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NOKTASAL YARI-EGIiK RIEMANN DONUSUMLER UZERINE

OZET

Bu yiiksek lisans tezi, dort ana boliimden olusmaktadir. Ik béliimde, tezin konusu ile
ilgili tarihsel bir perspektif sunulmustur. Ikinci béliimde ise ilerleyen boliimlerde bize
yardimc1  olacak temel tamimlar, teoremler ve Ornekler yer almaktadir.

Ucgiincii boliimde, ilk olarak kompleks geometri gergevesinde, hemen hemen Hermityen
manifoldlardan Riemann manifoldlarina tanimlanacak noktasal yari-egik Riemann
doniisiimiinlin tanim1 yapilmis ve bu doniisiimiin varligina iliskin 6rnekler sunulmustur.
Ardindan, hemen hemen Hermityen manifoldlardan Riemann manifoldlarina tanimlanan
noktasal yari- egik Riemann doniisiimlerin araciligi ile kaynak ve hedef manifoldlarin
geometrisi ele alinmigtir. Ayrica, noktasal Riemann doniistimleri ile tanimlanan
distribiisyonlar i¢in ayrisim teoremleri sunulmustur. Boliimiin devaminda, kompleks uzay
formlarindan Riemann manifoldlarina tanimlanan noktasal yari-egimli Riemann
dontistimleri i¢in Chen-Ricci esitsizliklerini iginde barindiran egrilik iligkileri ele
alinmustr.

Son boliimde, kompleks geometri ¢ergevesinde, Riemann manifoldlarindan hemen hemen
Hermityen manifoldlara tanimlanan noktasal yari-egik Riemann doniisiimleri ele alinmig
ve bu dontistimlerle ilgili 6rnekler sunulmustur. Ardindan, bu doniistimlerin varlik sartlar
incelenmis ve donilisiimlerin tamamen jeodezikligi ve harmonik olup olmadig:
arastirllmistir. Ayrica, noktasal yari-egik Riemann doniisimlerin tamamen jeodezik
olabilmesi i¢in gereken Onemli sartlar belirtilmistir. Boliimiin devaminda, Riemann
manifoldlarindan kompleks uzay formlarma tanimlanan noktasal yari-egik Riemann
doniisiimleri i¢in Casorati esitsizliklerini i¢inde barindiran egrilik iliskileri ele alinmstir.

Anahtar Kelimeler: Manifold, Riemann Déoniisimler, Noktasal Yari-Egik Riemann
Doniigiimler, Hemen Hemen Hermityen Manifold, Egik Fonksiyon, Noktasal Yari-Egik
Fonksiyon, Distribiisyon.



ON POINTWISE SEMI-SLANT RIEMANNIAN MAPS

ABSTRACT

The master's thesis being worked on consists of four main chapters. In the first chapter, a
historical perspective related to the subject of the thesis is presented. In the second
chapter, fundamental definitions, theorems, and examples are provided, which will be
helpful in the following chapters.

In the third section, the definition of the pointwise semi-slant Riemannian transformation,
which is mapped from almost Hermitian manifolds to Riemannian manifolds within the
framework of complex geometry, is first introduced, accompanied by examples
demonstrating the existence of such transformations. Subsequently, the geometry of
source and target manifolds is examined through pointwise semi-slant Riemannian
transformations defined from almost Hermitian manifolds to Riemannian manifolds.
Additionally, decomposition theorems are presented for distributions defined by
pointwise Riemannian transformations. Later in the section, curvature relations involving
Chen-Ricci inequalities are explored for pointwise semi-slant Riemannian
transformations defined from complex space forms to Riemannian manifolds.

In the fourth section, pointwise semi-slant Riemannian transformations defined from
Riemannian manifolds to almost Hermitian manifolds within the framework of complex
geometry are discussed, and examples related to these transformations are provided.
Subsequently, the existence conditions of these transformations are examined, and their
total geodesicity and harmonicity are investigated. Furthermore, key conditions required
for pointwise semi-slant Riemannian transformations to be totally geodesic are specified.
Later in the section, curvature relations involving Casorati inequalities are explored for
pointwise semi-slant Riemannian transformations defined from Riemannian manifolds to
complex space forms.

Keywords: Manifold, Riemannian Maps, Pointwise Semi-Slant Riemannian Maps,
Almost Hermitian Manifolds, Slant Function, Pointwise Semi-Slant Function,
Distribution.
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1. GIRIS

Diferansiyel geometri g¢er¢evesinde, Riemann manifoldlar1 (veya yari1-Riemann
manifoldlar1) tizerinde tanimlanan temel doniistimler izometrik immersiyonlar (Riemann
altmanifoldlar1) ve Riemann submersiyonlaridir. Bu doniistimlerin daha genel bir tiirii ise
Riemann doniistimleri olarak adlandirilir. Bu tiir dontisiimler, iki manifold arasindaki
geometrik yapilar1 karsilagtirmak amaciyla yaygm bir bigimde kullanilmaktadir.
Izometrik immersiyonlar (Riemann altmanifoldlar1), Riemann manifoldlari, Riemann
metrikleri ve Jakobiyen matrisleri ile birlikte tanimlanan 6zel doniisiimlerdir. Bu
dontistimler, rank degeri serbest (keyfi) olan doniisiimlerle kiyaslandiginda daha spesifik
dontigiimlerdir. Bu 0Ozellik nedeniyle, Fischer, izometrik immersiyonlar ve Riemann
submersiyonlar kavramlarin1 da iceren Riemann dontisiimii kavramini tanimlamistir. Bir
Riemann doniisiimii, ne izometrik immersiyon ne de Riemann submersiyon kosullarini
saglamasa da, kismi izometri kosulunu yerine getiren bir doniisiimdiir. Bu sekilde, iki

manifold arasindaki en genel izometri tanimlanmis bulunmaktadir.

Altmanifoldlarin geometrisi acisindan, en dikkat ¢ekici altmanifold tiirlerinden biri
kompleks manifoldlardir. Bu manifoldlarin altmanifoldlari, tanjant uzayinin, manifoldun
kompleks yapist altinda nasil davrandigina gore ifade edilir. Bu tiir altmanifoldlardan
bazi Ornekler su sekilde verilebilir: Holomorfik altmanifold (invaryant altmanifold),
tamamen reel altmanifold ve egik altmanifoldlardir. Son yillarda, egik altmanifoldlar ve
bu tiir altmanifoldlarin tiimiinii kapsayan noktasal egik altmanifoldlar, Chen ve Garay
(2012) tarafindan tanimlanmistir. Kompleks manifoldlarin altmanifoldu {izerinde
tanimlanan bu bahsi gegen yapilarin, Riemann submersiyonlarindaki karsiliklar1 arasinda
holomorfik submersiyon, anti-invaryant Riemann submersiyon, yari-invaryant Riemann
submersiyon ve egik Riemann submersiyon gibi kavramlar yer almaktadir. Bu
karsiliklardan holomorfik submersiyon Watson tarafindan 1976°da, anti-invariant
Riemann submersiyon, yari-invariant Riemann submersiyon ve egik Riemann
submersiyon kavramlari ise Sahin tarafindan 2017’de tanimlanmis olup bu yapilarin
Riemann submersiyonlarindaki karsiliklar1 degisik uzaylarda bir¢ok arastirmaci

tarafindan incelenmistir. Diger yandan, holomorfik altmanifoldlar, tamamen reel



altmanifoldlar ve egik altmanifoldlar1 6zel altgruplar olarak i¢inde barindiran ve herhangi
bir Riemann manifoldundan hemen hemen Hermityen manifolda tanimlanan invaryant
Riemann doOniistimleri, anti-invaryant Riemann doniisiimleri ve egik Riemann
dontistimleri Sahin tarafindan 2017’de tanimlanmis olup, bu doniisiimlerin 6zellikle hedef
manifoldun geometrisini analiz etmede son derece faydali oldugu goézlemlenmistir.Bu
doniistimler ayn1 zamanda harmonik morfizmler teorisinde de yeni sonuglar elde
edilmesinde 6nemli bir rol oynamaktadir. Ayrica, holomorfik submersiyonlar, anti-
invaryant submersiyonlar ve egik submersiyonlar1 6zel siniflar olarak kapsayan ve hemen
hemen Hermityen bir manifolddan Riemann manifolduna tanimlanan holomorfik
Riemann doniisiimleri, anti-invaryant Riemann donilisiimleri ve egik Riemann

doniisiimleri tizerine de cesitli ¢aligmalar yapilmistir.

Bu c¢aligmada, altmanifoldlar, Riemann submersiyonlari ve Riemann doniisiim
kavramlarmi 6zel smiflar olarak kapsayan noktasal yari-egik Riemann dontigimii
tanimlanacaktir. Bu doniisiim araciligiyla, kaynak ve hedef manifoldlarinin geometrisi
detayli bir sekilde incelenecek ve iki manifold arasindaki geometrik yapilar

incelenecektir.

Bu yiiksek lisans tezindeki temel amacimiz, dncelikle kompleks geometri acisindan
onemli bir yer tutan hemen hemen Hermityen manifoldlardan Riemann manifoldlarina ve
Riemann manifoldlarindan hemen hemen Hermityen manifoldlara tanimlanan noktasal
yar1-egik Riemann doniigiimlerinin tanimlarini ele alarak, bu doniisiimlerden elde edilen
distriblisyonlarin geometrisini incelemek ve bu dontistimlerle ilgili 6rnekler sunmaktir.
Ardindan, kaynak manifold, hedef manifold ve liflerin geometrilerini detayli bir sekilde
analiz etmek, ayricakompleks uzay formlarindan Riemann manifoldlarina ve Riemann
manifoldlarindan kompleks uzay formlarina tanimlanan noktasal yari-egik Riemann
dontistimleri i¢in Chen-Ricci ve Casorati esitsizliklerini iginde barindiran egrilik

iliskilerini ele almaktir.



2. TEMEL KAVRAMLAR

2.1. Riemann Manifoldlar

Tamm 2.1.1. V' bir diferansiyellenebilir manifold ve X' (')’ de V' manifoldu tizerindeki
diferansiyellenebilir vektor alanlarinin kiimesi olsun. VX,Y,Z € X (W) ve ¢,d € R igin,
I X (N) XX (V) - C*°(WV,R)
dir. Ve
i. In (X, Y) = g (Y, X)(simetrik)
ii. gr(X,X) =2 0,VX € X(IV)icin gy (X,X) = 0 & X = 0, (pozitif tanimhlik)
iii. Bilineer;
Iy (X +dY,Z)=cgy(X,Z)+dgy(Y,Z)
Ve

InX,cY +dZ) = cgy(X,Y) +dgy(X,2)

kosullarini saglayan g, donlisimii Riemann metrigi (veya metrik tensor) ve (N, gy)

ikilisi ise Rieamann manifoldu olarak adlandirilir (Gudmundsson, 2006).

Tamim 2.1.2. ' Riemann manifoldunun metrik tensérii gy~ olsun. Bir X, € T,V tanjant

vektoriiniin uzunlugu (boyu),

x5l = ‘/gN(Xp'Xp) 2.1)

esitligi ile hesaplanmaktadir (Gundmundson, 2006).

Tammm 2.1.3. ' Riemann manifoldunun metrik tensorii g, olsun. Sifirdan farkl

Xp, Yp € Ty V tanjant vektorleri arasindaki 6 agist,

QN(Xp' Yp) = ”Xp”“Yp” cos 6 (2.2)



esitligi seklinde yazilir. Mevcut 6 agisi [0, ] kapali araligindadir (Hacisalihoglu, 2003).

Tamm 2.14. u, bir M manifoldundan bir N manifolduna tanimlanan

diferansiyellenebilir u: M — N bir doniisiim olsun. X € T,M igin, M de segilen a(t)

egrisine a(t,) = p noktasinda X vektorii teget olsun. Bu durumda u(p) = p(a(ty))
noktasinda ¢ = ,u(a(t)) egrisine teget olacak bigimde p, (X (a(t))) vektorini karsilik

getiren doniisiime u doniisiimiiniin tiirev doniisimii denir ve p,:TyM — T,x)N

bigimindeifade edilir (Sahin, 2012).
Tanmim 2.1.5. (M, g»r), (IV, g5) Riemann manifoldlari olsun ve
u: (M, gae) = (W, gov)
bir C*doniisiimii olmak tizere; V s € M ve U, Vg € T{M  igin,
93 (Us, Vs) = gar (1. (Ug), 1. (V) (2:3)

esitligi mevcut ise M den V' ye tanimlanan p donistimiine bir izometri denir (Baird ve
Wood, 2003; Giindiizalp, 2007).

Tamm 2.1.6. X ve Y, N manifoldu tizerinde tanimli iki vektor alani1 kabul edilsin.

C* (I, R) kiimesinden alinmis bir f fonksiyonu olsun.
LX) X X(V) » X (V)
(X, Y1f =X(Yf) - Y(X[) (2.4)

biciminde tanimlanan [, | fonksiyonuna X ile Y nin Lie (parantez) operatorii denir. Bu

operatorde alttaki kosullari saglar (Carmo, 2003).



VX, Y,ZeX(V), f,fi € C®(IV,R) ve a,b € R olmak iizere;

. [X,Y]= —[Y,X]

i.  [aX +DbY,Z] = a[X,Z] +b[Y,Z]
iii.  [X[Y,Z]] +[Y,[Z X]] + [Z, [X,Y]] = 0, (jacobi 6zdesligi)

iv. [fX fi¥Yl = fIX, Y]+ fF(XfDY - Y X
dir.

Tanmim 2.1.7. N bir manifold ve I'(TN') de bu manifold iizerinde tanimli olan
diferansiyellenebilir vektor alanlarinin kiimesi olmak iizere; VX,Y,Z € '(TN') ve f €
C* (M, R) igin,
V:[(TN) - T'(TN)

ile birlikte tanimlanan ve

i. VyxsyZ =VyZ +VyZ

ii. V(Y +2Z) =VyY +VyZ

iii. VY = fVyY

iv. Vi fY = X[f]Y + fVxY
kosullarin1 gergeklestiren V doniisiimiine V' {izerinde bir afin konneksiyon (veya lineer

konneksiyon) olarak adlandirilir ve Vy ifadesine de X vektor alanina gore kovaryant tlirev
denir (Carmo, 2003).



Tamm 2.1.8. M bir manifold, V afin konneksiyon ve [, ] Lie braketi olsun. Bu durumda
X,Y € I'(TM) igin,

T:I'(TM) X T'(TM) = I'(TM)

(X,Y) > T(X,Y) = VyY — VyX — [X, Y] (2.5)

tensorii torsiyon tensorii olarak tanimlanir (Yano and Kon 1984).

Tamm 2.1.9. V' bir manifold ve VX,Y € I'(TNV') igin T(X,Y) = 0 ise V konneksiyonu

simetrik veya sifir torsiyonlu (torsiyonsuz) denir (Yano ve Kon, 1984).

Tamm 2.1.10. V' bir manifold, g, simetrik ve non-singiiler bilineer form olsun. Eger V
konneksiyonu asagidaki ozellikleri sagliyorsa bu konneksiyona Riemann konneksiyonu
veya Levi-Civita konneksiyonu denir (O’Neill, 1983).

i [X,Y] = V.Y —V,X

. Xgn(Y,Z) = gn(VxY,Z) + g (Y, VyZ)(konneksiyonun metrikle bagdasabilme
szelligidir).

Tamm 2.1.11. IV iizerinde tanimli bir Levi-Civita konneksiyonu vV X,Y,Z € I'(TV) igin

295 (VxY,2) = Xgn (Y, 2) + Ygn (Z,X) = Zgn (X,Y) — gn (X, [Y, Z])

esitligi bulunur. Bu esitlige koszul esitligi denir (O’Neill, 1983).

Teorem 2.1.1. Bir Riemann manifoldu {izerinde bir tek Riemann konneksiyonu

bulunmaktadir (Chen, 1973; Boothby, 1986).



Tanim 2.1.12. (IV, g»-) bir Riemann manifoldu ve ¢: I — NV bir egri olsun. X € I'(TN')
vektor alani i¢in ¢@ = ¢, (Oa_t) olmak tizere Vy,X = 0 ise X vektor alanina ¢ boyunca

paraleldir denir (Boothby, 1986).

Tamm 2.1.13. (IV, g,-) bir Riemann manifold olsun. B:1 — Negrisinin teget vektor

alan1 8 boyunca paralel oluyorsa §’ya geodezik egri denir (Boothby, 1986).
2.1.1. Altmanifoldlar

Tamm 2.1.1.1. Eger y immersiyonu birebir (1-1) oluyorsa y ya immedding (gémme), M
ye de V' nin (gdmiilen) altmanifoldu denir (Hacisalihoglu 1982, 2003).

Tanim 2.1.1.2. M ve N'" Riemann manifoldlar1 olsun.
y:M" - N

C* dontisimii i¢in boy (y*(TpJV[ )) = m oluyorsa y nin p € M noktasindaki ranki m

olmak tizere rank(y) =m ile ifade edilir. Eger boy(M) = rank(y) oluyorsa y
dontigimii immersiyon (daldirma) olur. Bu durumda M ye de N nin immersed
altmanifoldu denir (Hacisalihoglu 1982, 2003).

