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ONSOZ

Son yillarda nanoteknoloji alaninda 6nemli gelismeler olmustur. Mikro ve nano
yapilarin miihendislik uygulamalarinda kullanimi ve bu yapilarin mekanik
davranisinin belirlenmesi bir¢ok giincel calismanin konusunu teskil etmektedir.
Modern ve 0zgiin cihazlar tasarlayabilmek i¢in, bu yapilarin fiziksel Ozellikleri
konusunda kapsaml1 bilgi sahibi olmak gerekmektedir. Ornegin, grafen ve karbon
nanotiipler, essiz mekanik ve elektriksel 6zelliklere sahiptir. Nano ¢ubuklar ve nano
plaklar, genellikle nano aktiiator veya nano salter gibi nano elektro-mekanik
sistemlerde kullanilirlar. Yapilan deneylerde, nano boyuttaki cisimlerin mekanik
ozelliklerinde kiiclik boyut etkisinin onemli rol oynadigi goézlemlenmistir. Yerel
olmayan elastisite teorisi, kiigiik boyut etkisini g6z 6niinde bulunduran, son on yilda
yaygin olarak kullanilan ve gelistirilen bir teori olarak bilinmektedir. Nano 6lgekteki
cisimlerin analizinde klasik (yerel) elastisite teorisine gore daha uygun sonuglar
verdigi son yillara ait aragtirma makalelerinde belirtilmektedir.

Bu c¢aligmada, yerel olmayan -elastisite teorisinin genel denklemleri, silindirik
koordinatlarda diizenlenerek cubuk teorisine uygulanmistir. Degisken egrilikli ve
degisken kesitli oldugu diisliniilen g¢ubuklarin diizlem dis1 statik ve dinamik
problemleri incelenmistir. Denklemlerin kesin analitik ¢oziimii, baslangi¢ degerleri
yontemiyle elde edilmistir. Calismada, nano boyutlardaki egri eksenli cubuk
problemlerinde, yerel olmayan elastisitenin kullanilmasinin klasik elastisiteye gore
cok daha fistiin oldugunu gostermek ve nanoyapilarin mekanik davranislarini
anlamada yerel olmayan etkilerin 6nemli oldugunu gostermek amaglanmustir.

Bu ¢alisma TUBITAK tarafindan 112M404 no’lu “Nanoteknoloji Uygulamalarindaki
Egri Eksenli Cubuklarin Statik ve Dinamik Problemlerinin Yerel Olmayan Elastisite
Teorisi ile Analitik Coziimii” baslikli proje ile desteklenmistir.

Degerli tecriibesi ve bilgisi ile ¢alismamin her asamasinda bana yol gdsteren ve
akademik calisma prensiplerini kazandiran saygideger hocam Prof. Dr. Ekrem
Tiifekci’ye tesekkiir ederim.

Bu akademik ¢alismanin olusmasi i¢in bana her zaman destek olan annem Miinevver
Aya, babam Kamil Aya ve ablam Pelin Selen Aya’ya tesekkiir ederim.

Subat 2017 Serhan Aydin AYA
(Mak.Yiik. Miihendisi)
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EGRi EKSENLi NANO CUBUKLARIN DUZLEM DISI STATIK VE
DINAMIK PROBLEMLERININ YEREL OLMAYAN ELASTISITE TEORISi
ILE ANALITIK COZUMU

OZET

Nano c¢ubuklar, nano 6l¢ekteki cihaz ve makinelerde yaygin olarak kullanilan yapi
elemanlaridir. Nano boyuttaki makinalarin gelistirilebilmesi i¢in bu ¢ubuk elemanlarin
mekanik davraniginin tam olarak bilinmesi gerekmektedir. Siirekli ortam mekanigi
uygulamalarinda atomlar arasindaki kafes bosluklari, ylizey ozellikleri, tane boyutu
gibi kiiciik boyut etkileri goz oniinde bulundurulmalidir. Klasik (yerel) stirekli ortam
mekaniginin nano 6l¢ekteki sistemlere uygulamasinin kisitli olmasinin temel sebebi,
atomlar arasinda bulunan kafes bosluklarinin, yapinin biitiinliigiinii bozmasi ve siirekli
ortam olarak modellenmesine engel teskil etmesidir. Nanometre mertebesinde,
bahsedilen kii¢iik boyut etkisinin 6nemi artmaktadir. Bu sebeple, nano c¢ubuklarin
mekanik davranisi konusundaki caligmalarda yerel olmayan siirekli ortam mekanigi
kullanilmaktadir.

Bu ¢alismada, degisken egrilikli ve degisken kesitli nano ¢ubuklarin diizlem disi statik
ve dinamik davranmiglar1 incelenmistir. Eringen tarafindan verilen yerel olmayan
elastisite teorisinin biinye denklemleri silindirik koordinatlarda yazilarak klasik gubuk
teorisine uygulanmistir. Boylece, yerel olmayan ¢ubuk teorisi denklemleri, degisken
yayilt yikleri tasiyan degisken egrilikli ve degisken kesitli cubuklar icin elde
edilmistir. Bu denklemler kullanilarak, diizlemsel egri eksenli nano cubuklarin
diizlem dis1 statik ve dinamik problemleri incelenebilmektedir. Denklemlerde, kuvvet
ve momentlerin yerel olmayan etkileri goz Oniine alinmaktadir. Kayma etkilerinin
yaninda kayma kuvvetlerinin yerel olmayan etkilerinin de gozoniine alindigi
literatiirdeki ilk ¢alisma bu olmustur.

Egri eksenli gubugun diizlem dis1 davranisini ifade eden denklemlerin analitik kesin
¢Oziimi, baslangic degerleri yontemiyle elde edilmistir. Baglangic degerleri
yonteminin istiinliigii; yiiksek mertebe statik belirsizliklerin, problemin ¢dziimiine
ilave bir zorluk katmamasidir. Herhangi bir bilinen sinir sart1 ile kesin analitik ¢6ziim
elde etmek miimkiindiir. Farkli geometri ve kesite sahip cubuklarin asal matrislerinin
analitik ifadeleri elde edilebilir. Boylece, yer degistirme, kesit donmesi ve kesit
tesirleri degerleri eksen egrisi boyunca analitik olarak belirlenebilmektedir. Boyut
parametresi, ¢ubuk acikligi, narinlik orani gibi bazi parametrelerin degisiminin
cubugun statik davranigina etkisini gostermek amactyla farkli ¢cubuk geometrileri,
yiikleme ve sinir sartlari igeren problemler ¢oziilmiistiir.

Egri eksenli degisken kesitli cubugun diizlem dis1 serbest titresimlerini ifade eden
denklemler d’Alembert prensibi yardimiyla tiiretilmistir. Kayma deformasyonu,
egilme ve burulma dénme eylemsizlikleri etkileri gz Oniinde bulundurulmustur.
Denklemlerin ¢ézliimiinde baslangi¢c degerleri yontemi kullanilmistir. Kesin ¢6ziim
sadece sabit kesitli gember eksenli kirigler igin mevcuttur. Degisken egrilikli ve kesitli
cubuklar, belirli sayida sabit egrilikli ve kesitli gubuk elemandan olusacak sekilde
modellenmis ve ayni ¢6ziim yontemi kullanilarak sonug¢ elde edilmistir. Titresim ile
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ilgili ¢esitli problemler ¢oziilerek, dogal frekanslar elde edilmistir. Boyut parametresi,
cubuk agikligi ve narinlik oran1 gibi bazi parametrelerin degisiminin gubugun dinamik
davranigina etkisi gosterilmistir.

Bu ¢alismada sunulan yerel olmayan elastisite teorisi, egri eksenli nano ¢ubuklarin
diizlem dis1 statik ve dinamik analizi i¢in temel olusturmaktadir. Klasik (yerel)
elastisite teorisi yerine yerel olmayan elastisite teorisi kullanilarak, nano ¢ubuklarin
mekanik davranisinin belirlenmesinde biiylik 6nem arz eden yerel olmayan etkilerin
ortaya cikarilmasi saglanmaktadir. Denge denklemlerinin kesin ¢dziimiinde boyut
etkisi, kayma deformasyonu, dénme eylemsizligi etkilerinin dahil edildigi bu
caligmada elde edilen sonuclarin egri eksenli nano cubuklar ile ilgili yapilacak
caligmalar i¢in 6nemli bir kaynak teskil edecegi diistiniilmektedir.
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ANALYTICAL SOLUTIONS OF OUT-OF-PLANE STATIC AND DYNAMIC
PROBLEMS OF CURVED NANOBEAMS USING NONLOCAL
ELASTICITY THEORY

SUMMARY

Nanobeams are widely used as a structural element for nano-devices and nano-
machines. The development of nano-sized machines depends on proper understanding
of mechanical behavior of these nano-sized beam elements. The mechanical properties
of nanobeams can be measured by conventional experimental methods, however, these
techniques are expensive and should be improved correspond to nano scale.
Considering the experimental limitations, researchers focused on better mathematical
models that comprise the effects of small length scales such as lattice spacing between
atoms, grain size etc. on material behavior in micro and nano scale. Computational
strategies, such as molecular dynamics simulations are adopted to analyze mechanical
behavior of nano-sized structures. These simulations enable comparable investigations
of dynamics of nano materials to experiments, and introduce detailed information on
interatomic interactions of nano materials and molecular complexes. However, it could
become too complex to simulate nanostructures, and these simulations are bounded by
the computational limits. On the other hand, high-order continuum modeling is less
computationally expensive than the former approach and provides relatively simple
formulations. The nonlocal theory of elasticity, initiated by Eringen and Edelen takes
the small-scale effect into account. This theory states that the stress at a given reference
point of a body is a function of the strain field at every point in the body; hence, the
theory takes the long-range forces between atoms and the scale effect into account in
the formulation. Small length scales such as lattice spacing between atoms, surface
properties, grain size etc. need to be considered when applying any continuum model.
The main reason of limited applicability of classical or local continuum theory to nano-
scaled systems is that the assumption of continuous media is not appropriate for
modeling the discrete structure of the material due to the lattice spacing between
atoms. The small length scale becomes very important in the order of nanometers.
Thus, nonlocal continuum mechanics approach is adopted for studying the mechanical
behavior of nanobeams.

In this study, the out-of-plane static and dynamic behavior of a curved planar
nanobeam having variable curvature and cross-section is investigated. The nonlocal
constitutive equations of FEringen are arranged in cylindrical coordinate and
implemented into the classical beam equations. Therefore, governing differential
equations of nonlocal beam theory is obtained for curved beams with non-uniform
cross-section. Using these equations, out-of-plane static and dynamic problems of
planar curved nanobeams can be studied. The nonlocal effects of both force and
moments are considered in the equations. This is the first study in the literature that
considers the nonlocal effects of shear force along with the effects of shear
deformation in the formulations.
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The governing differential equations are obtained for curved beams and analytical
exact solutions for out-of-plane static problems are obtained by using the initial value
method. Superiority of the initial value method is that high order statically
indeterminacy adds no extra difficulty to the solution. The exact solution can be
obtained for any boundary condition. The fundamental matrix of beams with different
geometries and cross-sections can be obtained analytically. Thus, the deformation,
slope and stress resultants can be defined analytically along the beam axis. In order to
understand the effects of different parameters such as small scale parameter, opening
angle of the beam and slenderness ratio etc. on the mechanics of the beam, several
examples with different geometries, loading and boundary conditions are solved.

In the static analysis, a fully clamped circular beam with non-uniform cross-section
and non-uniform distributed load is considered as an example. The effects of the small
scale parameter and the other beam characteristics, i.e. opening angle of the beam, the
slenderness ratio on the transverse displacements, rotation angle and force resultants
are investigated. It is observed that the result of the nonlocal theory always larger than
that by the classical model for small sized beams. The size of the beam is determined
by small scale parameter which is the ratio of the nanobeam radius to the additional
length scale parameter. Thus, the small scale parameter has a relevant importance in
calculation of displacement. For smaller values of slenderness ratio, i.e. for thick
beams, the effect of small scale parameter on the displacement ratio, i.e. the ratio of
the displacement results obtained from nonlocal theory and local theory is more
important. The difference between the solution of both theories increases considerably
with lower values of small scale parameter for any value of slenderness ratio. A
uniform change in displacement ratio is observed at larger values of small scale
parameter for different values of slenderness ratio, i.e. the effect is almost the same for
both theories. Displacement ratio at the midspan increases with the decreasing opening
angle for different values of slenderness ratio. At larger values of opening angle, the
displacement ratio remains almost the constant at unity for different values of
slenderness ratio. By decreasing the beam length, i.e. for smaller opening angle, size
effect is much more important. Consequently, the transverse displacement of the
nonlocal beam changes more in comparison to the classic one. Therefore, the size
effect must be taken into account for smaller beams. The effects of slenderness ratio -
opening angle, small scale parameter - opening angle and small scale parameter -
slenderness ratio on the rotation angles and force resultants are also studied. Ratio of
rotation angle and also the ratio of moments are not affected by the slenderness ratio.
The results for shear forces is equal to unity, meaning the both theories give the same
results.

The equations for out-of-plane free vibrations of a curved beam with non-uniform
cross section are derived by means of d’Alembert principle. The effects of shear
deformation, bending and torsional rotatory inertia are considered for the out-of-plane
vibrations. In the solution process, initial value method is used. Exact solution is only
available for uniform circular beams. The vibration of a curved beam with varying
curvature and cross-section is investigated by dividing the beam into a number of
circular uniform beam elements. Similar approach is taken in the solution process.
Natural frequencies are obtained for different curved beams. The effect of small scale
parameter, opening angle of the beam and slenderness ratio on the dynamic behavior
of the beams are presented with these examples. It is observed that size effect is more
significant when the small-scale parameter is small. It is observed that the ratio of the
natural frequencies predicted by nonlocal and classical models becomes more
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noticeable for both lower values of slenderness ratio and opening angle of the
nanobeam. It is expected that the valuable results obtained from the presented
continuous model would be very useful for dynamic analyses of beam-like
components such as nanosensors or nanoactuators whose discrete models have high
computational and labor costs.

The literature has shown that, almost all the studies on nonlocal beam theory has
discussed the subject in the context of straight nanobeams. There are very limited
number of papers on the curved nanobeams and most of them neglect the effect of
shear deformation. Numerical and approximate solution methods are used in these
studies. Numerical examples for nonlocal curved beam models are insufficient. The
present work will be helpful in the analysis and design of curved nanobeams with
various combinations of loadings, geometry and boundary conditions. The nonlocal
theory and the equations presented in this study forms the basis for the study of out-
of-plane static and dynamic analysis of curved nanobeams. Instead of using classical
beam theory, using nonlocal elasticity theory reveals the nonlocal effects which is
significant to understand the mechanical behavior of nanobeams. The results of the
examples presented in this study will give insight to the interplay between the
geometry of the beam and the stress distribution and the effect of the nonlocal behavior
on static and dynamic behavior of curved nonlocal beams. Considering scale effect,
shear deformation and rotatory inertia in the exact solutions of the governing
equilibrium equations presented here, the results can be considered as a reference for
nonlocal theories of curved nanobeams.
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1. GIRIS

Karbon nanotiip, grafen levha gibi pratik uygulama alani bulan kesifler nanoteknoloji
alanina olan ilginin odagi olmustur. Giiniimiizde bu alandaki ¢aligsmalar artarak devam
etmektedir. Nano Olcekteki yapilar, birgok 6zgiin uygulamaya imkan tanimalarindan
dolay1 deneysel ve teorik alanlarda arastirma gruplarmin ilgisini ¢ekmistir. Makro
boyutlardaki malzemelerle kiyaslandiginda, nano malzemelerin {istiin fiziksel,
kimyasal veya biyolojik 6zelliklere sahip oldugu gozlemlenmistir. Bu malzemeler
daha kuvvetli, esnek, cok daha hafif veya daha farkli 1s1 ve elektrik iletme 6zelliklerine
sahip olabilmektedir. Manyetik ve optik 6zelliklerinde 6nemli Olciide artma veya
azalma olabilmektedir. Bir nano yapinin fiziksel 6zellikleri ve mukavemeti onun

boyutuna bagli olarak énemli degisim gosterebilmektedir.

Nano cubuklar, bir yap1 elemani olarak biosensdrlerde, yari iletken nano kablolarda,
atomik kuvvet mikroskoplarinda, mikro elektro mekanik sistemlerde (MEMS) ve nano
elektro mekanik sistemlerde (NEMS) veya giiclendirme elemani olarak nano
kompozitlerde yaygin bir sekilde kullanilmaktadir. Nano 6l¢ekteki cubuklarin egilme,
titresim ve burkulma gibi mekanik davranislarinin anlasilmasi bu tip elemanlarin
kullanildigr miihendislik yapilarinin tasarim ve gelistirilmesi i¢in biiyiik 6nem arz

etmektedir.

Nano yapilarin kullanildigi malzemelerin modellenmesi ve simiilasyonunda kullanilan
molekiiler dinamik (MD) gibi yontemler ¢cok karmasik olabilmektedir. Ayrica, bu
modeller, kullanilan hesaplama programlarinin ve bilgisayarlarin kapasiteleriyle
simirlidir. Miihendislik agisindan bakildiginda, MD yontemi atom, molekiil, baglar ve
atomlar aras1 kuvvetlerin parametre olarak yer aldig1 bir yontem olup ilgili konular1
igeren kimya alaninda bilgi sahibi olmay1 gerektirmektedir. Ornegin, karbon nanotiip,
grafen ve grafen bazli sistemlerin deneysel olarak veya MD simiilasyonu ile
incelenmesi parametrelerin fazlaligi nedeniyle karmasik bir siirectir. Nano cihazlarin
tasariminda kullanilan bu yapilarm egilme, titresim veya burkulma agisindan

incelenmesi i¢in daha pratik ¢ézlimlere ihtiya¢ duyulmaktadir.



