

MEMRİSTÖR TABANLI YAPAY SİNİR AĞI TASARIMI VE OPTİMİZASYONU

Baki GÖKGÖZ

Danışman: Doç. Dr. Tolga AYDIN

Doktora Tezi

Bilgisayar Mühendisliği Ana Bilim Dalı

2025

(Her hakkı saklıdır.)

T.C.

ATATÜRK ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ

BİLGİSAYAR MÜHENDİSLİĞİ ANA BİLİM DALI

MEMRİSTÖR TABANLI YAPAY SİNİR AĞI TASARIMI VE OPTİMİZASYONU

(Memristor Based Artificial Neural Network Design and Optimisation)

DOKTORA TEZİ

Baki GÖKGÖZ

Danışman: Doç. Dr. Tolga AYDIN

Erzurum

Ocak, 2025

i

KABUL VE ONAY TUTANAĞI

Baki GÖKGÖZ tarafından hazırlanan “MEMRİSTÖR TABANLI YAPAY SİNİR AĞI

TASARIMI VE OPTİMİZASYONU” başlıklı çalışması 15/01/2025 tarihinde yapılan tez

savunma sınavı sonucunda başarılı bulunarak jürimiz tarafından Bilgisayar Mühendisliği Ana

Bilim Dalı, Bilgisayar Mühendisliği Bilim Dalında doktora tezi olarak kabul edilmiştir.

Jüri Başkanı: Prof. Dr. Kemal BIÇAKCI

İstanbul Teknik Üniversitesi

……….................

Danışman: Doç. Dr. Tolga AYDIN

Atatürk Üniversitesi

……….................

Jüri Üyesi: Prof. Dr. İbrahim Yücel ÖZBEK

Atatürk Üniversitesi

……….................

Jüri Üyesi: Doç. Dr. Ferhat BOZKURT

Atatürk Üniversitesi

……….................

Jüri Üyesi: Dr. Öğr. Üyesi Özkan BİNGÖL

Gümüşhane Üniversitesi

……….................

İkinci Tez

Danışmanı

Doç. Dr. Fatih GÜL

Recep Tayyip Erdoğan Üniversitesi

Enstitü Yönetim

Kurulunun …./…/…. tarih

ve …… sayılı kararı.

Bu tezin Atatürk Üniversitesi Lisansüstü Eğitim ve Öğretim Yönetmeliği’nin ilgili

maddelerinde belirtilen şartları yerine getirdiğini onaylarım.

 Prof.Dr. Alper NUHOĞLU

 Enstitü Müdürü

 Aslı Islak İmzalıdır

Bu çalışma, Atatürk Üniversitesi BAP projeleri kapsamında desteklenmiştir.

Proje No: FDK-2022-9895

ii

ETİK BİLDİRİM VE İNTİHAL BEYAN FORMU

Doktora Tezi olarak Doç. Dr. Tolga AYDIN danışmanlığında sunulan “MEMRİSTÖR TABANLI

YAPAY SİNİR AĞI TASARIMI VE OPTİMİZASYONU” başlıklı çalışmanın tarafımızdan bilimsel

etik ilkelere uyularak yazıldığını, yararlanılan eserlerin kaynakçada gösterildiğini, Fen Bilimleri

Enstitüsü tarafından belirlenmiş olan Turnitin programı benzerlik oranlarının aşılmadığını ve aşağıdaki

oranlarda olduğunu beyan ederiz.

Tez Bölümleri Tezin Benzerlik Oranı (%) Maksimum Oran (%)

Giriş 2 30

Kuramsal Temeller 8 30

Materyal ve Metot 4 35

Araştırma Bulguları ve Tartışma 3 20

Sonuçlar ve Öneriler 0 20

Tezin Geneli 7 25

Not: Yedi kelimeye kadar benzerlikler ile Başlık, Kaynakça, İçindekiler, Teşekkür, Dizin ve Ekler kısımları tarama

dışı bırakılabilir. Yukarıdaki azami benzerlik oranları yanında tek bir kaynaktan olan benzerlik oranlarının

%5’den büyük olmaması gerekir.

Sunulan bilgilerin doğru olduğunu, aksi halde doğacak hukuki sorumlulukları kabul

ettiğimizi beyan ederiz.

Tez Yazarı (Öğrenci) Tez Danışmanı

Baki GÖKGÖZ Doç. Dr. Tolga AYDIN

15.1.2025 15.1.2025

İmza: Aslı ıslak imzalıdır

İmza: Aslı ıslak imzalıdır

* Tez ile ilgili YÖKTEZ’de yayınlamasına ilişkin bir engelleme var ise aşağıdaki alanı doldurunuz.

☐ Tezle ilgili patent başvurusu yapılması / patent alma sürecinin devam etmesi sebebiyle Enstitü Yönetim

Kurulunun …./…/…. tarih ve …………. sayılı kararı ile teze erişim 2 (iki) yıl süreyle engellenmiştir.

☐ Enstitü Yönetim Kurulunun …./…/…. tarih ve …………. sayılı kararı ile teze erişim 6 (altı) ay süreyle

engellenmiştir.

iii

TEŞEKKÜR

Çalışmalarım süresince bilgi ve deneyimleriyle bana rehberlik eden, değerli görüşlerini

paylaşarak birçok konuda destek olan danışmanım Sayın Doç. Öğr. Tolga AYDIN’a en derin

teşekkürlerimi sunarım.

Tez konusunun belirlenmesinde rehberlik eden, her zaman değerli zamanını ayırarak yardımlarını

esirgemeyen ikinci danışmanım Sayın Doç. Dr. Fatih GÜL’e en içten teşekkürlerimi ve saygılarımı

iletmek isterim.

Çalışmalarım boyunca bilgi ve deneyimleriyle bana yol gösteren, görüş ve destekleriyle katkı

sağlayan Sayın Prof. Dr. İbrahim Yücel ÖZBEK’e ve Sayın Doç. Dr. Ferhat BOZKURT’a da teşekkür

ederim.

Ayrıca, her zaman yanımda olan ve desteklerini hiçbir şekilde eksik etmeyen aileme minnettarım.

Lisansüstü eğitimim süresince bana destek veren ve Tez Projesi kapsamında (FDK-2022-9895)

katkılarda bulunan Atatürk Üniversitesi BAP birimine de teşekkür ederim.

Baki GÖKGÖZ

iv

ÖZET

DOKTORA TEZİ

MEMRİSTÖR TABANLI YAPAY SİNİR AĞI TASARIMI VE OPTİMİZASYONU

Baki GÖKGÖZ

Danışman: Doç. Dr. Tolga AYDIN

İkinci Tez Danışmanı: Doç. Dr. Fatih GÜL

Amaç: Bu çalışmanın amacı, memristör tabanlı nano-sinaptik cihazların yapay sinir ağı (YSA)

uygulamalarında kullanılabilirliğini bilgisayar ortamında simüle etmek ve bu cihazların performansını

detaylı bir şekilde değerlendirmektir. Simülasyon çalışmaları, cihazların doğruluk, enerji verimliliği,

eğitim süresi, donanım kapasitesi ve ölçeklenebilirlik gibi kritik performans kriterleri açısından

sağladığı katkıları ortaya koymayı hedeflemektedir. Bunun yanı sıra, bu cihazlar üzerinde kullanılan

optimizasyon yöntemlerinin etkinliği ve bu yöntemlerin performans üzerinde oluşturduğu iyileştirmeler

incelenecektir. Çalışmanın, hem yeni nesil sinaptik cihazların geliştirilmesine hem de yapay sinir ağı

uygulamalarında optimizasyon yöntemlerinin rolünün daha iyi anlaşılmasına katkı sağlaması

amaçlanmaktadır.

Yöntem: Bu çalışmada, memristör tabanlı nano-sinaptik cihazlar kullanılarak sinir ağlarının donanım

üzerinde uygulanabilirliği incelenmiş ve bu yöntem çeşitli optimizasyon algoritmaları yardımıyla

doğruluk, alan kullanımı ve enerji tüketimi açısından değerlendirilmiştir. Önerilen donanım tabanlı

model, özellik tanıma ve sınıflandırma yeteneklerine sahip olup, elle yazılmış ve bilgisayar tarafından

üretilmiş rakamların tanınmasında kullanılmaktadır. Model, ileri besleme (FF) ve geri yayılma (BP)

süreçlerini entegre ederek giriş verilerini çıkışlarla eşleştiren bir yapı sunmaktadır. Eğitim süreci, FF ve

BP olmak üzere iki aşamadan oluşmaktadır. İleri besleme aşamasında, girdi verileri sinir ağının giriş

katmanına alınır, ardından ağırlıklı toplamlar ve aktivasyon fonksiyonları aracılığıyla gizli katmanlardan

geçirilerek çıktı katmanına iletilir. Çıktılar, doğru etiketlerle karşılaştırılarak tahmin hatası hesaplanır.

Geri yayılma aşamasında ise bu hata, sinir ağı boyunca geriye doğru yayılır ve ağırlıklar optimizasyon

yöntemleri kullanılarak ayarlanır. Optimizasyonun temel amacı, modelin hem eğitim hem de test

verilerinde yüksek doğruluk elde etmesini sağlamak, genelleme yeteneğini artırarak farklı veri setlerinde

başarılı olmasını mümkün kılmak ve tüm bunları hesaplama maliyetlerini minimize ederek en verimli

şekilde gerçekleştirecek en uygun yapılandırmayı bulmaktır.

Bulgular: Bu çalışma, memristör tabanlı memristörlerin nöromorfik uygulamalarda yüksek doğruluk,

enerji verimliliği ve genelleme kapasitesi sunduğunu ortaya koymaktadır. CMOS uyumlu yapıları ve

biyolojik sinapsları taklit edebilme özellikleri sayesinde, bu cihazlar enerji verimli donanımlar için

önemli avantajlar sağlamaktadır. Optimizasyon algoritmaları arasında AdaDelta, doğruluk ve enerji

verimliliği açısından en iyi performansı sergilemiştir. Modelin farklı veri kümelerindeki genelleme

kapasitesi, Memristör tabanlı cihazların geniş bir makine öğrenimi yelpazesinde etkili bir şekilde

kullanılabileceğini göstermektedir.

Sonuç: Memristör tabanlı sinaptik cihazlara dayalı sinir ağının performansı, MNIST ve CIFAR veri

kümeleri üzerinde farklı optimizasyon yöntemleri kullanılarak kapsamlı bir şekilde değerlendirilmiştir.

%90 doğruluk oranına ulaşan model, optimizasyon algoritmaları arasında sağlamlık ve genelleme

kapasitesi sergilemiştir. Elde edilen sonuçlar, memristör tabanlı cihazların nöromorfik hesaplama ve

donanım tabanlı yapay zekâ uygulamalarında, çeşitli optimizasyon yöntemleriyle birleştirildiğinde etkin

bir çözüm sunduğunu ortaya koymaktadır. Ayrıca önerilen TiO2 tabanlı model, Ag:Si tabanlı sinir ağına

göre %20 daha az enerji, %16 daha yüksek doğruluk ve %18 daha düşük gecikme sağlamaktadır. Bu

çalışma, gelecekte daha enerji verimli ve hassas sinir ağı modellerinin geliştirilmesine katkıda bulunacak

önemli bulgular sağlamaktadır.

Anahtar Kelimeler: Derin öğrenme, makine öğrenimi, memristörler, nöromorfik hesaplama,

optimizasyon algoritmaları, sinapslar, Memristör.

Ocak 2025, 149 sayfa

v

ABSTRACT

DOCTORAL DISSERTATION

MEMRISTOR BASED ARTIFICIAL NEURAL NETWORK DESIGN AND OPTIMISATION

Baki GÖKGÖZ

Supervisor: Assoc. Prof. Dr. Tolga AYDIN

Co-supervisor: Assoc. Prof. Dr. Fatih GÜL

Purpose: The aim of this study is to simulate the usability of memristor-based nano-synaptic devices in

artificial neural network (ANN) applications in a computer environment and to evaluate the performance

of these devices in detail. The simulation studies aim to reveal the contributions of these devices in terms

of critical performance criteria such as accuracy, energy efficiency, training time, hardware capacity,

and scalability. Additionally, the effectiveness of optimization methods applied to these devices and the

improvements they bring to performance will be examined. The study is intended to contribute both to

the development of next-generation synaptic devices and to a better understanding of the role of

optimization methods in artificial neural network applications.

Method: In this study, the feasibility of implementing neural networks on hardware using memristor-

based nano-synaptic devices was examined, and this method was evaluated in terms of accuracy, area

usage, and energy consumption with the help of various optimization algorithms. The proposed

hardware-based model possesses feature recognition and classification capabilities and is used for

recognizing both handwritten and computer-generated digits. The model integrates feedforward (FF)

and backpropagation (BP) processes, providing a structure that maps input data to outputs. The training

process consists of two stages: FF and BP. In the feedforward stage, input data is fed into the input layer

of the neural network, then passed through the hidden layers using weighted sums and activation

functions, and finally delivered to the output layer. The outputs are compared with the correct labels to

calculate prediction error. In the backpropagation stage, this error is propagated backward through the

neural network, and the weights are adjusted using optimization methods. This process is performed

faster and more efficiently than traditional gradient descent methods, aiming to minimize the error.

Finding: This study demonstrates that memristor-based memristors offer high accuracy, energy

efficiency, and generalization capacity in neuromorphic applications. Due to their CMOS-compatible

structures and ability to mimic biological synapses, these devices provide significant advantages for

energy-efficient hardware. Among the optimization algorithms, AdaDelta exhibited the best

performance in terms of accuracy and energy efficiency. The model's generalization capacity across

different datasets highlights the potential for Memristör-based devices to be effectively utilized in a wide

range of machine learning applications.

Result: The performance of the neural network based on memristor synaptic devices was

comprehensively evaluated on the MNIST and CIFAR datasets using different optimization methods.

The model achieved a 90% accuracy rate, demonstrating robustness and generalization capacity among

the optimization algorithms. The results reveal that memristor-based devices, when combined with

various optimization methods, offer an effective solution for neuromorphic computing and hardware-

based artificial intelligence applications. Moreover, the proposed TiO2 based model provides 20% less

energy, 16% higher accuracy and 18% lower latency than the Ag:Si based neural network. This study

provides significant findings that will contribute to the development of more energy-efficient and precise

neural network models in the future.

Keywords: Deep learning, machine learning, memristors, neuromorphic computing, optimization

algorithms, synapses, Memristör.

January 2025, 149 pages

vi

İÇİNDEKİLER

KABUL VE ONAY TUTANAĞI .. i

ETİK BİLDİRİM VE İNTİHAL BEYAN FORMU ... ii

TEŞEKKÜR ... iii

ABSTRACT .. v

İÇİNDEKİLER ... vi

TABLOLAR DİZİNİ ... viii

ŞEKİLLER DİZİNİ .. ix

KISALTMALAR ve SİMGELER DİZİNİ .. xi

GİRİŞ .. 1

Yapay Sinir Ağı (YSA) ve Nöromorfik Hesaplama .. 4

Tezin Amacı ve Alana Katkıları .. 6

KURAMSAL TEMELLER ... 9

Memristörün Tarihsel Gelişimi ... 9

Memristörün Yapısı ... 11

Sinaps cihazı .. 12

Biyolojik sinaps ... 13

Yapay sinaps .. 15

Makine öğrenimi ile memristör tabanlı çalışmalar .. 17

Derin Öğrenmeye Genel Bakış .. 18

Derin Sinir Ağları (DNNs) .. 19

DNN'ler ve aktivasyon fonksiyonları .. 20

DNN katman tipleri ... 21

DNN modellerinin hiperparametreleri ve uyarlanmaları ... 24

Memristör tabanlı DNN çalışmaları .. 28

Memristör tabanlı yapay nöron ve sinaps .. 31

Memristör nöronlar .. 33

Memristör sinapsları .. 38

Memristör tabanlı yapay zekâ (AI) çipleri .. 40

Memristör tabanlı yapay sinaps çalışmaları .. 41

Memristör tabanlı donanım hızlandırıcılarının güvenilirlik üzerindeki etkisi 49

Alan çalışmaları ile nöromorfik sistemin genel değerlendirilmesi .. 50

MATERYAL VE METOT .. 52

Yöntem .. 52

Veri Seti Tanımlaması ve Kullanılan Veri Setleri ... 55

Memristör Tabanlı Sinir Ağı Donanımı .. 58

Memristör Sinaptik Tabanlı Cihaz Kullanarak Nöral Ağ Uygulaması ... 59

vii

Cihaz Özelliklerı̇ ve Uygulama Deneylerı̇ .. 63

Malzeme ve cihaz özellikleri ... 63

Memristör tabanlı sinaptik cihazın özellikleri ... 64

Yapay sinaps olarak memristör ve uygulamanın yazılım-donanım entegrasyonu 67

Uygulamada kullanılan optı̇mı̇zasyon algoritmalarının sınıflandırılması ... 69

Kullanılan optı̇mı̇zasyon yöntemleri ve eğitim aşaması .. 70

Gradyan Descent ve türleri .. 70

Stochastic Gradient Descent (SGD) .. 70

Adam (Adaptive Moment Estimation) ... 72

RMSprop (Root Mean Square Propagation) ... 75

Adagrad (Adaptive Gradient Algorithm) ... 77

AdaDelta .. 79

Nadam (Nesterov-Accelerated Adaptive Moment Estimation) .. 82

Momentum ... 85

Adamax .. 88

Uygulamanın test aşaması ... 91

Donanım aşaması .. 92

Yazılım aşaması ... 93

Uygulamanın çalıştırılması .. 96

Performans ölçüm metrikleri ... 98

ARAŞTIRMA BULGULARI VE TARTIŞMA .. 101

Uygulamada Elde Edilen Deneysel Sonuçlar .. 105

SONUÇLAR VE ÖNERİLER .. 111

Bulgular ... 111

Öneriler .. 112

KAYNAKLAR .. 113

ÖZGEÇMİŞ .. 136

viii

TABLOLAR DİZİNİ

Tablo 1. DNN tipleri (Cheng & An, 2021) ... 19

Tablo 2. Aktivasyon fonksiyonları ve özellikleri ... 20

Tablo 3. CMOS nöronları ile memristör tabanlı nöronların karşılaştırılması 48

Tablo 4. Uygulamanın genel çalışma mantığını anlatan sözde kod .. 55

Tablo 5. CIFAR-10 veri setinin uygulamada kullanacak dijit yapıya dönüştürülmesine ait sözde kod 57

Tablo 6. Farklı memristör tabanlı donanım uygulaması yapay sinir ağı çalışmaları. 59

Tablo 7. Tez çalışmasında kullanılan SGD yönteminin eğitim aşamasındaki sözde kodu 70

Tablo 8. Tez çalışmasında kullanılan Adam yönteminin eğitim aşamasındaki sözde kodu 73

Tablo 9. Tez çalışmasında kullanılan RMSProp yönteminin eğitim aşamasındaki sözde kodu 75

Tablo 10. Çalışmada yer verilen AdaGrad algoritmasının eğitim aşamasındaki sözde kodu 78

Tablo 11. Çalışmada kullanılan AdaDelta algoritmasının eğitim aşamasındaki sözde kodu 80

Tablo 12. Çalışmada kullanılan Nadam algoritmasının eğitim aşamasındaki sözde kodu 83

Tablo 13. Çalışmada kullanılan Momentum algoritmasının eğitim aşamasındaki sözde kodu 85

Tablo 14. Adamax algoritmasının eğitim aşamasındaki sözde kodu .. 88

Tablo 15. Uygulamanın test kısmına ait sözde kod .. 92

Tablo 16. Uygulamanın test kısmına ait sözde kodun devamı (yazılım) .. 93

Tablo 17. Uygulamnın çalıştırıldığı ana fonksiyona ait sözde kod .. 96

Tablo 18. Çalışma Ortamına Ait Özellikler .. 101

Tablo 19. Optimizasyon modellerinin MNIST veri seti ile karşılaştırmalı performans sonuçları 106

Tablo 20. MNIST, CIFAR ve Fisher’s Iris verı̇ setleri ile çeşitlı̇ optı̇mı̇zasyon modellerı̇nı̇n

karşılaştırmalı doğruluk performans sonuçları .. 106

Tablo 21. Sinir ağı mimarilerinin MNIST veri kümesi üzerindeki karşılaştırmalı performans sonuçları.

 ... 106

ix

ŞEKİLLER DİZİNİ

Şekil 1. (a) ve (b) Von Neumann mimarisi ile nöromorfik mimari arasındaki karşılaştırmayı

göstermektedir. Bu iki mimari, burada gösterildiği gibi çalışma, organizasyon, programlama, iletişim ve

zamanlama açısından temelde farklılık göstermektedir. ... 1

Şekil 2. Moore Yasası, işlemci başına transistör sayısındaki artışı ifade eder (1971-2020). 2

Şekil 3. Von Neumann mimarisinde darboğaz (bottleneck) problemi .. 4

Şekil 4. Dört temel iki terminalli pasif devre elemanı .. 9

Şekil 5. Leon Chua'nın öngördüğü memristör histerezisi (L. O. Chua & Sung Mo Kang, 1976) 10

Şekil 6. Biyolojik sinaps şeması. Sinaptik iletim, presinaptik hücreden gelen sinyallerin postsinaptik

hücreye iletilmesi sürecidir. Şemada, sinaptik veziküller presinaptik hücre içinde bulunur ve sinir

hücreleri arasında iletişimi sağlayan nörotransmitterleri içerir. .. 14

Şekil 7. Yapay sinapsın gösterimi. .. 15

Şekil 8. Yapay sinapslar LTP (kırmızı) ve STP (mavi). ... 16

Şekil 9. Derin Sinir Ağı ... 18

Şekil 10. Aktivasyon fonksiyonunun basitleştirilmiş blok diyagramı... 20

Şekil 11. DNN metodolojisinin akış diyagramı. ... 28

Şekil 12. (a) MLP'nin matematiksel modeli. (b) MLP'yi ayrıntılı olarak açıklayan akış diyagramının

gösterimi. ... 35

Şekil 13. MLP'nin memristör tabanlı uygulamasının şematik gösterimi. ... 35

Şekil 14. Biyolojik Nöron üzerinden bilgi akışı .. 37

Şekil 15. Yapay Nöron .. 37

Şekil 16. Memristör sinapslı Crossbar SNN mimarisi, insan beyninin çalışma şeklinden esinlenen çift

yönlü bir STDP öğrenme kuralının grafiksel bir temsilinin eşlik ettiği iki sinaptik öncesi spike ve iki

sinaptik sonrası spike arasındaki bir sinaps bağlantısıdır. Verileri depolamak ve işlemek için çapraz

çubuk memristör dizileri kullanan bir tür nöromorfik hesaplama mimarisidir. 39

Şekil 17. Yapay zekanın çeşitli katmanları içinde bir yapay zekâ çipinin işlevi. 41

Şekil 18. Çalışmada kullanılan metodolojinin akış diyagramı. ... 53

Şekil 19. (a) Bilgisayar ile yazılmış bir rakamın uygulama ile binary hale getirilmesi (b) Elle yazılmış

bir rakamın uygulama ile binary hale getirilmesi. ... 56

Şekil 20. Çalışmada CIFAR-10 Veri setinin kullanımı. .. 57

Şekil 21. MLP nöral ağı. Kullanılan BPNN'nin mimarisi ve nöronları. (a) Bilgisayar tarafından üretilen

bir rakamı temsil eden ikili matris (28x28) ve (b) el yazısı rakam. ... 60

Şekil 22. SMU/Pulse Source. Memristör sinaptik cihazın yerleşimi ve deneysel kurulum 61

Şekil 23. İki katmanlı MLP ağının donanımda uygulanması için devre blok diyagramı. 62

x

Şekil 24. Biyolojik ve yapay sinapsların şematik gösterimi. Nörotransmitterler ve reseptörlerle biyolojik

bir sinaps gibi, PRE ve POST sivri uçları burada da kullanılır ... 63

Şekil 25. Memristif Cihazların Teknolojik Gelişmeleri ve Uygulamaları .. 64

Şekil 26. Ag:a-Si için doğrusal olmayan ağırlık güncellemesi, (b) TiO2 için doğrusal olmayan ağırlık

güncellemesi, (c) Analog eNVM cihaz davranış modelinin -6'dan 6'ya kadar etiketlenmiş doğrusal

olmayan ağırlık güncellemeleriyle şematik gösterimi ... 65

Şekil 27. Memristör Tabanlı Sinaptik Cihazın Spike-Zamanlamasına Bağlı Plastisite (STDP)

Özellikleri. (b) Memristör tabanlı ağırlık ayarlama verileri için normalleştirilmiş darbe (pulse) sayısı ve

normalleştirilmiş iletkenlik arasındaki ilişkiyi gösteren grafik ... 67

Şekil 28. Geriye Yayılım Devresi. .. 68

Şekil 29. Uygulamanın eğitim aşaması. .. 91

Şekil 30. Uygulamanın test aşaması. .. 95

Şekil 31. Uygulamanın derlenmesi ... 102

Şekil 32. Uygulamanın çalıştırılması.. 103

Şekil 33. AdaDelta, AdaGrad, Adam ve Adamax optimizasyon algoritmaları için doğruluk grafikleri

 ... 107

Şekil 34. Momentum, Nadam, RMSProp ve SGD optimizasyon algoritmaları için doğruluk grafikleri

 ... 107

Şekil 35. AdaDelta, AdaGrad, Adam ve Adamax algoritmaları için hata oranı grafikleri 108

Şekil 36. AdaDelta, AdaGrad, Adam ve Adamax algoritmaları için hata oranı grafikleri 108

Şekil 37. Bu şekil, farklı optimizasyon algoritmalarının doğruluk oranlarını karşılaştırmaktadır.

AdaDelta (%89,48), SGD (%89,47) ve Momentum (%88,55) en yüksek doğruluğa sahipken, AdaGrad

(%79,00) en düşük doğruluğu göstermektedir. ... 109

Şekil 38. Bu şekil, farklı optimizasyon algoritmalarının doğruluk oranlarını karşılaştırmaktadır. 110

xi

KISALTMALAR ve SİMGELER DİZİNİ

AI : Artificial Intelligence

DNN : Deep Neural Network (Derin Sinir Ağları)

CMOS : Complementary Metal Oxide Semiconductor (Bütünleyici Metal Oksit Yarı İletken)

VN : Von Neumann

BT : Bilgisayar Teknolojileri

CPU : Central Processing Unit (Merkezi İşlem Birimi)

GPU : Graphics Processing Unit (Grafik İşlem Birimi)

SGD : Stochastic Gradient Descent (Stokastik Gradyan İnişi)

LTP : Long-Term Potentiation (Uzun Süreli G STP üçlenme)

LTD : Long-Term Depression (Uzun Süreli Depresyon)

STP : Short-Rerm Potentiation (Kısa Süreli Potansiyasyon)

RRAM : Resistive Random-Access Memory (Dirençli Rastgele Erişimli Bellek)

ANN : Artificial Neural Network (Yapay Sinir Ağları)

DL : Deep Learning (Derin Öğrenme)

ANN : Artificial Neural Network (Yapay Sinir Ağları)

RNN : Recurrent Neural Network (Tekrarlayan Sinir Ağı)

LSTM : Long Short Term Memory (Uzun Kısa Süreli Bellek)

CF : Critical Fault (Kritik Hatalar)

WTA : Winner-Take-All

SNN : Spike Neural Network (Spike Sinir Ağları)

FPGAs : Field Programmable Gate Arrays (Programlanabilir Kapı Dizileri)

BP : Backpropagation (Geriyayılım)

FF : Feedforward (İleriyayılım)

FFNN : Feedforward Neural Network (İleri Beslemeli Yapay Sinir Ağı)

ACC : Accuracy (Doğruluk)

MLP : Multi Layer Perceptron (Çok Katmanlı Algılayıcı)

PCM : Phase Change Memory (Faz Değişimi Belleği)

CBM : Conductive Bridge Memristors (İletken Köprü Memristörleri)

HP : Hewlett Packard

STDP : Spike Time-Dependent Plasticity (Spike Zamanına Bağlı Plastisite)

GRU : Gated Recurrent Unit (Geçitli Tekrarlayan Birim)

ACU : Approximated Computation Unit (Yaklaşık Hesaplama Birimi)

ASIC : Application-Specific Integrated Circuit (Özel Entegre Devreler)

TPU : Tensor Processing Unit (Tensör İşleme Birimi)

YSA : Yapay Sinir Ağları

1

GİRİŞ

Yapay zekâ kullanımının hızla yaygınlaştığı günümüz bilgi teknolojileri dünyasında,

makine öğrenimi ve derin öğrenme hızla yaygınlaşmakta ve çeşitli uygulama alanları

bulmaktadır (Ren et al., 2022). Akademik dünyada keşfedilip kullanılmaya başlanan bu

yöntemler, hızla büyüyerek hem akademik hem de endüstriyel uygulamalarda önem

kazanmıştır. Aynı zamanda veri biliminin de vazgeçilmez bileşenleridir (Sun et al., 2020).

Gelişen bilgisayar teknolojileri sayesinde yapay zekâ alanlarında da önemli bir yer

edinmişlerdir (S. Kim et al., 2019). Bununla birlikte makine öğrenimi ve derin öğrenme

yapısında kullanılan, Derin Sinir Ağları (DNN) yüksek doğruluk, mükemmel ölçeklenebilirlik

ve kendini uyarlama özellikleri nedeniyle yoğun olarak kullanılmaktadır (Ren et al., 2022). Bu

yoğun kullanımın bir sonucu olarak, DNN modelleri daha büyük ve daha derin ağ yapıları

oluşturacak şekilde geliştirilmektedir. Ayrıca, yapay zeka uygulamalarında kullanılan derin

öğrenme algoritmaları süreçleri otomatikleştirmekte, verileri analiz etmekte ve tahmin

işlevlerini yerine getirmektedir (Bengio et al., 2013).

DNN modellerinin doğası gereği yüksek hesaplama gücü ve geniş bellek depolama alanı

gerektirmektedir. Bu gereksinimler karşısında Von Neumann mimarisine dayalı klasik bilgi

işleme ve hesaplama yöntemleri yetersiz kalmaktadır (S. Yu et al., 2011). Bu yetersizlik, bilgi

işleme yapılarının biyolojik sinir sistemlerinden oldukça farklı olmasından kaynaklanmaktadır.

Şekil 1(a) sıralı işlemede hesaplama ve belleğin ayrı olduğunu gösterirken, Şekil 1(b) paralel

işlemede hesaplama ve belleğin bütünleşik olduğunu ve işlemlerin eş zamansız olarak

gerçekleştiğini göstermektedir.

Şekil 1. (a) ve (b) Von Neumann mimarisi ile nöromorfik mimari arasındaki karşılaştırmayı

göstermektedir. Bu iki mimari, burada gösterildiği gibi çalışma, organizasyon, programlama,

iletişim ve zamanlama açısından temelde farklılık göstermektedir.

2

VN mimarisine dayalı geleneksel bilgisayar sistemleri iyi tanımlanmış yapısal

problemlerin çözümünde etkilidir. Ancak derin öğrenme ve yapay zeka gibi biyolojik sistemleri

taklit eden yöntemlerin kullanılması için uygun değildir (S. Yu et al., 2011). Bunun yerine bu

tür yöntemler için daha karmaşık mimariler kullanılmalıdır. Bunun nedeni, mantık tabanlı

donanım ve yazılım sistemleri mimarisinin biyolojik sinir sisteminden önemli ölçüde farklı

olmasıdır (B. Gao et al., 2016). Biyolojik beyin, öğrenme işlevini milyonlarca sinapsın paralel

çalışmasıyla gerçekleştirmektedir (Kuzum et al., 2013). Örneğin, karmaşık bir yapay zeka

probleminin çözümünde kullanılan bir süper bilgisayar enerji maliyeti açısından 1 megawattan

fazla güce ihtiyaç duyarken, insan beyni çalışma mimarisi sayesinde toplamda yaklaşık 10

watt'lık enerji tüketmektedir (Kuzum et al., 2013). Bu durum, klasik sistemlerin enerji

gereksinimlerinin uygulama maliyetleri bakımından önemli bir zorluk teşkil ettiğini

göstermektedir (Cumming et al., 2014). Enerji maliyeti sorununa ek olarak, klasik yöntemlerde

verilerin sürekli olarak işlemci ve bellek birimleri arasında taşınması gerekmekte, bu da veri

yoğun uygulamalarda gecikmelere yol açmaktadır (Eryilmaz et al., 2014; Mutlu et al., 2019).

Bu gecikmeler özellikle gerçek zamanlı uygulamalarda temel bir sorun olarak ortaya

çıkmaktadır (Eryilmaz et al., 2014; Gul, 2020; Sebastian et al., 2020). Bu sorunların üstesinden

gelmek için memristör benzeri cihazlar gibi özelleşmiş, konuma özgü donanım birimlerinin

oluşturulması düşünülmektedir (Sung, Hwang and Yoo, 2018).

Donanım hızlandırma yoluyla Derin Sinir Ağlarının (DNN) performansını ve enerji

optimizasyonunu artırmak için hem akademik hem de endüstriyel sektörlerde kapsamlı

araştırmalar yürütülmektedir.

Şekil 2. Moore Yasası, işlemci başına transistör sayısındaki artışı ifade eder (1971-2020).

3

Geçtiğimiz elli yılda, Moore Yasası, Dennard Ölçeklendirme ve Von Neumann mimari

trendlerinin etkili birleşimi ve kesişimi sayesinde bilgi teknolojisi alanında hızlı ve etkili bir

dönüşüm yaşanmıştır (Tsai et al., 2018). Moore Yasası, transistör başına maliyetin üstel olarak

azalmasını tanımlamaktadır (Moore, 1965). Bu trend, Şekil 2'de ifade edildiği gibi yıllar

içindeki değişim grafiğinde gösterilmektedir. Bir dizi “ölçeklendirme yasası” (Dennard et al.,

1974) ile tanımlanan Dennard ölçeklendirmesi, daha küçük transistörlerin daha hızlı çalışmasını

ve aynı zamanda daha az güç tüketmesini sağlar.

Von Neumann mimarisinin çok yönlülüğü, geliştiricilerin CPU ve GPU'ları modüler

bileşenler olarak kullanarak çeşitli karmaşık bilgi işlem sistemleri oluşturmalarına olanak

sağlamaktadır (Tsai et al., 2018b). Son yıllarda, güçlü bir etkiye sahip olabilecek bu eğilimlerin

kesişimi geçerliliğini büyük ölçüde yitirmeye başlamıştır (Radack & Zolper, 2008). Cihazların

ihtiyaç duyduğu güç ve voltaj parametrelerindeki değişkenlik nedeniyle, cihaz ölçeklendirme

işlevleri daha zorlu hale gelmiştir (Zidan et al., 2018). Bu zorluklar, cihazların optimum

işlevselliğe ulaşmasını karmaşık ve zor hale getirmektedir (Schuman et al., 2017). Sonuç olarak,

bellek ve işlemci arasındaki veri aktarımı için harcanan zaman ve enerji, gerçek zamanlı

görüntü tanıma ve doğal dil işleme gibi yoğun veri işleyen ve analiz eden sistemler için sorunlu

hale gelmiştir (Eryilmaz et al., 2014; Kuzum et al., 2013).

Günümüzde kullanılan hesaplama sistemleri Von Neumann mimarisi üzerine inşa

edilmiştir (del Valle et al., 2018). Bu mimaride veriler önce merkezi işlem birimine (CPU)

taşınmakta, burada işlenmekte, ardından işlenen veriler ana belleğe veya diğer bellek

birimlerine aktarılmakta ve işlemler bu şekilde döngüsel olarak devam etmektedir (H. Li et al.,

2015). Veri hacminin yüksek olduğu durumlarda, ilgili verilerin aktarılması ve işlenmesi zaman

ve enerji açısından önemli bir maliyet sorunu oluşturmaktadır (Kvatinsky et al., 2014). Ayrıca,

verilerin bellek bileşenlerinden alınmasına bağlı gecikme, özellikle yapay zeka alanında artan

iş yükleriyle uğraşan çeşitli uygulamalarda performans açısından önemli bir engel

oluşturmaktadır (Sebastian et al., 2020). Ayrıca Şekil 3’te belirtildiği gibi sistemin veri transferi

olan her yerinde darboğaz (bottleneck) problemi ortaya çıkmaktadır.

4

Şekil 3. Von Neumann mimarisinde darboğaz (bottleneck) problemi

Bilim insanları, Von Neumann mimarisinin doğasında bulunan darboğaz sorununu

çözmek için aktif olarak hem donanım hem de yazılım yaklaşımları geliştirmektedirler

(Drakopoulos et al., 2021; Xia et al., 2021) Yöntemlerden biri ve şu anda en popüler olanı,

biyolojik beynin çalışma modelinden ilham alan nöromorfik sistemlerdir (Eshraghian, Wang

and Lu, 2022). Biyolojik beynin yapısı incelendiğinde, hesaplama için düşük enerji gerektiren

çoklu nöronları, uyarlanabilir bellek birimleri olarak hizmet veren sinapslarla birbirine

bağlayan oldukça paralel çalışan bir mimari ile karakterize edilir (Cao et al., 2023).

Yapay Sinir Ağı (YSA) ve Nöromorfik Hesaplama

YSA, ham veri sınıflandırması ve örüntü tanımayı içeren görevlerde modern geleneksel

Von Neumann işlemcilerden daha iyi performans gösterebilmektedir. İnsan beyninin

tasarımından esinlenen nöromorfik donanım sistemleri (Indiveri et al., 2011), geleneksel Von

Neumann mimarisinden farklı olarak güçlü ve verimli bilgi işleme yetenekleri sağlama

kapasitesine sahiptir. Bu tür bir hesaplama sistemi hatalara karşı dirençli, son derece paralel ve

enerji tasarrufludur (Mead, 1990). Bununla birlikte, günümüzde “nöromorfik hesaplama”

olarak adlandırılan farklı uygulama ve tasarımların sayısı önemli ölçüde artmış ve tamamen

farklı yaklaşımları kapsar hale gelmiştir (Nawrocki et al., 2016). Bu çalışmaların büyük

çoğunluğu beynin birkaç nöronunu taklit etmeyi amaçlayan donanım tabanlı yeni cihazları

içerirken, sistemin bir diğer kısmı da kısmen veya tamamen beynin çalışma modelinden

esinlenen yeni yazılım algoritmalarını içermektedir (Lukoševičius & Jaeger, 2009). Sonuç

olarak memristör devre elemanları kullanılarak donanım tabanlı sistemlerin geliştirilmesi

üzerine çalışmalar yapılmıştır.

5

Memristör (L. Chua, 1971), değişken bir direnç gibi davranarak direnç değerini değiştiren

ve akımın geçişi sırasında kapasitif bir eleman gibi davranarak akımın akışını kontrol eden bir

devre elemanıdır (Oli-Uz-Zaman et al., 2022). Yeni bir donanım teknolojisi olan memristörler

çok küçük ölçeklerde çalışmakta ve büyük ölçekli entegrasyonlar için kullanılabilmektedir

(Gharpinde et al., 2018). Memristörlerin operasyonel mantığı ile karşılaştırıldığında, klasik

tamamlayıcı metal-oksit-yarı iletken (CMOS) çalışma yöntemi, küçük alan gereksinimleri ve

düşük güç tüketimi gibi benzer avantajlar sergilemektedir (Cheng & An, 2021a).

Memristör tabanlı derin sinir ağlarının avantajlarına rağmen, cihaz değişkenliği, mevcut

teknolojinin sınırlamaları ve memristörlerin esnekliği gibi ele alınması gereken zorluklar vardır.

Bu sorunların uygulamaların işleyişi üzerinde olumsuz etkileri bulunmaktadır. Sonuç olarak,

donanım tabanlı sinir ağı uygulamalarında üstesinden gelinmesi gereken zorluklar vardır. Bu

zorlukları aşmak için memristörler diğer sistemlere kıyasla daha fazla potansiyel çözümü

sağlayabileceği yapılan çalışmalarla ortaya konulmuştur (Cheng & An, 2021).

Memristör tabanlı donanım sistemleri üzerine çeşitli inceleme makaleleri yapılmıştır.

Mutlu ve meslektaşları, derin sinir ağlarını (DNN'ler) verimli bir şekilde işlemeyi amaçlayan

son gelişmeler üzerine kapsamlı bir çalışma (Mutlu et al., 2019) yürütmüştür.

Sebastian ve ekibi, bellek aygıtları tarafından etkinleştirilen temel hesaplama işlevlerinin

yanı sıra bilimsel hesaplama, sinyal işleme, optimizasyon, makine öğrenimi, derin öğrenme ve

stokastik hesaplama gibi uygulamaları inceleyen bir çalışma (Sebastian et al., 2020) sunmuştur.

Bir diğer çalışma, Von Neumann mimarisindeki verimsizlikleri ortadan kaldırmak için

farklı fiziksel prensiplere dayanan dirençli anahtarlama malzemelerinin tasarımına

odaklanmıştır. Wang ve ekibi, dirençli anahtarlama süreçlerine (RSM) yol açan fiziksel

mekanizmalarla ilgili çalışmaları incelemiş ve mekanizmaların temsil kabiliyeti, anahtarlama

hızı, enerji, güvenilirlik ve cihaz yoğunluğu hakkında bilgi vermiştir (Z. Wang et al., 2020).

Yang ve meslektaşları, derleme makalelerinde çeşitli memristör sinaptik cihazları uyaran

modellerine göre sınıflandırmış ve bu sinaptik cihazların çalışma mekanizmalarının ayrıntılı bir

analizini yapmıştır. Bir başka çalışma (S. Chen et al., 2023) ile hem biyolojik hem de yapay

hücrelerde nöral sinyal üretimi ve iletiminin karmaşık süreçlerine yönelik mevcut yaklaşımların

genel bir incelemesi sunulmuştur.

Günümüzde doğal dil işleme, metin tahmini, nesne algılama, konuşma ve görüntü tanıma

gibi çeşitli yapay zekâ uygulamalarında YSA mimarilerinin kullanımı önemli ölçüde artmıştır.

Geleneksel YSA uygulamalarında, bellek ve işlem birimleri arasında büyük ölçekli veri

6

hareketleri gerçekleşmekte ve bu işlemler yüksek hesaplama maliyetleri gerektirmektedir. Bu

hesaplama süreçlerini daha verimli hale getirmek amacıyla çeşitli yazılım ve donanım

çözümleri geliştirilmektedir. Ancak, tüm bu çabalara rağmen, veri trafiğindeki gecikme ve

yüksek enerji tüketimi gibi Von Neumann mimarisinin darboğaz sorunları devam etmektedir.

Bu darboğazın üstesinden gelmek için yapay zekâ uygulamalarına özel donanım elemanlarının

tasarlanması ve geliştirilmesi gerekmektedir. Bu doğrultuda, nörobiyolojik sistemlerden

esinlenen çeşitli özelliklerin donanım düzeyinde tasarlanması ve entegre edilmesi, bu soruna

etkili bir çözüm sunabilir. Bu yaklaşım çerçevesinde, özellikle memristör tabanlı nöromorfik

hesaplama sistemleri dikkat çekmektedir. Memristörler, uçucu olmayan bellek özellikleri ve

analog davranışları sayesinde hız ve enerji verimliliği açısından umut verici donanım

iyileştirmeleri sunmaktadır. Sinaptik ağırlıkların etkin bir şekilde depolanmasına ve

işlenmesine olanak tanıyan bu cihazlar, donanım düzeyinde performans artırıcı çözümler

sunmaktadır.

Bu çalışmada, güncel sistemlerden farklı olarak doğrudan derin öğrenme işlevlerini

yerine getirebilen ve biyolojik beyin yapısını taklit edebilen memristör tabanlı nöromorfik

hesaplama sistemleri ele alınmaktadır. Bu bağlamda, çalışmada derin öğrenme ve makine

öğrenmesi uygulamalarında sıkça kullanılan Stokastik Gradyan İnişi (SGD) ve momentum

tabanlı optimizasyon varyantlarının memristör tabanlı sistemler üzerindeki performansı

kapsamlı bir şekilde deneysel olarak incelenmiştir. Ayrıca, nano ölçekli memristör tabanlı

sinaptik cihazların öğrenme özellikleri, enerji verimliliği ve doğruluk oranları gibi önemli

performans metrikleri detaylı olarak araştırılmıştır. Uygulamada MNIST ve CIFAR-10 veri

setleri kullanılarak elde edilen deneysel sonuçlar sonraki bölümlerde paylaşılmıştır.

Tezin Amacı ve Alana Katkıları

Literatür incelemesi, memristör ileri teknoloji malzemeler kullanılarak çip üzerinde

öğrenme süreçlerini gerçekleştirmeyi hedefleyen dirençli sinaptik diziler üzerine yapılan

araştırmaları kapsamaktadır. Bu malzemeler, özellikle hafif yapıları ve enerji tasarrufu sağlayan

özellikleri ile modern nöromorfik hesaplama sistemlerinin geliştirilmesinde etkili bir potansiyel

sunmaktadır. Araştırmalar, memristör tabanlı sinaptik dizilerin elektriksel karakteristiklerini

inceleyerek bu malzemelerin sinaptik davranışları nasıl taklit ettiğini anlamayı amaçlamaktadır.

Bu çalışmalar, nöromorfik uygulamalar için gerekli olan doğrusal olmayan iletim, yüksek

anahtarlama hızları, geniş bellek pencereleri, uzun süreli bellek tutma yetenekleri gibi birçok

temel elektriksel özelliği analiz etmektedir. Bu bağlamda, özellikle sinaptik ağırlıkların sürekli

olarak güncellenmesine olanak tanıyan çok katmanlı yapılar ve malzemelerin sinaptik

7

plastikliği, uzun süreli potansiyasyon (LTP) ve depresyon (LTD) gibi biyolojik fonksiyonları

destekleyebilme kapasitesi ön plana çıkmaktadır.

Özetle literatür incelemesinde genellikle memristör malzemeleri kullanılarak çip üzerinde

öğrenmeyi sağlamak amacıyla dirençli sinaptik dizilerin incelendiği görülmüştür. Bu

çalışmaların odak noktası genellikle bu malzemelerin elektriksel özellikleri ve sinaptik

davranışları olmuştur. Bu çerçevede, bu çalışma ile:

1. Memristör tabanlı nano-sinaptik bir cihazın yapay sinir ağı uygulamalarında

kullanımını bilgisayar ortamında simüle ederek, bu cihaz üzerindeki optimizasyon

yöntemlerinin performansını derinlemesine analiz ederek alana önemli katkılar

sunulmuştur.

2. Bu çalışmada, yapay sinir ağı uygulamalarında kullanılan memristör tabanlı nano-

sinaptik cihazın doğruluk, enerji optimizasyonu ve eğitim süresi gibi kritik

performans ölçütleri optimize edilerek test edilmiştir.

3. MNIST ve CIFAR-10 veri kümeleri üzerinde gerçekleştirilen rakam tanıma ve

sınıflandırma uygulamaları ile cihazın ve kullanılan optimizasyon yöntemlerinin

performansı kapsamlı bir şekilde analiz edilmiştir.

4. Bu detaylı analizlerin sonucunda, cihazın kullanılan veri kümelerinde yüksek

doğruluk oranları elde ettiği, dolayısıyla uygulamalarda hata oranını düşürerek etkili

sonuçlar sunduğu görülmüştür.

5. Memristör tabanlı nano-sinaptik cihaz, enerji tüketimi bakımından klasik bilgisayar

sistemlerine göre önemli ölçüde tasarruf sağlamakta, düşük enerji tüketimiyle yapay

zekâ uygulamalarında yeni bir donanım çözümü olarak öne çıkabileceği

gösterilmiştir.

6. Yapılan simülasyonlarda, Stocastic Gradient Descent (SGD) ve onun varyantları gibi

optimizasyon yöntemleri kullanılarak cihazın dayanıklılığı, adaptasyon yeteneği ve

farklı veri kümelerine uyum kabiliyeti test edilmiştir.

7. Bu çalışma, önerilen sistemin sağlamlığını ve uyarlanabilirliğini vurgulayarak,

cihazın değişen koşullara ve parametre ayarlarına hızla adapte olabilen bir yapıya

sahip olduğunu ortaya koymaktadır.

8. Nöromorfik mimarilerin potansiyeli ve yapay zekâ sistemlerine sağladığı katkılar ele

alınarak, geleneksel bilgi işlem paradigmasının sınırlamalarının ötesine geçebilecek

alternatif bir yol gösterilmiştir.

8

9. Elde edilen simülasyon sonuçları, memristör tabanlı nano-sinaptik cihazların,

nöromorfik hesaplama sistemleri için sürdürülebilir ve yüksek performanslı bir

çözüm sunduğunu, böylece yapay sinir ağı tabanlı uygulamalarda gelecekte yaygın

bir kullanım alanına sahip olabileceğini göstermektedir.

10. Çalışmanın sonuçları, klasik bilgisayar sistemlerine bir alternatif olarak memristör

tabanlı nano-sinaptik cihazların etkili bir donanım çözümü sunduğunu kanıtlamış

olup, bu cihazların daha geniş alanlarda uygulanabilirliğini araştırmak için

gelecekteki çalışmalara rehberlik etmektedir.

Bu çalışma, memristör tabanlı nano-sinaptik cihazların yapay sinir ağı uygulamalarındaki

kapasitesini ve verimliliğini simülasyonlar aracılığıyla inceleyerek, optimizasyon

yöntemlerinin bu cihazlar üzerindeki yansıması bilgisayar üzerinde simüle ederek detaylı bir

biçimde değerlendirmektedir.

Bu tezin devamı, aşağıdaki şekilde yapılandırılmıştır. İlk olarak, Kuramsal Temeller

bölümü, ilgili literatürü kapsamlı bir biçimde ele alarak tez konusuna ilişkin temel kavramları

ve kuramsal çerçeveyi sunmaktadır. Ardından, Materyal ve Metot bölümünde, araştırmada

kullanılan materyallerin özellikleri ayrıntılı olarak tanımlanmış ve önerilen yöntemin uygulama

süreci açıklanmıştır. Bulgular ve Tartışma bölümünde ise araştırma sonuçları kapsamlı bir

biçimde analiz edilerek, literatürdeki benzer çalışmalarla kıyaslanmış ve farklı açılardan

yorumlanmıştır. Son olarak, Sonuçlar ve Öneriler bölümünde elde edilen bulgular ışığında bu

alanda gelecekte yapılacak çalışmalara yönelik öneriler sunularak ve çalışmanın genel katkısı

tartışılarak tez tamamlanmaktadır.

9

KURAMSAL TEMELLER

Memristörün Tarihsel Gelişimi

Ewald Georg von Kleist 1745 yılında kondansatörü, Georg Simon Ohm 1827 yılında

direnci ve Michael Faraday 1831 yılında indüktörü keşfetmiştir (Mazumder et al., 2012). Bu

devre elemanları ve aralarındaki ilişki Şekil 4'te gösterilmiştir. Şekil 4'te gösterilen devrede

kondansatör elektrik yükü ile elektrik potansiyeli arasındaki bağlantıyı, direnç elektrik akımı

ile voltaj arasındaki ilişkiyi, indüktör ise manyetik akı ile elektrik akımı arasındaki ilişkiyi

kurmaktadır (R. Lin et al., 2023). Bununla birlikte, uzun bir süre boyunca akım ve yük

arasındaki ilişkiyi kuran devre elemanı tanımlanmamıştır (Strukov et al., 2008). Leon Chua

1971 yılında simetri argümanlarına dayanarak dirençler, kapasitörler ve indüktörlerin yanında

dördüncü bir devre elemanı olması gerektiğini savunmuş ve bu elemana hafızalı direnç olan

memristör adını vermiştir (L. Chua, 1971). Chua ve Kang tarafından 1976 yılında yapılan başka

bir çalışma (L. O. Chua & Sung Mo Kang, 1976) ile memristör daha da detaylandırılmış ve

memristör özellikleri gösteren devre elemanları detaylı bir biçimde ele alınmıştır.

Şekil 4. Dört temel iki terminalli pasif devre elemanı

Çalışma, donanım tasarımının memristör kullanımını içerdiği “memristif sistemler” adı verilen

yeni bir sistemi tanıtmakta ve böyle bir sistem için gerekli kriterleri belirlemektedir (Corinto et

al., 2015). Ayrıca bu çalışma, memristörün akım-gerilim karakteristiğinin bir histerezis eğrisi

sergilediğini tespit eden ilk çalışmadır (F. Y. Wang, 2008). Buna ek olarak, çalışma, yüksek

frekanslarda bir direncin akım-gerilim karakteristiğinin doğrusal bir direncinkine benzer

olduğunu açıklamaktadır (Adhikari et al., 2013; Sah et al., 2015). Şekil 5, Leon Chua'nın akım-

gerilim karakteristiğine dayalı olarak tahmin edilen memristör histerezis eğrisini (Lyscaous)

10

göstermektedir. Chua ve Kang, çalışmalarında Hodgkin Huxley Sinir Modeli (Y. Liu et al.,

2021) gibi sistemlerin memristörler kullanılarak uygulanabileceğini öne sürmüşlerdir. (L. O.

