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OZET

DOGRUSAL REGRESYONDA BOZULMA NOKTASINA SAHIP
TAHMINLER

Joaquim Jorge Da Costa Khalau

Yiiksek Lisans, istatistik Boliimii
Tez Danigmani: Prof. Dr. Suleyman Gunay

Ocak 2017, 40 Sayfa

Bu calismada dogrusal regresyonda kullanilan bazi saglam yontemler incelendi ve bu

yontemlerden, Huber, Hampel, Andrew ve Tukey'in M-tahminleri karsilastirildi.

Calismanin birinci béluminde konuya giris yapildi. Regresyon modelleri, kullanilan

yontemler, saglam ve yuksek bozulma noktasina sahip yontemler kisaca tanitildi.

Tahminler Uzerinde etkili olan gozlemlerin ortaya c¢ikartilmasinda kullanilan yontemler
ve diger tanisal dlglimlere de ikinci bélimde ayrintili bigimde yer verildi. Onemli
saglamlik unsurlarindan olan bozulma noktasi tanimlandi. Bu bdlimde ayrica dogrusal

regresyon modeli ve En Kuguk Kareler yontemi ayrintili olarak incelendi.

Uglincli bélimde ise yiksek bozulma noktasina sahip yontemler verildi ve bu

yontemlerin 6zellikleri tartisildi.



Calismada uygulama kismi dérdinci bolimde, tartisma ve sonuglar ise besinci

bolumde verildi.

Anahtar Kelimeler: Dogrusal regresyon, bozulma noktasi, saglam tahmin ediciler



ABSTRACT

BREAKDOWN POINT ESTIMATIONS IN LINEAR
REGRESSION

Joaquim Jorge Da Costa Khalau
Master, Department of Statistics
Supervisor: Prof. Dr. Suleyman Gunay

January 2017, 40 pages

In this study Robust methods used in Linear Regression are briefly examined. For this
study, Huber, Hampel, Andrew and Tukey’'s M estimation methods are compared each

other.

For the first part of study, there is a brief introduction. Robust methods and high
breakdown point methods used in Linear Regression has briefly introduced.

The residual obtained from used methods and the other diagnostic measurements
which are used to detect the observations effecting the estimations are discussed in the
second chapter and also the important robustness measurements breakdown point and
influence function are presented. In this chapter also considered the linear regression

model and the Least Square method in detail.



For the following chapter is presented in detail the breakdown point methods used in

linear Regression analyses.

Finally an application of those methods, discussion and results are given.

Keywords: Linear Regression, Breakdown Point, Robust Estimators
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BIiRINCi BOLUM

1.GIRIS

Regresyon analizinde parametre tahmininde ¢ok sik kullanilan yontemlerden biri En
Kaguk Kareler (EKK)'dir. EKK kullanilarak, parametreler icin yansiz ve en kuguk
varyansh tahminler elde edilmektedir. Bu yonteme alternatif olarak aykiri degerlerden

cok fazla etkilenmeyen saglam regresyon yontemleri 6nerilmektedir.

Bu galismada, regresyon modellerinin analizinde kullanilan EKK, saglam En Kuguk
Medyan kareler (EMK), M ve MM tahmin yéntemleri incelenmis ve bu yontemlerden,

Huber, Hampel, Andrew ve Tukey’in M-tahminleri karsilagtiriimigtir.

En kucguk karelere segenek olarak, saglam bir regresyon tahminine dogru ilk adim
Edgeworth’den gelmistir (Rosseeuw 1984). Bu segenek, en kiguk mutlak degerler (L1
kriteri) olarak adlandirilir. Daha sonra artiklarin daha farkli bir amag¢ fonksiyonunun
kullaniimasi fikrine dayali M tahminler gelistiriimistir. Bu tahminler, normal hatalara
sahip bir modelde L, den daha etkindir (Candan 1995). Yohai (1988) tarafindan, o*'nin
M ve S tahminleri dnerilmigtir. Ancak bu tahminler normal hatalara sahip bir regresyon
modeli igin kiguk etkinlige sahiptir. Aykiri degerlere kargi dayanikli olmasina karsin ug
degerler s6zkonusu oldugunda bu tahminler igin ayni iddialarda bulunmak muimkin
olmamaktadir. U¢ degerlere kargi daha dayanikh tahminler elde etmek amaciyla M, L, R
ve GM yontemleri onerilmektedir. Bu yontemlerden higbirinde %30°dan ¢ok bozulma
noktasi elde edilememistir. YUksek etkinlik, yuksek bozulma noktasi elde etmek igin,
medyan en klglk kareler tahminini Rouseeuw (1984) énermistir. Bu durumda artiklarin
kareleri toplami yerine artiklarin karelerinin ortancasi minimum yapilmaktadir (Candan
1995).

Yohai (1987), Rousseeuw ve Leroy (1987), en klg¢uk ortanca igin progress algoritmasi,
MM yontemi icin de ayri bir algoritma dnermigtir. MM tahmin edicileri, hatalarin normal

dagildigi durumda yuksek etkinlige sahiptir ve bozulma noktalari % 50 dir.



IKINCi BOLUM

2. GENEL BILGILER

Bu bolumde dogrusal regresyon, dogrusal regresyon modelleri, dogrusal regresyonda
en kuguk kareler yontemi, dogrusal regresyonda artiklar etkili gdzlemler ve aykiri deger,
tanisal yontemler, dogrusal regresyonda bazi 6nemli saglamhk unsurlari ve dogrusal

regresyonda saglam yontemler incelenmistir.

2.1 Dogrusal Regresyon
Ross (1987) tarafindan Regresyon Analizinde kullanilan degiskenler arasinda
fonksiyonel bir iliskinin var oldugu ve bu iligkinin de regresyon modeli olarak bilindigi

belirtiimektedir.

Regresyon analizinde uygulanan iglemler ve elde edilen sonuglar, dogrusal olarak

siniflanan bu modeller tGzerindeki varsayimlara baghdir.

Cok degiskenli regresyon modelleri gibi dogrusal model 6rnekleri, 6zel bir veri kimesine
en iyi uyumu saglamaktadir. Bu modeller, fiziksel, kimyasal ya da biyolojik modeller i¢in
cok ender kullaniimaktadir. Cok sayida veri kimesine uyum saglayamamalarina karsin

basit ve anlagilir olmalari en blyuk avantajdir.

2.2 Dogrusal Regresyon modelleri
Dogrusal regresyon Y olarak isimlendirilen sayisal bir bagiml degiskenle X olarak
belirtlen bir veya daha c¢ok bagimsiz degigsken arasindaki iligkiyi modelleme

yaklasimidir.

