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ABSTRACT
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Department of Computer Engineering

Thesis Advisor:
Assist. Prof. Dr. Kasim OZACAR
January 2025, 135 pages

Heel bone conditions, such as heel spurs and Sever's disease, pose significant
challenges to patients’ daily activities. While orthopedic and traumatology doctors rely
on foot X-rays for diagnosis, there is a need for more Al-based detection and
classification of these conditions. This thesis addresses this need by proposing two

deep learning models: HeCapsNet and MedCapsNet.

This thesis first presents a novel dataset of 3,956 annotated lateral foot X-ray images
and uses the original capsule network (CapsNet) as a baseline. The low accuracy of
CapsNet (73.99%) led to the development of an enhanced CapsNet, HeCapsNet, which
adjusts the feature extraction layers, adds extra convolutional layers and utilizes
improved initialization and padding schemes. HeCapsNet achieved higher accuracy
rates, including 97.29% for balanced data, 94.19% for imbalanced data, an AUC of
98.69%, and a 5-fold cross-validation accuracy of 95.77%. While our findings aligned



with those reported in the literature for relatively more uncomplicated, non-medical
datasets like MNIST and F-MNIST, we achieved better results with more complex,

medically focused datasets, including brain MRI, knee, and our novel dataset.

In addition, this thesis introduces MedCapsNet, a new hybrid capsule model that
combines the modified DenseNet201 model with the original CapsNet. The
architecture of this model is designed to detect and classify cases of heel bone
pathologies using lateral heel X-ray images of the foot. The model has been applied to
a heel data set and other medical datasets (John Cheng's MRI brain, Breast BreaKHis
v1, and HAM10000 melanoma). MedCapsNet's versatility in different types of images,
including X-ray, MRI, and microscopy images, where it achieved high-performance
metrics without requiring a unique architecture for each set or tuning the

hyperparameter for each dataset, made it superior to state-of-the-art models.

HeCapsNet and MedCapsNet offer the potential of Al-based methods to detect and
categorize heel bones, fulfilling the need for diagnosis and more reliable management

of these conditions.

Key Words : Capsule network, Deep Learning, Foot X-ray images, Heel spur,
Sever Disease
Science Code : 92432
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Doktora Tezi

LATERAL AYAK RONTGEN GORUNTULERINI KULLANARAK TOPUK
HASTALIKLARI TESHISI iCiN GELISTIRILMiS KAPSUL SiNiR AGI
MODELI

Osamah Fadhil Taher TAHER

Karabiik Universitesi
Lisansustu Egitim Enstittsu

Bilgisayar Miihendisligi Anabilim Dal

Tez Damismani:
Dr. Ogr. Uyesi. Kasim OZACAR
Ocak 2025, 135 sayfa

Topuk dikeni ve Sever hastalig1 gibi topuk kemigi rahatsizliklari, hastalarin giinliik
aktivitelerinde dnemli zorluklar yaratmaktadir. Ortopedi ve travmatoloji doktorlar:
teshis i¢in ayak rontgenlerine giivenirken, bu durumlarin daha fazla yapay zeka tabanl
tespitine ve siniflandirilmasina ihtiyag vardir. Bu ihtiyaci karsilamak i¢in bu ¢alisma,

HeCapsNet ve MedCapsNet iki derin 6grenme modeli sunmaktadir:

[lk olarak 3.956 yan ayak réntgen goriintiisiinden olusan yeni bir veri kiimesi sunmakta
ve orijinal kapsiil agin1 (CapsNet) temel olarak kullanmaktadir. CapsNet'in diisiik
dogrulugu (%73,99), ozellik ¢ikarma katmanlarini ayarlayan, ekstra evrisimli
katmanlar ekleyen ve gelismis baslatma ve doldurma semalari kullanan geligmis bir

kapsiil ag1 olan HeCapsNet'in gelistirilmesine yol

Vi



acmistir. HeCapsNet, dengeli veriler icin %97,29, dengesiz veriler i¢in %94,19,
%98,69 AUC ve %95,77 5 kat ¢apraz dogrulama dogrulugu dahil olmak iizere daha
yuksek dogruluk oranlar1 elde etmistir. Son teknoloji iirlinii modifiye CapsNet
modelleriyle yapilan karsilastirmalar, HeCapsNet'in daha karmagik tibbi veri

kiimelerinde daha iyi performans gosterdigini ortaya koymaktadir.

Ayrica bu calisma, modife edilmis bir DenseNet201 ile bir kapsiil agin1 birlestiren yeni
bir hibrit kapsil modeli olan MedCapsNet'i de 6nermektedir. Bu model, yan topuk
ayak rontgen goriintiilerini kullanarak topuk kemigi hastaliklarin1 dogru bir sekilde
tespit etmek ve smiflandirmak i¢in tasarlanmistir. Topuk veri kiimesi ve diger tibbi
veri kiimeleri (Jun Cheng Brain MRI, Breast BreaKHis v1 ve HAM10000 cilt kanseri)
lizerinde yapilan deneyler, veri kiimesine 6zgli mimari veya hiperparametre ayarina
ihtiya¢ duymadan yuksek performans olgcumleri elde eden MedCapsNet'in ok

yonliligiini gostermektedir.

HeCapsNet ve MedCapsNet, topuk kemiklerinin tespiti ve siniflandirilmasina
yardimci olmak i¢in yapay zeka tabanli yaklasimlarin potansiyelini ortaya koyarak,
teshis siireclerinin 1iyilestirilmesine ve bu kosullarin daha giivenilir bir sekilde

yonetilmesine katkida bulunmay1 amaglamaktadir.
Anahtar Kelimeler : Kapsiil agi, Derin 6grenme, Ayak rontgen goriintiileri, Topuk

dikeni, Sever Hastaligi
Bilim Kodu 1 92432
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PART 1

INTRODUCTION

The concept of Artificial Intelligence (Al) first originated during the mid-20th century,
specifically in the range of the 1950s and the 1960s. In the year 1956, a conference at
Dartmouth was held by John McCarthy and Marvin Minsky that outlined key features
towards the emerging field of Al. In its earliest stages, traditional Al approaches were
highly rule-based in which a computer would be forced to use an internal model to
make decisions; however, this was also one of the up-and-coming fields of Deep
Learning (DL) that began to change the world [1,2]. While in the past, programming
rules were primarily used in Al, advancements in DL have introduced a wealth of
possibilities that have revolutionized Al. New and enhanced intelligent systems are
being developed to assist and transform healthcare as we know it. Al technology is
rapidly advancing in the field of medical imaging, where CT scans, MRIs, ultrasounds,
and X-rays remain difficult to interpret due to the overwhelming suite of images
produced for specialists [3,4,5]. However, DL models have proven to be efficient in
this domain, including the analysis of medical images [6,7,8]. The major types of Al
methods suitable for use in conjunction with medical imagery include detection,

classification and segmentation of the images [9].

DL, a subset of Machine Learning (ML), employs Artificial Neural Network (ANN)
architectures with a distributed representation that consists of a multi-layered coding
strategy system with multiple hidden layers to be learned [10]. In the early 2010’s,
neural networks known as Convolutional Neural Networks (CNNs) were extensively
used in the field of medical imaging [11]. Then, in 2017, Hinton G. et al. introduced
Capsule Networks (CapsNet), a more advanced technique for conducting medical
imaging analysis compared to traditional networks, providing several benefits over

other conventional techniques [12].



Heel bone disease affects a patient’s performance of daily tasks very much due to
reduced mobility, which results from pain on the lower side of the foot. An orthopedic
specialist is involved who provides the necessary examinations and foot X-rays and
diagnoses the condition, and thus, treatment is done for the patient. Two of the most
common heel bone diseases are heel spurs and Sever’s disease. Heel spurs are defined
as bony growths that extend into the heel bone, which in return lead to inflammation
that results in pain, which at times can be managed with physical therapy but at times
necessitates surgery, while Sever’s disease, which is common in youngsters, is
inflammation due to overuse, wherein there is swelling of the posterior aspect of the
heel bone, and this causes pain on the heel [13,14].

This research creates a base for lateral X-ray foot views and shows Al's role in
medicine. At first, the original CapsNet was tested on the dataset. Still, as the
performance was relatively poor, two improved CapsNet models, HeCapsNet and
MedCapsNet, were designed to facilitate the identification and classification of heel
bone diseases. Introducing advanced capsule models shortens the time and increases
the accuracy with which satisfactory treatment can be proposed. This application of
Al in medical technologies is one of the milestones that can place the patient's welfare
and clinical practice at the next level in the forthcoming time.

This thesis contains eight parts, each focusing on various aspects of advanced Capsule

Network (CapsNet) models for detecting and classifying heel bone diseases.

Part 1, Introduction, provides an overview of heel bone diseases like heel spur and
severe disease, emphasizing the diagnosing challenges faced with these conditions. It
points out how Al-based models, especially CapsNets, can improve detection and
classification effectiveness. The thesis also outlined the research aims, highlighted the

critical questions to address, and contributed to this dissertation.

Part 2, Theoretical Background, covers essential information connected with this
study. This section includes such subtopics as the history of heel bone diseases, why
artificial intelligence methods have become popular in their treatment, supervised and

unsupervised learning notions, neural network topologies, accuracy criteria employed



in ML, and other concepts crucial to our understanding of DL like CNNs and factors

leading to the creation of CapsNets.

Part 3, Capsule Networks: Concept and Key Components, explains how CapsNets can
be used in medical image analysis by discussing their appearance and work. It looks
at the difficulties faced when using CapsNets with complex datasets and new

developments that have improved their efficiency in medical imaging tasks.

Part 4, the methodology, explains how a new dataset for heel disease was created and
examined. The data collection process, annotation, and preprocessing procedures were
described. This section presents the CapsNet model and discusses the improved
HeCapsNet and MedCapsNet models used to check performance against the Heel

disease dataset.

Part 5 provides the implementation and results of the baseline CapsNet model on the
heel dataset. Architectural improvements and the inclusion of the You Only Look
Once (YOLO) framework for automated heel region identification are some of the
features that define this advanced convolutional capsule network, HeCapsNet,
developed for detecting and classifying heel abnormalities. Furthermore,
MedCapsNet, which is a hybrid model combining DenseNet201 with Capsule
Networks, is introduced to address feature extraction and classification issues. It is
then applied to additional medical datasets such as Breast BreakHis v1, HAM10000

skin cancer, and Jun Cheng Brain MRI datasets.

Part 6 examines the strengths and contributions of HeCapsNet and MedCapsNet in
medical image analysis. This section highlights the novelty of the proposed models,

discusses their limitations, and offers recommendations for improvement.

Part 7, Conclusion, summarizes the main results and highlights the relevance of
HeCapsNet and MedCapsNet in Al-based medical imaging. It also applies possibilities
for further investigations, such as increasing data sets, multimodal imaging, and

expanding the models to accommodate other medical uses. Moreover, it is provided



that several scholars are currently involved in the improvement of CapsNet
architecture by modifying it for better performance.

1.1. PROBLEM STATEMENT

The conditions of heel spurs and Sever’s disease disable the mobility and quality of
life of the affected person. Orthopedic physicians are the ones who are qualified to
accurately diagnose these conditions and treat them using lateral X-rays of the foot. In
places lacking such doctors, the typical clinical examination usually takes a long time
and is susceptible to error, which results in late and wrong treatment. Though there has
been some success in Al in recent times, particularly in deep learning, the current Al
techniques like CNNs or CapsNets are struggling to detect and classify such diseases

from medical images properly.

Despite the potential demonstrated by recent encouraging advances in Al and medical
image analysis toward contribution to medical diagnostic practice, the development of
tailor-made datasets and better models specific to heel bone diseases remain entirely
untouched. Using the original CapsNet network, the results showed an inability to
achieve the required degree of accuracy for reliable diagnosis. Therefore, it is essential
to create more accurate and efficient models for detecting and classifying heel bone
diseases. The primary aim of this development is to enhance patient outcomes and

minimize the time lost in diagnosis.

This work aims to fill in the gap by providing a new set of lateral foot X-ray images
and developing two new enhanced CapsNet models named HeCapsNet and
MedCapsNet. These models shall enable more accurate and timely diagnoses,
allowing for better patient care through early intervention and better treatment

strategies for patients with heel bone diseases.

1.2. RESEARCH OBJECTIVES

This thesis aims to overcome the difficulties in diagnosing diseases such as heel spurs

and Sever's disease in heel bones by developing advanced Al-based models that use



Capsule Networks and hybrid architectures like MedCapsNet, including
DenseNet201, for better extraction of features. A novel dataset of lateral foot X-ray
images categorized and annotated by medical professionals will be created to address
the lack of a publicly available dataset. At the same time, data quality has been
improved using preprocessing techniques such as ROI cropping, resizing, and
balancing. The study investigates methods to improve diagnostic accuracy without
relying on data augmentation using enhanced models such as HeCapsNet and
MedCapsNet with more convolutional layers, dropout mechanisms, and "he_normal™
initializers. These models have also been tested on other medical datasets, including
brain MRI and skin cancer, ensuring their versatility and robustness relative to current
state-of-the-art architectures on the heel dataset. Moreover, for effective analysis
purposes, these algorithms can include object detection schemes to automate ROI
detection, such as YOLOVS. This research seeks to design a complete decision support
system for automated, accurate diagnosis of heel diseases, particularly for areas with
limited access to experts, thus bridging gaps in Al-based medical imaging diagnostics

that exist today.

1.3. RESEARCH QUESTIONS

The following research questions are formulated to assist the undertaken study in
resolving the existing challenges in the detection and classification of heel bone
diseases by means of Al models. These queries delve into the role of advanced Al
techniques such as CapsNets in enhancing the accuracy and efficiency of diagnosis in
medical imaging. The investigation is also aimed at creating a new dataset and
conducting performance evaluation of novel Al models in order to be able to more
effectively assist towards the fight against heel and other diseases. The questions posed
are meant to find out how the automation of feature extraction, classification, and

detection of diseases could be accomplished better by means of the suggested models:

How can lateral foot X-ray images arranged into a dataset by qualified professionals
help enhance the performance of Al models in laterally inverted foot imaging?



What improvements can be made to Al-based models so that heel bone diseases

such as heel spurs and severe diseases can be accurately detected and

classified?

What improvements in performance of the proposed models over the state-of-the-

art models, and how do they cope with medical image datasets?

1.4. RESEARCH CONTRIBUTIONS

The following contributions summarize the key advancements made through this

study. By addressing existing gaps in Al-based detection and classification of heel

bone diseases, these contributions aim to enhance both the dataset availability and the

performance of Al models in medical diagnostics. The study introduces novel models

and methodologies that significantly improve the accuracy and efficiency of disease

detection, particularly in medical imaging. These contributions are outlined below:

¢ Novel Dataset Creation: Both studies contribute to the medical field by creating

a unique dataset of 3,956 lateral X-ray images, addressing the lack of sufficient

labeled data for diagnosing heel diseases such as heel spurs and Sever’s

disease. This dataset was annotated by expert orthopedists, providing a solid

foundation for Al-based disease detection models.

Development of Enhanced Capsule Network Models:

HeCapsNet: The first model introduced is an advanced CapsNet that
targets heel bone diseases. This model overcomes the limitations of the
original CapsNet architecture regarding feature extraction by including
more convolutional layers, utilizing he_normal kernel initializer for better
fitting in medical images, which resulted in 97.29% accuracy for balanced
data, 94.19% for imbalanced data and an AUC of 98.69%.

MedCapsNet: The second model introduced was a hybrid model that
combines DenseNet201 and CapsNet. This model provides detection and
classification of heel disease and proves adaptable to datasets such as
breast cancer, brain MRI, and skin cancer, with an accuracy of 96.38% for

heel disease and 98.40% for breast cancer datasets.



Automation of system: Both models aim to automate the detection of heel diseases by
providing a decision support system that makes X-ray images more accessible and
faster to analyze. These systems are particularly valuable in regions where access to
orthopedic specialists may be limited and offer a more scalable approach to medical
diagnosis.

Evaluation of performance: The models have been thoroughly evaluated on both
simple and complex medical datasets, tested against other cutting-edge Al models, and
found to outperform them in all factors. Many studies show the developed models can

work on complicated medical images faster than conventional approaches.



PART 2

THEORETICAL BACKGROUND

2.1. INTRODUCTION OF HEEL BONE DISEASES AND MOTIVATION TO
AI-BASED DETECTION

Conditions cause heel bones such as Sever's disease and heel spurs have been
demonstrated to affect patients' quality of life and daily stress levels. Specifically, heel
spurs, as depicted in Figure 2.1, are located just below the calcaneus. Such heel spurs
are generally a result of excessive mechanical stress on the plantar fascia, a condition
often associated with plantar fasciitis. The combined effect of these factors is the
manifestation of discomfort, specifically at the plantar surface of the foot. This
condition has been observed in 15% to 20% of the population, with a higher prevalence
among runners. In some cases, surgical intervention is necessary when medication fails

to address heel spurs in the heel bone [13,14].

~ Calcaneus
(Heel Bone)

=%

~ —Heel Spur

Figure 2.1. Heel spure [13].



Heel spurs have been reported in several subsets of populations with the ugliest
percentage rates being 11.0% and the highest being 55.1%. An individual can evolve
with both plantar and dorsal heel spur and even have them in both of their heels. As
heel spurs develop over an individual’s lifetime, most of them are painless and remain
unnoticed until people visit health care centers complaining of heel aches. Most of the
heel spur research done by scholars has focused on the condition on one foot, with few

attempts having been made to the two footed condition [15].

In the other part, they talked about a condition called Sever’s disease that has been
discussed in the images 2.2 and 2.3, the medical condition which carries the Sever’s
name was first noted in 1912 by an orthopedic doctor James Warren Severe. People
between the ages of 11-15 are said to be highly affected by calcaneal apophysitis,
which is in simpler terms called Sever’s disease. These are direct results to excessive
strain applied to the body so sort of high impact physical activities or a period a growth
spurts. This directly involves an irritated region which is found in the heel region of
the foot.

Achilles Tendon

Calcaneus

Growth Plate Apophysis

Figure 2.2. Sever disease [16].



Figure 2.3. Sever in X-ray [16].

The heel hurts if one has a medical condition of a significant nature and the heel pain
increases when someone walks, jogs or skips. The heel pain is located at the back and
the bottom of the heel which is above the calcaneal apophysis. If the pain is more
severe, it tends to restrict the capacity of any person to physically carry out any activity

causing them to limp.

The patient's heel does not appear to exhibit any remarkable findings, and there are no
indications of local disease, such as edema or redness. A preliminary diagnosis can be
made via a physical examination that involves palpating the calcaneus to identify
discomfort when applying medial-lateral compression to the area of the heel bone. This
method, known as the "squeeze test,” is a valuable diagnostic tool but generally
physicians ask patients to do X-ray radiograph imaging for more specific diagnoses.
Consequently, the diagnosis of the higher form of the disease is applied clinically.
Studies have demonstrated that heel pain is present in approximately 8.2% of children
seeking medical attention [13,14,16].

Traditionally, physicians have diagnosed such conditions by taking X-rays of the foot.
However, there is still a demand for Al-based solutions that provide accurate and rapid
diagnoses [13,14]. The conventional approach to diagnostics entails a medical
professional evaluating the disease through an assembly of academic and clinical
knowledge. This is also the case for medical diseases that require diagnostic imaging.
In these cases, the calculated interpretation performed by the physician is overly reliant
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on personal insight, which makes the technique time-consuming and less reliable
[17,18].

The recent rapid growth of Al technologies in many sectors including healthcare
provides opportunities to improve accuracy and efficiency of results including
accurate detection and classification of diseases. With the help of Al systems, a large
amount of data can be analyzed and patterns that may be difficult for people to see are
able to be fully explored and thus speeding up the time taken and improving the
accuracy of the diagnosis. Speed and accuracy undergoing automation and analysis of
complex medical images, including X-rays, MRIs, and CT scans, greatly improves the

outcomes of such procedures [19].

The training of Al models offers prospective means of enhancing efficiency with
respect to the identification and treatment of diseases [20]. Approaches that utilize Al
can assist specialists provided in reverse or rural medical clinics where a physician
professional is not present [21]. Even when there is a delay in transferring the patient
to that location the wellbeing of the patient will still be improved with the help of Al
as it saves costs and improves patient outcome [21]. Additionally, Al provides a timely
and precise diagnosis of the disease which significantly reduces the expense in the
health care system along with improving the efficiency with which the diseases are

classified and diagnosed [21].

There is a space which still exists even with multiple Al-based studies focused on
disease detection and classification, that systems developed remain incapable of
detecting heel bone diseases. An appropriate model and a corresponding dataset have
been missing as well, to further supplement this space in the literature. In response to
these concerns, the current research seeks to fill this gap by proposing advanced
CapsNet models for the accurate detection and classification of heel bone conditions.
The dataset of lateral foot X-ray images were collected from a medical institution, and
an expert orthopedist and traumatologist labeled and classified the dataset. The
constellation of the original model of CapsNet, was first introduced as a newer model

taking into consideration this dataset. The outcome was not all that satisfying, the first
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model that was presented was not all that enhanced and so this point was the place that
we started thinking about developing enhanced models.

2.2. OVERVIEW OF MACHINE LEARNING AND NEURAL NETWORKS

2.2.1. Introduction to Machine Learning (ML)

With the help of data, ML, which is a subset of Al, strives to construct intelligent
devices such as computers and more, that are able to automatically make optimizations
without the need for manual programming. It aims to provide efficient automation in
recognizing and predicting patterns as well as performing decision making. Over time,
computing power and access to immense datasets has experienced excessive growth
and so have ML methods, which gives us an insight that every day new technologies
aid in advancing the methods even more [22].

