2 + 3cos2𝜙] − 𝑡𝑔𝐵1(𝒯𝐿1𝐿1,ℋ) +∑

𝑡

𝑘=1

𝑔𝐵1(𝒯𝑋𝑘𝐿1, 𝒯𝐿1𝑋𝑘) (3.1.35) 

 

olur, burada  ℋ  lifin ortalama eğiklik vektör alanıdır (Gündüzalp ve Akyol, 2023). 

 

 

Buradan hareketle aşağıdaki teorem yazılabilir. 
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Teorem 3.1.8. 𝛿: (𝐵1(𝜈), 𝑔𝐵1) → (𝐵2, 𝑔𝐵2), (𝑟𝑎𝑛𝑔𝑒𝛿∗)
⊥ = {0} ile noktasal yarı-eğimli 

bir Riemann dönüşümü olsun. Bu durumda,  

 

𝑅𝑖𝑐𝑘𝑒𝑟𝛿∗(𝐿1) ≥
𝜈

4
[𝑡 + 2 + 3cos2𝜙] − 𝑡𝑔𝐵1(𝒯𝐿1𝐿1,ℋ)                    (3.1.36) 

 

olur. 

𝐿1 ∈ 𝑘𝑒𝑟𝛿∗ birim dikey vektörü için, eşitsizliğin eşitlik durumu ancak ve ancak her lif 

tamamen jeodezik ise sağlanır (Gündüzalp ve Akyol, 2023). 

 

Polarizasyona göre, (3.1.35) kullanılarak aşağıdakiler elde edilir: 

Teorem 3.1.9. 𝛿: (𝐵1(𝜈), 𝑔𝐵1) → (𝐵2, 𝑔𝐵2), (𝑟𝑎𝑛𝑔𝑒𝛿∗)
⊥ = {0} ile noktasal yarı-eğimli 

bir Riemann dönüşümü olsun. Bu durumda, 𝑘𝑒𝑟𝛿∗ üzerindeki 𝑆𝑘𝑒𝑟𝛿∗ Ricci tensörü alttaki 

eşitsizliği sağlar. 

 

𝑆𝑘𝑒𝑟𝛿∗(𝐿1, 𝐿2) ≥
𝜈

4
[𝑡 + 2 + 3cos2𝜙]𝑔𝐵1(𝐿1, 𝐿2) − 𝑡𝑔𝐵1(𝒯𝐿1𝐿2,ℋ)        (3.1.37) 

 

𝐿1, 𝐿2 ∈ 𝑘𝑒𝑟𝛿∗ için, eşitsizliğin eşitlik durumu ancak ve ancak her lif tamamen jeodezik 

ise sağlanır. 

Benzer şekilde, (Falcitelli vd. 2004)’nın (1.27)’si ve (3.1.31)‘den faydalanarak 𝑘𝑒𝑟𝛿∗ 

için, 

2𝜌𝑘𝑒𝑟𝛿∗ =
𝜈

4
[𝑡(𝑡 − 1) + 6(𝑘1 + 𝑘2cos

2𝜙)] 

                                                      −𝑡2 ∥ ℋ ∥2 

                                                            + ∑

𝑡

𝑘,𝑠=1

𝑔𝐵1(𝒯𝑋𝑘𝑋𝑠, 𝒯𝑋𝑘𝑋𝑠)                                              (3.1.38) 

 

yazılır, burada 𝜌𝑘𝑒𝑟𝛿∗ = ∑1≤𝑘<𝑠≤𝑡 𝑅
𝑘𝑒𝑟𝛿∗(𝑋𝑘, 𝑋𝑠, 𝑋𝑠, 𝑋𝑘)‘dir (Gündüzalp ve Akyol, 

2023). 

 

Bu sebeple, aşağıdaki sonuç yazılabilir. 
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Teorem 3.1.10. 𝛿: (𝐵1(𝜈), 𝑔𝐵1) → (𝐵2, 𝑔𝐵2), (𝑟𝑎𝑛𝑔𝑒𝛿∗)
⊥ = {0} ile noktasal yarı-eğimli 

bir Riemann dönüşümü olsun. Bu durumda, aşağıdaki eşitsizliğin eşitlik durumu ancak ve 

ancak her lif tamamen jeodezik ise sağlanır. 

 

2𝜌𝑘𝑒𝑟𝛿∗ ≥
𝜈

4
[𝑡(𝑡 − 1) + 6(𝑘1 + 𝑘2cos

2𝜙)] − 𝑡2 ∥ ℋ ∥2                   (3.1.39) 

 

Şimdi, (𝑟𝑎𝑛𝑔𝑒𝛿∗)
⊥ = {0} ile noktasal yarı-eğimli bir Riemann dönüşümü için, 𝑘𝑒𝑟𝛿∗ 

üzerindeki Chen-Ricci eşitsizliği verilecektir.  

(3.1.34) ve (3.1.38)‘den faydalanarak varılan sonuç aşağıda verilmiştir. 

 

 2𝜌𝑘𝑒𝑟𝛿∗ =
𝜈

4
[𝑡(𝑡 − 1) + 6(𝑘1 + 𝑘2cos

2𝜙)] 

                                                     −𝑡2 ∥ ℋ ∥2+ ∑
𝑛1
𝜔=𝑡+1 ∑

𝑡
𝑘,𝑠=1 (𝒯𝑘𝑠

𝜔)2                    (3.1.40)

     

(Gülbahar vd. 2017) den bilindiği üzere; 

 

∑

𝑛1

𝜔=𝑡+1

∑

𝑡

𝑘,𝑠=1

(𝒯𝑘𝑠
𝜔)2 =

1

2
𝑡2 ∥ ℋ ∥2 

         +
1

2
∑

𝑛1

𝜔=𝑡+1

[𝒯11
𝜔 − 𝒯22

𝜔−. . . −𝒯𝑡𝑡
𝜔]2 + 2 ∑

𝑛1

𝜔=𝑡+1

∑

𝑡

𝑠=2

(𝒯1𝑠
𝜔)2 

                      −2∑
𝑛1
𝜔=𝑡+1 ∑

𝑡
2≤𝑘<𝑠≤𝑡 [𝒯𝑘𝑘

𝜔𝒯𝑠𝑠
𝜔 − (𝒯𝑘𝑠

𝜔)2]                             (3.1.41) 

 

(3.1.40)’a (3.1.41) yerleştirilirse aşağıdaki eşitlik bulunur. 

 

2𝜌𝑘𝑒𝑟𝛿∗ =
𝜈

4
[𝑡(𝑡 − 1) + 6(𝑘1 + 𝑘2cos

2𝜙)] 

                                                  −
1

2
𝑡2 ∥ ℋ ∥2+

1

2
∑𝑛1𝜔=𝑡+1 [𝒯11

𝜔 − 𝒯22
𝜔−. . . −𝒯𝑡𝑡

𝜔]2 

                                                  +2∑
𝑛1
𝜔=𝑡+1 ∑

𝑡
𝑠=2 (𝒯1𝑠

𝜔)2 

                                                  −2∑
𝑛1
𝜔=𝑡+1 ∑

𝑡
2≤𝑘<𝑠≤𝑡 [𝒯𝑘𝑘

𝜔𝒯𝑠𝑠
𝜔 − (𝒯𝑘𝑠

𝜔)2]                 (3.1.42) 

 

Buradan da elde edilen: 
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2𝜌𝑘𝑒𝑟𝛿∗ ≥
𝜈

4
[𝑡(𝑡 − 1) + 6(𝑘1 + 𝑘2cos

2𝜙)] 

                −
1

2
𝑡2 ∥ ℋ ∥2− 2∑

𝑛1
𝜔=𝑡+1 ∑

𝑡
2≤𝑘<𝑠≤𝑡 [𝒯𝑘𝑘

𝜔𝒯𝑠𝑠
𝜔 − (𝒯𝑘𝑠

𝜔)2]                              (3.1.43)

    

olur. 

Öte yandan, (Falcitelli vd. 2004)’nın (1.27)’si ve (3.1.31) den faydalanarak,  

𝑈 = 𝑊 = 𝑋𝑘, 𝑉 = 𝐹 = 𝑋𝑠 ele alınarak ve (3.1.34)’dende faydalanarak 

 

2 ∑

2≤𝑘<𝑠≤𝑡

𝑅𝑁1(𝑋𝑘, 𝑋𝑠, 𝑋𝑠, 𝑋𝑘) = 2 ∑

2≤𝑘<𝑠≤𝑡

𝑅𝑘𝑒𝑟𝛿∗(𝑋𝑘, 𝑋𝑠, 𝑋𝑠, 𝑋𝑘) 

                                                            +2∑
𝑛1
𝜔=𝑡+1 ∑

𝑡
2≤𝑘<𝑠≤𝑡 [𝒯𝑘𝑘

𝜔𝒯𝑠𝑠
𝜔 − (𝒯𝑘𝑠

𝜔)2]      (3.1.44) 

 

bulunur. 

Son eşitliğe göre, (3.1.43) şu şekilde 

 

2𝜌𝑘𝑒𝑟𝛿∗ ≥
𝜈

4
[𝑡(𝑡 − 1) + 6(𝑘1 + 𝑘2cos

2𝜙)] −
1

2
𝑡2 ∥ ℋ ∥2 

                                        +2∑2≤𝑘<𝑠≤𝑡 𝑅
𝑘𝑒𝑟𝛿∗(𝑋𝑘, 𝑋𝑠, 𝑋𝑠, 𝑋𝑘) 

                                        −2∑2≤𝑘<𝑠≤𝑡 𝑅
𝐵1(𝑋𝑘, 𝑋𝑠, 𝑋𝑠, 𝑋𝑘)                                           (3.1.45) 

 

yazılabilir. 

Ayrıca, eşitlik kullanılarak 

 

2𝜌𝑘𝑒𝑟𝛿∗ = 2 ∑

2≤𝑘<𝑠≤𝑡

𝑅𝑘𝑒𝑟𝛿∗(𝑋𝑘, 𝑋𝑠, 𝑋𝑠, 𝑋𝑘) + 2∑

𝑡

𝑠=1

𝑅𝑘𝑒𝑟𝛿∗(𝑋1, 𝑋𝑠, 𝑋𝑠, 𝑋1)     (3.1.46) 

 

olur.  

Bu son eşitlik, (3.1.45) içine yerleştirilirse 

 

2𝑅𝑖𝑐𝑘𝑒𝑟𝛿∗(𝑋1) ≥
𝜈

4
[𝑡(𝑡 − 1) + 6(𝑘1 + 𝑘2cos

2𝜙)] 

                                                    −
1

2
𝑡2 ∥ ℋ ∥2− 2∑2≤𝑘<𝑠≤𝑡 𝑅

𝐵1(𝑋𝑘, 𝑋𝑠, 𝑋𝑠, 𝑋𝑘)   (3.1.47) 

elde edilir.  
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𝐵1 bir kompleks uzay formu olduğundan, 𝐵1‘in 𝑅𝐵1 eğrilik tensörü (3.1.31) denklemini 

sağlar. Bundan dolayı aşağıdaki eşitsizliğe ulaşılır. 

 

𝑅𝑖𝑐𝑘𝑒𝑟𝛿∗(𝑋1) ≥
𝜈

4
(𝑡 − 1) +

3𝜈

4
(1 + cos2𝜙) −

1

4
𝑡2 ∥ ℋ ∥2            (3.1.48) 

 

(Gündüzalp ve Akyol, 2023). 

 

Böylece, aşağıdaki sonuçlara ulaşılabilir. 

