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ÖZET 

DOKTORA TEZİ 
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Baki GÖKGÖZ 

Danışman: Doç. Dr. Tolga AYDIN  

İkinci Tez Danışmanı: Doç. Dr. Fatih GÜL 

 

Amaç: Bu çalışmanın amacı, memristör tabanlı nano-sinaptik cihazların yapay sinir ağı (YSA) 

uygulamalarında kullanılabilirliğini bilgisayar ortamında simüle etmek ve bu cihazların performansını 

detaylı bir şekilde değerlendirmektir. Simülasyon çalışmaları, cihazların doğruluk, enerji verimliliği, 

eğitim süresi, donanım kapasitesi ve ölçeklenebilirlik gibi kritik performans kriterleri açısından 

sağladığı katkıları ortaya koymayı hedeflemektedir. Bunun yanı sıra, bu cihazlar üzerinde kullanılan 

optimizasyon yöntemlerinin etkinliği ve bu yöntemlerin performans üzerinde oluşturduğu iyileştirmeler 

incelenecektir. Çalışmanın, hem yeni nesil sinaptik cihazların geliştirilmesine hem de yapay sinir ağı 

uygulamalarında optimizasyon yöntemlerinin rolünün daha iyi anlaşılmasına katkı sağlaması 

amaçlanmaktadır. 

Yöntem: Bu çalışmada, memristör tabanlı nano-sinaptik cihazlar kullanılarak sinir ağlarının donanım 

üzerinde uygulanabilirliği incelenmiş ve bu yöntem çeşitli optimizasyon algoritmaları yardımıyla 

doğruluk, alan kullanımı ve enerji tüketimi açısından değerlendirilmiştir. Önerilen donanım tabanlı 

model, özellik tanıma ve sınıflandırma yeteneklerine sahip olup, elle yazılmış ve bilgisayar tarafından 

üretilmiş rakamların tanınmasında kullanılmaktadır. Model, ileri besleme (FF) ve geri yayılma (BP) 

süreçlerini entegre ederek giriş verilerini çıkışlarla eşleştiren bir yapı sunmaktadır. Eğitim süreci, FF ve 

BP olmak üzere iki aşamadan oluşmaktadır. İleri besleme aşamasında, girdi verileri sinir ağının giriş 

katmanına alınır, ardından ağırlıklı toplamlar ve aktivasyon fonksiyonları aracılığıyla gizli katmanlardan 

geçirilerek çıktı katmanına iletilir. Çıktılar, doğru etiketlerle karşılaştırılarak tahmin hatası hesaplanır. 

Geri yayılma aşamasında ise bu hata, sinir ağı boyunca geriye doğru yayılır ve ağırlıklar optimizasyon 

yöntemleri kullanılarak ayarlanır. Optimizasyonun temel amacı, modelin hem eğitim hem de test 

verilerinde yüksek doğruluk elde etmesini sağlamak, genelleme yeteneğini artırarak farklı veri setlerinde 

başarılı olmasını mümkün kılmak ve tüm bunları hesaplama maliyetlerini minimize ederek en verimli 

şekilde gerçekleştirecek en uygun yapılandırmayı bulmaktır.  

Bulgular: Bu çalışma, memristör tabanlı memristörlerin nöromorfik uygulamalarda yüksek doğruluk, 

enerji verimliliği ve genelleme kapasitesi sunduğunu ortaya koymaktadır. CMOS uyumlu yapıları ve 

biyolojik sinapsları taklit edebilme özellikleri sayesinde, bu cihazlar enerji verimli donanımlar için 

önemli avantajlar sağlamaktadır. Optimizasyon algoritmaları arasında AdaDelta, doğruluk ve enerji 

verimliliği açısından en iyi performansı sergilemiştir. Modelin farklı veri kümelerindeki genelleme 

kapasitesi, Memristör tabanlı cihazların geniş bir makine öğrenimi yelpazesinde etkili bir şekilde 

kullanılabileceğini göstermektedir. 

Sonuç: Memristör tabanlı sinaptik cihazlara dayalı sinir ağının performansı, MNIST ve CIFAR veri 

kümeleri üzerinde farklı optimizasyon yöntemleri kullanılarak kapsamlı bir şekilde değerlendirilmiştir. 

%90 doğruluk oranına ulaşan model, optimizasyon algoritmaları arasında sağlamlık ve genelleme 

kapasitesi sergilemiştir. Elde edilen sonuçlar, memristör tabanlı cihazların nöromorfik hesaplama ve 

donanım tabanlı yapay zekâ uygulamalarında, çeşitli optimizasyon yöntemleriyle birleştirildiğinde etkin 

bir çözüm sunduğunu ortaya koymaktadır. Ayrıca önerilen TiO2 tabanlı model, Ag:Si tabanlı sinir ağına 

göre %20 daha az enerji, %16 daha yüksek doğruluk ve %18 daha düşük gecikme sağlamaktadır. Bu 

çalışma, gelecekte daha enerji verimli ve hassas sinir ağı modellerinin geliştirilmesine katkıda bulunacak 

önemli bulgular sağlamaktadır.  

Anahtar Kelimeler: Derin öğrenme, makine öğrenimi, memristörler, nöromorfik hesaplama, 

optimizasyon algoritmaları, sinapslar, Memristör. 

Ocak 2025, 149 sayfa 
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ABSTRACT 

DOCTORAL DISSERTATION 

MEMRISTOR BASED ARTIFICIAL NEURAL NETWORK DESIGN AND OPTIMISATION 

Baki GÖKGÖZ 

Supervisor: Assoc. Prof. Dr. Tolga AYDIN  

Co-supervisor: Assoc. Prof. Dr. Fatih GÜL 

 

Purpose: The aim of this study is to simulate the usability of memristor-based nano-synaptic devices in 

artificial neural network (ANN) applications in a computer environment and to evaluate the performance 

of these devices in detail. The simulation studies aim to reveal the contributions of these devices in terms 

of critical performance criteria such as accuracy, energy efficiency, training time, hardware capacity, 

and scalability. Additionally, the effectiveness of optimization methods applied to these devices and the 

improvements they bring to performance will be examined. The study is intended to contribute both to 

the development of next-generation synaptic devices and to a better understanding of the role of 

optimization methods in artificial neural network applications. 

Method: In this study, the feasibility of implementing neural networks on hardware using memristor-

based nano-synaptic devices was examined, and this method was evaluated in terms of accuracy, area 

usage, and energy consumption with the help of various optimization algorithms. The proposed 

hardware-based model possesses feature recognition and classification capabilities and is used for 

recognizing both handwritten and computer-generated digits. The model integrates feedforward (FF) 

and backpropagation (BP) processes, providing a structure that maps input data to outputs. The training 

process consists of two stages: FF and BP. In the feedforward stage, input data is fed into the input layer 

of the neural network, then passed through the hidden layers using weighted sums and activation 

functions, and finally delivered to the output layer. The outputs are compared with the correct labels to 

calculate prediction error. In the backpropagation stage, this error is propagated backward through the 

neural network, and the weights are adjusted using optimization methods. This process is performed 

faster and more efficiently than traditional gradient descent methods, aiming to minimize the error.  

Finding: This study demonstrates that memristor-based memristors offer high accuracy, energy 

efficiency, and generalization capacity in neuromorphic applications. Due to their CMOS-compatible 

structures and ability to mimic biological synapses, these devices provide significant advantages for 

energy-efficient hardware. Among the optimization algorithms, AdaDelta exhibited the best 

performance in terms of accuracy and energy efficiency. The model's generalization capacity across 

different datasets highlights the potential for Memristör-based devices to be effectively utilized in a wide 

range of machine learning applications. 

Result: The performance of the neural network based on memristor synaptic devices was 

comprehensively evaluated on the MNIST and CIFAR datasets using different optimization methods. 

The model achieved a 90% accuracy rate, demonstrating robustness and generalization capacity among 

the optimization algorithms. The results reveal that memristor-based devices, when combined with 

various optimization methods, offer an effective solution for neuromorphic computing and hardware-

based artificial intelligence applications. Moreover, the proposed TiO2 based model provides 20% less 

energy, 16% higher accuracy and 18% lower latency than the Ag:Si based neural network. This study 

provides significant findings that will contribute to the development of more energy-efficient and precise 

neural network models in the future. 

Keywords: Deep learning, machine learning, memristors, neuromorphic computing, optimization 

algorithms, synapses, Memristör. 
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GİRİŞ 

Yapay zekâ kullanımının hızla yaygınlaştığı günümüz bilgi teknolojileri dünyasında, 

makine öğrenimi ve derin öğrenme hızla yaygınlaşmakta ve çeşitli uygulama alanları 

bulmaktadır (Ren et al., 2022). Akademik dünyada keşfedilip kullanılmaya başlanan bu 

yöntemler, hızla büyüyerek hem akademik hem de endüstriyel uygulamalarda önem 

kazanmıştır. Aynı zamanda veri biliminin de vazgeçilmez bileşenleridir (Sun et al., 2020). 

Gelişen bilgisayar teknolojileri sayesinde yapay zekâ alanlarında da önemli bir yer 

edinmişlerdir (S. Kim et al., 2019). Bununla birlikte makine öğrenimi ve derin öğrenme 

yapısında kullanılan, Derin Sinir Ağları (DNN) yüksek doğruluk, mükemmel ölçeklenebilirlik 

ve kendini uyarlama özellikleri nedeniyle yoğun olarak kullanılmaktadır (Ren et al., 2022). Bu 

yoğun kullanımın bir sonucu olarak, DNN modelleri daha büyük ve daha derin ağ yapıları 

oluşturacak şekilde geliştirilmektedir. Ayrıca, yapay zeka uygulamalarında kullanılan derin 

öğrenme algoritmaları süreçleri otomatikleştirmekte, verileri analiz etmekte ve tahmin 

işlevlerini yerine getirmektedir (Bengio et al., 2013).  

DNN modellerinin doğası gereği yüksek hesaplama gücü ve geniş bellek depolama alanı 

gerektirmektedir. Bu gereksinimler karşısında Von Neumann mimarisine dayalı klasik bilgi 

işleme ve hesaplama yöntemleri yetersiz kalmaktadır (S. Yu et al., 2011). Bu yetersizlik, bilgi 

işleme yapılarının biyolojik sinir sistemlerinden oldukça farklı olmasından kaynaklanmaktadır. 

Şekil 1(a) sıralı işlemede hesaplama ve belleğin ayrı olduğunu gösterirken, Şekil 1(b) paralel 

işlemede hesaplama ve belleğin bütünleşik olduğunu ve işlemlerin eş zamansız olarak 

gerçekleştiğini göstermektedir.  

 

Şekil 1. (a) ve (b) Von Neumann mimarisi ile nöromorfik mimari arasındaki karşılaştırmayı 

göstermektedir. Bu iki mimari, burada gösterildiği gibi çalışma, organizasyon, programlama, 

iletişim ve zamanlama açısından temelde farklılık göstermektedir. 
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VN mimarisine dayalı geleneksel bilgisayar sistemleri iyi tanımlanmış yapısal 

problemlerin çözümünde etkilidir. Ancak derin öğrenme ve yapay zeka gibi biyolojik sistemleri 

taklit eden yöntemlerin kullanılması için uygun değildir (S. Yu et al., 2011). Bunun yerine bu 

tür yöntemler için daha karmaşık mimariler kullanılmalıdır. Bunun nedeni, mantık tabanlı 

donanım ve yazılım sistemleri mimarisinin biyolojik sinir sisteminden önemli ölçüde farklı 

olmasıdır (B. Gao et al., 2016). Biyolojik beyin, öğrenme işlevini milyonlarca sinapsın paralel 

çalışmasıyla gerçekleştirmektedir (Kuzum et al., 2013). Örneğin, karmaşık bir yapay zeka 

probleminin çözümünde kullanılan bir süper bilgisayar enerji maliyeti açısından 1 megawattan 

fazla güce ihtiyaç duyarken, insan beyni çalışma mimarisi sayesinde toplamda yaklaşık 10 

watt'lık enerji tüketmektedir (Kuzum et al., 2013). Bu durum, klasik sistemlerin enerji 

gereksinimlerinin uygulama maliyetleri bakımından önemli bir zorluk teşkil ettiğini 

göstermektedir (Cumming et al., 2014). Enerji maliyeti sorununa ek olarak, klasik yöntemlerde 

verilerin sürekli olarak işlemci ve bellek birimleri arasında taşınması gerekmekte, bu da veri 

yoğun uygulamalarda gecikmelere yol açmaktadır (Eryilmaz et al., 2014; Mutlu et al., 2019). 

Bu gecikmeler özellikle gerçek zamanlı uygulamalarda temel bir sorun olarak ortaya 

çıkmaktadır (Eryilmaz et al., 2014; Gul, 2020; Sebastian et al., 2020). Bu sorunların üstesinden 

gelmek için memristör benzeri cihazlar gibi özelleşmiş, konuma özgü donanım birimlerinin 

oluşturulması düşünülmektedir (Sung, Hwang and Yoo, 2018).  

Donanım hızlandırma yoluyla Derin Sinir Ağlarının (DNN) performansını ve enerji 

optimizasyonunu artırmak için hem akademik hem de endüstriyel sektörlerde kapsamlı 

araştırmalar yürütülmektedir. 

 

Şekil 2. Moore Yasası, işlemci başına transistör sayısındaki artışı ifade eder (1971-2020). 
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Geçtiğimiz elli yılda, Moore Yasası, Dennard Ölçeklendirme ve Von Neumann mimari 

trendlerinin etkili birleşimi ve kesişimi sayesinde bilgi teknolojisi alanında hızlı ve etkili bir 

dönüşüm yaşanmıştır (Tsai et al., 2018). Moore Yasası, transistör başına maliyetin üstel olarak 

azalmasını tanımlamaktadır (Moore, 1965). Bu trend, Şekil 2'de ifade edildiği gibi yıllar 

içindeki değişim grafiğinde gösterilmektedir. Bir dizi “ölçeklendirme yasası” (Dennard et al., 

1974) ile tanımlanan Dennard ölçeklendirmesi, daha küçük transistörlerin daha hızlı çalışmasını 

ve aynı zamanda daha az güç tüketmesini sağlar.  

Von Neumann mimarisinin çok yönlülüğü, geliştiricilerin CPU ve GPU'ları modüler 

bileşenler olarak kullanarak çeşitli karmaşık bilgi işlem sistemleri oluşturmalarına olanak 

sağlamaktadır (Tsai et al., 2018b). Son yıllarda, güçlü bir etkiye sahip olabilecek bu eğilimlerin 

kesişimi geçerliliğini büyük ölçüde yitirmeye başlamıştır (Radack & Zolper, 2008). Cihazların 

ihtiyaç duyduğu güç ve voltaj parametrelerindeki değişkenlik nedeniyle, cihaz ölçeklendirme 

işlevleri daha zorlu hale gelmiştir (Zidan et al., 2018). Bu zorluklar, cihazların optimum 

işlevselliğe ulaşmasını karmaşık ve zor hale getirmektedir (Schuman et al., 2017). Sonuç olarak, 

bellek ve işlemci arasındaki veri aktarımı için harcanan zaman ve enerji, gerçek zamanlı 

görüntü tanıma ve doğal dil işleme gibi yoğun veri işleyen ve analiz eden sistemler için sorunlu 

hale gelmiştir (Eryilmaz et al., 2014; Kuzum et al., 2013). 

Günümüzde kullanılan hesaplama sistemleri Von Neumann mimarisi üzerine inşa 

edilmiştir (del Valle et al., 2018). Bu mimaride veriler önce merkezi işlem birimine (CPU) 

taşınmakta, burada işlenmekte, ardından işlenen veriler ana belleğe veya diğer bellek 

birimlerine aktarılmakta ve işlemler bu şekilde döngüsel olarak devam etmektedir (H. Li et al., 

2015). Veri hacminin yüksek olduğu durumlarda, ilgili verilerin aktarılması ve işlenmesi zaman 

ve enerji açısından önemli bir maliyet sorunu oluşturmaktadır (Kvatinsky et al., 2014). Ayrıca, 

verilerin bellek bileşenlerinden alınmasına bağlı gecikme, özellikle yapay zeka alanında artan 

iş yükleriyle uğraşan çeşitli uygulamalarda performans açısından önemli bir engel 

oluşturmaktadır (Sebastian et al., 2020). Ayrıca Şekil 3’te belirtildiği gibi sistemin veri transferi 

olan her yerinde darboğaz (bottleneck) problemi ortaya çıkmaktadır. 
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Şekil 3. Von Neumann mimarisinde darboğaz (bottleneck) problemi 

Bilim insanları, Von Neumann mimarisinin doğasında bulunan darboğaz sorununu 

çözmek için aktif olarak hem donanım hem de yazılım yaklaşımları geliştirmektedirler 

(Drakopoulos et al., 2021; Xia et al., 2021) Yöntemlerden biri ve şu anda en popüler olanı, 

biyolojik beynin çalışma modelinden ilham alan nöromorfik sistemlerdir (Eshraghian, Wang 

and Lu, 2022). Biyolojik beynin yapısı incelendiğinde, hesaplama için düşük enerji gerektiren 

çoklu nöronları, uyarlanabilir bellek birimleri olarak hizmet veren sinapslarla birbirine 

bağlayan oldukça paralel çalışan bir mimari ile karakterize edilir (Cao et al., 2023).  

Yapay Sinir Ağı (YSA) ve Nöromorfik Hesaplama 

YSA, ham veri sınıflandırması ve örüntü tanımayı içeren görevlerde modern geleneksel 

Von Neumann işlemcilerden daha iyi performans gösterebilmektedir. İnsan beyninin 

tasarımından esinlenen nöromorfik donanım sistemleri (Indiveri et al., 2011), geleneksel Von 

Neumann mimarisinden farklı olarak güçlü ve verimli bilgi işleme yetenekleri sağlama 

kapasitesine sahiptir. Bu tür bir hesaplama sistemi hatalara karşı dirençli, son derece paralel ve 

enerji tasarrufludur (Mead, 1990). Bununla birlikte, günümüzde “nöromorfik hesaplama” 

olarak adlandırılan farklı uygulama ve tasarımların sayısı önemli ölçüde artmış ve tamamen 

farklı yaklaşımları kapsar hale gelmiştir (Nawrocki et al., 2016). Bu çalışmaların büyük 

çoğunluğu beynin birkaç nöronunu taklit etmeyi amaçlayan donanım tabanlı yeni cihazları 

içerirken, sistemin bir diğer kısmı da kısmen veya tamamen beynin çalışma modelinden 

esinlenen yeni yazılım algoritmalarını içermektedir (Lukoševičius & Jaeger, 2009). Sonuç 

olarak memristör devre elemanları kullanılarak donanım tabanlı sistemlerin geliştirilmesi 

üzerine çalışmalar yapılmıştır.  
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Memristör (L. Chua, 1971), değişken bir direnç gibi davranarak direnç değerini değiştiren 

ve akımın geçişi sırasında kapasitif bir eleman gibi davranarak akımın akışını kontrol eden bir 

devre elemanıdır (Oli-Uz-Zaman et al., 2022). Yeni bir donanım teknolojisi olan memristörler 

çok küçük ölçeklerde çalışmakta ve büyük ölçekli entegrasyonlar için kullanılabilmektedir 

(Gharpinde et al., 2018). Memristörlerin operasyonel mantığı ile karşılaştırıldığında, klasik 

tamamlayıcı metal-oksit-yarı iletken (CMOS) çalışma yöntemi, küçük alan gereksinimleri ve 

düşük güç tüketimi gibi benzer avantajlar sergilemektedir (Cheng & An, 2021a).  

Memristör tabanlı derin sinir ağlarının avantajlarına rağmen, cihaz değişkenliği, mevcut 

teknolojinin sınırlamaları ve memristörlerin esnekliği gibi ele alınması gereken zorluklar vardır. 

Bu sorunların uygulamaların işleyişi üzerinde olumsuz etkileri bulunmaktadır. Sonuç olarak, 

donanım tabanlı sinir ağı uygulamalarında üstesinden gelinmesi gereken zorluklar vardır. Bu 

zorlukları aşmak için memristörler diğer sistemlere kıyasla daha fazla potansiyel çözümü 

sağlayabileceği yapılan çalışmalarla ortaya konulmuştur (Cheng & An, 2021). 

Memristör tabanlı donanım sistemleri üzerine çeşitli inceleme makaleleri yapılmıştır. 

Mutlu ve meslektaşları, derin sinir ağlarını (DNN'ler) verimli bir şekilde işlemeyi amaçlayan 

son gelişmeler üzerine kapsamlı bir çalışma (Mutlu et al., 2019) yürütmüştür.  

Sebastian ve ekibi, bellek aygıtları tarafından etkinleştirilen temel hesaplama işlevlerinin 

yanı sıra bilimsel hesaplama, sinyal işleme, optimizasyon, makine öğrenimi, derin öğrenme ve 

stokastik hesaplama gibi uygulamaları inceleyen bir çalışma (Sebastian et al., 2020) sunmuştur.  

Bir diğer çalışma, Von Neumann mimarisindeki verimsizlikleri ortadan kaldırmak için 

farklı fiziksel prensiplere dayanan dirençli anahtarlama malzemelerinin tasarımına 

odaklanmıştır. Wang ve ekibi, dirençli anahtarlama süreçlerine (RSM) yol açan fiziksel 

mekanizmalarla ilgili çalışmaları incelemiş ve mekanizmaların temsil kabiliyeti, anahtarlama 

hızı, enerji, güvenilirlik ve cihaz yoğunluğu hakkında bilgi vermiştir (Z. Wang et al., 2020). 

Yang ve meslektaşları, derleme makalelerinde çeşitli memristör sinaptik cihazları uyaran 

modellerine göre sınıflandırmış ve bu sinaptik cihazların çalışma mekanizmalarının ayrıntılı bir 

analizini yapmıştır. Bir başka çalışma (S. Chen et al., 2023) ile hem biyolojik hem de yapay 

hücrelerde nöral sinyal üretimi ve iletiminin karmaşık süreçlerine yönelik mevcut yaklaşımların 

genel bir incelemesi sunulmuştur.  

Günümüzde doğal dil işleme, metin tahmini, nesne algılama, konuşma ve görüntü tanıma 

gibi çeşitli yapay zekâ uygulamalarında YSA mimarilerinin kullanımı önemli ölçüde artmıştır. 

Geleneksel YSA uygulamalarında, bellek ve işlem birimleri arasında büyük ölçekli veri 
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hareketleri gerçekleşmekte ve bu işlemler yüksek hesaplama maliyetleri gerektirmektedir. Bu 

hesaplama süreçlerini daha verimli hale getirmek amacıyla çeşitli yazılım ve donanım 

çözümleri geliştirilmektedir. Ancak, tüm bu çabalara rağmen, veri trafiğindeki gecikme ve 

yüksek enerji tüketimi gibi Von Neumann mimarisinin darboğaz sorunları devam etmektedir. 

Bu darboğazın üstesinden gelmek için yapay zekâ uygulamalarına özel donanım elemanlarının 

tasarlanması ve geliştirilmesi gerekmektedir. Bu doğrultuda, nörobiyolojik sistemlerden 

esinlenen çeşitli özelliklerin donanım düzeyinde tasarlanması ve entegre edilmesi, bu soruna 

etkili bir çözüm sunabilir. Bu yaklaşım çerçevesinde, özellikle memristör tabanlı nöromorfik 

hesaplama sistemleri dikkat çekmektedir. Memristörler, uçucu olmayan bellek özellikleri ve 

analog davranışları sayesinde hız ve enerji verimliliği açısından umut verici donanım 

iyileştirmeleri sunmaktadır. Sinaptik ağırlıkların etkin bir şekilde depolanmasına ve 

işlenmesine olanak tanıyan bu cihazlar, donanım düzeyinde performans artırıcı çözümler 

sunmaktadır. 

Bu çalışmada, güncel sistemlerden farklı olarak doğrudan derin öğrenme işlevlerini 

yerine getirebilen ve biyolojik beyin yapısını taklit edebilen memristör tabanlı nöromorfik 

hesaplama sistemleri ele alınmaktadır. Bu bağlamda, çalışmada derin öğrenme ve makine 

öğrenmesi uygulamalarında sıkça kullanılan Stokastik Gradyan İnişi (SGD) ve momentum 

tabanlı optimizasyon varyantlarının memristör tabanlı sistemler üzerindeki performansı 

kapsamlı bir şekilde deneysel olarak incelenmiştir. Ayrıca, nano ölçekli memristör tabanlı 

sinaptik cihazların öğrenme özellikleri, enerji verimliliği ve doğruluk oranları gibi önemli 

performans metrikleri detaylı olarak araştırılmıştır. Uygulamada MNIST ve CIFAR-10 veri 

setleri kullanılarak elde edilen deneysel sonuçlar sonraki bölümlerde paylaşılmıştır. 

Tezin Amacı ve Alana Katkıları 

Literatür incelemesi, memristör ileri teknoloji malzemeler kullanılarak çip üzerinde 

öğrenme süreçlerini gerçekleştirmeyi hedefleyen dirençli sinaptik diziler üzerine yapılan 

araştırmaları kapsamaktadır. Bu malzemeler, özellikle hafif yapıları ve enerji tasarrufu sağlayan 

özellikleri ile modern nöromorfik hesaplama sistemlerinin geliştirilmesinde etkili bir potansiyel 

sunmaktadır. Araştırmalar, memristör tabanlı sinaptik dizilerin elektriksel karakteristiklerini 

inceleyerek bu malzemelerin sinaptik davranışları nasıl taklit ettiğini anlamayı amaçlamaktadır. 

Bu çalışmalar, nöromorfik uygulamalar için gerekli olan doğrusal olmayan iletim, yüksek 

anahtarlama hızları, geniş bellek pencereleri, uzun süreli bellek tutma yetenekleri gibi birçok 

temel elektriksel özelliği analiz etmektedir. Bu bağlamda, özellikle sinaptik ağırlıkların sürekli 

olarak güncellenmesine olanak tanıyan çok katmanlı yapılar ve malzemelerin sinaptik 
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plastikliği, uzun süreli potansiyasyon (LTP) ve depresyon (LTD) gibi biyolojik fonksiyonları 

destekleyebilme kapasitesi ön plana çıkmaktadır. 

Özetle literatür incelemesinde genellikle memristör malzemeleri kullanılarak çip üzerinde 

öğrenmeyi sağlamak amacıyla dirençli sinaptik dizilerin incelendiği görülmüştür. Bu 

çalışmaların odak noktası genellikle bu malzemelerin elektriksel özellikleri ve sinaptik 

davranışları olmuştur. Bu çerçevede, bu çalışma ile:   

1. Memristör tabanlı nano-sinaptik bir cihazın yapay sinir ağı uygulamalarında 

kullanımını bilgisayar ortamında simüle ederek, bu cihaz üzerindeki optimizasyon 

yöntemlerinin performansını derinlemesine analiz ederek alana önemli katkılar 

sunulmuştur. 

2. Bu çalışmada, yapay sinir ağı uygulamalarında kullanılan memristör tabanlı nano-

sinaptik cihazın doğruluk, enerji optimizasyonu ve eğitim süresi gibi kritik 

performans ölçütleri optimize edilerek test edilmiştir. 

3. MNIST ve CIFAR-10 veri kümeleri üzerinde gerçekleştirilen rakam tanıma ve 

sınıflandırma uygulamaları ile cihazın ve kullanılan optimizasyon yöntemlerinin 

performansı kapsamlı bir şekilde analiz edilmiştir. 

4. Bu detaylı analizlerin sonucunda, cihazın kullanılan veri kümelerinde yüksek 

doğruluk oranları elde ettiği, dolayısıyla uygulamalarda hata oranını düşürerek etkili 

sonuçlar sunduğu görülmüştür. 

5. Memristör tabanlı nano-sinaptik cihaz, enerji tüketimi bakımından klasik bilgisayar 

sistemlerine göre önemli ölçüde tasarruf sağlamakta, düşük enerji tüketimiyle yapay 

zekâ uygulamalarında yeni bir donanım çözümü olarak öne çıkabileceği 

gösterilmiştir. 

6. Yapılan simülasyonlarda, Stocastic Gradient Descent (SGD) ve onun varyantları gibi 

optimizasyon yöntemleri kullanılarak cihazın dayanıklılığı, adaptasyon yeteneği ve 

farklı veri kümelerine uyum kabiliyeti test edilmiştir. 

7. Bu çalışma, önerilen sistemin sağlamlığını ve uyarlanabilirliğini vurgulayarak, 

cihazın değişen koşullara ve parametre ayarlarına hızla adapte olabilen bir yapıya 

sahip olduğunu ortaya koymaktadır. 

8. Nöromorfik mimarilerin potansiyeli ve yapay zekâ sistemlerine sağladığı katkılar ele 

alınarak, geleneksel bilgi işlem paradigmasının sınırlamalarının ötesine geçebilecek 

alternatif bir yol gösterilmiştir. 
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9. Elde edilen simülasyon sonuçları, memristör tabanlı nano-sinaptik cihazların, 

nöromorfik hesaplama sistemleri için sürdürülebilir ve yüksek performanslı bir 

çözüm sunduğunu, böylece yapay sinir ağı tabanlı uygulamalarda gelecekte yaygın 

bir kullanım alanına sahip olabileceğini göstermektedir. 

10. Çalışmanın sonuçları, klasik bilgisayar sistemlerine bir alternatif olarak memristör 

tabanlı nano-sinaptik cihazların etkili bir donanım çözümü sunduğunu kanıtlamış 

olup, bu cihazların daha geniş alanlarda uygulanabilirliğini araştırmak için 

gelecekteki çalışmalara rehberlik etmektedir. 

Bu çalışma, memristör tabanlı nano-sinaptik cihazların yapay sinir ağı uygulamalarındaki 

kapasitesini ve verimliliğini simülasyonlar aracılığıyla inceleyerek, optimizasyon 

yöntemlerinin bu cihazlar üzerindeki yansıması bilgisayar üzerinde simüle ederek detaylı bir 

biçimde değerlendirmektedir. 

Bu tezin devamı, aşağıdaki şekilde yapılandırılmıştır. İlk olarak, Kuramsal Temeller 

bölümü, ilgili literatürü kapsamlı bir biçimde ele alarak tez konusuna ilişkin temel kavramları 

ve kuramsal çerçeveyi sunmaktadır. Ardından, Materyal ve Metot bölümünde, araştırmada 

kullanılan materyallerin özellikleri ayrıntılı olarak tanımlanmış ve önerilen yöntemin uygulama 

süreci açıklanmıştır. Bulgular ve Tartışma bölümünde ise araştırma sonuçları kapsamlı bir 

biçimde analiz edilerek, literatürdeki benzer çalışmalarla kıyaslanmış ve farklı açılardan 

yorumlanmıştır. Son olarak, Sonuçlar ve Öneriler bölümünde elde edilen bulgular ışığında bu 

alanda gelecekte yapılacak çalışmalara yönelik öneriler sunularak ve çalışmanın genel katkısı 

tartışılarak tez tamamlanmaktadır. 
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KURAMSAL TEMELLER 

Memristörün Tarihsel Gelişimi 

Ewald Georg von Kleist 1745 yılında kondansatörü, Georg Simon Ohm 1827 yılında 

direnci ve Michael Faraday 1831 yılında indüktörü keşfetmiştir (Mazumder et al., 2012). Bu 

devre elemanları ve aralarındaki ilişki Şekil 4'te gösterilmiştir. Şekil 4'te gösterilen devrede 

kondansatör elektrik yükü ile elektrik potansiyeli arasındaki bağlantıyı, direnç elektrik akımı 

ile voltaj arasındaki ilişkiyi, indüktör ise manyetik akı ile elektrik akımı arasındaki ilişkiyi 

kurmaktadır (R. Lin et al., 2023). Bununla birlikte, uzun bir süre boyunca akım ve yük 

arasındaki ilişkiyi kuran devre elemanı tanımlanmamıştır (Strukov et al., 2008). Leon Chua 

1971 yılında simetri argümanlarına dayanarak dirençler, kapasitörler ve indüktörlerin yanında 

dördüncü bir devre elemanı olması gerektiğini savunmuş ve bu elemana hafızalı direnç olan 

memristör adını vermiştir (L. Chua, 1971). Chua ve Kang tarafından 1976 yılında yapılan başka 

bir çalışma (L. O. Chua & Sung Mo Kang, 1976) ile memristör daha da detaylandırılmış ve 

memristör özellikleri gösteren devre elemanları detaylı bir biçimde ele alınmıştır. 

 

Şekil 4. Dört temel iki terminalli pasif devre elemanı 

Çalışma, donanım tasarımının memristör kullanımını içerdiği “memristif sistemler” adı verilen 

yeni bir sistemi tanıtmakta ve böyle bir sistem için gerekli kriterleri belirlemektedir (Corinto et 

al., 2015). Ayrıca bu çalışma, memristörün akım-gerilim karakteristiğinin bir histerezis eğrisi 

sergilediğini tespit eden ilk çalışmadır (F. Y. Wang, 2008). Buna ek olarak, çalışma, yüksek 

frekanslarda bir direncin akım-gerilim karakteristiğinin doğrusal bir direncinkine benzer 

olduğunu açıklamaktadır (Adhikari et al., 2013; Sah et al., 2015). Şekil 5, Leon Chua'nın akım-

gerilim karakteristiğine dayalı olarak tahmin edilen memristör histerezis eğrisini (Lyscaous) 
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göstermektedir. Chua ve Kang, çalışmalarında Hodgkin Huxley Sinir Modeli (Y. Liu et al., 

2021) gibi sistemlerin memristörler kullanılarak uygulanabileceğini öne sürmüşlerdir. (L. O. 

Chua & Sung Mo Kang, 1976). Ayrıca, çalışmalarında memristif sistemler için modelleme 

yöntemlerini de göstermişlerdir. 2010 yılında, nöro plastisiteye benzeyen uzun vadeli plastisite 

(LTP), memristörlerin en yaygın olarak uygulanan temel işlevlerinden biri olan sürüklenme 

temelli memristörlerde (drift memristors) taklit edildi  (Jo et al., 2010). 2010 yılında, biyolojik 

sistemlere kıyasla bağlantı ve işlev yoğunluğu sunan bir memristör çapraz çubuk dizisi de 

geliştirilmiştir (C. Li et al., 2019). Faz Değişim Belleği (PCM) olarak bilinen memristör türleri 

2010 yılında uygulamalar için önerilmiştir (Wong et al., 2010). 2012 yılında, PCM tabanlı 

devreler nöromorfik spiking fonksiyonları taklit edilerek uygulanmıştır (Pickett et al., 2013). 

 

Şekil 5. Leon Chua'nın öngördüğü memristör histerezisi (L. O. Chua & Sung Mo Kang, 1976) 

2016 yılında Wang ve arkadaşları tarafından, metal iyonlarının redoks reaksiyonu ve metal 

iletken bir filament oluşumu yoluyla iletkenlik anahtarlamasını kontrol eden iletken köprü 

memristörleri (CBM) önerilmiştir. 2019 yılında, tamamen entegre ve programlanabilir 

memristör çip setleri geliştirilmiştir (Vaughan, 2023). Bu araştırma, bir memristör çapraz çubuk 

dizisi ile tamamlayıcı metal-oksit-yarı iletken (CMOS) kontrol devrelerinin kombinasyonunu 

içeriyordu. Sonuç olarak yüksek verimlilikle çarpma-biriktirme işlemlerini gerçekleştirebilen 

nöromorfik bir bilgi işlem çipinin oluşturulmasıydı (F. Cai et al., 2019). 2020'de yapılan bir 

çalışma, geleneksel çapraz çubuk dizilerinin iki boyutlu yapısını geliştirerek üç boyutlu 

memristör devreleri geliştirmeyi amaçlamıştır (P. Lin et al., 2020). Bellekte hesaplama 

yapabilen, CMOS ve dirençli rastgele erişimli bellek (RRAM) yapısına sahip memristör 

cihazları içeren, yüksek enerji verimli ve düşük gecikmeli bir donanım yapısı 

gerçekleştirilmiştir (Hung et al., 2021). 2022 yılına gelindiğinde, çip üzerinde iletişim için 

memristör çapraz çubuk dizilerine dayalı bir cihaz geliştirilmiş ve paralel veri işleme için 

kullanılmıştır (Choi et al., 2022). 
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Uzun yıllar boyunca memristörün teorik bir unsur olduğuna ve böyle bir devre elemanının 

gerçekte var olmadığına inanılıyordu (Johnsen, 2012; Meuffels & Soni, 2012). Bu algı 

nedeniyle araştırmacılar, 2008 yılında Hewlett Packard (HP) laboratuvarlarında fiziksel olarak 

uygulanana kadar bu yeni devre elemanına fazla ilgi göstermemiştir (Strukov et al., 2008). 

Memristörün HP tarafından donanımsal olarak gerçekleştirilmesinden sonra, araştırmacıların 

dikkatini hızla çekmiş ve memristörler üzerinde yoğun çalışmalar ve araştırmalar yapılmasına 

yol açmıştır (Ascoli et al., 2016; Kvatinsky et al., 2013). Bu atılımın başarılmasına rağmen, 

memristörün bir devre bileşeni olarak pratikte uygulanması gecikmiştir. Bu gecikme nedeniyle, 

araştırmacılar memristörlerin rolünü yerine getiren devrelerle devre modellemeye odaklanmış 

ve çok sayıda modelleme süreci yürütmüştür (Biolek & Biolková, 2009). 

Memristörün Yapısı  

Memristörün yapısı genellikle iki terminalli, pasif, enerji depolamayan, doğrusal olmayan 

özelliklere sahip küçük boyutlu bir akım-voltaj devre elemanıdır (Liao et al., 2021). HP firması 

tarafından donanım olarak hayata geçirilen memristörün matematiksel ifadesi de HP 

laboratuvarında gerçekleştirilmiştir. İlgili matematiksel ifadeler aşağıda gösterilmiştir. 

Denklem 1 ile akım ve gerilim arasındaki ilişki ifade edilmiştir. 

𝑉(𝑡) = 𝑅𝑀𝐸𝑀(𝑥)𝑖(𝑡)                                                                                     (1) 

Denklem 2 ile memristör direncinin değişimi gösterilmiştir. 

𝑅𝑀𝐸𝑀(𝑥) = [𝑅𝑂𝑁(𝑥) + 𝑅𝑂𝐹𝐹(1 − 𝑥)]                                                      (2) 

Memristörler, depolanmış ve depolanmamış olmak üzere iki bölge ile ifade edilebilir ve 

depolanmış bölgenin genişliğinin toplam memristör genişliğine oranındaki değişim, x olarak 

gösterilmekte olup, aşağıdaki Denklem 3 ile temsil edilmiştir (Strukov et al., 2008). 

𝑑𝑥

𝑑𝑡
=

𝜇𝑣𝑅𝑂𝑁

𝐷2
𝑖(𝑡)                                                                                    (3) 

Daha iyi ve sağlıklı bir sonuç elde edebilmek için HP tarafından önerilen pencereleme 

fonksiyonu Denklem 4'te ifade edilmiştir. 

𝑓(𝑥) =
𝑥(1 − 𝑥)

𝐷
                                                                                   (4) 

Katkılı bölgenin alanının tüm memristör bölgesine oranındaki değişimi bulmak için denklem 

(4) ve Denklem (3) kullanılarak bu oran bulunur. Bu işlem Denklem 5 ile ifade edilir. 
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𝑑𝑥

𝑑𝑡
=

𝜇𝑣𝑅𝑂𝑁

𝐷2
𝑖(𝑡)𝑓(𝑥)                                                                         (5) 

Memristörler çok küçüktür ve birim alan başına yoğunlukları insan beynindeki sinaps 

yoğunluğuyla karşılaştırılabilir (Strukov et al., 2008). Bu, biyolojik sinir ağlarının işleyiş 

yöntemlerini taklit edebilen yapay sinir ağları oluşturmak için umut verici bir teknolojidir 

(Eshraghian et al., 2022). Bu alanların etkinleştirilebilmesi için memristörlerin büyük diziler 

halinde düzenlenmesi gerekmektedir (Caravelli & Carbajal, 2018). Memristör dizilerini 

okuyabilen ve yazabilen devrelerin geliştirilmesi, memristör teknolojisinin ilerlemesinde 

önemli bir adımdır (Yakopcic et al., 2011). Bu tür devreler, memristör dizisine doğru bir şekilde 

veri okuyup yazabilmenin yanı sıra memristör dizisinden geçen akım akışını algılama ve 

kontrol etme gibi diğer işlevleri de yerine getirecek şekilde tasarlanmalıdır. Memristörlerin 

okunarak ve yazılarak bellek depolama için nasıl kullanılacağını açıklayan makaleler 

yazılmıştır (Ho et al., 2011; Niu et al., 2010). Bu devreler, bir memristörün durumunu 

belirlemek için analog karşılaştırıcılar olarak fonksiyonel amplifikatörler kullanır. Kim ve 

arkadaşlarının çalışması, memristör direncini önceden belirlenmiş sekiz değer kümesine 

değiştirme yeteneğine sahip karmaşık okuma ve yazma devreleri önermektedir (H. Kim et al., 

2010). Memristör, paralel hesaplama ile ilgili olan vektör matris çarpımı için kullanılabilecek 

doğrusal, çok seviyeli iletim durumlarına sahip olma potansiyeli nedeniyle büyük ilgi 

görmektedir (Hu et al., 2016). Bu donanım durumu ile yazılım, CPU ve GPU ile birlikte hızlı 

bir geliştirme ve dönüştürme sürecinde daha yüksek hızlara ulaşma imkanına sahip olmaktadır. 

