
SLATER T�P ORB�TALLER 
KULLANILARAK ELEKTR�K          

ÇOK-KUTUP MOMENT 
�NTEGRALLER�N�N HESAPLANMASI 

N�LGÜN �NCERE�S 

F�Z�K YÜKSEK L�SANS 

F�Z�K ANAB�L�M DALI 



T.C. 

ONDOKUZ MAYIS ÜN�VERS�TES� 

FEN B�L�MLER� ENST�TÜSÜ 

 

 

 

SLATER T�P ORB�TALLER KULLANILARAK ELEKTR�K ÇOK-KUTUP 

MOMENT �NTEGRALLER�N�N HESAPLANMASI 

 

 

N�LGÜN �NCERE�S 

 

YÜKSEK L�SANS TEZ� 

 

F�Z�K ANAB�L�M DALI 

 

 

AKADEM�K DANI�MAN 

DOÇ. DR. EM�N ÖZTEK�N 

 

 

 

SAMSUN-2011 





���

�

SLATER T�P ORB�TALLER KULLANILARAK ELEKTR�K ÇOK-KUTUP 

MOMENT �NTEGRALLER�N�N HESAPLANMASI 

 

ÖZ 

 Bu çalı�mada, Slater tip orbitaller (STO’lar) kullanılarak, tek-elektron ve a ve b 

olarak adlandırılan iki-merkez elektrik çok-kutup moment integraller hesaplanmaktadır. 

Bundan dolayı, düzenli katı harmonikler ve i�lemci için master formüller kullanılarak 

iki-merkez elektrik çok-kutup moment integrallerinde içeren o-merkez çok-kutup 

moment i�lemciler ve a-merkez STO’lar b-merkezine ta�ınmaktadır. Sonra, integralin 

radyal ve açısal kısımları ayrı ayrı ve analitik olarak hesaplanmı�tır. Böylece, iki-

merkez elektrik çok-kutup moment integraller tek-merkeze indirgenmi� olur. Daha 

sonra, eliptik koordinat sistemi kullanılarak iki-merkez elektrik çok-kutup moment 

integraller Zeta fonksiyonu veya A
k

 ve B
k

 yardımcı fonksiyonları cinsinden ifade 

edilmi�tir. Sonuç olarak, Mathematica 7 programlama dilinde A
k

 ve B
k

 yardımcı 

fonksiyonları hesaplayan bilgisayar programı yapılarak tek-elektron ve iki-merkez 

elektrik çok-kutup moment integraller sayısal olarak hesaplanmı�tır. 

 

Anahtar Kelimeler: Slater tip orbitaller, çok-kutup momentler, Z fonksiyonları, A
k

 

yardımcı fonksiyonu, B
k

 yardımcı fonksiyonu. 
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CALCULATION OF ELECTRIC MULTIPOLE MOMENT  

INTEGRALS BY USING SLATER TYPE ORBITALS 

 

ABSTRACT 

 In this work, electric multipole moment integrals which has one-electron and 

two-center, which is termed as a and b terms, calculated by using Slater type orbitals 

(STOs). Therefore, o-center multipole moment operators and a-center STOs involved in 

the two-center electric multipole moment integrals was translated to b-center using 

tesseral harmonics and master formulas as operator. Then, the radial and angular part of 

the integral was analytically and separetely calculated. So, two-center electric multipole 

moment integrals have been reduced to the one-center. After more, two-center electric 

multipole moment integrals are expressed in terms of Zeta functions or A
k

 and B
k

 

auxiliary functions by using ellipsoidal coordinate system. Consequently, one-electron 

and two-center electric multipole moment integrals numerically calculated using 

computing program which calculated A
k

 and B
k

 auxiliary functions in Mathematica 7 

programming language.  

 

Keywords: Slater-type orbitals, the multipole moments, Z functions, A
k

 auxiliary 

function, B
k

 auxiliary function. 
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 1. G�R�� 

 

 Maddeleri daha yakından tanıyabilmek için onları olu�turan atom ve 

moleküllerin özelliklerini incelemek gerekir. �ncelemek istedi�imiz maddenin elektrik, 

manyetik veya optik özellikleri ve madde içinde olu�an reaksiyonlar, bu maddeyi 

meydana getiren moleküllerin özelliklerine ba�lıdır. Bu nedenle moleküllerin yapısını 

belirtmek, yapı ile özellik arasındaki ilgileri bulmak büyük önem ta�ır. 

 Moleküllerin yapı ve özellikleri bilindi�inde, onun kimyasal reaksiyon yetene�i 

ve meydana getirdi�i maddenin özellikleri hakkında birtakım bilgiler elde edilmektedir. 

Ayrıca istedi�imiz özelliklerde bir madde elde etmek için bu maddeyi olu�turan 

molekülün yapısının önceden bilinmesi önemli bir yer tutmaktadır. Böylece, herhangi 

bir deney yapmadan ve herhangi bir teorik ara�tırmaya girmeden sadece moleküllerin 

bazı özelliklerini bilerek bu moleküllerden olu�an maddenin özelli�i hakkında birtakım 

bilgiler elde edilmektedir. 

 Molekülün yapısı kimyasal yapısının bilinmesiyle anlamlı olur. Bu yapıyı 

bilmeden molekülün kendi yapısından ve özelliklerinden söz etmek mümkün de�ildir. 

Molekülü olu�turan atomlar arasındaki kimyasal ba�lar, molekülün kimyasal yapısının 

temelini olu�turmaktadır. Kuantum mekani�inin inceleme alanına giren elektronlar 

vasıtasıyla da bu ba�lar olu�maktadır.  

  Atom ve moleküllerin elektronik yapılarının belirlenmesi, atomlar ve moleküller 

arasındaki etkile�imlerin anla�ılmasında çok önemlidir. Bu nedenle, bu yapıların do�ru 

ve incelikli bir �ekilde belirlenmesi ile ilgili çalı�malar uzun yıllardan beri sürmektedir. 

 Elektriksel olarak bir yük sistemi, elektrik çok-kutup momentlerin bir setiyle 

ilgilidir. Belli bir bölgede toplanmı� yüklerin da�ılımının dı�ında bir noktadaki elektrik 

alanın potansiyeli yüklerin çok-kutup momentlerine ba�lıdır. Bu, bir dı� alanla sistemin 

etkile�im enerjisidir. Çok-kutup momentler, moleküller arasındaki kuvvetlerin varlı�ını 

kanıtlamaktadır. Aynı zamanda tamamlanmamı� gazların, sıvıların veya katıların 

özelliklerinin anla�ılması için ara�tırmalara da yardım etmektedir. Moleküllerdeki çift-

kutup ve dört-kutup momentlerin ölçümleri yapısal açıdan çok önemlidir. Örne�in, 

-18
 1,84 x 10 e.s.u.  (1,84 D) olan 

2
H O ’nun çift-kutup moment de�eri molekülün yük 
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da�ılımı hakkında bilgi vermektedir. Böyle polar kovalent ba�a sahip moleküllerin yük 

da�ılımındaki farklılık çift-kutup moment ile verilir. 
2

CO ’nin dört-kutup momenti de 

bize bu moleküldeki C-O ba�ları hakkında çok �ey söylemektedir (Buckingham, 1959).  

 Atomlar ve moleküller arasında olu�an belirli kuvvetler öncelikle bu atomların 

veya moleküllerin elektriksel olarak birbirleriyle etkile�imlerinden kaynaklandı�ı 

sonucuna varılabilir. Moleküller uzakla�tı�ında ve moleküller arasındaki mesafe 

molekülün boyutları için kar�ıla�tırıldı�ında etkile�im enerjisi sabit elektrik momentler 

tarafından belirlenmektedir. Bu moleküllerin etkile�imleri de elektrostatik enerji 

içermektedir. Böyle sabit momentler, bir ek etkile�ime neden olan yakın moleküllerin 

elektronik yapılarını bozan bir alan üretmektedir (Buckingham, 1967).  

 Moleküler sistemde, sistemin enerjisinin belirlenmesi kadar molekülün sahip 

oldu�u yük da�ılımının belirlenmesi de birtakım özelliklerin bilinmesi açısından 

önemlidir. Moleküllerin yük da�ılımı ise elektrik çok-kutup momentler cinsinden ifade 

edilmektedir (Buckingham, 1967). Elektrik çok-kutup moment integrallari ise Slater tipi 

orbitaller (STO) kullanarak analitik olarak de�erlendirilmesiyle ilgili çalı�malar 

(Guseinov ve Sadichov, 1977; Beck ve Hohlneicher, 1999) geçmi�ten günümüze kadar 

hala devam etmektedir. Son zamanlarda yapılan elektrik çok-kutup momentlerinin 

belirlenmesiyle ilgili çalı�maların ço�u teoriktir. Elektrik çok-kutup moment integralleri 

için yapılmı� olan teorik çalı�maların (Zheng ve Zerner, 1993; Guseinov, 1998; 

Guseinov ve ark., 1999 (a); Yükçü ve ark., 2011; Yükçü, 2009) ço�unda elektrik çok-

kutup moment i�lemcisinin veya STO’ların ta�ınma ba�ıntıları kullanılmı�tır. Aynı 

zamanda manyetik çok-kutup moment integralleri için de STO’ların ta�ınma 

ba�ıntılarının kullanıldı�ı çalı�malar bulunmaktadır (Guseinov, 1998; Guseinov ve ark., 

1999 (b); Yükçü, 2009).  

 Kaynaklara baktı�ımızda çok-kutuplar ile ilgili de�i�ik çalı�malar yapılmı�tır. 

Örne�in, elektromanyetik alandaki küresel bir parçacı�ın tork ve kuvvetinin 

hesaplanması üzerinde çalı�malar yapılarak alanın türev ifadeleri bakımından 

matematiksel ifadeleri elde edilmi�tir (Washizu, 2004). Tasi ve arkada�ları (Tasi ve ark., 

1997) da kalıcı elektrik çift-kutup momentlerin analizini yapmı�lardır. Kalıcı elektrik 

çift-kutup moment de, moleküllerin kutupla�ma ve yapısı üzerinde temel bilgiler 

sa�lamaktadır. Ayrıca ba�ka bir çalı�mada elektrik çift-kutup momentlerin parçacık 
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hakkında daha detaylı bilgi verdi�i ifade edilmektedir (Stoylov ve ark., 2009). Ba�ka bir 

kaynakta (Ong ve ark., 2003) ise çok-kutuplar üzerindeki hızlı Fourier dönü�üm metodu 

(FFTM) ile üç boyutlularda potansiyel alanların hızlı hesaplanması için hızlı çalı�an 

algoritma yapmı�lardır. Ayrıca, çekirdek ile elektronlar arasındaki elektromanyetik 

etkile�melerden yalnızca elektrik etkile�meler dikkate alınarak a�ırı ince yapı sabitinin 

de�eri elektrik çok-kutup momentler cinsinden hesaplanmı�tır (Gül, 2006). 

 Elektrik çok-kutup momentler ile ilgili hem deneysel hem de teorik çalı�malar 

vardır. Do�rudan ölçümler genellikle çift-kutup (Halkier ve ark., 1999) ve dört-kutup 

(Harrison ve Lawson, 2005; Maynau ve ark., 2002; Rabinowitz ve Rein, 1972; Maroulis 

ve Thakkar, 1987) momentlerle sınırlanırken, moleküler elektronik yapı teoride 10. 

dereceyi a�kın elektrik momentler üzerinde teorik ara�tırmalar (Sundholm ve Pyykko, 

1985; Bounds ve Wilson, 1985; Özdo�an, 2006; Zheng ve Zerner, 1993) yapılmı�tır. 

Deneysel sınırlamalar yüzünden daha yüksek momentlerin çalı�maları ölçüm 

sonuçlarını do�rulamada hedef alınamamaktadır. Yüksek dereceden momentler, 

moleküler dinamikte, yüksek derece kutuplanabilirlerin hesaplanmasında (Dacre, 1984; 

Maroulis, 2003; Maroulis, 2011 (a); Maroulis, 2011 (b)), moleküler optik ve manyetik 

özelliklerde, London serilerinin terimlerindeki moleküller arası etkile�imlerde ve öz 

uyumlu alan teorisinin kuantum mekaniksel çözümlerinde kullanılmaktadır (Zheng ve 

Zerner, 1993). 

 Bir moleküler orbital tanımlaması sıklıkla moleküler çift-kutup momentlerle 

verilebilir. Moleküler çift-kutup momentler, dört-kutup momentlerden daha güvenlidir. 

Dört-kutup momentlerden daha yüksek derece momentler için seçilen baz seti çok 

önemlidir. Yüksek derece momentler, moleküler bölgenin dı�ındaki elektronik 

da�ılımlar için çok duyarlıdır. Yalnızca büyük baz setleri tarafından tanımlanması daha 

iyi olabilir. Baz setinin etkileri, yüksek derece momentler üzerindeki ili�kiden daha 

önemli oldu�una inanılmaktadır (Zheng ve Zerner, 1993). 

 Biz bu çalı�mada, STO’ları kullanarak elektrik çok-kutup moment integallerini 

bulmaya çalı�tık. Bunun için öncelikle, kartezyen koordinatları kullanarak normalize 

olmu� düzenli katı harmonikleri Mathematica 7 programlama dilini kullanarak g 

orbitallerine kadar hesapladık. Sonra, kaynaklarda ifade edilen çok-kutup moment 

tanımlamalarından birini (Buckingham, 1959) kullanarak çe�itli momentlerin tensör 

operatörlerini tek-kutup, çift-kutup, dört-kutup, sekiz-kutup ve onaltı-kutup için master 
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formül ifadelerini yazdık. Daha sonra, farklı koordinatlara sahip iki ayrı merkezin 

birbirine nasıl ba�lı oldu�unu ve A-merkezini B-merkezine nasıl ta�ıyaca�ımızı, bunu 

�ekil (3.2)’de ifade ederek, açıkladık. Aynı zamanda, kaynaklarda düzenli katı 

harmonikler ve i�lemcinin ta�ınması için master formüller (Zheng ve Zerner, 1993) 

ifade edilmi�tir. Bu master formülerleri kullanarak hem STO hem i�lemci için 

hesapladı�ımız master ifadeleri çizelge halinde gösterdik. Sonra STO’ları kullanılarak A 

ve B biçiminde iki-merkez ve tek-elektron olan elektrik çok-kutup moment 

integrallerinin hesaplanması için O-merkezindeki i�lemciyi ve A-merkezindeki STO’yu, 

düzenli katı harmonikler ve i�lemci için master formülleri kullanarak B-merkezine 

ta�ıdık. Böylece iki-merkez elektrik çok-kutup moment integraller tek-merkeze 

indirgenmi� oldu. Daha sonra iki-merkez elektrik çok-kutup moment integrallerinin 

eliptik koordinat sisteminde ifade edilmesiyle Z fonksiyonları cinsinden veya A ve B 

yardımcı fonksiyonları cinsinden ifade edilebilmesi nedeniyle Mathematica 7 

programlama dilinde A ve B yardımcı fonksiyonları bulan programı yaparak iki-merkez 

ve tek-elektron olan elektrik çok-kutup moment integralleri sayısal olarak 

hesaplanmaktadır. 
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 2. GENEL B�LG�LER 

  

 2.1. Çok Kutuplu Alanlar 

 Molekülden olu�an bir sistem dü�ündü�ümüzde, moleküllerin sahip oldukları 

yük da�ılımlarının belirlenmesi en az sistemin enerjisinin belirlenmesi kadar önemlidir 

(Orbay, 2000). Bu nedenle molekülerin yük da�ılımlarını incelemek, moleküller 

hakkında bize ayrıntılı bilgiler sunar. Bu moleküllerin yük da�ılımları da elektrik çok-

kutup momentler cinsinden ifade edilir (Buckingham, 1967).  

 Bu bölümde, kararlı-durum ko�ulları altındaki elektromanyetik etkilerden söz 

edilecektir. �lk olarak, durgun yüklerin bir koleksiyonu dü�ünülecek ve kuvvet 

serilerinin açılımı kullanılarak durgun yüklerin kendilerinden belirli bir mesafede 

olu�turdu�u skaler potansiyel hesaplanması gösterilecektir. Böyle bir açılım içindeki 

çe�itli terimlerin, sistemin çok-kutup momentleriyle özde�le�mi� olabilece�inden 

bahsedilecektir. Bu terimler, sistemdeki çok-kutup momentlerden tek-kutup, çift-kutup 

ve dört-kutup açısından ayrıntılı olarak ele alınacaktır. E�er yükler hareketli ise, akımlar 

olu�acak ve manyetik etkiler meydana gelecektir (Marion ve Heald, 1980). Bu 

bölümdeki e�itlikler için Gauss birim sistemi kullanılmı�tır. Yani, 0k = 1/ 4�	 = 1 olarak 

alınmı�tır.  

 

 2.1.1. Elektrik Çift-Kutup 

 �lk olarak, yüklerin statik bir sistemine temel bir örnek dü�ünelim. Sistem, e�it 

büyüklükteki iki yükten olu�ur (�ekil 2.1). Bu yükler zıt i�aretlidir ve her biri ba�langıç 

noktasından l kadar mesafededir. Ba�langıç noktası ise bu yükleri birbirine ba�layan 

eksen üzerindedir. Böyle bir sistem, elektrik çift-kutup için en basit örnektir (Marion ve 

Heald, 1980). 
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�ekil 2.1. Elektrik çift-kutup. 

 

 Elektrik alan süperpozisyon prensibine uyar. Bu nedenle bir yük sisteminin 

elektrik potansiyeli süperpozisyon prensibi ile bulunur. Süperpozisyon prensibine göre; 

bir yük kümesinin elektrik alanı her bir yükün olu�turdu�u elektrik alanların vektörel 

toplamıdır. Bir dizi yükün meydana getirdi�i elektrik potansiyeli de her bir yükün 

olu�turdu�u potansiyellerin skaler toplamıdır. 

