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ÖNSÖZ 

Son yıllarda nanoteknoloji alanında önemli gelişmeler olmuştur. Mikro ve nano 
yapıların mühendislik uygulamalarında kullanımı ve bu yapıların mekanik 
davranışının belirlenmesi birçok güncel çalışmanın konusunu teşkil etmektedir. 
Modern ve özgün cihazlar tasarlayabilmek için, bu yapıların fiziksel özellikleri 
konusunda kapsamlı bilgi sahibi olmak gerekmektedir. Örneğin, grafen ve karbon 
nanotüpler, eşsiz mekanik ve elektriksel özelliklere sahiptir. Nano çubuklar ve nano 
plaklar, genellikle nano aktüatör veya nano şalter gibi nano elektro-mekanik 
sistemlerde kullanılırlar. Yapılan deneylerde, nano boyuttaki cisimlerin mekanik 
özelliklerinde küçük boyut etkisinin önemli rol oynadığı gözlemlenmiştir. Yerel 
olmayan elastisite teorisi, küçük boyut etkisini göz önünde bulunduran, son on yılda 
yaygın olarak kullanılan ve geliştirilen bir teori olarak bilinmektedir. Nano ölçekteki 
cisimlerin analizinde klasik (yerel) elastisite teorisine göre daha uygun sonuçlar 
verdiği son yıllara ait araştırma makalelerinde belirtilmektedir. 
Bu çalışmada, yerel olmayan elastisite teorisinin genel denklemleri, silindirik 
koordinatlarda düzenlenerek çubuk teorisine uygulanmıştır. Değişken eğrilikli ve 
değişken kesitli olduğu düşünülen çubukların düzlem dışı statik ve dinamik 
problemleri incelenmiştir. Denklemlerin kesin analitik çözümü, başlangıç değerleri 
yöntemiyle elde edilmiştir. Çalışmada, nano boyutlardaki eğri eksenli çubuk 
problemlerinde, yerel olmayan elastisitenin kullanılmasının klasik elastisiteye göre 
çok daha üstün olduğunu göstermek ve nanoyapıların mekanik davranışlarını 
anlamada yerel olmayan etkilerin önemli olduğunu göstermek amaçlanmıştır. 
Bu çalışma TÜBİTAK tarafından 112M404 no’lu “Nanoteknoloji Uygulamalarındaki 
Eğri Eksenli Çubukların Statik ve Dinamik Problemlerinin Yerel Olmayan Elastisite 
Teorisi ile Analitik Çözümü” başlıklı proje ile desteklenmiştir. 
Değerli tecrübesi ve bilgisi ile çalışmamın her aşamasında bana yol gösteren ve 
akademik çalışma prensiplerini kazandıran saygıdeğer hocam Prof. Dr. Ekrem 
Tüfekci’ye teşekkür ederim. 
Bu akademik çalışmanın oluşması için bana her zaman destek olan annem Münevver 
Aya, babam Kamil Aya ve ablam Pelin Selen Aya’ya teşekkür ederim. 
 
 
Şubat 2017        Serhan Aydın AYA 
                                                                       (Mak.Yük. Mühendisi) 

 
 
 
 
  



viii 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



ix 
 

İÇİNDEKİLER 

Sayfa 

ÖNSÖZ ..... .................................................................................................................vii 
İÇİNDEKİLER ......................................................................................................... ix 
KISALTMALAR ...................................................................................................... xi 
SEMBOLLER ......................................................................................................... xiii 
ŞEKİL LİSTESİ ....................................................................................................... xv 
ÖZET…...................................................................................................................xvii 
SUMMARY ............................................................................................................. xix 
1. GİRİŞ…...................................................................................................................1 
2. NANOTEKNOLOJİDE ÇUBUKLARIN STATİK VE DİNAMİK 

DAVRANIŞLARI ÜZERİNE YAPILAN ÇALIŞMALAR ................................ 5 
3. EĞRİ EKSENLİ ÇUBUKLARIN DÜZLEM DIŞI STATİK 

DAVRANIŞLARININ İNCELENMESİ ............................................................ 11 
 Çubukların Düzlem Dışı Statik Davranışını İfade Eden Yerel Olmayan 
Denklemler ....................................................................................................... 11 
 Çubukların Düzlem Dışı Statik Davranışını İfade Eden Yerel Olmayan 
Denklemlerin Çözümü ...................................................................................... 26 

4. EĞRİ EKSENLİ ÇUBUKLARIN DÜZLEM DIŞI DİNAMİK 
DAVRANIŞININ İNCELENMESİ .................................................................... 33 

 Çubukların Düzlem Dışı Dinamik Davranışını İfade Eden Yerel Olmayan 
Denklemler ....................................................................................................... 33 
 Çubukların Düzlem Dışı Dinamik Davranışını İfade Eden Yerel Olmayan 
Denklemlerin Çözümü ...................................................................................... 40 

5. DÜZLEM DIŞI STATİK DAVRANIŞLA İLGİLİ ÖRNEKLER VE 
DAVRANIŞA ETKİ EDEN PARAMETRELERİN İNCELENMESİ ............ 45 

 Serbest Ucundan ܨ௕ ile Yüklü, 2/ߨ Açıklığına Sahip, Çember Eksenli Sabit 
Kesitli Ankastre-Serbest Çubuk ....................................................................... 46 
 Serbest Ucundan ܯ௡ ile Yüklü, 2/ߨ Açıklığına Sahip, Çember Eksenli Sabit 
Kesitli Ankastre-Serbest Çubuk ....................................................................... 47 
 Serbest Ucundan ܯ௧ ile Yüklü, 2/ߨ Açıklığına Sahip, Çember Eksenli Sabit 
Kesitli Ankastre-Serbest Çubuk ....................................................................... 48 
 Simetrik Olmayan Yükleme Durumları ........................................................... 49 
 Değişken ݍ௕ Yayılı Yüküyle Yüklü Değişken Kesitli Çember Eksenli 
Ankastre-Ankastre Çubuk ................................................................................ 52 
 Farklı Parametrelerin Çember Eksenli Nano Çubukların Statik Davranışına 
Etkisi ................................................................................................................. 57 

 5.6.1 Küçük boyut parametresi ܴ/ߛ ve narinlik oranı ߣ’nın etkisi ................... 58 
 5.6.2 Narinlik oranı ߣ ve çubuk açıklığı ்ߠ’nin etkisi ...................................... 61 
 5.6.3 Küçük boyut parametresi ܴ/ߛ ve çubuk açıklığı ்ߠ’nin etkisi................ 62 

 



x 
 

6. DÜZLEM DIŞI DİNAMİK DAVRANIŞLA İLGİLİ ÖRNEKLER VE 
DAVRANIŞA ETKİ EDEN PARAMETRELERİN İNCELENMESİ ............ 65 

 Küçük Boyut Parametresi ܴ/ߛ ve Narinlik Oranı ߣ’nın Etkisi ........................ 67 
 Narinlik Oranı ߣ ve Çubuk Açıklığı ்ߠ’nin Etkisi ........................................... 68 
 Küçük Boyut Parametresi ܴ/ߛ ve Çubuk Açıklığı ்ߠ’nin Etkisi .................... 70 

7. SONUÇ VE ÖNERİLER ..................................................................................... 73 
KAYNAKLAR .......................................................................................................... 77 
ÖZGEÇMİŞ .............................................................................................................. 81 

 

 
 
 
 



xi 
 

KISALTMALAR 

MD : Atomistik/Moleküler Dinamik Simülasyonlar 
MEMS : Mikro Elektro Mekanik Sistemler 
NEMS : Nano Elektro Mekanik Sistemler 
 
 
 
 

 

 

 

 

 

 

 



xii 
 

 



xiii 
 

SEMBOLLER 

 ሻ : Diferansiyel denklem takımının katsayılar matrisiࣂሺ࡭

 Çubuğun dik kesit alanı : ࡭

 Çubuk kesitinin derinliği : ࢈

 Elastiklik modülü : ࡱ

࢒࢔ࡲ , ࢈ࡲ
࢒ , ࢚ࡲ

࢒  : Kesite ait iç kuvvet bileşenleri 

,࢒࢔࢔ࡲ ࢈ࡲ
,࢒࢔ ࢚ࡲ

 Kesite ait yerel olmayan iç kuvvet bileşenleri : ࢒࢔

 Kayma modülü : ࡳ

 Çubuk kesitinin genişliği : ࢎ

Çubuk eğrisinin binormal eksene göre kesitin eylemsizlik momentleri : ࢈ࡵ

 Burulma sabiti : ࡶ

 Silindirik koordinatları belirten indisler : ࢠ	,ࣂ ,࢘

 ૛ : Laplasyenࢺ

 Kayma gerilmesinin kesite üniform yayılmadığını gösteren sabit : ࢔࢑

 Klasik elastisite teorisindeki gerilme tensörü : ࢒࣌

 Yerel olmayan elastisite teorisindeki gerilme tensörü : ࢒࢔࣌

࢔ࡹ
࢒ ࢈ࡹ,

࢒ ࢚ࡹ,
࢒  : Kesite ait iç moment bileşenleri 

࢔ࡹ
࢈ࡹ,࢒࢔

࢚ࡹ,࢒࢔
 Kesite ait yerel olmayan iç moment bileşenleri : ࢒࢔

 Çubuğa etkiyen yayılı dış moment bileşenleri : ࢚࢓	,࢈࢓	,࢔࢓

 Normal, binormal ve teğetsel koordinatları belirten indisler : ࢚	,࢈	,࢔

 Çubuğa etkiyen yayılı dış  kuvvet bileşenleri : ࢚ࢗ	,࢈ࢗ	,࢔ࢗ

r : Silindirik koordinat 

ത࢘ : Kesit içindeki radyal koordinat 

R : Eğrilik yarıçapı 

࢚࣌, ,࢚࢔࣌  Frenet koordinat sisteminde çubuk teorisindeki gerilme bileşenleri : ࢈࢚࣌

u, v, w : Yer değiştirme bileşenleri 

Y : Asal matris 

࢟ : Diferansiyel denklem takımının değişkenler vektörü 

࢟૙ : Başlangıç değerleri vektörü 

ρ : Özgül kütle 

 Narinlik oranı : ࣅ

ω : Açısal frekans 

ഥ࣓  : Boyutsuz frekans 

ષ࢔,	ષ࢈,	ષ࢚ : Kesite ait dönme açısının bileşenleri 

 Açısal koordinat : ࣂ

 Toplam çubuk açıklığı : ࢀࣂ

 Poisson oranı : ࣇ



xiv 
 

 ૙ : Boyutsuz malzeme sabitiࢋ

a : Atomik mesafe 

 Yerel olmayan boyut faktörü : ࢽ

 Boyut parametresi : ࢽ/ࡾ

	࢒࢔࣓ : Yerel olmayan teori ile hesaplanmış frekans 

	࢒࣓ : Klasik elastisite teorisi ile hesaplanmış frekans 

	ࣁ : Kesit değişim katsayısı 



xv 
 

ŞEKİL LİSTESİ 

Sayfa 

Şekil 3.1 : Eğri eksenli bir çubukta, Frenet ve silindirik koordinat eksenleri. .......... 14 
Şekil 5.1 : Düzlem dışı statik davranışın incelendiği çember eksenli nano çubuk. ... 45 
Şekil 5.2 :	2/ߨ açıklığı olan, çember eksenli sabit kesitli ve ankastre-serbest mesnetli 

serbest ucundan ܨ௕ kuvveti ile yüklü çubuk .......................................................... 46 
Şekil 5.3 : Açıklığı 2/ߨ olan, çember eksenli sabit kesitli ve ankastre-serbest 

mesnetli serbest ucundan ܯ௡ momentinin etkidiği çubuk ..................................... 47 
Şekil 5.4 : Açıklığı ߨ olan, çember eksenli sabit kesitli ve ankastre-serbest mesnetli 

serbest ucundan ܯ௧ momentinin etkidiği çubuk. ................................................... 48 
Şekil 5.5 :	ߠ௄ koordinatından ܨ௕௄ tekil yükü etkiyen ve ்ߠ ൌ 120°	açıklığı olan, 

sabit kesitli çember eksenli nano çubuk ................................................................. 50 
Şekil 5.6 : Yerel ve yerel olmayan teoriyle elde edilen yer değiştirme eğrileri             

( :Şekil değiştirmemiş çubuk ekseni,    : Yerel olmayan elastisite teorisi 
sonuçları,    : Klasik elastisite teorisi sonuçları) ............................................. 51 

Şekil 5.7 : Yerel ve yerel olmayan teoriyle elde edilen dönme açısı (ߗ௡) eğrileri. ....   (
:Şekil değiştirmemiş çubuk ekseni,    : Yerel olmayan elastisite teorisi 

sonuçları,    : Klasik elastisite teorisi sonuçları) ............................................. 51 
Şekil 5.8 : Yerel ve yerel olmayan teoriyle elde edilen dönme açısı (ߗ௧) eğrileri.  (

:Şekil değiştirmemiş çubuk ekseni,    : Yerel olmayan elastisite teorisi 
sonuçları,    : Klasik elastisite teorisi sonuçları)..............................................52 

Şekil 5.9 : Binormal eksen doğrultusunda değişken ݍ௕ሺߠሻ yayılı yüküyle yüklü 
çember eksenli ankastre-ankastre çubuk ................................................................ 53 

Şekil 5.10 : Değişken ݍ௕ yayılı yükü etkisindeki, değişken kesitli çember eksenli 
çubuğun yerel olmayan teori (mavi renk) ve klasik teori (kırmızı renk) ile 
hesaplanmış yer değiştirme diyagramı ................................................................... 54 

Şekil 5.11 : Değişken ݍ௕ yayılı yükü etkisindeki, değişken kesitli çember eksenli 
çubuğun yerel olmayan teori (mavi renk) ve klasik teori (kırmızı renk) ile 
hesaplanmış normal doğrultudaki dönme açısı (࢔ࢹ) diyagramı ............................ 55 

Şekil 5.12 : Değişken ݍ௕ yayılı yükü etkisindeki, değişken kesitli çember eksenli 
çubuğun yerel olmayan teori (mavi renk) ve klasik teori (kırmızı renk) ile 
hesaplanmış teğet doğrultudaki dönme açısı (ߗ௧) diyagramı (ܴ/ߛ ൌ 1) ............... 55 

Şekil 5.13 : Değişken ݍ௕ yayılı yükü etkisindeki, değişken kesitli çember eksenli 
çubuğun yerel olmayan teori (mavi renk) ve klasik teori (kırmızı renk) ile 
hesaplanmış teğet doğrultudaki dönme açısı (ߗ௧) diyagramı (ܴ/ߛ ൌ 7) ............... 56 

Şekil 5.14 : Değişken ݍ௕ yayılı yükü etkisindeki, değişken kesitli çember eksenli  
çubuğun yerel olmayan teori (mavi renk) ve klasik teori (kırmızı renk) ile 
hesaplanmış normal eksende eğilme momenti (ܯ௡) diyagramı. ............................ 56 

Şekil 5.15 : Değişken ݍ௕ yayılı yükü etkisindeki, değişken kesitli çember eksenli 
çubuğun yerel olmayan teori (mavi renk) ve klasik teori (kırmızı renk) ile 
hesaplanmış teğet eksende burulma momenti (ܯ௧) diyagramı .............................. 57 

Şekil 5.16 : Değişken ݍ௕ yayılı yükü etkisindeki, değişken kesitli çember eksenli 
çubuğun yerel olmayan teori (mavi renk) ve klasik teori (kırmızı renk) ile 
hesaplanmış binormal doğrultuda kesme kuvveti (ܨ௕) diyagramı ......................... 57 



xvi 
 

Şekil 5.17 : Küçük boyut etkisi ݇ ve narinlik oranının ߣ yerdeğiştirmeye ൫࢜࢒࢜/࢒࢔൯ 
etkisi ....................................................................................................................... 58 

Şekil 5.18 : Küçük boyut etkisi ݇ ve narinlik oranının ߣ kesitin normal eksen 
etrafında dönme açısına ሺߗ௡௡௟/ߗ௡௟ ሻ etkisi ............................................................... 59 

Şekil 5.19 : Küçük boyut parametresi ሺ݇ሻ ve narinlik oranının ߣ kesitin teğet eksen 
etrafındaki dönme açısı oranına ൫ߗ௧

௡௟/ߗ௧
௟൯ etkisi ................................................... 60 

Şekil 5.20 : Narinlik oranı ߣ ve çubuk açıklığının ሺ்ߠሻ yerdeğiştirme oranına 
ሺݒ௡௟/ݒ௟ሻ etkisi. ....................................................................................................... 62 

Şekil 5.21 : Küçük boyut parametresi ሺ݇ሻ ve çubuk açıklığının ሺ்ߠሻ yerdeğiştirme 
oranına ሺݒ௡௟/ݒ௟ሻ etkisi ........................................................................................... 63 

Şekil 5.22 : Küçük boyut parametresi ሺ݇ሻ ve çubuk açıklığının ሺ்ߠሻ kesitin teğet 
eksen etrafında dönme açısı oranına ൫ߗ௧

௡௟/ߗ௧
௟൯ etkisi ............................................ 63 

Şekil 6.1   : Değişken kesitli çubuklar. ...................................................................... 66 
Şekil 6.2   : Boyut parametresi ݇ ൌ  nın değişken kesitli’ߣ ve narinlik oranı ߛ/ܴ

çember eksenli çubuğun birinci mod frekansına ഥ߱௡௟ etkisi (்ߠ ൌ 120°). ............. 67 
Şekil 6.3   : Boyut parametresi ݇ ൌ  nın değişken kesitli’ߣ ve narinlik oranı ߛ/ܴ

çember eksenli çubuğun birinci mod frekans oranına ( ഥ߱௡௟/ ഥ߱௟) etkisi (்ߠ ൌ 120°).
 ................................................................................................................................ 68 

Şekil 6.4   : Çubuk açıklığı ்ߠ ve narinlik oranı ߣ’nın değişken kesitli çember eksenli 
çubuğun birinci mod frekansına ഥ߱௡௟ etkisi (݇ ൌ 1). .............................................. 69 

Şekil 6.5   : Çubuk açıklığı ்ߠ ve narinlik oranı ߣ’nın değişken kesitli çember eksenli 
çubuğun birinci mod mod frekans oranına ሺ ഥ߱௡௟/ ഥ߱௟ሻ etkisi (݇ ൌ 1) ..................... 70 

Şekil 6.6   : Boyut parametresi ݇ ൌ  nin değişken kesitli’்ߠ ve çubuk açıklığı ߛ/ܴ
çember eksenli çubuğun birinci mod frekansına 	 ഥ߱௡௟ etkisi (ߣ ൌ 150) ................. 71 

Şekil 6.7   : Boyut parametresi ݇ ൌ  nin değişken kesitli’்ߠ ve çubuk açıklığı ߛ/ܴ
çember eksenli çubuğun birinci mod frekans oranına ሺ ഥ߱௡௟/ ഥ߱௟ሻ etkisi (ߣ ൌ 150)..
 ................................................................................................................................ 72 

 
  



xvii 
 

EĞRİ EKSENLİ NANO ÇUBUKLARIN DÜZLEM DIŞI STATİK VE 
DİNAMİK PROBLEMLERİNİN YEREL OLMAYAN ELASTİSİTE TEORİSİ 

İLE ANALİTİK ÇÖZÜMÜ 

ÖZET 

Nano çubuklar, nano ölçekteki cihaz ve makinelerde yaygın olarak kullanılan yapı 
elemanlarıdır. Nano boyuttaki makinaların geliştirilebilmesi için bu çubuk elemanların 
mekanik davranışının tam olarak bilinmesi gerekmektedir. Sürekli ortam mekaniği 
uygulamalarında atomlar arasındaki kafes boşlukları, yüzey özellikleri, tane boyutu 
gibi küçük boyut etkileri göz önünde bulundurulmalıdır. Klasik (yerel) sürekli ortam 
mekaniğinin nano ölçekteki sistemlere uygulamasının kısıtlı olmasının temel sebebi, 
atomlar arasında bulunan kafes boşluklarının, yapının bütünlüğünü bozması ve sürekli 
ortam olarak modellenmesine engel teşkil etmesidir. Nanometre mertebesinde, 
bahsedilen küçük boyut etkisinin önemi artmaktadır. Bu sebeple, nano çubukların 
mekanik davranışı konusundaki çalışmalarda yerel olmayan sürekli ortam mekaniği 
kullanılmaktadır. 
Bu çalışmada, değişken eğrilikli ve değişken kesitli nano çubukların düzlem dışı statik 
ve dinamik davranışları incelenmiştir. Eringen tarafından verilen yerel olmayan 
elastisite teorisinin bünye denklemleri silindirik koordinatlarda yazılarak klasik çubuk 
teorisine uygulanmıştır. Böylece, yerel olmayan çubuk teorisi denklemleri, değişken 
yayılı yükleri taşıyan değişken eğrilikli ve değişken kesitli çubuklar için elde 
edilmiştir.  Bu denklemler kullanılarak, düzlemsel eğri eksenli nano çubukların 
düzlem dışı statik ve dinamik problemleri incelenebilmektedir. Denklemlerde, kuvvet 
ve momentlerin yerel olmayan etkileri göz önüne alınmaktadır. Kayma etkilerinin 
yanında kayma kuvvetlerinin yerel olmayan etkilerinin de gözönüne alındığı 
literatürdeki ilk çalışma bu olmuştur.  

Eğri eksenli çubuğun düzlem dışı davranışını ifade eden denklemlerin analitik kesin 
çözümü, başlangıç değerleri yöntemiyle elde edilmiştir. Başlangıç değerleri 
yönteminin üstünlüğü; yüksek mertebe statik belirsizliklerin, problemin çözümüne 
ilave bir zorluk katmamasıdır. Herhangi bir bilinen sınır şartı ile kesin analitik çözüm 
elde etmek mümkündür. Farklı geometri ve kesite sahip çubukların asal matrislerinin 
analitik ifadeleri elde edilebilir.  Böylece, yer değiştirme, kesit dönmesi ve kesit 
tesirleri değerleri eksen eğrisi boyunca analitik olarak belirlenebilmektedir. Boyut 
parametresi, çubuk açıklığı, narinlik oranı gibi bazı parametrelerin değişiminin 
çubuğun statik davranışına etkisini göstermek amacıyla farklı çubuk geometrileri, 
yükleme ve sınır şartları içeren problemler çözülmüştür.  

Eğri eksenli değişken kesitli çubuğun düzlem dışı serbest titreşimlerini ifade eden 
denklemler d’Alembert prensibi yardımıyla türetilmiştir. Kayma deformasyonu, 
eğilme ve burulma dönme eylemsizlikleri etkileri göz önünde bulundurulmuştur. 
Denklemlerin çözümünde başlangıç değerleri yöntemi kullanılmıştır. Kesin çözüm 
sadece sabit kesitli çember eksenli kirişler için mevcuttur. Değişken eğrilikli ve kesitli 
çubuklar, belirli sayıda sabit eğrilikli ve kesitli çubuk elemandan oluşacak şekilde 
modellenmiş ve aynı çözüm yöntemi kullanılarak sonuç elde edilmiştir. Titreşim ile 



xviii 
 

ilgili çeşitli problemler çözülerek, doğal frekanslar elde edilmiştir. Boyut parametresi, 
çubuk açıklığı ve narinlik oranı gibi bazı parametrelerin değişiminin çubuğun dinamik 
davranışına etkisi gösterilmiştir. 

Bu çalışmada sunulan yerel olmayan elastisite teorisi, eğri eksenli nano çubukların 
düzlem dışı statik ve dinamik analizi için temel oluşturmaktadır. Klasik (yerel) 
elastisite teorisi yerine yerel olmayan elastisite teorisi kullanılarak, nano çubukların 
mekanik davranışının belirlenmesinde büyük önem arz eden yerel olmayan etkilerin 
ortaya çıkarılması sağlanmaktadır. Denge denklemlerinin kesin çözümünde boyut 
etkisi, kayma deformasyonu, dönme eylemsizliği etkilerinin dahil edildiği bu 
çalışmada elde edilen sonuçların eğri eksenli nano çubuklar ile ilgili yapılacak 
çalışmalar için önemli bir kaynak teşkil edeceği düşünülmektedir. 
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ANALYTICAL SOLUTIONS OF OUT-OF-PLANE STATIC AND DYNAMIC 
PROBLEMS OF CURVED NANOBEAMS USING NONLOCAL 

ELASTICITY THEORY 

SUMMARY 

Nanobeams are widely used as a structural element for nano-devices and nano-
machines. The development of nano-sized machines depends on proper understanding 
of mechanical behavior of these nano-sized beam elements. The mechanical properties 
of nanobeams can be measured by conventional experimental methods, however, these 
techniques are expensive and should be improved correspond to nano scale. 
Considering the experimental limitations, researchers focused on better mathematical 
models that comprise the effects of small length scales such as lattice spacing between 
atoms, grain size etc. on material behavior in micro and nano scale. Computational 
strategies, such as molecular dynamics simulations are adopted to analyze mechanical 
behavior of nano-sized structures. These simulations enable comparable investigations 
of dynamics of nano materials to experiments, and introduce detailed information on 
interatomic interactions of nano materials and molecular complexes. However, it could 
become too complex to simulate nanostructures, and these simulations are bounded by 
the computational limits. On the other hand, high-order continuum modeling is less 
computationally expensive than the former approach and provides relatively simple 
formulations. The nonlocal theory of elasticity, initiated by Eringen and Edelen takes 
the small-scale effect into account. This theory states that the stress at a given reference 
point of a body is a function of the strain field at every point in the body; hence, the 
theory takes the long-range forces between atoms and the scale effect into account in 
the formulation. Small length scales such as lattice spacing between atoms, surface 
properties, grain size etc. need to be considered when applying any continuum model. 
The main reason of limited applicability of classical or local continuum theory to nano-
scaled systems is that the assumption of continuous media is not appropriate for 
modeling the discrete structure of the material due to the lattice spacing between 
atoms. The small length scale becomes very important in the order of nanometers. 
Thus, nonlocal continuum mechanics approach is adopted for studying the mechanical 
behavior of nanobeams. 

In this study, the out-of-plane static and dynamic behavior of a curved planar 
nanobeam having variable curvature and cross-section is investigated. The nonlocal 
constitutive equations of Eringen are arranged in cylindrical coordinate and 
implemented into the classical beam equations. Therefore, governing differential 
equations of nonlocal beam theory is obtained for curved beams with non-uniform 
cross-section. Using these equations, out-of-plane static and dynamic problems of 
planar curved nanobeams can be studied. The nonlocal effects of both force and 
moments are considered in the equations. This is the first study in the literature that 
considers the nonlocal effects of shear force along with the effects of shear 
deformation in the formulations. 
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The governing differential equations are obtained for curved beams and analytical 
exact solutions for out-of-plane static problems are obtained by using the initial value 
method. Superiority of the initial value method is that high order statically 
indeterminacy adds no extra difficulty to the solution. The exact solution can be 
obtained for any boundary condition. The fundamental matrix of beams with different 
geometries and cross-sections can be obtained analytically. Thus, the deformation, 
slope and stress resultants can be defined analytically along the beam axis. In order to 
understand the effects of different parameters such as small scale parameter, opening 
angle of the beam and slenderness ratio etc. on the mechanics of the beam, several 
examples with different geometries, loading and boundary conditions are solved.  

In the static analysis, a fully clamped circular beam with non-uniform cross-section 
and non-uniform distributed load is considered as an example. The effects of the small 
scale parameter and the other beam characteristics, i.e. opening angle of the beam, the 
slenderness ratio on the transverse displacements, rotation angle and force resultants 
are investigated. It is observed that the result of the nonlocal theory always larger than 
that by the classical model for small sized beams. The size of the beam is determined 
by small scale parameter which is the ratio of the nanobeam radius to the additional 
length scale parameter. Thus, the small scale parameter has a relevant importance in 
calculation of displacement. For smaller values of slenderness ratio, i.e. for thick 
beams, the effect of small scale parameter on the displacement ratio, i.e. the ratio of 
the displacement results obtained from nonlocal theory and local theory is more 
important. The difference between the solution of both theories increases considerably 
with lower values of small scale parameter for any value of slenderness ratio. A 
uniform change in displacement ratio is observed at larger values of small scale 
parameter for different values of slenderness ratio, i.e. the effect is almost the same for 
both theories. Displacement ratio at the midspan increases with the decreasing opening 
angle for different values of slenderness ratio. At larger values of opening angle, the 
displacement ratio remains almost the constant at unity for different values of 
slenderness ratio. By decreasing the beam length, i.e. for smaller opening angle, size 
effect is much more important. Consequently, the transverse displacement of the 
nonlocal beam changes more in comparison to the classic one. Therefore, the size 
effect must be taken into account for smaller beams. The effects of slenderness ratio - 
opening angle, small scale parameter - opening angle and small scale parameter - 
slenderness ratio on the rotation angles and force resultants are also studied. Ratio of 
rotation angle and also the ratio of moments are not affected by the slenderness ratio. 
The results for shear forces is equal to unity, meaning the both theories give the same 
results. 

