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ABSTRACT

SYNTHESIS AND MASS SPECTROMETRY OF SOME NEW

BENZENESULFONYL SUBSTITUTED ISOXAZOLIDINES

ALTUG, Cevher
M.Sc. , Department of Chemistry
Supervisor : Prof.Dr.Yasar DURUST

December 2004, 119 pages

In this work, the 1,3-dipolar cycloaddition (1,3 DC) reactions of some
nitrones including a new one to the dipolarophile phenylvinyl sulfone are
described. To our best knowledge of literature survey, nine new isoxazolidine
compounds have been synthesized. Purification of the title compounds have
been performed by means of flash column chromatography on silica gel.Also
much attention was focused on the fragmentation ways of the cycloadducts,
namely benzenesulfonyl substituted isoxazolidines, in electron impact mass
spectrometry and the routes leading to described fragmentations were
interpreted in terms of stability and substituents existing on the isoxazolidine
ring. The structures of benzenesulfonyl substituted isoxazolidines were

elucidated by means of IR, NMR ("H , '®C), MASS spectra and physical

iii



characteristics (melting points and R¢ values). The stereochemistry of the
isoxazolidine ring was determined by n.O.e experiments and was found to be
trans configuration according to the groups on C-3 and C-4 carbons.
Regiochemistry is also determined as to have been formed only 4-
regioisomers but not 5-regioisomers based on the J coupling constants in "H-

NMR and n.O.e data.

Keywords: 1,3-Dipolar cycloaddition , nitrones , isoxazolidine.
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OZET

BAZI YENi BENZENSULFONIL SUBSTITUE iZOKSAZOLIDIN

BILESIKLERININ SENTEZi VE KUTLE SPEKRUMLARININ iNCELENMESI

ALTUG, Cevher
Yiksek Lisans Tezi , Kimya Bolimi
Tez Danismani : Prof.Dr.Yasar DURUST

Aralik 2004, 119 sayfa

Bu c¢alismada, biri yeni olmak tzere 10 adet nitron bilesiginin dipolarofil
reaktif olarak fenilvinil siilfon ile 1,3 dipolar halkali katilma tepkimeleri
arastinlmistir. En son literatir arastirmasi esas alinarak 9 adet yeni
benzensiifonil substitue izoksazolidin bilesiginin sentezi gerceklestirilmistir.
Katilma urlnleri olan izoksazolidin bilesiklerinin tepkime karigimindan
ayrilmalarn ve saf maddeler olarak elde edilmeleri silika jel Gzerinde flas
kolon kromatografisi yardimiyla olanakli olmustur. Bilesiklerin yapi
aydinlatiimasi IR, NMR ('H, °C), Kutle spektrumlari ve bazi fiziksel sabitler
(erime noktasi, R¢ degerleri) yardimiyla yapilmigtir. Ayrica sentezi
gercgeklestirilen siibstitue izoksazolidin bilesiklerinin elektron impakt kitle
spektrumlari Gzerinde de yogunlasiimisg ve pargalanma yollar substituentler

ve olusan pargalanma urinlerinin kararliliklan esas alinarak yorumlanmstir.



Bilegiklerin stereokimyasi n.O.e (nukleer Overhauser etkisi) deneyleri ile
belirlenmig ve C-3, C-4 karbonlari Gizerindeki gruplarin trans konfigirasyonda

olduklari bulunmustur.

Anahtar Kelimeler: 1,3-Dipolar halkalikatiima , nitron , izoksazolidin.
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CHAPTER | :INTRODUCTION

1.1.THE 1,3-DIPOLAR CYCLOADDITION REACTION

The [3+2] 1,3-dipolar cycloaddition is a reaction where two organic
compounds, a dipolarophile, and a 1,3-dipole (or ylide), combine to form a
five membered heterocycle (Figure 1.1). From simple starting materials, the
1,3-dipolar cycloaddition (DC) reaction can furnish very complex
heterocycles, containing multiple stereogenic centres. Therefore this reaction
is often used as a key step in the syntheses of many natural products and
pharmaceuticals. After its discovery in 1888[1], with diazoacetic ester as the

1,3-dipole, various other 1,3-dipoles have been used in this type of reaction.

DAY A AR
- ar L

dipolarophile dipole heterocycle

Figure 1.1

1.1.1.The 1,3-dipolelylide

The 1,3-dipole, also known as an ylide, bears a positive and a negative
charge distributed over three atoms and has 47 electrons. The most
common atoms incorporated in the 1,3-dipole are nitrogen, carbon, oxygen

or sulfur.

Representative examples of some 1,3-dipoles are shown in Figure 1.2, but
other types of 1,3-dipoles also exist.[2] These are divided into two groups,

the allyl anion type which has a bent structure and the propargyl/allenyl anion



type with a linear structure as shown in Figure 1.2. Each of these dipoles has
four resonance structures as exemplified for the nitrone and the diazoalkane
in Figure 1.2. The ylide can, depending on the nature of the 1,3-dipole exist
in an equilibrium between an E-form and a Z-form. This can have

consequences for the diastereoselectivity in reactions with dipolarophiles.

C N @ — C N
R R® /[ \ /[ \
R2 R3 R2 R3
Azomethine ylide
Nitrone
+
R4\ R'] —C.). R1 o
R ‘d—R? / \-_c g
\ +/ + C——N ———> . \
c==¢ / \ / 4
/ R2 R3 R2 R
RZ
Thiocarbonyl ylide
Allyl anion type
R! R!
. + e _ + + _
R N % :C——N—=N ~—— C—=N—/—N":
Nitrile oxide
R2 RZ
Diazoalkane
’
R\— . R1 R1
—_— + - +
.. N—N=N o N—N A
. [ ] ]
Azide
R? R2

Propargyl/alienyl anion type 1,3-dipoles

Figure 1.2.



1.1.2.The dipolarophile
The dipolarophile in a 1,3-dipolar cycloaddition is a reactive alkene moiety

containing 27 electrons. Thus, depending on which dipole that is present,
a, p -unsaturated aldehydes, ketones, and esters, allylic alcohols, allylic
halides,vinylic ethers and alkynes are examples of dipolarophiles that react
readily(Figure 1.3). It must be noted, however, that other 2 7 -moieties such
as carbonyls and imines also can undergo cycloaddition with dipoles. The
alkene moiety can be mono-, di-, tri- or even tetrasubstituted (only
monosubstituted ones are shown here). However, mostly due to steric
factors, tri- and tetrasubstituted ones often display very low reactivity in

reactions with dipoles.

\/‘l’]\R1 :/—X ::/owue N,

R'=HMeorMeO X =OH or halogen

Figure 1.3.

1.1.3.Mechanistic aspects

The 1,3-dipolar cycloaddition reaction of a 1,3-dipole with a dipolarophile
involves the 4 electrons of the dipole/ylide and the 27 electrons of the
dipolarophile . The reaction mostly proceeds in a concerted manner, which
means that all bonds are created simultaneously, but not necessarily to the
same extent at a certain time. Consequently, the stereochemistry of the

dipolarophile is conserved in the final product. This is exemplified in Scheme



1.1 where frans-2-butene reacts with the hypothetical dipole furnishing

exclusively trans-product. Starting from the cis-2-butene will thus yield the cis

product.
— -
- C /-—\\\\\“‘“ S\\\
+ TN §
/\/ A\ / » M \
\ / A (o8
B N /
| h B
trans-2-butene dipole trans
Scheme 1.1

If, on the other hand, the reaction proceeds via a two step mechanism, the
stereochemistry of the starting dipolarophile is not necessarily conserved
throughout the whole reaction. This is exemplified in Scheme 1.2, where
trans-2-butene reacts with the dipole in a two step fashion furnishing the

diastereomer cis-product via isomerisation of the starting dipolarophile.

-\\\\\\\ p
/\/*7\\ //C—-> / :’_:" — : c —>
B ¢ AN A A
C
B g~

A~
+ ~p7
B
trans-2-butene dipole (cis-product)
Scheme 1.2

Depending on the nature of the dipole and the dipolarophile, the 1,3-dipolar

cycloaddition reaction is controlled either by a LUMO(dipolarophile)-HOMO
(dipole) or a LUMO(dipole)-HOMO(dipolarophile) interaction but in some
cases a combination of both interactions is involved.[3] An example of a
LUMO(dipolarophile)-HOMO(dipole) controlled reaction is depicted in

Scheme 1.3. The approach of the dipole to the dipolarophile can occur in an



endo or exo mode resulting in two diastereomeric endo/exo cycloadducts,
endo-cycloaddition product and exo-cycloaddition product, respectively. An
overview over both these approaches is depicted in Scheme 1.3 where the
endo approach is stabilised by small secondary x-orbital interactions,

contributing to the endo/exo selectivity of the reaction.

However, other factors such as steric ones can have a major influence on

this endo/exo selectivity and can often override this stabilising effect.

o]
L’z
R1

“, *

—

© c
Rz\\“A\B/ MRS

I

endo-product

- R
- R (I
R3 1) Z
g ° o [He—F A
7 ™~ A c
R2 B RZ’ \B/ NRS
— R2 -
exo-approach exo-product

Scheme 1.3



Moreover, depending on the substitution pattern of the ylide, this can exist in
an equilibrium between a Z-form and an E-form. Reaction of each of these
isomers with a dipolarophile, gives rise to diastereomeric cycloadducts,
provided that the approach of these (endo or exo) is the same. This is
exemplified in Scheme 1.4 where E-form and Z-form of ylides react with the
dipolarophile via an exo-approach furnishing diastereomeric cycloadducts
trans-product and cis-product respectively. The cis/trans nomenclature for
the description of the stereochemistry of the cycloadducts is thus often used
instead of the exo/endo one to avoid confusion when ylides existing as an

equilibrating mixture of Z/E isomers are used.
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exo-approach (cis-)

Scheme 1.4.Reaction of two Z/E isomers of ylide with dipolarophile via an exo-
approach.