 Süperpozisyon prensibine göre � �R = R
�

 
oldu�unda P(r, �, 
)  noktasındaki 

potansiyel, 

1 2

1 1
�(r,�,
) =

R R
q
� �
� �−

� �
� �

� �                                                                                            (2.1) 

olarak verilir. Potansiyel ifadesi, �  açısına ve r
�

’nin r = r
�

 büyüklü�üne ba�lı olarak 

yazılabilir. Çünkü yük da�ılımı eksensel simetriktir. Potansiyel 
  azimut açısından 

ba�ımsız olmalıdır. Potansiyelin 
 ’den ba�ımsız oldu�unu göstermek için, öncelikle r 

ve � ’nın fonksiyonu olarak 1R  ve 2R  yazılır. Kosinüs teoremi kullanılarak, denklem 

(2.2) yazılır (Marion ve Heald, 1980). 
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olur. E�er çift-kutup alanın etki etti�i P noktasının çift-kutup merkezinden uzaklı�ı, 

yüklerin çift-kutup merkezine olan l uzaklı�ından çok büyük seçilirse (l << r) yakla�ık 

olarak a�a�ıdaki gibi olur: 

2
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dir. 
2

1

R
‘deki – i�areti cos(� �) = cos�− −  açılımından ortaya çıkar. Böylece potansiyel 

yakla�ık olarak, 

2
�(r,�) 2q

cos�
 l

r
=

                                           

                                                            (2.5) 

yazılır. Bir çift-kutup potansiyeli bundan dolayı 1/ 2r
 

kadar azalırken bir yükün 

potansiyeli 1/r kadar azalır. Buna göre; çift-kutup potansiyeli, tek bir yükün 

potansiyelinden daha çabuk azalmalıdır. Çünkü P noktası daha uza�a konulur ve 

böylece çift-kutup yük da�ılımı yüksüz basit küçük bir birim yük olarak görünür. 2l 

mesafede ve q kadar e�it yüklerin çiftine elektrik çift-kutup moment denir ve  

ˆp 2 eql≡

�
                                                                                                                       (2.6) 
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biçiminde ifade edilir. Çift-kutup moment, �ekil 2.1’de görüldü�ü gibi negatif yükten 

pozitif yüke do�ru tanımlanan yönde bir vektördür (Marion ve Heald, 1980). 

 E�er êr ; P noktası do�rultusundaki bir birim vektörse, çift-kutup potansiyeli, 

2

ˆp
� =

�
.er

r
                                                                                                                      (2.7) 

kadar olmalıdır (Marion ve Heald, 1980). 

 Çift-kutup için elektrik alan vektörü E
�

, � ’nin gradientinin negatifi olarak, 

E = grad �−
�

                                                                                                                (2.8) 

�eklinde verilir (Marion ve Heald, 1980). 

 E
�

’nin küresel bile�enleri, denklem (2.5)’i kullanarak daha kolay bir �ekilde 

hesaplanabilir. Aynı zamanda  p 2ql=  olarak alındı�ında E
���

’nin küresel bile�enleri, 
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�eklinde yazılabilir (Marion ve Heald, 1980). 

 Bazı elektrik alan çizgileri ve e�potansiyel çizgiler �ekil 2.2’de gösterilmektedir. 

       (2.9) 
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�ekil 2.2. E�potansiyel yüzey ve elektrik alan çizgileri. 

 

 �ekil 2.2’deki e�rilerin her ikisi de kutupsal eksende simetriktir. Böylece 

e�potansiyel yüzeyler, simetrik eksenlerde �ekil 2.2’deki e�rilerin dönmesiyle elde 

edilebilir. Ayrıca, �ekil 2.2’ye göre çift-kutup moment yönünün soldan sa�a yatay 

oldu�u söylenilebilir. Burada, sonlu büyüklükte olan çift-kutup dü�ünülür. Fakat limit 

durumunda sıfır olan bir çift-kutup noktası tanımlanır ve yükün büyüklü�ü sonsuza 

yakla�ır. Böylece p çift-kutup momenti, 
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p lim 2
l
q
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→

→ ∞

≡                                                                                                               (2.10) 

�eklindedir (Marion ve Heald, 1980). 
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 2.1.2. Potansiyelin Çok-Kutup Açılımı 

 Keyfi yerle�tirilmi� 
�

q  yükünün ba�langıç noktası etrafındaki statik bir 

koleksiyonuna sahip oldu�u yerdeki genel yerle�imini dü�ünelim. 
�,1 �,2 �,3( ' , ' , ' )x x x

 

noktasındaki  � . yükünün uzaklık vektörü �,r ' = r  ' (  ' )ix
� �

 
olsun. 

�
q

 
yükünden 

� �R r r '= −

� � �
 ve ba�langıç noktasından r

�
 olarak  P P( )ix=

 
noktasına yönelen vektörler, 

sırasıyla �ekil 2.3’te gösterilmi�tir. P noktasındaki alan sabit alınırsa, böylece R
�

�
 

vektörü, � q  yükünün �,' ix  koordinatının bir fonksiyonu olarak yazılır (Marion ve 

Heald, 1980). 

�

�ekil 2.3. � q yükünün bir P noktasındaki potansiyeli. 
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olur. Burada, 
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  r
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 konumunda sabit bir alan için, ba�langıç noktası �r ' 0=
�

 civarında 
�

1
 
R

‘ nın 

açılımı yapılır. 
�,1 �,2 ,3� �
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koordinatı için üç boyutlu Maclaurin açılımı, 
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�eklindedir (Arfken ve Weber, 2001). Bundan dolayı, 
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olarak alındı�ında, 
�
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olur. 

 �imdi, denklem (2.12)’den uzaysal türevler, 
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olarak de�i�ir. Böylece, 
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olur. Bu nedenle; potansiyel, 
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olarak yazılabilir. 

 Yüklerin toplamından kaynaklanan potansiyel, 

( ) ( ) ( )1 2 4 (2 )
... ...

l

α
α

Φ = Φ = Φ + Φ + Φ + + Φ +
                                                          (2.19) 

olarak yazılabilir. Burada a�a�ıdaki tanımlamalar kullanılmı�tır. 
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dir. 

 E�er toplam yük 
�

�

q q=
  ba�langıç noktasında yerle�tirildiyse ilk terim (1)
�  

potansiyelidir. Bu tek-kutup potansiyel olarak adlandırılır. Tek-kutup momentin, toplam 

yükü q‘dur. (2)
�  terimi çift-kutup potansiyel olarak adlandırılır ve önceki bölümdeki 

çift-kutup potansiyele denk oldu�unu görebiliriz. 
(4)
�  terimi, dört-kutup potansiyel ve 
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genelde, 
(2 )l

Φ  terimi 2l. çok-kutup potansiyeli olarak isimlendirilir (Marion ve Heald, 

1980). 

 2.1.3. Çift-Kutup Potansiyel 

 �lk olarak, denklem (2.20b) ile verilen 
(2)�  terimine dikkatimizi yönlendirelim. 
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 Daha önceden denklem (2.6) ile ifade edilen çift kutup momenti ile denklem 

(2.21)’deki ifadedeki α  üzerinden �r '
�
�

q ‘nın toplamı benzerdir ve sistemin çift-kutup 

momenti 

�rp '=

� �

�

�

q                                                                                                                 (2.22) 

olur. Böylece, 
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r.e

r
                                                                                                                (2.23) 

yazılır. Bu ifade, denklem (2.7)’de verilen ifadeyle aynıdır. ix  noktasındaki i. 

parçacı�ın koordinatlarına göre yukarıdaki ifadeye gradient i�lemcisi uygulanır. Bundan 

dolayı, potansiyel için genel ifadedeki ikinci terim, Bölüm 2.1.1’de hesap edilen basit 

çift-kutup için yakla�ık potansiyele tam olarak kar�ılık gelir. Burada, tek-kutup terimi 

basit çift-kutup için sıfırdır (Marion ve Heald, 1980). 

 
(2)

E
�

elektrik çift-kutup alan vektörü, 
(2)� ’nin gradienti alınarak hesaplanabilir. 
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�ki skaler fonksiyonun çarpımının gradientini açarsak ( p.r
� �
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3

1

r
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buluruz. �imdi 
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dir. Bundan dolayı, 
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dir. 

 Çift-kutup potansiyel 1/ 2
r  ile orantılı olarak de�i�ir. Elektrik çift-kutup alan ise 

1/ 3
r  ile orantılı olarak de�i�ir. 

 

 2.1.4. Dört-Kutup Potansiyel ve Dört-Kutup Moment 

 Potansiyel için genel ifadedeki üçüncü terim, statik yüklerin katkısıyla 

2
(4)
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�

1 1
�

2
i j

i, ij j

q x' x'
x x r

∂ � �
= � �

∂ ∂ � �

 
                                                                        (2.29) 
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�eklinde verilir. Bu ifade, dört-kutup potansiyellerinin hesaplanmasında do�rudan 

kullanılabilmesine kar�ın, özellikle katı-cisim dinami�indeki tensörlerin ta�ınması 

çalı�malarında oldukça kullanı�lıdır. Bu durumu, a�a�ıdaki i�lemleri yaparak daha iyi 

anlayabiliriz (Marion ve Heald, 1980). 

 r = 0 noktası hariç, Laplacian e�itli�inin 
1
 
r

 için çözümü 
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olur. Bu ifade, 
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olarak tekrar yazılabilir. Bu ifade sıfıra e�it oldu�undan, herhangi bir sabit kez bu 

nicelik, 
(4)
�  de�erine eklenebilir. E�er, 2 2
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                                                       (2.31) 

biçiminde olur. Böylece (2.31) denklemi yeniden 
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�eklinde yazılabilir. Buradaki 

( ),
2

,3
i

'� �ij � i � j j
�

Q q x x' r' �≡ −
                                                                                    (2.32) 

ifadesi 9 niceli�e sahip 3x3 ‘lük bir diziden olu�an bir tensördür. Bu dört-kutup tensör 

olarak adlandırılır. Bu tensör 
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31 32 33

� �
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Q Q Q

Q Q Q

Q Q Q

                                                                                           (2.33) 

�eklindedir. Bu tensör simetriktir. Yani, =ij jiQ Q  dir. Böylece {Q} en fazla 6 ba�ımsız 

eleman içerebilir. Aslında, ba�ımsız elemanların sayısını 5’e dü�üren ijQ  arasında ek 

bir ili�ki vardır. Bunu sırasıyla gösterirsek, 

( ) 2
,
23= −
 � �kk � k kk

�

Q q x' r' �                                                                                      (2.34) 

yazabiliriz. k üzerinden toplam alınmasıyla 

2 2
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olur. Fakat, 

22 2
, = =
 ' � �� k

k

x r' r'     ve    3=
 kk
k

�                                                                     (2.36) 

olmaktadır. Bu nedenle, denklem (2.35) 

0=
 kk
k

Q

                                                                                                                 (2.37)

 

�ekline indirgenir. Böylece, {Q}‘nun ({Q}’nun izi olarak söylenir) kö�egen 

elemanlarının toplamı sıfır olur ve ijQ ’nin en fazla be� elemanı ba�ımsız olur. 

 Dört-kutup tensörü esas eksene göre seçildi�inde kö�egen dı�ındaki tüm 

elemanlar sıfır olur. �zin sıfır olmasıyla ba�ımsız elemanların sayısı 2’ye dü�er. Ço�u 

durumda yük da�ılımı simetri eksenine göre belirlenir. E�er 
3
'x  ekseni simetri ekseni 

olarak seçilirse, 11 22Q = Q olur. Bundan dolayı, {Q}’nun yalnızca bir tane ba�ımsız 

elemanı olur. Denklem (2.37) gere�ince, 

33 11 22 11 22)( 2 2= − + = − = −Q Q Q Q Q                                                                         (2.38) 
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olur. 33Q  elemanı, genellikle Q  olarak alınır ve simetrik bir yük da�ılımının dört-kutup 

momenti olarak adlandırılır. Buna ra�men, elbette dört-kutup moment tam anlamıyla bir 

tensördür, yalnızca belli durumdaki 33Q ‘ün ba�ımsız elemanlarıdır. 

 A�a�ıdaki �ekilde, {Q}’nun ba�ımsız elemanlarının sayısındaki azalmayı 

özetleyebiliriz. 

:Q
ij

9 eleman 

                       {Q}  en fazla 6 ba�ımsız eleman için simetriktir. 

                        {Q}‘nun izi en fazla 5 ba�ımsız eleman için sıfır olur. 

                        {Q} en fazla 2 ba�ımsız eleman için esas eksen olur.  

                        1 ba�ımsız eleman için, simetrik yük da�ılımı = Q  olmaktadır. 

 Denklem (2.31a) tarafından tanımlanan dört-kutup tensör, yukarıdaki özellikleri 

sa�lar. Dört-kutup potansiyel hesaplamaları için kullanılan bu tensör, genellikle 

denklem (2.29)’un direk uygulamasından daha uygundur. 

 E�er 3'x -ekseni, yük da�ılımının simetrik ekseniyse ve 
�
r'  vektörü tarafından 

tanımlanan noktadaki yük yo�unlu�u �(r ')
�

 ise yük yo�unluk da�ılımının V hacmi 

üzerinden integrali 

( ) ( )2
3 1 2
2

3
V

= � r' 3 ' - r' d ' d ' d 'Q x x x x�
�

                                                                   (2.39) 

olur. Burada, yük da�ılımı tamamen pozitiftir (atom çekirde�i için) ve yük da�ılımı e�er 

3'x -ekseni boyunca olursa (e�er da�ılım oval ise), Q > 0 olur. Fakat pozitif yük 

da�ılımı az oldu�unda, Q < 0 olur. 

Örnek: 

Çift-kutup momentlerinin daha iyi anla�ılması için �ekil 2.4’teki yük 

da�ılımını dikkate alalım. Bu da�ılım, aralarında 2l  mesafe olan p = 2 
q  momentlerine 



���

�

sahip iki ayrı çift-kutup moment olarak (aralarında 2
  mesafe olan  p = 2ql  

momentlerine sahip iki çift-kutup gibi) dikkate alınır. Yükler sırasıyla, 

3' = + 
x l ‘ da   +q  

     
−l ’ da    q−  

        + 
−l ‘ da   q−  

        
− −l ’ da   +q  

konumlarına sahip olsunlar. 

 

�ekil 2.4. '3x  ekseni boyunca yüklerin da�ılımı. 

 

 Dikkat edilirse, tek-kutup ve çift-kutup momentlerin her ikisinin benzer �ekilde 

sıfır oldukları görülür. Böylece dört-kutup terimi, potansiyele en dü�ük seviyede katkıda 

bulunur. Çünkü, yük da�ılımı, 3'x  ekseni boyunca simetriktir. Bu yüzden yalnızca dört-

kutup tensör elemanı olan 
33

Q  ele alınırsa; 

2


2


+q 

-q 

-q 

+q 

l �

l �

�

P 

3'x

1x' �

2'x  



�
�

�

2
�33 �,3

�

2 'Q = Q q x= 
  
 

              2 2 2 2
)2( ( 
) ( 
) ( 
) ( 
)q l q l q l q l= + − − − − + + − −  

              16 
 8pql l= =                                                                                                (2.40) 

�eklinde olur. Ayrıca, 

11 22 33

1
4p

2
= = − = −Q Q Q l                                                                                         (2.41) 

dir. E�er, denklem (2.31a) kullanılırsa, 

2
(4) 11
�

6 ri, j
i, j i j

Q
x x

=
∂ � �

� �
∂ ∂ � �




   

 

        
2

2

1 1
= 

6 rkk
k k

Q
x

∂ � �
� �

∂ � �

  

      
2 2 2

5 1 2 3

1
  = 2p ( + 2 )

r
l x x x−−  

2 2

3
5

(3x r )
 = 2p

r
      

−
l                                                                                                   (2.42) 

biçiminde olur. 
3

= rcos�x  için, denklem (2.42) yeniden 

2
(4)

5

(3cos � 1)
� = p

r

−
l                                                                                                   (2.43) 

olarak yazılabilir. �  kutupsal açısının bir fonksiyonu olarak bu potansiyel �ekil 2.5’de 

gösterilmektedir. Dikkat edilirse �ekilde, potansiyelin negatif ve pozitif bölgeleri vardır. 

�ki negatif yükün, 
2

x  eksenine iki pozitif yükten daha yakın oldu�u görülür. Bundan 

dolayı, � 90°
= ‘ye yakın kısımlarda potansiyel üzerinde negatif yüklerin etkisi daha 

fazladır ve bu bölgede potansiyel negatif olur. Potansiyel, -1 °� = cos (1 / 3) 54.7≅  

de�erinde sıfır olur. 
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�ekil 2.5. 
°� = 54.7 için dört-kutup potansiyelinin pozitif ve negatif bölgeleri. 

 

E�er yük da�ılımı bir kare dizi ise (�ekil 2.6’daki gibi), o zaman potansiyel 
  

azimut açısından ba�ımsız olamaz. Bu durumda dört-kutup potansiyel, 

2
(4) 2

3

sin � cos2
3
� = q

4 r
l                                                                                            (2.44) 

olur. Burada pozitif 
1

x -ekseni boyunca 
 = 0  dır. 
2 3

-x x  düzlemindeki (� = � / 2)  

potansiyel �ekil 2.7’de gösterilmi�tir. Yine buradaki potansiyelin hem pozitif hem 

negatif kısımlarının oldu�u görülmektedir. 

�

Pozitif 

Negatif 

�

�

θ 0

   =54.7

θ θ

°

=
�

3x �

2x �
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�ekil 2.6. Dört-kutup karesel yük da�ılımı. 

 

               

�ekil 2.7. � = � / 2 için dört-kutup potansiyelinin pozitif ve negatif bölgeleri 

 

�

φ

1x �

2x �

°45 �

negatif 

pozitif 

2
'x �

1
'x �

-q 

/ 2l �

/ 2l � / 2l �

/ 2l �

+q 

-q 

+q 
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 2.1.5. Elektrik Çok Kutuplular 

 Keyfi bir yük da�ılımının potansiyeli, çok-kutup açılımı cinsinden her zaman 

ifade edilebilir. Genellikle, daha yüksek seviyedeki terimlerde 1/r ifadesindeki gibi 

mesafenin azalmasıyla artma olmasına ra�men, bir açılımın tüm terimleri mevcut 

olacaktır. Bundan dolayı, r’nin boyutları yük da�ılımının boyutlarıyla kar�ıla�tırılırsa, r 

de�erleri için açılım daha hızlı yakınsayacaktır. Ayrıca, yük da�ılımının belirli bir 

geometrisinden dolayı, bazı çok-kutup terimler sıfır olabilir. Böylece, e�er e�it 

büyüklükte negatif ve pozitif yükler varsa, tek-kutup terim sıfır olur ve e�er da�ılım, 

ters yönlü e�de�er çift-kutuplardan olu�uyorsa ek olarak çift-kutup terim sıfır olur (�ekil 

2.4 ve �ekil 2.6). Böyle durumlarda, ço�unlukla en dü�ük-seviyedeki terim sıfırdan 

farklıysa ideal çok-kutup olarak adlandırılır. Böylece �ekil 2.1 bir ideal çift-kutubu, 

�ekil 2.6 ise bir ideal dört-kutupu gösterir. Ancak, unutulmamalıdır ki, bu gibi 

durumlarda çift-kutup veya dört-kutup terim yalnızca bir açılımdaki temel durumları 

temsil etmektedir. Genelde, daha yüksek seviyelerdeki terimler sistemi temsil eder. 

