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ABSTRACT 

 

PhD. Thesis 

 

AN ENHANCED CAPSULE NEURAL NETWORK MODEL FOR HEEL 

DISEASE DIAGNOSİS USING LATERAL FOOT X-RAY IMAGES 

 

Osamah Fadhil Taher TAHER 

 

Karabük University 

Institute of Graduate Programs  

Department of Computer Engineering 

 

Thesis Advisor: 

Assist. Prof. Dr. Kasım ÖZACAR 

January 2025, 135 pages 

 

Heel bone conditions, such as heel spurs and Sever's disease, pose significant 

challenges to patients' daily activities. While orthopedic and traumatology doctors rely 

on foot X-rays for diagnosis, there is a need for more AI-based detection and 

classification of these conditions. This thesis addresses this need by proposing two 

deep learning models: HeCapsNet and MedCapsNet. 

 

This thesis first presents a novel dataset of 3,956 annotated lateral foot X-ray images 

and uses the original capsule network (CapsNet) as a baseline. The low accuracy of 

CapsNet (73.99%) led to the development of an enhanced CapsNet, HeCapsNet, which 

adjusts the feature extraction layers, adds extra convolutional layers and utilizes 

improved initialization and padding schemes. HeCapsNet achieved higher accuracy 

rates, including 97.29% for balanced data, 94.19% for imbalanced data, an AUC of 

98.69%, and a 5-fold cross-validation accuracy of 95.77%. While our findings aligned 
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with those reported in the literature for relatively more uncomplicated, non-medical 

datasets like MNIST and F-MNIST, we achieved better results with more complex, 

medically focused datasets, including brain MRI, knee, and our novel dataset. 

 

In addition, this thesis introduces MedCapsNet, a new hybrid capsule model that 

combines the modified DenseNet201 model with the original CapsNet. The 

architecture of this model is designed to detect and classify cases of heel bone 

pathologies using lateral heel X-ray images of the foot. The model has been applied to 

a heel data set and other medical datasets (John Cheng's MRI brain, Breast BreaKHis 

v1, and HAM10000 melanoma). MedCapsNet's versatility in different types of images, 

including X-ray, MRI, and microscopy images, where it achieved high-performance 

metrics without requiring a unique architecture for each set or tuning the 

hyperparameter for each dataset, made it superior to state-of-the-art models. 

 

HeCapsNet and MedCapsNet offer the potential of AI-based methods to detect and 

categorize heel bones, fulfilling the need for diagnosis and more reliable management 

of these conditions. 

 

Key Words : Capsule network, Deep Learning, Foot X-ray images, Heel spur, 

Sever Disease 

Science Code :  92432
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ÖZET 

 

Doktora Tezi 

 

LATERAL AYAK RÖNTGEN GÖRÜNTÜLERİNİ KULLANARAK TOPUK 

HASTALIKLARI TEŞHİSİ İÇİN GELİŞTİRİLMİŞ KAPSÜL SİNİR AĞI 

MODELİ  

 

Osamah Fadhil Taher TAHER 

 

Karabük Üniversitesi 

Lisansüstü Eğitim Enstitüsü 

Bilgisayar Mühendisliği Anabilim Dalı 

 

Tez Danışmanı: 

Dr. Öğr. Üyesi. Kasım ÖZACAR 

Ocak 2025, 135 sayfa 

 

Topuk dikeni ve Sever hastalığı gibi topuk kemiği rahatsızlıkları, hastaların günlük 

aktivitelerinde önemli zorluklar yaratmaktadır. Ortopedi ve travmatoloji doktorları 

teşhis için ayak röntgenlerine güvenirken, bu durumların daha fazla yapay zeka tabanlı 

tespitine ve sınıflandırılmasına ihtiyaç vardır. Bu ihtiyacı karşılamak için bu çalışma, 

HeCapsNet ve MedCapsNet iki derin öğrenme modeli sunmaktadır: 

 

İlk olarak 3.956 yan ayak röntgen görüntüsünden oluşan yeni bir veri kümesi sunmakta 

ve orijinal kapsül ağını (CapsNet) temel olarak kullanmaktadır. CapsNet'in düşük 

doğruluğu (%73,99), özellik çıkarma katmanlarını ayarlayan, ekstra evrişimli 

katmanlar ekleyen ve gelişmiş başlatma ve doldurma şemaları kullanan gelişmiş bir 

kapsül ağı olan HeCapsNet'in geliştirilmesine yol 
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açmıştır. HeCapsNet, dengeli veriler için %97,29, dengesiz veriler için %94,19, 

%98,69 AUC ve %95,77 5 kat çapraz doğrulama doğruluğu dahil olmak üzere daha 

yüksek doğruluk oranları elde etmiştir. Son teknoloji ürünü modifiye CapsNet 

modelleriyle yapılan karşılaştırmalar, HeCapsNet'in daha karmaşık tıbbi veri 

kümelerinde daha iyi performans gösterdiğini ortaya koymaktadır. 

 

Ayrıca bu çalışma, modife edilmiş bir DenseNet201 ile bir kapsül ağını birleştiren yeni 

bir hibrit kapsül modeli olan MedCapsNet'i de önermektedir. Bu model, yan topuk 

ayak röntgen görüntülerini kullanarak topuk kemiği hastalıklarını doğru bir şekilde 

tespit etmek ve sınıflandırmak için tasarlanmıştır. Topuk veri kümesi ve diğer tıbbi 

veri kümeleri (Jun Cheng Brain MRI, Breast BreaKHis v1 ve HAM10000 cilt kanseri) 

üzerinde yapılan deneyler, veri kümesine özgü mimari veya hiperparametre ayarına 

ihtiyaç duymadan yüksek performans ölçümleri elde eden MedCapsNet'in çok 

yönlülüğünü göstermektedir.  

 

HeCapsNet ve MedCapsNet, topuk kemiklerinin tespiti ve sınıflandırılmasına 

yardımcı olmak için yapay zeka tabanlı yaklaşımların potansiyelini ortaya koyarak, 

teşhis süreçlerinin iyileştirilmesine ve bu koşulların daha güvenilir bir şekilde 

yönetilmesine katkıda bulunmayı amaçlamaktadır. 

 

Anahtar Kelimeler  :  Kapsül ağı, Derin öğrenme, Ayak röntgen görüntüleri, Topuk 

dikeni, Sever Hastalığı 

Bilim Kodu :  92432 
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PART 1 

 

INTRODUCTION 

 

The concept of Artificial Intelligence (AI) first originated during the mid-20th century, 

specifically in the range of the 1950s and the 1960s. In the year 1956, a conference at 

Dartmouth was held by John McCarthy and Marvin Minsky that outlined key features 

towards the emerging field of AI. In its earliest stages, traditional AI approaches were 

highly rule-based in which a computer would be forced to use an internal model to 

make decisions; however, this was also one of the up-and-coming fields of Deep 

Learning (DL) that began to change the world [1,2]. While in the past, programming 

rules were primarily used in AI, advancements in DL have introduced a wealth of 

possibilities that have revolutionized AI. New and enhanced intelligent systems are 

being developed to assist and transform healthcare as we know it. AI technology is 

rapidly advancing in the field of medical imaging, where CT scans, MRIs, ultrasounds, 

and X-rays remain difficult to interpret due to the overwhelming suite of images 

produced for specialists [3,4,5]. However, DL models have proven to be efficient in 

this domain, including the analysis of medical images [6,7,8]. The major types of AI 

methods suitable for use in conjunction with medical imagery include detection, 

classification and segmentation of the images [9]. 

 

DL, a subset of Machine Learning (ML), employs Artificial Neural Network (ANN) 

architectures with a distributed representation that consists of a multi-layered coding 

strategy system with multiple hidden layers to be learned [10]. In the early 2010’s, 

neural networks known as Convolutional Neural Networks (CNNs) were extensively 

used in the field of medical imaging [11]. Then, in 2017, Hinton G. et al. introduced 

Capsule Networks (CapsNet), a more advanced technique for conducting medical 

imaging analysis compared to traditional networks, providing several benefits over 

other conventional techniques [12]. 
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Heel bone disease affects a patient’s performance of daily tasks very much due to 

reduced mobility, which results from pain on the lower side of the foot. An orthopedic 

specialist is involved who provides the necessary examinations and foot X-rays and 

diagnoses the condition, and thus, treatment is done for the patient. Two of the most 

common heel bone diseases are heel spurs and Sever’s disease. Heel spurs are defined 

as bony growths that extend into the heel bone, which in return lead to inflammation 

that results in pain, which at times can be managed with physical therapy but at times 

necessitates surgery, while Sever’s disease, which is common in youngsters, is 

inflammation due to overuse, wherein there is swelling of the posterior aspect of the 

heel bone, and this causes pain on the heel [13,14]. 

 

This research creates a base for lateral X-ray foot views and shows AI's role in 

medicine. At first, the original CapsNet was tested on the dataset. Still, as the 

performance was relatively poor, two improved CapsNet models, HeCapsNet and 

MedCapsNet, were designed to facilitate the identification and classification of heel 

bone diseases. Introducing advanced capsule models shortens the time and increases 

the accuracy with which satisfactory treatment can be proposed. This application of 

AI in medical technologies is one of the milestones that can place the patient's welfare 

and clinical practice at the next level in the forthcoming time. 

 

This thesis contains eight parts, each focusing on various aspects of advanced Capsule 

Network (CapsNet) models for detecting and classifying heel bone diseases. 

 

Part 1, Introduction, provides an overview of heel bone diseases like heel spur and 

severe disease, emphasizing the diagnosing challenges faced with these conditions. It 

points out how AI-based models, especially CapsNets, can improve detection and 

classification effectiveness. The thesis also outlined the research aims, highlighted the 

critical questions to address, and contributed to this dissertation. 

 

Part 2, Theoretical Background, covers essential information connected with this 

study. This section includes such subtopics as the history of heel bone diseases, why 

artificial intelligence methods have become popular in their treatment, supervised and 

unsupervised learning notions, neural network topologies, accuracy criteria employed 
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in ML, and other concepts crucial to our understanding of DL like CNNs and factors 

leading to the creation of CapsNets. 

 

Part 3, Capsule Networks: Concept and Key Components, explains how CapsNets can 

be used in medical image analysis by discussing their appearance and work. It looks 

at the difficulties faced when using CapsNets with complex datasets and new 

developments that have improved their efficiency in medical imaging tasks. 

 

Part 4, the methodology, explains how a new dataset for heel disease was created and 

examined. The data collection process, annotation, and preprocessing procedures were 

described. This section presents the CapsNet model and discusses the improved 

HeCapsNet and MedCapsNet models used to check performance against the Heel 

disease dataset. 

 

Part 5 provides the implementation and results of the baseline CapsNet model on the 

heel dataset. Architectural improvements and the inclusion of the You Only Look 

Once (YOLO) framework for automated heel region identification are some of the 

features that define this advanced convolutional capsule network, HeCapsNet, 

developed for detecting and classifying heel abnormalities. Furthermore, 

MedCapsNet, which is a hybrid model combining DenseNet201 with Capsule 

Networks, is introduced to address feature extraction and classification issues. It is 

then applied to additional medical datasets such as Breast BreaKHis v1, HAM10000 

skin cancer, and Jun Cheng Brain MRI datasets. 

 

Part 6 examines the strengths and contributions of HeCapsNet and MedCapsNet in 

medical image analysis. This section highlights the novelty of the proposed models, 

discusses their limitations, and offers recommendations for improvement. 

 

Part 7, Conclusion, summarizes the main results and highlights the relevance of 

HeCapsNet and MedCapsNet in AI-based medical imaging. It also applies possibilities 

for further investigations, such as increasing data sets, multimodal imaging, and 

expanding the models to accommodate other medical uses. Moreover, it is provided 
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that several scholars are currently involved in the improvement of CapsNet 

architecture by modifying it for better performance. 

 

1.1. PROBLEM STATEMENT 

 

The conditions of heel spurs and Sever’s disease disable the mobility and quality of 

life of the affected person. Orthopedic physicians are the ones who are qualified to 

accurately diagnose these conditions and treat them using lateral X-rays of the foot. In 

places lacking such doctors, the typical clinical examination usually takes a long time 

and is susceptible to error, which results in late and wrong treatment. Though there has 

been some success in AI in recent times, particularly in deep learning, the current AI 

techniques like CNNs or CapsNets are struggling to detect and classify such diseases 

from medical images properly. 

 

Despite the potential demonstrated by recent encouraging advances in AI and medical 

image analysis toward contribution to medical diagnostic practice, the development of 

tailor-made datasets and better models specific to heel bone diseases remain entirely 

untouched. Using the original CapsNet network, the results showed an inability to 

achieve the required degree of accuracy for reliable diagnosis. Therefore, it is essential 

to create more accurate and efficient models for detecting and classifying heel bone 

diseases. The primary aim of this development is to enhance patient outcomes and 

minimize the time lost in diagnosis. 

 

This work aims to fill in the gap by providing a new set of lateral foot X-ray images 

and developing two new enhanced CapsNet models named HeCapsNet and 

MedCapsNet. These models shall enable more accurate and timely diagnoses, 

allowing for better patient care through early intervention and better treatment 

strategies for patients with heel bone diseases. 

 

1.2. RESEARCH OBJECTIVES 

 

This thesis aims to overcome the difficulties in diagnosing diseases such as heel spurs 

and Sever's disease in heel bones by developing advanced AI-based models that use 
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Capsule Networks and hybrid architectures like MedCapsNet, including 

DenseNet201, for better extraction of features. A novel dataset of lateral foot X-ray 

images categorized and annotated by medical professionals will be created to address 

the lack of a publicly available dataset. At the same time, data quality has been 

improved using preprocessing techniques such as ROI cropping, resizing, and 

balancing. The study investigates methods to improve diagnostic accuracy without 

relying on data augmentation using enhanced models such as HeCapsNet and 

MedCapsNet with more convolutional layers, dropout mechanisms, and "he_normal" 

initializers. These models have also been tested on other medical datasets, including 

brain MRI and skin cancer, ensuring their versatility and robustness relative to current 

state-of-the-art architectures on the heel dataset. Moreover, for effective analysis 

purposes, these algorithms can include object detection schemes to automate ROI 

detection, such as YOLOv8. This research seeks to design a complete decision support 

system for automated, accurate diagnosis of heel diseases, particularly for areas with 

limited access to experts, thus bridging gaps in AI-based medical imaging diagnostics 

that exist today. 

 

1.3.  RESEARCH QUESTIONS 

 

The following research questions are formulated to assist the undertaken study in 

resolving the existing challenges in the detection and classification of heel bone 

diseases by means of AI models. These queries delve into the role of advanced AI 

techniques such as CapsNets in enhancing the accuracy and efficiency of diagnosis in 

medical imaging. The investigation is also aimed at creating a new dataset and 

conducting performance evaluation of novel AI models in order to be able to more 

effectively assist towards the fight against heel and other diseases. The questions posed 

are meant to find out how the automation of feature extraction, classification, and 

detection of diseases could be accomplished better by means of the suggested models: 

 

How can lateral foot X-ray images arranged into a dataset by qualified professionals 

help enhance the performance of AI models in laterally inverted foot imaging? 
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What improvements can be made to AI-based models so that heel bone diseases 

such as heel spurs and severe diseases can be accurately detected and 

classified? 

What improvements in performance of the proposed models over the state-of-the-

art models, and how do they cope with medical image datasets? 

 

1.4. RESEARCH CONTRIBUTIONS  

 

The following contributions summarize the key advancements made through this 

study. By addressing existing gaps in AI-based detection and classification of heel 

bone diseases, these contributions aim to enhance both the dataset availability and the 

performance of AI models in medical diagnostics. The study introduces novel models 

and methodologies that significantly improve the accuracy and efficiency of disease 

detection, particularly in medical imaging. These contributions are outlined below: 

 

• Novel Dataset Creation: Both studies contribute to the medical field by creating 

a unique dataset of 3,956 lateral X-ray images, addressing the lack of sufficient 

labeled data for diagnosing heel diseases such as heel spurs and Sever’s 

disease. This dataset was annotated by expert orthopedists, providing a solid 

foundation for AI-based disease detection models. 

• Development of Enhanced Capsule Network Models: 

• HeCapsNet: The first model introduced is an advanced CapsNet that 

targets heel bone diseases. This model overcomes the limitations of the 

original CapsNet architecture regarding feature extraction by including 

more convolutional layers, utilizing he_normal kernel initializer for better 

fitting in medical images, which resulted in 97.29% accuracy for balanced 

data, 94.19% for imbalanced data and an AUC of 98.69%. 

• MedCapsNet: The second model introduced was a hybrid model that 

combines DenseNet201 and CapsNet. This model provides detection and 

classification of heel disease and proves adaptable to datasets such as 

breast cancer, brain MRI, and skin cancer, with an accuracy of 96.38% for 

heel disease and 98.40% for breast cancer datasets.   
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Automation of system: Both models aim to automate the detection of heel diseases by 

providing a decision support system that makes X-ray images more accessible and 

faster to analyze. These systems are particularly valuable in regions where access to 

orthopedic specialists may be limited and offer a more scalable approach to medical 

diagnosis. 

Evaluation of performance: The models have been thoroughly evaluated on both 

simple and complex medical datasets, tested against other cutting-edge AI models, and 

found to outperform them in all factors. Many studies show the developed models can 

work on complicated medical images faster than conventional approaches. 
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PART 2 

 

THEORETICAL BACKGROUND 

 

2.1. INTRODUCTION OF HEEL BONE DISEASES AND MOTIVATION TO 

AI-BASED DETECTION 

 

Conditions cause heel bones such as Sever's disease and heel spurs have been 

demonstrated to affect patients' quality of life and daily stress levels. Specifically, heel 

spurs, as depicted in Figure 2.1, are located just below the calcaneus. Such heel spurs 

are generally a result of excessive mechanical stress on the plantar fascia, a condition 

often associated with plantar fasciitis. The combined effect of these factors is the 

manifestation of discomfort, specifically at the plantar surface of the foot. This 

condition has been observed in 15% to 20% of the population, with a higher prevalence 

among runners. In some cases, surgical intervention is necessary when medication fails 

to address heel spurs in the heel bone [13,14]. 

 

 

Figure 2.1. Heel spure [13]. 
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Heel spurs have been reported in several subsets of populations with the ugliest 

percentage rates being 11.0% and the highest being 55.1%. An individual can evolve 

with both plantar and dorsal heel spur and even have them in both of their heels. As 

heel spurs develop over an individual’s lifetime, most of them are painless and remain 

unnoticed until people visit health care centers complaining of heel aches. Most of the 

heel spur research done by scholars has focused on the condition on one foot, with few 

attempts having been made to the two footed condition [15].  

 

In the other part, they talked about a condition called Sever’s disease that has been 

discussed in the images 2.2 and 2.3, the medical condition which carries the Sever’s 

name was first noted in 1912 by an orthopedic doctor James Warren Severe. People 

between the ages of 11-15 are said to be highly affected by calcaneal apophysitis, 

which is in simpler terms called Sever’s disease. These are direct results to excessive 

strain applied to the body so sort of high impact physical activities or a period a growth 

spurts. This directly involves an irritated region which is found in the heel region of 

the foot. 

 

 

Figure 2.2. Sever disease [16]. 
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Figure 2.3. Sever in X-ray [16]. 

 

The heel hurts if one has a medical condition of a significant nature and the heel pain 

increases when someone walks, jogs or skips. The heel pain is located at the back and 

the bottom of the heel which is above the calcaneal apophysis. If the pain is more 

severe, it tends to restrict the capacity of any person to physically carry out any activity 

causing them to limp. 

 

The patient's heel does not appear to exhibit any remarkable findings, and there are no 

indications of local disease, such as edema or redness. A preliminary diagnosis can be 

made via a physical examination that involves palpating the calcaneus to identify 

discomfort when applying medial-lateral compression to the area of the heel bone. This 

method, known as the "squeeze test," is a valuable diagnostic tool but generally 

physicians ask patients to do X-ray radiograph imaging for more specific diagnoses. 

Consequently, the diagnosis of the higher form of the disease is applied clinically. 

Studies have demonstrated that heel pain is present in approximately 8.2% of children 

seeking medical attention [13,14,16]. 

 

Traditionally, physicians have diagnosed such conditions by taking X-rays of the foot. 

However, there is still a demand for AI-based solutions that provide accurate and rapid 

diagnoses [13,14]. The conventional approach to diagnostics entails a medical 

professional evaluating the disease through an assembly of academic and clinical 

knowledge. This is also the case for medical diseases that require diagnostic imaging. 

In these cases, the calculated interpretation performed by the physician is overly reliant 
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on personal insight, which makes the technique time-consuming and less reliable 

[17,18]. 

 

The recent rapid growth of AI technologies in many sectors including healthcare 

provides opportunities to improve accuracy and efficiency of results including 

accurate detection and classification of diseases. With the help of AI systems, a large 

amount of data can be analyzed and patterns that may be difficult for people to see are 

able to be fully explored and thus speeding up the time taken and improving the 

accuracy of the diagnosis. Speed and accuracy undergoing automation and analysis of 

complex medical images, including X-rays, MRIs, and CT scans, greatly improves the 

outcomes of such procedures [19]. 

 

The training of AI models offers prospective means of enhancing efficiency with 

respect to the identification and treatment of diseases [20]. Approaches that utilize AI 

can assist specialists provided in reverse or rural medical clinics where a physician 

professional is not present [21]. Even when there is a delay in transferring the patient 

to that location the wellbeing of the patient will still be improved with the help of AI 

as it saves costs and improves patient outcome [21]. Additionally, AI provides a timely 

and precise diagnosis of the disease which significantly reduces the expense in the 

health care system along with improving the efficiency with which the diseases are 

classified and diagnosed [21]. 

 

There is a space which still exists even with multiple AI-based studies focused on 

disease detection and classification, that systems developed remain incapable of 

detecting heel bone diseases. An appropriate model and a corresponding dataset have 

been missing as well, to further supplement this space in the literature. In response to 

these concerns, the current research seeks to fill this gap by proposing advanced 

CapsNet models for the accurate detection and classification of heel bone conditions. 

The dataset of lateral foot X-ray images were collected from a medical institution, and 

an expert orthopedist and traumatologist labeled and classified the dataset. The 

constellation of the original model of CapsNet, was first introduced as a newer model 

taking into consideration this dataset. The outcome was not all that satisfying, the first 
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model that was presented was not all that enhanced and so this point was the place that 

we started thinking about developing enhanced models. 

 

2.2. OVERVIEW OF MACHINE LEARNING AND NEURAL NETWORKS 

 

2.2.1. Introduction to Machine Learning (ML) 

 

With the help of data, ML, which is a subset of AI, strives to construct intelligent 

devices such as computers and more, that are able to automatically make optimizations 

without the need for manual programming. It aims to provide efficient automation in 

recognizing and predicting patterns as well as performing decision making. Over time, 

computing power and access to immense datasets has experienced excessive growth 

and so have ML methods, which gives us an insight that every day new technologies 

aid in advancing the methods even more [22]. 

