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ABSTRACT

The present thesis consists of four chapters. In the second chapter, the
definitions and basic properties of metric space, norm space and linear operator
introduced by Spectral theory were discussed. In this study, some basic concepts related
to the subject of spectrum were given by taking that subject into consideration. Also,
the definition of sequence spaces was introduced and definitions and theorems related
to matrix transformations were given in the first chapter.

In chapter 3, the fine spectrum of newly introduced Z“ operator on the sequence
space co was discussed. We examined the spectra and fine spectra of Zweier matrix
which is a band matrix as an operator over the sequence spaces co and c. additionally,
we also determined the fine spectrum with Goldberg's classification of the operator Z<
on the sequence spaces cp and C.

In the fourth chapter, we essentially dealed with the fine spectrum of the
generalized difference matrix B(r,.s,) which is a band matrix over the sequence
spaces Cp and c.

Keywords: Spectral theory, Fine spectrum, Point Spectrum, Residual spectrum,

Continuous spectrum, Sequence space on ¢y and ¢
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Bu tez 4 boliimden ibarettir. Ikinci béliimde; metrik uzaylar, normlu uzaylar ve
lineer doniisiimlerin tanimi verilerek ozelliklerden bahsedilmistir. Ayrica boliimiin
ikinci kisminda spektrum konusu ele alinarak, konuyla ilgili bazi temel tanim ve
kavramlar verilmistir.

Tezin tglincii boliimiinde; co ve ¢ dizi uzaylan tizerinde Z% Zwier operatdrii
tanimlanarak bu operatoriin ince spektrumu incelenmistir. Ayrica Z% operatdriiniin Co
ve ¢ dizi uzaylar tizerindeki spektrumu Goldberg siniflandirmasina gore verilmistir.

Tezin dordiincii boliimiinde; asli kosegeninde (ry) ve ona paralel ikinci
kosegeninde (sy) dizilerinin terimlerini ihtiva eden B(r,s,) alt {icgen matris olmak
lizere bu matrisin Cg ve ¢ dizi uzaylari lizerindeki ince spektrumu incelenmistir.

Anahtar Kelimeler: Spektrum, ince spektrum, artik spektrum, nokta spektrum,
stirekli spektrum, co ve ¢ dizi uzaylari.
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ABSTRACT

The present thesis consists of four chapters. In the second chapter, the definitions
and basic properties of metric space, norm space and linear operator introduced by
Spectral theory were discussed. In this study, some basic concepts related to the
subject of spectrum were given by taking that subject into consideration. Also, the
definition of sequence spaces was introduced and definitions and theorems related
to matrix transformations were given in the second chapter. In chapter 3, the fine
spectrum of newly introduced operator on the sequence space ¢y was discussed. We
examined the spectra and fine spectra of Zweier matrix which is a band matrix as an
operator over the sequence spaces ¢y and ¢. Additionally, we also determined the fine
spectrum with Goldberg’s classification of the operator on the sequence spaces cg
and c. In the fourth chapter, we essentially dealed with the fine spectrum of the gen-

eralized difference matrix which is a band matrix over the sequence spaces ¢y and c.
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ilerek ozelliklerden bahsedilmistir. Ayrca boltimiin ikinci kisminda spektrum konusu
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INTRODUCTION

We summarize the knowledge in the existing literature concerning with the
spectrum and the fine spectrum of the linear operators defined by some particular
limitation matrices over some sequence spaces. ([Wenger R.B., 1975]) examined the
fine spectrum of the integer power of the Cesaro operator in the space ¢. ([Reade
J.B., 1985]) worked with the spectrum of the Cesaro operator in the sequence space
co. ([Gonzalez M., 1985]) studied the fine spectrum of the Cesaro operator in the se-
quence space £,. ([Okutoyi J.T., 1994]) computed the spectrum of Cesaro operator
on the sequence space bv. Recently, ([Yildirnm M., 1996]) worked the fine spec-
trum of Rhally operators acting on the space ¢ and ¢q. Lately, ([Cogskun C., 1997])
studied the spectrum and fine spectrum for p—Cesaro operator acting on the space
co. ([Akhmedov A.M. and Bagar F.,2004]) have recently determined, independently
than that of (|Gonzalez M., 1985]) the fine spectrum of the Cesaro operator in the
sequence spaces ¢, £p, o by the different way, respectively, where 1 < p < co. Quite
recently, ([ Malafose B., 2002]) and ([Altay B. and Basar F., 2004 |)have respectively
studied the spectrum and fine spectrum of the difference operator on the sequence

spaces ¢, g, Sp; where s, denotes the Banach space of all sequences x = (zj) normed

by

s, = iﬁg%’ (r>0).
Also, ([Akhmedov A.M. and Basar F., 2004]) , ([Altay B. and Basar F., 2005])
have determined the fine spectrum with respect to Goldberg’s classification of the
difference operator A and generalized difference operator B(r, s) over the sequence
spaces {,, bv, and cy, c; receptively. Later Bilgi¢ ([H. and Furkan H., 2007]) worked
on the spectrum of the operator B(r,s,t), defined by a triple-band lower triangle

matrix, over the sequence spaces ¢; and bv.