The core activity of ML is to construct a model on a specified dataset and use that
model to make some decision on an unseen data instance. The model is a work in
progress and undergoes fine-tuning based on its accuracy. These algorithms include
models that are prerequisite to classify whether their input is an image, text or number.
More advanced models however take the input and link it to the correct output
regardless of the data type. The uses of ML are endless, and from various domains
including medicine, banking and self-driving cars. In medicine, ML models are used
in many areas such as medical X-rays, diagnostics and in the development of new
drugs [23].

The domain of machine learning can be vast in its two main types. It can be subdivided

into four main categories:

e Supervised Learning: In this case, the data is labeled and so each training
sample has an output specified with it. Now the model makes
generalizations based on its predictions of the label for data never seen
before. For example, one of the tasks for unsupervised models is image

classification- determining if an email is spam or not is a common image
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classification use case as Figure 2.4. shows the paradigm of supervised
learning. Something similar can be said for supervised tasks that take
regression, the main goal is still prediction. This technique is popular in
predicting the likelihood of loan repayment in banking and identifying

disease markers in medicine [24,25].

Prediction

®

Machine Model

INPUT DATA

C 7 &

Test Data

Figure 2.4. Paradigm of supervised learning.

Unsupervised Learning: As opposed to supervised learning, unsupervised learning is
trained with unlabeled data, with the aim of finding unseen structures in the data as the
paradigm of unsupervised learning is illustrated in Figure 2.5. Clustering algorithms
such as k-means and Hierarchical clustering are developed to group data points which
have relevant traits in common. Its application unfolding during market segmentation
is more concerned with grouping of customers by purchase patterns, and in genomics
with the search for unknown molecular disease subtypes with genetic data. Examples
of applications of unsupervised learning today are as follows: clustering, density
estimation, feature extraction, dimensionality reduction, discovery of association

rules, and anomaly detection. [24,25].
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Interpretation Algorithms Processing

Figure 2.5. Paradigm of unsupervised learning.

The variety of algorithms like support vector machines (SVM), decision trees, and
ANN used to be the focus of machine learning [26]. The rapid emergence of, which is
a subset of machine learning, but more sophisticated, more advanced models are
capable of handling complex, including robotics, video games, natural language
processing and computer vision [27]. Medical images have also been analyzed fairly
well using deep learning models. Among them are various imaging techniques
including ultrasound (US), X-ray, computed tomography (CT) scans, magnetic
resonance imaging (MRI) scans, and positron emission tomography (PET) scans,
retinal photography, whole slide images (WSI) obtained during histopathology and
cytopathology as well as images from endoscopes and dermoscopes [28]. CNNs and

CapsNets are common examples of deep learning tools [29].

2.2.2. Overview of Neural Networks and Key Components

Neural networks were introduced by McCulloch and Pitts in the early 1940s, and they
made a significant development in relation to the workings of the human brain [30].
Although, they rose to prominence with the advancement of computing in the late 20th
century. Neural Networks were described as computational models, made after
inspiration from the Human brain in 1999 by Abdi et al. biological neurons are
replaced with interconnected units which form these networks. Neural networks are
designed to detect associations, comprehend them, and then use the resultant

knowledge to anticipate situations as per the defined requirements [31].
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Now a days, there has been growth in the application of deep learning strategies and
Al, which is a clear advancement of technology developed on the foundation of neural
networks, accomplished in distinct areas such as pattern detection, photo recognition,

general language understanding and treatment selections.

2.2.2.1. Neural Network Structure

Neural network systems comprise networks of cells called neurons, which form
interconnected structures. Such cells discover patterns within the input data and work
towards training them using complex computations. In general, three primary types of
layers are what compose the structural organization of the neural networks, they
include: input layer, hidden layers and output layer. Each layer processes the
information received from the previous layer and sends it to the next one. It is

explained below as to what the function of these layers is:

Input Layer:

In a neural network, the first layer is the input layer. Every neuron in this layer
corresponds to a single feature or attribute within the data set. For example, in image
processing, the input layer would encompass the pixel values of an image. The input
layer establishes a parameter for entering the network, but it does not carry out any
calculations; it only propagates the data to the next hidden layers [32]. Figure 2.1
illustrates the neural network with layers.

Hidden Layers:

Computation takes place in layers between the input and output layers and is termed
as the hidden layers. The neurons in these layers receive signals from the input layer,
perform some convolution and calculate several steps of the function in a complex
[32,33] process. The existence of multiple hidden layers is a characteristic feature of a
neural network which enables the model to learn more advanced features and

representations of the data [34]. These layer depth highly influence the network’s

15



power, that is its ability to learn complex relationships in data. Parts of a neural
network listed mark a graph of Figure 2.8.

Output Layer:

The last layer, which is the output layer is the layer which gives the final results or
even the prediction classes and is based on the input data that was already transformed,
which was processed by the hidden layers. The quantity of neurons contained in the
output layer is a function of the number of classes which the network was targeted for
the tasks [33]. For example, the output layer for a classification task where three
classes have been defined would comprise three neurons. The layers of the neural

network are shown in Figure 2.6.

Layer 0 Layer 1 Layer 2 Layer 3
(Input layer) n (Output layer)

Hidden layers

Figure 2.6. Neural network structure [32].

2.2.2.2. Neural Network Key Components (Neurons, Weights, Biases, Activation

and Loss Functions)

In order to understand how neural networks work, it is critical to understand the basic
building blocks that allow them to receive inputs which in turn helps them make
decisions, classify information or forecast events. These are components are

represented as follows:
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Neurons:

A neuron is a biological neural representation and simulation unit that constitutes an
ANN [35]. For every input aggregate, one or more signals are given to the neuron
which processes each of them by multiplying with values called weights that influence
the degree of the connections. The internal output of a neuron is also denoted as the
weight. Such output is sent to subsequent layers of dots where the sigmoid function
determines the transfer output along with the weighted connections (as illustrated in
Figure 2.7) to construct an interactive or active neuro. The transfer function of choice
converts the weighted input into the output for the given neuron. The authors describe

how information in the network is transmitted using these connection weights.

transform

inputs

Figure 2.7. Artificial neuron model adapted from [35].

Weights:

Neural networks employ weights as the tunable parameters that establish the effect of
the neuron’s input towards its output. The operation at the output of a neuron is a
weighted sum of the weighted inputs. As illustrated in Figure 2.7 wl, w2 and w3 are
the weights assigned to the inputs x1, x2, and x3 respectively. These weights
essentially determine the importance of each of the inputs in the calculation of the
neuron’s output signal. To be specific, the first step occurs in the training mode, where
modeling employs backpropagation and other methods to adjust the weights of a
neuron to minimize the difference between the desired and actual outputs. For a given

input X, its weight interacts with its input to determine whether the particular input has
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a significant influence on the output of the neuron. Weights are quite instrumental in
pattern recognition from the data since they determine how much importance is
attached to each of the input variables in the prediction and what associations have
been developed by the network [35].

Biases:

The bias in neural networks aids the model in identifying intricate trends and
correlations within the data. Bias is the constant added to the dot-product of the
weights and inputs prior to the activation function. This enables the activation function
to move horizontally, which expands the location of the decision boundary. This shift
enables the network to modify its output without being compelled to originate from
the same point. Each neuron possesses its own bias, which determines their firing
status according to the input signal and bias level. The inclusion of bias during the
computation of neural nets enhances their performance and adaptability for learning

during training resulting in better learning outcomes [36,37].

Activation Functions:

ANNSs utilize the weighted sum approach in which a neuron’s inputs along with
weights and biases are estimated via mathematical functions known as activation
functions. This is what encodes a neuron’s response to the input and hence the output
that the network must produce. Among others, the most common where the sum of the
inputs is transformed to a value between zero and one, is the sigmoidal function,
enabling the functional output of the neuron to lie between 0 and 1. This transfer
function also helps to introduce a non-linear element to the network, allowing it to
effectively model complex patterns in the data as demonstrated in Figure 5. In a neural
network architecture, this operating property is achieved as a neural network comprises
many units termed interneurons which process in parallel each input, modifying it
linearly and subsequently altering the processed input through an activation function.
If there were no activation functions present, it would simply translate the value of the
inputs without sufficiently enabling generalization which is necessary for a neural

network [35,38,39]. The role of activation functions can be summarized as follows:
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e Introduce non-linearity: To satisfy additional conditions, incorporation of more
general activation functions into the basic form enables the model to learn to
approximate more complex non-linear correspondence between the input and
the output.

Increase the capacity of the model: Non-linear activation functions allow the model

to learn more complex patterns and relationships in the data.

Improve generalization: By introducing non-linearity, activation functions help the

model to generalize better with new, unseen data.

There are diverse kinds of activation functions, each of them has its own pros and cons.

Most of the time, activation functions are:
Sigmoid:
The mapping behind the sigmoid function is appropriate in the case of binary

classification problems since it helps to squish the input into an output that is between

0 and 1. The specific formulation to the sigmoid function is given as below:

Fe = ) @2.1)

1+e™
ReLU (Rectified Linear Unit):

The ReLU function applies a non-linear transformation on output where negative
values become all zeros and the positive values become one value, which also makes

it easy to compute and frequently employed [38]. The ReLU activation is given below:

f(x) = max(0,x) = {x(;: i; Z x f(()) (2.2)
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SoftMax:

The SoftMax function is suitable for multi-class problems since it maps the input to a
probability vector across the class which is stochastic as well [38]. The SoftMax

function is given as below:

exp(xi)

fED = oo o)

(2.3)

Loss Functions:

A loss function is a crucial aspect of machine learning models. It is the most interesting
loss function in regression analysis, allowing to gauge the effectiveness of the model,
as well as setting the bar for minimizing the difference between estimated and real-
world results. In machine learning, loss functions are vital for optimizing a model,
since they allow the model weights to be learnt at each training iteration in a way that
not only makes the model better but also predicts better outcomes. It is very important
for the loss function to be set up correctly, since otherwise, its misuse must lead to the
poorer quality of the system being developed [40].

2.2.3. Overfitting and Underfitting

Unquestionably, overfitting and underfitting are crucial problems which arise in
machine learning and deep learning, due to their strong effect on model performance
and their ability to generalize. The most common situation is when a model suffers
from underfitting or overfitting: these terms relate to the degree of correlation a model
has between the training and test or validation datasets. Any task of the machine
learning modeling is to solve the problem of good generalization on unseen data. This
implies that the model should not just overfit the training data set or just underfit and
learn nothing useful from it. Overfitting and underfitting are core issues that have to

be resolved in order to achieve this equilibrium [41,42,43].
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2.2.3.1. Overfitting

Overfitting occurs when a model focuses on the noise and details of the data rather
than just the patterns. The performance of the model is perfect after training but fails
on testing. Being able to fit several parameters causes deep learning models to always
overfit. Such models are so complex that they no longer learn; they just find and
remember the data. This causes excessive training and test errors. Overfitting occurs
in cases where the model is either too complex, the training data is too small, or too
much noise is present in the training data. An example of overfitting is illustrated in
Figure 2.8. The model is too tightly fitted to the training data which causes it to pick
the noise instead of the actual patterns. There are various strategies to cope with
overfitting; weight decay, dropout, and batch normalization, as well as data
augmentation are some. These include where additional constraints or variations which

improve generalization are added [41,42,43].

Overfitting

Y Variable
/W
-
/
.

X Variable

Figure 2.8. Example of overfitting adapted from [42].

2.2.3.2. Underfitting

The inverse of fitting is the underfitting, the situation whereby a fitting is too simple
relative to what is needed to explain the relevant information within the data. When
the model lacks sufficient capacity or complexity to grasp the underlying structure of
the data, it can also lead to high errors during training and test of the model. It is quite

an easy notion to understand how and why underfitting may occur. This is use models
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that have insufficient layers or number of parameters or they haven’t been trained
sufficiently or simply the wrong model has been selected for the data given.
Understanding the difference between overfitting and underfitting is important in
understanding Al Overfitting is when a model knows the data too well or ‘memorizes’
it; simply put the model learns too much to be useful in the analyzing of new data.
What this implies is a situation of high bias but low variance. What figure 2.9 presents
is the case of underfitting and its ‘classic’ symptoms. It demonstrates the consequences
of the over-simplistic model, which failed to consider factors that are not too
insignificant in the data. As a result, the model accuracy turns out to be low on both

the test and training datasets.
There are a few measures we can take in countering an underfit model. For example,

model complexity can be increased, more time can be devoted to the training, or a
better model can be chosen for the complexity of the task [41,42,43].

Underfitting

Y Variable
o

X Variable

Figure 2.9. Underfitting example. adapted from [42].

2.2.4. Evaluation Performance of Machine Learning Models

In machine learning, particularly in classification tasks involving datasets with target
labels, confusion matrices are a standard way of determining the effectiveness of
trained models. These matrices help to see the extent to which a model can correctly
classify the positive and negative cases in a given test dataset. Table 2.1 represents the

Confusion matrix overview.
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Table 2.1. Confusion matrix overview.

Actual Positive Actual Negative
True Positive False Positive
False Negative True Negative

The confusion matrix provides a detailed breakdown of a model's predictions:

e True Positive (TP): Correctly predicted positive instances.
True Negative (TN): Correctly predicted negative instances.
False Positive (FP): Incorrectly predicted as positive when the actual class is
negative.
False Negative (FN): Incorrectly predicted as negative when the actual class is

positive.

To measure the efficiency of classification models, various metrics such as precision,
recall, F1-score and accuracy are common. Such constraints assist in evaluating the
performance of a model in predicting the positive and negative cases. Below is a

detailed explanation of these criteria:

e  Precision (P): Precision measures the proportion of true positive predictions

among all positive predictions made by the model.

TP
P = TP Fp
Recall (R): Recall calculates the proportion of actual positives correctly predicted by
the model.
TP
R=TP+FN

F1-Score: The F1-Score combines precision and recall providing a balanced measure

of performance.

F1 _p. 2R
score =2-p——
Accuracy (A): Accuracy measures the overall correctness of the model’s predictions.

A TP + TN
" TP+ TN + FP + FN
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2.3. OVERVIEW OF DEEP LEARNING
2.3.1. Introduction to Deep Learning (DL)

Deep learning, an advanced subset of machine learning, is transforming the field of Al
through its ability to enable computers to train on and learn from large data sets in
ways that emulate human perception [44]. The defining characteristic of deep learning
is its ability to automatically extract features from data without the need for manual
intervention. This capability enables systems to learn complex patterns, which
differentiates it from machine learning, which is essentially multi-layer neural
networks. This technique has yielded enhanced capabilities for detecting intricate

representations in images and processing natural language [45,46,47].

Al encompasses ML and DL concepts, as depicted in Figure 2.10. The concept of DL
is a subdivision of ML which empowers its ideas [48]. In classical approaches to
machine learning, algorithms utilize manual feature extraction frequently and more
simple neural networks are limited on layers. However, with deep learning, the
neurons, activation functions, loss functions, and optimization methods used in the

model enable it to learn from the data.

ARTIFICIAL INTELLIGENCE

A program that can sense, reason, act
and adapt.

MACHINE LEARNING

Algorithms whose performance improve as they
are exposed to more data over time

DEEP LEARNING
Subset of machine leaming in which
multilayered neural networks leam from
vast amount of data

Figure 2.10. Family of Al adapted from [41].
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It’s worth noting that deep learning is even more effective as it incorporates a
multilayered neural network structure allowing the model to detect intricate patterns
in unprocessed information [41]. Deeper structures improve performance especially
when large amounts of data are involved and motivate more recent developments in
many areas, for example image processing, natural language understanding,
bioinformatics, control systems, and medical information processing, etc. On the other
hand, deep learning is distinguished from traditional machine learning ML techniques
in that it can do the job of automatically learning sets of features that describe the tasks
at hand. With DL such a complication is avoided as learning and classification can
take place in a single operation. Figure 2.11. The differences between ML and DL as

levels of processing boxes are portrayed in the map [41].
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Figure 2.11. Differences between machine learning and deep learning steps atapted
from [41].

In deep learning, multiple models of deep learning have been developed with the aim
of solving different types of applications and tasks. These architectures include CNNs
for image-related tasks, recurrent neural networks (RNNs) for sequential data, long
short-term memory networks (LSTMs) for time series and language processing etc.
[41]. However, in light of the fact that our research is concerned with the processing
of images, we will be concentrating more on the explanation of CNNs as they are

defined and used in the present work.
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2.3.2. Convolutional Neural Networks (CNNs)

CNNs are a class of deep learning models which are well suited for applications
involving data that can be represented in a matrix form, for example images [49]. The
emergence of a follow-up, which now appears to be misleadingly termed, a
convolutional neural network, seems to be genetically related to the functioning of the
neurons of visual cortex of animals [41]. CNNs were initially introduced to the world
of science by Fukushima in 1998 [50] and gradually, these have found applications in
a gamut of fields such as image and speech recognition, natural language processing
(NLP), and many more [41,51,52].

The architecture of a CNN consists of multi-layered structures that serve the role of
learning and extracting features from the data in a hierarchical manner. This includes
convolutional layers, pooling layers, as well as fully connected (FC) layers as depicted
in Figure 2.12. [41,49,50]. Convolutional layers are vital in feature extraction. These
layers utilize several filters, or kernels, that are moved over the input data in order to
identify spatial patterns, thus, enabling the extraction of local relationships within the
data [47,49,50]. These operations yield a set of feature maps depicting the directions

in which various patterns found in the input data are oriented [47].

A fundamental advantage of the CNNs is their use of local connections and shared
weights [41,47]. So, any filter existing within a convolutional layer can be used for
many differing locations of the input, hence making it possible for the CNNs to
recognize features irrespective of their location [41,47]. This property of being
translation invariant, together with the fact that parameters are shared, allows for
efficient pattern recognition with less memory and less computation, unlike the
standard FC networks [41].

The structure of the CNNs is hierarchical and adaptive which facilitates the extraction
of both low-level features and high-level features and is one of the reasons as to why
they have become a core technology in the field of computer vision. Their validity has
been proved across multiple areas including, but not limited to, face recognition

systems, autonomous vehicles, medical imaging, etc. [41,52].
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Figure 2.12. CNN layers adapted from [41].

2.3.2.1. Convolutional Layer

The typical structure of CNN incorporates a convolutional layer which performs the
important role of feature extraction by means of applying trainable filters or kernels
across the spatial dimensions of the input data [49,50,53]. This layer is preceded by a
sequence of linear and non-linear operations wherein said layer begins with a
convolution operation that takes the inner product of the input and filter values
resulting in the production of a 2D activation map [50,54]. The function of the
convolutional layer is illustrated in Figure 2.13.

Various regions of the input are processed by a convolutional filter via a sliding
window in a specified stride and padding which leads to the formation of localized
feature representations which are also referred to as receptive fields as a result of the
convolution process [54,55]. Such filters are generally intended for targeting particular
features or edges within the input at specific locations so that the CNN can later

identify such features in the images or other forms of structured data [49,50,56].
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Figure 2.13. Convolutional layer mechanism adapted from [53].

The parameters of the convolutional layer include hyperparameters such as filter depth,
stride and padding, which modify the size and the number of output feature maps [55].
Each convolutional layer is often followed by an activation function, e.g., ReLU,
which adds nonlinearities and permits the network to discover complex correlations in
the data [54]. Due to the prominent performing hierarchical decompositions of feature
representations associated with the repetitive use of convolution and activation
functions, CNNs are superior to pattern recognition [50,53,55]. The following
definitions for each component from CNNSs: Filters (or kernels), Strides, Padding and
feature map generation permeates how a convolutional layer works and what output it

produces.

Filters/Kernels

A kernel in CNN is a set of discrete values representing a weight which is small on the
grid and is used for feature extraction [41,49]. Initially, the weights located within the
kernel are assigned randomly. However, as the network trains, these values are altered

as the network learns what patterns or features are critical in the input data [41].

The operation of the kernel involves moving across the input tensor which is a

structured number array and calculates the scalar between its values and corresponding
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values in the input. Such processes produce output in the form of the 2D activation
map which indicates areas where the kernel was able to feature find specific elements
within the data [49,55]. Kernels are small usually in spatial dimensions, but their depth
suits the input data which allows the kernels to find both shallow and deep level
features in the layers [55]. The kernel with a dimension of [3 x 3] is depicted in Figure
2.14 as it moves on top of the input tensor.

X
2 |
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Feature map )
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Input tensor
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. L

Kok Feature map

Input tensor &

Figure 2.14. Kernel size of 3 x 3 adapted from [49].

Strides

The stride indicates the advancement or length of a single step performed by the filter
while accessing the input data. A stride of 1 means the filter moves a single pixel of
maximum intensity as depicted in Figure 2.16 from (a) to (b) [49]. In a stride of 2, a
two-pixel intensity is advanced at a particular point. A big stride increases the output
feature map’s size properties but decreases its detail level and lowers the processing
requirements. Thus, it seems straight forward to determine the optimum value of

computational efficiency and detail by selecting an appropriate stride.
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Padding

Padding is the operation of extending input data with additional rows and columns of
pixels around the border before filtering. This ensures that the spatial dimensions in
the resulting feature map are equal to or only slightly less than those of the input
depending on the type of the chosen padding. The practice of convolution making
addition of zeros around edges which is known as zero padding is the finest technique
for preserving information owing edge focus. If padding is not done the filters tend to
compress the spatial dimensions which leads to a tremendous decrease in the size of
the feature map after several layers [49,55]. Figure 2.15 illustrates the zero padding

around the original input pixels.

/

; 7
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Input tensor (5x5)

Figure 2.15. A zero padding around the original input pixels adapted From [49].
Feature Map Generation
The responses delivered by every single filter throughout its pass over the Input are
represented visually in what is referred to as a Feature Map, which is produced after a
convolution layer. The results of kernel scanning for the input that generates feature

maps are observable in Figure 2.14.

