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SLATER TiP ORBITALLER KULLANILARAK ELEKTRIiK COK-KUTUP
MOMENT iINTEGRALLERININ HESAPLANMASI

oz

Bu calismada, Slater tip orbitaller (STO’lar) kullanilarak, tek-elektron ve a ve b
olarak adlandirilan iki-merkez elektrik cok-kutup moment integraller hesaplanmaktadir.
Bundan dolay1, diizenli katt harmonikler ve islemci icin master formiiller kullanilarak
iki-merkez elektrik ¢ok-kutup moment integrallerinde iceren o-merkez c¢ok-kutup
moment islemciler ve a-merkez STO’lar b-merkezine tasinmaktadir. Sonra, integralin
radyal ve acisal kistmlart ayri ayr1 ve analitik olarak hesaplanmistir. Boylece, iki-
merkez elektrik ¢ok-kutup moment integraller tek-merkeze indirgenmis olur. Daha
sonra, eliptik koordinat sistemi kullanilarak iki-merkez elektrik ¢ok-kutup moment

integraller Zeta fonksiyonu veya A, ve B, yardimci fonksiyonlar cinsinden ifade
edilmigtir. Sonug olarak, Mathematica 7 programlama dilinde A, ve B, yardimci

fonksiyonlar1 hesaplayan bilgisayar programi yapilarak tek-elektron ve iki-merkez

elektrik ¢cok-kutup moment integraller sayisal olarak hesaplanmustir.

Anahtar Kelimeler: Slater tip orbitaller, ¢ok-kutup momentler, Z fonksiyonlar1, A,

yardimei fonksiyonu, B, yardimci fonksiyonu.



CALCULATION OF ELECTRIC MULTIPOLE MOMENT

INTEGRALS BY USING SLATER TYPE ORBITALS

ABSTRACT

In this work, electric multipole moment integrals which has one-electron and
two-center, which is termed as a and b terms, calculated by using Slater type orbitals
(STOs). Therefore, o-center multipole moment operators and a-center STOs involved in
the two-center electric multipole moment integrals was translated to b-center using
tesseral harmonics and master formulas as operator. Then, the radial and angular part of
the integral was analytically and separetely calculated. So, two-center electric multipole
moment integrals have been reduced to the one-center. After more, two-center electric

multipole moment integrals are expressed in terms of Zeta functions or A, and B,

auxiliary functions by using ellipsoidal coordinate system. Consequently, one-electron
and two-center electric multipole moment integrals numerically calculated using

computing program which calculated A, and B, auxiliary functions in Mathematica 7

programming language.

Keywords: Slater-type orbitals, the multipole moments, Z functions, A, auxiliary

function, B, auxiliary function.
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1. GIRIS

Maddeleri daha yakindan taniyabilmek igin onlar1 olusturan atom ve
molekiillerin 6zelliklerini incelemek gerekir. Incelemek istedigimiz maddenin elektrik,
manyetik veya optik Ozellikleri ve madde i¢inde olusan reaksiyonlar, bu maddeyi
meydana getiren molekiillerin 6zelliklerine baglidir. Bu nedenle molekiillerin yapisini

belirtmek, yap1 ile 6zellik arasindaki ilgileri bulmak biiyiik 6nem tasir.

Molekiillerin yapr ve 6zellikleri bilindiginde, onun kimyasal reaksiyon yetenegi
ve meydana getirdigi maddenin 6zellikleri hakkinda birtakim bilgiler elde edilmektedir.
Ayrica istedigimiz Ozelliklerde bir madde elde etmek i¢in bu maddeyi olusturan
molekiiliin yapisinin 6énceden bilinmesi 6nemli bir yer tutmaktadir. Boylece, herhangi
bir deney yapmadan ve herhangi bir teorik arastirmaya girmeden sadece molekiillerin
baz1 6zelliklerini bilerek bu molekiillerden olusan maddenin 6zelligi hakkinda birtakim

bilgiler elde edilmektedir.

Molekiiliin yapist kimyasal yapisimin bilinmesiyle anlamli olur. Bu yapiy1
bilmeden molekiiliin kendi yapisindan ve ozelliklerinden s6z etmek miimkiin degildir.
Molekiilii olusturan atomlar arasindaki kimyasal baglar, molekiiliin kimyasal yapisinin
temelini olusturmaktadir. Kuantum mekaniginin inceleme alanina giren elektronlar

vasitasiyla da bu baglar olusmaktadir.

Atom ve molekiillerin elektronik yapilarinin belirlenmesi, atomlar ve molekiiller
arasindaki etkilesimlerin anlagilmasinda ¢ok onemlidir. Bu nedenle, bu yapilarin dogru

ve incelikli bir sekilde belirlenmesi ile ilgili calismalar uzun yillardan beri stirmektedir.

Elektriksel olarak bir yiik sistemi, elektrik cok-kutup momentlerin bir setiyle
ilgilidir. Belli bir bolgede toplanmis yiiklerin dagiliminin disinda bir noktadaki elektrik
alanin potansiyeli yiiklerin ¢cok-kutup momentlerine baglidir. Bu, bir dis alanla sistemin
etkilesim enerjisidir. Cok-kutup momentler, molekiiller arasindaki kuvvetlerin varligini
kanitlamaktadir. Ayni zamanda tamamlanmamis gazlarin, sivilarin veya katilarin
ozelliklerinin anlasilmasi icin arastirmalara da yardim etmektedir. Molekiillerdeki cift-

kutup ve dort-kutup momentlerin olgiimleri yapisal agidan ¢ok onemlidir. Ornegin,

1,84x107' e.s.u. (1,84 D) olan H O ’nun cift-kutup moment degeri molekiiliin yiik



dagilimi hakkinda bilgi vermektedir. Boyle polar kovalent baga sahip molekiillerin yiik

dagilimindaki farklilik ¢ift-kutup moment ile verilir. COz’nin dort-kutup momenti de

bize bu molekiildeki C-O baglar1 hakkinda ¢ok sey sdylemektedir (Buckingham, 1959).

Atomlar ve molekiiller arasinda olusan belirli kuvvetler dncelikle bu atomlarin
veya molekiillerin elektriksel olarak birbirleriyle etkilesimlerinden kaynaklandigi
sonucuna varilabilir. Molekiiller uzaklastiinda ve molekiiller arasindaki mesafe
molekiiliin boyutlar icin karsilastirildiginda etkilesim enerjisi sabit elektrik momentler
tarafindan belirlenmektedir. Bu molekiillerin etkilesimleri de elektrostatik enerji
icermektedir. Boyle sabit momentler, bir ek etkilesime neden olan yakin molekiillerin

elektronik yapilarini bozan bir alan tiretmektedir (Buckingham, 1967).

Molekiiler sistemde, sistemin enerjisinin belirlenmesi kadar molekiiliin sahip
oldugu yiikk dagiliminin belirlenmesi de birtakim ozelliklerin bilinmesi agisindan
onemlidir. Molekiillerin yiik dagilimi ise elektrik ¢cok-kutup momentler cinsinden ifade
edilmektedir (Buckingham, 1967). Elektrik cok-kutup moment integrallari ise Slater tipi
orbitaller (STO) kullanarak analitik olarak degerlendirilmesiyle ilgili calismalar
(Guseinov ve Sadichov, 1977; Beck ve Hohlneicher, 1999) gecmisten giiniimiize kadar
hala devam etmektedir. Son zamanlarda yapilan elektrik cok-kutup momentlerinin
belirlenmesiyle ilgili ¢calismalarin ¢ogu teoriktir. Elektrik ¢ok-kutup moment integralleri
icin yapilmig olan teorik caligmalarin (Zheng ve Zerner, 1993; Guseinov, 1998;
Guseinov ve ark., 1999 (a); Yiikcii ve ark., 2011; Yiikci, 2009) cogunda elektrik ¢ok-
kutup moment islemcisinin veya STO’larin tasinma bagintilart kullanilmistir. Ayni
zamanda manyetik c¢ok-kutup moment integralleri i¢in de STO’larin tasinma
bagintilarinin kullanildigi ¢alismalar bulunmaktadir (Guseinov, 1998; Guseinov ve ark.,

1999 (b); Yiik¢ii, 2009).

Kaynaklara baktigimizda ¢ok-kutuplar ile ilgili degisik ¢alismalar yapilmistir.
Ornegin, elektromanyetik alandaki kiiresel bir parcacigin tork ve kuvvetinin
hesaplanmasi iizerinde c¢alismalar yapilarak alanin tiirev ifadeleri bakimindan
matematiksel ifadeleri elde edilmistir (Washizu, 2004). Tasi ve arkadaslar1 (Tasi ve ark.,
1997) da kalict elektrik cift-kutup momentlerin analizini yapmislardir. Kalic1 elektrik
cift-kutup moment de, molekiillerin kutuplasma ve yapisi iizerinde temel bilgiler

saglamaktadir. Ayrica baska bir calismada elektrik cift-kutup momentlerin parcacik



hakkinda daha detayl bilgi verdigi ifade edilmektedir (Stoylov ve ark., 2009). Baska bir
kaynakta (Ong ve ark., 2003) ise cok-kutuplar iizerindeki hizli Fourier doniisiim metodu
(FFTM) ile ii¢ boyutlularda potansiyel alanlarin hizli hesaplanmasi i¢in hizli ¢alisan
algoritma yapmislardir. Ayrica, cekirdek ile elektronlar arasindaki elektromanyetik
etkilesmelerden yalnizca elektrik etkilesmeler dikkate alinarak asir1 ince yapi sabitinin

degeri elektrik ¢ok-kutup momentler cinsinden hesaplanmistir (Giil, 2006).

Elektrik cok-kutup momentler ile ilgili hem deneysel hem de teorik caligsmalar
vardir. Dogrudan olciimler genellikle cift-kutup (Halkier ve ark., 1999) ve dort-kutup
(Harrison ve Lawson, 2005; Maynau ve ark., 2002; Rabinowitz ve Rein, 1972; Maroulis
ve Thakkar, 1987) momentlerle sinirlanirken, molekiiler elektronik yapi teoride 10.
dereceyi askin elektrik momentler iizerinde teorik arastirmalar (Sundholm ve Pyykko,
1985; Bounds ve Wilson, 1985; Ozdogan, 2006; Zheng ve Zerner, 1993) yapilmistir.
Deneysel simirlamalar yiiziinden daha yiikksek momentlerin caligmalar1 dl¢iim
sonuglarin1  dogrulamada hedef alinamamaktadir. Yiiksek dereceden momentler,
molekiiler dinamikte, yiiksek derece kutuplanabilirlerin hesaplanmasinda (Dacre, 1984;
Maroulis, 2003; Maroulis, 2011 (a); Maroulis, 2011 (b)), molekiiler optik ve manyetik
ozelliklerde, London serilerinin terimlerindeki molekiiller arasi1 etkilesimlerde ve 0z
uyumlu alan teorisinin kuantum mekaniksel coziimlerinde kullanilmaktadir (Zheng ve

Zerner, 1993).

Bir molekiiler orbital tanimlamasi siklikla molekiiler c¢ift-kutup momentlerle
verilebilir. Molekiiler cift-kutup momentler, dort-kutup momentlerden daha giivenlidir.
Dort-kutup momentlerden daha yliksek derece momentler icin secilen baz seti ¢ok
onemlidir. Yiiksek derece momentler, molekiiler bolgenin disindaki elektronik
dagilimlar icin ¢ok duyarlidir. Yalnizca biiyiik baz setleri tarafindan tanimlanmasi daha
iyi olabilir. Baz setinin etkileri, yliksek derece momentler iizerindeki iliskiden daha

onemli olduguna inanilmaktadir (Zheng ve Zerner, 1993).

Biz bu calismada, STO’lar1 kullanarak elektrik ¢ok-kutup moment integallerini
bulmaya calistik. Bunun icin Oncelikle, kartezyen koordinatlart kullanarak normalize
olmus diizenli kati harmonikleri Mathematica 7 programlama dilini kullanarak g
orbitallerine kadar hesapladik. Sonra, kaynaklarda ifade edilen ¢ok-kutup moment
tanimlamalarindan birini (Buckingham, 1959) kullanarak cesitli momentlerin tensor

operatorlerini tek-kutup, cift-kutup, dort-kutup, sekiz-kutup ve onalti-kutup i¢in master



formiil ifadelerini yazdik. Daha sonra, farkli koordinatlara sahip iki ayr1 merkezin
birbirine nasil bagli oldugunu ve A-merkezini B-merkezine nasil tasiyacagimizi, bunu
Sekil (3.2)’de ifade ederek, acikladik. Aymi zamanda, kaynaklarda diizenli kati
harmonikler ve islemcinin taginmasi i¢in master formiiller (Zheng ve Zerner, 1993)
ifade edilmistir. Bu master formiilerleri kullanarak hem STO hem islemci ig¢in
hesapladigimiz master ifadeleri ¢izelge halinde gosterdik. Sonra STO’lar1 kullanilarak A
ve B biciminde iki-merkez ve tek-elektron olan elektrik c¢ok-kutup moment
integrallerinin hesaplanmasi i¢in O-merkezindeki islemciyi ve A-merkezindeki STO’yu,
diizenli katt1 harmonikler ve islemci icin master formiilleri kullanarak B-merkezine
tasidik. Boylece iki-merkez elektrik c¢ok-kutup moment integraller tek-merkeze
indirgenmis oldu. Daha sonra iki-merkez elektrik ¢ok-kutup moment integrallerinin
eliptik koordinat sisteminde ifade edilmesiyle Z fonksiyonlari cinsinden veya A ve B
yardimcr fonksiyonlari cinsinden ifade edilebilmesi nedeniyle Mathematica 7
programlama dilinde A ve B yardimci fonksiyonlar: bulan programi yaparak iki-merkez
ve tek-elektron olan elektrik c¢ok-kutup moment integralleri sayisal olarak

hesaplanmaktadir.



2. GENEL BIiLGIiLER

2.1. Cok Kutuplu Alanlar

Molekiilden olusan bir sistem diisiindiigiimiizde, molekiillerin sahip olduklar1
yiikk dagilimlarinin belirlenmesi en az sistemin enerjisinin belirlenmesi kadar 6nemlidir
(Orbay, 2000). Bu nedenle molekiilerin yiik dagilimlarini incelemek, molekiiller
hakkinda bize ayrintili bilgiler sunar. Bu molekiillerin yiik dagilimlar1 da elektrik ¢ok-

kutup momentler cinsinden ifade edilir (Buckingham, 1967).

Bu boliimde, kararli-durum kosullart altindaki elektromanyetik etkilerden soz
edilecektir. Ilk olarak, durgun yiiklerin bir koleksiyonu diisiiniilecek ve kuvvet
serilerinin a¢ilimi kullanilarak durgun yiiklerin kendilerinden belirli bir mesafede
olusturdugu skaler potansiyel hesaplanmasi gosterilecektir. Boyle bir agilim icindeki
cesitli terimlerin, sistemin ¢ok-kutup momentleriyle 06zdeslesmis olabileceginden
bahsedilecektir. Bu terimler, sistemdeki ¢ok-kutup momentlerden tek-kutup, ¢ift-kutup
ve dort-kutup agisindan ayrintili olarak ele alinacaktir. Eger yiikler hareketli ise, akimlar

olusacak ve manyetik etkiler meydana gelecektir (Marion ve Heald, 1980). Bu

boliimdeki esitlikler i¢cin Gauss birim sistemi kullanilmistir. Yani, k =1/4mg, =1 olarak

alinmistir.

2.1.1. Elektrik Cift-Kutup

[k olarak, yiiklerin statik bir sistemine temel bir rnek diisiinelim. Sistem, esit
biiytikliikteki iki ylikten olusur (Sekil 2.1). Bu yiikler zit isaretlidir ve her biri baslangic
noktasindan / kadar mesafededir. Baslangi¢c noktasi ise bu yiikleri birbirine baglayan
eksen iizerindedir. Boyle bir sistem, elektrik cift-kutup icin en basit 6rnektir (Marion ve

Heald, 1980).



P(r, 6, ¢)

Sekil 2.1. Elektrik ¢ift-kutup.