Bu nedenle tasarlanan sistemlerden en iyi verimin alınabilmesi için memristörlerin geliştirilen 

donanım sistemi zincir yapısı içerisinde doğru konumlandırılması önem arz etmektedir. 

Sinaps cihazı 

Günümüzde kullanılan hesaplamalı veri işleme, birçok modern bilgisayar sistemi 

mimarisinin temelini oluşturan Von Neumann mimarisi üzerinde gerçekleştirilmektedir (Tsai 

et al., 2018). Bu mimari, bir bilgisayarın temel bileşenleri olan işlemci, bellek ve giriş/çıkış 

birimlerini bir araya getirmektedir (von Neumann, 1993). Merkezi işlem birimi ve belleğin bir 

arada çalıştığı sistem transistör teknolojisine dayanmaktadır (Shaw, 1950). Bu durum nedeniyle 

donanım, Moore yasasını takip ederek kısa sürede hızlı bir gelişim göstermiştir (Manfrinato et 

al., 2013). Moore Yasası'na (Moore, 1965) göre, bir entegre devredeki transistör sayısının her 

iki yılda bir iki katına çıkacağı ve üretim maliyetlerinin düşmesi nedeniyle bilgisayar 

donanımlarının performansının da her iki yılda bir iki katına çıkacağı düşünülmektedir. Bu 

durum daha güçlü ve verimli CPU'ların ve bellek sistemlerinin geliştirilmesine yol açmıştır.  
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Sonuç olarak, veri işleme donanımı daha yüksek işlem hızları ve daha büyük bellek 

kapasiteleri sağlayarak daha güçlü ve verimli hale gelmiştir (Hu et al., 2017). Bu durum, daha 

güçlü ve verimli bilgi işlem sistemlerinin yanı sıra daha gelişmiş yazılım ve uygulamaların 

geliştirilmesine yol açmıştır. Transistörlerin ölçeklendirilmesi ve daha küçük alanlara daha 

fazla transistör yerleştirilmesi sonucunda CPU'nun işlem hızı önemli ölçüde artmıştır (Xiu, 

2019). Bununla birlikte, CPU ve bellek arasındaki yavaş veri aktarımı, hesaplama hızını 

yavaşlatır ve bu da enerji verimliliğini azaltır. Bu durum CPU'nun çalışma sırasında daha fazla 

enerji tüketmesine neden olmaktadır (Zanotti et al., 2020). Moore Yasası sayesinde transistör 

teknolojisi ve von Neumann mimarisi, transistörleri 10 nanometreye kadar küçülterek sınırlarını 

zorlamış ve bu teknolojilerin üretim sınırlarına atomik düzeyde ulaşmamızı sağlamıştır (Taur, 

2002). CPU'ların ve belleklerin performansını artırmak için birçok araştırmacı transistör ve von 

Neumann mimarisindeki teknik sorunları ele almaya çalışmıştır (Palit et al., 2014). Bu durum, 

yüksek performanslı, son teknoloji bilgi işlem ve bellek cihazlarına daha fazla ihtiyaç 

duyulmasına neden olmuştur. Carver Mead, nöromorfik sistem adı verilen ve aynı anda hem 

hesaplama hem de bellek işlemlerini gerçekleştirerek insan beyninin çalışma mekanizmasını 

taklit eden yeni bir hesaplama sistemi olan nöromorfik sistemi önermiştir (Mead, 1990). 

Nöromorfik sistemler, insan beyninin çalışma mekanizmalarını taklit etmek için geliştirilmiş 

bir bilgisayar sistemi türüdür. Bunlar, beyin gibi birden fazla işlemi aynı anda gerçekleştirerek 

çoklu görev yapmak üzere tasarlanmıştır. Nöromorfik sistemler, insan beyninin çalışma 

mekanizmalarını kopyalamanın yanı sıra, insanların çözebildiği problemleri çözebilme 

yeteneğine de sahiptir (Hu et al., 2017). 

Biyolojik sinaps 

Biyolojik bir sinaps, sinaptik yarık olarak bilinen küçük bir boşlukla birbirine bağlanan 

iki hücrenin oluşturduğu, sinir hücreleri arasında mesaj iletmek için özel bir bağlantı olarak 

bulunur (W. Xu et al., 2016). Şekil 6'da sinapsların konumu gösterilmektedir. Şekil 6'da ifade 

edildiği gibi, pre-sinaptik nöron akson ucundan post-sinaptik nöronun dendritine doğru 

konumlanır (Kandel et al., 2012). Nörotransmitterler post-sinaptik nöronun reseptörlerine 

bağlanmadan önce, pre-sinaptik nöronun aksonunun ucunda elektriksel bir spike (darbe) 

oluştururlar, ardından nörotransmitterler iki nöron arasındaki boşluğa salınır ve postsinaptik 

nöronun reseptörlerine bağlanarak bir elektrik sinyali oluştururlar (H. Yu et al., 2021). 

Oluşturulan bu sinyal daha sonra nöron boyunca iletilir. Biyolojik sinyaller, post-sinaptik 

nöronun dendritine bir nörotransmitter gönderildikten sonra bağlı nöronlar aracılığıyla sinir 

sistemine iletilir (Bower & Beeman, 1995). Sinaps plastisitesi, sinapsların aktiviteye yanıt 
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olarak güçlerini değiştirme yeteneğidir. Diğer bir ifadeyle sinapsın bir sinyalin hızını veya 

yoğunluğunu artırma veya azaltma kabiliyetidir (G. Lee et al., 2021; S. Yu et al., 2011). Ayrıca, 

kısa ve uzun süreli hafızanın yapılandırılmasıyla yakından bağlantılı olup öğrenme ve hafıza 

oluşumu için önemlidir (Saïghi et al., 2015).  

 

Şekil 6. Biyolojik sinaps şeması. Sinaptik iletim, presinaptik hücreden gelen sinyallerin 

postsinaptik hücreye iletilmesi sürecidir. Şemada, sinaptik veziküller presinaptik hücre içinde 

bulunur ve sinir hücreleri arasında iletişimi sağlayan nörotransmitterleri içerir. 

Beynin öğrenme süreci sırasında, sinaps olarak bilinen nöronlar arasındaki bağlantı, 

sinaptik plastisite aşamasında ya daha güçlü ya da daha depresif hale gelebilir (Rajendran et al., 

2019). Spike Zamanına Bağlı Plastisite (STDP), postsinaptik ve pre-sinaptik nöronlardaki 

aksiyon potansiyellerindeki artışlar arasındaki zamanlama farkına bağlıdır (Burr et al., 2017). 

Şekil 7, biyolojik bir sinaps ile metal oksit tabanlı yapay bir sinaps arasındaki karşılaştırmayı 

göstermektedir. Pre-sinaptik ve post-sinaptik nöronlar, uyarıcı ve inhibe edici post-sinaptik 

potansiyellerin elektrik sinyallerini gönderir ve alır.  
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Şekil 7. Yapay sinapsın gösterimi. 

Bu sinyaller, nörotransmitterleri serbest bırakarak iki nöron arasındaki bağlantının gücünü 

değiştirmek için kullanılır (Kuzum et al., 2011; Sung et al., 2018). Uzun süreli güçlenme (LTP), 

sinaptik ağırlığın kalıcı olarak değiştirildiği sinaptik güçte kalıcı bir değişikliktir. Kısa bir süre 

içinde bir dizi ardışık uyarım meydana geldiğinde, sinaptik aktivite artar (uzun süreli güçlenme) 

veya azalır (uzun süreli depresyon, LTD). Bu değişiklik birkaç dakika veya daha uzun sürebilir 

(H. Yu et al., 2021). Spike-Timing-Dependent Plasticity, bir sinapsın gücünün presinaptik ve 

post-sinaptik aksiyon potansiyellerinin veya spike'ların (STDP) zamanlamasına bağlı olarak 

değiştiği bir olgudur (Yan et al., 2018). 

Yapay sinaps 

Biyolojik sinaps plastisitesi, sinaptik ağırlık olarak adlandırılan ve analog bir şekilde 

kontrol edilebilen bir bağlantı gücüdür (Q. Wan et al., 2019). Yapay sinapslar, biyolojik bir 

sinapsın önemli işlevlerini taklit etmek için tasarlanmıştır (W. Xu et al., 2016). Yapay sinaps, 

iki sinir hücresi arasındaki bağlantı olan biyolojik sinapsın işlevini taklit eden bir cihazdır (H. 

Yu et al., 2021). Yapay sinapslar, insan beyninin yapısını ve davranışını taklit eden bir 

bilgisayar türü olan nöromorfik bilişimde kullanılmaktadır. Bu sinapslar tipik olarak silikon, 

metal veya organik moleküller gibi malzemelerden yapılır ve biyolojik sinapslardan geçen 

elektrik sinyallerini taklit etmek için tasarlanmıştır (H. Yu et al., 2021). Yapay sinapslar, 

karmaşık sorunları çözmek için kullanılabilecek yapay sinir ağları oluşturmak için 

kullanılabilir. Şekil 7'de gösterildiği gibi iletkenlik değişiminin (direnç) sinaptik bir ağırlıkla 

değiştirilmesi, biyolojik nöronun tepkisinin yapay bir sinaps uygulamasıyla taklit edilmesini 

gerektirir (Do et al., 2010). Yapay sinapslar, hafızanın nasıl korunduğunu belirleyen Uzun 

Süreli Potansiyasyon (LTP) ve Kısa Süreli Potansiyasyon (STP) olmak üzere iki tür sinaptik 

plastisiteye sahiptir. 

Uzun Vadeli Potansiyasyon (LTP), Uzun Vadeli Depresyon ve Kısa Vadeli 

Potansiyasyon (LTD) 

Sinaptik plastisite, nöronlar arasındaki bağlantıların yoğunluğundaki değişimi ifade eder 

(Bear & Malenka, 1994). İlk çalışmalarda, yüksek frekanslı presinaptik uyarımın uzun süreli 

güçlenmeyi (LTP) tetiklediği, düşük frekanslı uyarımın ise sinir hücrelerinde uzun süreli 

depresyonu (LTD) başlattığı gösterilmiştir (Bliss & Lømo, 1973). Temel faktörlerden biri uzun 

vadeli plastisite olarak adlandırılır. Sinaptik ağırlıktaki uzun vadeli değişiklikleri ifade eder ve 

insan beynindeki öğrenme ve hafıza mekanizmalarıyla ilişkili olduğuna inanılır (Daoudal & 
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Debanne, 2003). Sinirsel bağlantıların güçlendiği, sinaptik güçte uzun vadeli veya kalıcı bir 

artışla sonuçlanan kalıcı bir duruma uzun vadeli güçlenme (LTP) denir (Feldman, 2012). Diğer 

bir deyişle, nöral bağlantıların zayıfladığı, sinaptik güçte uzun süreli veya kalıcı bir azalmaya 

yol açan kalıcı bir durum, uzun süreli depresyon (LTD) olarak adlandırılır (Bear & Malenka, 

1994).  

LTP ve LTD, nöromorfik bilgi işlem sistemlerinde sinaptik ağırlıkları düzenleyen ve 

güncelleyen temel ilkeler olarak kullanılabilir (Zeng et al., 2023). Sinaptik plastisite, iki nöron 

arasındaki bağlantının gücünün değiştirilmesi anlamına gelir ve bu da aralarında iletilen ve sivri 

uç olarak bilinen darbelerin süresiyle belirlenir (Ranjan et al., 2016; Zahari et al., 2015). Darbe 

genişliğine dayalı sinaptik plastisite, Spike-Time Dependent Plasticity (STDP) (Dan & Poo, 

2006; Linares-Barranco & Serrano-Gotarredona, 2009) olarak bilinen ve sinirsel öğrenme için 

temel bir mekanizma olarak hizmet eder (Caporale & Dan, 2008). 

Elektrokimyasal transistörler, STP veya LTP gibi biyolojik sinapsların nörokimyasal 

işlevlerini çoğaltmanın bir yolu olarak incelenmekte ve geliştirilmektedir (Sheliakina et al., 

2018). STP ve LTP'li sinapslar, plastisite zaman ölçeğinde öğrenme ve hafıza oluşumu için 

sinirsel temeldir (H. Wang et al., 2018). Çeşitli sistemler LTP süreçlerini mümkün kılarken, 

sıvı elektrolit bileşenleri (Gkoupidenis et al., 2015; J. Shi et al., 2013) sınırlı tutma süresi ve 

küçük iletkenlik değişimi nedeniyle belirsiz STP/LTP sinyalleri içerir (Van De Burgt et al., 

2017). Çoklu plastisiteye sahip entegre cihazlar oluşturmak ve nöromorfik devreleri 

basitleştirmek için, güvenilir uçucu olmayan belleğe ve açıkça ayırt edilen kısa vadeli ve uzun 

vadeli plastisite modlarına sahip katı hal organik sinapslar tasarlamak çok önemlidir. LTP ve 

STP, Şekil 8'de gösterildiği gibi yapay sinapslar, dış sinyallerle geçici olmayan bir değişime 

sahip olduklarında gerçekleştirilir. 

 

Şekil 8. Yapay sinapslar LTP (kırmızı) ve STP (mavi). 
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Makine öğrenimi ile memristör tabanlı çalışmalar 

Günümüz dünyasında makine öğrenimi, veri işleme teknolojilerinin temel 

bileşenlerinden biri haline gelmiştir. Sürekli artan veri hacmiyle birlikte, akıllı veri analizinin 

teknolojik amaçlar için daha yaygın ve önemli hale geleceğine inanılmaktadır (Mahdavinejad 

et al., 2018; Sarker et al., 2021). Makine öğreniminin önemli bir kısmı, veri işleme 

operasyonları ve bu operasyonlar sırasında karşılaşılan sorunlar için etkili çözümler sunmaktır. 

Makine öğrenimi, yapay zekânın bir alt kümesidir. Makine öğrenimi algoritmaları, açıkça 

programlanmadan otomatik olarak deneyimlerden öğrenir ve gelişir (Gupta et al., 2022). 

Makine öğrenimi algoritmaları, verileri akıllıca analiz ederek, gerçek dünya sorunları için akıllı, 

gerçek zamanlı mühendislik uygulamaları geliştirmenin anahtarıdır (Jhaveri et al., 2022). 

Makine öğrenimi, Denetimli, Denetimsiz ve Takviyeli Öğrenme olarak kategorize edilir. 

Memristör tabanlı çalışmalarda (Serb et al., 2016; Z. Wang et al., 2019; Yao et al., 2020; W. 

Zhang et al., 2023), bu öğrenme algoritmaları çeşitli derin öğrenme yöntemleriyle birlikte 

kullanılmaktadır. 

Makine öğreniminde denetimli öğrenmenin işlevi, her bir girdi öğesini ilgili sınıf etiketi 

değeriyle eşleştirmektir. Eğitimden sonra, bir bilgisayar bir nesneyi amaçlanan çıktı ile 

ilişkilendirir, böylece öğrenme sürecini kolaylaştırır. Memristör tabanlı nöromorfik hesaplama 

sistemleri, sinir ağlarını eğitmek için hızlı ve enerji açısından verimli bir yaklaşım sağlar. Yao 

ve meslektaşları (Yao et al., 2020) çalışmalarında, bir derin öğrenme üzerinde denetimli bir 

öğrenme algoritması kullanarak hız ve enerji açısından verimli durumu açıklamışlardır. 

Denetimsiz öğrenme, etiketlenmemiş veri nesneleri üzerinde çalışır. Bu öğrenme türü 

genellikle özellik çıkarma, önemli desen ve yapıları tespit etme, ilgili nesneleri eşleştirme ve 

pratik amaçlar için kullanılır  (J. Yang et al., 2019). Denetimsiz öğrenme algoritmasının 

kullanıldığı bir çalışmada, metal oksit tabanlı memristörlerin kademeli ve çok seviyeli 

anahtarlama özelliklerinden yararlanılarak olasılıksal bir sinir ağı tasarlanmıştır (Serb et al., 

2016). 

Derin sinir ağı tabanlı pekiştirmeli öğrenme algoritmaları, insan müdahalesi veya 

gözetimi ihtiyacını azaltarak bilgi ve problem çözme becerilerini otonom olarak edinebilen 

makineler oluşturma konusunda büyük umut vaat etmektedir (Z. Wang et al., 2019). Wang ve 

araştırma ekibi çalışmalarında, pekiştirmeli öğrenme uygulamasını sergilemek için deneysel bir 

çalışma gerçekleştirmiştir. Analog ve dijital bileşenleri birleştiren özel tasarlanmış bir 

platformda tek bir transistör ve tek bir memristörden (genellikle 1T1R olarak adlandırılır) 
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oluşan üç katmanlı bir ağ kullandılar. Bunu başarmak için, benzersiz kurulumları için 

uyarlanmış değiştirilmiş bir öğrenme algoritması kullanmışlardır. 

Derin Öğrenmeye Genel Bakış 

Derin Öğrenme (Deng, 2014), çok katmanlı sinir ağı yapıları kullanılarak verilerdeki üst 

düzey soyutlamaları modellemek için çeşitli algoritmalar kullanan bir türdür. İlk olarak 1986 

yılında tanıtılmış ve 2000 yılında sinir ağlarına uygulanmıştır (Schmidhuber, 2015). Derin 

öğrenme algoritmaları, farklı karmaşıklık seviyelerinde veri kümelerini çıkarıp analiz etmek 

için birden fazla katman kullanır (LeCun et al., 2015). Derin öğrenme uygulamaları, 

bilgisayarların basit kavramlardan karmaşık kavramları öğrenip analiz etmelerine olanak tanır 

(Goodfellow et al., 2016). Hiyerarşik öğrenme olarak da bilinen Derin Öğrenme (DL), Yapay 

Sinir Ağı'nın (ANN) genel aktivasyonunu dönüştürmek için birçok hesaplama aşamasında ilgili 

değerlerin doğru şekilde atanmasıyla ilişkilidir (Deng, 2014). Derin mimariler, çok düzeyli 

soyutlamalarla (yani doğrusal olmayan işlemlerle) karmaşık fonksiyonları öğrenme işleminde 

kullanılır (Turian et al., 2009). Kısacası, derin öğrenme, denetimli veya denetimsiz;  özellik 

öğrenme, sınıflandırma ve desen tanıma gibi görevleri yerine getirmek için çok düzeyli 

doğrusal olmayan hesaplama ve soyutlama kullanan makine öğreniminin bir dalıdır (Deng, 

2014). 

 

Şekil 9. Derin Sinir Ağı 

Yapay Sinir Ağı (ANN), katmanlar halinde düzenlenmiş yapay nöronlardan oluşan bir 

hesaplama sistemidir. Derin Sinir Ağları (DNN’ler) günümüzde bilgisayarla görme, konuşma 

tanıma ve robotik gibi birçok yapay zekâ ve makine öğrenimi uygulaması için yaygın olarak 

kullanılmaktadır (Sze et al., 2017). Bu sinir ağlarının klasik uygulamalarda gerçekleştirdiği 

hesaplama işlemleri, bellek ve işlemci birimleri arasında büyük ve sürekli veri hareketleri 

gerektirir; bu tür iş yükleri için özel donanım geliştirme çalışmaları devam etmektedir (Musisi-
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Nkambwe et al., 2021). Şekil 9'da gösterilen ağ yapısı, giriş verilerini tanımlamak ve 

sınıflandırmak için birlikte çalışan, her biri farklı ağırlık değerlerine sahip, birbiriyle bağlantılı 

düğüm katmanlarından oluşmaktadır. Şekil 9’da gösterilen daireler ağın düğümleri olarak 

adlandırılır. Her düğüm belirli girdi değerlerine sahiptir ve onları birbirine bağlayan çizgilere 

ağırlık denir. 

Derin Sinir Ağları (DNNs) 

Derin Sinir Ağları (DNN'ler) (Oli-Uz-Zaman et al., 2022; J. Zhang & Zong, 2015), 

geleneksel algoritmalarla çözülemeyen karmaşık problemleri çözmek için kullanılır. Bu ağlar, 

verilerden karmaşık desenleri ve özellikleri çıkarma yeteneğine sahiptir. DNN'ler, görüntü 

tanıma ve doğal dil işleme gibi çeşitli görevlerde de kullanılabilir. DNN, veriyi ileri iletmek 

için çok katmanlı doğrusal olmayan gizli düğümler kullanan bir yapay sinir ağıdır (Capra et al., 

2020). DNN'ler üzerine yapılan araştırmalar, derin katmanlı ağlar, filtreler, eğitim ve test veri 

setlerini içerir. Yapay sinir ağları, katman sayısının artırılmasıyla daha derin hale getirilerek 

derin sinir ağları (DNN'ler) oluşturulur. Araştırmacılar, çalışmalarında derin inanç ağları 

(DBN), derin yığın ağları (DSN), evrişimli sinir ağları (CNN) ve yinelemeli sinir ağları (RNN) 

gibi çeşitli DNN sistemleri geliştirmişlerdir (J. Zhang & Zong, 2015). 

Tablo 1. DNN tipleri (Cheng & An, 2021) 

DNNs Temel özellikler Temel uygulamalar 

CNN 
Evrişim, havuzlama ve tam bağlantı katmanlarının 

etkisinin azalması. 

Görüntü İşleme ve Nesne Tespiti 

RNN 

Yapay sinir ağı yapısında ileri beslemeli ve geri 

beslemeli sinir ağı yapıların kombinasyonu (geri 

besleme). 

Doğal Dil İşleme, Kredi Kartı 

Dolandırıcılığı Tespiti, El Yazısı 

Tanıma. 

LTSM 

Özel bir RNN türü olan derin öğrenme algoritmalarıyla, 

görüntülerden elde edilen bilgiler kullanılarak birçok 

sınıflandırma ve tahmin işlemi gerçekleştirilebilir. 

Doğal dil işleme ve metin işleme: 

Görsellerden otomatik altyazı 

oluşturma ve ilgili metinlerden kelime 

üretme. 

Gan 
Denetimsiz öğrenme, Generatif Model ve Ayırt Edici 

Model olmak üzere iki modeli içerir. 

Anlamsal Segmentasyon ve Görüntü 

Çözünürlüğü Artırma. 

 

Derin sinir ağları (DNN'ler), görüntü sınıflandırma veya konuşma tanıma gibi karmaşık 

makine öğrenimi görevlerinde olağanüstü sonuçlar göstermiştir. DNN makine öğrenimi 

teknikleri, birçok uygulamada insan performansına eşdeğer veya bazı durumlarda daha yüksek 

doğruluk seviyelerine ulaşmıştır. Uygulamalarda, belirli bir görev için elde edilen yüksek 

doğruluğun, verideki herhangi bir yapaylıktan değil, uygun problem temsilinin 

kullanılmasından kaynaklandığından emin olmak önemlidir (Leek et al., 2010; Soneson et al., 
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2014). Bu nedenle, modelin öğrendiklerini yorumlamak ve anlamak için geliştirilen yöntemler, 

güvenilir bir doğrulama sürecinin önemli bir parçası haline gelmiştir (Hansen et al., 2011). 

Yorumlanabilirlik, özellikle tıp veya otonom araçlar gibi modelin doğru özelliklere bağlı 

kalarak çalışmasının hayati önem taşıdığı uygulamalarda çok büyük öneme sahiptir (Bojarski 

et al., 2017; Caruana et al., 2015). Tablo 1'de DNN'ler kendine özgü özellikleri ve uygulama 

alanları ile gösterilmiştir. 

DNN'ler ve aktivasyon fonksiyonları 

Literatürde, sigmoid, lojistik, tanh, ReLU ve Leaky-ReLU gibi aktivasyon fonksiyonları 

bulunmaktadır (Hoon Chung et al., 2016). 

 

Şekil 10. Aktivasyon fonksiyonunun basitleştirilmiş blok diyagramı. 

Tablo 2. Aktivasyon fonksiyonları ve özellikleri 

Aktivasyon 

Fonksiyonu 
    Grafik Tanım 

Sigmoid 

 

Sigmoid aktivasyon fonksiyonu, sıfır ile 

bir arasında bir değer üretir. 

Tanh 

 

Tanh fonksiyonu, -1 ile +1 arasında 

değerler üretir. 

ReLU 

 

ReLU aktivasyon fonksiyonunda, giriş 

değeri sıfırdan küçük olduğunda çıkış 

değeri sıfırdır, ancak giriş değeri sıfırdan 

büyük olduğunda çıkış değeri giriş 

değeriyle eşittir (Nwankpa et al., 2018). 

Leakly ReLU 

 

Leaky ReLU fonksiyonu, klasik ReLU 

aktivasyon fonksiyonunun bir 

varyasyonudur. Bu fonksiyonun çıkışı, 

negatif giriş değerlerine karşı küçük bir 

eğime sahiptir (J. Xu et al., 2020). 

𝜎(𝑥) =
1

1 + 𝑒−𝑥
 

𝜎(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

max (0, 𝑥) 

max (0.1𝑥, 𝑥) 
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ELU 

 

Negatif değerlere sahip olması, ortalama 

birim aktivasyonunu sıfıra yaklaştırarak 

hesaplama karmaşıklığını azaltır ve bu 

sayede öğrenme hızını artırır (J. Xu et al., 

2020). 

 

Aktivasyon fonksiyonunun rolü, belirli bir nöronun aktive edilip edilmeyeceğine karar 

vermek gibi çeşitli aktivasyon fonksiyonları vardır (Sharma et al., 2020). Bu, bir katmandaki 

nöronlardan gelen çıktı değerlerinin aktivasyon fonksiyonları kullanılarak sonraki 

katmanlardaki nöronlara aktarıldığı anlamına gelir. Nöronda oluşan bir çıktının diğer 

katmanlara gönderilip gönderilmeyeceğine karar verilirken bir eşik değerine ihtiyaç duyulur. 

Bunun nedeni nörondaki verinin değerinin (-∞, +∞) aralığında herhangi bir değer alabilmesidir. 

Ayrıca nöron veri transfer limitini bilmemektedir. Bu nedenle, nöron aktivasyonunda karar 

verme sürecinde aktivasyon fonksiyonları kullanılmalıdır. Bir aktivasyon fonksiyonu 

kullanılmadan, ağırlıklar ve bias değerleri yalnızca doğrusal bir dönüşüm gerçekleştirecektir, 

bu da doğrusal bir regresyon modeliyle aynıdır (Jagtap et al., 2020). Bu doğrusal modelin 

çözülmesi kolaydır, ancak karmaşık problemlerle çok iyi sonuçlar başaramaz. Doğrusal 

olmayan aktivasyon fonksiyonu, giriş verileri üzerinde doğrusal olmayan bir dönüşüm 

gerçekleştirerek daha karmaşık görevleri öğrenmesine ve gerçekleştirmesine olanak tanır 

(Jagtap et al., 2020). Basitleştirilmiş aktivasyon fonksiyonu yapısı Şekil 10'da gösterilmektedir 

(Haoxiang & S, 2021).  

Tablo 2, yapay sinir ağlarında kullanılan çeşitli aktivasyon fonksiyonlarının grafiksel 

gösterimleri verilmiştir. 

DNN katman tipleri  

Derin öğrenme, yapay zekâ disiplininde, bilgisayarlı görü, doğal dil işleme ve konuşma 

tanıma gibi alanlarda çığır açıcı gelişmelere imkân tanıyan bir makine öğrenimi alt dalıdır. Bu 

alandaki başarılar, büyük ölçüde çok katmanlı yapay sinir ağları adı verilen karmaşık 

hesaplamalı modellerin geliştirilmesine dayanmaktadır. Her bir sinir ağı katmanı, belirli bir 

özelliği öğrenmeye yönelik olarak tasarlanmış olup, tüm katmanların bir araya gelmesiyle 

oluşturulan derin mimari, büyük veri kümelerinden karmaşık ilişkileri çıkarabilme yeteneği 

kazanır. Cai, Wu ve Zhang tarafından yapılan çalışmada vurgulandığı üzere, çalışmada 

incelenen derin öğrenme mimarilerinde kullanılan farklı katman türleri, ağın genel 

performansını doğrudan etkileyen optimizasyon süreçlerinin merkezinde yer almaktadır (Y. Cai 

et al., 2019; Y.-H. Jin et al., 2020). Bu bağlamda, derin öğrenme modellerinde sıklıkla 

𝑓(𝑥) = {
𝑥, 𝑥 ≥ 0

𝛼(𝑒𝑥 − 1), 𝑥 < 0
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kullanılan yinelemeli katmanlar, havuzlama katmanları, tam bağlantılı katmanlar ve döngüsel 

katmanlar gibi farklı katman türlerinin özellikleri ve işlevleri kullanılmaktadır. Bu tezin 

kapsamında uygulamada kullanılan katmanlar ve hipermatreler ayrıntılı olarak ilerleyen 

bölümlerde ele alınacaktır. 

Giriş katmanı 

Giriş katmanı, derin öğrenme modellerinde ham verilerin, modelin iç yapısına entegre 

edildiği ilk ve kritik bir bileşendir. Bu katman, dış dünyadan elde edilen karmaşık ve çeşitli veri 

türlerini, modelin anlayabileceği bir temsile dönüştürme işlevini üstlenir. Bilgisayarlı görü 

uygulamalarında olduğu gibi, giriş katmanı, ham görüntü verilerini standartlaştırmak, 

gürültüleri azaltmak ve belirgin özellikleri vurgulamak amacıyla ön işleme adımları 

gerçekleştirir. Örneğin, Feng ve arkadaşları tarafından yapılan çalışma (Feng et al., 2020) ile 

giriş katmanında uygulanan çeşitli görüntü dönüşümlerinin, modelin öznitelik öğrenme 

performansını önemli ölçüde etkilediği gösterilmiştir. Bu sayede, model, daha yüksek seviyeli 

soyut kavramları öğrenerek, karmaşık görsel verileri daha doğru bir şekilde sınıflandırabilir 

veya nesneleri tespit edebilir. Dolayısıyla, giriş katmanı, derin öğrenme modellerinin başarısı 

için temel bir yapı taşıdır ve modelin genel performansını doğrudan etkileyen bir faktördür. 

RNN katmanı 

Tekrarlayan sinir ağları (RNN), özellikle sıralı veriyle çalışan derin öğrenme 

modellerinin temel yapı taşlarından biridir. Bu ağlar, giriş verilerindeki zaman veya sıraya bağlı 

bağlamları anlamak ve işlemek amacıyla tasarlanmış yapısal bileşenlerdir. RNN'ler, her bir 

zaman adımında girdileri işleyerek ve önceki zaman adımından gelen bilgileri bir "gizli durum" 

aracılığıyla koruyarak, verilerdeki ardışık ilişkileri öğrenir. Bu mekanizma, metin, ses ve zaman 

serileri gibi sıralı verilerde önemli olan bağlamsal bilgilerin modellenmesini sağlar. RNN'in 

temel çalışma prensibi, bir ağırlık matrisi aracılığıyla giriş vektörleri ve önceki gizli durumun 

birleşik bir dönüşümünü gerçekleştirmek ve bu dönüşüme doğrusal olmayan bir aktivasyon 

fonksiyonu uygulamaktır. Bu süreç, her bir zaman adımında tekrarlanarak verideki uzun vadeli 

ve kısa vadeli bağımlılıkların yakalanmasını mümkün kılar. Ancak, RNN'lerin vanishing 

gradient (kaybolan gradyan) problemi nedeniyle uzun vadeli bağımlılıkları öğrenmekte zorluk 

yaşayabileceği bilinmektedir. Bu sorunu çözmek için, LSTM (Uzun Kısa Süreli Bellek) ve 

GRU (Gated Recurrent Unit) gibi gelişmiş RNN türleri geliştirilmiştir. Bu türler, veri içinde 

hangi bilgilerin tutulacağı veya unutulacağına karar veren kapı mekanizmalarını kullanarak 

performansı artırır (Hochreiter & Schmidhuber, 1997). Tekrarlayan sinir ağları, derin öğrenme 
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modellerinin sıralı verileri anlamasında ve sıralı veri gerektiren görevlerde yüksek performans 

göstermesinde kritik bir rol oynar. RNN'ler, bu bağlamsal ilişkileri yakalayarak makine çevirisi, 

duygu analizi ve ses tanıma gibi uygulamalarda derin öğrenmenin başarısını artırmaktadır. 

Havuzlama 

Havuzlama katmanları, derin öğrenme tabanlı bilgisayarlı görme sistemlerinde, 

yinelemeli katmanlarla birlikte kullanılan temel bir bileşendir. Bu katmanlar, RNN işlemi 

sonucu elde edilen öznitelik haritalarının boyutunu düşürmek amacıyla alt örnekleme işlemi 

uygularlar. Alt örnekleme, hesaplama maliyetini azaltarak modelin daha verimli çalışmasını 

sağlar, aşırı öğrenme riskini düşürür ve çeviri değişmezliği artırarak modelin farklı boyutlardaki 

veya hafifçe deforme olmuş girdilere karşı daha dayanıklı olmasını sağlar. Yaygın olarak 

kullanılan havuzlama yöntemleri arasında, bir bölge içerisindeki en büyük değerin seçildiği 

maksimum havuzlama ve bölge içerisindeki değerlerin ortalamasının alındığı ortalama 

havuzlama bulunmaktadır. Yapılan bir çalışma (S. Li et al., 2019) ile havuzlama katmanlarının 

derin öğrenme modellerinin başarısı üzerindeki etkileri detaylı bir şekilde incelenmiştir . Bu 

çalışmada, farklı havuzlama yöntemlerinin modelin performansı, öğrenme süresi ve genelleme 

yeteneği üzerindeki etkileri karşılaştırılmıştır. 

Tam bağlantılı katman 

Tam bağlantılı katmanlar (yoğun katmanlar olarak da bilinir), derin öğrenme 

modellerinde, verideki karmaşık ilişkileri ve soyut kavramları öğrenmek için kullanılan temel 

bir bileşendir. Bu katmanlarda, bir önceki katmandaki her nöron, sonraki katmandaki her 

nörona tek tek bağlanır. Bu sayede, ağ boyunca bilgi akışı maksimum düzeyde sağlanır ve 

model, verideki global bilgiyi daha etkili bir şekilde yakalar. Tam bağlantılı katmanlar, 

genellikle derin öğrenme modellerinin çıkış katmanı olarak kullanılır ve sınıflandırma veya 

regresyon gibi çeşitli görevlerde son tahmini yaparlar. Sınıflandırma görevlerinde, softmax gibi 

bir aktivasyon fonksiyonu kullanarak farklı sınıflar için olasılık dağılımları elde edilirken, 

regresyon görevlerinde ise doğrusal bir aktivasyon fonksiyonu tercih edilir. Yapılan bir çok 

çalışma (Prihatno et al., 2021; Q. Wang et al., 2020) ile tam bağlantılı katmanların derin 

öğrenme modellerindeki önemini ve çeşitli uygulamalarını detaylı bir şekilde incelemiştir. Bu 

çalışmalarda, tam bağlantılı katmanların farklı mimarilerdeki ve hiperparametre ayarlarındaki 

etkileri incelenerek, model performansını optimize etmek için önemli bulgular elde edilmiştir. 
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Bırakma katmanı 

Bırakma katmanı, derin öğrenme modellerinde aşırı uyum sorununu hafifletmek için 

sıklıkla kullanılan bir düzenleme tekniğidir. Aşırı uyum, modelin eğitim verilerine aşırı 

derecede uyum sağlaması ve sonuç olarak yeni, görülmemiş veriler üzerinde genelleme 

yeteneğini kaybetmesi durumudur. Bırakma tekniği, bu sorunu çözmek amacıyla, eğitim 

sürecinde sinir ağının gizli katmanlarındaki nöronların bir kısmını rastgele devre dışı bırakarak 

modelin karmaşıklığını azaltır. Bu sayede model, eğitim verilerindeki rastlantısal gürültülere 

karşı daha dayanıklı hale gelir ve genelleme performansı artar. Yapılan bir çalışma (Choe & 

Shim, 2019) ile bırakma tekniğinin, özellikle büyük ve karmaşık sinir ağlarında aşırı uyumu 

önlemedeki etkinliği vurgulanmıştır. Bırakma işlemi, her bir eğitim yinelemesinde farklı bir alt 

kümedeki nöronların devre dışı bırakılması şeklinde gerçekleştirilir. Bu sayede, model, her bir 

eğitim adımında farklı bir yapıya sahip olur ve bu da modelin daha genelleyici özelliklere sahip 

olmasını sağlar. Sonuç olarak, bırakma katmanı, derin öğrenme modellerinin başarısı için 

önemli bir araçtır ve modelin genelleme yeteneğini önemli ölçüde artırır. 

Düzleştirme katmanı 

Düzleştirme katmanı, derin öğrenme mimarilerinde, özellikle evrişimli sinir ağlarında, 

çok boyutlu girdi verilerini tek boyutlu bir vektör temsiline dönüştürmek amacıyla kullanılan 

bir işlemdir. Bu işlem, yüksek boyutlu verilerin, tamamen bağlantılı katmanlar gibi daha basit 

yapıdaki katmanlara uygulanabilmesi için gereklidir. Evrişimli katmanlar tarafından elde edilen 

özellik haritaları gibi çok boyutlu veriler, düzleştirme işlemi sayesinde tek boyutlu bir vektör 

haline getirilerek, sonraki katmanlara daha uygun bir formatta sunulur. Bu sayede, modelin 

daha yüksek seviyedeki soyut kavramları öğrenmesi ve karmaşık kararlar alması kolaylaşır. 

Anand ve arkadaşları tarafından yapılan çalışmada, düzleştirme katmanının, derin öğrenme 

modellerinin başarısı üzerindeki etkisi ve farklı mimarilerdeki kullanımı detaylı bir şekilde 

incelenmiştir (Anand et al., 2022). Düzleştirme işlemi, herhangi bir parametre öğrenimi 

gerektirmeyen basit bir işlem olmasına rağmen, modelin genel performansı üzerinde önemli bir 

etkiye sahip olabilir. Özellikle, düzleştirme işlemi öncesinde uygulanan normalizasyon ve 

beyazlatma gibi ön işleme teknikleri, modelin öğrenme hızını artırabilir ve genelleme 

yeteneğini güçlendirebilir. 

DNN modellerinin hiperparametreleri ve uyarlanmaları 

Derin öğrenme modellerinin tasarımı, belirli bir problem için en uygun sinir ağı 

mimarisinin belirlenmesi sürecini ifade eder. Bu süreçte, modelin yapısal bileşenleri olan 
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katman sayısı, katman türleri ve bu katmanların birbirine nasıl bağlanacağı gibi kritik kararlar 

verilir. Modelin performansını doğrudan etkileyen hiperparametreler ise, modelin öğrenme 

sürecini kontrol eden ayarlanabilir parametrelerdir. Öğrenme oranı, küme boyutları, düzenleme 

parametreleri ve optimizasyon algoritması gibi hiperparametreler, modelin genelleme yeteneği, 

eğitim süresi ve yakınsama hızı üzerinde önemli etkilere sahiptir. Bu parametrelerin uygun 

şekilde ayarlanması, modelin istenen performansa ulaşabilmesi için büyük önem taşır. Derin 

öğrenme modellerinin tasarımında hem teorik bilgi hem de deneysel çalışmaların birleşimiyle 

elde edilen bilgilerden yararlanılır. Modelin karmaşıklığı, veri kümesinin özellikleri, hesaplama 

kaynakları ve çözülmek istenen problemin doğası gibi faktörler, tasarım sürecinde dikkate 

alınması gereken önemli unsurlardır. Tasarlanan bir DNN modelinde birçok hiperparametre 

bulunabilir. Bu parametrelerden en önemlileri; hedef boyutu, parti boyutu, aktivasyon 

fonksiyonu, optimizasyon fonksiyonu, eğitim tur sayısı olarak sıralanabilir. 

Bir derin öğrenme modelinin başarısı, sadece mimarisiyle değil, aynı zamanda 

hiperparametrelerinin de doğru seçimiyle belirlenir. Hiperparametreler, modelin öğrenme 

sürecini kontrol eden ve modelin genelleme yeteneğini doğrudan etkileyen ayarlanabilir 

değerlerdir. Bu nedenle, en uygun hiperparametreleri belirlemek, model tasarımının kritik bir 

aşamasıdır. Hiperparametre optimizasyonu, genellikle deneysel bir süreçtir ve araştırmacıların 

domain bilgisine, sezgisine ve mevcut yöntemlere dayanır. Son zamanlarda, bu süreci daha 

verimli hale getirmek için otomatik hiperparametre arama yöntemleri popülerlik 

kazanmaktadır. Aşağıda, derin öğrenme modellerinde sıkça kullanılan hiperparametreler ve 

bunların etkileri detaylı olarak incelenecektir. 