The equations for out-of-plane free vibrations of a curved beam with non-uniform 
cross section are derived by means of d’Alembert principle. The effects of shear 
deformation, bending and torsional rotatory inertia are considered for the out-of-plane 
vibrations. In the solution process, initial value method is used. Exact solution is only 
available for uniform circular beams. The vibration of a curved beam with varying 
curvature and cross-section is investigated by dividing the beam into a number of 
circular uniform beam elements. Similar approach is taken in the solution process. 
Natural frequencies are obtained for different curved beams. The effect of small scale 
parameter, opening angle of the beam and slenderness ratio on the dynamic behavior 
of the beams are presented with these examples. It is observed that size effect is more 
significant when the small-scale parameter is small. It is observed that the ratio of the 
natural frequencies predicted by nonlocal and classical models becomes more 



xxi 
 

noticeable for both lower values of slenderness ratio and opening angle of the 
nanobeam. It is expected that the valuable results obtained from the presented 
continuous model would be very useful for dynamic analyses of beam-like 
components such as nanosensors or nanoactuators whose discrete models have high 
computational and labor costs. 

The literature has shown that, almost all the studies on nonlocal beam theory has 
discussed the subject in the context of straight nanobeams. There are very limited 
number of papers on the curved nanobeams and most of them neglect the effect of 
shear deformation. Numerical and approximate solution methods are used in these 
studies. Numerical examples for nonlocal curved beam models are insufficient. The 
present work will be helpful in the analysis and design of curved nanobeams with 
various combinations of loadings, geometry and boundary conditions. The nonlocal 
theory and the equations presented in this study forms the basis for the study of out-
of-plane static and dynamic analysis of curved nanobeams. Instead of using classical 
beam theory, using nonlocal elasticity theory reveals the nonlocal effects which is 
significant to understand the mechanical behavior of nanobeams. The results of the 
examples presented in this study will give insight to the interplay between the 
geometry of the beam and the stress distribution and the effect of the nonlocal behavior 
on static and dynamic behavior of curved nonlocal beams. Considering scale effect, 
shear deformation and rotatory inertia in the exact solutions of the governing 
equilibrium equations presented here, the results can be considered as a reference for 
nonlocal theories of curved nanobeams. 
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1.  GİRİŞ 

Karbon nanotüp, grafen levha gibi pratik uygulama alanı bulan keşifler nanoteknoloji 

alanına olan ilginin odağı olmuştur. Günümüzde bu alandaki çalışmalar artarak devam 

etmektedir. Nano ölçekteki yapılar, birçok özgün uygulamaya imkan tanımalarından 

dolayı deneysel ve teorik alanlarda araştırma gruplarının ilgisini çekmiştir. Makro 

boyutlardaki malzemelerle kıyaslandığında, nano malzemelerin üstün fiziksel, 

kimyasal veya biyolojik özelliklere sahip olduğu gözlemlenmiştir. Bu malzemeler 

daha kuvvetli, esnek, çok daha hafif veya daha farklı ısı ve elektrik iletme özelliklerine 

sahip olabilmektedir. Manyetik ve optik özelliklerinde önemli ölçüde artma veya 

azalma olabilmektedir. Bir nano yapının fiziksel özellikleri ve mukavemeti onun 

boyutuna bağlı olarak önemli değişim gösterebilmektedir. 

Nano çubuklar, bir yapı elemanı olarak biosensörlerde, yarı iletken nano kablolarda, 

atomik kuvvet mikroskoplarında, mikro elektro mekanik sistemlerde (MEMS) ve nano 

elektro mekanik sistemlerde (NEMS) veya güçlendirme elemanı olarak nano 

kompozitlerde yaygın bir şekilde kullanılmaktadır. Nano ölçekteki çubukların eğilme, 

titreşim ve burkulma gibi mekanik davranışlarının anlaşılması bu tip elemanların 

kullanıldığı mühendislik yapılarının tasarımı ve geliştirilmesi için büyük önem arz 

etmektedir.  

Nano yapıların kullanıldığı malzemelerin modellenmesi ve simülasyonunda kullanılan 

moleküler dinamik (MD) gibi yöntemler çok karmaşık olabilmektedir. Ayrıca, bu 

modeller, kullanılan hesaplama programlarının ve bilgisayarların kapasiteleriyle 

sınırlıdır. Mühendislik açısından bakıldığında, MD yöntemi atom, molekül, bağlar ve 

atomlar arası kuvvetlerin parametre olarak yer aldığı bir yöntem olup ilgili konuları 

içeren kimya alanında bilgi sahibi olmayı gerektirmektedir. Örneğin, karbon nanotüp, 

grafen ve grafen bazlı sistemlerin deneysel olarak veya MD simülasyonu ile 

incelenmesi parametrelerin fazlalığı nedeniyle karmaşık bir süreçtir. Nano cihazların 

tasarımında kullanılan bu yapıların eğilme, titreşim veya burkulma açısından 

incelenmesi için daha pratik çözümlere ihtiyaç duyulmaktadır.  
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Sürekli ortam modeli yaklaşımı, simülasyonlara göre daha basit formüller vermekte 

ve hesaplamalar daha kolay olmaktadır. Fakat, klasik teorinin, nano yapıların mekanik 

davranışlarını incelenmesi amacıyla kullanımında problemler ortaya çıkmıştır. Çünkü, 

klasik sürekli ortam modellerinde, bir noktadaki gerilme durumu aynı noktadaki birim 

şekil değişimiyle belirlenmektedir. Diğer bir ifade ile, klasik elastisite teorisi boyuttan 

bağımsız tanımlanmaktadır. Fakat, küçük boyutlarda, bir malzemenin mikro yapısı 

büyük öneme sahip olup bu etki yadsınamaz. Dolayısıyla, malzemelerin doğası gereği 

homojen olmayan ve süreksizlik barındıran yapısındaki boyut etkisini göz önünde 

bulunduran, MD simülasyonlarından daha hızlı çözüm alınabilecek gelişmiş bir 

sürekli ortam yöntemine ihtiyaç duyulmuştur. Son yıllarda bu doğrultuda yaygın 

kullanımı olan sürekli ortam mekaniği yöntemi, Eringen’in sunduğu yerel olmayan 

elastisite teorisidir. Bu teoride, bir noktadaki gerilme durumu hesaplanırken, o nokta 

etrafındaki diğer noktalarda olan şekil değiştirmeler de hesaba katılmaktadır.  

Nano çubukların statik ve dinamik analizi konusunda yapılan çalışmalar ikinci 

bölümde incelenmiştir. Bu çalışmalarda, nano çubukların yerel olmayan Euler-

Bernoulli kiriş teorisi veya yerel olmayan Timoshenko kiriş teorisi ile incelendiği, 

fakat çalışmaların genellikle doğrusal yapı elemanları ile sınırlı olduğu tespit 

edilmiştir. Yerel olmayan eğri eksenli kiriş modelleri konusunda yapılan sayısal 

örneklerin ise yetersiz olduğu sonucuna varılmıştır.  

Üçüncü bölümde, sürekli değişken eğri eksenli ve sürekli değişken kesitli nano 

çubukların düzlem dışı statik problemlerine ait analitik ifadeler Eringen’in yerel 

olmayan elastisite teorisi kullanılarak verilmiştir. Eğri eksenli nano çubukların statik 

davranışını ifade eden diferansiyel denklemler Eringen’in sunduğu yerel olmayan 

bünye denklemleri kullanılarak elde edilmiştir. Denklemlerde, kayma deformasyonu 

etkisi göz önünde bulundurulmuştur. Başlangıç değerleri yöntemi kullanılarak 

diferansiyel denklemlerin kesin çözümü elde edilmiştir. Yer değiştirme, kesitin normal 

ve teğetsel eksen etrafında dönme açıları ve kesit tesirleri analitik olarak elde 

edilmiştir. 

Dördüncü bölümde, d’Alembert prensibinden faydalanılarak eğri eksenli nano 

çubuklara ait serbest titreşim analizi gerçekleştirilmiştir. Kayma deformasyonu etkisi 

yanında eğilme ve burulma dönme eylemsizliği etkileri de denklemlere dahil 

edilmiştir. Sürekli değişken eğriliğe ve kesite sahip çubukların düzlem dışı serbest 
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titreşimlerinin analizinde sabit kesitli çember eksenli çubuk için elde edilen kesin 

analitik çözüm yöntemi kullanılmıştır. 

Beşinci bölümde, eğri eksenli nano çubukların düzlem dışı statik davranışıyla ilgili 

çeşitli problemlerin çözümleri verilerek yer değiştirme, dönme açısı ile iç kuvvet ve 

momentler hesaplanmıştır. Küçük boyut etkisi, narinlik oranı, çubuğun açıklığı, sınır 

koşullarının etkilerinin parametrik incelendiği örnekler sunulmuştur. Ayrıca, farklı 

yükleme durumlarında elde edilen sonuçlar da incelenmiştir. Basit yükleme durumları 

için çubuğun bir noktasının yerdeğiştirme, dönme açısı ve kesit tesiri ifadeleri analitik 

olarak verilmiştir. Ardından, ankastre-ankastre mesnetli nano çubukta ߠ௄ olarak 

belirtilen, rastgele seçilmiş bir noktadan etkiyen tekil yüklerin statik davranışa etkisi 

de incelenmiştir. Son kısımda, değişken yayılı yük etkisindeki çember eksenli sürekli 

değişken kesitli çubuk incelenmiştir. 

Altıncı bölümde, yerel olmayan ve klasik teori kullanılarak, çember eksenli ve 

değişken kesitli nano çubuğun düzlem dışı serbest titreşimi ile ilgili örnekler 

çözülmüştür. Küçük boyut etkisi, narinlik oranı ve çubuk açıklığının yerel ve yerel 

olmayan teorilerle elde edilen doğal frekans oranına etkisi araştırılmıştır. 

Hesaplamalarda, kayma deformasyonu yanında eğilme ve burulma dönme 

eylemsizliği etkileri de göz önüne alınmıştır. 

Elde edilen sonuçlar doğrultusunda, eğri eksenli çubukların statik ve dinamik 

analizinde çubuk geometrisi, sınır koşulları ve yerel olmayan davranışın etkisinin 

belirlenmesi hedeflenmiştir.  
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2.  NANOTEKNOLOJİDE ÇUBUKLARIN STATİK VE DİNAMİK 

DAVRANIŞLARI ÜZERİNE YAPILAN ÇALIŞMALAR 

Karbon nanotüp ve grafen levha gibi keşiflerin ardından nanoteknolojiye olan ilgi son 

yirmi yılda büyük bir hızla artmıştır. Nano ölçekteki çubuk yapılar, büyük rijitlik ve 

mukavemet değerleri, düşük yoğunlukları ve üstün iletkenlikleriyle, nano elektro 

mekanik sistemlerde, ultra duyarlı algılayıcılarda, yarı iletken nano kablolarda ve 

atomik kuvvet mikroskoplarında temel yapı elemanları olarak kullanılmaktadır 

(Craighead, 2000; Kong ve diğ., 2000; Roukes, 2001; Li ve Chou, 2003; Ekinci, 2005). 

Özel bir uygulama olarak, küçük boyut ve büyük yüzeyli karbon nano tüpler, yoğun 

kimyasal ortamlardaki dayanıklılığıyla dikkat çekmektedir (Zhao ve diğ., 2002). 

Özgün nano cihazların tasarımı için bu yapıların mühendisler ve bilim insanları 

tarafından iyi anlaşılmış olması gerekmektedir.  

Nano çubukların mekanik özellikleri konvansiyonel deneysel yöntemlerle ölçülebilir, 

fakat mevcut teknikler bu ölçekteki sistemler için karmaşık ve pahalıdır, dolayısıyla 

bu tekniklerin geliştirilmesi gerekmektedir. Sürecin zorluğuna rağmen, bazı metal ve 

polimerlerle yapılan deneysel çalışmalardan elde edilen sonuçlar, mikro ve nano 

ölçekteki malzemenin mekanik davranışının boyuta bağlı olduğunu göstermektedir. 

Çalışmalarda, nano ölçekteki malzemenin elastiklik modülünün normal boyutlardaki 

malzemelerin elastiklik modülüne göre oldukça yüksek olduğu gözlenmiştir (Treacy 

ve diğ., 1996; McFarland ve Colton, 2005). Nano malzemelerin özellikleri belirgin bir 

biçimde normal boyutlardaki malzemelerden farklı olduğundan, uygulamada büyük 

bir potansiyele sahiptir. 

Araştırmacılar, deneysel kısıtlamaları göz önüne alarak, mikro ve nano ölçekteki bu 

malzemelerin mekanik davranışını incelemek amacıyla kafes boşluğu, tane boyutu 

gibi küçük boyut etkilerini kapsayacak bir matematiksel model üretmek için çalışmalar 

yapmıştır. Örneğin bu amaçla, nano boyuttaki yapılar için moleküler dinamik (MD) 

simülasyonları gibi sayısal yöntemler uygulanmıştır (Srivastava ve Wei, 2003). Bu 

simülasyonlarda nano yapılardaki atom veya moleküller arasındaki atomsal 

etkileşimleri doğru modellemek amacıyla farklı parametreler incelenmiştir. Bir 
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moleküler dinamik simülasyonunda, çeşitli ampirik potansiyel çiftleriyle tanımlanan 

bağ enerjilerinin fonksiyonu için birçok denklem mevcuttur. Bu denklemlerin 

çeşitliliği doğruluk derecesine ve moleküler sistemin tipine bağlıdır. Sayısal yaklaşım 

ile yapılan simülasyonlar, nano malzemelerin dinamik davranışı için deneylerle 

kıyaslanabilir inceleme yapma imkanı sunmuş ve nano malzeme ile moleküler 

komplekslerin atomlar arası ilişkileri hakkında detaylı bilgi edinilmesini sağlamıştır. 

Bazı araştırmacılar, bu yöntem ile deneysel yolla ulaşmanın neredeyse imkansız 

olduğu sonuçlara dahi ulaşıldığını belirtmişlerdir (Arash ve diğ., 2011). Fakat, nano 

yapıların simülasyonu genellikle çok karmaşıktır ve hesaplamalar, bilgisayar 

donanımının kapasitesiyle kısıtlanmaktadır.  

Diğer bir yandan, yüksek mertebe sürekli ortam modelleri daha az hesaplama gücüne 

ihtiyaç duymaktadır ve daha basit formülasyonlar sunmaktadır (Arash ve Wang, 2012; 

Barretta ve diğ., 2014; Rafiee ve Monghadam, 2014). Literatürde verilen sürekli ortam 

modelleri genellikle klasik (yerel) veya yerel olmayan sürekli ortam teorilerine 

dayanmaktadır. Klasik yöntemde, narinliği düşük karbon nanotüp ince cidarlı bir boru 

gibi düşünülerek şekil değişimi bir elastik çubuğa benzer şekilde hesaplanabilir. 

Çubuk yaklaşımı, Harik (2001) tarafından incelenmiş ve sürekli çubuk yaklaşımının 

geçerliliği kontrol edilmiştir. Çalışmada, önerilen geometrik parametreler ile 

moleküler dinamik simülasyonları arasındaki ilişki araştırılmıştır. Klasik sürekli ortam 

modellerinde, herhangi bir noktadaki gerilme durumu aynı noktadaki birim şekil 

değiştirme durumu ile belirlenmektedir. Klasik elastisite teorisinin boyuttan bağımsız 

tanımı nedeniyle mikro ve nano yapıların mekanik davranışı için klasik modellerin 

kullanımının uygunluğu tartışılır durumdadır. 

Malzemelerin doğası gereği homojen olmayan ve süreksizlik barındıran yapısındaki 

boyut etkisini göz önünde bulunduran, moleküler dinamik simulasyonlarından daha 

hızlı çözüm alınabilecek gelişmiş bir sürekli ortam yöntemine ihtiyaç duyulmuştur. 

Eringen ve Edelen (1972) tarafından sunulan yerel olmayan elastisite teorisi son 

yıllarda bu doğrultuda yaygın kullanımı olan bir sürekli ortam mekaniği yöntemidir. 

Bu teoride, bir noktadaki gerilme durumu hesaplanırken, o nokta etrafındaki diğer 

noktalarda olan şekil değiştirmeler de hesaba katılmaktadır. Böylece, atomlar 

arasındaki uzun mesafe kuvvetleri ve küçük boyut etkisini içeren bir model elde 

edilmektedir. Yerel olmayan elastisite teorisinin Euler-Bernoulli kirişi için uygulaması 

ilk olarak Peddieson (2003) tarafından gerçekleştirilmiştir. Elde edilen sonuçlara göre 
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bu yöntemin nano yapıların analizinde kullanılabileceği öngörülmüştür. Geçtiğimiz 

yıllarda, sürekli ortam modelleri konusunda yoğun çalışmalar yapılmış olup, sürekli 

ortam modelleri nano malzemelerin statik ve dinamik davranışlarını ifade eden 

denklemler yerel olmayan sürekli ortam modeline göre geliştirilmiştir. 

Örneğin, Wang ve diğ. (2006) tarafından geliştirilen diğer bir yerel olmayan sürekli 

ortam modelinde klasik Timoshenko çubuk modelinden farklı iki malzeme 

parametresi bulunmaktadır. Sonlu elemanlar yöntemini kullanarak, Phadikar ve 

Pradhan (2010) nano çubukları doğrusal olmayan bir formülasyonla incelemişlerdir. 

Alizada ve Sofiyev (2011) iki boyutlu kristal yapı için düzeltilmiş elastiklik modülünü 

elde etmiştir. Boyut etkisi ve boşlukların elastiklik modülünü etkilediği sonucuna 

varmışlardır. Mahmoud ve diğ. (2012) nano çubukların statik şekil değiştirmesine 

yerel olmayan elastisitenin etkisini incelemiştir. Yakın zamanda gerçekleştirilen bazı 

çalışmalara göre, karbon nanotüplerin analizinde kullanılan yerel olmayan elastisite 

teorisi ile moleküler dinamik simülasyonu uyumlu sonuçlar vermiştir. Murmu ve 

Adhikari (2012) karbon nanotüplerin kullanıldığı nano ölçekli biyosensör konusunda 

yaptıkları çalışmada yerel olmayan elastisite teorisinden elde ettikleri sonuçlar ile 

moleküler dinamik sonuçlarının uyumlu olduğunu gözlemlemiştir. Benvenuti ve 

Simone (2013) klasik (yerel) ve yerel olmayan elasitise teorisi ile gradyen teori 

arasındaki ilişkiyi incelemiştir. Çalışmada, küçük boyut etkisinin yanı sıra gradyen 

teori ile yerel olmayan elastisite teorisi arasındaki uyum araştırılmıştır. Barretta ve De 

Sciarra (2014) yerel olmayan termodinamik yaklaşımla nano çubukların eğilme 

problemlerini incelemiştir. Varyasyonel formüller sunulmuş ve sınır koşullarına bağlı 

olarak ilgili diferansiyel denklemler elde edilmiştir. Örnek olarak, yayılı yük 

etkisindeki nano ölçekli konsol kiriş incelenmiş ve küçük boyut etkisi nedeniyle 

yapının daha rijit davrandığı belirlenmiştir. Euler-Bernoulli yerel olmayan çubuk 

teorisine dayanarak nano çubukların statik davranışını incelemek için Marotti de 

Sciarra (2014) yerel olmayan sonlu eleman metodunu geliştirmiştir. Salvetat ve diğ. 

(2014), yüksek mertebeden Euler-Bernoulli yerel olmayan çubuk teorisine dayanan bir 

yerel olmayan sonlu eleman yöntemi geliştirmişlerdir. Üniform yayılı yük etkisindeki 

basit mesnetli bir çubuk problemi çözülmüş ve elde edilen sonuç diferansiyel 

denklemin kesin çözüm sonucuyla karşılaştırılmıştır. 

Karbon nanotüplerin dinamik davranışını anlamak amacıyla yapılan birçok çalışmada, 

farklı dinamik yüklerdeki titreşimler teorik olarak incelenmiştir. Berrabah ve diğ. 
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(2013) nano çubukların eğilme, burkulma ve serbest titreşimi ile ilgili çalışmak 

amacıyla bir yerel olmayan elastisite teorisi sunmuştur. Küçük boyut etkisi ve kayma 

deformasyonu etkisinin dahil edildiği modelde hareket denklemlerinin elde 

edilmesinde Hamilton prensibi kullanılmıştır. Basit mesnetli bir nano çubuğa ait 

eğilme, burkulma ve doğal frekans ifadeleri için analitik çözümler sunulmuştur. Bir 

diğer çalışmada, Eltaher ve diğ. (2014) nano çubukların serbest titreşimleri için sonlu 

eleman yöntemini uygulamıştır. Formülasyonda Eringen’in yerel olmayan bünye 

denklemleri kullanılmıştır. Nano çubukların dinamik analizinde yerel olmayan 

parametre, sınır ve yükleme koşulları incelenmiştir. Ansari ve diğ. (2015) viskoelastik 

Timoshenko nano çubukların serbest titreşimini yerel olmayan elastisite teorisini 

kullanarak incelemiştir. Tek duvarlı karbon nanotüplerin malzeme özellikleri 

kullanılarak zamana bağlı denklemler çözülmeye çalışılmıştır. Yerel olmayan 

parametreler, viskoelastisite katsayısı ve nano çubuk uzunluğunun viskoelastik nano 

çubuğun zaman cevabına olan etkisi verilen sayısal sonuçlarla yorumlanmıştır. Arash 

ve diğ. (2015) nanomekanik rezonatörlerin kullanımı konusunda yaptıkları 

incelemede, konu ile ilgili yapılmış olan teorik çalışmaları da özetlemiştir. Bu 

çalışmalara örnek olarak, sürekli ortam yaklaşımı, moleküler simülasyon gibi 

yöntemler verilebilir. Bu teorik çalışmalar neticesinde, önemli kullanım alanı bulunan 

nanomekanik rezonatörlerin daha iyi tasarlanması amaçlanmıştır. Zenkour ve Sobhy 

(2015) ısı etkisindeki nano çubukların eğilme analizi için basitleştirilmiş üç 

bilinmeyen şekil değişimi olan (kesme ve normal şekil değişimleri) yerel olmayan 

çubuk teorisini sunmuştur. Çalışmada Eringen’in yerel olmayan bünye denklemleri 

kullanılmıştır. Hamilton prensibi kullanılarak denklemler oluşturulmuştur. Sonuçlar 

literatürdeki benzer çalışmalarla karşılaştırılmıştır. Bağdatlı (2015) farklı mesnetleme 

koşullarındaki Euler-Bernoulli nano çubuklarının lineer olmayan titreşimlerini 

incelemiştir. Problemin doğrusal kısmında, mod şekillerinin ve frekansların kesin 

çözümleri verilmiştir. Lineer olmayan kısımda ise, pertürbasyon tekniği ile bulunan 

yaklaşık çözümler hareket denklemlerine uygulanmıştır. Ansari ve diğ. (2016) termo-

mekanik yükler etkisindeki, burkulmuş piezoelektrik Timoshenko nano çubukların 

serbest titreşim analizinde boyut etkisini içeren yerel olmayan elastisite teorisini 

uygulamıştır. Farklı sınır koşullarında, boyut parametresinin ve sıcaklığın artışı ile 

boyutsuz doğal frekansların burkulma öncesi durum için küçüldüğü, sonrasındaki 

durum için ise büyüdüğünü gözlenmiştir. Bahrami ve Teimourian (2016), yerel 

olmayan elastisite teorisinin dalga yayılımı yöntemi ile birleştirildiği çalışmalarında 
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karbon nanotüplerin dalga cevabını incelemiştir. Dalga yayılımı yönteminin titreşim, 

enerji iletimi ve dalga cevabı analizi için kullanışlı bir yöntem olduğu belirtilmiştir.  

Nano çubuklar konusunda yapılan çalışmalar genellikle düz çubuklarla ilgilenmiştir, 

fakat gözlemler sonucu bu yapıların tam olarak düz olmadığı belirlenmiştir (Joshi ve 

diğ., 2010). Wang ve diğ. (2012) tarafından eğri eksenli nano yapılar konusunda 

Eringen’in sunduğu yerel olmayan elastisite teorisi kullanılmıştır. Çalışmada, yazarlar 

yerel olmayan elastisite teorisini kullanarak nano-ring ve çember eksenli nano 

yapıların burkulmasına ait analitik ifadeleri çıkarmışlardır. Shao ve diğ. (2009) dalgalı 

yapının karbon nanotüpün elastikliğini büyük ölçüde düşürdüğünü belirlemiştir. 

Burada, eğri eksenli nano çubukların eğriliğinin üretimde oluşturulduğunu veya düz 

çubuğun eksenel kuvvetlerin etkisinde burkulmasıyla gerçekleştiği düşünülmektedir. 

Eğri eksenli nano çubukların düzlem içi statik analizi için Tüfekci ve diğ. (2016a) yerel 

olmayan elastisite teorisini kullanan bir model sunmuştur. Analitik modelde eksenel 

uzama ve kayma deformasyonu etkileri ve bunların yerel olmayan etkileri ile eğilme 

momentinin yerel olmayan etkisi dahil edilmiştir. Kesin çözümde başlangıç değerleri 

yöntemi uygulanmıştır ve çözüm analitik olarak elde edilmiştir. Benzer çözüm 

yolunun izlendiği bir diğer çalışmada Tüfekci ve diğ. (2016b) değişken eğrilikli ve 

değişken kesitli nano çubukların düzlem içi statik davranışı konusunda kapsamlı bir 

analiz gerçekleştirmiştir. Çalışmada, çubuk eğriliği, kesiti ve çubuğa etkiyen yükler 

değişken olarak alınmıştır ve çubuk geometrisi, sınır şartları, boyut etkisi, eksenel 

uzama ve kayma deformasyonu etkilerinin öneminin incelendiği örnekler 

çözülmüştür. Tüfekci ve Aya (2016) çember eksenli nano çubukların düzlem dışı statik 

davranışını inceledikleri çalışmalarında kayma deformasyonu ve yerel olmayan 

etkileri ile eğilme ve burulma momentlerinin yerel olmayan etkilerini analitik modelde 

dahil etmiştir. Çalışmada, tekil yük etkisindeki nano çubuklardaki şekil, kesit açısı ve 

kesit tesirlerinin değişimlerin belirlendiği bir örnek çözülmüştür.  

Sürekli ortam mekaniği uygulamalarında atomlar arasındaki kafes boşlukları, yüzey 

özellikleri, tane boyutu gibi küçük boyut etkileri göz önünde bulundurulmalıdır. 

Klasik (yerel) sürekli ortam mekaniğinin nano ölçekteki sistemlere uygulamasının 

kısıtlı olmasının temel sebebi, atomlar arasında bulunan kafes boşluklarının yapının 

bütünlüğünü bozması ve sürekli ortam olarak modellenmesine engel teşkil etmesidir. 

Nanometre mertebesinde, bahsedilen küçük boyut etkisinin önemi artmaktadır. Bu 

sebeple, nano çubukların mekanik davranışı konusundaki çalışmalarda yerel olmayan 
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sürekli ortam mekaniği kullanılmaktadır. Alt bölümlerde, düzlemsel eğri eksenli nano 

çubukların düzlem dışı statik ve serbest titreşim davranışlarını belirlemek için bir 

analitik yöntem geliştirilmiştir. Çubuk kesitinin çift simetrik olduğu kabul edilmiştir. 

Boyut etkisinin ihmal edilmesinin sonuçlarda önemli sapmaya neden olduğu 

bilinmektedir. Bu çalışma, Eringen’in yerel olmayan teorisini kullanarak bu problemi 

aşmayı hedeflemektedir. Mevcut çalışma, eğri eksenli nano çubukların düzlem dışı 

statik ve dinamik davranışının incelenip, kesin çözümün sunulduğu ilk çalışma olma 

özelliğini taşımaktadır. Bu sebeple, elde edilen sonuçların, bu konuda daha sonra 

yapılacak teorik ve sayısal çalışmalar için değerlendirme kıstası olarak kabul 

edilebileceği düşünülmektedir. 
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3.  EĞRİ EKSENLİ ÇUBUKLARIN DÜZLEM DIŞI STATİK 

DAVRANIŞLARININ İNCELENMESİ 

 Çubukların Düzlem Dışı Statik Davranışını İfade Eden Yerel Olmayan 

Denklemler 

Mikro ve nano çubukların statik problemlerinin çözümünde küçük boyut etkisini 

içeren yerel olmayan elastisite teorisi kullanılmaktadır. Boyut etkisi; kafes 

parametreleri, tane boyutu ve molekül büyüklüğüne bağlı değişen karakteristik 

uzunluk ile ilişkilidir. Çubuk boyu, karakteristik uzunluğa göre çok büyük olduğunda, 

yerel olmayan teorinin sonuçları klasik (yerel) teorinin sonuçlarına yakınsamaktadır. 