 

The core activity of ML is to construct a model on a specified dataset and use that 

model to make some decision on an unseen data instance. The model is a work in 

progress and undergoes fine-tuning based on its accuracy. These algorithms include 

models that are prerequisite to classify whether their input is an image, text or number. 

More advanced models however take the input and link it to the correct output 

regardless of the data type. The uses of ML are endless, and from various domains 

including medicine, banking and self-driving cars. In medicine, ML models are used 

in many areas such as medical X-rays, diagnostics and in the development of new 

drugs [23]. 

 

The domain of machine learning can be vast in its two main types. It can be subdivided 

into four main categories: 

 

• Supervised Learning: In this case, the data is labeled and so each training 

sample has an output specified with it. Now the model makes 

generalizations based on its predictions of the label for data never seen 

before. For example, one of the tasks for unsupervised models is image 

classification- determining if an email is spam or not is a common image 
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classification use case as Figure 2.4. shows the paradigm of supervised 

learning. Something similar can be said for supervised tasks that take 

regression, the main goal is still prediction. This technique is popular in 

predicting the likelihood of loan repayment in banking and identifying 

disease markers in medicine [24,25].  

 

 

Figure 2.4. Paradigm of supervised learning. 

 

Unsupervised Learning: As opposed to supervised learning, unsupervised learning is 

trained with unlabeled data, with the aim of finding unseen structures in the data as the 

paradigm of unsupervised learning is illustrated in Figure 2.5. Clustering algorithms 

such as k-means and Hierarchical clustering are developed to group data points which 

have relevant traits in common. Its application unfolding during market segmentation 

is more concerned with grouping of customers by purchase patterns, and in genomics 

with the search for unknown molecular disease subtypes with genetic data. Examples 

of applications of unsupervised learning today are as follows: clustering, density 

estimation, feature extraction, dimensionality reduction, discovery of association 

rules, and anomaly detection. [24,25]. 
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Figure 2.5. Paradigm of unsupervised learning. 

  

The variety of algorithms like support vector machines (SVM), decision trees, and 

ANN used to be the focus of machine learning [26]. The rapid emergence of, which is 

a subset of machine learning, but more sophisticated, more advanced models are 

capable of handling complex, including robotics, video games, natural language 

processing and computer vision [27]. Medical images have also been analyzed fairly 

well using deep learning models. Among them are various imaging techniques 

including ultrasound (US), X-ray, computed tomography (CT) scans, magnetic 

resonance imaging (MRI) scans, and positron emission tomography (PET) scans, 

retinal photography, whole slide images (WSI) obtained during histopathology and 

cytopathology as well as images from endoscopes and dermoscopes [28]. CNNs and 

CapsNets are common examples of deep learning tools [29]. 

 

2.2.2. Overview of Neural Networks and Key Components 

 

Neural networks were introduced by McCulloch and Pitts in the early 1940s, and they 

made a significant development in relation to the workings of the human brain [30]. 

Although, they rose to prominence with the advancement of computing in the late 20th 

century. Neural Networks were described as computational models, made after 

inspiration from the Human brain in 1999 by Abdi et al. biological neurons are 

replaced with interconnected units which form these networks. Neural networks are 

designed to detect associations, comprehend them, and then use the resultant 

knowledge to anticipate situations as per the defined requirements [31].  
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Now a days, there has been growth in the application of deep learning strategies and 

AI, which is a clear advancement of technology developed on the foundation of neural 

networks, accomplished in distinct areas such as pattern detection, photo recognition, 

general language understanding and treatment selections. 

 

2.2.2.1. Neural Network Structure 

 

Neural network systems comprise networks of cells called neurons, which form 

interconnected structures. Such cells discover patterns within the input data and work 

towards training them using complex computations. In general, three primary types of 

layers are what compose the structural organization of the neural networks, they 

include: input layer, hidden layers and output layer. Each layer processes the 

information received from the previous layer and sends it to the next one. It is 

explained below as to what the function of these layers is: 

 

Input Layer: 

 

In a neural network, the first layer is the input layer. Every neuron in this layer 

corresponds to a single feature or attribute within the data set. For example, in image 

processing, the input layer would encompass the pixel values of an image. The input 

layer establishes a parameter for entering the network, but it does not carry out any 

calculations; it only propagates the data to the next hidden layers [32]. Figure 2.1 

illustrates the neural network with layers. 

 

Hidden Layers: 

 

Computation takes place in layers between the input and output layers and is termed 

as the hidden layers. The neurons in these layers receive signals from the input layer, 

perform some convolution and calculate several steps of the function in a complex 

[32,33] process. The existence of multiple hidden layers is a characteristic feature of a 

neural network which enables the model to learn more advanced features and 

representations of the data [34]. These layer depth highly influence the network’s 
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power, that is its ability to learn complex relationships in data. Parts of a neural 

network listed mark a graph of Figure 2.8. 

 

Output Layer: 

 

The last layer, which is the output layer is the layer which gives the final results or 

even the prediction classes and is based on the input data that was already transformed, 

which was processed by the hidden layers. The quantity of neurons contained in the 

output layer is a function of the number of classes which the network was targeted for 

the tasks [33]. For example, the output layer for a classification task where three 

classes have been defined would comprise three neurons. The layers of the neural 

network are shown in Figure 2.6. 

 

 

Figure 2.6. Neural network structure [32]. 

 

2.2.2.2. Neural Network Key Components (Neurons, Weights, Biases, Activation 

and Loss Functions)  

 
In order to understand how neural networks work, it is critical to understand the basic 

building blocks that allow them to receive inputs which in turn helps them make 

decisions, classify information or forecast events. These are components are 

represented as follows: 
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Neurons: 

 

A neuron is a biological neural representation and simulation unit that constitutes an 

ANN [35]. For every input aggregate, one or more signals are given to the neuron 

which processes each of them by multiplying with values called weights that influence 

the degree of the connections. The internal output of a neuron is also denoted as the 

weight. Such output is sent to subsequent layers of dots where the sigmoid function 

determines the transfer output along with the weighted connections (as illustrated in 

Figure 2.7) to construct an interactive or active neuro. The transfer function of choice 

converts the weighted input into the output for the given neuron. The authors describe 

how information in the network is transmitted using these connection weights. 

 

 

Figure 2.7. Artificial neuron model adapted from [35]. 

 

Weights: 

 

Neural networks employ weights as the tunable parameters that establish the effect of 

the neuron’s input towards its output. The operation at the output of a neuron is a 

weighted sum of the weighted inputs. As illustrated in Figure 2.7 w1, w2 and w3 are 

the weights assigned to the inputs x1, x2, and x3 respectively. These weights 

essentially determine the importance of each of the inputs in the calculation of the 

neuron’s output signal. To be specific, the first step occurs in the training mode, where 

modeling employs backpropagation and other methods to adjust the weights of a 

neuron to minimize the difference between the desired and actual outputs. For a given 

input x, its weight interacts with its input to determine whether the particular input has 
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a significant influence on the output of the neuron. Weights are quite instrumental in 

pattern recognition from the data since they determine how much importance is 

attached to each of the input variables in the prediction and what associations have 

been developed by the network [35]. 

 

Biases: 

 

The bias in neural networks aids the model in identifying intricate trends and 

correlations within the data. Bias is the constant added to the dot-product of the 

weights and inputs prior to the activation function. This enables the activation function 

to move horizontally, which expands the location of the decision boundary. This shift 

enables the network to modify its output without being compelled to originate from 

the same point. Each neuron possesses its own bias, which determines their firing 

status according to the input signal and bias level. The inclusion of bias during the 

computation of neural nets enhances their performance and adaptability for learning 

during training resulting in better learning outcomes [36,37]. 

 

Activation Functions: 

 

ANNs utilize the weighted sum approach in which a neuron’s inputs along with 

weights and biases are estimated via mathematical functions known as activation 

functions. This is what encodes a neuron’s response to the input and hence the output 

that the network must produce. Among others, the most common where the sum of the 

inputs is transformed to a value between zero and one, is the sigmoidal function, 

enabling the functional output of the neuron to lie between 0 and 1. This transfer 

function also helps to introduce a non-linear element to the network, allowing it to 

effectively model complex patterns in the data as demonstrated in Figure 5. In a neural 

network architecture, this operating property is achieved as a neural network comprises 

many units termed interneurons which process in parallel each input, modifying it 

linearly and subsequently altering the processed input through an activation function. 

If there were no activation functions present, it would simply translate the value of the 

inputs without sufficiently enabling generalization which is necessary for a neural 

network [35,38,39]. The role of activation functions can be summarized as follows: 
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• Introduce non-linearity: To satisfy additional conditions, incorporation of more 

general activation functions into the basic form enables the model to learn to 

approximate more complex non-linear correspondence between the input and 

the output. 

Increase the capacity of the model: Non-linear activation functions allow the model 

to learn more complex patterns and relationships in the data. 

Improve generalization: By introducing non-linearity, activation functions help the 

model to generalize better with new, unseen data. 

 

There are diverse kinds of activation functions, each of them has its own pros and cons. 

Most of the time, activation functions are: 

 

Sigmoid:  

 

The mapping behind the sigmoid function is appropriate in the case of binary 

classification problems since it helps to squish the input into an output that is between 

0 and 1. The specific formulation to the sigmoid function is given as below: 

 

𝑓(𝑥) = (
1

1 + 𝑒−𝑥
)                                                                                                             (2.1)  

 

ReLU (Rectified Linear Unit):  

 

The ReLU function applies a non-linear transformation on output where negative 

values become all zeros and the positive values become one value, which also makes 

it easy to compute and frequently employed [38]. The ReLU activation is given below: 

 

𝑓(𝑥) = max(0, 𝑥) = {
𝑥𝑖, 𝑖𝑓 𝑥𝑖  𝑥 ≥ 0  
0, 𝑖𝑓 𝑥𝑖    < 0

                                                                 (2.2) 
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SoftMax:  

 

The SoftMax function is suitable for multi-class problems since it maps the input to a 

probability vector across the class which is stochastic as well [38]. The SoftMax 

function is given as below: 

 

𝑓(𝑥𝑖) =    
exp(𝑥𝑖)

∑ exp  (𝑥𝑗)
                                                                                                         (2.3) 

 

Loss Functions: 

 

A loss function is a crucial aspect of machine learning models. It is the most interesting 

loss function in regression analysis, allowing to gauge the effectiveness of the model, 

as well as setting the bar for minimizing the difference between estimated and real-

world results. In machine learning, loss functions are vital for optimizing a model, 

since they allow the model weights to be learnt at each training iteration in a way that 

not only makes the model better but also predicts better outcomes. It is very important 

for the loss function to be set up correctly, since otherwise, its misuse must lead to the 

poorer quality of the system being developed [40]. 

 

2.2.3. Overfitting and Underfitting 

 

Unquestionably, overfitting and underfitting are crucial problems which arise in 

machine learning and deep learning, due to their strong effect on model performance 

and their ability to generalize. The most common situation is when a model suffers 

from underfitting or overfitting: these terms relate to the degree of correlation a model 

has between the training and test or validation datasets. Any task of the machine 

learning modeling is to solve the problem of good generalization on unseen data. This 

implies that the model should not just overfit the training data set or just underfit and 

learn nothing useful from it. Overfitting and underfitting are core issues that have to 

be resolved in order to achieve this equilibrium [41,42,43]. 
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2.2.3.1. Overfitting 

 

Overfitting occurs when a model focuses on the noise and details of the data rather 

than just the patterns. The performance of the model is perfect after training but fails 

on testing. Being able to fit several parameters causes deep learning models to always 

overfit. Such models are so complex that they no longer learn; they just find and 

remember the data. This causes excessive training and test errors. Overfitting occurs 

in cases where the model is either too complex, the training data is too small, or too 

much noise is present in the training data. An example of overfitting is illustrated in 

Figure 2.8. The model is too tightly fitted to the training data which causes it to pick 

the noise instead of the actual patterns. There are various strategies to cope with 

overfitting; weight decay, dropout, and batch normalization, as well as data 

augmentation are some. These include where additional constraints or variations which 

improve generalization are added [41,42,43]. 

 

 

Figure 2.8. Example of overfitting adapted from [42]. 

 

2.2.3.2. Underfitting 

 

The inverse of fitting is the underfitting, the situation whereby a fitting is too simple 

relative to what is needed to explain the relevant information within the data. When 

the model lacks sufficient capacity or complexity to grasp the underlying structure of 

the data, it can also lead to high errors during training and test of the model. It is quite 

an easy notion to understand how and why underfitting may occur. This is use models 
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that have insufficient layers or number of parameters or they haven’t been trained 

sufficiently or simply the wrong model has been selected for the data given. 

Understanding the difference between overfitting and underfitting is important in 

understanding AI. Overfitting is when a model knows the data too well or ‘memorizes’ 

it; simply put the model learns too much to be useful in the analyzing of new data. 

What this implies is a situation of high bias but low variance. What figure 2.9 presents 

is the case of underfitting and its ‘classic’ symptoms. It demonstrates the consequences 

of the over-simplistic model, which failed to consider factors that are not too 

insignificant in the data. As a result, the model accuracy turns out to be low on both 

the test and training datasets. 

 

There are a few measures we can take in countering an underfit model. For example, 

model complexity can be increased, more time can be devoted to the training, or a 

better model can be chosen for the complexity of the task [41,42,43]. 

 

 

Figure 2.9. Underfitting example. adapted from [42]. 

 

2.2.4. Evaluation Performance of Machine Learning Models 

 

In machine learning, particularly in classification tasks involving datasets with target 

labels, confusion matrices are a standard way of determining the effectiveness of 

trained models. These matrices help to see the extent to which a model can correctly 

classify the positive and negative cases in a given test dataset. Table 2.1 represents the 

Confusion matrix overview.  
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Table 2.1. Confusion matrix overview. 

Actual Positive Actual Negative 

True Positive False Positive 

False Negative True Negative 

 

The confusion matrix provides a detailed breakdown of a model's predictions: 

 

• True Positive (TP): Correctly predicted positive instances. 

True Negative (TN): Correctly predicted negative instances. 

False Positive (FP): Incorrectly predicted as positive when the actual class is 

negative. 

False Negative (FN): Incorrectly predicted as negative when the actual class is 

positive. 

 

To measure the efficiency of classification models, various metrics such as precision, 

recall, F1-score and accuracy are common. Such constraints assist in evaluating the 

performance of a model in predicting the positive and negative cases. Below is a 

detailed explanation of these criteria: 

 

• Precision (P): Precision measures the proportion of true positive predictions 

among all positive predictions made by the model. 

P =
TP

TP + FP
 

Recall (R): Recall calculates the proportion of actual positives correctly predicted by 

the model. 

R =
TP

TP + FN
 

 F1-Score: The F1-Score combines precision and recall providing a balanced measure 

of performance. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ⋅
P ⋅ R

P + R
 

Accuracy (A): Accuracy measures the overall correctness of the model’s predictions.  

A =
TP + TN

TP + TN + FP + FN
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2.3. OVERVIEW OF DEEP LEARNING 

 

2.3.1. Introduction to Deep Learning (DL) 

 

Deep learning, an advanced subset of machine learning, is transforming the field of AI 

through its ability to enable computers to train on and learn from large data sets in 

ways that emulate human perception [44]. The defining characteristic of deep learning 

is its ability to automatically extract features from data without the need for manual 

intervention. This capability enables systems to learn complex patterns, which 

differentiates it from machine learning, which is essentially multi-layer neural 

networks. This technique has yielded enhanced capabilities for detecting intricate 

representations in images and processing natural language [45,46,47]. 

 

AI encompasses ML and DL concepts, as depicted in Figure 2.10. The concept of DL 

is a subdivision of ML which empowers its ideas [48]. In classical approaches to 

machine learning, algorithms utilize manual feature extraction frequently and more 

simple neural networks are limited on layers. However, with deep learning, the 

neurons, activation functions, loss functions, and optimization methods used in the 

model enable it to learn from the data.  

 

 

Figure 2.10. Family of AI adapted from [41].  
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It’s worth noting that deep learning is even more effective as it incorporates a 

multilayered neural network structure allowing the model to detect intricate patterns 

in unprocessed information [41]. Deeper structures improve performance especially 

when large amounts of data are involved and motivate more recent developments in 

many areas, for example image processing, natural language understanding, 

bioinformatics, control systems, and medical information processing, etc. On the other 

hand, deep learning is distinguished from traditional machine learning ML techniques 

in that it can do the job of automatically learning sets of features that describe the tasks 

at hand. With DL such a complication is avoided as learning and classification can 

take place in a single operation. Figure 2.11. The differences between ML and DL as 

levels of processing boxes are portrayed in the map [41].  

 

 

Figure 2.11. Differences between machine learning and deep learning steps atapted 

from [41]. 

 

In deep learning, multiple models of deep learning have been developed with the aim 

of solving different types of applications and tasks. These architectures include CNNs 

for image-related tasks, recurrent neural networks (RNNs) for sequential data, long 

short-term memory networks (LSTMs) for time series and language processing etc. 

[41]. However, in light of the fact that our research is concerned with the processing 

of images, we will be concentrating more on the explanation of CNNs as they are 

defined and used in the present work.  
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2.3.2. Convolutional Neural Networks (CNNs) 

 

CNNs are a class of deep learning models which are well suited for applications 

involving data that can be represented in a matrix form, for example images [49]. The 

emergence of a follow-up, which now appears to be misleadingly termed, a 

convolutional neural network, seems to be genetically related to the functioning of the 

neurons of visual cortex of animals [41]. CNNs were initially introduced to the world 

of science by Fukushima in 1998 [50] and gradually, these have found applications in 

a gamut of fields such as image and speech recognition, natural language processing 

(NLP), and many more [41,51,52]. 

 

The architecture of a CNN consists of multi-layered structures that serve the role of 

learning and extracting features from the data in a hierarchical manner. This includes 

convolutional layers, pooling layers, as well as fully connected (FC) layers as depicted 

in Figure 2.12. [41,49,50]. Convolutional layers are vital in feature extraction. These 

layers utilize several filters, or kernels, that are moved over the input data in order to 

identify spatial patterns, thus, enabling the extraction of local relationships within the 

data [47,49,50]. These operations yield a set of feature maps depicting the directions 

in which various patterns found in the input data are oriented [47]. 

 

A fundamental advantage of the CNNs is their use of local connections and shared 

weights [41,47]. So, any filter existing within a convolutional layer can be used for 

many differing locations of the input, hence making it possible for the CNNs to 

recognize features irrespective of their location [41,47]. This property of being 

translation invariant, together with the fact that parameters are shared, allows for 

efficient pattern recognition with less memory and less computation, unlike the 

standard FC networks [41]. 

 

The structure of the CNNs is hierarchical and adaptive which facilitates the extraction 

of both low-level features and high-level features and is one of the reasons as to why 

they have become a core technology in the field of computer vision. Their validity has 

been proved across multiple areas including, but not limited to, face recognition 

systems, autonomous vehicles, medical imaging, etc. [41,52]. 
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Figure 2.12. CNN layers adapted from [41]. 

 

2.3.2.1. Convolutional Layer 

 

The typical structure of CNN incorporates a convolutional layer which performs the 

important role of feature extraction by means of applying trainable filters or kernels 

across the spatial dimensions of the input data [49,50,53]. This layer is preceded by a 

sequence of linear and non-linear operations wherein said layer begins with a 

convolution operation that takes the inner product of the input and filter values 

resulting in the production of a 2D activation map [50,54]. The function of the 

convolutional layer is illustrated in Figure 2.13. 

 

Various regions of the input are processed by a convolutional filter via a sliding 

window in a specified stride and padding which leads to the formation of localized 

feature representations which are also referred to as receptive fields as a result of the 

convolution process [54,55]. Such filters are generally intended for targeting particular 

features or edges within the input at specific locations so that the CNN can later 

identify such features in the images or other forms of structured data [49,50,56]. 
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Figure 2.13. Convolutional layer mechanism adapted from [53]. 

  

The parameters of the convolutional layer include hyperparameters such as filter depth, 

stride and padding, which modify the size and the number of output feature maps [55]. 

Each convolutional layer is often followed by an activation function, e.g., ReLU, 

which adds nonlinearities and permits the network to discover complex correlations in 

the data [54]. Due to the prominent performing hierarchical decompositions of feature 

representations associated with the repetitive use of convolution and activation 

functions, CNNs are superior to pattern recognition [50,53,55]. The following 

definitions for each component from CNNs: Filters (or kernels), Strides, Padding and 

feature map generation permeates how a convolutional layer works and what output it 

produces. 

 

Filters/Kernels 

 

A kernel in CNN is a set of discrete values representing a weight which is small on the 

grid and is used for feature extraction [41,49]. Initially, the weights located within the 

kernel are assigned randomly. However, as the network trains, these values are altered 

as the network learns what patterns or features are critical in the input data [41]. 

 

The operation of the kernel involves moving across the input tensor which is a 

structured number array and calculates the scalar between its values and corresponding 
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values in the input. Such processes produce output in the form of the 2D activation 

map which indicates areas where the kernel was able to feature find specific elements 

within the data [49,55]. Kernels are small usually in spatial dimensions, but their depth 

suits the input data which allows the kernels to find both shallow and deep level 

features in the layers [55]. The kernel with a dimension of [3 × 3] is depicted in Figure 

2.14 as it moves on top of the input tensor. 

 

 

Figure 2.14. Kernel size of 3 × 3 adapted from [49]. 

  

Strides  

 

The stride indicates the advancement or length of a single step performed by the filter 

while accessing the input data. A stride of 1 means the filter moves a single pixel of 

maximum intensity as depicted in Figure 2.16 from (a) to (b) [49]. In a stride of 2, a 

two-pixel intensity is advanced at a particular point. A big stride increases the output 

feature map’s size properties but decreases its detail level and lowers the processing 

requirements. Thus, it seems straight forward to determine the optimum value of 

computational efficiency and detail by selecting an appropriate stride. 
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Padding 

 

Padding is the operation of extending input data with additional rows and columns of 

pixels around the border before filtering. This ensures that the spatial dimensions in 

the resulting feature map are equal to or only slightly less than those of the input 

depending on the type of the chosen padding. The practice of convolution making 

addition of zeros around edges which is known as zero padding is the finest technique 

for preserving information owing edge focus. If padding is not done the filters tend to 

compress the spatial dimensions which leads to a tremendous decrease in the size of 

the feature map after several layers [49,55]. Figure 2.15 illustrates the zero padding 

around the original input pixels. 

 

 

Figure 2.15. A zero padding around the original input pixels adapted From [49]. 

  

Feature Map Generation 

 

The responses delivered by every single filter throughout its pass over the Input are 

represented visually in what is referred to as a Feature Map, which is produced after a 

convolution layer. The results of kernel scanning for the input that generates feature 

maps are observable in Figure 2.14. 

 

2.3.2.2. Pooling Layer 

 

A pooling layer is an important concept in the architectural design of CNNs since they 

help to decrease the number of spatial dimensions of the feature maps that are produced 
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by the convolutional layers. Having so many parameters and computations in the 

network is other no. less demanding as it economizes the necessary resources 

[49,50,54,55]. 