Siirekli ortam modeli yaklagimi, simiilasyonlara gore daha basit formiiller vermekte
ve hesaplamalar daha kolay olmaktadir. Fakat, klasik teorinin, nano yapilarin mekanik
davraniglarini incelenmesi amaciyla kullaniminda problemler ortaya ¢ikmistir. Ciinkii,
klasik stirekli ortam modellerinde, bir noktadaki gerilme durumu ayn1 noktadaki birim
sekil degisimiyle belirlenmektedir. Diger bir ifade ile, klasik elastisite teorisi boyuttan
bagimsiz tamimlanmaktadir. Fakat, kiiciik boyutlarda, bir malzemenin mikro yapist
biiylik 6neme sahip olup bu etki yadsinamaz. Dolayisiyla, malzemelerin dogasi geregi
homojen olmayan ve siireksizlik barindiran yapisindaki boyut etkisini géz oniinde
bulunduran, MD simiilasyonlarindan daha hizli ¢6ziim alinabilecek gelismis bir
stirekli ortam yontemine ihtiya¢ duyulmustur. Son yillarda bu dogrultuda yaygin
kullanimi olan siirekli ortam mekanigi yontemi, Eringen’in sundugu yerel olmayan
elastisite teorisidir. Bu teoride, bir noktadaki gerilme durumu hesaplanirken, o nokta

etrafindaki diger noktalarda olan sekil degistirmeler de hesaba katilmaktadir.

Nano c¢ubuklarin statik ve dinamik analizi konusunda yapilan ¢aligmalar ikinci
boliimde incelenmistir. Bu c¢alismalarda, nano c¢ubuklarin yerel olmayan Euler-
Bernoulli kiris teorisi veya yerel olmayan Timoshenko kirig teorisi ile incelendigi,
fakat calismalarin genellikle dogrusal yapi elemanlar1 ile simirli oldugu tespit
edilmistir. Yerel olmayan egri eksenli kiris modelleri konusunda yapilan sayisal

orneklerin ise yetersiz oldugu sonucuna varilmistir.

Uciincii boliimde, siirekli degisken egri eksenli ve siirekli degisken kesitli nano
cubuklarin diizlem dis1 statik problemlerine ait analitik ifadeler Eringen’in yerel
olmayan elastisite teorisi kullanilarak verilmistir. Egri eksenli nano ¢ubuklarmn statik
davranisini ifade eden diferansiyel denklemler Eringen’in sundugu yerel olmayan
biinye denklemleri kullanilarak elde edilmistir. Denklemlerde, kayma deformasyonu
etkisi g6z Onilinde bulundurulmustur. Baglangi¢ degerleri yontemi kullanilarak
diferansiyel denklemlerin kesin ¢6zlimii elde edilmistir. Yer degistirme, kesitin normal
ve tegetsel eksen etrafinda donme agilar1 ve kesit tesirleri analitik olarak elde

edilmistir.

Dordiincii bolimde, d’Alembert prensibinden faydalanilarak egri eksenli nano
cubuklara ait serbest titresim analizi gergeklestirilmistir. Kayma deformasyonu etkisi
yaninda egilme ve burulma donme eylemsizligi etkileri de denklemlere dahil

edilmistir. Siirekli degisken egrilige ve kesite sahip cubuklarin diizlem dis1 serbest



titresimlerinin analizinde sabit kesitli ¢ember eksenli ¢ubuk i¢in elde edilen kesin

analitik ¢6ziim yontemi kullanilmustir.

Besinci boliimde, egri eksenli nano ¢ubuklarin diizlem dis1 statik davranisiyla ilgili
cesitli problemlerin ¢éziimleri verilerek yer degistirme, donme agisi ile i¢c kuvvet ve
momentler hesaplanmistir. Kiigiik boyut etkisi, narinlik orani, gubugun agikligi, sinir
kosullarmin etkilerinin parametrik incelendigi 6rnekler sunulmustur. Ayrica, farkl
ylikleme durumlarinda elde edilen sonuglar da incelenmistir. Basit yiikleme durumlari
icin gubugun bir noktasinin yerdegistirme, donme agis1 ve kesit tesiri ifadeleri analitik
olarak verilmistir. Ardindan, ankastre-ankastre mesnetli nano c¢ubukta 6y olarak
belirtilen, rastgele se¢ilmis bir noktadan etkiyen tekil yiiklerin statik davranisa etkisi
de incelenmistir. Son kisimda, degisken yayili yiik etkisindeki cember eksenli siirekli

degisken kesitli gubuk incelenmistir.

Altinct boliimde, yerel olmayan ve klasik teori kullanilarak, cember eksenli ve
degisken kesitli nano ¢ubugun diizlem dis1 serbest titresimi ile ilgili Ornekler
¢coOziilmiistiir. Kiigiik boyut etkisi, narinlik oran1 ve gubuk agikliginin yerel ve yerel
olmayan teorilerle elde edilen dogal frekans oranina etkisi aragtirilmistir.
Hesaplamalarda, kayma deformasyonu yaninda egilme ve burulma dénme

eylemsizligi etkileri de gdz oniine alinmustir.

Elde edilen sonucglar dogrultusunda, egri eksenli ¢ubuklarin statik ve dinamik
analizinde ¢ubuk geometrisi, simir kosullar1 ve yerel olmayan davranisin etkisinin

belirlenmesi hedeflenmistir.






2. NANOTEKNOLOJIDE CUBUKLARIN STATIK VE DINAMIK
DAVRANISLARI UZERINE YAPILAN CALISMALAR

Karbon nanotiip ve grafen levha gibi kesiflerin ardindan nanoteknolojiye olan ilgi son
yirmi yilda biiyiik bir hizla artmistir. Nano 6lgekteki ¢ubuk yapilar, biiytik rijitlik ve
mukavemet degerleri, diisiikk yogunluklar1 ve iistiin iletkenlikleriyle, nano elektro
mekanik sistemlerde, ultra duyarh algilayicilarda, yar iletken nano kablolarda ve
atomik kuvvet mikroskoplarinda temel yapi elemanlar1 olarak kullanilmaktadir
(Craighead, 2000; Kong ve dig., 2000; Roukes, 2001; Li ve Chou, 2003; Ekinci, 2005).
Ozel bir uygulama olarak, kii¢iik boyut ve biiyiik yiizeyli karbon nano tiipler, yogun
kimyasal ortamlardaki dayanikliligiyla dikkat ¢cekmektedir (Zhao ve dig., 2002).
Ozgiin nano cihazlarm tasarimi i¢in bu yapilarin miihendisler ve bilim insanlari

tarafindan iyi anlasilmis olmasi gerekmektedir.

Nano c¢ubuklarin mekanik 6zellikleri konvansiyonel deneysel yontemlerle dlgtilebilir,
fakat mevcut teknikler bu dlgekteki sistemler i¢in karmasik ve pahalidir, dolayistyla
bu tekniklerin gelistirilmesi gerekmektedir. Siirecin zorluguna ragmen, bazi metal ve
polimerlerle yapilan deneysel calismalardan elde edilen sonuglar, mikro ve nano
Olcekteki malzemenin mekanik davraniginin boyuta bagli oldugunu gostermektedir.
Calismalarda, nano dl¢ekteki malzemenin elastiklik modiiliiniin normal boyutlardaki
malzemelerin elastiklik modiiliine gore oldukca yiiksek oldugu gdzlenmistir (Treacy
ve dig., 1996; McFarland ve Colton, 2005). Nano malzemelerin 6zellikleri belirgin bir
bicimde normal boyutlardaki malzemelerden farkli oldugundan, uygulamada biiyiik

bir potansiyele sahiptir.

Aragtirmacilar, deneysel kisitlamalar1 géz oniine alarak, mikro ve nano 6lgekteki bu
malzemelerin mekanik davranigini incelemek amaciyla kafes boslugu, tane boyutu
gibi kiiciik boyut etkilerini kapsayacak bir matematiksel model tiretmek i¢in ¢alismalar
yapmustir. Ornegin bu amagla, nano boyuttaki yapilar i¢in molekiiler dinamik (MD)
simiilasyonlar1 gibi sayisal yontemler uygulanmistir (Srivastava ve Wei, 2003). Bu
simiilasyonlarda nano yapilardaki atom veya molekiiller arasindaki atomsal

etkilesimleri dogru modellemek amaciyla farkli parametreler incelenmistir. Bir



molekiiler dinamik simiilasyonunda, ¢esitli ampirik potansiyel ¢iftleriyle tanimlanan
bag enerjilerinin fonksiyonu icin bir¢ok denklem mevcuttur. Bu denklemlerin
cesitliligi dogruluk derecesine ve molekiiler sistemin tipine baglidir. Sayisal yaklasim
ile yapilan simiilasyonlar, nano malzemelerin dinamik davranigi i¢in deneylerle
kiyaslanabilir inceleme yapma imkani sunmus ve nano malzeme ile molekiiler
komplekslerin atomlar arasi iligkileri hakkinda detayl bilgi edinilmesini saglamistir.
Baz1 arastirmacilar, bu yontem ile deneysel yolla ulasmanin neredeyse imkansiz
oldugu sonuglara dahi ulasildigini belirtmislerdir (Arash ve dig., 2011). Fakat, nano
yapilarin simiilasyonu genellikle ¢ok karmasiktir ve hesaplamalar, bilgisayar

donaniminin kapasitesiyle kisitlanmaktadir.

Diger bir yandan, yiiksek mertebe siirekli ortam modelleri daha az hesaplama giiciine
ihtiya¢ duymaktadir ve daha basit formiilasyonlar sunmaktadir (Arash ve Wang, 2012;
Barretta ve dig., 2014; Rafiee ve Monghadam, 2014). Literatiirde verilen siirekli ortam
modelleri genellikle klasik (yerel) veya yerel olmayan siirekli ortam teorilerine
dayanmaktadir. Klasik yontemde, narinligi diisiik karbon nanotiip ince cidarl bir boru
gibi diisiiniilerek sekil degisimi bir elastik ¢ubuga benzer sekilde hesaplanabilir.
Cubuk yaklagimi, Harik (2001) tarafindan incelenmis ve siirekli ¢gubuk yaklagiminin
gecerliligi  kontrol edilmistir. Calismada, Onerilen geometrik parametreler ile
molekiiler dinamik simiilasyonlar1 arasindaki iligki arastirilmistir. Klasik siirekli ortam
modellerinde, herhangi bir noktadaki gerilme durumu ayni noktadaki birim sekil
degistirme durumu ile belirlenmektedir. Klasik elastisite teorisinin boyuttan bagimsiz
tanim1 nedeniyle mikro ve nano yapilarin mekanik davranisi icin klasik modellerin

kullaniminin uygunlugu tartigilir durumdadir.

Malzemelerin dogas1 geregi homojen olmayan ve siireksizlik barindiran yapisindaki
boyut etkisini géz oniinde bulunduran, molekiiler dinamik simulasyonlarindan daha
hizli ¢6ziim alinabilecek geligsmis bir siirekli ortam yontemine ihtiya¢ duyulmustur.
Eringen ve Edelen (1972) tarafindan sunulan yerel olmayan elastisite teorisi son
yillarda bu dogrultuda yaygin kullanimi olan bir siirekli ortam mekanigi yontemidir.
Bu teoride, bir noktadaki gerilme durumu hesaplanirken, o nokta etrafindaki diger
noktalarda olan sekil degistirmeler de hesaba katilmaktadir. Bdylece, atomlar
arasindaki uzun mesafe kuvvetleri ve kiiciik boyut etkisini iceren bir model elde
edilmektedir. Yerel olmayan elastisite teorisinin Euler-Bernoulli kirisi i¢in uygulamasi

ilk olarak Peddieson (2003) tarafindan gergeklestirilmistir. Elde edilen sonuglara gore



bu yontemin nano yapilarin analizinde kullanilabilecegi ongoriilmiistiir. Gegtigimiz
yillarda, siirekli ortam modelleri konusunda yogun ¢alismalar yapilmis olup, siirekli
ortam modelleri nano malzemelerin statik ve dinamik davraniglarini ifade eden

denklemler yerel olmayan siirekli ortam modeline gore gelistirilmistir.

Ornegin, Wang ve dig. (2006) tarafindan gelistirilen diger bir yerel olmayan siirekli
ortam modelinde klasik Timoshenko ¢ubuk modelinden farkli iki malzeme
parametresi bulunmaktadir. Sonlu elemanlar yontemini kullanarak, Phadikar ve
Pradhan (2010) nano ¢ubuklar1 dogrusal olmayan bir formiilasyonla incelemislerdir.
Alizada ve Sofiyev (2011) iki boyutlu kristal yap1 i¢in diizeltilmis elastiklik modiiltinii
elde etmistir. Boyut etkisi ve bosluklarin elastiklik modiiliinii etkiledigi sonucuna
varmiglardir. Mahmoud ve dig. (2012) nano c¢ubuklarin statik sekil degistirmesine
yerel olmayan elastisitenin etkisini incelemistir. Yakin zamanda gerceklestirilen bazi
calismalara gore, karbon nanotiiplerin analizinde kullanilan yerel olmayan elastisite
teorisi ile molekiiler dinamik simiilasyonu uyumlu sonuglar vermistir. Murmu ve
Adhikari (2012) karbon nanotiiplerin kullanildig1 nano 6l¢ekli biyosensor konusunda
yaptiklar1 ¢aligmada yerel olmayan elastisite teorisinden elde ettikleri sonuglar ile
molekiiler dinamik sonuglarinin uyumlu oldugunu goézlemlemistir. Benvenuti ve
Simone (2013) klasik (yerel) ve yerel olmayan elasitise teorisi ile gradyen teori
arasindaki iliskiyi incelemistir. Caligmada, kiiciik boyut etkisinin yami sira gradyen
teori ile yerel olmayan elastisite teorisi arasindaki uyum arastirilmistir. Barretta ve De
Sciarra (2014) yerel olmayan termodinamik yaklasimla nano g¢ubuklarin egilme
problemlerini incelemistir. Varyasyonel formiiller sunulmus ve sinir kosullarina bagl
olarak ilgili diferansiyel denklemler elde edilmistir. Ornek olarak, yayili yiik
etkisindeki nano Olgekli konsol kirig incelenmis ve kiigiik boyut etkisi nedeniyle
yapmin daha rijit davrandigi belirlenmistir. Euler-Bernoulli yerel olmayan c¢ubuk
teorisine dayanarak nano g¢ubuklarin statik davramisimi incelemek i¢in Marotti de
Sciarra (2014) yerel olmayan sonlu eleman metodunu gelistirmistir. Salvetat ve dig.
(2014), yiiksek mertebeden Euler-Bernoulli yerel olmayan gubuk teorisine dayanan bir
yerel olmayan sonlu eleman yontemi gelistirmislerdir. Uniform yay1li yiik etkisindeki
basit mesnetli bir ¢ubuk problemi ¢6ziilmiis ve elde edilen sonu¢ diferansiyel

denklemin kesin ¢6ziim sonucuyla karsilagtirilmistir.

Karbon nanotiiplerin dinamik davranigin1 anlamak amaciyla yapilan bir¢ok ¢aligmada,

farkli dinamik yiiklerdeki titresimler teorik olarak incelenmistir. Berrabah ve dig.



(2013) nano g¢ubuklarm egilme, burkulma ve serbest titresimi ile ilgili caligsmak
amaciyla bir yerel olmayan elastisite teorisi sunmustur. Kii¢iik boyut etkisi ve kayma
deformasyonu etkisinin dahil edildigi modelde hareket denklemlerinin elde
edilmesinde Hamilton prensibi kullanilmistir. Basit mesnetli bir nano ¢ubuga ait
egilme, burkulma ve dogal frekans ifadeleri i¢in analitik ¢ozlimler sunulmustur. Bir
diger ¢alismada, Eltaher ve dig. (2014) nano ¢ubuklarin serbest titresimleri i¢in sonlu
eleman yontemini uygulamistir. Formiilasyonda Eringen’in yerel olmayan biinye
denklemleri kullanilmistir. Nano c¢ubuklarin dinamik analizinde yerel olmayan
parametre, sinir ve yiikleme kosullar1 incelenmistir. Ansari ve dig. (2015) viskoelastik
Timoshenko nano cubuklarin serbest titresimini yerel olmayan elastisite teorisini
kullanarak incelemistir. Tek duvarli karbon nanotiiplerin malzeme 06zellikleri
kullanilarak zamana bagli denklemler ¢oziilmeye calisilmistir. Yerel olmayan
parametreler, viskoelastisite katsayist ve nano ¢ubuk uzunlugunun viskoelastik nano
cubugun zaman cevabina olan etkisi verilen sayisal sonuglarla yorumlanmistir. Arash
ve dig. (2015) nanomekanik rezonatorlerin kullanimi konusunda yaptiklari
incelemede, konu ile ilgili yapilmis olan teorik calismalar1 da Ozetlemistir. Bu
caligmalara ornek olarak, siirekli ortam yaklasimi, molekiiler simiilasyon gibi
yontemler verilebilir. Bu teorik caligmalar neticesinde, 6nemli kullanim alani bulunan
nanomekanik rezonatorlerin daha iyi tasarlanmasi amaglanmistir. Zenkour ve Sobhy
(2015) 1s1 etkisindeki nano g¢ubuklarin egilme analizi igin basitlestirilmis ii¢
bilinmeyen sekil degisimi olan (kesme ve normal sekil degisimleri) yerel olmayan
cubuk teorisini sunmustur. Calismada Eringen’in yerel olmayan biinye denklemleri
kullanilmistir. Hamilton prensibi kullanilarak denklemler olusturulmustur. Sonuglar
literatiirdeki benzer ¢aligmalarla karsilagtirnlmistir. Bagdatli (2015) farkli mesnetleme
kosullarindaki Euler-Bernoulli nano c¢ubuklarinin lineer olmayan titresimlerini
incelemistir. Problemin dogrusal kisminda, mod sekillerinin ve frekanslarin kesin
coztimleri verilmistir. Lineer olmayan kisimda ise, pertiirbasyon teknigi ile bulunan
yaklasik ¢coziimler hareket denklemlerine uygulanmistir. Ansari ve dig. (2016) termo-
mekanik yiikler etkisindeki, burkulmus piezoelektrik Timoshenko nano gubuklarin
serbest titresim analizinde boyut etkisini iceren yerel olmayan elastisite teorisini
uygulamistir. Farkli sinir kosullarinda, boyut parametresinin ve sicakligin artisi ile
boyutsuz dogal frekanslarin burkulma o6ncesi durum igin kiiciildiigli, sonrasindaki
durum igin ise biyiidiiginii goézlenmistir. Bahrami ve Teimourian (2016), yerel

olmayan elastisite teorisinin dalga yayilimi yontemi ile birlestirildigi ¢caligmalarinda



karbon nanotiiplerin dalga cevabini incelemistir. Dalga yayilimi yonteminin titresim,

enerji iletimi ve dalga cevabi analizi i¢in kullanigli bir yontem oldugu belirtilmistir.

