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ABSTRACT

ON UNIDIRECTIONAL CYCLIC LAYOUTS,
HAMILTONIAN CIRCUITS, CAPACITATED VEHICLE
ROUTES AND MINIMAL SPANNING TREES

This thesis consists of four major parts. The first part is on the Unidirec-
tional Cyclic Layout Problem (UCLP). First, new efficient heuristics for the UCLP
are proposed based on the ideas originally proposed for two well-known combinatorial
optimization problems: The Asymmetric Travelling Salesman Problem (ATSP) and
the Linear Ordering Problem (LOP). Then, we particularly consider the balanced case
of the UCLP’S satisfying the additional conservation of flow assumption: the material
flow is conserved at every workstation and we develop a Branch and Bound algorithm
for the Balanced UCLP (BUCLP). In the second part, we propose new extended ATSP
formulations O(n®) constraints and we analyze the strengths of their linear program-
ming (LP) relaxation both analytically and experimentally. It is shown that the LP
relaxation of one of the new formulations can have optimal objective value larger than
the LP relaxation of the ATSP’s multi-commodity flow formulations. In addition, we
also propose new extended ATSP formulations with O(n?) constraints and compare
their strengths with the ones of known ATSP formulations with O(n?) constraints.
Finally, in the third and fourth parts, a new enhancement of the Clarke and Wright'’s
savings heuristic for the Capacitated Vehicle Routing Problem and new enhancements

_of the Esau and Williams’ savings heuristic for the Capacitated Minimal Spanning Tree

Problem are respectively proposed.
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OZET

TEK YONLU DAIRESEL YERLESIMLER, HAMILTON
CEVRIMLER, SINIRLI ARAC ROTALARI VE EN KUGUK
KAPSARAGACLAR UZERINE

Bu tez dort ana kissmdan olugmaktadir. Birinci kisim, tek yonli dairesel yerlegim
problemi (TYDYP) ile ilgilidir. TYDYP igin, aslinda Asimetrik Gezgin Satic1 Problemi
(AGSP) ve Dogrusal Siralama Problemi (DSP) icin 6nerilen sezgisel algoritmalardan
esinlenerek yeni etkili ¢6ziim yontemleri onerilmigtir. Daha sonra, TYDYP’ nin 6zel
bir durumu olan ve malzeme akiginin korundugu varsayiminin yapildigi, Dengeli TY-
DYP (DTYDYP) ele alinmig ve bu problem i¢in bir dal-sinir algoritmas: Snerilmigtir.
Ikinci kisimda, O(n®) kasith yeni AGSP formiilasyonlar: onerilmis ve dogrusal program-
lama (DP) gevsetilmelerinin giicli hem analitik hem de deneysel olarak incelenmigtir.
Onerilen yeni formiilasyonlardan bir tanesinin DP gevsetilmesiyle elde edilen eniyi
degerin bilinen diger ¢ok malli AGSP formiilasyonlarimn DP gevsetilmesiyle elde edile-
cek degerden daha biiyiik oldugu gosterilmigtir. Bunlara ilave olarak, O(n?) kisith yeni
AGSP formiilasyonlar: 6nerilmig ve DP gevsetilmelerinin giicii bilinen diger O(n?) kisith
AGSP formiilasyonlarinin DP gevsetilmeleriyle kargilagtirilmigtir. Son olarak, tigiinci
ve dérdiincii kistmlarda sirasiyla, Siga Suurhi Arag Rotalama Problermi igin geligtirilmig
olan Clarke ve Wright kazamm sezgiseli ve Siga Simirh En Kiigiik Kapsaragag Prob-
lemi igin geligtirilmig olan Esau ve Williams kazanim sezgiseli igin yeni iyilegtirmeler

Onerilmigtir.
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1. INTRODUCTION

Today, many businesses in logistics, telecommunication, and manufacturing have
a growing need for the optimal use of their resources. Consequently, the utilization
of Operations Researchi and Mathematical Programming techniques have increased in
the last decades parallel to the developments of computer systems and information
systems. Moreover, the implementation of the modelling and algorithmic tools have
also significantly progressed. The proposed models take into account all the charac-
teristics of real-life applications and, the corresponding algorithms produce sufficiently

good solutions within acceptable computing times.

In this dissertation, we consider four well-known combinatorial optimization prob-
lems from the manufacturing, logistics and telecommunication. These are the Unidirec-
tional Cyclic Layout Problem (UCLP), the Asymmetric Travelling Salesman Problem
(ATSP), the Capacitated Vehicle Routing Problem (CVRP) and the Capacitated Min-
imal Spanning Tree Problem (CMSTP). First, we develop new solution procedures for
the UCLP. Second, we propose new formulations for the ATSP. Then, we improve one
of the well-known algorithms for the CVRP. Lastly, we propose new enhancements for
one of the widely used algorithms for the CMSTP.

1.1. Unidirectional Cyclic Layout Problem

The UCLP is related to the assignment of n workstations to n predetermined
locations in a manufacturing cell which consists of a circular material handling. It is
shown to be NP-hard by Kouvelis and Kim [1]. Circular material handling systems
connect all workstations by passing through each workstation exactly once. The system
is assumed to move the materials unidirectionally (e.g. clockwise or counter-clockwise)
around the circuit. Typical examples of this type of material handling systems are
loop conveyors, tow lines, overhead monorail systems and wire paths of unidirectional
automated guided vehicles. One of the workstations serves as the load/unload area;

this is where parts enter and leave the manufacturing cell. Each part is routed through



workstations following the sequence specified in its process plan. When a part is
processed at one of the workstations, material handling system moves it unidirectionally
to the next station pointed in the process plan. If the workstation is occupied, the
part is awaited in a buffer until it becomes available. The objective is to determine
the assignment of workstations to candidate locations which minimizes total distance
travelled by the parts in the manufacturing cell within a unit time. One version of the
UCLP is known as the Balanced Unidirectional Cyclic Layout Problem (BUCLP). The
balanced case, is particularly relevant to automated manufacturing where no manual
interruption is allowed to remove/insert parts from/to the workstations. In other words,
the material flow is conserved at each workstation: Total inflow is equal to total outflow

at a workstation.
1.2. Asymmetric Travelling Salesman Problem

Any algorithm devised to solve the ATSP tries to answer the following question:
Given a set of n cities and possibly asymmetric intercity distances, what is the shortest
tour that visits each city exactly once. Even the euclidean travelling salesman problem
is known to be NP-Complete [2]. The ATSP is one of the oldest combinatorial problems.
According to Punnen [3] the first work published on the ATSP goes back to 1932 by [4]
and the name “Travelling Salesman Problem” has been coined by Robinson [5]. The
books by Lawler et al. [6], Reinelt [7] and Gutin and Punnen [8] summarize various

developments on the subject.
1.3. Capacitated Vehicle Routing Problem

The CVRP is the problem concerning the distribution of goods between depots
and customers. The classical CVRP can be defined as designing a set of routes with
minimum total routing cost for a fleet o.f m identical vehicles with capacity D which
have to serve n customers with nonnegative demand d; from a depot subject to the

following constraints:

e Each customer is served exactly once by exactly one vehicle



e Each route starts and ends at the depot

e The total demand on each route does not exceed vehicle capacity D.

In many instances, additional requirements and assumptions are added to this
basic definition in order to model various aspects of real - life distribution problems.
For a complete survey see the recent monograph edited by Toth and Vigo [9]. As the
ATSP, the CVRP is also a difficult combinatorial optimization problem. It is known
to be NP_hard [10].

1.4. Capacitated Minimal Spanning Tree Problem

To define the CMSTP, consider G = {V, E} where V = {0, 1,...,n} is the vertex
set with O as the central vertex (root), and E = {{i,5} : i,7 € V,i # j} is the edge
set. Each noncentral vertex has a known nonnegative demand d;. A cost ¢;;, which is
the cost of connecting vertices (terminals) ¢ and j, is associated with edge {7,j}. The
CMSTP is to find a minimal — cost tree which spans over all vertices so that the sum of
demands in each subtree obtained by deleting the edges connecting them to the central
vertex does not exceed the capacity limitation ). The subtree containing vertex i
is called the subtree of ¢ and the set V; denotes its vertices. The edge connecting the
subtree of vertex 7 is the gate of 4+ and has length g;. When the demands of all terminals
are equal to unity, the problem reduces to finding a minimal — cost rooted spanning tree
in which each subtree contains at most ¢} vertices. This unit demand case, which is also
known as the homogeneous demand case, is referred as the CMSTP in the literature.
In this thesis we are concerned in both the homogeneous and heterogeneous cases and
propose new heuristics for the CMSTP in general. The uncapacitated version is the
well — known minimum spanning tree (MST) problem. The survey paper by Gavish is
an excellent resource to learn about the telecommunication network design problems
which can be formulated as a CMSTP [11]. It has been shown that even for the unit
demand case it is NP-complete when 2 < @ < n/2 [12].



1.5. Motivations and Contributions

Chapter 1 outlines the UCLP. This problem has several applications in the layout
of Flexible Manufacturing Systems (FMS). The determinatién of workstation locations
around a closed loop conveyor system, in the allocation of. cutting tools on the sites
around a turret, in the positioning of stations around a unidirectional single loop

Automated Guided Vehicle (AGV) path are only a few of real-life examples.

Chapter 2 is where we propose new heuristics for the UCLP. We present the
relationships between the UCLP and the ATSP and, thé Linear Ordering Problem
(LOP). By exploring these relations, we adopt for the UCLP several algorithms origi-
nally devised for the ATSP and LOP. Then, we improve some of these ideas resulting
in new very accurate and fast local improvement heuristics. A comparison of different

algorithms is also provided.

In Chapter 3, we propose a branch and bound algorithm for the BUCLP. We use
the efficient heuristic developed in Chapter 2, for upper bounding. The LP relaxation
of an existing BUCLP formulation is used for lower bounding. A new dominance is

also proposed to decrease the size of the enumeration tree.

Chapter 4 reviews entirely the existing ATSP formulations and their comparisons.
We present the current state of the classification of the known ATSP formulations. The
comparison of the ATSP is an important issue which attracted the attention of several
researchers. Ever since the seminal paper by Dantzig, Fulkerson and Johnson [13] there
has been many attempts for a perfect formulation of the ATSP. Dantzig, Fulkerson
and Johnson have not only solved the ATSP but have also shown that the concept
of cutting planes is important for integer linear programs and the complexity of the
facet structure of a combinatorial optimization problem can be dealt by using linear
programming efficiently. In addition they used, perhaps for the first time, the concept
of branch and bound, which shows how the quality of the bound obtained through

linear programming relaxations is important.



In general, in integer programming a good formulation is of crucial importance to
solve the model. Then, the question becomes how different ATSP formulations should
be compared. As it is already indicated, ATSP algorithms require a lower bound on
the value of the objective function, and the efficiency of the algorithm depend on the
sharpness of the bound. In almost all of the cases the lower bound is obtained by
solving a linear programming relaxation. Therefore, it is possible to say that given
different formulations the formulation whose linear programming relaxation has the

largest optiinum objective value is the best of them.

A perfect formulation means an ideal description of the ATSP polytope where
the linear programming relaxation of it leads us to the optimum. Although such
formulations could have been obtained for unrealistically small problems the effort has
resulted in different formulations with varying quality as stated by Langevin, Soumis

and Desrosiers [14] and Padberg and Sung [15].

Chapter 5 analyzes new extended ATSP formulations with O(n?®) subtour elimi-
nation constraints. They are based on an integer programming model developed for the
BUCLP by Kiran et dl. [16]. The strength of new ATSP formulations are analyzed and
compared with major compact ATSP formulations presented in Chapter 4. We show
that the linear programming relaxation of one of the new formulations can have opti-
mal objective value larger than the one of the linear programming relaxation of ATSP
multi-commodity flow formulations. One more outcome of this chapter is another new
ATSP formulation with n(n — 1)(n — 2) + (n)(n — 1) subtour elimination constraints
only. Different than many other formulations, this formulation interestingly does not

require the 2n assignment constraints.

In Chapter 6 and Chapter 7, we respectively present a new enhancement of Clarke
and Wright’s (CW) savings heuristic for the CVRP [17] and new enhancements of the
Esau and Williams’s (EW) savings heuristic for the CMSTP [18]. Both of the CW
and EW heuristics start with an infeasible solution, and based on a saving criterion
they quickly reach a feasible solution. CW and EW savings heuristics obtain a final
solution starting from a simple solution. For both of the CVRP and CMSTP, several
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heuristic solution methods have been proposed. They can be classified as classical
heuristics and metaheuristics. Recent developments have §hown that metaheuristics
outperform classical heuristics. However, they require long computation times and
there are difficulties in their parameter calibration and coding phases. This explains
the popularity of the savings heuristics for CVRP and CMSTP in practice. Based on
the extensive computational experiments we observe that they improve their accuracy

considerably without harming their simplicity.

In Chapter 8 we summarize this dissertation, and discuss potential research prob-

lems. We also present further research topics.

To summarize, the contribution of this dissertation is three fold. First, we con-
sider the BUCLP and develop new efficient and accurate heuristics for its solution.
Second, we explore the relationship of this cyclic layout problem with the ATSP and,
propose new ATSP formulations. Then, we compare these new ATSP formulations
with the existing ones. Third, we enhance the CW and EW savings heuristics for the
CVRP and CMSTP, respectively.



2. THE DESIGN OF OPTIMAL UNIDIRECTIONAL
CYCLIC LAYOUTS

2.1. Introduction

Consider a manufacturing cell which consists of a circular material handling sys-
tem and n workstations assigned to n candidate locations. Circular material han-
dling systems connect all workstations by passing through each workstation exactly
once. The system is assumed to move the parts unidirectionally clockwise, or counter-
_clockwise. Typical examples of this type material handling systems are 106p CONVeyors
(Figuré 2.1), robot arms rotating unidirectionally (Figure 2.2), and unidirectional sin-
gle loop automated guided vehicles (Figure 2.3). As it can be seen in the figures one of
the workstations serves as the load/unload (LUL) area. A common operational policy
for circular material handling systems is to require all parts enter and leave the man-
ufacturing cell at the LUL area. Each part is routed through workstations following
the sequence specified in its process plan. When a part is processed at one of the
workstations, material handling system moves it unidirectionally to the next worksta-
tion pointed in the process plan. If the workstation is occupied, the part is awaited
in a buffer until it becomes available. The objective is to determine the assignment of
workstations to candidate locations which minimizes total transportation cost of the
parts in the manufacturing cell within a unit time. This is a layout problem where
a layout is an assignment of workstations to locations. According to Afentakis [19],
Unidirectional Cyclic Layouts (UCLs) are mostly preferred because of their relative
low initial investment costs, high niateria.l handling flexibility and their ability of being

easily accommodated to future introduction of new parts and process changes.

As underlined by Kouvelis et al. [20] the optimal design of its physical layout is
crucial for the performance of an FMS. The work by Afentakis [19] is the very first
attempt for the design of an UCL in this respect. He gives a binary integer linear

programming formulation to determine locations of the workstations which minimize



Load/Unioad Station

Station 7
Station 2

Station 6

Station 1 Iy , Station 3

Load/Unload
" Station

Station 4

Station 5

Figure 2.2. Unidirectional robot arm serving 8 stations
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Figure 2.3. AGV system with 6 stations and 4 vehicles

material transport in a UCL. We refer this problem as the UCLP in the sequel. Kou-
velis and Kim [1] have shown that the UCLP is NP-hard. A detailed discussion on the
complexity of the UCLP is also provided by Tansel and Bilen [21]. UCLP has special
forms. In one of them the material flow is conserved at each workstation: Total inflow is
equal to total outflow. This version of the UCLP is known as the BUCLP. The BUCLP
is particularly relevant in automated manufacturing where no manual interruption is
allowed to remove/insert parts from/to the workstations. Another special form of the
UCLP is the Fquidistant Unidirectional Cyclic Layout Problem (EUCLP), where can-
didate locations served by a unidirectional cyclic material hé,ndling system are equally
distant. Both problems have been addressed previously by Bozer and Rim [22], and
Kiran et al. [16] respectively.

Both heuristics and exact methods are proposed for the:solution of the UCLP.' The
works by Kiran and Karabat [23], Kouvelis and Kim [1], Tansel and Bilen [21], Cheng
and Gen [24] and Lee et al. [25] are only a few of them. .In this work we consider
UCLs with single LUL area operational policy. We also assume that the part flow
is conserved at every workstation Wheh necessary. We first show new features of the
existing formulations. Then we diécuss and propose new construction and improvement

heuristics for determining optimal layouts. New heuristics are efficient and accurate
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according to our experimental results. The rest of this chapter is organized as follows.
In the next section we discuss the formulations of the UCLP as a Quadratic Assignment
Problem (QAP) and BUCLP as a binary integer linear programming (BILP) problem.
We also explain a relaxation of the EUCLP by Bozer and Rim [22] and suggest a
slightly more efficient equivalent modification for it. Lower Bounds obtained by solving
the modiﬁed Bozer - Rim relaxation are used in assessing the quality of the heuristics.
The third and fourth sections are entirely devoted to heuristics: We summarize some of
the existing heuristics, which are used in benchmarking, and propose faster and more
accurate new ones. Section five includes computational results and conclusions on the

BUCLP.
2.2. Unidirectional Cyclic Layout Problem

Let N = {1,...,n} be the set of workstations to be located at the candidate
locations connected by a unidirectional circular material handling system where one of
the workstations represents the LUL area, and F' be the n X n part flow matrix whose
(3,7)t entry fi; > 0 denotes the average number of jobs to be moved from workstation
i to workstation j over a given length of time. Clearly fi; = 0. A discussion of
how matrix F' is determined from process plans can be found in Tansel and Bilen [21].
Unidirectional cyclic material handling systems together with the n candidate locations
specified ‘around it can be modelled by a circuit with n vertices. Notice that n is the
number of candidate locations (also workstations) including the LUL area. The vertices
are numbered 1 through 7 in increasing order in clockwise direction, which is assumed
without loss of generality as the direction of material flow. The system is illustrated

in Figure 2.4.

The weight w, is the length of arc (¢,¢+ 1) and determines the distance between
locations ¢ and ¢t-+1. Notice that location -1 denotes location 1 because of circularity.

Asa consequence, d;;, the transportation distance from location i to location j, becomes

p S, ifi<j
ij = . .
A=ST", ifi>g

t=i

(2.1)
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w /
Oarm®

Figure 2.4. A unidirectional cyclic material handling system

Here the constant ) is the length of the circuit. Namely, 7, wy = A a.nd distance d;;

satisfies the followmg metric properties:

1. di; =0 h,j=1,...,ni=3
2. di + dig > diy k=1 .mitjtk
3. dij +dj = A L,ij=1,...,ni#£ ]

4. dij7édjiunlessdij=)\/2 Z,]-—"“—l,,n,?,?éj

A layout of n workstations, which has already been defined as the assignment of work-
stations ¢ = 1,...,n to candidate locations {1,...,n} with one workstation per loca-
tion, can be denoted as a permutation vector 7 = (71, ...,7,) where m; is the number
of workstation assigned to location 4. Then the question is to determine a layout
which minimizes certain appropriate cost function of material transport. Two types of

objective function have been used in the literature:

1. Minimization of the total part transport distange per unit time;
2. Minimization of the total number of parts that pass through the LUL area per

unit time.

As shown by Bozer and Rim [22] and Kiran et al. [16] under the first o‘bjective the
UCLP becomes the QAP after letting II denote the set of all possible layouts, namely
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all possible permutations of indices {1,...,n}
min ¢; () = %1; ; Frimy i (2.2)
J#i

To formulate the UCLP with the second objective function Afentakis [19], and
Kouvelis and Kim [1] have defined the indicator function

1 ifi>j
I(i,5) = , (2.3)
0 otherwise

which is used to count the number of parts passing through the LUL area. If the
location i is greater than location j, the parts going from workstation ;, located at
location ¢, to workstation m;, located at location j, pass through the LUL area; and

this results in the following QAP formulation of the UCLP:

mmcz(’fr mmZZfW,] i, 7). (2.4)
=1 j=1
J#i
In fact,

ci(r) = Aeg(m) (2.5)

both formulations become equivalent for UCLs with single L UL area and balanced part
flow. This result has been shown by Kouvelis and Kim [1], and Tansel and Bilen [26].
Then, any one of the workstations can .be chosen as the LUL area. As a remark,
although it is not particularly stated in any of these works, balanced part flow assump-
tion is necessary in the derivation of relation (2.5). In order to see this necessity let

us consider a UCL of three workstations with unbalanced workstation-to-workstation
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part flow matrix

fo 13
FF=1102],
2 40

and assume that circuit length A = 1 and location 1 is the LUL area. For the layout
7 = (1,3,2), namely for workstation 1 is located at location 1, workstation 2 is located

at location 3, and workstation 3 is located at location 2,

C1 (7‘(‘) = 3dyg + d13 + 2da; + 4das + d31 + 2d3g
= 2(d12 + da1) + (d13 + ds1) + 2(das + dsa) + 2daz + dia

=5+dyy+2dy3 > 5= )\CQ(W).

However, for

0 2 3
F=110 6/,
4 5 0

which is balanced, we obtain
ci(m) = 11 = Aep(m).
Relation (2.5) between ¢;(7) and co(7) is important because cy(m) has the fol-
lowing property which makes new heuristics computationally efficient for the BUCLP.
Consider the initial layout

T = (7'('1, ooy TGy Ty it Ly eeny e 1y Ty Tl y eony ﬂ'n), (26)

and move forward workstation 7; located at location ¢ to location j (with 4 < j). This
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results in the new layout
f‘f = (7!'1, eony T3 Tiely oony 7Tj_1, ﬂ'j, iy 7Tj_|_1., ceny ﬂ'n), (27)

where workstation m; is now at location j. For the same initial layout (2.6), when
workstation 7; located at location j is moved backward to location 7 (with ¢ < j) the
new layout

b __

T = (71"1, ceny M1, 7Tj,7Ti,7T¢+1, veny 7Tj_1, 7'l'j+1, ...,Wn), (28)
is obtained. Workstation ; is now at location ¢. Then, the changes in the cost function

c2(m) due to the forward move of workstation m; to location j and the backward move

of workstation 7; to location ¢ are respectively

Ai; = () — 62(ﬁf) = Z (frwms = Frim)s (2.9)
—i+1
and
j—1
AI; = 62('717) - 62(-7?2)) = z(fvrjm - fﬂ'[cﬂ'j)‘ (2.10)
k=i

This is a direct consequence of the definition of the cost function cy(w). We can
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determine the costs of layouts 7 and 7/ as

n  i-1 n n j—1 n
Ty = > D fum+ D fumt D D Frumt+ Y frum,

k=j+11=1 k=j+1 k=j+lU=it+l k=j+1
i—1 i-1
+ ZijW( + fg,z + S fﬂ‘jm
=1 l=i+1
j=1 i-1 i-1
+ Z E :f'ﬂ’km—[_ Zfﬂ'kﬂ'i
k=i+11=1 k=i+1
i—1
+ E :frm
=1
i—1 k-1 j=-1 k-1 n
+Z§ :fﬂk’ﬂ'z"l' E : E :f'rrsz"l' E : § :fwkvr; s
k=2 =1 k—z+2l—~z+1 k=j+2l=34+1
and
n -1
—f) 2 : E :f’ﬂ'kﬂz'}" § : _S_ :f“'k'ﬂ'l+ E :fﬂkﬂy+ Z fﬂ'k""z
k=j+1 =1 k=j+1l=i+1 k=j+1 k=j+1
i—1 i—
+ Zfﬂzﬂ'l + § :f‘tr,,ﬂ‘g + f""iWJ
l_z—l-l
i—1
+ E :f‘ll']’lrz + E fﬂ‘,m
J=i4-1
i~1 i-1
+ § § f’l‘rk'lfl
" k=itli=1
i—1 k-1 i—1 k-1 n
+ 3 Y frum + Z > Fremt D E ifm
k=2 I=1 k=it-2l=i+1 k=j+2A=j+1

Then A/, can be obtained by subtracting co(7”) from ¢y(T), resulting in many can-
cellations and finally in the simple expression (2.9). Af;z can be obté.ined similarly.
Notice that (2.9) and (2.10) can be used for the BUCLP with ¢; () or cy(r) since both
objectives are equivalent. However, this is not possible for the unbalanced UCLP.

In their early work Bozer and Rim [22], later on Kiran et al. [16], have shown

that the cost c¢;(m) of a layout 7 is independent of where the workstations are located
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‘around the unidirectional cyclic material handling system when the part flow is bal-
anced. In other words the predetermined locations can be shifted without modifying
the value of the objective function as long as the layout, namely the sequence of the
workstations around the unidirectional cyclic material handling system, remains the
same. In short, when the part flow is balanced, even the locations are nonequidistant,
the problem becomes equivalent to the determination of a cyclic permutation of the
workstations around the unidirectional circular material handling system, which mini-
‘mizes total material transport. In fact it has been shown that the BUCLP and EUCLP
are equivalent (Bozer and Rim [22], Kiran et al. [16)).

2.2.1. Aféntakis’ Formulation

In his seminal paper, Afentakis [19] proposed a BILP formulation for the BUCLP
which he called as the Loop Interconnection Problem (LIP). In his formulation, a
traffic graph D = (V, A) is defined consisting of vertices V' denoting the workstations
and directed arcs (i, 7) € A reflecting the part flow from workstation ¢ to workstation
J, with the costs fi; associated for each arc (4,7) € A. He assumed that parts enter and
exit the system through a LUL area and complete an integer number of tours around

the loop before leaving the system, which makes the material flow balanced. LIP is

given below:
n
LIP: min Y fii(1 - i) ‘ (2.11)
(ig)eA
s.t. yij—}-yﬁ:l z,gzl,,n,zaéy (212)
yi; = 0,1 L,j=1,...,mi#£j (2.14)
where

1 if workstation 7 is located after
Yij = workstation ¢ in an optimal layout .

0 otherwise
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As noted by Afentakis [19], the objective function (2.11) minimizes the total number
of times the parts cross the LUL area. Constraints (2.12) guarantee either workstation
1 is located before workstation j, or vice versa. Constraints (2.13) state if workstation
% is located before workstation &k and workstation & is located before workstation 7,

then workstation ¢ must be located before workstation j.

2.2.2. Kiran, Unal and Karabati’s Formulation

Later, Kiran et al. [16] have developed an extended formulation for the BUCLP.

They define the following auxiliary binary decision variables

1 if workstation j immediately follows
Tij = workstation ¢ in an optimal layout )

0 otherwise

and let d;; denote the distance between workstations ¢ and j. The distances can be
scaled by dividing the constant circuit length A. This does not affect the solution of
the problem. Thus, it is possible to assume that A =1 and 0 < d;; < 1 without loss of
generality. Then their BILP formulation for the BUCLP is given as

BUCLP: minii fiidsj (2.15)
i
s.t.zn:xij =1 i=1,...,n (2.16)
=1
J#i
i}ﬁ=1 j=1,...,n (2.17)
5
dij +dji =1 =1, mi ] (2.18)
Arej = dii + dij + 245 — 1 LWhk=1...,mi#j#k (2.19)
zi =0,1 i,j=1,...,n1#] (2.20)

0<d; <1 ii=1,...,m4 %] (2.21)
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In this formulation constraints (2.16) and (2.17) are exactly the assignment con-
straints and ensure that each workstation has exactly one predecessor and one succes-
sor. Constraints (2.18) and (2.19) define the properties of i:he distance matrix. Also
(2.19) guarantees that di; = dy + di; if workstation j immediately follows workstation
k in the flow direction in an optimal layout as shown by Kiran et al. [16]. They have
shown that this is a valid BUCLP formulation, and conjectured that it is in fact ideal
and its linear programming relaxation gives always an integer optimal solution based
on their test with 3600 random instances generated for n = 5, 6, 7 workstations. How-
ever, Tansel and Bilen [27] have demonstrated fractional solutions are possible for larger
problems, later on. An interestiﬁg consequence of this formulation is the interpretation
of the distance variables d;;. The flow is balanced first of all. It is also assumed that
parts enter and leave the system by the LUL area. As a result the objective function
of the BUCLP becomes equivalent to cy(n) of (2.4), and counts the number of times
parts pass through the LUL area, since the length A of the UCL is 1. Therefore, d;;
must behave as the indicator function (2.3) and be equal to 1 if workstation i is .after
workstation j in a layout. This also explains why these variables have always 0 or 1

values at the optimality.

Any feasible solution of the BUCLP consists of a feasible UCL and distances be-
tween workstations. Any UCL is a cyclic permutation of workstations which determine
a circular sequence of them. As a consequence we can represent a feasible UCL as a
Hamiltonian circuit of the Afentakis’ traffic graph. Now we would like to discuss some
properties of the BUCLP formulation. From now on we will assume that the traffic
graph is a complete digraph. This does cause any loss of generality since f;; can be
made arbitrarily large for any non existing arc (¢,7) € A . Let us consider arbitrarily

- three workstations 7, j, k and the distance constraints (2.19) involved. These are
dix > dij + djr + T — 1 (2.22)
and

dii > dij + dji + 55 — 1. (2.23)
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If 2, = 1 then z; = 0 because there can be only one exit from every workstation
as a consequence of the assignment constraint .. z; = 1. Also di; = 1 — dj,
dii = 1 —dy, from the circularity constraints (2.19). Then for z; = 1 (2.22) and (2.23)

become respectively

dir, = dij + diji, (2.24)
and

1-de>1—-djr+1—dy— 1 (2.25)

The last inequality can be reorganized to obtain

dix < di; + dyg
which implies that

Ay = dij + djk-

when considered together with (2.24). As a consequence of this discussion the following

lemma was originally proven by Kiran et al. [16].

Lemma 2.1 [16] For any three workstations i,j and k, if j immediately precedes k

on a circuit, then di; = dy; + dj.

Both, the proofs of the next lemma and the following theorem use Lemma 2.1. Notice

that Theorem 2.1 strengthens Theorem 3 given in [16].

Lemma 2.2 Consider any two workstations i,, 44 on a given circuit D¢ = (Ve, C) of
the traffic graph D = (V, A) and the directed path {(2p, tp+1); (Gpt1, tp+2), - - -, (8g—3, %g—2),

(4g—2,%g-1), (44-1, %)} connecting them on the circuit D¢. Then d;,;, = Z;; Qiripps-
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Proof. As a consequence of Lemma 2.1 the equalities

Qipiy = igigy T Gig_yi,
dip’:q-l = d'ipiq—2 + diq~2iq—1

dip’:q——2 = d'ip’:q—3 + diq—Siq—2

Bigipra = Bigipis T Digripra

can be written since %4, = 1 for r = p,p +1,...,9—1, Wthh reduces to di,;, =

-14
Zq di,i,,, because of the cancellations. m

Theorem 2.1 E(i,j)eé di; = 1 for any circuit Dg = (Ve, C) of the traffic graph- D =
(V, A).