Tanim 2.1.1.3. (M, gy) ve (IV, gy) sirasiyla m ve n boyutlu Riemann manifoldlari ve

y: M — IV bir immersiyon olsun. v X,Y € I'(T,M) i¢in

In X, v.Y) = g (X, Y) (2.1.1)

oluyorsa y izometrik immersiyon (metrik koruyan immersiyon) olarak adlandirilir (Chen,
1973).

Tamm 2.1.1.4. M ve IV sirasiyla m ve n boyutlu Riemann manifoldlar1 olsun. IV
manifoldunun altmanifoldu M olsun. V ve V sirasiyla M ve V' manifoldlarmin Levi-

Civita konneksiyonlari olsun. VX,Y € I'(TM) olmak tizere,



h: X (M) x X (M) - XL(M)
VyY =VyY + h(X,Y) (2.1.2)
ile ifade edilen denklem gauss denklemi olarak adlandirilir. Burada VyY ve h(X,Y)
sirastyla VY nin teget ve normal bilesenleri olur. h ye de M nin ikinci temel formu denir

(Chen, 1973).

Tamm 2.1.1.5. (2.1.2) denkleminde eger h = 0 oluyorsa M manifolduna tamamen
geodezik altmanifold denir (Chen, 1973).

Tamm 2.1.1.6. M ve IV sirastyla m ve n boyutlu Riemann manifoldlar1 olmak iizere, IV

manifoldunun altmanifoldu Molsun. M nin normal birim vektor alam1 V ve —AyX ve

V,l(V sirastyla Vy V nin teget ve normal bilesenleri olmak iizere,
A: XL x X (M) - X (M)

VyV = —AyX 4+ ViV (2.1.3)
biciminde belirtilen esitlige weingarten denklemi denir. Burada Ay ye, V ye bagl sekil
operatorii, V4 konneksiyonuna da M in TLM normal konneksiyonu olarak ifade edilir
(Sahin, 2012).

Ikinci temel form ve sekil operatorii arasinda

I (h(X,Y),V) = gy (Y, AyX) (2.1.4)

esitligi vardir.



2.1.2. Distribiisyon

Tamm 2.1.2.1. M bir manifold olmak {izere Vz € M noktasma T,M nin bir D, alt

uzayini karsilik getiren dontisiime distribiisyon denir.

D:M > T,M

z2->D, cT,M
Vz noktasinda D, geren r tane diferansiyellenebilir vektor alanlari varsa D,
diferansiyellenebilir r-boyutlu distribiisyon olarak adlandirilmaktadir (Chen, 1973; Sahin,
2012).

Ornek 2.1.2.1. Her vektor alan1 1-boyutlu distribiisyon tanimlar (Sahin, 2012).

Tamm 2.1.2.2. M bir C*manifold olmak iizere, M' manifoldu iizerinde D; r-boyutlu bir
C® distribiisyonu ve M nin altmanifoldu M olsun. Eger Vx € M noktasinda M
altmanifoldunun tanjant uzay: ile D, ayni oluyorsa M manifolduna D nin integral
altmanifoldu denir (Chen, 1973). Ozetle,

M - M
bir immedding olmak tizere Vx € M igin
5.(T.M) =D, (2.2.1)

olur. Eger D distribiisyonunun M manifoldunu kapsayan bagka bir integral manifoldu

yoksa M manifolduna D nin bir maksimal integral manifoldu (leaf) denir (Chen, 1973).

Tamm 2.1.2.3. M bir C® manifold ve M nin altmanifoldu M olsun. Eger Vz € M icin
D distribiisyonunun z noktasin1 kapsayan bir maksimal integral manifoldu mevcutsa D

distribiisyonuna integrallenebilirdir denir (Giindiizalp, 2007).
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Ornek 2.1.2.2. 1-boyutlu her distribiisyon integrallenebilirdir (Sahin, 2012).

Tanmmm 2.1.2.4. D bir distribiisyon ve X,Y € D olsun. Eger [X,Y] € D oluyorsa D

distribiisyonu involutivedir denir (Sahin, 2012).

Teorem 2.1.2.1. (Frobenius Teoremi) V' bir C* manifold ve D, IV iizerinde r-boyutlu
bir distribiisyon olsun. Bu durumda her involutive distribiisyonu integrallenebilirdir.
Ustelik D distribiisyonunun p € ' noktasindan gecen bir tek maksimal integral
manifoldu vardir ve p noktasini belirten diger biitiin integral manifoldlar bu maksimalin
bir agik altmanifoldudur (Sahin, 2012).

Tanim 2.1.25. (I, gy ) bir Riemann manifoldu ve (IV,g,) Riemann manifoldu
tizerindeki lineer konneksiyonuda V olsun. Eger VX € I'(TN), Y € I'(D)igin

V.Y € I'(D)

ise D disribiisyonu V' de paraleldir denir (Glindiizalp, 2007).

Tamm 2.1.2.6. (M, gar) ve (W, gar) Riemann manifoldlart ve n < m olmak tizere

: (M, gae) = (W, gw)
orten C*doniisiimii igin

rankm,, = boyN
oluyorsa  , x € M noktasinda bir submersiyon olur. Vx € M ig¢in 7 bir submersiyon ise
M tizerindeki m dontisimii submersiyon olarak ifade edilir (Falcitelli, lanus and Pastore,

2004; Gilindiizalp, 2007).

Tanim 2.1.2.7. (M™, g»r) ve (N, g-) Riemann manifoldlart olmak tizere

T (M,g]v[) - (N’gN)
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bir C*°dontisiimi olsun. x € M igin

V, =V, (n) =¢ekn,, ={x € T M:m,,(X)=0}cT,M
ve

K, =V cT,Mm

olarak tanimlayalim. V, uzayr m donisiimiiniin x noktasindaki dikey uzayi olarak
adlandirilir. V, dikey uzayinin dik timleyen uzayi olan H, e de m doniisiimiiniin x
noktasindaki yatay uzayi denir (Baird ve Wood, 2003; Giindiizalp, 2007).

Boylece M Riemann manifoldu x € M igin
TM=V,®H, =V, ®V," (2.7)
ortogonal ayrigimi1 mevcuttur (Glindiizalp, 2007).
Tanim 2.1.2.8. (M, g5r) ve (NV'”, gj-) Riemann manifoldlari olmak tizere
T (M, gae) = (W, gw)
bir C* doniigiimii olsun. x € M noktasina sirasiyla V, ve H,, altuzaylarini karsilayan
x -7V,
ve
x->H,
dontisimleri M \ C,; tlizerinde swrasiyla V =V(r) ve H =H(m) ile gosterilen
C™disribiisyonlarini tanimlar. V = V (), m nin dikey distribiisyonu veya dikey alt demeti

olarak adlandirilir, H = H (m) ise yatay distribisyonu veya yatay alt demeti olarak ifade
edilir (Baird and Wood, 2003; Giindiizalp, 2007).
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Tamm 2.1.2.9. V' manifoldu tizerindeki herhangi bir X vektor alani yatay distribiisyona
ait ise X vektor alami yatay vektor alani olarak adlandirilir ve yatay vektor alanlarinin

kiimesi X"(V) ile gosterilir (Sahin, 2012).
Tammm 2.1.2.10. NV {izerindeki herhangi bir X vektor alami dikey distribiisyona ait
oluyorsa X wvektor alan1 dikey vektor alani olarak isimlendirilir ve dikey vektor
alanlariin kiimesi X'V (V") bigiminde ifade edilir (Sahin, 2012).

Herhangi bir E € I'(T, V") vektor alaninin dikey ve yatay bilesenleri sirasiyla vE
ve hE ile ifade edilir (Sahin, 2012).
Tanim 2.1.2.11. (M, g»r), (N, g»-) Riemann manifoldlart arasinda

T (M,g]v[) - (Nrg]\f)

C* submersiyonu igin Vp € M noktasinda m,, tiirev doniisiimii yatay vektorlerin

uzunlugunu (boyunu) koruyor ise yani kisaca; U, W € H,, s; € M i¢in,

s, UW) = gor o (s, (0), ., (W) (2:8)

ise  doniistimii bir Riemann submersiyon olarak adlandirilir (Falcitelli, lanus ve Pastore,
2004; Giindiizalp, 2007).

Tanim 2.1.2.12. (M, g»r), (W, g»-) Riemann manifoldlar1 ve

w: (M, gar) > (W, gw)
doniisiimii Riemann submersiyon olsun. Bu durumda (1,2) mertebeli T temel tensor alani
X,Y € I'(TM) olmak lizere

TXy = hvavY + UVUXhY (29)

ile tanimlanir (O’Neill, 1966; Giindiizalp, 2007).
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T temel tensor alan1 asagidaki nitelikleri tasir.

i. X, Y,Z e I'(TM) igin Ty anti-simetriktir ve lineer operatordiir. Baska bir deyisle,

I (TxY, Z) = —g(TxZ,Y) dir.

ii. X €r(TM)igin Ty yatay ve dikey altuzaylarin rollerini degistirir.

iii. T dikey tensor alanidir. Yani, X € I'(TM) i¢in Ty = T,x olur.

iv. T dikey  tensér  alam simetriktir. Yani, X,Yerw) icin

Tanim 2.1.2.13. (M, gar), (W, g»r) Riemann manifoldlar ve

M(Mig]\/[) v (Nrg]\f)

dontisiimii Riemann submersiyon olsun. Bu durumda (1,2) mertebeli A temel tensér alani

ve X,Y € I'(TM) olmak iizere

AxY = hV,xvY + vV, xvY (2.10)

ile tanimlanir (O’Neill, 1966; Giindiizalp, 2007).

A temel tensor alan1 agagidaki nitelikleri tasir.

i. XY, Zel'(TM)igin Ay anti-simetriktir ve lineer operatordiir.

Im(AxY,Z) = —gp(AxZ,Y).

ii. X €r(TM)igin Ay yatay ve dikey altuzaylarm rollerini degistirir.

iii. A yatay tensor alamidir. Bagka bir ifadeyle, X € I'(TM) i¢in Ay = Apx olur.
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iv. A yatay tensor alani alterneleyendir. Yani, X,Y € I'(H) i¢in AyY = —Ay X olur.

Lemma2.1.2.1. (M™, gar), (WN", g») Riemann manifoldlari arasinda tanimlanan

w: (M, gae) > (W, gy)

doniisiimii bir Riemann submersiyon olmak iizere X,Y € X*(M) ve V,W € XV(M) igin

VyW = TyW + %W,

va = hVVX + Tvx,

ViV = AV + vV, V,

VXy = hVXY + AXy

dir (Giindiizalp, 2007).

Tanim 2.1.2.14. (M, gae), (W, g»-) Riemann manifoldlar1 ve

w: (M, gae) = (N, g)

(2.11)

(2.12)

(2.13)

(2.14)

donisiimii bir Riemann submersiyon olsun. Eger tensor alami T sifir oluyorsa u

doniisiimiiniin  herhangi bir u~'(x) lifine M manifoldunun tamamen jeodezik

altmanifoldu denir (Falcitelli, lanus and Pastore, 2004; Giindiizalp, 2007).

Tamm 2.1.2.15. u, M manifoldundan N manifolduna tanimli bir déniistim olsun.

manifoldu iizerindeki bir konneksiyon V olsun. u boyunca N manifoldu iizerindeki V

konneksiyonuna p boyunca V konneksiyonunun geri cekme (pullback) konneksiyonu ad

verilir (Garcia-Rio and Kupeli, 1999)
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Tanim 2.1.2.16. (M, gar), (V" g»-) Riemann manifoldlari ve

w: (M, gae) = (W, go)
bir doniisiim olsun. V konneksiyonunun p boyunca geri ¢ekme konneksiyonu V# olmak
lizere, VX,Y € I'(TM) i¢in

Vu,:I(TM) X I'(TM) - I,(TN)

ile gosterilen Vu, doniisiimiine g doniistimiiniin ikinci temel formu adi verilir (Garcia-Rio

and Kupeli, 1999; Sahin, 2012)

Onerme 2.1.2.1. u: (M, g»r) = (IV, gyr) bir doniisiim olsun. X, Y € I'(TM) igin,

Vu) (X, Y) = (Vu) (Y, X)
dir. Yani, ikinci temel form simetriktir (Fischer, 1992; Sahin, 2012).

Tanmim 2.1.2.17. w: (M™, gar) = (NV'", gy) bir doniisiim olsun. {eq, €5, ..., ey}, ['(TM)
i¢in bir ortonormal yerel ¢atis1 olsun. ¢ doniisiimiiniin tensiyon alani t(u), Vu, ikinci

temel formun izine esittir. Yani,

m

) = i2(V8) = ) (T (e ) (2.16)

i=1

dir. Bir i: (M, gae) = (W, gp) donilisiimiiniin tensiyon alant u boyunca bir vektor
alamdir. Yani, t(u) € I,(TN) dir (Fischer, 1992; Sahin, 2012).

Tammm 2.1.2.18. Eger t(u) =0 oluyorsa  u: (M, gy) = (IV,gy) doniisimiine
harmonik doniigiim denir (Fischer, 1992; Sahin, 2012).
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Tanim 2.1.2.19. (M, gae), (W, g»-) Riemann manifoldlar1 ve

M(M"g]\/[) - (N'gN)

bir dontisiim olsun. O halde s € M' noktasinda u doniisiimiiniin tiirev dontsimii s

olmak tizere X € Ty M ve Y € T, )]V i¢in,

I (s (XD, Y) = gar (X, 175 (V) (2.17)

ile tanmimlanan p*s doniisiimiine s € M noktasindaki . doniistimiiniin adjoint doniistimii

denir (Sahin, 2012).
2.2. Kompleks Manifoldlar

Tanim 2.2.1. M bir Hausdorff uzay1 ve M de bir agik {U,},e1 olsun. Eger Vs € M i¢in
Ug:Ug T M > W, cC"

homeomorfizmasi meveut ve U, N Ug # @ olmak lizere

bap = .uao.u[s’_l:.uﬁ(ua N Uﬁ) - .ua(Ua N Uﬁ)

¢Ba = .uﬁolua_l::ua(ua N Uﬁ) - HB(Ua N Uﬁ)

dontisiimleri holomorfik oluyorsa M manifolduna kompleks manifold adi verilir. C" ve
R2" 5zdes oldugundan M manifoldu 2n — boyutlu bir reel analitik manifolddur. Burada
{Ug o }aer Ya da M manifolduna holomorfik koordinat komsulugu denir (Matsushima,
1972).

Tamm 2.2.2. ' manifoldu 2m — boyutlu bir reel manifold olmak {izere V" manifoldu

tizerinde (1,1) mertebeli tensor alani J olsun. O helde Vp; € IV i¢in,

Jp, Tp, N = TplN'jgl =—Im
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ile belirtilen J endomorfizmi (lineer doniisimii) mevcutsa / ye ' manifoldu {izerinde
hemen hemen kompleks yap1 denir. V' manifolduna ise /] kompleks yapisi ile birlikte

hemen hemen kompleks manifold denir (Yano ve Kon, 1984; Sahin, 1996).

Tamm 2.2.3. V', hemen hemen kompleks manifold olmak {izere, eger U c V' agigi

J (aza) - aia J (aia) - _%

olacak bi¢imde U nin {x%, y*} koordinat sistemi varsa " manifoldu kompleks manifold
olarak adlandirilir (Yano and Kon; 1984).

uzerinde

Sonug 2.2.1. IV bir hemen hemen kompleks manifoldu ise n = 2m olur. Burada n, V'

nin kompleks boyutu, 2m ise V' nin reel boyutudur (Kobayashi ve Nomizu, 1963).

Tamim 2.2.4. V" bir hemen hemen kompleks manifold ve V'nin hemen hemen kompleks

yapisi J5 olsun. V' iizerinde bir Riemann metrigi g, olmak tizere, VU,V € X (V')i¢in

InUnU,JnV) = gy (U, V) (2.18)

ise gy bilineer doniisimiine Hermityen metrik denir (Yano ve Kon; 1984).

Tanim 2.2.5. V' bir hemen hemen kompleks manifold olsun, eger V' manifoldu tizerinde
bir g Hermityen metrigi tanimli ise V' ye hemen hemen Hermityen manifold denir. V" bir
kompleks manifold ve WV {izerinde g;, hermityen metrigi tanimli ise V' ye hermityen

manifold denir. Bu hemen hemen Hermityen manifold YU,V € X (V)i¢in,

Jn?=—IvegyWU,V)=gyUnUJxV) (2.19)

esitligini saglar (Yano and Kon; 1984).
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Tamim 2.2.6. V' hemen hemen Hermityen manifold, g, ve J5, N flizerinde sirasiyla

Hermityen metrik ve hemen hemen kompleks yap1 olsun.

