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ÖZET 
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KASILMALARIN TESPİTİ VE ERKEN DOĞUM KESTİRİMİ 
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Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Danışmanı: DOÇ. DR. ATİLA YILMAZ 

Ocak 2017, 100 sayfa 

 

 

 Dünya çapında her 10 bebekten biri erken doğum sonucu yani 37 haftayı 

tamamlamadan dünyaya gelmektedir. Erken doğum bir çok problemi beraberinde 

getirmektedir. Erken doğum yapmış anne ile bebeğin bir süre hastanede kalması ve bebeğe 

özenli tedavinin uygulanması gerekmektedir. Bu bebeklerde solunum yetersizliği, akciğer 

rahatsızlıkları, zayıf bağışıklık sistemleri, zihinsel problemler ve öğrenme bozuklukları gibi 

bir çok rahatsızlık görülmektedir. Bu nedenle erken doğumun önceden kestirilmesi ciddi 

önem teşkil etmektedir. 

 Bu problemin kestirilmesinde rahim elektromyogram sinyalleri yöntemi 

kullanılmıştır. Çalışmanın ilk aşamasında kaynak taraması yolu ile seçilmiş öznitelikler 

kullanılarak sinyal üzerinde meydana gelen önemli olaylardan kasılma olayı diğer 

olaylardan ayırt edilmiştir. Bu sınıflandırma için doğrusal sınıflandırıcı olan en yakın 

uzaklık sınıflandırıcı ve doğrusal olmayan sınıflandırıcı olarak yapay sinir ağları 

kullanılmıştır. En yakın uzaklık sınıflandırma performansını arttırmaya yönelik ağırlık 
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eniyileme çalışmaları yapılarak elde edilen sınıflandırma performansı arttırılmıştır. 

Doğrusal olmayan sınıflandırıcı yapay sinir ağları ile kasılma ve rahimde meydana gelen 

kasılma, muhtemel kasılma ve bebeğin hareketi gibi olaylar başarılı olarak 

sınıflandırılmıştır. Bu olaylardan doğum hakkında önemli bilgi içeren kasılma olayı diğer 

durumlardan (bebeğin hareketi gibi) daha fazla önem taşımaktadır. Kasılma olayı 

hamilelik, erken doğum veya normal doğuma ait sinyaller üzerinde oluşabilmektedir. 

İkinci aşamada yapay sinir ağları yöntemi kullanılarak önceki sınıflandırmada elde edilen 

kasılmaların erken doğum, hamilelik veya normal doğum olaylarından hangisine ait olduğu 

incelenmiştir. İnceleme sonucu erken doğum kasılmaları diğer kasılmalardan başarılı 

olarak ayırt edilmiştir. 

 İki sınıflandırma performansının da kanallara göre değişimi incelenmiştir. Yüksek 

başarı elde edilen kanallar iki sınıflandırma için de farklı kanallardır. Bununla birlikte aynı 

katılımcının farklı zamanlarda meydana gelmiş kasılmalarına ait öznitelik değerleri 

karşılaştırılmıştır. Bu şekilde zaman-öznitelik değişimleri incelenerek zamanla daha çok 

ayırt edici olan özniteliğin belirlenmesi amaçlanmıştır. 

 Bu çalışmalara ek olarak Matlab ortamında sonraki çalışmalarda faydalı olabilmesi 

amacıyla bir sinyal işleme ve analiz arayüzü oluşturulmuştur. Arayüzde sinyal ön işleme 

çalışmaları, enerji ve korelasyon analizleri, öznitelik çıkarımı ve zaman-frekans analizleri 

yapılabilmektedir. 

 

 

Anahtar Kelimeler: Erken doğum, rahim EMG, kasılma tespiti, yapay sinir ağları, 

Matlab.  
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ABSTRACT 
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SIGNALS 

 

 

AYŞE TAŞDÖĞEN 
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Supervisor: Assoc. Prof. DR. ATİLA YILMAZ 

January 2017,100 pages 

 

 

 One in ten baby, worldwide borns before 37 weeks of pregnancy. Preterm birth 

brings lots of problems to the family afterwards. The mother who gives preterm birth and 

her child must stay in the hospital for a beginning and the child must be treated carefully. 

These babies might have many preterm associated discomforts such as respiratory 

insufficiency, lung disorders, weak immune systems, mental problems and learning 

disorders in their future. For this reason, the correct estimation of preterm has a great 

importance in order to increase the possibilities of eliminating some of those problems. 

 In this study, uterus EMG signals are used to estimate preterm births. In the first 

part of the study, using some features selected after the literature review, specifically 

contractions which are the set of important events occured on the EMG signals were 

classified from other significant events. For the classification stage,  minimum distance 

classifiers as a linear classifier example and artificial neural networks as a non-linear 

classifier example are used. The performance of minimum distance classifier has been 
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improved by  adjusting  class weights based on known class samples. Artificial neural 

networks classify the events like contraction, possible contraction and foetal movements 

that have occured on the uterus.  The contraction carrying important information about a 

birth is more important than other situations (such as baby movement) among all events. 

Besides, the contraction can occur in the signals including pregnancy, premature birth or 

normal birth. In the second part, contractions which were analysed by the first 

classification stage were reconsidered again in terms of understanding the differences of 

preterm birth, normal birth and pregnancy terms by assigning new artificial neural network 

units. As a result of this second part of the study preterm birth contractions were isolated 

from other term contractions successfully. 

Both of two classification performances were analysed in terms of the use of different 

bipolar channels. It is reported that the channels giving the best performance for the certain 

classifiers for an each classification effort. At the same time, time dependent variations in 

the features of contractions have been monitored and compared for temporal analysis. In 

this way, it was aimed to define more distinctive feature associated by time dependent 

variations. In addition to these studies, an interface for signal processing and dedicated 

analysis tools has been developed in the Matlab environment in order to give a better 

presentation for the results. Through the interface, signal preprocessing studies, energy and 

correlation analysis, feature extractions and time-frequency analysis can be planned. 

 

 

Keywords: Preterm birth, Uterine EMG, Contraction Detection, Artificial Neural 

Networks, Matlab. 
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1.GİRİŞ 

Dünya Sağlık Örgütü'nün tanımına göre erken doğum bebeğin 37 haftayı 

tamamlamadan önce doğmasına denir [1]. Normal gebelik süreci 37-40 hafta arasındadır. 

Erken doğumların %70’i 34-37' nci haftalar arasında gerçekleşir [1]. Dünya Sağlık 

Örgütünün açıklamalarına göre her yıl 15 milyon bebek bu süreden daha önce dünyaya 

gelmektedir. Bu rakam her 10 bebekten birinin erken doğum sonucu dünyaya geldiğini 

göstermektedir. Erken doğum sonucu dünyaya gelmiş bebeklerde kalıcı birçok sorun 

meydana gelmektedir. Anne karnında gelişimini yeterince tamamlamadan dünyaya gelen 

çocuklarda, beyin felci görülme oranı normal zamanında doğmuş çocuklara göre daha 

yüksektir. Öğrenme bozukluklarına dayalı zihinsel problemler, bağırsak ile ilgili 

rahatsızlıklar, solunum yetersizliği gibi akciğer hastalıkları, bağışıklık sisteminin zayıf 

olması ve buna bağlı enfeksiyonlar, görme ve işitme bozuklukları gibi problemler daha sık 

görülmektedir [1],[2]. Bu gibi ciddi sağlık problemleri çocuğun yaşamında kalıcı bir 

problem haline gelebilmektedir. Normal zamandan daha önce (37 haftayı tamamlamadan) 

doğan çocukların daha uzun süre hastanede kalması gerekmektedir. Bu olumsuz faktörler 

nedeniyle normal şartlarda bir bebeğin 9 ay 10 gün anne karnında kalması bebeğin sağlıklı 

olarak hayatta kalması açısından önem taşımaktadır. Anne karnında geçirilen bir gün bile 

bebeğin doğumdan sonraki hayatı için çok önemlidir. Erken doğum riski taşıyan 

bebeklerinbir süre daha anne karnında kalması için her türlü tıbbi çabasarfedilmektedir. 

Gerçek sebebi tam olarak açıklanamayan erken doğumu önceden kestirmek için bilimsel 

çalışmalar da sürmektedir. Doğum sancılarını durdurma işlemi olan tokoliz tedavisi bu 

müdahalelerden biridir. Bu tedavide anneye ağız ve damar yoluyla ilaçlar verilmektedir. 

Ayrıca bebeğin akciğer gelişimini tamamlamasına yönelik ilaçlar da anneye 

uygulanmaktadır. 34' üncü haftaya kadar devam ettirilen bu tedavide hala doğum sancıları 

kesilmezse tokoliz tedavisi yarıda bırakılır. Bu alandaki bilimsel çalışmalara rağmen henüz 

erken doğumu kesin olarak belirlemek mümkün değildir [3]. 

Erken doğum tespiti için amaç; mümkün olduğunca anne ve çocuk sağlığını doğru 

kararlarla korumak, bebeğin anne karnında kalma süresini arttırmak, hem doğum esnasında 

ve doğum sonrasında erken doğuma bağlı sorunların ve rahatsızlıkların ortadan 

kaldırılmasını sağlamak, doğum sonrası bebeğin ve annenin hastanede gereksiz kalmasını 

önlemek ve buna bağlı olarak kullanılan ilaç tedavisinin ortadan kaldırılarak daha sağlıklı 

bir doğumun gerçekleşmesini sağlamaktır [4].  Erken doğumun daha önceden 

kestirilememesi sonucu doğumu gerçekleşen bir bebeğin dolayısıyla annenin yukarıda 



13 
 

belirtilen sağlık ve maddi problemlerle karşılaşması önlenemeyecektir. Bu gibi istenmeyen 

durumların oluşmasını önlemek için en iyi sonuç verecek seviyede erken doğumun 

kestirilmesi ve kestirim yapılırken hata oranının enaz olması hedeflenmelidir. Erken 

doğumun kestirimi için uygulanan yöntemler arasında EMG sinyalleri kullanım kolaylığı 

ve sonuçların güvenliği açısından diğer yöntemlere göre daha uygun ve daha başarılı bir 

yöntem olarak sunulmaktadır [4]. 1950’li yıllardan beri birçok akademik çalışmaya konu 

olan EHG, son yıllarda bu önemli amaç için umut verici bir yöntem olarak tekrar ele 

alınmaktadır. 

 EMG sinyallerinin frekans tabanlı çözümlemeleri ve zaman tabanlı analizleri 

normal doğum kasılmaları ve erken doğum kasılmalarını birbirinden ayırabilme konusunda 

önemli ölçüde bilgi vermektedir. Bu tezde erken doğumun EMG sinyalleri yöntemiyle 

kestirim yapılması amaçlanmıştır. Uygulanan çalışmada öznitelikler ve sınıflandırıcı 

belirlenirken rahim sinyallerinin doğrusal ve durağan olmayan yapısı göz önünde 

tutulmuştur. Kaynaklar incelendiğinde en belirleyici parametrenin ne olduğu ile ilgili 

çalışmaların devam ettiği görülmektedir ancak bu konuda kesin bir sonuca ulaşılmamıştır. 

Uygulanan çeşitli yöntemlere göre zamanında doğum için ve erken doğum tespiti için 

kabul edilen en önemli frekans tabanlı parametrelerden birisi olarak Güç Spektral 

Yoğunluk Fonksiyonu gösterilebilir. Bununla birlikte bazı çalışmalarda Fourier 

Dönüşümü, Dalgacık Analizi veya Zaman-Frekans Analizi hesaplanır ve ilgili yorumlar 

yapılabilir. Bu çalışmada ise zaman ve frekans tabanlı özniteliklerden 11 adet öznitelik 

belirlenmiştir. Kaynaklardan seçilen bu özniteliklerin farklı amaçlarla sınıflandırma 

performansına etkisi çalışmaları yapılmıştır [5],[6]. 

Günümüze kadar gelen araştırmalardaerken doğum kestirim yöntemi olarak hangi 

yöntemin kullanılması konusunda da kesin bir sonuca ulaşılamamıştır. Bunun yanında 

rahim EMG sinyallerinin doğrusal ve durağan olmayan yapısından dolayı sınıflandırıcı 

olarak doğrusal olmayan yapay sinir ağları da uygun bir yöntem olarak görülmektedir. 

Bununla birlikte doğrusal sınıflandırıcılardan ise en temel sınıflandırma yöntemi olan en 

yakın uzaklık sınıflandırıcı incelemeye alınmıştır. Elde edilen sonuçlar erken doğum 

kestirimi için umut vericidir. 

Çalışmada kullanılan veri seti Pyhsionet internet sitesinde yer alan İzlanda veri 

setidir. Bu veri setinde 45 farklı kadından hamilelik veya doğum anında kaydedilen 122 

sinyal bulunmaktadır. Bu sinyaller 16 elektrot kullanılarak kaydedilmiştir [7]. 
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Sinyaller üzerinde yer alan kasılma bölgelerinin diğer bölgelerden ayırt edilmesinde 

%86,4 performans, genel doğruluk oranı olarak ise %79 performans elde edilmiştir. 

Hamilelik, erken doğum, normal doğum veya erken doğum ile sonuçlanmış hamilelik 

zamanına ait rahimde kasılmalar oluşabilmektedir. Bu kasılmaların diğer olaylardan ayırt 

edilmesinden sonra tekrar bu kasılmalar da kendi içinde sınıflandırılmıştır. Erken doğum, 

hamilelik ve normal doğum sinyallerinden oluşan kasılmalar içinde erken doğum 

kasılmaları 87,5% doğruluk oranı ile sınıflandırılmıştır. Sınıflandırma performansının 

kanallara göre değişimi de incelenmiştir.  

 Bu çalışma ile erken doğumun tespit edilmesi için önce kasılma bölgeleri sinyal 

üzerinde meydana gelen diğer önemli olaylardan ayrılmıştır. Belirlenen bu kasılmalardan 

erken doğuma ait kasılmalar da yapay sinir ağları ile sınıflandırılmıştır. Performans 

sonuçları değişimi her bir bipolar kanala göre incelenmiştir. Bu çoklu kanallar arasında 2, 

4, 7 ve 12' nci bipolar kanallar sınıflandırma aşamasındaen iyi sonuçları vermiştir. 

Tezde rahim sinyallerini kolaylıkla analiz edebilmek için Matlab ortamı 

kullanılarak sinyal işleme ve analiz arayüzü oluşturulmuştur. Arayüzde sinyal ön işlemleri, 

filtreleme işlemleri, enerji analizleri, kanalların enerji ve ilinti kıyaslamaları, kasılma 

bölgelerinin otomatik olarak kestirilmesine yönelik çalışmalar, zaman ve frekansa dayalı 

özniteliklerin hesaplanması ve kaydedilmesi mümkündür. Ayrıca bu arayüze farklı veri 

setlerinin de uyarlanması ileride kaydedilen başka sinyallerin analizine yönelik çalışmalara 

da katkı sağlayacağı düşünülmektedir. 

Bu çalışma genel olarak altı bölümden oluşmaktadır. Çalışmanın ikinci bölümünde 

erken doğum tespit yöntemleri, kullanılan veri setleri, rahmin anatomik yapısı ve kullanılan 

elektrot dizilimleri, erken doğum tespiti için yapay sinir ağları ile yapılan çalışmalar 

konusunda bilgi verilmiştir. Üçüncü bölümde öznitelik çıkarımı ve daha önce bu amaca 

yönelik olarak kullanılan öznitelikler ve bu çalışmada kullanılan öznitelikler hakkında bilgi 

verilmiştir. Dördüncü bölümde kullanılan sınıflandırıcılar, beşinci bölümde sinyal işleme 

adımları ve kullanılan sınıflandırıcılara göre elde edilen sonuçlar ve bu sonuçların farklı 

kanallara göre değişimi ile ilgili bilgi verilmiştir. Altıncı bölümde Matlab ortamında 

oluşturulan arayüz ile ilgili detaylı bilgi yer almaktadır. Son olarak yedinci bölümde 

değerlendirme ve sonuç kısmı yer almaktadır. 
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2. ERKEN DOĞUM TESPİT YÖNTEMLERİ 

Erken doğum tespit yöntemlerini ayrıntılı incelemeden önce rahim yapısı ve 

kullanılabilecek veri tabanları ile ilgili bilgileri gözden geçirmek gerekmektedir. 

 

2.1. Rahim ve Anatomik Yapısı 

Kadın üreme organı olan rahim bebeğin hamilelik süresi boyunca kaldığı yere 

denir. Rahimde, hamilelik ve doğum esnasında birçok değişiklik gözlenmektedir. Fiziksel 

olarak doğum işlemi genel olarak karmaşık bir süreçtir. Bu süreçte bir takım hormonal ve 

fiziksel değişikler olmasının yanında doğumu tetikleyen bu hormonal faktörlerin eşik 

değeri tam olarak bilinmemektedir. 

Birden fazla parametre ve duruma bağlı olan karmaşık doğum olayının kesin zamanının 

belirlenmesi için hormonal faktörlerden başka parametrelerin de araştırılması yararlı olur. 

Bunun için rahim bölgesinden elektrotlar yardımıyla alınan sinyaller analiz edilmektedir. 

Rahim bölgesine farklı elektrot dizilimleri ile sinyaller kaydedilebilir. Fakat bu dizilimler 

belirlenirken rahmin fiziksel yapısı ve yeri göz önünde bulundurulmalı ya da bu konuda 

uzman doktorlardan yardım alınmalıdır. Çeşitli elektrot dizilimleri ve bu şekilde elde 

edilen sinyallere geçmeden önce rahmin anatomik yapısı ve doğum olayının rahim 

üzerindeki hormonal olarak etkisi aşağıda açıklanmıştır. 

 

2.1.1. Doğum Olayının Rahim Üzerindeki Hormonal Etkisi 

Kadın üreme organı olan rahim kasık bölgesinin merkezindedir. Bu bölgede 

bulunan idrar torbası ve rectumun yani kalın bağırsağın son kısmı arasında yer alır. Sağ ve 

sol tarafında (fallov tüpleri) yumurtalıklar yer alır. Rahim normal durumda 30 ile 80 gram 

aralığındadır. Gebelik döneminde rahmin ağırlığında da artış görülmektedir. Ters üçgen 

şeklini andıran rahim üç ana bölümden oluşur. Bunlar, serviks (rahim ağzı), rahmin iç 

kısmı ve fundustur. Rahmin ana bölümleri Şekil 1'de verilmiştir. 

 Rahim ağzı boyutu ortalama 3 cm olurken (serviks) her kadının yaşına ve hormonal 

olarak menstrual döngüsüne göre farklılık gösterir [8]. Rahmin en alt kısmında bulunur. 

Hamilelik boyunca embriyoya zarar verebilecek zararlı her türlü şeyin rahme girişini 

engeller. Rahim kasılma yeteneği çok güçlü olan kaslardan meydana gelir. Rahim ana 
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duvarında 3 ana kısım vardır.  En içten dışa doğru; endometriyum, miyometrium ve seroza 

yer alır [9]. 

 

Şekil 1.Rahim ve ana bölümleri[9] 

 

Endometriyum bölgesi rahmin en iç kısmında bulunur ve eğer yumurta döllenmiş ise 

embriyo gelişim sürecinde kalınlaşır ve embriyonun gelişimini tamamlayacağı rahat yatak 

ortamını oluşturur. Yumurtalıklarda gelişen yumurta döllenmez ise menstüral döngü ile 

birlikte dışarı atılır. Miyometriyum rahmin dış kısmında bulunan en kalın yapıdır. 

Hamilelik boyunca bu yapı da boyut olarak değişiklik gösterir. Doğum sırasında hormonal 

ve fiziksel faktörlerin de etkisiyle bebeğin ve plasentanın dışarı atılmasında rol oynar. 

Embriyonun büyümesi ile miyometriyum hacimsel olarak yeterince genişleyebilecek 

yapıya sahiptir. Doğum sonrasında ise hacimsel olarak eski şeklini alır. 

En dış kısımda bulunan yapı serosa, rahmi çevreler ve korur. Yüzeyindeki bağlar 

sayesinde rahmin sabit durabilmesini sağlar. Hamilelik süresi boyunca meydana gelen 

fiziksel ve hormonal değişiklikler sayesinde doğum meydana gelir. Hormonal olarak 

progesteron ve östrojen hormonlarının değişimi rahim üzerindeki kasların kasılabilirliğini 

arttırdığı için doğum üzerinde etkilidir. Progesteron hormonu hamilelik süresince 

rahimdeki kasların kasılabilirliğinin aşırı artışını kontrol eder. Bu şekilde embriyonun 

tutunmasında rol oynar. Östrojen hormonu temel olarak rahim kaslarının kasılabilirliğini 

arttırarak doğumda etkin role sahiptir. Bu kasılmalar sayesinde doğum başlayacağı için, 

kasılabilirliğini azaltan progesteron-östrojen oranı doğum öncesi azalır. Fakat bu 

hormonların neye göre artış ya da azalış gösterdiği bilinmemektedir. Oksitosin hormonu 
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doğum olayında etkili olan bir diğer hormondur. Doğum yaklaştıkça bu hormonun seviyesi 

artar. Rahim yüzeyindeki kasların kasılabilirliğinin artmasında yine bu hormon etkilidir 

[9]. 