Elektrik alan siiperpozisyon prensibine uyar. Bu nedenle bir yiik sisteminin
elektrik potansiyeli siiperpozisyon prensibi ile bulunur. Siiperpozisyon prensibine gore;
bir yiik kiimesinin elektrik alan1 her bir yiikiin olusturdugu elektrik alanlarin vektorel
toplamidir. Bir dizi yiikiin meydana getirdigi elektrik potansiyeli de her bir yiikiin

olusturdugu potansiyellerin skaler toplamidir.

Siiperpozisyon prensibine gore R :‘ﬁa oldugunda P(r,0,¢) noktasindaki

potansiyel,

1 1

olarak verilir. Potansiyel ifadesi, 0 agisina ve T ’nin |f| =r biiyiikliigiine bagli olarak
yazilabilir. Ciinkii yiik dagilimi eksensel simetriktir. Potansiyel ¢ azimut acgisindan
bagimsiz olmalidir. Potansiyelin ¢ ’den bagimsiz oldugunu gostermek i¢in, oncelikle r
ve 0’nin fonksiyonu olarak R, ve R, yazilir. Kosiniis teoremi kullanilarak, denklem
(2.2) yazilir (Marion ve Heald, 1980).



RZ2=1>+1%>-2rlcosd

1
I (1
:r{u(—) —2(—jcose} r>1 icin (2.2)
T T

Boylece,
5 172
L:1 1+(£] —2(£]c059
Rl r r r
2 3
_! 1+(£]cos@+l(£j (300520—1)+l(£] (5¢08°0-3c0s0) +... (2.3)
r r 2\r 2\r

olur. Eger cift-kutup alanin etki ettigi P noktasinin ¢ift-kutup merkezinden uzakligi,
yiiklerin ¢ift-kutup merkezine olan / uzakligindan ¢ok biiyiik secilirse (/ << r) yaklasik
olarak asagidaki gibi olur:

11 1/
—=—+L20059 +—l—3(3c0529—1)

R1 r r 2r

11 1 177 >
—=———cos0+——3cos0-1 2.4
Rz r r2 2r3( : o

.1 .. : .
dir. — ‘deki — isareti cos(m—0)=—cosO agilimindan ortaya ¢ikar. Boylece potansiyel
2

yaklasik olarak,

cosl

O(r,0)=2q1
;

(2.5)

yazilir. Bir cift-kutup potansiyeli bundan dolay1 1/ r* kadar azalirken bir yiikiin
potansiyeli 1/r kadar azalir. Buna gore; cift-kutup potansiyeli, tek bir yiikiin
potansiyelinden daha cabuk azalmalidir. Ciinkii P noktasi daha uzaga konulur ve
boylece cift-kutup yiik dagilimi yiiksiiz basit kiiciik bir birim yiik olarak goriiniir. 2/

mesafede ve q kadar esit yiiklerin ciftine elektrik ¢ift-kutup moment denir ve

p=2gle (2.6)



biciminde ifade edilir. Cift-kutup moment, Sekil 2.1°de goriildiigii gibi negatif yiikten

pozitif yiikke dogru tanimlanan yonde bir vektordiir (Marion ve Heald, 1980).

Eger €. ; P noktasi dogrultusundaki bir birim vektorse, ¢ift-kutup potansiyeli,

=L (2.7)

kadar olmalidir (Marion ve Heald, 1980).

Cift-kutup icin elektrik alan vektorii E, @ ’nin gradientinin negatifi olarak,
E = —grad ® (2.8)
seklinde verilir (Marion ve Heald, 1980).

E’nin kiiresel bilesenleri, denklem (2.5)’i kullanarak daha kolay bir sekilde

hesaplanabilir. Aym zamanda p=2gl olarak alindiginda E ’nin kiiresel bilesenleri,

oD cosd
E=-2"=2
d or P P

1 0D sin@
E =——= (2.9)
0 r 060 P P
Y rsinf dp

seklinde yazilabilir (Marion ve Heald, 1980).

Bazi elektrik alan ¢izgileri ve espotansiyel ¢izgiler Sekil 2.2°de gosterilmektedir.



' Es potansiveller

¥

Simetri ekseni
(cift kutup eksen)

Sekil 2.2. Espotansiyel yiizey ve elektrik alan ¢izgileri.

Sekil 2.2°deki egrilerin her ikisi de kutupsal eksende simetriktir. Boylece
espotansiyel yiizeyler, simetrik eksenlerde Sekil 2.2’deki egrilerin donmesiyle elde
edilebilir. Ayrica, Sekil 2.2°’ye gore cift-kutup moment yoOniiniin soldan saga yatay
oldugu soylenilebilir. Burada, sonlu biiyiikliikte olan ¢ift-kutup diisiiniiliir. Fakat limit
durumunda sifir olan bir ¢ift-kutup noktast tanimlanir ve yiikiin biiyiikliigii sonsuza
yaklasir. Boylece p cift-kutup momenti,
p= lim 2q/ (2.10)

-0
q—

seklindedir (Marion ve Heald, 1980).
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2.1.2. Potansiyelin Cok-Kutup Ac¢ilim

Keyfi yerlestirilmis ¢, yiikiinin baslangic noktas1 etrafindaki statik bir

koleksiyonuna sahip oldugu yerdeki genel yerlesimini diigiinelim. (x', ,x' ,,x' 3)
noktasindaki . yikiniin uzaklik vektorii t'=7'(x',;) olsun. ¢, yikiinden

ﬁa =1 -1, ' ve baslangi¢ noktasindan T olarak P =P(x;) noktasina yonelen vektorler,

sirastyla Sekil 2.3’te gosterilmistir. P noktasindaki alan sabit alinirsa, boylece ﬁa

vektorii, q, yiikiniin x' ; koordinatinin bir fonksiyonu olarak yazilir (Marion ve

Heald, 1980).

9q (x'(x,i) Ry = f_f’u P(xi)

=4
o>
=

Sekil 2.3. ¢, yiikiiniin bir P noktasindaki potansiyeli.

q, yukiiniin P noktas: alanindaki potansiyeli,

(2.11)

olur. Burada,
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R, =[f=T'y|= [D (5 =%y (2.12)

t konumunda sabit bir alan i¢in, baslangi¢ noktas1 ', =0 civarinda 1. nin
o
acilimi yapilir. r', = (x'

12X 'q2>*'y 3) koordinati igin ti¢ boyutlu Maclaurin a¢ilimi,

! 2 !
f(r'a):f(0)+Zx’u,i l:—af(r“)} 0+%Zx’a,ix,a,j !—8 fra) ] +.. (2.13)
'(x: r'a:()

’ ’ ’
l ox'y; iy ox'y jOX'y ;

seklindedir (Arfken ve Weber, 2001). Bundan dolayz,

9q
' (2.14)
R, @)

o

fy)=

olarak alindiginda, g, yiikiinden kaynaklanan potansiyel i¢in ifade,

d 1
Dy = T 402X —(_j
a r (4] > N ax i Ra Ra:r

o1 DXl _ ¢ (L + (2.15)
2 q(x l',j o,l a,j axra,i ax!a’j Ra Rx:r oo .
olur.
Simdi, denklem (2.12)’den uzaysal tiirevler,
0 0
—f(Rp=—5—f(R) (2.16)
ox i ox;

olarak degisir. Boylece, (r =, /lez ile ),

&), 1R

0 (1
_—ghj (2.17)
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olur. Bu nedenle; potansiyel,

0

4o * (1
B =

X

olarak yazilabilir.

Yiiklerin toplamindan kaynaklanan potansiyel,

D= O, = RO NC NG B NG S

(2%

olarak yazilabilir. Burada asagidaki tamimlamalar kullanilmistir.

W _§ 4. _4
® _Za:r r
@ _ : i(lj
>= ;%Zxa’i ox; \ r

@ _1 * (1
o zq(zzxou O.ja -

x; ax

1
o (=1) o' 1
CI)(Z)E— X xt o — |
T ;QQ zlx ai®aj N al axiaxjmaxl (r]

dir.

(2.18)

(2.19)

(2.20a)

(2.20b)

(2.20¢)

(2.204d)

Eger toplam yiik ¢ =g, baslangic noktasinda yerlestirildiyse ilk terim @
a

potansiyelidir. Bu tek-kutup potansiyel olarak adlandirilir. Tek-kutup momentin, toplam

yiikii q‘dur. ®* terimi cift-kutup potansiyel olarak adlandirilir ve &nceki boliimdeki

cift-kutup potansiyele denk oldugunu gorebiliriz. O terimi, dort-kutup potansiyel ve
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)
genelde, @) terimi 2. cok-kutup potansiyeli olarak isimlendirilir (Marion ve Heald,

1980).

2.1.3. Cift-Kutup Potansiyel

ilk olarak, denklem (2.20b) ile verilen ® terimine dikkatimizi yonlendirelim.

@ _ : i(lj
= %“%Zxa’i ox; \ r

= _an 7', .grad Gj (2.21)
a

Daha onceden denklem (2.6) ile ifade edilen cift kutup momenti ile denklem

(2.21)’deki ifadedeki « iizerinden g,r', ‘nin toplami benzerdir ve sistemin ¢ift-kutup

momenti
P=D4q,r', (2.22)
a

olur. Boylece,

=t (2.23)

yazilir. Bu ifade, denklem (2.7)’de verilen ifadeyle aymdir. x; noktasindaki i.
parcacigin koordinatlarina gore yukaridaki ifadeye gradient islemcisi uygulanir. Bundan
dolay1, potansiyel i¢in genel ifadedeki ikinci terim, Boliim 2.1.1°de hesap edilen basit

cift-kutup icin yaklasik potansiyele tam olarak karsilik gelir. Burada, tek-kutup terimi
basit ¢ift-kutup icin sifirdir (Marion ve Heald, 1980).

E® elektrik cift-kutup alan vektort, ®? nin gradienti alinarak hesaplanabilir.



E@ = —grad(I)(2)
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—grad[p rj (2.24)
o . C - 1
Iki skaler fonksiyonun ¢arpiminin gradientini agarsak (p.r ve—),
r
E? =L grad(5 t)—(p.F) grad L (2.25)
e grad{p. pT)g 3 :
buluruz. Simdi
grad(p.r)= Zpiéi =p (2.26)
1
ve
grad (%j = —3—§ (2.27)
r r
dir. Bundan dolayz,
~(2 p ..23r
E¥ = -—S5+(P.D—=5
r r
ey =0
:r—5[3(p F)f-pr’ | (2.28)

dir.

Cift-kutup potansiyel 1/7* ile orantil1 olarak degisir. Elektrik cift-kutup alan ise

1/7° ile orantil olarak degisir.

2.1.4. Dort-Kutup Potansiyel ve Dort-Kutup Moment

Potansiyel i¢in genel ifadedeki iiciincii terim, statik yiiklerin katkisiyla

<1>(4)__zqa2xa, wi’y

2
J (lj (2.29)

xax
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seklinde verilir. Bu ifade, dort-kutup potansiyellerinin hesaplanmasinda dogrudan
kullanilabilmesine karsin, o©zellikle kati-cisim dinamigindeki tensorlerin tasinmast
calismalarinda oldukga kullanighdir. Bu durumu, asagidaki islemleri yaparak daha iyi

anlayabiliriz (Marion ve Heald, 1980).

1
r = 0 noktast hari¢, Laplacian esitliginin — i¢in ¢dziimii
r

9% (1
Z@( jzo r>0 (2.30)

i r

olur. Bu ifade,

2° (1
> —[0;=0 r>0 (2.30a)

—~ axiaxj r

olarak tekrar yazilabilir. Bu ifade sifira esit oldugundan, herhangi bir sabit kez bu

nicelik, @ degerine eklenebilir. Eger, r'Z =Ir', 1> oldugu yerde bu sabiti

—% Z qq" 'é olarak secersek, ifade
o

4 1 ' ' ' 82 1
o EE;CIaZ(3xa,ix a,j _razaij)ax.ax, ( ) (2.3D)
i

i, r

biciminde olur. Boylece (2.31) denklemi yeniden

r i,j

1 22 (1 1 3x,x: — 125
o Lyo ( J:_ |2 231
6 ;Q” ox,0x i 6 ZQU o~ ( )
seklinde yazilabilir. Buradaki
Ql] = an (3x’a,ix’a,j - r,géij) (232)

ifadesi 9 nicelige sahip 3x3 ‘liik bir diziden olusan bir tensordiir. Bu dort-kutup tensor

olarak adlandirilir. Bu tensor
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Qll Q12 Q13
{Q}= Q21 Q22 Q23 (2.33)
Q31 Q32 Q33

seklindedir. Bu tensor simetriktir. Yani, Q=0 dir. Boylece {Q} en fazla 6 bagimsiz
eleman igerebilir. Aslinda, bagimsiz elemanlarin sayisini 5’e diisiiren Q,; arasinda ek

bir iligki vardir. Bunu sirasiyla gosterirsek,

O = 20 (35 =100 (2.34)
yazabiliriz. k {izerinden toplam alinmasiyla

304 =Y. {3(;;«(&2} 2 (;%{ ﬂ (2.35)
olur. Fakat,

;x'mkz :‘r’a‘z = r'a2 ve ;5,{,{ =3 (2.36)

olmaktadir. Bu nedenle, denklem (2.35)

ZQkk =0
T (2.37)

sekline indirgenir. Boylece, {Q}‘nun ({Q}’nun izi olarak soylenir) kosegen

elemanlarinin toplamu sifir olur ve Qi ‘nin en fazla bes eleman1 bagimsiz olur.

Dort-kutup tensorii esas eksene gore secildiginde kosegen disindaki tiim
elemanlar sifir olur. Izin sifir olmasiyla bagimsiz elemanlarin sayis1 2’ye diiser. Cogu

durumda yiik dagilimi simetri eksenine gore belirlenir. Eger x’3 ekseni simetri ekseni

olarak secilirse, Q) = Q,,o0lur. Bundan dolay1, {Q}’nun yalnizca bir tane bagimsiz

elemani olur. Denklem (2.37) geregince,

Q33 = _(Qll + Q22) = _2Q11 = _2Q22 (2.38)
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olur. Q,; elemani, genellikle QO olarak alinir ve simetrik bir yiik dagiliminin dort-kutup

momenti olarak adlandirilir. Buna ragmen, elbette dort-kutup moment tam anlamiyla bir

tensordiir, yalnizca belli durumdaki Q. ‘lin bagimsiz elemanlaridir.

Asagidaki sekilde, {Q}’nun bagimsiz elemanlarinin sayisindaki azalmay1

Ozetleyebiliriz.

Qij :9 eleman

L {Q} en fazla 6 bagimsiz eleman icin simetriktir.

4 {Q}‘nun izi en fazla 5 bagimsiz eleman i¢in sifir olur.

1 {Q} en fazla 2 bagimsiz eleman igin esas eksen olur.

L 1 bagimsiz eleman i¢in, simetrik yiik dagilimi = Q olmaktadir.

Denklem (2.31a) tarafindan tanimlanan dort-kutup tensor, yukaridaki ozellikleri
saglar. Dort-kutup potansiyel hesaplamalar1 icin kullanilan bu tensor, genellikle

denklem (2.29)’un direk uygulamasindan daha uygundur.

Eger x';-ekseni, yiik dagiliminin simetrik ekseniyse ve 7' vektorii tarafindan

tanimlanan noktadaki yiik yogunlugu p(r') ise yiik yogunluk dagilimmin V hacmi

tizerinden integrali
0= p(¥)(3x3-r?)dr,dr,dx, (2.39)
\%

olur. Burada, yilik dagilimi1 tamamen pozitiftir (atom cekirdegi icin) ve yiik dagilimi eger

x',-ekseni boyunca olursa (eger dagilim oval ise), Q> 0 olur. Fakat pozitif yiik

dagilimi az oldugunda, Q < 0 olur.