Regresyon modelindeki bagimsiz degisken sayisi bir ise model basit dogrusal
regresyon olarak tanimlanir. Modeldeki bagimsiz degisken sayisi birden ¢ok ise bu

model ¢oklu dogrusal regresyon olarak isimlendirilir.

Regresyon degiskenleri arasindaki iligkinin, bagimsiz degiskenlere ve parametrelerine
gore dogrusal olan bir yapiyla iyi bir sekilde temsil edildigi varsayildiginda, uygun model

asagidaki gibi verilebilir:



Yi= Bo+B1 Xia + B2 Xig +ooot B Xic +&i,  1=1,2,...,n (2.1)

Yukardaki model, hem bagimsiz degiskenlere hem de 3 parametre vektoriine gére
dogrusal olan modeller sinifindandir. Ayrica, degiskenlerine gére dogrusal olmayip

parametrelerine gore dogrusal olan modeller de vardir.

Yi= Bo+BiXi®+ B X +&, i=12..n (2.2)

Esitlik (2.1) ile verilen regresyon modelinin matris gosterimi
Y=XB+¢& (2.3)
seklinde verilebilir.

Burada:

Y: nx1 boyutlu cevap vektoérd,

X: nx(k + 1) boyutlu girdi matrisi,

B: (k + 1) x 1 boyutlu katsayilar vektord,

€. n x 1 boyutlu hata vektoérudur.

Hata terimi € “nin sifir ortalama ve o varyansiyla normal dagilimli ve bagimsiz olduklari

varsayilir. B'nin tahmini igin en ¢ok kullanilan yontem En Klguk Kareler yontemidir.

2.3 Dogrusal Regresyonda En Kiigiik Kareler Yontemi

Bir modelin parametrelerinin tahmininde en ¢ok kullanilan yontem En Kiguk Kareler
(EKK)dir. Bu yontemin c¢ok yaygin bicimde kullaniimasinin nedeni, hesaplama ve
anlasilma kolayhgidir. Bu yontemle elde edilen sonuglarin yanlis yorumlanmasinin

onlenmesi amaciyla yontemin ¢ok iyi anlagiimasi gerekmektedir.
Esitlilik (2.3)'den EKK tahmini g ,

e=Y-Xp



olmak uzere,

AKTg=e’e (2.4)

AKT fonksiyonunu minimum yapan B nin degeri olarak belirlenir. Bu esitlikte (Y - X B),
nx1 boyutlu (Y - XB) vektorinln transpozu ve AKT de artiklarin kareler toplamini

gOstermektedir.

Esitlik (2.4)’den B,
B=(X'X)* XY

biciminde elde edilir.

2.4 Dogrusal Regresyonda Artiklar, Etkili Gozlemler ve Aykiri Deger

Alt Bolum (2.2)'de deginildigi gibi hatalarin (¢;) normal dagilima sahip oldugu varsayimi
altinda, EKK tahmin edicileri en iyi tahmin edicilerdir. Ancak, aykiri degerlerin varligi, bu
varsayimi bozdugundan yanl ve buyuk varyansili tahminlerin elde edilmesine neden

olabilir.

Esitlik (2.3)'de € hata terimi yerine e artik terimi asagidaki gibi tanimlanir
e=Y-Y=Y-XB (2.5)

Veri kimesi verilen Esitlik (2.3) modelinin uygun olup olmadigina karar vermek igin
gi'lere iligkin varsayimlar incelenmelidir. €;’ler gozlenemediginden bu dogrudan Esitlik
(2.5) kullanilarak yapilir.

Rousseeuw ve Leroy (1987) tarafindan, tek bir aykiri deger oldugunda, tani yontemleri

bir goézlemin c¢ikarilarak etkisine bakma yoluyla iyi sonuglar elde edilebildigi



gosterilmistir. Ancak, birbiri ile iligski cok aykiri degerleri teshis etmek zordur ve gelismis

programlari gerektirir.

2.4.1 En Kuglik Kareler Artiklari ve Sapka Matrisi
Sapka matrisi, veri kimesindeki X; bagimsiz degiskenler tek bir aykiri deger igerdiginde

daha kullanighdir. Bununla birlikte, veri kimesi birka¢ aykiri deger igerdiginde, bu deger

hii’de gorulmeyebilir. Burada h;j matris gosterimi ile asagidaki gibi belirtilebilir.

H=X(XX)*X (2.6)

Verilen Esitlik (2.6), H, Sapka matrisi olarak adlandirilir. Bu sapka matrisi nxn boyutlu
simetrik izdUgsum matrisidir. Késegen 6geleri h; = h; ile gosterildiginde, 0 < h; <1 ve

iz(H) = p 6zelliklerini saglar.

Sapka matrisi H, bagimsiz degiskenlerin singller olmayan dogrusal donustmlerinden
de etkilenmemektedir: A, pxp boyutlu ve tam rankli matris olmak Uzere nxp boyutlu X

matrisi,

bigiminde donusturuldagunde
H=XXX'X=XXX)'X=H

elde edilir ( Rousseeuw ve Leory, 1987).

Sapka matrisinin kdsegen 6geleri, i. gézlemin tahmini Uzerindeki etkisini dl¢tigunden
cok dnemlidir. h;i'nin sifir olmasi i. gézlemin tahmini Gzerinde etkili olmadigini gosterir.
Regresyon analizinde aykiri degerleri saptamak icin tek basina h; yeterli degildir; ¢cinkul

sapka matrisi, y;"deki aykiri degerleri gdéz 6niine almaz. Gézlem etkilerini ortaya ¢ikaran



baska istatistiksel 6lgiitler vardir; i. gdzlemin Y; tahmin degeri (izerinde yarattigi etkiyi

incelemek icin DFFITS o6lgusu kullanilir:

Yi—¥i

Si(i) Jhi

Burada Y; degeri n sayida gdzleme dayali olarak bulunan tahmin degerini, \?i(i) ve Sij;

DFFITS; = i=1,..,n 2.7)

degerleri de i. gozlem veriden atildiktan sonra geriye kalan n-1 sayda g6zleme deyall
olarak bulunan tahmin degeri ve artiklar igin standart sapmayi gdsterir ( Gamgam ve
Altunkaynak, 2015).

Sapka matrisi, Y ‘nin kovaryans matrisi iizerinde de etkilidir. e =[e1, e, , ..., e)]’, nx1

boyutlu EKK artiklar vektort olmak Uzere,
Cov(Y) = 6’ H (2.8)
Cov (e) = 0% (1 - H) (2.9)
dir.

Esitlik (2.9) den h; yaklasik 1 oldugunda, i. artigin varyansi sifira yaklasir. i. gdzlemin
EKK tahminleri Gzerinde etkili olup olmadigi incelenmelidir ( Rousseeuw ve Leroy,
1987).

