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OZET

DOKTORA TEZi
MEMRISTOR TABANLI YAPAY SINiR AGI TASARIMI VE OPTIiMiZASYONU

Baki GOKGOZ

Damisman: Doc¢. Dr. Tolga AYDIN
Ikinci Tez Damismam: Dog. Dr. Fatih GUL

Amagc¢: Bu calismanin amaci, memristor tabanli nano-sinaptik cihazlarin yapay sinir ag1 (YSA)
uygulamalarinda kullanilabilirligini bilgisayar ortaminda simiile etmek ve bu cihazlarin performansini
detayl1 bir sekilde degerlendirmektir. Simiilasyon ¢alismalari, cihazlarin dogruluk, enerji verimliligi,
egitim siiresi, donanim kapasitesi ve Olceklenebilirlik gibi kritik performans kriterleri agisindan
sagladigi katkilar1 ortaya koymayi hedeflemektedir. Bunun yani sira, bu cihazlar iizerinde kullanilan
optimizasyon yontemlerinin etkinligi ve bu yontemlerin performans iizerinde olusturdugu iyilestirmeler
incelenecektir. Caligmanin, hem yeni nesil sinaptik cihazlarin gelistirilmesine hem de yapay sinir ag1
uygulamalarinda optimizasyon yontemlerinin roliiniin daha iyi anlasilmasma katki saglamasi
amaclanmaktadir.

Yontem: Bu calismada, memristor tabanli nano-sinaptik cihazlar kullanilarak sinir aglarinin donanim
iizerinde uygulanabilirligi incelenmis ve bu yontem cesitli optimizasyon algoritmalari yardimiyla
dogruluk, alan kullanimi ve enerji tiikketimi agisindan degerlendirilmistir. Onerilen donanim tabanl
model, 6zellik tanima ve siniflandirma yeteneklerine sahip olup, elle yazilmis ve bilgisayar tarafindan
tiretilmis rakamlarin taninmasinda kullanilmaktadir. Model, ileri besleme (FF) ve geri yayilma (BP)
siireglerini entegre ederek giris verilerini ¢ikislarla eslestiren bir yap1 sunmaktadir. Egitim siireci, FF ve
BP olmak iizere iki asamadan olusmaktadir. Ileri besleme asamasinda, girdi verileri sinir agmin giris
katmanina alinir, ardindan agirlikli toplamlar ve aktivasyon fonksiyonlari araciligiyla gizli katmanlardan
gecirilerek ¢ikt1 katmanina iletilir. Ciktilar, dogru etiketlerle karsilastirilarak tahmin hatasi hesaplanir.
Geri yayilma asamasinda ise bu hata, sinir ag1 boyunca geriye dogru yayilir ve agirliklar optimizasyon
yontemleri kullanmilarak ayarlanir. Optimizasyonun temel amaci, modelin hem egitim hem de test
verilerinde yiiksek dogruluk elde etmesini saglamak, genelleme yetenegini artirarak farkli veri setlerinde
basarili olmasinit miimkiin kilmak ve tiim bunlar1 hesaplama maliyetlerini minimize ederek en verimli
sekilde gergeklestirecek en uygun yapilandirmay1 bulmaktir.

Bulgular: Bu c¢alisma, memristdr tabanlt memristorlerin ndromorfik uygulamalarda yiiksek dogruluk,
enerji verimliligi ve genelleme kapasitesi sundugunu ortaya koymaktadir. CMOS uyumlu yapilari ve
biyolojik sinapslar taklit edebilme o6zellikleri sayesinde, bu cihazlar enerji verimli donanimlar igin
Oonemli avantajlar saglamaktadir. Optimizasyon algoritmalar1 arasinda AdaDelta, dogruluk ve enerji
verimliligi agisindan en iyi performansi sergilemistir. Modelin farkli veri kiimelerindeki genelleme
kapasitesi, Memristor tabanli cihazlarin genis bir makine 6grenimi yelpazesinde etkili bir sekilde
kullanilabilecegini gostermektedir.

Sonug¢: Memristor tabanli sinaptik cihazlara dayali sinir aginin performansi, MNIST ve CIFAR veri
kiimeleri tizerinde farkli optimizasyon yontemleri kullanilarak kapsamli bir sekilde degerlendirilmistir.
%90 dogruluk oranina ulagan model, optimizasyon algoritmalar1 arasinda saglamlik ve genelleme
kapasitesi sergilemistir. Elde edilen sonuglar, memristér tabanli cihazlarin néromorfik hesaplama ve
donanim tabanli yapay zeka uygulamalarinda, ¢esitli optimizasyon yontemleriyle birlestirildiginde etkin
bir ¢6ziim sundugunu ortaya koymaktadir. Ayrica dnerilen TiO, tabanli model, Ag:Si tabanli sinir agina
gore %20 daha az enerji, %16 daha yiiksek dogruluk ve %18 daha diisiik gecikme saglamaktadir. Bu
caligma, gelecekte daha enerji verimli ve hassas sinir ag1 modellerinin gelistirilmesine katkida bulunacak
onemli bulgular saglamaktadir.

Anahtar Kelimeler: Derin 6grenme, makine O0grenimi, memristdrler, néromorfik hesaplama,
optimizasyon algoritmalari, sinapslar, Memristor.

Ocak 2025, 149 sayfa



ABSTRACT

DOCTORAL DISSERTATION
MEMRISTOR BASED ARTIFICIAL NEURAL NETWORK DESIGN AND OPTIMISATION
Baki GOKGOZ

Supervisor: Assoc. Prof. Dr. Tolga AYDIN
Co-supervisor: Assoc. Prof. Dr. Fatih GUL

Purpose: The aim of this study is to simulate the usability of memristor-based nano-synaptic devices in
artificial neural network (ANN) applications in a computer environment and to evaluate the performance
of these devices in detail. The simulation studies aim to reveal the contributions of these devices in terms
of critical performance criteria such as accuracy, energy efficiency, training time, hardware capacity,
and scalability. Additionally, the effectiveness of optimization methods applied to these devices and the
improvements they bring to performance will be examined. The study is intended to contribute both to
the development of next-generation synaptic devices and to a better understanding of the role of
optimization methods in artificial neural network applications.

Method: In this study, the feasibility of implementing neural networks on hardware using memristor-
based nano-synaptic devices was examined, and this method was evaluated in terms of accuracy, area
usage, and energy consumption with the help of various optimization algorithms. The proposed
hardware-based model possesses feature recognition and classification capabilities and is used for
recognizing both handwritten and computer-generated digits. The model integrates feedforward (FF)
and backpropagation (BP) processes, providing a structure that maps input data to outputs. The training
process consists of two stages: FF and BP. In the feedforward stage, input data is fed into the input layer
of the neural network, then passed through the hidden layers using weighted sums and activation
functions, and finally delivered to the output layer. The outputs are compared with the correct labels to
calculate prediction error. In the backpropagation stage, this error is propagated backward through the
neural network, and the weights are adjusted using optimization methods. This process is performed
faster and more efficiently than traditional gradient descent methods, aiming to minimize the error.

Finding: This study demonstrates that memristor-based memristors offer high accuracy, energy
efficiency, and generalization capacity in neuromorphic applications. Due to their CMOS-compatible
structures and ability to mimic biological synapses, these devices provide significant advantages for
energy-efficient hardware. Among the optimization algorithms, AdaDelta exhibited the best
performance in terms of accuracy and energy efficiency. The model's generalization capacity across
different datasets highlights the potential for Memristor-based devices to be effectively utilized in a wide
range of machine learning applications.

Result: The performance of the neural network based on memristor synaptic devices was
comprehensively evaluated on the MNIST and CIFAR datasets using different optimization methods.
The model achieved a 90% accuracy rate, demonstrating robustness and generalization capacity among
the optimization algorithms. The results reveal that memristor-based devices, when combined with
various optimization methods, offer an effective solution for neuromorphic computing and hardware-
based artificial intelligence applications. Moreover, the proposed TiO, based model provides 20% less
energy, 16% higher accuracy and 18% lower latency than the Ag:Si based neural network. This study
provides significant findings that will contribute to the development of more energy-efficient and precise
neural network models in the future.

Keywords: Deep learning, machine learning, memristors, neuromorphic computing, optimization
algorithms, synapses, Memristor.
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GIRIS

Yapay zeka kullaninminin hizla yaygilastigi giiniimiiz bilgi teknolojileri diinyasinda,
makine 6grenimi ve derin 6grenme hizla yayginlagmakta ve cesitli uygulama alanlari
bulmaktadir (Ren et al., 2022). Akademik diinyada kesfedilip kullanilmaya baslanan bu
yontemler, hizla biiyliyerek hem akademik hem de endiistriyel uygulamalarda 6nem
kazanmistir. Ayn1 zamanda veri biliminin de vazgegilmez bilesenleridir (Sun et al., 2020).
Gelisen bilgisayar teknolojileri sayesinde yapay zeka alanlarinda da ©nemli bir yer
edinmislerdir (S. Kim et al., 2019). Bununla birlikte makine 6grenimi ve derin 6grenme
yapisinda kullanilan, Derin Sinir Aglar1 (DNN) yiiksek dogruluk, miikemmel 6l¢eklenebilirlik
ve kendini uyarlama 6zellikleri nedeniyle yogun olarak kullanilmaktadir (Ren et al., 2022). Bu
yogun kullanimin bir sonucu olarak, DNN modelleri daha biiyiik ve daha derin ag yapilari
olusturacak sekilde gelistirilmektedir. Ayrica, yapay zeka uygulamalarinda kullanilan derin
O0grenme algoritmalar1 siiregleri otomatiklestirmekte, verileri analiz etmekte ve tahmin

islevlerini yerine getirmektedir (Bengio et al., 2013).

DNN modellerinin dogas1 geregi yiiksek hesaplama giicii ve genis bellek depolama alani
gerektirmektedir. Bu gereksinimler karsisinda Von Neumann mimarisine dayali klasik bilgi
isleme ve hesaplama yontemleri yetersiz kalmaktadir (S. Yu et al., 2011). Bu yetersizlik, bilgi
isleme yapilariin biyolojik sinir sistemlerinden oldukg¢a farkli olmasindan kaynaklanmaktadir.
Sekil 1(a) sirali islemede hesaplama ve bellegin ayr1 oldugunu gosterirken, Sekil 1(b) paralel
islemede hesaplama ve bellegin biitiinlesik oldugunu ve islemlerin es zamansiz olarak
gerceklestigini gdstermektedir.

(a) Cevresel Bellek . (b) | Ortak lokalize hesaplama ve
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Sekil 1. (a) ve (b) Von Neumann mimarisi ile néromorfik mimari arasindaki karsilastirmayi
gostermektedir. Bu iki mimari, burada gosterildigi gibi ¢alisma, organizasyon, programlama,
iletisim ve zamanlama ag¢isindan temelde farklilik géstermektedir.



VN mimarisine dayali geleneksel bilgisayar sistemleri iyi tanimlanmis yapisal
problemlerin ¢éztimiinde etkilidir. Ancak derin 6grenme ve yapay zeka gibi biyolojik sistemleri
taklit eden yontemlerin kullanilmasi i¢in uygun degildir (S. Yu et al., 2011). Bunun yerine bu
tiir yontemler i¢in daha karmasik mimariler kullanilmalidir. Bunun nedeni, mantik tabanli
donanim ve yazilim sistemleri mimarisinin biyolojik sinir sisteminden 6nemli 6l¢iide farkl
olmasidir (B. Gao et al., 2016). Biyolojik beyin, 6grenme islevini milyonlarca sinapsin paralel
calismasiyla gerceklestirmektedir (Kuzum et al., 2013). Ornegin, karmasik bir yapay zeka
probleminin ¢éziimiinde kullanilan bir siiper bilgisayar enerji maliyeti acisindan 1 megawattan
fazla gilice ihtiya¢ duyarken, insan beyni ¢aligma mimarisi sayesinde toplamda yaklasik 10
watt'lik enerji tiiketmektedir (Kuzum et al., 2013). Bu durum, klasik sistemlerin enerji
gereksinimlerinin uygulama maliyetleri bakimindan ©nemli bir zorluk teskil ettigini
gostermektedir (Cumming et al., 2014). Enerji maliyeti sorununa ek olarak, klasik yontemlerde
verilerin siirekli olarak islemci ve bellek birimleri arasinda tasinmasi gerekmekte, bu da veri
yogun uygulamalarda gecikmelere yol agmaktadir (Eryilmaz et al., 2014; Mutlu et al., 2019).
Bu gecikmeler oOzellikle gergek zamanli uygulamalarda temel bir sorun olarak ortaya
cikmaktadir (Eryilmaz et al., 2014; Gul, 2020; Sebastian et al., 2020). Bu sorunlarin {istesinden
gelmek icin memristdr benzeri cihazlar gibi 6zellesmis, konuma 6zgii donanim birimlerinin

olusturulmasi diigtiniilmektedir (Sung, Hwang and Yoo, 2018).

Donanim hizlandirma yoluyla Derin Sinir Aglarinin (DNN) performansini ve enerji
optimizasyonunu artirmak i¢in hem akademik hem de endiistriyel sektorlerde kapsamli

arastirmalar yiiriitiilmektedir.
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Sekil 2. Moore Yasasi, islemci bagina transistor sayisindaki artig1 ifade eder (1971-2020).

2



Gegtigimiz elli y1lda, Moore Yasasi, Dennard Olceklendirme ve Von Neumann mimari
trendlerinin etkili birlesimi ve kesisimi sayesinde bilgi teknolojisi alaninda hizli ve etkili bir
doniisiim yasanmugtir (Tsai et al., 2018). Moore Yasasi, transistor bagina maliyetin iistel olarak
azalmasini tanimlamaktadir (Moore, 1965). Bu trend, Sekil 2'de ifade edildigi gibi yillar
icindeki degisim grafiginde gosterilmektedir. Bir dizi “6l¢geklendirme yasas1” (Dennard et al.,
1974) ile tanimlanan Dennard 6l¢eklendirmesi, daha kiiglik transistorlerin daha hizli ¢alismasini
ve ayn1 zamanda daha az gii¢ tiiketmesini saglar.

Von Neumann mimarisinin ¢ok yonliiliigii, gelistiricilerin CPU ve GPU'lar1 modiiler
bilesenler olarak kullanarak cesitli karmasik bilgi islem sistemleri olusturmalarina olanak
saglamaktadir (Tsai et al., 2018b). Son yillarda, giiclii bir etkiye sahip olabilecek bu egilimlerin
kesisimi gegerliligini biiylik 6l¢iide yitirmeye baslamistir (Radack & Zolper, 2008). Cihazlarin
ihtiya¢ duydugu gii¢c ve voltaj parametrelerindeki degiskenlik nedeniyle, cihaz dlgeklendirme
islevleri daha zorlu hale gelmistir (Zidan et al., 2018). Bu zorluklar, cihazlarin optimum
islevsellige ulasmasini karmasik ve zor hale getirmektedir (Schuman et al., 2017). Sonug olarak,
bellek ve iglemci arasindaki veri aktarimi i¢in harcanan zaman ve enerji, gercek zamanh
goriintli tanima ve dogal dil isleme gibi yogun veri isleyen ve analiz eden sistemler i¢in sorunlu

hale gelmistir (Eryilmaz et al., 2014; Kuzum et al., 2013).

Giliniimiizde kullanilan hesaplama sistemleri Von Neumann mimarisi iizerine insa
edilmistir (del Valle et al., 2018). Bu mimaride veriler 6nce merkezi islem birimine (CPU)
tasinmakta, burada islenmekte, ardindan islenen veriler ana bellege veya diger bellek
birimlerine aktarilmakta ve islemler bu sekilde dongiisel olarak devam etmektedir (H. Li et al.,
2015). Veri hacminin yliksek oldugu durumlarda, ilgili verilerin aktarilmasi ve islenmesi zaman
ve enerji agisindan 6nemli bir maliyet sorunu olusturmaktadir (Kvatinsky et al., 2014). Ayrica,
verilerin bellek bilesenlerinden alinmasina bagli gecikme, 6zellikle yapay zeka alaninda artan
i yikleriyle ugrasan c¢esitli uygulamalarda performans agisindan 6nemli bir engel
olusturmaktadir (Sebastian et al., 2020). Ayrica Sekil 3’te belirtildigi gibi sistemin veri transferi
olan her yerinde darbogaz (bottleneck) problemi ortaya ¢ikmaktadir.
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Sekil 3. Von Neumann mimarisinde darbogaz (bottleneck) problemi

Bilim insanlari, Von Neumann mimarisinin dogasinda bulunan darbogaz sorununu
cozmek icin aktif olarak hem donanim hem de yazilim yaklagimlar1 gelistirmektedirler
(Drakopoulos et al., 2021; Xia et al., 2021) Yontemlerden biri ve su anda en popiiler olani,
biyolojik beynin ¢aligma modelinden ilham alan néromorfik sistemlerdir (Eshraghian, Wang
and Lu, 2022). Biyolojik beynin yapis1 incelendiginde, hesaplama i¢in diisiik enerji gerektiren
coklu noéronlari, uyarlanabilir bellek birimleri olarak hizmet veren sinapslarla birbirine

baglayan oldukga paralel ¢alisan bir mimari ile karakterize edilir (Cao et al., 2023).

Yapay Sinir Ag1 (YSA) ve Noromorfik Hesaplama

YSA, ham veri siniflandirmasi ve Oriintii tanimay1 igceren gorevlerde modern geleneksel
Von Neumann islemcilerden daha iyi performans gosterebilmektedir. Insan beyninin
tasarimindan esinlenen néromorfik donanim sistemleri (Indiveri et al., 2011), geleneksel Von
Neumann mimarisinden farkli olarak gii¢lii ve verimli bilgi isleme yetenekleri saglama
kapasitesine sahiptir. Bu tiir bir hesaplama sistemi hatalara kars1 direngli, son derece paralel ve
enerji tasarrufludur (Mead, 1990). Bununla birlikte, giinlimiizde “ndromorfik hesaplama”
olarak adlandirilan farkli uygulama ve tasarimlarin sayis1 6nemli dl¢lide artmis ve tamamen
farkli yaklasimlar1 kapsar hale gelmistir (Nawrocki et al., 2016). Bu c¢alismalarin biiyiik
cogunlugu beynin birka¢ néronunu taklit etmeyi amacglayan donanim tabanli yeni cihazlari
icerirken, sistemin bir diger kismi da kismen veya tamamen beynin c¢alisma modelinden
esinlenen yeni yazilim algoritmalarmi i¢ermektedir (LukoSevicius & Jaeger, 2009). Sonug
olarak memristor devre elemanlar1 kullanilarak donanim tabanli sistemlerin gelistirilmesi

iizerine ¢alismalar yapilmistir.



Memristor (L. Chua, 1971), degisken bir direng gibi davranarak direng¢ degerini degistiren
ve akimin gegisi sirasinda kapasitif bir eleman gibi davranarak akimin akisini kontrol eden bir
devre elemanidir (Oli-Uz-Zaman et al., 2022). Yeni bir donanim teknolojisi olan memristdrler
cok kiiciik dlgeklerde ¢alismakta ve biiylik Olcekli entegrasyonlar i¢in kullanilabilmektedir
(Gharpinde et al., 2018). Memristorlerin operasyonel mantig1 ile karsilastirildiginda, klasik
tamamlayic1 metal-oksit-yar1 iletken (CMOS) ¢alisma yontemi, kiiciik alan gereksinimleri ve

diisiik gii¢ tiiketimi gibi benzer avantajlar sergilemektedir (Cheng & An, 2021a).

Memristor tabanli derin sinir aglarinin avantajlarina ragmen, cihaz degiskenligi, mevcut
teknolojinin sinirlamalar1 ve memristorlerin esnekligi gibi ele alinmasi gereken zorluklar vardir.
Bu sorunlarin uygulamalarin isleyisi tizerinde olumsuz etkileri bulunmaktadir. Sonug olarak,
donanim tabanli sinir ag1 uygulamalarinda iistesinden gelinmesi gereken zorluklar vardir. Bu
zorluklar1 agmak icin memristorler diger sistemlere kiyasla daha fazla potansiyel ¢oziimii

saglayabilecegi yapilan ¢aligmalarla ortaya konulmustur (Cheng & An, 2021).

Memristor tabanli donanim sistemleri {izerine ¢esitli inceleme makaleleri yapilmistir.
Mutlu ve meslektaslari, derin sinir aglarin1 (DNN'ler) verimli bir sekilde islemeyi amaclayan

son gelismeler iizerine kapsamli bir ¢aligma (Mutlu ez al., 2019) yiirtitmustiir.

Sebastian ve ekibi, bellek aygitlar: tarafindan etkinlestirilen temel hesaplama islevlerinin
yani sira bilimsel hesaplama, sinyal isleme, optimizasyon, makine 6grenimi, derin 6grenme ve

stokastik hesaplama gibi uygulamalar1 inceleyen bir caligma (Sebastian et al., 2020) sunmustur.

Bir diger ¢alisma, Von Neumann mimarisindeki verimsizlikleri ortadan kaldirmak i¢in
farkli fiziksel prensiplere dayanan direngli anahtarlama malzemelerinin tasarimina
odaklanmistir. Wang ve ekibi, direncli anahtarlama siireclerine (RSM) yol acan fiziksel
mekanizmalarla ilgili ¢aligmalari incelemis ve mekanizmalarin temsil kabiliyeti, anahtarlama
hiz1, enerji, giivenilirlik ve cihaz yogunlugu hakkinda bilgi vermistir (Z. Wang et al., 2020).
Yang ve meslektaslari, derleme makalelerinde ¢esitli memristor sinaptik cihazlari uyaran
modellerine gore siniflandirmis ve bu sinaptik cihazlarin ¢alisma mekanizmalarinin ayrintilt bir
analizini yapmustir. Bir bagka calisma (S. Chen et al., 2023) ile hem biyolojik hem de yapay
hiicrelerde noral sinyal {iretimi ve iletiminin karmasik siireclerine yonelik mevcut yaklasimlarin

genel bir incelemesi sunulmustur.

Glinlimiizde dogal dil isleme, metin tahmini, nesne algilama, konusma ve goriintii tanima
gibi ¢esitli yapay zeka uygulamalarinda YSA mimarilerinin kullanimi 6nemli 6lgiide artmigtir.

Geleneksel YSA uygulamalarinda, bellek ve islem birimleri arasinda biiyiik olgekli veri
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hareketleri gergeklesmekte ve bu islemler yiiksek hesaplama maliyetleri gerektirmektedir. Bu
hesaplama siireglerini daha verimli hale getirmek amaciyla gesitli yazilim ve donanim
coziimleri gelistirilmektedir. Ancak, tiim bu cabalara ragmen, veri trafigindeki gecikme ve
yiiksek enerji tiiketimi gibi Von Neumann mimarisinin darbogaz sorunlari devam etmektedir.
Bu darbogazin iistesinden gelmek icin yapay zeka uygulamalarina 6zel donanim elemanlarinin
tasarlanmas1 ve gelistirilmesi gerekmektedir. Bu dogrultuda, ndrobiyolojik sistemlerden
esinlenen ¢esitli 6zelliklerin donanim diizeyinde tasarlanmasi ve entegre edilmesi, bu soruna
etkili bir ¢6zlim sunabilir. Bu yaklasim g¢ergevesinde, 6zellikle memristor tabanli néromorfik
hesaplama sistemleri dikkat ¢ekmektedir. Memristorler, ugucu olmayan bellek 6zellikleri ve
analog davranislar1 sayesinde hiz ve enerji verimliligi acisindan umut verici donanim
iyilestirmeleri sunmaktadir. Sinaptik agirliklarin etkin bir sekilde depolanmasina ve
islenmesine olanak taniyan bu cihazlar, donanim diizeyinde performans artirict ¢oziimler

sunmaktadir.

Bu calismada, gilincel sistemlerden farkli olarak dogrudan derin 6grenme islevlerini
yerine getirebilen ve biyolojik beyin yapisini taklit edebilen memristdr tabanli néromorfik
hesaplama sistemleri ele alinmaktadir. Bu baglamda, calismada derin 6grenme ve makine
ogrenmesi uygulamalarinda sik¢a kullamlan Stokastik Gradyan Inisi (SGD) ve momentum
tabanli optimizasyon varyantlarinin memristor tabanli sistemler iizerindeki performansi
kapsamli bir sekilde deneysel olarak incelenmistir. Ayrica, nano 6lgekli memristor tabanlt
sinaptik cihazlarin 6grenme Ozellikleri, enerji verimliligi ve dogruluk oranlari gibi énemli
performans metrikleri detayli olarak arastirilmistir. Uygulamada MNIST ve CIFAR-10 veri

setleri kullanilarak elde edilen deneysel sonuglar sonraki boliimlerde paylasilmistir.

Tezin Amaci ve Alana Katkilar:

Literatiir incelemesi, memristor ileri teknoloji malzemeler kullanilarak ¢ip iizerinde
ogrenme siireglerini gerceklestirmeyi hedefleyen direngli sinaptik diziler lizerine yapilan
arastirmalar1 kapsamaktadir. Bu malzemeler, 6zellikle hafif yapilar1 ve enerji tasarrufu saglayan
ozellikleri ile modern ndromorfik hesaplama sistemlerinin gelistirilmesinde etkili bir potansiyel
sunmaktadir. Arastirmalar, memristdr tabanli sinaptik dizilerin elektriksel karakteristiklerini
inceleyerek bu malzemelerin sinaptik davranislar1 nasil taklit ettigini anlamay1 amacglamaktadir.
Bu ¢alismalar, néromorfik uygulamalar i¢in gerekli olan dogrusal olmayan iletim, yiiksek
anahtarlama hizlari, genis bellek pencereleri, uzun siireli bellek tutma yetenekleri gibi bir¢ok
temel elektriksel 6zelligi analiz etmektedir. Bu baglamda, 6zellikle sinaptik agirliklarin stirekli

olarak giincellenmesine olanak tanmiyan ¢ok katmanli yapilar ve malzemelerin sinaptik
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plastikligi, uzun siireli potansiyasyon (LTP) ve depresyon (LTD) gibi biyolojik fonksiyonlar1

destekleyebilme kapasitesi 0n plana ¢ikmaktadir.

Ozetle literatiir incelemesinde genellikle memristdr malzemeleri kullanilarak ¢ip iizerinde

O0grenmeyi saglamak amaciyla direngli sinaptik dizilerin incelendigi goriilmiistiir. Bu

caligmalarin odak noktasi genellikle bu malzemelerin elektriksel ozellikleri ve sinaptik

davranislar1 olmustur. Bu ¢er¢evede, bu calisma ile:

1.

Memristor tabanli nano-sinaptik bir cihazin yapay sinir agr uygulamalarinda
kullanimin1 bilgisayar ortaminda simiile ederek, bu cihaz tizerindeki optimizasyon
yontemlerinin performansin1 derinlemesine analiz ederek alana Onemli katkilar
sunulmustur.

Bu ¢alismada, yapay sinir ag1 uygulamalarinda kullanilan memristor tabanli nano-
sinaptik cihazin dogruluk, enerji optimizasyonu ve egitim siiresi gibi kritik
performans 6l¢iitleri optimize edilerek test edilmistir.

MNIST ve CIFAR-10 veri kiimeleri iizerinde gergeklestirilen rakam tanima ve
siiflandirma uygulamalar ile cihazin ve kullanilan optimizasyon yontemlerinin
performansi kapsamli bir sekilde analiz edilmistir.

Bu detayli analizlerin sonucunda, cihazin kullanilan veri kiimelerinde yiiksek
dogruluk oranlar1 elde ettigi, dolayisiyla uygulamalarda hata oranini diisiirerek etkili
sonuclar sundugu goriilmiistiir.

Memristor tabanli nano-sinaptik cihaz, enerji tiiketimi bakimindan klasik bilgisayar
sistemlerine gore onemli ol¢iide tasarruf saglamakta, diisiik enerji tiiketimiyle yapay
zekd uygulamalarinda yeni bir donanim ¢6ziimii olarak One ¢ikabilecegi
gosterilmistir.

Yapilan simiilasyonlarda, Stocastic Gradient Descent (SGD) ve onun varyantlar1 gibi
optimizasyon yontemleri kullanilarak cihazin dayanikliligi, adaptasyon yetenegi ve
farkli veri kiimelerine uyum kabiliyeti test edilmistir.

Bu calisma, Onerilen sistemin saglamligin1 ve uyarlanabilirligini vurgulayarak,
cihazin degisen kosullara ve parametre ayarlarina hizla adapte olabilen bir yapiya
sahip oldugunu ortaya koymaktadir.

Noromorfik mimarilerin potansiyeli ve yapay zeka sistemlerine sagladigi katkilar ele
alinarak, geleneksel bilgi islem paradigmasinin sinirlamalarinin 6tesine gecebilecek

alternatif bir yol gosterilmistir.



9. Elde edilen simiilasyon sonuglari, memristdr tabanli nano-sinaptik cihazlarin,
néromorfik hesaplama sistemleri icin siirdiiriilebilir ve yiiksek performanslh bir
¢oziim sundugunu, boylece yapay sinir ag1 tabanli uygulamalarda gelecekte yaygin
bir kullanim alanina sahip olabilecegini gostermektedir.

10. Calismanin sonuglari, klasik bilgisayar sistemlerine bir alternatif olarak memristor
tabanli nano-sinaptik cihazlarin etkili bir donanim ¢6ziimii sundugunu kanitlamis
olup, bu cihazlarin daha genis alanlarda uygulanabilirligini arastirmak igin

gelecekteki ¢alismalara rehberlik etmektedir.

Bu calisma, memristor tabanli nano-sinaptik cihazlarin yapay sinir ag1 uygulamalarindaki
kapasitesini ve verimliligini simiilasyonlar aracilifiyla inceleyerek, optimizasyon
yontemlerinin bu cihazlar iizerindeki yansimasi bilgisayar iizerinde simiile ederek detayl1 bir

bicimde degerlendirmektedir.

Bu tezin devami, asagidaki sekilde yapilandirilmistir. Ilk olarak, Kuramsal Temeller
boliimdi, ilgili literatiirii kapsamli bir bigimde ele alarak tez konusuna iliskin temel kavramlari
ve kuramsal ¢ergeveyi sunmaktadir. Ardindan, Materyal ve Metot boliimiinde, arastirmada
kullanilan materyallerin 6zellikleri ayrintili olarak tanimlanmig ve 6nerilen yontemin uygulama
stireci aciklanmistir. Bulgular ve Tartisma boliimiinde ise arastirma sonuglari kapsamli bir
bicimde analiz edilerek, literatiirdeki benzer ¢alismalarla kiyaslanmis ve farkli agilardan
yorumlanmustir. Son olarak, Sonuglar ve Oneriler boliimiinde elde edilen bulgular 15131nda bu
alanda gelecekte yapilacak ¢alismalara yonelik 6neriler sunularak ve ¢alismanin genel katkisi

tartisilarak tez tamamlanmaktadir.



KURAMSAL TEMELLER

Memristoriin Tarihsel Gelisimi

Ewald Georg von Kleist 1745 yilinda kondansatorii, Georg Simon Ohm 1827 yilinda
direnci ve Michael Faraday 1831 yilinda indiiktorii kesfetmistir (Mazumder et al., 2012). Bu
devre elemanlar1 ve aralarindaki iliski Sekil 4'te gosterilmistir. Sekil 4'te gosterilen devrede
kondansator elektrik yiikii ile elektrik potansiyeli arasindaki baglantiy1, direng elektrik akimi
ile voltaj arasindaki iligkiyi, indiiktdr ise manyetik aki ile elektrik akimi arasindaki iliskiyi
kurmaktadir (R. Lin et al., 2023). Bununla birlikte, uzun bir siire boyunca akim ve yiik
arasindaki iligskiyi kuran devre elemani1 tanimlanmamistir (Strukov et al., 2008). Leon Chua
1971 yilinda simetri argiimanlarina dayanarak direncler, kapasitorler ve indiiktorlerin yaninda
dordiincii bir devre eleman1 olmasi gerektigini savunmus ve bu elemana hafizali direng olan
memristdr adini vermistir (L. Chua, 1971). Chua ve Kang tarafindan 1976 yilinda yapilan bagka
bir ¢alisma (L. O. Chua & Sung Mo Kang, 1976) ile memristor daha da detaylandirilmis ve

memristdr 6zellikleri gosteren devre elemanlar1 detayl bir bigimde ele alinmaistir.

Resistor
Oy
v S
R=dv/di
C=do/di L=de/di Inductor
Rmem=de¢/dq
Charge\ o[ Flux
VT N\
Memristor
Memristive Systems

Sekil 4. Dort temel iki terminalli pasif devre elemani

~ . cC

Calisma, donanim tasariminin memristér kullanimini igerdigi “memristif sistemler” adi verilen
yeni bir sistemi tanitmakta ve bdyle bir sistem i¢in gerekli kriterleri belirlemektedir (Corinto et
al., 2015). Ayrica bu calisma, memristoriin akim-gerilim karakteristiginin bir histerezis egrisi
sergiledigini tespit eden ilk caligmadir (F. Y. Wang, 2008). Buna ek olarak, ¢alisma, yiiksek
frekanslarda bir direncin akim-gerilim karakteristiginin dogrusal bir direncinkine benzer
oldugunu agiklamaktadir (Adhikari et al., 2013; Sah et al., 2015). Sekil 5, Leon Chua'nin akim-

gerilim karakteristigine dayali olarak tahmin edilen memristor histerezis egrisini (Lyscaous)



gostermektedir. Chua ve Kang, caligmalarinda Hodgkin Huxley Sinir Modeli (Y. Liu et al.,
2021) gibi sistemlerin memristorler kullanilarak uygulanabilecegini one siirmiislerdir. (L. O.
Chua & Sung Mo Kang, 1976). Ayrica, ¢alismalarinda memristif sistemler i¢in modelleme
yontemlerini de gostermislerdir. 2010 yilinda, néro plastisiteye benzeyen uzun vadeli plastisite
(LTP), memristorlerin en yaygin olarak uygulanan temel islevlerinden biri olan siiriiklenme
temelli memristorlerde (drift memristors) taklit edildi (Jo et al., 2010). 2010 yilinda, biyolojik
sistemlere kiyasla baglant1 ve islev yogunlugu sunan bir memristoér ¢apraz ¢ubuk dizisi de
gelistirilmistir (C. Li et al., 2019). Faz Degisim Bellegi (PCM) olarak bilinen memristor tiirleri
2010 yilinda uygulamalar i¢in 6nerilmistir (Wong et al., 2010). 2012 yilinda, PCM tabanl
devreler ndromorfik spiking fonksiyonlar taklit edilerek uygulanmistir (Pickett et al., 2013).

Sekil 5. Leon Chua'nin 6ngdrdiigi memristor histerezisi (L. O. Chua & Sung Mo Kang, 1976)

2016 yilinda Wang ve arkadaglari tarafindan, metal iyonlarmnin redoks reaksiyonu ve metal
iletken bir filament olusumu yoluyla iletkenlik anahtarlamasini kontrol eden iletken koprii
memristorleri (CBM) oOnerilmistir. 2019 yilinda, tamamen entegre ve programlanabilir
memristor ¢ip setleri gelistirilmistir (Vaughan, 2023). Bu arastirma, bir memristor capraz ¢ubuk
dizisi ile tamamlayici metal-oksit-yar1 iletken (CMOS) kontrol devrelerinin kombinasyonunu
iceriyordu. Sonug olarak yiiksek verimlilikle ¢arpma-biriktirme islemlerini gerceklestirebilen
noromorfik bir bilgi islem ¢ipinin olusturulmasiyd: (F. Cai et al., 2019). 2020'de yapilan bir
calisma, geleneksel capraz cubuk dizilerinin iki boyutlu yapisini gelistirerek {ic boyutlu
memristor devreleri gelistirmeyi amaglamistir (P. Lin et al.,, 2020). Bellekte hesaplama
yapabilen, CMOS ve direngli rastgele erisimli bellek (RRAM) yapisina sahip memristor
cihazlart iceren, yiiksek enerji verimli ve diisiik gecikmeli bir donanim yapisi
gergeklestirilmistir (Hung et al., 2021). 2022 yilina gelindiginde, ¢ip iizerinde iletisim i¢in
memristdr ¢apraz ¢ubuk dizilerine dayali bir cihaz gelistirilmis ve paralel veri isleme icin

kullanilmistir (Choi et al., 2022).
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Uzun yillar boyunca memristoriin teorik bir unsur olduguna ve boyle bir devre elemaninin
gercekte var olmadigina inaniliyordu (Johnsen, 2012; Meuffels & Soni, 2012). Bu algi
nedeniyle arastirmacilar, 2008 yilinda Hewlett Packard (HP) laboratuvarlarinda fiziksel olarak
uygulanana kadar bu yeni devre elemanina fazla ilgi gostermemistir (Strukov et al., 2008).
Memristoriin HP tarafindan donanimsal olarak gerceklestirilmesinden sonra, arastirmacilarin
dikkatini hizla ¢ekmis ve memristdrler iizerinde yogun ¢alismalar ve aragtirmalar yapilmasina
yol agmustir (Ascoli et al., 2016; Kvatinsky et al., 2013). Bu atilimin basarilmasina ragmen,
memristoriin bir devre bileseni olarak pratikte uygulanmasi gecikmistir. Bu gecikme nedeniyle,
arastirmacilar memristorlerin roliinii yerine getiren devrelerle devre modellemeye odaklanmis

ve ¢ok sayida modelleme siireci yiiriitmiistiir (Biolek & Biolkova, 2009).

Memristoriin Yapisi

Memristoriin yapisi genellikle iki terminalli, pasif, enerji depolamayan, dogrusal olmayan
ozelliklere sahip kiigiik boyutlu bir akim-voltaj devre elemanidir (Liao et al., 2021). HP firmas1
tarafindan donanim olarak hayata gecirilen memristériin matematiksel ifadesi de HP
laboratuvarinda gerceklestirilmistir. Ilgili matematiksel ifadeler asagida gosterilmistir.

Denklem 1 ile akim ve gerilim arasindaki iliski ifade edilmistir.

V(t) = Ryem (x)i(t) €]

Denklem 2 ile memristdr direncinin degisimi gosterilmistir.

Ryem (%) = [Ron(X) + Ropr(1 — X)] (2)
Memristorler, depolanmis ve depolanmamis olmak iizere iki bolge ile ifade edilebilir ve
depolanmis bolgenin genisliginin toplam memristor genisligine oranindaki degisim, x olarak
gosterilmekte olup, asagidaki Denklem 3 ile temsil edilmistir (Strukov et al., 2008).

d_x _ HtvRon
dt D?

i(t) 3)

Daha iyi ve saglikli bir sonug¢ elde edebilmek i¢cin HP tarafindan Onerilen pencereleme

fonksiyonu Denklem 4'te ifade edilmistir.

1—
foo =220 @

Katkili bolgenin alaninin tim memristor bolgesine oranindaki degisimi bulmak i¢in denklem

(4) ve Denklem (3) kullanilarak bu oran bulunur. Bu islem Denklem 5 ile ifade edilir.
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dx  pyRon

= o i(OF () (5)

Memristorler ¢cok kiiciiktiir ve birim alan basina yogunluklar1 insan beynindeki sinaps
yogunluguyla karsilastirilabilir (Strukov et al., 2008). Bu, biyolojik sinir aglarinin isleyis
yontemlerini taklit edebilen yapay sinir aglari olusturmak i¢in umut verici bir teknolojidir
(Eshraghian et al., 2022). Bu alanlarin etkinlestirilebilmesi i¢in memristdrlerin biiyiik diziler
halinde diizenlenmesi gerekmektedir (Caravelli & Carbajal, 2018). Memristor dizilerini
okuyabilen ve yazabilen devrelerin gelistirilmesi, memristor teknolojisinin ilerlemesinde
onemli bir adimdir (Yakopcic et al., 2011). Bu tiir devreler, memristor dizisine dogru bir sekilde
veri okuyup yazabilmenin yani sira memristor dizisinden gegen akim akigini algilama ve
kontrol etme gibi diger islevleri de yerine getirecek sekilde tasarlanmalidir. Memristorlerin
okunarak ve yazilarak bellek depolama icin nasil kullanilacagini acgiklayan makaleler
yazilmistir (Ho et al.,, 2011; Niu et al., 2010). Bu devreler, bir memristériin durumunu
belirlemek i¢in analog karsilastiricilar olarak fonksiyonel amplifikatorler kullanir. Kim ve
arkadaglarinin c¢alismasi, memristér direncini 6nceden belirlenmis sekiz deger kiimesine
degistirme yetenegine sahip karmasik okuma ve yazma devreleri 6nermektedir (H. Kim et al.,
2010). Memristor, paralel hesaplama ile ilgili olan vektdr matris ¢carpimi i¢in kullanilabilecek
dogrusal, cok seviyeli iletim durumlarina sahip olma potansiyeli nedeniyle biiyiik ilgi
gormektedir (Hu et al., 2016). Bu donanim durumu ile yazilim, CPU ve GPU ile birlikte hizli
bir gelistirme ve doniistliirme stirecinde daha yiiksek hizlara ulagsma imkanina sahip olmaktadir.
Bu nedenle tasarlanan sistemlerden en iyi verimin alinabilmesi i¢in memristorlerin gelistirilen

donanim sistemi zincir yapisi igerisinde dogru konumlandirilmasi 6nem arz etmektedir.