 

A pooling layer gathers information from neighboring neurons in proximity and 

coverage of an area and compresses the area’s outputs into one number. Max Pooling 

that takes the maximum value plus average pooling are common pooling functions. It 

was also noted that pooling layers allow the model to work with small variations in the 

input data and displacement of features. This eliminates overfitting by making it easier 

to detect common features thus decreasing the complexity of the model. Figure 2.16. 

shows the Pooling Layer (Maxpooling). 

 

It was suggested that most pooling operations involve a [2 × 2] kernel size happening 

at a stride of two, thereby maintaining the depth of the input and at the same time 

shrinking the activation map by 25% [54,55]. However, there are also limitations in 

pooling, especially spatial information, hence trade of effective rate and level of details 

available [41,56]. 

 

 

Figure 2.16. Pooling layer (Max Pooling) adapted From [56] 

  

2.3.2.3. Dropout Layer 

 

Dropout regularization is a method of regularization in a neural network which 

consists in withholding every random group of neurons – set of fractions of neurons to 

be ignored or turned off when training the graph. In Figure 2.17 (a) the standard neural 

network is displayed, while the (b) shows after applying the dropout. This process 

helps in overfitting by less dependence of the network on the particular sets of neurons 
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and helps in the learning of more common and less sensitive features instead [57]. The 

process referred to as dropout, the removal of both hidden and visible units along with 

their connections, effortlessly creates an ensemble of different network topologies. 

This step also helps towards the generalization of the network, addressing a key point 

of machine learning [57]. To strengthen the model along the neural network at each 

epoch the model drops as a group increasing its stresses multi paths within it’s 

extremely structured unit [51,57]. 

 

 

Figure 2.17. (a) is a standard neural network, (b) after applying the dropout adapted 

from [57]. 

  

2.3.2.4. Fully Connected Layer 

 

Fully connected layer works as a classifier which fuses or combines inputs originating 

from previous layers outputs and is usually located at the end of a CNN. For every 

neuron from the previous layer, there is a connection or link between every neuron 

from the current layer; this is what is generally referred to as the FC layer [41,50,51]. 

Similarly, the FC layer is similar to a conventional multi-layer perception (MLP) in 

that it too uses a feed-forward structure to perform activations via matrix multiplication 

followed by the addition of a bias [50,53]. 

 

As the name suggests, the last pooling or convolution layer of a neural network 

produces the feature vector which serves as the input of the FC layer, this input 
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undergoes a process termed flattening [41]. It involves taking away the spatial 

dimensionality of multi-dimensional feature maps provided by any of the previous 

layers and forming a single classification vector of one dimension containing the 

mapping [53]. Finally, what comes out of the FC layer is what gets the final touch or 

is the final output or classification of the model which is the CNN as seen in the 

discourse of [41,50]. The output generated by the FC layer constitutes the final result 

of the CNN, as depicted in Figure 2.18. 

 

 

Figure 2.18. FC layer as represented final result of CNN. Adapted from [41]. 

   

2.3.2.5. Non-Linearity (Activation Functions) 

 

Non-Linearity (Activation Functions) Neural networks, particularly CNNs, need 

nonlinear functions. They permit the model to convert the input signals into output 

signals in non-linear fashion. This is very important; or else, many processes in reality 

which are complicated cannot be modeled using linear transformations [51]. The 

nonlinear functions allow the model to learn more complex interactions and 

dependencies in the data, improving its expressiveness and capabilities to model more 

functions in general [41,51]. 

 

A nonlinear function is designed to follow the layers which have trainable weights like 

FC layers and convolutional layers – they constitute the non-linearity of the whole 

CNN architecture [41]. Non-linear functions however add more complexity for them 
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to work. They possess the special feature of being differentiable which is important in 

facilitating error back-propagation in network training [41]. 

 

The most widely used nonlinear activation functions are the sigmoid (or logistic) 

function, the hyperbolic tangent (tanh) function and the rectified linear unit (ReLU) 

[50]. The clear winner among the activation functions used in CNNs is the rectified 

linear unit (ReLU) owing to its simplicity and being very effective. ReLU enables to 

cut down all values less than zero to those which are zero; this assists in reducing the 

restrained gradient issue and enhances the speed of the training procedure [38]. 

 

2.3.2.6. Backpropagation  

 

Backpropagation is a significant training technique it allows the network to self-learn 

by changing its parameters called weights and biases so that the errors in its outputs 

are minimized [49,50]. The approach proceeds by first deriving the gradient of the loss 

function in relation to every weight in the network. It then applies those weights with 

the direction given by the calculated gradient so that the model is enhanced in many 

rounds [49]. 

 

2.3.3. Limitations of CNNs 

 

CNNs have numerous advantages; however, there are salient limitations that should 

be taken into account while implementing them. One of the major concerns is their 

applicability only in situations where a huge amount of labeled data is available. CNNs 

have millions of parameters, so a large amount of variation in data is needed to achieve 

minimum risk of overfitting. Gathering and labeling this enormous data set can be a 

daunting and expensive exercise, especially in instances of fine-grained classification 

or segmentation tasks [51]. Further, it has been noted that due to the down-sampling 

operation (pooling), CNNs lose important spatial information, as they discard 

information about an object’s precise pose and location [52]. They also have problems 

with a lack of internal rotation, therefore making it hard for them to correctly label the 

objects when they are in different orientations from those trained. Also, since CNNs 

are sensitive to even the slightest perturbations of pixels, they can easily misclassify 
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and suffer adversarial attacks. These challenges raise the areas where the use of CNNs 

poses limitations, more so in areas where spatial relations, efficiency and robustness 

matter [51,52]. 

 

But as reinforcement of learning becomes easier, there have emerged deep learning 

techniques such as CapsNets that offer promising insights to go above the traditional 

cons of CNNs, including the loss of important spatial structures between the elements 

in the hierarchy [12]. In the next part, the concept of CapsNets will be described in 

detail. 

 

2.4. CAPSULE NETWORKS: CONCEPT AND KEY COMPONENTS 

 

2.4.1. Introduction to Capsule Networks 

 

As described in 2017 by Sabour et al., CapsNet are capable architectures which can be 

handy for problems that require significant amount of spatial attention such as image 

recognition [12]. This is because they address some of the limitations that are naturally 

present in the classical neural networks. 

 

It can be viewed as a state-of-the-art neural network structural design in which multi-

dimensional spatial hierarchies in relation to the data are compiled and encoded in 

“capsules” instead of the conventional neurofunctional units that has a single output. 

In the case of CapsNet, the core concept refers to an image representation method that 

aims to overcome this limitation by treating visual information as a complex 

hierarchical structure composed of cosets. In general, the traditional neural networks 

operate on the principle that its basic functional unit is the neuron which provides 

scalar outputs. The output is a multi-dimensional vector that represents a cluster of 

neurons and the unit cell at this level is a capsule. This vector provides information 

concerning various characteristics of the given object or a component of that object 

such as its position, orientation and scale. Thus, the network can understand the 

different level of image components discrimination and image segmentation. For 

instance, the length of the capsule’s output vector will denote the probability that an 

object is present while the direction of the vector carries other spatial information [12]. 
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Capsules are considered to assist these networks, known as capsule nets or real-world 

nets, in perceiving aspects in an orderly fashion and preventing the effect of changes 

in pose, texture or any distortion. For example, in the case of object recognition tasks, 

it is not only the features that caps networks sense but also the spatial position of those 

features, hence the strain of the degree of positional accuracy is relieved. Because of 

the parts of an object were moved around, there would not be as many confusions 

caused by object misclassifications. The strength of this capability is further magnified 

with the introduction of the dynamic routing mechanism that allows the nesting of 

pods with the lower-level output sent to a higher-level pod when there is a strong 

spatial relation between them. This improves the sensibility of the network [12]. 

 

2.4.2. Capsule Network Architecture 

 

A base structure of a CapsNet proposed by Hinton Geoffrey et al. in 2017 relies on the 

developments that appeared concerning the representation of an object or an object 

part by activity vectors [12]. They employ the length of the activity vector to indicate 

the existence of the entity and the direction of the vector to indicate the parameterized 

formation of the objects. This is done to ensure that the output vectors are in the range 

of 0 and 1 which is affected by the equation which is Non-linear squash. As given 

below: 

 

𝒗𝒋 =
||𝑠𝑗||

2

1+||𝑠𝑗||
2

𝑠𝑗

||𝑠𝑗||
                                                                 (3.1) 

 

In accordance with equation 3.1, the output vector of capsule 𝒋 is denoted by 𝑣𝑗 , and 

𝒔𝒋 is its total input. Although, 𝒔𝒋 remains the same for the first one, the prediction value 

of all pillars for that case is as shown in (3.2) a weighted summation of the prediction 

vector 𝒖̂𝒋|𝒊 from the last pillar. Also note that the output of 𝑢𝑖 from the lower-level 

capsule is multiplied by the weight matrix 𝑊𝑖𝑗 and the resultant vector is the prediction 

vector 𝒖̂𝒋|𝒊. 

 

𝒔𝒋 = ∑ 𝒄𝒊𝒋𝒊   𝒖̂𝒋|𝒊, 𝒖̂𝒋|𝒊=𝑾𝒋𝒊𝒖𝒊
                                                      (3.2) 
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In the model described, the linking coefficient, referred to as 𝒄𝒊𝒋, is crucial and is 

determined by means of a dynamic routing algorithm which is undertaken in a 

recurrent manner over time. Specifically, these link factors, which evaluate the 

strength of a link between a certain lower-level capsule, 𝒊 and all higher-level capsules, 

are bound by the SoftMax function to add up to one. The probability that capsule 𝒊 will 

interconnect with capsule  𝒋, named as 𝒃𝒊𝒋,  plays an important role in establishing 

these link factors and is naturally a part of the model as expressed in the equation (3.3). 

 

𝒄𝒊𝒋 =
𝒆𝒙 𝒑(𝒃𝒊𝒋)

∑ 𝒆𝒙 𝒑(𝒃𝒊𝒌)𝒌
                                                             (3.3) 

 

The two capsules’ position and type establish the initial probability which is then 

updated with the weights during the learning phase, which is defined as the input image 

[12]. Therefore, the initial link of factor is changed to incorporate the output 𝒗𝒋 as of 

the higher-level capsule, to  𝒖̂𝒋|𝒊 be the prediction made regarding the capsule 𝒊. Each 

feature is then recognized, and parts of the object are organized into a hierarchy using 

dynamic routing., 𝒂𝒊𝒋 = 𝒗𝒋 ⋅ 𝒃 𝒖̂𝒋|𝒊  programmed in a scalar value which is later added 

to 𝒃𝒊𝒋 so that the new link factors can be computed. Dynamic routing can be seen in 

Table 2.2. 

 

The initial architecture of the capsule neural network had a Conv2D layer consisting 

of 256 filters of size [9 × 9] with a stride of 1. The output produced [20 × 20 × 256] 

was as a result of feature maps produced by the “ReLU” activation function. 

Thereafter, a primary capsule layer utilizes 256 filters which consist of a convolutional 

kernel of size [9 × 9] with a [2 × 2] stride resulting into 32 channels of 8D capsules. 

The outputs were slotted into the [6 × 6 × 32] dimensional space, where it consisted of 

32 units with each unit having an 8D output capsule. The third layer consists of a digit 

capsule layer whose neurons are FC to all the capsules present in the next layer. This 

layer has 10 capsules, one for each digit and each capsule is represented by a [16 × 1] 

vector which was obtained from the capsules obtained in the previous layer in order to 

do image classification as shown in Figure 2.19. This layer executes the function of 

determining the bias of each capsule, which is useful to indicate the likelihood of the 
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presence of the object and can be applied as the probability for the classification result 

[12]. 

 

The authors mentioned, the CapsNet model focuses on a peculiar decoder structure, 

which aims at reconstructing the digit images from the representations contained 

within the DigitCaps layer. The MNIST database has long enjoyed the position of an 

industry standard in the sphere of machine learning and consists of 70,000 scanned, 

gray-scale images of handwritten digits from 0 through 9, each one having a resolution 

of [28 × 28] pixels. This dataset is suitable for testing the capabilities of models trained 

to classify images which involve recognizing images of handwritten digits [12]. 

 

Table 2.2. Dynamic routing algorithm [12]. 

Procedure 1 Routing algorithm 

1: procedure ROUTING (𝒖̂𝒊|𝒋., r, l) 

2: for all capsule 𝒊 in layer 𝒍 and capsule 𝒋 in layer (𝒍+1): 𝒃𝒊𝒋 ← 0. 

3: for 𝒓 iterations do 

4: for all capsule 𝒊 in layer 𝒍: 𝒄𝒊 ← softmax( 𝒃𝒊) 

5: for all capsule 𝒋 in layer (𝒍+1): 𝒔𝒋← ∑ 𝒄𝒊𝒋𝒊 𝒖̂𝒋|𝒊  

6: for all capsule 𝒋 in layer (𝒍+1): 𝒗𝒋←squash(𝒔𝒋) 

7: for all capsule 𝒊 in layer 𝒍 and capsule 𝒋 in layer (𝒍+1): 𝒃𝒊𝒋←𝒃𝒊𝒋+𝒖̂𝒊|𝒋.𝒗𝒋 

return 𝒗𝒋 

 

 

Figure 2.19. Original CapsNet structure adapted from [12]. 

 

Before the Decoder section there is a section called The DigitCaps volume which 

contains 10 capsules, each of which is responsible for the prediction of a single digit 

class. Each capsule is a directional 16 vector which is responsible for capturing the 

basic characteristic of its digit class. At the time of decoding, all other non-predicted 
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capsules are made zero and the only non-zero capsule used corresponds with the 

predicted class. This selective masking ensures that the decoder bears emphasis on the 

reconstruction of features associated with the predicted number only, with less 

disturbance from other classes thus improving the quality of the reconstructed image 

[12]. 

 

The decoding itself is composed of three FC reconstruction layers, this means that 

layer one in the decoder has 512 and layer two has 1024 units respectively, with all 

layers using “ReLU” activation so that’s growth and refinement feature space, letting 

the network get esoteric details of the digit. And the last layer is 784 units which 

correspond to the input of [28 × 28] image dimension with the use of Sigmoid activated 

function in order to output only values close to 1 and 0 making it suitable for 

binarization. During training the model induces the length of the instance vector with 

the help of a custom loss function such that for the correct capsule its representation 

can be close to 1 while for the rest the ideal is close to 0, which is valid as the input 

data is binary. This structure for combined reconstruction and classification helps the 

CapsNet form better and more useful and explainable capsule encodings. In the same 

sense it’s worth noting the caption appearing on Figure 2.20. constructing a digit from 

the digit caps layer representation [12]. 

 

 

Figure 2.20. CapsNet decoder structure adapted from [12]. 

 

2.4.3. Limitations of Capsnet in Medical Image Processing 

 

Even though CapsNet indicates a shift in deep learning and solves some of the 

drawbacks of the existing CNN models, this still has some constraints which makes it 
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difficult for medical images or images with complicated features to get stronger 

outputs. Such factors are identified and illustrated as follows: 

 

• Incompatibility with Medical Images: Initially, CapsNet was designed to work 

on the MNIST dataset, which consists of basic binary images of low resolution 

such as handwritten digits [12]. This dataset is simple and does not have the 

deep and conveyance representation abstraction that other kinds of images, 

especially medical images, contain. In general, medical images have richer 

feature representations, high-quality images, and complex pixel information 

which again is in stark contrast with the MNIST dataset. Without adaptations, 

CapsNet fails on the other hand, because the complex representation has not 

been intended for the operation with such rich feature datasets in the first place 

[58,59]. 

 Need for Design Adjustments: Medical datasets tend to have a small number 

of high-resolution images and high feature complexity compared to MNIST 

which contains an excessive number of simple images. Several experiments 

point out that original CapsNet was not developed for small size intricate 

datasets and was required to be modified in order to acknowledge the intricate 

characteristics of medical imaging [59]. 

 

However, numerous researchers are presently looking for ways to enhance the 

structure of CapsNet. Medical image processing is more effective when enhanced 

modifications and changes have been made as per several research articles in this area 

and in order to overcome these challenges 
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PART 3 

 

RELATED WORK 

 

The focus of recent work has been on improving the CapsNet architecture and training 

algorithms for the purpose of medical imaging. These advancements are intended to 

expand the scope of issues that the CapsNet can solve, such as those involving high 

resolution images, intricate textures, and small differences that are common in medical 

data sets. Strategies like adding hybrid architecture, changing routing approaches, and 

fusion of multiple mechanisms have been employed to overcome these hurdles, thus 

making the CapsNets more versatile and resilient for the Clinical purposes. This 

subsection analyzes the recent developments in CapsNets that have led to better results 

and performance in the task of medical image processing. 

 

Toraman et al in their work incorporated convolutional CapsNet which is supposed to 

reveal the abnormalities of COVID-19 from the X-ray edges. They augmented the 

original CapsNet by adding multiple convolutional layers in front of the primary 

capsule layer to improve on feature extraction. The network architecture therefore 

involved four convolutional layers arranged in the following order of internal 

components: Conv1 has 16 [5 x 5] filters with a stride of 1 and a [2 x 2] max-pooling 

layer afterwards; Conv2 has 32 [5 x 5] filters with a stride of 1 and a [2 x 2] max-

pooling layer afterwards; Conv3 has 64 [5 x 5] filters with a stride of 1; and Conv4 

has 128 [9 x 9], stride 1 filters. After the convolution layers, the primary capsule layer 

contains a total of 32 capsules, each with a [9 x 9] kernel and a stride of 1. The 

LabelCaps consists of 2D and 3D classification tasks in two sets of 16 capsules while 

applying ReLU activation function. Due to the small images size, the model was fitted 

on augmented images on a binary and multi-class settings that reached the accuracies 

of 97.24% for the binary classification and 84.22% for the multi-class classification 

respectively [60].
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A model for classification and detection of lymph nodes in medical images was 

proposed by Zhang et al., they called it Camelyon16 capsule network model. They 

improved the routing process by feature decomposition whereby the feature vector and 

feature value obtained from decomposition stood in form of output vector and 

predicted value in the standard routing process making it a new routing schema. As 

they knew the shortcoming of a kernel of fixed size, they contacted a multi scale 

feature extraction module just before the first capsule layer. This module includes 

several convolution and pooling layers with the aim of obtaining different spatial 

features. Firstly [1 x 1] dimension reducing convolution is applied and then [3 x 3] 

and [5 x 5] convolutions are used to capture larger scale patterns later. Also, because 

the dominant features need to be focused on and the input down-sampled, a [2 x 2] 

max-pooling layer was added. These outputs are then concatenated aimed at yielding 

a shifted multi-scale representation which is more informative. They reported accuracy 

results of 82.31% for CIFAR-10, 99.65% for MNIST, and 88.23% for Camelyon16 

when the model was tested on these three datasets [61]. 

 

Afriyie et al. conducted a study which sought to test the first version of CapsNet on 

several datasets namely R-MNIST, CIFAR-10, MRI images of the brain tumors, and 

blood cells. From their experiments, the results achieved are as follows: profiles of 

62.98% in the case of CIFAR-10, 78.69% in the case of brain tumor MRI, 92.49% in 

the case of the F-MNIST, and 82.00% in the case of blood cell images. The results 

show the shortcomings of the original CapsNet in general, and in particular, its ability 

to work with complex picture dataset-medical image dataset. Because of this, the focus 

of many researchers is on the improvement of technology, so that it better corresponds 

to the requirements of different data types. The subsequent sections summarize the 

studies that have aimed to alter and adapt the CapsNet for use in medical imaging 

based on various other datasets. [62]. 

 

Afshar et al. have created a modified CapsNet for the purpose of diagnosing brain 

tumors using brain MRI scans. In their case, the changes were not restricted only to 

the architecture but also implemented in the loss function. The authors resized the brain 

MRI scans from [512 x 512] to [128 x 128]. The architecture begins with a convolution 

layer that has 64 filters with a kernel of [9 x 9] which aims at feature map extraction. 
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They then constructed a primary capsule layer which contained 32 capsules with each 

having eight dimensions (8D) and a [9 x 9] kernel. Rather than the standard methods 

of CapsNet which utilize Margin Loss and a reconstruction loss, Authors suggested 

using a novel loss function that was constructed by integrating capsule loss and cross 

entropy loss in order to boost the overall classification accuracy. Based on their 

conclusions, the designed CapsNet surpassed other methods aflame in terms of 

accuracy reaching 90.89% in correctly diagnosing brain tumor [63]. 

 

In a recent research work, Afshar et al, improved the CapsNet for classification of the 

tumor types further. Their improved version of model contained only one 

convolutional layer with 64 filters instead of 256 as it was in the previous versions and 

took images which were resized to [64 x 64] pixels. The initial capsule layer, which 

consisted of 32 capsules of eight dimensions each was unchanged and had kernels of 

size [9 x 9] with a stride of 2, areas of which were pooled to form a [24 x 24] feature 

map. Their CapsNet modification outperformed the original CapsNet accuracy of 

82.30% and achieved 86.56% accuracy. Furthermore, they applied models with two 

convolutional layers filter, each having 64 models, which had an accuracy of 81.97 

percent. In order to obtain better results, they have improved the reconstruction 

Internal Neural Network by augmenting it with an additional FC layer of the 

reconstructed neurons large 4096. They have also tested three-layer models in the 

decoder with 1024, 2048 and 4096 neurons to achieve accuracy of 83.93% [64]. 

 

A number of researchers have explored the fusion of pre-trained CNNs with CapsNet 

aiming at developing hybrid frameworks that resolve certain weaknesses of the 

primary CapsNet while obtaining better results. In this context, Mandic et al. have 

proposed a hybrid model - DenseCapsNet that integrates DenseNet121 model and a 

capsule neural network (CapsNet) with the aim of Covid-19 infection detection from 

chest X-ray (CXR) images. This approach achieved an accuracy of 90.7%. The 

segmentation network TernausNet was used to mask the lung region from each image 

and the subtracted images were input into DenseNet for lung feature extraction. In 

order to enhance the performance of the model further, random data augmentation was 

performed. During the span level using CapsNet, the spread loss function was utilized 

in order to decrease the training sensitivity. The paper claimed that the coverage of 
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this aspect of the issue is still quite poor as it was focused on the results of experiments 

when data augmentation and model training and coupling of CapsNet and CNNs were 

present [65]. 

 

As reported in a study by Sezer et al., a novel twist to the CapsNet was advanced for 

rotator cuff pathologies classification in the computer-aided analysis of shoulder MRI. 

This enhanced architecture incorporated two convolutional layers into the original 

CapsNet. The first convolutional layer had 128 filters with kernel size [7 × 7] and 

padding stride 2, yielding a reduced output of [29 × 29] without any formal padding. 