Chua & Sung Mo Kang, 1976). Ayrıca, çalışmalarında memristif sistemler için modelleme

yöntemlerini de göstermişlerdir. 2010 yılında, nöro plastisiteye benzeyen uzun vadeli plastisite

(LTP), memristörlerin en yaygın olarak uygulanan temel işlevlerinden biri olan sürüklenme

temelli memristörlerde (drift memristors) taklit edildi (Jo et al., 2010). 2010 yılında, biyolojik

sistemlere kıyasla bağlantı ve işlev yoğunluğu sunan bir memristör çapraz çubuk dizisi de

geliştirilmiştir (C. Li et al., 2019). Faz Değişim Belleği (PCM) olarak bilinen memristör türleri

2010 yılında uygulamalar için önerilmiştir (Wong et al., 2010). 2012 yılında, PCM tabanlı

devreler nöromorfik spiking fonksiyonları taklit edilerek uygulanmıştır (Pickett et al., 2013).

Şekil 5. Leon Chua'nın öngördüğü memristör histerezisi (L. O. Chua & Sung Mo Kang, 1976)

2016 yılında Wang ve arkadaşları tarafından, metal iyonlarının redoks reaksiyonu ve metal

iletken bir filament oluşumu yoluyla iletkenlik anahtarlamasını kontrol eden iletken köprü

memristörleri (CBM) önerilmiştir. 2019 yılında, tamamen entegre ve programlanabilir

memristör çip setleri geliştirilmiştir (Vaughan, 2023). Bu araştırma, bir memristör çapraz çubuk

dizisi ile tamamlayıcı metal-oksit-yarı iletken (CMOS) kontrol devrelerinin kombinasyonunu

içeriyordu. Sonuç olarak yüksek verimlilikle çarpma-biriktirme işlemlerini gerçekleştirebilen

nöromorfik bir bilgi işlem çipinin oluşturulmasıydı (F. Cai et al., 2019). 2020'de yapılan bir

çalışma, geleneksel çapraz çubuk dizilerinin iki boyutlu yapısını geliştirerek üç boyutlu

memristör devreleri geliştirmeyi amaçlamıştır (P. Lin et al., 2020). Bellekte hesaplama

yapabilen, CMOS ve dirençli rastgele erişimli bellek (RRAM) yapısına sahip memristör

cihazları içeren, yüksek enerji verimli ve düşük gecikmeli bir donanım yapısı

gerçekleştirilmiştir (Hung et al., 2021). 2022 yılına gelindiğinde, çip üzerinde iletişim için

memristör çapraz çubuk dizilerine dayalı bir cihaz geliştirilmiş ve paralel veri işleme için

kullanılmıştır (Choi et al., 2022).

11

Uzun yıllar boyunca memristörün teorik bir unsur olduğuna ve böyle bir devre elemanının

gerçekte var olmadığına inanılıyordu (Johnsen, 2012; Meuffels & Soni, 2012). Bu algı

nedeniyle araştırmacılar, 2008 yılında Hewlett Packard (HP) laboratuvarlarında fiziksel olarak

uygulanana kadar bu yeni devre elemanına fazla ilgi göstermemiştir (Strukov et al., 2008).

Memristörün HP tarafından donanımsal olarak gerçekleştirilmesinden sonra, araştırmacıların

dikkatini hızla çekmiş ve memristörler üzerinde yoğun çalışmalar ve araştırmalar yapılmasına

yol açmıştır (Ascoli et al., 2016; Kvatinsky et al., 2013). Bu atılımın başarılmasına rağmen,

memristörün bir devre bileşeni olarak pratikte uygulanması gecikmiştir. Bu gecikme nedeniyle,

araştırmacılar memristörlerin rolünü yerine getiren devrelerle devre modellemeye odaklanmış

ve çok sayıda modelleme süreci yürütmüştür (Biolek & Biolková, 2009).

Memristörün Yapısı

Memristörün yapısı genellikle iki terminalli, pasif, enerji depolamayan, doğrusal olmayan

özelliklere sahip küçük boyutlu bir akım-voltaj devre elemanıdır (Liao et al., 2021). HP firması

tarafından donanım olarak hayata geçirilen memristörün matematiksel ifadesi de HP

laboratuvarında gerçekleştirilmiştir. İlgili matematiksel ifadeler aşağıda gösterilmiştir.

Denklem 1 ile akım ve gerilim arasındaki ilişki ifade edilmiştir.

𝑉(𝑡) = 𝑅𝑀𝐸𝑀(𝑥)𝑖(𝑡) (1)

Denklem 2 ile memristör direncinin değişimi gösterilmiştir.

𝑅𝑀𝐸𝑀(𝑥) = [𝑅𝑂𝑁(𝑥) + 𝑅𝑂𝐹𝐹(1 − 𝑥)] (2)

Memristörler, depolanmış ve depolanmamış olmak üzere iki bölge ile ifade edilebilir ve

depolanmış bölgenin genişliğinin toplam memristör genişliğine oranındaki değişim, x olarak

gösterilmekte olup, aşağıdaki Denklem 3 ile temsil edilmiştir (Strukov et al., 2008).

𝑑𝑥

𝑑𝑡
=

𝜇𝑣𝑅𝑂𝑁

𝐷2
𝑖(𝑡) (3)

Daha iyi ve sağlıklı bir sonuç elde edebilmek için HP tarafından önerilen pencereleme

fonksiyonu Denklem 4'te ifade edilmiştir.

𝑓(𝑥) =
𝑥(1 − 𝑥)

𝐷
 (4)

Katkılı bölgenin alanının tüm memristör bölgesine oranındaki değişimi bulmak için denklem

(4) ve Denklem (3) kullanılarak bu oran bulunur. Bu işlem Denklem 5 ile ifade edilir.

12

𝑑𝑥

𝑑𝑡
=

𝜇𝑣𝑅𝑂𝑁

𝐷2
𝑖(𝑡)𝑓(𝑥) (5)

Memristörler çok küçüktür ve birim alan başına yoğunlukları insan beynindeki sinaps

yoğunluğuyla karşılaştırılabilir (Strukov et al., 2008). Bu, biyolojik sinir ağlarının işleyiş

yöntemlerini taklit edebilen yapay sinir ağları oluşturmak için umut verici bir teknolojidir

(Eshraghian et al., 2022). Bu alanların etkinleştirilebilmesi için memristörlerin büyük diziler

halinde düzenlenmesi gerekmektedir (Caravelli & Carbajal, 2018). Memristör dizilerini

okuyabilen ve yazabilen devrelerin geliştirilmesi, memristör teknolojisinin ilerlemesinde

önemli bir adımdır (Yakopcic et al., 2011). Bu tür devreler, memristör dizisine doğru bir şekilde

veri okuyup yazabilmenin yanı sıra memristör dizisinden geçen akım akışını algılama ve

kontrol etme gibi diğer işlevleri de yerine getirecek şekilde tasarlanmalıdır. Memristörlerin

okunarak ve yazılarak bellek depolama için nasıl kullanılacağını açıklayan makaleler

yazılmıştır (Ho et al., 2011; Niu et al., 2010). Bu devreler, bir memristörün durumunu

belirlemek için analog karşılaştırıcılar olarak fonksiyonel amplifikatörler kullanır. Kim ve

arkadaşlarının çalışması, memristör direncini önceden belirlenmiş sekiz değer kümesine

değiştirme yeteneğine sahip karmaşık okuma ve yazma devreleri önermektedir (H. Kim et al.,

2010). Memristör, paralel hesaplama ile ilgili olan vektör matris çarpımı için kullanılabilecek

doğrusal, çok seviyeli iletim durumlarına sahip olma potansiyeli nedeniyle büyük ilgi

görmektedir (Hu et al., 2016). Bu donanım durumu ile yazılım, CPU ve GPU ile birlikte hızlı

bir geliştirme ve dönüştürme sürecinde daha yüksek hızlara ulaşma imkanına sahip olmaktadır.

Bu nedenle tasarlanan sistemlerden en iyi verimin alınabilmesi için memristörlerin geliştirilen

donanım sistemi zincir yapısı içerisinde doğru konumlandırılması önem arz etmektedir.

Sinaps cihazı

Günümüzde kullanılan hesaplamalı veri işleme, birçok modern bilgisayar sistemi

mimarisinin temelini oluşturan Von Neumann mimarisi üzerinde gerçekleştirilmektedir (Tsai

et al., 2018). Bu mimari, bir bilgisayarın temel bileşenleri olan işlemci, bellek ve giriş/çıkış

birimlerini bir araya getirmektedir (von Neumann, 1993). Merkezi işlem birimi ve belleğin bir

arada çalıştığı sistem transistör teknolojisine dayanmaktadır (Shaw, 1950). Bu durum nedeniyle

donanım, Moore yasasını takip ederek kısa sürede hızlı bir gelişim göstermiştir (Manfrinato et

al., 2013). Moore Yasası'na (Moore, 1965) göre, bir entegre devredeki transistör sayısının her

iki yılda bir iki katına çıkacağı ve üretim maliyetlerinin düşmesi nedeniyle bilgisayar

donanımlarının performansının da her iki yılda bir iki katına çıkacağı düşünülmektedir. Bu

durum daha güçlü ve verimli CPU'ların ve bellek sistemlerinin geliştirilmesine yol açmıştır.

13

Sonuç olarak, veri işleme donanımı daha yüksek işlem hızları ve daha büyük bellek

kapasiteleri sağlayarak daha güçlü ve verimli hale gelmiştir (Hu et al., 2017). Bu durum, daha

güçlü ve verimli bilgi işlem sistemlerinin yanı sıra daha gelişmiş yazılım ve uygulamaların

geliştirilmesine yol açmıştır. Transistörlerin ölçeklendirilmesi ve daha küçük alanlara daha

fazla transistör yerleştirilmesi sonucunda CPU'nun işlem hızı önemli ölçüde artmıştır (Xiu,

2019). Bununla birlikte, CPU ve bellek arasındaki yavaş veri aktarımı, hesaplama hızını

yavaşlatır ve bu da enerji verimliliğini azaltır. Bu durum CPU'nun çalışma sırasında daha fazla

enerji tüketmesine neden olmaktadır (Zanotti et al., 2020). Moore Yasası sayesinde transistör

teknolojisi ve von Neumann mimarisi, transistörleri 10 nanometreye kadar küçülterek sınırlarını

zorlamış ve bu teknolojilerin üretim sınırlarına atomik düzeyde ulaşmamızı sağlamıştır (Taur,

2002). CPU'ların ve belleklerin performansını artırmak için birçok araştırmacı transistör ve von

Neumann mimarisindeki teknik sorunları ele almaya çalışmıştır (Palit et al., 2014). Bu durum,

yüksek performanslı, son teknoloji bilgi işlem ve bellek cihazlarına daha fazla ihtiyaç

duyulmasına neden olmuştur. Carver Mead, nöromorfik sistem adı verilen ve aynı anda hem

hesaplama hem de bellek işlemlerini gerçekleştirerek insan beyninin çalışma mekanizmasını

taklit eden yeni bir hesaplama sistemi olan nöromorfik sistemi önermiştir (Mead, 1990).

Nöromorfik sistemler, insan beyninin çalışma mekanizmalarını taklit etmek için geliştirilmiş

bir bilgisayar sistemi türüdür. Bunlar, beyin gibi birden fazla işlemi aynı anda gerçekleştirerek

çoklu görev yapmak üzere tasarlanmıştır. Nöromorfik sistemler, insan beyninin çalışma

mekanizmalarını kopyalamanın yanı sıra, insanların çözebildiği problemleri çözebilme

yeteneğine de sahiptir (Hu et al., 2017).

Biyolojik sinaps

Biyolojik bir sinaps, sinaptik yarık olarak bilinen küçük bir boşlukla birbirine bağlanan

iki hücrenin oluşturduğu, sinir hücreleri arasında mesaj iletmek için özel bir bağlantı olarak

bulunur (W. Xu et al., 2016). Şekil 6'da sinapsların konumu gösterilmektedir. Şekil 6'da ifade

edildiği gibi, pre-sinaptik nöron akson ucundan post-sinaptik nöronun dendritine doğru

konumlanır (Kandel et al., 2012). Nörotransmitterler post-sinaptik nöronun reseptörlerine

bağlanmadan önce, pre-sinaptik nöronun aksonunun ucunda elektriksel bir spike (darbe)

oluştururlar, ardından nörotransmitterler iki nöron arasındaki boşluğa salınır ve postsinaptik

nöronun reseptörlerine bağlanarak bir elektrik sinyali oluştururlar (H. Yu et al., 2021).

Oluşturulan bu sinyal daha sonra nöron boyunca iletilir. Biyolojik sinyaller, post-sinaptik

nöronun dendritine bir nörotransmitter gönderildikten sonra bağlı nöronlar aracılığıyla sinir

sistemine iletilir (Bower & Beeman, 1995). Sinaps plastisitesi, sinapsların aktiviteye yanıt

14

olarak güçlerini değiştirme yeteneğidir. Diğer bir ifadeyle sinapsın bir sinyalin hızını veya

yoğunluğunu artırma veya azaltma kabiliyetidir (G. Lee et al., 2021; S. Yu et al., 2011). Ayrıca,

kısa ve uzun süreli hafızanın yapılandırılmasıyla yakından bağlantılı olup öğrenme ve hafıza

oluşumu için önemlidir (Saïghi et al., 2015).

Şekil 6. Biyolojik sinaps şeması. Sinaptik iletim, presinaptik hücreden gelen sinyallerin

postsinaptik hücreye iletilmesi sürecidir. Şemada, sinaptik veziküller presinaptik hücre içinde

bulunur ve sinir hücreleri arasında iletişimi sağlayan nörotransmitterleri içerir.

Beynin öğrenme süreci sırasında, sinaps olarak bilinen nöronlar arasındaki bağlantı,

sinaptik plastisite aşamasında ya daha güçlü ya da daha depresif hale gelebilir (Rajendran et al.,

2019). Spike Zamanına Bağlı Plastisite (STDP), postsinaptik ve pre-sinaptik nöronlardaki

aksiyon potansiyellerindeki artışlar arasındaki zamanlama farkına bağlıdır (Burr et al., 2017).

Şekil 7, biyolojik bir sinaps ile metal oksit tabanlı yapay bir sinaps arasındaki karşılaştırmayı

göstermektedir. Pre-sinaptik ve post-sinaptik nöronlar, uyarıcı ve inhibe edici post-sinaptik

potansiyellerin elektrik sinyallerini gönderir ve alır.

15

Şekil 7. Yapay sinapsın gösterimi.

Bu sinyaller, nörotransmitterleri serbest bırakarak iki nöron arasındaki bağlantının gücünü

değiştirmek için kullanılır (Kuzum et al., 2011; Sung et al., 2018). Uzun süreli güçlenme (LTP),

sinaptik ağırlığın kalıcı olarak değiştirildiği sinaptik güçte kalıcı bir değişikliktir. Kısa bir süre

içinde bir dizi ardışık uyarım meydana geldiğinde, sinaptik aktivite artar (uzun süreli güçlenme)

veya azalır (uzun süreli depresyon, LTD). Bu değişiklik birkaç dakika veya daha uzun sürebilir

(H. Yu et al., 2021). Spike-Timing-Dependent Plasticity, bir sinapsın gücünün presinaptik ve

post-sinaptik aksiyon potansiyellerinin veya spike'ların (STDP) zamanlamasına bağlı olarak

değiştiği bir olgudur (Yan et al., 2018).

Yapay sinaps

Biyolojik sinaps plastisitesi, sinaptik ağırlık olarak adlandırılan ve analog bir şekilde

kontrol edilebilen bir bağlantı gücüdür (Q. Wan et al., 2019). Yapay sinapslar, biyolojik bir

sinapsın önemli işlevlerini taklit etmek için tasarlanmıştır (W. Xu et al., 2016). Yapay sinaps,

iki sinir hücresi arasındaki bağlantı olan biyolojik sinapsın işlevini taklit eden bir cihazdır (H.

Yu et al., 2021). Yapay sinapslar, insan beyninin yapısını ve davranışını taklit eden bir

bilgisayar türü olan nöromorfik bilişimde kullanılmaktadır. Bu sinapslar tipik olarak silikon,

metal veya organik moleküller gibi malzemelerden yapılır ve biyolojik sinapslardan geçen

elektrik sinyallerini taklit etmek için tasarlanmıştır (H. Yu et al., 2021). Yapay sinapslar,

karmaşık sorunları çözmek için kullanılabilecek yapay sinir ağları oluşturmak için

kullanılabilir. Şekil 7'de gösterildiği gibi iletkenlik değişiminin (direnç) sinaptik bir ağırlıkla

değiştirilmesi, biyolojik nöronun tepkisinin yapay bir sinaps uygulamasıyla taklit edilmesini

gerektirir (Do et al., 2010). Yapay sinapslar, hafızanın nasıl korunduğunu belirleyen Uzun

Süreli Potansiyasyon (LTP) ve Kısa Süreli Potansiyasyon (STP) olmak üzere iki tür sinaptik

plastisiteye sahiptir.

Uzun Vadeli Potansiyasyon (LTP), Uzun Vadeli Depresyon ve Kısa Vadeli

Potansiyasyon (LTD)

Sinaptik plastisite, nöronlar arasındaki bağlantıların yoğunluğundaki değişimi ifade eder

(Bear & Malenka, 1994). İlk çalışmalarda, yüksek frekanslı presinaptik uyarımın uzun süreli

güçlenmeyi (LTP) tetiklediği, düşük frekanslı uyarımın ise sinir hücrelerinde uzun süreli

depresyonu (LTD) başlattığı gösterilmiştir (Bliss & Lømo, 1973). Temel faktörlerden biri uzun

vadeli plastisite olarak adlandırılır. Sinaptik ağırlıktaki uzun vadeli değişiklikleri ifade eder ve

insan beynindeki öğrenme ve hafıza mekanizmalarıyla ilişkili olduğuna inanılır (Daoudal &

16

Debanne, 2003). Sinirsel bağlantıların güçlendiği, sinaptik güçte uzun vadeli veya kalıcı bir

artışla sonuçlanan kalıcı bir duruma uzun vadeli güçlenme (LTP) denir (Feldman, 2012). Diğer

bir deyişle, nöral bağlantıların zayıfladığı, sinaptik güçte uzun süreli veya kalıcı bir azalmaya

yol açan kalıcı bir durum, uzun süreli depresyon (LTD) olarak adlandırılır (Bear & Malenka,

1994).

LTP ve LTD, nöromorfik bilgi işlem sistemlerinde sinaptik ağırlıkları düzenleyen ve

güncelleyen temel ilkeler olarak kullanılabilir (Zeng et al., 2023). Sinaptik plastisite, iki nöron

arasındaki bağlantının gücünün değiştirilmesi anlamına gelir ve bu da aralarında iletilen ve sivri

uç olarak bilinen darbelerin süresiyle belirlenir (Ranjan et al., 2016; Zahari et al., 2015). Darbe

genişliğine dayalı sinaptik plastisite, Spike-Time Dependent Plasticity (STDP) (Dan & Poo,

2006; Linares-Barranco & Serrano-Gotarredona, 2009) olarak bilinen ve sinirsel öğrenme için

temel bir mekanizma olarak hizmet eder (Caporale & Dan, 2008).

Elektrokimyasal transistörler, STP veya LTP gibi biyolojik sinapsların nörokimyasal

işlevlerini çoğaltmanın bir yolu olarak incelenmekte ve geliştirilmektedir (Sheliakina et al.,

2018). STP ve LTP'li sinapslar, plastisite zaman ölçeğinde öğrenme ve hafıza oluşumu için

sinirsel temeldir (H. Wang et al., 2018). Çeşitli sistemler LTP süreçlerini mümkün kılarken,

sıvı elektrolit bileşenleri (Gkoupidenis et al., 2015; J. Shi et al., 2013) sınırlı tutma süresi ve

küçük iletkenlik değişimi nedeniyle belirsiz STP/LTP sinyalleri içerir (Van De Burgt et al.,

2017). Çoklu plastisiteye sahip entegre cihazlar oluşturmak ve nöromorfik devreleri

basitleştirmek için, güvenilir uçucu olmayan belleğe ve açıkça ayırt edilen kısa vadeli ve uzun

vadeli plastisite modlarına sahip katı hal organik sinapslar tasarlamak çok önemlidir. LTP ve

STP, Şekil 8'de gösterildiği gibi yapay sinapslar, dış sinyallerle geçici olmayan bir değişime

sahip olduklarında gerçekleştirilir.

Şekil 8. Yapay sinapslar LTP (kırmızı) ve STP (mavi).

17

Makine öğrenimi ile memristör tabanlı çalışmalar

Günümüz dünyasında makine öğrenimi, veri işleme teknolojilerinin temel

bileşenlerinden biri haline gelmiştir. Sürekli artan veri hacmiyle birlikte, akıllı veri analizinin

teknolojik amaçlar için daha yaygın ve önemli hale geleceğine inanılmaktadır (Mahdavinejad

et al., 2018; Sarker et al., 2021). Makine öğreniminin önemli bir kısmı, veri işleme

operasyonları ve bu operasyonlar sırasında karşılaşılan sorunlar için etkili çözümler sunmaktır.

Makine öğrenimi, yapay zekânın bir alt kümesidir. Makine öğrenimi algoritmaları, açıkça

programlanmadan otomatik olarak deneyimlerden öğrenir ve gelişir (Gupta et al., 2022).

Makine öğrenimi algoritmaları, verileri akıllıca analiz ederek, gerçek dünya sorunları için akıllı,

gerçek zamanlı mühendislik uygulamaları geliştirmenin anahtarıdır (Jhaveri et al., 2022).

Makine öğrenimi, Denetimli, Denetimsiz ve Takviyeli Öğrenme olarak kategorize edilir.

Memristör tabanlı çalışmalarda (Serb et al., 2016; Z. Wang et al., 2019; Yao et al., 2020; W.

Zhang et al., 2023), bu öğrenme algoritmaları çeşitli derin öğrenme yöntemleriyle birlikte

kullanılmaktadır.

Makine öğreniminde denetimli öğrenmenin işlevi, her bir girdi öğesini ilgili sınıf etiketi

değeriyle eşleştirmektir. Eğitimden sonra, bir bilgisayar bir nesneyi amaçlanan çıktı ile

ilişkilendirir, böylece öğrenme sürecini kolaylaştırır. Memristör tabanlı nöromorfik hesaplama

sistemleri, sinir ağlarını eğitmek için hızlı ve enerji açısından verimli bir yaklaşım sağlar. Yao

ve meslektaşları (Yao et al., 2020) çalışmalarında, bir derin öğrenme üzerinde denetimli bir

öğrenme algoritması kullanarak hız ve enerji açısından verimli durumu açıklamışlardır.

Denetimsiz öğrenme, etiketlenmemiş veri nesneleri üzerinde çalışır. Bu öğrenme türü

genellikle özellik çıkarma, önemli desen ve yapıları tespit etme, ilgili nesneleri eşleştirme ve

pratik amaçlar için kullanılır (J. Yang et al., 2019). Denetimsiz öğrenme algoritmasının

kullanıldığı bir çalışmada, metal oksit tabanlı memristörlerin kademeli ve çok seviyeli

anahtarlama özelliklerinden yararlanılarak olasılıksal bir sinir ağı tasarlanmıştır (Serb et al.,

2016).

Derin sinir ağı tabanlı pekiştirmeli öğrenme algoritmaları, insan müdahalesi veya

gözetimi ihtiyacını azaltarak bilgi ve problem çözme becerilerini otonom olarak edinebilen

makineler oluşturma konusunda büyük umut vaat etmektedir (Z. Wang et al., 2019). Wang ve

araştırma ekibi çalışmalarında, pekiştirmeli öğrenme uygulamasını sergilemek için deneysel bir

çalışma gerçekleştirmiştir. Analog ve dijital bileşenleri birleştiren özel tasarlanmış bir

platformda tek bir transistör ve tek bir memristörden (genellikle 1T1R olarak adlandırılır)

18

oluşan üç katmanlı bir ağ kullandılar. Bunu başarmak için, benzersiz kurulumları için

uyarlanmış değiştirilmiş bir öğrenme algoritması kullanmışlardır.

Derin Öğrenmeye Genel Bakış

Derin Öğrenme (Deng, 2014), çok katmanlı sinir ağı yapıları kullanılarak verilerdeki üst

düzey soyutlamaları modellemek için çeşitli algoritmalar kullanan bir türdür. İlk olarak 1986

yılında tanıtılmış ve 2000 yılında sinir ağlarına uygulanmıştır (Schmidhuber, 2015). Derin

öğrenme algoritmaları, farklı karmaşıklık seviyelerinde veri kümelerini çıkarıp analiz etmek

için birden fazla katman kullanır (LeCun et al., 2015). Derin öğrenme uygulamaları,

bilgisayarların basit kavramlardan karmaşık kavramları öğrenip analiz etmelerine olanak tanır

(Goodfellow et al., 2016). Hiyerarşik öğrenme olarak da bilinen Derin Öğrenme (DL), Yapay

Sinir Ağı'nın (ANN) genel aktivasyonunu dönüştürmek için birçok hesaplama aşamasında ilgili

değerlerin doğru şekilde atanmasıyla ilişkilidir (Deng, 2014). Derin mimariler, çok düzeyli

soyutlamalarla (yani doğrusal olmayan işlemlerle) karmaşık fonksiyonları öğrenme işleminde

kullanılır (Turian et al., 2009). Kısacası, derin öğrenme, denetimli veya denetimsiz; özellik

öğrenme, sınıflandırma ve desen tanıma gibi görevleri yerine getirmek için çok düzeyli

doğrusal olmayan hesaplama ve soyutlama kullanan makine öğreniminin bir dalıdır (Deng,

2014).

Şekil 9. Derin Sinir Ağı

Yapay Sinir Ağı (ANN), katmanlar halinde düzenlenmiş yapay nöronlardan oluşan bir

hesaplama sistemidir. Derin Sinir Ağları (DNN’ler) günümüzde bilgisayarla görme, konuşma

tanıma ve robotik gibi birçok yapay zekâ ve makine öğrenimi uygulaması için yaygın olarak

kullanılmaktadır (Sze et al., 2017). Bu sinir ağlarının klasik uygulamalarda gerçekleştirdiği

hesaplama işlemleri, bellek ve işlemci birimleri arasında büyük ve sürekli veri hareketleri

gerektirir; bu tür iş yükleri için özel donanım geliştirme çalışmaları devam etmektedir (Musisi-

19

Nkambwe et al., 2021). Şekil 9'da gösterilen ağ yapısı, giriş verilerini tanımlamak ve

sınıflandırmak için birlikte çalışan, her biri farklı ağırlık değerlerine sahip, birbiriyle bağlantılı

düğüm katmanlarından oluşmaktadır. Şekil 9’da gösterilen daireler ağın düğümleri olarak

adlandırılır. Her düğüm belirli girdi değerlerine sahiptir ve onları birbirine bağlayan çizgilere

ağırlık denir.

Derin Sinir Ağları (DNNs)

Derin Sinir Ağları (DNN'ler) (Oli-Uz-Zaman et al., 2022; J. Zhang & Zong, 2015),

geleneksel algoritmalarla çözülemeyen karmaşık problemleri çözmek için kullanılır. Bu ağlar,

verilerden karmaşık desenleri ve özellikleri çıkarma yeteneğine sahiptir. DNN'ler, görüntü

tanıma ve doğal dil işleme gibi çeşitli görevlerde de kullanılabilir. DNN, veriyi ileri iletmek

için çok katmanlı doğrusal olmayan gizli düğümler kullanan bir yapay sinir ağıdır (Capra et al.,

2020). DNN'ler üzerine yapılan araştırmalar, derin katmanlı ağlar, filtreler, eğitim ve test veri

setlerini içerir. Yapay sinir ağları, katman sayısının artırılmasıyla daha derin hale getirilerek

derin sinir ağları (DNN'ler) oluşturulur. Araştırmacılar, çalışmalarında derin inanç ağları

(DBN), derin yığın ağları (DSN), evrişimli sinir ağları (CNN) ve yinelemeli sinir ağları (RNN)

gibi çeşitli DNN sistemleri geliştirmişlerdir (J. Zhang & Zong, 2015).

Tablo 1. DNN tipleri (Cheng & An, 2021)

DNNs Temel özellikler Temel uygulamalar

CNN
Evrişim, havuzlama ve tam bağlantı katmanlarının

etkisinin azalması.

Görüntü İşleme ve Nesne Tespiti

RNN

Yapay sinir ağı yapısında ileri beslemeli ve geri

beslemeli sinir ağı yapıların kombinasyonu (geri

besleme).

Doğal Dil İşleme, Kredi Kartı

Dolandırıcılığı Tespiti, El Yazısı

Tanıma.

LTSM

Özel bir RNN türü olan derin öğrenme algoritmalarıyla,

görüntülerden elde edilen bilgiler kullanılarak birçok

sınıflandırma ve tahmin işlemi gerçekleştirilebilir.

Doğal dil işleme ve metin işleme:

Görsellerden otomatik altyazı

oluşturma ve ilgili metinlerden kelime

üretme.

Gan
Denetimsiz öğrenme, Generatif Model ve Ayırt Edici

Model olmak üzere iki modeli içerir.

Anlamsal Segmentasyon ve Görüntü

Çözünürlüğü Artırma.

Derin sinir ağları (DNN'ler), görüntü sınıflandırma veya konuşma tanıma gibi karmaşık

makine öğrenimi görevlerinde olağanüstü sonuçlar göstermiştir. DNN makine öğrenimi

teknikleri, birçok uygulamada insan performansına eşdeğer veya bazı durumlarda daha yüksek

doğruluk seviyelerine ulaşmıştır. Uygulamalarda, belirli bir görev için elde edilen yüksek

doğruluğun, verideki herhangi bir yapaylıktan değil, uygun problem temsilinin

kullanılmasından kaynaklandığından emin olmak önemlidir (Leek et al., 2010; Soneson et al.,

20

2014). Bu nedenle, modelin öğrendiklerini yorumlamak ve anlamak için geliştirilen yöntemler,

güvenilir bir doğrulama sürecinin önemli bir parçası haline gelmiştir (Hansen et al., 2011).

Yorumlanabilirlik, özellikle tıp veya otonom araçlar gibi modelin doğru özelliklere bağlı

kalarak çalışmasının hayati önem taşıdığı uygulamalarda çok büyük öneme sahiptir (Bojarski

et al., 2017; Caruana et al., 2015). Tablo 1'de DNN'ler kendine özgü özellikleri ve uygulama

alanları ile gösterilmiştir.

DNN'ler ve aktivasyon fonksiyonları

Literatürde, sigmoid, lojistik, tanh, ReLU ve Leaky-ReLU gibi aktivasyon fonksiyonları

bulunmaktadır (Hoon Chung et al., 2016).

Şekil 10. Aktivasyon fonksiyonunun basitleştirilmiş blok diyagramı.

Tablo 2. Aktivasyon fonksiyonları ve özellikleri

Aktivasyon

Fonksiyonu
 Grafik Tanım

Sigmoid

Sigmoid aktivasyon fonksiyonu, sıfır ile

bir arasında bir değer üretir.

Tanh

Tanh fonksiyonu, -1 ile +1 arasında

değerler üretir.

ReLU

ReLU aktivasyon fonksiyonunda, giriş

değeri sıfırdan küçük olduğunda çıkış

değeri sıfırdır, ancak giriş değeri sıfırdan

büyük olduğunda çıkış değeri giriş

değeriyle eşittir (Nwankpa et al., 2018).

Leakly ReLU

Leaky ReLU fonksiyonu, klasik ReLU

aktivasyon fonksiyonunun bir

varyasyonudur. Bu fonksiyonun çıkışı,

negatif giriş değerlerine karşı küçük bir

eğime sahiptir (J. Xu et al., 2020).

𝜎(𝑥) =
1

1 + 𝑒−𝑥

𝜎(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

max (0, 𝑥)

max (0.1𝑥, 𝑥)

21

ELU

Negatif değerlere sahip olması, ortalama

birim aktivasyonunu sıfıra yaklaştırarak

hesaplama karmaşıklığını azaltır ve bu

sayede öğrenme hızını artırır (J. Xu et al.,

2020).

Aktivasyon fonksiyonunun rolü, belirli bir nöronun aktive edilip edilmeyeceğine karar

vermek gibi çeşitli aktivasyon fonksiyonları vardır (Sharma et al., 2020). Bu, bir katmandaki

nöronlardan gelen çıktı değerlerinin aktivasyon fonksiyonları kullanılarak sonraki

katmanlardaki nöronlara aktarıldığı anlamına gelir. Nöronda oluşan bir çıktının diğer

katmanlara gönderilip gönderilmeyeceğine karar verilirken bir eşik değerine ihtiyaç duyulur.

Bunun nedeni nörondaki verinin değerinin (-∞, +∞) aralığında herhangi bir değer alabilmesidir.

Ayrıca nöron veri transfer limitini bilmemektedir. Bu nedenle, nöron aktivasyonunda karar

verme sürecinde aktivasyon fonksiyonları kullanılmalıdır. Bir aktivasyon fonksiyonu

kullanılmadan, ağırlıklar ve bias değerleri yalnızca doğrusal bir dönüşüm gerçekleştirecektir,

bu da doğrusal bir regresyon modeliyle aynıdır (Jagtap et al., 2020). Bu doğrusal modelin

çözülmesi kolaydır, ancak karmaşık problemlerle çok iyi sonuçlar başaramaz. Doğrusal

olmayan aktivasyon fonksiyonu, giriş verileri üzerinde doğrusal olmayan bir dönüşüm

gerçekleştirerek daha karmaşık görevleri öğrenmesine ve gerçekleştirmesine olanak tanır

(Jagtap et al., 2020). Basitleştirilmiş aktivasyon fonksiyonu yapısı Şekil 10'da gösterilmektedir

(Haoxiang & S, 2021).

Tablo 2, yapay sinir ağlarında kullanılan çeşitli aktivasyon fonksiyonlarının grafiksel

gösterimleri verilmiştir.

DNN katman tipleri

Derin öğrenme, yapay zekâ disiplininde, bilgisayarlı görü, doğal dil işleme ve konuşma

tanıma gibi alanlarda çığır açıcı gelişmelere imkân tanıyan bir makine öğrenimi alt dalıdır. Bu

alandaki başarılar, büyük ölçüde çok katmanlı yapay sinir ağları adı verilen karmaşık

hesaplamalı modellerin geliştirilmesine dayanmaktadır. Her bir sinir ağı katmanı, belirli bir

özelliği öğrenmeye yönelik olarak tasarlanmış olup, tüm katmanların bir araya gelmesiyle

oluşturulan derin mimari, büyük veri kümelerinden karmaşık ilişkileri çıkarabilme yeteneği

kazanır. Cai, Wu ve Zhang tarafından yapılan çalışmada vurgulandığı üzere, çalışmada

incelenen derin öğrenme mimarilerinde kullanılan farklı katman türleri, ağın genel

performansını doğrudan etkileyen optimizasyon süreçlerinin merkezinde yer almaktadır (Y. Cai

et al., 2019; Y.-H. Jin et al., 2020). Bu bağlamda, derin öğrenme modellerinde sıklıkla

𝑓(𝑥) = {
𝑥, 𝑥 ≥ 0

𝛼(𝑒𝑥 − 1), 𝑥 < 0

22

kullanılan yinelemeli katmanlar, havuzlama katmanları, tam bağlantılı katmanlar ve döngüsel

katmanlar gibi farklı katman türlerinin özellikleri ve işlevleri kullanılmaktadır. Bu tezin

kapsamında uygulamada kullanılan katmanlar ve hipermatreler ayrıntılı olarak ilerleyen

bölümlerde ele alınacaktır.

Giriş katmanı

Giriş katmanı, derin öğrenme modellerinde ham verilerin, modelin iç yapısına entegre

edildiği ilk ve kritik bir bileşendir. Bu katman, dış dünyadan elde edilen karmaşık ve çeşitli veri

türlerini, modelin anlayabileceği bir temsile dönüştürme işlevini üstlenir. Bilgisayarlı görü

uygulamalarında olduğu gibi, giriş katmanı, ham görüntü verilerini standartlaştırmak,

gürültüleri azaltmak ve belirgin özellikleri vurgulamak amacıyla ön işleme adımları

gerçekleştirir. Örneğin, Feng ve arkadaşları tarafından yapılan çalışma (Feng et al., 2020) ile

giriş katmanında uygulanan çeşitli görüntü dönüşümlerinin, modelin öznitelik öğrenme

performansını önemli ölçüde etkilediği gösterilmiştir. Bu sayede, model, daha yüksek seviyeli

soyut kavramları öğrenerek, karmaşık görsel verileri daha doğru bir şekilde sınıflandırabilir

veya nesneleri tespit edebilir. Dolayısıyla, giriş katmanı, derin öğrenme modellerinin başarısı

için temel bir yapı taşıdır ve modelin genel performansını doğrudan etkileyen bir faktördür.

RNN katmanı

Tekrarlayan sinir ağları (RNN), özellikle sıralı veriyle çalışan derin öğrenme

modellerinin temel yapı taşlarından biridir. Bu ağlar, giriş verilerindeki zaman veya sıraya bağlı

bağlamları anlamak ve işlemek amacıyla tasarlanmış yapısal bileşenlerdir. RNN'ler, her bir

zaman adımında girdileri işleyerek ve önceki zaman adımından gelen bilgileri bir "gizli durum"

aracılığıyla koruyarak, verilerdeki ardışık ilişkileri öğrenir. Bu mekanizma, metin, ses ve zaman

serileri gibi sıralı verilerde önemli olan bağlamsal bilgilerin modellenmesini sağlar. RNN'in

temel çalışma prensibi, bir ağırlık matrisi aracılığıyla giriş vektörleri ve önceki gizli durumun

birleşik bir dönüşümünü gerçekleştirmek ve bu dönüşüme doğrusal olmayan bir aktivasyon

fonksiyonu uygulamaktır. Bu süreç, her bir zaman adımında tekrarlanarak verideki uzun vadeli

ve kısa vadeli bağımlılıkların yakalanmasını mümkün kılar. Ancak, RNN'lerin vanishing

gradient (kaybolan gradyan) problemi nedeniyle uzun vadeli bağımlılıkları öğrenmekte zorluk

yaşayabileceği bilinmektedir. Bu sorunu çözmek için, LSTM (Uzun Kısa Süreli Bellek) ve

GRU (Gated Recurrent Unit) gibi gelişmiş RNN türleri geliştirilmiştir. Bu türler, veri içinde

hangi bilgilerin tutulacağı veya unutulacağına karar veren kapı mekanizmalarını kullanarak

performansı artırır (Hochreiter & Schmidhuber, 1997). Tekrarlayan sinir ağları, derin öğrenme

23

modellerinin sıralı verileri anlamasında ve sıralı veri gerektiren görevlerde yüksek performans

göstermesinde kritik bir rol oynar. RNN'ler, bu bağlamsal ilişkileri yakalayarak makine çevirisi,

duygu analizi ve ses tanıma gibi uygulamalarda derin öğrenmenin başarısını artırmaktadır.

Havuzlama

Havuzlama katmanları, derin öğrenme tabanlı bilgisayarlı görme sistemlerinde,

yinelemeli katmanlarla birlikte kullanılan temel bir bileşendir. Bu katmanlar, RNN işlemi

sonucu elde edilen öznitelik haritalarının boyutunu düşürmek amacıyla alt örnekleme işlemi

uygularlar. Alt örnekleme, hesaplama maliyetini azaltarak modelin daha verimli çalışmasını

sağlar, aşırı öğrenme riskini düşürür ve çeviri değişmezliği artırarak modelin farklı boyutlardaki

veya hafifçe deforme olmuş girdilere karşı daha dayanıklı olmasını sağlar. Yaygın olarak

kullanılan havuzlama yöntemleri arasında, bir bölge içerisindeki en büyük değerin seçildiği

maksimum havuzlama ve bölge içerisindeki değerlerin ortalamasının alındığı ortalama

havuzlama bulunmaktadır. Yapılan bir çalışma (S. Li et al., 2019) ile havuzlama katmanlarının

derin öğrenme modellerinin başarısı üzerindeki etkileri detaylı bir şekilde incelenmiştir . Bu

çalışmada, farklı havuzlama yöntemlerinin modelin performansı, öğrenme süresi ve genelleme

yeteneği üzerindeki etkileri karşılaştırılmıştır.

Tam bağlantılı katman

Tam bağlantılı katmanlar (yoğun katmanlar olarak da bilinir), derin öğrenme

modellerinde, verideki karmaşık ilişkileri ve soyut kavramları öğrenmek için kullanılan temel

bir bileşendir. Bu katmanlarda, bir önceki katmandaki her nöron, sonraki katmandaki her

nörona tek tek bağlanır. Bu sayede, ağ boyunca bilgi akışı maksimum düzeyde sağlanır ve

model, verideki global bilgiyi daha etkili bir şekilde yakalar. Tam bağlantılı katmanlar,

genellikle derin öğrenme modellerinin çıkış katmanı olarak kullanılır ve sınıflandırma veya

regresyon gibi çeşitli görevlerde son tahmini yaparlar. Sınıflandırma görevlerinde, softmax gibi

bir aktivasyon fonksiyonu kullanarak farklı sınıflar için olasılık dağılımları elde edilirken,

regresyon görevlerinde ise doğrusal bir aktivasyon fonksiyonu tercih edilir. Yapılan bir çok

çalışma (Prihatno et al., 2021; Q. Wang et al., 2020) ile tam bağlantılı katmanların derin

öğrenme modellerindeki önemini ve çeşitli uygulamalarını detaylı bir şekilde incelemiştir. Bu

çalışmalarda, tam bağlantılı katmanların farklı mimarilerdeki ve hiperparametre ayarlarındaki

etkileri incelenerek, model performansını optimize etmek için önemli bulgular elde edilmiştir.

24

Bırakma katmanı

Bırakma katmanı, derin öğrenme modellerinde aşırı uyum sorununu hafifletmek için

sıklıkla kullanılan bir düzenleme tekniğidir. Aşırı uyum, modelin eğitim verilerine aşırı

derecede uyum sağlaması ve sonuç olarak yeni, görülmemiş veriler üzerinde genelleme

yeteneğini kaybetmesi durumudur. Bırakma tekniği, bu sorunu çözmek amacıyla, eğitim

sürecinde sinir ağının gizli katmanlarındaki nöronların bir kısmını rastgele devre dışı bırakarak

modelin karmaşıklığını azaltır. Bu sayede model, eğitim verilerindeki rastlantısal gürültülere

karşı daha dayanıklı hale gelir ve genelleme performansı artar. Yapılan bir çalışma (Choe &

Shim, 2019) ile bırakma tekniğinin, özellikle büyük ve karmaşık sinir ağlarında aşırı uyumu

önlemedeki etkinliği vurgulanmıştır. Bırakma işlemi, her bir eğitim yinelemesinde farklı bir alt

kümedeki nöronların devre dışı bırakılması şeklinde gerçekleştirilir. Bu sayede, model, her bir

eğitim adımında farklı bir yapıya sahip olur ve bu da modelin daha genelleyici özelliklere sahip

olmasını sağlar. Sonuç olarak, bırakma katmanı, derin öğrenme modellerinin başarısı için

önemli bir araçtır ve modelin genelleme yeteneğini önemli ölçüde artırır.

Düzleştirme katmanı

Düzleştirme katmanı, derin öğrenme mimarilerinde, özellikle evrişimli sinir ağlarında,

çok boyutlu girdi verilerini tek boyutlu bir vektör temsiline dönüştürmek amacıyla kullanılan

bir işlemdir. Bu işlem, yüksek boyutlu verilerin, tamamen bağlantılı katmanlar gibi daha basit

yapıdaki katmanlara uygulanabilmesi için gereklidir. Evrişimli katmanlar tarafından elde edilen

özellik haritaları gibi çok boyutlu veriler, düzleştirme işlemi sayesinde tek boyutlu bir vektör

haline getirilerek, sonraki katmanlara daha uygun bir formatta sunulur. Bu sayede, modelin

daha yüksek seviyedeki soyut kavramları öğrenmesi ve karmaşık kararlar alması kolaylaşır.

Anand ve arkadaşları tarafından yapılan çalışmada, düzleştirme katmanının, derin öğrenme

modellerinin başarısı üzerindeki etkisi ve farklı mimarilerdeki kullanımı detaylı bir şekilde

incelenmiştir (Anand et al., 2022). Düzleştirme işlemi, herhangi bir parametre öğrenimi

gerektirmeyen basit bir işlem olmasına rağmen, modelin genel performansı üzerinde önemli bir

etkiye sahip olabilir. Özellikle, düzleştirme işlemi öncesinde uygulanan normalizasyon ve

beyazlatma gibi ön işleme teknikleri, modelin öğrenme hızını artırabilir ve genelleme

yeteneğini güçlendirebilir.

DNN modellerinin hiperparametreleri ve uyarlanmaları

Derin öğrenme modellerinin tasarımı, belirli bir problem için en uygun sinir ağı

mimarisinin belirlenmesi sürecini ifade eder. Bu süreçte, modelin yapısal bileşenleri olan

25

katman sayısı, katman türleri ve bu katmanların birbirine nasıl bağlanacağı gibi kritik kararlar

verilir. Modelin performansını doğrudan etkileyen hiperparametreler ise, modelin öğrenme

sürecini kontrol eden ayarlanabilir parametrelerdir. Öğrenme oranı, küme boyutları, düzenleme

parametreleri ve optimizasyon algoritması gibi hiperparametreler, modelin genelleme yeteneği,

eğitim süresi ve yakınsama hızı üzerinde önemli etkilere sahiptir. Bu parametrelerin uygun

şekilde ayarlanması, modelin istenen performansa ulaşabilmesi için büyük önem taşır. Derin

öğrenme modellerinin tasarımında hem teorik bilgi hem de deneysel çalışmaların birleşimiyle

elde edilen bilgilerden yararlanılır. Modelin karmaşıklığı, veri kümesinin özellikleri, hesaplama

kaynakları ve çözülmek istenen problemin doğası gibi faktörler, tasarım sürecinde dikkate

alınması gereken önemli unsurlardır. Tasarlanan bir DNN modelinde birçok hiperparametre

bulunabilir. Bu parametrelerden en önemlileri; hedef boyutu, parti boyutu, aktivasyon

fonksiyonu, optimizasyon fonksiyonu, eğitim tur sayısı olarak sıralanabilir.

Bir derin öğrenme modelinin başarısı, sadece mimarisiyle değil, aynı zamanda

hiperparametrelerinin de doğru seçimiyle belirlenir. Hiperparametreler, modelin öğrenme

sürecini kontrol eden ve modelin genelleme yeteneğini doğrudan etkileyen ayarlanabilir

değerlerdir. Bu nedenle, en uygun hiperparametreleri belirlemek, model tasarımının kritik bir

aşamasıdır. Hiperparametre optimizasyonu, genellikle deneysel bir süreçtir ve araştırmacıların

domain bilgisine, sezgisine ve mevcut yöntemlere dayanır. Son zamanlarda, bu süreci daha

verimli hale getirmek için otomatik hiperparametre arama yöntemleri popülerlik

kazanmaktadır. Aşağıda, derin öğrenme modellerinde sıkça kullanılan hiperparametreler ve

bunların etkileri detaylı olarak incelenecektir.

Hedef boyut

Hedef boyut parametresi, görüntü işleme görevlerinde, girdi görüntülerinin

çözünürlüğünü düşürerek hesaplama maliyetini azaltmayı amaçlayan bir tekniktir. Bu yöntem,

orijinal görüntüde bazı bilgilerin kaybına yol açsa da modelin eğitim ve tahmin süreçlerini

hızlandırır. Ancak, aşırı derecede çözünürlük düşürmek, modelin önemli görsel özelliklerini

kaçırmasına ve performansını düşürmesine neden olabilir. Bu nedenle, hedef boyut

parametresinin seçimi, modelin doğruluğu ve hızının bir denge noktası olarak belirlenmelidir.

Batch boyutu

Derin öğrenme algoritmalarında, tüm eğitim verisi üzerindeki hesaplamaların tek seferde

gerçekleştirilmesi, özellikle büyük veri setleri için hesaplama maliyetini önemli ölçüde

artırabilir. Bu nedenle, eğitim verisi daha küçük alt kümelere bölünerek işlenir. Bu alt kümelere

26

"parti" veya "mini-batch" denir. Parti boyutu ise, her bir partide bulunan örnek sayısını belirten

bir hiperparametredir. Parti boyutunun seçimi, modelin yakınsama hızını, genelleme

performansını ve bellek kullanımını etkileyen önemli bir faktördür. Küçük parti boyutları,

modelin daha sık güncellenmesini sağlayarak daha hızlı öğrenmeye olanak tanırken, büyük

parti boyutları ise daha kararlı bir öğrenme süreci sunar.

Aktivasyon fonksiyonu

Derin öğrenme modellerinde, aktivasyon fonksiyonları, doğrusal bir dönüşümün ardından

elde edilen çıktıyı doğrusal olmayan bir çıktıya dönüştürerek modelin karmaşık ilişkileri

öğrenme yeteneğini artırır. Bu sayede model, gerçek dünyadaki verilerin doğrusal olmayan

yapısını daha iyi temsil edebilir. Aktivasyon fonksiyonları, aynı zamanda, geri yayılım

algoritması ile modelin parametrelerinin güncellenmesi için gerekli olan gradyan

hesaplamalarında da önemli bir rol oynar. Sigmoid, tanh ve ReLU gibi farklı aktivasyon

fonksiyonları bulunmaktadır. ReLU, genellikle tercih edilen bir fonksiyon olup, daha hızlı

öğrenme ve daha az hesaplama maliyeti gibi avantajlara sahiptir (Gong et al., 2023).

Optimizasyon fonksiyonu

Derin öğrenme modellerinin eğitimi, özünde, yüksek boyutlu bir parametre uzayında bir

optimizasyon problemidir (Mai et al., 2023). Modelin parametrelerini, belirli bir maliyet

fonksiyonunu minimize edecek şekilde ayarlamak amacıyla çeşitli optimizasyon algoritmaları

kullanılır. Bu algoritmalar, genellikle stokastik gradyan inişi (SGD) yöntemine dayalı olup,

model parametrelerini, maliyet fonksiyonunun gradyantının zıt yönünde güncelleyerek iteratif

bir şekilde ilerler.

Stokastik gradyan inişin temel bir varyasyonu olan SGD, her iterasyonda eğitim verisinin

küçük bir alt kümesi (mini-batch) üzerinde hesaplanan gradyant kullanılarak parametreleri

günceller. Bu sayede, hesaplama maliyeti azaltılır ve model daha hızlı öğrenir. Ancak, SGD,

öğrenme oranının uygun şekilde ayarlanmasını ve yerel minimumlara sıkışma riskini içerir. Bu

sorunları aşmak için, Adagrad, Adadelta, Adam, Adamax gibi adaptif öğrenme oranı

algoritmaları geliştirilmiştir. Bu algoritmalar, her bir parametre için farklı öğrenme oranları

kullanarak, seyrek parametrelerin daha hızlı öğrenmesini ve sık görülen parametrelerin daha

yavaş öğrenmesini sağlar.

Farklı optimizasyon algoritmalarının performansı, veri kümesi, model mimarisi ve

hiperparametre ayarlarına göre değişebilir. Örneğin, Adagrad, seyrek veri setlerinde iyi

27

performans gösterirken, Adam, daha genel amaçlı bir optimizasyon algoritması olarak kabul

edilir. Adamax ise, Adam'ın bir varyasyonu olup, daha kararlı bir öğrenme süreci sunar. Seçilen

optimizasyon algoritması, modelin yakınsama hızını, genelleme performansını ve hesaplama

maliyetini doğrudan etkiler. Bu nedenle, derin öğrenme uygulamalarında, farklı optimizasyon

algoritmalarını deneyerek en uygun olanını seçmek önemlidir. Optimizasyon yöntemleri bu tez

çalışmasının önemli bir parçası olup ileride detaylı biçimde ele alınacaktır.

Epoch sayısı

Eğitim sürecinde, tüm eğitim verisi üzerinde bir geçiş yapılması "epoch" olarak adlandırılır.

Her epoch'ta, eğitim verisi belirli büyüklükteki parçalara (batch veya mini-batch) ayrılır ve

model bu parçalardaki veriler üzerinde sırayla eğitilir. Her batch'ten sonra, modelin ağırlıkları,

hesaplanan gradyantlar doğrultusunda güncellenir. Bu iteratif süreç, modelin parametrelerinin

optimum değerlere yakınsamasını sağlar.