Ornek:

Cift-kutup momentlerinin daha iyi anlasilmas: icin Sekil 2.4’teki yiik

dagilimin dikkate alalim. Bu dagilim, aralarinda 2/ mesafe olan p =2¢d momentlerine
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sahip iki ayrt c¢ift-kutup moment olarak (aralarinda 26 mesafe olan p=2q/

momentlerine sahip iki ¢ift-kutup gibi) dikkate alinir. Yiikler sirasiyla,

xy=l+06"da +q

[-8’da —q
—-[+6°‘da —gq
—-[-6’da +q

konumlarina sahip olsunlar.

X3
_&ﬂ.'+q
> _-® P
HE
Ji et
0 et
d,”/
el \ 4
A x'2
[

Sekil 2.4. x'; ekseni boyunca yiiklerin dagilimu.

Dikkat edilirse, tek-kutup ve ¢ift-kutup momentlerin her ikisinin benzer sekilde

sifir olduklar1 goriiliir. Boylece dort-kutup terimi, potansiyele en diisiik seviyede katkida

bulunur. Ciinki, ylik dagilimi, x'; ekseni boyunca simetriktir. Bu yiizden yalnizca dort-

kutup tensor elemani olan Q33 ele alinirsa;
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_ B )
Q= Q33 - 2%4 9% o3

=2(q(+8)* —q(1=8)* — q(~1+8)* + q(~1 - &)%)
=164ql6 =8p! (2.40)

seklinde olur. Ayrica,

Q

1

Q

1

dir. Eger, denklem (2.31a) kullanilirsa,

_ I 2 > 2
= 2plr—5(—x1 - +2x3)

(3x§ —r?)
- 2p1r—5 (2.42)

biciminde olur. X, = rcos6 i¢in, denklem (2.42) yeniden

ol (3cos20-1)

“4)
o =
o

(2.43)

olarak yazilabilir. 6 kutupsal acisinin bir fonksiyonu olarak bu potansiyel Sekil 2.5 de
gosterilmektedir. Dikkat edilirse sekilde, potansiyelin negatif ve pozitif bolgeleri vardir.

Iki negatif yiikiin, X, eksenine iki pozitif yiikten daha yakin oldugu goriiliir. Bundan

dolayi, 0=90" ‘ye yakin kisimlarda potansiyel iizerinde negatif yiiklerin etkisi daha
fazladir ve bu bolgede potansiyel negatif olur. Potansiyel, 6=cos'l(1/x/§)554.7°

degerinde sifir olur.
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Negatif

Sekil 2.5. 6 = 54.7° icin dort-kutup potansiyelinin pozitif ve negatif bolgeleri.

Eger yiik dagilimi bir kare dizi ise (Sekil 2.6’daki gibi), o zaman potansiyel ¢

azimut acisindan bagimsiz olamaz. Bu durumda dort-kutup potansiyel,

)
(I)(4) _ 3 q12 sin“0 cos2¢

1 S (2.44)

olur. Burada pozitif X, -ekseni boyunca ¢ =0 dir. X, =X diizlemindeki (0=m/2)

potansiyel Sekil 2.7°de gosterilmistir. Yine buradaki potansiyelin hem pozitif hem

negatif kisimlarinin oldugu goriilmektedir.
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x2

!

/2
O o) \J
N - X
+q  1/2 112 +q 1

/2

Q
-q

Sekil 2.6. Dort-kutup karesel yiik dagilima.

pozitif

Sekil 2.7. 0 = /2 i¢in dort-kutup potansiyelinin pozitif ve negatif bolgeleri
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2.1.5. Elektrik Cok Kutuplular

Keyfi bir yiik dagiliminin potansiyeli, ¢ok-kutup agilimi cinsinden her zaman
ifade edilebilir. Genellikle, daha yiiksek seviyedeki terimlerde 1/r ifadesindeki gibi
mesafenin azalmasiyla artma olmasina ragmen, bir acilimin tiim terimleri mevcut
olacaktir. Bundan dolayi, r’nin boyutlar1 yiik dagiliminin boyutlariyla karsilastirilirsa, r
degerleri icin acilim daha hizli yakinsayacaktir. Ayrica, yikk dagiliminin belirli bir
geometrisinden dolayi, bazi c¢ok-kutup terimler sifir olabilir. Boylece, eger esit
biiytikliikte negatif ve pozitif yiikler varsa, tek-kutup terim sifir olur ve eger dagilim,
ters yonlii esdeger cift-kutuplardan olusuyorsa ek olarak ¢ift-kutup terim sifir olur (Sekil
2.4 ve Sekil 2.6). Boyle durumlarda, ¢cogunlukla en diisiik-seviyedeki terim sifirdan
farkliysa ideal cok-kutup olarak adlandirilir. Boylece Sekil 2.1 bir ideal cift-kutubu,
Sekil 2.6 ise bir ideal dort-kutupu gosterir. Ancak, unutulmamalidir ki, bu gibi
durumlarda cift-kutup veya dort-kutup terim yalnizca bir acilimdaki temel durumlar

temsil etmektedir. Genelde, daha yiiksek seviyelerdeki terimler sistemi temsil eder.

Belirli bir diizende verilen bir ideal cok-kutupun en basit 6rnegi, ters isaretlere
sahip olan alt seviyedeki iki cok-kutuplarin kiiciikk yer degistirmeyle olusturulabilir.
Boylece, ideal bir cift-kutup, +q ve —q yiikleri bir / mesafesiyle ayrilarak olusturulur.

Bir ideal dort-kutup ise bir / mesafesiyle ayrilan p ve —p ¢ift-kutup momentlerine

sahip iki cift-kutuptan olusur. Sekil 2.8 ‘de cok-kutuplarin sistemleri gosterilmistir.

- R S e "
+ + @----------- =70 T8
JEEE s BT
W =
| i ; a8
i L ¢ A e
- - - +
(a) (b) (c) (d)
Tek -kutup Cift- kutup Dort-kutup Sekiz-kutup

Sekil 2.8. Elektrik tek-, cift-, dort- ve sekiz- kutup.
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Cok-kutup moment hesaplamalari, genellikle secgilen baslangic noktasina
baghdir. Ornegin tek bir yiikiin potansiyeli q/R ‘dir. R, yiik ile etki alan1 noktasi
arasindaki uzakliktir. Eger, cok-kutup acilimdaki yiikler baslangic noktasinda
toplanirsa, o zaman agilimdaki hicbir terim sifir olmayacaktir (denklem (2.18) ve Sekil
2.3’de gosterilmistir). Diger taraftan, eger toplam yiik dagilimi sifirsa cift-kutup
moment se¢ilen baslangic noktasindan bagimsiz olacaktir. Genel olarak, dort-kutup ve
daha yiiksek seviyedeki momentler secilen eksenin yoOniine baghidir. Ama bu temel

eksenler her zaman kosegenlestirilmis bir simetrik tensor olarak bulunabilir.

2.2. Kuantum Mekaniginde Elektrik Cok-Kutup Moment integralleri

Klasik mekanikte zaman, durum, hiz, kiitle, dogrusal momentum, acisal
momentum, enerji v.b. gibi degiskenlere “dinamik degiskenler” denir. Ayrica kuantum
mekaniginde klasik mekanikte goriilmeyen spin agisal momentum ve dzdes taneciklerin
yer degistirmesiyle ilgili simetri 6zellikleri gibi bazi dinamik degiskenler de vardir.
Sistemin bir 6zelligi olarak deneyle gozlenebilen dinamik degiskenlere “godzlenebilir”

denir (Pamuk, 1979).

Klasik mekanikte her gozlenebilire kuantum mekaniginde bir islemci karsilik

gelir. Bu islemciler matris mekanigi kullanilarak birer matris bi¢iminde yazilabilir. Bir

sistem iyi davranish ¥ dalga fonksiyonu ile belirlenebiliyorsa, o zaman M islemcisine

karsilik gelen gozlenebilirin ortalama degeri veya bu islemcinin beklenen degeri,

<M>= J.\V*I\A/I\Vd3r

(v

olarak ifade edilir. Burada M, bu gozlenebilire karsilik gelen islemcidir.

M

\I’> (2.45)

Denklem (2.45)’te dalga fonksiyonu yerine STO’lar alinirsa, elektrik ¢ok-kutup

moment integralleri

=5 - _ % LA — - 3
Mnlm,vc,n’l’m' ((X, B’ ROb s Rab ) - J.anm ((l, 1} ) MD(S (1‘0) Xn'l‘m' (B’ rb )d r (246)
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biciminde ifade edilir. Buradaki M) tek elektron islemcisidir. Kiiresel
koordinatlarda, 2" ¢ok-kutup elektrik moment islemcisinin ¢ bileseni

/ =\ _ An 1/2 vy
Muc(fo)—(ZD +1) 15 Y5 (0. 0) (2.47)

olarak verilmektedir (Beiser, 1967). Bu ifadede, 1\7[06 vektorel bir islemciyi, Y, (90,(p)

kiiresel harmonikleri, v kutubu ve o ise x, y, z gibi bir bileseni temsil etmektedir.
Ayrica fo’ elektronun secilen baslangi¢ noktasina olan uzakligimi temsil eden vektor,
R,

=i - ve li =7 —f olmaktadir.

Kuantum mekaniginde elektrik ¢cok kutup moment integralleri denklem (2.46) ile
(a,1,) ve

verilir ve bu integral tek-elektron iki-merkezli bir integraldir. Burada, X*nlm

x rl,l,m,(B,fb) , strasiyla, a ve b merkezlerinde yerlestirilmis STO’lar1; a ve S perdeleme

sabitlerini gostermektedir.
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3. MATERYAL ve YONTEM

3.1. Kartezyen Koordinatlar ve Diizenli Kati Harmonikler

Reel ve kompleks kiiresel harmonikler i¢in STO,

Xnim = {W} e Y6, 0) (3.1)

olarak verilir (Slater, 1930). Denklem (3.1)’deki Ylm (0,¢) normalize olmus kiiresel

harmonikler, karakok katsayisi ise radyal bilesen i¢in normalizasyon sabitidir. Burada

¢, Slater kurallari ile belirlenen perdeleme sabitidir.

Negatif olmayan m degerleri icin kiiresel harmonikler,

(21+1)(1-m)!
4z (1+m)!

12
} P" (cos8) e m=>0 (3.2)

" (6.9)=(-1)" {
biciminde verilirken, negatif m degerleri i¢in
Y (6,4)=(-1)" ¥, (6,9) m < 0 (3.3)

biciminde verilmektedir (Bransden ve Joachain, 1989). Denklem (3.2)’deki B (cos8)

bagh Legendre fonksiyonlaridir.

Bagli Legendre fonksiyonlari i¢in Rodrigues formiili

ml/2 |m|
rreo=(-2)" (L) g 64

X

biciminde ifade edilir. Buradaki P, (x) Legendre fonkiyonlaridir ve

P (x) E%(ij (2 -1) (3.5)

seklindedir (Ozbek ve Durukanoglu, 2010).
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Kuantum mekaniginde 6nemli rol oynayan kiiresel harmonikler, orbital acisal
momentum islemcisinin 6zfonksiyonlaridir. Ayrica, kiiresel harmonikler orbital agisal

momentumu / olan ve I’ye karsilik gelen m degerleriyle kiiresel simetrik alanda hareket

eden parcaciklarin acisal dagilimlarini tanimlamaktadir (Vashalovich ve ark., 1988).

x =cos @ doniisiimii kullanilarak normalize olmus bagli Legendre fonksiyonlari

" ()= [@Hw|m|>!}‘“(1_xz)@ o

l
"2 2(1+]m])! TS -1) (3.6)

seklinde ifade edilir (Gradshteyn ve Ryzhik, 2000).

Normalize olmus baglh Legendre fonksiyonlari

B (x)=(-=1)" A" (~x) (3.7)

olur ve burada (—1)" " bu fonksiyonlarin paritesidir. Ayn1 zamanda normalize olmus

Legendre fonksiyonlari,

2

l 2 ” 2_
21+1,,;01+§m,0‘P’ @] =1

(3.8)

normalizasyon sartin1 saglamaktadir (Guseinov ve ark.,

1997). Bagli Legendre
polinomlart i¢in diklik bagmtisi,

- . . 2 (q+m)!
JPP (cos@)P," (cos @)sin d6 = 2q+1(q—m)!5pq (3.9)

bicimindedir. Kiiresel harmonikler i¢in diklik bagintisi ise,

J[Yﬁ | (9,¢)} V2 (6,0)dQ=0, | &, (3.10)

ile tanimlanir (Arfken ve Weber, 2001).

Denklem (3.1) yeniden,
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Q2¢)H 1/2
Knim™ {W} pleer [rlYlm(¢9,¢)} (3.11)

biciminde yazilabilir. Denklem (3.11)’deki ikinci parantezdeki nicelikler diizenli kati

harmonikler olarak adlandirilir ve
L =[r'Y"0.9)] (3.12)

olarak ifade edilir. Burada /=0, 1, 2, 3,... ‘e karsilik gelen durumlarin spektroskopik
gosterimi i¢in s, p, d, f,... harfleri kullanilir. Normalize olmus gercek kiiresel
harmoniklerin toplanmasindan ya da farklarindan orbitaller elde edilir. / ve m

degerlerine gore hesaplanan Y;" +Y;™ degeri gergek bilesenleri karsilayarak diizenli

kat1 harmonikler olusturulur (Zheng ve Zerner,1993).

Diizenli kati harmonikler, i, j ve k tamsayilar olmak iizere, x, y ve z’nin

kuvvetlerinin bir iiriinii olarak
G, j,k) = x'y/ ZF (3.13)

seklinde ifadeler iceren kartezyen koordinatlarda tanimlanir. Burada i, j ve k sirasiyla
kartezyen koordinatlardaki x, y ve Zz’lerin sayisin1 gostermektedir. Bu gdsterim
kullanilarak normalize olmus diizenli kati harmonikler yazilabilmektedir (Zheng ve

Zerner, 1993).

Biz bu calismada diizenli kati harmonikleri g orbitallerine kadar hesapladik ve
kaynaktaki (Zheng ve Zerner, 1993) sonuclarla uyumlu oldugunu gordiik. Ornegin (=2
icin m= -2, -1, 0, 1, 2 degerlerini alacagindan (3.2) ve (3.3) denklemlerini kullanarak
oncelikle olusabilecek kiiresel harmonikleri elde ettik. (3.4) ve (3.5) denklemlerini
kullanarak ve x=cos6 doniisiimiinden faydalanarak baglhi Legendre fonksiyonlari
hesaplanmaktadir. Kiiresel harmoniklerin kiiresel koordinatlardaki degerleri temel
kitaplarda bulunmaktadir. Bu ifadelere gore; kiiresel harmonikler Cizelge (3.1)’de

verilmektedir.
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Cizelge 3.1. [=2 icin kiiresel harmonikler

! m Y (6,9)
1/2
(LJ (30032 0— 1)
0 167
12 ‘
—(Ej sin @cos @ ¢
1 87

1/2
(Ej sin@cos @ e

2 -1 87
12
—(%j sin’ @ ¢
0 V4
12
(3175) sin’ @ ¢ 2
) 1

[=2 ve m=2 durumunda kiiresel harmoniklerin toplanmasi1 veya farklarindan iki

diizenli kati harmonik elde ederiz. Denklem (3.12)’yi kullanarak I, +1 , ve [, -1,

durumlarinin hangi diizenli kat1 harmonigi gosterdigini bulabiliriz.

=2 i¢in I, +1_, durumu ile /, —I_, durumununun spektroskopik gosterimi d’dir.

Fakat bu iki durumdan farkli sonuglar elde edilir ve bu da bize yiik dagilimlarinin farkl
oldugunu gostermektedir. Bu nedenle bu iki durum ayni / degerinde oldugundan ayni
spektroskopik gosterime sahip olsa da yiiklerin bulunma olasiligimin farkli oldugu
durumlarn ifade etmek i¢in orbital gosterimini yiiklerin dagilimini kullanarak alt indisle

ifade ederek yazariz. Ornegin l, +1_, durumunu ele alalim. Burada normalize olmus

kiiresel harmonikleri aliriz.

L+l =r %[Yf (6,0)+Y,7(6.9) |
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o 15 v ) 2ig —2ig
d=r"|——| sin H(e +e )
2 15 ]/2 2
=2r 6T sin” @ cos(2¢)
V1

seklindedir. Burada kiiresel koordinatlar1 kartezyen koordinatlara cevirirsek asagidaki

ifadeyi elde ederiz.