Eringen (1983) tarafından sunulan yerel olmayan elastisite teorisine göre bir noktada 

oluşan gerilmeler belirli bir alandaki birim uzamaların integrali ile ilişkilidir: 

Bu denklemde, ߙ௜௝௞௟ çekirdek tensörü atom boyutundaki etkileşimleri, ߪ௜௝
௡௟ yerel 

olmayan gerilmeyi ve ߝ௞௟ ise yerel birim uzamayı ifade etmektedir.	࢞ ve ࢞ᇱ ise Ω 

alanında malzemenin herhangi iki noktasına ait konum vektörleridir. İzotrop ortamda, 

,௜௝௞௟ሺ࢞ߙ ࢞ᇱሻ’nin elastiklik tensörü bileşenlerine eşit olarak dağıldığı varsayılmaktadır 

(Eringen, 1983). Bu durumda denklem 3.1 aşağıdaki gibi düzenlenebilir: 

Bu denklemde, ܥ௜௝௞௟ izotrop malzeme için elastiklik tensörü ve ߙ skaler çekirdek 

fonksiyonudur. Bu denklem aşağıdaki şekilde yeniden yazılabilir: 

Burada, ߪ௜௝
௟  yerel gerilme tensörüdür. 

௜௝ߪ
௡௟ሺ࢞ሻ ൌ නߙ௜௝௞௟ሺ࢞, ࢞ᇱሻ ௞௟ሺ࢞ᇱሻߝ ݀Ω

ஐ
 (3.1)

௜௝ߪ
௡௟ሺݔሻ ൌ නߙሺ࢞, ࢞ᇱሻ ௜௝௞௟ܥ ௞௟ሺ࢞ᇱሻߝ ݀Ω

ஐ
 (3.2)

௜௝ߪ
௡௟ሺݔሻ ൌ නߙሺ࢞, ࢞ᇱሻ ௜௝ߪ

௟ ሺ࢞ᇱሻ ݀Ω
ஐ

 (3.3)
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Yerel olmayan elasitisite teorisinin integral bünye denklemleri bazı şartlar altında 

aşağıda verilen kısmi diferansiyel denkleme sadeleştirilebilir (Eringen, 1983; 

Benvenuti ve Simone, 2013). Böylece, yerel ve yerel olmayan elastisite teorisinin 

gerilmeleri arasındaki ilişki aşağıdaki kısmi diferansiyel denklemlerle verilmektedir: 

Burada, ߛ yerel olmayan parametreyi, ׏ଶ Laplasyen operatörünü, ࣌௡௟ yerel olmayan 

elastisite teorisinin gerilme tensörünü, ࣌௟ yerel (klasik) elastisite teorisinin gerilme 

tensörünü göstermektedir. Bu denklemler, yerel ve yerel olmayan elastisite 

teorilerindeki gerilmeler arasındaki ilişkiyi vermektedir. Bu ifade kullanılarak eğri 

eksenli çubukların yerel olmayan denklemleri, gerilme tensörünün silindirik 

koordinatlardaki laplasyeni hesaplanarak elde edilebilir. Bu denklem silindirik 

koordinatlarda düzenlenirse; 

௥௥௡௟ߪ െ ଶ࣌௡௟ሻ௥௥׏ଶሺߛ ൌ ௥௥௟ߪ  (3.5) 

ఏఏߪ
௡௟ െ ଶ࣌௡௟ሻఏఏ׏ଶሺߛ ൌ ఏఏߪ

௟  (3.6) 

௥ఏߪ
௡௟ െ ଶ࣌௡௟ሻ௥ఏ׏ଶሺߛ ൌ ௥ఏߪ

௟  (3.7) 

௥௭௡௟ߪ െ ଶ࣌௡௟ሻ௥௭׏ଶሺߛ ൌ ௥௭௟ߪ  (3.8) 

ఏ௭ߪ
௡௟ െ ଶ࣌௡௟ሻఏ௭׏ଶሺߛ ൌ ఏ௭ߪ

௟  (3.9) 

௭௭௡௟ߪ െ ଶ࣌௡௟ሻ௭௭׏ଶሺߛ ൌ ௭௭௟ߪ  (3.10) 

ifadeleri elde edilir. Yerel olmayan elastisite teorisindeki ࣌௡௟ gerilme tensörünün 

laplasyeni, Povstenko (1995) tarafından aşağıdaki eşitliklerle verilmektedir: 

ሺ׏ଶ࣌௡௟ሻ௥௥ ൌ ௥௥௡௟ߪଶ׏ െ
4
ଶݎ
௥ఏߪ߲

௡௟

ߠ߲
െ
2
ଶݎ
൫ߪ௥௥௡௟ െ ఏఏߪ

௡௟ ൯ (3.11) 

ሺ׏ଶ࣌௡௟ሻఏఏ ൌ ఏఏߪଶ׏
௡௟ ൅

4
ଶݎ
௥ఏߪ߲

௡௟

ߠ߲
൅
2
ଶݎ
൫ߪ௥௥௡௟ െ ఏఏߪ

௡௟ ൯ (3.12) 

ሺ׏ଶ࣌௡௟ሻ௥ఏ ൌ ௥ఏߪଶ׏
௡௟ െ

4
ଶݎ
௥ఏߪ
௡௟ ൅

2
ଶݎ

߲
ߠ߲

൫ߪ௥௥௡௟ െ ఏఏߪ
௡௟ ൯ (3.13) 

ሺ1 െ ଶሻ࣌௡௟׏ଶߛ ൌ ࣌௟ (3.4) 
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ሺ׏ଶ࣌௡௟ሻ௥௭ ൌ ௥௭௡௟ߪଶ׏ െ
1
ଶݎ
௥௭௡௟ߪ െ

2
ଶݎ
ఏ௭ߪ߲

௡௟

ߠ߲
 (3.14)

ሺ׏ଶ࣌௡௟ሻఏ௭ ൌ ఏ௭ߪଶ׏
௡௟ െ

1
ଶݎ
ఏ௭ߪ
௡௟ ൅

2
ଶݎ
௥௭௡௟ߪ߲

ߠ߲
 (3.15)

ሺ׏ଶ࣌௡௟ሻ௭௭ ൌ ௭௭௡௟ (3.16)ߪଶ׏

burada, skaler büyüklüğün laplasyen ifadesi, 

ଶ݂׏ ൌ
߲ଶ݂
ଶݎ߲

൅
1
ݎ
߲݂
ݎ߲

൅
1
ଶݎ
߲ଶ݂
ଶߠ߲

൅
߲ଶ݂
ଶݖ߲

 (3.17)

olarak bilinmektedir. Eğri eksenli çubukların denklemleri Frenet koordinat sisteminde 

verilmektedir. Silindirik ve Frenet koordinat sistemleri arasındaki ilişkinin 

incelenebilmesi amacıyla her iki koordinat sistemi Şekil 3.1’de gösterilmektedir. 

Çubuk teorisinde, üç boyutlu yükleme durumu için ߪ௧, ߪ௧௡ ve ߪ௧௕ gerilmeleri 

mevcuttur. Çubuk kesitinin rijit olduğu, yani herhangi bir boyut değişimine ve 

çarpılmaya uğramadığı varsayımıyla, diğer gerilmelerin, yani ߪ௡, ߪ௕ ve ߪ௡௕ 

değerlerinin sıfır oldukları ifade edilmektedir. Silindirik koordinatlardaki gerilmeler 

ile Frenet koordinatlarındaki gerilmeler arasındaki ilişki aşağıda verilmektedir: 

௡ߪ ൌ െߪ௥௥ ൌ 0 (3.18)

௕ߪ ൌ ௭௭ߪ ൌ 0 (3.19)

௧ߪ ൌ ఏఏߪ ് 0 (3.20)

௧௡ߪ ൌ െߪ௥ఏ ് 0 (3.21)

௧௕ߪ ൌ ఏ௭ߪ ് 0 (3.22)

௡௕ߪ ൌ െߪ௥௭ ൌ 0 (3.23)
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Şekil 3.1 : Eğri eksenli bir çubukta, Frenet ve silindirik koordinat eksenleri. 

Bu ilişki hem yerel hem de yerel olmayan gerilmeler için aynıdır. Çubuğun eğrilik 

yarıçapının sadece ߠ açısal koordinatının fonksiyonu olduğu varsayılmaktadır. Yani, 

ܴ ൌ ܴሺߠሻ olduğundan silindirik koordinat ݎ ve diferansiyeli şu şekilde tarif edilebilir: 

burada ̅ݎ kesit içindeki radyal koordinatı göstermektedir. Çubuk teorisinde, kesit 

boyutlarının eğrilik yarıçapının yanında çok küçük olduğu yani ̅ݎ/ܴሺߠሻ ≪ 1 

kabulüyle, yaklaşık olarak ൫1 ൅ ሻ൯ߠሺܴ/ݎ̅ ≅ 1 şeklinde alınabilir. 

Bu çalışmada, düzlemsel yükleme durumundaki düzlemsel eğri eksenli çubuklar ele 

alındığından ߪ௧௡ ൌ െߪ௥ఏ ൌ 0 olacaktır. Bu durumda, eğri eksenli düzlemsel çubuğun, 

düzlemindeki davranışını ifade eden, ߠ koordinatındaki kesit tesirleri olan ܨ௕
௡௟, ܯ௡

௡௟ ve 

௧ܯ
௡௟ sadece ߠ koordinatına bağlı olacaktır. Kesit tesirlerinin silindirik koordinatlardaki 

türevleri: 

௕ܨ߲
௡௟

ݎ߲̅
ൌ 0			

߲ଶܨ௕
௡௟

ଶݎ߲̅
ൌ 0			

௕ܨ߲
௡௟

ߠ߲
് 0

߲ଶܨ௕
௡௟

ଶߠ߲
് 0

௕ܨ߲
௡௟

ݖ߲
ൌ 0

߲ଶܨ௕
௡௟

ଶݖ߲
ൌ 0 (3.25) 

௡ܯ߲
௡௟

ݎ߲̅
ൌ 0			

߲ଶܯ௡
௡௟

ଶݎ߲̅
ൌ 0		

௡ܯ߲
௡௟

ߠ߲
് 0

߲ଶܯ௡
௡௟

ଶߠ߲
് 0

௡ܯ߲
௡௟

ݖ߲
ൌ 0

߲ଶܯ௡
௡௟

ଶݖ߲
ൌ 0 (3.26) 

ݎ ൌ ܴሺߠሻ ൅ ݎ̅ ; ݎ߲ ൌ  (3.24) ݎ߲̅
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௧ܯ߲
௡௟

ݎ߲̅
ൌ 0	

߲ଶܯ௧
௡௟

ଶݎ߲̅
ൌ 0	

௧ܯ߲
௡௟

ߠ߲
് 0

߲ଶܯ௧
௡௟

ଶߠ߲
് 0

௧ܯ߲
௡௟

ݖ߲
ൌ 0

߲ଶܯ௧
௡௟

ଶݖ߲
ൌ 0 (3.27)

olarak bilinmektedir. 

Silindirik koordinatlardaki denge denklemleri; 

௥௥௡௟ߪ߲

ݎ߲
൅
௥௥௡௟ߪ െ ఏఏߪ

௡௟

ݎ
൅
1
ݎ
௥ఏߪ߲

௡௟

ߠ߲
൅
௥௭௡௟ߪ߲

ݖ߲
ൌ 0 (3.28)

௥ఏߪ߲
௡௟

ݎ߲
൅
௥ఏߪ2

௡௟

ݎ
൅
1
ݎ
ఏఏߪ߲

௡௟

ߠ߲
൅
ఏ௭ߪ߲

௡௟

ݖ߲
ൌ 0 (3.29)

௭௥௡௟ߪ߲

ݎ߲
൅
௭௥௡௟ߪ

ݎ
൅
1
ݎ
௭ఏߪ߲

௡௟

ߠ߲
൅
௭௭௡௟ߪ߲

ݖ߲
ൌ 0 (3.30)

olarak bilinmektedir. Bu denklemler, 3.18-3.23 denklemleri kullanılarak yeniden 

yazılırsa; 

െ
1
ݎ
ఏఏߪ
௡௟ ൅

1
ݎ
௥ఏߪ߲

௡௟

ߠ߲
ൌ 0 (3.31)

௥ఏߪ߲
௡௟

ݎ߲̅
൅
1
ݎ
௥ఏߪ2

௡௟ ൅
1
ݎ
ఏఏߪ߲

௡௟

ߠ߲
൅
ఏ௭ߪ߲

௡௟

ݖ߲
ൌ 0 (3.32)

1
ݎ
௭ఏߪ߲

௡௟

ߠ߲
ൌ 0 (3.33)

ifadeleri elde edilir. 

Yerel olmayan elastisite teorisinden elde edilen gerilmeler arasındaki ilişkilerden 

faydalanılarak, denklem 3.17, denklem 3.5’te yerine konarak aşağıdaki şekilde 

yazılabilir: 

௥௥௡௟ߪ െ ଶߛ ቌ׏ଶߪ௥௥௡௟ െ
4
ଶݎ
௥ఏߪ߲

௡௟

ߠ߲
െ
2
ଶݎ
൫ߪ௥௥௡௟ െ ఏఏߪ

௡௟ ൯ቍ ൌ ௥௥௟ߪ  (3.34)

Denklem 3.17, ߪ௥௥௡௟ için düzenlenirse; 
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௥௥௡௟ߪଶ׏ ൌ
߲ଶߪ௥௥௡௟

ଶݎ߲̅
൅
1
ݎ
௥௥௡௟ߪ߲

ݎ߲̅
൅
1
ଶݎ
߲ଶߪ௥௥௡௟

ଶߠ߲
൅
߲ଶߪ௥௥௡௟

ଶݖ߲
 (3.35) 

eşitliği elde edilir. Bu ifade, denklem 3.34’te yerine konursa; 

௥௥௡௟ߪ െ ଶߛ ቈ
߲ଶߪ௥௥௡௟

ଶݎ߲̅
൅
1
ݎ
௥௥௡௟ߪ߲

ݎ߲̅
൅
1
ଶݎ
߲ଶߪ௥௥௡௟

ଶߠ߲
൅
߲ଶߪ௥௥௡௟

ଶݖ߲
െ
4
ଶݎ
௥ఏߪ߲

௡௟

ߠ߲

െ
2
ଶݎ
൫ߪ௥௥௡௟ െ ఏఏߪ

௡௟ ൯቉ ൌ ௥௥௟ߪ  

(3.36) 

ifadesine ulaşılır. Çubuk varsayımı, yani 3.18-3.23 denklemleri kullanılarak; 

ଶߛ4

ଶݎ
௥ఏߪ߲

௡௟

ߠ߲
െ
ଶߛ2

ଶݎ
ఏఏߪ
௡௟ ൌ 0 (3.37) 

eşitliği elde edilir. 

Denklem 3.12, denklem 3.15’te yerine konularak aşağıdaki ifade elde edilir: 

ఏఏߪ
௡௟ െ ଶߛ ቈ׏ଶߪఏఏ

௡௟ ൅
4
ଶݎ
௥ఏߪ߲

௡௟

ߠ߲
൅
2
ଶݎ
൫ߪ௥௥௡௟ െ ఏఏߪ

௡௟ ൯቉ ൌ ఏఏߪ
௟  (3.38) 

Denklem 3.17, ߪఏఏ
௡௟  için düzenlenirse; 

ఏఏߪଶ׏
௡௟ ൌ

߲ଶߪఏఏ
௡௟

ଶݎ߲̅
൅
1
ݎ
ఏఏߪ߲

௡௟

ݎ߲̅
൅
1
ଶݎ
߲ଶߪఏఏ

௡௟

ଶߠ߲
൅
߲ଶߪఏఏ

௡௟

ଶݖ߲
 (3.39) 

eşitliği elde edilir. Bu eşitlik, denklem 3.38’de yerine konursa, aşağıdaki ifade elde 

edilir. 

ఏఏߪ
௡௟ െ ଶߛ ቈቆ

߲ଶߪఏఏ
௡௟

ଶݎ߲̅
൅
1
ݎ
ఏఏߪ߲

௡௟

ݎ߲̅
൅
1
ଶݎ
߲ଶߪఏఏ

௡௟

ଶߠ߲
൅
߲ଶߪఏఏ

௡௟

ଶݖ߲
ቇ ൅

4
ଶݎ
௥ఏߪ߲

௡௟

ߠ߲

൅
2
ଶݎ
൫ߪ௥௥௡௟ െ ఏఏߪ

௡௟ ൯቉ ൌ ఏఏߪ
௟  

(3.40) 

3.18-3.23 denklemleri kullanılarak; 

ఏఏߪ
௡௟ െ ଶߛ ቈቆ

߲ଶߪఏఏ
௡௟

ଶݎ߲̅
൅
1
ݎ
ఏఏߪ߲

௡௟

ݎ߲̅
൅
1
ଶݎ
߲ଶߪఏఏ

௡௟

ଶߠ߲
൅
߲ଶߪఏఏ

௡௟

ଶݖ߲
ቇ ൅

4
ଶݎ
௥ఏߪ߲

௡௟

ߠ߲
െ
2
ଶݎ
ఏఏߪ
௡௟ ቉

ൌ ఏఏߪ
௟  

(3.41) 
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eşitliği elde edilir.  

Denklem 3.17, denklem 3.7’de yerine konur ve düzenlenirse; 

௥ఏߪ
௡௟ െ ଶߛ ൤׏ଶߪ௥ఏ

௡௟ െ
4
ଶݎ
௥ఏߪ
௡௟ ൅

2
ଶݎ

߲
ߠ߲

൫ߪ௥௥௡௟ െ ఏఏߪ
௡௟ ൯൨ ൌ ௥ఏߪ

௟  (3.42)

bulunur. Denklem 3.17, ߪ௥ఏ
௡௟ için düzenlenerek; 

௥ఏߪଶ׏
௡௟ ൌ

߲ଶߪ௥ఏ
௡௟

ଶݎ߲̅
൅
1
ݎ
௥ఏߪ߲

௡௟

ݎ߲̅
൅
1
ଶݎ
߲ଶߪ௥ఏ

௡௟

ଶߠ߲
൅
߲ଶߪ௥ఏ

௡௟

ଶݖ߲
 (3.43)

ifadesi elde edilir. Bu, denklem 3.42’de yerine konursa; 

௥ఏߪ
௡௟ െ ଶߛ ቈቆ

߲ଶߪ௥ఏ
௡௟

ଶݎ߲̅
൅
1
ݎ
௥ఏߪ߲

௡௟

ݎ߲̅
൅
1
ଶݎ
߲ଶߪ௥ఏ

௡௟

ଶߠ߲
൅
߲ଶߪ௥ఏ

௡௟

ଶݖ߲
ቇ െ

4
ଶݎ
௥ఏߪ
௡௟

൅
2
ଶݎ

߲
ߠ߲

൫ߪ௥௥௡௟ െ ఏఏߪ
௡௟ ൯቉ ൌ ௥ఏߪ

௟  

(3.44)

elde edilir. 3.18-3.23 denklemleri kullanılarak; 

௥ఏߪ
௡௟ െ ଶߛ ቈቆ

߲ଶߪ௥ఏ
௡௟

ଶݎ߲̅
൅
1
ݎ
௥ఏߪ߲

௡௟

ݎ߲̅
൅
1
ଶݎ
߲ଶߪ௥ఏ

௡௟

ଶߠ߲
൅
߲ଶߪ௥ఏ

௡௟

ଶݖ߲
ቇ െ

4
ଶݎ
௥ఏߪ
௡௟ െ

2
ଶݎ
ఏఏߪ߲

௡௟

ߠ߲
቉

ൌ ௥ఏߪ
௟  

(3.45)

denklemine ulaşılır. 

Denklem 3.17, denklem 3.8’de yerine konur ve düzenlenirse; 

௥௭௡௟ߪ െ ଶߛ ቈ׏ଶߪ௥௭௡௟ െ
1
ଶݎ
௥௭௡௟ߪ െ

2
ଶݎ
ఏ௭ߪ߲

௡௟

ߠ߲
቉ ൌ ௥௭௟ߪ  (3.46)

bulunur. Denklem 3.17, ߪ௥௭௡௟ için düzenlenerek; 

௥௭௡௟ߪଶ׏ ൌ
߲ଶߪ௥௭௡௟

ଶݎ߲̅
൅
1
ݎ
௥௭௡௟ߪ߲

ݎ߲̅
൅
1
ଶݎ
߲ଶߪ௥௭௡௟

ଶߠ߲
൅
߲ଶߪ௥௭௡௟

ଶݖ߲
 (3.47)

ifadesi elde edilir. Bu, denklem 3.46’da yerine konursa; 
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௥௭௡௟ߪ െ ଶߛ ቈቆ
߲ଶߪ௥௭௡௟

ଶݎ߲̅
൅
1
ݎ
௥௭௡௟ߪ߲

ݎ߲̅
൅
1
ଶݎ
߲ଶߪ௥௭௡௟

ଶߠ߲
൅
߲ଶߪ௥௭௡௟

ଶݖ߲
ቇ െ

1
ଶݎ
௥௭௡௟ߪ െ

2
ଶݎ
ఏ௭ߪ߲

௡௟

ߠ߲
቉

ൌ ௥௭௟ߪ  

(3.48) 

elde edilir. 3.18-3.23 denklemleri kullanılarak; 

ఏ௭ߪ߲
௡௟

ߠ߲
ൌ 0 (3.49) 

denklemine ulaşılır. 

Denklem 3.17, denklem 3.9’da yerine konur ve düzenlenirse; 

ఏ௭ߪ
௡௟ െ ଶߛ ቈ׏ଶߪఏ௭

௡௟ െ
1
ଶݎ
ఏ௭ߪ
௡௟ ൅

2
ଶݎ
௥௭௡௟ߪ߲

ߠ߲
቉ ൌ ఏ௭ߪ

௟  (3.50) 

bulunur. Denklem 3.17, ߪఏ௭
௡௟ için düzenlenerek; 

ఏ௭ߪଶ׏
௡௟ ൌ

߲ଶߪఏ௭
௡௟

ଶݎ߲̅
൅
1
ݎ
ఏ௭ߪ߲

௡௟

ݎ߲̅
൅
1
ଶݎ
߲ଶߪఏ௭

௡௟

ଶߠ߲
൅
߲ଶߪఏ௭

௡௟

ଶݖ߲
 (3.51) 

ifadesi elde edilir. Bu, denklem 3.50’de yerine konursa; 

ఏ௭ߪ
௡௟ െ ଶߛ ቈቆ

߲ଶߪఏ௭
௡௟

ଶݎ߲̅
൅
1
ݎ
ఏ௭ߪ߲

௡௟

ݎ߲̅
൅
1
ଶݎ
߲ଶߪఏ௭

௡௟

ଶߠ߲
൅
߲ଶߪఏ௭

௡௟

ଶݖ߲
ቇ െ

1
ଶݎ
ఏ௭ߪ
௡௟ ൅

2
ଶݎ
௥௭௡௟ߪ߲

ߠ߲
቉

ൌ ఏ௭ߪ
௟  

(3.52) 

elde edilir. 3.18-3.23 denklemleri kullanılarak; 

ఏ௭ߪ
௡௟ െ ଶߛ ቈቆ

߲ଶߪఏ௭
௡௟

ଶݎ߲̅
൅
1
ݎ
ఏ௭ߪ߲

௡௟

ݎ߲̅
൅
1
ଶݎ
߲ଶߪఏ௭

௡௟

ଶߠ߲
൅
߲ଶߪఏ௭

௡௟

ଶݖ߲
ቇ െ

1
ଶݎ
ఏ௭ߪ
௡௟቉ ൌ ఏ௭ߪ

௟  (3.53) 

denklemine ulaşılır. 

௕ܨ
௡௟ kesit tesirini elde etmek için, ߪఏ௭

௡௟ gerilme ifadesinin, yani, denklem 3.53’ün kesit 

üzerinde integre edilmesi gerekir: 
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ඵ ቎ߪఏ௭
௡௟ െ ଶߛ ቈቆ

߲ଶߪఏ௭
௡௟

ଶݎ߲
൅
1
ݎ
ఏ௭ߪ߲

௡௟

ݎ߲
൅
1
ଶݎ
߲ଶߪఏ௭

௡௟

ଶߠ߲
൅
߲ଶߪఏ௭

௡௟

ଶݖ߲
ቇ െ

1
ଶݎ
ఏ௭ߪ
௡௟቉቏ ܣ݀

஺

ൌ ඵߪఏ௭
௟ ܣ݀

஺
 

(3.54)

Denklem 3.24’ü kullanıp, ̅ݎ/ܴ ≪ 1 varsayımı yapıldığında aşağıdaki denklem elde 

edilir: 

ඵߪఏ௭
௡௟݀ܣ

஺
െ ଶඵߛ

߲ଶߪఏ௭
௡௟

ଶݎ߲̅
ܣ݀

஺
െ

ଶߛ

ܴሺߠሻ
ඵ

ఏ௭ߪ߲
௡௟

ݎ߲̅
ܣ݀

஺
െ

ଶߛ

ܴሺߠሻଶ
ඵ

߲ଶߪఏ௭
௡௟

ଶߠ߲
ܣ݀

஺

െ ଶඵߛ
߲ଶߪఏ௭

௡௟

ଶݖ߲
ܣ݀

஺
൅

ଶߛ

ܴሺߠሻଶ
ඵߪఏ௭

௡௟݀ܣ
஺

ൌ ඵߪఏ௭
௟ ܣ݀

஺
 

(3.55)

Belirli koşullar altında integral ve kısmi türevlerin değiştirilebileceğinin belirtildiği 

Leibniz integral kuralı (Abramowitz ve Stegun, 1972) uygulandığında denklem 3.55 

aşağıda verilen şekilde sadeleşecektir: 

ඵߪఏ௭
௡௟݀ܣ

஺
െ ଶߛ

߲ଶ

ଶݎ߲̅
ඵߪఏ௭

௡௟݀ܣ
஺

െ
ଶߛ

ܴሺߠሻ
߲
ݎ߲̅
ඵߪఏ௭

௡௟݀ܣ
஺

െ
ଶߛ

ܴሺߠሻଶ
߲ଶ

ଶߠ߲
ඵߪఏ௭

௡௟݀ܣ
஺

െ ଶߛ
߲ଶ

ଶݖ߲
ඵߪఏ௭

௡௟݀ܣ
஺

൅
ଶߛ

ܴሺߠሻଶ
ඵߪఏ௭

௡௟݀ܣ
஺

ൌ ඵߪఏ௭
௟ ܣ݀

஺
 

(3.56)

Burada, 

ඵߪఏ௭
௡௟݀ܣ

஺
ൌ ௕ܨ

௡௟ ඵߪఏ௭
௟ ܣ݀

஺
ൌ ௕ܨ

௟  (3.57)

eşitlikleri yazılabilir.	ܨ௕
௡௟’in ߠ koordinatındaki kesit tesiri olduğu bilinmektedir ve 

değeri sadece ߠ koordinatına bağlıdır. Dolayısıyla, denklem 3.56 aşağıdaki biçimde 

düzenlenebilir:  

ቆ1 ൅
ଶߛ

ܴሺߠሻଶ
ቇܨ௕

௡௟ െ
ଶߛ

ܴሺߠሻଶ
߲ଶܨ௕

௡௟

ଶߠ߲
ൌ ௕ܨ

௟  (3.58)
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Benzer şekilde, ܯ௡
௡௟ ve ܯ௡

௟  arasındaki ilişkiyi belirlemek için denklem 3.41 ile verilen 

ఏఏߪ
௡௟  gerilme ifadesi ݖ koordinatı ile çarpılarak kesit üzerinde integre edilir: 

ඵ ቊߪఏఏ
௡௟ െ ଶߛ ቈቆ

߲ଶߪఏఏ
௡௟

ଶݎ߲
൅
1
ݎ
ఏఏߪ߲

௡௟

ݎ߲
൅
1
ଶݎ
߲ଶߪఏఏ

௡௟

ଶߠ߲
൅
߲ଶߪఏఏ

௡௟

ଶݖ߲
ቇ቉ቋ ܣ݀ݖ

஺

ൌ ඵߪఏఏ
௟ ܣ݀ݖ

஺
 

(3.59) 

ܴ/ݎ̅ ≪ 1 varsayımı yapılır; kısmi integrasyon ve Leibniz kuralı uygulanırsa aşağıdaki 

denklem elde edilir:  

ඵߪఏఏ
௡௟ܣ݀ݖ

஺
െ ଶߛ

߲ଶ

ଶݎ߲̅
ඵߪఏఏ

௡௟ܣ݀ݖ
஺

െ
ଶߛ

ܴሺߠሻ
߲
ݎ߲̅
ඵߪఏఏ

௡௟ܣ݀ݖ
஺

െ
ଶߛ

ܴሺߠሻଶ
߲ଶ

ଶߠ߲
ඵߪఏఏ

௡௟ܣ݀ݖ
஺

െ ଶߛ
߲ଶ

ଶݖ߲
ඵ൫ߪఏఏ

௡௟ݖ൯݀ܣ
஺

൅ ଶߛ2
߲
ݖ߲
ඵߪఏఏ

௡௟݀ܣ
஺

ൌ ඵߪఏఏ
௟ ܣ݀ݖ

஺
 

(3.60) 