Hedef boyut 

Hedef boyut parametresi, görüntü işleme görevlerinde, girdi görüntülerinin 

çözünürlüğünü düşürerek hesaplama maliyetini azaltmayı amaçlayan bir tekniktir. Bu yöntem, 

orijinal görüntüde bazı bilgilerin kaybına yol açsa da modelin eğitim ve tahmin süreçlerini 

hızlandırır. Ancak, aşırı derecede çözünürlük düşürmek, modelin önemli görsel özelliklerini 

kaçırmasına ve performansını düşürmesine neden olabilir. Bu nedenle, hedef boyut 

parametresinin seçimi, modelin doğruluğu ve hızının bir denge noktası olarak belirlenmelidir. 

Batch boyutu 

Derin öğrenme algoritmalarında, tüm eğitim verisi üzerindeki hesaplamaların tek seferde 

gerçekleştirilmesi, özellikle büyük veri setleri için hesaplama maliyetini önemli ölçüde 

artırabilir. Bu nedenle, eğitim verisi daha küçük alt kümelere bölünerek işlenir. Bu alt kümelere 
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"parti" veya "mini-batch" denir. Parti boyutu ise, her bir partide bulunan örnek sayısını belirten 

bir hiperparametredir. Parti boyutunun seçimi, modelin yakınsama hızını, genelleme 

performansını ve bellek kullanımını etkileyen önemli bir faktördür. Küçük parti boyutları, 

modelin daha sık güncellenmesini sağlayarak daha hızlı öğrenmeye olanak tanırken, büyük 

parti boyutları ise daha kararlı bir öğrenme süreci sunar. 

Aktivasyon fonksiyonu 

Derin öğrenme modellerinde, aktivasyon fonksiyonları, doğrusal bir dönüşümün ardından 

elde edilen çıktıyı doğrusal olmayan bir çıktıya dönüştürerek modelin karmaşık ilişkileri 

öğrenme yeteneğini artırır. Bu sayede model, gerçek dünyadaki verilerin doğrusal olmayan 

yapısını daha iyi temsil edebilir. Aktivasyon fonksiyonları, aynı zamanda, geri yayılım 

algoritması ile modelin parametrelerinin güncellenmesi için gerekli olan gradyan 

hesaplamalarında da önemli bir rol oynar. Sigmoid, tanh ve ReLU gibi farklı aktivasyon 

fonksiyonları bulunmaktadır. ReLU, genellikle tercih edilen bir fonksiyon olup, daha hızlı 

öğrenme ve daha az hesaplama maliyeti gibi avantajlara sahiptir (Gong et al., 2023). 

Optimizasyon fonksiyonu 

Derin öğrenme modellerinin eğitimi, özünde, yüksek boyutlu bir parametre uzayında bir 

optimizasyon problemidir (Mai et al., 2023). Modelin parametrelerini, belirli bir maliyet 

fonksiyonunu minimize edecek şekilde ayarlamak amacıyla çeşitli optimizasyon algoritmaları 

kullanılır. Bu algoritmalar, genellikle stokastik gradyan inişi (SGD) yöntemine dayalı olup, 

model parametrelerini, maliyet fonksiyonunun gradyantının zıt yönünde güncelleyerek iteratif 

bir şekilde ilerler.  

Stokastik gradyan inişin temel bir varyasyonu olan SGD, her iterasyonda eğitim verisinin 

küçük bir alt kümesi (mini-batch) üzerinde hesaplanan gradyant kullanılarak parametreleri 

günceller. Bu sayede, hesaplama maliyeti azaltılır ve model daha hızlı öğrenir. Ancak, SGD, 

öğrenme oranının uygun şekilde ayarlanmasını ve yerel minimumlara sıkışma riskini içerir. Bu 

sorunları aşmak için, Adagrad, Adadelta, Adam, Adamax gibi adaptif öğrenme oranı 

algoritmaları geliştirilmiştir. Bu algoritmalar, her bir parametre için farklı öğrenme oranları 

kullanarak, seyrek parametrelerin daha hızlı öğrenmesini ve sık görülen parametrelerin daha 

yavaş öğrenmesini sağlar.  

Farklı optimizasyon algoritmalarının performansı, veri kümesi, model mimarisi ve 

hiperparametre ayarlarına göre değişebilir. Örneğin, Adagrad, seyrek veri setlerinde iyi 
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performans gösterirken, Adam, daha genel amaçlı bir optimizasyon algoritması olarak kabul 

edilir. Adamax ise, Adam'ın bir varyasyonu olup, daha kararlı bir öğrenme süreci sunar. Seçilen 

optimizasyon algoritması, modelin yakınsama hızını, genelleme performansını ve hesaplama 

maliyetini doğrudan etkiler. Bu nedenle, derin öğrenme uygulamalarında, farklı optimizasyon 

algoritmalarını deneyerek en uygun olanını seçmek önemlidir. Optimizasyon yöntemleri bu tez 

çalışmasının önemli bir parçası olup ileride detaylı biçimde ele alınacaktır.   

Epoch sayısı 

Eğitim sürecinde, tüm eğitim verisi üzerinde bir geçiş yapılması "epoch" olarak adlandırılır. 

Her epoch'ta, eğitim verisi belirli büyüklükteki parçalara (batch veya mini-batch) ayrılır ve 

model bu parçalardaki veriler üzerinde sırayla eğitilir. Her batch'ten sonra, modelin ağırlıkları, 

hesaplanan gradyantlar doğrultusunda güncellenir. Bu iteratif süreç, modelin parametrelerinin 

optimum değerlere yakınsamasını sağlar. 

Epoch sayısı, modelin ne kadar süre eğitildiğini belirleyen önemli bir hiperparametredir. 

Yetersiz sayıda epoch ile model tam olarak öğrenmeyebilir ve düşük performans gösterebilir. 

Ancak, aşırı sayıda epoch ise aşırı öğrenmeye (overfitting) neden olabilir, yani model eğitim 

verisine aşırı uyum sağlayarak yeni, görülmemiş verilere genelleme yeteneğini kaybedebilir.  

Epoch sayısı, derin öğrenme modellerinin eğitiminde kritik bir rol oynar. Hem yetersiz 

hem de aşırı sayıda epoch, modelin performansını olumsuz etkileyebilir. Bu nedenle, optimum 

epoch sayısını belirlemek için dikkatli bir hiperparametre ayarlaması yapmak gerekmektedir. 

Erken durdurma gibi teknikler, bu optimizasyon sürecinde önemli bir araçtır. DNN’deki temel 

yapışlar Şekil 11’de gösterilmiştir. 
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Şekil 11. DNN metodolojisinin akış diyagramı. 

Memristör tabanlı DNN çalışmaları 

Son yıllarda, elektronik, hesaplama ve iletişim teknolojilerindeki hızlı gelişmeler, derin 

öğrenme sistemlerinin geliştirilmesi sayesinde veri yoğun hesaplamayı daha erişilebilir ve 

doğru hale getirmiştir. Bu durum, daha büyük, daha enerji verimli ve daha hızlı sinir ağlarının 

oluşumuna yol açmıştır (Josh & Gibson, 2017). Bu gelişmeler, yeni fiziksel ekipmanların ve 

bilgisayar teknolojilerinin geliştirilmesini teşvik etmiş ve yapay zekanın karmaşık sorunları 

çözmek için kullanılabilmesini mümkün kılmıştır (Cheng & An, 2021). Ayrıca, bu teknoloji, 

verilerdeki desenleri tanımlamak ve tahminler yapmak için kullanılabilecek daha gelişmiş 

makine öğrenmesi algoritmalarının geliştirilmesini sağlamıştır (Schuman et al., 2017). 

Memristör, entegre çiplerde büyük ölçekte sinir ağları oluşturmayı mümkün kılan yeni 

bir donanım türüdür (Cheng & An, 2021). Geleneksel CMOS lojik devrelere kıyasla, memristör 
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devrelerini yapay sinir ağı sistemlerini simüle etmek için kullanmak, daha küçük alan, daha 

düşük enerji tüketimi ve sensör simülasyon hesaplamaları için benzer yetenekler gibi avantajlar 

sunmaktadır. Ancak, memristörlerin DNN uygulamalarında kullanımına ilişkin bazı zorluklar 

da bulunmaktadır; donanım değişkenliği, bu alandaki teknolojinin olgunlaşmamış olması ve 

memristörlerin dayanıklılığı gibi sorunlar yapay sinir ağlarının memristörlerle geliştirilmesini 

engellemekte ve araştırmacılara aşılması gereken zorluklar sunmaktadır. Literatürde bu 

problemlerin çözülmesiyle, memristör tabanlı sistemlerin, günümüzde kullanılan von Neumann 

mimarisine dayalı klasik sistemlere kıyasla enerji ve hız açısından çok daha verimli olacağı 

belirtilmektedir (Ye et al., 2022). Bu yeni alanın sunduğu avantajlar ve mevcut sistemin 

tıkanıklığı nedeniyle, araştırmacıların yoğun olarak çalıştığı bir alana dönüşmeye başlamıştır. 

Li ve arkadaşları, çalışmalarında memristör tabanlı çok katmanlı sinir ağlarını kullanarak 

yaklaşık hesaplamalar için enerji verimli bir uygulama gerçekleştirmiştir (B. Li et al., 2013). 

Yaklaşık hesaplama sürecini hızlandırmak için programlanabilir bir memristöre önce Yaklaşık 

Hesaplama Birimi (Memristör ACU) öğretilmiştir (B. Li et al., 2013). Ardından, Memristör 

ACU'nun üzerinde ölçeklenebilir bir memristör tabanlı yaklaşık hesaplama çerçevesi 

önerilmiştir. Bu sistemde uygulanan işlevlerdeki maksimum hata oranı %1,87 olup, enerji 

tüketimi benzerlerine göre 22 kat daha verimlidir. 

Yuan ve arkadaşları, çalışmalarında (Yuan ve diğerleri, 2019) memristör çapraz çubuk 

dizisini von Neumann mimarisinin zorluklarını azaltmak ve derin sinir ağlarının (DNN'ler) 

düşük güç tüketimiyle hızlandırılmasını sağlamak için teşvik edici bir çözüm olarak 

kullanmışlardır. Memristör tabanlı ağırlık budama ve ağırlık quantizasyonunu ayrı ayrı 

inceleyerek, orijinal DNN modeline kıyasla alan ve enerji tasarrufu sağladıklarını 

göstermişlerdir. Yüksek doğruluk, düşük güç ve küçük bir alan elde etmek amacıyla çapraz 

çubuk bloklarının budanması, iletkenlik aralığı ve ağırlık değerleri ile gerçek cihazlar 

arasındaki uyumsuzluk gibi donanım sınırlamalarını da göz önünde bulundurmuşlardır. 

Deneysel sonuçlar, önerilen yöntemin VGG-16 ağında %29,81 oranında ağırlık sıkıştırma ile 

güç ve alan tüketiminde sırasıyla %98,38 ve %98,29 azalma sağladığını ve orijinal DNN 

modellerine kıyasla yalnızca %0,5 doğruluk kaybına yol açtığını göstermektedir. 

Derin sinir ağlarının popülaritesi, yapay zekâ ve derin öğrenme gibi yoğun veri işleme 

uygulamalarında artmaktadır (Greenberg-Toledo et al., 2019). Ancak, mevcut platformların 

DNN'ler için verimli olmadığı bilinmektedir. Bu sorunların üstesinden gelmek amacıyla, DNN 

tabanlı uygulamalara yönelik özel donanım tasarım çalışmaları yürütülmektedir. Bu durumdan 

yola çıkan Greenberg-Toledo ve arkadaşları, çalışmalarında yapay sinir ağlarının temel unsuru 
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olan sinapsı oluşturmak için memristörleri kullanmışlardır. Çalışmada, DNN'lerde yaygın 

olarak kullanılan momentum optimizasyon algoritmasını destekleyen bir memristör tabanlı 

sinaps önerilmiştir. Simülasyonlarda, önerilen DNN eğitim çözümlerinin performansı ortalama 

886 kat hızlandırdığı ve enerji tüketimini ortalama yedi kat azalttığı gözlemlenmiştir. Ayrıca, 

bir GPU platformunda eğitim kadar doğru olduğu da görülmüştür. 

Derin sinir ağı modellerinin memristör tabanlı çapraz çubuklar gibi nöromorfik 

hızlandırıcılarla kullanılması durumunda, kullanılan donanım birimlerinin güvenilirliğini 

sağlamak öncelikli konulardan biridir (Du et al., 2015). Üretim sürecindeki hatalar ve 

değişkenlikler, çapraz çubuk bağlantılarında donanım arızalarına yol açabilir (C. Y. Chen & 

Chakrabarty, 2021). Chen ve Chakrabarty, çalışmalarında, memristör çapraz çubuklarında 

yanlış sınıflamaya neden olabilecek Kritik Hataları (CF’ler) belirlemek için makine öğrenimi 

tabanlı verimli bir teknik geliştirmişlerdir. Bu önemlidir çünkü memristör tabanlı DNN'ler 

doğal olarak hata toleranslıdır ve CF'leri doğru bir şekilde tespit etmek, hata toleransı 

alternatiflerinin bu alanlara odaklanmasına olanak tanır (C. Y. Chen & Chakrabarty, 2021). Bu 

teknik, rastgele hata enjeksiyonu kullanarak %98'in üzerinde doğrulukla ve 20 kat daha hızlı 

bir şekilde kritik hataları tespit edebilmektedir. Bu çalışmada, memristör çapraz çubuklarında 

CF'lerle ilişkili ağırlıkları kaldıran bir hata toleransı yöntemi önerilmektedir. CIFAR-10 veri 

kümesi ve diğer derin sinir ağları ile yapılan testlerde, önerilen budama tekniğinin bağlantı 

alanlarının %95'ine kadarını kaldırdığı ve DNN çıkarım doğruluğunda %1'den az bir düşüşle 

sonuçlandığı gösterilmiştir. Bu, genel CF sayısındaki azalma sayesinde hata toleransı için 

gereken fiziksel donanım yedekliliğinde %99'luk bir azalma sağlamıştır.  

Yapay zekâ, bulut bilişim ve Nesnelerin İnterneti (IoT) uygulamalarının hızla 

büyümesiyle, derin öğrenme uygulamalarında hesaplama için memristör cihazları ve ilgili 

donanım sistemlerinin geliştirilmesi, düşük güç tüketimi ve daha az çip alanıyla kapsamlı veri 

hesaplamaları gerektirmektedir. Derin öğrenme modelleri, düşük güç tüketimi ile çalışabilmek 

için büyük miktarda veri işlemeyi gerektirir. Yapılan bir çalışma (KI & R, 2022) ile CIFAR-10 

veri kümesi için memristör tabanlı bir nesne algılama sistemi önerilmiş ve bu sistemle %85 

doğruluk oranına ulaşmayı başarmışlardır. 

Memristörler, bellek birimleri üzerinde matris-vektör çarpımlarını (MVM) hesaplamayı 

mümkün kılar (Kern et al., 2022). Memristörler, derin sinir ağı hızlandırıcılarının enerji 

verimliliğini önemli ölçüde artırma potansiyeline sahiptir. Ancak, memristörlerdeki 

hesaplamalar donanım uyumsuzluk sorunlarına ve çeşitli gürültü kaynaklarına maruz kalmakta 

olup, bu durum sistem performansını olumsuz etkileyebilir. Kern ve arkadaşları, yaptıkları 
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çalışma (Kern et al., 2022) ile matris-vektör çarpımı (MVM) için memristör çapraz çubuklarının 

kullanıldığı durumda derin sinir ağlarının (DNN) ortalama kare hata (MSE) değerine yönelik 

teorik bir analiz gerçekleştirmişlerdir. Bu çalışmada, hem DNN modelinin boyutunun 

küçültülmesi ihtiyacından kaynaklanan kuantizasyon gürültüsünü hem de bellek değerini 

programlarken ortaya çıkan değişkenlik nedeniyle oluşan programlama gürültüsünü dikkate 

alan yeni bir yöntem önerilmiştir. Önerilen yöntemin, Monte-Carlo simülasyonuna kıyasla 

yaklaşık iki kat daha hızlı olduğu gözlemlenmiştir (Kern et al., 2022). Bu araştırmanın sonucu, 

belirli bir güç sınırı ve minimum hata ile uyumlu olacak şekilde uygulama parametrelerini 

optimize etmeyi mümkün kılmaktadır. 

Memristör tabanlı yapay nöron ve sinaps 

Memristör tabanlı nöromorfik hesaplama sistemleri, Sinir Ağı (NN) algoritmalarına 

enerji açısından daha verimli bir alternatif sunmaktadır (Ren et al., 2022). Doğal analog 

dirençler olan memristörler, hesaplamayı bellekte gerçekleştirerek von Neumann mimarisine 

bir alternatif sunmaktadır (Jo et al., 2010). Memristörlerin büyük ölçekli uygulamalarında 

optimum performansı sağlamak için, tasarımı tahmin etmek ve optimize etmek amacıyla 

sistemin simülasyonları yapılmalıdır. 

Nöromorfik hesaplama, biyolojik olarak ilham alarak ve insan beyninin çalışma şeklini 

modelleyerek zorlu yapay zekâ ve makine öğrenimi problemlerini çözmek için kullanılabilecek 

yüksek seviyeli bağlantı modellerine sahip nöronlar ve sinapslar oluşturmayı amaçlamaktadır 

(Ren et al., 2022). Yapay Sinir Ağı algoritmaları, insan beyninin nöron ağı yapısının çalışma 

şeklini taklit ederek hızlı hesaplamalar yapabilmektedir (Mead, 1990). Paralel hesaplamada, 

sinir ağlarındaki işlemleri hızlandırmak için bir ağırlık matrisi kullanılır. Yapay zekâ 

uygulamaları için tasarlanan çiplerin büyük çoğunluğu hızlandırıcı olsa da bunlar nöromorfik 

işlemciler değildir (Du et al., 2015). Yapay zekâ ve derin öğrenme alanındaki büyük 

şirketlerden bazıları Google, Microsoft, IBM, Amazon, Apple, Intel, NVIDIA ve 

Qualcomm'dur. Yapay zekâ alanında çalışan bu büyük şirketler, Grafik İşleme Birimi'nden 

(GPU) yararlanarak matris çarpımı gibi işlemler için hızlandırıcılar, örüntü tanıma gibi önemli 

uygulamalar için Alan Programlanabilir Kapı Dizileri (FPGA) veya belirli görevler için 

Uygulamaya Özel Entegre Devreler (ASIC) gibi dijital entegre devreler geliştirmeye 

çalışmaktadır (Capra et al., 2020). Bu çalışmalarla birlikte, yüksek çip fiyatları, donanım 

rekabeti, hesaplama hızı, düşük güç tüketimi, küçük ayak izi boyutu ve düşük üretim maliyetine 

odaklanmaktadırlar (Schuman et al., 2017). Hızlandırıcıların önemli ve temel işlevlerinden biri 

matris çarpımıdır (Sung et al., 2018). Google, makine öğrenimi görevlerini hızlandırmak için 
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Tensör İşleme Birimi (TPU) adı verilen kendi yapay zekâ çipini geliştirmektedir (Jouppi et al., 

2017). Çok hızlı veri işleme ve hesaplamaya sahip olan TPU'da ana hesaplama kısmı aynı 

zamanda bir matris çarpma birimidir (Y. E. Wang et al., 2019). Nöromorfik hesaplama, insan 

beyninin çalışma şeklini taklit ettiği için çok katmanlı nöronal ağların her bir parçasının 

modellenmesi ve derin öğrenme algoritmalarının donanım birimine uygulanması ile 

gerçekleştirilmektedir (Schuman et al., 2017). Nöromorfik hesaplama modelini temel alan 

CMOS teknolojileri ile üretilen yapay sinir işlemcileri bulunmaktadır. Bu işlemciler biyolojik 

nöronların davranışlarını taklit edecek şekilde tasarlanmıştır ve yapay sinir ağları oluşturmak 

için kullanılabilmektedir. Ancak geliştirilen CMOS tabanlı sinir ağının verimli olabilmesi için 

memristörlerin bir çip üzerinde denetimli eğitim ve öğrenme için kullanılabilmesi 

gerekmektedir (Sung et al., 2018). 

Memristif cihazlar, çoklu direnç seviyelerini depolama yetenekleri nedeniyle matris 

çarpma birimleri için çok uygundur (Y. E. Wang et al., 2019). Memristörler, verileri depolamak 

ve işlemek için kullanılabilen bir tür uçucu olmayan bellek cihazıdır. Memristörler, düşük güç 

tüketimi ve yüksek yoğunluğa sahip olmaları nedeniyle nöromorfik donanım için caziptir 

(Hung et al., 2021). Örüntüleri tanımak, görüntüleri işlemek ve diğer makine öğrenimi 

görevlerini yerine getirmek için yapay sinir ağları oluşturmak için kullanılabilirler. Ayrıca, 

sinyal işleme ve kontrol uygulamaları için analog devreler oluşturmak için de kullanılabilirler. 

Memristörler, çip üzerinde hesaplama için nöromorfik donanım oluşturmak için de 

kullanılabilir ve verilerin daha hızlı ve daha verimli işlenmesine olanak tanır. Örneğin 

memristör, eşik anahtarlama öğrenimi (Yakopcic et al., 2011) kullanılarak oluşturulan tek bir 

başak ve salınım hareketine sahiptir (Pickett et al., 2013). Memristif sinaptik ağırlık, hafıza 

değiştirme özelliğinden kaynaklanmaktadır (Woo et al., 2016; J. J. Zhang et al., 2013; W. Zhang 

et al., 2023). Ayrıca memristif mantık (Maan et al., 2017) ve memristör tabanlı tanıma çipi de 

bulunmaktadır. 

Memristör tabanlı donanım üzerine yapılan çalışmalarda, özellikle sinaptik ağırlıklarda, 

veri saçılması ve güvenilirlik problemlerini çözmek için yoğun bir çaba vardır (Sung et al., 

2018). Bununla birlikte, bu sorunları çözmek için çeşitli yöntemler geliştirilmektedir. Bunlar 

arasında memristörleri kontrol etmek için kullanılan kontrol sinyallerinin düzenlenmesi, 

memristörlerin çalışma ortamının kontrol edilmesi, memristörlerin kalibre edilmesi ve 

memristörler üzerinde çalışan algoritmaların geliştirilmesi yer almaktadır (Rajendran et al., 

2019). Bu çalışmaların sonuçları, memristör tabanlı donanımın ticari bir ürün haline gelmesi 

için gereken güvenilirlik ve veri saçılımı önündeki engellerin kaldırılmasına yardımcı olacaktır. 
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Bu, verilerin kendisinin rastgelelik veya diğer faktörlere atfedilebilecek bir dereceye kadar 

değişkenliğe sahip olacağı anlamına gelir. Bu değişkenlik, zaman içinde farklı modeller veya 

eğilimler gösterebileceğinden anahtarlama verilerinde görülebilir (Sung et al., 2018). Örneğin, 

olasılık teorisi kapsamında Poisson dağılımı ((Langston et al., 2011), belirli bir ortalama değer 

etrafında rastgele meydana gelen olayların sayısının dağılımını temsil eder. Bu dağılım, 

rastgeleliğin kontrol edilemediği anahtarlama süreci sırasında iletken yolların oluşumu için de 

geçerlidir (Yoo et al., 2008). Bu engellerin üstesinden gelmek için araştırmacılar çeşitli 

çözümler önermişlerdir. Yaklaşımlardan biri memristörler ile dirençler, kapasitörler ve 

transistörler gibi diğer bileşenleri bir arada kullanarak hibrit bir devre oluşturmaktır (Borghetti 

et al., 2009). Bu hibrit devre, verileri tek başına bir memristörden daha güvenilir bir şekilde 

depolamak ve işlemek için kullanılabilir. Ayrıca, araştırmacılar memristör tabanlı sistemlerin 

güvenilirliğini artırmak için makine öğrenimi algoritmalarının kullanılmasını önermişlerdir 

(Ren et al., 2022). Bu algoritmalar, memristörde depolanan verilerdeki hataları tanımlamak ve 

düzeltmek için kullanılabilir ve daha güvenilir bir çalışma sağlar. Son olarak, araştırmacılar 

memristör tabanlı sistemlerin güvenilirliğini artırmak için hata düzeltme kodlarının 

kullanılmasını önermiştir (Ren et al., 2022; Schuman et al., 2017). Bu kodlar, memristörde 

depolanan verilerdeki hataları tespit etmek ve düzeltmek için kullanılabilir ve daha güvenilir 

bir çalışma sağlar (Z. Wang et al., 2018). Yapılan çalışmalar sonucunda güvenilir bir kalıcı 

doğrusal çok seviyeli memristör henüz ortaya çıkarılamamıştır. Bununla birlikte, bir memristör 

koleksiyonu, çok seviyeli verilerin varyansını azaltmaya yardımcı olabilecek çoklu bit veya 

çoklu seviyeli bir sinaptik ağırlık uygulamak için hala çalışmaktadır. 

Memristör nöronlar 

Günümüzde yapay nöromorfik sistemler, insan beynini daha iyi anlamamızda ve 

nörolojik süreçleri taklit eden bilgi işlem sistemlerinin geliştirilmesinde önemli bir rol 

oynamaktadır. Biyolojik sistemlerde gözlemlenen uzamsal ve güç verimliliğine ulaşmak için, 

sinapsların nano ölçekli analogları olarak elektronik ve faz değişimli memristif cihazlar 

keşfedilmiştir (Tuma et al., 2016). Araştırmalar, biyolojik nöronların davranışını taklit eden 

yapay nöronların, kalkojenit bazlı faz değişim malzemeleri kullanılarak inşa edilebileceğini 

göstermiştir. Bu yapay nöronlar, nano ölçekli faz değiştirme cihazlarının faz konfigürasyonu 

ile temsil edilmektedir (Tuma et al., 2016). 

Bir sinir ağı modelinin genel yapısı, ağın hangi bileşenlerden oluştuğunu, bu bileşenlerin 

çalışma prensibini ve bu bileşenler arasındaki etkileşimi açıklar (Y. Shi et al., 2019) Örneğin, 

Şekil 9'da gösterilen yapay sinir ağı modelinin ortak bileşenleri, Şekil 12'de gösterilen biyolojik 
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sinir ağı modelinin yapısından esinlenerek nöronlar ve sinapslardır. Ayrıca, bir sinir ağı modeli 

tasarlanırken, ağı oluşturan her bir bileşen için modeller tanımlanmalı ve tanımlanan modele 

göre bileşenin nasıl çalışacağı belirlenmeli ve yönetilmelidir (Haoxiang & S, 2021). Memristör 

modeli, gerçek bir memristörün davranışını matematiksel olarak temsil etmek için 

geliştirilmiştir ve özelliklerini araştırmak için kullanılabilir (X. Liu & Zeng, 2022). Sistem 

tasarımını hızlandırmak için simülasyonlarda da kullanılabilir. Nöronlar sadece CMOS 

teknolojisi ile üretilirken, çok sayıda transistöre ihtiyaç duyulmaktadır. Memristörler, devreleri 

basitleştirmek için bazı CMOS cihazlarına alternatif olarak önerilmektedir. Önerilen memristör 

tabanlı uygulamalara örnek olarak; memristör tabanlı Hodgkin-Huxley (Corinto et al., 2013), 

memristör tabanlı Morris ve Lecar (Shamsi et al., 2017), memristör tabanlı Fitz Hugh-Naguma 

(J. Zhang & Liao, 2017) ve memristör tabanlı Hindmarsh-Rose (Bao et al., 2018) sinyalleri 

simüle edilerek rapor edilmiştir. Basit memristör tabanlı başak örüntüsü, nöronların tutumunu 

simüle etmek için memristörleri kullanan matematiksel bir modeldir (Zheng & Mazumder, 

2018). Memristörlerin, elektrik sinyalleri üretme ve yayma yetenekleri gibi nöronların 

elektriksel özelliklerini temsil etmek için kullanılabileceği fikrine dayanmaktadır. Model, sinir 

ağlarının dinamiklerini incelemek ve makine öğrenimi için yeni algoritmalar geliştirmek için 

kullanılır. Entegre et ve ateş modeli, nöronların dinamiklerini birleştiren biyolojik olarak 

esinlenmiş bir modeldir (Lashkare et al., 2018). AlShedivat ve meslektaşları, bir memristör 

kullanarak stokastik olarak artan bir nöronu simüle etmiştir (Al-Shedivat et al., 2015). Bilim 

insanları memristörlerin gelişmiş analitik modelini önermişlerdir. Memristörler için önerilen 

analitik model, memristörün direncini tanımlayan bir “durum değişkeni” fikrine dayanıyordu 

(Strukov et al., 2008). Memristörün direnci doğrusal değildir ve kendisine uygulanan akım ve 

voltaj tarafından belirlenir, bu da bu durum değişkeninin modeline yansıtılır. Model daha sonra 

gerilim darbesi, akım darbesi ve sinüzoidal dalga formu gibi çeşitli koşullar altında bir 

memristörün davranışını simüle etmek için kullanılmıştır. Simülasyonların sonuçları, modelin 

bu koşullar altında memristörün davranışını doğru bir şekilde tahmin ettiğini göstermiştir. 

Shamsi ve arkadaşları, memristör tabanlı analog uyarlanabilir bir nöron tasarlamıştır (Binelli et 

al., 2005). Mehonic ve Kenyon, tek kutuplu anahtarlama belleği SiO2 'ye bir eşik akımı 

uygulayarak sınır voltajının yükselişini/kararsızlığını izlemiştir (Mehonic & Kenyon, 2016). 

Pantazi ve arkadaşları, faz değişimli memristörleri içeren bir mimari geliştirerek nöronların 

entegrasyonu ve aktivasyonunun yanı sıra sinaptik unsurların zaman içinde gelişmesine olanak 

sağlamıştır (Pantazi et al., 2016). 
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Şekil 12. (a) MLP'nin matematiksel modeli. (b) MLP'yi ayrıntılı olarak açıklayan akış 

diyagramının gösterimi. 

 

Şekil 13. MLP'nin memristör tabanlı uygulamasının şematik gösterimi. 

Bilgi işleme donanımı, yapay zekânın günlük yaşam üzerindeki etkilerini belirleyen temel 

bir unsurdur. Ancak, derin sinir ağlarını çalıştıran mevcut donanımların enerji tüketimi, 

biyolojik beyinle kıyaslandığında oldukça yüksektir (Huang et al., 2023; Jeong et al., 2016). 

Tek katmanlı algılayıcılar sınırlı işlevselliğe sahip olup, bu kısıtın üstesinden gelmek amacıyla 

çok katmanlı algılayıcılar (MLP'ler) geliştirilmiştir. Şekil 12(a)'da gösterildiği üzere, MLP'ler 

giriş vektörlerini çıkış vektörlerine eşleyen ileri beslemeli sinir ağlarıdır ve daha yüksek 

doğruluk gerektiren karmaşık görevlerde etkili bir şekilde kullanılmaktadır (Ruck et al., 1990; 

Thimm & Fiesler, 1997). Şekil 12(b), Şekil 12(a)'da matematiksel olarak tanımlanan MLP'nin 
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akış diyagramını göstermektedir. Şekil 13'te ise, Şekil 12(a)'da gösterilen MLP'nin elektrik 

devre bileşenleriyle fiziksel bir analojisi sunulmaktadır. Bu analojide, giriş katmanı veri 

kümesinden alınan girdileri işlerken, bu sinyaller gizli katmanlar aracılığıyla dirençler ve 

yükselteçler gibi devre elemanlarından geçmektedir. İşlenmiş sinyallerin çıkış katmanına 

ulaşmasıyla nihai sonuçlar elde edilmektedir. Bu devre elemanları sinyal işleme ve dönüştürme 

süreçlerini simüle etmektedir. Ancak, bu algoritmalar paralel işlem ve sürekli bilgi akışı için 

uygun olmayan von Neumann mimarisi nedeniyle verimsiz çalışmaktadır (Han et al., 2022; S. 

H. Sung et al., 2021; Zanotti et al., 2021). Bu bağlamda, donanım tabanlı sinir ağları ya da 

nöromorfik işlemciler, biyolojik nöronların işleyişini taklit ederek performans artışı 

sağlamaktadır (Y. Liang et al., 2022; Xiao et al., 2020) Nöromorfik sistemler, sinyal iletim 

katsayısının “ağırlık” olarak işlev gördüğü yapay sinapslar üzerinden işlem yapmaktadır (Onen 

et al., 2020). Ayrıca Şekil 13’te gösterilen şema ile çalışma kapsamında önerilen memristör 

tabanlı modelin donanım kısmında uygulanması gösterilmiştir. Burada yapay sinir ağı 

yapısında bulunan her bir nöronun içerisine bir memristif yapı eklenerek modelin tasarımı 

gerçeklenmiş ve bilgisayar ortamında simüle edilmiştir. Bu şema, memristör tabanlı bir yapay 

sinir ağını (YSA) temsil eder. Giriş katmanında V1(n) ve -V1(n) sinyalleri memristör ağı 

üzerinden geçirilir. Memristörler, sinir ağı ağırlıklarını temsil eder ve dirençleri önceki 

durumlarına bağlı olarak giriş sinyallerini işler. Gizli katmanda, aktivasyon fonksiyonları ve 

amplifikatörler yardımıyla sinyaller doğrusal olmayan şekilde düzenlenir ve işlenir. Çıkış 

katmanında ise işlenmiş sinyaller birleştirilerek nihai çıktı oluşturulur. Memristörler sayesinde 

hem bellek hem de işlem bir arada gerçekleştirilir. Bu, düşük enerji tüketimi ve hızlı hesaplama 

avantajı sağlar. Çalışma kapsamında önerilen modelin memristör tabanlı donanım-yazılım 

geçişi “MATERYAL ve METOT” kısmında “Yapay sinaps olarak memristör ve uygulamanın 

yazılım-donanım entegrasyonu” alt başlığında detaylı biçimde anlatılacaktır.    

Şekil 14'de gösterildiği gibi, biyolojik bir nöron genellikle bir hücre gövdesi, bir akson 

ve dendritlerden oluşur (G. Lee et al., 2021). Akson, bir nöronun hücre gövdesinden uzanan 

uzun, ince bir liftir ve elektrik sinyallerini nörondan diğer hücrelere taşımaktan sorumludur (Lv 

et al., 2018). Dendritler, sinyalleri almaktan, entegre etmekten ve hücre gövdesine iletmekten 

ve diğer sinir hücrelerinden girdi almaktan sorumlu olan dallardır. Kimyasal iletimler, 

nörotransmitterler bir nörondan salındığında ve başka bir nöron üzerindeki reseptörlere 

bağlandığında meydana gelir ve bir elektrik sinyalinin gönderilmesine neden olur (Gul, 2020). 

Elektriksel iletimler, nöronlar iyonların doğrudan aralarında akmasına izin veren ve bir elektrik 

akımı oluşturan boşluk kavşakları ile bağlandığında meydana gelir (Schuman et al., 2017). 
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Sinapslar, elektriksel veya kimyasal sinyallerin bir nörondan diğerine iletildiği iki nöron 

arasındaki bağlantı noktalarıdır (H. Wang et al., 2018; S. Yu et al., 2011). Elektrik sinyalleri 

gönderen nöronun aksonu tarafından üretilir ve kimyasal sinyaller gönderen nöronun akson 

terminalinden salınır ve alıcı nöronun dendritleri tarafından alınır (G. Lee et al., 2021). Nöron 

daha sonra sinaps boyunca diğer nöronlara giden nörotransmitterleri serbest bırakır ve böylece 

sinyali yayar (Dretchen et al., 1976). Bu süreç aksiyon potansiyeli olarak bilinir. Nöron 

yeterince sinyal alırsa, bir eşiğe ulaşacak ve bu noktada bir aksiyon potansiyeli ateşleyerek diğer 

nöronlara nörotransmitter salacaktır (X. Zhang et al., 2018). Bazı nöromorfik modellerde, yük 

birikimi, yükü depolayan ve nöron ateşlenmeden önce belirli bir miktarda yük birikmesine izin 

veren kapasitörlerin kullanılmasıyla elde edilir. Bu tür bir yük birikimi, spiking nöronları simüle 

etmek için popüler bir model olan Leaky Integrate-and-Fire (LIF) modelinde kullanılmaktadır 

(Lu et al., 2020). Bu modelde, kapasitör bir akım girişi ile şarj edilir ve daha sonra zaman içinde 

yavaşça boşalır. Kapasitör belirli bir eşiğe ulaştığında, nöron ateşlenerek diğer nöronlara bir 

sinyal gönderir (Shamsi et al., 2018). Biyolojik bir nöronun yapısı ve elektrik sinyallerinin 

iletimi Şekil 14'de gösterilmektedir. 

 

Şekil 14. Biyolojik Nöron üzerinden bilgi akışı 

 
Şekil 15. Yapay Nöron 
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Memristör sinapsları 

Nöromorfik çalışmaların bazılarında nöron modeline odaklanılarak sinaps 

uygulamalarını da içeren bir sistem geliştirilebilmektedir. Bu duruma benzer şekilde nöron 

modellerinden bağımsız sinaps uygulamaları geliştirmeye odaklanan çalışmalarda da 

nöromorfik sistemler gerçekleştirilmiştir (Merolla et al., 2011; J. Seo et al., 2011). Bu 

odaklanmalarla birlikte memristör sinaptik ağırlıklarında karmaşık ve zorlayıcı durumlar söz 

konusudur. Bu zor durumlar; kalıcılık, doğrusallık ve çok düzeyliliktir (Amirsoleimani et al., 

2020; Huh et al., 2020). Ancak bu üç özelliği aynı anda sağlayan sonuçlar henüz elde 

edilememiştir (Huh et al., 2020). Sinaps, biyolojik sinir ağlarının önemli bir parçası olmakla 

birlikte doğrudan elektronik bir eşdeğeri yoktur (Thomas, 2013). Bu durum, sinir sisteminin 

yapısını taklit eden donanımların oluşturulmasını zorlaştırmaktadır. Şekil 13, bir nöron darbesi 

üreten bir CMOS entegre ve ateşleme nöronunu göstermektedir (Xinyu Wu et al., 2015). 

Memristör tabanlı bir sinaptik ağırlık çapraz çubuğunda, memristör giriş ve çıkış nöronları 

arasına yerleştirilir ve aralarındaki bağlantının ağırlıklarının ayarlanmasına ve saklanmasına 

izin verir. 

Birçok çalışma, spike zamanlamasına bağlı plastisite (STDP) gibi temel sinaptik öğrenme 

ilkelerinin memristörlerde başarıyla uygulandığını göstermiştir (Alibart et al., 2012; Jo et al., 

2010; Krzysteczko et al., 2012; S. Yu et al., 2011). Daha önceki araştırmalarda, memristörler 

öncelikle programlanabilir bellek bileşenleri olarak görülmüş ve kullanılmıştır. Oksit tabanlı 

memristörlerde ikinci dereceden memristör etkilerinin önemli olabileceği deneysel olarak 

kanıtlanana kadar, çalışmalar genellikle karmaşık programlama dalga formları veya üst üste 

binen programlama darbeleri kullanan tasarımlara odaklanmadı (S. Kim et al., 2015). Bu 

cihazlarda, istenen iletkenlik değişimini elde etmek için darbe genişliği ve darbe yüksekliğinin 

dikkatli bir şekilde tasarlanması gerekir. Matematiksel açıdan bu aygıtlar birinci dereceden 

memristörler olarak sınıflandırılabilir (Pershin & Di Ventra, 2012). 

Çapraz çubuk üzerindeki ikinci dereceden memristörlerde, her memristör STDP adlı bir 

öğrenme kuralı kullanılarak bir eğitim sürecine tabi tutulur (Cruz-Albrecht et al., 2012). STDP 

öğrenimi sinaptik ağırlığı, nöronun sinapstan önce ateşlediği zaman ile sinapstan sonra 

ateşlediği zaman arasındaki zaman farkına göre belirler. Bu durumda, sinaptik ağırlık doğrusal 

olmayan sonuçlar üretir ve genellikle Winner-Take-All (WTA) algoritması ile denetimsiz 

öğrenmede kullanılır (Sung et al., 2018). Zheng ve Mazumder tarafından önerilen algoritma, 

spike-zamanlamaya bağlı plastisite (STDP) ve denetimli öğrenmenin bir kombinasyonunu 
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kullanan bir tür makine öğrenimi veya derin öğrenme olan denetimli STDP öğrenme kavramına 

dayanmaktadır. 