CHAPTER 2

PRELIMINARIES, BACKGROUND AND NOTATION

Spectral theory is one of the main branches of modern functional analysis and
its applications. Roughly speaking it is concerned with certain inverse operator,
their general properties and their relation the original operator. Such inverse oper-
ator arise naturally in connection with the problem of solving equation (system of
linear algebraic equation differential equation, integral equation) for instance, the
investigation of boundary value problem by Sturm and Liouville, and Fredholm’s

famous theory of integral equations were important to development of the field.

In Chapter 2, we mention some properties and give an introduction to spectral

theory of bounded linear operators.

2.1. Background

In this section, we give some required definitions related with the spectrum.

Definition 2.1. (Metric space) Let X be a non-empty set and d be a distance
function from X x X to the set Rt of non-negative real numbers. Then the pair
(X, d) is called a metric space and d is a metric for X, if the following metric axioms

are satisfied for all elements z,y, z € X:

(M.1) d(z,y) =0 if and only if x = y.
(M.2) d(z,y) = d(y,z), (the symmetry property).
(M.3) d(x,2) < d(z,y) +d(y, z), (the triangle inequality).



3

Definition 2.2. (Normed space) Let X be a real or complex linear space and
| - || be a function from X to the set R™ of non-negative real numbers. Then the
pair (X, | - |) is called a normed space and || - || is a norm for X, if the following

norm axioms are satisfied for all elements =,y € X and for all scalars a:

(N.1) ||z|| = 0 if and only if z = 6.
(N.2) ||az|| = |a|||x||, (the absolute homogenity property).
(N.3) |l +yll < |lz] + |lyll, (the triangle inequality).

Definition 2.3. (Banach space) A Banach space X is complete normed linear
space. Completeness means that if ||z, — z,|| = 0 as m,n — oo, where z,, € X,

then there exist z € X such that ||z, — z|| — 0 as n — oc.

Definition 2.4. (Linear operator) In calculus we consider real line R and real-
valued functions on R (or on a subset R). Obviously, any such function is a mapping
of its domain into R. In functional analysis, we consider more general space, such
metric space and normed space and mapping of these space in the case of vector

space and in particular, normed space a mapping is called an operator.

A linear operator T is an operator such that

(i) the domain D(T) of T is a vector space and range R(T") lies in a vector space
over the same field

(i) for all x,y € D(T) and scalars «,
Tx+y) = Te+Ty

T(ar) = oTx

Observe the notation; we write Tz instead of T'(z); this simplification is standard
in functional analysis. Furthermore for the remainder of the thesis we shall use the

fol- lowing notation:

D(T') denotes the domain of T



R(T) denotes the range of T’
N(T') denotes the null space of T

By definition the null space of T" is set of all x € D(T") such that Tz = 0. We
should also say something about the use of arrows in connection with operators.
Let D(T) € X and R(T) C Y, where X and Y are vector spaces, both real or
complex. Then 7T is an operator from D(7T) onto R(T'), written

T : D(T) — R(T)

or from D(T) into Y

T:D(T) =Y

If D(T) is the whole space X, then and only then we write

T:X-=Y

Definition 2.5. (Bounded linear operator) Let X and Y be the normed spaces
and T : D(T) — Y a linear operator, where D(7) C X. The operator T is said to

be bounded operator if there is a positive real number ¢ such that

[Tl = el

for all z € D(T). Let X and Y be linear spaces. By L(X,Y) and B(X,Y), we
denote the set of all linear operators and the set of all bounded linear operators

from X into Y.
Theorem 2.1.1. Let X, Y be the normed spaces and T : X — Y be linear operator.

Then

(i) T continuous at the origin implies Tuniformly continuous on X .

(i) T is continuous on X if and only if it is bounded.
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Proof. (i) We have ||Tx| < e whenever ||z|| < 6. Hence, if ||z — y| < 0 then
|T(x —y)|| = || Tx — Tyl|| < € by linearity of T

(1) First let 7' be bounded. ||Tz| = ¢||z|| on X. Then
| Te = Tyl| = [T(z —y)| <cllz —yll <e
if ||z — y|| < £ Hence, T" uniformly continuous on X. Then 7" is continuous at ¢

and so there exist § = §(1) such that ||Tz|| < 1 whenever ||z|| < 0. Take any = # 6.
Then

H oz ’_ J

20j=[lf] 2

and so HT(ﬁT—;) H <1, ||Tz| < 2|z

If z = 6 then ||[Tz|| = 0 and so ||Tz|| < 267!||z|| on X, i.e T is bounded. O

Definition 2.6. (Norm of a bounded operator) Let T € B(X,Y) then the

norm of 7" is defined as

T
17 = sup 220 < o (2.1)

o0 |||

The supremum on the right side of (2.1)is finite which follows from the fact that
|Tz|| = ¢||x|| when T' € B(X,Y)

Now we show that ||Tz| is indeed a norm on B(X,Y) and also we prove that
B(X,Y) is a Banach space when Y is a Banach space, irrespective of whether X is

a Banach space.