Teorem 3.1.11. 𝛿: 𝐵1(𝜈) → 𝐵2, (𝑟𝑎𝑛𝑔𝑒𝛿∗)
⊥ = {0} ile bir (𝐵1(𝜈), 𝑔𝐵1) kompleks uzay 

formundan bir (𝐵2, 𝑔𝐵2) Riemann manifolduna noktasal yarı-eğimli bir Riemann 

dönüşümü olsun. Bu durumda, 

 

𝑅𝑖𝑐𝑘𝑒𝑟𝛿∗(𝑋1) ≥
𝜈

4
(𝑡 − 1) +

3𝜈

4
(1 + cos2𝜙) −

1

4
𝑡2 ∥ ℋ ∥2             (3.1.49) 

 

olur. 

Eşitsizliğin eşitlik durumu, sadece ve sadece 

 

𝒯11
𝜔 = 𝒯22

𝜔+. . . +𝒯𝑡𝑡
𝜔                                                  (3.1.50) 

 

𝒯1𝑠
𝜔 = 0, 𝑠 = 2, . . . , 𝑡                                                  (3.1.51) 

 

mevcutsa mümkün olur (Gündüzalp ve Akyol, 2023).  

 

Buradan aşağıdaki sonuçlara varılabilir. 

Sonuç 3.1.2. 𝛿: 𝐵1(𝜈) → 𝐵2, (𝑟𝑎𝑛𝑔𝑒𝛿∗)
⊥ = {0} ve yarı-eğim fonksiyonu 𝜙 =

𝜋

2
 ile bir 

(𝐵1(𝜈), 𝑔𝐵1) kompleks uzay formundan bir (𝐵2, 𝑔𝐵2) Riemann manifolduna noktasal 

yarı-eğimli bir Riemann dönüşümü olsun. Bu durumda,  

 

𝑅𝑖𝑐𝑘𝑒𝑟𝛿∗(𝑋1) ≥
𝜈

4
(𝑡 + 2) −

1

4
𝑡2 ∥ ℋ ∥2                          (3.1.52) 

olur. 
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Eşitsizliğin eşitlik durumu, sadece ve sadece 

 

   𝒯11
𝜔 = 𝒯22

𝜔+. . . +𝒯𝑡𝑡
𝜔                                                   (3.1.53) 

 

   𝒯1𝑠
𝜔 = 0, 𝑠 = 2, . . . , 𝑡                                                  (3.1.54) 

 

olursa sağlanır (Gündüzalp ve Akyol, 2023). 

 

Sonuç 3.1.3. 𝛿: 𝐵1(𝜈) → 𝐵2, (𝑟𝑎𝑛𝑔𝑒𝛿∗)
⊥ = {0} ve yarı-eğim fonksiyonu 𝜙 = 0 ile bir 

(𝐵1(𝜈), 𝑔𝐵1) kompleks uzay formundan bir (𝐵2, 𝑔𝐵2) Riemann manifolduna noktasal 

yarı-eğimli bir Riemann dönüşümü olsun. Bu durumda,  

 

𝑅𝑖𝑐𝑘𝑒𝑟𝛿∗(𝑋1) ≥
𝜈

4
(𝑡 + 5) −

1

4
𝑡2 ∥ ℋ ∥2                             (3.1.55) 

olur. 

Eşitsizliğin eşitlik durumu, sadece ve sadece 

 

𝒯11
𝜔 = 𝒯22

𝜔+. . . +𝒯𝑡𝑡
𝜔                                               (3.1.56) 

 

𝒯1𝑠
𝜔 = 0, 𝑠 = 2, . . . , 𝑡                                               (3.1.57) 

 

olursa sağlanır (Gündüzalp ve Akyol, 2023). 

 

Son bölümde, kompleks uzay formlardan Riemann manifoldlarına noktasal yarı-eğimli 

Riemann dönüşümleri için Casorati eşitsizliklerini içinde barındıran eğrilik ilişkileri ele 

alınmıştır. 

 

Aşağıda bulunan lemma, teoremimizin kanıtında kullanılmak üzere önem taşır: 

Lemma 3.1.2. 𝑈 = {(𝑙1, 𝑙2, . . . , 𝑙𝑚) ∈ 𝑅
𝑚: 𝑙1 + 𝑙2+. . . +𝑙𝑚 = 𝑧}, 𝑅

𝑚‘nin bir hiperdüzlemi 

olsun ve bir ikinci dereceden form 𝑔: 𝑅𝑚 → 𝑅, 

 

𝑔(𝑙1, 𝑙2, . . . , 𝑙𝑚) = 𝑐Σ𝑘=1
𝑚−1(𝑙𝑘)

2 + 𝑑(𝑙𝑚)
2 − 2Σ1≤𝑘<𝑠≤𝑚𝑙𝑘𝑙𝑠, 𝑐 > 0, 𝑑 > 0  (3.1.58) 

biçimde tanımlansın. 
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Bu durumda, 𝑚𝑖𝑛(𝑙1,𝑙2,...,𝑙𝑚)∈𝑈𝑔 kısıtlanmış ekstremum problemi aşağıdaki çözüme 

sahiptir: 

𝑙1 = 𝑙2 = ⋯ = 𝑙𝑚−1 =
𝑧

𝑐 + 1
, 

𝑙𝑚 =
𝑧

𝑑 + 1
=
𝑧(𝑚 − 1)

(𝑐 + 1)𝑑
= (𝑐 − 𝑚 + 2)

𝑧

𝑐 + 1
,                      (3.1.59) 

 

(Tripathi, 2017)’da 𝑑 =
𝑚−1

𝑐−𝑚+2
 olduğu görülür. 

𝛿, (𝑟𝑎𝑛𝑔𝑒𝛿∗)
⊥ = {0} ile bir (𝐵1

𝑛1(𝜈), 𝐽1, 𝑔𝐵1) kompleks uzay formundan bir (𝐵2
𝑛2 , 𝑔𝐵2) 

Riemann manifolduna bir noktasal yarı-eğimli bir Riemann dönüşümü olsun. Kabuk 

edilsin ki, {𝑋1, . . . , 𝑋𝑝}, 𝑞1 ∈ 𝑁1 için 𝑘𝑒𝑟𝛿∗𝑞1  dikey uzayının ortonormal bazı ve 

{𝑋𝑝+1, . . . , 𝑋𝑛1}, (𝑘𝑒𝑟𝜑∗𝑞1)
⊥ yatay uzayının ortonormal bazıdır. 

𝑘𝑒𝑟𝛿∗𝑞1 dikey uzayı üzerindeki 𝜏𝑘𝑒𝑟𝛿∗ skaler eğriliğini 

 

𝜏𝑘𝑒𝑟𝛿∗ = Σ𝑘,𝑠=1
𝑝 𝑔𝐵1(𝑅

𝑘𝑒𝑟𝛿∗(𝑋𝑘, 𝑋𝑠)𝑋𝑠, 𝑋𝑘)                       (3.1.60) 

 

olarak ve 𝑘𝑒𝑟𝛿∗𝑞1‘nun da 𝜅𝑘𝑒𝑟𝛿∗ skaler eğriliğini  

 

𝜅𝑘𝑒𝑟𝛿∗ =
2𝜏𝑘𝑒𝑟𝛿∗

𝑝(𝑝 − 1)
                                                (3.1.61) 

 

olarak tanımladık. 

Bu durumda,  

 

𝑇𝑘𝑠
𝜀 = 𝑔𝐵1(𝑇(𝑋𝑘, 𝑋𝑠), 𝑋𝜀), 𝑘, 𝑠 = 1, . . . , 𝑝, 𝜀 = 𝑝 + 1, . . . , 𝑛2,            (3.1.62) 

 

∥ 𝑇 ∥2  = Σ𝑘,𝑠=1
𝑝 𝑔𝐵1(𝑇(𝑋𝑘, 𝑋𝑠), 𝑇(𝑋𝑘, 𝑋𝑠)),                           (3.1.63) 

 

𝑡𝑟𝑎𝑐𝑒𝑇 = Σ𝑘=1
𝑝 𝑇(𝑋𝑘, 𝑋𝑘), ∥ 𝑡𝑟𝑎𝑐𝑒𝑇 ∥

2= 𝑔𝐵1(𝑡𝑟𝑎𝑐𝑒𝑇, 𝑡𝑟𝑎𝑐𝑒𝑇)            (3.1.64) 

 

eşitlikleri ifade edilebilir ve 𝑇‘nin 𝐵1 manifoldu üzerindeki 𝒞𝑘𝑒𝑟𝛿∗  olarak gösterilen 

karelenmiş normu, (𝑘𝑒𝑟𝛿∗)𝑞1 dikey uzayının dikey Casorati eğriliği olarak adlandırılır.  
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Böylece,  

𝒞𝑘𝑒𝑟𝛿∗ =
1

𝑝
∥ 𝑇 ∥2=

1

𝑝
Σ𝜀=𝑝+1
𝑛1 Σ𝑘,𝑠=1

𝑝 (𝑇𝑘𝑠
𝜀 )2                         (3.1.65) 

 

elde edilir. 

Şimdi, 2 ≤ 𝑡 için L𝑘𝑒𝑟𝛿∗ nin t boyutlu bir alt uzay olduğu ve {𝑋1, 𝑋2, . . . , 𝑋𝑡}‘nin L𝑘𝑒𝑟𝛿∗ 

nin bir ortonormal bazı olduğu varsayılsın.  

Bu durumda L𝑘𝑒𝑟𝛿∗ nin 𝒞𝑘𝑒𝑟𝛿∗(L𝑘𝑒𝑟𝛿∗) Casorati eğriliği  

 

𝒞𝑘𝑒𝑟𝛿∗(L𝑘𝑒𝑟𝛿∗) =
1

𝑡
∥ 𝑇 ∥2=

1

𝑡
Σ𝜀=𝑝+1
𝑛1 Σ𝑘,𝑠=1

𝑡 (𝑇𝑘𝑠
𝜀 )2                   (3.1.66) 

 

şeklinde tanımlanır. (𝑘𝑒𝑟𝛿∗)𝑞1 nun normalleştirilmiş 𝜎𝑘𝑒𝑟𝛿∗ − Casorati eğrilikleri 

𝜎𝒞
𝑘𝑒𝑟𝛿∗(𝑝 − 1) ve 𝜎𝒞

𝑘𝑒𝑟𝛿∗(𝑝 − 1), 

[𝜎𝒞
𝑘𝑒𝑟𝛿∗(𝑝 − 1)]𝑞1 =

1

2
𝒞𝑞1
𝑘𝑒𝑟𝛿∗ +

𝑝+1

2𝑝
𝑖𝑛𝑓{𝒞𝑘𝑒𝑟𝛿∗(L𝑘𝑒𝑟𝛿∗): L𝑘𝑒𝑟𝛿∗ ,(𝑘𝑒𝑟𝛿∗)𝑞1‘nun hiperdüzlemi},  

ve 

[𝜎̅𝒞
𝑘𝑒𝑟𝛿∗(𝑝 − 1)]𝑞1 = 2𝒞𝑞1

𝑘𝑒𝑟𝛿∗ −
2𝑝−1

2𝑝
𝑖𝑛𝑓{𝒞𝑘𝑒𝑟𝛿∗(L𝑘𝑒𝑟𝛿∗): L𝑘𝑒𝑟𝛿∗, (𝑘𝑒𝑟𝛿∗)𝑞1‘nun hiperdüzlemi} 

olarak yazılır (Tripathi, 2017). 