Bilim insanları, termal enerjinin dağılımından yararlanarak kimyasal sinapslarda 

gözlemlenen kalsiyum iyonu (Ca2
+) dinamiklerini taklit etmek için çalışmalarında ikinci 

dereceden memristörleri entegre ettiler. Bu yaklaşım sayesinde, üst üste binmeyen spike uçlarla 

spike zamanlamasına bağlı plastisite (STDP) olarak bilinen olguyu etkili bir şekilde sergilediler 

ve diğer çeşitli sinaptik işlevleri çoğaltmayı başardılar. Bu başarı, biyolojik olarak doğru 

sinaptik cihazların geliştirilmesine yönelik kayda değer bir ilerlemeye işaret etmektedir. Bu 

yaklaşım tekrarlanabilirlik ve basitlik özelliklerine sahiptir ancak fiziksel süreçlerin gerçek 

sinapslardan önemli ölçüde farklı olması nedeniyle istenen sinaptik işlevlerin doğruluğu ve 

çeşitliliği sınırlıdır (Z. Wang et al., 2017). Biyolojik Ca2+ dinamiklerinin fiziksel özelliklerini 

kopyalayan bir cihaz oluşturmak, sinaptik işlevi daha etkili bir şekilde taklit etme yeteneğini 

artıracak ve nöromorfik bilgi işlemin potansiyel uygulamalarını genişletecektir. Bu emülatif 

memristör, metal atom difüzyonu ve nanoparçacıkların kendiliğinden oluşumu 

mekanizmalarını kullanarak çalışmaktadır. Bu mekanizma, yüksek çözünürlüklü transmisyon 

elektron mikroskobu (HRTEM) ve nanoparçacık davranışının dinamik simülasyonları ile 

derinlemesine incelenmiştir. Difüzyon memristörlerinin dinamik özelliklerinin, kısa ve uzun 

vadeli plastisite gibi operasyonel özellikler de dahil olmak üzere biyolojik sinapslardaki Ca2+ 

ile işlevsel olarak eşdeğer olduğu deneysel olarak doğrulanmıştır (Z. Wang et al., 2017). 

Memristör sinapslarına sahip Crossbar SNN mimarisi Şekil 16'te gösterilmektedir. 

 

Şekil 16. Memristör sinapslı Crossbar SNN mimarisi, insan beyninin çalışma şeklinden 

esinlenen çift yönlü bir STDP öğrenme kuralının grafiksel bir temsilinin eşlik ettiği iki sinaptik 

öncesi spike ve iki sinaptik sonrası spike arasındaki bir sinaps bağlantısıdır. Verileri depolamak 

ve işlemek için çapraz çubuk memristör dizileri kullanan bir tür nöromorfik hesaplama 

mimarisidir. 
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Algoritma donanım uyumlu olacak şekilde tasarlanmıştır, yani önemli değişiklikler 

gerektirmeden mevcut donanım platformlarında uygulanabilir. Algoritma ayrıca ağırlığa bağlı 

olacak şekilde tasarlanmıştır, yani öğrenme süreci nöronlar arasındaki bağlantıların 

ağırlıklarına dayanmaktadır (Zheng & Mazumder, 2018). 

Araştırmacılar analog bellek özellikleri oluşturmak amacıyla nöronlar, sinapslar, mimari, 

öğrenme ve test üzerine bir dizi çalışma yürütmüş ve yaygınlaştırmıştır (Tsai et al., 2018). 

Genel olarak sinaps modelleri iki kategoride incelenebilir. İlk kategori, biyolojik beynin 

yapısından esinlenen ve spike tabanlı sistemler için sinaps yapılarını içeren sinaps 

uygulamalarıdır (Q. Wan et al., 2019). İkinci kategori ise ileri beslemeli sinir ağları gibi 

geleneksel yapay sinir ağları için sinaps uygulamalarıdır (Zyarah et al., 2017). Nöromorfik 

sistemlerde en bol bulunan bileşenin sinapslar olduğu belirtilmektedir. Geliştirilecek çoğu 

donanım uygulaması için sinaps uygulamasının optimize edilmesine, özellikle nöromorfik 

hesaplama sistemleri için yeni malzemeler geliştirilmesine odaklanılmaktadır (Kwon et al., 

2022). Biyolojik sistemlerin ayrıntılı ve hassas bir şekilde donanım modellemesi çok zordur. 

Bu nedenle, biyolojik davranışı açıkça modellemeye çalışılmadığı sürece sinaps modelleri 

nispeten basit olma eğilimindedir (Schuman et al., 2017). Nöronun ağırlık değerinin 

değişmesine neden olan bir plastisite mekanizması vardır. Ayrıca, plastisite mekanizmalarının 

biyolojik beyinlerde öğrenme ile ilişkili olduğu bulunmuştur. 

Memristör tabanlı yapay zekâ (AI) çipleri 

AI çipleri, AI yeteneklerini içeren ve makine öğrenimi alanında kullanılan sofistike 

silikon mikroişlemcilerdir. Yapay zekâ, çeşitli sektörlerde insan hayatına yönelik potansiyel 

tehlikelerin azaltılmasında veya hafifletilmesinde çok önemli bir rol oynamaktadır. Artan veri 

hacmi, matematiksel ve hesaplama zorluklarının üstesinden gelmek için daha verimli 

sistemlerin geliştirilmesini gerektirmekte ve daha fazla üretkenlik için artan aciliyeti 

vurgulamaktadır. Bu nedenle, yapay zekâ çiplerinin ve uygulamalarının geliştirilmesi söz 

konusu olduğunda, BT sektöründeki büyük firmaların önemli bir kısmı kendilerini bu işe 

adamış durumdadır. 

Yapay zekâ özellikli uç cihazların yüksek çıkarım doğruluğuna, hızlı tepki sürelerine ve 

enerji tasarruflu çalışmaya sahip olması, yani uzun ömürlü pillere sahip olması gerekir (Chiu et 

al., 2023). Bu tür cihazların halka açık alanlarda kullanılması, onları çip kontrolünde veya çip 

üstü kalıcı bellekte depolanan değerli verilere yetkisiz erişimi içeren kötü niyetli saldırılara 

karşı savunmasız hale getirmektedir (Golonzka et al., 2019; T.-H. Yang et al., 2018). 
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Milyonlarca parametreye sahip yapay zekâ (AI) modelleri çeşitli görevlerde yüksek 

hassasiyet elde edebilir (Vaswani et al., 2017), ancak grafik işlem birimleri veya merkezi işlem 

birimleri gibi geleneksel genel amaçlı işlemciler gibi donanım bileşenlerinin zayıf enerji 

verimliliği daha fazla sorun haline gelebilir (Ambrogio et al., 2023). Genellikle analog-AI 

olarak adlandırılan analog bellek içi hesaplama (Khaddam-Aljameh et al., 2022; Narayanan et 

al., 2021; W. Wan et al., 2022; Yao et al., 2020), matris-vektör çarpımlarını “bellek dizileri” 

içinde eşzamanlı olarak yürütme yeteneği sayesinde üstün enerji verimliliği elde etmektedir 

(Ambrogio et al., 2023). Ambrogio ve meslektaşları çalışmalarında, 34 farklı birimdeki 35 

milyon faz değişimli bellek cihazını, birimler arası kitlesel paralel iletişimi ve analog, düşük 

güçlü çevresel devreleri bir araya getiren analog bir yapay zekâ çipi sunmuştur. Yapay zekâ 

çipinin çeşitli yapay zekâ katmanları içindeki işlevselliği Şekil 17'te gösterilmektedir. 

 

Şekil 17. Yapay zekanın çeşitli katmanları içinde bir yapay zekâ çipinin işlevi. 

Memristör tabanlı yapay sinaps çalışmaları 

Bilgisayar sistemlerinin gelişim süreci incelendiğinde, hesaplama işlemleri için veri 

miktarı katlanarak arttığından bellek birimleri ve işlemciler arasında veri aktarımı büyük bir 

sorun haline gelmiştir (Oh et al., 2021). Bu sorunu çözmek için insan beyninin çalışma prensibi 

taklit edilerek yapılan araştırmalara ilgi artmıştır. Beyinden ilham alan (Pedretti et al., 2017; 

Xinyu Wu et al., 2015; H. Yu et al., 2021) veri işleme, duyusal verilerin gerçek zamanlı 

işlenmesinde beyin benzeri performans elde etmeyi amaçlayan ve gelişmekte olan bir alandır. 

Böyle bir hesaplama sistemine ulaşmada bazı sınırlayıcı zorluklar vardır. Bu zorluklar arasında 

ölçeklenebilir ara bağlantı cihazları, ultra düşük güç tüketimi ve öğrenmeyi donanımda 

uygulamak için güçlü nöromorfik hesaplama yapıları ile kompakt, büyük ölçüde paralel bir 

mimari oluşturmak yer almaktadır (Kuzum et al., 2012). Bu zorluklar göz önünde 
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bulundurularak faz değiştiren malzemeler kullanan cihazlarla simetrik ve asimetrik sinaptik 

plastisitenin uygulanmasını sağlayan programlama stratejileri, malzeme özellikleri ve spike 

diyagramları incelenmiş, cihaz çalışma düzeni ve dinamik plan yapısının uyarlanmasıyla enerji 

tüketiminin optimize edilebildiği bir çalışma sunulmuştur (Kuzum et al., 2012). 

Sinaptik elektronikler, beyindeki nöronların birbirleriyle iletişim kurma şeklini taklit 

eden, bilgiyi insan beynine benzer şekilde işleyebilen, insan beyni kadar verimli ve hataya 

dayanıklı, ancak daha yoğun bir biçimde elektronik sistemler oluşturmayı amaçlayan yeni bir 

çalışma alanıdır (Kuzum et al., 2013). İşlem hızı ve enerji tüketimi, makine öğrenimi, derin 

öğrenme ve veri yoğun uygulamalarda bilgisayarların hesaplama performansı için kritik öneme 

sahiptir. Bu nedenle, biyolojik beynin hızı ve etkinliği uzun süredir araştırmaların ana odak 

noktası olmuştur. Bu durum, beynin işleyişine dayanan hesaplama ve sinyal işleme teorileri, 

formülleri ve tasarımlarının taklit eden çalışmalarla sonuçlanmıştır. Araştırmalar, faz değişimli 

sinaptik cihazların iki boyutlu çapraz çubuk dizilerinin, beyinden esinlenen bir donanım 

mimarisinde beyin benzeri öğrenme oluşturmak için kullanılabileceğini ve ilişkisel öğrenme ve 

örüntü tanıma görevlerine izin verdiğini göstermiştir (Eryilmaz et al., 2013; P. Lin et al., 2020). 

Nano ölçekli sinaptik unsurların bireysel cihaz düzeyinde işlev görebileceğine dair 

deneysel çalışmalardan elde edilen kanıtlara rağmen, ağ düzeyindeki çalışmalar 

simülasyonlarla sınırlı kalmıştır (Schuman et al., 2017). Deneyler, faz değişimli sinaptik 

cihazların biyolojide insan beyninin organize edilme şekline benzer şekilde ızgara benzeri bir 

yapıya bağlanmasıyla dizi düzeyinde ilişkisel öğrenmenin mümkün olduğunu göstermiştir 

(Eryilmaz et al., 2014). Bu, sistemin farklı cihazlara uyum sağlayabildiğini ve hücre direnci 

seviyelerindeki büyük farklılıkların eğitim seanslarının miktarının artırılmasıyla 

dengelenebileceğini göstermiştir. 

Vektör matris çarpımı (Amirsoleimani et al., 2020), derin öğrenme uygulamalarında 

zaman ve enerji maliyetleri açısından büyük bir sorun teşkil etmektedir. Memristör tabanlı 

vektör matris çarpımının güç tüketimi üzerine yapılan araştırmalar bazı sorunları ortaya 

çıkarmıştır (Hu et al., 2017; Shafiee et al., 2016). Bayat ve arkadaşları, memristör dedektörü ile 

donatılmış bir sınıflandırıcı üzerinde bir çalışma yürütmüştür (Bayat vd., 2017). Knowm şirketi, 

yapay zeka ve derin öğrenme uygulamaları için çok kullanışlı olan ikili anahtarlama ile hem 

anti-Hebbian hem de Hebbian kurallarını kullanan bir kategorize edici ürün piyasaya sürmüştür 

(Anti-Hebbian and Hebbian (AHaH) Plasticity, 2017). Derin öğrenme uygulamalarında, 

memristör tabanlı hesaplama süreçleri kullanılırken, özellikle çip üzerinde öğrenme sırasında, 

sinaptik ağırlığın dinamik aralığı nedeniyle ortaya çıkan sınırlamalar ve zorluklar vardır. Mobil 
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cihazlarda öğrenme bilgisi edinirken Yapay Zekâ (YZ) işlevlerinin zarar görmesini önlemek 

için veri sıkıştırma veya kırpma teknikleri önerilmiştir (Mao & Dally, 2016). 

Deng ve arkadaşları, oluşturdukları bir uygulamada öğrenmenin çeşitli aşamalarındaki 

enerji tüketiminin bir analizini yapmışlardır (Deng et al., 2016). 

Geleneksel donanım platformları, işlemci ve harici bellek arasında veri aktarımı ihtiyacı 

nedeniyle öğrenme ile ilgili görevleri tamamlamak için büyük miktarda enerji gerektirir 

(Schuman et al., 2017). Analog ağırlık depolama kullanan beyinden ilham alan cihaz 

teknolojileri ile bir cihaz geliştirilmiş, algısal görevlerin daha verimli bir şekilde 

tamamlandığını gösteren bir çalışma yapılmıştır (Yao et al., 2017). Bu cihaz, ağırlığını her iki 

yönde de sürekli olarak ayarlayabilme özelliğine sahiptir. Deneyler, paralel anlık eğitim ile 

1024 hücreli bir dizinin gri ölçekli yüzleri sınıflandırmak için kullanılabileceğini göstermiştir. 

Çalışma sonucunda daha düşük enerji tüketimi ile hesaplama işlemleri gerçekleştirilmiştir. 

Shamsi ve arkadaşları tarafından üç tasarım seviyesinde sunulan bir sütunlu organize 

bellek (COM) (Shamsi et al., 2018) donanım mimarisi önerilmiştir. Seviye I'de, COM mimarisi 

ile uyumlu düşük güçlü bir devre tanıtılmıştır. Seviye II'de, önerilen bir nöron düzeneği ve tek 

bir memristör çapraz çubuk dizisi kullanılarak bir Winner-Take-All (WTA) algoritması (S. Li 

et al., 2017) modülü uygulanmıştır. Seviye III'te, WTA modülleri ve memristör çapraz çubuk 

dizileri birleştirilerek COM tabanlı bir donanım mimarisi oluşturulmuştur. COM donanımını 

eğitmek için ex-situ yöntemi kullanılmış ve uygulamanın tüm tasarım seviyelerinde 

simülasyonlar gerçekleştirilmiştir. Çalışmanın birincil odak noktası, nöron devresinin 

elektriksel güç tüketimini değerlendirmektir (Shamsi et al., 2018). 

Çalışmalarında (Saxena et al., 2018), NeuSoC sisteminin enerji tüketimini tahmin etmek 

için analitik modeller ve devre simülasyonlarının bir kombinasyonunu kullanmışlardır. Farklı 

çalışma koşulları altında sistemin enerji tüketimini değerlendirmişler ve enerji verimliliği 

üzerinde en büyük etkiye sahip devre ve cihaz parametrelerini belirlemişlerdir. Araştırmacılar 

ayrıca sistemin enerji tüketimini azaltmak için tasarım teknikleri önermişlerdir. Son olarak, elde 

ettikleri sonuçları mevcut NeuSoC sistemleriyle karşılaştırmışlar ve önerdikleri tekniklerin 

enerji verimliliğini %30'a kadar artırabileceğini göstermişlerdir. Ayrıca, CMOS memristör 

konsepti için bir emülatöre dayalı CMOS sinaps devrelerini, sistemlerin prototipini 

oluşturmanın bir yolu olarak sunmuşlar ve pratik memristör cihazlarını normal CMOS ile 

oluşturmuş ve birleştirmişlerdir. Uçucu olmayan bellek (NVM) veya memristif cihazların 

geliştirilmesi, derin öğrenmenin bir CMOS katmanı üzerinde karışık sinyalli entegre devrelerle 
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entegre edildiğinde enerji açısından verimli bir şekilde gerçekleştirilebileceğini göstermiştir. 

Uçucu olmayan Çip Üzerinde Nöromorfik Sistemler (Saxena et al., 2018) hedefine ulaşmak, 

çeşitli algoritmik zorlukların ele alınmasını ve bu zorluklara uygun enerji verimli çözümler 

bulunmasını gerektirmektedir. 

Sinirbilim (Sejnowski et al., 1988) alanında, popülasyon kodlama teorisi, sinirsel 

mekanizmaların hatalara karşı dayanıklı hesaplamalar yapabileceği gösterilmiştir (Mizrahi et 

al., 2018; Sejnowski et al., 1988). Bu teori, nanoelektronik teknolojisiyle birleştirildiğinde, 

küçük boyutlu, gürültülü ve hata yapmaya yatkın cihazlarla güvenilir hesaplama yapılmasını 

mümkün kılabilir. Popülasyon kodlama teorisi CMOS teknolojisiyle uygulanabilir olsa da bu 

sistemler genellikle yüksek alan veya enerji gereksinimlerine sahiptir. Mizrahi ve ekibi, nano 

ölçekli manyetik tünel bağlantılarının bu gereksinimleri karşılamak için kullanılabileceğini 

göstermiştir  (Mizrahi et al., 2018). 

CMOS teknolojisi ile memristörlerin birleştirildiği bir devrede, CMOS bileşenleri her bir 

kabloya bağlanır. Bu bağlantı, özel bir “CMOL” arayüzü sayesinde gerçekleştirilir ve bu 

arayüz, devredeki ek çapraz çubuk yapısındaki tekil memristörlere erişim imkanı sağlar 

(Prezioso et al., 2015). Bir tür hibrit nöromorfik ağ olan CrossNets, nöron hücre gövdelerinin 

CMOS tabanlı donanım modellerini memristif çapraz çubuklarla entegre etme potansiyelinden 

faydalanmaktadır. Bu yenilikçi mimaride, çapraz çubuğun telleri aksonlar ve dendritler olarak 

işlev görürken, memristörler biyolojik sinapsların davranışını taklit eder. Metal oksit 

memristörlerin basit, iki terminalli, transistörsüz topolojisi, CMOS modelli memristörlere 

(Pershin & Di Ventra, 2010), kayan kapıya (Hasler & Marr, 2013), 2013) ve ferroelektrik 

(Kaneko et al., 2014) bellek hücrelerine dayalı olanlar da dahil olmak üzere, CrossNets'in saf 

CMOS nöromorfik ağlara kıyasla çok daha yüksek yoğunluk elde etmesini sağlayabilmektedir. 

Prezioso ve ekibi, transistör içermeyen entegre bir çapraz çubuk yapısı kullanarak, bunun yerine 

metal oksit memristörlere dayanan işlevsel bir sinir ağının deneysel bir gösterimini 

gerçekleştirmiştir (Prezioso et al., 2015). Ağ, doğrudan kendi operasyonel ortamında eğitime 

tabi tutuldu, yani harici bir bilgisayar modeline dayanmadı ve Manhattan güncelleme kuralını 

kullandı (Lim et al., 2019). Manhattan güncelleme kuralı ve toplu mod delta kuralı temelde 

aynıdır, tek fark donanım uygulamasını kolaylaştırmaya yarayan ikili niceleme kullanımıdır 

(Prezioso et al., 2015). 

Derin analog Yapay Sinir Ağları (YSA'lar) karmaşık sınıflandırma problemlerini çok 

yüksek bir doğruluk derecesiyle çözebilmektedir (Musisi-Nkambwe et al., 2021). Kuantum 

bilgisayarlar, uygulamalarda sağladıkları doğruluk avantajlarına rağmen, hesaplamalar için çok 
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fazla enerji tüketir ve bu da pratik kullanım alanlarını sınırlayabilir (Lukoševičius & Jaeger, 

2009). Bu durum, uygulamalarda elde edilen doğruluk avantajlarının kullanışlılığını 

gölgelemektedir. Wijesinghe ve arkadaşları, nano ölçekli dirençli cihazların rastgeleliğinin bir 

spike nöronun davranışını taklit etmek için nasıl kullanılabileceğini ve daha sonra bu durumu 

ele almak için derin stokastik SNN'lere nasıl dahil edilebileceğini önermişlerdir. Algoritmik 

olarak, bir Yapay Sinir Ağını (Sharma et al., 2020) bir Spiking Sinir Ağına (Lashkare et al., 

2018) dönüştürmek için eğitim sürecinin nasıl değiştirilebileceğini açıklarken, bu cihazların 

sunduğu rastgele aktivasyon işlevini kullanmaya devam ederler. Sinaptik ağırlıklarla aynı 

işlevleri yerine getirmek için stokastik anımsatıcı nöronları anımsatıcı çapraz çubuklarla 

birleştiren devre mimarileri tasarladıkları bir çalışma sunmuşlardır (Wijesinghe et al., 2018). 

Bu çalışmada, tasarlanan sistemin benzerlerine kıyasla enerji tüketimi açısından daha verimli 

olduğunu kanıtlamışlardır. 

Nöromorfik hesaplama sistemleri için bir donanım ağı yapısının oluşturulması temelde 

bellek dizilerinin entegrasyonudur. Günümüzde çapraz çubuk dizisi tabanlı bellek sistemlerinin 

parazit akımı göz önüne alındığında, donanım tabanlı sinir ağlarının parazit önleme yeteneği 

son derece zayıf olabilir (Lim et al., 2019). Bu, geliştirilen sistemin uygulanmasında önemli bir 

zorluktur ve olası okuma hatalarına ve eğitim sürecinde artan enerji tüketimine yol açabilir. Bu 

durumu çözmeye yönelik çalışmalar gerçekleştirilmiştir (Gul, 2019). 

Elektronik sinaps cihazlarının kullanıldığı donanımlar için öğrenme algoritması 

çalışmaları gerçekleştirilmiştir. Bir çalışmada, sınırlı ve süreksiz iletkenlik özelliklerine sahip 

elektronik aletler kullanan donanım tabanlı bir derin sinir ağı için geri yayılım algoritması 

tabanlı bir öğrenme kuralı önerilmiştir (Lim et al., 2019). Bu algoritma, donanım tabanlı ağırlık 

ayarlamalarının yanı sıra hem ileri hem de geri yayılmayı sağlayan esnek bir öğrenme 

mekanizması içermektedir. Ayrıca, bu algoritma enerji verimli ve yüksek hızlı derin sinir 

ağlarının yürütülmesine yardımcı olacak şekilde uyarlanmıştır. Bu çalışmada, elektronik sinaps 

cihazlarının öğrenme performansı, üç katmanlı bir sensör ağı kullanılarak yapılan 

simülasyonlarda çeşitli iletkenlik yanıtlarına ve ağırlık güncelleme yöntemlerine göre 

değerlendirilmiştir. 

Spike Sinir Ağları (SNN'ler), biyolojik beynin bilgiyi hızlı ve doğru bir şekilde işleme 

yeteneğinden ilham alır ve biyolojik sinir ağlarının sinirsel kodlarını, dinamiklerini ve 

devrelerini kopyalamayı amaçlar. SNN'ler, bellek içi hesaplama kullanarak denetimsiz öğrenme 

uygulaması için büyük bir potansiyele sahiptir (Sourikopoulos et al., 2017). Bu durum göz 

önüne alındığında, uçucu olmayan bellek (eNVM) cihazlarında Spike Sinir Ağları (SNN'ler) ile 
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öğrenmenin enerji verimliliğini artıran algoritmik bir optimizasyon sunmaktadır (Y. Shi et al., 

2019). Bir başka çalışmada, bellek ile merkezi işlem birimi arasındaki veri aktarım 

gereksinimini en aza indirmek için, bellek içi hesaplama mimarileri de dikkate alınarak, STT-

MRAM ve SRAM kullanılarak bir YSA model sisteminin fiziksel uygulaması için kapsamlı bir 

çalışma yapılmıştır. 

Beyinden ilham alan paralel hesaplama, insan beyninin bilgiyi işleme şekline çok benzer 

şekilde, verileri paralel olarak işlemek için birbirine bağlı işlemcilerden oluşan bir ağ kullanma 

fikrine dayanmaktadır (B. Gao et al., 2016). Bu tür bilgi işlem, büyük miktarda veriyi çok daha 

kısa sürede işleyebildiği için geleneksel bilgi işlem yöntemlerinden daha verimli olacak şekilde 

tasarlanmıştır. Ayrıca, geleneksel bilgi işlem yöntemleriyle aynı miktarda güç gerektirmediği 

için daha enerji verimli olma potansiyeline de sahiptir. Doğrusal olmayan ve asimetrik 

iletkenlik-güncelleme özelliklerine sahip yapay sinapsların faydalarına rağmen, bir donanım 

yapay sinir ağı, bir yazılım yapay sinir ağının eğitim ve çıkarım doğruluğuyla eşleşemez. Bu 

durum için doğrusal ve simetrik iletkenlik-güncelleme özelliklerine sahip yeni bir yapay van 

der-Waals hibrit sinaps geliştirilmiştir (S. Seo et al., 2020). Bu çalışmada, iletkenliği seçici 

olarak artırmak ve azaltmak için tungsten diselenid (WSe2) ve molibden disülfür (MoS2) 

kanalları kullanılmıştır. Daha sonra, bir donanım yapay sinir ağı için hibrit bir sinapsın 

potansiyeli, eğitim ve çıkarım simülasyonu yoluyla gösterilmiştir. 

Rahimi Azghadi ve çalışma arkadaşları tarafından yürütülen bir çalışma (Rahimi Azghadi 

et al., 2020) ile CMOS, SiOx tabanlı memristif ve karma CMOS-memristif teknolojiler 

kullanılarak nöromorfik hesaplama üzerine kapsamlı bir inceleme gerçekleştirilmiştir. Bu 

çalışma, biyolojik nöronların ve sinapsların bazı yönlerini taklit edebilen tasarımları 

içermektedir. Araştırma, nöronları taklit edebilen bileşenlerin model sınıflandırmaları veya 

görüntü tanıma gibi görevlerde kullanılabileceğini göstermiştir. Cihaz çeşitliliklerine ve ideal 

olmayan koşullara rağmen, geliştirilen unsurların iyi performans gösterdiği gözlemlenmiştir. 

Beyinden ilham alan sinaptik nano-elektronik cihazlar, düşük enerji tüketimi ve veriyi 

paralel olarak işleyebilme yetenekleri gibi biyolojik nöronlara benzer özellikleri nedeniyle 

giderek daha fazla popülerlik kazanmaktadır. Metal oksitten yapılan dirençli anahtarlamalı 

bellek cihazları, düşük maliyetli, üretimi kolay ve tamamlayıcı metal oksit yarı iletken (CMOS) 

teknolojisi ile uyumlu olmaları nedeniyle sinaps oluşturmak için son derece arzu edilmektedir 

(B. Gao et al., 2016). Bu nedenle, bu alandaki bir çalışmada, nöromorfik uygulamalar için basit, 

tek katmanlı ve nano ölçekli memristör tabanlı yapay bir sinaptik cihaz sunulmuştur (Gul, 

2020). 
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Başka bir çalışmada (Shymkovych et al., 2021), Radyal Tabanlı Fonksiyon (RBF) sinir 

ağlarının Gauss aktivasyon yöntemini Programlanabilir Kapı Dizileri (FPGAs) donanımında 

uygulamayı amaçlayan bir araştırma önerisi sunulmuştur. 

Günümüzde, Von Neumann darboğazını aşmak amacıyla bellek içi hesaplamada sinaptik 

cihazların kullanımı konusunda önemli ilerlemeler kaydedilmiştir (Zanotti et al., 2020). Ancak, 

derin sinir ağlarının donanımda verimli bir şekilde uygulanabilmesi için doğrusal olmayan 

aktivasyon işlevlerini yerine getirebilen kompakt nano cihazlara ihtiyaç duyulmaktadır 

(Haoxiang & S, 2021). Bu doğrultuda, vanadyum dioksit (VO2) tabanlı bir Mott aktivasyon 

nöronu ile bir iletken köprü rasgele erişimli bellek (CBRAM) çapraz bağlantı dizisinin entegre 

edildiği başarılı bir çalışma gerçekleştirilmiştir (Oh et al., 2021). Bu araştırmada, Mott 

aktivasyon nöronu analog alanda düzeltilmiş doğrusal birim (ReLU) işlevini kullanmaktadır. 

Nöron cihazları, analog tamamlayıcı metal-oksit yarı iletken uygulamalara göre önemli ölçüde 

daha az enerji tüketmekte ve daha az alan kaplamaktadır. Mott aktivasyon nöronları ile çalışan 

LeNet-5 ağı, MNIST veri kümesinde ideal yazılım doğruluğuna yakın bir doğruluk oranı olan 

%98,38’e ulaşmıştır. Ayrıca, bu çalışmada (Oh ve diğerleri, 2021), Mott aktivasyon nöronları 

ve CBRAM çapraz bağlantı dizilerinin kombinasyonu kullanılarak büyük ölçekli görüntü kenar 

tespiti süreçleri de gerçekleştirilmiştir. 

İki boyutlu (2D) geçiş metali kalkojenitler (TMC’ler) ve bunların heteroyapıları, 

beyinden ilham alan nöromorfik hesaplama sistemlerinde, ileriye dönük bellek ve sinaptik 

cihazlar için önemli yapı taşlarıdır ve çeşitli elektronik ve optoelektronik cihazlarda kullanım 

potansiyeline sahiptir (Kwon et al., 2022). Bu çalışma, nöromorfik hesaplama uygulamalarında 

kullanılan iki boyutlu geçiş metali kalkojenitlere (2D TMC'ler) dayalı yüksek performanslı 

memristörlere dair kapsamlı bir inceleme sunmaktadır. Çalışmada iki boyutlu geçiş metali 

kalkojenit malzemeler ve heteroyapılar ele alınarak memristif cihazların mevcut durumu detaylı 

bir şekilde değerlendirilmektedir (Kwon et al., 2022). Bu araştırmanın amacı, iki boyutlu geçiş 

metali karbürlerden üretilen nöromorfik memristörlerin üretimi ve karakterizasyonuna genel 

bir bakış sunmak ve bu malzemelerin ve cihazların gelecekte karşılaşabileceği zorlukları ve 

potansiyel fırsatları tartışmaktır. 

Memristif cihazlar, düşük enerji tüketimi, ölçeklenebilirlik ve direnç değişiminin çok 

seviyeli doğası (plastisite) gibi özellikleri sayesinde derin öğrenme ve yapay zekâ 

uygulamalarında enerji tüketimi ve ölçeklenebilirlik gibi sorunları çözmede oldukça umut vaat 

etmektedir (Kwon et al., 2022). Çok seviyeli plastisite, memristörlerin fiziksel nöromorfik 

hesaplama sistemlerinde sinapsları taklit etmesine olanak tanır (Shvetsov et al., 2022). Shvetsov 
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ve çalışma arkadaşları, çapraz bağlantı geometrisinde üretilen Cu/poly-p-xylene (PPX)/Au 

hafıza elemanlarını inceleyen bir çalışma gerçekleştirmiştir. Yapılan çalışmalar sonucunda, tek 

bir memristörün döngüden döngüye geçişi ve birkaç memristörün cihazdan cihaza geçişi 

üzerine yapılan deneylerde direnç değişim voltajlarının yüksek tekrarlanabilirliği gösterilmiştir. 

Elde edilen memristörlere dayanarak, basit desenleri sınıflandırmak üzere eğitilebilen bir 

donanım nöromorfik ağı oluşturulmuştur. 

Tablo 3, CMOS nöronları ve memristör tabanlı nöronlar için güç tüketimi, nöron başına 

enerji tüketimi değerlerini sunmaktadır. Bu makalede, memristör düğümü ile birlikte CMOS 

devreleri ve transistörlü bir memristör düğümünün kombinasyonu tanıtılmaktadır. 

Tablo 3. CMOS nöronları ile memristör tabanlı nöronların karşılaştırılması 

Referans 
Cihaz 

Tip/Model 
Konfigürasyon Enerji/Spike 

(Indiveri, 2003) CMOS 18–20 transistör 0.3–1.5 μW, 

2850 pJ/spike 

(Y. J. Lee et al., 2004) CMOS 90 transistör 163.4 μW 

(Cruz-Albrecht et al., 2012) CMOS 16 transistör 40.2 pW, 

0.4 pJ/spike 

(Sourikopoulos et al., 2017) CMOS 9 transistör 4 fJ/spike 

(Shamsi et al., 2018) CMOS 14 transistör 4.3 pJ/spike 

(Wijekoon & Dudek, 2008) CMOS 14 transistör 8–40 μW 

(Babacan et al., 2016) CMOS 1 transistör emülatör + 3 transistör 60–110 μW 

(Saxena et al., 2018) CMOS + Memristör Memristor emülatör (8 transistor) 14 fJ–1.4 pJ/spike 

(Mizrahi et al., 2018) CMOS + Memristör 1 memristör + 1 manyetik 

coupling + CMOS devre 

3.3 μW, 

150 pJ/junction 

(Z. Wang et al., 2018) Memristör ~6 x 4 ∼5 (nJ/spike) 

(X. Zhang et al., 2018) Memristör 5 x 5 ∼700 (nJ/spike) 

(Lu et al., 2020) Memristör <10 × 10 16 (fJ/spike) 

(Feali, 2021) Memristör <10 × 10 16 (pJ/spike) 

 

Yapılan çalışmalar ve bu çalışmalarda kullanılan model, alan ve enerji tüketimi gibi 

özellikleri Tablo 3’te gösterilmiştir. Bu tabloda, kullanılan memristör sayısı ile enerji tüketimi 

arasındaki dengeye dikkat etmek önemlidir. Bu durumun belirlenmesi uygulamalara göre 

değişiklik gösterebilir. Örneğin, Tablo 3 karşılaştırıldığında, 14 transistör kullanan Wijekoon 
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Dudek modeli, Babacan’ın yaklaşımına benzer tüm yükselme ve patlama türlerini 

gerçekleştirebilmekte ancak enerji tüketimi açısından ele alındığında, Babacan’ın memristör 

nöronuna göre %40 daha az güç kullanmaktadır. Tablo 3’te enerji tüketim miktarlarına 

bakıldığında en umut verici nöron Sourikopoulos’un çalışması olarak görülmektedir. Ancak 

yapay zekâ uygulamalarının en verimli formu yalnızca tek bir duruma dayanılarak 

değerlendirilemez. Donanım mimarisi tasarımında enerji tüketimini azaltmak için çipin hızı ve 

boyutu göz önünde bulundurulmalıdır. Bununla birlikte, bu koşulların en ideal durumu için 

belirli bir çip tasarımında bazı tavizler verilmesi gerekebilmektedir. 

Memristör tabanlı donanım hızlandırıcılarının güvenilirlik üzerindeki etkisi 

Memristör teknolojisi, makine öğrenimi, yapay zekâ, doğal dil işleme ve görüntü işleme 

gibi geniş bir uygulama yelpazesi için büyük bir potansiyel taşımaktadır. Ancak, bu ürünlerin 

ticari hale gelmesi için güvenilirlik, üretim, tutarlılık ve ölçeklenebilirlik gibi bazı önemli 

zorlukların ele alınması ve aşılması gerekmektedir (Mehonic et al., 2020). Memristör 

teknolojileri ailesi çeşitlilik göstermekte olup, farklı teknolojiler farklı cihaz ve sistem 

kusurlarıyla birlikte gelmektedir. Bu zorlukların yanı sıra, memristör tabanlı donanım 

hızlandırıcılarının güvenilirliği ve zorlukları, memristörlerin görece yeni bir teknoloji olması 

nedeniyle araştırmacılar için aktif ve popüler bir araştırma konusudur.  

Memristör teknolojisindeki güvenilirliği etkileyen en önemli zorluklardan biri, 

olgunlaşmamış üretim süreçlerinden kaynaklanan donanım kusurlarıdır (Kannan et al., 2015) 

(C.-Y. Chen et al., 2015) (S. Jin et al., 2020). Parametre varyasyonları, yüksek hassasiyetli 

memristör programlamasıyla kalibre edilebilse de, donanım kusurları geri dönüşümsüzdür ve 

düzeltilemez (Merced-Grafals et al., 2016). 

Memristör teknolojisindeki bir diğer ideal dışı durum ise takılı hata olarak bilinen stuck-

at-fault (SAF) ve cihazdan cihaza (D2D) varyasyonlardır (Joksas et al., 2020). Bir arıza 

durumunda stuck-at-fault (SAF), bir cihazın belirli bir durumda sıkışıp kalmasıyla ilgili önemli 

bir güvenilirlik sorunudur (M. Liu et al., 2019). Bu durum, yapay sinir ağlarında yanlış 

ağırlıkların oluşmasına ve hatalı hesaplamalara yol açabilir. D2D varyasyonlarıda, farklı 

cihazların programlama darbelerine farklı tepkiler vermesi nedeniyle memristörlerin yanlış 

programlanmasına neden olabilir. Sonuç olarak, memristörler yanlış iletkenlik seviyesine 

programlanabilir. Bu sorunları ele almak için, okuma ve doğrulama programlama şemaları  

veya yüksek hassasiyetli işlem birimlerinin çeşitli teknikler önerilmektedir (Le Gallo et al., 

2018; Shim et al., 2020). 
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Bir diğer sorun, birçok memristif cihazda gözlemlenen akım-gerilim 

karakteristiklerindeki doğrusal olmayanlıktır. Çıkış akımı ile uygulanan voltaj arasındaki 

doğrusal ilişkinin olmaması ve varsayılan doğrusal ilişkinin (I = GV) tüm voltaj aralığında 

kullanılamaması, memristör çapraz barları kullanarak doğru vektör matris hesaplamalarını 

engellemektedir (Mehonic et al., 2020). 

Alan çalışmaları ile nöromorfik sistemin genel değerlendirilmesi  

Literatür incelemesinde ilgili çalışmalarda görüldüğü üzere, bilgisayar sistemlerinde 

yazılım ve donanım alanında sürekli ve çok hızlı bir gelişim süreci yaşanmaktadır. Bu ilerleme 

ile birlikte, yapılandırılmış sorunları çözme konusunda başarılı olan Von Neumann mimarisine 

dayanan geleneksel bilgisayar sistemlerinin, büyük miktarda yapılandırılmamış veriyi işlemek 

için yetersiz olduğu anlaşılmıştır. Bu durumun sonucunda, son yıllarda daha fazla araştırmacı 

memristörlerin özelliklerini incelemeye ve daha gerçekçi memristör modelleri oluşturmaya 

başlamıştır. Memristör tabanlı nöromorfik hesaplama, donanım birimleri, uygulama modelleri, 

algoritmalar ve entegrasyon teknolojilerini kapsayan farklı disiplinlerin araştırma ve uygulama 

geliştirme alanı haline gelmiştir. Bu durum, gerçekleştirilen çalışmalarda yeni fırsatlar 

sunarken, aynı zamanda bazı zorlukları beraberinde getirmektedir. Bu, donanım tabanlı 

çalışmaların istenen seviyeye ulaşabilmesi için aşağıda sıralanan durumların göz önünde 

bulundurulması gerektiği düşünülmektedir. Memristör tabanlı nöromorfik donanımın inşasında 

farklı malzemeler kullanılmalıdır. Tasarlanan memristörler test edilmeli ve analiz edilmelidir. 

Bu analizler doğrultusunda, daha kararlı ve güvenilir memristör malzemeleri ve üretim 

yöntemleri izlenmelidir. Birçok memristör tabanlı uygulama düşük doğruluk sorunları 

yaşamaktadır. Bu sorunun çözümü, memristörlerin güvenilirliğini artırmakta yatmaktadır. 

Tasarlanan memristör birimlerinin güvenilirliğini artırmanın en önemli yöntemi, yeni üretim 

malzemelerinin kullanılmasıdır. 