In addition to the issues concerning diastereoselectivity discussed above,



regioselectivity related ones can also arise. Thus, when both the ylide and
the dipolarophile are nonsymmetric, regioisomeric adducts can be formed.
This is exemplified in Scheme 1.5, where the hypothetical ylide reacts in two
different modes with dipolarophile, giving rise to the regioisomeric
cycloadducts. Nitrones are examples of nonsymmetric ylides, which upon
reaction with nonsymmetric dipolarophiles sometimes furnish two
regioisomeric cycloadducts. Depending on electronic factors and the
substitution pattern of the ylide and the dipolarophile, both modes of addition

of the ylide to the dipolarophile can occur.[4-5]

—_}7 ]
R1____>

Scheme 1.5- Two alternative approaches of a hypothetical ylide to
dipolarophile giving rise to regioisomers.



1.2.NITRONES

1.2.1.Structure of Nitrones [6]

Nitrones are usually represented by formulae as shown in Figure 1.4, which
imply that there is a positive charge on the nitrogen. However it has to be
made clear that this positive charge is delocalized between the nitrogen and

the a-carbon as represented in Figure1.4, resulting in a 1,3-dipolar structure.

ANV
N — C N
/ T \ 7N\

0 )
a-position

N-position

R\C_ fN/R R\C+_N/ :
/N AR

Figure 1.4.

The extent of this delocalization will naturally be influenced by the
substituents in the a-position as well as on the nitrogen, which therefore will

ailso have a marked influence upon the reactivity of the nitrone function.

It is necessary to make a general remark regarding the various
nomenclatures used in nitrones. There are two positions in the parent nitrone
molecule: the a-position and the N-position (see Figure 1.4.). The a-position
is often referred to as the C-position. In addition nitrones are often called
Schiff base N-oxides (e.g. N-benzylidene-N-methylamine N-oxide) or

aldehyde N-alkyloximes or aldehyde N-alkyl nitrones. In the older literature



aldehyde N-alkyloximes or aldehyde N-alkyl nitrones. In the older literature
nitrones were often called oxime N-alkyl ethers. The names of cyclic nitrones

are usually derived from the name of the parent heterocycle.

1.2.1.1. Theoretical calculations

Ab initio molecular orbital calculations have been carried out for the parent
molecule in Figure 1.5 and its eight isomers, showing that formamide is far
more stable than the other isomers. However, the calculated dipole moment
of 499 D was quite far from the experimental value of 3.37-3.47 D.
Subsequent CNDO/2 and INDO calculations gave results closed to the
experimental values CNDO/2 was also used to calculate the a- and 7-

electron density of a-phenyl N-methyl nitrone.

H 0]
\C_——_—N/
/ \
H H

Figure 1.5.Example of a simple nitrone

1.2.1.2. Nonspectral physical methods

1.2.1.2.1. X-ray studies.

The structures of two nitrones have been determined by this method.
Lipscomb and coworkers have determined the structures of C-p-chlorophenyl
N-methyl nitrone Figure 1.6 and compared its bond lengths to those of the

isomeric O-methyloximes of p-chlorobenzaldehyde(see Figure 1.7) [7].The



bond angles of C-p-chlorophenyl N-methyl nitrone are indicated in the
formula. The N—O bond length in nitrone was found to be 1.284 A.
considerably shorter than the N—O distance in the isomeric syn oxime

(1.408 A) indicating the partial double-bond character of this bond in

Cl

1247° 12520 O

DAY
/ NS\
H g Me

Figure 1.6. C-p-Chlorophenyl-N-methyl nitrone

the nitrone. Moreover the C=N distance of 1.309 A in the nitrone is longer
than the corresponding bond in the O-methyloxime (1.260 A). The data found

for a,a-N-triphenyl nitrone (see Figure 1.7) are indicated in the formula.

Figure 1.7



1.2.1.2.2. Mesomorphism

Some nitrones are found to exhibit mesomorphism. This property can be

exploited for the formation of liquid crystals.

1.2.1.2.3. Dipole moment and acid base properties

Dipole moments have been determined for several series of nitrones and
found to be 3.37-3.47 D; this confirms the dipolar structure indicated

previously.

In a study of a series of N-phenyl nitrones having variously substituted aryl or
heteroaryl groups in the a-position it was found that the N-oxide group is
capable of acting either as an electron acceptor or as an electron donor
contributing to the effects of electron-donating and electron-withdrawing
substituents. This can be illustrated for a-(p-nitrophenyl) and a-(p-anisyl)
nitrones in Figure 1.8. Similar results have been found in a series of N-

methyl nitrones.

o)
|\ i e -
/ N N %

Ph Ph
Y +/ + /
MeO C=—N —» MeO C—N
Ha\ Ho N,
0O

Figure 1.8.
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The ionization constants of a series of conjugate acids of substituted phenyl
nitrones (see Figure 1.9) and other aryl nitrones have been determined by

potentiometric titration.

R R
OH 0
+
/C N D C==N + H
H Ph H/ Ph
Figure 1.9

The values obtained could best be correlated with the & values of the
substituent R.The basicity of a nitrones towards a Lewis acid (BF3) has also
been studied.Complexation with boron trifluoride(equation 1) increased the
dipole moment by approximately 5 D. Calculations indicated that
approximately 0.43 e was transferred from the oxygen to the boron.

+ = + _
RCH==N—0 + BF; —» RcH——N——O—BF, (eq.1)

R R
The rate constants of the exchange of « ,N-diaryl nitrones and the « -methyl
hydrogens of «-aryl N-methyl nitrones with deuterium have also been
correlated with the substituent constants of the groups in the aryl rings. The
electron-withdrawing effect of the N-oxide group has been found to have

strong influence on the sensitivity of the methine hydrogen exchange to

substiuent effects.
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1.2.1.3.Spectra of Nitrones

1.2.1.3.1.Photoelectron spectra

The photoelectron spectra of a number of nitrones have been measured and
various ionization potentials have been assiged. The correlation of these with

the mode of 1,3-cycloaadditions of nitrones has also been discussed.

1.2.1.3.2.Ultraviolet spectra

A large number of papers report that the influence of steric effects and of
solvents effects upon the ultraviolet spectra of nitrones. Spectral data of

various types of nitrones are summerized in Table1.

TABLE.1.Ultraviolet spectral data of various types of nitrones in alcohol
solvents
Type A (11112) £ X107
o
Aryl\ o /0 227-240 747
/C:N 247-280 6-12
8-20
H \Aryl 310-372
e
Aryl\ 0 205 8
— 221 7
C=—=N
/ 290 147
H Alkyl
Aryl3 Alkyl?
\ o 211 6
C——N 228 12
/ AVS 304 16
H 0
o
®
/C:N\
H Alkyl
Alkyl? Alkyl?
\ o 230-235 8-9
C=—N
/" \e
o]
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1.2.1.3.3.Infrared spectra.

It is generally accepted now that nitrones exhibit two characteristic bands
resulting from N-— O and C=N bond stretching vibrations. The N— O band
appears in aromatic ketonitrones in the region of 1200-1300cm™ while in
aldonitrones it is seen between 1050-1170 cm™ .The C=N stretching
vibration appears in aromatic nitrones at 1350-1600cm™ and in aliphatic and

alicyclic nitrones at 1570-1620 cm™.
1.2.1.3.4.Nuclear Magnetic Resonance Spectra;

Only proton chemical shifts are available. Some typical chemical shifts of

protons adjacent to the nitrones function are listed in Table 2.

In addition to these general data there are some additional features of
interest in the NMR spectra of nitrones. The spectra of a-aryl aldonitrones
and a,a-diaryl nitrones show signals corresponding to two hydrogens at a
field lower than the rest of the aromatic hydrogens. These low field signals
have been assigned to the two ortho hydrogens of the phenyl group situated
syn to the nitrone oxygen (see Figure 1.10) and apparently arise from its
deshielding influence. The magnitude of this deshielding influence has been
found comparable to that of the nitro group. In contrast, the deshielding effect
of the nitrone group upon the meta protons of aryl groups attached to it is

very weak.

14



o
O
_ &
H /C_N\
Figure 1.10

TABLE 2. Approximate chemical shifts of protons in the vicinity of
the nitrone function
Position Chemical shift, 5( ppm)
S)
(0]
®,/ 6.4-6.7
Alkyl HC—N
AN
R
S)
o)
@
Aryl HC=—=N 7.8
R
?
®/
H;C——C——=N 2
Ho X
R
©
(0]
@
RCH=—N 3.4-4
CH;
©
(0]
@

From a study of a series of substituted a,N-diaryl nitrones it appears that
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there are nonbonded interactions between the ortho substituent of the a-
phenyl group and the N-oxygen as there are between the ortho substituent of
the N-phenyl group and the a-hydrogen. As a consequence of this the stable
conformation of 2.2'-dimethyl-a-N-dipheny! nitrone would be as indicated by
Figure 1.11 and the hydrogen at position 6 appears at the unusually low field

of 9.5 ppm due to the deshielding effect of the oxygen.