Nano ¢ubuklar konusunda yapilan ¢alismalar genellikle diiz ¢ubuklarla ilgilenmistir,
fakat gozlemler sonucu bu yapilarin tam olarak diiz olmadig1 belirlenmistir (Joshi ve
dig., 2010). Wang ve dig. (2012) tarafindan egri eksenli nano yapilar konusunda
Eringen’in sundugu yerel olmayan elastisite teorisi kullanilmistir. Caligmada, yazarlar
yerel olmayan elastisite teorisini kullanarak nano-ring ve c¢ember eksenli nano
yapilarin burkulmasina ait analitik ifadeleri ¢ikarmiglardir. Shao ve dig. (2009) dalgali
yapmin karbon nanotiipiin elastikligini biiyiik ol¢lide diistirdiigliinii belirlemistir.
Burada, egri eksenli nano ¢ubuklarin egriliginin iiretimde olusturuldugunu veya diiz
cubugun eksenel kuvvetlerin etkisinde burkulmasiyla gergeklestigi diisiiniilmektedir.
Egri eksenli nano gubuklarin diizlem i¢i statik analizi i¢in Tiifekci ve dig. (2016a) yerel
olmayan elastisite teorisini kullanan bir model sunmustur. Analitik modelde eksenel
uzama ve kayma deformasyonu etkileri ve bunlarin yerel olmayan etkileri ile egilme
momentinin yerel olmayan etkisi dahil edilmistir. Kesin ¢éziimde baslangi¢ degerleri
yontemi uygulanmistir ve ¢6ziim analitik olarak elde edilmistir. Benzer ¢dziim
yolunun izlendigi bir diger ¢calismada Tiifekci ve dig. (2016b) degisken egrilikli ve
degisken kesitli nano ¢ubuklarin diizlem i¢i statik davranigi konusunda kapsamli bir
analiz gergeklestirmistir. Calismada, ¢ubuk egriligi, kesiti ve cubuga etkiyen yiikler
degisken olarak almmistir ve ¢ubuk geometrisi, sinir sartlari, boyut etkisi, eksenel
uzama ve kayma deformasyonu etkilerinin Oneminin incelendigi &rnekler
¢Oziilmistiir. Tiifekei ve Aya (2016) gember eksenli nano ¢ubuklarin diizlem dig1 statik
davranigini inceledikleri ¢aligmalarinda kayma deformasyonu ve yerel olmayan
etkileri ile egilme ve burulma momentlerinin yerel olmayan etkilerini analitik modelde
dahil etmistir. Calismada, tekil yiik etkisindeki nano ¢ubuklardaki sekil, kesit agis1 ve

kesit tesirlerinin degisimlerin belirlendigi bir 6rnek ¢oziilmiistiir.

Stirekli ortam mekanigi uygulamalarinda atomlar arasindaki kafes bosluklari, yilizey
ozellikleri, tane boyutu gibi kiigiik boyut etkileri goz Oniinde bulundurulmalidir.
Klasik (yerel) siirekli ortam mekaniginin nano olcekteki sistemlere uygulamasinin
kisith olmasinin temel sebebi, atomlar arasinda bulunan kafes bosluklarinin yapinin
biitiinligiinii bozmasi ve siirekli ortam olarak modellenmesine engel teskil etmesidir.
Nanometre mertebesinde, bahsedilen kiiciik boyut etkisinin 6énemi artmaktadir. Bu

sebeple, nano ¢ubuklarin mekanik davranigi konusundaki ¢alismalarda yerel olmayan



stirekli ortam mekanigi kullanilmaktadir. Alt boliimlerde, diizlemsel egri eksenli nano
gubuklarin diizlem dis1 statik ve serbest titresim davraniglarimi belirlemek i¢in bir
analitik yontem gelistirilmigtir. Cubuk kesitinin ¢ift simetrik oldugu kabul edilmistir.
Boyut etkisinin ihmal edilmesinin sonuglarda 6nemli sapmaya neden oldugu
bilinmektedir. Bu ¢alisma, Eringen’in yerel olmayan teorisini kullanarak bu problemi
asmay1 hedeflemektedir. Mevcut ¢alisma, egri eksenli nano ¢ubuklarin diizlem dis1
statik ve dinamik davranisinin incelenip, kesin ¢oziimiin sunuldugu ilk ¢alisma olma
ozelligini tasimaktadir. Bu sebeple, elde edilen sonuglarin, bu konuda daha sonra
yapilacak teorik ve sayisal caligmalar i¢in degerlendirme kistasi olarak kabul

edilebilecegi diistintilmektedir.
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3. EGRi EKSENLi CUBUKLARIN DUZLEM DISI STATIK
DAVRANISLARININ iNCELENMESI

3.1 Cubuklarin Diizlem Dis1 Statik Davramisini ifade Eden Yerel Olmayan

Denklemler

Mikro ve nano g¢ubuklarin statik problemlerinin ¢oziimiinde kiiciik boyut etkisini
iceren yerel olmayan elastisite teorisi kullanilmaktadir. Boyut etkisi; kafes
parametreleri, tane boyutu ve molekiil biiyiikliigiine bagli degisen karakteristik
uzunluk ile iligkilidir. Cubuk boyu, karakteristik uzunluga gore ¢ok biiyiik oldugunda,
yerel olmayan teorinin sonuglar klasik (yerel) teorinin sonuglarina yakinsamaktadir.
Eringen (1983) tarafindan sunulan yerel olmayan elastisite teorisine gore bir noktada

olusan gerilmeler belirli bir alandaki birim uzamalarin integrali ile iliskilidir:

o7l (x) = fﬂ i (2 0 (x') A2 3.0)

Bu denklemde, «;j; ¢ekirdek tensorii atom boyutundaki etkilesimleri, al-’}l yerel

olmayan gerilmeyi ve g, ise yerel birim uzamay1 ifade etmektedir. x ve x’ ise (
alaninda malzemenin herhangi iki noktasina ait konum vektorleridir. izotrop ortamda,
@;jxi (x, x") nin elastiklik tensorii bilesenlerine esit olarak dagildig: varsayilmaktadir

(Eringen, 1983). Bu durumda denklem 3.1 asagidaki gibi diizenlenebilir:

ol (x) = fna(x, x") Cijr € (x) dQ (3.2)

Bu denklemde, Cjjy; izotrop malzeme igin elastiklik tensorii ve a skaler g¢ekirdek

fonksiyonudur. Bu denklem asagidaki sekilde yeniden yazilabilir:

ol (x) = fﬂa(x, x') af;(x") dQ (3.3)

Burada, g; yerel gerilme tensoriidiir.
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Yerel olmayan elasitisite teorisinin integral biinye denklemleri bazi sartlar altinda
asagida verilen kismi diferansiyel denkleme sadelestirilebilir (Eringen, 1983;
Benvenuti ve Simone, 2013). Boylece, yerel ve yerel olmayan elastisite teorisinin

gerilmeleri arasindaki iliski asagidaki kismi diferansiyel denklemlerle verilmektedir:

(1 -y2v?3)e™ = g (3.4

Burada, y yerel olmayan parametreyi, V> Laplasyen operatoriinii, 6™ yerel olmayan
elastisite teorisinin gerilme tensdriinii, o' yerel (klasik) elastisite teorisinin gerilme
tensorlinii  gostermektedir. Bu denklemler, yerel ve yerel olmayan elastisite
teorilerindeki gerilmeler arasindaki iliskiyi vermektedir. Bu ifade kullanilarak egri
eksenli c¢ubuklarin yerel olmayan denklemleri, gerilme tensoriiniin silindirik
koordinatlardaki laplasyeni hesaplanarak elde edilebilir. Bu denklem silindirik

koordinatlarda diizenlenirse;

ot —y2(Vie™),, = o}, (3.5)
g5 — v2(V2a™)gg = ajg (3.6)
oly —v2(V2a™),g = ol 3.7)
ol —y2(Vie™),, = d}, (3.8)
agy — 2 (V2e™)g, = 0§, (3.9)
oy —v*(V2e™),, = o}, (3.10)

ifadeleri elde edilir. Yerel olmayan elastisite teorisindeki o™ gerilme tensoriiniin

laplasyeni, Povstenko (1995) tarafindan asagidaki esitliklerle verilmektedir:

4 9c% 2
(V2e™),, = V2ol —r—z—age ) ol — og (.11)
4 9ol 2
(V2a™)gg = V2054 +r_2W+_ ot — ogg (3.12)
2 nl 2 4 nl 3.13
(VO- )rG Vo, rG 9+T269(0-TT_O-66 ( . )
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1 2 do¥
(VZO.TLl)rZ — VZO';lZl _ r_zo-;‘tzl _ r_z ae_z (314)

1 2 dol¥
(V2a™)g, = V2ot — r—zagzl +3 agz (3.15)
(VZe™),, = V2ol (3.16)

burada, skaler biiyiikliigiin laplasyen ifadesi,
2 2 2

v 0L 108 1077 O (3.17)

ar2 ' ror 12002  0z2

olarak bilinmektedir. Egri eksenli cubuklarin denklemleri Frenet koordinat sisteminde
verilmektedir. Silindirik ve Frenet koordinat sistemleri arasindaki iligkinin
incelenebilmesi amaciyla her iki koordinat sistemi Sekil 3.1’de gdsterilmektedir.
Cubuk teorisinde, ii¢ boyutlu yiikleme durumu i¢in oy, 0y, ve oy, gerilmeleri
mevcuttur. Cubuk kesitinin rijit oldugu, yani herhangi bir boyut degisimine ve
carpilmaya ugramadigi varsaymmyla, diger gerilmelerin, yani o,, 0, ve 0Oy
degerlerinin sifir olduklan ifade edilmektedir. Silindirik koordinatlardaki gerilmeler

ile Frenet koordinatlarindaki gerilmeler arasindaki iliski asagida verilmektedir:

— (3.18)
oy =0, =0 (3.19)
0r = g9 % 0 (3.20)

S 6.21)
Oy = Ogy 0 (3.22)

Gy = ~000 = 0 (.23
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Sekil 3.1 : Egri eksenli bir gubukta, Frenet ve silindirik koordinat eksenleri.

Bu iliski hem yerel hem de yerel olmayan gerilmeler i¢in aynidir. Cubugun egrilik
yarigapimin sadece 6 acisal koordinatinin fonksiyonu oldugu varsayilmaktadir. Yani,

R = R(0) oldugundan silindirik koordinat r ve diferansiyeli su sekilde tarif edilebilir:

r=R(0)+T; or = or (3.24)

burada 7 kesit i¢indeki radyal koordinati gostermektedir. Cubuk teorisinde, kesit
boyutlarinin egrilik yarigapimnin yaninda ¢ok kiicik oldugu yani 7#/R(0) < 1
kabuliiyle, yaklasik olarak (1 +7/R (9)) = 1 seklinde alinabilir.

Bu calismada, diizlemsel yiikleme durumundaki diizlemsel egri eksenli ¢cubuklar ele
alimdigindan o;,, = —a,9 = 0 olacaktir. Bu durumda, egri eksenli diizlemsel gubugun,
diizlemindeki davranisini ifade eden, 8 koordinatindaki kesit tesirleri olan FJ¥, MM ve

M sadece 6 koordinatina baglh olacaktir. Kesit tesirlerinin silindirik koordinatlardaki

tirevleri:
aFnl aZFnl aFnl aZFTLl aFnl aZFnl
—2 = 2= b b4 b —o —L =0 (325
or 072 a0 002 0z 0z2
nl 2pnl nl 2pnl nl 2pnl
oMyl OPMRl_ oMl otMpt  oMpl _ otMt_ oo
or 072 a0 062 0z 0z2
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ompt  9*mMpt oM aZMp! aMplzoazMg”_

=0 = 0 0 =0 3.27
o7 977 96 7" a6z 7" Taz 927 42D
olarak bilinmektedir.
Silindirik koordinatlardaki denge denklemleri;
doyy | oy —ogy , 10075 doy _ (3.28)
ar T r 06 0z
da% 201 100} do}l
Z = 3.29
ar + r r 060 + 0z ( )
Falepids UL"J 1602”91 ol Y, (3.30)

ar r r 00 0z

olarak bilinmektedir. Bu denklemler, 3.18-3.23 denklemleri kullanilarak yeniden

yazilirsa;
_%0&3 %aggg —0 (3.31)
"’(,;Lf{za;g%ag—gﬁa%fé:o (332)
%"’E;Lgel —0 (3.33)

ifadeleri elde edilir.

Yerel olmayan elastisite teorisinden elde edilen gerilmeler arasindaki iliskilerden
faydalanilarak, denklem 3.17, denklem 3.5’te yerine konarak asagidaki sekilde

yazilabilir:
ot —y? | Vot - =T — = (ol — o38) | = by (3.34)

Denklem 3.17, 6% i¢in diizenlenirse;
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2 nl nl 2 nl 2
02 100 1 0% 0%

vZ — — J— 3.35
W =m trar T aer T oz (-39
esitligi elde edilir. Bu ifade, denklem 3.34’te yerine konursa;
2 .l l 2 nl 2 .l l
onl — 2 1o Rtopts +160{; +ia o +6 o _iaar”@
or? r or r? 002 0z?> r? 06
(3.36)
(Urr — g ] = 0}y
ifadesine ulagilir. Cubuk varsayimi, yani 3.18-3.23 denklemleri kullanilarak;
4y*dafy 2y*
T3 2 o =0 (3.37)
esitligi elde edilir.
Denklem 3.12, denklem 3.15’te yerine konularak asagidaki ifade elde edilir:
4 9ol 2
ags —v* V%w9+;57%—+—— ot — g)| = ol (3.38)
Denklem 3.17, 05 ! icin diizenlenirse;
l l l l
V2opt = 0%0yy 100y 1 0%0ps 0%04s (3.39)

a2 ' r oF | r? 062 022

esitligi elde edilir. Bu esitlik, denklem 3.38°de yerine konursa, asagidaki ifade elde

edilir.

nl 0%}, 100} 1 0%} 0%0}} iaar"el
gge — ¥* +

arz ' r oF | r? 002 = 9z% ) r? 00
(3.40)
2(O.nl _ nl ] — O'ég
3.18-3.23 denklemleri kullanilarak;
926 100} 1 0%} 9% 4 9o 2
nl _ 66 , ~90gg 66 66\ , * ol
%66 — ¥ [( or? +r or +r2 002 * 622> 2 99 12709 (3.41)

_ 1
= Ogp
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esitligi elde edilir.

Denklem 3.17, denklem 3.7’de yerine konur ve diizenlenirse;

4 2 0
ot = v V2ot = ok + = (ot — aBh)| = ot (42)
bulunur. Denklem 3.17, g/ Licin diizenlenerek;
0%c 1dc% 10%7Y 0%Y (3.43)

Vgl = -
orp = orz ' r oF r2692 022

ifadesi elde edilir. Bu, denklem 3.42’de yerine konursa;

i Kaz oy 1day 10%) a%;lé) 4
-y + 2 —2%ro

ro
ro 0r2 r or r? 002 0z2 r2
(3.44)
2
+T‘_2% O-rr - )] - r9

elde edilir. 3.18-3.23 denklemleri kullanilarak;

1 0%  9%¢™\ 4 2 Ao}
2% 772796 (3.45)

nl

0%c 1007
Org ]/

57t ar Tz aer t o
l

= Orp

denklemine ulasilir.

Denklem 3.17, denklem 3.8’de yerine konur ve diizenlenirse;

2 a nl
m_ S0 _ gt (3.46)

2
Grz ]/ v Jrz _r_arz r2 90

bulunur. Denklem 3.17, /¥ icin diizenlenerek;

920 100 109%cY 0%c (3.47)

V2gnl = - -
% =32 i ar T e T o

ifadesi elde edilir. Bu, denklem 3.46’da yerine konursa;
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Orz or2 7 or ' r2 002 ' 0922

O-T'Z

elde edilir. 3.18-3.23 denklemleri kullanilarak;

ol B
0
denklemine ulagilir.