Definition 2.7. (Matrix Transformation) Let A = (a,x) be an infinite matrix

of complex numbers a,;, where k,n € N. We write
(AX)y = anmear;  (n € N, € Dy), (2.2)
k=0

where Dgo(A) denotes the subspace w consisting of x € W for which the sum exist
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as a finite sum. More generally, if ;¢ is a normed sequence space, we can write D, (A)

for € w for which the sum in (2.2) converges in the norm of p. We will write

(\:p)={A:AC D,(A)

for the space of those matrices send the whole of the sequence space A into y in this

sense.

Lemma 1. The matriz A = (an;) gives rise to a bounded operator T € B(c) from

¢ to itself if and only if

(1) the rows of A in ¢y and their {; norms are bounded,
(2) the columns of A are in c,
(8) the sequence of row sums of A is in c.

The operator norm of T is the supremum of the {1 norms of the rows.

Lemma 2. The matriz A = (an,) gives rise to a bounded operator T' € B(cg) from

co to itself if and only if

(1) the rows of A in ¢y and their {1 norms are bounded,
(2) the columns of A are in c.

The operator norm of T is the supremum of the {1 norms of the rows.

Definition 2.8. (Spectral theory in finite dimensional normed space ) Let
X be finite dimensional normed space and T : X — Y a linear operator. Spec-
tral theory of such operators is simpler than that of operators defined on infinite
dimensional spaces. In fact we know that we can represent T" by matrices which
depends on the choice of bases for X and we shall see that spectral theory of T
is essential matrix eigenvalue theory. So, let us begin matrices. For given real or
complex n-square matrix A = (o) the concepts of eigenvalue and eigenvector are

defined terms of the equation

Az = \x (2.3)



as follows.

Definition 2.9. ( Eigenvalues, eigenvectors, eigenspaces, spectrum,

resolvent set of matrix) An eigenvalue of a square matrix A = (a;y,) is a number
A such that (2.3) has a solution = # 6. This z is called an eigenvector of A corre-
sponding to that eigenvalue A. The eigenvectors corresponding to that eigenvalue
A and the zero vector from a vector subspace of X which called eigenspace of A
corresponding to that eigenvalue X\. The set o(A) of all eigenvalues of A is called
the spectrum of A, its complement p(A) = C — g(A) in the complex plane is called

the resolvent set of A.

Theorem 2.1.2. Let T € B(X, X), where X is a Banach space. If | T|| < 1, then

(I —T)™" exist as a bounded linear operator on the whole space X and

(1_T)_1:ZTk:]+T+T2+"'

k=0

Theorem 2.1.3. If X # {0} is a complex Banach space and T € B(X,X), then
ao(T) #0.

Definition 2.10. (Spectral radius) The spectral radius r,(7") of an operator
T € B(X, X) on a complex Banach space X is the radius of the smallest closed disk

centered at the origin of the complex A-plane and containing o(7'),i.e

ro(T) = sup ||
Aeo(T)

2.2. Purpose of Study

Let X and Y be the Banach spaces and T': X — Y also be a bounded linear

operator. By R(T'), we denote the range of T, i.e.,

R(T)={yeY :y=Tz, z € X}.
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By B(X), we also denote the set of all bounded linear operators on X into itself.
If X is any Banach space and 7' € B(X) then the adjoint 7" of T" is a bounded
linear operator on the dual X* of X defined by (T*f)(z) = f(Tx) for all f € X*
and x € X.

Let X # {#} be a non trivial complex normed space and T : D(T) — X
a linear operator defined on subspace D(T') C X. We do not assume that D(T)
is dense in X, or that T" has closed graph {(z,Tz) : x € D(T)} C X x X. We

mean by the expression “T"is invertible” that there exists a bounded linear operator

S : R(T) — X for which ST = I on D(T) and R(T) = X; such that S = T!
is necessarily uniquely determined, and linear; the boundedness of S means that T’
must be bounded below, in the sense that there is k& > 0 for which ||Tz|| > k||z|| for

all z € D(T). Associated with each complex number « is perturbed operator

T, =T — al,

defined on the same domain D(T') as T. The spectrum o(T,X) consist of those
a € C for which T, is not invertible, and the resolvent is the mapping from the

complement o (7T, X) of the spectrum into the algebra of bounded linear operators

on X defined by o +— T, 1.

The name resolvent is appropriate, since T, ! helps to solve the equation
Tox = y. Thus, z = T, 'y provided T, ! exists. More important, the investiga-
tion of properties of T, ! will be basic for an understanding of the operator T itself.
Naturally, many properties of T, and T);' depend on «, and spectral theory is con-
cerned with those properties. For instance, we shall be interested in the set of all a’s
in the complex plane such that T, exists. Boundedness of T, ! is another property
that will be essential. We shall also ask for what a’s the domain of 7! is dense in
X, to name just a few aspects. A regular value o of T' is a complex number such
that T, exists and bounded and whose domain is dense in X. For our investigation
of T, T,, and T, ', we need some basic concepts in spectral theory which are given

as follows ([Kreyszig E., 1978 see pp. 370-371]):
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The resolvent set p(T') of T is the set of all regular values « of T'. Furthermore,

the spectrum o(7') is partitioned into the following three disjoint sets

The point (discrete) spectrum o,(T, X) is the set such that T, ' does not exist.