Proof. The assertion is trivially true for |C| = 2 since d;; + dj; = 1. Let C be the arc
set of any circuit of size m and let C = {(%1,172), (%2,%3), - - - ; (brn—15%m); (b Ime1) } With
im+1 = %1, be the circuit arcs. For the vertices on the circuit we can write

d:

tlpt1

=dis, + diipy, t=1,...,m, p=1,....m; t#pp+1L (2.26)

as a consequence of Lemma 2.1. The addition of these inequalities side by side results

in

Z Z (d’tzz’ +d"p’p+1) Z Z dztzp.,.l (227)

_. _.1 t=1
taép,p+1 t#p,p+1

For any triplet (i, 4y, 4p11) of vertices, where ¢ # p and ¢ # p+1, there are two possible
cases as it can be seen in Figure 2.5. If ¢t # p+ 2, then it is possible to write equalities

ivip + digipyy = Givipyy
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Figure 2.5. Possible cases for triplet (i;,%p, ipy1)

and
Biigr + Gipyripa = Disips

respectively for triplets (i, ipyip+1) a0d (%, %p11,%p+2). When these two equalities are

added side by side to derive (2.27) the term d;,;,,, is cancelled.
If t = p+ 2, then it is possible to write
igip + Gigipyy = Giripss
where the term d;,;, is cancelled in (2.27) because of the equality
iy + diyyi, = iy,

As a result of both cases (2.27) reduces to

m m m
(m - 2) Z d":p":p-{-l + Z d’ipip+1 = Z dip+1ip (2.28)
whose right hand side can be re-expressed as

Z (1—di..)- (2.29)
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After replacing the right hand side of (2.28) with (2.29) and arranging the terms we

obtain
m
m § :dirip+1 =m
p=1

which implies that

m

Z d'épip+1 =1

p:

and the proof is complete. ‘ |

There are two direct consequences of Theorem 2.1. The first one, is given as
Corollary 2.1, Constraints 2.18 and 2.19 do not allow any subtour of the traffic graph in
a feasible solution of BUCLP. Corollary 2.2 points to an interesting feature of the same
formulation. Constraints (2.18) and (2.19) eliminate any subtour with one exception:
Hamiltonian circuits of the traffic graph do not cause any feasibility and they are not

eliminated.

Corollary 2.1 Constraints (2.18) and (2.19) eliminate any subtour.

Proof. Let D¢ = (Vg, C) be any non Hamiltonian circuit on the traffic digraph, which
is assumed to be the complete digraph with vertex set V = {1,...,n}. Then for any

vertex k which is not on the circuit and for all arc (4, 7) on the circuit

jGVC ":E'VC (irj)eo ("'7.7)60

can be written. Since )y, dej = Y iey,, dii (2.30) becomes

Yoz<ICl- Y dy

(i.f)eC (i.5)eC

which completes the proof since Z(i’ jec dij =1 as a consequence of Theorem 2.1. =
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Corollary 2.2 Constraints (2.18) and (2.19) are not violated for any Hamiltonian
circuit of the traffic graph.

Proof. Let C be the arc set of size m > 3 of any circuit D¢ = (Ve, C), and let

C = {(il,ig),(ig,ig),...,(im_l,im),(im,im_,.l)} with 4mi1 = 41, be the circuit arcs.

Consider vertices i1, 7% and 7;, and the inequalities

Qiiz 2= digsy + digiy + Tigs, — 1

Qirig 2 Qigig + digig + Tigig — 1

Giria 2 igiy + digiy + Tigiy — 1

diyis 2 digiy + digis + Tigis — 1

Qitim = Bigipm_y T Qigy_vim T+ Tigg_yi, — 1
diyiy 2 Aigiy + Qingiy + Tiysy — 1

with k # 1,2,1 and [ # 1,m, k. Same argument can be repeated for any other three

vertices with the same properties. When these inequalities are summed up side by side

(diin + Girim + igsy) = (digi, + diyiy + digs,) + Y dig+ Y 75— |C]
(i.5)eC (3.4)eC

is obtained because of cancellations. In addition, the réplacéments dipin = 1 — digs,,

diyi,, = 1 —d;4, and dy;, = 1 — dyy;,, and appropriate manipulations give

3 > (diriy + Giniy + diiy) + (digs, + digis + disr) + Y, dig+ > 35— |C].
(ig)eC (i)eC

Then, diiy + digi, + digs, = Z(i,j)eC d;; and diyiy + s, + d‘imil = E(z‘,j)ec d;; follow
from Lemma 2.2. Besides Z(i e di; = 1 by Theorem 2.1. Hence, the last inequality

reduces to

321+1+1+m—m,
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which does not cause any violation of the subtour elimination constraints.

For the case k = [ # 1,2, m same arguments result in -

2> (diyiy + digiy + diginn + diis) + D, i+ D zi5—|C].
(s.9)eC (i.5)eC

This clearly reduces to
2>21+1+m—m,

since d;; 4, + digsy, + digir, + dini, = 1 as a consequence of Lemma 2.2 and Theorem 2.1.
Therefore, we can consider a Hamiltonian circuit instead of D¢ = (Vg, C) in particular,

which completes the proof. : ]

Theorem 2.1 and its two corollaries will be used in Chapter 5 in the context of

the new ATSP formulations to show their validity and strength.

The previously shown two lemmas and theorem are the basic properties of the
BUCLP formulation. We will not only refer them in the following discussion but also

in Section 5.1.1 in the context of the new ATSP formulations.

Now we would like to present a new property of the BUCLP formulation (2.15)—
(2.21). Consider any feasible solution (z,d). Then  must be the characteristic vector
of an Hamiltonian circuit of the traffic graph as a consequence of Corollary 2.1 and
Corollary 2.2. Notice that the vertex z represent a feasible unidirectional cyclic layout
(UCL) in the mean time. Moreover, the vector d satisfies (2,18) and di = d;; + djx for
any three workstations i # j # as a consequence of Lemma 2.2. Since dj = 1 — dj;,

dij + djr +dg; = 1 for ¢ < j < k in particular. In other words, auxiliary variable vector
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d of any feasible BUCLP solution satisfies constraints

d,;j + dji =1 1< 7 (2.31)
d,;j 4+ dj],, +dy=1 i<j<k (2.32)

The converse is also true. Consider the vector (z,d) where z is the characteristic
vector of any Hamiltonian circuit of the traffic graph and assume d satisfies equalities
(2.31) and (2.32). It trivially satisfies equalities (2.18) because of the symmetry of
the variables d;; and d;;. For any two workstations j and & where k is the immediate
successor of j on a feasible layout, z;;, = 1. Then for any i # j, k constraints (2.19)

becomes
dij+dp+d <1 i=1,...,n; i#]

which is clearly satisfied by any d satisfying (2.31). In case k is not the immediate

successor of 7, z;; = 0 and (2.19) becomes
d13+djk+dkzs2 z=1,,n, Z;éj

which is again satisfied by any d satisfying (2.31). Therefore we have shown the fol-

lowing lemma.

Lemma 2.3 For any given UCL the BUCLP formulation (2.15)—(2.21) reduces to the
following LP in d;;:

n n
P: miny Y  fiidis
i=1 j=1
i

s.t. (2.31),(2.32),di; > 0 i<j
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Now we can write the dual problem of P as

n—2 n—-1 n n-1 n :
D: IIlaXZ Z Z Vijk T Z Z Usj : (2.33)
i=1 jeitlk=j+1 i1 ikl
n n—2
sboug+ Y Vet D Wkig S fiy B =116 <] (2.34)
k=3 k=1 )
i<k k<i
n—1
uii+ Y ki < fi i,5=1,...,n; j <i (2.35)
k=2
J<k<i
uij, Uik unrestricted Lhk=1,...,ni<j<k (2.36)

Here u;; and vi;x are the dual variables associated respectively with constraints (2.31)

and (2.32). Consider the primal — dual solution pair

1 ii=1,... mj<i
dij = (2.37)
0 otherwise. ’
Fie = Fus i=1,2<j<k
— Lty (2.38)
0 otherwise
fn+ > (fw—fg)  i=1,25j
Uir = k=2
* k<j
fii otherwise

They are respectively primal and dual feasible. Notice that

Y (fg = fi) = Fa+ Y (f5 = fu)

i=2 i=2
>3] i<

follows for all § > 1, because the part flow is balanced and. > fi = >, fi; for
i=Tij i=Lij
j=1,...,n. If welet zp and zp denote primal and dual objective values, then for
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(2.37)
n—1l n
Zp = Z Z fiidi
i=1 j=i+1
n-1l =n
=2 2. fx
i=1 j=i+1
and for (2.38)
n—-2 n-1 n n—1 n
ZD:Z Z Z 'Uz'jk'l‘z Z Uij
i=1 j=i+1k=j+1 i=l j=itl
n-1 n n n—-1"n
= Z vlz-j—i—Zulj—l-Z Z Uij
=2 j=itl =2 i=2 j=i+1
n-1 n n n n—-1 n
=3 Fu— )+ > Fn+ D> Fa—Fa)+D. > fi
§=2 j=i+l’ j=2 :z? =2 F=i+1
n n—-1 n
=) fa+ Z Z i
§=2 =2 =i+l
n—-1 =n
= Z Fii-
i=1 j=i+1

As a result of this discussion we have proven that (2.37) and (2.38) are primal and
dual feasible solutions with equal objective function values. We state this result with

the followirig theorem.

Theorem 2.2 (2.37) and (2.38) are primal and dual optimal solutions of P.

In short, for any given feasible UCL we can determine d;; values and evaluate the
part flow cost very efficiently, which makes the tailoring of any ATSP heuristic for the
BUCLP straightforward.
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2.2.3. Bozer and Rim’s Formulation

Bozer and Rim [22] have proposed the following linear programming (LP) formu-
lation for the EUCLP and claimed that it always gives integer solutions and thus it is
an ideal EUCLP formulation.

EUCLPp: minii fiidis (2.39)
3
s.t. Zdw "‘1 i=1,...,n (2.40)
Jaéz
Zdz, n(n =b)} j=1,...,n (2.41)
i
dij+di=n L,j=1,...,m1#]j (2.42)
dij +djx < dix +n i k=1,... nitjAk (243)
dij + dik > din GLik=1,...nitjAk (244)
di; 2 0 L, j=1,...,mi#j (2.45)

They assume that the length of the cyclic material handling system, namely A, is equal
to n, the number of workstations. Therefore, the distance between two consecutive
locations is 1 and the variable dz?j eventually counts the number of workstations be-
tween workstation ¢ and workstation j, including workstation j but not workstation .
Constraints (2.40)—(2.41) define the properties of the distances. First of all, regardless
of the workstation sequences, the distances from workstation ¢ to all other workstations

add up to the same constant value:

n(n - l).

Y dy=1+2++(n-1)= 5

i=1

i#]

(2.46)

Constraints (2.42) are the circularity constraints and follow from the fact that the
layout is cyclic. Constraints (2.43) and (2.44) are related to the precedence relationship

of any three workstations around the unidirectional material handling system: Starting
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at workstation 4, either workstation 7 precedes workstation &, or workstation & precedes

workstation j. Namely,

d; if workstation j precedes &
dij + dj = . (2.47)
' dix +n  if workstation & precedes j

However, if (2.47) is employed in the formulation as a constraint set, the formulation
would have to include binary variables. As a result Bozer and Rim [22] propose to
use a relaxed version of (2.47), namely constraints (2.43) and (2.44) instead. Although
they give a number of intermediate results to show that the relaxation EUCLPp has
integer optimum solutions and solves the EUCLP to optimality, the proof has not been
validated so far. According to Tansel and Bilen [27], their claim seems to be hardly
true since both the BUCLP and EUCLP are equivalent and there are instances for
which the LP relaxation of the BUCLP has optimal fractional solutions.

Bozer and Rim’s relaxation EUCLPp, can be simplified. First, n in the right
hand side of the inequality (2.43) can be replaced with d;; -+ dj;, which gives

Then, d;; can be cancelled from both sides to obtain
dix < djis + da, i k=1...,mitj#k (2.49)

which are in fact the triangle inequalities (2.44). Therefore, we can agree that con-
straints (2.44) are redundant since they are implied by (2.42) and (2.43). On the other

hand, we can rewrite constraints (2.40) and (2.41) as

& i nn—1)
j=1 Jj=1

i it
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When we add equalities (2.42) for j =1,...,n, j # i we end up with

D (dij+dp)=nn-1) i=1,...,n (2.51)
3=1
ot

Together with (2.50), (2.51) implies that it suffices to use -

idij = zn:dﬁ i=1...,n (2.52)

j=1 j=1

J# J#
instead of constraints (2.40) and (2.41). In other words, this new relaxation, which
is referred as EUCLP’.p in the sequel, consists of the minimization of the objective
function (2.39) subject to the constraint sets (2.42), (2.43), (2.45) and (2.52). As a

consequence of this discussion the following proposition follows.

Proposition 2.1 EUCLPp is equivalent to EUCLP’Lp

Note that EUCLP,p has n®4+n?+n constraints instead of 2n3+n?+2n. Therefore,
EUCLP’.p is used to calculate lower bounds on the optimal objective value of the
BUCLP and also UCLP, which provide benchmarks in assessing the quality of the

solutions new heuristics produce.
2.3. Construction and Improvement Heuristics

We briefly summarize five existing heuristic procedures used to construct and
improve UCLs in the following. Some of them are essentially proposed for solving the
UCLP, namely for the unbalanced and unequally spaced unidirectional cyclic layout
problem. They can be used for the solution of its balanced version, namely the BUCLP,
in particular. We implement and use them as benchmarks in assessing the performance

of our new heuristics.
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2.3.1. Kouvelis and Kim’s Heuristic

Kouvelis and Kim [1] have proposed three construction heuristics: KK1, KK2,
and KK3 for the UCLP. They are based on dominance rules, which suggest locating
a workstation at the first available location (i.e. the beginning of a UCL) if it has
only outflow, and to the last available location (i.e. the end of a UCL) if it has only
inflow. We consider only KK3 in assessing the performance of our new heuristics since
it has the highest accuracy comparing KK1’s and KK2’s. KK3 starts with the part

flow matrix F' and determines workstation pair (¢*, 7*) which gives the largest
RCy = (R~ C)— (R; = Cj) + [ — [y (2.53)

value. Here, R; and C; are respectively obtained by summing up the entries of the ith
row and ** column of F'. They denote total outflow and total inflow for workstation 1.
As for fi; and f;;, they are the number of parts processed in workstation ¢ per unit time
that must be routed to workstation 7, and vice versa. These two workstations, namely
7* and j7*, are respectively assigned to the first and the last available locations. Then
rows ¢* and j*, and columns i*and j* are deleted from F and a new (i*, j*) is determined
by using (2.53) on the new part flow matrix F'. These steps are repeated until the part
flow matrix consists of a single element. KK3 yields a layout where workstations with
higher outflow rate are located towards the beginning and workstations with higher

inflow rate towards the end of a layout.
Notice that formula (2.53) becomes
Rcz'j = f ji fij (2~54)

when the problem is balanced since R; = C; for all i = 1,...,n, and KK3 uses only

flow values between workstation pairs.
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2.3.2. Mdve Heuristic

Tansel and Bilen [21] consider the BUCLP in particular, and propose heuristics
based on the improvements that moving workstations from one location to another one
can do in the objective function. Given the current assignment of n workstations to
n available locations, a layout , move heuristic (MOVE) computes the change in the
objective value that results because of moving any ‘workstation m; located at location 4
to any of the locations 7 # ¢. This is done for every workstation and the improvements
are recorded. Then the move resulting in the largest improvement is realized. The
procedure is repeated until no improvement is possible. Moving workstatien m; from
location 2 ﬁo location j consists of a sequence of location changes. First workstation
m; is moved to location j. Then, if j < ¢ workstations m;, mj41,...,m—1 at locations
4,4+1,...,i—1, are shifted forward to locations j+1, 742, ...,%. If ¢ < j, backward shift
occurs for workstations 7,1, miye,. .., 7;, from locations ¢ + 1,7+ 2,..., 7 to locations

Bhi+1,...,7—-1
2.3.3. Pairwise Interchange and 3-Way Interchange Heuristics

One of the oldest improvement heuristics is based on the idea of improving a
given layout by means of pairwise interchanges (swaps). Famous CRAFT algorithm,
which is used to obtain a good feasible solution for the QAP, is a pairwise interchange
heuristic (Francis, McGinnis and White, [28]). Since the UCLP is a QAP then it
seems natural to exercise pairwise interchange heuristic (SWAP) on it. In short, given
an initial feasible assignment, all possible pairwise interchanges are considered .and
the best one, namely the one with the best improvement in the objective funcﬁion, is
performed. This is repeated until no more improvement is possible. Note that every
pairwise interchange can be achieved by two individual move operations and therefore,
MOVE can be seen as a special form of SWAP as an heuristic. If we let 7 be the initial

layout we obtain the new layout

T= (71"1, ooy M1y Ty Tiply eony =1y Mgy Wjg1y -eey 7Tn) (255)
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when we interchange workstations 7; and m; located at locations i and j which results in
the changes c;(7) —c1 () or ca(7) —ea(T) depending on the type of the objective function
used. It is possible to generalize SWAP to k-way interchange heuristic, as discussed
by Tansel and Bilen [21]. In this work we only consider 3;Way interchange heuristic
(3WI): Three workstations exchange their locations in order to yield a better layout.
At every step, the iinprovements of all possible 3-way interchanges are computed and

the one with the best improvement is performed.

It may seem possible to obtain even further improvements if MOVE is followed
by pairwise interchanges at the first look. However, this is not so since a pairwise

interchange is equivalent to two individual move operations as explained above.
2.3.4. Lee, Huang and Chiang’s Heuristic

Lee, Huang and Chiang heuristic (LHC) is based on the new conditions for opti-
mal UCLs [25]. They show that, any workstation ¢ with fi; = fji, 7 =1,..,n, j # 4,
can be arbitrarily located in any position at the optimal solution, and for any pair of
adjacent workstations ¢ and j, if fi; < f;; than workstation ¢ must be located before
workstation j in an optimal layout. Moreover, they also prove that for any workstation
i, if Ry > C; (R; < C;) where R; is the i** row sum and C; is the ** column sum of
the part flow matrix, then workstation ¢ cannot be assigned to the last (first) loca-
tion immediately before (after) the LUL area. They have devised a branch and beund
algorithm using the depth first search strategy and these rules.

In their heuristic, as initialization, workstations ¢ with symmetric part flows (i.e.
fis =[5, =1,..,m, j # 1) are detected first. These workstations can arbitrarily be
located later. Second, the workstations with C; = 0 (R; = 0) are assigned to available
locations immediately after (before) the LUL area. Then, workstation ¢ with the largest
|R; — C;| value is chosen. If this value is positive (nonpositive) the workstation is
located at the first available location after (before) the LUL area. These are the layout
construction steps of the LHC.
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Finally, an improvement procedure is applied. Workstations with the largest
positive difference R; — C; (C; — R;) are forced to interchange their locations with
the workstations located closer to the LUL area against the part flow direction (in the
part flow direction) of the material handling system. These interchanges are repeated
as long as the objective function keeps decreasing. As the last step, SWAP is applied

only for workstations that are not considered in the previous interchanges.
2.4. New Heuristics

As we have already mentioned, the UCLP is a special form of the QAP. Yet,
another special form of the QAP is the ATSP. In short, the UCLP and the ATSP are
relatives. Both problems deal with the determination of an optimal cyclic permutation;
an optimal assignment of workstations to candidate locations on a circle (an optimal
UCL) in the case of the UCLP, and an optimal assignment of cities to visit orders (an
optimal tour), which can be seen as locations around a circle without loss of generality.
In fact, the ATSP and the balanced problem BUCLP are very close. The relation
between z;; and d;; variables we have shown in Section 2.2 is another characteristic
of the BUCLP that supports this claim. Besides, as it was shown in Chapter 4, it is
possible to obtain a valid extended ATSP formulation with O(n?®) subtour elimination
constraints by only changing the objective function (2.15) of the formulation (2.15)-
(2.21).

Another combinatorial optimization problem related to the UCLP is the well-
known LOP (Reinelt, [29]). There is a detailed discussion on the equivalence of both
problems in the recent work by Potts and Whitehead [30]: LOP consists of finding
a permutation of the columns and rows in order to maximize the sum of the weights
in the upper triangle for a given matrix of weights. In economics the LOP has been
known as the triangulation problem of the input-output matrices. The economy of a
region consists of n sectors and a,n. n X n input-output matrix is constructed with each
(4,7)* entry denoting material flow from sector ¢ to sector j in a given year. Then the
triangulation problem becomes permuting the rows and columns of the input-output

matrix in order to maximize the sum of the entries above the main diagonal. An
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optimal solution clearly gives an ordering, namely a permutation, of the sectors. Since
the solution of the UCLP is related to the ordering of the columns and rows of the part
flow matrix, approaches to solve the LOP can be adopted for the UCLP. At sum the
new heuristics proposed in this section exploit the relations between the UCLP, ATSP
and LOP. ’

2.4.1. Exchange and Relocation Heuristics

The basic exchange heuristic (EX) is originally suggested for the ATSP by Lin
[31], which is the well-known k-opt. We have used this idea for our problem, namely
the UCLP, by exploiting the possibility to represent a unidirectional cyclic layout of
workstations as a Hamiltonian circuit. In this heuristic, the location of four worksta-
tions is replaced with the ones of four others addressixig a decrease in the value of the

objective function. For instance, consider an initial layout
(Dy es by Jy ey By Ly ooy My, ., 0),

where the locations of workstations 7 and 7, k& and [, m and n and, o and p are adjacent.
One possible exchange of adjacency is illustrated in Figure 2.6; it results in the new
layout

(D) o5 By My ooy 0y 1y ooy, Jy s K).

Notice the differences in the adjacent workstations. As for example workstation ¢ is
not adjacent with workstation j anymore; it is adjacent with workstation n. This is
one of the 2 x 4! = 48 possible exchanges. At each step the best of 48 exchanges
is performed and the algorithm is run until no further improvement in the objective

function is possible.

In the relocation heuristic (RE), which is originally proposed for the ATSP by
Or [32] and known as Or-opt, the interest is in a partial layout consisting of four

consecutive workstations. Relocations are restricted only to moving the partial layout
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Figufe 2.6. An exchange of workstations i, 7, k,l,m,n,o,p
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Figure 2.7. A relocation of (4, j, k, [) workstation sequence

consisting of a permutation of four consecutive workstations to n—4 possible locations.
Out of 4! x (n —4) = 24 x (n — 4) possible layouts the one with the best improvement
is selected as the new layout. Two strategies can be used during the relocation of
the workstations: Either the first relocation of the four-workstation partial layout
-which improves the objective function, or the relocation with the best improvement
in the objeétive function is performed. In our implementation, we adopted the best
improvement strategy. In Figure 2.7, we illustrate the relocation of a partial layout
of four workstations 4, j, k,! in a layout of eight workstations. Notice that in the new
layout they are located according to the permutation, %, k,/, 5.. It is possible to see that

MOVE is a special form of RE.
2.4.2. Outflow-Inflow Ratio Heuristic

In his early work on the LOP, Becker [33] proposed a construction heuristic based

on the ratios of row and column sums of the cost matrix. FEach ratio ¢ measures the
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attractiveness of sector i by dividing the sum of the entries in the ** row to the sum of
the entries in the i** column of the input-output matrix. As we have already mentioned
the solution of the UCLP is related to the ordering of the columns and rows of the part
flow matrix. Hence, Becker’s idea can be adopted to locate the workstations. For this

purpose, first the ratios

Q|

T = (2.56)
are calculated for workstations ¢ = 1,...,n. Here, R; and C; are defined as in KK3
and hence 7; is the outflow-inflow (OI) ratio for workstation ¢. The workstation with
the largest ratio is assigned to the closest available location to the LUL area in the
part flow direction. Then, the corresponding column and row are deleted from the part
flow matrix and the new ratios for the remaining workstations represented with the
remaining part flow matrix are calculated and the workstation with the largest ratio is
located right after the previous one. The procedure continues until every workstation

is located, namely a layout is determined.

Notice that it is not meaningful to use OI when the problem is balanced since
R; = C; and thus r; = 1 for all ¢ = 1,...,n. Therefore no values will be reported in

Table 2.2 and Table 2.4 in Section 2.5.2.

2.4.3. Sort and Reverse Heuristic

As another consequence of the relation between the UCLP and the LOP, we have
adopted the efficient sort and reverse heuristic (SR) by Chanas and Kobylanski [34]
originally devised for the LOP. In the SR, sort and reverse operations are successively

applied until no further improvement in the objective function value is possible.

A sort operation improves a given initial layout. In fact, workstations are assigned
to locations from scratch. Consider the layout m = {my, 72, 73, ..., Tn} of workstations.
First, m; and e, namely workstations at the first and the second locations are consid-

ered. The best combination of these two workstations, which has the smallest objective
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function value is chosen. That is to say, we initially considér either the partial layout
{m1,me} or the partial layout {ms,m }. For instance suppose that the partial layout
{mq, T} is better and chosen. Next, the third workstation in the initial layout, i.e. w3,
is considered. It is assigned in all possible locations of the partial layout consisting of
two workstations. In other words, among the partial layouts {ms, 7o, w1}, {ms, 73, 71}
and {ma, 71,73}, the one with the smallest objective functllon value is chosen as the
new partial layout. The process of reassigning the workstations into partial layouts

continues until all of the workstations are located and a complete layout is at hand.

A revefse operation simply reverses the order of workstations of a given layout.
That is to say, considering the initial layout © = {my, ms, 73, ..., T, } of workstations,
reverse operation yields the following layout: {m,,...,7s,me, 71}. In particular when
applied to the layout obtained by a sort operation, usually results in a layout with a
larger ob jective function value. However, when sort is implemented on the reversed lay-
out, a new layout which is much better than the one we obtained with the previous sort
operation, can be obtained. In other words, a reverse operation somewhat represents
an uphill move to escape from a local optimum solution obtained by a sort operation.
Moreover, it can be easily shown that the sort operation .following a reverse operation
does not worsen the layout the sort operation preceding the reverse operation gives,

modifying the arguments by Chanas and Kobylanski [34] proposed for LOP.

2.4.4. Move and Reverse Heuristic

According to the computational results, which can be found in detail in the
next section, SR is the fastest improvement method comparing to other improvement
heuristics; but unfortunately its solution quality is not as good as MOVE’s. Recall
that a reverse operation in SR results in a jump out of the local minimum latest sort
operation produces. Similarly the combination of a reverse operation with a move
operation cah improve én MOVE’s pérformance by causing a jump out of the local
minimum obtained by move operations. We propose replacing a sort in SR with a
run of MOVE to obtain move and reverse (MR) heuristic. In MR, MOVE and reverse

alternate until no further decrease in the objective function is possible.
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Now we formally discuss the correctness of MR, namely why the use of MR does
never worsen a given feasible layout. Let MOV E(x) denote one run of MOVE given the
layout 7 of workstations, and m(m;; j;7) represent the individual move operation for
workstation m;, initially at location 4, to location j in the layout w. Recall that during
one run of MOVE on the given layout of 7; namely the execution of MOVE (7)), we first
compute the objective function value of the layouts obtained by performing individual
move operations m(mw;; j;m) of all workstations 7, ..., 7, from locations i = 1,...,n to
locations j=1,...,n. Then, MOV E(r) updates the layout 7 by realizing the individual
move operation yielding the best improvement in the objective function value. MOVE
runs until no further improvement is possible. These steps are now repeated on the

last layout.

Notice that, after performing one reverse operation for the layout w, we can
obtain the same layout in at least n — 1 and at most n X (n — 1)/2 individual move
operations m(m;; 7; 7). Therefore, this shows that we can not worsen layout 7 after

reversing it, namely executing REV ERSE(r).

For instance, consider the initial layout = = {m, m;} consisting of two worksta-

tions. The following cases occur while running MR:

Case 1: Suppose f;; > f;. MR performs first the reverse operation which yields
{mj,m} — REVERSE({m;, m;}).

Then, all possible layouts obtained by performing individual move operations m(m;; 1; ),
m(mi; 2; ), m(m;; 1;m), and m(m;; 2; ) are considered. These operations yield two pos-
sible layout options {m;, 7;} and {m;,7;}. Among them MOVE performs the one with

the smallest objective function value, namely n’ = {m;, m;} is the new layout, since
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fi > fii. These operations can be summarized step by step. as follows:

MOVE({r;,m}) «— MOV E(REVERSE({m;, ,})),
{mj,m} — MOVE({r;,m}),

7’ — {mj, m},
with ¢1(7) > ¢1(7'), or ea(w) > ca(n’) depending on the type of the cost function used.
Case 2: Suppose, f;; < fi. A reverse operation produces
{mj,mi} «— REVERSE({r;;m;})

and individual move operations work on layouts {m;, 7;} and {m;,m;}. The first layout

is performed since it has smaller or equal objective value. This is shown as
{7('1;, 7Tj} & MOVE({’IT],TQ})

Finally, 7 = {m;,m;} is the solution of MR for f;; < f;;. These steps can be summa-

rized as follows

MOVE({rn;,m}) «— MOVE(REVERSE({m;,m;})),
{71-?37 77.7'} — MOVE({Wja mﬁ})a

7 — {mi,m;}.
with ¢1(7) = ¢1(n”) or ca(w) = co(n”) depending on the type of the cost function used.

So far, we have obtained ¢;(7) > ¢, (#’) for case 1 and ¢;(7) = ¢;(n”) for case 2.
As a result, we deduce that for two workstations, MR can yield layout 7’ or layout 7”,
which are at least as good as the input layout, m. Now we generalize our results further
by induction on the number of workstations. Consider a layout 7 of n — 1 workstations

and assume that MR yields a layout which is at least as good as the input layout =,
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namely
ci(m) 2> cl(MOVE({REVERSE({W})})).