2.4.2 Mahalanobis Uzakligi

Mahalanobis uzaklik ile sabit terimli bir regresyon modelinin ug degerleri bulunabilir.

Bu uzaklik Ertas (2011) tarafindan, x; lerin olusturdugu c¢ok degiskenli bir veri
kimesinde bir gozlemin veri kimesinin merkezine olan uzaklik seklinde belirtilmistir. x} :

go6zlem vektoru,
X,i=1 Xi1Xi2. . - Xjk =1Zi

biciminde tanimlanirsa, sirasiyla z; nin ortalama vektoru ve kovaryans matrisi asagidaki
gibidir:



—=%Z z (2.10)

ve

1
=7 z(zi'z)'(zi'z) (2.11)

zi'nin z "dan uzakhginin hesaplanmasinda kullanilan bir 6lgim, Mahalanobis uzakliginin

karesidir:
M =(z-2)C" (z-2)"

Rousseeuw ve Leroy (1987) tarafindan, M?, a anlamlilik diizeyinde p-1 serbestlik
dereceli ki-kare degeri ile karsilastiriir ve bu degeri asan gozlemler u¢ deger olarak

tayin edilir.

2.5 Tanisal Yontemlere Alternatif Olarak Saglam Yontemler

Aykiri degerlerin ortaya cikarilmasi ve tahminler Uzerindeki etkilerinin giderilmesi
amaciyla kullanilan yéntemlere alternatif olarak saglam yéntemler énerilmektedir. Klasik
EKK yontemiyle, normal dagiimasa bile normal goértnen artiklar elde edilmeye c¢aligilir.
Ancak, saglam yontemler kullanilarak dnce regresyon modeli verilerin buyuk bir kismina
uydurulur sonra artiklarin buylk degerleri aykiri degerler olarak belirlenir. Boylece,
saglam yontemlere aykiri ve Ug degerlerin etkisine kargi saglam tahminler, bu gozlemler

veri kimesinden ¢ikartiimadan elde edilebilir (Candan 1995).

Myers (1986) tarafindan, saglam ydntemler kullanilarak elde edilen artiklarin aykiri
degerleri tanimlamada kullanilmasi ¢ok yararli olsa da, tanisal yontemler yerine higbir
zaman gecemedigi iddia edilmektedir. Bu durumda tanisal ydntemlerle, saglam

uyumdan elde edilmeyen bir¢ok bilgiye ulagilabilmektedir. Ancak, tanisal yontemlerle



ortaya cikarilan aykiri de@erlerin atilmasiyla elde edilen klasik tahmin ediciler, saglam

tahmin ediciler kadar ylksek etkinlige sahip olmayabilir.

2.6 Dogrusal Regresyonda Bazi Onemli Saglamlik Unsurlar

Dogrusal regresyonda kullanilan saglam yontemler, hem veri kimesinden hem de
modellemeden kaynaklanan sorunlari ¢ozmek amaciyla kullanilabilmektedir. Bu
yontemler, veri kimesine iyi bir yaklasimin saglandidi durumda c¢ok iyi sonug

verebilmektedir.

Saglam bir yontem kullanilarak, elde edilen tahmin edicinin ne kadar saglam olduguna

karar vermede, bozulma noktasi ve etkinlik fonksiyonunun énemi bayuktar.

Dogrusal regresyon modellerinin saglam tahminlerinin elde edilmesinde M, L, R tahmin

edicilerinin kullanilmasi onemli bir adimdir.

Huber ve Ronchetti (2009), asagidaki 6rnek regresyon modellerinin tahmininde aykiri
degerler sorununa yer vermistir. Kullanilan veri kimesinde aykiri degerler U¢ degisik
regresyon modeli Uzerinde incelenmigtir ve EKK ydntemiyle elde edilen artiklar ve

grafikleri verilmistir:

Cizelge 2.1 n = 6 gozlemli veri kimesi ve EKK uyumlari ve artiklari

Uyum 1 Uyum 2 Uyum 3
Gozlem | x y y y -3y y y -39 y y -3y

1 -4 2.48 0.39 2.09 2.04 0.44 2.23 0.25
2 -3 0.73 0.32 0.42 1.06 -0.33 0.99 -0.26
3 -2 -0.04 0.23 -0.27 0.08 -0.12 -0.09 -0.13
4 -1 -144 0.15 -1.59 -0.9 -0.54 -1 -0.44
5 0 -1.32 0.07 -1.39 -1.87 0.55 -1.74 0.42
6 10 0 -0.75 0.75 -11.64 11.54 0.01 -0.01

o =1.55 o = 0.55 o =041

e/6 =135 emax/ 0 = 1.00 emax/0 = 1.08




Asagida verilen grafiklerden,
(a) grafik dogrusal bir modele uydugu kabul edilen verilerin EKK uyumuna aittir;
('b) grafik dogrusal bir modele uydugu kabul edilen verilerin saglam uyumuna aittir;

(c) grafik ise ikinci dereceden polinomial bir modele uyudugu kabul edilen verilerin EKK

uyumuna aittir.

Burada, iki degiskenli bir veri kumesinde, en iyi uyumu saglayan saglam model

belirlendikten sonra aykiri degerlerin ortaya c¢ikarilmasinin kolay oldugu gérulebilir.

Verilen artiklar incelenerek, verilere en iyi uyum saglayan modelin 3. model oldugu
soylenebilir ve 6. gézlem diginda 5 gézleminy = - (2 + x) + € (¢ ~ N(0, 0.36)) modeline
gore elde edildigi bilindiginde, ger¢gek modele en iyi yaklasim goésteren modelin 2. model

olduguna karar verilir.

Sekil 2.1 Regresyon modellerinin veri kimesine uyum grafikleri



2.6.1 Bozulma Noktasi

Bozulma noktasinin bir boyutlu durumda konum parametrelerin tahmin igin tanimlandigi
bilinmektedir. Candan (1995) tarafindan, eger bir tahmin aykiri degerlerin kuguk bir
orani tarafindan yalnizca sinirli miktarda degistirilirse direncgli oldugu belirtiimektedir.
Fakat bu oran blylrse tahmin bozulur. Bozulma noktasi igin elde edilebilecek en
yuksek deger, %50'dir. Bu nedenle %50'yi asan bozulma noktasi ile normal goézlemlerle

aykiri degerler arasinda ayirim yapilamamaktadir.