An a € 0,(T) is called an eigenvalue of T.

The continuous spectrum o.(T, X) is the set such that T ! exists and is

bounded and the domain of 7);' is dense in X.

The residual spectrum o,.(T, X) is the set such that T, exists (and may be

bounded or not) but the domain of T);! is not dense in X.

To avoid trivial misunderstandings, let us say that some of the sets defined

above, may be empty. This is an existence problem which we shall have to discuss.
Indeed, it is well-known that o.(T, X) = 0,.(T, X) = () and the spectrum o(T, X)

consists of only the set 0,(7, X) in the finite dimensional case.

From ([Goldberg S., 1985]) if X is a Banach space and T' € B(X), then there
are three possibilities for R(T) and T~

() R(T)=X
(T)

(II) R(T)#R(T)=X
(Il) R(T)#X
and

(1) T~! exists and is continuous.
(2)  T! exists but is discontinuous.
(3)  T~! does not exist.

Applying Goldberg’s classification to T, we have three possibilities for T, and T, ;

(I) T, is surjective.
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(I)  R(T,) # R(Ta) = X
(I)  R(T,) # X

and

(1) T, is injective and T, ! is continuous.
(2) T, is injective and T, ' is discontinuous.

(3) T, is not injective.

If these possibilities are combined in all possible ways, nine different states are
created. These are labeled by: Iy, Iy, I3, 111,115,115, 111,115 and I115. If o is
a complex number such that 7, € I or T, € II; then « is in the resolvent set
p(T, X) of T. The further classification gives rise to the fine spectrum of 7. If an

operator is in state 1, for example, then R(T) # R(T) = X and T~! exists but is

discontinuous and we write a € I1,o(T, X).

111
I,
IT1
11
11,
15
I3

I

I

A

T*

I, I, Iy II, I, ILITLIILITI,

T

Fig.1: State diagram for B(X) and B(X*)

for a non-reflective Banach space X.

By the definitions given above, we can illustrate the subdivision of spectrum
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in the following table:

1 2 3
R()\; L) exists R(\; L) exists R(\; L)
and is bounded | and is unbounded | does not exists
A€ o,(L)
I |RAM—-L)=X A€ p(L) - A€ og(L)
A€ o.(L) A€ o,(L)
II |RAM—-L)=X A€ p(L) A € 04y(L) A € 04(L)
A€ os(L) A € os(L)
A€o (L) A€o (L) A€ o,(L)
I | RM—-L)#X | Xeos(L) \ € 0,4p(L) A € 04p(L)
A €os(L) A € os(L)
A€ 0eo(L) A€ 0e(L) A€ 0eo(L)

Table 1.2

From now on, we should note that the index p has different meanings in the
notation of the spaces £, €7, bu,, bu, and the point spectrums o,(B(r,s,t),0,),
op(B(r,8,1)",£3), 0p(B(r, 5,t),bv,), 0p(B(r, 5,1)*, buy) which occur in theorems given

in Section 2 and Section 3.

By a sequence space, we understand a linear subspace of the space w = CN of
all complex sequences which contains ¢, the set of all finitely non—zero sequences,
where N = {0,1,2,...}. We write {, ¢, ¢y and bv for the spaces of all bounded,
convergent, null and bounded variation sequences, respectively. Also by ¢,, we

denote the space of all p-absolutely summable sequences, where 1 < p < oc.

The purpose of this study is to collect the knowledge on the spectrum of
some triangle operators defined by certain summability matrices over the classical

spaces {, ¢, cy and £,. Of course, to obtain the spectrum and fine spectrum of the
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generalized difference operator B(r, s) over one of the classical spaces (., ¢, ¢y and
¢, may be studied by following ([A.M. Akhmedov and Baar F., 2004]) and ([ Bilgi
H. and Furkan H., 2007]).



CHAPTER 3

ON THE SPECTRUM AND FINE SPECTRUM OF THE
ZWEIER MATRIX AS AN OPERATOR

3.1. Introduction

The purpose in this chapter is to determine the fine spectrum of the Zweier

matrix which is the band matrix as an operator over the sequence spaces ¢y and c.

3.2. Zweier Matrices

Let us consider the zweier matrix Z¢ represented by following band matrix

where o € R\ {0, 1}. We begin with determining that a matrix A induces a bounded

operator from c to ¢

Corollary 3.2.1. Z* : ¢ — c is a bounded linear operator with the norm ||Z||(c.c) =

o] + 1 —af

Corollary 3.2.2. Z% : ¢y — cq is a bounded linear operator with the norm || Z%||(c.c) =

HZQH(CmCO)
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3.3. The Spectrum of the Operator Z¢ On the Sequence Spaces ¢y and ¢