 

2.2. Rahim EMG Veri Seti 

Erken doğum istatiksel olarak normal doğumların %10’unu oluşturduğu için bu 

alanda geniş ve kapsamlı veri setinin elde edilmesi erken doğum kestirimi üzerinde büyük 

etkisi olacaktır. Çünkü rahim sinyalleri her bir kadında farklı olabilmektedir. Veri seti ne 

kadar kapsamlı olursa elde edilen doğruluk değerleri de gerçeğe o kadar yakın olacaktır. 

Rahim EMG sinyalleri rahim yüzeyine yerleştirilen farklı elektrot dizilimleri ile kayıt 

edilebilir. Bu dizilimler daha önce deneysel çalışmalar sonucu ve Kadın Doğum doktorları 

tarafından belirlenmiş olup rahmin bulunduğu bölge yapısına göre belirlenmiştir. Pysionet 

internet sitesinde kolaylıkla ulaşılabilen 2 farklı rahim EMG veri tabanı bulunmaktadır. 

Lubliyana ve İzlanda veri setleri kaynaklarda sunulan çalışmalarda da sıklıkla 

kullanılmıştır. Lubliyana veri seti 4 elektrot kullanılarak kayıt edilmiş erken doğum ve 

normal doğum sinyallerini içerir. Bu veri setinde bulunan kayıt edilen sinyaller her biri 

farklı kadından elde edilmiştir. Ayrıca bu sinyaller üzerinde çok fazla gürültü mevcuttur 

[10]. 

 Eletrot sayısının fazla olması rahim sinyallerinin incelenmesinde daha fazla bilgi 

içerir. Bu tezde üzerinde çalışılan veri seti Physionet internet sitesinde bulunan İzlanda veri 

setidir [11]. 16 kanaldan kayıt edilen bu veri seti doğum ve normal doğum, erken doğum 

sinyallerini içermektedir. İzlanda veri seti 16 elektrot ile 45 farklı kadından kaydedilmiş 

122 rahim sinyali içerir. 45 kadından kaydedilen sinyallerin 112 tanesi hamilelik 10 tanesi 

doğum sinyalidir. Her bir kadından sinyaller hamileliğin belirli haftalarında, hem 

hamilelikte hem doğum anında ya da yalnız doğum anında kaydedilmiştir. Kayıtlarda 

sinyallerin ilk 30 saniyesi için takograf cihazı kaydının görüntüsü bulunmaktadır. 

Sinyallerle ilgili diğer bilgi ise 111 sinyal için bulunan ön bilgilerdir. Şekil 2'de elektrotlar 

7 cm’lik aralıklarla dörtlü dizilim yada 16 elektrotluk olarak verilen iki farklı elektrot 

dizilimi verilmiştir. 
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Şekil 2. Farklı elektrot Dizilimleri [10] 

Önemli olayların çeşidini ve zamanını içeren bu bilgiler hem kayıt sırasında katılımcı 

üzerindeki gözlemler ve katılımcının hissettiği kasılmalar, hareketlenmelerdir. Bunların ön 

bilgi olarak kaydedilmesi için takograf kaydında da gözlemlenmiş olması gerekir. Bazen 

katılımcının hissettiği kasılma ve hareketlenmeler takograf cihazında görülmeyebilir. Ya 

da katılımcının hissedemediği olaylar takograf cihazında gözlemlenebilir. Ön bilgiler yani 

katılımcının kayıt sırasında hissettiği olaylar aynı zamanda takograf kaydında da görülmesi 

sonucunda kaydedilir. Bu yüzden her sinyal için bilgi notu bulunmamaktadır. Ön bilgiler 

şu şekildedir: 

 Kasılma 

 Muhtemel kasılma 

 Katılımcının hareketi 

 Pozisyon değişimi 

 Bebeğin hareket etmesi 

 Kayıt cihazlarından kaynaklı gürültü 

Hamilelik süreç (pregnancy) sinyallerinin ortalama kayıt süresi 61 dakika olmak üzere en 

kısa kayıt 19, en uzun 81 dakikadan oluşmaktadır. Hamilelik doğum (labor) sinyallerinin 

kayıt süresi ise ortalama 36 dakikadan yine en kısa kayıt 8 dakika en uzun kayıt 64 

dakikadan oluşmaktadır. Kaydedilen her sinyal için ilgili açıklama (gestasyonel zamanı, 

varsa önceki doğum bilgileri ve doğum şekli, yapay oksitosin bilgisi vb.) detaylı olarak yer 

almaktadır [7]. 

Katılımcılardan elde edilen sinyaller Şekil 3’ te verilen elektrot dizilimine göre elde 

edilmektedir. Monopolar 16 kanal sinyalden bipolar sinyaller elde edilmiştir. Gürültü 

seviyesini azaltmak için sinyal işleme aşamasında kanallar bipolar olarak ele alınmıştır. 
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Şekil 3. Elektrot Dizilimi [7] 

Kayıtlı bilgiler yardımıyla, kasılma, bebek hareketi gibi sinyal aralıkları bilinmektedir. Bu 

nedenle kasılma, muhtemel kasılma, bebek hareketi, pozisyon değişimi, kasılma ve bebek 

hareketi olarak daha önceden belirlenen sinyal aralıklarının her birine özgü öznitelikler 

çıkarılmıştır. 

Özniteliği çıkarılan önemli olayların sayısı şöyledir: 

 223 Bebek hareketi (Foetalmovement), 

 224 Kasılma (Contraction), 

 44 Muhtemel kasılma (Possible Contraction), 

 43 Kasılma ve bebek hareketi  

 42 Katılımcının hareketi (Participant Movement), 

 4 Katılımcının pozisyon değişimi (Participant Change of Position), 

 21 Ekipmandan kaynaklı gürültü (Equipment Manipulation), 

Bu olaylardan; ekipmandan kaynaklanan gürültü, katılımcının hareketi veya pozisyon 

değiştirmesi hamilelik ya da doğum ile ilgili kasılmalar hakkında bilgi içermemektedir. Bu 

nedenle bunlar dışındaki bilgiler kullanılmıştır. Bu bilgiler yardımıyla kasılma muhtemel 

kasılma ve foetal hareketlenmeleri en iyi performansta kestirim yapılmaktadır. Bu kestirim 

bilgilerine göre kasılma bölgeleri tespit edildikten sonra erken doğum kaydı yeralan 

sinyallerin kasılmaları sınıflandırılmaktadır. 

 

2.3. Doğum Sinyali Kestirimi Uygulamaları 

Doğum ve hamilelik sinyallerinin belirlenmesinde yapılan çalışmalar incelenmiştir. 

Hamilelik ve doğum sinyallerini sınıflandırma doğruluğunu arttırmak için frekans ile ilgili 
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parametreler yardımıyla çoklu destek vektör makinesi (Support Vector Machines) yöntemi 

ile farklı bir veri setine uygulanmıştır. Hamilelik ve doğum sırasında alınan sinyallere 

uygulanan çoklu SVM metodu sonucu sınıflandırma doğruluk oranı hamilelik için %93,5 

iken doğum için %84,3 olarak elde edilmiştir [12].  

Zaman ve frekans tabanlı analiz yöntemi olan dalgacık yönteminde gerçekleştirilen 

analiz sonucu hamilelik ve doğum kasılmalarının enerjisi karşılaştırılmıştır. 3'üncü 

seviyeden dalgacık paket açılımının enerjisi, hamilelik ve doğum sinyalleri arasında ayırt 

edici bir yöntem olarak belirlenmiştir. Gestasyon haftası arttıkça dalgacık paketlerinin 

enerjilerinin arttığı görülmüştür [13]. 

Doğum ve hamilelik sinyallerinin kestirilmesinde ortalama frekans ve kasılmanın 

süresi önemli bir ipucu vermektedir. Doğum sinyalleri genel olarak yüksek frekanslı ve 

meydana gelen kasılmalar uzun süreli olmaktadır. Hamilelikteki kasılmalar bunun aksine 

daha kısa süreli olmaktadır. Ayrıca bu sinyallerin doğum kayıtlarına göre daha düşük 

frekansta ve parametre değerlerinin düşük olduğu tespit edilmiştir [14]. 

Uygulanan çalışmalarda önemli olan üç temel unsur vardır. Bu unsurlar; veri seti, 

sınıflandırıcı yöntemi ve özniteliklerdir. Bunun önemini vurgulayan bir çalışma aynı veri 

setinde frekans analizi yapılıp medyan frekansının en iyi ayırt edici parametre olduğu 

görülmüştür [15]. Bu araştırmanın devamı olarak aynı veri seti ve öznitelikler kullanılarak 

iki farklı yapay sinir ağları modeli ve performansları karşılaştırılmıştır. Yarışan 

(Competitive) Neural Network sinir ağı ile Radial Tabanlı fonksiyon sinir ağı sırasıyla 

%78,4 ve %82,65 doğruluk oranlarını vermiştir [5]. 

Rahim EMG sinyallerini erken doğum, normal doğum veya hamilelik sinyalleri olarak 

ayırt edebilmek amacıyla ANN (Artificial Neural Network) birçok kez kullanılmıştır. 37 

haftanın öncesi ve sonrasında kaydedilen hamilelik veya doğum sinyalleri frekans tabanlı 

öznitelikler kullanıldığında ortalama %80 doğruluk oranı ile sınıflandırılabilmiştir [6]. 

 

2.4. Erken Doğum Tespiti 

Erken doğum tespiti için amaç; hem doğum esnasında ve doğum sonrasında erken 

doğuma bağlı sorunların ve rahatsızlıkların ortadan kaldırılması ve doğum sonrası bebeğin 

ve annenin hastanede gereksiz kalmasının önlenmesi ve buna bağlı olarak kullanılan ilaç 

tedavisinin ortadan kaldırılarak daha sağlıklı bir doğumun gerçekleşmesini sağlamaktır [4].  

Erken doğumun daha önceden kestirilememesi sonucu doğumu gerçekleşen bir bebeğin 
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dolayısıyla annenin yukarıda belirtilen sağlık ve maddi problemlerle karşılaşması 

önlenemeyecektir. Bu gibi istenmeyen durumların oluşmasını önlemek için optimum 

seviyede erken doğumun kestirilmesi ve kestirim yapılırken hata oranının enaz olması 

hedeflenmelidir. 

Erken doğumu tespit etmek için günümüze kadar birçok yöntem araştırılıp denenmiştir. 

Yaygın olarak kullanılan yöntemler; Takodinamometre cihazı, Transvajinal Serviks 

Uzunluğu, Bishop Skoru ve Elektromiyografi sinyalidir. Takodinamometre cerrahi 

müdahale ile rahim duvarına yerleştirilir. Rahim yüzeyinde meydana gelen fiziksel 

değişiklikleri ölçer. Bu değişikler rahimdeki kasılmalar olarak yorumlanır [4]. Transvajinal 

Serviks uzunluğu ultrason yardımıyla ölçülebilir. Deneysel bir çalışma sonucunda bu 

uzunluk ile erken doğum riski arasında ters orantı bulunmaktadır. Bu uzunluk değeri 

kısaldıkça erken doğum yapma riski artmaktadır [8]. Diğer bir yöntem olan Bishop skoru 

birden fazla parametre kullanılarak hesaplanan bir değerdir. Leğen kemiğinin genişleme 

miktarı, rahim boyunun kısalma oranı, yeri ve durumu değerlerinden hesaplanır. Bishop 

Skor değerine göre normal doğum veya erken doğum kestirimi yapılabilmektedir. Skor ne 

kadar yüksek ise normal doğum gerçekleşme olasılığı o kadar yüksek demektir [4]. Tüm 

bu yöntemler erken doğum tespiti için kullanılmış olan yöntemlerdir. Bir diğer yöntem ise 

rahim dış yüzeyindeki elektrotlar ile kaydedilen elektromiyogram (EMG) sinyallerini 

incelemektir.  EMG sinyali cerrahi müdahaleye gerek duyulmadan rahmin dış yüzeyine 

yerleştirilen elektrotlar yardımıyla kayıt edilebilir. Bu yönüyle daha önceden uygulanan 

yöntemlere göre daha avantajlıdır. Erken doğum tespiti için rahim EMG yöntemi 

uygulanan diğer yöntemlere göre daha uygulanabilir ve daha güvenilir sonuç vermektedir 

[4].  

Kas elektriksel sinyallerinin elektrotlar yardımıyla ölçen ve kayıt eden cihaza 

elektromiyografi kaydedilen sinyallere de elektromiyogram sinyalleri denir. Girişimsiz 

(non-invasive) olarak yani cerrahi müdahale olmadan yapılan rahim elektromiyogramı 

(uterus electromyogram), diğer bir adıyla elektrohistogram (EHG), rahimde meydana gelen 

kasılma hareketlerinden oluşan biyolojik sinyallerdir. Bu sinyaller erken doğumun 

kestirimi için önemli bilgi kaynağıdır. 

 Şekil 4' te dört farklı erken doğum kestirim metodunun ROC (Receiver Operating 

Characteristic) eğrileri verilmiştir. Bu şekilde anlaşılan rahim EMG yöntemi diğerlerine 

göre daha hassas ve bu nedenle daha güçlü bir kestirim metodu olduğu görülmektedir. 
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Şekil 4.ROC karakteristiklerinin karşılaştırılması[4] 

 Rahim EMG sinyallerini kaydetmek için elektrotlar rahim yüzeyindeki belirli 

noktalara yerleştirilir. Rahim bölgesinden hamileliğin farklı zamanlarında veya doğum 

anında EMG sinyalleri kaydedilir. EMG sinyalleri durağan veya periyodik sinyaller gibi 

değildir. Bu yüzden aynı haftaya ait farklı iki hamileden alınan sinyaller arasında gözle 

ayırt edilebilecek bir benzerlik bulunmaz. Hatta aynı kadının farklı zamanlardaki rahim 

EMG sinyallerini kolaylıkla belirlemek zordur. EMG sinyallerinin bu tür karmaşık 

özelliğinden dolayı, sinyalin doğrusal ve doğrusal olmayan özellikleri belirlenerek bu 

özellikler yardımıyla sinyallerin doğum, erken doğum ve hamilelik gibi sınıflara ayırt 

etmek mümkün olabilmektedir. 

 

2.4.1. Yapay Sinir Ağı Uygulamaları 

Yapay sinir ağları daha önceki çalışmalarda farklı veri setlerine, farklı öznitelikler 

kullanılarak erken doğumun belirlenmesi için uygulanmıştır. Bu yöntem önce farelerin 

rahim EMG sinyalleri üzerinde erken doğumu belirlemek amacıyla kullanılmıştır ve 

yüksek performans elde edilmiştir [8],[16]. Dalgacık paket enerjisi özniteliği ve yapay sinir 

ağı kullanılarak erken doğum ile normal doğum sinyalleri %64,1 performans ile 

sınıflandırılmıştır [17]. Öznitelik seçimi sınıflandırma işleminde en önemli aşamadır. 

Sınıflandırma yaparken bu değerler kullanıldığı için doğru ve uygun parametrelerin 

seçiminin sınıflandırma performansı üzerinde büyük etkisi vardır. Öznitelikler zaman 

frekans veya istatiksel tabanlı seçilebilmektedir. Frekans tabanlı seçilen özniteliklerden 

Hassaslık 
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erken doğum üzerinde en ayırt edici öznitelik güç spektral yoğunluk fonksiyonunun tepe 

frekansıdır [18]. 

 Sinyali hem zamana hem de frekansa bağlı olarak analiz etmeye yarayan yöntem 

dalgacık paket dönüşümü özniteliği kullanılarak yapay sinir ağı tasarlanmıştır. Hamilelik 

sinyalleri %96,3 doğum sinyalleri %71 doğruluk oranı ile sınırlandırılmıştır [19]. Doğum 

anında olduğu gibi normal hamilelik döneminde ve erken doğum zamanlarında rahim 

sinyallerinde kasılmalar meydana gelebilmektedir. Bu kasılmaların hangi zamana ait 

olduğunu belirleyebilmek erken doğumu kestirebilmenin bir başka yoludur. Yine yapay 

sinir ağı kullanılarak farklı dönemlere ait kasılmalar yüksek performans göstererek 

sınıflandırılmıştır [6]. 

Dalgacık Paket Dönüşümü öznitelikleri de kullanılarak erken doğum kestirilmeye 

çalışılmıştır. Bu çalışmaya göre destek vektör makineleri kullanılarak uygulanan 

sınıflandırma sonucu yüksek performansta erken doğum kasılmaları tespit edilmiştir [20]. 

Erken doğum tespiti için makine öğrenmesi teknikleri sonucu elde edilen sonuçlar yaklaşık 

olarak klinik verilere uygulanmış ve ortalama %61 doğruluk oranını geçememiştir [21]. 

Düşük sonuçlar elde edilmesinin önemli sebeplerinden birisi erken doğum verisinin yeterli 

sayıda olmaması olarak açıklanmıştır [21]. Bir başka çalışmada danışımsız (Unsupervised) 

sınıflandırma yöntemi diğeri ise AR modele dayalı K-en yakın komşuluk sınıflandırıcı 

yöntemi uygulanmıştır. Yapılan çalışmada AR model, filtre gibi işlev gördüğü için 

danışımsız sınıflandırma yöntemine göre daha yüksek bir başarı elde edilmiştir [22]. 

Yapay sinir ağına yönelik çeşitli çalışmalar Ampirik Mod Ayrışımı ile analiz 

edilmiş ve elde edilen sonuçlar ciddi oranda iyileştirilmiştir. Ampirik Mod Ayrışımı, Kısa 

Süreli Fourier ve Dalgacık Dönüşümü gibi özellikle durağan olmayan sinyalleri analiz 

etmeye yarayan bir yöntemdir. Erken doğum kestirimi için yapay sinir ağı yöntemlerinin 

sonuçlarının iyileştirilmesinde faydalı olduğu görülmüştür [16]. Kaynaklar incelendiğinde 

2000’li yıllardan günümüze kadar erken doğum tespiti için rahim EHG sinyallerine birçok 

farklı yöntemin uygulandığı görülmektedir. Uygulanan yöntemler sonucunda; gerek veri 

setinin yeterince kapsamlı olmaması; farklı bölgelere ait çeşitli veri seti havuzunun 

oluşturulamaması, gerekse uygun doğrusal ve doğrusal olmayan özniteliklerin 

seçilememesi veya uygun ve yüksek performanslı sınıflandırıcıların kullanılmaması 

nedeniyle hala erken doğum başarılı ve kesin olarak tespit edilememektedir. 

Erken doğum problemine bir diğer yaklaşım doğum sinyalleri ile hamilelik 

sinyallerini ayırt edebilmeye yöneliktir. Bu amaçla yapılan çalışmalar sonucu doğum 
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sinyallerinin başarılı olarak kestirilebilmesi yine bir doğum sinyali olan erken doğum 

sinyallerini belirlemede önemli bir yeri olduğu açıktır. 

 

2.4.2. Sınıflandırma Amaçlı Sinyal İşleme Sistematiği 

Bu çalışmada erken doğum kestirimi amacıyla yapılan işlemlerin blok diyagramı Şekil 5'te 

verilmiştir. Veri setindeki sinyallere sinyal ön işleme yöntemleri uygulandıktan sonra blok 

diyagramında da verildiği gibi iki kanaldan birinde sinyal kayıt bilgilerinden faydalanılarak 

sinyal üzerinde meydana gelen olaylara ait öznitelikler çıkarılmıştır. Diğer yandan da bu 

bölgelerin otomatik olarak tespit edilmesine yönelik çalışmalar yapılmıştır. Bu amaçla 3 

farklı algoritma uygulanarak; kasılma, bebek hareketlemesi gibi önemli olaylar otomatik 

olarak bölütlenmiştir. Her sinyale ait ön bilgi yer almadığı için bu algoritma sonuçları 

yalnızca kendi içinde karşılaştırılmıştır. 