VYU,V € X (V) i¢in,

AU, V) = gn (U, JxV) (2.20)

ile taniml1 tensére temel 2-form denir. Bu manifold iizerinde tanimli Hermityen metrigi
gy ve hemen hemen kompleks yapisi /5 olsun. Bu durumda N, hemen hemen

Hermityen manifoldu (IV, gy, /) ile gosterilir (Yano and Kon; 1984).
Tamm 2.2.7. V' bir hemen hemen kompleks manifold ve g,-, IV iizerinde bir Hermityen
metrik olsun. Eger V' iizerinde tanimlanan A temel 2-formu kapali ise yani dA = 0 ise

g Hermityen metrigine Kaehler metrik denir (Yano and Kon; 1984).

Tamm 2.2.8. Eger ¥ kompleks manifold ve V iizerinde g5, Kaehler metrigi tanimli
ise (V, g Ja) Ye Kaehler manifoldu denir (Yano ve Kon; 1984).

Teorem 2.2.1.(V, g, Jn) hemen hemen Hermityen manifoldun Kaehler manifold

olmasi i¢in gerek ve yeter sart

Vi =0 (2.21)

dir (Yano and Kon; 1984).

Teorem 2.2.2. (N, gn,Ja) bir hemen hemen Hermityen manifoldu bir Kaehler

manifoldu ise VX,Y € TV i¢in,

(VxJa)Y=0
VilnY = (VxJp)Y + VY ——— Vi)V = [ VY (2.22)

dir (Yano ve Kon; 1984).
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Tanimm 2.2.9. (Mm,gM,]]M) ve (N, gu, Ja)(m > n) olacak sekilde bir hemen hemen
Hermityen manifoldlar olmak tizere, B: (M7, g, ac) = N, g ) bir C%

submersiyonu asagidaki kosullar1 sagliyorsa bu 8 doniisiimiine hemen hemen Hermityen

submersiyon veya Holomorfik submersiyon adi verilir (Yano and Kon; 1984).
i. B bir Riemann submersiyon,
ii. S bir hemen hemen kompleks doniisiimdiir. Yani,

B = JnB- (2.23)

dir (Yano and Kon, 1984).

Tanm 2.2.10.(M1", gar,, Jar,) Ve (M3", g, Ja,) hemen  hemen  Hermityen

manifoldlar olmak tizere,

B: (M1»9M1JM1) - (MZ'gMZJMZ)

dontisiimii bir Riemann doniisiimii olsun. Eger

.B*]]V[l =]JV[2.B* (2'24)

ise § donilisiimiine p; € M noktasinda bir Holomorfik Riemann submersiyon denir (Lee
and Sahin, 2014).

Tanim 2.2.11. (M, g, Jac) hemen hemen Hermityen manifold ve (3V, g,-) Riemann

manifold olsun.
B:(M"™, gae:Jae) = (N, o)

doniisimii (n < m) sartim saglayan bir Riemann submersiyon olsun. Eger dikey
distribiisyon [, e gore invaryant ise § doniisiimiine bir invaryant Riemann submersiyon

denir. Yani,
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Jac(cekpB.) = cekp. (2.25)
dir (Sahin, 2013).

Tamim 2.2.12. B, (M, g, Jac) hemen hemen Hermityen manifolddan (V' g»-) Riemann

manifolduna tanimlanan

B:(M"™, gaes Jae) = (N, o)

dontisimii (n < m) sartin1 saglayan bir Riemann submersiyon olsun. Eger ¢cekfB.Jar €
gore anti-invaryant ise  doniisiimiine anti-invaryant Riemann submersiyon denir (Sahin,
2010).

Jac(sekB.) € (gekB)* (2.26)

Tanmm 2.2.13. B, (M, g, J») hemen hemen Hermityen manifolddan (V, gy-)

Riemann manifolduna tanimlanan

B:(M", grerJae) = (V" gv)

dontisimii (n <m) kosulunu gergeklestiren bir Riemann submersiyon olsun.

D, S c¢ekp, distribiisyonu var,

cekp. = D@D,

Jie@) =D1,  Ja(D2) < (gekB)t (2.27)

ise f doniisiimiine yari-invaryant Riemann submersiyon denir. Burada D, ¢ekf, da D,

distriblisyonunun ortogonal tamamlayicisidir (Sahin, 2013).

Tamm 2.2.14. B, (M, g, Jac) hemen hemen Hermityen manifolddan (V, gy)

Riemann manifolduna tanimlanan

B:(M", grerJae) = (V" giv)
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dontisiimii (n < m) sartin1 saglayan bir Riemann submersiyon olmak iizere, eger s; €
M noktasinda sifirdan farkli X € ¢ekp.s, vektori i¢in ¢ekf.s, Ve Jp X arasindaki
6(X) agis1 sabit yani, s; € M ve cekpf,s deki X tanjant vektorlerinin seciminden
bagimsiz ise [ doniisiimiine egik submersiyon denir. Burada 6 acisina da egik

submersiyonun egik agis1 denir (Sahin, 2011).

Tamim 2.2.15. (B, gg ,J) bir hemen hemen Hermityen manifold ve (N, gy) bir Riemann
manifoldu olsun. m: (B,gg,J/) = (N,gy) scklinde yazilan bir Riemann

submersiyonudur eger, D; < kerm, olacak bigimde bir distribiisyon mevcutsa ve
keTT[* = Dl @ D2, ](Dl) = D1 (228)

sartlarin1 sagliyorsa, bu submersiyon yari-egik submersiyon olarak ifade edilir. Bu
durumda, D,, kerm, iginde D;'in ortogonal tamamlayicisi olur.

Y € (D;), Ve p €B icin JY ile (D;), arasindaki a¢1 olan 6 = 6(Y), sifirdan farkli
Y degerleri igin sabit olur (Park and Prasad, 2013).

2.3. Riemann Doniisiimler

Tanim 2.3.1. 8, (M, g»,) Riemann manifoldundan (v, g»-) Riemann manifolduna

ﬁ(Mlg]V[) - (N'gN)

diferansiyellenebilir bir doniisiim olsun. p; € M noktasinda S, lineer doniistimiiniin

cekirdek uzaymni ¢ekf,, ve ortogonal tiimleyen uzaymi da H, = (cekB)L ile

*P1

gosterelim. M’ manifoldunun p; € M noktasindaki tanjant uzay1
To, M = &;ekﬁ*pl69((;ekﬁ*)l (2.29)

ayrisimina sahip olur. p; € M noktasinda B, lineer doniisiimiiniin goriintlisti go7B.p,
ve ortogonal tiimleyen uzayimi da ( gorp., 1)l ile gosterelim. Boylelikle NV nin Tg, )N

tanjant uzay1 p; € M noktasinda
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. . 1
ooy N = o1 B.p, ®(g67B.p,) (2.30)

ayrisimina sahip olur. p; € M noktasinda p, = S(p,) olmak lizere

(cekBup,)" gac(PD)) |
( Il

ve

1
cekBup,)

((gbrrg*lh)’ 9N (pz)) |(g6rﬁ*p1)

i¢ carpim uzaylar1 arasinda

AL 4
i (cekBup, )™ = (967B.p, ) (2.31)
ile tanimlanan doniisiim bir lineer izometri ise

B: (M, gn) = (V, gn)

diferansiyellenebilir doniisiimiine p; € M noktasindaki Riemann dontisiimii adi verilir

(Fischer, 1992).

Lemma 2.3.1. B, (M, gy) Riemann manifoldundan (V, g»-) Riemann manifolduna

tanimlanan
ﬁ: (MﬂgM) - (N;g]\f)
Riemann doniisiimii olsun. VX,Y,Z € F((gekﬁ*)L) icin
an((VBIX,Y),5.(2)) = 0 (2.32)

esitligi vardir (Sahin, 2012).

Ispat: f8 bir Riemann déniisiimii oldugu i¢in (2.1.17) denkleminden faydalanarak,
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an((VBIX, V), B.(2)) = g (VB0 B.(2D)) = g (B.(VHY), 5.(D))

elde edilir ve £ nin 6zelliginden dolayz,

an (B, B.2D) = g (VEB.), B.(D)) = 920 (W37, 2) (2.33)

elde edilir. Diger yandan V™, M nin bir Levi-Civita konneksiyonu oldugu igin, koszul

esitliginden yararlanarak;

ya21hr. B*([X! Y]) — [B*(X), B*(Y)] oldugu 1(}111, gM(Xﬂ Y) = gN(B*(X)ﬂﬁ*(Y)) ifadesi

kullanilarak;

+9n ([8.(0, (), (D)) + gw ([8.(2), B.(XO), B.(V))

elde edilir. Ayrica, VN | IV {izerinde bir Levi-Civita konneksiyonu oldugu i¢in,
M — B
93(VXY,2) = gy (VB.(), B.(2)) (2.34)
esitligi elde edilir. (2.32) ve (2.33) esitlikleri kullanilarak,

gn ((VBI(X,Y),B.(2)) =0

elde edilir. Buradan da,

(VBIX,Y) € I((gorpIt), XY €T ((gekp.)t) (2.35)
olur.
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Altmanifoldlardaki weingarten denklemi Riemann doniisiimlere uygulanirsa

VoV = —SyB.X + V5V (2.36)

esitligini elde ederiz. Burada, SyS.X, V[Z;* xV nin S vektor alan1 boyunca teget bilesenidir.

SyB.X, V iizerinde bilineerdir. X, Y € I'((¢ekB.)1) ve V € I'((gorp.)1) igin,

(VBIX,Y) = Vi B.(Y) — B(VEY)
dir. Burada B.Y € I'(gorp.) oldugundan

I ((VBI(X,Y),V) = gp(B.(Y), SyB.X) (2.37)

esitligi vardir. (2.36) esitligi, Riemann doniistimler i¢in doniislimiin ikinci temel formu
ile sekil operatorii arasindaki baglantiyr verir. (V,) simetrik oldugu i¢in Sy de (gorp,)
n bir simetrik lineer doniisiimiidiir (Sahin, 2012).

Simdi (2.9), (2.10) ve (2.11) denklemlerinden faydalanarak bir Riemann doéniisiimiin

tamamen geodezik olmasi i¢in bir tanima yer verilecektir.

Tamm 2.3.2. 8, (M, g»r) Riemann manifoldundan (V, g»-) Riemann manifolduna

tanimlanan

B: (M, gae) = (V, g)
diferansiyellenebilir bir doniistim olsun. VX, X, € I'(TM) i¢in,
(VB)(X1,X2) =0
ise bu S doniistimiine tamamen geodezik doniisiim denir (Sahin, 2012).

Teorem 2.3.1. B, (M, g) Riemann manifoldundan (I, g»-) Riemann manifolduna

tanimlanan

B: (M, gx) = (V,gn)
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Riemann doéniisiim olsun. B doniisiimiiniin tamamen geodezik olmasi igin gerek ve yeter

sart,
i, A =0

ii. X,Yer((cekB.)t)ve Ver((gorp.)?t) icin lifler tamamen geodeziktir (Sahin,
2012).

Ispat: ik olarak 5, (M, gir) Riemann manifoldundan (I, g»-) Riemann manifolduna

tanimlanan

ﬁ(MlgM) - (N'g]\f)

dontisiimiiniin tamamen geodezik olmasi igin gerek ve yeter sart V U, U, U, € I'(¢cekp,)

ve VX, Y € I'((¢ekB.)L) igin
(VBIX,Y) =0, (VBI(X,U)=0 we (VB)(U;,Uz) =0 (2.38)
olmasidir. (VB,)(X,U) € I'(gorp.) oldugu i¢in
(VBOX,U) =10

ifadesinin saglanabilmesi i¢in gerek ve yeter sart Y € I’ ((gekﬁ*)i) igin

g ((VBIX, 1), B.(Y)) =0 (2.39)
esitliginin saglanmasidir. Burada (2.15) ifadesi kullanilarak,

(VBI(X,U) = =B.(V%V)

elde edilir. (2.13) ifadesini kullanilarak,
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(VBOX,U) = —B.(AxV) (2.40)
elde edilir. (2.38) ve (2.39) ifadelerinden yararlanilarak,
I (B-(Ax V), B.(V)) = —gn (VB X, 1), B.(Y)) = O
esitligi yazilir. § bir Riemann doniisiim oldugundan,
I (AxU,Y) = —gp (VB (X, 1), B.(Y)) = 0 (2.41)
esitligi bulunur. Buradan,
I (AxU,Y) = =g (U, AxY) = 0
olup
AxY =0
olur. Benzer bi¢cimde (VS,)(U,V) € I'(gorp,) igin
(VBOW,V) =0
olmasi i¢in gerek ve yeter sart X € I ((gekﬁ*)i) igin

In((VBI(W, V), B.(X)) = 0 (2.42)

olmasidir. Buradan yine (2.15) esitliginden faydalanilarak,

esitligi elde edilir. (2.11) esitligi kullanilarak,
(VBI(W,V) = =B.(TyV) (2.43)

elde edilir. (2.41) ve (2.42) esitliklerinden,
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I (B(TyV), .(X)) = —gn ((VBI(WU, V), B.(X))
elde edilir. B8 bir Riemann doniisiimii oldugundan Gtiirii
9 (TyV, X) = =gy (VB (U, V), B.(X)) (2.44)
elde edilir. Son olarak, X, Y € I'((¢ekB.)1) igin
(VBOX,Y) =0
olmasi igin gerek ve yeter sart V€ I’ ((gi')rﬁ*)J-) icin
9w ((VBI(X, V), V) =0
dir. (2.36) esitligi kullanilarak,
In((VBIX,Y),V) = gy (B.(Y), SyB.X) = 0 (2.45)
elde edilir. Buradan da Syf.X = 0 bulunur. Boylece ispat tamamlanmis olur.
Simdi, Riemann egrilik tensorleriyle ilgili baz1 denklemler verelim.
R,R',Rve R* ; M ve N Riemann manifoldlarinin Riemannian egrilik tensorleri olsun.
kerp, ve (kerB,)?* sirasiyla dikey distribiisyon ve yatay distribiisyon olsun. Sonrasinda,
Gauss-Codazzi tipi denklemler su sekilde verilir:

R(U,V,F,W) =R (U,V,F,W) + g(TyW,T,F) — g(T,W,T,F)  (2.46)

R(X,Y,Z,H)=R*(X,Y,Z,H) — 2g(AxY,AzH)
+9(AyZ, AxH) — g(AxZ, AyH) (2.47)

RX,V,Y,W) = g((vxT)(V,W),Y) + g((VyA)(X,Y), W)
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— g X, TywY) + g(AyW,AxV) (2.48)

B.(R*(X,Y)Z)) = R'(B.X,B.Y)B.Z (2.49)

VYUV,F,W €T (kerB,)veX,Y,Z HeT((kerB)').
Ayrica, f Riemann submersiyonunun herhangi bir lifinin ortalama egrilik vektor alant H

asagidaki gibidir.
r
1
H = ;z Ty,Uj (2.50)
j=1

burada, {U, ..., U, } dikey distribiisyon olan kerp, nin ortogonal bazidir. Ayrica, 8, T nin
sifir olmas1 durumunda tamamen geodezik liflere sahip olur (Akyol vd., 2022).
Tamm 23.3. X, (By,gs,,J5,) hemen hemen Hermityen manifoldundan (B, gs,)

Riemann manifolduna tanimlanan

K: (31,931,131) - (BZ'ng)

bir Riemann dontistim olsun. V qi € By ve sifirdan farkl
Y € I'(¢ekX.,)q, vektorii olup Jp Y ve (¢ekX.)q, uzayr arasindaki 6(Y) wirtinger agist,
sabit bulunuyorsa K doniisiimii egik Riemann doniisiim olarak adlandirilir. Bu durumda

0 agisina da egik Riemann doniisiimiin egik acis1 ad1 verilir (Sahin, 2017).

Tamm 2.3.4. (By, gp,) Riemann manifold olsun ve (B, gg,,Js,) hemen hemen

Hermityen manifold olmak tizere;

K: (311931) - (Bzrngr]Bz)
bir Riemann doniisim olsun. Eger V q; € B, noktasi i¢in sifirdan farkli olan bir
K.(Y) €T(rangeX.)q, vektorii igin Jp, K. (Y) ve (rangeX.,)q, uzay: arasindaki 6(Y)
wirtinger agis1, Sabit bulunuyorsa K donisimii egik Riemann dontisim olarak
adlandirilir. Bu durumda 6 agisina da e8ik Riemann doniisiimiin egik acis1 adi verilir

(Sahin, 2017).
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Tanim 2.3.5. (Ny,gy,,/1) bir hemen hemen Hermityen manifoldu ve (N, gy,) bir
Riemann manifoldu olsun. Eger kerf, iizerinde bir g¢ift ortogonal D® ve DT
distriblisyonu mevcutsa ve asagidaki sartlar1 sagliyorsa f:N; = N, yari-egimli bir
Riemann doniisiim olur.

1. ker 3, uzay1, D® @ DT ortogonal direkt ayrisimidir.

2. DT distribiisyonu invaryanttir.

Burada, ¢ agis1 yari-egimli bir Riemann déniisiimiiniin sabit agisidir (Park, 2018).

