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Danisman: Dog. Dr. Ahmet Ocak AKDEMIR

Konveks fonksiyonlar ve esitsizlik teori birbiriyle yakindan iligkili iki konu olup
bir¢cok arastirmacinin ilgisini ¢ekmis ve cok sayida ¢alisma ortaya konmustur.
Ozellikle konveks fonksiyonlar igin integral esitsizlikleri olduk¢a yogun olarak
irdelenmis ve konveks fonksiyonlarin ortalama degerine iliskin sinir bulma problemi
ile ilgilenilmistir. Bu konularda yapilan calismalarda Caputo tiirevi, Riemann-
Liouville integralleri, uyumlu kesirli turevler ve k-lokal kesirli integraller gibi farkli
tlrev ve integral operatorleri de kullanilmigtir.

Bu tez galismasinda oncelikle konvekslik kavrami ve konvekslik tiirleri iizerinde
genel bir inceleme yapilmistir. Ardindan kuantum hesabin analizine yer verilmis ve
g-tlrev, g-integral ile bu kavramlarin 6zellikleri tizerinde durulmustur.

Ardindan konveks fonksiyon siniflari iizerine g-integraller igeren baz1 esitsizlikler ve
sonuglara deginilmistir. Son olarak ise g-integraller i¢in Steffensen esitsizligi, Griiss
esitsizligi, Chebysev esitsizligi ve Ostrowski esitsizligi gibi klasik integral
esitsizliklerine yer verilmistir. Ayrica m-konveks fonksiyonlar icin g-integraller

yardimiyla iki yeni integral esitsizligi elde edilmistir.

2017, 68 sayfa
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Convex functions and inequality theory are two fields that has a close relationship,
they have been attracted attentson of many researchers and several studies have been
presented. Especially, integral inequalities for convex functions have been dealed
intensively and interested with the problem of finding bounds related to mean value
of convex functions. In these studies that have been presented in this field, different
derivative and integral operators such as Caputo derivative, Riemann-Liouville
integrals, conformable fractional derivatives and k-local fractional derivatives have

been used.

In this thesis, firstly a general investigation has been performaed on the concept of
convexity and the kinds of convexity. Later, analysis of quantum calculus have been
presented and emphasized on g-derivative, g-integral and properties of them.

After, it is referred to inequalities and results that include g-integrals on the classes of
convex functions. Finally, classical integral inequalities such as Steffensen
inequality, Griss inequality, Chebysev inequality and Ostrowski inequality have
been given. Besides, two new integral inequalities for m-convex functions have been
obtained via g-integrals.
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1. GIRIS

Konvekslik kavrami ilk olarak Hermite tarafindan Ekim 1881°de elde edilen bir
sonucun, 1883 yilinda Mathesis adli dergide yaymlanmasiyla ortaya g¢ikmistir.
Hadamard’in 1893 yilindaki c¢alismasinda konvekslige rastlansa da konveks
fonksiyonlarin sistematik olarak ¢alisilmasit 1905-1906 yillarinda Jensen ile baslar.
Konveksligi ortaya koyan bu ilk ¢alismalarin ardindan giiniimiize kadar konvekslik
kavrami1 matematiksel analizde onemli bir yere sahip olmakla birlikte bircok yeni

konuyla iliskilendirilmistir.

Konveksligin tanimi esitsizlikle ifade edildiginden ve esitsizlik teoriesasen nicelikler
arasinda karsilastirma {izerine ¢aligmalar1 konu edindiginden Konveks Fonksiyonlar
Teorisinde esitsizliklerin 6nemli bir yeri vardir. Hardy, Littlewood, Polya,
Beckenbach, Bellman, Mitrinovié, Pachpatte, Pecari¢ ve Fink gibi matematikgiler
Konveks Fonksiyonlar ile Esitsizlikler Teorisi’ni bir arada inceleyerek bu iki konu
arasindaki iligkileri insa eden ve gelistiren bircok makale yaymlamiglardir. Konveks
fonksiyonlar1 ihtiva eden esitsizlikleri konu alan ilk temel calisma 1934’te Hardy,
Littlewood ve Polya tarafindan yazilan “Inequalities” adli kitaptir (Hardyet al. 1952).
Diger bir kayda deger c¢alisma ise E.F. Beckenbach ve R. Bellman tarafindan
1961°de yazilan 1934-1960 yillar1 arasinda elde edilen bu konularda elde edilmis
esitsizlikler iceren ve yine “Inequalities” adi verilen kitaptir (Beckenbach and
Bellman 1961). Mitrinovi¢’in 1970 yilinda yaymnladigi ve 0 zamana kadar ele
alinmamis konulara degindigi “Analytic Inequalities” isimli kitapta esitsizlik teoride

temel kaynaklardan biri olmustur (Mitrinovi¢ 1970).

Konveks Fonksiyonlar Teorisi ile iligkili olan temel esitsizliklerden en onemlileri
1881 yilinda Hermite tarafindan elde edilen Hermite-Hadamard esitsizligi ve 1938
yilinda Ostrowski tarafindan elde edilen Ostrowski esitsizligidir. Hermite-Hadamard
esitsizligi ile ilgili ¢alismalarin biiyiik bir kismi1 Dragomir ve Pearce taratindan 2000
yilinda yazilmis olan “Selected Topics on Hermite-Hadamard Inequalities and

Applications” isimli kaynakta bir araya getirilmistir (Dragomir and Pearce 2000).



Esitsizlik teori ve konveks fonksiyonlar izerine calismalar yiiriiten ve yeni bir¢ok
tamim ve teorem ortaya koyan diger bilim insanlari Ozdemir, Kirmaci, Agarval,
Anastassiou, Milovanovic, Fink, Roberts, Varberg, Barnett, Yildirim, Sarikaya,
Ujevi¢, VaroSanec, Bullen, Cerone, Toader, Alomari, Qi, Pearce, Darus, Bakula,
Pecari¢, Set, Akdemir, Kavurmaci-Onalan, Avci-Ardig, Giirbiiz, Ekinci ve Iscan

seklinde siralanabilir.