 

Teorem 3.1.12. 𝛿, (𝑟𝑎𝑛𝑔𝑒𝛿∗)
⊥ = {0} ve 3 ≤ 𝑝 ile bir (𝐵1

𝑛1(𝜈), 𝐽1, 𝑔𝐵1) kompleks uzay 

formundan bir (𝐵2
𝑛2 , 𝑔𝐵2) Riemann manifolduna noktasal yarı-eğimli bir Riemann 

dönüşümü olsun. (𝑘𝑒𝑟𝛿∗)𝑞1 üzerindeki normalleştirilmiş 𝜎 − Casorati eğrilikleri 𝜎𝒞
𝑘𝑒𝑟𝛿∗  

ve  𝜎𝒞
𝑘𝑒𝑟𝛿∗, alttakileri sağlarlar. 

 

(𝑖)  𝜅𝑘𝑒𝑟𝛿∗ ≤ 𝜎𝒞
𝑘𝑒𝑟𝛿∗(𝑝 − 1) +

𝜈

4
+

3𝜈

2𝑝(𝑝 − 1)
(𝑘1 + 𝑘2cos

2𝜙),            (3.1.67) 

 

(𝑖𝑖)  𝜅𝑘𝑒𝑟𝛿∗ ≤ 𝜎𝒞
𝑘𝑒𝑟𝛿∗(𝑝 − 1) +

𝜈

4
+

3𝜈

2𝑝(𝑝 − 1)
(𝑘1 + 𝑘2cos

2𝜙).           (3.1.68) 
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Ayrıca, ancak ve ancak (𝑘𝑒𝑟𝛿∗)𝑞1 üzerindeki {𝑋1, . . . , 𝑋𝑝} ve ((𝑘𝑒𝑟𝛿∗)𝑞1)
⊥ üzerindeki 

{𝑋𝑝+1, . . . , 𝑋𝑛1} uygun ortonormal bazlarına göre bir 𝑞1 ∈ 𝐵1 noktasındaki herhangi bir 

eşitsizlikte eşitlik şartı sağlanır. 𝑇’nin bileşenleri aşağıdakileri sağlar. 

 

𝑇11
𝜀 = 𝑇22

𝜀 = ⋯ = 𝑇𝑝−1𝑝−1
𝜀 =

1

2
𝑇𝑝𝑝
𝜀 , 𝜀 ∈ {𝑝 + 1, 𝑝 + 2, … , 𝑛1},          (3.1.69) 

𝑇𝑘𝑠
𝜀 = 0, 𝑘, 𝑠 ∈ {1, , … , 𝑝}(𝑘 ≠ 𝑠), 𝜀 ∈ {𝑝 + 1, 𝑝 + 2, . . . , 𝑛1}.         (3.1.70) 

 

(Gündüzalp ve Akyol, 2023). 

 

Teorem 3.1.12. den faydalanarak aşağıdaki sonuçlara varılabilir. 

Sonuç 3.1.4. 𝛿,  bir (𝐵1
𝑛1(𝜈), 𝐽1, 𝑔𝐵1) kompleks uzay formundan bir (𝐵2

𝑛2 , 𝑔𝐵2) Riemann 

manifolduna olan 3 ≤ 𝑝 ve 𝜙 =
𝜋

2
  yarı-eğim fonksiyonu ve (𝑟𝑎𝑛𝑔𝑒𝛿∗)

⊥ = {0} ile 

noktasal yarı-eğimli bir Riemann dönüşümü olsun. Buna göre, (𝑘𝑒𝑟𝛿∗)𝑞1 üzerindeki 

𝜎𝒞
𝑘𝑒𝑟𝛿∗ ve 𝜎𝒞

𝑘𝑒𝑟𝛿∗ normalleştirilmiş 𝜎 − Casorati eğrilikleri aşağıdakileri eşitsizlikleri 

sağlar. 

(𝑖)  𝜅𝑘𝑒𝑟𝛿∗ ≤ 𝜎𝒞
𝑘𝑒𝑟𝛿∗(𝑝 − 1) +

𝜈

4
+

3𝑘1𝜈

2𝑝(𝑝 − 1)
,                             (3.1.71) 

 

(𝑖𝑖)  𝜅𝑘𝑒𝑟𝛿∗ ≤ 𝜎𝒞
𝑘𝑒𝑟𝛿∗(𝑝 − 1) +

𝜈

4
+

3𝑘1𝜈

2𝑝(𝑝 − 1)
.                             (3.1.72) 

 

Ayrıca, sadece ve sadece (𝑘𝑒𝑟𝛿∗)𝑞1 üzerindeki {𝑋1, . . . , 𝑋𝑝} ve ((𝑘𝑒𝑟𝛿∗)𝑞1)
⊥ üzerindeki 

{𝑋𝑝+1, . . . , 𝑋n} uygun ortonormal bazlarına göre 𝑞1 ∈ 𝐵1 noktasındaki herhangi bir 

eşitsizlikte eşitlik durumu geçerlidir. T’nin bileşenleri aşağıdakileri sağlar. 

 

𝑇11
𝜀 = 𝑇22

𝜀 = ⋯ = 𝑇𝑝−1𝑝−1
𝜀 =

1

2
𝑇𝑝𝑝
𝜀 , 𝜀 ∈ {𝑝 + 1, 𝑝 + 2, . . . , 𝑛1},          (3.1.73) 

𝑇𝑘𝑠
𝜀 = 0, 𝑘, 𝑠 ∈ {1, , … , 𝑝}(𝑘 ≠ 𝑠),      𝜀 ∈ {𝑝 + 1, 𝑝 + 2, . . . , 𝑛1}.        (3.1.74) 

 

(Gündüzalp ve Akyol, 2023). 
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Sonuç 3.1.5. 𝛿,  bir (𝐵1
𝑛1(𝜈), 𝐽1, 𝑔𝐵1) kompleks uzay formundan 3 ≤ 𝑝 ve 𝜙 = 0 yarı-

eğim fonksiyonu ile bir (𝐵2
𝑛2 , 𝑔𝐵2) Riemann manifolduna olan, (𝑟𝑎𝑛𝑔𝑒𝛿∗)

⊥ = {0} ile 

noktasal yarı-eğimli bir Riemann dönüşümü olsun.  

Buna göre, (𝑘𝑒𝑟𝜑∗)𝑞1 üzerindeki 𝜎𝒞
𝑘𝑒𝑟𝜑∗ ve 𝜎𝒞

𝑘𝑒𝑟𝜑∗ normalleştirilmiş 𝜎 − Casorati 

eğrilikleri aşağıdakileri sağlar. 

 

(𝑖)  𝜅𝑘𝑒𝑟𝛿∗ ≤ 𝜎𝒞
𝑘𝑒𝑟𝛿∗(𝑝 − 1) +

(𝑝 + 2)𝜈

4(𝑝 − 1)
,                                (3.1.75) 

 

(𝑖𝑖)  𝜅𝑘𝑒𝑟𝛿∗ ≤ 𝜎𝒞
𝑘𝑒𝑟𝛿∗(𝑝 − 1) +

(𝑝 + 2)𝜈

4(𝑝 − 1)
.                                (3.1.76) 

 

Ayrıca, yalnızca (𝑘𝑒𝑟𝛿∗)𝑞1 üzerindeki {𝑋1, . . . , 𝑋𝑝} ve ((𝑘𝑒𝑟𝛿∗)𝑞1)
⊥ üzerindeki 

{𝑋𝑝+1, . . . , 𝑋𝑛1} uygun ortonormal bazlarına göre 𝑞1 ∈ 𝐵1 noktasındaki herhangi bir 

eşitsizlikte eşitlik durumu geçerlidir. T’nin bileşenleri aşağıdakileri sağlar. 

 

𝑇11
𝜀 = 𝑇22

𝜀 = ⋯ = 𝑇𝑝−1𝑝−1
𝜀 =

1

2
𝑇𝑝𝑝
𝜀 , 𝜀 ∈ {𝑝 + 1, 𝑝 + 2, . . . , 𝑛1},              (3.1.77) 

 

𝑇𝑘𝑠
𝜀 = 0, 𝑘, 𝑠 ∈ {1, , … , 𝑝}(𝑘 ≠ 𝑠),         𝜀 ∈ {𝑝 + 1, 𝑝 + 2, … , 𝑛1}.           (3.1.78) 

 

(Gündüzalp ve Akyol, 2023). 
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4. RİEMANN MANİFOLDUNDAN HEMEN HEMEN HERMİTYEN 

MANİFOLDA NOKTASAL YARI-EĞİK RİEMANN DÖNÜŞÜMLER 
 

 

 

Bu bölümde kompleks geometride, Riemann manifoldlarından hemen hemen Hermityen 

manifoldlarına tanımlanan noktasal yarı- eğik Riemann dönüşümler ile ilgili tanım, 

teorem ve örneklerele alınacaktır. Noktasal yarı- eğik Riemann dönüşümlerden doğan 

distribüsyonların geometrisine bakılacaktır.Ayrıca, kompleks uzay formlarından Riemann 

manifoldlarına noktasal yarı-eğik Riemann dönüşümleri için Casorati eşitsizliklerini 

içeren eğrilik ilişkileri ele alınacaktır. 

 

4.1. Riemann Manifoldlardan Hermityen Manifoldlara Tanımlı Yarı-Eğik Riemann 

Dönüşümler 

 

Tanım 4.1.1. (𝐵2, 𝑔2 , 𝐽2) bir hemen hemen Hermityen manifoldu ve (𝐵1, 𝑔1) bir 

Riemann manifoldu olsun. Bu durumda, eğer 𝑘𝑒𝑟γ∗ üzerinde aşağıdaki şartları 

sağlıyorsa,  𝐷𝜙 ve 𝐷⊤ ortogonal distribüsyonlar olmak üzere, γ: 𝐵1 → 𝐵2  Riemann 

dönüşümü noktasal yarı-eğimli bir Riemann dönüşümüdür denir: 

 1.  𝑟𝑎𝑛𝑔𝑒γ∗ uzayı, Dϕ⊕D⊤ ortogonal direkt ayrışımına eşittir. 

 2. D⊤ distribüsyonu invaryanttır. 

 3. D𝜙 distribüsyonu 𝜙 yarı-eğik fonksiyonu ile noktasal eğiktir. 

Bu durumda, 𝜙 açısı, noktasal yarı-eğimli bir Riemann dönüşümünün yarı-eğik 

fonksiyonu olarak bilinen 𝐵2 üzerindeki bir fonksiyon olarak adlandırılır (Akyol ve 

Gündüzalp, 2024). 

𝛾, bir (𝐵1, 𝑔1)  Riemann manifoldundan bir (𝐵2, 𝑔2 , 𝐽2) hemen hemen Hermityen 

manifolduna bir noktasal yarı-eğimli bir Riemann dönüşümü olsun. Bu durumda, 

herhangi  γ∗(𝑌) ∈ 𝑟𝑎𝑛𝑔𝑒γ∗ ve 𝑌 ∈ Γ(𝑘𝑒𝑟γ∗)
⊥ için  

 

J γ∗(Y) =  ϕγ∗(Y)  + ωγ∗(Y)                                         (4.1.1) 

 

yazılır. Burada 𝜙γ∗(Y) ∈ Γ(𝒟⊤) ve 𝜔γ∗(Y) ∈ Γ(𝐽Dϕ) dir. Herhangi bir 

V ∈ Γ(rangeγ∗)
⊥  için 
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𝐽V = ℬV + 𝒞V                                                       (4.1.2) 

 

olur. Bu durumda ℬV ∈ Γ(rangeγ∗) ve 𝒞V ∈ Γ(rangeγ∗)
⊥ dir. 

 𝔼,𝔾 ∈ Γ(𝑇𝐵1) için, 𝒜 ve 𝒯O’Neill tensörleri: 

  

𝒜𝔼𝔾 = ℋ∇ℋ𝔼𝒱𝔾 + 𝒱∇ℋ𝔼ℋ𝔾,                                  (4.1.3) 

 

𝒯𝔼𝔾 = ℋ∇𝒱𝔼𝒱𝔾 + 𝒱∇𝒱𝔼ℋ𝔾                                      (4.1.4) 

 

dir (Akyol ve Gündüzalp, 2024).  