H3C /C N ('.;H3
H
H
Figure 1.11

In 2.6-unsubstituted a-phenyl nitrones the phenyl group rotates freely and
the two ortho hydrogens become magnetically equivalent. With more
hindered 2.6-disubstituted aryl groups in the a-position of a nitrone it has
been possibie to obtain and isolate stable (E)-aldonitrones in addition to the
predominant (Z) isomers (see Figure1.12). The NMR spectra show the N-
methyl of (E)-isomer at higher field (3.4 ppm) than that of the (Z) isomer
(3.90 ppm), while the opposite trend is observed for the vinyl proton [(Z)-

isomer: 7.6 ppm, (E)-isomer; 7.9 ppm]

16



O CHj
C=—N C—

Figure 1.12

In cyclic nitrones of various ring-sizes it has been found that there is a
homoallylic coupling between two groups that lie in a transoid fashion across
the nitrone function. The magnitude of the coupling constant varies

somewhat with the ring-size (see Figure 1.14).

N
H N
| B I_ H I— CH3
o 0 o
b a b a b a
Jp=1.95 Hz Jap=1.84 Hz Jp=1.50 Hz
Figure 1.13

NMR spectroscopy has also become a convenient tool to study geometrical
and other isomerizations of nitrones since the spectra of the pairs of
compounds involved are often found sufficiently different. For example the
interconversion between the (Z) and (E) isomers has been followed by
examining the aromatic methyl signal, while the equilibrium composition of a
series of a-aryl N-benzyl nitrones has been examined by integrating the N-

benzyl CH; signal (equation 2)
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Q. _9,

S O
Figure 1.14

+
X— : : F—C:T———C

)

|

1.2.1.3.5. Mass spectra

(eq.2)

In all mass spectra variously substituted and deuterated a-N-diaryl nitrones

(Figure 1.15) appears the M-16 peak, which resuits from the loss of oxygen.

CH3 Q
(E-isomer ) (Z-isomer)

Figure 1.15
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This is a peak of some diagnostic value for N-oxides. A summary of the
mass spectral processes which a-N-diaryl nitrones undergo is presented in
Scheme 1. The presence of the benzoyl cation requires oxygen migration
from nitrogen to carbon and presumably the intermediacy of an oxaziridine,

which may rearrange to an amide, which in turn may provide the fragment

* In addition to this in all spectra the biphenylene radical cation

and the 2-substituted benzisoxazolium cation are produced.

.t
PhHC=—NPh — PhC==NPh —> Q G

0]

O

N
PhHC==NPh ——> PhHC——NPh

PhCHo+PhN\~ HCNPh

PhOH

—

/Ph

\ +

ENOD
0

Scheme 1.6

1.2.1.4. Geometrical isomerism of nitrones

The phenomenon of geometrical isomerism in nitrones has long been
recognized and in many instances pairs (E) and (Z) isomers have been

separated and configurations assigned. However it is only recently that such



pairs of isomers have been successfully isolated in acyclic aldonitrones,
which usually exist entirely as the (2) isomers (a) (see Scheme 1.7). It has
been found that in derivatives of (a) with highly substituted aryl groups it is
possible to isolate the stable (E) isomers (b). Apparently in these cases the
increased steric requirements of the a-aryl group cause it to twist out of its

normal coplanar conformation (a) and assume an orthogonal orientation (b).

o R
=i = =i
HoOR 4oy

(a) (b)

\C ::N \C _"N/
H R H S
(c) (d)

Scheme 1.7

In this conformation there is increased repulsion between the negative
oxygen and the electron-rich aromatic ring, resulting in an increase in the
ground-state energy of the (Z) isomer and greater ease of formation of the
(E) isomer (b). This effect can be counteracted by the size of the, N-
substituent. Indeed only one isomer (Z) is observed with nitrones (a)

containing bulky R groups such as t-butyl, neopentyl or adamantyl.

There have been a number of investigations regarding (F) < (Z2)
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isomerizations. The activation energies of such isomerizations have been
determined in a number of cases and some representative data are listed in

Table 3.

TABLE3.The activation energies of some isomers of

nitrones.
Nitrone EA(kcal/mol)
Ph Ph
:C=N/ 24.6
NC \o‘
O\ + + /O 12
/N“" ——N_
Ph Ph
H + O
:C=N/
H @ 232
/ N\ 33.6
Ph CH,Ph
- 33.
/ AN
H Me
Mefg Me
\C___*F\l /
- 4.6
/7 N\ ’
H 0]
H
PRHC=C & ~CH-SCHs 282
pr’ G

The influence of the N-substituent upon the rate of isomerization has been
studied in the a,a-diphenyl nitrone series Figure 1.16. The approximately
twofold rate of isomerization of b as compared to a is considered to be due to

increased ground-state energies of the former caused by the stronger non-
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bounded interactions between the benzyl and the a-phenyl groups. However
the fact that the benzhydryl derivative ¢ isomerizes 10 times faster than a is
taken as an indication that a new mechanism is operating in this case. It has
been suggested that the isomerization of N-benzhydryl nitrones proceeds, at
least in part, via dissociation to iminoxy radicals followed by fast

isomerization of the radical and recombination.

/ (a) R=Me
c=N (b) R=CH,Ph
\R (¢) R = CHPh,

Figure 1.16

The question of the mechanism of (E)<«> (Z) isomerization has been

approached theoretically. CNDO/2 and INDO calculations on the parent
nitrone, Figure 1.17, indicate a high charge density on the oxygen and are
consistent with a major contribution of structure in the ground state. The
twisted conformation, which is proposed to be the transition state for the
rotation around the C=N bond, appears, however, to be well represented by
isomer of that nitrone since there is a high electron density on the carbon.
However the calculated rotational barriers of 60 and 80 kcal/mol by these

methods are much higher than those observed experimentally.

O O
+/ _ + /
H,C=—N H c-——-r\/
\H 2 \H
Figure 1.17
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1.2.1.5. Tautomerism of nitrones

1.2.1.5.1. Nitrone-hydroxyenamine tautomerism.

This type of tautomerism is analogous to the keto-enol tautomerism of

carbonyl compounds. The question of such tautomerism has been the

subject of a number of papers. 2,3-dihydropyrrol-1-ol (b) , see Figure 1.18,

are not detectable by NMR in pyrroline N-oxide (a).

-

N

OH

(a) (b) (©)

_O
o ;j

Figure 1.18

This type of tautomerization is assumed to be involved also in the base-
catalysed reaction of the flavanononitrone, which leads to the Schiff base as

one of the products (equation 7).

O._ _Ph o.  _Ph o _Ph
(_;—:— | HQ
Ny
; o )
o
O CHuPh O CHyph CHPh

Interestingly the nitrone-hydroxyenamine equilibrium is found to be
influenced by the heteroatom in the chromane system. Thus reaction of the

oxime (X = O) with diazomethane leads to nitrone , whereas the thio
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analogue (X = S) with the same reagent affords the hydroxylamino

thiochromane.

0
+ -
X N T_ 5
CHs
S
° |
TOH
©  cCH

Scheme 1.8

A keto group appropriately situated relative to the nitrone function will
enhance tautomerism similarly to B-dicarbonyl compounds. Indeed the
infrared spectrum of phenacylpyrroline N-oxide(Figure 1.19) shows bonds

attributable to an intramolecular hydrogen bond which could result from

either or both structures.

—— s —
N —~———— + “—gr—— + /
|7 Ph \ Ph N \ .
O-H---- -
Q © Q-----HO

Figure 1.19

1.2.1.5.2. Ring-chain tautomerism.

Oxidation of an N-(2-hydroxyalkyl) nitrone of type with mercuric oxide leads
to an oxazoline N-oxide indicating involvement of the cyclic tautomer in the

reaction (equation 11). The gem-dimethyl nitrone is oxidized by silver ion to

the cyclic nitroxide radical.
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I Ph
(_) CH HON N—=
~ \THZ /\ _He0 (ea1)
ﬂHPh OH | Ph © i

It has been suggested that in this case the cyclization is facilitated by the

silver ion acting as a Lewis acid.

HO 0

Scheme 1.9

In contrast to the a-aryl nitrones mentioned, examination of a series of
aliphatic aldonitrones by spectroscopic methods has revealed the presence

of the cyclic tautomers in the equilibrium mixture (equation 12).

O+ \\

N N
|| |/> (eq.12)
CHR RHC—_

HO

Acylation gives derivatives of the cyclic tautomer. Ring-chain tautomerism
has also been studied in 2-hydroxynaphthalene derivatives Scheme 1.10.
The equilibrium composition is influenced by R as well as by the medium.
Acetylation gives derivatives of the cyclic tautomer. The o-
hydroxyphenylaminoacyl nitrone could be converted to the cyclic tautomer
which could be oxidized to the new nitrone. Acetylation of both tautomers is

reported to lead to the derivative of the open-chain tautomer.
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Scheme 1.10 Ph

1.2.1.6.Synthesis of Nitrones
1.2.1.6.1.0xidation Methods

1.2.1.6.1.1. From dehydrogenation of N, N-disubstituted-hydroxyl amines

R2 R3

R? 3
R
|/ 2H  \__ /S
R1-——-ﬁ——N\ —» C=N
OH / \
R’ 0O
Scheme 1.11
1.2.2.6.1.2. From N-alkyl hydroxamic acid
0 R® F,C-S0,-OR%/ CH,Cl, [Rreo R2
N/ 25%,2-10 @ | ~0-S0,CF;
N — C=—N
d \ /
R R OH
(115)
Base R3O R?
——
-F;C-SO3H \C:Njy
R1/ \O
Scheme 1.12
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1.2.2.6.1.3. By oxidation of secondary amines

R1 H202/N8,2WO4/ R1 R3
H H3C-OH or Hzo \ - /
R2—C N R3 > C——N
H - S/ \
2
O
Scheme 1.13