 

Şekil 5. Sinyal İşleme Blok Diyagramı 

Ön bilgilere ait öznitelikler çıkartıldıktan sonra doğrusal ve doğrusal olmayan 

sınıflandırıcılar kullanılarak kasılma sınıfının da içinde bulunduğu rahimden kaynaklı 

(bebek hareketi, muhtemel kasılma ve kasılma) 3 farklı sınıfa ayrılmıştır. Bu aşamadan 

sonra veri setinde yer alan erken doğum ile sonuçlanan hamilelik kasılmaları, normal 

doğum ile sonuçlanan kasılmalar ve doğum anında meydana gelen kasılmalar olarak yine 3 

sınıf olarak ele alınmıştır. İkinci kez sınıflandırma işleminde doğrusal olmayan 

sınıflandırıcılar kullanılarak erken doğum kasılması ve diğer kasılmalar ayrı olarak 

sınıflandırılmıştır. Bu gösterimin önemli adımlarından öznitelik belirleme bir sonraki 

bölümde ayrıntıları ile sunulmaktadır. 
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3. ÖZNİTELİK BELİRLEME 

 Sinyal analizinde özniteliklerin belirlenmesi önemli bir aşamadır. Doğrusal 

olmayan ve belirli bir yapısı bulunmayan rahim EMG sinyallerini analiz ederken yapılması 

gereken öncelikle bu sinyalin karakteristiğini en iyi yansıtan özniteliklerin belirlenip ve 

çıkartılması gerekmektedir. Çünkü sinyalin kestirilmesi işleminde çıkarılan öznitelik 

değerleri kullanılır. Bu nedenle bu değerlerin uygun seçilmesi ve doğru hesaplanması 

sinyal sınıflandırmasında en önemli kısımlardandır. Çok sayıda öznitelik belirlemek 

sinyalin analizinde doğru tespitleri elde etmemize fayda sağlarken bir yandan da veri 

boyutu artışından kaynaklı iş gücü ve karmaşıklık problemlerini beraberinde getirir. Bu 

nedenle sinyal analizinde en iyi performansı gösteren özniteliklerin belirlenmesi ve 

kullanılması gerekmektedir. Bu çalışmada, öznitelikler seçilirken ilgili alanda çalışmalar 

yapılırken kullanılan özniteliklerin sınıflandırma performansına olumlu yönde etkileyen 

özniteliklerden seçilmesine özen gösterilmiştir. 

 

3.1. İlgili Çalışmalarda Kullanılan Öznitelikler 

 Erken doğum problemini belirleyebilmek için kullanılan veri seti ve uygulanan 

yöntem kadar seçilen öznitelikler ve sayısı da önemlidir. Hangi parametrelerin 

sınıflandırma yaparken daha verimli sonuç vereceği konusunda pek çok çalışma 

yapılmıştır. Öznitelik seçiminde kullanılan veri seti, kullanılan sınıflandırıcı gibi 

değişkenler uygun özniteliklerin seçiminde etkilidir. Bu konu ile ilgili çalışmalar bize amaç 

doğrultusunda yol gösterici olurken erken doğum tespiti için kesin bir sonuç 

verememektedir. Çünkü çalışmalar karşılaştırıldığında veri seti ya da sınıflandırıcı 

değiştirildiğinde elde edilen sonuç ve gözlem de değişmektedir. Bu konuda geniş kapsamlı 

bir veri seti üzerinde çalışarak değişkenlerin (sınıflandırıcı yöntemi, öznitelik) problem 

çözümü üzerindeki etkisi daha sağlıklı gözlemlenebilir. 

Biyolojik sinyaller analiz edilirken seçilen parametreler zaman, frekans tabanlı doğrusal 

veya doğrusal olmayanlardan seçilebilmektedir. Sınıflandırma için seçilen doğrusal ve 

doğrusal olmayan öznitelikler arasında erken doğum ve normal doğum kasılmalarının ayırt 

edilmesinde en belirleyici parametreler seçildiğinde performans artacaktır. Kaynak 

çalışmalarında görülen doğrusal ve doğrusal olmayan öznitelikler arasından medyan 

frekansı ve örnek entropisi erken doğumun kestiriminde en etkili parametreler arasında 
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olduğudur [24],[23],[24]. Yapılan bazı çalışmalar doğrusal olmayan parametrelerin erken 

doğum kestiriminde daha iyi sonuç verdiğini göstermektedir [25]. 

Tüm rahim EMG sinyalinden çıkartılan parametreler ve farklı frekans bantlarına ait olan 

parametreler hamilelik ve doğum sinyallerini ayırt etmek için kullanılmıştır [31],[26].  

Tüm frekans bandına ait parametreler arasında ortalama güç frekansı (mpf) parametresi söz 

konusu sinyalleri ayırt etmede en önemli etkene sahiptir. Farklı frekans bantlarına ait 

parametreler değerlendirilirken paketler (D1...D9), ortalama güç frekansı gibi parametreler 

sınıflandırma işleminde kullanılabilir ve erken doğum sinyallerini belirleyici öneme 

sahiptirler. 

Rahim EMG sinyalinin gücü, ortalama güç frekansı, spektral güç yoğunluğunun %95' ini 

kapsayan limit frekansı ve sinyalin spektral değişimi gibi parametre değerleri için genel 

olarak hamilelik döneminde ve doğum anında ölçülen değerler karşılaştırıldığında 

hamilelik döneminde bu parametrelerin daha düşük olduğu daha önce yapılan çalışmalarda 

gözlemlenmiştir [27]. 

Öznitelikler belirlenirken temelde dikkat edilen doğrusal ve doğrusal olmayan öznitelik 

seçimidir. Durağan olmayan EMG sinyalleri analiz edilirken doğrusal olmayan 

özniteliklerin seçimi yapılan çalışmanın performansını etkileyebilmektedir. Bu nedenle 

öznitelikler doğrusal ve doğrusal olmayan olmak üzere iki sınıfa ayırmak bu etkenin 

sonuçlar üzerindeki etkisini incelememizde etkili olacaktır. 

Doğrusal olmayan özniteliklerin kestirim performansı daha yüksek olmasına rağmen bu 

çalışmada doğrusal öznitelikler de kullanılmıştır [25]. 

Öznitelik çıkarımı aşaması dahilinde doğrusal ve doğrusal olmayan olmak üzere 11 adet 

öznitelik çıkarılmıştır. 

 

3.1.1. Doğrusal Öznitelikler 

Öznitelikler sinyalin frekans veya genliğine dayalı parametrelerden elde edilmiştir. 

Sinyalin Güç Spektral Yoğunluğu, zaman-frekans gösterimi (wavelet dönüşümü) öznitelik 

çıkarımı için kullanılmıştır.  

Ortalama Frekans, Güç Spektral Yoğunluğun Tepe Frekansı, Güç Spektral 

Yoğunluğun Tepe  Genliği, Medyan Frekansı, Karelerin Ortalamasının Karekökü  (RMS),  

Dalgacık Dönüşüm Paketleri, (D1…D9)  Sinyalin Gücü, Kasılma (Burst)  Süresi, Ortalama 
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Güç Frekansı, Dalgacık Dönüşümü Analizi,  Hızlı Fourier Dönüşümünün Genliğinin 

Karesi, Sıfırdan Geçiş Oranı (Zero-Crossing), Kesikli Zaman Kosinüs Dönüşümü, 

öznitelikleri rahim EMG  sinyallerinin analizinde kullanılmıştır. 

Frekansa dayalı parametrelerden; Güç Spektral Yoğunluğun Tepe Frekansı, 

Medyan Frekansı, Karelerin Ortalama Karekökü (RMS), Güç Spektral Yoğunluğun Tepe 

Genliği ve kasılma süresi doğum sinyallerini belirlemede kullanılmıştır. Bu sinyalleri 

hamilelik dönemindeki sinyallerden ayırt etmede Spektral Yoğunluğun Tepe Frekansı en 

önemli etkene sahiptir [18]. 

Frekans analizi ile ilgili öznitelikler kullanılarak rahim EMG sinyalleri analiz 

edilmiştir.  Farklı frekans bantları kullanılarak çıkarılan öznitelik değerlerinin hamilelik 

döneminden doğum zamanına kadar artış gösterdiği gözlemlenmiştir [27],[28]. Frekansa 

dayalı bir parametre olan ortalama frekansı tanımlamak için; öncelikle Güç Spektral 

Yoğunluk fonksiyonunu tanımlamak gerekir. Güç Spektral Yoğunluk (GSY) fonksiyonu, 

sinyalin gücünü frekansın fonksiyonu olarak gösterir [29]. Yani frekans bölgesinde gücün 

dağılımıdır. Bu yoğunluğun belirlenmesinde çeşitli yöntemler geliştirilmiştir. GSY 

fonksiyonu sinyalin frekans bölgesindeki özelliklerini içeren (genlik, güç, yoğunluk, faz) 

ve bu özellikler sinyalin karakteristiği hakkında çok önemli bilgiler içerdiği için sinyal 

işlemede incelenmesi gereken önemli bir fonksiyondur. Bu fonksiyonun belirlenmesinde 

temelde üç farklı yaklaşım bulunmaktadır. 

Parametrik Olmayan Yöntemler: Bu yöntem sinyal hakkında bir ön bilgi içermeden 

direk Kesikli Fourier Dönüşümünü kullanarak GSY fonksiyonunun kestirimini yapar. Ön 

bilgi kullanılmadığı için herhangi bir tipte sinyalin GSY fonksiyonu kestirimi için 

kullanılabilir. Periodogram, geliştirilmiş periodogram, Welch ve multitaper parametrik 

olmayan yöntemlerdir. Denklem (1) de Periodogram kestiriminin matematiksel gösterimi 

verilmiştir [30]. 

𝑃𝑥𝑥(𝑤) = lim
𝑚→∞

𝐸 {
1

2𝑚+1
|∑ 𝑥(𝑛)𝑒−𝑗𝑤𝑛𝑚

𝑛=−𝑚 |
2
}                     (1) 

Geliştirilmiş periodogram kestirimi Kesikli Fourier Dönüşümü uygulamadan önce 

zaman bölgesinde uygun bir pencere fonksiyonu ile çarpılır. 

Welch yöntemi için önce zaman bölgesinde bölütleme yapılır, her bir bölüt için 

geliştirilmiş periodogram uygulanır. Tüm zaman serileri için elde edilen kestirim 

değerlerinin ortalaması alınarak GSY fonksiyonu kestirilir. 
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Parametrik Yöntemler: Bu yöntem sinyalin GSY fonksiyonunu kestirmek yerine sistemi 

doğrusal bir sistem gibi modelleyip, sistemin katsayılarını kestirmeyi hedefler (Yule-

Walker AR Yöntem ve Burg Yöntem) [30]. 

Rahim EMG sinyallerinin Güç Spektral Yoğunluk analizinde çeşitli kestirim yöntemleri 

mevcuttur. GSY fonksiyonun kestiriminde Periodogram ve Welch yöntemleri iyi 

performans gösteren iki kestirim yöntemidir [31]. 

GYS fonksiyonu kullanılarak aşağıdaki öznitelikler çıkartılmıştır. 

a) Ortalama Frekans: GSY fonksiyonun her bir frekansa ait değeri ile frekansların 

çarpımların toplamının, tüm frekans değerlerine karşılık gelen değerlerin toplamına oranı 

ortalama frekansı verir. Matematiksel denklem (2) de verilmiştir [32]. 

𝑓𝑚𝑒𝑎𝑛 =
∑ 𝑓𝑖.𝑃𝑖

𝑛
𝑖=1

∑ 𝑃𝑖
𝑛
𝑖=1

                                                                     (2) 

 

Bu eşitlikte 𝑛  sinyalin uzunluğu   𝑓𝑖  güç yoğunluk fonksiyondaki i. bins’deki 

frekans değeri, 𝑃 GSY fonksiyonudur. 

b) Medyan Frekansı: GYS fonksiyonunun medyan frekansının üst frekans değerlerinin 

toplamı ile altında kalan değerlerinin toplamı birbirine eşittir. Denlem (3.1) ve (3.2) deki 

gibi ifade edilir [32]. 

∑ 𝑃(𝑖)
𝑖𝑚
𝑖=1 = ∑ 𝑃(𝑖)𝑛

𝑖=𝑖𝑚
                                    (3.1) 

𝑓𝑚𝑒𝑑𝑦𝑎𝑛 = 𝑖𝑚
𝑓𝑠

𝑛
                                         (3.2) 

𝑓𝑠: Örnekleme frekansı 

𝑃: GYS fonksiyonu            𝑓𝑚𝑒𝑑𝑦𝑎𝑛 : Hertz cinsinden medyan frekansı 

c) Güç Spektral Yoğunluk Fonksiyonunun Tepe Frekansı: Güç yoğunluk 

Fonksiyonunun maksimum olduğu noktadaki frekans değeridir [32],[15]. Denklem (4) te 

tepe frekansı matematiksel olarak verilmiştir. 

𝑓𝑝𝑒𝑎𝑘 =
𝑓𝑠

𝑛
𝑚𝑎𝑥(𝑃(𝑖))𝑖=1

𝑛                                                              (4) 

𝑓𝑠:  örnekleme frekansı, n: sinyalin uzunluğu , 𝑓𝑝𝑒𝑎𝑘: Hertz cinsinden tepe frekans değeri 
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d) Güç Spektral Yoğunluk Fonksiyonunun Tepe Genliği: Güç yoğunluk fonksiyonunun 

maksimum olduğu noktadaki genlik değeridir [25]. Denklem (5) de verildiği gibi tepe 

genlik değeri belirlenebilir. 

𝐴 = 𝑚𝑎𝑥(𝑃(𝑖))𝑖=1
𝑛                                                                 (5) 

e) Karelerin Ortalamasının Karekökü 

Tüm örneklerin genlik değerlerinin karelerinin toplamının kareköküdür [25]. Karelerin 

ortalama karekökü denklemi denklem (6) da verilmiştir.  

𝑟𝑚𝑠 = √
1

𝑛
∑ 𝑥(𝑖)2𝑛

𝑖=1                                                             (6) 

 

f) Ortalama Güç Frekansı: Güç Spektral Yoğunluk fonksiyonunun değerlerinin 

ortalamasına karşılık gelen frekans değeri ortalama güç frekansını verir [25]. 

 

3.1.2. Doğrusal Olmayan Öznitelikler 

Rahim EMG sinyallerinin analizinde doğrusal özniteliklerin yanı sıra doğrusal olmayan 

öznitelikler de kullanılmıştır. Bu parametrelerin her biri ayrı incelenmiş ve genel olarak 

maksimum performansı veren parametreleri belirlemeye yönelik çalışmalar yapılmıştır. 

Bu çalışmalardan birisinde doğrusal veya doğrusal olmayan parametrelerin 

kullanılmasının rahim EMG sinyalinin sınıflandırılmasındaki etkisi incelenmiştir. EMG 

sinyali, durağan olmayan yapıya sahip olduğundan dolayı sınıflandırma yapılırken 

kullanılan doğrusal olmayan parametreler doğrusal olanlara göre daha başarılı sonuçlar 

vermektedir [25]. Bu öznitelikler; zamanda değişmezlik, Lyapunov üsteli, örnek entropi,  

yaklaşık entropi, ilinti (korelasyon) boyutudur. 

Doğrusal olmayan yapıya sahip rahim EMG sinyalleri çözümlenirken işlem yükü, 

zamandan tasarruf başka diğer dezavantajlar göz önünde bulundurulmalıdır. Bazı 

durumlarda sinyal elde edilirken saatlerce kayıt alınmaktadır. Bu sinyallerin işlenmesinde 

düşük örnekleme frekansı işlem yükünü azaltabilir. Aynı zamanda da asıl amacımız olan 

erken doğumun hızla belirlenmesi yolunda bir dezavantaja dönüşebilir. Diab ve grubu bu 

problemle ilgili bir çalışma yapmıştır. Bu çalışmada 200 Hz olan normal örnekleme 

frekansını 20 Hz olarak düşürmüş ve bu değişimin dört farklı doğrusal olmayan 

öznitelikler üzerindeki etkisini araştırmıştır. Kullanılan öznitelikler; zamanda 
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terslenebilirlik (TR), örnek entropisi (SE), Lyapunov üsteli (LE), gecikmeli vektör 

varyansıdır (Delay Vector Varyans, DVV). Örenkleme frekansı değişiminin yöntemlerin 

performansına etkisi ROC (Receiver Operating Characteristic) eğrilerine bakılarak 

incelenmiştir. Zamanda terslenebilirlik ve Lyapunov parametreleri etkilenmemiştir. Örnek 

entropisi olumlu olarak frekans düşüşünden etkilenmiştir. Bu çalışmada kayıt sırasındaki 

örnekleme frekansı üzerinden tekrar örnekleme işlemi yapılmamıştır. 

a) Örnek Entropisi: Örnek entropi EMG sinyalleri gibi dinamik zaman serilerindeki 

karmaşıklığın veya düzensizliğin incelenmesinde kullanılan yaygın bir parametredir 

[25],[10]. Matematiksel olarak denklem (7) de ifade edilmiştir. 

𝑆𝑎𝑚𝑝𝐸𝑛 = − log
𝐴

𝐵
                                                               (7) 

𝐴 ∶ 𝑑|𝑥𝑚+1(𝑖), 𝑥𝑚+1(𝑗)| < 𝑟;      𝑟; 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑠 𝑑𝑒ğ𝑒𝑟𝑖,𝑚 𝑔ö𝑚𝑚𝑒 𝑏𝑜𝑦𝑢𝑡𝑢 

𝐵 ∶ 𝑑|𝑥𝑚(𝑖), 𝑥𝑚(𝑗)| < 𝑟;      𝑟; 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑠𝑑𝑒ğ𝑒𝑟𝑖, 𝑚 𝑔ö𝑚𝑚𝑒𝑏𝑜𝑦𝑢𝑡𝑢 

 

 Veri uzunluğu çok büyük olan örneklerde tolerans değeri 0,2𝑥𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑡 𝑠𝑎𝑝𝑚𝑎 

olarak alınır [33],[34]. Gömme boyutu entropi hesabında kullanılan verinin uzunluğu yani 

kesikli uzayda pencere boyutudur. 

Sinyalin örnek entropi değerinin küçük olması bu sinyaldeki düzensizliğin, 

karmaşıklığın ya da gürültünün az olduğu bilgisini verir. Örnek entropisi durağan olmayan 

sinyallerin analizinde kullanılan önemli bir özniteliktir [25],[21],[35],[36]. 

Bu öznitelik değeri hamilelikten doğum zamanına kadar geçen süre boyunca 

dalgacık yöntemi kullanılarak incelenmiştir. Dalgacık dönüşümü biyolojik sinyallerin 

çözümlemesinde başarılı sonuçlar veren bir yöntemdir. Rahim EMG sinyallerinde 

meydana gelen kasılmaları sınıflandırabilmek için kullanılan dalgacık dönüşümü sonucu 

hamilelik ve doğum kasılmaları arasında ayırt edici değerlerin elde edildiği görülmüştür 

[46]. İncelemeler sonucunda örnek entropisinin doğum zamanında hamileliğe göre 

zamanla arttığı görülmüştür [47],[37]. 

b) Zamanda terslenebilirlik: Sinyalin istatistiksel özellikleri zamanla değişmiyor ise 

verinin zamanda terslenebilir özelliği vardır. Denklem (8)’de zamanda terslenebilirlik 

matematiksel olarak ifade edilmiştir. 𝑥𝑖   ve 𝑥𝑖−𝜏  sırasıyla x sinyalinin i. noktadaki değeri 

ve zaman gecikmesinden sonraki değeridir. 
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𝑇𝑟(𝜏) =
1

𝑛−𝜏
∑ (𝑥𝑖 − 𝑥𝑖−𝜏)

3𝑛
𝑖=𝜏+1                                                   (8) 

𝑛; sinyalin uzunluğu,  𝜏;  zaman gecikmesi 

Zamanda terslenebilirlik durağan olmayan sinyallerin (uterine EMG,EEG gibi ) analizi ve 

sınıflandırılmasında kullanılan en önemli yöntemlerden biridir [38]. Bu parametre erken 

doğum kestirimi için kullanıldığında yüksek performans sonucu elde edilmiştir [39]. 

Rahim sinyallerinin zamanda değişmezlik özelliği hamilelik kayıtlarında varken doğum 

sinyallerinde bu özelliğin olmadığı doğrusal olmayan parametrelerin analizinde tespit 

edilmiştir [40]. 

c) Lyapunov Üsteli: Durağan olmayan bir zaman dizisinde, zaman içinde birbirine yakın 

noktalar bir üstel değere göre yakınlaşıp uzaklaşması söz konusudur. Bu yakınlaşma veya 

uzaklaşmayı tanımlayan parametre Lyapunov üsteli olarak adlandırılır. Lyapunov üsteli   

ve buna bağlı değişkenler denklem (9) ve (10) da verilmiştir. 