The output from these filters served as the input in the second CNN layer which 

comprised 256 filters with [9×9] convolution kernel and a stride of 1. The 

convolutional networks comprised of two layers where the first one was linked with 

the other which was passed to the primary capsule layer. The parameters of the primary 

capsule layer were different to the previous layers which were altered by the authors. 

They employed a total of 64 capsules of 8 dimensions each with [9×9] conv kernel and 

stride of 4. As far as the reconstruction is concerned, a decoder block was applied with 

512, 1024, and 4096 layered neurons that aim to restore the given images. Inception 

along with new appendages applied to the word-oriented MRI data in coronal plane 

obtained 95.36% accuracy whereas a modified version of the CapsNet associated with 

no inception deleted 94.75%, together with sustenance thumb etc. [66]. 

 

As part of their work, Anant et al. developed a reconfigured CapsNet explicitly 

targeted at pediatric bone age assessment. They adapted the model for the content 

comprising the RSNA Pediatric Bone Age Challenge (2017) data set of hand X-ray 

images of children which are over 10 GB in size. The researchers have introduced a 

number of improvements over the originally designed CapsNet. First, they reduced the 

loss function to three using a specific formula. Moreover, they sought to address the 

‘dying ReLU’ issue by substituting the standard ReLU with Leaky ReLU. ReLU has 

mathematical properties which mean that when a neuron has an output of zero, then 

that neuron is inactive since there is no way for the weights to change, which can be 

referred to as ‘turning off’ the neuron. Instead, if Leaky ReLU is applied, then the 

researchers hoped this challenge would be overcome. The paper does not indicate 
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specific accuracy but rather these changes were made to reinforce that, over different 

age group model accuracy is not biased [67]. 

 

DenseCaps, is another different capsule architecture which employs dense 

connections, makes use of cross-capsule feature concatenation, which as a matter of 

fact, was motivated by the dense net’s cross layer feature binding strategy. The model 

was tested on a variety of well-known canonical datasets with accurate performance 

of 99.70 % on MNIST, 94.93% on Fashion-MNIST, 89.41% on CIFAR-10 and 

95.99% on SVHN. As mentioned, these data sets have a great number of images, 

therefore data augmentation was not needed. On the other hand, the fact that it is reliant 

on a large dataset suggests it may be difficult for DenseCaps to attain such a high level 

of accuracy as these in smaller ones [68]. 

 

ResCaps was developed to aid in the problem of papillary thyroid cancer classification 

by extending the CapsNet approach. In contrast to the ResNet architecture which 

replaces the standard CNN layer, CapsNet architecture only conducts convolution of 

its input without introducing additional complexities leading to increased errors. 

ResCaps was trained using a smaller dataset consisting of 1956 training images and 

424 testing images, the model attained an 81.06% classification ratio. In contrast, the 

same dataset ResCaps using CNNCaps was applied with a final accuracy rate of 79.17, 

indicating a significant benefit from the residual unit in the processing of advanced 

medical images [69]. 

 

VGG-CapsNet is an extension of CapsNet which focusses integrating its capabilities 

with the VGG-16 architecture so as to be able to classify lung cancer tissues within 

CT images with better accuracy and efficiency. The authors of this paper put emphasis 

on the performance of VGG-CapsNet by benchmarking its performance against other 

models on the LIDC-IDRI and Kaggle datasets. In the case of the LIDC-IDRI dataset, 

VGG-CapsNet got AUC score of 0.980 and F1-Score of over 98% meaning it had a 

precision, recall, specificity and accuracy score of 99.07%, 98.16%, 99.07% and 

98.61% respectively. The VGG-CapsNet achieved a precision of 98.14%, a specificity 

of 99.16%, accuracy of 98.07% an AUC score of 0.98 and F1-Score of 98.14% for the 

Kaggle dataset which showcases how perfectly the model was developed [70]. 
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The IRCM-Caps model integrates CNN and CapsNet architectures for Covid 19 

diagnosis in X-ray images, Improving its performance with the aids of an attention 

mechanism and a multi-branch lightweight module. To enhance the image contrast, 

the images are first preprocessed by the Contrast Adaptive Histogram Equalization 

(CLAHE) algorithm. The model has been validated with a dataset of 1200 standard X-

ray images including 400 positives for Covid 19, 400 positive for viral pneumonia and 

400 negative cases. Results indicate that the IRCM-Caps model achieved 99% 

accuracy which was an improvement over the 93% accuracy of the initial CapsNet 

model [71]. 

 

S-VCNet, a hybrid model combining VGG and CapsNet, enhances the accuracy of 

lumbar spondylolisthesis identification in X-ray images. The study utilized a dataset 

of 466 private radiographs, with 186 images showing spines affected by 

spondylolisthesis and 280 images depicting normal spines. The proposed model was 

compared to other diagnostic approaches and demonstrated superior performance, 

achieving an accuracy of 98% [72]. 

 

Ensemble Model can be classified as a skin cancer detection method that utilizes VGG, 

CapsNet, and ResNet in order to aid in achieving higher accuracy level. The authors 

in this research utilized the ISIC (International Skin Imaging Collaboration) dataset, 

which contains 25000 skin images belonging to several categories with the main 

concentration on binary classification involving 3000 malignant images and 2800 

benign images. Experimental results indicate that the integrated model achieves higher 

performance than the single models i.e. an accuracy of 93.5% as opposed to 75% for 

CapsNet, 79% for ResNet and 69% for VGG [73]. 

 

The model RNNinCaps consists of modified CapsNet and some RNN module for 

recognition of 3D vertebral images. The vertebral image dataset used in this study 

contains a total of 4000 images beside the CIFAR-10 database. The model was 

evaluated against the CNN, CapsNet, Baseline-1 and Baseline-2 models which were 

similarly scaled with the same dataset and was found to be more accurate than these 

comparative models. [74]. 
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The combination of Xception and CapsNet into a model termed XCapsNet is aimed at 

the accurate and efficient detection of diabetic retinopathy (DR) from fundus images. 

When this model was used on the APTOS2019 dataset, it obtained a classification 

accuracy of 83.06% for multiclass DR classification and 98.91% for binary-class DR 

classification. On Messidor dataset, XCapsNet provides classification accuracy of 

98.33% for DR and Normal classes of fundus images which is better than existing 

models in terms of classification accuracy and computational cost [75]. 

 

The FixCaps model is particularly intended for classifying dermoscopic images in the 

skin cancer context. The model increases the workload easing detection by including 

a large kernel convolution layer, with a kernel size of 31 x 31, increasing the receptive 

field of the CapsNet, rather than the standard 9 x 9 kernel, which is the standard norm. 

The results of the experiments fully support the supposition that FixCaps is superior 

to all available as well as dominant IRv2-SA models developed for dermatoscopic 

images classification. The Zip files containing the HAM10000 dataset output file 

observed that 96.49% accuracy using FixCaps which outperformed IRv2-SA results 

[76]. 

 

The BoostCaps model, which was first described by Ben et al. is the first CapsNet 

which has been able to implement a boosting mechanism. It is specifically created to 

perform tumor classification tasks. The model accepts images of the human brain as 

well as rough boundary boxes of the tumor, which enables it to analyze both the target 

tissues and tissues surrounding it. An internal boosting mechanism is used to 

iteratively enhance weak learners which makes building large architecture scalable. 

Evaluated on the Jun Cheng brain dataset, BoostCaps obtained a classification rate of 

92.45%, exceeding the accuracy of the original capsule model of 89.83% [77]. 

 

Khikani et al., developed a powerful capsule neural network for the classification of 

breast cancer using histopathological images, by adding a Res2Net block and four 

other convolutional layers in order to aid in multi- scale feature extraction and 

minimize. The model was evaluated on BreakHis dataset, and it was able to achieve 

an overall accuracy of 95.6% and a recall rate of 97.2%, thus outshining other previous 

models. The study also performed image rotation and flipping to increase the size of 
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the dataset and improve the performance, and as it has been pointed out, augmentation 

should be performed whenever small databases are utilized [78]. 

 

Kumari et al. synthesized a hybrid model by integrating CapsNet and SVM for 

classifying five stages of diabetic retinopathy and reached an accuracy rate of 96%. A 

scan of current work which has employed CapsNet in retinal image classification 

indicates that while there are works aimed at the detection of common retinal diseases 

such as diabetic retinopathy and glaucomatous neuroretinal atrophy, no work has 

specifically sought to classify varied retinopathies themselves [79]. 

 

HMedCaps, a proposed hybrid CapsNet architecture, is designed to enhance the 

analysis of complex medical images by integrating Residual Block and FractalNet 

modules within the feature extraction layer. This innovative architecture aims to 

deepen the network while effectively addressing the vanishing gradient problem 

through the implementation of skip connections. Additionally, a novel Sigmoid-

Squash function is employed to improve capsule activation, emphasizing the 

distinctive features of the capsules. To address dataset imbalances, data augmentation 

was utilized to equalize the number of images across selected cases. The model's 

performance was assessed using the CIFAR10 dataset for complex images, the RFMiD 

dataset for multiclass retinal images, and the Blood Cell Count Dataset for blood cell 

analysis. The results highlighted that HMedCaps notably surpassed the performance 

of traditional CapsNet and other contemporary methods, achieving higher accuracy in 

classifying complex and multiclass medical images, thereby showcasing its potential 

for more precise diagnoses in medical image analysis [80]. 

 

The focus of the work of Kalyani et al. revolves around the usage of a modified 

architecture of the capsule neural network to achieve the detection and classification 

of diabetic retinopathy. The aim of the work is to develop a highly accurate and early 

detection technique by making use of a CapsNet which is free from loss of information 

which is a characteristic drawback of pooling layers in standard convoluted neural 

networks. This technique uses the Messidor data set which contains over 1200 RGB 

fundus picture dispersed into 4 groups where 0 means absent of diabetic retinopathy 

and 1 to 3 means as the numbers increase so does the severity of the condition. The 
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model performs enhancement preprocessing of the fundus image to improve the image 

contrast based on the green channel, press decomposed averaging followed by a set of 

sequences comprising of convolutional layer, primary capsule, and class capsule and 

ended by softmax classification layer. The results are quite pleasing with a high 

accuracy rate of 97.98% for images of healthy retina and there is 97.65%, 97.65% and 

98.64% for after the first, second and third stages of diabetic retinopathy. This 

indicates that the method in discussion has high accuracy in the diagnosis and 

gradation of diabetic retinopathy [81]. 

 

A novel preprocessing pipeline, a fine-tuned Vision transformer (ViT) and CapsNet 

are integrated together in the algorithm developed by Oulhadj et al. to gauge the 

progression of diabetic retinopathy. To begin with, power law transformations are 

applied to change the contrast of the retinal fundus images. The same channels are then 

processed with contrast-limited adaptive histogram equalization to a certain extent 

which intensifies the microaneurysms. This results in processed images with one 

interface providing an input to ViT while the second interface providing an input to 

the CapsNet. The classification model here takes the output of the two models in 

determining the extent of development of diabetic retinopathy. This methodology has 

been implemented and tested on four publicly available datasets like APTOS, 

Messidor-2, DDR and EyePACS. Results indicated that the test accuracy for the 

mentioned datasets were 88.18%, 87.78%, 80.36%, and 78.64% respectively. Such 

results indicate a substantial improvement with respect to the existing best techniques 

solutions and thus emphasize the importance of the model in enabling a timely 

diagnosis of diabetic retinopathy [82]. 

 

In another study Kumar et al., this study proposes a method that utilizes a modified 

CapsNet (CapsNet) model which is optimized to detect malaria parasites in blood 

smear microscopic images. According to the authors, this model consists of a fully 

functional CNN integrated with CapsNet thereby increasing the accuracy of diagnosis. 

As a part of improving image quality, the image processing pipeline consists of 

rotation and normalization techniques before inputting data into hybrid model. The 

study uses the Malaria Cell Imaging Dataset from the National Institutes of Health 

which contains more than 27,558 images which consist of infected and non-infected 
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malaria blood cells. Furthermore, it was found that the hybrid CapsNet model 

performed satisfactorily well with effective results of detection rate of 99% and 

accuracy of 99.08% with a false acceptance rate of 0.97%. These results are significant 

compared with the previously existing models and further prove the effectiveness of 

the hybrid model for malaria diagnosis [83]. 

 

The new capsule model which has been designed in theory includes the foundation of 

three separate capsule approaches including Tri Texton-Dense Capsule Network 

(TTDCapsNet), TDCapsNet Dense Stage and TDCapsNet Core Stage which aims at 

assimilation of three core building pillars towards improved understanding of intricate 

medical images. The voting scheme provides a simple procedure for feature extraction 

along with a dedicated eight-layer u shaped dense us encased in a luminance saliency 

as its last stage. The authors started image classifications in the TDCapsNet’s final 

layer by using the first PC but then may consider altering the second-level TDCapsNet 

configurations in accordance with proper integration criteria sense-assisted TS quite 

different from Probability Cubic which influenced TDCapsNet. The author’s jury cited 

over 85% accuracy for facial recognition while noting that this in some study set 

samples of the model including having achieved over 97% accuracy with specific 

parameters, accuracy levels that are positioned around 94.90% level for Fashion-

MNIST unmatched clothing datasets, CIFAR-10, and Breast cancer. It could therefore 

be argued that from the arguments made, TTDCapsNet is a fifth-generation CapsNet 

as it raises the bar for latest CapsNet configurations among others targeting advanced 

three-dimensional image recognition settings [84]. 

 

Veni et al., acute clinical conditions like acne are commonplace in our society today, 

thus a comprehensive understanding of the condition through its grading and 

classification is very crucial. In this regard, utilizing a vast amount of data, we need 

advanced systems and architectures capable of classification and detection. To solve 

some of the issues within the papers, such as, overly reliant and non-robust models, 

we propose a hybrid system consisting of a VGG16 which has been reinforced by the 

inclusion of a CapsNet network which we have called convolutional block attention 

module (CBAM) to be able to classify acne into the three levels of severity including 

mild moderate and severe acne. Due to the model being built on some of the recent 
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datasets, we were able to train and adapt the model successfully. The results achieved 

by the model were impressive, demonstrating high performance, high confidence 

clinical tools including a precision of 100%, an F1 score of 99%, recall of 100%, 

accuracy of 99%, specificity of 100%, and a kappa score of 97.87%. etc. As such, the 

model shows great promise in the field of medical diagnostics [85]. 

 

Saif et al., CapsCovNet et al., gives a second-generation capsule neural network which 

helps to assist diagnosis of COVID-19 from multiple forms of medical imaging that 

involve chest X-ray and ultrasound scans using a dataset. CapsCovNet differs CapsNet 

for diagnosing COVID-19 from more basic ones in that it employs some major 

features. It uses many multi convolutional blocks whilst varying the kernels so as to 

extract information at different dimensions, it also deepens the number of the capsule 

neural network layers to improve the capturing of complex data, finally it employs 

twisted capsules to mostly improve the learning process. With an application of a 

refined routing algorithm the information retention is also greatly improved, 

furthermore, a pre training technique based on a large source of data greatly aids in 

overcoming secondary data problems. All these changes help improve the models 

overall predictive ability and efficacy and enable it to perform better than the current 

practices available in multimodal medical imaging. CapsCovNet, three standard 

benchmark datasets were used to evaluate: A chest X-ray dataset of COVID and 

pneumonia patients, a chest X-ray dataset and a point of care ultrasound dataset. The 

findings were of remarkable success since the model used in the investigation was able 

to achieve better results in accuracy when put against the current best models, most 

notably a classification accuracy of 100% of the videos taken of ultrasound scans of 

COVID-19 cases and great improvement in chest X-ray datasets that improved all 

other metrics such as precision and recall rates and therefore this was a good pointer 

in the automatic diagnosis of COVID-19 disease [86]. 

 

In this work, an image segmentation method that utilizes capsule neural networks 

(CapsNet) for segmenting corneal images is proposed. The method consists of several 

steps; the first one deploys preprocessing in order to remove speckle noise via a hybrid 

gaussian, anisotropic and bilateral filters. This stage is important in improving the 

quality of the images before the classification process. There are 579 OCT images in 
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the dataset which were obtained from the noor hospital, Iran using SD-OCT imaging 

technology, of which 384 images were used for training while the rest were reserved 

for testing. The system is specifically trained to classify and segment three key layers 

of the cornea, outer epithelium, upper stroma and lower endothelium. The modified 

capsnet’s accuracy level was 96.41% as well as high sensitivity (96.83%) and 

specificity (83.33%). On top of that, the segmentation performance was also analyzed 

using the Dice Similarity Coefficient and it was revealed that the modified SegCaps 

outperformed the existing methods and once more emphasized the effectiveness of the 

suggested development in regard to corneal images segmentation in pre-surgical 

imaging tasks [87]. 

 

Gupta et al. have developed a multimodal neural network called COVID-19 Capsule 

WideNet which can automatically diagnose COVID-19 from chest X-ray pictures. 

Their model consists of two convolutional layers and three capsule layers which solve 

the conundrum of conventional CNNs preserving spatial context while simultaneously 

solving feature detection. This model has further been tested on the COVIDx dataset 

that has 13942 images of which there were 507 images of COVID-19 patients and 

13435 images of non-covid patients. Such high metric results as 91% accuracy, 

sensitivity, and specificity, together with AUC equals 0.95. This underlines the ability 

of the COVID-WideNet framework to address the given task of the timely diagnosis 

of COVID-19 based on X-ray images [88]. 

 

The deep learning framework which utilizes CapsNet based structures of various 

CNNs such as DenseNet, ResNet, VGGNet, and MobileNet have been proposed for 

the detection of COVID-19 from lung CT scans. This hybrid architecture, termed as 

DenseCapsNet, ResCapsNet, VGGCapsNet, and MobileCapsNet, employs the best of 

both worlds where ConvNets are utilized for feature extraction and CapsNets for 

higher degree of spatial awareness. The model is trained on SARS-COV-2 CT-Scan 

dataset containing 1,252 CT images of COVID-19 positive patients and 1,230 non-

COVID CT images thereby making a total of 2,482 images. The results show that the 

three models VGGCapsNet, DenseCapsNet and MobileCapsNet achieved an accuracy 

of up to 99%, thus proving the effectiveness of the proposed architecture in the 

diagnosis of COVID-19 from the lung CT scans [89]. 
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Madhu et al., proposed method in the article introduces an Imperative Dynamic 

Routing mechanism using fully trained CapsNet for malaria classification, addressing 

the limitations of traditional CNNs. This model is specifically designed to enhance the 

extraction of features from thin blood smear images, which contain samples of both 

parasitized and healthy erythrocytes. The dataset utilized consists of 27,558 images 

sourced from the National Institutes of Health (NIH) repository, ensuring a balanced 

representation of both classes without class imbalance. The CapsNet architecture 

includes a series of convolutional blocks followed by dynamic routing between 

primary and secondary capsules, effectively capturing spatial relationships and 

reducing information loss by eliminating pooling layers. The results achieved by the 

model are noteworthy, with an accuracy of 98.82%, an Area Under the Curve (AUC) 

of 99.03%, and a specificity of 99.30% on the test samples, demonstrating its 

robustness and effectiveness in accurately classifying malaria-infected cells [90].  

 

Recently, Goceri et al., presented AFConv-CapsNet which is a new deep learning 

architecture designed for the purpose of diagnosing skin cancers by use of adjustable 

and fully convolutional capsule layers. This architecture incorporates an adjustable 

capsule layer that encodes spatial relations between capsule vectors with a learned bias 

feature, allowing the model to perform better in maintaining orientation and location 

information. For training and evaluating the proposed model, the authors used the 

HAM10000 dataset which includes a considerable number of dermoscopic images 

under seven forms of skin lesion. To achieve a balanced diverse coverage, they used a 

total of 805 images with the dataset enhanced through the use of image augmentation 

techniques. Achieved results obtained by the AFConv-CapsNet model are quite good, 

registering the recognition accuracy at the level of 95.24% with sensitivity diagnosed 

at 95.37% and specificity at 99.23%, which indicates offline effective classification of 

multiple skin cancer types [91]. 

 

Behara et al. introduced an innovative model for automated skin lesion classification 

that encompasses a combination of an active contour segmentation, ResNet50 based 

feature extraction and a lightweight attention driven CapsNet. To begin with, the 

method in the first step utilizes active contour models to properly segment the skin 

lesions thus increasing the degree of relevance to the features contained in the images. 
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After segmentation, important features are extracted from the images through the use 

of the ResNet50 model, and then the CBAM which reads together each of the channels 

in the feature map enhances the attention to important parts in the attention spatial 

feature maps. The obtained features were further concatenated and forwarded to 

CapsNet that employs dynamic routing for classification. The model has been tested 

on available databases; the HAM10000 and ISIC 2020 and it has obtained a record of 

98% accuracy and 97.3% AUC-ROC. These outcomes demonstrate the considerable 

prospect of the model to generalize well in the context of automated skin diagnosis 

systems [92]. 

 

The InceptionCapsule approach put forth by Sadeghnezhad et al., combines Inception-

ResNet with CapsuleNet within a self-attention framework to address the challenges 

pertaining to medical image classification. This strategy employs a form of transfer 

learning, wherein the model is initialized with weights from ImageNet to avoid having 

to deal with random weight selection problems. The procedure includes a CapsNet 

augmented with attention that processes feature rich vectors derived from the Inception 

middle layers and may aid in highlighting useful features. The model was tested 

against the Kvasir dataset and BUSI with GT dataset. It was able to yield an accuracy 

of 97.62% and 94.30% for 5 and 8 class respectively in Kvasir dataset. The model 

achieved an accuracy of 98.88%, 95.34% precision and an F1-score of 93.74 in the 

BUSI with GT dataset, affirming its superiority over existing techniques as highlighted 

in the literature [93]. 

 

The approach used by Aydin et al. was to address the limitations of conventional CNNs 

using an enhanced Capsule Neural Network (CapsNet) architecture to classify bone 

marrow (BM) cells. The specific objectives were achieved through the implementation 

of three pre-trained models; VGG16-CapsNet, Residual Capsule Network (RES-

CapsNet) and Google Network Inception V3 (GN-CapsNet). These models aim at 

enhancing feature representation by employing dynamic routing and hierarchical 

feature comprehension. The dataset used in the research consisted of more than 

170,000 images showing BM cells with more than 21 cell classes that had been 

annotated by experts. The application of the Synthetic Minority Over-Sampling 

Technique (SMOTE) was able to reduce and if not eliminate class imbalance making 
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classification much better. There results were remarkable, with GN-CapsNet recording 

a 99.45 % accuracy rates while RES-CapsNet followed with a 99.24 %, VGG16-

CapsNet a 98.95 % and the basic CapsNet 96.99 % all achieved impressive 

performance rates. Such performance results of the models contribute to accurate 

diagnosis for various hematological diseases [94]. 