Then attach the end of this layout a new workstation to obtain layout n’ = {r, 7, } of

n workstations. It is clear that
a(m) =c({m, m}).
On the other hand, by definition of the cost function 01
ci({m m}) 2 ct(MOVE({REV ERSE({r}),m})),

since the same value, which is actually the cost term associated with workstation m,,,
is added to both sides of the previous inequality. Moreover, the move of workstation
T, to location n (this is what it is in fact) for the layout n’ = {m, m,} does not affect

the value of the objective function ¢;, and
ci(MOVE({REVERSE({r}),mn}) = ci(m(mp;n; {MOVE({REVERSE({r})}), m.})).
can be written, from which

c1(m(mn; n; {MOVE({REVERSE({r})}),7n})) =
ca(m(m;i=1,...,n{MOVE({REVERSE({n})}), m™}))

follows. Note that, the right hand side of the last inequality is the objective func-
tion value of the best layout after performing all possible individual move opera-
tions for workstation m, in the layout ' = {m,m,}. Finally, since the layout itself,
namely {r,n,}, and its permutations {REV ERSE(r), 7.}, REVERSE({m,m,}) and
REVERSE({REVERSE(r),n,}) are considered as four particular cases in a run of
MOVE({r, m,}), which is m(m,;j = 1,...,n; MOVE({REVERSE({r})}), we can
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write
m{ma;j=1,...,m; {MOVE({REVERSE({W})}), Tn}) = MOV E(REV ERSE({r,m.})).
Therefore
MOVE(REVERSE({r,m,})) = MOVE(REVERSE(r"))
bolds, showing the correctness of the new MR heuristic.
2.5. Computational Results

In this section we discuss the accuracy and efficiency of the heuristics introduced
in Section 2.3 and Section 2.4.. We first explain how we generate random part flow
matrices to form our test bed. We then compare our new heuristics described in

Section 2.4 with the heuristic procedures of Section 2.3.

2.5.1. Test Bed

In an FMS environment workstations, which are interconnected by a material
handling system, can process different part types simultaneously. In our experiments
we consider four different FMS environments with respectively 20, 30, 40 and 50 work-
stations interconnected by a unidirectional cyclic material handling system. We fix the

number of different part types to 50.

Let P={1,..., P} be the set of part types and f%; be the total number of parts
of type p that flow from station ¢ to station j per period of time. Notice P=50 in our

test bed. Then,

fa=D_fF 4i=1...,m i#] (2.57)

peP
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determines the part flow per time period from station % to station j. When the flow is
* balanced ff; can be expressed as

n=npny Gi=1...,ni#j peP (2.58)
where n,, denotes the number of parts of type p to be processed in the system and
ni; denotes the number of moves part type p makes from station i to station j per
perio'd of time, since no part is lost and no new part is created during the process to
cause an unbalance in the flow. Each part type may have a different process plan. The
process plan S, is the sequence in which part type p visits the workstations. Notice
that in any process plan a part can visit a workstation more than once, and hence
a workstation’s number can appear more than one time in S,, but not consecutively.
Hence, nfj specifies the number of times workstations ¢ and j appear consecutively
(¢ immediately before j) in the process plan S,. We have generated randomly 30
process plans, for each one of 50 part types, for our four FMS environments. For this
purpose we first created uniform positive integer numbers between 1 and the number
of workstations, (i.e. 20, 30, 40 or 50) to determine the number of workstations to be
visited by this part type. This actually gives the size of a linear array representing a
process plan, which we fill entry by entry by uniform positive integers between 1 and
the number of workstations while preventing the same integer to occur more than one
time in row. This makes 30x 50% .4 = 600 process plans at sum; and they are all used

in the generation of both balanced and unbalanced instances.

As it can be observed when the part flow is balanced formula (2.58) applies and
the value of n, has a direct effect to the magnitude of f;;. Hence, it is possible to control
the range of numbers in the part flow matrix by means of n,. We generate three sets
of n, with p=1,...,50 respectively from uniform distributions U(1,10), U(1,50) and
U(1,100) as done by Tansel and Bilen [21]. They correspond to low, medium and high
variation part flows. We will mark the instances with letters L, M and H to identify
the type of variation they have, in the sequel. We first use formula (2.58) then formula
(2.57) to obtain balanced part flows between workstation pairs. We generate 10 test

problems per variation type.
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As for the unbalanced part flow, formula (2.58) does not apply anymore since the
number of part type p parts, n,, does not necessarily remain fixed during the process.
As a result we generate n‘% random integers, and sum them up to obtain f7; for every
part type p. Then we use formula (2.57) to obtain unbalanced part flows between
workstation pairs. We use uniform distributions U(1,10), U( 1,50) and U(1,100) for

generating those random integers to create low, medium and high variation part flows.

In summary our test bed consists of the set of balanced and unbalanced instances.
In each set, instances are grouped according to the type of variation their flows have.
Each group is formed by four 10-problem packages respectively with 20, 30, 40 and 50
workstations. For example the package UnBal20-M consists of ten test problems each
with 20 workstations and medium variation in part flows. The package Bal20-M is its
balanced version. In short, there are 80 test instances for each flow type, which makes

a test bed of 240 instances.
2.5.2. Discussion of the Results

Our computational results are summarized in Tables 2.1 ~ 2.4. Table 2.1 and
Table 2.2 include average relative per cent deviations of the ten-problem test sets, for
unbalanced and balanced instances respectively. Table 2.3 and Table 2.4 list average
CPU times. The first columns of the tables consist of the test sets. Each one of the
remaining columns is associated Wiﬁh one of the heuristics.explained in the previous
sections. Columns representing new heuristics are emphasized with bold. The last three
rows of Table 2.1 and Table 2.2 are respectively the column averages (UnBalAver,
BalAver), and the averages of the smallest (UnBalMinAver, BalMinAver) and
largest (UnBalMaxAver, BalMaxAver) relative deviations. They are obtained with
the ten instances of the test sets. The last rows of Table 2.3 and Table 2.4 are simply
the averages of the average CPU times reported in each column. The columns of Table
2.1 and Table 2.2 are in decreasing order of the column averages. However, the ones
in Table 2.3 and Table 2.4 are in increasing order of their averages. We believe this

exposes better the performances of the heuristics.
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The relative per cent deviations are computed using the formula

(Upper Bound - Lower Bound)
(Lower Bound)

100 x

where, Lower Bound is the optimal objective value of the E[iCLP’ Lp and Upper Bound
is the total flow cost obtained by the corresponding heuristic. We have used Cplex ver.
7.0’s barrier solver to soive the EUCLP’p. In all of them, only OI and KK3 are
construction heuristics and build gradually a feasible layout. The remaining ones are
improvement methods and need an initial layout to start. We use KK3 for this purpose
since it performs 9.3 per cent better than OI in the average (i.e. the average of both
unbalanced and balanced instances). Although LHC can be treated as an improvement
heuristic it also includes a construction phase as its first step. Hence, there is no need

to run KK3 to construct an initial layout for LHC.

The cost function ¢; is used in all computations. However, we take advantage
of the equivalence between ¢; and ¢, for balanced insta.ncés and use formulae (2.9) or
(2.10) to prepare Table 2.1 and Table 2.2. This increases the efficiency considerably.
We run all of the heuristics on both unbalanced and balanced instances although some
of them are originally proposed for solving the BUCLP. Two:such examples are MOVE
and its close relative MR. RE and EX are two others; they exploit the relation between’
the BUCLP and ATSP.

Based on UnBalAver values, MR is the most accurate method for the unbal-
anced instances and has an average (average of test set averages) relative per cent
deviation 2.61 per cent. It has also the highest accuracy for the balanced instances. Its
average relative deviation, namely BalAver value, is 2.72 per cent. As a consequence,
the overall accuracy of MR is the highest; its overall average ((UnBalAver + Bal-
Aver)/2) relative deviation is 2.67 per cent. RE, MOVE and EX follow MR in this
order with overall average relative deviations respectively, 3.08, 3.26 and 4.61 per cent.
However, we should point out that UnBalMinAver of RE is 1.62 per cent, which
is slightly lower than 1.63 per cent of MR. In addition, while looking at the ranges
of UnBalMinAver and UnBalMaxAver in Table 2.1, and ranges of BalMinAver
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and BalMaxAver in Table 2.2 it is possible to say that MR is the most robust of all
the heuristics: the ranges are respectively 2.20 for unbalanced and 2.46 for balanced

instances.

Within this four heuristics MOVE is the fastest. Its overall average CPU is
0.35 secbnds. EX’s efficiency is very low with a value of 6.73 CPU seconds in the
average. Although they have the third and fourth highest average CPU seconds, which
are 2.24 and 1.27, RE and MR can also be considered quite efficient. Note that the
computational efforts of OI and KK3 are significantly smaller (almost none) than the
ones of the remaining methods, since they are construction methods and have O(n)

worst case time complexity.

Comparing UnBalAver and BalAver values it seems impossible to draw a gen-
eral conclusion about the effect of balancedness on the accuracy. Some of the heuristics
perform better on balanced instances, while some do on unbalanced problems. Never-
theless, it is possible to say that usually the heuristics tend to have higher accuracy

when the problem is balanced. Similar conclusion holds for their efficiency.

We can say that variation in part flow matrix does not affect the quality of
the heuristics. However, computation time increases with increasing variation. As a
summary of our experimental results, among all of the considered heuristics, we can say
rank one goes to MR. It has a very high performance and requires relatively moderate

computational effort is very high.
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3. AN EXACT ALGORITHM FOR THE BALANCED
UNIDIRECTIONAL CYCLIC LAYOUT PROBLEM

3.1. Introduction

The UCLP is defined in Chapter 1: It concerns with the determination of the
locations of workstations around a circular material handling system moving the parts
unidirectionally. | One special form of the UCLP is when the material flow is conserved
at each workstation: Total inflow is equal to total outflow at every workstation. This
version is known as the BUCLP.

In this chapter we propose a branch and bound algorithm to obtain the optimum
solution of the BUCLP. To the best of our knowledge, there is no other work proposing
a branch and bound algorithm for the BUCLP. Only, Lee et al. [25], Kouvelis and
Kim [1] and Kiran and Karabati [23] have devised branch and bound approaches for
the general UCLP.

3.2. The Branch and Bound Algorithm

In general there are two major procedures of any branch and bound algorithm:
branching and bounding. The branching procedure partitions the problem into smaller
sub-problems. Each subproblem, represented by a node, corresponds to a partial so-
lution. A search strategy is associated with the branching scheme in order to decide
which node to branch next. Depth first search. and breadth first search are two of
them. The bounding procedures are used to calculate the lower and upper bound val-
ues for each node. For a minimization type problem, the best upper bound value is
kept throughout of the algorithm and this value is updated when a new node yields a
better upper bound value.

At the beginning of our branch and bound algorithm, we have an empty sequence

of workstations and when the algorithm stops we obtain a complete sequence of work-
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stations such that total material transportation cost is minimized. The first (last)
position of the sequence corresponds to the first (last) candidate location immediately
after (before) the Load/Unload area. At every node of the branching tree, we have
two sets of workstations: assigned and unassigned. The set of assigned workstations
are kept in‘a partial sequence, with fixed positions. However, the positions of the set

of unassigned workstations are not determined.

When a new node is generated, one workstation from the unassigned set is chosen
and included into the assigned set. In other words, every time a new node is generated
in the branching tree we assign a workstation from the unassigned set, to the first
available location of the partial sequence. The partial sequence of a node is kept of
all of its descendant branching nodes. That is to say the partial sequence of a node is
always inherited from its ancestors. For every node a new partial sequence is obtained
by choosing and locating an unassigned workstation to the first available position in

the inherited partial sequence.

Moreover, for each node, we compute the lower and upper bound considering the
assigned and unassigned sets of workstations. To compute the lower bound, we first
compute the cost of assigned workstations. Then, we consider the costs due to the set
of unassigned workstations. The upper bound value is the objective function value of
the solution obtained with the heuristic procedure. During the search process, we keep

the best upper bound value of all generated nodes.

For any node in the tree, if the lower bound is greater than the best known upper
bound we fathom this node. If all nodes are discarded, the optimum solution has:
been found and the current best upper bound value is the optimum objective value.
Otherwise, if 'we have more than one nodés to explore, we select a node with the lowest
lower bound value for further branchihg. ‘Then, we perforrﬁ a depth first search until
we reach the bottom of the tree. ‘

In summary, at the start of the algorithm, n nodes are generated. For each of

them, there is only one assigned workstation and its location is fixed at the first po-
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Node 0

Noded Node § Node 6 Node 7 Node 8 Node 9

Figure 3.1. The enumeration tree of a 4-workstation example

sition of the corresponding partial sequence. Then, we run branching and bounding
procedures consecutively. The lower and upper bound values of new nodes are com-
puted as explained above. The nodes whose lower bound values are greater than the
current best upper bound values are discarded for further consideration. Then, the
node with the lowest lower bound value is chosen for further branching to generate
new nodes. These steps continue until we have only one node with equal lower and

upper bound values.

To illustrate these steps, we presént in Figure 3.1 a branch and bound subtree
for a unidirectional cyclic layout with four workstations. At the first node, namely at
Node 0, we assign workstation ¢ into the first location. In other words, we have the
partial sequence {i} for Node 0. Node 1, Node 2 and Node 3 are in the second level

of the tree and they are branches of Node 0. Workstations 7, k and [ are respectively
assigned into the second available locations. Their partial sequence are respectively
{1,5}, {3, k} and {4,1}. Node 4, Node 5, Node 6, Node 7, Node 8 and Node 9 are in
the thlrd level of the tree and they represent all possible solutions with workstation 4

assigned to location 1.
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3.2.1. Preprocessing Steps

The preprocessing steps constitute the initialization phase of our branch and
bound algorithm. These procedures are run at the very béginning of the algorithm
with the purpose to reduce the size of the material flow matrix, and therefore the size

of the problem.

Kouvelis and Kim have proposed the preprocessing steps in their seminal paper [1]
on the UCLP. In their work, to reduce the size of the problems, the preprocessing phase
looks for the workstations which have only inflows and/or outflows. They have shown
that in an optimal solution, a workstation ¢ that has only inflow (outflow) is always
located at the last (first) candidate location in an optimal sequence. As a consequence,

these workstations should be located at the appropriate locations at the beginning.

In addition to this rule, Lee et.al. [25] have proposed two more rules based on
the properties of the material flow matrix which they apply at the beginning of the
algorithm. Their first rule is to detect all workstations ¢ with fi; = fj; for all j =
1,...,n. They have shown that, the optimal layout is independent of the position of
such a workstation. Their second rule is related with the number of workstations with
R; > C;. When the number of workstations with R; > C; is greater than the number
of workstations with C; > R; they propose to construct the layouf by assigning the
workstations starting from the first position. For the other case, they suggest to locate

, the workstation starting from the last position. Notice that, this rule is not applicable
for the BUCLP since R; =C; foralli=1,...,n.

3.2.2. Lower Bounding

To compute the lower bound values we need to consider three flow quantities:
Flows between assigned workstations, flows between unassigned-assigned workstation
pairs, and flows between unassigned workstations. To calculate a bound in the latter
case may be more complicated than the first two. To provide a bound, the LP re-

laxation of the formulation by Kiran et al. [16] has to be solved. The flows between
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assigned workstations and the flows between unassigned-assigned workstations pairs
can be directly computed since the actual position of assigned workstations is known.
In fact, to compute directly these two flow quantities we use the following observation.
For a given sequence of workstations, the workstation located in the first position con-
tributes to the objective function value as much as the sum qf the inflows from all other
workstations. Namely, if workstation i is located in the ﬁrs’c: position, the contribution
to the total cost due to workstationiis C; = 3 fi where f; is the fixed flow quantity
from workstation k& to workstation 7. Moreoce?;uppose that, workstation j is located
in the second position of that partial sequence. Then, the contribution to the total
objective function is ( % fri) — fij = (Cj) — fij. In other words, it is equal to the
3

total amount of flow to worksta,tlon 7 except the inflow quantity from workstation 7 to

workstation j.

To explain better this step, consider a sequence {i,%,l,7} of four workstations.
Our objective it to calculate the objective function > 3 fi;di;. Recall that diy = 1
if workstation ¢ is located after workstation j and thza iUL area is located at some
position on the path from workstation ¢ to workstation 7. For the given sequence of

workstation the objective function value is
Ci+ (Ck — fix) + (C1 ~ fa — fu) (3.1)

where C; is the sum of column 7 of the flow matrix, i.e. C; = z;é fii
3

Now, we can formally present our lower bounding procedure. For any workstation
7, i=1...,n,let Fi. @ be the amount of part flow into workstation 7, except fi; where
{i} is the workstation located before workstation j. In other words, F{;, = C; — fj;
where C; is the i*» column’s sum of the part flow matrix. Consider the case where
a sequence of two workstations, namely {%, k}, is located before workstation j. The
y = Cj— fij— Jr;- For
a partial sequence of workstations {¢, j, k} we have the lower bound LB = C; + F; {z} +

amount of part flows into workstation j, except fi; and fi;, is F{z ;

F{i’k} + Ib(k), where [(bk) is the bound obtained by solving the linear programming
formulation by Kiran et al. [16], with workstations i, j and k deleted. For instance
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consider the branch and bound subtree of Figure 3.1. For Node 0 and Node 1 the lower
bounds are respectively, LBy = C; 4+ Ib(i) and LBy = C; + (C; — fi;) + 1b(4, 7). For
Node 4, the lower bound is

LBy =Ci + (C; — fs) + (Ci — fix — fix) + 163, 5, k)
= C;+ (Cj — fi5) + (Cx — fie — fie) +(Cr = fu — fii — fur)
= C; + (Cj — fi) + (Cx — fir — fix)-

3.2.3. Upper Bounding

To compute the upper bounds, we temporarily complete the partial sequence
with the set of unassigned workstations. To assign the unassigned workstations into
candidate (available) locations in the rest of the partial sequence, we use the KK3
heuristic. As a result we have a complete sequence of workstations. Then, we perform
the Move-Reverse (MR) heuristic to improve the newly inserted set of workstations.

Notice that, we perform the KK3 and MR without harming the initial partial sequence.

To better illustrate this, consider Node 1 in Figure 3.1. In Node 1, the set of
assigned workstations 7 and 7, are respectively assigned in the first and second available
locations in the partial sequence. To compute the upper bound value of Node 1 we
need to ébtain a complete sequence of all four workstations. In other words, we need
to temporarily locate the unassigned workstations & and ! to the candidate positions,
namely the third and fourth posiﬁons. We first run KK3 to construct a sequence
then MR to improve the layout for the rest of the partial sequence. Suppose that
MR outputs {l,k}. Then the feasible solution can be represented with the solution
{1,4,1,k} and the upper bound value is UBy = C; + (C; — fi;) + (Ci — fu — fi).
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3.2.4. Dominance Rules

Dominance rules help to identify the set of dominant sequences. Given two se-
quences w and 7, m dominates 7, means that the objective function value obtained

with 7 is better than the one obtained with 7.

In this section we first present existing dominance rﬁles, which are based on the
notion of location interchanges. Then we propose a new dominance rule based on the
notion of move operations. An interchange operation is the basic action of the fa-
mous SWAP heuristic which is widely used for solving the facility layout problems. In
Chapter 2, we have also computationally experimented and compared its performance
with other existing aﬁd new heuristics. On the other hand, a move operation is more
elementary than an interchange operation; and every interchange operation can be per-
formed by two move operations. In Chapter 2 we have observed that MOVE heuristic

is more efficient than SWAP heuristic. Now, consider the initial sequence
T=1,.,i—14i+1,.,5-1,5,j+1,.,n) (3.2)

and the sequence obtained by interchanging the locations of workstations ¢ and j
T=1,.,i—1,4i+1,..,5—147+1..,n). (3.3)

Then the change in the cost function is

j—1
Acy = 3(T) — ca(m) = Jz: (frs = fix) + (fi = fas) + Fir — Fii- (34)
k=i+1

where c; is the objective function of the UCLP. Recall that the derivation of (3.4) is
explained in Section 2.2. Clearly when Ac; is positive then we have a positive gain from
this interchange operation. Kouvelis and Kim [1] uses (3.4) to develop new dominance
rules for identifying local optimal solutions. Based on these rules they have devised
three construction heuristics: KK1, KK2 and KK3. KK3, is the best of them; it is



58

presented in the previous chapter. Later, Kiran and Karabat: 23] have used formula
(3.4) to propose General Dominance (GD) and Adjacent Dominance (AD) rules which
they used within their branch and bound algorithm. The GD rule is applied within the
branch and bound algorithm when a new node in the branching tree is generated. Every
time a new node is generated, a workstation ¢ from the unassigned set is located at
the first available location of the partial sequence. With the GD rule, we first compute
all the interchange cost of workstation ¢ with the workstations of the partial sequence,
and in case of a positive gain, we do not consider this newly generated node for further
consideration. One weakness of the GD is its CPU time requirement. Considering
this, Kiran and Karabat: [23] come up with another dominance rule: AD which is a
simplified version of the GD rule. They consider only adjacent workstations. In.the
branch and bound algorithm, the AD rule computes the interchange cost of workstation
1 and the workstation immediately before workstation ¢ in the partial sequence. In case
this value is positive, the new node is fathomed. The AD rule is also used by Lee et

al. [25] within their branch and bound algorithm.

Both GD and AD are interchange based dominance rules. Now we propose a new
move based dominance rule. Our motivation is based on the recent results by Tansel
and Bilen [21], and the results of our computational experiments including MOVE and

SWAP heuristi¢s presented in Chapter 2. Since MOVE heuristic is more efficient than
SWAP heuristic, it is expected that the move based dominance rule is more efficient

than GD and AD rules.

In our branch and bound algorithm the move based dominance rule applies when
a new workstation ¢ is assigned to the last available position of the partial sequenbe. We
efficiently compute the cost of all possible backward move operations of workstation %
through the partial sequence by using formula (2.9). In case a positive gain is detected
~ in the objective function value we do not consider this node for further branching
namely, this node is fathomed. For instance consider Node 1. At this node we have
assigned workstation j to the available position at the end of the partial sequence {i}
of Node 0, and we have obtained partial sequence {4, j}. However, if the cost of partial

sequence {7,i}, which is obtained by moving workstation j into location i, is better
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than the partial sequence {i, 5}, then the partial sequence {%,j} may be reordered as
{4,4} in the optimal sequence.

3.3. Computational Results -

Our results are summarized in Table 3.1 and Table 3.2. The first, fourth and
seventh columns of both tables stand for instances. These instances are randomly
generated as explained in the previous chapter. The second, fifth and eighth columns
give the number of nodes explored until the optimal solution is reached. The third,

sixth and ninth columns are the total CPU times.

As it can be observed, the average number of nodes explored grows as the variation
in part flow increases. For example, for instances with low variation having 20 and 30
workstations, the average number of nodes explored are 119.6 and 665.5 respectively.
These values become 121.7 and 925.8 for medium variation, and 214.2 and 1656.9 for

high variation instances.

To compute lower bounds, we solve the LP relaxations of the BUCLP formula-
tion by Kiran et al. [16] with barrier procedure of Cplex ver. 7.0. This part of the
computational effort constitutes the bottleneck of our branch and bound algorithm.

The development of more efficient lower bounding procedures will solve this problem.

We could not solve all of the instances of our test bed generated in the Chapter 2,
it is because the computational effort to find the optimum solution grows exponentially
with the number of workstations. For example, for instances with 20 workstations the
overall average CPU time is 37.22, while this value becomes 1454 for instances with
30 workstations. Therefore, we have not been able to test our code on instances with

more than 30 Works@:ations.

The relation between UCLP and the Linear Ordering Problem is implied by
Afentakis [19], and Potts and Whitehead [30]. There are many other combinatorial

optimization problems with similar structures. The permutation flow—shop scheduling
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problem and single machine scheduling problem, single row layout problem are only a
few of them. Several researchers have devised branch and bound algorithms for these
problems. One more research topic is the adaptation of techniques developed for the

BUCLP to its relatives.
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4. ASYMMETRIC TRAVELLING SALESMAN PROBLEM
FORMULATIONS

4.1. Introduction

Ever since the publication of the seminal work by Dantzig, Fulkerson and Johnson
[13], & perfect formulation of the ATSP has been attempted many times. A perfect
ATSP formulation is a representation of the ATSP polytope which is ideal in the sense
the solution of its linear programming (LP) relaxation gives an optimal tour. Although
such formulations could have been obtained only for unrealistically small sized problems
(problems with eight cities or less [35]), the effort has resulted in different formulations

with varying quality.

As it is the case with most combinatorial optimization problems, methods that
solve the ATSP to optimality combine polyhedral results with enumeration. Since
the efficiency of enumeration depends on the optimal objective value of a sequence of
LP problems obtained by modifying the LP relaxation of an ATSP formulation, the
strength of the relaxation determines the quality of the formulation. The strength of
the LP relaxation is measured by the value of the minimization objective function at the
optimality (i.e. LP bound). Thus it is possible to say that given two formulations the
one with larger LP bound has a stronger LP relaxation; it is a better ATSP formulation

in short.

The strength of LP relaxations, or equivalently the:strength of formulations,
can also be determined by using polyhedral information they provide. Suppose, two
different formulations F; and F; that are stated in the same space of variables are given.
In addition, assume the objective is of minimization type. Let P(F}) and P(F3) be the
polyhedra associated with them. If P(F}) is a proper subset of P(F) then F; is a better
formulation than F; since the lower bound obtained by solving the LP relaxation (LP

bound) of F; is larger than or equal to the one obtained by solving the LP relaxation

of F,. In other words the minimization of the cost function over P(F}) brings us closer
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to the integer optimum. As a consequence, the inclusion of polyhedra determines the
strength of linear programming relaxations since this provides an ordering of their LP

bounds.

Different formulations of a given problem can be frequently stated in terms of
different set of variables, as it is the case with the extended formulations of the ATSP.
Say F3 is a formulation with this property. However, it is possible to project the
extended polyhedra P(F3) of F3 into the subspace of the original variables without
losiné any integer solution, namely any of the tours, and compare the lower bound

obtained over the projected polyhedron T'P(F3). To be precise given the pofyhedron
P(F3) = {(z,y) e R™ x R™ : Az + By < b}

where A, B and b € R™, the projection of P(F3) into the subspace of z variables, or

into R™, is
TP(F;) = {z € R™ : there exists y € R™ such that (z,y) € P(F3)},

and if TP(F3) is a proper subset of P(F}) then Fj is a better formulation since the LP

bound it gives is larger than the one F; does [36].

Several attempts have been made to compare the existing ATSP formulations.
. The works by Wong [37], Padberg and Sung [15], Langevin et al. [14], Gouveia and
Vof [38], Orman and Williams [39] and Gouvéia and Pires [40,41] are examples in
this direction. In this chapter we consider a new extended ATSP formulation which is

originally proposed for the BUCLP [16].
4.2. Classical Formulations and Their Subtqur Elimination Constraints

Many of the valid ATSP formulations follow the general framework of an assign-

ment problem with integrality and subtour elimination constraints of the form:
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n n ‘
ATSP:  min ) Y ez : (4.1)
=1 j=1
n .
st Y my=1 i=1,...,n (4.2)
j:
n .
D =1 ji=1,...,n (4.3)
;= 0,1 hi=1,...,m 0% (4.5)

{(z’,j):xij=1,'z',j=2,...,n; Z;é]}

do not contain subtours

Binary variables z;; are used to indicate whether city ¢ precedes city 7 in an optimal
tour. Coeflicients ¢;; represent the distance from city ¢ to city j. For simplicity, it can
be assumed that the formulation is defined on a complete, simple digraph D = (V, A)
with z;; = 0 or ¢;; = +oo for any arc (4,7) ¢ A. Constraints (4.6) defeat subtours
over the set {2,...,n}. Together with the assignment constraints (4.2) and (4.3) they

also eliminate subtours containing vertex 1; and the subtour elimination constraints

for ¢ = 1 become redundant.
4.2.1. Dantzig, Fulkerson and Johnson’s Formulation

In their seminal work, Dantzig, Fulkerson and Johnson (DFJ) formulate the sub-

tour elimination constraints directly in the space of original variables as [13]

> oz <IS|-1 §C{2,...,n}, 8] 22 (4.7)
(i,9)€S,i#]

These cligue packing, or simply clique, inequalities state that the number of arcs that
can be placed in the clique defined by the set of vertices S cannot exceed |S| — 1.
These inequalities are known to be facet defining [42]. Unfortunately, there are O(2")

clique inequalities. However, rather than introducing them to the formulation all at
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once, they can be added to the formulation gradually throughout a branch—and-bound
scheme, which usually results in an optimal solution after only a subset of them are

used.
4.2.2. Miller, Tucker and Zemlin’s Formulation

The earliest known extended formulation of the ATSP is due to Miller, Tucker and
Zemlin (MTZ). MTZ formulation is originally proposed for a vehicle routing problem
where each route is restricted to not having more than a certain number of customers
[43]. In this formulation; the number of subtour elimination constraints are reduced
from O(2") to O(n?) at the expense of additional variables u; for ¢ = 2,...,n. The
subtour elimination constraints of the MTZ formulation are equivalently stated by

Desrochers and Laporte [44] as

U — U+ (n— Dz <n—2, ,]=2,...,m;1#] (4.8)

1<uy;<n—1 i=2,...,n (4.9)

Constraints (4.8) imply u; > wu; + 1 whenever z;; = 1, and the value of each wu;
can be treated as the visit order of city ¢ from city 1 on the optimal tour. Given a
circuit Dg = (Vg, C), with vertices Vi and arcs C, summing up equation set (4.8)
for (i,7) € C yields the contradiction 2 < 1. Notice that the same contradiction is
also obtained when D¢ is an Hamiltonian circuit, which means that the formulation is
infeasible. However, this case does not occur since the MTZ formulation is concerned
only with subtours of size smaller than n — 1. We should mention that u; variables are
unrestricted in the original paper [43]. Simple bounds (4.9) are introduced later on.
This enables u; to present the order vertex ¢ is visited on a tour, and does not affect

the LP bound obtained on P(MTZ).
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4.2.3. Circuit Packing Formulation

The subset of clique inequalities known as the circuit packing or simply circuit

inequalities, given by

Z' z;; < |C]—1 for all circuits D¢ = (Ve, C), Vé c{2,...,n} (4.10)
(#.g)eC

are sufficient to eliminate all subtours and the formulation obtained by replacing clique
inequalities (4.7) with circuit inequalities (4.10) is a valid ATSP formulation; it is
referred as the circuit packing (CP) formulation. As it can be noticed the polytope
P(DFJ) described by (4.2)—(4.4) and (4.7), is a proper subset of the polytope P(CP)
represented by (4.2)~(4.4) and (4.10). This implies that the DFJ formulation has a

stronger LP relaxation, and hence a larger LP bound, than CP formulation does.