Burada, 

ඵߪఏఏ
௡௟ܣ݀ݖ

஺
ൌ ௡ܯ

௡௟;		ඵߪఏఏ
௟ ܣ݀ݖ

஺
ൌ ௡ܯ

௟ ; ඵߪఏఏ
௟ ܣ݀

஺
ൌ ௧ܨ

௟ (3.61) 

eşitlikleri yazılır.	ܯ௡
௡௟ ve ܨ௧

௡௟ kesit tesirleri sadece ߠ koordinatına bağlıdır. Bu 

durumda, denklem 3.60 aşağıdaki verilen ifadeye (denklem 3.62) sadeleştirilir: 

௡ܯ
௡௟ െ

ଶߛ

ܴሺߠሻଶ
߲ଶܯ௡

௡௟

ଶߠ߲
ൌ ௡ܯ

௟  (3.62) 

௧ܯ
௡௟ teğetsel momenti, ߪ௥ఏ

௡௟ and ߪఏ௭
௡௟ gerilme ifadelerinin kiriş kesiti üzerinde integre 

edilmesiyle elde edilir: 
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ඵ ቐ቎ߪ௥ఏ
௡௟ െ ଶߛ ቈቆ

߲ଶߪ௥ఏ
௡௟

ଶݎ߲̅
൅
1
ݎ
௥ఏߪ߲

௡௟

ݎ߲̅
൅
1
ଶݎ
߲ଶߪ௥ఏ

௡௟

ଶߠ߲
൅
߲ଶߪ௥ఏ

௡௟

ଶݖ߲
ቇ െ

4
ଶݎ
௥ఏߪ
௡௟

஺

െ
2
ଶݎ
ఏఏߪ߲

௡௟

ߠ߲
቉቏ ݖ

െ ቎ߪఏ௭
௡௟

െ ଶߛ ቈቆ
߲ଶߪఏ௭

௡௟

ଶݎ߲̅
൅
1
ݎ
ఏ௭ߪ߲

௡௟

ݎ߲̅
൅
1
ଶݎ
߲ଶߪఏ௭

௡௟

ଶߠ߲
൅
߲ଶߪఏ௭

௡௟

ଶݖ߲
ቇ

െ
1
ଶݎ
ఏ௭ߪ
௡௟቉቏ ቑݎ̅ ܣ݀ ൌඵ൫ߪ௥ఏ

௟ ݖ െ ఏ௭ߪ
௟ ܣ൯݀ݎ̅

஺
 

(3.63)

Kısmi integrasyon ve Leibniz kuralı uygulanırsa aşağıdaki denklem elde edilir:  

ඵ൛ߪ௥ఏ
௡௟ݖ െ ఏ௭ߪ

௡௟̅ݎൟ݀ܣ
஺

െ ଶߛ
߲ଶ

ଶݎ߲̅
ඵ൛ߪ௥ఏ

௡௟ݖ െ ఏ௭ߪ
௡௟̅ݎൟ݀ܣ

஺

െ
ଶߛ

ܴሺߠሻ
߲
ݎ߲̅
ඵ൛ߪ௥ఏ

௡௟ݖ െ ఏ௭ߪ
௡௟̅ݎൟ݀ܣ

஺

െ
ଶߛ

ܴሺߠሻଶ
߲ଶ

ଶߠ߲
ඵ൛ߪ௥ఏ

௡௟ݖ െ ఏ௭ߪ
௡௟̅ݎൟ݀ܣ

஺

െ ଶߛ
߲ଶ

ଶݖ߲
ඵ൛ߪ௥ఏ

௡௟ݖ െ ఏ௭ߪ
௡௟̅ݎൟ݀ܣ

஺

൅
ଶߛ

ܴሺߠሻଶ
ඵ൛ߪ௥ఏ

௡௟ݖ െ ఏ௭ߪ
௡௟̅ݎൟ݀ܣ

஺
൅ ଶߛ2

߲
ݖ߲
ඵߪ௥ఏ

௡௟݀ܣ
஺

൅
ଶߛ2

ܴሺߠሻଶ
߲
ߠ߲

ඵߪఏఏ
௡௟ܣ݀ݖ

஺
െ ଶߛ2

߲
ݎ߲̅
ඵߪఏ௭

௡௟݀ܣ
஺

െ
ଶߛ

ܴሺߠሻ
ඵߪఏ௭

௡௟݀ܣ
஺

൅
ଶߛ3

ܴሺߠሻଶ
ඵߪ௥ఏ

௡௟ܣ݀ݖ
஺

ൌ ඵ൫ߪ௥ఏ
௟ ݖ െ ఏ௭ߪ

௟ ܣ൯݀ݎ̅
஺

 

(3.64)

Burada, 
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ඵ൛ߪ௥ఏ
௡௟ݖ െ ఏ௭ߪ

௡௟̅ݎൟ݀ܣ
஺

ൌ ௧ܯ
௡௟; ඵ൛ߪ௥ఏ

௟ ݖ െ ఏ௭ߪ
௟ ܣൟ݀ݎ̅

஺
ൌ ௧ܯ

௟ 

ඵߪఏఏ
௡௟ܣ݀ݖ

஺
ൌ ௡ܯ

௡௟; 		ඵߪఏ௭
௡௟݀ܣ

஺
ൌ ௕ܨ

௡௟; ඵߪ௥ఏ
௡௟݀ܣ

஺
ൌ െܨ௡௡௟ 

(3.65) 

eşitlikleri yazılabilir. Denklem 3.65 ile verilen eşitlikler denklem 3.64’te yerine 

konduğunda aşağıdaki ifade elde edilir:  

௧ܯ
௡௟ െ

ଶߛ

ܴሺߠሻଶ
߲ଶܯ௧

௡௟

ଶߠ߲
൅

ଶߛ2

ܴሺߠሻଶ
߲
ߠ߲

௡ܯ
௡௟ െ

ଶߛ

ܴሺߠሻ
௕ܨ
௡௟ ൅

ଶߛ

ܴሺߠሻଶ
௧ܯ
௡௟

൅
ଶߛ3

ܴሺߠሻଶ
ඵߪ௥ఏ

௡௟ܣ݀ݖ
஺

ൌ ௧ܯ
௟ 

(3.66) 

Denklem 3.66’nın sol tarafının son terimi denge denklemleri kullanılarak tekrar 

yazılırsa:  

௥ఏߪ߲
௡௟

ݎ߲
൅
௥ఏߪ2

௡௟

ݎ
൅
1
ݎ
ఏఏߪ߲

௡௟

ߠ߲
൅
ఏ௭ߪ߲

௡௟

ݖ߲
ൌ 0 (3.67) 

eşitliği elde edilir. Denklem 3.67, 3ݎ2/ݖ ile çarpılıp, ardından kısmi integrasyon 

kuralını uygulayarak kesit üzerinde integre edilirse (̅ݎ/ܴ ≪ 1):  

3
ܴሺߠሻଶ

ඵߪ௥ఏ
௡௟ܣ݀ݖ

஺

ൌ െ
3

2ܴሺߠሻଶ
௡ܯ߲

௡௟

ߠ߲
൅

3
2ܴሺߠሻ

௕ܨ
௡௟ (3.68) 

Bu ifade denklem 3.66’da yerine konursa ܯ௧
௡௟ ve ܯ௧

௟ arasındaki ilişkiyi veren denklem 

yazılabilir: 

ቆ1 ൅
ଶߛ

ܴଶ
ቇܯ௧

௡௟ െ
ଶߛ

ܴሺߠሻଶ
߲ଶܯ௧

௡௟

ଶߠ߲
൅

ଶߛ

2ܴሺߠሻଶ
௡ܯ߲

௡௟

ߠ߲
൅

ଶߛ

2ܴሺߠሻ
௕ܨ
௡௟ ൌ ௧ܯ

௟ (3.69) 

Yerel elastisite teorisinin verdiği, düzlem dışı statik davranışını ifade eden denklemler 

(Tüfekci ve Dogruer, 2006); 

ሻߠሺݒ݀
ߠ݀

ൌ െܴሺߠሻΩ୬ሺߠሻ ൅
݇௡ܴሺߠሻ

ሻߠሺܣܩ
 ሻ (3.70)ߠ௕ሺܨ
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݀Ω௡ሺߠሻ
ߠ݀

ൌ Ω௧ሺߠሻ ൅
ܴሺߠሻ
ሻߠ௡ሺܫܧ

ሻ (3.71)ߠ௡ሺܯ

݀Ω௧ሺߠሻ
ߠ݀

ൌ Ω௡ሺߠሻ ൅
ܴሺߠሻ
ሻߠሺܬܩ

ሻ (3.72)ߠ௧ሺܯ

ሻߠ௡ሺܯ݀
ߠ݀

ൌ െܯ௧ሺߠሻ ൅ ܴሺߠሻܨ௕ሺߠሻ െ ܴሺߠሻ݉௡ሺߠሻ (3.73)

ሻߠ௧ሺܯ݀
ߠ݀

ൌ ሻߠ௡ሺܯ െ ܴሺߠሻ݉௧ሺߠሻ (3.74)

ሻߠ௕ሺܨ݀
ߠ݀

ൌ െܴሺߠሻݍ௕ሺߠሻ (3.75)

olarak bilinmektedir. Bu denklemlerde ݒ binormal doğrultulardaki yer değiştirmeleri; 

݊, ܾ ve ݐ indisleri sırasıyla normal, binormal ve teğet doğrultuları göstermekdir. Ω௡ 

kesitin normal eksen etrafındaki dönme açısını;	Ω௧ kesitin teğet eksen etrafındaki 

dönme açısını ߠ, açısal koordinatı; ܴሺߠሻ, şekil değiştirmemiş çubuk ekseninin eğrilik 

yarıçapını, ܨ௕ binormal doğrultudaki iç kuvvetleri; ܯ௡ normal doğrultuda, ܯ௧ teğet 

doğrultuda vektör veren iç momentleri; ܧ ve ܩ malzemenin elastiklik (Young) ve 

kayma modüllerini; ݇௕ kayma gerilmesinin kesite üniform olarak yayılmadığını 

karakterize eden sabiti; ܣ, kesit alanını; ܫ௡, binormal eksene göre eylemsizlik 

momentini temsil etmektedir.	ܬ burulma sabitidir. ݍ௕ binormal doğrultuda yayılı dış 

kuvveti, ݉௡ ve ݉ ௧ normal ve teğet doğrultulardaki yayılı dış momenti göstermektedir. 

Burada, çubuk eğriliğinin ve kesitinin ayrıca dış yayılı yüklerin, sadece, ߠ 

koordinatının fonksiyonu olduğu varsayılmaktadır. Yerel teorinin çubuk denklemleri 

kullanılarak, elde edilmiş olan yerel ve yerel olmayan teorilerdeki kesit tesirleri 

arasındaki ilişkiler, düzenlenerek, ilk üç denklemde yerine konacaktır. 

3.73-3.75 denklemleri, yani denge denklemleri hem yerel hem de yerel olmayan 

teoride aynıdır. 3.58, 3.62 ve 3.69 bu bilgi ile düzenlenerek, ifadeler denklem 3.70-

3.72’de yerine koyulur ve böylece yerel olmayan bünye denklemleri elde edilir. Bunun 

için, 3.73-3.75 denklemleri ߠ koordinatına göre türetilirse;  
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݀ଶܯ௡ሺߠሻ

ଶߠ݀
ൌ െ

ሻߠ௧ሺܯ݀

ߠ݀
൅
ܴ݀ሺߠሻ

ߠ݀
ሻߠ௕ሺܨ ൅ ܴሺߠሻ

ሻߠ௕ሺܨ݀

ߠ݀
െ
ܴ݀ሺߠሻ

ߠ݀
݉௡ሺߠሻ

െ ܴሺߠሻ
݀݉௡ሺߠሻ
ߠ݀

 

(3.76) 

݀ଶܯ௧ሺߠሻ
ଶߠ݀

ൌ
ሻߠ௡ሺܯ݀
ߠ݀

െ
ܴ݀ሺߠሻ
ߠ݀

݉௧ሺߠሻ െ ܴሺߠሻ
݀݉௧ሺߠሻ
ߠ݀

 (3.77) 

݀ଶܨ௕ሺߠሻ
ଶߠ݀

ൌ െ
ܴ݀ሺߠሻ
ߠ݀

ሻߠ௕ሺݍ െ ܴሺߠሻ
ሻߠ௕ሺݍ݀
ߠ݀

 (3.78) 

eşitlikleri elde edilir. Burada, denklem 3.76-3.78, yani kesit tesirlerinin birinci 

türevleri, denklem 3.58, 3.62 ve 3.69’da yerine konur ve düzenlenirse;  

ቆ1 ൅
ଶߛ

ܴሺߠሻଶ
ቇܯ௡

௡௟ሺߠሻ െ
ଶߛ

ܴሺߠሻଶ
ܴ݀ሺߠሻ

ߠ݀
௕ܨ
௡௟ሺߠሻ ൅

ଶߛ

ܴሺߠሻଶ
ܴሺߠሻଶݍ௕ሺߠሻ

െ
ଶߛ

ܴሺߠሻଶ
ܴሺߠሻ݉௧ሺߠሻ ൅

ଶߛ

ܴሺߠሻଶ
ܴ݀ሺߠሻ

ߠ݀
݉௡ሺߠሻ

൅
ଶߛ

ܴሺߠሻଶ
ܴሺߠሻ

݀݉௡ሺߠሻ

ߠ݀
ൌ ௡ܯ

௟ ሺߠሻ 

(3.79) 

ቆ1 ൅
ଶߛ3

2ܴሺߠሻଶ
ቇܯ௧

௡௟ሺߠሻ ൅
ଶߛ

2ܴሺߠሻଶ
ܴሺߠሻ݉௡ሺߠሻ ൅

ଶߛ

ܴሺߠሻଶ
ܴ݀ሺߠሻ

ߠ݀
݉௧ሺߠሻ

൅
ଶߛ

ܴሺߠሻଶ
ܴሺߠሻ

݀݉௧ሺߠሻ
ߠ݀

ൌ ௧ܯ
௟ሺߠሻ 

(3.80) 

ቆ1 ൅
ଶߛ

ܴሺߠሻଶ
ቇܨ௕

௡௟ሺߠሻ ൅
ଶߛ

ܴሺߠሻଶ
ܴ݀ሺߠሻ

ߠ݀
ሻߠ௕ሺݍ ൅

ଶߛ

ܴሺߠሻ
ሻߠ௕ሺݍ݀

ߠ݀
ൌ ௕ܨ

௟ሺߠሻ (3.81) 

eşitlikleri elde edilir. Bu ifadeler, çubuk denklemlerinin ilk üçünde (denklem 3.70-

3.72) yerine konarak, yerel olmayan elastisite teorisinin verdiği denklemler; 

ሻߠሺݒ݀

ߠ݀
ൌ െܴሺߠሻΩ௡ሺߠሻ ൅

݇௕ܴሺߠሻ

ሻߠሺܣܩ
ቆ1 ൅

ଶߛ

ܴሺߠሻଶ
ቇܨ௕

௡௟

൅
݇௕ܴሺߠሻ

ሻߠሺܣܩ
ଶߛ

ܴሺߠሻଶ
൭ݍ௕ሺߠሻ

ܴ݀ሺߠሻ

ߠ݀
൅
ሻߠ௕ሺݍ݀

ߠ݀
ܴሺߠሻ൱ 

(3.82) 
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݀Ω௡ሺߠሻ
ߠ݀

ൌ െΩ௧ሺߠሻ

൅
ܴሺߠሻ

ሻߠ௡ሺܫܧ
൭ቆ1 ൅

ଶߛ

ܴሺߠሻଶ
ቇܯ௡ሺߠሻ െ

ଶߛ

ܴሺߠሻଶ
ܴ݀ሺߠሻ

ߠ݀
௕ܨ
௡௟ሺߠሻ

൅
ଶߛ

ܴሺߠሻଶ
ܴሺߠሻଶݍ௕ሺߠሻ െ

ଶߛ

ܴሺߠሻଶ
ܴሺߠሻ݉௧ሺߠሻ

൅
ଶߛ

ܴሺߠሻଶ
ܴ݀ሺߠሻ
ߠ݀

݉௡ሺߠሻ ൅
ଶߛ

ܴሺߠሻଶ
ܴሺߠሻ

݀݉௡ሺߠሻ
ߠ݀

൱ 

(3.83)

݀Ω௧ሺߠሻ

ߠ݀
ൌ Ω௡ሺߠሻ

൅
ܴሺߠሻ
ሻߠሺܬܩ

൭ቆ1 ൅
ଶߛ3

2ܴሺߠሻଶ
ቇܯ௧

௡௟ ൅
ଶߛ

2ܴሺߠሻଶ
ܴሺߠሻ݉௡ሺߠሻ

൅
ଶߛ

ܴሺߠሻଶ
ܴ݀ሺߠሻ

ߠ݀
݉௧ሺߠሻ ൅

ଶߛ

ܴሺߠሻଶ
ܴሺߠሻ

݀݉௧ሺߠሻ

ߠ݀
൱ 

(3.84)

௡ܯ݀
௡௟ሺߠሻ
ߠ݀

ൌ െܯ௧
௡௟ሺߠሻ ൅ ܴሺߠሻܨ௕

௡௟ െ ܴሺߠሻ݉௡ሺߠሻ  (3.85)

௧ܯ݀
௡௟ሺߠሻ

ߠ݀
ൌ ௡ܯ

௡௟ሺߠሻ െ ܴሺߠሻ݉௧ሺߠሻ (3.86)

௕ܨ݀
௡௟ሺߠሻ

ߠ݀
ൌ െܴሺߠሻݍ௕ሺߠሻ (3.87)

olarak elde edilir. 

Eğri eksenli çubukların düzlem dışı statik problemlerinin kesin çözümü, çubuk eksen 

eğrisi ve kesiti ne olursa olsun, yer değiştirmenin, kesit dönmelerinin ve kesit 

tesirlerinin, çubuk eksen eğrisi boyunca belirlenmesine imkan verecek şekilde, 

başlangıç değerleri yöntemi ile elde edilebilmektedir. Benzer şekilde, kayma 

deformasyonu ve dönme eylemsizliği etkilerinin göz önüne alınması durumunda, 

çubuk titreşimine ait diferansiyel denklemlerin kesin çözümü, başlangıç değerleri 

yöntemi kullanılarak hesaplanabilmektedir. 
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 Çubukların Düzlem Dışı Statik Davranışını İfade Eden Yerel Olmayan 

Denklemlerin Çözümü 

Eğri eksenli çubukların kendi düzlemindeki şekil değiştirmelerine ait 3.82-3.87 

denklemleri, birinci dereceden değişken katsayılı lineer diferansiyel denklemlerdir. 

Denklemler matris şeklinde ifade edildiğinde; 

ሻߠሺܡ݀
ߠ݀

ൌ ሻߠሺܡሻߠሺۯ ൅  ሻ (3.88)ߠሺ܎

burada y değişkenler vektörünü temsil etmektedir ve bileşenleri ݒ, Ω௡, Ω௧, ܯ௡
௡௟, ܯ௧

௡௟, 

௕ܨ
௡௟ olarak verilmiştir. ۯሺߠሻ 66 elemanlı katsayılar matrisini ifade etmekte olup, ܎ሺߠሻ 

ise 6 elemanlı yayılı dış yük vektörüdür. Denklem 3.88’in çözümü aşağıda verilmiştir: 

ሻߠሺܡ ൌ ,ߠሺ܇ ௢ܡ଴ሻߠ ൅ ,ߠሺ܇ ଴ሻߠ නି܇ଵሺ߶, ߶ሺ߶ሻ݀܎଴ሻߠ

ఏ

ఏబ

 (3.89) 

Burada ܇ሺߠ,  ଴ሻ, denklem 3.88’in homojen halinin çözümünden elde edilen asalߠ

matrisi gösterirken, ܡ଴ ൌ  ଴ koordinatındaki başlangıç değerleri vektörüdür (Buߠ ଴ሻߠሺܡ

çalışma için: ߠ଴ ൌ 0). Tekil kuvvet ve momentlerin etkidiği çubuğa ait denklemlerin, 

yani, çubuk üzerine hiçbir yayılı kuvvet ya da momentin etkimemesi durumunda 

homojen denklem takımının matris formda düzenlenmiş hali aşağıda verilmiştir:  

ሻߠሺܡ݀
ߠ݀

ൌ  ሻ (3.90)ߠሺܡሻߠሺۯ

Burada, ۯሺߠሻ 6 ൈ 6 katsayılar matrisidir. 3.90 ile verilen diferansiyel denklem 

sisteminin çözümü aşağıda verilmiştir: 

ሻߠሺܡ ൌ ,ߠሺ܇ 0ሻܡ଴ (3.91) 

3.91 ile verilen denklem sistemi matris formunda aşağıdaki gibi yazılabilir: 
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ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
ሻߠሺݒ
Ω௡ሺߠሻ
Ω௧ሺߠሻ
௡ܯ
௡௟ሺߠሻ

௧ܯ
௡௟ሺߠሻ

௕ܨ
௡௟ሺߠሻے

ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ ଵܻଵ ଵܻଶ ଵܻଷ ଵܻସ ଵܻହ ଵܻ଺

ଶܻଵ ଶܻଶ ଶܻଷ ଶܻସ ଶܻହ ଶܻ଺

ଷܻଵ ଷܻଶ ଷܻଷ ଷܻସ ଷܻହ ଷܻ଺

ସܻଵ ସܻଶ ସܻଷ ସܻସ ସܻହ ସܻ଺

ହܻଵ ହܻଶ ହܻଷ ହܻସ ହܻହ ହܻ଺

଺ܻଵ ଺ܻଶ ଺ܻଷ ଺ܻସ ଺ܻହ ଺ܻ଺ے
ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ۍ
଴ݒ
Ω௡଴
Ω௧଴
௡଴ܯ
௧଴ܯ
௕଴ܨ ے

ۑ
ۑ
ۑ
ۑ
ې

 (3.92)

Asal matris ܇ሺߠ,  :଴ሻ aşağıdaki koşulları sağlamaktadırߠ

,ߠሺ܇݀ ଴ሻߠ

ߠ݀
ൌ ,ߠሺ܇ሻߠሺۯ ଴ሻߠ , ,଴ߠሺ܇ ଴ሻߠ ൌ ۷ (3.93)

,ଵߠሺ܇ ,ଶߠሺ܇ଶሻߠ ଷሻߠ ൌ ,ଵߠሺ܇ ଷሻߠ , ,ଵߠሺ܇ ଶሻߠ ൌ ,ଶߠଵሺି܇ ଵሻ (3.94)ߠ

Burada I birim matristir.  

İki bölgeli, ߠ ൌ  kooordinatından tekil yükler etkiyen çember eksenli bir çubuk için	௄ߠ

aşağıdaki eşitlikler yazılabilir: 

െߠ஺ ൑ ଵߠ ൑ ଵሻߠଵሺܡ     ௄    içinߠ ൌ ,ଵߠሺ܇ ଵ଴ (3.95)ܡ଴ሻߠ

௄ߠ       ൑ ଶߠ ൑ ଶሻߠଶሺܡ      ஻    içinߠ ൌ ,ଶߠሺ܇ ଶ௄ (3.96)ܡ௄ሻߠ

 ଶ௄ܡ ଵ଴ veܡ .௄ koordinatındaki başlangıç değerler vektörüdürߠ ଶ௄ ikinci bölge içinܡ

vektörlerinin on iki bileşeninin hesaplanabilmesi için sınır ve süreklilik şartlarından 

elde edilen on iki denklem kullanılır. Bu noktadaki süreklilik şartı: 

௄ሻߠଵሺܡ ൅ ۹ ൌ ଶ୏ (3.97)ܡ

 ۹ ൌ ሾ0 0 ௄௕ܨ				0 ௄௡ܯ  ௄௧ሿ୘ vektörü K noktasında bulunan tekil yüklerܯ

vektörüdür. Böylece, denklem 3.96 yeniden yazılırsa: 

ଶሻߠଶሺܡ ൌ ,ଶߠሺ܇ ௄ሻߠଵሺܡ௄ሻߠ ൅ ,ଶߠሺ܇ ௄ሻ۹ (3.98)ߠ

Denklem 3.94, denklem 3.96 kullanılarak yeniden yazılırsa: 

ଶሻߠଶሺܡ ൌ ,ଶߠሺ܇ ଵ଴ܡ଴ሻߠ ൅ ,ଶߠሺ܇ ଴ሻߠ ,௄ߠଵሺି܇ ଴ሻ۹ (3.99)ߠ

eşitliğine ulaşılır. Böylece; yer değiştirme, dönme açısı ve kuvvet bileşenlerinin 

analitik ifadeleri her iki bölge için de elde edilebilir. 
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Çubuğa sabit yayılı yüklerin etkimesi durumunda dış yük vektörü olan f’nin ve asal 

matris ܇’nin tersi olan ି܇૚’in hesaplanması gereklidir. 3.89 ifadesinden çözüm 

aşağıdaki gibi yazılabilir: 

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
ݒ
Ω௡
Ω௧
௡ܯ
௡௟

௧ܯ
௡௟

௕ܨ
௡௟ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ ሾܻሿ଺௫଺

ۏ
ێ
ێ
ێ
ێ
ۍ
଴ݒ
Ω௡଴
Ω௧଴
௡଴ܯ
௧଴ܯ
௕଴ܨ ے

ۑ
ۑ
ۑ
ۑ
ې

൅ ሾܻሿ଺௫଺ න ሾܻሿିଵ଺௫଺
ఏ

଴

ۏ
ێ
ێ
ێ
ێ
ۍ ଵ݂

ଶ݂

ଷ݂

ସ݂

ହ݂

଺݂ے
ۑ
ۑ
ۑ
ۑ
ې

݀߶ (3.100) 

Çember eksenli üniform nano çubuk için yazılan homojen diferansiyel denklemin 

çözümü kolaylıkla elde edilebilir. Eğrilik yarıçapı, atalet momenti ve kesit alanı; 

ܴሺߠሻ ൌ ሻߠ௡ሺܫ								,	ܴ ൌ ሻߠሺܬ								,	௡ܫ ൌ ܬ , ሻߠሺܣ ൌ  (3.101) ܣ

olacaktır. Bu durum için asal matrisin bileşenleri aşağıda verilmiştir. 