Sinaps cihaz

Giliniimiizde kullanilan hesaplamali veri isleme, bircok modern bilgisayar sistemi
mimarisinin temelini olusturan Von Neumann mimarisi iizerinde gergeklestirilmektedir (Tsai
et al., 2018). Bu mimari, bir bilgisayarin temel bilesenleri olan islemci, bellek ve giris/¢ikis
birimlerini bir araya getirmektedir (von Neumann, 1993). Merkezi islem birimi ve bellegin bir
arada caligtig1 sistem transistor teknolojisine dayanmaktadir (Shaw, 1950). Bu durum nedeniyle
donanim, Moore yasasini takip ederek kisa siirede hizli bir gelisim gdstermistir (Manfrinato et
al., 2013). Moore Yasasi'na (Moore, 1965) gore, bir entegre devredeki transistor sayisinin her
iki yilda bir iki katina ¢ikacagi ve lretim maliyetlerinin diismesi nedeniyle bilgisayar
donanimlarinin performansinin da her iki yilda bir iki katina ¢ikacag diisiiniilmektedir. Bu

durum daha gii¢lii ve verimli CPU'larin ve bellek sistemlerinin gelistirilmesine yol agmuistir.
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Sonug olarak, veri isleme donanimi daha yiiksek islem hizlar1 ve daha biiylik bellek
kapasiteleri saglayarak daha giiclii ve verimli hale gelmistir (Hu et al., 2017). Bu durum, daha
giiclii ve verimli bilgi islem sistemlerinin yani sira daha gelismis yazilim ve uygulamalarin
gelistirilmesine yol agmustir. Transistorlerin 6l¢eklendirilmesi ve daha kiiclik alanlara daha
fazla transistor yerlestirilmesi sonucunda CPU'nun islem hizi énemli 6l¢iide artmistir (Xiu,
2019). Bununla birlikte, CPU ve bellek arasindaki yavas veri aktarimi, hesaplama hizini
yavaglatir ve bu da enerji verimliligini azaltir. Bu durum CPU'nun ¢alisma sirasinda daha fazla
enerji tiikketmesine neden olmaktadir (Zanotti et al., 2020). Moore Yasasi sayesinde transistor
teknolojisi ve von Neumann mimarisi, transistorleri 10 nanometreye kadar kiigiilterek sinirlarini
zorlamis ve bu teknolojilerin iiretim sinirlaria atomik diizeyde ulasmamizi saglamistir (Taur,
2002). CPU'larin ve belleklerin performansini artirmak i¢in bir¢ok arastirmact transistor ve von
Neumann mimarisindeki teknik sorunlari ele almaya ¢alismistir (Palit et al., 2014). Bu durum,
yiiksek performansli, son teknoloji bilgi islem ve bellek cihazlarina daha fazla ihtiyag
duyulmasina neden olmustur. Carver Mead, néromorfik sistem adi verilen ve ayn1 anda hem
hesaplama hem de bellek islemlerini gergeklestirerek insan beyninin ¢alisma mekanizmasini
taklit eden yeni bir hesaplama sistemi olan néromorfik sistemi Onermistir (Mead, 1990).
Noromorfik sistemler, insan beyninin ¢alisma mekanizmalarini taklit etmek icin gelistirilmis
bir bilgisayar sistemi tiirtidiir. Bunlar, beyin gibi birden fazla islemi ayni anda gerceklestirerek
coklu gorev yapmak iizere tasarlanmistir. Noromorfik sistemler, insan beyninin ¢alisma
mekanizmalarin1  kopyalamanin yani sira, insanlarin ¢ozebildigi problemleri ¢dzebilme

yetenegine de sahiptir (Hu et al., 2017).
Biyolojik sinaps

Biyolojik bir sinaps, sinaptik yarik olarak bilinen kiiciik bir boslukla birbirine baglanan
iki hiicrenin olusturdugu, sinir hiicreleri arasinda mesaj iletmek i¢in 6zel bir baglant1 olarak
bulunur (W. Xu et al., 2016). Sekil 6'da sinapslarin konumu gosterilmektedir. Sekil 6'da ifade
edildigi gibi, pre-sinaptik noron akson ucundan post-sinaptik ndronun dendritine dogru
konumlanir (Kandel et al., 2012). Norotransmitterler post-sinaptik néronun reseptorlerine
baglanmadan Once, pre-sinaptik ndronun aksonunun ucunda elektriksel bir spike (darbe)
olustururlar, ardindan norotransmitterler iki ndron arasindaki bosluga salinir ve postsinaptik
noronun reseptorlerine baglanarak bir elektrik sinyali olustururlar (H. Yu et al., 2021).
Olusturulan bu sinyal daha sonra noron boyunca iletilir. Biyolojik sinyaller, post-sinaptik
néronun dendritine bir norotransmitter gonderildikten sonra bagli néronlar aracilifiyla sinir

sistemine iletilir (Bower & Beeman, 1995). Sinaps plastisitesi, sinapslarin aktiviteye yanit
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olarak giiclerini degistirme yetenegidir. Diger bir ifadeyle sinapsin bir sinyalin hizin1 veya
yogunlugunu artirma veya azaltma kabiliyetidir (G. Lee et al., 2021; S. Yu et al., 2011). Ayrica,
kisa ve uzun siireli hafizanin yapilandirilmasiyla yakindan baglantili olup 6grenme ve hafiza

olusumu i¢in 6nemlidir (Saighi et al., 2015).

Sinaptik
kesecikler

Pre-sinaptik
hiicre

Nérotransmitter

Sinaptik
yarik

Reseptdre baglanmis
norotransmitter

Post-sinaptik
hicre

Reseptor

Sekil 6. Biyolojik sinaps semasi. Sinaptik iletim, presinaptik hiicreden gelen sinyallerin
postsinaptik hiicreye iletilmesi siirecidir. Semada, sinaptik vezikiiller presinaptik hiicre i¢inde
bulunur ve sinir hiicreleri arasinda iletisimi saglayan ndrotransmitterleri igerir.

Beynin 6grenme siireci sirasinda, sinaps olarak bilinen ndronlar arasindaki baglanti,
sinaptik plastisite asamasinda ya daha giiclii ya da daha depresif hale gelebilir (Rajendran et al.,
2019). Spike Zamanina Bagl Plastisite (STDP), postsinaptik ve pre-sinaptik néronlardaki
aksiyon potansiyellerindeki artislar arasindaki zamanlama farkina baglidir (Burr et al., 2017).
Sekil 7, biyolojik bir sinaps ile metal oksit tabanli yapay bir sinaps arasindaki karsilastirmay:
gostermektedir. Pre-sinaptik ve post-sinaptik ndronlar, uyarict ve inhibe edici post-sinaptik

potansiyellerin elektrik sinyallerini gonderir ve alir.
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Sekil 7. Yapay sinapsin gosterimi.

Bu sinyaller, norotransmitterleri serbest birakarak iki noron arasindaki baglantinin giictlinii
degistirmek icin kullanilir (Kuzum et al., 2011; Sung et al., 2018). Uzun stireli giiglenme (LTP),
sinaptik agirligin kalici olarak degistirildigi sinaptik gligte kalic1 bir degisikliktir. Kisa bir siire
icinde bir dizi ardigik uyarim meydana geldiginde, sinaptik aktivite artar (uzun siireli giiclenme)
veya azalir (uzun siireli depresyon, LTD). Bu degisiklik birka¢ dakika veya daha uzun siirebilir
(H. Yu et al., 2021). Spike-Timing-Dependent Plasticity, bir sinapsin giiciiniin presinaptik ve
post-sinaptik aksiyon potansiyellerinin veya spike'larin (STDP) zamanlamasina bagli olarak

degistigi bir olgudur (Yan et al., 2018).
Yapay sinaps

Biyolojik sinaps plastisitesi, sinaptik agirlik olarak adlandirilan ve analog bir sekilde
kontrol edilebilen bir baglant1 giiclidiir (Q. Wan et al., 2019). Yapay sinapslar, biyolojik bir
sinapsin Onemli iglevlerini taklit etmek i¢in tasarlanmistir (W. Xu et al., 2016). Yapay sinaps,
iki sinir hiicresi arasindaki baglanti olan biyolojik sinapsin islevini taklit eden bir cihazdir (H.
Yu et al., 2021). Yapay sinapslar, insan beyninin yapisim1 ve davranigini taklit eden bir
bilgisayar tiiri olan néromorfik bilisimde kullanilmaktadir. Bu sinapslar tipik olarak silikon,
metal veya organik molekiiller gibi malzemelerden yapilir ve biyolojik sinapslardan gecen
elektrik sinyallerini taklit etmek i¢in tasarlanmistir (H. Yu et al., 2021). Yapay sinapslar,
karmasik sorunlart ¢ozmek i¢in kullanilabilecek yapay sinir aglar1 olusturmak igin
kullanilabilir. Sekil 7'de gosterildigi gibi iletkenlik degisiminin (direng) sinaptik bir agirlikla
degistirilmesi, biyolojik néronun tepkisinin yapay bir sinaps uygulamasiyla taklit edilmesini
gerektirir (Do et al., 2010). Yapay sinapslar, hafizanin nasil korundugunu belirleyen Uzun
Siireli Potansiyasyon (LTP) ve Kisa Siireli Potansiyasyon (STP) olmak iizere iki tiir sinaptik
plastisiteye sahiptir.

Uzun Vadeli Potansiyasyon (LTP), Uzun Vadeli Depresyon ve Kisa Vadeli
Potansiyasyon (LTD)

Sinaptik plastisite, noronlar arasindaki baglantilarin yogunlugundaki degisimi ifade eder
(Bear & Malenka, 1994). ik calismalarda, yiiksek frekansl presinaptik uyarimin uzun siireli
giiclenmeyi (LTP) tetikledigi, diisiik frekansli uyarimin ise sinir hiicrelerinde uzun siireli
depresyonu (LTD) baslattig1 gosterilmistir (Bliss & Lomo, 1973). Temel faktorlerden biri uzun
vadeli plastisite olarak adlandirilir. Sinaptik agirliktaki uzun vadeli degisiklikleri ifade eder ve

insan beynindeki 6grenme ve hafiza mekanizmalariyla iligkili olduguna inanilir (Daoudal &
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Debanne, 2003). Sinirsel baglantilarin gii¢lendigi, sinaptik gilicte uzun vadeli veya kalict bir
artigla sonuglanan kalic1 bir duruma uzun vadeli giiclenme (LTP) denir (Feldman, 2012). Diger
bir deyisle, noral baglantilarin zayifladigi, sinaptik giicte uzun siireli veya kalic1 bir azalmaya
yol agan kalic1 bir durum, uzun siireli depresyon (LTD) olarak adlandirilir (Bear & Malenka,
1994).

LTP ve LTD, noromorfik bilgi islem sistemlerinde sinaptik agirliklar1 diizenleyen ve
giincelleyen temel ilkeler olarak kullanilabilir (Zeng et al., 2023). Sinaptik plastisite, iki ndron
arasindaki baglantinin giiciiniin degistirilmesi anlamina gelir ve bu da aralarinda iletilen ve sivri
uc olarak bilinen darbelerin siiresiyle belirlenir (Ranjan et al., 2016; Zahari et al., 2015). Darbe
genisligine dayal1 sinaptik plastisite, Spike-Time Dependent Plasticity (STDP) (Dan & Poo,
2006; Linares-Barranco & Serrano-Gotarredona, 2009) olarak bilinen ve sinirsel 6grenme i¢in

temel bir mekanizma olarak hizmet eder (Caporale & Dan, 2008).

Elektrokimyasal transistorler, STP veya LTP gibi biyolojik sinapslarin ndérokimyasal
islevlerini ¢ogaltmanin bir yolu olarak incelenmekte ve gelistirilmektedir (Sheliakina et al.,
2018). STP ve LTP'li sinapslar, plastisite zaman Ol¢eginde 6grenme ve hafiza olusumu i¢in
sinirsel temeldir (H. Wang et al., 2018). Cesitli sistemler LTP siireclerini miimkiin kilarken,
stv1 elektrolit bilesenleri (Gkoupidenis et al., 2015; J. Shi et al., 2013) sinirli tutma siiresi ve
kiiciik iletkenlik degisimi nedeniyle belirsiz STP/LTP sinyalleri igerir (Van De Burgt et al.,
2017). Coklu plastisiteye sahip entegre cihazlar olusturmak ve ndromorfik devreleri
basitlestirmek icin, giivenilir ugucu olmayan bellege ve acik¢a ayirt edilen kisa vadeli ve uzun
vadeli plastisite modlarina sahip kat1 hal organik sinapslar tasarlamak ¢ok 6énemlidir. LTP ve
STP, Sekil 8'de gosterildigi gibi yapay sinapslar, dis sinyallerle gecici olmayan bir degisime
sahip olduklarinda gergeklestirilir.

LTP

EPSC
7]
e |
o
EPSC

e e

Time Time

V|:hu|se
Vpulse

Sekil 8. Yapay sinapslar LTP (kirmiz1) ve STP (mavi).
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Makine 6grenimi ile memristor tabanh calismalar

Glinimiiz diinyasinda makine oOgrenimi, veri isleme teknolojilerinin temel
bilesenlerinden biri haline gelmistir. Siirekli artan veri hacmiyle birlikte, akilli veri analizinin
teknolojik amagclar i¢in daha yaygin ve 6nemli hale gelecegine inanilmaktadir (Mahdavinejad
et al., 2018; Sarker et al., 2021). Makine 6greniminin Onemli bir kismi, veri isleme
operasyonlar1 ve bu operasyonlar sirasinda karsilasilan sorunlar i¢in etkili ¢oziimler sunmaktir.
Makine Ogrenimi, yapay zekanin bir alt kiimesidir. Makine 6grenimi algoritmalari, agikca
programlanmadan otomatik olarak deneyimlerden &grenir ve gelisir (Gupta et al., 2022).
Makine 6grenimi algoritmalari, verileri akillica analiz ederek, ger¢ek diinya sorunlari i¢in akilli,
ger¢ek zamanli miihendislik uygulamalar1 gelistirmenin anahtaridir (Jhaveri et al., 2022).
Makine 6grenimi, Denetimli, Denetimsiz ve Takviyeli Ogrenme olarak kategorize edilir.
Memristor tabanli calismalarda (Serb et al., 2016; Z. Wang et al., 2019; Yao et al., 2020; W.
Zhang et al., 2023), bu 6grenme algoritmalar1 ¢esitli derin 6grenme yontemleriyle birlikte

kullanilmaktadir.

Makine 6greniminde denetimli 6grenmenin islevi, her bir girdi 6gesini ilgili sinif etiketi
degeriyle eslestirmektir. Egitimden sonra, bir bilgisayar bir nesneyi amaclanan c¢ikt1 ile
iligkilendirir, boylece 6grenme siirecini kolaylastirir. Memristor tabanli néromorfik hesaplama
sistemleri, sinir aglarini egitmek i¢in hizli ve enerji agisindan verimli bir yaklagim saglar. Yao
ve meslektaslar1 (Yao et al., 2020) c¢alismalarinda, bir derin 6grenme iizerinde denetimli bir

ogrenme algoritmasi kullanarak hiz ve enerji agisindan verimli durumu agiklamiglardir.

Denetimsiz 6grenme, etiketlenmemis veri nesneleri iizerinde calisir. Bu 6grenme tiirii
genellikle 6zellik ¢ikarma, 6nemli desen ve yapilar tespit etme, ilgili nesneleri eslestirme ve
pratik amaclar i¢in kullanilir (J. Yang et al., 2019). Denetimsiz 6grenme algoritmasinin
kullanildigr bir calismada, metal oksit tabanli memristérlerin kademeli ve ¢ok seviyeli
anahtarlama Ozelliklerinden yararlanilarak olasiliksal bir sinir ag1 tasarlanmistir (Serb et al.,

2016).

Derin sinir ag1 tabanli pekistirmeli 6grenme algoritmalari, insan miidahalesi veya
gbzetimi ihtiyacim azaltarak bilgi ve problem ¢dzme becerilerini otonom olarak edinebilen
makineler olusturma konusunda biiylik umut vaat etmektedir (Z. Wang et al., 2019). Wang ve
arastirma ekibi ¢aligmalarinda, pekistirmeli 6grenme uygulamasini sergilemek i¢in deneysel bir
caligma gercgeklestirmistir. Analog ve dijital bilesenleri birlestiren 6zel tasarlanmis bir

platformda tek bir transistor ve tek bir memristérden (genellikle 1T1R olarak adlandirilir)
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olusan lic katmanli bir ag kullandilar. Bunu basarmak i¢in, benzersiz kurulumlar1 icin

uyarlanmig degistirilmis bir 6grenme algoritmasi kullanmiglardir.

Derin Ogrenmeye Genel Bakis

Derin Ogrenme (Deng, 2014), ¢ok katmanli sinir ag1 yapilar1 kullanilarak verilerdeki iist
diizey soyutlamalari modellemek icin gesitli algoritmalar kullanan bir tiirdiir. ilk olarak 1986
yilinda tanitilmig ve 2000 yilinda sinir aglarina uygulanmigtir (Schmidhuber, 2015). Derin
O0grenme algoritmalari, farkli karmasiklik seviyelerinde veri kiimelerini ¢ikarip analiz etmek
icin birden fazla katman kullanir (LeCun et al., 2015). Derin 6grenme uygulamalari,
bilgisayarlarin basit kavramlardan karmasik kavramlar1 6grenip analiz etmelerine olanak tanir
(Goodfellow et al., 2016). Hiyerarsik 6grenme olarak da bilinen Derin Ogrenme (DL), Yapay
Sinir Ag1'nin (ANN) genel aktivasyonunu doniistiirmek i¢in bir¢ok hesaplama asamasinda ilgili
degerlerin dogru sekilde atanmasiyla iligkilidir (Deng, 2014). Derin mimariler, ¢cok diizeyli
soyutlamalarla (yani dogrusal olmayan islemlerle) karmasik fonksiyonlar1 6grenme isleminde
kullanilir (Turian et al., 2009). Kisacasi, derin 6grenme, denetimli veya denetimsiz; 6zellik
ogrenme, siniflandirma ve desen tanima gibi gorevleri yerine getirmek icin ¢ok diizeyli
dogrusal olmayan hesaplama ve soyutlama kullanan makine 6greniminin bir dalidir (Deng,

2014).

Girig Katmani Gizli Katmanlar Cikis Katmani

- =z|f Dt L

2 | f—>Y1
X2 Z

Zlf—*yz

X3 z

Sekil 9. Derin Sinir Ag1

Yapay Sinir Ag1 (ANN), katmanlar halinde diizenlenmis yapay noronlardan olusan bir
hesaplama sistemidir. Derin Sinir Aglar1 (DNN’ler) glinlimiizde bilgisayarla gérme, konugma
tanima ve robotik gibi bir¢cok yapay zekd ve makine 6grenimi uygulamasi i¢in yaygin olarak
kullanilmaktadir (Sze et al., 2017). Bu sinir aglarmin klasik uygulamalarda gergeklestirdigi
hesaplama islemleri, bellek ve islemci birimleri arasinda biiylik ve siirekli veri hareketleri

gerektirir; bu tiir is yiikleri i¢in 6zel donanim gelistirme ¢alismalari devam etmektedir (Musisi-
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Nkambwe et al., 2021). Sekil 9'da gosterilen ag yapisi, giris verilerini tanimlamak ve
siniflandirmak icin birlikte ¢alisan, her biri farkli agirlik degerlerine sahip, birbiriyle baglantili
diiglim katmanlarindan olugmaktadir. Sekil 9°da gosterilen daireler agin diigiimleri olarak
adlandirilir. Her diigiim belirli girdi degerlerine sahiptir ve onlar1 birbirine baglayan ¢izgilere

agirlik denir.

Derin Sinir Aglar1 (DNNs)

Derin Sinir Aglar1 (DNN'ler) (Oli-Uz-Zaman et al., 2022; J. Zhang & Zong, 2015),
geleneksel algoritmalarla ¢oziilemeyen karmasik problemleri ¢6zmek i¢in kullanilir. Bu aglar,
verilerden karmasik desenleri ve 6zellikleri ¢ikarma yetenegine sahiptir. DNN'ler, goriintii
tanima ve dogal dil isleme gibi ¢esitli gorevlerde de kullanilabilir. DNN, veriyi ileri iletmek
icin ¢ok katmanli dogrusal olmayan gizli diigtimler kullanan bir yapay sinir agidir (Capra et al.,
2020). DNN'ler iizerine yapilan arastirmalar, derin katmanli aglar, filtreler, egitim ve test veri
setlerini igerir. Yapay sinir aglari, katman sayisinin artirilmastyla daha derin hale getirilerek
derin sinir aglari (DNN'ler) olusturulur. Arastirmacilar, ¢aligmalarinda derin inang¢ aglar
(DBN), derin y181n aglar1 (DSN), evrigimli sinir aglar1 (CNN) ve yinelemeli sinir aglar1 (RNN)
gibi ¢esitli DNN sistemleri gelistirmislerdir (J. Zhang & Zong, 2015).

Tablo 1. DNN tipleri (Cheng & An, 2021)

DNNs Temel o6zellikler Temel uygulamalar
Evrisim, havuzlama ve tam baglanti katmanlarinin Gériintii Isleme ve Nesne Tespiti

CNN .
etkisinin azalmasi.

Yapay sinir ag1 yapisinda ileri beslemeli ve geri Dogal Dil Isleme, Kredi Karti
RNN beslemeli sinir ag1 yapilarin kombinasyonu (geri Dolandiriciligt  Tespiti, El  Yazisi
besleme). Tanima.

Dogal dil igleme ve metin igleme:
Gorsellerden otomatik altyazi
olusturma ve ilgili metinlerden kelime

Ozel bir RNN tiirii olan derin 6grenme algoritmalariyla,
LTSM goriintillerden elde edilen bilgiler kullanilarak bir¢ok

siiflandirma ve tahmin islemi gerceklestirilebilir. .
iiretme.

Gan Denetimsiz 6grenme, Generatif Model ve Ayirt Edici  Anlamsal Segmentasyon ve Goriintii
Model olmak tizere iki modeli igerir. Coziinirligi Artirma.

Derin sinir aglart (DNN'ler), goriintii siniflandirma veya konugsma tanima gibi karmasik
makine O6grenimi gorevlerinde olaganiistii sonuglar gdstermistir. DNN makine 6grenimi
teknikleri, bir¢ok uygulamada insan performansina esdeger veya bazi1 durumlarda daha yiiksek
dogruluk seviyelerine ulagsmistir. Uygulamalarda, belirli bir gorev icin elde edilen yliksek
dogrulugun, verideki herhangi bir yapayliktan degil, uygun problem temsilinin

kullanilmasindan kaynaklandigindan emin olmak énemlidir (Leek et al., 2010; Soneson et al.,
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2014). Bu nedenle, modelin 6grendiklerini yorumlamak ve anlamak i¢in gelistirilen yontemler,
giivenilir bir dogrulama siirecinin 6nemli bir par¢asi haline gelmistir (Hansen et al., 2011).
Yorumlanabilirlik, 6zellikle tip veya otonom araclar gibi modelin dogru o6zelliklere bagl
kalarak caligmasinin hayati 6nem tasidigi uygulamalarda ¢ok biiyiik 6neme sahiptir (Bojarski
et al., 2017; Caruana et al., 2015). Tablo 1'de DNN'ler kendine 6zgii 6zellikleri ve uygulama

alanlari ile gosterilmistir.

DNN'ler ve aktivasyon fonksiyonlari

Literatiirde, sigmoid, lojistik, tanh, ReLU ve Leaky-ReLLU gibi aktivasyon fonksiyonlari
bulunmaktadir (Hoon Chung et al., 2016).

X4
Xg
X3
D—)écmtputs
. Transfer Activation
function  function
X, —>

Sekil 10. Aktivasyon fonksiyonunun basitlestirilmis blok diyagrama.

Tablo 2. Aktivasyon fonksiyonlari ve 6zellikleri

Aktivasyon Grafik
Fonksiyonu

Tanim

Sigmoid aktivasyon fonksiyonu, sifir ile

o(x) = bir arasinda bir deger {iretir.

Sigmoid 1+ e™
L Tanh fonksiyonu, -1 ile +1 arasinda
e —e
o(x)=——= degerler iiretir.
Tanh et te s
ReLU aktivasyon fonksiyonunda, giris
max (0, x) o . - o
degeri sifirdan kiigiik oldugunda ¢ikis
ReLU degeri sifirdir, ancak giris degeri sifirdan
W ; biylik oldugunda ¢ikis degeri giris
degeriyle esittir (Nwankpa et al., 2018).
Leaky ReLU fonksiyonu, klasik RelLU
max(0.1x, x) . . .
aktivasyon fonksiyonunun bir
Leakly ReLU varyasyonudur. Bu fonksiyonun ¢ikisi,

negatif giris degerlerine kars1 kiiciik bir
egime sahiptir (J. Xu et al., 2020).
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X >0 Negatif degerlere sahip olmasi, ortalama

fx) = {a(e" - 1): x<0 birim aktivasyonunu sifira yaklastirarak
hesaplama karmasikligint azaltir ve bu
sayede 6grenme hizini artirir (J. Xu et al.,
2020).

ELU

Aktivasyon fonksiyonunun rolii, belirli bir néronun aktive edilip edilmeyecegine karar
vermek gibi ¢esitli aktivasyon fonksiyonlar1 vardir (Sharma et al., 2020). Bu, bir katmandaki
noronlardan gelen ¢ikt1 degerlerinin aktivasyon fonksiyonlar1 kullanilarak sonraki
katmanlardaki ndronlara aktarildigi anlamina gelir. Noronda olusan bir c¢iktinin diger
katmanlara gonderilip gonderilmeyecegine karar verilirken bir esik degerine ihtiya¢ duyulur.
Bunun nedeni nérondaki verinin degerinin (-oo, +o0) araliginda herhangi bir deger alabilmesidir.
Ayrica ndron veri transfer limitini bilmemektedir. Bu nedenle, néron aktivasyonunda karar
verme siirecinde aktivasyon fonksiyonlart kullanilmalidir. Bir aktivasyon fonksiyonu
kullanilmadan, agirliklar ve bias degerleri yalnizca dogrusal bir doniisiim gergeklestirecektir,
bu da dogrusal bir regresyon modeliyle aynidir (Jagtap et al., 2020). Bu dogrusal modelin
coziilmesi kolaydir, ancak karmasik problemlerle ¢ok iyi sonuglar basaramaz. Dogrusal
olmayan aktivasyon fonksiyonu, giris verileri iizerinde dogrusal olmayan bir doniisiim
gerceklestirerek daha karmasik gorevleri 6grenmesine ve gerceklestirmesine olanak tanir
(Jagtap et al., 2020). Basitlestirilmis aktivasyon fonksiyonu yapisi Sekil 10'da gdsterilmektedir
(Haoxiang & S, 2021).

Tablo 2, yapay sinir aglarinda kullanilan c¢esitli aktivasyon fonksiyonlarinin grafiksel

gosterimleri verilmistir.

DNN katman tipleri

Derin 6grenme, yapay zeka disiplininde, bilgisayarli gorii, dogal dil isleme ve konusma
tanima gibi alanlarda ¢i8ir agic1 gelismelere imkan taniyan bir makine 6grenimi alt dalidir. Bu
alandaki basarilar, biiyiik Ol¢lide ¢ok katmanli yapay sinir aglar1 adi verilen karmagik
hesaplamali modellerin gelistirilmesine dayanmaktadir. Her bir sinir ag1 katmani, belirli bir
olusturulan derin mimari, biiyiik veri kiimelerinden karmasik iliskileri ¢ikarabilme yetenegi
kazanir. Cai, Wu ve Zhang tarafindan yapilan c¢alismada vurgulandigi iizere, calismada
incelenen derin 6grenme mimarilerinde kullanilan farkli katman tiirleri, agin genel
performansini1 dogrudan etkileyen optimizasyon siireglerinin merkezinde yer almaktadir (Y. Cai

et al.,, 2019; Y.-H. Jin et al., 2020). Bu baglamda, derin 6grenme modellerinde siklikla
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kullanilan yinelemeli katmanlar, havuzlama katmanlari, tam baglantili katmanlar ve dongiisel
katmanlar gibi farkli katman tiirlerinin 6zellikleri ve islevleri kullanilmaktadir. Bu tezin
kapsaminda uygulamada kullanilan katmanlar ve hipermatreler ayrintili olarak ilerleyen

bolumlerde ele alinacaktir.

Giris katmani

Giris katmani, derin 6grenme modellerinde ham verilerin, modelin i¢ yapisina entegre
edildigi ilk ve kritik bir bilesendir. Bu katman, dis diinyadan elde edilen karmasik ve ¢esitli veri
tiirlerini, modelin anlayabilecegi bir temsile doniistiirme islevini {istlenir. Bilgisayarli gorii
uygulamalarinda oldugu gibi, giris katmani, ham goriintii verilerini standartlastirmak,
giriiltiileri azaltmak ve belirgin Ozellikleri vurgulamak amaciyla 6n isleme adimlar
gerceklestirir. Ornegin, Feng ve arkadaslar1 tarafindan yapilan calisma (Feng et al., 2020) ile
giris katmaninda uygulanan cesitli goriintii doniisiimlerinin, modelin Oznitelik 6grenme
performansin1 6nemli dl¢ilide etkiledigi gdsterilmistir. Bu sayede, model, daha yiiksek seviyeli
soyut kavramlar1 6grenerek, karmasik gorsel verileri daha dogru bir sekilde siniflandirabilir
veya nesneleri tespit edebilir. Dolayisiyla, giris katmani, derin 6grenme modellerinin basarisi

icin temel bir yapi tasidir ve modelin genel performansini dogrudan etkileyen bir faktordiir.

RNN katmani

Tekrarlayan sinir aglar1 (RNN), 0Ozellikle sirali veriyle c¢alisan derin 6grenme
modellerinin temel yapi taglarindan biridir. Bu aglar, giris verilerindeki zaman veya siraya bagl
baglamlar1 anlamak ve islemek amaciyla tasarlanmis yapisal bilesenlerdir. RNN'ler, her bir
zaman adiminda girdileri igleyerek ve dnceki zaman adimindan gelen bilgileri bir "gizli durum"
aracilifiyla koruyarak, verilerdeki ardisik iligkileri 6grenir. Bu mekanizma, metin, ses ve zaman
serileri gibi sirali verilerde 6nemli olan baglamsal bilgilerin modellenmesini saglar. RNN'in
temel caligma prensibi, bir agirlik matrisi aracilifiyla giris vektorleri ve onceki gizli durumun
birlesik bir doniisiimiinii gerceklestirmek ve bu doniisiime dogrusal olmayan bir aktivasyon
fonksiyonu uygulamaktir. Bu siireg, her bir zaman adiminda tekrarlanarak verideki uzun vadeli
ve kisa vadeli bagimliliklarin yakalanmasinit miimkiin kilar. Ancak, RNN'lerin vanishing
gradient (kaybolan gradyan) problemi nedeniyle uzun vadeli bagimliliklar1 6grenmekte zorluk
yasayabilecegi bilinmektedir. Bu sorunu ¢ézmek i¢in, LSTM (Uzun Kisa Siireli Bellek) ve
GRU (Gated Recurrent Unit) gibi gelismis RNN tiirleri gelistirilmistir. Bu tiirler, veri i¢inde
hangi bilgilerin tutulacagi veya unutulacagina karar veren kapi1 mekanizmalarim1 kullanarak

performansi artirir (Hochreiter & Schmidhuber, 1997). Tekrarlayan sinir aglari, derin 6grenme
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modellerinin siral1 verileri anlamasinda ve sirali veri gerektiren gérevlerde yiiksek performans
gostermesinde kritik bir rol oynar. RNN'ler, bu baglamsal iligkileri yakalayarak makine gevirisi,

duygu analizi ve ses tanima gibi uygulamalarda derin 6grenmenin basarisini artirmaktadir.

Havuzlama

Havuzlama katmanlari, derin 6grenme tabanli bilgisayarli gorme sistemlerinde,
yinelemeli katmanlarla birlikte kullanilan temel bir bilesendir. Bu katmanlar, RNN islemi
sonucu elde edilen 6znitelik haritalarinin boyutunu diistirmek amaciyla alt 6rnekleme iglemi
uygularlar. Alt 6rnekleme, hesaplama maliyetini azaltarak modelin daha verimli ¢alismasini
saglar, asir1 6grenme riskini diistiriir ve ¢eviri degismezligi artirarak modelin farkli boyutlardaki
veya hafifce deforme olmus girdilere kars1 daha dayanikli olmasii saglar. Yaygin olarak
kullanilan havuzlama yontemleri arasinda, bir bolge icerisindeki en biiyiikk degerin segildigi
maksimum havuzlama ve bolge igerisindeki degerlerin ortalamasinin alindigi ortalama
havuzlama bulunmaktadir. Yapilan bir calisma (S. Li et al., 2019) ile havuzlama katmanlarinin
derin 6grenme modellerinin basarisi tizerindeki etkileri detayli bir sekilde incelenmistir . Bu
caligmada, farkli havuzlama yontemlerinin modelin performansi, 6grenme siiresi ve genelleme

yetenegi iizerindeki etkileri karsilastirilmistir.

Tam baglantili katman

Tam baglantili katmanlar (yogun katmanlar olarak da bilinir), derin 6grenme
modellerinde, verideki karmasik iligkileri ve soyut kavramlart 6grenmek icin kullanilan temel
bir bilesendir. Bu katmanlarda, bir 6nceki katmandaki her néron, sonraki katmandaki her
ndrona tek tek baglanir. Bu sayede, ag boyunca bilgi akist maksimum diizeyde saglanir ve
model, verideki global bilgiyi daha etkili bir sekilde yakalar. Tam baglantili katmanlar,
genellikle derin 6grenme modellerinin ¢ikis katmani olarak kullanilir ve smiflandirma veya
regresyon gibi ¢esitli gorevlerde son tahmini yaparlar. Siniflandirma gorevlerinde, softmax gibi
bir aktivasyon fonksiyonu kullanarak farkli simiflar i¢in olasilik dagilimlari elde edilirken,
regresyon gorevlerinde ise dogrusal bir aktivasyon fonksiyonu tercih edilir. Yapilan bir ¢ok
caligma (Prihatno et al., 2021; Q. Wang et al., 2020) ile tam baglantili katmanlarin derin
ogrenme modellerindeki 6nemini ve ¢esitli uygulamalarini detayli bir sekilde incelemistir. Bu
caligmalarda, tam baglantili katmanlarin farkli mimarilerdeki ve hiperparametre ayarlarindaki

etkileri incelenerek, model performansini optimize etmek i¢in dnemli bulgular elde edilmistir.
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Birakma katmani

Birakma katmani, derin 6grenme modellerinde asiri uyum sorununu hafifletmek i¢in
siklikla kullanilan bir diizenleme teknigidir. Asir1 uyum, modelin egitim verilerine asiri
derecede uyum saglamasi ve sonu¢ olarak yeni, goriilmemis veriler {lizerinde genelleme
yetenegini kaybetmesi durumudur. Birakma teknigi, bu sorunu ¢ézmek amaciyla, egitim
stirecinde sinir agimin gizli katmanlarindaki néronlarin bir kismini rastgele devre dis1 birakarak
modelin karmagikligin1 azaltir. Bu sayede model, egitim verilerindeki rastlantisal giiriiltiilere
kars1 daha dayanikli hale gelir ve genelleme performansi artar. Yapilan bir calisma (Choe &
Shim, 2019) ile birakma tekniginin, 6zellikle biliylik ve karmasik sinir aglarinda asir1 uyumu
onlemedeki etkinligi vurgulanmistir. Birakma islemi, her bir egitim yinelemesinde farkli bir alt
kiimedeki noronlarin devre dis1 birakilmasi seklinde gergeklestirilir. Bu sayede, model, her bir
egitim adiminda farkli bir yapiya sahip olur ve bu da modelin daha genelleyici 6zelliklere sahip
olmasini saglar. Sonu¢ olarak, birakma katmani, derin 6grenme modellerinin basarisi igin

onemli bir aragtir ve modelin genelleme yetenegini 6nemli dlciide artirir.

Diizlestirme katmani

Diizlestirme katmani, derin 6grenme mimarilerinde, 6zellikle evrisimli sinir aglarinda,
cok boyutlu girdi verilerini tek boyutlu bir vektor temsiline doniistiirmek amaciyla kullanilan
bir islemdir. Bu islem, yiiksek boyutlu verilerin, tamamen baglantili katmanlar gibi daha basit
yapidaki katmanlara uygulanabilmesi i¢in gereklidir. Evrigimli katmanlar tarafindan elde edilen
ozellik haritalar1 gibi ¢ok boyutlu veriler, diizlestirme islemi sayesinde tek boyutlu bir vektor
haline getirilerek, sonraki katmanlara daha uygun bir formatta sunulur. Bu sayede, modelin
daha yiiksek seviyedeki soyut kavramlari 6grenmesi ve karmasik kararlar almasi kolaylasir.
Anand ve arkadaslan tarafindan yapilan calismada, diizlestirme katmaninin, derin 6grenme
modellerinin basarisi iizerindeki etkisi ve farklt mimarilerdeki kullanimi detayli bir sekilde
incelenmistir (Anand et al., 2022). Diizlestirme islemi, herhangi bir parametre 6grenimi
gerektirmeyen basit bir islem olmasina ragmen, modelin genel performansi lizerinde 6nemli bir
etkiye sahip olabilir. Ozellikle, diizlestirme islemi &ncesinde uygulanan normalizasyon ve
beyazlatma gibi 6n isleme teknikleri, modelin 6grenme hizimi artirabilir ve genelleme

yetenegini gli¢lendirebilir.
DNN modellerinin hiperparametreleri ve uyarlanmalar:

Derin 6grenme modellerinin tasarimi, belirli bir problem i¢in en uygun sinir agi

mimarisinin belirlenmesi siirecini ifade eder. Bu siirecte, modelin yapisal bilesenleri olan
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katman sayisi, katman tiirleri ve bu katmanlarin birbirine nasil baglanacagi gibi kritik kararlar
verilir. Modelin performansini dogrudan etkileyen hiperparametreler ise, modelin 6grenme
siirecini kontrol eden ayarlanabilir parametrelerdir. Ogrenme orani, kiime boyutlari, diizenleme
parametreleri ve optimizasyon algoritmasi gibi hiperparametreler, modelin genelleme yetenegi,
egitim siiresi ve yakinsama hizi lizerinde 6nemli etkilere sahiptir. Bu parametrelerin uygun
sekilde ayarlanmasi, modelin istenen performansa ulasabilmesi i¢in biiyiikk 6nem tasir. Derin
o0grenme modellerinin tasariminda hem teorik bilgi hem de deneysel ¢aligmalarin birlesimiyle
elde edilen bilgilerden yararlanilir. Modelin karmasikligi, veri kiimesinin 6zellikleri, hesaplama
kaynaklar1 ve ¢Oziilmek istenen problemin dogasi gibi faktorler, tasarim siirecinde dikkate
alinmas1 gereken onemli unsurlardir. Tasarlanan bir DNN modelinde bir¢ok hiperparametre
bulunabilir. Bu parametrelerden en onemlileri; hedef boyutu, parti boyutu, aktivasyon

fonksiyonu, optimizasyon fonksiyonu, egitim tur sayisi olarak siralanabilir.

Bir derin 6grenme modelinin basarisi, sadece mimarisiyle degil, ayni zamanda
hiperparametrelerinin de dogru secimiyle belirlenir. Hiperparametreler, modelin 6grenme
stirecini kontrol eden ve modelin genelleme yetenegini dogrudan etkileyen ayarlanabilir
degerlerdir. Bu nedenle, en uygun hiperparametreleri belirlemek, model tasariminin kritik bir
asamasidir. Hiperparametre optimizasyonu, genellikle deneysel bir siirectir ve arastirmacilarin
domain bilgisine, sezgisine ve mevcut yontemlere dayanir. Son zamanlarda, bu siireci daha
verimli hale getirmek i¢in otomatik hiperparametre arama yoOntemleri popiilerlik
kazanmaktadir. Asagida, derin 6grenme modellerinde sik¢a kullanilan hiperparametreler ve

bunlarin etkileri detayli olarak incelenecektir.

Hedef boyut

Hedef boyut parametresi, goriintli isleme gorevlerinde, girdi goriintiilerinin
¢cozlnlirliiglinti diistirerek hesaplama maliyetini azaltmay1 amaglayan bir tekniktir. Bu yontem,
orijinal goriintiide baz1 bilgilerin kaybina yol agsa da modelin egitim ve tahmin siireclerini
hizlandirir. Ancak, asir1 derecede ¢oziiniirliik diisiirmek, modelin 6nemli gorsel ozelliklerini
kacirmasimma ve performansini diisiirmesine neden olabilir. Bu nedenle, hedef boyut

parametresinin se¢imi, modelin dogrulugu ve hizinin bir denge noktasi olarak belirlenmelidir.