Bozulma noktasi, nicel saglamhgin bir gostergesidir ve bir tahmin edicinin etkilenmedigi
aykiri degerlerin sinirli bir miktarini verir. K¢k bir olasilikla buyuk hatalarin kiguk bir
bolumudur ve model dagilimindan olan uzakliktir. Bozulma noktalari, uzak aykiri
degerlerin ne kadarinin reddedilebilecegini sodyler. Eger bozulma sifirdan bulytkse

bozulma noktasi direnclidir.

n gbzlemden olusan Z érneklemi,

Z= {(Xll,---, X1p, yl),...,(an,---,Xnm yn)}

ve Z ornekleminin regresyon tahmin edicisi T olsun. T tahmin edicisinin Z orneklemine
uygulanmasi sonucu regresyon katsayilari vektérii T(Z) = 8 elde edilir. m tane orjinal
veri noktasi Z érnekleminden c¢ikarilip, yerine m tane keyfi bozulmus degerler konularak

Z’ 6rneklemi elde edilsin. Burada bozulmus Z" érneklemleri icin yan miktari:
Yan(m;T,Z) = Sup, IT(Z")-T(Z)l

seklinde belirtilebilir. Bu yan degeri sonsuza yaklastiginda, m aykiri degerin T Gzerinde
blyuk etkisi oldugunu gosterir ve tahmin edicinin bozuldugu soOylenir. Boyle bir Z

ornekleminde T tahmin edicisinin bozulma noktasi asagidaki bicimde tanimlanir:
en*(T,Z2) = Min {%;Yan(m;T,Z)= oo}
z

Bir bagka ifade ile, T tahmin edicisinin T(Z) den uzak degerler almasina neden olan en

kicUk bozulum miktarini verir.
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Rousseeuw ve Leroy (1987) tarafindan, tahmin edicilerin saglamhgdinin énemli bir 6gesi
olan bozulma noktasi, bu tahmin edicileri hesaplamada kullanilan yontemlerle birlikte

anilmasi gerekligi belirtiimektedir.

EKK ve saglam olarak 6nerilen L; yontemi igin,
en*(T,Z2) =1/n

dir.

Burada n sonsuza giderken, bu oranin sifira yakinsadigi agiktir.

2.6.2 Etkinlik Fonksiyonu
Bir F dagiliml kitleden ¢ekilen Y = {y3,...,yn} 6rnekleminden elde edilen T tahmin edicisi

igin etkinlik fonksiyonu,

T[(1 -e)F+ 86y]-T(F)
£

IF(y;T,F)= lirr(m) (2.12)
biciminde tanimlanir.

Veri kimesinde, 6lgme hatasinin bulunmadigi, yaklagik normalligin saglandigi ve etkili
g6zlemin olmadigi bir durumda bu veri kimesine saglam regresyon uygulandiginda,
regresyon modelinin hemen hemen EKK ile ayni olmasi istenir, ¢clinki EKK bodyle bir

veri igin en uygun tahmin yontemidir.

Ortalama tahmin edicisi igin etkinlik fonksiyonu yukaridaki fonksiyondan

_lim (1-e)u+ey—p _

IF(y; ¥,F)=¢0 - y—H

olarak elde edilir.

IF(y) fonksiyonu y — oo iken tanimlanamayan bigimde artmaktadir.
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Etkinlik fonksiyonu bazi 6nemli saglamhk o&lgumlerinin elde edilmesinde de
kullaniimaktadir. Huber (1981) tarafindan, tek bir gézlemin tahmin edicisi veya test
istatistigi Uzerindeki goreli etkisini degerlendiriimesinin saglandigi belirtimektedir. Eger

fonksiyon sinirli degilse bir aykiri deger sorun ¢ikarabilir.

Tam tahmin ediciler bozulma noktasina sahiptir, ama tumu bir etki fonksiyonuna sahip
degildir. Ayrica etki fonksiyonuna sahip tahmin ediciler genelde asimptotik normal

dagilr.
Vn(Tn = T(F)) ~ N(O,V(T,F))

Saglam tahmin edicilerin belirli bir bolgedeki saglamliklariyla ilgili bilgi edinebilmek
amaciyla etkinlik fonksiyonunun sonlu Orneklemlere uyarlanmasiyla elde edilen
duyarhlik egrilerinden yararlanilir. Bu duyarlik egrileri (2.12) esitliginde, F yerine F,.; ve

€ yerine 1/n yazilarak elde edilir:

T(A LR, +26,) —T(Fyy)
Stpar = LT o )
=n[Th(Y1,-- .Y YY) — Thz (Y1,---,¥n)] (2.13)

2.7 Dogrusal Regresyonda Saglam Yontemler
Regresyon icin saglam yontemler, varsayilan modelden kuguk sapmalara kargi duyarsiz

parametre tahminlerini verir.

Dogrusal regresyon modellerin saglam tahminlerinin elde ediimesinde M, L, R tahmin

edicilerin kullaniimasi1 6nemli bir adimdir.

Bir dérneklem durumda ise, p = 1 ve tum i’ler i¢in x; = 1 konularak elde edilen genel
regresyon modelin 6zel bir durumu gibi dusunulmektedir. Bu durumda y; érnekleminde

edilen model denklemi,

12



Yi=B+ei, i=1,2,...,n
dir.

Bir y; 6rneklemine, bir v sabiti eklendiginde T,,"de ayni miktarda artarsa, yani,

To(Y1+V,...;¥n+ V) =Th (V1,-..,¥Yn) TV

ise bir T, tahmin edicisi konum esdegiskendir. y; drnekleminin tium goézlemlerinin bir ¢

sabitiyle ¢carpilmasi durumu da s6zkonusu olabilir.

Regresyonda uzun hata dagihmlari, bilinmeyen parametrelerin EKK tahminlerini aykiri
degerlere asiri duyarh kilar. Bu nedenle, bir boyutlu durumda, ortalamaya segenek
olarak oOnerilen saglam tahmin yontemleri, ¢ok degiskenli regresyon modellerinin
tahmininde kullaniimak Uzere genellestiriimistir. Bu bolumde, ¢ok parametreli regresyon
modellerinin  saglam tahminlerinin elde edilmesinde kullanilan bazi ydntemler

incelenmisgtir.

2.7.1 M yontemi ile saglam tahmin ediciler
Huber (1985) tarafindan, M-tahmin edicileri olarak bilinen bir tahmin edici sinifi
Onerilmistir. Bu tahmin yontemi, artiklarin kareleri yerine, artiklarin baska bir
fonksiyonunu minimum yapma fikrine dayanmaktadir. M-tahmin edicisinin amag
fonksiyonu, asagida bigimde verilir:

P

Ming. p (y; —zxjiﬁj)
j=1

p artiklarin simetrik bir fonksiyonudur ve sifir noktasinda en kiguk degerini alir.

Yukardaki amag fonksiyonun 3 regresyon parametresine gore turevi alindiginda
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D Wl D xBxi=0 (2.14)

denklem sistemi elde edilir.