Denklem 3.17, denklem 3.9°da yerine konur ve diizenlenirse;

1 2 dol¥
R )
092 V VZO'QZ _r_Uez +T_2 EY:) = Ogz

bulunur. Denklem 3.17, gy, 1g1n diizenlenerek;

%0 1dc} 109%0} 0%clt
or? r or r? 00? 0z2

7,
Y 092—

ifadesi elde edilir. Bu, denklem 3.50°de yerine konursa;

a | (0205 N 100} N 10%00% 09%a)\ 1 Sl
O- — —

6z — V¥ or2 r or  r? 062 9z2 | rz %0z
l
JGZ

elde edilir. 3.18-3.23 denklemleri kullanilarak;

onl 2 azaélzl_l_laaglzl lazagzl %o\ 1
oz or? r or r? 002 072

denklemine ulasilir.

nl_yz[(azaﬁzl laaﬂzl 1 9%0% 62@2) 1

2 do¥

rz 00

2 0o
r2 00

|

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

F" kesit tesirini elde etmek igin, g gerilme ifadesinin, yani, denklem 3.53’iin kesit

iizerinde integre edilmesi gerekir:
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92a} 100 1 09%26}% 0% 1
nl 2 0z 0z 0z 0z nl
g -y + — + — + ——0 dA
ﬂ;l oz [( or?2 " r dor r? 06?2 022> r? 62]

= .U o},dA
A

Denklem 3.24°0 kullanip, 7/R « 1 varsayim yapildiginda asagidaki denklem elde

(3.54)

edilir:

H o8zdA —Y ﬂ ajgz _Ry(;)ﬂ aggéd R(H)Z_U aggz
_yzﬂAa;Zgz R(e)zjf oA = ﬂfézd“

Belirli kosullar altinda integral ve kismi tiirevlerin degistirilebileceginin belirtildigi

(3.55)

Leibniz integral kurali (Abramowitz ve Stegun, 1972) uygulandiginda denklem 3.55

asagida verilen sekilde sadelesecektir:

ff 244 =1 57 sz Ry(;)%ffoéi A
R(@)Zamﬂ A-yio- sz 57 dA (3.56)
+#ﬂ‘ oldA = ﬂ‘fesz

Burada,

f f opldA = f f op,dA = F} (3.57)
A

esitlikleri yazilabilir. F**’in @ koordinatindaki kesit tesiri oldugu bilinmektedir ve
degeri sadece 6 koordinatina baghdir. Dolayisiyla, denklem 3.56 asagidaki bigimde

diizenlenebilir:

2 2 2pnl
Y 1 14 an _ rl
(”WW TR 62 0 (.38)
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Benzer sekilde, M ve M}, arasindaki iligkiyi belirlemek icin denklem 3.41 ile verilen

0'(% gerilme ifadesi z koordinati ile ¢arpilarak kesit {izerinde integre edilir:

2 10afs 10%a} 0%0l
ff {069 [( or? +r or +r2 062 + 0z2 zdA

= ﬂ. 0pozdA
A

7/R < 1 varsayimi yapilir; kismi integrasyon ve Leibniz kurali uygulanirsa asagidaki

(3.59)

denklem elde edilir:

62
nl a2
fLJggZdA y 572 ffo'gg dA — R(Q)a ff sz
]/ nl 4 z_ff nl 3.60
~R(6)2 307 ff opezdA —y 557 A(G@gZ)dA (3.60)

+ 2y2 a—ﬂa dA = ﬂaggsz

Burada,

ﬂ ophzdA = M}, ﬂ 0hozdA = ML; jf chgdA = F} (3.61)
A A A

esitlikleri yazilir. M7 ve F/" kesit tesirleri sadece 8 koordinatina baglidir. Bu

durumda, denklem 3.60 asagidaki verilen ifadeye (denklem 3.62) sadelestirilir:

2 2 l
nl ys 0°M}

S O M. (3.62)

MM tegetsel momenti, Jrngl and agz gerilme ifadelerinin kiris kesiti iizerinde integre

edilmesiyle elde edilir:
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1004

aZ nel
T
4 [( or? +r or

nl
f ] Org
A

1 az ‘Irlgl aZO_Tr'Lel _io_nl
r2 962 0z2 r2 1o

2 Ao}
r2 00
— o (3.63)
.2 azo.élzl_i_lao-gzl iazo-élzl 620-62
4 or? r or r? 007 0z?
1
aélzl] 7rdA =f (olgz — 0p,7)dA
A
Kismi integrasyon ve Leibniz kurali uygulanirsa asagidaki denklem elde edilir:
ff {arez— O'GZT'}dA Y2 37 zf {arez—agzr}dA
R(Q) 77 ff{a 0Z — agzr}dA
V
T R(6)2 002 ff {0}z — afiT}dA
_y az zj {O-rGZ_O—GZr}dA
(3.64)

+#ﬂ‘ {04z — ofir}dA + 2y? G_,U
R(H)Zaeﬂ‘%ezcm 2y? _.UUQZ

3@ ﬂ dd +R(9)2 JJ otszar

= -UA(UrleZ

- o*ézf) dA

Burada,
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f{argz—aez }dA = M7 ff 0Lz — 0f,TIdA = M}

ffagesz Mz, ff MdA = FY, ﬂ "dA = —FV
A

esitlikleri yazilabilir. Denklem 3.65 ile verilen esitlikler denklem 3.64’te yerine

(3.65)

kondugunda asagidaki ifade elde edilir:

y2 aZMgll-I_ 2y2 iMnl y2 F y2 Mnl
R(0)2 962 ~ R(8)206 RO) ? R(@)2 t

R(H)fo UzdA = M}

Denklem 3.66’nin sol tarafinin son terimi denge denklemleri kullanilarak tekrar

nl
Mt -

(3.66)

yazilirsa:

! ! ! !
daly y 20/ N 100y 00y,

_ = 3.67
or T r 00 0z 0 ( )

esitligi elde edilir. Denklem 3.67, 3z/2r ile ¢arpilip, ardindan kismi integrasyon

kuralin1 uygulayarak kesit iizerinde integre edilirse (/R <« 1):

3 ﬂ noag = 3 aM,’;lJr 3 gl
R6)2)) 7% T T2R6)? a6 T 2R(0) ® (3.68)
A

Bu ifade denklem 3.66°da yerine konursa MJ* ve M} arasindaki iliskiyi veren denklem

yazilabilir:

2 2 a2pmnl 2 nl 2

Y y® 0°M; y® oMy Y

1 mpt— F = mt 3.69
( * RZ) ' R(8)? 902 " 2R(6)% 96 + 2R(0) " t (3.69)
Yerel elastisite teorisinin verdigi, diizlem digi statik davranigini ifade eden denklemler

(Tiifekei ve Dogruer, 2006);

dv(6) _ knR(6)
10 = ROQ(0) + GA®)

F,(6) (3.70)
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dQ,(0) R(6)

a0~ RO+ gy Ma(O) (3.71)

dfiitéﬁ) =0,0) + %Mt(e) (3.72)

dﬂize( 2 = ,6) + ROF,(©) ~ ROIM,(®) (3.73)
d”i{ém = M, (6) — R(60)m.(6) (3.74)

dF;ée) = —R(8)4,(9) (3.75)

olarak bilinmektedir. Bu denklemlerde v binormal dogrultulardaki yer degistirmeleri;
n, b ve t indisleri sirastyla normal, binormal ve teget dogrultular gostermekdir. (1,
kesitin normal eksen etrafindaki donme agising; £, kesitin teget eksen etrafindaki
donme agisini 6, agisal koordinati; R(6), sekil degistirmemis ¢ubuk ekseninin egrilik
yari¢apini, F, binormal dogrultudaki i¢ kuvvetleri; M,, normal dogrultuda, M, teget
dogrultuda vektdér veren i¢ momentleri; E ve G malzemenin elastiklik (Young) ve
kayma modiillerini; k; kayma gerilmesinin kesite tiniform olarak yayilmadiginm
karakterize eden sabiti; A, kesit alanini; I, binormal eksene gore eylemsizlik
momentini temsil etmektedir. /] burulma sabitidir. q;, binormal dogrultuda yayili dis

kuvveti, m,, ve m; normal ve teget dogrultulardaki yayili digs momenti gostermektedir.

Burada, cubuk egriliginin ve kesitinin ayrica dis yayili yiiklerin, sadece, 6
koordinatinin fonksiyonu oldugu varsayilmaktadir. Yerel teorinin ¢ubuk denklemleri
kullanilarak, elde edilmis olan yerel ve yerel olmayan teorilerdeki kesit tesirleri

arasindaki iliskiler, diizenlenerek, ilk ii¢ denklemde yerine konacaktir.

3.73-3.75 denklemleri, yani denge denklemleri hem yerel hem de yerel olmayan
teoride aynidir. 3.58, 3.62 ve 3.69 bu bilgi ile diizenlenerek, ifadeler denklem 3.70-
3.72’de yerine koyulur ve boylece yerel olmayan biinye denklemleri elde edilir. Bunun

icin, 3.73-3.75 denklemleri 6 koordinatina gore tiiretilirse;
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d?M,(6) _ _dM.(6) dR() £ (6) 4 RO) dF,(6) dR(9)

my (6)

—R(Q)dm"(g)
deo
d’M.(8) dM,(8) dR(8
dgz(): dg()_ di—,) m.(6) — R(6) t() (3.77)
2
dggge)z_d};fga) q,(0) — R(6) qb(a) (3.78)

esitlikleri elde edilir. Burada, denklem 3.76-3.78, yani kesit tesirlerinin birinci

tiirevleri, denklem 3.58, 3.62 ve 3.69’da yerine konur ve diizenlenirse;

Y2 \yn y? dR() &
<1 * R(9)2>Mnl(0) B R(0)? d6 Fy o)+ R(6)2 R(6)*q,(6)
v _y® dR(8)
v’ dm,(6)
R(9)2 R(6) — 57— = Mn(6)

2 2 2
<1+ 3 2>M,_T”(9)+ Y r@ym,6) + B o)

2R(0) 2R(9)2 R(6)? db
(3.80)
v R(6) t(e)—Ml(G)
R(@)Z a

r _r'_drO) ¥? dgy(6) _

esitlikleri elde edilir. Bu ifadeler, ¢ubuk denklemlerinin ilk ii¢iinde (denklem 3.70-

3.72) yerine konarak, yerel olmayan elastisite teorisinin verdigi denklemler;

dv(9) kpR(6) v
qo = ~RO20) + 0 <1+R(9)2>F

(3.82)

kbR(H) VZ dR(G) dCIb(e)
GA(@)W(‘“’(Q) a0 T ap R(Q))
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d,(9)

do = _Qt(g)
+ RO v’ v: dR® _,
EI 7(6) <<1+R(9)2>M ©) - R(0)2 db Fi(6)
¥? , Y2 (3.83)
+ i RO™O) — (H)ZR(B)mt(B)
_v*_dR(®) v? dm,,(6)
R(0)?> d6 M (8) +R(9)2R(9) 10 )
d0,(6)
do - Qn(e)
R(9) 3y? . % ; .
" <1+2R(9)2) M+ S RO (3.84)
+R(9)2 do mt(Q) R(H)ZR(Q) 40 )
nl
dMge(Q) = —M"(8) + R(OF)' — R(O)my(6) (3.85)
nl
—dM;g(a) = Mz'(8) — R(6)m(6) (3.86)
dF* (6
’;9( )= R©)a,®) (3.87)

olarak elde edilir.

Egri eksenli ¢gubuklarn diizlem dis1 statik problemlerinin kesin ¢oziimii, cubuk eksen
egrisi ve kesiti ne olursa olsun, yer degistirmenin, kesit donmelerinin ve kesit
tesirlerinin, ¢ubuk eksen egrisi boyunca belirlenmesine imkan verecek sekilde,
baslangic degerleri yontemi ile elde edilebilmektedir. Benzer sekilde, kayma
deformasyonu ve donme eylemsizligi etkilerinin géz Oniine alinmasi durumunda,
cubuk titresimine ait diferansiyel denklemlerin kesin ¢oziimii, baslangi¢ degerleri

yontemi kullanilarak hesaplanabilmektedir.
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3.2 Cubuklarin Diizlem Dis1 Statik Davramisim ifade Eden Yerel Olmayan

Denklemlerin Coziimii

Egri eksenli ¢ubuklarim kendi diizlemindeki sekil degistirmelerine ait 3.82-3.87
denklemleri, birinci dereceden degisken katsayili lineer diferansiyel denklemlerdir.
Denklemler matris seklinde ifade edildiginde;

dy(6)

20 " A@)y(6) + £(6) (3.88)

burada y degiskenler vektoriinii temsil etmektedir ve bilesenleri v, Q,, Q,, MM, M},
F¥ olarak verilmistir. A(6) 6x6 elemanli katsay1lar matrisini ifade etmekte olup, f(6)

ise 6 elemanl yayili dis yiik vektoriidiir. Denklem 3.88’in ¢oziimii agagida verilmisgtir:

7]
y(6) = Y(6,8,)y, + Y(6,6,) f Y1($, 0,)E($)dgb (3.89)
6o

Burada Y(6,6,), denklem 3.88’in homojen halinin ¢6ziimiinden elde edilen asal
matrisi gosterirken, y, = y(6,) 8, koordinatindaki baslangi¢ degerleri vektoriidir (Bu
calisma icin: 8, = 0). Tekil kuvvet ve momentlerin etkidigi cubuga ait denklemlerin,
yani, ¢ubuk {iizerine hicbir yayili kuvvet ya da momentin etkimemesi durumunda
homojen denklem takiminin matris formda diizenlenmis hali agagida verilmistir:
dy(6
YO _ aoyy®) (3.90)
de
Burada, A(8) 6 X 6 katsayilar matrisidir. 3.90 ile verilen diferansiyel denklem

sisteminin ¢Oziimii agagida verilmigtir:

y(8) = Y(6,0)y, (3.91)

3.91 ile verilen denklem sistemi matris formunda asagidaki gibi yazilabilir:
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[ ;(69) ] Y Yz Yiz Y Yis Yig [ Yo 1
Tl( ) Y21 YZZ Y23 Y24 Y25 Y26 |'Qn0 |
'Qt(e) Y31 Y32 Y33 Y34, Y35 Y36 | ‘QtO |

MEO) ||V Yie Yea Yas Vi Vig||Muol (3:52)
MM (6) Yo1 Yoo Ys3 Yoo Yss Yse|[Meo
_Fl’fl(g)_ Vo1 Yoo Yoz Yoo Yes YeellFho
Asal matris Y(6, 8,)) asagidaki kosullar1 saglamaktadir:
dy(e, e
% = A(0)Y(6,6,), Y(6o,6,) =1 (3.93)
Y(6,,6,)Y(6,,05) =Y(61,05), Y(61,6,) =Y '(6,,6,) (3.94)

Burada I birim matristir.

Iki bolgeli, 8 = 8y kooordinatindan tekil yiikler etkiyen cember eksenli bir ¢ubuk icin
asagidaki esitlikler yazilabilir:

-0, <6, <60 icin y;(6;)=Y(01,60y10 (3.95)

Ok <0, <6p icin y,(0;)=Y(6,0k)y2 (3.96)

Y,x ikinci bolge icin 8y koordinatindaki baslangi¢ degerler vektoriidiir. y;5 ve Vi
vektorlerinin on iki bileseninin hesaplanabilmesi i¢in sinir ve siireklilik sartlarindan

elde edilen on iki denklem kullanilir. Bu noktadaki siireklilik sarti:

y1(0x) + K=y (3.97)

K=[0 0 0 Fxp Mg, Mg:]T vektorii K noktasinda bulunan tekil yiikler

vektoriidiir. Boylece, denklem 3.96 yeniden yazilirsa:
y2(02) = Y(62, 0¢)y1(0k) + Y(6;, 6)K (3.98)
Denklem 3.94, denklem 3.96 kullanilarak yeniden yazilirsa:
¥2(62) = Y(85,600)y10 + Y(62,60) Y (8, 00)K (3.99)

esitligine ulasilir. Boylece; yer degistirme, donme agis1 ve kuvvet bilesenlerinin

analitik ifadeleri her iki bolge icin de elde edilebilir.