Analog veya dijital hesaplamalarda, farklı cihazlardaki memristör cihaz özelliklerindeki 

ani değişimler, gerçekleştirilen işlemlerin doğruluğunu önemli ölçüde etkileyebilir. Özellikle 

yüksek doğruluğun çok önemli olduğu bilimsel hesaplamalarda, memristör cihazlarının 

uygunluk gereksinimi görece yüksektir. Doğrulama yöntemlerinin veya yedeklilik tasarımının 

kullanılması, bu hataların toleransını bir dereceye kadar artırabilir; ancak bunun sonucunda ek 

enerji tüketimi ve gecikme meydana gelecektir. Sonuç olarak, memristör tabanlı bellek içi 

hesaplamaların doğal avantajları zayıflayacaktır. Bu nedenle, geliştirilen uygulamalarda 

kullanılan memristör cihazlarının uygunluğu önemli bir sorundur. 
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Literatür taramasından çıkarılan bir diğer sonuç ise, memristör tabanlı yapıların dikkate 

alınmasıyla, bu özelliklere uygun olarak tasarlanacak yeni öğrenme algoritmaları ile geliştirilen 

sistemden daha iyi verim elde edilebilir. Ayrıca, yeni nesil bilgisayarların donanım mimarisi, 

Von Neumann mimarisinden farklı şekilde tasarlanmalıdır. Biyolojik ilham alan bir hesaplama 

paradigması olarak nöromorfik hesaplama, yapay zekanın ve derin öğrenme süreçlerinin 

hızlandırılması ile enerji verimliliği açısından optimal çözümler için büyük bir potansiyele 

sahiptir. Akademi ve sanayide artan araştırma girişimleri ile yakın gelecekte daha güvenilir 

öğrenme algoritmaları ve daha verimli uygulamalar konusunda iyileştirmelerin gerçekleşmesi 

beklenmektedir. 
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MATERYAL VE METOT 

Yöntem 

Bu tez çalışmasında, donanım tabanlı bir öğrenme modeli oluşturma sürecinde kullanılan 

metodolojinin temel bileşenleri kapsamlı bir biçimde incelenmekte ve oluşturulacak modelin 

performansı bilgisayar ortamında simüle edilmektedir. Bu metodoloji, optimizasyon 

yöntemlerinin entegrasyonu yoluyla modelin performansını artırmayı hedeflemekte ve çeşitli 

adımlar içermektedir. İlk olarak, optimizasyon sürecinde kullanılan matematiksel yaklaşımlar 

tanıtılmakta, ardından, donanım üzerinde öğrenme modelini kurma aşamasında bu yöntemlerin 

nasıl uygulandığı ele alınmaktadır. Bu çerçevede, her bir adımın modelin genel verimliliğine 

katkıları ve donanımın sınırlamaları dikkate alınarak yapılan düzenlemeler de açıklanmaktadır. 

Bu çalışma, sinir ağlarının donanım tabanlı uygulanabilirliğini inceleyerek, özellikle 

memristör tabanlı nano-sinaptik cihazların kullanım potansiyelini detaylı bir şekilde ele 

almaktadır. Memristör gibi gelişmiş malzemelerle üretilen nano-sinaptik cihazlar, sinir 

ağlarının hem doğruluk hem de işlem verimliliği açısından performansını iyileştirebilmekte, 

bununla birlikte enerji tüketimini azaltarak geniş çaplı hesaplama gereksinimlerine yönelik 

etkin çözümler sunabilmektedir. Çalışmada önerilen ve bilgisayar ortamında simüle edilen 

donanım tabanlı yapay sinir ağı modeli, çevrimiçi öğrenme ve çevrimdışı sınıflandırma 

görevleri optimum hale getirilmiş olup, özellikle veri yoğun sınıflandırma problemlerinde 

işlevsel ve ölçeklenebilir bir yapı sunmaktadır.  

Donanım tabanlı uygulama süreci, makine öğrenimi ve derin öğrenme algoritmalarının 

ileri besleme (FeedForward, FF) ve geri yayılım (BackPropagation, BP) gibi temel tekniklerini 

kapsayarak, FF algoritmasında giriş verisinin ağırlıklı toplamlar ve aktivasyon fonksiyonları 

üzerinden katmanlar boyunca çıkış katmanına ulaştırılması prensibine dayanmaktadır. Bu 

katman bazlı iletim süreci, sinir ağı çıktısının belirli bir etiket ile karşılaştırılmasını sağlar, 

böylece modelin tahmin hatası hesaplanır. BP aşamasında ise, hesaplanan tahmin hatası, 

modelin performansını iyileştirmek üzere optimizasyon algoritmaları aracılığıyla geri yayılır 

ve her bir veri noktasına ilişkin ağırlık değerleri anında güncellenerek hata minimize edilir.  

Özellikle donanım seviyesinde optimize edilmiş bu sinir ağı modeli, geleneksel gradyan 

inişi gibi yazılım tabanlı yöntemlerden ayrışarak enerji verimliliği, işlem hızı ve doğruluk 

açısından ciddi avantajlar sağlamaktadır. Hinduja ve arkadaşları ile Lillicrap ve arkadaşlarının 

çalışmaları, donanım tabanlı sinir ağlarının hem enerji tasarrufu sağladığını hem de işlem hızını 
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artırdığını göstermektedir. Bu ağlar, büyük veri kümeleriyle çalışırken gerekli olan hesaplama 

gücünü minimize etme konusunda da etkili bir çözüm sunmaktadır (Hinduja et al., 2019; 

Lillicrap et al., 2020). Şekil 18, çalışmanın genel yapısını göstermekle birlikte optimizasyon 

algoritmalarının makine öğrenimi model performansı üzerindeki etkilerini inceleyen bir akış 

diyagramını da ifade etmektedir. Şekil 18’in genel akışı, giriş verilerinin işlenmesinden nihai 

sonuçların değerlendirilmesine kadar olan süreci kapsamaktadır. 

 

Şekil 18. Çalışmada kullanılan metodolojinin akış diyagramı. 
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Aşağıda Şekil 18’da gösterilen akış diyagramının özet biçiminde açıklaması verilmiş olup 

ilerleyen bölümlerde bu kısımlar detaylı bir şekilde anlatılacaktır. 

 Başlangıç ve Giriş Verisi (Input Data): İlk adımda, MNIST, CIFAR-10 ve Fisher’s 

Iris gibi veri kümeleri bilgisayar ortamında simüle edilen modele girdi olarak 

verilmektedir. Bu veri kümeleri, el yazısı rakamlar ve küçük renkli görüntüler gibi 

standart makine öğrenimi test veri setlerini içerir. 

 Optimizasyon Yöntemleri İçin Hiperparametreler: Modelin başarısını etkileyen 

öğrenme oranı, nöron ağırlıkları ve gizli katman sayısı gibi çeşitli hiperparametreler 

belirlenir. Bu ayarlar, modelin performansını optimize etmek için detaylı 

ayarlamalar yapılması gereken kritik parametrelerdir. 

 Optimizasyon Yöntemleri: Akış diyagramında Stokastik Gradyan İnişi (SGD), 

AdaGrad, AdaMax, RMSProp, Momentum, AdaDelta, Nadam ve Adam gibi çeşitli 

optimizasyon algoritmaları listelenmiştir. Bu algoritmalar, modelin öğrenme 

sürecinde ağırlıkların güncellenme şeklini belirler.  

 Hedefler (Amaç): Optimizasyon sürecinin amacı, doğruluğu (ACC) maksimize 

ederken kaybı (Loss) minimize etmektir. Bu iki metrik, model performansını 

değerlendirmede kritik rol oynar. 

 Sinaptik Cihaz Tabanlı FFNN: Optimizasyon süreci, bir İleri Beslemeli Yapay Sinir 

Ağı (FFNN) modelini eğitmek için kullanılır. Sinaptik cihazlar terimi, modelin 

donanım veya yazılım uygulamalarında nöromorfik sistemleri temsil ediyor 

olabilir. 

 Neurosim ile Eğitim: YSA’nın eğitimi, Neurosim adlı bir simülasyon aracı 

kullanılarak gerçekleştirilir. Bu araç, nöromorfik hesaplamayı simüle ederek sinir 

ağı performansını değerlendirmeye yardımcı olmaktadır. 

 Doğruluk ve Optimum Değerlerin Hesaplanması: Modelin doğruluk oranı (ACC), 

doğru tahmin sayısının toplam tahmin sayısına oranı olarak hesaplanır. Bu adımda 

ayrıca modelin optimum parametre değerleri belirlenir. 

 Sonuçlar: Nihai sonuçlar ve değerlendirme metrikleri sunulmakta, akış diyagramı 

"BİTİŞ" adımıyla tamamlanmaktadır. 

Şekil 18, optimizasyon algoritmalarının karşılaştırmalı performans analizine yönelik bir süreç 

akışını sunmakta olup, makine öğrenimi alanında hiperparametre ayarlarının ve optimizasyon 

yöntemlerinin etkisini incelemek için tasarlanmıştır. Burada optimizasyon yöntemleri 
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kullanılarak donanım tabanlı bir öğrenme modeli oluşturmak için kullanılan metodolojinin 

temel yönleri gösterilmektedir. 

Tablo 4. Uygulamanın genel çalışma mantığını anlatan sözde kod 

Input: InputData, Hyperparameters, Optimizers 

Output: BestModel, BestAccuracy, BestLoss 

Begin 

   1:     Initialize Variables 

   2:               data ← LoadData (InputData) 

   3:               params ← SetHyperparameters (Hyperparameters) 

   4:               bestModel ← NULL 

   5:               bestAccuracy ← 0 

   6:               bestLoss ← ∞ 

   7:     For each optimizer in Optimizers do 

    8:               Initialize Model with Current Optimizer 

    9:                              model ← InitializeModel (params, optimizer) 

  10:               Randomly Initialize Model Weights 

  11:                              RandomInitializeWeights(model) 

  12:              Train the Model using Data 

   13:                                Train (model, data) 

   14:              Evaluate Model Performance 

   15:                             accuracy ← CalculateAccuracy (model, data) 

   16:                             loss ← CalculateLoss (model, data) 

   17:              Compare and Update Best Model if Necessary 

   18:                             if accuracy > bestAccuracy or (accuracy == bestAccuracy and loss < bestLoss) then 

   19:                                            bestModel ← model 

   20:                                            bestAccuracy ← accuracy 

   21:                                            bestLoss ← loss 

   22:                             End if 

    23:    End For 

    24:    Return Results 

    25:                return bestModel, bestAccuracy, bestLoss 

End 

 

 

Veri Seti Tanımlaması ve Kullanılan Veri Setleri 

El yazısı karakter tanıma amacıyla MNIST veri kümesi (Li Deng, 2012) kullanılmıştır. 

MNIST, yaygın olarak el yazısı rakamların tanınması üzerine yapılan çalışmalar için standart 

bir test veri kümesi olarak kullanılmaktadır. Ayrıca bilgisayarlı görü algoritmalarının 

performansını değerlendirmede oldukça etkin bir ölçüt sunar. Bu tez çalışmasında, bilgisayar 

tarafından yazılmış karakter tanıma sürecini incelemek amacıyla her bir rakamın dijital 

görüntüsünü bilgisayar ortamında üreterek kendi veri kümemizi oluşturduk. Her bir karakter 

görüntüsü, veri ön işleme aşamasında sayısallaştırılarak başlangıçtaki 48×48 piksel 

çözünürlükten 28×28 piksele normalize edilmiştir. Bu, sinir ağımızın giriş katmanındaki 
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nöronlar için gerekli olan giriş vektörlerini dikey ve yatay özellik vektörlerinin birleşimi 

şeklinde sunmamıza olanak sağlamaktadır. Neticede, önerilen sinir ağı modelimiz, bilgisayar 

ortamında yazılmış bir karakter ile el yazısı bir karakter için toplamda 56 benzersiz özellik 

taşıyan bir giriş vektörünü işlemektedir. Bilgisayar tarafından üretilen karakterlerden oluşan 

yeni bir veri kümesi, metin görüntülerinin 28 × 28 piksele sayısallaştırılmasıyla oluşturulmuş 

olup ve Şekil 19 (a) ve Şekil 19 (b)'de gösterilmektedir. 

 

Şekil 19. (a) Bilgisayar ile yazılmış bir rakamın uygulama ile binary hale getirilmesi (b) Elle 

yazılmış bir rakamın uygulama ile binary hale getirilmesi. 

Ayrıca bu tez çalışmasında, donanım tabanlı bir sinir ağı mimarisinin performansını 

değerlendirmek amacıyla CIFAR-10 veri kümesinden (McCrary, 1992) faydalanılmıştır. 

CIFAR-10, bilgisayarla görme alanında sıklıkla kullanılan, geniş kapsamlı ve karmaşık bir 

görüntü sınıflandırma veri setidir. Bu veri seti, her biri 32×32 piksel boyutunda ve renkli olan 

60.000 görüntüden oluşmaktadır ve on farklı sınıfa dağıtılmıştır. Bu sınıflar, günlük hayatta 

karşılaşılan çeşitli nesne ve hayvan kategorilerini içermektedir. CIFAR-10 veri kümesindeki 

her görüntü, önceden belirlenmiş on sınıftan birine atanmıştır, bu da veri kümesini denetimli 

öğrenme tabanlı görüntü sınıflandırma çalışmaları için ideal hale getirmektedir. Veri kümesinde 

bulunan çeşitli nesneler ve karmaşık arka planlar, sınıflandırma modelleri için oldukça zorlayıcı 

bir ortam sunmakta, böylece algoritmaların sınıfları ayırt edebilmek için derin özellikleri 

öğrenmesini zorunlu kılmaktadır (McCrary, 1992). Tablo 5’te sözde kodu yazılan ptyhon 

programlama dilinde yazılan kod ile CIFAR-10 veri kümesini işleyip eğitim ve test verilerini 
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belirli dosyalara kaydeder. Öncelikle, veriler belirtilen dizinlerdeki dosyalardan yüklenir ve 

ardından eğitim verileri birleştirilerek patch_train.txt ve label_train.txt dosyalarına kaydedilir. 

Test verileri de benzer şekilde patch_test.txt ve label_test.txt dosyalarına kaydedilir. Algoritma, 

eğitim ve test verilerini ayrı dosyalara kaydederek veriyi model eğitimi için kullanılabilir hale 

getirir. 

 

Şekil 20. Çalışmada CIFAR-10 Veri setinin kullanımı. 

Standartlaştırılmış yapısı ve zengin içeriğiyle CIFAR-10, özellikle derin öğrenme ve makine 

öğrenimi modellerinin sınıflandırma performansını değerlendirme amacıyla araştırmacılar 

tarafından yaygın olarak kullanılmaktadır. Bu veri kümesi, sınıflandırma algoritmalarının 

gerçek dünya problemlerine uyarlanabilirlik performansını değerlendirmek ve farklı tekniklerin 

verimliliğini nesnel bir biçimde karşılaştırmak için ölçüt işlevi görmektedir. 

Tablo 5. CIFAR-10 veri setinin uygulamada kullanacak dijit yapıya dönüştürülmesine ait 

sözde kod 

Input: data_dir, output_dir 

Output: patch_train.txt, label_train.txt, patch_test.txt, label_test.txt 

Begin 

   1:     Function: load_cifar10_batch(file) 

   2:               Open file in 'rb' mode 

   3:               Load data using pickle and save it to a dictionary 

   4:               Extract images (from data key) and labels (from labels key) from the dictionary 

   5:               Return images, labels 

   6:     Function: save_data(images, labels, patch_file, label_file) 

   7:               Save images to patch_file 

   8:               Save labels to label_file 

   9:     Function: process_cifar10_data (data_dir, output_dir) 

 10:               If output_dir does not exist: 

 11:              Create output_dir 

 12:              Initialize empty lists: train_images and train_labels 

 13:              For each i from 1 to 5: 

 14:                             Construct file path as data_dir + 'data_batch_i' 
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 15:                             Call load_cifar10_batch(file) to load images and labels 

 16:                             Append images to train_images 

 17:                             Append labels to train_labels 

 18:                Concatenate train_images and train_labels 

 19:                Call save_data(train_images, train_labels, 'patch_train.txt', 'label_train.txt') 

 20:                Call load_cifar10_batch(data_dir + 'test_batch') to load test_images and test_labels 

 21:                Call save_data(test_images, test_labels, 'patch_test.txt', 'label_test.txt') to save test data  

 22:     Call process_cifar10_data('cifar-10-batches-py', 'cifar10_data') 

End 

 

Tez çalışmasında önerilen yöntemin performansını değerlendirmek için kullanılan diğer 

bir veri seti Fisher’s Iris veri setidir. Fisher’s Iris veri seti, makine öğrenimi ve istatistik 

alanlarında sıklıkla kullanılan, iyi yapılandırılmış ve basit bir veri setidir. Bu veri seti, her biri 

dört farklı özellik içeren 150 gözlemden oluşmaktadır ve üç farklı sınıfa ayrılmıştır. Sınıflar, üç 

farklı iris çiçeği türünü temsil etmektedir. Bunlar; Iris-setosa, Iris-versicolor ve Iris-virginica. 

Her sınıf, veri setinde eşit sayıda örnek içerir. Fisher’s Iris veri seti, denetimli öğrenme tabanlı 

sınıflandırma çalışmaları için ideal bir ortam sunar. Küçük boyutu ve dengeli sınıf dağılımı 

sayesinde eğitim ve test işlemleri hızlıca gerçekleştirilebilir. Bunun yanı sıra, özelliklerin 

doğrusal olarak ayrılabilirliği, algoritmaların performansını analiz etmek için uygun bir zemin 

oluşturur. CIFAR-10 veri setine uygulanan işlemler python programlama dili ile Fisher’s Iris 

veri setine uygulanarak modelin kullanabileceği binary formata çevrilir. Bu aşamalardan sonra 

ilgili veri seti önerilen model üzerinde kullanılarak sonuçlar elde edilir. 

Memristör Tabanlı Sinir Ağı Donanımı 

Donanım tabanlı yapay sinir ağı uygulamaları için memristif sinaptik cihazlar giderek 

daha fazla benimsenmektedir (J. Chen et al., 2021; Ielmini & Wong, 2018; Qin et al., 2020). 

Bu cihazlar, biyolojik sinapsların işlevini taklit ederek yapay sinir ağlarında bilgi işleme ve 

öğrenme sürecini etkinleştirmektedir. Yapay sinir ağları, büyük veri kümelerini kullanarak 

öğrenme algoritmalarını eğitmekte ve girdi verilerinin temel özelliklerini çıkarımsal olarak 

öğrenmektedir. Mimari açıdan, yapay sinir ağları genellikle iki ana kategoriye ayrılır. İlk 

kategori olan ileri beslemeli ağlar, hesaplama sürecini girişten çıkışa doğru, her katmanda 

ardışık bir şekilde gerçekleştirir. Bu tür ağlar, öğrenme süreci sırasında sinyalleri yalnızca ileri 

yönde taşıyarak çıktı katmanına ulaşır. Bu ağ yapısı, hesaplama işlemlerini sadeleştirirken 

doğrusal bilgi akışını korur ve çoğunlukla denetimli öğrenme gerektiren sınıflandırma 

görevlerinde kullanılır (S. Raj & Ananthi J, 2019). İkinci kategori olan tekrarlayan yapay sinir 

ağları (RNN), farklı bir yapısal yaklaşım sunar. Bu ağlar, döngüsel bağlantılar aracılığıyla hem 

ileri hem geri bilgi akışı sağlamakta ve zaman içindeki ardışık ilişkileri dikkate alabilmektedir. 
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Böylece, veriler arasında bir hafıza etkisi oluşturulmakta ve ağın önceki durum bilgilerini de 

hesaba katarak daha dinamik bir hesaplama kapasitesine sahip olması sağlanmaktadır. Bu 

çalışmada ikinci kategoride belirtilen yapay sinir ağı modeli kullanılmıştır. İleri beslemeli bir 

sinir ağında nöronlar, katmanlar halinde düzenlenmiştir; her katmandaki nöronların çıktısı bir 

sonraki katmana ağırlıklı bir giriş olarak aktarılır ve bu süreç, katmanlar arası sinirsel iletimin 

temelini oluşturur. 

Tablo 6, memristör tabanlı donanım uygulamalarına yönelik yapay sinir ağları üzerine 

gerçekleştirilen dört farklı çalışmanın karşılaştırmalı analizini sunmaktadır. Bu çalışmalar, 

biriktirme yöntemleri, memristör yapıları, aktif katman kalınlıkları, ROFF/RON oranları, sinaptik 

özellikler, iletkenlik durumları ve sinaptik voltaj değerlerindeki farklılıklar açısından detaylı 

bir şekilde incelenmiştir. Analiz, memristörlerin tasarım ve performans parametrelerinin sinir 

ağı uygulamalarındaki etkilerini anlamaya yönelik kapsamlı bir bakış açısı sağlamaktadır. 

Referanslarda belirtilen çalışmalarda ve bu tez çalışmasında, biriktirme yöntemleri olarak 

Darbeli Lazer Biriktirme (PLD), Plazma Destekli Atomik Katman Biriktirme (PEALD), 

Reaktif Magnetron Püskürtme ve RF-Magnetron Püskürtme kullanılmıştır. Çalışmalar, 10 nm 

ile 65 nm arasında değişen aktif katman kalınlıklarına odaklanmış ve farklı ROFF/RON oranları 

rapor edilmiştir. Sinaptik özellikler bu çalışma ve (L. Gao et al., 2015; Illarionov et al., 2020; 

Miyake et al., 2022) referanslarında ayrıntılı olarak açıklanmıştır. Çeşitli çalışmalar, iletkenlik 

durumlarının 102 ile 210 arasında değişkenlik gösterdiğini ve sinaptik voltajların 3 V ile 10 V 

aralığında dalgalandığını bildirmiştir. 

Tablo 6. Farklı memristör tabanlı donanım uygulaması yapay sinir ağı çalışmaları. 

Çalışma (Miyake et al., 

2022) 

(Illarionov et al., 

2020) 

(L. Gao et al., 2015) Bu çalışma 

Biriktirme yöntemi PLD (Darbeli Lazer 

biriktirme) 

PEALD (Plazma 

Destekli Atomik 

Katman Biriktirme) 

Reaktif Magnetron 

Püskürtme 

RF-

Magnetron 

Sputtering 

Yapı Pt∕TiO2−𝑥∕Pt Al∕TiO2∕Al Ta∕TaO𝑥∕TiO2∕Ti Al∕TiO2∕Al 

Aktif katman kalınlığı 65 nm 13 nm 10 nm+30 nm 10 nm 

𝑅𝑂𝐹𝐹 /𝑅𝑂𝑁  ratio(RRAM) 20 100 Rapor edilmedi > 2 

Sinaptik özellikler + Rapor edilmedi + + 

İletkenlik durumları Not reported Rapor edilmedi 102 210 

Sinaptik gerilim 7 V, 8 V, 9 V, 10 V Rapor edilmedi 3 V 5 V 

 

Memristör Sinaptik Tabanlı Cihaz Kullanarak Nöral Ağ Uygulaması 

Memristif sinaptik cihazlar, gelişmiş öğrenme algoritmaları ve yüksek kaliteli veri 

kümelerinin yardımıyla rakam tanıma ve görüntü sınıflandırma gibi görevlerde performansı 

önemli ölçüde artırmaktadır. Bu cihazlar, yapay zekâ ve makine öğrenimi uygulamaları için 
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ideal bir yapı sunarak, düşük güç tüketimi ve yüksek işlem hızı avantajları ile öne çıkmaktadır. 

Çalışmanın odağı, çeşitli optimizasyon algoritmaları kullanılarak hız, enerji verimliliği ve 

doğruluğun optimize edilmesidir. Bu çerçevede, memristör tabanlı nano-sinaptik cihazların 

sahip olduğu özelliklerin ve mevcut öğrenme performanslarındaki sınırlılıkların ele alındığı bir 

nöro-esinli donanım çözümü sunulmaktadır. 

Bu çalışmada, memristör tabanlı cihazın memristif özelliklerini kullanarak ileri besleme 

(FF) ve geri yayılım (BP) yöntemleriyle performans ve verimliliği artırma hedeflenmiştir. 

Performans karşılaştırmaları ve referans sağlamak amacıyla iki katmanlı bir perceptron (MLP) 

sinir ağı tercih edilerek tasarlanmıştır. Şekil 21(a)'da gösterildiği gibi, bu sinir ağı, giriş, gizli 

ve çıkış katmanlarından oluşmakta ve her katmandaki nöronlar, bir sonraki katmandaki tüm 

nöronlara tam bağlantılarla bağlanmaktadır. Bu bağlantı yapısı, ağın karmaşık veri modellerini 

öğrenme kapasitesini artırırken, ağırlıklı sinapslarla temsil edilen esnek bağlantılarla yüksek 

hesaplama gücü sunmaktadır. Giriş ve gizli katmanlar arasındaki bağlantı ağırlıkları matris WIH 

ile, gizli ve çıkış katmanları arasındaki ağırlıklar ise matris WHO ile gösterilmektedir. Ağın 

eğitimi için giriş verisi olarak 28x28 piksel boyutuna yeniden ölçeklendirilmiş MNIST el yazısı 

rakamları ve CIFAR-10 veri setleri kullanılmıştır. 

 

Şekil 21. MLP nöral ağı. Kullanılan BPNN'nin mimarisi ve nöronları. (a) Bilgisayar tarafından 

üretilen bir rakamı temsil eden ikili matris (28x28) ve (b) el yazısı rakam.                                                        

Ağ topolojisinin varsayılan yapısı 784 nöronlu bir giriş katmanı, 128 nöronlu bir gizli 

katman ve 10 sınıfa karşılık gelen 10 nöronlu bir çıkış katmanı içermektedir. Bu yapı, her bir 

görüntüyü işleyerek uygun rakam sınıfını belirleme yeteneğini sağlar. Bu parametrelerde 

yapılacak değişiklikler, ağın performansını optimize etmek için yeni ayarların yapılmasını 

gerektirebilir. Şekil 21(b) ise bir nöron düğümünü gösterir; burada nöron, gelen sinapslardan 

ağırlıklı bir toplamı hesaplamakta ve 1 bitlik düşük hassasiyetli bir aktivasyon fonksiyonu ile 

çevrimdışı sınıflandırma gerçekleştirmektedir. Ancak, eğitim sürecinde geriye yayılım 
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yapılırken, küçük hata düzeltmeleri için daha yüksek hassasiyetli ağırlık güncellemeleri 

gerekmekte olup çalışmada bu durum göz önünde bulundurularak işlemler gerçekleştirilmiştir. 

Bu tez çalışmasında tasarlanan memristör tabanlı sinaptik cihazın performansını artırmak 

amacıyla çeşitli optimizasyon yöntemleri uygulanmıştır. Bu cihazda, öğrenme süreci sırasında 

oluşan sinaptik ağırlık değişimlerinin ölçülmesi ve izlenmesi için özel bir prob istasyonu 

kullanılmıştır. Ayrıca, memristör cihazının sinaptik davranışlarının detaylı analizleri, bu amaca 

yönelik özel olarak geliştirilmiş bir yazılım ile yürütülerek sonuçlandırılmıştır.  

Memristif eNVM sinaptik çekirdeklerindeki enerji tüketiminin ana kaynağı, geleneksel 

belleklerde sıklıkla görülen dinamik güç tüketiminden farklı olarak, daha çok statik güç 

tüketimine dayanır. Memristif sinapslardan geçen elektrik akımı, enerji tüketimine önemli bir 

katkı sağlamakta olup toplam enerji tüketimi hem sinaptik çekirdekler hem de çevresel 

devrelerin tükettiği enerjinin bileşimi olarak hesaplanmaktadır. Çevresel devrelerin enerji 

tüketimi hesaplamaları, 32 nm düğüm teknolojisi ile öngörücü teknoloji modeli (PTM) 

aracılığıyla gerçekleştirilmiştir. 

 

Şekil 22. SMU/Pulse Source. Memristör sinaptik cihazın yerleşimi ve deneysel kurulum 

Sinir ağı uygulamasının bilgisayar üzerinde enerji tüketimi analizi için, i7-10750H 

işlemci (2.90 GHz) ve 8 GB RAM'e sahip bir sistem kullanılmıştır. Bu analiz sırasında enerji 

tüketimi ölçümlerinde (García-Martín et al., 2019) kaynakta sunulan yönergeler temel alınmış 

ve sinir ağı uygulamasının bilgisayardaki enerji kullanımını tahmin etmek amacıyla DeLight 

adlı analiz aracı (Şekil 22'de gösterilen) kullanılmıştır. Bu yöntemler, sinir ağlarının donanım 
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tabanlı uygulamaları için daha düşük enerji gereksinimleriyle yüksek verim elde etme 

potansiyelini değerlendirmede kritik bir rol oynamaktadır. 

 

Şekil 23. İki katmanlı MLP ağının donanımda uygulanması için devre blok diyagramı. 

Şekil 23, iki katmanlı MLP sinir ağının donanım tabanlı uygulaması için devre blok 

diyagramını göstermektedir. Bu uygulamada, ağırlıklı toplam hesaplamaları sinaptik 

çekirdekler aracılığıyla gerçekleştirilir. Ancak, standart bir sinaptik dizide kullanılan ağırlıklar 

sadece WH = 0~1 aralığında negatif olmayan değerler alabilirken, sinir ağı algoritmasında hem 

pozitif hem de negatif ağırlık değerleri mevcuttur, yani WA = -1~1. Bu durum donanım 

tasarımında bazı zorluklar ortaya çıkarmakta ve negatif ağırlıkları temsil etmek için özel 

çözümler gerektirmektedir. Bu uygulamada, ağırlıkları WA=-1~1 aralığından WH = 0~1 

aralığına dönüştürmek için algoritmik bir yapı kullanılmıştır. Algoritmadaki ağırlıklı toplam 

hesaplaması aşağıdaki gibi ifade edilir: 

     𝑊𝐴𝑉 = 2(𝑊𝐻 − 0.5𝐽)𝑉 = 2𝑊𝐻𝑉 − 𝐽𝑉)                                                                      (6) 

Bu ifadede V giriş vektörünü, J ise WA ve WH ile aynı boyutta ve tüm elemanları bire eşit 

olan bir matrisi temsil etmektedir. Denklem (6)'da WHV, sinaptik çekirdekten elde edilen 

ağırlıklı toplamın sonucunu temsil eder. Bu nedenle WA, (-1~1) aralığından WH (-1~0) aralığına 

dönüştürülür. Özetle, Şekil 21 bir sinir ağının donanımsal mimarisini göstermektedir. MNIST, 

CIFAR-10 ve Fisher’s Iris veri kümelerinin bir kısmı girdi vektörü olarak kullanılır ve çıktı 

vektörünü tahmin etmek için sinaptik çekirdekler (WIH ve WHO) aracılığıyla işlenir. Ara 

katmanda, ağırlıklar donanım kontrol mantığı tarafından ayarlanır ve MSB tarafından işlenir. 

Sonuç olarak, çıktı katmanı tahmini sağlar. Şekil 23 sinir ağlarının donanım uygulamasını 

göstermektedir. 
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Cihaz Özellikleri̇ ve Uygulama Deneyleri̇ 

Malzeme ve cihaz özellikleri 

Memristörlere dayalı nöromorfik hesaplama sistemleri, yazılım tabanlı sinir ağlarından daha 

enerji verimlidir. Doğal analog dirençler gibi davranan memristörler, hesaplamaları bellek 

içinde gerçekleştirerek von Neumann mimarisine bir alternatif sunar. Büyük ölçekli memristör 

tasarımlarını tahmin ve optimize etmek için NeuroSim ile simülasyonlara ihtiyaç vardır. İkili 

oksitler, basit üretimleri ve CMOS teknolojisi ile uyumlulukları nedeniyle elektronik 

memristörler için çok önemlidir (Ye et al., 2022). Bu memristörlerin üretimi kolay, düşük 

maliyetli ve mevcut yarı iletken teknolojileriyle iyi entegre olabilirler. Hf, Zn, V, Ni ve Ti (Gale, 

2014) gibi oksitler, kademeli direnç anahtarlamaları için sinaptik nano cihazlarda 

kullanılmaktadır. Bu sinaps benzeri davranış, memristörleri nöromorfik hesaplama ve sinir ağı 

uygulamaları için ideal hale getirmektedir. Ayrıca sinaptik işlevleri taklit eden nano-elektronik 

cihazların geliştirilmesine önemli bir ilgi vardır (Kuzum, 2018). Memristör, CMOS 

üretimindeki önemi nedeniyle nöromorfik bilgi işlem için umut vericidir. Memristör tabanlı 

sinaptik cihazlar, bellek içi hesaplama için çapraz çubuk mimarilerine zahmetsizce dahil 

edilebilir. Şekil 24(a) biyolojik sinaps muadillerini ve memristörün anahtarlama davranışını 

detaylandırmaktadır. Yapay sinaps oluşturma, bipolar elektrotlar arasında yer alan 

nanoparçacıkların elektrokimyasal reaksiyonlarına dayanır. Gerilim uygulaması iyon ve atom 

göçüne neden olarak iki kutuplu anahtarlama sağlar (Ilyas et al., 2020).  

 

Şekil 24. Biyolojik ve yapay sinapsların şematik gösterimi. Nörotransmitterler ve reseptörlerle 

biyolojik bir sinaps gibi, PRE ve POST sivri uçları burada da kullanılır 

 Şekil 24(c), voltajın nanoparçacıkların büyümesine, akımın artmasına ve memristörün düşük 

dirençli bir duruma geçmesine neden olduğunu göstermektedir. Gerilim geri çekildiğinde, Şekil 

24(b)'de gösterildiği gibi, nanoparçacıklar küçülür, akımı azaltır ve memristörü yüksek dirençli 
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bir duruma geçirir. Memristör tabanlı cihazların direnci dinamik olarak değiştirebilir ve 

biyolojik sinapsların işlevselliğini taklit edebilir. Bu cihazlar nöromorfik mühendislik ve yapay 

sinir ağları gibi ileri teknolojik uygulamalar için büyük bir potansiyele sahiptir. 

Memristör tabanlı sinaptik cihazın özellikleri 

Memristörlerin gelişimi RRAM, biyohibrit sistemler ve sensörler gibi yüksek teknoloji 

uygulamalarıyla bağlantılıdır. Bu uygulamalar memristörlerin potansiyeli Şekil 25'te 

gösterilmiştir. TiOx, RRAM uygulamaları için çalışılan en eski malzemeler arasındadır. 

Bununla birlikte, memristörler genellikle AÇIK veya KAPALI durumlar arasında değişen 

dirençli anahtarlama bellek cihazları olarak kullanılır (Wong et al., 2012). Memristör tabanlı 

RRAM cihazları, iki durum arasında geçiş yaparak veri depolar ve güç kapalı olsa bile 

gerektiğinde erişilebilir kalır (Q. Wan et al., 2019). Bazı nano ölçekli metal oksit memristörler, 

dirençte ince ayarlara izin vererek hassas veri işleme ve depolamaya olanak tanır. Bu da onları 

gelişmiş nöromorfik hesaplama ve yenilikçi bellek uygulamaları için ideal hale getirmektedir.  

 

Şekil 25. Memristif Cihazların Teknolojik Gelişmeleri ve Uygulamaları 

Teorik olarak, sinaptik ağırlık değişiklikleri yazma darbelerinin sayısıyla doğrusal olarak 

ilişkili olmalıdır, ancak gerçek dünyadaki cihazlar bu davranıştan sapmaktadır. İletkenlik LTP 

ve LTD'nin ilk aşamalarında hızla değişir ve kademeli olarak doygunluğa ulaşır. Şekil 26 ((a), 

(b) ve (c)) nöromorfik sistemlerin doğruluğunu ve verimliliğini etkileyen bu sapmaları 

göstermektedir. Bu da detaylı karakterizasyon ve optimizasyon gerektirmektedir. Doğrusal 

olmayan ağırlık güncellemelerini modellemek için bir cihaz modeli tasarlanmıştır. MLP + 

NeuroSim, memristör tabanlı sinaptik cihaz gibi analog eNVM sinapslarına sahip nöromorfik 
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sistemlerin güç kullanımını, eğitim gecikmesini ve uzamsal gereksinimlerini modellemektedir 

(Luo et al., 2019).  

 

Şekil 26. Ag:a-Si için doğrusal olmayan ağırlık güncellemesi, (b) TiO2 için doğrusal olmayan 

ağırlık güncellemesi, (c) Analog eNVM cihaz davranış modelinin -6'dan 6'ya kadar etiketlenmiş 

doğrusal olmayan ağırlık güncellemeleriyle şematik gösterimi 

İletkenlik değişimi yazma darbeleri (P) ile ilişkilidir ve aşağıdaki denklemlerle ifade edilir: 

𝐺𝐿𝑇𝑃 = 𝐵 (1 − 𝑒(−
𝑃

𝐴
)) + 𝐺𝑚𝑖𝑛                                                                                   (7) 

𝐺𝐿𝑇𝑃 = −𝐵 (1 − 𝑒(−
𝑃−𝑃𝑚𝑎𝑥

𝐴
)) + 𝐺𝑚𝑎𝑥                                                                      (8) 

𝐵 = (𝐺𝑚𝑎𝑥 − 𝐺𝑚𝑖𝑛)/(1 − 𝑒−𝑃𝑚𝑎𝑥/𝐴)                                                                        (9) 

GLTP ve GLTD sırasıyla LTP ve LTD süreçleri için iletkenlik değerlerini temsil eder. Gmax, Gmin 

ve Pmax doğrudan deneysel sonuçlardan elde edilen değerlerdir ve sırasıyla en yüksek 

iletkenliği, en düşük iletkenliği ve cihazın en yüksek ve en düşük iletkenlik durumları arasında 

geçiş yapması için gereken maksimum darbe sayısını ifade eder. A parametresi ağırlık 

güncelleme davranışının doğrusal olmayan doğasını kontrol eder ve pozitif (mavi) veya negatif 

(kırmızı) olabilir. Şekil 24(a) ve Şekil 24(b)'de LTP ve LTD için A değerlerinin büyüklükleri 

aynıdır, ancak işaretleri farklıdır. B, A'nın bir fonksiyonu olarak tanımlanır ve Gmax, Gmin ve 

Pmax kapsamındaki fonksiyonları uydurmak için kullanılır. Denklem ((7), (8) ve (9)) 

kullanılarak, Şekil 24(c)'de gösterildiği gibi A değeri ayarlanarak çeşitli doğrusal olmayan 

ağırlık artırma (mavi) ve ağırlık azaltma (kırmızı) davranışları elde edilebilir. Her bir doğrusal 

olmayan eğri +6 ile -6 arasında değişen doğrusal olmama değerleriyle etiketlenmiştir (P.-Y. 

Chen et al., 2018). Denklem (7) ve (8) incelendiğinde, A'nın işareti dışında eşdeğer oldukları 

kanıtlanabilir. Bu nedenle hem doğrusal olmayan LTP hem de LTD ağırlık güncellemeleri için 

yalnızca Denklem (7) kullanılacaktır. Şekil 26(c)'den ((a) ve (b)) farklı olarak, daha basit 
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formülasyon için eğrilerin sıfır numaralı darbeden başlamasını sağlamak amacıyla tüm LTD 

eğrileri yansıtılmış ve yatay olarak kaydırılmıştır. 

Biyolojik sinir ağlarında, sinaptik ağırlık STDP ile modüle edilir ve hücre iletkenliği ile 

ölçülür (Prezioso et al., 2016). Bu, yapay sinir ağlarındaki öğrenmeyi taklit eder. Memristör 

cihazın sinaptik ağırlık değişimi, tepe zamanlaması darbelerinden kaynaklanan iletkenlik 

değişiklikleri ile belirlenir, bu da ön ve ardışık sinaptik tepe zamanlamasına bağlı olarak 

güçlendirme veya zayıflamaya yol açar. Memristör tabanlı memristif cihazlar, biyolojik 

sinapsların işlevselliğini taklit edebilir. Sinaptik ağırlık değişiminin miktarı ve yönü, tepe 

zamanlamaları arasındaki göreceli iletkenlik değişimi ile bağlantılı olup STDP ilkeleri ve sinir 

ağı öğrenme mekanizmalarını yansıtır. Bu ifadenin matematiksel olarak nasıl tanımlandığını 

belirtmek için Denklem (10) şu şekildedir: 

∆𝐺 = (𝐺𝑎𝑓𝑡𝑒𝑟 − 𝐺𝑏𝑒𝑓𝑜𝑟𝑒)/𝐺𝑏𝑒𝑓𝑜𝑟𝑒                                                                                                               (10) 

Bu denkleme göre, ∆G sinaptik ağırlık değişimini temsil ederken, Gafter ve Gbefore sırasıyla ön-

son sivri uçların aktivasyonunu takip eden ve öncesindeki iletkenlik değerlerini temsil eder (S. 

Yu et al., 2011). Bu oran sinaptik modülasyon etkinliğini ve yönünü belirler. Şekil 27(a), 

memristör tabanlı sinaptik cihazın spike-time bağlı plastisite (STDP) özelliklerini sunarak 

sinaptik öncesi ve sonrası spike uçlar arasındaki zamanlamanın sinaptik iletkenlikteki 

değişiklikleri nasıl etkilediğini ifade etmektedir. STDP mekanizması, bağlantıları güçlendiren 

veya zayıflatan sinaptik gücün modüle edilmesinde önemli bir rol oynamaktadır. Memristörler 

biyolojik sinapsların davranışını taklit etmede ve nöromorfik sistemlerde 

uygulanabilirliklerinde umut vaat etmektedir. Şekil 27(b) cihazın çeşitli zamanlama 

aralıklarındaki performansını göstermekte ve sinaptik ağırlık modifikasyonunun dinamiklerini 

ortaya koymaktadır. 
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Şekil 27. Memristör Tabanlı Sinaptik Cihazın Spike-Zamanlamasına Bağlı Plastisite (STDP) 

Özellikleri. (b) Memristör tabanlı ağırlık ayarlama verileri için normalleştirilmiş darbe (pulse) 

sayısı ve normalleştirilmiş iletkenlik arasındaki ilişkiyi gösteren grafik 

MLP + NeuroSim, çevrimiçi öğrenme süreçlerini karşılaştırmak için yaygın olarak 

kullanılmaktadır. Memristör tabanlı analog eNVM sinapsları ile nöromorfik donanımın güç 

tüketimi, eğitim gecikmesi ve alan kullanımı gibi metriklerini simüle eder. Normalleştirme 

parametreleri, deneysel ağırlık verilerinin yeniden düzenlenmesi ve normalleştirilmesiyle 

belirlenmiştir. LTP ve LTD verileri NeuroSim doğrusal olmayan uydurma yöntemi kullanılarak 

yansıtılmış ve uydurulmuş bu işlemin sonucunda sırasıyla 0,19 ve 3,42 doğrusal olmayan 

değerlere ulaşılmıştır. Bu değerler simülatörde kullanılmış ve sonuçlar Şekil 27(b)'de 

gösterilmiştir. Bu simülasyonlar memristör tabanlı nöromorfik donanımın performansını 

optimize etmeye yardımcı olmaktadır. 