1.2.2.6.1.4. By oxidation of imines

e
KMnOy, / [(HgC,),Nf® Cl

R
H,0 / CH,Cl,;20° 24 h / 2
R—C=——=N——R - —_—C ==
1 i 2 R1 ﬁ N\
O
Scheme 1.14

1.2.2.6.2.Alkylation Methods

1.2.2.6.2.1. By alkylation of a-chloronitroso alkenes

l R ©
R4 N | Vd
\ yd R;MgX/Ether \CZN
C 0%, 10min / \
\ R R
R3 Cl 2 3

Scheme 1.15
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1.2.2.6.2.2. By alkylation of Nitro alkenes

Ry

Ry
R NO, \N/ R\ /O
— R
+ C  CH,CN, 15-20° 3h l / *
" y lcl 7 R C——N\
2 = z
= = ” R,
i3 H H O
°*  scheme1.16
1.2.2.6.3.From Oximes
1.2.2.6.3.1. By intramolecular cyclization of oximes
OH
H ~ HgO/Disodiummethylen- H,C
c’ N diamintetraacetate
. g <
6! 15
H, \
CeHs 0
Scheme 1.17
1.2.2.6.3.2. By intermolecular cyclization of oximes
|
Ry NH, Ry
N\ COCl, / (HsCp):N N 0
R \ o ol Y
/C:::N THF -20"—200 Rs I
R3 OH R3 \O

Scheme 1.18
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1.2.2.6.4.By condensation of hydroxylamine derivatives

1.2.2.6.4.1. With orthocarbonic acids

OH
H,C CHsO, 1.CH,CLy, 259, 1h o
HsC + R 2-N(CyHs) o R
%N\ Cas0” | > //
H,C OH H3C N\
HCI CHy 0

Scheme 1.19

1.2.2.6.4.2. With imines

HsC
CH(CgHs),
HsC l
C/KO

NH l

C/ HO-NH-CH(CHs), Cabs
HsC o
C NNWAN
T 7 CH(CgHs),
CeHs
(E)
Scheme 1.20
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1.2.2.6.5.From Nitro Compounds

NO, o

R1 R1
N Rs
Rs Reduction AN
Rz —_—
Ry
R3 R4
R; R4
R¢=H, CHs ; Ry=H, Alkyl , Aryl
R4=H,Aryl : Rs=H, Alkyl, Aryl
Reduction:
Zn/NH,Cl/Water" Methanol?
Scheme 1.21
1.2.2.6.6.From Diazoalkanes
O
-0 0. ~o_ .
H,C==N, + ON—R FEMeri025 24h  y,c—=n

Scheme 1.22

1.2.2.6.7.Recent Publications

Recently , Voinov has been synthesized a-heteroatom substituted nitrones
for the first time by the reaction of lithiated cyclic aldonitrone with HgCl,, and
a-Chloronitrone was prepared for the first time by direct chiorination of

lithiated aldonitrone using TsCI.[6]
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a) E=HgCl, R=HgCl, 55 %
b) E=TsCl, R=Cl, 90%

Scheme 1.23

Brandi and coworkers reported that a nitrone from the oxidation of a C2
symmetric piperidine, obtained through a ring enlargement process of the
enantiopure  protected  (4R)-hydroxy-(2S)-hydroxymethyl  pyrrolidine.

Oxidation with C-phenyl-N-phenylsulfonyloxaziridine afforded the

corresponding nitrone that is too unstable for isolation. [7]

RZO OR RZO/

S

R!'=H, OH or Bn

Scheme 1.24

1.3.VINYL SULPHONES

Vinyl sulphones («, # -unsaturated sulphones) have now become generally

accepted as useful intermediates in organic synthesis. Thus vinyl sulphones
serve efficiently as both Michael acceptors and as partners in cycloaddition

reactions.[8]
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In cycloaddition reactions, vinyl sulphones again serve a useful function as
convenient equivalents for ethylene, acetylene, ketene, etc. Other notable
features of sulphones, including their ease of handling (many are nicely
crystalline) and ready removal (desulphonylation), have added to the

attractions of vinyl sulphones as intermediates.

1.3.1.Vinyl Sulphones in [3+2] Cycloaddition Reactions

In one of a series of significant contributions to the cycloaddition chemistry of
vinyl sulphones Padwa’s group have examined the reaction of 2-
diazopropane with the bicycloheptadiene.[9] This reaction followed a similar
unexpected course to that observed with cyclopentadiene reaction occurring
on the electronically less activated alkene. By contrast , the corresponding
desilylated diene gave the product of addition to the vinyl sulphone(Scheme

1.25).

SOzAr

diazopropan diazopropan
X= SiMe?, X=H

X = SiMe,

X=H

N=N AN
SO,Ar )é“
SiMe; H SOZAT
major product
Scheme 1.25

Reactions of diazo compounds with allenylphenyl sulphone have also been

examined by Padwa,[10] as have a variety of dipolar cycloadditions between
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unsaturated sulphones and nitrones. An interesting development of the
sulphonyl! allene chemistry was the finding that the use of vinyl suiphone
allows access to nitrone cycloadducts., formally derived from addition to the

unactiviated double bond of a sulphony! allene.(Scheme 1.26).[11]

Ao 3
y N—0O I
SO,Ph \(/ e /o
Ph =
=<__302Ph - M/ / /SOzph
I//
SO,Ph
l DBU
I
N\
Ph g
SO,Ph
Scheme 1.26

The anion derived from vinyl sulphone can be generated by conjugate
addition of sodium benzenesulphinate to phenylsulphonyl ailene.[12] This

allows for a number of interesting cyclisation-elimination reactions with

Michael acceptors to give [ 3+2] type products, e.g. Scheme 1.27 .
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H,C==C==CHSO,Ph  NaSO,Ph
—_—

SO,Ph SO,Ph

SO,Ph

— + NaSO,Ph

NC NC

Scheme 1.27

The benzenesulphinate is regenerated in this sequence, and is required only
in trace amounts. Analogous sequences were possible by using the addition

of other anions to the starting allene to trigger cyclisation.

Grigg and coworkers have described the use of nitrones, generated from
oximes by Michael addition, for cycloaddidon reactions.[13] Vinyl sulphones
can be used as reaction partners, either to generate the nitrone, or to

participate in the cycloaddition, or in both steps, e.g. Scheme 1.28-29.

N/OH
N
/\8/\ %
S

Scheme 1.28 O
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_-OH

H
X _~~sopn 2
> PhsO,~ ~—N y
Scheme 1.29

Both the initial Michael reaction and the cycloaddition reaction can be carried
out intra- or intermolecularly, allowing a broad range of interesting

functionalised polycyclic products to be prepared.

Trost has included vinyl sulphones amongst the partners that react with
trimethylenemethane-palladium complexes to give [3+2] adducts. Scheme
1.30 highlights a particularly pleasing example in which two rings are
constructed in a single step and with a high degree of stereocontrol.[14]

SiNIe3 H
(PhP),Pd,dppe,DME

—

F

SO,Ph

OAc 0,8Ph

dppe = 1,2-bis(diphenylphosphino)ethane
Scheme 1.30

Caddick has studied 1,3-dipolar cycloaddition reaction of a variety of nitrones
to pentafluorophenyl vinyl sulfonate and phenylvinyl sulphone. Compared it
with cycloaddition of C-phenyl-N-methylnitrone and reported that the
reversed 4C-substituted cycloadduct increasingly predominates when very
electron-defficient dipolarophiles are involved. Actually the cycloaddition of

nitrones to olefins generates 5C-substituted isoxazolidines [15].
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Details of the reactivity of the factors affecting the regioselectivity in the
cycloaddition of nitrones to unsaturated methyl sulfones possesing vicinal
electron-withdrawing (CN or CO;Me) substituents can be found in paper
found by Chanet-Ray and coworkers.The cycloaddition product shows the 4-

sulfonyl isomer is the sole or dominant cycloadduct. [16]
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CHAPTER I

EXPERIMENTAL

'H and *C NMR spectra were recorded on BRUKER and VARIAN
spectrometers. IR spectra were recorded on a JASCO 430 FT/IR instrument
(KBr pellet in case of solids and neat for oil or liquids using NaCl discs).
Mass spectra were run on ZABSpec VG7070E instrument. Melting points
were determined on a Meltemp apparatus and uncorrected. Flash Column
chromatography was performed on Silica Gel (Merck, 230-400 mesh). TLC
was done using precoated plates with fluorescent indicator (Merck 5735).
Nitrones 2a-j were synthesized according to the methods described in the

literature [20-29].

2.1.Synthesis of Nitrones 2a-j

2.1.1. N-Methyl-4-(N,N-dimethylamino)-benzylidene amine N-oxide (2a)

A mixture of 4-(N,N-dimethylamino)benzaldehyde (1b) (298 mg , 2 mmol )
and N-methylhydroxylamine hydrochloride (167 mg, 2 mmol) and
potassiumhydroxide (123 mg, 2.2 mmol) in methanol (10 mL) was heated
at reflux with molecular sieves (4 A) in order to remove water for over

night.Reaction monitored by TLC. After cooling a white precipitate (KCl) was
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observed. The mixture were filtered and filtrate were concentrated under
reduced pressure. A light yellow crystalline solid is obtained in benzene-

petroleum ether(40-60 °C) mixture; yield 213 mg (60%), m.p. 95-98 °C.

Rf :0.37 (Ethanol-n-Hexane;3:1)

IR (KBr): v (cm™): 1612 (C=N), 1149 (N-O) .