Theorem 3.3.1. 0(Z% c)) =A€C:|A—al <|1—al

Proof. Tt is enough to prove that (Z%—\I)~! exist and is in (cg : o) for A & 0(Z%, ¢p)
and nextly show that the operator Z% — AI is not invertible for A\ € o(Z%, ¢y). Let
A ¢ a(Z% cg). Since Z* — A is triangle, (Z% — X\I)~! exists. Therefore, solving the

equation

oa— A 0 0 T
l—a a—X 0 1
(Z¢ =Xz =
0 l—-a a—X --- T
zo(ar — A) Yo
B zo(l—a)+ai(a=A) | | »n
(1 —a) + zo(a — A) 0
we derive x in terms of y that,
e — Yo
0 a_)\7
= oo Yo
! a—XN  (a—=N)?
1—a)? 1—
£y = Yol @) _yl( 04)+ Yo

(v — \)3 (@—=A)?  a-—=2A

which gives the matrix (Z% — M\ )~!. The n'* row turns out to be,

(1—a)*
(a0 — \)n—ht1
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”(Za_/\])_IH(C(J:CO) = Sup

< 0 (3.1)

that is (Z* — AX)™! € (co : o).

a € 0(Z% cp) and X # « since Z% — M is triangle (Z* — AI)~! exists and one
can see by (3.1)That

H(Za - )‘I)_IH(Coico) =0

whenever a € 0(Z%, ¢y) and (Z% — AI)~! is not in B(cy). If @ = X the operator

Z* — M is represented by the matrix,

0 0 0
l—a 0 0
7% =
0 01—«

since (Z% — Xl )z = 0 implies x = 0, Z* — A\ : ¢ — ¢ is injective but has not dense

range. So, Z“ — Al is not invertible. This completes the proof. O

Theorem 3.3.2. 0,(Z% ¢) = 0.

Proof. Suppose Z% = Az for © # 6 = (0,0,0,...) in ¢g. Then, by solving the
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system of linear equations

arg = AXp
(1—a)rg+axr; = Ay
(1 —a)r; +axry = Ay
(1 — )z + argr = Ay

we find that if z is the first non-zero entry of sequence z = (z,,) then A = o and

from the equation,

(1 - C“)‘%no T Tng+1 = )‘xnoJrl

we set (1 — a)z,, = 0. Since a # 1 we must have 0,(Z%,¢p) = 0, as desired.

Theorem 3.3.3. 0,((Z%)*,¢}) ={a € C: |A—a| <|1—al}

Proof. Suppose (Z%)*x = Ax for x # 0 = (0,0,0,...) € ¢t = (4.

o
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arg+ (1 —a)z; = Axg
ar+ (1 —a)zy = Ay
ars+ (1 —a)zs = Axg
arg+ (1 — @)z = Aag
We obtain that z, = 3=2x, which shows that x = (zx) € ¢} if and only if |A — a| <
11— al.
This completes the proof. n

Lemma 3. T has a dense range if and only if T™ is one to one.

Lemma 4. The adjoint operator T* of T 1is onto if and only if T is a bounded

operator.

Theorem 3.3.4. 0,(Z% ¢)) ={acC:|]A—a| <|1 —al}.

Proof. We show that R(Z® — M) # ¢, for a satisfying |A — a| < |1 — a for X # a
the operator Z¢ — A\I triangle and has an inverse for A = « the operator Z¢ — ol
is one to one hence has a inverse but (Z%)* — Al not one to one by Theorem 3.3.3.
Now, Lemma 4 yields the fact that the range of the operator Z¢ — AI is not dense

in cg.

This completes the proof. O

Theorem 3.3.5. 0.(Z%,¢) = 0.

Proof. Since 0.(Z%,¢y), 0,(Z%, co) and 0,(Z%, ¢y) are disjoint union of the spectrum

o(Z%, cy), we must have 0.(Z%, cy) = 0. O

Theorem 3.3.6. 0(Z% ¢c) = € C:|A—a| <|1 —q]
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Proof. This is obtained in the similar way that used in proof of Theorem 3.3.1 [

Theorem 3.3.7. 0,(Z%,¢c) =)

Proof. The proof may be obtained by proceeding as in proving Theorem 3.3.2. [

If T : ¢ — cis bounded matrix operator with A, then 7% : ¢* — ¢* acting on

C & /1 has a matrix representation of the form

x 0
b Al

where y denotes the characteristic of the matrix A and is the limit of the
sequence of rows of A minus of the limit of the columns of A and b is the column
vector whose kth entry is the limit of kth column of A for each k € N. (Z*)* €
B(C @ ¢,) is the following:

Theorem 3.3.8. o((ZY)*,¢* ) =Ae€C:|A—a| < |1 —qal.

Proof. Suppose (Z%)*x = Az for x # 0 € ¢* = C @ {4,i.e,

1 1—« 0 o o
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Then, by solving the system of linear equations,

o+ (1—a)ry = Az

ary + (1 —a)zy = Axg
ars + (1 —a)zs = Axg
arg+ (1 —a)zp = Axg

we obtain that,

A—a\"”
Ty = x
11—« 0
for all n € N. If’l\:—z:1,azlthensinces;«élxlz(),xgzo,xgz(),...,xn:

0,..., that is * = (x0,0,0,...) is an eigenvector corresponding to = 1 If ’1\:—2‘ #1

then x € C® ¢,

—/A—a\'/A—a
sup T T < o0
neN |77 (07 o
which leads us to consequence that,
A—al |1-(5=2)"
sup = < 00
1 | neN 1-— l—g
if and only if |A — a] < |1 — «f, as asserted. O

Theorem 3.3.9. o € [I1,0(Z%, cp).