𝜆 =
1

𝑡𝑁−𝑡0
log2

𝑑(𝑡𝑘)

𝑑(𝑡𝑘−1)
,                                                            (9) 

𝑑(𝑡) = 𝑑0𝑒
𝜆𝑡                                                                 (10) 

   𝑑0: noktalar arasındaki uzaklık, 

Maksimum Lyapunov üsteli sinyalin karmaşıklığını ölçer [41]. 

Doğrusal olan ve olmayan öznitelikler arasında doğum zamanını tespit etmede en 

önemli etkene, ayırt edici özelliğe sahip öznitelikler; doğrusal özniteliklerden medyan 

frekansı ile doğrusal olmayanlardan örnek entropisidir [24]. 

Rahim EMG sinyalinde örnek entropisinin, Dalgacık Paket Dönüşümü yöntemi 

kullanılarak hamilelik boyunca nasıl değiştiği incelenmiştir. Hamilelik boyunca yavaş 

yavaş azaldığı görülen örnek entropisi ve Lyapunov üsteli rahim EMG sinyallerinin 

analizinde kullanıldığında başarılı sonuç veren doğrusal olmayan parametrelerdendir 

[42],[43]. 

 

3.2. Dalgacık Dönüşümü (Wavelet) Analizi 

 Biyolojik sinyaller analiz edilirken sadece zaman veya frekans bölgesinde analiz 

yapmak bizi optimum sonuçtan uzaklaştırır. Rahim EMG sinyalleri incelenirken dalgacık 

dönüşüm yönteminin kullanılması hem frekans hem zaman bölgesinde analiz edildiği için 
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çok daha sağlıklı sonuçlar verdiği yapılan literatür araştırmasında anlaşılmıştır. Bu durum 

biyolojik sinyallerin durağan olmayan yapısından kaynaklanmaktadır. 

3.2.1. Dalgacık Dönüşümü 

 Sinyal işleme alanında frekans bölgesi analizi için yaygın yöntem olarak kullanılan 

Fourier dönüşümünde zaman bilgisi kaybolmaktadır. Dalgacık Dönüşümü bu dezavantajı 

ortadan kaldırarak zaman bilgisini korur. Durağan olmayan sinyallerin analizinde de 

kullanılan Dalgacık analizi bu tip sinyallerde Fourier analizine göre daha avantajlı sonuçlar 

vermektedir. Dalgacık dönüşümünde kullanılan sonsuz Dalgacık fonksiyonu vardır. 

Dönüşüm için öncelikle Dalgacık fonksiyonuna karar vermek gerekmektedir. Şekil 6'da 

başlıca kullanılan Dalgacık Dönüşüm fonksiyonları yer almaktadır.  Bu temel fonksiyonlar 

sıkıştırma, germe, yumuşatma (smoothing), gürültü azaltma gibi amaçlar için kullanılır. 

 

Şekil 6. Dalgacık Dönüşümü Fonksiyonları [44] 

Fourier Dönüşümde olduğu gibi Dalgacık fonksiyonu ile sinyalin iç çarpımı 

sinyalin Dalgacık Dönüşümünü verir. Bu dönüşümün temel amacı sinyalin zamanda kayan 

Dalgacık fonksiyonunun sıkıştırılmış veya gerilmiş halini inceleyebilmektir. Bunun için 

sıkıştırma veya germe işlemi için bir katsayı (scale, ölçek) belirlemek gerekmektedir. Şekil 

7 ' de farklı katsayı değerlerine göre sinüs sinyali gösterilmiştir. 

 

a)                             b)                                                c) 

Şekil 7. a)Ölçek =1 b) Ölçek =2 c)  Ölçek= 4 [44] 

Dalgacık Dönüşümü, düşük frekanslı bölgeler için geniş pencere yüksek frekanslı bölgeler 

için dar pencere boyutlarına sahiptir. Böylece bütün frekans bölgelerinde Fourier analizine 
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göre daha faydalı bir zaman frekans çözünürlüğüne sahiptir. Ayrıca Dalgacık analiz 

yöntemi diğer zaman-frekans tabanlı analiz yöntemlerine göre daha hızlı çalıştığı 

görülmüştür. Biyolojik işaretlerin yani durağan olmayan sinyallerin analizinde Fourier 

analizinden faydalanılsa da Dalgacık dönüşümü daha yararlı sonuçlar vermektedir. 

 Dalgacık dönüşümü işaret işlemede sinyali frekans aralıklarına bölerek bu 

aralıklarda ayrı ayrı analiz yapılarak sinyalin karakteristiği hakkında bilgi edinmeyi sağlar. 

Bu frekans bantlarına ayırma nedeniyle durağan olmayan sinyalleri incelemede avantajlı 

olduğu görülmektedir. Bu dönüşüm işlemi sürekli zaman ve ayrık zamanda yapmak 

mümkündür. 

 

3.2.2. Sürekli Zaman Dalgacık Dönüşümü 

Bu dönüşüm belirlenen özel dalgacık fonksiyonu ᴪ ile, sinyalin ağırlıklandırılarak, 

zamanda kaydırılıp çarpımlarının toplanması demektir. Sürekli zaman dalgacık dönüşümü 

matematiksel olarak denklem (13) de verilmiştir. 

𝐶𝑊𝑇(𝑎, 𝑏) = ∫𝑥(𝑡)ᴪ∗
𝑎,𝑏(𝑡) 𝑑𝑡                                                      (13) 

a ölçek, b kaydırılan zamanı ifade etmektedir ve bu parametrelere göre dalgacık 

fonksiyonunu denklem (14) de verilmiştir. 

ᴪ𝑎,𝑏(𝑡) =
1

√𝑎
ᴪ (

t−b

a
)                                                                    (14) 

 

Süzgeç Blokları 

Dalgacık dönüşümünde temel olarak sinyale iki tane alçak ve yüksek geçirgen filtre 

(birbirini tümleyen) uygulanır. Dalgacık Dönüşümünde uygulanan ana fonksiyon denklemi 

denklem (15) de verilmiştir. 

ᴪ𝑗,𝑘(𝑡) = 2−𝑗/2ᴪ(2−𝑗𝑡 − 𝑘)                                              (15) 

Temel fonksiyonu bu olan Dalgacık Dönüşümü ile sinyal alt ve üst bileşenlerine ayrılır. 

 Bu işlem istenilen frekans aralığı elde edilene kadar veya işaret üzerinde belirli bölgelerin 

tespitine kadar uygulanmaya devam edilir. 

Şekil 8’de verilen sinyal 3. Seviyeden yaklaşım ve ayrıntı katsayılarına yani alt ve üst 

frekans bileşenlerine ayrılmıştır. 
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Şekil 8. Dalgacık Dönüşümü H_0:Yüksek Geçirgen,G_0:Alçak Geçirgen [44] 

Bu algoritma Mallat algoritması (Hızlı Dalgacık Dönüşümü) olarak bilinir. İncelenmek 

istenen seviyeye kadar ayrışım yapılır, bu dönüşüm sonucu alçak geçirgen filtre katsayıları; 

yaklaşım (𝑐[𝑛]), benzer şekilde yüksek geçirgen katsayıları; ayrışım (𝑑[𝑛]) katsayıları 

olarak tanımlanır.   

Dalgacık dönüşümünün temelinde sinyali yüksek ve düşük frekanslı bileşenlerine 

ayırarak analiz etmek yer almaktadır. Aşağıdaki verilen şekilde x sinyali 3’üncü seviyede 

alt ve üst frekans bileşenlerine ayrılmıştır. Kesikli dalgacık dönüşümü sadece alçak 

geçirgen filtrelere uygulanmaktadır. Bu dönüşüm her iki filtre sonucuna da uygulandığında 

elde edilen dönüşüm dalgacık paket dönüşümü adını almaktadır. Dalgacık dönüşümünde 

alçak geçirgen filtre çıkışına tekrar dönüşüm yapılarak alt ve üst frekans sinyallerine 

ayrılırken paket dönüşümünde ise yaklaşım ve ayrışım çıktılarının her ikisine de dönüşüm 

uygulanır. Şekil 9 ve Şekil 10' da verilen şekillerde Dalgacık Dönüşümü ve Dalgacık Paket 

Dönüşümü gösterilmiştir. 
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Şekil 9. Dalgacık Dönüşümü[1] 

 

Şekil 10. DalgacıkPaket Dönüşümü[1] 
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3.3. Boyut İndirgeme 

Sınıflandırma problemlerinde öznitelikler önemli bir yere sahiptir. Özniteliklerin doğru 

olarak hesaplanmasının öneminin yanında hangilerinin kullanılacağı da bir başka 

problemdir. Çünkü sınıflandırma işlemi seçilen bu öznitelikler kullanılarak yapılır. 

 Yüksek boyutlu veri örneklerinin kullanılması hem hesaplama maliyeti hem de 

daha az önemsiz denilebilen gürültü öznitelikleri sınıflandırmanın performansını olumsuz 

etkileyebilir. Çok boyutluluğun laneti olarak bilinen bu problemin çözümünde öznitelik 

çıkarımı ve seçimi yöntemlerinden oluşan boyut indirgeme yöntemleri geliştirilmiştir. PCA 

(Principle Component Analysis) ve FDA (Fischer Discriminant Analysis) bu yöntemler 

arasında yer alır. Şekil 11' de farklı sayıda veri boyutuna ait verinin grafiksel gösterimi yer 

almaktadır. 

 

Şekil 11. Farklı veri boyutuna ait grafiksel gösterim [45] 

Boyut sayısı arttıkça öznitelik dağılımının merkezi varyansı  artmaktadır. Daha az 

belirleyici özelliğe sahip öznitelikler, öznitelik vektörünün uzaydaki dağılımının odağını 

beklenmeyen veya önemsiz bölgelere doğru çekmektedir.  Bu da yanlış veya kötü 

performanslı sınıflandırma sonuçları almanın bir nedeni olabilir. 

Öznitelik boyutunun sınıf  sayısından daha büyük olan veri setlerinde en önemli 

öznitelikler belirlenip bu öznitelikler kullanılabilir. 

 

3.3.1. FDA(Fischer Discriminant Analysis) 

 Doğrusal olarak sınıflandırma yapabilmenin de mümkün olduğu boyut indirgeme 

yöntemi ile en önemli boyutlara göre kestirim yapıldığı için doğruluk perfromansı 

artmaktadır. 
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 Şekil 12'de verilen örneklerde sınıflandırıcı yüzeyleri farklı iki doğru 

bulunmaktadır. Sol tarafta yanlış sınıflandırılmış veriler mevcutken sağ taraftaki karar sınır 

yüzeyleri ile  tüm veriler hatasız sınıflandırılmıştır. 

 

Şekil 12.  İki boyutlu üç farklı sınıf için farklı karar sınırları [45] 

Fisher yöntemi ile boyut indirgeme için x veri setininin bir düzlem üzerine iz 

düşümü alınır. Denklem (16) ile verilen iz düşümü çalışması yapılır. 

𝑦 = 𝑤𝑇𝑥                                                               (16) 

Bu izdüşüm bölgesine düşen  𝑥′  verilerine eşikleme yöntemi uygulanarak uygun 

sınıflara atanır. İz düşüm alınırken dikkat edilmesi gereken kural izdüşüm doğrusunda 

verilerin üst üste gelmesini engellemektir.  Veri çakışmasını önlemek için uygun 𝑤  

değerini bulmak için her bir verinin kendi içinde ortalamaları belirlenir. Denklem (17) de 

kendi içindeki ortalamaları verilmiştir. 

 

𝑚1 =
1

𝑁1
∑ 𝑥𝑛𝑛∈𝐶1

, 𝑚2 =
1

𝑁2
∑ 𝑥𝑛𝑛∈𝐶2

                                        (17) 

İz düşüm üzerindeki verilen ortalamaları her bir sınıf için sırasıyla 𝑚1 
′    ve    𝑚2 

′   

olsun. Denklem (18) de ortalamaların farkının izdüşümleri yer almaktadır. 

𝑚1 
′ − 𝑚2 

′
= 𝑤𝑇(𝑚1 − 𝑚2 )                                      (18) 

Çakışmayı minimum seviyede tutmak amacıyla ortalamaların izdüşümleri 

arasındaki uzaklığın arttırılması gerekir. Yani temel amaç farklı sınıflardan gelen verilerin 

izdüşümlerinin ayrık olacağı  yani çakışmanın minimum olacağı doğruyu belirlemektir. 
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Şekil 13'te sol tarafta izdüşümler arasında çakışma mevcuttur. Sağ tarafta ise çakışmanın 

minimum olduğu görülmektedir. 

 

Şekil 13. Farklı doğrular üzerine alınan iz düşümler [45] 

Görsel olarak verilen örnekten de anlaşıldığı gibi iz düşüm doğrusunu iz düşümü 

alınan her iki verinin de varyansının küçük olduğu yöne paralel seçildiği zaman çakışma 

minimumdur. 

Fischer yöntemi ile iz düşümü alınan verilerin ortalamaları arası uzaklığın 

maksimum olması ve bu uzaklığın aynı anda izdüşümü alınan her sınıfın kendi içindeki 

varyansına orantılı olarak da maksimum olması istenmektedir. 

İz düşümü alınan verinin varyansı denklem (19) daki gibi hesaplanır. 

𝑆𝑘
′2 = ∑ (𝑦𝑛 − 𝑚𝑘

′)2
𝑛∈𝐶𝑘

                                                  (19) 

𝑦𝑛 = 𝑤𝑇𝑥𝑛                                                             (20) 

Fischer yöntemi her sınıfın kendi arasındaki varyansın, sınıfların kendi içindeki 

varyansların toplamının oranına bağlı olarak maksimum yapacak iz düşüm doğrusunun 

bulunmasını amaçlar. Denklem (21) de verilen matematiksel ifadede J' yi maksimum yapan 

w' nın bulunması Fischer yönteminin temel amacıdır. 

 

𝐽(𝑤) =
(𝑚1

′−𝑚2
′)2

𝑆1
′2+𝑆2

′2                                                        (21) 

Varyansların iz düşümü yani    𝑆𝑘
′2

  'yi normal verinin varyansı 𝑆𝑘     cinsinden 

yazmak için toplam sembolünün içindeki ifade açılıp denklem (22) elde edilir. 
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𝑆𝑘
′2 = ∑ (𝑤𝑇𝑥𝑘𝑛 − 𝑤𝑇𝑚𝑘)

2 =𝑛∈𝐶𝑘
∑ 𝑤𝑇(𝑥𝑘𝑛 − 𝑚𝑘)(𝑥𝑘𝑛 − 𝑚𝑘)

𝑇𝑤 = 𝑤𝑇
𝑛∈𝐶𝑘

𝑆𝑘𝑤   (22) 

𝑆𝑐
′2 + 𝑆𝑘

′2 = 𝑤𝑇(𝑆𝑐 + 𝑆𝑘)𝑤                                (23) 

𝑆𝑐 + 𝑆𝑘  her sınıfın kendi içindeki varyansı 𝑆𝑤 olsun. 

(𝑚𝑐
′ − 𝑚𝑘

′)2 = 𝑤𝑇(𝑚𝑐 − 𝑚𝑘)(𝑚𝑐 − 𝑚𝑘)
𝑇𝑤                       (24) 

= 𝑤𝑇𝑆𝐵𝑤𝑆𝐵:   sınıflar arasındaki varyans 

𝐽(𝑤) =
𝑤𝑇𝑆𝐵𝑤

𝑤𝑇𝑆𝑤𝑤
                                                     (25) 

 

J'yi maksimum yapan w yı bulmak için bu değişkene göre türevini bulup sıfıra eşitlenirse 

denklem (26) ve (27)'de elde edilir. 

𝜕 𝐽

𝜕𝑤
= 0                                                    (26) 

𝑆𝐵𝑤⃗⃗ − 𝛼𝑆𝑤𝑤⃗⃗ = 0     , 𝑆𝐵𝑤⃗⃗ = 𝛼𝑆𝑤𝑤⃗⃗                                    (27) 

Bu eşitliği sağlayan w değerlerinin bulunması bilinen birim değer (eigenvalue) 

probleminin çözümüdür. 

𝑆𝑤
−1𝑆𝐵𝑤⃗⃗ ' nin en büyük öz vektörleri,  özniteliklerin en büyük öz değerlerine karşılık 

gelmektedir [46]. 

Doğrusal olarak sınıflandırma için de kullanılabilen Fischer yöntemi ile öznitelikler 

istenilen boyuta indirgenir. Özniteliklerin indirilmesi istenen boyut r olsun. Bu vektörlerin 

en büyük ilk r tane öz birim değerleri indirgenmiş öznitelik değerlerini verir [47],[46]. 
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4. SINIFLANDIRMA YÖNTEMLERİ 

4.1. En Yakın Uzaklık Sınıflandırıcı 

 Bu sınıflandırıcı kullanımı ve uygulaması basit olan bir sınıflandırıcı çeşididir. 

Eğitici setinden her sınıfa ait ortalama öznitelik değerleri belirlenir. Test için belirlenen 

verilerden her biri, ortalaması hesaplanan her sınıfın özniteliklerine uzaklığı hesaplanır. 

Uzaklık ölçümü için farklı yöntemler kullanılabilir. Öklid uzaklık, Mahalanobis ve 

Manhattan uzaklık bunlardan sıkça kullanılanlardandır. Uzaklık olarak hangi sınıfa daha 

yakın ise test edilen veri örneği o sınıfa atanır. Denklem (28) de her bir ağırlık vektörüne 

uzaklık hesabı denklemi verilmiştir. 

𝑥 Test girdisi olsun. 𝑚1, 𝑚2, … ,𝑚𝑘 k tane farklı sınıfa ait öznitelikler olsun.  

𝑑 = ||𝑥 − 𝑚𝑖|| ,   0 < 𝑖 ≤ 𝑐                                              (28) 

Her sınıfa olan uzaklık hesaplanır ve x en yakın uzaklık elde edilen sınıfa aittir [48]. Şekil 

14' te verilen grafikte de görüldüğü gibi en yakın uzaklık sınıflandırıcı algoritmasında her 

sınıfın ortalama vektörüne olan uzaklıklar tek tek hesaplanır. 

 

Şekil 14. En Yakın Uzaklık Sınıflandırıcı 

Bu sınıflandırıcıda genel olarak amaç veriye en yakın sınıfı, uzaklık parametrelerine göre 

belirleyip ve veriyi en yakın olan bu sınıfa atamaktır. Sınıfa ait ağırlıklara olan uzaklığı 

minimize etmek gerekir.  Uzaklığı minimize etmek için karesi alınır. (29) ve (31) 

denklemleri arasında en yakın uzaklık sınıflandırıcı denklemi elde edilir. 

𝑑 = ||𝑥 − 𝑚𝑖|| = ||𝑥 − 𝑚𝑖||
2
                                        (29) 

Vektör olduğu için devriği ile ifadenin çarpımı karesini verecektir. 

||𝑥 − 𝑚𝑖||
2
= (𝑥 − 𝑚𝑖)

𝑇(𝑥 − 𝑚𝑖)                                          (30) 

=𝑥𝑇𝑥 − 2𝑥𝑇𝑚𝑖 + 𝑚𝑖
𝑇𝑚𝑖                                         (31) 
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−2𝑥𝑇𝑚𝑖 + 𝑚𝑖
𝑇𝑚𝑖 ifadesini minimize etmek  𝑥𝑇𝑚𝑖 −

1

2
𝑚𝑖

𝑇𝑚𝑖  ‘yi maksimize etmek 

demektir [47]. 

𝑔(𝑥) = 𝑥𝑇𝑚𝑖 −
1

2
𝑚𝑖

𝑇𝑚𝑖                                       (32) 

Bu sonuca göre eğitim setinde bulunan sınıflara ait verilerin ortalaması alınarak ağırlıklar 

belirlenir. Test setindeki her verinin bu ağırlıklara uzaklığı denklem 32’ ye göre hesaplanır 

ve maksimum değerin sınıfına atanır. 

 

4.2. Yapay Sinir Ağları 

Rahim EMG sinyallerinin sınıflandırılmasında doğrusal olmayan sınıflandırıcılar 

kullanılırsa yüksek performansta sonuçlar elde edilir [28]. Bu çalışmada kullanılan 

doğrusal olmayan sınıflandırıcı yapay sinir ağlarıdır. 

Biyolojik sistemleri matematiksel olarak temsil eden yapıya yapay sinir ağı (YSA) 

denir. Normal sinir hücreleri arasında bilgi alışverişi aksonlar yardımıyla olur. Bilgi sinir 

hücresine aksonlar yardımıyla gelir ve yine bir diğer hücreye aynı şekilde iletilir. Şekil 15’ 

te biyolojik bir sinir hücresinin yapısı görülmektedir. 

 

Şekil 15. Biyolojik Sinir Hücresi (Fausset L. 1994) [48] 

Temel olarak sinir hücresinin yapısı; dentrit, soma, akson ve sinapsisten oluşur. 