'H NMR (54,400 MHz, CDCl3):2.84 (s, 6H), 3.70(s,3H), 6.30 (d, 2H), 7.01 (s,

1H),7.90 (d, 2H).

2.1.2. N-Phenyl-4-(N,N-dimethylamino)-benzylidene amine N-oxide (2b)

A mixture of 4-(N,N-dimethylamino)benzaldehyde (1b) (298 mg , 2 mmoL )
and N-phenylhydroxylamine [17] (218 mg, 2 mmol) in methanol (10mL) was
heated at reflux, with molecular sieves (4 A) in order to remove water, for 6
hour reaction monitored by TLC. After cooling the mixture was filtered and
filtrate was concentrated under reduced pressure. The crude product was

kept in order to use in cycloaddition reaction; crude yield 310 mg .
R¢ : 0.25 (Ethanol-n-Hexane;3:1)

IR (KBr): v (cm™) : 1611 (C=N) , 1059 (N-O)
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2.1.3. N-Methyl-4-(methoxy)-benzylidene amine N-oxide (2c)

A mixture of 4-methoxy-benzaldehyde 1¢ (1 mL , 8.2 mmoL ) and N-
methylhydroxylamine  hydrochloride (687 mg, 8.2 mmolL) and
potassiumhydroxide (508 mg, 9 mmoL) in methanol (10mL) was heated at
reflux with molecular sieves in order to remove water for over night.Reaction
monitored by TLC. After cooling a white precipitate (KCl) was observed. The
mixture was filtered and filtrate was concentrated under reduced pressure. A
white crystalline solid is obtained in benzene-petroleum ether mixture; yield

1.122 mg ( 83%).
Rf : 0.29 (Ethanol-n-Hexane;3:1)

IR (KBr): v (cm™) : 1603(C=N) , 1148 (N-O).

2.1.4. N-Phenyl-4-(methoxy)-benzylidene amine N-oxide (2d)

A mixture of 4-methoxy-benzaldehyde 1c (1 mL, 8.2 mmoL ) and

N-phenylhydroxyl amine (898 mg, 8.2 mmolL) in methanol (10mL) was
heated under reflux temperature with molecular sieves to remove water for

over night.Reaction monitored by TLC. After cooling , the mixture was filtered
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and filtrate was concentrated under reduced pressure. A yellow crystalline
solid is obtained in benzene-petroleum ether mixture; yield 877 mg (47%)

m.p. 117-118 °C.
R : 0.21 (Ethanol-n-Hexane;4:1.5)

IR (KBr): v (cm™") : 1604 (C=N) , 1065 (N-O)

2.1.5.N-Methyl-(4-benzyloxy-3-methoxy)-benzylidene amine N-oxide (2e)

A mixture of 4-benzyloxy-3-methoxy benzaldehyde 1a (242 mg , 1mmol )
and N-methylhydroxylamine hydrochloride (83.5 mg , 1mmol) and
potassiumhydroxide (61.7 mg , 1.1 mmol) in methanol (10mL) was heated
at reflux with molecular sieves (4A) in order to remove water for over
night. The progress of the reaction was monitored by TLC. After cooling a
white precipitate (KCI) was observed. The mixture was filtered and filtrate
was concentrated under reduced pressure. A yellow crystalline solid is
obtained in benzene-petroleum ether(40-60 °C) mixture; yield 181 mg (

67%), m.p. 110-111 °C.
Rs¢ : 0.31 (Ethanol-n-Hexane ; 4:1)
IR (KBr): v (cm™):1591 (C=N) , 1083 (N-O).

"H NMR (5, 400 MHz, CDCls): 3.82 (s,3H, NCH3),3.93 (s, 3H, OCHy), 5.19 (s,

2H, OCH,), 6.90(d, 1H, J=8.47 Hz), 7.28-7.44 (m, 5H), 8.36 (s, 1H).
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2.1.6. N-(2-Hydroxyphenyl)-benzylidene amine N-oxide (2f)

OH

A mixture of 2-hyroxybenzaldehyde (1h) (122 mg, 0.21 mL , 2.0 mmolL ) and
N-phenylhydroxylamine (218 mg , 2.0 mmolL) in methanol (10mL) was
heated at reflux, in the presence of molecular sieves (4 A), for 6 h. The
progress of the reaction was monitored by TLC. After cooling, the mixture
was filtered and filtrate was concentrated under reduced pressure. The crude
product was kept in order to use in cycloaddition reaction; crude yield 198

mg .
R¢ : 0.21 (Ethylalcohol-n-Hexane;2:1)

IR (KBr): v (cm™) :3500(0-H) , 1559 (C=N) , 1149 (N-O).

2.1.7. N-Methyl-1-(2-pyridyl)methanimine N-oxide (2g)

A mixture of pyridine-2-carbaldehyde (1d) (1.5 mL , 1.69 g, 15.8 mmolL )
and N-methylhydroxylamine hydrochloride (1.349 g, 16 mmoL were added
to a suspension of sodiumhydrogen carbonate (3.989 g , 47.4 mmol) in
dichloromethane(50 mL) in the presence of molecular sieves (4 A). The
mixture was heated under reflux with vigorous stirring for 5 h. Reaction

monitored by TLC. After cooling, the reaction mixture was filtered and the

41



precipitate washed with CHyCl, . The combined CH.CI, filtrates were
evaporated to dryness. The crude product was recrystallized from
cyclohexane to give light yellow crystals : Yield 1.64 g (76.3 %) , m.p.

38°C .
Rs . 0.22 (Ethanol-n-Hexane;3:1)

IR (KBr): v(cm™) : 1583 (C=N) , 1087 (N-O)

2.1.8. N-Methyl-1-(2-furyl)methanimine N-oxide (2h)

-

o N\
lL CH;

A mixture of furan-2-carbaldehyde (1g) (0.5 mL , 6 mmolL ) and N-
methylhydroxylamine hydrochloride (498 mg, 6 mmol) were added to a
suspension of magnesium sulfate (1.7 g, 12 mmol) and molecular sieves
(4 A) in dichloromethane (15 mL). The mixture was heated under reflux with
vigorous stirring for 3.5 h. The progress of the reaction was monitored by
TLC.After cooling, the reaction mixture was filtered and the precipitate was
washed with CH.Cl, . The combined CH,Cl, filtrates were evaporated to
dryness. The crude product was kept in order to use in cycloaddition, crude

yield 1.220 g.
Rs : 0.21 (Ethanol-n-Hexane;3:1)

IR (KBr): v (cm™) : 1596 (C=N) , 1097 (N-O)
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2.1.9. N-Methyl-1-(2-thienyl)methanimine N-oxide (2i)

 —

S l
\ CHj

A mixture of thiophene-2-carbaldehyde (1e) (0.2 mL ,2.18 mmoL ) and N-
methylhydroxylamine hydrochloride (181 mg, 2.18 mmolL) were added to a
suspension of sodiumhydrogen carbonate (1.16 g , 13.2 mmol) in
dichloromethane (15 mL) in the presence of molecular sieves (4 A). The
mixture was heated under reflux with vigorous stirring for over night,
reaction monitored by TLC , filtered and precipitate was washed with CH,Cl,
. The combined CHClI; filtrates were evaporated to dryness. Crude product
(2i) were used in the next step, without purification for the cycloaddition

reaction.Crude yield 324 mg.
Rs¢ : 0.28 (Ethylalcohol-n-Hexane;3:1)

IR (KBr): v (cm™) : 1585 (C=N) , 1092 (N-O).

2.1.10. N-Methyl-1-(2-(3-methyl thienyl))methanimine N-oxide (2j)
CH;
+
/ P
C=N
S | \
H CHj

A mixture of 3-methylthiophene-2-carbaldehyde (1f) (0.27 mL,2.5 mmoL )
and N-methylhydroxylamine hydrochloride (209 mg, 2.5 mmolL) were added

to a suspension of sodium hydrogen carbonate (630 mg , 7.5 mmol) in
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dichloromethane (15 mL) in the presence of molecular sieves (4 A). The
mixture was heated under reflux with vigorous stirring for over night,
reaction monitored by TLC , filtered and precipitate was washed with CH,Cl,
. The combined CH,CI; filtrates were evaporated to dryness. Crude green

products were kept to use in cycloaddition product.
R¢ : 0.31 (Ethylalcohol-n-Hexane;3:1)
IR (KBr): v (cm™): 1590 (C=N), 1087 (N-O).

"H NMR (8, 400 MHz, CDCly): 2.37 (s, 3H), 3.80(s, 3H),6.95 (d, 1H, J=8.5

Hz), 7.38 (d, 1H, J=8.3 Hz),7.78 (s, 1H).

C NMR (8¢, 100 MHz, CDCl; ):14.4, 51.7, 1254, 127.0, 128.1, 129.2,

131.1,138.9

2.2.Synthesis of benzenesulfonyl substituted isoxazolidines

2.2.1.4-Benzenesulfonyl-3-(4-N,N-dimethylphenyl)-2-methyi-
isoxazolidine (3a)

Me

Me—N
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To a solution of phenyl vinyl sulfone (168 mg, 1 mmol) in dry toluene (10
mL) was added N-methyl-4-(N,N-dimethylamino)-benzylidene amine N-oxide
(2a) (1.0 eq., 271 mg, 1 mmoL) and the mixture was heated to reflux for
overnight. The progress of the reaction was monitored by TLC. The reaction
mixture was concentrated /n vacuo, and the crude residue was purified by
flash column chromatography (n-hexane:ethyl acetate; 2:1) to give (3a) as a

yellowish solid (190 mg, 55 %). Mpt 116-117 °C.