2.3.2.2. Pooling Layer

A pooling layer is an important concept in the architectural design of CNNs since they

help to decrease the number of spatial dimensions of the feature maps that are produced
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by the convolutional layers. Having so many parameters and computations in the
network is other no. less demanding as it economizes the necessary resources
[49,50,54,55].

A pooling layer gathers information from neighboring neurons in proximity and
coverage of an area and compresses the area’s outputs into one number. Max Pooling
that takes the maximum value plus average pooling are common pooling functions. It
was also noted that pooling layers allow the model to work with small variations in the
input data and displacement of features. This eliminates overfitting by making it easier
to detect common features thus decreasing the complexity of the model. Figure 2.16.

shows the Pooling Layer (Maxpooling).

It was suggested that most pooling operations involve a [2 x 2] kernel size happening
at a stride of two, thereby maintaining the depth of the input and at the same time
shrinking the activation map by 25% [54,55]. However, there are also limitations in
pooling, especially spatial information, hence trade of effective rate and level of details
available [41,56].

111214

max pool with 2x2
516 |7 |8 window and stride 2 6 | 8
3121110 3| 4
11213 |4

Figure 2.16. Pooling layer (Max Pooling) adapted From [56]

2.3.2.3. Dropout Layer

Dropout regularization is a method of regularization in a neural network which
consists in withholding every random group of neurons — set of fractions of neurons to
be ignored or turned off when training the graph. In Figure 2.17 (a) the standard neural
network is displayed, while the (b) shows after applying the dropout. This process
helps in overfitting by less dependence of the network on the particular sets of neurons

31



and helps in the learning of more common and less sensitive features instead [57]. The
process referred to as dropout, the removal of both hidden and visible units along with
their connections, effortlessly creates an ensemble of different network topologies.
This step also helps towards the generalization of the network, addressing a key point
of machine learning [57]. To strengthen the model along the neural network at each
epoch the model drops as a group increasing its stresses multi paths within it’s

extremely structured unit [51,57].

a) Standard Neural Net (k) After applying dropont.

Figure 2.17. (a) is a standard neural network, (b) after applying the dropout adapted
from [57].

2.3.2.4. Fully Connected Layer

Fully connected layer works as a classifier which fuses or combines inputs originating
from previous layers outputs and is usually located at the end of a CNN. For every
neuron from the previous layer, there is a connection or link between every neuron
from the current layer; this is what is generally referred to as the FC layer [41,50,51].
Similarly, the FC layer is similar to a conventional multi-layer perception (MLP) in
that it too uses a feed-forward structure to perform activations via matrix multiplication
followed by the addition of a bias [50,53].

As the name suggests, the last pooling or convolution layer of a neural network

produces the feature vector which serves as the input of the FC layer, this input
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undergoes a process termed flattening [41]. It involves taking away the spatial
dimensionality of multi-dimensional feature maps provided by any of the previous
layers and forming a single classification vector of one dimension containing the
mapping [53]. Finally, what comes out of the FC layer is what gets the final touch or
Is the final output or classification of the model which is the CNN as seen in the
discourse of [41,50]. The output generated by the FC layer constitutes the final result
of the CNN, as depicted in Figure 2.18.

0.1

0.2

0.9

0.2 Dog

0.9 Not Dog
0.1

0.2
These connections are
repeated for each node

Figure 2.18. FC layer as represented final result of CNN. Adapted from [41].

2.3.2.5. Non-Linearity (Activation Functions)

Non-Linearity (Activation Functions) Neural networks, particularly CNNs, need
nonlinear functions. They permit the model to convert the input signals into output
signals in non-linear fashion. This is very important; or else, many processes in reality
which are complicated cannot be modeled using linear transformations [51]. The
nonlinear functions allow the model to learn more complex interactions and
dependencies in the data, improving its expressiveness and capabilities to model more

functions in general [41,51].
A nonlinear function is designed to follow the layers which have trainable weights like

FC layers and convolutional layers — they constitute the non-linearity of the whole

CNN architecture [41]. Non-linear functions however add more complexity for them
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to work. They possess the special feature of being differentiable which is important in
facilitating error back-propagation in network training [41].

The most widely used nonlinear activation functions are the sigmoid (or logistic)
function, the hyperbolic tangent (tanh) function and the rectified linear unit (ReLU)
[50]. The clear winner among the activation functions used in CNNs is the rectified
linear unit (ReLU) owing to its simplicity and being very effective. ReLU enables to
cut down all values less than zero to those which are zero; this assists in reducing the

restrained gradient issue and enhances the speed of the training procedure [38].

2.3.2.6. Backpropagation

Backpropagation is a significant training technique it allows the network to self-learn
by changing its parameters called weights and biases so that the errors in its outputs
are minimized [49,50]. The approach proceeds by first deriving the gradient of the loss
function in relation to every weight in the network. It then applies those weights with
the direction given by the calculated gradient so that the model is enhanced in many
rounds [49].

2.3.3. Limitations of CNNs

CNNs have numerous advantages; however, there are salient limitations that should
be taken into account while implementing them. One of the major concerns is their
applicability only in situations where a huge amount of labeled data is available. CNNs
have millions of parameters, so a large amount of variation in data is needed to achieve
minimum risk of overfitting. Gathering and labeling this enormous data set can be a
daunting and expensive exercise, especially in instances of fine-grained classification
or segmentation tasks [51]. Further, it has been noted that due to the down-sampling
operation (pooling), CNNs lose important spatial information, as they discard
information about an object’s precise pose and location [52]. They also have problems
with a lack of internal rotation, therefore making it hard for them to correctly label the
objects when they are in different orientations from those trained. Also, since CNNs

are sensitive to even the slightest perturbations of pixels, they can easily misclassify

34



and suffer adversarial attacks. These challenges raise the areas where the use of CNNs
poses limitations, more so in areas where spatial relations, efficiency and robustness
matter [51,52].

But as reinforcement of learning becomes easier, there have emerged deep learning
techniques such as CapsNets that offer promising insights to go above the traditional
cons of CNNs, including the loss of important spatial structures between the elements
in the hierarchy [12]. In the next part, the concept of CapsNets will be described in
detail.

2.4. CAPSULE NETWORKS: CONCEPT AND KEY COMPONENTS

2.4.1. Introduction to Capsule Networks

As described in 2017 by Sabour et al., CapsNet are capable architectures which can be
handy for problems that require significant amount of spatial attention such as image
recognition [12]. This is because they address some of the limitations that are naturally

present in the classical neural networks.

It can be viewed as a state-of-the-art neural network structural design in which multi-
dimensional spatial hierarchies in relation to the data are compiled and encoded in
“capsules” instead of the conventional neurofunctional units that has a single output.
In the case of CapsNet, the core concept refers to an image representation method that
aims to overcome this limitation by treating visual information as a complex
hierarchical structure composed of cosets. In general, the traditional neural networks
operate on the principle that its basic functional unit is the neuron which provides
scalar outputs. The output is a multi-dimensional vector that represents a cluster of
neurons and the unit cell at this level is a capsule. This vector provides information
concerning various characteristics of the given object or a component of that object
such as its position, orientation and scale. Thus, the network can understand the
different level of image components discrimination and image segmentation. For
instance, the length of the capsule’s output vector will denote the probability that an

object is present while the direction of the vector carries other spatial information [12].
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Capsules are considered to assist these networks, known as capsule nets or real-world
nets, in perceiving aspects in an orderly fashion and preventing the effect of changes
in pose, texture or any distortion. For example, in the case of object recognition tasks,
it is not only the features that caps networks sense but also the spatial position of those
features, hence the strain of the degree of positional accuracy is relieved. Because of
the parts of an object were moved around, there would not be as many confusions
caused by object misclassifications. The strength of this capability is further magnified
with the introduction of the dynamic routing mechanism that allows the nesting of
pods with the lower-level output sent to a higher-level pod when there is a strong
spatial relation between them. This improves the sensibility of the network [12].

2.4.2. Capsule Network Architecture

A base structure of a CapsNet proposed by Hinton Geoffrey et al. in 2017 relies on the
developments that appeared concerning the representation of an object or an object
part by activity vectors [12]. They employ the length of the activity vector to indicate
the existence of the entity and the direction of the vector to indicate the parameterized
formation of the objects. This is done to ensure that the output vectors are in the range
of 0 and 1 which is affected by the equation which is Non-linear squash. As given

below:
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(3.1)

In accordance with equation 3.1, the output vector of capsule j is denoted by v;, and
s; is its total input. Although, s; remains the same for the first one, the prediction value
of all pillars for that case is as shown in (3.2) a weighted summation of the prediction
vector u;); from the last pillar. Also note that the output of u; from the lower-level
capsule is multiplied by the weight matrix Wij and the resultant vector is the prediction

vector u]|l

Sj = ZiCij Wi, o, (3:2)
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In the model described, the linking coefficient, referred to as c;;, is crucial and is
determined by means of a dynamic routing algorithm which is undertaken in a
recurrent manner over time. Specifically, these link factors, which evaluate the
strength of a link between a certain lower-level capsule, i and all higher-level capsules,
are bound by the SoftMax function to add up to one. The probability that capsule i will

interconnect with capsule j, named as b;;, plays an important role in establishing

ijs
these link factors and is naturally a part of the model as expressed in the equation (3.3).

o exp(bjj)
U Srexpby) (3.3)

The two capsules’ position and type establish the initial probability which is then
updated with the weights during the learning phase, which is defined as the input image

[12]. Therefore, the initial link of factor is changed to incorporate the output v; as of

the higher-level capsule, to ;); be the prediction made regarding the capsule i. Each
feature is then recognized, and parts of the object are organized into a hierarchy using

dynamic routing., a;; = v; - bu;; programmed in a scalar value which is later added
to b;; so that the new link factors can be computed. Dynamic routing can be seen in

Table 2.2.

The initial architecture of the capsule neural network had a Conv2D layer consisting
of 256 filters of size [9 x 9] with a stride of 1. The output produced [20 x 20 x 256]
was as a result of feature maps produced by the “RelLU” activation function.
Thereafter, a primary capsule layer utilizes 256 filters which consist of a convolutional
kernel of size [9 x 9] with a [2 x 2] stride resulting into 32 channels of 8D capsules.
The outputs were slotted into the [6 x 6 x 32] dimensional space, where it consisted of
32 units with each unit having an 8D output capsule. The third layer consists of a digit
capsule layer whose neurons are FC to all the capsules present in the next layer. This
layer has 10 capsules, one for each digit and each capsule is represented by a [16 x 1]
vector which was obtained from the capsules obtained in the previous layer in order to
do image classification as shown in Figure 2.19. This layer executes the function of
determining the bias of each capsule, which is useful to indicate the likelihood of the
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presence of the object and can be applied as the probability for the classification result
[12].

The authors mentioned, the CapsNet model focuses on a peculiar decoder structure,
which aims at reconstructing the digit images from the representations contained
within the DigitCaps layer. The MNIST database has long enjoyed the position of an
industry standard in the sphere of machine learning and consists of 70,000 scanned,
gray-scale images of handwritten digits from 0 through 9, each one having a resolution
of [28 x 28] pixels. This dataset is suitable for testing the capabilities of models trained

to classify images which involve recognizing images of handwritten digits [12].

Table 2.2. Dynamic routing algorithm [12].

Procedure 1 Routing algorithm

1: procedure ROUTING (uy;., 1, I)

2: for all capsule i in layer L and capsule j in layer (I+1): b;; < 0.

3: for r iterations do

4: for all capsule i in layer L: ¢; < softmax( b;)

5: for all capsule j in layer (I+1): sj« ¥; ¢;; W;;

6: for all capsule j in layer (I+1): vj«<squash(s;)

7: for all capsule i in layer L and capsule j in layer (I+1): bj«b;+1;;.v;
return v;
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Figure 2.19. Original CapsNet structure adapted from [12].

Before the Decoder section there is a section called The DigitCaps volume which
contains 10 capsules, each of which is responsible for the prediction of a single digit
class. Each capsule is a directional 16 vector which is responsible for capturing the
basic characteristic of its digit class. At the time of decoding, all other non-predicted
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capsules are made zero and the only non-zero capsule used corresponds with the
predicted class. This selective masking ensures that the decoder bears emphasis on the
reconstruction of features associated with the predicted number only, with less
disturbance from other classes thus improving the quality of the reconstructed image
[12].

The decoding itself is composed of three FC reconstruction layers, this means that
layer one in the decoder has 512 and layer two has 1024 units respectively, with all
layers using “ReLU” activation so that’s growth and refinement feature space, letting
the network get esoteric details of the digit. And the last layer is 784 units which
correspond to the input of [28 x 28] image dimension with the use of Sigmoid activated
function in order to output only values close to 1 and 0 making it suitable for
binarization. During training the model induces the length of the instance vector with
the help of a custom loss function such that for the correct capsule its representation
can be close to 1 while for the rest the ideal is close to 0, which is valid as the input
data is binary. This structure for combined reconstruction and classification helps the
CapsNet form better and more useful and explainable capsule encodings. In the same
sense it’s worth noting the caption appearing on Figure 2.20. constructing a digit from
the digit caps layer representation [12].

16 FC FC FC
RelLU Rell Sgmoid

10 [ . . 512 \1024 784

0 Masked = Representation of the reconstruction tanmet
Figure 2.20. CapsNet decoder structure adapted from [12].

2.4.3. Limitations of Capsnet in Medical Image Processing

Even though CapsNet indicates a shift in deep learning and solves some of the

drawbacks of the existing CNN models, this still has some constraints which makes it
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difficult for medical images or images with complicated features to get stronger
outputs. Such factors are identified and illustrated as follows:

e Incompatibility with Medical Images: Initially, CapsNet was designed to work
on the MNIST dataset, which consists of basic binary images of low resolution
such as handwritten digits [12]. This dataset is simple and does not have the
deep and conveyance representation abstraction that other kinds of images,
especially medical images, contain. In general, medical images have richer
feature representations, high-quality images, and complex pixel information
which again is in stark contrast with the MNIST dataset. Without adaptations,
CapsNet fails on the other hand, because the complex representation has not
been intended for the operation with such rich feature datasets in the first place
[58,59].

Need for Design Adjustments: Medical datasets tend to have a small number
of high-resolution images and high feature complexity compared to MNIST
which contains an excessive number of simple images. Several experiments
point out that original CapsNet was not developed for small size intricate
datasets and was required to be modified in order to acknowledge the intricate

characteristics of medical imaging [59].

However, numerous researchers are presently looking for ways to enhance the
structure of CapsNet. Medical image processing is more effective when enhanced
modifications and changes have been made as per several research articles in this area
and in order to overcome these challenges
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PART 3

RELATED WORK

The focus of recent work has been on improving the CapsNet architecture and training
algorithms for the purpose of medical imaging. These advancements are intended to
expand the scope of issues that the CapsNet can solve, such as those involving high
resolution images, intricate textures, and small differences that are common in medical
data sets. Strategies like adding hybrid architecture, changing routing approaches, and
fusion of multiple mechanisms have been employed to overcome these hurdles, thus
making the CapsNets more versatile and resilient for the Clinical purposes. This
subsection analyzes the recent developments in CapsNets that have led to better results

and performance in the task of medical image processing.

Toraman et al in their work incorporated convolutional CapsNet which is supposed to
reveal the abnormalities of COVID-19 from the X-ray edges. They augmented the
original CapsNet by adding multiple convolutional layers in front of the primary
capsule layer to improve on feature extraction. The network architecture therefore
involved four convolutional layers arranged in the following order of internal
components: Convl has 16 [5 x 5] filters with a stride of 1 and a [2 X 2] max-pooling
layer afterwards; Conv2 has 32 [5 x 5] filters with a stride of 1 and a [2 X 2] max-
pooling layer afterwards; Conv3 has 64 [5 x 5] filters with a stride of 1; and Conv4
has 128 [9 x 9], stride 1 filters. After the convolution layers, the primary capsule layer
contains a total of 32 capsules, each with a [9 x 9] kernel and a stride of 1. The
LabelCaps consists of 2D and 3D classification tasks in two sets of 16 capsules while
applying ReLU activation function. Due to the small images size, the model was fitted
on augmented images on a binary and multi-class settings that reached the accuracies
of 97.24% for the binary classification and 84.22% for the multi-class classification
respectively [60].
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A model for classification and detection of lymph nodes in medical images was
proposed by Zhang et al., they called it Camelyon16 capsule network model. They
improved the routing process by feature decomposition whereby the feature vector and
feature value obtained from decomposition stood in form of output vector and
predicted value in the standard routing process making it a new routing schema. As
they knew the shortcoming of a kernel of fixed size, they contacted a multi scale
feature extraction module just before the first capsule layer. This module includes
several convolution and pooling layers with the aim of obtaining different spatial
features. Firstly [1 x 1] dimension reducing convolution is applied and then [3 X 3]
and [5 x 5] convolutions are used to capture larger scale patterns later. Also, because
the dominant features need to be focused on and the input down-sampled, a [2 X 2]
max-pooling layer was added. These outputs are then concatenated aimed at yielding
a shifted multi-scale representation which is more informative. They reported accuracy
results of 82.31% for CIFAR-10, 99.65% for MNIST, and 88.23% for Camelyonl16

when the model was tested on these three datasets [61].

Afriyie et al. conducted a study which sought to test the first version of CapsNet on
several datasets namely R-MNIST, CIFAR-10, MRI images of the brain tumors, and
blood cells. From their experiments, the results achieved are as follows: profiles of
62.98% in the case of CIFAR-10, 78.69% in the case of brain tumor MRI, 92.49% in
the case of the F-MNIST, and 82.00% in the case of blood cell images. The results
show the shortcomings of the original CapsNet in general, and in particular, its ability
to work with complex picture dataset-medical image dataset. Because of this, the focus
of many researchers is on the improvement of technology, so that it better corresponds
to the requirements of different data types. The subsequent sections summarize the
studies that have aimed to alter and adapt the CapsNet for use in medical imaging

based on various other datasets. [62].

Afshar et al. have created a modified CapsNet for the purpose of diagnosing brain
tumors using brain MRI scans. In their case, the changes were not restricted only to
the architecture but also implemented in the loss function. The authors resized the brain
MRI scans from [512 x 512] to [128 x 128]. The architecture begins with a convolution

layer that has 64 filters with a kernel of [9 x 9] which aims at feature map extraction.
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They then constructed a primary capsule layer which contained 32 capsules with each
having eight dimensions (8D) and a [9 x 9] kernel. Rather than the standard methods
of CapsNet which utilize Margin Loss and a reconstruction loss, Authors suggested
using a novel loss function that was constructed by integrating capsule loss and cross
entropy loss in order to boost the overall classification accuracy. Based on their
conclusions, the designed CapsNet surpassed other methods aflame in terms of
accuracy reaching 90.89% in correctly diagnosing brain tumor [63].

In a recent research work, Afshar et al, improved the CapsNet for classification of the
tumor types further. Their improved version of model contained only one
convolutional layer with 64 filters instead of 256 as it was in the previous versions and
took images which were resized to [64 x 64] pixels. The initial capsule layer, which
consisted of 32 capsules of eight dimensions each was unchanged and had kernels of
size [9 x 9] with a stride of 2, areas of which were pooled to form a [24 x 24] feature
map. Their CapsNet modification outperformed the original CapsNet accuracy of
82.30% and achieved 86.56% accuracy. Furthermore, they applied models with two
convolutional layers filter, each having 64 models, which had an accuracy of 81.97
percent. In order to obtain better results, they have improved the reconstruction
Internal Neural Network by augmenting it with an additional FC layer of the
reconstructed neurons large 4096. They have also tested three-layer models in the
decoder with 1024, 2048 and 4096 neurons to achieve accuracy of 83.93% [64].

A number of researchers have explored the fusion of pre-trained CNNs with CapsNet
aiming at developing hybrid frameworks that resolve certain weaknesses of the
primary CapsNet while obtaining better results. In this context, Mandic et al. have
proposed a hybrid model - DenseCapsNet that integrates DenseNet121 model and a
capsule neural network (CapsNet) with the aim of Covid-19 infection detection from
chest X-ray (CXR) images. This approach achieved an accuracy of 90.7%. The
segmentation network TernausNet was used to mask the lung region from each image
and the subtracted images were input into DenseNet for lung feature extraction. In
order to enhance the performance of the model further, random data augmentation was
performed. During the span level using CapsNet, the spread loss function was utilized

in order to decrease the training sensitivity. The paper claimed that the coverage of
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this aspect of the issue is still quite poor as it was focused on the results of experiments
when data augmentation and model training and coupling of CapsNet and CNNs were
present [65].

As reported in a study by Sezer et al., a novel twist to the CapsNet was advanced for
rotator cuff pathologies classification in the computer-aided analysis of shoulder MRI.
This enhanced architecture incorporated two convolutional layers into the original
CapsNet. The first convolutional layer had 128 filters with kernel size [7 x 7] and
padding stride 2, yielding a reduced output of [29 x 29] without any formal padding.
The output from these filters served as the input in the second CNN layer which
comprised 256 filters with [9x9] convolution kernel and a stride of 1. The
convolutional networks comprised of two layers where the first one was linked with
the other which was passed to the primary capsule layer. The parameters of the primary
capsule layer were different to the previous layers which were altered by the authors.
They employed a total of 64 capsules of 8 dimensions each with [9%x9] conv kernel and
stride of 4. As far as the reconstruction is concerned, a decoder block was applied with
512, 1024, and 4096 layered neurons that aim to restore the given images. Inception
along with new appendages applied to the word-oriented MRI data in coronal plane
obtained 95.36% accuracy whereas a modified version of the CapsNet associated with

no inception deleted 94.75%, together with sustenance thumb etc. [66].