Tammm 2.3.6. (B,, g, ,/,) bir hemen hemen Hermityen manifoldu ve (B, g,) bir
Riemann manifoldu olsun. Eger kerp, iizerinde asagidaki sartlar mevcutsa, D? ve DT
ortogonal distribiisyonlar olmak iizere, f: By = B, Riemann doniigiimiine, yari-egimli
bir Riemann doniisiimii denir:

1. rangep, uzayi, D® @ DT ortogonal direkt ayrisimina denktir.

2. DT distribiisyonu invaryant olur.

Bu kosulda, ¢ acisi, yari-egimli bir Riemann doniisiimiiniin sabit agisidir (Park, 2018).

2.4. Noktasal Egik Riemann Doniisiimler

Tamm 2.4.1. K, (B3, gg,,/5,) hemen hemen Hermityen manifoldundan (B, g, )

Riemann manifolduna tanimlanan

K: (31,931'131) - (BZ'ng)

bir Riemann doniisiim olsun. V q; € B; ve sifirdan farkli Y € I'(¢ekX.,) q, vektorii olmak
lizere Jp, Y Ve (¢ekX,)q, uzay: arasindaki 6(Y) wirtinger acisi, Y € I'(cekX.,)q, vektor
alan1 ve q; € B; noktasinin se¢iminden bagimsiz olur. Burada X bir noktasal egik
Riemann doniisiimii olur. 6, B, iizerinde bir fonksiyon olur, bu fonksiyona da noktasal

egik Riemann doniisiimiin egik fonksiyonu ad1 verilir (Glindiizalp ve Akyol, 2022).

Eger q; € By noktasi i¢in egik fonksiyon 6 = % ise noktasal egik Riemann doniigiimii

tamamen reel olur. Benzer bigimde bir q; € B; noktasi igin egik fonksiyon 8 = 0 ise bu

nokta kompleks nokta olarak isimlendirilir. Eger bir noktasal egik Riemann
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dontistimiinde kompleks nokta ve de tamamen reel nokta mevcut degilse bu doniisiim

uygun doniisiim olarak adlandirilir (Sahin, 2017).

Bu doniisiim bir alt immersiyon oldugundan doniisiimiin ranki kaynak manifold
tizerinde sabit olur. Buradan da bu doniisiim i¢in rank teoremi kaynak manifoldun
dikey distriblisyonu, kaynak manifoldun tanjant demetinin bir
integrallenebilir alt manifoldu anlami tasir (Abraham et al. 1988), sayfa 205).

Simdi noktasal egik Riemann doniisiimler i¢in bazi1 6rnekler verelim.

Ornek 2.4.1. Hemen hemen Hermityen manifolddan bir hemen hemen Hermityen
manifolduna tanimlanan hemen hemen Hermityen submersiyonu, (gérk,)L = {0} ve

6 = 0 ile birlikte bir noktasal egik Riemann doniisimdiir (Giindiizalp ve Akyol, 2022).

Ornek 2.4.2. Hemen hemen Hermityen manifolddan bir Riemann manifolduna

tanimlanan her anti-invaryant Riemann submersiyonu, 6 =§ ve (gorx,)L = {0} ile

birlikte bir noktasal egik Riemann donlisimdiir (Giindiizalp ve Akyol, 2022).

Ornek 2.4.3. (R* ggr+) bir Riemann manifold ve (R*J,gg+) bir hemen hemen
Hermityen manifold olsun. Verilen hemen hemen Hermityen manifold tizerinde J;,/, ve
J», hemen hemen kompleks yapilarimi [/, = —J,J; ve [, = (cosw)J; + (sinw)]/,
kosullarmi saglayacak bicimde tanimlayalim. R* iizerindeki {J,/>} hemen hemen

kompleks yapilari

J1(dy,dy,d3,dy,) = (—d3,—dy,dy,dy) ve  J,(dy,dy,d3,dy,) = (—dp,dy,dy, —d3)  seklinde

olup

]]_]2 :]1(_d21d11d41_d3) = (_d4'd3'_d2'd1)
J2J1 = J.(—=ds, —dy, dy,dy) = (d4,—d3,,d2,—d1) oldugundan J,J, = —J,/; saglanir.

simdi J,? = —I oldugunu gosterelim.



]a)z =]w(]w) =]w((COS(4))]1 + (Sin w)]z) =]w((COS(4))]1) +](u((Sin w)]z)
= cosw],, (—d3, —dy, dy,d;) + sinw J,(—d,, dy, dy, —d3)
= cosw(cosw)((—dy, —d,, —d3, —d,)) + cosw(sin w)(dy, —ds, dy, —d; )

+ sin w cosw(—dy, d3, —d,, dy) + sinw ((sinw)(—dy, —dy, d3, d,))

= (—=dy, —d,, —d3, —d,)(cos?w + sinw)

+(—d,,ds3,d,, —d;)(cosw sin w — sin w cosw)

= (_d1'_d2»d3»d4) = _(dl» dz'd3’d4)
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oldugundan J, hemen hemen bir kompleks yapidir. K, bir hemen hemen Hermityen

manifolddan bir Riemann manifolduna tanimlanan

Riemann doniisiimiini

seklinde yazalim.

K,y zt) = (xsinﬁ +zcos,8,10,\/E,

0k, 0k, 0k, O0kq]
dx dy 0z Ot
0k, 0k, 0dk, 0k,
dx dy 0z Ot
0k; 0ks 0k; O0ks
dx dy 0z Ot
0k, 0k, 0k, 0k,
[ 0x Jdy 0z ot

K: (R, ], gre) > (R, gge)

Buradan rank(¥,) =2’dir. Simdi, dikey ve yatay distribiisyonlar1

y—t
V2

V = ¢ekX, = span {Wl = (=cosp,0,sin §,0), W, = (0’ 1/\/5'0' 1/\/5)}

H = (¢cekXK,)L = span{Ll = (sinf,0,cosB,0), L, = (O, 1/\/5,0,— 1/\5)}

seklinde secelim. Buradan da
grt(Ly, L) = gge(H.Ly, KoL) ve gre(La, Ly) = gre(KiLy, K. Ly) oldugunu

gosterelim.
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gr+(Ly, Ly) = ((sinB,0,cos 5,0), (sinB,0,cos 5,0)) =1

[sinﬁ 0 cosf 0 ]
l 0 0 0 0 sinf8 1
_| o 0 0 0 0o |_|o
Kli=1 0 0 0 [|cosB| |0
1 1

gre(K.Ly, %.Ly) = ((1,0,0,0),(1,0,0,0)) =1 olup esitlik saglanir. Benzer sekilde
g+ (L, L) = gpa(K.Ly, K, L,) esitligi saglandigindan yatay vektorlerin uzunlugu (boyu)

g[R6(]wW1! WZ)

ifadesini bulalim. Daha sonra
1T W llll W2II

korunur.  Simdi cosf =

Jo» = (cosw) J; + (sin w)]J, esitliginden faydalanarak J,W;’i yazalim.

JoW; = ((cosw) J; + (sinw)],)(—cospB,0,sinf,0)
= (cosw) J; (—cosp,0,sin,0) + (sinw)/,(0, —cosB, 0, —sin )
= (—cosw sin 8, — sin wcosf , coswcosf, —sin w sin )

Wil =1, W] =1

1 1
+(J,W;, W) = gps | (—cosw sin 8, — sin wcosf3, coswcosS, —sin w sin 8), (0,—, 0, —)
Irt U Wi, W, IR ( B B B B 2 V2

1
= ——sinw (cosf + sin B)

V2

esitlikleri kullanilarak cos 8 = — \/%sin w (cosP +sinB) ise 6 =

arccos (— \/%sin w (cosf + sin ,B)) bulunur. Buradan hareketle, K egik fonksiyonu 6 =

arccos (— % sin w (cosf + sin ﬁ)) ile birlikte noktasal egik Riemann doniistimdiir

(Demir, 2023).

Tanmm 2.4.2. (B, gp, ) Riemann manifold olsun ve (B,, gs,,Js,) hemen hemen

Hermityen manifold olmak tizere;

X: (BlrgBl) - (BZ'ng’]Bz)
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bir Riemann doniisim olsun. Eger V q; € B, noktasi i¢in sifirdan farkli olan bir
K.(Y) €T(g0rK,)q, vektori igin Jp K,(Y) ve (gorX.)q, uzayr arasindaki 6(Y)
wirtinger agis1 Y € T'(g6rK.,)q, vektdr alanindan bagimsiz ve ayni1 zamanda da q; € B,
noktasinin se¢iminden de bagimsiz oluyorsa K doniisiimii bir noktasal egik Riemann

doniistim olarak adlandirilir (Akyol ve Giindiizalp, 2023).

Buradan hareketle 8 agis1 B, lizerinde noktasal egik Riemann doniisiimiiniin egik
fonksiyonu olarak isimlendirilir. Eger B, nin her noktasi1 tamamen ger¢ek nokta oluyorsa,
K noktasal egik Riemann doniisimii tamamen gergek doniistim olarak isimlendirilir
(Akyol ve Giindiizalp, 2023).

Ornek 2.4.4. (R* ggs) bir Riemann manifold ve (R*J,,gg:) bir hemen hemen
Hermityen manifold olsun. Bu hemen hemen Hermityen manifold tizerinde J;,/, Ve J,
hemen hemen kompleks yapilarini /,J, = —J,J;ve J,, = (cosw) J; + (sin w)J, kosullarini
saglayacak bicimde tanimlansmn. R* {izerindeki {J;,/,} hemen hemen kompleks
yapilarini,

]1 (dll le d3, d4-) = (_d31 _d4-' dll dZ)

]Z(dll dZI d3l d4-) = (_le dll d4-' _d3)

seklinde secelim.

Zy+ Z3 Zy + Z3 4)

K: (R3, - (R%,095,]), ?C(Z,Z,Z)=(Z, ,
( 932) ( wgBlj) 1,22, Z3 1 NG NG

ile verilen bir % : (R® > R%) Riemann déniisiimii ele alalim. Bu durumda, rankX = 2
ve 0 = arccos%(\/f sinw + cos w) ve X, egik fonksiyonu w olan bir noktasal egik

Riemann doniisiimdiir (Akyol ve Giindiizalp, 2023).

Ornek 2.4.5. (R® ggs) bir Riemann manifold ve (RS,],,grs) bir hemen hemen
Hermityen manifold olsun. Bu hemen hemen Hermityen manifold {izerinde J;,/, Ve J,

hemen hemen kompleks yapilarini Jio == ve
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Jo = (cosw) J; + (sinw)], kosullarini saglayacak sekilde tamimlansin. R® iizerindeki
{J1,J2} hemen hemen kompleks yapilari
J1(t, ta, t3, ty, ts, te, ty, tg) = (—tg, —ty, —ts, —ts, ty, t3, ta, t1)
ve
J2(t1, ta, ts, by, ts, b, g, tg) = (—tp, ty, —ty, t3, —te, ts, —tg, t7)
bigimde tanimlansin. Simdi J,J, = —J,J; oldugunu gosterelim.
Ji(=ty, ty, —ty, t3, —ts, ts, —tg, t;) = (t;, —tg, ts, —tg, —t3, ty, —ty,t3)
J2(=tg, —t;, —tg, —ts, ty, t3, ty, t1) = (—t7, tg, —ts, te, t3, —ty, t1, t3)

olup JiJ, = —J,J; esitligi saglanmis olur.

Jo = cosw J; + sinw J,
esitligindeki /,,, R® {izerindeki hemen hemen kompleks yapidir.

K, bir Riemann manifoldundan bir hemen hemen Hermityen manifolda tanimlanan

K: (R, gge) = (R, Juor Gs)

bir Riemann doniisiimii

2z +\/§Z
K(zl,zz,z3,z4,25,z6, Z7,28) = (cos §z1 —sind zg,siné, 1,\/%, 0, \/ﬁ, 0, %)
seklinde secelim.
[CoS & 0 0 0 0 O 0 — sin 47
0 0 0 0 0O 0 0
0 0 0 0 0O 0 0
0 0 0 0 0O 0 0
K.=| O 0 0 0 0O 0 0
0 0 0 0 0O 0 0
0 0 0 0 0O 0 0
0o 2 00 00 \/g/ 0
/7 V7
Bu durumda, rankX., = 2 olup
G, 0 2 d 30
(cekX.,) { 1 = COS oz sin oz 2= o, + \/7627}
O0rK. {L* 56 '66 L," 26+\/§6}
OT R, = =CO0SO7——SIno——, = —
g ! dy, v, 2 T 70y, 70y,

JL," = cos wJ;(cos&,0,0,0,0,0,0, — sin §) + sin w/,(cos §,0,0,0,0,0,0, — sin §)
= cos w(sin §,0,0,0,0,0,0, cos §) + sin w(0, — cos §,0,0,0,0, —sin §, 0)
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= (cosw sin§, —sin w cos §,0,0,0,0, —sin w sin §, cos w cos §)

gre(UL1", L")

2 V3
= ggre| (coswsin§, —sin w cos §,0,0,0,0, —sin w sin §, cos w cos §), <O, —,0,0,0,0,—, 0)
V7 V7
sin w
= - 2cos§+V3siné
77 )

elde edilir. Buradan,

sinw .
g weULi' L") _F(Z cos & +V3sind) _ sinw

cosf = * — = - 2cos 8 +/3sind
/Ly (1L ] 1 V7 ( )
olup
sin w
0 = arccos| — 2cosé +V3sins
&1 )

yazilabildiginden X bir noktasal egik Riemann doniistimdiir (Demir, 2023).
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3. HEMEN HEMEN HERMITYEN MANIFOLDLARINDAN
RIEMANN  MANIFOLDLARINA  NOKTASAL  YARI-EGIK
RIEMANN DONUSUMLER

Bu boliimde kompleks geometri alaninda, hemen hemen Hermityen manifoldlarindan
Riemann manifoldlarina tanimlanan noktasal yari-egik Riemann doniisiimleriyle ilgili
tanimlar, teoremler ve drnekler sunulacaktir. Noktasal yari-egik Riemann doniisiimlerinin
dogurdugu distribiisyonlarin geometrisi incelenerek ayrisim teoremleri iizerinde

durulacaktir.

3.1. Hemen Hemen Hermityen Manifoldundan Riemann Manifolduna Tanimh Yari-

Egik Riemann Doniisiimler

Tanim 3.1.1. (Ny,gy,,/1) bir hemen hemen Hermityen manifoldu ve (N, gy,) bir
Riemann manifoldu olsun. Bu durumda, eger kerd, iizerinde bir ¢ift ortogonal D ve DT
distribiisyonu varsa, bir Riemann doniisiimii §: N; — N, noktasal yari-egimli bir Riemann
déniisiimdiir. Oyle ki,

1. keré, uzay, D¢ P DT ortogonal direkt ayrigimi olarak tanimlanir.

2. DT distribiisyonu invaryanttir.

3. D? distribiisyonu ¢ yari-egim fonksiyonu ile noktasal egik bir yapidadir.
Bu durumda, ¢ acisi, noktasal yari-egimli bir Riemann doénilisiimiiniin yari-egim
fonksiyonu olarak adlandirilir. Ve bu fonksiyon N; iizerindeki bir fonksiyon olarak
degerlendirilir (Glindiizalp ve Akyol, 2023).
Simdi, has noktasal yari-egimli bir Riemann doniisiimleri igin 6rnekler verecegiz. J;, R®
tizerindeki bir hemen hemen kompleks yap1 olsun.

]1(a1,...,a8) = (az,—al,...,ag, —a7). (311)

Ornek 3.1.1. x,y:R® >R ‘nin reel degerli fonksiyonlar oldugu yerde, bir
doniisiim 8: R® > R® su sekilde verilsin:

6(z4,...,2g) = (zcosx — z3sinx, z,siny — z,cosYy, zs, z5, 0, —10) (3.1.2)
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ile tanimlansin. Bu durumda, § doniisiimii noktasal yari-egimli bir Riemann

doniisiimiidiir. Oyle ki, cos¢p = sin(x + y) olan ¢ yari-egim fonksiyonu ile

DT =< 9 9
"0z, 0zg
ve
D¢—<'a+ 9 a+' a> 3.1.3
= smxaz1 cosvas,cosyaZ2 smyaz4 (3.1.3)

olur (Giindiizalp ve Akyol, 2023).

Ornek 3.1.2. (R® gge) bir Riemann manifold ve (RS,],,grs) bir hemen hemen
Hermityen manifold olsun. Bu durumda hemen hemen Hermityen manifold iizerinde
Jo(t1, ty, ts, ta, te, te, to, tg) = (—ty, ty, —ts, t3, —tg, ts, —tg, t;) bigciminde tanimlansin.
R8 {izerindeki J,, hemen hemen kompleks yapidir.