R¢ : 0.55 (Ethylacetate-n-Hexane;2:1)

IR (KBr): vicm™) : 2922 , 1614, 1447, 1309 (SO, ,symmetric),
1147(SOz,asymmetric) .

'H NMR(8y, 300 MHz, CDCly): 7.98 (d, J=7.3 Hz, 2H), 7.75(t, J=7.4 Hz, 1H),
7.65 (t, J=7.9 Hz, 2H), 7.18 (d,J=8.7 Hz, 2H), 6.70 (d, J=8.5 Hz, , 2H), 4.66
(dd, J=9.9, 3.3 Hz,1H, 5-Hyp), 4.45 (dd,J=9.9, 8.2 Hz, 1H, 5-H,), 4.22 (ddd,
J= 8.2, 6.0, 3.2 Hz,1H, 4-H), 3.92 (br d,J=6 Hz,1H, 3-H), 3.01 (s, 6H),
2.71(s, 3H).

®C NMR(8¢, 75 MHz, CDCly): 150.85, 138.52 , 134.31, 12967, 129.01,

128.96, 128.74, 123.92, 112.84, 75.53 (C-4), 73.87 (C-3), 66.47 (C-5),
42.95 (NCHs), 40.88 (NMe,).

MS (m/z, %): 346 (M*, 22), 178 (100), 160 (60), 77 (23).
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2.2.2. 4-Benzenesulfonyl-3-(4-N,N-dimethylphenyl)-2-phenyl-

isoxazolidine (3b)

To a solution of phenyl vinyl sulfone (298 mg, 2 mmol) in dry toluene (10
mL) was added N-Phenyl-4-(N,N-dimethylamino)-benzylidene amine N-
oxide (2b) (1.0 eq., 218 mg, 2 mmoL) and the reaction mixture was heated
to reflux overnight. The reaction was monitored by TLC. The crude reaction
mixture was concentrated in vacuo, and the residual material was purified
by flash column chromatography (n-hexane:ethyl acetate;3:1) to give (3b)
and recrystallized from benzene-light petroleum as yellow needles (208
mg, 51 %). Mpt 172-175 °C.

Rf : 0.46 (Ethylacetate-n-Hexane;1:1)

IR (KBr): v (cm™) : 2922, 1614 , 1447 ,1309 (SO;,symmetric), 1147
(SOz,asymmetric) .

'H NMR (84, 300 MHz, CDCl3,): 7.90-7.81 (m,2H ), 7.71-7.57(m, 2H), 7.51-
7.45 (m, 2H), 7.18 (m, 3H), 6.97-6.84 (m, 3H), 6.61 (m, 2H), 4.79 (d, J=4.9
Hz,1H, 3-H), 4.54 (dd, J=10.0 , 4.5 Hz, 1H, H-5,), 4.38 (dd, J=10.0, 7.5

Hz,1H, H-5,), 4.10 (ddd,J=7.5, 4.9, 4.5 Hz, 1H, H-4), 3.45 (s, 1H), 2.97 (s,
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3H).

3C NMR (8¢ 75MHz, CDCls): 150.5, 149.4, 137.9, 134.8, 134.4, 129.6,
129.0, 128.3, 127.9, 126.7, 123.1, 116.4, 112.8, 76.8 (C-4),70.4 (C-3), 66.7
(C-5), 40.7 (NCHs).

MS (m/z, %): 408 (M*, 21), 240(6) , 300 (21), 160 (100), 77 (57)

2.2.3. 4-Benzenesulfonyl-3-(4-methoxyphenyl)-2-methyl-isoxazolidine
(3¢c)

MeO

To a solution of phenyl vinyl sulfone (42 mg, 0,25 mmol) in dry toluene (10
mL) was added N-Methyl-4-(methoxy)-benzylidene amine N-oxide (2¢ )(1.0
eq., 68 mg, 0,25 mmolL) and the reaction mixture was refluxed overnight.
The reaction was monitored by TLC. The reaction mixture was concentrated
in vacuo, and the remaining crude product was purified by flash column
chromatography (n-hexane : ethyl acetate;2:1) to give (3¢) as a yellow solid

(62 mg, 55 %). Mpt 146-147 °C.

Rs¢ : 0.62 (Ethylacetate-n-Hexane;1:1)

IR (KBr): v (cm™) : 3050 , 2845 , 1615 , 1445 , 1295(SO,,symmetric), 1142
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(80,,asymmetric).

'H NMR (84, 300 MHz, CDChL): 7.72 (d, J= 9.4 Hz, 2H), 7.49 (t, J=8.6
Hz,1H), 7.35 (t, J=7.5 Hz, 2H), 6.98 (d, J=8.7 Hz, 2H), 6.65 (d,J=8.7 Hz,
2H), 4.37 (dd, J=9.9, 3.3 Hz, 1H, H, -5), 4.17 (dd, J=9.9, 8.2 Hz,1H,H,-5),
3.89 ( ddd, J=8.2, 7.0, 3.5 Hz,1H, H-4), 3.68 (br d, J=6.3 Hz, 1H,H-3), 3.65
(s, 3H, OCH3), 2.41(s,3H, NCH3).

3C NMR (8¢, 75 MHz, CDCI3): 160.0, 138.4, 134.4, 129.7, 129.3, 129.0,
128.9, 128.8, 114.4, 75.6 (C-4), 73.5 (C-3), 66.4 (C-5), 55.6 (OCH3), 42.9
(NCHs3).

MS (m/z, %): 333 (M*, 40), 190(100), 165(30) , 147 (27), 77 (38).

2.24. A4-Benzenesulfonyl-3-(4-methoxyphenyl)-2-phenyl-isoxazolidine

(3d)

To a solution of phenyl vinyl sulfone (168 mg, 1 mmol) in dry toluene (10
mL) was added N-phenyl-4-(methoxy)-benzylidene amine N-oxide (2d) (1.0
eq., 227 mg, 1 mmol) and the mixture was heated to reflux overnight. The

reaction was monitored by TLC. The reaction mixture was concentrated in
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vacuo, and the crude residue was purified by flash column chromatography
(n-hexane:ethyl acetate; 3:1) to give (3d) and recrystallized from benzene-

light petroleum as yellow needles (200 mg, 50 %). Mpt 145-146 °C.

R¢ . 0.61 (Ethylacetate-n-Hexane;1:1)

IR (KBr): v (cm™) : 3415, 3056 , 1611 ,1486 ,1309 (SO,,symmetric) ,1147
(8SO,,asymmetric). |

'H NMR (84, 300 MHz, CDCl) ; 7.84 (d,2H), 7.61 (m,1H), 7.50 (t,2H), 7.24
(d, 3H),7.15 (t, 2H), 6.98 (m,1H), 6.80(m,4H), 4.85 (d, J=5.0 Hz,1H, H-3),
4.50(dd, J=10.0, 4.8 Hz,1H, Hy-5), 4.35 (dd, J=10.0, 7.5 Hz,1H, H,-5),
4.15(ddd, J=7.5, 5.0, 4.8 Hz,1H, H-4), 3.79 (s,3H, OCHj3).

¥C NMR (8¢, 75 MHz, CDCl; ):159.6, 149.2, 137.8, 134.5, 131.5, 129.7,
128.9,128.3, 123.3, 116.4, 114.5, 76.8 (C-4), 70.2 (C-3), 66.8 (C-5), 55.5
(OCHs).

MS (miz, %): 395 (M*, 31), 253(12) , 211(73), 147(32) , 77 (53).

2.2.5. 4-Benzenesulfonyl-3-(4-benzyloxy-3-methoxyphenyl)-2-methyl-

isoxazolidine (3e)

MeO
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To a solution of phenyl vinyl sulfone (168 mg, 1 mmol) in dry toluene (10
mL) was added N-methyi-(4-benzyloxy-3-methoxy)-benzylidene amine N-
oxide (2e) (1.0 eq., 271 mg, 1 mmoL) and the mixture was heated to reflux
for 18 h. The progress of the reaction was monitored by TLC. The reaction
mixture was concentrated in vacuo, and the crude residue was purified by
flash column chromatography (petroleum ether 40-60 °C : ethyl acetate;2
:1) to give 3e as a yellow solid (276 mg, 63 %). m.p 115-117 °C.

Rt : 0.77 (Ethylacetate-n-Hexane;2:1)

IR (KBr): v (cm™) : 3050,2959,1604, 1454, 1305(SO,,symmetric), 1153
(SO2,asymmetric).

'"H NMR (84, 500 MHz, CDCls): 7.80(2 doublets, 2H), 7.55-7.52 (3 triplets,
1H), 7.45-7.30 (m, 8H), 6.75(d, 1H), 6.68 (d, 1H,J=8.27 Hz), 6.59 (dd,J=8.2,
6.3 Hz,1H), 513 (s, 2H), 4.47 (dd, J=10.0, 3.4 Hz, H,-5,1H) 4.25
(dd,J=10.0, 8.3 Hz, 1H, Ha-5), 4.03 (ddd,J=8.3, 7.1, 3.4 Hz, 1H,H-4), 43.80
(br d,J=7.1 Hz, 1H, H-3), 2.60 (s, 3H, NCH5).

3C NMR(8¢, 125 MHz, CDCls): 149.6, 148.1, 138.0, 134.0, 129.5, 129.3,
128.5, 120.3, 113.6, 110.6, 75.3 (C-4), 73.2 (C-3), 70.8 (OCH,Ph)66.0 (C-
5), 56.0 (OCHa), 42.7 (NCH3).