 Belirli bir düzende verilen bir ideal çok-kutupun en basit örne�i, ters i�aretlere 

sahip olan alt seviyedeki iki çok-kutupların küçük yer de�i�tirmeyle olu�turulabilir. 

Böylece, ideal bir çift-kutup, +q ve –q yükleri bir l  mesafesiyle ayrılarak olu�turulur. 

Bir ideal dört-kutup ise bir l  mesafesiyle ayrılan p
�

 ve p−

�
 çift-kutup momentlerine 

sahip iki çift-kutuptan olu�ur. �ekil 2.8‘de çok-kutupların sistemleri gösterilmi�tir. 

 

�ekil 2.8. Elektrik tek-, çift-, dört- ve sekiz- kutup. 
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 Çok-kutup moment hesaplamaları, genellikle seçilen ba�langıç noktasına 

ba�lıdır. Örne�in tek bir yükün potansiyeli q / R ‘dir. R, yük ile etki alanı noktası 

arasındaki uzaklıktır. E�er, çok-kutup açılımdaki yükler ba�langıç noktasında 

toplanırsa, o zaman açılımdaki hiçbir terim sıfır olmayacaktır (denklem (2.18) ve �ekil 

2.3’de gösterilmi�tir). Di�er taraftan, e�er toplam yük da�ılımı sıfırsa çift-kutup 

moment seçilen ba�langıç noktasından ba�ımsız olacaktır. Genel olarak, dört-kutup ve 

daha yüksek seviyedeki momentler seçilen eksenin yönüne ba�lıdır. Ama bu temel 

eksenler her zaman kö�egenle�tirilmi� bir simetrik tensör olarak bulunabilir. 

 

 2.2. Kuantum Mekani�inde Elektrik Çok-Kutup Moment �ntegralleri 

 Klasik mekanikte zaman, durum, hız, kütle, do�rusal momentum, açısal 

momentum, enerji v.b. gibi de�i�kenlere “dinamik de�i�kenler” denir. Ayrıca kuantum 

mekani�inde klasik mekanikte görülmeyen spin açısal momentum ve özde� taneciklerin 

yer de�i�tirmesiyle ilgili simetri özellikleri gibi bazı dinamik de�i�kenler de vardır. 

Sistemin bir özelli�i olarak deneyle gözlenebilen dinamik de�i�kenlere “gözlenebilir” 

denir (Pamuk, 1979). 

 Klasik mekanikte her gözlenebilire kuantum mekani�inde bir i�lemci kar�ılık 

gelir. Bu i�lemciler matris mekani�i kullanılarak birer matris biçiminde yazılabilir. Bir 

sistem iyi davranı�lı �  dalga fonksiyonu ile belirlenebiliyorsa, o zaman M̂  i�lemcisine 

kar�ılık gelen gözlenebilirin ortalama de�eri veya bu i�lemcinin beklenen de�eri, 

3ˆM �* M � d r< >= �   

        ˆ = � M �                                                                                                         (2.45) 

olarak ifade edilir. Burada M̂ , bu gözlenebilire kar�ılık gelen i�lemcidir. 

 Denklem (2.45)’te dalga fonksiyonu yerine STO’lar alınırsa, elektrik çok-kutup 

moment integralleri  

* 3
a �� 0nlm,��,n' 'm' 0b ab n m n' 'm' b

ˆM (�,�;R ,R ) = � (�, r ) M (r ) � (�, r )d r
l l l�

� � � � �

                           (2.46) 
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biçiminde ifade edilir. Buradaki �� 0M̂ (r )
�

 tek elektron i�lemcisidir. Küresel 

koordinatlarda, 
�2 çok-kutup elektrik moment i�lemcisinin �  bile�eni  

1 2 �
�� ��0 0 0

4�
M̂ (r ) = ( ) r Y (� ,
)

2�+1

�
                                                                             (2.47) 

olarak verilmektedir (Beiser, 1967). Bu ifadede, ��M̂  vektörel bir i�lemciyi,
 �� 0Y (� ,
)  

küresel harmonikleri, υ  kutubu ve σ  ise x, y, z gibi bir bile�eni temsil etmektedir. 

Ayrıca ,
0
r
�

 
elektronun seçilen ba�langıç noktasına olan uzaklı�ını temsil eden vektör, 

0 b
r r

0b
R = −

� �
�

 ve 
a b
r r

ab
R = −

� �
�

 olmaktadır. 

 Kuantum mekani�inde elektrik çok kutup moment integralleri denklem (2.46) ile 

verilir ve bu integral tek-elektron iki-merkezli bir integraldir. Burada, 
*

an m
� (�, r )

l

�
 ve 

n' 'm' b
� (�, r )

l
 

�
, sırasıyla, a ve b merkezlerinde yerle�tirilmi� STO’ları; �  ve �  perdeleme 

sabitlerini göstermektedir. 
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 3. MATERYAL ve YÖNTEM 

  

 3.1. Kartezyen Koordinatlar ve Düzenli Katı Harmonikler 

 Reel ve kompleks küresel harmonikler için STO, 

1/22 1
1

(, ,
(2 )

, )
(2 )!

n
rn m

n l m l
r e Y

n

ζζ
χ θ φ

+
−−� �

= 	 

� �

                                                                    (3.1) 

olarak verilir (Slater, 1930). Denklem (3.1)’deki ( , )Ym

l
θ φ  normalize olmu� küresel 

harmonikler, karakök katsayısı ise radyal bile�en için normalizasyon sabitidir. Burada 

ζ , Slater kuralları ile belirlenen perdeleme sabitidir.  

 Negatif olmayan m de�erleri için küresel harmonikler, 

( ) ( )
( ) ( )

( )
( )

1 2

                        
2 1 !

, 1 cos m 0
4 !

m imm m

l l

l l m
Y P e

l m

φθ φ θ
π

� �+ −
= − ≥	 


+� �
                    (3.2) 

biçiminde verilirken, negatif m de�erleri için 

( ) ( ) ( )*, 1 ,                                                           m < 0
mm m

l l
Y Yθ φ θ φ−= −                   (3.3) 

biçiminde verilmektedir (Bransden ve Joachain, 1989). Denklem (3.2)’deki ( )cosm

l
P θ  

ba�lı Legendre fonksiyonlarıdır. 

 Ba�lı Legendre fonksiyonları için Rodrigues formülü 

( ) ( )
22( ) 1

m
m

m

l l

d
P x x P x

dx

� �
≡ − � �

� �
                                                                              (3.4) 

biçiminde ifade edilir. Buradaki ( )
l

P x  Legendre fonkiyonlarıdır ve 

( ) ( )21
1

2 !

l
l

l l

d
P x x

dxl

� �
≡ −� �

� �
                                                                                         (3.5) 

�eklindedir (Özbek ve Durukano�lu, 2010). 
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 Kuantum mekani�inde önemli rol oynayan küresel harmonikler, orbital açısal 

momentum i�lemcisinin özfonksiyonlarıdır. Ayrıca, küresel harmonikler orbital açısal 

momentumu l olan ve l’ye kar�ılık gelen m de�erleriyle küresel simetrik alanda hareket 

eden parçacıkların açısal da�ılımlarını tanımlamaktadır (Vashalovich ve ark., 1988). 

 cosx θ=  dönü�ümü kullanılarak normalize olmu� ba�lı Legendre fonksiyonları 

( )
( )( )

( )
( ) ( )2

1 2

22
2 1 !1

1 1
2 !2 !

m l m
lm

l l l m

l l m d
P x x x

l ml dx

+

+

� �+ −
= − −	 


+	 
� �
                                    (3.6) 

�eklinde ifade edilir (Gradshteyn ve Ryzhik, 2000). 

 Normalize olmu� ba�lı Legendre fonksiyonları 

( ) ( ) ( )1
l mm m

l l
P x P x

−
= − −                                                                                            (3.7) 

olur ve burada ( )1
l m−

−  bu fonksiyonların paritesidir. Aynı zamanda normalize olmu� 

Legendre fonksiyonları, 

 2

0 ,0

2 2
( ) 1

2 1

l
m

l
m m

P x
l 1 δ=

=
+ +

                                                                                     (3.8) 

normalizasyon �artını sa�lamaktadır (Guseinov ve ark., 1997). Ba�lı Legendre 

polinomları için diklik ba�ıntısı, 

( ) ( )
( )
( )0

!2
cos cos sin

2 1 !

m m
p q pq

q m
P P d

q q m

π

θ θ θ θ δ
+

=
+ −�                                                   (3.9) 

biçimindedir. Küresel harmonikler için diklik ba�ıntısı ise, 

( ) ( )
*

1 2
,, 1 21 2 1 2

, ,
m m

m ml l l l
Y Y dθ φ θ φ δ δ

Ω

� � Ω =
	 
� ��                                                                 (3.10) 

ile tanımlanır (Arfken ve Weber, 2001).  

 Denklem (3.1) yeniden, 
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1/22 1
1

, ,
(2 )

( , )
(2 )!

n
rn l l m

n l m l
r e r Y

n

ζζ
χ θ φ

+
−− − � �

	 
� �

� �
= 	 

� �

                                                          (3.11) 

biçiminde yazılabilir. Denklem (3.11)’deki ikinci parantezdeki nicelikler düzenli katı 

harmonikler olarak adlandırılır ve 

( , )l m
m l

l r Y θ φ� �
	 
� �

=                                                                                                         (3.12) 

olarak ifade edilir. Burada l=0, 1, 2, 3,... ‘e kar�ılık gelen durumların spektroskopik 

gösterimi için s, p, d, f,… harfleri kullanılır. Normalize olmu� gerçek küresel 

harmoniklerin toplanmasından ya da farklarından orbitaller elde edilir. l ve m 

de�erlerine göre hesaplanan Y ± Ym -m
l l

 de�eri gerçek bile�enleri kar�ılayarak düzenli 

katı harmonikler olu�turulur (Zheng ve Zerner,1993). 

 Düzenli katı harmonikler, i, j ve k tamsayılar olmak üzere, x, y ve z’nin 

kuvvetlerinin bir ürünü olarak 

( ) = ji k
i, j,k x y z                                                                                                          (3.13) 

�eklinde ifadeler içeren kartezyen koordinatlarda tanımlanır. Burada i, j ve k sırasıyla 

kartezyen koordinatlardaki x, y ve z’lerin sayısını göstermektedir. Bu gösterim 

kullanılarak normalize olmu� düzenli katı harmonikler yazılabilmektedir (Zheng ve 

Zerner, 1993). 

 Biz bu çalı�mada düzenli katı harmonikleri g orbitallerine kadar hesapladık ve 

kaynaktaki (Zheng ve Zerner, 1993) sonuçlarla uyumlu oldu�unu gördük. Örne�in l=2 

için m= -2, -1, 0, 1, 2 de�erlerini alaca�ından (3.2) ve (3.3) denklemlerini kullanarak 

öncelikle olu�abilecek küresel harmonikleri elde ettik. (3.4) ve (3.5) denklemlerini 

kullanarak ve cos�x =  dönü�ümünden faydalanarak ba�lı Legendre fonksiyonları 

hesaplanmaktadır. Küresel harmoniklerin küresel koordinatlardaki de�erleri temel 

kitaplarda bulunmaktadır. Bu ifadelere göre; küresel harmonikler Çizelge (3.1)’de 

verilmektedir.  
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Çizelge 3.1. l=2 için küresel harmonikler 

l m ( ),m

l
Y θ φ  

 

 

 

 

 

2 

 

0 
( )

1 2
25

3cos 1
16

θ
π

� �
−� �

� �
 

 

1 

1 2
15

sin cos  
8

i
e

φθ θ
π

� �
−� �
� �

 

 

-1 
 

1 2
15

sin cos
8

i
e

φθ θ
π

−� �
� �
� �

 

 

2 

1 2
2215

sin  
32

i
e

φθ
π

� �
−� �
� �

 

 

-2 

1 2
2215

sin  
32

i
e

φθ
π

−� �
� �
� �

 

 

 l=2 ve m=2 durumunda küresel harmoniklerin toplanması veya farklarından iki 

düzenli katı harmonik elde ederiz. Denklem (3.12)’yi kullanarak 2 2l l−+  ve 2 2l l−−  

durumlarının hangi düzenli katı harmoni�i gösterdi�ini bulabiliriz. 

 l=2 için 2 2l l−+  durumu ile 2 2l l−−  durumununun spektroskopik gösterimi d’dir. 

Fakat bu iki durumdan farklı sonuçlar elde edilir ve bu da bize yük da�ılımlarının farklı 

oldu�unu göstermektedir. Bu nedenle bu iki durum aynı l de�erinde oldu�undan aynı 

spektroskopik gösterime sahip olsa da yüklerin bulunma olasılı�ının farklı oldu�u 

durumları ifade etmek için orbital gösterimini yüklerin da�ılımını kullanarak alt indisle 

ifade ederek yazarız. Örne�in 2 2l l−+  durumunu ele alalım. Burada normalize olmu� 

küresel harmonikleri alırız. 

( ) ( )2 2 2
2 2 2 2

1
, ,

2
l l r Y Yθ φ θ φ−

−
� �+ = +� �  
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( )
1 2

2 2 2 2

1 2

2 2

15
sin

64

15
  2 sin cos(2 )

64

i i
d r e e

r

φ φθ
π

θ φ
π

−� �
= +� �

� �

� �
= � �

� �

 

�eklindedir. Burada küresel koordinatları kartezyen koordinatlara çevirirsek a�a�ıdaki 

ifadeyi elde ederiz. 

( )
1 2

2 2

2 2

15
2

64
l l d x y

π
−

� �
+ = = −� �

� �
 

(a, b, c)=(x’in sayısı, y’nin sayısı, z’nin sayısı) biçimindedir (Zheng ve Zerner, 1993). 

kartezyen koordinatlar için ifade edilen gösterim biçimini kullanarak düzenli katı 

harmoni�i 

( ) ( )2 2

1 2
15

2,0,0 0, 2,0
16x y

d
π−

� �
= −� �� � � �
� �

 

biçiminde elde ederiz. Bu �ekilde di�er düzenli katı harmonikler de elde edilir. Bu 

i�lemleri kolayla�tırmak için Ek-1’de Mathematica 7 programlama dilinden 

faydalanarak (3.2), (3.3), (3.6) ve (3.12) denklemlerini kullanarak düzenli katı 

harmonikleri küresel koordinatlarda bulan program verilmi�ir. Bu programı 

kullandıktan sonra küresel koordinatları kartezyen koordinatlara çevirip Zheng ve 

Zerner’in (Zheng ve Zerner, 1993) kartezyen koordinatlar için ifade etti�i gösterimi 

kullanarak a�a�ıdaki düzenli katı harmonikler elde edilmektedir. 

s harmonik: 

= 1/ (4�)(0,0,0)s  

p harmonikler: 

= 3 / (4�)(1,0,0)xp  

= 3 / (4�)(0,1,0)yp  

= 3 / (4�)(0,0,1)zp  
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d harmonikler:  

2 = 5 / (16�)[2(0,0, 2) (2,0,0) (0, 2,0)]
z

d − −  

2 2 = 15 / (16�)[(2,0,0) (0, 2,0)]
x - y

d −  

= 15 / (4�)(1,1,0)xyd  

= 15 / (4�)(1,0,1)xzd  

= 15 / (4�)(0,1,1)yzd  

f  harmonikler: 

3

2
= 63 / (16�)[ (0,0,3) (2,0,1) (0, 2,1)]

3z
f − −  

2 = 21/ (32�)[4(1,0,2) (3,0,0) (1,2,0)]
xz

f − −  

2 = 21/ (32�)[4(0,1, 2) (2,1,0) (0,3,0)]
yz

f − −  

2 2( )
= 105 / (16�)[(2,0,1) (0,2,1)]

-z x y
f −  

= 105 / (4�)(1,1,1)xyzf  

3 23
= 35 / (32�)[(3,0,0) 3(1,2,0)]

x - xy
f −  

2 33
= 35 / (32�)[3(2,1,0) (0,3,0)]

x y-y
f −  

g harmonikler: 

4

8
= (9 / (16 � )) (4,0,0) 2(2, 2,0) (0, 4,0) 8(2,0, 2) 8(0, 2, 2) (0,0, 4)

3z
g

� �
+ + − − +	 
� �

 

3

9 4
= 10 / � (1,0,3) (3,0,1) (1, 2,1)

8 3xz
g

� �
− −	 
� �
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3

9 4
= 10 / � (0,1,3) (2,1,1) (0,3,1)

8 3yz
g

� �
− −	 
� �

 

2 2 2( )

3
= 5 / �[ (4,0,0) (0, 4,0) 6(2,0, 2) 6(0,2, 2)]

8z x -y
g − + + −  

2

3
= 5 / �[6(1,1, 2) (3,1,0) (1,3,0)]

4xyz
g − −  

3 2( )3

3
= 70 / �[(3,0,1) 3(1, 2,1)]

8z x - xy
g −  

2 3(3 )

3
= 70 / �[3(2,1,1) (0,3,1)]

8yz x - y
g −  

2 2

3
= 35 / �[(4,0,0) 6(2,2,0) (0, 4,0)]

16x y
g − +  

2 2( )

3
= 35 / �[(3,1,0) (1,3,0)]

4xy x - y
g −  

 Yukarıdaki düzenli katı harmonikler için ça�ırma formülünü, 

m
l

f =l(l+1)+m+1 

olarak aldık. Ça�ırma formülündeki l ve m de�erlerine göre hangi düzenli katı 

harmoni�i kar�ılayaca�ı a�a�ıdaki Çizelge 3.2’de gösterilmi�tir. 