Let P(MTZ) be the polyhedron described by (4.2)-(4.4), (4.8) and (4.9). In
their work on the analytical comparison of different ATSP formulations Padberg and
Sung [15] have shown that the polyhedron obtained by projecting P(MTZ) into the

subspace of z;; variable is

1

n—1

TP(MTZ) = {z € R4/ (42) — (44),and 3 gz < |C]| -

(.g)eC

for all circuits D¢ = (Vg,C), Vo C {2,:..,n}}. (4.11)

TP(MTZ) is also known as the weak circuit polytope because (4.11) are a weaker version
of the circuit inequalities (4.10). This result shows that P(CP) is a proper subset of
TP(MTZ), therefore MTZ formulation is weaker than CP and DFJ formulations. The
weakness of MTZ formulation is also demonstrated by Langevin et al. in their early
work in which they classify nine ATSP fdrmulations with respect to the LP bounds
they produce [14]. Moreover, using the Fourier-Motzkin elimination to project several
ATSP formulations into a common variable space, Orman and Williams show that

P(MTZ) contains the polyhedra of some of seven existing formulations [39].
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4.2.4. Desrochers and Laporte’s Formulation

The compact polynomial representation of P(MTZ) is particularly useful when
the ATSP arises as a subproblem within the context of a larger problem. Two such
examples are the distance constrained capacitated vehicle routing problem (DCVRP)
and the capacitated vehicle routing problem with time windows (TWCVRP) [45]. The
DFJ formulation can also be extended to the CVRP [46].' However, its generaliza-
tions to the DCVRP and .TWCVRP are not straightforward. Another advantage of
the MTZ formulation is that the subtour elimination constraints (4.8) and (4.9) can
be incorporated into other type of problem formulations together with stronger con-
straints. Motivated by these facts, Desrochers and Laporte lifted subtour elimination

constraints (4.8) and (4.9) to obtain the following stronger ones [44]:

u—uj + (n— Dz + (n—3)z; <n—2, ,7=2,...,ni#7 (4.12)
n k13
1+(n—-3)xﬂ+ Z xﬂguign—l—(n—?))xu— Z Zij
F=2,5#4 F=2,5#

i=2,...,n. (4.13)

They have ‘shown that inequalities (4.12) are facet defining. 'Their.proof relies on the
early result of Grotschel and Padberg [42] who demonstrated that clique inequalities
are facet defining for |S| = 2 and n > 6. They also showed that (4.13) are valid
inequalities. Later, Driscoll proved that (4.13) are actually facet defining [47].

4.2.5. Sherali and Driscoll’s Formulation

The concern of Sherali and Driscoll’s recent paper [48] is also strengthening the
relaxations of MTZ formulation for the ATSP. The authors apply only a partial first

level version of the Reformulation-linearization technique (RLT) [49] to a nonlinear
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reformulation of MTZ formulation’s subtour elimination constraints to obtain

>yt (n— Dz = i=2,...,n (4.14)
F=2,54

n

> witl=u j=2,...,n (4.15)
1=2,i5
zi; < iy < (n— 2)zy; 4 =2,...,m1#] (4.16)

uj+ (n—2)zi; — (n—1)(1 —z4) <
vii + s < uj — (1— z5) B i=2. . mit] (4.17)
14+ (1 —zy)+ (n—3)z;n 5’
u<(n—1)—(n-3zy;—1—z;1) - j=2...,n (4.18)

These O(n?) constraints are shown to be valid subtour elimination constraints and
imply (4.12) and (4.13) of the DL formulation [48]. In short the SD formulation is
stronger than the DL formulation and has a larger LP bound. Since the new variable
Yij = UiZsj, it assumes a nonzero value that represents the order (starting with 0) of

the arc (4,7) if it is on a given tour. This value is zero otherwise.
4.2.6. Gavish and Graves’ Formulation

A large class of the extended ATSP formulations have been known as the com-
modity flow formulations [14] where the additional variables represent cormmodity fows
through the arcs that satisfy additional flow conservation constraints. These models can
be further subdivided into three groups: single commodity flow (SCF), two-commodity
flow (T'CF) and multi-commodity flow (MCF) formulations.:

The earliest SCF formulation is due to Gavish and Graves [50]. The additional
continuous nonnegative variables y;; they use describe the flow of a single commodity

to vertex 1 from every other vertex. O(n?) subtour elimination constraints are then
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given by

zyij"zyji=0 i=2,...,n (4.19)

=1 71
Yij < (n—1)zy; i=2,...,mji=1...,n1#] (4.20)
yi; =0 i=1...,mji=1,...,ni#j (4.21)

Constraints (4.20) and (4.21) imply that 0 < y;; <n—1if z;; =1. An iﬁterpretation
similar to the one given for the additional variables u; of the MTZ formulation can also
be attached to variables y;;; they can be interpreted as the number of arcs which are

included in the path between vertex 1 and arc (¢, 7) in the optimal tour [40].

Let P(GG) be the polyhedron described by (4.2)-(4.4), (4.19)-(4.21). As a con-
sequence of a result for CVRP [51] it can be shown that the polyhedron obtained by

projecting P(GG) into the subspace of z;; variables is

TP(GG) ={z ¢ Rl : (4.2) — (4.4),
and Z zi; < |8 — nli_Il
(i.9)€8,i#7

SC{2,...,n}, [S] =2 2}, (4.22)

which is known as the weak cligue polytope [40]. Therefore P(DFJ) is a proper subset
of TP(GG) and the GG formulation is weaker than the DFJ formulation. However,
GG formulation is stronger than MTZ formulation since TP(GG) is a proper subset of
TP(MT?Z). This follows from the fact that constraint set (4.22) includes also constraints
(4.11) as a subset. |

It is also possible to construct a relationship between the SD and GG formula-
tions, and the DL and GG formulations. Recall that both have O(n?) subtour elimina-
tion constraints. Consider constraints (4.14)—(4.16) of the SD formulation and observe

that the right hand sides of (4.14) and (4.15) are in fact equal. As a result we can write

n n
S oyt a-Dza= Y, ypt+l i=2,...,n (4.23)
=2, =254
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Then by adding this set of inequalities for S C V = {1,...,n} we obtain

2 Yij + (n—1) Z Ty = z vi; + S| (4.24)
ieS\{1} ieS\{1} ieSe\{1}
jesa\{1} jes\{1}

where 5S¢ = V\S. On the other hand the aggregation of constraints (4.16) over .S gives

(n—2) Z Tij = Z Yij (4.25)
: i€S\{1} ieS\{1}
jese\{1} jese\{1}

“and

ieSe\{1} ieSe\{1}
jes\{1} jeS\{1}

Hence equality (4.24) and inequalities (4.25) and (4.26) imply

(n—-2) > z+n-1) > za> > @+, (4.27)
ieS\{1} ieS\{1} i€Se\{1}
jese\{1} jes\{1}

which results in

(n—2)Degree(S\{1}) +(n—1) > za=(n—-1) > zy+|S| (4.28)
ieS\(1} iese\(1}
jesS\{1}

after adding (n — 2)3 ;cge\(13%is to both sides of (4.27). Here Degree(S\ {1}) =

: jes\{1}
> ies\1y%is + 2iese\(13Tij, namely the number of arcs having exactly one endpoint
jes\{1} JeS\{1}
(head or tail but not both) in the subset S\ {1}. Inequality (4.28) can be equivalently

rewritten as

(n — 2)Degree(S\ {1}) + (n — 1) Z zi; > (n— 1)Degree(S\ {1}) + (S|  (4.29)

ieS\{1}
jese



after adding (n — 1)) ;¢\ (1}%i; to its right and left hand sides from which
jes\{1}

(n—1) Z z;; > Degree(S\ {1}) + S|
ieS\{1}
jese

follows. Since

Zmij + Zmij = IS]

i,j€S €S
jese

for all subsets S of the set of vertices V', we can write

> @yt D w<IS|  SCV,
ijeS\}y  ies\(1)
jese

or equivalently

i,7€5\{1} ieS\{1}
jese

Now, by using (4.33) we can rewrite (4.30) as
(n-1) (ISI - > wij) > Degree(S\ {1}) + 5]
i,jeS\{1}
which implies weak clique inequalities

5= L > S g scie...n}2<IS|<n-1
: n—1" &
3,68

72

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

since Degr'ee(S\ {1}) is nonnegative. A direct consequence of this discussion is that

the projection of a polyhedron which includes P(SD) is included in TP(GG) and con-
sequently TP(SD) is in TP(GG); the SD formulation is at least as strong as GG-
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formulation. In addition it is always possible to find an ATSP instance for which the
LP bound of the SD formulation, is strictly larger than the one produced by the GG
formulation on the same instance. One such example is att48: the LP bound the GG
formulation gives is 8786.94 compared to 10070.3 for the SD formulation. Therefore
TP(SD) is a proper subset of TP(GG) and the SD formulation is stronger than the
GG formulation.

As for the relations between the DL and GG formulations, we can say they are
incomparable. In order to see this it is enough to consider ATSP instances £t53 and
kroA124p. The LP bounds obtained by solving the LP relaxations of the DL and
GG formulations are respectively 6045.04 and 6011.33 for £t53. However they become
34248 and 34976.7 for kroA124p.

4.2.7. Wong’s Formulation

Wong is the first to formulate the ATSP as a MCF model [37]. He uses additional
nonnegative variables to describe the flow of 2(n—1) commodities between vertex 1 and
other vertices, namely commodities Y* = v, k = 2,...,n and commodities Z* = z;;,

k=2,...,n. His O(n®) subtour elimination constraints consist of the followings:

n n
Zyijk — Zyﬁk =0 i,k=2,...,n;1#k (4.36)
g=1 g=1 ‘
i it
n n :
=1 =1
i#] i#]
n k3 n
> mi=1> wip=1, > sy =0 J=2,...,n (4.38)
=2 =1 =1
i#] ] i#]
n n n
Zzlij = 1, Zzz.?] = 1, sz =0 J = 2’ ..o, (439)
=2 i=1 i=1
ij i i]
Yijk < Tijy Yije = 0 Li=1...,mk=2...,ni#j (440

Zijke < Zijy Zij > 0 L,i=1,...,nk=2,...,n; i #j. (441)
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Constraints (4.36) and (4.38) guarantee that one unit of commodity Y* travels from
vertex 1 to vertex k while one unit of commodity Z* travels from vertex k to vertex
1. Notice that, only the z;;’s are subject to integrality since z;j and y;;, variables
have integer values whenever the z;;’s are, because the flow matrix for commodities Y*
and Z* is totally unimodular. In fact the variable z;; can be interpreted as deﬁning a
capacity on arc (%, j). Wong has shown that the LP bound of his formulation is equal to
the LP bound of the DFJ formulation’s and thus both of them have the same strength.

One modification of the Wong’s MCF model (WONG) was proposed by Langevin
[52]. He reblaced constraints (4.37), (4.39) and (4.41), by vk + 2ijx < zi5 for 4,7, k.
A similar modification is proposed by Loulou [53] but, he replaced the constraints
(4.37), (4.39) and (4.41), by 3 + 2ija = zi; for 4, j, k. Hence, Langevin’s formulation
(LANGEVIN) is a restriction of the WONG formulation, and Loulou’s formulation
(LOULOU) is a restriction of both Langevin’s formulation and WONG formulation.

4.2.8. Claus’ Formulation

Different than the WONG formulation, Claus’ more recent formulation (CLAUS)
uses (n — 1) commodities [54]. It can be obtained from the WONG formulation by
eliminating half of the flow variables and related constraints. Claus defines nonnegative
flow variables 2 to describe the amount of commodity k that flows from vertex 1 to

vertex k through arc (4, ). The O(n3) subtour elimination constraints can be given as

follows:
n - n
Zzijk — Zzﬁk =0 iy' k= 2) e ,'n,;i 7é k (4'42)
j=1 j=1
i#] i#]
n n n
am=1) zi=1 zz=0 j=2,...,n (4.43)
§=2 =1 =1
i#] 1] i
zijkgzij i,j=1,...,n;k=2,...,n;i7£j (444)

P =1, mk=2...mitj (445)



75

Constraints (4.42) ensure that the flow is conserved at evefy vertex except vertex 1,
which is the home city, and vertex k, which is the sink of commodity k. Constraints
(4.43) ensure exactly 1 unit of outflow of commodity j from vertex 1 to any other vertex
1, exactly 1 unit of inflow of commodity j to vertex j, and zero flow of commodity j
out of vertex j, respectively. Constraints (4.44) and (4.45) imply that the value of flow
of commodity k which can be sent from city 1 to city & is nonnegative and does not
exceed 1. Conservation of flow constraints for vertex 1 are not considered because they
are redundant in the LP relaxation of the formulation. In this manner, flow variables

of SCF and MCF formulations become related:

Y um=yy hi=1...,m i (4.46)

k=2
There -are two results on the strength of the CLAUS formulation. The first one is
due to Langevin et al. [14]. They demonstrate that LP bounds of the WONG and
CLAUS formulations [37,54] are equal, which means both formulations have equal
strengths. The second one is due to Padberg and Sung [15]. They obtain the projection
TP(CLAUS) of polyhedron P(CLAUS) described by constraints (4.2)—(4.4), (4.42)-
(4.45) into the subspace of z;; variables and show that it is equivalent to P(DFJ). As a
consequence, the CLAUS formulation is as strong as the DFJ and WONG formulations,

and its LP bound has the same value as theirs.

4.2.9. Gouveia and Pires’ Formulations

4.2.9.1. Generalizations Based on Miller, Tucker and Zemlin Formulation. In their first

work on extending the MTZ formulation, Gouveia and Pires show that the set of in-

equalities

Tij + Upi — Vg; S 1 L, ,k=2,...,n1#£j#k (4.47)
Ty — v <0 L,i=2,...,m1#] (4.48)

T+ v <1 ,j=2,...,mt#] (4.49)
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eliminate subtours and together with constraints (4.2)-(4.5) they give a valid ATSP
formulation [40]. This first formulation of Gouveia and Pires is referred as GP1 formu-
lation in the sequel. The GP1 formulation has O(n3) subtour elimination constraints
and becomes infeasible when the subtour elimination constraints for vertex 1 are also
included, as is also the case with the MTZ formulation and its extensions the DL and
SD formulations. Here v;; are the new additional variables. Inequalities (4.47) and
(4.48) imply v;; = 1 if vertex i is in the path from vertex 1 to vertex j, and inequalities
(4.49) state that arc (¢, 4) is in the optimal tour if and only if vertex j is not on the
path from vertex 1 to vertex . Reqall that u; of the MTZ formulation can be inter-
preted as the number of intermediate cities in the path from vertex 1 to vertex ¢ of
the optimal tour. However, in this version considered by Gouveia and Pires, u; goes
from 0 to n — 2, rather than from 1 to n — 1. This is different than the form of the
MTZ formulation considered in the derivation of the DL and SD formulations. The
addition of such bounds on the additional variables does not change the LP bound of
the original MTZ formulation in which u; is unrestricted. Here u; and v;; are related
by

n

U = Z Vi L=2,...,Mm. (4.50)
k=2k#i
Notice that it is possible to obtain subtour elimination constraints (4.8) by adding
- constraints. (4:47) for k = 2,...,n, k # 1, and k # j first, and constraints (4.48) and
(4.49) then, for the same pair (4, 5), and finally using relation (4.50).

They also show that the projection of the polyhedron P(GP1) intb the subspace

of original z;; variables, is the polyhedron
TP(GP1)= {z e R4 : (4.2) — (4.4), and (4.10)}.
Observing that TP(GP1) is exactly the circuit polytope P(CP), which is a proper

subset of TP(MTZ), it is possible to say that the GP1 formulation is stronger than the
MTZ formulation.
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Circuit inequalities (4.10) can be lifted to obtain new families of facet defining
inequalities for the ATSP polytope [40, 55]. Since the projection of the polyhedron
P(GP1) into the subspace of z;; variables is the circuit polytope, one interesting ques-
tion is whether the projection into the subspace of z;; variables of any lifting of in-
equalities (4.47)—(4.49) is a lifting of the circuit inequalities. Notice that the summing
up of constraints (4.48) and (4.49) for pairs (3, ) and (J, ¢) for j # 4 results respectively
in the facet defining clique inequalities (4.7) for S = {4,5}. In other words any lifting
of coﬁstraint (4.48) and/or (4.49) would have generated an inequality which is stronger
than a facet—defining inequality. Therefore (4.48) and/or (4.49) cannot be lifted. On
the other hand constraints (4.47) can be lifted in two different ways [40]:

Tji + Tij + Uk — Ui < 1 L,5,k=2,...,n1#j#k (4.51)
and
T+ T+ Tij + U — U <1 4,5,k=2,...,n;1#£J £k (4.52)

New formulations, namely the GP2 and GP3 formulations, which are obtained by
replacing (4.47) first with (4.51), and then (4.52) respectively, are valid ATSP formu-
lations. For (4.51); zj + zi; < 1 is always true and vg; = 1 if and only if vg; = 1 when
zji+xi; = 1. For (4.52); if z;; = 1 then zx; = z; = 0 and v = 1 if and only if v; = 1.
If 2;; = 0, then (4.52) can be obtained by adding (4.48) for the pair (k, j) with (4.49)
for the pair (, k).

If we sum up constraints (4.51) for k = 2,...,n and ¢ # j # k for a given pair
(i,4), adding the resulting aggregation to (4.48) and (4.49) for the same pair (4, 7), and
using relation (4.50), then ine'qualitiés (4.12) can be obtained [40]. It should be noted
that (4.12) can not be lifted further since for any other variable zy, there is a tight

solution to the inequality if zx = 0 or zg = 1.

It is also possible to project the LP relaxations of the GP2 and GP3 formulations,
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namely the polyhedrons
P(GP2) = {z € R : (4.2) — (4.4), (4.48), (4.49), (4.51)}
and
P(GP3) = {z € R™I: (4.2) — (4.4), (4.48), (4.49), (4.52)}

into the subspace of original z;; variables. Gouveia and Pires [40] have shown that

these sets are

TP(GP2) = {z e R : (42) — (44), > =+ » z;<[C|—1

(¢.5)eC (i,4)eC
ikt
k € Vg, for all cireuits D¢ = (V, C), Ve € {2,...,n}, |C| > 2} (4.53)

and

TP(GP3) = {z € R : (4.2) — (44), > zy+ Y _ (@kp+ Zpi) < [C]

(3.5)eC keVe

p & Ve, p# 1 for all circuits D¢ = (Ve,C), Vo €{2,...,n}, |C] > 2}. (4.54)

Both TP'(GPZ) and TP(GP3) are proper subsets of the circuit polytope P(CP), which is
equivalent to TP(GP1). Hence, the GP2 and GP3 formulations are stronger than GP1
formulation and have larger LP bounds. Unfortunately, they are dominated by the DFJ
formulation because P(DFJ) is a proper subset of both TP(GP2) and TP(GP3) [40].

In their fourth formulation, which we refer as the GP4 formulation, Gouveia
and Pires consider constraints (4.51) and (4.52) together with constraints (4.2)—(4.5),
(4.48) and (4.49). The GP4 formulation is clearly strongef than the GP2 and GP3
formulations since it includes the constraints of both the GP2 and GP3 formulations.
However,.a clear dominance relation between the GP4 and CLAUS formulations does

not exist. In fact it is possible to show that the GG and GP1 formulations are not
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comparable by finding a feasible (Z,7) vector of P(GP1) for which no 7 exists such
that (Z,%) vector is included in P(GG), and vice-versa [40].

The DL formulation and the GP1 — GP4 formulations are incomparable. The
fact that (4.12) is one of the subtour elimination constraints of the DL formulation, and
its derivation from constraints (4.48), (4.49), (4.51) and linear transformation (4.50)
may convince one to claim that the GP1 formulation is stronger than the DL formula-
tion. Previous computational results support this claim, indeed [40,48]. Unfortunately,
this claim is not true and the DL formulation and the GP1 — GP4 formulations are
incomparable, in fact. We show this by means of two solution vectors one of which is
feasible for P(DL) but infeasible for P(GP1) — P(GP4), and the other which is feasible
for P(GP4) but infeasible for P(DL).

Consider

z12 = 0.6, z15 = 0.4,
Zos =1,
T3 =04, x3 = 0.6,
Tao = 0.4, z43 = 0.6,
Tsq = 1,

Tg1 — 0.6, Te3z = 0.4,

Ug = 14, Ug = 3.2, Ug = 34, Us = 24, U = 3.4,

and all other variables are equal to zero. This is a feasible solution of P(DL). To show

that no v;; can exist such that (z,v) is included in P(GP1) let us write inequalities
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(4.48) and (4.49) respectively for (¢,5) = (5,4) and (4,7) = (4,5):

Tsa < Usg,
Tsg + Vg5 < 1,
Zy5 < Vgs,

ZTgs +vsa < 1.

Since zs4 = 1 and 745 = 0, vss = 0 and wvsy = 1 follow. Now we consider (4.47) for

(i,5,k) = (2,5,4):
Tos + Vg2 — Ugs < 1.

Using vgs - 0, 295 = 1 we obtain vy, < 0, which contradicts (4.48) for (4,5) = (4,2),
namely z4 < v49, since x4 = 0.4 ﬁ vaz < 0. Therefore no v;; value can exist for
these z;; values. Moreover, since P(GP2), P(GP3), and P(GP4) are proper subsets
of P(GP1) no v can exist for these z;; values so that (z,v) vector is in P(GP2),
P(GP3) and P(GP4) can exist. Hence, DL formulation is not stronger than GP1 -

GP4 formulations.

Now consider

z13 = 0.5, x5 =0.5,
Zog = 0.5, z94 = 0.5,
T30 = 0.5, zs5 = 0.5,
zq1 = 0.5, x4 = 0.5,

Ts1 = 0.5, Tpg = 0.5,
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Vg3 = 0.5, Vog = 0.5, Vo = 075,
V3zg = 05, Vgq — 05, VUss = 05,
Vgo = 0.5, U4z = 0.5, Vag = 0.5,

Usg = 05, Uz = 05, Usg = 05,

and all other variables are equal to zero. The corresponding (z,v) vector is included
in the polyhedron P(GP4). To show that no u; can exist for these z;; values so that
(z,u) vector is in P(DL). Let us write inequalities (4.13) for i =2,...,5:

4 — 2219 — Tag — Toa — Tos = U 2> 1+ 2T91 + Tz + Tao + Tse,
4 — 2713 — Tag — Tag — Tas > Uz > 1 + 231 + Tog + T3 + Zss,
4 —2T14 — Tap — Tag — Tas 2> Ug = 1+ 2T41 + Toa + T3 + Tsa,

4 — 2215 — Tsy — Tz — Tsa = Us > 1+ 2251 + Tos + Tas + Zas.

They become
Zu2227
ZU3215,
3 2“42.37
25>U5>25,

after replacing the above given z;; values. Then we write inequalities (4.12) for (¢, ) =

(2,4) and (3,75) = (4,2):

Ug — Ug + 4T94 + 2249 < 3,

Uy — Uy + 4749 + 2294 < 3.

Using z94 = 0.5 and z49 = 0.5 we have ug = u4. Considering the lower bound of u4 and

the upper bound of us we obtain uy = us = 3. On the other hand inequalities (4.12)
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for (4,7) = (2,3) give
Ug — Ug + 493 + 233 < 3.

For x93 = 0.5, and z3s = 0.5 we obtain us < us, which is a contradiction since 3 = uq
4 us < 2. In addition, since P(GP4) is a proper subset: of P(GP1), P(GP2) and
P(GP3) this (z,v) vector is also included in them, and therefore not only the GP4 but
also the GP1, GP2 and GP3 formulations are not stronger. than DL formulation. This
ends the discussion on’ the incomparability of the GP1 — GP4 formulations with the
DL formulation.

The SD formulation and the GP1 - GPJ formulations are incomparable. Simi-
lar incomparability relations exist between the GP1 — GP4 and the SD formulations.

Consider first

z13 = 0.5, z15 = 0.5,
ZToz = 0.5, 294 = 0.5,
232 = 0.5, x35 = 0.5,
zg =0.5, 249 =0.5,

Tyl = 0.5, Tpq = 0.5,

Vog = 0.5, Vog = 0.5, Vog = 0.5,
V32 = 0.5, Vgg = 0.5, VUgs = 0.5,
Vao = 0.5, Usg = 0.5, U4 = 0.5,

vsa = 0.5, vs3 = 0.5, vsq = 0.5,

and all other variables are equal to zero. This is a feasible solution of P(GP4). To

show that no u; can exist such that (z,u) is included in P(SD) let us write inequalities
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(4.18) for j = 2,3,4

1+(1—'$12)+2$21SUQS4~2$12—(1—$21)
1+(1-—2’J13)+2$31SU3S4—2$13—(15—(L‘31)

1+(1—$14)+2$41 <ug <4—2214 — (1 —11741).

Then by using 13 =0, z13 = 0.5, 214 = 0, 235 = 0.5, 291 =0, 731 = b, z4 = 0.5 and

z51 = 0.5 we obtain

2Su2S3:

1.5 S’U;3 S 2,

3<ug <35,

On the other hand, when we write (4.17) for (¢,5) = (3,2), (¢,7) = (2,3), (4,7) = (4,2)
and (4, 7) = (2,4),

Ug + 3Zo3 — 4(1 — z33) < Yoz + Y2 < uz — (1 — za9)
Ug + 3233 — 4(1 — T93) < Yag + Yoz < ug — (1 — T23)
ug + 3Ta2 — 4(1 — z21) < Yuz + You < up — (1 — 224)

Ug + 3%as — 4(1 — Za2) < You + Ya2 < Ug — (1 —Z4g)
and set To3 = X9q = T3g = Ty9 = 0.5 we obtain

ug — 0.5 < yog +y32 Sug— 0.5
g — 0.5 < yso+ 923 Sup— 0.5
us — 0.5 < yao+yu Sug—05

Ug — 0.5 < Yos + ya2 S ug — 0.5,

which imply yes + yss + 0.5 = ug = ug and Yoq + Ya2 + 0.5 = ug = us. Because

of the bounds for us and us, us = us = ug = 2, which results in the contradiction
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3 < ug < 3.5. Hence for the given z;; values no u; can exist such that (z,u) is in
P(SD). Since P(GP4) is a subset of P(GP1) — P(GP3), this solution is also feasible for
P(GP1) - P(GP3). Therefore the GP1 — GP4 formulations are not stronger than the
SD formulation.

To show that the SD formulation is not stronger than the GP1 formulation,

consider

T14 = 0.25, T15 = 0.75,

Zog =1,
T3r =1,
Tyg = 1,
z53 =1,

T4 = 0.75, gy = 0.25,

Ty = 1,
Y26 = 2-251
Ys7 =5,
Ysz = 4’
Ys2 = 1'25:

Yos = 3, Yes = 0.25,

up =225, uz=>5 us=4, us=125 ug=3.25 ur=-6,

and all other variables are equal to zero. It is included in P(SD). Then circuit inequal-
ities for the circuit {(5,2), (2,6), (6,5)} yield the contradiction 2.25 £ 2. Consequently
since TP(GP1) is equivalent to the circuit polytope P(CP), and these z;; values are
not contaiﬁed in P(CP) they can not be in TP(GP1) either. In other words there can
not exist v;; values so that the corresponding (z,v) vector is in P(GP1). On the other

hand, there can not exist either v;; values for these x;; values such that the correspond-
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ing (z,v) vector is in P(GP2) - P(GP4), since they are subsets of P(GP1). As a result,
the SD formulation is not stronger than the GP1 - GP4 formulations. Therefore, the
GP1 —~ GP4 formulations and the SD formulation are incomparable.

4.2.9.2. Generalization Based on Claus’ Multi-Commodity Flow Formulation. In their

latest work Gouveia and Pires consider an equivalent version of CLAUS formulation,
which consists of the assignment constraints (4.2), (4.3), integrality restrictions (4.5),

and the following subtour elimination constraints [41]:

n n

Sooai— > mi=0 ik=2...mi#k (4.55)
j=L,j#4 F=1,g#4

n

» =1 F=2,...,n © (4.56)
=1

Zkij < Tij L,i=1,...,m k=2,...,n;1#J (4.57)
Zkij = 0 ,j=1,...,m k=2,...,n;1# (4.58)

Although both O(n®)-formulations are equivalent and give the same LP bound, the
order of indexing of commodity flow variables is different. They use zx;; instead of 2y,
which only affects their interpretation. Namely, zx;; = 1 indicates that arc (4,7) is on

the path from vertex k = 2,...,n to vertex 1.

Gouveia and Pires have shown that it is possible to obtain subtour elimination
constraints (4.48), (4.49), and (4.52) of their GP3 formulation from constraints (4.57),
(4.58), and the following weaker version of (4.55)

37 iy 2 g+ e kg =2 m k=2, n i Ak g Fk (4.59)
J=1,#4

by using the linear transformation

n
E Zij = Vi ’i,k

j=1

It
N

n. (4.60)
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It is also interesting to observe that the left hand side of (4.60) counts the number of
outarcs of vertex ¢ on the path from vertex k to vertex 1. Besides, vg; = 1 if k is on the

path from vertex 1 to vertex ¢ and vg; = 0 otherwise.

Inequélities (4.59) are weaker than inequalities (4.55) Esince they are satisfied by
any flow vector satisfying (4.55); but the converse is not aiways true. At the end of
the derivation of constraints (4.52) from (4.57)-(4.59) and (4.60); Gouveia and Pires
reach the conclusion that they have generated the GP3 formulation from the weaker
constraints (4.59) suggesting that they may obtain stronger constraints if they add
additional terms to the right-hand side of (4.59) and/or consider at the same time

several constraints (4.59) such as

n
E Zkij = Zkgi T Zkmi T Zkki

=L
kmq=2,...,mk=2,...,n,9#Fk;, m#k; i £k (4.61)
and
> ki = Zhgm + Zkkm m,q,k=2,...,n;m#k; q#k. (462)
j=1

A proper use of these two inequalities with the transformation (4.60), (4.2) and (4.57)
gives the two-path inequalities

xim+xmj+$ij+$ik+wkm+$mk+xkj+Uki""'U]cjSZ

i, 5,kbm=2,...,n; k#14,5,m. (4.63)

(4.63) can also be obtained from constraints (4.52) by summing those which represent
triplets (i,m, k) and (m, j,k) side by side and lifting z;; with a coefficient 1 in the
aggregated constraint gives the two-path inequality for (i,m,J, k) [41]. When same
arguments are applied to (4.55)-(4.58) the two-path inequalities (4.63) are further

generalized to (4.64), where the central vertex represented with the index m is replaced
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with clique S C V:

Ukit+ Z (Tim + Trom) + Z (Tmj + Tmk) + Z Tpg + Tik'+ Thj + Ti; < 1+ |S| + vgy
mes meSs pgeS

GG k=2...,m4j#k SCV,/{Lijk}. (464)

Notice that for |S| = 0 and [S| = 1 we are respectively back to constraints (4.52) and
(4.63).