Proof. By Theorem 3.3.3 and Lemma 3, Z* — ol € [1I. On the other hand, since
0,(Z% ¢o) = 0 by Theorem 3.3.2 Z* — ol has inverse then 1 U 2 to show that
Z* —al € 1, it is enough to establish by Lemma 3 that(Z%)* — ol is onto. Given
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y = (yn) € {1 such that ((Z*)* — al)x = y, therefore, calculation gives that

for all n € N. This shows that (Z*)* — al is onto. O

Theorem 3.3.10. If a # X\, o € [11,0(Z%, cp).

Proof. Since o # A, the operator Z* — «al is triangle. Hence it has inverse by
Theorem 3.3.2. The inverse of the operator Z% — ol is discontinuous. Therefore,
Z*—al € 2. By Theorem 3.3.3, (Z%)* —al is not one to one. By Lemma 3 Z% —al

does not have a dense range. Therefore, Z7* — ol € I11. O]



CHAPTER 4

ON THE FINE SPECTRUM OF THE GENERALIZED
DIFFERENCE OPERATOR B(ry, s;)

In this chapter, we essentially deal with the fine spectrum of the generalized
difference matrix B(ry, sx) which is a band matrix over the sequence spaces ¢y and

C.

By C and SD,throughout the text we denote the sets of all constant and strictly

decreasing sequences of real numbers.

4.1. introduction

Let r = () and s = (s;) be either constant or strictly decreasing sequence of

positive real numbers satisfying the following conditions:

limr, = L;>0 and lim s, = Ly >0,
k—o00 k—o0

suprry < 2L; and supsg < 2Ls.
keN keN

Define the generalized difference matrix B(ry, sx) via the sequences r = (ry,)

and s = (sg) by

To 0 0

So T1 0
B(Tk, Sk) =
0 S1 To
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Corollary 4.1.1. B(ry,sy) : co — ¢ is a bounded linear operator and || B(rg, sg)|| =

2(SupkeN Tk + SUDgen Sk)

4.2. The Fine Spectrum of the Operator B(r, s;) on the Sequence Space

co and ¢

Theorem 4.2.1. o(B(rg, si), o) = {oz eC: LlL—;a < 1}.
Proof. We firstly prove that
L1 —
o(B(rg, sk),c0) CqaeC: <1y, (4.1)
2
which is equivalent to show that o € C with LlL—;O‘ > 1 implies a ¢ o(B(rg, sk), ).
Secondly we prove that
L1 —
acC: 7 <13 Co(B(rg, sk), o) (4.2)
2

We get B(ry, sk) — al = (ang) is triangle and has an inverse. Thus,by solving the

matrix equation

Ty — QO 0 0 . To
S T — o 0 o T
B(rg, sp)xr = 0 ! !
0 S1 Ty — Q& ... T
(7’0 - a)éfo Yo
B SoTo + (11 — )z | wm
151+ (r2 — @)xo Yo




23

Yo
rg = ,
o — «
. hn SoYo
TR e e
= Y2 S$1Y1 S051Y0
2 - b
ro—a  (ro—a)(ri—a)  (ro—a)(r; —a)(rg — «)
T, = Yn + Spn—1Yn—1 505152 .. .8n—1Y%0

rm—a (rp—a)(rp1—a) (ro—a)(rn—a)(irp—a)...(r, —a)’

Therefore we obtain B = (b,x) = (B(ry, sx) — al)~! as follows:

Tol_a 0 0
—s 1
(bnk) _ (rlfa)(g'ofa) ri—a 0

S0S1 —S1 1
(ro—a)(ri—a)(re—a) (re—a)(ri—a) re—«

Hence (B(ry, sp) — al)™ € (cg, o) if and if only

1. The series Y ;- |bngk| is convergent for each n € N and sup,,cy Y peg bnk < 00 ;

2. limy, 00 |bpk| = 0 for each k € N .

Now,we will show that the series ZZOZO bnx is convergent for each n € N . Let

k=0

1

Ty — |

505152 ...5p—1

(ro —a)(r —a)(rs —a)...(r, —a)

—Sp—1

o = (rm—a)(rnr —a)

+ +

Clearly, > 77, buy is convergent for each n € N. Now, we show that sup,,cy is finite

Sn—1
T —0

let 0 = lim,, | | 0 is continuous. Hence

Ll—a
Ly |

0= ‘ (4.3)
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Which shows 0 < 6 < 1 and gives

. . Snfl 1 9
| =1 = — 4.4
nl_)r{.lo ’rn — 04‘ nl—%lo Tn — || Sp_1 Lo ( )
n— 1
S, = |-l 4 (4.5)
Tn — Tn—1