As part of their work, Anant et al. developed a reconfigured CapsNet explicitly
targeted at pediatric bone age assessment. They adapted the model for the content
comprising the RSNA Pediatric Bone Age Challenge (2017) data set of hand X-ray
images of children which are over 10 GB in size. The researchers have introduced a
number of improvements over the originally designed CapsNet. First, they reduced the
loss function to three using a specific formula. Moreover, they sought to address the
‘dying ReLLU” issue by substituting the standard ReLU with Leaky ReLU. ReLU has
mathematical properties which mean that when a neuron has an output of zero, then
that neuron is inactive since there is no way for the weights to change, which can be
referred to as ‘turning off” the neuron. Instead, if Leaky ReLU is applied, then the

researchers hoped this challenge would be overcome. The paper does not indicate
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specific accuracy but rather these changes were made to reinforce that, over different
age group model accuracy is not biased [67].

DenseCaps, is another different capsule architecture which employs dense
connections, makes use of cross-capsule feature concatenation, which as a matter of
fact, was motivated by the dense net’s cross layer feature binding strategy. The model
was tested on a variety of well-known canonical datasets with accurate performance
of 99.70 % on MNIST, 94.93% on Fashion-MNIST, 89.41% on CIFAR-10 and
95.99% on SVHN. As mentioned, these data sets have a great number of images,
therefore data augmentation was not needed. On the other hand, the fact that it is reliant
on a large dataset suggests it may be difficult for DenseCaps to attain such a high level

of accuracy as these in smaller ones [68].

ResCaps was developed to aid in the problem of papillary thyroid cancer classification
by extending the CapsNet approach. In contrast to the ResNet architecture which
replaces the standard CNN layer, CapsNet architecture only conducts convolution of
its input without introducing additional complexities leading to increased errors.
ResCaps was trained using a smaller dataset consisting of 1956 training images and
424 testing images, the model attained an 81.06% classification ratio. In contrast, the
same dataset ResCaps using CNNCaps was applied with a final accuracy rate of 79.17,
indicating a significant benefit from the residual unit in the processing of advanced

medical images [69].

VGG-CapsNet is an extension of CapsNet which focusses integrating its capabilities
with the VGG-16 architecture so as to be able to classify lung cancer tissues within
CT images with better accuracy and efficiency. The authors of this paper put emphasis
on the performance of VGG-CapsNet by benchmarking its performance against other
models on the LIDC-IDRI and Kaggle datasets. In the case of the LIDC-IDRI dataset,
VGG-CapsNet got AUC score of 0.980 and F1-Score of over 98% meaning it had a
precision, recall, specificity and accuracy score of 99.07%, 98.16%, 99.07% and
98.61% respectively. The VGG-CapsNet achieved a precision of 98.14%, a specificity
of 99.16%, accuracy of 98.07% an AUC score of 0.98 and F1-Score of 98.14% for the

Kaggle dataset which showcases how perfectly the model was developed [70].
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The IRCM-Caps model integrates CNN and CapsNet architectures for Covid 19
diagnosis in X-ray images, Improving its performance with the aids of an attention
mechanism and a multi-branch lightweight module. To enhance the image contrast,
the images are first preprocessed by the Contrast Adaptive Histogram Equalization
(CLAHE) algorithm. The model has been validated with a dataset of 1200 standard X-
ray images including 400 positives for Covid 19, 400 positive for viral pneumonia and
400 negative cases. Results indicate that the IRCM-Caps model achieved 99%
accuracy which was an improvement over the 93% accuracy of the initial CapsNet
model [71].

S-VCNet, a hybrid model combining VGG and CapsNet, enhances the accuracy of
lumbar spondylolisthesis identification in X-ray images. The study utilized a dataset
of 466 private radiographs, with 186 images showing spines affected by
spondylolisthesis and 280 images depicting normal spines. The proposed model was
compared to other diagnostic approaches and demonstrated superior performance,

achieving an accuracy of 98% [72].

Ensemble Model can be classified as a skin cancer detection method that utilizes VGG,
CapsNet, and ResNet in order to aid in achieving higher accuracy level. The authors
in this research utilized the ISIC (International Skin Imaging Collaboration) dataset,
which contains 25000 skin images belonging to several categories with the main
concentration on binary classification involving 3000 malignant images and 2800
benign images. Experimental results indicate that the integrated model achieves higher
performance than the single models i.e. an accuracy of 93.5% as opposed to 75% for
CapsNet, 79% for ResNet and 69% for VGG [73].

The model RNNinCaps consists of modified CapsNet and some RNN module for
recognition of 3D vertebral images. The vertebral image dataset used in this study
contains a total of 4000 images beside the CIFAR-10 database. The model was
evaluated against the CNN, CapsNet, Baseline-1 and Baseline-2 models which were
similarly scaled with the same dataset and was found to be more accurate than these

comparative models. [74].
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The combination of Xception and CapsNet into a model termed XCapsNet is aimed at
the accurate and efficient detection of diabetic retinopathy (DR) from fundus images.
When this model was used on the APTOS2019 dataset, it obtained a classification
accuracy of 83.06% for multiclass DR classification and 98.91% for binary-class DR
classification. On Messidor dataset, XCapsNet provides classification accuracy of
98.33% for DR and Normal classes of fundus images which is better than existing

models in terms of classification accuracy and computational cost [75].

The FixCaps model is particularly intended for classifying dermoscopic images in the
skin cancer context. The model increases the workload easing detection by including
a large kernel convolution layer, with a kernel size of 31 x 31, increasing the receptive
field of the CapsNet, rather than the standard 9 x 9 kernel, which is the standard norm.
The results of the experiments fully support the supposition that FixCaps is superior
to all available as well as dominant IRv2-SA models developed for dermatoscopic
images classification. The Zip files containing the HAM10000 dataset output file
observed that 96.49% accuracy using FixCaps which outperformed IRv2-SA results
[76].

The BoostCaps model, which was first described by Ben et al. is the first CapsNet
which has been able to implement a boosting mechanism. It is specifically created to
perform tumor classification tasks. The model accepts images of the human brain as
well as rough boundary boxes of the tumor, which enables it to analyze both the target
tissues and tissues surrounding it. An internal boosting mechanism is used to
iteratively enhance weak learners which makes building large architecture scalable.
Evaluated on the Jun Cheng brain dataset, BoostCaps obtained a classification rate of

92.45%, exceeding the accuracy of the original capsule model of 89.83% [77].

Khikani et al., developed a powerful capsule neural network for the classification of
breast cancer using histopathological images, by adding a Res2Net block and four
other convolutional layers in order to aid in multi- scale feature extraction and
minimize. The model was evaluated on BreakHis dataset, and it was able to achieve
an overall accuracy of 95.6% and a recall rate of 97.2%, thus outshining other previous

models. The study also performed image rotation and flipping to increase the size of
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the dataset and improve the performance, and as it has been pointed out, augmentation
should be performed whenever small databases are utilized [78].

Kumari et al. synthesized a hybrid model by integrating CapsNet and SVM for
classifying five stages of diabetic retinopathy and reached an accuracy rate of 96%. A
scan of current work which has employed CapsNet in retinal image classification
indicates that while there are works aimed at the detection of common retinal diseases
such as diabetic retinopathy and glaucomatous neuroretinal atrophy, no work has

specifically sought to classify varied retinopathies themselves [79].

HMedCaps, a proposed hybrid CapsNet architecture, is designed to enhance the
analysis of complex medical images by integrating Residual Block and FractalNet
modules within the feature extraction layer. This innovative architecture aims to
deepen the network while effectively addressing the vanishing gradient problem
through the implementation of skip connections. Additionally, a novel Sigmoid-
Squash function is employed to improve capsule activation, emphasizing the
distinctive features of the capsules. To address dataset imbalances, data augmentation
was utilized to equalize the number of images across selected cases. The model's
performance was assessed using the CIFAR10 dataset for complex images, the RFMiD
dataset for multiclass retinal images, and the Blood Cell Count Dataset for blood cell
analysis. The results highlighted that HMedCaps notably surpassed the performance
of traditional CapsNet and other contemporary methods, achieving higher accuracy in
classifying complex and multiclass medical images, thereby showcasing its potential

for more precise diagnoses in medical image analysis [80].

The focus of the work of Kalyani et al. revolves around the usage of a modified
architecture of the capsule neural network to achieve the detection and classification
of diabetic retinopathy. The aim of the work is to develop a highly accurate and early
detection technique by making use of a CapsNet which is free from loss of information
which is a characteristic drawback of pooling layers in standard convoluted neural
networks. This technique uses the Messidor data set which contains over 1200 RGB
fundus picture dispersed into 4 groups where 0 means absent of diabetic retinopathy

and 1 to 3 means as the numbers increase so does the severity of the condition. The
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model performs enhancement preprocessing of the fundus image to improve the image
contrast based on the green channel, press decomposed averaging followed by a set of
sequences comprising of convolutional layer, primary capsule, and class capsule and
ended by softmax classification layer. The results are quite pleasing with a high
accuracy rate of 97.98% for images of healthy retina and there is 97.65%, 97.65% and
98.64% for after the first, second and third stages of diabetic retinopathy. This
indicates that the method in discussion has high accuracy in the diagnosis and

gradation of diabetic retinopathy [81].

A novel preprocessing pipeline, a fine-tuned Vision transformer (ViT) and CapsNet
are integrated together in the algorithm developed by Oulhadj et al. to gauge the
progression of diabetic retinopathy. To begin with, power law transformations are
applied to change the contrast of the retinal fundus images. The same channels are then
processed with contrast-limited adaptive histogram equalization to a certain extent
which intensifies the microaneurysms. This results in processed images with one
interface providing an input to ViT while the second interface providing an input to
the CapsNet. The classification model here takes the output of the two models in
determining the extent of development of diabetic retinopathy. This methodology has
been implemented and tested on four publicly available datasets like APTOS,
Messidor-2, DDR and EyePACS. Results indicated that the test accuracy for the
mentioned datasets were 88.18%, 87.78%, 80.36%, and 78.64% respectively. Such
results indicate a substantial improvement with respect to the existing best techniques
solutions and thus emphasize the importance of the model in enabling a timely

diagnosis of diabetic retinopathy [82].

In another study Kumar et al., this study proposes a method that utilizes a modified
CapsNet (CapsNet) model which is optimized to detect malaria parasites in blood
smear microscopic images. According to the authors, this model consists of a fully
functional CNN integrated with CapsNet thereby increasing the accuracy of diagnosis.
As a part of improving image quality, the image processing pipeline consists of
rotation and normalization techniques before inputting data into hybrid model. The
study uses the Malaria Cell Imaging Dataset from the National Institutes of Health

which contains more than 27,558 images which consist of infected and non-infected
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malaria blood cells. Furthermore, it was found that the hybrid CapsNet model
performed satisfactorily well with effective results of detection rate of 99% and
accuracy of 99.08% with a false acceptance rate of 0.97%. These results are significant
compared with the previously existing models and further prove the effectiveness of

the hybrid model for malaria diagnosis [83].

The new capsule model which has been designed in theory includes the foundation of
three separate capsule approaches including Tri Texton-Dense Capsule Network
(TTDCapsNet), TDCapsNet Dense Stage and TDCapsNet Core Stage which aims at
assimilation of three core building pillars towards improved understanding of intricate
medical images. The voting scheme provides a simple procedure for feature extraction
along with a dedicated eight-layer u shaped dense us encased in a luminance saliency
as its last stage. The authors started image classifications in the TDCapsNet’s final
layer by using the first PC but then may consider altering the second-level TDCapsNet
configurations in accordance with proper integration criteria sense-assisted TS quite
different from Probability Cubic which influenced TDCapsNet. The author’s jury cited
over 85% accuracy for facial recognition while noting that this in some study set
samples of the model including having achieved over 97% accuracy with specific
parameters, accuracy levels that are positioned around 94.90% level for Fashion-
MNIST unmatched clothing datasets, CIFAR-10, and Breast cancer. It could therefore
be argued that from the arguments made, TTDCapsNet is a fifth-generation CapsNet
as it raises the bar for latest CapsNet configurations among others targeting advanced
three-dimensional image recognition settings [84].

Veni et al., acute clinical conditions like acne are commonplace in our society today,
thus a comprehensive understanding of the condition through its grading and
classification is very crucial. In this regard, utilizing a vast amount of data, we need
advanced systems and architectures capable of classification and detection. To solve
some of the issues within the papers, such as, overly reliant and non-robust models,
we propose a hybrid system consisting of a VGG16 which has been reinforced by the
inclusion of a CapsNet network which we have called convolutional block attention
module (CBAM) to be able to classify acne into the three levels of severity including

mild moderate and severe acne. Due to the model being built on some of the recent
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datasets, we were able to train and adapt the model successfully. The results achieved
by the model were impressive, demonstrating high performance, high confidence
clinical tools including a precision of 100%, an F1 score of 99%, recall of 100%,
accuracy of 99%, specificity of 100%, and a kappa score of 97.87%. etc. As such, the

model shows great promise in the field of medical diagnostics [85].

Saif et al., CapsCovNet et al., gives a second-generation capsule neural network which
helps to assist diagnosis of COVID-19 from multiple forms of medical imaging that
involve chest X-ray and ultrasound scans using a dataset. CapsCovNet differs CapsNet
for diagnosing COVID-19 from more basic ones in that it employs some major
features. It uses many multi convolutional blocks whilst varying the kernels so as to
extract information at different dimensions, it also deepens the number of the capsule
neural network layers to improve the capturing of complex data, finally it employs
twisted capsules to mostly improve the learning process. With an application of a
refined routing algorithm the information retention is also greatly improved,
furthermore, a pre training technique based on a large source of data greatly aids in
overcoming secondary data problems. All these changes help improve the models
overall predictive ability and efficacy and enable it to perform better than the current
practices available in multimodal medical imaging. CapsCovNet, three standard
benchmark datasets were used to evaluate: A chest X-ray dataset of COVID and
pneumonia patients, a chest X-ray dataset and a point of care ultrasound dataset. The
findings were of remarkable success since the model used in the investigation was able
to achieve better results in accuracy when put against the current best models, most
notably a classification accuracy of 100% of the videos taken of ultrasound scans of
COVID-19 cases and great improvement in chest X-ray datasets that improved all
other metrics such as precision and recall rates and therefore this was a good pointer
in the automatic diagnosis of COVID-19 disease [86].

In this work, an image segmentation method that utilizes capsule neural networks
(CapsNet) for segmenting corneal images is proposed. The method consists of several
steps; the first one deploys preprocessing in order to remove speckle noise via a hybrid
gaussian, anisotropic and bilateral filters. This stage is important in improving the

quality of the images before the classification process. There are 579 OCT images in
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the dataset which were obtained from the noor hospital, Iran using SD-OCT imaging
technology, of which 384 images were used for training while the rest were reserved
for testing. The system is specifically trained to classify and segment three key layers
of the cornea, outer epithelium, upper stroma and lower endothelium. The modified
capsnet’s accuracy level was 96.41% as well as high sensitivity (96.83%) and
specificity (83.33%). On top of that, the segmentation performance was also analyzed
using the Dice Similarity Coefficient and it was revealed that the modified SegCaps
outperformed the existing methods and once more emphasized the effectiveness of the
suggested development in regard to corneal images segmentation in pre-surgical
imaging tasks [87].

Gupta et al. have developed a multimodal neural network called COVID-19 Capsule
WideNet which can automatically diagnose COVID-19 from chest X-ray pictures.
Their model consists of two convolutional layers and three capsule layers which solve
the conundrum of conventional CNNSs preserving spatial context while simultaneously
solving feature detection. This model has further been tested on the COVIDx dataset
that has 13942 images of which there were 507 images of COVID-19 patients and
13435 images of non-covid patients. Such high metric results as 91% accuracy,
sensitivity, and specificity, together with AUC equals 0.95. This underlines the ability
of the COVID-WideNet framework to address the given task of the timely diagnosis
of COVID-19 based on X-ray images [88].

The deep learning framework which utilizes CapsNet based structures of various
CNNs such as DenseNet, ResNet, VGGNet, and MobileNet have been proposed for
the detection of COVID-19 from lung CT scans. This hybrid architecture, termed as
DenseCapsNet, ResCapsNet, VGGCapsNet, and MobileCapsNet, employs the best of
both worlds where ConvNets are utilized for feature extraction and CapsNets for
higher degree of spatial awareness. The model is trained on SARS-COV-2 CT-Scan
dataset containing 1,252 CT images of COVID-19 positive patients and 1,230 non-
COVID CT images thereby making a total of 2,482 images. The results show that the
three models VGGCapsNet, DenseCapsNet and MobileCapsNet achieved an accuracy
of up to 99%, thus proving the effectiveness of the proposed architecture in the
diagnosis of COVID-19 from the lung CT scans [89].
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Madhu et al., proposed method in the article introduces an Imperative Dynamic
Routing mechanism using fully trained CapsNet for malaria classification, addressing
the limitations of traditional CNNs. This model is specifically designed to enhance the
extraction of features from thin blood smear images, which contain samples of both
parasitized and healthy erythrocytes. The dataset utilized consists of 27,558 images
sourced from the National Institutes of Health (NIH) repository, ensuring a balanced
representation of both classes without class imbalance. The CapsNet architecture
includes a series of convolutional blocks followed by dynamic routing between
primary and secondary capsules, effectively capturing spatial relationships and
reducing information loss by eliminating pooling layers. The results achieved by the
model are noteworthy, with an accuracy of 98.82%, an Area Under the Curve (AUC)
of 99.03%, and a specificity of 99.30% on the test samples, demonstrating its

robustness and effectiveness in accurately classifying malaria-infected cells [90].

Recently, Goceri et al., presented AFConv-CapsNet which is a new deep learning
architecture designed for the purpose of diagnosing skin cancers by use of adjustable
and fully convolutional capsule layers. This architecture incorporates an adjustable
capsule layer that encodes spatial relations between capsule vectors with a learned bias
feature, allowing the model to perform better in maintaining orientation and location
information. For training and evaluating the proposed model, the authors used the
HAMZ10000 dataset which includes a considerable number of dermoscopic images
under seven forms of skin lesion. To achieve a balanced diverse coverage, they used a
total of 805 images with the dataset enhanced through the use of image augmentation
techniques. Achieved results obtained by the AFConv-CapsNet model are quite good,
registering the recognition accuracy at the level of 95.24% with sensitivity diagnosed
at 95.37% and specificity at 99.23%, which indicates offline effective classification of

multiple skin cancer types [91].

Behara et al. introduced an innovative model for automated skin lesion classification
that encompasses a combination of an active contour segmentation, ResNet50 based
feature extraction and a lightweight attention driven CapsNet. To begin with, the
method in the first step utilizes active contour models to properly segment the skin

lesions thus increasing the degree of relevance to the features contained in the images.
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After segmentation, important features are extracted from the images through the use
of the ResNet50 model, and then the CBAM which reads together each of the channels
in the feature map enhances the attention to important parts in the attention spatial
feature maps. The obtained features were further concatenated and forwarded to
CapsNet that employs dynamic routing for classification. The model has been tested
on available databases; the HAM10000 and ISIC 2020 and it has obtained a record of
98% accuracy and 97.3% AUC-ROC. These outcomes demonstrate the considerable
prospect of the model to generalize well in the context of automated skin diagnosis

systems [92].

The InceptionCapsule approach put forth by Sadeghnezhad et al., combines Inception-
ResNet with CapsuleNet within a self-attention framework to address the challenges
pertaining to medical image classification. This strategy employs a form of transfer
learning, wherein the model is initialized with weights from ImageNet to avoid having
to deal with random weight selection problems. The procedure includes a CapsNet
augmented with attention that processes feature rich vectors derived from the Inception
middle layers and may aid in highlighting useful features. The model was tested
against the Kvasir dataset and BUSI with GT dataset. It was able to yield an accuracy
of 97.62% and 94.30% for 5 and 8 class respectively in Kvasir dataset. The model
achieved an accuracy of 98.88%, 95.34% precision and an F1-score of 93.74 in the
BUSI with GT dataset, affirming its superiority over existing techniques as highlighted
in the literature [93].

The approach used by Aydin et al. was to address the limitations of conventional CNNs
using an enhanced Capsule Neural Network (CapsNet) architecture to classify bone
marrow (BM) cells. The specific objectives were achieved through the implementation
of three pre-trained models; VGG16-CapsNet, Residual Capsule Network (RES-
CapsNet) and Google Network Inception V3 (GN-CapsNet). These models aim at
enhancing feature representation by employing dynamic routing and hierarchical
feature comprehension. The dataset used in the research consisted of more than
170,000 images showing BM cells with more than 21 cell classes that had been
annotated by experts. The application of the Synthetic Minority Over-Sampling

Technique (SMOTE) was able to reduce and if not eliminate class imbalance making

54



classification much better. There results were remarkable, with GN-CapsNet recording
a 99.45 % accuracy rates while RES-CapsNet followed with a 99.24 %, VGG16-
CapsNet a 98.95 % and the basic CapsNet 96.99 % all achieved impressive
performance rates. Such performance results of the models contribute to accurate

diagnosis for various hematological diseases [94].

In their study, POKUAA et al. presented their system which is the Denoising Patch-
and-Amplify Gabor Capsule Network (DPafy-GCaps), aimed at the diagnosis of
gastrointestinal (GI) diseases. The proposed method extends the traditional
architecture of the Capsule Networks by using a technique which enhances certain
features while suppressing the noise embedded in images. This technique applies to
Gabor filters that will be used to selectively obtain the frequency components critical
for the diagnosis of the disease. The model was tested on the Kvasir-V2 dataset which
consists of 8000 colored images of gastrointestinal diseases. The effectiveness of this
model was demonstrated by recognition accuracy that was raised to a remarkable
96.80% on Kvasir-V2 dataset which means its ability to detect diseases such as
esophagitis and polyps is greatly enhanced. Moreover, it has also demonstrated
comparatively good results with Fashion-MNIST and CIFAR-10 datasets with 95.10
and 85.50 accuracy respectively. All the results obtained show that the model is quite
robust and has a broad applicability to medical imaging even in conditions of limited
data [95].

