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 Bu tez 4 bölümden ibarettir. İkinci bölümde; metrik uzaylar, normlu uzaylar ve 

lineer dönüşümlerin tanımı verilerek özelliklerden bahsedilmiştir. Ayrıca bölümün 

ikinci kısmında spektrum konusu ele alınarak, konuyla ilgili bazı temel tanım ve 

kavramlar verilmiştir. 

Tezin üçüncü bölümünde; c0 ve c dizi uzayları üzerinde  Zwier operatörü 

tanımlanarak bu operatörün ince spektrumu incelenmiştir. Ayrıca   operatörünün  c0 

ve c dizi uzayları üzerindeki spektrumu Goldberg sınıflandırmasına göre verilmiştir. 

Tezin dördüncü bölümünde; aslî köşegeninde (rk) ve ona paralel ikinci 

köşegeninde (sk) dizilerinin terimlerini ihtiva eden  alt üçgen matris olmak 

üzere bu matrisin  c0 ve c dizi uzayları üzerindeki ince spektrumu incelenmiştir.
 

  

Anahtar Kelimeler: Spektrum, ince spektrum, artık spektrum, nokta spektrum, 

sürekli spektrum, c0 ve c dizi uzayları. 

 

 

 

 

 



v 

 

 

 

 
 

 

 

DEDICATION  
 
 

 

To my familiy 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

 

 

 

 

 

 

 

 

 

 

ACKNOWLEDGEMENT 
 

 

 

I express sincere appreciation to Prof. Dr. Feyzi BAŞAR for his guidance and 

insight throughout the research and thanks go to the other faculty members.  

I express my thanks and appreciation to my wife for her understanding, 

motivation and patience. Lastly, but in no sense the least, I am thankful to all colleagues 

and friends who made my stay at the university a memorable and valuable experience. 

I express my thanks and appreciation to my family for their understanding, 

motivation and patience. Lastly, but in no sense the least, I am thankful to all colleagues 

and friends who made my stay at the university a memorable and valuable experience. 

 

 

 

 

 

 

 

 

 

 

 

 



vii 

 

 

 

 

 

 

 

 

TABLE OF CONTENTS 
 

 

 

ABSTRACT  .............................................................................................................. iii 

ÖZ  .............................................................................................................. iv 

DEDICATION  ............................................................................................................... v 

ACKNOWLEDGEMENT ............................................................................................... vi 

TABLE OF CONTENTS................................................................................................ vii 

LIST OF SYMBOLS AND ABBREVIATIONS .......................................................... viii 

CHAPTER 1 INTRODUCTION ............................................................................... 1 

CHAPTER 2   PRELIMINARIES, BACKGROUND AND NOTATİON ................ 2                                    

2.1 Background ............................................................................................ 2 

2.2 Purpose of Study .................................................................................... 7 

CHAPTER 3 ON THE SPECTRUM AND FINE SPECTRUM AS AN 

OPERATOR ZWEIER MATRIX ............................................................................... 13 

3.1 Introduction .......................................................................................... 13 

3.2 Zweier Matrix ...................................................................................... 13 

3.3 The Spectrum of the Operator Z
α
 On the Sequence Space c0 and c .... 14 

CHAPTER 4     ON THE FINE SPECTRUM OF THE GENERALIZED 

DİFFERENCE OPERATOR  ....................................................................... 21 

4.1 Introduction .......................................................................................... 21 

4.2 The Fine Spectrum of the Operator  On the sequence  

 Space c0 and c ...................................................................................... 22 

REFERENCES  ............................................................................................................. 32 

  



viii 

 

 

LIST OF TABLES 

       :   Reel sayıların cümlesi 

        :   Kompleks sayılar cümlesi, 

 :  X normlu uzayında tanımlı bütün sınırlı lineer operatörlerin 

              cümlesi,  

 :  T operatörünün görüntü cümlesi, 

   :  T operatörünün tanım cümlesi, 

  : T operatörünün çekirdeği, 

    : T operatörünün tersi 

        :  Reel terimli yakınsak dizilerin uzayı 

 :  Reel terimli sıfıra yakınsak dizilerin uzayı                     

 :  cümlesinin kapanışı 

 : T operatörünün resolventi 

 :  T operatörünün spektrumu 

 :   Artık spektrum 

:  Sürekli spektrum 

 

      :  T operatörünün spektral yarıçapı 

 
  :  T operatörünün adjointi



 



i

TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
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Supervisor

Examining Committee Members

Prof. Dr. Allaberen Ashyralyev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Prof. Dr. Alexey Lukashov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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uzayları üzerindeki spektrumu Goldberg sınıflandırmasına göre verilmiştir. Tezin
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1

INTRODUCTION

We summarize the knowledge in the existing literature concerning with the

spectrum and the fine spectrum of the linear operators defined by some particular

limitation matrices over some sequence spaces. ([Wenger R.B., 1975]) examined the

fine spectrum of the integer power of the Cesàro operator in the space c. ([Reade

J.B., 1985]) worked with the spectrum of the Cesàro operator in the sequence space

c0. ([Gonzalez M., 1985]) studied the fine spectrum of the Cesàro operator in the se-

quence space `p. ([Okutoyi J.T., 1994]) computed the spectrum of Cesàro operator

on the sequence space bv. Recently, ([Yıldırım M., 1996]) worked the fine spec-

trum of Rhally operators acting on the space c and c0. Lately, ([Coşkun C., 1997])

studied the spectrum and fine spectrum for p−Cesàro operator acting on the space

c0. ([Akhmedov A.M. and Başar F.,2004]) have recently determined, independently

than that of ([Gonzalez M., 1985]) the fine spectrum of the Cesàro operator in the

sequence spaces c0, `p, `∞ by the different way, respectively, where 1 < p <∞. Quite

recently,([ Malafose B., 2002]) and ([Altay B. and Başar F., 2004 ])have respectively

studied the spectrum and fine spectrum of the difference operator on the sequence

spaces c, c0, sr; where sr denotes the Banach space of all sequences x = (xk) normed

by

‖x‖sr = sup
k∈N

|xk|
rk

, (r > 0).