Şimdi noktasal yarı-eğimli bir Riemann dönüşümüne dair örnek verebiliriz. 

 

Örnek 4.1.1. (ℝ8, 𝑔ℝ8) bir Riemann manifold olsun ve ℝ8 üzerindeki kompleks yapı, 

𝐽𝜔(𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6, 𝑡7, 𝑡8) = (−𝑡2, 𝑡1, −𝑡4, 𝑡3, −𝑡6, 𝑡5, −𝑡8, 𝑡7) olarak tanımlansın.  

Bu şartlarda, (ℝ𝜔
8 , 𝐽𝜔 , 𝑔ℝ8) bir hemen hemen Hermityen manifold olsun.  

𝒦, bir Rieman manifoldundan bir hemen hemen Hermityen manifolda tanımlanan 

 

𝒦:  (ℝ8, 𝑔ℝ8) → (ℝ𝜔
8 , 𝐽𝜔 ,𝑔ℝ8) 

 

bir Riemann dönüşümü olur 

 

𝒦(𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5, 𝑧6, 𝑧7, 𝑧8) = (𝑧7, −𝑧8,√10, 5, 𝑐𝑜𝑠𝜑𝑧1 − 𝑠𝑖𝑛𝜑𝑧3, 𝑠𝑖𝑛𝜑𝑧2 − 𝑐𝑜𝑠𝜑𝑧4, 𝜋, 0) 

 

biçiminde yazalım. 𝒦 nın Jakobiyen matrisi, 

 

𝒦∗ =

[
 
 
 
 
 
 
 
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

𝑐𝑜𝑠𝜑 0 −𝑠𝑖𝑛𝜑 0 0 0 0 0
0 𝑠𝑖𝑛𝜑 0 −𝑐𝑜𝑠𝜑 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ]

 
 
 
 
 
 
 

 

 

Buradan,  𝑟𝑎𝑛𝑘𝒦∗ = 4 bulunup   
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(𝑘𝑒𝑟𝒦∗)
⊥ = 𝑠𝑝𝑎𝑛

{
 

 𝑈1 =
𝜕

𝜕𝑧7
   , 𝑈2 = −

𝜕

𝜕𝑧8
   

𝑈3 = 𝑐𝑜𝑠𝜑
𝜕

𝜕𝑧1
− 𝑠𝑖𝑛𝜑

𝜕

𝜕𝑧3
   , 𝑈4 = 𝑠𝑖𝑛𝜑

𝜕

𝜕𝑧2
− 𝑐𝑜𝑠𝜑

𝜕

𝜕𝑧4
 
}
 

 

 

𝑟𝑎𝑛𝑔𝑒𝒦∗ = 𝑠𝑝𝑎𝑛

{
 
 

 
 𝑊1 =

𝜕

𝜕𝑦
7

   ,𝑊2 = −
𝜕

𝜕𝑦
8

   

𝑊3 = 𝑐𝑜𝑠𝜑
𝜕

𝜕𝑦
1

− 𝑠𝑖𝑛𝜑
𝜕

𝜕𝑦
3

   ,𝑊4 = 𝑠𝑖𝑛𝜑
𝜕

𝜕𝑦
2

− 𝑐𝑜𝑠𝜑
𝜕

𝜕𝑦
4

 
}
 
 

 
 

 

biçimde yazılır. 

𝐽𝜔(𝑊2) =
𝜕

𝜕𝑦
2

= 𝑊1 

𝐽𝜔(𝑊3) = 𝑐𝑜𝑠𝜑
𝜕

𝜕𝑦
2

− 𝑠𝑖𝑛𝜑
𝜕

𝜕𝑦
4

 

 

olup, 

 

 𝑔ℝ8(𝐽𝜔(𝑊3),𝑊4) =  𝑔ℝ8((0, 𝑐𝑜𝑠𝜑, 0, −𝑠𝑖𝑛𝜑, 0,0,0,0), (0, 𝑠𝑖𝑛𝜑, 0, −𝑐𝑜𝑠𝜑, 0,0,0,0)) 

                                  = 𝑠𝑖𝑛𝜑. 𝑐𝑜𝑠𝜑 + 𝑠𝑖𝑛𝜑. 𝑐𝑜𝑠𝜑 = sin (2𝜑) 

 

bulunur. Buradan hareketle,  

cos𝜃 =
 𝑔
ℝ8
(𝐽𝜔(𝑊3

),𝑊4)

‖𝐽𝜔(𝑊3
)‖‖𝑊4‖

=
sin (2𝜑)

1
= sin (2𝜑) 

𝜃 = arccos(sin (2𝜑)) 

olur. 

Buradan, 

𝐷𝜃 = 𝑠𝑝𝑎𝑛{𝑊3,𝑊4}  , 𝐷
⊤ = 𝑠𝑝𝑎𝑛{𝑊1,𝑊2}   

 

ifade edilir. Sonuç olarak,  𝑟𝑎𝑛𝑔𝑒𝒦∗ = 𝐷
𝜃⊕𝐷⊤  yazılabildiğinden,  𝜃  açısı noktasal 

yarı-eğimli bir Riemann dönüşümün yarı-eğik fonksiyonu olur. Dolayısıyla  𝒦 ise bir 

Riemann manifolddan bir hemen hemen Hermityen manifolda tanımlanan noktasal yarı-

eğimli Riemann dönüşümdür. 

 

Örnek 4.1.2. (ℝ8, 𝑔ℝ8) Öklid uzayı olsun. 𝐽1𝐽2 = −𝐽2𝐽1’yi gerçekleştiren, ℝ8 üzerindeki 

bir çift {𝐽1, 𝐽2} hemen hemen kompleks yapılarını inceleyelim. Burada, 
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𝐽1(𝑎1, . . . , 𝑎8) = (−𝑎2, 𝑎1, −𝑎4, 𝑎3, −𝑎6, 𝑎5, −𝑎8, 𝑎7)            (4.1.5) 

ve 

𝐽2(𝑎1, . . . , 𝑎8) = (−𝑎3, 𝑎4, 𝑎1, −𝑎2, −𝑎7, −𝑎8, 𝑎5, −𝑎6)          (4.1.6) 

 

dir. 

Herhangi bir reel değerli 𝒹:ℝ8 → ℝ fonksiyonu için,  𝐽𝒹 = (cos𝒹)𝐽1 + (sin𝒹)𝐽2 ile, ℝ8 

üzerinde yeni 𝐽𝒹 hemen hemen kompleks yapısı tanımlayalım. Bu durumda,  

ℝ𝒹
8 = (ℝ8, 𝐽𝒹 , 𝑔ℝ8) bir hemen hemen Hermityen manifoldu olur.  

 

γ(𝑥1, . . . , 𝑥8) = (𝑥1, 𝑥2, 𝑥3, 𝑥4, −2, 𝑥6, 11, 𝑥8)                          (4.1.7) 

 

ile bir γ:ℝ𝒹
8 → ℝ8 Riemann dönüşümü olsun. Bu durumda, 𝛾 dönüşümü, 𝒹 yarı-eğik 

fonksiyonu ile noktasal yarı-eğimli bir Riemann dönüşümüdür. Doğrudan işlemler 

yapılırsa, 

𝒟𝜃 = 𝑠𝑝𝑎𝑛{
𝜕

𝜕𝑧6
,
𝜕

𝜕𝑧8
} ve 𝒟⊤ = 𝑠𝑝𝑎𝑛 {

𝜕

𝜕𝑧1
,
𝜕

𝜕𝑧2
,
𝜕

𝜕𝑧3
,
𝜕

𝜕𝑧4
}. 

 

ve 

(𝑟𝑎𝑛𝑔𝑒γ∗)
⊥ = 𝑠𝑝𝑎𝑛 {

𝜕

𝜕𝑧5
,
𝜕

𝜕𝑧7
}                                     (4.1.8) 

 

elde edilir. Burada, {𝑧1, . . . , 𝑧8}, ℝ8 üzerindeki yerel koordinatlardır (Akyol ve 

Gündüzalp, 2024). 

 

Bir noktasal yarı-eğimli Riemann dönüşümü 𝒟𝜃 ≠ {0} ve 𝜃 ≠ 0,
𝜋

2
 koşullarını 

sağlandığında has(proper) dönüşüm olur. Aşağıdaki teorem has noktasal yarı-eğimli bir 

Riemann dönüşümü örneklerini elde etmek için önemli bir rol oynar (Akyol ve 

Gündüzalp, 2024). 

 

Teorem 4.1.1. 𝛾1, bir (𝐵1, 𝑔1) Riemann manifoldundan (𝐵2, 𝑔2, 𝐽1) hemen hemen 

Hermityen manifolduna bir Riemann submersiyonu olduğunu ve  𝛾2 de, (𝐵2, 𝑔2, 𝐽1)’den 

(𝐵3, 𝑔3, 𝐽2) hemen hemen Hermityen manifolduna noktasal yarı-eğimli bir immersiyon 
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olsun.  Bu durumda, 𝛾2 ∘ 𝛾1 bir noktasal yarı-eğimli bir Riemann dönüşümü olur (Akyol 

ve Gündüzalp, 2024). 

Üstteki teoremin uygulanması olarak aşağıdaki has noktasal yarı-eğimli bir Riemann 

dönüşüm örneği yazılabilir. 

 

Örnek 4.1.3. (ℝ8, 𝑔ℝ8) Öklid uzayı olsun. 𝐽1𝐽2 = −𝐽2𝐽1’yi sağlayan, ℝ8 üzerindeki bir 

çift {𝐽1, 𝐽2} hemen hemen kompleks yapıları olsun. Burada, 

 

𝐽1(𝑎1, . . . , 𝑎8) = (−𝑎2, 𝑎1, −𝑎4, 𝑎3, −𝑎6, 𝑎5, −𝑎8, 𝑎7)                  (4.1.9) 

ve 

𝐽2(𝑎1, . . . , 𝑎8) = (−𝑎3, 𝑎4, 𝑎1, −𝑎2, −𝑎7, −𝑎8, 𝑎5, −𝑎6)               (4.1.10) 

 

dir. 

Herhangi reel değerli 𝒹:ℝ8 → ℝ fonksiyonu için,  𝐽𝒹 = (cos𝒹)𝐽1 + (sin𝒹)𝐽2birlikte, ℝ8 

üzerinde yeni 𝐽𝒹 hemen hemen kompleks yapısı yazalım. Bu durumda,  

ℝ𝒹
8 = (ℝ8, 𝐽𝒹 , 𝑔ℝ8) bir hemen hemen Hermityen manifoldu olur.  

 

γ2:ℝ
6 → (ℝ8, 𝐽𝒹 , 𝑔ℝ8),       γ2(𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔) = (𝑏, 𝑐, 𝑑, 𝑒, 0, 𝑓, 0, 𝑔)        (4.1.11) 

 

noktasal yarı-eğimli immersiyonu ve  

 

γ1: (ℝ
8, 𝑔) → ℝ6,                γ1(𝑦1, . . . , 𝑦8)  = (𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦6, 𝑦8)           (4.1.12) 

 

Riemann submersiyonunun bileşimi olan   

 

γ: (ℝ8, 𝑔) → (ℝ𝒹
8 , 𝐽𝒹 , 𝑔ℝ8),           γ(𝑦1, . . . , 𝑦8) = (𝑦1, 𝑦2, 𝑦3, 𝑦4, 0, 𝑦6, 0, 𝑦8) 

 

dönüşümünü ele alalım. 𝛾 dönüşümü, 𝜃 = 𝒹 yarı-eğimli fonksiyonu ile birlikte noktasal 

yarı-eğimli bir Riemann dönüşümü olur.  