MS (m/z, %): 439 (M*, 11), 297(9) , 255(11), 91(100) , 77 (28).
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2.2.6. 4-Benzenesulfonyl-3-(2-hydroxyphenyl)-2-phenyl-isoxazolidine
(3f)

To a solution of phenyl vinyl sulfone (168 mg, 1 mmolL) in dry toluene (10
mL) was added N-(2-hydroxyphenyl)-benzylidene amine N-oxide (2f) (1.0
eq., 213 mg, 1 mmol) and the reaction mixture was heated to reflux
overnight. During this time the reaction was monitored by TLC. The reaction
mixture was concentrated in vacuo, and the crude residue was purified by
flash column chromatography (n-hexane:ethyl acetate 2:1) to give 3f as a

dark coloured oily product. (48 mg, 13 %).

Rs : 0.46 (Ethylacetate-n-Hexane;1:1)

IR (KBr): v (cm™) : 3411 (OH), 1596 , 1447 ,1307 (SO,,symmetric), 1149
(S0O,,asymmetric).

'H NMR (84, 500 MHz ,CDCl3): 8.98 (br s, 1H, OH), 7.84 (d, 2H, J=7.9
Hz),7.64 (m, 1H), 7.50 (t, 2H), 7.38 (s, 2H), 7.24 (m, 3H), 7.20 (m, 3H), 6.93
(d, 1H, J=8.2 Hz), 6.80 (d, 1H, J=7.8 Hz), 6.72 (t,1H), 4.82 (d, J=6.1 Hz,1H,
H-3),4.68 (dd,J=10.1, 3.2 Hz, 1H,Hp-5), 4.47 (dd,J=10.1, 7.6 Hz, 1H, H,-5),

4.25 (ddd,J=7.6, 6.1, 3.2, 1H, H-4).
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3C NMR (5¢, 125 MHz, CDCly): 162.4, 160.1, 141.4, 134.9, 133.1, 130.7,
129.5,129.1,122.1, 120.6,119.5,117.1,116.6, 74.4 (C-4), 71.8 (C-3), 67.3
(C-5).

MS (m/z, %): 381 (M*, 52), 239(37) , 196(28), 133(55) , 77 (100).

2.2.7. 4-Benzenesulfonyl-2-methyl-3-pyridyl-isoxazolidine (3g)

To a solution of phenyl vinyl sulfone (168 mg, 1 mmol) in dry toluene (10
mL) was added N-methyl-1-(2-pyridyl)methanimine N-oxide (2g) (1.0 eq.,
271 mg, 1 mmolL) and the reaction mixture was refluxed overnight. The
reaction was monitored by TLC. The reaction mixture was concentrated in
vacuo, and the crude residue was subjected to flash column
chromatography (n-hexane:ethyl acetate 2:1) to give 3g as a black solid
(126 mg, 41 %). Mpt 119-122 °C.

R¢ : 0.62 (Ethylacetate-n-Hexane;1:1)

IR (KBr): v (cm™) : 2853, 1591, 1443, 1302 (SO,symmetric),1154
(SOz,asymmetric).

'H NMR (51: 500 MHz, CDCls) ; 8.46(d,1H), 7.49 (d,2H), 7.37 (m,2H), 6.98
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(m,2H), 7.10 (t,2H), 4.79 (very broad,1H, H-4), 4.55 (dd, J=9.8, 4.0 Hz,1H,
Hp-5), 4.33 (dd, J=9.8, 8.2 Hz, 1H, Ha-5), 4.06 (very broad,1H, H-3), 2.69 (s,
3H, N-CH).

3C NMR (8¢, 125 MHz, CDCls): 154.9 , 149.9, 138.2, 136.7, 133.9, 128 4,
123.8, 123.3, 74.4 (C-3), 73.1 (C-4), 66.2 (C-5), 43.0 (N-CH,).

MS (m/z, %): 304 (M*, 18), 246(100) , 134(69), 118(92) , 77 (55).

2.2.8. 4-Benzenesulfonyl-3-furyl-2-methyl-isoxazolidine (3h)

To a solution of phenyl vinyl sulfone (168 mg, 1 mmol) in dry toluene (10
mlL) was added N-methyl-1-(2-furyl)methanimine N-oxide (2h) (1.0 eq., 125
mg, 1 mmol) and the mixture was heated to reflux overnight. The reaction
was monitored by TLC. The reaction mixture was concentrated in vacuo, and
the remaining crude residue was purified by flash column chromatography
(n-hexane:ethyl acetate;2:1) to give (3h) and recrystallized from benzene-

light petroleum as a white needles (125 mg, 40 %). Mpt 122-124 °C.

Rs¢ : 0.50 (Ethylacetate-n-Hexane;1:1)
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IR (KBr): v (cm™) : 3137, 2967 , 1448 ,1315 (SO,symmmetric),
1149(S0,,,asymmetric).

'H NMR (814, 500 MHz, CDCl3):7.83 (dd,2H ), 7.60 (3 triplets, 1H ), 7.49 (t,
2H), 7.25 ( dd, 2H), 6.17-6.06 (brtand d , 1H), 4.54 (dd, J= 9.9, 3.3 Hz, 1H,
Hy-5), 4.37 (ddd, J=8.6,7.5, 3.3 Hz),1H, H-4), 4.29 (dd, J=9.9,8.6 Hz, 1H,
Hz-5),3.91 (very br, 1H, H-3),2.66 (s, 3H, NCH3).

*C NMR (8¢, 125 MHz, CDCl;):147.6 , 137.8, 134.0, 129.3, 128.4, 110.5,
110.0, 71.3 (C-4), 67.4 (C-3), 65.8 (C-5), 42.4 (N-CH3).

MS (m/z, %): 293 (M, 16), 150(100) , 125(22), 107(25) , 77 (45).

2.2.9. 4-Benzenesulfonyl-2-methyl-3-thienyl-isoxazolidine (3i-a) and 5-

Benzenesulfonyl-2-methyl-3-thienyl-isoxazolidine (3i-b)

and

3i-a 3i-b

To a solution of phenyl vinyl sulfone (168 mg, 1 mmol) in dry toluene (10
mL) was added N-methyl-1-(2-thienyl)methanimine N-oxide (2i)(1.0 eq., 141
mg, 1 mmol) and the reaction mixture was heated to reflux overnight.The
reaction was monitored by TLC. The reaction mixture was concentrated in

vacuo, and the crude residue was purified by flash column chromatography

54



(n-hexane:ethyl acetate ;2:1) to give a mixture of 4- and 5- regioisomers
which can not be separated and recrystallized from benzene-light petroleum

as white needles (126 mg, 41 %). Mpt 99-101 °C.

R : 0.49 (Ethylacetate-n-Hexane;3:2)

IR (KBr): v (cm™) : 1581 , 1446, 1307(SO2,symmmetric) ,1147
(SOz,asymmetric).

'H NMR (84 500 MHz, CDCl3): 7.95 (d, 2H), 7.86 ( d, 4H), 7.71-7.59 (m,
5H), 7.52 (t, 4H), 7.28 (d, 1H ), 7.20 (d,2H),7.02 (br s, 1H), 6.97 (dd, 1H),
6.81 (dd, 2H), 6.66 (d,2H), 4.50 (dd, J=10.0, 3.3 Hz, 1H, H,-5), 4.26 (dd,
J=10.0, 8.2 Hz, 1H, H;-5), 4.21 (very broad, 1H, H-3), 4.03 (ddd, 8.2, 7.0,
3.3 Hz, 1H, H-4), 2.68 (s, 3H, NCH3).

3C NMR (3¢ , 125 MHz, CDCls): 139.5, 137.1, 134.2, 129.4, 128.6, 126.8,
126.6, 126.1, 91.6 (C-5 of 5-regioisomer),75.6 (C-4), 69.1 (C-3), 65.9 (C-5
of 4-regioisomer), 42.8 (NCH3).

MS (m/z, %): 309 (M*, 25), 166(100) , 140(37), 125(100) , 97 (50) , 77(97).
2.2.10. 4-Benzenesulfonyl-2-methyl-3-(3-methylthienyl)-isoxazolidine

(3))
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To a solution of phenyl vinyl sulfone (168 mg, 1 mmolL) in dry toluene (10
mL) was added N-methyl-1-(2-(3-methyl thienyl))ethanimine N-oxide (2j) (1.0
eq., 155 mg, 1 mmolL) and the reaction mixture was heated to reflux
overnight. The reaction was monitored by TLC. The reaction mixture was
concentrated in vacuo, and the crude product was purified by flash column
chromatography (n-hexane:ethyl acetate;2:1) to give 3j and recrystallization

from hexane yielded white needles (126 mg, 41 %). Mpt 87-89 °C.

R¢ : 0.46 (Ethylacetate-n-Hexane;1:1)

IR (KBr): v (cm™) : 3058, 2877 , 1447 1307 (SO,,symmetric) ,
1153(S0,,asymmetric).

'H NMR (81, 500 MHz, CDCls): 7.84 (d, 2H), 7.61 (t, 1H), 7.49 (t, 2H),7.14
(s, 1H), 6.68 (d, 2H), 4.43 (dd, J=10.0, 3.3 Hz, 1H, Hy-5), 4.28 (very broad,
1H, H-3), 4.26 (dd, J=10.0, 8.3 Hz, 1H, H,-5), 4.11 (ddd, J=8.3, 7.0, 3.3 Hz,
1H, H-4), 2.62 (s, 3H, N-CH3), 2.19 (s, 3H).

C NMR (8¢, 125 MHz, CDCls):137.9, 137.1, 134.0, 132.3, 130.0, 129.3,
128.3, 125.0, 75.3 (C4), 67.0 (C;3), 66.2 (C-5), 42.4 (N-CHs), 14.4 .