ଵܻଵ ൌ 1	; 			 ଵܻଶ ൌ െܴ sin ߠ 	; 			 ଵܻଷ ൌ ܴሺ1 െ cos ሻߠ ; (3.102) 

ଵܻସ ൌ
ܴଶ

ܬܩ
൅
ଶߛ3

ܬܩ2
െ
ܴଶ cos ߠ
ܬܩ

െ
ଶߛ3 cos ߠ
ܬܩ2

െ
ܴଶߠ sin ߠ
௡ܫܧ2

െ
ܴଶߠ sin ߠ
ܬܩ2

െ
ߠଶߛ sin ߠ
௡ܫܧ2

െ
ߠଶߛ3 sin ߠ

ܬܩ4
 

(3.103) 

ଵܻହ ൌ െ
ܴଶߠ cos ߠ
௡ܫܧ2

െ
ܴଶߠ cos ߠ
ܬܩ2

െ
ߠଶߛ cos ߠ
௡ܫܧ2

െ
ߠଶߛ3 cos ߠ

ܬܩ4
൅
ܴଶ sin ߠ
௡ܫܧ2

൅
ܴଶ sin ߠ
ܬܩ2

൅
ଶߛ sin ߠ
௡ܫܧ2

൅
ଶߛ3 sin ߠ
ܬܩ4

 

(3.104) 

ଵܻ଺ ൌ
݇௕ܴߠ
ܣܩ

൅
ܴଷߠ
ܬܩ

൅
݇௕ߛଶߠ
ܴܣܩ

൅
ߠଶߛ3ܴ
ܬܩ2

൅
ܴଷߠ cos ߠ
௡ܫܧ2

൅
ܴଷߠ cos ߠ
ܬܩ2

൅
ߠଶߛܴ cos ߠ

௡ܫܧ2
൅
ߠଶߛ3ܴ cos ߠ

ܬܩ4
െ
ܴଷ sin ߠ
௡ܫܧ2

െ
3ܴଷ sin ߠ
ܬܩ2

െ
ଶߛܴ sin ߠ
௡ܫܧ2

െ
ଶߛ9ܴ sin ߠ

ܬܩ4
 

(3.105) 

ଶܻଵ ൌ 0	; 		 ଶܻଶ ൌ cos ߠ ;				 ଶܻଷ ൌ െ sin ߠ ; (3.106) 
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ଶܻସ ൌ
ߠܴ cos ߠ
௡ܫܧ2

൅
ߠܴ cos ߠ
ܬܩ2

൅
ߠଶߛ cos ߠ
௡ܴܫܧ2

൅
ߠଶߛ3 cos ߠ
ܴܬܩ4

൅
ܴ sin ߠ
௡ܫܧ2

െ
ܴ sin ߠ
ܬܩ2

൅
ଶߛ sin ߠ
௡ܴܫܧ2

െ
ଶߛ3 sin ߠ
ܴܬܩ4

 

(3.107) 

ଶܻହ ൌ െ
ߠܴ sin ߠ
௡ܫܧ2

െ
ߠܴ sin ߠ
ܬܩ2

െ
ߠଶߛ sin ߠ
௡ܴܫܧ2

െ
ߠଶߛ3 sin ߠ
ܴܬܩ4

 (3.108) 

ଶܻ଺ ൌ െ
ܴଶ

ܬܩ
െ
ଶߛ3

ܬܩ2
൅
ܴଶ cos ߠ
ܬܩ

൅
ଶߛ3 cos ߠ
ܬܩ2

൅
ܴଶߠ sin ߠ
௡ܫܧ2

൅
ܴଶߠ sin ߠ
ܬܩ2

൅
ߠଶߛ sin ߠ
௡ܫܧ2

൅
ߠଶߛ3 sin ߠ

ܬܩ4
 

(3.109) 

ଷܻଵ ൌ 0;					 ଷܻଶ ൌ sin ߠ ; ଷܻଷ ൌ cos ߠ ; (3.110) 

ଷܻସ ൌ
ߠܴ sin ߠ
௡ܫܧ2

൅
ߠܴ sin ߠ
ܬܩ2

൅
ߠଶߛ sin ߠ
௡ܴܫܧ2

൅
ߠଶߛ3 sin ߠ
ܴܬܩ4

 (3.111) 

ଷܻହ ൌ
ߠܴ cos ߠ
௡ܫܧ2

൅
ߠܴ cos ߠ
ܬܩ2

൅
ߠଶߛ cos ߠ
௡ܴܫܧ2

൅
ߠଶߛ3 cos ߠ
ܴܬܩ4

െ
ܴ sin ߠ
௡ܫܧ2

൅
ܴ sin ߠ
ܬܩ2

െ
ଶߛ sin ߠ
௡ܴܫܧ2

൅
ଶߛ3 sin ߠ
ܴܬܩ4

 

(3.112) 

ଷܻ଺ ൌ െ
ܴଶߠ cos ߠ
௡ܫܧ2

െ
ܴଶߠ cos ߠ
ܬܩ2

െ
ߠଶߛ cos ߠ
௡ܫܧ2

െ
ߠଶߛ3 cos ߠ

ܬܩ4
൅
ܴଶ sin ߠ
௡ܫܧ2

൅
ܴଶ sin ߠ
ܬܩ2

൅
ଶߛ sin ߠ
௡ܫܧ2

൅
ଶߛ3 sin ߠ
ܬܩ4

 

(3.113) 

ସܻଵ ൌ 0;	 ସܻଶ ൌ 0;	 ସܻଷ ൌ 0; ସܻସ ൌ cos ߠ ; ସܻହ ൌ െ sin ߠ ; ସܻ଺ ൌ ܴ sin ߠ ; (3.114) 

ହܻଵ ൌ 0;		 ହܻଶ ൌ 0;		 ହܻଷ ൌ 0; ହܻସ ൌ sin ߠ ; ହܻହ ൌ cos ߠ ; (3.115) 

ହܻ଺ ൌ ܴ െ ܴ cos ߠ ; (3.116) 

଺ܻଵ ൌ 0;			 ଺ܻଶ ൌ 0;				 ଺ܻଷ ൌ 0; ଺ܻସ ൌ 0; ଺ܻହ ൌ 0; ଺ܻ଺ ൌ 1; (3.117) 

Asal matrisin tersinin bileşenlerine ait analitik ifadeler aşağıda verilmiştir:  

ଵଵܫܻ ൌ ଵଶܫܻ			;	1 ൌ ܴ sin ߠ ; ଵଷܫܻ ൌ ܴሺ1 െ cos ሻߠ ; (3.118) 
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ଵସܫܻ ൌ
ܴଶ

ܬܩ
൅
ଶߛ3

ܬܩ2
െ
ܴଶ cos ߠ
ܬܩ

െ
ଶߛ3 cos ߠ
ܬܩ2

െ
ܴଶߠ sin ߠ
௡ܫܧ2

െ
ܴଶߠ sin ߠ
ܬܩ2

െ
ߠଶߛ sin ߠ
௡ܫܧ2

െ
ߠଶߛ3 sin ߠ

ܬܩ4
 

(3.119) 

ଵହܫܻ ൌ
ܴଶߠ cos ߠ
௡ܫܧ2

൅
ܴଶߠ cos ߠ
ܬܩ2

൅
ߠଶߛ cos ߠ
௡ܫܧ2

൅
ߠଶߛ3 cos ߠ

ܬܩ4
െ
ܴଶ sin ߠ
௡ܫܧ2

െ
ܴଶ sin ߠ
ܬܩ2

െ
ଶߛ sin ߠ
௡ܫܧ2

െ
ଶߛ3 sin ߠ
ܬܩ4

 

(3.120) 

ଵ଺ܫܻ ൌ െ
݇௕ܴߠ
ܣܩ

െ
ܴଷߠ
ܬܩ

െ
݇௕ߛଶߠ
GAܴ

െ
ߠଶߛ3ܴ
ܬܩ2

െ
ܴଷߠ cos ߠ
௡ܫܧ2

െ
ܴଷߠ cos ߠ
ܬܩ2

െ
ߠଶߛܴ cos ߠ

௡ܫܧ2
െ
ߠଶߛ3ܴ cos ߠ

ܬܩ4
൅
ܴଷ sin ߠ
௡ܫܧ2

൅
3ܴଷ sin ߠ
ܬܩ2

൅
ଶߛܴ sin ߠ
௡ܫܧ2

൅
ଶߛ9ܴ sin ߠ

ܬܩ4
 

(3.121) 

ଶଵܫܻ ൌ 0	; ଶଶܫܻ		 ൌ cos ߠ ଶଷܫܻ				; ൌ sin ߠ ;  (3.122) 

ଶସܫܻ ൌ െ
ߠܴ cos ߠ
௡ܫܧ2

െ
ߠܴ cos ߠ
ܬܩ2

െ
ߠଶߛ cos ߠ
௡ܴܫܧ2

െ
ߠଶߛ3 cos ߠ
ܴܬܩ4

െ
ܴ sin ߠ
௡ܫܧ2

൅
ܴ sin ߠ
ܬܩ2

െ
ଶߛ sin ߠ
௡ܴܫܧ2

൅
ଶߛ3 sin ߠ
ܴܬܩ4

 

(3.123) 

ଶହܫܻ ൌ െ
ߠܴ sin ߠ
௡ܫܧ2

െ
ߠܴ sin ߠ
ܬܩ2

െ
ߠଶߛ sin ߠ
௡ܴܫܧ2

െ
ߠଶߛ3 sin ߠ
ܴܬܩ4

 (3.124) 

ଶ଺ܫܻ ൌ െ
ܴଶ

ܬܩ
െ
ଶߛ3

ܬܩ2
൅
ܴଶ cos ߠ
ܬܩ

൅
ଶߛ3 cos ߠ
ܬܩ2

൅
ܴଶߠ sin ߠ
௡ܫܧ2

൅
ܴଶߠ sin ߠ
ܬܩ2

൅
ߠଶߛ sin ߠ
௡ܫܧ2

൅
ߠଶߛ3 sin ߠ

ܬܩ4
 

(3.125) 

ଷଵܫܻ ൌ ଷଶܫܻ					;0 ൌ െsin ߠ ଷଷܫܻ					; ൌ cos ߠ ; (3.126) 

ଷସܫܻ ൌ
ߠܴ sin ߠ
௡ܫܧ2

൅
ߠܴ sin ߠ
ܬܩ2

൅
ߠଶߛ sin ߠ
௡ܴܫܧ2

൅
ߠଶߛ3 sin ߠ
ܴܬܩ4

 (3.127) 
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ଷହܫܻ ൌ െ
ߠܴ cos ߠ
௡ܫܧ2

െ
ߠܴ cos ߠ
ܬܩ2

െ
ߠଶߛ cos ߠ
௡ܴܫܧ2

െ
ߠଶߛ3 cos ߠ
ܴܬܩ4

൅
ܴ sin ߠ
௡ܫܧ2

െ
ܴ sin ߠ
ܬܩ2

൅
ଶߛ sin ߠ
௡ܴܫܧ2

െ
ଶߛ3 sin ߠ
ܴܬܩ4

 

(3.128) 

ଷ଺ܫܻ ൌ
ܴଶߠ cos ߠ
௡ܫܧ2

൅
ܴଶߠ cos ߠ
ܬܩ2

൅
ߠଶߛ cos ߠ
௡ܫܧ2

൅
ߠଶߛ3 cos ߠ

ܬܩ4
െ
ܴଶ sin ߠ
௡ܫܧ2

െ
ܴଶ sin ߠ
ܬܩ2

െ
ଶߛ sin ߠ
௡ܫܧ2

െ
ଶߛ3 sin ߠ
ܬܩ4

 

(3.129) 

ସଵܫܻ ൌ ସଶܫܻ				;0 ൌ 0;			 ସଷܫܻ ൌ 0; ସସܫܻ ൌ cos ߠ ; ସହܫܻ ൌ sin ߠ ; (3.130) 

ସ଺ܫܻ ൌ െܴ sin ߠ ; (3.131) 

ହଵܫܻ ൌ ହଶܫܻ		;0 ൌ ହଷܫܻ			;0 ൌ 0; ହସܫܻ ൌ െ sin ߠ ; ହହܫܻ ൌ cos ߠ ;			 (3.132) 

ହ଺ܫܻ ൌ ܴሺ1 െ cos  ሻ; (3.133)ߠ

଺ଵܫܻ ൌ ଺ଶܫܻ			;0 ൌ ଺ଷܫܻ				;0 ൌ 0; ଺ସܫܻ ൌ 0; ଺ହܫܻ ൌ 0; ଺଺ܫܻ ൌ 1; (3.134) 
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4.  EĞRİ EKSENLİ ÇUBUKLARIN DÜZLEM DIŞI DİNAMİK 

DAVRANIŞININ İNCELENMESİ 

 Çubukların Düzlem Dışı Dinamik Davranışını İfade Eden Yerel Olmayan 

Denklemler 

Yerel olmayan elastisite teorisinden elde edilen, çubuğun düzlemine dik statik 

davranışını ifade eden genel denklemleri, 3.82-3.87 denklemleri ile verilmektedir. 

Denklemlerde, kayma deformasyonu etkisi göz önüne alınmaktadır. D’Alembert 

prensibi yardımı ile çubuk teorisinin bu genel denklemleri kullanılarak çubuk 

titreşimlerini de incelemek mümkündür. Bu prensibe göre, maddesel bir sistemin 

hareketinden dolayı, bir t anında meydana gelen eylemsizlik kuvvetleri aktif dış 

kuvvetler olarak, sisteme etki eden gerçek kuvvetlerle birlikte göz önüne alınırsa; 

sistem bütün bu kuvvetlerin etkisi altında, t anındaki konumunda dengede bulunur. 

Çubuğa dışarıdan etkiyen yayılı kuvvet ve moment ࢗ ve ࢓ vektörleridir. Dinamik 

problemin incelenmesinde, bu dış yük vektörlerinin düzlem dışı bileşenlerinin kütle 

atalet kuvvetleri olarak alınması gerekmektedir (Tüfekci ve Arpaci, 1998); 

ሻߠ௕ሺݍ ൌ െܣߩሺߠሻ
݀ଶݒሺߠሻ

ଶݐ݀
ൌ ሻ (4.1)ߠሺݒሻ߱ଶߠሺܣߩ

݉௡ሺߠሻ ൌ െܫߩ௡ሺߠሻ
݀ଶΩ௡ሺߠሻ

ଶݐ݀
ൌ ሻ (4.2)ߠሻ߱ଶΩ௡ሺߠ௡ሺܫߩ

݉௧ሺߠሻ ൌ െܫߩ௣ሺߠሻ
݀ଶΩ௧ሺߠሻ

ଶݐ݀
ൌ ሻ (4.3)ߠሻ߱ଶΩ௧ሺߠ௣ሺܫߩ

Bu denklemlerde ߩ çubuk birim uzunluğunun ağırlığını, ܣሺߠሻ kesit alanını, ݐ zamanı, 

 ሻ kesit alanının polarߠ௣ሺܫ ሻ normal eksene göre alan eylemsizlik momentini veߠ௡ሺܫ

eylemsizlik momentini ifade etmektedir. Bu ifadelerin türevleri aşağıda verilmiştir: 

ሻߠ௕ሺݍ݀

ߠ݀
ൌ ሻ߱ଶߠሺܣߩ ሻߠሺݒ݀

ߠ݀
൅ ߩ

ሻߠሺܣ݀
ߠ݀

߱ଶݒሺߠሻ (4.4)
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݀݉௡ሺߠሻ

ߠ݀
ൌ ሻ߱ଶߠ௡ሺܫߩ ݀Ω௡ሺߠሻ

ߠ݀
൅ ߩ

ሻߠ௡ሺܫ݀

ߠ݀
߱ଶΩ௡ሺߠሻ (4.5) 

݀݉௧ሺߠሻ

ߠ݀
ൌ ሻ߱ଶߠ௣ሺܫߩ ݀Ω௧ሺߠሻ

ߠ݀
൅ ߩ

ሻߠ௣ሺܫ݀

ߠ݀
߱ଶΩ௧ሺߠሻ (4.6) 

Yer değiştirme, dönme açısı ve kesit tesirlerinin zamanın harmonik fonsiyonları 

olduğu varsayımı yapılarak; denklem 4.4-4.6 ile verilen türev ifadeleri, yerel olmayan 

elastisitenin 3.82-3.87 ile verilen çubuk denklemlerinde yerine koyulursa hareket 

denklemleri elde edilir: 

ሻߠሺݒ݀

ߠ݀
ൌ െܴሺߠሻΩ௡ሺߠሻ ൅

݇௕ܴሺߠሻ

ሻߠሺܣܩ
ቆ1 ൅

ଶߛ

ܴሺߠሻଶ
ቇܨ௕

௡௟

൅
݇௕ܴሺߠሻ
ሻߠሺܣܩ

ଶߛ

ܴሺߠሻଶ
൭ܣߩሺߠሻ߱ଶݒሺߠሻ

ܴ݀ሺߠሻ
ߠ݀

൅ ሺܣߩሺߠሻ߱ଶ ሻߠሺݒ݀

ߠ݀
൅ ߩ

ሻߠሺܣ݀

ߠ݀
߱ଶݒሺߠሻሻܴሺߠሻ൱ 

(4.7) 

݀Ω௡ሺߠሻ
ߠ݀

ൌ െΩ௧ሺߠሻ

൅
ܴሺߠሻ

ሻߠ௡ሺܫܧ
ቌቆ1 ൅

ଶߛ

ܴሺߠሻଶ
ቇܯ௡ሺߠሻ െ

ଶߛ

ܴሺߠሻଶ
ܴ݀ሺߠሻ

ߠ݀
௕ܨ
௡௟ሺߠሻ

൅
ଶߛ

ܴሺߠሻଶ
ܴሺߠሻଶܣߩሺߠሻ߱ଶݒሺߠሻ

െ
ଶߛ

ܴሺߠሻଶ
ܴሺߠሻܫߩ௣ሺߠሻ߱ଶΩ௧ሺߠሻ

൅
ଶߛ

ܴሺߠሻଶ
ܴ݀ሺߠሻ
ߠ݀

ሻߠሻ߱ଶΩ௡ሺߠ௡ሺܫߩ

൅
ଶߛ

ܴሺߠሻଶ
ܴሺߠሻ ൭ܫߩ௡ሺߠሻ߱ଶ ݀Ω௡ሺߠሻ

ߠ݀

൅ ߩ
ሻߠ௡ሺܫ݀

ߠ݀
߱ଶΩ௡ሺߠሻ൱ቍ 

(4.8) 
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݀Ω௧ሺߠሻ

ߠ݀
ൌ Ω௡ሺߠሻ

൅
ܴሺߠሻ

ሻߠሺܬܩ
ቌቆ1 ൅

ଶߛ3

2ܴሺߠሻଶ
ቇܯ௧

௡௟

൅
ଶߛ

2ܴሺߠሻଶ
ܴሺߠሻܫߩ௡ሺߠሻ߱ଶΩ௡ሺߠሻ

൅
ଶߛ

ܴሺߠሻଶ
ܴ݀ሺߠሻ

ߠ݀
ሻߠሻ߱ଶΩ௧ሺߠ௣ሺܫߩ

൅
ଶߛ

ܴሺߠሻଶ
ܴሺߠሻ ൭ܫߩ௣ሺߠሻ߱ଶ ݀Ω௧ሺߠሻ

ߠ݀
൅ ߩ

ሻߠ௣ሺܫ݀

ߠ݀
߱ଶΩ௧ሺߠሻ൱ቍ 

(4.9)

௡ܯ݀
௡௟ሺߠሻ

ߠ݀
ൌ െܯ௧

௡௟ሺߠሻ ൅ ܴሺߠሻܨ௕
௡௟ െ ܴሺߠሻܫߩ௡ሺߠሻ߱ଶΩ௡ሺߠሻ (4.10)

௧ܯ݀
௡௟ሺߠሻ

ߠ݀
ൌ ௡ܯ

௡௟ሺߠሻ െ ܴሺߠሻܫߩ௣ሺߠሻ߱ଶΩ௧ሺߠሻ (4.11)

௕ܨ݀
௡௟ሺߠሻ
ߠ݀

ൌ െܴሺߠሻܣߩሺߠሻ߱ଶݒሺߠሻ (4.12)

Eğri eksenli çubukların serbest titreşimlerini ifade eden denklemler birinci mertebeden 

altı adet lineer diferansiyel denklemden oluşmaktadır. Değişken kesitli ve değişken 

eğrilikli çubukların dinamik davranışını ifade eden denklemlerdeki değişken katsayılar 

sebebiyle bu denklemlerin kapalı form genel çözümü zordur. Kayma deformasyonu 

ve dönme eylemsizliğinin de dahil edildiği denklemler çözümü daha da 

zorlaştırmaktadır. Bu sebepten dolayı, birçok araştırmacı eğri eksenli çubukların doğal 

frekanslarının hesaplanmasında bahsedilen etkilerin ihmal edildiği teoriyi tercih 

etmiştir.  

4.7-4.12 denklemleri düzenlenirse;  
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ሻߠሺݒ݀

ߠ݀
ൌ
൬
݇௕ܴሺߠሻ
ሻߠሺܣܩ

ଶߛ

ܴሺߠሻଶ ܣߩ
ሺߠሻ߱ଶ ܴ݀ሺߠሻ

ߠ݀ ൅
ଶ݇௕ߛ
ሻߠሺܣܩ ߩ

ሻߠሺܣ݀
ߠ݀ ߱ଶ൰

൬1 െ
݇௕

ሻߠሺܣܩ ߛ
ଶܣߩሺߠሻ߱ଶ൰

ሻߠሺݒ

െ
ܴሺߠሻ

൬1 െ
݇௕

ሻߠሺܣܩ ߛ
ଶܣߩሺߠሻ߱ଶ൰

Ω௡ሺߠሻ

൅
ቆ
݇௕ܴሺߠሻ
ሻߠሺܣܩ ൬1 ൅

ଶߛ

ܴሺߠሻଶ൰ቇ

൬1 െ
݇௕

ሻߠሺܣܩ ߛ
ଶܣߩሺߠሻ߱ଶ൰

௕ܨ
௡௟ 

(4.13) 

݀Ω௡ሺߠሻ
ߠ݀

ൌ
൬
ሻߠଶܴሺߛ
ሻߠ௡ሺܫܧ

ሻ߱ଶ൰ߠሺܣߩ

൬1 െ ଶߛ
ሻߠ௡ሺܫܧ

ሻ߱ଶ൰ߠ௡ሺܫߩ
ሻߠሺݒ

൅

ܴሺߠሻ
ሻߠ௡ሺܫܧ

ଶߛ

ܴሺߠሻଶ ൬
ܴ݀ሺߠሻ
ߠ݀ ሻ߱ଶߠ௡ሺܫߩ ൅ ܴሺߠሻߩ

ሻߠ௡ሺܫ݀
ߠ݀ ൰

൬1 െ ଶߛ
ሻߠ௡ሺܫܧ

ሻ߱ଶ൰ߠ௡ሺܫߩ
Ω௡ሺߠሻ

െ
൬1 ൅ ଶߛ

ሻߠ௡ሺܫܧ
ሻ߱ଶ൰ߠ௣ሺܫߩ

൬1 െ ଶߛ
ሻߠ௡ሺܫܧ

ሻ߱ଶ൰ߠ௡ሺܫߩ
Ω௧ሺߠሻ ൅

ቆ
ܴሺߠሻ
ሻߠ௡ሺܫܧ

൬1 ൅
ଶߛ

ܴሺߠሻଶ൰ቇ

൬1 െ ଶߛ
ሻߠ௡ሺܫܧ

ሻ߱ଶ൰ߠ௡ሺܫߩ
ሻߠ௡ሺܯ

െ
൬ ܴ

ሺߠሻ
ሻߠ௡ሺܫܧ

ଶߛ

ܴሺߠሻଶ
ܴ݀ሺߠሻ
ߠ݀ ൰

൬1 െ ଶߛ
ሻߠ௡ሺܫܧ

ሻ߱ଶ൰ߠ௡ሺܫߩ
௕ܨ
௡௟ሺߠሻ 

(4.14) 



37 

݀Ω௧ሺߠሻ

ߠ݀

ൌ
൬ ଶߛ

ሻߠሺܬܩ2 ௡ܫߩ
ሺߠሻ߱ଶ ൅ 1൰

൬1 െ ଶߛ
ሻߠሺܬܩ ௣ܫߩ

ሺߠሻ߱ଶ൰
Ω௡ሺߠሻ

൅
൬ ܴ

ሺߠሻ
ሻߠሺܬܩ

ଶߛ

ܴሺߠሻଶ
ܴ݀ሺߠሻ
ߠ݀ ሻ߱ଶߠ௣ሺܫߩ ൅ ଶߛ

ሻߠሺܬܩ ߩ
ሻߠ௣ሺܫ݀
ߠ݀ ߱ଶ൰

൬1 െ ଶߛ
ሻߠሺܬܩ ௣ܫߩ

ሺߠሻ߱ଶ൰
Ω௧ሺߠሻ

൅

ܴሺߠሻ
ሻߠሺܬܩ ൬1 ൅

ଶߛ3

2ܴሺߠሻଶ൰

൬1 െ ଶߛ
ሻߠሺܬܩ ௣ܫߩ

ሺߠሻ߱ଶ൰
௧ܯ
௡௟ 

(4.15)

௡ܯ݀
௡௟ሺߠሻ

ߠ݀
ൌ െܴሺߠሻܫߩ௡ሺߠሻ߱ଶΩ௡ሺߠሻ െ ௧ܯ

௡௟ሺߠሻ ൅ ܴሺߠሻܨ௕
௡௟ (4.16)

௧ܯ݀
௡௟ሺߠሻ
ߠ݀

ൌ െܴሺߠሻܫߩ௣ሺߠሻ߱ଶΩ௧ሺߠሻ ൅ ௡ܯ
௡௟ሺߠሻ (4.17)

௕ܨ݀
௡௟ሺߠሻ

ߠ݀
ൌ െܴሺߠሻܣߩሺߠሻ߱ଶݒሺߠሻ (4.18)

Bu denklemler matrisel formda; 

ሻߠሺܡ݀
ߠ݀

ൌ ሻ (4.19)ߠሺܡሻߠሺۯ

olarak yazılabilir. Burada ۯሺߠሻ matrisi, katsayılar matrisidir. 

ሻߠሺۯ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
ଵଵܣ ଵଶܣ ଵଷܣ ଵସܣ ଵହܣ ଵ଺ܣ
ଶଵܣ ଶଶܣ ଶଷܣ ଶସܣ ଶହܣ ଶ଺ܣ
ଷଵܣ ଷଶܣ ଷଷܣ ଷସܣ ଷହܣ ଷ଺ܣ
ସଵܣ ସଶܣ ସଷܣ ସସܣ ସହܣ ସ଺ܣ
ହଵܣ ହଶܣ ହଷܣ ହସܣ ହହܣ ହ଺ܣ
଺ଵܣ ଺ଶܣ ଺ଷܣ ଺ସܣ ଺ହܣ ے଺଺ܣ

ۑ
ۑ
ۑ
ۑ
ې

 (4.20)

Katsayılar matrisinin ࡭ሺߠሻ elemanları aşağıda verilmiştir: 
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ଵଵܣ ൌ
൬
݇௕ܴሺߠሻ
ሻߠሺܣܩ

ଶߛ

ܴሺߠሻଶ ܣߩ
ሺߠሻ߱ଶ ܴ݀ሺߠሻ

ߠ݀ ൅
ଶ݇௕ߛ
ሻߠሺܣܩ ߩ

ሻߠሺܣ݀
ߠ݀ ߱ଶ൰

൬1 െ
݇௕

ሻߠሺܣܩ ߛ
ଶܣߩሺߠሻ߱ଶ൰

 (4.21) 

ଵଶܣ ൌ െ
ܴሺߠሻ

൬1 െ
݇௕

ሻߠሺܣܩ ߛ
ଶܣߩሺߠሻ߱ଶ൰

 (4.23) 

ଵ଺ܣ ൌ
ቆ
݇௕ܴሺߠሻ
ሻߠሺܣܩ ൬1 ൅

ଶߛ

ܴሺߠሻଶ൰ቇ

൬1 െ
݇௕

ሻߠሺܣܩ ߛ
ଶܣߩሺߠሻ߱ଶ൰

 (4.24) 

ଶଵܣ ൌ
൬ߛ

ଶܴሺߠሻ
ሻߠ௡ሺܫܧ

ሻ߱ଶ൰ߠሺܣߩ

൬1 െ ଶߛ
ሻߠ௡ሺܫܧ

ሻ߱ଶ൰ߠ௡ሺܫߩ
 (4.25) 

ଶଶܣ ൌ

ܴሺߠሻ
ሻߠ௡ሺܫܧ

ଶߛ

ܴሺߠሻଶ ൬
ܴ݀ሺߠሻ
ߠ݀ ሻ߱ଶߠ௡ሺܫߩ ൅ ܴሺߠሻߩ

ሻߠ௡ሺܫ݀
ߠ݀ ൰

൬1 െ ଶߛ
ሻߠ௡ሺܫܧ

ሻ߱ଶ൰ߠ௡ሺܫߩ
 (4.26) 

ଶଷܣ ൌ െ
൬1 ൅ ଶߛ

ሻߠ௡ሺܫܧ
ሻ߱ଶ൰ߠ௣ሺܫߩ

൬1 െ ଶߛ
ሻߠ௡ሺܫܧ

ሻ߱ଶ൰ߠ௡ሺܫߩ
 (4.27) 

ଶସܣ ൌ
ቆ ܴሺߠሻ
ሻߠ௡ሺܫܧ

൬1 ൅ ଶߛ

ܴሺߠሻଶ൰ቇ

൬1 െ ଶߛ
ሻߠ௡ሺܫܧ

ሻ߱ଶ൰ߠ௡ሺܫߩ
 (4.28) 

ଶ଺ܣ ൌ െ
൬ ܴ

ሺߠሻ
ሻߠ௡ሺܫܧ

ଶߛ

ܴሺߠሻଶ
ܴ݀ሺߠሻ
ߠ݀ ൰

൬1 െ ଶߛ
ሻߠ௡ሺܫܧ

ሻ߱ଶ൰ߠ௡ሺܫߩ
 (4.29) 

ଷଶܣ ൌ
൬ ଶߛ

ሻߠሺܬܩ2 ௡ܫߩ
ሺߠሻ߱ଶ ൅ 1൰

൬1 െ ଶߛ
ሻߠሺܬܩ ௣ܫߩ

ሺߠሻ߱ଶ൰
 (4.30) 
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ଷଷܣ ൌ
൬ ܴ

ሺߠሻ
ሻߠሺܬܩ

ଶߛ

ܴሺߠሻଶ
ܴ݀ሺߠሻ
ߠ݀ ሻ߱ଶߠ௣ሺܫߩ ൅ ଶߛ

ሻߠሺܬܩ ߩ
ሻߠ௣ሺܫ݀
ߠ݀ ߱ଶ൰

൬1 െ ଶߛ
ሻߠሺܬܩ ௣ܫߩ

ሺߠሻ߱ଶ൰
 (4.31)

ଷହܣ ൌ

ܴሺߠሻ
ሻߠሺܬܩ ൬1 ൅

ଶߛ3

2ܴሺߠሻଶ൰

൬1 െ ଶߛ
ሻߠሺܬܩ ௣ܫߩ

ሺߠሻ߱ଶ൰
 (4.32)

ସଶܣ ൌ െܴሺߠሻܫߩ௡ሺߠሻ߱ଶ (4.33)

ସହܣ ൌ െ1 (4.34)

ସ଺ܣ ൌ ܴሺߠሻ (4.35)

ହଷܣ ൌ െܴሺߠሻܫߩ௣ሺߠሻ߱ଶ (4.36)

ହସܣ ൌ 1 (4.37)

଺ଵܣ ൌ െܴሺߠሻܣߩሺߠሻ߱ଶ (4.38)

şekindedir. Bu diferansiyel denklem takımının kesin analitik çözümü, katsayılar 

matrisinin sabit olması durumunda mevcuttur. Bu durum, sabit kesitli çember eksenli 

çubuğa karşı gelmektedir. Dolayısıyla, değişken terimler sabit alınarak denklemler 

aşağıdaki şekilde sadeleşirler: 

ଵଶܣ ൌ െ
ܴ

ቀ1 െ
݇௕
ܣܩ ߛ

ଶ߱ܣߩଶቁ
 (4.39)

ଵ଺ܣ ൌ

݇௕ܴ
ܣܩ ൬1 ൅

ଶߛ

ܴଶ൰

1 െ
݇௕
ܣܩ ߛ

ଶ߱ܣߩଶ
 (4.40)

ଶଵܣ ൌ

ଶܴߛ
௡ܫܧ

ଶ߱ܣߩ

1 െ ଶߛ
௡ܫܧ

௡߱ଶܫߩ
 (4.41)
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ଶଷܣ ൌ െ
1 ൅ ଶߛ

௡ܫܧ
௣߱ଶܫߩ

1 െ ଶߛ
௡ܫܧ

௡߱ଶܫߩ
 (4.42) 

ଶସܣ ൌ

ܴ
௡ܫܧ

൬1 ൅ ଶߛ

ܴଶ൰

1 െ ଶߛ
௡ܫܧ

௡߱ଶܫߩ
 (4.43) 

ଷଶܣ ൌ

ଶߛ
ܬܩ2 ௡߱ܫߩ

ଶ ൅ 1

1 െ ଶߛ
ܬܩ ௣߱ܫߩ

ଶ
 (4.44) 

ଷହܣ ൌ

ܴ
ܬܩ ൬1 ൅

ଶߛ3

2ܴଶ൰

1 െ ଶߛ
ܬܩ ௣߱ܫߩ

ଶ
 (4.45) 

ସଶܣ ൌ െܴܫߩ௡߱ଶ (4.46) 

ସହܣ ൌ െ1 (4.47) 

ସ଺ܣ ൌ ܴ (4.48) 

ହଷܣ ൌ െܴܫߩ௣߱ଶ (4.49) 

ହସܣ ൌ 1 (4.50) 

଺ଵܣ ൌ െܴ߱ܣߩଶ (4.51) 

Bu matris yardımıyla, başlangıç değerleri yöntemi kullanılarak, titreşim 

problemlerinin kesin analitik çözümü bulunur. 