 

Çizelge 3.2. Ça�ırma formülüne kar�ılık gelen düzenli katı harmonikler 

l m m
l

f =l(l+1)+m+1 Düzenli Katı Harmonikler 

0 0 1 s 

1 -1 2 xp  
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1 0 3 zp  

1 1 4 yp  

2 -2 5 xyd  

2 -1 6 xzd  

2 0 7 
2z

d  

2 1 8 yzd  

2 2 9 
2 2x -y

d  

3 -3 10 
3 23x - xy

f  

3 -2 11 xyzf  

3 -1 12 
2xz

f  

3 0 13 
3z

f  

3 1 14 
2yz

f  

3 2 15 
2 2( )-z x y

f  

3 3 16 
2 33x y-y

f  
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4 -4 17 
2 2( )xy x -y

g  

4 -3 18 
3 2( )3z x - xy

g  

4 -2 19 
2xyz

g  

4 -1 20 
3xz

g  

4 0 21 
4z

g  

4 1 22 
3yz

g  

4 2 23 
2 2 2( )z x -y

g  

4 3 24 
2 3(3 )yz x -y

g  

4 4 25 
2 2x y

g  

  

 

 3.2. Çok-Kutup Moment ��lemcisi 

 Çok-kutup moment i�lemcileri denklem (2.47) ile daha önceden verilmi�ti. Çok-

kutup moment i�lemcileri için alternatif bir tanımlama da a�a�ıdaki gibi tensörlerle 

ifade edilmektedir (Buckingham, 1959; Buckingham, 1967; Özdo�an, 2000). A�a�ıdaki 

tanımlamalarda kullanılan �, �, � ve �  alt indisleri 1, 2 veya 3 de�erlerini alır. Bu 

durumda 1x x= , 2x y=  ve 3x z= ’ye kar�ılık gelmektedir. Bu alt indisler kartezyen 

koordinat sistemindeki çok-kutup moment i�lemcisinin farklı bile�enlerini 

göstermektedir. Tensörün indislerinin sayısı ise tensörün rankını verir. 
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Tek-kutup  

q=1                                                                                                                             (3.14)   

Çift-kutup 

� =� �x                                                                                                                       (3.15) 

Dört-kutup 

21
Q = (3 
 )

2
��� � ��

x x r−                                                                                            (3.16) 

Sekiz-kutup 

2 2 2
��

1
� = (5 
 
 
 )

2
� � � ���� � �� � ��

x x x x r x r x r− − −                                                 (3.17) 

Onaltı-kutup 

(
21

� = [35 5 
 + x x 

8 � � � � �� � ��� � �x x x x r x xαβγη −      

                  )+ 
 + 
  + 
 + 
� � � � � � � ���� �� �� �x x x x x x x x  

                  4+ (
 
 + 
 
 + 
 
 )]�� �� ���� �� ��r                                                                 (3.18) 

 Üç boyutlu uzayda, l ranklı kartezyen elektrik çok-kutup moment tensörünün 3l  

tane bile�eni vardır. �ndislerinin yer de�i�imine göre simetrik olan kartezyen elektrik 

çok-kutup moment tensörlerinin 3l  tane bile�eninden ( ) ( )1 2 / 2l l+ +  tanesi farklıdır. 

Örne�in, dört-kutup moment i�lemcisinin 6 tane farklı bile�eni vardır. Bunlardan xxQ  

bile�enini, 

 21
Q = (3 
 )

2
xx xxxx r−

 

olarak yazabiliriz. Burada, 

 2 2 2 2r x y z= + +                                                                                                        (3.19) 
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dir. Kronecker Delta sembolü de,  

1,
    

0,
ij

i j

i j
δ

=�
= �

≠�
                                                                                                         (3.20)                                                              

olarak tanımlanır (Bransden ve Joachain, 1989). Böylece xxQ  bile�eni, 

2 2 21
Q = (2 y z )

2
xx x − −

 

olur. Daha sonra, kartezyen koordinatlarda bulunan dört-kutup moment i�lemcisinin 

xxQ  bile�enini kaynaktaki (Zheng ve Zerner, 1993) = ( )
ji k

x y z i, j,k  gösterimden 

faydalanarak, 

 

1
Q = [2(2,0,0) (0, 2,0) (0,0, 2)]

2

       

xx − −
 

olarak yazabiliriz. 

 Ek-2’de dört-kutup, sekiz-kutup ve onaltı-kutup moment i�lemcilerini 

hesaplayan Mathematica 7 programı verilmi�tir. Bu programda (3.16), (3.17) ve (3.18) 

denklemlerindeki tanımlar ile (3,19) ve(3.20) denklemleri kullanılmı�tır. Böylece çe�itli 

momentlerin tensör i�lemcilerini bu programı kullanarak kaynaktaki (Zheng ve Zerner, 

1993) sonuçlarla uyumlu bir �ekilde a�a�ıdaki gibi elde ederiz. 

Çift-kutup 

� = (1,0,0)x  

� = (0,1,0)y  

� = (0,0,1)z  

Dört-kutup 

1
Q = [2(2,0,0) (0, 2,0) (0,0, 2)]

2
xx − −  



�
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1
Q = [2(0, 2,0) (2,0,0) (0,0, 2)]

2
yy − −  

1
Q = [2(0,0, 2) (2,0,0) (0,2,0)]

2
zz − −  

3
Q = (1,1,0)

2
xy  

3
Q = (1,0,1)

2
xz  

3
Q = (0,1,1)

2
yz  

Sekiz-kutup 

1
� = [2(3,0,0) 3(1,2,0) 3(1,0, 2)]

2
xxx − −  

1
� = [2(0,3,0) 3(2,1,0) 3(0,1,2)]

2
yyy − −  

1
� = [2(0,0,3) 3(2,0,1) 3(0,2,1)]

2
zzz − −  

1
� = [4(2,1,0) (0,3,0) (0,1,2)]

2
xxy − −  

1
� = [4(2,0,1) (0,2,1) (0,0,3)]

2
xxz − −  

1
� = [4(1,2,0) (3,0,0) (1,0,2)]

2
xyy − −  

5
� = (1,1,1)

2
xyz  

1
� = [4(1,0, 2) (3,0,0) (1,2,0)]

2
xzz − −  
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1
� = [4(0,2,1) (2,0,1) (0,0,3)]

2
yyz − −  

1
� = [4(0,1,2) (2,1,0) (0,3,0)]

2
yzz − −  

Onaltı-kutup 

 
3 3

� = (4,0,0) 3[(2, 2,0) (2,0,2)] [(0,0, 4) (0,4,0)] (0,2, 2)
8 4

xxxx − + + + +   

5 15
� = (3,1,0) [(1,3,0) (1,1, 2)]

2 8
xxxy − +  

5 15
� = (3,0,1) [(1, 2,1) (1,0,3)]

2 8
xxxz − +  

3 1 1
� = [9(2,2,0) (2,0, 2) (0,2, 2)] [(4,0,0) (0, 4,0)] (0,0,4)

8 2 8
xxyy − − − + +  

30 5
� = (2,1,1) [(0,1,3) (0,3,1)]

8 8
xxyz − +  

3 1 1
� = [9(2,0, 2) (2,2,0) (0, 2,2)] [(0,0,4) (4,0,0)] (0, 4,0)

8 2 8
xxzz − − − + +   

5 15
� = (1,3,0) [(1,1,2) (3,1,0)]

2 8
xyyy − +  

15 5
� = (1, 2,1) [(1,0,3) (3,0,1)]

4 8
xyyz − +  

15 5
� = (1,1, 2) [(1,3,0) (3,1,0)]

4 8
xyzz − +  

5 15
� = (1,0,3) [(1,2,1) (3,0,1)]

2 8
xzzz − +  

 
3 3

� = (0,4,0) [(0,0, 4) (4,0,0)] 3[(0, 2,2) (2,2,0)] (2,0, 2)
8 4

yyyy + + − + +  
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5 15

� = (0,3,1) [(0,1,3) (2,1,1)]
2 8

yyyz − +  

   
3 1 1

� = [9(0,2, 2) (2,0,2) (2,2,0)] [(0,0, 4) (0, 4,0)] (4,0,0)
8 2 8

yyzz − − − + +  

  
5 15

� = (0,1,3) [(0,3,1) (2,1,1)]
2 8

yzzz − +  

  

3 3
� = (0,0,4) (2,2,0) [(0,4,0) (4,0,0)] 3[(2,0, 2) (0,2, 2)]

4 8
zzzz + + + − +

   

  

 3.3. Koordinat Sistemleri ve Dönme Matrisi 

 STO baz fonksiyonları, �ekil 3.1’de A, B ve O olarak belirtilen atomların 

çekirdeklerindeki merkezlerde bulunur. Çok-kutup moment i�lemcisinin merkezi O 

olarak belirtilir. �ekil 3.1’de a, b ve o alt indislerine sahip vektör bile�enler ise A, B ve 

O merkezlerinin kartezyen koordinatlardaki bile�enleridir. A ve B merkezlerini iki ayrı 

STO’lar ile, O merkezini de çok-kutup moment i�lemsi ile ifade edersek kar�ımıza iki-

merkez integraller çıkmaktadır. Böyle sistemler, sınırları belli bir sistem üzerinden 

de�erlendirilir. �ekil 3.1’de görüldü�ü gibi belli bir Z ekseni, Za  ve Z
b

 eksenlerine 

sahip iki merkezi tanımlayan A ve B merkezleri arasındadır. Burada, (X ,Y ,Z )
a a a

 

kartezyen koordinat sisteminin merkezinde A, (X ,Y ,Z )
b b b

 merkezinde ise B atomunun 

çekirde�i bulunmaktadır. Elektronun A çekirde�ine olan uzaklı�ı r
a

, B çekirde�ine olan 

uzaklı�ı ise r
b

 dir. A ile B çekirdekleri arasındaki uzaklık ise R dir. Bu sistemde X, 

Xa , X
b

 ve Y, Ya , Y
b

 eksenleri de paralel eksenlerdir. �ekil 3.1’de eksenleri X, Y, Z 

olan koordinat sistemi, A ve B merkezleri arasında merkezle�mi� genel koordinat 

sistemidir. Za  ve Z
b

 eksenleri ise ya aynı ekseni göstermekte ya da aynı yön 

do�rultusundadır (Zheng ve Zerner, 1993). 

 



�
�

�

 

�ekil 3.1. Küresel koordinatlardan eliptik koordinatlara geçi� için çizilen koordinat 

sistemi ve koordinatların döndürülmesindeki durumlar.  

 

 (X, Y, Z) koordinat sistemine sahip kartezyen koordinat sisteminin ba�langıç 

noktası, iki ayrı baz fonksiyonları merkezleri olan A ve B merkezlerinin ortasındadır. 

Belli bir bölgede yer alan böyle bir sistem, oval küresel veya A ve B üzerinde odaklanan 

eliptik koordinat sistemiyle tanımlanır. Eliptik koordinat sistemi kullanılarak a ve b 

merkezleri için a�a�ıdaki ba�ıntılar yazılabilir (Steinborn ve Ruedenberg, 1972; Zheng 

ve Zerner, 1993).  

Xa � Z
a
�

Y
a
�

� �

X 

Z 

Y 

X'  

Y '  

X
b

 

Y
b
 

Z
b

 

φ �

Z ''
a
�

Y
a
�

Z
a
�

X
b
�

Y
b
�

Z
b
�

X
a
�

X''a �

Y''
a
�

Z''
b
�

X''
b
�

Y''
b
�

Z'
a
�

X'a �

Y'
a
�

X'
b
�

Z'
b
�

Y'
b
�

Z'

A 

B 
O 



���

�

3

2 2

2 2

3
2 2

R
r = (� �)

2

R
r = (� �)

2

R
x = x = (� 1)(1 � )cos

2

R
y = y = (� 1)(1 � )sin

2

R
z = (1 ��)

2

R
z = (1 ��)

2

R
d r = (� � )d�d�d

8

a

b

a b

a b

a

b

φ

φ

φ

+

−

− −

− −

+

−

−

                                                                            (3.21) 

 Çok-kutup moment integralleri, gerekli olan dönü�ümler yapıldıktan sonra belirli 

bir bölgedeki eliptik koordinat sisteminde veya moleküler yapı olarak tanımlanan
 

' ' '
(X ,Y , Z )  koordinatlarına sahip moleküler tabanlı koordinat sisteminde de�erlendirilir. 

Bu dönü�ümler için gerekli olan döndürme do�rudan kosinüse ba�lıdır. 

2 2

'

' ' ' 
+

cos� = �z / R

cos = �y / �x �yφ
                                                                                         (3.22)

 

 Dönme matrisi, farklı koordinatlara sahip durumların birbiriyle ili�kisini gösterir. 

Koordinat eksenlerinden birini sabit tutup di�er ikisini belli bir açıda döndürerek 

olu�acak koordinat sistemi ile döndürülmeden önceki koordinat sistemininin durumu 

arasındaki ili�kiyi dönme matrisi açıklar. Dönme matrisi ( ),R θ φ  olarak gösterilir. �ekil 

3.1’de koordinatların döndürüldü�ündeki durumlar görülmektedir. 

 R(�, )φ  dönme matrisi 2 adımda elde edilir: 

i)  z eksenini sabit tutup y eksenini döndürme: ( )1R �  

1

''
X X cos� 0 sin� X

''
Y = R (�) Y = 0 1 0 Y

'' Z sin� 0 cos� ZZ

� �
� � � �� �� �
� � � �� �� �
� � � �� �� � � � � �� �−� � � � � �� �

� �

                                                            (3.23) 
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ii) 
''

x  ve ''y  eksenlerini sabit tutup 
''

z  eksenini döndürme: 
2R ( )φ  

2

' '' ''X X Xcos sin 0
' '' ''Y = R ( ) Y = sin cos 0 Y

' '' ''0 0 1Z Z Z

φ φ

φ φ φ

� � � � � �
−� �� � � � � �

� �� � � � � �
� �� � � � � �� �� � � � � �� �

� � � � � �

                                                       (3.24) 

Denklem (3.23) ve denklem (3.24) kullanılarak dönme matrisinin son �ekli a�a�ıdaki 

gibi elde edilir. 

2 1

cos�cos sin sin�cos

R(�, ) = R ( )R (�) = cos�sin cos sin�cos

sin� 0 cos�

φ φ φ

φ φ φ φ φ

−� �
� �
� �
� �−� �

                                          (3.25) 

 

 3.4. Merkezlerin Ta�ınması 

 Çok-merkezli integrallerin hesaplanmasında “�ntegrali moleküler sistemdeki 

hangi atomun merkezine göre almamız gerekir?” sorusunu dü�ündü�ümüzde 

yapaca�ımız i�lemleri kolayla�tırmak için sistemdeki tüm merkezlerin tek bir merkeze 

göre ifadeleri yazılmalıdır. Bunun için seçti�imiz bir merkezin dı�ında kalan tüm 

merkezleri seçti�imiz merkez cinsinden ifadelerini yazmalıyız. Çünkü integrali tek bir 

merkeze göre almak çok merkeze göre almaktan daha kolay olur. Bunun için �ekil 

3.2’ye baktı�ımızda [x, y, z]  koordinatlarına sahip genel bir laboratuar koordinat sistemi 

ve x y zA(a , a ,a ) ’da merkezli olan a a a[x , y ,z ]  koordinatlarına sahip belirli bir merkez 

dü�ünülürse bu merkezin koordinatları, 

a x

a y

a z

x = x a

y = y a

z = z a

−

−

−

                                                                                                                (3.26) 

olur (Zheng ve Zerner,1993). 



���

�

 x y zB(b , b , b ) ’ de merkezli olan b b b
[x , y ,z ]  koordinatlarına sahip ba�ka bir 

merkezi,  x y zA(a , a ,a ) ’da merkezli olan a a a[x , y ,z ]  koordinatlarındaki merkeze 

ta�ımak için, �ekil 3.2’yi kullanarak a�a�ıdaki gibi verilen ifadelerle yazabiliriz. 

a x x xb b

a y y yb b

a z z zb b

x = x + (b a ) = x + ba

y = y + (b a ) = y + ba

z = z + (b a ) = z + ba

−

−

−

                                                                                 (3.27) 

 

�ekil 3.2. A ve B merkezinin koordinatları. 

 

 Bu çalı�mada A merkezini B merkezine ta�ırken daha önceki bölümlerde ifade 

edilen keyfi bir kartezyen tanımlaması kullanılmaktadır. A�a�ıdaki denklem (3.28)’de A 

merkezinin B merkezine dönü�ümünü görmekteyiz (Zheng ve Zerner, 1993). 

b
x �

b
y �

y �

x �

ay �

ax �

yb �

ya �

xb �

xa

B 

A 

O 
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( )
( ), ,

x y z =
0 0 0

, ,

              = , ,
, , 0,0,0

i r j s k tji k r s t
x y za a a b b b

r s t
r s t b b bx y z

ji kji k
ba x ba y ba z

r s tr s t

i j k

C x y zba ba ba
r s t

� �
� �� �
� �

� �
� �
� �

− − −� �� �� �
� �� �� �

� � � � � �

 
 

= = =



=

                                           (3.28) 

 Denklem (3.28)’deki , ,r s tC ( ), ,
x y zba ba ba  bir sabittir. Bu sabiti 

( ), ,
0 0 0

, ,
ji ki r j s k t

x y zr s t x y z
r s t

i j k
C ba ba baba ba ba r s t

− − −

= = =

� �� � � �
= � �� � � �� �� � � �

� �� � � �

 
 
                                        (3.29) 

�eklinde ifade edebiliriz. 

 Yukarıdaki denklem (3.28)’deki ta�ımalar a�a�ıdaki denklem (3.30)’da ifade 

edilen bir çok kutup moment integralini sa�lamaktadır (Zheng ve Zerner, 1993). 