Letting n — oo in (4.5) with lies (4.3) and (4.4) one see that

0 1

since 6 = lim,, !f::;| < 1. Therefore, ’;:_:H < 1. Consequently;
. 505152 ...Sp—1
lim |b,0| = = 0.
n—>oo| o (ro —a)(ry —a)(res —a)...(r, —«)
Similarly we can show that lim, . |b,x| =0, for all £ =1,2,3,....
Thus;
-1 . Ll -«
(B(rg,sk) —al)™ € B(cy) for a € C with ’ 7 ‘ > 1.
2

Now, we show that the domain at the operator (B(ry,s.) — al)~! is dense in ¢,
this statement holds if and if only the range of operator (B(ry, s;) —al)~! is dense

in ¢y. Since we have (B(ry, sy) — al)™! € (cp, o). This show that,

Ll—oz

2

o(B(rk, s1), co) € {a eC: '

< 1} . (4.6)

Li1—«

=e) <.

Now, we suppose that a # Ly and a # 1, for all k£ and let a € C with

Obvious, B(ry, s;) — ol is triangle and hence (B(ry, sp) —al) ™! exists. So condition

(R2) is satisfied but (R;) fails as we can see below.
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a e Cwith |B=2) <1
lim |21 | > 1
n—oo ’]"n —
Consequently;
. 505152 ...Sp—1
lim |b,0| = 0.
nggo| nol (ro —a)(ri —a)(ry — ) ... (r, — ) 7

Hence (B(ry, sg) —al)™' ¢ B(c) for with LILEO‘ < 1L

Now we consider LlL—;”‘ =150 |L; — a| = |Ls| which implies |ry — a| = |s;| for all

k. Therefore; Si < Tkl_a . We have,

S = 505182 ... Sn—1 n —Sn_1 . 1 > n + 1‘
(ro — a)(r1 —a)(rs —a)...(r, —«) (rn — a)(rp_1 — @) Tn — Q Sn

So we can write,

{n—l— 1]
sup S, = sup = 00.
neN neN

So condition (Ry) fails. Hence (B(ry, si) —al)™t ¢ B(c) for a € C with
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L};a =1if L1 =a as well as 1, = «
ro — Tk 0 0 e Zo
So r — Tk O . T
(B(ry, sg) —rgl)z =
0 S1 o — T ... )
(1o — 71)T0
Soxo + (rl - Tk)xl
s121 + (1o — 71) o
Sp—92T—2 + (Tk;—l - rk)xk—l
STk + (ka1 — Th) T
i (Tk) — [, and (Sk) _ L27 constant B(Tk,Sk)x =60 so To=T1=29...=0 this one

show (B(rg, sk) — riI) one to one but R(B(ry,sk) — rxl) is not dense in ¢, since
the condition (Rj3) fails. Hence Ly € o(B(ry, sk), ¢o) so if (ry) and (si) are strictly

decreasing sequence

B(ry, sp)x =0

To=21 =Ty =2xp_1 =0

Sn
Tn41—Tk

Therefore condition (R;) fails. So 7 € o(B(rg, sk), co) for all £ € N. When

Ty = x, for all n > k. This show that B(rg,sg) — gl not injective.

|L1 — a| = |Ls|, which implies |y, — a| = |si| for all . Therefore,’i’ < m%g . We
have,
505152 ...Sp—1 —Sn—1 1 n+1
(ro —a)(ri —a)(ry — ) ... (r, — @) (rn — a)(rp_1 — a) Ty — Q Sn
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So we can write,

{n + 1]
sup S, = sup = 00.
neN neN Sn

So,the condition (Rz) fails. Therefore,
(B(ry, sx) —al)™" ¢ B(co)

for « = Ly so Ly € o(B(rg, Sk),co) thus in this case rp € o(B(r, sk), co) for all

k € N. This shows that

. Ll—O{
{aGC.' I

< 1} C o(B(rg, sk), co) (4.7)

(4.7) and (4.6) from we get,

Ll—Oé
L,

o(B(ry, si), co) = {a eC: ‘

:

This complete proof. O
Theorem 4.2.2.

0 . (rk), (sk) €C,

OP(B(rkv Sk)7 CO) =
{(Tk)kel\b (Sk)keN} , (Tk), (Sk) e SD.

Proof. Proof of this theorem is dived two parts. Casel: Assume that (1) and (si)

are the constant sequence. Consider B((rg, sk), co)r = ax for x # 6 = (0,0,0,...)
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in ¢y which gives

Toog = QX

Soro + 111 = Qxy
S$1T1 +TroTos = Qo
Sp_1Tp—1 + Tl = Qxy

let x,, is the first non zero entry of the sequence z = (x,,). So we get

SmTm + Tmi1Tme1 = a1 which implies @ = z,,, and from the equation

SmTm + "'m+1Tm4+1 = A1

we get x,, = 0 which is contradiction our assumption. Therefore;

O'p<B(Tk, Sk), Co) - @

Case2: Assume (ry) and (sg) are strictly decreasing sequence. suppose o = 1y Con-
sider

B((ry, sx), co)x = ax for x # 6 = (0,0,0,...) in ¢y which gives

5085182 ...8p—1

(re —ro)(rk—1 — 10)(rg—2 — 10) ... (r1 — 10)

T =

}xo for all k> 1.