Constraints (4.64) can also be derived from the subtour elimination constraints
of CLAUS formulation and thus they are valid subtour elimination constraints [41].
Consequently, GP5 formulation is obtained by replacing inequalities (4.52) of the GP3
with inequalities (4.64) [41]. Then,

P(GP5) = {(z,v) € R4 x R4 : (4.2) — (4.4), (4.48), (4.49), (4.64)}.

The derivation aggregates the following two weaker versions of constraints (4.55),

namely

n
szij > E Zgmi + Zrgi + Zkks
7=1 meS

Lkq=2...,n4,q#k SCV/{li,kq} (465)

> izkmj >y (Z 2, Zigm + zkkm)

meS j=1 meS \neS

k,g=2,...,n;q#k;, SCV/{1,i,k,q}, (4.66)

and applies transformation (4.60). In short, P(CLAUS) is included in P(GP35), which
is, in its turn, properly included in P(GP3). It means CLAUS formulation is not
weaker than the. GP5 formulation, which is stronger than the GP3 formulation. The
last statement follows from the fact that constraints (4.64) include constraints (4.52)

as a special case for |S| = 0.
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The addition of the two of inequalities (4.51), one for the triplet (¢,m, k) and the
other for the triplet (m, j, k) and the lifting of z;; and z;; with coeflicients 1 results in

ZTim + Tmi + T + Tjm + Tij + Tji + Vki — Vkj <2

4 km=2,...,m; k#1,j,m. (4.67)

It can be noticed that at most two of the z,, variables can be equal to one. In addition
the arcs corresponding to these two variables form a path with two arcs, and vy; = 1
if and only if vg; = 1 because vertex k is not included in the path connecting vertices
i and j. The fact that z,, variables represent the arcs of the clique with S = {i, j,m}

suggest the generalization of constraints (4.67) for larger cliques [41]:

ZAzpq‘{“vki“vkjS ISl—1 4,5,k=2,...,m,

PaES
p#q

SCc{2,...,n},|S|>22, k¢ S;i,5€S5  (4.68)

When the value of the summation is less than |S| — 1, constraints (4.68) are trivially
satisfied. If it is equal to |S| — 1 then the arcs associated with the variables which
are equal to 1 form a path with |S| — 1 arcs, and vy =1 if and only if vz = 1,
because although vertices ¢ and j are in S, vertex k is not. Hence inequalities (4.68)
are valid. Besides, inequalities (4.51) and (4.67) are special cases obtained respectively
for |S| = 2 and |S| = 3. Then Gouveia and Pires propose the GP6 formulation by
replacing inequalities '(4.51) of the GP2 formulation with inequalities (4.68) [41]. This

formulation clearly has O(2") constraints, and
P(GP6) = {(z,v) € R4 x Rl : (4.2) — (4.4), (4.48), (4.49), (4.68)}.

Consider now two of the constraints (4.68); one for a given subset S and indices 7, j and
k, and the other for the same S but for indices 7, ¢ and k. Their addition gives clique
inequalities (4.7) for subset S. This shows that it is possible to obtain clique inequalities
by properly aggregating constraints (4.68) and hence the projection TP(GP6) of the
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polyhedron P(GP6) into the space of z;; variables is a subset of the polyhedron 'P(DFJ ).
Then the GP6 formulation can not be weaker than the DFJ formulation. On the other
hand the aﬁthofs conjecture that the converse of this statement is also true, namely
both formulations are in fact equivalent, and P(GP6) is an extended characterization
of P(DFJ). Observe that the polyhedron P(GP6) can not be obtained by transforming
the polyhedron P(CLAUS) into the subspace of (z;;,vs;) variables under the linear
transformation (4.60). This is, first of all, because it includes a special subset of
constraints (4.68) (i.e. for |S| = {4,7}) which are constraints (4.51) belonging to
the GP2 formulation. Moreover, the GP2 and GP3 formulations are shown to be

incomparable.

As we have seen, the constraint set of the last two formulations by Gouveia
and Pires [41] include the constraints of CLAUS formulation as a subset and they are
stronger as a result. The derivation of inequalities (4.52) from constraints (4.55), (4.57)
and (4.58) under linear transformation (4.60) shows that the same transformation
cannot be used to generate inequalities (4.51) from constraints (4.55), (4.57) and (4.58).
Therefore, inequalities (4.51) and linear transformation (4.60) are not redundant for
the polyhedron P(CLAUS) and their addition to constraints (4.2)—(4.5), and (4.55)-
(4.58) of CLAUS formulation results in the stronger GP7 formulation having O(n?)

constraints. In other words
P(GPT) = {(z,v) e RMI'x RM! : (4.2) — (4.4), (4.55) — (4.58), (4.51), (4.60)}.

Recall that Padberg and Sung have shown TP(CLAUS), the projection of the polyhe-
dron P(CLAUS) into the subspace of z;; variables, is the polyhedron P(DFJ) [15]. As
a consequence TP(GP7), the projection of the polyhedron P(GP7) into the subspace
of z;; vaﬁables, a proper subset of the set described by the clique inequalities (4.7),
and therefore TP(GP7) is a proper subset of TP(CLAUS) and P(DFJ).

In their earlier work Gouveia and Pires demonstrate that the GP4 and CLAUS
formulations are not comparable [40]. However, this is not the case for the GP7 formu-

lation; it includes the constraints of CLAUS formulation from which inequalities (4.52)
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can be derived by using linear transformation (4.60). It also includes constraints (4.51).
As a consequence the projection of P(GP7) into the subspace of (z;;,vk:) variables is
a proper subset of P(GP4), which implies that the GP7 foifmulation is stronger than
the GP4 formulation.

The addition of constraints (4.51) for given indices 7, ¢ and &, to (4.64) for {1, 7, k}
and for a subset S result in the lifted circuit inequalities

Z (Tim + Tkm) + Z (Tmj + Tmk) + z Tpq + Tik + Thj + 225 + 25 < 2+ | 9]
mes meS PgeS

Lhk=2...,m4i#k SCV/{Li5k}, (4.69)

which are special cases of the facet defining F'D inequalities introduced by Balas and
Fischetti [56]. It is possible to derive constraints (4.64) from a weaker version of (4.55)—
(4.57) using (4.60). Besides, constraints (4.51) together with constraints (4.64) imply
constraints (4.69) [41]. As a result, the GP7 formulation is a compact model which

subsumes the exponential sized set of simple FD inequalities.

Recall that constraints (4.51) can be obtained from constraints (4.68) for |S| =
{i,7}. Therefore it is possible to obtain a stronger formulation by adding constraints
(4.68) and transformation (4.60) to CLAU‘Sformulatibn. This gives the GP8 formula-

tion, which is the eighth formulation due to Gouveia and Pires [41], where
P(GP8) = {(z,v) € R4 x RMI : (4.2) — (4.4), (4.55) — (4.58), (4.68), (4.60)}.

The GP8 formulation is stronger thé,n both of their sixth and seventh formulations,

the GP6 and GP7 formulations. The GP5, GP6 and GP8 formulations have O(2")

subtour elimination constraints while this number is O(n?) for the GP7 formulation.
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4.2.10. Fox, Gavish and Graves’s Formulation

Consider the following one-machine n-jobs scheduling problem, which is known
as the time dependent TSP (TDTSP) in the literature. A set of n — 1 jobs, denoted
by 2, ...,n, are to be performed in a single machine and setup cost c¢;;; occurs when job
j is processed in the t* order immediately after job 3. The machine is in the initial
state which we denote by job 1. We assume that the machine will be in that state
after processing all of the n — 1 jobs. The problem is to find the cheapest sequence of

performing all jobs.

The TDTSP is a generalization of the standard TSP where the cost of any given
arc depends on its position in the tour. The TDTSP has several real-world applications.
According to Pickard and Queyranne [57], the TDTSP is originally defined by Fox [58]

and is illustrated by several examples from the brewing industry.

There are three time-dependent formulations proposed by Fox, Gavish and Graves
[59]. The one we present below has four constraints and will be denoted as FGG4 in

the sequel. ‘

man Z }:cmym (4.70)

i=1 ,7-1 t=1

Stzz%t—l i=1,...,n (4.71)
=1 t=1
DI i=1...m (4.72)
1,=1 t=1
Zzlﬁﬁ-‘l t=1...,n (4.73)
zzl ) n n—1 :
Zztym—zzwn—l i=92....1m (4.74)
Jj=1 t=1 j=1 t=1

‘it € {0,1} 4,t=1,...,n (4.75)
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Variable y;;; is equal to 1 is vertex j is in the position number ¢ immediately after
vertex 4, 0 otherwise. Constraints (4.71) - (4.73) are the assignment constraints. (4.71)
and (4.72) ensure respectively that there exist exactly one leaving arc from vertex 4
and there exist exactly one incoming arc to vertex j. (4.73) state that there must be
exactly one vertex in order ¢. Constraints (4.74) ensure that for each vertex i other
than vertex 1, the position number of an arc leaving vertex 7 is exactly one more than
the position number of an arc entering that vertex. Fox, Gavish and Graves [59] have
noted that constraints (4.73) are not needed in showing the validity of the FGG4 and,
they may be dropped from the FGG4. We will call, the formulation consisting of
objective function (4.70) and, constraints (4.71), (4.72), (4.74) and (4.75) as the FGG3
formulation. Gouveia and Vog [38] have shown that the FGG4 is stronger than the
FGG3 by presenting an example which is feasible for the LP-relaxation of the FGG3
but infeasible for the LP-relaxation of the FGG4 formulation. In other words, P(FGG4)
is a proper subset of P(FGG3).

Furthermore, they have also proposed a more compact version of FGG4 formu-

lation, which will be denoted as the FGG2 formulation, by using

D> whe=n (4.76)

i=1 j=1 t=1

as an aggregation of constraints (4.71)-(4.73). For the validity of the FGG2 formulation,
Fox, Gavish and Graves [59] assume that y;j1 = yjm fori=2,... n, y14 = 0fort=2,... n

and ;1 = 0 for t=1,...,n-1.

Now, consider the following example which is feasible for the LP relaxation of
the FGG2 formulation but infeasible for the LP relaxation of the FGG3 formulation
because of constraints (4.71)

Yis1=1, Yora =1, Yoa3s =1/3, ya2 =1, Ya23s =2/3 (4.77)

Since the FGG2 formulation has aggregated assignment constraint (4.76) instead of
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(4.71) - (4.73) and therefore every solution feasible for the LP relaxation of the FGG3
formulation is also feasible for the LP relaxation of the FGG2 formulation, this partic-
ular example shows that P(FGG3) is a proper subset of P(FGG2).

4.2.11. Pickard and Queyranne’s Formulation

Pickard and Queyranne [57] have proposed the following three-indexed Time-

Dependent Travelling Salesman Problem formulation:

mmZ Z Zcijty,-jt (478)

i=1 j=1 t=1
n

st )t =1 f (4.79)
i==1
3 ym=1 i=1,...,n (4.80)
j=1 t=1
D Y=Y e i=2,...,mt=1..,n-1 (4.81)
Yijt € {0, 1} ’i,j,t = 1, R ) (482)

where y;;; = 1 when city j is visited after city i in the ¢ order. Constraint (4.79)
state that city 1 must be left exactly once in the first order. Constraints (4.80) are the

assignment constraints and constraints (4.81) denote the visit order of vertices.

Pickard and Queyranne [57] have discussed the application of this three-indexed
formulation into the tardiness problem in Qnemachine scheduling problem. The visit
order of the vertices for the TSP is now the processing order of the jobs in the machine.
In the scheduling problem, setup cost is associated with each of n jobs to be processed.
‘Moreover, the setup cost of each job depends not only on the job that precedes it, but

also on its position (time) in the sequence.
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4.2.12. Fin.ke, Claus and Gunn’s Formulation

Finke et al. [60] have proposed the first two—commodity flow formulation. In their
formulation, the salesman leaves vertex 1 with n — 1 units of one type of commodity,
say commodity Y, and none of the other type, say commodity Z. At each vertex, he
‘drops one unit of commodity Y and collects one unit of commodity Z. In other words
he travels at all times with a total of n — 1 units of commodities. Their formulation is

as follows:

mmZZcu o 1 ) z“) (4:83)
=1 j=1 )
8.t. Z Yij — Z yi = (n—1) (4.84)
_7—.2
Zzlj — szl = —(n =3 1) (485)
=2 =2
n n B
D wi— Zyji =—1 i=2,...,1n (4.86)
=1 =1
%'75.7' i?éj :
Zzz, Zzﬁ =— i=2,...,n (4.87)
J=1
zaéf i#j
n n
> wi+ Y m=n—1 i=1,...,n (4.88)
=1 =1
i#] ]
Yij + 25 € {0,n — 1} i,j=1,...,n;i#] - (4.89)
Yij 20,2 >0 j=1,...,m;9i#J (4.90)

Constraints (4.84)- (4.87) conserve the flow for each commodity at every vertex. Con-

straints (4.88) ensure the existence of (n — 1) commodities outgoing from each vertex.

Finally, we close this chapter with Figure 4.1, Whibh illustrates the relative
strength of the LP relaxations of the twenty two existing ATSP formulations which
we have briefly explained so far. An arrow from A to B indicates that the LP relax-

ation of the B formulation is tighter than the LP relaxation of the A formulation, which
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equivalently means the B formulation is stronger than the A formulation. Bidirectional
arrows represent the equivalence of the A and B formulations. Dashed lines imply the

incomparability of the A and B formulations.

The relations between the FGG3 and FCG, the FGG3 and FGG4 and, the FGG4
and PQ are shown by Gouveia and Voss [38]. The relation between the FGG2 and
DFJ formulations is shown by Padberg and Sung [15]. The equivalence of the DFJ and
WONG formulations and, the relations between the GG and DFJ and the MTZ and GG
are shown by Wong [37]. The relations between the FCG and GG, the LANGEVIN
and LOULOU, the LOULOU and DFJ, the WONG and CLAUS formulations are
presented by Langevin et al. [14]. The relations between the GP1 and MTZ, the GP1
and GP2, the GP1 and GP3, the GP3 and GP2, the GP3 and GP4, the GP2 and GP4
formulations are shown by Gouveia and Pires [40]. Moreover, Gouveia and Pires have
shown the relations between the GP3 and GP5, the GP2 and GP6, the GP4 and GP7,
the GP6 and CLAUS, the GP5 and CLAUS, the CLAUS and GP7, the GP6 and GPS,
the GP7 and GP8 formulations [41]. The relations between the FGG2 and FGG3, the
GG and SD, the GG and DL, the SD and GP1, the SD and GP4, the DL and GP1,

and the DL and GP4 formulations are our contributions.

One relation which we have not shown rigorously is between the SD and DFJ
formulations (or CLAUS formulation equi{ralently). Clearly, the SD formulation is not
stronger than the DFJ formulation. However, they may be incomparable, which indeed

requires specific examples. Then Figure 4.1 will become complete.
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5. NEW EXTENDED ASYMMETRIC TRAVELLING
SALESMAN PROBLEM FORMULATIONS

5.1. Balanced Unidirectional Cyclic Layout Problem and a New

Formulation for the Asymmetric Travelling Salesman Problem

In this chapter we will propose a new ATSP formulation based on the formulation
of the BUCLP given by (2.15)—(2.21). Recall that binary decision variables are defined

as

1 if workstation j immediately follows
Ti; = workstation ¢ in an optimal sequence ,

0 otherwise

and d;; denote the distance between the workstations ¢ and j in the original formulation.

For the sake of clearness we will represent once more their formulation:

BUCLP:  mind Y. fydy (5.1)
i=1j=1j
s.t inj—l i=1...,n (5.2)
=1,j#¢
day=1 i=1,...,n (5.3)
i=1,i#]
dig 2 dix+dpj +ai;—1 4,5,k=1,...,ni#j#k (5.5)
Osdz] ’t,j:].,.,n,Z;éj (56)
7 =0,1 =1, mi#] (5.7)

In this formulation constraints (5.2) and (5.3) are exactly the assignment con-

straints (4.2) and (4.3) and ensure that any workstation has exactly one predecessor
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and one successor. Constraints (5.4) and (5.5) define the properties of the distance
matrix. (5.5) guarantees also d;; = di + di; if j immediately follows & in the flow

direction.

The new ATSP formulation can then be obtained after replacing objective func-
tion (5.1) with (41) and treating the workstations as cities the travelling salesman
has to visit. The decision variables z;; have the same meaning. Besides, circular dis-
tances d;; become the additional variables which makes nonnegativity restrictions (5.6)
redundant. Notice that, constraints (5.4) and (5.5) are the new subtour elimination
constraints and the ones fdr vertex 1 do not have to be considered as before. Con-
sequently, we drop vertex 1 from the sets (5.4) and (5.5), a.ﬁd refer the new ones as
(5.4’) and (5.5°). In short, the new formulation, which will be referred as NEW1 in the
sequel, has objective (4.1) and constraints (5.2)—(5.7), (5.4’) and (5.5").

5.1.1. The Validity of the New Formulation

In Section 2.2.2 we have stated important properties of the BUCLP formulation.
In this section we will use some of the theoretical results derived in Section 2.2.2.
Notice that, the AT'SP’s complete digraph is exactly Afentakis’ traffic graph. The set
of workstations can be considered as the set of cities, and the set of directed arcs (4, §)
reflecting the part flow from workstation ¢ to workstation j, can now be regarded as
the arcs of the ATSP’s complete digraph. The flow costs associated with each arc (4, 5)
of the traffic graph is now the distances c¢;; from city ¢ to city j.

As a result, we will directly use the consequences of Theorem 2.1 withinv the
context of the ATSP. There are two direct consequences of Theorem 2.1. The first one,
given as Corollary 2.1, implies now that NEW1 is a valid ATSP formulation. Corollary
2.2 points to an interesting feature of the new formulation: It remains feasible even
vertex 1 is also included in the subtour elimination constraints. Namely, (5.4) and (5.5)
eliminate any subtour without causing any violation for any Hamiltonian circuit, which
is not the case for many extended ATSP formulations such as the MTZ formulation

and its extensions the DL, SD and GP formulations. This is the second consequence.
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5.1.2. The Strength of the New Formulation

Now we have enough material for discussing rigorously the strength of the NEW1
formulation. Corollary 5.1, the succeeding discussion, and Proposition 5.1 are also
consequences of Theorem 2.1. We denote the feasible solution set of NEW1 formulation
and its projection into the subspace of z;; variables as P(NEW1) and TP(NEW1)

respectively by using the notation we have introduced in Section 1.

Corollary 5.1 TP(NEW1) is a proper subset of TP(MTZ) for n > 3.

Proof. Let us add up side by side constraints (5.5') of the polyhedron P(NEW1) as it

is done in the proof of Corollary 2.1. Then we obtain surrogate inequality

(i.5)eC (8.5)eC

> ec i = 1 as a consequence of Theorem 2.1 and (5.8) becomes equivalent to a
circuit inequality, which is tighter than its weaker version belonging to (4.11), since
(ICl-1) < |0} - nﬁ_l Hence for any z € P(CP) there exists d € R such that (z,d) €
P(NEW1), which means TP(NEW1) is a subset of P(CP). This completes the proof
since P(CP) has been shown to be a proper subset of TP(MTZ) [15]. n

As a consequence of this corollary we can say that the NEW1 formulation has
tighter LP relaxation than the one of the MTZ formulation, and can give larger LP
bound. In addition, it is at least as strong as the GP1 formulation, Gouveia and Pires’
first extension of the MTZ formulation explained in the previous section [40], since

TP(NEW1) is a subset of P(CP), which is shown to be equivalent to TP(GP1) [40].

In fact the NEW1 formulation is stronger than the GP1 formulation. This can
be shown by finding a feasible solution Z of P(CP) for which no d € RI®! can exist such
that (Z,d) is a feasible solution in P(NEW1). This shows that TP(NEW1) is in fact
a proper subset of P(CP) and TP(GP1). Let us assume that n > 4, and consider T
represented in the support graph given in Figure 5.1. This corresponds to
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\
An 3)\\ 2(n 2)

2(n 2) \\

2n 3
2(n 2

Figure 5.1. Example showing that TP(NEW1) is a proper subset of P(CP)

551,2 = %; Ej,l == Tnl_—T) ]=‘- 4, 5, ——- ].;
Tip = ﬁ; Tjo = 2—(;;1:55 j=4,5,..,n—-1
Tg’l = -2—(;”_—2—)-; —ﬂf—j’j_l = ;i(%__—-g% j = 4, 5, ey
T, ;= 2(+_2)' j — 4, 5, ey T — 1, Tng = 2(n2—2)’

X392 = 5(772_—2); I3n = g(::g,

As it can be observed 7 satisfies the assignment constraints. The next step is to
check the feasibility of Z with respect to circuit inequalities (4.7). Recall that subtour
elimination constraints for home city, namely city 1, are redundant and therefore dis-
regarded in the previous work on the ATSP formulations as well as in this one. In fact
the MTZ formulation and its extensions due to Gouveia and Pires [40,41], Desrochers
and Laporte [44], and Sherali and Driscoll [48] become infeasible when the subtour

elimination constraints for city 1 are also considered. This is not true for the NEW1
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formulation. However, as we have already mentioned we have dropped inequalities for
vertex 1 from the sets (5.4) and (5.5) and use (5.4’) and (5.5’) instead. As a result we
check the feasibility of Z for circuits over vertices {2, ...,n}. All circuits with two arcs
have vertex sequence {2,%,2} ¢ =4,...,n — 1 and {3,n,3}. For the first group

1 1 1

T T A2 n-2

which is not larger than |C| — 1 =1 for n > 3. For the circuit {3,n, 3} similar result

can be obtained. Namely,

2 2(n—3)

=2 T2n=2) -

T3n +Tps =

The largest value of the summation } -, .- %i; with 3 < |C| < n—2, except the circuit

with the vertex sequence {n,n —1,...,4,3,n} is
2 1 2n—3) 2|C) -7
m=2) " 2(n—2) +(c] “2)2(n~2) =(c1=2) 2(n—2)’

which is less than |C| — 1. In other words T with the support digraph of Figure 5.1 is
included in TP(GP1).

Let us consider inequalities (5.5’) of the NEW1 formulation for the circuit with

vertex sequence {n,n —1,...,4,3,n} and the arc (n,3). They are

dop 2> dos+dapn+Ta3n—1
d2,n-1 > d2,'n. + d'n.,n—l + E'n,,'n,-—l -1

don—9 2 don—1+dn-1n-2+Tn-1n-2—1

dos > dog+dys+Ts3—1

dis > dapn+dns +Tns — 1.
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When we add them up side by side we obtain
n—12>(dsn+dns) + (dnp-1+...+dan) + (Fsn+Tnp-1+...+Tas+ Tns)

As a consequence of equalities (5.4) dsn + dng = 1. From Theorem 2.1, dp 1 + ... +

dsn = 1 follows. Then we obtain

2(n — 3) 2 1

—1> _9 =7 — L
n—1>1+1+(n 2)2(n—2) e n l—l—n_z,

which is a contradiction. Hence for such Z no d such that (%, d) is included in P(NEW1)
can exist. ~Thi$ clearly means that Z is not included in the projected polyhedron
TP(NEW1). However,. it is in P(CP), which is equivalent to TP(GP1). Therefore
TP(NEW1) is a proper subset of TP(GP1) and therefore the NEW1 formulation is

stronger than the GP1 formulation.

Recall that Gouveia and Pires have strengthened their first extension of the MTZ
formulation, namely the GP1 formulation, by replacing constraints (4.47) with (4.51) to
obtain the GP2 formulation with constraint sets (4.2)—(4.4), (4.48), (4.49) and (4.51).
They have also shown that the projection of the polyhedron P{GP2) into the subspace
of z;; variables is TP(GP2) given in Section 4.2.9. The following proposition shows
that the NEW1 formulation is at least as good as the GP2 formulation.

Proposition 5.1 TP(NEWI1) is a subset of TP(GP2)

Proof. Consider a circuit Dg = (Vg,C). Then by adding the subtour elimination

constraints
Tij + dis + dij < dig + 1, (2,]) € C with i,j,k:=.2,...,n;i7éj7ék;k ¢ Ve
and

wji"f"dpj"i'djisdpi'l"l’ (Z:]) ECWithi,j’p=21°”7n;i7éj7ép; pEVCy
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side by side and using circularity constraints

dij+di=1 i#j;4,7=2,...,n

we obtain inequalities as a consequence of Theorem 2.1

zxij + Z z; <|C|—1, peVe, Ve C{2,...,n}, (5.9)
(h4)eC  (i,5)eC
i,5#p

they are demonstrated to be the inequalities describing the projection of the subtour
elimination constraints of the GP2 formulation into the subspace of z;; variables [40].

Therefore TP(NEW1) is a subset of TP(GP2). n

Moreover, as it can be observed from the computational results reported in Ta-
ble 5.5 .of the next section, there are ATSP instances, such as £tv33, ftv35, ftv3s,
ftva7, ftv55, ftve4, £tv70, ££70 and £t53, for which the LP bound thé NEW1

formulation gives, is strictly larger than the one the GP2 formulation does. When we
combine this fact with Proposition 5.1 we can see that TP(NEW1) is in fact a proper
subset of TP(GP2) and therefore the NEW1 formulation is stronger than the GP2

formulation.
5.2. Extensions of the New Formulation and Their Strengths
We start by pointing out that constraints (5.5°) can not be lifted in z;; variables.
Notice that by adding up side by side two of the inequalities (5.5’) which are given
respectively for arcs (k, j) and (4, k), namely
di; 2 dig + dij + 5 — 1. (5.10)

and

dig, > dij + dje + 256 — 1, (5.11)
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we obtain d;; + dix > dij + dix + dij + djr + T; + Tjr — 2 or equivalently
Tk + Tk <1, (5.‘12)

since di; +djx = 1 as a result of circularity iiiequalities (5.4’). The last inequality is the
facet defining clique inequality (4.7) for S = {i,j} [42]. If distance inequalities (5.5
could be lifted then the same argument would have resulted in an inequality which is

stronger than a facet defining inequality. Therefore constraints (5.5’) can not be lifted.

Let us suppose that additional variables d;; are restricted to be binary.- Then if
vertex k£ immediately precedes vertex j in an optimal tour, zx; = 1 and z;; = 0, and
the setting of d;; = dy = djx = 1 and di; = 0 satisfy (5.10) and (5.11) as equalities.
These values do not contradict Lemma 2.1, and give a decent interpretation. By letting
d;i indicate whether vertex & is on the path from vertex 1 to vertex j or not, one can
observe that if zi; = 1 then dj; = 1, z;x = 0 and di; = 0. Moreover, if z3; = 1 then
dix = 1 if and only if d;; = 1. In other words if vertex & immediately precedes vertex
7, then vertex j is on .the path from vertex 1 to vertex ¢ if and only if vertex k is on
the path from vertex 1 to vertex ¢. This interpretation Shows that additional variable
di; used in our NEW1 formulation has the same meaning as the additional variable
v;x used in Gouveia and Pires’ GP1 formulation [40]. Then constraints (5.5’) ensure
the ordering of cities, and constraints (5.4’) state that either city ¢ precedes city j or
vice versa. We obtain the first extension of the NEW1 formulation, which is referred

as the NEW?2 formulation in the sequel, by adding the inequalities
Ty —dis <0 4,5=2,...,m1F#] (5.13)

to the NEW1 formulation’s constraint set. In other words the NEW?2 formulation
consists of (4.1)-(4.5), (5.4’) and (5.5) and (5.13). Then

P(NEW?2) = {(z,d) € R x R™! : (4.2) — (4.4), (5.4, (5.5), (5.13)} .

Notice the similarity between inequalities (5.13), and inequalities (4.48) of the GP1
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formulation. Also, as it is shown below in Proposition 5.3; Inequalities (5.14) together
with subtour elimination constraints (5.4’) and (5.5°) imply (4.51) with v = dix and

Ug; = djr. The NEW1 formulation can be extended furthermore by adding the set
Tij+ Tk + T +die —dipn <1 1#T#k 4,5,k=2,...,n (5.14)

'to its constraint sets in order to obtain the NEW3 formulation (4.1)-(4.5), (5.4’) and
(5.5"), and (5.14) with the LP relaxation has the feasible solution set

P(NEW3) = {(z,d) e R4 x R : (4.2) — (4.4), (5.4)), (5.5), (5.14)} .

Observe thé,t (5.14) becomes (4.52) for di; = vy and di; = vjz. Yet another extension
is possible. The: NEW4 formulation can be obtained just by adding both (5.13) and
(5.14) to the NEW1 formulation: The NEW4 formulation consists of (4.1)-(4.5), (5.4’)
and (5.5”), (5.13) and (5.14). Consequently

P(NEW4) = {(z,d) € R4 x R : (4.2) — (4.4), (5.4), (5.5), (5.13), (5.14) } .
Observe that each member of NEW formulation family has O(n®) constraints and

O(n?) variables.

The NEWl, NEW2, NEW3 and NEW4 formulations can be ordered easily ac-
cording to their strengths: The NEW?2 formulation is at least as strong as the NEW1
formulation by definition since it includes the constraints of the GP1 formulation and
inequalities (5.13), in addition. Also, the NEW3 formulation is at least as good as
the NEWl formulation, since it includes the constraints of the GP1 formulation and
inequalities (5.14) in addition. Finally the NEW4 formulation is at least as good as the
NEW?2 and NEW3 formulations since it includes the constraints of these two formu-
lations. Previously, we have shown that the NEW1 formulation is stronger than both
the GP1 and GP2 formulations. We continue this line of analysis also in this section
and compare the NEW2, NEW3 and NEW4 formulations with the GP2, GP3 and GP4

formulations.
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Proposition 5.2 The NEW3 formulation is at least as strong as GP3 the formulation

Proof. Adding constraints (5.14) for (4,5) € C and p ¢ Vi which is
Tij + Tip + Tpj + dip < djp +1 - (5.15)

with C being the arc set of a given circuit D¢ = (Vg, C) such that |C] > 2 and 1 ¢ V¢

we obtain

Dozt Y (@) <O (5.16)

(i,5)eC keVe

This set of inequalities together with constraints (4.2)—(4.4) describe TP(GP3), which is
the projection of P(GP3) into the subspace of ;; variables [40]. Therefore, TP(NEW3)
is a subset of TP(GP3) [

Moreover, as it can be observed from the computational results reported in Table
5.5 given in the next section, there are ATSP instances, such as £tv35, ftv38, ftv47,
ftvbb, ftv64, £tv70, £t70, and £t53, for which LP bound the NEW3 formulation
has is strictly larger than the one of the GP3 formulation. This observation together
with Proposition 5.2 implies that TP(NEW3) is in fact a proper subset of P(GP3) and
therefore NEW3 formulation is stronger than the GP3 formulation.