Batch boyutu

Derin 6grenme algoritmalarinda, tiim egitim verisi tizerindeki hesaplamalarin tek seferde
gergeklestirilmesi, Ozellikle biiyiik veri setleri i¢cin hesaplama maliyetini 6nemli Olgiide

artirabilir. Bu nedenle, egitim verisi daha kii¢iik alt kiimelere boliinerek islenir. Bu alt kiimelere
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"parti" veya "mini-batch" denir. Parti boyutu ise, her bir partide bulunan 6rnek sayisini belirten
bir hiperparametredir. Parti boyutunun se¢imi, modelin yakinsama hizini, genelleme
performansini ve bellek kullanimini etkileyen onemli bir faktordiir. Kiigiik parti boyutlari,
modelin daha sik giincellenmesini saglayarak daha hizli 6grenmeye olanak tanirken, biiyiik

parti boyutlar1 ise daha kararli bir 6grenme siireci sunar.

Aktivasyon fonksiyonu

Derin 6grenme modellerinde, aktivasyon fonksiyonlari, dogrusal bir doniisiimiin ardindan
elde edilen ¢iktiyr dogrusal olmayan bir ¢iktiya doniistiirerek modelin karmasik iligkileri
O0grenme yetenegini artirir. Bu sayede model, gercek diinyadaki verilerin dogrusal olmayan
yapisini daha iyi temsil edebilir. Aktivasyon fonksiyonlari, ayn1 zamanda, geri yayilim
algoritmas1 ile modelin parametrelerinin giincellenmesi i¢in gerekli olan gradyan
hesaplamalarinda da 6nemli bir rol oynar. Sigmoid, tanh ve ReLU gibi farkli aktivasyon
fonksiyonlar1 bulunmaktadir. ReLU, genellikle tercih edilen bir fonksiyon olup, daha hizli

o0grenme ve daha az hesaplama maliyeti gibi avantajlara sahiptir (Gong et al., 2023).
Optimizasyon fonksiyonu

Derin 6grenme modellerinin egitimi, 6ziinde, yliksek boyutlu bir parametre uzayinda bir
optimizasyon problemidir (Mai et al., 2023). Modelin parametrelerini, belirli bir maliyet
fonksiyonunu minimize edecek sekilde ayarlamak amaciyla gesitli optimizasyon algoritmalari
kullanilir. Bu algoritmalar, genellikle stokastik gradyan inisi (SGD) yontemine dayali olup,
model parametrelerini, maliyet fonksiyonunun gradyantinin zit yoniinde giincelleyerek iteratif

bir sekilde ilerler.

Stokastik gradyan inisin temel bir varyasyonu olan SGD, her iterasyonda egitim verisinin
kiiclik bir alt kiimesi (mini-batch) lizerinde hesaplanan gradyant kullanilarak parametreleri
giinceller. Bu sayede, hesaplama maliyeti azaltilir ve model daha hizli 6grenir. Ancak, SGD,
O0grenme oraninin uygun sekilde ayarlanmasini ve yerel minimumlara sikigsma riskini igerir. Bu
sorunlart agmak icin, Adagrad, Adadelta, Adam, Adamax gibi adaptif Ogrenme orani
algoritmalar1 gelistirilmistir. Bu algoritmalar, her bir parametre i¢in farkli 6grenme oranlari
kullanarak, seyrek parametrelerin daha hizli 6grenmesini ve sik goriilen parametrelerin daha

yavas 0grenmesini saglar.

Farkli optimizasyon algoritmalarinin performansi, veri kiimesi, model mimarisi ve

hiperparametre ayarlarina gore degisebilir. Ornegin, Adagrad, seyrek veri setlerinde iyi
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performans gosterirken, Adam, daha genel amacli bir optimizasyon algoritmasi olarak kabul
edilir. Adamax ise, Adam'in bir varyasyonu olup, daha kararli bir 6grenme siireci sunar. Sec¢ilen
optimizasyon algoritmasi, modelin yakinsama hizini, genelleme performansini ve hesaplama
maliyetini dogrudan etkiler. Bu nedenle, derin 6§renme uygulamalarinda, farkli optimizasyon
algoritmalarin1 deneyerek en uygun olanini segmek dnemlidir. Optimizasyon yontemleri bu tez

caligmasinin 6nemli bir parcasi olup ileride detayl bigimde ele alinacaktir.

Epoch sayisi

Egitim siirecinde, tiim egitim verisi tizerinde bir gecis yapilmasi "epoch" olarak adlandirilir.
Her epoch'ta, egitim verisi belirli biiyiikliikteki pargalara (batch veya mini-batch) ayrilir ve
model bu pargalardaki veriler iizerinde sirayla egitilir. Her batch'ten sonra, modelin agirliklari,
hesaplanan gradyantlar dogrultusunda giincellenir. Bu iteratif siire¢, modelin parametrelerinin

optimum degerlere yakinsamasini saglar.

Epoch sayis1, modelin ne kadar siire egitildigini belirleyen dnemli bir hiperparametredir.
Yetersiz sayida epoch ile model tam olarak 6grenmeyebilir ve diisiik performans gosterebilir.
Ancak, asir1 sayida epoch ise asir1 6grenmeye (overfitting) neden olabilir, yani model egitim

verisine agir1 uyum saglayarak yeni, goriilmemis verilere genelleme yetenegini kaybedebilir.

Epoch sayisi, derin 6grenme modellerinin egitiminde kritik bir rol oynar. Hem yetersiz
hem de asir1 sayida epoch, modelin performansini olumsuz etkileyebilir. Bu nedenle, optimum
epoch sayisini belirlemek i¢in dikkatli bir hiperparametre ayarlamasi yapmak gerekmektedir.
Erken durdurma gibi teknikler, bu optimizasyon siirecinde 6nemli bir aragtir. DNN’deki temel

yapislar Sekil 11°de gosterilmistir.
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Sekil 11. DNN metodolojisinin akis diyagrami.

Memristor tabanhh DNN calismalar:

Son yillarda, elektronik, hesaplama ve iletisim teknolojilerindeki hizli gelismeler, derin
ogrenme sistemlerinin gelistirilmesi sayesinde veri yogun hesaplamay1 daha erisilebilir ve
dogru hale getirmistir. Bu durum, daha biiytik, daha enerji verimli ve daha hizli sinir aglarinin
olusumuna yol agcmistir (Josh & Gibson, 2017). Bu gelismeler, yeni fiziksel ekipmanlarin ve
bilgisayar teknolojilerinin gelistirilmesini tesvik etmis ve yapay zekanin karmasik sorunlari
¢ozmek icin kullanilabilmesini miimkiin kilmistir (Cheng & An, 2021). Ayrica, bu teknoloji,
verilerdeki desenleri tanimlamak ve tahminler yapmak i¢in kullanilabilecek daha gelismis

makine 6grenmesi algoritmalarinin gelistirilmesini saglamistir (Schuman et al., 2017).

Memristor, entegre ¢iplerde biiyiik 6lgekte sinir aglar1 olusturmayr miimkiin kilan yeni

bir donanim tiiriidiir (Cheng & An, 2021). Geleneksel CMOS lojik devrelere kiyasla, memristor
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devrelerini yapay sinir ag1 sistemlerini simiile etmek i¢in kullanmak, daha kii¢iik alan, daha
diistik enerji tiikketimi ve sensor simiilasyon hesaplamalari i¢in benzer yetenekler gibi avantajlar
sunmaktadir. Ancak, memristorlerin DNN uygulamalarinda kullanimina iliskin baz1 zorluklar
da bulunmaktadir; donanim degiskenligi, bu alandaki teknolojinin olgunlasmamis olmasi ve
memristorlerin dayanikliligi gibi sorunlar yapay sinir aglarinin memristorlerle gelistirilmesini
engellemekte ve arastirmacilara asilmasi gereken zorluklar sunmaktadir. Literatiirde bu
problemlerin ¢éziilmesiyle, memristor tabanli sistemlerin, giintimiizde kullanilan von Neumann
mimarisine dayali klasik sistemlere kiyasla enerji ve hiz agisindan ¢ok daha verimli olacagi
belirtilmektedir (Ye et al., 2022). Bu yeni alanin sundugu avantajlar ve mevcut sistemin

tikaniklig1 nedeniyle, arastirmacilarin yogun olarak ¢alistig1 bir alana donlismeye baglamistir.

Li ve arkadaslari, ¢calismalarinda memristor tabanli ¢ok katmanli sinir aglarini kullanarak
yaklasik hesaplamalar icin enerji verimli bir uygulama gerceklestirmistir (B. Li et al., 2013).
Yaklasik hesaplama siirecini hizlandirmak i¢in programlanabilir bir memristore once Yaklagik
Hesaplama Birimi (Memristor ACU) 6gretilmistir (B. Li et al., 2013). Ardindan, Memristor
ACU'nun iizerinde Olgeklenebilir bir memristdr tabanli yaklasik hesaplama ¢ergevesi
onerilmistir. Bu sistemde uygulanan islevlerdeki maksimum hata oran1 %1,87 olup, enerji

tiikketimi benzerlerine gore 22 kat daha verimlidir.

Yuan ve arkadaslari, calismalarinda (Yuan ve digerleri, 2019) memristor ¢capraz ¢cubuk
dizisini von Neumann mimarisinin zorluklarin1 azaltmak ve derin sinir aglarinin (DNN'ler)
disiik giic tiiketimiyle hizlandirilmasimi saglamak icin tesvik edici bir ¢oziim olarak
kullanmiglardir. Memristor tabanli agirlik budama ve agirlik quantizasyonunu ayri ayri
inceleyerek, orijinal DNN modeline kiyasla alan ve enerji tasarrufu sagladiklarini
gostermislerdir. Yiiksek dogruluk, diistik giic ve kiigiik bir alan elde etmek amaciyla ¢apraz
cubuk bloklarinin budanmasi, iletkenlik araligi ve agirhik degerleri ile gergek cihazlar
arasindaki uyumsuzluk gibi donanim simirlamalarimi da goz Oniinde bulundurmuslardir.
Deneysel sonuglar, 6nerilen yontemin VGG-16 aginda %?29,81 oraninda agirlik sikistirma ile
giic ve alan tiikketiminde sirasiyla %98,38 ve %98,29 azalma sagladigini ve orijinal DNN

modellerine kiyasla yalnizca %0,5 dogruluk kaybina yol agtigin1 gostermektedir.

Derin sinir aglarmin popiilaritesi, yapay zeka ve derin 6grenme gibi yogun veri isleme
uygulamalarinda artmaktadir (Greenberg-Toledo et al., 2019). Ancak, mevcut platformlarin
DNN'ler i¢in verimli olmadig1 bilinmektedir. Bu sorunlarin iistesinden gelmek amaciyla, DNN
tabanli uygulamalara yonelik 6zel donanim tasarim calismalar yiiriitiilmektedir. Bu durumdan
yola ¢ikan Greenberg-Toledo ve arkadaslari, ¢alismalarinda yapay sinir aglariin temel unsuru
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olan sinapsi olusturmak i¢in memristorleri kullanmislardir. Calismada, DNN'lerde yaygin
olarak kullanilan momentum optimizasyon algoritmasin1 destekleyen bir memristor tabanli
sinaps Onerilmistir. Simiilasyonlarda, 6nerilen DNN egitim ¢ézlimlerinin performansi ortalama
886 kat hizlandirdig1 ve enerji tiiketimini ortalama yedi kat azalttigi gozlemlenmistir. Ayrica,

bir GPU platformunda egitim kadar dogru oldugu da gériilmiistiir.

Derin sinir ag1 modellerinin memristér tabanli ¢apraz c¢ubuklar gibi ndéromorfik
hizlandiricilarla kullanilmasi durumunda, kullanilan donanim birimlerinin giivenilirligini
saglamak oncelikli konulardan biridir (Du et al., 2015). Uretim siirecindeki hatalar ve
degiskenlikler, ¢apraz ¢ubuk baglantilarinda donanim arizalarina yol agabilir (C. Y. Chen &
Chakrabarty, 2021). Chen ve Chakrabarty, calismalarinda, memristor ¢apraz c¢ubuklarinda
yanlis siniflamaya neden olabilecek Kritik Hatalar1 (CF’ler) belirlemek i¢in makine 6grenimi
tabanli verimli bir teknik gelistirmislerdir. Bu 6nemlidir ¢linkii memristor tabanli DNN'ler
dogal olarak hata toleranslidir ve CF'leri dogru bir sekilde tespit etmek, hata toleransi
alternatiflerinin bu alanlara odaklanmasina olanak tanir (C. Y. Chen & Chakrabarty, 2021). Bu
teknik, rastgele hata enjeksiyonu kullanarak 9%98'in iizerinde dogrulukla ve 20 kat daha hizli
bir sekilde kritik hatalar1 tespit edebilmektedir. Bu ¢alismada, memristor ¢apraz ¢ubuklarinda
CF'lerle iligkili agirliklar1 kaldiran bir hata tolerans1 yontemi onerilmektedir. CIFAR-10 veri
kiimesi ve diger derin sinir aglar ile yapilan testlerde, onerilen budama tekniginin baglanti
alanlarinin %95'ine kadarin kaldirdigr ve DNN ¢ikarim dogrulugunda %1'den az bir diisiisle
sonuglandig1 gosterilmistir. Bu, genel CF sayisindaki azalma sayesinde hata toleransi i¢in

gereken fiziksel donanim yedekliliginde %99'luk bir azalma saglamistir.

Yapay zeka, bulut bilisim ve Nesnelerin Interneti (IoT) uygulamalarinin hizla
biiylimesiyle, derin 6grenme uygulamalarinda hesaplama i¢in memristdr cihazlar ve ilgili
donanim sistemlerinin gelistirilmesi, diisiik gii¢ tiiketimi ve daha az ¢ip alaniyla kapsamli veri
hesaplamalar1 gerektirmektedir. Derin 6grenme modelleri, diisiik gii¢ tiikketimi ile ¢calisabilmek
icin biiylik miktarda veri islemeyi gerektirir. Yapilan bir calisma (KI & R, 2022) ile CIFAR-10
veri kiimesi i¢in memristor tabanli bir nesne algilama sistemi Onerilmis ve bu sistemle %85

dogruluk oranina ulagmay1 basarmislardir.

Memristorler, bellek birimleri lizerinde matris-vektor carpimlarint (MVM) hesaplamayi
miimkiin kilar (Kern et al., 2022). Memristorler, derin sinir ag1 hizlandiricilarinin enerji
verimliligini O6nemli Olclide artirma potansiyeline sahiptir. Ancak, memristorlerdeki
hesaplamalar donanim uyumsuzluk sorunlarina ve ¢esitli giiriiltii kaynaklarina maruz kalmakta
olup, bu durum sistem performansini olumsuz etkileyebilir. Kern ve arkadaslar, yaptiklart
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caligma (Kern et al., 2022) ile matris-vektor ¢arpim1 (MVM) i¢in memristdr capraz ¢ubuklarinin
kullanildigr durumda derin sinir aglarinin (DNN) ortalama kare hata (MSE) degerine yonelik
teorik bir analiz gerceklestirmislerdir. Bu ¢alismada, hem DNN modelinin boyutunun
kiigiiltiilmesi ihtiyacindan kaynaklanan kuantizasyon giiriiltiisiinii hem de bellek degerini
programlarken ortaya c¢ikan degiskenlik nedeniyle olusan programlama giiriiltiisiinii dikkate
alan yeni bir yontem onerilmistir. Onerilen ydntemin, Monte-Carlo simiilasyonuna kiyasla
yaklasik iki kat daha hizli oldugu gézlemlenmistir (Kern et al., 2022). Bu arastirmanin sonucu,
belirli bir gii¢ smir1 ve minimum hata ile uyumlu olacak sekilde uygulama parametrelerini

optimize etmeyi miimkiin kilmaktadir.

Memristor tabanh yapay noron ve sinaps

Memristor tabanli néromorfik hesaplama sistemleri, Sinir Ag1 (NN) algoritmalarina
enerji agisindan daha verimli bir alternatif sunmaktadir (Ren et al., 2022). Dogal analog
direncler olan memristorler, hesaplamay1 bellekte gerceklestirerek von Neumann mimarisine
bir alternatif sunmaktadir (Jo et al., 2010). Memristorlerin biiylik 6l¢ekli uygulamalarinda
optimum performansi saglamak igin, tasarimi tahmin etmek ve optimize etmek amaciyla

sistemin simiilasyonlar1 yapilmalidir.

Noromorfik hesaplama, biyolojik olarak ilham alarak ve insan beyninin ¢aligma seklini
modelleyerek zorlu yapay zeka ve makine 6grenimi problemlerini ¢dzmek i¢in kullanilabilecek
yiiksek seviyeli baglanti modellerine sahip néronlar ve sinapslar olusturmay1 amaglamaktadir
(Ren et al., 2022). Yapay Sinir Ag1 algoritmalari, insan beyninin néron ag1 yapisinin ¢alisma
seklini taklit ederek hizli hesaplamalar yapabilmektedir (Mead, 1990). Paralel hesaplamada,
sinir aglarindaki islemleri hizlandirmak i¢in bir agirlik matrisi kullanilir. Yapay zeka
uygulamalari i¢in tasarlanan ¢iplerin biiylik ¢ogunlugu hizlandirict olsa da bunlar ndromorfik
islemciler degildir (Du et al., 2015). Yapay zekd ve derin 6grenme alanindaki biyiik
sirketlerden bazilar1 Google, Microsoft, IBM, Amazon, Apple, Intel, NVIDIA ve
Qualcomm'dur. Yapay zeka alaninda ¢alisan bu biiyiik sirketler, Grafik Isleme Birimi'nden
(GPU) yararlanarak matris ¢arpimi gibi islemler i¢in hizlandiricilar, 6riintii tanima gibi dnemli
uygulamalar i¢in Alan Programlanabilir Kapt Dizileri (FPGA) veya belirli gorevler icin
Uygulamaya Ozel Entegre Devreler (ASIC) gibi dijital entegre devreler gelistirmeye
caligmaktadir (Capra et al., 2020). Bu c¢alismalarla birlikte, yiiksek ¢ip fiyatlari, donanim
rekabeti, hesaplama hizi, diisiik giic tiiketimi, kiigiik ayak izi boyutu ve diisiik {iretim maliyetine
odaklanmaktadirlar (Schuman et al., 2017). Hizlandiricilarin 6nemli ve temel islevlerinden biri

matris carpimidir (Sung et al., 2018). Google, makine 6grenimi gdrevlerini hizlandirmak i¢in
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Tensor Isleme Birimi (TPU) ad1 verilen kendi yapay zeka ¢ipini gelistirmektedir (Jouppi et al.,
2017). Cok hizli veri isleme ve hesaplamaya sahip olan TPU'da ana hesaplama kismi ayni
zamanda bir matris ¢arpma birimidir (Y. E. Wang et al., 2019). Noromorfik hesaplama, insan
beyninin ¢alisma seklini taklit ettigi i¢in ¢ok katmanli noronal aglarin her bir pargasinin
modellenmesi ve derin Ogrenme algoritmalarinin donanim birimine uygulanmasi ile
gerceklestirilmektedir (Schuman et al., 2017). Noromorfik hesaplama modelini temel alan
CMOS teknolojileri ile iiretilen yapay sinir islemcileri bulunmaktadir. Bu islemciler biyolojik
noronlarin davraniglarini taklit edecek sekilde tasarlanmistir ve yapay sinir aglar1 olusturmak
icin kullanilabilmektedir. Ancak gelistirilen CMOS tabanli sinir aginin verimli olabilmesi i¢in
memristorlerin  bir ¢ip {lizerinde denetimli egitim ve Ogrenme i¢in kullanilabilmesi

gerekmektedir (Sung et al., 2018).

Memristif cihazlar, ¢oklu direng seviyelerini depolama yetenekleri nedeniyle matris
carpma birimleri i¢in ¢ok uygundur (Y. E. Wang et al., 2019). Memristorler, verileri depolamak
ve islemek i¢in kullanilabilen bir tiir ugucu olmayan bellek cihazidir. Memristorler, diisiik gii¢
tilkketimi ve yiiksek yogunluga sahip olmalar1 nedeniyle néromorfik donanim ig¢in caziptir
(Hung et al., 2021). Oriintiileri tanimak, goriintiileri islemek ve diger makine Ogrenimi
gorevlerini yerine getirmek i¢in yapay sinir aglart olusturmak i¢in kullanilabilirler. Ayrica,
sinyal isleme ve kontrol uygulamalari i¢in analog devreler olusturmak icin de kullanilabilirler.
Memristorler, ¢ip {lizerinde hesaplama igin noéromorfik donanim olusturmak igin de
kullanilabilir ve verilerin daha hizli ve daha verimli islenmesine olanak tamir. Ornegin
memristor, esik anahtarlama 6grenimi (Yakopcic et al., 2011) kullanilarak olusturulan tek bir
basak ve salinim hareketine sahiptir (Pickett et al., 2013). Memristif sinaptik agirlik, hafiza
degistirme 6zelliginden kaynaklanmaktadir (Woo et al., 2016; J. J. Zhang et al., 2013; W. Zhang
et al., 2023). Ayrica memristif mantik (Maan et al., 2017) ve memristor tabanli tanima ¢ipi de

bulunmaktadir.

Memristor tabanli donanim iizerine yapilan ¢aligmalarda, 6zellikle sinaptik agirliklarda,
veri sagilmasi ve giivenilirlik problemlerini ¢6zmek i¢in yogun bir ¢aba vardir (Sung et al.,
2018). Bununla birlikte, bu sorunlar1 ¢ozmek igin ¢esitli yontemler gelistirilmektedir. Bunlar
arasinda memristorleri kontrol etmek icin kullanilan kontrol sinyallerinin diizenlenmesi,
memristorlerin  ¢alisma ortaminin kontrol edilmesi, memristorlerin kalibre edilmesi ve
memristorler lizerinde ¢alisan algoritmalarin gelistirilmesi yer almaktadir (Rajendran et al.,
2019). Bu caligmalarin sonuglari, memristor tabanli donanimin ticari bir {irtin haline gelmesi

icin gereken giivenilirlik ve veri sagilim1 6niindeki engellerin kaldirilmasina yardimci olacaktir.
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Bu, verilerin kendisinin rastgelelik veya diger faktorlere atfedilebilecek bir dereceye kadar
degiskenlige sahip olacagi anlamina gelir. Bu degiskenlik, zaman iginde farkli modeller veya
egilimler gosterebileceginden anahtarlama verilerinde gériilebilir (Sung et al., 2018). Ornegin,
olasilik teorisi kapsaminda Poisson dagilimi ((Langston et al., 2011), belirli bir ortalama deger
etrafinda rastgele meydana gelen olaylarin sayisinin dagilimini temsil eder. Bu dagilim,
rastgeleligin kontrol edilemedigi anahtarlama siireci sirasinda iletken yollarin olusumu i¢in de
gegerlidir (Yoo et al.,, 2008). Bu engellerin iistesinden gelmek i¢in arastirmacilar gesitli
coziimler Onermislerdir. Yaklagimlardan biri memristorler ile direngler, kapasitorler ve
transistorler gibi diger bilesenleri bir arada kullanarak hibrit bir devre olusturmaktir (Borghetti
et al., 2009). Bu hibrit devre, verileri tek basina bir memristorden daha giivenilir bir sekilde
depolamak ve islemek icin kullanilabilir. Ayrica, aragtirmacilar memristdr tabanli sistemlerin
giivenilirligini artirmak i¢in makine 6grenimi algoritmalarinin kullanilmasini 6nermislerdir
(Ren et al., 2022). Bu algoritmalar, memristdrde depolanan verilerdeki hatalari1 tanimlamak ve
diizeltmek i¢in kullanilabilir ve daha giivenilir bir ¢calisma saglar. Son olarak, aragtirmacilar
memristdr tabanli sistemlerin giivenilirligini artirmak igin hata diizeltme kodlarinin
kullanilmasini1 6nermistir (Ren et al., 2022; Schuman et al., 2017). Bu kodlar, memristorde
depolanan verilerdeki hatalar1 tespit etmek ve diizeltmek icin kullanilabilir ve daha gilivenilir
bir ¢alisma saglar (Z. Wang et al., 2018). Yapilan ¢aligmalar sonucunda giivenilir bir kalici
dogrusal ¢ok seviyeli memristor heniiz ortaya ¢ikarilamamistir. Bununla birlikte, bir memristor
koleksiyonu, ¢ok seviyeli verilerin varyansini azaltmaya yardimci olabilecek c¢oklu bit veya

coklu seviyeli bir sinaptik agirlik uygulamak i¢in hala ¢caligmaktadir.

Memristor noronlar

Giliniimlizde yapay ndéromorfik sistemler, insan beynini daha iyi anlamamizda ve
norolojik siirecleri taklit eden bilgi islem sistemlerinin gelistirilmesinde onemli bir rol
oynamaktadir. Biyolojik sistemlerde gézlemlenen uzamsal ve gii¢ verimliligine ulagsmak igin,
sinapslarin nano Olgekli analoglar1 olarak elektronik ve faz deg§isimli memristif cihazlar
kesfedilmistir (Tuma et al., 2016). Arastirmalar, biyolojik néronlarin davranisini taklit eden
yapay noronlarin, kalkojenit bazli faz degisim malzemeleri kullanilarak insa edilebilecegini
gostermistir. Bu yapay noronlar, nano 6lgekli faz degistirme cihazlarinin faz konfigiirasyonu

ile temsil edilmektedir (Tuma et al., 2016).

Bir sinir ag1 modelinin genel yapisi, agin hangi bilesenlerden olugtugunu, bu bilesenlerin
calisma prensibini ve bu bilesenler arasindaki etkilesimi agiklar (Y. Shi et al., 2019) Ornegin,
Sekil 9'da gosterilen yapay sinir ag1 modelinin ortak bilesenleri, Sekil 12'de gosterilen biyolojik
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sinir ag1 modelinin yapisindan esinlenerek noronlar ve sinapslardir. Ayrica, bir sinir ag1 modeli
tasarlanirken, ag1 olusturan her bir bilesen i¢in modeller tanimlanmali ve tanimlanan modele
gore bilesenin nasil ¢alisacagi belirlenmeli ve yonetilmelidir (Haoxiang & S, 2021). Memristor
modeli, gercek bir memristériin davranisini matematiksel olarak temsil etmek ig¢in
gelistirilmistir ve 6zelliklerini arastirmak i¢in kullanilabilir (X. Liu & Zeng, 2022). Sistem
tasarimini hizlandirmak ic¢in simiilasyonlarda da kullanilabilir. Noronlar sadece CMOS
teknolojisi ile iiretilirken, ¢ok sayida transistore ihtiya¢ duyulmaktadir. Memristorler, devreleri
basitlestirmek icin bazt CMOS cihazlarina alternatif olarak énerilmektedir. Onerilen memristor
tabanli uygulamalara 6rnek olarak; memristor tabanli Hodgkin-Huxley (Corinto et al., 2013),
memristdr tabanli Morris ve Lecar (Shamsi et al., 2017), memristdr tabanli Fitz Hugh-Naguma
(J. Zhang & Liao, 2017) ve memristor tabanli Hindmarsh-Rose (Bao et al., 2018) sinyalleri
simiile edilerek rapor edilmistir. Basit memristor tabanli basak Oriintiisii, néronlarin tutumunu
simiile etmek i¢in memristorleri kullanan matematiksel bir modeldir (Zheng & Mazumder,
2018). Memristorlerin, elektrik sinyalleri liretme ve yayma yetenekleri gibi noronlarin
elektriksel 6zelliklerini temsil etmek i¢in kullanilabilecegi fikrine dayanmaktadir. Model, sinir
aglarimin dinamiklerini incelemek ve makine 6grenimi i¢in yeni algoritmalar gelistirmek i¢in
kullanilir. Entegre et ve ates modeli, néronlarin dinamiklerini birlestiren biyolojik olarak
esinlenmis bir modeldir (Lashkare et al., 2018). AlShedivat ve meslektaslari, bir memristor
kullanarak stokastik olarak artan bir ndronu simiile etmistir (Al-Shedivat et al., 2015). Bilim
insanlart memristorlerin gelismis analitik modelini 6nermislerdir. Memristorler icin Onerilen
analitik model, memristoriin direncini tanimlayan bir “durum degiskeni” fikrine dayaniyordu
(Strukov et al., 2008). Memristoriin direnci dogrusal degildir ve kendisine uygulanan akim ve
voltaj tarafindan belirlenir, bu da bu durum degiskeninin modeline yansitilir. Model daha sonra
gerilim darbesi, akim darbesi ve siniizoidal dalga formu gibi ¢esitli kosullar altinda bir
memristdriin davranigini simiile etmek i¢in kullanilmistir. Simiilasyonlarin sonuglari, modelin
bu kosullar altinda memristoriin davranisint dogru bir sekilde tahmin ettigini gostermistir.
Shamsi ve arkadaslari, memristor tabanli analog uyarlanabilir bir noron tasarlamistir (Binelli et
al., 2005). Mehonic ve Kenyon, tek kutuplu anahtarlama bellegi SiO: 'ye bir esik akimi
uygulayarak smir voltajinin yiikselisini/kararsizligini izlemistir (Mehonic & Kenyon, 2016).
Pantazi ve arkadaglari, faz degisimli memristorleri iceren bir mimari gelistirerek noéronlarin
entegrasyonu ve aktivasyonunun yani sira sinaptik unsurlarin zaman iginde gelismesine olanak

saglamistir (Pantazi et al., 2016).
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Sekil 12. (a) MLP'nin matematiksel modeli. (b) MLP'yi ayrintili olarak aciklayan akis
diyagraminin gosterimi.
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Sekil 13. MLP'nin memristor tabanlt uygulamasinin sematik gosterimi.

Bilgi isleme donanimi, yapay zekanin giinliik yagam tizerindeki etkilerini belirleyen temel
bir unsurdur. Ancak, derin sinir aglarini ¢aligtiran mevcut donanimlarin enerji tiiketimi,
biyolojik beyinle kiyaslandiginda oldukca yiiksektir (Huang et al., 2023; Jeong et al., 2016).
Tek katmanli algilayicilar sinirli islevsellige sahip olup, bu kisitin iistesinden gelmek amaciyla
cok katmanli algilayicilar (MLP'ler) gelistirilmistir. Sekil 12(a)'da gosterildigi tizere, MLP'ler
girig vektorlerini ¢ikis vektorlerine esleyen ileri beslemeli sinir aglaridir ve daha yiiksek
dogruluk gerektiren karmagik gorevlerde etkili bir sekilde kullanilmaktadir (Ruck et al., 1990;
Thimm & Fiesler, 1997). Sekil 12(b), Sekil 12(a)'da matematiksel olarak tanimlanan MLP'nin
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akis diyagramini gostermektedir. Sekil 13'te ise, Sekil 12(a)'da gosterilen MLP'nin elektrik
devre bilesenleriyle fiziksel bir analojisi sunulmaktadir. Bu analojide, giris katmani veri
kiimesinden alinan girdileri islerken, bu sinyaller gizli katmanlar aracilifiyla direngler ve
yiikseltecler gibi devre elemanlarindan ge¢mektedir. Islenmis sinyallerin ¢ikis katmanina
ulagmasiyla nihai sonuclar elde edilmektedir. Bu devre elemanlari sinyal isleme ve doniistiirme
stireclerini simiile etmektedir. Ancak, bu algoritmalar paralel islem ve stirekli bilgi akis1 i¢in
uygun olmayan von Neumann mimarisi nedeniyle verimsiz ¢aligmaktadir (Han et al., 2022; S.
H. Sung et al., 2021; Zanotti et al., 2021). Bu baglamda, donanim tabanli sinir aglar1 ya da
noromorfik islemciler, biyolojik noronlarin isleyisini taklit ederek performans artisi
saglamaktadir (Y. Liang et al., 2022; Xiao et al., 2020) Noromorfik sistemler, sinyal iletim
katsayisinin “agirlik” olarak islev gérdiigli yapay sinapslar iizerinden islem yapmaktadir (Onen
et al., 2020). Ayrica Sekil 13’te gosterilen sema ile calisma kapsaminda Onerilen memristor
tabanli modelin donanim kisminda uygulanmasi gosterilmistir. Burada yapay sinir agi
yapisinda bulunan her bir néronun igerisine bir memristif yap1 eklenerek modelin tasarimi
gerceklenmis ve bilgisayar ortaminda simiile edilmistir. Bu sema, memristor tabanli bir yapay
sinir agi1 (YSA) temsil eder. Giris katmaninda Vi(n) ve -Vi(n) sinyalleri memristoér agi
iizerinden gecirilir. Memristorler, sinir ag1 agirliklarint temsil eder ve direngleri onceki
durumlarina bagl olarak giris sinyallerini isler. Gizli katmanda, aktivasyon fonksiyonlari ve
amplifikatorler yardimiyla sinyaller dogrusal olmayan sekilde diizenlenir ve islenir. Cikis
katmaninda ise islenmis sinyaller birlestirilerek nihai ¢ikt1 olusturulur. Memristorler sayesinde
hem bellek hem de islem bir arada gerceklestirilir. Bu, diisiik enerji tiiketimi ve hizli hesaplama
avantaji saglar. Calisma kapsaminda oOnerilen modelin memristor tabanli donanim-yazilim
gecisi “MATERYAL ve METOT” kisminda “Yapay sinaps olarak memristor ve uygulamanin

yazilim-donanim entegrasyonu” alt basliginda detayli bigcimde anlatilacaktir.

Sekil 14'de gosterildigi gibi, biyolojik bir ndron genellikle bir hiicre gdévdesi, bir akson
ve dendritlerden olusur (G. Lee et al., 2021). Akson, bir néronun hiicre govdesinden uzanan
uzun, ince bir liftir ve elektrik sinyallerini nérondan diger hiicrelere tasimaktan sorumludur (Lv
et al., 2018). Dendritler, sinyalleri almaktan, entegre etmekten ve hiicre govdesine iletmekten
ve diger sinir hiicrelerinden girdi almaktan sorumlu olan dallardir. Kimyasal iletimler,
norotransmitterler bir nérondan salindiginda ve baska bir ndron iizerindeki reseptorlere
baglandiginda meydana gelir ve bir elektrik sinyalinin gonderilmesine neden olur (Gul, 2020).
Elektriksel iletimler, néronlar iyonlarin dogrudan aralarinda akmasina izin veren ve bir elektrik

akimi olusturan bosluk kavsaklari ile baglandiginda meydana gelir (Schuman et al., 2017).
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Sinapslar, elektriksel veya kimyasal sinyallerin bir noérondan digerine iletildigi iki noron
arasindaki baglanti noktalaridir (H. Wang et al., 2018; S. Yu et al., 2011). Elektrik sinyalleri
gonderen noronun aksonu tarafindan iretilir ve kimyasal sinyaller gonderen néronun akson
terminalinden salinir ve alicit néronun dendritleri tarafindan alinir (G. Lee et al., 2021). N6ron
daha sonra sinaps boyunca diger néronlara giden norotransmitterleri serbest birakir ve boylece
sinyali yayar (Dretchen et al., 1976). Bu siire¢ aksiyon potansiyeli olarak bilinir. Noron
yeterince sinyal alirsa, bir esige ulagsacak ve bu noktada bir aksiyon potansiyeli atesleyerek diger
noronlara norotransmitter salacaktir (X. Zhang et al., 2018). Bazi ndromorfik modellerde, yiik
birikimi, ytlikii depolayan ve noron ateslenmeden dnce belirli bir miktarda yiik birikmesine izin
veren kapasitorlerin kullanilmasiyla elde edilir. Bu tiir bir yiik birikimi, spiking ndronlar simiile
etmek i¢in popiiler bir model olan Leaky Integrate-and-Fire (LIF) modelinde kullanilmaktadir
(Lu et al., 2020). Bu modelde, kapasitor bir akim girisi ile sarj edilir ve daha sonra zaman i¢inde
yavasg¢a bosalir. Kapasitor belirli bir esige ulastiginda, néron ateslenerek diger ndronlara bir
sinyal gonderir (Shamsi et al., 2018). Biyolojik bir néronun yapisi ve elektrik sinyallerinin

iletimi Sekil 14'de gosterilmektedir.
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Memristor sinapslari

Noromorfik  c¢aligmalarin  bazilarinda ndéron modeline odaklanilarak  sinaps
uygulamalarin1 da igeren bir sistem gelistirilebilmektedir. Bu duruma benzer sekilde néron
modellerinden bagimsiz sinaps uygulamalar1 gelistirmeye odaklanan c¢aligsmalarda da
noromorfik sistemler gergeklestirilmistir (Merolla et al., 2011; J. Seo et al., 2011). Bu
odaklanmalarla birlikte memristor sinaptik agirliklarinda karmasik ve zorlayict durumlar s6z
konusudur. Bu zor durumlar; kalicilik, dogrusallik ve ¢ok diizeyliliktir (Amirsoleimani et al.,
2020; Huh et al., 2020). Ancak bu ii¢ 6zelligi ayn1 anda saglayan sonuglar heniiz elde
edilememistir (Huh et al., 2020). Sinaps, biyolojik sinir aglarinin énemli bir pargas1 olmakla
birlikte dogrudan elektronik bir esdegeri yoktur (Thomas, 2013). Bu durum, sinir sisteminin
yapisini taklit eden donanimlarin olusturulmasini zorlagtirmaktadir. Sekil 13, bir néron darbesi
iireten bir CMOS entegre ve atesleme noronunu gostermektedir (Xinyu Wu et al., 2015).
Memristor tabanli bir sinaptik agirlik ¢apraz cubugunda, memristor giris ve ¢ikis noronlari
arasina yerlestirilir ve aralarindaki baglantinin agirliklarinin ayarlanmasina ve saklanmasina

1zin verir.

Birgok calisma, spike zamanlamasina bagli plastisite (STDP) gibi temel sinaptik 6grenme
ilkelerinin memristorlerde basariyla uygulandigini gostermistir (Alibart et al., 2012; Jo et al.,
2010; Krzysteczko et al., 2012; S. Yu et al., 2011). Daha 6nceki arastirmalarda, memristorler
oncelikle programlanabilir bellek bilesenleri olarak goriilmiis ve kullanilmistir. Oksit tabanli
memristorlerde ikinci dereceden memristor etkilerinin dnemli olabilecegi deneysel olarak
kanitlanana kadar, caligmalar genellikle karmasik programlama dalga formlar1 veya {ist iiste
binen programlama darbeleri kullanan tasarimlara odaklanmad: (S. Kim et al., 2015). Bu
cihazlarda, istenen iletkenlik degisimini elde etmek icin darbe genisligi ve darbe yiiksekliginin
dikkatli bir sekilde tasarlanmasi gerekir. Matematiksel agidan bu aygitlar birinci dereceden

memristdrler olarak siniflandirilabilir (Pershin & Di Ventra, 2012).

Capraz ¢ubuk tizerindeki ikinci dereceden memristorlerde, her memristor STDP adl bir
ogrenme kurali kullanilarak bir egitim siirecine tabi tutulur (Cruz-Albrecht et al., 2012). STDP
ogrenimi sinaptik agirligi, néronun sinapstan Once atesledigi zaman ile sinapstan sonra
atesledigi zaman arasindaki zaman farkina gore belirler. Bu durumda, sinaptik agirlik dogrusal
olmayan sonuglar lretir ve genellikle Winner-Take-All (WTA) algoritmas: ile denetimsiz
ogrenmede kullanilir (Sung et al., 2018). Zheng ve Mazumder tarafindan dnerilen algoritma,

spike-zamanlamaya bagli plastisite (STDP) ve denetimli 6grenmenin bir kombinasyonunu
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kullanan bir tiir makine 6grenimi veya derin 6grenme olan denetimli STDP 6grenme kavramina

dayanmaktadir.

Bilim insanlari, termal enerjinin dagilimindan yararlanarak kimyasal sinapslarda
gozlemlenen kalsiyum iyonu (Ca>") dinamiklerini taklit etmek i¢in caligmalarinda ikinci
dereceden memristorleri entegre ettiler. Bu yaklasim sayesinde, iist iiste binmeyen spike uglarla
spike zamanlamasina bagli plastisite (STDP) olarak bilinen olguyu etkili bir sekilde sergilediler
ve diger cesitli sinaptik islevleri ¢cogaltmay1 basardilar. Bu basari, biyolojik olarak dogru
sinaptik cihazlarin gelistirilmesine yonelik kayda deger bir ilerlemeye isaret etmektedir. Bu
yaklagim tekrarlanabilirlik ve basitlik 6zelliklerine sahiptir ancak fiziksel siireclerin gergek
sinapslardan 6nemli Slgiide farkli olmasi nedeniyle istenen sinaptik islevlerin dogrulugu ve
cesitliligi sinirhdir (Z. Wang et al., 2017). Biyolojik Ca>+ dinamiklerinin fiziksel 6zelliklerini
kopyalayan bir cihaz olusturmak, sinaptik islevi daha etkili bir sekilde taklit etme yetenegini
artiracak ve ndromorfik bilgi islemin potansiyel uygulamalarini genigletecektir. Bu emiilatif
memristér, metal atom difiizyonu ve nanopargaciklarin kendiliginden olusumu
mekanizmalarini kullanarak ¢alismaktadir. Bu mekanizma, yiiksek ¢oziiniirliiklii transmisyon
elektron mikroskobu (HRTEM) ve nanopargacik davranisinin dinamik simiilasyonlar1 ile
derinlemesine incelenmistir. Diflizyon memristorlerinin dinamik 6zelliklerinin, kisa ve uzun
vadeli plastisite gibi operasyonel 6zellikler de dahil olmak {izere biyolojik sinapslardaki Ca>+
ile islevsel olarak esdeger oldugu deneysel olarak dogrulanmistir (Z. Wang et al., 2017).