Doğrudan işlemler yapılarak, 

 

𝒟̿𝜃 = 𝑠𝑝𝑎𝑛{
𝜕

𝜕𝑧6
,
𝜕

𝜕𝑧8
}   ve   𝒟̿⊤ = 𝑠𝑝𝑎𝑛{

𝜕

𝜕𝑧1
,
𝜕

𝜕𝑧2
,
𝜕

𝜕𝑧3
,
𝜕

𝜕𝑧4
}. 
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bulunup 

(𝑟𝑎𝑛𝑔𝑒γ∗)
⊥ = 𝑠𝑝𝑎𝑛 {

𝜕

𝜕𝑧5
,
𝜕

𝜕𝑧7
}                                   (4.1.13) 

 

yazılır. Burada {𝑧1, . . . , 𝑧8}, ℝ
8 üzerinde tanımlanan yerel koordinatlardır. 

γ∗𝑄1 ∈ 𝒟̿
𝜃 ve γ∗𝑄2 ∈ 𝒟̿

⊤ için 𝑔2(γ∗𝑄1, γ∗𝑄2) = 0 dir. Bu durumda, 𝛾 bir Riemann 

dönüşümü olduğundan 𝑔1(𝑄1, 𝑄2) = 0 olur. Buradan, 

 

(𝑘𝑒𝑟γ∗)
⊥ = 𝒟̿⊤⊕ 𝒟̿𝜃                                                (4.1.14) 

 

yazılır (Akyol ve Gündüzalp, 2024). 

Şimdi, noktasal yarı-eğimli bir Riemann dönüşümü için aşağıdaki teoremi yazabiliriz. 

 

Teorem 4.1.2. 𝛾, (𝐵1, 𝑔1) Riemann manifoldundan (𝐵2, 𝑔2, 𝐽1) hemen hemen Hermityen 

manifolduna, 𝜃 yarı-eğimli fonksiyonu ile birlikte noktasal yarı-eğimli bir Riemann 

dönüşümü olsun. Bu durumda, herhangi γ∗𝕏 ∈ Γ(𝒟𝜃) için 

 

𝜙2γ∗𝕏 = −cos
2𝜃γ∗𝕏                                               (4.1.15) 

 

olur (Akyol ve Gündüzalp, 2024). 

 

Yukarıdaki teoremden faydalanarak herhangi γ∗𝕏, γ∗𝕐 ∈ Γ(𝒟𝜃) için 

 

𝑔2(𝜙γ∗𝕏,𝜙γ∗𝕐) = cos
2𝜃𝑔2(γ∗𝕏, γ∗𝕐)                              (4.1.16) 

 

𝑔2(𝜔γ∗𝕏,𝜔γ∗𝕐) = sin
2𝜃𝑔2(γ∗𝕏, γ∗𝕐)                              (4.1.17) 

 

denklemleri elde edilir. 𝛾’nin (𝐵1, 𝑔1) Riemann manifoldundan (𝐵2, 𝑔2) Riemann 

manifolduna, 𝐶∞ − dönüşümü olsun. Bu durumda, herhangi 𝕏 ∈ 𝑇𝑠1𝐵1 ve 𝕐 ∈ 𝑇γ(𝑠1)𝐵2 

için, (γ∗)𝑠1 , 𝑠1 ∈ 𝐵1 diferansiyelinin (γ∗)𝑠1 , 𝑠1 ∈ 𝐵1 adjoint dönüşümü  

 

𝑔2((γ∗)𝑠1𝕏,𝕐) = 𝑔1(𝕏,
∗ (γ∗)𝑠1𝕐)                                  (4.1.18) 
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 ile yazılır. Ayrıca,  𝛾 bir Riemann dönüşümü ise, 𝕏 ∈ Γ(𝑟𝑎𝑛𝑔𝑒γ∗)γ(𝑠1) ve  

𝕐 ∈ Γ(𝑘𝑒𝑟(γ∗)𝑠1)
⊥ için, 

 

∗(γ∗)𝑠1(γ∗)𝑠1𝕏 = 𝕏,
∗(γ∗)𝑠1(γ∗)𝑠1𝕐 = 𝕐                      (4.1.19) 

 

elde edilir. Böylece, ∗(γ∗)𝑠1: (𝑟𝑎𝑛𝑔𝑒γ∗)γ(𝑠1) → (𝑘𝑒𝑟(γ∗)𝑠1)
⊥ lineer dönüşümü bir 

izomorfizmadır (Akyol ve Gündüzalp, 2024). 

 𝒞 =∗ (γ∗)𝑠1𝜙(γ∗) ‘yi olsun. Toerem 4.1.2 den faydalanarak aşağıdaki sonuç yazılabilir. 

 

Sonuç 4.1.1. 𝛾, bir (𝐵1, 𝑔1) Riemann manifoldundan bir (𝐵2, 𝑔2, 𝐽) hemen hemen 

Hermityen manifolduna, 𝜃 yarı-eğimli fonksiyonu ile birlikte noktasal yarı-eğimli bir 

Riemann dönüşümü olsun. Bu durumda, 𝕏 ∈ 𝛤(𝒟𝜃) için, 

 

                            𝒞2𝕏 = −cos2𝜃𝕏                                                   (4.1.20) 

 

Burada γ∗𝕫′2 = 𝜙γ∗𝕫2 ile 𝕫1, 𝕫2, 𝕫′2 ∈ Γ((𝑘𝑒𝑟γ∗)𝑞1)
⊥ için, 

 

(∇𝕫1
γ
𝜔)γ∗𝕫2 = 𝒞(∇γ∗)(𝕫1, 𝕫2) − (∇γ∗)(𝕫1, 𝕫

′
2)                      (4.1.21) 

 

ifade edilir (Akyol ve Gündüzalp, 2024). 

 

Önerme 4.1.1. 𝛾, bir (𝐵1, 𝑔1) Riemann manifoldundan bir (𝐵2, 𝑔2, 𝐽) Kaehler 

manifolduna, 𝜃 yarı-eğimli fonksiyonu ile birlikte noktasal yarı-eğimli bir Riemann 

dönüşümü olsun. 𝜔 tensörü paralel ise, bu durumda 𝕪1, 𝕪2 ∈ 𝛤(𝒟
𝜃) için 

 

(∇γ∗)(𝒞𝕪1, 𝒞𝕪2) = −cos
2𝜙(∇γ∗)(𝕪1, 𝕪2)                       (4.1.22) 

 

elde edilir (Akyol ve Gündüzalp, 2024). 

 

𝒟⊤ invaryant distribüsyonu için aşağıdaki sonuç yazılabilir. 
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Teorem 4.1.3. 𝛾, bir (𝐵1, 𝑔1) Riemann manifoldundan bir (𝐵2, 𝑔2, 𝐽) Kaehler 

manifolduna, noktasal yarı-eğimli bir Riemann dönüşümü olsun.  Bu durumda,  

herhangi 𝕜1, 𝕜2,ℤ,𝕎1 ∈ Γ(𝑘𝑒𝑟γ∗)
⊥ öyle ki γ∗𝕜1, γ∗𝕜2 ∈ Γ(𝒟⊤),     

γ∗𝕎1 ∈ Γ(𝒟𝜃) ve 𝕍 ∈ Γ(rangeγ∗)
⊥ ve γ∗ℤ = ℬ𝕍 için, bu durumda 𝐷⊤ invaryant 

distribüsyonu  𝐵2 üzerinde tamamen jeodezik bir foliasyon tanımlar ancak ve ancak 

 (i)  𝒮𝒞𝕍γ∗(𝕜1) − γ∗(∇𝕜1ℤ),  Γ(𝒟
⊤) içerisinde hiç bileşeni yoktur, 

(ii) 𝜙(γ∗(∇𝕜1𝕎1
′ ) − 𝒮𝜔γ∗𝕎1

𝕜1), Γ(𝒟
⊤) içerisinde hiç bileşeni yoktur (Akyol ve 

Gündüzalp, 2024). 

 

𝒟𝜃, eğik distribüsyonu için aşağıdaki sonuç yazılabilir. 

 

Teorem 4.1.4. 𝛾, bir (𝐵1, 𝑔1) Riemann manifoldundan bir (𝐵2, 𝑔2, 𝐽) Kaehler 

manifolduna noktasal yarı-eğimli bir Riemann dönüşümü olsun. Bu durumda, herhangi  

U1, U2 ∈ Γ(𝑘𝑒𝑟γ∗)
⊥ öyle ki  γ∗U1, γ∗U2 ∈ Γ(𝒟𝜃) ve 𝕍 ∈ Γ(rangeγ∗)

⊥ için  𝒟𝜃 eğik 

distribüsyonu 𝐵2 üzerinde tamamen jeodezik bir foliasyondur ancak ve ancak  

(i) −𝑠𝑖𝑛2(𝜃)[U1, 𝕍] + 𝑠𝑖𝑛(2𝜃)𝕍(𝜃)U1 + ∇𝕍
γ
𝜔𝜙γ∗U1 + 𝜙∇𝕍

γ
𝜔γ∗U1,  

Γ(rangeγ∗) içinde hiç bileşene sahip değildir, 

(ii) 𝜙(𝒮𝜔γ∗U2γ∗U1 − ∇U1
γ
𝜙γ∗U2), Γ(𝒟⊤) içinde hiç bileşene sahip değildir 

(Akyol ve Gündüzalp, 2024). 

Ayrıca aşağıdaki sonuç yazılabilir. 

 

Teorem 4.1.5. 𝛾, bir (𝐵1, 𝑔1) Riemann manifoldundan bir (𝐵2, 𝑔2, 𝐽) Kaehler 

manifolduna, noktasal yarı-eğimli bir Riemann dönüşümü olsun.  Bu durumda, herhangi 

U1, U2 ∈ Γ(𝑘𝑒𝑟γ∗)
⊥, öyle ki  γ∗U1 ∈ Γ(𝒟⊤), γ∗U2 ∈ Γ(𝒟𝜃) ve 𝕍,𝕎 ∈ Γ(rangeγ∗)

⊥ 

için,  (𝑟𝑎𝑛𝑔𝑒𝛾)⊥ distribüsyonu,  𝐵2 üzerinde tamamen jeodezik bir foliasyon tanımlar 

ancak ve ancak 

            (i) [γ∗U1, 𝕍] − ∇U1
γ⊥
𝕍, Γ(rangeγ∗)

⊥ içinde hiç bileşeni yoktur. 

(ii) ∇𝕍
γ
𝜔𝜙γ∗U2 + 𝜙∇𝕍

γ
𝜔γ∗U2, Γ(rangeγ∗)

⊥ içinde hiç bileşeni yoktur (Akyol ve 

Gündüzalp, 2024). 
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Teorem 4.1.3. , Teorem 4.1.4. ve Teorem 4.1.5. ‘in bir sonucu olarak aşağıdaki 

yazılabilir. 