Yapay sinaps olarak memristör ve uygulamanın yazılım-donanım entegrasyonu 

Gelişen teknolojiyle birlikte yapay zekâ ve sinir ağları, enerji verimliliği ve hesaplama 

performansı açısından daha optimize çözümlere duyulan ihtiyacı artırmıştır. Geleneksel 

hesaplama yaklaşımlarının ötesine geçerek, memristör tabanlı yapay sinapslar, enerji verimli 

ve biyolojik ilhamlı donanım mimarileri için umut vaat eden bileşenler olarak ortaya çıkmıştır. 

Bu bölümde, memristörlerin yapay sinir ağı uygulamalarındaki rolü ve yazılım-donanım 

entegrasyonu ile bu sistemlerin etkinliği ele alınmaktadır.  

Memristör, elektriksel direnci hafızasına alabilen bir bileşendir ve doğrudan biyolojik 

sinapsları taklit etmek için kullanılabilir. Bu özellik hem verilerin depolanması hem de 

işlenmesi için aynı fiziksel yapıyı kullanması nedeniyle geleneksel transistörlere kıyasla çok 

daha verimli çözümler sunar. 



68 
 

Bu tez çalışmasında memristör özelliği gösteren TiO2 tabanlı malzemeler kullanılmıştır. 

TiO2 tabanlı sinaptik bileşen, laboratuvar ortamında tasarlanarak bilgisayar ortamında doğrusal 

olmayan değerleri elde edilmiştir. Elde edilen bu parametreler ile memristör tabanlı bir yapay 

sinir ağının çalışması bilgisayar ortamında simüle edilmiştir. Ayrıca yapay sinapsların etkili bir 

şekilde kullanılabilmesi için, donanım mimarisi ile yazılım algoritmalarının uyumlu bir şekilde 

entegre edilmesi gerekmektedir. Bu entegrasyon, ağırlıkların donanım seviyesinde doğrudan 

temsil edilmesi ve işlem süreçlerinin donanım tabanlı olarak optimize edilmesini sağlamaktadır. 

Tasarım aşamasından sonra uygulamanın yazılım-donanım entegrasyon aşaması 

gerçekleştirilmiştir.  

Çalışmamızda ilk önce ağırlıkların donanıma haritalanması yapılmaktadır. Memristör 

dizileri, sinir ağındaki ağırlıkların fiziksel olarak depolandığı yapılardır. Yazılım tarafından 

öğretilen ağırlıklar, bu dizilere aktarılarak hesaplama işlemleri doğrudan donanım üzerinde 

gerçekleştirilir. 

Yazılım-donanım entegrasyonunun ikinci aşamasında donanım tabanlı hesaplama 

gerçekleştirilir. Gerçekleştirilen çalışmada yapay sinir ağlarında hesaplama işlemleri, akım ve 

gerilim sinyalleri üzerinden gerçekleştirilir. Crossbar mimarisi, çarpma ve toplama işlemlerinin 

paralel olarak yapılmasını sağlar. Bu, yazılım tabanlı işlemlere kıyasla hem zaman hem de 

enerji verimliliği sunar. 

Uygulamanın üçüncü aşmasında hata düzeltme ve geri yayılım işlemi için yazılım-

donanım entegrasyonu ayarlanır. Bu işlem yapılarak eğitim sürecinde, memristörlerin doğal 

gürültü ve hassasiyet sorunlarının etkisi azaltılmaktadır. Çalışmada kullanılan yazılım 

algoritmalarının, hata sinyallerini analiz ederek ağırlık güncellemelerinin donanıma 

yansıtılması sağlanır. Son olarak uygulamanın donanım düzeyindeki enerji verimliliği yazılım-

donanım entegrasyonu ile analiz edilir. 

 

Şekil 28. Geriye Yayılım Devresi. 
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Şekil 28’de, sinir ağlarının sinaptik entegrasyon sürecinde kritik bir bileşen olan Geri 

Yayılım Devresi'nin (BPC) karmaşık işleyişini detaylandırmaktadır. Hata terimlerinin gizli 

katmanlara iletilmesinden, CROSSBAR (CB) yapısındaki son ağırlık güncellemelerine kadar 

her aşama titizlikle incelenmiştir. Bu çalışmada özellikle, NMOS transistörü M60 etrafında 

yapılandırılan Çarpma Devresinin doğrusal çarpma işlemlerini gerçekleştirmedeki rolü ve farklı 

giriş konfigürasyonlarını nasıl ele aldığı kapsamlı bir şekilde ele alınmıştır. Ayrıca, bu devrede 

Analog Anahtarlar (AS) ve Ters Çeviren Yükselteçlerin (IA) kullanımı, devrenin 

karmaşıklığına ek bir boyut katmaktadır. Son olarak, devre çıkışlarının ağırlık güncelleme 

mekanizmasındaki kritik rolü vurgulanmış; genlik ve işaretin ağırlık ayarlamalarını nasıl 

şekillendirdiği üzerinde durulmuştur. 

Bu çalışma, TiO₂ tabanlı memristörlerin yapay sinir ağlarında kullanımına yönelik özgün 

bir yaklaşım sunmaktadır. Özellikle, laboratuvar ortamında tasarlanan sinaptik bileşenlerin 

bilgisayar ortamında doğrusal olmayan parametrelerinin elde edilmesi ve bu verilerin 

memristör tabanlı bir yapay sinir ağının simülasyonlarında kullanılması, literatürde sınırlı 

sayıda ele alınmış bir konudur. Bununla birlikte, yazılım ve donanım entegrasyonunun her üç 

aşamasının detaylı bir şekilde ele alınması ve memristörlerin doğal gürültü ve hassasiyet 

sorunlarına karşı alınan önlemler, çalışmanın yenilikçi yönlerini oluşturmaktadır. Ayrıca TiO2 

tabanlı sinaptik cihazın kullanıldığı yapay sinir ağlarında optimizasyon yöntemlerinin 

doğruluk, enerji ve hız bakımından karşılaştırıldığı, bununla birlikte önerilen modelin çok 

sayıda veri seti ile kararlılığının test edildiği çalışmaya rastlanmamıştır. Bunlar çalışmanın 

özgünlüğünü pekiştirmektedir.  

Uygulamada kullanılan optı̇mı̇zasyon algoritmalarının sınıflandırılması 

Optimizasyon algoritmaları doğruluk, hız ve genelleme performansı gibi hedeflere göre 

sınıflandırılır (Bian & Priyadarshi, 2024). Doğruluk, modelin doğru tahminler yapabilme 

yeteneğini; hız, işlem süresini; genelleme performansı ise modelin yeni verilere 

uyarlanabilirliğini göstermektedir. Genelleştirme performansı optimizasyon algoritmalarında 

büyük ve etkin bir öneme sahip olup parametrelerin kolayca güncellenebilmesi bu algoritmaları 

daha pratik hale getirir. Ayrıca, büyük veri kümelerinde enerji tüketimi performansı da önemli 

bir faktördür. Farklı bileşenler farklı optimizasyon teknikleri ve stratejileri gerektirmektedir. 

Bu çalışmada, Stocastic Gradient Descent (SGD) ve varyasyonları makine öğrenimi ve derin 

öğrenme uygulamalarında kullanılmış olup, bu algoritmalar ilerleyen bölümlerde kısaca 

açıklanmıştır. Bu çalışma, memristör sinaptik tabanlı bir cihaz kullanarak nöromorfik 

hesaplama alanında sekiz optimizasyon yöntemini karşılaştırmaktadır. 
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Kullanılan optı̇mı̇zasyon yöntemleri ve eğitim aşaması  

Gradyan Descent ve türleri 

Yapay sinir ağlarını eğitmek, kayıp fonksiyonunu en aza indiren ağ parametrelerini 

belirlemeyi amaçlayan bir optimizasyon sürecidir. Bu öğrenme modelleri büyük veri kümeleri 

ve ayarlanması gereken çok sayıda model parametresi gerektirir. Büyük veri kümelerini işlemek 

için en uygun yöntemi bulmak önemli bir engel oluşturmaktadır. Gradyan inişi, model 

parametrelerini gradyanın ters yönünde düzenli olarak güncelleyerek kayıp fonksiyonlarını 

azaltmak için çok önemli bir yöntemdir (Bian & Priyadarshi, 2024). Gradyan inişinin çeşitli 

versiyonları, optimizasyon sürecinde karşılaşılan zorlukların üstesinden gelmek için farklı 

algoritmik stratejiler sunar.  

Makine öğreniminde kullanılan birçok model bulunmaktadır. Bunlardan biri olan 

Stokastik Gradyan İnişi (SGD), parametreleri optimize ederek bir model oluşturur ve bu model 

aracılığıyla geleceğe yönelik tahminler yapar (Ruder, 2016). Büyük veri setlerinde hızlı ve etkili 

bir optimizasyon sağlar. Bu nedenle SGD ve varyantları olan algoritmalar çalışmamız için 

uygun optimizasyon yöntemleridir. Aşağıda SGD ve varyasyonlarının bir özeti verilmiştir. Bu 

özetlerle beraber tez çalışmasında kullanımı ile ilgili hesaplama ve kod yapıları gösterilmiştir. 

Stochastic Gradient Descent (SGD) 

SGD (Robbins & Monro, 1951), makine öğrenimi ve derin öğrenme optimizasyon 

problemlerini çözmek için sıklıkla önerilmektedir. SGD, basit, anlaşılır ve yapay zekâ 

modellerinde etkilidir. SGD için matematiksel Denklem 11'de gösterilmiştir. 

𝜃𝑡+1 = 𝜃𝑡 − 𝛼𝛻𝐹𝑖(𝜃𝑡)                                                                                                           (11) 

Denklem 11'de; 𝜃𝑡, t adımındaki ağırlık vektörüdür. 𝛼, her adımda ne kadar hareket edeceğimizi 

belirleyen öğrenme oranıdır. 𝐹𝑖(𝜃𝑡) Gradyan vektörüdür, rastgele seçilen 𝑖 alt kümesi için kayıp 

fonksiyonunun gradyanıdır. Bu denklemde, her iterasyonda rastgele bir veri alt kümesi seçilir 

ve bu alt kümedeki örnekler için gradyan hesaplanır. Bu gradyan, ağırlık vektörünü 

güncellemek için ağırlık vektörünün mevcut değerinden çıkarılır. Tablo 7’te SGD 

algoritmasının eğitim aşamasındaki sözde kodu gösterilmiştir. 

Tablo 7. Tez çalışmasında kullanılan SGD yönteminin eğitim aşamasındaki sözde kodu 

Input: numTrain, epochs, learningRate, initialWeights 

Output: bestWeights, bestLoss 

Begin 
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  1:  weights ← initialWeights 

  2:  bestWeights ← weights 

  3:  bestLoss ← ∞ 

  4:  for epoch ← 1 to epochs do 

  5:      for batch ← 1 to numTrain do 

  6:          // İleri yayılım 

  7:          hiddenLayerOutput ← ActivationFunction(weights.hiddenLayer * Input) 

  8:          outputLayerOutput ← ActivationFunction(weights.outputLayer * hiddenLayerOutput) 

  9:          // Hata hesaplama 

 10:          error ← Output - outputLayerOutput 

 11:          // Hata geri yayılımı 

12:          outputLayerGradient ← error * ActivationDerivative(outputLayerOutput) 

 13:          hiddenLayerGradient ← (weights.outputLayer^T * outputLayerGradient) *      

                                                         ActivationDerivative(hiddenLayerOutput) 

 14:          // Ağırlık güncelleme 

 15:          deltaWeightOutput ← -learningRate * outputLayerGradient * hiddenLayerOutput^T 

 16:          deltaWeightHidden ← -learningRate * hiddenLayerGradient * Input^T 

 17:          weights.outputLayer ← weights.outputLayer + deltaWeightOutput 

 18:          weights.hiddenLayer ← weights.hiddenLayer + deltaWeightHidden 

 19:          // Eğitim kaybının hesaplanması 

 20:          currentLoss ← LossFunction(error) 

 21:          if currentLoss < bestLoss then 

 22:              bestWeights ← weights 

 23:              bestLoss ← currentLoss 

 24:          End if 

 25:      End for 

 26:  End for 

 27:  return bestWeights, bestLoss 

End 

Tez çalışmasında SGD yöntemi memristör tabanlı bir uygulama için kullanılmıştır. SGD 

optimizasyon yöntemi uygulamada kullanılan veri setlerine ait her eğitim örneğine göre 

ağırlıkları güncelleyerek klasik Gradient Descent algoritmasına kıyasla daha hızlı yakınsama 

sağlar. SGD algoritması, tüm veri kümesi yerine her adımda yalnızca bir örnek veya küçük bir 

batch kullanarak ağırlıkları günceller. Bu özellik, SGD’nin büyük veri kümeleriyle hızlı bir 

şekilde çalışmasına olanak tanır. SGD'nin temel yaklaşımı, model parametrelerini güncellemek 

için her adımda küçük bir veri grubuna dayalı gradyan bilgisini kullanmaktır. Train.cpp 

dosyasındaki SGD algoritması, modelin ağırlıklarını initialWeights ile başlatır ve en iyi 

ağırlıkları bestWeights olarak saklar. En iyi kayıp değeri (bestLoss), başlangıçta ∞ olarak 

ayarlanır, böylece eğitim süreci boyunca ilk güncellenen değer en düşük olarak kabul edilir. 

Eğitim döngüsü, belirli bir epoch sayısı boyunca devam eder. Her epoch içinde model, 

tüm batch’ler üzerinde ileri ve geri yayılım yaparak güncellenir. İleri yayılım sırasında, modelin 

girdisi gizli katman ağırlıklarıyla çarpılarak hiddenLayerOutput elde edilir. Bu ara katman 

çıktısı, çıkış katmanına gönderilerek outputLayerOutput hesaplanır, bu da modelin tahmin 
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çıktısını temsil eder. Bu tahmin, modelin performansını ölçmek için kullanılır ve hata değeri 

(error), tahmin edilen çıkış ile gerçek çıkış arasındaki fark olarak hesaplanır. 

SGD algoritmasında, ağırlık güncellemesi doğrudan her batch sonrası gradient bilgisiyle 

yapılır. Çıkış ve gizli katman ağırlık güncellemeleri için deltaWeightOutput ve 

deltaWeightHidden hesaplanır. Güncelleme adımı, gradientin öğrenme oranı (learningRate) ile 

çarpılması ve ardından mevcut ağırlıkların güncellenmesiyle gerçekleştirilir. Her batch 

sonrasında, modelin eğitim kaybı (currentLoss) hesaplanır. Eğer mevcut kayıp değeri 

(currentLoss), en iyi kayıp değerinden daha düşükse, bu durumda en iyi ağırlıklar bestWeights 

ve en iyi kayıp değeri bestLoss olarak güncellenir. 

Eğitim süreci tamamlandığında, modelin en iyi ağırlık değerleri ve en düşük kayıp değeri 

döndürülür. SGD, özellikle büyük veri kümelerinde hızlı bir şekilde optimize etme avantajına 

sahiptir. Her batch için ayrı ayrı güncelleme yaparak modelin hızla öğrenmesini sağlarken, tam 

veri kümesini kullanmadığı için düşük bellek tüketir. Bununla birlikte, gradyanların tek 

örneklere göre güncellenmesi zaman zaman gürültülü güncellemelere yol açabilir, bu da yerel 

minimumdan kaçınmayı sağlar ancak bu durum bazen öğrenmenin dalgalı olmasına neden 

olmaktadır. 

Adam (Adaptive Moment Estimation) 

Tez çalışmasına ait uygulama kısmında kullanılan önemli optimizasyon 

algoritmalarından olan Adam, makine öğrenimi ve derin öğrenmede yaygın olarak kullanılan 

bir optimizasyon algoritmasıdır. Gradyanların birinci ve ikinci momentlerinin tahminlerini 

kullanarak uyarlanabilir öğrenme oranlarını belirler. Bu algoritma hem Momentum hem de 

RMSprop optimizasyon algoritmalarının ilkelerini birleştirir (X. Liang et al., 2023). Adam 

optimizasyon algoritması için matematiksel denklemler kümesi sırayla Denklem (12), (13), 

(14), (15) ve (16)'da gösterilmiştir. 

𝑚𝑡+1 = 𝛽1𝑚𝑡 + (1 − 𝛽1)𝑔𝑡                                                                                                (12) 

𝑣𝑡+1 = 𝛽2𝑣𝑡 + (1 − 𝛽2)𝑔𝑡
2                                                                                                  (13) 

𝑚̂𝑡+1 =
𝑚𝑡+1

1−𝛽2
𝑡+1                                                                                                                        (14) 

𝑣𝑡+1 =
𝑣𝑡+1

1−𝛽2
𝑡+1                                                                                                                          (15) 

𝜃𝑡+1 = 𝜃𝑡 − 𝛼
𝑚𝑡+1

√𝑣̂𝑡+1+∈
                                                                                                           (16) 
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Adam optimizer için matematiksel denklemlerdeki parametreler aşağıdaki gibidir: 𝑚𝑡 ve 𝑣𝑡 

sırasıyla birinci ve ikinci momentlerin tahminlerini gösterir. 𝑔𝑡 Gradyan vektörüdür. 𝛽1 ve 𝛽2 

hem gradyanların ani dalgalanmalarını hem de uzun vadeli eğilimlerini dikkate alarak öğrenme 

sürecini hızlandıran parametrelerdir. α öğrenme oranıdır. ∈ sıfıra bölme hatalarını önlemek için 

kullanılan çok küçük bir değerdir. Bu denklemler moment tahminlerini günceller ve ağırlıkları 

ayarlayarak Adam'ın farklı problemleri ele almasına ve öğrenme oranını otomatik olarak 

ayarlamasına olanak tanır. Tablo 8’de tez çalışmasında kullanılan Adam yönteminin eğitim 

aşamasındaki sözde kodu gösterilmiştir. 

Tablo 8.  Tez çalışmasında kullanılan Adam yönteminin eğitim aşamasındaki sözde kodu 

Input: numTrain, epochs, learningRate, initialWeights, beta1, beta2, epsilon 

Output: bestWeights, bestLoss 

Begin 

  1:  weights ← initialWeights 

  2:  bestWeights ← weights 

  3:  bestLoss ← ∞ 

  4:  mHidden ← 0, vHidden ← 0 

  5:  mOutput ← 0, vOutput ← 0 

  6:  t ← 1 

  7:  for epoch ← 1 to epochs do 

  8:      for batch ← 1 to numTrain do 

  9:          // İleri yayılım 

 10:          hiddenLayerOutput ← ActivationFunction(weights.hiddenLayer * Input) 

 11:          outputLayerOutput ← ActivationFunction(weights.outputLayer * hiddenLayerOutput) 

 12:          // Hata hesaplama 

 13:          error ← Output - outputLayerOutput 

 14:          // Hata geri yayılımı 

 15:          outputLayerGradient ← error * ActivationDerivative(outputLayerOutput) 

 16:          hiddenLayerGradient ← (weights.outputLayer^T * outputLayerGradient) *      

                                                         ActivationDerivative(hiddenLayerOutput) 

 17:          // Ağırlık güncelleme 

 18:          mOutput ← beta1 * mOutput + (1 - beta1) * outputLayerGradient 

 19:          vOutput ← beta2 * vOutput + (1 - beta2) * outputLayerGradient^2 

 20:          mHidden ← beta1 * mHidden + (1 - beta1) * hiddenLayerGradient 

 21:          vHidden ← beta2 * vHidden + (1 - beta2) * hiddenLayerGradient^2 

 22:          mOutputHat ← mOutput / (1 - beta1^t) 

 23:          vOutputHat ← vOutput / (1 - beta2^t) 

 24:          mHiddenHat ← mHidden / (1 - beta1^t) 

 25:          vHiddenHat ← vHidden / (1 - beta2^t) 

 26:          deltaWeightOutput ← -learningRate / sqrt(vOutputHat + epsilon) * mOutputHat 

 27:          deltaWeightHidden ← -learningRate / sqrt(vHiddenHat + epsilon) * mHiddenHat 

 28:          weights.outputLayer ← weights.outputLayer + deltaWeightOutput 

 29:          weights.hiddenLayer ← weights.hiddenLayer + deltaWeightHidden 

 30:          t ← t + 1 

 31:          // Eğitim kaybını hesapla 

 32:          currentLoss ← LossFunction(error) 

 33:          if currentLoss < bestLoss then 
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 34:              bestWeights ← weights 

 35:              bestLoss ← currentLoss 

 36:          End if 

 37:      End for 

 38:  End for 

 39:  return bestWeights, bestLoss 

End 

 

Adam, Momentum ve RMSprop algoritmalarını birleştiren ve genellikle en iyi 

performansı sunan bir optimizasyon yöntemidir. Adam, önceki gradyanların ortalamasını 

(momentum) ve RMSprop’taki kare gradient ortalamasını kullanarak hem stabil hem de hızlı 

bir güncelleme yapar. 

Adam, adaptif öğrenme hızına sahip olan ve her parametre için öğrenme hızını ayrı ayrı 

ayarlayan bir optimizasyon tekniğidir. Train.cpp dosyasındaki Adam algoritması, modelin 

ağırlıklarını initialWeights olarak başlatarak en iyi ağırlıklar (bestWeights) ile en düşük kayıp 

değeri (bestLoss) ilk başta tanımlanır. İlk momentum (mHidden, mOutput) ve ikinci momentum 

(vHidden, vOutput) sıfırdan başlatılır, t ise zaman adımı olarak kullanılan bir sayaç olup 

başlangıçta sıfırdır. 

Eğitim aşaması, belirli bir epoch ve batch sayısınca tekrarlanır. Her epoch kümesinde her 

bir batch için ileri ve geri yayılım gerçekleştirilir. İleri yayılım sırasında, model girdileri gizli 

katmandan çıkış katmanına doğru ilerleyerek hiddenLayerOutput ve outputLayerOutput 

değerlerini oluşturur. Bu değerler, modelin tahmin sonuçları olup, hata hesaplamasında 

kullanılır. Modelin tahmini ile gerçek çıkış arasındaki fark error olarak adlandırılır ve modelin 

hatasını yansıtır. 

Geri yayılım aşamasında, modelin gradyanları hesaplanır. Çıkış katmanındaki gradyan 

(outputLayerGradient), hatanın aktivasyon fonksiyonunun türev değeri ile çarpılmasıyla 

bulunur. Gizli katmandaki gradyan (hiddenLayerGradient), çıkış katmanından gelen gradyanın 

gizli katmandaki aktivasyon türevi ile çarpılması sonucu elde edilir. 

Adam algoritması iki ayrı momentum güncellemesi yapar: m ilk momentum olarak 

gradyanın hareketli ortalamasını (momentum) ve v ise gradyanın karesinin hareketli 

ortalamasını temsil eder. İlk momentum (mOutput ve mHidden), beta1 katsayısı ile güncellenir; 

bu katsayı, önceki momentumun mevcut gradientle ne kadar harmanlanacağını belirler. İkinci 

momentum (vOutput ve vHidden), beta2 katsayısı kullanılarak güncellenir ve gradyan 

karelerinin bir ortalamasını oluşturur. 
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Daha sonra, her iki momentum da kaydırılmış ortalama (bias correction) hesaplanarak 

güncellenir. Bu adım, özellikle başlangıçtaki momentumların etkisini azaltarak dengeleme 

yapar ve gradyanın doğru bir tahminini sağlar. Bu kaydırılmış ortalama değerler kullanılarak 

deltaWeightOutput ve deltaWeightHidden güncellemeleri yapılır. Her iki katman için ağırlıklar, 

gradyanın karesine dayalı bir normalizasyon ile öğrenme hızı adaptif hale getirilerek 

güncellenir. 

Her batch sonrası, modelin currentLoss değeri hesaplanır. Eğer bu kayıp değeri bestLoss 

değerinden daha düşükse, en iyi ağırlıklar ve kayıp değeri güncellenir. Bu süreç, en düşük 

kayıpla en iyi ağırlıkları elde etmeyi sağlar. Eğitim tamamlandığında, bestWeights ve bestLoss 

değeri geri döndürülür. 

RMSprop (Root Mean Square Propagation) 

RMSprop (Ma et al., 2023) AdaGrad'ı modifiye eden bir algoritmadır. RMSprop, 

AdaGrad'da karşılaşılan azalan öğrenme oranları sorununu ele almak için geliştirilmiştir. Bu 

optimizasyon tekniği, bireysel parametre öğrenme oranlarını uyarlamalı olarak ayarlamak için 

karesel gradyanların çalışan ortalamasını kullanır. RMSprop optimizasyon algoritması için 

matematiksel Denklem 17'de sunulmuştur. 

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑣𝑡+∈
 ⊙  𝑔𝑡                                                                                                     (17) 

RMSprop optimizasyon algoritmasının matematiksel denklemindeki parametreler aşağıdaki 

gibidir: 𝜃𝑡: t adımındaki model parametreleri, 𝑔𝑡: t adımındaki gradyan, η: öğrenme oranı, 𝑣𝑡: 

karesel gradyanların üstel ağırlıklı hareketli ortalaması, ∈: sıfıra bölme hatalarını önlemek için 

çok küçük bir sayı ve ⊙: eleman bazında çarpma. Bu denklemde her parametre için ayrı bir 

öğrenme oranı hesaplanır. Eski gradyanların karelerinin çalışan ortalaması, mevcut gradyanın 

karesi ile güncellenir. Bu, öğrenme oranlarını gradyanların büyüklüklerine göre dinamik olarak 

ayarlar. Tablo 9’da tez çalışmasında kullanılan RMSProp algoritmasının eğitim aşamasındaki 

sözde kodu gösterilmiştir 

Tablo 9. Tez çalışmasında kullanılan RMSProp yönteminin eğitim aşamasındaki sözde kodu 

Input: numTrain, epochs, learningRate, initialWeights, gamma, epsilon 

Output: bestWeights, bestLoss 

Begin 

  1:  weights ← initialWeights 

  2:  bestWeights ← weights 

  3:  bestLoss ← ∞ 

  4:  gradSquarePrevHidden ← 0 
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  5:  gradSquarePrevOutput ← 0 

  6:  for epoch ← 1 to epochs do 

  7:      for batch ← 1 to numTrain do 

  8:          // İleri yayılım 

  9:          hiddenLayerOutput ← ActivationFunction(weights.hiddenLayer * Input) 

 10:          outputLayerOutput ← ActivationFunction(weights.outputLayer * hiddenLayerOutput) 

 11:          // Hata hesaplama 

 12:          error ← Output - outputLayerOutput 

 13:          // Hata geri yayılımı 

 14:          outputLayerGradient ← error * ActivationDerivative(outputLayerOutput) 

 15:          hiddenLayerGradient ← (weights.outputLayer^T*outputLayerGradient)*    

                                                         ActivationDerivative(hiddenLayerOutput) 

 16:          // Ağırlık güncelleme (RMSprop) 

 17:          gradSquarePrevOutput ← gamma * gradSquarePrevOutput + (1 - gamma) * outputLayerGradient^2 

 18:          gradSquarePrevHidden ← gamma * gradSquarePrevHidden + (1 - gamma) * hiddenLayerGradient^2 

 19:          deltaWeightOutput ← -learningRate / sqrt(gradSquarePrevOutput + epsilon) *  

                                                                             outputLayerGradient * hiddenLayerOutput^T 

 20:          deltaWeightHidden ← -learningRate / sqrt(gradSquarePrevHidden + epsilon) *  

                                                                                      hiddenLayerGradient * Input^T 

 21:          weights.outputLayer ← weights.outputLayer + deltaWeightOutput 

 22:          weights.hiddenLayer ← weights.hiddenLayer + deltaWeightHidden 

 23:          // Eğitim kaybını hesapla 

 24:          currentLoss ← LossFunction(error) 

 25:          if currentLoss < bestLoss then 

 26:              bestWeights ← weights 

 27:              bestLoss ← currentLoss 

 28:          End if 

 29:      End for 

 30:  End for 

 31:  return bestWeights, bestLoss 

End 

 

RMSProp (Root Mean Square Propagation) algoritması, gradyanın her parametre için 

adaptif bir öğrenme oranı ile güncellenmesini sağlayarak optimize eder. Train.cpp dosyasındaki 

RMSProp algoritması, modelin ağırlıklarını initialWeights ile başlatarak başlangıçta 

bestWeights ve bestLoss değişkenlerini tanımlanır. bestWeights, her adımda en iyi model 

ağırlıklarını saklarken bestLoss, en düşük kayıp değeri olarak güncellenir. İlk kare gradyan 

ortalamaları (gradSquareHidden ve gradSquareOutput) sıfır olarak tanımlanır. 

Eğitim döngüsü, belirli bir epoch sayısı boyunca devam eder. Her epoch, belirli sayıda 

batch üzerinde çalışır. İleri yayılım sırasında, modelin girdisi gizli katmandan çıkış katmanına 

doğru geçer ve hiddenLayerOutput ve outputLayerOutput hesaplanır. Bu çıktılar modelin 

tahmin sonuçlarıdır ve gerçek çıktılarla karşılaştırılarak hata (error) hesaplanır. 

Hata geri yayılımı aşamasında, bu hata değeri gradyan hesaplamasında kullanılır. Çıkış 

katmanındaki gradyan (outputLayerGradient), modelin hatasının aktivasyon fonksiyonunun 
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türev değeri ile çarpılmasıyla elde edilir. Gizli katman gradyanı (hiddenLayerGradient), çıkış 

katmanından gelen gradyan ile gizli katmandaki aktivasyon türevi kullanılarak hesaplanır. 

RMSProp algoritmasında, her gradyanın karesi alınır ve hareketli ortalama ile 

güncellenir. Kare gradyanların ortalaması (gradSquareOutput ve gradSquareHidden), gamma 

(γ) katsayısı ile eski ortalama ve (1-gamma) katsayısı ile yeni gradyan karesi harmanlanarak 

hesaplanır. Bu hareketli ortalama, öğrenme hızının parametreler üstündeki etkisini 

normalleştirmek için kullanılır. Her bir parametre için adaptif olarak güncellenen bu öğrenme 

hızı, gradyanların büyüklüğüne göre öğrenme oranını azaltır ve büyük gradyanların 

parametreler üzerindeki etkisini dengeler. 

Son olarak, deltaWeightOutput ve deltaWeightHidden ağırlık güncellemeleri adaptif 

olarak öğrenme hızına göre güncellenir. Bu güncellemeler, RMSProp’un epsilon (ε) sabitini 

kullanarak gradyanın karesi üzerindeki bölmeyi stabilize eder ve öğrenme oranının sıfıra 

yaklaşmasını engeller. Yeni ağırlıklar, bu güncellemelerle güncellenir ve her batch sonrası 

modelin kaybı (currentLoss) hesaplanır. Eğer currentLoss değeri bestLoss değerinden daha 

düşükse, bestWeights ve bestLoss güncellenir. 

Eğitim süreci sona erdiğinde, bestWeights ve bestLoss döndürülür. RMSProp algoritması, 

özellikle gürültülü ve yüksek boyutlu veri setlerinde stabil öğrenme sağlar. Bu adaptif yöntem, 

gradyanların büyüklüğüne göre öğrenme hızını dinamik olarak ayarlayarak yakınsamanın daha 

dengeli ve hızlı gerçekleşmesini sağlar. Bu sayede, derin öğrenme modellerinde ve karmaşık 

ağlarda daha istikrarlı bir performans sergiler. 

Adagrad (Adaptive Gradient Algorithm) 

AdaGrad, bireysel parametrelerin öğrenme oranlarını son gradyanlarına göre optimize 

eder (Z. Cai et al., 2023). Büyük türevlere sahip parametreler öğrenme hızında hızlı bir düşüş 

yaşarken, küçük türevlere sahip olanlar daha az önemli ölçüde azalır. Bu, gradyanların geçmiş 

karesel değerleri kullanılarak yapılır. Özellikle seyrek veriler veya farklı ölçeklerde özelliklere 

sahip veriler için kullanışlıdır. AdaGrad optimizasyon algoritması için matematiksel Denklem 

18'de gösterilmektedir. 

𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 −
𝜂

√𝐺𝑡,𝑖𝑖+∈
. 𝑔𝑡,𝑖                                                                                                   (18) 

AdaGrad optimize edici için matematiksel denklemlerdeki parametreler aşağıdaki gibidir: 

𝜃𝑡+1,𝑖: t+1 adımındaki ağırlık parametresi, 𝜃𝑡,𝑖: t adımındaki ağırlık parametresi, η: öğrenme 
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oranı, 𝐺𝑡,𝑖𝑖: t adımındaki i parametresi için önceki gradyanların karelerinin toplamı, 𝑔𝑡,𝑖: t 

adımındaki i parametresi için gradyan değeri ve ∈: sıfıra bölme hatalarını önlemek için çok 

küçük bir değer. AdaGrad denkleminde her parametre için ayrı bir öğrenme oranı hesaplanır. 

Geçmiş gradyanların karelerinin toplamı mevcut gradyan ile güncellenir. Böylece, öğrenme 

oranı seyrek güncellenen parametreler için artarken, sık güncellenenler için azalır. Tablo 10’da 

çalışmada yer verilen AdaGrad algoritmasının eğitim aşamasındaki sözde kodu gösterilmiştir. 

Tablo 10. Çalışmada yer verilen AdaGrad algoritmasının eğitim aşamasındaki sözde kodu 

Input: numTrain, epochs, learningRate, initialWeights, epsilon 

Output: bestWeights, bestLoss 

Begin 

  1:  weights ← initialWeights 

  2:  bestWeights ← weights 

  3:  bestLoss ← ∞ 

  4:  gradSquareSumHidden ← 0 

  5:  gradSquareSumOutput ← 0 

  6:  for epoch ← 1 to epochs do 

  7:      for batch ← 1 to numTrain do 

  8:          // İleri yayılım 

  9:          hiddenLayerOutput ← ActivationFunction(weights.hiddenLayer * Input) 

 10:          outputLayerOutput ← ActivationFunction(weights.outputLayer * hiddenLayerOutput) 

 11:          // Hata hesaplama 

 12:          error ← Output - outputLayerOutput 

 13:          // Hata geri yayılımı 

 14:          outputLayerGradient ← error * ActivationDerivative(outputLayerOutput) 

 15:          hiddenLayerGradient ← (weights.outputLayer^T * outputLayerGradient) *   

                                                        ActivationDerivative(hiddenLayerOutput) 

 16:          // Ağırlık güncelleme (Adagrad) 

 17:          gradSquareSumOutput ← gradSquareSumOutput + outputLayerGradient^2 

 18:          gradSquareSumHidden ← gradSquareSumHidden + hiddenLayerGradient^2 

 19:          deltaWeightOutput ← -learningRate / sqrt(gradSquareSumOutput + epsilon) *  

                                                                                     outputLayerGradient * hiddenLayerOutput^T 

 20:          deltaWeightHidden ← -learningRate / sqrt(gradSquareSumHidden + epsilon) * 

                                                                                    hiddenLayerGradient * Input^T 

 21:          weights.outputLayer ← weights.outputLayer + deltaWeightOutput 

 22:          weights.hiddenLayer ← weights.hiddenLayer + deltaWeightHidden 

 23:          // Eğitim kaybını hesapla 

 24:          currentLoss ← LossFunction(error) 

 25:          if currentLoss < bestLoss then 

 26:              bestWeights ← weights 

 27:              bestLoss ← currentLoss 

 28:          End if 

 29:      End for 

 30:  End for 

 31:  return bestWeights, bestLoss 

End 
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Adagrad (Adaptive Gradient Algorithm) algoritması, parametrelerin geçmişteki tüm 

gradyanlarının karelerini toplayarak, her parametre için adaptif bir öğrenme oranı belirler. 

Train.cpp dosyasındaki Adagrad algoritması, modelin başlangıç ağırlıklarını initialWeights ile 

başlatır ve en iyi ağırlıklar (bestWeights) ile en düşük kayıp değeri (bestLoss) ilk başta 

tanımlanır. İlk kare gradyan toplamları (gradSquareSumHidden ve gradSquareSumOutput) 

sıfır olarak başlatılır. 

Eğitim aşaması, belirli bir epoch ve batch sayısınca tekrarlanır. Her epoch kapsamında 

her bir batch için ileri ve geri yayılım işlemleri gerçekleştirilir. İleri yayılım sırasında, model 

girdisi gizli katmandan çıkış katmanına doğru geçerek hiddenLayerOutput ve 

outputLayerOutput değerlerini hesaplar. Modelin tahmin ettiği outputLayerOutput, gerçek çıkış 

(Output) ile karşılaştırılarak hata (error) hesaplanır. 

Hata geri yayılım aşamasında, bu hata gradient hesaplaması için kullanılır. Çıkış 

katmanındaki gradyan (outputLayerGradient), hatanın aktivasyon fonksiyonunun türev değeri 

ile çarpılmasıyla elde edilirken, gizli katmandaki gradyan (hiddenLayerGradient), çıkış 

katmanından gelen gradyan ile gizli katmandaki aktivasyon türevinin çarpılmasıyla hesaplanır.  

Adagrad algoritmasının karakteristik özelliği, her bir gradyanın karesinin zamanla 

birikerek toplanmasıdır. gradSquareSumOutput ve gradSquareSumHidden değişkenlerinde, 

her bir gradyanın karesi, toplam kare gradyanların hareketli bir ortalamasını oluşturacak şekilde 

birikir. Bu toplam, her parametreye özel adaptif bir öğrenme oranı oluşturmak için kullanılır. 

Ağırlık güncelleme adımında, her bir parametre, öğrenme hızının gradyanın karelerinin 

toplamının karekökü ile bölünmesiyle güncellenir. Böylece, sık güncellenen parametrelerin 

öğrenme oranı azalırken nadiren güncellenen parametrelerin öğrenme oranı daha yüksek kalır. 

Epsilon (ε) sabiti, karekök işlemi sırasında sıfır bölme hatasını engellemek için eklenir. 

Her batch sonrası, modelin currentLoss değeri hesaplanır. Eğer bu kayıp değeri, bestLoss 

değerinden daha düşükse, en iyi ağırlıklar (bestWeights) ve en düşük kayıp değeri (bestLoss) 

güncellenir. Bu süreç, modelin eğitimi tamamlanana kadar devam eder ve en iyi ağırlıklar 

döndürülür. Bu tez çalışmasında AdaGrad yönteminin memristör tabanlı uygulamalarda verimli 

bir yöntem olduğu ortaya çıkmıştır. 

AdaDelta 

AdaDelta, AdaGrad'ın azalan öğrenme oranları sorununu çözmek için geliştirilmiş bir 

uyarlamasıdır (Zeiler, 2012). Bu algoritma, sürekli azalan öğrenme oranlarına ve global bir 
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öğrenme oranı seçmeye olan ihtiyacı ortadan kaldırır. AdaDelta, sabit bir pencere boyutunu 

korurken önceki tüm gradyanlara eşit önem vererek, geçmiş gradyanlardan oluşan kayan bir 

pencere kullanarak karesel gradyanların hareketli ortalamasını hesaplar. AdaDelta 

optimizasyon algoritması için matematiksel denklemler Denklem (19), (20), (21), (22) ve 

(23)'te gösterilmiştir. 

𝑅𝑀𝑆 [𝐸[𝑔2]]𝑡 =  √𝐸[𝑔2]𝑡+∈                                                                                 (19) 

𝑅𝑀𝑆 [∆𝑥2]𝑡−1 =  √𝐸[∆𝑥2]𝑡−1+∈                                                                           (20) 

𝑢𝑝𝑑𝑎𝑡𝑒 = − 
𝑅𝑀𝑆 [∆𝑥]𝑡−1

𝑅𝑀𝑆 [𝐸[𝑔2]]𝑡
𝑔𝑡                                                                                      (21) 

∆𝑥𝑡 =  𝜌∆𝑥𝑡−1 + (1 − 𝜌)𝑢𝑝𝑑𝑎𝑡𝑒2                                                                          (22) 

𝑥𝑡+1 =  𝑥𝑡 + 𝑢𝑝𝑑𝑎𝑡𝑒                                                                                               (23) 

Tablo 11’de çalışmada kullanılan AdaDelta algoritmasının eğitim aşamasındaki sözde kodu 

gösterilmiştir. 