Memristor sinapslarina sahip Crossbar SNN mimarisi Sekil 16'te gosterilmektedir.
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Sekil 16. Memristor sinapsli Crossbar SNN mimarisi, insan beyninin c¢alisma seklinden
esinlenen ¢ift yonlii bir STDP 6grenme kuralinin grafiksel bir temsilinin eslik ettigi iki sinaptik
oncesi spike ve iki sinaptik sonrasi spike arasindaki bir sinaps baglantisidir. Verileri depolamak
ve islemek i¢in c¢apraz cubuk memristdr dizileri kullanan bir tiir néromorfik hesaplama
mimarisidir.
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Algoritma donanim uyumlu olacak sekilde tasarlanmistir, yani Onemli degisiklikler
gerektirmeden mevcut donanim platformlarinda uygulanabilir. Algoritma ayrica agirliga bagh
olacak sekilde tasarlanmistir, yani Ogrenme siireci noronlar arasindaki baglantilarin

agirliklarina dayanmaktadir (Zheng & Mazumder, 2018).

Arastirmacilar analog bellek 6zellikleri olusturmak amaciyla noronlar, sinapslar, mimari,
O0grenme ve test lizerine bir dizi calisma yiirlitmiis ve yaygmlastirmistir (Tsai et al., 2018).
Genel olarak sinaps modelleri iki kategoride incelenebilir. Ilk kategori, biyolojik beynin
yapisindan esinlenen ve spike tabanli sistemler i¢in sinaps yapilarini igeren sinaps
uygulamalaridir (Q. Wan et al., 2019). ikinci kategori ise ileri beslemeli sinir aglar1 gibi
geleneksel yapay sinir aglar i¢in sinaps uygulamalaridir (Zyarah et al., 2017). Néromortfik
sistemlerde en bol bulunan bilesenin sinapslar oldugu belirtilmektedir. Gelistirilecek cogu
donanim uygulamasi i¢in sinaps uygulamasinin optimize edilmesine, 6zellikle néromorfik
hesaplama sistemleri i¢in yeni malzemeler gelistirilmesine odaklanilmaktadir (Kwon et al.,
2022). Biyolojik sistemlerin ayrintili ve hassas bir sekilde donanim modellemesi ¢ok zordur.
Bu nedenle, biyolojik davranisi acikga modellemeye calisilmadig: siirece sinaps modelleri
nispeten basit olma egilimindedir (Schuman et al., 2017). Noronun agirlik degerinin
degismesine neden olan bir plastisite mekanizmasi vardir. Ayrica, plastisite mekanizmalarinin

biyolojik beyinlerde 6grenme ile iliskili oldugu bulunmustur.

Memristor tabanh yapay zeka (Al) cipleri

Al cipleri, Al yeteneklerini iceren ve makine 6grenimi alaninda kullanilan sofistike
silikon mikroislemcilerdir. Yapay zeka, cesitli sektorlerde insan hayatina yonelik potansiyel
tehlikelerin azaltilmasinda veya hafifletilmesinde ¢ok 6nemli bir rol oynamaktadir. Artan veri
hacmi, matematiksel ve hesaplama zorluklarinin iistesinden gelmek igin daha verimli
sistemlerin gelistirilmesini gerektirmekte ve daha fazla iretkenlik i¢in artan aciliyeti
vurgulamaktadir. Bu nedenle, yapay zeka ciplerinin ve uygulamalarinin gelistirilmesi sz
konusu oldugunda, BT sektoriindeki biiyiik firmalarin 6nemli bir kismi kendilerini bu ise

adamis durumdadir.

Yapay zeka ozellikli u¢ cihazlarin yiiksek ¢ikarim dogruluguna, hizli tepki siirelerine ve
enerji tasarruflu ¢alismaya sahip olmasi, yani uzun 6miirlii pillere sahip olmasi gerekir (Chiu et
al., 2023). Bu tiir cihazlarin halka a¢ik alanlarda kullanilmasi, onlari ¢ip kontroliinde veya ¢ip
istii kalic1 bellekte depolanan degerli verilere yetkisiz erisimi iceren kotli niyetli saldirilara

kars1 savunmasiz hale getirmektedir (Golonzka et al., 2019; T.-H. Yang et al., 2018).
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Milyonlarca parametreye sahip yapay zeka (AI) modelleri gesitli gorevlerde yiiksek
hassasiyet elde edebilir (Vaswani et al., 2017), ancak grafik islem birimleri veya merkezi iglem
birimleri gibi geleneksel genel amacli islemciler gibi donanim bilesenlerinin zayif enerji
verimliligi daha fazla sorun haline gelebilir (Ambrogio et al., 2023). Genellikle analog-Al
olarak adlandirilan analog bellek i¢i hesaplama (Khaddam-Aljameh et al., 2022; Narayanan et
al., 2021; W. Wan et al., 2022; Yao et al., 2020), matris-vektor carpimlarim1 “bellek dizileri”
icinde eszamanli olarak yiiriitme yetenegi sayesinde iistiin enerji verimliligi elde etmektedir
(Ambrogio et al., 2023). Ambrogio ve meslektaslar1 calismalarinda, 34 farkli birimdeki 35
milyon faz degisimli bellek cihazini, birimler arasi kitlesel paralel iletisimi ve analog, diisiik
giiclii cevresel devreleri bir araya getiren analog bir yapay zeka ¢ipi sunmustur. Yapay zeka
¢ipinin ¢esitli yapay zeka katmanlari i¢indeki iglevselligi Sekil 17'te gosterilmektedir.

« Raobotik
» Akilh Uretim
. Personel Asistani

Y

Uygulama

--------------------

. Makine Ogrenimi
» Derin Ogrenme
« Yapay Zeka Platformu

L J

Teknoloji
. Sensorler
) « Yapaz Zeka Cipleri
Teknolojik Altyapi « Data

---------

Sekil 17. Yapay zekanin ¢esitli katmanlari i¢inde bir yapay zeka ¢ipinin iglevi.

Memristor tabanh yapay sinaps calismalari

Bilgisayar sistemlerinin gelisim siireci incelendiginde, hesaplama islemleri i¢in veri
miktar1 katlanarak arttifindan bellek birimleri ve islemciler arasinda veri aktarimi biiyiik bir
sorun haline gelmistir (Oh et al., 2021). Bu sorunu ¢6zmek i¢in insan beyninin ¢alisma prensibi
taklit edilerek yapilan arastirmalara ilgi artmistir. Beyinden ilham alan (Pedretti et al., 2017;
Xinyu Wu et al., 2015; H. Yu et al., 2021) veri isleme, duyusal verilerin ger¢ek zamanl
islenmesinde beyin benzeri performans elde etmeyi amaglayan ve gelismekte olan bir alandir.
Boyle bir hesaplama sistemine ulasmada bazi sinirlayici zorluklar vardir. Bu zorluklar arasinda
Olgeklenebilir ara baglanti cihazlar, ultra diisik gili¢ tiiketimi ve 6grenmeyi donanimda
uygulamak icin giliclii néromorfik hesaplama yapilar ile kompakt, biiyiik 6l¢iide paralel bir

mimari olusturmak yer almaktadir (Kuzum et al.,, 2012). Bu zorluklar g6z Onilinde
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bulundurularak faz degistiren malzemeler kullanan cihazlarla simetrik ve asimetrik sinaptik
plastisitenin uygulanmasini saglayan programlama stratejileri, malzeme 6zellikleri ve spike
diyagramlar1 incelenmis, cihaz ¢alisma diizeni ve dinamik plan yapisinin uyarlanmasiyla enerji

tikketiminin optimize edilebildigi bir ¢alisma sunulmustur (Kuzum et al., 2012).

Sinaptik elektronikler, beyindeki ndronlarin birbirleriyle iletisim kurma seklini taklit
eden, bilgiyi insan beynine benzer sekilde isleyebilen, insan beyni kadar verimli ve hataya
dayanikli, ancak daha yogun bir bi¢cimde elektronik sistemler olusturmay1 amaglayan yeni bir
calisma alanidir (Kuzum et al., 2013). Islem hiz1 ve enerji tiiketimi, makine dgrenimi, derin
Ogrenme ve veri yogun uygulamalarda bilgisayarlarin hesaplama performansi i¢in kritik 6neme
sahiptir. Bu nedenle, biyolojik beynin hiz1 ve etkinligi uzun siiredir arastirmalarin ana odak
noktast olmustur. Bu durum, beynin isleyisine dayanan hesaplama ve sinyal isleme teorileri,
formiilleri ve tasarimlarinin taklit eden ¢aligmalarla sonuglanmistir. Arastirmalar, faz degisimli
sinaptik cihazlarin iki boyutlu capraz ¢ubuk dizilerinin, beyinden esinlenen bir donanim
mimarisinde beyin benzeri 6grenme olusturmak i¢in kullanilabilecegini ve iligkisel 6grenme ve

orlintii tanima gorevlerine izin verdigini gostermistir (Eryilmaz et al., 2013; P. Lin et al., 2020).

Nano oSlgekli sinaptik unsurlarin bireysel cihaz diizeyinde islev gorebilecegine dair
deneysel calismalardan elde edilen kanitlara ragmen, ag diizeyindeki c¢alismalar
simiilasyonlarla sinirli kalmistir (Schuman et al., 2017). Deneyler, faz degisimli sinaptik
cihazlarin biyolojide insan beyninin organize edilme sekline benzer sekilde 1zgara benzeri bir
yapiya baglanmasiyla dizi diizeyinde iliskisel 6grenmenin miimkiin oldugunu gostermistir
(Eryilmaz et al., 2014). Bu, sistemin farkli cihazlara uyum saglayabildigini ve hiicre direnci
seviyelerindeki  biliylik  farkliliklarin =~ e8itim  seanslarinin  miktarinin  artirilmasiyla

dengelenebilecegini gostermistir.

Vektor matris ¢arpimi (Amirsoleimani et al., 2020), derin 6grenme uygulamalarinda
zaman ve enerji maliyetleri agisindan biiylik bir sorun teskil etmektedir. Memristor tabanlt
vektor matris ¢arpiminin gili¢ tilketimi lizerine yapilan arastirmalar bazi sorunlari ortaya
cikarmistir (Hu et al., 2017; Shafiee et al., 2016). Bayat ve arkadaslari, memristor dedektortii ile
donatilmig bir siniflandirict iizerinde bir ¢aligma yiiriitmiistiir (Bayat vd., 2017). Knowm sirketi,
yapay zeka ve derin 6grenme uygulamalari i¢in ¢ok kullanislt olan ikili anahtarlama ile hem
anti-Hebbian hem de Hebbian kurallarini kullanan bir kategorize edici iirlin piyasaya stirmiistiir
(Anti-Hebbian and Hebbian (AHaH) Plasticity, 2017). Derin 6grenme uygulamalarinda,
memristor tabanli hesaplama siirecleri kullanilirken, 6zellikle ¢ip lizerinde 6grenme sirasinda,
sinaptik agirligin dinamik aralig1 nedeniyle ortaya ¢ikan sinirlamalar ve zorluklar vardir. Mobil
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cihazlarda 6grenme bilgisi edinirken Yapay Zeka (YZ) islevlerinin zarar gérmesini énlemek

icin veri sikistirma veya kirpma teknikleri onerilmistir (Mao & Dally, 2016).

Deng ve arkadaslari, olusturduklar1 bir uygulamada 6grenmenin ¢esitli asamalarindaki

enerji tilkketiminin bir analizini yapmislardir (Deng et al., 2016).

Geleneksel donanim platformlari, islemci ve harici bellek arasinda veri aktarimi ihtiyaci
nedeniyle 6grenme ile ilgili gorevleri tamamlamak ig¢in biiyiik miktarda enerji gerektirir
(Schuman et al., 2017). Analog agirlik depolama kullanan beyinden ilham alan cihaz
teknolojileri ile bir cihaz gelistirilmis, algisal gorevlerin daha verimli bir sekilde
tamamlandigin1 gosteren bir ¢alisma yapilmistir (Yao et al., 2017). Bu cihaz, agirligini her iki
yonde de siirekli olarak ayarlayabilme 6zelligine sahiptir. Deneyler, paralel anlik egitim ile
1024 hiicreli bir dizinin gri dlgekli yiizleri siniflandirmak i¢in kullanilabilecegini gostermistir.

Calisma sonucunda daha diisiik enerji tiiketimi ile hesaplama islemleri gerceklestirilmistir.

Shamsi ve arkadaslar tarafindan ii¢ tasarim seviyesinde sunulan bir siitunlu organize
bellek (COM) (Shamsi et al., 2018) donanim mimarisi 6nerilmistir. Seviye I'de, COM mimarisi
ile uyumlu diistik giiclii bir devre tanitilmistir. Seviye II'de, 6nerilen bir ndron diizenegi ve tek
bir memristor ¢apraz ¢ubuk dizisi kullanilarak bir Winner-Take-All (WTA) algoritmasi (S. Li
et al., 2017) modiilii uygulanmistir. Seviye III'te, WTA modiilleri ve memristdr ¢apraz ¢ubuk
dizileri birlestirilerek COM tabanli bir donanim mimarisi olusturulmustur. COM donanimini
egitmek icin ex-situ yontemi kullanmilmis ve uygulamanin tiim tasarim seviyelerinde
simiilasyonlar gerceklestirilmistir. Calismanin birincil odak noktasi, ndron devresinin

elektriksel gii¢ tiiketimini degerlendirmektir (Shamsi et al., 2018).

Calismalarinda (Saxena et al., 2018), NeuSoC sisteminin enerji tiiketimini tahmin etmek
icin analitik modeller ve devre simiilasyonlarinin bir kombinasyonunu kullanmislardir. Farkli
calisma kosullar1 altinda sistemin enerji tiiketimini degerlendirmisler ve enerji verimliligi
iizerinde en bliylik etkiye sahip devre ve cihaz parametrelerini belirlemislerdir. Arastirmacilar
ayrica sistemin enerji tliketimini azaltmak i¢in tasarim teknikleri 6nermislerdir. Son olarak, elde
ettikleri sonuglart mevcut NeuSoC sistemleriyle karsilastirmislar ve onerdikleri tekniklerin
enerji verimliligini %30'a kadar artirabilecegini gostermislerdir. Ayrica, CMOS memristor
konsepti i¢in bir emiilatore dayali CMOS sinaps devrelerini, sistemlerin prototipini
olusturmanin bir yolu olarak sunmuslar ve pratik memristér cihazlarint normal CMOS ile
olusturmus ve birlestirmislerdir. Ucucu olmayan bellek (NVM) veya memristif cihazlarin

gelistirilmesi, derin 6grenmenin bir CMOS katmani iizerinde karigik sinyalli entegre devrelerle
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entegre edildiginde enerji agisindan verimli bir sekilde gergeklestirilebilece§ini gdstermistir.
Ugucu olmayan Cip Uzerinde Noromorfik Sistemler (Saxena et al., 2018) hedefine ulagmak,
cesitli algoritmik zorluklarin ele alinmasini ve bu zorluklara uygun enerji verimli ¢oziimler

bulunmasini gerektirmektedir.

Sinirbilim (Sejnowski et al., 1988) alaninda, popiilasyon kodlama teorisi, sinirsel
mekanizmalarin hatalara kars1 dayanikli hesaplamalar yapabilecegi gosterilmistir (Mizrahi et
al., 2018; Sejnowski et al., 1988). Bu teori, nanoelektronik teknolojisiyle birlestirildiginde,
kiigiik boyutlu, giiriiltiilii ve hata yapmaya yatkin cihazlarla giivenilir hesaplama yapilmasini
miimkiin kilabilir. Popiilasyon kodlama teorisi CMOS teknolojisiyle uygulanabilir olsa da bu
sistemler genellikle yliksek alan veya enerji gereksinimlerine sahiptir. Mizrahi ve ekibi, nano
6lcekli manyetik tlinel baglantilarinin bu gereksinimleri karsilamak icin kullanilabilecegini

gostermistir (Mizrahi et al., 2018).

CMOS teknolojisi ile memristorlerin birlestirildigi bir devrede, CMOS bilesenleri her bir
kabloya baglanir. Bu baglanti, 6zel bir “CMOL” araylizii sayesinde gerceklestirilir ve bu
arayliz, devredeki ek capraz cubuk yapisindaki tekil memristorlere erisim imkani saglar
(Prezioso et al., 2015). Bir tiir hibrit néromorfik ag olan CrossNets, noron hiicre govdelerinin
CMOS tabanli donanim modellerini memristif ¢apraz ¢ubuklarla entegre etme potansiyelinden
faydalanmaktadir. Bu yenilik¢i mimaride, ¢apraz ¢ubugun telleri aksonlar ve dendritler olarak
islev goriirken, memristorler biyolojik sinapslarin davranigini taklit eder. Metal oksit
memristorlerin basit, iki terminalli, transistorsiiz topolojisi, CMOS modelli memristorlere
(Pershin & Di Ventra, 2010), kayan kapiya (Hasler & Marr, 2013), 2013) ve ferroelektrik
(Kaneko et al., 2014) bellek hiicrelerine dayali olanlar da dahil olmak {izere, CrossNets'in saf
CMOS noromorfik aglara kiyasla ¢cok daha yiiksek yogunluk elde etmesini saglayabilmektedir.
Prezioso ve ekibi, transistor icermeyen entegre bir ¢apraz ¢gubuk yapisi kullanarak, bunun yerine
metal oksit memristorlere dayanan islevsel bir sinir agmin deneysel bir gosterimini
gerceklestirmistir (Prezioso et al., 2015). Ag, dogrudan kendi operasyonel ortaminda egitime
tabi tutuldu, yani harici bir bilgisayar modeline dayanmadi1 ve Manhattan giincelleme kuralini
kulland1 (Lim et al., 2019). Manhattan giincelleme kurali ve toplu mod delta kurali temelde
aynidir, tek fark donanim uygulamasini kolaylastirmaya yarayan ikili niceleme kullanimidir

(Prezioso et al., 2015).

Derin analog Yapay Sinir Aglar1 (YSA'lar) karmasik siniflandirma problemlerini ¢ok
yiiksek bir dogruluk derecesiyle ¢ozebilmektedir (Musisi-Nkambwe et al., 2021). Kuantum
bilgisayarlar, uygulamalarda sagladiklar1 dogruluk avantajlarina ragmen, hesaplamalar i¢in cok
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fazla enerji tiiketir ve bu da pratik kullanim alanlarini sinirlayabilir (LukoSevicius & Jaeger,
2009). Bu durum, uygulamalarda elde edilen dogruluk avantajlarinin kullanisliligin
golgelemektedir. Wijesinghe ve arkadaslari, nano 6l¢ekli direncli cihazlarin rastgeleliginin bir
spike néronun davranisini taklit etmek i¢in nasil kullanilabilecegini ve daha sonra bu durumu
ele almak icin derin stokastik SNN'lere nasil dahil edilebilecegini 6nermislerdir. Algoritmik
olarak, bir Yapay Sinir Agin1 (Sharma et al., 2020) bir Spiking Sinir Agina (Lashkare et al.,
2018) doniistiirmek i¢in egitim siirecinin nasil degistirilebilecegini agiklarken, bu cihazlarin
sundugu rastgele aktivasyon islevini kullanmaya devam ederler. Sinaptik agirliklarla aym
islevleri yerine getirmek igin stokastik animsatic1 ndronlar1 animsatici ¢apraz cubuklarla
birlestiren devre mimarileri tasarladiklar1 bir ¢alisma sunmuslardir (Wijesinghe et al., 2018).
Bu calismada, tasarlanan sistemin benzerlerine kiyasla enerji tiiketimi agisindan daha verimli

oldugunu kanitlamislardir.

Noromorfik hesaplama sistemleri i¢in bir donanim ag1 yapisinin olusturulmasi temelde
bellek dizilerinin entegrasyonudur. Gliniimiizde ¢apraz ¢ubuk dizisi tabanli bellek sistemlerinin
parazit akimi g6z Oniine alindiginda, donanim tabanli sinir aglarinin parazit 6nleme yetenegi
son derece zayif olabilir (Lim et al., 2019). Bu, gelistirilen sistemin uygulanmasinda énemli bir
zorluktur ve olasi okuma hatalarina ve egitim siirecinde artan enerji tiiketimine yol agabilir. Bu

durumu ¢ézmeye yonelik ¢alismalar gergeklestirilmistir (Gul, 2019).

Elektronik sinaps cihazlarinin kullanildigi donanimlar igin Ogrenme algoritmasi
caligmalar1 gergeklestirilmistir. Bir ¢alismada, sinirl ve siireksiz iletkenlik 6zelliklerine sahip
elektronik aletler kullanan donanim tabanli bir derin sinir ag1 i¢in geri yayilim algoritmasi
tabanli bir 6grenme kural1 6nerilmistir (Lim et al., 2019). Bu algoritma, donanim tabanli agirlik
ayarlamalarinin yani sira hem ileri hem de geri yayilmayi saglayan esnek bir 6grenme
mekanizmasi icermektedir. Ayrica, bu algoritma enerji verimli ve yiliksek hizli derin sinir
aglarmin ytiriitiilmesine yardimei olacak sekilde uyarlanmistir. Bu ¢calismada, elektronik sinaps
cihazlarinin 6grenme performansi, ii¢ katmanli bir sensér agi kullanilarak yapilan
simiilasyonlarda ¢esitli iletkenlik yanitlarina ve agirlik gilincelleme yontemlerine gore

degerlendirilmistir.

Spike Sinir Aglar1 (SNN'ler), biyolojik beynin bilgiyi hizli ve dogru bir sekilde isleme
yeteneginden ilham alir ve biyolojik sinir aglarinin sinirsel kodlarini, dinamiklerini ve
devrelerini kopyalamay1 amaglar. SNN'ler, bellek i¢i hesaplama kullanarak denetimsiz 6grenme
uygulamasi i¢in biiylik bir potansiyele sahiptir (Sourikopoulos et al., 2017). Bu durum goz
oniine alindiginda, ugucu olmayan bellek (eNVM) cihazlarinda Spike Sinir Aglar1 (SNN'ler) ile
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O0grenmenin enerji verimliligini artiran algoritmik bir optimizasyon sunmaktadir (Y. Shi et al.,
2019). Bir baska c¢alismada, bellek ile merkezi islem birimi arasindaki veri aktarim
gereksinimini en aza indirmek i¢in, bellek i¢i hesaplama mimarileri de dikkate alinarak, STT-
MRAM ve SRAM kullanilarak bir YSA model sisteminin fiziksel uygulamasi i¢in kapsamli bir

calisma yapilmistir.

Beyinden ilham alan paralel hesaplama, insan beyninin bilgiyi isleme sekline cok benzer
sekilde, verileri paralel olarak islemek i¢in birbirine bagli islemcilerden olusan bir ag kullanma
fikrine dayanmaktadir (B. Gao et al., 2016). Bu tiir bilgi islem, biiyiik miktarda veriyi ¢ok daha
kisa siirede isleyebildigi i¢in geleneksel bilgi islem yontemlerinden daha verimli olacak sekilde
tasarlanmistir. Ayrica, geleneksel bilgi islem yontemleriyle ayn1 miktarda giic gerektirmedigi
icin daha enerji verimli olma potansiyeline de sahiptir. Dogrusal olmayan ve asimetrik
iletkenlik-giincelleme 6zelliklerine sahip yapay sinapslarin faydalarina ragmen, bir donanim
yapay sinir agi, bir yazilim yapay sinir aginin egitim ve ¢ikarim dogruluguyla eslesemez. Bu
durum icin dogrusal ve simetrik iletkenlik-gilincelleme 6zelliklerine sahip yeni bir yapay van
der-Waals hibrit sinaps gelistirilmistir (S. Seo et al., 2020). Bu c¢alismada, iletkenligi secici
olarak artirmak ve azaltmak icin tungsten diselenid (WSe2) ve molibden disiilfiir (MoS>)
kanallar1 kullanilmistir. Daha sonra, bir donanim yapay sinir ag1 i¢in hibrit bir sinapsin

potansiyeli, egitim ve ¢ikarim simiilasyonu yoluyla gosterilmistir.

Rahimi Azghadi ve ¢alisma arkadaslari tarafindan yiiriitiilen bir ¢aligma (Rahimi Azghadi
et al., 2020) ile CMOS, SiO, tabanli memristif ve karma CMOS-memristif teknolojiler
kullanilarak néromorfik hesaplama iizerine kapsamli bir inceleme gergeklestirilmistir. Bu
calisma, biyolojik ndronlarin ve sinapslarin bazi yonlerini taklit edebilen tasarimlari
icermektedir. Arastirma, noronlar1 taklit edebilen bilesenlerin model siniflandirmalar1 veya
gorlintii tanima gibi gorevlerde kullanilabilecegini gostermistir. Cihaz gesitliliklerine ve ideal

olmayan kosullara ragmen, gelistirilen unsurlarin 1yi performans gosterdigi gézlemlenmistir.

Beyinden ilham alan sinaptik nano-elektronik cihazlar, diisiik enerji tiiketimi ve veriyi
paralel olarak isleyebilme yetenekleri gibi biyolojik noronlara benzer 6zellikleri nedeniyle
giderek daha fazla popiilerlik kazanmaktadir. Metal oksitten yapilan direngli anahtarlamali
bellek cihazlari, diisiik maliyetli, liretimi kolay ve tamamlayici metal oksit yar1 iletken (CMOS)
teknolojisi ile uyumlu olmalari nedeniyle sinaps olusturmak i¢in son derece arzu edilmektedir
(B. Gao et al., 2016). Bu nedenle, bu alandaki bir calismada, ndromorfik uygulamalar i¢in basit,
tek katmanli ve nano 6lgekli memristor tabanli yapay bir sinaptik cihaz sunulmustur (Gul,
2020).
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Baska bir calismada (Shymkovych et al., 2021), Radyal Tabanli Fonksiyon (RBF) sinir
aglarinin Gauss aktivasyon yontemini Programlanabilir Kap1 Dizileri (FPGAs) donaniminda

uygulamayi amaglayan bir aragtirma onerisi sunulmustur.

Giliniimiizde, Von Neumann darbogazini agmak amaciyla bellek i¢i hesaplamada sinaptik
cihazlarin kullanimi konusunda énemli ilerlemeler kaydedilmistir (Zanotti et al., 2020). Ancak,
derin sinir aglarinin donanimda verimli bir sekilde uygulanabilmesi i¢in dogrusal olmayan
aktivasyon islevlerini yerine getirebilen kompakt nano cihazlara ihtiya¢ duyulmaktadir
(Haoxiang & S, 2021). Bu dogrultuda, vanadyum dioksit (¥O;) tabanli bir Mott aktivasyon
noronu ile bir iletken koprii rasgele erisimli bellek (CBRAM) capraz baglanti dizisinin entegre
edildigi basarili bir calisma gerceklestirilmistir (Oh et al., 2021). Bu arastirmada, Mott
aktivasyon noronu analog alanda diizeltilmis dogrusal birim (ReLU) islevini kullanmaktadir.
Noron cihazlari, analog tamamlayicit metal-oksit yari iletken uygulamalara gére 6nemli dlgiide
daha az enerji tikketmekte ve daha az alan kaplamaktadir. Mott aktivasyon noronlart ile ¢aligan
LeNet-5 ag1, MNIST veri kiimesinde ideal yazilim dogruluguna yakin bir dogruluk orani olan
%98,38’e ulagsmustir. Ayrica, bu calismada (Oh ve digerleri, 2021), Mott aktivasyon ndronlari
ve CBRAM ¢apraz baglanti dizilerinin kombinasyonu kullanilarak biiyiik 6l¢ekli goriintii kenar

tespiti siiregleri de gergeklestirilmistir.

Iki boyutlu (2D) ge¢is metali kalkojenitler (TMC’ler) ve bunlarin heteroyapilari,
beyinden ilham alan ndromorfik hesaplama sistemlerinde, ileriye doniik bellek ve sinaptik
cihazlar i¢in 6nemli yap1 taglaridir ve ¢esitli elektronik ve optoelektronik cihazlarda kullanim
potansiyeline sahiptir (Kwon et al., 2022). Bu ¢alisma, néromorfik hesaplama uygulamalarinda
kullanilan iki boyutlu gecis metali kalkojenitlere (2D TMC'ler) dayal1 yiiksek performansl
memristorlere dair kapsamli bir inceleme sunmaktadir. Calismada iki boyutlu gecis metali
kalkojenit malzemeler ve heteroyapilar ele alinarak memristif cihazlarin mevcut durumu detayl
bir sekilde degerlendirilmektedir (Kwon et al., 2022). Bu arastirmanin amaci, iki boyutlu gecis
metali karbiirlerden {iiretilen ndromorfik memristorlerin iiretimi ve karakterizasyonuna genel
bir bakis sunmak ve bu malzemelerin ve cihazlarin gelecekte karsilasabilecegi zorluklar1 ve

potansiyel firsatlar tartigmaktir.

Memristif cihazlar, diisiik enerji tiiketimi, dlgeklenebilirlik ve direng degisiminin ¢ok
seviyeli dogasi (plastisite) gibi Ozellikleri sayesinde derin Ogrenme ve yapay zeka
uygulamalarinda enerji tiiketimi ve 6lgeklenebilirlik gibi sorunlari ¢ozmede olduk¢a umut vaat
etmektedir (Kwon et al., 2022). Cok seviyeli plastisite, memristorlerin fiziksel néromorfik
hesaplama sistemlerinde sinapslari taklit etmesine olanak tanir (Shvetsov et al., 2022). Shvetsov
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ve calisma arkadaslari, capraz baglanti geometrisinde iiretilen Cu/poly-p-xylene (PPX)/Au
hafiza elemanlarini inceleyen bir calisma gerceklestirmistir. Yapilan ¢aligmalar sonucunda, tek
bir memristériin dongiiden dongiiye gecisi ve birkag memristoriin cihazdan cihaza gecisi
iizerine yapilan deneylerde direng degisim voltajlarinin yiiksek tekrarlanabilirligi gosterilmistir.
Elde edilen memristorlere dayanarak, basit desenleri siniflandirmak iizere egitilebilen bir

donanim néromorfik ag1 olusturulmustur.

Tablo 3, CMOS néronlar1 ve memristor tabanli néronlar i¢in gii¢ tiiketimi, néron basina
enerji tikketimi degerlerini sunmaktadir. Bu makalede, memristor diiglimii ile birlikte CMOS

devreleri ve transistorlii bir memristor diiglimiiniin kombinasyonu tanitilmaktadir.

Tablo 3. CMOS noéronlari ile memristor tabanli néronlarin karsilastirilmasi

Referans _Cihaz Konfigiirasyon Enerji/Spike
Tip/Model
(Indiveri, 2003) CMOS 18-20 transistor 0.3-1.5 uW,
2850 pl/spike
(Y. J. Lee etal., 2004) CMOS 90 transistor 163.4 uW
(Cruz-Albrecht et al., 2012) CMOS 16 transistor 40.2 pW,
0.4 pJ/spike
(Sourikopoulos et al., 2017) CMOS 9 transistor 4 f/spike
(Shamsi et al., 2018) CMOS 14 transistor 4.3 pl/spike
(Wijekoon & Dudek, 2008) CMOS 14 transistor 8-40 uW
(Babacan et al., 2016) CMOS 1 transistor emiilator + 3 transistor 60-110 pW
(Saxena et al., 2018) CMOS + Memristor ~ Memristor emiilator (8 transistor) 14 fJ—1.4 pJ/spike
(Mizrahi et al., 2018) CMOS + Memristor 1 memristor + 1 manyetik 3.3 uW,
coupling + CMOS devre 150 pJ/junction
(Z. Wang et al., 2018) Memristor ~6 x4 ~5 (nJ/spike)
(X. Zhang et al., 2018) Memristor 5x5 ~700 (nJ/spike)
(Luetal., 2020) Memristor <10 x 10 16 (f/spike)
(Feali, 2021) Memristor <10 x 10 16 (pJ/spike)

Yapilan calismalar ve bu ¢alismalarda kullanilan model, alan ve enerji tiikketimi gibi
ozellikleri Tablo 3’te gosterilmistir. Bu tabloda, kullanilan memristor sayisi ile enerji tiiketimi
arasindaki dengeye dikkat etmek onemlidir. Bu durumun belirlenmesi uygulamalara gore

degisiklik gosterebilir. Ornegin, Tablo 3 karsilastirildiginda, 14 transistér kullanan Wijekoon
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Dudek modeli, Babacan’in yaklagimina benzer tiim yiikselme ve patlama tiirlerini
gerceklestirebilmekte ancak enerji tiiketimi agisindan ele alindiginda, Babacan’in memristor
noronuna gore %40 daha az gii¢ kullanmaktadir. Tablo 3’te enerji tiikketim miktarlarina
bakildiginda en umut verici néron Sourikopoulos’un c¢aligmasi olarak goriilmektedir. Ancak
yapay zekd uygulamalarmin en verimli formu yalnmizca tek bir duruma dayanilarak
degerlendirilemez. Donanim mimarisi tasariminda enerji tilketimini azaltmak i¢in ¢ipin hizi ve
boyutu g6z oniinde bulundurulmalidir. Bununla birlikte, bu kosullarin en ideal durumu igin

belirli bir ¢ip tasariminda bazi tavizler verilmesi gerekebilmektedir.

Memristor tabanli donamim hizlandiricilarinin giivenilirlik iizerindeki etkisi

Memristor teknolojisi, makine 6grenimi, yapay zeka, dogal dil isleme ve goriintii isleme
gibi genis bir uygulama yelpazesi i¢in biiyiik bir potansiyel tasimaktadir. Ancak, bu {iriinlerin
ticari hale gelmesi i¢in giivenilirlik, liretim, tutarlilik ve 6l¢eklenebilirlik gibi bazi énemli
zorluklarin ele alinmast ve asilmasi gerekmektedir (Mehonic et al., 2020). Memristor
teknolojileri ailesi ¢esitlilik gostermekte olup, farkli teknolojiler farkli cihaz ve sistem
kusurlariyla birlikte gelmektedir. Bu zorluklarin yani sira, memristor tabanli donanim
hizlandiricilarinin giivenilirligi ve zorluklari, memristorlerin gérece yeni bir teknoloji olmasi

nedeniyle arastirmacilar icin aktif ve popiiler bir arastirma konusudur.

Memristor teknolojisindeki giivenilirligi etkileyen en Onemli zorluklardan biri,
olgunlagmamis iiretim siire¢lerinden kaynaklanan donanim kusurlaridir (Kannan et al., 2015)
(C.-Y. Chen et al., 2015) (S. Jin et al., 2020). Parametre varyasyonlari, yiiksek hassasiyetli
memristdr programlamasiyla kalibre edilebilse de, donanim kusurlar1 geri doniisiimsiizdiir ve

diizeltilemez (Merced-Grafals et al., 2016).

Memristor teknolojisindeki bir diger ideal dis1 durum ise takili hata olarak bilinen stuck-
at-fault (SAF) ve cihazdan cihaza (D2D) varyasyonlardir (Joksas et al., 2020). Bir ariza
durumunda stuck-at-fault (SAF), bir cihazin belirli bir durumda sikisip kalmasiyla ilgili dnemli
bir giivenilirlik sorunudur (M. Liu et al., 2019). Bu durum, yapay sinir aglarinda yanlis
agirliklarin olugmasina ve hatali hesaplamalara yol acabilir. D2D varyasyonlarida, farkl
cithazlarin programlama darbelerine farkli tepkiler vermesi nedeniyle memristorlerin yanls
programlanmasina neden olabilir. Sonu¢ olarak, memristorler yanlis iletkenlik seviyesine
programlanabilir. Bu sorunlar1 ele almak i¢in, okuma ve dogrulama programlama semalar:
veya yiiksek hassasiyetli islem birimlerinin ¢esitli teknikler onerilmektedir (Le Gallo et al.,

2018; Shim et al., 2020).
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Bir diger sorun, birgok memristif cihazda gozlemlenen akim-gerilim
karakteristiklerindeki dogrusal olmayanliktir. Cikis akimi ile uygulanan voltaj arasindaki
dogrusal iligkinin olmamas1 ve varsayilan dogrusal iligkinin (I = GV) tiim voltaj aralifinda
kullanilamamasi, memristor c¢apraz barlar1 kullanarak dogru vektér matris hesaplamalarini

engellemektedir (Mehonic et al., 2020).

Alan calismalari ile noromorfik sistemin genel degerlendirilmesi

Literatiir incelemesinde ilgili calismalarda goriildiigii tlizere, bilgisayar sistemlerinde
yazilim ve donanim alaninda stirekli ve ¢ok hizli bir gelisim siireci yasanmaktadir. Bu ilerleme
ile birlikte, yapilandirilmis sorunlar1 ¢6zme konusunda basarili olan Von Neumann mimarisine
dayanan geleneksel bilgisayar sistemlerinin, bliylik miktarda yapilandirilmamis veriyi islemek
icin yetersiz oldugu anlasilmistir. Bu durumun sonucunda, son yillarda daha fazla arastirmaci
memristdrlerin 6zelliklerini incelemeye ve daha gergekci memristor modelleri olusturmaya
baglamistir. Memristor tabanli néromorfik hesaplama, donanim birimleri, uygulama modelleri,
algoritmalar ve entegrasyon teknolojilerini kapsayan farkli disiplinlerin arastirma ve uygulama
gelistirme alani haline gelmistir. Bu durum, gercgeklestirilen calismalarda yeni firsatlar
sunarken, ayni zamanda bazi zorluklar1 beraberinde getirmektedir. Bu, donanim tabanl
caligmalarin istenen seviyeye ulasabilmesi i¢in asagida siralanan durumlarin goz Oniinde
bulundurulmasi gerektigi diistiniilmektedir. Memristor tabanli néromorfik donanimin ingasinda
farkli malzemeler kullanilmalidir. Tasarlanan memristorler test edilmeli ve analiz edilmelidir.
Bu analizler dogrultusunda, daha kararli ve giivenilir memristor malzemeleri ve {iretim
yontemleri izlenmelidir. Bir¢cok memristor tabanli uygulama diisiik dogruluk sorunlari
yasamaktadir. Bu sorunun ¢dziimii, memristorlerin giivenilirligini artirmakta yatmaktadir.
Tasarlanan memristor birimlerinin giivenilirligini artirmanin en 6nemli yontemi, yeni tiretim

malzemelerinin kullanilmasidir.

Analog veya dijital hesaplamalarda, farkli cihazlardaki memristor cihaz 6zelliklerindeki
ani degisimler, gerceklestirilen islemlerin dogrulugunu 6nemli dl¢iide etkileyebilir. Ozellikle
yiikksek dogrulugun c¢ok oOnemli oldugu bilimsel hesaplamalarda, memristér cihazlarinin
uygunluk gereksinimi gorece yiiksektir. Dogrulama yontemlerinin veya yedeklilik tasariminin
kullanilmasi, bu hatalarin toleransini bir dereceye kadar artirabilir; ancak bunun sonucunda ek
enerji tiikketimi ve gecikme meydana gelecektir. Sonug olarak, memristér tabanli bellek i¢i
hesaplamalarin dogal avantajlar1 zayiflayacaktir. Bu nedenle, gelistirilen uygulamalarda

kullanilan memristdr cihazlarinin uygunlugu énemli bir sorundur.
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Literatiir taramasindan ¢ikarilan bir diger sonug ise, memristor tabanli yapilarin dikkate
alinmasiyla, bu 6zelliklere uygun olarak tasarlanacak yeni 6grenme algoritmalari ile gelistirilen
sistemden daha iyi verim elde edilebilir. Ayrica, yeni nesil bilgisayarlarin donanim mimarisi,
Von Neumann mimarisinden farkli sekilde tasarlanmalidir. Biyolojik ilham alan bir hesaplama
paradigmasi olarak néromorfik hesaplama, yapay zekanin ve derin 6grenme siireclerinin
hizlandirilmasi ile enerji verimliligi agisindan optimal ¢oziimler igin biiylik bir potansiyele
sahiptir. Akademi ve sanayide artan arastirma girisimleri ile yakin gelecekte daha giivenilir
O0grenme algoritmalar1 ve daha verimli uygulamalar konusunda iyilestirmelerin gerceklesmesi

beklenmektedir.
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MATERYAL VE METOT

Yontem

Bu tez ¢alismasinda, donanim tabanli bir 6grenme modeli olusturma siirecinde kullanilan
metodolojinin temel bilesenleri kapsamli bir bi¢imde incelenmekte ve olusturulacak modelin
performansi1 bilgisayar ortaminda simiile edilmektedir. Bu metodoloji, optimizasyon
yontemlerinin entegrasyonu yoluyla modelin performansini artirmay1 hedeflemekte ve cesitli
adimlar icermektedir. ilk olarak, optimizasyon siirecinde kullanilan matematiksel yaklagimlar
tanitilmakta, ardindan, donanim {izerinde 6grenme modelini kurma agamasinda bu yontemlerin
nasil uygulandigi ele alinmaktadir. Bu ¢er¢evede, her bir adimin modelin genel verimliligine

katkilar1 ve donanimin siirlamalar dikkate alinarak yapilan diizenlemeler de aciklanmaktadir.