15 1/2
Ll =d=2[=2] (-5
2 (647[] ( y)

(a, b, c)=(x’in sayis1, y’nin sayisi, z'nin sayisi) bicimindedir (Zheng ve Zerner, 1993).
kartezyen koordinatlar icin ifade edilen gosterim bicimini kullanarak diizenli kati

harmonigi

d, .= (ijﬂ [(2.0.0)—(0.2,0) ]

16

biciminde elde ederiz. Bu sekilde diger diizenli kati harmonikler de elde edilir. Bu
islemleri kolaylastirmak i¢in Ek-1’de Mathematica 7 programlama dilinden
faydalanarak (3.2), (3.3), (3.6) ve (3.12) denklemlerini kullanarak diizenli kati
harmonikleri kiiresel koordinatlarda bulan program verilmisir. Bu programi
kullandiktan sonra kiiresel koordinatlar1 kartezyen koordinatlara cevirip Zheng ve
Zerner’in (Zheng ve Zerner, 1993) kartezyen koordinatlar i¢in ifade ettigi gosterimi

kullanarak asagidaki diizenli kat1 harmonikler elde edilmektedir.

s harmonik:

5 =4/1/(4m)(0,0,0)

p harmonikler:

Py =4/3/(4m)(1,0,0)
py =+/3/(4m)(0,1,0)
P; =+/3/(4m)(0,0,1)
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d harmonikler:

a’Z2 =,/5/(16m)[2(0,0,2)—(2,0,0)—(0,2,0)]
a,’xz_y2 =,/15/(16m)[(2,0,0)-(0,2,0)]
dyy =,/15/(4n)(1,1,0)

d,, =15/ (4m)(1,0,1)
dy, =[15/(4m)(0,1,1)

f harmonikler:

fa= m%(o, 0.3)=(2,0,)~(0,2,]
£ =21/ (32m)[4(1,0,2) - (3,0,0)— (1,2,0)]
fyz2 =21/ (32m)[4(0,1,2) = (2,1,0) - (0,3,0)]
f gy = J105/(16m)[(2,0,1)— (0,2, 1)]

Frye =105/ (4m)(1,1,1)

f 532 =35/ 3201(3,0,0-3(1,2,0)

f3 53 =+/35/(32m)[3(2,1,0)-(0,3,0)]
xX=y-y

2 harmonikler:

8,4% 9/ (16\/5)) [(4, 0,0)+2(2,2,0)+(0,4,0)-8(2,0,2)-8(0,2,2) +§(O, 0, 4)}

g s =%JIO/nE(l,o,3)—(3,0,1>—<1,z,1)}
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g . =2m[f(o,1,3)—(2,1,1)—(0’3’0}
vz 8 3
82252 = %45 /7[=(4,0,0)+(0,4,0)+6(2,0,2)=6(0,2,2)]

3
8 1322 =Z\IS/n[6(1,1,2)—(3,1,0)—(1,3,0)]

3

8 .(x3-3y2) :gm[(3,0,l)—3(1,2,1)]
3

8, (3x2y-yh) =g Y70/ 732, 1.1)=(0,3,1)]

¢ :%M[@,O,O)—6(2,2,0)+(0,4,0)]

X7y

=3 35 7713.1.0) - (1,3.0)]

gxy(xz-yz) T4

Yukaridaki diizenli kati harmonikler icin ¢agirma formiiliinii,
S =l D) +m+1

olarak aldik. Cagirma formiiliindeki / ve m degerlerine gore hangi diizenli kati

harmonigi karsilayacag asagidaki Cizelge 3.2°de gosterilmistir.

Cizelge 3.2. Cagirma formiiliine karsilik gelen diizenli kati harmonikler

[ m fl’" =l([+1)+m+1 Diizenli Kat1 Harmonikler
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0 3 P,
1 4 Py
2 5 dy,
-1 6 dxz
0 7
dz2
1 8 dyz
2 9 do s
-3 10
fx3_3xy2
-2 11 fxyz
-1 12 fXZ2
0 13 7
b4
1 14
£
2 15
2(x2-y?)
3 16 f

3x%y-y?
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4 4 17 8 o)
4 3 18 8 an)
4 2 19 8

4 -1 20 g

4 0 21 8.4

4 1 22 8,

4 2 23 8 2ty
4 3 24 8 a2y
4 4 25 8,

3.2. Cok-Kutup Moment Islemcisi

Cok-kutup moment islemcileri denklem (2.47) ile daha onceden verilmisti. Cok-
kutup moment islemcileri icin alternatif bir tanimlama da asagidaki gibi tensorlerle
ifade edilmektedir (Buckingham, 1959; Buckingham, 1967; Ozdogan, 2000). Asagidaki

tanimlamalarda kullanilan o, ,yven alt indisleri 1, 2 veya 3 degerlerini alir. Bu
durumda x;=x, x, =y ve xy=z"ye kargilik gelmektedir. Bu alt indisler kartezyen

koordinat sistemindeki ¢ok-kutup moment

islemcisinin

farkli

gostermektedir. Tensoriin indislerinin sayist ise tensoriin rankini verir.

bilesenlerini
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Tek-kutup
g=1
Cift-kutup
o = Xy

Dort-kutup

_1 2
Qaﬁ = 5(3xaxﬂ -r Saﬂ)
Sekiz-kutup

_1 2
Qaﬂy‘E(SxaxﬁxV X, Sp’

2 2
y ~Xg" Oy =Xy 1 Saﬁ)

Onalti-kutup

r =%[35x XX, X —5r2(xaxﬂ5 +X ,X,0

aopfm at By m TRy Oan

+2,X,0,5 + X, X0 5 + X, X,0 5, + X5%,0,,)

4
+r (és(wé}y,7 + 5ay55,7 + 5(1;755y )]

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

Uc boyutlu uzayda, / rankl1 kartezyen elektrik cok-kutup moment tensoriiniin 3l

tane bileseni vardir. Indislerinin yer degisimine gore simetrik olan kartezyen elektrik

¢ok-kutup moment tensorlerinin 3' tane bileseninden (/+1)(/+2)/2 tanesi farklidir,

Ornegin, dort-kutup moment islemcisinin 6 tane farkli bileseni vardir. Bunlardan Q..

bilesenini,
1 2
Q.= E(3xx— rd.)

olarak yazabiliriz. Burada,

rP=xt+yi 4zt

(3.19)
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dir. Kronecker Delta sembolii de,

L, i=j
O. = 3.20
v {0, i#j (5-20)

olarak tanimlanir (Bransden ve Joachain, 1989). Boylece Q,, bileseni,

1
Q.. :5<2x2 —y?—7%)

olur. Daha sonra, kartezyen koordinatlarda bulunan doért-kutup moment islemcisinin
Q,, bilesenini kaynaktaki (Zheng ve Zerner, 1993) xiyj zk =(i, jk) goOsterimden

faydalanarak,

Q.. = %[2@,0,0) ~(0,2,0)~(0,0,2)]

olarak yazabiliriz.

Ek-2’de dort-kutup, sekiz-kutup ve onalti-kutup moment islemcilerini
hesaplayan Mathematica 7 programi verilmistir. Bu programda (3.16), (3.17) ve (3.18)
denklemlerindeki tanimlar ile (3,19) ve(3.20) denklemleri kullanilmistir. Boylece cesitli
momentlerin tensor islemcilerini bu programi kullanarak kaynaktaki (Zheng ve Zerner,

1993) sonuglarla uyumlu bir sekilde asagidaki gibi elde ederiz.
Cift-kutup

= (1,0,0)
by = (0,1,0)
1, =(0.0.1)
Dort-kutup

Qe = %[2@,0,0)—(0, 2,0)~(0,0,2)]
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Q,, = %[2(0, 2,0)—(2,0,0)—(0,0,2)]

1

Qz; =512(0,0,2-(2,0,0-(0,2,0)]
3

Q=3 0.1,0)
3

Qu =5 (1,01

3
Qyz = 5(0’1,1)

Sekiz-kutup

Qox = ! [2(3,0,0)—3(1,2,0)-3(1,0,2)]

xXxx = E
1
Q. =5[2(0,3,0)—3(2,1,0)—3(0,1,2)]

Q. . = ! [2(0,0,3)—3(2,0,1)-3(0,2,1)]

2 " A
2

1
Qyxy = 5[4(2,1,0)—(0,3,0)—(0,1,2)]

Qyy = %[4(2, 0,1)-(0,2,1)-(0,0,3)]

1
Qyy =5 140,2,0-(,0,0-(1,0,2)]

5
Q. ==(1,1,1
e =5 (LD

Q

xzz =

%[4(1,0, 2)-(3,0,0)-(1,2,0)]
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1
Qyy; =2 140.2,)=(2,0,)=(0,0,3)]

1
Qyz; =2 140,1,2-(2,1,0-(0,3,0)]

Onalti-kutup

I' oo =(4,0,00-3[(2,2,0)+(2,0,2)] +§[(O, 0,4)+(0,4,0)] +%(O, 2,2)

_3

15
Iy = 5 (3,1,0)—5[(1,3,O)+(1,1,2)]

5 15
[z = 5(3,0,1)—g[(1,2,1)+(1,0,3)]

3

1 1
Ly = §[9(2, 2,0)-(2,0,2)—-(0,2,2)] —5[(4, 0,0)+(0,4,0)]+ 3 (0,0,4)

r

30 5
2 =?(2,1,1)—g[(0,1,3)+(0,3,1)]

[z = %[9(2, 0,2)-(2,2,0)-(0,2,2)] —%[(0, 0,4)+(4,0,0)] +%(O, 4,0)

r

5 15
oy =5 (13,0 -2 ((1.1,2)+(.1,0)

r %(l,2,1)—%[(1,0,3)+(3,0,1)]

xyyz =

15 5
nyZZ = Z(l’l’z)_g[(1’3’0)+(3’1?0)]

r

X722 =

5 15
—-(1,0,3)-—[{1,2,1)+(3,0,1
2( ) 2 [1,2,1)+(3,0,1)]

I'yyyy =(0,4,0) +§[(O, 0,4)+(4,0,0)]-3[(0,2,2)+(2,2,0)] +%(2,0, 2)
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Ty =%(0,3,1)—%[(0,1,3)+(2,1,1)]

Ty = %[9(0, 2,2)-(2,0,2)—(2,2,0)] —%[(o, 0,4)+(0,4,0)]+ % (4,0,0)
Tz =%(0,1,3)—%[(0,3,1)“2,1,1)]

r.,.. =00, 4)+%(2, 2, 0)+§[(0,4,0)+(4, 0,0)]-3[(2,0,2)+(0,2,2)]

3.3. Koordinat Sistemleri ve Donme Matrisi

STO baz fonksiyonlari, Sekil 3.1’de A, B ve O olarak belirtilen atomlarin
cekirdeklerindeki merkezlerde bulunur. Cok-kutup moment islemcisinin merkezi O
olarak belirtilir. Sekil 3.1’de a, b ve o alt indislerine sahip vektor bilesenler ise A, B ve
O merkezlerinin kartezyen koordinatlardaki bilesenleridir. A ve B merkezlerini iki ayri
STO’lar ile, O merkezini de ¢cok-kutup moment islemsi ile ifade edersek karsimiza iki-
merkez integraller ¢ikmaktadir. Boyle sistemler, sinirlart belli bir sistem {izerinden

degerlendirilir. Sekil 3.1°de goriildiigii gibi belli bir Z ekseni, Z, ve Z, cksenlerine
sahip iki merkezi tamimlayan A ve B merkezleri arasindadir. Burada, X,Y,.Z)
kartezyen koordinat sisteminin merkezinde A, (Xb,Yh ,Zb) merkezinde ise B atomunun
¢ekirdegi bulunmaktadir. Elektronun A ¢ekirdegine olan uzakligi r_, B ¢ekirdegine olan
uzaklig1 ise r dir. A ile B ¢ekirdekleri arasindaki uzaklik ise R dir. Bu sistemde X,

X, X p Ve Y, Y,, Yb eksenleri de paralel eksenlerdir. Sekil 3.1°de eksenleri X, Y, Z

olan koordinat sistemi, A ve B merkezleri arasinda merkezlesmis genel koordinat

sistemidir. Z, ve Z, eksenleri ise ya aym ekseni gostermekte ya da ayni yon

dogrultusundadir (Zheng ve Zerner, 1993).
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Sekil 3.1. Kiiresel koordinatlardan eliptik koordinatlara gecis i¢in ¢izilen koordinat

sistemi ve koordinatlarin dondiiriilmesindeki durumlar.

(X, Y, Z) koordinat sistemine sahip kartezyen koordinat sisteminin baslangic
noktasi, iki ayr1 baz fonksiyonlar1 merkezleri olan A ve B merkezlerinin ortasindadir.
Belli bir bolgede yer alan boyle bir sistem, oval kiiresel veya A ve B ilizerinde odaklanan
eliptik koordinat sistemiyle tanimlanir. Eliptik koordinat sistemi kullanilarak a ve b
merkezleri icin asagidaki bagintilar yazilabilir (Steinborn ve Ruedenberg, 1972; Zheng
ve Zerner, 1993).
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%=%@+m

= &

X =X, =5 (& =1 -1)c0sg
Yo =¥, =5 €= D-Psing
za =2 (140

7, = (1=

(3.21)
3R322
dr=;;@ —n")d&dnd¢

Cok-kutup moment integralleri, gerekli olan doniisiimler yapildiktan sonra belirli
bir bolgedeki eliptik koordinat sisteminde veya molekiiler yapi olarak tanimlanan
(X', Y', Z') koordinatlarina sahip molekiiler tabanli koordinat sisteminde degerlendirilir.

Bu doniisiimler i¢in gerekli olan dondiirme dogrudan kosiniise baglidir.

cosf = Az /R

' V2 V2
cos@ = Ay /4Ax “ +Ay (3.22)

Donme matrisi, farkli koordinatlara sahip durumlarin birbiriyle iligkisini gosterir.
Koordinat eksenlerinden birini sabit tutup diger ikisini belli bir ag¢ida dondiirerek

olusacak koordinat sistemi ile dondiiriilmeden onceki koordinat sistemininin durumu

arasindaki iligkiyi donme matrisi agiklar. Dénme matrisi R(6,¢) olarak gosterilir. Sekil

3.1’de koordinatlarin dondiiriildiigiindeki durumlar goriilmektedir.

R(0,¢) donme matrisi 2 adimda elde edilir:

i) z eksenini sabit tutup y eksenini dondiirme: R (0)

"

X X cosO O sinf (X

n

Y [=R,®)|Y|=| 0 1 o0 |Y (3.23)
Z" Z —sin@ 0 cosO )\ Z
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i) X ve y" eksenlerini sabit tutup z eksenini dondiirme: R, (¢)

X X cos¢p —sing O X
Y |[=R,(@)|Y |=|sing cosgp O|Y (3.24)
ZV ZYV O 0 1 ZU

Denklem (3.23) ve denklem (3.24) kullanilarak donme matrisinin son sekli asagidaki
gibi elde edilir.

cosOcosg —sing sinBcos¢
R(0,9) =R, (#R,(0) =| cosOsing cos¢ sinbcosg (3.25)

—sin0 0 cos0

3.4. Merkezlerin Tasinmasi

Cok-merkezli integrallerin hesaplanmasinda “Integrali molekiiler sistemdeki
hangi atomun merkezine gore almamiz gerekir?” sorusunu diisiindiigiimiizde
yapacagimiz islemleri kolaylastirmak icin sistemdeki tiim merkezlerin tek bir merkeze
gore ifadeleri yazilmalidir. Bunun igin sectigimiz bir merkezin disinda kalan tiim
merkezleri sectigimiz merkez cinsinden ifadelerini yazmaliyiz. Ciinkii integrali tek bir
merkeze gore almak ¢ok merkeze gore almaktan daha kolay olur. Bunun i¢in Sekil

3.2’ye baktigimizda [Xx,y,z] koordinatlarina sahip genel bir laboratuar koordinat sistemi
ve A(ax,ay,aZ ’da merkezli olan [X,,y,,z,] koordinatlarina sahip belirli bir merkez

diisiiniiliirse bu merkezin koordinatlari,

X, =X—a,
Ya=Y—ay (3.26)
Z, =7Z—a

olur (Zheng ve Zerner,1993).
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B(bx,by,bz) > de merkezli olan [xb,yb,zb] koordinatlarina sahip baska bir
merkezi,  A(ay,ay,a,)’da merkezli olan [X,,y,,z,] koordinatlarindaki merkeze

tagimak i¢in, Sekil 3.2°yi kullanarak asagidaki gibi verilen ifadelerle yazabiliriz.