MS (m/z, %): 323 (M*, 51), 181(100) , 164(32), 137(55) , 77 (50).
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CHAPTER Ill : RESULTS AND DISCUSSION

More than a century since the original discovery and four decades since the
systematic organization of the field 1,3-dipolar cycloaddition chemistry has
greatly evolved as an exceptionally versatile strategic tool for assembling
the organic molecules especially heterocyclic compounds which can be
found naturally,1,3-dipoles, are structurally grouped into more than a dozen
classes and according to intermolecular or intramolecular pathways lead in

a feasible manner to heterocyclic systems[29].

On the other hand , to our best knowledge of the literatute survey involved in
the above mentioned area revealed that the 1,3-dipolar cycloaddition
reactions of nitrones to the dipolarophile phenyl vinyl sulfone were the one
that was rarely incorporated among this class of reactions. This encouraged
us to perform this work. The work under investigation is essentially

consisted of three parts.
1) Synthesis of various aldehyde nitrones(2a-j),
2) Synthesis of 3-substituted 4-benzenesulfonyl isoxazolidines (3a-j )

3) Mass spectral study of the new cycloadducts.

Synthesis of the nitrones (2a-j) were carried out by reacting the
corresponding aromatic or heteroaromatic aldehyde with N-methylhydroxy!
amine hydrochloride or N-phenyl hydroxyl amine in the presence of a
desiccant (i.e. molecular sieves 4 A or magnesium sulfate) according to the

procedures described in the literature [20-29].(Scheme 3.1)
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1
R R2NHOH ?1])/
0 McOH \e

H 1 Reflux H 2
R’ R2
2a 4-M€2N-C6H4 Me
2b 4-M82N-CGH4 Ph
2c  4-MeO-CgHy4 Me
2d  4-MeO-CgH4 Ph
2e  (4-PhCH,0-3-MeO)-CgH; Me
2f 2-OH-CgHg, Ph
29 2-pyridyl Me
2h  2-furyl Me
2i 2-thienyl Me
2j  2-(3-methyl)-thienyl Me
Scheme 3.1
Some of the nitrones could be crystallized but some of them were

used in the next step (1,3 DC with phenylvinylsulfone) as oils without any
purification. Nitrone (2j) is a new one and not registered as far as we
searched the literature (WEBOFSCIENCE and SCIFINDER electronic
databases). The nitrone compounds were identified by IR, NMR, m.p and R¢
characteristics. The very basic proof of the generation of the nitrone is the
disappearance of the carbonyl absorption of the corresponding aldehyde in
the IR spectrum of the crude product during the course of reaction.On the
other hand, the very polar structure of the nitrone in comparison with the

aldehyde prevents it ascending much higher point on thin layer
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chromatography plates.The nitrones have strecting vibrations of C=N at
around 1620-1550 cm™. N-O streching vibrations appear at 1070-1050 cm™
which are higher (ca. 1300-1200 cm™) in the case of ketonitrones. In the
NMR spectra , iminic proton of the nitrones arise at lowerfield values like 8.5-
6.5 ppm. This is another indicative proof of the nitrone since aldehydic

protons arise at much lowerfield region.

Secondly, 1,3-dipolar cycloaddition reactions were performed by refluxing the

nitrones and dipolarophile phenylvinyl sulfone (Scheme 3. 2).

R2

Rl &/ Phenylvinylsulfone
———N
Y \@ Toluene
O Reflux
2
R! R?
3a 4-MeyN-CgHy Me
3b 4-M62N-C6H4 Ph
3c 4-MeO-CgHy Me
3d  4-MeO-Cg4H, Ph
3e (4-PhCH,0-3-MeO)-CgH; Me
3f 2'OH'C6H4 Ph
39 2-pyridyl Me
3h 2-furyl Me
3i 2-thienyl Me
3} 2-(3-methyl)-thienyl Me
Scheme 3.2

From the theoretical background of the 1,3-dipolar cycloaddition of a 1,3-
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dipolar compound and a dipolarophile like phenylvinyl sulfone , it can be
deduced that we might obtain two isomeric cycloadducts depending on the
relative position of the substituent (S) in the cycloadduct, head-to-head,

5-regioisomer, or head-to-tail, 4-regioisomer (Scheme 3.3)[32,33].

S

head-to-head X

C)? s Y—,

9/ + - 5-regioisomer
\\Z
head-to-tail )l( .

1,3-dipole dipolarophile ~ tF——— v

\Z

4-regioisomer
Scheme 3.3

The chemical shift positions of the methylene protons of isoxazolidines 3a-j (3
4.30-4.50) were consistent with the presence of a directly bonded oxygen
atom and not with a vicinal carbon attachment which would produce a
resonance at higher field. As for the carbon chemical shift positions of the
isoxazoline compounds, a representative sample 3a, 3¢, carbons C-5, C-4

and C-3 resonated at deshielded regions as expected.

C-5 C-4 C-3
3a 66.47 75.53 73.87
3¢ 66.88 76.86 70.22
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All the cycloadducts obtained were found to be 4-regioisomeric structure
based on the NMR and MASS spectral measurements. The stereochemistry
of the new benzenesulfonyl substituted isoxazolidines were determined as
trans configuration based on both J coupling constants of hydrogen atoms on
the carbons 3 and 4 by isoxazolidine ring numbering and 2 D NMR
measurements ( NOESY, HSQC, HMBC spectra). A representative example

for n.O.e enhancements of related protons in 3a was shown below.

Me

/ H

The predominant regioisomer formation can be accounted for the following
frontier molecular orbital interaction between nitrone and phenyl vinyl sulfone

(Scheme 3.4)[29,30].

RZ\ H
N 4&
R/ = R
» SO,Ph
H
H
H
LUMO

Scheme 3.4



However, the reaction between nitrone 2i and phenyl vinyl sulfone gave a
mixture of 4- and 5- regioisomers (3i-a and 3i-b) (ratio:2:1) which was
determined by 'H NMR and "*C NMR spectra. The carbon chemical shift of C-
5 of the 5-regioisomer (3i-b) appeared at 91.6 ppm whereas that of C-5 of the
4-regioisomer (3i-a) was found at 65.9 ppm. H-4 of 4-regioisomer (3i-a) was

observed at 4.03 ppm, but, H-5 of 5-regioisomer (3i-b) appeared at 5.04 ppm.

In addition to the synthetic part of this work, a mass spectral study was carried
out to investigate the fragmentation pathways of the target isoxazolidines
under electron impact conditions. From the data it can be ruled out that there
have been following routes to lead the peaks observed in the mass spectra of

the compounds (Scheme 3.5).

N
a
—
A B
R R?2
b @/
Retro-1,3-DC N\e
H 0
3a-j C
¢ 1
e ——— R R2
\ J/
N
D

Scheme 3.5
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Table 4 MASS Spectral Data for Isoxazolidine Compounds

m/z

m/z m/z m/z
A B C D
3a 204/10 160/59 178/100 162/2
3b .
160/100 240/6 223/11
3c 190/100 146/27 165/30 149/9
3d 253/12 147/28 } 211173
3e 297/9 255/14 very low 25412
3f 239/37 133/56 very low 196/28
3g 163/28 118/91 136/40 120/10
3h 150/100 107/24 very low 109/2
3i 166/100 123/46 141/37 125/49
3 181/100 137/54 155/20 139/8

Route (a) in the fragmentation of isoxazolidines (3a-j) under electron impact
conditions gives rise to the formation of oxazolium cations (A) which may be
considered as resonance-stabilized aromatic rings. There have not been
observed an oxazolium species in the fragmentation of 3b.The relative
abundances of the oxazoliums were the highest (as base peaks) in 3¢, 3h, 3i
and 3j . The account for this could be the aromatic stabilization of furan and
thiophene and also contribution from the electron donating effect of methoxy

group on the phenyl ring of 3c.

A further fragmentation might be occurred since the peaks were observed
due to the existence of the m/z (B) ; azirine species. The highest abundances

for the corresponding aziridines are those of having N,N-dimethyl phenyl on
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C-3 and phenyl on N-2 of 3b and 2-pyridyl on C-3 and methyl on N-2 of 3g.

In addition, a retro-1,3-dipolar cycloaddition reaction (pathway b) would
generate the nitrone which could be attributed to the masses depicted in
Scheme 3.5 (C). Imine formation seemed to be in highest abundance in the
case of isoxazolidine (3d) where methoxy subtiuent is attached on the phenyl

of carbon-3.

An interesting fragmentation due to the existence of alkyne moieties (Scheme
3.6) have been concluded which may be accounted for the resizing of the

isoxazolidines 3g and 3j can be seen below .

miz ( %) 246(100)

= C==CH

miz ( %) 104(32)
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C==CH

miz ( %) 122(18)

CONCLUSION

This work describes a simple and one-pot synthesis of the 9 new
benzenesulfonyl substituted isoxazolidines. The structure and sterochemistry
of the compounds are determined by means of IR,NMR and Mass Spectra. A
detailed mass spectral study was also conducted on thé compounds newly

synthesized.
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APPENDIX : IR, NMR( 'H, '*C , NOESY, HSQC, HMBC)

AND MASS SPECTRA
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Figure 4.37 MASS Spectrum of 3e
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Figure 4.42. IR Spectrum of 3g
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Figure 4.45. MASS Spectrum of 3g
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Figure 4.46. IR Spectrum of 3h
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Figure 4.49 MASS Spectrum of 3h
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Figure 4.50. IR Spectrum of 3i
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Figure 4.53.MASS Spectrum of 3i
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Figure 4.54. IR Spectrum of 3j
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Figure 4.57 MASS Spectrum of 3j

119