Also, ([Akhmedov A.M. and Başar F., 2004]) , ([Altay B. and Başar F., 2005])

have determined the fine spectrum with respect to Goldberg’s classification of the

difference operator ∆ and generalized difference operator B(r, s) over the sequence

spaces `p, bvp and c0, c; receptively. Later Bilgiç ([H. and Furkan H., 2007]) worked

on the spectrum of the operator B(r, s, t), defined by a triple-band lower triangle

matrix, over the sequence spaces `1 and bv.



CHAPTER 2

PRELIMINARIES, BACKGROUND AND NOTATION

Spectral theory is one of the main branches of modern functional analysis and

its applications. Roughly speaking it is concerned with certain inverse operator,

their general properties and their relation the original operator. Such inverse oper-

ator arise naturally in connection with the problem of solving equation (system of

linear algebraic equation differential equation, integral equation) for instance, the

investigation of boundary value problem by Sturm and Liouville, and Fredholm’s

famous theory of integral equations were important to development of the field.

In Chapter 2, we mention some properties and give an introduction to spectral

theory of bounded linear operators.

2.1. Background

In this section, we give some required definitions related with the spectrum.

Definition 2.1. (Metric space) Let X be a non-empty set and d be a distance

function from X × X to the set R+ of non-negative real numbers. Then the pair

(X, d) is called a metric space and d is a metric for X, if the following metric axioms

are satisfied for all elements x, y, z ∈ X:

(M.1) d(x, y) = 0 if and only if x = y.

(M.2) d(x, y) = d(y, x), (the symmetry property).

(M.3) d(x, z) ≤ d(x, y) + d(y, z), (the triangle inequality).

2
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Definition 2.2. (Normed space) Let X be a real or complex linear space and

‖ · ‖ be a function from X to the set R+ of non-negative real numbers. Then the

pair (X, ‖ · ‖) is called a normed space and ‖ · ‖ is a norm for X, if the following

norm axioms are satisfied for all elements x, y ∈ X and for all scalars α:

(N.1) ‖x‖ = 0 if and only if x = θ.

(N.2) ‖αx‖ = |α|‖x‖, (the absolute homogenity property).

(N.3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖, (the triangle inequality).

Definition 2.3. (Banach space) A Banach space X is complete normed linear

space. Completeness means that if ‖xm − xn‖ → 0 as m,n → ∞, where xn ∈ X,

then there exist x ∈ X such that ‖xn − x‖ → 0 as n→∞.

Definition 2.4. (Linear operator) In calculus we consider real line R and real-

valued functions on R (or on a subset R). Obviously, any such function is a mapping

of its domain into R. In functional analysis, we consider more general space, such

metric space and normed space and mapping of these space in the case of vector

space and in particular, normed space a mapping is called an operator.

A linear operator T is an operator such that

(i) the domain D(T ) of T is a vector space and range R(T ) lies in a vector space

over the same field

(ii) for all x, y ∈ D(T ) and scalars α,

T (x+ y) = Tx+ Ty

T (αx) = αTx

Observe the notation; we write Tx instead of T (x); this simplification is standard

in functional analysis. Furthermore for the remainder of the thesis we shall use the

fol- lowing notation:

D(T ) denotes the domain of T
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R(T ) denotes the range of T

N(T ) denotes the null space of T

By definition the null space of T is set of all x ∈ D(T ) such that Tx = 0. We

should also say something about the use of arrows in connection with operators.

Let D(T ) ⊂ X and R(T ) ⊂ Y , where X and Y are vector spaces, both real or

complex. Then T is an operator from D(T ) onto R(T ), written

T : D(T )→ R(T )

or from D(T ) into Y

T : D(T )→ Y

If D(T ) is the whole space X, then and only then we write

T : X → Y

Definition 2.5. (Bounded linear operator) Let X and Y be the normed spaces

and T : D(T ) → Y a linear operator, where D(T ) ⊂ X. The operator T is said to

be bounded operator if there is a positive real number c such that

‖Tx‖ = c‖x‖

for all x ∈ D(T ). Let X and Y be linear spaces. By L(X, Y ) and B(X, Y ), we

denote the set of all linear operators and the set of all bounded linear operators

from X into Y .

Theorem 2.1.1. Let X, Y be the normed spaces and T : X → Y be linear operator.

Then

(i) T continuous at the origin implies Tuniformly continuous on X.

(ii) T is continuous on X if and only if it is bounded.
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Proof. (i) We have ‖Tx‖ < ε whenever ‖x‖ < δ. Hence, if ‖x − y‖ < δ then

‖T (x− y)‖ = ‖ Tx− Ty‖ < ε by linearity of T .

(ii) First let T be bounded. ‖Tx‖ = c‖x‖ on X. Then

‖ Tx− Ty‖ = ‖T (x− y)‖ ≤ c‖x− y‖ < ε

if ‖x − y‖ < ε
c
. Hence, T uniformly continuous on X. Then T is continuous at θ

and so there exist δ = δ(1) such that ‖Tx‖ < 1 whenever ‖x‖ < δ. Take any x 6= θ.

Then

∥∥∥∥ δx

2‖x‖

∥∥∥∥ =
δ

2

and so

∥∥∥∥T( δx
2‖x‖

)∥∥∥∥ < 1, ‖Tx‖ < 2
δ
‖x‖

If x = θ then ‖Tx‖ = 0 and so ‖Tx‖ ≤ 2δ−1‖x‖ on X, i.e T is bounded.

Definition 2.6. (Norm of a bounded operator) Let T ∈ B(X, Y ) then the

norm of T is defined as

‖T‖ = sup
x 6=θ

‖Tx‖
‖x‖

<∞ (2.1)

The supremum on the right side of (2.1)is finite which follows from the fact that

‖Tx‖ = c‖x‖ when T ∈ B(X, Y )

Now we show that ‖Tx‖ is indeed a norm on B(X, Y ) and also we prove that

B(X, Y ) is a Banach space when Y is a Banach space, irrespective of whether X is

a Banach space.

Definition 2.7. (Matrix Transformation) Let A = (ank) be an infinite matrix

of complex numbers ank, where k, n ∈ N. We write

(AX)n =
∞∑
k=0

ankxk; (n ∈ N, x ∈ D00), (2.2)

where D00(A) denotes the subspace w consisting of x ∈ W for which the sum exist
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as a finite sum. More generally, if µ is a normed sequence space, we can write Dµ(A)

for x ∈ w for which the sum in (2.2) converges in the norm of µ. We will write

(λ : µ) = {A : λ ⊆ Dµ(A)}

for the space of those matrices send the whole of the sequence space λ into µ in this

sense.