 

In their study, POKUAA et al. presented their system which is the Denoising Patch-

and-Amplify Gabor Capsule Network (DPafy-GCaps), aimed at the diagnosis of 

gastrointestinal (GI) diseases. The proposed method extends the traditional 

architecture of the Capsule Networks by using a technique which enhances certain 

features while suppressing the noise embedded in images. This technique applies to 

Gabor filters that will be used to selectively obtain the frequency components critical 

for the diagnosis of the disease. The model was tested on the Kvasir-V2 dataset which 

consists of 8000 colored images of gastrointestinal diseases. The effectiveness of this 

model was demonstrated by recognition accuracy that was raised to a remarkable 

96.80% on Kvasir-V2 dataset which means its ability to detect diseases such as 

esophagitis and polyps is greatly enhanced. Moreover, it has also demonstrated 

comparatively good results with Fashion-MNIST and CIFAR-10 datasets with 95.10 

and 85.50 accuracy respectively. All the results obtained show that the model is quite 

robust and has a broad applicability to medical imaging even in conditions of limited 

data [95]. 

 

A novel method which is named as improved capsule neural network (CapsNet), was 

introduced by Remya et al in their work, with the objective of being able to correctly 

identify and quantify the thickness of the brain tumor regions. The method proposed 

is a three-step process, namely: pre-processing, classification and segmentation. First, 

the method adopts an enhancement of Discrete Wavelet Transform (DWT) filtering 

system to reduce Rician noise from movies of the 461 brain tumors of various grades 

in the BRATS2018 data set. After the noise cancelation step, classification which is 

also a feature extraction step is performed, only that this time the images are already 

cleaned. The classification step uses the CapsNet, which can construct useful features 

even with meager samples. The last step involves segmentation of the images by use 

of modified Seg Caps in order to distill the abnormal areas of the tumor for accurate 
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measurements. The accuracy of the tumor segmentation was noted to be 95.36%, an 

improvement of 1.5% from other algorithms. Moreover, the estimated areas of the 

tumor thickness were the best, when compared with the other estimates that were 

provided by the specialists in the field, suggesting that the device can be suitable for 

use in clinical settings [96]. 

 

As per the article by Ye et al., a Genetic Hybrid Rice Optimization (GHRO) algorithm 

that utilizes a hybrid approach to the search for optimum values in hyper systems for 

capsule is introduced by the authors. This approach combines genetic search 

techniques with the hybrid rice optimization algorithm to improve global search 

capabilities while preventing local optima. GHRO was used to automatically optimize 

hyper parameters for the CapsNet model which entailed setting up appropriate batch 

size, the number of kernels as well as suitable activation functions. The methodology 

was rigorously evaluated with several datasets including MNIST, Chest X-ray 

(pneumonia) and Chest X-ray (COVID-19 & pneumonia). The experimental outcomes 

clearly illustrated that the application of GHRO in optimization of parameters of the 

CapsNet improved its performance in image classification tasks as they achieved more 

accurate results and a reduction in time taken to train the models relative to the 

traditional methods for parameter estimation. More specifically, the GHRO-CapsNet 

model, outperformed the other models in classifying the images in the datasets which 

attested to the success of the hyperparameter optimization component in the model 

[97]. 

 

The method developed by Chaudhari et al. focuses on the development of an 

automated bacterial recognition system that incorporates a histogram oriented 

optimized CapsNet. The approach uses histograms as one of the features which helps 

in reducing the dimensionality of the input data while still preserving essential color 

information. The CapsNet on the other hand is supposed to take care of such factors 

as spatial orientation and pose of a bacterial image. This is further said to enhance the 

classification ability of an object as compared to conventional CNNs. The model was 

evaluated using the DiBAS database which consists of a collection of 33 bacterial 

species. Unfortunately, the paper did not discuss KNN or methods of finding nearest 

neighbors. The results came out to be quite optimistic in that the accuracy achieved by 
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the CapsNet was quite impressively high at 95.08, thus beating numerous benchmark 

ML algorithms such as KNN, Decision Trees, Naïve Bayes and SVM. This implies 

that the proposed technique is capable and efficient in the accurate classification of the 

studied genera of bacteria having very few training parameters [98]. 

 

The research of Mursalim et al. proposes a model named BiCaps-DBP, a combination 

of Bi-directional LSTMs and ID-Capsule which aims to create a model that predicts 

DNA-binding proteins. It contains a one-hot encoding layer to transform protein 

sequences into binary vectors so that the Bi-LSTM layer can extract contextual 

features. Later on, the features obtained by relational information from the ID-Capsule 

would help in classification. The model was tested against three datasets namely, 

PDB2272, PDB186, and PDB20000. This model achieved the results of 83.11%, 

73.49%, and 94.58% respectively, enabling it to be witnessed as a superior model, 

being 1.05%, 5.79%, and 0.40% more accurate than the other predictors, marking an 

important step in DBPs [99]. 

 

Chen et al. developed a multi-scale convolutional capsule network (MSCCNet). This 

network has been trained for the classification of cervical cells using a deep learning 

framework. A cross-layer attention-based feature fusion module has been integrated 

within the architecture of the model that unites features of different levels (low, 

middle, and high) to endorse the representation capabilities. Moreover, an attention-

assisted spatial relationship modeling module that’s been added to the architecture of 

the model in order to model the differences between the cervical cells of different types 

that may look similar to each other. The model was tested on two databases the in-

house created DSCC data set that has 15,509 cervical images and the publicly available 

SIPaKMeD containing 4,049 images. Particularly, for the DSCC dataset the accuracy 

rate was approximately in the range of 87.88% while for the SIPaKMeD data set the 

scores reached nearly 97.90%. The success rates surpassed many of the existing 

classification techniques and demonstrated high accuracy performance in cervical 

classification [100]. 

 

To address the limitations of traditional CapsNets used in complex background 

images, Adu et al. designed the SqueezeCapsNet model by merging SqueezeNet and 
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CapsNets aims to improve the feature extraction while reducing the number of 

parameters. The architecture employs sigmoid activation functions for better 

normalization of coupling coefficients and proposes a new embedding squash function 

to modify the distribution of the mass of the capsule activations. The model was 

applied to diverse medical images set such as the brain tumor dataset, lung and colon 

cancer dataset, alongside with standard datasets, that are MNIST, Fashion-MNIST, 

and CIFAR-10. Conclusively, the model performed impressively well with 99.87% 

accuracy on the MNIST dataset, 94.85 on the brain tumor dataset, 99.76% in lung and 

colon and 82.45 percent on CIFAR-10 which justify that SqueezeCapsNet increases 

the accuracy of diagnosis in medical images and is robust to many complex 

background images [101]. 

 

According to Pallapu et al., the method describes a new model of detection for breast 

cancer as well as its spread which includes adversarial capsule network and 
Adversarial Capsule Network with Graph Convolutional Neural Networks 

(ACNGCNN). This allows a new technique that utilizes a Generative Adversarial 

Network (GAN) for data augmentation by constructing artificial images to supplement 

the training set, further increasing its realism. Such a model applies to a Non-Local 

Means (NLM) filter that effectively reduces noise from the image without removing 

any unique features from the image itself. To perform the classification task LSTM 

with Bidirectional Gated Recurrent Units within a Recurrent ShuffleNet V2 

architecture is employed making it easy to tackle long dated data. The method was 

extensively evaluated on the BreaKHis dataset and there were tangible increments in 

the detection rates: a 4.9% increase in precision, 3.5% in accuracy, and 3.4% in recall, 

and a 2.5% boost in the AUC. Moreover, such a model, as a bonus, achieved 

improvement at specificity of 1.9% as well as reduced the duration required for breast 

cancer stage detection by approximately 3.4%, confirming the model’s potential on 

early detection and accurate staging of the breast cancer disease [102]. 

 

As noted by Dubey et al., the Golden Hawk Optimization based Distributed Capsule 

Neural Networks is the name of the method that they developed. The aim of this 

research is to increase the performance of the detection of epidermis lesions 

specifically focused on melanoma using computer techniques. This technique uses an 
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optimized clustering-based segmentation approach using Sewer Shad Fly 

Optimization (SSFO) in order to obtain better boundaries and features of the lesion. 

The model uses a dataset which comprises 10,000 dermatoscopic images, namely, the 

HAM10000 dataset. The performance metrics as reported show that the GHO-DCaNN 

model training had a specificity of 97.53%, a sensitivity of 99.05%, and an overall 

accuracy of 98.83%. For a k-fold cross-validation with 10 folds, it recorded 97.83% 

specificity, 99.50% sensitivity, and 99.06% accuracy affirming its effectiveness in the 

early diagnosis of epidermis lesion [103]. 

 

In their proposal, Boruah et al. present a model called CaDenseNet that combines a 

CapsNet with attention mechanism in order to provide HIV integration site (IS) 

prediction. The architecture also includes an encoding module, CapsNet module, and 

other attention layers which help in the processing and learning of genomic sequences. 

To prevent any bias from antiretroviral therapy due to data stemming from patients on 

such therapy already, the models work from clean data acquired from the Retrovirus 

Integration Database (RID), which precisely includes data from HEK293T cells 

containing HIV. According to the authors, CaDenseNet outperformed all the 

previously known cutting-edge techniques in the field, demonstrating better 

improvements on the evaluation metrics of AUC-ROC, AUC-PR, and F-score, thus 

providing greater insight on the capability of the model to be utilized in HIV research, 

as well as coming up with intervention strategies [104]. 

 

Manikandan et al., effort is identified as CAPSGAN. It is a glaucoma detection method 

which is a deep learning hybrid model which integrates Generative Adversarial 

Networks (GAN) and CapsNet. The GAN portion is responsible for creating artificial 

retinal images to complement the database, which tackles the issue of limited data in 

medical imaging. A glaucoma dataset was taken from Kaggle with a total of 400 

fundus images “normal” classification containing 300 images while “glaucoma” 

classification consisted of 100 images. Once synthetic images were generated, the 

CAPSNET was used for classification because it contains various properties pertinent 

to diagnosis of the disease, namely positional and orientation information. The 

outcomes showed a very high level of performance with the accuracy of 99.29% 

registered by the CAPSGAN model, also high precision, recall and F1-score metrics 



60 

 

 

indicating that the model exceeded several modern ones, such as ResNet-50 and VGG-

19 [105]. 

 

The research method adds another feature to the existing methods targeting LDA 

(lncRNA-disease association) using a novel architecture comprised of a stacked 

autoencoder, attention mechanism and CapsNet, which Zhang et al. termed as 

CapsNet-LDA. Starting with building similarity matrices for lncRNAs and diseases 

across N number of views, the method then performs initial feature extraction via a 

stacked autoencoder in order to obtain lower dimensional representations. Attention 

mechanism is often utilized as an auxiliary technique to assign the importance variably 

across these representations before feeding them into a capsule neural network-based 

manner. Further, studying the work, CapsNet-LDA has been tested with four 

benchmark datasets which are Dataset1, Dataset2, Dataset3 and Dataset4 with AUC 

scores of 0.9722, 0.9645, 0.9610 and 0.8770 respectively. These results illustrate that 

the model is more competent than five other contemporary methods, and also 

emphasize such robustness and generalization abilities of the model in predicting the 

lncRNADisease associations [106]. 

 

Ravindran et al. proposes an enhanced two-level smart data augmentation in 

conjunction with Capsule Neural Networks (CapsNet) to forecast the occurrence of 

cancer diseases. The study employs a cancer gene expression dataset with 14,124 

features into six classes such as lung cancer, breast cancer, brain cancer, endometrial 

cancer as well as prostate cancer. With respect to this issue of lack of sufficient training 

samples, the researchers resorted to using Uniform Distributive Augmentation (UDA) 

and created dense synthetic samples using a Wasserstein Generative Adversarial 

Network (W-GAN). Such an augmentation technique not only achieved statistically 

balanced class distributions but also augmented the ability of the models to learn. The 

CapsNet model after being trained on such augmented datasets produced very good 

results, with measures of performance such as accuracy, precision and recall all above 

98% thereby minimizing the error margin typical to such neural network deep learning 

approaches significantly [107]. 
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According to Zhang et al., the CN2A-CapsNet model integrates attention mechanisms 

with CapsNet and CNNs to facilitate the automatic diagnosis of COVID-19 from chest 

X-ray images. As a contribution to the model, CBAM is integrated to give attention to 

certain areas in the image to improve the extraction of features without spacial 

dependency that constrains traditional tensile recurrent neural nets. For validation 

purposes, a dataset of 33,920 chest X-ray images which were subdivided into 3 

categories was employed, where the categories included: positive for COVID-19 

pneumonia and non-pneumonic patients. The results obtained for the CN2A-CapsNet 

model were encouraging, where 98.54% accuracy and 99.01% recall were achieved 

for the binary classification (normal and COVID-19) and 96.71% accuracy and 

98.34% recall for the multi-class classification (COVID-19, pneumonia, and normal) 

illustrating its performance in small size datasets [108]. 

 

The work of Boruah et al., MLCapsNet+, consists of human immunodeficiency virus 

(HIV) integration sites (HIV ISs) identification mechanism that employs multi layered 

CapsNets integrated with attention mechanism. To allow genomic data to be more 

comprehensible, the said architecture adds an attention layer to multiple class-capsule 

layers. The model was trained with data sourced from the RID which consists of 

positive samples of HIV ISs from hg19 genome build and matched random control 

sites as negative samples. The dataset was partitioned into training, validation and test 

sets, and a robust figure of 37,664 positive samples and a corresponding number of 

negative samples were generated. The results confirmed that MLCapsNet+ surpassed 

the previously established methods, scoring high metrics on numerous evaluation 

criteria which included AUC-ROC and Fβ scores which are indicative of HIV ISs for 

this method of working [109]. 

 

According to the work of Han et al. which is proposed as CardioCaps, CardioCaps is 

an attention-based dynamic routing capsule network developed with a view to 

mitigating the problem of class imbalance in echocardiogram images. The structural 

design includes a new margin-based loss function which encodes a weighting factor 

towards the positive instances of that class, combined with an additional regression 

loss that looks at Ejection Fraction (EF) to make the model less sensitive to class 

imbalance problem. CardioCaps adopts attention mechanism paradigm instead of 
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dynamic routing which is supposed to enhance training and reduce the burden of 

satisfying translation-equivariance aspects in echocardiographic images. The model 

performed consistently well on the EchoNet-LVH dataset that contains around 12,000 

videos of echocardiograms yet this dataset is known to be rather rather skewed with 

80% of the content being normal and 20% abnormal videos. Thus, CardioCaps was 

able to optimally classify 85% of the submitted video samples which surpassed the 

results achieved by the baseline algorithms i.e. conventional ML and a variety of DL 

models suggesting that the model is robust to class imbalance in medical images [110]. 

 

The method introduced in this study incorporates a Capsule Neural Network (CapsNet) 

with transfer learning to further improve the classification of thoracic pathology in the 

chest X-ray images. The researchers created a dataset which consisted of 3043 chest 

X-ray images from four open access repositories and divided them into four classes 

being pneumonia, COVID-19, tuberculosis and healthy. The model combines three 

CNNs including VGG16, VGG19, and Inception V3 as the feature extractors and 

CapsNet as the classifier with the help of augmentation tactics to solve data imbalance 

problems. The results were outstanding as the model achieved a training accuracy of 

97.29% and the validation accuracy was 96.47%. The sophisticated design of CapsNet 

model was achieved with F1- score of 97.08%. Which shows that it is capable of 

diagnosing multiple thoracic diseases [111]. 

 

According to Almarshad et al., the SOADL-GCC method proposed by them is 

applicable in detection and classification of gastrointestinal cancer by way of 

employing an all-inclusive approach consisting of bilateral filtering for noise 

reduction, a CapsNet structure for feature extraction, and Deep Belief Network (DBN) 

for classification. The model also uses a newly developed Snake optimisation 

algorithm to optimize the hyperparameters of the CapsNet model. The system was 

assessed using the Kvasir dataset which has 5000 endoscopic images of different 

gastrointestinal states. Experimental results demonstrated that SOADL-GCC achieved 

an impressive accuracy rate of 99.72% with sensitivity, specificity and F-score values 

of 99.29%, 99.82% and 99.29%, respectively. These results prove that the model 

performs well in detecting and classifying gastrointestinal cancers which ceteris 
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paribus suggest an improvement of computer-aided diagnostic systems in the health 

sector [112]. 

 

The method introduced by Lei and his colleagues, BP-CapsNet, has also proved 

powerful and effective for the medical image analysis tasks by integrating the use of a 

singular value decomposition (SVD) module into Capsules Networks. By performing 

noise reduction, the SVD function allows the input to make more relevant 

contributions towards the final decision. It includes more layers including 

convolutional layers to extract features, a primary capsule layer which transforms 

those features into vector capsules and A routing module which is designed with a new 

strategy called Bayesian–Pearson routing. This algorithm responsible for capsule 

routing manages to alleviate some of causes of deterioration of performance in the case 

of decaying and noise infestation of multi-dimensional vectors. The performance of 

BP-CapsNet was comprehensively tested using seven different datasets of medical 

images drawn from MedMNIST v2, where it achieved state-of –the-art results on two 

of the datasets and the best results on another two datasets which suggests its 

generalization and effectiveness in medical image diagnosis [113]. 

 

Shaheen et Al.’s coupling mechanism proposes to model the liver cirrhosis disease 

condition using a hybrid deep learning approach namely the Hybrid Convolutional 

Neural Network-Capsule Network (HCNN-CN) which was optimized using Adaptive 

Emperor Penguin Optimization (AEPO) Optimization. The first step is to de-noise the 

acquired 3D images by applying an Extended Guided Filter followed by binomial 

thresholding segmentation in order to focus on the ROI. The methods used are the 

Grey Level Co-occurrence Matrix (GLCM) and gray level Run-length Matrix 

(GRLM) for feature extraction. After the federated learning of Graph Neural Networks 

(GNNs) model, HCNN-CN was majorly focused on the classification of features and 

were enhanced through varying hyperparameters optimally using AEPO. The data set 

under study contains MRI images of several patients who were diagnosed with liver 

cirrhosis. The model was able to get good results, with 99.33% accuracy and 98.63% 

sensitivity which confirms that the model can diagnose the cirrhosis condition 

appropriately [114]. 
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In their work, Manohar et al., talk about a technique named InceptionCaps which 

targets the problem of automatic classification of glaucoma through use of CapsNet 

based deep learning models. In their work, the authors consider an InceptionV3 based 

architecture as its convolutional subnetwork for better feature representation of retinal 

fundus images. The model overcomes the problems of limited data by transfer 

learning, which helps it generalize well when there are not many annotated images. 

The main benchmark dataset used for evaluation is taken from the RIM-ONE v2 

database which consists of a total of 455 fundus images that are sectioned into 

glaucomatous and normal groups. In this method, astounding performance measures 

were obtained specifically a: accuracy value of 0.956, specificity of 0.96 and AUC 

access of 0.9556. Such measures indicate stability and general superiority against other 

many modern deep learning models for glaucoma classification tasks [115]. 

 

Though heel disease diagnosis and treatment has been addressed in multiple medical 

publications, to the best of our knowledge, no research exists which employs AI to 

heel disease diagnostics. Furthermore, we did not find any public online database of 

heel radiographs. This research aims to fill out these voids by adding to the medical 

field the problems concerning the first contact with patients suffering from foot 

diseases, namely Heel spur and Sever's disease. The aims of the research include the 

development of a new set of data to mitigate the data sparsity issue that affects 

classification efforts and development of more efficient capsule neural network 

models that provide better performance in detection and classification of congenital 

disorders of the heel bone.
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PART 4 

 

METHODOLOGY 

 

4.1. DATASET CREATION AND ANALYSIS 

 

In this part of the study, we present a previously non-existing dataset that specifically 

addresses the issue of heel bone disease classification, including Sever’s disease and 

heel spurs. The dataset is supposed to fill in the crucial gap in the publicly available 

data in this particular medical field so that AI models can be developed to make 

accurate diagnoses and classifications of diseases. We followed strict collection, 

annotation, and preprocessing procedures to put together such a dataset that contains 

multiple images of different conditions and injuries, thus ensuring the availability of a 

wide range of deep learning models for training and testing purposes. The following 

section is focused on the methods of dataset creation, annotation, and preprocessing, 

as well as on the methods of dataset balancing to improve the performance of a trained 

model. 

 

4.1.1. Collection of Lateral Foot X-ray Images 

 

The X-ray images used in this dataset were taken from the Kirkuk General Hospital, 

utilizing the hospital’s resources in order to gather high-quality medical imaging data. 

The images were first obtained in a Digital Imaging and Communications in 

Medicine (DICOM) format, which is the preferred format for medical imaging. This 

format allows for important metadata and a particular level of imaging quality to be 

maintained. In order to ease their applicability in machine learning application 

pipelines, the images were exported into the JPG format of a licensed software known 

as MicroDicom, which is highly regarded in working with DICOM images.  
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MicroDicom also allows batch conversion, thus speeding up the rate at which many 

images would be processed. The images that were collected mostly had a size of [2021 

× 2021] pixels, which was quite useful in providing great detail of the anatomical 

features of interest. The high resolution, however, posed difficulties regarding 

computational ability. Thus, to simplify the analysis and concentrate on the region of 

interest (ROI), the images were resized during the preprocessing stage. 

 

4.1.2. Dataset Characteristics 

 

The dataset is composed of 3,956 images categorized into three classes: 

● Normal Heel: 1,842 images 

● Heel Spur: 1,316 images 

● Sever’s Disease: 798 images 

 

Examples of X-ray images are shown in Figure 4.1, Normal Heel, Figure 4.2, Heel 

Spur, and Figure 4.3, Heel with Sever disease. 

 

 

Figure 4.1. Normal heel.
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Figure 4.2. Heel spur. 

 

 

Figure 4.3. Heel with sever disease. 

 

While the dataset provides a comprehensive representation of the conditions studied, 

it exhibits an imbalance across the three classes. The "normal" class contains the most 

images, followed by the "heel spur" class, with the "Sever" class having the least. This 

imbalance reflects the natural prevalence of these conditions in the population but 

poses challenges for training AI models, as imbalanced datasets often lead to biased 

predictions favoring the majority class.  
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To correct this imbalance, some oversampling of the minority classes was also 

conducted during model training to guarantee even knowledge and accuracy across all 

the classes. 

 

4.1.3. Annotation Process 

 

Annotation of the dataset included locating the area of interest in each X-ray image. 

The ROI included the heel bone, which is required to diagnose ailments like heel spurs 

and severe disease. This was done using specialized software, for example, Votte 

v.2.2.0 and labelImg-1.8.6, which are both known to be precise as well as user-friendly 

when it comes to creating bounding boxes around pertinent regions of the medical 

images. 

 

The region pertaining to the heel bone was marked using a bounding box, making the 

rest of the image unnecessary and ensuring the model used the parts of the image that 

had useful diagnostic information. This approach has immensely minimized the 

processing load and also enhanced the performance of the machine learning pipeline. 

The labeling process was done by a qualified orthopedic and traumatology surgeon 

with a radiology background to counter-check the validity of the labeling.Illustrated 

examples of X-ray photographs demonstrate specific classes which include (A) none 

affected heel (B) heel spur, (C) Sever’s disease demonstrated in Figure 4.4. These 

annotations made it possible to form a dataset with features belonging to well defined 

and labeled classes which are key in the development of an effective AI model. 