Tablo 11. Çalışmada kullanılan AdaDelta algoritmasının eğitim aşamasındaki sözde kodu 

Input: numTrain, epochs, initialWeights, gamma, epsilon 

Output: bestWeights, bestLoss 

Begin 

  1:  weights ← initialWeights 

  2:  bestWeights ← weights 

  3:  bestLoss ← ∞ 

  4:  gradSquarePrevHidden ← 0 

  5:  gradSquarePrevOutput ← 0 

  6:  deltaPrevHidden ← 0 

  7:  deltaPrevOutput ← 0 

  8:  for epoch ← 1 to epochs do 

  9:      for batch ← 1 to numTrain do 

 10:          // İleri yayılım 

 11:          hiddenLayerOutput ← ActivationFunction(weights.hiddenLayer * Input) 

 12:          outputLayerOutput ← ActivationFunction(weights.outputLayer * hiddenLayerOutput) 

 13:          // Hata hesaplama 

 14:          error ← Output - outputLayerOutput 

 15:          // Hata geri yayılımı 

 16:          outputLayerGradient ← error * ActivationDerivative(outputLayerOutput) 

 17:          hiddenLayerGradient ← (weights.outputLayer^T * outputLayerGradient)  

                                                         * ActivationDerivative(hiddenLayerOutput) 

 18:          // Ağırlık güncelleme (Adadelta) 

 19:          gradSquarePrevOutput ← gamma * gradSquarePrevOutput + (1 - gamma) * outputLayerGradient^2 

 20:          gradSquarePrevHidden ← gamma * gradSquarePrevHidden + (1 - gamma) * hiddenLayerGradient^2 

 21:          deltaWeightOutput ← - sqrt((deltaPrevOutput + epsilon) / (gradSquarePrevOutput + epsilon)) *  

                                                              outputLayerGradient * hiddenLayerOutput^T 

 22:          deltaWeightHidden ← - sqrt((deltaPrevHidden + epsilon) / (gradSquarePrevHidden + epsilon)) *    

                                                                                                                     hiddenLayerGradient * Input^T 

 23:          deltaPrevOutput ← gamma * deltaPrevOutput + (1 - gamma) * deltaWeightOutput^2 
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 24:          deltaPrevHidden ← gamma * deltaPrevHidden + (1 - gamma) * deltaWeightHidden^2 

 25:          weights.outputLayer ← weights.outputLayer + deltaWeightOutput 

 26:          weights.hiddenLayer ← weights.hiddenLayer + deltaWeightHidden 

 27:          // Eğitim kaybını hesapla 

 28:          currentLoss ← LossFunction(error) 

 29:          if currentLoss < bestLoss then 

 30:              bestWeights ← weights 

 31:              bestLoss ← currentLoss 

 32:          End if 

 33:      End for 

 34:  End for 

 35:  return bestWeights, bestLoss 

End 

Tablo 11’de gösterilen sözde kodda görüldüğü gibi, Adadelta optimizasyon algoritmasını 

kullanarak bir modelin ağırlıklarını günceller ve en iyi ağırlık değerlerini kaydeder.  

Tez çalışması uygulama kısmında eğitim süreci başlamadan önce, weights yani modelin 

ağırlıkları, başlangıç değerleri olan initialWeights ile ayarlanır. bestWeights değişkeni de bu 

başlangıç ağırlıklarıyla başlatılır ve ilerleyen adımlarda en iyi ağırlıklar burada saklanır. 

bestLoss başlangıçta sonsuz (∞) olarak tanımlanır, böylece ilk hesaplanan kayıptan küçük her 

değer, bestLoss olarak güncellenir. Ayrıca, Adadelta algoritmasının bileşenleri olan 

gradSquarePrevHidden, gradSquarePrevOutput, deltaPrevHidden ve deltaPrevOutput 

sıfırdan başlatılır. Bu değişkenler, hareketli ortalamalar için önceki adımların bilgisini saklar. 

for döngüsü ile epoch sayısı kadar eğitim iterasyonu yapılır. Her epoch, tüm eğitim verileri 

üzerinden bir geçişi temsil eder. Her epoch içinde, for döngüsüyle her bir batch (veri kümesinin 

bir alt kümesi) üzerinde işlem yapılır. İleri yayılım (forward-propagation) aşamasında, modelin 

tahminleri hesaplanır. İlk olarak, giriş verisi (input) ile gizli katmanın (hidden layer) ağırlıkları 

çarpılır ve hiddenLayerOutput elde edilir. Daha sonra, hiddenLayerOutput ile çıktı katmanının 

(output layer) ağırlıkları çarpılır ve outputLayerOutput hesaplanır. Bu işlemler, aktivasyon 

fonksiyonları kullanılarak gerçekleştirilir. Çıkış (Output) ve outputLayerOutput arasındaki fark 

error olarak tanımlanır. Bu, modelin tahmin ettiği değer ile gerçek değer arasındaki farktır. 

Hata geri yayılımı (Backward Propagation) ile outputLayerGradient ve hiddenLayerGradient 

hesaplanır. outputLayerGradient, çıkış katmanındaki hatanın gradyanını temsil eder. 

hiddenLayerGradient ise, çıkış katmanından geri yayılmak üzere gizli katmandaki hatanın 

gradyanını içerir. Aktivasyon fonksiyonunun türevini kullanarak bu gradyanlar hesaplanır. 

Adadelta optimizasyon algoritması, her iki katmanın gradyanlarını kullanarak ağırlıkları 

günceller. gradSquarePrevOutput ve gradSquarePrevHidden, önceki kare gradyan 

ortalamalarının ağırlıklı toplamı olarak güncellenir. gamma faktörü ile eski değeri, (1 - gamma) 
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faktörü ile de yeni gradyan karesi eklenir. Böylece, her yeni batch’te ağırlıklandırılmış bir 

hareketli ortalama oluşturulur. deltaWeightOutput ve deltaWeightHidden, ağırlık değişimi için 

kullanılan güncellemeleri içerir. Bu değerler, Adadelta’nın adaptif öğrenme hızı kullanılarak 

hesaplanır. Güncelleme oranı, önceki kare ağırlık değişimleri ve gradyan ortalamaları 

arasındaki oranla belirlenir. Bu oran, her bir gradyan için normalize edilmiş bir değer sağlar ve 

güncelleme miktarının büyük veya küçük olmasını önler. deltaPrevOutput ve deltaPrevHidden, 

yeni ağırlık değişimi karelerini saklar ve güncellenen değerlerle hareketli ortalamalarını 

sürdürür. weights.outputLayer ve weights.hiddenLayer, Adadelta algoritmasıyla elde edilen 

güncelleme değerleri (deltaWeightOutput ve deltaWeightHidden) kullanılarak güncellenir. 

currentLoss, LossFunction ile error kullanılarak hesaplanır ve bu, modelin mevcut batch 

üzerindeki performansını gösterir. Bu kayıp değeri, modelin doğruluğunu değerlendirmek için 

kullanılır. Eğer currentLoss, bestLoss değerinden küçükse, bestWeights ve bestLoss 

güncellenir. Bu işlem, modelin en iyi ağırlık ve en düşük kayıp değerlerinin kaydedilmesini 

sağlar. Eğitim döngüsünün tamamlanmasının ardından, modelin en iyi ağırlıkları (bestWeights) 

ve en düşük kayıp değeri (bestLoss) geri döndürülür. 

Tez çalışmasında kullanılan, Adadelta algoritmasının eğitim sürecinde adaptif 

güncellemeleri nasıl yaptığını ve en iyi model parametrelerini nasıl kaydettiğini özetlemektedir. 

Nadam (Nesterov-Accelerated Adaptive Moment Estimation) 

Nadam, Adam'ın güncelleme kuralına Nesterov momentumunu ekler. Bu yöntem, 

momentum yönünde gelecekteki bir konumu dikkate alarak gradyanı hesaplar. Böylece 

yakınsama hızını artırmayı ve model kalitesini iyileştirmeyi amaçlar. Nadam optimizasyon 

algoritması için matematiksel denklemler Denklem (24), (25), (26), (27) ve (28)'de 

gösterilmiştir. 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡                                                                                                (24) 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2                                                                                                  (25) 

𝑚̂𝑡 =
𝑚𝑡

1−𝛽2
𝑡                                                                                                                                (26) 

𝑣𝑡 =
𝑣𝑡

1−𝛽2
𝑡                                                                                                                                 (27) 

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑣𝑡+∈
(𝛽1𝑚̂𝑡 + (1 − 𝛽1)𝑔𝑡                                                                            (28) 

Nadam optimizasyon algoritmasının matematiksel denklemlerindeki parametreler 

aşağıdaki gibidir: 𝑚𝑡 ve 𝑣𝑡 : sırasıyla 𝑡 adımdaki birinci ve ikinci momentlerin tahminleri. 𝑔𝑡: 

gradyan vektörü. 𝛽1 ve 𝛽2 : hareketli ortalamalar için üstel bozunma oranları. η: öğrenme oranı. 
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𝑚̂𝑡 ve 𝑣𝑡 : birinci ve ikinci momentlerin düzeltilmiş tahminleri. ∈: sıfıra bölme hatalarını 

önlemek için kullanılan çok küçük bir sayı. Nadam, önceki momentum kavramını geliştirmek 

için Nesterov Momentum ve Adam algoritmalarını birleştirir ve böylece yerel minimumlara 

takılma riskini azaltır. Tablo 12’de çalışmada yer verilen Nadam algoritmasının eğitim 

aşamasındaki sözde kodu gösterilmiştir. 

Tablo 12. Çalışmada kullanılan Nadam algoritmasının eğitim aşamasındaki sözde kodu 

Input: numTrain, epochs, learningRate, initialWeights, beta1, beta2, epsilon 

Output: bestWeights, bestLoss 

Begin 

  1:  weights ← initialWeights 

  2:  bestWeights ← weights 

  3:  bestLoss ← ∞ 

  4:  mHidden ← 0 

  5:  vHidden ← 0 

  6:  mOutput ← 0 

  7:  vOutput ← 0 

  8:  t ← 0 

  9:  for epoch ← 1 to epochs do 

 10:      for batch ← 1 to numTrain do 

 11:          t ← t + 1 

 12:          // İleri yayılım 

 13:          hiddenLayerOutput ← ActivationFunction(weights.hiddenLayer * Input) 

 14:          outputLayerOutput ← ActivationFunction(weights.outputLayer * hiddenLayerOutput) 

 15:          // Hata hesaplama 

 16:          error ← Output - outputLayerOutput 

 17:          // Hata geri yayılımı 

 18:          outputLayerGradient ← error * ActivationDerivative(outputLayerOutput) 

 19:          hiddenLayerGradient ← (weights.outputLayer^T * outputLayerGradient) *  

                                                       ActivationDerivative(hiddenLayerOutput) 

 20:          // Ağırlık güncelleme (Nadam) 

 21:          mOutput ← beta1 * mOutput + (1 - beta1) * outputLayerGradient 

 22:          vOutput ← beta2 * vOutput + (1 - beta2) * outputLayerGradient^2 

 23:          mHidden ← beta1 * mHidden + (1 - beta1) * hiddenLayerGradient 

 24:          vHidden ← beta2 * vHidden + (1 - beta2) * hiddenLayerGradient^2 

 25:          mOutputHat ← mOutput / (1 - beta1^t) 

 26:          vOutputHat ← vOutput / (1 - beta2^t) 

 27:          mHiddenHat ← mHidden / (1 - beta1^t) 

 28:          vHiddenHat ← vHidden / (1 - beta2^t) 

 29:          deltaWeightOutput ← -learningRate * (beta1 * mOutputHat + (1 - beta1) * outputLayerGradient) /  

                                                                              (sqrt(vOutputHat) + epsilon) * hiddenLayerOutput^T 

 30:          deltaWeightHidden ← -learningRate * (beta1 * mHiddenHat + (1 - beta1) *  

                                               hiddenLayerGradient) / (sqrt(vHiddenHat) + epsilon) * Input^T 

 31:          weights.outputLayer ← weights.outputLayer + deltaWeightOutput 

 32:          weights.hiddenLayer ← weights.hiddenLayer + deltaWeightHidden 

 33:          // Eğitim kaybını hesapla 

 34:          currentLoss ← LossFunction(error) 

 35:          if currentLoss < bestLoss then 

 36:              bestWeights ← weights 
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 37:              bestLoss ← currentLoss 

 38:          End if 

 39:      End for 

 40:  End for 

 41:  return bestWeights, bestLoss 

End 

Nadam optimizasyon yöntemi, Adam algoritmasının bir uzantısı olup, adaptif öğrenme 

hızını Nesterov momentumu ile birleştirir. Bu yöntemde, gradientlerin momentum etkisi altında 

hızlandırılması sağlanırken, her adımda daha iyi sonuç almak için Nesterov momentumu 

kullanılır. Uygulamada ağın eğitiminin gerçekleştirildiği Train.cpp dosyasındaki Nadam 

algoritmasında öncelikle modelin ağırlıkları initialWeights ile başlatılır ve en iyi ağırlıklar 

bestWeights olarak kaydedilir. En iyi kayıp değeri başlangıçta ∞ olarak ayarlanır, böylece 

eğitim boyunca ilk güncellenen kayıp değeri en düşük olarak kabul edilir ve kaydedilir. 

Momentum ve ikinci momentum olarak kullanılan mHidden, vHidden, mOutput ve vOutput 

sıfırdan başlatılır. t değişkeni ise zaman adımını takip etmek için sıfırdan başlatılır. 

Eğitim sürecinde, belirlenen epoch sayısı boyunca model güncellenir. Her epoch içinde 

tüm batch verileri işlenir. İleri yayılım sırasında modelin giriş katmanından başlayarak 

hesaplamalar yapılır. Giriş verisi gizli katmanın ağırlıklarıyla çarpılarak hiddenLayerOutput 

hesaplanır, ardından bu değer çıkış katmanına aktarılır ve modelin tahmini olan 

outputLayerOutput elde edilir. Tahmin değeri ile gerçek değer arasındaki fark error olarak 

hesaplanır, bu hata değeri modelin o anki performansını yansıtır. 

Geri yayılım sırasında, hatanın her katmana geri iletilmesiyle gradyanlar hesaplanır. Çıkış 

katmanı için outputLayerGradient, hata ile aktivasyon fonksiyonunun türev değeri çarpılarak 

elde edilir. Gizli katmandaki gradyan ise, çıkış katmanından geriye doğru hesaplanan 

gradyanın, gizli katmandaki aktivasyon türevi ile çarpılmasıyla bulunur. Bu gradyanlar, ağırlık 

güncellemeleri için kullanılacaktır. 

Nadam optimizasyonunda, önce ilk momentum ve ikinci momentum değerleri 

güncellenir. mOutput ve mHidden, mevcut gradyanlarla güncellenerek ilk momentum değerini 

oluşturur ve vOutput ile vHidden da gradyanların kareleri üzerinden ikinci momentum olarak 

güncellenir. Momentum terimleri kaydırılmış (bias-corrected) ortalamalar olarak hesaplanır; 

böylece algoritma başlangıçtaki dengesizliklerin etkisinden kurtulur ve daha hassas sonuçlar 

elde edilir. 

Ağırlık güncellemeleri yapılırken, Nesterov momentumu ile gelecekteki bir adımda 

hareket göz önünde bulundurulur. deltaWeightOutput ve deltaWeightHidden, kaydırılmış 

ortalama ve karekök ile normalize edilen gradyanlar kullanılarak hesaplanır. Bu güncellemeler 
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adaptif öğrenme hızını baz alarak modelin daha verimli bir şekilde en düşük kayba ulaşmasını 

sağlar. 

Son olarak, modelin performansı her batch sonrasında hesaplanır. Eğer modelin ilgili 

batch üzerindeki kayıp değeri en düşük değer olarak güncellenirse, ağırlıklar bestWeights 

olarak saklanır. Eğitim süreci tamamlandığında, modelin en iyi ağırlık ve kayıp değerleri 

döndürülür. Nadam yöntemi, gradyanların hareketlerini gelecekteki adımlar üzerinden optimize 

ederek daha hızlı ve kararlı bir öğrenme sağlar, bu da modelin minimum kayba daha etkin bir 

biçimde ulaşmasına yardımcı olur. 

Momentum 

Momentum yöntemi (Ruder, 2016) fiziksel momentum kavramına benzemektedir. Amaç, 

önceki adımların hızını bir momentum terimi ile hesaba katarak optimizasyon yönünde daha 

hızlı hareket sağlamaktır. Bu yaklaşımla, önceki gradyanlardan elde edilen veriler bir 

“momentum” etkisiyle korunarak her seferinde daha hızlı güncelleme yapılmasına olanak 

sağlanır. Momentum optimizasyon algoritması için matematiksel denklemler Denklem (29) ve 

(30)'te gösterilmektedir. 

𝑣𝑡+1 = 𝛽1𝑣𝑡 + 𝛼𝑔𝑡                                                                                                               (29) 

𝜃𝑡+1 = 𝛽1𝑣𝑡 + 𝛼𝑔𝑡                                                                                                                (30) 

Momentum optimizasyon algoritmasının matematiksel denklemlerindeki parametreler 

aşağıdaki gibidir. 𝑣𝑡+1: momentumu temsil eder ve geçmiş gradyanların ağırlıklı bir 

ortalamasıdır. 𝜃𝑡: t adımındaki model parametreleri. 𝑔𝑡: t adımındaki gradyan. 𝛼: öğrenme 

oranı. 𝛽1: momentumu kontrol eden bir hiperparametredir. Tablo 13’te çalışmada yer verilen 

momentum algoritmasının eğitim aşamasındaki sözde kodu gösterilmiştir. 

Tablo 13. Çalışmada kullanılan Momentum algoritmasının eğitim aşamasındaki sözde kodu 

Input: numTrain, epochs, learningRate, initialWeights, gamma 

Output: bestWeights, bestLoss 

Begin 

  1:  weights ← initialWeights 

  2:  bestWeights ← weights 

  3:  bestLoss ← ∞ 

  4:  velocityHidden ← 0 

  5:  velocityOutput ← 0 

  6:  for epoch ← 1 to epochs do 

  7:      for batch ← 1 to numTrain do 

  8:          // İleri yayılım 

  9:          hiddenLayerOutput ← ActivationFunction(weights.hiddenLayer * Input) 

 10:          outputLayerOutput ← ActivationFunction(weights.outputLayer * hiddenLayerOutput) 
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 11:          // Hata hesaplama 

 12:          error ← Output - outputLayerOutput 

 13:          // Hata geri yayılımı 

 14:          outputLayerGradient ← error * ActivationDerivative(outputLayerOutput) 

 15:          hiddenLayerGradient ← (weights.outputLayer^T * outputLayerGradient) *  

                                                          ActivationDerivative(hiddenLayerOutput) 

 16:          // Ağırlık güncelleme (Momentum) 

 17:          velocityOutput ← gamma * velocityOutput - learningRate * outputLayerGradient *  

                                                                                                                  hiddenLayerOutput^T 

 18:          velocityHidden ← gamma * velocityHidden - learningRate * hiddenLayerGradient * Input^T 

 19:          weights.outputLayer ← weights.outputLayer + velocityOutput 

 20:          weights.hiddenLayer ← weights.hiddenLayer + velocityHidden 

 21:          // Eğitim kaybını hesapla 

 22:          currentLoss ← LossFunction(error) 

 23:          if currentLoss < bestLoss then 

 24:              bestWeights ← weights 

 25:              bestLoss ← currentLoss 

 26:          End if 

 27:      End for 

 28:  End for 

 29:  return bestWeights, bestLoss 

End 

 

Momentum algoritması, SGD’ye göre daha kararlı bir güncelleme yapmayı amaçlar. 

Momentum, bir yöne doğru hızlanmayı sağlar ve bu sayede minimum noktaya daha çabuk ve 

stabil bir biçimde ulaşılır. SGD’de, gradyan değeri her örneğe göre dalgalandığından 

ağırlıkların güncellenmesi de gürültülüdür. Momentum, önceki adımların ortalamasını alarak 

daha düzgün bir güncelleme yapılmasını sağlar. Sözde kodda önce ağırlıklar ve hız vektörleri 

sıfırdan başlatılır. Her epoch ve batch için ileri yayılım ve hata hesaplaması yapılır, ardından 

hata geri yayılımıyla gradyan değerleri bulunur. Momentum aşamasında, önceki gradyan 

adımları da dikkate alınarak ağırlıkların güncellenmesi sağlanır. Bu sayede yerel minimumlara 

takılmadan, daha hızlı bir yakınsama elde edilir. Momentum katsayısı (gamma), önceki gradyan 

adımlarının ağırlıklarını belirler; bu katsayı daha büyük olduğunda güncellemeler daha stabil 

hale gelir. Eğer mevcut kayıp değeri, daha önceki en iyi kayıp değerinden düşükse, bu değer en 

iyi sonuç olarak saklanır. Aşağıda uygulamada kullanılan Momentum optimizasyon yöntemi 

detaylı bir biçimde açıklanmıştır. 

Başlangıç değerleri eğitim başlamadan önce, weights değişkeni modelin başlangıç ağırlık 

değerleri olan initialWeights ile başlatılır. bestWeights, başlangıçta weights olarak ayarlanır ve 

süreç boyunca en iyi ağırlık değerlerini kaydeder. bestLoss ise ∞ (sonsuz) olarak belirlenir, 

böylece elde edilen ilk kayıp değeri bestLoss’dan daha düşük olacaktır ve en iyi kayıp değeri 

olarak güncellenir. Momentum yöntemi için ayrıca velocityHidden ve velocityOutput 
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değişkenleri sıfırdan başlatılır; bu değişkenler, ağırlık güncellemelerinin hızını temsil eder ve 

momentum etkisini içerir. Epoch döngüsü ile belirlenen epochs sayısı kadar çalışır ve her 

epoch, tüm eğitim çıktıları üzerinden bir tam geçişi ifade eder. Batch döngüsü her epoch içinde, 

batch döngüsü ile her bir batch üzerinde eğitim işlemi yapılır. Model her batch’te güncellenir 

ve böylece gradyanlar daha sık bir şekilde güncellemeye katkı sağlar. İleri Yayılım (Forward 

Propagation), modelin giriş katmanından çıkış katmanına kadar veri akışı gerçekleşir. Giriş 

verisi, gizli katmanın ağırlıkları ile çarpılarak hiddenLayerOutput elde edilir. Ardından, 

hiddenLayerOutput çıkış katmanının ağırlıklarıyla çarpılır ve outputLayerOutput hesaplanır. 

Bu işlemde, aktivasyon fonksiyonu kullanılarak katmanların çıktıları hesaplanır. Hata 

hesaplama ile çıkış (Output) ile modelin tahmini (outputLayerOutput) arasındaki fark error 

olarak hesaplanır. Bu hata değeri, modelin o anki batch’te ne kadar sapma gösterdiğini ifade 

eder. Hata Geri Yayılımı (Backward Propagation), modeldeki hatalar, katmanlarda geriye 

doğru iletilir. Çıkış katmanı için outputLayerGradient, hata (error) ile aktivasyon 

fonksiyonunun türev değerinin çarpımıyla hesaplanır. Gizli katman için hiddenLayerGradient, 

çıkış katmanından geri yayılım ile elde edilen gradyanın, gizli katman aktivasyonunun türevi 

ile çarpılması sonucu hesaplanır. 

Momentum yöntemi kullanılarak güncellemeler, önceki adımlarda hesaplanan gradyan 

bilgisinin bir kısmı korunarak velocityHidden ve velocityOutput güncellemeleri yapılır. Bu 

güncellemeler, gamma faktörüyle önceki velocity değerini çarparak momentum etkisini sağlar. 

learningRate ile çarpılan güncel gradient ise eklenir. Böylece velocity, güncel gradientin 

hareketini yumuşatır ve geçmiş gradientlerin etkisini de barındırır. Ağırlıkların güncellenmesi, 

elde edilen velocityOutput ve velocityHidden değerleri, weights.outputLayer ve 

weights.hiddenLayer ağırlıklarına eklenerek ağırlıklar güncellenir. Bu işlem, modelin mevcut 

batch üzerindeki gradyan yönünde ilerlemesini sağlar, ancak momentum yöntemi sayesinde bu 

hareket daha kararlı ve istikrarlıdır. Eğitim kaybının hesaplanması (LossFunction), error 

kullanılarak currentLoss hesaplanır. Bu değer, modelin mevcut batch üzerindeki kayıp 

miktarını gösterir ve modelin o anki performansını değerlendirir. En iyi ağırlık ve kayıp 

güncellemesinde eğer currentLoss, bestLoss değerinden düşükse, bestWeights ve bestLoss 

güncellenir. Bu, modelin şimdiye kadarki en iyi performans gösterdiği ağırlıkların ve kayıp 

değerinin saklanmasını sağlar. Sonuç olarak eğitim sürecinin sonunda, bestWeights ve bestLoss 

değerleri döndürülür. Bu değerler, modelin en iyi performansı gösterdiği ağırlıkları ve en düşük 

kaybı içerir. 

Momentum yöntemi, modelin minimuma daha süratli ve daha kararlı bir biçimde 

ulaşmasına yardımcı olur. Ağırlık güncellemelerinde, gradientlerin geçici dalgalanmalarına 
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karşı bir dengeleme sağlar ve geçmişteki gradyan hareketlerinin etkisiyle güncellemeler yapılır. 

Bu sayede, model yerel minimumlardan kaçınarak daha stabil bir optimizasyon süreci 

gerçekleştirir. 

Adamax 

Adam'ın bir varyantı olarak geliştirilen AdaMax, sonsuzluk normunu kullanarak 

yakınsama kararlılığını iyileştirmeyi amaçlamaktadır (Long et al., 2023). Bu yaklaşımda, 

gradyanların üstel hareketli ortalamalarının L-sonsuzluk normu hesaplanır ve Adam 

algoritmasındaki gradyanın sonsuzluk normu yerine kullanılır. AdaMax optimizasyon 

algoritması için matematiksel denklemler Denklem (19), (20) ve (21)'de gösterilmiştir. 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡                                                                                                                               (31) 

𝑢𝑡 = 𝑚𝑎𝑥(𝛽2𝑢𝑡−1,‖𝑔𝑡‖∞                                                                                                                                     (32) 

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

1−𝛽1
𝑡  

𝑚𝑡

𝑢𝑡+∈
                                                                                                                                           (33) 

AdaMax optimizasyon algoritmasının matematiksel denklemlerindeki parametreler 

aşağıdaki gibidir. 𝜃𝑡: t adımındaki model parametreleri. 𝑔𝑡: t adımındaki gradyan. η: öğrenme 

oranı. 𝛽1 ve 𝛽2 hareketli ortalamalar için üstel bozunma oranlarını temsil eden iki parametre. 

𝑚𝑡: t adımındaki ilk moment tahmini. 𝑢𝑡: t adımdaki ilk moment tahmini ve sonsuzluk 

normundan (maksimum mutlak değer) seçilen maksimum değer. ∈: sıfıra bölme hatalarını 

önlemek için kullanılan çok küçük bir sayı. AdaMax, Adam optimizasyon algoritmasına benzer 

şekilde ikinci moment yerine sonsuzluk normunu kullanarak daha istikrarlı bir performans 

sağlamayı amaçlamaktadır. Bu durumun sonucu olarak, özellikle derin ağlarda daha iyi 

sonuçların alınmasını sağlayabilir. Tablo 14’te Adamax algoritmasının eğitim aşamasındaki 

sözde kodu gösterilmiştir. 

Tablo 14. Adamax algoritmasının eğitim aşamasındaki sözde kodu 

Input: numTrain, epochs, learningRate, initialWeights, beta1, beta2, epsilon 

Output: bestWeights, bestLoss 

Begin 

  1:  weights ← initialWeights 

  2:  bestWeights ← weights 

  3:  bestLoss ← ∞ 

  4:  mHidden ← 0 

  5:  uHidden ← 0 

  6:  mOutput ← 0 

  7:  uOutput ← 0 

  8:  t ← 0 

  9:  for epoch ← 1 to epochs do 
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 10:      for batch ← 1 to numTrain do 

 11:          t ← t + 1 

 12:          // İleri yayılım 

 13:          hiddenLayerOutput ← ActivationFunction(weights.hiddenLayer * Input) 

 14:          outputLayerOutput ← ActivationFunction(weights.outputLayer * hiddenLayerOutput) 

 15:          // Hata hesaplama 

 16:          error ← Output - outputLayerOutput 

 17:          // Hata geri yayılımı 

 18:          outputLayerGradient ← error * ActivationDerivative(outputLayerOutput) 

 19:          hiddenLayerGradient ← (weights.outputLayer^T * outputLayerGradient) *  

                                                          ActivationDerivative(hiddenLayerOutput) 

 20:          // Ağırlık güncelleme (Adamax) 

 21:          mOutput ← beta1 * mOutput + (1 - beta1) * outputLayerGradient 

 22:          uOutput ← max(beta2 * uOutput, |outputLayerGradient|) 

 23:          mHidden ← beta1 * mHidden + (1 - beta1) * hiddenLayerGradient 

 24:          uHidden ← max(beta2 * uHidden, |hiddenLayerGradient|) 

 25:          mOutputHat ← mOutput / (1 - beta1^t) 

 26:          mHiddenHat ← mHidden / (1 - beta1^t) 

 27:          deltaWeightOutput ← -learningRate * mOutputHat / (uOutput + epsilon) * hiddenLayerOutput^T 

 28:          deltaWeightHidden ← -learningRate * mHiddenHat / (uHidden + epsilon) * Input^T 

 29:          weights.outputLayer ← weights.outputLayer + deltaWeightOutput 

 30:          weights.hiddenLayer ← weights.hiddenLayer + deltaWeightHidden 

 31:          // Eğitim kaybını hesapla 

 32:          currentLoss ← LossFunction(error) 

 33:          if currentLoss < bestLoss then 

 34:              bestWeights ← weights 

 35:              bestLoss ← currentLoss 

 36:          End if 

 37:      End for 

 38:  End for 

 39:  return bestWeights, bestLoss 

End 

 

Adamax, ikinci momentumun (v) güncellenmesinde L∞ normunu kullanır ve bu sayede, 

gradyanın büyüklüğünden daha az etkilenir ve daha dengeli güncellemeler sağlar. Adamax 

algoritması, öncelikle modelin başlangıç ağırlıkları (initialWeights) ile başlar ve en iyi ağırlıklar 

(bestWeights) ile en düşük kayıp (bestLoss) değeri başlangıçta tanımlanır. İlk momentum 

(mHidden, mOutput) ve L∞ normuna göre güncellenen ikinci momentum (uHidden, uOutput) 

sıfırdan başlatılır. t ise zaman adımı olarak kullanılan bir sayaçtır ve başlangıçta sıfırdır. 

Eğitim süreci, belirli bir epoch ve batch sayısınca tekrarlanır. Her epoch dahilinde her bir 

batch için ileri yayılım gerçekleştirilir. Modelin girdileri, gizli katmandan çıkış katmanına 

doğru ilerleyerek hiddenLayerOutput ve outputLayerOutput değerlerini oluşturur. Bu değerler, 

modelin tahmin sonuçları olup, hata hesaplamasında kullanılır. Modelin tahmini ile gerçek çıkış 

arasındaki fark error olarak adlandırılır ve modelin hatasını yansıtır. 
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Adamax algoritmasında, ilk momentum (m) ve L∞ normuna göre ikinci momentum (u) 

güncellenir. İlk momentum (mOutput ve mHidden), beta1 katsayısı ile mevcut gradientlerin 

hareketli ortalaması olarak hesaplanır. İkinci momentum ise uOutput ve uHidden 

değişkenlerinde beta2 katsayısı kullanılarak her bir gradientin L∞ normuna göre güncellenir, 

yani mevcut gradient ile u’nun beta2 katsayısına göre ölçeklendirilmiş eski değeri arasında 

maksimum olanı seçilir. Bu işlem, büyük gradient değişimlerinden daha az etkilenilmesini 

sağlar ve daha kararlı bir güncelleme sunar. 

İlk momentum, mOutput ve mHidden için kaydırılmış ortalama (bias correction) 

hesaplanır; bu sayede başlangıçtaki dengesizliklerin etkisi azaltılmış olur. Daha sonra ağırlık 

güncellemeleri yapılır. Çıkış ve gizli katman ağırlıkları için, kaydırılmış ortalamaya göre 

güncellenen momentum değerleri (mOutputHat, mHiddenHat) ve L∞ normu (uOutput, 

uHidden) ile normalize edilerek deltaWeightOutput ve deltaWeightHidden hesaplanır. Bu 

adımlar, adaptif bir öğrenme hızında güncelleme yapılmasını sağlar. 

Her batch sonrasında eğitim kaybı hesaplanır ve eğer bu kayıp değeri mevcut en iyi 

kayıptan daha düşükse, bestWeights ve bestLoss güncellenir. Bu, modelin eğitim süresince en 

düşük kayıpla en iyi ağırlıkları öğrenmesini sağlar. 

Eğitim tamamlandığında, modelin en iyi ağırlıkları (bestWeights) ve kayıp değeri 

(bestLoss) döndürülür. Adamax algoritması, L∞ normu kullanarak gradyanların 

büyüklüğünden daha az etkilenir ve bu sayede büyük gradyan değişimlerine karşı daha 

kararlıdır. Bu özellikleriyle, büyük veri kümelerinde Adamax, öğrenme sürecinde daha 

istikrarlı bir ilerleme sağlar. Yapılan tez çalışmasında AdaMax optimizasyon yöntemi ile 

başarılı sonuçlara ulaşılmıştır. 

Şekil 29’de uygulamaya ait eğitim aşaması belirtilmiştir. Bu şekil, tez çalışmasında 

kullanılan uygulamaya ait yapay sinir ağının eğitim sürecini adım adım açıklayan bir akış 

diyagramıdır. 
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Şekil 29. Uygulamanın eğitim aşaması. 

Uygulamanın test aşaması  

Bu tez çalışmasında, test kısmının çalışma mantığını açıklamak amacıyla donanım ve 

yazılım bölümlerine ait sözde kodlar Tablo 15 ve Tablo 16'da sunulmuştur. Uygulamada 

kullanılan MNIST ve CIFAR-10 veri setlerinde eğitim için 50.000 bin örnek, test aşaması için 

ise 10.000 örnek resim objesi kullanılmaktadır. Ayrıca uygulamanın sağlamlığını pekiştirmek 

amacıyla Fisher’s Iris veri seti uygulamaya dahil edilmiştir.  Burada ileri beslemeli bir sinir 

ağında (feedforward neural network) test verilerini kullanarak sınıflandırma işlemi 

gerçekleştirmektir. Program hem donanım hem de yazılım kısmında çeşitli optimizasyonlar ve 

hesaplamalar yaparak enerji sarfiyatını minimum düzeye indirmeyi hedefler. Kodun genel akışı 

üç ana bileşenden oluşur: donanım parametrelerinin başlatılması, tüketilen enerjinin 

hesaplanması ve ileri besleme işleminin gerçekleştirilmesidir. 
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Donanım aşaması 

Tablo 15. Uygulamanın test kısmına ait sözde kod 

Input: arrayIH, arrayHO, param, techIH, techHO, testInput, weight1, weight2 

Output: correct, sumArrayReadEnergyIH, sumArrayReadEnergyHO 

Begin 

1:  Function InitializeHardwareParameters(): 

2:      // Donanım parametrelerini başlat 

3:      if arrayIH->cell[0][0] type-> "eNVM" then: 

4:          readVoltageIH ← arrayIH->cell[0][0].readVoltage 

5:          readVoltageHO ← arrayHO->cell[0][0].readVoltage 

6:          readPulseWidthIH ← arrayIH->cell[0][0].readPulseWidth  

7:          readPulseWidthHO ← arrayHO->cell[0][0].readPulseWidth  

9:      if arrayIH->cell[0][0] type-> "HybridCell" then: 

10:         readVoltageIH ← arrayIH->cell[0][0].LSB->readVoltage 

11:         readVoltageHO ← arrayHO->cell[0][0].LSB->readVoltage 

12:         readVoltageMSB ← arrayIH->cell[0][0].MSB->readVoltage 

13:         readPulseWidthIH ← arrayIH->cell[0][0].LSB->readPulseWidth 

14:         readPulseWidthHO ← arrayHO->cell[0][0].LSB->readPulseWidth 

15:         readPulseWidthMSB ← arrayIH->cell[0][0].MSB->readPulseWidth 

16: End Function 

18: Function CalculateEnergyConsumption(): 

19:     sumArrayReadEnergyIH ← 0 

20:     sumArrayReadEnergyHO ← 0 

22:     // Giriş Katmanı İçin Enerji Tüketimi Hesapla 

23:     Her bir gizli katman sinapsı için: 

24:         if arrayIH->cell type-> "AnalogNVM" then: 

25:             if arrayIH->cell CMOS then: 

26:                 sumArrayReadEnergyIH += arrayIH->wireGateCapRow * (techIH.vdd ^ 2) * param->nInput 

27:             else, arrayIH crosbarr then: 

28:                 sumArrayReadEnergyIH += arrayIH->wireCapRow * (techIH.vdd ^ 2) * (param->nInput - 1) 

30:         if arrayIH->cell type-> "DigitalNVM" then: 

31:             if arrayIH->cell CMOS then: 

32:                 sumArrayReadEnergyIH += arrayIH->wireGateCapRow * (techIH.vdd ^ 2) 

33:             else arrayIH crossbar ise: 

34:                 sumArrayReadEnergyIH += arrayIH->wireCapRow * (techIH.vdd ^ 2) * (param->nInput - 1) 

36:         if arrayIH->cell type-> "HybridCell" then: 

37:             sumArrayReadEnergyIH += arrayIH->wireGateCapRow * (techIH.vdd ^ 2) * param->nInput 

39:     // Çıkış Katmanı İçin Enerji Tüketimi Hesapla 

40:     return sumArrayReadEnergyHO 

41: End Function 

End 

 

Uygulamaya ait sözde kodun ilk aşamasında, donanım parametrelerinin yapılandırılması 

işlemi gerçekleştirilir. Bu işlem, sinir ağı modelinin donanımda çalıştırılmasını sağlayacak 

parametrelerin başlatılmasını içerir. InitializeHardwareParameters() fonksiyonu, her hücre 

türüne (cell type) göre okuma voltajı (readVoltage) ve okuma darbe genişliği (readPulseWidth) 



93 
 

gibi parametreleri ayarlar. Kod, donanım katmanında kullanılan hücre türünü (eNVM, 

HybridCell) tespit ederek uygun voltaj ve darbe genişliği değerlerini belirler. 

 Eğer hücre tipi "eNVM" (Embedded Non-Volatile Memory) ise, okuma işlemi için 

kullanılan voltaj ve darbe genişliği doğrudan arrayIH ve arrayHO nesnelerinden alınır. 

 Eğer hücre tipi "HybridCell" ise, hücrelerin alt bileşenleri olan LSB (Least Significant 

Bit) ve MSB (Most Significant Bit) için okuma voltajları ve darbe genişlikleri ayrı ayrı 

ayarlanır. Bu durum, hibrit hücrelerin farklı özelliklere sahip alt bileşenleri kullanarak 

daha esnek bir okuma işlemi gerçekleştirmesini sağlar. 

Test aşmasının bu kısmında donanım tabanlı bir YSA modelinin temel gereksinimlerini 

oluşturarak enerji tüketimi ve performans hesaplamalarına geçiş yapılmasını sağlar. 

Enerji tüketiminin hesaplanmasında CalculateEnergyConsumption() fonksiyonu 

kullanılmaktadır. Bu işlem, sinir ağı modelinin ileri besleme aşamasında donanım 

kaynaklarının etkin şekilde kullanılması için önemlidir. Enerji tüketimi, sinapslar ve bağlantılar 

üzerinden geçen akımın voltaj ve kapasitans (capacitance) değerlerine bağlı olarak hesaplanır. 

 Giriş Katmanı Enerji Tüketimi: Kod, AnalogNVM, DigitalNVM ve HybridCell gibi farklı 

hücre türlerine göre giriş katmanındaki enerji tüketimini hesaplar. Eğer hücreler CMOS 

tabanlı ise, wireGateCapRow değeri ile voltaj (techIH.vdd) karesi çarpılır ve param-

>nInput ile ölçeklenir. Aksi takdirde, çapraz bağlantılı yapılar için wireCapRow değeri 

kullanılır. 

 Çıkış Katmanı Enerji Tüketimi: Çıkış katmanında da benzer işlemler tekrarlanır, ancak 

bu defa arrayHO nesnesi üzerinden enerji tüketimi hesaplanır. 