Lemma 1. The matrix A = (ank) gives rise to a bounded operator T ∈ B(c) from

c to itself if and only if

(1) the rows of A in `1 and their `1 norms are bounded,

(2) the columns of A are in c,

(3) the sequence of row sums of A is in c.

The operator norm of T is the supremum of the `1 norms of the rows.

Lemma 2. The matrix A = (ank) gives rise to a bounded operator T ∈ B(c0) from

c0 to itself if and only if

(1) the rows of A in `1 and their `1 norms are bounded,

(2) the columns of A are in c0.

The operator norm of T is the supremum of the `1 norms of the rows.

Definition 2.8. (Spectral theory in finite dimensional normed space ) Let

X be finite dimensional normed space and T : X → Y a linear operator. Spec-

tral theory of such operators is simpler than that of operators defined on infinite

dimensional spaces. In fact we know that we can represent T by matrices which

depends on the choice of bases for X and we shall see that spectral theory of T

is essential matrix eigenvalue theory. So, let us begin matrices. For given real or

complex n-square matrix A = (αjk) the concepts of eigenvalue and eigenvector are

defined terms of the equation

Ax = λx (2.3)
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as follows.

Definition 2.9. ( Eigenvalues, eigenvectors, eigenspaces, spectrum,

resolvent set of matrix) An eigenvalue of a square matrix A = (αjk) is a number

λ such that (2.3) has a solution x 6= θ. This x is called an eigenvector of A corre-

sponding to that eigenvalue λ. The eigenvectors corresponding to that eigenvalue

λ and the zero vector from a vector subspace of X which called eigenspace of A

corresponding to that eigenvalue λ. The set σ(A) of all eigenvalues of A is called

the spectrum of A, its complement ρ(A) = C− σ(A) in the complex plane is called

the resolvent set of A.

Theorem 2.1.2. Let T ∈ B(X,X), where X is a Banach space. If ‖T‖ < 1, then

(I − T )−1 exist as a bounded linear operator on the whole space X and

(1− T )−1 =
∞∑
k=0

T k = I + T + T 2 + · · ·

Theorem 2.1.3. If X 6= {θ} is a complex Banach space and T ∈ B(X,X), then

σ(T ) 6= ∅.

Definition 2.10. (Spectral radius) The spectral radius rσ(T ) of an operator

T ∈ B(X,X) on a complex Banach space X is the radius of the smallest closed disk

centered at the origin of the complex λ-plane and containing σ(T ),i.e

rσ(T ) = sup
λ∈σ(T )

|λ|

2.2. Purpose of Study

Let X and Y be the Banach spaces and T : X → Y also be a bounded linear

operator. By R(T ), we denote the range of T , i.e.,

R(T ) = {y ∈ Y : y = Tx, x ∈ X}.
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By B(X), we also denote the set of all bounded linear operators on X into itself.

If X is any Banach space and T ∈ B(X) then the adjoint T ∗ of T is a bounded

linear operator on the dual X∗ of X defined by (T ∗f)(x) = f(Tx) for all f ∈ X∗

and x ∈ X.

Let X 6= {θ} be a non trivial complex normed space and T : D(T ) → X

a linear operator defined on subspace D(T ) ⊆ X. We do not assume that D(T )

is dense in X, or that T has closed graph {(x, Tx) : x ∈ D(T )} ⊆ X × X. We

mean by the expression “T is invertible” that there exists a bounded linear operator

S : R(T ) → X for which ST = I on D(T ) and R(T ) = X; such that S = T−1

is necessarily uniquely determined, and linear; the boundedness of S means that T

must be bounded below, in the sense that there is k > 0 for which ‖Tx‖ ≥ k‖x‖ for

all x ∈ D(T ). Associated with each complex number α is perturbed operator

Tα = T − αI,

defined on the same domain D(T ) as T . The spectrum σ(T,X) consist of those

α ∈ C for which Tα is not invertible, and the resolvent is the mapping from the

complement σ(T,X) of the spectrum into the algebra of bounded linear operators

on X defined by α 7→ T−1α .

The name resolvent is appropriate, since T−1α helps to solve the equation

Tαx = y. Thus, x = T−1α y provided T−1α exists. More important, the investiga-

tion of properties of T−1α will be basic for an understanding of the operator T itself.

Naturally, many properties of Tα and T−1α depend on α, and spectral theory is con-

cerned with those properties. For instance, we shall be interested in the set of all α’s

in the complex plane such that T−1α exists. Boundedness of T−1α is another property

that will be essential. We shall also ask for what α’s the domain of T−1α is dense in

X, to name just a few aspects. A regular value α of T is a complex number such

that T−1α exists and bounded and whose domain is dense in X. For our investigation

of T , Tα and T−1α , we need some basic concepts in spectral theory which are given

as follows ([Kreyszig E., 1978 see pp. 370-371]):
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The resolvent set ρ(T ) of T is the set of all regular values α of T . Furthermore,

the spectrum σ(T ) is partitioned into the following three disjoint sets

The point (discrete) spectrum σp(T,X) is the set such that T−1α does not exist.

An α ∈ σp(T ) is called an eigenvalue of T .

The continuous spectrum σc(T,X) is the set such that T−1α exists and is

bounded and the domain of T−1α is dense in X.

The residual spectrum σr(T,X) is the set such that T−1α exists (and may be

bounded or not) but the domain of T−1α is not dense in X.

To avoid trivial misunderstandings, let us say that some of the sets defined

above, may be empty. This is an existence problem which we shall have to discuss.

Indeed, it is well-known that σc(T,X) = σr(T,X) = ∅ and the spectrum σ(T,X)

consists of only the set σp(T,X) in the finite dimensional case.

From ([Goldberg S., 1985]) if X is a Banach space and T ∈ B(X), then there

are three possibilities for R(T ) and T−1:

(I) R(T ) = X

(II) R(T ) 6= R(T ) = X

(III) R(T ) 6= X

and

(1) T−1 exists and is continuous.

(2) T−1 exists but is discontinuous.

(3) T−1 does not exist.