In order to demonstrate that NEW4 formulation is stronger than the GP4 formu-
lation we first show TP(NEW4), which is the projection of the polyhedron P(NEW4)
into the subspace of z;; variables, is a subset of TP(GP4), which is the projection of
the polyhedron P(GP4) into the subspace of z;; variables.

Proposition 5.3 TP(NEW4) is a subset of TP(GP4)
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Proof. Adding constraint

ZTji+dij +dji — 1 < dig
with

Ziyj —dj <0

side by side results in the surrogate inequality

Zij + Zj + diy — 1 < dis.
Then

Tij + Ty + digg < dji + 1.

holds since dg; = 1 — di and di; = 1 — d;x. The latter inequality becomes equivalent

to ;5 + Zji + v < Uk + 1 as a consequence of identity
dji = 'Uij, (5.17)

between the additional variables d;; and v;; of the NEW and GP formulation families.

f Moreover, since dj; = 1 — d;;, constraint z;; — d; < 0 becomes
Zij +di; <1,
which is again equivalent to z;; + v; < 1 because of identity (5.17).

Similar arguments also show the equivalence between Tij+Tig+Thj +Vki < Ui+ 1
of the GP4 formulation and z;; +zi —l—xki +dix < djz+1ofthe N EW4. Last inequality

can be considered as a lifted version of z;; + vk < v + 1 of GP1 formulation as a

consequence of (5.17). Therefore constraints of the GP4 formulation can be obtained
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from the constraints of the NEW4 formulation by using the transformation (5.17). This

shows the NEW4 formulation is at least as strong as GP4 formulation. |

Notice that it is possible to say that the NEW4 formulation is as least as good
as the GP4 formulation as a consequence of this proposition. In addition, in order
to see that the NEW4 formulation is even stronger than the GP4 formulation, it is
endugh to solve the LP relaxations of both formulations on one of the instances £tv35,
ftv38, £tvb5, ftv64, £tv70, ££70, and £t53, and observe that the LP bound NEW4
formulation gives is strictly larger than the one GP4 formulation does. Table 5.5 of

the next section provides examples.

Although they give very good LP bounds none of the extensions of the NEW1
formulation we have obtained so far is stronger than DFJ formulation or one of its
multi-commodity flow equivalents, such as the CLAUS formulation. However, there is
a fifth member of the NEW formulation family, which we call the NEW5 formulation
with this property. Being inspired by the derivation of the seventh formulation of
Gouveia and Pires [41], namely the GP7 formulatioﬁ summarized in Section 2.6.2, we
add to the constraint set of the NEW?2 formulation multi-commodity flow constraints

(4.55)—(4.58) and the affine transformation

>z =du i k=2,...,n. (5.18)
=1 .
In other words the NEW5 formulation consists of the constraint sets (4.1)—(4.5), (5.4°)
and (5.5°), (4.55)—(4.58) and (5.18), and the feasible solution set of its LP relaxation is

P(NEWS5) = {(z,d) € R x R4 : (4.2) — (4.4), (5.4), (5.5, (5.18), (4.55) — (4.58)} .

It is not very difficult to see that the NEWS5 formulation is not weaker than the GP7
formulation. This follows from three observations. First of all the GP7 formulation is
obtained from the GP2 formulation by adding the multi-commodity flow constraints
(4.55)-(4.58). Then similarly the NEW5 formulation is obtained from the NEW2
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formulation by adding the same multi-commodity flow constraints, which means that
the NEW5 formulation is not weaker than the NEW2 formulation. Finally, the NEW2
formulation is stronger than the GP2 formulation as a consequence of Proposition 5.1.
At this step it is enough to provide a feasible (z;;, vij, 2ki;) vector of P(GPT), for which
no (d;i, zri;) vector can exist such that (2, dji, zxi;) is included in P(NEWS). Consider

the following solution for a 5-vertex instance

T3 =2/3, T15 =1/3,
To1 = 2/3, o5 = 1/3,
T31 = 2/3, 75 = 1/3,
Ty =1/3, zap =2/3,
Tsg = 1/3, 53 =1/3, xs4a=1/3.

Its feasibility for the GP7 formulation can be shown for the following (vi, 2ki;) values:

vy = 1/3, wes = 1/3,

vag = 2/3, wag=2/3, wss=1/3,

v =2/3, wvaz=1/3, was=1/3,

‘usg = 2/3, wss =1/3, s =2/3,

zom = 2/3, 295 =1/3, z0m =1/3, 24 =1/3,

Z3o1 = 2/3, 2334 =2/3, z3a5s =1/3, 231 =1/3, 2342 =1/3,

zasg = 1/3, z4o1 = 2/3, za35 =1/3, 2441 =1/3, zaao =2/3, 23 =1/3,

zso1 = 2/3, a4 =1/3, 2541 =1/3, zsaa=1/3, 252 =1/3, zss3=1/3, 2554 =1/3.

Consider MCF constraints (4.56)

Zoo1 + %203 + Zoga + 2225 = 1
2331 + 2332 + 2334 + 2335 = 1
Zaa1 + Zaa9 + Zaa3 + 2aa5 = 1

2551 + 2552 + 2553 + 2554 = 1
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and (4.57)

201 < 2/3, 202350, 202450, 205 < 1/3,
2331 <0, 2332 <0, 2334 <2/3, 2335 < 1/3,
Z4a1 S 1/3, 2440 £2/3, 2443 <0, 245 <0,

2551 <0, 2552 £ 1/3, 2553 <1/3, 2553 < 1/3,

in order to see that these values are in fact infeasible for P(NEW5). These two sets all
together imply that

Zoo1 = 2/3, za25=1/3,
z334 = 2/3, 2335 = 1/3,
2441 = 1/3, 22 =2/3,
zss2 = 1/3, zsss = 1/3, 254 = 1/3.

Constrainté (4.55) with these values and the transformation (5.18) become

dsp = 2234 + 2235 = Z253 (5.19)
daz = Zoa1 = 2934 + Z254 (5.20)
dsa = 2953 + 2251 = 1/3 + 2235 (5.21)
o3 = 2321 + 2325 = Za42 + 2352 (5.22)
daz = 2341 + 2342 = 2/3 + 2354 (5.23)
dss = Zs52 + 2354 = Zaos + 1/3 (5.24)
dog = 2421 + Za25 = 2/3 + 2459 (5.25)
d3s = 2435 = 2453 (5.26)
dss = Zgp2 + 2453 = 2425 + 2435 (56.27)
dos = 2521 = Z5a2 + 1/3 (5.28)
 dgs = 2534 =1/3 (5.29)
das = Zsa1 + 2542 = 2534 + 1/3 (5.30)

Now, since dss = 1/3 from (5.29) ds3 = 2/3 directly follows by (5.4’), namely das+ds3 =
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1. From (5.24) we obtain, 2395 = 1/3. Moreover, 235 < 1/3 and 2354 < 1/3 by (4.44)
and zssp+ 2350 = dsg = 2/3 by (5.24) imply 2353 = 1/3 and zs54 = 1/3. As a result
dis = 1 by (5.23), therefore dsy = 0 and 2435 = 2453 = 0 by (5.26). Then, we have
2341 = 1/3 and 2342 = 2/3 since 231 < 1/3, 2340 < 2/3 by (4.44) and 2341 +2340 = dgz = 1
by (5.23). We know that 234 = 2/3 and zss2 = 1/3, hence das = 1 follows by (5.22).
Therefore, dsa = 0 and 2234 = 2035 = 2253 = 0 by (5.19). Hence, we end up with
dss = 1/3 and 2354 = 1/3 by (5.21). Consequently, dsy = 2241 = 1/3 by (5.20) and
this gives dgs = 2/3 by (5.4') and considering (5.25) we obtain z459 = 0. Furthermore,
since 2435 = 2453 = 0 by (5.26), 2495 = 0 by (5.27). As a direct result ds4 = 0. On the
other hand, we have zs34 = 1/3 by (5.29) which implies dss5 = 2/3; bﬁt dss = 0 from
(5.27), and this contradicts (5.4’), since dss + dgs = 2/3 # 1. Hence there exists an
instance for which TP(NEWS) is a proper subset of TP(GP7). Therefore, the NEW5

formulation is stronger than the GP7 formulation.

We summarize our discussion on the relative strength of our five new formulations,
with the diagram given in Figure 5.6. Again an arrow from the A formulation to the B
formulation indicates that the LP relaxation of the B formulation is tighter than the
LP relaxation of the A formulation, or equivalently the B formulation is stronger than
the A formulation. Also, bidirectional arrows represent the equivalence of the A and B
formulations. All of the formulations have O(n®) constraints and O(n?) variables with
some exceptions: CLAUS, the GP7 and NEW5 formulations have O(n®) constraints
but O(n?) variables instead, and the GP5, GP6 and GP8 formulations have O(2")

constraints and O(n?) variables.

Notice that there are two relations which have not been explained yet. We first
explain why P(NEWS5) is a proper subset of P(NEW4) and thus the NEW5 formulation
is stronger than NEW4 formulation. Recall that the NEW4 formulation consists of as-
signment constraints (4.2) and (4.3), subtour elimination constraints (5.4’) and (5.5'),
(5.13) and (5.14), while the NEWS5 formulation is defined by assignment constraints
(4.2) and (4.3), multi-commodity flow constraints (4.55 )—(4.58), subtour elimination
constraints (5.4’) and (5.5’), (5.13), and linear transformation (5.18)." As we have men-

tioned in Section 2.6.2, Gouveia and Pires [41] have shown that it is possible to obtain
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/ NEW5
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GP1

Figure 5.2. Relative strength of NEW formulé,tion family

“subtour elimination constraints (4.52) from constraints '(4.57), (4.58) and a weaker ver-
sion of (4.55) by using the linear transformation (4.60). For the sake of clarity, the
derivation of (5.14), from a weaker version of (4.55) and linear transformation (5.18)

is explained below. This weaker version of (4.55) is

D i 2 it A k=2, mitjtk

t=1

It is equivalent to

djk=zzkjt23kij+$kj L k=2,...,mi#j#Ek.
t=1

Then by adding, > 2k to both sides and using the relation Y 2k + 2y =
t=T,t# t=1,t#j

> 2k = dig, and considering (5.18) we obtain
“t=1

n
Z Zit + djp > dig + Tgj Lik=2,...,mi#j#k
t=1,t#]
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™ n
Since T;; > 2kij by (4.57) and zky is not defined, we have > 1z > > 2w
L t=1t45k t=1,t44,k

Consequently,

S zatdp2detaoy G k=2..,mit #k
t=1,t#5k ’

n

follows. On the other hand assignment constraints (4.2) imply >, zu-+ziy+zw =1
t=1,t£j,k
resulting in

l—zy—Zgp+djp 2 dis+a; 6,5,k=2,...,ni# 7 #k,

which are constraints (5.14). Hence, the NEWS5 formulation, includes constraints of
the NEW4 formulation, subtour elimination constraints (4.42)-(4.44), and the linear
transformation (5.18). As a result, the NEW5 formulation is at least as strong as the
NEW4 formulation. Now consider the following solution (%, d):

Tis = 0.4, Zig=0.6, |
Tos = 0.2, Tgg = 0.6, Tos = 0.2,
Ty = 0.8, Taw =02,
Ta =02, Ty =04, Ty =04,
Tso = 0.6, Zss = 0.4,

Tos = 0.2, Tgs = 0.8.

dos = 0.4, dog = 0.4, dos = 0.6, dag = 0.6,
dsz = 0.6, day = 0.6, das=0.6, dgs =056,
dip = 0.6, dys =04, dys=06, dg=0.6,
dse =04, ds3 =04, dsy=0.4, dssg=0.8,
des = 0.4, dgs =04, dgs =04, dgs =02

It is in P(NEWA4). Observe that, these z;; values violate clique inequalities for the
set S = {2,4,5,6}. In other words they are infeasible for P(DFJ). However, it is
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Figure 5.3. A solution which is feasible for P(GP4) but infeasible for P(NEW3)

known that P(DFJ) and TP(CLAUS), the projection of P(CLAUS) into the subspace
of z;; variables, are equivalent [15]. Thus no 7 can exist such that (Z,Z) vector is in
P(CLAUS). Since the constraint set of the NEWS5 formulation includes the constraint
set of CLAUS formulation, P(NEWS) is a subset of P(CLAUS) and no Z can exist such
that (Z,d,Z) vector is in P(NEWS5). Therefore there exists an instance for which the
projection of P(NEWS5) into the subspace of (z;, d;;) variables is a proper subset of
P(NEW4), and the NEWS5 formulation is stronger than the NEW4 formulation.

5.3. Formulations Incomparable with the New Ones

It is known that not all of the ATSP formulations are comparable. As for exa,mple,
Gouveia and Pires provide solutions one of which is feasible for P(GP2) but infeasible
for P(GP3), while the other is feasible for P(GP3) but infeasible for P(GP2) in its
turn [40]. Examples showing DL and SD formulations are iricomparable with the GP1
— GP4 formulations are provided in Chapter 4. Ihcomparabilities also exist between
the members of NEW formulation family and the others explaining why some of the
arrows are missing in Figure 5.6. We report results on this issue in the rest of this

section.
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0.25

Figure 5.4. A solution which is feasible for P(NEW3) but infeasible for P(GP4)

5.3.1. Gouveia and Pires’ Fourth Formulation

Consider the solution represented with the support digraph of Figure 5.3, which
is a feasible solution in P(GP4). However, it is infeasible for NEW3, namely it is not

in P(NEW3). To see this add inequalities

To3 +Toa + Taz +dos S dza+1 (5.31)
Toz +dag +daz < dgz +1

Tz + Tas + Tsz + das S das + 1
T3z + dsz +dga S dsa+1

side by side and use relations ds -I- dis=1,dys+dsa=1,dog+dgs =1, doza+dsy =1,
" ds3 + dgs = 1 to obtain the surrogate inequality

T93 + Tog + Tag + Toz + Taz + Tas + Taa + T2 < 3.
It is violated by the solution of Figure 5.3 since the left hand side of the above inequality

adds up to 3.5, which implies that, in fact, this solution violates inequalities (5.31)
belonging NEW3 formulation for a complete digraph of five vertices.
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On the other hand, the solution whose support digraph given in Figure 5.4 is
feasible for P(NEW3) but infeasible for P(GP4): Adding the following inequalities,
which belong to the constraints of GP4 formulation,

T3+ Tas +Ts3 +vss Svss+ 1

Zag+ Tas+vsza Swsg + 1
we obtain
T43 + Tas + T3 + Taz + Taa < 2.

It is violated since its left hand side has-a value of 2.25. As a result, based on the
solutions whose support digraphs are given in Figure 5.3 and Figure 5.4 it is possible
to say that the NEW3 and GP4 formulations are incomparable.

5.3.2. Claus’ Formulation

Although we have not been able to achieve an algebraic expression for the pro-
jection of the NEW!1 formulation and its extensions into the subspace of z;; variables
we have shown that the NEW1 formulation is stronger than GP1 formulation. Since
P(GP1) is equivalent to P(CP). One may dare to claim that constraints of the three
extensions of the NEW1 formulation, namely the NEW2, NEW3 and NEW4 formu-
lations, correspond'to some lifted. circuit inequalities after P(NEW2), P(NEW3) and
P(NEW4) are projected into the subspace of z;; variables. This is the case with the
NEWS3 formulation: Its constraints imply one of the D, inequalities, which are shown to

be facet defining for the ATSP polytope [42]. This can be seen by adding up constraints

Ti + T+ 2y +Hd K dg+ 1
xik+mip+wpk+di Sdkp’l"l 5
Zik + dps + dix < dpre + 1

Tps + dpe + dis < dis + 1
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Figure 5.5. Support graph of a D, inequality for vertices ¢, k, [, and p

side by side and using equalities dg + dik = 1,dikx + diei = 1,dip + dps = 1,dyy +dyy = 1
and dpi, + dip = 1 to obtain

Tip + Tpk + Tit + Tis + 2Tik + 22 <3

The last inequality is one of the D, inequalities, which is illustrated with the supporting
digraph given in Figure 5.5.

In their early work Groétschel and Padberg have shown that Dy inequalities are
not dominated by clique inequalities [42]. Therefore, the NEW3 formulation, and thus
its stronger version the NEW4 formulation are not weaker than DFJ formulation (or
equivalent to CLAUS. formulation). However, there exists instances for which the LP
bound CLAUS férmulation gives larger than the ones the NEW3 and NEW4 formula-
tions do. In short, CLAUS formulation, and the NEW3 and NEW4 formulations are

not comparable.
5.3.3. Desi‘och,ers and Laporte’s, and Sherali and Driscoll’s Formulations

Similar to the GP1 — GP4 and DL formulations and the GP1 — GP4 and SD
formulations, the NEW1 — NEW4 formulations and the DI and SD formulations are
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incomparable. We first start by showing.that DL formulation is not stronger than
the NEW1 formulation. For this purpose consider the solution given in Section 4.2.9,
which is feasible for P(DL) but infeasible for P(GP1). It is possible to see that it is
also infeasible for P(NEW1). Side by side addition of inequalities (5.5) for (¢,7,k) =
(2,5,6), (i, ], k) = (5,4,6), G, 5, k) = (4,2,6), and (i, , k) = (4,5,2) gives

1+ dgs 2> de2 + das + Tas
1+ des > dgs + dsa + Ts4
1+ deg > dgs + dag + 242

1+ dos > dog + das + Tss.

By using (5.4") for (4,7) = (4,5) and (3,5) = (2,4) results in the contradiction 4 %
4.4 = Tog+ Tss + Tag + dag + dog + dys + dss. Note that, this solution is also infeasible for
P(NEW2) — P(NEW4) since P(NEW2) — P(NEW4) are proper subsets of P(NEW1).
Therefore, the DL formulation is not stronger than the NEW1 — NEW4 formulations.

Now consider

z13 = 0.5, 215 =0.5,
Tog = 0.5, 94 = 0.5,
Z3 = 0.5, z35 = 0.5,
24 = 0.5, z4 = 0.5,

T51 = 05, Tya — 05, .

dos = 0.5, dog = 0.5, das =0.5,
dsg = 0.5, dss = 0.5, das=0.5,
dip = 0.5, das =05, das=0.5,
dsy = 0.5, ds3 =0.5, dsq=0.5,

and all other variables are equal to zero. It is feasible for P(NEW4) but infeasible
for P(DL). Notice that z;; values are the same as the solution given in Section 4.2.9.1



119

which is feasible for P(GP4) but infeasible for P(DL). Therefore, the DL formulation
is not stronger than the NEW4 formulation. On the other hand, this solution is
also feasible for P(NEW1) — P(NEW3) since P(NEW4) is a proper subset of these
polyhedra. As a result, the NEW1 — NEW4 formulations are not stronger than DL
formulation. Therefore, the DL formulation and the N EW1 — NEW4 formulations are

not comparable.

To show that the NEW4 formulation is not stronger than the SD formulation

consider

213 = 0.5, z15 =0.5,
Tog = 0.5, 94 = 0.5,
z30 = 0.5, x35 = 0.5,
z41 = 0.5, z49 =0.5,

Zs1 = 0.5, 54 = 0.5,

das = 0.5, dog = 0.5, dos=0.5,
dsy = 0.5, das = 0.5, dgs=0.5,
dip = 0.5, dgz =05, dgs=0.5,
dsa = 0.5, dsz = 0.5, dss = 0.5,

and all other variables are equal to zero. It is feasible for P(NEW4). Recall that these
given z;; values are the same as the solution given above which is feasible for P(GP4)
but infeasible for P(SD). Therefore we can perform the same operations to show its
infeasibility for P(SD). Since, P(NEW4) is a proper subset of P(NEW1) - P(NEW3),
this solution is also feasible for the polyhedra P(NEW1) — P(NEW3). Therefore, the
NEW1 — NEW4 formulations are not stronger than the SD formulation.

Finally consider the solution givén above which is feasible for P(SD) but infeasi-
ble for P(GP1) and the circuit polytope P(CP). Since P(NEW1) includes the circuit
inequalities and P(NEW1) is a proper subset of P(GP1), this solution is also infeasible



120

for P(NEW1). Moreover, this solution is also infeasible for P(NEW2) — P(NEW4) since
we know that the polyhedra P(NEW2) — P(NEW4) are proper subsets of P(NEW1).
Hence, the SD formulation is not stronger than the NEW1 — NEW4 formulations.
Therefore, we can conclude the NEW1 — NEW4 formulations and- the SD formulation

are incomparable.

One more missing relation is between the GP8 and NEWS5 formulations. However,
we believe that showing it does not have great importance from application point
of view since GP8 formulation has exponential subtour elimination constraints Whilé

NEWS5 formulation having only O(n?).

As a final issue, it may be interesting to question whether it is possible to combine
the efficiency of the MTZ formulation with the strength of the NEW formulation family.
One quick answer may be the aggregation of the distance ineqtia.lities (5.5) to obtain
some new relatives of the MTZ subtour elimination constraints, which may increase

the number of auxiliary variables.
5.4. New Aggregated Formulations
5.4.1. Aggregating the Assignment Constraints

In this section we show that it is possible to obtain a more compact formulation

by replacing the 2n assignment constraints (5.2) and (5.3) by the equality

i=1j=1,ij

obtained by aggregating the first n (or similarly the last n) of them. This new formula-
tion will be denoted as NEWS. It consists of subtour elimination constraints (5.4) and
(5.5), nonnegativity constraints (5.6), integrality constraints (5.7) and the equalities
(5.32). |
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Recall that the ATSP digraph D = (V, A) is simply, a complete digraph over
vertex set V = {1,...,n}. Now, consider inequalities (5.5) for a vertex i € V and k
of its inarcs (j,4) € A. Since this is a complete digraph the total number of inarcs are
|[V| — 1. Assume without loss of generality these k inarcs are (1,1), (2,4), ..., (k,%),

and these k inequalities have the following form:

doi > dyy +dii +x1; — 1
dsi > dsp +dy + T2 — 1

dai > dag +d3i +23; — 1

drs > digk—1 + di—15 + Ti—15 — 1 |

di; 2 dig + i + Tr — 1.

When we sum them up side by side we obtain

k-1 k
0 > (Zdi+1z‘ + dl ) + z;xﬁ — k.. (5.33)
= .

i=1

because of cancellations. The expression within the parenthesis is to 1 as a consequence

of Theorem 2.1 and inequality (5.33) reduces to

k
k - 1 Z Zl’ﬂ
j=1

We note that, the last inequality can be driven for any k= 2,...,n—1, which implies

k
D zi<l i=1,...,mi#] (5.34)
j=1

As a consequence of this discussion we can state the following lemma.

Lemma 5.1 For any vertex i € V, the subtour elimination constraints (5.4) and (5.5)

with the integrality restrictions (5.7) allow at most one of the variables z;; to be 1.
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In other words every city can be entered by the travelling salesman at most one
time. This result becomes stronger when leaving arcs considered instead of entering
arcs. Let us apply similar argument to vertex ¢ on any k of its leaving arcs; they can
be assumed to be (%,1), (4,2), ..., (i, k) without loss of generality. Then, by adding
the inequalities (5.5) side by side ‘

do1 > doi +dig +zin — 1
dsg 2> dgi +dig+xig— 1

dag > dgi +dig + i3 — 1

k-1 = digi + dik—1 + Tig—1 — 1

dig > dis + dig + Tie — 1

and by using dj; +d;; =1, for j =1,...,k we obtain
k—1 k
(Zdi.l_li + dlk) >k+ inj — k. (5.35)
i=1 j=1 '

The expression within. the parenthesis is equal to 1 as a consequence of Theorem 2.1

and inequality (5.35) reduces to

k
» zy <1 i=1,...,mi#7, (5.36)

j=1
which completes the proof of the next lemma.

Lemma 5.2 For any vertex i € V, the subtour elimination constraints (5.4) and (5.5)

with the integrality restrictions (5.7) allow at most one of the variables z;; to be 1.

In other words every city must be left no more than one time by the travelling
salesman.” We note that, this inequality is independent of the number of arcs. There

are two major implications of Lemma 5.1 and Lemma 5.2. First of all constraints (5.4)
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and (5.5) do not eliminate only subtours but also trees with vertices of more than 1
in- and outdegrees, when considered together with the integrality restrictions (5.7).
Namely only paths are allowed. These constraints can be seen stronger than any other
known subtour elimination constraints because of this property. However, it has an
important drawback: it is not possible to benefit ffom any kind of tree relaxations
in order to produce good lower bounds. The second implication is the redundancy
of the assignment constraints: Subtour elimination constraints (5.4) and (5.5) allow
at most one entrance and one exit for each city when considered with the integrality
restrictions (5.7). However, dropping off the assignment constraints completely results
in the trivial optimal solution where all variables have zero value. Hence, we have to
force the formulation to have a Hamiltonian circuit in its solution, which can be done

by considering equalities (5.32) with the constraints (5.4) — (5.7), which yields

NEW6:  min) Y cyzmy; (5.37)
i=1 j=1
et

s.t. (5.32), (5.4)-(5.7)

as the new extended ATSP formulation. It has n(n — 1)% 4+ 1 constraints.

Theorem 5.1 Formulation (5.37) is a valid ATSP formulation.

Proof. Constraints (5.4) and (5.5) do not only eliminate subtours, but also force every
city to have exactly one entrance and one exit with the aggregated equality (5.32) and

the integrality restrictions (5.7) as a conséquenc‘e of Lemma 2.1 and Lemma 2.2. m
5.4.2. Aggregating the Subtour Elimination Constraints

Consider any subset S of the vertices V' with size |S| > 3. If we add constraints

(5.5) for a given pair (k,]) over all 1 € S/{k,j} we obtain

Zd,,jz Z dix + Z dkj+ Z zkj_(lsi—Q)'

i€S/{k.j} ieS/{k.j} ieS/{k.j} €S/ {k.j}
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In addition when we add side by side 1 = di; + djx and 0 = di; — di; to the last
inequality we end up with

14+(]S|—-2) > Z diie +djr + Z dij +di; — Z dij — dij + di; + Z Lhjs
i€S/{k,j} i€S/{k,j} i€S/{k.j} . i€S/{k,j}

which is equivalent to

S| =12 > di— Y dig+I[S|dis+ (IS| — 2.
s/} ies/()

The last inequality becomes
us, — ug; + (lS! —_ 2).’1,'1‘,]' + |S| dkj < |S| —1 (538)

for

'u,sp = Z dip.

i€S/{p}

Notice that, for S = V we have
uy, —uy; + (N — 2z +ndy; <n—Llfork,j=1,...,njk # 4, (5.39)

as the special form of (5.38). Summing up (5.38) for (k,j) on a given circuit D¢ =
(Ve, C) with vertex set Vo C S and arc set C' we obtain

(1S1-2) > @ +1S| Y dy < (ISI-1)|C]. (5.40)

(kj)eC (k.g)eC

We can also consider reverse arcs (4, k) on the circuit vertices Vi and write in-
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equalities
us; — U, + (lSl — 2)33jk + ISI djk < [SI — 1. (5.41)

They can be obtained as inequalities (5.38) by using the sé,me argument. Then, it is
possible to end up with :

(151-2) > zu+IS| D dw < (ISI-1)[C] (5.42)

(k)eC (k,j)eC

by summing them up inequalities (5.41) on the circuit D¢ = (V¢, C). Since z; = 1 and

z;, = 0 because of the assignment constraints (5.40) and (5.42) reduce respectively to

(S| =2)[Cl+1S] Y de; < (S| =D C| (5.43)
(k,j)eC
and
1S Z dix < (|S| - 1)|C], (5.44)
(k.3)eC
from which
el
(k§od@ < 9] (5.45)
and
Y au< B (5.46)
(k.j)EC 151

Meanwhile the aggregation of the circularity constraints (5.4) on arcs (k,j) for the

circuit D¢ results in

S di+ Y, de=1C. (5.47)

(kg)eC (k.j)eC
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Notice that inequalities (5.45) and (5.46) imply

cl 18] -1
z dij + Z djkﬁll—gll-l-l—lITIC'l:lcl,
(k.j)eC (k.j)eC

which does not contradict (5.47).
Notice that

has been used to strengthen the NEW1 formulation. When we add them up over the

arcs of the same circuit D¢ = (V¢, C), we end up with

S om< Y di,

(k.j)eC (k.f)eC
implying
> diw>|C (5.49)
(kf)eC

since zx; = 1 for all circuit arcs (k, 7), which gives the contradiction |\S| —1 > |S| when
considered together with inequality (5.46). A direct consequence of this discussion is
the following formulation having exactly 2n+2n(n—1)+(n—1)(n—2) = 3n% ~3n+2

constraints and n(2n — 1) variables:

i=]1 j=1
J#t

s.t. (5.2) - (5.3), (5.39), (5.48).

Theorem 5.2 Formulation (5.50) is a valid ATSP formulation.



127

Proof. Follows immediately from the previous discussion. m
5.5. Computational Results

In this section we report results on the quality of the LP bounds obtained with
the NEW formulation family. Table 5.1 includes symmetric and asymmetric ATSP
instances used in the computations and their optimum objective values. They are
obtained from the TSPLIB [61] and used in similar earlier works as the test bed [40,
48]. Computational experiments are represented in two subsections. In the first one
we report results obtained with formulations having O(n®) constraints. The second
subsection includes the ones obtained with formulations having O(n?) constraints: The
only exceptvion is the NEW6 formulation. It has O(n®) constraints; but we still consider
it as a compact formulation since it has single aggregated constraint instead of 2n
assignment constraints. There are two types of tables in both sections. On the first
group we present relative deviations from the optimal tour lengths. They are calculated

according to the formula

%

100 x (ﬁ&:ﬁfﬁ)
Zrp

~where z}p is the length of an optimal tour and zj p is the LP bound obtained by solving

the LP relaxation of the models.