A novel method which is named as improved capsule neural network (CapsNet), was
introduced by Remya et al in their work, with the objective of being able to correctly
identify and quantify the thickness of the brain tumor regions. The method proposed
is a three-step process, namely: pre-processing, classification and segmentation. First,
the method adopts an enhancement of Discrete Wavelet Transform (DWT) filtering
system to reduce Rician noise from movies of the 461 brain tumors of various grades
in the BRATS2018 data set. After the noise cancelation step, classification which is
also a feature extraction step is performed, only that this time the images are already
cleaned. The classification step uses the CapsNet, which can construct useful features
even with meager samples. The last step involves segmentation of the images by use

of modified Seg Caps in order to distill the abnormal areas of the tumor for accurate
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measurements. The accuracy of the tumor segmentation was noted to be 95.36%, an
improvement of 1.5% from other algorithms. Moreover, the estimated areas of the
tumor thickness were the best, when compared with the other estimates that were
provided by the specialists in the field, suggesting that the device can be suitable for

use in clinical settings [96].

As per the article by Ye et al., a Genetic Hybrid Rice Optimization (GHRO) algorithm
that utilizes a hybrid approach to the search for optimum values in hyper systems for
capsule is introduced by the authors. This approach combines genetic search
techniques with the hybrid rice optimization algorithm to improve global search
capabilities while preventing local optima. GHRO was used to automatically optimize
hyper parameters for the CapsNet model which entailed setting up appropriate batch
size, the number of kernels as well as suitable activation functions. The methodology
was rigorously evaluated with several datasets including MNIST, Chest X-ray
(pneumonia) and Chest X-ray (COVID-19 & pneumonia). The experimental outcomes
clearly illustrated that the application of GHRO in optimization of parameters of the
CapsNet improved its performance in image classification tasks as they achieved more
accurate results and a reduction in time taken to train the models relative to the
traditional methods for parameter estimation. More specifically, the GHRO-CapsNet
model, outperformed the other models in classifying the images in the datasets which
attested to the success of the hyperparameter optimization component in the model
[97].

The method developed by Chaudhari et al. focuses on the development of an
automated bacterial recognition system that incorporates a histogram oriented
optimized CapsNet. The approach uses histograms as one of the features which helps
in reducing the dimensionality of the input data while still preserving essential color
information. The CapsNet on the other hand is supposed to take care of such factors
as spatial orientation and pose of a bacterial image. This is further said to enhance the
classification ability of an object as compared to conventional CNNs. The model was
evaluated using the DIiBAS database which consists of a collection of 33 bacterial
species. Unfortunately, the paper did not discuss KNN or methods of finding nearest

neighbors. The results came out to be quite optimistic in that the accuracy achieved by
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the CapsNet was quite impressively high at 95.08, thus beating numerous benchmark
ML algorithms such as KNN, Decision Trees, Naive Bayes and SVM. This implies
that the proposed technique is capable and efficient in the accurate classification of the

studied genera of bacteria having very few training parameters [98].

The research of Mursalim et al. proposes a model named BiCaps-DBP, a combination
of Bi-directional LSTMs and ID-Capsule which aims to create a model that predicts
DNA-binding proteins. It contains a one-hot encoding layer to transform protein
sequences into binary vectors so that the Bi-LSTM layer can extract contextual
features. Later on, the features obtained by relational information from the ID-Capsule
would help in classification. The model was tested against three datasets namely,
PDB2272, PDB186, and PDB20000. This model achieved the results of 83.11%,
73.49%, and 94.58% respectively, enabling it to be witnessed as a superior model,
being 1.05%, 5.79%, and 0.40% more accurate than the other predictors, marking an
important step in DBPs [99].

Chen et al. developed a multi-scale convolutional capsule network (MSCCNet). This
network has been trained for the classification of cervical cells using a deep learning
framework. A cross-layer attention-based feature fusion module has been integrated
within the architecture of the model that unites features of different levels (low,
middle, and high) to endorse the representation capabilities. Moreover, an attention-
assisted spatial relationship modeling module that’s been added to the architecture of
the model in order to model the differences between the cervical cells of different types
that may look similar to each other. The model was tested on two databases the in-
house created DSCC data set that has 15,509 cervical images and the publicly available
SIPaKMeD containing 4,049 images. Particularly, for the DSCC dataset the accuracy
rate was approximately in the range of 87.88% while for the SIPaKMeD data set the
scores reached nearly 97.90%. The success rates surpassed many of the existing
classification techniques and demonstrated high accuracy performance in cervical

classification [100].

To address the limitations of traditional CapsNets used in complex background

images, Adu et al. designed the SqueezeCapsNet model by merging SqueezeNet and
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CapsNets aims to improve the feature extraction while reducing the number of
parameters. The architecture employs sigmoid activation functions for better
normalization of coupling coefficients and proposes a new embedding squash function
to modify the distribution of the mass of the capsule activations. The model was
applied to diverse medical images set such as the brain tumor dataset, lung and colon
cancer dataset, alongside with standard datasets, that are MNIST, Fashion-MNIST,
and CIFAR-10. Conclusively, the model performed impressively well with 99.87%
accuracy on the MNIST dataset, 94.85 on the brain tumor dataset, 99.76% in lung and
colon and 82.45 percent on CIFAR-10 which justify that SqueezeCapsNet increases
the accuracy of diagnosis in medical images and is robust to many complex

background images [101].

According to Pallapu et al., the method describes a new model of detection for breast
cancer as well as its spread which includes adversarial capsule network and
Adversarial Capsule Network with Graph Convolutional Neural Networks
(ACNGCNN). This allows a new technigue that utilizes a Generative Adversarial
Network (GAN) for data augmentation by constructing artificial images to supplement
the training set, further increasing its realism. Such a model applies to a Non-Local
Means (NLM) filter that effectively reduces noise from the image without removing
any unique features from the image itself. To perform the classification task LSTM
with Bidirectional Gated Recurrent Units within a Recurrent ShuffleNet V2
architecture is employed making it easy to tackle long dated data. The method was
extensively evaluated on the BreaKHis dataset and there were tangible increments in
the detection rates: a 4.9% increase in precision, 3.5% in accuracy, and 3.4% in recall,
and a 2.5% boost in the AUC. Moreover, such a model, as a bonus, achieved
improvement at specificity of 1.9% as well as reduced the duration required for breast
cancer stage detection by approximately 3.4%, confirming the model’s potential on

early detection and accurate staging of the breast cancer disease [102].

As noted by Dubey et al., the Golden Hawk Optimization based Distributed Capsule
Neural Networks is the name of the method that they developed. The aim of this
research is to increase the performance of the detection of epidermis lesions

specifically focused on melanoma using computer techniques. This technique uses an
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optimized clustering-based segmentation approach wusing Sewer Shad Fly
Optimization (SSFO) in order to obtain better boundaries and features of the lesion.
The model uses a dataset which comprises 10,000 dermatoscopic images, namely, the
HAM10000 dataset. The performance metrics as reported show that the GHO-DCaNN
model training had a specificity of 97.53%, a sensitivity of 99.05%, and an overall
accuracy of 98.83%. For a k-fold cross-validation with 10 folds, it recorded 97.83%
specificity, 99.50% sensitivity, and 99.06% accuracy affirming its effectiveness in the

early diagnosis of epidermis lesion [103].

In their proposal, Boruah et al. present a model called CaDenseNet that combines a
CapsNet with attention mechanism in order to provide HIV integration site (IS)
prediction. The architecture also includes an encoding module, CapsNet module, and
other attention layers which help in the processing and learning of genomic sequences.
To prevent any bias from antiretroviral therapy due to data stemming from patients on
such therapy already, the models work from clean data acquired from the Retrovirus
Integration Database (RID), which precisely includes data from HEK293T cells
containing HIV. According to the authors, CaDenseNet outperformed all the
previously known cutting-edge techniques in the field, demonstrating better
improvements on the evaluation metrics of AUC-ROC, AUC-PR, and F-score, thus
providing greater insight on the capability of the model to be utilized in HIV research,

as well as coming up with intervention strategies [104].

Manikandan et al., effort is identified as CAPSGAN. It is a glaucoma detection method
which is a deep learning hybrid model which integrates Generative Adversarial
Networks (GAN) and CapsNet. The GAN portion is responsible for creating artificial
retinal images to complement the database, which tackles the issue of limited data in
medical imaging. A glaucoma dataset was taken from Kaggle with a total of 400
fundus images “normal” classification containing 300 images while “glaucoma”
classification consisted of 100 images. Once synthetic images were generated, the
CAPSNET was used for classification because it contains various properties pertinent
to diagnosis of the disease, namely positional and orientation information. The
outcomes showed a very high level of performance with the accuracy of 99.29%

registered by the CAPSGAN model, also high precision, recall and F1-score metrics

59



indicating that the model exceeded several modern ones, such as ResNet-50 and VGG-
19 [105].

The research method adds another feature to the existing methods targeting LDA
(IncRNA-disease association) using a novel architecture comprised of a stacked
autoencoder, attention mechanism and CapsNet, which Zhang et al. termed as
CapsNet-LDA. Starting with building similarity matrices for INcRNAs and diseases
across N number of views, the method then performs initial feature extraction via a
stacked autoencoder in order to obtain lower dimensional representations. Attention
mechanism is often utilized as an auxiliary technique to assign the importance variably
across these representations before feeding them into a capsule neural network-based
manner. Further, studying the work, CapsNet-LDA has been tested with four
benchmark datasets which are Datasetl, Dataset2, Dataset3 and Dataset4 with AUC
scores of 0.9722, 0.9645, 0.9610 and 0.8770 respectively. These results illustrate that
the model is more competent than five other contemporary methods, and also
emphasize such robustness and generalization abilities of the model in predicting the

IncRNAD isease associations [106].

Ravindran et al. proposes an enhanced two-level smart data augmentation in
conjunction with Capsule Neural Networks (CapsNet) to forecast the occurrence of
cancer diseases. The study employs a cancer gene expression dataset with 14,124
features into six classes such as lung cancer, breast cancer, brain cancer, endometrial
cancer as well as prostate cancer. With respect to this issue of lack of sufficient training
samples, the researchers resorted to using Uniform Distributive Augmentation (UDA)
and created dense synthetic samples using a Wasserstein Generative Adversarial
Network (W-GAN). Such an augmentation technique not only achieved statistically
balanced class distributions but also augmented the ability of the models to learn. The
CapsNet model after being trained on such augmented datasets produced very good
results, with measures of performance such as accuracy, precision and recall all above
98% thereby minimizing the error margin typical to such neural network deep learning
approaches significantly [107].
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According to Zhang et al., the CN2A-CapsNet model integrates attention mechanisms
with CapsNet and CNNs to facilitate the automatic diagnosis of COVID-19 from chest
X-ray images. As a contribution to the model, CBAM is integrated to give attention to
certain areas in the image to improve the extraction of features without spacial
dependency that constrains traditional tensile recurrent neural nets. For validation
purposes, a dataset of 33,920 chest X-ray images which were subdivided into 3
categories was employed, where the categories included: positive for COVID-19
pneumonia and non-pneumonic patients. The results obtained for the CN2A-CapsNet
model were encouraging, where 98.54% accuracy and 99.01% recall were achieved
for the binary classification (normal and COVID-19) and 96.71% accuracy and
98.34% recall for the multi-class classification (COVID-19, pneumonia, and normal)

illustrating its performance in small size datasets [108].

The work of Boruah et al., MLCapsNet+, consists of human immunodeficiency virus
(HIV) integration sites (HIV ISs) identification mechanism that employs multi layered
CapsNets integrated with attention mechanism. To allow genomic data to be more
comprehensible, the said architecture adds an attention layer to multiple class-capsule
layers. The model was trained with data sourced from the RID which consists of
positive samples of HIV ISs from hg19 genome build and matched random control
sites as negative samples. The dataset was partitioned into training, validation and test
sets, and a robust figure of 37,664 positive samples and a corresponding number of
negative samples were generated. The results confirmed that MLCapsNet+ surpassed
the previously established methods, scoring high metrics on numerous evaluation
criteria which included AUC-ROC and Ff scores which are indicative of HIV ISs for
this method of working [109].

According to the work of Han et al. which is proposed as CardioCaps, CardioCaps is
an attention-based dynamic routing capsule network developed with a view to
mitigating the problem of class imbalance in echocardiogram images. The structural
design includes a new margin-based loss function which encodes a weighting factor
towards the positive instances of that class, combined with an additional regression
loss that looks at Ejection Fraction (EF) to make the model less sensitive to class

imbalance problem. CardioCaps adopts attention mechanism paradigm instead of
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dynamic routing which is supposed to enhance training and reduce the burden of
satisfying translation-equivariance aspects in echocardiographic images. The model
performed consistently well on the EchoNet-LVH dataset that contains around 12,000
videos of echocardiograms yet this dataset is known to be rather rather skewed with
80% of the content being normal and 20% abnormal videos. Thus, CardioCaps was
able to optimally classify 85% of the submitted video samples which surpassed the
results achieved by the baseline algorithms i.e. conventional ML and a variety of DL

models suggesting that the model is robust to class imbalance in medical images [110].

The method introduced in this study incorporates a Capsule Neural Network (CapsNet)
with transfer learning to further improve the classification of thoracic pathology in the
chest X-ray images. The researchers created a dataset which consisted of 3043 chest
X-ray images from four open access repositories and divided them into four classes
being pneumonia, COVID-19, tuberculosis and healthy. The model combines three
CNNs including VGG16, VGG19, and Inception V3 as the feature extractors and
CapsNet as the classifier with the help of augmentation tactics to solve data imbalance
problems. The results were outstanding as the model achieved a training accuracy of
97.29% and the validation accuracy was 96.47%. The sophisticated design of CapsNet
model was achieved with F1- score of 97.08%. Which shows that it is capable of

diagnosing multiple thoracic diseases [111].

According to Almarshad et al., the SOADL-GCC method proposed by them is
applicable in detection and classification of gastrointestinal cancer by way of
employing an all-inclusive approach consisting of bilateral filtering for noise
reduction, a CapsNet structure for feature extraction, and Deep Belief Network (DBN)
for classification. The model also uses a newly developed Snake optimisation
algorithm to optimize the hyperparameters of the CapsNet model. The system was
assessed using the Kvasir dataset which has 5000 endoscopic images of different
gastrointestinal states. Experimental results demonstrated that SOADL-GCC achieved
an impressive accuracy rate of 99.72% with sensitivity, specificity and F-score values
of 99.29%, 99.82% and 99.29%, respectively. These results prove that the model

performs well in detecting and classifying gastrointestinal cancers which ceteris
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paribus suggest an improvement of computer-aided diagnostic systems in the health
sector [112].

The method introduced by Lei and his colleagues, BP-CapsNet, has also proved
powerful and effective for the medical image analysis tasks by integrating the use of a
singular value decomposition (SVD) module into Capsules Networks. By performing
noise reduction, the SVD function allows the input to make more relevant
contributions towards the final decision. It includes more layers including
convolutional layers to extract features, a primary capsule layer which transforms
those features into vector capsules and A routing module which is designed with a new
strategy called Bayesian—Pearson routing. This algorithm responsible for capsule
routing manages to alleviate some of causes of deterioration of performance in the case
of decaying and noise infestation of multi-dimensional vectors. The performance of
BP-CapsNet was comprehensively tested using seven different datasets of medical
images drawn from MedMNIST v2, where it achieved state-of —the-art results on two
of the datasets and the best results on another two datasets which suggests its

generalization and effectiveness in medical image diagnosis [113].

Shaheen et Al.’s coupling mechanism proposes to model the liver cirrhosis disease
condition using a hybrid deep learning approach namely the Hybrid Convolutional
Neural Network-Capsule Network (HCNN-CN) which was optimized using Adaptive
Emperor Penguin Optimization (AEPO) Optimization. The first step is to de-noise the
acquired 3D images by applying an Extended Guided Filter followed by binomial
thresholding segmentation in order to focus on the ROI. The methods used are the
Grey Level Co-occurrence Matrix (GLCM) and gray level Run-length Matrix
(GRLM) for feature extraction. After the federated learning of Graph Neural Networks
(GNNs) model, HCNN-CN was majorly focused on the classification of features and
were enhanced through varying hyperparameters optimally using AEPO. The data set
under study contains MRI images of several patients who were diagnosed with liver
cirrhosis. The model was able to get good results, with 99.33% accuracy and 98.63%
sensitivity which confirms that the model can diagnose the cirrhosis condition

appropriately [114].
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In their work, Manohar et al., talk about a technique named InceptionCaps which
targets the problem of automatic classification of glaucoma through use of CapsNet
based deep learning models. In their work, the authors consider an InceptionV3 based
architecture as its convolutional subnetwork for better feature representation of retinal
fundus images. The model overcomes the problems of limited data by transfer
learning, which helps it generalize well when there are not many annotated images.
The main benchmark dataset used for evaluation is taken from the RIM-ONE v2
database which consists of a total of 455 fundus images that are sectioned into
glaucomatous and normal groups. In this method, astounding performance measures
were obtained specifically a: accuracy value of 0.956, specificity of 0.96 and AUC
access of 0.9556. Such measures indicate stability and general superiority against other

many modern deep learning models for glaucoma classification tasks [115].

Though heel disease diagnosis and treatment has been addressed in multiple medical
publications, to the best of our knowledge, no research exists which employs Al to
heel disease diagnostics. Furthermore, we did not find any public online database of
heel radiographs. This research aims to fill out these voids by adding to the medical
field the problems concerning the first contact with patients suffering from foot
diseases, namely Heel spur and Sever's disease. The aims of the research include the
development of a new set of data to mitigate the data sparsity issue that affects
classification efforts and development of more efficient capsule neural network
models that provide better performance in detection and classification of congenital
disorders of the heel bone.
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PART 4

METHODOLOGY

4.1. DATASET CREATION AND ANALYSIS

In this part of the study, we present a previously non-existing dataset that specifically
addresses the issue of heel bone disease classification, including Sever’s disease and
heel spurs. The dataset is supposed to fill in the crucial gap in the publicly available
data in this particular medical field so that Al models can be developed to make
accurate diagnoses and classifications of diseases. We followed strict collection,
annotation, and preprocessing procedures to put together such a dataset that contains
multiple images of different conditions and injuries, thus ensuring the availability of a
wide range of deep learning models for training and testing purposes. The following
section is focused on the methods of dataset creation, annotation, and preprocessing,
as well as on the methods of dataset balancing to improve the performance of a trained

model.

4.1.1. Collection of Lateral Foot X-ray Images

The X-ray images used in this dataset were taken from the Kirkuk General Hospital,
utilizing the hospital’s resources in order to gather high-quality medical imaging data.
The images were first obtained in a Digital Imaging and Communications in
Medicine (DICOM) format, which is the preferred format for medical imaging. This
format allows for important metadata and a particular level of imaging quality to be
maintained. In order to ease their applicability in machine learning application
pipelines, the images were exported into the JPG format of a licensed software known
as MicroDicom, which is highly regarded in working with DICOM images.
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MicroDicom also allows batch conversion, thus speeding up the rate at which many
images would be processed. The images that were collected mostly had a size of [2021
x 2021] pixels, which was quite useful in providing great detail of the anatomical
features of interest. The high resolution, however, posed difficulties regarding
computational ability. Thus, to simplify the analysis and concentrate on the region of

interest (ROI), the images were resized during the preprocessing stage.

4.1.2. Dataset Characteristics

The dataset is composed of 3,956 images categorized into three classes:

e Normal Heel: 1,842 images
e Heel Spur: 1,316 images

e Sever’s Disease: 798 images

Examples of X-ray images are shown in Figure 4.1, Normal Heel, Figure 4.2, Heel

Spur, and Figure 4.3, Heel with Sever disease.

Figure 4.1. Normal heel.
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Figure 4.2. Heel spur.

Figure 4.3. Heel with sever disease.

While the dataset provides a comprehensive representation of the conditions studied,
it exhibits an imbalance across the three classes. The "normal” class contains the most
images, followed by the "heel spur” class, with the "Sever" class having the least. This
imbalance reflects the natural prevalence of these conditions in the population but
poses challenges for training Al models, as imbalanced datasets often lead to biased

predictions favoring the majority class.
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To correct this imbalance, some oversampling of the minority classes was also
conducted during model training to guarantee even knowledge and accuracy across all

the classes.

4.1.3. Annotation Process

Annotation of the dataset included locating the area of interest in each X-ray image.
The ROl included the heel bone, which is required to diagnose ailments like heel spurs
and severe disease. This was done using specialized software, for example, Votte
v.2.2.0 and labellmg-1.8.6, which are both known to be precise as well as user-friendly
when it comes to creating bounding boxes around pertinent regions of the medical

images.

The region pertaining to the heel bone was marked using a bounding box, making the
rest of the image unnecessary and ensuring the model used the parts of the image that
had useful diagnostic information. This approach has immensely minimized the
processing load and also enhanced the performance of the machine learning pipeline.
The labeling process was done by a qualified orthopedic and traumatology surgeon
with a radiology background to counter-check the validity of the labeling.lllustrated
examples of X-ray photographs demonstrate specific classes which include (A) none
affected heel (B) heel spur, (C) Sever’s disease demonstrated in Figure 4.4. These
annotations made it possible to form a dataset with features belonging to well defined
and labeled classes which are key in the development of an effective Al model.

Figure 4.4. (a) Normal heel, (b) Heel spur, (c) Sever disease.
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4.1.4. Data Preprocessing Techniques

Data preprocessing is an important phase in making the dataset ready for machine
learning applications. This research involved implementing various native techniques

to facilitate the optimization of the dataset:

e Resizing: Resizing all X-ray images to pixel images of [64 x 64] enabled
uniform standardization of the input dimensions into the Al model. This is
resizing lowered computational needs without affecting the fundamental
features that are necessary for diagnosis.

e Cropping the ROI: A rectangular box was used to crop the area of interest in
the image, thus removing uninteresting parts of the picture and concentrating
the model on the heel bone. Figure 4.5. Show the samples of cropped ROI
images.

e Normalization: The pixel values were rescaled to fall between the range of 0
and 1, so there is image intensity homogeneity across the dataset. This step

enhanced the capacity of the model to learn features.