 

 

Figure 4.4. (a) Normal heel, (b) Heel spur, (c) Sever disease. 
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4.1.4. Data Preprocessing Techniques 

 

Data preprocessing is an important phase in making the dataset ready for machine 

learning applications. This research involved implementing various native techniques 

to facilitate the optimization of the dataset: 

 

• Resizing: Resizing all X-ray images to pixel images of [64 x 64] enabled 

uniform standardization of the input dimensions into the AI model. This is 

resizing lowered computational needs without affecting the fundamental 

features that are necessary for diagnosis. 

• Cropping the ROI: A rectangular box was used to crop the area of interest in 

the image, thus removing uninteresting parts of the picture and concentrating 

the model on the heel bone. Figure 4.5. Show the samples of cropped ROI 

images. 

• Normalization: The pixel values were rescaled to fall between the range of 0 

and 1, so there is image intensity homogeneity across the dataset. This step 

enhanced the capacity of the model to learn features. 

 

These series of preprocessing steps made it possible for the dataset to adapt to a neat 

and suitable form, which was ready to go for training and testing of deep learning 

models, thus producing ideal and precise outcomes during the classification of the 

diseases of the heel bone. 

 

 

Figure 4.5. Samples of cropped ROI images. 



70 

 

 

4.2. BASELINE MODEL - ORIGINAL CAPSNET 

 

As depicted in part 3, the 2017 invention of Sabour et al., referred to as CapsNet, offers 

a solution to scaling problems faced in standard convolution neural networks [12]. 

Explaining this feature in further detail, we see that these networks assist in patterning 

data interactions as they take a vector form instead of a scalar, which makes them 

effective in hierarchal spatial applications. Targeting our heel disease dataset with the 

help of CapsNet presented us with some specific issues with regard to suitability based 

on the design aspects that follow suit in this section. 

 

4.2.1. Application of CapsNet to Heel Disease Dataset 

 

The initial version of any CapsNet model was mostly developed and tested on the 

MNIST dataset, which is a standard benchmark and a set of binary images of 

handwritten digits with a size of [28 × 28] pixels. Although the MNIST dataset is 

simple and has a consistent data structure, the heel disease dataset is not. The X-ray 

images in our dataset show fine bone structures, different pixel levels, and images with 

different resolutions, which are extremely different from the binary images of the 

MNIST dataset. 

 

In order to transfer the original CapsNet model to the heel disease data set, the images 

were first resized to [64 × 64] pixels so that they were compatible with the model’s 

input layer; Figure 4.6 shows the applying the original capsule architecture on the heel 

dataset. Nevertheless, the results were still disappointing as the proposed model did 

not perform well on the heel disease dataset. This could be due to two or more of the 

data having different characteristics, and thus: 

 

• Complex Pixel Information: Unlike MNIST’s binary representation, the heel 

disease dataset contains grayscale X-ray images with high pixel density, which 

requires a more robust feature extraction mechanism. 

• Dataset Size: The relatively small size of the heel disease dataset posed 

challenges for the original CapsNet, which was designed for datasets with a 

larger volume of samples. 
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• Feature Variability: The dataset comprises three distinct classes—normal, heel 

spur, and Sever’s disease—each exhibiting unique patterns that the original 

CapsNet struggled to distinguish effectively. 

 

Although CapsNet inherently provides better performance in capturing spatial 

hierarchies and part-to-whole relationships compared to CNNs, the limitations of its 

original design became evident when applied to medical imaging tasks. 

 

 

Figure 4.6. Original capsule architecture with heel dataset. 

 

4.2.2. Performance Analysis (Accuracy, AUC, Cross-Validation) 

 

The performance of the original CapsNet model on the heel disease dataset was 

assessed using key metrics, including accuracy, AUC, and a confusion matrix analysis. 

These metrics provide insights into the model's effectiveness in detecting and 

classifying heel disease. 

 

4.2.2.1. Accuracy 

 

Accuracy evaluates the proportion of correctly classified samples out of the total 

dataset. The CapsNet model achieved an accuracy of 73.99%, highlighting its general 

performance in classifying heel disease conditions. Figure 4.7 shows the curve of 

training accuracy. Figure 4.8 shows the curve for the training loss of the model. 

Additionally, the class-wise performance metrics, including precision, recall, and F1-

score for each class, are detailed in Table 4.1, highlighting the performance of CapsNet 

in distinguishing between the categories of the heel disease dataset. 
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Figure 4.7. Training and testing accuracy of CapsNet applied on heel dataset. 

 

 

Figure 4.8. Training and testing loss of CapsNet applied on heel dataset. 

 

4.2.2.2. Area Under the Curve 

 

The AUC measures the model's ability to differentiate between classes, with a value 

closer to 1.0 indicating better performance. For the CapsNet model, the AUC was 

recorded as 66.95%, demonstrating its potential in binary and multi-class classification 

tasks. Figure 4.9 shows the curve of AUC for original CapsNet applied on Heel dataset. 
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4.2.2.3. Confusion Matrix Analysis 

 

A confusion matrix was generated to further understand the model's classification 

performance, as shown in Figure 4.10. The confusion matrix provides a detailed 

breakdown of the true positive (TP), false positive (FP), true negative (TN), and false 

negative (FN) values for each class in Table 4.1. The confusion matrix shows the 

capabilities and limitations of the model against each class, seeking the class where 

some error or misclassification occurred. Although these metrics are useful to some 

extent, the performance indicates that a better model is required that would be more 

capable of dealing with the problems of perplexing X-ray images along with an 

enhanced level of classification performance. 

 

 

Figure 4.9. Curve of AUC for original CapsNet applied on heel dataset. 
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Figure 4.10. Confusion matrix of original CapsNet applied on heel dataset. 

 

Table 4.1. Class-Wise Performance Metrics of CapsNet on heel disease dataset. 

Classes Precision Recall F1-score 

Sever 0.98             0.71 0.82 

Heel Spur 0.71       0.61       0.65 

Normal 0.69             0.85 0.76 

 

4.2.3. Limitations of CapsNet for Heel Disease Detection 

 

In spite of the groundbreaking architecture of CapsNet, the application in heel disease 

detection brought out certain shortcomings: 

 

• Incompatibility with Medical Data: The original CapsNet was tailored for data 

sets like MNIST that are rather straightforward in terms of pixel representation 

and the number of features. Medical X-ray images, for example those in our 

dataset, are richer in features with greater pixel variability. This variation 

means that considerable changes must be made to the CapsNet model 

architecture to be able to handle such data effectively. 



75 

 

 

• Dependence on Dataset Size: Optimizing the parameters and vice versa of 

CapsNet requires a lot of data. In this regard, the moderate amount of heel 

disease dataset that included three classes and 3,956 images was not enough to 

explore the entire potential of the original model, and it only caused overfitting 

and poor generalization issues. 

• Suboptimal Hyperparameter Settings: First, the intrinsic parameters or default 

settings, such as the kernel size, stride, and the number of capsules of CapsNet, 

did not meet the requirements of our dataset. Because of the limited size and 

complexity of the images, a configuration where some particular 

hyperparameters were altered was appropriate, which was not the case for the 

basic configuration of the CapsNet. 

• Lack of Multi-scale Feature Representation: The original formulation of 

CapsNet evidently has difficulty scaling its feature extraction capabilities, 

which is crucial for identifying fine differences between X-ray images. Its 

inability to adjust for variable feature size and shape considerably reduced its 

usefulness in many tasks, especially in the correct diagnosis of heel diseases. 

• Computational Complexity: Though the architecture of CapsNet is unique, it 

is quite demanding in terms of computation requirements, which makes it less 

appealing for specific tasks in the real world, such as medical applications, 

which emphasize efficiency. The high computational cost also added to the 

complications of training the model on a relatively small dataset. 

 

In summary, to conclude, the primary research gaps that need to be filled by future 

research are also addressed. And so, as these seeming problems began to emerge when 

the first CapsNet was employed for heel disease detection purposes, it became clear 

that the remaining tasks were simpler than they appeared. Such limitations prompted 

the search for a better-suited, selectively focused deep learning model capable of 

coping with medical images. 
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4.3. AN ENHANCED CAPSULE NETWORK (HECAPSNET) 

 

4.3.1. Introduction to HeCapsNet 

 

The HeCapsNet is a model produced by applying a set of improvements to the original 

CapsNet architecture. One of the major improvements that we have introduced is the 

use of the “he_normal” kernel initializer, as proposed by Kaiming He in 2015 [116]. 

This kernel enables the model to work effectively, which is the reason why we opted 

to call this “HeCapsNet” because of its applicability. The enhanced model is designed 

for automatic detection and classification of the Heel spurs and Sever disease using 

lateral foot X-ray images. These heel diseases are common ailments that cause pain 

and discomfort and are usually diagnosed through X-ray images viewed by orthopedic 

doctors. However, diagnostics and therapies, in a way, depend on manual diagnosis, 

which is a problem in areas with limited access to healthcare workers. This is an 

example of how AI-based systems are useful to remedy the wide diagnostic gap. 

 

Even though CapsNet, such as the original CapsNet, has shown to be quite resourceful, 

they have only been used on standard datasets, such as the MNIST dataset, which only 

consists of binary pixels. This dataset, however, being relatively simple, is in stark 

contrast to the complexity of medical imaging, which does tend to have high resolution 

features along with well-defined anatomical structures. We trained CapsNet on the 

heel disease dataset and found it had a rather large performance gap, and the accuracy 

was unsatisfactory. We were able to identify the issue as being a performance gap, and 

we may need to permanently restructure the architecture of the system to apply it more 

effectively for medical imaging applications. 

 

HeCapsNet implements the above discussed adjustments so as to enhance the feature 

extraction and representation. Such adjustments consist of extra convolutional layers, 

optimized kernel initializers and dropout techniques for fighting overfitting. 

 

Consequently, all these improvements allow HeCapsNet to capture the intricate pixel 

arrangements of medical images which result in such performance evaluation metrics 

as accuracy, AUC and cross validation results to increase significantly. This model not 
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only improves diagnostic capabilities in low-resource settings but also prepares the 

stage for AI-driven developments in the medical imaging domain. The novel dataset 

and better architecture are the two features that HeCapsNet embodies, which is an 

interjection in the AI revolution in the scope of medicine and day scale and accurate 

solution to bone disorders. 

 

4.3.2. Architectural Modifications 

 

HeCapsNet’s architecture includes several architectural modifications and 

improvements that were devised as responses to issues encountered with the original 

model CapNet. These changes were made in order to enhance the model’s applicability 

to intricate medical images and performance on the heel disease dataset. These 

architectural modifications are as follows: 

 

• Additional Convolutional Layers: For the sake of improving the extraction of 

features, HeCapsNet inserts additional convolutional layers prior to the 

primary capsule layer. These layers are designed to extract the high-

dimensional aspects of the X-ray images of heel bone, thus making it much 

easier for the network to accurately code the features associated with heel 

disease indicators. With these layers stacked, the model is capable of extracting 

both lower and higher-level features that aid in proper classification. 

• Kernel Initializers: Achieving an accuracy of 91.68% on the modified 

CapsNet, "he_normal" kernel initializer was employed to better the 

performance. The “he_normal” initializer was invented in 2015 by Kaiming 

He, and it is mainly used to increase the gradient flow in a deeper network that 

uses ReLU activation [116]. This strategy helps prevent problems such as very 

small or large outputs during initialization and thus allows faster and more 

reliable training. The application of this kernel initialization technique enables 

the model to achieve an appropriate weight distribution, which is advantageous 

in datasets with high variability in pixel intensities. 

• Dropout Layers: HeCapsNet employs dropout layers to solve overfitting, 

which gains significance when the number of samples in a dataset is low. 

Regularization is implemented within the network through dropout, ensuring 
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the model is able to make accurate predictions on new data.Modified Capsule 

Layers: The capsule layers have been improved to incorporate spatial relations 

and hierarchies between features. The primary capsule layer has been modified 

to use a higher-dimensional capsule to encode more intricate feature 

representations, while the classification capsule layer’s purpose is to develop 

accurate predictions by employing the input obtained from the other layers. 

 

The structure of the proposed HeCapsNet architecture model can be explained as 

follows: The convolutional layers are described in blocks. Block one has an inception 

convolutional layer made up of 64 filters of size [3 × 3] and a stride of one. The 

mentioned layer employs ReLU as its activation function, is initialized with 

“he_normal” and maintains the same padding scheme. After this, a dropout layer is 

employed with a ratio of 0.2 in order to decrease overfitting. With 64 filters and the 

previous kernel again, another Conv2D layer was introduced. This layer frames a [2 × 

2] maximum pooling layer, which is aimed at reducing irrelevant spatial features. The 

second block consists of the Conv2D layer with parameters of 128 filters, respective 

kernel size of [3 × 3], and activation of ReLU with the same padding. With a three 

times rate, the dropout was used again. Another Conv2D layer with the same 

parameters as above, for example,128 filters and [3 × 3] kernel, is added, which is then 

followed by another [2 × 2] max pooling layer. The third block of feature extraction 

augmented to enhance efficiency is comprised of 256 filters Conv2D’s, two in total, 

with a [3 × 3] kernel, and a dropout section is placed between them with a 0.5 rate. 

Later, a max-pooling layer with [2 × 2] size is applied after convolutional layers. The 

data is then forwarded to the primary capsule layer, which can be seen as a 

convolutional layer with 8 × 16 = 128 capsules, where each capsule has eight 

parameters implemented in a [3 × 3] kernel with a stride of one. To represent the output 

of the capsules, the output is reshaped to yield eight-dimensional vectors, and then the 

squash function is applied to scale the output in the range of [0, 1]. All these 

architectural modifications together improve the overall processing capabilities of 

HeCapsNet in terms of dealing with intricate medical images, feature extraction, and 

prediction. The new set of convolutional and capsule layers along with dropout and 

advanced initializers, augment the robustness of the network's overbalanced and 
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imbalanced datasets. The architecture of enhanced HeCapsNet is illustrated in Figure 

4.11, which mentions these modifications that were integrated into the model. 

 

 

Figure 4.11. Proposed enhanced CapsNet (HeCapsNet). 

 

4.3.3. Incorporating Yolo With HeCapsNet 

 

To improve the preprocessing pipeline of HeCapsNet, the YOLO model was 

implemented to automatically recognize and extract the region of interest (ROI) in heel 

X-ray images. YOLO is one of the best algorithms for object detection owing to its 

speed and accuracy, which makes it suitable for use in medicine where the accurate 

position of features is necessary [117]. 

 

When the whole foot X-ray is presented to the model, it assists the user in 

automatically detecting the heel area without requiring the user to select the region of 

interest, which enhances the diagnosis of the given condition. YOLO solves this 

challenge by fully automating the detection process, thus guaranteeing the reliable and 

accurate classification of the heel region. This step considerably minimizes the 

preprocessing workload and enables the HeCapsNet model to emphasize the key 

features in the images while ignoring regions that are not relevant. 

 

 

 



80 

 

 

4.3.3.1. Implementation of YOLO Steps 

 

• YOLO Model Architecture: In this study, we made use of YOLOv8 for object 

detection concerning the ROI. YOLO splits the input image into grid cells and 

predicts each grid cell's bounding boxes and class probabilities. For the heel 

disease dataset, the model was trained using a part of x-ray images in order to 

detect and locate the heel area. As shown in Figure 4.12, the YOLO was applied 

to the heel input image to produce the cropped ROI image.   

• Training Process: The model of YOLO underwent fine-tuning using the part of 

the heel disease dataset, which has been annotated with bounding boxes on the 

heel parts. 

• Output Integration: The bounding boxes found by YOLO allowed for 

automatic cropping of the heel areas. These followed cropped ROIs, which 

were resized to [64 × 64] pixels and sent to HeCapsNet for classification tasks. 

 

 

Figure 4.12. YOLO is applied to a heel X-ray image to automatically crop the ROI. 

 

4.4. HYBRID CAPSULE NETWORK (MEDCAPSNET) 

 

4.4.1. Introduction to MedCapsNet 

 

The field of automated medical diagnosis and analysis, which uses medical image 

processing, has always relied on complex neural network structures to accomplish 

accurate and dependable diagnoses. CapsNet has been revolutionary in covering the 

drawbacks of convolution neural networks, like the failure to preserve spatial 
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hierarchies. However, the original model of CapsNet, which was developed for simpler 

data sets like MNIST, has not been successful in meeting the requirements for more 

complex medical imaging data sets. Such datasets generally include high-resolution 

images with complex structural anatomy and extreme differences in pixel structure and 

intensity. To cover this shortcoming, we designed a MedCapsNet, which represents a 

combination of CapsNet architecture and a modified DenseNet201 model. This 

approach combines DenseNet's hierarchical feature extraction capability with 

CapsNet's spatial extent, thus allowing flexibility in its application to medical image 

classification tasks. Therefore, we decided to name the model "MedCapsNet" since it 

is an improved version of the Capsule network, which has been optimized for medical 

images. 

 

CapsNet’s first implementation tests were performed on the MNIST dataset, which 

consists of black-and-white images with pixel values of either 0 or 1. Although MNIST 

serves as a standard and simple platform for neural network evaluation, it is completely 

different from medical imaging datasets. Medical images have more intricate 

characteristics, higher resolutions, and wider distributions of pixel intensities. In 

addition, medical datasets are usually smaller and more skewed than datasets like 

MNIST. Such discrepancies made the original model of CapsNet unsuitable for 

medical datasets, and the architecture needed considerable changes to handle such 

intricate tasks. 

 

One of the issues associated with medical image datasets, e.g., X-ray and MRI images, 

is their high intra-class variability, smaller quantities, and intricate details within pixel 

level. These factors make it difficult for one to apply the traditional neural networks 

without heavily augmenting the training data provided. To alleviate these problems, 

MedCapsNet uses a modified DenseNet201 structure, which is better suited to the 

requirements of medical imaging. The structure of DenseNet201 allows for the 

improvement of the flow of information across its layers by forming dense inter-layer 

connections that allow every layer to receive input from every preceding layer. It 

achieves this by promoting better propagation of the gradients, and very deep networks 

can be built to learn and model complex features essential for the interpretation of 

medical images. 
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4.4.2. Introduction to DenseNet201 Model 

 

The DenseNet201 model, being an enhanced variation of the Dense Convolutional 

Networks, is perhaps one of the most distant developments in the sequence of deep 

learning architectures. As noted by Huang et al. in 2017, DenseNets were formulated 

with the expectation of enhancing the interlayer connections, improving gradient flow, 

and optimizing computing costs without compromising parameter efficiency. In 

particular, DenseNet201 is more than an implementation of such logic: it is a deep 

neural network with 201 layers designed for complex image recognition and 

classification tasks [118]. 

 

DenseNet201 is based on the idea of dense connectivity, and it completely contradicts 

the structural paradigm where information is passed from one layer to another in a one-

way sequential manner. In contrast, DenseNet proposes to interconnect directly every 

layer with all the layers that come before it in order to allow for a complete and 

unidirectional supply of information to the layers. This integration is accomplished by 

feature concatenation such that each layer not only takes inputs from the closest layer 

but also collects feature maps from all the layers before it. 

 

Thus, this connectivity pattern enables DenseNet201 to possess L(L+1)/2 connections 

in a network with L layers. For example, in five layers, the second layer H2 obtains 

input from x0 and x1 within the dense block connectivity pattern which ensures that 

the first layer or H1 is an input while the other layers H3, H4 obtain input from all the 

lower layers as shown in Figure 6.1. 
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Figure 4.13. Dense connectivity pattern adapted from [118]. 

 

DenseNet201 has several distinctive properties that make it an exceptional architecture 

for deep learning tasks wherein the most distinguishing characteristics are [118]: 

 

• Enhanced Gradient Flow: A dense connectivity pattern helps in getting around 

the vanishing gradient problem through better gradient flow within the 

network. All layers of a deep network architecture have direct access to the 

output gradient and the original input signals, which are helpful in learning 

deep networks. 

• Parameter Efficiency: Using concatenation instead of summation for feature 

reuse, DenseNet201 greatly decreases the number of parameters in comparison 

with classic networks. This saving of resources not only lessens memory 

consumption but also enhances the generalization power of the network. 

• Feature Reuse: Each layer in DenseNet201 adds its feature maps to all the 

subsequent layers so that features can be reused. This increases the number of 

available features for each layer, which assists each layer in representation 

learning, further improving performance in more complex tasks. 

• Reduced Computational Burden: Despite its numerous layers, DenseNet201 

utilizes a reduced number of parameters, thereby attaining enhanced 

computational efficiency. This enhancement in efficiency can be attributed to 
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the incorporation of dense blocks, a structural element that serves to reduce 

redundant computations, thereby focusing on the iterative refinement of feature 

maps. 

• Growth Rate and Dense Blocks: The concept of a growth rate (k), which 

defines the number of feature maps to be added by each layer, is introduced in 

DenseNet201. The setting of a larger growth rate aids in having more dense 

connections since each layer is able to utilize more features. For instance, in a 

dense block with k = 4, the fourth layer and all subsequent layers use denser 

feature maps than the third layer, among others. 

 

DenseNet201 consists of several dense blocks separated by transition layers; these 

combine to allow the network to learn hierarchical features and become adaptable to 

several tasks: 

 

4.4.2.1. Dense Blocks 

 

The majority of the structure is constituted of dense blocks, where each layer is 

connected to all layers of the preceding blocks. Such an arrangement enhances the 

efficiency of feature reuse alongside making representation learning more robust. 

 

4.4.2.2. Transition Layers 

 

The dense blocks have transition layers placed in between them to down-sample the 

spatial resolution of the feature maps and control the number of feature maps being 

sent to the next blocks. These layers make use of convolution, batch normalization, 

and pooling, among others, to reduce the complexity of the network. 

 

4.4.2.3. Growth Rate Optimization 

 

The growth rate in denseNet201 has been designed to enable a reasonable tradeoff 

between efficiency in computation and richness of representation. Each layer is 

influenced by this parameter since it specifies the count of new feature maps that are 

produced in each layer, making the network suitable for both small and large datasets. 
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4.4.2.4. Output Layer 

 

Densenet201 ends with a global average pooling layer and FC layer, which merges all 

the features learned in the previous layers and makes the last predictions for 

classification tasks.  

 

DenseNet201 is currently one of the most widely used deep learning models across 

different fields. This is largely because it is able to handle big datasets and multiple 

complex features. For instance, in regard to medical imaging, Densenet201 

impressively searches for very complex parts of the human body and any slight 

changes in scans, thus making diagnosis better. Densenet201 is among the most 

advanced architectures for deep learning, and it is useful in complex image recognition 

problems. It uses many dense connections, is parameter efficient, and extracts features 

efficiently, making it ideal for cases that need high precision and less computational 

consumption. Finally, Densenet201, in essence, tackles the loss of information and 

redundancy in computations; therefore, it is convincingly a building block to deep 

neural networks and all the potential inventions that will emerge in the future of deep 

learning. 