I, bir hemen hemen Hermityen manifolddan bir Riemann manifolduna tanimlanan

K: (RS, Jop gge) = (R®, ggs)

bir Riemann doniisiimii olup

:}C(er 22, 23,24, 25, 2¢,Z7, Z8)

cot 1 1 cot
=< B 5 ﬁz4,13,\/82,z7,28>

zZy — z zZ, —
cosecB "t cosecB ¥ cosecB > cosecB

bi¢iminde yazalim. K nin Jakobiyen matrisi,

r cotf3 1 ]
0 - 0 0 0 0 O
cosecf cosecfs

1 cotf

0 - 0 0 0 O
K, = cosecfs cosecf

0 0 0 0 0 0 0 O
0 0 0 0 0 0 0 O
0 0 0 0 0 01 0
0 0 0 0 0 0 0 1

Buradan, rankX., = 4 bulunup
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ker¥., {Vt 0 aV a+t av—av—a}
eri. = spamihy =tanfrt o Ve =g ttanfa Vs =g =g,
cotp 0 1 0 1 4 cotp 0
3 2 5 5
(ker®,)+ = span cosecﬁ 621 cosecf ('223 cosaecﬁ 0z, cosecf 0z,
U3 = 6_27 , U4_ = a—Z8
seklinde yazilir.
__ cotp i_ 1 i _
1= cosecf 0z, cosec dz3 Olup IRs (Ull Ul) =1
2
Ho(Un) = (S + 7m0, 0,0,0,0,0) 0lup g (3, (U1, K.(U)) = 1 bulunur.

Benzer islemlerle U,,U;ve U, yatay vektorlerinin uzunluklarinin (boylarmnin)

korundugu aciktir. Simdi,

d

d
]w (Vl) tanﬁ 5. + 6_24

bulunup,
Ire U V1), V) = ggs((0,tanp,0,1,0,0,0,0),(0,1,0,tanB,0,0,0,0)) = 2tanp

bulunur. Buradan,

IreUw(V1),V2) 2tanf _ 2tanp

O T WDVl ~ (Jean?fx . (Jeaif s D) secf b osP = smih)
6 = arccos(sin(2p))
olur.
Jo(V3) = i =V,
dzg
Bulundugundan

D = span{V,,V,} ,DT = span{Vs,V,}

olur. Buradan kerX,=D® @ DT yazilir. X bir noktasal yar-egimli Riemann

doniisiimdiir.

Ornek 3.1.3. (R® ggs) bir Riemann manifold ve (RS,],,grs) bir hemen hemen

Hermityen manifold olsun. Bu durumda hemen hemen Hermityen manifold iizerinde
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Jo(tq,ty, ts, ty, ts, te, t7, tg) = (—ty, t1, —ts, t3, —tg, ts, —tg, t;) biciminde tanimlansin.
R8 {izerindeki J,, hemen hemen kompleks yapidir.

I, bir hemen hemen Hermityen manifolddan bir Riemann manifolduna tanimlanan

K: (RS, Jop gge) = (RS, ggs)

bir Riemann doniistimiini

7((21, Zy,Z3,Za, Z5, Zgy Z7, Z8)

( sinh o cosha sinh a cosha

z1 + Za, Zy — Z,5,10,Z,Z>
vcosh2a ! vcosh2a 3 \cosh2a 2 Vcosh2a + 78

biciminde yazalim. K nin Jakobiyen matrisi,

- sinha 0 cosha 0 00 0 0'
Vcosh2a Vcosh2a
0 sinha 0 cosha 000 0
K, = VcoshZ2a Vcosh2a
0 0 0 0 0O 0 0 O
0 0 0 0 0 0 0 O
0 0 0 0 0 01 O
0 0 0 0 0 0 0 1

Buradan, rankX, = 4 bulunup

d d d 0
= cosha — — sinha— ,V, = cosha — + sinha — l

Vi
— azl aZ3 aZZ 624
ker?@—span{ - 3 - 5
\ 37 0z 1T 0z )
U = sinha 0 N cosha 0 U, = 1 0 cosha 0
(ker®,)t = span ' Vcosh2a 021 cosh2adzs' °  cosecBdz; +cosh2a 9z,
Us = 6_27' U, = 6_28 J
seklinde yazilir.
sinha 0 cosha 0
Ul - \/cosh2a6_21+ \/coshz(xa 0|Up g]RB(Ul: Ul) =1
) . .
K.(U,) = ((j;’;’:;)x e ,0,0,0,0,0) olup gge (K. (U, %.(Uy)) = 1 bulunur.

Benzer islemlerle U,,Us;ve U, yatay vektorlerinin uzunluklarinin  (boylarinin)
korundugu agiktir.
0

0
Jo (V1) = cosha — — sinha —
aZZ 024
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Ire U V1), V) = ggs((0, cosha, 0, —sinha, 0,0,0,0), (0, cosha, 0, sinha, 0,0,0,0) )
= (cosha)? — (sinha)? = 1
bulunur. Buradan hareketle,

_ g]RB(]w(Vl)'VZ) _ 1 _ 1
WL,V (cosha)® — (sinha)®  cosh2a

1
0 =
arccos <cosh2a>

olur.

0
]w(V3) = 6_ =V,
Zg

bulundugundan D? = span{V;,V,} ,DT = span{Vs,V,} yazilir. kerX, = D® @ DT
g

olur. K bir noktasal yari-egimli Riemann doniisiimdiir.

Ornek 3.1.4. (R® ggs) Oklid uzayr olsun. JiJ, = —J,J;’yi saglayacak sekilde, R®
9r

tizerindeki bir ¢ift {/;,/,} hemen hemen kompleks yapilari géz Oniine alalim. Buradan

hareketle,

]1 (blﬂ Ry b8) = (_b3' —b4, blﬂ b2' _b7' _b8' bS' b6) (314)
ve

]2 (bl, saay bg) = (_bz, bl, b4,, _b3, _b6l b5, b8' _b7) (315)
olur.

Herhangi reel degerli a:R® - R fonksiyonu i¢in, J, = (cosa)J; + (sina)/, ile, R®
tizerinde yeni J, hemen hemen kompleks yapisi yazalim. Bu durumda,

RE = (R8,],, grs) bir hemen hemen Hermityen manifold olur.

6(21,...,28) = (0,0,0,0,0, Z6' 0, Z8) (316)

ile bir §: R& - R® Riemann déniisiimii gdz 6niine alalim.

Bu durumda,
— X, ==—> (3.1.7)

Ve
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kerd, =< Vi = Uy = o Vg = o V= Vg = V= > (3.18)
0z¢ 0z 0z, 0z, 023 0z,

bulunur.

Ote yandan, Jo(V3) = sinaV, + cosaVs, J,(V,) = —sinaV; + cosaV,

Ja(Vs) = —cosaV; — sinaVy, J,(Vg) = —cosaV, + sinaVs olur. Boylece,

D? =< V,,V, > ve DT =<V,,V,, V5, Vs > olan ¢ = a yari-egim fonksiyonu ile &

noktasal yari-egimli bir Riemann dontistimiidiir (Gilindiizalp ve Akyol, 2023).

8: (N1, gn,,J1) = (N2, gn,) noktasal yari-egimli bir Riemann doniisiimii olsun. Bu

durumda, V € keré, igin,

JiV =0V +Q,V (3.1.9)

ifade edilebilir, burada Q;V € DT ve Q,V € D?. V € ker$. icin,

JV =V +7V, (3.1.10)

burada {V € kerd, ve nV € (kers,)*t. Ayriyeten, Y € (keré,)? icin,

LY ={Y +qY (3.1.11)

olur, burada {Y € kerd, ve 7Y € (kers,):. C € §1TN, igin,

C = Q,C + Q,C, (3.1.12)

elde edilir, burada Q,C € rangeé, ve Q,C € (ranged,)*. Bu durumda,

(ker8,)* =nD? @ v, (3.1.13)

burada v, (kers,)* iginde nD? ortogonal tamamlayicisi ve J; altinda invaryanttir.

flave olarak,
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(D" =D",nD" =0,{D® cD?,  {((kers.)t) =D?¢
+n=—-L7*+n{=-In{+am =0,{7+{{=0. (3.1.14)

Ayrica, V1,V € kerd, i¢in (Ny, gn,,J1) Kachler ise, asagidakilere ulasmak miimkiindiir.
(Viym)Va = 1Ty, Vo = Ty, SV, (3.1.15)
(VVIZ)VZ = vale — TynVs, (3.1.16)
Buradaki V, N; tizerindeki Levi-Civita konneksiyonudur ve
(Vo n)Va = WV, 0V, — nVy, V, (3.1.17)
(Vi O)Ve = Vy, OV, = CV, 1, (3.1.18)
(Giindiizalp ve Akyol, 2023).

Asagidaki teorem yazilabilir.
Teorem 3.1.1. &, ¢ yari-egim fonksiyonu ile (Ny,gy,,/;) hemen hemen Hermityen
manifoldundan (N,, gy,) Riemann manifolduna noktasal yari-egimli bir Riemann

doniistimii olsun. Bu durumda,
{%V, = —(cos?¢)V,, V, € D%, (3.1.19)
olur. V,V, € D? i¢in asagidaki esitlikler yazilabilir.
In, V1, ¢Vy) = C052¢9N1 V1, V2) (3.1.20)
In, MV, nVy) = Sin2¢gN1 V1, V2) (3.1.21)

Yari-egim fonksiyonu ¢ iken, TN, ‘in
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(X1 )1 Xes s Xio J1 X Xy, secd0 Xy, cscdn Xy, o, K, secd( X, cscdn Ko, Xy ) Jy Xy s ooe)
?t 1 ?t} ortonormal catisin1 yerel olarak yazabiliriz. Oyle ki, {X1, /1 X1, ..., Xi, J1 Xic},
DT “nin bir ortonormal catisidir, {X;, sec¢{X;, ..., Xs, secpp X}, D? nin bir ortonormal
catisidir, {cscgnX, ..., cscpnXs}, nD? nin bir ortonormal ¢atisidir,

{?1 A ?1 yeen) ?t )1 ?t}, v’nin bir ortonormal ¢atisidir (Giindiizalp ve Akyol, 2023).

Buradan asagidaki sonucu ifade edebiliriz.

Lemma 3.1.1. §, ¢ yar-egim fonksiyonu ile (Ny,gy,,/;) Kaehler manifoldundan
(N2, gn,) Riemann manifolduna noktasal yari-egimli bir Riemann doniisiimii olsun. n

paralel iken, V; € D? igin,
T<V1{V1 ES _COSZ¢TV1V1 (3122)

olur (Giindiizalp ve Akyol, 2023).

Asagidaki teoremler verilebilir:

Teorem 3.1.2. §, ¢ yan-egim fonksiyonu ile (N, gy,,J/;) Kaehler manifoldundan
(N2, gn,) Riemann manifolduna noktasal yari-egimli bir Riemann doniisiimii olsun. Bu

durumda, sadece ve sadece V;,V, € DT i¢in DT distribiisyonu integrallenebilirdir ve
n(Vy,Vo = Vi,V1) =0 (3.1.23)
elde edilir (Glindiizalp ve Akyol, 2023).

Teorem 3.1.3. §, ¢ yari-egim fonksiyonu ile (Ny,gy,,/;) Kaehler manifoldundan
(N2, gn,) Riemann manifolduna noktasal yari-egimli bir Riemann doniisiimii olsun, yle
ki DT integrallenebilirdir. Bu durumda, sadece ve sadece D¢ iizerindeki trace(V$,) = 0
ve H =0 olursa§ harmonik olur. Burada H = 0, ranged, nin ortalama egrilik vektor

alanimini ifade eder (Giindiizalp ve Akyol, 2023).

Bu sebeple asagidaki sonuca variriz.
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Sonu¢ 3.1.1. §, (N1, gn,,J1) Kaehler manifoldundan (N, gy,) Riemann manifolduna
noktasal yari-egimli bir Riemann doniisiimii olsun, dyle ki DT integrallenebilir ve ¢ yari-
egim fonksiyonudur. Kabul edilsin ki, tensor n paraleldir. Bu durumda, sadece ve sadece
H = 0 olursa § harmonik olur (Giindiizalp ve Akyol, 2023).

Teorem 3.1.4. §, ¢ yan-egim fonksiyonu ile (N, gy,,J/;) Kaehler manifoldundan
(N2, gn,) Riemann manifolduna noktasal yari-egimli bir Riemann déniisiimii olsun. Bu

durumda, U, U, € DT,U; € D? ve Y € (kerd,)* igin, sadece ve sadece

Iy (Vu,J1U5,Y) = gn, (V8D (Ur,)1U), 8.77Y) (3.1.24)
ve
—cos’¢gn, (Vu, Uz, Us) = gn,((V8.) (U1, Up), 6.13U3)
+9n, (TyJ1U2,nUs) (3.1.25)

olursa DT, N, iizerinde tamamen jeodezik bir foliasyon tanimlar (Giindiizalp ve Akyol,

2023).

Teorem 3.1.5. §, ¢ yari-egim fonksiyonu ile (Ny,gy,,/;) Kaehler manifoldundan
(N2, gn,) Riemann manifolduna noktasal yari-egimli bir Riemann doniisiimii olsun. Bu

durumda, Uy, U, € D?, U; € DT ve Y € (kerd,)* icin, sadece ve sadece

Sinzﬁngl([UL Y], Up) = Sin2¢y(¢)gNl (U, Up) + In, (Ayn¢U,, Uy)
—9n, (AynUy,{U,) — gn, (6.hVynU,,8.,nU;) (3.1.26)

ve

0 = —gn, (Ty,n¢Us, Us) + gn, (Tu,nUz,J1U3) (3.1.27)

esitlikleri mevcutsa D®, N; iizerinde tamamen jeodezik bir foliasyon tanimlar

(Giindiizalp ve Akyol, 2023).

Teorem 3.1.6. §, ¢ yan-egim fonksiyonu ile (N, gy,,/;) Kaehler manifoldundan
(N3, gn,) Riemann manifolduna noktasal yari-egimli bir Riemann doniisiimii olsun.

Bu durumda, U, U, € kers, ve Y € (kerd,)?! icin, sadece ve sadece
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gn, (AyJ1Q2U1,J1Uz) = —sin®¢gy, ([Us, Y], U2) + cos?pgn, (vVy Q. Uy, Uy)
+sin2@Y (¢)gn, (Q1U1, Uz) + gn, (Ayn¢Q1 Uy, Uz)
—gn, (AynQ1U3,J1Uz) = gn, (hWy1Q1 U1, J1Uz)
—gn, WVy]1Q,Uy,J1Uy) (3.1.18)

esitligi mevcutsa (kerd,) uzayi, N; lizerinde tamamen jeodezik bir foliasyon tanimlar

(Giindiizalp ve Akyol, 2023).

Teorem 3.1.7. ¢, ¢ yar-egim fonksiyonu ile (By,gg,,J;) Kaehler manifoldundan
(B2, gg,) Riemann manifolduna noktasal yari-egimli bir Riemann doniisiimii olsun. Bu
durumda, V, € D®, V; € DT ve Uy, U, € (kere,)* icin, sadece ve sadece

vy (U, = —Ay AU, (3.1.29)
ve

Oz, (vu._ . (M3), o, qU,) = Og, (vy._ @, (V). 0,U)—gg, (Ay, Ve, {U,). (3.1.30)

olursa (kere,)* uzayi, B; iizerinde tamamen jeodezik bir foliasyon tanimlar (Giindiizalp

ve Akyol, 2023).

Bu boliimde, kompleks uzay formlardan Riemann manifoldlarina noktasal yari-egimli
Riemann doniisiimleri i¢cin Chen-Ricci esitsizliklerini i¢inde barindiran egrilik iliskileri
ele alinmustir.

(B1, gs,,J1) bir Kaehler manifoldu olsun. v sabit holomorfik kesitsel egriligin karmasik
bir  B;(v) wuzay formunun Riemann Christoffel egiklik tensorii, tiim

Y1, Y2, Y3, Y, € T(TB,) vektor alanlar igin asagidaki esitligi saglar (Yano ve Kon, 1985).

R’B._[:Flr Y, Ys Ys) = E{ﬂﬂ._(yirya:]ﬁ:e._(yzrya ) — .Ei’:e._(yiryajﬁ:e._ (Y2,Ys)
t9s, [leflyajﬁia._U:F:ryn}) - g‘B;[Fﬂrflyajg‘B;Ulyl’yd-)
+2gz, (Y1, /1Y2) g5, (J1Va: Ys)} (3.1.31)

(YYano ve Kon, 1985).
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(Blnl(v),gBl) kompleks uzay formu, (B, gp,) bir Riemann manifoldu,
(ranged)*t = {0} ve dim(kerés,) =t = 2k, + 2k, ile §:B,(v) » B, noktasal yari-
egimli bir Riemann doniisiimii olsun.

Her q € B; igin,  {Xy,X; = 1X1,. s Xow -1, Xok, = J1Xok,—1 X2k +10 Xok 42 =
SeCHC KXoy +1- -+ Xk, +2k,—1 Xt = S€COC Kok, 12k, -1} V€ {Xp41, Xev2, .., X, } sirasiyla,
(keréd,) ve (kerd,)’ nin ortonormal bazlari olarak yazilabilir.