The second type of tables include CPU times spent for computing corresponding,
bounds with the barrier solver of Cplex ver. 7.0. Default options are selected. We prefer
using barrier solver since the LP relaxations are quiet large and the use of interior point
methods can decrease the solution time remarkably. However, barrier demands larger
memory space which can cause problems for large linear programs as it is the case
with the LP relaxation of the NEWS5 formulation. For that reason there is no entry
for ft53, ftvh5, ftve4, ft70 and ftv70 in Table 5.3 and Table 5.5. For the same reason
there is no entry for eil51, st70, €il76 and pr76 in Table 5.2 and Table 5.4. Therefore,
the average of the NEW5 columns are taken over existing values and underestimates

the true avérage in Tables 5.2 — 5.4. It is probably possible to obtain better memory
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and CPU performances by tuning Cplex’s parameters carefully. No value is reported
with the GP5 — GP8 formulations since the CPU and memory resources they demand
for computing the LP bounds are prohibitive. Our computations are realized on a Sun
Microsystems Blade — 1000 with a 750 MHz Ultrasparc III CPU and 2 GByte RAM,
working within SOLARIS 8 environment.

Each subsection includes also; one figure for symmetric instances and one for
asymmetric instances. These are basically plots of average relative deviations versus-
average CPU times for each formulation. We believe they expose better the perfor-

mances of the considered formulations.
5.5.1. Experiments with O(n3) Constrained Formulations

As it can be observed from Table 5.2 the CLAUS and NEW5 formulations give the
best bounds. This is not surprising since NEWS5 formulation is theoretically stronger
than the CLAUS formulation which is theoretically as strong as the DFJ formulation
in its turn. Notice that the average of NEWS5 column is obtained by solving the LP
relaxations of the first seven instances. We have not been able to solve the LP relax-
ations of NEWS5 formulation on larger instances because of memory limitations. The
NEW3, NEW4, GP3 and GP4 formulations are the second bests; They give the same
relative deviations although the NEW3 and NEW4 formulations have been theoreti-
cally shown to be stronger than the GP3 and GP4 formulations. The strength of the
new formulations become clearer on asymmetric instances. According to the values
reported in the first five rows of Table 5.3, the NEW5 formulation gives the best LP
bounds. This should not change even when the remaining :instances are solved. The
second best is the CLAUS formulation. This time the NEW3 and NEW4 formulations
perform better than GP3 and GP4 formulations. We note again that the average of
the NEW5 column is not directly comparable since it is obtained with only seven of
the test instances. Despite this shortcoming, the NEWS5 formulation gives better LP
bounds that the CLAUS formulation does. Therefore we would expect an average LP
bound lower than the one of the CLAUS formulation gives when all the instances are

solved using the NEW5 formulation.
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Table 5.1. Test instances and their optimum objective values

Symmetric Optimal Asymmetric Optimal
Instances | Tour Length | Instances | Tour Length
gral 2707 ftv33 1286
grod 1272 ftv35 1473
bayg29 1610 ftv38 1530
bays29 2020 ftv44 1613
att48 10628 ftva7 1776
gr48 5046 ft53 6905
hk48 11461 ftvbs 1608
eil51 426 ftv64 . 1839
il76 538 70 38673
pr76 108159 ftv70 1950
st70 675 kroA124p 136230

Table 5.4 and Table 5.5 include CPU times spent for computing bounds. The
NEWS5 formulation is the slowest on both of the symmetric and asymmetric instances
in the average. This is expected since the number of constraints it has is almost twice
of any other model has. In short, regarding to bound-per-resource performance we can
say that the NEW formulation family gives good LP bounas in a reasonable amount
of time, which make them considerable for use in real life applications. This can be
observed more clearly from Figure 5.6 and Figure 5.7. We must point out that better
LP bounds can be obtained much faster by solving the LP relaxation of the DFJ
formulation using constraint generation [62]. This decreases the probability that one
of the models of the NEW and GP formulation families is used in the exact solution
of the ATSP. However, they become more attractive for problems where additional

variables also have costs and can not be removed. Gouveia and Pires provide examples

for such cases [40].
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Figure 5.6. The performance of O(n®) formulations on symmetric instances

Recall that we have disregarded subtour elimination constraints fér vertex 1 upto
now while comparing the members of the NEW formulation family, even they do not
cause an infeasibility as it is the case with the MTZ formulation and its extensions
such as the DL, SD and GP formulations. The reason is to provide a platform for a
fair comparison. The addition of these constraints increase their strengths since the

related polyhedra become smaller.

Figure 5.6 and Figure 5.7 illustrate the performances of O(n3) constrained formu-
lations for symmetric and asymmetric inétances. In both of the figures CLAUS formu-
lation appears to be the best since it has the lowest average CPU time requirement (the
highest speed) with the lowest average per cent relative deviation (the highest average
accuracy). Although the highest accuracy is obtained with NEWS35, it has the highest
average CPU time requirement. For example, for symmetric instances the average per
cent deviation of the NEWS5 is 0.363 and this value is 0.564 for the CLAUS. However,
the CPU tiine requirements of the NEW5 and CLAUS are respectively, 8765.4 and
1075.8. For asymmetric instances, the accuracy gap between the NEWS5 and CLAUS
becomes clearer. However, the CLAUS’ CPU time requirement is much less than the

one of NEW5. Hence, NEW5 may not be preferable to the CLAUS in practice, unless
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Figure 5.7. The performance of O(n®) formulations on asymmetric instances

the accuracy becomes much more important than the efficiency. The GP1, GP2, NEW1
and NEW2 formulations, and the GP2,GP4, NEW3 and NEW4 formulations are sep-
arately grouped close to each other in both of Figure 5.6 and Figure 5.7. For both of
the figures, we can observe that the GP2, GP3, NEW3 and NEW4 formulations are
closer to the origin (0,0) than the GP1, GP2, NEW1 and NEW?2 formulations. That
is to say, the performance of the former group of formulations (the GP2, GP4, NEW3
and NEW4) is better than the latter group of formulations (the GP1, GP2, NEW1 and
NEW?2). In both of the figures, GP1 and GP2 seem to be the worst formulations. | They
have the worst accuracy with relatively higher CPU time requirements comparing to
the ones of the NEW1 and NEW2. Silhilarly, it is possible to observe that the NEW3
and NEW4 formulations are better than GP3 and GP4. In other words, comparing the
NEW formulation family with the GP formulation family it is possible to say the per-
formance of the NEW formulation family is better than the one of the GP formulation

family. This observation becomes clearer on asymmetric instances.
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5.5.2. Experiments with More Compact Formulations

Recall that all of the formulations considered on the experiments of this section
have O(n?) constraints, except the NEW6 formulation. It has O(n®) subtour elimina-

tion constraints.

Table 5.6 and Table 5.7 present relative per cent deviations respectively for sym-
metric and asymmetric instances. Table 5.8 and Table 5.9 include CPU times spent
for computing these bounds. We have used barrier procedure of Cplex ver. 7.0. In
all of the tables the first column include. the instances. The second column is for the
MTZ, the third column is for the DL, the fourth column is for the SD and, the fifth and
sixth columns are for NEW6 and NEW?7 respectively. The average relative per cent
deviations of the SD formulation are 3.41 for symmetric instances and 4.28 for asym-
metric instances. These are the lowest average per cent relative deviations of Table
5.6 and Table 5.7. On the other hand, the average CPU time requirements of the SD
formulation are 4.09 for symmetric instances and 5.66 for asymmetric instances. These
are the lowest average CPU time requirements considering Table 5.4, Table 5.5, Table
5.8 and Table 5.9. Therefore, among all the formulations considered in this chapter,
the SD has the highest efficiency. However, the accuracy of SD is not better than the
ones of the GP3, GP4, NEW3, NEW4, NEW5, and CLAUS formulatibns, for symmet-
ric instances. Moreover, the accuracy of SD is not better than any O(n®) constrained

formulations for asymmetric instances.

Figure 5.8 and Figure 5.9 illustrate the performances of thé more compact for-
mulations. The performance of the SD formulation is the best which means that the
SD formulation give the lowest average per cent relative deviation with the lowest av-
erage CPU time. On the other hand the performance of the NEW6 formulation is the
worst. This is not surprising since NEW6 does not include assignment constraints.
The NEW?7 formulation is the second best. Its performance.is very close to the one of
SD. Recall that, both of NEW?7 and SD formulations have n? variables. Then comes
the DL and MTZ formulations. The performance of the DL formulation is better than
the MTZ formulation since it is a lifted version of the MTZ formulation.



Table 5.6. Relative per cent deviations for symmetric instances

Instances | MTZ | DL | SD | NEW6 | NEW7
gr2l 9.59 | 0.00 | 0.00 | 37.90 | 0.00
grod 16.19 | 3.73 | 3.20 | 30.90 | 3.73
bayg29 || 10.20 | 3.98 | 3.60 | 18.39 | 3.98
bays20 || 12.14 | 3.76 | 3.59 | 23.66 | 3.76
attd8 || 20.13 | 5.52 | 5.25 | 40.42 | 5.52
grds8 17.56 | 5.49 | 5.17 | 33.02 | 5.49
hk48 13.50 | 2.30 | 1.76 | 26.67 | 2.30
eil51 11.16 | 2.23 | 2.13 | 13.62 | 2.23
st70 21.92 | 7.70 | 6.26 | 26.52 | 6.81
eil76 9.07 | 0.00 | 0.00 | 17.84 | 0.00
pr76 | 28.20 | 8.47 | 6.49 | 31.34 | 8.47
AVERAGE | 15.42 { 3.93 | 3.41 | 27.30 | 3.84

Table 5.7. Relative per cent deviations for asymmetric instances

Instances || MTZ | DL | SD | NEW6 | NEW7
ftv33 765 | 535 | 4.78 | 33.44 | 5.35
fv35 6.12 | 4.04 | 3.90 | 35.95 | 4.04
ftv3g 587 | 3.45 | 3.26 | 34.54 | 3.8
ftvad | 556 | 243 | 243 | 27.12 | 2.43

| ftvaT 6.77 | 2.83 | 275 | 30.13 | 2.84
53 14.04 | 12.93 | 11.39 | 51.41 | 12.94
ftv55 || 10.56 | 6.05 | 5.89 | 27.45 | 6.05
ftv64 6.32 | 4.24 | 4.00 | 30.83 | 4.24
ftv70 9.26 | 4.69 | 4.64 | 2821 | 4.69
ft70 177 | 0.88 | 0.80 | 17.89 | 0.90

kroA124p | 6.13 | 3.46 | 3.23 | 13.96 | 3.46

AVERAGE | 7.28 | 458 | 428 | 30.08 | 4.58
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Table 5.8.

CPU times (in seconds) with barrier option for symmetric instances
Instances | MTZ | DL | SD | NEW6 | NEW7
ool 045 | 053 | 208 { 143 | 035
or24 084 | 092 | 480 | 468 | 0.36
bayg29 210 | 267 | 061 | 12.86 | 0.78
bays29 198 | 212 | 057 | 975 | 0.84
attd8 || 49.84 | 58.60 | 0.59 | 191.74 | 6.00
gras 45.60 | 53.23 | 2.24 | 198.56 | 5.86
hk48 54.13 | 62.37 | 2.39 | 193.79 | 6.48
eil51 64.40 | 68.20 | 3.48 | 62.74 | 6.86
' 5t70 410.59 | 392.90 | 8.76 | 832.84 | 7.66

€il76 667.05 | 753.86 | 10.03 | 366.60 | 14.57
pr76 924.04 | 757.62 | 9.42 | 1173.04 | 15.57
AVERAGE || 201.91 | 195.73 | 4.09 | 277.09 | 5.94
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Table 5.9. CPU times (in seconds) with barrier option for asymmetric instances

Instances | MTZ | DL | SD | NEW6 | NEW7
fv33- | 534 | 639 | 115 | 2021 | 17.2
ftv35 6.13 | 864 | 1.08 | 28.72 | 7.6
ftv38 1079 | 17.20 | 1.59 | 42.20 | 15.0
ftvad | 28.05 | 36.02 | 1.79 | 13329 | 20.7
ftva7 | 53.10 | 64.50 | 2.30 | 18257 | 49.4
££53 93.70 | 111.04 | 3.11 | 22439 | 1.7
ftv55 | 133.72 | 143.50 | 4.47 | 380.87 | 1.8
ftv64 || 246.38 | 334.07 | 5.63 | 884.65 | 2.8
870 | 411.50 | 590.80 | 6.54 | 1161.31 | 3.5
ftv70 | 407.70 | 592.30 | 10.43 | 1448.31 | 3.4

kroA124p | 139.64 | 754 |24.20| 9158 | 11.2

AVERAGE | 139.64 | 173.82 | 5.66 | 418.01 | 13.03
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Figure 5.8. The performance of more compact formulations on symmetric instances
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6. A NEW ENHANCEMENT OF CLARKE AND
WRIGHT’S SAVINGS HEURISTIC

6.1. Introduction

The CVRP is a difficult combinatorial optimization problem and known to be
NP_hard [10]. The largest problem which has been solved to optimality contains 50
customers [63]. As a result of the inadequacy of exact methods, heuristics are widely
used in practice. CVRP heuristics can be classified as classical heuristics and meta-
heuristics. Most of the works realized during the 30 — year period starting from 1960
are within the first family. Starting from 1990 the interest has been shifted towards
metaheuristics and mostly new members for this family have been produced. Classi-
cal heuristics consist of three classes: Tour construction hetiristics, tour improvement
heuristics and two — phase methods. Tour construction heuristics gradually build a
feasible solution either by merging existing routes using a saving criterion or assigning
vertices to vehicle routes using an insertion cost. However, tour improvement heuristics
attempt to improve a feasible solution by means of edge and vertex exchanges within
or between vehicle routes. Two — phase methods are the result of two approaches.
Methods based on the first group combine customers into feasible clusters first and
obtains a vehicle route for each cluster then. These are known as cluster — first, route
- second heuristics. Heuristics based on the second approach construct first a travel-
ling salesman tour for all customers, which is then divided into separate parts to form
vehicle routes with total customer demand not exceeding vehicle capacity D. They are
known as route — first, cluster — }second methods. For cbmplete studies on classical
CVRP heuristics see for example the recent works by Laporte et al. [64] and Laporte
and Semet [65].

Metaheuristics intensively use neighborhood search methods to explore solution
space without necessarily improving the objective function and sometimes allowing in-

feasible moves. Simulating Annealing (SA) [66-68] and Tabu Search (TS) [69,70], are
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the most widely used metaheuristics to solve the CVRP. Both methods start with an
initial solution and move each step from the current solution to a new one selected
from its neighborhood, not necessarily improving the objective function. Other meta-
heuristics include Genetic Algorithms (GA) [71,72], Ant Systems (AS) [73,74] and
Neural Networks (NN) [75-77]. GA examines at each step a new set of possibly infea-
sible solutions. The set of new solutions is the new population; it is derived from the
previous one by combining its best member and discarding the worst. AS constructs
possibly more than one new solutions at each step by using information collected on
the previous solutions. NN are mainly adaptive learning processes that continuously
update some weights until an acceptable, namely feasible or “close” to feasible solution
is reached. The rule that governs the dynamics of the learning process depends on
the implementation. Compared with TS, GA and AS no information on the previous.
solution is collected. More details on the application of metaheuristics on the CVRP
can be found in two recent surveys by Laporte et al. [64] and Gendreau, Laporte and

Potvin [78].

Classical heuristics are unsophisticated and perform a limited exploration of the
search space compared with metaheuristics. However, they are simple, which makes
them easy to understand and easy to implement, and produce fairly good solutions very
fast. Some of them are flexible and can be extended easily to handle many variants
of the CVRP. The performance of the metaheuristics is usually much.higher than the
ones of classical heuristics, but they require much more computational effort to have
their parameters finely tuned — up. The large set of parameters they have, increase
their flexibility; but they also make them context dependent and difficult to extend to

other situations.

In their very recent work Cordeau et al. [79] introducé.accumcy, speed, simplicity
and ﬂe:z:z'bﬂz’ty as what they believe the most important attributes of a good heuristic
and compare well — known classical heuristics and best available metaheuristics ac-
cording to these four criteria. They report that none of the classical heuristics is as
accurate and flexible as any one of the metaheuristics; but the CW heuristic is very fast

and simple to implement, which probably explains its popularity. As a consequence,
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how one can improve the accuracy of CW without harming its speed and simplicity
very much becomes an interesting question. A quick intuitive answer could be the

consideration of additional information in its savings criterion.

All of the savings method proposed for the CVRP use only distance information.
However, the work by Vigo on the Asymmetric Capacitated Vehicle Routing Prob-
lem (ACVRP) [80], and the works by Salhi and Nagy [81] and Wade and Salhi [82]
on the single and multi-depot CVRP with backhauling have shown that the use of
vehicle overloads, which is implicitly related to customer demands, in addition to dis-
tances in the traditional insertion costs can improve the solution quality. Motivated
by their results we propose a new parallel savings heuristic which combines distances

and customer demands in its saving criterion.
6.2. Clarke and Wright’s Savings Heuristic and Its Enhancements

Clarke and Wright’s heuristic is not only one of the earliest methods proposed for
the solution of the CVRP, but also probably the most widely used one in commercial
routing packages. Initially every customer is visited by a separate vehicle. This is
not clearly a feasible solution since a fleet of n vehicles (one vehicle per customer) is
required. Subsequently, routes are combined repeatedly by considering the saving in
the routing cost, which is obtained by using one vehicle instead of two for the same set
of customers. Then the savings obtained by merging routes (0, ...,4,0) and (0, 4, ...,0)

into the route (0, ...,%, 4, ...,0) is

8i7 = (coi + cio + coj + ¢jo) — (Coi + €5 — Co)
= ¢+ Coj — Cij

In short, at every iteration the feasible combination of two routes that leads to
the largest saving in the routing cost is performed. The heuristic stops when a feasible
merge of routes that leads to a saving is no longer possible. The best feasible merge

version is also known as the parallel version of CW. In the sequential version the first
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saving sg; or s; that can feasibly be used to extend the current route (0,%,...,4,0)
by merging with another route containing arc or edge (k,0) or containing arc or edge
| (0,1), is determined first. Then merge operation is implemented and repeated with
the current route. The procedure stops when no feasible merge is possible. In their
recent work on the CVRP heuristics Laporte and Semet [65] report that the parallel
version dominates the sequential version, based on their experiments on the symmetric

instances of Christofides et al. [83].

Saving defined as in formula (6.1) basically measures the gain when two customers
are visifed by the same vehicle instead of being visited separately by two vehicles.
Savings become higher when the distance between customers i and j is smaller relative
" to their distance to the depot. As a consequence the original CW tends to produce
good routes at the beginning. Gaskell [84] and Yellow [85] addressed this weakness in

their early works and proposed the following parameterized. saving expression:
8ij = Cip + coy — )\C,J : (62)

Here A, which can only take positive values, is called route shape parameter. It prevents
the formation of circumferenced routes which tend to be created by the original CW.
As it increases, greater emphasis is placed on the distance between customer 4 and j
rather than their position relative to the depot. The search for the best route structure
realized by changing A\ provides better heuristic solutions with an additional search

effort for the best parameter value.

Another way to improve the performance of the CW algorithm is to extend the
parametric saving expression (6.2) to consider more information about the spatial
distribution of the customers. Omne approach can be the use of asymmetry between
customers ¢ and 7 with respect to their distances to the depot. This was Paessens
motivation who introduced one new term and parameter to.saving expression (6.2) in

order to obtain the following one [86]:

83 = Cip + Coj — ACij + 4 lcos — ¢l - (6.3)
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This new enhancement of the CW can be run with different values of the pa-
rameters A and g to obtain different solutions. The result is a Qonsiderable increase
in the solution quality, but also in the computational effort. However, Paessens also
proposes an efficient approach to compute maximum savings [86]. Hence Paessens work

contributes to both the accuracy and the speed of the savings algorithms.

Two other enhancements of the CW are due to Golden et al. [87] and Nelson et
al. [88]. They mainly contribute to its speed. Computing the maximum saving value
is computationally the most expensive part of the algorithm. Golden et al. consider
Gaskell-Yellow savings criterion (6.2) and use a limited sort, instead of a full sort of
the savings, which they implement by means- of heap data structure. Their work is
based on the idea of considering a subset of all possible savings in order to decrease
computing time and memory requirements of the algorithm. Nelson et al.’s basic idea
is quiet similar.. However, they use more complex abstract data structures, such as
hash functions implemented by using several smaller heaps:instead of one large heap,
in computing maximum savings calculated according to CW’s original formula (6.1).
Recalling the level nowadays computer technology has been reached it is possible to

say that these enhancements may only be useful for very large instances.

The storage of the complete savings set allows the consideration of different selec-
tion strategies. One such example is Daskin’s work [89]. At:each iteration the original
CW myopically chooses the route pairs. That is why several researchers have tried to
introduce route shape parameter into the~savings formula. ‘Taking into consideration
this observation, Daskin has come up with the randomized saving approach. He pro-
poses to run the standard CW but at the routé merging step, the k™ best saving is
selected from the top of the saving list where & is a random variable between 1 and
thé depth, which is set to a value at the beginning. The randomized algorithm is then
repeated for a number of times, which is another parameter fixed at the beginning with

the depth, and the best solution is recorded.
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6.3. New Enhancement

In this section we introduce a new enhancement of thg original CW. While run-
ning the original CW and its eﬁhancements, espeéially towards the end, the merge of
routes with equal or very close savings occur often. Then it may be more interesting to
consider also customer demands while calculating savings. In fact, the VRP consists of
two problems: The Multiple Travelling Salesman problem (m—~TSP) and the Bin Pack-
ing Problem (BPP). Hence, a saving expression which somehow combines the solution
strategies proposed for them can increase the chance of obtaining higher improvements.
For this purpose we have adopted the well known first fit decrease idea of Martello and
Toth [90], which was originally used for the BPP: put first larger items. In short we
propose the following new savings criterion:

-+ d.
8.,;j=ci0+00j—‘ACij+ll:lC()i'—Cjol+de zi. 1. (64)

Here d; is the demand of customer 4, d is the average demand used to normalize, Cij
is the distance between customers ¢ and j, ¢;o and cg; are respectively distances between
‘customers ¢ and j and the depot, and v is the new parameter. Since it also includes

enhancements due to Gaskell [84], Yellow [85] and Paessens [86], saving expression (6.4)

is more general. We consider demands normalized with the average demand d = %Zd,
3=1

because we prefer to include the relative importance of the customers according to their

demands on a vehicle’s capacity.

The situation given in Figure 6.1 illustrates the effect of customer demands,
namely the third term of the new saving expression (6.4). There are eight customer
points located equidistantly from each others on a circle whose center is the depot.
Namely, €41 = Cit1,42 for ¢ = 1,...,6, and cg; = cp441 for ¢ = 1,...,7. The given
numbers in this figure present customer demands. Assume also that the fleet consists
of identical vehicles with capacity 100 units. Observe that when customer demands are

ignored, namely Paessens’ saving expression (6.3) is used, any two adjacent customer
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Figure 6.1. Effect of customer demand in merging

points can be combined unless they violate capacity restriction. However, this is differ-
ent for the situation when demands are also considered: For any positive v, customer

points with demands 20 and 80 will have priority in our example.

The new method is also a parallel heuristic and starts with n vehicles each vis-
iting one customer. Then gradually combines routes (0,4,...,0) and (0, .. d 0) into
0,...,%,7,-..,0) if the saving criterion (6.4) has the largest value between all possible

such route merges.

Another strategy for introducing demand information into the saving criterion
may be the consideration of the remaining vehicle capacities. Very briefly, one might

be interested in the saving expression

(D—di)+ (D - d)

i (6.5)

sij = Cio ++ Coj — Acij + fi]coi — cjol +

Here the new parameter v weights the relative importance given to customers with
smaller demands, which results in higher femaining capacities. In other words the
larger is 7y, the smaller are the items put first, this time. As a result of extensive
computational study we can say that its performance is not better than the one with the
saving criterion (6.4). Hence we have preferred not to report the related computational

results here.
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While- proposing the new heuristic, our main goal is to increase the performance
of the original CW as much as we can with minimal sacrifice in its simplicity and speed.
As a result we have not included on purposely a sophisticated tuning phase, during
which several edge/node interchanging strategies can be used in order to improve the
final solution obtained by the new savings method. Computational results reported in
the next section indicate that the new approach causes conéiderablé improvements in

the accuracy of the CW without decreasing its speed and simplicity.
6.4. Computational Results

In order to demonstrate the improvement obtained by considering customer de-
mands we conducted experimernts with the original CW, its enhancements due to
Gaskell [84], Yellow [85] and Paessens [86], and the new heuristic with savings cri-
terioﬁ (6.4) on the same test bed. In our implementations we use Method 4 by Nelson
et al. [88], which is efficient and not very complicated to implement. In this method
savings are stored in a heap represented as a n x (n + 1)/2 dimensional array. They
also use an additional linear array of size n X (n + 1)/2 to link saving s;; to customer
pair (¢,7) and vice versa. At each step, the root of the heap, which contains the largest
saving value s;;, is removed from the heap and the routes passing through customers
i and j are merged. Saving values which are associated to customers on these two
merged routes. are also removed from the heap. Besides, if it is not possible to merge
the routes due to the capacity restrictions, then the corresponding value is also re-
moved from the heap. Nelson et al. [88] propose four more methods to make CW more
efficient. Method 1 — Method 3 are less efficient than Method 4. Method 5 is more
efficient, but unfortunately the used data structure requires certain maturity in com-
puter programming. At sum, Method 4 is very efficient and simpler to programme. In
an earlier version of this work [91] we used a matrix to store the saving values. This is
the most simple data structure to implement and require only very basic programming
skills. In other words, we search the whole savings matrix starting from the very first
cell and keep the best saving with the smallest indices ¢ and j. Then, we try to merge
the routes which contain customers ¢ and j. We join them if the total demand of these

two routes does not exceed vehicle capacity. In the other ecase, when the capacity is
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exceeded, the saving value s;; is set to 0. We also update the savings matrix after the
merge operation is performed: The savings belonging to the pairs of customers who
are on the new route are also set to 0. The algorithm terminates when there is no
more positive saving in the savings matrix. However, the search effort spent on the
determination of largest saving value was prohibitive; we ended up with CPU times
approximately fifteen times larger than the ones reported here. All of our codes are

written in C** programming language.

In sophisticated implementations of savings heuristics, a tour improvement step
is repeated after every merge operation to decrease the length of the new route. This is
usually realized by using local improvement heuristics suggested originally for the TSP.
As for example Daskin uses Or-opt [32], which is then followed by 2-opt after every
merge and reports considerable improvement in the accuracy of his randomized savings
heuristic [89]. This is also Laporte and Semet’s motivation for using 3-opt with the best
improvement strategy after every merge in their réputed parallel CW implementation
[65]. For only the verification of our codes we compare our implementation of the CW
with theirs on the seven symmetric instances of Christofides et al. [83]; they are the
ones with capacity restrictions. The results are summarized in Table 6.1. The entries
of the first column are the instances. The letter C denotes that there is a restriction
on the vehicle capacity. Following digits denote the number of customers; the depot
is not counted. Second column is adopted directly from Laporte et al.’s work [64].
Notice that we have two implementations. The third and fourth columns include final
total route lengths computed by our plain and sophisticated implementations. Our
sophisticated implementation has also local improvement steps. Once two routes are
merged we first use Or-opt with strings of up to four vertices; sequences of four, three,
two and one consecutive vertices (customers) are relocated in the new route so that it
becomes shorter. The string whose relocation results in the best improvement (largest '
decrease of -all possible relocations) is relocated. Then 4-opt [31] is utilized on the
same route: Four edges are replaced with four others so that the length of the new
route decreases. We again do the interchange which results in the best improvement.

However, our plain implementation does not include any local improvement procedure.
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Table 6.1. Total routing costs obtained by different CW implementations

Instance | Laporte-Semet | Altmel-Oncan (Plain) | Altinel-Oncan

C50 578.56 584.6 572.29

C75 888.04 907.3 : 888.04
C100a 878.70 10350 880.62
C150 1128.24 1140.4 1128.24
C199 1386.84 1395.7 1370.11
€120 1048.53 | 1068.1 1046.5
C100b 824.42 833.5 824.42

As it can be observed, our plain implementation finds larger values. This should
be expected since it does not include any local improvement step.. However, our sophis-
ticated implementation results in equal or slightly lower values except instance C'100a:
The value our implementation computes.is slightly higher. This is also expected since
we -spend moré effort on local improvement than Laporte and Semet do. In short
it seems we can rely on our CW implementation and use it for benchmarking. While
proposing the new heuristic, our main goal is to increase the performance of the original
CW as much as we can with minimal sacrifice in its simplicity and speed. As a result we
prefer to use mainly our plain implementation in our computational experiments. We

also believe this exposes the contribution introduced by demand information better.

Our test bed does not only consist of the instances by Christofides et al. [83],
but also the ones by Christofides and Eilon [92] and Augerat et al. [93]. They can be
downloaded from [94,95]. The results reported in Table 6.2 are obtained with local
improvement steps (Or—opt followed by 4-opt) by using the mentioned symmetric
and capacitated instances of Chrisfoﬁdes et al.’s. However, the results reported in
Table 6.3 are obtained without local improvement steps. The first column of the
tableau shows the instances. The second and third columns. are obtained by using our
CW implementation. The fourth and sixth columns include values calculated by our
implementation of Gaskell-Yellow CW enhancement (CW1). The numbers in each cell

are respectively route-shape parameter A, the relative per cent deviations from the
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best known values and total CPU times; they are the best of the results of 20 runs
each of which is realized with a value of A between 0.1 and 2. Initially A is set to 0.1
and incremented by 0.1 every time. The entries of the sixth column are the total of
CPU times in seconds of 20 runs. This format is repeateci in columns 7 — 9 for our
implementation of Paessens’ enhancement (CW2) and in columns 10 - 12 for the new
heuristic (CW3) with (A, u) pairs and (), u, v) triplets respebtively. In the last column
we present the best known values. The search effort becomes higher with the increase in
the number of parameters. For our Paessens implementation A changes within [0.1, 2]
with an increment of 0.1, while y is taking values starting from 0 up to 2 with an
increment of 0.1. In other words, the numbers in columns 7 and 8 are the best and the
numbers in column 9 are the averages of 20 x 21 = 420 values. The search effort for
the new heuristic is even higher because of the third parameter v; it is assigned values
starting fro.m 0 up to 2 with an increment of 0.1. As for A and u, the search intervals
are kept the same, namely [0.1, 2] for A and [0, 2] for x with an increment of 0.1. Hence
the number in columns 10 — 11 are respectively the best of 20 x 21 x 21 = 8820 vaiues.
As for example, for instance C50, it takes CW3 95.05 secohds (1.5 min.), to. obtain a
relative per cent deviation of 3.46 and parameters (A, u, v) = (0.6; 1.5;0.4) as the best
of 8820 values. Note that same local improvement strategy is activated after every
merge in all implementations. Namely, first Or-opt then 4-opt and best improvement,
are executed. For the same instance, namely C50, when the local improvement strategy
is not activated, it takes CW3 24.93 seconds (0.41 min.), to obtain a relative per cent

deviation of 5.90 and parameters (A, u,v) = (1.4;0.9;0.3) as the best of 8820 values.