M tahminlerinin Esitlik (2.14) ile elde edilmesinin bir dezavantaji vardir: tahminin dlgek

degismez olmasi igin bir o dlgegdi ile B nin,

P

Z w(Eyx, = 0
] O- ]l B
=1

esitliginden tahmini onerilmigtir. Ancak, hangi olgek tahmininin kullaniimasi gerektigi

aclk bigimde belirtilememektedir.

M tahmin ediciler, saglam tahminde 6nemli bir adimdir. Yapilan ¢alismalarin gogunda p

ve W fonksiyonlarini olusturma uzerine yogunlagmistir.

En kicuk mutlak deger tahmininin EKK tahminine gore ustunlugu aykiri degerlere karsi
duyarli olmamasidir. Ancak, aykiri deger olmadiginda EKK tahmini daha dogru olabilir.
Bir boyutlu durumda kullanilan medyan mutlak sapmaya benzer bir tahmin ¢ok boyutlu

durumda medyan mutlak artiklar,
0= med{ | e; |}

biciminde tanimlanir.

Huber (1985) tarafindan, B ve o parametrelerin M tahminlerinin birlikte hesaplanmasini
saglayan H algoritmasi dnerilmigtir. Regresyon artiklarinin degistiriimesine dayanan bu

algoritmanin adimlari asagida verilmektedir:
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a) e;'nin degeri,

el" = yi = f,(6™)

b) o nin yeni degeri,

c) e; artiklar asagidaki gibi degistirilir:

o™
il l +1
Zi =Y O.(m+1) G(m )

d) Kismi turevleri hesaplamak igin:

_ 9f(8™)
xij—a—f}

e) X'X1=X'z'den 7 elde edilir.

f) (m*L = g(M 4 g pulunur.

g) X = (X’X)~* matrisinin késegen elemanlari %;; olmak lizere | 7;| < &,/%;0™+D

ise iterasyon durdurulur ve ¢+ 8'nin tahmini olarak bulunur. Aksi halde m=m + 1
alinarak siirec tekrarlanir. Bu ydntemler icin baslangic tahminlerin (6© , () secilmesi

sorun olabilir.
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2.7.2 R yontemi ile saglam tahmin ediciler
R tahminlerinin M tahminlerine gore dnemli bir avantaji, bu tahminlerin dlgek esdegisken
olmasidir. Bu tahminler rank testlerinden turetiimigdir. Tek 6rneklem yalnizca konum

problemleri igin bulunur.

EKK yaklagimi kullanilarak R tahminleri agagidaki sekilde elde edilir.

n

Minﬁj Z an(Ri)ei

i=1
Burada R;, (e1, ... , en)’de ei'nin rankidir ve an(.), >7;a,(i) =0 saglayan monoton
skorlar fonksiyonudur.

Yukardaki fonksiyonun £;’lere gore kismi turevi alinarak

n

> an(R)X; =0

i=1

denklem sistemi elde edilir. Bu denklem sistemi

14 n
Ming, Z | Z an (Ry)x;j; |
= =

biciminde tekrar bir optimization problemine doénustirilebilir (Rousseeuw and Leroy
1987).

2.7.3 L yontemi ile saglam tahmin ediciler
Bir boyutlu durumdan ¢ok boyutlu duruma uyarlanabilen diger bir tahmin edici sinifi da
L dir. Bickel (1973), dogrusal bir model i¢in tek iterasyon suren bir L tahmin edici sinif

onermistir (Rousseeuv ve Leroy, 1987).

Veri kiimesinin dagihm fonksiyonunun simetrik olmasi durumunda, L tahminleri M ve R

tahminlerine esit oldugunu Jaekel gostermistir (Rousseuv ve Leroy, 1987). Ancak,
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dagilimla ilgili simetrik 6zelligi yoksa bir L tahmin edicisini M ve R tahmin edicileriyle

eslestirmek mumkun degildir.

Orneklem ylzde degerlerine dayali bir L tahmin edici Koenker ve Basset dnermistir

(Rousseeuw ve Leroy 1987). a, bir regresyon yiizde degeri ( 0 < a < 1) olmak (lizere,

tahmini.

n
Ming z p,(e)
i=1

saglayan B degerdir. Burada,

_ ae; , ej =0
Paler) = {(a —1e; , e; <0

dir.

X1 £ Xz £ ... < Xp siral 6rneklem olsun. L tahmin edici sirah istatistiklerin dogrusal

birlesimleridir ve
Tro(X1, X2, vy Xn) = Dieyq AiX;

biciminde ifade edilir. a; agirliklari,

7, na

J; hdA

a=

bigciminde verilir. Burada h

[0,1] —- R ve folhd/l # 0 Ozelliklerini saglayan bir fonksiyonudur. Bu tahmin edici

asimptotik olarak normallik 6zelligi gosterir.

e L karsilik gelen fonksiyonu:

[ xh(G(x))dG(x)

"6 = T ro)are)
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e L etkinlik fonksiyonu:
Jioxg NEYIIAY)- [ [, N(F(¥))ANIAF (1)
S h(F(y))dF(y)

IF(x;T;F)=

biciminde verilir.

Hampel (1971) tarafindan L tahmin igin IF, dagilima baghdir ve kaguk degisikliklerde IF
uygun degildir.

18



UCUNCU BOLUM

3. DOGRUSAL REGRESYONDA YUKSEK BOZULMA NOKTASINA
SAHIP YONTEMLER

Bu bolumde, bir boyutlu regresyon analizinde yuksek bozulma noktasina sahip

yontemler incelenmistir.

Dogrusal regresyon modellerinin parametrelerinin yiksek bozulma noktali, gok saglam
parametre tahminleri elde edilmesi amaciyla, bir boyutlu durumda 0.50 bozulma
noktasina sahip medyana dayali yontemlere bazi secenek Onerilmigtir. En kuguk
medyan kareler tahmin edicisi, en kuguk kesilmis ortalamalar yontemi ve S-tahmin
edicileri bu sinifta yer alir. Ryan (1997) tarafindan, tim ylksek bozulma noktasina sahip
yontemler tam-uygun dogruyu vermesine ragmen, EKK yonteminin kullaniimasinin

gerektigi veri kimesinde goreli olarak zayif bir performans gésterdigi belirtiimektedir.

3.1 Bir Boyutlu Durumda Yiiksek Bozulma Noktasina Sahip Yontemler

Alpu ve arkadaslari (2010) tarafindan, ylksek bozulma noktali regresyon tahmin
edicilerinin ¢ok sayida aykiri degerin varliginda guavenilir tahminler elde etmek igin
gelistirildigi ifade edilmektedir. Bu tahmin ediciler 0.50 bozulma noktasina sahiptir ve
direngli (resistant) tahmin ediciler olarak bilinir. Yiksek bozulma noktali tahmin ediciler
hem x hem de y yonundeki aykiri degerlerin varligi durumunda guvenilir parametre

tahminleri verir.