Bu calisma, sinir aglarimin donanim tabanli uygulanabilirligini inceleyerek, ozellikle
memristdr tabanlt nano-sinaptik cihazlarin kullanim potansiyelini detayli bir sekilde ele
almaktadir. Memristor gibi gelismis malzemelerle iiretilen nano-sinaptik cihazlar, sinir
aglarinin hem dogruluk hem de islem verimliligi agisindan performansini iyilestirebilmekte,
bununla birlikte enerji tiiketimini azaltarak genis capli hesaplama gereksinimlerine yonelik
etkin ¢oziimler sunabilmektedir. Calismada Onerilen ve bilgisayar ortaminda simiile edilen
donanim tabanli yapay sinir ag1 modeli, ¢evrimi¢i 6grenme ve c¢evrimdisi siniflandirma
gorevleri optimum hale getirilmis olup, 6zellikle veri yogun siniflandirma problemlerinde

islevsel ve Olgeklenebilir bir yap1 sunmaktadir.

Donanim tabanli uygulama siireci, makine 6grenimi ve derin 6grenme algoritmalarinin
ileri besleme (FeedForward, FF) ve geri yayilim (BackPropagation, BP) gibi temel tekniklerini
kapsayarak, FF algoritmasinda giris verisinin agirlikli toplamlar ve aktivasyon fonksiyonlari
iizerinden katmanlar boyunca ¢ikis katmanma ulagtirilmasi prensibine dayanmaktadir. Bu
katman bazli iletim siireci, sinir ag1 ¢iktisinin belirli bir etiket ile karsilagtirilmasini saglar,
boylece modelin tahmin hatasi hesaplanir. BP asamasinda ise, hesaplanan tahmin hatasi,
modelin performansini iyilestirmek lizere optimizasyon algoritmalar1 araciligiyla geri yayilir

ve her bir veri noktasina iliskin agirlik degerleri aninda giincellenerek hata minimize edilir.

Ozellikle donanim seviyesinde optimize edilmis bu sinir ag1 modeli, geleneksel gradyan
inigi gibi yazilim tabanli yontemlerden ayrisarak enerji verimliligi, islem hizi ve dogruluk
acisindan ciddi avantajlar saglamaktadir. Hinduja ve arkadaglari ile Lillicrap ve arkadaglarinin

caligmalari, donanim tabanli sinir aglarinin hem enerji tasarrufu sagladigini hem de islem hizini
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artirdigimmi gostermektedir. Bu aglar, biiyiik veri kiimeleriyle ¢alisirken gerekli olan hesaplama
gliciinii minimize etme konusunda da etkili bir ¢dziim sunmaktadir (Hinduja et al., 2019;
Lillicrap et al., 2020). Sekil 18, calismanin genel yapisini gostermekle birlikte optimizasyon
algoritmalarinin makine 6grenimi model performansi iizerindeki etkilerini inceleyen bir akis
diyagramini da ifade etmektedir. Sekil 18’in genel akisi, giris verilerinin islenmesinden nihai

sonuglarin degerlendirilmesine kadar olan stireci kapsamaktadir.

BASLA

\Z
INPUT DATA (MNIST ve CIFAR-10)
I: Input data
O: Output data

v

Optimizasyon Yoéntemleri icin Hiperparametreler
W: Néronlarin Agirlikiari
LR: Ggrenme Orani
NH: Gizli Néron Sayisi

v
> e:e+l ———F Optimizasyon Yéntemleri
SGD <« > Momenturm
] AdaGrad < » AdaDelta —>
«—— AdaMax < > Nadam —
«——— RMSprop € > Adam >
— Amag ---> max(ACC), min(Loss) —

v

Sinaptik Cihaz Tabanlh FFNN (FeedForward Neural Network)
Net: newff(min_max(p), [I, NH, 10])

Neurosim ile FFNN Egitimi
Network:train(Net, I, O)

y

ACC:Dogru Tahmin Sayisi / Toplam Tahmin Sayisi
v

Epoch(e)<=125

v

ACC:(TP + TN) /(TP + TN + FP + FN)
Enerji(mj) ve Gecikme (s)

v

Optimum Degerler
Woptimum’ LRoptimum ve NHoptimum

v

BITiS
Sekil 18. Calismada kullanilan metodolojinin akis diyagrami.
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Asagida Sekil 18’da gosterilen akis diyagramiin 6zet bigiminde agiklamasi verilmis olup

ilerleyen boliimlerde bu kisimlar detayli bir sekilde anlatilacaktir.

. Baslangic ve Giris Verisi (Input Data): Ilk adimda, MNIST, CIFAR-10 ve Fisher’s
Iris gibi veri kiimeleri bilgisayar ortaminda simiile edilen modele girdi olarak
verilmektedir. Bu veri kiimeleri, el yazis1 rakamlar ve kii¢lik renkli gériintiiler gibi
standart makine 6grenimi test veri setlerini igerir.

. Optimizasyon Yontemleri I¢in Hiperparametreler: Modelin basarisini etkileyen
ogrenme orani, noron agirliklart ve gizli katman sayisi gibi ¢esitli hiperparametreler
belirlenir. Bu ayarlar, modelin performansin1 optimize etmek i¢in detayl
ayarlamalar yapilmasi gereken kritik parametrelerdir.

. Optimizasyon Yontemleri: Akis diyagraminda Stokastik Gradyan Inisi (SGD),
AdaGrad, AdaMax, RMSProp, Momentum, AdaDelta, Nadam ve Adam gibi ¢esitli
optimizasyon algoritmalar1 listelenmistir. Bu algoritmalar, modelin 6grenme
stirecinde agirliklarin giincellenme seklini belirler.

. Hedefler (Amag): Optimizasyon siirecinin amaci, dogrulugu (ACC) maksimize
ederken kaybi (Loss) minimize etmektir. Bu iki metrik, model performansini
degerlendirmede kritik rol oynar.

J Sinaptik Cihaz Tabanli FFNN: Optimizasyon siireci, bir Ileri Beslemeli Yapay Sinir
Ag1 (FFNN) modelini egitmek icin kullanilir. Sinaptik cihazlar terimi, modelin
donanim veya yazilim uygulamalarinda ndromorfik sistemleri temsil ediyor
olabilir.

o Neurosim ile Egitim: YSA’nin egitimi, Neurosim adli bir simiilasyon araci
kullanilarak gerceklestirilir. Bu arag¢, néromorfik hesaplamay: simiile ederek sinir
ag1 performansini degerlendirmeye yardimci olmaktadir.

J Dogruluk ve Optimum Degerlerin Hesaplanmasi: Modelin dogruluk orant (ACC),
dogru tahmin sayisinin toplam tahmin sayisina orani olarak hesaplanir. Bu adimda
ayrica modelin optimum parametre degerleri belirlenir.

. Sonuglar: Nihai sonuglar ve degerlendirme metrikleri sunulmakta, akis diyagrami

"BITIS" adimiyla tamamlanmaktadr.

Sekil 18, optimizasyon algoritmalarinin karsilastirmali performans analizine yonelik bir siire¢
akisini sunmakta olup, makine 6grenimi alaninda hiperparametre ayarlarinin ve optimizasyon

yontemlerinin etkisini incelemek ic¢in tasarlanmistir. Burada optimizasyon ydntemleri
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kullanilarak donanim tabanli bir 6§renme modeli olusturmak ic¢in kullanilan metodolojinin

temel yonleri gosterilmektedir.

Tablo 4. Uygulamanin genel ¢alisma mantigini anlatan sézde kod

Input: InputData, Hyperparameters, Optimizers
Output: BestModel, BestAccuracy, BestLoss
Begin
1: Initialize Variables
2 data «— LoadData (InputData)
3: params «— SetHyperparameters (Hyperparameters)
4. bestModel «— NULL
5 bestAccuracy «— 0
6 bestLoss «— o
7:  For each optimizer in Optimizers do
8: Initialize Model with Current Optimizer
9: model « InitializeModel (params, optimizer)
10: Randomly Initialize Model Weights
11: RandomlnitializeWeights(model)
12: Train the Model using Data
13: Train (model, data)
14: Evaluate Model Performance
15: accuracy < CalculateAccuracy (model, data)
16: loss < CalculateLoss (model, data)
17: Compare and Update Best Model if Necessary
18: if accuracy > bestAccuracy or (accuracy == bestAccuracy and loss < bestLoss) then
19: bestModel < model
20: bestAccuracy «— accuracy
21: bestLoss <« loss
22: End if
23: End For
24: Return Results
25: return bestModel, bestAccuracy, bestLoss
End

Veri Seti Tanimlamasi ve Kullanilan Veri Setleri

El yazis1 karakter tanima amaciyla MNIST veri kiimesi (Li Deng, 2012) kullanilmistir.
MNIST, yaygin olarak el yazis1 rakamlarin taninmasi iizerine yapilan ¢aligmalar i¢in standart
bir test veri kiimesi olarak kullanilmaktadir. Ayrica bilgisayarli gorii algoritmalarinin
performansini degerlendirmede oldukca etkin bir 6lgiit sunar. Bu tez calismasinda, bilgisayar
tarafindan yazilmis karakter tanima siirecini incelemek amaciyla her bir rakamin dijital
goriintlistinii bilgisayar ortaminda iireterek kendi veri kiimemizi olusturduk. Her bir karakter
goriintlisi, veri On isleme asamasinda sayisallagtirilarak baslangictaki 48x48 piksel

cOziinlirliikten 28x28 piksele normalize edilmistir. Bu, sinir agimizin giris katmanindaki
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noronlar icin gerekli olan giris vektorlerini dikey ve yatay 6zellik vektorlerinin birlesimi
seklinde sunmamiza olanak saglamaktadir. Neticede, Onerilen sinir ag1 modelimiz, bilgisayar
ortaminda yazilmis bir karakter ile el yazist bir karakter i¢in toplamda 56 benzersiz 6zellik
tagiyan bir giris vektorlinii islemektedir. Bilgisayar tarafindan iiretilen karakterlerden olusan
yeni bir veri kiimesi, metin goriintiilerinin 28 x 28 piksele sayisallagtirilmasiyla olusturulmus

olup ve Sekil 19 (a) ve Sekil 19 (b)'de gosterilmektedir.
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Sekil 19. (a) Bilgisayar ile yazilmis bir rakamin uygulama ile binary hale getirilmesi (b) Elle
yazilmis bir rakamin uygulama ile binary hale getirilmesi.

Ayrica bu tez ¢aligmasinda, donanim tabanli bir sinir ag1 mimarisinin performansini
degerlendirmek amaciyla CIFAR-10 veri kiimesinden (McCrary, 1992) faydalanilmistir.
CIFAR-10, bilgisayarla gorme alaninda siklikla kullanilan, genis kapsamli ve karmasik bir
goriintii stniflandirma veri setidir. Bu veri seti, her biri 32x32 piksel boyutunda ve renkli olan
60.000 goriintiiden olugmaktadir ve on farkli sinifa dagitilmistir. Bu siniflar, giinliik hayatta
karsilagilan ¢esitli nesne ve hayvan kategorilerini i¢ermektedir. CIFAR-10 veri kiimesindeki
her goriintii, onceden belirlenmis on siniftan birine atanmistir, bu da veri kiimesini denetimli
ogrenme tabanli goriintii siniflandirma galigmalari i¢in ideal hale getirmektedir. Veri kiimesinde
bulunan gesitli nesneler ve karmasik arka planlar, siniflandirma modelleri i¢in oldukga zorlayici
bir ortam sunmakta, bdylece algoritmalarin siniflar1 ayirt edebilmek i¢in derin 6zellikleri
ogrenmesini zorunlu kilmaktadir (McCrary, 1992). Tablo 5’te sézde kodu yazilan ptyhon

programlama dilinde yazilan kod ile CIFAR-10 veri kiimesini igleyip egitim ve test verilerini
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belirli dosyalara kaydeder. Oncelikle, veriler belirtilen dizinlerdeki dosyalardan yiiklenir ve
ardindan egitim verileri birlestirilerek patch_train.txt ve label train.txt dosyalarina kaydedilir.
Test verileri de benzer sekilde patch_test.txt ve label test.txt dosyalarina kaydedilir. Algoritma,
egitim ve test verilerini ayr1 dosyalara kaydederek veriyi model egitimi i¢in kullanilabilir hale

getirir.
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Sekil 20. Calismada CIFAR-10 Veri setinin kullanima.

Girig Vektori

Standartlastirilmis yapist ve zengin igerigiyle CIFAR-10, 6zellikle derin 6grenme ve makine
ogrenimi modellerinin smiflandirma performansini degerlendirme amaciyla aragtirmacilar
tarafindan yaygin olarak kullanilmaktadir. Bu veri kiimesi, siniflandirma algoritmalarinin
gercek diinya problemlerine uyarlanabilirlik performansini degerlendirmek ve farkli tekniklerin
verimliligini nesnel bir bicimde karsilastirmak i¢in 6lciit islevi gormektedir.

Tablo 5. CIFAR-10 veri setinin uygulamada kullanacak dijit yapiya doniistiiriilmesine ait
sozde kod

Input: data_dir, output_dir
Output: patch_train.txt, label_train.txt, patch_test.txt, label_test.txt
Begin

1:  Function: load_cifar10_batch(file)

2: Open file in 'rb* mode
3: Load data using pickle and save it to a dictionary
4: Extract images (from data key) and labels (from labels key) from the dictionary
5: Return images, labels
6: Function: save_data(images, labels, patch_file, label_file)
7: Save images to patch_file
8: Save labels to label_file
9:  Function: process_cifarl0_data (data_dir, output_dir)
10: If output_dir does not exist:
11: Create output_dir
12: Initialize empty lists: train_images and train_labels
13: For each i from 1 to 5:
14: Construct file path as data_dir + 'data_batch_i'
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15: Call load_cifar10_batch(file) to load images and labels

16: Append images to train_images

17: Append labels to train_labels

18: Concatenate train_images and train_labels

19: Call save_data(train_images, train_labels, ‘patch_train.txt', 'label_train.txt")

20: Call load_cifar10_batch(data_dir + 'test_batch') to load test_images and test_labels
21: Call save_data(test_images, test_labels, ‘patch_test.txt', 'label_test.txt") to save test data
22:  Call process_cifar10_data('cifar-10-batches-py", ‘cifarl0_data’)

End

Tez galismasinda onerilen yontemin performansini degerlendirmek i¢in kullanilan diger
bir veri seti Fisher’s Iris veri setidir. Fisher’s Iris veri seti, makine 68renimi ve istatistik
alanlarinda siklikla kullanilan, iyi yapilandirilmis ve basit bir veri setidir. Bu veri seti, her biri
dort farkli 6zellik igeren 150 gdzlemden olugmaktadir ve ti¢ farkli sinifa ayrilmistir. Siniflar, ii¢
farkl iris ¢icegi tiirlinli temsil etmektedir. Bunlar; Iris-setosa, Iris-versicolor ve Iris-virginica.
Her sinif, veri setinde esit sayida 6rnek igerir. Fisher’s Iris veri seti, denetimli 6grenme tabanli
siiflandirma calismalar1 igin ideal bir ortam sunar. Kiiciik boyutu ve dengeli sinif dagilimi
sayesinde egitim ve test islemleri hizlica gerceklestirilebilir. Bunun yani sira, 6zelliklerin
dogrusal olarak ayrilabilirligi, algoritmalarin performansini analiz etmek i¢in uygun bir zemin
olusturur. CIFAR-10 veri setine uygulanan islemler python programlama dili ile Fisher’s Iris
veri setine uygulanarak modelin kullanabilecegi binary formata ¢evrilir. Bu asamalardan sonra

ilgili veri seti 6nerilen model tizerinde kullanilarak sonuclar elde edilir.

Memristor Tabanh Sinir Ag1 Donanim

Donanim tabanli yapay sinir ag1 uygulamalar1 i¢in memristif sinaptik cihazlar giderek
daha fazla benimsenmektedir (J. Chen et al., 2021; Ielmini & Wong, 2018; Qin et al., 2020).
Bu cihazlar, biyolojik sinapslarin islevini taklit ederek yapay sinir aglarinda bilgi isleme ve
ogrenme siirecini etkinlestirmektedir. Yapay sinir aglari, biiylik veri kiimelerini kullanarak
ogrenme algoritmalarini egitmekte ve girdi verilerinin temel 6zelliklerini ¢ikarimsal olarak
ogrenmektedir. Mimari agidan, yapay sinir aglari genellikle iki ana kategoriye ayrilir. Ilk
kategori olan ileri beslemeli aglar, hesaplama siirecini giristen ¢ikisa dogru, her katmanda
ardisik bir sekilde gerceklestirir. Bu tiir aglar, 6grenme siireci sirasinda sinyalleri yalnizca ileri
yonde tasiyarak ¢ikti katmanina ulasir. Bu ag yapisi, hesaplama islemlerini sadelestirirken
dogrusal bilgi akisinm1 korur ve c¢ogunlukla denetimli 6grenme gerektiren siniflandirma
gorevlerinde kullanilir (S. Raj & Ananthi J, 2019). Ikinci kategori olan tekrarlayan yapay sinir
aglar1 (RNN), farkli bir yapisal yaklasim sunar. Bu aglar, dongiisel baglantilar araciligiyla hem

ileri hem geri bilgi akis1 saglamakta ve zaman i¢indeki ardisik iligkileri dikkate alabilmektedir.
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Boylece, veriler arasinda bir hafiza etkisi olusturulmakta ve agin 6nceki durum bilgilerini de
hesaba katarak daha dinamik bir hesaplama kapasitesine sahip olmasi saglanmaktadir. Bu
caligmada ikinci kategoride belirtilen yapay sinir ag1 modeli kullanilmustir. Ileri beslemeli bir
sinir aginda noronlar, katmanlar halinde diizenlenmistir; her katmandaki néronlarin ¢iktis1 bir
sonraki katmana agirlikli bir giris olarak aktarilir ve bu siire¢, katmanlar arasi sinirsel iletimin

temelini olusturur.

Tablo 6, memristor tabanli donanim uygulamalarina yonelik yapay sinir aglar {izerine
gergeklestirilen dort farkli ¢alismanin karsilagtirmali analizini sunmaktadir. Bu c¢alismalar,
biriktirme yontemleri, memristor yapilari, aktif katman kalinliklari, Rorr/Ron oranlari, sinaptik
ozellikler, iletkenlik durumlar1 ve sinaptik voltaj degerlerindeki farkliliklar agisindan detayl
bir sekilde incelenmistir. Analiz, memristorlerin tasarim ve performans parametrelerinin sinir
ag1 uygulamalarindaki etkilerini anlamaya yonelik kapsamli bir bakis agis1 saglamaktadir.
Referanslarda belirtilen ¢aligmalarda ve bu tez calismasinda, biriktirme yontemleri olarak
Darbeli Lazer Biriktirme (PLD), Plazma Destekli Atomik Katman Biriktirme (PEALD),
Reaktif Magnetron Piiskiirtme ve RF-Magnetron Piiskiirtme kullanilmistir. Caligsmalar, 10 nm
ile 65 nm arasinda degisen aktif katman kalinliklarina odaklanmis ve farkli Rorr/Ron oranlari
rapor edilmistir. Sinaptik 6zellikler bu ¢alisma ve (L. Gao et al., 2015; Illarionov et al., 2020;
Miyake et al., 2022) referanslarinda ayrintili olarak agiklanmistir. Cesitli calismalar, iletkenlik
durumlarinin 102 ile 210 arasinda degiskenlik gdsterdigini ve sinaptik voltajlarin 3 Vile 10 V

araliginda dalgalandigini bildirmistir.

Tablo 6. Farklt memristor tabanli donanim uygulamasi yapay sinir ag1 ¢aligmalari.

Calisma (Miyake et al., (IMarionov et al, (L.Gaoetal., 2015) Bugalisma
2022) 2020)
Biriktirme yontemi PLD (Darbeli Lazer PEALD (Plazma Reaktif Magnetron  RF-
biriktirme) Destekli Atomik Piiskiirtme Magnetron
Katman Biriktirme) Sputtering
Yap1 PYTiO2—xPt AVTIO2/Al Ta/TaOx/TiO2Ti AVTiIO2/Al
Aktif katman kalinligi 65 nm 13 nm 10 nm+30 nm 10 nm
Rorr | Row ratioRRAM) 20 100 Rapor edilmedi >2
Sinaptik 6zellikler + Rapor edilmedi + +
Iletkenlik durumlar Not reported Rapor edilmedi 102 210
Sinaptik gerilim 7V,8V,9V,10V Rapor edilmedi 3V 5V

Memristor Sinaptik Tabanh Cihaz Kullanarak Noral Ag Uygulamasi

Memristif sinaptik cihazlar, gelismis 6grenme algoritmalar1 ve yliksek kaliteli veri
kiimelerinin yardimiyla rakam tanima ve goriintii siniflandirma gibi gérevlerde performansi

onemli 6l¢iide artirmaktadir. Bu cihazlar, yapay zeka ve makine 0grenimi uygulamalari i¢in
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ideal bir yap1 sunarak, diisiik gii¢ tiiketimi ve yliksek islem hiz1 avantajlari ile 6ne ¢ikmaktadir.
Calismanin odagi, cesitli optimizasyon algoritmalart kullanilarak hiz, enerji verimliligi ve
dogrulugun optimize edilmesidir. Bu ¢ercevede, memristdr tabanli nano-sinaptik cihazlarin
sahip oldugu 6zelliklerin ve mevcut 6grenme performanslarindaki sinirliliklarin ele alindigi bir

noro-esinli donanim ¢6ziimii sunulmaktadir.

Bu calismada, memristor tabanli cihazin memristif 6zelliklerini kullanarak ileri besleme
(FF) ve geri yayilim (BP) yontemleriyle performans ve verimliligi artirma hedeflenmistir.
Performans karsilagtirmalar1 ve referans saglamak amaciyla iki katmanli bir perceptron (MLP)
sinir ag1 tercih edilerek tasarlanmistir. Sekil 21(a)'da gosterildigi gibi, bu sinir ag1, giris, gizli
ve ¢ikis katmanlarindan olusmakta ve her katmandaki noronlar, bir sonraki katmandaki tiim
noronlara tam baglantilarla baglanmaktadir. Bu baglanti yapisi, agin karmasik veri modellerini
ogrenme kapasitesini artirirken, agirlikli sinapslarla temsil edilen esnek baglantilarla yiiksek
hesaplama giicii sunmaktadir. Giris ve gizli katmanlar arasindaki baglanti agirliklari matris Wiy
ile, gizli ve cikis katmanlar1 arasindaki agirliklar ise matris Wxo ile gosterilmektedir. Agin
egitimi i¢in giris verisi olarak 28x28 piksel boyutuna yeniden 6l¢eklendirilmis MNIST el yazisi

rakamlar1 ve CIFAR-10 veri setleri kullanilmastir.
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Sekil 21. MLP noral agi. Kullanilan BPNN'nin mimarisi ve noronlari. (a) Bilgisayar tarafindan
iiretilen bir rakami temsil eden ikili matris (28x28) ve (b) el yazisi rakam.

Ag topolojisinin varsayilan yapist 784 noronlu bir giris katmani, 128 néronlu bir gizli
katman ve 10 sinifa karsilik gelen 10 néronlu bir ¢ikis katmani igermektedir. Bu yapi, her bir
gorlintiiyli isleyerek uygun rakam simifim1 belirleme yetenegini saglar. Bu parametrelerde
yapilacak degisiklikler, agin performansini1 optimize etmek i¢in yeni ayarlarin yapilmasini
gerektirebilir. Sekil 21(b) ise bir ndron diiglimiinii gosterir; burada ndron, gelen sinapslardan
agirlikli bir toplam1 hesaplamakta ve 1 bitlik diisiik hassasiyetli bir aktivasyon fonksiyonu ile

cevrimdis1 smiflandirma gerceklestirmektedir. Ancak, egitim siirecinde geriye yayilim
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yapilirken, kiiciik hata diizeltmeleri i¢in daha yiiksek hassasiyetli agirlik giincellemeleri

gerekmekte olup calismada bu durum g6z dniinde bulundurularak islemler gergeklestirilmistir.

Bu tez ¢alismasinda tasarlanan memristor tabanli sinaptik cihazin performansini artirmak
amaciyla cesitli optimizasyon yontemleri uygulanmistir. Bu cihazda, 6grenme siireci sirasinda
olusan sinaptik agirlik degisimlerinin Olgiilmesi ve izlenmesi i¢in 0zel bir prob istasyonu
kullanilmistir. Ayrica, memristor cihazinin sinaptik davranislarinin detayli analizleri, bu amaca

yonelik 6zel olarak gelistirilmis bir yazilim ile yiiriitiilerek sonuglandirilmistir.

Memristif eNVM sinaptik ¢ekirdeklerindeki enerji tiiketiminin ana kaynagi, geleneksel
belleklerde siklikla goriilen dinamik gii¢ tiikketiminden farkli olarak, daha ¢ok statik giic
tiikketimine dayanir. Memristif sinapslardan gecen elektrik akimi, enerji tiiketimine 6nemli bir
katki saglamakta olup toplam enerji tiikketimi hem sinaptik c¢ekirdekler hem de g¢evresel
devrelerin tiikettigi enerjinin bilesimi olarak hesaplanmaktadir. Cevresel devrelerin enerji
tilketimi hesaplamalari, 32 nm diiglim teknolojisi ile Ongdriicii teknoloji modeli (PTM)

araciligiyla gerceklestirilmistir.
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Sekil 22. SMU/Pulse Source. Memristor sinaptik cihazin yerlesimi ve deneysel kurulum

Sinir ag1 uygulamasmin bilgisayar {lizerinde enerji tiiketimi analizi i¢in, 17-10750H
islemci (2.90 GHz) ve 8 GB RAM'e sahip bir sistem kullanilmistir. Bu analiz sirasinda enerji
tiiketimi dl¢timlerinde (Garcia-Martin et al., 2019) kaynakta sunulan yonergeler temel alinmis
ve sinir ag1 uygulamasinin bilgisayardaki enerji kullanimini tahmin etmek amaciyla DeLight

adli analiz araci (Sekil 22'de gosterilen) kullanilmistir. Bu yontemler, sinir aglarinin donanim
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tabanli uygulamalar1 i¢in daha diisiik enerji gereksinimleriyle yiliksek verim elde etme

potansiyelini degerlendirmede kritik bir rol oynamaktadir.
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Sekil 23. iki katmanli MLP aginin donanimda uygulanmast i¢in devre blok diyagramu.

Sekil 23, iki katmanli MLP sinir aginin donanim tabanli uygulamasi i¢in devre blok
diyagramin1 gostermektedir. Bu uygulamada, agirlikli toplam hesaplamalart sinaptik
cekirdekler araciligiyla gerceklestirilir. Ancak, standart bir sinaptik dizide kullanilan agirliklar
sadece Wh = 0~1 araliginda negatif olmayan degerler alabilirken, sinir ag1 algoritmasinda hem
pozitif hem de negatif agirlik degerleri mevcuttur, yani Wa = -1~1. Bu durum donanim
tasariminda bazi zorluklar ortaya ¢ikarmakta ve negatif agirliklar1 temsil etmek icin 6zel
coziimler gerektirmektedir. Bu uygulamada, agirliklar1 Wa=-1~1 araligindan Wy = 0~1
araligma doniistiirmek icin algoritmik bir yap1 kullanilmistir. Algoritmadaki agirlikli toplam

hesaplamasi asagidaki gibi ifade edilir:

W,V = 2(Wy, — 0.5))V = 2W,V — JV) (6)

Bu ifadede V giris vektoriini, J ise W4 ve Wy ile ayn1 boyutta ve tiim elemanlart bire esit
olan bir matrisi temsil etmektedir. Denklem (6)'da WyV, sinaptik cekirdekten elde edilen
agirlikli toplamin sonucunu temsil eder. Bu nedenle Wy, (-1~1) araligindan Wy (-1~0) araligina
doniistiiriiliir. Ozetle, Sekil 21 bir sinir aginin donanimsal mimarisini géstermektedir. MNIST,
CIFAR-10 ve Fisher’s Iris veri kiimelerinin bir kism1 girdi vektorii olarak kullanilir ve ¢ikt
vektorlinii tahmin etmek i¢in sinaptik ¢ekirdekler (Win ve Who) aracilifiyla islenir. Ara
katmanda, agirliklar donanim kontrol mantig: tarafindan ayarlanir ve MSB tarafindan islenir.
Sonug olarak, ¢ikti katmani tahmini saglar. Sekil 23 sinir aglarinin donanim uygulamasin

gostermektedir.
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Cihaz Ozellikleri ve Uygulama Deneyleri
Malzeme ve cihaz ozellikleri

Memristorlere dayali néromorfik hesaplama sistemleri, yazilim tabanli sinir aglarindan daha
enerji verimlidir. Dogal analog direngler gibi davranan memristorler, hesaplamalar1 bellek
icinde gerceklestirerek von Neumann mimarisine bir alternatif sunar. Biiyiik 6l¢ekli memristor
tasarimlarini tahmin ve optimize etmek igin NeuroSim ile simiilasyonlara ihtiyac vardir. Ikili
oksitler, basit tretimleri ve CMOS teknolojisi ile uyumluluklar1 nedeniyle elektronik
memristdrler i¢in ¢ok dnemlidir (Ye et al., 2022). Bu memristorlerin {iretimi kolay, diisiik
maliyetli ve mevcut yar1 iletken teknolojileriyle iyi entegre olabilirler. Hf, Zn, V, Ni ve Ti (Gale,
2014) gibi oksitler, kademeli diren¢ anahtarlamalar1 ic¢in sinaptik nano cihazlarda
kullanilmaktadir. Bu sinaps benzeri davranis, memristdrleri noromorfik hesaplama ve sinir agi
uygulamalari i¢in ideal hale getirmektedir. Ayrica sinaptik islevleri taklit eden nano-elektronik
cihazlarin gelistirilmesine 6nemli bir ilgi vardir (Kuzum, 2018). Memristor, CMOS
iiretimindeki 6nemi nedeniyle néromorfik bilgi islem icin umut vericidir. Memristor tabanl
sinaptik cihazlar, bellek i¢i hesaplama i¢in ¢apraz ¢ubuk mimarilerine zahmetsizce dahil
edilebilir. Sekil 24(a) biyolojik sinaps muadillerini ve memristoriin anahtarlama davranisini
detaylandirmaktadir. Yapay sinaps olusturma, bipolar elektrotlar arasinda yer alan
nanopargcaciklarin elektrokimyasal reaksiyonlarina dayanir. Gerilim uygulamasi iyon ve atom

gociine neden olarak iki kutuplu anahtarlama saglar (Ilyas et al., 2020).

Pre-sinaptik n Lo [+] - |
(a) re-sinaptik néron 1| . | : (b) + (c)
Ca“ veya Na_iyonlari i Ust Elektrot Ust Elektrot
Post H
E SIcIoNG
Diftizif ; ® @ £)®
5 oJo o0
: ®) X ®®
Drift o )o &)
- Il © o(0lal O
Algilayicilar |
gliay IPre ; Alt Elektrot Alt Elektrot
| E Potansiyasyon Depresyon
Post-sinaptik néron (Yapay Sinaps) (Yapay Sinaps)

Sekil 24. Biyolojik ve yapay sinapslarin sematik gdsterimi. Norotransmitterler ve reseptorlerle
biyolojik bir sinaps gibi, PRE ve POST sivri uglar1 burada da kullanilir

Sekil 24(c), voltajin nanopargaciklarin bliylimesine, akimin artmasina ve memristoriin diisiik
direngli bir duruma gegmesine neden oldugunu gostermektedir. Gerilim geri ¢ekildiginde, Sekil

24(b)'de gosterildigi gibi, nanoparcaciklar kiigiiliir, akim1 azaltir ve memristorii yliksek direngli
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bir duruma gecirir. Memristor tabanli cihazlarin direnci dinamik olarak degistirebilir ve
biyolojik sinapslarin islevselligini taklit edebilir. Bu cihazlar néromorfik miihendislik ve yapay

sinir aglar1 gibi ileri teknolojik uygulamalar i¢in biiyiik bir potansiyele sahiptir.
Memristor tabanh sinaptik cihazin ozellikleri

Memristorlerin gelisimi RRAM, biyohibrit sistemler ve sensorler gibi yiiksek teknoloji
uygulamalariyla baglantilidir. Bu uygulamalar memristorlerin potansiyeli Sekil 25'te
gosterilmistir. 7i0,, RRAM uygulamalar1 i¢in c¢alisilan en eski malzemeler arasindadir.
Bununla birlikte, memristorler genellikle ACIK veya KAPALI durumlar arasinda degisen
direngli anahtarlama bellek cihazlar1 olarak kullanilir (Wong et al., 2012). Memristor tabanli
RRAM cihazlari, iki durum arasinda gegis yaparak veri depolar ve gilic kapali olsa bile
gerektiginde erisilebilir kalir (Q. Wan et al., 2019). Bazi nano 6lgekli metal oksit memristdrler,
direncte ince ayarlara izin vererek hassas veri isleme ve depolamaya olanak tanir. Bu da onlar1

gelismis noromorfik hesaplama ve yenilik¢i bellek uygulamalar i¢in ideal hale getirmektedir.
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ince tabaka, yiiksek hassasiyet, sinyal yayilimi

Sekil 25. Memristif Cihazlarin Teknolojik Gelismeleri ve Uygulamalari

Teorik olarak, sinaptik agirlik degisiklikleri yazma darbelerinin sayisiyla dogrusal olarak
iligkili olmalidir, ancak gergek diinyadaki cihazlar bu davranistan sapmaktadir. iletkenlik LTP
ve LTD'nin ilk asamalarinda hizla degisir ve kademeli olarak doygunluga ulasir. Sekil 26 ((a),
(b) ve (c)) néromorfik sistemlerin dogrulugunu ve verimliligini etkileyen bu sapmalari
gostermektedir. Bu da detayli karakterizasyon ve optimizasyon gerektirmektedir. Dogrusal
olmayan agirlik giincellemelerini modellemek icin bir cthaz modeli tasarlanmistir. MLP +

NeuroSim, memristdr tabanli sinaptik cihaz gibi analog eNVM sinapslarina sahip néromorfik
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sistemlerin gli¢c kullanimini, egitim gecikmesini ve uzamsal gereksinimlerini modellemektedir

(Luo et al., 2019).
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Sekil 26. Ag:a-Si i¢in dogrusal olmayan agirlik giincellemesi, (b) TiO2 i¢in dogrusal olmayan
agirlik giincellemesi, (¢) Analog eNVM cihaz davranis modelinin -6'dan 6'ya kadar etiketlenmis
dogrusal olmayan agirlik giincellemeleriyle sematik gdsterimi

Iletkenlik degisimi yazma darbeleri (P) ile iliskilidir ve asagidaki denklemlerle ifade edilir:

Gurp = B (1= el D) + Gy )
Girp = =B (1= 7)) 4 G ®
B = (Gmax = Gmin)/ (1 — e~ Pmax/4) ©)

Grtp ve Grp sirastyla LTP ve LTD siiregleri icin iletkenlik degerlerini temsil eder. Gmax, Gmin
ve Pmax dogrudan deneysel sonuglardan elde edilen degerlerdir ve sirasiyla en yliksek
iletkenligi, en diistik iletkenligi ve cihazin en yiiksek ve en diisiik iletkenlik durumlari arasinda
gecis yapmast i¢in gereken maksimum darbe sayisini ifade eder. A parametresi agirlik
giincelleme davraniginin dogrusal olmayan dogasini kontrol eder ve pozitif (mavi) veya negatif
(kirmizi1) olabilir. Sekil 24(a) ve Sekil 24(b)'de LTP ve LTD icin A degerlerinin biiyiikliikleri
aynidir, ancak isaretleri farklidir. B, A'nin bir fonksiyonu olarak tanimlanir ve Gmax, Gmin Ve
Pmax kapsamindaki fonksiyonlari uydurmak ig¢in kullanilir. Denklem ((7), (8) ve (9))
kullanilarak, Sekil 24(c)'de gosterildigi gibi A degeri ayarlanarak cesitli dogrusal olmayan
agirlik artirma (mavi) ve agirlik azaltma (kirmizi) davraniglar: elde edilebilir. Her bir dogrusal
olmayan egri +6 ile -6 arasinda degisen dogrusal olmama degerleriyle etiketlenmistir (P.-Y.
Chen et al., 2018). Denklem (7) ve (8) incelendiginde, A'nin isareti disinda esdeger olduklari
kanitlanabilir. Bu nedenle hem dogrusal olmayan LTP hem de LTD agirlik giincellemeleri i¢in

yalnizca Denklem (7) kullanilacaktir. Sekil 26(c)'den ((a) ve (b)) farkli olarak, daha basit
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formiilasyon i¢in egrilerin sifir numarali darbeden baglamasini saglamak amaciyla tiim LTD

egrileri yansitilmis ve yatay olarak kaydirilmistir.

Biyolojik sinir aglarinda, sinaptik agirlik STDP ile modiile edilir ve hiicre iletkenligi ile
Olciiliir (Prezioso et al., 2016). Bu, yapay sinir aglarindaki 6grenmeyi taklit eder. Memristor
cihazin sinaptik agirlik degisimi, tepe zamanlamasi darbelerinden kaynaklanan iletkenlik
degisiklikleri ile belirlenir, bu da 6n ve ardigik sinaptik tepe zamanlamasina bagli olarak
giiclendirme veya zayiflamaya yol agar. Memristdr tabanlt memristif cihazlar, biyolojik
sinapslarin islevselligini taklit edebilir. Sinaptik agirlik degisiminin miktar1 ve yonii, tepe
zamanlamalar1 arasindaki goreceli iletkenlik degisimi ile baglantili olup STDP ilkeleri ve sinir
ag1 0grenme mekanizmalarini yansitir. Bu ifadenin matematiksel olarak nasil tanimlandigini

belirtmek i¢in Denklem (10) su sekildedir:

AG = (Gafter - Gbefore)/Gbefore (10)

Bu denkleme gore, AG sinaptik agirlik degisimini temsil ederken, Gafier Ve Goefore Sirasiyla on-
son sivri uglarin aktivasyonunu takip eden ve dncesindeki iletkenlik degerlerini temsil eder (S.
Yu et al., 2011). Bu oran sinaptik modiilasyon etkinligini ve yoniinii belirler. Sekil 27(a),
memristor tabanl sinaptik cihazin spike-time bagl plastisite (STDP) 6zelliklerini sunarak
sinaptik Oncesi ve sonrasi spike uglar arasindaki zamanlamanin sinaptik iletkenlikteki
degisiklikleri nasil etkiledigini ifade etmektedir. STDP mekanizmasi, baglantilar1 gliclendiren
veya zayiflatan sinaptik giiclin modiile edilmesinde 6nemli bir rol oynamaktadir. Memristorler
biyolojik  sinapslarin  davranigmi  taklit etmede ve  ndromorfik  sistemlerde
uygulanabilirliklerinde umut vaat etmektedir. Sekil 27(b) cihazin c¢esitli zamanlama
araliklarindaki performansini géstermekte ve sinaptik agirlik modifikasyonunun dinamiklerini

ortaya koymaktadir.
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Sekil 27. Memristor Tabanli Sinaptik Cihazin Spike-Zamanlamasia Bagl Plastisite (STDP)
Ozellikleri. (b) Memristdr tabanli agirlik ayarlama verileri icin normallestirilmis darbe (pulse)
sayis1 ve normallestirilmis iletkenlik arasindaki iligkiyi gosteren grafik

MLP + NeuroSim, ¢evrimi¢i 6grenme siireclerini karsilastirmak icin yaygin olarak
kullanilmaktadir. Memristor tabanli analog eNVM sinapslari ile ndromorfik donanimin gii¢
tiiketimi, egitim gecikmesi ve alan kullanimi gibi metriklerini simiile eder. Normallestirme
parametreleri, deneysel agirlik verilerinin yeniden diizenlenmesi ve normallestirilmesiyle
belirlenmistir. LTP ve LTD verileri NeuroSim dogrusal olmayan uydurma yontemi kullanilarak
yansitilmis ve uydurulmus bu islemin sonucunda sirasiyla 0,19 ve 3,42 dogrusal olmayan
degerlere ulasilmigtir. Bu degerler simiilatorde kullanilmig ve sonuglar Sekil 27(b)'de
gosterilmistir. Bu simiilasyonlar memristor tabanli néromorfik donanimin performansini

optimize etmeye yardimci olmaktadir.