 

Sonuç 4.1.2. 𝛾, bir (𝐵1, 𝑔1) Riemann manifoldundan bir (𝐵2, 𝑔2, 𝐽) Kaehler manifolduna, 

noktasal yarı-eğimli bir Riemann dönüşümü olsun. Bu durumda, 𝐵2 total uzayı, 𝒟⊤, 𝒟𝜃 

ve (𝑟𝑎𝑛𝑔𝑒𝛾∗)
⊥ yapraklarının bir yerel çarpım uzayı olması (𝐵2 = 𝐵2𝒟⊤ × 𝐵2𝒟𝜃 ×

𝐵2(𝑟𝑎𝑛𝑔𝑒𝛾∗)⊥) için gerek ve yeter şart herhangi U1, U2, ℤ,𝕎1,𝕎2 ∈ Γ(𝑘𝑒𝑟γ∗)
⊥ ve 𝕐 ∈

Γ(rangeγ∗)
⊥ için, 

  (i) 𝒮𝒞𝕍γ∗(U1) − γ∗(∇U1ℤ),  Γ(𝒟
⊤) içinde hiç bileşene sahip değilse, 

(ii) 𝜙(γ∗(∇U1𝕎1
′ ) − 𝒮𝜔γ∗𝕎1

U1),  Γ(𝒟
⊤) içinde hiç bileşene sahip değilse, 

(iii) −𝑠𝑖𝑛2(𝜃)[𝕎1, 𝕐] + 𝑠𝑖𝑛(2𝜃)𝕐(𝜃)𝕎1 + ∇𝕐
γ
𝜔𝜙γ∗𝕎1 + 𝜙∇𝕐

γ
𝜔γ∗𝕎1,   

Γ(rangeγ∗) içinde hiç bileşene sahip değilse, 

(iv) 𝜙(𝒮𝜔γ∗𝕎2
γ∗𝕎1 − ∇𝕎1

γ
𝜙γ∗𝕎2),  Γ(𝒟

⊤) içinde hiç bileşene sahip değilse, 

(v) [γ∗U1, 𝕐] − ∇U1
γ⊥
𝕐, Γ(rangeγ∗)

⊥  içinde hiç bileşene sahip değilse, 

(vi) ∇𝕐
γ
𝜔𝜙γ∗U2 + 𝜙∇𝕐

γ
𝜔γ∗U2,  Γ(rangeγ∗)

⊥ içinde hiç bileşene sahip değilse, 

eşitliklerinin sağlanmasıdır (Akyol ve Gündüzalp, 2024).  

 

Şimdi,  γ, noktasal yarı-eğimli bir Riemann dönüşümünün tamamen jeodezik olabilmesi 

için gerek ve yeter şartlar verilecektir. 

 

Teorem 4.1.6. 𝛾, bir (𝐵1, 𝑔1) Riemann manifoldundan bir (𝐵2, 𝑔2, 𝐽) Kaehler 

manifolduna, 𝜃 yarı-eğimli fonksiyonu ile birlikte noktasal yarı-eğimli bir Riemann 

dönüşümü olsun. 𝛾 tamamen jeodezik dönüşümdür ancak ve ancak 

 (a) 𝑝1 ∈ 𝐵1 için tüm γ−1(𝑝1) lifleri tamamen jeodezikdir, 

 (b) (𝑘𝑒𝑟γ∗)
⊥, 𝐵1 üzerinde tamamen jeodezik bir foliasyon tanımlar, 

 (c) 𝒞(∇γ∗)(𝕏, 𝕐′) − 𝜔γ∗(∇𝕏𝕐′), Γ(rangeγ∗)
⊥ içinde hiç bileşene sahip değildir, 

 (d)Herhangi 𝕌,𝕐 ∈ Γ(𝑘𝑒𝑟γ∗)
⊥ ve ℤ ∈ Γ(rangeγ∗)

⊥ için olan 

γ∗𝕌, γ∗𝕐 ∈ Γ(𝒟𝜃) için aşağıdaki eşitlik sağlanır: 
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sin2𝜃ℤ(𝜃)𝑔2(γ∗𝕌, γ∗𝕐) = −𝑔2(γ∗𝕐, [γ∗𝕌, ℤ]) − cos
2𝜃𝑔2(γ∗𝕐, ∇ℤ

γ
γ∗𝕌) 

                                            +𝑔2(γ∗𝕐,ℬ∇ℤ

γ
𝑤γ∗𝕌) + 𝑔2(γ∗𝕐, ∇ℤ

γ
𝑤𝜙γ∗𝕌).              (4.1.23) 

 

dır (Akyol ve Gündüzalp, 2024). 

 

Teorem 4.1.7. 𝛾, bir (𝐵1, 𝑔1) Riemann manifoldundan bir (𝐵2, 𝑔2, 𝐽) Kaehler 

manifolduna, 𝜃 yarı-eğimli fonksiyonu ile birlikte noktasal yarı-eğimli bir Riemann 

dönüşümü olsun. Sadece ve sadece aşağıdaki koşullar sağlanırsa 𝛾 tamamen jeodezik 

olur. Bu durumda, 𝛾 harmoniktir ancak ve ancak aşağıdaki eşitlikler sağlanır: 

                1. Lifler minimaldir. 

                2. 𝑡𝑟𝑎𝑐𝑒{∇(.)
γ⊥
𝜔𝜙γ∗(. ) + 𝜔𝒮𝜔γ∗(.)(. ) − 𝒞∇(.)

γ⊥
𝜔γ∗(. )} = 0 

 

dır (Akyol ve Gündüzalp, 2024). 

 

Bu tezin son kısmında, Riemann manifoldlarından kompleks uzay formlarına noktasal 

yarı-eğik Riemann dönüşümleri için Casorati eşitsizliklerini içinde barındıran eğrilik 

ilişkilerine yer verilecektir. İlk olarak,  kompleks uzay formunu tanımlayalım. 

 

4.2. Riemann Manifoldlarından Kompleks Uzay Formlarına Noktasal Yarı-Eğik 

Riemann Dönüşümler 

 

Tanım 4.2.1. (𝐵2, 𝑔2, 𝐽) bir Kaehler manifold olsun. Sabit holomomorfik kesit eğriliği 𝜈 

olun bir kompleks uzay form 𝐵2(𝜈) nin Riemann Christoffel eğrilik tensörü 

𝕌1, 𝕌2, 𝕌3, 𝕌4 ∈ Γ(𝑇𝐵2) için 

𝑅𝐵2(𝕌1, 𝕌2, 𝕌3, 𝕌4) =
𝜈

4
{𝑔2(𝕌1, 𝕌4)𝑔2(𝕌2, 𝕌3) − 𝑔2(𝕌1, 𝕌3)𝑔2(𝕌2, 𝕌4) 

                                  +𝑔2(𝕌1, 𝐽𝕌3)𝑔2(𝐽𝕌2, 𝕌4) − 𝑔2(𝕌2, 𝐽𝕌3)𝑔2(𝐽𝕌1, 𝕌4) 

                                              +2𝑔2(𝕌1, 𝐽𝕌2)𝑔2(𝐽𝕌3, 𝕌4)}                                             (4.2.1) 

eşitliği yazılır. 

𝜋, bir (𝐵1, 𝑔1) Riemann manifoldundan bir (𝐵2, 𝑔2) Riemann manifolduna bir Riemann 

dönüşümü olsun. Sırasıyla ∇𝐵1 ve ∇𝐵2 nin eğrilik tensör alanları 𝑅𝐵1 ve 𝑅𝐵2 olsun. Bu 

durumda 𝕌1, 𝕌2, 𝕌3, 𝕌4 ∈ Γ(𝑘𝑒𝑟π∗)
⊥ için, Gauss formulü  
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𝑔2(𝑅𝐵2(π∗𝕌1, π∗𝕌2)π∗𝕌3, π∗𝕌4) = 𝑔1(𝑅𝐵1(𝕌1, 𝕌2)𝕌3, 𝕌4) 

                                                       +𝑔2((∇π∗)(𝕌1, 𝕌3), (∇π∗)(𝕌2, 𝕌4)) 

                                                       −𝑔2((∇π∗)(𝕌1, 𝕌4), (∇π∗)(𝕌2, 𝕌3)).                   (4.2.2) 

 

ile yazılır.  Şimdi kabul edelim ki,  𝜋, bir (𝐵1
𝑏1 , 𝑔1) Riemann manifoldundan bir 

(𝐵2
2𝑛(𝜈), 𝐽, 𝑔2) kompleks uzay formuna 3 ≤ 𝑑 = 𝑟𝑎𝑛𝑘π < 𝑚𝑖𝑛{𝑏1, 2𝑛} ile birlikte 

noktasal yarı-eğimli bir Riemann dönüşümü olsun. Herhangi 𝕌1, 𝕌2, 𝕌3, 𝕌4 ∈ Γ(𝑘𝑒𝑟π∗)
⊥ 

için (4.1.1) ve (4.1.2) denklemleri yardımıyla 

 

𝑔1(𝑅𝐵1(𝕌1, 𝕌2)𝕌3, 𝕌4 =
𝜈

4
{𝑔2(𝕌1, 𝕌4)𝑔2(𝕌2, 𝕌3) − 𝑔2(𝕌1, 𝕌3)𝑔2(𝕌2, 𝕌4) 

                                       +𝑔2(π∗𝕌1, 𝐽π∗𝕌3)𝑔2(𝐽π∗𝕌2, π∗𝕌4) 

                                       −𝑔2(π∗𝕌2, 𝐽π∗𝕌3)𝑔2(𝐽π∗𝕌1, π∗𝕌4) 

                                       +2𝑔2(π∗𝕌1, 𝐽π∗𝕌2)𝑔2(𝐽π∗𝕌3, π∗𝕌4)} 

                                       −𝑔2((∇π∗)(𝕌1, 𝕌3), (∇π∗)(𝕌2, 𝕌4)) 

                                                          +𝑔2((∇π∗)(𝕌1, 𝕌4), (∇π∗)(𝕌2, 𝕌3))                           (4.2.3) 

 

yazılır.   

{π∗𝐸1, π∗𝐸2 = 𝐽π∗𝐸1, . . . , π∗𝐸2𝑑1−1, π∗𝐸2𝑑1 = 𝐽π∗𝐸2𝑑1−1, π∗𝐸2𝑑1+1, 

π∗𝐸2𝑑1+2 = sec𝜃𝜙π∗𝐸2𝑑1+1, . . . , π∗𝐸2𝑑1+2𝑑2−1, π∗𝐸𝑑 = sec𝜃𝜙π∗𝐸2𝑑1+2𝑑2−1} 

ve {𝐸𝑑+1, 𝐸𝑑+2, . . . , 𝐸2𝑛} sırasıyla (𝑘𝑒𝑟π∗)
⊥ ve (𝑟𝑎𝑛𝑔𝑒π∗)

⊥ distribüsyonlarının ortogonal 

bazları olsun.  Bu durumda 𝑟𝑎𝑛𝑔𝑒π∗ nin boyutu 𝑑 = 2𝑑1 + 2𝑑2 dir. (𝑘𝑒𝑟π∗)
⊥  yatay 

uzayı üzerinde 𝜏(𝑘𝑒𝑟π∗)
⊥

 skaler eğirliği  

 

𝜏(𝑘𝑒𝑟π∗)
⊥
= Σ𝑘,𝑠=1

𝑑 𝑔1(𝑅𝐵1(𝐸𝑘, 𝐸𝑠)𝐸𝑠, 𝐸𝑘)                            (4.2.4) 

 

ile birlikte ve (𝑘𝑒𝑟π∗𝑞1)
⊥ nin 𝜅(𝑘𝑒𝑟π∗)

⊥
 normalleştirilmiş skaler eğriliği  

 

𝜅(𝑘𝑒𝑟π∗)
⊥
=
2𝜏(𝑘𝑒𝑟π∗)

⊥

𝑑(𝑑 − 1)
                                            (4.2.5) 

 

 olarak tanımlanır. Bu durumda 
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𝜑𝑘𝑠
𝛽
= 𝑔2 ((∇π∗)(𝐸𝑘, 𝐸𝑠), 𝐸𝛽) , 𝑘, 𝑠 = 1, . . . , 𝑑, 𝛽 = 𝑑 + 1, . . . ,2𝑛,          (4.2.6) 

 

∥ 𝜑 ∥2= Σ𝑘,𝑠=1
𝑑 𝑔2((∇π∗)(𝐸𝑘, 𝐸𝑠), (∇π∗)(𝐸𝑘, 𝐸𝑠))                   (4.2.7) 

 

𝑡𝑟𝑎𝑐𝑒𝜑 = Σ𝑘=1
𝑑 (∇π∗)(𝐸𝑘, 𝐸𝑘), 

∥ 𝑡𝑟𝑎𝑐𝑒𝜑 ∥2= 𝑔2(𝑡𝑟𝑎𝑐𝑒𝜑, 𝑡𝑟𝑎𝑐𝑒𝜑).                                  (4.2.8) 

 

yazılır.  