3.1.1 En Kugiik Medyan Kareler Yontemi (EMK)

Rousseeuw ve Leory (1987) tarafindan, en klguk medyan kareler ydnteminin, aykir
degerlerin ortaya c¢ikarilmasi i¢in kullanilan saglam bir yontem oldugu iddia edilmektedir.
Yontem, artik kareler toplami yerine artik karelerin medyanini en kiglk yapan B 'nin
degeri olarak asagidaki bigimde tanimlanir:
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Minﬁ]_ med; (yi-B)2

Bu yontem, aykiri degerlerin belirlemesinde kullanilan bir veri ¢dézumlemesi olarak

dusundulebilir.

EMK tahmin edicisinin dlgek tahmini de saglam olmalidir. Bu amacla asagidaki tahmin

6=Cy |mede ?

edicinin kullanimi 6nerilmektedir:

Burada,
e; — EMK tahmine gore elde edilmis artik degerleridir.

C1 — sabit normal hata dagiliminda tutarlihgi saglamak icin kullanilir.

3.1.2 En Kiciik Kesilmisg Kareler Yontemi

En Kiguk Medyan Kareler, asimptotik etkinlik bakimindan zayif bir performansa sahiptir.
En Kiiciik Kesilmis Kareler Tahmin Edicisi 3, sirali artik karelerin toplamini en kiigiik

yapan [3 de@eri olarak Rousseeuw (1987) tarafindan asagidaki bicimde énerilmigtir:

h
Ming e, (3.12)
i=1

Burada, efy) < el < - < ef,, sirali artik kare degerleridir ve h = [n/2] +1"dir.

h = [n/2] +1 iken, EMK ile ayni bozulma noktasi elde edilmektedir. Tekrarli medyanla

ayni bozulma noktasi elde etmek igin,
h=[n/2]+[(p+1)/2]
alinmaldir.

Rousseeuw ve Leory (1987), h degerinin, h = [n (1 - a ) ] + 1 olarak segilmesini

onermislerdir.
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EKKK'in hesaplanmasi igin

Yay - Yob Y@, - Yosoh -5 Yoy, oo Yol
orneklemleri belirlenir. Herbiri h gozlem iceren bu gézlemlerin ortalamalari,
1% 1%
FO = sz(i) .., yoheD = ﬁz.y@
=1 =1

bulunur ve bunlara karsilik gelen kareler toplamlari (KT) asagidaki bicimde elde edilir:

n h
KT® = Z(}’(i) =y, KTMh*D = z oy — ¥W)?
i=1

i=n—-h+1

EKKK tahmini, en kiiglik KTY degerine karsilik gelen 379 olarak bulunur.

hyU™0 — yii_1y + Y(an-1y

5U) —
Y h

Karsilik gelen ortalama kareler toplamini hesaplanmak igin:
KTU) = KTU-D — }’(Zj—1) + y(2j+h—1) - hy(zj) + hy(2j—1)

esitligi kullanilir.

Rousseeuw ve Leroy (1987) tarafindan, EKKK'de EMK"de oldugu gibi regresyon, dlgek,
afin esdegiskendir. Ayrica, 1/2 (n + p — 1 ) gdzlemden fazlasi yi = x; B esitligini

sagladiginda EKKK tahmin edicisi de tam uyum o6zelligini saglamaktadir.
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3.1.3 S - Yontemi

Kavruk (2005) tarafindan, hem EMK hem de EKKK ydntemi, artiklarin dagiliminin
saglam olcuminin minimumu olarak tanimlanmaktadir. Candan (1995) tarafindan, S
tahmin ediciler, regresyon gibi ¢ok degiskenli durumlarda meydana gelen ylksek
bozulma noktasindan dolayi onerilir. Rousseuw ve Leroy (1987) tarafindan, bir boyutlu
durumda 6nemli bir tahmin edici sinifi da S'dir. Bir S tahmin edicisi, artiklarin dagilimini

en kuguk yapan 3 dederi olarak asagidaki gibi dnermistir:
Mlnﬁ S(yl - ﬁ; oy ¥Yn T B)'

S(B) = s(es(B), ..., en(B)) (3.13)

Artik dagiliminin B’ya goére en kuguk yapilmasindan elde edilmektedir
Ming S(B)

Burada, S tahmin edicileri,

esitliginin gézumunden elde edilmektedir.

Rousseeuw ve Leroy (1987) tarafindan, p artik fonksiyonunun asagidaki verilen

sekildeki ifadenin kullaniimasi dnerilmigtir:
x2  x*  «x
{— —-——+— x| <c

k% , x| >c

Bir Y = {y1, ..., yn} 6rnekleminde EMK, EKKK ve S tahmin edicilerinin bozulma noktasi,
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ozt
. 2
En(T,Y)=T

dir.
Bu oran n — « iken 0.50ye yakinsar.

Rousseeuw ve Leroy (1987) tarafindan, S tahmin edicilerinin de diger yuksek bozulma

noktali tahmin ediciler gibi tam uyum 6zelligini sagladigi belirtilmigtir.

S tahmin edicileri yiksek bozulma noktasina sahip olmasina kargin hatalarin normal
dagildigi durumda dusuk etkinlige sahiptir. S tahminlerinin etkinligini artirmanin bir yolu

da bir adim M tahmininin ya da yeniden agirlikli EKK tahmininin kullaniimasidir.

3.1.4 MM Yontemi

TUum yuksek bozulma noktasina sahip tahmin ediciler, yuksek etkinlige sahip MM tahmin
edicilerin hesaplamasinda baslangi¢ noktasi olarak kullanilabilir. Yohai (1987)
tarafindan, MM yontemi, istatistiksel etkinliginin (hatalarin normal dagildigi varsayimi
altinda) yuksek ve ayni zamanda ylksek bozulma noktasina sahip bir yontem oldugu

gOsterilmistir.

Yohai (1988) tarafindan, bu tahmin edicinin ¢okmeye dayanikli ve ylksek etkinlige
sahip lic asamadan olusan bir tahmin edici oldugu kanitlanmistir. ilk asama S tahmin
edicisini kullanir ve artiklari elde eder. ikinci agsamada, artiklari kullanarak M tahmin
edicisi hesaplanir. Son asama olarak, ¢cok yuksek artiklara 0 agirlik veren bir fonksiyon
ile M tahmin edicisi hesaplanir.