Asagidakine kolaylikla ulasilabilir.

1, for ke{1,2,...2k; —1};
98, U1 X Xies1) = {
1 cos’p, for k€ {2k, +1,....2k; + 2k, — 1}. (3.1.32)

Bu sartlarda,

t
Z 95, U1 X, Xies1) = 2(ky + kpcos?¢p) (3.1.33)
k,s=1

1<ks<t ve t+1<w<n; oldugu yerde, 7,¥ asagidaki gibi tanimlansin.
T = g, (T, X5 X o) (3.1.34)

Simdi, (Falcitelli vd. 2004)’nin (1.27)’si ve (3.1.31) kullanilarak kerd, icin,
(rangeé,)* = {0} ile § noktasal yari-egimli bir Riemann doniisiimii oldugundan dolay1

her bir L, € kerd, birim vektori igin ulasilan sonug:

t
Ric*em0+(L,) = —[t + 2 + 3cos?P] — tgp, (T, L1, H) + Z 98, (Tx, L1, T3, X)) (3.1.35)

k=1

<

olur, burada & lifin ortalama egiklik vektor alanidir (Glindiizalp ve Akyol, 2023).

Buradan hareketle asagidaki teorem yazilabilir.
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Teorem 3.1.8. §: (B1(v), gs,) = (B2, gs,), (ranged,)* = {0} ile noktasal yari-egimli

bir Riemann doniisiimii olsun. Bu durumda,

v
Rickerd+ (L)) > 2 [t + 2 + 3cos?¢p] — tgp, (T3, Ly, #) (3.1.36)
olur.

L, € kerd, birim dikey vektorii i¢in, esitsizligin esitlik durumu ancak ve ancak her lif

tamamen jeodezik ise saglanir (Giindiizalp ve Akyol, 2023).

Polarizasyona gore, (3.1.35) kullanilarak asagidakiler elde edilir:
Teorem 3.1.9. &: (B;(v), gs,) = (Ba, g5,), (ranged,)* = {0} ile noktasal yari-egimli
bir Riemann dontisimii olsun. Bu durumda, kerd, tizerindeki Skerd. Ricci tensorii alttaki

esitsizligi saglar.
Skerd.(1. L,) = —[t + 2 + 3cos? Li,L,) — T, L, AH 3.1.37
vh2) =7 cos“¢lgp, (L1, L) thl( Lib2 ) (3.1.37)

L, L, € kerd, igin, esitsizligin esitlik durumu ancak ve ancak her lif tamamen jeodezik
ise saglanir.

Benzer sekilde, (Falcitelli vd. 2004)’nin (1.27)’si ve (3.1.31)‘den faydalanarak ker§,
i¢in,

keréd. — v 2
2p%€CT0 = 1 [t(t —1) + 6(ky + kycos“9)]

—t? || NI
t
+ Z gBl (:T)'(kXSl g}(kXS) (3-1.38)
k,s=1

yazilir, burada p*¢T% =¥, . cccr R¥O (X, X, X, X)) dir (Giindiizalp ve Akyol,
2023).

Bu sebeple, asagidaki sonug yazilabilir.
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Teorem 3.1.10. 6: (B1(v), gp,) = (B2, gs,) (ranged,)t = {0} ile noktasal yari-egimli
bir Riemann doéniistimii olsun. Bu durumda, asagidaki esitsizligin esitlik durumu ancak ve

ancak her lif tamamen jeodezik ise saglanr.
2pkerd. > = [t(t — 1) + 6(ky + kycos?gp)] — t2 || # |1 (3.1.39)

Simdi, (ranged,)* = {0} ile noktasal yari-egimli bir Riemann déniisiimii igin, kerd,
tizerindeki Chen-Ricci esitsizligi verilecektir.

(3.1.34) ve (3.1.38)“den faydalanarak varilan sonug asagida verilmistir.

2pkers. =V 2e(t — 1) + 6k, + k,cos?¢)]

—t2 | HNP+ Eolesr Ths=1 (TS)? (3.1.40)

(Giilbahar vd. 2017) den bilindigi iizere;

ny t

1
Z (T)* =5t 1 AN

w=t+1 k,s=1
1 <
t5 Y IR =T TP 42 z Z(ﬂz‘;’)z

w=t+1 w=t+1 s=

2 X1 Laskesst [Tk T8 — (1)) (3.1.41)

(3.1.40)’a (3.1.41) yerlestirilirse asagidaki esitlik bulunur.

keré v 2
2peT% = 2[t(t = 1) + 6(ky + kpc0s”¢)]
— 2N AN+ STy [T = T = =T
+22w =t+1 ZS=2 (Tl(;))z
—2 Y0 i1 Doskesse [TiiTsd — (T$)?] (3.1.42)

Buradan da elde edilen:
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2pker8e > —t(t — 1) + 6(ky + k,cos%¢)]

<

1
_Etz I 1% 2221=t+1 ngk<sst [T Ts8 — (7}(3))2] (3.1.43)

olur.
Ote yandan, (Falcitelli vd. 2004)’'nmn (1.27)’si ve (3.1.31)den faydalanarak,
U=W =X, V=F = X;ele alinarak ve (3.1.34)’dende faydalanarak

2 Z RN (X, X, X5, Xp) = 2 Z R*eT8« (X, X, X, X3,

2<k<sst 2<k<sst

F2300 0 T csse [TETL — (T)?] (3.1.44)

bulunur.

Son esitlige gore, (3.1.43) su sekilde

1
Zpkerts* >—[t(t—1)+6(k, + kZCOSZ(,‘b)] = Etz | |2

<

+2 22Sk<sst Rkeré'* (Xk'XS' XS' Xk)
—2 Yock<s<t RP (X, X5, X5, Xi) (3.1.45)

yazilabilir.

Ayrica, esitlik kullanilarak

t
2pkerse =2 Z R"‘”‘S*(Xk,xs,xs,xk)ﬂzR"“’”S*(Xl,xs,xs,xl) (3.1.46)

2<k<ss<t s=1

olur.

Bu son esitlik, (3.1.45) i¢ine yerlestirilirse

v
2Rickers (X)) > 7 [t(t — 1) + 6(k; + kycos?¢)]
—~t2 | H NP = 2 persse R (K X Xs, Xi0)  (3.147)

elde edilir.
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B; bir kompleks uzay formu oldugundan, B, ‘in RP1 egrilik tensérii (3.1.31) denklemini

saglar. Bundan dolay1 asagidaki esitsizlige ulasilir.
i kers v 3v 2 1., 2
Ricker® (X;) 2 7 (t = 1) + = (1 + cos?¢) — 2t% | A | (3.1.48)

(Glindiizalp ve Akyol, 2023).

Boylece, asagidaki sonuclara ulasilabilir.
Teorem 3.1.11. §: B;(v) = B,, (ranged,)* = {0} ile bir (B;(v), gs,) kompleks uzay
formundan bir (B, gg,) Riemann manifolduna noktasal yari-egimli bir Riemann

donisiimi olsun. Bu durumda,
- keré$ v 3v 2 1 2 2
Ricker® (X;) 2 2 (6= 1) + 2= (1 + cos?¢) = 7 62 | # | (3.149)

olur.

Esitsizligin esitlik durumu, sadece ve sadece
T8 =55+ . +7¢ (3.1.50)
T2 =0,5=2,...,t (3.1.51)
mevcutsa miimkiin olur (Giindiizalp ve Akyol, 2023).

Buradan asagidaki sonuglara varilabilir.

Sonug¢ 3.1.2. §: B;(v) = B,, (range8,)* = {0} ve yari-egim fonksiyonu ¢ =§ ile bir
(B1(v), gp,) kompleks uzay formundan bir (B,,gg,) Riemann manifolduna noktasal

yari-egimli bir Riemann donistimii olsun. Bu durumda,

Rickerd-(x,) >K(t+2)—1t2 | 112 (3.1.52)
1=y 4 o

olur.
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Esitsizligin esitlik durumu, sadece ve sadece
T8 =55+ .+ (3.1.53)
7% =0,s =2,...,t (3.1.54)
olursa saglanir (Giindiizalp ve Akyol, 2023).
Sonug¢ 3.1.3. §: B, (v) = B,, (rangeé,)* = {0} ve yari-egim fonksiyonu ¢ = 0 ile bir

(B1(v), gp,) kompleks uzay formundan bir (B, gp,) Riemann manifolduna noktasal

yari-egimli bir Riemann donisiimi olsun. Bu durumda,

Rickerd-(x,) > K(1: +5) — 1tz (AR (3.1.55)
Y=y 4 o

olur.

Esitsizligin esitlik durumu, sadece ve sadece
Y =5+ . +T¢ (3.1.56)
79 =0,s =2,...,t (3.1.57)
olursa saglanir (Giindiizalp ve Akyol, 2023).
Son boliimde, kompleks uzay formlardan Riemann manifoldlarina noktasal yari-egimli
Riemann doniisiimleri i¢in Casorati esitsizliklerini i¢inde barindiran egrilik iligkileri ele
alimastir.
Asagida bulunan lemma, teoremimizin kanitinda kullanilmak tizere 6nem tasir:

Lemma 3.1.2. U = {(l3,15,..., Ly) € R™: 1y + [,+... +1,, = z}, R™ nin bir hiperdiizlemi

olsun ve bir ikinci dereceden form g: R™ — R,

gl by, ) = M LD? + d(Ly)? — 281ckesemlilss € >0,d >0 (3.1.58)

bi¢cimde tanimlansin.
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Bu durumda, ming, ;, i yepg kisitlanmis ekstremum problemi asagidaki ¢oziime

sahiptir:
Z
z z(m—1) z
=T 1T v Dd TS (3.1.59)

m-1

(Tripathi, 2017)’da d = oldugu goriiliir.

c—m+2

ns

8, (rangeds,)* = {0} ile bir (Blnl(v),jl,gBl) kompleks uzay formundan bir (B,?, gg,)
Riemann manifolduna bir noktasal yari-egimli bir Riemann doéniisiimii olsun. Kabuk

edilsin ki, {Xj,...,X,}, q1 € Ny icin kerd,, dikey uzaymnin ortonormal bazi ve

{Xp+1)+-» Xn, }, (ker,q,)* yatay uzaymn ortonormal bazidur.

keré,q, dikey uzay tizerindeki Tkerd. skaler egriligini

7% = 5 o198, (RET2 (X, X)X, X (3.1.60)

olarak ve kerd,, ‘nun da x*¢7%+ skaler egriligini

*q1

s Ztkerc‘i*
iherde = —— (3.1.61)
p(p—1)
olarak tanimladik.
Bu durumda,
Tes = 95, T (X, X:), X)), ks=1,...,pe=p+1,..,n (3.1.62)
1T 17 =% =198, (TKi, X5), T (X, X)), (3.1.63)
traceT = Xh_,T(Xy, X)), |l traceT ||>= gs, (traceT, traceT) (3.1.64)

esitlikleri ifade edilebilir ve T‘nin B; manifoldu iizerindeki C¢"% olarak gosterilen

karelenmis normu, (kerd.,),, dikey uzaymi dikey Casorati egriligi olarak adlandirilir.
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Boylece,

1
cherd. = 5 I T 1I12= 528 212k o1 (TE)? (3.1.65)

elde edilir.
Simdi, 2 < t igin L*¢"% nin t boyutlu bir alt uzay oldugu ve {X;,X,,..., X;}‘nin L*e7%-
nin bir ortonormal baz1 oldugu varsayilsin.

Bu durumda L¥€79+ nin ¢kerd-(Lkerd+) Casorati egriligi

1
Ckeré‘*(LkeT'&) =_ || T |I?= X2 p+12k5 1(Tks)2 (3.1.66)

seklinde tanimlanir. (kerd,),, nun normallestirilmis gkerds — Casorati egrilikleri
ker6 (p _ 1) ve 5écer8 (p _ 1),

[08°7% (p — D]g, = 3Cq " + B inf{Ckerd (Lkerd:): Lker®: (kers,)q ‘nun  hiperdiizlemi},
ve

[G6°7 (p — D]g, = 2C4 > — 2= an{ckera <(LKerd:): LkerS:, (kerd,)q, ‘nun hiperdiizlemi}

olarak yazilir (Tripathi, 2017).

Teorem 3.1.12. 8, (ranged,)* = {0} ve 3 < p ile bir (B;""(v),]1, gs,) kompleks uzay

formundan bir (B,2,gp,) Riemann manifolduna noktasal yari-egimli bir Riemann

doniisiimii olsun. (keré,),, lzerindeki normallestirilmis o — Casorati egrilikleri aclf erd.

ve Eéfers alttakileri saglarlar.

v
(i) ©kers < gf % (p — 1) + il (k1 + kycos2¢), (3.1.67)

3v
2p(p—1)

3v
i) ckerd. < Gkerdi oy _ 4 vy % k k 2 3.1.68
(i) x <ad. (p )+4+2p(p—1)(1+ 2COS° ). (3.1.68)



54

Ayrica, ancak ve ancak (kerd,),, lzerindeki {X;,...,X,} ve ((kerd,)q, )" iizerindeki
{Xp+1,...,Xn, } uygun ortonormal bazlarina gore bir q; € B; noktasindaki herhangi bir
esitsizlikte esitlik sart1 saglanir. T nin bilesenleri asagidakileri saglar.
1
Tlgl == TZEZ = = T;—lp—l ES ETpsp, &€ E {p + 1,p + 2, ...,Tll}, (3.1.69)

Té =0, k,se{l,,..,p}k #s), cee{fp+1,p+2,...,n} (3.1.70)
(Giindiizalp ve Akyol, 2023).

Teorem 3.1.12. den faydalanarak asagidaki sonuglara varilabilir.
Sonug 3.1.4. §, bir (B (v),]1, gs,) kompleks uzay formundan bir (B,?, g5,) Riemann
manifolduna olan 3 <p ve ¢ =g yari-egim fonksiyonu ve (ranged,)* = {0} ile

noktasal yari-egimli bir Riemann doniisiimii olsun. Buna gore, (kerd,),, lizerindeki

aéf °ro ve 5g erd. normallestirilmis ¢ — Casorati egrilikleri asagidakileri esitsizlikleri
saglar.
v 3kyv
@ kherd <ol p -1+~ +——, 3.1.71
e P 4 2p(p-1) ( )
v 3kv
(i) Kkerd < GFe0 (p— 1) + - —— 3.1.72

Ayrica, sadece ve sadece (kerd,)q, tzerindeki {X;,...,X,} ve ((kerd,)q, )" lizerindeki
{Xp+1,-.., X} uygun ortonormal bazlarma gdre g, € B; noktasindaki herhangi bir

esitsizlikte esitlik durumu gecerlidir. T nin bilesenleri asagidakileri saglar.

1
Tfl = T282 = = T;—lp—l = ETPSP’ & E {p + 1,p + 2,...,1’11}, (3173)

Té =0, k,se{l,,...p}k#s), ec€{p+1lp+2,..,n} (3.1.74)

(Giindiizalp ve Akyol, 2023).
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Sonug¢ 3.1.5. §, bir (Blnl(v),jl,gBl) kompleks uzay formundan 3 < p ve ¢ = 0 yari-
egim fonksiyonu ile bir (sz,ng) Riemann manifolduna olan, (rangeé,)* = {0} ile
noktasal yari-egimli bir Riemann doniigiimii olsun.

kerg, —kero,

Buna gore, (kerg,),, Uzerindeki o, Ve G, normallestirilmis o — Casorati

egrilikleri asagidakileri saglar.

2)v
: ker$. < kerd., (p +
() « <g. “(p—1)+ —4(p Y (3.1.75)
_ (p+2)v
ii) Kkerd: < gherde(p — 1) + —, 3.1.76

Ayrica, yalmizca (kerd,)q, Uzerindeki {Xy,...,X,} Ve ((keré'*)ql)l tizerindeki
{Xp+1,..-,Xn, } Uygun ortonormal bazlarma gore q; € B; noktasindaki herhangi bir

esitsizlikte esitlik durumu gegerlidir. T nin bilesenleri asagidakileri saglar.

1
Tfl = T282 = e = Tpg—lp—l = ET;p, g E {p + 1,p + 2,. ..,Tll}, (3.1.77)
Té =0, k,se€{1,,..,p}k #s), ce{p+1,p+2..,n} (3.1.78)

(Giindiizalp ve Akyol, 2023).
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4. RIEMANN MANIiFOLDUNDAN HEMEN HEMEN“HE.RI_\./HTYEN
MANIFOLDA NOKTASAL YARI-EGIK RIEMANN DONUSUMLER

Bu boliimde kompleks geometride, Riemann manifoldlarindan hemen hemen Hermityen
manifoldlarina tanimlanan noktasal yari- egik Riemann doniisiimler ile ilgili tanim,
teorem ve Orneklerele alinacaktir. Noktasal yari- egik Riemann doniisiimlerden dogan
distriblisyonlarin geometrisine bakilacaktir.Ayrica, kompleks uzay formlarindan Riemann
manifoldlarina noktasal yari-egik Riemann doniisiimleri i¢in Casorati esitsizliklerini

iceren egrilik iliskileri ele alinacaktir.