27



Cubuga sabit yayili yiiklerin etkimesi durumunda dis yiik vektorii olan f'nin ve asal

matris Y’nin tersi olan Y~1’in hesaplanmas1 gereklidir. 3.89 ifadesinden ¢oziim

asagidaki gibi yazilabilir:

- U Vo 1]
?ln QTLO 0 f2
t . Qto -1 f3
MM = [Y]exe M0 + [Y]exs | [Y] 6x6 | f, d¢
0
MM My fs
| Fp Fyo e

(3.100)

Cember eksenli tiniform nano ¢ubuk icin yazilan homojen diferansiyel denklemin

¢Oziimii kolaylikla elde edilebilir. Egrilik yarigapi, atalet momenti ve kesit alan;

RO)=R, L =L, JO)=], A=A
olacaktir. Bu durum i¢in asal matrisin bilesenleri asagida verilmistir.
Yll = 1 ; Y12 = _R SIDH ; Y13 = R(l — COS 9) ;

R? 3y? R?%cosf® 3y%cosf R?0sinf R?0sinb

Yig = — + o —
M6 7 26) GJ 2GJ 2EL, 2GJ
y?0sin 3y?Osin6
2EL, 4GJ
R?0cos® R?Gcosh® y?0cosf 3y?60cosf R?sinb
Yis = — - - - +

2EI, 26 2EL, 4GJ 2EL,
R?sin® y?sinf 3y?sinf
+ + +
2G] 2EL, 4GJ

_ k,R6 N R36 k,y?6 3Ry?8 N R36 cos 6 N R36 cos 6
7 GA ' G]  GAR 2G] 2E1, 2G]

+Ry29c059+3Ry29c059 R3sin® 3R3sinf

2EL, 4GJ 2EI, 26
Ry?sin@ 9Ry?sin#@
2EI, 4GJ

Y21:0; YZZZCOSQ; Y23:_Sln9;
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(3.104)
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R9c059+R9c059 ¥y20cos® 3y?fcosf Rsind Rsinh

Y, =
27 2FI, 2G] + 2EI,R + 4GJR + 2E1, 2GJ 3.107)
y?sinf 3y?sinf '
2ELLR __ 4GJR
v, = _ROsing RO sin9_y29 sin9_3y26?sin6 (3.108)
2E1, 2G] 2EL,R 4GJR
R? 3y? R?cosf 3y?cosf R?*0sinf R?Osinb
Y26 == + + + +
G 26] 7 g 2G] 2EL, 2G] 6109
+y29 sin0+3y29 sin @ '
2E1, 4GJ
Y., =0; Y;,=sinf; Y33 =cosf; (3.110)
ROsin® ROsin® y2?0sinf 3y%0sinb
24 = + + (3.111)
2E1, 2G] 2EL,R 4GJR
_R9c059+R9c059+y29c059+3y29c059 Rsin9+Rsin9
357 2EI, 2GJ 2EL,R 4GJR 2EI, 2G] Ga1)
y2sin @ N 3y?%sin@ '
2EILR 4GJR
v R%?6cos® R?Ocosf y?0cosh 3y26 cost9+R2 sin @
36 ™ 2E1, 2G] 2E1, 4GJ 2E1,
(3.113)

R?sinf y?sinf 3y?sinf
+ + +
26G] 2EL, 4GJ

Y4_1 = 0, Y4_2 = O, Y4_3 = O, Y4_4_ = COSG; Y4_5 = _Sine;Y4_6 = RSlne, (3114)

Y51, =0; Ye, =0; Y553 =0; Yy =sinf; Ys5 =cosB; (3.115)
Yoe =R —Rcosf; (3.116)
Y61 = 0, Y62 = 0, Y63 = 0, Y64 = 0, Y65 = 0, Y66 = 1, (3117)

Asal matrisin tersinin bilesenlerine ait analitik ifadeler asagida verilmistir:

Y111 = 1, Y112 = Rsin@ 5 Y113 = R(l — COS 9), (3118)
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R? 3y? R?cos@® 3y%cosf R?Osinf R?Osinb

Yl =— -
"7 g + 2GJ GJ 2GJ 2E1, 2GJ
y20sinf 3y20sinf
2EL, 4GJ
R%0cos® R?Bcosf y?0cosf 3y?0cosf R?sinf
Yls = + + + -
2EL, 2G] 2El, 4GJ 2EL,
R?sinf y?sinf 3y?sinf
2G] 2EL, 4GJ
VI = k,RO R30 k,y?6 3Ry?6 R30cosf® R3Ocosh
'™ GA G/ GAR 2GJ 2E1, 2GJ
Ry?6 cos® 3Ry?6cosf +R3 sin @ y 3R3sin@
2EL, 4GJ 2EL, 2G)

Ry?sin@® 9Ry?sinf
+ +
2FIL, 4GJ

Y121 = O, YIZZ — COSH; Y123 = Sing;

ROcos® ROcosH y?BcosO 3y?0cosf® Rsinh

Yl = —

24 2E1, 2G] 2EI,R 4GJR 2E1,

Rsin@ y?%sinf® 3y?sind
2G]  2EL,R 4GJR

Vi = ROsinf ROsinf y20sinf 3y20sinb

7 2El, 2GJ 2EI,R 4GJR

R? 3y? R?cosf 3y%cosf® R?Osinf R?Osinb

Y126 = — + + +

o 20 o 2G] 2E1, 2G]
20sinf 3y%0sin0
+Y + 2
2EI, 4GJ

YI31 = 0, YI32 = —Sin9; Y133 = COSG;

RO sin 6 N ROsinfd y?0sinf 3y?Osinh

Yz =
3* 7 2EI, 2GJ * 2EI,R * 4GJR
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(3.120)

(3.121)

(3.122)

(3.123)

(3.124)

(3.125)

(3.126)

(3.127)



ROcos® ROcosO y?HcosO 3y?0cosf® Rsinb

Yigs = —
35 2EI, 2G] 2ELR 2GR ' 2EL
Rsin 6 +y2 sin@ 3y%sin@
2G] ' 2ELLR  4GJR
R%0cos® R?Bcosf y?0cosf 3y?0cosf R?sinfh
Y136 = + + + -

2E1, 26] 2E1, 4GJ 2E1,
R%?sinf® y?sinf® 3y?sinf
2G] 2E1, 4GJ

YIj,=0;, Y, =0; Yl35=0; Yl =cosf; YIl,s=sinb;
Yi,, = —Rsin@;

YIs; =0; Y5, =0; YIs3=0; Yls, =—sin6@; Ylss = cosb;
YI;¢ = R(1 — cos 6);

Yigs =0; Y, =0; Ylg3=0; Y, =0; Ylgs=0; Yigg=1;
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(3.129)

(3.130)
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4. EGRi EKSENLi CUBUKLARIN DUZLEM DISI DINAMIK
DAVRANISININ INCELENMESI

4.1 Cubuklarin Diizlem Dis1 Dinamik Davramsimi ifade Eden Yerel Olmayan

Denklemler

Yerel olmayan elastisite teorisinden elde edilen, ¢ubugun diizlemine dik statik
davranisini ifade eden genel denklemleri, 3.82-3.87 denklemleri ile verilmektedir.
Denklemlerde, kayma deformasyonu etkisi géz Oniine alinmaktadir. D’Alembert
prensibi yardimi ile cubuk teorisinin bu genel denklemleri kullanilarak ¢ubuk
titresimlerini de incelemek miimkiindiir. Bu prensibe gore, maddesel bir sistemin
hareketinden dolayi, bir t aninda meydana gelen eylemsizlik kuvvetleri aktif dis
kuvvetler olarak, sisteme etki eden gercek kuvvetlerle birlikte gz Oniine alinirsa;
sistem biitiin bu kuvvetlerin etkisi altinda, t anindaki konumunda dengede bulunur.
Cubuga disaridan etkiyen yayili kuvvet ve moment q ve m vektorleridir. Dinamik
problemin incelenmesinde, bu dis yiik vektdrlerinin diizlem dis1 bilesenlerinin kiitle

atalet kuvvetleri olarak alinmasi gerekmektedir (Tiifekci ve Arpaci, 1998);

2
() = —pA©) T2 = pAB)w?v(6) 4.1)
2
m,(0) = —pl,(6) dg—;lz(g) = pIn(e)wz-Qn(g) (4.2)
2
me(©) = ol () 25 = o1 0)020,(0) (43)

Bu denklemlerde p ¢ubuk birim uzunlugunun agirligini, A(8) kesit alanini, t zamani,
I,(8) normal eksene gore alan eylemsizlik momentini ve I,(68) kesit alaninin polar
eylemsizlik momentini ifade etmektedir. Bu ifadelerin tiirevleri agagida verilmistir:

dq,(0) _

b0 _ PA(B)w? dv(6) N dA(0)

a0 P e

w?v(0) (4.4)
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dm,(0) _ dQ,(6) = dI,(6)

70 pl,(8)w? 0 TP w?Q,(0) (4.5)
d";t;g) pl,(O)w Zd%;9)+pd12;9)wznt(9) (4.6)

Yer degistirme, donme agis1 ve kesit tesirlerinin zamanin harmonik fonsiyonlar
oldugu varsayim yapilarak; denklem 4.4-4.6 ile verilen tiirev ifadeleri, yerel olmayan
elastisitenin 3.82-3.87 ile verilen ¢ubuk denklemlerinde yerine koyulursa hareket

denklemleri elde edilir:

O _ k)00 + 22O <1+ v >F,;”

do GA(6) R(6)?
k,R(8) 2 R(0)
+MW<PA(9) 9(9)— 4.7
dv(6 dA(8
+ (pA(O)w? ';(9)+ o d(e)wzv(e))R(H)>
dQ,(0)
o = )
R(e) & y? dR() .
EI EL(0) <1+R(9)2>M() R(6)2 do F5(6)
v’ 2 2
+R(9)2R(9) pA(®)w?v(6)
y? 5
~ Reey ROPl©)0?0,(0) 48)
y? dR(6)
R@) d6 ———pL,(0)w*Q,(8)

2

R(l9)2

dl,,(6)
Tuﬁ(%(@))

d,(0)

R(9)<pl O)o®—2
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R(6) 3y? n
+— <1 +—2R(9)2>Mtl

GJ(0)
ZR(ZO)ZR(G)pI (0)w?Q,(6) (4.9)
R(V;)Zdﬁé ) o1, (6)020,(6)
b 2 B 1)
WO _upi(6) + ROF! ~ RO 6?2, (6) (4.10)
%;(8) = M71(0) — R(8)pl,(0)w?Q,(6) (4.11)
dF’Z;(H) = —R(0)pA(®)w?v(6) (4.12)

Egri eksenli gubuklarin serbest titresimlerini ifade eden denklemler birinci mertebeden

alt1 adet lineer diferansiyel denklemden olugsmaktadir. Degisken kesitli ve degisken

egrilikli gubuklarin dinamik davranigini ifade eden denklemlerdeki degisken katsayilar

sebebiyle bu denklemlerin kapali form genel ¢6ziimii zordur. Kayma deformasyonu

ve donme eylemsizliginin de dahil edildigi

denklemler ¢Oziimii daha da

zorlagtirmaktadir. Bu sebepten dolay1, birgok arastirmaci egri eksenli gubuklarin dogal

frekanslarinin hesaplanmasinda bahsedilen etkilerin ihmal edildigi teoriyi tercih

etmistir,

4.7-4.12 denklemleri diizenlenirse;
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pAO)w? &

k,R(8) y? R(O) = v?*k, dA(6)
dU(B)_(GbA(H) R(9)? a0 T GA@)Pdp “’2)

= v(0)
do (1 — G/I;E)G) y2pA(0)w? )

- 8o 0,(6)

k,R(0) v?
(cfA(e) (1+ R(e)Z))
" kp o 2 A
(1~ catayr oa®@?)

dQ,(60)
do

(4.13)

(G )

2
RO rar (15 o1 0107 + R0 L)

v(0)

(1~ gy P ©@e?) e (4.14)
(1 El, (e)pl (O ) (;;(4(9{3) (1 +R(y02)2))

(1 El, RO ) (1‘151 @7 ()
o)

(R(H) v? dR(Q)
El (Q)R(Q)Z

(1 ol (Q)pl (0)w2>

M, (6)

Fi(6)
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dQ.(6)
deo

(y—zpln(é?)wz + 1)
- 260) 2,(0)

R(O) y% dR(H) y?  dL,(6)
+<G](6)R(0)2 a0 PO + Frgy P —aqg— ‘*’2)

R(6) 3y?
G (0) (1 * 2R(9)2)

dM;' (6)
do

0.(6)

+

nl
M

= —R(8)pl,(0)w?Q,(8) — M () + R(O)F*

nl
M) - —RO)p1, ©)0?2,(0) + M)

nl
dFZz@(e) = —R(0)pA(0)w?v(6)

Bu denklemler matrisel formda;

dy(8)
TR A(9)y(6)

olarak yazilabilir. Burada A(6@) matrisi, katsayilar matrisidir.

A(O) =

Katsayilar matrisinin A(6) elemanlar1 asagida verilmistir:
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(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)



All -

Ayy =

(&1ter

kyR(O) _v?

GA(6) R(8)2P

dA®©)

o ' GA®)F

do

)

A =—

(1 — G/I;E)H) Y2pA(0)w? )
R(6)

(1~ gatgyr2ea®?)

k,R(0) 2
((511(9) (1+ R(ye)Z))

16 —

Ay =

R(O) y*

(1~ gatgyroa©e?)

2
(YEIR((g)) pA)a?)

ET,(6) R(6)?

(d’;(")pz (@)w? + R(0)p

dl (9)

)

24 =

Aye = —

Asp =

(1 ‘mp’n@‘“ )

(EIX@) (1+ R(yez)ZD

(R(Q) y? dR(H))
EL,(O)R(6)2 dob

(%p[n(@wz + 1)
(1 —%plp(é?)wz)
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4.21)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)



(R(e) Y2 dR(g)plp(G)a)2+ vz dL,(0) 2>

GJ(O)R(0)2 db G/ do

A3z = (1 B G}’ng)plp(e)w) (4.31)

A = b (21 +2R3<y;)2> W)
(1-ghggpin©@?)

Ayy = —R(0)pl,(8)w? (4.33)

Ay =—1 (4.34)

Ay = R(O) (4.35)

Ass = —R(0)pl,,(0)w? (4.36)

Ao, =1 (4.37)

Ag; = —R(0)pA()w? (4.38)

sekindedir. Bu diferansiyel denklem takiminin kesin analitik ¢oziimii, katsayilar
matrisinin sabit olmasi1 durumunda mevcuttur. Bu durum, sabit kesitli cember eksenli
cubuga kars1 gelmektedir. Dolayisiyla, degisken terimler sabit alinarak denklemler

asagidaki sekilde sadelesirler:

R
Ay == 439
(1= Egroa) >
2
005
A16 = (440)
1-— G—byszwz
2
T, pAw?
21 = . (4.41)
1-%7 pl,w?
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Ay = ——F+——— (4.42)
1 E—Inplna)z
R y?
(14 7)
Ay =—2 = (4.43)
1- E_Inplnwz
2
zyT]pIna)2 +1
Agpg =————— (4.44)
1- )C/'.—]plpa)2
R 3y?
(1422
G ( 2R2)
Aszs = / z (4.45)
1 G—]plpou2
Ay, = —Rpl,w? (4.46)
Ay =—1 (4.47)
A46 = R (4.48)
A53 = —Rplpa)z (4.49)
As, =1 (4.50)
A61 = _RpA(UZ (4.51)

Bu matris yardimiyla, baslangic degerleri yontemi kullanilarak, titresim

problemlerinin kesin analitik ¢dztimii bulunur.

4.2 Cubuklarin Diizlem Disi Dinamik Davramisimi ifade Eden Yerel Olmayan

Denklemlerin Coziimii

Yerel olmayan c¢ubuk teorisiyle nano boyuttaki ¢ubuklarin diizlem dis1 séniimsiiz
serbest titresimlerini ifade eden diferansiyel denklemler 4.13-4.18 denklemleriyle
verilmistir. Sabit kesitli ¢gember eksenli cubuklar i¢in sabit katsayili bir diferansiyel

denklem takimi olan denklemlerin kesin ¢oziimii ise;
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y(6) = ey, (4.52)

olarak bilinmektedir. Burada A katsayillar matrisinin elemanlar1 (4.39)-(4.51)
denklemleriyle verilmistir. Bu ¢6ziim, sinir sartlar1 yardimiyla frekanslar1 verecektir.

Cubugun her iki ucundaki mesnet sartina bagli olarak ilgili denklemler asagidaki gibi

yazilmalidir:
Ankastre u¢ igin v, =0 Q,=0 Q=0 (4.53)
Serbest u¢ igin Foy=0 M,, =0 My =0 (4.54)

Her iki ug icin yazilan toplam alt1 adet sinir sartindan baslangi¢ degerleri vektoriiniin
alt1 bileseni ¢oziilecektir. Ancak, elde edilen denklemler homojen denklem takimi
olugturmaktadir. Bu homojen denklem takiminin sifirdan farkli ¢6ziimiiniin olmasi
icin katsayilar matrisinin determinantinin sifir olmasi1 gerekmektedir. Buradan elde

edilecek denklemin ¢6ziimii, frekans degerlerini verecektir.

Siirekli degisken egrilige ve kesite sahip ¢ubuklarin diizlem dis1 serbest titresimlerinin
analizinde sabit kesitli ¢gember eksenli ¢ubuk i¢in elde edilen kesin analitik ¢oziim
yontemi kullanilmistir. Cubuk, sabit kesit alanlarina ve sabit egriliklere sahip bolgelere
ayrilarak modellenmig ve her bolge, sabit kesitli cember eksenli cubugun diizlem dis1
titresimlerini veren ifadeler ve ¢oziim yontemi kullanilarak incelenmistir. Cubuk
bolgelerinde, egrilik yaricaplar1 ve alanlari, bdlgelerin sahip oldugu ortalama
yaricaplar ve alanlar alinarak belirlenmis ve bdylece, degisken kesitli ve degisken
egrilikli ¢ubuk, birgok sabit kesitli ¢gember eksenli par¢anin birlesiminden olusacak
sekilde modellenmistir. Bu bolgelerin her biri igin, yazilan denklemler, baslangi¢
degerleri yontemi ile ¢oziilmektedir. Denklemler, kayma deformasyonunu ve donme
eylemsizligini igcermekte ve moment ve kuvvetlerin yerel olmayan etkilerini de

g6zoniine almaktadir.

Her eleman, sabit kesitli ve ¢gember eksenli bir gubuk olarak diigiiniilmiig ve her bolge
i¢cin kesin ¢0ziim, baslangi¢ degerleri yontemi ile elde edilmistir. Elemanlarin sinir
bolgelerindeki kinetik ve kinematik gecis sartlar1 yazilarak elde edilen denklem

takiminin ¢ézlimiinden frekans degerleri elde edilmistir.