 

4.4.3. Integration Of DenseNet201 with Capsule Network 

 

Before entering the integration of Densenet201 with CapsNet, it’s worth noting that 

we first trained the DenseNet201 model with our heel bone dataset. The training 

achieved an accuracy of 92.17% and an AUC of 92.46%; this gave an indication of 

powerful model characteristics to learn deep features such as complex medical images. 

Thus, we decided to use it as a model for integration with CapsNet to improve 

performance. 

 

MedCapsNet makes use of the underlying framework of DenseNet201 but 

incorporates specific changes in order to increase its usability for the processing of 

medical images. These modifications improve the model performance when 

confronted with medical data complexities such as high dimensional X-ray images by 
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integrating both the dense connectivity patterns of DenseNet201 and the hierarchical 

and rich feature representations of CapsNet. The MedCapsNet architecture, with the 

help of its key features, enhances the original idea of DenseNet201 and modifies it for 

better performance on complex image classification, as shown in Figure 4.14. Below 

are discussed in detail the differences in the original structures and the modified 

version of the structure of the DenseNet201, which were incorporated in MedCapsNet: 

 

• Dense Block 

• Original DenseNet201: Employs densely connected layers in a block wherein 

each layer receives input from all previous layers within the block. This 

connectivity guarantees strong gradient flow, solves the problem of vanishing 

gradients, and features reusing. 

• Modified DenseNet201: The fundamental idea concerning the issue of dense 

connectivity remains, but hyperparameters have been adapted to better manage 

the complexity of the problem associated with medical image datasets. 

Additionally, an increase in the severity of overfitting can be prevented, and 

computational requirements can be reduced by limiting growth rates and the 

number of filters. 

Dense Layer 

• Original DenseNet201: Applies a basic convolutional layer with batch 

normalization and the ReLU function. This configuration works well with 

standard datasets but is somehow limited in terms of grasping the fine details 

in complex medical images. 

• Modified DenseNet201: Integrates two convolutional layers of different filter 

sizes in order to extract more complex features. The dropout layer is included 

in the model to enhance generalization capability and avoid the issue of 

overfitting. In addition, the “he_normal” initializer is used to secure better 

weight initialization for complex pixel distributions, which in turn assists in 

better convergence and improved gradient for the model’s multiple layers. The 

“he_normal” initializer takes samples from a truncated normal distribution, 

which has a mean of 0 and a variance as described in equation (6.1), with n 

being the number of input units in the weight tensor [119]. 
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Transition Layer 

• Original DenseNet201: In order to enhance performance while minimizing the 

number of feature maps, batch normalization, ReLU activation, and global 

average pooling are used. 

• Modified DenseNet201: To avoid overfitting, dropout is employed instead of 

batch normalization, and global average pooling is replaced by MaxPooling2D. 

The latter better retains details of the local features, which is important in 

medical imaging since little details could be important in diagnosis. 

Convolutional Layer 

• Original DenseNet201: Does not entail the application of extra convolutional 

networks prior to the entrance into DenseNet structure. It is obvious that the 

model performs directly on the provided input data, which may constrain its 

use in more complex datasets. 

• Modified DenseNet201: Presents two convolutional blocks prior to DenseNet. 

Each block is composed of two convolution layers: Conv1 and Conv2. The first 

convolutional layer, Conv1, includes a kernel size of [3 × 3], the same padding 

technique, and a normal kernel initializer, generating 64 channels of output for 

the first block and 128 for the second one. After conv1, a dropout layer is used 

with a value of 0.2 and 0.3 for the first and second blocks, respectively. 

Subsequently, Conv2 is performed with the same settings as Conv1, with the 

addition of a 128-channel output layer. Finally, a Kernel MaxPooling2D layer 

with a Kernel Size of [2 × 2] is used to form the completed blocks. These blocks 

act on the raw input by normalizing and enhancing feature maps, which, in 

turn, facilitates the other processes within DenseNet. 

Number of Blocks and Growth Rate 

• Original DenseNet201: Consists of 4 dense blocks with a growth rate of 32 and 

6, 12, 32, and 48 filters, respectively. This architecture works well for a high 

number of data sets but is costly and tends to overfit for low datasets. 

• Modified DenseNet201: Decreases the architecture to one dense layer with a 

growth rate of 4 instead of 32 and 2 filters only instead of a group of 
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(6,12,32,48) filters, respectively. Such specialization minimizes the expenses 

for modeling, allowing the core function of the model to be relevant without 

overtraining with minor datasets. 

 

Table 4.2 highlights the differences between the original DenseNet201 architecture 

and the modified DenseNet201 used in MedCapsNet. Such a combination of the 

modified Dense Net 201 and CapsNet makes it possible for MedCapsNet to transcend 

the challenges that the original architecture had. These problems included problems in 

interpreting datasets containing complex spatial patterns and increased chances of 

overfitting in smaller datasets. Addressing the said problems, MedCapsNet shows 

notable advancement in terms of diagnostic accuracy, robustness, and computational 

efficiency. These transformed MedCapsNet will allow it to capture a rich hierarchy 

amongst the input data while being able to process medical data sets efficiently, 

making it more appropriate for heel disease detection in the larger context of 

complicated imaging tasks.  

 

Experimental results have proved the heel disease detection and classification 

superiority of MedCapsNet that achieves good accuracy and robustness by taking 

advantage of DenseNet201’s dense connectivity with CapsNet spatial awareness. 
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Table 4.2. Comparison of original and modified DenseNet201. 

Aspect Original DenseNet201 Modified DenseNet201  

Dense Block Use multiple densely 

connected layers with large 

growth rates. 

Retains dense connectivity but 

uses reduced growth rates and 

fewer filters to minimize 

computational complexity. 

Dense Layer Single Conv2D layer with 

batch normalization and 

ReLU activation. 

Two Conv2D layers with varied 

filter sizes, dropout for 

regularization, and “he_normal” 

initializer for weight 

optimization. 

Transition 

Layer 

Includes batch normalization, 

ReLU, and global average 

pooling. 

Replaces batch normalization 

with dropout and global average 

pooling with MaxPooling2D to 

retain critical local features. 

Convolutional 

Layer 

No additional convolutional 

layers; directly processes raw 

input. 

Adds two convolutional blocks 

before DenseNet, including 

dropout and MaxPooling2D for 

enhanced feature extraction. 

Number of 

Blocks 

Four dense blocks with filters 

(6, 12, 32, 48). 

One dense block with two filters 

for simplicity and reduced 

computational overhead. 

Growth Rate Fixed at 32, suitable for large 

datasets but resource 

intensive. 

Reduced to 4, balancing feature 

reuse and computational 

efficiency. 

Feature Map 

Pooling 

Global average pooling used 

in transition layers. 

MaxPooling2D for better 

retention of small but 

diagnostically significant local 

features. 

Weight 

Initialization 

Standard initialization 

methods, prone to gradient 

vanishing/exploding issues. 

“he_normal” initializer ensures 

stable training and convergence 

for complex medical images. 
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Figure 4.14. Architecture of MedCapsNet model. 
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PART 5 

 

EXPREMENTS AND RESULTS 

 

5.1. APPLICATION OF HECAPSNET ON HEEL DISEASE DATASET 

 

The dataset on heel disease comprises 3956 X-ray images, grouped into three classes: 

Normal, Heel spur, and Severs disease. The images contain a lot of anatomical detail, 

and these were annotated by specialist orthopedics and radiology. Prior to submission 

of information to HeCapsNet, The X-ray images were normalized to a size of [64 × 

64] pixels. Such resizing allows for the graphical information to be appropriate to the 

model’s input layer and does not eliminate features relevant to diagnosis. The data set 

is then divided into balance and imbalance data sets to test the performance of the 

model under different conditions. 

 

Using powerful feature extraction layers techniques, “he_normal” initializer, and 

modified decoder parameters, HeCapsNet was able to classify better and was trained 

on this dataset. Its ability to cope with variations in the quality and size of an image 

was subjected to rigorous tests that demonstrated its robustness and adaptability in 

actual medical situations. 

 

HeCapsNet exhibited excellent performance in heel bone disease detection and 

classification since the accuracy achieved was 97.29% on balanced data and 94.19% 

on imbalanced data. More specifically, HeCapsNet had managed to yield results of an 

accuracy of 91.68% on the new dataset, this time though there was no “he_normal” 

initializer; nonetheless, once the initializer was applied, the result drastically changed 

to 98.37%. The model is effectively capable of shielding a high AUC of 98.69, 

contributing to an excellent power of discriminating between various classes of 

objects, namely Normal, Heel spur, and Sever’s disease. Along with this, the fivefold 
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cross-validation achieved an accuracy of 95.77%, thereby reiterating the strength of 

the HeCapsNet model across different portions of the dataset. 

 

Several important figures graphically demonstrate the performance of HeCapsNet. 

The training accuracy recorded in Figure 5.1 and the loss curve in Figure 5.2 indicates 

the overall epoch-wise performance of the model since the accuracy has been reported 

to improve gradually while the loss keeps on reducing through all the phases of the 

training. The confusion matrix gives details of how the model performed with regard 

to the classification by presenting the overall proportion of true and false positives and 

true and false negatives for all three classes: normal, heel spur, and Sever’s disease, as 

illustrated in Figure 5.3. Additionally, the class-wise performance metrics, including 

precision, recall, and F1-score for each class, are detailed in Table 5.1, highlighting 

the effectiveness of HeCapsNet in distinguishing between these categories. 

Furthermore, the AUC ROC curve, which is presented in Figure 5.4, emphasizes the 

capacity of the model to separate the classes since AUC, which is large, provides an 

indication of good predictive power. In this collection of figures, the outstanding 

performance of HeCapsNet in the context of automated diagnosis of heel diseases is 

confirmed. 

 

 

Figure 5.1. HeCapsNet training - testing Accuracy over epochs on heel dataset. 
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Figure 5.2. HeCapsNet training - testing loss over epochs on heel dataset. 

 

 

Figure 5.3. HeCapsNet AUC ROC curve on heel dataset. 
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Figure 5.4. HeCapsNet AUC ROC curve on heel dataset 

 

Table 5.1. Class-Wise Performance Metrics of HeCapsNet on Heel Disease Dataset. 

Classes Precision Recall F1-score 

Sever 0.99 1.00 0.99 

Heel Spur 0.98 0.95 0.97 

Normal 0.95 0.96 0.96 

 

5.2. APPLICATION OF HECAPSNET ON DIFFERENT DATASETS 

 

A range of different datasets were used to systematically evaluate the performance of 

HeCapsNet for image classification. For this assessment, the HeCapsNet model was 

fully trained on the F-MNIST, MNIST, CIFAR-10, OA knee, and Brain MRI datasets. 

Such datasets were incorporated in order to further analyze the strengths and 

weaknesses of HeCapsNet in simple and complex imaging tasks. 

 

The MNIST dataset is renowned for composing 60000 training samples and 10000 

testing samples and formatting grayscale images ranging from digits 0 to 9 into [28 × 

28] pixel resolution. Even though it is basic in its architecture, it is still reliable in 

assessing a given model's performance, and due to its nature of being easy with the 

features, the MNIST continues to be a core pillar for developing deep learning models. 

In parallel, F-MNIST can be considered as a substitute for MNIST, which consists of 
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10 categories of various clothing items. The set also provides 60,000 training and 

10,000 testing images, and its structure is also [28 × 28] resolution, each image framed 

as a grayscale. These data sets set the threshold for the assessment of HeCapsNet's 

capability in handling grayscale images of lower complexity. 

 

In continuation of proceeding towards advanced domains, the next challenging dataset 

is the CIFAR-10 dataset. This dataset, which was built by Alex Krizhevsky and Ilya 

Sutskever, focuses on image classification in 10 different categories that include 

vehicles, animals, and household items. To note our differences, as opposed to the 

CIFAR-10 dataset, where its images are in RGB format, both the MNIST and F-

MNIST datasets do not require a model to operate or manipulate three color channels 

at once. Each image in the CIFAR-10 dataset is over [32 × 32] pixels, and there are a 

total of 50,000 training images and 10,000 testing images within it. This dataset gives 

an additional complexity of color features, which would make it hard for models 

initially built for the grayscale ones, such as the MNIST models. 

 

In order to assess the efficacy of HeCapsNet on medical imaging tasks, two complex 

datasets were included in our studies, which are Knee osteoarthritis (OA) and brain 

tumor MRI; the Knee OA severity grading dataset hosted on Mendeley has 

comprehensive X-ray images that are crucial for OA grading. We picked this dataset 

due to its nearness to our heel disease dataset since all have complex anatomical 

features that can be best viewed in X-ray imaging. The Kaggle brain tumor MRI 

database has a total of 3,064 MRI scans and is used as a baseline to classify the 

diagnosis of patients with brain tumors. The complexity of composing these medical 

datasets stems from but is not limited to, the information on the pixels and the different 

types of anatomy present, as well as the requirement for precise feature 

construction. Training on these datasets helped to confirm the strength that HeCapsNet 

possesses in dealing with the problems associated with medical imaging. 

 

The Heel Disease dataset contains 3956 images in three classes: normal, heel spur, and 

Sever's disease, and was created in order to test HeCapsNet for heel disease recognition 

and classification. All images were resized to the resolution of [64 x 64] pixels, 

retaining underlying important anatomical structures and compatibility with input 
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dimensions. Such a preprocessing step made it easier for the model to concentrate on 

functionality only relevant to the region of interest while disregarding computation 

over nonconcentrated areas. 

 

HeCapsNet was trained on all the datasets, setting 70 epochs of training iteration. In 

terms of medical images, where high-resolution features and complex pixel variations 

are more difficult challenges, the model's performance clearly outperformed the initial 

version of the CapsNet. HeCapsNet faced datasets in the form of Brain MRI, Knee 

OA, and Heel Disease, which already had rich anatomical structures and varied quality 

of images, which made it suitable to test its advanced feature extraction and 

classification capabilities. In contrast, more straightforward tasks were posed by easier 

datasets such as MNIST, F-MNIST, and CIFAR-10, which all included 60,000 images. 

 

According to Table 5.2, HeCapsNet obtained sufficient results for all datasets. For the 

Knee OA dataset, the model managed to achieve 83.42% accuracy, which is even 

better than the original 78.82% performance of the CapsNet. For the Heel Disease 

dataset, HeCapsNet obtained 97.29% accuracy for the balanced dataset, 94.19% for 

the imbalanced dataset, and 95.77% with five cross-validations. With the use of the 

"he_normal" initializer, HeCapsNet achieved a knee dataset accuracy of 83.42%, 

while the knee dataset accuracy without the technique was 77.35%. CapsNet achieved 

an accuracy of 91.68 and 97.29 percent, respectively, for our new dataset with and 

without the use of a "he_normal" initializer. Results indicate how the model can 

manage to be trained on datasets of different complexities and balancing. 

 

Comparative performance analysis with other works, as shown in Table 5. 3, indicates 

that HeCapsNet is superior in achieving accuracy on different HeCapsNet datasets. 

For example, for the datasets considered, HeCapsNet was able to accomplish the 

following results: 99.51% on MNIST, 93.33% on F-MNIST, 81.94% on CIFAR-10, 

and 98.37% (balanced) on Brain MRI datasets. These figures are well above what has 

been achieved using the original CapsNet and many enhanced capsule-based 

approaches, which in turn demonstrate the better generalization and performance 

consistency of HeCapsNet across diverse areas. 
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Table 5.2. Accuracy comparison between HeCapsNet and original capsule models for 

knee and heel disease datasets. 

Model Knee (OA) Heel Dataset 

Original CapsNet 78.82% 73.99% 

Proposed enhanced CapsNet 

(Without he_normal 

initializer) 

77.35% 91.68% (balanced dataset) 

Proposed CapsNet 

(HeCapsNet) 

83.42% 97.29% (balanced dataset) 

94.19% (imbalanced dataset) 

95.77% (fivefold cross-validation) 

 

HeCapsNet has shown its versatility by including both medical and non-medical 

datasets. Its capability to manage complicated imaging tasks, especially in medical 

applications, indicates its potential use in actual diagnostic systems. HeCapsNet's 

advanced approach combines architectural innovations and rigorous training and 

clearly illustrates the benefits of HeCapsNet over conventional architectures in 

medical images, opening up great opportunities for researchers and practitioners in 

medical imaging. 

 

In this part, we described HeCapsNet, a modified fully convolutional CapsNet that is 

aimed at automatically identifying and classifying heel ailments from the lateral foot 

X-ray images. To this end, we carried out a series of experiments employing our 

recently proposed model in addition to various datasets, which were MNIST, Fashion-

MNIST, CIFAR-10, brain tumor MRI, and knee osteoarthritis (OA) X-rays. The 

results confirmed that HeCapsNet exceeded the original CapsNet, especially on the 

more complicated medical datasets. 

 

When HeCapsNet is compared with other modified CapsNet found in literature, we 

experimentally observed similar effectiveness for it on the simpler datasets such as 

MNIST and F-MNIST. On the other hand, HeCapsNet achieved better performance 

when dealing with more complex medical datasets like brain MRIs, knee X-rays, 

muscle diseases, and heel disease datasets. In particular, for the heel disease dataset, 

the proposed model recorded accuracy rates of 97.29% on balanced data, 94.19% on 

imbalanced data, an AUC of 98.69%, and 95.77% accuracy regarding fivefold cross-

validation. 
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Table 5.3. Performance (accuracy) comparison between proposed and state of the art 

models.  

Models MNIST F-MNIST CIFAR-10 Brain MRI 

[62] [12] Original 

CapsNet 

99.23% 

[12] 

92.49% [62] 62.98% [62] 78.69% [62] 

[61] Improved 

capsule network 

99.65% - 82.31% - 

[101] Optimized 

capsule network 

99.87% - 82.45% 94.85% 

[63] Modified capsule 

network 

- - - 90.89% 

[64] Improved 

capsule network 

- - - 86.56% 

Proposed enhanced 

CapsNet (without 

he_normal 

initializer) 

99.46% 93.21% 82.84% 96.98% 

Proposed enhanced 

CapsNet (HeCapsNet) 

99.51% 93.33% 81.94% 98.37% 

(balanced) 

93.59% 

(imbalanced) 

 

The initial design of the CapsNet had issues with medical images for two reasons: first, 

it had too few convolutional layers, which rendered it incapable of properly feature 

extracting from intricate images, and second, the raw kernel initializer that was 

deployed in conjunction with the ReLU activator was ineffective for medical images 

that contained heavy pixel detail. To address these issues, we implemented a 

“he_normal” kernel initializer on the convolutional layer. These modifications greatly 

improved the results that HeCapsNet delivered when deployed on complicated 

datasets. 

 

Furthermore, adding more convolutional blocks before the capsule layers enabled the 

model to extract better features. These changes increased accuracy by allowing the 

network to encode hierarchical structures in the data and improve the encoding of 

spatial features. The additional convolutional blocks were also useful for 

regularization and lessening overfitting in order to enhance generalization on new data. 

 

Our 3,956 X-ray images of the lateral foot have been annotated from a reliable dataset 

that seeks to bridge the existing gap in heel diseases such as Sever’s disease and heel 
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spurs. Maintaining results that seem to be well substantiated does come with its share 

of challenges. As noted, the offered set of comprehensively analyzed images can 

facilitate reliable diagnoses, although expanding the set may assist in enhancing the 

capacity of the system or the model offered. Furthermore, the model is capable of only 

diagnosing two conditions, Sever’s disease and heel spurs, and thus is unable to assist 

in identifying other conditions affecting the heel or even the fractures. 

 

In practical terms, this system could be integrated into X-ray machines or used on its 

own for the first step in disease detection. It could also be enhanced into a web 

application where users can upload X-ray images, and the application gives a 

diagnosis. This would enable the system to be available to medics and help 

orthopedists give faster and more accurate first-contact diagnoses of heel illnesses. 

 

5.3. APPLICATION OF MEDCAPSNET AND OTHER MODELS TO HEEL 

DATASET 

 

The X-ray heel dataset forms a special category described in 4.1.2 and 4.1.3 with what 

can be termed three distinct classes: 1842 images, which can be termed as ‘normal,’ 

1316 images, which can be dubbed the brusque, heel spur, and 798 images that 

captured the severe backlash in the region. The dataset then contained a total of 3,956 

images comprising all classes. To facilitate disease identification in the heel bone 

images and to optimize network efficiency by excluding irrelevant areas, a bounding 

box method was used to create the region of interest (ROI). 

 

For the annotation and bounding box drawing of the ROI, the labelImg v1.8.6 software 

was applied. It is important to note that all the images went through basic 

preprocessing procedures, such as cropping to the ROI and then scaling the image sizes 

to [64 × 64] pixels, prior to being incorporated into the experimental arrangement. 

Considering the challenge posed by the unbalanced distribution of the images across 

the dataset classes, techniques for data balancing, especially oversampling methods, 

were employed to achieve better representation. Oversampling was carried out using 

the RandomOverSampler from the imblearn.over_sampling library to equalize the 

distribution of the three classes: Sever, Heel spur, and Normal. Some more usage 
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instances were added to the dataset. Originally, there were only 3,956 images 

available. The method introduces random samples from classes with a lower number 

of images until all classes have the same number as the class of interest. In this case, 

the aim was to have 1,842 images for each individual class. Consequently, the total 

number of images in the dataset was raised to 5,526, with an even distribution among 

the classes. The results of performing the mentioned method render the training of 

machine learning models free from class imbalance as all the classes are better 

represented, and no single class has a greater chance of skewing the bias of the 

algorithms. The balancing of the heel diseases dataset is shown in Figure 5.5. 

 

 

Figure 5.5. Distribution of balancing heel diseases dataset. 

 

We have implemented the original CapsNet [12] Res2Net+Caps [78], FixCaps [76], 

and BoostCaps [77] models according to the descriptions in their respective papers. 

To ensure the correct implementation of the existing models, we first trained the 

models using the datasets that were employed in their studies. After achieving results 

consistent with those reported in the papers, we proceeded to train the models with the 

heel dataset.  

 

Table 5.4 shows the model accuracy values of the original CapsNet and the other 

CapsNet compared with MedCapsNet on the heel dataset. In our implementation, 

while original CapsNet showed an accuracy of 73.99%, Res2Net+Caps showed an 

accuracy of 34.81%, and FixCapsNet showed an accuracy of 73.33% on the heel 

dataset. Regarding BoostCaps in [77], we encountered difficulties in method 

implementation due to some of the architecture components and parameters not being 
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clearly specified. MedCapsNet demonstrated 96.38% accuracy, as the epochs shown 

in Figure 5.6 and the loss epochs shown in Figure 5.7. Furthermore, the AUC score is 

98.27%, as demonstrated in Figure 5.8, along with the corresponding confusion matrix 

in Figure 5.9. Additionally, the class-based performance metrics, including precision, 

recall, and F1-score for each class, are detailed in Table 5.5, thereby highlighting the 

effectiveness of MedCapsNet in distinguishing between heel dataset classes. 