=
n -l -1 -� r

f geb b b b

l,m,n b b b b

n -l -1 -� rji k l m na a a a
a a a a o o o

M r x y z e x y z r x y z e                          

( , , ) ( , , )

, ,, ,( , , ) (0,0,0) ( , , ) (0,0,0)
             ( , , ) ( , , )

i j k l m n

u v wr s tr s t u v w
C ba ba ba C bo bo box y z x y z

= =

= 
 
  

                      .
n -l -1 -� rn -l -1 -� r f +s+v g+t+we+r+ua a a a b b b b

a b b b b
r e r x y z e                               (3.30) 

 Denklem (3.30)’da normalizasyon katsayısı sabit oldu�u için dikkate 

alınmayarak o-merkezinde bulunan 
l,m,n

M  i�lemcisinin beklenen de�eri ifade edilmi�tir. 

Burada a-merkezinde bir STO, b-merkezinde ba�ka bir STO bulunmaktadır. Böylece a, 

b ve o merkezlerine sahip iki-merkez integralin çözülmesi için denklem (3.28)’in 

kullanılmasıyla a ve o merkezleri b merkezine ta�ınarak çok kutup moment integrali 

daha kolay hesaplanabilecek �ekile dönü�türülür. Denklem (3.30)’daki 

, ,
( , , )

r s t
C ba ba bax y z  ve 

, ,
( , , )

u v w
C bo bo box y z  de�erleri ta�ımalar yapıldıktan sonra 

gelen sabit ifadelerdir. Bu sabit ifadeler, r, s ve t ye ba�lı üç toplam ile u, v ve w’ye 

ba�lı üç toplamı içermektedir. 
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 4. BULGULAR ve TARTI�MA 

 

 4.1. Düzenli Katı Harmoniklerin Ta�ınması �çin Master Formüller 

 Herhangi bir düzenli katı harmoni�i ba�ka bir merkeze ta�ımak için 

kullandı�ımız master formül 

                                                                             (4.1) 

biçimindedir (Zheng ve Zerner, 1993). Burada g (ba ,ba ,ba )a
x y z

	
 sabit bir de�erdir. 

Denklem (4.1)’de 	 =(0,0,0)’dan ba�layarak A

m
l ’nin içindeki (x’in sayısı, y’nin sayısı, 

z’nin sayısı) sınırına kadar toplam alınmaktadır. A merkezinde bulunan düzenli katı 

harmonikleri B merkezine denklem (4.1)’i kullanarak ta�ıyabiliriz. Örne�in daha önceki 

bölümlerde elde etti�imiz 2 2x -y
d ’nin a-merkezinde oldu�unu dü�ünürsek,  

2 2
2 0 0 0 2 0= (15 /16�)[ ]a a a a a a

a a
x - y

d x y z x y z−

 

olur. Denklem (4.1)’den faydalanarak  

22 0 0 (0,0,0) 2 (1,0,0) (2,0,0)x xa a ax y z ba ba= + +

 

ile 

+(0,0,0) 2 (0,1,0) + (0, 2,0)
20 2 0

= y ya a ax y z ba ba
  

ifadelerini elde ederiz ve bunları kullanarak, 

2 2 )= (15 /16�)[( (0,0,0) 2 (1,0,0) 2 (0,1,0) + (2,0,0) (0, 2,0)]
2 2
x y x y

a a
x - y

d ba ba ba ba− + − −

 

olur. Böylece a-merkezindeki düzenli katı harmoni�i b-merkezine ta�ımı� oluruz. 

 Çizelge 4.1’de a-merkezinden b-merkezine ta�ıdı�ımız düzenli katı harmonikleri 

g orbitallerine kadar elde ettik ve kaynaktaki (Zheng ve Zerner, 1993) sonuçlarla 

uyumludur. 

�
= g (ba ,ba ,ba )( , , )A a B

x y z
m 	 	

l i j k




�	�

�

Çizelge 4.1. Ta�ıma yapıldıktan sonra düzenli katı harmonikler. 

Spektroskopik Gösterim Düzenli Katı Harmonikler 

s  1

4�
 

x
p  3

[ (0,0,0) (1,0,0)]
4

xba
π

+  

y
p  

[
3

(0,0,0) + (0,1,0)]
4�

yba  

z
p  

[
3

(0,0,0) + (0,0,1)]
4�

zba  

2z
d  2 2 25

[(2 )(0,0,0) 2 (1,0,0)
16�

          2 (0,1,0) + 4 (0,0,1) (2,0,0)

          (0,2,0) + 2(0,0,2)]

z x y x

y z

ba ba ba ba

ba ba

− − −

− −

−

 

22x y
d

−

 2 215
[( )(0,0,0) 2 (0,1,0)

16�

               + 2 (1,0,0) + (2,0,0) (0,2,0)]

x y y

x

ba ba ba

ba

− −

−

 

xy
d  15

[ (0,0,0) + (1,0,0) + (0,1,0) +(1,1,0)]
4�

x y y xba ba ba ba  

xz
d  15

[ (0,0,0) + (1,0,0) + (0,0,1) + (1,0,1)]
4�

x z z xba ba ba ba  

yz
d  15

[ (0,0,0) + (0,1,0) + (0,0,1) + (0,1,1)]
4�

y z z yba ba ba ba  



�
�

�

 

3z
f  

3 2 2

2 2 2

7
[( 3 3 )(0,0,0)

16�

6 (1,0,0) 6 (0,1,0)

+(6 3 3 )(0,0,1) 3 (2,0,0)

6 (1,0,1) 3 (0,2,0) 6 (0,1,1)

+6 (0,0,2) 3(2,0,1) 3(0,2,1) + 2(0,0,3)]

z x z y

x z y z

z x y z

x z y

z

ba ba ba ba baz

ba ba ba ba

ba ba ba ba

ba ba ba

ba

− −

− −

− −

−

− − −

− −

 

 

2xz
f  

 

 

2 3 2

2 2 2

21
[(4 )(0,0,0)

32�

+(4 3 )(1,0,0) 2 (0,1,0)

+8 (0,0,1) 3 (2,0,0) 2 (1,1,0)

(0,2,0) +8 (1,0,1) + 4 (0,0,2)

(3,0,0) (1,2,0) + 4(1,0,2)]

x z x x y

z x y x y

x z x y

x z x

ba ba ba ba ba

ba ba ba ba ba

ba ba ba ba

ba ba ba

− −

− − −

− −

−

− −

 

 

2yz
f  

2 2 3

2 2 2

21
[(4 )(0,0,0)

32�

2 (1,0,0) +8 (0,0,1)

+(4 3 )(0,1,0) (2,0,0)

2 (1,1,0) 3 (0,2,0) +8 (0,1,1)

+4 (0,0,2) (2,1,0) (0,3,0) + 4(0,1,2)]

y z x y y

x y y z

z x y y

x y z

y

ba ba ba ba ba

ba ba ba ba

ba ba ba ba

ba ba ba

ba

− −

−

− − −

− −

− −

 

 

2 2(x y )z
f

−

 

2 2

2 2

105
[ ( )(0,0,0) + 2 (1,0,0)

16�

2 (0,1,0) + ( )(0,0,1) + (2,0,0)

+2 (1,0,1) (0,2,0) 2 (0,1,1)

+(2,0,1) (0,2,1)]

z x y x z

y z x y z

x x y

ba ba ba ba ba

ba ba ba ba ba

ba ba ba

−

− −

− −

−

 

 

xyz
f  

105
[ (0,0,0) + (1,0,0)

4�

+ (0,1,0) + (0,0,1) + (1,1,0)

+ (1,0,1) + (0,1,1) + (1,1,1)]

x y z y z

x z x y z

y x

ba ba ba ba ba

ba ba ba ba ba

ba ba
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�

3 2x 3xy
f

−

 3 2 2 2
x

35
[( )(0,0,0) +3( )(1,0,0)

32�

6 (0,1,0) +3 (2,0,0) 6 (1,1,0)

3 (0,2,0) +(3,0,0) 3(1,2,0)]

x y x y

x y x y

x

ba ba ba ba ba

ba ba ba ba

ba

− −

− −

− −

 

2 33x y y
f

−

 2 3

2 2

35
[(3 )(0,0,0) + 6 (1,0,0)

32�

+3( )(0,1,0) +3 (2,0,0) + 6 (1,1,0)

 3 (0,2,0) +3(2,1,0) (0,3,0)]

x y y x y

x y y x

y

ba ba ba ba ba

ba ba ba ba

ba

−

−

− −

 

 

4z
g  

4 2 2 4 2 2

4 2 2 3 2

2 2 3

2 3 2

2 2 2 2

3
( ){(3 +6 +3 24
16 �

+8 24 )(0,0,0) + (12 +12

48 )(1,0,0) +12( +

4 )(0,1,0) +16(2 3

3 )(0,0,1) + 6(3 + 4 )(2,0,0)

+24

x x y y y z

z x z x x y

x z x y y

y z z x z

y z x y z

ba ba ba ba ba ba

ba ba ba ba ba ba

ba ba ba ba ba

ba ba ba ba ba

ba ba ba ba ba

b

−

−

−

− −

− −

2 2 2

2 2 2

(1,1,0) 96 (1,0,1)

+6( +3 4 )(0,2,0) 96 (0,1,1)

24( + 2 )(0,0,2)

+12 [(3,0,0) +(1,2,0) 4(1,0,2)]

+12 [(2,1,0) + (0,3,0) 4(0,1,2)]

16 [3(2,0,1) +3(0,2,1) 2(0,0,3)]

+3(

x y x z

x y z y z

x y z

x

y

z

a ba ba ba

ba ba ba ba ba

ba ba ba

ba

ba

ba

−

− −

− −

−

−

− −

4,0,0) + 6(2,2,0) 24(2,0,2) +3(0,4,0)

24(0,2,2) +8(0,0,4)}

−

−

 

 

 

3xz
g  

3 3 2

3 2 2

2 3 2

2 2 2

3 10
{(4 3 3 )(0,0,0)

8 �

+(4 9 3 )(1,0,0)

6 (0,1,0) +3(4 )(0,0,1)

+3(4 3 )(1,0,1) 3 [3(2,0,0)

+(0,2,0) 4(0,0,2)] 6 (1,

x z x z x y z

z x z y z

x y z x z x x y

z x y x z

y z

ba ba ba ba ba ba ba

ba ba ba ba ba

ba ba ba ba ba ba ba ba

ba ba ba ba ba

ba ba

− −

− −

− − −

− − −

− − 1,0) 6 (0,1,1)

+3 [4(1,0,2) (3,0,0) (1,2,0)]+ [4(0,0,3)

3(0,2,1) 9(2,0,1)] 6 (1,1,1) 3(3,0,1)

3(1,2,1) + 4(1,0,3)}

x y

z x

y

ba ba

ba ba

ba

−

− −

− − − −

−

 



���

�

 

 

3yz
g  

3 3 2

3 2 2

2 3 2

2 2 2

3 10
{(4 3 3 )(0,0,0)

8 �

+(4 9 3 )(0,1,0)

6 (1,0,0) +3(4 )(0,0,1)

+3(4 3 )(0,1,1) 3 [(2,0,0) 3(0,2,0)

4(0,0,2)] 6 (1,

y z y z x y z

z y z x z

x y z y z y x y

z y x y z

x z

ba ba ba ba ba ba ba

ba ba ba ba ba

ba ba ba ba ba ba ba ba

ba ba ba ba ba

ba ba

− −

− −

− − −

− − − +

− − 1,0) 6 (1,0,1)

+3 [4(0,1,2) (0,3,0) (2,1,0)]+ [4(0,0,3)

3(2,0,1) 9(0,2,1)] 6 (1,1,1) 3(0,3,1)

3(2,1,1) + 4(0,1,3)}

x y

z y

x

ba ba

ba ba

ba

−

− −

− − − −

−

 

 

 

 

2 2 2( )z x y
g

−

 

4 4 2 2 2 2

2 3 2 3

2 2 2 2

2 2

2

3 5
{( 6 6 )(0,0,0)

8 �

+4(3 )(1,0,0) 4(3 )(0,1,0)

+12( )(0,0,1) 6( )(2,0,0)

+24 (1,0,1) + 6( )(0,2,0)

24 (0,1,1) +6(

y x x z y z

x z x y z y

x z y z x z

x z y z

y z x

ba ba ba ba ba ba

ba ba ba ba ba ba

ba ba ba ba ba ba

ba ba ba ba

ba ba ba ba

−

−

−

− + −

− − −

− −

−
2

)(0,0,2)

+4 [3(1,0,2) (3,0,0)]+12 [(2,0,1)

(0,2,1)]+ 4 [(0,3,0) 3(0,1,2)] (4,0,0) + 6(2,0,2)

+(0,4,0) 6(0,2,2)}

y

x z

y

ba ba

ba

−

− − −

−

 

 

 

 

2xyz
g  

2

2 2 3 3

2 2 3

2 3

2 2 2

2 2

3 5
{( )(0,0,0)

4 �

+(6 3 )(1,0,0)

+(6 3 )(0,1,0)

+12 (0,0,1) +3(2 )(1,1,0)

3 [(2,0,0) + (0,2,0) 2(0,0,2)]+ 6( )(0,

x y z x y x y

y z x y y

x z x x y

x y z z x y

x y y z

ba ba ba ba ba ba ba

ba ba ba ba ba

ba ba ba ba ba

ba ba ba ba ba ba

ba ba ba ba

−

−

− −

− −

− −

−

− − 2,0)

+12 (1,0,1)+12 (0,1,1)

[(3,0,0) +3(1,2,0) 6(1,0,2)]

[3(2,1,0) + (0,3,0) 6(0,1,2)]

+12 (1,1,1) (3,1,0) (1,3,0) +6(1,1,2)}

y z x z

y

x

z

ba ba ba ba

ba

ba

ba

− −

− −

− −

 



�
�

�

 

 

3 2( )z x y-3x
g  

3 2

2 2

3 2

2 2

8

3 70
{( 3 )(0,0,0)

�

+3( )(1,0,0)

6 (0,1,0)+( 3 )(0,0,1)

6 (1,1,0) +3 [(2,0,0) (0,2,0)]

+3( )(1,0,1) 6 (0,1,1)

+ [(3,0,0) 3(1,2,0)]+3

x z x y z

x z y z

x y z x x y

y z x z

x y x y

z

ba ba ba ba ba

ba ba ba ba

ba ba ba ba ba ba

ba ba ba ba

ba ba ba ba

ba

−

−

−

− −

− −

−

− [(2,0,1) (0,2,1)]

6 (1,1,1)+(3,0,1) 3(1,2,1)}

x

y

ba

ba

−

− −

 

 

 

2 3( )z x y3 y
g

−

 

2 3

2 2

2 3

2 2

8

3 70
{(3 )(0,0,0)

�

+3( )(0,1,0)

+6 (1,0,0)+(3 )(0,0,1)

+6 (1,1,0) +3 [(2,0,0) (0,2,0)]

+3( )(0,1,1) + 6 (1,0,1)

+ [3(2,1,0) (0,3,0)]+3

x y z y z

x z y z

x y z x y y

x z y z

x y x y

z

ba ba ba ba ba

ba ba ba ba

ba ba ba ba ba ba

ba ba ba ba

ba ba ba ba

ba

−

−

−

−

−

− [(2,0,1) (0,2,1)]

+6 (1,1,1) (0,3,1)+3(2,1,1)}

y

x

ba

ba

−

−

 

 

2 2x y
g  

4 2 2 4

3 2 3 2

2 2

35

16

3
{( 6 + )(0,0,0)
�

+4( 3 )(1,0,0) + 4( 3 )(0,1,0)

+6( )[(2,0,0) (0,2,0)] 24 (1,1,0)

+4 [(3,0,0) 3(1,2,0)]+4 [(0,3,0) 3(2,1,0)]

+(4,0,0) 6(2,2,0)+(0,4,0)

x x y y

x x y y x y

x y x y

x y

ba ba ba ba

ba ba ba ba ba ba

ba ba ba ba

ba ba

−

−

− −

− −

− −

− }

 

 

2 2( )xy x y
g

−

 

3 3

2 3 3 2

2 2

353
{( )(0,0,0)

4 �

+(3 )(1,0,0) + ( 3 )(0,1,0)

+3 [(2,0,0) (0,2,0)]+3( )(1,1,0)

+ [(3,0,0) 3(1,2,0)]+ [3(2,1,0) (0,3,0)]

+(3,1,0) (1,3,0)}

x y x y

x y y x x y

x y x y

y x

ba ba ba ba

ba ba ba ba ba ba

ba ba ba ba

ba ba

−

− −

− −

− −

−

 

  

 



	��

�

 4.2. ��lemcinin Ta�ınması �çin Master Formüller 

 Bir i�lemciyi ba�ka bir merkeze ta�ımak için kullandı�ımız master formül, 

(bo ,bo ,bo )O
x y z



f  sabit bir de�er olmak üzere, 

( , , ) = (bo ,bo ,bo )( , , )O O B
x y z


 

n l m f i j k

ν



                                                                    (4.2) 

biçimindedir (Zheng ve Zerner, 1993). Denklem (4.2)’yi kullanarak a�a�ıdaki Çizelge 

4.2’de ifade etti�imiz i�lemcileri hesapladık ve kaynaktaki (Zheng veZerner,1993) 

sonuçlarla uyumludur. Örne�in O merkezindeki (1,0,0) i�lemcisini denklem (4.2)’yi 

kullanarak B merkezine ta�ıyalım. Böylece, 

0 0 0 1 0 0

1 0 01 0 0

0 0 0

                =

                =

(1,0,0)

(0,0,0) (1,0,0)

i j kji k
x y zb b bb b b

i j k

x b b b b b bb

x
b

bo x bo y bo z

bo x y z x y z

bo

− − −

= = =

=

+

+


 
 


 

buluruz.  

Çizelge 4.2. Ta�ıma yapıldıktan sonra i�lemciler. 