Sinir hücresine gelen bilgi sinyalleri ilk önce dentritler yardımıyla hücrenin 

somabölgesinde toplanır. Soma toplanan sinyalleri aksonlar yardımıyla bir diğer sinir 

hücresine iletir. Aksonlar üzerinden geçen sinyal sinapsis boşluğu denilen bölgeye gelir. 

Buraya gelen bilgi sinyalleri dentritlere geçmeden önce gerekli ön işlemden geçmektedir. 
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Bu işlem eşik değer işlemi gibi düşünülebilir. Örneğin ağrı eşik değeri insanlarda farklılık 

gösterebilir. Kullanılan ağrı kesici sinirlerin ağrıyı hissetme eşik değerini yükselterek 

gerçekte var olan ağrıyı hissetmememizi sağlar. 

Sinapsis aksondan gelen bilgiyi yorumlayıp diğer sinir hücresinin dentritine 

ulaştıran son durak olduğu için bu kısım sinir yapısının karar verici bölmesi olarak 

düşünülebilir. İki dentrit arasında yeralan soma, akson ve snapsis bölgelerinin 

matematiksel olarak modellenmesi mümkündür. Şekil 16 ile Şekil 15 incelendiğinde 

ağırlıklar aksonları, eşikleme kısmı da sinapsisi temsil etmektedir. 

 

Şekil 16. Yapay sinir ağı modeli 

Yapay sinir ağı yapay sinir hücrelerinden oluşur. Hücreler arasındaki katmanların 

ağırlık değerleri ile öğrenme işlemi gerçekleşir. 

Yapay sinir ağı modelleri, hayatın hemen her alanında yer almaktadır. Uygun 

öğrenme yolu izlendiğinde yani ağırlıklar belirlendiğinde başarılı sonuçlar verebilmektedir. 

Sınıflandırma, optimizasyon, konuşma tanıma gibi pek çok alanda sıkça kullanılmaktadır. 

Yapay sinir ağı modellerinde birçok nöronun eş zamanlı olarak çalışabilmesi ve çıktı 

üretebilmesi mümkündür. Eğitilen nöronların eğitim setinde olmayıp hiç girdi olarak 

verilmeyen girdilere doğru sonuçlar üretebilme özelliği vardır. Yapay sinir ağı modellerini 

hem donanım hem yazılım alanında geliştirmek mümkündür. Donanım alanında yapay 

sinir ağı modeli geliştirmek için öncelikle yazılım olarak modellenen yapay sinir ağının 

performansı çok iyi düzeyde olmalıdır. 

 Yapay sinir ağı ile sınıflandırma işleminde en temel amaç; girdiyi (𝑥1, 𝑥2 …𝑥ℎ ,)         

aktivasyon fonksiyonuna iletip beklenen çıktıyı (𝑦) elde etmektir. Denklem (33) de verilen 

eşitlikte x girdilerinin toplanıp aktivasyon fonksiyonuna girdi olarak verilip çıktı olarak y 

çıktısının elde edildiği görülmektedir. 
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𝑦(𝑥, 𝑤) = 𝑓(∑ 𝑤𝑗𝑥𝑗
ℎ
𝑗=1 )                                                       (33) 

Bu sınıflandırıcı modeli temel olarak üç katmandan meydana gelir. Bu katmanlar; 

girdi katmanı, ara katman ve çıktı katmanıdır. Girdi katmanı verinin sonraki katmanlara 

iletildiği katmandır. Bu katmanda veri sayısı kadar sinir nöronu bulunur. Ara 

katmanlardaki nöron sayısı girdi ve çıktı katmanlarından bağımsız olarak seçilir. Ağ 

modelinde birden fazla ara katman yer alabilir. Ara katmanlardaki ağırlıkların belirlenmesi 

öğrenme işleminin bir parçasıdır. Öğrenme aşamasında   𝑤𝑗   katsayıları öyle bir 

seçilmelidir ki beklenen çıktı değeri elde edilsin. Tüm ağırlıklar girdi verileri ile işlemden 

geçirilerek merkezde toplanır. Elde edilen değer 𝑓(. ) aktivasyon fonksiyonundan 

geçirilerek çıktı üretilir. Geri beslemeli katmanlarda üretilen çıktı değeri, ağırlıkların 

güncellenip hatanın yok edilmesi için girdi olarak yeniden ağın girişine verilir. Başlangıç 

ağırlık değerleri eğitim süresi boyunca güncellenerek son halini alır.  Bir başka ifade ile 

beklenen çıktı değeri elde edilinceye kadar eğitim devam eder.  

Yapay sinir ağının ara katmanındaki nöron ve katman sayısı hesaplamanın 

karmaşıklığını artırsa bile, zor problemlerin çözümünde iyi performans göstermesi 

kullanılan nöron sayısı ile ilişkilidir. Kullanılan katman sayısına göre farklı türlerde yapay 

sinir ağı mevcuttur. 

 

4.2.1. Yapay Sinir Ağı Modelleri 

 Tek Katmanlı yapay sinir ağı modelleri:  

 Perceptron 

 Adaline 

Sinir ağı modelleri tek katmanlı modellerdendir. 

 Çok katmanlı yapay sinir ağı modelleri: 

 Çok katlı Perceptron (MLP) 

 Hopfield Ağı 

 Self  Organizing Map (SOM) 

 Recurrent Ağı 

Perceptron 

 Tek katmanlı en basit yapı olan perceptron modeli yapay sinir ağları için önemli bir 

temel oluşturmaktadır. Perceptron ağında çıktı katmanında birden fazla nöron yer 
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almaktadır. Perceptron doğrusal olarak ayrılabilen verileri sınıflandırabilir. Bunun için 

eğitim sürecinde ağırlıklar güncellenerek en uygun karar sınır yüzeyinin elde edilmesi 

amaçlanır. Perceptron ve perceptron ağı Şekil 17' de verilmiştir. 

 

 

Şekil 17.Perceptron ağı (sol) ve tek perceptron (sağ) 

Belirlenecek ağırlık değerleri için başlangıç değeri atanır. Eğitim seti için belirlenen 

girdiler başlangıç ağırlıkları ile tek tek çarpılır ve toplanır. Elde edilen değer eşikleme 

fonksiyonu kullanılarak; eşik değerinin altında kalan değerleri bir sınıfa, üstünde kalan 

değerleri diğer sınıfa atayarak her bir girdi değeri için tahmini bir çıktı değeri üreterek bu 

tahmine bağlı olarak girdiyi bir sınıfa atar. Gerçek sınıf değerleri ve belirlenen çıktı 

değerleri kıyaslanır. Hata hesabı yapıldıktan sonra ağırlıklar hata değerine göre 

güncellenerek döngü devam eder. Bu süreç her bir girdinin doğru sınıfa atılması ile 

sonlanır. En son elde edilen ağırlık değerlerine göre karar verici yüzey belirlenir. 

Perceptron yapay sinir ağı modelinin yukarda anlatılan algoritması şu şekildedir. Denklem 

(34) – (37) algoritmanın adımlarını matematiksel olarak vermektedir. 

Adım 0: başlangıç ağırlık değerlerini 𝑤𝑖     ve kutup değerini  𝑏   belirle, öğrenme katsayısı 

(µ) belirle, 

Adım 1: Belirli bir iterasyon sayısı kadar veya her girdi değeri için uygun y değeri elde 

edilene kadar 2-5 adımlarını tekrarla, 

Adım 3: Girdi değerlerini girdi setinden al, 

Adım4: Perceptrona gelen toplam bilgi sinyalini belirle, 

𝑦𝑖𝑛 = 𝑏 + ∑𝑤𝑖𝑥𝑖                                                (34) 

𝑦 = 𝑓(𝑦𝑖𝑛),                                                           𝑦 =  {
−1   ,                  𝑒ğ𝑒𝑟𝑦 < ∅
 +1   ,             𝑒ğ𝑒𝑟𝑦 > ∅

}              (35) 
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Adım 5: Beklenen t değerinden elde edilen y çıktı değeri farklı ise hata var demektir. Hata 

varsa; 

𝑤𝑖𝑦𝑒𝑛𝑖 = 𝑤𝑖𝑒𝑠𝑘𝑖 + 𝑡 ∗ µ ∗ 𝑥𝑖                                                     (36) 

𝑏𝑦𝑒𝑛𝑖 = 𝑏𝑒𝑠𝑘𝑖 + 𝑡 ∗ µ                                                                         (37) 

Hata yoksa en uygun ağırlık değeri belirlenmiş demektir. 

Adım 6: Öğrenme işlemini bitir [45]. 

 

Şekil 18. Girdi katmanı, Ağırlıklar ve Ara katman Çıktı katmanı 

Hatanın minimize edilmesi için kullanılan çeşitli yöntemler şunlardır: 

 Gradient Descent Metodu 

 Steepest Descent Metodu 

 Newton Metodu 

 Conjugate Gradient Metodu 

4.2.2. Çok Katlı Perceptron (MLP) Yapay Sinir Ağı 

Tek katmanlı perceptron yapısı doğrusal olmayan problemlerin çözümünde yetersiz 

kalmaktadır. Bu yapının yetersiz kaldığı yerde çok katmanlı perceptron yapısı kullanışlı bir 

yöntemdir. Çok katlı perceptron sinir ağı modelinde giriş katmanından verilen girdilerin 

çıktı katmanında doğru çıktı değerlerini vermesi için uygun ağırlık değerlerinin 

belirlenmesini amaçlar. Standart geriye yayılım algoritması (Back-Propagation) ve 

momentumlu geriye yayılım algoritması bu model için kullanılır. 

Standart geriye yayılım algoritması şöyledir: 
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 Eğitim seti için belirlenen verilerden biri ağ girişine uygulanması 

 Ağın çıkışının hesaplanması 

 Ağın çıkışı ile beklenen değer arasındaki hatanın hesaplanması 

 Hatanın küçültülmesi için geriye doğru ağırlıkların güncellenmesi 

Yapay sinir ağının Matlab'ta hazır arayüzü bulunmaktadır.  Veri setinin ve etiket 

vektörünün bu arayüze yüklenmesi, ara katmanlardaki nöron sayısının belirlenmesi, 

aktivasyon fonksiyonunun seçilmesi ile yapay sinir ağı modeli eğitilir.  Bu arayüzde 

sonucun performans grafiklerinin incelenmesi, eğitim süresinde toplam iterasyon sayısı 

bilgilerine ulaşılabilmektedir. 
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5. SİNYAL ÖN İŞLEME ve SINIFLANDIRMA SONUÇLARI 

Bu çalışmada kullanılan veri seti 16 elektrot kullanılarak kaydedilen İzlanda veri setidir 

[7]. Sinyaller 200 Hz örnekleme frekansı ile örneklenmiştir. Kayıt cihazında kesim frekansı 

100 Hz olan anti-aliasing filtre kullanılmıştır.  4x4 elektrotlardan alınan sinyaller sinyal 

gürültü oranını arttırmak için yatay olarak bipolar sinyallere dönüştürülmüştür [49]. Şekil 

19'da bipolar kanal gösterimi verilmiştir. Şekil 20 ve 21' de verilen grafiklerde monopolar 

ve bipolar sinyallerin karşılaştırılması görülmektedir. 

 

Şekil 19. 4x4 elektrot Dizilimi[7] 

 

Şekil 20. Monopolar Rahim Sinyalleri[9] 

 

Şekil 21.  Bipolar Sinyaller[9] 



48 
 

Bu grafikler incelendiğinde bipolar sinyallerde olayların daha keskin olarak 

görüldüğü anlaşılmaktadır. Rahim EMG sinyallerinde annenin solunum, EKG ve EGG 

(Electrogastrogram, mide sinyalleri) sinyalinden bebeğin kalp sinyaline kadar sinyal 

bileşenleri mevcuttur. Özellikle annenin solunum sinyalinin sinyaller üzerindeki etkisini 

azaltmak için bipolar sinyaller üzerinden analiz yapmak kasılma gibi bölgelerin tespit 

edilmesinde daha etkili olacaktır. Bu yüzden bipolar sinyaller üzerinde istenmeyen yani 

gürültü olarak tanımlanan bileşenlerin etkisinin azaltılması için sinyaller bipolar forma 

çevrilmiştir. Böylece sinyal gürültü oranının arttırılması hedeflenmiştir. 

Bipolar rahim sinyallerine ilk işlem olarak Dalgacık Paket Dönüşümünden 

yararlanarak gürültü azaltma işlemi uygulanmıştır. 

 

5.1. Dalgacık Paket Dönüşümü Eşik Değer Yöntemi ile Gürültü Yok Etme 

 Rahim dış yüzeyinden alınan sinyaller birçok gürültü bileşeni içerir. Gerçek 

zamanlı her sinyalde meydana gelebilen bu gibi sinyalleri gürültü gibi genel bir ifade ile 

tanımlayabiliriz. İstenmeyen bu sinyaller elektrotlar ile deri arasındaki yüzeyden, kayıt 

cihazından kaynaklanan bileşenlerden, elektronik ekipmanlardan, ortamdaki 

elektromanyetik gürültü, elektrot ve elektrot kablolarından kaynaklanabilmektedir. Bu 

gürültü bileşenlerinin kaydedilen sinyal üzerindeki etkisi en aza indirilmelidir. Bu nedenle 

sinyalin içerdiği gürültü bileşenlerini minimum seviyeye düşürdükten sonra sinyal işleme 

amaçlanmıştır. Bunun için gürültüyü azaltma veya yok etme (de-noising) yöntemlerinden 

dalgacık eşik değer yöntemi kullanılmıştır. Bu yöntem ile öncelikle dalgacık katsayıları 

belirlenen bir dalgacık fonksiyonu ile hesaplanır. Dalgacık dönüşümü ile ilgili bilgiler 

üçüncü kısımda ayrıntılı olarak anlatılmaktadır. Temel olarak Dalgacık Paket Dönüşümü 

ile gürültü yok etme blok şeması Şekil 22'de gösterilmiştir. 

 

 

 

Şekil 22. Dalgacık Paket dönüşümü a) Analiz b) Sentez blok diyagramları 

 

İlk olarak sinyal dalgacık katsayılarına ayrıştırılır ve önceden belirlenen T eşik değerine 

göre yeni katsayılar belirlenir. 𝐶(𝑗, 𝑘) dalgacık katsayıları olmak üzere, 

Analiz (Dalgacık 

Bileşenlerine Ayırma) 

Eşikleme Sentez (Ters Dalgacık 

Dönüşümü) 
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𝑑(𝐶(𝑗, 𝑘)) = {
1,   𝐶(𝑗, 𝑘) > 𝑇
0                𝑑𝑖ğ𝑒𝑟

}                                              (37) 

Elde edilen eşiklenmiş katsayılar kullanılarak Ters Dalgacık Dönüşümü ile sinyal 

sentez edilmiş olur. Bu şekilde eşik değer uygulandığı için sinyal üzerine binen gürültü 

azaltılmıştır [50]. Dalgacık Dönüşümü ile gürültü yok ederken eşik değerin belirlenmesi 

önemli bir problemdir. Farklı eşik değerlere göre farklı sonuçlar elde edilmektedir. Sinyal-

gürültü oranı dikkate alınarak en uygun SNR değerini veren eşik değer belirlenmiştir. 

Uygulanacak eşik değer metodunu belirlemek için aşamada literatürde kullanılan 

eşik değer yöntemleri incelenmiştir. 

Yumuşak (Soft) ve Keskin (Hard) Eşikleme olarak verilen eşitlikler denklem (38) 

ve denklem (39) da verilmiştir. 

Keskin eşik değer   ;  𝑤𝑡ℎ = {
𝑤 ,   |𝑤| ≥ 𝑡

0   ,    |𝑤| < 𝑡
}                        (38) 

w dalgacık katsayısı, t eşik değer; 

Yumuşak eşik değer;  𝑤𝑡𝑠 = {
[𝑠𝑖𝑔𝑛(𝑤)](|𝑤| − 𝑡), |𝑤| ≥ 𝑡

0                          ,        |𝑤| < 𝑡
}                    (39) 

Diğer eşik değer çeşitlerinin temel denklemi denklem (40)’da sigma değeri de denklem 

(41)’ de verilmiştir. 

𝑤𝑡ℎ = 𝜎√2 log(𝑛) /𝑛                                                  (40) 

𝜎 =
𝑚𝑒𝑑𝑖𝑎𝑛(𝑤)

0.6745
                                                 (41) 

W dalgacık dönüşümü katsayıları, n toplam dalgacık katsayılarının toplam sayısıdır. 

Global, Rigrsure, Heursure, minimax eşikleme değerleri temelde bu denklemden 

türetilmişlerdir. Bu farklı eşikleme değerleri analiz edilmiştir. Analiz için SNR değerleri 

karşılaştırılmıştır. SNR hesaplama için öncelikle temizlenen sinyalin orijinal sinyalden 

farkı alınarak gürültü sinyali belirlenmiştir. Daha sonra sinyalin gürültü sinyaline oranı 

hesaplanarak SNR değeri hesaplanmıştır. Matlab’ta yeralan bu eşikleme yöntemleri 

kullanılarak gürültü azaltma işlemi sonucu elde dilen sinyal gürültü oranları 

karşılaştırılmıştır. Rahim EMG sinyallerine uygulanan eşikleme yöntemleri arasından 

Heursure ve Soft eşikleme değerlerinin SNR değerleri birbirine eşit çıkarken diğer 

yöntemlerden minimax eşikleme en yüksek SNR değerini vermiştir. Bu eşikleme 

yöntemine göre Şekil 23’ te elde edilen sonuçlar verilmiştir. 
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Şekil 23. Gürültü Azaltma Öncesi ve Sonrası Rahim EMG Sinyali 

 

Rahim EMG sinyalleri durağan olmayan bir karakteristiğe sahiptir ve bu sinyaller kayıt 

altına alınırken, rahim kaslarının sinyallerinden başka sinyal bileşenleri içerir. Bu 

bileşenler annenin EKG'si, elektrotlardan kaynaklanan gürültü ve ortamdaki 

elektromanyetik alandan kaynaklanabilir. Bu nedenle sinyalin içerdiği bu bileşenleri 

belirlemek kasılma ve foetal hareketlenmelerin kestirilmesinde önemli bir yere sahiptir. 

Belirlenen bu bileşenler dışında kalan kasılmalar analiz edilerek erken doğumu kestirmek 

daha kolay hale gelecektir. Örneğin bizim için öneme sahip olan olayları belirlemek için 

uygun filtreden geçirip hem embriyonun hem annenin EKG sinyal bileşenini içeriyorsa bu 

sinyalleri ayırt etmek erken doğum kasılmasını belirleme işleminden önce faydalı bir adım 

olacaktır. Rahim EMG sinyalinin içerebileceği başlıca sinyaller şunlardır: 

 Kasılma 

 Embriyo hareketleri 

 Annenin veya bebeğin EKG'si 

 Uzun süreli düşük frekanslı sinyaller 
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Kasılma sinyalleri 1 Hz'in altındaki, uzun süreli düşük frekanslı sinyaller ve embriyo 

hareketlerine bağlı elektriksel sinyaller de 0,5 Hz'in altındaki frekanslara sahiptir [51],[52]. 

Erken doğumun kestirilmesinde önemli bir yeri olan bu tip sinyaller dışındaki 

istenmeyen gürültülerden kurtulmak için bant geçirgen filtre uygulanmıştır. Üstteki 

sinyallerin frekans aralıkları göz önünde bulundurularak ve aynı zamanda kaynaklardaki 

çalışmalarda kullanılan kesim frekansına sahip bant geçirgen filtre kullanılmıştır. 

Uygulanan filtrenin kesim frekansı 3 Hz -0,1 Hz’dir. 

Rahim EMG sinyallerinde kasılma ve foetal hareketlenme bölgelerinin tespit edilmesi; 

tüm sinyalin analiz edilmesi gerekliliğini ortadan kaldırarak aşırı veri işlenmesinden 

kaynaklanan işlem yükünden kurtulmayı sağlayacaktır. Bu amaçla bu bölgelerin otomatik 

olarak tespit edilmesine yönelik uygulanan algoritmalar ayrıntılı olarak verilmiştir. 

5.2. Kasılma Tespiti için Uygulamalar 

 Filtrelenen sinyalin kasılma bölgeleri ve diğer foetal hareketlerinin zaman 

bölgesinde kestirilebilmesi için çeşitli analizler yapılmıştır. Bu analizler zaman bölgesinde 

sinyalin enerjisi veya farklı filtreler uygulanarak yapılmıştır. 