Applying Goldberg’s classification to Tα, we have three possibilities for Tα and T−1α ;

(I) Tα is surjective.
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(II) R(Tα) 6= R(Tα) = X

(III) R(Tα) 6= X

and

(1) Tα is injective and T−1α is continuous.

(2) Tα is injective and T−1α is discontinuous.

(3) Tα is not injective.

If these possibilities are combined in all possible ways, nine different states are

created. These are labeled by: I1, I2, I3, II1, II2, II3, III1, III2 and III3. If α is

a complex number such that Tα ∈ I1 or Tα ∈ II1 then α is in the resolvent set

ρ(T,X) of T . The further classification gives rise to the fine spectrum of T . If an

operator is in state II2 for example, then R(T ) 6= R(T ) = X and T−1 exists but is

discontinuous and we write α ∈ II2σ(T,X).
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-

6

T

T ∗

Fig.1: State diagram for B(X) and B(X∗)

for a non-reflective Banach space X.

By the definitions given above, we can illustrate the subdivision of spectrum
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in the following table:

1 2 3

R(λ;L) exists R(λ;L) exists R(λ;L)

and is bounded and is unbounded does not exists

λ ∈ σp(L)

I R(λI − L) = X λ ∈ ρ(L) – λ ∈ σap(L)

λ ∈ σc(L) λ ∈ σp(L)

II R(λI − L) = X λ ∈ ρ(L) λ ∈ σap(L) λ ∈ σap(L)

λ ∈ σδ(L) λ ∈ σδ(L)

λ ∈ σr(L) λ ∈ σr(L) λ ∈ σp(L)

III R(λI − L) 6= X λ ∈ σδ(L) λ ∈ σap(L) λ ∈ σap(L)

λ ∈ σδ(L) λ ∈ σδ(L)

λ ∈ σco(L) λ ∈ σco(L) λ ∈ σco(L)

Table 1.2

From now on, we should note that the index p has different meanings in the

notation of the spaces `p, `
∗
p, bvp, bv

∗
p and the point spectrums σp(B(r, s, t), `p),

σp(B(r, s, t)∗, `∗p), σp(B(r, s, t), bvp), σp(B(r, s, t)∗, bv∗p) which occur in theorems given

in Section 2 and Section 3.

By a sequence space, we understand a linear subspace of the space w = CN of

all complex sequences which contains φ, the set of all finitely non–zero sequences,

where N = {0, 1, 2, . . . }. We write `∞, c, c0 and bv for the spaces of all bounded,

convergent, null and bounded variation sequences, respectively. Also by `p, we

denote the space of all p–absolutely summable sequences, where 1 ≤ p <∞.

The purpose of this study is to collect the knowledge on the spectrum of

some triangle operators defined by certain summability matrices over the classical

spaces `∞, c, c0 and `p. Of course, to obtain the spectrum and fine spectrum of the
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generalized difference operator B(r, s) over one of the classical spaces `∞, c, c0 and

`p may be studied by following ([A.M. Akhmedov and Baar F., 2004]) and ([ Bilgi

H. and Furkan H., 2007]).



CHAPTER 3

ON THE SPECTRUM AND FINE SPECTRUM OF THE

ZWEIER MATRIX AS AN OPERATOR

3.1. Introduction

The purpose in this chapter is to determine the fine spectrum of the Zweier

matrix which is the band matrix as an operator over the sequence spaces c0 and c.

3.2. Zweier Matrices

Let us consider the zweier matrix Zα represented by following band matrix

Zα =


α 0 0 · · ·

1− α α 0 · · ·

0 1− α α · · ·
...

...
...

. . .

 ,

where α ∈ R\{0, 1}. We begin with determining that a matrix A induces a bounded

operator from c to c

Corollary 3.2.1. Zα : c→ c is a bounded linear operator with the norm ‖Zα‖(c,c) =

|α|+ |1− α|

Corollary 3.2.2. Zα : c0 → c0 is a bounded linear operator with the norm ‖Zα‖(c,c) =

‖Zα‖(c0,c0)

13
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3.3. The Spectrum of the Operator Zα On the Sequence Spaces c0 and c

Theorem 3.3.1. σ(Zα, c0) = λ ∈ C : |λ− α| ≤ |1− α|.

Proof. It is enough to prove that (Zα−λI)−1 exist and is in (c0 : c0) for λ /∈ σ(Zα, c0)

and nextly show that the operator Zα − λI is not invertible for λ ∈ σ(Zα, c0). Let

λ /∈ σ(Zα, c0). Since Zα − λI is triangle, (Zα − λI)−1 exists. Therefore, solving the

equation

(Zα − λI)x =


α− λ 0 0 · · ·

1− α α− λ 0 · · ·

0 1− α α− λ · · ·
...

...
...

. . .




x0

x1

x2
...



=


x0(α− λ)

x0(1− α) + x1(α− λ)

x1(1− α) + x2(α− λ)
...

 =


y0

y1

y2
...


we derive x in terms of y that,

x0 =
y0

α− λ
,

x1 =
y1

α− λ
− y0

(α− λ)2
,

x2 =
y0(1− α)2

(α− λ)3
− y1(1− α)

(α− λ)2
+

y0
α− λ

...

which gives the matrix (Zα − λI)−1. The nth row turns out to be,

(1− α)n−k

(α− λ)n−k+1
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‖(Zα − λI)−1‖(c0:c0) = sup
n∈N

n∑
k=1

∣∣∣∣1− αλ− α

∣∣∣∣n−k ∣∣∣∣ 1

λ− α

∣∣∣∣
=

∣∣∣∣ 1

λ− α

∣∣∣∣ n∑
k=1

∣∣∣∣1− αλ− α

∣∣∣∣n <∞ (3.1)

that is (Zα − λI)−1 ∈ (c0 : c0).

α ∈ σ(Zα, c0) and λ 6= α since Zα − λI is triangle (Zα − λI)−1 exists and one

can see by (3.1)That

‖(Zα − λI)−1‖(c0:c0) =∞

whenever α ∈ σ(Zα, c0) and (Zα − λI)−1 is not in B(c0). If α = λ the operator

Zα − λI is represented by the matrix,

Zα =


0 0 0 · · ·

1− α 0 0 · · ·

0 0 1− α · · ·
...