��lemci Ta�ıma yapıldıktan sonra i�lemciler 

(1,0,0) (0,0,0) + (1,0,0)xbo
 

(0,1,0) (0,0,0) +(0,1,0)ybo
 

(0,0,1) (0,0,0) + (0,0,1)zbo
 

(2,0,0) 2
(0,0,0) + 2 (1,0,0) + (2,0,0)x xbo bo

 

(1,1,0) (0,0,0) + (1,0,0) + (0,1,0) + (1,1,0)x y y xbo bo bo bo
 



	��

�

(1,0,1) (0,0,0) + (1,0,0) + (0,0,1) +(1,0,1)x z z xbo bo bo bo
 

(0,2,0) 2
(0,0,0) + 2 (0,1,0) + (0,2,0)y ybo bo

 

(0,1,1) (0,0,0) + (0,1,0) + (0,0,1) + (0,1,1)y z z ybo bo bo bo
 

(0,0,2) 2
(0,0,0) + 2 (0,0,1) + (0,0,2)z zbo bo

 

(3,0,0) 3 2
(0,0,0) +3 (1,0,0) +3 (2,0,0) + (3,0,0)x x xbo bo bo

 

(1,2,0) 2 2
(0,0,0) + (1,0,0) + 2 (0,1,0)

+2 (1,1,0) + (0,2,0) + (1,2,0)

x y y x y

y x

bo bo bo bo bo

bo bo  

(1,0,2) 2 2
(0,0,0) + (1,0,0) + 2 (0,0,1)

+2 (1,0,1) + (0,0,2) +(1,0,2)

x z z x z

z x

bo bo bo bo bo

bo bo  

(2,1,0) 2 2
(0,0,0) + 2 (1,0,0) + (0,1,0)

 + 2 (1,1,0) + (2,0,0) +(2,1,0)

x y x y x

x y

bo bo bo bo bo

bo bo  

(2,0,1) 2 2
(0,0,0) + 2 (1,0,0) + (0,0,1)

+2 (1,0,1) + (2,0,0) + (2,0,1)

x z x z x

x z

bo bo bo bo bo

bo bo  

 

(1,1,1) 

(0,0,0) + (1,0,0)

+ (0,1,0) + (0,0,1)

+ (1,1,0) + (1,0,1) + (0,1,1)

+(1,1,1)

x y z y z

x z x y

z y x

bo bo bo bo bo

bo bo bo bo

bo bo bo  

(0,3,0) 3 2
(0,0,0) +3 (0,1,0) +3 (0,2,0) + (0,3,0)y y ybo bo bo

 



	��
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(0,1,2) 2 2
(0,0,0) + (0,1,0) + 2 (0,0,1)

+2 (0,1,1) + (0,0,2) + (0,1,2)

y z z y z

z y

bo bo bo bo bo

bo bo  

(0,2,1) 2 2
(0,0,0) + 2 (0,1,0) + (0,0,1)

+2 (0,1,1) + (0,2,0) + (0,2,1)

y z y z y

y z

bo bo bo bo bo

bo bo  

(0,0,3) 3 2
(0,0,0) +3 (0,0,1) +3 (0,0,2) + (0,0,3)z z zbo bo bo

 

(4,0,0) 4 3 2
(0,0,0) + 4 (1,0,0) + 6 (2,0,0)

+4 (3,0,0) + (4,0,0)

x x x

x

bo bo bo

bo  

 

(3,1,0) 

3 2

3 2

(0,0,0) +3 (1,0,0)

+ (0,1,0) +3 (2,0,0) +3 (1,1,0)

+ (3,0,0) +3 (2,1,0) + (3,1,0)

x y x y

x x y x

y x

bo bo bo bo

bo bo bo bo

bo bo
 

 

(3,0,1) 

3 2

3 2

(0,0,0) +3 (1,0,0)

+ (0,0,1) +3 (1,0,1) +3 (2,0,0)

+ (3,0,0) +3 (2,0,1) + (3,0,1)

x z x z

x x z

z

x

x

bo bo bo bo

bo bo bo bo

bo bo
 

 

(2,2,0) 

2 2 2

2 2

2

(0,0,0) + 2 (1,0,0)

+2 (0,1,0) + (2,0,0) + 4 (1,1,0)

+ (0,2,0) + 2 (1,2,0) + 2 (2,1,0) + (2,2,0)

x y y

x y y y

x x y

x

x

bo bo bo bo

bo bo bo bo bo

bo bo bo
 

 

(2,1,1) 

2

2 2

2

(0,0,0) + 2 (1,0,0)

+ (0,1,0) + (0,0,1) + (2,0,0)

+2 (1,1,0) + 2 (1,0,1) + (0,1,1)

+ (2,1,0) + (2,0,1) + 2 (1,1,1) + (2,1,1)

x y z y z

x z x y y z

z y x

z y x

x

x x

bo bo bo bo bo bo

bo bo bo bo bo bo

bo bo bo bo bo

bo bo bo
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(2,0,2) 

2 2 2 2

2 2

(0,0,0) + 2 (1,0,0) + 2 (0,0,1)

+4 (1,0,1) + (2,0,0) + (0,0,2)

+2 (1,0,2) + 2 (2,0,1) + (2,0,2)

x z z x z

z z x

z

x

x

x

bo bo bo bo bo bo

bo bo bo bo

bo bo
 

 

(1,3,0) 

3 2 3

2

(0,0,0) +3 (0,1,0) + (1,0,0)

+3 (0,2,0) +3 (1,1,0)

+ (0,3,0) +3 (1,2,0) +(1,3,0)

y y y

y y

y

x x

x

x

bo bo bo bo bo

bo bo bo

bo bo
 

 

(1,2,1) 

2

2 2

2

(0,0,0) + 2 (0,1,0)

+ (1,0,0) + (0,0,1) + (0,2,0)

+2 (1,1,0) + 2 (0,1,1) + (1,0,1)

+ (1,2,0) + (0,2,1) + 2 (1,1,1) + (1,2,1)

x y z y z

y z x y x z

y z y y

z x y

x

x

bo bo bo bo bo bo

bo bo bo bo bo bo

bo bo bo bo bo

bo bo bo

 

 

 

(1,1,2) 

2 2

2

2

(0,0,0) + (1,0,0)

+ (0,1,0) + 2 (0,0,1)

+ (1,1,0) + 2 (1,0,1) + 2 (0,1,1)

+ (0,0,2) + (1,0,2) + 2 (1,1,1) +

+ (0,1,2) + (1,1,2)

x y z y z

x z x y z

z y z z

x y y z

x

x

bo bo bo bo bo

bo bo bo bo bo

bo bo bo bo bo

bo bo bo bo

bo

 

 

(1,0,3) 

3 3 2

2

(0,0,0) + (1,0,0) +3 (0,0,1)

+3 (1,0,1) +3 (0,0,2)

+3 (1,0,2) + (0,0,3) + (1,0,3)

z z z

z z

z

x x

x

x

bo bo bo bo bo

bo bo bo

bo bo
 

(0,4,0) 4 3 2
(0,0,0) + 4 (0,1,0) + 6 (0,2,0)

+4 (0,3,0) + (0,4,0)

y y y

y

bo bo bo

bo  

 

(0,3,1) 

3 2 3

2

(0,0,0) +3 (0,1,0) + (0,0,1)

+3 (0,1,1) +3 (0,2,0) + (0,3,0)

+3 (0,2,1) + (0,3,1)

y z y z y

y z z

y

x

bo bo bo bo bo

bo bo bo bo

bo
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(0,2,2) 

2 2 2 2

2 2

(0,0,0) + 2 (0,1,0) + 2 (0,0,1)

+4 (0,1,1) + (0,2,0) + (0,0,2)

+2 (0,1,2) + 2 (0,2,1) + (0,2,2)

y z y z y z

y z z y

y z

bo bo bo bo bo bo

bo bo bo bo

bo bo
 

 

(0,1,3) 

3 3 2

2

(0,0,0) + (0,1,0) +3 (0,0,1)

+3 (0,1,1) +3 (0,0,2) +3 (0,1,2)

+ (0,0,3) + (0,1,3)

y z z y z

z y z z

y

bo bo bo bo bo

bo bo bo bo

bo
 

(0,0,4) 4 3 2
(0,0,0) + 4 (0,0,1) + 6 (0,0,2)

+4 (0,0,3) + (0,0,4)

z z z

z

bo bo bo

bo  

 

 

 a merkezindeki STO’nun içindeki düzenli katı harmoni�i ve o merkezindeki 

i�lemciyi b merkezine ta�ıma yaparak denklem (3.30)’da görünen altı katlı toplamı 

denklem (4.3)’de görünen iki katlı toplama indirgeyerek çok-kutup moment integralini 

denklem (4.3)’deki gibi sadece B merkezinde ifade etmi� oluruz. 

=
n -l -1 -� rn -l -1 -� rj f gi k l m n ea a a a b b b b

a a a a o o ol,m,n b b b b
M r x y z e x y z r x y z e

 

            

( )

( )

1 ,, ,

1,, ,

, ,   

      , ,

aa att tn l ry ua x u z ua a a a
x y za b b b

oo o n l rtt ty f go ex z b b b b
x y z b b b b b b b

r g ba ba ba x y z e

f bo bo bo x y z r x y z e

ζ
µ

µ

ζυυ υ
υ

υ

− − −

− − −

� �
= � �

� �

� �
� �
� �






 

           

( ) ( )
,

1 1 , ,, , , ,

, , , ,

     

a o
x y z x y z

a oa o a of t te t t g t tn l r n l y u yx u x z u z ra a a a b b b b
a b b b b

g ba ba ba f bo bo bo

r e r x y z e

µ υ
µ υ

ζ υυ υ ζ+ ++ + + +− − − − − −

=


             (4.3) 

Denklem (4.3)’deki ( ), ,a
x y zg ba ba baµ  ve ( ), ,o

x y zf bo bo boυ  sabit katsayılardır. 
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 4.3. Bir- ve �ki-Merkezli �ntegrallerin Analitik Hesaplanması  

 4.3.1. Bir-Merkezli �ntegraller 

 Denklem (4.3)’teki ifadenin iki-merkezli oldu�unu görmekteyiz. Bu 

merkezlerden birini di�erine ta�ıdı�ımızda ifademiz bir merkeze sahip olmaktadır. 

Burada a ob
r = r = r  alınmı�tır. Denklem (4.3)’te gerekli ta�ımalar yapıldıktan sonra, 

normalizasyon katsayısı dı�ında, tüm bir-merkezli integraller, 

n +n -l -l -2 -(� +� )r
a a aji kb b b b

1 b b b b
I = r x y z e

      

 

   
2

0 0 0

 =   
n +n -l -l -(� +� )r
a a a i+ j+1 jk ib b b b

b b b b b b b b

i j k
r e dr sin � cos � d� sin cos d

π π
φ φ φ

∞ + + +

� � �
      

(4.4) 

biçiminde olmaktadır (Zheng ve Zerner, 1993).  

 Denklem (4.4)’teki integrallerin çözümü için bazı dönü�ümler yapılır. Bu 

dönü�ümleri yaptıktan sonra bir merkez integraller için açılara ba�lı olu�abilecek 

durumların hepsini Çizelge 4.3’te gösterdik. Bu çizelgeye bakarak bize gerekli olan bir-

merkezli integrallerin açılara ba�lı kısımını kolayca hesaplayabiliriz.  

 Denklem (4.4)’teki integralin radyal kısmı ise gamma fonksiyonları 

biçimindedir. Radyal kısımdaki integral n - n+1
e d = n!/

0

�r
r r �

∞
�  ba�ıntısı kullanılarak 

kolayca hesaplanmaktadır (Arfken ve Weber, 2001). 
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Çizelge 4.3. Bir-merkezli integrallerin açılara ba�lı kısmı. 

m n 
,2

cos  sin  
0

m n d
π π

φ φ φ�  

çift çift 

( 1)!!( 1)!!
cos  sin  

( )!!0

m nm n d
m n

π
φ φ φ π

− −
=�

+
 

 

2 ( 1)!!( 1)!!
cos  sin  2

( )!!0

m nm n d
m n

π
φ φ φ π

− −
=� +

 

çift tek 

1 1
2 ( )!( )!( 1)!! !! 2 2cos  sin  

( )!! !0

n n n
m nm n d
m n n

π
φ φ φ

− −
−

=�
+

 

2
cos  sin  0

0

m n d
π

φ φ φ =�  

tek çift 

( 1)!!( 1)!!
cos  sin  

( )!!0

m nm n d
m n

π
φ φ φ π

− −
=�

+
 

2 ( 1)!!( 1)!!
cos  sin  2

( )!!0

m nm n d
m n

π
φ φ φ π

− −
=� +

 

tek tek 

1 1
2 ( )!( )!( 1)!! !! 2 2cos  sin  

( )!! !0

n n n
m nm n d
m n n

π
φ φ φ

− −
−

=�
+

 

2
cos  sin  0

0

m n d
π

φ φ φ =�
 

 

 

 4.3.2. �ki- Merkezli �ntegraller 

 Daha önceki bölümlerde gerekli ta�ımalar yapıldıktan sonra (4.3)’teki iki-merkez 

integralin çözümü için (3.21)’de ifade edilen eliptik koordinat sistemini ele alırız. 

Böylece iki-merkez integraller, 

2

n -l -1 -� rn -l -1 -� r ji ka a a a b b b b
a a a ab

I r e r x y z e=  
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( ) ( ) ( )

( ) ( )
( )

( )

1 2
1 1 1

1 1 0

/2
2 2

2

   1 1 1 cos sin

n n l l i j k n na a ab b b

i j k ji

d d d R

e

π

ρξ τρη

ξ η φ ξ η ξ η

ξ η ξη φ φ

∞
+ − − + + + + + +

−

+
− −

= + −

� �− − −
� �

� � �
 

       ( ) ( ) ( )
1

1 1 1

1 1

2
n n l l i j k n na a ab b bd d Rξ η ξ η ξ η

∞
+ − − + + + + + +

−

= + −� �  

           ( )( )
( )

( )
/2

2 21 1 1 ( , )
i j k

e F i j
ρξ τρηξ η ξη

+
− −� �− − −

� �
                                            (4.5) 

olur. Burada ρ  ve τ  ifadeleri, 

( )( )

( ) ( )

/ 2

/

a b

a ab b

Rρ ζ ζ

τ ζ ζ ζ ζ

= +

= − +
                                                                                              (4.6) 

ile verilir (Zheng ve Zerner, 1993). ( , )F i j  de, 

( )
( ) ( )

( )
( )

2

0

1 !! 1 !!
, cos sin 2

!!

m n m n
F m n d

m n

π

φ φ φ π
− −

= =
+�                                                 (4.7) 

olarak bir-merkezli integrallerde buldu�umuz de�erlerden biridir. 

 Denklem (4.5)’teki sabitler dı�ında kalan ifade “Z fonksiyonları” olarak 

adlandırılır ve 

( ) ( ) ( ) ( ) ( ) ( )
1

2 2
, , ,

1 1

, 1 1 1Z d e d
γ γ α β δ ρξ τρη

α β γ δ ρ τ ξ ξ η ξ η ξ η ξη η
∞

− −

−

= − − + − −� �     (4.8) 

biçiminde ifade edilir (Zheng ve Zerner, 1993). Z fonksiyonlarını 

( )2 2
A

k i j mα β γ ρ+ + − − − −  ve ( )2
B

i j l m
ρτ+ + +  yardımcı fonksiyonlar cinsinden a�a�ıdaki 

gibi 

( ) ( )

( ) ( )

, , ,
, , , ,

2 2 2

, 1

                               A  B

j k l m

i j k l m

k i j m i j l m

Z
i j k l mα β γ δ

α β γ

α β γ γ δ
ρ τ

ρ ρτ

+ + +

+ + − − − − + + +

� �� �� �� �� �
= −� �� �� �� �� �

� �� �� �� �� �



                                       (4.9) 
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yazarız. Yardımcı fonksiyonlar ile ilgili bilgi Ek-3’te verilmi�tir. Ek-3’te Mathematica 7 

programlama dilinde ( )2 2
A

k i j mα β γ ρ+ + − − − −  ve ( )2
B

i j l m
ρτ+ + +  yardımcı fonksiyonları 

hesaplayan programlar verilmi�tir. Aynı zamanda Ek-3’te Mathematica 7 programlama 

dilinde farklı α  de�erlerine kar�ılık gelen ( )2 2
A

k i j mα β γ ρ+ + − − − −  ve ( )2
B

i j l m
ρτ+ + +  

yardımcı moleküler integrallerin grafiklerini çizen program verilmektedir. Bu 

programda çizdirilen grafikler a�a�ıdaki �ekillerde gösterilmektedir. 

 �ki- merkez integraller böylece hem Z fonksiyonları hem de F fonksiyonları 

cinsinden 

2

, ,( )/2,
    = Z ( , ) ( , )

n -l -1 -� rn -l -1 -� r ji ka a a a b b b b
a a a ab

n -l n l i j ka a b b

I r e r x y z e

F i jρ τ− +

=
 

yazılır.  

 

�ekil 4.1. n<17 için A (1, )n α ’nın grafi�i 

 

 �ekil 4.1’de n<17 için farklı n ve α  de�erleri ele alınarak A (1, )n α  yardımcı 

moleküler integrallerinin α  de�erine kar�ılık gelen grafi�ini Mathematica 7 

programlama dilini kullanarak çizdirdik. Bu grafi�e baktı�ımızda α  de�eri arttıkça 



	
�

�

A (1, )
n

α  yardımcı moleküler integral de�eri azalmaktadır. n<17 durumunda n’nin 

de�eri azaldıkça α ’daki de�i�im oranı daha küçüktür. Kaynaklara (Kara, 1998) 

baktı�ımızda A (1, )
n

α  yardımcı moleküler integral için çizilen grafik, �ekil 4.1’de elde 

etti�imiz grafikle uyum içerisindedir.  

 

�ekil 4.2. n>17 için A (1, )
n

α ’nın grafi�i 

 

 n>17 oldu�u durumda farklı n ve α  de�erlerindeki A (1, )
n

α  yardımcı moleküler 

integrallerinin α  de�erine kar�ılık gelen grafi�i �ekil 4.2’de görülmektedir. Bu grafi�e 

baktı�ımızda herhangi bir n de�erinde α ’nın alabilece�i en küçük de�er, A (1, )
n

α  

yardımcı moleküler integral için en büyük de�eri verir. Kaynaklara (Kara, 1998) 

baktı�ımızda A (1, )
n

α  yardımcı moleküler integral için çizilen grafik ile �ekil 4.2’de 

elde etti�imiz grafik uyum içerisindedir. A (1, )
n

α  yardımcı moleküler integral için 

n’nin tek ya da çift olamsı önemli de�ildir. 
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�ekil 4.3. n=35, n=50, n=55, n=60, n=70 için A (1, )
n

α ’nın grafi�i 

 

 �ekil 4.1, �ekil 4.2 ve �ekil 4.3’e baktı�ımızda herhangi iki durum için A (1, )
n

α  

yardımcı moleküler integral de�erleri aynı ise bu durumların n ve α  de�erleri kesinlikle 

farklıdır. 