 Çubukların Düzlem Dışı Dinamik Davranışını İfade Eden Yerel Olmayan 

Denklemlerin Çözümü 

Yerel olmayan çubuk teorisiyle nano boyuttaki çubukların düzlem dışı sönümsüz 

serbest titreşimlerini ifade eden diferansiyel denklemler 4.13-4.18 denklemleriyle 

verilmiştir. Sabit kesitli çember eksenli çubuklar için sabit katsayılı bir diferansiyel 

denklem takımı olan denklemlerin kesin çözümü ise; 
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࢟ሺߠሻ ൌ ఏ࢟଴ (4.52)࡭݁

olarak bilinmektedir. Burada ࡭ katsayılar matrisinin elemanları (4.39)-(4.51) 

denklemleriyle verilmiştir.  Bu çözüm, sınır şartları yardımıyla frekansları verecektir. 

Çubuğun her iki ucundaki mesnet şartına bağlı olarak ilgili denklemler aşağıdaki gibi 

yazılmalıdır: 

Ankastre uç için ݒ஺ ൌ 0 Ω௡ ൌ 0 Ω௧ ൌ 0 (4.53)

Serbest uç için ܨ௕஺ ൌ 0 ௡஺ܯ ൌ 0 ௧஺ܯ ൌ 0 (4.54)

Her iki uç için yazılan toplam altı adet sınır şartından başlangıç değerleri vektörünün 

altı bileşeni çözülecektir. Ancak, elde edilen denklemler homojen denklem takımı 

oluşturmaktadır. Bu homojen denklem takımının sıfırdan farklı çözümünün olması 

için katsayılar matrisinin determinantının sıfır olması gerekmektedir. Buradan elde 

edilecek denklemin çözümü, frekans değerlerini verecektir.  

Sürekli değişken eğriliğe ve kesite sahip çubukların düzlem dışı serbest titreşimlerinin 

analizinde sabit kesitli çember eksenli çubuk için elde edilen kesin analitik çözüm 

yöntemi kullanılmıştır. Çubuk, sabit kesit alanlarına ve sabit eğriliklere sahip bölgelere 

ayrılarak modellenmiş ve her bölge, sabit kesitli çember eksenli çubuğun düzlem dışı 

titreşimlerini veren ifadeler ve çözüm yöntemi kullanılarak incelenmiştir. Çubuk 

bölgelerinde, eğrilik yarıçapları ve alanları, bölgelerin sahip olduğu ortalama 

yarıçaplar ve alanlar alınarak belirlenmiş ve böylece, değişken kesitli ve değişken 

eğrilikli çubuk, birçok sabit kesitli çember eksenli parçanın birleşiminden oluşacak 

şekilde modellenmiştir. Bu bölgelerin her biri için, yazılan denklemler, başlangıç 

değerleri yöntemi ile çözülmektedir. Denklemler, kayma deformasyonunu ve dönme 

eylemsizliğini içermekte ve moment ve kuvvetlerin yerel olmayan etkilerini de 

gözönüne almaktadır. 

Her eleman, sabit kesitli ve çember eksenli bir çubuk olarak düşünülmüş ve her bölge 

için kesin çözüm, başlangıç değerleri yöntemi ile elde edilmiştir. Elemanların sınır 

bölgelerindeki kinetik ve kinematik geçiş şartları yazılarak elde edilen denklem 

takımının çözümünden frekans değerleri elde edilmiştir. 

Çubuk, sabit kesitli çember eksenli ݊ parçaya bölündüğünde, her parçanın diferansiyel 

denklem takımı 
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݀࢟௜
௜ߠ݀

ൌ ௜ሻߠ࢟௜ሺ	௜࡭ ; ݅ ൌ 1, 2,… , ݊ (4.55) 

şeklinde yazılabilir. Burada, ࢟௜ሺߠ௜ሻ, 6 elemanlı değişkenler vektörünü ve ࡭௜, 6×6 

elemanlı katsayılar matrisini ve ݅ indisi de bölge sayısını ifade etmek üzere, her bölge 

için değişkenler vektörü, 

࢟௜ሺߠሻ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
௜ݒ
Ω௡௜
Ω௧௜
௡௜ܯ
௧௜ܯ
௕௜ܨ ے

ۑ
ۑ
ۑ
ۑ
ې

 (4.56) 

şeklinde tanımlanabilir. Yukarıda elde edilen ࡭௜ katsayılar matrisi, kayma 

deformasyonu ve dönme eylemsizliği etkilerini, ayrıca, moment ve kuvvetlerin yerel 

olmayan etkilerini de göz önüne alarak elde edilen matristir. Etkiler ayrı ayrı ele 

alınarak da çözüm yapılıp, doğal frekanslar elde edilebilir. ࡭௜ katsayılar matrisinin tüm 

elemanlarının sabit sayılar olması durumunda, denklem takımının kesin çözümü, aynı 

şekilde elde edilecektir. ࡭௜ katsayılar matrisinin elemanları 4.39-4.51 denklemleri ile 

verilmektedir. 

 ௜ katsayılar matrisinin tüm elemanlarının sabit sayılar olması durumunda, denklem࡭

takımının kesin çözümü; 

࢟௜ሺߠ௜ሻ ൌ  ௜଴ሻ (4.57)ߠ೔ఏ೔࢟௜ሺ࡭݁

olarak elde edilir. ߠ௜଴ ൌ 0 olarak belirlenen koordinat, sabit kesitli her çubuk elemanı 

için referans koordinatı olarak alınmaktadır. Burada, ࢟ ௜ሺߠ௜଴ሻ, ߠ௜ ൌ  ௜଴ koordinatındakiߠ

bilinen başlangıç değerleri vektörüdür. ݁࡭೔ఏ೔ matematiksel olarak ifade 

edilebilmektedir. 6 ∗ ݊ adet bilinmeyen başlangıç değerleri, sabit kesitli her çubuk 

elemanının iki ucu için yazılan sınır şartları, ߠ௜ koordinatları için yazılan geçiş ve 

denge şartları yardımıyla elde edilir. 

Sınır ve geçiş şartlarından elde edilen ሺ6݊ሻ adet denklem homojen denklem takımı 

oluşturduğundan, sistemin sıfırdan farklı tek bir çözümünün olması, katsayılar 

matrisinin determinantının sıfıra eşit olması durumunda mümkündür. 
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Yukarıda ifade edilen çözüm yöntemi sabit kesitli her çubuk elemanına 

uygulanmaktadır. Çubuk eleman için çubuk açısı aşağıdaki şekilde ifade edilir. 

i. çubuk eleman için;  ߠ௜ିଵ ൑ ߠ ൑ ௜ (4.58)ߠ

İki uç nokta için sınır koşullarından gelen 6 adet eşitlik mevcuttur. Çubuk elemanların 

sınır bölgelerinde kinetik ve kinematik geçiş koşullarını sağlayan ifadeler aşağıda 

verilmektedir. Bu ifadeye göre, komşu çubuk elemanların sınır noktalarındaki 

büyüklükler birbirlerine eşit olmak zorundadır. 

࢟௜ሺߠ௜ሻ ൌ ࢟௜ାଵሺߠ௜ሻ (4.59)

௜଴ሻߠ೔ఏ೔࢟௜ሺ࡭݁ ൌ ሺ௜ାଵሻ଴൯ (4.60)ߠ೔శభఏ೔࢟௜൫࡭݁

௜ሻߠሺݒ ൌ ௜ሻߠ௜ሻ           Ω௡௜ሺߠ௜ାଵሺݒ ൌ Ω௡ሺ௜ାଵሻሺߠ௜ሻ        Ω௧௜ሺߠ௜ሻ ൌ Ω௧ሺ௜ାଵሻሺߠ௜ሻ (4.61)

௜ሻߠ௡௜ሺܯ ൌ ௜ሻߠ௧௜ሺܯ     ௜ሻߠ௡ሺ௜ାଵሻሺܯ ൌ ௜ሻߠ௕௜ሺܨ      ௜ሻߠ௧ሺ௜ାଵሻሺܯ ൌ ௜ሻ (4.62)ߠ௕ሺ௜ାଵሻሺܨ

Sabit mesnet, ankastre mesnet ve serbest uç için sınır şartları aşağıdaki gibidir. 

Sabit mesnet:            ݒ௜ሺߠሻ ൌ ሻߠ௡௜ሺܯ       , 0 ൌ ሻߠ௧௜ሺܯ      ,0 ൌ 0 , 

Ankastre mesnet:      ݒ௜ሺߠሻ ൌ 0 ,       Ω௡௜ሺߠሻ ൌ 0 ,      Ω௧௜ሺߠሻ ൌ 0 , 

Serbest uç:                ܯ௡௜ሺߠሻ ൌ ሻߠ௧௜ሺܯ    , 0 ൌ ሻߠ௕௜ሺܨ       ,0 ൌ 0 , 

Eğri eksenli bir çubuk ሺ݊ሻ adet elemana ayırılıp, bu denklemler her eleman için 

uygulanırsa, ሾ6 ∗ ሺ݊ െ 1ሻሿ adet geçiş şartı yazılır. Böylece, sınır ve süreklilik 

şartlarından gelen ሺ6 ∗ ݊ሻ adet eşitlik, matris formunda ifade edilir: 

ۏ
ێ
ێ
ێ
ێ
ۍ
૚ࢄ ૙૚ ૙૚
భఏభ࡭݁ െ݁࡭మఏభ ૙૛
૙૛ మఏమ࡭݁ మఏభ࡭݁

⋯
⋯
⋯

૙૚ ૙૚
૙૛ ૙૛
૙૛								 					૙૛

⋯ ⋯ ⋯ ⋯ ⋯ ⋯
૙૛							 ૙૛						 ૙૛
૙૚							 ૙૚						 ૙૚

⋯
⋯

೙షభఏ೙షభ࡭݁ െ݁࡭೙ఏ೙షభ
૙૚ ࢔ࢄ ے

ۑ
ۑ
ۑ
ۑ
ې

଺௡ൈ଺௡ ۏ
ێ
ێ
ێ
ێ
ۍ
࢟଴ଵ
࢟଴ଶ
࢟଴ଷ
⋮

࢟଴ሺ௡ିଵሻ
࢟଴௡ ے

ۑ
ۑ
ۑ
ۑ
ې

଺௡ൈଵ

ൌ ሾ૙ሿ଺௡ൈଵ 

(4.63)

Burada ࢄ૚ ve 6×3 ,࢔ࢄ boyutunda eğri eksenli çubuğun A ve B ucundaki sınır 

şartlarından elde edilen matris; ૙૚, 3×6 boyutunda ve ૙૛, 6 ൈ 6 boyutunda sıfır 

matrisleridir. ࢟଴௜ ൌ ࢟௜ሺߠ଴௜ሻ olarak tanımlanırlar. Elde edilen 6 ൈ ݊ eşitlik, homojen 
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denklem takımı oluşturduklarından, ࢟ ଴௜’lerin sıfırdan farklı çözümleri ancak katsayılar 

matrisinin determinantının sıfıra eşit olması durumunda mevcuttur. Determinant 

ifadesi, ߱ doğal frekansının bir fonksiyonudur. Böylece doğal frekanslar elde edilir.  
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5.  DÜZLEM DIŞI STATİK DAVRANIŞLA İLGİLİ ÖRNEKLER VE 

DAVRANIŞA ETKİ EDEN PARAMETRELERİN İNCELENMESİ 

Bu bölümde eğri eksenli nano çubukların düzlem dışı statik davranışıyla ilgili çeşitli 

problemlerin çözümleri verilerek yer değiştirme, dönme açısı ile iç kuvvet ve 

momentler hesaplanmıştır. Örneklerde, ankastre-serbest ve ankastre-ankastre sınır 

koşulları; binormal doğrultuda tekil yük ܨ௕, normal ve teğet doğrultuda tekil moment 

 ሻ gibi farklı yüklemeߠ௕ሺݍ binormal doğrultuda değişken yayılı yük ,(௧ܯ ௡ veܯ)

durumları incelenmiştir. Tekil yükler, ankastre-serbest mesnetli nano çubukta serbest 

uçtan etkimektedir. Bunun yanında, ankastre-ankastre mesnetli nano çubukta ߠ௄ 

olarak belirtilen, rastgele seçilmiş bir noktadan etkiyen tekil yüklerin statik davranışa 

etkisi de incelenmiştir. Son bölümde, binormal doğrultuda etkiyen değişken yayılı yük 

  .ሻ etkisindeki çember eksenli sürekli değişken kesitli çubuk incelenmiştirߠ௕ሺݍ

 

Şekil 5.1 : Düzlem dışı statik davranışın incelendiği çember eksenli nano çubuk. 

Farklı yükleme ve sınır koşullarının yanı sıra; boyut parametresi ܴ/ߛ, çubuk açıklığı 

ߣ ve narinlik oranı ்ߠ ൌ ்ߠ	ܴ ඥܫ௡ ⁄⁄ܣ  gibi malzeme ve çubuk geometrisi ile ilgili 

parametrelerin de etkileri incelenmiştir. Çalışmalarda ߛ boyut parametresi 1.56 mm, 

 ࡭

 ࡮

 ࢔

 ࢚ ࢈

 ߠ
 ஻ߠ

 ஺ߠ

ܴ 
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Poisson oranı ߭ ൌ 0.3, elastiklik modülü ܧ ൌ 1	ܶܲܽ olarak alınmıştır. Bu değerler Hu 

ve diğ. (2009) çalışmasından alınmıştır.  

Bu çalışmada incelenen çember eksenli nano çubuk Şekil 5.1’de verilmiştir. 

Bilinmeyen başlangıç değerleri, her uç için yazılacak üçer adet lineer denklemle 

çözülmektedir. Bundan sonra, çubuğun yer değiştirmesinin, dönme açısının, iç kuvvet 

ve momentlerinin kesin analitik ifadesini belirtmek mümkün olmaktadır. 

 Serbest Ucundan ࢈ࡲ ile Yüklü, ࣊/૛ Açıklığına Sahip, Çember Eksenli Sabit 

Kesitli Ankastre-Serbest Çubuk 

 

Şekil 5.2 : 2/ߨ açıklığı olan, çember eksenli sabit kesitli ve ankastre-serbest 
mesnetli serbest ucundan ܨ௕ kuvveti ile yüklü çubuk. 

Bu örnekte serbest ucundan binormal doğrultuda etkiyen tekil ܨ௕ kuvveti ile yüklü, 

்ߠ ൌ  açıklığına sahip, çember eksenli sabit kesitli ankastre-serbest çubuk 2/ߨ

incelenmiştir (Şekil 5.2). Bu çubuğun serbest ucundaki yer değiştirme ve dönme açısı 

değerleri, yerel olmayan elastisite teorisi ile: 

௢ݒ ൌ ቆ
ܴߨ௕݇௕ܨ
ܣܩ2

൅
ଷܴߨ௕ܨ

௡ܫܧ4
ቇ ቆ1 ൅

ଶߛ

ܴଶ
ቇ ൅ ቆ

ଷܴߨ௕ܨ3

ܬܩ4
െ
௕ܴଷܨ2

ܬܩ
ቇ ቆ1 ൅

ଶߛ3

2ܴଶ
ቇ  (5.1) 

Ω௡௢ ൌ െ
௕ܴଶܨ

௡ܫܧ2
ቆ1 ൅

ଶߛ

ܴଶ
ቇ െ

௕ܴଶܨ

ܬܩ2
ቆ1 ൅

ଶߛ3

2ܴଶ
ቇ  (5.2) 

Ω௧௢ ൌ െ
ଶܴߨ௕ܨ

௡ܫܧ4
ቆ1 ൅

ଶߛ

ܴଶ
ቇ ൅ ቆ

௕ܴଶܨ

ܬܩ
െ
ଶܴߨ௕ܨ

ܬܩ4
ቇቆ1 ൅

ଶߛ3

2ܴଶ
ቇ  (5.3) 

olarak elde edilmiştir. Çubuk ekseni boyunca, binormal doğrultuda yer değiştirme ݒ ൌ

ሻ, normal eksen etrafındaki dönme açısı Ω௡ߠሺݒ ൌ Ω௡ሺߠሻ ve teğet eksen etrafındaki 

dönme açısı Ω௧ ൌ Ω௧ሺߠሻ değerlerinin değişimi aşağıdaki gibi elde edilmiştir. Çubuk 

boyutunun büyüdüğü (ܴ ≫  nin küçük’ܴ/ߛ durumda, yani boyut parametresi (ߛ
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değerlerinde bu parametrenin bulunduğu terimlerin sonuca etkisi yok olmakta ve 

sonuçlar klasik çubuk teorisi ile aynı olmaktadır. Çubuk ekseni boyunca binormal 

doğrultuda yer değiştirme ݒሺߠሻ, normal eksen etrafında dönme açısı Ω௡ሺߠሻ ve teğet 

eksen etrafında dönme açısı Ω௧ሺߠሻ için hesaplanan analitik ifadeler aşağıda verilmiştir: 

ሻߠሺݒ ൌ
௕݇௕ܴܨ
ܣܩ

ቆ1 ൅
ଶߛ

ܴଶ
ቇ ቀ
ߨ
2
൅ ቁߠ ൅

௕ܴଷܨ

௡ܫܧ2
ቆ1 ൅

ଶߛ

ܴଶ
ቇ ቀ
ߨ
2
൅ ቁߠ cos ߠ

൅
௕ܴଷܨ

ܬܩ
ቆ1 ൅

ଶߛ3

2ܴଶ
ቇ ൤
ߨ
2
െ 1 ൅ ߠ ൅ ൬

ߨ
4
െ 1 ൅

ߠ
2
൰ cos ߠ

൅ sin  ൨ߠ

(5.4)

Ω௡ሺߠሻ ൌ
௕ܴଶܨ

௡ܫܧ2
ቆ1 ൅

ଶߛ

ܴଶ
ቇ ቂቀ

ߨ
2
൅ ቁߠ sin ߠ െ cos ቃߠ

൅
௕ܴଶܨ

ܬܩ
ቆ1 ൅

ଶߛ3

2ܴଶ
ቇ ൤
cos ߠ
2

െ 1 ൅ ൬
ߨ
4
൅
ߠ
2
െ 1൰ sin  ൨ߠ

(5.5)

Ω௧ሺߠሻ ൌ
ଶܴߨ௕ܨ

௡ܫܧ4
ቆ1 ൅

ଶߛ

ܴଶ
ቇ ሺߠ െ 1ሻ cos ߠ

൅
௕ܴଶܨ

ܬܩ
ቆ1 ൅

ଶߛ3

2ܴଶ
ቇ ൬1 െ

ߨ
4
െ
ߠ
2
൰ cos  ߠ

(5.6)

 Serbest Ucundan ࢔ࡹ ile Yüklü, ࣊/૛ Açıklığına Sahip, Çember Eksenli Sabit 

Kesitli Ankastre-Serbest Çubuk 

 

Şekil 5.3 : Açıklığı 2/ߨ olan, çember eksenli sabit kesitli ve ankastre-serbest 
mesnetli serbest ucundan ܯ௡ momentinin etkidiği çubuk. 

Bu örnekte serbest ucundan tekil ܯ௡ momentinin etkidiği, ்ߠ ൌ  ,açıklığına sahip 2/ߨ

çember eksenli sabit kesitli ankastre-serbest çubuk incelenmiştir (Şekil 5.3). Çubuğun 

serbest ucundaki yer değiştirme ve dönme açısı değerleri, yerel olmayan elastisite 

teorisi ile: 
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଴ݒ ൌ െ
௡ܴଶܯ

௡ܫܧ2
ቆ1 ൅

ଶߛ

ܴଶ
ቇ െ

௡ܴଶܯ

ܬܩ2
ቆ1 ൅

ଶߛ3

2ܴଶ
ቇ  (5.7) 

Ω௡଴ ൌ
ܴߨ௡ܯ
௡ܫܧ4

ቆ1 ൅
ଶߛ

ܴଶ
ቇ ൅

ܴߨ௡ܯ
ܬܩ4

ቆ1 ൅
ଶߛ3

2ܴଶ
ቇ  (5.8) 

Ω௧଴ ൌ
௡ܴܯ
௡ܫܧ2

ቆ1 ൅
ଶߛ

ܴଶ
ቇ െ

௡ܴܯ
ܬܩ2

ቆ1 ൅
ଶߛ3

2ܴଶ
ቇ  (5.9) 

olarak elde edilmiştir. Çubuk ekseni boyunca binormal doğrultuda yer değiştirme 

 ሻ ve teğet eksen etrafında dönme açısıߠሻ, normal eksen etrafında dönme açısı Ω௡ሺߠሺݒ

Ω௧ሺߠሻ için hesaplanan analitik ifadeler aşağıda verilmiştir: 

ሻߠሺݒ ൌ െ
௡ܴଶܯ

௡ܫܧ2
ቆ1 ൅

ଶߛ

ܴଶ
ቇ ቂcos ߠ ൅ ቀ

ߨ
2
൅ ቁߠ sin ቃߠ

െ
௡ܴଶܯ

ܬܩ2
ቆ1 ൅

ଶߛ3

2ܴଶ
ቇ ቂcos ߠ ൅ ቀ

ߨ
2
൅ ቁߠ sin  ቃߠ

(5.10) 

Ω௡ሺߠሻ ൌ
௡ܴܯ
௡ܫܧ2

ቆ1 ൅
ଶߛ

ܴଶ
ቇ ቀ
ߨ
2
൅ ቁߠ cos ߠ ൅

௡ܴܯ
ܬܩ2

ቆ1 ൅
ଶߛ3

2ܴଶ
ቇ ቀ
ߨ
2
൅ ቁߠ cos ߠ

െ
௡݇௡ܴܨ
ܣܩ2

ቆ1 ൅
ଶߛ

ܴଶ
ቇ ሾሺߠ ൅ ߠሻCosߨ ൅ Sinߠሿ 

(5.11) 

Ω௧ሺߠሻ ൌ
௡ܴܯ
௡ܫܧ2

ቆ1 ൅
ଶߛ

ܴଶ
ቇ ቂቀ

ߨ
2
൅ ቁߠ sin ߠ ൅ cos ቃߠ cos ߠ

൅
௡ܴܯ
ܬܩ2

ቆ1 ൅
ଶߛ3

2ܴଶ
ቇ ቂቀ

ߨ
2
൅ ቁߠ sin ߠ െ cos  ቃߠ

(5.12) 

 Serbest Ucundan ࢚ࡹ ile Yüklü, ࣊/૛ Açıklığına Sahip, Çember Eksenli Sabit 

Kesitli Ankastre-Serbest Çubuk 

 

Şekil 5.4 : Açıklığı ߨ olan, çember eksenli sabit kesitli ve ankastre-serbest mesnetli 
serbest ucundan ܯ௧ momentinin etkidiği çubuk. 
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Bu örnekte serbest ucundan tekil ܯ௧ momentinin etkidiği, ்ߠ ൌ  ,açıklığına sahip 2/ߨ

çember eksenli sabit kesitli ankastre-serbest çubuk incelenmiştir (Şekil 5.4). Çubuğun 

serbest ucundaki yer değiştirme ve dönme açısı değerleri, yerel olmayan elastisite 

teorisi ile: 

଴ݒ ൌ െ
ଶܴߨ௧ܯ

௡ܫܧ4
ቆ1 ൅

ଶߛ

ܴଶ
ቇ ൅

௧ܴଶܯ

ܬܩ
ቆ1 ൅

ଶߛ3

2ܴଶ
ቇ ቀ1 െ

ߨ
4
ቁ  (5.13)

Ω௡଴ ൌ
௧ܴܯ
௡ܫܧ2

ቆ1 ൅
ଶߛ

ܴଶ
ቇ െ

௧ܴܯ
ܬܩ2

ቆ1 ൅
ଶߛ3

2ܴଶ
ቇ  (5.14)

Ω௧଴ ൌ
ܴߨ௧ܯ
௡ܫܧ4

ቆ1 ൅
ଶߛ

ܴଶ
ቇ ൅

ܴߨ௧ܯ
ܬܩ4

ቆ1 ൅
ଶߛ3

2ܴଶ
ቇ  (5.15)

olarak elde edilmiştir. Çubuk ekseni boyunca binormal doğrultuda yer değiştirme 

 ሻ ve teğet eksen etrafında dönme açısıߠሻ, normal eksen etrafında dönme açısı Ω௡ሺߠሺݒ

Ω௧ሺߠሻ için hesaplanan analitik ifadeler aşağıda verilmiştir: 

ሻߠሺݒ ൌ െ
௧ܴଶܯ

௡ܫܧ2
ቆ1 ൅

ଶߛ

ܴଶ
ቇ ቀ
π
2
൅ ቁߠ cos ߠ

൅
௧ܴଶܯ

ܬܩ
ቆ1 ൅

ଶߛ3

2ܴଶ
ቇ ൤1 െ ൬

ߨ
4
൅
ߠ
2
൰ cos ߠ ൅ sin  ൨ߠ

(5.16)

Ω௡ሺߠሻ ൌ
௧ܴܯ
௡ܫܧ2

ቆ1 ൅
ଶߛ

ܴଶ
ቇ ቀcos ߠ െ

π
2
sin ߠ െ ߠ sin ቁߠ

െ
௧ܴܯ
ܬܩ2

ቆ1 ൅
ଶߛ3

2ܴଶ
ቇ ቀcos ߠ ൅

π
2
sin ߠ ൅ ߠ sin  ቁߠ

(5.17)

Ω௧ሺߠሻ ൌ
௧ܴܯ
௡ܫܧ2

ቆ1 ൅
ଶߛ

ܴଶ
ቇ ቀ
ߨ
2
൅ ቁߠ cos ߠ ൅

௧ܴܯ
ܬܩ2

ቆ1 ൅
ଶߛ3

2ܴଶ
ቇ ቀ
ߨ
2
൅ ቁߠ cos  ߠ (5.18)

 Simetrik Olmayan Yükleme Durumları 

Bu kısımda, simetrik olmayan sınır şartlarına sahip çubukların orta noktalarından 

farklı konumlarına etkiyen tekil yükleme durumları incelenmiştir. Bu amaçla, 

ankastre-ankastre mesnetli sabit kesitli çember eksenli Şekil 5.5’te görülen çubuğun, 

௄ߠ ൌ 30° koordinatından ܨ௕௄ tekil kuvveti ile yüklendiği durum incelenmiştir. Çubuk 

்ߠ ൌ 2π/3 açıklığına, ߣ ൌ 100 narinlik oranına, ܴ/ߛ ൌ 1 küçük boyut parametresine 
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sahiptir. Bu çubukta ortaya çıkan yer değiştirmeler, dönme açıları ve kesit tesirleri; 

tüm etkilerin gözönüne alındığı yerel olmayan teorinin verdiği sonuçlar ve tüm 

etkilerin dahil edildiği yerel sonuçlarla birlikte aşağıdaki diyagramlarda verilmiştir. 