Epoch sayısı, modelin ne kadar süre eğitildiğini belirleyen önemli bir hiperparametredir.

Yetersiz sayıda epoch ile model tam olarak öğrenmeyebilir ve düşük performans gösterebilir.

Ancak, aşırı sayıda epoch ise aşırı öğrenmeye (overfitting) neden olabilir, yani model eğitim

verisine aşırı uyum sağlayarak yeni, görülmemiş verilere genelleme yeteneğini kaybedebilir.

Epoch sayısı, derin öğrenme modellerinin eğitiminde kritik bir rol oynar. Hem yetersiz

hem de aşırı sayıda epoch, modelin performansını olumsuz etkileyebilir. Bu nedenle, optimum

epoch sayısını belirlemek için dikkatli bir hiperparametre ayarlaması yapmak gerekmektedir.

Erken durdurma gibi teknikler, bu optimizasyon sürecinde önemli bir araçtır. DNN’deki temel

yapışlar Şekil 11’de gösterilmiştir.

28

Şekil 11. DNN metodolojisinin akış diyagramı.

Memristör tabanlı DNN çalışmaları

Son yıllarda, elektronik, hesaplama ve iletişim teknolojilerindeki hızlı gelişmeler, derin

öğrenme sistemlerinin geliştirilmesi sayesinde veri yoğun hesaplamayı daha erişilebilir ve

doğru hale getirmiştir. Bu durum, daha büyük, daha enerji verimli ve daha hızlı sinir ağlarının

oluşumuna yol açmıştır (Josh & Gibson, 2017). Bu gelişmeler, yeni fiziksel ekipmanların ve

bilgisayar teknolojilerinin geliştirilmesini teşvik etmiş ve yapay zekanın karmaşık sorunları

çözmek için kullanılabilmesini mümkün kılmıştır (Cheng & An, 2021). Ayrıca, bu teknoloji,

verilerdeki desenleri tanımlamak ve tahminler yapmak için kullanılabilecek daha gelişmiş

makine öğrenmesi algoritmalarının geliştirilmesini sağlamıştır (Schuman et al., 2017).

Memristör, entegre çiplerde büyük ölçekte sinir ağları oluşturmayı mümkün kılan yeni

bir donanım türüdür (Cheng & An, 2021). Geleneksel CMOS lojik devrelere kıyasla, memristör

29

devrelerini yapay sinir ağı sistemlerini simüle etmek için kullanmak, daha küçük alan, daha

düşük enerji tüketimi ve sensör simülasyon hesaplamaları için benzer yetenekler gibi avantajlar

sunmaktadır. Ancak, memristörlerin DNN uygulamalarında kullanımına ilişkin bazı zorluklar

da bulunmaktadır; donanım değişkenliği, bu alandaki teknolojinin olgunlaşmamış olması ve

memristörlerin dayanıklılığı gibi sorunlar yapay sinir ağlarının memristörlerle geliştirilmesini

engellemekte ve araştırmacılara aşılması gereken zorluklar sunmaktadır. Literatürde bu

problemlerin çözülmesiyle, memristör tabanlı sistemlerin, günümüzde kullanılan von Neumann

mimarisine dayalı klasik sistemlere kıyasla enerji ve hız açısından çok daha verimli olacağı

belirtilmektedir (Ye et al., 2022). Bu yeni alanın sunduğu avantajlar ve mevcut sistemin

tıkanıklığı nedeniyle, araştırmacıların yoğun olarak çalıştığı bir alana dönüşmeye başlamıştır.

Li ve arkadaşları, çalışmalarında memristör tabanlı çok katmanlı sinir ağlarını kullanarak

yaklaşık hesaplamalar için enerji verimli bir uygulama gerçekleştirmiştir (B. Li et al., 2013).

Yaklaşık hesaplama sürecini hızlandırmak için programlanabilir bir memristöre önce Yaklaşık

Hesaplama Birimi (Memristör ACU) öğretilmiştir (B. Li et al., 2013). Ardından, Memristör

ACU'nun üzerinde ölçeklenebilir bir memristör tabanlı yaklaşık hesaplama çerçevesi

önerilmiştir. Bu sistemde uygulanan işlevlerdeki maksimum hata oranı %1,87 olup, enerji

tüketimi benzerlerine göre 22 kat daha verimlidir.

Yuan ve arkadaşları, çalışmalarında (Yuan ve diğerleri, 2019) memristör çapraz çubuk

dizisini von Neumann mimarisinin zorluklarını azaltmak ve derin sinir ağlarının (DNN'ler)

düşük güç tüketimiyle hızlandırılmasını sağlamak için teşvik edici bir çözüm olarak

kullanmışlardır. Memristör tabanlı ağırlık budama ve ağırlık quantizasyonunu ayrı ayrı

inceleyerek, orijinal DNN modeline kıyasla alan ve enerji tasarrufu sağladıklarını

göstermişlerdir. Yüksek doğruluk, düşük güç ve küçük bir alan elde etmek amacıyla çapraz

çubuk bloklarının budanması, iletkenlik aralığı ve ağırlık değerleri ile gerçek cihazlar

arasındaki uyumsuzluk gibi donanım sınırlamalarını da göz önünde bulundurmuşlardır.

Deneysel sonuçlar, önerilen yöntemin VGG-16 ağında %29,81 oranında ağırlık sıkıştırma ile

güç ve alan tüketiminde sırasıyla %98,38 ve %98,29 azalma sağladığını ve orijinal DNN

modellerine kıyasla yalnızca %0,5 doğruluk kaybına yol açtığını göstermektedir.

Derin sinir ağlarının popülaritesi, yapay zekâ ve derin öğrenme gibi yoğun veri işleme

uygulamalarında artmaktadır (Greenberg-Toledo et al., 2019). Ancak, mevcut platformların

DNN'ler için verimli olmadığı bilinmektedir. Bu sorunların üstesinden gelmek amacıyla, DNN

tabanlı uygulamalara yönelik özel donanım tasarım çalışmaları yürütülmektedir. Bu durumdan

yola çıkan Greenberg-Toledo ve arkadaşları, çalışmalarında yapay sinir ağlarının temel unsuru

30

olan sinapsı oluşturmak için memristörleri kullanmışlardır. Çalışmada, DNN'lerde yaygın

olarak kullanılan momentum optimizasyon algoritmasını destekleyen bir memristör tabanlı

sinaps önerilmiştir. Simülasyonlarda, önerilen DNN eğitim çözümlerinin performansı ortalama

886 kat hızlandırdığı ve enerji tüketimini ortalama yedi kat azalttığı gözlemlenmiştir. Ayrıca,

bir GPU platformunda eğitim kadar doğru olduğu da görülmüştür.

Derin sinir ağı modellerinin memristör tabanlı çapraz çubuklar gibi nöromorfik

hızlandırıcılarla kullanılması durumunda, kullanılan donanım birimlerinin güvenilirliğini

sağlamak öncelikli konulardan biridir (Du et al., 2015). Üretim sürecindeki hatalar ve

değişkenlikler, çapraz çubuk bağlantılarında donanım arızalarına yol açabilir (C. Y. Chen &

Chakrabarty, 2021). Chen ve Chakrabarty, çalışmalarında, memristör çapraz çubuklarında

yanlış sınıflamaya neden olabilecek Kritik Hataları (CF’ler) belirlemek için makine öğrenimi

tabanlı verimli bir teknik geliştirmişlerdir. Bu önemlidir çünkü memristör tabanlı DNN'ler

doğal olarak hata toleranslıdır ve CF'leri doğru bir şekilde tespit etmek, hata toleransı

alternatiflerinin bu alanlara odaklanmasına olanak tanır (C. Y. Chen & Chakrabarty, 2021). Bu

teknik, rastgele hata enjeksiyonu kullanarak %98'in üzerinde doğrulukla ve 20 kat daha hızlı

bir şekilde kritik hataları tespit edebilmektedir. Bu çalışmada, memristör çapraz çubuklarında

CF'lerle ilişkili ağırlıkları kaldıran bir hata toleransı yöntemi önerilmektedir. CIFAR-10 veri

kümesi ve diğer derin sinir ağları ile yapılan testlerde, önerilen budama tekniğinin bağlantı

alanlarının %95'ine kadarını kaldırdığı ve DNN çıkarım doğruluğunda %1'den az bir düşüşle

sonuçlandığı gösterilmiştir. Bu, genel CF sayısındaki azalma sayesinde hata toleransı için

gereken fiziksel donanım yedekliliğinde %99'luk bir azalma sağlamıştır.

Yapay zekâ, bulut bilişim ve Nesnelerin İnterneti (IoT) uygulamalarının hızla

büyümesiyle, derin öğrenme uygulamalarında hesaplama için memristör cihazları ve ilgili

donanım sistemlerinin geliştirilmesi, düşük güç tüketimi ve daha az çip alanıyla kapsamlı veri

hesaplamaları gerektirmektedir. Derin öğrenme modelleri, düşük güç tüketimi ile çalışabilmek

için büyük miktarda veri işlemeyi gerektirir. Yapılan bir çalışma (KI & R, 2022) ile CIFAR-10

veri kümesi için memristör tabanlı bir nesne algılama sistemi önerilmiş ve bu sistemle %85

doğruluk oranına ulaşmayı başarmışlardır.

Memristörler, bellek birimleri üzerinde matris-vektör çarpımlarını (MVM) hesaplamayı

mümkün kılar (Kern et al., 2022). Memristörler, derin sinir ağı hızlandırıcılarının enerji

verimliliğini önemli ölçüde artırma potansiyeline sahiptir. Ancak, memristörlerdeki

hesaplamalar donanım uyumsuzluk sorunlarına ve çeşitli gürültü kaynaklarına maruz kalmakta

olup, bu durum sistem performansını olumsuz etkileyebilir. Kern ve arkadaşları, yaptıkları

31

çalışma (Kern et al., 2022) ile matris-vektör çarpımı (MVM) için memristör çapraz çubuklarının

kullanıldığı durumda derin sinir ağlarının (DNN) ortalama kare hata (MSE) değerine yönelik

teorik bir analiz gerçekleştirmişlerdir. Bu çalışmada, hem DNN modelinin boyutunun

küçültülmesi ihtiyacından kaynaklanan kuantizasyon gürültüsünü hem de bellek değerini

programlarken ortaya çıkan değişkenlik nedeniyle oluşan programlama gürültüsünü dikkate

alan yeni bir yöntem önerilmiştir. Önerilen yöntemin, Monte-Carlo simülasyonuna kıyasla

yaklaşık iki kat daha hızlı olduğu gözlemlenmiştir (Kern et al., 2022). Bu araştırmanın sonucu,

belirli bir güç sınırı ve minimum hata ile uyumlu olacak şekilde uygulama parametrelerini

optimize etmeyi mümkün kılmaktadır.

Memristör tabanlı yapay nöron ve sinaps

Memristör tabanlı nöromorfik hesaplama sistemleri, Sinir Ağı (NN) algoritmalarına

enerji açısından daha verimli bir alternatif sunmaktadır (Ren et al., 2022). Doğal analog

dirençler olan memristörler, hesaplamayı bellekte gerçekleştirerek von Neumann mimarisine

bir alternatif sunmaktadır (Jo et al., 2010). Memristörlerin büyük ölçekli uygulamalarında

optimum performansı sağlamak için, tasarımı tahmin etmek ve optimize etmek amacıyla

sistemin simülasyonları yapılmalıdır.

Nöromorfik hesaplama, biyolojik olarak ilham alarak ve insan beyninin çalışma şeklini

modelleyerek zorlu yapay zekâ ve makine öğrenimi problemlerini çözmek için kullanılabilecek

yüksek seviyeli bağlantı modellerine sahip nöronlar ve sinapslar oluşturmayı amaçlamaktadır

(Ren et al., 2022). Yapay Sinir Ağı algoritmaları, insan beyninin nöron ağı yapısının çalışma

şeklini taklit ederek hızlı hesaplamalar yapabilmektedir (Mead, 1990). Paralel hesaplamada,

sinir ağlarındaki işlemleri hızlandırmak için bir ağırlık matrisi kullanılır. Yapay zekâ

uygulamaları için tasarlanan çiplerin büyük çoğunluğu hızlandırıcı olsa da bunlar nöromorfik

işlemciler değildir (Du et al., 2015). Yapay zekâ ve derin öğrenme alanındaki büyük

şirketlerden bazıları Google, Microsoft, IBM, Amazon, Apple, Intel, NVIDIA ve

Qualcomm'dur. Yapay zekâ alanında çalışan bu büyük şirketler, Grafik İşleme Birimi'nden

(GPU) yararlanarak matris çarpımı gibi işlemler için hızlandırıcılar, örüntü tanıma gibi önemli

uygulamalar için Alan Programlanabilir Kapı Dizileri (FPGA) veya belirli görevler için

Uygulamaya Özel Entegre Devreler (ASIC) gibi dijital entegre devreler geliştirmeye

çalışmaktadır (Capra et al., 2020). Bu çalışmalarla birlikte, yüksek çip fiyatları, donanım

rekabeti, hesaplama hızı, düşük güç tüketimi, küçük ayak izi boyutu ve düşük üretim maliyetine

odaklanmaktadırlar (Schuman et al., 2017). Hızlandırıcıların önemli ve temel işlevlerinden biri

matris çarpımıdır (Sung et al., 2018). Google, makine öğrenimi görevlerini hızlandırmak için

32

Tensör İşleme Birimi (TPU) adı verilen kendi yapay zekâ çipini geliştirmektedir (Jouppi et al.,

2017). Çok hızlı veri işleme ve hesaplamaya sahip olan TPU'da ana hesaplama kısmı aynı

zamanda bir matris çarpma birimidir (Y. E. Wang et al., 2019). Nöromorfik hesaplama, insan

beyninin çalışma şeklini taklit ettiği için çok katmanlı nöronal ağların her bir parçasının

modellenmesi ve derin öğrenme algoritmalarının donanım birimine uygulanması ile

gerçekleştirilmektedir (Schuman et al., 2017). Nöromorfik hesaplama modelini temel alan

CMOS teknolojileri ile üretilen yapay sinir işlemcileri bulunmaktadır. Bu işlemciler biyolojik

nöronların davranışlarını taklit edecek şekilde tasarlanmıştır ve yapay sinir ağları oluşturmak

için kullanılabilmektedir. Ancak geliştirilen CMOS tabanlı sinir ağının verimli olabilmesi için

memristörlerin bir çip üzerinde denetimli eğitim ve öğrenme için kullanılabilmesi

gerekmektedir (Sung et al., 2018).

Memristif cihazlar, çoklu direnç seviyelerini depolama yetenekleri nedeniyle matris

çarpma birimleri için çok uygundur (Y. E. Wang et al., 2019). Memristörler, verileri depolamak

ve işlemek için kullanılabilen bir tür uçucu olmayan bellek cihazıdır. Memristörler, düşük güç

tüketimi ve yüksek yoğunluğa sahip olmaları nedeniyle nöromorfik donanım için caziptir

(Hung et al., 2021). Örüntüleri tanımak, görüntüleri işlemek ve diğer makine öğrenimi

görevlerini yerine getirmek için yapay sinir ağları oluşturmak için kullanılabilirler. Ayrıca,

sinyal işleme ve kontrol uygulamaları için analog devreler oluşturmak için de kullanılabilirler.

Memristörler, çip üzerinde hesaplama için nöromorfik donanım oluşturmak için de

kullanılabilir ve verilerin daha hızlı ve daha verimli işlenmesine olanak tanır. Örneğin

memristör, eşik anahtarlama öğrenimi (Yakopcic et al., 2011) kullanılarak oluşturulan tek bir

başak ve salınım hareketine sahiptir (Pickett et al., 2013). Memristif sinaptik ağırlık, hafıza

değiştirme özelliğinden kaynaklanmaktadır (Woo et al., 2016; J. J. Zhang et al., 2013; W. Zhang

et al., 2023). Ayrıca memristif mantık (Maan et al., 2017) ve memristör tabanlı tanıma çipi de

bulunmaktadır.

Memristör tabanlı donanım üzerine yapılan çalışmalarda, özellikle sinaptik ağırlıklarda,

veri saçılması ve güvenilirlik problemlerini çözmek için yoğun bir çaba vardır (Sung et al.,

2018). Bununla birlikte, bu sorunları çözmek için çeşitli yöntemler geliştirilmektedir. Bunlar

arasında memristörleri kontrol etmek için kullanılan kontrol sinyallerinin düzenlenmesi,

memristörlerin çalışma ortamının kontrol edilmesi, memristörlerin kalibre edilmesi ve

memristörler üzerinde çalışan algoritmaların geliştirilmesi yer almaktadır (Rajendran et al.,

2019). Bu çalışmaların sonuçları, memristör tabanlı donanımın ticari bir ürün haline gelmesi

için gereken güvenilirlik ve veri saçılımı önündeki engellerin kaldırılmasına yardımcı olacaktır.

33

Bu, verilerin kendisinin rastgelelik veya diğer faktörlere atfedilebilecek bir dereceye kadar

değişkenliğe sahip olacağı anlamına gelir. Bu değişkenlik, zaman içinde farklı modeller veya

eğilimler gösterebileceğinden anahtarlama verilerinde görülebilir (Sung et al., 2018). Örneğin,

olasılık teorisi kapsamında Poisson dağılımı ((Langston et al., 2011), belirli bir ortalama değer

etrafında rastgele meydana gelen olayların sayısının dağılımını temsil eder. Bu dağılım,

rastgeleliğin kontrol edilemediği anahtarlama süreci sırasında iletken yolların oluşumu için de

geçerlidir (Yoo et al., 2008). Bu engellerin üstesinden gelmek için araştırmacılar çeşitli

çözümler önermişlerdir. Yaklaşımlardan biri memristörler ile dirençler, kapasitörler ve

transistörler gibi diğer bileşenleri bir arada kullanarak hibrit bir devre oluşturmaktır (Borghetti

et al., 2009). Bu hibrit devre, verileri tek başına bir memristörden daha güvenilir bir şekilde

depolamak ve işlemek için kullanılabilir. Ayrıca, araştırmacılar memristör tabanlı sistemlerin

güvenilirliğini artırmak için makine öğrenimi algoritmalarının kullanılmasını önermişlerdir

(Ren et al., 2022). Bu algoritmalar, memristörde depolanan verilerdeki hataları tanımlamak ve

düzeltmek için kullanılabilir ve daha güvenilir bir çalışma sağlar. Son olarak, araştırmacılar

memristör tabanlı sistemlerin güvenilirliğini artırmak için hata düzeltme kodlarının

kullanılmasını önermiştir (Ren et al., 2022; Schuman et al., 2017). Bu kodlar, memristörde

depolanan verilerdeki hataları tespit etmek ve düzeltmek için kullanılabilir ve daha güvenilir

bir çalışma sağlar (Z. Wang et al., 2018). Yapılan çalışmalar sonucunda güvenilir bir kalıcı

doğrusal çok seviyeli memristör henüz ortaya çıkarılamamıştır. Bununla birlikte, bir memristör

koleksiyonu, çok seviyeli verilerin varyansını azaltmaya yardımcı olabilecek çoklu bit veya

çoklu seviyeli bir sinaptik ağırlık uygulamak için hala çalışmaktadır.

Memristör nöronlar

Günümüzde yapay nöromorfik sistemler, insan beynini daha iyi anlamamızda ve

nörolojik süreçleri taklit eden bilgi işlem sistemlerinin geliştirilmesinde önemli bir rol

oynamaktadır. Biyolojik sistemlerde gözlemlenen uzamsal ve güç verimliliğine ulaşmak için,

sinapsların nano ölçekli analogları olarak elektronik ve faz değişimli memristif cihazlar

keşfedilmiştir (Tuma et al., 2016). Araştırmalar, biyolojik nöronların davranışını taklit eden

yapay nöronların, kalkojenit bazlı faz değişim malzemeleri kullanılarak inşa edilebileceğini

göstermiştir. Bu yapay nöronlar, nano ölçekli faz değiştirme cihazlarının faz konfigürasyonu

ile temsil edilmektedir (Tuma et al., 2016).

Bir sinir ağı modelinin genel yapısı, ağın hangi bileşenlerden oluştuğunu, bu bileşenlerin

çalışma prensibini ve bu bileşenler arasındaki etkileşimi açıklar (Y. Shi et al., 2019) Örneğin,

Şekil 9'da gösterilen yapay sinir ağı modelinin ortak bileşenleri, Şekil 12'de gösterilen biyolojik

34

sinir ağı modelinin yapısından esinlenerek nöronlar ve sinapslardır. Ayrıca, bir sinir ağı modeli

tasarlanırken, ağı oluşturan her bir bileşen için modeller tanımlanmalı ve tanımlanan modele

göre bileşenin nasıl çalışacağı belirlenmeli ve yönetilmelidir (Haoxiang & S, 2021). Memristör

modeli, gerçek bir memristörün davranışını matematiksel olarak temsil etmek için

geliştirilmiştir ve özelliklerini araştırmak için kullanılabilir (X. Liu & Zeng, 2022). Sistem

tasarımını hızlandırmak için simülasyonlarda da kullanılabilir. Nöronlar sadece CMOS

teknolojisi ile üretilirken, çok sayıda transistöre ihtiyaç duyulmaktadır. Memristörler, devreleri

basitleştirmek için bazı CMOS cihazlarına alternatif olarak önerilmektedir. Önerilen memristör

tabanlı uygulamalara örnek olarak; memristör tabanlı Hodgkin-Huxley (Corinto et al., 2013),

memristör tabanlı Morris ve Lecar (Shamsi et al., 2017), memristör tabanlı Fitz Hugh-Naguma

(J. Zhang & Liao, 2017) ve memristör tabanlı Hindmarsh-Rose (Bao et al., 2018) sinyalleri

simüle edilerek rapor edilmiştir. Basit memristör tabanlı başak örüntüsü, nöronların tutumunu

simüle etmek için memristörleri kullanan matematiksel bir modeldir (Zheng & Mazumder,

2018). Memristörlerin, elektrik sinyalleri üretme ve yayma yetenekleri gibi nöronların

elektriksel özelliklerini temsil etmek için kullanılabileceği fikrine dayanmaktadır. Model, sinir

ağlarının dinamiklerini incelemek ve makine öğrenimi için yeni algoritmalar geliştirmek için

kullanılır. Entegre et ve ateş modeli, nöronların dinamiklerini birleştiren biyolojik olarak

esinlenmiş bir modeldir (Lashkare et al., 2018). AlShedivat ve meslektaşları, bir memristör

kullanarak stokastik olarak artan bir nöronu simüle etmiştir (Al-Shedivat et al., 2015). Bilim

insanları memristörlerin gelişmiş analitik modelini önermişlerdir. Memristörler için önerilen

analitik model, memristörün direncini tanımlayan bir “durum değişkeni” fikrine dayanıyordu

(Strukov et al., 2008). Memristörün direnci doğrusal değildir ve kendisine uygulanan akım ve

voltaj tarafından belirlenir, bu da bu durum değişkeninin modeline yansıtılır. Model daha sonra

gerilim darbesi, akım darbesi ve sinüzoidal dalga formu gibi çeşitli koşullar altında bir

memristörün davranışını simüle etmek için kullanılmıştır. Simülasyonların sonuçları, modelin

bu koşullar altında memristörün davranışını doğru bir şekilde tahmin ettiğini göstermiştir.

Shamsi ve arkadaşları, memristör tabanlı analog uyarlanabilir bir nöron tasarlamıştır (Binelli et

al., 2005). Mehonic ve Kenyon, tek kutuplu anahtarlama belleği SiO2 'ye bir eşik akımı

uygulayarak sınır voltajının yükselişini/kararsızlığını izlemiştir (Mehonic & Kenyon, 2016).

Pantazi ve arkadaşları, faz değişimli memristörleri içeren bir mimari geliştirerek nöronların

entegrasyonu ve aktivasyonunun yanı sıra sinaptik unsurların zaman içinde gelişmesine olanak

sağlamıştır (Pantazi et al., 2016).

35

Şekil 12. (a) MLP'nin matematiksel modeli. (b) MLP'yi ayrıntılı olarak açıklayan akış

diyagramının gösterimi.

Şekil 13. MLP'nin memristör tabanlı uygulamasının şematik gösterimi.

Bilgi işleme donanımı, yapay zekânın günlük yaşam üzerindeki etkilerini belirleyen temel

bir unsurdur. Ancak, derin sinir ağlarını çalıştıran mevcut donanımların enerji tüketimi,

biyolojik beyinle kıyaslandığında oldukça yüksektir (Huang et al., 2023; Jeong et al., 2016).

Tek katmanlı algılayıcılar sınırlı işlevselliğe sahip olup, bu kısıtın üstesinden gelmek amacıyla

çok katmanlı algılayıcılar (MLP'ler) geliştirilmiştir. Şekil 12(a)'da gösterildiği üzere, MLP'ler

giriş vektörlerini çıkış vektörlerine eşleyen ileri beslemeli sinir ağlarıdır ve daha yüksek

doğruluk gerektiren karmaşık görevlerde etkili bir şekilde kullanılmaktadır (Ruck et al., 1990;

Thimm & Fiesler, 1997). Şekil 12(b), Şekil 12(a)'da matematiksel olarak tanımlanan MLP'nin

36

akış diyagramını göstermektedir. Şekil 13'te ise, Şekil 12(a)'da gösterilen MLP'nin elektrik

devre bileşenleriyle fiziksel bir analojisi sunulmaktadır. Bu analojide, giriş katmanı veri

kümesinden alınan girdileri işlerken, bu sinyaller gizli katmanlar aracılığıyla dirençler ve

yükselteçler gibi devre elemanlarından geçmektedir. İşlenmiş sinyallerin çıkış katmanına

ulaşmasıyla nihai sonuçlar elde edilmektedir. Bu devre elemanları sinyal işleme ve dönüştürme

süreçlerini simüle etmektedir. Ancak, bu algoritmalar paralel işlem ve sürekli bilgi akışı için

uygun olmayan von Neumann mimarisi nedeniyle verimsiz çalışmaktadır (Han et al., 2022; S.

H. Sung et al., 2021; Zanotti et al., 2021). Bu bağlamda, donanım tabanlı sinir ağları ya da

nöromorfik işlemciler, biyolojik nöronların işleyişini taklit ederek performans artışı

sağlamaktadır (Y. Liang et al., 2022; Xiao et al., 2020) Nöromorfik sistemler, sinyal iletim

katsayısının “ağırlık” olarak işlev gördüğü yapay sinapslar üzerinden işlem yapmaktadır (Onen

et al., 2020). Ayrıca Şekil 13’te gösterilen şema ile çalışma kapsamında önerilen memristör

tabanlı modelin donanım kısmında uygulanması gösterilmiştir. Burada yapay sinir ağı

yapısında bulunan her bir nöronun içerisine bir memristif yapı eklenerek modelin tasarımı

gerçeklenmiş ve bilgisayar ortamında simüle edilmiştir. Bu şema, memristör tabanlı bir yapay

sinir ağını (YSA) temsil eder. Giriş katmanında V1(n) ve -V1(n) sinyalleri memristör ağı

üzerinden geçirilir. Memristörler, sinir ağı ağırlıklarını temsil eder ve dirençleri önceki

durumlarına bağlı olarak giriş sinyallerini işler. Gizli katmanda, aktivasyon fonksiyonları ve

amplifikatörler yardımıyla sinyaller doğrusal olmayan şekilde düzenlenir ve işlenir. Çıkış

katmanında ise işlenmiş sinyaller birleştirilerek nihai çıktı oluşturulur. Memristörler sayesinde

hem bellek hem de işlem bir arada gerçekleştirilir. Bu, düşük enerji tüketimi ve hızlı hesaplama

avantajı sağlar. Çalışma kapsamında önerilen modelin memristör tabanlı donanım-yazılım

geçişi “MATERYAL ve METOT” kısmında “Yapay sinaps olarak memristör ve uygulamanın

yazılım-donanım entegrasyonu” alt başlığında detaylı biçimde anlatılacaktır.

Şekil 14'de gösterildiği gibi, biyolojik bir nöron genellikle bir hücre gövdesi, bir akson

ve dendritlerden oluşur (G. Lee et al., 2021). Akson, bir nöronun hücre gövdesinden uzanan

uzun, ince bir liftir ve elektrik sinyallerini nörondan diğer hücrelere taşımaktan sorumludur (Lv

et al., 2018). Dendritler, sinyalleri almaktan, entegre etmekten ve hücre gövdesine iletmekten

ve diğer sinir hücrelerinden girdi almaktan sorumlu olan dallardır. Kimyasal iletimler,

nörotransmitterler bir nörondan salındığında ve başka bir nöron üzerindeki reseptörlere

bağlandığında meydana gelir ve bir elektrik sinyalinin gönderilmesine neden olur (Gul, 2020).

Elektriksel iletimler, nöronlar iyonların doğrudan aralarında akmasına izin veren ve bir elektrik

akımı oluşturan boşluk kavşakları ile bağlandığında meydana gelir (Schuman et al., 2017).

37

Sinapslar, elektriksel veya kimyasal sinyallerin bir nörondan diğerine iletildiği iki nöron

arasındaki bağlantı noktalarıdır (H. Wang et al., 2018; S. Yu et al., 2011). Elektrik sinyalleri

gönderen nöronun aksonu tarafından üretilir ve kimyasal sinyaller gönderen nöronun akson

terminalinden salınır ve alıcı nöronun dendritleri tarafından alınır (G. Lee et al., 2021). Nöron

daha sonra sinaps boyunca diğer nöronlara giden nörotransmitterleri serbest bırakır ve böylece

sinyali yayar (Dretchen et al., 1976). Bu süreç aksiyon potansiyeli olarak bilinir. Nöron

yeterince sinyal alırsa, bir eşiğe ulaşacak ve bu noktada bir aksiyon potansiyeli ateşleyerek diğer

nöronlara nörotransmitter salacaktır (X. Zhang et al., 2018). Bazı nöromorfik modellerde, yük

birikimi, yükü depolayan ve nöron ateşlenmeden önce belirli bir miktarda yük birikmesine izin

veren kapasitörlerin kullanılmasıyla elde edilir. Bu tür bir yük birikimi, spiking nöronları simüle

etmek için popüler bir model olan Leaky Integrate-and-Fire (LIF) modelinde kullanılmaktadır

(Lu et al., 2020). Bu modelde, kapasitör bir akım girişi ile şarj edilir ve daha sonra zaman içinde

yavaşça boşalır. Kapasitör belirli bir eşiğe ulaştığında, nöron ateşlenerek diğer nöronlara bir

sinyal gönderir (Shamsi et al., 2018). Biyolojik bir nöronun yapısı ve elektrik sinyallerinin

iletimi Şekil 14'de gösterilmektedir.

Şekil 14. Biyolojik Nöron üzerinden bilgi akışı

Şekil 15. Yapay Nöron

38

Memristör sinapsları

Nöromorfik çalışmaların bazılarında nöron modeline odaklanılarak sinaps

uygulamalarını da içeren bir sistem geliştirilebilmektedir. Bu duruma benzer şekilde nöron

modellerinden bağımsız sinaps uygulamaları geliştirmeye odaklanan çalışmalarda da

nöromorfik sistemler gerçekleştirilmiştir (Merolla et al., 2011; J. Seo et al., 2011). Bu

odaklanmalarla birlikte memristör sinaptik ağırlıklarında karmaşık ve zorlayıcı durumlar söz

konusudur. Bu zor durumlar; kalıcılık, doğrusallık ve çok düzeyliliktir (Amirsoleimani et al.,

2020; Huh et al., 2020). Ancak bu üç özelliği aynı anda sağlayan sonuçlar henüz elde

edilememiştir (Huh et al., 2020). Sinaps, biyolojik sinir ağlarının önemli bir parçası olmakla

birlikte doğrudan elektronik bir eşdeğeri yoktur (Thomas, 2013). Bu durum, sinir sisteminin

yapısını taklit eden donanımların oluşturulmasını zorlaştırmaktadır. Şekil 13, bir nöron darbesi

üreten bir CMOS entegre ve ateşleme nöronunu göstermektedir (Xinyu Wu et al., 2015).

Memristör tabanlı bir sinaptik ağırlık çapraz çubuğunda, memristör giriş ve çıkış nöronları

arasına yerleştirilir ve aralarındaki bağlantının ağırlıklarının ayarlanmasına ve saklanmasına

izin verir.

Birçok çalışma, spike zamanlamasına bağlı plastisite (STDP) gibi temel sinaptik öğrenme

ilkelerinin memristörlerde başarıyla uygulandığını göstermiştir (Alibart et al., 2012; Jo et al.,

2010; Krzysteczko et al., 2012; S. Yu et al., 2011). Daha önceki araştırmalarda, memristörler

öncelikle programlanabilir bellek bileşenleri olarak görülmüş ve kullanılmıştır. Oksit tabanlı

memristörlerde ikinci dereceden memristör etkilerinin önemli olabileceği deneysel olarak

kanıtlanana kadar, çalışmalar genellikle karmaşık programlama dalga formları veya üst üste

binen programlama darbeleri kullanan tasarımlara odaklanmadı (S. Kim et al., 2015). Bu

cihazlarda, istenen iletkenlik değişimini elde etmek için darbe genişliği ve darbe yüksekliğinin

dikkatli bir şekilde tasarlanması gerekir. Matematiksel açıdan bu aygıtlar birinci dereceden

memristörler olarak sınıflandırılabilir (Pershin & Di Ventra, 2012).

Çapraz çubuk üzerindeki ikinci dereceden memristörlerde, her memristör STDP adlı bir

öğrenme kuralı kullanılarak bir eğitim sürecine tabi tutulur (Cruz-Albrecht et al., 2012). STDP

öğrenimi sinaptik ağırlığı, nöronun sinapstan önce ateşlediği zaman ile sinapstan sonra

ateşlediği zaman arasındaki zaman farkına göre belirler. Bu durumda, sinaptik ağırlık doğrusal

olmayan sonuçlar üretir ve genellikle Winner-Take-All (WTA) algoritması ile denetimsiz

öğrenmede kullanılır (Sung et al., 2018). Zheng ve Mazumder tarafından önerilen algoritma,

spike-zamanlamaya bağlı plastisite (STDP) ve denetimli öğrenmenin bir kombinasyonunu

39

kullanan bir tür makine öğrenimi veya derin öğrenme olan denetimli STDP öğrenme kavramına

dayanmaktadır.

Bilim insanları, termal enerjinin dağılımından yararlanarak kimyasal sinapslarda

gözlemlenen kalsiyum iyonu (Ca2
+) dinamiklerini taklit etmek için çalışmalarında ikinci

dereceden memristörleri entegre ettiler. Bu yaklaşım sayesinde, üst üste binmeyen spike uçlarla

spike zamanlamasına bağlı plastisite (STDP) olarak bilinen olguyu etkili bir şekilde sergilediler

ve diğer çeşitli sinaptik işlevleri çoğaltmayı başardılar. Bu başarı, biyolojik olarak doğru

sinaptik cihazların geliştirilmesine yönelik kayda değer bir ilerlemeye işaret etmektedir. Bu

yaklaşım tekrarlanabilirlik ve basitlik özelliklerine sahiptir ancak fiziksel süreçlerin gerçek

sinapslardan önemli ölçüde farklı olması nedeniyle istenen sinaptik işlevlerin doğruluğu ve

çeşitliliği sınırlıdır (Z. Wang et al., 2017). Biyolojik Ca2+ dinamiklerinin fiziksel özelliklerini

kopyalayan bir cihaz oluşturmak, sinaptik işlevi daha etkili bir şekilde taklit etme yeteneğini

artıracak ve nöromorfik bilgi işlemin potansiyel uygulamalarını genişletecektir. Bu emülatif

memristör, metal atom difüzyonu ve nanoparçacıkların kendiliğinden oluşumu

mekanizmalarını kullanarak çalışmaktadır. Bu mekanizma, yüksek çözünürlüklü transmisyon

elektron mikroskobu (HRTEM) ve nanoparçacık davranışının dinamik simülasyonları ile

derinlemesine incelenmiştir. Difüzyon memristörlerinin dinamik özelliklerinin, kısa ve uzun

vadeli plastisite gibi operasyonel özellikler de dahil olmak üzere biyolojik sinapslardaki Ca2+

ile işlevsel olarak eşdeğer olduğu deneysel olarak doğrulanmıştır (Z. Wang et al., 2017).

Memristör sinapslarına sahip Crossbar SNN mimarisi Şekil 16'te gösterilmektedir.

Şekil 16. Memristör sinapslı Crossbar SNN mimarisi, insan beyninin çalışma şeklinden

esinlenen çift yönlü bir STDP öğrenme kuralının grafiksel bir temsilinin eşlik ettiği iki sinaptik

öncesi spike ve iki sinaptik sonrası spike arasındaki bir sinaps bağlantısıdır. Verileri depolamak

ve işlemek için çapraz çubuk memristör dizileri kullanan bir tür nöromorfik hesaplama

mimarisidir.

40

Algoritma donanım uyumlu olacak şekilde tasarlanmıştır, yani önemli değişiklikler

gerektirmeden mevcut donanım platformlarında uygulanabilir. Algoritma ayrıca ağırlığa bağlı

olacak şekilde tasarlanmıştır, yani öğrenme süreci nöronlar arasındaki bağlantıların

ağırlıklarına dayanmaktadır (Zheng & Mazumder, 2018).

Araştırmacılar analog bellek özellikleri oluşturmak amacıyla nöronlar, sinapslar, mimari,

öğrenme ve test üzerine bir dizi çalışma yürütmüş ve yaygınlaştırmıştır (Tsai et al., 2018).

Genel olarak sinaps modelleri iki kategoride incelenebilir. İlk kategori, biyolojik beynin

yapısından esinlenen ve spike tabanlı sistemler için sinaps yapılarını içeren sinaps

uygulamalarıdır (Q. Wan et al., 2019). İkinci kategori ise ileri beslemeli sinir ağları gibi

geleneksel yapay sinir ağları için sinaps uygulamalarıdır (Zyarah et al., 2017). Nöromorfik

sistemlerde en bol bulunan bileşenin sinapslar olduğu belirtilmektedir. Geliştirilecek çoğu

donanım uygulaması için sinaps uygulamasının optimize edilmesine, özellikle nöromorfik

hesaplama sistemleri için yeni malzemeler geliştirilmesine odaklanılmaktadır (Kwon et al.,

2022). Biyolojik sistemlerin ayrıntılı ve hassas bir şekilde donanım modellemesi çok zordur.

Bu nedenle, biyolojik davranışı açıkça modellemeye çalışılmadığı sürece sinaps modelleri

nispeten basit olma eğilimindedir (Schuman et al., 2017). Nöronun ağırlık değerinin

değişmesine neden olan bir plastisite mekanizması vardır. Ayrıca, plastisite mekanizmalarının

biyolojik beyinlerde öğrenme ile ilişkili olduğu bulunmuştur.

Memristör tabanlı yapay zekâ (AI) çipleri

AI çipleri, AI yeteneklerini içeren ve makine öğrenimi alanında kullanılan sofistike

silikon mikroişlemcilerdir. Yapay zekâ, çeşitli sektörlerde insan hayatına yönelik potansiyel

tehlikelerin azaltılmasında veya hafifletilmesinde çok önemli bir rol oynamaktadır. Artan veri

hacmi, matematiksel ve hesaplama zorluklarının üstesinden gelmek için daha verimli

sistemlerin geliştirilmesini gerektirmekte ve daha fazla üretkenlik için artan aciliyeti

vurgulamaktadır. Bu nedenle, yapay zekâ çiplerinin ve uygulamalarının geliştirilmesi söz

konusu olduğunda, BT sektöründeki büyük firmaların önemli bir kısmı kendilerini bu işe

adamış durumdadır.

Yapay zekâ özellikli uç cihazların yüksek çıkarım doğruluğuna, hızlı tepki sürelerine ve

enerji tasarruflu çalışmaya sahip olması, yani uzun ömürlü pillere sahip olması gerekir (Chiu et

al., 2023). Bu tür cihazların halka açık alanlarda kullanılması, onları çip kontrolünde veya çip

üstü kalıcı bellekte depolanan değerli verilere yetkisiz erişimi içeren kötü niyetli saldırılara

karşı savunmasız hale getirmektedir (Golonzka et al., 2019; T.-H. Yang et al., 2018).

41

Milyonlarca parametreye sahip yapay zekâ (AI) modelleri çeşitli görevlerde yüksek

hassasiyet elde edebilir (Vaswani et al., 2017), ancak grafik işlem birimleri veya merkezi işlem

birimleri gibi geleneksel genel amaçlı işlemciler gibi donanım bileşenlerinin zayıf enerji

verimliliği daha fazla sorun haline gelebilir (Ambrogio et al., 2023). Genellikle analog-AI

olarak adlandırılan analog bellek içi hesaplama (Khaddam-Aljameh et al., 2022; Narayanan et

al., 2021; W. Wan et al., 2022; Yao et al., 2020), matris-vektör çarpımlarını “bellek dizileri”

içinde eşzamanlı olarak yürütme yeteneği sayesinde üstün enerji verimliliği elde etmektedir

(Ambrogio et al., 2023). Ambrogio ve meslektaşları çalışmalarında, 34 farklı birimdeki 35

milyon faz değişimli bellek cihazını, birimler arası kitlesel paralel iletişimi ve analog, düşük

güçlü çevresel devreleri bir araya getiren analog bir yapay zekâ çipi sunmuştur. Yapay zekâ

çipinin çeşitli yapay zekâ katmanları içindeki işlevselliği Şekil 17'te gösterilmektedir.

Şekil 17. Yapay zekanın çeşitli katmanları içinde bir yapay zekâ çipinin işlevi.

Memristör tabanlı yapay sinaps çalışmaları

Bilgisayar sistemlerinin gelişim süreci incelendiğinde, hesaplama işlemleri için veri

miktarı katlanarak arttığından bellek birimleri ve işlemciler arasında veri aktarımı büyük bir

sorun haline gelmiştir (Oh et al., 2021). Bu sorunu çözmek için insan beyninin çalışma prensibi

taklit edilerek yapılan araştırmalara ilgi artmıştır. Beyinden ilham alan (Pedretti et al., 2017;

Xinyu Wu et al., 2015; H. Yu et al., 2021) veri işleme, duyusal verilerin gerçek zamanlı

işlenmesinde beyin benzeri performans elde etmeyi amaçlayan ve gelişmekte olan bir alandır.

Böyle bir hesaplama sistemine ulaşmada bazı sınırlayıcı zorluklar vardır. Bu zorluklar arasında

ölçeklenebilir ara bağlantı cihazları, ultra düşük güç tüketimi ve öğrenmeyi donanımda

uygulamak için güçlü nöromorfik hesaplama yapıları ile kompakt, büyük ölçüde paralel bir

mimari oluşturmak yer almaktadır (Kuzum et al., 2012). Bu zorluklar göz önünde

42

bulundurularak faz değiştiren malzemeler kullanan cihazlarla simetrik ve asimetrik sinaptik

plastisitenin uygulanmasını sağlayan programlama stratejileri, malzeme özellikleri ve spike

diyagramları incelenmiş, cihaz çalışma düzeni ve dinamik plan yapısının uyarlanmasıyla enerji

tüketiminin optimize edilebildiği bir çalışma sunulmuştur (Kuzum et al., 2012).

Sinaptik elektronikler, beyindeki nöronların birbirleriyle iletişim kurma şeklini taklit

eden, bilgiyi insan beynine benzer şekilde işleyebilen, insan beyni kadar verimli ve hataya

dayanıklı, ancak daha yoğun bir biçimde elektronik sistemler oluşturmayı amaçlayan yeni bir

çalışma alanıdır (Kuzum et al., 2013). İşlem hızı ve enerji tüketimi, makine öğrenimi, derin

öğrenme ve veri yoğun uygulamalarda bilgisayarların hesaplama performansı için kritik öneme

sahiptir. Bu nedenle, biyolojik beynin hızı ve etkinliği uzun süredir araştırmaların ana odak

noktası olmuştur. Bu durum, beynin işleyişine dayanan hesaplama ve sinyal işleme teorileri,

formülleri ve tasarımlarının taklit eden çalışmalarla sonuçlanmıştır. Araştırmalar, faz değişimli

sinaptik cihazların iki boyutlu çapraz çubuk dizilerinin, beyinden esinlenen bir donanım

mimarisinde beyin benzeri öğrenme oluşturmak için kullanılabileceğini ve ilişkisel öğrenme ve

örüntü tanıma görevlerine izin verdiğini göstermiştir (Eryilmaz et al., 2013; P. Lin et al., 2020).

Nano ölçekli sinaptik unsurların bireysel cihaz düzeyinde işlev görebileceğine dair

deneysel çalışmalardan elde edilen kanıtlara rağmen, ağ düzeyindeki çalışmalar

simülasyonlarla sınırlı kalmıştır (Schuman et al., 2017). Deneyler, faz değişimli sinaptik

cihazların biyolojide insan beyninin organize edilme şekline benzer şekilde ızgara benzeri bir

yapıya bağlanmasıyla dizi düzeyinde ilişkisel öğrenmenin mümkün olduğunu göstermiştir

(Eryilmaz et al., 2014). Bu, sistemin farklı cihazlara uyum sağlayabildiğini ve hücre direnci

seviyelerindeki büyük farklılıkların eğitim seanslarının miktarının artırılmasıyla

dengelenebileceğini göstermiştir.

Vektör matris çarpımı (Amirsoleimani et al., 2020), derin öğrenme uygulamalarında

zaman ve enerji maliyetleri açısından büyük bir sorun teşkil etmektedir. Memristör tabanlı

vektör matris çarpımının güç tüketimi üzerine yapılan araştırmalar bazı sorunları ortaya

çıkarmıştır (Hu et al., 2017; Shafiee et al., 2016). Bayat ve arkadaşları, memristör dedektörü ile

donatılmış bir sınıflandırıcı üzerinde bir çalışma yürütmüştür (Bayat vd., 2017). Knowm şirketi,

yapay zeka ve derin öğrenme uygulamaları için çok kullanışlı olan ikili anahtarlama ile hem

anti-Hebbian hem de Hebbian kurallarını kullanan bir kategorize edici ürün piyasaya sürmüştür

(Anti-Hebbian and Hebbian (AHaH) Plasticity, 2017). Derin öğrenme uygulamalarında,

memristör tabanlı hesaplama süreçleri kullanılırken, özellikle çip üzerinde öğrenme sırasında,

sinaptik ağırlığın dinamik aralığı nedeniyle ortaya çıkan sınırlamalar ve zorluklar vardır. Mobil

43

cihazlarda öğrenme bilgisi edinirken Yapay Zekâ (YZ) işlevlerinin zarar görmesini önlemek

için veri sıkıştırma veya kırpma teknikleri önerilmiştir (Mao & Dally, 2016).

Deng ve arkadaşları, oluşturdukları bir uygulamada öğrenmenin çeşitli aşamalarındaki

enerji tüketiminin bir analizini yapmışlardır (Deng et al., 2016).

Geleneksel donanım platformları, işlemci ve harici bellek arasında veri aktarımı ihtiyacı

nedeniyle öğrenme ile ilgili görevleri tamamlamak için büyük miktarda enerji gerektirir

(Schuman et al., 2017). Analog ağırlık depolama kullanan beyinden ilham alan cihaz

teknolojileri ile bir cihaz geliştirilmiş, algısal görevlerin daha verimli bir şekilde

tamamlandığını gösteren bir çalışma yapılmıştır (Yao et al., 2017). Bu cihaz, ağırlığını her iki

yönde de sürekli olarak ayarlayabilme özelliğine sahiptir. Deneyler, paralel anlık eğitim ile

1024 hücreli bir dizinin gri ölçekli yüzleri sınıflandırmak için kullanılabileceğini göstermiştir.

Çalışma sonucunda daha düşük enerji tüketimi ile hesaplama işlemleri gerçekleştirilmiştir.

Shamsi ve arkadaşları tarafından üç tasarım seviyesinde sunulan bir sütunlu organize

bellek (COM) (Shamsi et al., 2018) donanım mimarisi önerilmiştir. Seviye I'de, COM mimarisi

ile uyumlu düşük güçlü bir devre tanıtılmıştır. Seviye II'de, önerilen bir nöron düzeneği ve tek

bir memristör çapraz çubuk dizisi kullanılarak bir Winner-Take-All (WTA) algoritması (S. Li

et al., 2017) modülü uygulanmıştır. Seviye III'te, WTA modülleri ve memristör çapraz çubuk

dizileri birleştirilerek COM tabanlı bir donanım mimarisi oluşturulmuştur. COM donanımını

eğitmek için ex-situ yöntemi kullanılmış ve uygulamanın tüm tasarım seviyelerinde

simülasyonlar gerçekleştirilmiştir. Çalışmanın birincil odak noktası, nöron devresinin

elektriksel güç tüketimini değerlendirmektir (Shamsi et al., 2018).

Çalışmalarında (Saxena et al., 2018), NeuSoC sisteminin enerji tüketimini tahmin etmek

için analitik modeller ve devre simülasyonlarının bir kombinasyonunu kullanmışlardır. Farklı

çalışma koşulları altında sistemin enerji tüketimini değerlendirmişler ve enerji verimliliği

üzerinde en büyük etkiye sahip devre ve cihaz parametrelerini belirlemişlerdir. Araştırmacılar

ayrıca sistemin enerji tüketimini azaltmak için tasarım teknikleri önermişlerdir. Son olarak, elde

ettikleri sonuçları mevcut NeuSoC sistemleriyle karşılaştırmışlar ve önerdikleri tekniklerin

enerji verimliliğini %30'a kadar artırabileceğini göstermişlerdir. Ayrıca, CMOS memristör

konsepti için bir emülatöre dayalı CMOS sinaps devrelerini, sistemlerin prototipini

oluşturmanın bir yolu olarak sunmuşlar ve pratik memristör cihazlarını normal CMOS ile

oluşturmuş ve birleştirmişlerdir. Uçucu olmayan bellek (NVM) veya memristif cihazların

geliştirilmesi, derin öğrenmenin bir CMOS katmanı üzerinde karışık sinyalli entegre devrelerle

44

entegre edildiğinde enerji açısından verimli bir şekilde gerçekleştirilebileceğini göstermiştir.

Uçucu olmayan Çip Üzerinde Nöromorfik Sistemler (Saxena et al., 2018) hedefine ulaşmak,

çeşitli algoritmik zorlukların ele alınmasını ve bu zorluklara uygun enerji verimli çözümler

bulunmasını gerektirmektedir.

Sinirbilim (Sejnowski et al., 1988) alanında, popülasyon kodlama teorisi, sinirsel

mekanizmaların hatalara karşı dayanıklı hesaplamalar yapabileceği gösterilmiştir (Mizrahi et

al., 2018; Sejnowski et al., 1988). Bu teori, nanoelektronik teknolojisiyle birleştirildiğinde,

küçük boyutlu, gürültülü ve hata yapmaya yatkın cihazlarla güvenilir hesaplama yapılmasını

mümkün kılabilir. Popülasyon kodlama teorisi CMOS teknolojisiyle uygulanabilir olsa da bu

sistemler genellikle yüksek alan veya enerji gereksinimlerine sahiptir. Mizrahi ve ekibi, nano

ölçekli manyetik tünel bağlantılarının bu gereksinimleri karşılamak için kullanılabileceğini

göstermiştir (Mizrahi et al., 2018).

CMOS teknolojisi ile memristörlerin birleştirildiği bir devrede, CMOS bileşenleri her bir

kabloya bağlanır. Bu bağlantı, özel bir “CMOL” arayüzü sayesinde gerçekleştirilir ve bu

arayüz, devredeki ek çapraz çubuk yapısındaki tekil memristörlere erişim imkanı sağlar

(Prezioso et al., 2015). Bir tür hibrit nöromorfik ağ olan CrossNets, nöron hücre gövdelerinin

CMOS tabanlı donanım modellerini memristif çapraz çubuklarla entegre etme potansiyelinden

faydalanmaktadır. Bu yenilikçi mimaride, çapraz çubuğun telleri aksonlar ve dendritler olarak

işlev görürken, memristörler biyolojik sinapsların davranışını taklit eder. Metal oksit

memristörlerin basit, iki terminalli, transistörsüz topolojisi, CMOS modelli memristörlere

(Pershin & Di Ventra, 2010), kayan kapıya (Hasler & Marr, 2013), 2013) ve ferroelektrik

(Kaneko et al., 2014) bellek hücrelerine dayalı olanlar da dahil olmak üzere, CrossNets'in saf

CMOS nöromorfik ağlara kıyasla çok daha yüksek yoğunluk elde etmesini sağlayabilmektedir.