...
...

. . .


since (Zα−λI)x = θ implies x = θ, Zα−λI : c0 → c0 is injective but has not dense

range. So, Zα − λI is not invertible. This completes the proof.

Theorem 3.3.2. σp(Z
α, c0) = ∅.

Proof. Suppose Zαx = λx for x 6= θ = (0, 0, 0, . . .) in c0. Then, by solving the
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system of linear equations

αx0 = λx0

(1− α)x0 + αx1 = λx1

(1− α)x1 + αx2 = λx2
...

(1− α)xk + αxk+1 = λxk
...

we find that if x0 is the first non-zero entry of sequence x = (xn) then λ = α and

from the equation,

(1− α)xn0 + xn0+1 = λxn0+1

we set (1− α)xn0 = 0. Since α 6= 1 we must have σp(Z
α, c0) = ∅, as desired.

Theorem 3.3.3. σp((Z
α)∗, c∗0) = {α ∈ C : |λ− α| ≤ |1− α|}

Proof. Suppose (Zα)∗x = λx for x 6= θ = (0, 0, 0, . . .) ∈ c∗o ∼= `1.


α 0 0 . . .

1− α 0 0 . . .

0 1− α α . . .
...

...
...
. . .




x0

x1

x2
...

 = λ


x0

x1

x2
...


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αx0 + (1− α)x1 = λx0

αx1 + (1− α)x2 = λx1

αx2 + (1− α)x3 = λx2
...

αxk + (1− α)xk+1 = λxk
... .

We obtain that xn = λ−α
1−αx0 which shows that x = (xk) ∈ c∗o if and only if |λ− α| 6

|1− α|.

This completes the proof.

Lemma 3. T has a dense range if and only if T ∗ is one to one.

Lemma 4. The adjoint operator T ∗ of T is onto if and only if T is a bounded

operator.

Theorem 3.3.4. σr(Z
α, c0) = {α ∈ C : |λ− α| ≤ |1− α|}.

Proof. We show that R(Zα − λI) 6= c0 for α satisfying |λ − α| ≤ |1 − α| for λ 6= α

the operator Zα − λI triangle and has an inverse for λ = α the operator Zα − αI

is one to one hence has a inverse but (Zα)∗ − λI not one to one by Theorem 3.3.3.

Now, Lemma 4 yields the fact that the range of the operator Zα − λI is not dense

in c0.

This completes the proof.

Theorem 3.3.5. σc(Z
α, c0) = ∅.

Proof. Since σc(Z
α, c0), σp(Z

α, c0) and σr(Z
α, c0) are disjoint union of the spectrum

σ(Zα, c0), we must have σc(Z
α, c0) = ∅.

Theorem 3.3.6. σ(Zα, c) = λ ∈ C : |λ− α| ≤ |1− α|
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Proof. This is obtained in the similar way that used in proof of Theorem 3.3.1

Theorem 3.3.7. σp(Z
α, c) = ∅

Proof. The proof may be obtained by proceeding as in proving Theorem 3.3.2.

If T : c → c is bounded matrix operator with A, then T ∗ : c∗ → c∗ acting on

C⊕ `1 has a matrix representation of the form

 χ 0

b At

 ,

where χ denotes the characteristic of the matrix A and is the limit of the

sequence of rows of A minus of the limit of the columns of A and b is the column

vector whose kth entry is the limit of kth column of A for each k ∈ N. (Zα)∗ ∈

B(C⊕ `1) is the following:


1 1− α 0 · · ·

0 α 1− α · · ·

0 0 0 · · ·
...

...
...

. . .


Theorem 3.3.8. σ((Zα)∗, c∗) = λ ∈ C : |λ− α| ≤ |1− α|.

Proof. Suppose (Zα)∗x = λx for x 6= θ ∈ c∗ = C⊕ `1,i.e,


1 1− α 0 · · ·

0 α 1− α · · ·

0 0 0 · · ·
...

...
...

. . .




x0

x1

x2
...

 = λ


x0

x1

x2
...

 .
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Then, by solving the system of linear equations,

x0 + (1− α)x1 = λx0

αx1 + (1− α)x2 = λx1

αx2 + (1− α)x3 = λx2
...

αxk + (1− α)xk+1 = λxk
...

we obtain that,

xn =

(
λ− α
1− α

)n
x0

for all n ∈ N. If λ−α
1−α = 1, α = 1 then since s 6= 1 x1 = 0, x2 = 0, x3 = 0, . . . , xn =

0, . . ., that is x = (x0, 0, 0, . . .) is an eigenvector corresponding to α = 1 If λ−α
1−α 6= 1

then x ∈ C⊕ `1

sup
n∈N

∣∣∣∣∣
n−1∑
k=0

(
λ− α
1− α

)k (
λ− α
1− α

)∣∣∣∣∣ <∞
which leads us to consequence that,

∣∣∣∣λ− α1− α

∣∣∣∣ sup
n∈N

∣∣∣∣∣1−
(
λ−α
1−α

)n
1− λ−α

1−α

∣∣∣∣∣ <∞
if and only if |λ− α| 6 |1− α|, as asserted.

Theorem 3.3.9. α ∈ III1σ(Zα, c0).

Proof. By Theorem 3.3.3 and Lemma 3, Zα − αI ∈ III. On the other hand, since

σp(Z
α, c0) = ∅ by Theorem 3.3.2 Zα − αI has inverse then 1 ∪ 2 to show that

Zα − αI ∈ 1, it is enough to establish by Lemma 3 that(Zα)∗ − αI is onto. Given
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y = (yn) ∈ `1 such that ((Zα)∗ − αI)x = y, therefore, calculation gives that

xn =
1

1− s
yn−1

for all n ∈ N. This shows that (Zα)∗ − αI is onto.

Theorem 3.3.10. If α 6= λ, α ∈ III2σ(Zα, c0).

Proof. Since α 6= λ, the operator Zα − αI is triangle. Hence it has inverse by

Theorem 3.3.2. The inverse of the operator Zα − αI is discontinuous. Therefore,

Zα−αI ∈ 2. By Theorem 3.3.3, (Zα)∗−αI is not one to one. By Lemma 3 Zα−αI

does not have a dense range. Therefore, Zα − αI ∈ III.