Cubuk, sabit kesitli gember eksenli n parcaya boliindiigiinde, her parcanin diferansiyel

denklem takimi
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dy;
do,;

=4;y,0); i=12..,n (4.55)

seklinde yazilabilir. Burada, y;(6;), 6 elemanli degiskenler vektoriinii ve A;, 6x6
elemanl katsayilar matrisini ve i indisi de bolge sayisini ifade etmek iizere, her bolge

icin degiskenler vektori,

yi0) =3 (4.56)

seklinde tamimlanabilir. Yukarida elde edilen A; katsayillar matrisi, kayma
deformasyonu ve donme eylemsizligi etkilerini, ayrica, moment ve kuvvetlerin yerel
olmayan etkilerini de géz Oniine alarak elde edilen matristir. Etkiler ayr1 ayn ele
alinarak da ¢6ziim yapilip, dogal frekanslar elde edilebilir. A; katsayilar matrisinin tim
elemanlarinin sabit sayilar olmasi durumunda, denklem takiminin kesin ¢6ziimil, ayni
sekilde elde edilecektir. A; katsayilar matrisinin elemanlar1 4.39-4.51 denklemleri ile

verilmektedir.

A; katsayilar matrisinin tiim elemanlarinin sabit sayilar olmasi durumunda, denklem

takiminin kesin ¢éziimii;

y:(6)) = eAi®iy;(6,) (4.57)

olarak elde edilir. 8;, = 0 olarak belirlenen koordinat, sabit kesitli her gubuk eleman1
i¢in referans koordinati olarak alinmaktadir. Burada, y; (6;,), 8; = 6;, koordinatindaki
bilinen baslangic degerleri vektoriidiir. e4i® matematiksel olarak ifade
edilebilmektedir. 6 * n adet bilinmeyen baslangi¢ degerleri, sabit kesitli her ¢ubuk
elemaniin iki ucu i¢in yazilan sinir gartlari, 8; koordinatlar i¢in yazilan gecis ve

denge sartlar1 yardimiyla elde edilir.

Sinir ve gecis sartlarindan elde edilen (6n) adet denklem homojen denklem takimi
olusturdugundan, sistemin sifirdan farkli tek bir ¢6ziimiiniin olmasi, katsayilar

matrisinin determinantinin sifira esit olmasi durumunda miimkiindiir.
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Yukarida ifade edilen ¢Oziim yoOntemi sabit kesitli her c¢ubuk elemanina

uygulanmaktadir. Cubuk eleman i¢in gubuk acis1 agagidaki sekilde ifade edilir.
i. gubuk eleman i¢in; 0.1 <0<6; (4.58)

Iki ug nokta icin sinir kosullarindan gelen 6 adet esitlik mevcuttur. Cubuk elemanlarin
simir bolgelerinde kinetik ve kinematik gecis kosullarin1 saglayan ifadeler asagida
verilmektedir. Bu ifadeye gore, komsu c¢ubuk elemanlarin smir noktalarindaki

biiytikliikler birbirlerine esit olmak zorundadir.

yi(0;) = y::1(6;) (4.59)
e4i%iy;(6,) = eAngiyi(e(Hl)O) (4.60)
v(0;) = vi41(0;) 0i(60) = Qusy(0)  Qu(0) = Qrey(8)  (4.61)

Mpi(6;) = Mypip1y(8)) My (6;) = Mei1)(0:)  Fpi(8;) = Fpsny(8))  (4.62)

Sabit mesnet, ankastre mesnet ve serbest ug icin sinir sartlar1 agagidaki gibidir.
Sabit mesnet: v;(0) =0, M,;(6)=0 M;06)=0,
Ankastre mesnet:  v;(6) =0, Q;08)=0, Qu6)=0,
Serbest ug: M,;(6)=0, M,;(6)=0, F,;©0)=0,

Egri eksenli bir gubuk (n) adet elemana ayirilip, bu denklemler her eleman igin
uygulanirsa, [6 * (n —1)] adet gecis sartt yazilir. Boylece, smir ve siireklilik

sartlarindan gelen (6 * n) adet esitlik, matris formunda ifade edilir:

X4 01 o1 - 01 01 [ Yo1 1
ed101  _pA20, 02 02 02 Yoz
02 4202 A6 o 02 02 Yo3
: 4,63
02 02 02 eAn_len_l _eAnQn_1 J’o(n—1) ( )
01 01 01 01 X, enxen = Yon Jdenx1

= [0] 6nx1

Burada X; ve X,,, 3x6 boyutunda egri eksenli ¢ubugun A ve B ucundaki sinir
sartlarindan elde edilen matris; 01, 3x6 boyutunda ve 02, 6 X 6 boyutunda sifir

matrisleridir. yo; = y;(0,;) olarak tanimlanirlar. Elde edilen 6 X n esitlik, homojen
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denklem takimi olusturduklarindan, y; ’lerin sifirdan farkli ¢6ziimleri ancak katsayilar
matrisinin determinantinin sifira esit olmasi durumunda mevcuttur. Determinant

ifadesi, w dogal frekansinin bir fonksiyonudur. Béylece dogal frekanslar elde edilir.
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5. DUZLEM DISI STATIK DAVRANISLA iLGILi ORNEKLER VE
DAVRANISA ETKi EDEN PARAMETRELERIN INCELENMESI

Bu boliimde egri eksenli nano gubuklarin diizlem disi1 statik davranisiyla ilgili ¢esitli
problemlerin ¢ozlimleri verilerek yer degistirme, donme agisi ile i¢ kuvvet ve
momentler hesaplanmistir. Orneklerde, ankastre-serbest ve ankastre-ankastre sinir
kosullari; binormal dogrultuda tekil yiik F;,, normal ve teget dogrultuda tekil moment
(M,, ve M,), binormal dogrultuda degisken yayili yik q,(6) gibi farkli yiikleme
durumlar1 incelenmistir. Tekil yiikler, ankastre-serbest mesnetli nano gubukta serbest
uctan etkimektedir. Bunun yaninda, ankastre-ankastre mesnetli nano gubukta O
olarak belirtilen, rastgele se¢ilmis bir noktadan etkiyen tekil ytiklerin statik davranisa
etkisi de incelenmistir. Son boliimde, binormal dogrultuda etkiyen degisken yayil1 yiik

qp (0) etkisindeki gember eksenli siirekli degisken kesitli gubuk incelenmistir.

Sekil 5.1 : Diizlem dis1 statik davranigin incelendigi ¢cember eksenli nano gubuk.

Farkli yiikleme ve sinir kosullarinin yani sira; boyut parametresi R /y, cubuk acikligi

0; ve narinlik oran1 A = R 0;/,/1,/A gibi malzeme ve gubuk geometrisi ile ilgili

parametrelerin de etkileri incelenmistir. Caligmalarda y boyut parametresi 1.56 mm,
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Poisson oran1 v = 0.3, elastiklik modiilii E = 1 TPa olarak alinmistir. Bu degerler Hu

ve dig. (2009) calismasindan alinmustir.

Bu calismada incelenen c¢ember eksenli nano c¢ubuk Sekil 5.1°de verilmistir.
Bilinmeyen baglangi¢c degerleri, her u¢ i¢in yazilacak iiger adet lineer denklemle
¢Oziilmektedir. Bundan sonra, cubugun yer degistirmesinin, donme ag¢isinin, i¢ kuvvet

ve momentlerinin kesin analitik ifadesini belirtmek mimkiin olmaktadir.

5.1 Serbest Ucundan F, ile Yiiklii, /2 Acikhgina Sahip, Cember Eksenli Sabit
Kesitli Ankastre-Serbest Cubuk

Sekil 5.2 : /2 acgiklig1 olan, gember eksenli sabit kesitli ve ankastre-serbest
mesnetli serbest ucundan Fj, kuvveti ile yiiklii cubuk.

Bu 6rnekte serbest ucundan binormal dogrultuda etkiyen tekil F;, kuvveti ile yiklii,
O0r = m/2 acikligina sahip, ¢cember eksenli sabit kesitli ankastre-serbest cubuk
incelenmistir (Sekil 5.2). Bu ¢ubugun serbest ucundaki yer degistirme ve donme agist

degerleri, yerel olmayan elastisite teorisi ile:

v = Fbka[R n F'bﬂ,'R3 14 ﬁ n 3Fb7TR3 _ 2FbR3 14 3)/2 (51)
o 2GA ' 4Kl R? 4GJ G 2R?

FbRZ )/2 FbRZ 3]/2
Qo = — 14+—= |- 14— (5.2)
no 2E1, ( TR 2G] TR
FbTTRZ )/2 FbRZ FbT[RZ 3]/2
=_ L b it A (5.3)
feo 4E1, (1 TRzt GJ 4GJ L+or

olarak elde edilmistir. Cubuk ekseni boyunca, binormal dogrultuda yer degistirme v =
v(60), normal eksen etrafindaki donme agis1 Q,, = Q,(0) ve teget eksen etrafindaki
donme acis1 Q; = Q,(0) degerlerinin degisimi asagidaki gibi elde edilmistir. Cubuk
boyutunun biyiidigi (R > y) durumda, yani boyut parametresi y/R’nin kiigiik
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degerlerinde bu parametrenin bulundugu terimlerin sonuca etkisi yok olmakta ve
sonuglar klasik cubuk teorisi ile ayn1 olmaktadir. Cubuk ekseni boyunca binormal
dogrultuda yer degistirme v(6), normal eksen etrafinda donme agis1 Q,,(0) ve teget

eksen etrafinda donme agis1 0, (0) igin hesaplanan analitik ifadeler asagida verilmistir:

2 2

Fpk,R y2\ FyR3 v\
Fpkp b
v(6) =i <1+R2>(2 +9) 25 <1+R2> (E+6)c056

+FbGI]?3< 2R2>[__1+9+(__1+Z>C050 -4

+ sin 6]

Q,00) = 2E12< + ;/32) [(g+ 9) sinf — cos@]

(5.5)
+FbR2 1+3y2 [cose 1+<n+9 1) . 9]
GJ 2rRZ) 2 427 7))
RZ y2
Q.(0) = 4E1 <1+ >(9—1) cos 6
(5.6)

+FbR2 1+3y (1 n 6) 0
GJ 2R? 4 2)°°°

5.2 Serbest Ucundan M,, ile Yiiklii, r/2 Acikhigina Sahip, Cember Eksenli Sabit
Kesitli Ankastre-Serbest Cubuk

Sekil 5.3 : Aciklig1 /2 olan, gember eksenli sabit kesitli ve ankastre-serbest
mesnetli serbest ucundan M,, momentinin etkidigi cubuk.

Bu 6rnekte serbest ucundan tekil M,, momentinin etkidigi, 8, = m/2 ac¢ikligina sahip,
cember eksenli sabit kesitli ankastre-serbest cubuk incelenmistir (Sekil 5.3). Cubugun
serbest ucundaki yer degistirme ve donme agis1 degerleri, yerel olmayan elastisite

teorisi ile:
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M, R? ¥\ M,R? 3y?
= 1+—=]—- 1 5.7
< TR T 2R .7)

Yo = T oL 2) " 2q)
M,mR y?\ M,mR 3y?
o = 5T <1+ﬁ>+ TR T (5.8)
= MR (1 2\ MR () 3V 5.9
107 2EI, RZ) 2G] 2R? (59)

olarak elde edilmistir. Cubuk ekseni boyunca binormal dogrultuda yer degistirme
v(0), normal eksen etrafinda donme agis1 Q,,(0) ve teget eksen etrafinda donme agisi

Q,(0) igin hesaplanan analitik ifadeler asagida verilmistir:

2 2

v(0) = — MR <1 + y_) [cos 0+ (g + 9) sin 6]

2EI, R2

Y iy (5.10)
n )4 T .

26] 1+2R2>[c056+(2+9)sm9]

_ MR v2\ o M, R 3y2\ /m
0,00) = 2E1n(1 +ﬁ> (E+9)c050 + 2G) 1 +ﬁ (E+6)c050

R , (5.11)
n''n y .

2CA <1 + R2> [(6 + m)CosO + Sinb]
MR Y\ .

Q.(0) = 2EL, <1 +ﬁ> [(E-I_ 9) sin @ + cos@] cos @

R 22 (5.12)

n 14 T .
+ 2G] <1+ﬁ> [(E+6)sm6—cos€]

5.3 Serbest Ucundan M, ile Yiiklii, /2 Ac¢ikhigina Sahip, Cember Eksenli Sabit
Kesitli Ankastre-Serbest Cubuk

Sekil 5.4 : Agiklig1  olan, gember eksenli sabit kesitli ve ankastre-serbest mesnetli
serbest ucundan M; momentinin etkidigi cubuk.
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Bu 6rnekte serbest ucundan tekil M; momentinin etkidigi, 8 = m/2 acikligina sahip,
cember eksenli sabit kesitli ankastre-serbest gubuk incelenmistir (Sekil 5.4). Cubugun
serbest ucundaki yer degistirme ve donme acisi degerleri, yerel olmayan elastisite

teorisi ile:

M,mR? y?\ M.R? 3y? T
M,R ¥?\ MR 3y?
Qo = 1+=)——(1+-— 5.14
no 2Eln< * R2> 267 \' T 2r2 (.19)
M,mR v?\ M,nR 3y? (5.15)
© 4EI, <1 * F) o\ re

olarak elde edilmistir. Cubuk ekseni boyunca binormal dogrultuda yer degistirme
v(0), normal eksen etrafinda donme agis1 Q,,(6) ve teget eksen etrafinda donme agisi

Q,(0) i¢in hesaplanan analitik ifadeler asagida verilmistir:

2 2

v(0) = _ UK <1 +y_> (g+ 9) cos 6

2EI, R?
(5.16)
JMRE( 3T [1 (”+6) 6 + si 9]
] R? 4 t5)cos sin
MR Y2 L .
Q,(00) = 2EL <1+ﬁ>(c050—551n0 Hsm@)
(5.17)
MR() 3V (cos6 +5sin 6 +0sin6)
26 gz ) (cos 5 Sin sin

MR [ y*\m MR(  3y*\ m
,(0) = 1+—|(5 skl (A 1
+(8) 2E1n< +R2>(2+0)cose+2GJ +27)(F+0)cost (5.18)

5.4 Simetrik Olmayan Yiikleme Durumlari

Bu kisimda, simetrik olmayan sinir sartlarina sahip ¢ubuklarin orta noktalarindan
farkli konumlarina etkiyen tekil yiikleme durumlari incelenmistir. Bu amagla,
ankastre-ankastre mesnetli sabit kesitli cember eksenli Sekil 5.5’te goriilen ¢cubugun,
0k = 30° koordinatindan Fy tekil kuvveti ile yiiklendigi durum incelenmistir. Cubuk

0; = 21t/3 agikligina, A = 100 narinlik oranina, R /y = 1 kiiciik boyut parametresine
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sahiptir. Bu ¢ubukta ortaya ¢ikan yer degistirmeler, donme agilar1 ve kesit tesirleri;
tim etkilerin goézoniine alindig1 yerel olmayan teorinin verdigi sonuglar ve tiim

etkilerin dahil edildigi yerel sonuclarla birlikte asagidaki diyagramlarda verilmistir.

Sekil 5.5 : 6y koordinatindan F tekil yiikii etkiyen ve 87 = 120° agiklig1 olan,
sabit kesitli cember eksenli nano gubuk.

Sekil 5.6’da tiim etkilerin gézoniine alindig1 yerel olmayan teoriden ve tiim etkilerin
dahil edildigi yerel teoriden elden edilen yerdegistirme degerleri ¢ubugun sekil
degistirmemis eksen egrisi iizerine ¢izilmistir. Yerel olmayan teoriden elde edilen
sonuglar, klasik teori ile elde edilen sonuglarin yaklagik olarak iki katidir. R/y degeri

biiytlidiik¢e bu farkin azaldigi goriilmiistiir.
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Sekil 5.6 : Yerel ve yerel olmayan teoriyle elde edilen yer degistirme egrileri
( — :Sekil degistirmemis ¢ubuk ekseni, : Yerel olmayan elastisite teorisi
sonuglari, — : Klasik elastisite teorisi sonuglari)

Sekil 5.8 ve Sekil 5.9°da kesitin sirasiyla normal eksen etrafinda ({2,,) ve teget eksen
etrafinda (£2;) donme agismin yerel olmayan teori ve klasik cubuk teorisi ile
hesaplandig1 diyagram verilmistir. Bu iki farkli yaklagim ile elde edilen sonuglarin

birbirinden 6nemli 6l¢iide farkli oldugu gézlemlenmistir.

Sekil 5.7 : Yerel ve yerel olmayan teoriyle elde edilen donme agis1 (£2,,) egrileri.
( — :Sekil degistirmemis ¢cubuk ekseni, : Yerel olmayan
elastisite teorisi sonuglari, — : Klasik elastisite teorisi sonuglar)
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Sekil 5.8 : Yerel ve yerel olmayan teoriyle elde edilen donme agis1 (£2,) egrileri.
(— :Sekil degistirmemis ¢ubuk ekseni, : Yerel olmayan
elastisite teorisi sonuclari, — : Klasik elastisite teorisi sonuglari)

Yer degistirme ve kesitin donme agisina ait diyagramlar incelendiginde genel olarak
yerel olmayan teoriden elde edilen sonuglarin klasik teori ile elde edilen sonuglara gore
daha biiyiik oldugu goriilmiistiir. Bu sonu¢ McFarland ve Colton’in (2005) deneysel
caligsmasi ve Reddy’nin (2007) teorik ¢alismasi ile uyumludur. Bu iki yaklagim ile elde
edilen sonuclar arasindaki fark, R/y kiiciik boyut parametresinin biiytimesiyle
azalmaktadir. Bu sebeple, egri eksenli nano ¢ubuklari yer degistirme ve kesin dénme

acisinin hesaplanmasinda boyut parametresinin 6nemi anlasilmaktadir.

Kesit tesirleri, yani normal dogrultudaki egilme momenti M, teget dogrultudaki
burulma momenti M; ve binormal dogrutudaki kesme kuvveti Fj, de klasik ve yerel
olmayan teori ile incelenmis olup sonuglar arasindaki farkin ¢ok kiiciik oldugu
goriilmistiir. Kiiclik boyut parametresi R/y’nin degeri biiylidiikge hemen hemen {ist
iiste ¢ikan egriler elde edilmektedir. Sonuclar arasindaki farkin az olmasi nedeniyle

ilgili diyagramlar burada verilmemistir.