X, =Xy +(by —a,) = X} +ba,

Ya =Y, +(by—ay) =y, +ba, (3.27)

2, =12, +(b,-a,)= z, +ba,
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- d
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., " . ’ ’ |
-, ‘L X, |
L . ’ a \
’ P ’ 4
., AP , 7 |
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Sekil 3.2. A ve B merkezinin koordinatlari.

Bu calismada A merkezini B merkezine tasirken daha dnceki boliimlerde ifade
edilen keyfi bir kartezyen tanimlamasi kullanilmaktadir. Asagidaki denklem (3.28)’de A

merkezinin B merkezine doniisiimiinii gormekteyiz (Zheng ve Zerner, 1993).
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. i —i-r J (i —Jj—s
Xi’yglzﬁzréo("jbax " szo[ijbay % Z( Jbaz
(i,j,k] (3.28)

_(r’s,t)g{lo,o’o] Crsi (bax’ba yba Z) x, beb

Denklem (3.28)deki C,.,, (pgba yvba.) bir sabittir. Bu sabiti

r=0 s=0 t=0

- — i (1 \—i-r J —j—s k [k \}—k—t
Cr,s,t(bax’bay’baz): 2 - bax 2 bay 2 baz (3.29)
seklinde ifade edebiliriz.

Yukaridaki denklem (3.28)’deki tasimalar asagidaki denklem (3.30)’da ifade

edilen bir cok kutup moment integralini saglamaktadir (Zheng ve Zerner, 1993).

Sl

n -l ]~ Lr
k
M = a a da
< l,m,n> <r %, y Z ¢ b b

- }
B e f Cbrb>
b

(i,j,k) (I,m,n)
= > (bax, bay baz) (box, bOy boz)
(r,5,6)=(0,0,0) ’ 5:t (u,v,w)=(0,0,0) ” v,w
n,l Gl 7T enrs fHs+v_g+t+w <
<ra“ a g aa rbb b x; “yb zbg e bb (3.30)

Denklem (3.30)’da normalizasyon katsayist sabit oldugu icin dikkate

alinmayarak o-merkezinde bulunan M 1 islemcisinin beklenen degeri ifade edilmistir.
m,n

Burada a-merkezinde bir STO, b-merkezinde baska bir STO bulunmaktadir. Boylece a,
b ve o merkezlerine sahip iki-merkez integralin ¢oziilmesi icin denklem (3.28)’in
kullanilmasiyla a ve o merkezleri b merkezine tasinarak cok kutup moment integrali

daha kolay hesaplanabilecek sekile  doniistiiriilir.  Denklem  (3.30)’daki

Crst(%x,b_ay,%z) ve Cuvw(%x,%y,%z) degerleri tasimalar yapildiktan sonra

gelen sabit ifadelerdir. Bu sabit ifadeler, r, s ve t ye bagl ii¢c toplam ile u, v ve w’ye

baglh ii¢ toplami icermektedir.
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4. BULGULAR ve TARTISMA

4.1. Diizenli Kati Harmoniklerin Tasinmasi icin Master Formiiller

Herhangi bir diizenli kati harmonigi baska bir merkeze tasimak igin

kulland1gimiz master formiil
1" = Yg;,(bax.bay,bas)G: jiko® 4.1
bigimindedir (Zheng ve Zerner, 1993). Burada g, (bax,bay,baz) sabit bir degerdir.

Denklem (4.1)’de u=(0,0,0)’dan baslayarak 12 ‘nin icindeki (x’in sayisi, y’nin sayist,

Z’nin sayist) sinirina kadar toplam alinmaktadir. A merkezinde bulunan diizenli kati
harmonikleri B merkezine denklem (4.1)’i kullanarak tasiyabiliriz. Ornegin daha 6nceki

boliimlerde elde ettigimiz dxz_y2 ‘nin a-merkezinde oldugunu diisiiniirsek,

d o= Jas/16mx2y0z0 —x0y270)
a

a

olur. Denklem (4.1)’den faydalanarak
xﬁygzg = Ei (0,0,0) + 2ba(1,0,0) +(2,0,0)
ile

xgygzg = %i (0,0,0) +2ba (0,1,0) +(0,2,0)
ifadelerini elde ederiz ve bunlar1 kullanarak,

dx 2.2 =/(15/16m)[(bax -bay)(0,0,0)+ 2bax(1,0,0)—-2ba(0,1,0)+(2,0,0)—(0,2,0)]

a a

olur. Boylece a-merkezindeki diizenli kati harmonigi b-merkezine tagimis oluruz.

Cizelge 4.1°de a-merkezinden b-merkezine tasidigimiz diizenli kati harmonikleri
g orbitallerine kadar elde ettik ve kaynaktaki (Zheng ve Zerner, 1993) sonuclarla

uyumludur.
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Cizelge 4.1. Tasima yapildiktan sonra diizenli kat1 harmonikler.

Spektroskopik Gosterim

Diizenli Kati Harmonikler

S 1
4n
Py ,%%(o,o,owa,o,on
Py E[%ym,o,omo,l,on
4t
P P[%z<o,o,0>+<o,o,1)]
47
d 3 —2 —2 2 —
2 E[Qbaz —bax—bay)(0,0,0)—2bax(1,0,0)
—2bay(0,1,0)+4baz(0,0,1)—(2,0,0)
—-(0,2,0)+2(0,0,2)]
Yoy 2 {(ba a3 (0,0,0)~2bay (0,1,0)
+2bax(1,0,0)+(2,0,0)—(0,2,0)]
d 15— — — —
xy \/%[baxbay(0,0,0)+bay(1,0,0)+bax(0,1,0)+(1,1,0)]
d 15— 7— — —
xz —n[baxbaz(0,0,0)+baz(1,0,())+bax(0,0,1)+(1,0,1)]
d 15

vz

E[Ey%z((),(),())*'%z (0,1,0)+bay (0,0,1)+(0,1,1)]
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L{(ba: - 3barba ~3hay baz)(0,0,0)
—6baxbaz(1,0,0)—6bayba:(0,1,0)

+(6ba- —3bas-3bay)©0,0,1)=3ba=(2,0,0)
—6bax(1,0,1)—3baz(0,2,0)—6bay(0,1,1)
+6ba-(0,0,2)—3(2,0,1)=3(0,2,1)+2(0,0,3)]

Xz

2L {(4baxba ~ba’ ~baxbar 0,0,0

+(4ba: —3bas —bar)(1,0,0)—2baxbay(0,1,0)
+8baxba;(0,0,1)=3bax(2,0,0)—2bay(1,1,0)
—bax(0,2,0)+8ba:(1,0,1)+4bax(0,0,2)
—(3,0,0)—(1,2,0)+4(1,0,2)]

Rz

[21 = =2 +—2— 3
m[(“-baybaz —baxbay —bay)(0,0,0)
—2baxbay(1,0,0)+8bayba:(0,0,1)

+(4baz —bas—3bar)(0,1,0)~bay (2,0,0)
—2bax(1,1,0)—3bay(0,2,0)+8ba:(0,1,1)
+4ba y(0,0,2)—(2,1,0)—(0,3,0) +4(0,1,2)]

2(x2-y2)

%%Z (bax~bay )(0,0,0)+ 2basbaz (1,0,0)

—2%y%z,(0,1,0)+(%§ —Ei)(o,0,1)+@(2,0,0)

+2bax(1,0,1)—bax(0,2,0)—2bay(0,1,1)
+(2,0,1)=(0,2,1)]

xyz

%%x%%z(0,0,0)%@&1’0’0)

+baxbaz(0,1,0)+baxbay(0,0,1)+baz(1,1,0)
+bay(1,0,1)+bax(0,1,1)+(1,1,1)]
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X —3xy2

%[@i ~baxbay)(0,0,0)+3(bax ~bay )(1,0,0)

—6baxba y(0,1,0)+3bax(2,0,0)—6bay(1,1,0)
-3bax(0,2,0)+(3,0,0)-3(1,2,0)]

3x2y-y

2 [(3bavbay ~bay)(0,0,0)+6barbay (1,0,0)

+3(E§—%i)(o,l,())+3Ey(2,0,0)+6%(1,1,0)
_3%)’ (0’270)+3(27170)_(0’3’0)]

—4 22 4 2

(ﬁ){(%ax +6basbay +3bay —24barba.

4 22 —3 — —
+8bas —24basba: )(0,0,0)+(12bay +12baxbas
_48baxba:)(1,0,0)+12(ba-bay +bay
—4baybaz)(0,1,0)+16(2ba. —3baba-
_3pasbaz)(0,0,1)+6(3bas +bas —4baz)(2,0,0)
+24baxbay(1,1,0)—96baxbaz(1,0,1)
+6(bas +3bay —4ba:)(0,2,0)~96baybaz (0,1,1)
“24(bas +bay —2baz)(0,0,2)
+12bax[(3,0,0)+(1,2,0)—4(1,0,2)]
+12bay[(2,1,0)+(0,3,0)=4(0,1,2)]
_16ba=[3(2,0,1)+3(0,2,1) = 2(0,0,3)]
+3(4,0,0)+6(2,2,0)—24(2,0,2)+3(0,4,0)
224(0,2,2)+8(0,0,4))

Xz

%E{ (4baxba, —3bayba: —3baxbaybaz)(0,0,0)
+(4ba; —9barba: —3baybaz)(1,0,0)
—6baxbayba-(0,1,0)+3(4barba: —bay —baxbay)(0,0,1)
+3(4ba- —3bas —bay)(1,0,1) = 3baxbaz[3(2,0,0)
£(0,2,0)—4(0,0,2)]—6bayba: (1,1,0)—6babay(0,1,1)
+3ba-[4(1,0,2)— (3,0,0)—(1,2,0)] + bax[4(0,0,3)

-3(0,2,1)=9(2,0,1)]-6bay(1,1,1)—3(3,0,1)
-3(1,2,1)+4(1,0,3)}
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%\/g{(mﬁy%? _3bayba: —3baxrbayba:)0,0,0)
+(4bas —9bayba- —3baxba:)(0,1,0)
—6baxbayba-(1,0,0)+3(4bayba: —bay —basbay)©,0,1)
+3(4ba; —3bay —bax)(0,1,1)—3bayba:[(2,0,0)+3(0,2,0)
—4(0,0,2)]—6baxbaz (1,1,0)—6baxbay(1,0,1)
+3ba[4(0,1,2)— (0,3,0)— (2,1,0)]+ba ,[4(0,0,3)

-3(2,0,1)=9(0,2,1)]-6bax(1,1,1)-3(0,3,1)
-3(2,1,1)+4(0,1,3)}

vz

g\/g{@‘; ~bas +6basba’ —6basbaz)(0,0,0)
+4(3baxba: —bay)(1,0,0)—4(3ba yba: —bay)(0,1,0)
+12(basbaz —baybaz)(0,0,1)~6(bas —ba:)(2,0,0)
124baxba: (1,0,1)+6(bay —ba2)(0,2,0)

22202 ~24bayba=(0,1,1)+6(bas —ba)(0,0,2)
+4bax[3(1,0,2)—(3,0,0)]+12ba;[(2,0,1)
—(0,2,1)]+4bay[(0,3,0)—3(0,1,2)]—(4,0,0)+6(2,0,2)
+(0,4,0)-6(0,2,2)}

%E{(%%i%? —baybay —ba.bay)0,0,0)
+(6bayba: —3basbay —bay)(1,0,0)

+(6baxba: —bay—3baxbay)(0,1,0)
+12baxbayba:(0,0,1)+3(2bas —bax—bay)(1,1,0)

xyz2 —3baxbay[(2,0,0)+(0,2,0)-2(0,0,2)] + 6(E§ ~baz)(0,2,0)
+12baybaz(1,0,1)+12baxba-(0,1,1)
—bay[(3,0,0)+3(1,2,0)-6(1,0,2)]
—bax[3(2,1,0)+(0,3,0)-6(0,1,2)]
+12baz(1,1,1)—(3,1,0)—(1,3,0)+6(1,1,2)}
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8
2(x3-31y2)

3 \/?{ (baxba: —3ba.bay ba: )(0,0,0)

+3(basbaz —bayba:)(1,0,0)
_6baxbayba=(0,1,0)+(bay —3baxbas)©,0,1)
—6baybaz(1,1,0)+3baxba:[(2,0,0)—(0,2,0)]
+3(bax—bay)(1,0,1)—6baxbay(0,1,1)
+baz[(3,0,0)—3(1,2,0)]+3bax[(2,0,1)—(0,2,1)]
—6bay(1,1,1)+(3,0,1)-3(1,2,1)}

g
2(3x2y—y3)

g\/?{ (3ba>bayba- —basba=)0,0,0)

+3(basba- —EiEz)(O,l,O)
+6baxbaybaz(1,0,0)+(3basbay —bar)0,0,1)
+6baxbaz(1,1,0)+3bayba:[(2,0,0)—(0,2,0)]
+3(E§—%i)(o,1,1)+6%xwy(1,o,1)
+ba:[3(2,1,0)—(0,3,0)]+3bay[(2,0,1)—(0,2,1)]
+6bax(1,1,1)—(0,3,1)+3(2,1,1)}

%\/%{@i-@iwi +5a$)(0,0,0)

+4(bay —3baxbay)(1,0,0)+4(bay —3basbay )(0,1,0)

x2y2
+6(bas —%i)[(2,0,0)—(0,2,0)]—24b_axb_ay(1,1,0)
+4bax[(3,0,0)=3(1,2,0)]+4bay[(0,3,0)-3(2,1,0)]
+(4,0,0)-6(2,2,0)+(0,4,0)}
3 [ 1Bavbay ~barbar)0.0,0
8 o) +(3baxbay—bay)(1,0,0)+(bax —3baxbay )(0,1,0)

+3%x%y[(2,0,0)—(o,2,0)]+3(b_a§ —b_ai)(l,w)
+bay[(3,0,0)-3(1,2,0)]+bax[3(2,1,0)—(0,3,0)]
+(3,1,0)—(1,3,0)}
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4.2. Islemcinin Tasinmasi icin Master Formiiller

Bir islemciyi baska bir merkeze tasimak i¢in kullandigimiz master formiil,

fVO (Ex,% y ,bo:) sabit bir deger olmak iizere,

(n,L,m)° =3 £ (box,boy,b0:)(i, j,k)®

v Y 4.2)
bicimindedir (Zheng ve Zerner, 1993). Denklem (4.2)’yi kullanarak asagidaki Cizelge
4.2’de ifade ettigimiz islemcileri hesapladik ve kaynaktaki (Zheng veZerner,1993)
sonuglarla uyumludur. Ornegin O merkezindeki (1,0,0) islemcisini denklem (4.2)’yi

kullanarak B merkezine tagiyalim. Boylece,

L—t-i QL —0-j ;& —0-k 4
(1,0,0) =Y box, x, > boy," yj D boz, z,
i=0 7=0 k=0

7 0.0_0 1.0_0

%xb (0,0,0)+(1,0,0)

buluruz.
Cizelge 4.2. Tasima yapildiktan sonra islemciler.
Islemci Tasima yapildiktan sonra islemciler
(1,0,0) b0x(0,0,0)+(1,0,0)
(0,1,0) boy(0,0,0)+(0,1,0)
(0,0,1) b0:(0,0,0)+(0,0,1)
(2,0.0) bo~ (0,0,0)+2box(1,0,0)+(2.,0,0)
(1,1,0) boxboy(0,0,0)+boy(1,0,0)+b0ox(0,1,0)+(1,1,0)
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(1,0,1) boxbo:(0,0,0)+boz(1,0,0)+box(0,0,1)+(1,0,1)
0.2,0) b0 (0,0,0)+2boy (0,1,0)+(0,2,0)
(0,1,1) boybo(0,0,0)+b0(0,1,0)+boy(0,0,1)+(0,1,1)
0,0.2) bo2(0,0,0)+2b0=(0,0,1)+(0,0,2)