Yapay sinaps olarak memristor ve uygulamanin yazihm-donanim entegrasyonu

Gelisen teknolojiyle birlikte yapay zeka ve sinir aglari, enerji verimliligi ve hesaplama
performansi agisindan daha optimize ¢oziimlere duyulan ihtiyaci artirmistir. Geleneksel
hesaplama yaklagimlarinin 6tesine gecerek, memristdr tabanli yapay sinapslar, enerji verimli
ve biyolojik ilhamli donanim mimarileri i¢in umut vaat eden bilesenler olarak ortaya ¢ikmuistir.
Bu boliimde, memristorlerin yapay sinir ag1 uygulamalarindaki rolii ve yazilim-donanim

entegrasyonu ile bu sistemlerin etkinligi ele alinmaktadir.

Memristdr, elektriksel direnci hafizasina alabilen bir bilesendir ve dogrudan biyolojik
sinapslart taklit etmek i¢in kullanilabilir. Bu 6zellik hem verilerin depolanmasi hem de
islenmesi icin ayni fiziksel yapiyr kullanmasi nedeniyle geleneksel transistorlere kiyasla ¢ok

daha verimli ¢6ziimler sunar.

67



Bu tez calismasinda memristor 6zelligi gosteren TiO, tabanli malzemeler kullanilmistir.
Ti02 tabanli sinaptik bilesen, laboratuvar ortaminda tasarlanarak bilgisayar ortaminda dogrusal
olmayan degerleri elde edilmistir. Elde edilen bu parametreler ile memristor tabanli bir yapay
sinir aginin ¢alismasi bilgisayar ortaminda simiile edilmistir. Ayrica yapay sinapslarin etkili bir
sekilde kullanilabilmesi i¢in, donanim mimarisi ile yazilim algoritmalarinin uyumlu bir sekilde
entegre edilmesi gerekmektedir. Bu entegrasyon, agirliklarin donanim seviyesinde dogrudan
temsil edilmesi ve iglem siireclerinin donanim tabanli olarak optimize edilmesini saglamaktadir.
Tasarim asamasindan sonra uygulamanin yazilim-donanim entegrasyon asamasi

gergeklestirilmistir.

Calismamizda ilk once agirliklarin donanima haritalanmasi yapilmaktadir. Memristor
dizileri, sinir agindaki agirliklarin fiziksel olarak depolandigi yapilardir. Yazilim tarafindan
ogretilen agirliklar, bu dizilere aktarilarak hesaplama islemleri dogrudan donanim iizerinde

gerceklestirilir.

Yazilim-donanim entegrasyonunun ikinci asamasinda donanim tabanli hesaplama
gerceklestirilir. Gergeklestirilen ¢alismada yapay sinir aglarinda hesaplama islemleri, akim ve
gerilim sinyalleri lizerinden gergeklestirilir. Crossbar mimarisi, garpma ve toplama islemlerinin
paralel olarak yapilmasini saglar. Bu, yazilim tabanl islemlere kiyasla hem zaman hem de

enerji verimliligi sunar.

Uygulamanin {ciincii agmasinda hata diizeltme ve geri yayilim islemi i¢in yazilim-
donanim entegrasyonu ayarlanir. Bu islem yapilarak egitim siirecinde, memristorlerin dogal
giiriilti ve hassasiyet sorunlarmin etkisi azaltilmaktadir. Caligmada kullanilan yazilim
algoritmalarinin, hata sinyallerini analiz ederek agirlik giincellemelerinin donanima
yansitilmasi saglanir. Son olarak uygulamanin donanim diizeyindeki enerji verimliligi yazilim-

donanim entegrasyonu ile analiz edilir.
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Sekil 28. Geriye Yayilim Devresi.
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Sekil 28’de, sinir aglarinin sinaptik entegrasyon siirecinde kritik bir bilesen olan Geri
Yayilim Devresi'nin (BPC) karmasik isleyisini detaylandirmaktadir. Hata terimlerinin gizli
katmanlara iletilmesinden, CROSSBAR (CB) yapisindaki son agirlik giincellemelerine kadar
her asama titizlikle incelenmistir. Bu ¢alismada 6zellikle, NMOS transistorii Meo etrafinda
yapilandirilan Carpma Devresinin dogrusal carpma islemlerini gergeklestirmedeki rolii ve farkl
giris konfigiirasyonlarini nasil ele aldig1 kapsamli bir sekilde ele alinmistir. Ayrica, bu devrede
Analog Anahtarlar (AS) ve Ters Ceviren Yiikselteclerin (IA) kullanimi, devrenin
karmasikligina ek bir boyut katmaktadir. Son olarak, devre ¢ikislarinin agirlik giincelleme
mekanizmasindaki kritik rolii vurgulanmis; genlik ve isaretin agirlik ayarlamalarini nasil

sekillendirdigi iizerinde durulmustur.

Bu ¢alisma, TiO: tabanli memristorlerin yapay sinir aglarinda kullanimina yonelik 6zgiin
bir yaklasim sunmaktadir. Ozellikle, laboratuvar ortaminda tasarlanan sinaptik bilesenlerin
bilgisayar ortaminda dogrusal olmayan parametrelerinin elde edilmesi ve bu verilerin
memristdr tabanli bir yapay sinir agmin simiilasyonlarinda kullanilmasi, literatiirde sinirlt
sayida ele alinmis bir konudur. Bununla birlikte, yazilim ve donanim entegrasyonunun her ii¢
asamasinin detayli bir sekilde ele alinmasi ve memristorlerin dogal giiriiltii ve hassasiyet
sorunlarina karst alinan onlemler, ¢alismanin yenilik¢i yonlerini olusturmaktadir. Ayrica TiO:
tabanli sinaptik cihazin kullanildig1 yapay sinir aglarinda optimizasyon ydntemlerinin
dogruluk, enerji ve hiz bakimindan karsilastirildigi, bununla birlikte 6nerilen modelin ¢ok
sayida veri seti ile kararliliginin test edildigi calismaya rastlanmamistir. Bunlar ¢aligmanin

ozglinliigiinii pekistirmektedir.
Uygulamada kullanilan optimizasyon algoritmalarinin siniflandirilmasi

Optimizasyon algoritmalar1 dogruluk, hiz ve genelleme performansi gibi hedeflere gore
smiflandirilir (Bian & Priyadarshi, 2024). Dogruluk, modelin dogru tahminler yapabilme
yetenegini; hiz, islem siiresini; genelleme performanst ise modelin yeni verilere
uyarlanabilirligini gostermektedir. Genellestirme performansi optimizasyon algoritmalarinda
biiyiik ve etkin bir 6neme sahip olup parametrelerin kolayca giincellenebilmesi bu algoritmalari
daha pratik hale getirir. Ayrica, biiyilik veri kiimelerinde enerji tiiketimi performansi da dnemli
bir faktordiir. Farkli bilesenler farkli optimizasyon teknikleri ve stratejileri gerektirmektedir.
Bu caligmada, Stocastic Gradient Descent (SGD) ve varyasyonlari makine 6grenimi ve derin
ogrenme uygulamalarinda kullanilmis olup, bu algoritmalar ilerleyen boliimlerde kisaca
aciklanmistir. Bu calisma, memristdr sinaptik tabanli bir cihaz kullanarak ndéromorfik

hesaplama alaninda sekiz optimizasyon yontemini karsilastirmaktadir.
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Kullanilan optimizasyon yontemleri ve egitim asamasi
Gradyan Descent ve tiirleri

Yapay sinir aglarin1 egitmek, kayip fonksiyonunu en aza indiren ag parametrelerini
belirlemeyi amaglayan bir optimizasyon siirecidir. Bu 6grenme modelleri biiyiik veri kiimeleri
ve ayarlanmasi gereken ¢ok sayida model parametresi gerektirir. Biiyiik veri kiimelerini islemek
icin en uygun yontemi bulmak onemli bir engel olusturmaktadir. Gradyan inisi, model
parametrelerini gradyanin ters yoniinde diizenli olarak giincelleyerek kayip fonksiyonlarini
azaltmak icin ¢ok 6nemli bir yontemdir (Bian & Priyadarshi, 2024). Gradyan inisinin g¢esitli
versiyonlari, optimizasyon siirecinde karsilasilan zorluklarin iistesinden gelmek igin farkli

algoritmik stratejiler sunar.

Makine Ogreniminde kullanilan bir¢ok model bulunmaktadir. Bunlardan biri olan
Stokastik Gradyan Inisi (SGD), parametreleri optimize ederek bir model olusturur ve bu model
araciligiyla gelecege yonelik tahminler yapar (Ruder, 2016). Biiyiik veri setlerinde hizli ve etkili
bir optimizasyon saglar. Bu nedenle SGD ve varyantlar1 olan algoritmalar ¢alismamiz igin
uygun optimizasyon yontemleridir. Asagida SGD ve varyasyonlarinin bir 6zeti verilmistir. Bu

Ozetlerle beraber tez calismasinda kullanimu ile ilgili hesaplama ve kod yapilart gdsterilmistir.

Stochastic Gradient Descent (SGD)

SGD (Robbins & Monro, 1951), makine 6grenimi ve derin 0grenme optimizasyon
problemlerini ¢ozmek icin siklikla Onerilmektedir. SGD, basit, anlasilir ve yapay zeka

modellerinde etkilidir. SGD i¢in matematiksel Denklem 11'de gosterilmistir.

Ot+1 = 0 — aVF(6) (11)

Denklem 11'de; 8;, t adimindaki agirlik vektoriidiir. a, her adimda ne kadar hareket edecegimizi
belirleyen 6grenme oranidir. F;(8,) Gradyan vektoriidiir, rastgele secilen i alt kiimesi i¢in kayip
fonksiyonunun gradyanidir. Bu denklemde, her iterasyonda rastgele bir veri alt kiimesi secilir
ve bu alt kiimedeki Ornekler i¢in gradyan hesaplanir. Bu gradyan, agirhk vektoriini
giincellemek icin agirlik vektoriinlin mevcut degerinden c¢ikarilir. Tablo 7°te SGD

algoritmasinin egitim asamasindaki s6zde kodu gosterilmistir.

Tablo 7. Tez calismasinda kullanilan SGD yonteminin egitim asamasindaki s6zde kodu

Input: numTrain, epochs, learningRate, initialWeights
Output: bestWeights, bestLoss
Begin
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1: weights « initialWeights

2: bestWeights < weights

3: bestLoss «<— o

4: for epoch « 1 to epochs do

5:  for batch < 1 to numTrain do

6: // Ileri yayilim

7: hiddenLayerOutput < ActivationFunction(weights.hiddenLayer * Input)

8: outputLayerOutput < ActivationFunction(weights.outputLayer * hiddenLayerOutput)

9: // Hata hesaplama

10: error < Output - outputLayerOutput

11: // Hata geri yayilimi

12: outputLayerGradient «— error * ActivationDerivative(outputLayerOutput)
13: hiddenLayerGradient < (weights.outputLayer™T * outputLayerGradient) *

ActivationDerivative(hiddenLayerOutput)

14: // Agwrlik giincelleme

15: deltaWeightOutput < -learningRate * outputLayerGradient * hiddenLayerOutput T
16: deltaWeightHidden «— -learningRate * hiddenLayerGradient * Input"T

17: weights.outputLayer < weights.outputLayer + deltaWeightOutput

18: weights.hiddenLayer «— weights.hiddenLayer + deltaWeightHidden

19: // Egitim kaybinin hesaplanmasi

20: currentLoss < LossFunction(error)

21: if currentLoss < bestLoss then

22: bestWeights «— weights

23: bestLoss «— currentLoss

24: End if

25:  Endfor

26: End for

27: return bestWeights, bestLoss
End

Tez calismasinda SGD yontemi memristor tabanli bir uygulama i¢in kullanilmistir. SGD
optimizasyon yontemi uygulamada kullanilan veri setlerine ait her egitim Ornegine gore
agirliklar giincelleyerek klasik Gradient Descent algoritmasina kiyasla daha hizli yakinsama
saglar. SGD algoritmasi, tiim veri kiimesi yerine her adimda yalnizca bir 6rnek veya kiigtik bir
batch kullanarak agirliklart giinceller. Bu 6zellik, SGD’nin biiytik veri kiimeleriyle hizli bir
sekilde ¢alismasina olanak tanir. SGD'nin temel yaklasimi, model parametrelerini giincellemek
icin her adimda kiiclik bir veri grubuna dayali gradyan bilgisini kullanmaktir. Train.cpp
dosyasindaki SGD algoritmasi, modelin agirliklarini initialWeights ile baslatir ve en iyi
agirliklar bestWeights olarak saklar. En i1yi kayip degeri (bestLoss), baslangicta oo olarak

ayarlanir, boylece egitim stireci boyunca ilk glincellenen deger en diisiik olarak kabul edilir.

Egitim dongiisii, belirli bir epoch sayis1 boyunca devam eder. Her epoch i¢cinde model,
tiim batch’ler {izerinde ileri ve geri yayilim yaparak giincellenir. Ileri yayilim sirasinda, modelin
girdisi gizli katman agirliklanyla ¢arpilarak hiddenLayerOutput elde edilir. Bu ara katman

ciktisi, ¢ikis katmania gonderilerek outputLayerOutput hesaplanir, bu da modelin tahmin
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ciktisin1 temsil eder. Bu tahmin, modelin performansini 6l¢gmek i¢in kullanilir ve hata degeri

(error), tahmin edilen ¢ikis ile gercek cikis arasindaki fark olarak hesaplanir.

SGD algoritmasinda, agirlik giincellemesi dogrudan her batch sonrasi gradient bilgisiyle
yapilir. Cikis ve gizli katman agirlik gilincellemeleri icin  deltaWeightOutput ve
deltaWeightHidden hesaplanir. Glincelleme adimi, gradientin 6grenme orani (learningRate) ile
carpilmast ve ardindan mevcut agirliklarin giincellenmesiyle gerceklestirilir. Her batch
sonrasinda, modelin egitim kaybi (currentLoss) hesaplanir. Eger mevcut kayip degeri
(currentLoss), en iyi kayip degerinden daha diisiikse, bu durumda en iyi agirliklar bestWeights

ve en 1yl kayip degeri bestLoss olarak giincellenir.

Egitim siireci tamamlandiginda, modelin en 1yi agirlik degerleri ve en diisiik kayip degeri
dondiiriiliir. SGD, 6zellikle biiyiik veri kiimelerinde hizli bir sekilde optimize etme avantajina
sahiptir. Her batch i¢in ayr1 ayr1 giincelleme yaparak modelin hizla 6grenmesini saglarken, tam
veri kiimesini kullanmadig1 i¢in diisiikk bellek tiiketir. Bununla birlikte, gradyanlarin tek
orneklere gore glincellenmesi zaman zaman giiriiltiilii giincellemelere yol agabilir, bu da yerel
minimumdan kaginmay1 saglar ancak bu durum bazen 6grenmenin dalgali olmasina neden

olmaktadir.

Adam (Adaptive Moment Estimation)

Tez c¢alismasina ait uygulama kisminda kullanilan 6nemli  optimizasyon
algoritmalarindan olan Adam, makine 6grenimi ve derin 6grenmede yaygin olarak kullanilan
bir optimizasyon algoritmasidir. Gradyanlarin birinci ve ikinci momentlerinin tahminlerini
kullanarak uyarlanabilir 6grenme oranlarini belirler. Bu algoritma hem Momentum hem de
RMSprop optimizasyon algoritmalariin ilkelerini birlestirir (X. Liang et al., 2023). Adam
optimizasyon algoritmasi i¢in matematiksel denklemler kiimesi sirayla Denklem (12), (13),

(14), (15) ve (16)'da gosterilmistir.

My = P1me + (1= B1)G: (12)

Vpp1 = Bovp + (1 — B2) gt (13)

ﬁ\lt+1 = %Eil (14)

Ders = 7o (15)
_ _ Mt41

Orer = 0 — @ =5 (16)
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Adam optimizer i¢in matematiksel denklemlerdeki parametreler agsagidaki gibidir: m; ve v,
strastyla birinci ve ikinci momentlerin tahminlerini gosterir. g, Gradyan vektoriidiir. 5; ve 5,
hem gradyanlarin ani dalgalanmalarini hem de uzun vadeli egilimlerini dikkate alarak grenme
stirecini hizlandiran parametrelerdir. a 6grenme oranidir. € sifira bolme hatalarin1 6nlemek igin
kullanilan ¢ok kiiciik bir degerdir. Bu denklemler moment tahminlerini giinceller ve agirliklar
ayarlayarak Adam'mm farkli problemleri ele almasina ve 0grenme oranini otomatik olarak
ayarlamasina olanak tanir. Tablo 8’de tez calismasinda kullanilan Adam yOnteminin egitim

asamasindaki s6zde kodu gosterilmistir.

Tablo 8. Tez caligmasinda kullanilan Adam ydnteminin egitim agamasindaki sézde kodu

Input: numTrain, epochs, learningRate, initialWeights, betal, beta2, epsilon
Output: bestWeights, bestLoss
Begin

1: weights «— initialWeights

2: bestWeights < weights

3: bestLoss «— ©

4: mHidden «— 0, vHidden «— 0

5: mOutput < 0, vOutput < 0

6: t—1
7: for epoch < 1 to epochs do
8:  for batch « I to numTrain do
9:

// Ileri yayilim

10: hiddenLayerOutput < ActivationFunction(weights.hiddenLayer * Input)

11: outputLayerOutput < ActivationFunction(weights.outputLayer * hiddenLayerOutput)

12: // Hata hesaplama

13: error < Qutput - outputLayerOutput

14: // Hata geri yayilimi

15: outputLayerGradient — error * ActivationDerivative(outputLayerOutput)

16: hiddenLayerGradient < (weights.outputLayer™T * outputLayerGradient) *
ActivationDerivative(hiddenLayerOutput)

17: // Agirlik giincelleme

18: mQutput <« betal * mOutput + (1 - betal) * outputLayerGradient

19: vOutput < beta2 * vOutput + (1 - beta2) * outputLayerGradient2

20: mHidden <« betal * mHidden + (I - betal) * hiddenLayerGradient

21: vHidden < beta2 * vHidden + (1 - beta2) * hiddenLayerGradient*2

22: mQutputHat «— mQOutput / (1 - betal™)

23: vOutputHat < vOutput / (1 - beta2”t)

24: mHiddenHat < mHidden / (1 - betal™)

25: vHiddenHat «— vHidden / (1 - beta2™)

26: deltaWeightOutput < -learningRate / sqrt(vOutputHat + epsilon) * mOutputHat

27: deltaWeightHidden — -learningRate / sqrt(vHiddenHat + epsilon) * mHiddenHat

28: weights.outputLayer «— weights.outputLayer + deltaWeightOutput

29: weights.hiddenLayer < weights.hiddenLayer + deltaWeightHidden

30: t—1t+1

31: // Egitim kaybini hesapla

32: currentLoss «— LossFunction(error)

33: if currentLoss < bestLoss then
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34: bestWeights — weights
35: bestLoss «— currentLoss
36: End if

37:  End for

38: End for

39: return bestWeights, bestLoss
End

Adam, Momentum ve RMSprop algoritmalarini birlestiren ve genellikle en iyi
performanst sunan bir optimizasyon yontemidir. Adam, Onceki gradyanlarin ortalamasini
(momentum) ve RMSprop’taki kare gradient ortalamasini kullanarak hem stabil hem de hizli

bir giincelleme yapar.

Adam, adaptif 6grenme hizina sahip olan ve her parametre i¢in 6grenme hizini ayr1 ayri
ayarlayan bir optimizasyon teknigidir. Train.cpp dosyasindaki Adam algoritmasi, modelin
agirliklarini initial Weights olarak baslatarak en iyi agirliklar (bestWeights) ile en disilik kayip
degeri (bestLoss) ilk basta tanimlanir. ilk momentum (mHidden, mOutput) ve ikinci momentum
(vHidden, vOutput) sifirdan baslatilir, ¢ ise zaman adimi olarak kullanilan bir saya¢ olup

baslangigta sifirdir.

Egitim asamasi, belirli bir epoch ve batch sayisinca tekrarlanir. Her epoch kiimesinde her
bir batch igin ileri ve geri yayilim gerceklestirilir. ileri yayilim sirasinda, model girdileri gizli
katmandan ¢ikis katmanma dogru ilerleyerek hiddenLayerOutput ve outputLayerOutput
degerlerini olusturur. Bu degerler, modelin tahmin sonuglar1 olup, hata hesaplamasinda
kullanilir. Modelin tahmini ile gergek ¢ikis arasindaki fark error olarak adlandirilir ve modelin

hatasin1 yansitir.

Geri yayilim asamasinda, modelin gradyanlar1 hesaplanir. Cikis katmanindaki gradyan
(outputLayerGradient), hatanin aktivasyon fonksiyonunun tiirev degeri ile carpilmasiyla
bulunur. Gizli katmandaki gradyan (hiddenLayerGradient), ¢ikis katmanindan gelen gradyanin

gizli katmandaki aktivasyon tiirevi ile ¢arpilmasi sonucu elde edilir.

Adam algoritmas1 iki ayr1 momentum giincellemesi yapar: m ilk momentum olarak
gradyanin hareketli ortalamasini (momentum) ve v ise gradyanin karesinin hareketli
ortalamasini temsil eder. ilk momentum (mQutput ve mHidden), betal katsayist ile giincellenir;
bu katsay1, dnceki momentumun mevcut gradientle ne kadar harmanlanacagim belirler. Tkinci
momentum (vOutput ve vHidden), beta? katsayisi kullanilarak giincellenir ve gradyan

karelerinin bir ortalamasini olusturur.
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Daha sonra, her iki momentum da kaydirilmig ortalama (bias correction) hesaplanarak
giincellenir. Bu adim, 6zellikle baslangictaki momentumlarin etkisini azaltarak dengeleme
yapar ve gradyanin dogru bir tahminini saglar. Bu kaydirilmis ortalama degerler kullanilarak
deltaWeightOutput ve deltaWeightHidden giincellemeleri yapilir. Her iki katman i¢in agirliklar,
gradyanin karesine dayali bir normalizasyon ile Ogrenme hizi adaptif hale getirilerek

giincellenir.

Her batch sonrasi, modelin currentLoss degeri hesaplanir. Eger bu kayip degeri bestLoss
degerinden daha diislikse, en 1yi agirliklar ve kayip degeri giincellenir. Bu siireg, en diistik
kayipla en iyi agirliklart elde etmeyi saglar. Egitim tamamlandiginda, bestWeights ve bestLoss

degeri geri dondiiriiliir.
RMSprop (Root Mean Square Propagation)

RMSprop (Ma et al., 2023) AdaGrad1 modifiye eden bir algoritmadir. RMSprop,
AdaGrad'da karsilagilan azalan 6grenme oranlari sorununu ele almak i¢in gelistirilmistir. Bu
optimizasyon teknigi, bireysel parametre 6grenme oranlarini uyarlamali olarak ayarlamak i¢in
karesel gradyanlarin ¢alisan ortalamasini kullanir. RMSprop optimizasyon algoritmasi i¢in

matematiksel Denklem 17'de sunulmustur.

041 =0, ——— O g; (17)

VttE

RMSprop optimizasyon algoritmasinin matematiksel denklemindeki parametreler asagidaki
gibidir: 6;: t adimindaki model parametreleri, g,: t adimidaki gradyan, n: 6grenme orani, v;:
karesel gradyanlarin iistel agirlikli hareketli ortalamasi, €: sifira bdlme hatalarini 6nlemek i¢in
cok kiigiik bir say1 ve (O: eleman bazinda ¢carpma. Bu denklemde her parametre igin ayr bir
o0grenme orani hesaplanir. Eski gradyanlarin karelerinin ¢alisan ortalamasi, mevcut gradyanin
karesi ile glincellenir. Bu, 6grenme oranlarin1 gradyanlarin biiytikliikklerine gore dinamik olarak
ayarlar. Tablo 9°da tez ¢aligsmasinda kullanilan RMSProp algoritmasinin egitim agamasindaki

sozde kodu gosterilmistir

Tablo 9. Tez ¢aligmasinda kullanilan RMSProp yonteminin egitim asamasindaki sézde kodu

Input: numTrain, epochs, learningRate, initialWeights, gamma, epsilon
Output: bestWeights, bestLoss
Begin

1: weights « initialWeights

2: bestWeights < weights

3: bestLoss «— ©

4: gradSquarePrevHidden < 0
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5. gradSquarePrevOutput «— 0
6: for epoch < 1 to epochs do
7. for batch « I to numTrain do
8: // Ileri yayilim
9: hiddenLayerOutput «— ActivationFunction(weights.hiddenLayer * Input)
10: outputLayerOutput «— ActivationFunction(weights.outputLayer * hiddenLayerOutput)
11: // Hata hesaplama
12: error < Output - outputLayerOutput
13: // Hata geri yayilimi
14: outputLayerGradient «— error * ActivationDerivative(outputLayerOutput)
15: hiddenLayerGradient < (weights.outputLayer"T *outputLayerGradient)*
ActivationDerivative(hiddenLayerOutput)
16: // Agirlik giincelleme (RMSprop)
17: gradSquarePrevOutput < gamma * gradSquarePrevOutput + (1 - gamma) * outputLayerGradient”2
18: gradSquarePrevHidden «— gamma * gradSquarePrevHidden + (I - gamma) * hiddenLayerGradient"2
19: deltaWeightOutput < -learningRate / sqrt(gradSquarePrevOutput + epsilon) *
outputLayerGradient * hiddenLayerOutputT
20: deltaWeightHidden < -learningRate / sqrt(gradSquarePrevHidden + epsilon) *
hiddenLayerGradient * Input"T
21: weights.outputLayer < weights.outputLayer + deltaWeightOutput
22: weights.hiddenLayer «— weights.hiddenLayer + deltaWeightHidden
23: // Egitim kaybini hesapla
24 currentLoss < LossFunction(error)
25: if currentLoss < bestLoss then
26: bestWeights «— weights
27: bestLoss «— currentLoss
28: End if
29:  Endfor
30: End for
31: return bestWeights, bestLoss
End

RMSProp (Root Mean Square Propagation) algoritmasi, gradyanin her parametre igin
adaptif bir 6grenme orani ile giincellenmesini saglayarak optimize eder. Train.cpp dosyasindaki
RMSProp algoritmasi, modelin agirliklarint initialWeights ile baslatarak bagslangicta
bestWeights ve bestLoss degiskenlerini tanimlanir. bestWeights, her adimda en iyi model
agirliklarmi saklarken bestLoss, en diisiik kayip degeri olarak giincellenir. Ilk kare gradyan

ortalamalar1 (gradSquareHidden ve gradSquareOutput) sifir olarak tanimlanir.

Egitim dongiisii, belirli bir epoch sayist boyunca devam eder. Her epoch, belirli sayida
batch iizerinde galisir. Ileri yayilim sirasinda, modelin girdisi gizli katmandan ¢ikis katmanina
dogru gecer ve hiddenLayerOutput ve outputLayerOutput hesaplanir. Bu c¢iktilar modelin

tahmin sonuclaridir ve gercek ciktilarla karsilastirilarak hata (error) hesaplanir.

Hata geri yayilim1 asamasinda, bu hata degeri gradyan hesaplamasinda kullanilir. Cikis

katmanindaki gradyan (outputLayerGradient), modelin hatasinin aktivasyon fonksiyonunun
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tiirev degeri ile carpilmasiyla elde edilir. Gizli katman gradyam (hiddenLayerGradient), ¢ikis

katmanindan gelen gradyan ile gizli katmandaki aktivasyon tiirevi kullanilarak hesaplanir.

RMSProp algoritmasinda, her gradyanin karesi alinir ve hareketli ortalama ile
giincellenir. Kare gradyanlarin ortalamasi (gradSquareOutput ve gradSquareHidden), gamma
(v) katsayisi ile eski ortalama ve (/-gamma) katsayisi ile yeni gradyan karesi harmanlanarak
hesaplanir. Bu hareketli ortalama, 6grenme hizinin parametreler {stiindeki etkisini
normallestirmek i¢in kullanilir. Her bir parametre i¢in adaptif olarak giincellenen bu 6grenme
hizi, gradyanlarin biytlkligliine gore Ogrenme oranmi azaltir ve biliylik gradyanlarin

parametreler lizerindeki etkisini dengeler.

Son olarak, deltaWeightOutput ve deltaWeightHidden agirlik gilincellemeleri adaptif
olarak 6grenme hizina gore giincellenir. Bu giincellemeler, RMSProp 'un epsilon (g) sabitini
kullanarak gradyanin karesi iizerindeki bolmeyi stabilize eder ve 6grenme oraninin sifira
yaklagmasini engeller. Yeni agirliklar, bu giincellemelerle gilincellenir ve her batch sonrasi
modelin kayb1 (currentLoss) hesaplanir. Eger currentLoss degeri bestLoss degerinden daha

diisiikse, bestWeights ve bestLoss giincellenir.

Egitim siireci sona erdiginde, bestWeights ve bestLoss dondiiriiliir. RMSProp algoritmasi,
ozellikle giiriiltiilii ve yiliksek boyutlu veri setlerinde stabil 6grenme saglar. Bu adaptif yontem,
gradyanlarin bliylikligiine gore 6grenme hizin1 dinamik olarak ayarlayarak yakinsamanin daha
dengeli ve hizl1 gerceklesmesini saglar. Bu sayede, derin 6grenme modellerinde ve karmasik

aglarda daha istikrarl bir performans sergiler.

Adagrad (Adaptive Gradient Algorithm)

AdaGrad, bireysel parametrelerin 6grenme oranlarini son gradyanlarina gére optimize
eder (Z. Cai et al., 2023). Biiyiik tiirevlere sahip parametreler 6grenme hizinda hizl bir diisiis
yasarken, kiigiik tlirevlere sahip olanlar daha az 6nemli dl¢ilide azalir. Bu, gradyanlarin gegmis
karesel degerleri kullanilarak yapilir. Ozellikle seyrek veriler veya farkli dlgeklerde 6zelliklere
sahip veriler i¢in kullaniglidir. AdaGrad optimizasyon algoritmasi i¢in matematiksel Denklem

18'de gosterilmektedir.
Ot+1,i = Ori — ﬁ-gt,i (18)

AdaGrad optimize edici i¢in matematiksel denklemlerdeki parametreler asagidaki gibidir:

O¢4+1,;: t+1 adimindaki agirhik parametresi, 8, ;: t adimindaki agirlik parametresi, n: 6grenme
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orani, G, ;: t adimmdaki 7 parametresi igin O6nceki gradyanlarin karelerinin toplami, g;;: t
adimindaki i parametresi i¢in gradyan degeri ve €: sifira b6lme hatalarint 6nlemek i¢in ¢ok
kiigiik bir deger. AdaGrad denkleminde her parametre i¢in ayr1 bir 6grenme orani hesaplanir.
Gegmis gradyanlarin karelerinin toplami1 mevcut gradyan ile giincellenir. Boylece, 6grenme
orani seyrek giincellenen parametreler icin artarken, sik giincellenenler i¢in azalir. Tablo 10°da

caligmada yer verilen AdaGrad algoritmasinin egitim asamasindaki s6zde kodu gosterilmistir.

Tablo 10. Calismada yer verilen AdaGrad algoritmasinin egitim asamasindaki s6zde kodu

Input: numTrain, epochs, learningRate, initialWeights, epsilon
Output: bestWeights, bestLoss
Begin

1: weights «— initialWeights

2. bestWeights < weights

3: bestLoss «— ©

4. gradSquareSumHidden < 0

5. gradSquareSumQutput «— 0

6: for epoch < I to epochs do

7. for batch « I to numTrain do

8: // Ileri yayilim

9: hiddenLayerOutput — ActivationFunction(weights.hiddenLayer * Input)

10: outputLayerOutput < ActivationFunction(weights.outputLayer * hiddenLayerOutput)
11: // Hata hesaplama

12: error < Qutput - outputLayerOutput

13: // Hata geri yayilimi

14: outputLayerGradient — error * ActivationDerivative(outputLayerOutput)

15: hiddenLayerGradient < (weights.outputLayer™T * outputLayerGradient) *

ActivationDerivative(hiddenLayerOutput)

16: // Agirlik giincelleme (Adagrad)

17: gradSquareSumQutput < gradSquareSumOutput + outputLayerGradient”2
18: gradSquareSumHidden « gradSquareSumHidden + hiddenLayerGradient™2
19: deltaWeightOutput < -learningRate / sqrt(gradSquareSumOutput + epsilon) *

outputLayerGradient * hiddenLayerOutput"T
20: deltaWeightHidden — -learningRate / sqrt(gradSquareSumHidden + epsilon) *
hiddenLayerGradient * Input"T

21: weights.outputLayer < weights.outputLayer + deltaWeightOutput

22: weights.hiddenLayer < weights.hiddenLayer + deltaWeightHidden

23: // Egitim kaybini hesapla

24 currentLoss < LossFunction(error)

25: if currentLoss < bestLoss then

26: bestWeights «— weights

27 bestLoss «— currentLoss

28: End if

29:  End for

30: End for

31: return bestWeights, bestLoss

End

78



Adagrad (Adaptive Gradient Algorithm) algoritmasi, parametrelerin ge¢misteki tiim
gradyanlarinin karelerini toplayarak, her parametre i¢in adaptif bir 6grenme orani belirler.
Train.cpp dosyasindaki Adagrad algoritmasi, modelin baslangi¢ agirliklarini initial Weights ile
baslatir ve en iyi agirliklar (bestWeights) ile en diisiik kayip degeri (bestLoss) ilk basta
tanimlanir. Ik kare gradyan toplamlar1 (gradSquareSumHidden ve gradSquareSumOutput)

sifir olarak baglatilir.

Egitim asamasi, belirli bir epoch ve batch sayisinca tekrarlanir. Her epoch kapsaminda
her bir batch igin ileri ve geri yayilim islemleri gergeklestirilir. Ileri yayilim sirasinda, model
girdisi gizli katmandan ¢ikis katmanma dogru gecerek hiddenLayerOutput ve
outputLayerOutput degerlerini hesaplar. Modelin tahmin ettigi outputLayerOutput, gergek ¢ikis

(Output) ile karsilastirilarak hata (error) hesaplanir.

Hata geri yayilim asamasinda, bu hata gradient hesaplamasi i¢in kullanilir. Cikis
katmanindaki gradyan (outputLayerGradient), hatanin aktivasyon fonksiyonunun tiirev degeri
ile carpilmasiyla elde edilirken, gizli katmandaki gradyan (hiddenLayerGradient), ¢ikis

katmanindan gelen gradyan ile gizli katmandaki aktivasyon tiirevinin ¢arpilmasiyla hesaplanir.

Adagrad algoritmasinin karakteristik 6zelligi, her bir gradyanin karesinin zamanla
birikerek toplanmasidir. gradSquareSumOutput ve gradSquareSumHidden degiskenlerinde,
her bir gradyanin karesi, toplam kare gradyanlarin hareketli bir ortalamasini olusturacak sekilde

birikir. Bu toplam, her parametreye 6zel adaptif bir 6grenme oran1 olusturmak i¢in kullanilir.

Agirlik giincelleme adiminda, her bir parametre, 6grenme hizinin gradyanin karelerinin
toplaminin karekdokii ile boliinmesiyle glincellenir. Boylece, sik giincellenen parametrelerin
ogrenme orani azalirken nadiren giincellenen parametrelerin 6grenme orani daha yiiksek kalir.

Epsilon (¢) sabiti, karekok islemi sirasinda sifir b6lme hatasin1 engellemek i¢in eklenir.

Her batch sonrasi, modelin currentLoss degeri hesaplanir. Eger bu kayip degert, bestLoss
degerinden daha diisiikse, en iy1 agirliklar (bestWeights) ve en diisiik kayip degeri (bestLoss)
giincellenir. Bu siire¢, modelin egitimi tamamlanana kadar devam eder ve en iyi agirliklar
dondiiriiliir. Bu tez calismasinda AdaGrad yonteminin memristor tabanli uygulamalarda verimli

bir yontem oldugu ortaya ¢ikmustir.

AdaDelta

AdaDelta, AdaGrad'in azalan 6grenme oranlar1 sorununu ¢ézmek i¢in gelistirilmis bir

uyarlamasidir (Zeiler, 2012). Bu algoritma, siirekli azalan 6§renme oranlarina ve global bir
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O0grenme orani segmeye olan ihtiyaci ortadan kaldirir. AdaDelta, sabit bir pencere boyutunu
korurken Onceki tiim gradyanlara esit onem vererek, gegmis gradyanlardan olusan kayan bir
pencere kullanarak karesel gradyanlarin hareketli ortalamasinm1i  hesaplar. AdaDelta
optimizasyon algoritmas1 i¢in matematiksel denklemler Denklem (19), (20), (21), (22) ve
(23)'te gosterilmistir.

RMS [E[g*]]. = VE[g?]:+€ (19)

RMS [sz]t—l = E[sz]t_1+e (20)
RMS [Ax],_

update = — S =L [[Ef;;]]lt , (21)

Ax, = pAx,_; + (1 — p)update? (22)

Xep1 = X¢ + update (23)

Tablo 11°de ¢alismada kullanilan AdaDelta algoritmasimin egitim asamasindaki sozde kodu
gosterilmistir.

Tablo 11. Calismada kullanilan AdaDelta algoritmasinin egitim asamasindaki s6zde kodu

Input: numTrain, epochs, initialWeights, gamma, epsilon
Output: bestWeights, bestLoss
Begin

1: weights < initialWeights

2: bestWeights < weights

3: bestLoss «— ®

4: gradSquarePrevHidden < 0

5: gradSquarePrevOutput < 0

6: deltaPrevHidden «— 0

7. deltaPrevOutput < 0

8: for epoch « 1 to epochs do

9:  for batch — I to numTrain do

10: // Ileri yayilim

11: hiddenLayerOutput < ActivationFunction(weights.hiddenLayer * Input)
12: outputLayerOutput < ActivationFunction(weights.outputLayer * hiddenLayerOutput)
13: /I Hata hesaplama

14: error < Output - outputLayerOutput

15: // Hata geri yayilimi

16: outputLayerGradient — error * ActivationDerivative(outputLayerOutput)
17: hiddenLayerGradient < (weights.outputLayer™T * outputLayerGradient)

* ActivationDerivative(hiddenLayerOutput)
18: // Agirlik giincelleme (Adadelta)
19: gradSquarePrevOutput < gamma * gradSquarePrevOutput + (1 - gamma) * outputLayerGradient"2
20: gradSquarePrevHidden «— gamma * gradSquarePrevHidden + (1 - gamma) * hiddenLayerGradient"2

21: deltaWeightOutput < - sqrt((deltaPrevOutput + epsilon) / (gradSquarePrevOutput + epsilon)) *
outputLayerGradient * hiddenLayerOutputT
22: deltaWeightHidden — - sqrt((deltaPrevHidden + epsilon) / (gradSquarePrevHidden + epsilon)) *
hiddenLayerGradient * Input"T
23: deltaPrevOutput < gamma * deltaPrevOutput + (1 - gamma) * deltaWeightOutput"2
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24: deltaPrevHidden < gamma * deltaPrevHidden + (1 - gamma) * deltaWeightHidden”2
25: weights.outputLayer < weights.outputLayer + deltaWeightOutput
26: weights.hiddenLayer < weights.hiddenLayer + deltaWeightHidden
27: // Egitim kaybini hesapla

28: currentLoss «— LossFunction(error)

29: if currentLoss < bestLoss then

30: bestWeights «— weights

31: bestLoss «— currentLoss

32: End if

33:  Endfor

34: End for

35: return bestWeights, bestLoss

End

Tablo 11°de gosterilen s6zde kodda goriildiigii gibi, Adadelta optimizasyon algoritmasini

kullanarak bir modelin agirliklarini giinceller ve en iyi agirlik degerlerini kaydeder.