CHAPTER 4

ON THE FINE SPECTRUM OF THE GENERALIZED

DIFFERENCE OPERATOR B(rk, sk)

In this chapter, we essentially deal with the fine spectrum of the generalized

difference matrix B(rk, sk) which is a band matrix over the sequence spaces c0 and

c.

By C and SD,throughout the text we denote the sets of all constant and strictly

decreasing sequences of real numbers.

4.1. introduction

Let r = (rk) and s = (sk) be either constant or strictly decreasing sequence of

positive real numbers satisfying the following conditions:

lim
k→∞

rk = L1 > 0 and lim
k→∞

sk = L2 > 0,

sup
k∈N

rk ≤ 2L1 and sup
k∈N

sk ≤ 2L2.

Define the generalized difference matrix B(rk, sk) via the sequences r = (rk)

and s = (sk) by

B(rk, sk) =


r0 0 0 · · ·

s0 r1 0 · · ·

0 s1 r2 · · ·
...

...
...

. . .

 .

21
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Corollary 4.1.1. B(rk, sk) : c0 → c0 is a bounded linear operator and ‖B(rk, sk)‖ =

2(supk∈N rk + supk∈N sk)

4.2. The Fine Spectrum of the Operator B(rk, sk) on the Sequence Space

c0 and c

Theorem 4.2.1. σ(B(rk, sk), c0) =
{
α ∈ C :

∣∣∣L1−α
L2

∣∣∣ ≤ 1
}

.

Proof. We firstly prove that

σ(B(rk, sk), c0) ⊆
{
α ∈ C :

∣∣∣∣L1 − α
L2

∣∣∣∣ ≤ 1

}
, (4.1)

which is equivalent to show that α ∈ C with
∣∣∣L1−α

L2

∣∣∣ > 1 implies α /∈ σ(B(rk, sk), c0).

Secondly we prove that

{
α ∈ C :

∣∣∣∣L1 − α
L2

∣∣∣∣ ≤ 1

}
⊆ σ(B(rk, sk), c0). (4.2)

We get B(rk, sk) − αI = (ank) is triangle and has an inverse. Thus,by solving the

matrix equation

B(rk, sk)x =


r0 − α 0 0 . . .

s0 r1 − α 0 . . .

0 s1 r2 − α . . .
...

...
...

. . .




x0

x1

x2
...



=


(r0 − α)x0

s0x0 + (r1 − α)x1

x1s1 + (r2 − α)x2
...

 =


y0

y1

y2
...


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x0 =
y0

r0 − α
,

x1 =
y1

r1 − α
+

s0y0
(r1 − α)(r0 − α)

,

x2 =
y2

r2 − α
+

s1y1
(r2 − α)(r1 − α)

+
s0s1y0

(r2 − α)(r1 − α)(r0 − α)
,

...

xn =
yn

rn − α
+

sn−1yn−1
(rn − α)(rn−1 − α)

+
s0s1s2 . . . sn−1y0

(r0 − α)(r1 − α)(r2 − α) . . . (rn − α)
,

...

Therefore we obtain B = (bnk) = (B(rk, sk)− αI)−1 as follows:

(bnk) =


1

r0−α 0 0 . . .

−s0
(r1−α)(r0−α)

1
r1−α 0 . . .

s0s1
(r0−α)(r1−α)(r2−α)

−s1
(r2−α)(r1−α)

1
r2−α . . .

...
...

...
. . .


Hence (B(rk, sk)− αI)−1 ∈ (c0, c0) if and if only

1. The series
∑∞

k=0 |bnk| is convergent for each n ∈ N and supn∈N
∑∞

k=0 bnk <∞ ;

2. limn→∞ |bnk| = 0 for each k ∈ N .

Now,we will show that the series
∑∞

k=0 bnk is convergent for each n ∈ N . Let

Sn =
n∑
k=0

|bnk|

Sn =

∣∣∣∣ s0s1s2 . . . sn−1
(r0 − α)(r1 − α)(r2 − α) . . . (rn − α)

∣∣∣∣+

∣∣∣∣ −sn−1
(rn − α)(rn−1 − α)

∣∣∣∣+

∣∣∣∣ 1

rn − α

∣∣∣∣.
Clearly,

∑∞
k=0 bnk is convergent for each n ∈ N. Now, we show that supn∈N is finite

let θ = limn→∞
∣∣ sn−1

rn−α

∣∣ θ is continuous. Hence

θ =

∣∣∣∣L1 − α
L2

∣∣∣∣ . (4.3)
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Which shows 0 < θ < 1 and gives

lim
n→∞

1

|rn − α|
= lim

n→∞

∣∣∣∣ sn−1rn − α

∣∣∣∣ ∣∣∣∣ 1

sn−1

∣∣∣∣ =
θ

L2

(4.4)

Sn =

∣∣∣∣ sn−1rn − α

∣∣∣∣Sn−1 +

∣∣∣∣ 1

rn−1

∣∣∣∣ . (4.5)

Letting n→∞ in (4.5) with lies (4.3) and (4.4) one see that

lim
n→∞

Sn =
θ

L2

( 1

1− θ

)
<∞ so sup

n∈N
Sn <∞

since θ = limn→∞
∣∣ sn−1

rn−α

∣∣ < 1. Therefore,
∣∣ sn−1

rn−α

∣∣ < 1. Consequently;

lim
n→∞

|bn0| =
∣∣∣∣ s0s1s2 . . . sn−1
(r0 − α)(r1 − α)(r2 − α) . . . (rn − α)

∣∣∣∣ = 0.

Similarly we can show that limn→∞ |bnk| = 0, for all k = 1, 2, 3, . . ..

Thus;

(B(rk, sk)− αI)−1 ∈ B(c0) for α ∈ C with
∣∣∣L1 − α

L2

∣∣∣ > 1.

Now, we show that the domain at the operator (B(rk, sk) − αI)−1 is dense in c0,

this statement holds if and if only the range of operator (B(rk, sk)− αI)−1 is dense

in c0. Since we have (B(rk, sk)− αI)−1 ∈ (c0, c0). This show that,

σ(B(rk, sk), c0) ⊆
{
α ∈ C :

∣∣∣∣L1 − α
L2

∣∣∣∣ ≤ 1

}
. (4.6)

Now, we suppose that α 6= L1 and α 6= rk for all k and let α ∈ C with
∣∣∣L1−α

L2

∣∣∣ ≤ 1.