 

�ekil 4.4. n’nin çift ve 17’den büyük de�erleri için B ( )
n

α ’nın grafi�i 
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 n’nin tek ya da çift olması A (1, )
n

α  yardımcı moleküler integrallerde farklılık 

yaratmazken B ( )
n

α  yardımcı moleküler integraller için farklılı�ı ortaya çıkarır. �ekil 

4.4’te n’nin çift ve 17’den büyük olması durumu gösterilmektedir. Bu grafi�e 

baktı�ımızda α  de�eri arttıkça B ( )
n

α  yardımcı moleküler integral de�eri pozitiftir ve 

artmaktadır. n>17 durumunda n’nin de�eri azaldıkça α ’daki de�i�im oranı daha 

küçüktür. Kaynaklara (Kara, 1998) baktı�ımızda B ( )
n

α  yardımcı moleküler integral 

için çizilen grafik ile �ekil 4.4’te elde etti�imiz grafik uyum içerisindedir. 

 

�ekil 4.5. n’nin tek ve 17’den büyük de�erleri için B ( )
n

α ’nın garfi�i 

 

 n’nin tek ve 17’den büyük de�erleri aldı�ı durumda ise, B ( )
n

α  yardımcı 

moleküler integral de�erinin negatif de�erler aldı�ı �ekil 4.5’te görülmektedir. Bu 

grafi�e baktı�ımızda α  de�eri arttıkça B ( )
n

α  yardımcı moleküler integral de�eri 

azalmaktadır. Kaynaklara (Kara, 1998) baktı�ımızda B ( )
n

α  yardımcı moleküler 

integral için çizilen grafik ile �ekil 4.5’te elde etti�imiz grafik uyum içerisindedir. 
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�ekil 4.6. n’nin çift ve 17’den küçük de�erleri için B ( )
n

α ’nın grafi�i 

 

 Mathematica 7 programlama dilinin kullanılmasıyla çok kısa sürede programlar 

yardımıyla çizdirilen grafikler daha iyi sonuç vermektedir. Kaynaklarda (Kara, 1998)  

B ( )
n

α  yardımcı moleküler integraller için çizilen grafik, �ekil 4.6’da elde etti�imiz 

grafikle uyum içerisindedir.    

  n’nin çift ve 17’den küçük de�erleri için �ekil 4.6’daki grafik, farklı n ve α  

de�erlerindeki B ( )
n

α  yardımcı moleküler integrallerinin α  de�erine göre durumunu 

göstermektedir. Burada, α  arttıkça B ( )
n

α  yardımcı moleküler integral de�eri hem 

artarak artmaktadır hem de pozitif de�erler almaktadır. 
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�ekil 4.7. n’nin tek ve 17’den küçük de�erleri için B ( )
n

α ’nın grafi�i 

 �ekil 4.7’de n’nin tek ve 17’den küçük de�erleri için farklı n ve α  de�erlerine 

kar�ı gelen B ( )
n

α  yardımcı moleküler integrallerinin α  de�erine kar�ılık gelen grafi�i 

yine Mathematica 7 programlama dilini kullanarak çizdirdik. Bu grafi�e baktı�ımızda 

α  de�eri arttıkça B ( )
n

α  yardımcı moleküler integral de�eri azalmaktadır ve negatiftir. 

Kaynaklara (Kara, 1998) baktı�ımızda B ( )
n

α  yardımcı moleküler integral için çizilen 

grafik ile �ekil 4.7’de elde etti�imiz grafik uyum içerisindedir. 

 A�a�ıdaki Çizelge 4.4 ve Çizelge 4.5’te n>17 için A (1, )
n

α  ve B ( )
n

α  yardımcı 

moleküler integrallerin de�erleri verilmektedir. Burada hesaplanan yardımcı moleküler 

integraller Mathematica 7 programlama dili kullanılarak Ek-3’te verilen programlar 

yardımıyla hesaplanmaktadır. Bu hesaplama sonucunda elde etti�imiz de�erler ile 

kaynaktaki (Kara, 1998) sonuçlar kar�ıla�tırıldı�ında birbiriyle uyum içerisindedir. 
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Çizelge 4.4. n>17 için A (1, )
n

α  Yardımcı Moleküler �ntegraller 

 

n 

 

α  

 

Bu çalı�mada 

 

Kaynak (Kara, 1998) 

 

 

 

 

 

 

 

 

 

18 

 

0.1 6.40237×10
34

 6.40237370572800E+0034 

1.9 3.23610×10
10

 3.23610498278710E+0010 

2.8 2.04333×10
7
 2.04332959234244E+0007 

3.7 1.02449×10
5
 1.02449125640500+0005 

4.6 1.63660×10
3
 1.63659807764112E+0003 

5.2 1.59322×10
2
 1.59322248710314E+0002 

6.7 1.29088×10
0
 1.29088438909983E+0000 

7.9 5.63874×10
-2

 5.63874276051763E-0002 

8.2 2.77653×10
-2

 2.77652923358477E-0002 

11.5 4.38092×10
-5

 4.38092139689438E-0005 

13.9 1.09025×10
-6

 1.09024851781146E-0006 

17.2 1.36526×10
-8

 1.36526172346481E-0008 

19.6 7.45388×10
-10

 7.45388340201848E-0010 

21.4 9.20670×10
-11

 9.20670027619442E-0011 

23.5 8.56297×10
-12

 8.56297171114381E-0012 

26.8 2.25391×10
-13

 2.25390946604644E-0013 

28.6 3.20671×10
-14

 3.20671026549233E-0014 

29.2 1.68090×10
-14

 1.68090296921971E-0014 
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30.1 6.40053×10
-15

 6.40052643510014E-0015 

19 7.0 1.52445×10
0
 1.52445474617075E+0000 

19 24.7 2.49436×10
-12

 2.49436014982635E-0012 

20 13.3 5.91120×10
-6

 5.91120282275021E-0006 

20 29.2 1.95085×10
-14

 1.95084813696612E-0014 

21 0.7 1.30673×10
23

 1.30673351892220E+0023 

21 17.2 2.85852×10
-8

 2.85851590157477E-0008 

22 4.6 6.41707×10
5
 6.41706536947621E+0005 

22 16.9 5.86046×10
-8

 5.86046087023726E-0008 

23 9.1   2.48593×10
-1

 2.48592703251723E-0001 

23 30.1 9.40388×10
-15

 9.40388096647520E-0015 

24 2.2 1.70663×10
15

 1.70662714705865E+0015 

25 28.0 1.20051×10
-13

 1.20050750488933E-0013 

25 1.3 1.69090×10
22

 1.69090231551075E+0022 

26 19.9 3.18389×10
-9

 3.18389333252295E-0009 

26 29.8 1.76943×10
-14

 1.76943017199233E-0014 

27 21.4   5.50731×10
-10

 5.50730698753986E-0010 

27 5.2 9.74741×10
7
 9.74740854669615E+0007 

28 0.1 3.04888×10
58

 3.04888344611714E+0058 

28 11.2   1.13977×10
-1

 1.13976502920031E-0001 
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Çizelge 4.5. n>17 için B (�)
n

 Yardımcı Moleküler �ntegraller 

 

n 

 

α  

 

Bu çalı�mada 

 

Kaynak (Kara,1998) 

 

 

 

 

18 

0.1 1.05740×10
-1

 1.05739710800898E-0001 

2.8 7.62378×10
-1

 7.62377620634772E-0001 

6.1 1.79334×10
1
 1.79334166341940E+0001 

9.7 5.75251×10
2
 5.75250955072259E+0002 

15.1 1.07336×10
5
 1.07336329338265E+0005 

20.8 2.74908×10
7
 2.74908036177983E+0007 

27.4 1.73274×10
10

 1.73274462821069E+0010 

30.1 2.43592×10
11

 2.43592429322098E+0011 

 

 

 

19 

1.9   -3.14680×10
-1

 -2.98242500536055E-0001 

10.3 -9.92282×10
2
 -9.92282441076476E+0002 

16.6   -4.47926×10
5
 -4.47926243042275E+0005 

22.0 -8.64340×10
7
 -8.64339714666933E+0007 

27.1 -1.26390×10
10

 -1.26390360391023E+0010 

29.8 -1.77835×10
11

 -1.77834758500263E+0011 

20 7.9 9.42083×10
1
 9.42082409418105E+0001 
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21 12.7 -9.54503×10
3
 -9.54503222625260E+0003 

22 25.9 3.66145×10
9
 3.66144676283345E+0009 

23 1.3 -1.57293×10
-1

 -1.33339444869591E-0001 

24 0.1 8.03707×10
-2

 8.03706578163131E-0002 

25 30.1 -2.12559×10
11

 -2.12559009059577E+0011 

26 16.3   2.79435×10
5
 2.79435381632993E+0005 

28 3.4   9.29047×10
-1

 9.29047496408778E-0001 

29 15.7 -1.45131×10
5
 -1.45131218312531E+0005 

30 0.1 6.48194×10
-2

 - 

31 17.1 -5.47552×10
5
 - 

37 28.6 -3.98246×10
10

 - 

48 0.4 0.43994×10
-1

 - 

65 30.1 -1.23297×10
11

 - 
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 5. SONUÇ ve ÖNER�LER 

 Biz bu çalı�mada, STO’ları kullanarak elektrik çok-kutup moment integrallerini 

hesapladık. Bunun için öncelikle, kartezyen gösterimini kullanarak normalize olmu� 

düzenli katı harmonikleri Mathematica 7 programlama dilini kullanarak g orbitallerine 

kadar hesapladık. Sonra kaynaklarda ifade edilen çok-kutup moment tanımlamalarından 

birini (Buckingham,1959) kullanarak çe�itli momentlerin tensör i�lemcilerinin tek-

kutup, çift-kutup, dört-kutup, sekiz-kutup ve onaltı-kutup için tüm bile�enlerini 

hesaplayan program için yine Mathematica 7 programlama dilinden faydalandık. Daha 

sonra, farklı koordinatlara sahip iki ayrı merkezin birbirine nasıl ba�lı oldu�una ve A 

merkezini B merkezine nasıl ta�ıyaca�ımızı bunu �ekil 3.2’de ifade ederek açıkladık. 

Aynı zamanda kaynaklarda STO ve i�lemcinin ta�ınması için master formüller (Zheng 

ve Zerner, 193) ifade edilmi�tir. Bu master formülleri kullanarak hem STO hem i�lemci 

için hesapladı�ımız ifadeleri çizelge halinde gösterdik. 

 Mathematica 7 programlama dilinde hazırladı�ımız program yardımıyla kısa 

sürede düzenli katı harmonikleri küresel koordinatlarda elde ettik. Kaynakta (Zheng ve 

Zerner, 1993) düzenli katı harmonikler kartezyen koordinatlarda bulundu�undan 

kar�ıla�tırma yapmak için küresel koordinatlarda elde etti�imiz düzenli katı 

harmonikleri kartezyen koordinatlara çevirip Zheng ve Zerner’in kullandıkları kartezyen 

gösterimini kullanarak kaynaktaki (Zheng ve Zerner, 1993) düzenli katı harmoniklerle 

bizim elde etti�imiz düzenli katı harmonikler arasında fark olmadı�ını gördük. Küresel 

koordinatlardaki düzenli katı harmonikleri kartezyen koordinatlara dönü�türmek 

Mathematica 7 programlama dilinde olu�turmak güçtür. Bu nedenle küresel 

koordinatlarda elde etti�imiz düzenli katı harmonikleri elde hesaplama yaparak 

kartezyen koordinatlara çevirdik. Sonra kartezyen koordinatlarda elde etti�imiz 

sonuçları ba�ka bir programa veri olarak girdik. Dosya açma ve yazma �eklinde 

programları ve ça�ırma formülünden faydalanarak hangi düzenli katı harmoni�in hangi 

bile�enin hangi katsayısının ne olaca�ını elde etmemizi sa�layan Mathematica 7 

programlama dilini kullanarak programını yaptık. 

 Bu çalı�mada, STO’ları ele alarak a ve b biçiminde iki-merkez ve tek-elektron 

olan elektrik çok-kutup moment integrallerinin hesaplanması için neler yapılması 

gerekti�ini açıkladık ve bu tür integrallerin çözülmesinde seçilen baz fonksiyonu kadar 

seçilen koordinat sistemi de önemlidir. Çünkü seçti�imiz koordinat sistemine göre 





�

�

integralin içindeki ifadelerin görünüm olarak de�i�mesi i�lemleri kolayla�tıracak bazı 

fonksiyonların kullanlabilmesini sa�lamaktadır. 

 Elektrik çok-kutup moment integrallerinin STO’lar kullanılarak eliptik 

koordinatlarda hesaplanması A (1, )
n

α  ve B (�)
n

 yardımcı moleküler integrallerin 

hassas olarak hesaplanmasına ba�lıdır. Bu nedenle, α  ve n’nin farklı de�erleri için 

A (1, )
n

α  ve B (�)
n

 yardımcı moleküler integrallerinin ifadeleri dikkate alınarak 

Mathematica 7 programlama dilinde programlar yaptık. Bu programlarla elde edilen 

sonuçlar kaynaktaki (Kara,1998) sonuçlarla uyumludur ve bunları çizelgeler halinde 

gösterdik. A (1, )
n

α  ve B (�)
n

 yardımcı moleküler integrallerinin farklı α  de�erlerine 

kar�ılık gelen durumlarını gösteren grafikleri Mathematica 7 programlama dilini 

kullanılarak çizdirdik ve mevcut kaynaktaki (Kara, 1998) grafiklerle kar�ıla�tırıldı�ında 

uyum içerisinde oldu�unu gördük. 

 A (1, )
n

α  ve B (�)
n

 yardımcı moleküler integraller Mathematica 7 programlama 

dilinde yapılan programlar sonucunda elde edilen de�erler kullanılarak elektrik çok-

kutup moment integralleri daha hassas olarak hesaplanabilir. 
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 7. EK-1: Düzenli Katı Harmoniklerin Küresel Koordinatlarda Bulunması 

 Program-1’deki “noalf” de�i�keni denklem (3.6)’daki normalize olmu� ba�lı 

Legendre fonksiyonunu temsil etmektedir. Bu programdaki “kh[i]” de�i�keni küresel 

harmonikleri ifade ederken; “cag1”, “cag2” ve “cag3” ise sırasıyla m>0, m<0 ve m=0 

de�erlerine kar�ılık gelen ça�ırma ifadelerini, “i” olarak ifade edilen ça�ırma formülüne 

göre m yerine m, -m ve 0 de�erleri yazılarak olu�turulmaktadır. Ça�ırma formülünün 

aldı�ı de�erleri Çizelge 3.2’de verdik ve bu çizelgede hangi l ve m de�erlerinde hangi 

düzenli katı harmonikleri elde edece�imizi gösterdik. Burada �öyle bir ayrıntı vardır: 

E�er m de�eri pozitifse +Y Ym -m
l l

, e�er m de�eri negatifse Y Ym -m
l l

−  biçiminde 

alınarak düzenli katı harmonikler hesaplanmaktadır. “kure1” ve “kure2” ile adlandırılan 

de�i�kenler de sırasıyla küresel harmoniklerin toplanması ve farkları durumlarını temsil 

eder. “kure11” ifadesi, “kure1”’deki φ  de�erini limit komutuyla φ−  ‘ye dönü�ümünü 

sa�layarak “kure1”’in e�lene�ini göstermektedir. “kure1abs” ise küresel harmoniklerin 

toplanmasıyla elde edilen düzenli katı harmonikleri vermektedir. “kure22” ifadesi, 

“kure2”’deki φ  de�erini limit komutuyla φ−  ‘ye dönü�ümünü sa�layarak “kure2”’in 

e�lene�ini göstermektedir. “kure2abs” ise küresel harmoniklerin farklarından elde 

edilen düzenli katı harmonikleri vermektedir. Kısacası Program-1, küresel 

koordinatlarda düzenli katı harmoniklerin bulunmasını sa�lamaktadır. 

 Program-2’de, düzenli katı harmoniklerin kartezyen koordinatlardaki 

ifadelerindeki katsayıları ve x, y, z’nin kuvvetlerini gösteren kısımları veri olarak girdik. 

Bu verileri FileNameJoin komutuyla belirtilen adrese Mathematica dosyası olarak 

yazdırdık. Program-3’te ise kayıtlı olan bu dosyadan verilen l ve m de�erlerine göre 

düzenli katı harmoniklerin kartezyen koordinatlardaki ifadelerini okuyarak 

(normalizasyon katsayısı, katsayı, x’in üssü, y’nin üssü, z’nin üssü, …) biçiminde print 

komutuyla ekrana yazdırılmaktadır. Ayrıca dosya açma ve yazma �eklinde olu�turulan 

programlarda kullanılan ça�ırma formülünden faydalanarak hangi düzenli katı 

harmoni�in hangi bile�enin hangi katsayısının ne olaca�ını print komutuyla ekrana 

yazdırarak istenen bile�en kolayca görülebilmektedir. 
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Program-1

For[l=0,l<5,l++,
For[m=-l,m<l+1,m++,
noalf=(1/((2^l)*l!))*((((2*l+1)*(l-

Abs[m])!)/(2*(l+Abs[m])!))^(1/2))*((1-
x^2)^(Abs[m]/2))*D[(((x^2)-1)^l),{x,l+Abs[m]}];

x=Cos[ ];
i=l*(l+1)+m+1;
If[m<0,kh[i]=((-1)^m)*((-

1)^Abs[m])*((1/(2*Pi))^(1/2))*noalf*(!^(-"*Abs[m]*#)),

kh[i]=((-1)^m)*((1/(2*Pi))^(1/2))*noalf*(!^("*m*#))]]];
For[l=0,l<5,l=l+1,

cag3=l*(l+1)+1;
kure3=kh[cag3];
Pr !"#$%&'()$*+&,-*$. . /)$*/*$. . 0)$*1*$. . 234.