Tez ¢alismas1 uygulama kisminda egitim siireci baglamadan 6nce, weights yani modelin
agirliklari, baslangi¢ degerleri olan initialWeights ile ayarlanir. bestWeights degiskeni de bu
baslangic agirliklariyla baglatilir ve ilerleyen adimlarda en iyi agirliklar burada saklanir.
bestLoss baslangigta sonsuz (o) olarak tanimlanir, boylece ilk hesaplanan kayiptan kii¢iik her
deger, bestLoss olarak giincellenir. Ayrica, Adadelta algoritmasmin bilesenleri olan
gradSquarePrevHidden, gradSquarePrevOutput, deltaPrevHidden ve deltaPrevOutput
sifirdan baglatilir. Bu degiskenler, hareketli ortalamalar i¢in dnceki adimlarin bilgisini saklar.
for dongiisii ile epoch sayisi kadar egitim iterasyonu yapilir. Her epoch, tim egitim verileri
izerinden bir ge¢isi temsil eder. Her epoch iginde, for dongiisiiyle her bir batch (veri kiimesinin
bir alt kiimesi) {izerinde islem yapilir. Ileri yayilim (forward-propagation) asamasinda, modelin
tahminleri hesaplanir. Ilk olarak, giris verisi (input) ile gizli katmanin (hidden layer) agirhiklar
carpilir ve hiddenLayerOutput elde edilir. Daha sonra, hiddenLayerOutput ile ¢ikti katmaninin
(output layer) agirhiklar carpilir ve outputLayerOutput hesaplanir. Bu islemler, aktivasyon
fonksiyonlar1 kullanilarak gerceklestirilir. Cikis (Output) ve outputLayerOutput arasindaki fark
error olarak tanimlanir. Bu, modelin tahmin ettigi deger ile ger¢ek deger arasindaki farktir.
Hata geri yayilim1 (Backward Propagation) ile outputLayerGradient ve hiddenLayerGradient
hesaplanir. outputLayerGradient, c¢ikis katmanindaki hatanin gradyanmi temsil eder.
hiddenLayerGradient ise, ¢ikis katmanindan geri yayilmak iizere gizli katmandaki hatanin
gradyanini igerir. Aktivasyon fonksiyonunun tiirevini kullanarak bu gradyanlar hesaplanir.
Adadelta optimizasyon algoritmasi, her iki katmanin gradyanlarini kullanarak agirliklar:
giinceller. gradSquarePrevOutput ve gradSquarePrevHidden, Onceki kare gradyan

ortalamalarinin agirlikli toplami olarak giincellenir. gamma faktori ile eski degeri, (1 - gamma)
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faktorii ile de yeni gradyan karesi eklenir. Boylece, her yeni batch’te agirliklandirilmis bir
hareketli ortalama olusturulur. delta WeightOutput ve deltaWeightHidden, agirlik degisimi i¢in
kullanilan gilincellemeleri icerir. Bu degerler, Adadelta’nin adaptif 6grenme hiz1 kullanilarak
hesaplanir. Glincelleme orani, onceki kare agirlik degisimleri ve gradyan ortalamalari
arasindaki oranla belirlenir. Bu oran, her bir gradyan i¢in normalize edilmis bir deger saglar ve
giincelleme miktarinin biiyiik veya kii¢iik olmasini 6nler. deltaPrevOutput ve deltaPrevHidden,
yeni agirlik degisimi karelerini saklar ve glincellenen degerlerle hareketli ortalamalarini
strdiiriir. weights.outputLayer ve weights.hiddenLayer, Adadelta algoritmasiyla elde edilen
giincelleme degerleri (deltaWeightOutput ve deltaWeightHidden) kullanilarak gilincellenir.
currentLoss, LossFunction ile error kullanilarak hesaplanir ve bu, modelin mevcut batch
iizerindeki performansini gosterir. Bu kayip degeri, modelin dogrulugunu degerlendirmek igin
kullanilir. Eger currentLoss, bestLoss degerinden kiiclikse, bestWeights ve bestLoss
giincellenir. Bu islem, modelin en iyi agirlik ve en diisiik kayip degerlerinin kaydedilmesini
saglar. Egitim dongiisiiniin tamamlanmasinin ardindan, modelin en iyi agirliklar1 (bestWeights)
ve en diistiik kayip degeri (bestLoss) geri dondiirtiliir.

Tez calismasinda kullanilan, Adadelta algoritmasinin egitim siirecinde adaptif

giincellemeleri nasil yaptigini ve en iyi model parametrelerini nasil kaydettigini 6zetlemektedir.

Nadam (Nesterov-Accelerated Adaptive Moment Estimation)

Nadam, Adam'm giincelleme kuralina Nesterov momentumunu ekler. Bu ydntem,
momentum yoniinde gelecekteki bir konumu dikkate alarak gradyani hesaplar. Boylece
yakinsama hizini artirmayi ve model kalitesini iyilestirmeyi amaclar. Nadam optimizasyon

algoritmas1 icin matematiksel denklemler Denklem (24), (25), (26), (27) ve (28)'de

gosterilmistir.
me = Pime_q + (1= B1)ge (24)
Ve = B + (1= ) gi (25)
e = T (26)
b= (27)
Ocs1 = 0r =i (B + (1= B1)ge (28)

Nadam optimizasyon algoritmasinin matematiksel denklemlerindeki parametreler
asagidaki gibidir: m; ve v, : sirasiyla t adimdaki birinci ve ikinci momentlerin tahminleri. g;:

gradyan vektorii. B; ve B, : hareketli ortalamalar i¢in iistel bozunma oranlari. n: 6grenme orani.
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m; ve D, : birinci ve ikinci momentlerin diizeltilmis tahminleri. €: sifira bolme hatalarini
onlemek i¢in kullanilan ¢ok kii¢iik bir say1. Nadam, dnceki momentum kavramini gelistirmek
icin Nesterov Momentum ve Adam algoritmalarini birlestirir ve boylece yerel minimumlara
takilma riskini azaltir. Tablo 12’de c¢alismada yer verilen Nadam algoritmasimnin egitim

asamasindaki sdzde kodu gosterilmistir.

Tablo 12. Calismada kullanilan Nadam algoritmasinin egitim agsamasindaki sézde kodu

Input: numTrain, epochs, learningRate, initialWeights, betal, beta2, epsilon
Output: bestWeights, bestLoss
Begin
1: weights «— initialWeights
2: bestWeights < weights
3: bestLoss «— ©
4: mHidden <« 0
5: vHidden < 0
6: mQOutput — 0
7 vOutput < 0
8: 10
9: for epoch < 1 to epochs do
10:  for batch « I to numTrain do
11: t—t+1
12: // Ileri yayilim
13: hiddenLayerOutput < ActivationFunction(weights.hiddenLayer * Input)
14: outputLayerOutput < ActivationFunction(weights.outputLayer * hiddenLayerOutput)
15: /[ Hata hesaplama
16: error < Qutput - outputLayerOutput
17: // Hata geri yayilimi
18: outputLayerGradient «— error * ActivationDerivative(outputLayerOutput)
19: hiddenLayerGradient < (weights.outputLayer™T * outputLayerGradient) *
ActivationDerivative(hiddenLayerOutput)
20: // Agwrlik giincelleme (Nadam)
21: mQutput «— betal * mOutput + (1 - betal) * outputLayerGradient
22: vOutput <« beta2 * vOutput + (1 - beta2) * outputLayerGradient2
23: mHidden < betal * mHidden + (1 - betal) * hiddenLayerGradient
24: vHidden < beta2 * vHidden + (I - beta2) * hiddenLayerGradient"2
25: mOQutputHat «— mQOutput / (1 - betal’™)
26: vOutputHat < vOutput / (1 - beta2t)
27: mHiddenHat «— mHidden / (1 - betal™)
28: vHiddenHat < vHidden / (1 - beta2"t)
29: deltaWeightOutput — -learningRate * (betal * mOutputHat + (1 - betal) * outputLayerGradient) /
(sgrt(vOutputHat) + epsilon) * hiddenLayerOutput*T
30: deltaWeightHidden — -learningRate * (betal * mHiddenHat + (1 - betal) *
hiddenLayerGradient) / (sqrt(vHiddenHat) + epsilon) * Input"T
31: weights.outputLayer «— weights.outputLayer + deltaWeightOutput
32: weights.hiddenLayer < weights.hiddenLayer + deltaWeightHidden
33: // Egitim kaybwni hesapla
34: currentLoss < LossFunction(error)
35: if currentLoss < bestLoss then
36: bestWeights «— weights
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37: bestLoss «— currentLoss
38: End if

39: End for

40: End for

41: return bestWeights, bestLoss
End

Nadam optimizasyon yontemi, Adam algoritmasinin bir uzantisi olup, adaptif 6grenme
hizin1 Nesterov momentumu ile birlestirir. Bu yontemde, gradientlerin momentum etkisi altinda
hizlandirilmast saglanirken, her adimda daha iyi sonu¢ almak i¢in Nesterov momentumu
kullanilir. Uygulamada agin egitiminin gergeklestirildigi 7rain.cpp dosyasindaki Nadam
algoritmasinda oOncelikle modelin agirliklar initial Weights ile baslatilir ve en iyi agirliklar
bestWeights olarak kaydedilir. En iyi kayip degeri baslangigta oo olarak ayarlanir, bdylece
egitim boyunca ilk giincellenen kayip degeri en diisiik olarak kabul edilir ve kaydedilir.
Momentum ve ikinci momentum olarak kullanilan mHidden, vHidden, mOutput ve vOutput
sifirdan baglatilir. ¢ degiskeni ise zaman adimini takip etmek i¢in sifirdan baslatilir.

Egitim siirecinde, belirlenen epoch sayist boyunca model giincellenir. Her epoch i¢inde
tiim batch verileri islenir. Ileri yayilim sirasinda modelin giris katmanindan baslayarak
hesaplamalar yapilir. Giris verisi gizli katmanin agirliklariyla ¢arpilarak hiddenLayerOutput
hesaplanir, ardindan bu deger c¢ikis katmanina aktarilir ve modelin tahmini olan
outputLayerOutput elde edilir. Tahmin degeri ile gergek deger arasindaki fark error olarak
hesaplanir, bu hata degeri modelin o anki performansini yansitir.

Geri yayilim sirasinda, hatanin her katmana geri iletilmesiyle gradyanlar hesaplanir. Cikis
katmani i¢in outputLayerGradient, hata ile aktivasyon fonksiyonunun tiirev degeri ¢arpilarak
elde edilir. Gizli katmandaki gradyan ise, ¢ikis katmanindan geriye dogru hesaplanan
gradyanin, gizli katmandaki aktivasyon tiirevi ile ¢carpilmasiyla bulunur. Bu gradyanlar, agirlik
giincellemeleri i¢in kullanilacaktir.

Nadam optimizasyonunda, Once ilk momentum ve ikinci momentum degerleri
giincellenir. mOutput ve mHidden, mevcut gradyanlarla giincellenerek ilk momentum degerini
olusturur ve vOutput ile vHidden da gradyanlarin kareleri iizerinden ikinci momentum olarak
giincellenir. Momentum terimleri kaydirilmis (bias-corrected) ortalamalar olarak hesaplanir;
boylece algoritma baslangictaki dengesizliklerin etkisinden kurtulur ve daha hassas sonuglar
elde edilir.

Agirlhik giincellemeleri yapilirken, Nesterov momentumu ile gelecekteki bir adimda
hareket goz Oniinde bulundurulur. deltaWeightOutput ve deltaWeightHidden, kaydirilmig

ortalama ve karekok ile normalize edilen gradyanlar kullanilarak hesaplanir. Bu gilincellemeler
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adaptif 6grenme hizin1 baz alarak modelin daha verimli bir sekilde en diisiik kayba ulagsmasini
saglar.

Son olarak, modelin performansi her batch sonrasinda hesaplanir. Eger modelin ilgili
batch tizerindeki kayip degeri en diisiik deger olarak giincellenirse, agirliklar bestWeights
olarak saklanir. Egitim siireci tamamlandiginda, modelin en iyi agirlik ve kayip degerleri
dondiiriiliir. Nadam yontemi, gradyanlarin hareketlerini gelecekteki adimlar {izerinden optimize
ederek daha hizli ve kararli bir 6grenme saglar, bu da modelin minimum kayba daha etkin bir

bi¢imde ulagsmasina yardimci olur.

Momentum

Momentum ydntemi (Ruder, 2016) fiziksel momentum kavramina benzemektedir. Amag,
onceki adimlarin hizin1 bir momentum terimi ile hesaba katarak optimizasyon yoniinde daha
hizli hareket saglamaktir. Bu yaklasimla, onceki gradyanlardan elde edilen veriler bir
“momentum” etkisiyle korunarak her seferinde daha hizli giincelleme yapilmasina olanak
saglanir. Momentum optimizasyon algoritmasi i¢in matematiksel denklemler Denklem (29) ve

(30)'te gosterilmektedir.

Vep1 = P10 + age (29)
Or+1 = B1ve + ag; (30)

Momentum optimizasyon algoritmasinin matematiksel denklemlerindeki parametreler
asagidaki gibidir. v;.4: momentumu temsil eder ve ge¢cmis gradyanlarin agirlikli bir
ortalamasidir. 8;: ¢t adimindaki model parametreleri. g,: ¢ adimindaki gradyan. a: 6grenme
orani. f;: momentumu kontrol eden bir hiperparametredir. Tablo 13’te ¢alismada yer verilen

momentum algoritmasinin egitim asamasindaki sézde kodu gosterilmistir.

Tablo 13. Calismada kullanilan Momentum algoritmasinin egitim asamasindaki s6zde kodu

Input: numTrain, epochs, learningRate, initialWeights, gamma
Output: bestWeights, bestLoss
Begin

1: weights « initialWeights
bestWeights «— weights
bestLoss «— o
velocityHidden «— 0
velocityOutput «— 0
for epoch < 1 to epochs do

for batch — 1 to numTrain do
// Heri yayilim

O 2 NP

hiddenLayerOutput < ActivationFunction(weights.hiddenLayer * Input)
outputLayerOutput «— ActivationFunction(weights.outputLayer * hiddenLayerOutput)

~
S
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11: /[ Hata hesaplama

12: error < Output - outputLayerOutput

13: // Hata geri yayilimi

14: outputLayerGradient «— error * ActivationDerivative(outputLayerOutput)

15: hiddenLayerGradient < (weights.outputLayer"T * outputLayerGradient) *
ActivationDerivative(hiddenLayerOutput)

16: 1/ Agwrlik giincelleme (Momentum)

17: velocityOutput «— gamma * velocityOutput - learningRate * outputLayerGradient *

hiddenLayerOutput"T

18: velocityHidden « gamma * velocityHidden - learningRate * hiddenLayerGradient * Input"T

19: weights.outputLayer < weights.outputLayer + velocityOutput

20: weights.hiddenLayer < weights.hiddenLayer + velocityHidden

21: // Egitim kaybini hesapla

22: currentLoss «— LossFunction(error)

23: if currentLoss < bestLoss then

24: bestWeights «— weights

25: bestLoss « currentLoss

26: End if

27:  End for

28: End for

29: return bestWeights, bestLoss

End

Momentum algoritmasi, SGD’ye goére daha kararli bir giincelleme yapmay1 amaglar.
Momentum, bir yone dogru hizlanmay1 saglar ve bu sayede minimum noktaya daha cabuk ve
stabil bir bicimde ulasilir. SGD’de, gradyan degeri her oOrnege gore dalgalandigindan
agirliklarin giincellenmesi de giiriiltiilliidiir. Momentum, 6nceki adimlarin ortalamasini alarak
daha diizgiin bir giincelleme yapilmasini saglar. S6zde kodda once agirliklar ve hiz vektorleri
sifirdan baslatilir. Her epoch ve batch igin ileri yayilim ve hata hesaplamasi yapilir, ardindan
hata geri yayilimiyla gradyan degerleri bulunur. Momentum asamasinda, onceki gradyan
adimlar da dikkate alinarak agirliklarin giincellenmesi saglanir. Bu sayede yerel minimumlara
takilmadan, daha hizl1 bir yakinsama elde edilir. Momentum katsayis1 (gamma), 6nceki gradyan
adimlarmin agirliklarini belirler; bu katsay1 daha biiyiik oldugunda giincellemeler daha stabil
hale gelir. Eger mevcut kayip degeri, daha 6nceki en 1yi kayip degerinden diisiikse, bu deger en
1yl sonug olarak saklanir. Asagida uygulamada kullanilan Momentum optimizasyon yontemi

detayl bir bi¢imde agiklanmustir.

Baslangi¢ degerleri egitim baslamadan 6nce, weights degiskeni modelin baslangi¢c agirlik
degerleri olan initialWeights ile baslatilir. bestWeights, baslangicta weights olarak ayarlanir ve
stire¢ boyunca en iyi agirlik degerlerini kaydeder. bestLoss ise o (sonsuz) olarak belirlenir,
bdylece elde edilen ilk kayip degeri bestLoss’dan daha diisiik olacaktir ve en iyi kayip degeri

olarak gilincellenir. Momentum yoOntemi i¢in ayrica velocityHidden ve velocityOutput
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degiskenleri sifirdan baglatilir; bu degiskenler, agirlik giincellemelerinin hizini1 temsil eder ve
momentum etkisini igerir. Epoch dongilisii ile belirlenen epochs sayis1 kadar c¢alisir ve her
epoch, tim egitim ¢iktilar1 lizerinden bir tam geg¢isi ifade eder. Batch dongiisii her epoch iginde,
batch dongiisii ile her bir batch lizerinde egitim islemi yapilir. Model her batch 'te giincellenir
ve bdylece gradyanlar daha sik bir sekilde giincellemeye katki saglar. Ileri Yayilim (Forward
Propagation), modelin giris katmanindan ¢ikis katmanina kadar veri akisi gergeklesir. Giris
verisi, gizli katmanin agirliklar1 ile c¢arpilarak hiddenLayerOutput elde edilir. Ardindan,
hiddenLayerOutput ¢ikis katmaninin agirliklariyla carpilir ve outputLayerOutput hesaplanir.
Bu islemde, aktivasyon fonksiyonu kullanilarak katmanlarin ¢iktilar1 hesaplanir. Hata
hesaplama ile ¢ikis (Output) ile modelin tahmini (outputLayerOutput) arasindaki fark error
olarak hesaplanir. Bu hata degeri, modelin o anki batch te ne kadar sapma gosterdigini ifade
eder. Hata Geri Yayilimi (Backward Propagation), modeldeki hatalar, katmanlarda geriye
dogru iletilir. Cikis katmani icin outputLayerGradient, hata (error) ile aktivasyon
fonksiyonunun tiirev degerinin carpimziyla hesaplanir. Gizli katman i¢in hiddenLayerGradient,
¢ikis katmanindan geri yayilim ile elde edilen gradyanin, gizli katman aktivasyonunun tiirevi
ile carpilmasi sonucu hesaplanir.

Momentum yontemi kullanilarak giincellemeler, 6nceki adimlarda hesaplanan gradyan
bilgisinin bir kismi korunarak velocityHidden ve velocityOutput glincellemeleri yapilir. Bu
giincellemeler, gamma faktoriiyle 6nceki velocity degerini ¢carparak momentum etkisini saglar.
learningRate ile c¢arpilan giincel gradient ise eklenir. Bdylece velocity, gilincel gradientin
hareketini yumusatir ve gegmis gradientlerin etkisini de barindirir. Agirliklarin giincellenmesi,
elde edilen velocityOutput ve velocityHidden degerleri, weights.outputLayer ve
weights.hiddenLayer agirliklarina eklenerek agirliklar giincellenir. Bu islem, modelin mevcut
batch iizerindeki gradyan yoniinde ilerlemesini saglar, ancak momentum ydntemi sayesinde bu
hareket daha kararli ve istikrarlidir. Egitim kaybinin hesaplanmasi (LossFunction), error
kullanilarak currentLoss hesaplanir. Bu deger, modelin mevcut batch tlzerindeki kayip
miktarmi gosterir ve modelin o anki performansini degerlendirir. En 1y1 agirlik ve kayip
giincellemesinde eger currentLoss, bestLoss degerinden dusiikse, bestWeights ve bestLoss
giincellenir. Bu, modelin simdiye kadarki en iyi performans gosterdigi agirliklarin ve kayip
degerinin saklanmasini saglar. Sonug olarak egitim siirecinin sonunda, bestWeights ve bestLoss
degerleri dondiiriiliir. Bu degerler, modelin en iyi performansi gosterdigi agirliklar: ve en diisiik
kayb1 igerir.

Momentum ydntemi, modelin minimuma daha siiratli ve daha kararli bir bigimde

ulagsmasima yardimci olur. Agirlik giincellemelerinde, gradientlerin gegici dalgalanmalarina
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kars1 bir dengeleme saglar ve gecmisteki gradyan hareketlerinin etkisiyle glincellemeler yapilir.
Bu sayede, model yerel minimumlardan kagmarak daha stabil bir optimizasyon siireci

gerceklestirir.
Adamax

Adam'in bir varyanti olarak gelistirilen AdaMax, sonsuzluk normunu kullanarak
yakinsama kararliligini iyilestirmeyi amaglamaktadir (Long et al., 2023). Bu yaklasimda,
gradyanlarin {stel hareketli ortalamalarinin L-sonsuzluk normu hesaplanir ve Adam
algoritmasindaki gradyanin sonsuzluk normu yerine kullanilir. AdaMax optimizasyon

algoritmasi i¢in matematiksel denklemler Denklem (19), (20) ve (21)'de gosterilmistir.

my = pime_q + (1 —B1)9: (31)
Uy = max(.BZut—l,”gt”oo (32)
Or+1 =6 — 1—L/3{ ur:rte (33)

AdaMax optimizasyon algoritmasinin matematiksel denklemlerindeki parametreler
asagidaki gibidir. 8,: t adimindaki model parametreleri. g,: t adimindaki gradyan. n: 6grenme
orani. 3; ve 3, hareketli ortalamalar icin {istel bozunma oranlarini temsil eden iki parametre.
m;: ¢t adimindaki ilk moment tahmini. u,: t adimdaki ilk moment tahmini ve sonsuzluk
normundan (maksimum mutlak deger) secilen maksimum deger. €: sifira bolme hatalarini
onlemek i¢in kullanilan ¢ok kiigiik bir say1. AdaMax, Adam optimizasyon algoritmasina benzer
sekilde ikinci moment yerine sonsuzluk normunu kullanarak daha istikrarli bir performans
saglamay1 amaclamaktadir. Bu durumun sonucu olarak, 6zellikle derin aglarda daha iyi
sonuglarin alinmasini saglayabilir. Tablo 14’te Adamax algoritmasinin egitim asamasindaki

s0zde kodu gosterilmistir.

Tablo 14. Adamax algoritmasinin egitim asamasindaki s6zde kodu

Input: numTrain, epochs, learningRate, initial Weights, betal, beta2, epsilon
Output: bestWeights, bestLoss
Begin

1: weights «— initialWeights
bestWeights < weights
bestLoss «— o
mHidden «— 0
uHidden «— 0
mQOutput < 0
uOutput < 0
t<—20
for epoch < 1 to epochs do

© 2 NS A wh
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10:  for batch — I to numTrain do

11: t—t+1

12: // Ileri yayilim

13: hiddenLayerOutput < ActivationFunction(weights.hiddenLayer * Input)

14: outputLayerOutput < ActivationFunction(weights.outputLayer * hiddenLayerOutput)

15: /[ Hata hesaplama

16: error < Output - outputLayerOutput

17: // Hata geri yayilimi

18: outputLayerGradient — error * ActivationDerivative(outputLayerOutput)

19: hiddenLayerGradient < (weights.outputLayer™T * outputLayerGradient) *
ActivationDerivative(hiddenLayerOutput)

20: 1/ Agwrlik giincelleme (Adamax)

21: mOQutput «— betal * mOutput + (1 - betal) * outputLayerGradient

22: uQutput — max(beta? * uOutput, |outputLayerGradient|)

23: mHidden < betal * mHidden + (I - betal) * hiddenLayerGradient

24: uHidden «— max(beta? * uHidden, |hiddenLayerGradient|)

25: mQutputHat < mQOutput / (1 - betal™)

26: mHiddenHat < mHidden / (1 - betal™t)

27: deltaWeightOutput < -learningRate * mOutputHat / (uOutput + epsilon) * hiddenLayerOutput"T

28: deltaWeightHidden — -learningRate * mHiddenHat / (uHidden + epsilon) * Input"T

29: weights.outputLayer < weights.outputLayer + deltaWeightOutput

30: weights.hiddenLayer «— weights.hiddenLayer + deltaWeightHidden

31: // Egitim kaybini hesapla

32: currentLoss «— LossFunction(error)

33: if currentLoss < bestLoss then

34: bestWeights «— weights

35: bestLoss <« currentLoss

36: End if

37:  Endfor

38: End for

39: return bestWeights, bestLoss

End

Adamax, ikinci momentumun (v) giincellenmesinde Lco normunu kullanir ve bu sayede,
gradyanin biiylikliiglinden daha az etkilenir ve daha dengeli giincellemeler saglar. Adamax
algoritmasi, oncelikle modelin baslangi¢ agirliklar (initialWeights) ile baslar ve en 1y1 agirliklar
(bestWeights) ile en diisiik kayip (bestLoss) degeri baslangicta tanimlanir. Ik momentum
(mHidden, mOutput) ve Loo normuna gore giincellenen ikinci momentum (uHidden, uOutput)

sifirdan baglatilir. ¢ ise zaman adimi olarak kullanilan bir sayagctir ve baslangicta sifirdir.

Egitim stireci, belirli bir epoch ve batch sayisinca tekrarlanir. Her epoch dahilinde her bir
batch igin ileri yayilim gerceklestirilir. Modelin girdileri, gizli katmandan ¢ikis katmanina
dogru ilerleyerek hiddenLayerOutput ve outputLayerOutput degerlerini olusturur. Bu degerler,
modelin tahmin sonuglar1 olup, hata hesaplamasinda kullanilir. Modelin tahmini ile gercek ¢ikis

arasindaki fark error olarak adlandirilir ve modelin hatasini yansitir.
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Adamax algoritmasinda, ilk momentum (m) ve Loo normuna gore ikinci momentum (u)
giincellenir. Ilk momentum (mOQutput ve mHidden), betal katsayisi ile mevcut gradientlerin
hareketli ortalamas1 olarak hesaplanir. ikinci momentum ise uQutput ve uHidden
degiskenlerinde bera? katsayisi kullanilarak her bir gradientin Loo normuna gore giincellenir,
yani mevcut gradient ile u’nun beta? katsayisina gore dlgeklendirilmis eski degeri arasinda
maksimum olan1 segilir. Bu islem, biiyiik gradient degisimlerinden daha az etkilenilmesini

saglar ve daha kararl1 bir giincelleme sunar.

[Ik momentum, mOQutput ve mHidden igin kaydirilmis ortalama (bias correction)
hesaplanir; bu sayede baslangictaki dengesizliklerin etkisi azaltilmis olur. Daha sonra agirlik
giincellemeleri yapilir. Cikis ve gizli katman agirliklart igin, kaydirilmis ortalamaya gore
giincellenen momentum degerleri (mQutputHat, mHiddenHat) ve Loo normu (uQutput,
uHidden) ile normalize edilerek deltaWeightOutput ve deltaWeightHidden hesaplanir. Bu

adimlar, adaptif bir 6grenme hizinda giincelleme yapilmasini saglar.

Her batch sonrasinda egitim kaybi hesaplanir ve eger bu kayip degeri mevcut en iyi
kayiptan daha diistikse, bestWeights ve bestLoss giincellenir. Bu, modelin egitim siiresince en

diistik kayipla en iyi agirliklar1 6grenmesini saglar.

Egitim tamamlandiginda, modelin en iyi agirliklar1 (bestWeights) ve kayip degeri
(bestLoss) donduriilir. Adamax algoritmasi, Loo normu kullanarak gradyanlarin
biiyiikliiglinden daha az etkilenir ve bu sayede biiyiik gradyan degisimlerine karsi daha
kararlidir. Bu oOzellikleriyle, biiylik veri kiimelerinde Adamax, 6grenme siirecinde daha
istikrarli bir ilerleme saglar. Yapilan tez ¢aligmasinda AdaMax optimizasyon yontemi ile

basarili sonuglara ulagilmistir.

Sekil 29°de uygulamaya ait egitim asamasi belirtilmistir. Bu sekil, tez ¢aligmasinda
kullanilan uygulamaya ait yapay sinir agmin egitim siirecini adim adim agiklayan bir akis

diyagramudir.
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Optimizasyon Algoritmalarini
Girdi Katmani Hiperparametrelerin Kullanimi
Egiim asamasi icin MNIST|  |Ayarlanmasi s Seb
- - N « Momentum
veya CIFAR-10 veri setinden—>\z, y; sonuglari elde etmek igin > . Adam
egitim omeklerinin  sisteme optimizasyon parametrelerinin « Adamax
yUklenmesi ayarlanmasi « AdaDelta
« RMSprop
« Adagrad
« Nadam
y
Backpropagation Feed Forward
. Tahmin hatasi ag boyunca geriye dogru P « Girig verileri sinir agi
yayihr. = katmanlarindan gecerek cikisa
. Katman agirliklan bu hatayi en aza indirecek ulasir.
sekilde ayarlanur. »| . Tahmin hatasini hesaplamak
icin cikti dogru etiketle

A kargilagtirihir.

Agrliklarin
kaydedilmesi

Evet

Hayir

Durum Kontroll

(Dongii Sayist) Egitim Asamasinin Bitisi

Sekil 29. Uygulamanin egitim agamas.

Uygulamanin test asamasi

Bu tez calismasinda, test kisminin ¢alisma manti§in1 aciklamak amaciyla donanim ve
yazilim boliimlerine ait s6zde kodlar Tablo 15 ve Tablo 16'da sunulmustur. Uygulamada
kullanilan MNIST ve CIFAR-10 veri setlerinde egitim i¢in 50.000 bin 6rnek, test asamasi i¢in
ise 10.000 ornek resim objesi kullanilmaktadir. Ayrica uygulamanin saglamligini pekistirmek
amaciyla Fisher’s Iris veri seti uygulamaya dahil edilmistir. Burada ileri beslemeli bir sinir
aginda (feedforward neural network) test verilerini kullanarak smiflandirma islemi
gerceklestirmektir. Program hem donanim hem de yazilim kisminda ¢esitli optimizasyonlar ve
hesaplamalar yaparak enerji sarfiyatini minimum diizeye indirmeyi hedefler. Kodun genel akis1
iic ana bilesenden olusur: donanim parametrelerinin baslatilmasi, tiiketilen enerjinin

hesaplanmasi ve ileri besleme isleminin gerceklestirilmesidir.
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Donanim asamasi

Tablo 15. Uygulamanin test kismina ait sézde kod

Input: arraylH, arrayHO, param, techlH, techHO, testinput, weightl, weight2
Output: correct, sumArrayReadEnergylH, sumArrayReadEnergyHO

Begin

1: Function InitializeHardwareParameters():

2:  // Donanmim parametrelerini baslat

3 if arraylH->cell[0][0] type-> "eNVM" then:

4 readVoltagelH «— arraylH->cell[0][0].readVoltage

5: readVoltageHO «— arrayHO->cell[0][0].readVoltage

6 readPulseWidthIH «— arraylH->cell[0][0].readPulseWidth

7 readPulseWidthHO «— arrayHO->cell[0][0].readPulseWidth

9 if arraylH->cell[0][0] type-> "HybridCell" then:

10: readVoltagelH < arraylH->cell[0][0].LSB->readVoltage

11: readVoltageHO «— arrayHO->cell[0][0].LSB->readVoltage

12: readVoltageMSB «— arraylH->cell[0][0].MSB->readVoltage

13: readPulseWidthIH «— arraylH->cell[0][0].LSB->readPulseWidth
14: readPulseWidthHO <« arrayHO->cell[0][0].LSB->readPulseWidth
15: readPulseWidthMSB <« arraylH->cell[0][0].MSB->readPulseWidth
16: End Function

18: Function CalculateEnergyConsumption():

19:  sumArrayReadEnergylH < 0

20:  sumArrayReadEnergyHO «— 0

22:  // Giris Katmani I¢in Enerji Tiiketimi Hesapla

23:  Her bir gizli katman sinapsi igin:

24: if arraylH->cell type-> "AnalogNVM" then:

25: if arraylH->cell CMOS then:

26: sumArrayReadEnergylH += arraylH->wireGateCapRow * (techlH.vdd * 2) * param->nlnput
27: else, arraylH crosbarr then:

28: sumArrayReadEnergylH += arraylH->wireCapRow * (techlH.vdd * 2) * (param->ninput - 1)
30: if arraylH->cell type-> "DigitalINVM" then:

31: if arraylH->cell CMOS then:

32: sumArrayReadEnergylH += arraylH->wireGateCapRow * (techlH.vdd * 2)

33: else arraylH crossbar ise:

34: sumArrayReadEnergylH += arraylH->wireCapRow * (techlH.vdd * 2) * (param->nlnput - 1)
36: if arraylH->cell type-> "HybridCell" then:

37: sumArrayReadEnergylH += arraylH->wireGateCapRow * (techlH.vdd * 2) * param->nInput

39:  // Cikis Katmani I¢in Enerji Tiiketimi Hesapla
40:  return sumArrayReadEnergyHO

41: End Function

End

Uygulamaya ait sézde kodun ilk asamasinda, donanim parametrelerinin yapilandirilmasi
islemi gerceklestirilir. Bu islem, sinir ag1 modelinin donanimda ¢alistirilmasini saglayacak
parametrelerin baglatilmasimi igerir. InitializeHardwareParameters() fonksiyonu, her hiicre

tiiriine (cell type) gore okuma voltaji (readVoltage) ve okuma darbe genisligi (readPulseWidth)
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gibi parametreleri ayarlar. Kod, donanim katmaninda kullanilan hiicre tiirlinii (eNVM,

HybridCell) tespit ederek uygun voltaj ve darbe genisligi degerlerini belirler.

e Eger hiicre tipi "eNVM" (Embedded Non-Volatile Memory) ise, okuma islemi igin
kullanilan voltaj ve darbe genisligi dogrudan arraylH ve arrayHO nesnelerinden alinir.

e Eger hiicre tipi "HybridCell" ise, hiicrelerin alt bilesenleri olan LSB (Least Significant
Bit) ve MSB (Most Significant Bit) i¢in okuma voltajlar1 ve darbe genislikleri ayr1 ayri
ayarlanir. Bu durum, hibrit hiicrelerin farkli 6zelliklere sahip alt bilesenleri kullanarak

daha esnek bir okuma islemi gergeklestirmesini saglar.

Test agsmasmin bu kisminda donanim tabanli bir YSA modelinin temel gereksinimlerini

olusturarak enerji tiiketimi ve performans hesaplamalarina ge¢is yapilmasini saglar.

Enerji tiiketiminin hesaplanmasinda  CalculateEnergyConsumption() fonksiyonu
kullanilmaktadir. Bu islem, sinir ag1 modelinin ileri besleme asamasinda donanim
kaynaklarinin etkin sekilde kullanilmasi i¢in 6nemlidir. Enerji tiiketimi, sinapslar ve baglantilar

iizerinden gegen akimin voltaj ve kapasitans (capacitance) degerlerine bagl olarak hesaplanir.

¢ Giris Katmani Enerji Tiiketimi: Kod, AnalogNVM, DigitalNVM ve HybridCell gibi farkli
hiicre tiirlerine gore giris katmanindaki enerji tiiketimini hesaplar. Eger hiicreler CMOS
tabanli ise, wireGateCapRow degeri ile voltaj (techlH.vdd) karesi c¢arpilir ve param-
>ninput ile dl¢eklenir. Aksi takdirde, ¢apraz baglantili yapilar i¢in wireCapRow degeri
kullanilir.
e Cikis Katmanm Enerji Tiiketimi: Cikis katmaninda da benzer islemler tekrarlanir, ancak
bu defa arrayHO nesnesi lizerinden enerji tiikketimi hesaplanir.
Bu enerji hesaplamalari, sinir aginin ¢alisirken harcadigi enerjiyi en aza indirmek ve gii¢ verim
seviyesini yilikseltmek icin kritik bir rol oynar. Sinapslarin her biri i¢in yapilan bu hesaplamalar,
toplam  enerji  tiketimini  sumArrayReadEnergylH  ve  sumArrayReadEnergyHO

degiskenlerinde saklar.

Yazilim asamasi

Tablo 16. Uygulamanin test kismina ait s6zde kodun devami (yazilim)

42: Function ForwardPropagationUsingSoftware():
43:  correct «— 0

45:  Tiim test goriintiileri igin:

46: // Gizli katman baslangi¢ degerlerini sifirla
47: outN1[i] < 0

48: alfi] <0

49: // Cikas katman baslangi¢ degerlerini sifirla
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50:
51:
53:
54.
55:
56:
57:
58:
59:
60:
61:
63:
64:
65:
66:
67:
69:
70:

71
73

74:
75:
76:
17

78

outN2[i] < 0
alfi] <0
// Giris Katmanmndan Gizli Katmana Ileri Besleme
if param->useHardwarelnTestingFF Then:
// Donammda enerji tiiketimi hesapla
CalculateEnergyConsumption()
else:
Her bir gizli katman sinapst igin:
// Giris ile sinaps agirligini ¢arp ve toplama ekle
OUtN1[j] += testInput[i][k] * weight1[K][i]
al[j] « Activate(outN1[j])
// Gizli Katmandan Cikis Katmanina Ileri Besleme
Her bir ¢ikis katman sinapsi igin:
// Gizli katman aktivasyon ¢ikiglarini ¢arp ve toplama ekle
outN2[m] += al[j] * weight2[j][m]
a2[m] «— Activate(outN2[m]) // Aktivasyon fonksiyonu uygula
if a2 then:
correct +=1
: End Function
: Function ReportTestResults():
accuracy = correct / param->numMnistTestImages
totalEnergyConsumption = sumArrayReadEnergylH + sumArrayReadEnergyHO
delay = CalculateDelay()
result (accuracy, totalEnergyConsumption, delay)
: End Function

Yazilim Tabanli Ileri Besleme, sinir ag1 modelinin ileri besleme asamasi, yazilim tabanl

olarak ForwardPropagationUsingSoftware() fonksiyonu ile gergeklestirilir. Bu islem, modelin

egitim sirasinda 6grenilen agirliklar1 kullanarak test verilerini siniflandirmasini saglar. Bu

asamada correct degiskeni, dogru tahminlerin sayisini kaydetmek i¢in kullanilir.

e Gizli Katmana Ileri Besleme: Giris katmanindaki sinirler ile gizli katmandaki sinirler

arasinda carpimlar yapilarak gizli katman ¢ikislart (outNI ve al) hesaplanir. Eger
param>useHardwarelnTestingF'F' parametresi etkinse, ileri besleme sirasinda enerji
tiketimi donanimda hesaplanir. Aksi takdirde, yazilim tabanl ileri besleme algoritmasi

caligtirilir.

e Cikis Katmanma lleri Besleme: Gizli katmandan cikis katmanma dogru aym islem

adimlan tekrar edilir. Gizli katman sinirlerinin aktivasyon c¢ikislari (al), ¢ikis katmani

sinir agirliklart ile ¢arpilir ve ¢ikis degerleri (outN2 ve a2) elde edilir.

Son asamada, ReportlestResults() fonksiyonu, sinir ag1 modelinin dogruluk oranin

(accuracy), toplam enerji tiiketimini (totalEnergyConsumption) ve gecikme siiresini (delay)

hesaplar. Bu degerler, modelin donanim tabanli bir ortamda nasil performans gosterdigini ve ne

kadar enerji tiikettigini analiz etmek i¢in 6nemlidir.
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e Dogruluk Orani (Accuracy): Modelin dogru siniflandirdig: test verilerinin toplam test
verilerine orani olarak hesaplanir.
e Toplam Enerji Tiiketimi (7otal Energy Consumption): Giris ve ¢ikis katmanlarindaki
enerji tilketimlerinin toplami1 olarak hesaplanir.
e Gecikme Siiresi (Delay): Ileri besleme siirecinde gerceklesen islemler igin toplam
gecikme siiresi hesaplanr.
Sonuglar, modelin performansini ve gii¢ verimliligini degerlendirerek daha verimli donanim ve
yazilim kombinasyonlar tasarlamak i¢in kullanilir. Bu raporlanan degerler, donanim tabanl
sinir aglar1 i¢in giic verimliligi optimizasyonu ve performans artirnmi agisindan énemli bir

referans saglar.

Sekil 30°de uygulamaya ait test asamasi gosterilmistir. Bu sekil, tez calismasinda
kullanilan uygulamaya ait yapay sinir agmin test siirecini adim adim agiklayan bir akis

diyagramidir.

Girdi Katmani

Egitim asamasi icin MNIST veya CIFAR-
10 veri setinden egitim &rneklerinin
sisteme yiiklenmesi

Feed Forward

« Modelin tahminleri ile gergek Egitim
etiketler Kargilagtirilir. .| asamsinda

« Bagariy! 6lgmek igin bir "] elde dilen
degerlendirme metrigi kullanilir agriiklarin

AN v

Tahminlerin
dosyaya | Tahmin Tahminin ekrana
yallmasi yazdinimasi
Evet Hayir

Durum Kontrolii
(D6ngl Sayisi)

y

Test Agsamasinin Bitigi

Sekil 30. Uygulamanin test asamasi.
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Test asamasi, yapay sinir aginin egitim sirasinda 6grendigi bilgilerin yeni, daha 6nce
goriilmemis veriler lizerinde degerlendirilmesi siirecidir. Bu asamada, agin performansini
Olemek ve genelleme yetenegini degerlendirmek amaglanir. Test verileri, egitim sirasinda
kullanilan veri setinden farklidir ve ayni 6n isleme adimlarindan gecirilmistir. Ag, test verilerini

ileri yayilim (forward propagation) ile isler ve bu veriler i¢in tahminler iretir.

Elde edilen tahminler, test veri setindeki gercek etiketlerle karsilastirilir. Performans,
dogruluk (accuracy), hatalarin ortalamas1 (MSE, MAE gibi) veya F1 skor gibi uygun metrikler
ile degerlendirilir. Bu asamada agin agirliklar1 degistirilmez, yalnizca egitim sirasinda
ogrenilen bilgilerin yeni verilere nasil uygulandigi gozlemlenir. Sonuglar, modelin genelleme
kapasitesini 6lgmek ve gerekirse iyilestirmeler yapmak icin kullanilir. Test asamasi, egitim

stirecinin dogrulugunu ve etkinligini degerlendirmenin en kritik adimlarindan biridir.