These series of preprocessing steps made it possible for the dataset to adapt to a neat
and suitable form, which was ready to go for training and testing of deep learning
models, thus producing ideal and precise outcomes during the classification of the

diseases of the heel bone.

Heel Spur

Heel Spur

Heel Spur Sever Normal Normal Heel Spur Heel Spur

Figure 4.5. Samples of cropped ROI images.
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4.2. BASELINE MODEL - ORIGINAL CAPSNET

As depicted in part 3, the 2017 invention of Sabour et al., referred to as CapsNet, offers
a solution to scaling problems faced in standard convolution neural networks [12].
Explaining this feature in further detail, we see that these networks assist in patterning
data interactions as they take a vector form instead of a scalar, which makes them
effective in hierarchal spatial applications. Targeting our heel disease dataset with the
help of CapsNet presented us with some specific issues with regard to suitability based

on the design aspects that follow suit in this section.

4.2.1. Application of CapsNet to Heel Disease Dataset

The initial version of any CapsNet model was mostly developed and tested on the
MNIST dataset, which is a standard benchmark and a set of binary images of
handwritten digits with a size of [28 x 28] pixels. Although the MNIST dataset is
simple and has a consistent data structure, the heel disease dataset is not. The X-ray
images in our dataset show fine bone structures, different pixel levels, and images with
different resolutions, which are extremely different from the binary images of the
MNIST dataset.

In order to transfer the original CapsNet model to the heel disease data set, the images
were first resized to [64 % 64] pixels so that they were compatible with the model’s
input layer; Figure 4.6 shows the applying the original capsule architecture on the heel
dataset. Nevertheless, the results were still disappointing as the proposed model did
not perform well on the heel disease dataset. This could be due to two or more of the

data having different characteristics, and thus:

e Complex Pixel Information: Unlike MNIST’s binary representation, the heel
disease dataset contains grayscale X-ray images with high pixel density, which
requires a more robust feature extraction mechanism.

o Dataset Size: The relatively small size of the heel disease dataset posed
challenges for the original CapsNet, which was designed for datasets with a

larger volume of samples.
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e Feature Variability: The dataset comprises three distinct classes—normal, heel
spur, and Sever’s disease—each exhibiting unique patterns that the original

CapsNet struggled to distinguish effectively.

Although CapsNet inherently provides better performance in capturing spatial
hierarchies and part-to-whole relationships compared to CNNSs, the limitations of its

original design became evident when applied to medical imaging tasks.

(171]

3 “ Outputs
8 FC FC FC
—— RelU RelU Softmax

HeelCaps
3 P
512 1024 4096

32 =0 Masked

Input

. |- Representation of the
Wij = [8 X 16] reconstruction target Reconstruction layers

Figure 4.6. Original capsule architecture with heel dataset.

4.2.2. Performance Analysis (Accuracy, AUC, Cross-Validation)

The performance of the original CapsNet model on the heel disease dataset was
assessed using key metrics, including accuracy, AUC, and a confusion matrix analysis.
These metrics provide insights into the model's effectiveness in detecting and

classifying heel disease.

4.2.2.1. Accuracy

Accuracy evaluates the proportion of correctly classified samples out of the total
dataset. The CapsNet model achieved an accuracy of 73.99%, highlighting its general
performance in classifying heel disease conditions. Figure 4.7 shows the curve of
training accuracy. Figure 4.8 shows the curve for the training loss of the model.
Additionally, the class-wise performance metrics, including precision, recall, and F1-
score for each class, are detailed in Table 4.1, highlighting the performance of CapsNet
in distinguishing between the categories of the heel disease dataset.
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Figure 4.7. Training and testing accuracy of CapsNet applied on heel dataset.
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Figure 4.8. Training and testing loss of CapsNet applied on heel dataset.

4.2.2.2. Area Under the Curve

The AUC measures the model's ability to differentiate between classes, with a value

closer to 1.0 indicating better performance. For the CapsNet model, the AUC was

recorded as 66.95%, demonstrating its potential in binary and multi-class classification

tasks. Figure 4.9 shows the curve of AUC for original CapsNet applied on Heel dataset.
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4.2.2.3. Confusion Matrix Analysis

A confusion matrix was generated to further understand the model's classification
performance, as shown in Figure 4.10. The confusion matrix provides a detailed
breakdown of the true positive (TP), false positive (FP), true negative (TN), and false
negative (FN) values for each class in Table 4.1. The confusion matrix shows the
capabilities and limitations of the model against each class, seeking the class where
some error or misclassification occurred. Although these metrics are useful to some
extent, the performance indicates that a better model is required that would be more
capable of dealing with the problems of perplexing X-ray images along with an

enhanced level of classification performance.
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Figure 4.9. Curve of AUC for original CapsNet applied on heel dataset.
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Figure 4.10. Confusion matrix of original CapsNet applied on heel dataset.

Table 4.1. Class-Wise Performance Metrics of CapsNet on heel disease dataset.

Classes Precision Recall F1-score
Sever 0.98 0.71 0.82
Heel Spur 0.71 0.61 0.65
Normal 0.69 0.85 0.76

4.2.3. Limitations of CapsNet for Heel Disease Detection

In spite of the groundbreaking architecture of CapsNet, the application in heel disease

detection brought out certain shortcomings:

e Incompatibility with Medical Data: The original CapsNet was tailored for data
sets like MNIST that are rather straightforward in terms of pixel representation
and the number of features. Medical X-ray images, for example those in our
dataset, are richer in features with greater pixel variability. This variation
means that considerable changes must be made to the CapsNet model
architecture to be able to handle such data effectively.
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e Dependence on Dataset Size: Optimizing the parameters and vice versa of
CapsNet requires a lot of data. In this regard, the moderate amount of heel
disease dataset that included three classes and 3,956 images was not enough to
explore the entire potential of the original model, and it only caused overfitting
and poor generalization issues.

e Suboptimal Hyperparameter Settings: First, the intrinsic parameters or default
settings, such as the kernel size, stride, and the number of capsules of CapsNet,
did not meet the requirements of our dataset. Because of the limited size and
complexity of the images, a configuration where some particular
hyperparameters were altered was appropriate, which was not the case for the
basic configuration of the CapsNet.

e Lack of Multi-scale Feature Representation: The original formulation of
CapsNet evidently has difficulty scaling its feature extraction capabilities,
which is crucial for identifying fine differences between X-ray images. Its
inability to adjust for variable feature size and shape considerably reduced its
usefulness in many tasks, especially in the correct diagnosis of heel diseases.

e Computational Complexity: Though the architecture of CapsNet is unique, it
is quite demanding in terms of computation requirements, which makes it less
appealing for specific tasks in the real world, such as medical applications,
which emphasize efficiency. The high computational cost also added to the

complications of training the model on a relatively small dataset.

In summary, to conclude, the primary research gaps that need to be filled by future
research are also addressed. And so, as these seeming problems began to emerge when
the first CapsNet was employed for heel disease detection purposes, it became clear
that the remaining tasks were simpler than they appeared. Such limitations prompted
the search for a better-suited, selectively focused deep learning model capable of

coping with medical images.
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4.3. AN ENHANCED CAPSULE NETWORK (HECAPSNET)

4.3.1. Introduction to HeCapsNet

The HeCapsNet is a model produced by applying a set of improvements to the original
CapsNet architecture. One of the major improvements that we have introduced is the
use of the “he normal” kernel initializer, as proposed by Kaiming He in 2015 [116].
This kernel enables the model to work effectively, which is the reason why we opted
to call this “HeCapsNet” because of its applicability. The enhanced model is designed
for automatic detection and classification of the Heel spurs and Sever disease using
lateral foot X-ray images. These heel diseases are common ailments that cause pain
and discomfort and are usually diagnosed through X-ray images viewed by orthopedic
doctors. However, diagnostics and therapies, in a way, depend on manual diagnosis,
which is a problem in areas with limited access to healthcare workers. This is an

example of how Al-based systems are useful to remedy the wide diagnostic gap.

Even though CapsNet, such as the original CapsNet, has shown to be quite resourceful,
they have only been used on standard datasets, such as the MNIST dataset, which only
consists of binary pixels. This dataset, however, being relatively simple, is in stark
contrast to the complexity of medical imaging, which does tend to have high resolution
features along with well-defined anatomical structures. We trained CapsNet on the
heel disease dataset and found it had a rather large performance gap, and the accuracy
was unsatisfactory. We were able to identify the issue as being a performance gap, and
we may need to permanently restructure the architecture of the system to apply it more

effectively for medical imaging applications.

HeCapsNet implements the above discussed adjustments so as to enhance the feature
extraction and representation. Such adjustments consist of extra convolutional layers,

optimized kernel initializers and dropout techniques for fighting overfitting.

Consequently, all these improvements allow HeCapsNet to capture the intricate pixel
arrangements of medical images which result in such performance evaluation metrics

as accuracy, AUC and cross validation results to increase significantly. This model not
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only improves diagnostic capabilities in low-resource settings but also prepares the
stage for Al-driven developments in the medical imaging domain. The novel dataset
and better architecture are the two features that HeCapsNet embodies, which is an
interjection in the Al revolution in the scope of medicine and day scale and accurate

solution to bone disorders.

4.3.2. Architectural Modifications

HeCapsNet’s architecture includes several architectural modifications and
improvements that were devised as responses to issues encountered with the original
model CapNet. These changes were made in order to enhance the model’s applicability
to intricate medical images and performance on the heel disease dataset. These

architectural modifications are as follows:

e Additional Convolutional Layers: For the sake of improving the extraction of
features, HeCapsNet inserts additional convolutional layers prior to the
primary capsule layer. These layers are designed to extract the high-
dimensional aspects of the X-ray images of heel bone, thus making it much
easier for the network to accurately code the features associated with heel
disease indicators. With these layers stacked, the model is capable of extracting
both lower and higher-level features that aid in proper classification.

e Kernel Initializers: Achieving an accuracy of 91.68% on the modified
CapsNet, "he_normal” kernel initializer was employed to better the
performance. The “he_normal” initializer was invented in 2015 by Kaiming
He, and it is mainly used to increase the gradient flow in a deeper network that
uses ReL.U activation [116]. This strategy helps prevent problems such as very
small or large outputs during initialization and thus allows faster and more
reliable training. The application of this kernel initialization technique enables
the model to achieve an appropriate weight distribution, which is advantageous
in datasets with high variability in pixel intensities.

e Dropout Layers: HeCapsNet employs dropout layers to solve overfitting,
which gains significance when the number of samples in a dataset is low.

Regularization is implemented within the network through dropout, ensuring
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the model is able to make accurate predictions on new data.Modified Capsule
Layers: The capsule layers have been improved to incorporate spatial relations
and hierarchies between features. The primary capsule layer has been modified
to use a higher-dimensional capsule to encode more intricate feature
representations, while the classification capsule layer’s purpose is to develop

accurate predictions by employing the input obtained from the other layers.

The structure of the proposed HeCapsNet architecture model can be explained as
follows: The convolutional layers are described in blocks. Block one has an inception
convolutional layer made up of 64 filters of size [3 x 3] and a stride of one. The
mentioned layer employs RelLU as its activation function, is initialized with
“he_normal” and maintains the same padding scheme. After this, a dropout layer is
employed with a ratio of 0.2 in order to decrease overfitting. With 64 filters and the
previous kernel again, another Conv2D layer was introduced. This layer frames a [2 X
2] maximum pooling layer, which is aimed at reducing irrelevant spatial features. The
second block consists of the Conv2D layer with parameters of 128 filters, respective
kernel size of [3 x 3], and activation of ReLU with the same padding. With a three
times rate, the dropout was used again. Another Conv2D layer with the same
parameters as above, for example,128 filters and [3 x 3] kernel, is added, which is then
followed by another [2 x 2] max pooling layer. The third block of feature extraction
augmented to enhance efficiency is comprised of 256 filters Conv2D’s, two in total,
with a [3 x 3] kernel, and a dropout section is placed between them with a 0.5 rate.
Later, a max-pooling layer with [2 x 2] size is applied after convolutional layers. The
data is then forwarded to the primary capsule layer, which can be seen as a
convolutional layer with 8 x 16 = 128 capsules, where each capsule has eight
parameters implemented in a [3 x 3] kernel with a stride of one. To represent the output
of the capsules, the output is reshaped to yield eight-dimensional vectors, and then the
squash function is applied to scale the output in the range of [0, 1]. All these
architectural modifications together improve the overall processing capabilities of
HeCapsNet in terms of dealing with intricate medical images, feature extraction, and
prediction. The new set of convolutional and capsule layers along with dropout and

advanced initializers, augment the robustness of the network's overbalanced and
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imbalanced datasets. The architecture of enhanced HeCapsNet is illustrated in Figure
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Figure 4.11. Proposed enhanced CapsNet (HeCapsNet).

4.3.3. Incorporating Yolo With HeCapsNet

To improve the preprocessing pipeline of HeCapsNet, the YOLO model was
implemented to automatically recognize and extract the region of interest (ROI) in heel
X-ray images. YOLO is one of the best algorithms for object detection owing to its
speed and accuracy, which makes it suitable for use in medicine where the accurate
position of features is necessary [117].

When the whole foot X-ray is presented to the model, it assists the user in
automatically detecting the heel area without requiring the user to select the region of
interest, which enhances the diagnosis of the given condition. YOLO solves this
challenge by fully automating the detection process, thus guaranteeing the reliable and
accurate classification of the heel region. This step considerably minimizes the
preprocessing workload and enables the HeCapsNet model to emphasize the key

features in the images while ignoring regions that are not relevant.
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4.3.3.1. Implementation of YOLO Steps

e YOLO Model Architecture: In this study, we made use of YOLOvV8 for object
detection concerning the ROI. YOLO splits the input image into grid cells and
predicts each grid cell's bounding boxes and class probabilities. For the heel
disease dataset, the model was trained using a part of x-ray images in order to
detect and locate the heel area. As shown in Figure 4.12, the YOLO was applied
to the heel input image to produce the cropped ROI image.

e Training Process: The model of YOLO underwent fine-tuning using the part of
the heel disease dataset, which has been annotated with bounding boxes on the
heel parts.

e Output Integration: The bounding boxes found by YOLO allowed for
automatic cropping of the heel areas. These followed cropped ROIs, which

were resized to [64 x 64] pixels and sent to HeCapsNet for classification tasks.

YOLO

Input New X-Ray Image
Output Cropped Heel image

Generation of
bounding boxes
+ Confidence Score

Dividing image
into
s x s grid

Figure 4.12. YOLO is applied to a heel X-ray image to automatically crop the ROI.
4.4. HYBRID CAPSULE NETWORK (MEDCAPSNET)
4.4.1. Introduction to MedCapsNet
The field of automated medical diagnosis and analysis, which uses medical image
processing, has always relied on complex neural network structures to accomplish

accurate and dependable diagnoses. CapsNet has been revolutionary in covering the

drawbacks of convolution neural networks, like the failure to preserve spatial
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hierarchies. However, the original model of CapsNet, which was developed for simpler
data sets like MNIST, has not been successful in meeting the requirements for more
complex medical imaging data sets. Such datasets generally include high-resolution
images with complex structural anatomy and extreme differences in pixel structure and
intensity. To cover this shortcoming, we designed a MedCapsNet, which represents a
combination of CapsNet architecture and a modified DenseNet201 model. This
approach combines DenseNet's hierarchical feature extraction capability with
CapsNet's spatial extent, thus allowing flexibility in its application to medical image
classification tasks. Therefore, we decided to name the model "MedCapsNet" since it
Is an improved version of the Capsule network, which has been optimized for medical

images.

CapsNet’s first implementation tests were performed on the MNIST dataset, which
consists of black-and-white images with pixel values of either 0 or 1. Although MNIST
serves as a standard and simple platform for neural network evaluation, it is completely
different from medical imaging datasets. Medical images have more intricate
characteristics, higher resolutions, and wider distributions of pixel intensities. In
addition, medical datasets are usually smaller and more skewed than datasets like
MNIST. Such discrepancies made the original model of CapsNet unsuitable for
medical datasets, and the architecture needed considerable changes to handle such

intricate tasks.

One of the issues associated with medical image datasets, e.g., X-ray and MRI images,
is their high intra-class variability, smaller quantities, and intricate details within pixel
level. These factors make it difficult for one to apply the traditional neural networks
without heavily augmenting the training data provided. To alleviate these problems,
MedCapsNet uses a modified DenseNet201 structure, which is better suited to the
requirements of medical imaging. The structure of DenseNet201 allows for the
improvement of the flow of information across its layers by forming dense inter-layer
connections that allow every layer to receive input from every preceding layer. It
achieves this by promoting better propagation of the gradients, and very deep networks
can be built to learn and model complex features essential for the interpretation of

medical images.
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4.4.2. Introduction to DenseNet201 Model

The DenseNet201 model, being an enhanced variation of the Dense Convolutional
Networks, is perhaps one of the most distant developments in the sequence of deep
learning architectures. As noted by Huang et al. in 2017, DenseNets were formulated
with the expectation of enhancing the interlayer connections, improving gradient flow,
and optimizing computing costs without compromising parameter efficiency. In
particular, DenseNet201 is more than an implementation of such logic: it is a deep
neural network with 201 layers designed for complex image recognition and

classification tasks [118].

DenseNet201 is based on the idea of dense connectivity, and it completely contradicts
the structural paradigm where information is passed from one layer to another in a one-
way sequential manner. In contrast, DenseNet proposes to interconnect directly every
layer with all the layers that come before it in order to allow for a complete and
unidirectional supply of information to the layers. This integration is accomplished by
feature concatenation such that each layer not only takes inputs from the closest layer
but also collects feature maps from all the layers before it.

Thus, this connectivity pattern enables DenseNet201 to possess L(L+1)/2 connections
in a network with L layers. For example, in five layers, the second layer H2 obtains
input from x0 and x1 within the dense block connectivity pattern which ensures that
the first layer or H1 is an input while the other layers H3, H4 obtain input from all the

lower layers as shown in Figure 6.1.
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Figure 4.13. Dense connectivity pattern adapted from [118].

DenseNet201 has several distinctive properties that make it an exceptional architecture
for deep learning tasks wherein the most distinguishing characteristics are [118]:

e Enhanced Gradient Flow: A dense connectivity pattern helps in getting around
the vanishing gradient problem through better gradient flow within the
network. All layers of a deep network architecture have direct access to the
output gradient and the original input signals, which are helpful in learning
deep networks.

e Parameter Efficiency: Using concatenation instead of summation for feature
reuse, DenseNet201 greatly decreases the number of parameters in comparison
with classic networks. This saving of resources not only lessens memory
consumption but also enhances the generalization power of the network.

e Feature Reuse: Each layer in DenseNet201 adds its feature maps to all the
subsequent layers so that features can be reused. This increases the number of
available features for each layer, which assists each layer in representation
learning, further improving performance in more complex tasks.

e Reduced Computational Burden: Despite its numerous layers, DenseNet201
utilizes a reduced number of parameters, thereby attaining enhanced

computational efficiency. This enhancement in efficiency can be attributed to
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the incorporation of dense blocks, a structural element that serves to reduce
redundant computations, thereby focusing on the iterative refinement of feature
maps.

e Growth Rate and Dense Blocks: The concept of a growth rate (k), which
defines the number of feature maps to be added by each layer, is introduced in
DenseNet201. The setting of a larger growth rate aids in having more dense
connections since each layer is able to utilize more features. For instance, in a
dense block with k = 4, the fourth layer and all subsequent layers use denser

feature maps than the third layer, among others.

DenseNet201 consists of several dense blocks separated by transition layers; these
combine to allow the network to learn hierarchical features and become adaptable to

several tasks:

4.4.2.1. Dense Blocks

The majority of the structure is constituted of dense blocks, where each layer is
connected to all layers of the preceding blocks. Such an arrangement enhances the

efficiency of feature reuse alongside making representation learning more robust.

4.4.2.2. Transition Layers

The dense blocks have transition layers placed in between them to down-sample the
spatial resolution of the feature maps and control the number of feature maps being
sent to the next blocks. These layers make use of convolution, batch normalization,

and pooling, among others, to reduce the complexity of the network.

4.4.2.3. Growth Rate Optimization

The growth rate in denseNet201 has been designed to enable a reasonable tradeoff
between efficiency in computation and richness of representation. Each layer is
influenced by this parameter since it specifies the count of new feature maps that are
produced in each layer, making the network suitable for both small and large datasets.
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4.4.2.4. Output Layer

Densenet201 ends with a global average pooling layer and FC layer, which merges all
the features learned in the previous layers and makes the last predictions for
classification tasks.

DenseNet201 is currently one of the most widely used deep learning models across
different fields. This is largely because it is able to handle big datasets and multiple
complex features. For instance, in regard to medical imaging, Densenet201
impressively searches for very complex parts of the human body and any slight
changes in scans, thus making diagnosis better. Densenet201 is among the most
advanced architectures for deep learning, and it is useful in complex image recognition
problems. It uses many dense connections, is parameter efficient, and extracts features
efficiently, making it ideal for cases that need high precision and less computational
consumption. Finally, Densenet201, in essence, tackles the loss of information and
redundancy in computations; therefore, it is convincingly a building block to deep
neural networks and all the potential inventions that will emerge in the future of deep

learning.

4.4.3. Integration Of DenseNet201 with Capsule Network

Before entering the integration of Densenet201 with CapsNet, it’s worth noting that
we first trained the DenseNet201 model with our heel bone dataset. The training
achieved an accuracy of 92.17% and an AUC of 92.46%; this gave an indication of
powerful model characteristics to learn deep features such as complex medical images.
Thus, we decided to use it as a model for integration with CapsNet to improve

performance.