 

 

Figure 5.6. Training and testing accuracy of heel diseases dataset. 

 

 

Figure 5.7. Training and testing loss of heel diseases dataset. 
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 Figure 5.8. AUC curve for heel diseases dataset. 

 

 

Figure 5.9. Confusion matrix of heel diseases dataset. 
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Table 5.4. Results in comparison with base and recent capsule network models for heel 

dataset. 

Architecture Accuracy 

Original CapsNet [12] 73.99% 

Res2Net+Caps [78] 34.81% 

FixCaps [76] 73.33% 

BoostCaps [77] - 

MedCapsNet 96.38% 

 

Table 5.5. Class-wise performance metrics of MedCapsNet on heel disease dataset. 

Classes Precision Recall F1-score 

Sever 0.99       1.00       0.99 

Heel Spur 0.95       0.95       0.95 

Normal 0.95             0.94 0.94 

 

Furthermore, we implemented a 5-fold cross-validation method on MedCapsNet. The 

full heel dataset of 5526 images has been split into 70% for training and 30% for 

testing. For training the model we used the part of 70%, while for the evaluation of 

model performance we used the part of 30% which split for the test and never exposed 

to the model training, also not the part that k-fold that splitting it for internal evaluation 

in iterations steps. The result shows that the model performance evaluation was done 

with a cross-validation accuracy of 95.69%, as its epoch is shown in Figure 5.10, and 

the loss epochs are shown in Figure 5.11. Additionally, the ROC AUC is 98.87%, as 

demonstrated in Figure 5.12, along with the corresponding confusion matrix in Figure 

5.13. Additionally, the class-wise 5-fold cross-validation performance metrics, 

including precision, recall, and F1-score for each class, are detailed in Table 5.6, 

highlighting the effectiveness of MedCapsNet in distinguishing between these 

categories. 



104 

 

 

 

Figure 5.10. Training and testing accuracy of cross validation. 

 

 

Figure 5.11. Training and testing loss of cross validation. 
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Figure 5.12. AUC curve of 5-fold cross validation of heel dataset. 

 

 

Figure 5.13. Confusion matrix of 5-fold cross validation of heel dataset. 
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Table 5.6. Class-Wise of cross vlaidation performance metrics of MedCapsNet on heel 

disease dataset. 

Classes Precision Recall F1-score 

Sever 0.99             0.99 0.99 

Heel Spur 0.96             0.94 0.95 

Normal 0.93             0.95 0.94 

 

5.4. EXPERIMENTS OF MEDCAPSNET ON ADDITIONAL MEDICAL 

DATASETS 

 

We evaluated the performance of MedCapsNet for various medical datasets, including 

Breast_BreaKHis_v1, HAM10000 skin cancer dataset, and Jun Cheng’s Brain 

Imaging MRI Dataset, to demonstrate its superiority compared to existing studies. For 

this, we tested the model on the datasets used by the studies in the recent enhancement 

of the CapsNet and compared the results. In these experiments, the 5-fold cross-

validation method was implemented using the kf.split algorithm to evaluate the 

performance, and the full data was split into 80% for training and 20% for testing.  The 

performance results show that the model can achieve high accuracy with small and 

large medical image datasets. Table 5.10 presents the cross-validation accuracy results 

of MedCapsNet across various datasets, comparing its performance with the accuracy 

of the other models. Additionally, we used 100 epochs in each experiment to monitor 

the training and loss values in each iteration. All experiments were conducted using 

Google Colab environments, which included Python v3 as the runtime type, high 

RAM, and T4 GPU as the acceleration hardware.  

 

5.4.1. Breast BreaKHis v1 Dataset 

 

The BreakHis dataset, known as the Breast Cancer Histopathological Image 

Classification, is a collection of 9,109 microscopic images of breast tumor tissue. 

These images were obtained from 82 patients and were captured at various 

magnification scales, namely 40X, 100X, 200X, and 400X. The dataset consists of 

2,480 benign samples and 5,429 malignant samples. Each image has dimensions of 

700 x 460 pixels and is represented in RGB color space with 3-channel information. 

The pixel depth in each channel is 8 bits, and the images are stored in PNG format 
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[120]. This experiment used a small subset of images from a breast cancer dataset, 

consisting of 1000 images rescaled to [65 × 65] pixels and converted to 1 color channel 

in grayscale mode. The total images were used for training 800, while the remaining 

200 images were used to test the performance with a limited sample size. The 

experiment yielded a 5-fold cross-validation accuracy of 98.40% for training and 

testing as its epochs demonstrated in Figure 5.14 and loss epochs of training and testing 

demonstrated in Figure 5.15. Along with the corresponding confusion matrix, which 

is demonstrated in Figure 5.16, and the AUC of 98.96%, as demonstrated in Figure 

5.17. Our proposed MedCapsNet model demonstrates superior performance with a 

small sample of the dataset without using data augmentation compared to the model 

presented in [78], which achieved an accuracy of 95.6% using data augmentation. 

Additionally, the class-wise performance metrics, including precision, recall, and F1-

score for each class, are detailed in Table 5.7, highlighting the effectiveness of 

MedCapsNet in distinguishing between these categories of breast cancer. 

 

 

Figure 5.14. Training and testing accuracy of breast BreaKHis v1. 
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Figure 5.15. Training and testing loss of breast BreaKHis v1. 

 

 

Figure 5.16. AUC curve of breast BreaKHis v1. 
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Figure 5.17. Confusion matrix of mreast BreaKHis v1. 

 

Table 5.7. Class-Wise performance metrics of MedCapsNet on breast BreaKHis v1. 

Classes Precision Recall F1-score 

Benign 0.99             0.99             0.99 

Malignant 0.99             0.99 0.99             

 

5.4.2. HAM10000 Skin Cancer Dataset 

 

The HAM10000 dataset, provided by the Harvard Dataverse Organization, addresses 

the limited size and diversity of existing dermatoscopic image datasets for training 

neural networks in the diagnosis of pigmented skin lesions. It consists of 10,015 

dermatoscopic images collected from different populations and acquisition modalities. 

The dataset covers important diagnostic categories such as melanoma, basal cell 

carcinoma, and benign keratosis-like lesions [121]. The dataset is provided in 3 color 

channels on which the proposed model was trained in RGB mode. In addition, since 

the provided dataset is imbalanced, the oversampling method has been used to balance 

the dataset and also make the training number of images in large numbers, including 

37548 images. The result shows the high performance of the model, achieving cross-

validation accuracy of 5-fold of 98.29%, as its epochs are given in Figure 5.18, and 
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loss for training and testing is given in Figure 5.19. AUC of 99.00%, as demonstrated 

in Figure 5.20, along with the corresponding confusion matrix given in Figure 5.21. 

Our proposed MedCapsNet model shows superior performance compared to the model 

presented in [76], which achieved an accuracy of 96.49%. Table 5.5 demonstrates the 

precision, recall, and F1-score for each class, thereby indicating the effectiveness of 

MedCapsNet in recognizing the distinct characteristics of the heel dataset classes. 

 

 

Figure 5.18. Accuracy of HAM10000 skin cancer dataset. 

 

 

Figure 5.19. Loss of HAM10000 skin cancer dataset. 
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Figure 5.20. AUC curve of HAM10000 skin cancer dataset. 

 

 

Figure 5.21. Confusion matrix of HAM10000 skin cancer dataset. 
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Table 5.8. Class-Wise performance metrics of MedCapsNet on HAM10000 skin 

cancer. 

Classes Precision Recall F1-score 

Actinic 0.99             1.00 1.00 

Malinga 0.99             1.00 1.00 

Benign 0.96             1.00 0.98 

Dermatofibroma 1.00            1.00 1.00 

Melanocytic 0.99             0.90 0.94 

Pyogenic 0.99       1.00       1.00 

Melanoma 0.96       1.00       0.98 

 

5.4.3. Jun Cheng’s Brain Imaging MRI Dataset 

 

The brain tumor dataset has 3064 images representing three different categories of 

brain tumors: meningioma, glioma, and pituitary tumor, published by Jun Cheng [122]. 

The provided dataset was imbalanced; therefore, oversampling was used to balance 

three classes. The total number of images after balancing is 4246. The proposed 

MedCapsNet model was trained on the dataset with [64 × 64] image size in 3-channel 

RGB mode. The result shows the high performance of the model, achieving cross-

validation accuracy 5-fold of 97.67%, as its epochs curve given in Figure 5.22 and loss 

epochs shown in Figure 5.23. The AUC of 99.80% is demonstrated in Figure 5.24, 

along with the corresponding confusion matrix in Figure 5.25. Our proposed 

MedCapsNet model achieved a higher accuracy than the boosted CapsNet presented 

by [77], which reported an accuracy of 92.45%. Additionally, the class-based 

performance metrics, including precision, recall, and F1-score for each class, are 

detailed in Table 5.9, highlighting the effectiveness of MedCapsNet in distinguishing 

between these categories of brain tumor. 
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Figure 5.22. Accuracy of Jun Cheng’s brain imaging MRI dataset. 

 

 

Figure 5.23. Loss of Jun Cheng’s braini MRI dataset. 
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Figure 5.24. AUC curve of Jun Cheng’s brain imaging MRI dataset. 

 

 

Figure 5.25. Confusion matrix of Jun Cheng’s brain imaging MRI dataset. 
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Table 5.9. Class-Wise performance metrics of MedCapsNet on Jun Cheng brain tumor 

dataset. 

Classes Precision Recall F1-score 

Meningioma 0.96 0.98 0.97 

Glioma 0.99 0.95 0.97 

Pituitary 0.98 1.00 0.99 

 

In addition to the results Table 5.10, present comparison for various medical datasets 

with MedCapsNet against other models showing sufficient performance of the model 

compared to other models. 

 

Table 5.10. Results in comparison for various medical datasets with MedCapsNet vs. 

other models. 

Dataset MedcapsNet 

(5-fold CV Accuracy) 

Other Models 

(Accuracy) 

BreakHis_v1 [120] 98.40% 

(without augmentation) 

Res2Net+Caps [78]: 95.6% 

(with augmentation) 

HAM10000 [121] 98.29% FixCaps [76]: 96.49% 

Jun Cheng [122] 97.67% BoostCaps [77]: 92.45% 

 

In this part, MedCapsNet was introduced as a hybrid model that combines the strengths 

of DenseNet201 and CapsNet to address the limitations of traditional CapsNets in 

processing complex medical images. By incorporating a modified DenseNet201 

architecture with advanced feature extraction capabilities prior to the capsule layers, 

the model demonstrated significant improvements in classification accuracy for the 

heel disease dataset as well as other challenging medical datasets. 

 

The main advancements encompassed the inclusion of convolutional layers in the 

feature extraction, addressing the vanishing/exploding gradient problem using the 

“he_normal” kernel initializer and utilizing dropout and MaxPooling2D for 

regularization. These improvements enabled MedCapsNet to obtain hierarchical 

relations, spatial relations, and complex structural details in medical images. 

Experimental results affirmed its better yield than so far existing approaches without 

modification or specific tuning of the architecture and massive data augmentation for 

other datasets. 
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The model MedCapsNet has only been tested on a limited number of data. Therefore, 

considerations for further revisions could entail texts using more extensive datasets 

that contain a mix of various heel diseases and even more advanced medical imaging 

tasks. Increasing the data available would improve the model's accuracy and general 

reliability, allowing it to be used in a wider array of scenarios. 

 

One further promising direction is to adapt MedCapsNet to the analysis of multi-

modality datasets. There is a possibility of creating a more universal diagnostic tool 

by merging X-rays and MRIs. In this manner, the individual advantages of various 

modalities would be exploited so as to enhance disease description and the diagnosis 

process. 

 

Optimizing the existing lightweight models of MedCapsNet towards real-time 

implementation in MedCapsnet is the other area one can look forward to examining. 

These optimized versions of MedCapsNet can be used embedded in medical imaging 

systems or in cell phones, thus improving the practical use and effectiveness of this 

technology. Also, as clinics may be assisted by the model's decision within the process, 

explainability via saliency maps and feature visualization can be integrated as part of 

the therapy. Such techniques would increase the trust level towards MedCapsNet by 

making its operations more transparent and facilitating its use within clinical 

workflows. 

 

In addition, future studies might also evaluate MedCapsNet against other cutting-edge 

techniques, including ViTs, GNNs, etc. Such comparisons would explain unique 

characteristics that can be complementary and suggest opportunities for integration, 

which may broaden the horizons of medical image analysis. 

 

Finally, adding patient age, gender, and medical history data would be a step toward 

transforming MedCapsNet into a specific diagnostic agent. Such evolution would 

allow better projection and further customization of treatment, which already signifies 

relevance to the precision medicine concept in relation to medical images. 
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5.5. ASPECTS OF COMPARATIVE MODELS OVER A SHARED DATASET 

 

Concerning medical image classification, the transition from CapsNet to HeCapsNet 

and MedCapsNet was critical, especially with intricate datasets such as the heel disease 

dataset. Every one of these models performed better than the previous version by 

introducing architectural improvements that overcame the shortcomings of the earlier 

model. For example, while CapsNet’s dynamic routing mechanism allowed for spatial 

relationship representation, its minimalist design and lack of multi-scale feature 

extraction made it unscalable to high-resolution medical images with a performance 

of only 73.99% accuracy and 66.95% AUC on the heel disease dataset. 

 

Various modifications were made to HeCapsNet, among them being the addition of 

convolutional layers before capsule layers, the use of “he_normal” kernel initializer, 

and dropout layers to handle overfitting and class imbalance problems, respectively. 

These led to a significant improvement in performance whereby 97.29% accuracy and 

98.69% AUC on the heel disease dataset and 98.37% accuracy on the Brain MRI 

dataset were achieved, respectively. This thus warranted architectural refinement for 

capsule networks used in complex medical imaging. 

 

MedCapsNet took advantage of these enhancements by fusing CapsNet with 

DenseNet201 through the introduction of convolutional layers before DenseNet 

blocks, MaxPooling2D in transition layers, and replacing batch normalization with 

dropout for better generalization. It demonstrated superior adaptability by obtaining 

an accuracy rate of 96.38%, with an AUC value equal to 98.27% on the heel disease 

data set; for the brain MRI data set, it obtained an accuracy rate equal to 97.67%, an 

AUC of 99.80%; however, it managed an accuracy rate worth mentioning which is 

above average on HAM10000 data set, i.e., equal to 98.29%. 

 

Comparatively, CapsNet had a hard time with difficult data types. HeCapsNet 

overcame this problem with improved feature extraction and regularization. 

MedCapsNet integrated DenseNet201 and produced a generalizable and reliable 

model applicable to any dataset yet still outperformed other models on specialized 
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tasks and showed adaptability across multiple datasets. These models are compared in 

Table 5.11 on common datasets. 

 

Table 5.11. Performance Comparison of Capsule Network Models. 

Dataset Metric CapsNet HeCapsNet MedCapsNet 

Heel Disease Accuracy 73.99% 97.29% 96.38% 

Heel Disease AUC 66.95% 98.70% 99.80% 

Brain MRI (Jun 

Cheng) 

Accuracy N/A 98.37% 97.67% 

Brain MRI (Jun 

Cheng) 

AUC N/A 99.74% 99.80% 
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PART 6 

 

DISCUSSION 

 

6.1. ANALYSING OF PROPOSED MODELS RESULTS 

 

The success of HeCapsNet and MedCapsNet in classifying medical images is also 

demonstrated within the scope of heel ailments. HeCapsNet, which incorporates 

improved convolutional blocks with a normal kernel initializer, showed a good 

advancement over basic CapsNet. It registered an accuracy of 97.29% on balanced 

heel disease datasets, 94.19% on imbalanced ones, and an AUC of 98.69%, with the 

fivefold cross-validation accuracy being 95.77%. These metrics indicate its capacity 

to function in complicated medical imaging environments, characterized by fine pixel 

combinations and various anatomical structures. 

 

Equally, MedCapsNet, which implements a modified DenseNet201 architecture, 

attained broader applicability across multiple datasets. When Deep Networks' feature 

extraction architecture was fused with the spatial hierarchical comprehension of 

CapsNet, MedCapsNet surpassed other models on the Heel Disease Dataset, 

Breast_BreaKHis_v1, HAM10000, Jun Cheng's Brain Imaging MRI dataset, among 

others. With its hybrid strategy, MedCapsNet overcame conventional models' 

weaknesses, which primarily performed very well even without having separate 

architectures constructed or heavy data augmentation applied for every set. Its 

application of automated region-of-interest (ROI) detection employing YOLO V 8 

also reduced the amount of preprocessing needed and increased the accuracy of results. 

 

Both models demonstrated stable potential to surpass the existing methods across 

different settings. Although HeCapsNet was particularly good at heel disease and 

Brain MRI classification, the fact that MedCapsNet could work with diverse medical 

datasets speaks volumes for its versatility and strength. These results highlight the need 
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for new architectural designs and suitable preprocessing to enhance medical image 

classification issues. 

 

6.2. ADVANTAGES AND INNOVATIONS OF PROPOSED MODELS 

 

The main advantages of HeCapsNet and MedCapsNet are found in their advanced 

structural-layer characteristics that provide solutions to the problems associated with 

the deep convolution neural networks and the previous variants of CapsNet. 

HeCapsNet aims to develop a more advanced CapsNet that modifies feature learning 

by employing more extra convolutional layers and deploying the kernel initializer 

"he_normal", increasing gradient flow during training. This invention improves not 

only the accuracy of the model but also the extent to which the model can generalize 

on diverse data sets. 

 

The MedCapsNet model has several advances and innovations. It combines a CapsNet 

with a densenet201 architecture, thus improving data feature extraction capability and 

representation of spatial hierarchies, even without data augmenting. This two-

component type of improvement delivers better performance with high accuracy and 

AUC values over several medical datasets like X-ray, MRI, and dermatoscopic images. 

The model scope of application is relatively broad due to its fixed architecture and 

hyperparameters, which give reproducible results for different types of images and 

diseases. The MedCapsNet model provides faster training, good generalization, and 

lower overfitting risks, making it a practical and useful model for analyzing medical 

images. 

 

These models constitute a considerable advancement in the use of deep learning in 

medical imaging as they provide a platform that could be modified for different 

diagnostic tasks. They are more useful in circumstances where specialized medical 

personnel are hard to come by because of their potential to enhance the accuracy of 

diagnosis and, at the same time, being economical. 
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6.3. CHALLENGES AND LIMITATIONS 

 

Despite the strengths of HeCapsNet and MedCapsNet, many issues and limitations 

still exist. One of the issues is the lack of large sets of labeled data for model training, 

which is a must-have. While HeCapsNet presented a new dataset of 3956 labeled 

lateral foot X-ray images, the low availability of such datasets for other types of 

medical conditions reduces the scope of usage of these models. Such dependency on 

massive data collection efforts will likely discourage wide use in different clinical 

environments. 

 

Additionally, the complexity of the models raises issues regarding interpretability. 

Since HeCapsNet and MedCapsNet are deep learning models, they can be considered 

black boxes, challenging clinicians to understand the rationale behind the diagnosis. 

Such a degree of opacity may hinder their uptake in centralized clinical settings where 

a high level of faith is placed on devices. 

 

Moreover, these systems rely on effective region of interest (ROI) identification 

systems (for example, YOLO), which means any error in the identification ROI will 

decrease the classification accuracy. 

 

Additionally, the computational resources required for training and inference, while 

optimized, can still be significant, limiting deployment in resource-constrained 

environments. 

 

Also, the optimization of the used infrastructure has not resolved the problem of the 

high computational power necessary for the training and inference, which limits the 

deployment of the solution in low-resource environments. 

 

It’s worth noting that incorporating ethical and practical elements such as extensive 

testing, legislative approvals, and embedding into the current clinical workflows 

makes it even more challenging to implement in practice. 
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Lastly, the non-interpretability feature of some deep learning models may also make 

clinicians resistant to using them when making crucial diagnosis decisions. It also 

shows potential areas for further development and better collaboration with clinicians. 

 

To conclude, although HeCapsNet and MedCapsNet show potential in the analysis of 

medical images, the broader application is hampered by other factors such as the small 

size of the datasets, the interpretability of the models, high computation requirements, 

and the need for precise ROI identification. Furthermore, factors such as ethical 

compliance, regulatory approval procedures, and the incorporation of the technology 

into clinical practice present additional challenges to its implementation, which would 

necessitate further research and coordination with medical practitioners to eliminate 

these constraints. 
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PART 7 

 

CONCLUSION 

 

In this study, we proposed two advanced CapsNet structures, HeCapsNet and 

MedCapsNet, to detect and classify heel diseases automatically using lateral foot X-

ray images. In terms of these contributions, both models completely overcame the 

insufficiencies of the original CapsNet, which would have posed significant challenges 

in medical imaging applications, by incorporating some sophisticated modifications. 

 

HeCapsNet was developed to enhance feature map extraction and classification 

accuracy by incorporating a few strategies like additional convolutional layers, 

he_normal kernel initializer, and other advanced regularization methods. This claim 

was validated through extensive experiments on a num­ber of datasets such as MNIST, 

F-MNIST, CIFAR-10, Brain MRI, and our new heel disease dataset. On the heel 

disease dataset, HeCapsNet delivered impressive results of 97.29% and 94.19% 

accuracy on the balanced and imbalanced data, respectively, with an AUC of 98.69% 

and a 5-fold cross-validation accuracy of 95.77%. However, certain limitations restrict 

the applicability of  HeCapsNet as it targets only heel spur and severe diseases; the 

generalizability is limited due to the relatively small sample size of the dataset. A 

larger dataset and more inclusion of other heel conditions could address this limitation. 

 

MedCapsNet, an enhanced CapsNet with modified DenseNet201, further improved 

the detection and classification capabilities of the methodology proposed. 

MedCapsNet compensated for the limits of the original CapsNet by improving feature 

extraction and implementing DenseNet201, thus reducing the total amount of data 

augmentations needed. The model achieved remarkable results on various medical 

databases, including Breast_BreaKHis_v1, the HAM10000 skin cancer dataset, and 

Jun Cheng’s Brain Imaging MRI Dataset. It also automatically detected Regions of 

Interest (ROI) in foot X-ray images with the help of the built-in YOLO V8 and, 
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therefore, simplified the data preprocessing. MedCapsNet can achieve high 

performance without requiring distinct architectural configurations or hyperparameter 

adjustments for each dataset, underscoring its robustness and adaptability. 

 

Both HeCapsNet and MedCapsNet are promising ways of improving the domain of 

medical image analysis. HeCapsNet provides a workable method for diagnosing heel 

diseases, while MedCapsNet shows effectiveness on different medical datasets. These 

models can be incorporated into X-ray machines, served as web-based diagnostic 

centers, or used in clinical settings. The proposed models can offer a reasonable and 

rapid preliminary diagnosis, which could benefit the patients, lessen the workload of 

the diagnosticians, and make the healthcare delivery systems more effective. 

Subsequent engineering actions will target increasing the datasets, adding more 

medical diseases, and improving the models to clinical utility.
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