5.5 Degisken q, Yayih Yiikiiyle Yiiklii Degisken Kesitli Cember Eksenli
Ankastre-Ankastre Cubuk

Tezin bu kisminda, daha genel bir durum i¢in elde edilmis olan, degisken yayil
yiiklerin etkidigi ¢cember eksenli ve degisken kesitli ¢ubuklara ait ¢oziim ifadeleri

kullanilarak, yerdegistirme, normal eksen etrafinda dénme acis1 Q7 teget eksen

52



etrafinda donme acis1 QP ve kesit tesirleri (M7, MM, F/') diyagramlar klasik
teoriden elde edilen sonuglarla birlikte verilmistir. Elde edilen veriler incelendiginde
yerel olmayan teoriyle hesaplanan yerdegistirme ve donme agis1 degerlerinin klasik
teori ile hesaplanan yerdegistirme ve donme agis1 degerlerine gore daha biiyiik oldugu
goriilmiistiir. Bu durum literatiirdeki ilgili ¢aligmalarla uyumludur (Reddy, 2007; Patti
ve dig., 2015). Bu 6rnekte incelenen, siirekli degisken yay1ili yiikiin etkisinde, degisken
kesitli, cember cksenli ve iki ucu ankastre mesnetli nano g¢ubuk Sekil 5.9°da
verilmigtir. Cubugun agikligi 8, = 120°, narinlik oram1 4 = 100 ve kiiglik boyut

parametresi R/y = 1 olarak belirlenmistir.

Sekil 5.9 : Binormal eksen dogrultusunda degisken q;,(6) yayih yiikiiyle yiiklii
¢ember eksenli ankastre-ankastre ¢ubuk.

Cubuk, normal dogrultudaki yatay uzunlugu b(8) ve binormal dogrultudaki diisey
uzunlugu k(@) olan ve bu biiyiikliiklerin asagida verildigi dikdortgen kesite sahiptir:

bo
cos@

b(6) = . h(8) = hy (5.19)

Bu dikdortgen kesit igin burulma sabiti J(0) asagida verilmistir (Timoshenko &
Goodier, 1951).

b>h i¢in J(@)=

b(0)h(6)3 [1 _ 0.63b(6) (1 b(6)* )] (5.20)

3 h(6)  12h(0)*

Yayilh yiikiin dagilim ise;
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HT 6T . . 6 2
5 S 6 < > icin q,(0) = qo [(HT/2> 1] ( )

olarak belirlenmistir. Yayili yiik ifadesindeki sabit bilesen g, birim yiik olarak
secilmistir. Bu durumda ortaya ¢ikan yer degistirme, donme agisi, moment, teget ve
normal dogrultulardaki kuvvetler, hem yerel hem de yerel olmayan teorilerle
hesaplanmis ve ilgili diyagramlar verilmistir. Sekil 5.10°da degisken q; yayili yiikii
etkisindeki, degisken kesitli cember eksenli cubugun, yerel ve yerel olmayan teorilerle

hesaplanmis yer degistirme diyagrami goriilmektedir.

Sekil 5.10 : Degisken g, yayili yiikii etkisindeki, degisken kesitli gember eksenli
cubugun yerel olmayan teori (mavi renk) ve klasik teori (kirmizi renk) ile
hesaplanmis yer degistirme diyagrama.

Kiigliik boyut parametresi R/y’nin biiyiik degerlerinde sonuglar arasindaki fark
azalmaktadir. Sekil 5.11°de, kesitin normal eksen etrafindaki donme agisinin (27 ve
n}) diyagrami verilmistir. Yerel olmayan teorinin sonucu kirmizi renkli siirekli
cizgiyle, yerel teorininki ise mavi renkli siirekli ¢izgiyle gosterilmektedir. Sonuclarin
yine birbirinden oldukca farkli oldugu goriilmektedir. Yine, kiigiik boyut parametresi

R /y’nin biiyiik degerlerinde sonuglar arasindaki fark azalmaktadir.
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Sekil 5.11 : Degisken q,, yayil yiikii etkisindeki, degisken kesitli cember eksenli
cubugun yerel olmayan teori (mavi renk) ve klasik teori (kirmizi renk) ile
hesaplanmis normal dogrultudaki donme agisi (£2,,) diyagrama.

Sekil 5.12°de, kiigiik boyut parametresi R/y = 1 olan gubugun yerel ve yerel olmayan
teorilerle hesaplanmig donme agis1 diyagrami (2 ve Q}) goriilmektedir. Sekil 5.13’te,
kiiciik boyut parametresi R/y = 7 olan ¢ubugun yerel ve yerel olmayan teorilerle
hesaplanmis donme agis1 diyagrami (2 ve 02}) goriilmektedir. Sekil 5.12°de egriler
benzer gorinmemektedir. Yerel olmayan teorinin sonucunun, yerel teorinin
sonucundan oldukga farkli olmasinin yani sira, yerel teorinden elde edilen donme ag1s1
diyagraminin isaret degistirdigi, yerel olmayan teoride ise hep ayni isaretli oldugu
goriilmektedir. Fakat, R/y = 7 durumunda (Sekil 5.13) farkli iki teoriden elde edilen

sonuglar arasindaki form benzerligi artmakta ve sonuglar arasindaki fark azalmaktadir.

Sekil 5.12 : Degisken q;, yayili yiikii etkisindeki, degisken kesitli gember eksenli
¢ubugun yerel olmayan teori (mavi renk) ve klasik teori (kirmizi renk) ile
hesaplanmis teget dogrultudaki donme agis1 (22;) diyagrami (R/y = 1).
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Sekil 5.13 : Degisken q,, yayili yiikii etkisindeki, degisken kesitli gember eksenli
cubugun yerel olmayan teori (mavi renk) ve klasik teori (kirmizi renk) ile
hesaplanmis teget dogrultudaki déonme agis1 (£2;) diyagrami (R/y = 7).
Normal eksen dogrultusundaki egilme momenti M} ve M} ve teget eksen etrafindaki

burulma momenti M ve M} sirastyla Sekil 5.14 ve Sekil 5.15’te verilmistir. Klasik

ve yerel olmayan teoriden elde edilen sonuglar her iki diyagramda da oldukga farklidir.

Sekil 5.14 : Degisken q;, yayih yiikii etkisindeki, degisken kesitli gember eksenli
c¢ubugun yerel olmayan teori (mavi renk) ve klasik teori (kirmizi renk) ile
hesaplanmis normal eksende egilme momenti (M,,) diyagrama.

56



Sekil 5.15 : Degisken q;, yayili yiikii etkisindeki, degisken kesitli gember eksenli
cubugun yerel olmayan teori (mavi renk) ve klasik teori (kirmiz1 renk) ile
hesaplanmig teget eksende burulma momenti (M;) diyagrama.

Sekil 5.16’da, ¢ubugun, yerel ve yerel olmayan teorilerle hesaplanmis binormal
dogrultudaki kesme kuvveti Fj** ve F} diyagranu verilmistir. Yerel olmayan teori ile
elde edilen sonuclarin klasik (yerel) teori ile elde edilen sonuglar ile aym1 oldugu
gozlenmistir. Kesme kuvveti sadece dis kuvvete baglidir ve kiigiik boyut

parametresinin, narinlik oraninin veya ¢ubuk acikligmin bir etkisi yoktur.

Sekil 5.16 : Degisken q;, yayili yiikii etkisindeki, degisken kesitli gember eksenli
cubugun yerel olmayan teori (mavi renk) ve klasik teori (kirmiz1 renk) ile
hesaplanmig binormal dogrultuda kesme kuvveti (F;,) diyagramu.

5.6 Farkh Parametrelerin Cember Eksenli Nano Cubuklarin Statik Davranisina

Etkisi

Bu boliimde, bir 6nceki boliimde incelenen cember eksenli degisken kesitli her iki ucu
ankastre mesnetli ve degigken yiik etkisindeki ¢ubugun statik davraniginda kiigiik boyut
parametresi k = R/y, ¢ubuk agikligi 61 ve narinlik oraninin A etkileri arastirilmustir.

Sinir kosullar1 ve yiikleme tipi Béliim 5.5°te incelenen ¢ubukla aynidir. Bu boliimdeki
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orneklerde, 6 ¢ubuk agikligi 10° ile 180° arasinda degismekte olup k = R/y kiigiik
boyut parametresi 1 ile 10 arasinda degismektedir. Diger bir paramtetre, A =
RO /m narinlik oran1 10 ile 150 arasindaki degerleri almaktadir. Klasik (yerel)
teori ile yerel olmayan teori ile hesaplanan yerdegistirme degerlerinin oran1 (v™ /v'),
dénme acilarmin oran1 (Q%/QL, Q™/Ql) ve momentler (M /ML, MM /ML) bu

parametrelerin degisimine gore hesaplanmis ve sonuglar ilgili grafiklerde verilmistir.

5.6.1 Kiiciik boyut parametresi R/y ve narinlik oran1 A’nin etkisi

Bu boéliimde, ¢ubuk agikligi 6, = 120° olup kiigiik boyut parametresik = R/y ve
narinlik oraninin A etkileri arastirilmstir. Sekil 5.17°de kiigiik boyut parametresi k =
R/y ve narinlik oraninin A degisimine karsilik ¢ubugun orta noktasina ait yerel

olmayan teori ve yerel teori ile elde edilen yerdegistirme oran1 v /v! ¢izilmistir.

10

10 < A <150

1<k<10

10 150

Sekil 5.17 : Kiigiik boyut etkisi (k) ve narinlik oraninin (1) yerdegistirmeye
(v™ /vh) etkisi.
Diyagramdan, kiiciik boyut parametresi k = R/y’nin bilyiik degerlerinde narinlik
oran1 A ile yerdegistirme oram v™/v! sonuglarinda biiyiik bir degisim olmadig
goriilmiistlir. Fakat, kiicliik boyut parametresinin kiigiik degerlerinde narinlik orani ile

yerdegistirmeler 6nemli Ol¢iide degismektedir. Herhangi bir narinlik oranmi A igin,
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yerdegistirme oran1 v /v!, azalan R/y degerleriyle artmaktadir. Bu artis, ubuk kisa
ve kalin ise (kiiciik narinlik orani) daha belirgindir. Cubuk agikligr 64 nin kiigiik
degerlerinde diyagram yine benzer sekildedir fakat azalan R/y karsisinda v™ /v!

oranindaki degisiklikler daha biiyiiktir.

7 10

10 <A <150

7 150

10

Sekil 5.18 : Kiiciik boyut etkisi (k) ve narinlik oraninin (1) kesitin normal eksen
etrafinda donme agisina (27 /0%) etkisi.

Sekil 5.18’de kiigiik boyut parametresi k = R/y ve narinlik oran1 A’nin degisimine
karsilik gubugun orta noktasindaki kesitin normal eksen etrafinda donme agisi
M /0L nin degisim grafigi verilmistir. Donme agis1 oran1 27 /04 narinlik oran1 A’nin
degismesinden etkilenmemektedir. Beklenildigi iizere, kiiciik boyut parametresinin
azalan degerlerinde Q™ /0! oran1 6nemli dlciide artmaktadir. Cubuk aciklig: 67 nin

azalmasi ile 27 /0! orani azalmaktadar.
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-5
a0
-10
10<A<150 100
150
(a) Orta nokta (6 = 0)
15
10
loSuTol

10

10 <A <150
100

150

10
(b) 6 = 76,/16

Sekil 5.19 : Kiigiik boyut parametresi (K) ve narinlik oraninin (1) kesitin teget
eksen etrafindaki donme agis1 oranina (.(2?’ /.(25) etkisi
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Sekil 5.19a’da kii¢iik boyut parametresi k = R/y ve narinlik oran1 A’nin gubugun orta
noktasindaki kesitin teget eksen etrafinda dénme agist Q1 /02 nin degisim grafigi
verilmistir. Yerel olmayan teori ve yerel teori ile elde edilen sonuglar arasindaki fark
artan kiigilk boyut parametresinin azalmasiyla artmaktadir. Sekil 5.12’den
hatirlanacag1 iizere, k = R/y’nin diisiik degerlerinde ¢ubugun orta noktasma ait
donme acis1 2P degeri isaret degistirmektedir. Eger orta nokta yerine mesnetlere

yakin bir noktada inceleme yapilirsa Sekil 5.19b’deki sonug elde edilmektedir.

Normal eksende ve teget eksende egilme momenti M /M) ve MM /M} sonuglar,
teget eksen etrafinda donme acis1 oram 2 /0! sonuglari ile benzer karakterdedir.
Kesme kuvveti oram1 F{*/F} sabittir ve bu sebepten dolayi ilgili grafikler burada

verilmemistir.

5.6.2 Narinlik oram A ve cubuk acikhigi 7’ nin etKisi

Bu 6rnekte narinlik oranm1 A ve ¢ubuk agikligi 6, nin etkileri incelenmistir. Kiigiik
boyut parametresi R/y = 1 olarak alinmustir. Sekil 5.20°de narinlik orani1 A ve gubuk
acgiklig1 8 nin degisimine karsilik gubugun orta noktasina ait yerel olmayan teori ve
yerel teori ile elde edilen yerdegistirme oran1 v™ /v! ¢izilmistir. v /v! oraninin azalan
cubuk agiklign Oy ile arttign gozlenmistir. Ozellikle 67 < 60° igin onemli Slciide
degisim mevcuttur. Bunun yaninda, diisiik narinlik oran1 A degerlerinde, yani kisa ve
kalm ¢ubuklar igin, v /v! orani biiyiimektedir. Bu artis, gubuk agiklig1 85 nin kiiciik

degerlerinde daha fazladir.

Bunun yaninda, normal eksen ve teget eksen etrafinda donme acis1 27 /02} ve QM /0t
normal eksende ve teget eksende egilme momenti MM /M} ve MM /M} ile ilgili
hesaplamalarda da narinlik orant A ve ¢ubuk agikligi 8, nin etkileri incelenmistir.
Sonuglarin yerdegistirme orani ile benzer oldugu goriilmiistiir ve bu sebeple ilgili

grafikler burada verilmemistir.
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150|

100

g 10 <A <150
10° < 87 < 180°

10

Sekil 5.20 : Narinlik oran1 (1) ve ¢ubuk agikliginin (6;) yerdegistirme oranina
(v™ /vh) etkisi.

5.6.3 Kiiciik boyut parametresi R/y ve cubuk acikhigi 7’ nin etkisi

Bu o6rnekte, kiiciikk boyut parametresi k = R/y ve gubuk agikligi 67 nin etkileri
incelenmistir. Cubugun narinlik oram1 A = 150°dir. Sekil 5.21°de kiigiikk boyut
parametresi k = R/y ve cubuk agikligi 6;’nin degisimine karsilik ¢ubugun orta
noktasina ait yerel olmayan teori ve yerel teori ile elde edilen yerdegistirme orani
v /vt cizilmistir. Kiigiik boyut parametresi R /y’dan bagimsiz olarak, yerdegistirme
oram v™ /v!, azalan cubuk aciklig1 O ile artmaktadir. Yerdegistirme oran1 v™ /v,
azalan kiigiik boyut parametresi R/y ile artmaktadir. Artis miktari, gubuk agiklhigi
O 'nin kiigiik degerlerinde daha fazladir. Farkli narinlik orami A degerlerinde bu
diyagramin formu benzer sekilde kalmakta fakat narinlik orani biiyiidiik¢ce sonuglar

biiylimektedir.
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300
200

v 100 10°)

100° 10° < g, < 180°

10

Sekil 5.21 : Kiiciik boyut parametresi (k) ve ¢ubuk agikliginin (65) yerdegistirme
oranma (v™ /v!) etkisi.

=200

-500
ar'ia)
-800

10°

1<k<10

100°
10° < 87 < 180°

Sekil 5.22 : Kiigiik boyut parametresi (k) ve gubuk agikliginin (6;) kesitin teget
cksen etrafinda donme agis1 oranina (2 /0}) etkisi.
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Kesitin normal eksen etrafinda dénme acis1 27 /0% ’na ait grafik Sekil 5.21°de verilen
yerdegistirme oram1 v™ /v! grafigine benzemektedir. Kesitin teget eksen etrafinda
donme agis1 27 /0L na ait sonuglar Sekil 5.22°de verilmistir. Sonuglar yerdegistirme
oran1 v™ /v! sonuglarindan tamamen farkhidir. Kii¢iik boyut parametresi ve cubuk
acikligmin kiiciik degerlerinde yerel olmayan teori ve yerel teori ile elde edilen
sonuclar arasindaki fark oldukca biiyiiktiir. Normal eksende ve teget eksende egilme

momenti MJ¥ /MY ve M* /M! ile ilgili incelemelerde benzer sonuglar goriilmiistiir.
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6. DUZLEM DISI DINAMIK DAVRANISLA ILGILI ORNEKLER VE
DAVRANISA ETKI EDEN PARAMETRELERIN INCELENMESI

Yerel olmayan c¢ubuk teorisinin, diizlemsel egri eksenli g¢ubuklarin kendi
diizlemlerindeki titresimlerini ifade eden denklemler 4.7-4.12 denklemleriyle
verilmektedir. Bu boliimde, c¢esitli c¢ubuk geometrileri ile ilgili problemler

¢Oziilmistiir. Titresim problemlerinin ¢6ziimiinde su parametreler mevcuttur:

1. Cubugun toplam agikligi: Cubuk ac¢ikligi i¢in, 10°°den 180°’ye kadar c¢esitli

acikliklar alinmustir.