MedCapsNet makes use of the underlying framework of DenseNet201 but
incorporates specific changes in order to increase its usability for the processing of
medical images. These modifications improve the model performance when

confronted with medical data complexities such as high dimensional X-ray images by
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integrating both the dense connectivity patterns of DenseNet201 and the hierarchical

and rich feature representations of CapsNet. The MedCapsNet architecture, with the

help of its key features, enhances the original idea of DenseNet201 and modifies it for

better performance on complex image classification, as shown in Figure 4.14. Below

are discussed in detail the differences in the original structures and the modified

version of the structure of the DenseNet201, which were incorporated in MedCapsNet:

Dense Block

Original DenseNet201: Employs densely connected layers in a block wherein
each layer receives input from all previous layers within the block. This
connectivity guarantees strong gradient flow, solves the problem of vanishing

gradients, and features reusing.

e Modified DenseNet201: The fundamental idea concerning the issue of dense

connectivity remains, but hyperparameters have been adapted to better manage
the complexity of the problem associated with medical image datasets.
Additionally, an increase in the severity of overfitting can be prevented, and
computational requirements can be reduced by limiting growth rates and the

number of filters.

Dense Layer

Original DenseNet201: Applies a basic convolutional layer with batch
normalization and the ReLU function. This configuration works well with
standard datasets but is somehow limited in terms of grasping the fine details
in complex medical images.

Modified DenseNet201: Integrates two convolutional layers of different filter
sizes in order to extract more complex features. The dropout layer is included
in the model to enhance generalization capability and avoid the issue of
overfitting. In addition, the “he_normal” initializer is used to secure better
weight initialization for complex pixel distributions, which in turn assists in
better convergence and improved gradient for the model’s multiple layers. The
“he normal” initializer takes samples from a truncated normal distribution,
which has a mean of 0 and a variance as described in equation (6.1), with n

being the number of input units in the weight tensor [119].
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sz |2 (6.1)

Transition Layer

Original DenseNet201: In order to enhance performance while minimizing the
number of feature maps, batch normalization, ReLU activation, and global
average pooling are used.

Modified DenseNet201: To avoid overfitting, dropout is employed instead of
batch normalization, and global average pooling is replaced by MaxPooling2D.
The latter better retains details of the local features, which is important in

medical imaging since little details could be important in diagnosis.

Convolutional Layer

Original DenseNet201: Does not entail the application of extra convolutional
networks prior to the entrance into DenseNet structure. It is obvious that the
model performs directly on the provided input data, which may constrain its
use in more complex datasets.

Modified DenseNet201: Presents two convolutional blocks prior to DenseNet.
Each block is composed of two convolution layers: Convl and Conv2. The first
convolutional layer, Convl, includes a kernel size of [3 x 3], the same padding
technique, and a normal kernel initializer, generating 64 channels of output for
the first block and 128 for the second one. After convl, a dropout layer is used
with a value of 0.2 and 0.3 for the first and second blocks, respectively.
Subsequently, Conv2 is performed with the same settings as Conv1l, with the
addition of a 128-channel output layer. Finally, a Kernel MaxPooling2D layer
with a Kernel Size of [2 x 2] is used to form the completed blocks. These blocks
act on the raw input by normalizing and enhancing feature maps, which, in

turn, facilitates the other processes within DenseNet.

Number of Blocks and Growth Rate

Original DenseNet201: Consists of 4 dense blocks with a growth rate of 32 and
6, 12, 32, and 48 filters, respectively. This architecture works well for a high
number of data sets but is costly and tends to overfit for low datasets.

Modified DenseNet201: Decreases the architecture to one dense layer with a

growth rate of 4 instead of 32 and 2 filters only instead of a group of
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(6,12,32,48) filters, respectively. Such specialization minimizes the expenses
for modeling, allowing the core function of the model to be relevant without

overtraining with minor datasets.

Table 4.2 highlights the differences between the original DenseNet201 architecture
and the modified DenseNet201 used in MedCapsNet. Such a combination of the
modified Dense Net 201 and CapsNet makes it possible for MedCapsNet to transcend
the challenges that the original architecture had. These problems included problems in
interpreting datasets containing complex spatial patterns and increased chances of
overfitting in smaller datasets. Addressing the said problems, MedCapsNet shows
notable advancement in terms of diagnostic accuracy, robustness, and computational
efficiency. These transformed MedCapsNet will allow it to capture a rich hierarchy
amongst the input data while being able to process medical data sets efficiently,
making it more appropriate for heel disease detection in the larger context of

complicated imaging tasks.
Experimental results have proved the heel disease detection and classification

superiority of MedCapsNet that achieves good accuracy and robustness by taking

advantage of DenseNet201’s dense connectivity with CapsNet spatial awareness.
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Table 4.2. Comparison of original and modified DenseNet201.

Aspect

Original DenseNet201

Modified DenseNet201

Dense Block

Use multiple densely
connected layers with large
growth rates.

Retains dense connectivity but
uses reduced growth rates and
fewer filters to minimize
computational complexity.

Dense Layer

Single Conv2D layer with
batch normalization and
ReLU activation.

Two Conv2D layers with varied
filter sizes, dropout for
regularization, and “he_normal”
initializer for weight
optimization.

Transition
Layer

Includes batch normalization,
ReLU, and global average
pooling.

Replaces batch normalization
with dropout and global average
pooling with MaxPooling2D to
retain critical local features.

Convolutional
Layer

No additional convolutional
layers; directly processes raw
input.

Adds two convolutional blocks
before DenseNet, including
dropout and MaxPooling2D for
enhanced feature extraction.

Number of
Blocks

Four dense blocks with filters
(6, 12, 32, 48).

One dense block with two filters
for simplicity and reduced
computational overhead.

Growth Rate

Fixed at 32, suitable for large
datasets but resource
intensive.

Reduced to 4, balancing feature
reuse and computational
efficiency.

Feature Map

Global average pooling used

MaxPooling2D for better

Pooling in transition layers. retention of small but
diagnostically significant local
features.

Weight Standard initialization “he_normal” initializer ensures

Initialization ~ methods, prone to gradient stable training and convergence

vanishing/exploding issues.

for complex medical images.
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Figure 4.14. Architecture of MedCapsNet model.
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PART 5

EXPREMENTS AND RESULTS

5.1. APPLICATION OF HECAPSNET ON HEEL DISEASE DATASET

The dataset on heel disease comprises 3956 X-ray images, grouped into three classes:
Normal, Heel spur, and Severs disease. The images contain a lot of anatomical detail,
and these were annotated by specialist orthopedics and radiology. Prior to submission
of information to HeCapsNet, The X-ray images were normalized to a size of [64 x
64] pixels. Such resizing allows for the graphical information to be appropriate to the
model’s input layer and does not eliminate features relevant to diagnosis. The data set
is then divided into balance and imbalance data sets to test the performance of the

model under different conditions.

Using powerful feature extraction layers techniques, “he normal” initializer, and
modified decoder parameters, HeCapsNet was able to classify better and was trained
on this dataset. Its ability to cope with variations in the quality and size of an image
was subjected to rigorous tests that demonstrated its robustness and adaptability in

actual medical situations.

HeCapsNet exhibited excellent performance in heel bone disease detection and
classification since the accuracy achieved was 97.29% on balanced data and 94.19%
on imbalanced data. More specifically, HeCapsNet had managed to yield results of an
accuracy of 91.68% on the new dataset, this time though there was no “he normal”
initializer; nonetheless, once the initializer was applied, the result drastically changed
to 98.37%. The model is effectively capable of shielding a high AUC of 98.69,
contributing to an excellent power of discriminating between various classes of

objects, namely Normal, Heel spur, and Sever’s disease. Along with this, the fivefold
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cross-validation achieved an accuracy of 95.77%, thereby reiterating the strength of
the HeCapsNet model across different portions of the dataset.

Several important figures graphically demonstrate the performance of HeCapsNet.
The training accuracy recorded in Figure 5.1 and the loss curve in Figure 5.2 indicates
the overall epoch-wise performance of the model since the accuracy has been reported
to improve gradually while the loss keeps on reducing through all the phases of the
training. The confusion matrix gives details of how the model performed with regard
to the classification by presenting the overall proportion of true and false positives and
true and false negatives for all three classes: normal, heel spur, and Sever’s disease, as
illustrated in Figure 5.3. Additionally, the class-wise performance metrics, including
precision, recall, and F1-score for each class, are detailed in Table 5.1, highlighting
the effectiveness of HeCapsNet in distinguishing between these categories.
Furthermore, the AUC ROC curve, which is presented in Figure 5.4, emphasizes the
capacity of the model to separate the classes since AUC, which is large, provides an
indication of good predictive power. In this collection of figures, the outstanding
performance of HeCapsNet in the context of automated diagnosis of heel diseases is

confirmed.

0.5 —8— HeCapsNet Training Accuracy
—8— HeCapsNet Testing Accuracy
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Figure 5.1. HeCapsNet training - testing Accuracy over epochs on heel dataset.
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Figure 5.2. HeCapsNet training - testing loss over epochs on heel dataset.
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Figure 5.3. HeCapsNet AUC ROC curve on heel dataset.
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Figure 5.4. HeCapsNet AUC ROC curve on heel dataset

Table 5.1. Class-Wise Performance Metrics of HeCapsNet on Heel Disease Dataset.

Classes Precision Recall F1-score
Sever 0.99 1.00 0.99
Heel Spur 0.98 0.95 0.97
Normal 0.95 0.96 0.96

5.2. APPLICATION OF HECAPSNET ON DIFFERENT DATASETS

A range of different datasets were used to systematically evaluate the performance of
HeCapsNet for image classification. For this assessment, the HeCapsNet model was
fully trained on the F-MNIST, MNIST, CIFAR-10, OA knee, and Brain MRI datasets.
Such datasets were incorporated in order to further analyze the strengths and

weaknesses of HeCapsNet in simple and complex imaging tasks.

The MNIST dataset is renowned for composing 60000 training samples and 10000
testing samples and formatting grayscale images ranging from digits 0 to 9 into [28 X
28] pixel resolution. Even though it is basic in its architecture, it is still reliable in
assessing a given model's performance, and due to its nature of being easy with the
features, the MNIST continues to be a core pillar for developing deep learning models.

In parallel, F-MNIST can be considered as a substitute for MNIST, which consists of
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10 categories of various clothing items. The set also provides 60,000 training and
10,000 testing images, and its structure is also [28 x 28] resolution, each image framed
as a grayscale. These data sets set the threshold for the assessment of HeCapsNet's

capability in handling grayscale images of lower complexity.

In continuation of proceeding towards advanced domains, the next challenging dataset
is the CIFAR-10 dataset. This dataset, which was built by Alex Krizhevsky and llya
Sutskever, focuses on image classification in 10 different categories that include
vehicles, animals, and household items. To note our differences, as opposed to the
CIFAR-10 dataset, where its images are in RGB format, both the MNIST and F-
MNIST datasets do not require a model to operate or manipulate three color channels
at once. Each image in the CIFAR-10 dataset is over [32 x 32] pixels, and there are a
total of 50,000 training images and 10,000 testing images within it. This dataset gives
an additional complexity of color features, which would make it hard for models

initially built for the grayscale ones, such as the MNIST models.

In order to assess the efficacy of HeCapsNet on medical imaging tasks, two complex
datasets were included in our studies, which are Knee osteoarthritis (OA) and brain
tumor MRI; the Knee OA severity grading dataset hosted on Mendeley has
comprehensive X-ray images that are crucial for OA grading. We picked this dataset
due to its nearness to our heel disease dataset since all have complex anatomical
features that can be best viewed in X-ray imaging. The Kaggle brain tumor MRI
database has a total of 3,064 MRI scans and is used as a baseline to classify the
diagnosis of patients with brain tumors. The complexity of composing these medical
datasets stems from but is not limited to, the information on the pixels and the different
types of anatomy present, as well as the requirement for precise feature
construction. Training on these datasets helped to confirm the strength that HeCapsNet

possesses in dealing with the problems associated with medical imaging.

The Heel Disease dataset contains 3956 images in three classes: normal, heel spur, and
Sever's disease, and was created in order to test HeCapsNet for heel disease recognition
and classification. All images were resized to the resolution of [64 x 64] pixels,

retaining underlying important anatomical structures and compatibility with input
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dimensions. Such a preprocessing step made it easier for the model to concentrate on
functionality only relevant to the region of interest while disregarding computation

over nonconcentrated areas.

HeCapsNet was trained on all the datasets, setting 70 epochs of training iteration. In
terms of medical images, where high-resolution features and complex pixel variations
are more difficult challenges, the model's performance clearly outperformed the initial
version of the CapsNet. HeCapsNet faced datasets in the form of Brain MRI, Knee
OA, and Heel Disease, which already had rich anatomical structures and varied quality
of images, which made it suitable to test its advanced feature extraction and
classification capabilities. In contrast, more straightforward tasks were posed by easier
datasets such as MNIST, F-MNIST, and CIFAR-10, which all included 60,000 images.

According to Table 5.2, HeCapsNet obtained sufficient results for all datasets. For the
Knee OA dataset, the model managed to achieve 83.42% accuracy, which is even
better than the original 78.82% performance of the CapsNet. For the Heel Disease
dataset, HeCapsNet obtained 97.29% accuracy for the balanced dataset, 94.19% for
the imbalanced dataset, and 95.77% with five cross-validations. With the use of the
"he_normal” initializer, HeCapsNet achieved a knee dataset accuracy of 83.42%,
while the knee dataset accuracy without the technique was 77.35%. CapsNet achieved
an accuracy of 91.68 and 97.29 percent, respectively, for our new dataset with and
without the use of a "he_normal™ initializer. Results indicate how the model can

manage to be trained on datasets of different complexities and balancing.

Comparative performance analysis with other works, as shown in Table 5. 3, indicates
that HeCapsNet is superior in achieving accuracy on different HeCapsNet datasets.
For example, for the datasets considered, HeCapsNet was able to accomplish the
following results: 99.51% on MNIST, 93.33% on F-MNIST, 81.94% on CIFAR-10,
and 98.37% (balanced) on Brain MRI datasets. These figures are well above what has
been achieved using the original CapsNet and many enhanced capsule-based
approaches, which in turn demonstrate the better generalization and performance

consistency of HeCapsNet across diverse areas.
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Table 5.2. Accuracy comparison between HeCapsNet and original capsule models for
knee and heel disease datasets.

Model Knee (OA) Heel Dataset

Original CapsNet 78.82% 73.99%

Proposed enhanced CapsNet 77.35% 91.68% (balanced dataset)
(Without he_normal

initializer)

Proposed CapsNet 83.42% 97.29% (balanced dataset)
(HeCapsNet) 94.19% (imbalanced dataset)

95.77% (fivefold cross-validation)

HeCapsNet has shown its versatility by including both medical and non-medical
datasets. Its capability to manage complicated imaging tasks, especially in medical
applications, indicates its potential use in actual diagnostic systems. HeCapsNet's
advanced approach combines architectural innovations and rigorous training and
clearly illustrates the benefits of HeCapsNet over conventional architectures in
medical images, opening up great opportunities for researchers and practitioners in

medical imaging.

In this part, we described HeCapsNet, a modified fully convolutional CapsNet that is
aimed at automatically identifying and classifying heel ailments from the lateral foot
X-ray images. To this end, we carried out a series of experiments employing our
recently proposed model in addition to various datasets, which were MNIST, Fashion-
MNIST, CIFAR-10, brain tumor MRI, and knee osteoarthritis (OA) X-rays. The
results confirmed that HeCapsNet exceeded the original CapsNet, especially on the

more complicated medical datasets.

When HeCapsNet is compared with other modified CapsNet found in literature, we
experimentally observed similar effectiveness for it on the simpler datasets such as
MNIST and F-MNIST. On the other hand, HeCapsNet achieved better performance
when dealing with more complex medical datasets like brain MRIs, knee X-rays,
muscle diseases, and heel disease datasets. In particular, for the heel disease dataset,
the proposed model recorded accuracy rates of 97.29% on balanced data, 94.19% on
imbalanced data, an AUC of 98.69%, and 95.77% accuracy regarding fivefold cross-

validation.
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Table 5.3. Performance (accuracy) comparison between proposed and state of the art

models.
Models MNIST F-MNIST CIFAR-10 Brain MRI
[62] [12] Original 99.23% 92.49% [62] 62.98% [62] 78.69% [62]
CapsNet [12]
[61] Improved 99.65% - 82.31% -
capsule network
[101] Optimized 99.87% - 82.45% 94.85%
capsule network
[63] Modified capsule - - - 90.89%
network
[64] Improved - - - 86.56%
capsule network
Proposed enhanced 99.46% 93.21% 82.84% 96.98%
CapsNet (without
he_normal
initializer)
Proposed enhanced 99.51% 93.33% 81.94% 98.37%
CapsNet (HeCapsNet) (balanced)

93.59%
(imbalanced)

The initial design of the CapsNet had issues with medical images for two reasons: first,
it had too few convolutional layers, which rendered it incapable of properly feature
extracting from intricate images, and second, the raw kernel initializer that was
deployed in conjunction with the ReLU activator was ineffective for medical images
that contained heavy pixel detail. To address these issues, we implemented a
“he normal” kernel initializer on the convolutional layer. These modifications greatly
improved the results that HeCapsNet delivered when deployed on complicated

datasets.

Furthermore, adding more convolutional blocks before the capsule layers enabled the
model to extract better features. These changes increased accuracy by allowing the
network to encode hierarchical structures in the data and improve the encoding of
spatial features. The additional convolutional blocks were also useful for

regularization and lessening overfitting in order to enhance generalization on new data.

Our 3,956 X-ray images of the lateral foot have been annotated from a reliable dataset

that seeks to bridge the existing gap in heel diseases such as Sever’s disease and heel
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spurs. Maintaining results that seem to be well substantiated does come with its share
of challenges. As noted, the offered set of comprehensively analyzed images can
facilitate reliable diagnoses, although expanding the set may assist in enhancing the
capacity of the system or the model offered. Furthermore, the model is capable of only
diagnosing two conditions, Sever’s disease and heel spurs, and thus is unable to assist

in identifying other conditions affecting the heel or even the fractures.

In practical terms, this system could be integrated into X-ray machines or used on its
own for the first step in disease detection. It could also be enhanced into a web
application where users can upload X-ray images, and the application gives a
diagnosis. This would enable the system to be available to medics and help

orthopedists give faster and more accurate first-contact diagnoses of heel illnesses.

5.3. APPLICATION OF MEDCAPSNET AND OTHER MODELS TO HEEL
DATASET

The X-ray heel dataset forms a special category described in 4.1.2 and 4.1.3 with what
can be termed three distinct classes: 1842 images, which can be termed as ‘normal,’
1316 images, which can be dubbed the brusque, heel spur, and 798 images that
captured the severe backlash in the region. The dataset then contained a total of 3,956
images comprising all classes. To facilitate disease identification in the heel bone
images and to optimize network efficiency by excluding irrelevant areas, a bounding
box method was used to create the region of interest (ROI).

For the annotation and bounding box drawing of the ROI, the labelimg v1.8.6 software
was applied. It is important to note that all the images went through basic
preprocessing procedures, such as cropping to the ROI and then scaling the image sizes
to [64 x 64] pixels, prior to being incorporated into the experimental arrangement.
Considering the challenge posed by the unbalanced distribution of the images across
the dataset classes, techniques for data balancing, especially oversampling methods,
were employed to achieve better representation. Oversampling was carried out using
the RandomOverSampler from the imblearn.over_sampling library to equalize the

distribution of the three classes: Sever, Heel spur, and Normal. Some more usage
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instances were added to the dataset. Originally, there were only 3,956 images
available. The method introduces random samples from classes with a lower number
of images until all classes have the same number as the class of interest. In this case,
the aim was to have 1,842 images for each individual class. Consequently, the total
number of images in the dataset was raised to 5,526, with an even distribution among
the classes. The results of performing the mentioned method render the training of
machine learning models free from class imbalance as all the classes are better
represented, and no single class has a greater chance of skewing the bias of the

algorithms. The balancing of the heel diseases dataset is shown in Figure 5.5.
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Figure 5.5. Distribution of balancing heel diseases dataset.

We have implemented the original CapsNet [12] Res2Net+Caps [78], FixCaps [76],
and BoostCaps [77] models according to the descriptions in their respective papers.
To ensure the correct implementation of the existing models, we first trained the
models using the datasets that were employed in their studies. After achieving results
consistent with those reported in the papers, we proceeded to train the models with the
heel dataset.

Table 5.4 shows the model accuracy values of the original CapsNet and the other
CapsNet compared with MedCapsNet on the heel dataset. In our implementation,
while original CapsNet showed an accuracy of 73.99%, Res2Net+Caps showed an
accuracy of 34.81%, and FixCapsNet showed an accuracy of 73.33% on the heel
dataset. Regarding BoostCaps in [77], we encountered difficulties in method

implementation due to some of the architecture components and parameters not being
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clearly specified. MedCapsNet demonstrated 96.38% accuracy, as the epochs shown
in Figure 5.6 and the loss epochs shown in Figure 5.7. Furthermore, the AUC score is
98.27%, as demonstrated in Figure 5.8, along with the corresponding confusion matrix
in Figure 5.9. Additionally, the class-based performance metrics, including precision,
recall, and F1-score for each class, are detailed in Table 5.5, thereby highlighting the
effectiveness of MedCapsNet in distinguishing between heel dataset classes.
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Figure 5.6. Training and testing accuracy of heel diseases dataset.
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Figure 5.7. Training and testing loss of heel diseases dataset.
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Figure 5.9. Confusion matrix of heel diseases dataset.
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Table 5.4. Results in comparison with base and recent capsule network models for heel

dataset.
Architecture Accuracy
Original CapsNet [12] 73.99%
Res2Net+Caps [78] 34.81%
FixCaps [76] 73.33%
BoostCaps [77] -
MedCapsNet 96.38%

Table 5.5. Class-wise performance metrics of MedCapsNet on heel disease dataset.