MM tahminleri Gg agamali olarak asagidaki gibi tanimlanabilir:

Asama 1:

Yuksek bozulma noktasina sahip (mumkunse 0.50), bir baglangi¢ tahmini segilir.
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Asama 2:
ei(30)= yi — B°x; ) 1<i<n

artiklari hesaplanir. S, = sn(e(ﬁ"))M Olgek tahmin, varsayimlarini saglayan bir p,

fonksiyonu kullanilarak,
b/a=0.5

esitligini saglayan bir b sabiti igin

G)Zn:p(ei(ﬁ)/sn) =p
i=1

esitliginden hesaplanir. Burada,

a = maxpo(y)

dir.

Bu ilk dlgek tahmininin 0.5 bozulma noktasina sahip olmasi icin, b/a = 0.5 olmasi

gerektigini Huber (1981) tarafindan tanitlanmistir.

Asama 3:

P1,Po icin verilen kosullari saglayan diger bir fonksiyon olmak Gzere:

p1(¥) < po(¥) ve Supp,(u) = suppy(u) = a

olmak tizere, MM tahmini 8,
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> (BB im0
i=1 n

S

esitliginin bir gozUmu olarak tanimlanir, ve bu tahmin

S(B;)=S(B,)

esitsizligini saglamaktadir. Burada,
S(B)= Zi1p,(ei(B)/sn) (3.14)

dir ve p;(0/0), 0 olarak tanimlanmaktadir. Bu tahminlerin hesaplamasinda kullanilan

iteratif agirlikli EKK algoritmasinin degisik bir bicimi Yohai (1987) tarafindan dnerilmigtir.
Bu algoritma asagidaki gibi ifade edilebilir:
Zi=(Yi %), 1<i<n

veri kimesi olmak Uzere, Ty, bu orneklemden hesaplanan yuksek bozulma noktali EMK

olsun.

Her t € RP igin agirlik fonksiyonlari,
Wi(t) = W1 (ei (t) / sn) / (&i (1) / Sn)

bicimde de tanimlanir.

Yuksek bozulma noktasina sahip EMK’in degisik yontemler icin baslangi¢ noktasi
olarak kullanimi yaygindir.

25



3.2 Saglam M Tahmin Yoéntemleri

Inal ve arkadaslan (2006) tarafindan, saglam tahmin ydntemleri icinde en yaygin
kullanilanlardan biri M tahminlerdir. M tahminler maksimum olasilik tahmininin
genellestiriimis  bigimidir. M tahmini olarak ¢ok sayida yontem sunulmustur. Bu
yontemlerin her biri farkli kayip, etki ve agirlik fonksiyonu ile tanimlanir. Parametre
tahmininde bilinmeyen parametrelerin gergcek degeri ile tahmin edilen degerleri

arasindaki fark kayip fonksiyonu ile ifade edilir.

Huber, Andrew ve Tukey olmak Uzere bu konuda birgok M- tahmini 6nerilmistir. Her bir
M- tahmine ait p(t), y(t) degerlerinin hesaplanigi sirasiyla asagida verilmistir (Akbilgi¢ ve
Keskinttrk 2008).

Huber’in Minimax Tahmini

t2
5 lt]| < b
PO =1 72
> lt| > b
_(t , lt] < ¢
b = {bsign(t) ) It] = ¢
Andrew in Sinlis Dalgasi Fonksiyonu
t2
5 lt]| < b
PO =1 72
- lt| > b
_ (sin(t), —-n<t<m
b(e) = {0 , deger durumlar
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Tukey’in ikili Agirliklar ( Bi — Weight)

t2
, lt| <c

p(t)={ 2
k , |t >¢

_ 2N\2
b = [ O

)

Q N

N

—nT<t<m
deger durumlar

M- tahmini igin p(t) = t¥2 ve (t) = t olarak belirlenirse EKK tahmini elde edilir.

Yukaridaki esitliklerde yer alan a ve c birer sabittir ve genellikle ayarlama sabitleri olarak

adlandirihr (Akbilgi¢c ve Keskinturk 2008).

Hampel in yeniden azalan tahmileri

Hampel U¢ parcali M tahmin edicileri asagidaki W fonksiyonu yardimiyla hesaplanabilir:

[ x
a signn (x),
Y() =9 atr—|Ix|) .
E— sign(x),
0,
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DORDUNCU BOLUM

4. UYGULAMA

Bu bélimde saglam regresyon tekniklerinden Huber, Hampel, Andrew ve Tukey'in M-
tahminlerini karsilastirmak amaciyla, énce gercek bir veri kiimesi, sonra gercek veri
kimesi degistirilerek elde edilen yeni veri kimesi Uzerinde M parametre tahminleri elde
edilmistir. Calismada IBM SPSS Statistic V23 ile Huber, Tukey, Hampel, Andrew tirli M

tahminleri hesaplanmistir.

Gergek veri olarak bir sirketin farkli boélimlerinde goérev yapan yoneticilerin aldiklari
maaslar ve yonettikleri butceler dikkate alinarak agsagidaki gizelge hazirlanmistir (Aydin
2014).

Cizelge 4.1 Butcge verileri.

Maas (Y) |butce (X)
Go6zlem No | (100TL) [(100.000TL)
1 60 3.5
2 67 5
3 50 2.5
4 83 6
5 96 7.5
6 76 4.5
7 64 6
8 52 4
9 83 4.5
10 59 5
11 45 2.5
12 98 12.5
13 97 9
14 72 7.5
15 57 6
16 71 5
17 45 3
18 98 8.5
19 76 7.5
20 69 6.5
Toplam 1418 116.5
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Uygulamamizda ¢izelge 4.1’ de verilen veri kiimesinin sacilim grafigi asagida

verilmektedir:

100.007

90.007

80.007

70.00

Maas

60.007

50.007

40.00

T T T
2450 5.00 7.50 10.00 1250

Sekil 4.1 Yonetilen butge miktarlarina karsilik alinan maaslarin sagilimi

Sekil 4.1’ deki sagcihm grafiginden veri kiimesinin dogrusal regresyon modeli ile iyi bir

bicimde temsil edilebilecegi agik olarak gorulmektedir.

Cizelge 4.1’ deki veri kimesinde, aykiri degerin oldugu ve olmadidi durumlar géz 6éniine

alinarak saglam M-tahmin yontemleri ile elde edilen degisik tahminler incelenmisgtir.