Uygulanan filtreler daha önce EKG sinyallerinde QRS bölgesinin tespiti için 

kullanılmıştır. Sinyal üzerindeki kasılma bölgelerinin frekansında ve genliğinde değişmeler 

meydana gelmektedir. Bu bölgeleri etiketlemek amacıyla uygulanan algoritmalar ve 

sonuçları aşağıda verilmiştir. 

5.2.1. Algoritma 1 

 Bu algoritma Ahlstrom&Tompkins tarafından QRS tespiti amacıyla geliştirilen bir 

algoritmadır [53].  QRS bölgesi yani kalbin kasılıp gevşediği bölge sinyalin diğer 

bölgelerine göre daha çok eğimin, yüksek genliğin ve en keskin dalganın olduğu bölge 

denilebilir. Bu bilgi ve öngörü ile oluşturulan algoritma kasılma ve erken doğum için 

belirleyici sinyal aralıklarının tespit edilmesi için rahim EMG sinyaline uygulanmıştır. 

Uygulanan algoritmalar sonucu elde edilen sinyaller aşağıda yeralmaktadır.  x(n) rahim 

EMG sinyali olsun. 

İlk olarak x(n) sinyalinin birinci dereceden türevi denklem (42) de verildiği gibi elde edilir. 

𝑦0(𝑛) = |𝑥(𝑛) − 𝑥(𝑛 − 2)|                                                 (42) 

İkinci dereceden türevi ise denklem (43) de verilmiştir. 
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𝑦1(𝑛) = |𝑥(𝑛) − 2𝑥(𝑛 − 2) + 𝑥(𝑛 − 4)|                                  (43) 

Birinci ve ikinci türevi belirli katsayılarla çarpılarak toplandığında elde dilen sinyal 

denklem (44) de yer almaktadır. 

𝑦2(𝑛) = 1.3𝑦0(𝑛) + 1.1𝑦1(𝑛)                                            (44) 

Bu algoritmada türev operatörünün uygulanması ile sinyale yüksek geçirgen filtre 

uygulanır. Yüksek geçirgen filtreler genel olarak sinyalin keskin bölgelerinin çıkartılması 

amacıyla, alçak geçirgen filtreler ise sinyal üzerinde bulunan gürültü bileşenlerinden 

kurtulmak amacıyla uygulanmıştır [54]. Algoritma sonucu elde edilen sinyal, birinci ve 

ikinci türev sonuçları Şekil 24' te verilmiştir. 

 Filtrelenen sinyalin ilk ve ikinci türevden sonraki çıktıları ve algoritmanın son hali 

incelendiğinde türev almanın olayların meydana geldiği aralıkları daha da keskinleştirdiği 

görülmektedir. Yüksek frekanstaki bölgeler türev işlemi ile daha belirginleştirilmiştir. 

 

 

Şekil 24. Sinyalin 1.ve 2. Türevleri 

Bu algoritma sonucu elde edilen sinyalin zarfı alınarak bölgelerin aralıkları otomatik olarak 

belirlenebilir. Diğer algoritma QRS tespitinde kullanılan bir başka yöntemdir. Bu yöntem 

de diğeri gibi Ahlstrom&Tompkins tarafından EKG sinyallerinde QRS bölgesi tespiti için 

geliştirilmiştir [55],[53]. 

Düşük frekans ve genlikli bölge 

 

Düşük frekans ve genlikli bölge 
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5.2.2. Algoritma 2 

 Bu yöntem önceki algoritmaya göre kasılma bölgesinin tespiti için daha başarılı 

sonuç vermiştir. Bu analiz yönteminde ilk olarak sinyalin birinci türevinin karesi değişken 

bir katsayı ile çarpılır. Bu katsayı sinyalin üzerinde taranan pencere uzunluğuna bağlı 

olarak her nokta için değişmektedir. Algoritmada ilk aşamada elde edilen sinyalin eşitliği 

denklem (45) de verilmiştir. 

𝑔1(𝑛) = ∑ |𝑥(𝑛 − 𝑖 + 1) − 𝑥(𝑛 − 𝑖)|2(𝑁 − 𝑖 + 1)𝑁
𝑖=1                                   (45) 

Türev alınırken aynı zamanda bir pencere kullanılır. N parametresi uygulanan pencerenin 

uzunluğudur. Bu pencerenin uzunluğu çok geniş ya da dar olmamalıdır. Dar olması 

çözümü ilk algoritmaya yaklaştırırken çok geniş olması da sinyal üzerinde gecikmeye 

sebep olur. Sonraki adım sinyal üzerindeki dalgalanmayı azaltmak amacıyla ortalama alıcı 

(Moving Avarage) filtre uygulamadır. Denklem (45) de elde edilen sinyale uygulanan filtre 

eşitliği denklem (46) da verilmiştir. M pencere aralığıdır. 

𝑔(𝑛) =
1

𝑀
∑ 𝑔1(𝑛 − 𝑗)𝑀−1

𝑗=0                                                 (46) 

Şekil 25 sinyale uygulanan her adımın çıktısını vermektedir. 

 

Şekil 25. Ağırlıklandırılmış ve Kare Alıcı Filtre ve Ortalama Alıcı Filtre sonuçları 
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İncelendiğinde algoritma 2’ nin sonucu takograf kaydı ile benzerlik gösterdiği 

görülmektedir. Şekil 26’ da verilen sinyallerde keskin sinyal bölgelerinin eşik enerjisinin 

alınıp bu enerji sinyaline uygulanan eşik değer sonucu bölgelerin başlangıç ve bitiş 

noktaları belirlenmiştir. Grafik üzerindeki iki kasılma ayrı olarak gösterilmiştir. 

 

(a)                                                                     (b) 

Şekil 26. (a) Enerji Sinyali (b) Algoritmaya Göre Elde Edilen Kasılma bölgeleri 

 Eşik değer enerji sinyalinin ortalama değeri ile ilgili katsayı çarpılarak belirlenir.İki 

algoritma sonuçları Şekil 27’ de karşılaştırılmıştır. İlk ve sonraki algoritma sonuçları 

karşılaştırıldığında sonraki algoritma sonucunda kasılma bölgelerini daha keskin olarak 

verdiği aşağıdaki şekil incelendiğinde görülmektedir. 

 

Şekil 27. Algoritma sonuçlarını karşılaştırma 
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Kasılma noktalarının otomatik olarak belirlenmesi için incelenen bir diğer yöntem Teager-

Kaiser Enerji Operatörüdür. Sinyal enerji analiz yöntemi olan Teager Enerji Operatörü ile 

sinyalin enerjisi incelenmiştir.  

 

5.2.3. Teager Enerji Operatörü 

Teager enerji operatörü bir sinyalin anlık enerjisi değerlendirmektedir. Bu algoritma ile 

sinyal üzerinde zaman bölgesine bağlı olarak değişim noktalarını tespit etmek mümkündür. 

Sürekli zaman sinyali olan x(t)  olsun,   Teager-Kaiser Operatörü uygulanırsa matematiksel 

gösterimi şu şekildedir [56]. Denklem (47) ve (48)’de sırasıyla sürekli ve zaman sinyalleri 

için Teager operatörü denklemleri verilmiştir. 

𝜑(𝑥(𝑡)) = (
𝑑𝑥(𝑡)

𝑑𝑡
)2 − 𝑥(𝑡)

𝑑2𝑥(𝑡)

𝑑𝑡2                                            (47) 

Sinyal kesikli olduğunda ise; 

𝜑(𝑥(𝑛)) = 𝑥(𝑛)2 − 𝑥(𝑛 + 1)𝑥(𝑛 − 1)                                     (48) 

Şekil 28' de Teager sonucu verilmiştir. Bu algoritmanın sinyalde kasılma veya önemli 

bölgeler olarak belirtilen bölgeleri daha keskin olarak öne çıkardığı görülmektedir. 

 

Şekil 28. Teager Enerji Operatörü sonucu 

Teager Enerji operatörü de sinyalin frekans ve genlik bakımından değişiklik gösterdiği 

bölgeleri belirleyebilmek açısından kullanışlı bir algoritmadır. Bu operatör Dalgacık 

Dönüşümü, Kısa Zamanlı Fourier Dönüşümü gibi bir dönüşüm olarak düşünülebilir. Daha 

önceki çalışmalarda uyku mili (spindle) bölgelerinin tespit edilmesinde kullanılmıştır [57]. 
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Teager-Enerji Operatörü kasılma bölgesinin tespitinde kullanılabilecek bir algoritmadır. 

Daha önce biyolojik sinyallerin enerji analizlerinde iyi sonuçlar veren algoritma 2 ve 

Teager Enerji Operatörü karşılaştırıldığında iki algoritmanın da kasılma noktalarını 

belirlemede birbirine benzer yaklaşım ortaya koyduğu görülmektedir. Şekil 29’da verilen 

grafikte her iki sonuç da çizdirilmiştir. 

 

 

Şekil 29. Teager Enerji ve Algoritma 2 Sonuçları Karşılaştırma 

 

Teager enerji analiz yöntemi Dalgacık Dönüşümüne da uygulanmıştır. Bu işlemde daha 

hızlı sonuç elde edilmiştir. Ayrıca Dalgacık Dönüşümü ile sinyal alt ve üst frekans 

bantlarına ayırdığı için ve bu işlemde zaman bilgisi korunduğu için yararlı bir uygulama 

olduğu görülmüştür. 

 

5.2.4. Dalgacık Dönüşümü ve Teager Enerji Dönüşümü 

Veri setinde bulunan sinyallerin analizi için kullanılan bir diğer yöntem Dalgacık 

Dönüşümü ile Teager-Kaiser Enerji analizidir. Bu yöntemde Dalgacık Dönüşümü ile 5' inci 

seviyeden Dalgacık Dönüşümü sonucuna Teager Enerji uygulanmıştır. Bu şekilde 5'inci 

seviyeden elde edilen sinyalin Teager Enerjisi hesaplanmıştır. Şekil 30’da verilen 
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grafiklerde Teager sonucu ve dalgacık dönüşümünden sonra elde edilen sonuçlar 

karşılaştırılmıştır. 

 

Şekil 30. Dalgacık Dönüşümünden Sonra Taeger Enerji Analizive Teager Enerji Analizi 

Elde edilen enerjiye eşik değer uygulanarak sinyalin keskin bölgelerini belirlemek 

mümkündür. Bu işlem dalgacık dönüşümü uygulamadan yapıldığında sonuç elde etmek 

için uzun süre beklemek gerekmektedir. Ayrıca dalgacık paket dönüşümü ile üst 

seviyelerde bulunan sinyal bileşenleri ayrıştırıldığı için daha yumuşak bir sonuç elde 

edilmektedir. Dalgacık Dönüşümü kullanılarak daha etkin sonuca, daha kısa sürede 

ulaşılmaktadır. 

Rahim EMG sinyallerine uygulanan bu ön işleme yöntemlerinin arayüzde 

uygulamaları mevcuttur. Bu yöntemlerin kullanımı sinyal işleme ve analizi arayüzü 

bölümünde detaylı olarak açıklanmıştır. 

 Kayıtlı sinyallere ait ön bilgilerin, yani rahimden kaynaklı önemli olayların 

sınıflandırılması amacıyla öznitelikler çıkarılmıştır. Öznitelik belirleme bölümünde 

anlatılan özniteliklerin bir kısmı sınıflandırma amacıyla çıkarılmıştır. Sınıflandırmada 

kullanılmayan fakat arayüzde ileride olabilecek çalışmalarda kullanılmak üzere istenilen 

sinyalin arayüzde bulunan seçeneklar yardımıyla bu özniteliklerin çıkartılması 

mümkündür. Sınıflandırmada kullanılan öznitelikler; toplam güç, tepe genliği, süresi, 

sıfırdan geçiş oranı, RMS, Güç Spektral Yoğunluk Tepe Genliği, Güç Spektral Yoğunluk 

Tepe Frekansı, standart sapma, varyans, ortalama, zamanda terslenebilirlik ve örnek 

entropisidir. Arayüzde bu parametrelere ek olarak kullanıcının analiz ederken 

kullanabileceği ek öznitelikler de bulunmaktadır. Dalgacık Dönüşümü ayrışım ve detay 

kaysayıları, dalgacık paket dönüşümü katsayıları, Lyapunov üsteli öznitelikleri de 
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kullanılmaktadır. Bu şekilde arayüzde kullanıcı sinyali analiz ederken zaman, frekans ve 

istatiksel tabanlı analiz edebilecektir. 

Çıkarılan özniteliklerin sayısı, boyut indirgeme yöntemi olan FDA ile 

düşürülmüştür. Boyut indirgeme ile seçilen boyutta en ayırt edici öznitelikler kullanılarak 

sınıflandırma yapıldığı için sınıflandırma performansı artmıştır. 

En yakın uzaklık sınıflandırıcı yöntemi ile boyut indirgeme yapılmadan sınıflandırma 

performansı %34,1 iken boyut indirgeme yöntemi ile özniteliklerin boyutu 3'e 

indirgenmiştir. Bu şekilde sınıflandırma performansı %65,34 olarak elde edilmiştir. 

 Doğrusal bir sınıflandırıcı olan en yakın uzaklık algoritmasının sonucunu 

iyileştirmek amacıyla iyileştirme işlemi uygulanmıştır. Sınıflandırma performansını 

arttıran iyileştirme uygulaması hakkında detaylı bilgi verilmiştir. 

 

5.3. En Yakın Uzaklık Sınıflandırıcı İçin Ağırlık Düzeltme 

 Sınıflandırmada kullanılan ağırlıklar eğitim setindeki verilerin ortalaması ile 

belirlenip test setindeki verilerin bu ağırlıklara olan uzaklıkları kıyaslanarak en yakın sınıfa 

atama yapılır. Bu ağırlık değerlerinin sınıflandırma performansı üzerinde etkili olduğundan 

dolayı, sınıflandırma doğruluk oranını yükseltmek amacıyla bu ağırlıkların daha anlamlı 

seçilmesi amaçlanmıştır. 

Bunun için eğitim ve test setine ek olarak yeni bir set tanımlanmaktadır. Bu set 

kullanılarak eğitim setinden elde edilen ağırlıklar, yani özniteliklerin ortak ifadesi bu 

düzeltme seti ile tekrar düzenlenir.   

Toplamda veri setinden eğitim seti, düzeltme seti ve test seti olmak üzere üç ayrı 

veri seti oluşturulmuştur. En yakın uzaklık algoritmasının iyileştirilmesi aşağıda verilen 

basamaklarla planlanmıştır: 

𝑥1, 𝑥2, … , 𝑥𝑒 Eğitim seti; 

𝑥1, 𝑥2, … , 𝑥𝑜Düzeltme seti; 

𝑥1, 𝑥2, … , 𝑥𝑡 Test seti olsun. 

Adım1: Eğitim setindeki her sınıfın ağırlıklarını ortalama değer olarak hesapla 

𝑤1, 𝑤2, 𝑤3 Eğitim setindeki sınıf tanımlayan özniteliklerin ortalaması; 

Adım2:  Düzeltme setindeki her veri için 2-a) - 2-b) adımlarını uygula, 
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2-a) Sınıfı bilinen 𝑥𝑜 verisi  𝑤2 (d) sınıfına ait olsun (d doğru sınıf), 

Öğrenme adımını η belirle 

2-b)        𝑥𝑜 verisinin  𝑔1 = ||𝑥𝑜 − 𝑤1|| , 

  𝑔2 = ||𝑥𝑜 − 𝑤2|| 

    𝑔3 = ||𝑥𝑜 − 𝑤3|| 

2-c)      Uzaklıklar arasından en küçük olanı bul ve sonuç sınıfını gerçek sınıfla karşılaştır 

2-d)     Doğru sınıf değil ise  𝑤ℎ = 𝑤ℎ-η(𝑥𝑜 − 𝑤ℎ); 

Doğru sınıf ise  𝑤ℎ = 𝑤ℎ+η(𝑥𝑜 − 𝑤ℎ) 

Adım3: Test setindeki her bir verinin güncellenmiş ağırlıklara uzaklıklarını hesapla 

Adım4: Uzaklığı en küçük hangi sınıfa ait ağırlık ise veriyi o sınıfa ata. 

Adım5: Testi bitir. 

Bu algoritmada adım 2' de ağırlıkların iyileştirilmesi yapılır. Uygulanan iyileştirme 

yordamı sonucu en yakın uzaklık sınıflandırıcının başarı performans oranı %70 olarak 

bulunmuştur. Sınıflara ait ağırlıkların iyileştirilmesi başarı oranını %65'ten %70 'e 

çıkarmıştır. 

 

5.4. Yapay Sinir Ağları ve En Yakın Uzaklık Sınıflandırıcı Sonuçları 

 İzlanda verisinde bulunan veri setinde toplam 3 sınıf bulunmaktadır. İlk 

uygulamada en yakın uzaklık sınıflandırıcı algoritmasında eğitim seti ve test seti her sınıfa 

ait verilerin yarısı eğitim diğer yarısı da test setindekullanılmıştır. Buna göre elde edilen 

sınıflandırma performansı %65’ tir. Performansı arttırmak amacıyla en yakın uzaklık 

sınıflandırıcının ağırlıkları optimize edilerek test seti test edilmiştir. Genel doğruluk oranı 

hesaplanırken eğitim seti, düzeltme seti, test seti olmak üzere 3 kısma ayrılmıştır. 

Uygulanan iyileştirme yöntemi sonucunda elde dilen sınıflandırma başarı oranı %70 olarak 

kaydedilmiştir. İleri beslemeli yapay sinir ağları ve en yakın uzaklık sınıflandırıcı 

yöntemlerinin sonuçları Tablo.1'de verilmiştir. 

İleri beslemeli yapay sinir ağları sınıflandırma sonucunda elde edilen Şekil 31' de 

verilen karışıklık matrisleri incelendiğinde 3. sınıf olan Kasılma sınıfının doğruluk oranı, 
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genel doğruluk oranından daha yüksek olup %86.4' tür. En düşük doğruluk oranı ikinci 

sınıf yani muhtemel kasılma sınıfına aittir. 

Tablo 1-Sınıflandırıcı Sonuçları 

İleri Beslemeli yapay sinir ağı Genel:%79.2, Kasılma: %86.4 

İyileştirilmiş En Yakın Uzaklık Sınıflandırıcı %70 

En yakın uzaklık sınıflandırıcı %65 

K-en yakın uzaklık Sınıflandırıcı %73 

 

 İleri beslemeli yapay sinir ağları sınıflandırma sonucunda elde edilen Şekil 31'de 

verilen karışıklık matrisleri incelendiğinde 3. sınıf olan Kasılma sınıfının doğruluk oranı, 

genel doğruluk oranından daha yüksek olup %86.4' tür. En düşük doğruluk oranı ikinci 

sınıf yani muhtemel kasılma sınıfına aittir. Muhtemel kasılma tam olarak hangi sınıfa ait 

olduğu bilinmeyen foetal hareketler veya kasılma olarak düşünülebilir. Bu sınıf çıkarılıp 

iki sınıf üzerinden ileri besleme yapay sinir ağları ile sınıflandırma yapıldığında genel 

doğruluk oranı %84.1, kasılma sınıfının doğruluk oranı ise %90 ' dır. Kasılma tespiti için 

yapılan bu çalışmalar sonucu yüksek performansta sınıflandırma yapılmıştır. 

 

Şekil 31. Karmaşıklık Matrisleri 

 

İleri beslemeli yapay sinir ağları ile 16 kanallı veriler için sonuçlara farklı kanalların 

performans üzerindeki etkisi de incelenmiştir. 3 sınıf kullanılarak yapılan sınıflandırma 



61 
 

işlemlerinde elde edilen sonuçlar Tablo-2’de verilmiştir. Tablo-2 elde edilirken 11 adet 

öznitelik kullanılmıştır. Bu öznitelikler; toplam güç, tepe genliği, süresi, sıfırdan toplam 

geçiş oranı, ortalamaların karekökü, Güç Spektral Yoğunluk Fonksiyonunun Tepe Genlik 

Değeri Ve Tepe Frekansı, standart sapma, ortalama, medyan ve varyans olmak üzere 11 

adettir. Bu öznitelikler kullanılarak kanalların doğruluk oranlarına etkisi incelenmiştir. 

Tablo-2 de görüldüğü gibi genel doğruluk oranı en iyi 12' nci bipolar kanalda Kasılma 

sınıfı için en iyi değerler 1 ve 12' nci bipolar kanallardan elde edilmiştir. Renk dağılım ile 

her kanalın doğruluk oranları verilmiştir. Bu dağılıma göre en yüksek değer açık sarıdan en 

düşük değer koyu maviye doğru değişim göstermektedir. 