Classes Precision Recall F1-score
Sever 0.99 1.00 0.99
Heel Spur 0.95 0.95 0.95
Normal 0.95 0.94 0.94

Furthermore, we implemented a 5-fold cross-validation method on MedCapsNet. The
full heel dataset of 5526 images has been split into 70% for training and 30% for
testing. For training the model we used the part of 70%, while for the evaluation of
model performance we used the part of 30% which split for the test and never exposed
to the model training, also not the part that k-fold that splitting it for internal evaluation
in iterations steps. The result shows that the model performance evaluation was done
with a cross-validation accuracy of 95.69%, as its epoch is shown in Figure 5.10, and
the loss epochs are shown in Figure 5.11. Additionally, the ROC AUC is 98.87%, as
demonstrated in Figure 5.12, along with the corresponding confusion matrix in Figure
5.13. Additionally, the class-wise 5-fold cross-validation performance metrics,
including precision, recall, and F1-score for each class, are detailed in Table 5.6,
highlighting the effectiveness of MedCapsNet in distinguishing between these

categories.
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Figure 5.10. Training and testing accuracy of cross validation.
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Figure 5.11. Training and testing loss of cross validation.
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Figure 5.12. AUC curve of 5-fold cross validation of heel dataset.
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Figure 5.13. Confusion matrix of 5-fold cross validation of heel dataset.

105



Table 5.6. Class-Wise of cross vlaidation performance metrics of MedCapsNet on heel
disease dataset.

Classes Precision Recall F1-score
Sever 0.99 0.99 0.99
Heel Spur 0.96 0.94 0.95
Normal 0.93 0.95 0.94

5.4. EXPERIMENTS OF MEDCAPSNET ON ADDITIONAL MEDICAL
DATASETS

We evaluated the performance of MedCapsNet for various medical datasets, including
Breast BreaKHis vl, HAM10000 skin cancer dataset, and Jun Cheng’s Brain
Imaging MRI Dataset, to demonstrate its superiority compared to existing studies. For
this, we tested the model on the datasets used by the studies in the recent enhancement
of the CapsNet and compared the results. In these experiments, the 5-fold cross-
validation method was implemented using the kf.split algorithm to evaluate the
performance, and the full data was split into 80% for training and 20% for testing. The
performance results show that the model can achieve high accuracy with small and
large medical image datasets. Table 5.10 presents the cross-validation accuracy results
of MedCapsNet across various datasets, comparing its performance with the accuracy
of the other models. Additionally, we used 100 epochs in each experiment to monitor
the training and loss values in each iteration. All experiments were conducted using
Google Colab environments, which included Python v3 as the runtime type, high
RAM, and T4 GPU as the acceleration hardware.

5.4.1. Breast BreaKHis v1 Dataset

The BreakHis dataset, known as the Breast Cancer Histopathological Image
Classification, is a collection of 9,109 microscopic images of breast tumor tissue.
These images were obtained from 82 patients and were captured at various
magnification scales, namely 40X, 100X, 200X, and 400X. The dataset consists of
2,480 benign samples and 5,429 malignant samples. Each image has dimensions of
700 x 460 pixels and is represented in RGB color space with 3-channel information.

The pixel depth in each channel is 8 bits, and the images are stored in PNG format
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[120]. This experiment used a small subset of images from a breast cancer dataset,
consisting of 1000 images rescaled to [65 x 65] pixels and converted to 1 color channel
in grayscale mode. The total images were used for training 800, while the remaining
200 images were used to test the performance with a limited sample size. The
experiment yielded a 5-fold cross-validation accuracy of 98.40% for training and
testing as its epochs demonstrated in Figure 5.14 and loss epochs of training and testing
demonstrated in Figure 5.15. Along with the corresponding confusion matrix, which
is demonstrated in Figure 5.16, and the AUC of 98.96%, as demonstrated in Figure
5.17. Our proposed MedCapsNet model demonstrates superior performance with a
small sample of the dataset without using data augmentation compared to the model
presented in [78], which achieved an accuracy of 95.6% using data augmentation.
Additionally, the class-wise performance metrics, including precision, recall, and F1-
score for each class, are detailed in Table 5.7, highlighting the effectiveness of

MedCapsNet in distinguishing between these categories of breast cancer.
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Figure 5.14. Training and testing accuracy of breast BreaKHis v1.
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Figure 5.17. Confusion matrix of mreast BreaKHis v1.

Table 5.7. Class-Wise performance metrics of MedCapsNet on breast BreaKHis v1.

Classes Precision Recall F1-score
Benign 0.99 0.99 0.99
Malignant 0.99 0.99 0.99

5.4.2. HAM10000 Skin Cancer Dataset

The HAM10000 dataset, provided by the Harvard Dataverse Organization, addresses
the limited size and diversity of existing dermatoscopic image datasets for training
neural networks in the diagnosis of pigmented skin lesions. It consists of 10,015
dermatoscopic images collected from different populations and acquisition modalities.
The dataset covers important diagnostic categories such as melanoma, basal cell
carcinoma, and benign keratosis-like lesions [121]. The dataset is provided in 3 color
channels on which the proposed model was trained in RGB mode. In addition, since
the provided dataset is imbalanced, the oversampling method has been used to balance
the dataset and also make the training number of images in large numbers, including
37548 images. The result shows the high performance of the model, achieving cross-

validation accuracy of 5-fold of 98.29%, as its epochs are given in Figure 5.18, and
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loss for training and testing is given in Figure 5.19. AUC of 99.00%, as demonstrated
in Figure 5.20, along with the corresponding confusion matrix given in Figure 5.21.
Our proposed MedCapsNet model shows superior performance compared to the model
presented in [76], which achieved an accuracy of 96.49%. Table 5.5 demonstrates the
precision, recall, and F1-score for each class, thereby indicating the effectiveness of
MedCapsNet in recognizing the distinct characteristics of the heel dataset classes.
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Figure 5.18. Accuracy of HAM10000 skin cancer dataset.
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Figure 5.19. Loss of HAM10000 skin cancer dataset.
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Figure 5.21. Confusion matrix of HAM10000 skin cancer dataset.
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Table 5.8. Class-Wise performance metrics of MedCapsNet on HAM10000 skin

cancer.
Classes Precision Recall F1-score
Actinic 0.99 1.00 1.00
Malinga 0.99 1.00 1.00
Benign 0.96 1.00 0.98
Dermatofiboroma 1.00 1.00 1.00
Melanocytic 0.99 0.90 0.94
Pyogenic 0.99 1.00 1.00
Melanoma 0.96 1.00 0.98

5.4.3. Jun Cheng’s Brain Imaging MRI Dataset

The brain tumor dataset has 3064 images representing three different categories of
brain tumors: meningioma, glioma, and pituitary tumor, published by Jun Cheng [122].
The provided dataset was imbalanced; therefore, oversampling was used to balance
three classes. The total number of images after balancing is 4246. The proposed
MedCapsNet model was trained on the dataset with [64 x 64] image size in 3-channel
RGB mode. The result shows the high performance of the model, achieving cross-
validation accuracy 5-fold of 97.67%, as its epochs curve given in Figure 5.22 and loss
epochs shown in Figure 5.23. The AUC of 99.80% is demonstrated in Figure 5.24,
along with the corresponding confusion matrix in Figure 5.25. Our proposed
MedCapsNet model achieved a higher accuracy than the boosted CapsNet presented
by [77], which reported an accuracy of 92.45%. Additionally, the class-based
performance metrics, including precision, recall, and F1-score for each class, are
detailed in Table 5.9, highlighting the effectiveness of MedCapsNet in distinguishing

between these categories of brain tumor.
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Figure 5.22. Accuracy of Jun Cheng’s brain imaging MRI dataset.
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Figure 5.23. Loss of Jun Cheng’s braini MRI dataset.
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Figure 5.24. AUC curve of Jun Cheng’s brain imaging MRI dataset.

Figure 5.25. Confusion matrix of Jun Cheng’s brain imaging MRI dataset.

Braib characteristic

1.0 1 "
’
7’
'
7’
¢
7’
0.8 1 2O
'
7’
'
7’
P
7’
0.6 1 /,
> &
7’
7’
.d
e
//
0.4 1 ,/
7’
s
¥ &
7’
'
7’
0.2 i
7’
7’
,I
" - ROC curve (area = 0.998)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

)

E

2

o

£

=

g 250

£

S - 200

©
E 150
r_

-

S- - 100

=

(o8

0 - 50
i I -0
meningioma glioma pituitary
Predicted

114



Table 5.9. Class-Wise performance metrics of MedCapsNet on Jun Cheng brain tumor

dataset.

Classes Precision Recall F1-score
Meningioma 0.96 0.98 0.97
Glioma 0.99 0.95 0.97
Pituitary 0.98 1.00 0.99

In addition to the results Table 5.10, present comparison for various medical datasets
with MedCapsNet against other models showing sufficient performance of the model

compared to other models.

Table 5.10. Results in comparison for various medical datasets with MedCapsNet vs.
other models.

Dataset MedcapsNet Other Models
(5-fold CV Accuracy) (Accuracy)
BreakHis_v1 [120] 98.40% Res2Net+Caps [78]: 95.6%
(without augmentation) (with augmentation)
HAM10000 [121] 98.29% FixCaps [76]: 96.49%
Jun Cheng [122] 97.67% BoostCaps [77]: 92.45%

In this part, MedCapsNet was introduced as a hybrid model that combines the strengths
of DenseNet201 and CapsNet to address the limitations of traditional CapsNets in
processing complex medical images. By incorporating a modified DenseNet201
architecture with advanced feature extraction capabilities prior to the capsule layers,
the model demonstrated significant improvements in classification accuracy for the

heel disease dataset as well as other challenging medical datasets.

The main advancements encompassed the inclusion of convolutional layers in the
feature extraction, addressing the vanishing/exploding gradient problem using the
“he normal” kernel initializer and utilizing dropout and MaxPooling2D for
regularization. These improvements enabled MedCapsNet to obtain hierarchical
relations, spatial relations, and complex structural details in medical images.
Experimental results affirmed its better yield than so far existing approaches without
modification or specific tuning of the architecture and massive data augmentation for

other datasets.

115



The model MedCapsNet has only been tested on a limited number of data. Therefore,
considerations for further revisions could entail texts using more extensive datasets
that contain a mix of various heel diseases and even more advanced medical imaging
tasks. Increasing the data available would improve the model's accuracy and general

reliability, allowing it to be used in a wider array of scenarios.

One further promising direction is to adapt MedCapsNet to the analysis of multi-
modality datasets. There is a possibility of creating a more universal diagnostic tool
by merging X-rays and MRIs. In this manner, the individual advantages of various
modalities would be exploited so as to enhance disease description and the diagnosis

process.

Optimizing the existing lightweight models of MedCapsNet towards real-time
implementation in MedCapsnet is the other area one can look forward to examining.
These optimized versions of MedCapsNet can be used embedded in medical imaging
systems or in cell phones, thus improving the practical use and effectiveness of this
technology. Also, as clinics may be assisted by the model's decision within the process,
explainability via saliency maps and feature visualization can be integrated as part of
the therapy. Such techniques would increase the trust level towards MedCapsNet by
making its operations more transparent and facilitating its use within clinical

workflows.

In addition, future studies might also evaluate MedCapsNet against other cutting-edge
techniques, including ViTs, GNNs, etc. Such comparisons would explain unique
characteristics that can be complementary and suggest opportunities for integration,

which may broaden the horizons of medical image analysis.

Finally, adding patient age, gender, and medical history data would be a step toward
transforming MedCapsNet into a specific diagnostic agent. Such evolution would
allow better projection and further customization of treatment, which already signifies

relevance to the precision medicine concept in relation to medical images.
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5.5. ASPECTS OF COMPARATIVE MODELS OVER A SHARED DATASET

Concerning medical image classification, the transition from CapsNet to HeCapsNet
and MedCapsNet was critical, especially with intricate datasets such as the heel disease
dataset. Every one of these models performed better than the previous version by
introducing architectural improvements that overcame the shortcomings of the earlier
model. For example, while CapsNet’s dynamic routing mechanism allowed for spatial
relationship representation, its minimalist design and lack of multi-scale feature
extraction made it unscalable to high-resolution medical images with a performance
of only 73.99% accuracy and 66.95% AUC on the heel disease dataset.

Various modifications were made to HeCapsNet, among them being the addition of
convolutional layers before capsule layers, the use of “he normal” kernel initializer,
and dropout layers to handle overfitting and class imbalance problems, respectively.
These led to a significant improvement in performance whereby 97.29% accuracy and
98.69% AUC on the heel disease dataset and 98.37% accuracy on the Brain MRI
dataset were achieved, respectively. This thus warranted architectural refinement for

capsule networks used in complex medical imaging.

MedCapsNet took advantage of these enhancements by fusing CapsNet with
DenseNet201 through the introduction of convolutional layers before DenseNet
blocks, MaxPooling2D in transition layers, and replacing batch normalization with
dropout for better generalization. It demonstrated superior adaptability by obtaining
an accuracy rate of 96.38%, with an AUC value equal to 98.27% on the heel disease
data set; for the brain MRI data set, it obtained an accuracy rate equal to 97.67%, an
AUC of 99.80%; however, it managed an accuracy rate worth mentioning which is
above average on HAM10000 data set, i.e., equal to 98.29%.

Comparatively, CapsNet had a hard time with difficult data types. HeCapsNet
overcame this problem with improved feature extraction and regularization.
MedCapsNet integrated DenseNet201 and produced a generalizable and reliable

model applicable to any dataset yet still outperformed other models on specialized
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tasks and showed adaptability across multiple datasets. These models are compared in

Table 5.11 on common datasets.

Table 5.11. Performance Comparison of Capsule Network Models.

Dataset Metric CapsNet  HeCapsNet = MedCapsNet
Heel Disease Accuracy  73.99% 97.29% 96.38%
Heel Disease AUC 66.95% 98.70% 99.80%
Brain MRI (Jun Accuracy N/A 98.37% 97.67%
Cheng)

Brain MRI (Jun AUC N/A 99.74% 99.80%
Cheng)
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PART 6

DISCUSSION

6.1. ANALYSING OF PROPOSED MODELS RESULTS

The success of HeCapsNet and MedCapsNet in classifying medical images is also
demonstrated within the scope of heel ailments. HeCapsNet, which incorporates
improved convolutional blocks with a normal kernel initializer, showed a good
advancement over basic CapsNet. It registered an accuracy of 97.29% on balanced
heel disease datasets, 94.19% on imbalanced ones, and an AUC of 98.69%, with the
fivefold cross-validation accuracy being 95.77%. These metrics indicate its capacity
to function in complicated medical imaging environments, characterized by fine pixel

combinations and various anatomical structures.

Equally, MedCapsNet, which implements a modified DenseNet201 architecture,
attained broader applicability across multiple datasets. When Deep Networks' feature
extraction architecture was fused with the spatial hierarchical comprehension of
CapsNet, MedCapsNet surpassed other models on the Heel Disease Dataset,
Breast BreaKHis_v1, HAM10000, Jun Cheng's Brain Imaging MRI dataset, among
others. With its hybrid strategy, MedCapsNet overcame conventional models'
weaknesses, which primarily performed very well even without having separate
architectures constructed or heavy data augmentation applied for every set. Its
application of automated region-of-interest (ROI) detection employing YOLO V 8

also reduced the amount of preprocessing needed and increased the accuracy of results.

Both models demonstrated stable potential to surpass the existing methods across
different settings. Although HeCapsNet was particularly good at heel disease and
Brain MRI classification, the fact that MedCapsNet could work with diverse medical

datasets speaks volumes for its versatility and strength. These results highlight the need
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for new architectural designs and suitable preprocessing to enhance medical image

classification issues.

6.2. ADVANTAGES AND INNOVATIONS OF PROPOSED MODELS

The main advantages of HeCapsNet and MedCapsNet are found in their advanced
structural-layer characteristics that provide solutions to the problems associated with
the deep convolution neural networks and the previous variants of CapsNet.
HeCapsNet aims to develop a more advanced CapsNet that modifies feature learning
by employing more extra convolutional layers and deploying the kernel initializer
"he_normal”, increasing gradient flow during training. This invention improves not
only the accuracy of the model but also the extent to which the model can generalize

on diverse data sets.

The MedCapsNet model has several advances and innovations. It combines a CapsNet
with a densenet201 architecture, thus improving data feature extraction capability and
representation of spatial hierarchies, even without data augmenting. This two-
component type of improvement delivers better performance with high accuracy and
AUC values over several medical datasets like X-ray, MRI, and dermatoscopic images.
The model scope of application is relatively broad due to its fixed architecture and
hyperparameters, which give reproducible results for different types of images and
diseases. The MedCapsNet model provides faster training, good generalization, and
lower overfitting risks, making it a practical and useful model for analyzing medical

images.

These models constitute a considerable advancement in the use of deep learning in
medical imaging as they provide a platform that could be modified for different
diagnostic tasks. They are more useful in circumstances where specialized medical
personnel are hard to come by because of their potential to enhance the accuracy of

diagnosis and, at the same time, being economical.

120



6.3. CHALLENGES AND LIMITATIONS

Despite the strengths of HeCapsNet and MedCapsNet, many issues and limitations
still exist. One of the issues is the lack of large sets of labeled data for model training,
which is a must-have. While HeCapsNet presented a new dataset of 3956 labeled
lateral foot X-ray images, the low availability of such datasets for other types of
medical conditions reduces the scope of usage of these models. Such dependency on
massive data collection efforts will likely discourage wide use in different clinical

environments.

Additionally, the complexity of the models raises issues regarding interpretability.
Since HeCapsNet and MedCapsNet are deep learning models, they can be considered
black boxes, challenging clinicians to understand the rationale behind the diagnosis.
Such a degree of opacity may hinder their uptake in centralized clinical settings where

a high level of faith is placed on devices.

Moreover, these systems rely on effective region of interest (ROI) identification
systems (for example, YOLO), which means any error in the identification ROI will
decrease the classification accuracy.

Additionally, the computational resources required for training and inference, while
optimized, can still be significant, limiting deployment in resource-constrained

environments.

Also, the optimization of the used infrastructure has not resolved the problem of the
high computational power necessary for the training and inference, which limits the

deployment of the solution in low-resource environments.
It’s worth noting that incorporating ethical and practical elements such as extensive

testing, legislative approvals, and embedding into the current clinical workflows

makes it even more challenging to implement in practice.
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Lastly, the non-interpretability feature of some deep learning models may also make
clinicians resistant to using them when making crucial diagnosis decisions. It also

shows potential areas for further development and better collaboration with clinicians.

To conclude, although HeCapsNet and MedCapsNet show potential in the analysis of
medical images, the broader application is hampered by other factors such as the small
size of the datasets, the interpretability of the models, high computation requirements,
and the need for precise ROI identification. Furthermore, factors such as ethical
compliance, regulatory approval procedures, and the incorporation of the technology
into clinical practice present additional challenges to its implementation, which would
necessitate further research and coordination with medical practitioners to eliminate

these constraints.
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PART 7

CONCLUSION

In this study, we proposed two advanced CapsNet structures, HeCapsNet and
MedCapsNet, to detect and classify heel diseases automatically using lateral foot X-
ray images. In terms of these contributions, both models completely overcame the
insufficiencies of the original CapsNet, which would have posed significant challenges

in medical imaging applications, by incorporating some sophisticated modifications.

HeCapsNet was developed to enhance feature map extraction and classification
accuracy by incorporating a few strategies like additional convolutional layers,
he_normal kernel initializer, and other advanced regularization methods. This claim
was validated through extensive experiments on a num-ber of datasets such as MNIST,
F-MNIST, CIFAR-10, Brain MRI, and our new heel disease dataset. On the heel
disease dataset, HeCapsNet delivered impressive results of 97.29% and 94.19%
accuracy on the balanced and imbalanced data, respectively, with an AUC of 98.69%
and a 5-fold cross-validation accuracy of 95.77%. However, certain limitations restrict
the applicability of HeCapsNet as it targets only heel spur and severe diseases; the
generalizability is limited due to the relatively small sample size of the dataset. A

larger dataset and more inclusion of other heel conditions could address this limitation.

MedCapsNet, an enhanced CapsNet with modified DenseNet201, further improved
the detection and classification capabilities of the methodology proposed.
MedCapsNet compensated for the limits of the original CapsNet by improving feature
extraction and implementing DenseNet201, thus reducing the total amount of data
augmentations needed. The model achieved remarkable results on various medical
databases, including Breast BreaKHis v1, the HAM10000 skin cancer dataset, and
Jun Cheng’s Brain Imaging MRI Dataset. It also automatically detected Regions of
Interest (ROI) in foot X-ray images with the help of the built-in YOLO V8 and,
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therefore, simplified the data preprocessing. MedCapsNet can achieve high
performance without requiring distinct architectural configurations or hyperparameter

adjustments for each dataset, underscoring its robustness and adaptability.

Both HeCapsNet and MedCapsNet are promising ways of improving the domain of
medical image analysis. HeCapsNet provides a workable method for diagnosing heel
diseases, while MedCapsNet shows effectiveness on different medical datasets. These
models can be incorporated into X-ray machines, served as web-based diagnostic
centers, or used in clinical settings. The proposed models can offer a reasonable and
rapid preliminary diagnosis, which could benefit the patients, lessen the workload of
the diagnosticians, and make the healthcare delivery systems more effective.
Subsequent engineering actions will target increasing the datasets, adding more

medical diseases, and improving the models to clinical utility.
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