Prezioso ve ekibi, transistör içermeyen entegre bir çapraz çubuk yapısı kullanarak, bunun yerine

metal oksit memristörlere dayanan işlevsel bir sinir ağının deneysel bir gösterimini

gerçekleştirmiştir (Prezioso et al., 2015). Ağ, doğrudan kendi operasyonel ortamında eğitime

tabi tutuldu, yani harici bir bilgisayar modeline dayanmadı ve Manhattan güncelleme kuralını

kullandı (Lim et al., 2019). Manhattan güncelleme kuralı ve toplu mod delta kuralı temelde

aynıdır, tek fark donanım uygulamasını kolaylaştırmaya yarayan ikili niceleme kullanımıdır

(Prezioso et al., 2015).

Derin analog Yapay Sinir Ağları (YSA'lar) karmaşık sınıflandırma problemlerini çok

yüksek bir doğruluk derecesiyle çözebilmektedir (Musisi-Nkambwe et al., 2021). Kuantum

bilgisayarlar, uygulamalarda sağladıkları doğruluk avantajlarına rağmen, hesaplamalar için çok

45

fazla enerji tüketir ve bu da pratik kullanım alanlarını sınırlayabilir (Lukoševičius & Jaeger,

2009). Bu durum, uygulamalarda elde edilen doğruluk avantajlarının kullanışlılığını

gölgelemektedir. Wijesinghe ve arkadaşları, nano ölçekli dirençli cihazların rastgeleliğinin bir

spike nöronun davranışını taklit etmek için nasıl kullanılabileceğini ve daha sonra bu durumu

ele almak için derin stokastik SNN'lere nasıl dahil edilebileceğini önermişlerdir. Algoritmik

olarak, bir Yapay Sinir Ağını (Sharma et al., 2020) bir Spiking Sinir Ağına (Lashkare et al.,

2018) dönüştürmek için eğitim sürecinin nasıl değiştirilebileceğini açıklarken, bu cihazların

sunduğu rastgele aktivasyon işlevini kullanmaya devam ederler. Sinaptik ağırlıklarla aynı

işlevleri yerine getirmek için stokastik anımsatıcı nöronları anımsatıcı çapraz çubuklarla

birleştiren devre mimarileri tasarladıkları bir çalışma sunmuşlardır (Wijesinghe et al., 2018).

Bu çalışmada, tasarlanan sistemin benzerlerine kıyasla enerji tüketimi açısından daha verimli

olduğunu kanıtlamışlardır.

Nöromorfik hesaplama sistemleri için bir donanım ağı yapısının oluşturulması temelde

bellek dizilerinin entegrasyonudur. Günümüzde çapraz çubuk dizisi tabanlı bellek sistemlerinin

parazit akımı göz önüne alındığında, donanım tabanlı sinir ağlarının parazit önleme yeteneği

son derece zayıf olabilir (Lim et al., 2019). Bu, geliştirilen sistemin uygulanmasında önemli bir

zorluktur ve olası okuma hatalarına ve eğitim sürecinde artan enerji tüketimine yol açabilir. Bu

durumu çözmeye yönelik çalışmalar gerçekleştirilmiştir (Gul, 2019).

Elektronik sinaps cihazlarının kullanıldığı donanımlar için öğrenme algoritması

çalışmaları gerçekleştirilmiştir. Bir çalışmada, sınırlı ve süreksiz iletkenlik özelliklerine sahip

elektronik aletler kullanan donanım tabanlı bir derin sinir ağı için geri yayılım algoritması

tabanlı bir öğrenme kuralı önerilmiştir (Lim et al., 2019). Bu algoritma, donanım tabanlı ağırlık

ayarlamalarının yanı sıra hem ileri hem de geri yayılmayı sağlayan esnek bir öğrenme

mekanizması içermektedir. Ayrıca, bu algoritma enerji verimli ve yüksek hızlı derin sinir

ağlarının yürütülmesine yardımcı olacak şekilde uyarlanmıştır. Bu çalışmada, elektronik sinaps

cihazlarının öğrenme performansı, üç katmanlı bir sensör ağı kullanılarak yapılan

simülasyonlarda çeşitli iletkenlik yanıtlarına ve ağırlık güncelleme yöntemlerine göre

değerlendirilmiştir.

Spike Sinir Ağları (SNN'ler), biyolojik beynin bilgiyi hızlı ve doğru bir şekilde işleme

yeteneğinden ilham alır ve biyolojik sinir ağlarının sinirsel kodlarını, dinamiklerini ve

devrelerini kopyalamayı amaçlar. SNN'ler, bellek içi hesaplama kullanarak denetimsiz öğrenme

uygulaması için büyük bir potansiyele sahiptir (Sourikopoulos et al., 2017). Bu durum göz

önüne alındığında, uçucu olmayan bellek (eNVM) cihazlarında Spike Sinir Ağları (SNN'ler) ile

46

öğrenmenin enerji verimliliğini artıran algoritmik bir optimizasyon sunmaktadır (Y. Shi et al.,

2019). Bir başka çalışmada, bellek ile merkezi işlem birimi arasındaki veri aktarım

gereksinimini en aza indirmek için, bellek içi hesaplama mimarileri de dikkate alınarak, STT-

MRAM ve SRAM kullanılarak bir YSA model sisteminin fiziksel uygulaması için kapsamlı bir

çalışma yapılmıştır.

Beyinden ilham alan paralel hesaplama, insan beyninin bilgiyi işleme şekline çok benzer

şekilde, verileri paralel olarak işlemek için birbirine bağlı işlemcilerden oluşan bir ağ kullanma

fikrine dayanmaktadır (B. Gao et al., 2016). Bu tür bilgi işlem, büyük miktarda veriyi çok daha

kısa sürede işleyebildiği için geleneksel bilgi işlem yöntemlerinden daha verimli olacak şekilde

tasarlanmıştır. Ayrıca, geleneksel bilgi işlem yöntemleriyle aynı miktarda güç gerektirmediği

için daha enerji verimli olma potansiyeline de sahiptir. Doğrusal olmayan ve asimetrik

iletkenlik-güncelleme özelliklerine sahip yapay sinapsların faydalarına rağmen, bir donanım

yapay sinir ağı, bir yazılım yapay sinir ağının eğitim ve çıkarım doğruluğuyla eşleşemez. Bu

durum için doğrusal ve simetrik iletkenlik-güncelleme özelliklerine sahip yeni bir yapay van

der-Waals hibrit sinaps geliştirilmiştir (S. Seo et al., 2020). Bu çalışmada, iletkenliği seçici

olarak artırmak ve azaltmak için tungsten diselenid (WSe2) ve molibden disülfür (MoS2)

kanalları kullanılmıştır. Daha sonra, bir donanım yapay sinir ağı için hibrit bir sinapsın

potansiyeli, eğitim ve çıkarım simülasyonu yoluyla gösterilmiştir.

Rahimi Azghadi ve çalışma arkadaşları tarafından yürütülen bir çalışma (Rahimi Azghadi

et al., 2020) ile CMOS, SiOx tabanlı memristif ve karma CMOS-memristif teknolojiler

kullanılarak nöromorfik hesaplama üzerine kapsamlı bir inceleme gerçekleştirilmiştir. Bu

çalışma, biyolojik nöronların ve sinapsların bazı yönlerini taklit edebilen tasarımları

içermektedir. Araştırma, nöronları taklit edebilen bileşenlerin model sınıflandırmaları veya

görüntü tanıma gibi görevlerde kullanılabileceğini göstermiştir. Cihaz çeşitliliklerine ve ideal

olmayan koşullara rağmen, geliştirilen unsurların iyi performans gösterdiği gözlemlenmiştir.

Beyinden ilham alan sinaptik nano-elektronik cihazlar, düşük enerji tüketimi ve veriyi

paralel olarak işleyebilme yetenekleri gibi biyolojik nöronlara benzer özellikleri nedeniyle

giderek daha fazla popülerlik kazanmaktadır. Metal oksitten yapılan dirençli anahtarlamalı

bellek cihazları, düşük maliyetli, üretimi kolay ve tamamlayıcı metal oksit yarı iletken (CMOS)

teknolojisi ile uyumlu olmaları nedeniyle sinaps oluşturmak için son derece arzu edilmektedir

(B. Gao et al., 2016). Bu nedenle, bu alandaki bir çalışmada, nöromorfik uygulamalar için basit,

tek katmanlı ve nano ölçekli memristör tabanlı yapay bir sinaptik cihaz sunulmuştur (Gul,

2020).

47

Başka bir çalışmada (Shymkovych et al., 2021), Radyal Tabanlı Fonksiyon (RBF) sinir

ağlarının Gauss aktivasyon yöntemini Programlanabilir Kapı Dizileri (FPGAs) donanımında

uygulamayı amaçlayan bir araştırma önerisi sunulmuştur.

Günümüzde, Von Neumann darboğazını aşmak amacıyla bellek içi hesaplamada sinaptik

cihazların kullanımı konusunda önemli ilerlemeler kaydedilmiştir (Zanotti et al., 2020). Ancak,

derin sinir ağlarının donanımda verimli bir şekilde uygulanabilmesi için doğrusal olmayan

aktivasyon işlevlerini yerine getirebilen kompakt nano cihazlara ihtiyaç duyulmaktadır

(Haoxiang & S, 2021). Bu doğrultuda, vanadyum dioksit (VO2) tabanlı bir Mott aktivasyon

nöronu ile bir iletken köprü rasgele erişimli bellek (CBRAM) çapraz bağlantı dizisinin entegre

edildiği başarılı bir çalışma gerçekleştirilmiştir (Oh et al., 2021). Bu araştırmada, Mott

aktivasyon nöronu analog alanda düzeltilmiş doğrusal birim (ReLU) işlevini kullanmaktadır.

Nöron cihazları, analog tamamlayıcı metal-oksit yarı iletken uygulamalara göre önemli ölçüde

daha az enerji tüketmekte ve daha az alan kaplamaktadır. Mott aktivasyon nöronları ile çalışan

LeNet-5 ağı, MNIST veri kümesinde ideal yazılım doğruluğuna yakın bir doğruluk oranı olan

%98,38’e ulaşmıştır. Ayrıca, bu çalışmada (Oh ve diğerleri, 2021), Mott aktivasyon nöronları

ve CBRAM çapraz bağlantı dizilerinin kombinasyonu kullanılarak büyük ölçekli görüntü kenar

tespiti süreçleri de gerçekleştirilmiştir.

İki boyutlu (2D) geçiş metali kalkojenitler (TMC’ler) ve bunların heteroyapıları,

beyinden ilham alan nöromorfik hesaplama sistemlerinde, ileriye dönük bellek ve sinaptik

cihazlar için önemli yapı taşlarıdır ve çeşitli elektronik ve optoelektronik cihazlarda kullanım

potansiyeline sahiptir (Kwon et al., 2022). Bu çalışma, nöromorfik hesaplama uygulamalarında

kullanılan iki boyutlu geçiş metali kalkojenitlere (2D TMC'ler) dayalı yüksek performanslı

memristörlere dair kapsamlı bir inceleme sunmaktadır. Çalışmada iki boyutlu geçiş metali

kalkojenit malzemeler ve heteroyapılar ele alınarak memristif cihazların mevcut durumu detaylı

bir şekilde değerlendirilmektedir (Kwon et al., 2022). Bu araştırmanın amacı, iki boyutlu geçiş

metali karbürlerden üretilen nöromorfik memristörlerin üretimi ve karakterizasyonuna genel

bir bakış sunmak ve bu malzemelerin ve cihazların gelecekte karşılaşabileceği zorlukları ve

potansiyel fırsatları tartışmaktır.

Memristif cihazlar, düşük enerji tüketimi, ölçeklenebilirlik ve direnç değişiminin çok

seviyeli doğası (plastisite) gibi özellikleri sayesinde derin öğrenme ve yapay zekâ

uygulamalarında enerji tüketimi ve ölçeklenebilirlik gibi sorunları çözmede oldukça umut vaat

etmektedir (Kwon et al., 2022). Çok seviyeli plastisite, memristörlerin fiziksel nöromorfik

hesaplama sistemlerinde sinapsları taklit etmesine olanak tanır (Shvetsov et al., 2022). Shvetsov

48

ve çalışma arkadaşları, çapraz bağlantı geometrisinde üretilen Cu/poly-p-xylene (PPX)/Au

hafıza elemanlarını inceleyen bir çalışma gerçekleştirmiştir. Yapılan çalışmalar sonucunda, tek

bir memristörün döngüden döngüye geçişi ve birkaç memristörün cihazdan cihaza geçişi

üzerine yapılan deneylerde direnç değişim voltajlarının yüksek tekrarlanabilirliği gösterilmiştir.

Elde edilen memristörlere dayanarak, basit desenleri sınıflandırmak üzere eğitilebilen bir

donanım nöromorfik ağı oluşturulmuştur.

Tablo 3, CMOS nöronları ve memristör tabanlı nöronlar için güç tüketimi, nöron başına

enerji tüketimi değerlerini sunmaktadır. Bu makalede, memristör düğümü ile birlikte CMOS

devreleri ve transistörlü bir memristör düğümünün kombinasyonu tanıtılmaktadır.

Tablo 3. CMOS nöronları ile memristör tabanlı nöronların karşılaştırılması

Referans
Cihaz

Tip/Model
Konfigürasyon Enerji/Spike

(Indiveri, 2003) CMOS 18–20 transistör 0.3–1.5 μW,

2850 pJ/spike

(Y. J. Lee et al., 2004) CMOS 90 transistör 163.4 μW

(Cruz-Albrecht et al., 2012) CMOS 16 transistör 40.2 pW,

0.4 pJ/spike

(Sourikopoulos et al., 2017) CMOS 9 transistör 4 fJ/spike

(Shamsi et al., 2018) CMOS 14 transistör 4.3 pJ/spike

(Wijekoon & Dudek, 2008) CMOS 14 transistör 8–40 μW

(Babacan et al., 2016) CMOS 1 transistör emülatör + 3 transistör 60–110 μW

(Saxena et al., 2018) CMOS + Memristör Memristor emülatör (8 transistor) 14 fJ–1.4 pJ/spike

(Mizrahi et al., 2018) CMOS + Memristör 1 memristör + 1 manyetik

coupling + CMOS devre

3.3 μW,

150 pJ/junction

(Z. Wang et al., 2018) Memristör ~6 x 4 ∼5 (nJ/spike)

(X. Zhang et al., 2018) Memristör 5 x 5 ∼700 (nJ/spike)

(Lu et al., 2020) Memristör <10 × 10 16 (fJ/spike)

(Feali, 2021) Memristör <10 × 10 16 (pJ/spike)

Yapılan çalışmalar ve bu çalışmalarda kullanılan model, alan ve enerji tüketimi gibi

özellikleri Tablo 3’te gösterilmiştir. Bu tabloda, kullanılan memristör sayısı ile enerji tüketimi

arasındaki dengeye dikkat etmek önemlidir. Bu durumun belirlenmesi uygulamalara göre

değişiklik gösterebilir. Örneğin, Tablo 3 karşılaştırıldığında, 14 transistör kullanan Wijekoon

49

Dudek modeli, Babacan’ın yaklaşımına benzer tüm yükselme ve patlama türlerini

gerçekleştirebilmekte ancak enerji tüketimi açısından ele alındığında, Babacan’ın memristör

nöronuna göre %40 daha az güç kullanmaktadır. Tablo 3’te enerji tüketim miktarlarına

bakıldığında en umut verici nöron Sourikopoulos’un çalışması olarak görülmektedir. Ancak

yapay zekâ uygulamalarının en verimli formu yalnızca tek bir duruma dayanılarak

değerlendirilemez. Donanım mimarisi tasarımında enerji tüketimini azaltmak için çipin hızı ve

boyutu göz önünde bulundurulmalıdır. Bununla birlikte, bu koşulların en ideal durumu için

belirli bir çip tasarımında bazı tavizler verilmesi gerekebilmektedir.

Memristör tabanlı donanım hızlandırıcılarının güvenilirlik üzerindeki etkisi

Memristör teknolojisi, makine öğrenimi, yapay zekâ, doğal dil işleme ve görüntü işleme

gibi geniş bir uygulama yelpazesi için büyük bir potansiyel taşımaktadır. Ancak, bu ürünlerin

ticari hale gelmesi için güvenilirlik, üretim, tutarlılık ve ölçeklenebilirlik gibi bazı önemli

zorlukların ele alınması ve aşılması gerekmektedir (Mehonic et al., 2020). Memristör

teknolojileri ailesi çeşitlilik göstermekte olup, farklı teknolojiler farklı cihaz ve sistem

kusurlarıyla birlikte gelmektedir. Bu zorlukların yanı sıra, memristör tabanlı donanım

hızlandırıcılarının güvenilirliği ve zorlukları, memristörlerin görece yeni bir teknoloji olması

nedeniyle araştırmacılar için aktif ve popüler bir araştırma konusudur.

Memristör teknolojisindeki güvenilirliği etkileyen en önemli zorluklardan biri,

olgunlaşmamış üretim süreçlerinden kaynaklanan donanım kusurlarıdır (Kannan et al., 2015)

(C.-Y. Chen et al., 2015) (S. Jin et al., 2020). Parametre varyasyonları, yüksek hassasiyetli

memristör programlamasıyla kalibre edilebilse de, donanım kusurları geri dönüşümsüzdür ve

düzeltilemez (Merced-Grafals et al., 2016).

Memristör teknolojisindeki bir diğer ideal dışı durum ise takılı hata olarak bilinen stuck-

at-fault (SAF) ve cihazdan cihaza (D2D) varyasyonlardır (Joksas et al., 2020). Bir arıza

durumunda stuck-at-fault (SAF), bir cihazın belirli bir durumda sıkışıp kalmasıyla ilgili önemli

bir güvenilirlik sorunudur (M. Liu et al., 2019). Bu durum, yapay sinir ağlarında yanlış

ağırlıkların oluşmasına ve hatalı hesaplamalara yol açabilir. D2D varyasyonlarıda, farklı

cihazların programlama darbelerine farklı tepkiler vermesi nedeniyle memristörlerin yanlış

programlanmasına neden olabilir. Sonuç olarak, memristörler yanlış iletkenlik seviyesine

programlanabilir. Bu sorunları ele almak için, okuma ve doğrulama programlama şemaları

veya yüksek hassasiyetli işlem birimlerinin çeşitli teknikler önerilmektedir (Le Gallo et al.,

2018; Shim et al., 2020).

50

Bir diğer sorun, birçok memristif cihazda gözlemlenen akım-gerilim

karakteristiklerindeki doğrusal olmayanlıktır. Çıkış akımı ile uygulanan voltaj arasındaki

doğrusal ilişkinin olmaması ve varsayılan doğrusal ilişkinin (I = GV) tüm voltaj aralığında

kullanılamaması, memristör çapraz barları kullanarak doğru vektör matris hesaplamalarını

engellemektedir (Mehonic et al., 2020).

Alan çalışmaları ile nöromorfik sistemin genel değerlendirilmesi

Literatür incelemesinde ilgili çalışmalarda görüldüğü üzere, bilgisayar sistemlerinde

yazılım ve donanım alanında sürekli ve çok hızlı bir gelişim süreci yaşanmaktadır. Bu ilerleme

ile birlikte, yapılandırılmış sorunları çözme konusunda başarılı olan Von Neumann mimarisine

dayanan geleneksel bilgisayar sistemlerinin, büyük miktarda yapılandırılmamış veriyi işlemek

için yetersiz olduğu anlaşılmıştır. Bu durumun sonucunda, son yıllarda daha fazla araştırmacı

memristörlerin özelliklerini incelemeye ve daha gerçekçi memristör modelleri oluşturmaya

başlamıştır. Memristör tabanlı nöromorfik hesaplama, donanım birimleri, uygulama modelleri,

algoritmalar ve entegrasyon teknolojilerini kapsayan farklı disiplinlerin araştırma ve uygulama

geliştirme alanı haline gelmiştir. Bu durum, gerçekleştirilen çalışmalarda yeni fırsatlar

sunarken, aynı zamanda bazı zorlukları beraberinde getirmektedir. Bu, donanım tabanlı

çalışmaların istenen seviyeye ulaşabilmesi için aşağıda sıralanan durumların göz önünde

bulundurulması gerektiği düşünülmektedir. Memristör tabanlı nöromorfik donanımın inşasında

farklı malzemeler kullanılmalıdır. Tasarlanan memristörler test edilmeli ve analiz edilmelidir.

Bu analizler doğrultusunda, daha kararlı ve güvenilir memristör malzemeleri ve üretim

yöntemleri izlenmelidir. Birçok memristör tabanlı uygulama düşük doğruluk sorunları

yaşamaktadır. Bu sorunun çözümü, memristörlerin güvenilirliğini artırmakta yatmaktadır.

Tasarlanan memristör birimlerinin güvenilirliğini artırmanın en önemli yöntemi, yeni üretim

malzemelerinin kullanılmasıdır.

Analog veya dijital hesaplamalarda, farklı cihazlardaki memristör cihaz özelliklerindeki

ani değişimler, gerçekleştirilen işlemlerin doğruluğunu önemli ölçüde etkileyebilir. Özellikle

yüksek doğruluğun çok önemli olduğu bilimsel hesaplamalarda, memristör cihazlarının

uygunluk gereksinimi görece yüksektir. Doğrulama yöntemlerinin veya yedeklilik tasarımının

kullanılması, bu hataların toleransını bir dereceye kadar artırabilir; ancak bunun sonucunda ek

enerji tüketimi ve gecikme meydana gelecektir. Sonuç olarak, memristör tabanlı bellek içi

hesaplamaların doğal avantajları zayıflayacaktır. Bu nedenle, geliştirilen uygulamalarda

kullanılan memristör cihazlarının uygunluğu önemli bir sorundur.

51

Literatür taramasından çıkarılan bir diğer sonuç ise, memristör tabanlı yapıların dikkate

alınmasıyla, bu özelliklere uygun olarak tasarlanacak yeni öğrenme algoritmaları ile geliştirilen

sistemden daha iyi verim elde edilebilir. Ayrıca, yeni nesil bilgisayarların donanım mimarisi,

Von Neumann mimarisinden farklı şekilde tasarlanmalıdır. Biyolojik ilham alan bir hesaplama

paradigması olarak nöromorfik hesaplama, yapay zekanın ve derin öğrenme süreçlerinin

hızlandırılması ile enerji verimliliği açısından optimal çözümler için büyük bir potansiyele

sahiptir. Akademi ve sanayide artan araştırma girişimleri ile yakın gelecekte daha güvenilir

öğrenme algoritmaları ve daha verimli uygulamalar konusunda iyileştirmelerin gerçekleşmesi

beklenmektedir.

52

MATERYAL VE METOT

Yöntem

Bu tez çalışmasında, donanım tabanlı bir öğrenme modeli oluşturma sürecinde kullanılan

metodolojinin temel bileşenleri kapsamlı bir biçimde incelenmekte ve oluşturulacak modelin

performansı bilgisayar ortamında simüle edilmektedir. Bu metodoloji, optimizasyon

yöntemlerinin entegrasyonu yoluyla modelin performansını artırmayı hedeflemekte ve çeşitli

adımlar içermektedir. İlk olarak, optimizasyon sürecinde kullanılan matematiksel yaklaşımlar

tanıtılmakta, ardından, donanım üzerinde öğrenme modelini kurma aşamasında bu yöntemlerin

nasıl uygulandığı ele alınmaktadır. Bu çerçevede, her bir adımın modelin genel verimliliğine

katkıları ve donanımın sınırlamaları dikkate alınarak yapılan düzenlemeler de açıklanmaktadır.

Bu çalışma, sinir ağlarının donanım tabanlı uygulanabilirliğini inceleyerek, özellikle

memristör tabanlı nano-sinaptik cihazların kullanım potansiyelini detaylı bir şekilde ele

almaktadır. Memristör gibi gelişmiş malzemelerle üretilen nano-sinaptik cihazlar, sinir

ağlarının hem doğruluk hem de işlem verimliliği açısından performansını iyileştirebilmekte,

bununla birlikte enerji tüketimini azaltarak geniş çaplı hesaplama gereksinimlerine yönelik

etkin çözümler sunabilmektedir. Çalışmada önerilen ve bilgisayar ortamında simüle edilen

donanım tabanlı yapay sinir ağı modeli, çevrimiçi öğrenme ve çevrimdışı sınıflandırma

görevleri optimum hale getirilmiş olup, özellikle veri yoğun sınıflandırma problemlerinde

işlevsel ve ölçeklenebilir bir yapı sunmaktadır.

Donanım tabanlı uygulama süreci, makine öğrenimi ve derin öğrenme algoritmalarının

ileri besleme (FeedForward, FF) ve geri yayılım (BackPropagation, BP) gibi temel tekniklerini

kapsayarak, FF algoritmasında giriş verisinin ağırlıklı toplamlar ve aktivasyon fonksiyonları

üzerinden katmanlar boyunca çıkış katmanına ulaştırılması prensibine dayanmaktadır. Bu

katman bazlı iletim süreci, sinir ağı çıktısının belirli bir etiket ile karşılaştırılmasını sağlar,

böylece modelin tahmin hatası hesaplanır. BP aşamasında ise, hesaplanan tahmin hatası,

modelin performansını iyileştirmek üzere optimizasyon algoritmaları aracılığıyla geri yayılır

ve her bir veri noktasına ilişkin ağırlık değerleri anında güncellenerek hata minimize edilir.

Özellikle donanım seviyesinde optimize edilmiş bu sinir ağı modeli, geleneksel gradyan

inişi gibi yazılım tabanlı yöntemlerden ayrışarak enerji verimliliği, işlem hızı ve doğruluk

açısından ciddi avantajlar sağlamaktadır. Hinduja ve arkadaşları ile Lillicrap ve arkadaşlarının

çalışmaları, donanım tabanlı sinir ağlarının hem enerji tasarrufu sağladığını hem de işlem hızını

53

artırdığını göstermektedir. Bu ağlar, büyük veri kümeleriyle çalışırken gerekli olan hesaplama

gücünü minimize etme konusunda da etkili bir çözüm sunmaktadır (Hinduja et al., 2019;

Lillicrap et al., 2020). Şekil 18, çalışmanın genel yapısını göstermekle birlikte optimizasyon

algoritmalarının makine öğrenimi model performansı üzerindeki etkilerini inceleyen bir akış

diyagramını da ifade etmektedir. Şekil 18’in genel akışı, giriş verilerinin işlenmesinden nihai

sonuçların değerlendirilmesine kadar olan süreci kapsamaktadır.

Şekil 18. Çalışmada kullanılan metodolojinin akış diyagramı.

54

Aşağıda Şekil 18’da gösterilen akış diyagramının özet biçiminde açıklaması verilmiş olup

ilerleyen bölümlerde bu kısımlar detaylı bir şekilde anlatılacaktır.

 Başlangıç ve Giriş Verisi (Input Data): İlk adımda, MNIST, CIFAR-10 ve Fisher’s

Iris gibi veri kümeleri bilgisayar ortamında simüle edilen modele girdi olarak

verilmektedir. Bu veri kümeleri, el yazısı rakamlar ve küçük renkli görüntüler gibi

standart makine öğrenimi test veri setlerini içerir.

 Optimizasyon Yöntemleri İçin Hiperparametreler: Modelin başarısını etkileyen

öğrenme oranı, nöron ağırlıkları ve gizli katman sayısı gibi çeşitli hiperparametreler

belirlenir. Bu ayarlar, modelin performansını optimize etmek için detaylı

ayarlamalar yapılması gereken kritik parametrelerdir.

 Optimizasyon Yöntemleri: Akış diyagramında Stokastik Gradyan İnişi (SGD),

AdaGrad, AdaMax, RMSProp, Momentum, AdaDelta, Nadam ve Adam gibi çeşitli

optimizasyon algoritmaları listelenmiştir. Bu algoritmalar, modelin öğrenme

sürecinde ağırlıkların güncellenme şeklini belirler.

 Hedefler (Amaç): Optimizasyon sürecinin amacı, doğruluğu (ACC) maksimize

ederken kaybı (Loss) minimize etmektir. Bu iki metrik, model performansını

değerlendirmede kritik rol oynar.

 Sinaptik Cihaz Tabanlı FFNN: Optimizasyon süreci, bir İleri Beslemeli Yapay Sinir

Ağı (FFNN) modelini eğitmek için kullanılır. Sinaptik cihazlar terimi, modelin

donanım veya yazılım uygulamalarında nöromorfik sistemleri temsil ediyor

olabilir.

 Neurosim ile Eğitim: YSA’nın eğitimi, Neurosim adlı bir simülasyon aracı

kullanılarak gerçekleştirilir. Bu araç, nöromorfik hesaplamayı simüle ederek sinir

ağı performansını değerlendirmeye yardımcı olmaktadır.

 Doğruluk ve Optimum Değerlerin Hesaplanması: Modelin doğruluk oranı (ACC),

doğru tahmin sayısının toplam tahmin sayısına oranı olarak hesaplanır. Bu adımda

ayrıca modelin optimum parametre değerleri belirlenir.

 Sonuçlar: Nihai sonuçlar ve değerlendirme metrikleri sunulmakta, akış diyagramı

"BİTİŞ" adımıyla tamamlanmaktadır.

Şekil 18, optimizasyon algoritmalarının karşılaştırmalı performans analizine yönelik bir süreç

akışını sunmakta olup, makine öğrenimi alanında hiperparametre ayarlarının ve optimizasyon

yöntemlerinin etkisini incelemek için tasarlanmıştır. Burada optimizasyon yöntemleri

55

kullanılarak donanım tabanlı bir öğrenme modeli oluşturmak için kullanılan metodolojinin

temel yönleri gösterilmektedir.

Tablo 4. Uygulamanın genel çalışma mantığını anlatan sözde kod

Input: InputData, Hyperparameters, Optimizers

Output: BestModel, BestAccuracy, BestLoss

Begin

 1: Initialize Variables

 2: data ← LoadData (InputData)

 3: params ← SetHyperparameters (Hyperparameters)

 4: bestModel ← NULL

 5: bestAccuracy ← 0

 6: bestLoss ← ∞

 7: For each optimizer in Optimizers do

 8: Initialize Model with Current Optimizer

 9: model ← InitializeModel (params, optimizer)

 10: Randomly Initialize Model Weights

 11: RandomInitializeWeights(model)

 12: Train the Model using Data

 13: Train (model, data)

 14: Evaluate Model Performance

 15: accuracy ← CalculateAccuracy (model, data)

 16: loss ← CalculateLoss (model, data)

 17: Compare and Update Best Model if Necessary

 18: if accuracy > bestAccuracy or (accuracy == bestAccuracy and loss < bestLoss) then

 19: bestModel ← model

 20: bestAccuracy ← accuracy

 21: bestLoss ← loss

 22: End if

 23: End For

 24: Return Results

 25: return bestModel, bestAccuracy, bestLoss

End

Veri Seti Tanımlaması ve Kullanılan Veri Setleri

El yazısı karakter tanıma amacıyla MNIST veri kümesi (Li Deng, 2012) kullanılmıştır.

MNIST, yaygın olarak el yazısı rakamların tanınması üzerine yapılan çalışmalar için standart

bir test veri kümesi olarak kullanılmaktadır. Ayrıca bilgisayarlı görü algoritmalarının

performansını değerlendirmede oldukça etkin bir ölçüt sunar. Bu tez çalışmasında, bilgisayar

tarafından yazılmış karakter tanıma sürecini incelemek amacıyla her bir rakamın dijital

görüntüsünü bilgisayar ortamında üreterek kendi veri kümemizi oluşturduk. Her bir karakter

görüntüsü, veri ön işleme aşamasında sayısallaştırılarak başlangıçtaki 48×48 piksel

çözünürlükten 28×28 piksele normalize edilmiştir. Bu, sinir ağımızın giriş katmanındaki

56

nöronlar için gerekli olan giriş vektörlerini dikey ve yatay özellik vektörlerinin birleşimi

şeklinde sunmamıza olanak sağlamaktadır. Neticede, önerilen sinir ağı modelimiz, bilgisayar

ortamında yazılmış bir karakter ile el yazısı bir karakter için toplamda 56 benzersiz özellik

taşıyan bir giriş vektörünü işlemektedir. Bilgisayar tarafından üretilen karakterlerden oluşan

yeni bir veri kümesi, metin görüntülerinin 28 × 28 piksele sayısallaştırılmasıyla oluşturulmuş

olup ve Şekil 19 (a) ve Şekil 19 (b)'de gösterilmektedir.

Şekil 19. (a) Bilgisayar ile yazılmış bir rakamın uygulama ile binary hale getirilmesi (b) Elle

yazılmış bir rakamın uygulama ile binary hale getirilmesi.

Ayrıca bu tez çalışmasında, donanım tabanlı bir sinir ağı mimarisinin performansını

değerlendirmek amacıyla CIFAR-10 veri kümesinden (McCrary, 1992) faydalanılmıştır.

CIFAR-10, bilgisayarla görme alanında sıklıkla kullanılan, geniş kapsamlı ve karmaşık bir

görüntü sınıflandırma veri setidir. Bu veri seti, her biri 32×32 piksel boyutunda ve renkli olan

60.000 görüntüden oluşmaktadır ve on farklı sınıfa dağıtılmıştır. Bu sınıflar, günlük hayatta

karşılaşılan çeşitli nesne ve hayvan kategorilerini içermektedir. CIFAR-10 veri kümesindeki

her görüntü, önceden belirlenmiş on sınıftan birine atanmıştır, bu da veri kümesini denetimli

öğrenme tabanlı görüntü sınıflandırma çalışmaları için ideal hale getirmektedir. Veri kümesinde

bulunan çeşitli nesneler ve karmaşık arka planlar, sınıflandırma modelleri için oldukça zorlayıcı

bir ortam sunmakta, böylece algoritmaların sınıfları ayırt edebilmek için derin özellikleri

öğrenmesini zorunlu kılmaktadır (McCrary, 1992). Tablo 5’te sözde kodu yazılan ptyhon

programlama dilinde yazılan kod ile CIFAR-10 veri kümesini işleyip eğitim ve test verilerini

57

belirli dosyalara kaydeder. Öncelikle, veriler belirtilen dizinlerdeki dosyalardan yüklenir ve

ardından eğitim verileri birleştirilerek patch_train.txt ve label_train.txt dosyalarına kaydedilir.

Test verileri de benzer şekilde patch_test.txt ve label_test.txt dosyalarına kaydedilir. Algoritma,

eğitim ve test verilerini ayrı dosyalara kaydederek veriyi model eğitimi için kullanılabilir hale

getirir.

Şekil 20. Çalışmada CIFAR-10 Veri setinin kullanımı.

Standartlaştırılmış yapısı ve zengin içeriğiyle CIFAR-10, özellikle derin öğrenme ve makine

öğrenimi modellerinin sınıflandırma performansını değerlendirme amacıyla araştırmacılar

tarafından yaygın olarak kullanılmaktadır. Bu veri kümesi, sınıflandırma algoritmalarının

gerçek dünya problemlerine uyarlanabilirlik performansını değerlendirmek ve farklı tekniklerin

verimliliğini nesnel bir biçimde karşılaştırmak için ölçüt işlevi görmektedir.

Tablo 5. CIFAR-10 veri setinin uygulamada kullanacak dijit yapıya dönüştürülmesine ait

sözde kod

Input: data_dir, output_dir

Output: patch_train.txt, label_train.txt, patch_test.txt, label_test.txt

Begin

 1: Function: load_cifar10_batch(file)

 2: Open file in 'rb' mode

 3: Load data using pickle and save it to a dictionary

 4: Extract images (from data key) and labels (from labels key) from the dictionary

 5: Return images, labels

 6: Function: save_data(images, labels, patch_file, label_file)

 7: Save images to patch_file

 8: Save labels to label_file

 9: Function: process_cifar10_data (data_dir, output_dir)

 10: If output_dir does not exist:

 11: Create output_dir

 12: Initialize empty lists: train_images and train_labels

 13: For each i from 1 to 5:

 14: Construct file path as data_dir + 'data_batch_i'

58

 15: Call load_cifar10_batch(file) to load images and labels

 16: Append images to train_images

 17: Append labels to train_labels

 18: Concatenate train_images and train_labels

 19: Call save_data(train_images, train_labels, 'patch_train.txt', 'label_train.txt')

 20: Call load_cifar10_batch(data_dir + 'test_batch') to load test_images and test_labels

 21: Call save_data(test_images, test_labels, 'patch_test.txt', 'label_test.txt') to save test data

 22: Call process_cifar10_data('cifar-10-batches-py', 'cifar10_data')

End

Tez çalışmasında önerilen yöntemin performansını değerlendirmek için kullanılan diğer

bir veri seti Fisher’s Iris veri setidir. Fisher’s Iris veri seti, makine öğrenimi ve istatistik

alanlarında sıklıkla kullanılan, iyi yapılandırılmış ve basit bir veri setidir. Bu veri seti, her biri

dört farklı özellik içeren 150 gözlemden oluşmaktadır ve üç farklı sınıfa ayrılmıştır. Sınıflar, üç

farklı iris çiçeği türünü temsil etmektedir. Bunlar; Iris-setosa, Iris-versicolor ve Iris-virginica.

Her sınıf, veri setinde eşit sayıda örnek içerir. Fisher’s Iris veri seti, denetimli öğrenme tabanlı

sınıflandırma çalışmaları için ideal bir ortam sunar. Küçük boyutu ve dengeli sınıf dağılımı

sayesinde eğitim ve test işlemleri hızlıca gerçekleştirilebilir. Bunun yanı sıra, özelliklerin

doğrusal olarak ayrılabilirliği, algoritmaların performansını analiz etmek için uygun bir zemin

oluşturur. CIFAR-10 veri setine uygulanan işlemler python programlama dili ile Fisher’s Iris

veri setine uygulanarak modelin kullanabileceği binary formata çevrilir. Bu aşamalardan sonra

ilgili veri seti önerilen model üzerinde kullanılarak sonuçlar elde edilir.

Memristör Tabanlı Sinir Ağı Donanımı

Donanım tabanlı yapay sinir ağı uygulamaları için memristif sinaptik cihazlar giderek

daha fazla benimsenmektedir (J. Chen et al., 2021; Ielmini & Wong, 2018; Qin et al., 2020).

Bu cihazlar, biyolojik sinapsların işlevini taklit ederek yapay sinir ağlarında bilgi işleme ve

öğrenme sürecini etkinleştirmektedir. Yapay sinir ağları, büyük veri kümelerini kullanarak

öğrenme algoritmalarını eğitmekte ve girdi verilerinin temel özelliklerini çıkarımsal olarak

öğrenmektedir. Mimari açıdan, yapay sinir ağları genellikle iki ana kategoriye ayrılır. İlk

kategori olan ileri beslemeli ağlar, hesaplama sürecini girişten çıkışa doğru, her katmanda

ardışık bir şekilde gerçekleştirir. Bu tür ağlar, öğrenme süreci sırasında sinyalleri yalnızca ileri

yönde taşıyarak çıktı katmanına ulaşır. Bu ağ yapısı, hesaplama işlemlerini sadeleştirirken

doğrusal bilgi akışını korur ve çoğunlukla denetimli öğrenme gerektiren sınıflandırma

görevlerinde kullanılır (S. Raj & Ananthi J, 2019). İkinci kategori olan tekrarlayan yapay sinir

ağları (RNN), farklı bir yapısal yaklaşım sunar. Bu ağlar, döngüsel bağlantılar aracılığıyla hem

ileri hem geri bilgi akışı sağlamakta ve zaman içindeki ardışık ilişkileri dikkate alabilmektedir.

59

Böylece, veriler arasında bir hafıza etkisi oluşturulmakta ve ağın önceki durum bilgilerini de

hesaba katarak daha dinamik bir hesaplama kapasitesine sahip olması sağlanmaktadır. Bu

çalışmada ikinci kategoride belirtilen yapay sinir ağı modeli kullanılmıştır. İleri beslemeli bir

sinir ağında nöronlar, katmanlar halinde düzenlenmiştir; her katmandaki nöronların çıktısı bir

sonraki katmana ağırlıklı bir giriş olarak aktarılır ve bu süreç, katmanlar arası sinirsel iletimin

temelini oluşturur.

Tablo 6, memristör tabanlı donanım uygulamalarına yönelik yapay sinir ağları üzerine

gerçekleştirilen dört farklı çalışmanın karşılaştırmalı analizini sunmaktadır. Bu çalışmalar,

biriktirme yöntemleri, memristör yapıları, aktif katman kalınlıkları, ROFF/RON oranları, sinaptik

özellikler, iletkenlik durumları ve sinaptik voltaj değerlerindeki farklılıklar açısından detaylı

bir şekilde incelenmiştir. Analiz, memristörlerin tasarım ve performans parametrelerinin sinir

ağı uygulamalarındaki etkilerini anlamaya yönelik kapsamlı bir bakış açısı sağlamaktadır.

Referanslarda belirtilen çalışmalarda ve bu tez çalışmasında, biriktirme yöntemleri olarak

Darbeli Lazer Biriktirme (PLD), Plazma Destekli Atomik Katman Biriktirme (PEALD),

Reaktif Magnetron Püskürtme ve RF-Magnetron Püskürtme kullanılmıştır. Çalışmalar, 10 nm

ile 65 nm arasında değişen aktif katman kalınlıklarına odaklanmış ve farklı ROFF/RON oranları

rapor edilmiştir. Sinaptik özellikler bu çalışma ve (L. Gao et al., 2015; Illarionov et al., 2020;

Miyake et al., 2022) referanslarında ayrıntılı olarak açıklanmıştır. Çeşitli çalışmalar, iletkenlik

durumlarının 102 ile 210 arasında değişkenlik gösterdiğini ve sinaptik voltajların 3 V ile 10 V

aralığında dalgalandığını bildirmiştir.

Tablo 6. Farklı memristör tabanlı donanım uygulaması yapay sinir ağı çalışmaları.

Çalışma (Miyake et al.,

2022)

(Illarionov et al.,

2020)

(L. Gao et al., 2015) Bu çalışma

Biriktirme yöntemi PLD (Darbeli Lazer

biriktirme)

PEALD (Plazma

Destekli Atomik

Katman Biriktirme)

Reaktif Magnetron

Püskürtme

RF-

Magnetron

Sputtering

Yapı Pt∕TiO2−𝑥∕Pt Al∕TiO2∕Al Ta∕TaO𝑥∕TiO2∕Ti Al∕TiO2∕Al

Aktif katman kalınlığı 65 nm 13 nm 10 nm+30 nm 10 nm

𝑅𝑂𝐹𝐹 /𝑅𝑂𝑁 ratio(RRAM) 20 100 Rapor edilmedi > 2

Sinaptik özellikler + Rapor edilmedi + +

İletkenlik durumları Not reported Rapor edilmedi 102 210

Sinaptik gerilim 7 V, 8 V, 9 V, 10 V Rapor edilmedi 3 V 5 V

Memristör Sinaptik Tabanlı Cihaz Kullanarak Nöral Ağ Uygulaması

Memristif sinaptik cihazlar, gelişmiş öğrenme algoritmaları ve yüksek kaliteli veri

kümelerinin yardımıyla rakam tanıma ve görüntü sınıflandırma gibi görevlerde performansı

önemli ölçüde artırmaktadır. Bu cihazlar, yapay zekâ ve makine öğrenimi uygulamaları için

60

ideal bir yapı sunarak, düşük güç tüketimi ve yüksek işlem hızı avantajları ile öne çıkmaktadır.

Çalışmanın odağı, çeşitli optimizasyon algoritmaları kullanılarak hız, enerji verimliliği ve

doğruluğun optimize edilmesidir. Bu çerçevede, memristör tabanlı nano-sinaptik cihazların

sahip olduğu özelliklerin ve mevcut öğrenme performanslarındaki sınırlılıkların ele alındığı bir

nöro-esinli donanım çözümü sunulmaktadır.

Bu çalışmada, memristör tabanlı cihazın memristif özelliklerini kullanarak ileri besleme

(FF) ve geri yayılım (BP) yöntemleriyle performans ve verimliliği artırma hedeflenmiştir.

Performans karşılaştırmaları ve referans sağlamak amacıyla iki katmanlı bir perceptron (MLP)

sinir ağı tercih edilerek tasarlanmıştır. Şekil 21(a)'da gösterildiği gibi, bu sinir ağı, giriş, gizli

ve çıkış katmanlarından oluşmakta ve her katmandaki nöronlar, bir sonraki katmandaki tüm

nöronlara tam bağlantılarla bağlanmaktadır. Bu bağlantı yapısı, ağın karmaşık veri modellerini

öğrenme kapasitesini artırırken, ağırlıklı sinapslarla temsil edilen esnek bağlantılarla yüksek

hesaplama gücü sunmaktadır. Giriş ve gizli katmanlar arasındaki bağlantı ağırlıkları matris WIH

ile, gizli ve çıkış katmanları arasındaki ağırlıklar ise matris WHO ile gösterilmektedir. Ağın

eğitimi için giriş verisi olarak 28x28 piksel boyutuna yeniden ölçeklendirilmiş MNIST el yazısı

rakamları ve CIFAR-10 veri setleri kullanılmıştır.

Şekil 21. MLP nöral ağı. Kullanılan BPNN'nin mimarisi ve nöronları. (a) Bilgisayar tarafından

üretilen bir rakamı temsil eden ikili matris (28x28) ve (b) el yazısı rakam.

Ağ topolojisinin varsayılan yapısı 784 nöronlu bir giriş katmanı, 128 nöronlu bir gizli

katman ve 10 sınıfa karşılık gelen 10 nöronlu bir çıkış katmanı içermektedir. Bu yapı, her bir

görüntüyü işleyerek uygun rakam sınıfını belirleme yeteneğini sağlar. Bu parametrelerde

yapılacak değişiklikler, ağın performansını optimize etmek için yeni ayarların yapılmasını

gerektirebilir. Şekil 21(b) ise bir nöron düğümünü gösterir; burada nöron, gelen sinapslardan

ağırlıklı bir toplamı hesaplamakta ve 1 bitlik düşük hassasiyetli bir aktivasyon fonksiyonu ile

çevrimdışı sınıflandırma gerçekleştirmektedir. Ancak, eğitim sürecinde geriye yayılım

61

yapılırken, küçük hata düzeltmeleri için daha yüksek hassasiyetli ağırlık güncellemeleri

gerekmekte olup çalışmada bu durum göz önünde bulundurularak işlemler gerçekleştirilmiştir.

Bu tez çalışmasında tasarlanan memristör tabanlı sinaptik cihazın performansını artırmak

amacıyla çeşitli optimizasyon yöntemleri uygulanmıştır. Bu cihazda, öğrenme süreci sırasında

oluşan sinaptik ağırlık değişimlerinin ölçülmesi ve izlenmesi için özel bir prob istasyonu

kullanılmıştır. Ayrıca, memristör cihazının sinaptik davranışlarının detaylı analizleri, bu amaca

yönelik özel olarak geliştirilmiş bir yazılım ile yürütülerek sonuçlandırılmıştır.

Memristif eNVM sinaptik çekirdeklerindeki enerji tüketiminin ana kaynağı, geleneksel

belleklerde sıklıkla görülen dinamik güç tüketiminden farklı olarak, daha çok statik güç

tüketimine dayanır. Memristif sinapslardan geçen elektrik akımı, enerji tüketimine önemli bir

katkı sağlamakta olup toplam enerji tüketimi hem sinaptik çekirdekler hem de çevresel

devrelerin tükettiği enerjinin bileşimi olarak hesaplanmaktadır. Çevresel devrelerin enerji

tüketimi hesaplamaları, 32 nm düğüm teknolojisi ile öngörücü teknoloji modeli (PTM)

aracılığıyla gerçekleştirilmiştir.

Şekil 22. SMU/Pulse Source. Memristör sinaptik cihazın yerleşimi ve deneysel kurulum

Sinir ağı uygulamasının bilgisayar üzerinde enerji tüketimi analizi için, i7-10750H

işlemci (2.90 GHz) ve 8 GB RAM'e sahip bir sistem kullanılmıştır. Bu analiz sırasında enerji

tüketimi ölçümlerinde (García-Martín et al., 2019) kaynakta sunulan yönergeler temel alınmış

ve sinir ağı uygulamasının bilgisayardaki enerji kullanımını tahmin etmek amacıyla DeLight

adlı analiz aracı (Şekil 22'de gösterilen) kullanılmıştır. Bu yöntemler, sinir ağlarının donanım

62

tabanlı uygulamaları için daha düşük enerji gereksinimleriyle yüksek verim elde etme

potansiyelini değerlendirmede kritik bir rol oynamaktadır.

Şekil 23. İki katmanlı MLP ağının donanımda uygulanması için devre blok diyagramı.

Şekil 23, iki katmanlı MLP sinir ağının donanım tabanlı uygulaması için devre blok

diyagramını göstermektedir. Bu uygulamada, ağırlıklı toplam hesaplamaları sinaptik

çekirdekler aracılığıyla gerçekleştirilir. Ancak, standart bir sinaptik dizide kullanılan ağırlıklar

sadece WH = 0~1 aralığında negatif olmayan değerler alabilirken, sinir ağı algoritmasında hem

pozitif hem de negatif ağırlık değerleri mevcuttur, yani WA = -1~1. Bu durum donanım

tasarımında bazı zorluklar ortaya çıkarmakta ve negatif ağırlıkları temsil etmek için özel

çözümler gerektirmektedir. Bu uygulamada, ağırlıkları WA=-1~1 aralığından WH = 0~1

aralığına dönüştürmek için algoritmik bir yapı kullanılmıştır. Algoritmadaki ağırlıklı toplam

hesaplaması aşağıdaki gibi ifade edilir:

 𝑊𝐴𝑉 = 2(𝑊𝐻 − 0.5𝐽)𝑉 = 2𝑊𝐻𝑉 − 𝐽𝑉) (6)

Bu ifadede V giriş vektörünü, J ise WA ve WH ile aynı boyutta ve tüm elemanları bire eşit

olan bir matrisi temsil etmektedir. Denklem (6)'da WHV, sinaptik çekirdekten elde edilen

ağırlıklı toplamın sonucunu temsil eder. Bu nedenle WA, (-1~1) aralığından WH (-1~0) aralığına

dönüştürülür. Özetle, Şekil 21 bir sinir ağının donanımsal mimarisini göstermektedir. MNIST,

CIFAR-10 ve Fisher’s Iris veri kümelerinin bir kısmı girdi vektörü olarak kullanılır ve çıktı

vektörünü tahmin etmek için sinaptik çekirdekler (WIH ve WHO) aracılığıyla işlenir. Ara

katmanda, ağırlıklar donanım kontrol mantığı tarafından ayarlanır ve MSB tarafından işlenir.

Sonuç olarak, çıktı katmanı tahmini sağlar. Şekil 23 sinir ağlarının donanım uygulamasını

göstermektedir.

63

Cihaz Özellikleri̇ ve Uygulama Deneyleri̇

Malzeme ve cihaz özellikleri

Memristörlere dayalı nöromorfik hesaplama sistemleri, yazılım tabanlı sinir ağlarından daha

enerji verimlidir. Doğal analog dirençler gibi davranan memristörler, hesaplamaları bellek

içinde gerçekleştirerek von Neumann mimarisine bir alternatif sunar. Büyük ölçekli memristör

tasarımlarını tahmin ve optimize etmek için NeuroSim ile simülasyonlara ihtiyaç vardır. İkili

oksitler, basit üretimleri ve CMOS teknolojisi ile uyumlulukları nedeniyle elektronik

memristörler için çok önemlidir (Ye et al., 2022). Bu memristörlerin üretimi kolay, düşük

maliyetli ve mevcut yarı iletken teknolojileriyle iyi entegre olabilirler. Hf, Zn, V, Ni ve Ti (Gale,

2014) gibi oksitler, kademeli direnç anahtarlamaları için sinaptik nano cihazlarda

kullanılmaktadır. Bu sinaps benzeri davranış, memristörleri nöromorfik hesaplama ve sinir ağı

uygulamaları için ideal hale getirmektedir. Ayrıca sinaptik işlevleri taklit eden nano-elektronik

cihazların geliştirilmesine önemli bir ilgi vardır (Kuzum, 2018). Memristör, CMOS

üretimindeki önemi nedeniyle nöromorfik bilgi işlem için umut vericidir. Memristör tabanlı

sinaptik cihazlar, bellek içi hesaplama için çapraz çubuk mimarilerine zahmetsizce dahil

edilebilir. Şekil 24(a) biyolojik sinaps muadillerini ve memristörün anahtarlama davranışını

detaylandırmaktadır. Yapay sinaps oluşturma, bipolar elektrotlar arasında yer alan

nanoparçacıkların elektrokimyasal reaksiyonlarına dayanır. Gerilim uygulaması iyon ve atom

göçüne neden olarak iki kutuplu anahtarlama sağlar (Ilyas et al., 2020).