Tablo 2- Bipolar Kanalların Genel ve Kasılma Sınıfı İçin Doğruluk Oranları 

 Vb1 Vb2 Vb3 Vb4 Vb5 Vb6 Vb7 Vb8 Vb9 Vb10 Vb11 Vb12 

Genel Doğruluk (%) 79.4 64.2 67.5 68.8 65.8 64.2 67.9 68.8 65 69 64.6 72.1 

Kasılma Sınıfı (%) 86.4 60 70 70 66.4 60 68.2 68.2 75.5 70 62.7 80 

 

Her bir bipolar kanalın doğruluk oranlarının dağılım matrisleri Şekil 32'de verilmiştir. 

 

 

Şekil 32. Farklı Kanallara Ait Genel Doğruluk ve Kasılma Sınıfının Doğruluk Oranları 

 

79.4 68.8 67.9 69 

64.2 65.8 68.8 64.6 

67.5 64.2 65 72.1 

86.4 70 68.2 70 

60 66.4 68.2 62.7 

70 60 75.5 80 
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En yakın uzaklık sınıflandırıcı yönteminde ağırlıkların optimize edilmesi başarı 

performansını arttırmıştır. Bu çalışmada kasılma bölgelerinin kestirilmesi yönünde 

çalışmalar yapılmıştır. Doğrusal olmayan ileri beslemeli yapay sinir ağları ile yapılan 

çalışmada kasılmalar iyi performansta kestirilmiştir. Deneysel olarak yapılan sonuçlarda en 

iyi performansı veren yapay sinir ağlarının yapısal özellikleri deneysel yöntemler sonucu 

belirlenmiştir. Kullanılan yapay sinir ağının özellikleri Tablo 3' te verilmiştir. 

 

Tablo 3- Yapay Sinir Ağı Özellikleri 

En yüksek eğitim döngü sayısı 1000 

Öğrenme adımı 0.01 

Transfer fonksiyonu Log-Sigmoid 

Eğitim fonksiyonu Geriye yayılım algoritması 

Nöron Sayısı 20 

 

Erken doğumun kestirilmesi için belirlenen kasılmaların hangi döneme ait 

olduğunun belirlenmesi gerekmektedir. Kasılma hamilelik döneminde, doğum anında, 

erken doğum ile sonuçlanmış bireyin hamilelik döneminde meydana gelebilir. Erken 

doğumu önceden kestirebilmek amacıyla erken doğum ile sonuçlanan hamilelik 

sinyallerini önceden kestirebilmek gerekir. Çalışmanın son aşamasında bu tip kasılmaları, 

normal doğum ile sonuçlanmış hamilelik sinyallerinden ayırt edebilmeye yönelik 

çalışmalar yapılmıştır. 

 

5.4.1. Erken Doğum, Normal doğum ve Hamilelik Sinyallerinin Sınıflandırılması 

 İzlanda veri setinde kısıtlı sayıdabulunan 3 erken doğum ile sonuçlanan hamilelik 

sinyallerinden dipnot bilgileri kullanılarak belirlenen kasılma bölgeleri çekilip, diğer 

sinyallerden normal doğum ile sonuçlanan hamilelik sinyallerinde meydana gelen kasılma 

bölgeleri ve normal doğum anındaki kasılma bölgeleri bir araya getirilmiştir. 

Erken doğum ile sonuçlanan 3 kayıttan toplam sekiz adet erken doğum kasılma bölgesi 

çıkartılmıştır. Sınıflandırmada öğrenme önyargısını enaza indirmek amacıyla hamilelik 
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kasılmalarından da 11 adet veri seçilmiştir. Doğum anında oluşan kasılma verilerinden de 

sınırlı sayıda olduğu için 4 adet seçilmiştir. Bu kasılma bölgeleri kullanılarak erken doğum 

ile sonuçlanan sınıf birinci sınıf ve diğer iki sınıf kullanılarak elde edilen genel doğruluk 

oranı %82.6'dır. Birinci sınıfın doğruluk oranı ise %75 olarak elde edilmiştir. 

 

5.4.2. Farklı Kanallar Üzerinden Yapılan Sınıflandırmalar 

 Çoklu monopolar kanallar ile kayıt edilen sinyaller analiz edilirken farklı kanallar 

seçilebilir. Seçilen kanalın sınıflandırma veya analiz sonucunda elde dilen performans 

değeri üzerinde etkisi vardır. Öyle ki performans sonucu analiz edilen kanala göre 

değişebilmektedir. Kaynaklarda yapay sinir ağı kullanılarak elde edilen sonuçlara göre 4x4 

elektrot diziliminde yeralan 10’ uncu bipolar kanal en yüksek sınıflandırma performansı 

verirken 7’ nci bipolar kanal en düşük performansı vermektedir [58]. Bu çalışmanın 

devamı olarak aynı öznitelikler kullanılarak başka bir yapay sinir ağı olan Radyal Tabanlı 

Yapay Sinir Ağı kullanıldığında düşük ve yüksek performans gösteren kanallar 

değişmektedir [5]. Diğer bir çalışmada frekansa dayalı öznitelikler tüm bipolar kanallardan 

ayrı ayrı elde edilmiştir. Elde edilen kanalların kasılma sinyallerini en iyi doğruluk oranı 

ile sınıflandıran kanalın 5. bipolar kanal olduğu görülmüştür [59]. Erken doğum ve normal 

doğum kasılmalarını sınıflandırmaya yönelik ilk sınıflandırma işlemi 1’inci bipolar kanal 

üzerinden yapılmıştır. Sınıflandırmada kullanılan ileri beslemeli yapay sinir ağının 

özellikleri Tablo 3' te verilen özellikler ile aynıdır. 20 nörondan oluşan yapay sinir ağında 

erken doğum, hamilelik ve normal doğum kasılmalarından sırasıyla 4, 6 ve 2 olmak üzere 

toplam 12 adet veri eğitim için kullanılmıştır. Analiz için ayrılmış olan diğer veriler de test 

verisi olarak kullanılmıştır. 

 Daha önce belirtildiği gibi 12 adet bipolar kanal bulunmaktadır. Elektrotlar 

üzerinde uzlamsal farklılığı gözlemleyebilmek için diğer kanallar üzerinden de 

sınıflandırma doğruluk oranlarına bakılmıştır. Şekil 33'de doğruluk oranlarının bipolar 

kanallara göre değişimi verilmiştir. Sayısal değerler de grafiğin hemen yanında matris 

olarak verilmiştir. En düşük değerden yani koyu maviden, en yüksek değer açık sarıya 

doğru performans değerleri dağılımı görülmektedir. Bu kanalların sayısal değerleri de 

Tablo-4' te verilmiştir. 
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Şekil 33. Genel Doğruluk ve Erken Doğum Sınıfına Ait Doğruluk Oranlarının Kanallara 

Göre Dağılımı 

Tablo 4- Bipolar Kanalların Genel ve Erken Doğum Sınıfı İçin Doğruluk Oranları 

  Vb1 Vb2 Vb3 Vb4 Vb5 Vb6 Vb7 Vb8 Vb9 Vb10 Vb11 Vb12 

Genel Doğruluk 

(%) 

82.6 65.2 82.6 60.9 60.9 65.2 82.6 91.3 65 87 73.9 82.6 

Erken Doğum 

(%) 

75 87.5 62.5 87.5 50 75 87.5 75 75 75 62.5 87.5 

 

Veri setinin kapsamlı olması durumunda doğruluk oranları daha da iyileşecektir. Bu 

sonuçlara göre erken doğum sınıfının doğruluk performansını en iyi veren bipolar kanallar 

2, 4, 7 ve 12’dir. Genel doğruluk için en iyi performansı gösteren kanal 8'inci bipolar kanal 

olmuştur. 

82.6 60.9 82.6 87 

65.2 60.9 91.3 73.9 

82.6 65.2 65 82.6 

75 87.5 87.5 75 

87.5 50 75 62.5 

62.5 75 75 87.5 
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 Erken doğum kestirimi için kanallara göre performansı değerlendirildikten sonra 

erken doğum ile sonuçlanan hamilelik sinyallerinde meydana gelen kasılmalara ait 

özniteliklerin zamanla değişimi de incelenmiştir. 

5.4.3. Zaman-Öznitelik Değişimi 

 Erken doğum yapan iki farklı kadından sırasıyla iki ve dört defa kayıt alınmıştır. 

Birinci kadının kaydında iki kez meydana gelen kasılma bölgesine ait özniteliklerin 

değişimi belirlenmiştir. Şekil 34' te aynı katılımcının aynı gün aynı kaydın iki farklı 

kasılmanın öznitelik değerleri görülmektedir. İkinci kasılmada altıncı öznitelik dışındaki 

diğer öznitelik değerlerinde azalma olduğu görülmektedir. 

 

Şekil 34. Farklı Zamanlardaki Kasılma Öznitelik Değerleri 

 

Bir diğer sinyal kaydında yeralan farklı öznitelikler Şekil 35' te verilmiştir. Birinci ve 

ikinci yani iki farklı zamanda kayıt edilen sinyallerde toplam üçer kez kasılma meydana 

gelmiştir. Bu iki farklı sinyal kaydında üçer farklı kasılmalara ait öznitelik değerleri 

incelendiğinde bazı özniteliklerin birinci kasılmaya göre artış veya azalış gösterdiği 

görülmektedir. 
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Şekil 35. İki Farklı Sinyalde Meydana Gelen Kasılmalar 

 

Şekil 34 ve 35' te yer alan grafiklerde erken doğum ile sonuçlanan hamilelik kasılmalarına 

ait özniteliklerin değerleri görülmektedir. Normal doğum ile sonuçlanan hamilelik 

sinyallerine ait özniteliklerin değerleri aşağıdaki şekilde yer almaktadır. Ayrıca bu 

grafiklerdeki öznitelikler sırasıyla sıfırdan geçiş oranı, karelerin ortalama karekökü, GYS 

Fonksiyonunun Tepe Genliği, GYS Fonksiyonunun Tepe Frekansı, standart sapma, 

varyans, ortalama ve medyandır. Bu grafiklerin normal doğum ile sonuçlanan hamilelik 

kasılmalarına ait özniteliklerin yer aldığı Şekil 36' daki grafik ile karşılaştırılması iki farklı 

sınıfa ait özniteliklerin zamandaki değişimi hakkında bilgi vermektedir. 

 

 

Şekil 36. Normal Doğuma Ait Öznitelik Değerleri 
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Bu grafikler incelendiğinde erken doğuma ait özniteliklerde 3’ üncü ve 6’ ncı 

özniteliklerin ayırt edici olduğu görülmektedir. Erken doğum ile normal doğum öznitelik 

değerleri karşılaştırıldığında 6’ ncı öznitelik değerlerinin farklı oranda değişim gösterdiği 

gözlemsel olarak söylenebilir. Ayrıca 4' üncü öznitelikten 5' inciye geçişte erken doğum 

verilerinde artış görülürken normal doğum verilerinde azalış olduğu görülmektedir. Zaman 

öznitelik değişimleri farklı kanallar üzerinde de incelenmiştir. İnceleme sonucunda birinci 

kanaldan elde edilen sonuçlara benzer sonuçlar elde edilmiştir. Bu çalışmanın devamında 

34, 35 ve 36' ncı haftaya ait olan erken doğum hamilelik ve normal doğum hamilelik 

sinyallerinde meydana gelen değişikliği analiz edebilmek için bu haftalarda meydana gelen 

her iki sınıfa ait çeşitli kasılmaların öznitelik değerleri karşılaştırılmıştır. Şekil 37' de 

yeralan grafikte sonuçlar yer almaktadır. Bu grafiğe göre erken doğum ve normal doğuma 

ait 6’ ncı öznitelik değerleri arasındaki fark değeri 34' üncü haftadan 36' ncı haftaya gelene 

kadar azalmaktadır. 

 

Şekil 37. Haftalara Göre Öznitelik Değerleri 
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Bu sonuçlara dayanarak, erken doğum ile sonuçlanan ve normal doğum ile sonuçlanan 

hamilelik sinyallerine ait kasılmaların 4, 6 ve 12' nci öznitelikleri çıkartılarak iki sınıfa ait 

veriler kullanılmıştır. Bu öznitelikler sırasıyla, sıfırdan geçiş oranı, Güç Yoğunluk 

Fonksiyonunun Tepe Genliği ve ortalamadır. Bu kez elde edilen genel doğruluk oranı 

%93.5, erken doğum sınıfına ait genel doğruluk oranı %87.5 olarak elde edilmiştir. 
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6. MATLAB'TA SINYAL İŞLEME VE ANALIZI İÇIN GRAFIKSEL 

KULLANICI ARAYÜZÜ (GUI) 

 EMG sinyallerini analiz etmek ve analiz sonuçlarını gözlemleyebilmek için 

Matlab'ta sinyal analiz arayüzü oluşturuldu. Arayüzün anlatımına geçmeden önce Matlab'ta 

GUI araç çubuğu ve detayları verilmiştir. GUI' nin açılımı Graphical User Interface 'dir. 

6.1. Giriş 

 Uygulamada bulunan nesnelerin kullanılması veya kullanıcı ile program arasında 

etkileşim sağlayan grafiksel programlama arayüzüdür.  

Radyo butonları, kaydırıcılar, grafikler, değişken kutucukları GUI nesnelerindendir. Şekil 

38' de yoğunluk ve hacmi girilen bir cismin kütlesini hesaplamaya yarayan örnek bir 

arayüz yer alıyor. 

 

Şekil 38. Örnek Matlab Arayüzü 

 

6.2. Matlab Ortamında Arayüz Oluşturma 

 “Guide” araç çubuğu ile kullanıcı kolaylıkla arayüz oluşturabilir. Arayüze, 

yapılacak çalışmanın gereğine göre arayüz nesneleri eklenir ve nesnelerin görsel özellikleri 

bu araç ile daha hızlı ve kolay değiştirilebilir. 

Komut satırına “guide” girilerek Şekil 39' da görüldüğü gibi GUIDE aracı çağrılır.  Örnek 

arayüz uygulamaları ile yeni arayüz için boş arayüz taslağı yer almaktadır. Yeni arayüz 

tasarımı için Blank GUI seçeneği seçilir. 
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Şekil 39. Matlab'ta GUIDE Aracı 

Açılan sayfaya arayüzde olması istenen arayüz nesneleri Şekil 39' da görüldüğü sürükle 

bırak işlemi ile eklenir. 

 

Şekil 40. Nesneleri Arayüze Ekleme 

Buraya eklenen nesnelerin görsel, boyut veya konumunda istenildiği gibi değişiklik 

yapılabilir. Şekil 41' de görüldüğü gibi nesnelerin üzerinde istenilen değişiklikler 

yapılabilmektedir. Çalışma alanının boyutunda ve renginde de değişiklik yapmak 

mümkündür. 
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Şekil 41. Nesneleri Görselleştirme 

Arayüze dışarıdan veriyi eklemek için 'Choosethedata' butonu kullanılır. Bu buton 

ile arayüze veri aktarılır. Veri aktarıldıktan sonra filtreleme ve gürültüden kurtulma 

işlemleri için veri panelinde 'Edittext' nesnesi ile 'slider' nesnesi yer almaktadır. Kullanıcı 

tarafından belirlenebilen parametreler arayüze bu nesneler yardımıyla eklenir. Arayüze 

eklenen nesneler bittikten sonra her nesne birbirinden bağımsız olarak programlanır. Şekil 

42'de görüldüğü gibi arayüzden fonksiyon çağrılır. Arayüzün programlaması için 

'ViewCallbacks/Callback' seçenekleri ile nesnenin fonksiyonuna ulaşılır. Her nesnenin ayrı 

fonksiyonu vardır. Bu ayrı fonksiyonlar kullanılarak arayüzdeki nesneler programlanır. 

 

Şekil 42. Arayüzden Programlamaya Geçiş 
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Şekil 43' te seçilen nesnenin fonksiyonu verilmiştir. 

 

Şekil 43. Seçilen Nesnenin Fonksiyonu 

Arayüz kullanıcı ile program arasında bir geçiştir. Değişkenlere göre farklı sonuçları 

incelemek daha kolay olacağı için yapılan analizleri yapabilmek ve sonuçlarını 

gözlemleyebilmek oldukça kolaydır. 

 

6.3. EMG Sinyal İşleme ve Analiz Arayüzü 

Oluşturulan arayüz analizin çeşidine göre panellere ayrılmıştır. Arayüz paneli Şekil 44' te 

verilmiştir. Veri paneli, enerji paneli, ilinti paneli, kasılma etiketleme paneli, dipnot paneli 

ve spektral analize geçiş gibi kısımlara ayrılıştır. Bu paneller ve açıklamalı anlatımları 

sırasıyla verilmiştir. 

Arayüzde bulunan her bir panel ile ilgili bilgi verilmiştir. İlk olarak Şekil 45' te veri paneli 

yer almaktadır. 

 

6.3.1. Veri Paneli 

Veri panelinde ; veri seçme, bipolar kanal seçimi, band geçirgen filtre için kesim frekans 

değerleri, gürültü azaltma seçeneği ve bipolar sinyalin filtrelenmiş sonucunu gösteren 

figürler yer almaktadır. 'noisy or de-noised' seçeneğinde  'de-noised ' seçilirse Dalgacık 

Paket Dönüşümü Eşik Değer Yöntemi ile gürültü azaltma işlemi uygulanır. Eğer  'noisy' 

seçilirse bipolar  sinyale hiç bir işlem uygulanmadan filtreleme işlemi yapılır. 
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Şekil 44. Sinyal Analiz Arayüzü 

 

 

Şekil 45. Veri Paneli 



74 
 

Filtreleme işlemi için kesim frekans değerlerinin girilmesi gerekmektedir.  0,1 - 3 

Hz frekans aralığını geçiren band geçirgen filtre uygulanmak istenirse  "Low pass fco" ve 

"High pass fco" kutucuklarına sırasıyla 3 Hz ve 0,1 Hz girilir. "Bipolar Channel" 

seçeneğinden bipolar kanal seçimi yapılır.  12 adet bipolar kanal bulunmaktadır. 16 

monopolar kanalların düşey olarak iki sinyallerin farkı alınarak bipolar sinyaller elde 

edilmiştir. "Name of  file" kutucuğuna analiz için seçilen sinyalin adı yer almaktadır. Şekil 

46'da"ice045_p_4of4m.mat" uterine EMG sinyalinin 2. bipolar kanalından alınan sinyalin 

önce  Dalgacık Dönüşümü Eşik Değer Yöntemi ile gürültüsü azaltılmıştır. 

 

 

Şekil 46. EMG Sinyalin Arayüze Aktarılması 

Arayüze girilen kesim frekansı değerlerine göre bant geçirgen filtre uygulanmıştır. Gürültü 

yok etme ve filtreleme sonucu elde edilen sinyaller arayüzde bulunan figürlerde 

çizdirilmektedir. 

“p:preterm ,l:labour” bilgisi  analiz edilen sinyalin adında geçer. EMG sinyalinin  doğum 

(l:labour) veya hamilelik (p:pregnancy) olduğunu göstermektedir. "Enter length" kutucuğu 

sinyalin sadece bir kımsı analiz edilmek istendiğinde verinin uzunluğunun girildiği 

kutucuktur. Bu kısım bazı sinyallerin analizinde gerekli olabilmektedir.  Genelde hamilelik  
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sinyalleri 1 saat ve üzeri kayıtlardır. Bu sinyaller 200 Hz örnekleme frekansı ile kayıt 

edilmiştir.  Veri kaybından kaçınmak için tekrar örneklenmemesi sonucu verinin analizi 

dakikaları almaktadır. Bu nedenle kullanıcı bu sinyallerin sadece bir kısımını analiz etmek 

istediğinde buraya uzunluk bilgisini girmesi yeterli olacaktır. "Plot Signals"butonu 

bunların yanında başka çizimler de vermektedir.  Filtrelenen sinyale uygulanan kasılma 

etiketleme algoritması olarak uygulanan Ahlstrom&Tompkins QRS belirleme algoritması 

uygulanır. Şekil 47' de algoritmanın her adımında elde edilen sinyal birlikte verilmektedir. 

 

Şekil 47. Kasılma Etiketleme için Uygulanan Algoritma 2 sonucu 

Bu algoritma ile ilgili detaylı bilgi önceki bölümde detaylı olarak açıklanmıştır. Veri 

panelinde sinyalin analiz edildiği bir başka yöntem ise Teager Enerji Operatörü ' dür. 

Uygulanan bu algoritma  yine sinyal üzerinde EMG sinyalinin normal durumda olmadığını 

gösteren bölgeleri (kasılma, foetal hareketlenme) belirlemeye yönelik bir algoritmadır. 