Obvious, B(rk, sk)−αI is triangle and hence (B(rk, sk)−αI)−1 exists. So condition

(R2) is satisfied but (R1) fails as we can see below.
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α ∈ C with
∣∣∣L1−α

L2

∣∣∣ < 1

lim
n→∞

∣∣∣ sn−1
rn − α

∣∣∣ > 1.

Consequently;

lim
n→∞

|bn0| =
∣∣∣∣ s0s1s2 . . . sn−1
(r0 − α)(r1 − α)(r2 − α) . . . (rn − α)

∣∣∣∣ 6= 0.

Hence (B(rk, sk)− αI)−1 /∈ B(c0) for with
∣∣∣L1−α

L2

∣∣∣ < 1.

Now we consider
∣∣∣L1−α

L2

∣∣∣ = 1 so |L1 − α| = |L2| which implies |rk − α| = |sk| for all

k. Therefore;
∣∣∣ 1sk ∣∣∣ ≤ ∣∣∣ 1

rk−α

∣∣∣. We have,

Sn =

∣∣∣∣ s0s1s2 . . . sn−1
(r0 − α)(r1 − α)(r2 − α) . . . (rn − α)

∣∣∣∣+

∣∣∣∣ −sn−1
(rn − α)(rn−1 − α)

∣∣∣∣+

∣∣∣∣ 1

rn − α

∣∣∣∣ ≥ n+ 1

sn
.

So we can write,

sup
n∈N

Sn = sup
n∈N

[
n+ 1

sn

]
=∞.

So condition (R2) fails. Hence (B(rk, sk)− αI)−1 /∈ B(c0) for α ∈ C with
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L2

∣∣∣ = 1 if L1 = α as well as rk = α

(B(rk, sk)− rkI)x =


r0 − rk 0 0 . . .

s0 r1 − rk 0 . . .

0 s1 r2 − rk . . .
...

...
...

. . .




x0

x1

x2
...



=



(r0 − rk)x0
s0x0 + (r1 − rk)x1
s1x1 + (r2 − rk)x2

...

sk−2xk−2 + (rk−1 − rk)xk−1
skxk + (rk+1 − rk)xk+1

...


if (rk) = L1 and (sk) = L2, constant B(rk, sk)x = θ so x0 = x1 = x2 . . . = 0 this one

show (B(rk, sk) − rkI) one to one but R(B(rk, sk) − rkI) is not dense in c0, since

the condition (R3) fails. Hence L1 ∈ σ(B(rk, sk), c0) so if (rk) and (sk) are strictly

decreasing sequence

B(rk, sk)x = θ

x0 = x1 = x2 · · · = xk−1 = 0

xn =

(
sn

rn+1−rk

)
xn for all n ≥ k. This show that B(rk, sk) − rkI not injective.

Therefore condition (R1) fails. So rk ∈ σ(B(rk, sk), c0) for all k ∈ N. When

|L1 − α| = |L2|, which implies |rk − α| = |sk| for all k. Therefore,
∣∣∣ 1sk ∣∣∣ ≤ ∣∣∣ 1

rk−α

∣∣∣. We

have,

Sn =

∣∣∣∣ s0s1s2 . . . sn−1
(r0 − α)(r1 − α)(r2 − α) . . . (rn − α)

∣∣∣∣+

∣∣∣∣ −sn−1
(rn − α)(rn−1 − α)

∣∣∣∣+

∣∣∣∣ 1

rn − α

∣∣∣∣ ≥ n+ 1

sn
.
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So we can write,

sup
n∈N

Sn = sup
n∈N

[
n+ 1

sn

]
=∞.

So,the condition (R2) fails. Therefore,

(B(rk, sk)− αI)−1 /∈ B(c0)

for α = L1 so L1 ∈ σ(B(rk, sk), c0) thus in this case rk ∈ σ(B(rk, sk), c0) for all

k ∈ N. This shows that

{
α ∈ C :

∣∣∣∣L1 − α
L2

∣∣∣∣ ≤ 1

}
⊆ σ(B(rk, sk), c0) (4.7)

(4.7) and (4.6) from we get,

σ(B(rk, sk), c0) =

{
α ∈ C :

∣∣∣∣L1 − α
L2

∣∣∣∣ ≤ 1

}

This complete proof.

Theorem 4.2.2.

σp(B(rk, sk), c0) =

 ∅ , (rk), (sk) ∈ C,

{(rk)k∈N, (sk)k∈N} , (rk), (sk) ∈ SD.

Proof. Proof of this theorem is dived two parts. Case1: Assume that (rk) and (sk)

are the constant sequence. Consider B((rk, sk), c0)x = αx for x 6= θ = (0, 0, 0, . . .)
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in c0 which gives

r0x0 = αx0

s0x0 + r1x1 = αx1

s1x1 + r2x2 = αx2
...

sk−1xk−1 + rkxk = αxk
...

let xm is the first non zero entry of the sequence x = (xn). So we get

smxm + rm+1xm+1 = αxk+1 which implies α = xm and from the equation

smxm + rm+1xm+1 = αxm+1

we get xm = 0 which is contradiction our assumption. Therefore;

σp(B(rk, sk), c0) = ∅

Case2: Assume (rk) and (sk) are strictly decreasing sequence. suppose α = r0 Con-

sider

B((rk, sk), c0)x = αx for x 6= θ = (0, 0, 0, . . .) in c0 which gives

xk =

(
sk−1
rk − r0

)
xk−1

xk =

[
s0s1s2 . . . sn−1

(rk − r0)(rk−1 − r0)(rk−2 − r0) . . . (r1 − r0)

]
x0 for all k ≥ 1.

We take x0 6= 0 get non zero solution of the equation B((rk, sk)−r0I)x = θ similarly

if rk = α for all k ≥ 1. Then, xk−1 = 0, xk−2 = 0, . . . , x0 = 0 and

xn+1 =

(
sn

rn+1 − rk

)
xn
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xn+1 =

[
snsn−1sn−2 . . . sk

(rn+1 − rk)(rn − rk)(rn−1 − rk) . . . (rk+1 − rk)

]
xk for all n ≥ k.

if we take xk 6= 0, then, get non zero solution of the equation B((rk, sk)− r0I)x = θ.