Şekil 24. Biyolojik ve yapay sinapsların şematik gösterimi. Nörotransmitterler ve reseptörlerle

biyolojik bir sinaps gibi, PRE ve POST sivri uçları burada da kullanılır

 Şekil 24(c), voltajın nanoparçacıkların büyümesine, akımın artmasına ve memristörün düşük

dirençli bir duruma geçmesine neden olduğunu göstermektedir. Gerilim geri çekildiğinde, Şekil

24(b)'de gösterildiği gibi, nanoparçacıklar küçülür, akımı azaltır ve memristörü yüksek dirençli

64

bir duruma geçirir. Memristör tabanlı cihazların direnci dinamik olarak değiştirebilir ve

biyolojik sinapsların işlevselliğini taklit edebilir. Bu cihazlar nöromorfik mühendislik ve yapay

sinir ağları gibi ileri teknolojik uygulamalar için büyük bir potansiyele sahiptir.

Memristör tabanlı sinaptik cihazın özellikleri

Memristörlerin gelişimi RRAM, biyohibrit sistemler ve sensörler gibi yüksek teknoloji

uygulamalarıyla bağlantılıdır. Bu uygulamalar memristörlerin potansiyeli Şekil 25'te

gösterilmiştir. TiOx, RRAM uygulamaları için çalışılan en eski malzemeler arasındadır.

Bununla birlikte, memristörler genellikle AÇIK veya KAPALI durumlar arasında değişen

dirençli anahtarlama bellek cihazları olarak kullanılır (Wong et al., 2012). Memristör tabanlı

RRAM cihazları, iki durum arasında geçiş yaparak veri depolar ve güç kapalı olsa bile

gerektiğinde erişilebilir kalır (Q. Wan et al., 2019). Bazı nano ölçekli metal oksit memristörler,

dirençte ince ayarlara izin vererek hassas veri işleme ve depolamaya olanak tanır. Bu da onları

gelişmiş nöromorfik hesaplama ve yenilikçi bellek uygulamaları için ideal hale getirmektedir.

Şekil 25. Memristif Cihazların Teknolojik Gelişmeleri ve Uygulamaları

Teorik olarak, sinaptik ağırlık değişiklikleri yazma darbelerinin sayısıyla doğrusal olarak

ilişkili olmalıdır, ancak gerçek dünyadaki cihazlar bu davranıştan sapmaktadır. İletkenlik LTP

ve LTD'nin ilk aşamalarında hızla değişir ve kademeli olarak doygunluğa ulaşır. Şekil 26 ((a),

(b) ve (c)) nöromorfik sistemlerin doğruluğunu ve verimliliğini etkileyen bu sapmaları

göstermektedir. Bu da detaylı karakterizasyon ve optimizasyon gerektirmektedir. Doğrusal

olmayan ağırlık güncellemelerini modellemek için bir cihaz modeli tasarlanmıştır. MLP +

NeuroSim, memristör tabanlı sinaptik cihaz gibi analog eNVM sinapslarına sahip nöromorfik

65

sistemlerin güç kullanımını, eğitim gecikmesini ve uzamsal gereksinimlerini modellemektedir

(Luo et al., 2019).

Şekil 26. Ag:a-Si için doğrusal olmayan ağırlık güncellemesi, (b) TiO2 için doğrusal olmayan

ağırlık güncellemesi, (c) Analog eNVM cihaz davranış modelinin -6'dan 6'ya kadar etiketlenmiş

doğrusal olmayan ağırlık güncellemeleriyle şematik gösterimi

İletkenlik değişimi yazma darbeleri (P) ile ilişkilidir ve aşağıdaki denklemlerle ifade edilir:

𝐺𝐿𝑇𝑃 = 𝐵 (1 − 𝑒(−
𝑃

𝐴
)) + 𝐺𝑚𝑖𝑛 (7)

𝐺𝐿𝑇𝑃 = −𝐵 (1 − 𝑒(−
𝑃−𝑃𝑚𝑎𝑥

𝐴
)) + 𝐺𝑚𝑎𝑥 (8)

𝐵 = (𝐺𝑚𝑎𝑥 − 𝐺𝑚𝑖𝑛)/(1 − 𝑒−𝑃𝑚𝑎𝑥/𝐴) (9)

GLTP ve GLTD sırasıyla LTP ve LTD süreçleri için iletkenlik değerlerini temsil eder. Gmax, Gmin

ve Pmax doğrudan deneysel sonuçlardan elde edilen değerlerdir ve sırasıyla en yüksek

iletkenliği, en düşük iletkenliği ve cihazın en yüksek ve en düşük iletkenlik durumları arasında

geçiş yapması için gereken maksimum darbe sayısını ifade eder. A parametresi ağırlık

güncelleme davranışının doğrusal olmayan doğasını kontrol eder ve pozitif (mavi) veya negatif

(kırmızı) olabilir. Şekil 24(a) ve Şekil 24(b)'de LTP ve LTD için A değerlerinin büyüklükleri

aynıdır, ancak işaretleri farklıdır. B, A'nın bir fonksiyonu olarak tanımlanır ve Gmax, Gmin ve

Pmax kapsamındaki fonksiyonları uydurmak için kullanılır. Denklem ((7), (8) ve (9))

kullanılarak, Şekil 24(c)'de gösterildiği gibi A değeri ayarlanarak çeşitli doğrusal olmayan

ağırlık artırma (mavi) ve ağırlık azaltma (kırmızı) davranışları elde edilebilir. Her bir doğrusal

olmayan eğri +6 ile -6 arasında değişen doğrusal olmama değerleriyle etiketlenmiştir (P.-Y.

Chen et al., 2018). Denklem (7) ve (8) incelendiğinde, A'nın işareti dışında eşdeğer oldukları

kanıtlanabilir. Bu nedenle hem doğrusal olmayan LTP hem de LTD ağırlık güncellemeleri için

yalnızca Denklem (7) kullanılacaktır. Şekil 26(c)'den ((a) ve (b)) farklı olarak, daha basit

66

formülasyon için eğrilerin sıfır numaralı darbeden başlamasını sağlamak amacıyla tüm LTD

eğrileri yansıtılmış ve yatay olarak kaydırılmıştır.

Biyolojik sinir ağlarında, sinaptik ağırlık STDP ile modüle edilir ve hücre iletkenliği ile

ölçülür (Prezioso et al., 2016). Bu, yapay sinir ağlarındaki öğrenmeyi taklit eder. Memristör

cihazın sinaptik ağırlık değişimi, tepe zamanlaması darbelerinden kaynaklanan iletkenlik

değişiklikleri ile belirlenir, bu da ön ve ardışık sinaptik tepe zamanlamasına bağlı olarak

güçlendirme veya zayıflamaya yol açar. Memristör tabanlı memristif cihazlar, biyolojik

sinapsların işlevselliğini taklit edebilir. Sinaptik ağırlık değişiminin miktarı ve yönü, tepe

zamanlamaları arasındaki göreceli iletkenlik değişimi ile bağlantılı olup STDP ilkeleri ve sinir

ağı öğrenme mekanizmalarını yansıtır. Bu ifadenin matematiksel olarak nasıl tanımlandığını

belirtmek için Denklem (10) şu şekildedir:

∆𝐺 = (𝐺𝑎𝑓𝑡𝑒𝑟 − 𝐺𝑏𝑒𝑓𝑜𝑟𝑒)/𝐺𝑏𝑒𝑓𝑜𝑟𝑒 (10)

Bu denkleme göre, ∆G sinaptik ağırlık değişimini temsil ederken, Gafter ve Gbefore sırasıyla ön-

son sivri uçların aktivasyonunu takip eden ve öncesindeki iletkenlik değerlerini temsil eder (S.

Yu et al., 2011). Bu oran sinaptik modülasyon etkinliğini ve yönünü belirler. Şekil 27(a),

memristör tabanlı sinaptik cihazın spike-time bağlı plastisite (STDP) özelliklerini sunarak

sinaptik öncesi ve sonrası spike uçlar arasındaki zamanlamanın sinaptik iletkenlikteki

değişiklikleri nasıl etkilediğini ifade etmektedir. STDP mekanizması, bağlantıları güçlendiren

veya zayıflatan sinaptik gücün modüle edilmesinde önemli bir rol oynamaktadır. Memristörler

biyolojik sinapsların davranışını taklit etmede ve nöromorfik sistemlerde

uygulanabilirliklerinde umut vaat etmektedir. Şekil 27(b) cihazın çeşitli zamanlama

aralıklarındaki performansını göstermekte ve sinaptik ağırlık modifikasyonunun dinamiklerini

ortaya koymaktadır.

67

Şekil 27. Memristör Tabanlı Sinaptik Cihazın Spike-Zamanlamasına Bağlı Plastisite (STDP)

Özellikleri. (b) Memristör tabanlı ağırlık ayarlama verileri için normalleştirilmiş darbe (pulse)

sayısı ve normalleştirilmiş iletkenlik arasındaki ilişkiyi gösteren grafik

MLP + NeuroSim, çevrimiçi öğrenme süreçlerini karşılaştırmak için yaygın olarak

kullanılmaktadır. Memristör tabanlı analog eNVM sinapsları ile nöromorfik donanımın güç

tüketimi, eğitim gecikmesi ve alan kullanımı gibi metriklerini simüle eder. Normalleştirme

parametreleri, deneysel ağırlık verilerinin yeniden düzenlenmesi ve normalleştirilmesiyle

belirlenmiştir. LTP ve LTD verileri NeuroSim doğrusal olmayan uydurma yöntemi kullanılarak

yansıtılmış ve uydurulmuş bu işlemin sonucunda sırasıyla 0,19 ve 3,42 doğrusal olmayan

değerlere ulaşılmıştır. Bu değerler simülatörde kullanılmış ve sonuçlar Şekil 27(b)'de

gösterilmiştir. Bu simülasyonlar memristör tabanlı nöromorfik donanımın performansını

optimize etmeye yardımcı olmaktadır.

Yapay sinaps olarak memristör ve uygulamanın yazılım-donanım entegrasyonu

Gelişen teknolojiyle birlikte yapay zekâ ve sinir ağları, enerji verimliliği ve hesaplama

performansı açısından daha optimize çözümlere duyulan ihtiyacı artırmıştır. Geleneksel

hesaplama yaklaşımlarının ötesine geçerek, memristör tabanlı yapay sinapslar, enerji verimli

ve biyolojik ilhamlı donanım mimarileri için umut vaat eden bileşenler olarak ortaya çıkmıştır.

Bu bölümde, memristörlerin yapay sinir ağı uygulamalarındaki rolü ve yazılım-donanım

entegrasyonu ile bu sistemlerin etkinliği ele alınmaktadır.

Memristör, elektriksel direnci hafızasına alabilen bir bileşendir ve doğrudan biyolojik

sinapsları taklit etmek için kullanılabilir. Bu özellik hem verilerin depolanması hem de

işlenmesi için aynı fiziksel yapıyı kullanması nedeniyle geleneksel transistörlere kıyasla çok

daha verimli çözümler sunar.

68

Bu tez çalışmasında memristör özelliği gösteren TiO2 tabanlı malzemeler kullanılmıştır.

TiO2 tabanlı sinaptik bileşen, laboratuvar ortamında tasarlanarak bilgisayar ortamında doğrusal

olmayan değerleri elde edilmiştir. Elde edilen bu parametreler ile memristör tabanlı bir yapay

sinir ağının çalışması bilgisayar ortamında simüle edilmiştir. Ayrıca yapay sinapsların etkili bir

şekilde kullanılabilmesi için, donanım mimarisi ile yazılım algoritmalarının uyumlu bir şekilde

entegre edilmesi gerekmektedir. Bu entegrasyon, ağırlıkların donanım seviyesinde doğrudan

temsil edilmesi ve işlem süreçlerinin donanım tabanlı olarak optimize edilmesini sağlamaktadır.

Tasarım aşamasından sonra uygulamanın yazılım-donanım entegrasyon aşaması

gerçekleştirilmiştir.

Çalışmamızda ilk önce ağırlıkların donanıma haritalanması yapılmaktadır. Memristör

dizileri, sinir ağındaki ağırlıkların fiziksel olarak depolandığı yapılardır. Yazılım tarafından

öğretilen ağırlıklar, bu dizilere aktarılarak hesaplama işlemleri doğrudan donanım üzerinde

gerçekleştirilir.

Yazılım-donanım entegrasyonunun ikinci aşamasında donanım tabanlı hesaplama

gerçekleştirilir. Gerçekleştirilen çalışmada yapay sinir ağlarında hesaplama işlemleri, akım ve

gerilim sinyalleri üzerinden gerçekleştirilir. Crossbar mimarisi, çarpma ve toplama işlemlerinin

paralel olarak yapılmasını sağlar. Bu, yazılım tabanlı işlemlere kıyasla hem zaman hem de

enerji verimliliği sunar.

Uygulamanın üçüncü aşmasında hata düzeltme ve geri yayılım işlemi için yazılım-

donanım entegrasyonu ayarlanır. Bu işlem yapılarak eğitim sürecinde, memristörlerin doğal

gürültü ve hassasiyet sorunlarının etkisi azaltılmaktadır. Çalışmada kullanılan yazılım

algoritmalarının, hata sinyallerini analiz ederek ağırlık güncellemelerinin donanıma

yansıtılması sağlanır. Son olarak uygulamanın donanım düzeyindeki enerji verimliliği yazılım-

donanım entegrasyonu ile analiz edilir.

Şekil 28. Geriye Yayılım Devresi.

69

Şekil 28’de, sinir ağlarının sinaptik entegrasyon sürecinde kritik bir bileşen olan Geri

Yayılım Devresi'nin (BPC) karmaşık işleyişini detaylandırmaktadır. Hata terimlerinin gizli

katmanlara iletilmesinden, CROSSBAR (CB) yapısındaki son ağırlık güncellemelerine kadar

her aşama titizlikle incelenmiştir. Bu çalışmada özellikle, NMOS transistörü M60 etrafında

yapılandırılan Çarpma Devresinin doğrusal çarpma işlemlerini gerçekleştirmedeki rolü ve farklı

giriş konfigürasyonlarını nasıl ele aldığı kapsamlı bir şekilde ele alınmıştır. Ayrıca, bu devrede

Analog Anahtarlar (AS) ve Ters Çeviren Yükselteçlerin (IA) kullanımı, devrenin

karmaşıklığına ek bir boyut katmaktadır. Son olarak, devre çıkışlarının ağırlık güncelleme

mekanizmasındaki kritik rolü vurgulanmış; genlik ve işaretin ağırlık ayarlamalarını nasıl

şekillendirdiği üzerinde durulmuştur.

Bu çalışma, TiO₂ tabanlı memristörlerin yapay sinir ağlarında kullanımına yönelik özgün

bir yaklaşım sunmaktadır. Özellikle, laboratuvar ortamında tasarlanan sinaptik bileşenlerin

bilgisayar ortamında doğrusal olmayan parametrelerinin elde edilmesi ve bu verilerin

memristör tabanlı bir yapay sinir ağının simülasyonlarında kullanılması, literatürde sınırlı

sayıda ele alınmış bir konudur. Bununla birlikte, yazılım ve donanım entegrasyonunun her üç

aşamasının detaylı bir şekilde ele alınması ve memristörlerin doğal gürültü ve hassasiyet

sorunlarına karşı alınan önlemler, çalışmanın yenilikçi yönlerini oluşturmaktadır. Ayrıca TiO2

tabanlı sinaptik cihazın kullanıldığı yapay sinir ağlarında optimizasyon yöntemlerinin

doğruluk, enerji ve hız bakımından karşılaştırıldığı, bununla birlikte önerilen modelin çok

sayıda veri seti ile kararlılığının test edildiği çalışmaya rastlanmamıştır. Bunlar çalışmanın

özgünlüğünü pekiştirmektedir.

Uygulamada kullanılan optı̇mı̇zasyon algoritmalarının sınıflandırılması

Optimizasyon algoritmaları doğruluk, hız ve genelleme performansı gibi hedeflere göre

sınıflandırılır (Bian & Priyadarshi, 2024). Doğruluk, modelin doğru tahminler yapabilme

yeteneğini; hız, işlem süresini; genelleme performansı ise modelin yeni verilere

uyarlanabilirliğini göstermektedir. Genelleştirme performansı optimizasyon algoritmalarında

büyük ve etkin bir öneme sahip olup parametrelerin kolayca güncellenebilmesi bu algoritmaları

daha pratik hale getirir. Ayrıca, büyük veri kümelerinde enerji tüketimi performansı da önemli

bir faktördür. Farklı bileşenler farklı optimizasyon teknikleri ve stratejileri gerektirmektedir.

Bu çalışmada, Stocastic Gradient Descent (SGD) ve varyasyonları makine öğrenimi ve derin

öğrenme uygulamalarında kullanılmış olup, bu algoritmalar ilerleyen bölümlerde kısaca

açıklanmıştır. Bu çalışma, memristör sinaptik tabanlı bir cihaz kullanarak nöromorfik

hesaplama alanında sekiz optimizasyon yöntemini karşılaştırmaktadır.

70

Kullanılan optı̇mı̇zasyon yöntemleri ve eğitim aşaması

Gradyan Descent ve türleri

Yapay sinir ağlarını eğitmek, kayıp fonksiyonunu en aza indiren ağ parametrelerini

belirlemeyi amaçlayan bir optimizasyon sürecidir. Bu öğrenme modelleri büyük veri kümeleri

ve ayarlanması gereken çok sayıda model parametresi gerektirir. Büyük veri kümelerini işlemek

için en uygun yöntemi bulmak önemli bir engel oluşturmaktadır. Gradyan inişi, model

parametrelerini gradyanın ters yönünde düzenli olarak güncelleyerek kayıp fonksiyonlarını

azaltmak için çok önemli bir yöntemdir (Bian & Priyadarshi, 2024). Gradyan inişinin çeşitli

versiyonları, optimizasyon sürecinde karşılaşılan zorlukların üstesinden gelmek için farklı

algoritmik stratejiler sunar.

Makine öğreniminde kullanılan birçok model bulunmaktadır. Bunlardan biri olan

Stokastik Gradyan İnişi (SGD), parametreleri optimize ederek bir model oluşturur ve bu model

aracılığıyla geleceğe yönelik tahminler yapar (Ruder, 2016). Büyük veri setlerinde hızlı ve etkili

bir optimizasyon sağlar. Bu nedenle SGD ve varyantları olan algoritmalar çalışmamız için

uygun optimizasyon yöntemleridir. Aşağıda SGD ve varyasyonlarının bir özeti verilmiştir. Bu

özetlerle beraber tez çalışmasında kullanımı ile ilgili hesaplama ve kod yapıları gösterilmiştir.

Stochastic Gradient Descent (SGD)

SGD (Robbins & Monro, 1951), makine öğrenimi ve derin öğrenme optimizasyon

problemlerini çözmek için sıklıkla önerilmektedir. SGD, basit, anlaşılır ve yapay zekâ

modellerinde etkilidir. SGD için matematiksel Denklem 11'de gösterilmiştir.

𝜃𝑡+1 = 𝜃𝑡 − 𝛼𝛻𝐹𝑖(𝜃𝑡) (11)

Denklem 11'de; 𝜃𝑡, t adımındaki ağırlık vektörüdür. 𝛼, her adımda ne kadar hareket edeceğimizi

belirleyen öğrenme oranıdır. 𝐹𝑖(𝜃𝑡) Gradyan vektörüdür, rastgele seçilen 𝑖 alt kümesi için kayıp

fonksiyonunun gradyanıdır. Bu denklemde, her iterasyonda rastgele bir veri alt kümesi seçilir

ve bu alt kümedeki örnekler için gradyan hesaplanır. Bu gradyan, ağırlık vektörünü

güncellemek için ağırlık vektörünün mevcut değerinden çıkarılır. Tablo 7’te SGD

algoritmasının eğitim aşamasındaki sözde kodu gösterilmiştir.

Tablo 7. Tez çalışmasında kullanılan SGD yönteminin eğitim aşamasındaki sözde kodu

Input: numTrain, epochs, learningRate, initialWeights

Output: bestWeights, bestLoss

Begin

71

 1: weights ← initialWeights

 2: bestWeights ← weights

 3: bestLoss ← ∞

 4: for epoch ← 1 to epochs do

 5: for batch ← 1 to numTrain do

 6: // İleri yayılım

 7: hiddenLayerOutput ← ActivationFunction(weights.hiddenLayer * Input)

 8: outputLayerOutput ← ActivationFunction(weights.outputLayer * hiddenLayerOutput)

 9: // Hata hesaplama

 10: error ← Output - outputLayerOutput

 11: // Hata geri yayılımı

12: outputLayerGradient ← error * ActivationDerivative(outputLayerOutput)

 13: hiddenLayerGradient ← (weights.outputLayer^T * outputLayerGradient) *

 ActivationDerivative(hiddenLayerOutput)

 14: // Ağırlık güncelleme

 15: deltaWeightOutput ← -learningRate * outputLayerGradient * hiddenLayerOutput^T

 16: deltaWeightHidden ← -learningRate * hiddenLayerGradient * Input^T

 17: weights.outputLayer ← weights.outputLayer + deltaWeightOutput

 18: weights.hiddenLayer ← weights.hiddenLayer + deltaWeightHidden

 19: // Eğitim kaybının hesaplanması

 20: currentLoss ← LossFunction(error)

 21: if currentLoss < bestLoss then

 22: bestWeights ← weights

 23: bestLoss ← currentLoss

 24: End if

 25: End for

 26: End for

 27: return bestWeights, bestLoss

End

Tez çalışmasında SGD yöntemi memristör tabanlı bir uygulama için kullanılmıştır. SGD

optimizasyon yöntemi uygulamada kullanılan veri setlerine ait her eğitim örneğine göre

ağırlıkları güncelleyerek klasik Gradient Descent algoritmasına kıyasla daha hızlı yakınsama

sağlar. SGD algoritması, tüm veri kümesi yerine her adımda yalnızca bir örnek veya küçük bir

batch kullanarak ağırlıkları günceller. Bu özellik, SGD’nin büyük veri kümeleriyle hızlı bir

şekilde çalışmasına olanak tanır. SGD'nin temel yaklaşımı, model parametrelerini güncellemek

için her adımda küçük bir veri grubuna dayalı gradyan bilgisini kullanmaktır. Train.cpp

dosyasındaki SGD algoritması, modelin ağırlıklarını initialWeights ile başlatır ve en iyi

ağırlıkları bestWeights olarak saklar. En iyi kayıp değeri (bestLoss), başlangıçta ∞ olarak

ayarlanır, böylece eğitim süreci boyunca ilk güncellenen değer en düşük olarak kabul edilir.

Eğitim döngüsü, belirli bir epoch sayısı boyunca devam eder. Her epoch içinde model,

tüm batch’ler üzerinde ileri ve geri yayılım yaparak güncellenir. İleri yayılım sırasında, modelin

girdisi gizli katman ağırlıklarıyla çarpılarak hiddenLayerOutput elde edilir. Bu ara katman

çıktısı, çıkış katmanına gönderilerek outputLayerOutput hesaplanır, bu da modelin tahmin

72

çıktısını temsil eder. Bu tahmin, modelin performansını ölçmek için kullanılır ve hata değeri

(error), tahmin edilen çıkış ile gerçek çıkış arasındaki fark olarak hesaplanır.

SGD algoritmasında, ağırlık güncellemesi doğrudan her batch sonrası gradient bilgisiyle

yapılır. Çıkış ve gizli katman ağırlık güncellemeleri için deltaWeightOutput ve

deltaWeightHidden hesaplanır. Güncelleme adımı, gradientin öğrenme oranı (learningRate) ile

çarpılması ve ardından mevcut ağırlıkların güncellenmesiyle gerçekleştirilir. Her batch

sonrasında, modelin eğitim kaybı (currentLoss) hesaplanır. Eğer mevcut kayıp değeri

(currentLoss), en iyi kayıp değerinden daha düşükse, bu durumda en iyi ağırlıklar bestWeights

ve en iyi kayıp değeri bestLoss olarak güncellenir.

Eğitim süreci tamamlandığında, modelin en iyi ağırlık değerleri ve en düşük kayıp değeri

döndürülür. SGD, özellikle büyük veri kümelerinde hızlı bir şekilde optimize etme avantajına

sahiptir. Her batch için ayrı ayrı güncelleme yaparak modelin hızla öğrenmesini sağlarken, tam

veri kümesini kullanmadığı için düşük bellek tüketir. Bununla birlikte, gradyanların tek

örneklere göre güncellenmesi zaman zaman gürültülü güncellemelere yol açabilir, bu da yerel

minimumdan kaçınmayı sağlar ancak bu durum bazen öğrenmenin dalgalı olmasına neden

olmaktadır.

Adam (Adaptive Moment Estimation)

Tez çalışmasına ait uygulama kısmında kullanılan önemli optimizasyon

algoritmalarından olan Adam, makine öğrenimi ve derin öğrenmede yaygın olarak kullanılan

bir optimizasyon algoritmasıdır. Gradyanların birinci ve ikinci momentlerinin tahminlerini

kullanarak uyarlanabilir öğrenme oranlarını belirler. Bu algoritma hem Momentum hem de

RMSprop optimizasyon algoritmalarının ilkelerini birleştirir (X. Liang et al., 2023). Adam

optimizasyon algoritması için matematiksel denklemler kümesi sırayla Denklem (12), (13),

(14), (15) ve (16)'da gösterilmiştir.

𝑚𝑡+1 = 𝛽1𝑚𝑡 + (1 − 𝛽1)𝑔𝑡 (12)

𝑣𝑡+1 = 𝛽2𝑣𝑡 + (1 − 𝛽2)𝑔𝑡
2 (13)

𝑚̂𝑡+1 =
𝑚𝑡+1

1−𝛽2
𝑡+1 (14)

𝑣𝑡+1 =
𝑣𝑡+1

1−𝛽2
𝑡+1 (15)

𝜃𝑡+1 = 𝜃𝑡 − 𝛼
𝑚𝑡+1

√𝑣̂𝑡+1+∈
 (16)

73

Adam optimizer için matematiksel denklemlerdeki parametreler aşağıdaki gibidir: 𝑚𝑡 ve 𝑣𝑡

sırasıyla birinci ve ikinci momentlerin tahminlerini gösterir. 𝑔𝑡 Gradyan vektörüdür. 𝛽1 ve 𝛽2

hem gradyanların ani dalgalanmalarını hem de uzun vadeli eğilimlerini dikkate alarak öğrenme

sürecini hızlandıran parametrelerdir. α öğrenme oranıdır. ∈ sıfıra bölme hatalarını önlemek için

kullanılan çok küçük bir değerdir. Bu denklemler moment tahminlerini günceller ve ağırlıkları

ayarlayarak Adam'ın farklı problemleri ele almasına ve öğrenme oranını otomatik olarak

ayarlamasına olanak tanır. Tablo 8’de tez çalışmasında kullanılan Adam yönteminin eğitim

aşamasındaki sözde kodu gösterilmiştir.

Tablo 8. Tez çalışmasında kullanılan Adam yönteminin eğitim aşamasındaki sözde kodu

Input: numTrain, epochs, learningRate, initialWeights, beta1, beta2, epsilon

Output: bestWeights, bestLoss

Begin

 1: weights ← initialWeights

 2: bestWeights ← weights

 3: bestLoss ← ∞

 4: mHidden ← 0, vHidden ← 0

 5: mOutput ← 0, vOutput ← 0

 6: t ← 1

 7: for epoch ← 1 to epochs do

 8: for batch ← 1 to numTrain do

 9: // İleri yayılım

 10: hiddenLayerOutput ← ActivationFunction(weights.hiddenLayer * Input)

 11: outputLayerOutput ← ActivationFunction(weights.outputLayer * hiddenLayerOutput)

 12: // Hata hesaplama

 13: error ← Output - outputLayerOutput

 14: // Hata geri yayılımı

 15: outputLayerGradient ← error * ActivationDerivative(outputLayerOutput)

 16: hiddenLayerGradient ← (weights.outputLayer^T * outputLayerGradient) *

 ActivationDerivative(hiddenLayerOutput)

 17: // Ağırlık güncelleme

 18: mOutput ← beta1 * mOutput + (1 - beta1) * outputLayerGradient

 19: vOutput ← beta2 * vOutput + (1 - beta2) * outputLayerGradient^2

 20: mHidden ← beta1 * mHidden + (1 - beta1) * hiddenLayerGradient

 21: vHidden ← beta2 * vHidden + (1 - beta2) * hiddenLayerGradient^2

 22: mOutputHat ← mOutput / (1 - beta1^t)

 23: vOutputHat ← vOutput / (1 - beta2^t)

 24: mHiddenHat ← mHidden / (1 - beta1^t)

 25: vHiddenHat ← vHidden / (1 - beta2^t)

 26: deltaWeightOutput ← -learningRate / sqrt(vOutputHat + epsilon) * mOutputHat

 27: deltaWeightHidden ← -learningRate / sqrt(vHiddenHat + epsilon) * mHiddenHat

 28: weights.outputLayer ← weights.outputLayer + deltaWeightOutput

 29: weights.hiddenLayer ← weights.hiddenLayer + deltaWeightHidden

 30: t ← t + 1

 31: // Eğitim kaybını hesapla

 32: currentLoss ← LossFunction(error)

 33: if currentLoss < bestLoss then

74

 34: bestWeights ← weights

 35: bestLoss ← currentLoss

 36: End if

 37: End for

 38: End for

 39: return bestWeights, bestLoss

End

Adam, Momentum ve RMSprop algoritmalarını birleştiren ve genellikle en iyi

performansı sunan bir optimizasyon yöntemidir. Adam, önceki gradyanların ortalamasını

(momentum) ve RMSprop’taki kare gradient ortalamasını kullanarak hem stabil hem de hızlı

bir güncelleme yapar.

Adam, adaptif öğrenme hızına sahip olan ve her parametre için öğrenme hızını ayrı ayrı

ayarlayan bir optimizasyon tekniğidir. Train.cpp dosyasındaki Adam algoritması, modelin

ağırlıklarını initialWeights olarak başlatarak en iyi ağırlıklar (bestWeights) ile en düşük kayıp

değeri (bestLoss) ilk başta tanımlanır. İlk momentum (mHidden, mOutput) ve ikinci momentum

(vHidden, vOutput) sıfırdan başlatılır, t ise zaman adımı olarak kullanılan bir sayaç olup

başlangıçta sıfırdır.

Eğitim aşaması, belirli bir epoch ve batch sayısınca tekrarlanır. Her epoch kümesinde her

bir batch için ileri ve geri yayılım gerçekleştirilir. İleri yayılım sırasında, model girdileri gizli

katmandan çıkış katmanına doğru ilerleyerek hiddenLayerOutput ve outputLayerOutput

değerlerini oluşturur. Bu değerler, modelin tahmin sonuçları olup, hata hesaplamasında

kullanılır. Modelin tahmini ile gerçek çıkış arasındaki fark error olarak adlandırılır ve modelin

hatasını yansıtır.

Geri yayılım aşamasında, modelin gradyanları hesaplanır. Çıkış katmanındaki gradyan

(outputLayerGradient), hatanın aktivasyon fonksiyonunun türev değeri ile çarpılmasıyla

bulunur. Gizli katmandaki gradyan (hiddenLayerGradient), çıkış katmanından gelen gradyanın

gizli katmandaki aktivasyon türevi ile çarpılması sonucu elde edilir.

Adam algoritması iki ayrı momentum güncellemesi yapar: m ilk momentum olarak

gradyanın hareketli ortalamasını (momentum) ve v ise gradyanın karesinin hareketli

ortalamasını temsil eder. İlk momentum (mOutput ve mHidden), beta1 katsayısı ile güncellenir;

bu katsayı, önceki momentumun mevcut gradientle ne kadar harmanlanacağını belirler. İkinci

momentum (vOutput ve vHidden), beta2 katsayısı kullanılarak güncellenir ve gradyan

karelerinin bir ortalamasını oluşturur.

75

Daha sonra, her iki momentum da kaydırılmış ortalama (bias correction) hesaplanarak

güncellenir. Bu adım, özellikle başlangıçtaki momentumların etkisini azaltarak dengeleme

yapar ve gradyanın doğru bir tahminini sağlar. Bu kaydırılmış ortalama değerler kullanılarak

deltaWeightOutput ve deltaWeightHidden güncellemeleri yapılır. Her iki katman için ağırlıklar,

gradyanın karesine dayalı bir normalizasyon ile öğrenme hızı adaptif hale getirilerek

güncellenir.

Her batch sonrası, modelin currentLoss değeri hesaplanır. Eğer bu kayıp değeri bestLoss

değerinden daha düşükse, en iyi ağırlıklar ve kayıp değeri güncellenir. Bu süreç, en düşük

kayıpla en iyi ağırlıkları elde etmeyi sağlar. Eğitim tamamlandığında, bestWeights ve bestLoss

değeri geri döndürülür.

RMSprop (Root Mean Square Propagation)

RMSprop (Ma et al., 2023) AdaGrad'ı modifiye eden bir algoritmadır. RMSprop,

AdaGrad'da karşılaşılan azalan öğrenme oranları sorununu ele almak için geliştirilmiştir. Bu

optimizasyon tekniği, bireysel parametre öğrenme oranlarını uyarlamalı olarak ayarlamak için

karesel gradyanların çalışan ortalamasını kullanır. RMSprop optimizasyon algoritması için

matematiksel Denklem 17'de sunulmuştur.

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑣𝑡+∈
 ⊙ 𝑔𝑡 (17)

RMSprop optimizasyon algoritmasının matematiksel denklemindeki parametreler aşağıdaki

gibidir: 𝜃𝑡: t adımındaki model parametreleri, 𝑔𝑡: t adımındaki gradyan, η: öğrenme oranı, 𝑣𝑡:

karesel gradyanların üstel ağırlıklı hareketli ortalaması, ∈: sıfıra bölme hatalarını önlemek için

çok küçük bir sayı ve ⊙: eleman bazında çarpma. Bu denklemde her parametre için ayrı bir

öğrenme oranı hesaplanır. Eski gradyanların karelerinin çalışan ortalaması, mevcut gradyanın

karesi ile güncellenir. Bu, öğrenme oranlarını gradyanların büyüklüklerine göre dinamik olarak

ayarlar. Tablo 9’da tez çalışmasında kullanılan RMSProp algoritmasının eğitim aşamasındaki

sözde kodu gösterilmiştir

Tablo 9. Tez çalışmasında kullanılan RMSProp yönteminin eğitim aşamasındaki sözde kodu

Input: numTrain, epochs, learningRate, initialWeights, gamma, epsilon

Output: bestWeights, bestLoss

Begin

 1: weights ← initialWeights

 2: bestWeights ← weights

 3: bestLoss ← ∞

 4: gradSquarePrevHidden ← 0

76

 5: gradSquarePrevOutput ← 0

 6: for epoch ← 1 to epochs do

 7: for batch ← 1 to numTrain do

 8: // İleri yayılım

 9: hiddenLayerOutput ← ActivationFunction(weights.hiddenLayer * Input)

 10: outputLayerOutput ← ActivationFunction(weights.outputLayer * hiddenLayerOutput)

 11: // Hata hesaplama

 12: error ← Output - outputLayerOutput

 13: // Hata geri yayılımı

 14: outputLayerGradient ← error * ActivationDerivative(outputLayerOutput)

 15: hiddenLayerGradient ← (weights.outputLayer^T*outputLayerGradient)*

 ActivationDerivative(hiddenLayerOutput)

 16: // Ağırlık güncelleme (RMSprop)

 17: gradSquarePrevOutput ← gamma * gradSquarePrevOutput + (1 - gamma) * outputLayerGradient^2

 18: gradSquarePrevHidden ← gamma * gradSquarePrevHidden + (1 - gamma) * hiddenLayerGradient^2

 19: deltaWeightOutput ← -learningRate / sqrt(gradSquarePrevOutput + epsilon) *

 outputLayerGradient * hiddenLayerOutput^T

 20: deltaWeightHidden ← -learningRate / sqrt(gradSquarePrevHidden + epsilon) *

 hiddenLayerGradient * Input^T

 21: weights.outputLayer ← weights.outputLayer + deltaWeightOutput

 22: weights.hiddenLayer ← weights.hiddenLayer + deltaWeightHidden

 23: // Eğitim kaybını hesapla

 24: currentLoss ← LossFunction(error)

 25: if currentLoss < bestLoss then

 26: bestWeights ← weights

 27: bestLoss ← currentLoss

 28: End if

 29: End for

 30: End for

 31: return bestWeights, bestLoss

End

RMSProp (Root Mean Square Propagation) algoritması, gradyanın her parametre için

adaptif bir öğrenme oranı ile güncellenmesini sağlayarak optimize eder. Train.cpp dosyasındaki

RMSProp algoritması, modelin ağırlıklarını initialWeights ile başlatarak başlangıçta

bestWeights ve bestLoss değişkenlerini tanımlanır. bestWeights, her adımda en iyi model

ağırlıklarını saklarken bestLoss, en düşük kayıp değeri olarak güncellenir. İlk kare gradyan

ortalamaları (gradSquareHidden ve gradSquareOutput) sıfır olarak tanımlanır.

Eğitim döngüsü, belirli bir epoch sayısı boyunca devam eder. Her epoch, belirli sayıda

batch üzerinde çalışır. İleri yayılım sırasında, modelin girdisi gizli katmandan çıkış katmanına

doğru geçer ve hiddenLayerOutput ve outputLayerOutput hesaplanır. Bu çıktılar modelin

tahmin sonuçlarıdır ve gerçek çıktılarla karşılaştırılarak hata (error) hesaplanır.

Hata geri yayılımı aşamasında, bu hata değeri gradyan hesaplamasında kullanılır. Çıkış

katmanındaki gradyan (outputLayerGradient), modelin hatasının aktivasyon fonksiyonunun

77

türev değeri ile çarpılmasıyla elde edilir. Gizli katman gradyanı (hiddenLayerGradient), çıkış

katmanından gelen gradyan ile gizli katmandaki aktivasyon türevi kullanılarak hesaplanır.

RMSProp algoritmasında, her gradyanın karesi alınır ve hareketli ortalama ile

güncellenir. Kare gradyanların ortalaması (gradSquareOutput ve gradSquareHidden), gamma

(γ) katsayısı ile eski ortalama ve (1-gamma) katsayısı ile yeni gradyan karesi harmanlanarak

hesaplanır. Bu hareketli ortalama, öğrenme hızının parametreler üstündeki etkisini

normalleştirmek için kullanılır. Her bir parametre için adaptif olarak güncellenen bu öğrenme

hızı, gradyanların büyüklüğüne göre öğrenme oranını azaltır ve büyük gradyanların

parametreler üzerindeki etkisini dengeler.

Son olarak, deltaWeightOutput ve deltaWeightHidden ağırlık güncellemeleri adaptif

olarak öğrenme hızına göre güncellenir. Bu güncellemeler, RMSProp’un epsilon (ε) sabitini

kullanarak gradyanın karesi üzerindeki bölmeyi stabilize eder ve öğrenme oranının sıfıra

yaklaşmasını engeller. Yeni ağırlıklar, bu güncellemelerle güncellenir ve her batch sonrası

modelin kaybı (currentLoss) hesaplanır. Eğer currentLoss değeri bestLoss değerinden daha

düşükse, bestWeights ve bestLoss güncellenir.

Eğitim süreci sona erdiğinde, bestWeights ve bestLoss döndürülür. RMSProp algoritması,

özellikle gürültülü ve yüksek boyutlu veri setlerinde stabil öğrenme sağlar. Bu adaptif yöntem,

gradyanların büyüklüğüne göre öğrenme hızını dinamik olarak ayarlayarak yakınsamanın daha

dengeli ve hızlı gerçekleşmesini sağlar. Bu sayede, derin öğrenme modellerinde ve karmaşık

ağlarda daha istikrarlı bir performans sergiler.

Adagrad (Adaptive Gradient Algorithm)

AdaGrad, bireysel parametrelerin öğrenme oranlarını son gradyanlarına göre optimize

eder (Z. Cai et al., 2023). Büyük türevlere sahip parametreler öğrenme hızında hızlı bir düşüş

yaşarken, küçük türevlere sahip olanlar daha az önemli ölçüde azalır. Bu, gradyanların geçmiş

karesel değerleri kullanılarak yapılır. Özellikle seyrek veriler veya farklı ölçeklerde özelliklere

sahip veriler için kullanışlıdır. AdaGrad optimizasyon algoritması için matematiksel Denklem

18'de gösterilmektedir.

𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 −
𝜂

√𝐺𝑡,𝑖𝑖+∈
. 𝑔𝑡,𝑖 (18)

AdaGrad optimize edici için matematiksel denklemlerdeki parametreler aşağıdaki gibidir:

𝜃𝑡+1,𝑖: t+1 adımındaki ağırlık parametresi, 𝜃𝑡,𝑖: t adımındaki ağırlık parametresi, η: öğrenme

78

oranı, 𝐺𝑡,𝑖𝑖: t adımındaki i parametresi için önceki gradyanların karelerinin toplamı, 𝑔𝑡,𝑖: t

adımındaki i parametresi için gradyan değeri ve ∈: sıfıra bölme hatalarını önlemek için çok

küçük bir değer. AdaGrad denkleminde her parametre için ayrı bir öğrenme oranı hesaplanır.

Geçmiş gradyanların karelerinin toplamı mevcut gradyan ile güncellenir. Böylece, öğrenme

oranı seyrek güncellenen parametreler için artarken, sık güncellenenler için azalır. Tablo 10’da

çalışmada yer verilen AdaGrad algoritmasının eğitim aşamasındaki sözde kodu gösterilmiştir.

Tablo 10. Çalışmada yer verilen AdaGrad algoritmasının eğitim aşamasındaki sözde kodu

Input: numTrain, epochs, learningRate, initialWeights, epsilon

Output: bestWeights, bestLoss

Begin

 1: weights ← initialWeights

 2: bestWeights ← weights

 3: bestLoss ← ∞

 4: gradSquareSumHidden ← 0

 5: gradSquareSumOutput ← 0

 6: for epoch ← 1 to epochs do

 7: for batch ← 1 to numTrain do

 8: // İleri yayılım

 9: hiddenLayerOutput ← ActivationFunction(weights.hiddenLayer * Input)

 10: outputLayerOutput ← ActivationFunction(weights.outputLayer * hiddenLayerOutput)

 11: // Hata hesaplama

 12: error ← Output - outputLayerOutput

 13: // Hata geri yayılımı

 14: outputLayerGradient ← error * ActivationDerivative(outputLayerOutput)

 15: hiddenLayerGradient ← (weights.outputLayer^T * outputLayerGradient) *

 ActivationDerivative(hiddenLayerOutput)

 16: // Ağırlık güncelleme (Adagrad)

 17: gradSquareSumOutput ← gradSquareSumOutput + outputLayerGradient^2

 18: gradSquareSumHidden ← gradSquareSumHidden + hiddenLayerGradient^2

 19: deltaWeightOutput ← -learningRate / sqrt(gradSquareSumOutput + epsilon) *

 outputLayerGradient * hiddenLayerOutput^T

 20: deltaWeightHidden ← -learningRate / sqrt(gradSquareSumHidden + epsilon) *

 hiddenLayerGradient * Input^T

 21: weights.outputLayer ← weights.outputLayer + deltaWeightOutput

 22: weights.hiddenLayer ← weights.hiddenLayer + deltaWeightHidden

 23: // Eğitim kaybını hesapla

 24: currentLoss ← LossFunction(error)

 25: if currentLoss < bestLoss then

 26: bestWeights ← weights

 27: bestLoss ← currentLoss

 28: End if

 29: End for

 30: End for

 31: return bestWeights, bestLoss

End

79

Adagrad (Adaptive Gradient Algorithm) algoritması, parametrelerin geçmişteki tüm

gradyanlarının karelerini toplayarak, her parametre için adaptif bir öğrenme oranı belirler.

Train.cpp dosyasındaki Adagrad algoritması, modelin başlangıç ağırlıklarını initialWeights ile

başlatır ve en iyi ağırlıklar (bestWeights) ile en düşük kayıp değeri (bestLoss) ilk başta

tanımlanır. İlk kare gradyan toplamları (gradSquareSumHidden ve gradSquareSumOutput)

sıfır olarak başlatılır.

Eğitim aşaması, belirli bir epoch ve batch sayısınca tekrarlanır. Her epoch kapsamında

her bir batch için ileri ve geri yayılım işlemleri gerçekleştirilir. İleri yayılım sırasında, model

girdisi gizli katmandan çıkış katmanına doğru geçerek hiddenLayerOutput ve

outputLayerOutput değerlerini hesaplar. Modelin tahmin ettiği outputLayerOutput, gerçek çıkış

(Output) ile karşılaştırılarak hata (error) hesaplanır.

Hata geri yayılım aşamasında, bu hata gradient hesaplaması için kullanılır. Çıkış

katmanındaki gradyan (outputLayerGradient), hatanın aktivasyon fonksiyonunun türev değeri

ile çarpılmasıyla elde edilirken, gizli katmandaki gradyan (hiddenLayerGradient), çıkış

katmanından gelen gradyan ile gizli katmandaki aktivasyon türevinin çarpılmasıyla hesaplanır.

Adagrad algoritmasının karakteristik özelliği, her bir gradyanın karesinin zamanla

birikerek toplanmasıdır. gradSquareSumOutput ve gradSquareSumHidden değişkenlerinde,

her bir gradyanın karesi, toplam kare gradyanların hareketli bir ortalamasını oluşturacak şekilde

birikir. Bu toplam, her parametreye özel adaptif bir öğrenme oranı oluşturmak için kullanılır.

Ağırlık güncelleme adımında, her bir parametre, öğrenme hızının gradyanın karelerinin

toplamının karekökü ile bölünmesiyle güncellenir. Böylece, sık güncellenen parametrelerin

öğrenme oranı azalırken nadiren güncellenen parametrelerin öğrenme oranı daha yüksek kalır.

Epsilon (ε) sabiti, karekök işlemi sırasında sıfır bölme hatasını engellemek için eklenir.

Her batch sonrası, modelin currentLoss değeri hesaplanır. Eğer bu kayıp değeri, bestLoss

değerinden daha düşükse, en iyi ağırlıklar (bestWeights) ve en düşük kayıp değeri (bestLoss)

güncellenir. Bu süreç, modelin eğitimi tamamlanana kadar devam eder ve en iyi ağırlıklar

döndürülür. Bu tez çalışmasında AdaGrad yönteminin memristör tabanlı uygulamalarda verimli

bir yöntem olduğu ortaya çıkmıştır.

AdaDelta

AdaDelta, AdaGrad'ın azalan öğrenme oranları sorununu çözmek için geliştirilmiş bir

uyarlamasıdır (Zeiler, 2012). Bu algoritma, sürekli azalan öğrenme oranlarına ve global bir

80

öğrenme oranı seçmeye olan ihtiyacı ortadan kaldırır. AdaDelta, sabit bir pencere boyutunu

korurken önceki tüm gradyanlara eşit önem vererek, geçmiş gradyanlardan oluşan kayan bir

pencere kullanarak karesel gradyanların hareketli ortalamasını hesaplar. AdaDelta

optimizasyon algoritması için matematiksel denklemler Denklem (19), (20), (21), (22) ve

(23)'te gösterilmiştir.

𝑅𝑀𝑆 [𝐸[𝑔2]]𝑡 = √𝐸[𝑔2]𝑡+∈ (19)

𝑅𝑀𝑆 [∆𝑥2]𝑡−1 = √𝐸[∆𝑥2]𝑡−1+∈ (20)

𝑢𝑝𝑑𝑎𝑡𝑒 = −
𝑅𝑀𝑆 [∆𝑥]𝑡−1

𝑅𝑀𝑆 [𝐸[𝑔2]]𝑡
𝑔𝑡 (21)

∆𝑥𝑡 = 𝜌∆𝑥𝑡−1 + (1 − 𝜌)𝑢𝑝𝑑𝑎𝑡𝑒2 (22)

𝑥𝑡+1 = 𝑥𝑡 + 𝑢𝑝𝑑𝑎𝑡𝑒 (23)

Tablo 11’de çalışmada kullanılan AdaDelta algoritmasının eğitim aşamasındaki sözde kodu

gösterilmiştir.

Tablo 11. Çalışmada kullanılan AdaDelta algoritmasının eğitim aşamasındaki sözde kodu

Input: numTrain, epochs, initialWeights, gamma, epsilon

Output: bestWeights, bestLoss

Begin

 1: weights ← initialWeights

 2: bestWeights ← weights

 3: bestLoss ← ∞

 4: gradSquarePrevHidden ← 0

 5: gradSquarePrevOutput ← 0

 6: deltaPrevHidden ← 0

 7: deltaPrevOutput ← 0

 8: for epoch ← 1 to epochs do

 9: for batch ← 1 to numTrain do

 10: // İleri yayılım

 11: hiddenLayerOutput ← ActivationFunction(weights.hiddenLayer * Input)

 12: outputLayerOutput ← ActivationFunction(weights.outputLayer * hiddenLayerOutput)

 13: // Hata hesaplama

 14: error ← Output - outputLayerOutput

 15: // Hata geri yayılımı

 16: outputLayerGradient ← error * ActivationDerivative(outputLayerOutput)

 17: hiddenLayerGradient ← (weights.outputLayer^T * outputLayerGradient)

 * ActivationDerivative(hiddenLayerOutput)

 18: // Ağırlık güncelleme (Adadelta)

 19: gradSquarePrevOutput ← gamma * gradSquarePrevOutput + (1 - gamma) * outputLayerGradient^2

 20: gradSquarePrevHidden ← gamma * gradSquarePrevHidden + (1 - gamma) * hiddenLayerGradient^2

 21: deltaWeightOutput ← - sqrt((deltaPrevOutput + epsilon) / (gradSquarePrevOutput + epsilon)) *

 outputLayerGradient * hiddenLayerOutput^T

 22: deltaWeightHidden ← - sqrt((deltaPrevHidden + epsilon) / (gradSquarePrevHidden + epsilon)) *

 hiddenLayerGradient * Input^T

 23: deltaPrevOutput ← gamma * deltaPrevOutput + (1 - gamma) * deltaWeightOutput^2

81

 24: deltaPrevHidden ← gamma * deltaPrevHidden + (1 - gamma) * deltaWeightHidden^2

 25: weights.outputLayer ← weights.outputLayer + deltaWeightOutput

 26: weights.hiddenLayer ← weights.hiddenLayer + deltaWeightHidden

 27: // Eğitim kaybını hesapla

 28: currentLoss ← LossFunction(error)

 29: if currentLoss < bestLoss then

 30: bestWeights ← weights

 31: bestLoss ← currentLoss

 32: End if

 33: End for

 34: End for

 35: return bestWeights, bestLoss

End

Tablo 11’de gösterilen sözde kodda görüldüğü gibi, Adadelta optimizasyon algoritmasını

kullanarak bir modelin ağırlıklarını günceller ve en iyi ağırlık değerlerini kaydeder.

Tez çalışması uygulama kısmında eğitim süreci başlamadan önce, weights yani modelin

ağırlıkları, başlangıç değerleri olan initialWeights ile ayarlanır. bestWeights değişkeni de bu

başlangıç ağırlıklarıyla başlatılır ve ilerleyen adımlarda en iyi ağırlıklar burada saklanır.

bestLoss başlangıçta sonsuz (∞) olarak tanımlanır, böylece ilk hesaplanan kayıptan küçük her

değer, bestLoss olarak güncellenir. Ayrıca, Adadelta algoritmasının bileşenleri olan

gradSquarePrevHidden, gradSquarePrevOutput, deltaPrevHidden ve deltaPrevOutput

sıfırdan başlatılır. Bu değişkenler, hareketli ortalamalar için önceki adımların bilgisini saklar.

for döngüsü ile epoch sayısı kadar eğitim iterasyonu yapılır. Her epoch, tüm eğitim verileri

üzerinden bir geçişi temsil eder. Her epoch içinde, for döngüsüyle her bir batch (veri kümesinin

bir alt kümesi) üzerinde işlem yapılır. İleri yayılım (forward-propagation) aşamasında, modelin

tahminleri hesaplanır. İlk olarak, giriş verisi (input) ile gizli katmanın (hidden layer) ağırlıkları

çarpılır ve hiddenLayerOutput elde edilir. Daha sonra, hiddenLayerOutput ile çıktı katmanının

(output layer) ağırlıkları çarpılır ve outputLayerOutput hesaplanır. Bu işlemler, aktivasyon

fonksiyonları kullanılarak gerçekleştirilir. Çıkış (Output) ve outputLayerOutput arasındaki fark

error olarak tanımlanır. Bu, modelin tahmin ettiği değer ile gerçek değer arasındaki farktır.

Hata geri yayılımı (Backward Propagation) ile outputLayerGradient ve hiddenLayerGradient

hesaplanır. outputLayerGradient, çıkış katmanındaki hatanın gradyanını temsil eder.

hiddenLayerGradient ise, çıkış katmanından geri yayılmak üzere gizli katmandaki hatanın

gradyanını içerir. Aktivasyon fonksiyonunun türevini kullanarak bu gradyanlar hesaplanır.