Dalgacık Dönüşümü-Teager Enerji panelinde bu yöntem sonuçlarını detaylı görmek 

mümkündür. Şekil 48' de algoritma 2 sonucunda elde edilen sinyalin Tegaer Enerjisi yer 

almaktadır. 
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Şekil 48. Teager Enerji Analiz Sonucu 

Veri paneli diğer panellerin bilgi ve verisine ulaşarak bir başka çizim sonucunu daha 

kullanıcıya vermektedir. Şekil 49' da verilen Annotation Paneli 'den sinyal üzerinde uzman 

doktorlar ve kayıt sırasında gözlemlenen veriler ışığında sinyale ait önemli olayların 

kayıtları veri paneline aktarılarak filtrelenmiş ve kasılma belirleme algoritması uygulanan 

sinyal üzerine çizdirilmiştir. 

 

Şekil 49. Dipnot Bilgileri fm: foetal hareket, C: kasılma 

 

6.3.2. Enerji Paneli 

Sinyal filtrelendikten sonra enerji analizi için kullanılan paneldir.  Enerji panelinde yer alan 

“Width of Window” kutucuğu , sinyalin enerjisi hesaplanırken kullanılan pencerenin 

boyutunu ifade eder.  Şekil 50' deki figürde görülen sinyal filtrelenmiş sinyalin 100 örnek 

için enerjisini göstermektedir. 
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Enerji panelinde bulunan bir diğer önemli grafik sonucu ise bipolar kanalların enerjisidir. 

Pencere boyutu belirlendikten sonra arayüz nesnesi olan "slider" ile zaman ekseninde 

ilerleyerek tüm bipolar kanalların enerjisini gösterir. Grafikte 3x4 matris olarak bipolar 

enerji kanalları 4x4 monopolar sinyallerden elde edilmiştir. Bu enerji matrisinde açık 

sarıdan koyu maviye doğru enerji azalmaktadır. Şekil 50' de yeralan enerji matrisi 

incelenirse 9’ uncu bipolar kanalda en yüksek, 4’ üncü kanalda ise en düşük enerji olduğu 

görülmektedir. Enerji matrisi zaman ilerledikçe değişmektedir. Bu şekilde kullanıcı ölçüm 

süresi boyunca rahim bölgesindeki enerji değişimi konusunda bilgi sahibi olabilecektir. 

 

 

Şekil 50. Enerji Paneli 

 

6.3.3. İlinti Paneli 

 Korelasyon panelinde enerji panelinde olduğu gibi seçilen kanalın ilintisini ve 

bipolar kanalların birbiri ile olan ilintisini incelenmektedir. Şekil 51' de korelasyon paneli 

verilmiştir. 
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Şekil 51. Korelasyon Paneli 

 

 Her kanalın kaydırma butonu değerine göre ilinti değerleri ve bu değerlere karşılık 

oluşturulan renk matrisi görülmektedir. Korelasyon değerleri en büyük değer açık sarıdan 

en küçük değer olan koyu maviye dağılım göstermektedir. 

 

6.3.4. Dipnot Paneli 

 Veri setinde bulunan sinyallerin uzman doktorlar ve sinyalin kaydı sırasında sinyal 

üzerindeki önemli olayların kaydına “annotation” yani dipnot denir. İzlanda veri setinin 

kayıtları sırasında bireyin hissettiği kasılma, bebeğin hareketi, pozisyon değişikliği gibi 

olaylar kaydedilmiştir. Sonraki aşamada Takograf cihazının kayıtları da uzmanlar 

tarafından incelenmiş ve EMG sinyalleri ile karşılaştırılmıştır. Karşılaştırma sonucu sinyal 

üzerindeki önemli olaylardan Takograf kayıtlarında da olanlar dipnot bilgisi olarak 

eklenmiştir [7].  Şekil 52' de verilen panelde analiz edilen sinyalin bilgileri verilmiştir. 
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Şekil 52. Dipnot Paneli 

 

6.3.5. Kasılma Belirleme Paneli 

 Veri panelinde elde edilen grafiklerden birisi uygulanan “moving-squared” 

algoritmasının adım adım uygulanması ve elde edilen sonuçlarıdır. Şekil 47' deki grafikte 

en altta bulunan sinyal ile birlikte filtrelenmiş sinyal de bu panele aktarılır. Enerji 

panelinde olduğu gibi sinyalin alanı için örnek sayısının girilmesi gerekmektedir. Sinyalin 

alanın grafiği "Plot" butonu ile elde edilir. Şekil 53'de verilen panelde alan 

hesaplanmasının sebebi kasılma gibi önemli olayların başlama ve bitiş noktalarının 

belirlenmesi için uygulanan bu algoritmada, önemli iki nokta arasındaki salınımıazaltmak 

ve bu bölgeleri daha belirgin hale getirmektir. Algoritma sonucunda kasılma gibi önemli 

olayların başlama ve bitiş noktaları eşik değer yöntemi ile belirlenir. Kullanıcı bu eşik 

değeri grafikleri görsel olarak analiz edip uygun bir değer girebileceği gibi hiç bir değer 

girmediği durumda da varsayılan eşik değer, alan sinyalinin ortalamasının 0,85 değeri ile 

çarpılmış sonucudur. Bu değer arayüz oluşturulurken girilen değerler ve alınan deneysel 

sonuçlara bağlı olarak belirlenmiştir. Bu panelde belirlenen önemli başlama ve bitiş 

noktaları panelde ilgili yere yazdırılır. Ayrıca sinyal üzerinde de işaretlenir. Şekil 54' te bu 

noktalar sinyal üzerinde işaretlenmiştir. Kullanıcı isterse dipnot panelinden annotation 

noktalarını bu panele aktarıp aynı grafik üzerine o noktaları da çizdirebilir. Bu şekilde 

algoritma ile belirlenen önemli olayların kaç tanesinin doğru tespit olduğunu görebilir. 
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Şekil 53. Kasılma Paneli 

 

Şekil 54. Başlangıç (*) ve Bitiş (o) Noktaları 

Bu analiz sonuçlarının annotation noktaları karşılaştırılmak istenildiğinde Dipnot 

panelinden alınan değerler birlikte çizdirilir. Şekil 55' de görüldüğü gibi sonuçlar 

karşılaştırılabilir. 

Veri panelinde yeralan veri uzunluk değeri 680000 girildiği için sonraki veriler 

analiz edilmemiştir.  Başlama ve bitiş noktaları ekranda start ve finish başlıklarının altına 

kaydedilir. 

Bu panelde frekans ve öznitelik analizi için Spektral Analysis and Feature 

Extraction butonu kullanılarak bir başka arayüze geçilir. 
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Şekil 55. Algoritma Sonuçları ile Dipnot Değerleri 

 

6.4. Spektral Analiz ve Öznitelik Çikarma Arayüzü 

 Arayüzde bulunan paneller yardımı ile filtrelenmiş sinyalinin frekans ve Dalgacık 

Dönüşümü analizi yapılabilir. Şekil 56’da görüldüğü gibi bu arayüzde spektral yoğunluk 

analiz, öznitelik çıkarma, Dalgacık Dönüşümü panelleri bulunur. 

 

Şekil 56. Spektral Analiz ve Öznitelik Çıkarma Arayüzü 
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6.4.1. Yoğunluk Analiz Paneli 

 Bu panelde yeralan Güç Spektral Yoğunluk Fonksiyonu ve Fourier Dönüşümü 

fonksiyonu analizi butonları mevcuttur. Bu dönüşümler için diğer arayüzden filtrelenmiş 

sinyal bu arayüze aktarılır. Bu panelde hızlı Fourier Dönüşümü ve Güç Spektral Yoğunluk 

Fonksiyonları incelenebilir. Şekil 57' de verilen grafiklerde Güç Yoğunluk Foksiyonu ile 

Hızlı Fourier Dönüşümü verilmiştir. 

 

Şekil 57. Hızlı Fourier Dönüşümü ve Güç Spektral Yoğunluk Fonksiyonu 

 

6.4.2. Öznitelik Çıkarımı Paneli 

 Bu panelde öznitelik çıkarımı yapılır. Algoritmanın belirlediği aralıklardan istenilen 

aralığın öznitelik değerleri hesaplanır. Şekil 58' de öznitelik paneli verilmiştir. İstenilen 

değerlerden ayrı olarak tüm öznitelikler hesaplanarak çalışma alanına kaydedilir. Bu panel 

yardımıyla kullanıcı doğrusal ve doğrusal olmayan özniteliklerin analizini de 

yapabilmektedir. 

 

Şekil 58. Öznitelik Paneli 
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Sinyali zaman ve frekans bölgesinde analiz etmek amacıyla Dalgacık Dönüşümü 

incelemesi yapılmıştır. Frekans bölgesi analizi için durağan sinyallere uygulanan Fourier 

Dönüşümü sinyal durağan değilse sorun haline gelmektedir. Dalgacık Dönüşümü hem 

zaman hem frekans bölgesinde analiz için çok faydalı bir yöntemdir. 

 

6.4.3. Dalgacık Dönüşümü Paneli 

Dalgacık dönüşümü panelinde bulunan arayüz nesneleri yardımıyla bu analizi kolaylıkla 

yapmak mümkündür. Kullanıcı Şekil 59' da görüldüğü gibi istenilen dalgacık fonksiyonunu 

seçerek fonksiyonu analiz edebilmektedir. 

 

Şekil 59. Dalgacık Dönüşümü Paneli 

 

Dalgacık Dönüşümü panelinde sinyalin kesikli olarak dalgacık dönüşümü yapılır. 

Dalgacık Dönüşümü için kullanılacak olan temel dalgacık fonksiyonları panelden seçilir. 

Wavelet Name nesnesi altında Matlab’ın kullandığı bu fonksiyonlardan bulunmaktadır. Bu 

fonksiyonlardan istenilen fonksiyon kullanılarak Dalgacık Dönüşümü yapabilmek 

mümkündür. 

 Dalgacık Dönüşümü katsayıları kullanılarak öznitelik çıkarımı yapabilmek 

mümkündür. Şekil 60' da görüldüğü gibi Kesikli Dalgacık Dönüşümü yapmak için seçilen 

ana fonksiyon kullanılır. 
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Şekil 60. Temel Dalgacık Dönüşümü Fonksiyonları 

 

Böylece bu kısımda sinyalin tek adım Dalgacık Dönüşümü elde edilir. Eğer daha yüksek 

seviyeden dalgacık dönüşümü yapılmak istenirse; istenilen seviye belirlenip arayüzde 

WaveletDec. Level adlı boşluğa girilir. Bu seviyeden elde edilen yaklaşım ve detay 

katsayıları incelemek için çizdirilebilir. Şekil 61' de verilen grafikte sinyalin birinci 

seviyeden elde edilen detay ve yaklaşım katsayıları yer almaktadır. 

 

Şekil 61. Dalgacık Dönüşümü Katsayıları ve sinyalin tekrar elde edilmesi 
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Sinyal Ters Dalgacık Dönüşümü ile elde edildiğinde orijinal sinyal ile arasında bir 

miktar kayıp söz konusudur. Orijinal sinyal, sentez ve fark sinyali aşağıda yer almaktadır. 

Verilen şekilde sinyal önce katsayılarına ayrılıp daha sonra tekrar oluşturulmuştur. 

Arayüzde bulunan bir başka analiz sinyalin daha yüksek seviyelerde Dalgacık Dönüşümü 

uygulanmasıdır. Uygulama sonunda elde edilen yaklaşım ve detay katsayıları Şekil 62 ve 

63' te verilen grafiklerde de görüldüğü gibi analiz yapabilmek mümkündür. 

 

Şekil 62. Dalgacık Dönüşümü ile Sinyalin Sentezi ve Fark Sinyali 
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2. seviye                                                                        3. seviye 

 

4. seviye                                                                                  5. seviye 

Şekil 63. Dalgacık Dönüşümü Ayrışım ve Yaklaşım katsayıları 

Dalgacık Paket Dönüşümü analizi için dönüşüm seviyesine göre analiz yapılır. Arayüz 

yardımı ile istenilen seviyeden sinyalin Dalgacık ve Dalgacık Paket Dönüşümünü elde 

etmek mümkündür. 
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7. SONUÇLAR 

Erken doğum insan hayatını kötü yönde etkileyen bir sağlık problemidir. Erken doğum 

riski taşıyan annenin doğumdan sonra hastanede kalması ve bebeğe ve anneye tedavinin 

özenli uygulanması gerekmektedir. Ayrıca bu bebeklerde ilerleyen yaşlarda normal 

zamanında doğmuş bebeklere göre daha fazla sağlık problemlerinin görülme olasılığı 

görmezden gelinmeyecek kadar yüksektir. İnsan hayatı söz konusu olduğu için bu sorunu 

önceden kestirebilmek gelecekte veya doğumdan hemen sonra kalıcı veya kalıcı olmayan 

pek çok soruna çözüm olacaktır. 

Erken doğumkestirimi için günümüze kadar uygulanan yöntemler arasından EMG 

sinyalleri kullanım kolaylığı ve kestirim doğruluğu bakımından daha avantajlıdır. Cerrahi 

herhangi bir müdahale gerektirmeyen EMG sinyalleri ile erken doğum kestirimi son 

yıllarda kullanılmaya başlanmıştır. EMG sinyallerinin kullanım kolaylığı ve daha güvenilir 

sonuçlar vermesinden dolayı bu çalışmada erken doğum kestirimi için EMG yöntemi 

kullanılmıştır. Kullanılan EMG sinyalleri internette ulaşılabilen iki farklı rahim EMG veri 

setinden seçilmiştir. Bu veri setleri farklı elektrot dizilimleri kullanılarak elde edilmiştir. 4 

ve 16 elektrot kullanılarak kaydedilen veri setlerinden 16 elektrotlu veri seti kullanılmıştır. 

Bu veri setinde normal doğum, normal doğum ile sonuçlanan hamilelik, erken doğum ile 

sonuçlanan hamilelik sinyalleri yer almaktadır. Bu veri setinde bulunan sinyallerin dipnot 

bilgileri kullanılarak rahimden kaynaklanan kasılma, bebek hareketi ve muhtemel kasılma 

olayları içinden kasılma olayı diğer olaylardan ayırt edilmiştir. Bu sınıflandırma işlemi için 

belirlenecek iki temel seçim bulunmaktadır. Bu iki önemli seçim sınıflandırıcı ve öznitelik 

belirlemedir. Kapsamlı bir kaynak taramasından sonra yapılan çıkarım ve deneysel 

sonuçlara dayanarak sınıflandırıcı ve öznitelikler belirlenmiştir. Rahim EMG sinyallerinin 

doğrusal ve durağan olmayan yapısı göz önünde bulundurularak çalışmanın ilk kısmında 

doğrusal olmayan sınıflandırıcı olan yapay sinir ağları ve en temel doğrusal 

sınıflandırıcılardan biri olan en yakın uzaklık sınıflandırıcı ile sınıflandırma yapılmış ve 

karşılaştırılmıştır. Beklenildiği gibi doğrusal olan sınıflandırıcı daha düşük performans 

göstermiştir. Bu düşük performans değeri doğrusal olmayan bir iyileştirme yöntemi 

kullanılarak iyileştirilmeye çalışılmıştır. Uygulanan iyileştirme algoritması ile performans 

yükseltilmiştir. Doğrusal olmayan sınıflandırıcı kullanılarak elde edilen genel sınıflandırıcı 

performansı %79.2 ve önemli sınıf olarak belirlenen kasılma sınıfına ait doğruluk oranı ise 

%86.4 olarak elde edilmiştir. Doğrusal olmayan sınıflandırıcı olarak ileri beslemeli yapay 

sinir ağları kullanılmıştır. Yapay sinir ağının parametrelerini belirlemek ve en iyi 
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performans sonuçlarına ulaşmak amacıyla deneysel çalışmalar yapılmıştır. Bu çalışmalar 

sonucu en iyi sonuçları veren öğrenme algoritması, nöron sayısı, transfer fonksiyonu, 

katman sayısı, öğrenme adımı gibi parametrelere ulaşılmıştır. İki katmanlı ileri beslemeli 

yapay sinir ağında 20 tane nöron kullanılmıştır. Transfer fonksiyonu olarak logaritmik–

sigmoid fonksiyonu, öğrenme algoritması olarak geriye yayılım algoritması kullanılmıştır. 

Bu algoritma klasik geriye yayılım algoritmasından daha hızlı sonuç veren bir 

algoritmadır. Öznitelikler normalize edilerek ağın eğitimi yapılmıştır. 

 Doğrusal sınıflandırıcının performansı ise %65 olup söz edilen iyileştirme sonucu 

ise performans yükselerek %70 değerine ulaşmıştır. Kullanılan sınıflandırıcıda uzaklık 

metriği olarak Öklid uzaklık parametresi kullanılmıştır. Çalışmanın ilk aşaması olan bu 

kısımda bu sonuçlar 1’ inci bipolar kanal üzeriden alınmıştır. Kanallar üzerinde farklılığı 

değerlendirmek için diğer 11 kanal için de sınıflandırma sonuçlarına bakılmıştır. 1’ inci ve 

12’ nci kanallar en yüksek performans değerlerini vermiştir. Böylece çalışmanın ilk 

aşamasında veri setinde bulunan hamilelik, erken doğum ve normal doğum sinyalleri 

üzerinde yapılan çalışmalarda sinyallerin üzerinde meydana gelen rahimden kaynaklı 

önemli olaylar arasından kasılma olayıdiğer olaylardan (bebek hareketi, muhtemel 

kasılma) yapay sinir ağları kullanılarak ayırt edilmiştir. Kasılma olayının ne zaman 

gerçekleştiğini tespit etmek demek erken doğum kestirimi yapabilmenin bir diğer yoludur. 

Yani kasılma olayının erken doğum veya normal doğum hamilelik dönemlerine ait 

olduğunu kestirmek erken doğum kestirimi için önemli bir adımdır. 

 Kasılma olayının hangi sınıfa ait olduğunu tespit edebilmek amacıyla çalışmanın 

ikinci aşamasını oluşturan bu kısımda ikinci kez ileri beslemeli yapay sinir ağları 

kullanılarak erken doğuma ait kasılmalar diğer kasılmalardan yüksek performansta 

sınıflandırılmıştır. Kullanılan ağın özellikleri önceki sinir ağının özellikleri ile aynı olarak 

belirlenmiştir. Erken doğum ve normal doğum ile sonuçlanan hamilelik sinyallerinde ve 

normal doğum anında meydana gelen kasılmalar ileri beslemeli yapay sinir ağları 

kullanılarak sınıflandırılmıştır. Sınıflandırmada 3 sınıfın (erken doğum ve normal doğum 

hamilelik kasılmaları, normal doğum kasılmaları) genel doğruluk oranı %82.6 erken 

doğum sınıfının doğruluk oranı ise %75 olarak elde edilmiştir. Veri setinin daha kapsamlı 

olması durumunda elde edilen performans sonuçları daha da iyileşecektir. Elde edilen bu 

sonuçlar 1’ inci bipolar kanal üzeriden alınan sonuçlardır. İlk kısımda olduğu gibi bu 

kısımda da diğer kanalların doğruluk performasına etkisi üzerinde durulmuştur. Buna göre 

12 bipolar kanal arasından en iyi sonuçları 2, 4, 7 ve 12' nci kanallar vermiştir. Bu şekilde 
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sınıflandırma performansının rahim yüzeyindeki bölgelere göre nasıl değiştiği 

gözlemlenmiştir. 

 Sınıflandırma performansının en iyi değere ulaşabilmesi için kullanılan yapay sinir 

ağı çeşidi ve özelliklerinin yanında enaz bu kadar önemli olan parametre de seçilen 

özniteliklerdir. Bu öznitelikler kaynak taramasında elde edilen bulgulara göre seçilmiştir. 

Buna ek olarak seçilen öznitelik değerlerinin farklı kasılma türlerine göre değişiminin 

önemi araştırılmıştır. Böylece normal doğum ve erken doğum ile sonuçlanan hamilelik 

kasılmalarının öznitelik değişimleri karşılaştırılarak zaman-öznitelik değişimi 

incelenmiştir. 

Bu çalışmalara ek olarak Matlab ortamında sinyal işleme ve analiz arayüzü 

oluşturulmuştur. Bu arayüzde sinyal ön işleme işlemleri, filtreleme, otomatik kasılma 

tespiti için uygulanan algoritmalar, algoritma sonuçlarının dipnot verileri ile 

karşılaştırılması, spektral analiz ve öznitelik çıkarımı, dalgacık dönüşümü işlemleri 

yapabilmek mümkündür. Bu arayüzün ilerde gerçekleşecek sinyal işleme çalışmalarına da 

faydalı olacağı düşünülmektedir. 

 Sonuç olarak erken doğumun kestirimi ileri beslemeli yapay sinir ağları ile yüksek 

performansta yapılmıştır. Elde edilen sonuçların performansının veri setinin daha kapsamlı 

olarak arttırılması ile daha da iyi bir seviyeye ulaşacağı düşünülmektedir. 
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