 

Şekil 5.5 : ߠ௄ koordinatından ܨ௕௄ tekil yükü etkiyen ve ்ߠ ൌ 120°	açıklığı olan, 
sabit kesitli çember eksenli nano çubuk.  

Şekil 5.6’da tüm etkilerin gözönüne alındığı yerel olmayan teoriden ve tüm etkilerin 

dahil edildiği yerel teoriden elden edilen yerdeğiştirme değerleri çubuğun şekil 

değiştirmemiş eksen eğrisi üzerine çizilmiştir. Yerel olmayan teoriden elde edilen 

sonuçlar, klasik teori ile elde edilen sonuçların yaklaşık olarak iki katıdır. ܴ/ߛ değeri 

büyüdükçe bu farkın azaldığı görülmüştür. 

 

 ࡭

 ࡮

 ࢔

 ࢚ ࢈

 ௄ߠ

 ஻ߠ

 ஺ߠ

ܴ 

 ௕௄ܨ

 ߠ
 ࡻ
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Şekil 5.6 : Yerel ve yerel olmayan teoriyle elde edilen yer değiştirme eğrileri             
( :Şekil değiştirmemiş çubuk ekseni,    : Yerel olmayan elastisite teorisi 

sonuçları,    : Klasik elastisite teorisi sonuçları) 

Şekil 5.8 ve Şekil 5.9’da kesitin sırasıyla normal eksen etrafında (ߗ௡) ve teğet eksen 

etrafında (ߗ௧) dönme açısının yerel olmayan teori ve klasik çubuk teorisi ile 

hesaplandığı diyagram verilmiştir. Bu iki farklı yaklaşım ile elde edilen sonuçların 

birbirinden önemli ölçüde farklı olduğu gözlemlenmiştir. 

 

Şekil 5.7 : Yerel ve yerel olmayan teoriyle elde edilen dönme açısı (ߗ௡) eğrileri.
   ( :Şekil değiştirmemiş çubuk ekseni,    : Yerel olmayan 

elastisite teorisi sonuçları,    : Klasik elastisite teorisi sonuçları) 
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Şekil 5.8 : Yerel ve yerel olmayan teoriyle elde edilen dönme açısı (ߗ௧) eğrileri.
   ( :Şekil değiştirmemiş çubuk ekseni,    : Yerel olmayan 

elastisite teorisi sonuçları,    : Klasik elastisite teorisi sonuçları) 

Yer değiştirme ve kesitin dönme açısına ait diyagramlar incelendiğinde genel olarak 

yerel olmayan teoriden elde edilen sonuçların klasik teori ile elde edilen sonuçlara göre 

daha büyük olduğu görülmüştür. Bu sonuç McFarland ve Colton’ın (2005) deneysel 

çalışması ve Reddy’nin (2007) teorik çalışması ile uyumludur. Bu iki yaklaşım ile elde 

edilen sonuçlar arasındaki fark, ܴ/ߛ küçük boyut parametresinin büyümesiyle 

azalmaktadır. Bu sebeple, eğri eksenli nano  çubukların yer değiştirme ve kesin dönme 

açısının hesaplanmasında boyut parametresinin önemi anlaşılmaktadır.  

Kesit tesirleri, yani normal doğrultudaki eğilme momenti ܯ௡, teğet doğrultudaki 

burulma momenti ܯ௧ ve binormal doğrutudaki kesme kuvveti ܨ௕ de klasik ve yerel 

olmayan teori ile incelenmiş olup sonuçlar arasındaki farkın çok küçük olduğu 

görülmüştür. Küçük boyut parametresi ܴ/ߛ’nın değeri büyüdükçe hemen hemen üst 

üste çıkan eğriler elde edilmektedir. Sonuçlar arasındaki farkın az olması nedeniyle 

ilgili diyagramlar burada verilmemiştir. 

 Değişken ࢈ࢗ Yayılı Yüküyle Yüklü Değişken Kesitli Çember Eksenli 

Ankastre-Ankastre Çubuk 

Tezin bu kısmında, daha genel bir durum için elde edilmiş olan, değişken yayılı 

yüklerin etkidiği çember eksenli ve değişken kesitli çubuklara ait çözüm ifadeleri 

kullanılarak, yerdeğiştirme, normal eksen etrafında dönme açısı Ω௡௡௟, teğet eksen 
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etrafında dönme açısı Ω௧
௡௟ ve kesit tesirleri (ܯ௡

௡௟, ܯ௧
௡௟, ܨ௕

௡௟) diyagramları klasik 

teoriden elde edilen sonuçlarla birlikte verilmiştir. Elde edilen veriler incelendiğinde 

yerel olmayan teoriyle hesaplanan yerdeğiştirme ve dönme açısı değerlerinin klasik 

teori ile hesaplanan yerdeğiştirme ve dönme açısı değerlerine göre daha büyük olduğu 

görülmüştür. Bu durum literatürdeki ilgili çalışmalarla uyumludur (Reddy, 2007; Patti 

ve diğ., 2015). Bu örnekte incelenen, sürekli değişken yayılı yükün etkisinde, değişken 

kesitli, çember eksenli ve iki ucu ankastre mesnetli nano çubuk Şekil 5.9’da 

verilmiştir. Çubuğun açıklığı ்ߠ ൌ 120°, narinlik oranı ߣ ൌ 100 ve küçük boyut 

parametresi ܴ ⁄ߛ ൌ 1 olarak belirlenmiştir. 

 

Şekil 5.9 : Binormal eksen doğrultusunda değişken ݍ௕ሺߠሻ yayılı yüküyle yüklü 
çember eksenli ankastre-ankastre çubuk. 

Çubuk, normal doğrultudaki yatay uzunluğu	ܾሺߠሻ ve binormal doğrultudaki düşey 

uzunluğu ݄ሺߠሻ olan ve bu büyüklüklerin aşağıda verildiği dikdörtgen kesite sahiptir: 

Bu dikdörtgen kesit için burulma sabiti ܬሺߠሻ aşağıda verilmiştir (Timoshenko & 

Goodier, 1951).  

Yayılı yükün dağılımı ise; 

ܾሺߠሻ ൌ
ܾ଴
cos ߠ

; ݄ሺߠሻ ൌ ݄଴ (5.19)

ܾ ൒ ݄			 	൴ç൴n					ܬሺߠሻ ൌ
ܾሺߠሻ݄ሺߠሻଷ

3
ቈ1 െ

0.63ܾሺߠሻ
݄ሺߠሻ

ቆ1 െ
ܾሺߠሻସ

12݄ሺߠሻସ
ቇ቉ (5.20)
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olarak belirlenmiştir. Yayılı yük ifadesindeki sabit bileşen ݍ଴ birim yük olarak 

seçilmiştir. Bu durumda ortaya çıkan yer değiştirme, dönme açısı, moment, teğet ve 

normal doğrultulardaki kuvvetler, hem yerel hem de yerel olmayan teorilerle 

hesaplanmış ve ilgili diyagramlar verilmiştir. Şekil 5.10’da değişken ݍ௕ yayılı yükü 

etkisindeki, değişken kesitli çember eksenli çubuğun, yerel ve yerel olmayan teorilerle 

hesaplanmış yer değiştirme diyagramı görülmektedir. 

 

Şekil 5.10 : Değişken ݍ௕ yayılı yükü etkisindeki, değişken kesitli çember eksenli 
çubuğun yerel olmayan teori (mavi renk) ve klasik teori (kırmızı renk) ile 

hesaplanmış yer değiştirme diyagramı. 

Küçük boyut parametresi ܴ ⁄ߛ ’nın büyük değerlerinde sonuçlar arasındaki fark 

azalmaktadır. Şekil 5.11’de, kesitin normal eksen etrafındaki dönme açısının (ߗ௡௡௟ ve 

௡௟ߗ ) diyagramı verilmiştir. Yerel olmayan teorinin sonucu kırmızı renkli sürekli 

çizgiyle, yerel teorininki ise mavi renkli sürekli çizgiyle gösterilmektedir. Sonuçların 

yine birbirinden oldukça farklı olduğu görülmektedir. Yine, küçük boyut parametresi 

ܴ ⁄ߛ ’nın büyük değerlerinde sonuçlar arasındaki fark azalmaktadır. 

െ
்ߠ
2
൑ ߠ ൑

்ߠ
2
				൴ç൴n ݍ௕ሺߠሻ ൌ ଴ݍ ቈ൬

ߠ
2/்ߠ

൰
ଶ

െ 1቉  (5.21) 



55 

 

Şekil 5.11 : Değişken ݍ௕ yayılı yükü etkisindeki, değişken kesitli çember eksenli 
çubuğun yerel olmayan teori (mavi renk) ve klasik teori (kırmızı renk) ile 

hesaplanmış normal doğrultudaki dönme açısı (ߗ௡) diyagramı. 

Şekil 5.12’de, küçük boyut parametresi ܴ ⁄ߛ ൌ 1 olan çubuğun yerel ve yerel olmayan 

teorilerle hesaplanmış dönme açısı diyagramı (ߗ௧
௡௟ ve ߗ௧

௟) görülmektedir. Şekil 5.13’te, 

küçük boyut parametresi ܴ ⁄ߛ ൌ 7 olan çubuğun yerel ve yerel olmayan teorilerle 

hesaplanmış dönme açısı diyagramı (ߗ௧
௡௟ ve ߗ௧

௟) görülmektedir. Şekil 5.12’de eğriler 

benzer görünmemektedir. Yerel olmayan teorinin sonucunun, yerel teorinin 

sonucundan oldukça farklı olmasının yanı sıra, yerel teorinden elde edilen dönme açısı 

diyagramının işaret değiştirdiği, yerel olmayan teoride ise hep aynı işaretli olduğu 

görülmektedir. Fakat, ܴ ⁄ߛ ൌ 7 durumunda (Şekil 5.13) farklı iki teoriden elde edilen 

sonuçlar arasındaki form benzerliği artmakta ve sonuçlar arasındaki fark azalmaktadır.  

 

Şekil 5.12 : Değişken ݍ௕ yayılı yükü etkisindeki, değişken kesitli çember eksenli 
çubuğun yerel olmayan teori (mavi renk) ve klasik teori (kırmızı renk) ile 
hesaplanmış teğet doğrultudaki dönme açısı (ߗ௧) diyagramı (ܴ ⁄ߛ ൌ 1). 
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Şekil 5.13 : Değişken ݍ௕ yayılı yükü etkisindeki, değişken kesitli çember eksenli 
çubuğun yerel olmayan teori (mavi renk) ve klasik teori (kırmızı renk) ile 
hesaplanmış teğet doğrultudaki dönme açısı (ߗ௧) diyagramı (ܴ ⁄ߛ ൌ 7). 

Normal eksen doğrultusundaki eğilme momenti ܯ௡
௡௟ ve ܯ௡

௟  ve teğet eksen etrafındaki 

burulma momenti ܯ௧
௡௟ ve ܯ௧

௟ sırasıyla Şekil 5.14 ve Şekil 5.15’te verilmiştir. Klasik 

ve yerel olmayan teoriden elde edilen sonuçlar her iki diyagramda da oldukça farklıdır.  

 

Şekil 5.14 : Değişken ݍ௕ yayılı yükü etkisindeki, değişken kesitli çember eksenli 
çubuğun yerel olmayan teori (mavi renk) ve klasik teori (kırmızı renk) ile 

hesaplanmış normal eksende eğilme momenti (ܯ௡) diyagramı. 
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Şekil 5.15 : Değişken ݍ௕ yayılı yükü etkisindeki, değişken kesitli çember eksenli 
çubuğun yerel olmayan teori (mavi renk) ve klasik teori (kırmızı renk) ile 

hesaplanmış teğet eksende burulma momenti (ܯ௧) diyagramı. 

Şekil 5.16’da, çubuğun, yerel ve yerel olmayan teorilerle hesaplanmış binormal 

doğrultudaki kesme kuvveti ܨ௕
௡௟ ve ܨ௕

௟  diyagramı verilmiştir. Yerel olmayan teori ile 

elde edilen sonuçların klasik (yerel) teori ile elde edilen sonuçlar ile aynı olduğu 

gözlenmiştir. Kesme kuvveti sadece dış kuvvete bağlıdır ve küçük boyut 

parametresinin, narinlik oranının veya çubuk açıklığının bir etkisi yoktur. 

 

Şekil 5.16 : Değişken ݍ௕ yayılı yükü etkisindeki, değişken kesitli çember eksenli 
çubuğun yerel olmayan teori (mavi renk) ve klasik teori (kırmızı renk) ile 

hesaplanmış binormal doğrultuda kesme kuvveti (ܨ௕) diyagramı. 

 Farklı Parametrelerin Çember Eksenli Nano Çubukların Statik Davranışına 

Etkisi 

Bu bölümde, bir önceki bölümde incelenen çember eksenli değişken kesitli her iki ucu 

ankastre mesnetli ve değişken yük etkisindeki çubuğun statik davranışında küçük boyut 

parametresi	݇ ൌ ܴ ⁄ߛ , çubuk açıklığı ்ߠ ve narinlik oranının ߣ etkileri araştırılmıştır. 

Sınır koşulları ve yükleme tipi Bölüm 5.5’te incelenen çubukla aynıdır. Bu bölümdeki 
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örneklerde, ்ߠ çubuk açıklığı 10° ile 180° arasında değişmekte olup ݇ ൌ ܴ ⁄ߛ  küçük 

boyut parametresi 1 ile 10 arasında değişmektedir. Diğer bir paramtetre, ߣ ൌ

 narinlik oranı 10 ile 150 arasındaki değerleri almaktadır. Klasik (yerel) ܣ/௡ܫඥ/்ߠܴ

teori ile yerel olmayan teori ile hesaplanan yerdeğiştirme değerlerinin oranı (ݒ௡௟/ݒ௟), 

dönme açılarının oranı (Ω௡௡௟/Ω௡௟ , Ω௧
௡௟/Ω௧

௟ ) ve momentler (ܯ௡
௡௟/ܯ௡

௟ ௧ܯ ,
௡௟/ܯ௧

௟) bu 

parametrelerin değişimine göre hesaplanmış ve sonuçlar ilgili grafiklerde verilmiştir. 

5.6.1 Küçük boyut parametresi ࢽ/ࡾ ve narinlik oranı ࣅ’nın etkisi 

Bu bölümde, çubuk açıklığı ்ߠ ൌ 120° olup küçük boyut parametresi	݇ ൌ ܴ ⁄ߛ  ve 

narinlik oranının ߣ etkileri araştırılmıştır. Şekil 5.17’de  küçük boyut parametresi ݇ ൌ

ܴ ⁄ߛ  ve narinlik oranının ߣ değişimine karşılık çubuğun orta noktasına ait yerel 

olmayan teori ve yerel teori ile elde edilen yerdeğiştirme oranı ߥ௡௟/ߥ௟ çizilmiştir.  

 

Şekil 5.17 : Küçük boyut etkisi ሺ݇ሻ ve narinlik oranının ሺߣሻ yerdeğiştirmeye 
ሺݒ௡௟/ݒ௟ሻ etkisi. 

Diyagramdan, küçük boyut parametresi	݇ ൌ ܴ ⁄ߛ ’nın büyük değerlerinde narinlik 

oranı ߣ ile yerdeğiştirme oranı ߥ௡௟/ߥ௟ sonuçlarında büyük bir değişim olmadığı 

görülmüştür. Fakat, küçük boyut parametresinin küçük değerlerinde narinlik oranı ile 

yerdeğiştirmeler önemli ölçüde değişmektedir. Herhangi bir narinlik oranı ߣ için, 
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yerdeğiştirme oranı ߥ௡௟/ߥ௟, azalan ܴ ⁄ߛ  değerleriyle artmaktadır. Bu artış, çubuk kısa 

ve kalın ise (küçük narinlik oranı) daha belirgindir. Çubuk açıklığı ்ߠ’nin küçük 

değerlerinde diyagram yine benzer şekildedir fakat azalan ܴ ⁄ߛ  karşısında ߥ௡௟/ߥ௟ 

oranındaki değişiklikler daha büyüktür. 

 

Şekil 5.18 : Küçük boyut etkisi ሺ݇ሻ ve narinlik oranının ሺߣሻ kesitin normal eksen 
etrafında dönme açısına ሺߗ௡௡௟/ߗ௡௟ ሻ etkisi. 

Şekil 5.18’de küçük boyut parametresi ݇ ൌ ܴ ⁄ߛ  ve narinlik oranı ߣ’nın değişimine 

karşılık çubuğun orta noktasındaki kesitin normal eksen etrafında dönme açısı 

௡௟ߗ/௡௡௟ߗ ’nın değişim grafiği verilmiştir. Dönme açısı oranı ߗ௡௡௟/ߗ௡௟  narinlik oranı ߣ’nın 

değişmesinden etkilenmemektedir. Beklenildiği üzere, küçük boyut parametresinin 

azalan değerlerinde ߗ௡௡௟/ߗ௡௟  oranı önemli ölçüde artmaktadır. Çubuk açıklığı ்ߠ’nin 

azalması ile ߗ௡௡௟/ߗ௡௟  oranı azalmaktadır.  
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(a) Orta nokta (ߠ ൌ 0ሻ 

 

(b) ߠ ൌ  16/்ߠ7

Şekil 5.19 :  Küçük boyut parametresi ሺkሻ ve narinlik oranının ሺλሻ kesitin teğet 
eksen etrafındaki dönme açısı oranına ൫ߗ௧

௡௟/ߗ௧
௟൯ etkisi 
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Şekil 5.19a’da küçük boyut parametresi ݇ ൌ  nın çubuğun orta’ߣ ve narinlik oranı ߛ/ܴ

noktasındaki kesitin teğet eksen etrafında dönme açısı ߗ௧
௡௟/ߗ௧

௟’nın değişim grafiği 

verilmiştir. Yerel olmayan teori ve yerel teori ile elde edilen sonuçlar arasındaki fark 

artan küçük boyut parametresinin azalmasıyla artmaktadır. Şekil 5.12’den 

hatırlanacağı üzere, ݇ ൌ  nin düşük değerlerinde çubuğun orta noktasına ait’ߛ/ܴ

dönme açısı ߗ௧
௡௟ değeri işaret değiştirmektedir. Eğer orta nokta yerine mesnetlere 

yakın bir noktada inceleme yapılırsa Şekil 5.19b’deki sonuç elde edilmektedir.  

Normal eksende ve teğet eksende eğilme momenti ܯ௡
௡௟/ܯ௡

௟  ve ܯ௧
௡௟/ܯ௧

௟ sonuçları, 

teğet eksen etrafında dönme açısı oranı ߗ௧
௡௟/ߗ௧

௟ sonuçları ile benzer karakterdedir. 

Kesme kuvveti oranı ܨ௕
௡௟/ܨ௕

௟  sabittir ve bu sebepten dolayı ilgili grafikler burada 

verilmemiştir. 

5.6.2 Narinlik oranı ࣅ ve çubuk açıklığı ࢀࣂ’nin etkisi 

Bu örnekte narinlik oranı ߣ ve çubuk açıklığı ்ߠ’nın etkileri incelenmiştir. Küçük 

boyut parametresi ܴ ⁄ߛ ൌ 1 olarak alınmıştır. Şekil 5.20’de narinlik oranı ߣ ve çubuk 

açıklığı ்ߠ’nin değişimine karşılık çubuğun orta noktasına ait yerel olmayan teori ve 

yerel teori ile elde edilen yerdeğiştirme oranı ߥ௡௟/ߥ௟ çizilmiştir. ߥ௡௟/ߥ௟ oranının azalan 

çubuk açıklığı ்ߠ ile arttığı gözlenmiştir. Özellikle ்ߠ ൏ 60° için önemli ölçüde 

değişim mevcuttur. Bunun yanında, düşük narinlik oranı ߣ değerlerinde, yani kısa ve 

kalın çubuklar için, ߥ௡௟/ߥ௟ oranı büyümektedir. Bu artış, çubuk açıklığı ்ߠ’nin küçük 

değerlerinde daha fazladır. 

Bunun yanında, normal eksen ve teğet eksen etrafında dönme açısı ߗ௡௡௟/ߗ௡௟  ve ߗ௧
௡௟/ߗ௧

௟ , 

normal eksende ve teğet eksende eğilme momenti ܯ௡
௡௟/ܯ௡

௟  ve ܯ௧
௡௟/ܯ௧

௟ ile ilgili 

hesaplamalarda da narinlik oranı ߣ ve çubuk açıklığı ்ߠ’nın etkileri incelenmiştir. 

Sonuçların yerdeğiştirme oranı ile benzer olduğu görülmüştür ve bu sebeple ilgili 

grafikler burada verilmemiştir.  
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Şekil 5.20 : Narinlik oranı ሺߣሻ ve çubuk açıklığının ሺ்ߠሻ yerdeğiştirme oranına 
ሺݒ௡௟/ݒ௟ሻ etkisi. 

5.6.3 Küçük boyut parametresi ࢽ/ࡾ ve çubuk açıklığı ࢀࣂ’nin etkisi 

Bu örnekte, küçük boyut parametresi ݇ ൌ ܴ ⁄ߛ  ve çubuk açıklığı ்ߠ’nin etkileri 

incelenmiştir. Çubuğun narinlik oranı ߣ ൌ 150’dir. Şekil 5.21’de küçük boyut 

parametresi ݇ ൌ ܴ ⁄ߛ  ve çubuk açıklığı ்ߠ’nin değişimine karşılık çubuğun orta 

noktasına ait yerel olmayan teori ve yerel teori ile elde edilen yerdeğiştirme oranı 

ܴ ௟ çizilmiştir. Küçük boyut parametresiߥ/௡௟ߥ ⁄ߛ ’dan bağımsız olarak, yerdeğiştirme 

oranı ߥ௡௟/ߥ௟, azalan çubuk açıklığı ்ߠ ile artmaktadır. Yerdeğiştirme oranı ݒ௡௟/ݒ௟, 

azalan küçük boyut parametresi ܴ ⁄ߛ  ile artmaktadır. Artış miktarı, çubuk açıklığı 

 değerlerinde bu ߣ	nin küçük değerlerinde daha fazladır. Farklı narinlik oranı’்ߠ

diyagramın formu benzer şekilde kalmakta fakat narinlik oranı büyüdükçe sonuçlar 

büyümektedir. 
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Şekil 5.21 : Küçük boyut parametresi ሺ݇ሻ ve çubuk açıklığının ሺ்ߠሻ yerdeğiştirme 
oranına ሺݒ௡௟/ݒ௟ሻ etkisi. 

 

Şekil 5.22 : Küçük boyut parametresi ሺ݇ሻ ve çubuk açıklığının ሺ்ߠሻ kesitin teğet 
eksen etrafında dönme açısı oranına ൫ߗ௧

௡௟/ߗ௧
௟൯ etkisi. 
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Kesitin normal eksen etrafında dönme açısı ߗ௡௡௟/ߗ௡௟ ’na ait grafik Şekil 5.21’de verilen 

yerdeğiştirme oranı ݒ௡௟/ݒ௟ grafiğine benzemektedir. Kesitin teğet eksen etrafında 

dönme açısı ߗ௧
௡௟/ߗ௧

௟’na ait sonuçlar Şekil 5.22’de verilmiştir. Sonuçlar yerdeğiştirme 

oranı ݒ௡௟/ݒ௟ sonuçlarından tamamen farklıdır. Küçük boyut parametresi ve çubuk 

açıklığının küçük değerlerinde yerel olmayan teori ve yerel teori ile elde edilen 

sonuçlar arasındaki fark oldukça büyüktür. Normal eksende ve teğet eksende eğilme 

momenti ܯ௡
௡௟/ܯ௡

௟  ve ܯ௧
௡௟/ܯ௧

௟ ile ilgili incelemelerde benzer sonuçlar görülmüştür. 
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6.  DÜZLEM DIŞI DİNAMİK DAVRANIŞLA İLGİLİ ÖRNEKLER VE 

DAVRANIŞA ETKİ EDEN PARAMETRELERİN İNCELENMESİ 

Yerel olmayan çubuk teorisinin, düzlemsel eğri eksenli çubukların kendi 

düzlemlerindeki titreşimlerini ifade eden denklemler 4.7-4.12 denklemleriyle 

verilmektedir. Bu bölümde, çeşitli çubuk geometrileri ile ilgili problemler 

çözülmüştür. Titreşim problemlerinin çözümünde şu parametreler mevcuttur: 

1. Çubuğun toplam açıklığı: Çubuk açıklığı için, 10°’den	180°’ye kadar çeşitli 

açıklıklar alınmıştır. 

2. Narinlik oranı	ሺߣ ൌ ்ߠ	ܴ ඥܫ௡ ⁄⁄ܣ ), olarak tarif edilen narinlik oranı değeri için, 

kalın bir geometriden (ߣ ൌ 10ሻ, ince bir geometriye kadar (ߣ ൌ 150) çeşitli 

durumlar ele alınmıştır. 

3. Boyut parametresi: ܴ/ߛ için 1’den 10’a kadar değişen değerler alınmıştır. 

Burada ߛ yerel olmayan boyut faktörünü simgelemektedir. Bu faktör, 

küçüklüğü ifade etmektedir. (ߛ ൌ ݁଴ܽሻ. 

4. Etkiler: Denklemlere kayma şekil değiştirmesi ve dönme eylemsizliği 

etkileriyle, kesme kuvveti ve eğilme momentlerinin yerel olmayan etkileri de 

dahil edilmiştir.  

Bu bölümde, yerel olmayan ve klasik (yerel) teori kullanılarak, çember eksenli ve 

değişken kesitli nano çubuğun düzlem dışı serbest titreşim analizi gerçekleştirilmiştir. 

Küçük boyut parametresi ܴ/ߛ, narinlik oranı λ ve çubuk açıklığını ்ߠ’nin yerel ve 

yerel olmayan teorilerle elde edilen doğal frekans oranına etkisi araştırılmıştır. 

Hesaplamalarda, kayma deformasyonu yanında eğilme ve burulma dönme 

eylemsizliği etkileri de göz önüne alınmıştır. Boyutsuz frekans değeri; 

ഥ߱௟ ൌ ሺ்ܴߠሻଶඨ
଴ܣߩ
௡଴ܫܧ

߱௟ ; ഥ߱௡௟ ൌ ሺ்ܴߠሻଶඨ
଴ܣߩ
௡଴ܫܧ

߱௡௟  (6.1)

olarak verilmiştir. 
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Şekil 6.1 : Değişken kesitli çubuklar. 

Bu kısımda Şekil 6.1’de verilen üç farklı geometride değişen dikdörtgen kesitli 

çubuklar incelenecektir. Çubuk kesitlerinin ܾ boyutu değişmezken, ݄ boyutunun 

değişimleri; 

birinci çubuk için (ortası kalın kenarları ince); 

݄ሺߠሻ ൌ

ە
۔

଴݄ۓ 	൬1 ൅ ߟ
ߠ
்ߠ
൰ ߠ ൑ 0

݄଴ 	൬1 െ ߟ
ߠ
்ߠ
൰ ߠ ൐ 0

 (6.2) 

ikinci çubuk için (ortası ince kenarları kalın); 

݄ሺߠሻ ൌ

ە
۔

଴݄ۓ 	൬1 െ ߟ
ߠ
்ߠ
൰ ߠ ൑ 0

݄଴ 	൬1 ൅ ߟ
ߠ
்ߠ
൰ ߠ ൐ 0

 (6.3) 

üçüncü çubuk için ( inceden kalına); 

݄ሺߠሻ ൌ ݄଴ 	൬1 ൅ ߟ	
ߠ
்ߠ
൰ െ ஺ߠ ൑ ߠ ൑  ஻ (6.4)ߠ

்ߠ ்ߠ

்ߠ
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olarak alınmıştır. Aşağıda incelenen örneklerde çember eksenli çubuk için değişken 

kesit yüksekliği ile ilgili parametre ߟ ൌ 0.1 olarak alınmıştır. 

 Küçük Boyut Parametresi ࢽ/ࡾ ve Narinlik Oranı ࣅ’nın Etkisi 

Bu örnekte, çember eksenli çubuğun kesit değişimi denklem 6.3’te verildiği gibi 

alınmıştır, yani ortası ince kenarları kalın kesitli bir çubuk incelenmektedir. Bu çubuk 

için, aynı malzemeden yapılmış, yani ߛ’nın değerinin sabit tutulduğu, ܴ yarıçapının 

değiştiği durumlar ele alınmıştır. ܴ/ߛ’nın artışıyla, ܴ yarıçapı değiştirilmiştir. 