𝜋 dönüşümünün kareleşmiş formu (𝐵2
2𝑛, 𝐽, 𝑔2) manifoldu üzerinde (𝑘𝑒𝑟π∗)

⊥  yatay 

uzayın ikinci temel formu  𝒞 ile gösterilir ve (𝑘𝑒𝑟π∗)
⊥ yatay uzayın Casorati eğriliği 

olarak adlandırılır. Bu yüzden 

 

𝒞 =
1

𝑑
∥ 𝜑 ∥2=

1

𝑑
Σ𝛽=𝑑+1
2𝑛

Σ𝑘,𝑠=1
𝑑 (𝜑𝑘𝑠

𝛽
)2                                (4.2.9) 

 

dır.  

Şimdi kabul edelim ki, L(𝑘𝑒𝑟π∗)
⊥

 t boyutlu (𝑘𝑒𝑟π∗)𝑞1
⊥ , 2 ≤ 𝑡 altuzayı ve L(𝑘𝑒𝑟π∗)

⊥
 nin bir 

ortonormal bazı {𝐸1, 𝐸2, . . . , 𝐸𝑡} olsun. L(𝑘𝑒𝑟π∗)
⊥

 nin, 𝒞(𝑘𝑒𝑟π∗)
⊥
(L(𝑘𝑒𝑟π∗

⊥)) Casorati eğriliği 

 

𝒞(𝑘𝑒𝑟π∗)
⊥
(L(𝑘𝑒𝑟π∗)

⊥
) =

1

𝑡
∥ 𝑇 ∥2=

1

𝑡
Σ𝛽=𝑑+1
2n Σ𝑘,𝑠=1

𝑡 (𝑇𝑘𝑠
𝛽
)2            (4.2.10) 

 

olarak tanımlanır. 

(𝑘𝑒𝑟π∗)𝑞1
⊥ ‘nun normalleştirilmiş 𝜎(𝑘𝑒𝑟π∗)

⊥
− Casorati eğrilikleri 𝜎𝒞

(𝑘𝑒𝑟π∗)
⊥

(𝑑 − 1) ve  

𝜎𝒞
(𝑘𝑒𝑟π∗)

⊥

(𝑑 − 1), 

[𝜎𝒞
(𝑘𝑒𝑟π∗)

⊥

(𝑑 − 1)]𝑞1 =
1

2
𝒞𝑞1
(𝑘𝑒𝑟π∗)

⊥

+
𝑑+1

2𝑑
𝑖𝑛𝑓{𝒞(𝑘𝑒𝑟π∗)

⊥
(L(𝑘𝑒𝑟π∗)

⊥
): L(𝑘𝑒𝑟π∗)

⊥
, (𝑘𝑒𝑟π∗)𝑞1

⊥ }, 

‘nun hiperdüzlemi} 

ve 

[𝜎̅𝒞
(𝑘𝑒𝑟π∗)

⊥

(𝑑 − 1)]𝑞1 = 2𝒞𝑞1
(𝑘𝑒𝑟π∗)

⊥

−
2𝑑 − 1

2𝑑
inf {𝒞(𝑘𝑒𝑟π∗)

⊥
(L(𝑘𝑒𝑟π∗)

⊥
): L(𝑘𝑒𝑟π∗)

⊥
, (𝑘𝑒𝑟π∗)𝑞1

⊥ } 

’nun hiperdüzlemi} olarak verilir. 
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(4.1.3), (4.1.4) ve (4.1.9) denklemlerinden faydalanarak 

 

𝜈

4
[𝑑2 − 𝑑 + 6(𝑑1 + 𝑑2cos

2𝜃)] = 2𝜏(𝑘𝑒𝑟π∗)
⊥
(𝑞1) + 𝑑𝒞

(𝑘𝑒𝑟π∗)
⊥
−∥ 𝑡𝑟𝑎𝑐𝑒𝜑 ∥2 ,    (4.2.11) 

 

yazılır. Burada; 𝜏(𝑘𝑒𝑟π∗)
⊥

, (𝑘𝑒𝑟π∗)
⊥ nin skaler eğriliğidir. 

Şimdi 𝜋 nin bileşenlerine uygun olarak verilen kuadratik polinom ile ilintili 𝒬(𝑘𝑒𝑟π∗)
⊥

 

fonksiyonunu, 

 

𝒬(𝑘𝑒𝑟π∗)
⊥
=
1

2
[(𝑑2 − 𝑑)𝒞(𝑘𝑒𝑟π∗)

⊥
+ (𝑑2 − 1)𝒞(𝑘𝑒𝑟π∗)

⊥
(L(𝑘𝑒𝑟π∗)

⊥
)] 

                       −2𝜏(𝑘𝑒𝑟π∗)
⊥
+
𝜈

4
[𝑑2 − 𝑑 + 6(𝑑1 + 𝑑2cos

2𝜃)]                       (4.2.12) 

 

ile tanımlayalım. Genelliği kaybetmeksizin, {𝐸1, . . . , 𝐸𝑑−1} bazı ile gerilen hiperdüzlemi 

L(𝑘𝑒𝑟π∗)
⊥

olduğunu kabul ederek ve (4.2.11) denklemini kullanarak  

 

𝒬(𝑘𝑒𝑟π∗)
⊥
= Σ𝛽=𝑑+1

2𝑛
Σ𝑘=1
𝑑−1[𝑑(𝜑𝑘𝑘

𝛽
)2 + (𝑑 + 1)(𝜑𝑘𝑑

𝛽
)2] 

                                    +Σ𝛽=𝑑+1
2𝑛 [2(𝑑 + 1)Σ1=𝑘<𝑠

𝑑−1 (𝜑𝑘𝑠
𝛽
)2 

                                    −2Σ1=𝑘<𝑠
𝑑 𝜑𝑘𝑘

𝛽
𝜑𝑠𝑠
𝛽
+
𝑑−1

2
(𝜑𝑑𝑑

𝛽
)2] 

                                  ≥ Σ𝛽=𝑑+1
2𝑛 [Σ𝑘=1

𝑑−1𝑑(𝜑𝑘𝑘
𝛽
)2 +

𝑑−1

2
(𝜑𝑑𝑑

𝛽
)2 

−2Σ1=𝑘<𝑠
𝑑 𝜑𝑘𝑘

𝛽
𝜑𝑠𝑠
𝛽
]                                                               (4.2.13) 

 

elde edilir.  𝛽 = 𝑑 + 1, . . . ,2𝑛 için, 𝑔𝛽:ℝ
2𝑛 → ℝ  kuadratik formunu  

 

𝑔𝛽(𝜑11
𝛽
, … , 𝜑𝑑𝑑

𝛽
) = Σ𝑘=1

𝑑−1𝑑(𝜑𝑘𝑘
𝛽
)2 +

𝑑 − 1

2
(𝜑𝑑𝑑

𝛽
)2 − 2Σ𝑘<𝑠=1

𝑑 𝜑𝑘𝑘
𝛽
𝜑𝑠𝑠
𝛽
,         (4.2.14) 

 

denklemi ile tanımlayalım ve sabitleştirilmiş ekstremum problemi 𝑚𝑖𝑛𝑔𝛽,   

 

Φ𝛽: 𝜑11
𝛽
+. . . +𝜑𝑑𝑑

𝛽
= 𝑧𝛽 ,                                       (4.2.15) 
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ile verelim. Burada, 𝑧𝛽 bir reel sabit olur. 𝑐 = 𝑑,   𝑒 =
𝑑−1

2
 olarak yazılır. 

Bu sebeple,   (𝜑11
𝛽
, . . . , 𝜑𝑑𝑑

𝛽
)  kritik noktası  

 

𝜑11
𝛽
= 𝜑22

𝛽
=. . . = 𝜑𝑑−1𝑑−1

𝛽
=

𝑧𝛽

𝑑 + 1
,    𝜑𝑑𝑑

𝛽
=
2𝑧𝛽

𝑑 + 1
,              (4.2.16) 

 

ile verilir ve bir global minimum noktasıdır. Ayrıca  𝑔𝛽(𝜑11
𝛽
, . . . , 𝜑𝑑𝑑

𝛽
) = 0 dır.  

Buna ek olarak, 

 

𝒬(𝑘𝑒𝑟π∗)
⊥
≥ 0,                                                    (4.2.17) 

olup bu eşitsizlik 

 

2𝜏(𝑘𝑒𝑟π∗)
⊥
≤
1

2
[(𝑑2 − 𝑑)𝒞(𝑘𝑒𝑟π∗)

⊥
+ (𝑑2 − 1)𝒞(𝑘𝑒𝑟π∗)

⊥
(L(𝑘𝑒𝑟π∗)

⊥
)] 

                        +
𝜈

4
[𝑑2 − 𝑑 + 6(𝑑1 + 𝑑2cos

2𝜃)]                                              (4.2.18) 

 

dir. Burada (3.1.14) denkleminden faydalanarak 

 

𝜅(𝑘𝑒𝑟π∗)
⊥
≤ [
1

2
𝒞(𝑘𝑒𝑟π∗)

⊥
+
𝑑 + 1

2𝑑
𝒞(𝑘𝑒𝑟π∗)

⊥
(L(𝑘𝑒𝑟π∗)

⊥
)] 

                                        +
𝜈

4
+
3𝜈(𝑑1+𝑑2cos

2𝜃)

2𝑑(𝑑−1)
                                                            (4.2.19) 

 

eşitliği (𝑘𝑒𝑟π∗)
⊥ nin tüm L(𝑘𝑒𝑟π∗)

⊥
 hiperyüzeyleri için elde edilir. 

 

Benzeri şekilde,  

 

𝒵(𝑘𝑒𝑟π∗)
⊥
= 2(𝑑2 − 𝑑)𝒞(𝑘𝑒𝑟π∗)

⊥
−
1

2
(2𝑑2 − 3𝑑 + 1)𝒞(𝑘𝑒𝑟π∗)

⊥
(L(𝑘𝑒𝑟π∗)

⊥
) 

                  −2𝜏(𝑘𝑒𝑟π∗)
⊥
+
𝜈

4
[𝑑2 − 𝑑 + 6(𝑑1 + 𝑑2cos

2𝜃)],                            (4.2.20) 

 

olur. Bu durumda  hyperplane L(𝑘𝑒𝑟π∗)
⊥

 hiperdüzlemi (𝑘𝑒𝑟π∗)
⊥ uzayının bir 

hiperyüzeyidir. Buradan hareketle,  
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𝒵(𝑘𝑒𝑟π∗)
⊥
≥ 0,                                                             (4.2.21) 

 olup  

𝜅(𝑘𝑒𝑟π∗)
⊥
≤ 2𝒞(𝑘𝑒𝑟π∗)

⊥
−
2𝑑 − 1

2𝑑
𝒞(𝑘𝑒𝑟π∗)

⊥
(L(𝑘𝑒𝑟π∗)

⊥
)] 

                               +
𝜈

4
+
3𝜈(𝑑1+𝑑2cos

2𝜃)

2𝑑(𝑑−1)
                                                             (4.2.22) 

 

elde edilir (Akyol ve Gündüzalp, 2024). 