(3,0,0) b0(0,0,0)+3box(1,0,0)+3box (2,0,0) +(3,0,0)

(1,2,0) boxbo5(0,0,0)+bos(1,0,0)+2boxboy (0,1,0)

+2boy(1,1,0)+b0x(0,2,0)+(1,2,0)

(1,0.2) boxbo2(0,0,0)+bo2(1,0,0)+ 2boxbo- (0,0,1)

+2b0-(1,0,1)+b0x(0,0,2)+(1,0,2)

(2,1,0) bo2boy(0,0,0)+2boxboy(1,0,0)+bos (0,1,0)

+2b0x(1,1,0)+Dboy (2,0,0)+(2,1,0)

(2,0.1) boabo:(0,0,0)+2boxbo= (1,0,0)+5os(0,0,1)

+2b0x(1,0,1)+b0-(2,0,0)+(2,0,1)
boxboyboz(0,0,0)+bo ybo(1,0,0)

(1 1 1) +%xb_0Z(0,1,0)+b_0xb_0y(0,0,1)
+bo:(1,1,0)+boy(1,0,1)+box(0,1,1)
+(1,1,1)

0,3,0) boy(0,0,0)+3bo 5 (0,1,0)+3boy (0,2,0) +(0,3,0)
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©0.,1,2) boybo=(0,0,0)+bo2 (0,1,0)+ 250y bo- (0,0,1)
+2b02(0,1,1)+b0y(0,0,2)+(0,1,2)

0.2.1) bo yb0-(0,0,0)+2b0ybo-= (0,1,0) +5o »(0,0,1)
+2b0y(0,1,1)+b0:(0,2,0)+(0,2,1)

0,0.3) b02(0,0,0)+3bo2 (0,0,1)+3b02(0,0,2) +(0,0,3)

(4.0,0) b01(0,0,0)+4b02(1,0,0) +6bo- (2,0,0)

+4b0x(3,0,0)+(4,0,0)

bosboy(0,0,0)+3bo2boy(1,0,0)

(3,1,0) +502(0,1,0) +3bo.boy (2,0,0) +3box (1,1,0)
+b0y(3,0,0)+3box(2,1,0)+(3,1,0)

borbo-(0.,0,0)+3bo2bo-(1,0.0)

(3.0.1) +504(0.,0.1) +3bo2(1,0.1) + 3boxbo= (2.0,0)
+b02(3,0,0)+3box(2,0,1)+(3,0,1)

boabo3(0,0,0)+2boxbos (1,0,0)
(2,2,0) +2b0+boy(0,1,0)+50 +(2,0,0) +4boxboy (1,1,0)
+%§(0,2,0)+2b_ox(1,2,0)+2b_oy (2,1,0)+(2,2,0)

boxboybo: (0,0,0)+ 2boxbo ybo: (1,0,0)
(2.1.1) +h0rb0=(0,1,0)+boxboy (0,0,1)+boybo= (2,0,0)

+21%x%z(1,1,0)+2b_0xb_oy(1,o,1)+b_o§(0,1,1)
+b0:(2,1,0)+boy(2,0,1)+2box(1,1,1)+(2,1,1)
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(2,0,2)

boxbo-(0,0,0)+2boxbo- (1,0,0)+ 2boxbo=(0,0,1)

+4boxbo: (1,0.1)+bo2 (2.0,0) +b02(0,0.2)
+2b0x(1,0,2)+2b0o-(2,0,1)+(2,0,2)

(1,3,0)

boxbo y(0,0,0)+3boxbo s (0,1,0)+bov(1,0,0)

+3boxboy (0,2,0)+3bo(1,1,0)
+b0x(0,3,0) +3boy(1,2,0)+(1,3,0)

(1,2,1)

boxboybo=(0,0,0) +2boxboybo= (0,1,0)
+ho350=(1,0,0)+boxboy (0,0,1)+boxbo= (0,2,0)

+2b0ybo=(1,1,0)+ 2boxboy (0,1,1) +boy(1,0,1)
+b02(1,2,0)+b0x(0,2,1)+2boy(1,1,1)+(1,2,1)

(1,1,2)

boxboybo:(0,0,0)+boybos(1,0,0)
+hoxbo=(0,1,0)+ 2boxboybo=(0,0,1)

+ho=(1,1,0)+2boybo=(1,0,1) + 2boxbo=(0,1,1)
+b0oxb0y(0,0,2)+boy(1,0,2)+2bo-(1,1,1)+
+box(0,1,2)+(1,1,2)

(1,0,3)

boxbo(0,0,0)+ 5o (1,0.0)+3boxbo (0,0.1)

+3b02(1,0.1) +3boxbo-(0,0.2)
+3bo;(1,0,2)+box(0,0,3)+(1,0,3)

(0,4,0)

b0y (0,0,0)+4b0y(0,1,0) +6bo (0,2,0)
+4b0y(0,3,0)+(0,4,0)

(0,3,1)

boybo-(0,0,0)+3bosbo=(0,1,0)+boy(0,0,1)

+3%§ (0,1,1) +3boxbo:(0,2,0)+bo:(0,3,0)
+3b0y(0,2,1)+(0,3,1)
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503502 (0,0,0)+250, 5oz (0.1,0)+ 2603 b0 (0.0.1)

0,2,2) +4boybo=(0,1,1)+502(0,2,0)+bor(0,0,2)
+2b0y(0,1,2)+2b0-(0,2,1)+(0,2,2)

boyb02(0,0,0)+b02(0,1,0)+3b0ybo (0,0,1)

(0,1,3) +3b02(0,1,1)+3b0yb0=(0,0,2) +3b0-(0,1,2)
+b0y(0,0,3)+(0,1,3)

(0,0.4) bo+(0,0,0)+4b0%(0,0,1)+6bo- (0,0,2)
+4b02(0,0,3)+(0,0,4)

a merkezindeki STO’nun i¢indeki diizenli kati harmonigi ve o merkezindeki
islemciyi b merkezine tasima yaparak denklem (3.30)’da goriinen alti katli toplami
denklem (4.3)’de goriinen iki katli toplama indirgeyerek cok-kutup moment integralini

denklem (4.3)’deki gibi sadece B merkezinde ifade etmis oluruz.

:<ana—la—l(ZgZ(%x,%y,%z)xb yb)’u lzu}e_gara
1

—_ — — oyt n, —1, -1 =&
(ng(box,bOy,bOZ) .Xl)ybyv Zuj bb b xgyf g bb>
[

_ zgz (%x,%y,az )fvo (%x,b_Oy,b_Oz)
100

a o a o a o
<r£a -1, _1e_§ara r;b I _IXZHX’” +Y 2y )’},fﬂy’u +3 v Z;f HEWHZ,0 =y > 4.3)

Denklem (4.3) deki &y (Ex,%y,%z) ve fo (%x,%y,%z) sabit katsayilardir.
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4.3. Bir- ve iki-Merkezli Integrallerin Analitik Hesaplanmasi
4.3.1. Bir-Merkezli integraller

Denklem (4.3)’teki ifadenin iki-merkezli oldugunu gormekteyiz. Bu
merkezlerden birini digerine tasidigimizda ifademiz bir merkeze sahip olmaktadir.

Burada r, =r =r, alinmistir. Denklem (4.3)’te gerekli tagimalar yapildiktan sonra,

normalizasyon katsayist disinda, tiim bir-merkezli integraller,

oo n_+n -l -l +i+j+k ({ +( )r T . 27 . .
=[r® beb e ¢ b bgy jsin”’”@ cos*0 do [ sin’¢ cos'p do 4.4)
0 b b 0 b b b 0 b b b

biciminde olmaktadir (Zheng ve Zerner, 1993).

Denklem (4.4)’teki integrallerin ¢oziimii icin bazi doOniisiimler yapilir. Bu
doniistimleri yaptiktan sonra bir merkez integraller icin acgilara bagli olusabilecek
durumlarin hepsini Cizelge 4.3’te gosterdik. Bu ¢izelgeye bakarak bize gerekli olan bir-

merkezli integrallerin agilara bagli kisimini kolayca hesaplayabiliriz.
Denklem (4.4)’teki integralin radyal kismi ise gamma fonksiyonlari

bi¢imindedir. Radyal kisimdaki integral [r"e™®" dr=n!/o""! bagintist kullanilarak

kolayca hesaplanmaktadir (Arfken ve Weber, 2001).
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Cizelge 4.3. Bir-merkezli integrallerin acilara baglh kisma.

T2
" n [ cos™¢ sin" ¢ dg
?008m¢ sin”¢d¢:(m—1)!!(n—1)”ﬂ_
0 (m+n)!!
27
m - n _(m—l)!!(n_l)”
({cos ¢ sin” g dp= ot o
—1y,,n—1
2" (O
V4
"y gin” (m=-Dan= 5 5
if K A N Rl !
Qlt te
2T
[ cos™ g sin” ¢ dp=0
0
3
My sin" g dp= MDD
({cos ¢ sin" ¢ dop= e i
tek ift
g zf[COSm¢ sin”¢)d¢_(m—1)!!(n—1)n
0 T (mtn)!
i 2" N
m. -.n _ (m=D)!n! 3 5
k K A ROl !
te te
27
[ cos™ ¢ sin” ¢ dg=0
0

4.3.2. iki- Merkezli Integraller

Daha onceki boliimlerde gerekli tasimalar yapildiktan sonra (4.3)’teki iki-merkez
integralin ¢oziimii icin (3.21)’de ifade edilen eliptik koordinat sistemini ele aliriz.
Boylece iki-merkez integraller,

}’b XaYala€

= g

mylyl i ok 'Cbrb>
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1

:O]df Id” Id(’) (R)2) ng g ~lg =1, +i+ j+ho+] (§+77)na+1 (é:_n)nbﬂ
i

-1 0

i+7)/2 . .
(&2-1)(1-77) }( ) (1=&n)* e P57 cos' gsin’ ¢
_ J'dé J'dﬂ(R/2)na+nb—la—lb+z+]+k+l (§+77)na+l (f—ﬂ)nbﬂ
1 -1

[(&-)-7)]"" (-n)f PG ) (4.5)

olur. Burada p ve 7 ifadeleri,

=(R/2
p=(R12)(¢,+) we)
:(;a_gb)/(ga—i_;b)
ile verilir (Zheng ve Zerner, 1993). F(i, j) de,
2
3 Mo on _(m—l)!!(n—l)!!
F(m,n)= ()[cos @sin” pd g = (el (27) 4.7

olarak bir-merkezli integrallerde buldugumuz degerlerden biridir.

Denklem (4.5)’teki sabitler disinda kalan ifade “Z fonksiyonlar1” olarak

adlandirilir ve

Zogys (o) = [(82-1) e I (1-72) (E+m)* (£-n)’ (1-&n)’ e Plan @4.8)
1

biciminde ifade edilir (Zheng ve Zerner, 1993). Z fonksiyonlarini

A i pray—2ki- j_m( p) ve B, Iy . (PT) yardimer fonksiyonlar cinsinden asagidaki

gibi

Zopys(P:T ,szm(l)( j(:j(zyj(ij(_l)ﬂkﬂm 4.9)

a+B+2y-2k—i—j—m (,0) Bi+j+2[+m (,02')

>



58

yazariz. Yardimci fonksiyonlar ile ilgili bilgi Ek-3’te verilmistir. Ek-3’te Mathematica 7

programlama dilinde A, 5.5 5p i i (p) ve B, +j1lem (pr) yardimer fonksiyonlari

hesaplayan programlar verilmistir. Ayn1 zamanda Ek-3’te Mathematica 7 programlama

dilinde farkli ¢ degerlerine karsilik gelen A, 55, 5 i, (P) ve By i (PT)

yardimct  molekiiler integrallerin grafiklerini c¢izen program verilmektedir. Bu

programda cizdirilen grafikler asagidaki sekillerde gosterilmektedir.

Iki- merkez integraller boylece hem Z fonksiyonlar1 hem de F fonksiyonlari

cinsinden

nb-l ;o ok Cr
blp ik CbTh
rb xayazae >

= Zna-la,nb—lb,(i+j)/2,k (,0, ) F (i, ])

yazilir.

An(l, )
14x10°F
12x10°E
10X 10°L
80x108L
6.0x108
40X 108}
20108

Sekil 4.1. n<17 i¢in A, (1, &) 'nin grafigi

Sekil 4.1°de n<17 i¢in farkli n ve o degerleri ele alinarak A, (1,&r) yardimci

molekiiler integrallerinin & degerine karsilik gelen grafigini Mathematica 7

programlama dilini kullanarak ¢izdirdik. Bu grafige baktigimizda ¢ degeri arttikca
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A, (1,a) yardimcit molekiiler integral degeri azalmaktadir. n<17 durumunda n’nin

degeri azaldikca « ’daki degisim oram1 daha kiiciiktiir. Kaynaklara (Kara, 1998)

baktigimizda A, (1,) yardimcr molekiiler integral i¢in ¢izilen grafik, Sekil 4.1°de elde

ettigimiz grafikle uyum igerisindedir.

An(l,)

1><1026;
§x 105 |
6x 102 |
4105 ]

leozj-k
I e : —

Sekil 4.2. n>17 i¢in A, (1, &) 'nin grafigi

n>17 oldugu durumda farkli n ve o degerlerindeki A, (1, &) yardimci molekiiler

integrallerinin & degerine karsilik gelen grafigi Sekil 4.2’de goriilmektedir. Bu grafige

baktigimizda herhangi bir n degerinde « ’nin alabilecegi en kiiciik deger, A, (L, @)

yardimcr molekiiler integral i¢in en biiylik degeri verir. Kaynaklara (Kara, 1998)

baktigimizda A, (l,«) yardimci molekiiler integral icin ¢izilen grafik ile Sekil 4.2°de
elde ettigimiz grafik uyum igerisindedir. A, (l,&) yardimci molekiiler integral igin

n’nin tek ya da ¢ift olamsi 6nemli degildir.
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An(l,a)

12108
1.0x 105
8.0x 105 |
6.0 x 10%
4.0x10%
20x 1080}

Sekil 4.3. n=35, n=50, n=55, n=60, n=70 i¢in A, (1, &) 'nin grafigi

Sekil 4.1, Sekil 4.2 ve Sekil 4.3’e baktigimizda herhangi iki durum i¢in A, (1, &)

yardimci molekiiler integral degerleri ayni ise bu durumlarin n ve & degerleri kesinlikle

farklidir.

L
=
*
—
=
[#3]
T

Sekil 4.4. n’nin ¢ift ve 17°den biiyiik degerleri i¢cin B, () 'nin grafigi
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n’nin tek ya da ¢ift olmas1 A, (l,) yardimci molekiiler integrallerde farklilik
yaratmazken B, () yardimci molekiiler integraller i¢in farkliligi ortaya ¢ikarir. Sekil

44°te n’nin c¢ift ve 17°den biiyilk olmasi durumu gosterilmektedir. Bu grafige

baktigimizda « degeri arttikca B, (&) yardimci molekiiler integral degeri pozitiftir ve

artmaktadir. n>17 durumunda n’nin degeri azaldikca ¢« ’daki degisim orani1 daha

kiiciiktiir. Kaynaklara (Kara, 1998) baktigimizda B, () yardimci molekiiler integral

icin cizilen grafik ile Sekil 4.4’te elde ettigimiz grafik uyum igerisindedir.