Adadelta optimizasyon algoritması, her iki katmanın gradyanlarını kullanarak ağırlıkları

günceller. gradSquarePrevOutput ve gradSquarePrevHidden, önceki kare gradyan

ortalamalarının ağırlıklı toplamı olarak güncellenir. gamma faktörü ile eski değeri, (1 - gamma)

82

faktörü ile de yeni gradyan karesi eklenir. Böylece, her yeni batch’te ağırlıklandırılmış bir

hareketli ortalama oluşturulur. deltaWeightOutput ve deltaWeightHidden, ağırlık değişimi için

kullanılan güncellemeleri içerir. Bu değerler, Adadelta’nın adaptif öğrenme hızı kullanılarak

hesaplanır. Güncelleme oranı, önceki kare ağırlık değişimleri ve gradyan ortalamaları

arasındaki oranla belirlenir. Bu oran, her bir gradyan için normalize edilmiş bir değer sağlar ve

güncelleme miktarının büyük veya küçük olmasını önler. deltaPrevOutput ve deltaPrevHidden,

yeni ağırlık değişimi karelerini saklar ve güncellenen değerlerle hareketli ortalamalarını

sürdürür. weights.outputLayer ve weights.hiddenLayer, Adadelta algoritmasıyla elde edilen

güncelleme değerleri (deltaWeightOutput ve deltaWeightHidden) kullanılarak güncellenir.

currentLoss, LossFunction ile error kullanılarak hesaplanır ve bu, modelin mevcut batch

üzerindeki performansını gösterir. Bu kayıp değeri, modelin doğruluğunu değerlendirmek için

kullanılır. Eğer currentLoss, bestLoss değerinden küçükse, bestWeights ve bestLoss

güncellenir. Bu işlem, modelin en iyi ağırlık ve en düşük kayıp değerlerinin kaydedilmesini

sağlar. Eğitim döngüsünün tamamlanmasının ardından, modelin en iyi ağırlıkları (bestWeights)

ve en düşük kayıp değeri (bestLoss) geri döndürülür.

Tez çalışmasında kullanılan, Adadelta algoritmasının eğitim sürecinde adaptif

güncellemeleri nasıl yaptığını ve en iyi model parametrelerini nasıl kaydettiğini özetlemektedir.

Nadam (Nesterov-Accelerated Adaptive Moment Estimation)

Nadam, Adam'ın güncelleme kuralına Nesterov momentumunu ekler. Bu yöntem,

momentum yönünde gelecekteki bir konumu dikkate alarak gradyanı hesaplar. Böylece

yakınsama hızını artırmayı ve model kalitesini iyileştirmeyi amaçlar. Nadam optimizasyon

algoritması için matematiksel denklemler Denklem (24), (25), (26), (27) ve (28)'de

gösterilmiştir.

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (24)

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 (25)

𝑚̂𝑡 =
𝑚𝑡

1−𝛽2
𝑡 (26)

𝑣𝑡 =
𝑣𝑡

1−𝛽2
𝑡 (27)

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑣𝑡+∈
(𝛽1𝑚̂𝑡 + (1 − 𝛽1)𝑔𝑡 (28)

Nadam optimizasyon algoritmasının matematiksel denklemlerindeki parametreler

aşağıdaki gibidir: 𝑚𝑡 ve 𝑣𝑡 : sırasıyla 𝑡 adımdaki birinci ve ikinci momentlerin tahminleri. 𝑔𝑡:

gradyan vektörü. 𝛽1 ve 𝛽2 : hareketli ortalamalar için üstel bozunma oranları. η: öğrenme oranı.

83

𝑚̂𝑡 ve 𝑣𝑡 : birinci ve ikinci momentlerin düzeltilmiş tahminleri. ∈: sıfıra bölme hatalarını

önlemek için kullanılan çok küçük bir sayı. Nadam, önceki momentum kavramını geliştirmek

için Nesterov Momentum ve Adam algoritmalarını birleştirir ve böylece yerel minimumlara

takılma riskini azaltır. Tablo 12’de çalışmada yer verilen Nadam algoritmasının eğitim

aşamasındaki sözde kodu gösterilmiştir.

Tablo 12. Çalışmada kullanılan Nadam algoritmasının eğitim aşamasındaki sözde kodu

Input: numTrain, epochs, learningRate, initialWeights, beta1, beta2, epsilon

Output: bestWeights, bestLoss

Begin

 1: weights ← initialWeights

 2: bestWeights ← weights

 3: bestLoss ← ∞

 4: mHidden ← 0

 5: vHidden ← 0

 6: mOutput ← 0

 7: vOutput ← 0

 8: t ← 0

 9: for epoch ← 1 to epochs do

 10: for batch ← 1 to numTrain do

 11: t ← t + 1

 12: // İleri yayılım

 13: hiddenLayerOutput ← ActivationFunction(weights.hiddenLayer * Input)

 14: outputLayerOutput ← ActivationFunction(weights.outputLayer * hiddenLayerOutput)

 15: // Hata hesaplama

 16: error ← Output - outputLayerOutput

 17: // Hata geri yayılımı

 18: outputLayerGradient ← error * ActivationDerivative(outputLayerOutput)

 19: hiddenLayerGradient ← (weights.outputLayer^T * outputLayerGradient) *

 ActivationDerivative(hiddenLayerOutput)

 20: // Ağırlık güncelleme (Nadam)

 21: mOutput ← beta1 * mOutput + (1 - beta1) * outputLayerGradient

 22: vOutput ← beta2 * vOutput + (1 - beta2) * outputLayerGradient^2

 23: mHidden ← beta1 * mHidden + (1 - beta1) * hiddenLayerGradient

 24: vHidden ← beta2 * vHidden + (1 - beta2) * hiddenLayerGradient^2

 25: mOutputHat ← mOutput / (1 - beta1^t)

 26: vOutputHat ← vOutput / (1 - beta2^t)

 27: mHiddenHat ← mHidden / (1 - beta1^t)

 28: vHiddenHat ← vHidden / (1 - beta2^t)

 29: deltaWeightOutput ← -learningRate * (beta1 * mOutputHat + (1 - beta1) * outputLayerGradient) /

 (sqrt(vOutputHat) + epsilon) * hiddenLayerOutput^T

 30: deltaWeightHidden ← -learningRate * (beta1 * mHiddenHat + (1 - beta1) *

 hiddenLayerGradient) / (sqrt(vHiddenHat) + epsilon) * Input^T

 31: weights.outputLayer ← weights.outputLayer + deltaWeightOutput

 32: weights.hiddenLayer ← weights.hiddenLayer + deltaWeightHidden

 33: // Eğitim kaybını hesapla

 34: currentLoss ← LossFunction(error)

 35: if currentLoss < bestLoss then

 36: bestWeights ← weights

84

 37: bestLoss ← currentLoss

 38: End if

 39: End for

 40: End for

 41: return bestWeights, bestLoss

End

Nadam optimizasyon yöntemi, Adam algoritmasının bir uzantısı olup, adaptif öğrenme

hızını Nesterov momentumu ile birleştirir. Bu yöntemde, gradientlerin momentum etkisi altında

hızlandırılması sağlanırken, her adımda daha iyi sonuç almak için Nesterov momentumu

kullanılır. Uygulamada ağın eğitiminin gerçekleştirildiği Train.cpp dosyasındaki Nadam

algoritmasında öncelikle modelin ağırlıkları initialWeights ile başlatılır ve en iyi ağırlıklar

bestWeights olarak kaydedilir. En iyi kayıp değeri başlangıçta ∞ olarak ayarlanır, böylece

eğitim boyunca ilk güncellenen kayıp değeri en düşük olarak kabul edilir ve kaydedilir.

Momentum ve ikinci momentum olarak kullanılan mHidden, vHidden, mOutput ve vOutput

sıfırdan başlatılır. t değişkeni ise zaman adımını takip etmek için sıfırdan başlatılır.

Eğitim sürecinde, belirlenen epoch sayısı boyunca model güncellenir. Her epoch içinde

tüm batch verileri işlenir. İleri yayılım sırasında modelin giriş katmanından başlayarak

hesaplamalar yapılır. Giriş verisi gizli katmanın ağırlıklarıyla çarpılarak hiddenLayerOutput

hesaplanır, ardından bu değer çıkış katmanına aktarılır ve modelin tahmini olan

outputLayerOutput elde edilir. Tahmin değeri ile gerçek değer arasındaki fark error olarak

hesaplanır, bu hata değeri modelin o anki performansını yansıtır.

Geri yayılım sırasında, hatanın her katmana geri iletilmesiyle gradyanlar hesaplanır. Çıkış

katmanı için outputLayerGradient, hata ile aktivasyon fonksiyonunun türev değeri çarpılarak

elde edilir. Gizli katmandaki gradyan ise, çıkış katmanından geriye doğru hesaplanan

gradyanın, gizli katmandaki aktivasyon türevi ile çarpılmasıyla bulunur. Bu gradyanlar, ağırlık

güncellemeleri için kullanılacaktır.

Nadam optimizasyonunda, önce ilk momentum ve ikinci momentum değerleri

güncellenir. mOutput ve mHidden, mevcut gradyanlarla güncellenerek ilk momentum değerini

oluşturur ve vOutput ile vHidden da gradyanların kareleri üzerinden ikinci momentum olarak

güncellenir. Momentum terimleri kaydırılmış (bias-corrected) ortalamalar olarak hesaplanır;

böylece algoritma başlangıçtaki dengesizliklerin etkisinden kurtulur ve daha hassas sonuçlar

elde edilir.

Ağırlık güncellemeleri yapılırken, Nesterov momentumu ile gelecekteki bir adımda

hareket göz önünde bulundurulur. deltaWeightOutput ve deltaWeightHidden, kaydırılmış

ortalama ve karekök ile normalize edilen gradyanlar kullanılarak hesaplanır. Bu güncellemeler

85

adaptif öğrenme hızını baz alarak modelin daha verimli bir şekilde en düşük kayba ulaşmasını

sağlar.

Son olarak, modelin performansı her batch sonrasında hesaplanır. Eğer modelin ilgili

batch üzerindeki kayıp değeri en düşük değer olarak güncellenirse, ağırlıklar bestWeights

olarak saklanır. Eğitim süreci tamamlandığında, modelin en iyi ağırlık ve kayıp değerleri

döndürülür. Nadam yöntemi, gradyanların hareketlerini gelecekteki adımlar üzerinden optimize

ederek daha hızlı ve kararlı bir öğrenme sağlar, bu da modelin minimum kayba daha etkin bir

biçimde ulaşmasına yardımcı olur.

Momentum

Momentum yöntemi (Ruder, 2016) fiziksel momentum kavramına benzemektedir. Amaç,

önceki adımların hızını bir momentum terimi ile hesaba katarak optimizasyon yönünde daha

hızlı hareket sağlamaktır. Bu yaklaşımla, önceki gradyanlardan elde edilen veriler bir

“momentum” etkisiyle korunarak her seferinde daha hızlı güncelleme yapılmasına olanak

sağlanır. Momentum optimizasyon algoritması için matematiksel denklemler Denklem (29) ve

(30)'te gösterilmektedir.

𝑣𝑡+1 = 𝛽1𝑣𝑡 + 𝛼𝑔𝑡 (29)

𝜃𝑡+1 = 𝛽1𝑣𝑡 + 𝛼𝑔𝑡 (30)

Momentum optimizasyon algoritmasının matematiksel denklemlerindeki parametreler

aşağıdaki gibidir. 𝑣𝑡+1: momentumu temsil eder ve geçmiş gradyanların ağırlıklı bir

ortalamasıdır. 𝜃𝑡: t adımındaki model parametreleri. 𝑔𝑡: t adımındaki gradyan. 𝛼: öğrenme

oranı. 𝛽1: momentumu kontrol eden bir hiperparametredir. Tablo 13’te çalışmada yer verilen

momentum algoritmasının eğitim aşamasındaki sözde kodu gösterilmiştir.

Tablo 13. Çalışmada kullanılan Momentum algoritmasının eğitim aşamasındaki sözde kodu

Input: numTrain, epochs, learningRate, initialWeights, gamma

Output: bestWeights, bestLoss

Begin

 1: weights ← initialWeights

 2: bestWeights ← weights

 3: bestLoss ← ∞

 4: velocityHidden ← 0

 5: velocityOutput ← 0

 6: for epoch ← 1 to epochs do

 7: for batch ← 1 to numTrain do

 8: // İleri yayılım

 9: hiddenLayerOutput ← ActivationFunction(weights.hiddenLayer * Input)

 10: outputLayerOutput ← ActivationFunction(weights.outputLayer * hiddenLayerOutput)

86

 11: // Hata hesaplama

 12: error ← Output - outputLayerOutput

 13: // Hata geri yayılımı

 14: outputLayerGradient ← error * ActivationDerivative(outputLayerOutput)

 15: hiddenLayerGradient ← (weights.outputLayer^T * outputLayerGradient) *

 ActivationDerivative(hiddenLayerOutput)

 16: // Ağırlık güncelleme (Momentum)

 17: velocityOutput ← gamma * velocityOutput - learningRate * outputLayerGradient *

 hiddenLayerOutput^T

 18: velocityHidden ← gamma * velocityHidden - learningRate * hiddenLayerGradient * Input^T

 19: weights.outputLayer ← weights.outputLayer + velocityOutput

 20: weights.hiddenLayer ← weights.hiddenLayer + velocityHidden

 21: // Eğitim kaybını hesapla

 22: currentLoss ← LossFunction(error)

 23: if currentLoss < bestLoss then

 24: bestWeights ← weights

 25: bestLoss ← currentLoss

 26: End if

 27: End for

 28: End for

 29: return bestWeights, bestLoss

End

Momentum algoritması, SGD’ye göre daha kararlı bir güncelleme yapmayı amaçlar.

Momentum, bir yöne doğru hızlanmayı sağlar ve bu sayede minimum noktaya daha çabuk ve

stabil bir biçimde ulaşılır. SGD’de, gradyan değeri her örneğe göre dalgalandığından

ağırlıkların güncellenmesi de gürültülüdür. Momentum, önceki adımların ortalamasını alarak

daha düzgün bir güncelleme yapılmasını sağlar. Sözde kodda önce ağırlıklar ve hız vektörleri

sıfırdan başlatılır. Her epoch ve batch için ileri yayılım ve hata hesaplaması yapılır, ardından

hata geri yayılımıyla gradyan değerleri bulunur. Momentum aşamasında, önceki gradyan

adımları da dikkate alınarak ağırlıkların güncellenmesi sağlanır. Bu sayede yerel minimumlara

takılmadan, daha hızlı bir yakınsama elde edilir. Momentum katsayısı (gamma), önceki gradyan

adımlarının ağırlıklarını belirler; bu katsayı daha büyük olduğunda güncellemeler daha stabil

hale gelir. Eğer mevcut kayıp değeri, daha önceki en iyi kayıp değerinden düşükse, bu değer en

iyi sonuç olarak saklanır. Aşağıda uygulamada kullanılan Momentum optimizasyon yöntemi

detaylı bir biçimde açıklanmıştır.

Başlangıç değerleri eğitim başlamadan önce, weights değişkeni modelin başlangıç ağırlık

değerleri olan initialWeights ile başlatılır. bestWeights, başlangıçta weights olarak ayarlanır ve

süreç boyunca en iyi ağırlık değerlerini kaydeder. bestLoss ise ∞ (sonsuz) olarak belirlenir,

böylece elde edilen ilk kayıp değeri bestLoss’dan daha düşük olacaktır ve en iyi kayıp değeri

olarak güncellenir. Momentum yöntemi için ayrıca velocityHidden ve velocityOutput

87

değişkenleri sıfırdan başlatılır; bu değişkenler, ağırlık güncellemelerinin hızını temsil eder ve

momentum etkisini içerir. Epoch döngüsü ile belirlenen epochs sayısı kadar çalışır ve her

epoch, tüm eğitim çıktıları üzerinden bir tam geçişi ifade eder. Batch döngüsü her epoch içinde,

batch döngüsü ile her bir batch üzerinde eğitim işlemi yapılır. Model her batch’te güncellenir

ve böylece gradyanlar daha sık bir şekilde güncellemeye katkı sağlar. İleri Yayılım (Forward

Propagation), modelin giriş katmanından çıkış katmanına kadar veri akışı gerçekleşir. Giriş

verisi, gizli katmanın ağırlıkları ile çarpılarak hiddenLayerOutput elde edilir. Ardından,

hiddenLayerOutput çıkış katmanının ağırlıklarıyla çarpılır ve outputLayerOutput hesaplanır.

Bu işlemde, aktivasyon fonksiyonu kullanılarak katmanların çıktıları hesaplanır. Hata

hesaplama ile çıkış (Output) ile modelin tahmini (outputLayerOutput) arasındaki fark error

olarak hesaplanır. Bu hata değeri, modelin o anki batch’te ne kadar sapma gösterdiğini ifade

eder. Hata Geri Yayılımı (Backward Propagation), modeldeki hatalar, katmanlarda geriye

doğru iletilir. Çıkış katmanı için outputLayerGradient, hata (error) ile aktivasyon

fonksiyonunun türev değerinin çarpımıyla hesaplanır. Gizli katman için hiddenLayerGradient,

çıkış katmanından geri yayılım ile elde edilen gradyanın, gizli katman aktivasyonunun türevi

ile çarpılması sonucu hesaplanır.

Momentum yöntemi kullanılarak güncellemeler, önceki adımlarda hesaplanan gradyan

bilgisinin bir kısmı korunarak velocityHidden ve velocityOutput güncellemeleri yapılır. Bu

güncellemeler, gamma faktörüyle önceki velocity değerini çarparak momentum etkisini sağlar.

learningRate ile çarpılan güncel gradient ise eklenir. Böylece velocity, güncel gradientin

hareketini yumuşatır ve geçmiş gradientlerin etkisini de barındırır. Ağırlıkların güncellenmesi,

elde edilen velocityOutput ve velocityHidden değerleri, weights.outputLayer ve

weights.hiddenLayer ağırlıklarına eklenerek ağırlıklar güncellenir. Bu işlem, modelin mevcut

batch üzerindeki gradyan yönünde ilerlemesini sağlar, ancak momentum yöntemi sayesinde bu

hareket daha kararlı ve istikrarlıdır. Eğitim kaybının hesaplanması (LossFunction), error

kullanılarak currentLoss hesaplanır. Bu değer, modelin mevcut batch üzerindeki kayıp

miktarını gösterir ve modelin o anki performansını değerlendirir. En iyi ağırlık ve kayıp

güncellemesinde eğer currentLoss, bestLoss değerinden düşükse, bestWeights ve bestLoss

güncellenir. Bu, modelin şimdiye kadarki en iyi performans gösterdiği ağırlıkların ve kayıp

değerinin saklanmasını sağlar. Sonuç olarak eğitim sürecinin sonunda, bestWeights ve bestLoss

değerleri döndürülür. Bu değerler, modelin en iyi performansı gösterdiği ağırlıkları ve en düşük

kaybı içerir.

Momentum yöntemi, modelin minimuma daha süratli ve daha kararlı bir biçimde

ulaşmasına yardımcı olur. Ağırlık güncellemelerinde, gradientlerin geçici dalgalanmalarına

88

karşı bir dengeleme sağlar ve geçmişteki gradyan hareketlerinin etkisiyle güncellemeler yapılır.

Bu sayede, model yerel minimumlardan kaçınarak daha stabil bir optimizasyon süreci

gerçekleştirir.

Adamax

Adam'ın bir varyantı olarak geliştirilen AdaMax, sonsuzluk normunu kullanarak

yakınsama kararlılığını iyileştirmeyi amaçlamaktadır (Long et al., 2023). Bu yaklaşımda,

gradyanların üstel hareketli ortalamalarının L-sonsuzluk normu hesaplanır ve Adam

algoritmasındaki gradyanın sonsuzluk normu yerine kullanılır. AdaMax optimizasyon

algoritması için matematiksel denklemler Denklem (19), (20) ve (21)'de gösterilmiştir.

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (31)

𝑢𝑡 = 𝑚𝑎𝑥(𝛽2𝑢𝑡−1,‖𝑔𝑡‖∞ (32)

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

1−𝛽1
𝑡

𝑚𝑡

𝑢𝑡+∈
 (33)

AdaMax optimizasyon algoritmasının matematiksel denklemlerindeki parametreler

aşağıdaki gibidir. 𝜃𝑡: t adımındaki model parametreleri. 𝑔𝑡: t adımındaki gradyan. η: öğrenme

oranı. 𝛽1 ve 𝛽2 hareketli ortalamalar için üstel bozunma oranlarını temsil eden iki parametre.

𝑚𝑡: t adımındaki ilk moment tahmini. 𝑢𝑡: t adımdaki ilk moment tahmini ve sonsuzluk

normundan (maksimum mutlak değer) seçilen maksimum değer. ∈: sıfıra bölme hatalarını

önlemek için kullanılan çok küçük bir sayı. AdaMax, Adam optimizasyon algoritmasına benzer

şekilde ikinci moment yerine sonsuzluk normunu kullanarak daha istikrarlı bir performans

sağlamayı amaçlamaktadır. Bu durumun sonucu olarak, özellikle derin ağlarda daha iyi

sonuçların alınmasını sağlayabilir. Tablo 14’te Adamax algoritmasının eğitim aşamasındaki

sözde kodu gösterilmiştir.

Tablo 14. Adamax algoritmasının eğitim aşamasındaki sözde kodu

Input: numTrain, epochs, learningRate, initialWeights, beta1, beta2, epsilon

Output: bestWeights, bestLoss

Begin

 1: weights ← initialWeights

 2: bestWeights ← weights

 3: bestLoss ← ∞

 4: mHidden ← 0

 5: uHidden ← 0

 6: mOutput ← 0

 7: uOutput ← 0

 8: t ← 0

 9: for epoch ← 1 to epochs do

89

 10: for batch ← 1 to numTrain do

 11: t ← t + 1

 12: // İleri yayılım

 13: hiddenLayerOutput ← ActivationFunction(weights.hiddenLayer * Input)

 14: outputLayerOutput ← ActivationFunction(weights.outputLayer * hiddenLayerOutput)

 15: // Hata hesaplama

 16: error ← Output - outputLayerOutput

 17: // Hata geri yayılımı

 18: outputLayerGradient ← error * ActivationDerivative(outputLayerOutput)

 19: hiddenLayerGradient ← (weights.outputLayer^T * outputLayerGradient) *

 ActivationDerivative(hiddenLayerOutput)

 20: // Ağırlık güncelleme (Adamax)

 21: mOutput ← beta1 * mOutput + (1 - beta1) * outputLayerGradient

 22: uOutput ← max(beta2 * uOutput, |outputLayerGradient|)

 23: mHidden ← beta1 * mHidden + (1 - beta1) * hiddenLayerGradient

 24: uHidden ← max(beta2 * uHidden, |hiddenLayerGradient|)

 25: mOutputHat ← mOutput / (1 - beta1^t)

 26: mHiddenHat ← mHidden / (1 - beta1^t)

 27: deltaWeightOutput ← -learningRate * mOutputHat / (uOutput + epsilon) * hiddenLayerOutput^T

 28: deltaWeightHidden ← -learningRate * mHiddenHat / (uHidden + epsilon) * Input^T

 29: weights.outputLayer ← weights.outputLayer + deltaWeightOutput

 30: weights.hiddenLayer ← weights.hiddenLayer + deltaWeightHidden

 31: // Eğitim kaybını hesapla

 32: currentLoss ← LossFunction(error)

 33: if currentLoss < bestLoss then

 34: bestWeights ← weights

 35: bestLoss ← currentLoss

 36: End if

 37: End for

 38: End for

 39: return bestWeights, bestLoss

End

Adamax, ikinci momentumun (v) güncellenmesinde L∞ normunu kullanır ve bu sayede,

gradyanın büyüklüğünden daha az etkilenir ve daha dengeli güncellemeler sağlar. Adamax

algoritması, öncelikle modelin başlangıç ağırlıkları (initialWeights) ile başlar ve en iyi ağırlıklar

(bestWeights) ile en düşük kayıp (bestLoss) değeri başlangıçta tanımlanır. İlk momentum

(mHidden, mOutput) ve L∞ normuna göre güncellenen ikinci momentum (uHidden, uOutput)

sıfırdan başlatılır. t ise zaman adımı olarak kullanılan bir sayaçtır ve başlangıçta sıfırdır.

Eğitim süreci, belirli bir epoch ve batch sayısınca tekrarlanır. Her epoch dahilinde her bir

batch için ileri yayılım gerçekleştirilir. Modelin girdileri, gizli katmandan çıkış katmanına

doğru ilerleyerek hiddenLayerOutput ve outputLayerOutput değerlerini oluşturur. Bu değerler,

modelin tahmin sonuçları olup, hata hesaplamasında kullanılır. Modelin tahmini ile gerçek çıkış

arasındaki fark error olarak adlandırılır ve modelin hatasını yansıtır.

90

Adamax algoritmasında, ilk momentum (m) ve L∞ normuna göre ikinci momentum (u)

güncellenir. İlk momentum (mOutput ve mHidden), beta1 katsayısı ile mevcut gradientlerin

hareketli ortalaması olarak hesaplanır. İkinci momentum ise uOutput ve uHidden

değişkenlerinde beta2 katsayısı kullanılarak her bir gradientin L∞ normuna göre güncellenir,

yani mevcut gradient ile u’nun beta2 katsayısına göre ölçeklendirilmiş eski değeri arasında

maksimum olanı seçilir. Bu işlem, büyük gradient değişimlerinden daha az etkilenilmesini

sağlar ve daha kararlı bir güncelleme sunar.

İlk momentum, mOutput ve mHidden için kaydırılmış ortalama (bias correction)

hesaplanır; bu sayede başlangıçtaki dengesizliklerin etkisi azaltılmış olur. Daha sonra ağırlık

güncellemeleri yapılır. Çıkış ve gizli katman ağırlıkları için, kaydırılmış ortalamaya göre

güncellenen momentum değerleri (mOutputHat, mHiddenHat) ve L∞ normu (uOutput,

uHidden) ile normalize edilerek deltaWeightOutput ve deltaWeightHidden hesaplanır. Bu

adımlar, adaptif bir öğrenme hızında güncelleme yapılmasını sağlar.

Her batch sonrasında eğitim kaybı hesaplanır ve eğer bu kayıp değeri mevcut en iyi

kayıptan daha düşükse, bestWeights ve bestLoss güncellenir. Bu, modelin eğitim süresince en

düşük kayıpla en iyi ağırlıkları öğrenmesini sağlar.

Eğitim tamamlandığında, modelin en iyi ağırlıkları (bestWeights) ve kayıp değeri

(bestLoss) döndürülür. Adamax algoritması, L∞ normu kullanarak gradyanların

büyüklüğünden daha az etkilenir ve bu sayede büyük gradyan değişimlerine karşı daha

kararlıdır. Bu özellikleriyle, büyük veri kümelerinde Adamax, öğrenme sürecinde daha

istikrarlı bir ilerleme sağlar. Yapılan tez çalışmasında AdaMax optimizasyon yöntemi ile

başarılı sonuçlara ulaşılmıştır.

Şekil 29’de uygulamaya ait eğitim aşaması belirtilmiştir. Bu şekil, tez çalışmasında

kullanılan uygulamaya ait yapay sinir ağının eğitim sürecini adım adım açıklayan bir akış

diyagramıdır.

91

Şekil 29. Uygulamanın eğitim aşaması.

Uygulamanın test aşaması

Bu tez çalışmasında, test kısmının çalışma mantığını açıklamak amacıyla donanım ve

yazılım bölümlerine ait sözde kodlar Tablo 15 ve Tablo 16'da sunulmuştur. Uygulamada

kullanılan MNIST ve CIFAR-10 veri setlerinde eğitim için 50.000 bin örnek, test aşaması için

ise 10.000 örnek resim objesi kullanılmaktadır. Ayrıca uygulamanın sağlamlığını pekiştirmek

amacıyla Fisher’s Iris veri seti uygulamaya dahil edilmiştir. Burada ileri beslemeli bir sinir

ağında (feedforward neural network) test verilerini kullanarak sınıflandırma işlemi

gerçekleştirmektir. Program hem donanım hem de yazılım kısmında çeşitli optimizasyonlar ve

hesaplamalar yaparak enerji sarfiyatını minimum düzeye indirmeyi hedefler. Kodun genel akışı

üç ana bileşenden oluşur: donanım parametrelerinin başlatılması, tüketilen enerjinin

hesaplanması ve ileri besleme işleminin gerçekleştirilmesidir.

92

Donanım aşaması

Tablo 15. Uygulamanın test kısmına ait sözde kod

Input: arrayIH, arrayHO, param, techIH, techHO, testInput, weight1, weight2

Output: correct, sumArrayReadEnergyIH, sumArrayReadEnergyHO

Begin

1: Function InitializeHardwareParameters():

2: // Donanım parametrelerini başlat

3: if arrayIH->cell[0][0] type-> "eNVM" then:

4: readVoltageIH ← arrayIH->cell[0][0].readVoltage

5: readVoltageHO ← arrayHO->cell[0][0].readVoltage

6: readPulseWidthIH ← arrayIH->cell[0][0].readPulseWidth

7: readPulseWidthHO ← arrayHO->cell[0][0].readPulseWidth

9: if arrayIH->cell[0][0] type-> "HybridCell" then:

10: readVoltageIH ← arrayIH->cell[0][0].LSB->readVoltage

11: readVoltageHO ← arrayHO->cell[0][0].LSB->readVoltage

12: readVoltageMSB ← arrayIH->cell[0][0].MSB->readVoltage

13: readPulseWidthIH ← arrayIH->cell[0][0].LSB->readPulseWidth

14: readPulseWidthHO ← arrayHO->cell[0][0].LSB->readPulseWidth

15: readPulseWidthMSB ← arrayIH->cell[0][0].MSB->readPulseWidth

16: End Function

18: Function CalculateEnergyConsumption():

19: sumArrayReadEnergyIH ← 0

20: sumArrayReadEnergyHO ← 0

22: // Giriş Katmanı İçin Enerji Tüketimi Hesapla

23: Her bir gizli katman sinapsı için:

24: if arrayIH->cell type-> "AnalogNVM" then:

25: if arrayIH->cell CMOS then:

26: sumArrayReadEnergyIH += arrayIH->wireGateCapRow * (techIH.vdd ^ 2) * param->nInput

27: else, arrayIH crosbarr then:

28: sumArrayReadEnergyIH += arrayIH->wireCapRow * (techIH.vdd ^ 2) * (param->nInput - 1)

30: if arrayIH->cell type-> "DigitalNVM" then:

31: if arrayIH->cell CMOS then:

32: sumArrayReadEnergyIH += arrayIH->wireGateCapRow * (techIH.vdd ^ 2)

33: else arrayIH crossbar ise:

34: sumArrayReadEnergyIH += arrayIH->wireCapRow * (techIH.vdd ^ 2) * (param->nInput - 1)

36: if arrayIH->cell type-> "HybridCell" then:

37: sumArrayReadEnergyIH += arrayIH->wireGateCapRow * (techIH.vdd ^ 2) * param->nInput

39: // Çıkış Katmanı İçin Enerji Tüketimi Hesapla

40: return sumArrayReadEnergyHO

41: End Function

End

Uygulamaya ait sözde kodun ilk aşamasında, donanım parametrelerinin yapılandırılması

işlemi gerçekleştirilir. Bu işlem, sinir ağı modelinin donanımda çalıştırılmasını sağlayacak

parametrelerin başlatılmasını içerir. InitializeHardwareParameters() fonksiyonu, her hücre

türüne (cell type) göre okuma voltajı (readVoltage) ve okuma darbe genişliği (readPulseWidth)

93

gibi parametreleri ayarlar. Kod, donanım katmanında kullanılan hücre türünü (eNVM,

HybridCell) tespit ederek uygun voltaj ve darbe genişliği değerlerini belirler.

 Eğer hücre tipi "eNVM" (Embedded Non-Volatile Memory) ise, okuma işlemi için

kullanılan voltaj ve darbe genişliği doğrudan arrayIH ve arrayHO nesnelerinden alınır.

 Eğer hücre tipi "HybridCell" ise, hücrelerin alt bileşenleri olan LSB (Least Significant

Bit) ve MSB (Most Significant Bit) için okuma voltajları ve darbe genişlikleri ayrı ayrı

ayarlanır. Bu durum, hibrit hücrelerin farklı özelliklere sahip alt bileşenleri kullanarak

daha esnek bir okuma işlemi gerçekleştirmesini sağlar.

Test aşmasının bu kısmında donanım tabanlı bir YSA modelinin temel gereksinimlerini

oluşturarak enerji tüketimi ve performans hesaplamalarına geçiş yapılmasını sağlar.

Enerji tüketiminin hesaplanmasında CalculateEnergyConsumption() fonksiyonu

kullanılmaktadır. Bu işlem, sinir ağı modelinin ileri besleme aşamasında donanım

kaynaklarının etkin şekilde kullanılması için önemlidir. Enerji tüketimi, sinapslar ve bağlantılar

üzerinden geçen akımın voltaj ve kapasitans (capacitance) değerlerine bağlı olarak hesaplanır.

 Giriş Katmanı Enerji Tüketimi: Kod, AnalogNVM, DigitalNVM ve HybridCell gibi farklı

hücre türlerine göre giriş katmanındaki enerji tüketimini hesaplar. Eğer hücreler CMOS

tabanlı ise, wireGateCapRow değeri ile voltaj (techIH.vdd) karesi çarpılır ve param-

>nInput ile ölçeklenir. Aksi takdirde, çapraz bağlantılı yapılar için wireCapRow değeri

kullanılır.

 Çıkış Katmanı Enerji Tüketimi: Çıkış katmanında da benzer işlemler tekrarlanır, ancak

bu defa arrayHO nesnesi üzerinden enerji tüketimi hesaplanır.

Bu enerji hesaplamaları, sinir ağının çalışırken harcadığı enerjiyi en aza indirmek ve güç verim

seviyesini yükseltmek için kritik bir rol oynar. Sinapsların her biri için yapılan bu hesaplamalar,

toplam enerji tüketimini sumArrayReadEnergyIH ve sumArrayReadEnergyHO

değişkenlerinde saklar.

Yazılım aşaması

Tablo 16. Uygulamanın test kısmına ait sözde kodun devamı (yazılım)

42: Function ForwardPropagationUsingSoftware():

43: correct ← 0

45: Tüm test görüntüleri için:

46: // Gizli katman başlangıç değerlerini sıfırla

47: outN1[i] ← 0

48: a1[i] ← 0

49: // Çıkış katman başlangıç değerlerini sıfırla

94

50: outN2[i] ← 0

51: a2[i] ← 0

53: // Giriş Katmanından Gizli Katmana İleri Besleme

54: if param->useHardwareInTestingFF Then:

55: // Donanımda enerji tüketimi hesapla

56: CalculateEnergyConsumption()

57: else:

58: Her bir gizli katman sinapsı için:

59: // Giriş ile sinaps ağırlığını çarp ve toplama ekle

60: outN1[j] += testInput[i][k] * weight1[k][j]

61: a1[j] ← Activate(outN1[j])

63: // Gizli Katmandan Çıkış Katmanına İleri Besleme

64: Her bir çıkış katman sinapsı için:

65: // Gizli katman aktivasyon çıkışlarını çarp ve toplama ekle

66: outN2[m] += a1[j] * weight2[j][m]

67: a2[m] ← Activate(outN2[m]) // Aktivasyon fonksiyonu uygula

69: if a2 then:

70: correct += 1

71: End Function

73: Function ReportTestResults():

74: accuracy = correct / param->numMnistTestImages

75: totalEnergyConsumption = sumArrayReadEnergyIH + sumArrayReadEnergyHO

76: delay = CalculateDelay()

77: result (accuracy, totalEnergyConsumption, delay)

78: End Function

Yazılım Tabanlı İleri Besleme, sinir ağı modelinin ileri besleme aşaması, yazılım tabanlı

olarak ForwardPropagationUsingSoftware() fonksiyonu ile gerçekleştirilir. Bu işlem, modelin

eğitim sırasında öğrenilen ağırlıkları kullanarak test verilerini sınıflandırmasını sağlar. Bu

aşamada correct değişkeni, doğru tahminlerin sayısını kaydetmek için kullanılır.

 Gizli Katmana İleri Besleme: Giriş katmanındaki sinirler ile gizli katmandaki sinirler

arasında çarpımlar yapılarak gizli katman çıkışları (outN1 ve a1) hesaplanır. Eğer

param>useHardwareInTestingFF parametresi etkinse, ileri besleme sırasında enerji

tüketimi donanımda hesaplanır. Aksi takdirde, yazılım tabanlı ileri besleme algoritması

çalıştırılır.

 Çıkış Katmanına İleri Besleme: Gizli katmandan çıkış katmanına doğru aynı işlem

adımları tekrar edilir. Gizli katman sinirlerinin aktivasyon çıkışları (a1), çıkış katmanı

sinir ağırlıkları ile çarpılır ve çıkış değerleri (outN2 ve a2) elde edilir.

Son aşamada, ReportTestResults() fonksiyonu, sinir ağı modelinin doğruluk oranını

(accuracy), toplam enerji tüketimini (totalEnergyConsumption) ve gecikme süresini (delay)

hesaplar. Bu değerler, modelin donanım tabanlı bir ortamda nasıl performans gösterdiğini ve ne

kadar enerji tükettiğini analiz etmek için önemlidir.

95

 Doğruluk Oranı (Accuracy): Modelin doğru sınıflandırdığı test verilerinin toplam test

verilerine oranı olarak hesaplanır.

 Toplam Enerji Tüketimi (Total Energy Consumption): Giriş ve çıkış katmanlarındaki

enerji tüketimlerinin toplamı olarak hesaplanır.

 Gecikme Süresi (Delay): İleri besleme sürecinde gerçekleşen işlemler için toplam

gecikme süresi hesaplanır.

Sonuçlar, modelin performansını ve güç verimliliğini değerlendirerek daha verimli donanım ve

yazılım kombinasyonları tasarlamak için kullanılır. Bu raporlanan değerler, donanım tabanlı

sinir ağları için güç verimliliği optimizasyonu ve performans artırımı açısından önemli bir

referans sağlar.

Şekil 30’de uygulamaya ait test aşaması gösterilmiştir. Bu şekil, tez çalışmasında

kullanılan uygulamaya ait yapay sinir ağının test sürecini adım adım açıklayan bir akış

diyagramıdır.

Şekil 30. Uygulamanın test aşaması.

96

Test aşaması, yapay sinir ağının eğitim sırasında öğrendiği bilgilerin yeni, daha önce

görülmemiş veriler üzerinde değerlendirilmesi sürecidir. Bu aşamada, ağın performansını

ölçmek ve genelleme yeteneğini değerlendirmek amaçlanır. Test verileri, eğitim sırasında

kullanılan veri setinden farklıdır ve aynı ön işleme adımlarından geçirilmiştir. Ağ, test verilerini

ileri yayılım (forward propagation) ile işler ve bu veriler için tahminler üretir.

Elde edilen tahminler, test veri setindeki gerçek etiketlerle karşılaştırılır. Performans,

doğruluk (accuracy), hataların ortalaması (MSE, MAE gibi) veya F1 skor gibi uygun metrikler

ile değerlendirilir. Bu aşamada ağın ağırlıkları değiştirilmez, yalnızca eğitim sırasında

öğrenilen bilgilerin yeni verilere nasıl uygulandığı gözlemlenir. Sonuçlar, modelin genelleme

kapasitesini ölçmek ve gerekirse iyileştirmeler yapmak için kullanılır. Test aşaması, eğitim

sürecinin doğruluğunu ve etkinliğini değerlendirmenin en kritik adımlarından biridir.

Uygulamanın çalıştırılması

Bu tez çalışmasında donanım destekli yapay sinir ağı (YSA) modellerinin verimli bir

biçimde eğitim ve değerlendirme süreçlerini ele almaktadır. Geleneksel YSA eğitim

algoritmaları, büyük veri kümeleri üzerinde hesaplama açısından yoğun işlemler

gerektirdiğinden, yüksek enerji tüketimi ve uzun işlem süreleri gibi sınırlamalarla karşı karşıya

kalmaktadır. Bu sorunları aşmak için, bu çalışma YSA'nın donanımsal bir platformda eğitilmesi

amacıyla bir yöntem geliştirmekte ve simülasyon tabanlı bir sinaptik çekirdek yapılandırması

kullanmaktadır. Kod, eğitim verilerinin işlenmesi, sinaptik ağırlıkların başlatılması, NeuroSim

çekirdeklerinin yapılandırılması ve YSA modelinin donanım üzerinde doğruluk, gecikme süresi

ve enerji tüketimi gibi performans metriklerinin hesaplanması adımlarını içermektedir. Bu

yaklaşımla, YSA'nın donanımda etkin şekilde çalıştırılması sağlanarak hem enerji verimliliği

hem de işlem süresi açısından iyileştirmeler hedeflenmektedir. Tablo 17’de ana fonksiyon

kullanılarak veri setlerinin yüklenmesi ve çeşitli fonksiyonlarla uygulamanın başlatılması

gösterilmiştir.

Tablo 17. Uygulamnın çalıştırıldığı ana fonksiyona ait sözde kod

Input: trainData, trainLabels, testData, testLabels, totalNumEpochs, interNumEpochs,

 numMnistTestImages, numTrainImagesPerEpoch, optimization_type

Output: output.csv, accuracy and performance metrics

Begin

1: Initialize random seed and load MNIST data

2: ReadTrainingDataFromFile("trainData", "trainLabels")

3: ReadTestingDataFromFile("testData", "testLabels")

4: Initialize synaptic arrays and NeuroSim cores

97

5: arrayIH->Initialization<RealDevice>()

6: arrayHO->Initialization<RealDevice>()

7: NeuroSimSubArrayInitialize and NeuroSimNeuronInitialize

8: Calculate area and leakage power

9: NeuroSimSubArrayArea and NeuroSimSubArrayLeakagePower

10: Initialize weights and hardware mapping

11: WeightInitialize() and WeightToConductance() (if useHardwareInTraining)

12: Open output file output.csv

13: For each epoch block

14: Run training for interNumEpochs

15: If not using hardware in training but in testing, then WeightToConductance()

16: Run validation

17: Save accuracy to file and print metrics

18: Print read/write latency and energy for synaptic cores

19: If HybridCell or _2T1F, print transfer latency and energy

20: End for

21: Return 0

End

Tablo 17’de gösterilen sözde kodda, uygulamada bir MLP modelini donanımsal platformda

eğitim ve test süreçlerini özetlemektedir. Kod, eğitim verilerini yükler, modelin donanım

tarafını kurar, ağı eğitir ve sonunda doğrulama yapar. Süreç aşağıdaki aşamalardan

oluşmaktadır:

 Rastgele Sayı Çekirdeği ve Veri Yükleme: Kod, rastgele sayı üretimini başlatmak için

bir çekirdek değeri ayarlar ve MNIST, CIFAR-10 veya Fisher’s Iris veri setinden eğitim

ve test verilerini yükler. Bu adım, modelin eğitim ve test aşamalarında kullanılacak

görüntü ve etiketlerin bellek içine alınmasını sağlar.

 Sinaptik Ağırlık Dizilerinin ve NeuroSim Çekirdeklerinin Başlatılması: YSA'nın gizli

katmanına ve çıktı katmanına ait sinaptik ağırlık dizileri, `RealDevice` kullanılarak

başlatılır. NeuroSim çekirdeklerinin ayarları yapılır ve bu sinaptik çekirdekler, belirli

donanım özelliklerine göre yapılandırılır.

 Alan ve Kaçak Güç Hesaplama: Modelin donanımsal yapısını simüle eden NeuroSim

çekirdeklerinin alan ve standby (bekleme) modunda enerji tüketimleri hesaplanır. Bu

hesaplamalar, modelin donanım üzerinde kapladığı fiziksel alanı ve düşük güç

modundayken harcadığı enerjiyi tahmin etmeye yardımcı olur.

 Ağırlıkların Başlatılması ve Donanıma Uygun Şekilde Haritalanması: Modelin sinaptik

ağırlıkları başlatılır ve donanım üzerinde çalışacak şekilde iletkenlik değerlerine

dönüştürülür. Eğer eğitimde donanım kullanılacaksa, bu dönüştürme işlemi yapılır.

98

 Çıktı Dosyasının Açılması: Eğitim süreci boyunca modelin doğruluk oranlarının

kaydedileceği `output.csv` dosyası açılır.

 Eğitim ve Doğrulama Döngüsü: Kod, `totalNumEpochs` boyunca modeli eğitir ve her

`interNumEpochs` sonrası doğrulama yapar. Eğitim süreci tamamlandığında doğruluk

oranı hesaplanır ve `output.csv` dosyasına yazılır.

 Performans ve Enerji Tüketim Metriği Hesaplama ve Yazdırma: Eğitim ve doğrulama

aşamaları boyunca sinaptik çekirdeklerin okuma/yazma gecikme süreleri ile enerji

tüketimleri hesaplanır ve çıktı olarak yazdırılır. Eğer “HybridCell” veya “_2T1F” gibi

özel hücre tipleri kullanılıyorsa, aktarım gecikme süreleri ve enerji tüketimleri de ayrıca

rapor edilir.

 Sonuçların Çıktısı ve Döndürme: Eğitim süreci tamamlandığında, modelin doğruluk

oranları ve donanım üzerindeki performans metrikleri “output.cs” dosyasına yazılmış

olur ve ‘main’ fonksiyonu başarıyla sonlanır.

Performans ölçüm metrikleri

Donanım tabanlı öğrenme sistemlerinin performansını değerlendirmek için kullanılan

temel ölçütler; doğruluk, test hata oranı, kesinlik ve özgüllüktür. Doğruluk (accuracy), sistemin

yaptığı doğru tahminlerin toplam tahminlere oranını ifade eder ve genel model başarısının bir

göstergesi olarak kullanılır. Test hata oranı (test error rate) ise yanlış sınıflandırmaların oranını

temsil eder ve modelin tahminlerindeki hataları değerlendirmek için kritik bir ölçüttür. Bu oran,

modelin genelleme yeteneğini ölçmek için önemli bir referans sağlar.

Kesinlik (precision), modelin pozitif olarak sınıflandırdığı örneklerin ne kadarının

gerçekte doğru olduğunu ölçer. Bu, özellikle yanlış pozitif sınıflandırmaların maliyetli olduğu

durumlarda (örneğin, tıbbi teşhis sistemlerinde) oldukça önemli bir metrik olarak karşımıza

çıkar. Diğer bir ifadeyle, kesinlik, modelin "gerçek pozitif" olarak adlandırılan doğru pozitif

tahminleri tespit etme kapasitesine odaklanır.

Özgüllük (specificity) ise modelin negatif sınıflandırmalarındaki başarısını, yani "gerçek

negatifleri" doğru bir şekilde tanımlama yeteneğini ölçer. Bu metrik, özellikle yanlış

negatiflerin kritik sonuçlar doğurabileceği senaryolarda (örneğin, güvenlik sistemlerinde)

modelin doğruluk seviyesini analiz etmek için kullanılır.

Bu ölçütler birlikte değerlendirildiğinde, donanım tabanlı öğrenme sistemlerinin hem

doğruluk hem de hata toleransı açısından ne kadar etkili olduğunu kapsamlı bir şekilde analiz

etmeye olanak tanır. Bu çalışma özelinde bu ölçütler bir arada değerlendirilerek uygulanmıştır.

99

Performans değerlendirmesi sırasında, bu metrikler arasındaki denge de dikkate alınmalı;

özellikle bir metrikteki iyileşmenin diğer metrikler üzerindeki potansiyel olumsuz etkileri göz

önünde bulundurulmalıdır. Böylece, uygulamaya özgü gereksinimlere uygun optimizasyon

stratejileri geliştirilebilir. Bu çalışma, optimizasyon algoritmalarının öğrenme süreçlerini

değerlendirmek amacıyla, her yöntem için doğruluk metriğinin hesaplanmasıyla başlamaktadır.

Doğruluk (accuracy), bir modelin doğru tahmin oranını temsil etmesi bakımından, model

performansını değerlendirmek için kritik bir göstergedir. Sadece tek başına bir metrik olarak

değil, aynı zamanda diğer performans ölçütleri ile birlikte ele alındığında, modelin genel

etkinliğinin kapsamlı bir değerlendirilmesine olanak tanır. Bu bağlamda, doğruluk metriği,

yalnızca modelin genel başarımını göstermekle kalmaz; aynı zamanda veri kümeleri arasında

model performansı hakkında ayrıntılı içgörüler sunar. Bu içgörüler, farklı optimizasyon

algoritmalarının etkinliklerini karşılaştırma açısından önemli bir temel oluşturur. Özellikle,

algoritmaların veri kümesine özgü öğrenme dinamikleri üzerindeki etkilerini anlamak ve

modelin genelleme yeteneğini analiz etmek için doğruluk metriği, diğer ölçütlerle entegre bir

biçimde kullanılabilir. Ayrıca, bu metriklerin sağladığı karşılaştırmalı analiz, optimizasyon

algoritmalarının avantajlı ve dezavantajlı yönlerinin tespit edilmesine olanak tanır. Bu süreç,

yalnızca mevcut modellerin daha optimum bir düzeye çıkarılması için değil, aynı zamanda daha

verimli ve daha doğru modellerin tasarlanması için de yol gösterici bir rol oynar. Çalışma,

doğruluk metriğini, optimizasyon algoritmalarını daha geniş bir performans perspektifinden

değerlendirmek için bir temel taş olarak ele almakta ve bu sayede modern makine öğrenimi

sistemlerinin performansını artırmaya yönelik değerli katkılar sağlamaktadır. Aşağıda bu

metrikler için matematiksel denklemler verilmiştir:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (34)

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =
𝐹𝑃+𝐹𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (35)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (36)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (37)

Bu metriklerin hesaplanmasında kullanılan terimler aşağıdaki gibi tanımlanmıştır: TP (doğru

pozitif), MNIST el yazısı rakamların veya CIFAR-10 veri setindeki resimlerin doğru tanındığı

durumların sayısını ifade eder. FP (yanlış pozitif), rakamların doğru olarak yanlış tanındığı

durumların sayısını gösterir. TN (doğru negatif) yanlış rakamların doğru şekilde yanlış olarak

tanımlandığı vaka sayısını ifade eder. FN (yanlış negatif), doğru olarak tanınması gereken

100

rakamların yanlış tanımlandığı durumların sayısını temsil eder. Bu terimler, modelin tahmin

performansını ayrıntılı olarak analiz etmek için kullanılır ve her birinin kendine özgü anlamı ve

önemi vardır.

101

ARAŞTIRMA BULGULARI VE TARTIŞMA

Deneysel çalışmalar sürecinde, sistemin istikrarlı bir şekilde çalışmasını sağlamak

amacıyla uzun süren ve detaylı denemeler gerçekleştirilmiş, bu denemeler sırasında ortaya

çıkan çalışma zamanı hataları titizlikle düzeltilmiştir. Sistemin tüm bileşenleri uyum içinde

çalışır hale getirildikten sonra, araştırma hipotezlerini test etmek ve araştırma sorularına yanıt

bulmak amacıyla çeşitli deneyler planlanmış ve uygulanmaya başlanmıştır. Elde edilen

bulgular, değerlendirilip sonuçlara ulaşılmasını takiben, karşılaştırmalı tablolar ve

detaylandırılmış grafikler ile görselleştirilmiştir. Sonuçlar, çalışmanın sağlamlığını ve

tutarlılığını artıracak şekilde sistematik olarak raporlanmıştır.

Bu tez çalışması, memristör tabanlı nano-sinaptik cihazların kullanıldığı bir sinir ağının

donanım tabanlı uygulamasını göstermektedir. Çalışmada işlem süresi, alan gereksinimi ve

enerji tüketimi gibi performans sonuçlarını değerlendirilmektedir. Bu hesaplamalar ve

deneylerden elde edilen sonuçlar, Tablo 18’de belirtilen özelliklere sahip çalışma ortamında

gerçekleştirilmiş ve ölçümleri tamamlanmıştır. Bu çalışma ortamı, deneylerin doğruluğunu ve

tekrarlanabilirliğini elde etmek için gerekli koşullar altında oluşturulmuş olup, elde edilen

bilgilerin sağlamlığı bu spesifik ortamda yapılan ölçümlerle garanti altına alınmıştır.

Tablo 18. Çalışma Ortamına Ait Özellikler

Birim Özellik

İşlemci HexaCore Intel Core i7-10750H, 4533 MHz (46 x 99)

Bellek 24 GB 3200 MHz DDR4

Ekran Kartı nVIDIA GeForce GTX 1650 Ti (HP)

Ön Bellek 12 MB

Hafıza 512 GB SSD

Şekil 31’da uygulamanın Linux işletim sistemi ortamında derlenmesi gösterilmiştir.