Şimdi, (𝑘𝑒𝑟π∗)
⊥ uzayının bütün L(𝑘𝑒𝑟π∗)

⊥
 hiperyüzeyleri üzerinde (4.2.22) de infimumu 

ve  (4.2.24) te supremumu alınarak ve sırasıyla (4.2.20) ve (4.2.23) da eşitlik durumu 

incelenerek aşağıdaki teoremi yazarız. 

 

Teorem 4.2.1. 𝜋, bir (𝐵1
𝑏1 , 𝑔1)Riemann manifoldundan bir (𝐵2

2𝑛(𝜈), 𝐽, 𝑔2) kompleks uzay 

formuna, 𝜃 yarı-eğimli fonksiyonu ve 𝜃,   3 ≤ 𝑑 = 𝑟𝑎𝑛𝑘𝜋 < 𝑚𝑖𝑛{𝑏1, 2𝑛} ile noktasal 

yarı-eğimli bir Riemann dönüşümü olsun. Bu durumda  (𝑘𝑒𝑟π∗)𝑞1
⊥  üzerinde 

normalleştirilmiş 𝜎𝒞
(𝑘𝑒𝑟𝜋∗)

⊥

 ve  𝜎𝒞
(𝑘𝑒𝑟𝜋∗)

⊥

, 𝜎 − Casorati eğrilikleri için, 

 

(𝑖)  𝜅(𝑘𝑒𝑟π∗)
⊥
≤ 𝜎𝒞

(𝑘𝑒𝑟π∗)
⊥

(𝑑 − 1) +
𝜈

4
+
3𝜈(𝑑1+𝑑2cos

2𝜃)

2𝑑(𝑑−1)
                   (4.2.23) 

 

(𝑖𝑖)  𝜅(𝑘𝑒𝑟π∗)
⊥
≤ 𝜎𝒞

(𝑘𝑒𝑟π∗)
⊥

(𝑑 − 1) +
𝜈

4
+
3𝜈(𝑑1+𝑑2cos

2𝜃)

2𝑑(𝑑−1)
                  (4.2.24) 

 

eşitlikleri sağlanır (Akyol ve Gündüzalp, 2024).  

 

Ayrıca, sadece ve sadece (𝑟𝑎𝑛𝑔𝑒π∗𝑞1)
⊥, üzerindeki {𝐸𝑑+1, . . . , 𝐸2𝑛} ve (𝑘𝑒𝑟π∗)𝑞1

⊥  

üzerindeki {𝐸1, . . . , 𝐸𝑑} uygun ortonormal bazlarına göre 𝑞1 ∈ 𝑁1 noktasındaki herhangi 

bir eşitsizlikte eşitlik durumu geçerlidir. 𝜑’nin bileşenleri aşağıdakileri sağlar. 

 

𝜑11
𝛽
= 𝜑22

𝛽
= ⋯ = 𝜑𝑑−1𝑑−1

𝛽
=
1

2
𝜑𝑑𝑑
𝛽
,     𝛽 ∈ {𝑑 + 1, 𝑑 + 2,… ,2𝑛},          (4.2.25) 
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𝜑𝑘𝑠
𝛽
= 0, 𝑘, 𝑠 ∈ {1, , . . . , 𝑑}(𝑘 ≠ 𝑠),             𝛽 ∈ {𝑑 + 1, 𝑑 + 2, . . . ,2𝑛}      (4.2.26) 

 

(Akyol ve Gündüzalp, 2024) 

 

Teorem 4.2.1 den faydalanarak aşağıdaki sonuç yazılır.   

Sonuç4.2.1. 𝜋, bir (𝐵1
𝑏1 , 𝑔1) Riemann manifoldundan bir (𝐵2

2𝑛(𝜈), 𝐽, 𝑔2) kompleks uzay 

formuna, 𝜃 yarı-eğimli fonksiyonu ve 𝜃 =
𝜋

2
,   3 ≤ 𝑑 = 𝑟𝑎𝑛𝑘𝜋 < 𝑚𝑖𝑛{𝑏1, 2𝑛} ile 

noktasal yarı-eğimli bir Riemann dönüşümü olsun. Bu durumda (𝑘𝑒𝑟π∗)𝑞1
⊥  üzerinde 

normalleştirilmiş  𝜎𝒞
(𝑘𝑒𝑟𝜋∗)

⊥

 ve  𝜎𝒞
(𝑘𝑒𝑟𝜋∗)

⊥

, 𝜎 − Casorati eğrilikleri için, 

 

       (𝑖)  𝜅(𝑘𝑒𝑟π∗)
⊥
≤ 𝜎𝒞

(𝑘𝑒𝑟π∗)
⊥

(𝑑 − 1) +
𝜈

4
+

3𝜈𝑑1

2𝑑(𝑑−1)
                          (4.2.27) 

 

      (𝑖𝑖)  𝜅(𝑘𝑒𝑟π∗)
⊥
≤ 𝜎𝒞

(𝑘𝑒𝑟π∗)
⊥

(𝑑 − 1) +
𝜈

4
+

3𝜈𝑑1

2𝑑(𝑑−1)
                        (4.2.28) 

 

Ayrıca, sadece ve sadece (𝑟𝑎𝑛𝑔𝑒π∗𝑞1)
⊥, üzerindeki {𝐸𝑑+1, . . . , 𝐸2𝑛} ve (𝑘𝑒𝑟π∗)𝑞1

⊥  

üzerindeki {𝐸1, . . . , 𝐸𝑑} uygun ortonormal bazlarına göre 𝑞1 ∈ 𝑁1 noktasındaki herhangi 

bir eşitsizlikte eşitlik durumu geçerlidir. 𝜑’nin bileşenleri aşağıdakileri sağlar. 

 

𝜑11
𝛽
= 𝜑22

𝛽
=. . . = 𝜑𝑑−1𝑑−1

𝛽
=
1

2
𝜑𝑑𝑑
𝛽
,     𝛽 ∈ {𝑑 + 1, 𝑑 + 2, . . . ,2𝑛},       (4.2.29) 

 

𝜑𝑘𝑠
𝛽
= 0, 𝑘, 𝑠 ∈ {1, , … , 𝑑}(𝑘 ≠ 𝑠),          𝛽 ∈ {𝑑 + 1, 𝑑 + 2,… ,2𝑛}         (4.2.30) 

 

(Akyol ve Gündüzalp, 2024).  

 

Sonuç 4.2.2. 𝜋, bir (𝐵1
𝑏1 , 𝑔1) Riemann manifoldundan bir (𝐵2

2𝑛(𝜈), 𝐽, 𝑔2) kompleks uzay 

formuna  , 𝜃 yarı-eğimli fonksiyonu ve  𝜃 = 0,   3 ≤ 𝑑 = 𝑟𝑎𝑛𝑘𝜋 < 𝑚𝑖𝑛{𝑏1, 2𝑛} ile 

noktasal yarı-eğimli bir Riemann dönüşümü olsun. Bu durumda (𝑘𝑒𝑟π∗)𝑞1
⊥

 üzerinde 

normalleştirilmiş 𝜎𝒞
(𝑘𝑒𝑟𝜋∗)

⊥

 ve  𝜎𝒞
(𝑘𝑒𝑟𝜋∗)

⊥

, 𝜎 − Casorati eğrilikleri için 
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(𝑖)  𝜅(𝑘𝑒𝑟π∗)
⊥
≤ 𝜎𝒞

(𝑘𝑒𝑟π∗)
⊥

(𝑑 − 1) +
𝜈(𝑑 + 2)

4(𝑑 − 1)
                          (4.2.31) 

 

(𝑖𝑖)  𝜅(𝑘𝑒𝑟π∗)
⊥
≤ 𝜎𝒞

(𝑘𝑒𝑟π∗)
⊥

(𝑑 − 1) +
𝜈(𝑑 + 2)

4(𝑑 − 1)
                         (4.2.32) 

 

Ayrıca, sadece ve sadece (𝑟𝑎𝑛𝑔𝑒π∗𝑞1)
⊥, üzerindeki {𝐸𝑑+1, . . . , 𝐸2𝑛} ve (𝑘𝑒𝑟π∗)𝑞1

⊥  

üzerindeki {𝐸1, . . . , 𝐸𝑑} uygun ortonormal bazlarına göre 𝑞1 ∈ 𝑁1 noktasındaki herhangi 

bir eşitsizlikte eşitlik durumu geçerlidir. 𝜑’nin bileşenleri aşağıdakileri sağlar. 

 

𝜑11
𝛽
= 𝜑22

𝛽
= ⋯ = 𝜑𝑑−1𝑑−1

𝛽
=
1

2
𝜑𝑑𝑑
𝛽
,    𝛽 ∈ {𝑑 + 1, 𝑑 + 2,… ,2𝑛},          (4.2.33) 

 

𝜑𝑘𝑠
𝛽
= 0, 𝑘, 𝑠 ∈ {1, , . . . , 𝑑}(𝑘 ≠ 𝑠),        𝛽 ∈ {𝑑 + 1, 𝑑 + 2, . . . ,2𝑛}.         (4.2.34) 

 

(Akyol ve Gündüzalp, 2024). 

 

Sonuç 4.2.3. 𝜋, bir (𝐵1
𝑏1 , 𝑔1) Riemann manifoldundan bir (𝐵2

2𝑛(𝜈), 𝐽, 𝑔2) kompleks uzay 

formuna, 𝜃 yarı-eğimli fonksiyonu ve  𝜃 =
𝜋

2
,   3 ≤ 𝑑 = 𝑟𝑎𝑛𝑘𝜋 < 𝑚𝑖𝑛{𝑏1, 2𝑛} ile 

noktasal yarı-eğimli bir Riemann dönüşümü olsun. Burada durumda, 

 

(𝑖)  𝜅(𝑘𝑒𝑟π∗)
⊥
≤ 𝜎𝒞

(𝑘𝑒𝑟π∗)
⊥

(𝑑 − 1),                                         (4.2.35) 

 

(𝑖𝑖)  𝜅(𝑘𝑒𝑟π∗)
⊥
≤ 𝜎𝒞

(𝑘𝑒𝑟π∗)
⊥

(𝑑 − 1)                                         (4.2.36) 

 

elde edilir (Akyol ve Gündüzalp, 2024). 
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5. SONUÇ VE ÖNERİLER 

 

 

 

Bu tez çalışmasında, kompleks geometri açısından önemli bir yere sahip olan hemen 

hemen Hermityen manifoldlar ile Riemann manifoldları arasındaki noktasal yarı-eğik 

Riemann dönüşümleri ve bunun tersine, Riemann manifoldlarından hemen hemen 

Hermityen manifoldlara yapılan benzer dönüşümlerin tanımları üzerinde durulmuştur. 

Ayrıca bu dönüşümlerin tamamen jeodezikliği ve harmonik olma durumları 

araştırılmıştır. Bu dönüşümlerle elde edilen distribüsyonların geometrisi, özellikleri 

incelenmiş ve örneklerle açıklamalar yapılmıştır. Sonrasında, kaynak manifold, hedef 

manifold ve bu manifoldlardaki liflerin geometrileri detaylı bir biçimde ele alınmıştır. 

Ayrıca, kompleks uzay formlarından Riemann manifoldlarına noktasal yarı-eğik Riemann 

dönüşümleri için Chen-Ricci ve Casorati eşitsizliklerini içeren eğrilik ilişkileri üzerine 

çalışılmıştır. Bu yüksek lisans tezi, ilerleyen zamanlarda yapılacak çalışmalara temel 

oluşturması ve yol göstermesi hedeflenerek hazırlanmıştır. 
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