Thus, sk = α. If we take s0 = α and similarly if we take sk = α, we can find a

sequence (sk). So; σp(B(rk, sk), c0) = {s0, s1, s2 · · · }

σp(B(rk, sk), c0) = {(rk)k∈N, (sk)k∈N}

This complete the proof.

Theorem 4.2.3. σp(B(rk, sk)
∗, c∗0) =

{
α ∈ C :

∣∣∣L1−α
L2

∣∣∣ < 1
}

.

Proof. Suppose (B(rk, sk))
∗ = αf for θ 6= f ∈ c0 ∼= `1. Then since

(B(rk, sk))
∗ =


r0 s0 0 . . .

0 r1 s1 . . .

0 0 r2 . . .
...

...
...
. . .




f0

f1

f2
...

 =


f0r0 + s0f1

f1r1 + s1f2

f2r2 + s2f3
...

 = α


f0

f1

f2
...,


we have

r0f0 + s0f1 = αf0

r1f1 + s1f2 = αf1

r2f2 + s2f3 = αf2
...

rk−1fk−1 + sk−1fk = αfk
...

This gives fk =

(
α−rk
sk−1

)
fk−1 for all k ≥ 1. Then ,(fk) ∈ `1 if and if only if

∣∣∣∣α−rksk−1

∣∣∣∣ < 1

which implies

∣∣∣∣α−L1

L2

∣∣∣∣ < 1. This complete the proof.
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Theorem 4.2.4.

σr(B(rk, sk), c0) =


{
α ∈ C :

∣∣∣L1−α
L2

∣∣∣ < 1
}

, (rk), (sk) ∈ C,{
α ∈ C :

∣∣∣L1−α
L2

∣∣∣ < 1
}
\{(rk), (sk)} , (rk), (sk) ∈ SD.

Proof. We prove the theorem by divided it into two parts.

Case1: (rk), (sk) ∈ C for α ∈ C with
∣∣L1−α

L2

∣∣ < 1 the operator B(rk, sk) − αI

is a triangle except α = L1 and consequently B(rk, sk) − αI has an inverse. By

Theorem 4.2.2 the operator B(rk, sk) − αI is one to one for α = L1. So it has a

inverse. By Theorem 4.2.3 the operator (B(rk, sk)−αI))∗ = (B(rk, sk))
∗−αI is not

one to one with α ∈ C such that
∣∣L1−α

L2

∣∣ < 1. Hence by Lemma 4 the range of the

operator B(rk, sk)− αI is not dense in c0. So,

σr(B(rk, sk), c0) =

{
α ∈ C :

∣∣∣∣L1 − α
L2

∣∣∣∣ < 1

}

Case2: Let (rk) and (sk) be the strictly decreasing sequences with limk→∞ rk = L1

and limk→∞ sk = L2 for α ∈ C with
∣∣L1−α

L2

∣∣ < 1 the operator B(rk, sk) − αI is a

triangle, except α = rk and α = sk for some k ∈ N. So the operator B(rk, sk)− αI

has an inverse. By Theorem 4.2.2 the operator B(rk, sk)− αI is not one to one for

α = rk and α = sk for some k ∈ N. Thus (B(rk, sk)− αI)−1 does not exist. But by

Theorem 4.2.3

(B(rk, sk) − αI))∗ = (B(rk, sk))
∗ − αI is not one to one with α ∈ C such that∣∣L1−α

L2

∣∣ < 1. Hence by Lemma 4 the range of the operator B(rk, sk)−αI is not dense

in c0. So,

σr(B(rk, sk), c0) =

{
α ∈ C :

∣∣∣∣L1 − α
L2

∣∣∣∣ < 1

}
\{(rk), (sk)}

This complete the proof.
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Theorem 4.2.5.

σc(B(rk, sk), c0) =


{
α ∈ C :

∣∣∣L1−α
L2

∣∣∣ = 1
}

, (rk), (sk) ∈ C,{
α ∈ C :

∣∣∣L1−α
L2

∣∣∣ = 1
}
\{r0} , (rk), (sk) ∈ SD.

Proof. We prove that two case;

Case1: (rk), (sk) ∈ C for α ∈ C with
∣∣L1−α

L2

∣∣ < 1 the operator B(rk, sk) − αI is a

triangle except α = L1 and consequently B(rk, sk)−αI has an inverse. By Theorem

4.2.2 the operator B(rk, sk) − αI is one to one for α = L1. So has an inverse. By

Theorem 4.2.3 the operator (B(rk, sk) − αI))∗ = (B(rk, sk))
∗ − αI is not one to

one with α ∈ C with
∣∣L1−α

L2

∣∣ = 1. Hence by Lemma 4 the range of the operator

B(rk, sk)− αI is not dense in c0. So,

σc(B(rk, sk), c0) =

{
α ∈ C :

∣∣∣∣L1 − α
L2

∣∣∣∣ = 1

}

Case2: Let (rk) and (sk) strictly decreasing sequence with limk→∞ rk = L1 and

limk→∞ sk = L2 for α ∈ C with
∣∣L1−α

L2

∣∣ = 1. The operator B(rk, sk)−αI is a triangle

except r0. So, the operator B(rk, sk) − αI has an inverse. By Theorem 4.2.3 the

operator B(rk, sk)− αI is not one to one for α = r0 . Thus (B(rk, sk)− αI)−1 does

not exist.

Nevertheless by Theorem 4.2.3. (B(rk, sk) − αI))∗ = (B(rk, sk))
∗ − αI is not one

to one with α ∈ C with
∣∣L1−α

L2

∣∣ = 1. Hence by Lemma 4 the range of the operator

B(rk, sk)− αIis not dense in c0. So,

σc(B(rk, sk), c0) =

{
α ∈ C :

∣∣∣∣L1 − α
L2

∣∣∣∣ = 1

}
\{r0}.

This completes the proof.



32

REFERENCES
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difference operator 4 over the sequence space `p 1 < p <∞”, Demonstratio Math.

39, 3 (2006),585–595.

B. Malafose, ”Properties of some sets of sequences and application to the space

of bounded diffrence sequence of order µ”, Hokkaido Math.31, (2002),283–299.
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