Bu enerji hesaplamaları, sinir ağının çalışırken harcadığı enerjiyi en aza indirmek ve güç verim 

seviyesini yükseltmek için kritik bir rol oynar. Sinapsların her biri için yapılan bu hesaplamalar, 

toplam enerji tüketimini sumArrayReadEnergyIH ve sumArrayReadEnergyHO 

değişkenlerinde saklar. 

Yazılım aşaması 

Tablo 16. Uygulamanın test kısmına ait sözde kodun devamı (yazılım) 

42: Function ForwardPropagationUsingSoftware(): 

43:     correct ← 0 

45:     Tüm test görüntüleri için: 

46:         // Gizli katman başlangıç değerlerini sıfırla 

47:         outN1[i] ← 0 

48:         a1[i] ← 0 

49:         // Çıkış katman başlangıç değerlerini sıfırla 
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50:         outN2[i] ← 0 

51:         a2[i] ← 0 

53:         // Giriş Katmanından Gizli Katmana İleri Besleme 

54:         if param->useHardwareInTestingFF Then: 

55:             // Donanımda enerji tüketimi hesapla 

56:             CalculateEnergyConsumption() 

57:         else: 

58:             Her bir gizli katman sinapsı için: 

59:                 // Giriş ile sinaps ağırlığını çarp ve toplama ekle 

60:                 outN1[j] += testInput[i][k] * weight1[k][j] 

61:             a1[j] ← Activate(outN1[j]) 

63:         // Gizli Katmandan Çıkış Katmanına İleri Besleme 

64:         Her bir çıkış katman sinapsı için: 

65:             // Gizli katman aktivasyon çıkışlarını çarp ve toplama ekle 

66:             outN2[m] += a1[j] * weight2[j][m] 

67:         a2[m] ← Activate(outN2[m])  // Aktivasyon fonksiyonu uygula 

69:         if a2 then: 

70:             correct += 1 

71: End Function 

73: Function ReportTestResults(): 

74:     accuracy = correct / param->numMnistTestImages 

75:     totalEnergyConsumption = sumArrayReadEnergyIH + sumArrayReadEnergyHO 

76:     delay = CalculateDelay() 

77:     result (accuracy, totalEnergyConsumption, delay) 

78: End Function 

 

Yazılım Tabanlı İleri Besleme, sinir ağı modelinin ileri besleme aşaması, yazılım tabanlı 

olarak ForwardPropagationUsingSoftware() fonksiyonu ile gerçekleştirilir. Bu işlem, modelin 

eğitim sırasında öğrenilen ağırlıkları kullanarak test verilerini sınıflandırmasını sağlar. Bu 

aşamada correct değişkeni, doğru tahminlerin sayısını kaydetmek için kullanılır. 

 Gizli Katmana İleri Besleme: Giriş katmanındaki sinirler ile gizli katmandaki sinirler 

arasında çarpımlar yapılarak gizli katman çıkışları (outN1 ve a1) hesaplanır. Eğer 

param>useHardwareInTestingFF parametresi etkinse, ileri besleme sırasında enerji 

tüketimi donanımda hesaplanır. Aksi takdirde, yazılım tabanlı ileri besleme algoritması 

çalıştırılır. 

 Çıkış Katmanına İleri Besleme: Gizli katmandan çıkış katmanına doğru aynı işlem 

adımları tekrar edilir. Gizli katman sinirlerinin aktivasyon çıkışları (a1), çıkış katmanı 

sinir ağırlıkları ile çarpılır ve çıkış değerleri (outN2 ve a2) elde edilir. 

Son aşamada, ReportTestResults() fonksiyonu, sinir ağı modelinin doğruluk oranını 

(accuracy), toplam enerji tüketimini (totalEnergyConsumption) ve gecikme süresini (delay) 

hesaplar. Bu değerler, modelin donanım tabanlı bir ortamda nasıl performans gösterdiğini ve ne 

kadar enerji tükettiğini analiz etmek için önemlidir. 
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 Doğruluk Oranı (Accuracy): Modelin doğru sınıflandırdığı test verilerinin toplam test 

verilerine oranı olarak hesaplanır. 

 Toplam Enerji Tüketimi (Total Energy Consumption): Giriş ve çıkış katmanlarındaki 

enerji tüketimlerinin toplamı olarak hesaplanır. 

 Gecikme Süresi (Delay): İleri besleme sürecinde gerçekleşen işlemler için toplam 

gecikme süresi hesaplanır. 

Sonuçlar, modelin performansını ve güç verimliliğini değerlendirerek daha verimli donanım ve 

yazılım kombinasyonları tasarlamak için kullanılır. Bu raporlanan değerler, donanım tabanlı 

sinir ağları için güç verimliliği optimizasyonu ve performans artırımı açısından önemli bir 

referans sağlar. 

Şekil 30’de uygulamaya ait test aşaması gösterilmiştir. Bu şekil, tez çalışmasında 

kullanılan uygulamaya ait yapay sinir ağının test sürecini adım adım açıklayan bir akış 

diyagramıdır. 

 

Şekil 30.  Uygulamanın test aşaması. 



96 
 

Test aşaması, yapay sinir ağının eğitim sırasında öğrendiği bilgilerin yeni, daha önce 

görülmemiş veriler üzerinde değerlendirilmesi sürecidir. Bu aşamada, ağın performansını 

ölçmek ve genelleme yeteneğini değerlendirmek amaçlanır. Test verileri, eğitim sırasında 

kullanılan veri setinden farklıdır ve aynı ön işleme adımlarından geçirilmiştir. Ağ, test verilerini 

ileri yayılım (forward propagation) ile işler ve bu veriler için tahminler üretir.  

Elde edilen tahminler, test veri setindeki gerçek etiketlerle karşılaştırılır. Performans, 

doğruluk (accuracy), hataların ortalaması (MSE, MAE gibi) veya F1 skor gibi uygun metrikler 

ile değerlendirilir. Bu aşamada ağın ağırlıkları değiştirilmez, yalnızca eğitim sırasında 

öğrenilen bilgilerin yeni verilere nasıl uygulandığı gözlemlenir. Sonuçlar, modelin genelleme 

kapasitesini ölçmek ve gerekirse iyileştirmeler yapmak için kullanılır. Test aşaması, eğitim 

sürecinin doğruluğunu ve etkinliğini değerlendirmenin en kritik adımlarından biridir. 

Uygulamanın çalıştırılması 

Bu tez çalışmasında donanım destekli yapay sinir ağı (YSA) modellerinin verimli bir 

biçimde eğitim ve değerlendirme süreçlerini ele almaktadır. Geleneksel YSA eğitim 

algoritmaları, büyük veri kümeleri üzerinde hesaplama açısından yoğun işlemler 

gerektirdiğinden, yüksek enerji tüketimi ve uzun işlem süreleri gibi sınırlamalarla karşı karşıya 

kalmaktadır. Bu sorunları aşmak için, bu çalışma YSA'nın donanımsal bir platformda eğitilmesi 

amacıyla bir yöntem geliştirmekte ve simülasyon tabanlı bir sinaptik çekirdek yapılandırması 

kullanmaktadır. Kod, eğitim verilerinin işlenmesi, sinaptik ağırlıkların başlatılması, NeuroSim 

çekirdeklerinin yapılandırılması ve YSA modelinin donanım üzerinde doğruluk, gecikme süresi 

ve enerji tüketimi gibi performans metriklerinin hesaplanması adımlarını içermektedir. Bu 

yaklaşımla, YSA'nın donanımda etkin şekilde çalıştırılması sağlanarak hem enerji verimliliği 

hem de işlem süresi açısından iyileştirmeler hedeflenmektedir. Tablo 17’de ana fonksiyon 

kullanılarak veri setlerinin yüklenmesi ve çeşitli fonksiyonlarla uygulamanın başlatılması 

gösterilmiştir. 

Tablo 17. Uygulamnın çalıştırıldığı ana fonksiyona ait sözde kod 

Input: trainData, trainLabels, testData, testLabels, totalNumEpochs, interNumEpochs,  

           numMnistTestImages, numTrainImagesPerEpoch, optimization_type 

Output: output.csv, accuracy and performance metrics 

Begin 

1:   Initialize random seed and load MNIST data 

2:   ReadTrainingDataFromFile("trainData", "trainLabels") 

3:   ReadTestingDataFromFile("testData", "testLabels") 

4:   Initialize synaptic arrays and NeuroSim cores 
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5:   arrayIH->Initialization<RealDevice>() 

6:   arrayHO->Initialization<RealDevice>() 

7:   NeuroSimSubArrayInitialize and NeuroSimNeuronInitialize 

8:   Calculate area and leakage power 

9:   NeuroSimSubArrayArea and NeuroSimSubArrayLeakagePower 

10: Initialize weights and hardware mapping 

11: WeightInitialize() and WeightToConductance() (if useHardwareInTraining) 

12: Open output file output.csv 

13: For each epoch block 

14:   Run training for interNumEpochs 

15:   If not using hardware in training but in testing, then WeightToConductance() 

16:   Run validation 

17:   Save accuracy to file and print metrics 

18:   Print read/write latency and energy for synaptic cores 

19:   If HybridCell or _2T1F, print transfer latency and energy 

20: End for 

21: Return 0 

End 

 

Tablo 17’de gösterilen sözde kodda, uygulamada bir MLP modelini donanımsal platformda 

eğitim ve test süreçlerini özetlemektedir. Kod, eğitim verilerini yükler, modelin donanım 

tarafını kurar, ağı eğitir ve sonunda doğrulama yapar. Süreç aşağıdaki aşamalardan 

oluşmaktadır: 

 Rastgele Sayı Çekirdeği ve Veri Yükleme: Kod, rastgele sayı üretimini başlatmak için 

bir çekirdek değeri ayarlar ve MNIST, CIFAR-10 veya Fisher’s Iris veri setinden eğitim 

ve test verilerini yükler. Bu adım, modelin eğitim ve test aşamalarında kullanılacak 

görüntü ve etiketlerin bellek içine alınmasını sağlar. 

 Sinaptik Ağırlık Dizilerinin ve NeuroSim Çekirdeklerinin Başlatılması: YSA'nın gizli 

katmanına ve çıktı katmanına ait sinaptik ağırlık dizileri, `RealDevice` kullanılarak 

başlatılır. NeuroSim çekirdeklerinin ayarları yapılır ve bu sinaptik çekirdekler, belirli 

donanım özelliklerine göre yapılandırılır. 

 Alan ve Kaçak Güç Hesaplama: Modelin donanımsal yapısını simüle eden NeuroSim 

çekirdeklerinin alan ve standby (bekleme) modunda enerji tüketimleri hesaplanır. Bu 

hesaplamalar, modelin donanım üzerinde kapladığı fiziksel alanı ve düşük güç 

modundayken harcadığı enerjiyi tahmin etmeye yardımcı olur. 

 Ağırlıkların Başlatılması ve Donanıma Uygun Şekilde Haritalanması: Modelin sinaptik 

ağırlıkları başlatılır ve donanım üzerinde çalışacak şekilde iletkenlik değerlerine 

dönüştürülür. Eğer eğitimde donanım kullanılacaksa, bu dönüştürme işlemi yapılır. 
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 Çıktı Dosyasının Açılması: Eğitim süreci boyunca modelin doğruluk oranlarının 

kaydedileceği `output.csv` dosyası açılır. 

 Eğitim ve Doğrulama Döngüsü: Kod, `totalNumEpochs` boyunca modeli eğitir ve her 

`interNumEpochs` sonrası doğrulama yapar. Eğitim süreci tamamlandığında doğruluk 

oranı hesaplanır ve `output.csv` dosyasına yazılır. 

 Performans ve Enerji Tüketim Metriği Hesaplama ve Yazdırma: Eğitim ve doğrulama 

aşamaları boyunca sinaptik çekirdeklerin okuma/yazma gecikme süreleri ile enerji 

tüketimleri hesaplanır ve çıktı olarak yazdırılır. Eğer “HybridCell” veya “_2T1F” gibi 

özel hücre tipleri kullanılıyorsa, aktarım gecikme süreleri ve enerji tüketimleri de ayrıca 

rapor edilir. 

 Sonuçların Çıktısı ve Döndürme: Eğitim süreci tamamlandığında, modelin doğruluk 

oranları ve donanım üzerindeki performans metrikleri “output.cs” dosyasına yazılmış 

olur ve ‘main’ fonksiyonu başarıyla sonlanır.  

Performans ölçüm metrikleri 

Donanım tabanlı öğrenme sistemlerinin performansını değerlendirmek için kullanılan 

temel ölçütler; doğruluk, test hata oranı, kesinlik ve özgüllüktür. Doğruluk (accuracy), sistemin 

yaptığı doğru tahminlerin toplam tahminlere oranını ifade eder ve genel model başarısının bir 

göstergesi olarak kullanılır. Test hata oranı (test error rate) ise yanlış sınıflandırmaların oranını 

temsil eder ve modelin tahminlerindeki hataları değerlendirmek için kritik bir ölçüttür. Bu oran, 

modelin genelleme yeteneğini ölçmek için önemli bir referans sağlar. 

Kesinlik (precision), modelin pozitif olarak sınıflandırdığı örneklerin ne kadarının 

gerçekte doğru olduğunu ölçer. Bu, özellikle yanlış pozitif sınıflandırmaların maliyetli olduğu 

durumlarda (örneğin, tıbbi teşhis sistemlerinde) oldukça önemli bir metrik olarak karşımıza 

çıkar. Diğer bir ifadeyle, kesinlik, modelin "gerçek pozitif" olarak adlandırılan doğru pozitif 

tahminleri tespit etme kapasitesine odaklanır.  

Özgüllük (specificity) ise modelin negatif sınıflandırmalarındaki başarısını, yani "gerçek 

negatifleri" doğru bir şekilde tanımlama yeteneğini ölçer. Bu metrik, özellikle yanlış 

negatiflerin kritik sonuçlar doğurabileceği senaryolarda (örneğin, güvenlik sistemlerinde) 

modelin doğruluk seviyesini analiz etmek için kullanılır. 

Bu ölçütler birlikte değerlendirildiğinde, donanım tabanlı öğrenme sistemlerinin hem 

doğruluk hem de hata toleransı açısından ne kadar etkili olduğunu kapsamlı bir şekilde analiz 

etmeye olanak tanır. Bu çalışma özelinde bu ölçütler bir arada değerlendirilerek uygulanmıştır. 
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Performans değerlendirmesi sırasında, bu metrikler arasındaki denge de dikkate alınmalı; 

özellikle bir metrikteki iyileşmenin diğer metrikler üzerindeki potansiyel olumsuz etkileri göz 

önünde bulundurulmalıdır. Böylece, uygulamaya özgü gereksinimlere uygun optimizasyon 

stratejileri geliştirilebilir. Bu çalışma, optimizasyon algoritmalarının öğrenme süreçlerini 

değerlendirmek amacıyla, her yöntem için doğruluk metriğinin hesaplanmasıyla başlamaktadır. 

Doğruluk (accuracy), bir modelin doğru tahmin oranını temsil etmesi bakımından, model 

performansını değerlendirmek için kritik bir göstergedir. Sadece tek başına bir metrik olarak 

değil, aynı zamanda diğer performans ölçütleri ile birlikte ele alındığında, modelin genel 

etkinliğinin kapsamlı bir değerlendirilmesine olanak tanır. Bu bağlamda, doğruluk metriği, 

yalnızca modelin genel başarımını göstermekle kalmaz; aynı zamanda veri kümeleri arasında 

model performansı hakkında ayrıntılı içgörüler sunar. Bu içgörüler, farklı optimizasyon 

algoritmalarının etkinliklerini karşılaştırma açısından önemli bir temel oluşturur. Özellikle, 

algoritmaların veri kümesine özgü öğrenme dinamikleri üzerindeki etkilerini anlamak ve 

modelin genelleme yeteneğini analiz etmek için doğruluk metriği, diğer ölçütlerle entegre bir 

biçimde kullanılabilir. Ayrıca, bu metriklerin sağladığı karşılaştırmalı analiz, optimizasyon 

algoritmalarının avantajlı ve dezavantajlı yönlerinin tespit edilmesine olanak tanır. Bu süreç, 

yalnızca mevcut modellerin daha optimum bir düzeye çıkarılması için değil, aynı zamanda daha 

verimli ve daha doğru modellerin tasarlanması için de yol gösterici bir rol oynar. Çalışma, 

doğruluk metriğini, optimizasyon algoritmalarını daha geniş bir performans perspektifinden 

değerlendirmek için bir temel taş olarak ele almakta ve bu sayede modern makine öğrenimi 

sistemlerinin performansını artırmaya yönelik değerli katkılar sağlamaktadır. Aşağıda bu 

metrikler için matematiksel denklemler verilmiştir: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                                                 (34) 

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =
𝐹𝑃+𝐹𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                                              (35) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                           (36) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                                                                           (37) 

Bu metriklerin hesaplanmasında kullanılan terimler aşağıdaki gibi tanımlanmıştır: TP (doğru 

pozitif), MNIST el yazısı rakamların veya CIFAR-10 veri setindeki resimlerin doğru tanındığı 

durumların sayısını ifade eder. FP (yanlış pozitif), rakamların doğru olarak yanlış tanındığı 

durumların sayısını gösterir. TN (doğru negatif) yanlış rakamların doğru şekilde yanlış olarak 

tanımlandığı vaka sayısını ifade eder. FN (yanlış negatif), doğru olarak tanınması gereken 
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rakamların yanlış tanımlandığı durumların sayısını temsil eder. Bu terimler, modelin tahmin 

performansını ayrıntılı olarak analiz etmek için kullanılır ve her birinin kendine özgü anlamı ve 

önemi vardır. 
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ARAŞTIRMA BULGULARI VE TARTIŞMA 

Deneysel çalışmalar sürecinde, sistemin istikrarlı bir şekilde çalışmasını sağlamak 

amacıyla uzun süren ve detaylı denemeler gerçekleştirilmiş, bu denemeler sırasında ortaya 

çıkan çalışma zamanı hataları titizlikle düzeltilmiştir. Sistemin tüm bileşenleri uyum içinde 

çalışır hale getirildikten sonra, araştırma hipotezlerini test etmek ve araştırma sorularına yanıt 

bulmak amacıyla çeşitli deneyler planlanmış ve uygulanmaya başlanmıştır. Elde edilen 

bulgular, değerlendirilip sonuçlara ulaşılmasını takiben, karşılaştırmalı tablolar ve 

detaylandırılmış grafikler ile görselleştirilmiştir. Sonuçlar, çalışmanın sağlamlığını ve 

tutarlılığını artıracak şekilde sistematik olarak raporlanmıştır. 

Bu tez çalışması, memristör tabanlı nano-sinaptik cihazların kullanıldığı bir sinir ağının 

donanım tabanlı uygulamasını göstermektedir. Çalışmada işlem süresi, alan gereksinimi ve 

enerji tüketimi gibi performans sonuçlarını değerlendirilmektedir. Bu hesaplamalar ve 

deneylerden elde edilen sonuçlar, Tablo 18’de belirtilen özelliklere sahip çalışma ortamında 

gerçekleştirilmiş ve ölçümleri tamamlanmıştır. Bu çalışma ortamı, deneylerin doğruluğunu ve 

tekrarlanabilirliğini elde etmek için gerekli koşullar altında oluşturulmuş olup, elde edilen 

bilgilerin sağlamlığı bu spesifik ortamda yapılan ölçümlerle garanti altına alınmıştır. 

Tablo 18. Çalışma Ortamına Ait Özellikler 

Birim Özellik 

İşlemci HexaCore Intel Core i7-10750H, 4533 MHz (46 x 99) 

Bellek 24 GB 3200 MHz DDR4 

Ekran Kartı nVIDIA GeForce GTX 1650 Ti (HP) 

Ön Bellek 12 MB 

Hafıza 512 GB SSD 

Şekil 31’da uygulamanın Linux işletim sistemi ortamında derlenmesi gösterilmiştir. 

"make" komutuyla başlatılan bu derleme süreci, GNU Compiler Collection (GCC) kullanılarak 

çok sayıda C++ dosyasının derlenmesini ve nihai olarak tek bir çalıştırılabilir dosya üretimini 

içermektedir. Bu derleme süreci, yüksek performanslı bir yapay sinir ağı simülasyon ile 

donanım benzetimi yazılımının hazırlanmasına yöneliktir. Kullanılan optimizasyon seviyesi 

(O3) ve OpenMP desteği, performans ihtiyaçlarının karşılanması için seçilmiştir. Bağımsız 

object dosyalarının üretilmesi, modüler yapıyı koruyarak gerekli bileşenlerin her biri ayrı olarak 

derlenmesini sağlamaktadır. 
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Donanım tabanlı model, çevrimiçi öğrenme yeteneği ile karakter tanıma yaparken, aynı 

zamanda çevrimdışı sınıflandırma yapabilme özelliğine sahiptir. Uygulama süreci, bilgisayarla 

yazılmış ve elle yazılmış rakamları tanımlamak için sinir ağında ileri besleme ve geri yayılma 

(BP) işlemlerini içermektedir.  

 

Şekil 31. Uygulamanın derlenmesi 

Şekil 32’de tez çalışmasında sinir ağı simülasyonunun çalıştırıldığı komut satırı 

gösterilmektedir. Komut satırında, sinir ağı simülasyonunun bazı donanım özellikleri ve her bir 

epoch (eğitim döngüsü) için doğruluk oranı, gecikme süreleri ve enerji tüketimi hesaplanarak 

ekranda gösterilmektedir. 
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Şekil 32. Uygulamanın çalıştırılması 

Şekil 31’de tez çalışmasına ait uygulanın çıktıların üç adımı aşağıda açıklanmıştır.  

Alan (Area) Hesaplamaları: 

 Total SubArray (synaptic core) area: Sinir ağının ağırlıklarını depolayan çekirdek birimin 

toplam alanıdır. Burada 8.6186e-09 m² olarak verilmiştir.   

 Total Neuron (neuron peripheries) area: Sinir ağındaki nöronların çevresel birimlerinin 

toplam alanı (örneğin, giriş ve çıkış birimleri). Bu 1.3306e-09 m² olarak hesaplanmıştır.   

 Total area: Yukarıdaki iki alanın toplamı olarak 9.9491e-09 m² verilmiş.  

Bu alan ölçümleri, donanım mimarisi tasarımında kullanılan bellek ve işlem birimlerinin 

fiziksel büyüklüklerini ifade etmektedir. 

Güç (Power) Hesaplamaları: 

 Leakage power of subArrayIH: "Input-Hidden Layer" alt dizisindeki sızıntı gücü, 

1.3021e-04 W olarak hesaplanmıştır.   

 Leakage power of subArrayHO: "Hidden-Output Layer" alt dizisindeki sızıntı gücü, 

1.8232e-05 W olarak hesaplanmıştır.  

 Leakage power of NeuronIH/NeuronHO: Girişten gizli katmana (IH) ve gizli katmandan 

çıkışa (HO) olan bağlantılardaki nöronlar için güç tüketimleri verilmiştir.   

 Total leakage power: Sistem genelindeki toplam güç sızıntısıdır (1.4844e-04 W subArray 

için ve 2.0853e-05 W nöronlar için).   

Uygulamada elde edilen bu değerler, donanımın çalışma sırasında harcadığı gücü ve sızıntı 

enerjisini simülasyonla ifade etmektedir. 
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Doğruluk (Accuracy) ve Performans Verileri: 

 Doğruluk (Accuracy), modelin belirli sayıda epoch (iterasyon) sonundaki performansını 

gösterir: 

 Epoch: %75,75 doğruluk 

 Epoch: %79,33 doğruluk 

 Epoch: %83,52 doğruluk 

Performans ölçütleri: 

 Read latency: Verilerin okunması sırasında geçen süre (örneğin, ilk epoch (iterasyon) için 

3,24712e-02 s).   

 Write latency: Verilerin yazılması sırasında geçen süreyi ifade eder.   

 Read energy / Write energy: Verilerin okunması ve yazılması sırasında harcanan enerji 

(joule cinsinden). 

Yukarıda Şekil 27’de gösterilen çıktılar açıklanmıştır. Bu çıktılar, sinir ağı tabanlı bir 

donanım sisteminin enerji verimliliği, alan kullanımı ve performans açısından nasıl çalıştığını 

detaylı bir şekilde ortaya koymaktadır. Çıktılar, sistem tasarımının fiziksel boyutları (alan), güç 

tüketimi (leakage power) ve performans ölçütleri (doğruluk, gecikme süreleri, enerji tüketimi) 

hakkında kapsamlı bilgi sunmaktadır.  

Öncelikle, toplam alan hesaplamaları, donanım mimarisinin fiziksel tasarımı ve yerleşim 

planları açısından oldukça önemlidir. Sinir ağı çekirdeği (synaptic core) ve çevresel nöron 

birimlerinin ayrı ayrı alan ölçümleri, toplam alanın nasıl dağıldığı gösterilmektedir. Bu alan 

dağılımı, çip tasarımında hem verimlilik hem de maliyet açısından kritik bir faktördür. 

SubArray (alt dizi) ve Neuron (nöron) alanlarının birleşimi, tüm sistemin fiziksel büyüklüğünü 

ortaya koyarken, bu alan ölçümleri, özellikle entegre devrelerde daha az yer kaplayan, daha 

yüksek yoğunluklu tasarımların geliştirilmesi için önemli bir girdi sağlamaktadır. 

Güç tüketimi hesaplamaları, özellikle enerji verimliliği yüksek sistemlerin tasarımında 

kilit bir role sahiptir. Donanım sisteminin hem subArray hem de nöron seviyesindeki sızıntı 

gücü ölçümleri, sistemin hangi bileşenlerinin daha fazla enerji harcadığını ve bu harcamanın 

nasıl optimize edilebileceğini anlamaya yardımcı olur. Özellikle, Input-Hidden Layer (IH) ve 

Hidden-Output Layer (HO) bağlantılarındaki sızıntı güç değerleri, sinir ağı modelinin çalışması 

sırasında hangi katmanların daha fazla enerji harcadığını göstermektedir. Toplam güç tüketimi 

ise donanımın sürekli çalışma sırasında ne kadar enerji gerektirdiğini anlamak için bir referans 

noktası sağlar. 
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Model doğruluk ve performans verileri, sinir ağı modelinin belirli epoch (iterasyon) 

sayılarındaki öğrenme yeteneğini ve işlem performansını değerlendirmek için kritik öneme 

sahiptir. Model, her epoch sonunda doğruluk açısından iyileşme göstermekte ve %75,75'ten 

başlayarak %83,52'ye kadar yükselmektedir. Bu, modelin eğitim sürecinin etkili olduğunu ve 

daha fazla epoch ile doğruluk seviyesinin arttığını göstermektedir. Ancak bu artışın, enerji 

tüketimi ve gecikme süreleri üzerinde bir maliyeti vardır. Okuma ve yazma gecikme süreleri 

(read/write latency) ile enerji tüketimi (read/write energy) değerleri, modelin eğitim süreci 

boyunca nasıl bir yük oluşturduğunu açıkça ortaya koymaktadır. İlk epoch'tan itibaren okuma 

ve yazma süreleri ile enerji tüketiminde bir artış görülmektedir, bu da daha karmaşık 

hesaplamaların ve daha büyük veri akışlarının gerçekleştiğine işaret eder. 

Tez çalışmasında elde edilen bu çıktılar, donanım ve sinir ağı modelinin birlikte 

çalışmasından doğan karmaşık bir dengeyi temsil etmektedir. Güç tüketimi ve alan 

gereksinimlerini azaltmak, doğruluk seviyesini artırırken performans ölçütlerini optimize 

etmek için kritik önemdedir. Bu bağlamda, veriler, donanım ve yazılım optimizasyonları için 

başlangıç noktası olarak kullanılabilir. Özellikle enerji verimliliği, doğruluk ve gecikme süresi 

arasındaki dengenin nasıl iyileştirileceğini anlamak için detaylı bir analizi bu çalışma ile 

gösterilmiştir. Bu tür bir çalışma hem donanım tasarımcıları hem de sinir ağı algoritması 

geliştiricileri için yol gösterici bir rehber niteliğindedir. 

Uygulamada Elde Edilen Deneysel Sonuçlar 

Bu makalede, el yazısı rakam tanıma için memristör tabanlı sinaptik cihazları kullanan 

bir sinir ağı (NN) modeli kullanılmıştır. Model, 60.000 eğitim örneği ve 0 ile 9 arasında değişen 

rakamlardan oluşan 10.000 test örneği içeren MNIST veri kümesi üzerinde eğitilmiş ve test 

işlemine tabi tutulmuştur. MNIST data setinin yanı sıra, bu makalede görüntü sınıflandırması 

için memristör tabanlı sinaptik cihazlar kullanan bir sinir ağı (NN) modeli kullanılmıştır. Model, 

10 sınıfta 50.000 eğitim örneği ve 10.000 test örneği içeren CIFAR-10 veri kümesi üzerinde 

eğitilmiş ve test edilmiştir. Bu veri setlerine ek olarak modelin kararlılığını pekiştirmek 

amacıyla Fisher’s Iris veri seti çalışmaya dahil edilmiştir. Devre düzeyindeki performans 

Neurosim kullanılarak analiz edilmiş ve enerji tüketimi, gecikme süresi ve alan gereksinimleri 

gibi ölçütler değerlendirilmiştir. Memristör tabanlı makine öğrenimi modeline Adadelta, 

AdaGrad, Adam, AdaMax, Momentum, Nadam, RMSprop ve SGD dahil olmak üzere çeşitli 

optimizasyon yöntemleri uygulanmıştır. Her yöntem doğruluğu artırmak için ağırlıkları farklı 

şekilde günceller. Deneysel sonuçlar Tablo 19’da ve Tablo 20’de gösterilmiştir. 
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Tablo 19. Optimizasyon modellerinin MNIST veri seti ile karşılaştırmalı performans sonuçları 

Optimizasyon Adı Tüketilen Enerji (J) 
Doğruluk Oranı 

(%) 

Eğitim Gecikme 

Süresi (epoch/s) 

AdaDelta 0.0304 89.48 804.58 (s) 

AdaGrad 0.0112 79.00 953.69 (s) 

Adam 0.2440 79.13 717.19 (s) 

AdaMax 0.0115 79.68 851.18 (s) 

Momentum 0.1431 88.55 737.09 (s) 

Nadam 0.112 81.20 828.19 (s) 

SGD 0.0276 89.47 639.34 (s) 

RMSprop 0.1603 84.91 740.52 (s) 

Geleneksel Bilgisayar 4.275x103 96.95 140.25 (s) 

 

Tablo 20. MNIST, CIFAR ve Fisher’s Iris verı̇ setleri ile çeşitlı̇ optı̇mı̇zasyon modellerı̇nı̇n 

karşılaştırmalı doğruluk performans sonuçları 

Optimizasyon Adı 
Doğruluk Oranı  

MNIST (%) 

Doğruluk Oranı 

CIAFR-10 (%) 

Doğruluk Oranı 

Fisher’s Iris (%) 

AdaDelta 89.48 92.51 93.08 

AdaGrad 79.00 82.08 81.17 

Adam 79.13 83.10 88.23 

AdaMax 79.68 81.76 83.71 

Momentum 88.55 91.25 92.05 

Nadam 81.20 82.45 80.20 

SGD 89.47 90.21 90.75 

RMSprop 84.91 88.11 87.01 

 

Tablo 21. Sinir ağı mimarilerinin MNIST veri kümesi üzerindeki karşılaştırmalı performans sonuçları. 

Mimari 
TiO2 Sinaptik Aygıt NN 

(Önerilen) 

Ag: Si 

Sinaptik Aygıt NN 

Doğruluk (%) 89.48 73.19 

 

Bu tez kapsamında önerilen TiO2 sinaptik tabanlı model Ag: Si sinaptik tabanlı modele 

göre doğruluk performansı olarak yaklaşık %20 oranında daha iyi sonuç verdiği Tablo 21’de 

gösterilmiştir. 
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Şekil 33. AdaDelta, AdaGrad, Adam ve Adamax optimizasyon algoritmaları için doğruluk grafikleri 

 

Şekil 34. Momentum, Nadam, RMSProp ve SGD optimizasyon algoritmaları için doğruluk grafikleri 

Şekil 33 ve Şekil 34’te tez çalışmasında kullanılan optimizasyon algoritmalarının doğruluk 

oranları (Accuracy Rate) gösterilmiştir.  
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Şekil 35. AdaDelta, AdaGrad, Adam ve Adamax algoritmaları için hata oranı grafikleri 

 

Şekil 36. AdaDelta, AdaGrad, Adam ve Adamax algoritmaları için hata oranı grafikleri 

Şekil 35 ve Şekil 36’de tez çalışmasında kullanılan optimizasyon algoritmalarının hata 

oranları (Error Rate) gösterilmiştir. Bu grafikler, farklı optimizasyon yöntemlerinin model 

performansı üzerindeki kritik etkisini ve yapay sinir ağlarının eğitilmesinde uygun 
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optimizasyon stratejilerinin seçilmesinin önemini açıkça ortaya koymaktadır. Bu tez çalışması 

kapsamında uygulamada kullanılan veri setleriyle optimizasyon yöntemlerinin doğruluk 

üzerinde oluşturduğu etkiler ayrıntılı biçimde incelenmiştir. Bu analizler ışığında, aynı epoch 

sayısında elde edilen doğruluk değerlerindeki önemli farklılıkları görselleştirmektedir. 

Özellikle, optimizasyon algoritmalarının öğrenme süreçlerini ne ölçüde etkilediğini göstermek 

açısından bu grafikler oldukça bilgilendiricidir. 

Grafiklerde yer alan bulgulara göre, Adadelta algoritması, diğer optimizasyon 

yöntemlerine kıyasla daha yüksek doğruluk oranları sağlamıştır. Bu sonuç, Adadelta'nın belirli 

veri kümeleri ve model yapıları için daha etkili bir öğrenme sağladığını göstermektedir. 

Bununla birlikte, her algoritmanın doğruluk açısından farklı sonuçlar üretmesi, optimizasyon 

algoritması seçiminin model performansını doğrudan etkileyen kritik bir faktör olduğunu ortaya 

koymaktadır. Bu grafiklerde sunulan veriler, optimizasyon algoritmaları kullanılarak elde 

edilen doğruluk ve epoch değerlerini içermekte ve bu algoritmaların eğitim aşamasındaki 

sonuçlarının anlaşılmasına katkı sağlamaktadır. Özellikle, doğruluğu artırmak ve hata oranlarını 

azaltmak için doğru optimizasyon algoritmasının seçiminin ne denli önemli olduğu 

vurgulanmaktadır. 

 

Şekil 37. Bu şekil, farklı optimizasyon algoritmalarının doğruluk oranlarını karşılaştırmaktadır. 

AdaDelta (%89,48), SGD (%89,47) ve Momentum (%88,55) en yüksek doğruluğa sahipken, 

AdaGrad (%79,00) en düşük doğruluğu göstermektedir. 
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Şekil 38. Bu şekil, farklı optimizasyon algoritmalarının doğruluk oranlarını karşılaştırmaktadır. 
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SONUÇLAR VE ÖNERİLER 

Sonuç olarak, memristör tabanlı sinaptik cihazlara dayalı sinir ağının performansı, 

MNIST ve CIFAR veri kümeleri üzerinde çeşitli optimizasyon yöntemleri kullanılarak 

kapsamlı biçimde incelenmiştir. SGD ve türevleri de dahil olmak üzere farklı optimizasyon 

algoritmaları test edilmiş ve %90 doğruluk oranı elde edilmiştir. Model, çeşitli optimizasyon 

yöntemleri arasında sağlamlık ve genelleme kabiliyeti göstermiştir. Bu optimizasyon 

yöntemleri altındaki bu yüksek performans, veri kümeleri arasındaki uyarlanabilirliği ve 

etkinliğini vurgulamakta ve çeşitli uygulamalar için potansiyelini göstermektedir. Bu 

değerlendirme, memristör tabanlı sinaptik cihazların nöromorfik hesaplama ve donanım tabanlı 

yapay zekâ uygulamaları için çeşitli optimizasyon algoritmalarıyla birleştirilmesinin etkinliğini 

doğrulamaktadır. Bu bulgular gelecekteki çalışmalara rehberlik ederek daha enerji verimli ve 

hassas sinir ağı modellerinin oluşturulmasına katkıda bulunmaktadır. 

Memristör tabanlı cihazların kullanımı, geleneksel Von Neumann mimarilerinde yaşanan 

enerji ve zaman verimsizliği sorunlarını önemli ölçüde azaltmaktadır. Bu cihazlar, bellek ve 

işlem birimlerini birleştirerek veri aktarımını en aza indirirken enerji tüketimini düşürmekte ve 

hesaplama performansını artırmaktadır. Tez çalışmasında cihazların doğruluk ve enerji 

tasarrufunu artıran özgün ve modern donanım çözümleri sunduğunu göstermiştir. 

Bulgular 

Optimizasyon Algoritmaları: Test edilen algoritmalar arasında AdaDelta, CIFAR-10 veri 

kümesinde %90,51 doğruluk oranıyla en iyi performansı göstermiştir. MNIST veri kümesinde 

ise SGD (%89,47), AdaDelta (%89,48) ve Momentum (%88,55) algoritmaları yüksek doğruluk 

oranları sağlamıştır. Bu sonuçlar, optimizasyon yöntemlerinin model performansı üzerinde çok 

etkili olduğunu göstermektedir. 

Cihaz Özellikleri: Memristör tabanlı memristörlerin, CMOS teknolojisiyle uyumlu yapıları 

sayesinde yüksek yoğunluklu ve enerji verimli donanımlar tasarlanmasına olanak tanıdığı 

gözlemlenmiştir. Bu cihazların biyolojik sinapsları taklit ederek direnç seviyelerini dinamik 

biçimde ayarlayabilmesi, nöromorfik uygulamalar için büyük bir avantaj sunmaktadır. 

Enerji Verimliliği: Bu tez çalışmasıyla memristör tabanlı mimariler, geleneksel sistemlere 

kıyasla enerji tüketimini önemli ölçüde azaltmıştır. Enerji tüketiminin büyük kısmı statik güç 

kullanımıyla ilişkilendirilmiş, bu da memristörlerin dinamik güç tüketimine kıyasla avantajlı 

olduğunu göstermiştir. 
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Doğruluk-Enerji Dengesi: Bu çalışmada yüksek doğruluk oranları elde edilmesine rağmen, bu 

doğruluğun enerji tüketimi üzerindeki etkileri kapsamlı şekilde incelenmiştir. Özellikle 

AdaDelta algoritması hem doğruluk hem de enerji verimliliği açısından üstün performans 

sergileyerek algoritma seçimlerinin nöromorfik donanım tasarımı üzerindeki önemini 

vurgulamaktadır. 

Genelleme Kabiliyeti: Bu tez çalışmasında ele alınan model, farklı veri kümelerinde sağlam bir 

genelleme kapasitesi göstermiştir. Bu durum, memristör tabanlı cihazların geniş bir makine 

öğrenimi görev yelpazesinde etkili biçimde kullanılabileceğini göstermektedir. 

Öneriler 

Bu çalışma, memristör tabanlı memristör cihazların nöromorfik hesaplama ve donanım 

tabanlı yapay zekâ uygulamalarındaki potansiyelini açık biçimde ortaya koymaktadır. Elde 

edilen bulgular, aşağıdaki alanlarda gelecekteki araştırmalara yol gösterici olabilir: 

Ölçeklenebilirlik: Memristör tabanlı cihazların daha büyük sinir ağları ve daha karmaşık veri 

kümeleri için uygulanabilirliği araştırılmalıdır. Özellikle ağırlık hassasiyeti ve kuantizasyon 

sorunları üzerine çalışmalar yapılabilir. 

Enerji Optimizasyonu: Enerji sarfiyatını daha da azaltmak amacıyla yeni yöntemlerin 

geliştirilmesi, nöromorfik sistemlerin enerji tasarrufunu artırabilir. 

Algoritma-Donanım Ortak Tasarımı: Optimizasyon algoritmalarının donanım özelliklerine 

uygun biçimde geliştirilmesi, performansı daha da iyileştirebilir. Örneğin, AdaDelta ve 

SGD’nin avantajlarını birleştiren hibrit yaklaşımlar daha başarılı sonuçlar sağlayabilir. 

Gerçek Dünya Uygulamaları: Memristör tabanlı cihazların kenar yapay zekâ, otonom sistemler 

ve beyin ilhamlı hesaplama gibi alanlarda uygulanabilirliği genişletilmelidir. 

Bu tez çalışması, memristör tabanlı memristör cihazların nöromorfik hesaplama için 

uygulanabilirliğini doğrulamış ve enerji verimliliği ile doğruluk arasında güçlü bir denge 

sağladığını göstermiştir. Çalışmanın sonuçları, donanım hızlandırmalı yapay zekâ sistemleri 

için sürdürülebilir ve ölçeklenebilir çözümler geliştirmek adına önemli bir temel sunmaktadır. 

Bu bulgular, daha enerji verimli, doğru ve genel kullanıma uygun sinir ağı modellerinin 

tasarlanmasına katkıda bulunacaktır. 
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