1. Durum: Tek aykiri deger oldugunda

Asagida saglam regresyon M tahminleri gizelge’de verilmektedir.
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Cizelge 4.2 Tek aykiri deger durumunda saglam regresyon tahminlerinin

kargilagtiriimasi

Yontem Maas (Y) Biitce
Huber M 69.831 5.601
Tukey M 70.067 5.483
Andrew M 70.071 5.475
Hampel M 70.168 5.602

Veri kiimesinin tek aykiri deger oldugu durumunda sacilim grafigi asagida verilmektedir:

Detrended Normal Q-Q Plot of Butge

25

2.0

Normal Sapma

0.59

=
=

0o

-0.5

Gézlenen deger

Sekil 4.2 Tek aykiri deger durumunda veri kimesinin sagilimi
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Hesaplanan artiklarin sacilim grafiginden 12. no’lu gbézlemin aykiri deger oldugu sekil

4.2’de acgik bicimde gortlmektedir.

12.57 o

5.0

2.5 e

T
Butge

Sekil 4.3 Butce Box-plot grafigi

Yukaridaki grafik incelendiginde veri kimesinde tek aykiri deger oldugu sdylenebilir.

2. Durum: iki aykiri deger oldugunda
Asagidaki cizelge’de veri kumesinde, iki aykiri deger oldugu durumu incelemek
amaclyla, bagimsiz dediskende rasgele bir dedisim yapilarak 7. goézlem igin bagimsiz

degisken deder 14 olarak tanimlandi.
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Cizelge 4.3 Veri kimesinde badimsiz degiskende 7. gdézlem degerinin degistiriimesi

Maas (Y) |bltce (X)

Gozlem No | (100TL) |(100.000TL)

1 60 3.5

2 67 5

3 50 2.5

4 83 6

5 96 7.5

6 76 4.5

7 64 14

8 52 4

9 83 4.5

10 59 5

11 45 2.5

12 98 12.5

13 97 9

14 72 7.5

15 57

16 71

17 45

18 98 8.5

19 76 7.5

20 69 6.5
Toplam 1418 124.5

Asagdida iki aykiri deger oldugunda saglam parametre M tahminleri gizelge'de
verilmektedir.
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Cizelge 4.4 iki aykiri deger durumunda saglam regresyon tahminlerin karsilastiriimasi

Yontem Maas (Y) Butce
Huber M 69.831 5.77
Tukey M 70.067 5.52
Andrew M 70.071 5.5
Hampel M 70.168 5.79

iki aykiri deger durumunda plot ve sacilim grafik asagida verilmektedir

Detrended Normal Q-Q Plot of Butce

Normal Sapma
&

Gozlenen deger

Sekil 4.4 iki aykiri deger durumunda veri kiimesinin sacilimi
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Butce

Sekil 4.5 iki aykiri deger durumunda Box-plot grafigi

Cizelge 4.4 (Iki aykiri deger durumu) ve gizelge 4.2 (tek aykiri deder durumu) dikkatle
incelendiginde sonuglarin birbirine ¢ok yakin oldugu goérulebilir. Yani, Huber M ve
Hampel M- tahmin edicileri arasinda énemli bir fark yoktur. Ayni sekilde Tukey M ile
Andrew M- tahmin edicileri de birbirine ¢ok yakin oldugu gorulebilir. Ayrica galistigimiz
veri kimesi icin Tukey ve Andrew M tahmin degerleri Huber ve Hampel M

tahminlerinden daha anlamli oldugu gorulmektedir.
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3. Durumu: Aykiri deger olmadiginda
Aykiri deger olmadiginda saglam tahminleri birbiriyle karsilastirmak amaciyla 12.
gozlem degeri veri kimesinden c¢ikariimistir. Asagidaki cizelge olusturan yeni veri

kimesi kullanilarak yeniden elde edilen tum sonuglar asagida verilmigtir.

Cizelge 4.5 Veri kimesinden 12. gdézlem dederinin ¢ikariimasi

Maas (Y) [bltce (X)
Gozlem No | (100TL) |(100.000TL)
1 60 3.5
2 67 5
3 50 2.5
4 83 6
5 96 7.5
6 76 4.5
7 64 6
8 52 4
9 83 4.5
10 59 5
11 45 2.5
13 97 9
14 72 7.5
15 57 6
16 71 5
17 45 3
18 98 8.5
19 76 7.5
20 69 6.5
Toplam 1320 104
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Cizelge 4.6 Saglam regresyon tahminlerinin karsilastiriimasi

Yontem Maas (Y) Biitce
Huber M 68.46 5.44
Tukey M 68.49 5.41
Andrew M 68.6 5.41
Hampel M 68.5 5.43

T
Butce

Sekil 4.6 Aykiri deger olmadigi durumunda Box-plot grafigi
Sekil 4.6, incelendiginde veri kimesinde aykiri deger olmadigi goérulmektedir. Aykir
deger yokken cizelge 4.6 incelendiginde Huber, Tukey, Andrew ve Hampel tahminlerin

birbirine ¢ok yakin oldugu gorulmektedir
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BESINCi BOLUM

5. SONUG VE TARTISMA

Birinci bolumde saglam yontemler ile ilgili bilgiler derlenerek dogrusal regresyon

tahminleri icin saglam tahminler incelendi.

ikinci bélimde, kullanilan tahmin yéntemleri ve tanisal dlglimlere énemli sagdlamlik
unsurlarindan olan bozulama noktasi tanimlandi. Uglincli béliimde yiksek bozulma

noktasina sahip yontemlerin 6zellikleri tartisildi.

Doérdincl boliumde, kullanilan veri kiimesi igin Saglam Regresyon tekniklerinden Huber,
Hampel, Andrew ve Tukey’'in M-tahminleri uygulandi. Bu ydntemleri, aykiri degerin

oldugu ve olmadigi durumlar g6z énune alinarak birbiriyle kargilastirildi.

Uygulamada gergek bir veri kiimesi kullanildi. ilk olarak veri kiimesinin aykiri deger olup
olmadigi test edildi ve tek aykiri deger oldugu goruldi. Ayni veri kimesinde rasgele
yapilan bir degisiklikle iki aykiri deger olan veri kiimesi yaratildi. Ote yanda orjinal veri

kiimesinden 12. goézlem degeri ¢ikartilarak ayni saglam teknikler karsilastirildi.

Veri kimesindeki tek veya iki aykiri deger olmasi durumunda Tukey ve Andrew’in M-
tahminleri diger tahminlerinden daha iyi sonuclar vermektedir. Aykiri degerin olmadigi

durumda ise saglam yontemler arasinda buyuk bir fark olmadigi goruilebilir.

Veri kimesindeki aykiri deger sayisi artiginda Hampel ve Huber yontemlerinin saglam
olmadigi gbézlemlenebilir. Aykiri deger olmadigi veya tek aykiri deger olmasi durumunda

Tukey ve Andrew’in M tahminleri gcok yakin sonuglar verdigi gorulmektedir.
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