4.1. Riemann Manifoldlardan Hermityen Manifoldlara Tamimh Yari-Egik Riemann

Doniisiimler

Tamm 4.1.1. (B3, g2 ,/,) bir hemen hemen Hermityen manifoldu ve (B4, g,) bir
Riemann manifoldu olsun. Bu durumda, eger kery, iizerinde asagidaki sartlari
sagliyorsa, D% ve DT ortogonal distribiisyonlar olmak iizere, y: B; » B, Riemann
doniistimii noktasal yari-egimli bir Riemann doniisiimiidiir denir:

1. rangey, uzay1, D® @ DT ortogonal direkt ayrisimina esittir.

2. DT distribiisyonu invaryanttir.

3. D? distribiisyonu ¢ yari-egik fonksiyonu ile noktasal egiktir.
Bu durumda, ¢ agisi, noktasal yari-egimli bir Riemann doniisiimiiniin yari-egik
fonksiyonu olarak bilinen B, iizerindeki bir fonksiyon olarak adlandirilir (Akyol ve
Giindiizalp, 2024).
v, bir (By,9;) Riemann manifoldundan bir (B, g,,/;) hemen hemen Hermityen
manifolduna bir noktasal yari-egimli bir Riemann doéniisimi olsun. Bu durumda,

herhangi v.(Y) € rangey, veY € I'(kery,)?! igin

Jv.(Y) = ¢y.(Y) + oy.(Y) (4.1.1)

yazihr. Burada ¢v.(Y) eT(DT) ve wy.(Y) €eT(JD®) dir. Herhangi bir
V € I'(rangey,)* igin
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JV = BV + CV (4.1.2)

olur. Bu durumda 4V € I'(rangey,) ve CV € I'(rangey, )" dir.
E,G € I'(TB,) i¢in, A ve TO’Neill tensorleri:

ApG = AV 5 VG + VV 5 4G, (4.1.3)
TG = IV VG + VVppAG (4.1.4)

dir (Akyol ve Gilindiizalp, 2024).

Simdi noktasal yari-egimli bir Riemann doniisiimiine dair 6rnek verebiliriz.
Ornek 4.1.1. (R8, ggs) bir Riemann manifold olsun ve R® iizerindeki kompleks yapi,
Jo (1, ta, ts, ty, ts, te, t7, tg) = (—ty, t1, —t4, t3, —te, ts, —tg, t7;)  olarak  tamimlansin.

Bu sartlarda, (R3], gre) bir hemen hemen Hermityen manifold olsun.

I, bir Rieman manifoldundan bir hemen hemen Hermityen manifolda tanimlanan
K: (R®, ggs) > (RS S Gge)
bir Riemann doniisiimii olur
iK(zl,zz, Z3,Z4, Z5, Zg)y Z7, Zs) = (27, —Zg, V10, 5, CoSQz, — SinQzz, SiINPz, — COSPZy, T, 0)

bi¢ciminde yazalim. X nin Jakobiyen matrisi,

0 0 0 0 0 0 1 017

0 0 0 0 0 0 0 -1

0 0 0 0 0 0 0 O

3 = 0 0 0 0 0 0 0 O
* lcosp 0  —sing 0 0 0 0 O
0 sing 0 —cospe 0 0 O O

0 0 0 0 0 0 0 O

0 0 0 0 0 0 0 O

Buradan, rankX, = 4 bulunup



( =9 g =_0 )
(ker¥,)t =s an{ b0z 1 0z

* p ” 0 o 0 0 9

k 3 = COSQ 3z, sing oz, Ut = sing 3z, cosQ 624)

0 0 )
Mo, T Ty,

7 8

(

| |
rangeX, = span{ P 9 P 0 $
W; = cosop — — sing — ,W, = sing — — cosp —
L 3 <p ayl (p ay3 4 ()0 ayz (p ay4J

bicimde yazilir.

0
]w(Wz) = a_ =W
P

0 0
Jo(W3) = cosp — — singp —
ayz 0y4

olup,

Irs U Ws),W,) = gre((0, cose, 0, —sing, 0,0,0,0), (0, sing, 0, —cos¢, 0,0,0,0) )
= sing.cos@ + sing.cose = sin(2¢)

bulunur. Buradan hareketle,

_ IwUuWy). Ws) _sin(2¢)
I, (WD IW 4l 1

6 = arccos(sin(2¢))

os 6 = sin(2¢)

olur.

Buradan,
Db = span{W,;, W,} ,DT = span{W,, W,}
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ifade edilir. Sonug olarak, rangeX, = D® @ DT vyazilabildiginden, 6 acis1 noktasal

yari-egimli bir Riemann doniigiimiin yari-egik fonksiyonu olur. Dolayisiyla K ise bir

Riemann manifolddan bir hemen hemen Hermityen manifolda tanimlanan noktasal yari-

egimli Riemann doniisiimdyir.

Ornek 4.1.2. (R®, gr8) Oklid uzay1 olsun. JiJ, = —/,J;’yi gerceklestiren, R® tizerindeki

bir ¢ift {/;,/,} hemen hemen kompleks yapilarini inceleyelim. Burada,
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]1(611, vy ag) = (_az, al, _a4, a3, _a6, as, _aS, a7) (4‘.1.5)

ve

J.(aq,...,ag) = (—as,a4,a4, —ay, —a,, —ag, as, —ag) (4.1.6)

dir.
Herhangi bir reel degerli 4:R® — R fonksiyonu i¢in, J, = (cosd)J; + (sind)J, ile, R®
tizerinde yeni J/, hemen hemen kompleks yapist tanimlayalim. Bu durumda,

RY = (R® ], g=s) bir hemen hemen Hermityen manifoldu olur.
Y(xq, .., xg) = (X1, X5, X3, X4, —2,%¢, 11, xg) (4.1.7)

ile bir y:R% — R® Riemann doniisiimii olsun. Bu durumda, y doniisiimii, d yari-egik

fonksiyonu ile noktasal yari-egimli bir Riemann doniisiimiidiir. Dogrudan islemler

yapilirsa,
0 _ i i T — i i i i
D" = Span{aze ’ 623} ie° = B {621 '8z, dz3’ 624}.
ve
L { 9 9 } 4.1.8
(rangey,)* = span  ERErs (4.1.8)

elde edilir. Burada, {z,...,zg}, R® {izerindeki yerel koordinatlardir (Akyol ve
Giindiizalp, 2024).

Bir noktasal yari-egimli Riemann doniisimi D% # {0} ve 8 = O,g kosullarini
saglandiginda has(proper) doniigiim olur. Asagidaki teorem has noktasal yari-egimli bir

Riemann doniisiimii orneklerini elde etmek igin 6nemli bir rol oynar (Akyol ve
Giindiizalp, 2024).

Teorem 4.1.1. y,, bir (By,g;) Riemann manifoldundan (B, g,,/;) hemen hemen
Hermityen manifolduna bir Riemann submersiyonu oldugunu ve y, de, (B,, g,,/1) den

(B3, g3,J2) hemen hemen Hermityen manifolduna noktasal yari-egimli bir immersiyon
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olsun. Bu durumda, y, o y; bir noktasal yari-egimli bir Riemann dontisiimii olur (Akyol
ve Giindiizalp, 2024).
Ustteki teoremin uygulanmasi olarak asagidaki has noktasal yari-egimli bir Riemann

dontlistim 6rnegi yazilabilir.

Ornek 4.1.3. (R®, g..s) Oklid uzayi olsun. J;J, = —/,J; yi saglayan, R® {izerindeki bir

cift {J1,/>} hemen hemen kompleks yapilar1 olsun. Burada,

]1(a1, vy ag) = (_az, a1, _a4, a3, _a6, as, _a8, a7) (419)
ve

J,(aq,...,ag) = (—as, a4,a,,—a,, —a;, —ag, s, —dg) (4.1.10)
dir.
Herhangi reel degerli &: R® — R fonksiyonu icin, J; = (cosd)/; + (sind)J,birlikte, R®

tizerinde yeni J; hemen hemen kompleks yapisi yazalim. Bu durumda,

RY = (R®, ], gzs) bir hemen hemen Hermityen manifoldu olur.

V2:R® > (R% )4, g:8),  v2(b,c,def.g) =(bcde0,f,0,g) (41.11)

noktasal yari-egimli immersiyonu ve

v1: (R g) - RS, Y11, - ¥8) = (Y1, Y2, V3, Yar Ver V) (4.1.12)

Riemann submersiyonunun bilesimi olan

v:(R%9) = (RS J0g:8), YOu-¥e) = (V1 Y2 Y3 Yar 0, Y6, 0, ¥5)

doniligiimiinii ele alalim. y doniligiimii, 8 = & yari-egimli fonksiyonu ile birlikte noktasal
yar1-egimli bir Riemann doniisiimii olur.
Dogrudan islemler yapilarak,

d a d

=6 _ 0 9 BT — 9 9 8 4.
D" = Span{626 ’ 623} ve D' = Span{azl ’ 0z, ’ 0z3 ’ 624}'
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bulunup

0 9 } (4.1.13)

(rangey,)t = span {6_25'0_27
yazilir. Burada {zy, ..., zg}, R® iizerinde tanimlanan yerel koordinatlardur.
v.0; € D? ve v.0, € DT i¢in g,(v.04,v.0,) = 0 dir. Bu durumda, y bir Riemann

doniistimii oldugundan g;(Q4, Q) = 0 olur. Buradan,

]

(kery)* =DT @ D? (4.1.14)

yazilir (Akyol ve Gilindiizalp, 2024).

Simdi, noktasal yari-egimli bir Riemann doniisiimii i¢in asagidaki teoremi yazabiliriz.

Teorem 4.1.2. y, (B4, g1) Riemann manifoldundan (B;, g,,/;) hemen hemen Hermityen
manifolduna, 6 yari-egimli fonksiyonu ile birlikte noktasal yari-egimli bir Riemann
doniisiimii olsun. Bu durumda, herhangi y,X € I'(D?) igin
¢%y. X = —cos?6y,X (4.1.15)
olur (Akyol ve Giindiizalp, 2024).
Yukaridaki teoremden faydalanarak herhangi v.X, v.Y € F(De) icin
92(9v.X, y.Y) = cos?0g,(v.X,y.Y) (4.1.16)

g2 (wy. X, wy,Y) = sin?0g,(v.X,y.Y) (4.1.17)

denklemleri elde edilir. y’nin (Bq,g;) Riemann manifoldundan (B,,g,) Riemann

manifolduna, C* — doniisiimii olsun. Bu durumda, herhangi X € Tg By ve Y € Ty s,)B;

igin, (Y+)s,»S1 € By diferansiyelinin (Y+)s,, 81 € By adjoint dontigiimii

92((¥)5,XY) = g1 (X (v.)5,Y) (4.1.18)
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ile yazilr. Ayrica, y bir Riemann doniisiimii ise, X € I'(rangey.)ys,) Ve

Y € I'(ker(y.)s,)* icin,

V)s, V), X=X, "(v)s, (V)5 Y =Y (4.1.19)
elde edilir. Boylece, “(v.)s,: (rangey.)ye,) = (ker(y*)sl)l lineer doniisimii bir

izomorfizmadir (Akyol ve Giindiizalp, 2024).
C =" (Y.)s,9(v,) “yi olsun. Toerem 4.1.2 den faydalanarak asagidaki sonug yazilabilir.

Sonu¢ 4.1.1. y, bir (B, g;) Riemann manifoldundan bir (B,, g,,/) hemen hemen
Hermityen manifolduna, 6 yari-egimli fonksiyonu ile birlikte noktasal yari-egimli bir
Riemann doniisiimii olsun. Bu durumda, X € I'(D?) igin,

C?X = —cos?6X (4.1.20)

Burada Y*ZIZ = ¢Y*ZZ |Ie Z1, Zz,zlz € F((kery*)ql)l i(}in,

(V2 @)v.z2 = C(Vy.)(21,2,) — (Vy.)(21,2") (4.1.21)
ifade edilir (Akyol ve Giindiizalp, 2024).

Onerme 4.1.1. y, bir (B;,g;) Riemann manifoldundan bir (B,, g, J) Kaehler
manifolduna, 6 yari-egimli fonksiyonu ile birlikte noktasal yari-egimli bir Riemann

doniisimii  olsun.  tensérii paralel ise, bu durumda vy,,y, € I'(D%) igin

(Vy.)(Cy1,Cy3,) = —cos?¢p(Vy.) (V1,¥2) (4.1.22)

elde edilir (Akyol ve Giindiizalp, 2024).

DT invaryant distribiisyonu i¢in asagidaki sonug yazilabilir.
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Teorem 4.1.3. y, bir (By,g,) Riemann manifoldundan bir (B,, g,,J) Kaehler
manifolduna, noktasal yari-egimli bir Riemann doniisimii olsun.  Bu durumda,
herhangi k,, k,, Z, W, € I'(kery,)* oyle ki v.ki, v.k, ET(DT),
v.W, € (DY) ve V € T'(rangey.)* ve y.Z = BV igin, bu durumda DT invaryant
distriblisyonu B, lizerinde tamamen jeodezik bir foliasyon tanimlar ancak ve ancak

(1) Seyy.(kqy) — v.(Vi, Z), (D7) igerisinde hig bileseni yoktur,

(ii) (v (Vie, W1) — Seoy.w, K1), T(DT) igerisinde hig bileseni yoktur (Akyol ve
Giindiizalp, 2024).

DY, egik distribiisyonu icin asagidaki sonug yazilabilir.

Teorem 4.14. y, bir (By,g,) Riemann manifoldundan bir (B,,g,,J) Kaehler
manifolduna noktasal yari-egimli bir Riemann doniisiimii olsun. Bu durumda, herhangi
U,,U, € I'(kery,)* oyle ki y,U;,y,U, €T(DP) ve V € I'(rangey,)* i¢in DY egik
distribiisyonu B, {izerinde tamamen jeodezik bir foliasyondur ancak ve ancak
(i)  —sin%(8)[Uy, V] + sin(20)V(0)U; + VY wdy.U; + pViwy. Uy,
I'(rangey,) ic¢inde hi¢ bilesene sahip degildir,
(i) ¢(Swy.u,v:Us =V} ¢v.Uz), T(DT) iginde hi¢ bilesene sahip degildir
(Akyol ve Giindiizalp, 2024).
Ayrica agagidaki sonug yazilabilir.

Teorem 4.15. y, bir (By,g,) Riemann manifoldundan bir (B, g,,J) Kaehler
manifolduna, noktasal yari-egimli bir Riemann doniisiimii olsun. Bu durumda, herhangi
U,,U, € T'(kery,)*, oyle ki y,U; eT(DT), v,.U, eT(DY) ve V,W € I'(rangey,)*
i¢in, (rangey)* distribiisyonu, B, iizerinde tamamen jeodezik bir foliasyon tanimlar
ancak ve ancak

(i) [v.Uy, V] — V{1V, I'(rangey.)* iginde hig bileseni yoktur.

(i) VYwepy.U, + ¢VYwy. Uy, T'(rangey.)* iginde hig bileseni yoktur (Akyol ve
Giindiizalp, 2024).
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Teorem 4.1.3. , Teorem 4.1.4. ve Teorem 4.1.5. ‘in bir sonucu olarak asagidaki

yazilabilir.

Sonug¢ 4.1.2. y, bir (B4, g;) Riemann manifoldundan bir (B,, g,,J) Kaehler manifolduna,
noktasal yari-egimli bir Riemann déniisiimii olsun. Bu durumda, B, total uzayi, DT, D°
ve (rangey.)t yapraklarmin bir yerel c¢arpim uzayr olmasi (B = B,p7 X B,pe X
B (rangey.)t) icin gerek ve yeter sart herhangi Uy, Uy, Z, W1, W, € T'(kery,)* ve Y €
I'(rangey,)? icin,

(1) Seyy«(Uy) — v (Vy,Z), (D7) iginde hig bilesene sahip degilse,

(i) ¢ (v.(Vu, W) — Siy.w,U1), T(DT) icinde hig bilesene sahip degilse,

(iii) —sin?(6)[W4, Y] + sin(20)Y(8)W; + Viwdy. W, + ¢V wy, Wy,
I'(rangey,) i¢inde hig bilesene sahip degilse,

(V) (Sey.w,V-W; — V{Mcpy*wz), ['(DT) i¢inde hig bilesene sahip degilse,

(V) [v.U, Y] = VEY, I'(rangey,)* icinde hig bilesene sahip degilse,

(vi) VYwdy. U, + pViwy.U,, T(rangey,)* iginde hig bilesene sahip degilse,
esitliklerinin saglanmasidir (Akyol ve Giindiizalp, 2024).

Simdi, y, noktasal yari-egimli bir Riemann doniisiimiiniin tamamen jeodezik olabilmesi

icin gerek ve yeter sartlar verilecektir.