2. Narinlik oran1 (A = R 64/./1I,,/A), olarak tarif edilen narinlik orani degeri igin,
kalin bir geometriden (1 = 10), ince bir geometriye kadar (A1 = 150) cesitli

durumlar ele alinmustir.

3. Boyut parametresi: R/y icin 1’den 10’a kadar degisen degerler alinmistir.
Burada y yerel olmayan boyut faktoriinii simgelemektedir. Bu faktor,

kiiciikliigii ifade etmektedir. (y = ega).

4. Etkiler: Denklemlere kayma sekil degistirmesi ve donme eylemsizligi
etkileriyle, kesme kuvveti ve egilme momentlerinin yerel olmayan etkileri de

dahil edilmistir.

Bu bolimde, yerel olmayan ve klasik (yerel) teori kullanilarak, ¢gember eksenli ve
degisken kesitli nano gubugun diizlem dis1 serbest titresim analizi gergeklestirilmistir.
Kiiciik boyut parametresi R/y, narinlik oran1 A ve ¢ubuk agikligini 61’ nin yerel ve
yerel olmayan teorilerle elde edilen dogal frekans oranina etkisi arastirilmistir.
Hesaplamalarda, kayma deformasyonu yaninda egilme ve burulma donme

eylemsizligi etkileri de goz oniine alimmistir. Boyutsuz frekans degert;

_ pAo _ pAo
L — (RO.)2 L, nl — (RP.)2 nl 6.1)
w" = (RO;) EL, W W (RO7) EL, W

olarak verilmigtir.
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Sekil 6.1 : Degisken kesitli gubuklar.

Bu kisimda Sekil 6.1°de verilen ii¢ farkli geometride degisen dikdortgen kesitli
cubuklar incelenecektir. Cubuk kesitlerinin b boyutu degismezken, h boyutunun
degisimleri;

birinci ¢ubuk i¢in (ortas1 kalin kenarlar1 ince);

0

h(6) = 0 (6.2)
kho (1 -7 —) 6>0
Or
ikinci ¢cubuk icin (ortas1 ince kenarlar1 kalin);
0
h(o) = HT (6.3)
ho (1 + 7 —) 6>0
Or
tiglincii cubuk i¢in ( inceden kalina);
0
h(6) = h, (1 +7 9—) —0,<0<6p (6.4)
T
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olarak alinmistir. Asagida incelenen drneklerde ¢ember eksenli cubuk icin degisken

kesit ytiksekligi ile ilgili parametre n = 0.1 olarak alinmustir.

6.1 Kiiciik Boyut Parametresi R/y ve Narinlik Oran1 A’nin Etkisi

Bu ornekte, ¢ember eksenli ¢ubugun kesit degisimi denklem 6.3’te verildigi gibi
alimmustir, yani ortasi ince kenarlar1 kalin kesitli bir gubuk incelenmektedir. Bu ¢ubuk
icin, ayn1 malzemeden yapilmis, yani y 'nin degerinin sabit tutuldugu, R yarigapinin

degistigi durumlar ele alinmigtir. R /y’nin artigiyla, R yarigap1 degistirilmistir.

Sekil 6.2°de, ¢cember eksenli sabit kesitli iki ucu ankastre mesnetli, agiklig1r (6; =
120°) olan nano ¢ubugun, yerel olmayan elastisite teorisi ile elde edilen birinci
moduna ait boyutsuz frekans katsayisinin, boyut parametresi R/y ve narinlik oran1 A
degerlerinin degisiminden nasil etkilendigini gostermektedir. Boyut parametresi R /y
ve narinlik oran1 A’nin kii¢lik degerleri i¢in birinci moda ait boyutsuz frekansin 6nemli
olciide etkilendigi goriilmektedir. Boyut parametresi R/y ve narinlik orani A’nin
biiylik degerlerinde ise birinci boyutsuz frekans katsayisinda onemli bir degisim

goriilmemektedir.

10

1<k<10
100

10<A<150

10

Sekil 6.2 : Boyut parametresi k = R/y ve narinlik oran1 A’nin degisken kesitli
cember eksenli gubugun birinci mod frekansma @™ etkisi (67 = 120°).
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Sekil 6.3 te, 87 = 120° olan cubugun birinci mod frekans oranlarinin (0™ /@"), boyut
parametresi k = R/y ve narinlik oran1 A ile degisimi ele alinmistir. Sekil 6.3’ten de
goriildiigii gibi boyutsuz frekans oran1 @™ /@' nin narinlik orani degisiminden genel
olarak etkilenmemektedir, yani narinlik oraninin her iki teorinin sonuglarina etkisi

benzerdir. Frekans orani, azalan k degerleri ile azalmaktadir.

@@ 0.7 i

10<A <150

150

Sekil 6.3 : Boyut parametresi k = R/y ve narinlik oran1 A’nin degisken kesitli
cember eksenli cubugun birinci mod frekans oranina (@™ /') etkisi (67 = 120°).

6.2 Narinlik Orani A ve Cubuk Ac¢ikhigi 6;°nin Etkisi

Bu 6rnekte, onceki drneklerdeki gibi gember eksenli gubugun kesit degisimi denklem
6.3’te verildigi gibi alinmistir, yani ortasi ince kenarlart kalin kesitli bir ¢ubuk
incelenmektedir. Boyut parametresi k = 1 olarak alinmistir. Sekil 6.4’te yerel
olmayan teori ile elde edilmis sonuglar goriilmektedir. Cubuk aciklig1 8 = 180° i¢in
boyutsuz frekans yaklasik 12 olarak hesaplanmis olup, 8, kiigiildiikkge bu deger de
kiigiilmektedir. Sekil 6.5°te verilen boyutsuz frekans oran1 @™ /@' sonuglar1 benzer
karakteristige sahiptir, 8 = 180° igin boyutsuz frekans orani yaklasik olarak 0.6

olarak hesaplanmistir ve 6 kiiciildiikce bu deger de kiiglilmektedir.
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10

10

100°
10° < 87 < 180°

10<A<150

10° 150

Sekil 6.4 : Cubuk aciklig1 8, ve narinlik oran1 A’nin degisken kesitli gember eksenli
cubugun birinci mod frekansma @™ etkisi (k = 1).

Narinlik oran1 A4; 4 > 20 degerlerinde boyutsuz frekansin degisiminde etkin degildir
fakat A < 20 degerlerinde azalan A i¢in yerel teori ile hesaplanan boyutsuz frekans
degeri azalmaktadir. Sekil 6.5 incelendiginde, boyutsuz frekans oran1 @™ /@' nin
narinlik orani degisiminden genel olarak etkilenmedigi goriilmektedir, yani narinlik

oraninin her iki teorinin sonuglarina etkisi benzerdir.
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10

180°

140° 10 < A< 150

10° < 87 < 180°

10° 150

Sekil 6.5 : Cubuk agiklig1 6, ve narinlik oran1 A’nin degisken kesitli gember eksenli
¢ubugun birinci mod frekans oranma (@™ /@) etkisi (k = 1).

6.3 Kiiciik Boyut Parametresi R/y ve Cubuk Ac¢ikhigi 8;’nin Etkisi

Bu drnekte, boyut parametresi R /y ve ¢ubuk acikligi 81 nin ¢cember eksenli degisken
eksenli gubugun birinci mod frekansina etkisi incelenmistir. Cember eksenli cubugun
kesit degisimi denklem 6.3’te verildigi gibi alinmistir. Narinlik oran1 A = 150 olarak
alinmistir. Bu ¢ubuk icin, aynt malzemeden yapilmig, yani y’nin degerinin sabit
tutuldugu, R yarigapinin degistigi durumlar ele alinmistir. R /y’nin artisiyla, R yarigapi
degistirilmistir.
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10° < 8y < 180°

1<k<10

10°

Sekil 6.6 : Boyut parametresi k = R/y ve ¢ubuk agiklig1 8, nin degisken kesitli
cember eksenli cubugun birinci mod frekansma @™ etkisi (1 = 150).

Ik olarak, Sekil 6.6°da, cubugun yerel olmayan teori ile hesaplanmis birinci mod
frekansinin, boyut parametresi k = R/y ve toplam ¢ubuk agikligi 6 ile degisimi ele
almmustir. Sekil 6.6’da goriildiigi gibi kiiglik k ve kiiciik 6 degerlerinde, birinci mod
frekans orani hizla degismekte, biiyiik k ve biiyiikk 6, degerlerinde ise 20 degerine
yakinsamaktadir. Birinci mod frekans oranlarinin boyut parametresi k = R/y ve
cubuk acikligi 0 ile degisiminin verildigi Sekil 6.7°de de benzer sonuglar alinmugtir.
Dolayisiyla, biiyiik k ve biiyiik 8 degerlerinde yerel ve yerel olmayan teori sonuglari

benzer degisim gdostermektedir.
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10° < 87 < 180°

1<k<10

10°

Sekil 6.7 : Boyut parametresi k = R/y ve ¢ubuk agikligi 8, nin degisken kesitli
cember eksenli gubugun birinci mod frekans oranma (@™ /@") etkisi (1 = 150).
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7. SONUC VE ONERILER

Literatiir aragtirmasinda, nanomekanik sistemlerin incelenmesinde atomsal yontemler
ve siirekli ortam mekanigi olmak iizere iki farkli teorik yaklasim gelistirildigi
goriilmiistiir. Atomsal yaklasimda karmasik bir modelleme ve hesaplama siireci
mevcuttur, hesaplama yiikii fazladir. Dolayistyla, ilgili modeller, kullanilan hesaplama
programlarinin ve bilgisayarlarin  kapasiteleriyle sinirlidir. Nano cihazlarin
tasarimimda kullanilan bu yapilarin egilme, titresim veya burkulma acisindan
incelenmesi i¢in daha pratik ¢oziimlere ihtiya¢ duyulmustur. Siirekli ortam mekanigi
yontemi, nano boyuttaki bu yapilarin mekanik davranigsinin incelenmesi i¢in daha
uygun bir yontem olarak kabul edilmektedir ve diger yonteme gore daha basit
formiiller sunmaktadir. Fakat, Euler-Bernoulli, Timoshenko veya daha yiiksek
mertebeli teoriler gibi klasik ¢ubuk teorileri, kii¢iik boyut etkisinin denklemlere dahil
edilmemesinden dolay1 bu 6l¢cekteki yapilarla ilgili problemlerin ¢6ziimii i¢in uygun
degildir. Bunun yaninda, Eringen tarafindan sunulan, boyut etkisinin hesaba katildig1
yerel olmayan elastisite teorisi, nanomekanik sistemlerin incelenmesi ig¢in uygun bir
siirekli ortam mekanigi yaklasimidir. Bu konuda yapilan ¢alismalarda, nano
cubuklarin yerel olmayan Euler-Bernoulli kiris teorisi veya yerel olmayan
Timoshenko kiris teorisi ile incelendigi, fakat calismalarin genellikle dogrusal yap1
elemanlan ile sinirli oldugu tespit edilmistir. Nano ¢ubuklar, bir¢ok calismada diiz
cubuk olarak incelense de algilayici gibi nanoteknoloji uygulamalarinda kullanilmak

tizere egri eksenli olarak tiretilmis olabilirler.

Bu calismada, Eringen’in yerel olmayan elastisite teorisi egri eksenli nano ¢ubuklarin
statik ve dinamik davramiglarinin incelenmesinde kullanilmistir. Calismanin amaci,
stirekli degisken egri eksenli ve siirekli degisken kesitli nano ¢ubuklarin diizlem dig1
statik ve dinamik davranism ifade eden denklemlerin elde edilmesi ve bu
denklemlerin kesin ¢6ziimiiniin saglanmasidir. Bu amagla, Eringen tarafindan verilen
yerel olmayan elastisite teorisinin biinye denklemleri silindirik koordinatlarda
yazilarak klasik ¢ubuk teorisine uygulanmistir. Statik analizde, kayma deformasyonu
etkisi goz oOniinde bulundurulmustur. Baslangi¢ degerleri yontemi kullanilarak

diferansiyel denklemlerin kesin ¢6zlimili elde edilmistir. Yer degistirme, kesitin normal
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ve tegetsel eksen etrafinda donme acilar1 ve kesit tesirleri analitik olarak elde

edilmistir.

Daha sonra, d’Alembert prensibinden faydalanilarak egri eksenli nano ¢ubuklara ait
serbest titresim analizi gerceklestirilmistir. Kayma deformasyonu etkisi yaninda
egilme ve burulma donme eylemsizligi etkileri de denklemlere dahil edilmistir. Siirekli
degisken egrilige ve kesite sahip ¢ubuklarin diizlem dis1 serbest titresimlerinin
analizinde sabit kesitli ¢ember eksenli gubuk i¢in elde edilen kesin analitik ¢6ziim

yontemi kullanilmisgtir.

Statik ve dinamik davranigla ilgili ¢oziilen 6rneklerde, elde edilen sonuglar klasik
teorinin sonuglariyla karsilastirilmistir. Egri eksenli nano ¢ubuklarin diizlem dis1 statik
davranisiyla ilgili 6rneklerde, cesitli problemlerin ¢oziimleri verilmis, yer degistirme,
donme agis1 ile i¢ kuvvet ve momentler hesaplanmistir. Bu 6rneklerde, ankastre-
serbest ve ankastre-ankastre sinir kosullari; binormal dogrultuda tekil yiik, normal ve
teget dogrultuda tekil moment, binormal dogrultuda degisken yayili yiik gibi farkl
ylikleme durumlari incelenmistir. Tekil yiikler, ankastre-serbest mesnetli nano ¢ubukta
serbest ugtan etkimektedir. Bunun yaninda, ankastre-ankastre mesnetli nano ¢ubukta
rastgele se¢ilmis bir noktadan etkiyen tekil yiiklerin statik davramisa etkisi de

incelenmistir.

Cubuk acikligimin sabit tutuldugu incelemede, narinlik oraninin kii¢iik degerleri igin
boyut parametresinin yer degisimi oranina etkisinin biiyiik oldugu goriilmiistiir. Boyut
parametresinin sabit tutuldugu incelemede, cubuk agikliginin azalmasi ile yer
degistirme oraninin arttig1 gézlenmistir. Cubuk agikliginin kiiciik degerlerinde, bu artig
miktarmin dnemli oldugu belirlenmistir. Bu 6rneklerde elde edilen yer degistirme ve
kesitin donme agisina ait diyagramlar incelendiginde genel olarak yerel olmayan
teoriden elde edilen sonuglarin klasik teori ile elde edilen sonuglara gére daha biiyiik
oldugu goriilmiistiir. Bu iki yaklasim ile elde edilen sonuglar arasindaki fark, kiiclik
boyut parametresinin bilylimesiyle azalmaktadir. Bu sebeple, egri eksenli nano
cubuklarin yer degistirme ve kesin donme acisinin hesaplanmasinda boyut
parametresinin dnemi anlagilmaktadir. Normal ve teget eksen etrafindaki donme
acilarmin oranlarinin parametrik incelendigi drneklerde, bu oranin narinlik oraninin
degisiminden etkilenmedigi gozlenmistir. Egilme ve burulma momentlerinin
oranlarinda da benzer etki goriilmiis olup, kesme kuvveti oraninin ise sabit oldugu,

yani her iki teoriden elde edilen sonuglarin ayni oldugu belirlenmistir.
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Egri eksenli nano cubuklarin diizlem dis1 serbest titresim analizinde kiigiik boyut
parametresi, narinlik orani ve ¢ubuk ag¢ikliginin yerel ve yerel olmayan teorilerle elde
edilen dogal frekans oranina etkisi arastirilmistir. Cubuk acikliginin sabit tutuldugu
incelemede, boyut parametresi ve narinlik oraninin kii¢iik degerleri i¢in birinci moda
ait boyutsuz frekansin 6nemli dl¢iide etkilendigi goriilmiistiir. Boyut parametresi ve
narinlik oraninin biiyiik degerlerinde ise birinci boyutsuz frekans katsayisinda 6nemli
bir degisim gorillmemistir. Boyut parametresinin sabit tutuldugu incelemede, boyutsuz
frekans oraninin narinlik oran1 degisiminden genel olarak etkilenmedigi goriilmiistiir,
yani narinlik oraninin her iki teorinin sonuglarina etkisi benzerdir. Narinlik oraninin
sabit tutuldugu incelemede boyut parametresi ve cubuk agikliginin biiyiik degerlerinde

yerel ve yerel olmayan teori sonuglar1 benzer degisim gostermistir.

Bu c¢aligmanin en dnemli 6zelligi, stirekli degisken egrilikli ve degisken kesitli
diizlemsel gubuklarin diizlem dig1 statik ve dinamik problemleri i¢in kesin analitik
¢Oziimilin verilmis olmasidir. Literatiir incelemelerinden bu konuda benzer bir
calismanin yapilmadigi tespit edilmistir. Bu c¢oziimler, molekiiler dinamik gibi
yontemlere gore daha hizli sonuglar vermektedir. Elde edilen sonuglar, daha 6nce diiz
cubuklar ile ilgili yapilmis olan deneysel ve teorik caligmalarla uyumludur. Bu
calismada sunulan, siirekli degisken egrilikli siirekli degisken kesitli nano ¢ubuklar
i¢in verilen genel bir ¢6ziimiin daha sonra yapilacak teorik ve sayisal ¢aligmalar i¢in
degerlendirme kistas1 olarak kabul edilebilecegi diisiiniilmektedir. Ayrica, verilen
denklemler, egri eksenli nano cubuklarin kararlilik problemlerinin incelenmesinde
kullanilabilir. Bu yontemin, miihendislik uygulamalarinda kullanilmak iizere
genigletilerek egri eksenli nano c¢ubuklar igin bir sonlu eleman yontemi

gelistirilebilecegi de diisiiniilmektedir.
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