"make" komutuyla başlatılan bu derleme süreci, GNU Compiler Collection (GCC) kullanılarak

çok sayıda C++ dosyasının derlenmesini ve nihai olarak tek bir çalıştırılabilir dosya üretimini

içermektedir. Bu derleme süreci, yüksek performanslı bir yapay sinir ağı simülasyon ile

donanım benzetimi yazılımının hazırlanmasına yöneliktir. Kullanılan optimizasyon seviyesi

(O3) ve OpenMP desteği, performans ihtiyaçlarının karşılanması için seçilmiştir. Bağımsız

object dosyalarının üretilmesi, modüler yapıyı koruyarak gerekli bileşenlerin her biri ayrı olarak

derlenmesini sağlamaktadır.

102

Donanım tabanlı model, çevrimiçi öğrenme yeteneği ile karakter tanıma yaparken, aynı

zamanda çevrimdışı sınıflandırma yapabilme özelliğine sahiptir. Uygulama süreci, bilgisayarla

yazılmış ve elle yazılmış rakamları tanımlamak için sinir ağında ileri besleme ve geri yayılma

(BP) işlemlerini içermektedir.

Şekil 31. Uygulamanın derlenmesi

Şekil 32’de tez çalışmasında sinir ağı simülasyonunun çalıştırıldığı komut satırı

gösterilmektedir. Komut satırında, sinir ağı simülasyonunun bazı donanım özellikleri ve her bir

epoch (eğitim döngüsü) için doğruluk oranı, gecikme süreleri ve enerji tüketimi hesaplanarak

ekranda gösterilmektedir.

103

Şekil 32. Uygulamanın çalıştırılması

Şekil 31’de tez çalışmasına ait uygulanın çıktıların üç adımı aşağıda açıklanmıştır.

Alan (Area) Hesaplamaları:

 Total SubArray (synaptic core) area: Sinir ağının ağırlıklarını depolayan çekirdek birimin

toplam alanıdır. Burada 8.6186e-09 m² olarak verilmiştir.

 Total Neuron (neuron peripheries) area: Sinir ağındaki nöronların çevresel birimlerinin

toplam alanı (örneğin, giriş ve çıkış birimleri). Bu 1.3306e-09 m² olarak hesaplanmıştır.

 Total area: Yukarıdaki iki alanın toplamı olarak 9.9491e-09 m² verilmiş.

Bu alan ölçümleri, donanım mimarisi tasarımında kullanılan bellek ve işlem birimlerinin

fiziksel büyüklüklerini ifade etmektedir.

Güç (Power) Hesaplamaları:

 Leakage power of subArrayIH: "Input-Hidden Layer" alt dizisindeki sızıntı gücü,

1.3021e-04 W olarak hesaplanmıştır.

 Leakage power of subArrayHO: "Hidden-Output Layer" alt dizisindeki sızıntı gücü,

1.8232e-05 W olarak hesaplanmıştır.

 Leakage power of NeuronIH/NeuronHO: Girişten gizli katmana (IH) ve gizli katmandan

çıkışa (HO) olan bağlantılardaki nöronlar için güç tüketimleri verilmiştir.

 Total leakage power: Sistem genelindeki toplam güç sızıntısıdır (1.4844e-04 W subArray

için ve 2.0853e-05 W nöronlar için).

Uygulamada elde edilen bu değerler, donanımın çalışma sırasında harcadığı gücü ve sızıntı

enerjisini simülasyonla ifade etmektedir.

104

Doğruluk (Accuracy) ve Performans Verileri:

 Doğruluk (Accuracy), modelin belirli sayıda epoch (iterasyon) sonundaki performansını

gösterir:

 Epoch: %75,75 doğruluk

 Epoch: %79,33 doğruluk

 Epoch: %83,52 doğruluk

Performans ölçütleri:

 Read latency: Verilerin okunması sırasında geçen süre (örneğin, ilk epoch (iterasyon) için

3,24712e-02 s).

 Write latency: Verilerin yazılması sırasında geçen süreyi ifade eder.

 Read energy / Write energy: Verilerin okunması ve yazılması sırasında harcanan enerji

(joule cinsinden).

Yukarıda Şekil 27’de gösterilen çıktılar açıklanmıştır. Bu çıktılar, sinir ağı tabanlı bir

donanım sisteminin enerji verimliliği, alan kullanımı ve performans açısından nasıl çalıştığını

detaylı bir şekilde ortaya koymaktadır. Çıktılar, sistem tasarımının fiziksel boyutları (alan), güç

tüketimi (leakage power) ve performans ölçütleri (doğruluk, gecikme süreleri, enerji tüketimi)

hakkında kapsamlı bilgi sunmaktadır.

Öncelikle, toplam alan hesaplamaları, donanım mimarisinin fiziksel tasarımı ve yerleşim

planları açısından oldukça önemlidir. Sinir ağı çekirdeği (synaptic core) ve çevresel nöron

birimlerinin ayrı ayrı alan ölçümleri, toplam alanın nasıl dağıldığı gösterilmektedir. Bu alan

dağılımı, çip tasarımında hem verimlilik hem de maliyet açısından kritik bir faktördür.

SubArray (alt dizi) ve Neuron (nöron) alanlarının birleşimi, tüm sistemin fiziksel büyüklüğünü

ortaya koyarken, bu alan ölçümleri, özellikle entegre devrelerde daha az yer kaplayan, daha

yüksek yoğunluklu tasarımların geliştirilmesi için önemli bir girdi sağlamaktadır.

Güç tüketimi hesaplamaları, özellikle enerji verimliliği yüksek sistemlerin tasarımında

kilit bir role sahiptir. Donanım sisteminin hem subArray hem de nöron seviyesindeki sızıntı

gücü ölçümleri, sistemin hangi bileşenlerinin daha fazla enerji harcadığını ve bu harcamanın

nasıl optimize edilebileceğini anlamaya yardımcı olur. Özellikle, Input-Hidden Layer (IH) ve

Hidden-Output Layer (HO) bağlantılarındaki sızıntı güç değerleri, sinir ağı modelinin çalışması

sırasında hangi katmanların daha fazla enerji harcadığını göstermektedir. Toplam güç tüketimi

ise donanımın sürekli çalışma sırasında ne kadar enerji gerektirdiğini anlamak için bir referans

noktası sağlar.

105

Model doğruluk ve performans verileri, sinir ağı modelinin belirli epoch (iterasyon)

sayılarındaki öğrenme yeteneğini ve işlem performansını değerlendirmek için kritik öneme

sahiptir. Model, her epoch sonunda doğruluk açısından iyileşme göstermekte ve %75,75'ten

başlayarak %83,52'ye kadar yükselmektedir. Bu, modelin eğitim sürecinin etkili olduğunu ve

daha fazla epoch ile doğruluk seviyesinin arttığını göstermektedir. Ancak bu artışın, enerji

tüketimi ve gecikme süreleri üzerinde bir maliyeti vardır. Okuma ve yazma gecikme süreleri

(read/write latency) ile enerji tüketimi (read/write energy) değerleri, modelin eğitim süreci

boyunca nasıl bir yük oluşturduğunu açıkça ortaya koymaktadır. İlk epoch'tan itibaren okuma

ve yazma süreleri ile enerji tüketiminde bir artış görülmektedir, bu da daha karmaşık

hesaplamaların ve daha büyük veri akışlarının gerçekleştiğine işaret eder.

Tez çalışmasında elde edilen bu çıktılar, donanım ve sinir ağı modelinin birlikte

çalışmasından doğan karmaşık bir dengeyi temsil etmektedir. Güç tüketimi ve alan

gereksinimlerini azaltmak, doğruluk seviyesini artırırken performans ölçütlerini optimize

etmek için kritik önemdedir. Bu bağlamda, veriler, donanım ve yazılım optimizasyonları için

başlangıç noktası olarak kullanılabilir. Özellikle enerji verimliliği, doğruluk ve gecikme süresi

arasındaki dengenin nasıl iyileştirileceğini anlamak için detaylı bir analizi bu çalışma ile

gösterilmiştir. Bu tür bir çalışma hem donanım tasarımcıları hem de sinir ağı algoritması

geliştiricileri için yol gösterici bir rehber niteliğindedir.

Uygulamada Elde Edilen Deneysel Sonuçlar

Bu makalede, el yazısı rakam tanıma için memristör tabanlı sinaptik cihazları kullanan

bir sinir ağı (NN) modeli kullanılmıştır. Model, 60.000 eğitim örneği ve 0 ile 9 arasında değişen

rakamlardan oluşan 10.000 test örneği içeren MNIST veri kümesi üzerinde eğitilmiş ve test

işlemine tabi tutulmuştur. MNIST data setinin yanı sıra, bu makalede görüntü sınıflandırması

için memristör tabanlı sinaptik cihazlar kullanan bir sinir ağı (NN) modeli kullanılmıştır. Model,

10 sınıfta 50.000 eğitim örneği ve 10.000 test örneği içeren CIFAR-10 veri kümesi üzerinde

eğitilmiş ve test edilmiştir. Bu veri setlerine ek olarak modelin kararlılığını pekiştirmek

amacıyla Fisher’s Iris veri seti çalışmaya dahil edilmiştir. Devre düzeyindeki performans

Neurosim kullanılarak analiz edilmiş ve enerji tüketimi, gecikme süresi ve alan gereksinimleri

gibi ölçütler değerlendirilmiştir. Memristör tabanlı makine öğrenimi modeline Adadelta,

AdaGrad, Adam, AdaMax, Momentum, Nadam, RMSprop ve SGD dahil olmak üzere çeşitli

optimizasyon yöntemleri uygulanmıştır. Her yöntem doğruluğu artırmak için ağırlıkları farklı

şekilde günceller. Deneysel sonuçlar Tablo 19’da ve Tablo 20’de gösterilmiştir.

106

Tablo 19. Optimizasyon modellerinin MNIST veri seti ile karşılaştırmalı performans sonuçları

Optimizasyon Adı Tüketilen Enerji (J)
Doğruluk Oranı

(%)

Eğitim Gecikme

Süresi (epoch/s)

AdaDelta 0.0304 89.48 804.58 (s)

AdaGrad 0.0112 79.00 953.69 (s)

Adam 0.2440 79.13 717.19 (s)

AdaMax 0.0115 79.68 851.18 (s)

Momentum 0.1431 88.55 737.09 (s)

Nadam 0.112 81.20 828.19 (s)

SGD 0.0276 89.47 639.34 (s)

RMSprop 0.1603 84.91 740.52 (s)

Geleneksel Bilgisayar 4.275x103 96.95 140.25 (s)

Tablo 20. MNIST, CIFAR ve Fisher’s Iris verı̇ setleri ile çeşitlı̇ optı̇mı̇zasyon modellerı̇nı̇n

karşılaştırmalı doğruluk performans sonuçları

Optimizasyon Adı
Doğruluk Oranı

MNIST (%)

Doğruluk Oranı

CIAFR-10 (%)

Doğruluk Oranı

Fisher’s Iris (%)

AdaDelta 89.48 92.51 93.08

AdaGrad 79.00 82.08 81.17

Adam 79.13 83.10 88.23

AdaMax 79.68 81.76 83.71

Momentum 88.55 91.25 92.05

Nadam 81.20 82.45 80.20

SGD 89.47 90.21 90.75

RMSprop 84.91 88.11 87.01

Tablo 21. Sinir ağı mimarilerinin MNIST veri kümesi üzerindeki karşılaştırmalı performans sonuçları.

Mimari
TiO2 Sinaptik Aygıt NN

(Önerilen)

Ag: Si

Sinaptik Aygıt NN

Doğruluk (%) 89.48 73.19

Bu tez kapsamında önerilen TiO2 sinaptik tabanlı model Ag: Si sinaptik tabanlı modele

göre doğruluk performansı olarak yaklaşık %20 oranında daha iyi sonuç verdiği Tablo 21’de

gösterilmiştir.

107

Şekil 33. AdaDelta, AdaGrad, Adam ve Adamax optimizasyon algoritmaları için doğruluk grafikleri

Şekil 34. Momentum, Nadam, RMSProp ve SGD optimizasyon algoritmaları için doğruluk grafikleri

Şekil 33 ve Şekil 34’te tez çalışmasında kullanılan optimizasyon algoritmalarının doğruluk

oranları (Accuracy Rate) gösterilmiştir.

108

Şekil 35. AdaDelta, AdaGrad, Adam ve Adamax algoritmaları için hata oranı grafikleri

Şekil 36. AdaDelta, AdaGrad, Adam ve Adamax algoritmaları için hata oranı grafikleri

Şekil 35 ve Şekil 36’de tez çalışmasında kullanılan optimizasyon algoritmalarının hata

oranları (Error Rate) gösterilmiştir. Bu grafikler, farklı optimizasyon yöntemlerinin model

performansı üzerindeki kritik etkisini ve yapay sinir ağlarının eğitilmesinde uygun

109

optimizasyon stratejilerinin seçilmesinin önemini açıkça ortaya koymaktadır. Bu tez çalışması

kapsamında uygulamada kullanılan veri setleriyle optimizasyon yöntemlerinin doğruluk

üzerinde oluşturduğu etkiler ayrıntılı biçimde incelenmiştir. Bu analizler ışığında, aynı epoch

sayısında elde edilen doğruluk değerlerindeki önemli farklılıkları görselleştirmektedir.

Özellikle, optimizasyon algoritmalarının öğrenme süreçlerini ne ölçüde etkilediğini göstermek

açısından bu grafikler oldukça bilgilendiricidir.

Grafiklerde yer alan bulgulara göre, Adadelta algoritması, diğer optimizasyon

yöntemlerine kıyasla daha yüksek doğruluk oranları sağlamıştır. Bu sonuç, Adadelta'nın belirli

veri kümeleri ve model yapıları için daha etkili bir öğrenme sağladığını göstermektedir.

Bununla birlikte, her algoritmanın doğruluk açısından farklı sonuçlar üretmesi, optimizasyon

algoritması seçiminin model performansını doğrudan etkileyen kritik bir faktör olduğunu ortaya

koymaktadır. Bu grafiklerde sunulan veriler, optimizasyon algoritmaları kullanılarak elde

edilen doğruluk ve epoch değerlerini içermekte ve bu algoritmaların eğitim aşamasındaki

sonuçlarının anlaşılmasına katkı sağlamaktadır. Özellikle, doğruluğu artırmak ve hata oranlarını

azaltmak için doğru optimizasyon algoritmasının seçiminin ne denli önemli olduğu

vurgulanmaktadır.

Şekil 37. Bu şekil, farklı optimizasyon algoritmalarının doğruluk oranlarını karşılaştırmaktadır.

AdaDelta (%89,48), SGD (%89,47) ve Momentum (%88,55) en yüksek doğruluğa sahipken,

AdaGrad (%79,00) en düşük doğruluğu göstermektedir.

110

Şekil 38. Bu şekil, farklı optimizasyon algoritmalarının doğruluk oranlarını karşılaştırmaktadır.

111

SONUÇLAR VE ÖNERİLER

Sonuç olarak, memristör tabanlı sinaptik cihazlara dayalı sinir ağının performansı,

MNIST ve CIFAR veri kümeleri üzerinde çeşitli optimizasyon yöntemleri kullanılarak

kapsamlı biçimde incelenmiştir. SGD ve türevleri de dahil olmak üzere farklı optimizasyon

algoritmaları test edilmiş ve %90 doğruluk oranı elde edilmiştir. Model, çeşitli optimizasyon

yöntemleri arasında sağlamlık ve genelleme kabiliyeti göstermiştir. Bu optimizasyon

yöntemleri altındaki bu yüksek performans, veri kümeleri arasındaki uyarlanabilirliği ve

etkinliğini vurgulamakta ve çeşitli uygulamalar için potansiyelini göstermektedir. Bu

değerlendirme, memristör tabanlı sinaptik cihazların nöromorfik hesaplama ve donanım tabanlı

yapay zekâ uygulamaları için çeşitli optimizasyon algoritmalarıyla birleştirilmesinin etkinliğini

doğrulamaktadır. Bu bulgular gelecekteki çalışmalara rehberlik ederek daha enerji verimli ve

hassas sinir ağı modellerinin oluşturulmasına katkıda bulunmaktadır.

Memristör tabanlı cihazların kullanımı, geleneksel Von Neumann mimarilerinde yaşanan

enerji ve zaman verimsizliği sorunlarını önemli ölçüde azaltmaktadır. Bu cihazlar, bellek ve

işlem birimlerini birleştirerek veri aktarımını en aza indirirken enerji tüketimini düşürmekte ve

hesaplama performansını artırmaktadır. Tez çalışmasında cihazların doğruluk ve enerji

tasarrufunu artıran özgün ve modern donanım çözümleri sunduğunu göstermiştir.

Bulgular

Optimizasyon Algoritmaları: Test edilen algoritmalar arasında AdaDelta, CIFAR-10 veri

kümesinde %90,51 doğruluk oranıyla en iyi performansı göstermiştir. MNIST veri kümesinde

ise SGD (%89,47), AdaDelta (%89,48) ve Momentum (%88,55) algoritmaları yüksek doğruluk

oranları sağlamıştır. Bu sonuçlar, optimizasyon yöntemlerinin model performansı üzerinde çok

etkili olduğunu göstermektedir.

Cihaz Özellikleri: Memristör tabanlı memristörlerin, CMOS teknolojisiyle uyumlu yapıları

sayesinde yüksek yoğunluklu ve enerji verimli donanımlar tasarlanmasına olanak tanıdığı

gözlemlenmiştir. Bu cihazların biyolojik sinapsları taklit ederek direnç seviyelerini dinamik

biçimde ayarlayabilmesi, nöromorfik uygulamalar için büyük bir avantaj sunmaktadır.

Enerji Verimliliği: Bu tez çalışmasıyla memristör tabanlı mimariler, geleneksel sistemlere

kıyasla enerji tüketimini önemli ölçüde azaltmıştır. Enerji tüketiminin büyük kısmı statik güç

kullanımıyla ilişkilendirilmiş, bu da memristörlerin dinamik güç tüketimine kıyasla avantajlı

olduğunu göstermiştir.

112

Doğruluk-Enerji Dengesi: Bu çalışmada yüksek doğruluk oranları elde edilmesine rağmen, bu

doğruluğun enerji tüketimi üzerindeki etkileri kapsamlı şekilde incelenmiştir. Özellikle

AdaDelta algoritması hem doğruluk hem de enerji verimliliği açısından üstün performans

sergileyerek algoritma seçimlerinin nöromorfik donanım tasarımı üzerindeki önemini

vurgulamaktadır.

Genelleme Kabiliyeti: Bu tez çalışmasında ele alınan model, farklı veri kümelerinde sağlam bir

genelleme kapasitesi göstermiştir. Bu durum, memristör tabanlı cihazların geniş bir makine

öğrenimi görev yelpazesinde etkili biçimde kullanılabileceğini göstermektedir.

Öneriler

Bu çalışma, memristör tabanlı memristör cihazların nöromorfik hesaplama ve donanım

tabanlı yapay zekâ uygulamalarındaki potansiyelini açık biçimde ortaya koymaktadır. Elde

edilen bulgular, aşağıdaki alanlarda gelecekteki araştırmalara yol gösterici olabilir:

Ölçeklenebilirlik: Memristör tabanlı cihazların daha büyük sinir ağları ve daha karmaşık veri

kümeleri için uygulanabilirliği araştırılmalıdır. Özellikle ağırlık hassasiyeti ve kuantizasyon

sorunları üzerine çalışmalar yapılabilir.

Enerji Optimizasyonu: Enerji sarfiyatını daha da azaltmak amacıyla yeni yöntemlerin

geliştirilmesi, nöromorfik sistemlerin enerji tasarrufunu artırabilir.

Algoritma-Donanım Ortak Tasarımı: Optimizasyon algoritmalarının donanım özelliklerine

uygun biçimde geliştirilmesi, performansı daha da iyileştirebilir. Örneğin, AdaDelta ve

SGD’nin avantajlarını birleştiren hibrit yaklaşımlar daha başarılı sonuçlar sağlayabilir.

Gerçek Dünya Uygulamaları: Memristör tabanlı cihazların kenar yapay zekâ, otonom sistemler

ve beyin ilhamlı hesaplama gibi alanlarda uygulanabilirliği genişletilmelidir.

Bu tez çalışması, memristör tabanlı memristör cihazların nöromorfik hesaplama için

uygulanabilirliğini doğrulamış ve enerji verimliliği ile doğruluk arasında güçlü bir denge

sağladığını göstermiştir. Çalışmanın sonuçları, donanım hızlandırmalı yapay zekâ sistemleri

için sürdürülebilir ve ölçeklenebilir çözümler geliştirmek adına önemli bir temel sunmaktadır.

Bu bulgular, daha enerji verimli, doğru ve genel kullanıma uygun sinir ağı modellerinin

tasarlanmasına katkıda bulunacaktır.

113

KAYNAKLAR

Adhikari, S. P., Sah, M. P., Kim, H., & Chua, L. O. (2013). Three Fingerprints of Memristor.

IEEE Transactions on Circuits and Systems I: Regular Papers, 60(11), 3008–3021.

https://doi.org/10.1109/TCSI.2013.2256171

Al-Shedivat, M., Naous, R., Cauwenberghs, G., & Salama, K. N. (2015). Memristors

Empower Spiking Neurons With Stochasticity. IEEE Journal on Emerging and Selected

Topics in Circuits and Systems, 5(2), 242–253.

https://doi.org/10.1109/JETCAS.2015.2435512

Alibart, F., Pleutin, S., Bichler, O., Gamrat, C., Serrano‐Gotarredona, T., Linares‐Barranco,

B., & Vuillaume, D. (2012). A Memristive Nanoparticle/Organic Hybrid Synapstor for

Neuroinspired Computing. Advanced Functional Materials, 22(3), 609–616.

https://doi.org/10.1002/adfm.201101935

Ambrogio, S., Narayanan, P., Okazaki, A., Fasoli, A., Mackin, C., Hosokawa, K., Nomura,

A., Yasuda, T., Chen, A., Friz, A., Ishii, M., Luquin, J., Kohda, Y., Saulnier, N., Brew,

K., Choi, S., Ok, I., Philip, T., Chan, V., … Burr, G. W. (2023). An analog-AI chip for

energy-efficient speech recognition and transcription. Nature, 620(7975), 768–775.

https://doi.org/10.1038/s41586-023-06337-5

Amirsoleimani, A., Alibart, F., Yon, V., Xu, J., Pazhouhandeh, M. R., Ecoffey, S., Beilliard,

Y., Genov, R., & Drouin, D. (2020). In‐Memory Vector‐Matrix Multiplication in

Monolithic Complementary Metal–Oxide–Semiconductor‐Memristor Integrated Circuits:

Design Choices, Challenges, and Perspectives. Advanced Intelligent Systems, 2(11),

2000115. https://doi.org/10.1002/aisy.202000115

Anand, V., Gupta, S., Altameem, A., Nayak, S. R., Poonia, R. C., & Saudagar, A. K. J.

(2022). An Enhanced Transfer Learning Based Classification for Diagnosis of Skin

Cancer. Diagnostics, 12(7), 1628. https://doi.org/10.3390/diagnostics12071628

Anti-Hebbian and Hebbian (AHaH) Plasticity. (2017). Knowm. https://knowm.org/ahah-

computing/

Ascoli, A., Tetzlaff, R., Chua, L. O., Strachan, J. P., & Williams, R. S. (2016). History Erase

Effect in a Non-Volatile Memristor. IEEE Transactions on Circuits and Systems I:

Regular Papers, 63(3), 389–400. https://doi.org/10.1109/TCSI.2016.2525043

Babacan, Y., Kaçar, F., & Gürkan, K. (2016). A spiking and bursting neuron circuit based on

memristor. Neurocomputing, 203, 86–91. https://doi.org/10.1016/j.neucom.2016.03.060

Bao, B., Hu, A., Bao, H., Xu, Q., Chen, M., & Wu, H. (2018). Three-Dimensional Memristive

Hindmarsh–Rose Neuron Model with Hidden Coexisting Asymmetric Behaviors.

Complexity, 2018, 1–11. https://doi.org/10.1155/2018/3872573

Bear, M. F., & Malenka, R. C. (1994). Synaptic plasticity: LTP and LTD. Current Opinion in

Neurobiology, 4(3), 389–399. https://doi.org/10.1016/0959-4388(94)90101-5

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation Learning: A Review and New

Perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8),

1798–1828. https://doi.org/10.1109/TPAMI.2013.50

Bian, K., & Priyadarshi, R. (2024a). Machine Learning Optimization Techniques: A Survey,

Classification, Challenges, and Future Research Issues. Archives of Computational

114

Methods in Engineering. https://doi.org/10.1007/s11831-024-10110-w

Bian, K., & Priyadarshi, R. (2024b). Machine Learning Optimization Techniques: A Survey,

Classification, Challenges, and Future Research Issues. Archives of Computational

Methods in Engineering. https://doi.org/10.1007/s11831-024-10110-w

Binelli, E., Broggi, A., Fascioli, A., Ghidoni, S., Grisleri, P., Graf, T., & Meinecke, M.

(2005). A modular tracking system for far infrared pedestrian recognition. IEEE

Proceedings. Intelligent Vehicles Symposium, 2005., 759–764.

https://doi.org/10.1109/IVS.2005.1505196

Biolek, D., & Biolková, V. (2009). SPICE Model of Memristor with Nonlinear Dopant Drift.

1, 210–214. http://hdl.handle.net/11012/57100

Bliss, T. V. P., & Lømo, T. (1973). Long-lasting potentiation of synaptic transmission in the

dentate area of the anaesthetized rabbit following stimulation of the perforant path. The

Journal of Physiology, 232(2), 331–356. https://doi.org/10.1113/jphysiol.1973.sp010273

Bojarski, M., Yeres, P., Choromanska, A., Choromanski, K., Firner, B., Jackel, L., & Muller,

U. (2017). Explaining How a Deep Neural Network Trained with End-to-End Learning

Steers a Car. http://arxiv.org/abs/1704.07911

Borghetti, J., Li, Z., Straznicky, J., Li, X., Ohlberg, D. A. A., Wu, W., Stewart, D. R., &

Williams, R. S. (2009). A hybrid nanomemristor/transistor logic circuit capable of self-

programming. Proceedings of the National Academy of Sciences, 106(6), 1699–1703.

https://doi.org/10.1073/pnas.0806642106

Bower, J. M., & Beeman, D. (1995). The Book of GENESIS: Exploring Realistic Neural

Models with the General Neural Simulation System. Springer.

Burr, G. W., Shelby, R. M., Sebastian, A., Kim, S., Kim, S., Sidler, S., Virwani, K., Ishii, M.,

Narayanan, P., Fumarola, A., Sanches, L. L., Boybat, I., Le Gallo, M., Moon, K., Woo,

J., Hwang, H., & Leblebici, Y. (2017). Neuromorphic computing using non-volatile

memory. Advances in Physics: X, 2(1), 89–124.

https://doi.org/10.1080/23746149.2016.1259585

Cai, F., Correll, J. M., Lee, S. H., Lim, Y., Bothra, V., Zhang, Z., Flynn, M. P., & Lu, W. D.

(2019). A fully integrated reprogrammable memristor–CMOS system for efficient

multiply–accumulate operations. Nature Electronics, 2(7), 290–299.

https://doi.org/10.1038/s41928-019-0270-x

Cai, Y., Wu, J., & Zhang, C. (2019). Classification of Trash Types in Cotton Based on Deep

Learning. 2019 Chinese Control Conference (CCC), 8783–8788.

https://doi.org/10.23919/ChiCC.2019.8865475

Cai, Z., Zhu, X., Gergondet, P., Chen, X., & Yu, Z. (2023). A Friction-Driven Strategy for

Agile Steering Wheel Manipulation by Humanoid Robots. Cyborg and Bionic Systems,

4. https://doi.org/10.34133/cbsystems.0064

Cao, Z., Sun, B., Zhou, G., Mao, S., Zhu, S., Zhang, J., Ke, C., Zhao, Y., & Shao, J. (2023).

Memristor-based neural networks: a bridge from device to artificial intelligence.

Nanoscale Horizons, 8(6), 716–745. https://doi.org/10.1039/D2NH00536K

Caporale, N., & Dan, Y. (2008). Spike Timing–Dependent Plasticity: A Hebbian Learning

Rule. Annual Review of Neuroscience, 31(1), 25–46.

https://doi.org/10.1146/annurev.neuro.31.060407.125639

115

Capra, M., Bussolino, B., Marchisio, A., Masera, G., Martina, M., & Shafique, M. (2020).

Hardware and Software Optimizations for Accelerating Deep Neural Networks: Survey

of Current Trends, Challenges, and the Road Ahead. IEEE Access, 8, 225134–225180.

https://doi.org/10.1109/ACCESS.2020.3039858

Caravelli, F., & Carbajal, J. (2018). Memristors for the Curious Outsiders. Technologies, 6(4),

118. https://doi.org/10.3390/technologies6040118

Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M., & Elhadad, N. (2015). Intelligible

Models for HealthCare. Proceedings of the 21th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, 1721–1730.

https://doi.org/10.1145/2783258.2788613

Chen, C.-Y., Shih, H.-C., Wu, C.-W., Lin, C.-H., Chiu, P.-F., Sheu, S.-S., & Chen, F. T.

(2015). RRAM Defect Modeling and Failure Analysis Based on March Test and a Novel

Squeeze-Search Scheme. IEEE Transactions on Computers, 64(1), 180–190.

https://doi.org/10.1109/TC.2014.12

Chen, C. Y., & Chakrabarty, K. (2021). Pruning of Deep Neural Networks for Fault-Tolerant

Memristor-based Accelerators. Proceedings - Design Automation Conference, 2021-

Decem, 889–894. https://doi.org/10.1109/DAC18074.2021.9586269

Chen, J., Li, J., Li, Y., & Miao, X. (2021). Multiply accumulate operations in memristor

crossbar arrays for analog computing. Journal of Semiconductors, 42(1), 013104.

https://doi.org/10.1088/1674-4926/42/1/013104

Chen, P.-Y., Peng, X., & Yu, S. (2018). NeuroSim: A Circuit-Level Macro Model for

Benchmarking Neuro-Inspired Architectures in Online Learning. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 37(12), 3067–3080.

https://doi.org/10.1109/TCAD.2018.2789723

Chen, S., Zhang, T., Tappertzhofen, S., Yang, Y., & Valov, I. (2023). Electrochemical‐

Memristor‐Based Artificial Neurons and Synapses—Fundamentals, Applications, and

Challenges. Advanced Materials, 35(37). https://doi.org/10.1002/adma.202301924

Cheng, G., & An, X. (2021a). A Brief Overview of Deep Learning and Memristor. Journal of

Physics: Conference Series, 1894(1), 012086. https://doi.org/10.1088/1742-

6596/1894/1/012086

Cheng, G., & An, X. (2021b). A Brief Overview of Deep Learning and Memristor. Journal of

Physics: Conference Series, 1894(1). https://doi.org/10.1088/1742-6596/1894/1/012086

Chiu, Y.-C., Khwa, W.-S., Yang, C.-S., Teng, S.-H., Huang, H.-Y., Chang, F.-C., Wu, Y.,

Chien, Y.-A., Hsieh, F.-L., Li, C.-Y., Lin, G.-Y., Chen, P.-J., Pan, T.-H., Lo, C.-C., Liu,

R.-S., Hsieh, C.-C., Tang, K.-T., Ho, M.-S., Lo, C.-P., … Chang, M.-F. (2023). A

CMOS-integrated spintronic compute-in-memory macro for secure AI edge devices.

Nature Electronics, 6(7), 534–543. https://doi.org/10.1038/s41928-023-00994-0

Choe, J., & Shim, H. (2019). Attention-based Dropout Layer for Weakly Supervised Object

Localization. https://doi.org/https://doi.org/10.48550/arXiv.1908.10028

Choi, C., Kim, H., Kang, J.-H., Song, M.-K., Yeon, H., Chang, C. S., Suh, J. M., Shin, J., Lu,

K., Park, B.-I., Kim, Y., Lee, H. E., Lee, D., Lee, J., Jang, I., Pang, S., Ryu, K., Bae, S.-

H., Nie, Y., … Kim, J. (2022). Reconfigurable heterogeneous integration using stackable

chips with embedded artificial intelligence. Nature Electronics, 5(6), 386–393.

116

https://doi.org/10.1038/s41928-022-00778-y

Chua, L. (1971a). Memristor-The missing circuit element. IEEE Transactions on Circuit

Theory, 18(5), 507–519. https://doi.org/10.1109/TCT.1971.1083337

Chua, L. (1971b). Memristor-The missing circuit element. IEEE Transactions on Circuit

Theory, 18(5), 507–519. https://doi.org/10.1109/TCT.1971.1083337

Chua, L. O., & Sung Mo Kang. (1976). Memristive devices and systems. Proceedings of the

IEEE, 64(2), 209–223. https://doi.org/10.1109/PROC.1976.10092

Corinto, F., Ascoli, A., & Sung-Mo Kang. (2013). Memristor-based neural circuits. 2013

IEEE International Symposium on Circuits and Systems (ISCAS2013), 417–420.

https://doi.org/10.1109/ISCAS.2013.6571869

Corinto, F., Civalleri, P. P., & Chua, L. O. (2015). A Theoretical Approach to Memristor

Devices. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 5(2),

123–132. https://doi.org/10.1109/JETCAS.2015.2426494

Cruz-Albrecht, J. M., Yung, M. W., & Srinivasa, N. (2012). Energy-efficient neuron, synapse

and STDP integrated circuits. IEEE Transactions on Biomedical Circuits and Systems,

6(3), 246–256. https://doi.org/10.1109/TBCAS.2011.2174152

Cumming, D. R. S., Furber, S. B., & Paul, D. J. (2014). Beyond Moore’s law. Philosophical

Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,

372(2012), 20130376. https://doi.org/10.1098/rsta.2013.0376

Dan, Y., & Poo, M.-M. (2006). Spike Timing-Dependent Plasticity: From Synapse to

Perception. Physiological Reviews, 86(3), 1033–1048.

https://doi.org/10.1152/physrev.00030.2005

Daoudal, G., & Debanne, D. (2003). Long-Term Plasticity of Intrinsic Excitability: Learning

Rules and Mechanisms. Learning & Memory, 10(6), 456–465.

https://doi.org/10.1101/lm.64103

del Valle, J., Ramírez, J. G., Rozenberg, M. J., & Schuller, I. K. (2018). Challenges in

materials and devices for resistive-switching-based neuromorphic computing. Journal of

Applied Physics, 124(21). https://doi.org/10.1063/1.5047800

Deng, L. (2014). Deep Learning: Methods and Applications. Foundations and Trends® in

Signal Processing, 7(3–4), 197–387. https://doi.org/10.1561/2000000039

Deng, L., Wang, D., Zhang, Z., Tang, P., Li, G., & Pei, J. (2016). Energy consumption

analysis for various memristive networks under different learning strategies. Physics

Letters A, 380(7–8), 903–909. https://doi.org/10.1016/j.physleta.2015.12.024

Dennard, R. H., Gaensslen, F. H., Yu, H.-N., Rideout, V. L., Bassous, E., & LeBlanc, A. R.

(1974). Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE

Journal of Solid-State Circuits, 9(5), 256–268.

https://doi.org/10.1109/JSSC.1974.1050511

Do, K., Lee, D., Ko, D.-H., Sohn, H., & Cho, M.-H. (2010). TEM Study on Volume Changes

and Void Formation in Ge[sub 2]Sb[sub 2]Te[sub 5] Films, with Repeated Phase

Changes. Electrochemical and Solid-State Letters, 13(8), H284.

https://doi.org/10.1149/1.3439647

Drakopoulos, F., Baby, D., & Verhulst, S. (2021). A convolutional neural-network framework

117

for modelling auditory sensory cells and synapses. Communications Biology, 4(1), 827.

https://doi.org/10.1038/s42003-021-02341-5

Dretchen, K. L., Standaert, F. G., Skirboll, L. R., & Morgenroth, V. H. (1976). Evidence for a

prejunctional role of cyclic nucleotides in neuromuscular transmission. Nature,

264(5581), 79–81. https://doi.org/10.1038/264079a0

Du, Z., Ben-Dayan Rubin, D. D., Chen, Y., He, L., Chen, T., Zhang, L., Wu, C., & Temam,

O. (2015). Neuromorphic accelerators. Proceedings of the 48th International Symposium

on Microarchitecture, 494–507. https://doi.org/10.1145/2830772.2830789

Eryilmaz, S. B., Kuzum, D., Jeyasingh, R. G. D., Kim, S., BrightSky, M., Lam, C., & Wong,

H.-S. P. (2013). Experimental demonstration of array-level learning with phase change

synaptic devices. 2013 IEEE International Electron Devices Meeting, 25.5.1-25.5.4.

https://doi.org/10.1109/IEDM.2013.6724691

Eryilmaz, S. B., Kuzum, D., Jeyasingh, R., Kim, S., BrightSky, M., Lam, C., & Wong, H.-S.

P. (2014a). Brain-like associative learning using a nanoscale non-volatile phase change

synaptic device array. Frontiers in Neuroscience, 8.

https://doi.org/10.3389/fnins.2014.00205

Eryilmaz, S. B., Kuzum, D., Jeyasingh, R., Kim, S., BrightSky, M., Lam, C., & Wong, H.-S.

P. (2014b). Brain-like associative learning using a nanoscale non-volatile phase change

synaptic device array. Frontiers in Neuroscience, 8(8 JUL), 1–11.

https://doi.org/10.3389/fnins.2014.00205

Eshraghian, J. K., Wang, X., & Lu, W. D. (2022a). Memristor-Based Binarized Spiking

Neural Networks: Challenges and applications. IEEE Nanotechnology Magazine, 16(2),

14–23. https://doi.org/10.1109/MNANO.2022.3141443

Eshraghian, J. K., Wang, X., & Lu, W. D. (2022b). Memristor-Based Binarized Spiking

Neural Networks: Challenges and applications. IEEE Nanotechnology Magazine, 16(2),

14–23. https://doi.org/10.1109/MNANO.2022.3141443

Feali, M. S. (2021). Using volatile/non-volatile memristor for emulating the short-and long-

term adaptation behavior of the biological neurons. Neurocomputing, 465, 157–166.

https://doi.org/10.1016/j.neucom.2021.08.132

Feldman, D. E. (2012). The Spike-Timing Dependence of Plasticity. Neuron, 75(4), 556–571.

https://doi.org/10.1016/j.neuron.2012.08.001

Feng, J., Shen, L., Chen, Z., Wang, Y., & Li, H. (2020). A Two-Layer Deep Learning Method

for Android Malware Detection Using Network Traffic. IEEE Access, 8, 125786–

125796. https://doi.org/10.1109/ACCESS.2020.3008081

Gale, E. (2014). TiO 2 -based memristors and ReRAM: materials, mechanisms and models (a

review). Semiconductor Science and Technology, 29(10), 104004.

https://doi.org/10.1088/0268-1242/29/10/104004

Gao, B., Kang, J., Zhou, Z., Chen, Z., Huang, P., Liu, L., & Liu, X. (2016). Metal oxide

resistive random access memory based synaptic devices for brain-inspired computing.

Japanese Journal of Applied Physics, 55(4S), 04EA06.

https://doi.org/10.7567/JJAP.55.04EA06

Gao, L., Wang, I.-T., Chen, P.-Y., Vrudhula, S., Seo, J., Cao, Y., Hou, T.-H., & Yu, S.

(2015). Fully parallel write/read in resistive synaptic array for accelerating on-chip

118

learning. Nanotechnology, 26(45), 455204. https://doi.org/10.1088/0957-

4484/26/45/455204

García-Martín, E., Rodrigues, C. F., Riley, G., & Grahn, H. (2019). Estimation of energy

consumption in machine learning. Journal of Parallel and Distributed Computing, 134,

75–88. https://doi.org/10.1016/j.jpdc.2019.07.007

Gharpinde, R., Thangkhiew, P. L., Datta, K., & Sengupta, I. (2018). A Scalable In-Memory

Logic Synthesis Approach Using Memristor Crossbar. IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, 26(2), 355–366.

https://doi.org/10.1109/TVLSI.2017.2763171

Gkoupidenis, P., Schaefer, N., Strakosas, X., Fairfield, J. A., & Malliaras, G. G. (2015).

Synaptic plasticity functions in an organic electrochemical transistor. Applied Physics

Letters, 107(26), 263302. https://doi.org/10.1063/1.4938553

Golonzka, O., Arslan, U., Bai, P., Bohr, M., Baykan, O., Chang, Y., Chaudhari, A., Chen, A.,

Clarke, J., Connor, C., Das, N., English, C., Ghani, T., Hamzaoglu, F., Hentges, P., Jain,

P., Jezewski, C., Karpov, I., Kothari, H., … Fischer, K. (2019). Non-Volatile RRAM

Embedded into 22FFL FinFET Technology. 2019 Symposium on VLSI Technology,

T230–T231. https://doi.org/10.23919/VLSIT.2019.8776570

Gong, Q., Kang, W., & Fahroo, F. (2023). Approximation of compositional functions with

ReLU neural networks. Systems & Control Letters, 175, 105508.

https://doi.org/10.1016/j.sysconle.2023.105508

Goodfellow, I., Bengio, Y., & Courville, A. (2016). deep learning English version (Vol. 26).

Greenberg-Toledo, T., Mazor, R., Haj-Ali, A., & Kvatinsky, S. (2019). Supporting the

Momentum Training Algorithm Using a Memristor-Based Synapse. IEEE Transactions

on Circuits and Systems I: Regular Papers, 66(4), 1571–1583.

https://doi.org/10.1109/TCSI.2018.2888538

Gul, F. (2019). Circuit Implementation of Nano-Scale TiO 2 Memristor Using Only Metal-

Oxide-Semiconductor Transistors. IEEE Electron Device Letters, 40(4), 643–646.

https://doi.org/10.1109/LED.2019.2899889

Gul, F. (2020). Nano-scale single layer TiO2-based artificial synaptic device. Applied

Nanoscience, 10(2), 611–616. https://doi.org/10.1007/s13204-019-01179-y

Gupta, V., Mishra, V. K., Singhal, P., & Kumar, A. (2022). An Overview of Supervised

Machine Learning Algorithm. 2022 11th International Conference on System Modeling

& Advancement in Research Trends (SMART), 87–92.

https://doi.org/10.1109/SMART55829.2022.10047618

Han, J., Yun, S., Lee, S., Yu, J., & Choi, Y. (2022). A Review of Artificial Spiking Neuron

Devices for Neural Processing and Sensing. Advanced Functional Materials, 32(33).

https://doi.org/10.1002/adfm.202204102

Hansen, K., Baehrens, D., Schroeter, T., Rupp, M., & Müller, K.-R. (2011). Visual

Interpretation of Kernel-Based Prediction Models. Molecular Informatics, 30(9), 817–

826. https://doi.org/10.1002/minf.201100059

Haoxiang, W., & S, S. (2021). Overview of Configuring Adaptive Activation Functions for

Deep Neural Networks - A Comparative Study. Journal of Ubiquitous Computing and

Communication Technologies, 3(1), 10–22. https://doi.org/10.36548/jucct.2021.1.002

119

Hasler, J., & Marr, B. (2013). Finding a roadmap to achieve large neuromorphic hardware

systems. Frontiers in Neuroscience, 7. https://doi.org/10.3389/fnins.2013.00118

Hinduja, D., Dheebhika, R., & Jacob, T. P. (2019). Enhanced Character Recognition using

Deep Neural Network-A Survey. 2019 International Conference on Communication and

Signal Processing (ICCSP), 0438–0440. https://doi.org/10.1109/ICCSP.2019.8698008

Ho, Y., Huang, G. M., & Li, P. (2011). Dynamical Properties and Design Analysis for

Nonvolatile Memristor Memories. IEEE Transactions on Circuits and Systems I:

Regular Papers, 58(4), 724–736. https://doi.org/10.1109/TCSI.2010.2078710

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation,

9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

Hoon Chung, Sung Joo Lee, & Jeon Gue Park. (2016). Deep neural network using trainable

activation functions. 2016 International Joint Conference on Neural Networks (IJCNN),

2016-Octob(l), 348–352. https://doi.org/10.1109/IJCNN.2016.7727219

Hu, M., Chen, Y., Yang, J. J., Wang, Y., & Li, H. H. (2017). A Compact Memristor-Based

Dynamic Synapse for Spiking Neural Networks. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 36(8), 1353–1366.

https://doi.org/10.1109/TCAD.2016.2618866

Hu, M., Strachan, J. P., Li, Z., Grafals, E. M., Davila, N., Graves, C., Lam, S., Ge, N., Yang,

J. J., & Williams, R. S. (2016). Dot-product engine for neuromorphic computing:

Programming 1T1M crossbar to accelerate matrix-vector multiplication. Proceedings -

Design Automation Conference, 05-09-June. https://doi.org/10.1145/2897937.2898010

Huang, Y., Ravichandran, V., Zhao, W., & Xia, Q. (2023). Towards Energy-Efficient

Computing Hardware Based on Memristive Nanodevices. IEEE Nanotechnology

Magazine, 17(5), 30–38. https://doi.org/10.1109/MNANO.2023.3297106

Huh, W., Lee, D., & Lee, C. (2020). Memristors Based on 2D Materials as an Artificial

Synapse for Neuromorphic Electronics. Advanced Materials, 32(51), 2002092.

https://doi.org/10.1002/adma.202002092

Hung, J.-M., Xue, C.-X., Kao, H.-Y., Huang, Y.-H., Chang, F.-C., Huang, S.-P., Liu, T.-W.,

Jhang, C.-J., Su, C.-I., Khwa, W.-S., Lo, C.-C., Liu, R.-S., Hsieh, C.-C., Tang, K.-T., Ho,

M.-S., Chou, C.-C., Chih, Y.-D., Chang, T.-Y. J., & Chang, M.-F. (2021). A four-

megabit compute-in-memory macro with eight-bit precision based on CMOS and

resistive random-access memory for AI edge devices. Nature Electronics, 4(12), 921–

930. https://doi.org/10.1038/s41928-021-00676-9

Ielmini, D., & Wong, H.-S. P. (2018). In-memory computing with resistive switching devices.

Nature Electronics, 1(6), 333–343. https://doi.org/10.1038/s41928-018-0092-2

Illarionov, G. A., Morozova, S. M., Chrishtop, V. V., Einarsrud, M.-A., & Morozov, M. I.

(2020). Memristive TiO2: Synthesis, Technologies, and Applications. Frontiers in

Chemistry, 8. https://doi.org/10.3389/fchem.2020.00724

Ilyas, N., Li, D., Li, C., Jiang, X., Jiang, Y., & Li, W. (2020). Analog Switching and Artificial

Synaptic Behavior of Ag/SiOx:Ag/TiOx/p++-Si Memristor Device. Nanoscale Research

Letters, 15(1), 0–10. https://doi.org/10.1186/s11671-020-3249-7

Indiveri, G. (2003). A low-power adaptive integrate-and-fire neuron circuit. Proceedings -

IEEE International Symposium on Circuits and Systems, 4.

120

https://doi.org/10.1109/iscas.2003.1206342

Indiveri, G., Linares-Barranco, B., Hamilton, T. J., Schaik, A. van, Etienne-Cummings, R.,

Delbruck, T., Liu, S.-C., Dudek, P., Häfliger, P., Renaud, S., Schemmel, J.,

Cauwenberghs, G., Arthur, J., Hynna, K., Folowosele, F., Saighi, S., Serrano-

Gotarredona, T., Wijekoon, J., Wang, Y., & Boahen, K. (2011). Neuromorphic Silicon

Neuron Circuits. Frontiers in Neuroscience, 5. https://doi.org/10.3389/fnins.2011.00073

Jagtap, A. D., Kawaguchi, K., & Karniadakis, G. E. (2020). Adaptive activation functions

accelerate convergence in deep and physics-informed neural networks. Journal of

Computational Physics, 404, 109136. https://doi.org/10.1016/j.jcp.2019.109136

Jeong, D. S., Kim, K. M., Kim, S., Choi, B. J., & Hwang, C. S. (2016). Memristors for

Energy‐Efficient New Computing Paradigms. Advanced Electronic Materials, 2(9).

https://doi.org/10.1002/aelm.201600090

Jhaveri, R. H., Revathi, A., Ramana, K., Raut, R., & Dhanaraj, R. K. (2022). A Review on

Machine Learning Strategies for Real-World Engineering Applications. Mobile

Information Systems, 2022, 1–26. https://doi.org/10.1155/2022/1833507

Jin, S., Pei, S., & Wang, Y. (2020). A variation tolerant scheme for memristor crossbar based

neural network designs via two-phase weight mapping and memristor programming.

Future Generation Computer Systems, 106, 270–276.

https://doi.org/10.1016/j.future.2020.01.021

Jin, Y.-H., Cai, L., Cheng, Z.-S., Cheng, H., Deng, T., Fan, Y.-P., Fang, C., Huang, D.,

Huang, L.-Q., Huang, Q., Han, Y., Hu, B., Hu, F., Li, B.-H., Li, Y.-R., Liang, K., Lin,

L.-K., Luo, L.-S., Ma, J., … Wang, X.-H. (2020). A rapid advice guideline for the

diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia

(standard version). Military Medical Research, 7(1), 4. https://doi.org/10.1186/s40779-

020-0233-6

Jo, S. H., Chang, T., Ebong, I., Bhadviya, B. B., Mazumder, P., & Lu, W. (2010). Nanoscale

Memristor Device as Synapse in Neuromorphic Systems. Nano Letters, 10(4), 1297–

1301. https://doi.org/10.1021/nl904092h

Johnsen, G. K. (2012). An introduction to the memristor – a valuable circuit element in

bioelectricity and bioimpedance. Journal of Electrical Bioimpedance, 3(1), 20–28.

https://doi.org/10.5617/jeb.305

Joksas, D., Freitas, P., Chai, Z., Ng, W. H., Buckwell, M., Li, C., Zhang, W. D., Xia, Q.,

Kenyon, A. J., & Mehonic, A. (2020). Committee machines—a universal method to deal

with non-idealities in memristor-based neural networks. Nature Communications, 11(1),

4273. https://doi.org/10.1038/s41467-020-18098-0

Josh, P., & Gibson, A. (2017). Deep Learning A Practitioner’s Approach (p. 800). O’Reilly

Media.

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S., Bhatia,

S., Boden, N., Borchers, A., Boyle, R., Cantin, P., Chao, C., Clark, C., Coriell, J., Daley,

M., Dau, M., Dean, J., Gelb, B., … Yoon, D. H. (2017). In-Datacenter Performance

Analysis of a Tensor Processing Unit. Proceedings of the 44th Annual International

Symposium on Computer Architecture, 1–12. https://doi.org/10.1145/3079856.3080246

Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S. A., & Hudspeth, A. J. (2012).

121

Principles of Neural Science (5th ed.). McGraw-Hill Education.

Kaneko, Y., Nishitani, Y., & Ueda, M. (2014). Ferroelectric Artificial Synapses for

Recognition of a Multishaded Image. IEEE Transactions on Electron Devices, 61(8),

2827–2833. https://doi.org/10.1109/TED.2014.2331707

Kannan, S., Karimi, N., Karri, R., & Sinanoglu, O. (2015). Modeling, Detection, and

Diagnosis of Faults in Multilevel Memristor Memories. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 34(5), 822–834.

https://doi.org/10.1109/TCAD.2015.2394434

Kern, J., Henwood, S., Mordido, G., Dupraz, E., Aissa-El-Bey, A., Savaria, Y., & Leduc-

Primeau, F. (2022). MemSE: Fast MSE Prediction for Noisy Memristor-Based DNN

Accelerators. Proceeding - IEEE International Conference on Artificial Intelligence

Circuits and Systems, AICAS 2022, 62–65.

https://doi.org/10.1109/AICAS54282.2022.9869978

Khaddam-Aljameh, R., Stanisavljevic, M., Fornt Mas, J., Karunaratne, G., Brandli, M., Liu,

F., Singh, A., Muller, S. M., Egger, U., Petropoulos, A., Antonakopoulos, T., Brew, K.,

Choi, S., Ok, I., Lie, F. L., Saulnier, N., Chan, V., Ahsan, I., Narayanan, V., …

Eleftheriou, E. (2022). HERMES-Core-A 1.59-TOPS/mm2PCM on 14-nm CMOS In-

Memory Compute Core Using 300-ps/LSB Linearized CCO-Based ADCs. IEEE Journal

of Solid-State Circuits, 57(4), 1027–1038. https://doi.org/10.1109/JSSC.2022.3140414

KI, R., & R, S. (2022). Memristor based object detection using neural network. High-

Confidence Computing, 2(4), 100085. https://doi.org/10.1016/j.hcc.2022.100085

Kim, H., Sah, M. P., Yang, C., & Chua, L. O. (2010). Memristor-based multilevel memory.