Teorem 4.1.6. y, bir (B;,g;) Riemann manifoldundan bir (B,, g,,J) Kaehler
manifolduna, 6 yari-egimli fonksiyonu ile birlikte noktasal yari-egimli bir Riemann
doniistimii olsun. y tamamen jeodezik doniisiimdiir ancak ve ancak

(a) p; € B; icin tiim y~1(p,) lifleri tamamen jeodezikdir,

(b) (kery,)*, B, iizerinde tamamen jeodezik bir foliasyon tanimlar,

(©) C(Vy.) (X, Y) — wy,(VxY", I'(rangey,)* i¢inde hig bilesene sahip degildir,

(dHerhangi  U,Y € I'(kery,)* ve  Z€T(rangey,)t i¢in  olan
v.U,v.Y € T(D?) i¢in asagidaki esitlik saglanir:
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SiHZQZ(Q)gZ (Y*U, Y*Y) =—92 (Y*Y' [Y*[U, Z]) - COSZHQZ (Y*Yv VZY*[U)
+9,(v.Y, BVIwy.U) + g,(v.Y, Vwey.U). (4.1.23)

dir (Akyol ve Giindiizalp, 2024).

Teorem 4.1.7. y, bir (By,g,) Riemann manifoldundan bir (B,,g,,J) Kaehler
manifolduna, 6 yari-egimli fonksiyonu ile birlikte noktasal yari-egimli bir Riemann
dontistimii olsun. Sadece ve sadece asagidaki kosullar saglanirsa y tamamen jeodezik
olur. Bu durumda, y harmoniktir ancak ve ancak asagidaki esitlikler saglanir:

1. Lifler minimaldir.

2. trace{Vz'_)lwq.’)y*(.) + WS4y, )() — CV\(/_)lwy*(.)} =0
dir (Akyol ve Giindiizalp, 2024).

Bu tezin son kisminda, Riemann manifoldlarindan kompleks uzay formlarina noktasal
yari-egik Riemann doniisiimleri i¢in Casorati esitsizliklerini i¢inde barindiran egrilik

iliskilerine yer verilecektir. ilk olarak, kompleks uzay formunu tanimlayalim.

4.2. Riemann Manifoldlarindan Kompleks Uzay Formlarina Noktasal Yari-Egik

Riemann Doniisiimler

Tanim 4.2.1. (B,, g,,]) bir Kaehler manifold olsun. Sabit holomomorfik kesit egriligi v
olun bir kompleks uzay form B,(v) nin Riemann Christoffel egrilik tensori
[Ul' [Uz, U3, [U4_ € F(TBz) lg:ln

v
Rp, (U, Uy, U3, Uy) = 4 {92(U1,Uy) g, (U3, Uz) — g2(Uq, U3) g, (U, Uy)

+92(U1,JU3)g2(JU3, Uy) — 92(U3,JU3)g2(JU1, Uy)
+29,(U1,JU2)9,(JUs, Uy)} (4.2.1)
esitligi yazilir.
m, bir (B4, g;) Riemann manifoldundan bir (B,, g,) Riemann manifolduna bir Riemann

déniisiimii olsun. Sirastyla V51 ve V52 nin egrilik tensor alanlar1 Rp, ve Rp, olsun. Bu

durumda U,, U,, U5, U, € I'(kerm,)?* igin, Gauss formulii
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9> (RBZ (m.Uy, M Up)mUs, m.Uy) = 94 (Rp, (Uy, U2)Us, U,)
+gZ((VT[*)([U1' [US)' (VT[*)([UZ' [U4))
~92((Vr.) (Uy, Uy), (V) (U, Us)). (4.2.2)

ile yazilir. Simdi kabul edelim ki, m, bir (Blbl,gl) Riemann manifoldundan bir
(B2"(v),],g,) kompleks uzay formuna 3 < d = rankm < min{by,2n} ile birlikte
noktasal yari-egimli bir Riemann déniisiimii olsun. Herhangi U, U,, U5, U, € I'(kerm,)*

i¢in (4.1.1) ve (4.1.2) denklemleri yardimiyla

%
g1 (R31 (U,,U0,)U3, U, = 2 {92(U1,U4) g2 (Uz, Us) — g2(Uq, U3) g2 (Uy, Uy)

+9g,(m. Uy, Jt, Uz) g, (. Uy, . Uy,)

—g2(1. Uy, JT,Uz) g, (Jm. Uy, m.U,)

+2g2 (1, Uy, JT.U;) g, (. U3, .U, }

—92((Vm,)(Uy, U), (V) (U2, Uy))

+95((Vm.)(Uy, Uy), (V1) (U, Us)) (4.2.3)

yazilir.

{.Ey, E; = JTLE, ..., T E2q, -1, TE2q, = JTWEq, -1, TWEq, 41,

T.Ezq,+2 = S€COPTLE2q, 41, -+, B2, 120, -1, TEq = S€COPTErq, 124, -1}

Ve {Eg11,Egi2, -, Expn} sirasiyla (kerm,)t ve (rangem,)?t distribiisyonlarinin ortogonal
bazlar1 olsun. Bu durumda rangem, nin boyutu d = 2d; + 2d, dir. (kerm,)* vyatay

PR

uzay1 iizerinde rCkerm)t skaler egirligi
1

erm)” = 5ies-191(Ra, (Ex, E)Ey, Ex) (42:4)

ile birlikte ve (kermg )"t nin kkert)t normallestirilmis  skaler egriligi

Z.L.(kem'r*)l

d(d—1)

cleerm)t _ (4.2.5)

olarak tanimlanir. Bu durumda
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ok = 92 (VM) (EE)Bg),  ks=1...d, p=d+1..2n  (426)

I @ 12= 2t oo1 92 (V) (B, Es), (V1) (Ey, Es)) (4.2.7)

tracep = Zgzl(VTr*)(Ek,Ek),
|l traceg 1>°= g,(traceq,trace). (4.2.8)

yazilir.
m déniisiimiiniin karelesmis formu (B%",], g,) manifoldu iizerinde (kerm,)* yatay
uzayin ikinci temel formu C ile gosterilir ve (kerm,)! yatay uzayin Casorati egriligi

olarak adlandirilir. Bu yiizden

1 1
C ==l ¢ IP= = EFl 05 e (94 (4.2.9)

dir.
Simdi kabul edelim ki, L*€™™" t boyutlu (kerm,)} ,2 < t altuzayi ve L&*¢"™)" nin bir

ortonormal bazi {E;, E,, ..., E;} olsun. Lkerm)® pin, ¢ kerm)* (L(ker“*l)) Casorati egriligi
(kerm,)* (1 (kerm,)*t 1 2 1 2n t B2
Clkerm)t (L)) = 2 T 2= —3f 4 Thoma (TR)? (4210

olarak tanimlanir.
1
(kern*)él‘nun normallestirilmis okerm)t _ Cagorati egrilikleri O'C(kem*) (d—1) ve
1
Eékerm) (d _ 1)’

kerm,)t 1 ,(kerm)t | d+1. L L L
[og" ™ (d = D)]g, =5Cq 7 + S infEETT LI LG, (kerm.)g ),

1

‘nun hiperdiizlemi}

ve

(ker‘r[*)l _ Zd - 1

_(kerm)t
[G8°T™)" (d = 1)] o

=2C
1

. inf{C (kerm,)* (L(kerﬂ*)l): L(kerm)l’ (kerﬂ*)é[l}

"nun hiperdiizlemi} olarak verilir.
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(4.1.3), (4.1.4) ve (4.1.9) denklemlerinden faydalanarak

[d2 — d + 6(d; + dyc0s20)] = 2cker™) (g,) + deker™* _|| traceq 112, (4.2.11)

<

yazilir. Burada; plkerm)t (kerm,)™ nin skaler egriligidir.

Simdi 7 nin bilesenlerine uygun olarak verilen kuadratik polinom ile ilintili Q(kerm)™

fonksiyonunu,

1
Q(kern*)l _ E [(dz _ d)e(kerm)l + (dz _ 1)€(kern*)l(L(kern*)L)]

v

_ppkerm )t 4 . [d? —d + 6(d; + d,c0s28)] (4.2.12)

ile tanimlayalim. Genelligi kaybetmeksizin, {E;,..., E;_1} baz1 ile gerilen hiperdiizlemi

Lkerm)t oldugunu kabul ederek ve (4.2.11) denklemini kullanarak

gUkerm)* Zé’;dﬂxg;}[d(gofk)z + (d + 1) (ppy)?]
+32 41 [2(d + DELE (0f)?

d-1
—25{ sl b + — (0ha)™]

- a-1
2 zé2d+1[zz=%d(¢]€k)2 +— (<Pgd)2

~ 25 s Pl k] (4.2.13)
elde edilir. B =d +1,...,2n igin, gg: R*" - R kuadratik formunu
_ d—1
(0l - 08) = TEd()? + —— (0 — 2ol (4214)
denklemi ile tammlayalim ve sabitlestirilmis ekstremum problemi mingg,

PP 4. 4ol = 2P, (4.2.15)
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. . . . d-1
ile verelim. Burada, z# bir reel sabitolur.c = d, e = — olarak yazilir.

Bu sebeple, (¢?,..., 5 ) kritik noktas:

B 2B
B _ . B _ _ B __Z B _ 4~
P11 =P == Pg_14-1 = d+1’ DPaa — d+ 1 (4.2.16)
ile verilir ve bir global minimum noktasidir. Ayrica gg ((pfl, e (pgd) = 0 dir.
Buna ek olarak,
Qkerm)® > 0, (4.2.17)
olup bu esitsizlik
ZT(kerm)J- < l[(dz _ d)c(kern*)l + (dz _ 1)C(kern*)l(L(kern*)l)]
-2
+§[d2 —d + 6(d; + d,cos20)] (4.2.18)
dir. Burada (3.1.14) denkleminden faydalanarak
rkerm)t < [%c(kerm)l + _d +1 C(kern*)l(L(kern*)*)]
2
_|_Z + 3v(d,+d;cos°0) (4.2.19)

4 2d(d-1)
esitligi (kerm,)* nin tiim Lkerm)t hiperylizeyleri i¢in elde edilir.

Benzeri sekilde,

1
gkerm)® = 2(d? — d)C*eT™” — o (2d° — 3d + DEET (LETT

—2t(kerm)® 4 X[d2 — d + 6(dy + d,co0s?6)], (4.2.20)

olur. Bu durumda  hyperplane L(kerm)® hiperdiizlemi (kerm,)! uzaymin bir

hiperyiizeyidir. Buradan hareketle,



70

Zkerm)t > (4.2.21)
olup
K(keth*)J- S Zc(ker“*)J' . ZdZ; 1 C(ke‘r‘l'[*)l (L(kerT[*)J.)]
v | 3v(di+d,cos?6)
+ " + W (4.2.22)

elde edilir (Akyol ve Giindiizalp, 2024).
Simdi, (kerm,)* uzaymin biitiin Lkerm)t hiperyiizeyleri lizerinde (4.2.22) de infimumu
ve (4.2.24) te supremumu alinarak ve sirasiyla (4.2.20) ve (4.2.23) da esitlik durumu

incelenerek asagidaki teoremi yazariz.

Teorem 4.2.1. m, bir (Blbl,gl)Riemann manifoldundan bir (B2"(v),], g,) kompleks uzay
formuna, 6 yari-egimli fonksiyonu ve 6, 3 < d = rankm < min{b,,2n} ile noktasal
yari-egimli bir Riemann doniisimii olsun. Bu durumda  (kerm,)g, iizerinde

1 1
normallestirilmis ac(kem*) ve 5C(kem*) , 0 — Casorati  egrilikleri igin,

1 2

(l) K(kern*)l < O_C(keth*) (d — 1) f E I 31/(6121;(32_20)5 9) (4223)
S 2

(ii) K(kern*)l < O__C(ker ) (d — 1) 1 E I 31’(‘121;(22_910)5 ) (4.2.24)

esitlikleri saglanir (Akyol ve Giindiizalp, 2024).

J_ . . . J_
Ayrica, sadece ve sadece (rangeﬂ*ql) , Uzerindeki {Egiq,...,En} Ve (kerm,)g,

tizerindeki {Ej,..., E;} uygun ortonormal bazlarina gére q; € N; noktasindaki herhangi

bir esitsizlikte esitlik durumu gegerlidir. ¢@’nin bilesenleri asagidakileri saglar.

1
of =f = =pf = 5<p§d, Bef{d+1,d+2,..2n},  (4.2.25)



71

of =0ksel,,... dk=s), Be{d+1,d+2,..2n} (4.2.26)
(Akyol ve Giindiizalp, 2024)

Teorem 4.2.1 den faydalanarak asagidaki sonug yazilir.
Sonu¢4.2.1. m, bir (Blbl,gl) Riemann manifoldundan bir (B2"(v),], g,) kompleks uzay
formuna, 6 yari-egimli fonksiyonu ve 6 = g, 3 < d = rankm < min{b,,2n} ile

noktasal yari-egimli bir Riemann déniisiimii olsun. Bu durumda (kerm,)z, iizerinde

(kerm,)t —(kerm,)t

normallestirilmis o, ve a. , 0 — Casorati egrilikleri i¢in,
1
(D) ket < g (g - 1) + L4 (4.2.27)
1
(if) ©leermat < GIe™(d — 1) + 2+ —Zj(vdd_ll) (4.2.28)

J_ . . . J_
Ayrica, sadece ve sadece (rangem, q,)» Uzerindeki {Eq+1,---, Ean} ve (kerm,)g,

tizerindeki {Ej,..., E;} uygun ortonormal bazlarina gére q; € N; noktasindaki herhangi

bir esitsizlikte esitlik durumu gegerlidir. ¢’nin bilesenleri asagidakileri saglar.
B _ B B 1 s
P11 = P2 == Py_1g-1 = 5 Paar Bef{d+1,d+2,..2n}, (4229

of =0kse(l,,..,d}(k#s), Bef{d+1,d+2,..2n} (4230)
(Akyol ve Giindiizalp, 2024).

Sonu¢ 4.2.2. , bir (Blbl,gl) Riemann manifoldundan bir (B"(v),/, g,) kompleks uzay
formuna , 6 yari-egimli fonksiyonuve 8 =0, 3 <d = rankm < min{b,, 2n}ile
noktasal yari-egimli bir Riemann déniisiimii olsun. Bu durumda (kerﬂ*);1 tizerinde

1 1
normallestirilmis ac.(kem*) ve Eékem*) , 0 — Casorati egrilikleri i¢in
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d+2)
; (kerm)t ~ (kerm)* 5 V(
() k < o, d-1)+ 1d-1D (4.2.31)
d+2)
.. (kerm)t —(kerm)t v( 4232
(ii) k <. (d 1)+—4(d—1) (4.2.32)

J_ . . . J_
Ayrica, sadece ve sadece (rangem, ql) , lizerindeki {Eg44,...,E2n} Ve (kerm,)g,

tizerindeki {Ej,..., E;} uygun ortonormal bazlarina gére q; € N; noktasindaki herhangi

bir esitsizlikte esitlik durumu gegerlidir. ¢ nin bilesenleri asagidakileri saglar.
o =gl ==l =t0h, BEld+Ld+2,.m),  (42.33)
of =0kse(,,... dk#*s), Be{d+1,d+2,...2n). (4234
(Akyol ve Giindiizalp, 2024).

Sonug 4.2.3. m, bir (Bfl,gl) Riemann manifoldundan bir (B2™(v),/, g,) kompleks uzay
formuna, 6 yari-egimli fonksiyonu ve 6 = %, 3 <d = rankm < min{b,,2n} ile

noktasal yari-egimli bir Riemann doniigiimii olsun. Burada durumda,
(i) kkermdt < gkerm (g _ 1), (4.2.35)

(if) xlkerm*t < ket g _ 1) (4.2.36)

elde edilir (Akyol ve Giindiizalp, 2024).
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5. SONUC VE ONERILER

Bu tez caligmasinda, kompleks geometri acisindan 6nemli bir yere sahip olan hemen
hemen Hermityen manifoldlar ile Riemann manifoldlar1 arasindaki noktasal yari-egik
Riemann doOniisiimleri ve bunun tersine, Riemann manifoldlarindan hemen hemen
Hermityen manifoldlara yapilan benzer doniisiimlerin tanimlar iizerinde durulmustur.
Ayrica bu doniiglimlerin tamamen jeodezikligi ve harmonik olma durumlar
arastirilmistir. Bu dontisiimlerle elde edilen distribisyonlarin geometrisi, 6zellikleri
incelenmis ve Orneklerle agiklamalar yapilmistir. Sonrasinda, kaynak manifold, hedef
manifold ve bu manifoldlardaki liflerin geometrileri detayli bir bicimde ele alinmistir.
Ayrica, kompleks uzay formlarindan Riemann manifoldlarina noktasal yari-egik Riemann
dontigiimleri i¢in Chen-Ricci ve Casorati esitsizliklerini igeren egrilik iligkileri tizerine
calisilmistir. Bu yiiksek lisans tezi, ilerleyen zamanlarda yapilacak caligmalara temel

olusturmasi ve yol gostermesi hedeflenerek hazirlanmistir.
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