Bn(a)

_50x108]

“10x109f

C15x100f
20x10°F

5% 10°f

Sekil 4.5. n’nin tek ve 17°den biiyiik degerleri i¢cin B, () 'nin garfigi

n’nin tek ve 17°den biiyilk degerleri aldigi durumda ise, B, (&) yardimci
molekiiler integral degerinin negatif degerler aldigi Sekil 4.5’te goriilmektedir. Bu
grafige baktifimizda « degeri arttitkca B, («r) yardimci molekiiler integral degeri
azalmaktadir. Kaynaklara (Kara, 1998) baktigimizda B, («) yardimci molekiiler

integral i¢in cizilen grafik ile Sekil 4.5’te elde ettigimiz grafik uyum igerisindedir.
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f— I
= ]
= L]
T

12
o
sy
o0
[
=

Sekil 4.6. n’nin ¢ift ve 17’den kiiciik degerleri i¢in B, (&) 'nin grafigi

Mathematica 7 programlama dilinin kullanilmasiyla cok kisa siirede programlar
yardimiyla ¢izdirilen grafikler daha iyi sonu¢ vermektedir. Kaynaklarda (Kara, 1998)

B, () yardimci molekiiler integraller i¢in ¢izilen grafik, Sekil 4.6’da elde ettigimiz

grafikle uyum igerisindedir.

n’nin cift ve 17°den kiigiik degerleri i¢in Sekil 4.6’daki grafik, farkli n ve o

degerlerindeki B, () yardimci molekiiler integrallerinin & degerine gére durumunu
gostermektedir. Burada, a arttikca B, () yardimci molekiiler integral degeri hem

artarak artmaktadir hem de pozitif degerler almaktadir.
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I~

I
12
=
(=]
—_—

|
L
=
=
T

Sekil 4.7. n’nin tek ve 17°den kiiciik degerleri i¢in B, (&) 'nin grafigi

Sekil 4.7°de n’nin tek ve 17’°den kiigiik degerleri i¢in farkli n ve @ degerlerine

kars1 gelen B, (&) yardimcr molekiiler integrallerinin @ degerine karsilik gelen grafigi

yine Mathematica 7 programlama dilini kullanarak ¢izdirdik. Bu grafige baktigimizda

o degeri arttikca B, () yardimci molekiiler integral degeri azalmaktadir ve negatiftir.
Kaynaklara (Kara, 1998) baktigimizda B, (&) yardimci molekiiler integral i¢in ¢izilen

grafik ile Sekil 4.7°de elde ettigimiz grafik uyum igerisindedir.

Asagidaki Cizelge 4.4 ve Cizelge 4.5'te n>17 i¢in A, (I, &) ve B, (&) yardimci
molekiiler integrallerin degerleri verilmektedir. Burada hesaplanan yardimci molekiiler
integraller Mathematica 7 programlama dili kullanilarak Ek-3’te verilen programlar
yardimiyla hesaplanmaktadir. Bu hesaplama sonucunda elde ettigimiz degerler ile

kaynaktaki (Kara, 1998) sonuclar karsilastirildiginda birbiriyle uyum igerisindedir.
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Cizelge 4.4. n>17 icin A, (1) Yardimci Molekiiler Integraller

n o Bu calismada Kaynak (Kara, 1998)
0.1 6.40237x10** 6.40237370572800E+0034
1.9 3.23610x10" 3.23610498278710E+0010
2.8 2.04333%10’ 2.04332959234244E+0007
3.7 1.02449x10° 1.02449125640500+0005
4.6 1.63660x10° 1.63659807764112E+0003
5.2 1.59322x10? 1.59322248710314E+0002
6.7 1.29088x10° 1.29088438909983E+0000

8 7.9 5.63874x10> 5.63874276051763E-0002
8.2 2.77653x107> 2.77652923358477E-0002
11.5 4.38092x107 4.38092139689438E-0005
13.9 1.09025%10°° 1.09024851781146E-0006
17.2 1.36526x10°® 1.3652617234648 1 E-0008
19.6 7.45388x1071° 7.45388340201848E-0010
21.4 9.20670x10™!! 9.20670027619442E-0011
23.5 8.56297x107? 8.56297171114381E-0012
26.8 2.25391x10™" 2.25390946604644E-0013
28.6 3.20671x10™"* 3.20671026549233E-0014

29.2

1.68090x10™*

1.68090296921971E-0014
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30.1 6.40053x107"° 6.40052643510014E-0015
19 7.0 1.52445%10° 1.52445474617075E+0000
19 24.7 2.49436x107"? 2.49436014982635E-0012
20 13.3 5.91120x10° 5.91120282275021E-0006
20 29.2 1.95085x10™ 1.95084813696612E-0014
21 0.7 1.30673x10% 1.30673351892220E+0023
21 17.2 2.85852x10° 2.85851590157477E-0008
22 4.6 6.41707x10° 6.41706536947621E+0005
22 16.9 5.86046x10° 5.86046087023726E-0008
23 9.1 2.48593x10" 2.48592703251723E-0001
23 30.1 9.40388x10°" 9.40388096647520E-0015
24 2.2 1.70663x10" 1.70662714705865E+0015
25 28.0 1.20051x107"3 1.20050750488933E-0013
25 1.3 1.69090%x10% 1.69090231551075E+0022
26 19.9 3.18389%10” 3.18389333252295E-0009
26 29.8 1.76943x107 1.76943017199233E-0014
27 21.4 5.50731x107"° 5.50730698753986E-0010
27 5.2 9.74741x10’ 9.74740854669615E+0007
28 0.1 3.04888x10° 3.04888344611714E+0058
28 11.2 1.13977x10™ 1.13976502920031E-0001
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Cizelge 4.5. n>17 icin B, (a) Yardimc1 Molekiiler Integraller

n a Bu calismada Kaynak (Kara,1998)
0.1 1.05740x10"! 1.05739710800898E-0001
2.8 7.62378x10™! 7.62377620634772E-0001
6.1 1.79334x10' 1.79334166341940E+0001
9.7 5.75251x10° 5.75250955072259E+0002
18
15.1 1.07336x10° 1.07336329338265E+0005
20.8 2.74908x10’ 2.74908036177983E+0007
27.4 1.73274x10" 1.73274462821069E+0010
30.1 2.43592x10'"! 2.43592429322098E+0011
1.9 -3.14680x10™" -2.98242500536055E-0001
10.3 -9.92282x10° -9.92282441076476E+0002
16.6 4.47926%10° -4.47926243042275E+0005
19
22.0 -8.64340x10’ -8.64339714666933E+0007
27.1 -1.26390x10" -1.26390360391023E+0010
29.8 -1.77835x10""! -1.77834758500263E+0011
20 7.9 9.42083x10" 9.42082409418105E+0001
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21 12.7 -9.54503x10° -9.54503222625260E+0003
22 25.9 3.66145%10° 3.66144676283345E+0009
23 13 -1.57293x10"" -1.33339444869591E-0001
24 0.1 8.03707x10 8.03706578163131E-0002

25 30.1 -2.12559x10"! -2.12559009059577E+0011
26 16.3 2.79435x10° 2.79435381632993E+0005
28 3.4 9.29047x10™" 9.29047496408778E-0001

29 15.7 -1.45131x10° -1.45131218312531E+0005
30 0.1 6.48194x10™ -

31 17.1 -5.47552x10° -

37 28.6 -3.98246x10" -

48 0.4 0.43994x10™ -

65 30.1 -1.23297x10"! -
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5. SONUC ve ONERILER

Biz bu calismada, STO’lar1 kullanarak elektrik ¢cok-kutup moment integrallerini
hesapladik. Bunun i¢in 6ncelikle, kartezyen gosterimini kullanarak normalize olmus
diizenli kat1 harmonikleri Mathematica 7 programlama dilini kullanarak g orbitallerine
kadar hesapladik. Sonra kaynaklarda ifade edilen cok-kutup moment tanimlamalarindan
birini (Buckingham,1959) kullanarak cesitli momentlerin tensor islemcilerinin tek-
kutup, cift-kutup, dort-kutup, sekiz-kutup ve onalti-kutup icin tiim bilesenlerini
hesaplayan program i¢in yine Mathematica 7 programlama dilinden faydalandik. Daha
sonra, farkli koordinatlara sahip iki ayr1 merkezin birbirine nasil bagli olduguna ve A
merkezini B merkezine nasil tasiyacagimizi bunu Sekil 3.2’de ifade ederek acikladik.
Aynm zamanda kaynaklarda STO ve islemcinin tasinmasi i¢in master formiiller (Zheng
ve Zerner, 193) ifade edilmistir. Bu master formiilleri kullanarak hem STO hem islemci

icin hesapladigimiz ifadeleri cizelge halinde gosterdik.

Mathematica 7 programlama dilinde hazirladigimiz program yardimiyla kisa
stirede diizenli kat1 harmonikleri kiiresel koordinatlarda elde ettik. Kaynakta (Zheng ve
Zerner, 1993) diizenli kati harmonikler kartezyen koordinatlarda bulundugundan
karsilastirma yapmak icin kiiresel koordinatlarda elde ettigimiz diizenli kati
harmonikleri kartezyen koordinatlara ¢evirip Zheng ve Zerner’in kullandiklari kartezyen
gosterimini kullanarak kaynaktaki (Zheng ve Zerner, 1993) diizenli kati harmoniklerle
bizim elde ettigimiz diizenli kati harmonikler arasinda fark olmadigin1 gordiik. Kiiresel
koordinatlardaki diizenli kati harmonikleri kartezyen koordinatlara doniistiirmek
Mathematica 7 programlama dilinde olusturmak giictiir. Bu nedenle kiiresel
koordinatlarda elde ettigimiz diizenli kati harmonikleri elde hesaplama yaparak
kartezyen koordinatlara cevirdik. Sonra kartezyen koordinatlarda elde ettigimiz
sonuglart bagka bir programa veri olarak girdik. Dosya agma ve yazma seklinde
programlar1 ve cagirma formiiliinden faydalanarak hangi diizenli kati harmonigin hangi
bilesenin hangi katsayisinin ne olacagimi elde etmemizi saglayan Mathematica 7

programlama dilini kullanarak programini yaptik.

Bu calismada, STO’lan ele alarak a ve b biciminde iki-merkez ve tek-elektron
olan elektrik ¢ok-kutup moment integrallerinin hesaplanmasi icin neler yapilmasi
gerektigini agikladik ve bu tiir integrallerin ¢oziilmesinde se¢ilen baz fonksiyonu kadar

secilen koordinat sistemi de Onemlidir. Ciinkii sectigimiz koordinat sistemine gore
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integralin i¢indeki ifadelerin goriiniim olarak degismesi islemleri kolaylastiracak bazi

fonksiyonlarin kullanlabilmesini saglamaktadir.

Elektrik c¢ok-kutup moment integrallerinin STO’lar kullamlarak eliptik
koordinatlarda hesaplanmas1 A, (l,a) ve B, (o) yardimcit molekiiler integrallerin
hassas olarak hesaplanmasina baglidir. Bu nedenle, & ve n’nin farkli degerleri i¢in
A,(l,a) ve B,(a) yardimci molekiiler integrallerinin ifadeleri dikkate alinarak

Mathematica 7 programlama dilinde programlar yaptik. Bu programlarla elde edilen
sonuclar kaynaktaki (Kara,1998) sonuglarla uyumludur ve bunlan ¢izelgeler halinde
gosterdik. A, (I,a) ve B,(a) yardimci molekiiler integrallerinin farkli & degerlerine
karsilik gelen durumlarini gosteren grafikleri Mathematica 7 programlama dilini
kullanilarak ¢izdirdik ve mevcut kaynaktaki (Kara, 1998) grafiklerle karsilastirildiginda

uyum icerisinde oldugunu gordiik.

A,(,a) ve B, (o) yardimci molekiiler integraller Mathematica 7 programlama

dilinde yapilan programlar sonucunda elde edilen degerler kullanilarak elektrik ¢ok-

kutup moment integralleri daha hassas olarak hesaplanabilir.
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7. EK-1: Diizenli Kat1 Harmoniklerin Kiiresel Koordinatlarda Bulunmasi

Program-1’deki “noalf’ degiskeni denklem (3.6)’daki normalize olmus bagl
Legendre fonksiyonunu temsil etmektedir. Bu programdaki “kh/i]” degiskeni kiiresel
harmonikleri ifade ederken; “cagl”, “cag2” ve “cag3” ise sirasiyla m>0, m<0 ve m=0

(132
l

degerlerine karsilik gelen ¢agirma ifadelerini, olarak ifade edilen cagirma formiiliine
gore m yerine m, -m ve O degerleri yazilarak olusturulmaktadir. Cagirma formiiliiniin
aldig1 degerleri Cizelge 3.2’de verdik ve bu cizelgede hangi / ve m degerlerinde hangi

diizenli kati harmonikleri elde edecegimizi gosterdik. Burada sdyle bir ayrint1 vardir:
Eger m degeri pozitifse Y," +Y,", eger m degeri negatifse Y,"-Y,” biciminde
alinarak diizenli kati harmonikler hesaplanmaktadir. “kurel” ve “kure2” ile adlandirilan

degiskenler de sirasiyla kiiresel harmoniklerin toplanmasi ve farklari durumlarini temsil

eder. “kurel 1” ifadesi, “kurel’’deki ¢ degerini limit komutuyla —¢ ‘ye doniisiimiinii

saglayarak “kurel’’in eslenegini gostermektedir. “kurelabs” ise kiiresel harmoniklerin
toplanmasiyla elde edilen diizenli kati harmonikleri vermektedir. “kure22” ifadesi,
“kure2’’deki ¢ degerini limit komutuyla —¢ ‘ye doniisiimiinii saglayarak “kure2”’in
eslenegini gostermektedir. “kure2abs” ise kiiresel harmoniklerin farklarindan elde
edilen diizenli kati harmonikleri vermektedir. Kisacasi Program-1, kiiresel

koordinatlarda diizenli kat1 harmoniklerin bulunmasini saglamaktadir.

Program-2’de, diizenli kat1 harmoniklerin kartezyen koordinatlardaki
ifadelerindeki katsayilar1 ve x, y, z’nin kuvvetlerini gdsteren kisimlar1 veri olarak girdik.
Bu verileri FileNameJoin komutuyla belirtilen adrese Mathematica dosyast olarak
yazdirdik. Program-3’te ise kayithi olan bu dosyadan verilen [ ve m degerlerine gore
diizenli kati harmoniklerin kartezyen koordinatlardaki ifadelerini okuyarak
(normalizasyon katsayisi, katsayi, x’in iissii, y’nin iissii, z’nin iissil, ...) biciminde print
komutuyla ekrana yazdirilmaktadir. Ayrica dosya agma ve yazma seklinde olusturulan
programlarda kullanilan c¢agirma formiiliinden faydalanarak hangi diizenli kati
harmonigin hangi bilesenin hangi katsayisinin ne olacagini print komutuyla ekrana

yazdirarak istenen bilesen kolayca goriilebilmektedir.
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Program-1

For[1l=0,1<5,1++,
For[m=-1,m<1+1l,m++,
noalf=(1/((2*1)*1'))* ((((2*1+1)*(1-
Abs[m])!)/(2* (1+Abs[m]) !))~(1/2)) * ((1-
x"2)* (Abs[m]/2))*D[ (((x*2)-1)*1),{x,1+Abs[m]}];
x=Cos[6];
i=1*(1+1)+m+1;
If[m<O0,kh[i]=((-1)"m)*((-
1) #*Abs[m])* ((1/(2*Pi) )~ (1/2)) *noalf* (e (-i*Abs[m] *¢)),
kh[i]=((-1)"m)*((1/(2*Pi))*(1/2))*noalf* (e” (i*m*¢))11];
For[1=0,1<5,1=1+1,
cag3=1*(1+1)+1;
kure3=kh[cag3];
Print["sayi=",cag3," 1=",1," m=",0," dkh
=" ,FullSimplify[kure3]];
For[m=1,m<=1l,m=m+1,
cagl=1*(1+1)+m+1;
cag2=1* (1+1) -m+1;
kurel=(kh[cagl]+kh[cag2]) ;
kurell=Limit[kurel, ¢->-¢];
kurelabs=Sqrt[kurel*kurell/2];
Print["sayi=",cagl," =",1," m=",m," ile"," 1=",1,"
m=",-m," dkh(toplam)=",FullSimplify[kurelabs]];
kure2=(kh[cagl]-kh[cag2]) ;
kure22=Limit[kure2, ¢->-¢];
kure2abs=Sqrt[kure2*kure22/2] ;