2010 12th International Workshop on Cellular Nanoscale Networks and Their

Applications, CNNA 2010, 1–6. https://doi.org/10.1109/cnna.2010.5430320

Kim, S., Du, C., Sheridan, P., Ma, W., Choi, S., & Lu, W. D. (2015). Experimental

demonstration of a second-order memristor and its ability to biorealistically implement

synaptic plasticity. Nano Letters, 15(3), 2203–2211.

https://doi.org/10.1021/acs.nanolett.5b00697

Kim, S., Kim, H.-D., & Choi, S.-J. (2019). Impact of Synaptic Device Variations on

Classification Accuracy in a Binarized Neural Network. Scientific Reports, 9(1), 15237.

https://doi.org/10.1038/s41598-019-51814-5

Krzysteczko, P., Münchenberger, J., Schäfers, M., Reiss, G., & Thomas, A. (2012). The

Memristive Magnetic Tunnel Junction as a Nanoscopic Synapse‐Neuron System.

Advanced Materials, 24(6), 762–766. https://doi.org/10.1002/adma.201103723

Kuzum, D. (2018). Neuro-Inspired Computing with Resistive Switching Devices [Guest

Editorial]. IEEE Nanotechnology Magazine, 12(3), 4–4.

https://doi.org/10.1109/MNANO.2018.2849799

Kuzum, D., Jeyasingh, R. G. D., & Wong, H.-S. P. (2011). Energy efficient programming of

nanoelectronic synaptic devices for large-scale implementation of associative and

temporal sequence learning. 2011 International Electron Devices Meeting, 30.3.1-30.3.4.

https://doi.org/10.1109/IEDM.2011.6131643

Kuzum, D., Jeyasingh, R. G. D., Yu, S., & Wong, H.-S. P. (2012). Low-Energy Robust

Neuromorphic Computation Using Synaptic Devices. IEEE Transactions on Electron

122

Devices, 59(12), 3489–3494. https://doi.org/10.1109/TED.2012.2217146

Kuzum, D., Yu, S., & Philip Wong, H.-S. (2013). Synaptic electronics: materials, devices and

applications. Nanotechnology, 24(38), 382001. https://doi.org/10.1088/0957-

4484/24/38/382001

Kvatinsky, S., Friedman, E. G., Kolodny, A., & Weiser, U. C. (2013). The Desired Memristor

for Circuit Designers. IEEE Circuits and Systems Magazine, 13(2), 17–22.

https://doi.org/10.1109/MCAS.2013.2256257

Kvatinsky, S., Satat, G., Wald, N., Friedman, E. G., Kolodny, A., & Weiser, U. C. (2014).

Memristor-Based Material Implication (IMPLY) Logic: Design Principles and

Methodologies. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

22(10), 2054–2066. https://doi.org/10.1109/TVLSI.2013.2282132

Kwon, O., Kim, S., Agudov, N., Krichigin, A., Mikhaylov, A., Grimaudo, R., Valenti, D., &

Spagnolo, B. (2022). Non-volatile memory characteristics of a Ti/HfO2/Pt synaptic

device with a crossbar array structure. Chaos, Solitons & Fractals, 162, 112480.

https://doi.org/10.1016/j.chaos.2022.112480

Langston, M. H., Greengard, L., & Zorin, D. (2011). A free-space adaptive fmm-based pde

solver in three dimensions. Communications in Applied Mathematics and Computational

Science, 6(1), 79–122. https://doi.org/10.2140/camcos.2011.6.79

Lashkare, S., Chouhan, S., Chavan, T., Bhat, A., Kumbhare, P., & Ganguly, U. (2018).

PCMO RRAM for Integrate-and-Fire Neuron in Spiking Neural Networks. IEEE

Electron Device Letters, 39(4), 484–487. https://doi.org/10.1109/LED.2018.2805822

Le Gallo, M., Sebastian, A., Mathis, R., Manica, M., Giefers, H., Tuma, T., Bekas, C.,

Curioni, A., & Eleftheriou, E. (2018). Mixed-precision in-memory computing. Nature

Electronics, 1(4), 246–253. https://doi.org/10.1038/s41928-018-0054-8

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

https://doi.org/10.1038/nature14539

Lee, G., Baek, J., Ren, F., Pearton, S. J., Lee, G., & Kim, J. (2021). Artificial Neuron and

Synapse Devices Based on 2D Materials. Small, 17(20), 2100640.

https://doi.org/10.1002/smll.202100640

Lee, Y. J., Lee, J., Kim, Y. B., Ayers, J., Volkovskifi, A., Selverston, A., Abarbanel, H., &

Rabinovich, M. (2004). Low power real time electronic neuron VLSI design using

subthreshold technique. Proceedings - IEEE International Symposium on Circuits and

Systems, 4. https://doi.org/10.1109/iscas.2004.1329111

Leek, J. T., Scharpf, R. B., Bravo, H. C., Simcha, D., Langmead, B., Johnson, W. E., Geman,

D., Baggerly, K., & Irizarry, R. A. (2010). Tackling the widespread and critical impact of

batch effects in high-throughput data. In Nature Reviews Genetics (Vol. 11, Issue 10, pp.

733–739). https://doi.org/10.1038/nrg2825

Li, B., Shan, Y., Hu, M., Wang, Y., Chen, Y., & Yang, H. (2013). Memristor-based

approximated computation. Proceedings of the International Symposium on Low Power

Electronics and Design, September, 242–247.

https://doi.org/10.1109/ISLPED.2013.6629302

Li, C., Wang, Z., Rao, M., Belkin, D., Song, W., Jiang, H., Yan, P., Li, Y., Lin, P., Hu, M.,

Ge, N., Strachan, J. P., Barnell, M., Wu, Q., Williams, R. S., Yang, J. J., & Xia, Q.

123

(2019). Long short-term memory networks in memristor crossbar arrays. Nature

Machine Intelligence, 1(1), 49–57. https://doi.org/10.1038/s42256-018-0001-4

Li Deng. (2012). The MNIST Database of Handwritten Digit Images for Machine Learning

Research [Best of the Web]. IEEE Signal Processing Magazine, 29(6), 141–142.

https://doi.org/10.1109/MSP.2012.2211477

Li, H., Gao, B., Chen, Z., Zhao, Y., Huang, P., Ye, H., Liu, L., Liu, X., & Kang, J. (2015). A

learnable parallel processing architecture towards unity of memory and computing.

Scientific Reports, 5(1), 13330. https://doi.org/10.1038/srep13330

Li, S., Li, W., Cook, C., Zhu, C., & Gao, Y. (2019). A fully trainable network with RNN-

based pooling. Neurocomputing, 338, 72–82.

https://doi.org/10.1016/j.neucom.2019.02.004

Li, S., Zhou, M., Luo, X., & You, Z.-H. (2017). Distributed Winner-Take-All in Dynamic

Networks. IEEE Transactions on Automatic Control, 62(2), 577–589.

https://doi.org/10.1109/TAC.2016.2578645

Liang, X., Chen, Z., Deng, Y., Liu, D., Liu, X., Huang, Q., & Arai, T. (2023). Field-

Controlled Microrobots Fabricated by Photopolymerization. Cyborg and Bionic Systems,

4. https://doi.org/10.34133/cbsystems.0009

Liang, Y., Lu, L., Jin, Y., Xie, J., Huang, R., Zhang, J., & Lin, W. (2022). An Efficient

Hardware Design for Accelerating Sparse CNNs With NAS-Based Models. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 41(3), 597–

613. https://doi.org/10.1109/TCAD.2021.3066563

Liao, K., Lei, P., Tu, M., Luo, S., Jiang, T., Jie, W., & Hao, J. (2021). Memristor Based on

Inorganic and Organic Two-Dimensional Materials: Mechanisms, Performance, and

Synaptic Applications. ACS Applied Materials & Interfaces, 13(28), 32606–32623.

https://doi.org/10.1021/acsami.1c07665

Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J., & Hinton, G. (2020).

Backpropagation and the brain. Nature Reviews Neuroscience, 21(6), 335–346.

https://doi.org/10.1038/s41583-020-0277-3

Lim, S., Bae, J.-H., Eum, J.-H., Lee, S., Kim, C.-H., Kwon, D., Park, B.-G., & Lee, J.-H.

(2019). Adaptive learning rule for hardware-based deep neural networks using electronic

synapse devices. Neural Computing and Applications, 31(11), 8101–8116.

https://doi.org/10.1007/s00521-018-3659-y

Lin, P., Li, C., Wang, Z., Li, Y., Jiang, H., Song, W., Rao, M., Zhuo, Y., Upadhyay, N. K.,

Barnell, M., Wu, Q., Yang, J. J., & Xia, Q. (2020). Three-dimensional memristor circuits

as complex neural networks. Nature Electronics, 3(4), 225–232.

https://doi.org/10.1038/s41928-020-0397-9

Lin, R., Shi, G., Qiao, F., Wang, C., & Wu, S. (2023). Research progress and applications of

memristor emulator circuits. Microelectronics Journal, 133(January), 105702.

https://doi.org/10.1016/j.mejo.2023.105702

Linares-Barranco, B., & Serrano-Gotarredona, T. (2009). Memristance can explain Spike-

Time-Dependent-Plasticity in Neural Synapses. Nature Precedings.

https://doi.org/10.1038/npre.2009.3010.1

Liu, M., Xia, L., Wang, Y., & Chakrabarty, K. (2019). Fault tolerance in neuromorphic

124

computing systems. Proceedings of the 24th Asia and South Pacific Design Automation

Conference, 216–223. https://doi.org/10.1145/3287624.3288743

Liu, X., & Zeng, Z. (2022). Memristor crossbar architectures for implementing deep neural

networks. Complex and Intelligent Systems, 8(2), 787–802.

https://doi.org/10.1007/s40747-021-00282-4

Liu, Y., Iu, H. H.-C., & Qian, Y. (2021). Implementation of Hodgkin-Huxley Neuron Model

With the Novel Memristive Oscillator. IEEE Transactions on Circuits and Systems II:

Express Briefs, 68(8), 2982–2986. https://doi.org/10.1109/TCSII.2021.3066471

Long, X., Lu, C., Su, Y., & Dai, Y. (2023). Machine learning framework for predicting the

low cycle fatigue life of lead-free solders. Engineering Failure Analysis, 148, 107228.

https://doi.org/10.1016/j.engfailanal.2023.107228

Lu, Y. F., Li, Y., Li, H., Wan, T. Q., Huang, X., He, Y. H., & Miao, X. (2020). Low-Power

Artificial Neurons Based on Ag/TiN/HfAlOx/Pt Threshold Switching Memristor for

Neuromorphic Computing. IEEE Electron Device Letters, 41(8), 1245–1248.

https://doi.org/10.1109/LED.2020.3006581

Lukoševičius, M., & Jaeger, H. (2009a). Reservoir computing approaches to recurrent neural

network training. Computer Science Review, 3(3), 127–149.

https://doi.org/10.1016/j.cosrev.2009.03.005

Lukoševičius, M., & Jaeger, H. (2009b). Reservoir computing approaches to recurrent neural

network training. Computer Science Review, 3(3), 127–149.

https://doi.org/10.1016/j.cosrev.2009.03.005

Luo, Y., Peng, X., & Yu, S. (2019). MLP+NeuroSimV3.0. Proceedings of the International

Conference on Neuromorphic Systems, 1–7. https://doi.org/10.1145/3354265.3354266

Lv, Z., Zhou, Y., Han, S. T., & Roy, V. A. L. (2018). From biomaterial-based data storage to

bio-inspired artificial synapse. Materials Today, 21(5), 537–552.

https://doi.org/10.1016/j.mattod.2017.12.001

Ma, S., Chen, Y., Yang, S., Liu, S., Tang, L., Li, B., & Li, Y. (2023). The Autonomous

Pipeline Navigation of a Cockroach Bio-Robot with Enhanced Walking Stimuli. Cyborg

and Bionic Systems, 4. https://doi.org/10.34133/cbsystems.0067

Maan, A. K., Jayadevi, D. A., & James, A. P. (2017). A Survey of Memristive Threshold

Logic Circuits. IEEE Transactions on Neural Networks and Learning Systems, 28(8),

1734–1746. https://doi.org/10.1109/TNNLS.2016.2547842

Mahdavinejad, M. S., Rezvan, M., Barekatain, M., Adibi, P., Barnaghi, P., & Sheth, A. P.

(2018). Machine learning for internet of things data analysis: a survey. Digital

Communications and Networks, 4(3), 161–175.

https://doi.org/10.1016/j.dcan.2017.10.002

Mai, H. T., Lieu, Q. X., Kang, J., & Lee, J. (2023). A novel deep unsupervised learning-based

framework for optimization of truss structures. Engineering with Computers, 39(4),

2585–2608. https://doi.org/10.1007/s00366-022-01636-3

Manfrinato, V. R., Zhang, L., Su, D., Duan, H., Hobbs, R. G., Stach, E. A., & Berggren, K. K.

(2013). Resolution Limits of Electron-Beam Lithography toward the Atomic Scale. Nano

Letters, 13(4), 1555–1558. https://doi.org/10.1021/nl304715p

125

Mao, H., & Dally, W. J. (2016). N ETWORKS WITH P RUNING , T RAINED Q

UANTIZATION. 1–14.

Mazumder, P., Kang, S. M., & Waser, R. (2012). Memristors: Devices, Models, and

Applications [Scanning the Issue]. Proceedings of the IEEE, 100(6), 1911–1919.

https://doi.org/10.1109/JPROC.2012.2190812

McCrary, M. B. (1992). Urban multicultural trauma patients. Asha, 34(4).

Mead, C. (1990a). Neuromorphic electronic systems. Proceedings of the IEEE, 78(10), 1629–

1636. https://doi.org/10.1109/5.58356

Mead, C. (1990b). Neuromorphic electronic systems. Proceedings of the IEEE, 78(10), 1629–

1636. https://doi.org/10.1109/5.58356

Mead, C. (1990c). Neuromorphic Electronic Systems. Proceedings of the IEEE, 78(10),

1629–1636. https://doi.org/10.1109/5.58356

Mehonic, A., & Kenyon, A. J. (2016). Emulating the Electrical Activity of the Neuron Using

a Silicon Oxide RRAM Cell. Frontiers in Neuroscience, 10.

https://doi.org/10.3389/fnins.2016.00057

Mehonic, A., Sebastian, A., Rajendran, B., Simeone, O., Vasilaki, E., & Kenyon, A. J. (2020).

Memristors—From In‐Memory Computing, Deep Learning Acceleration, and Spiking

Neural Networks to the Future of Neuromorphic and Bio‐Inspired Computing. Advanced

Intelligent Systems, 2(11). https://doi.org/10.1002/aisy.202000085

Merced-Grafals, E. J., Dávila, N., Ge, N., Williams, R. S., & Strachan, J. P. (2016).

Repeatable, accurate, and high speed multi-level programming of memristor 1T1R arrays

for power efficient analog computing applications. Nanotechnology, 27(36), 365202.

https://doi.org/10.1088/0957-4484/27/36/365202

Merolla, P., Arthur, J., Akopyan, F., Imam, N., Manohar, R., & Modha, D. S. (2011). A

digital neurosynaptic core using embedded crossbar memory with 45pJ per spike in

45nm. 2011 IEEE Custom Integrated Circuits Conference (CICC), 1–4.

https://doi.org/10.1109/CICC.2011.6055294

Meuffels, P., & Soni, R. (2012). Fundamental Issues and Problems in the Realization of

Memristors. 2012(version 01), 1–14. http://arxiv.org/abs/1207.7319

Miyake, R., Nagata, Z., Adachi, K., Hayashi, Y., Tohei, T., & Sakai, A. (2022). Versatile

Functionality of Four-Terminal TiO 2– x Memristive Devices as Artificial Synapses for

Neuromorphic Computing. ACS Applied Electronic Materials, 4(5), 2326–2336.

https://doi.org/10.1021/acsaelm.2c00161

Mizrahi, A., Hirtzlin, T., Fukushima, A., Kubota, H., Yuasa, S., Grollier, J., & Querlioz, D.

(2018). Neural-like computing with populations of superparamagnetic basis functions.

Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-03963-w

Moore, G. M. (1965). Cramming more components onto integrated circuits With unit cost.

Electronics, 38(8), 114. https://newsroom.intel.com/wp-

content/uploads/sites/11/2018/05/moores-law-electronics.pdf

Musisi-Nkambwe, M., Afshari, S., Barnaby, H., Kozicki, M., & Sanchez Esqueda, I. (2021).

The viability of analog-based accelerators for neuromorphic computing: a survey.

Neuromorphic Computing and Engineering, 1(1), 012001. https://doi.org/10.1088/2634-

126

4386/ac0242

Mutlu, O., Ghose, S., Gómez-Luna, J., & Ausavarungnirun, R. (2019a). Processing data

where it makes sense: Enabling in-memory computation. Microprocessors and

Microsystems, 67, 28–41. https://doi.org/10.1016/j.micpro.2019.01.009

Mutlu, O., Ghose, S., Gómez-Luna, J., & Ausavarungnirun, R. (2019b). Processing data

where it makes sense: Enabling in-memory computation. Microprocessors and

Microsystems, 67, 28–41. https://doi.org/10.1016/j.micpro.2019.01.009

Narayanan, P., Ambrogio, S., Okazaki, A., Hosokawa, K., Tsai, H., Nomura, A., Yasuda, T.,

Mackin, C., Lewis, S. C., Friz, A., Ishii, M., Kohda, Y., Mori, H., Spoon, K., Khaddam-

Aljameh, R., Saulnier, N., Bergendahl, M., Demarest, J., Brew, K. W., … Burr, G. W.

(2021). Fully On-Chip MAC at 14 nm Enabled by Accurate Row-Wise Programming of

PCM-Based Weights and Parallel Vector-Transport in Duration-Format. IEEE

Transactions on Electron Devices, 68(12), 6629–6636.

https://doi.org/10.1109/TED.2021.3115993

Nawrocki, R. A., Voyles, R. M., & Shaheen, S. E. (2016). A Mini Review of Neuromorphic

Architectures and Implementations. IEEE Transactions on Electron Devices, 63(10),

3819–3829. https://doi.org/10.1109/TED.2016.2598413

Niu, D., Chen, Y., & Xie, Y. (2010). Low-power dual-element memristor based memory

design. Proceedings of the International Symposium on Low Power Electronics and

Design, 25–30. https://doi.org/10.1145/1840845.1840851

Nwankpa, C., Ijomah, W., Gachagan, A., & Marshall, S. (2018). Activation Functions:

Comparison of trends in Practice and Research for Deep Learning.

http://arxiv.org/abs/1811.03378

Oh, S., Shi, Y., del Valle, J., Salev, P., Lu, Y., Huang, Z., Kalcheim, Y., Schuller, I. K., &

Kuzum, D. (2021). Energy-efficient Mott activation neuron for full-hardware

implementation of neural networks. Nature Nanotechnology, 16(6), 680–687.

https://doi.org/10.1038/s41565-021-00874-8

Oli-Uz-Zaman, M., Khan, S. A., Yuan, G., Liao, Z., Fu, J., Ding, C., Wang, Y., & Wang, J.

(2022). Mapping Transformation Enabled High-Performance and Low-Energy

Memristor-Based DNNs. Journal of Low Power Electronics and Applications, 12(1), 10.

https://doi.org/10.3390/jlpea12010010

Onen, M., Butters, B. A., Toomey, E., Gokmen, T., & Berggren, K. K. (2020). Design and

characterization of superconducting nanowire-based processors for acceleration of deep

neural network training. Nanotechnology, 31(2), 025204. https://doi.org/10.1088/1361-

6528/ab47bc

Palit, I., Sedighi, B., Horvath, A., Hu, X. S., Nahas, J., & Niemier, M. (2014). Impact of

steep-slope transistors on non-von Neumann architectures: CNN case study. Design,

Automation & Test in Europe Conference & Exhibition (DATE), 2014, 1–6.

https://doi.org/10.7873/DATE.2014.150

Pantazi, A., Woźniak, S., Tuma, T., & Eleftheriou, E. (2016). All-memristive neuromorphic

computing with level-tuned neurons. Nanotechnology, 27(35), 355205.

https://doi.org/10.1088/0957-4484/27/35/355205

Pedretti, G., Milo, V., Ambrogio, S., Carboni, R., Bianchi, S., Calderoni, A., Ramaswamy, N.,

127

Spinelli, A. S., & Ielmini, D. (2017). Memristive neural network for on-line learning and

tracking with brain-inspired spike timing dependent plasticity. Scientific Reports, 7(1),

5288. https://doi.org/10.1038/s41598-017-05480-0

Pershin, Y. V., & Di Ventra, M. (2010). Experimental demonstration of associative memory

with memristive neural networks. Neural Networks, 23(7), 881–886.

https://doi.org/10.1016/j.neunet.2010.05.001

Pershin, Y. V., & Di Ventra, M. (2012). Neuromorphic, Digital, and Quantum Computation

With Memory Circuit Elements. Proceedings of the IEEE, 100(6), 2071–2080.

https://doi.org/10.1109/JPROC.2011.2166369

Pickett, M. D., Medeiros-Ribeiro, G., & Williams, R. S. (2013). A scalable neuristor built

with Mott memristors. Nature Materials, 12(2), 114–117.

https://doi.org/10.1038/nmat3510

Prezioso, M., Merrikh-Bayat, F., Hoskins, B. D., Adam, G. C., Likharev, K. K., & Strukov,

D. B. (2015). Training and operation of an integrated neuromorphic network based on

metal-oxide memristors. Nature, 521(7550), 61–64. https://doi.org/10.1038/nature14441

Prezioso, M., Merrikh Bayat, F., Hoskins, B., Likharev, K., & Strukov, D. (2016). Self-

Adaptive Spike-Time-Dependent Plasticity of Metal-Oxide Memristors. Scientific

Reports, 6(1), 21331. https://doi.org/10.1038/srep21331

Prihatno, A. T., Nurcahyanto, H., Ahmed, M. F., Rahman, M. H., Alam, M. M., & Jang, Y.

M. (2021). Forecasting PM2.5 Concentration Using a Single-Dense Layer BiLSTM

Method. Electronics, 10(15), 1808. https://doi.org/10.3390/electronics10151808

Qin, Y.-F., Bao, H., Wang, F., Chen, J., Li, Y., & Miao, X.-S. (2020). Recent Progress on

Memristive Convolutional Neural Networks for Edge Intelligence. Advanced Intelligent

Systems, 2(11). https://doi.org/10.1002/aisy.202000114

Radack, D. J., & Zolper, J. C. (2008). A Future of Integrated Electronics: Moving Off the

Roadmap. Proceedings of the IEEE, 96(2), 198–200.

https://doi.org/10.1109/JPROC.2007.911049

Rahimi Azghadi, M., Chen, Y.-C., Eshraghian, J. K., Chen, J., Lin, C.-Y., Amirsoleimani, A.,

Mehonic, A., Kenyon, A. J., Fowler, B., Lee, J. C., & Chang, Y.-F. (2020).

Complementary Metal‐Oxide Semiconductor and Memristive Hardware for

Neuromorphic Computing. Advanced Intelligent Systems, 2(5).

https://doi.org/10.1002/aisy.201900189

Rajendran, B., Sebastian, A., Schmuker, M., Srinivasa, N., & Eleftheriou, E. (2019). Low-

Power Neuromorphic Hardware for Signal Processing Applications.

http://arxiv.org/abs/1901.03690

Ranjan, R., Ponce, P. M., Kankuppe, A., John, B., Saleh, L. A., Schroeder, D., &

Krautschneider, W. H. (2016). Programmable memristor emulator ASIC for biologically

inspired memristive learning. 2016 39th International Conference on

Telecommunications and Signal Processing (TSP), 5, 261–264.

https://doi.org/10.1109/TSP.2016.7760874

Ren, Y., Yi, K., Zhang, Y., & Tong, N. (2022). A Memristor-Based DNN Crossbar Array for

Iterative Network Pruning and Quantization. In Citation:. Journal Not Specified (Vol.

2022). https://doi.org/

128

Robbins, H., & Monro, S. (1951). A Stochastic Approximation Method. The Annals of

Mathematical Statistics, 22(3), 400–407. https://doi.org/10.1214/aoms/1177729586

Ruck, D. W., Rogers, S. K., Kabrisky, M., Oxley, M. E., & Suter, B. W. (1990). The

multilayer perceptron as an approximation to a Bayes optimal discriminant function.

IEEE Transactions on Neural Networks, 1(4), 296–298.

https://doi.org/10.1109/72.80266

Ruder, S. (2016). An overview of gradient descent optimization algorithms.

http://arxiv.org/abs/1609.04747

S. Raj, J., & Ananthi J, V. (2019). Recurrent Neural Networks and Nonlinear Prediction in

Support Vector Machines. Journal of Soft Computing Paradigm, 2019(1), 33–40.

https://doi.org/10.36548/jscp.2019.1.004

Sah, M. P., Yang, C., Kim, H., Muthuswamy, B., Jevtic, J., & Chua, L. (2015). A generic

model of memristors with parasitic components. IEEE Transactions on Circuits and

Systems I: Regular Papers, 62(3), 891–898. https://doi.org/10.1109/TCSI.2014.2373674

Saïghi, S., Mayr, C. G., Serrano-Gotarredona, T., Schmidt, H., Lecerf, G., Tomas, J., Grollier,

J., Boyn, S., Vincent, A. F., Querlioz, D., La Barbera, S., Alibart, F., Vuillaume, D.,

Bichler, O., Gamrat, C., & Linares-Barranco, B. (2015). Plasticity in memristive devices

for spiking neural networks. Frontiers in Neuroscience, 9.

https://doi.org/10.3389/fnins.2015.00051

Sarker, I. H., Hoque, M. M., Uddin, M. K., & Alsanoosy, T. (2021). Mobile Data Science and

Intelligent Apps: Concepts, AI-Based Modeling and Research Directions. Mobile

Networks and Applications, 26(1), 285–303. https://doi.org/10.1007/s11036-020-01650-z

Saxena, V., Wu, X., & Zhu, K. (2018). Energy-Efficient CMOS Memristive Synapses for

Mixed-Signal Neuromorphic System-on-a-Chip. 2018 IEEE International Symposium on

Circuits and Systems (ISCAS), 1–5. https://doi.org/10.1109/ISCAS.2018.8351766

Schmidhuber, J. (2015). Deep Learning. Scholarpedia, 10(11), 32832.

https://doi.org/10.4249/scholarpedia.32832

Schuman, C. D., Potok, T. E., Patton, R. M., Birdwell, J. D., Dean, M. E., Rose, G. S., &

Plank, J. S. (2017a). A Survey of Neuromorphic Computing and Neural Networks in

Hardware. http://arxiv.org/abs/1705.06963

Schuman, C. D., Potok, T. E., Patton, R. M., Birdwell, J. D., Dean, M. E., Rose, G. S., &

Plank, J. S. (2017b). A Survey of Neuromorphic Computing and Neural Networks in

Hardware. 1–88.

Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R., & Eleftheriou, E. (2020a). Memory

devices and applications for in-memory computing. Nature Nanotechnology, 15(7), 529–

544. https://doi.org/10.1038/s41565-020-0655-z

Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R., & Eleftheriou, E. (2020b). Memory

devices and applications for in-memory computing. Nature Nanotechnology, 15(7), 529–

544. https://doi.org/10.1038/s41565-020-0655-z

Sejnowski, T. J., Koch, C., & Churchland, P. S. (1988). Computational Neuroscience.

Science, 241(4871), 1299–1306. https://doi.org/10.1126/science.3045969

Seo, J., Brezzo, B., Liu, Y., Parker, B. D., Esser, S. K., Montoye, R. K., Rajendran, B.,

129

Tierno, J. A., Chang, L., Modha, D. S., & Friedman, D. J. (2011). A 45nm CMOS

neuromorphic chip with a scalable architecture for learning in networks of spiking

neurons. 2011 IEEE Custom Integrated Circuits Conference (CICC), 1–4.

https://doi.org/10.1109/CICC.2011.6055293

Seo, S., Kang, B.-S., Lee, J.-J., Ryu, H.-J., Kim, S., Kim, H., Oh, S., Shim, J., Heo, K., Oh, S.,

& Park, J.-H. (2020). Artificial van der Waals hybrid synapse and its application to

acoustic pattern recognition. Nature Communications, 11(1), 3936.

https://doi.org/10.1038/s41467-020-17849-3

Serb, A., Bill, J., Khiat, A., Berdan, R., Legenstein, R., & Prodromakis, T. (2016).

Unsupervised learning in probabilistic neural networks with multi-state metal-oxide

memristive synapses. Nature Communications, 7. https://doi.org/10.1038/ncomms12611

Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian, R., Strachan, J. P., Hu, M.,

Williams, R. S., & Srikumar, V. (2016). ISAAC: A Convolutional Neural Network

Accelerator with In-Situ Analog Arithmetic in Crossbars. 2016 ACM/IEEE 43rd Annual

International Symposium on Computer Architecture (ISCA), 14–26.

https://doi.org/10.1109/ISCA.2016.12

Shamsi, J., Amirsoleimani, A., Mirzakuchaki, S., & Ahmadi, M. (2017). Modular neuron

comprises of memristor-based synapse. Neural Computing and Applications, 28(1), 1–

11. https://doi.org/10.1007/s00521-015-2047-0

Shamsi, J., Mohammadi, K., & Shokouhi, S. B. (2018). A Hardware Architecture for

Columnar-Organized Memory Based on CMOS Neuron and Memristor Crossbar Arrays.

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 26(12), 2795–2805.

https://doi.org/10.1109/TVLSI.2018.2815025

Sharma, S., Sharma, S., & Anidhya, A. (2020). Understanding Activation Functions in Neural

Networks. International Journal of Engineering Applied Sciences and Technology,

4(12), 310–316.

Shaw, R. F. (1950). Arithmetic Operations in a Binary Computer. Review of Scientific

Instruments, 21(8), 687–693. https://doi.org/10.1063/1.1745692

Sheliakina, M., Mostert, A. B., & Meredith, P. (2018). An all-solid-state biocompatible ion-

to-electron transducer for bioelectronics. Materials Horizons, 5(2), 256–263.

https://doi.org/10.1039/C7MH00831G

Shi, J., Ha, S. D., Zhou, Y., Schoofs, F., & Ramanathan, S. (2013). A correlated nickelate

synaptic transistor. Nature Communications, 4, 1–9.

https://doi.org/10.1038/ncomms3676

Shi, Y., Nguyen, L., Oh, S., Liu, X., & Kuzum, D. (2019). A Soft-Pruning Method Applied

During Training of Spiking Neural Networks for In-memory Computing Applications.

Frontiers in Neuroscience, 13(APR), 1–13. https://doi.org/10.3389/fnins.2019.00405

Shim, W., Seo, J., & Yu, S. (2020). Two-step write–verify scheme and impact of the read

noise in multilevel RRAM-based inference engine. Semiconductor Science and

Technology, 35(11), 115026. https://doi.org/10.1088/1361-6641/abb842

Shvetsov, B. S., Minnekhanov, A. A., Emelyanov, A. V, Ilyasov, A. I., Grishchenko, Y. V,

Zanaveskin, M. L., Nesmelov, A. A., Streltsov, D. R., Patsaev, T. D., Vasiliev, A. L.,

Rylkov, V. V, & Demin, V. A. (2022). lene-based memristive crossbar structures with

130

multilevel resistive switching for neuromorphic computingPary. Nanotechnology,

33(25), 255201. https://doi.org/10.1088/1361-6528/ac5cfe

Shymkovych, V., Telenyk, S., & Kravets, P. (2021). Hardware implementation of radial-basis

neural networks with Gaussian activation functions on FPGA. Neural Computing and

Applications, 33(15), 9467–9479. https://doi.org/10.1007/s00521-021-05706-3

Soneson, C., Gerster, S., & Delorenzi, M. (2014). Batch effect confounding leads to strong

bias in performance estimates obtained by cross-validation. PLoS ONE, 9(6).

https://doi.org/10.1371/journal.pone.0100335

Sourikopoulos, I., Hedayat, S., Loyez, C., Danneville, F., Hoel, V., Mercier, E., & Cappy, A.

(2017). A 4-fJ/spike artificial neuron in 65 nm CMOS technology. Frontiers in

Neuroscience, 11(MAR). https://doi.org/10.3389/fnins.2017.00123

Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing

memristor found. Nature, 453(7191), 80–83. https://doi.org/10.1038/nature06932

Sun, S., Cao, Z., Zhu, H., & Zhao, J. (2020). A Survey of Optimization Methods From a

Machine Learning Perspective. IEEE Transactions on Cybernetics, 50(8), 3668–3681.

https://doi.org/10.1109/TCYB.2019.2950779

Sung, C., Hwang, H., & Yoo, I. K. (2018a). Perspective: A review on memristive hardware

for neuromorphic computation. Journal of Applied Physics, 124(15).

https://doi.org/10.1063/1.5037835

Sung, C., Hwang, H., & Yoo, I. K. (2018b). Perspective: A review on memristive hardware

for neuromorphic computation. Journal of Applied Physics, 124(15), 151903.

https://doi.org/10.1063/1.5037835

Sung, C., Hwang, H., & Yoo, I. K. (2018c). Perspective: A review on memristive hardware

for neuromorphic computation. Journal of Applied Physics, 124(15), 151903.

https://doi.org/10.1063/1.5037835

Sung, S. H., Kim, T. J., Shin, H., Namkung, H., Im, T. H., Wang, H. S., & Lee, K. J. (2021).

Memory-centric neuromorphic computing for unstructured data processing. Nano

Research, 14(9), 3126–3142. https://doi.org/10.1007/s12274-021-3452-6

Sze, V., Chen, Y.-H., Yang, T.-J., & Emer, J. (2017). Efficient Processing of Deep Neural

Networks: A Tutorial and Survey. Proceedings of the IEEE, 105(12), 2295–2329.

https://doi.org/10.1109/JPROC.2017.2761740

Taur, Y. (2002). CMOS design near the limit of scaling. IBM Journal of Research and

Development, 46(2.3), 213–222. https://doi.org/10.1147/rd.462.0213

Thimm, G., & Fiesler, E. (1997). High-order and multilayer perceptron initialization. IEEE

Transactions on Neural Networks, 8(2), 349–359. https://doi.org/10.1109/72.557673

Thomas, A. (2013). Memristor-based neural networks. Journal of Physics D: Applied Physics,

46(9), 093001. https://doi.org/10.1088/0022-3727/46/9/093001

Tsai, H., Ambrogio, S., Narayanan, P., Shelby, R. M., & Burr, G. W. (2018a). Recent

progress in analog memory-based accelerators for deep learning. Journal of Physics D:

Applied Physics, 51(28), 283001. https://doi.org/10.1088/1361-6463/aac8a5

Tsai, H., Ambrogio, S., Narayanan, P., Shelby, R. M., & Burr, G. W. (2018b). Recent

progress in analog memory-based accelerators for deep learning. In Journal of Physics

131

D: Applied Physics (Vol. 51, Issue 28). Institute of Physics Publishing.

https://doi.org/10.1088/1361-6463/aac8a5

Tuma, T., Pantazi, A., Le Gallo, M., Sebastian, A., & Eleftheriou, E. (2016). Stochastic

phase-change neurons. Nature Nanotechnology, 11(8), 693–699.

https://doi.org/10.1038/nnano.2016.70

Turian, J., Bergstra, J., & Bengio, Y. (2009). Quadratic features and deep architectures for

chunking. NAACL-HLT 2009 - Human Language Technologies: 2009 Annual

Conference of the North American Chapter of the Association for Computational

Linguistics, Short Papers, June, 245–248. https://doi.org/10.3115/1620853.1620921

Van De Burgt, Y., Lubberman, E., Fuller, E. J., Keene, S. T., Faria, G. C., Agarwal, S.,

Marinella, M. J., Alec Talin, A., & Salleo, A. (2017). A non-volatile organic

electrochemical device as a low-voltage artificial synapse for neuromorphic computing.

Nature Materials, 16(4), 414–418. https://doi.org/10.1038/NMAT4856

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., &

Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information

Processing Systems, 2017-Decem(Nips), 5999–6009.

Vaughan, O. (2023). A history of memristors in five covers. Nature Electronics, 6(1), 7–7.

https://doi.org/10.1038/s41928-023-00923-1

von Neumann, J. (1993). First draft of a report on the EDVAC. IEEE Annals of the History of

Computing, 15(4), 27–75. https://doi.org/10.1109/85.238389

Wan, Q., Sharbati, M. T., Erickson, J. R., Du, Y., & Xiong, F. (2019a). Emerging Artificial

Synaptic Devices for Neuromorphic Computing. Advanced Materials Technologies, 4(4),

1900037. https://doi.org/10.1002/admt.201900037

Wan, Q., Sharbati, M. T., Erickson, J. R., Du, Y., & Xiong, F. (2019b). Emerging Artificial

Synaptic Devices for Neuromorphic Computing. Advanced Materials Technologies, 4(4).

https://doi.org/10.1002/admt.201900037

Wan, W., Kubendran, R., Schaefer, C., Eryilmaz, S. B., Zhang, W., Wu, D., Deiss, S., Raina,

P., Qian, H., Gao, B., Joshi, S., Wu, H., Wong, H. S. P., & Cauwenberghs, G. (2022). A

compute-in-memory chip based on resistive random-access memory. Nature, 608(7923),

504–512. https://doi.org/10.1038/s41586-022-04992-8

Wang, F. Y. (2008). Memristor for Introductory Physics. 1, 1–4.

http://arxiv.org/abs/0808.0286

Wang, H., Zhao, Q., Ni, Z., Li, Q., Liu, H., Yang, Y., Wang, L., Ran, Y., Guo, Y., Hu, W., &

Liu, Y. (2018a). A Ferroelectric/Electrochemical Modulated Organic Synapse for

Ultraflexible, Artificial Visual-Perception System. Advanced Materials, 30(46),

1803961. https://doi.org/10.1002/adma.201803961

Wang, H., Zhao, Q., Ni, Z., Li, Q., Liu, H., Yang, Y., Wang, L., Ran, Y., Guo, Y., Hu, W., &

Liu, Y. (2018b). A Ferroelectric/Electrochemical Modulated Organic Synapse for

Ultraflexible, Artificial Visual-Perception System. Advanced Materials, 30(46),

1803961. https://doi.org/10.1002/adma.201803961

Wang, Q., Zhang, S., Ji, X., & Ran, F. (2020). High rejection performance ultrafiltration

membrane with ultrathin dense layer fabricated by the movement and dissolution of

metal–organic frameworks. New Journal of Chemistry, 44(32), 13745–13754.

132

https://doi.org/10.1039/D0NJ02700F

Wang, Y. E., Wei, G.-Y., & Brooks, D. (2019). Benchmarking TPU, GPU, and CPU

Platforms for Deep Learning. http://arxiv.org/abs/1907.10701

Wang, Z., Joshi, S., Savel’ev, S. E., Jiang, H., Midya, R., Lin, P., Hu, M., Ge, N., Strachan, J.

P., Li, Z., Wu, Q., Barnell, M., Li, G.-L., Xin, H. L., Williams, R. S., Xia, Q., & Yang, J.

J. (2017). Memristors with diffusive dynamics as synaptic emulators for neuromorphic

computing. Nature Materials, 16(1), 101–108. https://doi.org/10.1038/nmat4756

Wang, Z., Joshi, S., Savel’Ev, S., Song, W., Midya, R., Li, Y., Rao, M., Yan, P., Asapu, S.,

Zhuo, Y., Jiang, H., Lin, P., Li, C., Yoon, J. H., Upadhyay, N. K., Zhang, J., Hu, M.,

Strachan, J. P., Barnell, M., … Yang, J. J. (2018). Fully memristive neural networks for

pattern classification with unsupervised learning. Nature Electronics, 1(2), 137–145.

https://doi.org/10.1038/s41928-018-0023-2

Wang, Z., Li, C., Song, W., Rao, M., Belkin, D., Li, Y., Yan, P., Jiang, H., Lin, P., Hu, M.,

Strachan, J. P., Ge, N., Barnell, M., Wu, Q., Barto, A. G., Qiu, Q., Williams, R. S., Xia,

Q., & Yang, J. J. (2019). Reinforcement learning with analogue memristor arrays. Nature

Electronics, 2(3), 115–124. https://doi.org/10.1038/s41928-019-0221-6

Wang, Z., Wu, H., Burr, G. W., Hwang, C. S., Wang, K. L., Xia, Q., & Yang, J. J. (2020).

Resistive switching materials for information processing. Nature Reviews Materials,

5(3), 173–195. https://doi.org/10.1038/s41578-019-0159-3

Wijekoon, J. H. B., & Dudek, P. (2008). Compact silicon neuron circuit with spiking and

bursting behaviour. Neural Networks, 21(2–3), 524–534.

https://doi.org/10.1016/j.neunet.2007.12.037

Wijesinghe, P., Ankit, A., Sengupta, A., & Roy, K. (2018). An All-Memristor Deep Spiking

Neural Computing System: A Step Toward Realizing the Low-Power Stochastic Brain.

IEEE Transactions on Emerging Topics in Computational Intelligence, 2(5), 345–358.

https://doi.org/10.1109/TETCI.2018.2829924

Wong, H. S. P., Lee, H. Y., Yu, S., Chen, Y. S., Wu, Y., Chen, P. S., Lee, B., Chen, F. T., &

Tsai, M. J. (2012). Metal-oxide RRAM. Proceedings of the IEEE, 100(6), 1951–1970.

https://doi.org/10.1109/JPROC.2012.2190369

Wong, H. S. P., Raoux, S., Kim, S., Liang, J., Reifenberg, J. P., Rajendran, B., Asheghi, M.,

& Goodson, K. E. (2010). Phase change memory. Proceedings of the IEEE, 98(12),

2201–2227. https://doi.org/10.1109/JPROC.2010.2070050

Woo, J., Moon, K., Song, J., Lee, S., Kwak, M., Park, J., & Hwang, H. (2016). Improved

Synaptic Behavior Under Identical Pulses Using AlO x /HfO 2 Bilayer RRAM Array for

Neuromorphic Systems. IEEE Electron Device Letters, 37(8), 994–997.

https://doi.org/10.1109/LED.2016.2582859

Xia, Z., Chen, J., Huang, Q., Luo, J., & Hu, J. (2021). Neural Synaptic Plasticity-Inspired

Computing: A High Computing Efficient Deep Convolutional Neural Network

Accelerator. IEEE Transactions on Circuits and Systems I: Regular Papers, 68(2), 728–

740. https://doi.org/10.1109/TCSI.2020.3039346

Xiao, T. P., Bennett, C. H., Feinberg, B., Agarwal, S., & Marinella, M. J. (2020). Analog

architectures for neural network acceleration based on non-volatile memory. Applied

Physics Reviews, 7(3). https://doi.org/10.1063/1.5143815

133

Xinyu Wu, Saxena, V., & Kehan Zhu. (2015). A CMOS spiking neuron for dense memristor-

synapse connectivity for brain-inspired computing. 2015 International Joint Conference

on Neural Networks (IJCNN), 1–6. https://doi.org/10.1109/IJCNN.2015.7280819

Xiu, L. (2019). Time Moore: Exploiting Moore’s Law From The Perspective of Time. IEEE

Solid-State Circuits Magazine, 11(1), 39–55.

https://doi.org/10.1109/MSSC.2018.2882285

Xu, J., Li, Z., Du, B., Zhang, M., & Liu, J. (2020). Reluplex made more practical: Leaky

ReLU. Proceedings - IEEE Symposium on Computers and Communications, 2020-July.

https://doi.org/10.1109/ISCC50000.2020.9219587

Xu, W., Cho, H., Kim, Y.-H., Kim, Y.-T., Wolf, C., Park, C.-G., & Lee, T.-W. (2016).

Organometal Halide Perovskite Artificial Synapses. Advanced Materials, 28(28), 5916–

5922. https://doi.org/10.1002/adma.201506363

Yakopcic, C., Taha, T. M., Subramanyam, G., & Rogers, S. (2011). Multiple memristor read

and write circuit for neuromorphic applications. The 2011 International Joint Conference

on Neural Networks, 2676–2682. https://doi.org/10.1109/IJCNN.2011.6033569

Yan, X., Zhang, L., Chen, H., Li, X., Wang, J., Liu, Q., Lu, C., Chen, J., Wu, H., & Zhou, P.

(2018). Graphene Oxide Quantum Dots Based Memristors with Progressive Conduction

Tuning for Artificial Synaptic Learning. Advanced Functional Materials, 28(40),

1803728. https://doi.org/10.1002/adfm.201803728

Yang, J., Liu, Y., Qian, M., Guan, C., & Yuan, X. (2019). Information Extraction from

Electronic Medical Records Using Multitask Recurrent Neural Network with Contextual

Word Embedding. Applied Sciences, 9(18), 3658. https://doi.org/10.3390/app9183658

Yang, T.-H., Li, K.-X., Chiang, Y.-N., Lin, W.-Y., Lin, H.-T., & Chang, M.-F. (2018). A

28nm 32Kb embedded 2T2MTJ STT-MRAM macro with 1.3ns read-access time for fast

and reliable read applications. 2018 IEEE International Solid - State Circuits Conference

- (ISSCC), 482–484. https://doi.org/10.1109/ISSCC.2018.8310394

Yao, P., Wu, H., Gao, B., Eryilmaz, S. B., Huang, X., Zhang, W., Zhang, Q., Deng, N., Shi,

L., Wong, H. S. P., & Qian, H. (2017). Face classification using electronic synapses.

Nature Communications, 8(May), 1–8. https://doi.org/10.1038/ncomms15199

Yao, P., Wu, H., Gao, B., Tang, J., Zhang, Q., Zhang, W., Yang, J. J., & Qian, H. (2020).

Fully hardware-implemented memristor convolutional neural network. Nature,

577(7792), 641–646. https://doi.org/10.1038/s41586-020-1942-4

Ye, L., Gao, Z., Fu, J., Ren, W., Yang, C., Wen, J., Wan, X., Ren, Q., Gu, S., Liu, X., Lian,

X., & Wang, L. (2022). Overview of Memristor-Based Neural Network Design and

Applications. Frontiers in Physics, 10(July), 1–27.

https://doi.org/10.3389/fphy.2022.839243

Yoo, I. K., Kang, B. S., Park, Y. D., Lee, M. J., & Park, Y. (2008). Interpretation of nanoscale

conducting paths and their control in nickel oxide (NiO) thin films. Applied Physics

Letters, 92(20), 202112. https://doi.org/10.1063/1.2936087

Yu, H., Wei, H., Gong, J., Han, H., Ma, M., Wang, Y., & Xu, W. (2021). Evolution of Bio‐

Inspired Artificial Synapses: Materials, Structures, and Mechanisms. Small, 17(9),

2000041. https://doi.org/10.1002/smll.202000041

Yu, S., Wu, Y., Jeyasingh, R., Kuzum, D., & Wong, H.-S. P. (2011a). An Electronic Synapse

134

Device Based on Metal Oxide Resistive Switching Memory for Neuromorphic

Computation. IEEE Transactions on Electron Devices, 58(8), 2729–2737.

https://doi.org/10.1109/TED.2011.2147791

Yu, S., Wu, Y., Jeyasingh, R., Kuzum, D., & Wong, H.-S. P. (2011b). An Electronic Synapse

Device Based on Metal Oxide Resistive Switching Memory for Neuromorphic

Computation. IEEE Transactions on Electron Devices, 58(8), 2729–2737.

https://doi.org/10.1109/TED.2011.2147791

Zahari, F., Hansen, M., Mussenbrock, T., Ziegler, M., & Kohlstedt, H. (2015). Pattern

recognition with TiOx-based memristive devices. AIMS Materials Science, 2(3), 203–

216. https://doi.org/10.3934/matersci.2015.3.203

Zanotti, T., Puglisi, F. M., & Pavan, P. (2020). Smart Logic-in-Memory Architecture for

Low-Power Non-Von Neumann Computing. IEEE Journal of the Electron Devices

Society, 8(March), 757–764. https://doi.org/10.1109/JEDS.2020.2987402

Zanotti, T., Puglisi, F. M., & Pavan, P. (2021). Energy-Efficient Non-Von Neumann

Computing Architecture Supporting Multiple Computing Paradigms for Logic and

Binarized Neural Networks. Journal of Low Power Electronics and Applications, 11(3),

29. https://doi.org/10.3390/jlpea11030029

Zeiler, M. D. (2012). ADADELTA: An Adaptive Learning Rate Method.

http://arxiv.org/abs/1212.5701

Zeng, J., Chen, X., Liu, S., Chen, Q., & Liu, G. (2023). Organic Memristor with Synaptic

Plasticity for Neuromorphic Computing Applications. Nanomaterials, 13(5), 803.

https://doi.org/10.3390/nano13050803

Zhang, J. J., Sun, H. J., Li, Y., Wang, Q., Xu, X. H., & Miao, X. S. (2013). AgInSbTe

memristor with gradual resistance tuning. Applied Physics Letters, 102(18), 183513.

https://doi.org/10.1063/1.4804983

Zhang, J., & Liao, X. (2017). Synchronization and chaos in coupled memristor-based

FitzHugh-Nagumo circuits with memristor synapse. AEU - International Journal of

Electronics and Communications, 75, 82–90. https://doi.org/10.1016/j.aeue.2017.03.003

Zhang, J., & Zong, C. (2015). Deep Neural Networks in Machine Translation: An Overview.

IEEE Intelligent Systems, 30(5), 16–25. https://doi.org/10.1109/MIS.2015.69

Zhang, W., Yao, P., Gao, B., Liu, Q., Wu, D., Zhang, Q., Li, Y., Qin, Q., Li, J., Zhu, Z., Cai,

Y., Wu, D., Tang, J., Qian, H., Wang, Y., & Wu, H. (2023). Edge learning using a fully

integrated neuro-inspired memristor chip. Science (New York, N.Y.), 381(6663), 1205–

1211. https://doi.org/10.1126/science.ade3483

Zhang, X., Wang, W., Liu, Q., Zhao, X., Wei, J., Cao, R., Yao, Z., Zhu, X., Zhang, F., Lv, H.,

Long, S., & Liu, M. (2018). An Artificial Neuron Based on a Threshold Switching

Memristor. IEEE Electron Device Letters, 39(2), 308–311.

https://doi.org/10.1109/LED.2017.2782752

Zheng, N., & Mazumder, P. (2018). Online Supervised Learning for Hardware-Based

Multilayer Spiking Neural Networks Through the Modulation of Weight-Dependent

Spike-Timing-Dependent Plasticity. IEEE Transactions on Neural Networks and

Learning Systems, 29(9), 4287–4302. https://doi.org/10.1109/TNNLS.2017.2761335

Zidan, M. A., Strachan, J. P., & Lu, W. D. (2018). The future of electronics based on

135

memristive systems. Nature Electronics, 1(1), 22–29. https://doi.org/10.1038/s41928-

017-0006-8

Zyarah, A. M., Soures, N., Hays, L., Jacobs-Gedrim, R. B., Agarwal, S., Marinella, M., &

Kudithipudi, D. (2017). Ziksa: On-chip learning accelerator with memristor crossbars for

multilevel neural networks. 2017 IEEE International Symposium on Circuits and

Systems (ISCAS), 1–4. https://doi.org/10.1109/ISCAS.2017.8050531

136

ÖZGEÇMİŞ

Kişisel Bilgiler

Adı Soyadı: Baki GÖKGÖZ

Doğum tarihi:

Doğum Yeri:

Uyruğu:

Adres:

Tel:

E-mail:

Eğitim

Lise: Tekirdağ İmam Hatip Lisesi

Lisans: Uluslararası Kıbrıs Üniversitesi, Mühendislik Fakültesi,

Bilgisayar Mühendisliği Bölümü (2009)

Yüksek lisans: Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü,

Bilgisayar Mühendisliği Anabilim Dalı (2016)

Doktora: Atatürk Üniversitesi

Yabancı Dil Bilgisi

İngilizce: İyi

Tezden Üretilmiş Yayınlar

1. B. Gökgöz, F. Gül, and T. Aydin, ‘‘An overview memristor based hardware

accelerators for deep neural network,’’ Concurrency Comput., Pract. Exper., vol.

36, no. 9, pp. 1–22, Apr. 2024, doi: 10.1002/cpe.7997.

2. B. GÖKGÖZ, T. AYDIN, and F. GÜL, “Optimizing Memristor-Based Synaptic

Devices for Enhanced Energy Efficiency and Accuracy in Neuromorphic

Machine Learning,” IEEE Access, vol. 12, pp. 154401–154417, Nov. 2024.