Tables 6.4 — 6.11 are prepared with the same purpose for different instances. For
Table 6.4 and Table 6.5 the instances are chosen from Christofides and Eilon’s [92] test
bed, while the test bed from Augerat et al. [93] is being used for Tables 6.6 — 6.11.
Table 6.4, Table 6.6, Table 6.8 and Table 6.10 present results with local improvement
steps,namely first Or—opt, then 4—6pt this time. However, Table 6.5, Table 6.7, Table
6.9 and Table 6.11 present results without local improvement steps. At the first look
at the last rows of the tables we can say that local improvement steps have resulted in
slight improvements of the relative deviations with a considerable increase in the CPU

times.
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In all these tables last row includes column averages of relative per cent deviations
and total CPU seconds. Averaged relative per cent deviations give clues about the
improvement in the accuracy. For Augerat et al.’s and Christofides and Eilon’s test
set we use the best known results reported at [94] in the calculations. The best known
results for Christofides et al.’s instances are obtained from the work of Rochat and

Taillard {70].

The reported values of the parameters inform us implicitly about the contribution
of their corresponding term to the savings. As for example when A = 1 CW1 becomes
CW. Similarly for A = 1, 4 = v = 0 CW3’s behavior is equivalent to CW’s. Therefore,
whether the consideration of customer demand is a good idea or not. can be determined
how often v is different than zero. For 137 out of 174 values reported in column 11 of
Table 6.2 and Table 6.11 (79 per cent of the reported best values) v is different than
zero, which also points the contribution of CW3. |
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7. NEW ENHANCEMENTS OF ESAU AND WILLIAMS’
SAVINGS HEURISTIC

7.1. Introduction

Many telecommunication networks, such as time sharing, on line banking, reser-
vation, or registration, require remote terminals to be connected to a central processor.
Terminals have specified demands for information that must flow between the central
processor and them. Almost none of them use transmission lines continuously. They
transmit information intermittently, which result in very small transmission times. A
reasonable approach to increase the utilization is to connect several terminals into one
transmission line, which gives the name multipoint. Each multipoint transmission line
is in fact a tree spanning the vertices (terminals) sharing this line, and connected to
the central vertex (computer center) only by one edge (single link). Then the problem
becomes the design of minimal — cost multipoint transmission lines subject to capacity

restrictions.

As we have mentioned before, the CMSTP is a difficult combinatorial optimiza-
tion problem. It has been shown that even for the unit demand case it is NP-complete
when 2 < @ < n/2 [12]. In fact, many variants of the MST problem belong to the same
class [96,97]. Largest problem instances solved to optimality have respectively at most
200 and 50 vertices for the homogenous and nonhomogeneous demand cases [98]. As a
result of the inadequacy of exact methods, heuristics are widely used in practice. The
CMSTP heuristics can be classified as classical heuristics and metaheuristics. Most of
the early works realized during the 30 — year period starting from 1965 are within the
first family. Starting from 1995 the interest has been shifted towards metaheuristics
and mostly new members for this family have been produced. Current best heuristics
for the CMSTP in term of the quality of the solutions producéd belong to this family.
The recent work by Amberg et al. provide an excellent survey on the exact algo-

rithms and heuristics upto 1996 [99]. More recent developments are due to Sharaiha et
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al. [100], Ahuja et al. [101,102], Patterson et al. [103] and, Patterson and Pirkul [104].

Classical heuristics consist of two classes: Constructién heuristics and improve-
ment heuristics. Construction heuristics gradually build a feasible solution by merging
existing subtrees. They differentiate in their starting solution and merging criteria.
The first group starts with a spanning forest feasible with respect to capacity con-
straints and apply a greedy rule to select the subtrees to be merged. The feasibility
remains invariant and the number of connected components decreases throughout the
iterations. They stop when a feasible spanning tree is obtained. The second group
starts with a feasible trivial spa.nnihg tree, e.g. a star tree and improve this solu-
tion by merging multipoint transmission lines according to a saving criterion. This
is repeated until no savings can be obtained anymore. The third group starts with a
cheap but infeasible solution, e.g. a minimum spanning tree,'. and improves it gradually
by decreasing the infeasibility and increasing the cost according to an insertion cost.
Improvement heuristics attempt to improve a feasible solution. The first group use
local edge exchange strategies to move from a spanning tree with lower infeasibility
but higher cost. However the second group iteratively apply one of the construction
heuristics with different initial conditions, namely by forcing some of the edges to be
into or out of the final solution. Amberg et al. provide a detailed survey most of
the classical heuristics with an emphasis on their complexity in their work where they

propose a new vertex exchaxfge procedure [99].

Metaheuristics intensively use neighborhood search methods to explore solution
space without necessarily improving the objective function and sometimes allowing
infeasible moves. Tabu Search (TS) [69,99-101] and Adaptive Reasoning Technique
(ART) [103, 105] are the most widely used metaheuristics to solve the CMSTP. Both
methods start with an initial solution and move each step from the current solution
to a new one selected from its neighborhood, unot necessarily improving the objec-
tive function. Other metaheuristics are Simulated Annealing (SA) [66, 99, 106], Neu-
ral Networks (NN) [75,104,106] and Greedy Randomized Adaptive Search Procedure
(GRASP) [101, 107, 108]. Similar to TS, SA also starts with an initial solution and

move to a new one not necessarily improving the objective function, but no informa-
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tion on the previous solution is collected. NN are mainly adaptive learning processes
that continuously update some weights until an accepta,ble,: namely a feasible or close
to feasible solution is reached. GRASP is a neighborhood search algorithm that applies
a local improvement schemeAma,ny times with different starting feasible solutions each

of which is generated using some greedy randomized procedure.

Cla,ssical heuristics are unsophisticated and perform a limited exploration of the
search space compared with metaheuristics. However, they are simple, which makes
them easy to understand and easy to implement, and produce fairly good soluﬁions
irery fast. Some of them are flexible and can be extended easily to handle many
variants of the CMSTP. The performance of the metaheuristics is usually much higher
than the oﬁes of classical heuristics, but they require much more computational effort
to have their parameters finely tuned — up. The large set: of parameters they have,
increase their flexibility; but they also make them context dependent and difficult
to extend to other situations. Moreover, they have exponential running time times
in the worst case [109,110]. These probably explains why some of the classical and
elementary heuristics, such as the EW heuristic [18], are very popular in practice. EW
is extremely modest in its computational requirements and always ends up with a
‘feasible solution. Amberg et al. point the superiority of EW’s average performance in
comparison with other heuristics in the literature with similar computation time [99].
They also remarked that EW has a worst case running time of O(n?logn) where n is the
total number of nodes. Hence, it is embedded in many metaheuristics as a slave local
search procedure [99,101,103,104], and used as a benchmark by several researchers. As
a consequence, how one can improve the accuracy of EW without harming its speed
and simplicity very much becomes an interesting question. ‘It has been reported that
the major weakness of EW is in its greedy behavior: An edge that is cheap early in
the selection process may cause later edge selections resulting an expensive solution. A
quick and intuitive remedy could be the consideration of additional information in its
savings criterion, which can be introduced by means of additional parameters and/or
new terms concerning the capacity restriction. This is the main motivation of this
section; we propose new parallel savings heuristics which can control edge selections

and combine distance and demand information in its saving criterion.
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7.2. Esau and Williams’ Savings Heuristic and Its Enhancements

The EW heuristic [18] is not only one of the earliest methods proposed for the
solution of the CMSTP, but also probably the most widely used one in practice. Initially
every vertex is directly connected to the central vertex and there are as many subtrees
as the number of vertices. In other words, EW starts with a star tree. The star tree is a
feasible topology, otherwise there is no feasible topology. Subsequently, EW attempts
to reduce the cost as much as possible by modifying current solution without violating
capacity constraints. This is done by first identifying two vertices ¢ and 7 belonging
to two different subtrees and yielding the largest saving so that total demand of the |
subtree of 7 and the subtree of j does not exceed . Then the edge {0, 7} is replaced
with the edge {4, j} resulting in the largest saving

sij = (9 +g5) — (9 +cig) - (7.1)

= gj — Cij-

Here g; and g; are the lengths of the gates connecting respectively the subtrees of
vertices ¢ and 7 to the central vertex. Finally the savings are updated according to the

formula

su—gj+g forkeV\(ViuV;u{0})andl€V;
sk =14 0 for k,l € V; and k # 1 (7.2)

Skl otherwise

since the vertices in the subtree including vertex j now have edge {0,%} as the new
gate, whose length is g;. We have implemented. the parallel version of the algorithm
rather than the sequential version. In the parallel version of the algorithm, the list
of savings is tracked from the top in order to join the ﬁrst‘l pair of subtrees with the
largest saving, without violating the feasibility. Whereas in the sequential version, the
subtrees are considered first. For each subtree in turn, the saving list is tracked from

the top in order to find the first feasible join with another subtree.
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Although the feasibility of the final solution is guaraﬁteed, the accuracy of EW
is not always satisfactory. The low accuracy is mainly because of its greedy nature. At
each step, it myopically merges two subtrees and can be caught at a local optimal solu-
tion. As an attempt to remedy this drawback, one can modify EW to take more control
over the merging operations. For that purpose, Karnaugh {111] and Kershenbaum et
al. [112] have proposed second order greedy algorithms (SdGA). A SOGA iteratively
applies a construction procedure, namely a first order greedy algorithm (FOGA), such
as EW, to different initial conditions forcing some of the edges into or out of the final
solution. In each iteration, all possible modifications according to a given rule are
tested. The best one is realized and the respective modifications are made permanent
for the remaining iterations. These methods can also be seen as the early neighborhood

search algorithms for the CMSTP, rather than enhancements of EW.

The earliest enhancement of EW appears as a special form of Kershenbaum and
Chou’s unified algorithm [113]. The authors propose a sdving expression where g;,
vertex 4’s gate cost, is replaced with a parameterized weight in EW’s saving expression
(7.1). Another enhancement is due to Dai and Fujino [114]. They mainly contribute to
the speed of EW. Computing the maximum saving value is computationally the most
expensive part of EW. They employ component oriented saving computations instead
the vertex — oriented one in order to increase the efficieney. They also modify the
original heuristic to handle additional constraints on vertex order, degree and depth,
which can also be seen as a demonstration for the flexibility of EW. They organize and

maintain savings in a heap.

A limitation of EW is that a veftex, say vertex 7, is.always disconnected from
the root by deleting its gate while it may have been more adva.nté,geous to remove
the edge with the highest cost on the path linking vertex j to the root. In their
recent work Bruno and Laporte.ha,ve modified the'EW algorithm to implement this
idea [115]. This enhancement is easy to implement and the resulting algorithm is only
slightly slower than the original method. However, the accuracy has been significantly

improved especially on instances with large capacity bounds, Q.
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The most recent attempt to enhance EW is due to Jothi and Raghavachari [109,
110]. They have modified the saving formula by taking into account the information

coming from the total demand of the vertices belonging to the subtree to be connected.
7.3. New Enhancements

Although the feasibility of the final solution is guaranteed, the accuracy of EW
is not always satisfactory. The low accuracy is mainly because of its greedy nature. At
each step EW myopically merges two subtrees and can be caught at a local optimal
solution. Once two vertices are joined it is not possible to disconnect them later. That
is why one must be careful in joining the subtrees in order to escape from local minima.
One remedy is to use EW as a local search procedure. As it can be remembered this
" was the motivation behind the second order greedy approaches by Karnaugh [111] and
Kershenbaum et al. {112]. Another remedy can be the para.metrizé,tion of the saving
expression (7.1) similar to what Gaskell [84] and Yellow [85] propose to enhance the
CW heuristic for the CVRP [17]. This results in the saving expression,

Sij = g5 — O X Ci (7.3)

where a is the positive tree shape parameter. Notice that as it increases, greater
emphasis is given to the distance between vertices ¢ and j rather than their position
relative to the central vertex. The search for the best network topology realized by
changing o provides better near optimal solutions with an additional search effort
for the best parameter value. Notice that, although the parametrization of EW’s
saving expression (7.1) seems similar to the one of Kershenbau’m and Chou'’s earliér
suggestion [113] it is in fact different. They parameterize EW’s saving expression by
means of vertex ¢'s gate cost g;. Howevei', we consider the cost c,] of connecting vertices

i and j.

Another way to improve the performance of EW is to extend the parametric
saving expression (7.3) to consider more information about the spatial distribution of

the terminal vertices. One approach can be the use of asymmetry between the vertices
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i and j with respect to the central vertex. A similar enhancement was previously
proposed by Paessens for CW [86]. Parallel to his attempt for the CVRP it is possible
to add one more term and parameter to saving expression (7.3) in order to obtain the

following one

Sij =gj—aXcj+B8x|g—gjl. (7.4)

This new enhancement of EW can be run with different values of the parameters
a and B to obtain different solutions. The effect of parameters a and 8 are computa-
tionally studied in the following section. The result is a considerable increase in the

accuracy with a small additional computational cost.

While running the original EW and these: two new enhancements, especially to-
wards the end, the merge of subtrees with equal or very close savings occur often.
Then it may be more intéresting to consider also terminal demands while calculating
savings. In general, CMSTP is a combination of two problems: Minimal Spanning Tree
Problem (MSTP) and Bin Packing Problem (BPP). Hence, a saving expression which
somehow combines the solution strategies proposed for them can increase the chance
of obtaining higher improvements. For this purpose we adopt the well — known first
fit decrease idea of Martello and Toth [90], which was originally used for the BPP: put
first larger items into the bin. The inclusion of demand information provides addi-
tional control over the merge process. In short, we propose the following new savings

criterion:

si=gi—axc;+Bx|g—gl+yx (O de+ Y di)/d. (7.5)
" keV; kev;

Here d, is the demand of terminal 4, d is the average demand used for normaliza-
tion, ¢;; is the distance between terminals 4 and 7, g; and g; are respectively the lengths

of gates connecting the subtrees (multipoint lines) of terminals ¢ and j and the central
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vertex, and <y is the new parameter. Since it also includes previous enhancements,

saving expression (7.5) is more general. We consider demands normalized with their
n

average d = %Zd"’ because we want to include the effect of the relative impact of
i=1

terminal demands on the savings.

The use of demand effect in the saving formula is a.fso proposed by Jothi and
Raghavachari in their very recent works [109,110]. They have proposed the use of the

following expression for the Esau-Williams heuristic

sij = (95 — i) X (O i)’ (7.6)
. keV;

where 0 is a fixed parameter between 0 and 1. Notice that, (7.6) is different than the
one we proposed as the third term in (7.5). Jothi and Raghavachari use the demand
information prioritizing the subtrees with greater total demand to grow bigger and
bigger [109,110]. Different than their enhancement, we include into the saving formula,
the demand information coming from both of thé subtrees to be connected. In fact, at
merging step, we give priority to pairs of subtrees with greatest sum of their vertices

total demands.
7.4. Computational Results

In order,to demonstrate the improvement in the accuracy, we conducted exper-
iments with the original EW and the three new enhancemeénts on the same test bed.
Although a heap can provide a more efficient data organization we use the most simple
data structure, namely a matrix, to store the savings in our implementation. In other
words, we search the whole savings matrix starting from the very first cell and keep
the best sa.vihg with the smallest indices 7 and j. Then, we try to merge the subtrees
inéluding terminals ¢ and 5. We join them if the total demand of their subtrees does not
exceed capacity bound @. In the other case, when the capacity is exceeded, the saving
value s;; is set to 0. We also update the savings matrix after the merge operation is

performed: The savings belonging to the pairs of customers who are in the new subtree
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are also updated according to (7.2).

All of our codes are written in C** programming langﬁage. For only the verifica-
tion of our codes we compared our implementation of the EW with the implementation
of Sharaiha et al. [100] on seven sets of standard test problems: tc40, tc80, te40, te80,
cm50, c¢m100, and cm200. Each set has 15 instances, which makes 105 test problem at
sum. This is the test bed we use in our experiments. The sets which are identified
as tcX-Y QZ have the central vertex (root of the final tree) centrally located. This is
v;'hat the letter ¢ means. The central vertex is eccentric for the sets teX-Y QZ as meant
by the letter e. X is the number of terminals, Y is an instance label and the Z of QZ
is the capacity bounds for the subtrees. As for the cmX-~Y QZ instances, X, Y and Z
have precisely the same meaning, but the capacify bounds are significantly larger. All
of them can be downloaded from Beasley’s Operational Research library [116]. There
can be more than one edge with the same largest saving prior to a merge operation.
Since it determines the two subtrees to be joined this selection has a direct influence
on the final solution. We implement two strategies for a demonstration: Last best (LB)
and First best (FB). Last best chooses the last one of edges with the highest saving
encountered during the search in the current savings ma,trik. However, first best does
the opposite; the first edge with the highest saving determines the two subtrees to
be merged in this case. Our results are reported in the LB and FB columns of the
Table 7.1 and Table 7.2. “Instance” column includes the standard codes describing the
test problems. The columns with header SEW consist of the results due to Sharaiha
et al. [100]. As it can be observed the type of the strategy can effect final solutions
although it is not possible to say one is superior than the other. However, we can say
that our implementation gives slightly better results for almost all problem instances.
The overall averages of the final costs are respectively 884.26, 904.63, and 913.25 for
LB, FB and SEW. Last best (LB) is a better strategy in the average. We prefer to use
our EW implementation with the first best (FB) saving selection strategy for bench-
marking since it gives an average cost closer to the one of SEW. One may suggest to
improve final results further by going through a local improvement phase after every
merge. This can be achieved by determining “locally” a MST spanning the vertices of

the new subtree. Similar local improvement phases increase the accuracy of the saving
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heuristics for the CVRP. During our preliminary computational tests we have observed
marginal improvement only for a very few instances and preferred not to report them

here in detail.

The results reported in Tables 7.3 — 7.9 are obtained by using the mentioned 7
test sets. The first column shows the instances. The seco:nd and third columns are
obtained by using our implementation of the origiria,l EW. We run our implementation
with the first best saving selection strategy. The values are relative per cent deviations
from the bést known values and the CPU seconds spent for its calculation. The fourth
and fifth columns include values calculated with our first enhancement (EW1). The
numbers in each cell are respectively tree — shape parameter o and the total costs:
they are the best of the results of 19 runs each of which is realized with a value of
o between 0.1 and 2. Initially « is set to 0.1 and incremented by 0.1 at every step.
The entries of the sixth column are the averages of 19 CPU times in seconds each of
which is obtained for one value of o. This format is repeated in columns 7 — 9 for
the second enhancement (EW2) and in columns 10 — 12 for the third enhancement
(EW3) with (o, 8) pairs and (e, 8,7) triplets respectively. Notice that, in the original
EW’s update equation (7.1), (¢ = 1.0,8 = 0.0,y = 0.0) The best known values are
given in thé last columns. They are reported by Ahuja et al. {101,102], Patterson et
al. [103], Sharaiha et al. [100] and Amberg et al. [99]. The search effort becomes higher
with the increase in the number of parameters. For both enhancements «, 8 and «y are
chosen in the intervals (0.1,2), (0,2) and (0, 2) respectively. The increment is selected
0.1 for all parameters. In other words, we have solved EW2, 20 x 21 = 420 times
and EW3, 20 x 21 x 21 = 8820 times and recorded the best of 420 and 8820 relative
per cent devia.tioné and corresponding parameter values in columns 7 and 8 for EW2
and columns 10 and 11 for EW3. The CPU times given in‘columns 9 and 12 are the
averages of 420 and 8820 for EW2 and EW3 respectively;: As an example, for instance
cm50-3 Q200, it takes third enhancement EW3 1368 seconds (22.8 min.), which makes
0.155 seconds in the average, to obtain a total cost of 1208 :as the best of 8820 values
and corresponding parameters (¢, 8,7) = (1.5,0.9,2.0). In all these tables last row
includes column averages for relative per cent deviations and average CPU seconds.

Averaged total costs give clues about the improvement in the accuracy.
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We observe 9.083, 6.464 and 5.841 per cent relative deviations as the average of
the whole test set (105 test instances) for our new heuristics EW1, EW2 and EW3
respectively. According to the results listed in Tables 5.3 — 5.9 the most important
parameters seem to be the tree shape pa.rametér o, and ,8 They assume non zero
final values more frequently than y does. This fact can also be deduced from the three
average relative deviations. The one of EW2, which has « and g, is close to the one of
EWS3, which has «, 8 and -y as parameters. The capacity term in the savings expression
becomes more important (- has higher tendency to have non zero final values) for small
capacity bounds @), which is reasonable since this resource is scarce and there is not
many subtrees that can satisfy this bound. In the contrary, when @ is large, the
resource is not scarce and less care is given to capacities in the savings criterion, which

result in a larger number of zero 7y values.

Our final remark is on the determination of the intervals for (e, 8,) parameters.
This is a crucial point which may greatly affects the accuracy of EW1, EW2 and
EW3. It may not be possible to improve EW when the intervals are too tight. On
the other hand the required computational effort becomes excessive when the intervals.
are unnecessarily wide. In order to find a balance between the speed and the accuracy-
we have conducted additional experiments with EW3 where (¢, 8,) are respectively
chosen within [0.1, 3], [0, 3], [0, 3] and with increments 0.1. Wider intervals gave better
results than the ones obtained with (o, 8,7) in [0.1,2], [0,2], [0,2] in only 26 of the
20010 ((31-x 30 x 30) — (21 x 20 x 20)) additionial runs. Besides, in all these 26 cases
the values of B and -y were within [0,2]-and o was within [2,3]. This suggests that
our choice of interval [0, 2] for B and + is reasonable and the additional computational
effort spent for (@) in [2,3] is not worthless. Therefore, we believe that our choice of

(@, B,7) parameter intervals to be [0.1,2], [0,2], [0,2] is a good search strategy.

We have also experimented with the saving expression

sij = (g5 — @ X cij + B % g — gil) x (O _d)’, (7.7)
keV;
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which is inspired by (7.6) of Jothi and Raghavachari [109,110]. In these computations,
(e, 8,6) are chosen within the intervals [0.1,2], [0,2], [0,2] and with increments 0.1.
For only 7 out of 105 instances we ended up with a nonzero §. It means demand.
information contributes for only 6.66 per cent of test problems. Moreover, in any of
these 7 instances we have observed better results than the ones we obtained with EW3.

Therefore, we do not report them here.
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8. CONCLUSIONS

With this dissertation we first propose new heuristic algorithms for the UCLP
based on the ideas originally proposed for two well-known combinatorial optimization
problems: The Asymmetric Travelling Salesman Problem and The Linear Ordering
Problem. One of the new heuristics, MR, appears to be much more efficient and
accurate than the other considered known and new heuristics. Then, we have devised
a branch and bound algorithm for a special case of the UCLP: Balanced UCLP. We have
used MR as the upper bounding procedure and observed it is very efficient. Moreover,
- we have also developed a new move based dominance rule. The techniques used in
our branch and bound algorithm may be exported for other problems with similar
structure. Some of them are the LOP, the permutation flow—shop scheduling problem,

the single machine scheduling problem, etc.

Second, we propose new ATSP formulations, with O(n3) subtour elimination
constraints, based on a formulation originally devised for the balanced case of the
UCLP. We then improve this new formulation to obtain tighter linear programming
relaxations, while maintaining O(n3) subtour elimination constraints. Their relative
strength is analyzed and compared with several major ATSP:formulations both polyhe-
dral standpoint and a computational testing. It turns out that one of O(n®) constrained
ATSP formulations, is stronger than any known multi-commodity flow formulation. We
have not only classified the new formulations with the existing ones, but also we have

theoretically compared some of the known formulations.

All these new ATSP formulations have quite efficient subtour elimination con-
straints that one can also use them for the CVRP. Moreover, although we have not
considered in this thesis, the classification of Capacitated Vehicle Routing Problems is

also another important further research topic.

Third, we propose a new enhancement of the CW heuristic for the CVRP. Com-

pared with the previous enhancements of the Clarke-Wright heuristic considers also
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customer demands in its saving criterion. This is realized by introducing a new term

and a multiplier.

One problem with similar structure to the CVRP, is the CMSTP. Similarly, we
put forward new enhancements of the EW heuristic for the CMSTP. Both, CW and EW
run in the same way, based on a similar saving criterion. For the EW, in addition to
the demand information, we have adopted enhancements based on the ideas originally

proposed for the CVRP by Gaskell [84], Yellow [85] and Paessens [86].

In their recent work on the CVRP heuristics Cordeau et al. [79] have introduced
accuracy, speed, simplicity, and flezibility as what they believe the most important
attributes of a good heuristic and compare well — known classical heuristics and best
available metaheuristics according to these four criteria for the CVRP. They report
that none of the classical heuristics is as accurate and flexible as any one of the meta-
heuristics; but the CW is very fast and simple to implement. These are probably the
reasons of its popularity for the CVRP and explain its wide usage in commercial soft-
ware. Analogously, the four criteria used by Cordeau et al. [79] to evaluate the CVRP
heuristics can also be considered for the CMSTP heuristics. When this is done same
verdict can be declared about the EW: it has low accuracy, very high speed, very high
simplicity and low flexibility. Although, both CW and EW are forty years old algo-
rithms, they are still used by many researchers and practitioners. As a consequence,
how one can improve the accuracy of CW and EW without harming their speed and
simplicity very much, becomes an important question whose answer will contribute to

the practice of the CVRP and CMSTP, respectively.

Finally we should point out that all the computational tests of this dissertation
are realized on a Sun Microsystems Blade - 1.000 with a 750 MHz Ultrasparc III CPU
and 2 GByte RAM, working within SOLARIS 8.0 environment.
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APPENDIX A: PUBLICATIONS RELATED WITH THE
DISSERTATION

Journal Articles

e Altinel, I. K. and T. Oncan, “A New Enhancement of the Clarke and Wright
Savings Heuristic for the Capacitated Vehicle Routing Problem”, submitted to
Journal of the Operational Research Society, accepted for publication.

e Altinel, I. K., T. Oncan and A. T. Unal, “New Extended Formulations for the
Asymmetric Travelling Salesman Problem and The Strength of Their Linear Pro-
gramming Relaxations”, subnﬁtted to European Journal of Operations Research,
first revision.

e Altmel, I. K. and T. Oncan, “Enhancements of the Esau-Williams Heuristic for
the Capacitated Minimum Spanning Tree Problem”, submitted to European Jour-
nal of Operations Research.

e Altmmel, I. K. and T. Oncan, “The Design of Optimal Unidirectional Cyclic Lay-
outs”, submitted to International Journal of Production Research.

. Altinel, I. K. and T. Oncan, “Aggregating the Assignment and Subtour Elimina-

tion Constraints”, submitted to Operations Research Letters.

Conferences

e Altmnel, I. K. and T. Oncan, “New Enhancements of the Esau-Williams Heuristic
for the Capacitated Minimum Spanning Tree Problem”, Intematz’onal Conference
of Informatics, Izmir, Turkey, September 2004. ,

e Oncan, T. and i_. K. Altinel, “New Heuristic Solution Methods for the Unidirec-
tional Cyclic Layout Problem”, in Turkish, Operations Research and Industrial
Engineering Conference (YA/EM 2004), pp. 73-75, Gukurova University, Turkey,
June 2004. :

e Altmel, I. K. and T. Oncan, “A New n(n — 1)? + 1 Constrained Asymmetric
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Travelling Salesman Problem Formulation”, in Turkish, Operations Research and
Industrial Engineering Conference (YA/EM 2004), pp. 545, Cukurova University,
Turkéy, Jﬁne 2004.

e Oncan, T. and I. K. Altinel, “A New Enhancement of the Clarke-Wright Savings
Heuristic for the Capacitated Vehicle Routing Problem”, FEuro/Informs Joint
International Meeting, Istanbul, Turkey, July 2003.

e Oncan, T. and I. K. Altinel, “A New Travelling Salesman Problem Formula-
tion and Its Linear Programming Relaxation Strength”, in Turkish, Opemtz'éns
Research and Industrial Engineering Conference (YA/EM 2002), Yeditepe Uni-
versity, Turkey, July 2002. '

e Oncan, T. and I. K. Altnel, “Two New Travelling Salesman Problem Formula-
tions and Their Comparisons”, in Turkish, Operations Research and Industrial
E’ngz'ﬁeem'ng Conference (YA/EM 2000), East Mediterranean University, NCTR,
July 2000.

Technical Reports

e Altmnel, I. K. and T. Oncan, A New Enhancement of the Clarke and Wright
Savings Heuristic for the Capacitated Vehicle Routing Problem, Research Paper
FBE-IE-12 /2003—02, Institute for Graduate Studies in Science and Engineering,
Bogazigi University, Bebek, Istanbul, Turkey, February 2003.

e Altinel, I. K. and T. Oncan, Enhancements of the Esau: Williams Heuristic for the
C’apaéz’tated Minimum Spanning Tree Problem, Research Paper FBE-IE-03/2003-
03, Institute for Graduate Studies in Science and Engineering, Bogazi¢i Univer-
sity, Bebek, Istanbul, Turkey, April 2003. '

o Altmel, I. K., T. Oncan and A. T. Unal, New Ertended Formulations for the
Asymmetric Travelling Salesman Problem and The Strength of Their Linear Pro-
gramming Relazations, Research Paper FBE-IE-05/2003-05, Institute for Grad-
ué,te Studies in Science and Engineering, Bogazi¢i University, Bebek, Istanbul,
Turkey, August 2003.

e Altinel, I. K. and T. Oncan, The Design of Optimal Unidirectional Cyclic Lay-
outs, Research Paper FBE-IE-06/2004-09, Institute for Graduate Studies in Sci-
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" ence and Engineering, Bogazici University, Bebek, isté,nbul, Turkey, May 2004.

e Altmel, I. K. and T. Oncan, Aggregating The Assignment and Subtour Elimi-
natioﬁ Constraints, Research Paper FBE-IE—15/2004~.22,' Institute for Graduate
Studies in Science and Engineering, Bogazici University, Bebek, Istanbul, Turkey,

September 2004.
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