Şekil 6.2’de, çember eksenli sabit kesitli iki ucu ankastre mesnetli, açıklığı ሺ்ߠ ൌ

120°ሻ olan nano çubuğun, yerel olmayan elastisite teorisi ile elde edilen birinci 

moduna ait boyutsuz frekans katsayısının, boyut parametresi ܴ/ߛ ve narinlik oranı λ 

değerlerinin değişiminden nasıl etkilendiğini göstermektedir. Boyut parametresi ܴ/ߛ 

ve narinlik oranı λ’nın küçük değerleri için birinci moda ait boyutsuz frekansın önemli 

ölçüde etkilendiği görülmektedir. Boyut parametresi ܴ/ߛ ve narinlik oranı λ’nın 

büyük değerlerinde ise birinci boyutsuz frekans katsayısında önemli bir değişim 

görülmemektedir. 

 

Şekil 6.2 : Boyut parametresi ݇ ൌ  ve narinlik oranı λ’nın değişken kesitli ߛ/ܴ
çember eksenli çubuğun birinci mod frekansına ഥ߱௡௟ etkisi (்ߠ ൌ 120°). 
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Şekil 6.3’te, ்ߠ ൌ 120° olan çubuğun birinci mod frekans oranlarının ( ഥ߱௡௟/ ഥ߱௟), boyut 

parametresi ݇ ൌ  ve narinlik oranı λ ile değişimi ele alınmıştır. Şekil 6.3’ten de ߛ/ܴ

görüldüğü gibi boyutsuz frekans oranı ഥ߱௡௟/ ഥ߱௟’nın narinlik oranı değişiminden genel 

olarak etkilenmemektedir, yani narinlik oranının her iki teorinin sonuçlarına etkisi 

benzerdir. Frekans oranı, azalan ݇ değerleri ile azalmaktadır. 

  

Şekil 6.3 : Boyut parametresi ݇ ൌ  nın değişken kesitli’ߣ ve narinlik oranı ߛ/ܴ
çember eksenli çubuğun birinci mod frekans oranına ( ഥ߱௡௟/ ഥ߱௟) etkisi (்ߠ ൌ 120°). 

 Narinlik Oranı ࣅ ve Çubuk Açıklığı ࢀࣂ’nin Etkisi 

Bu örnekte, önceki örneklerdeki gibi çember eksenli çubuğun kesit değişimi denklem 

6.3’te verildiği gibi alınmıştır, yani ortası ince kenarları kalın kesitli bir çubuk 

incelenmektedir. Boyut parametresi ݇ ൌ 1 olarak alınmıştır. Şekil 6.4’te yerel 

olmayan teori ile elde edilmiş sonuçlar görülmektedir. Çubuk açıklığı ்ߠ ൌ 180° için 

boyutsuz frekans yaklaşık 12 olarak hesaplanmış olup, ்ߠ küçüldükçe bu değer de 

küçülmektedir. Şekil 6.5’te verilen boyutsuz frekans oranı ഥ߱௡௟/ ഥ߱௟ sonuçları benzer 

karakteristiğe sahiptir, ்ߠ ൌ 180° için boyutsuz frekans oranı yaklaşık olarak 0.6 

olarak hesaplanmıştır ve ்ߠ küçüldükçe bu değer de küçülmektedir.  
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Şekil 6.4 : Çubuk açıklığı ்ߠ ve narinlik oranı	ߣ’nın değişken kesitli çember eksenli 
çubuğun birinci mod frekansına ഥ߱௡௟ etkisi (k ൌ 1). 

Narinlik oranı ߣ ;ߣ ൐ 20 değerlerinde boyutsuz frekansın değişiminde etkin değildir 

fakat ߣ ൏ 20 değerlerinde azalan ߣ için yerel teori ile hesaplanan boyutsuz frekans 

değeri azalmaktadır. Şekil 6.5 incelendiğinde, boyutsuz frekans oranı ഥ߱௡௟/ ഥ߱௟’nın 

narinlik oranı değişiminden genel olarak etkilenmediği görülmektedir, yani narinlik 

oranının her iki teorinin sonuçlarına etkisi benzerdir. 
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Şekil 6.5 : Çubuk açıklığı ்ߠ ve narinlik oranı	ߣ’nın değişken kesitli çember eksenli 
çubuğun birinci mod frekans oranına ( ഥ߱௡௟/ ഥ߱௟) etkisi (݇ ൌ 1). 

 Küçük Boyut Parametresi ࢽ/ࡾ ve Çubuk Açıklığı ࢀࣂ’nin Etkisi 

Bu örnekte, boyut parametresi ܴ/ߛ ve çubuk açıklığı ்ߠ’nin çember eksenli değişken 

eksenli çubuğun birinci mod frekansına etkisi incelenmiştir. Çember eksenli çubuğun 

kesit değişimi denklem 6.3’te verildiği gibi alınmıştır. Narinlik oranı ߣ ൌ 150 olarak 

alınmıştır. Bu çubuk için, aynı malzemeden yapılmış, yani ߛ’nın değerinin sabit 

tutulduğu, ܴ  yarıçapının değiştiği durumlar ele alınmıştır. ܴ ܴ ,nın artışıyla’ߛ/  yarıçapı 

değiştirilmiştir.  
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Şekil 6.6 : Boyut parametresi ݇ ൌ  nin değişken kesitli’்ߠ	ve çubuk açıklığı ߛ/ܴ
çember eksenli çubuğun birinci mod frekansına ഥ߱௡௟ etkisi (ߣ ൌ 150). 

İlk olarak, Şekil 6.6’da, çubuğun yerel olmayan teori ile hesaplanmış birinci mod 

frekansının, boyut parametresi ݇ ൌ  ile değişimi ele ்ߠ ve toplam çubuk açıklığı ߛ/ܴ

alınmıştır. Şekil 6.6’da görüldüğü gibi küçük ݇ ve küçük ்ߠ değerlerinde, birinci mod 

frekans oranı hızla değişmekte, büyük ݇ ve büyük ்ߠ değerlerinde ise 20 değerine 

yakınsamaktadır. Birinci mod frekans oranlarının boyut parametresi ݇ ൌ  ve ߛ/ܴ

çubuk açıklığı ்ߠ ile değişiminin verildiği Şekil 6.7’de de benzer sonuçlar alınmıştır. 

Dolayısıyla, büyük ݇ ve büyük ்ߠ değerlerinde yerel ve yerel olmayan teori sonuçları 

benzer değişim göstermektedir. 
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Şekil 6.7 : Boyut parametresi ݇ ൌ  nin değişken kesitli’்ߠ	ve çubuk açıklığı ߛ/ܴ
çember eksenli çubuğun birinci mod frekans oranına ( ഥ߱௡௟/ ഥ߱௟) etkisi (ߣ ൌ 150). 
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7.  SONUÇ VE ÖNERİLER 

Literatür araştırmasında, nanomekanik sistemlerin incelenmesinde atomsal yöntemler 

ve sürekli ortam mekaniği olmak üzere iki farklı teorik yaklaşım geliştirildiği 

görülmüştür. Atomsal yaklaşımda karmaşık bir modelleme ve hesaplama süreci 

mevcuttur, hesaplama yükü fazladır. Dolayısıyla, ilgili modeller, kullanılan hesaplama 

programlarının ve bilgisayarların kapasiteleriyle sınırlıdır. Nano cihazların 

tasarımında kullanılan bu yapıların eğilme, titreşim veya burkulma açısından 

incelenmesi için daha pratik çözümlere ihtiyaç duyulmuştur. Sürekli ortam mekaniği 

yöntemi, nano boyuttaki bu yapıların mekanik davranışının incelenmesi için daha 

uygun bir yöntem olarak kabul edilmektedir ve diğer yönteme göre daha basit 

formüller sunmaktadır. Fakat, Euler-Bernoulli, Timoshenko veya daha yüksek 

mertebeli teoriler gibi klasik çubuk teorileri, küçük boyut etkisinin denklemlere dahil 

edilmemesinden dolayı bu ölçekteki yapılarla ilgili problemlerin çözümü için uygun 

değildir. Bunun yanında, Eringen tarafından sunulan, boyut etkisinin hesaba katıldığı 

yerel olmayan elastisite teorisi, nanomekanik sistemlerin incelenmesi için uygun bir 

sürekli ortam mekaniği yaklaşımıdır. Bu konuda yapılan çalışmalarda, nano 

çubukların yerel olmayan Euler-Bernoulli kiriş teorisi veya yerel olmayan 

Timoshenko kiriş teorisi ile incelendiği, fakat çalışmaların genellikle doğrusal yapı 

elemanları ile sınırlı olduğu tespit edilmiştir. Nano çubuklar, birçok çalışmada düz 

çubuk olarak incelense de algılayıcı gibi nanoteknoloji uygulamalarında kullanılmak 

üzere eğri eksenli olarak üretilmiş olabilirler. 

Bu çalışmada, Eringen’in yerel olmayan elastisite teorisi eğri eksenli nano çubukların 

statik ve dinamik davranışlarının incelenmesinde kullanılmıştır. Çalışmanın amacı, 

sürekli değişken eğri eksenli ve sürekli değişken kesitli nano çubukların düzlem dışı 

statik ve dinamik davranışını ifade eden denklemlerin elde edilmesi ve bu 

denklemlerin kesin çözümünün sağlanmasıdır. Bu amaçla, Eringen tarafından verilen 

yerel olmayan elastisite teorisinin bünye denklemleri silindirik koordinatlarda 

yazılarak klasik çubuk teorisine uygulanmıştır. Statik analizde, kayma deformasyonu 

etkisi göz önünde bulundurulmuştur. Başlangıç değerleri yöntemi kullanılarak 

diferansiyel denklemlerin kesin çözümü elde edilmiştir. Yer değiştirme, kesitin normal 
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ve teğetsel eksen etrafında dönme açıları ve kesit tesirleri analitik olarak elde 

edilmiştir. 

Daha sonra, d’Alembert prensibinden faydalanılarak eğri eksenli nano çubuklara ait 

serbest titreşim analizi gerçekleştirilmiştir. Kayma deformasyonu etkisi yanında 

eğilme ve burulma dönme eylemsizliği etkileri de denklemlere dahil edilmiştir. Sürekli 

değişken eğriliğe ve kesite sahip çubukların düzlem dışı serbest titreşimlerinin 

analizinde sabit kesitli çember eksenli çubuk için elde edilen kesin analitik çözüm 

yöntemi kullanılmıştır. 

Statik ve dinamik davranışla ilgili çözülen örneklerde, elde edilen sonuçlar klasik 

teorinin sonuçlarıyla karşılaştırılmıştır. Eğri eksenli nano çubukların düzlem dışı statik 

davranışıyla ilgili örneklerde, çeşitli problemlerin çözümleri verilmiş, yer değiştirme, 

dönme açısı ile iç kuvvet ve momentler hesaplanmıştır. Bu örneklerde, ankastre-

serbest ve ankastre-ankastre sınır koşulları; binormal doğrultuda tekil yük, normal ve 

teğet doğrultuda tekil moment, binormal doğrultuda değişken yayılı yük gibi farklı 

yükleme durumları incelenmiştir. Tekil yükler, ankastre-serbest mesnetli nano çubukta 

serbest uçtan etkimektedir. Bunun yanında, ankastre-ankastre mesnetli nano çubukta 

rastgele seçilmiş bir noktadan etkiyen tekil yüklerin statik davranışa etkisi de 

incelenmiştir. 

Çubuk açıklığının sabit tutulduğu incelemede, narinlik oranının küçük değerleri için 

boyut parametresinin yer değişimi oranına etkisinin büyük olduğu görülmüştür. Boyut 

parametresinin sabit tutulduğu incelemede, çubuk açıklığının azalması ile yer 

değiştirme oranının arttığı gözlenmiştir. Çubuk açıklığının küçük değerlerinde, bu artış 

miktarının önemli olduğu belirlenmiştir. Bu örneklerde elde edilen yer değiştirme ve 

kesitin dönme açısına ait diyagramlar incelendiğinde genel olarak yerel olmayan 

teoriden elde edilen sonuçların klasik teori ile elde edilen sonuçlara göre daha büyük 

olduğu görülmüştür. Bu iki yaklaşım ile elde edilen sonuçlar arasındaki fark, küçük 

boyut parametresinin büyümesiyle azalmaktadır. Bu sebeple, eğri eksenli nano  

çubukların yer değiştirme ve kesin dönme açısının hesaplanmasında boyut 

parametresinin önemi anlaşılmaktadır. Normal ve teğet eksen etrafındaki dönme 

açılarının oranlarının parametrik incelendiği örneklerde, bu oranın narinlik oranının 

değişiminden etkilenmediği gözlenmiştir. Eğilme ve burulma momentlerinin 

oranlarında da benzer etki görülmüş olup, kesme kuvveti oranının ise sabit olduğu, 

yani her iki teoriden elde edilen sonuçların aynı olduğu belirlenmiştir. 
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Eğri eksenli nano çubukların düzlem dışı serbest titreşim analizinde küçük boyut 

parametresi, narinlik oranı ve çubuk açıklığının yerel ve yerel olmayan teorilerle elde 

edilen doğal frekans oranına etkisi araştırılmıştır. Çubuk açıklığının sabit tutulduğu 

incelemede, boyut parametresi ve narinlik oranının küçük değerleri için birinci moda 

ait boyutsuz frekansın önemli ölçüde etkilendiği görülmüştür. Boyut parametresi ve 

narinlik oranının büyük değerlerinde ise birinci boyutsuz frekans katsayısında önemli 

bir değişim görülmemiştir. Boyut parametresinin sabit tutulduğu incelemede, boyutsuz 

frekans oranının narinlik oranı değişiminden genel olarak etkilenmediği görülmüştür, 

yani narinlik oranının her iki teorinin sonuçlarına etkisi benzerdir. Narinlik oranının 

sabit tutulduğu incelemede boyut parametresi ve çubuk açıklığının büyük değerlerinde 

yerel ve yerel olmayan teori sonuçları benzer değişim göstermiştir. 

Bu çalışmanın en önemli özelliği, sürekli değişken eğrilikli ve değişken kesitli 

düzlemsel çubukların düzlem dışı statik ve dinamik problemleri için kesin analitik 

çözümün verilmiş olmasıdır. Literatür incelemelerinden bu konuda benzer bir 

çalışmanın yapılmadığı tespit edilmiştir. Bu çözümler, moleküler dinamik gibi 

yöntemlere göre daha hızlı sonuçlar vermektedir. Elde edilen sonuçlar, daha önce düz 

çubuklar ile ilgili yapılmış olan deneysel ve teorik çalışmalarla uyumludur. Bu 

çalışmada sunulan, sürekli değişken eğrilikli sürekli değişken kesitli nano çubuklar 

için verilen genel bir çözümün daha sonra yapılacak teorik ve sayısal çalışmalar için 

değerlendirme kıstası olarak kabul edilebileceği düşünülmektedir. Ayrıca, verilen 

denklemler, eğri eksenli nano çubukların kararlılık problemlerinin incelenmesinde 

kullanılabilir. Bu yöntemin, mühendislik uygulamalarında kullanılmak üzere 

genişletilerek eğri eksenli nano çubuklar için bir sonlu eleman yöntemi 

geliştirilebileceği de düşünülmektedir.  

  



76 

 



77 

KAYNAKLAR 

Abramowitz, M. & Stegun, I. A. (1972). Handbook of mathematical functions with 
formulas, graphs, and mathematical tables, New York, NY: Dover 
Books. 

Alizada, A. N. & Sofiyev, A. H. (2011). Modified Young’s moduli of nano-materials 
taking into account the scale effects and vacancies, Meccanica, 46, 915-
920. 

Ansari, R., Oskouie. M. F., Gholami, R., Sadeghi, F. (2016). Thermo-electro-
mechanical vibration of postbuckled piezoelectric Timoshenko 
nanobeams based on the nonlocal elasticity theory, Composites Part B, 
89, 316-327. 

Arash, B., Wang, Q., Duan, W. H. (2011). Detection of gas atoms via vibration of 
graphenes. Physics Letter A, 375 (24), 2411–2415. 

Arash, B. & Wang, Q. (2012). A review on the application of nonlocal elastic models 
in modeling of carbon nanotubes and graphenes, Computational 
Materials Science, 51, 303-313.  

Arash, B., Jiang, J.W., Rabczuk, T. (2015). A review on nanomechanical resonators 
and their applications in sensors and molecular transportation.  Applied 
Physics Reviews, 2, 021301:1-20. 

Bahrami, A. & Teimourian, A. (2016). Study on the effect of small scale on the wave 
reflection in carbon nanotubes using nonlocal Timoshenko beam theory 
and wave propagation approach, Composites: Part B, 91, 492-504.  

Bağdatlı, S.M. (2015). Non-linear vibration of nanobeams with various boundary 
condition based on nonlocal elasticity theory. Composites: Part B., 80, 
43-52. 

Barretta, R., De Sciarra, F. M., Diaco, M. (2014). Small-scale effects in nanorods, 
Acta Mechanica, 225 (7), 1945-1953.  

Benvenuti, E. & Simone, A. (2013). One dimensional nonlocal and gradient 
elasticity: closed-form solution and size effect, Mechanics Research 
Communications 48, 46-51. 

Berrabah, H. M., Tounsi, A., Semmah, A., Bedia, E. A. A. (2013). Comparison of 
various refined nonlocal beam theories for bending, vibration and 
buckling analysis of nanobeams. Structural Engineering and 
Mechanics, 48 (3), 351-365. 

Craighead, H. G. (2000). Nanoelectromechanical systems. Science, 290 (5496), 
1532-1535. 



78 

De Sciarra, F. M. & Barretta, R. (2014). A new nonlocal bending model for Euler-
Bernoulli nanobeams, Mechanics Research Communications, 1 (62), 
25-30. 

Ekinci, K. L. (2005). Electromechanical transducers at the nanoscale: Actuation and 
sensing of motion in nanoelectromechanical systems (NEMS), Small, 1 
(8-9), 786-797. 

Eltaher, M. A., Alshorbagy, A. E. and Mahmoud, F. F. (2014). Vibration analysis 
of Euler-Bernoulli nanobeams by using finite element method. Applied 
Mathematical Modelling, 37, 4787-4797. 

Eringen, A. C. & Edelen D. G. B. (1972). Linear theory of nonlocal elasticity and 
dispersion of plane waves. International Journal of Engineering 
Science, 10 (3), 425–435.  

Eringen, A. C. (1983) On differential equations of nonlocal elasticity and solutions of 
screw dislocation and surface waves, Journal of Applied Physics, 54, 
4703-4710. 

Harik, V. M. (2001). Ranges of applicability for the continuum beam model in the 
mechanics of carbon nanotubes and nanorods. Solid State 
Communications, 120, 331-335.  

Hu, Y. G., Liew, K. M., Wang, Q. (2009) Nonlocal elastic beam models for flexural 
wave propagation in double-walled carbon nanotubes. Journal of 
Applied Physics, 106 (4), 044301. 

Joshi, A. Y., Sharma, S. C. and Harsha, S. P. (2010). Dynamic analysis of a clamped 
wavy single walled carbon nanotube based nanomechanical sensors. 
Journal of Nanotechnology in Engineering and Medicine, 1, 031007-7. 

Kong, J., Franklin, N.R., Zhou, C., Chapline, M.G., Peng, S., Cho, K., Dai, H. 
(2000). Nanotube molecular wires as chemical sensors. Science, 287, 
622-625. 

Li, C. & Chou, T. W. (2003). Single-walled carbon nanotubes as ultra-high frequency 
nanomechanical resonators. Physical Review B, 68 (7), 073405 

Mahmoud, F. F., Eltaher, M. A., Alshorbagy, A. E. and Meletis, E.I. (2012) Static 
analysis of nanobeams including surface effects by nonlocal finite 
elements. Journal of Mechanical Science and Technology 26, 3555-
3563  

McFarland, A. W. & Colton, J. S. (2005). Role of material microstructure in plate 
stiffness with relevance to microcantilever sensors. Journal of 
Micromechanics and Microengineering, 15, 1060-1067. 

Murmu, T. & Adhikari, S. (2012). Nonlocal elasticity based vibration of initially 
prestressed coupled nanobeam systems, European Journal of 
Mechanics - A/Solids, 34, 52-62.  

Oskouie, F. M., Sadeghi, F., Bazdid-Vahdati, M. (2015). Free vibration of fractional 
viscoelastic Timoshenko nanobeams using the nonlocal elasticity 
theory. Physica E, 74, 318-327.  

 



79 

Patti, A., Barretta, R., Sciarra F. M., Mensitieri G., Menna, C., Russo, P. (2015). 
Flexural properties of multi-wall carbon nanotube/polypropylene 
composites: Experimental investigation and nonlocal modeling. 
Composite Structures, 131, 282-289. 

Peddieson, J., Buchanan, G. R. and McNitt, R. P. (2003). Application of nonlocal 
continuum models to nanotechnology. International Journal of 
Engineering Science, 41, 305-312. 

Phadikar, J. K. & Pradhan, S. C. (2010). Variational formulation and finite element 
analysis for nonlocal elastic nanobeams and nanoplates. Computational 
Materials Science, 49 (3), 492-499.  

Povstenko, Y. Z. (1995). Straight disclinations in nonlocal elasticity, International 
Journal of Engineering Science, 33, 575-582. 

Rafiee, R. & Monghadam, R. M. (2014). On the modeling of carbon nanotubes: A 
critical review, Composites Part B, 56, 435-449.  

Reddy, J. N. (2007). Nonlocal theories for bending, buckling and vibration of beams, 
International Journal of Engineering Science, 45, 288-307. 

Roukes, M. (2001). Nanoelectromechanical systems face the future.  Physics World, 
14, 25-31. 

Salvetat, J. P., Briggs, G. A. D., Bonard, J. M., Bacsa, R. R., Kulik, A. J., Stöckli, 
T., de Sciarra, F. M. (2014). Finite element modelling of nonlocal 
beams. Physica E., 59, 144-149. 

Shao, L. H., Luo, R. Y., Bai, S. L., Wang, J. (2009). Prediction of effective moduli 
of carbon nanotube–reinforced composites with waviness and 
debonding. Composite Structures, 87, 274-281. 

Srivastava, D. & Wei, C. (2003). Nanomechanics of carbon nanotubes and 
composites, Applied Mechanics Reviews, 56, 215-230.  

Timoshenko, S. & Goodier, J. N. (1951) Theory of Elasticity, Tokyo: McGraw-Hill 
Book Co. 

Tufekci, E. & Arpaci, A. (1998). Exact solution of in-plane vibrations of circular 
arches with account taken of axial extension, transverse shear and 
rotatory inertia effects, Journal of Sound and Vibration, 209 (5), 845-
856. 

Tufekci, E. & Aya, S. A. (2016) A nonlocal beam model for out-of-plane static 
analysis of circular nanobeams, Mechanics Research Communications, 
76, 11-23. 

Tufekci, E., Aya, S. A., Oldac, O. (2016a). A unified formulation for static behavior 
of nonlocal curved beams, Structural Engineering Mechanics, 59 (3), 
475-502. 

Tufekci, E., Aya, S. A., Oldac, O. (2016b). In-plane static analysis of nonlocal curved 
beams with varying curvature and cross-section, International Journal 
of Applied Mechanics, 8 (1), 1650010. 

Treacy, M. M. J., Ebbesen, T. W., Gibson, J. W. (1996). Exceptionally high Young's 
modulus observed for individual carbon nanotubes. Nature, 381 (6584), 
678-680. 



80 

Tufekci, E. & Dogruer, O. Y. (2006). Exact solution of out-of-plane problems of an 
arch with varying curvature and cross section, Journal of Engineering 
Mechanics-ASCE, 132, 600-609. 

Wang, C. M., Xiang, Y., Yang, J., Kitipornchai, S. (2012). Buckling of nano-
rings/arches based on nonlocal elasticity. International Journal of 
Applied Mechanics, 4, 1250025. 

Wang, Q. & Shindo, Y. (2006). Nonlocal continuum models for carbon nanotubes 
subjected to static loading. Journal of Mechanics of Materials and 
Structures, 1, 663-680. 

Zenkour, A. M. & Sobhy, M. (2015). A simplified shear and normal deformations 
nonlocal theory for bending of nanobeams in thermal environment. 
Physica E, 70, 121-128. 

Zhao, Q., Gan, Z. H., Zhuang, O. K. (2002). Electrochemical sensors based on 
carbon nanotubes. Electroanalysis, 14 (23), 1609-13. 



81 

ÖZGEÇMİŞ 

 

Ad-Soyad           : Serhan Aydın Aya 

Doğum Tarihi ve Yeri       : 30.07.1985 - Malatya 

E-posta           : ayas@itu.edu.tr 

 

ÖĞRENİM DURUMU: 

 Lisans             : 2008, İ.T.Ü, Makina Mühendisliği 

 Yüksek Lisans     : 2011, İ.T.Ü, Makina Mühendisliği, Malzeme ve İmalat 

 
MESLEKİ DENEYİM VE ÖDÜLLER: 

 2009 yılından bu yana İstanbul Teknik Üniversitesi Makine Fakültesi Mukavemet 
Birimi’nde Araştırma Görevlisi olarak çalışmaktadır.  

DOKTORA TEZİNDEN TÜRETİLEN YAYINLAR, SUNUMLAR VE 
PATENTLER: 

 Tufekci, E., Aya, S. A. (baskıda). Nonlocal Continuum Modeling of Curved Nano 
Structures. In P. Russo, F.M. de Sciarra (Eds.), Experimental Characterization, 
Predictive Mechanical and Thermal Modeling of Nanostructures and Their 
Polymer Composites, Elsevier. 

 Aya, S. A., Tufekci, E. (baskıda) Modeling and Analysis of Out-of-Plane Behavior 
of Curved Nanobeams Based on Nonlocal Elasticity, Composites Part B: 
Engineering. 

 Tufekci, E., Aya, S. A. (2016). A Nonlocal Beam Model for Out-of-Plane Static 
Analysis of Circular Nanobeams, Mechanics Research Communications, 76, 11-
23. 

 Tufekci, E., Aya, S. A., Oldac, O. (2016). In-Plane Static Analysis of Nonlocal 
Curved Beams with Varying Curvature and Cross-Section. International Journal 
of Applied Mechanics, 8, 1650010. 

 Tufekci, E., Aya, S. A., Oldac, O. (2016). A Unified Formulation for Static 
Behavior of Nonlocal Curved Beams. Structural Engineering and Mechanics, 59 
(3), 475-502. 

 Aya, S. A., Tufekci, E. Out-of-Plane Static Analysis of Nanoarches Using 
Eringen’s Nonlocal Elasticity Theory, Proceedings of the 2nd World Congress on 
New Technologies (NewTech'16), Budapest, Hungary – August 19 – 20, 2016. 

 Aya, S. A., Oldac, O., Tufekci, E. A Nonlocal Elasticity Approach for the In-Plane 
Static Analysis of Nanoarches. Proceedings of the 2nd World Congress on New 
Technologies (NewTech'16), Budapest, Hungary – August 19 – 20, 2016. 



82 

DOKTORA TEZİNİ DESTEKLEYEN KURUMLAR: 

Bu çalışma TÜBİTAK tarafından 112M404 no.lu “Nanoteknoloji Uygulamalarındaki 
Eğri Eksenli Çubukların Statik ve Dinamik Problemlerinin Yerel Olmayan Elastisite 
Teorisi İle Analitik Çözümü” başlıklı proje ile desteklenmiştir.  
 

DİĞER YAYINLAR, SUNUMLAR VE PATENTLER: 

Dincer Kose, O., Karatasli, B., Demircan, S., Kose, T. E., Cene, E., Aya, S. A., Erdem, 
M. A., Cankaya, A. B. (baskıda). In Vitro Evaluation of Manual Torque Values 
Applied to Implant-Abutment Complex by Different Clinicians and Abutment Screw 
Loosening, BioMed Research International. 

Tufekci, E., Eroglu, U., Aya, S. A. (2016). An Exact Two-Noded Curved Beam Finite 
Element Including Axial Extension and Shear Deformation, Engineering with 
Computers, DOI:10.1007/s00366-016-0470-1.  

Aya, S. A., Ormanci Acar, T., Tufekci, N. (2016). Modeling of Membrane Fouling in 
Submerged Membrane Reactor Using Support Vector Regression, Desalination and 
Water Treatment, 1, 1-14.  

Tufekci, E., Eroglu, U., Aya, S. A. (2016). Exact Solution for In-Plane Static Problems 
of Circular Beams Made of Functionally Graded Materials, Mechanics Based Design 
of Structures and Machines, An International Journal, 44 (4), 476-494.  

Ozcoban, M. S., Aya, S. A. Turkoglu Demirkol, G., Gunes Durak, S., Tufekci, N. 
(2016). Modeling of Long Term Permeability of Compacted and Consolidated Clays 
Permeated with Leachate, 3rd International Congress on Water, Waste and Energy 
Management, Rome, Italy, July 18-20, 2016. 

Ormanci Acar, T., Aya, S. A., Celik, S. O., Tufekci, N. (2016). The Effects of Fulvic 
Acid and Iron Oxide on the Fe(II) and Mn(II) Removal by Submerged Membrane 
System, 18th International Symposium on Environmental Pollution and its Impact on 
Life in the Mediterranean Region (MESAEP), Crete, Greece, September 26-30, 2015. 