We take o # 0 get non zero solution of the equation B((r, si) — 7ol )z = 6 similarly

if r, =aforall k>1. Then, 1 =0,2,_2=0,...,290 =0 and

Sn
Lp+1 = Ty
Tn+1 — Tk
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SnSn—15n—2 ... S8k
(Tng1 = 70)(rn = 71) (Tt — 7)) + o (T — T0)

Tpi1 = zp forall n > k.

if we take z;, # 0, then, get non zero solution of the equation B((rg, sg) —rol)z = 6.
Thus, s = a. If we take s9 = « and similarly if we take s = a, we can find a

sequence (si). So; 0,(B(7k, Sk), o) = {0, 51,52+ - }

0p(B(Tk, 8k), c0) = { (k) ken, (Sk)ren}

This complete the proof. m
<1},

Proof. Suppose (B(ry, s;))* = af for 0 # f € ¢y = ¢1. Then since

Li—«
Lo

Theorem 4.2.3. 0,(B(ry, sk)*, ¢f) = {a eC:

ro so 0... fo foro + sof1 fo
. 0 7r s1... fi Jiri +s1fa fi

(B(Tlm Sk)) = = = «
0 0 r... fo fara + s2f3 fo

we have

rofo+ sofi = afy
mfi+sife = afi
rofo + s2fs = afs

Th—1fi—1 + Sk—1fk = ofk

a—Tg
Sk—1

<1

Sk—1

This gives f; = (ar’“)fk_l for all £ > 1. Then ,(f) € ¢, if and if only if

a—L1

which implies <L This complete the proof. O
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Theorem 4.2.4.

(B( ),co) = {QEC: LlL_;a <1} . (rk), (sg) €C,
r k> Sk); Co {a c LIL;O[ < 1}\{(rk),(sk)} (), (s) € SD.

Proof. We prove the theorem by divided it into two parts.

Casel: (ry),(s;) € C for a € C with ‘L}J—;a‘ < 1 the operator B(rg, si) — al
is a triangle except o = L; and consequently B(ry,s;) — ol has an inverse. By
Theorem 4.2.2 the operator B(ry, sx) — al is one to one for @« = Ly. So it has a
inverse. By Theorem 4.2.3 the operator (B(ry, sy) —al))* = (B(rg, sg))* —al is not
one to one with o € C such that }LlL—;O“ < 1. Hence by Lemma 4 the range of the

operator B(rg, si) — al is not dense in ¢y. So,

Ll—Oé

L,

0 (B, s1), o) = {a eC: ‘

2

Case2: Let (r;) and (sg) be the strictly decreasing sequences with limy o 7% = Ly
and limy_,o S, = Lo for a € C with ‘LlL—;a‘ < 1 the operator B(rg,s;) —al is a
triangle, except o = 1, and o = sy, for some k € N. So the operator B(r, sg) — al
has an inverse. By Theorem 4.2.2 the operator B(rg, si) — ol is not one to one for
a =1t and a = s, for some k € N. Thus (B(rg, sg) — )™ does not exist. But by
Theorem 4.2.3

(B(ry,sk) — al))* = (B(rg, sk))* — al is not one to one with a € C such that
|Li—;°‘| < 1. Hence by Lemma 4 the range of the operator B(ry, sp) — al is not dense

in ¢o. So,

—
Ly

L
o-(B(rg, sk),co) = {Oz cC: ‘ !

< 1} (), (50}

This complete the proof. n
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Theorem 4.2.5.

[ {aec:|bz=] =1} . () (se) €€,
o(B(rk, Sk), Co) = {a cC-: LlL;a _ 1} \{ro} , (re), () € SD.

Proof. We prove that two case;

Casel: (1), (sg) € C for a € C with }LIL—;“} < 1 the operator B(ry,sg) —al is a
triangle except a = Ly and consequently B(r, sx) — al has an inverse. By Theorem
4.2.2 the operator B(ry, s;) — al is one to one for &« = L;. So has an inverse. By
Theorem 4.2.3 the operator (B(ry,sx) — al))* = (B(rg, sx))* — ol is not one to
one with a € C with |L1L—;a| = 1. Hence by Lemma 4 the range of the operator

B(rg, s;) — o is not dense in ¢j. So,

L
oe(B(ry, si), o) = {a eC:

Case2: Let () and (sg) strictly decreasing sequence with limy . ry = L; and
limy_,oo St = Lo for a € C with ‘LlL—;O“ = 1. The operator B(ry, sx) —al is a triangle
except 9. So, the operator B(ry, s;) — al has an inverse. By Theorem 4.2.3 the
operator B(r, sz) — al is not one to one for a = 1 . Thus (B(ry, sp) — al)™! does
not exist.

Nevertheless by Theorem 4.2.3. (B(rg, si) — o)) = (B(7g, sk))* — ad is not one
to one with @ € C with ‘LlL—;a‘ = 1. Hence by Lemma 4 the range of the operator

B(ry, sg) — adis not dense in ¢g. So,

Ll—a
Ly

0 B(ri 58), co) = {a cC. ‘

_ 1} \{ro}.

This completes the proof. n
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