Print["sayi=",cag2," 1=",1," m=",m," ile","
1=",1," m=",-m," dkh(fark)=",FullSimplify[kure2abs]]]];
Program-2
Array[orb,25];

fname=FileNameJoin[{"C:\\Documents and
Settings\\Administrator\\Desktop/dkh.nb"}];
OpenWrite[fname] ;
orb[1]={(1/(4*Pi))~(1/2),1,
orb[2]={ ((3/(4*Pi))"(1/2)),
orb[3]={((3/(4*Pi))~(1/2)),
orb[4]={((3/(4*Pi))"(1/2)),
orb[5]={ ((15/(4*Pi)) " (1/2))
orb[6]={ ((15/(4*Pi))"(1/2))
orb[7]={ ((5/(16*Pi))"(1/2))
orb[8]={ ((15/(4*Pi))~(1/2))
orb[9]={ ((15/(16*Pi))"(1/2)
orb[10]={((35/(32*Pi))*(1/2))

_11210101_1101210};

rVi 1_1101210};
’ 1310101_3111210};

~ N~ N ~ ~ ~
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orb[11]={((105/(4*Pi))~(1/2)),1,1,1,1};
orb[12]={((21/(32*Pi))‘(1/2)),4,1,0,2,—1,3,0,0,—1,1,2,0};
orb[13]={((63/(16*Pi))~(1/2)),(2/3),0,0,3,-1,2,0,1,-
1,0,2,1};
orb[14]={((21/(32*pPi))~(1/2)),4,0,1,2,-1,2,1,0,-1,0,3,0};
orb[15]={((105/(16*Pi))~(1/2)),1,2,0,1,-1,0,2,1};

orb[16]={((35/(32*Pi))~(1/2)),3,2,1,0,-1,0,3,0};
orb[17]={(3/4)*((35/(Pi))~(1/2)),1,3,1,0,-1,1,3,0};
1,-3,1,2,1};

orb[18]={(3/8)*((70/(Pi))~(1/2)),1,3,0,
orb[19]={(3/4)*((5/(Pi))~(1/2)),6,1,1,2,-1
orb[20]={(9/8)* ((10/(Pi))~(1/2)),(4/3),1,0
1,1,2,1};
orb[21]={(9/16)*((1/(Pi))~(1/2)),(8/3),0,0,4,-8,2,0,2,-
810121211/410101212121011101410};
orb[22]={(9/8)*((10/(Pi))~(1/2)), (4/3),0,1,3,-1,2,1,1,-
1,0,3,1};
orb[23]={(3/8)*((5/(Pi))‘(1/2)),—1,4,0,0,1,0,4,0,6,2,0,2,—
6,0,2,2};
orb[24]={(3/8)*((70/(Pi))~(1/2)),3,2,1,1,-1,0
orb[25]={(3/16) *((35/(Pi))~(1/2)),1,4,0,0,1,0
6,2,2,0};
For[1l=0,1<5,1++,

For[m=-1,m<1l,m++,

i=1*(1+1)+m+1;

s=orb[i];

Print["1=",1," m=",m,6" dkh= ",s];

Write[fname,orb[i]]]];
Close[fname]

13111 1_1111310};
131_113/0/11_

Program-3

dosya=OpenRead["C: \Documents and
Settings\Administrator\Desktop/dkh.nb"];
orb=ReadList[dosya, Expression];

1=2;

m=-1;

i=1*(1+1)+m+1;

s=orb[[i]]’

Print[orb[[i]]]:

Print[s[[4]]];

Close[dosya]
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8. EK-2: Dort-kutup, Sekiz-kutup ve Onalti-kutup Moment Islemcilerinin

Hesaplanmasi

Asagidaki program denklem (3.16), (3.17) ve (3.18)’deki ifadeler kullanilarak
dort-kutup, sekiz-kutup ve onalti-kutup i¢in moment islemcilerininin kartezyen
koordinatlardaki bilesenlerini bulmaktadir. Burada “quad” dort-kutup, “ocpole” sekiz-
kutup ve ‘“hexapole” onalti-kutup momentlerin tensor islemcilerini temsil eden

degiskenlerdir.
Program-4

rkare=x*2+y*2+z*2;
For [ i=1 , i<3 , i=i+l1 ,

If[i==1,ii=x,If[i==2,ii=y,ii=2]] ;

For [ j=i , js3 , j=j+1 ,
If[3==1,33=x,1£[j=2,33=y,jj=z1]1 ;
If[i==j,deltal=1,deltal=0] ;

quad;,;=(3*ii*jj-rkare*deltal)/2;
Print["Quadrupole",ii,j]j," = " ,FullSimplify[quad; ;]1]] 1

For [ i=1 , i<3 , i=i+l1l ,

If[i==1,ii=x,If[i==2,ii=y,ii=z]] ;

For [ j=1i , j<3 , j=j+1 ,
If[j==1,33=x,1£[j==2,33=y,3I=2]] ;
If[i==j,deltal=1,deltal=0] ;
cat2=5*%ii*jj ;

For [ k=3 , k<3 , k=k+1 ,
If[k==1,kk=x,
If[k==2,kk=y,kk=2]] ;
If[i==k,delta2=1,delta2=0] ;
If[k==j,delta3=1,delta3=0] ;
octo;,j,x=(cat2*kk-ii*rkare*delta3-jj*rkare*delta2-
kk*rkare*deltal) /2 ;
ocpoley=FullSimplify[octo;, j,x]’
Print["Octopole ",ii,jj,kk," = ",ocpolex]ll]]

For [ i=1 , i<3 , i=i+l1 ,

If[i=1,ii=x,If[i=2,ii=y,ii=z]] ;

For [ j=i , j<3 , j=j+1 ,
If[j==1,33=x,1f[j==2,3j=y,Jj=21] ;
If[i=j,deltal=1,deltal=0] ;

For [ k=3 , k<3 , k=k+1 ,
If[k=1,kk=x,
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If[k==2,kk=y,kk=2]] ;
If[i==k,delta2=1,delta2=0] ;
If[k==j,delta3=1,delta3=0] ;
For [ 1=k , 1<3 , 1=1+1 ,
If[1l=-1,11=x,
If[l==2,11=y,11=2]] ;
If[i==1,deltad=1,deltad=0] ;
If[l==j,delta5=1,delta5=0] ;
If[l==k,delta6=1,delta6=0] ;
catl=35*iji*jj*kk*1l;
cat2=5*rkare* (ii*jj*deltab+jj*kk*deltad+kk*1ll*deltal+i
i*ll*delta3+ii*kk*delta5+jj*1ll*delta2);

cat3=(rkare”2) * (deltad*deltab6+delta2*delta5+deltad*deltal) ;
hexapoley,;=FullSimplify[ (catl-cat2+cat3)/8];
Print["Hexadecopole",ii,jj,kk,11," = ", hexapole,1]1]1]1]
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9. EK-3: Yardimci Fonksiyonlar

Eliptik koordinatlar kullanilarak, molekiiler integrallerin hesaplanmasinda,
integral sonuglari yardimci fonksiyonlar (auxilary function) cinsinden ifade edilir.

Bunlar A, ve B, yardimci fonksiyonlardir. Bu yardimei fonksiyonlar
A(p)= [ Ehedg
1

1
By(p)= | ntePdn

ile tanimlanir (Mulliken ve ark., 1949).
A, (o,a) integralinin genel sekli,

A, (0,0) = [x"e dx (Re a>0)

ez

olarak verilmektedir (Kara, 1998). A (o,a) integraline n kath kismi integrasyon

yontemi uygulandiginda

-oa n n—k

e n! o
A (o,a)=
n(0:2) a ,;)(n—k)! ot

ifadesi elde edilir.
A, yardimci fonksiyonlarini bulan Program-5°te o =106zel degeri i¢in

nle™® & o
A,(a)= i ;{Z::‘)F

kullanilmaktadir. Bu program i¢in, >0 ve v=n alindiginda, A,(L,a) i¢in

tekrarlama bagintist olan

A, La)=4,La)=[ (v+D4,(La)-v4, (,a)]/a

(13

ifadeler kullanilmistir. Program-5 ve Program-6’daki “aux” degiskeni A, (L, o)

yardimc1 fonksiyonu temsil etmektedir.
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Kaynakta (Kara, 1998) ,a =0 alindiginda:

2/(n+1) n,cift

B (0)=
n(){ 0 n, tek

verilmektedir. Bu durumlar, Program-7 ve Program-8’de kullanilmaktadir. Diger

durumlar ise,

k
[04
2 _— 001<a<?y), n ¢ift ise,
k:;ook!(k+n+1) ( ) ¢
)
) L (0.01<a<8), ntekise,

k=1(2)0 k '(k +n+ 1) ’

olarak verilmektedir. Program-7 ve Program-8’de kritik degerler ele alinarak if

komutuyla karsilastirmalar yapilmistir.
n’nin ¢ift degerleri i¢in,

0 2k

. (04
Byle)= 2;) 20\ 2k +n+1)

ve tek degerleri igin,

o0 2k+1

_ o
Byla)= 2;;)(2k+1)!(2k+n+2)

alinmaktadir.

A, (1,«) yardimci fonksiyonlarini bulan program Program-5’te, B, (o) yardimci

fonksiyonlarimi1 bulan program Program-7’de verilmektedir. n<17 ve n>17 igcin

A,(l,a)’nmn grafikleri Program-6 yardimiyla c¢izilebilmektedir. n’nin ¢ift ve tek
degerleri icin ise B,(a) yardimci molekiiler integralinin grafigini ¢izdiren program

Program-8’de verilmektedir.
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Program-5

nl=28;
x=8.8;
ald=1/x;
al=(1+x)/ (x*2);
For[r=2,r<nl,r=r+l,
a=al+ (r*al- (r-1)*a0) /x;
al=al;
al=a]l;
top=0;
For[r=0,r<nl,r=r+l,
terim=(x*r)/r!;
top=top+terim] ;
aux=((nl) '*Exp[-x]/ (x* (nl+l))) *top;
Print["a=" ,N[aux,b25]]

Program-6

f[nl ,y0 ]:=Module[{x=y0},

ald=1/x;

al=(1+x)/(x*2);

For[r=2,r<nl,r=r+l,

a=al+ (r*al-(r-1) *a0) /x;
al=al;
al=a]l;

top=0;

For[r=0,r=<nl,r=r+l,

terim=(x"r)/xr!;
top=top+terim] ;

aux=((nl) '*Exp[-x]/ (x*(nl1l+l))) *top;

X=aux] ;
Plot[{£[6,y0],£[8,y0],£[10,y0],£[12,y0],£[14,y0]},{y0,0,4},
AspectRatio—»0.5,TextStyle—» {FontFamily—»"Times" ,FontSize—-12}
,AxesLabel-»{"a","An(1,a)"}]
Plot[{Size=12,£f[18,y0],£f[20,y0],£f[23,y0],£[27,y0],£[29,y0]}
,{y0,0,4} ,AspectRatio—»0.5,TextStyle-» {FontFamily—»"Times" 6 Fo
ntSize-»12},AxesLabel-»>{"a","An(1,a)"}]
Plot[{Size=12,£f[35,y0],£f[50,y0],£[55,y0],£f[60,y0],£[70,y0]}

,{y0,0,4} ,AspectRatio—»0.5,TextStyle-» {FontFamily—»"Times" 6 Fo
ntSize-»12},AxesLabel-»>{"a","An(1l,a)"}]
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Program-7

f[n ,y0 ]:=Module[{x=y0},
epsilon=100;
top=0;
fark=0;
k=0;
If[(n/2)==IntegerPart[n/2],
If[x==0.,top=2/(n+l),

If[Or[n<8,x<8.],

While[epsilon==100,
top=top+ (2* (x*k) )/ ((k!') * (k+n+1)) ;
eps=top-fark;

If[eps<10”(-20) ,epsilon=101];
fark=top;
k=k+2],

While[epsilon==100,
top=top+2* ( (x* (2*k) )/ ((2*k) ' * (2*k+n+1))) ;
eps=top-fark;

If[eps<10”*(-20) ,epsilon=101];
fark=top;
k=k+1]1111;
If[(n/2)#IntegerPart[n/2],
If[x==0.,top=0,

If[Or[n<8,x<8.],

While[epsilon==100,
top=top-2* (x*k)/ ((k!) * (k+n+1)) ;
eps=top-fark;

If[Abs[eps]<10%*(-20) ,epsilon=101];
fark=top;
k=k+2],

While[epsilon=:=100,
top=top-2* ( (x* (2*k+1) )/ ((2*k+1) '* (2*k+n+2))) ;
eps=top-fark;

If[Abs[eps]<10*(-20) ,epsilon=101];
fark=top;
k=k+1]1111;
x=top] ;
Print["b=" ,N[£[23,10.6]]]

Program-8

f[n_,y0 _]:=Module[{x=y0},
epsilon=100;
top=0;
fark=0;
k=0;
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If[ (n/2)==IntegerPart[n/2],
If[x==0.,top=2/(n+l),
If[Or[n<8,x<8.],
While[epsilon==100,
top=top+ (2* (x*k) )/ ((k!) * (k+n+1)) ;
eps=top-fark;
If[eps<10*(-20) ,epsilon=101];
fark=top;
k=k+2],
While[epsilon=:=100,
top=top+2* ( (x* (2*k) )/ ((2*k) ' * (2*k+n+1))) ;
eps=top-fark;
If[eps<10”(-20) ,epsilon=101];
fark=top;
k=k+1]]111;
If[(n/2)#IntegerPart[n/2],
If[x==0.,top=0,
If[Or[n<8,x<8.],
While[epsilon=:=100,
top=top-2* (x*k) / ((k!) * (k+n+1)) ;
eps=top-fark;
If[Abs[eps]<10*(-20) ,epsilon=101];
fark=top;
k=k+2],
While[epsilon==100,
top=top-2* ((x* (2*k+1) )/ ((2*k+1) ' * (2*k+n+2))) ;
eps=top-fark;
If[Abs[eps]<10*(-20) ,epsilon=101];
fark=top;
k=k+1]]111;
x=top] ;
Plot[{£f[18,y0],£f[20,y0],£f[24,y0],£f[34,y0]},{y0,1,30} ,Aspect
Ratio—»0.5,TextStyle»{FontFamily-"Times" ,FontSize—»12},6AxesL
abel-»{"a","Bn(a)"}]
Plot[{£f[19,y0],£f[27,y0] ,£f[45,y0],£[55,y0]},{y0,1,30} ,Aspect
Ratio—»0.5,TextStyle— {FontFamily—-"Times" ,FontSize—»12},AxesL
abel-»>{"a","Bn(a) "}]
Plot[{£[0,y0],£[2,y0],£[4,y0],£[6,y0],£[8,y0],£[10,y0],£[12
,y0],£[14,y0]},{y0,0,10} ,AspectRatio—»0.5,TextStyle—»{FontFa
mily-»"Times" ,FontSize—»12} ,AxesLabel-»{"a","Bn(a)"}]
Plot[{£[1,y0],£[3,y0],£[5,y0],£[7,y0],£[9,y0],£[11,y0],£[13

,y0],£[15,y0],£[17,y0]},{y0,0,10},AspectRatio—»0.5,TextStyl

e-»>{FontFamily—»"Times" ,FontSize—»12} ,AxesLabel-»{"a","Bn(a)"}

]
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10. OZGECMIS

1985 yilinda Bartin’da dogdu. Ilk ve orta 6grenimini Bartin’da tamamladi. 2004
yilinda Ondokuz Mayis Universitesi Orta Ogretim Fizik Ogretmeligi Boliimiine girdi.
Ayni bolimden 2009 yilinda mezun oldu ve ayni yil Fen Bilimleri Enstitlisii Fizik
Anabilim dalinda yiiksek lisansa basladi ve halen devam etmektedir. Ayn1 zamanda
2009 yilinda Ondokuz May1s Universitesi Bilgisayar ve Ogretim Teknolojileri Egitimi

Boliimiine girdi ve suan 4. sinifi okumaktadir.