Uygulamanin cahistirilmasi

Bu tez calismasinda donanim destekli yapay sinir ag1 (YSA) modellerinin verimli bir
bicimde egitim ve degerlendirme siireglerini ele almaktadir. Geleneksel YSA egitim
algoritmalar1, biiylikk veri kiimeleri {lizerinde hesaplama acisindan yogun islemler
gerektirdiginden, yiiksek enerji tiiketimi ve uzun islem stireleri gibi sinirlamalarla kars1 karsiya
kalmaktadir. Bu sorunlari asmak i¢in, bu ¢alisma YSA'nin donanimsal bir platformda egitilmesi
amaciyla bir yontem gelistirmekte ve simiilasyon tabanli bir sinaptik ¢ekirdek yapilandirmasi
kullanmaktadir. Kod, egitim verilerinin islenmesi, sinaptik agirliklarin baslatilmasi, NeuroSim
cekirdeklerinin yapilandirilmasi ve YSA modelinin donanim iizerinde dogruluk, gecikme siiresi
ve enerji tliketimi gibi performans metriklerinin hesaplanmasi adimlarin1 icermektedir. Bu
yaklagimla, YSA'nin donanimda etkin sekilde ¢alistirilmasi saglanarak hem enerji verimliligi
hem de islem siiresi agisindan iyilestirmeler hedeflenmektedir. Tablo 17°de ana fonksiyon
kullanilarak veri setlerinin yiiklenmesi ve ¢esitli fonksiyonlarla uygulamanin baslatilmasi

gosterilmistir.

Tablo 17. Uygulamnin ¢alistirildig1 ana fonksiyona ait s6zde kod

Input: trainData, trainLabels, testData, testLabels, totaINumEpochs, interNumEpochs,
numMnistTestimages, numTrainlmagesPerEpoch, optimization_type

Output: output.csv, accuracy and performance metrics

Begin

1: [Initialize random seed and load MNIST data

2: ReadTrainingDataFromFile("trainData", "trainLabels")

3: ReadTestingDataFromFile("testData", "testLabels")

4: Initialize synaptic arrays and NeuroSim cores
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5: arraylH->Initialization<RealDevice>()

6: arrayHO->Initialization<RealDevice>()

7: NeuroSimSubArrayInitialize and NeuroSimNeuronlinitialize

8: Calculate area and leakage power

9: NeuroSimSubArrayArea and NeuroSimSubArrayLeakagePower

10: Initialize weights and hardware mapping

11: Weightlnitialize() and WeightToConductance() (if useHardwarelnTraining)
12: Open output file output.csv

13: For each epoch block

14: Run training for interNumEpochs

15: If not using hardware in training but in testing, then WeightToConductance()
16: Run validation

17: Save accuracy to file and print metrics

18: Print read/write latency and energy for synaptic cores

19: If HybridCell or _2T1F, print transfer latency and energy

20: End for

21: Return 0

End

Tablo 17°de gosterilen s6zde kodda, uygulamada bir MLP modelini donanimsal platformda
egitim ve test siireglerini Ozetlemektedir. Kod, egitim verilerini yiikler, modelin donanim
tarafim1 kurar, ag1 egitir ve sonunda dogrulama yapar. Siire¢ asagidaki asamalardan

olusmaktadir:

e Rastgele Say1 Cekirdegi ve Veri Yiikleme: Kod, rastgele say1 iiretimini baslatmak icin
bir ¢ekirdek degeri ayarlar ve MNIST, CIFAR-10 veya Fisher’s Iris veri setinden egitim
ve test verilerini yiikler. Bu adim, modelin egitim ve test asamalarinda kullanilacak
gorilintii ve etiketlerin bellek i¢ine alinmasini saglar.

e Sinaptik Agirlik Dizilerinin ve NeuroSim Cekirdeklerinin Baglatilmasi: YSA'nin gizli
katmanina ve c¢ikti katmanina ait sinaptik agirlik dizileri, 'RealDevice” kullanilarak
baglatilir. NeuroSim ¢ekirdeklerinin ayarlar1 yapilir ve bu sinaptik ¢ekirdekler, belirli
donanim 6zelliklerine gore yapilandirilir.

e Alan ve Kagak Gii¢ Hesaplama: Modelin donanimsal yapisini simiile eden NeuroSim
cekirdeklerinin alan ve standby (bekleme) modunda enerji tiiketimleri hesaplanir. Bu
hesaplamalar, modelin donanim {izerinde kapladigi fiziksel alam1 ve diisiik giic
modundayken harcadigi enerjiyi tahmin etmeye yardimei olur.

e Agirliklarin Baglatilmasi ve Donanima Uygun Sekilde Haritalanmasi: Modelin sinaptik
agirliklart baglatilir ve donanim iizerinde calisacak sekilde iletkenlik degerlerine

dontistiirtiliir. Eger egitimde donanim kullanilacaksa, bu doniistiirme iglemi yapilir.
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e Cikti Dosyasinin Acilmasi: Egitim siireci boyunca modelin dogruluk oranlarinin
kaydedilecegi ‘output.csv' dosyasi agilir.

e Egitim ve Dogrulama Dongilisii: Kod, ‘totalNumEpochs ™ boyunca modeli egitir ve her
‘interNumEpochs ™ sonras1 dogrulama yapar. Egitim siireci tamamlandiginda dogruluk
orani hesaplanir ve “output.csv' dosyasina yazilir.

¢ Performans ve Enerji Tiiketim Metrigi Hesaplama ve Yazdirma: Egitim ve dogrulama
asamalar1 boyunca sinaptik ¢ekirdeklerin okuma/yazma gecikme siireleri ile enerji
tiikketimleri hesaplanir ve ¢ikt1 olarak yazdirilir. Eger “HybridCell” veya “ 2TI1F” gibi
0zel hiicre tipleri kullaniliyorsa, aktarim gecikme siireleri ve enerji tiiketimleri de ayrica
rapor edilir.

e Sonuglarin Ciktis1t ve Dondiirme: Egitim siireci tamamlandiginda, modelin dogruluk
oranlar1 ve donanim {izerindeki performans metrikleri “output.cs” dosyasina yazilmis

olur ve ‘main’ fonksiyonu basariyla sonlanir.

Performans ol¢iim metrikleri

Donanim tabanli 6grenme sistemlerinin performansini degerlendirmek icin kullanilan
temel dlctitler; dogruluk, test hata orani, kesinlik ve 6zgiilliiktiir. Dogruluk (accuracy), sistemin
yaptig1 dogru tahminlerin toplam tahminlere oranini ifade eder ve genel model basarisinin bir
gostergesi olarak kullanilir. Test hata orani (test error rate) ise yanlis siniflandirmalarin oranini
temsil eder ve modelin tahminlerindeki hatalar1 degerlendirmek icin kritik bir 6l¢iittiir. Bu oran,

modelin genelleme yetenegini 6lgmek i¢in 6nemli bir referans saglar.

Kesinlik (precision), modelin pozitif olarak smiflandirdigi orneklerin ne kadarinin
gercekte dogru oldugunu olger. Bu, 6zellikle yanlis pozitif siniflandirmalarin maliyetli oldugu
durumlarda (6rnegin, tibbi teshis sistemlerinde) olduk¢a 6nemli bir metrik olarak karsimiza
cikar. Diger bir ifadeyle, kesinlik, modelin "gercek pozitif" olarak adlandirilan dogru pozitif

tahminleri tespit etme kapasitesine odaklanir.

Ozgiilliik (specificity) ise modelin negatif siniflandirmalarindaki basarisini, yani "gercek
negatifleri" dogru bir sekilde tanimlama yetenegini Olgcer. Bu metrik, 6zellikle yanlis
negatiflerin kritik sonuglar dogurabilecegi senaryolarda (6rnegin, giivenlik sistemlerinde)

modelin dogruluk seviyesini analiz etmek i¢in kullanilir.

Bu o6lciitler birlikte degerlendirildiginde, donanim tabanli 6grenme sistemlerinin hem
dogruluk hem de hata toleransi agisindan ne kadar etkili oldugunu kapsamli bir sekilde analiz

etmeye olanak tanir. Bu ¢alisma 6zelinde bu 6lg¢iitler bir arada degerlendirilerek uygulanmistir.
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Performans degerlendirmesi sirasinda, bu metrikler arasindaki denge de dikkate alinmali;
ozellikle bir metrikteki iyilesmenin diger metrikler lizerindeki potansiyel olumsuz etkileri goz
onlinde bulundurulmalidir. Boylece, uygulamaya 6zgli gereksinimlere uygun optimizasyon
stratejileri gelistirilebilir. Bu calisma, optimizasyon algoritmalarinin 6grenme siireglerini
degerlendirmek amaciyla, her yontem i¢in dogruluk metriginin hesaplanmasiyla baslamaktadir.
Dogruluk (accuracy), bir modelin dogru tahmin oranmni temsil etmesi bakimindan, model
performansini degerlendirmek i¢in kritik bir gostergedir. Sadece tek bagina bir metrik olarak
degil, ayn1 zamanda diger performans Olgiitleri ile birlikte ele alindiginda, modelin genel
etkinliginin kapsamli bir degerlendirilmesine olanak tanir. Bu baglamda, dogruluk metrigi,
yalnizca modelin genel basarimini gostermekle kalmaz; ayn1 zamanda veri kiimeleri arasinda
model performansit hakkinda ayrintili i¢goriiler sunar. Bu iggoriiler, farkli optimizasyon
algoritmalarinin etkinliklerini karsilastirma agisindan énemli bir temel olusturur. Ozellikle,
algoritmalarin veri kiimesine 6zgii 6grenme dinamikleri lizerindeki etkilerini anlamak ve
modelin genelleme yetenegini analiz etmek i¢in dogruluk metrigi, diger Olciitlerle entegre bir
bicimde kullanilabilir. Ayrica, bu metriklerin sagladigi1 karsilagtirmali analiz, optimizasyon
algoritmalarinin avantajli ve dezavantajli yonlerinin tespit edilmesine olanak tanir. Bu siireg,
yalnizca mevcut modellerin daha optimum bir diizeye ¢ikarilmasi i¢in degil, ayn1 zamanda daha
verimli ve daha dogru modellerin tasarlanmasi i¢in de yol gosterici bir rol oynar. Caligma,
dogruluk metrigini, optimizasyon algoritmalarin1 daha genis bir performans perspektifinden
degerlendirmek icin bir temel tas olarak ele almakta ve bu sayede modern makine 6grenimi
sistemlerinin performansini artirmaya yonelik degerli katkilar saglamaktadir. Asagida bu

metrikler i¢in matematiksel denklemler verilmistir:

TP+TN

Accuracy = m (34)

Error Rate = L — (35)
TP+TN+FP+FN

Sensitivity = P (36)

Specificity = ——— (37)

Bu metriklerin hesaplanmasinda kullanilan terimler agagidaki gibi tanimlanmistir: TP (dogru
pozitif), MNIST el yazis1 rakamlarin veya CIFAR-10 veri setindeki resimlerin dogru tanindigi
durumlarin sayisimi ifade eder. FP (yanlis pozitif), rakamlarin dogru olarak yanlis tanindigi
durumlarin sayisini gosterir. TN (dogru negatif) yanlis rakamlarin dogru sekilde yanlig olarak

tanimlandig1 vaka sayisini ifade eder. FN (yanlis negatif), dogru olarak taninmasi gereken

99



rakamlarin yanlis tanimlandigr durumlarin sayisini temsil eder. Bu terimler, modelin tahmin
performansini ayrintili olarak analiz etmek i¢in kullanilir ve her birinin kendine 6zgii anlami1 ve

Onemi vardir.
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ARASTIRMA BULGULARI VE TARTISMA

Deneysel calismalar siirecinde, sistemin istikrarli bir sekilde calismasii saglamak
amaciyla uzun siiren ve detayli denemeler gerceklestirilmis, bu denemeler sirasinda ortaya
cikan caligma zamani hatalar titizlikle diizeltilmistir. Sistemin tiim bilesenleri uyum iginde
calisir hale getirildikten sonra, arastirma hipotezlerini test etmek ve arastirma sorularina yanit
bulmak amaciyla ¢esitli deneyler planlanmis ve uygulanmaya baslanmistir. Elde edilen
bulgular, degerlendirilip sonuglara ulasilmasini takiben, karsilastirmali tablolar ve
detaylandirilmis grafikler ile gorsellestirilmistir. Sonuclar, c¢aligmanin saglamligini ve

tutarliligini artiracak sekilde sistematik olarak raporlanmaistir.

Bu tez ¢alismasi, memristor tabanli nano-sinaptik cihazlarin kullanildigi bir sinir aginin
donanim tabanli uygulamasini1 gostermektedir. Calismada islem stiresi, alan gereksinimi ve
enerji tiiketimi gibi performans sonuglarim1 degerlendirilmektedir. Bu hesaplamalar ve
deneylerden elde edilen sonuglar, Tablo 18°de belirtilen 6zelliklere sahip calisma ortaminda
gerceklestirilmis ve Slglimleri tamamlanmistir. Bu ¢alisma ortami, deneylerin dogrulugunu ve
tekrarlanabilirligini elde etmek i¢in gerekli kosullar altinda olusturulmus olup, elde edilen

bilgilerin saglamlig1 bu spesifik ortamda yapilan dl¢limlerle garanti altina alinmistir.

Tablo 18. Calisma Ortama Ait Ozellikler

Birim Ozellik

Islemci HexaCore Intel Core i7-10750H, 4533 MHz (46 x 99)
Bellek 24 GB 3200 MHz DDR4

Ekran Kart1 nVIDIA GeForce GTX 1650 Ti (HP)

On Bellek 12 MB

Hafiza 512 GB SSD

Sekil 31°’da uygulamanin Linux igletim sistemi ortaminda derlenmesi gosterilmistir.
"make" komutuyla baslatilan bu derleme siireci, GNU Compiler Collection (GCC) kullanilarak
cok sayida C++ dosyasinin derlenmesini ve nihai olarak tek bir calistirilabilir dosya {iretimini
icermektedir. Bu derleme siireci, yiiksek performansh bir yapay sinir agi simiilasyon ile
donanim benzetimi yaziliminin hazirlanmasina yoneliktir. Kullanilan optimizasyon seviyesi
(0O3) ve OpenMP destegi, performans ihtiyaclarinin karsilanmasi i¢in se¢ilmistir. Bagimsiz
object dosyalarinin iiretilmesi, modiiler yapiy1 koruyarak gerekli bilesenlerin her biri ayr1 olarak

derlenmesini saglamaktadir.
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Donanim tabanli model, ¢evrimi¢i 6grenme yetenegi ile karakter tanima yaparken, ayni
zamanda ¢evrimdis1 siniflandirma yapabilme 6zelligine sahiptir. Uygulama siireci, bilgisayarla
yazilmis ve elle yazilmis rakamlari tanimlamak igin sinir aginda ileri besleme ve geri yayilma

(BP) islemlerini igermektedir.

(base) bpbg@bpbg-HP-Pavilion-Gaming-Laptop-16-a0xxx:~/Desktop/SGDS make

g++ -c -fopenmp -03 -std=c++0x -w Array.cpp -o Array.o

g++ -c -fopenmp -03 -std=c++8x -w Cell.cpp -o Cell.o

g++ -c -fopenmp -03 -std=c++8x -w formula.cpp -o formula.o

g++ -c -fopenmp -03 -std=c++0x -w I0.cpp -o I0.o

g++ -c -fopenmp -03 -std=c++8x -w Mapping.cpp -o Mapping.o

g++ -c -fopenmp -03 -std=c++0x -w NeuroSim.cpp -o NeuroSim.o

g++ -c -fopenmp -03 -std=c++@x -w Param.cpp -o Param.o

g++ -c -fopenmp -03 -std=c++8x -w Test.cpp -o Test.o

g++ -c -fopenmp -03 -std=c++0x -w Train.cpp -o Train.o

g++ -c -fopenmp -03 -std=c++8x -w NeuroSim/Adder.cpp -o NeuroSim/Adder.o

g++ -c -fopenmp -03 -std=c++0x -w NeuroSim/CurrentSenseAmp.cpp -o NeuroSim/CurrentSenseAmp.o
g++ -c -fopenmp -03 -std=c++8x -w NeuroSim/DecoderDriver.cpp -o NeuroSim/DecoderDriver.o

g++ -c -fopenmp -03 -std=c++8x -w NeuroSim/DFF.cpp -o NeuroSim/DFF.o

g++ -c -fopenmp -03 -std=c++0x -w NeuroSim/formula.cpp -o NeuroSim/formula.o

g++ -c -fopenmp -03 -std=c++0x -w NeuroSim/FunctionUnit.cpp -o NeuroSim/FunctionUnit.o

g++ -c -fopenmp -03 -std=c++0x -w NeuroSim/MultilevelSAEncoder.cpp -o NeuroSim/MultilevelSAEncoder.
g++ -c -fopenmp -03 -std=c++0x -w NeuroSim/MultilevelSenseAmp.cpp -o NeuroSim/MultilevelSenseAmp.o
g++ -c -fopenmp -03 -std=c++0x -w NeuroSim/Mux.cpp -o NeuroSim/Mux.o

g++ -c -fopenmp -03 -std=c++0x -w NeuroSim/NewSwitchMatrix.cpp -o NeuroSim/NewSwitchMatrix.o
g++ -c -fopenmp -03 -std=c++8x -w NeuroSim/Precharger.cpp -o NeuroSim/Precharger.o

g++ -c -fopenmp -03 -std=c++0x -w NeuroSim/ReadCircuit.cpp -o NeuroSim/ReadCircuit.o

g++ -c -fopenmp -03 -std=c++0x -w NeuroSim/RowDecoder.cpp -o NeuroSim/RowDecoder.o

g++ -c -fopenmp -03 -std=c++8x -w NeuroSim/SenseAmp.cpp -o NeuroSim/SenseAmp.o

g++ -c -fopenmp -03 -std=c++0x -w NeuroSim/ShiftAdd.cpp -o NeuroSim/ShiftAdd.o

g++ -c -fopenmp -03 -std=c++0x -w NeuroSim/SRAMWriteDriver.cpp -o MNeuroSim/SRAMWriteDriver.o
g++ -c -fopenmp -03 -std=c++8x -w NeuroSim/SubArray.cpp -o NeuroSim/SubArray.o

g++ -c -fopenmp -03 -std=c++0x -w NeuroSim/Subtractor.cpp -o NeuroSim/Subtractor.o

g++ -c -fopenmp -03 -std=c++8x -w NeuroSim/SwitchMatrix.cpp -o NeuroSim/SwitchMatrix.o

g++ -c -fopenmp -03 -std=c++0x -w NeuroSim/Technology.cpp -o NeuroSim/Technology.o

g++ -c -fopenmp -03 -std=c++8x -w NeuroSim/VoltageSenseAmp.cpp -o MNeuroSim/VoltageSenseAmp.o
g++ -c -fopenmp -03 -std=c++8x -w NeuroSim/WLDecoderOutput.cpp -o NeuroSim/WLDecoderOutput.o
g++ -c -fopenmp -03 -std=c++0x -w NeuroSim/WLNewDecoderDriver.cpp -o NeuroSim/WLNewDecoderDriver.o

Sekil 31. Uygulamanin derlenmesi
Sekil 32°de tez caligmasinda sinir agi simiilasyonunun c¢alistirildigi komut satirt
gosterilmektedir. Komut satirinda, sinir ag1 simiilasyonunun bazi1 donanim 6zellikleri ve her bir

epoch (egitim dongiisii) i¢in dogruluk orani, gecikme siireleri ve enerji tiikketimi hesaplanarak
ekranda gosterilmektedir.

102



(base) bpbg@bpbg-HP-Pavilion-Gaming-Laptop-16-a0xxx:~/Desktop/SGD_okS ./main
Total SubArray (synaptic core) area=8.6186e-09 m~2
Total Neuron (neuron peripheries) area=1.3306e-09 m~2
Total area=9.9491e-09 m" 2
Leakage power of subArrayIH is : 1.3021e-04 W
Leakage power of subArrayHO is : 1.8232e-05 W
Leakage power of NeuronIH is : 1.8368e-05 W
Leakage power of NeuronHO is : 2.4850e-06 W
Total leakage power of subArray is : 1.4844e-04 W
Total leakage power of Neuron is : 2.0853e-05 W
Accuracy at 1 epochs is : 75.75%

Read latency=3.2471e-02 s

Write latency=6.5511e+02 s

Read energy=8.5397e-06 J

Write energy=4.3861e-04 J
Accuracy at 2 epochs is : 79.33%

Read latency=6.4942e-02 s

Write latency=1.3942e+03 s

Read energy=1.7080e-05 J

Write energy=9.2236e-04 J
Accuracy at 3 epochs is : 83.52%

Read latency=9.7414e-02 s

Write latency=2.1342e+03 s

Read energy=2.5619e-05 J

Write enerqy=1.4104e-03 J

Sekil 32. Uygulamanin ¢cahistirilmasi

Sekil 31°de tez calismasina ait uygulanin ¢iktilarin ti¢ adimi asagida agiklanmistir.

Alan (Area) Hesaplamalari:

Total SubArray (synaptic core) area: Sinir aginin agirliklarini depolayan ¢ekirdek birimin
toplam alanidir. Burada 8.6186¢e-09 m? olarak verilmistir.

Total Neuron (neuron peripheries) area: Sinir agindaki ndronlarin ¢evresel birimlerinin
toplam alani1 (6rnegin, giris ve ¢ikis birimleri). Bu 1.3306e-09 m? olarak hesaplanmaistir.

Total area: Yukaridaki iki alanin toplami olarak 9.9491e-09 m? verilmis.

Bu alan 6l¢limleri, donanim mimarisi tasariminda kullanilan bellek ve islem birimlerinin

fiziksel biiytikliiklerini ifade etmektedir.

Gii¢ (Power) Hesaplamalari:

Leakage power of subArraylH: "Input-Hidden Layer"” alt dizisindeki sizint1 giici,
1.3021e-04 W olarak hesaplanmustir.

Leakage power of subArrayHO: "Hidden-Output Layer"” alt dizisindeki sizint1 giicii,
1.8232e-05 W olarak hesaplanmustir.

Leakage power of NeuronIH/NeuronHO: Giristen gizli katmana (/H) ve gizli katmandan
cikisa (HO) olan baglantilardaki néronlar i¢in gii¢ tiiketimleri verilmistir.

Total leakage power: Sistem genelindeki toplam gii¢ sizintisidir (1.4844e-04 W subArray
i¢in ve 2.0853e-05 W noronlar igin).

Uygulamada elde edilen bu degerler, donanimin ¢alisma sirasinda harcadig1 giicii ve sizinti

enerjisini simiilasyonla ifade etmektedir.
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Dogruluk (Accuracy) ve Performans Verileri:
e Dogruluk (Accuracy), modelin belirli sayida epoch (iterasyon) sonundaki performansini
gosterir:
e Epoch: %75,75 dogruluk
e Epoch: %79,33 dogruluk
e Epoch: %83,52 dogruluk
Performans olciitleri:
e Read latency: Verilerin okunmasi sirasinda gegen siire (6rnegin, ilk epoch (iterasyon) igin
3,24712e-02 s).
e Write latency: Verilerin yazilmasi sirasinda gecen siireyi ifade eder.
e Read energy / Write energy: Verilerin okunmasi ve yazilmasi sirasinda harcanan enerji

(joule cinsinden).

Yukarida Sekil 27°de gosterilen c¢iktilar agiklanmistir. Bu ¢iktilar, sinir ag1 tabanli bir
donanim sisteminin enerji verimliligi, alan kullanim1 ve performans agisindan nasil ¢alistigini
detayli bir sekilde ortaya koymaktadir. Ciktilar, sistem tasariminin fiziksel boyutlari (alan), gii¢
tiikketimi (leakage power) ve performans olgiitleri (dogruluk, gecikme siireleri, enerji tiikketimi)

hakkinda kapsamli bilgi sunmaktadir.

Oncelikle, toplam alan hesaplamalar1, donanim mimarisinin fiziksel tasarimi ve yerlesim
planlar1 agisindan oldukca 6nemlidir. Sinir ag1 ¢ekirdegi (synaptic core) ve g¢evresel néron
birimlerinin ayr1 ayr1 alan olglimleri, toplam alanin nasil dagildig1 gosterilmektedir. Bu alan
dagilimi, ¢ip tasariminda hem verimlilik hem de maliyet acisindan kritik bir faktordiir.
SubArray (alt dizi) ve Neuron (ndron) alanlariin birlesimi, tiim sistemin fiziksel biiyiikligiini
ortaya koyarken, bu alan ol¢iimleri, 6zellikle entegre devrelerde daha az yer kaplayan, daha

yiiksek yogunluklu tasarimlarin gelistirilmesi i¢in 6nemli bir girdi saglamaktadir.

Gii¢ tliketimi hesaplamalari, 6zellikle enerji verimliligi yiiksek sistemlerin tasariminda
kilit bir role sahiptir. Donanim sisteminin hem subArray hem de ndron seviyesindeki sizinti
giicli 6l¢timleri, sistemin hangi bilesenlerinin daha fazla enerji harcadigin1 ve bu harcamanin
nasil optimize edilebilecegini anlamaya yardime1 olur. Ozellikle, Input-Hidden Layer (IH) ve
Hidden-Output Layer (HO) baglantilarindaki s1zint1 gii¢ degerleri, sinir ag1 modelinin ¢aligmasi
sirasinda hangi katmanlarin daha fazla enerji harcadigini géstermektedir. Toplam gii¢ tiiketimi
ise donanimin siirekli ¢aligma sirasinda ne kadar enerji gerektirdigini anlamak icin bir referans

noktasi saglar.
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Model dogruluk ve performans verileri, sinir ag1 modelinin belirli epoch (iterasyon)
sayilarindaki 6grenme yetenegini ve islem performansini degerlendirmek i¢in kritik dneme
sahiptir. Model, her epoch sonunda dogruluk agisindan iyilesme gostermekte ve %75,75'ten
baslayarak %83,52'ye kadar yilikselmektedir. Bu, modelin egitim siirecinin etkili oldugunu ve
daha fazla epoch ile dogruluk seviyesinin arttigin1 géstermektedir. Ancak bu artisin, enerji
tiiketimi ve gecikme siireleri {izerinde bir maliyeti vardir. Okuma ve yazma gecikme siireleri
(read/write latency) ile enerji tikketimi (read/write energy) degerleri, modelin egitim siireci
boyunca nasil bir yiik olusturdugunu acikga ortaya koymaktadir. Ik epoch'tan itibaren okuma
ve yazma siireleri ile enerji tiikketiminde bir artis gorilmektedir, bu da daha karmasik
hesaplamalarin ve daha biiyiik veri akiglarinin gerceklestigine isaret eder.

Tez calismasinda elde edilen bu c¢iktilar, donanim ve sinir ag1 modelinin birlikte
calisgmasindan dogan karmasik bir dengeyi temsil etmektedir. Gii¢ tiiketimi ve alan
gereksinimlerini azaltmak, dogruluk seviyesini artirirken performans Olciitlerini optimize
etmek icin kritik 6nemdedir. Bu baglamda, veriler, donanim ve yazilim optimizasyonlar1 i¢in
baslangi¢ noktasi olarak kullanilabilir. Ozellikle enerji verimliligi, dogruluk ve gecikme siiresi
arasindaki dengenin nasil iyilestirilecegini anlamak i¢in detayli bir analizi bu ¢alisma ile
gosterilmistir. Bu tlir bir ¢calisma hem donanim tasarimcilart hem de sinir agi1 algoritmasi

gelistiricileri igin yol gdsterici bir rehber niteligindedir.
Uygulamada Elde Edilen Deneysel Sonuclar

Bu makalede, el yazis1 rakam tanima i¢in memristor tabanli sinaptik cihazlar1 kullanan
bir sinir ag1 (NN) modeli kullanilmistir. Model, 60.000 egitim 6rnegi ve 0 ile 9 arasinda degisen
rakamlardan olusan 10.000 test 6rnegi iceren MNIST veri kiimesi iizerinde egitilmis ve test
islemine tabi tutulmustur. MNIST data setinin yani sira, bu makalede goriintli siniflandirmasi
icin memristor tabanli sinaptik cihazlar kullanan bir sinir ag1 (NN) modeli kullanilmistir. Model,
10 smifta 50.000 egitim 6rnegi ve 10.000 test 6rnegi igeren CIFAR-10 veri kiimesi lizerinde
egitilmis ve test edilmistir. Bu veri setlerine ek olarak modelin kararliligimi pekistirmek
amaciyla Fisher’s Iris veri seti ¢alismaya dahil edilmistir. Devre diizeyindeki performans
Neurosim kullanilarak analiz edilmis ve enerji tiikketimi, gecikme siiresi ve alan gereksinimleri
gibi Olgiitler degerlendirilmistir. Memristor tabanli makine 6grenimi modeline Adadelta,
AdaGrad, Adam, AdaMax, Momentum, Nadam, RMSprop ve SGD dahil olmak iizere cesitli
optimizasyon yontemleri uygulanmistir. Her yontem dogrulugu artirmak icin agirliklar farkl

sekilde giinceller. Deneysel sonuglar Tablo 19°da ve Tablo 20°de gosterilmistir.
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Tablo 19. Optimizasyon modellerinin MNIST veri seti ile karsilastirmali performans sonuglari

Optimizasyon Ad1 Tiiketilen Enerji (J) Dogruluk Oran Egitim Gecikme

(%) Siiresi (epoch/s)
AdaDelta 0.0304 89.48 804.58 (s)
AdaGrad 0.0112 79.00 953.69 (s)
Adam 0.2440 79.13 717.19 (s)
AdaMax 0.0115 79.68 851.18 (s)
Momentum 0.1431 88.55 737.09 (s)
Nadam 0.112 81.20 828.19 (s)
SGD 0.0276 89.47 639.34 (s)
RMSprop 0.1603 84.91 740.52 (s)
Geleneksel Bilgisayar 4.275x10° 96.95 140.25 (s)

Tablo 20. MNIST, CIFAR ve Fisher’s Iris veri setleri ile cesitli optimizasyon modellerinin
kargilagtirmali dogruluk performans sonuglari

Dogruluk Orani Dogruluk Oram Dogruluk Orani

Optimizasyon Adi MNIST (%) CIAFR-10 (%)  Fisher’s Iris (%)
AdaDelta 89.48 92.51 93.08
AdaGrad 79.00 82.08 81.17
Adam 79.13 83.10 88.23
AdaMax 79.68 81.76 83.71
Momentum 88.55 91.25 92.05
Nadam 81.20 82.45 80.20
SGD 89.47 90.21 90.75
RMSprop 84.91 88.11 87.01

Tablo 21. Sinir ag1 mimarilerinin MNIST veri kiimesi tizerindeki karsilastirmali performans sonuglari.

: . TiOz2 Sinaptik Aygit NN Ag: Si
Mimari (Onerilen) Sinaptik Aygit NN
Dogruluk (%) 89.48 73.19

Bu tez kapsaminda 6nerilen TiO2 sinaptik tabanli model Ag: Si sinaptik tabanli modele
gore dogruluk performansi olarak yaklasik %20 oraninda daha iyi sonug verdigi Tablo 21°de

gosterilmistir.

106



Epoch Number vs Accuracy Rate EpOCh Number vs Accuracy Rate
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Sekil 33. AdaDelta, AdaGrad, Adam ve Adamax optimizasyon algoritmalar1 i¢in dogruluk grafikleri
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Sekil 34. Momentum, Nadam, RMSProp ve SGD optimizasyon algoritmalari i¢in dogruluk grafikleri

Sekil 33 ve Sekil 34’te tez ¢aligmasinda kullanilan optimizasyon algoritmalarinin dogruluk

oranlar1 (Accuracy Rate) gosterilmistir.
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Epoch Number vs Error Rate
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Sekil 35. AdaDelta, AdaGrad, Adam ve Adamax algoritmalari i¢in hata oran1 grafikleri
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Sekil 36. AdaDelta, AdaGrad, Adam ve Adamax algoritmalar i¢in hata orani grafikleri

Sekil 35 ve Sekil 36°de tez caligmasinda kullanilan optimizasyon algoritmalariin hata
oranlar1 (Error Rate) gosterilmistir. Bu grafikler, farkli optimizasyon yontemlerinin model

performans1 iizerindeki kritik etkisini ve yapay sinir aglarmin egitilmesinde uygun
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optimizasyon stratejilerinin se¢ilmesinin 6nemini agikca ortaya koymaktadir. Bu tez ¢alismasi
kapsaminda uygulamada kullanilan veri setleriyle optimizasyon yontemlerinin dogruluk
iizerinde olusturdugu etkiler ayrintili bigimde incelenmistir. Bu analizler 1s18inda, ayn1 epoch
sayisinda elde edilen dogruluk degerlerindeki 6nemli farkliliklar1 gorsellestirmektedir.
Ozellikle, optimizasyon algoritmalarinin 6grenme siireglerini ne dl¢iide etkiledigini gdstermek

acisindan bu grafikler oldukca bilgilendiricidir.

Grafiklerde yer alan bulgulara gore, Adadelta algoritmasi, diger optimizasyon
yontemlerine kiyasla daha yiiksek dogruluk oranlar1 saglamistir. Bu sonug, Adadelta'nin belirli
veri kiimeleri ve model yapilar1 i¢cin daha etkili bir 6grenme sagladigini gostermektedir.
Bununla birlikte, her algoritmanin dogruluk agisindan farkli sonuglar iiretmesi, optimizasyon
algoritmasi se¢iminin model performansini dogrudan etkileyen kritik bir faktér oldugunu ortaya
koymaktadir. Bu grafiklerde sunulan veriler, optimizasyon algoritmalar1 kullanilarak elde
edilen dogruluk ve epoch degerlerini icermekte ve bu algoritmalarin egitim asamasindaki
sonuglarinin anlasilmasina katki saglamaktadir. Ozellikle, dogrulugu artirmak ve hata oranlarimni

azaltmak i¢in dogru optimizasyon algoritmasinin se¢iminin ne denli 6nemli oldugu

vurgulanmaktadir.

100 Farkli Algoritmalarin Dogruluk Karsilastirmasi

89.48% 88.55% 89.47%

- 81 20% 84.91%
. (]
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Adadelta Adagrad Adam Adamax Momentum Nadam RMSprop SGD
Algoritmalar

Sekil 37. Bu sekil, farkli optimizasyon algoritmalarinin dogruluk oranlarini karsilastirmaktadir.
AdaDelta (9%89,48), SGD (%89,47) ve Momentum (%88,55) en yiiksek dogruluga sahipken,
AdaGrad (%79,00) en diisiik dogrulugu gostermektedir.
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Sekil 38. Bu sekil, farkli optimizasyon algoritmalarinin dogruluk oranlarini karsilagtirmaktadir.
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SONUCLAR VE ONERILER

Sonug olarak, memristor tabanli sinaptik cihazlara dayali sinir aginin performansi,
MNIST ve CIFAR veri kiimeleri lizerinde cesitli optimizasyon yontemleri kullanilarak
kapsamli bicimde incelenmistir. SGD ve tiirevleri de dahil olmak iizere farkli optimizasyon
algoritmalar1 test edilmis ve %90 dogruluk orani elde edilmistir. Model, ¢esitli optimizasyon
yontemleri arasinda saglamlik ve genelleme kabiliyeti gostermistir. Bu optimizasyon
yontemleri altindaki bu yiiksek performans, veri kiimeleri arasindaki uyarlanabilirligi ve
etkinligini vurgulamakta ve cesitli uygulamalar i¢in potansiyelini gostermektedir. Bu
degerlendirme, memristor tabanli sinaptik cihazlarin néromorfik hesaplama ve donanim tabanl
yapay zeka uygulamalari i¢in ¢esitli optimizasyon algoritmalariyla birlestirilmesinin etkinligini
dogrulamaktadir. Bu bulgular gelecekteki ¢aligmalara rehberlik ederek daha enerji verimli ve

hassas sinir ag1 modellerinin olusturulmasina katkida bulunmaktadir.

Memristor tabanli cihazlarin kullanimi, geleneksel Von Neumann mimarilerinde yasanan
enerji ve zaman verimsizligi sorunlarmi énemli dl¢lide azaltmaktadir. Bu cihazlar, bellek ve
islem birimlerini birlestirerek veri aktarimini en aza indirirken enerji tikketimini diisiirmekte ve
hesaplama performansini artirmaktadir. Tez calismasinda cihazlarin dogruluk ve enerji

tasarrufunu artiran 6zgiin ve modern donanim ¢oziimleri sundugunu gostermistir.

Bulgular

Optimizasyon Algoritmalari: Test edilen algoritmalar arasinda AdaDelta, CIFAR-10 veri
kiimesinde %90,51 dogruluk oraniyla en iyi performansi gostermistir. MNIST veri kiimesinde
ise SGD (%89,47), AdaDelta (%89,48) ve Momentum (%88,55) algoritmalar1 yiiksek dogruluk
oranlar1 saglamistir. Bu sonuglar, optimizasyon yontemlerinin model performansi tizerinde ¢ok

etkili oldugunu gostermektedir.

Cihaz Ozellikleri: Memristdr tabanli memristorlerin, CMOS teknolojisiyle uyumlu yapilari
sayesinde yiiksek yogunluklu ve enerji verimli donanimlar tasarlanmasina olanak tanidig
gozlemlenmistir. Bu cihazlarin biyolojik sinapslari taklit ederek direng¢ seviyelerini dinamik

bicimde ayarlayabilmesi, néromorfik uygulamalar i¢in biiyiik bir avantaj sunmaktadir.

Enerji Verimliligi: Bu tez c¢alismasiyla memristor tabanli mimariler, geleneksel sistemlere
kiyasla enerji tiiketimini 6nemli dl¢iide azaltmistir. Enerji tiiketiminin biiyiik kismi statik giic
kullanimiyla iligkilendirilmis, bu da memristorlerin dinamik gii¢ tiiketimine kiyasla avantajli

oldugunu gostermistir.
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Dogruluk-Enerji Dengesi: Bu ¢alismada yiiksek dogruluk oranlar elde edilmesine ragmen, bu
dogrulugun enerji tiiketimi iizerindeki etkileri kapsamli sekilde incelenmistir. Ozellikle
AdaDelta algoritmasi hem dogruluk hem de enerji verimliligi acisindan iistiin performans
sergileyerek algoritma sec¢imlerinin néromorfik donanim tasarimi lizerindeki Onemini

vurgulamaktadir.

Genelleme Kabiliyeti: Bu tez calismasinda ele alinan model, farkl veri kiimelerinde saglam bir
genelleme kapasitesi gostermistir. Bu durum, memristor tabanli cihazlarin genis bir makine

O0grenimi gorev yelpazesinde etkili bigimde kullanilabilecegini gostermektedir.

Oneriler

Bu caligma, memristor tabanli memristor cihazlarin néromorfik hesaplama ve donanim
tabanli yapay zekd uygulamalarindaki potansiyelini acik bigimde ortaya koymaktadir. Elde

edilen bulgular, asagidaki alanlarda gelecekteki arastirmalara yol gosterici olabilir:

Olgeklenebilirlik: Memristdr tabanli cihazlarin daha biiyiik sinir aglar1 ve daha karmasik veri
kiimeleri i¢in uygulanabilirligi arastirilmalidir. Ozellikle agirlik hassasiyeti ve kuantizasyon

sorunlar1 lizerine ¢aligmalar yapilabilir.

Enerji Optimizasyonu: Enerji sarfiyatini daha da azaltmak amaciyla yeni yontemlerin

gelistirilmesi, néromorfik sistemlerin enerji tasarrufunu artirabilir.

Algoritma-Donanim Ortak Tasarimi: Optimizasyon algoritmalarinin donanim o&zelliklerine
uygun bicimde gelistirilmesi, performansi daha da iyilestirebilir. Ornegin, AdaDelta ve

SGD’nin avantajlarini birlestiren hibrit yaklagimlar daha basarili sonuglar saglayabilir.

Gergek Diinya Uygulamalari: Memristor tabanl cihazlarin kenar yapay zeka, otonom sistemler

ve beyin ilhamli hesaplama gibi alanlarda uygulanabilirligi genisletilmelidir.

Bu tez calismasi, memristor tabanli memristor cihazlarin néromorfik hesaplama i¢in
uygulanabilirligini dogrulamis ve enerji verimliligi ile dogruluk arasinda giiglii bir denge
sagladigin1 gostermistir. Calismanin sonuglari, donanim hizlandirmali yapay zeka sistemleri
i¢in siirdiiriilebilir ve dlgeklenebilir ¢oziimler gelistirmek adina 6nemli bir temel sunmaktadir.
Bu bulgular, daha enerji verimli, dogru ve genel kullanima uygun sinir ag1 modellerinin

tasarlanmasina katkida bulunacaktir.
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