=",FullSimplify[kure3]];
For[m=1,m<=l,m=m+1,

cag1=l*(l+1)+m+1;
cag2=l*(l+1)-m+1;
kure1=(kh[cag1]+kh[cag2]);

kure11=Limit[kure1,#$-#];
kure1abs=Sqrt[kure1*kure11/2];

56 !"#$%&'()$*+&,7*$../)",l,"  m=",m,"  ile","  l=",l,"  
m=",-m,"  dkh(toplam)=",FullSimplify[kure1abs]];

kure2=(kh[cag1]-kh[cag2]);

kure22=Limit[kure2,#$-#];
kure2abs=Sqrt[kure2*kure22/2];

56 !"#$%&'()$*+&,8*$. . . /)$*/*$. . 0)$*0*$. . .  /9$*$...

l=",l,"   m=",-m,"  dkh(fark)=",FullSimplify[kure2abs]]]];

Program-2

Array[orb,25];
fname=FileNameJoin[{"C:\\Documents and 
Settings\\Administrator\\Desktop/dkh.nb"}];
OpenWrite[fname];
orb[1]={(1/(4*Pi))^(1/2),1,0,0,0};
orb[2]={((3/(4*Pi))^(1/2)),1,1,0,0};
orb[3]={((3/(4*Pi))^(1/2)),1,0,0,1};
orb[4]={((3/(4*Pi))^(1/2)),1,0,1,0};
orb[5]={((15/(4*Pi))^(1/2)),1,1,1,0};
orb[6]={((15/(4*Pi))^(1/2)),1,1,0,1};
orb[7]={((5/(16*Pi))^(1/2)),2,0,0,2,-1,2,0,0,-1,0,2,0};
orb[8]={((15/(4*Pi))^(1/2)),1,0,1,1};
orb[9]={((15/(16*Pi))^(1/2)),1,2,0,0,-1,0,2,0};
orb[10]={((35/(32*Pi))^(1/2)),1,3,0,0,-3,1,2,0};
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orb[11]={((105/(4*Pi))^(1/2)),1,1,1,1};
orb[12]={((21/(32*Pi))^(1/2)),4,1,0,2,-1,3,0,0,-1,1,2,0};
orb[13]={((63/(16*Pi))^(1/2)),(2/3),0,0,3,-1,2,0,1,-
1,0,2,1};
orb[14]={((21/(32*Pi))^(1/2)),4,0,1,2,-1,2,1,0,-1,0,3,0};
orb[15]={((105/(16*Pi))^(1/2)),1,2,0,1,-1,0,2,1};
orb[16]={((35/(32*Pi))^(1/2)),3,2,1,0,-1,0,3,0};
orb[17]={(3/4)*((35/(Pi))^(1/2)),1,3,1,0,-1,1,3,0};
orb[18]={(3/8)*((70/(Pi))^(1/2)),1,3,0,1,-3,1,2,1};
orb[19]={(3/4)*((5/(Pi))^(1/2)),6,1,1,2,-1,3,1,0,-1,1,3,0};
orb[20]={(9/8)*((10/(Pi))^(1/2)),(4/3),1,0,3,-1,3,0,1,-
1,1,2,1};
orb[21]={(9/16)*((1/(Pi))^(1/2)),(8/3),0,0,4,-8,2,0,2,-
8,0,2,2,1,4,0,0,2,2,2,0,1,0,4,0};
orb[22]={(9/8)*((10/(Pi))^(1/2)),(4/3),0,1,3,-1,2,1,1,-
1,0,3,1};
orb[23]={(3/8)*((5/(Pi))^(1/2)),-1,4,0,0,1,0,4,0,6,2,0,2,-
6,0,2,2};
orb[24]={(3/8)*((70/(Pi))^(1/2)),3,2,1,1,-1,0,3,1};
orb[25]={(3/16)*((35/(Pi))^(1/2)),1,4,0,0,1,0,4,0,-
6,2,2,0};
For[l=0,l<5,l++,

For[m=-l,m%l,m++,
i=l*(l+1)+m+1;
s=orb[i];
Print["l=",l,"  m=",m,"   dkh= ",s];
Write[fname,orb[i]]]];

Close[fname]

Program-3

dosya=OpenRead["C:\Documents and 
Settings\Administrator\Desktop/dkh.nb"];
orb=ReadList[dosya, Expression];
l=2;
m=-1;
i=l*(l+1)+m+1;
s=orb[[i]];
Print[orb[[i]]];
Print[s[[4]]];
Close[dosya]
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8. EK-2: Dört-kutup, Sekiz- !"!#$ %&$'()*"+-k!"!#$,-.&("$ /0*&.12*&32(2($

4&5)#*)(.)5+

 !"#$%"&'( )*+,*"-( %enklem (3.16), (3.17) ve (3.18)’deki ifadeler kullan$."*"&(

dört-kutup, sekiz-kutup /0( +1".2$-kutup için moment i!.0-3'.0*'1'nin kartezyen

&++*%'1"2."*%"&'( 4'.0!01.0*'1' bul-"&2"%$*5(67*"%"( 8quad” dört-kutup, “ocpole” sekiz-

kutup ve “hexapole9( +1".2$-&727)( -+-012.0*'1( 201:;*( '!.0-3'.0*'1'( 20-:'.( 0%01(

%0#'!&01.0*%'*5

Program-4

rkare=x^2+y^2+z^2;

For [ i=1 , i%3 , i=i+1 ,

If[i&1,ii=x,If[i&2,ii=y,ii=z]] ;

For [ j=i , j%3 , j=j+1 ,

If[j&1,jj=x,If[j&2,jj=y,jj=z]] ;

If[i&j,delta1=1,delta1=0] ;
quadi,j=(3*ii*jj-rkare*delta1)/2;

Print["Quadrupole",ii,jj," = ",FullSimplify[quadi,j]]] ] 
;

For [ i=1 , i%3 , i=i+1 ,

If[i&1,ii=x,If[i&2,ii=y,ii=z]] ;

For [ j=i , j%3 , j=j+1 ,

If[j&1,jj=x,If[j&2,jj=y,jj=z]] ;

If[i&j,delta1=1,delta1=0] ;
cat2=5*ii*jj ;

For [ k=j , k%3 , k=k+1 ,

If[k&1,kk=x,

If[k&2,kk=y,kk=z]] ;

If[i&k,delta2=1,delta2=0] ;

If[k&j,delta3=1,delta3=0] ;
octoi,j,k=(cat2*kk-ii*rkare*delta3-jj*rkare*delta2-

kk*rkare*delta1)/2 ;
ocpolek=FullSimplify[octoi,j,k];
Print["Octopole ",ii,jj,kk,"  = ",ocpolek]]]] ;

For [ i=1 , i%3 , i=i+1 ,

If[i&1,ii=x,If[i&2,ii=y,ii=z]] ;

For [ j=i , j%3 , j=j+1 ,

If[j&1,jj=x,If[j&2,jj=y,jj=z]] ;

If[i&j,delta1=1,delta1=0] ;

For [ k=j , k%3 , k=k+1 ,

If[k&1,kk=x,
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If[k&2,kk=y,kk=z]] ;

If[i&k,delta2=1,delta2=0] ;

If[k&j,delta3=1,delta3=0] ;

For [ l=k , l%3 , l=l+1 ,

If[l&1,ll=x,

If[l&2,ll=y,ll=z]] ;

If[i&l,delta4=1,delta4=0] ;

If[l&j,delta5=1,delta5=0] ; 

If[l&k,delta6=1,delta6=0] ; 
cat1=35*ii*jj*kk*ll;

cat2=5*rkare*(ii*jj*delta6+jj*kk*delta4+kk*ll*delta1+i
i*ll*delta3+ii*kk*delta5+jj*ll*delta2);

cat3=(rkare^2)*(delta4*delta6+delta2*delta5+delta4*delta3);
hexapolek,l=FullSimplify[(cat1-cat2+cat3)/8];
Print["Hexadecopole",ii,jj,kk,ll,"  = ",hexapolek,l]]]]
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9. EK-67$8)39+.1+$:-( 52;-(*)3

<.')2'&( &++*%'1"2."*( &7.."1$."*"&=( -+.0&>.0*( '120,*"..0*'1( ?0:")."1-":$1%"=(

'120,*".( :+17@."*$( A"*%$-3$( B+1&:'A+1."*( C"7D'."*A( B7132'+1E( 3'1:'1%01( 'B"%0( 0%'.'*5(

Bunlar A
k

ve B
k
A"*%$-3$(B+1&:'A+1."*%$*5(67(A"*%$-3$(B+1&:'A+1."*

1

-
A ( ) e d

pk
k
p

   
!

" #

1
-

-1
B ( ) e d

ptk
k
pt

$$ $" #

'.0(2"1$-."1$*(CF7..'&01(/0("*&5=(GHIHE5

A ( , )% & ' integralinin ,010.(!0&.'=

A ( , ) xx e dx% '
%

&
& '

!
(" # (Re 0' ) )

olarak verilmektedir (Kara, 1998). A ( , )% & ' '120,*".'10( 1( &"2.$( &$:-'( '120,*":A+1(

A;120-'(7A,7."1%$#$1%"

0

!
A ( , )

( )!

n kn

n k
k

e n

n k

&' &
& '

' '

( (

"
"

(*

ifadesi elde edilir.

A
k
A"*%$-3$(B+1&:'A+1."*$1$(47.an Program-5’te 1& " ;J0.(%0#0*'('@'1

1
0

!
A (1, )

!

kn

n n
k

n e

k

' '
'

'

(

+
"

" *

&7.."1$.-"&2"%$*5( 67( )*+,*"-( '@'1=( 0& , ve n% " ".$1%$#$1%"=( A (1, )n ' için

20&*"*."-"(4"#$12$:$(+."1

1 1(1, ) (1, ) ( 1) (1, ) (1, )A A A A% %% %' ' % ' % ' '+ (( " - + ( ./ 0

'B"%0.0*( &7.."1$.-$!2$*5 Program-5 ve Program-6’daki “aux9( %0#'!&01'( A (1, )n '

A"*%$-3$(B+1&:'A+17(20-:'.(02-0&20%'*.



80 

 

Kaynakta (Kara, 1998) , 0' " ".$1%$#$1%"K

2 / ( 1) n, çift
B (0)

0 n, tek
n

n +1
" 2
3

verilmektedir. Bu durumlar, Program-7 ve Program-LM%0( &7.."1$.-"&2"%$*5 N'#0*(

durumlar ise,

0(2)

1(2)

2  ,           (0.01 8) ,        n çift ise,
!( 1)

( )

2  ,           (0.01 8) ,        n tek ise,
!( 1)

k

k

n
k

k

k k n
B

k k n

'
'

'
'

'

" !

" !

1
4 56

+ +6
" 2
6( 4 56 + +3

*

*

olarak verilmektedir. Program-7 ve Program-8’d0( &*'2'&( %0#0*.0*( 0.0( ".$1"*"&( 'f

&+-727A."(&"*!$."!2$*-"."*(A")$.-$!2$*5

1M1'1(@'B2(%0#0*.0*'('@'1=

2

0

( ) 2
(2 )!(2 1)

k

n

k

B
k k n

'
'

!

"
"

+ +
*

/0(20&(%0#0*.0*'('@'1=

2 1

0

( ) 2
(2 1)!(2 2)

k

n

k

B
k k n

'
'

+!

"
" (

+ + +
*

a.$1-"&2"%$*5

A (1, )n ' ya*%$-3$(B+1&:'A+1."*$1$(47."1()*+,*"- Program-5’te, B ( )n ' A"*%$-3$(

fon&:'A+1."*$1$( 47."1( )*+,*"- Program-7’de verilmektedir. n<17 ve n>17 için 

A (1, )n ' M1$1( ,*"B'&.0*'( O*+,*"--P( A"*%$-$A."( @'J'.04'.-0&20%'*5 n’nin çift ve tek 

%0#0*.0*'( '@'1 ise B ( )n ' A"*%$-3$( -+.0&>.0*( '120,*".'1'1( ,*"B'#'ni çizdiren program

Program-8’de verilmektedir.
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Program-5

n1=28;
x=8.8;
a0=1/x;
a1=(1+x)/(x^2);
For[r=2,r%n1,r=r+1,

a=a1+(r*a1-(r-1)*a0)/x;
a0=a1;
a1=a];

top=0;
For[r=0,r%n1,r=r+1,

terim=(x^r)/r!;
top=top+terim];

aux=((n1)!*Exp[-x]/(x^(n1+1)))*top;
Print["a=",N[aux,25]]

Program-6

f[n1_,y0_]:=Module[{x=y0},
a0=1/x;
a1=(1+x)/(x^2);
For[r=2,r%n1,r=r+1,
a=a1+(r*a1-(r-1)*a0)/x;
a0=a1;
a1=a];

top=0;
For[r=0,r%n1,r=r+1,
terim=(x^r)/r!;
top=top+terim];

aux=((n1)!*Exp[-x]/(x^(n1+1)))*top;
x=aux];

Plot[{f[6,y0],f[8,y0],f[10,y0],f[12,y0],f[14,y0]},{y0,0,4},
AspectRatio$0.5,TextStyle${FontFamily$"Times",FontSize$12}
,AxesLabel${"'","An(1,')"}]
Plot[{Size=12,f[18,y0],f[20,y0],f[23,y0],f[27,y0],f[29,y0]}
,{y0,0,4},AspectRatio$0.5,TextStyle${FontFamily$"Times",Fo
ntSize$12},AxesLabel${"'","An(1,')"}]
Plot[{Size=12,f[35,y0],f[50,y0],f[55,y0],f[60,y0],f[70,y0]}

,{y0,0,4},AspectRatio$0.5,TextStyle${FontFamily$"Times",Fo

ntSize$12},AxesLabel${"'","An(1,')"}]
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Program-7

f[n_,y0_]:=Module[{x=y0},
epsilon=100;
top=0;
fark=0;
k=0;
If[(n/2)==IntegerPart[n/2],
If[x==0.,top=2/(n+1),
If[Or[n<8,x<8.],
While[epsilon&100,

top=top+(2*(x^k))/((k!)*(k+n+1));
eps=top-fark;
If[eps%10^(-20),epsilon=101];
fark=top;

k=k+2],
While[epsilon&100,

top=top+2*((x^(2*k))/((2*k)!*(2*k+n+1)));
eps=top-fark;
If[eps%10^(-20),epsilon=101];
fark=top;

k=k+1]]]];
If[(n/2)(IntegerPart[n/2],
If[x&0.,top=0,
If[Or[n<8,x<8.],
While[epsilon&100,

top=top-2*(x^k)/((k!)*(k+n+1));
eps=top-fark;
If[Abs[eps]%10^(-20),epsilon=101];
fark=top;

k=k+2],
While[epsilon&100,

top=top-2*((x^(2*k+1))/((2*k+1)!*(2*k+n+2)));
eps=top-fark;
If[Abs[eps]%10^(-20),epsilon=101];
fark=top;

k=k+1]]]];
x=top];

Print["b=",N[f[23,10.6]]]

Program-8

f[n_,y0_]:=Module[{x=y0},
epsilon=100;
top=0;
fark=0;
k=0;
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If[(n/2)==IntegerPart[n/2],
If[x==0.,top=2/(n+1),
If[Or[n<8,x<8.],

While[epsilon&100,
top=top+(2*(x^k))/((k!)*(k+n+1));
eps=top-fark;

If[eps%10^(-20),epsilon=101];
fark=top;

k=k+2],

While[epsilon&100,
top=top+2*((x^(2*k))/((2*k)!*(2*k+n+1)));
eps=top-fark;

If[eps%10^(-20),epsilon=101];
fark=top;

k=k+1]]]];

If[(n/2)(IntegerPart[n/2],

If[x&0.,top=0,
If[Or[n<8,x<8.],

While[epsilon&100,
top=top-2*(x^k)/((k!)*(k+n+1));
eps=top-fark;

If[Abs[eps]%10^(-20),epsilon=101];
fark=top;

k=k+2],

While[epsilon&100,
top=top-2*((x^(2*k+1))/((2*k+1)!*(2*k+n+2)));
eps=top-fark;

If[Abs[eps]%10^(-20),epsilon=101];
fark=top;

k=k+1]]]];
x=top];

Plot[{f[18,y0],f[20,y0],f[24,y0],f[34,y0]},{y0,1,30},Aspect

Ratio$0.5,TextStyle${FontFamily$"Times",FontSize$12},AxesL

abel${"'","Bn(')"}]
Plot[{f[19,y0],f[27,y0],f[45,y0],f[55,y0]},{y0,1,30},Aspect

Ratio$0.5,TextStyle${FontFamily$"Times",FontSize$12},AxesL

abel${"'","Bn(')"}]
Plot[{f[0,y0],f[2,y0],f[4,y0],f[6,y0],f[8,y0],f[10,y0],f[12

,y0],f[14,y0]},{y0,0,10},AspectRatio$0.5,TextStyle${FontFa

mily$"Times",FontSize$12},AxesLabel${"'","Bn(')"}]
Plot[{f[1,y0],f[3,y0],f[5,y0],f[7,y0],f[9,y0],f[11,y0],f[13

,y0],f[15,y0],f[17,y0]},{y0,0,10},AspectRatio$0.5,TextStyl

e${FontFamily$"Times",FontSize$12},AxesLabel${"'","Bn(')"}

]
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10<$=>?@A,/B

GHLQ(A$.$1%"(6"*2$1M%"(%+#%75 R.&(/0(+*2"(;#*01'-'1'(6"*2$1M%"(2"-"-."%$5(STTI(

y$.$1%"(U1%+&7J(F"A$:(V1'/0*:'20:'(U*2"(W#*02'-(X'J'&(W#*02-0.'#'(6;.>->10(,'*%'5(

 A1$( 4;.>-%01( STTH( A$.$1%"( -0J71( +.%7( /0( "A1$( A$.( X01( 6'.'-.0*'( <1:2'2>:>( X'J'&(

Anabilim %".$1%"( A>&:0&( .':"1:"( 4"!."%$( /0( ?".01( %0/"-( 02-0&20%'*5  A1$( J"-"1%"(

STTH(A$.$1%"(U1%+&7J(F"A$:(V1'/0*:'20:'(6'.,':"A"*(/0(W#*02'- Y0&1+.+Z'.0*'(<#'2'-'(

6;.>->10(,'*%'(/0(!7"1(I5(:$1$B$(+&7-"&2"%$*5