Set tarafindan hazirlanan “Baz1 Farkli Tiirden Konveks Fonksiyonlar I¢in Integral

Esitsizlikleri” bashikli doktora tezinde  E —konveks ve  E —m —konveks
fonksiyonlar ile birlikte farkli tiirden E —konveks ve E — m —konveks fonksiyonlar

icin Hermite-Hadamard tipli ve diger baz1 farkli tiirden konveks fonksiyonlar olan

m —konveks, (a,m) —konveks, leg —konveks, guasi —konveks, s —konveks, r —
konveks ve h —konveks fonksiyonlar i¢in yeni integral esitsizlikleri verilmistir.

Bunlarin yani sira bazi genellestirmeler de elde edilmistir (Set 2010).

Alomari’nin “Several Inequalities of Hermite-Hadamard, Ostrowski and Simpson

Type for s —Convex, Quasi —Convex and » —Convex Mappings and Applications”
baslikli doktora tezinde s —konveks, guasi —konveks ve r —konveks fonksiyon

smiflart kullanilarak Hermite-Hadamard, Ostrowski ve Simpson tipli integral

esitsizlikleri elde edilmistir ve bu esitsizlikler i¢in uygulamalar verilmistir (Alomari

2011).

Kavurmaci-Onalan’in “Baz1 Farkli Tiirden Konveks Fonksiyonlar I¢in Ostrowski ve
Hermite-Hadamard Tipli Integral Esitsizlikler” baslikli doktora tezinde farkli tiirden
konveks fonksiyon siniflar1 kullanilarak yeni baskin konveks fonksiyon kavramlari
tamimlanmig, bu yeni fonksiyon smiflar1 i¢in Hermite-Hadamard tipli integral
esitsizlikleri edilmistir. Konveks fonksiyonlar igin Hermite-Hadamard tipli; konveks
ve konveks fonksiyonlar i¢in Ostrowski tipli yeni integral esitsizlikleri elde edilmistir

ve elde edilen bazi esitsizlikler i¢cin uygulamalar verilmistir (Kavurmaci 2012).



Konveks fonksiyonlar iizerine yapilan ¢aligmalarda temel olarak fonksiyon sinifinin
ozellikleri, diferansiyel ve integral hesabin bilinen &zellikleri, ortalama fonksiyonu
ve cesitli klasik esitsizlikler kullanilmistir. Kimi caligmalarda fonksiyonun
tanimlandig1 uzay degiskenlik gostermis olup kimi c¢alismalarda ise kullanilan
matematiksel analiz iglemleri farklilik arz etmistir. Temel felsefe olarak her yeni
calismada smirlarda iyilestirme, esitsizligi genellestirme, yeni bir tipten esitsizlik
elde etme ve bu esitsizlikleri farkli fonksiyonel uzaylarda takdim etme

benimsenmistir.

Konvekslik iizerine ilk caligmalar reel sayilarin alt araliklarinda yapilmis, ardindan
bu esitsizlikler koordinatlarda konvekslik kavrami ile birlikte R" uzayina tagimmustir.
Bagta Dragomir olmak iizere bazi diger arastirmacilar izotonik lineer fonksiyonel
uzayinda, normlu uzaylarda, Hilbert uzaylarda, Banach uzaylarda ve fraktal

uzaylarda esitsizlik calismalar1 yaparak konuyu genisletmislerdir.

Bazi arastirmacilar ise klasik tiirev ve integral icin elde edilmis sonucglar1 Caputo
tirev, Riemann-Liouville kesirli integraller, uyumlu kesirli integraller, k-lokal kesirli

integraller kullanarak genellestirmis ve konuya yeni bir boyut kazandirmislardir.

Bu yeni boyutlardan biri de kuantum hesap yardimiyla elde edilmis integral
esitsizlikler ve konveksligin kuantum hesapta kullanilmasidir. Kuantum hesap en
genel ifadeyle limit kullanmaksizin elde edilen hesap olarak bilinir. Klasik turevden
sadece diferansiyellenemeyen fonksiyonlarin kiimesinde tiirev almay: saglayan bir
operator farkiyla ayrilir. Kuantum diferansiyel operatdrii ortogonal polinomlar, temel
hipergeometrik fonksiyonlar, varyasyon analizi, mekanik ve gorelilik teorisi gibi
matematigin ve fizigin bir¢ok alanindaki uygulamalari ile ilging bir role sahiptir. Son
yillarda bir¢cok arastirmacinin dikkatini ¢eken ve iizerine g¢alismalar yapilan -
kalkiiliis icin tiirev, integral ve bu kavramlarin temel ozellikleri insa edilmistir.
Ayrica, Holder, Hermite-Hadamard, Trapezoid, Ostrowski, Cauchy-Bunyakovsky-
Schwarz, Griiss and Griiss-Cebysev ve Steffensen esitsizligi gibi birgok esitsizlik q-
integraller i¢cin takdim edilmistir. Bunun yanisira g-degisken operatorii yardimiyla

kesirli kuantum hesap kavrami da tanimlanmis ve bazi 6zellikleri ispat edilmistir.



Bu yeni yapilan tanimlarin uygulamalari olarak, kesirli g-diferansiyel denklemler
icin birinci ve ikinci mertebeden baslangic deger problemlerinin varlik ve tekligiyle
ilgili sonuglar verilmistir. Konuyla ilgili olarak Tariboon et al.,Jackson, Al-Salam,
Agarwal, Ernst, Sudsutad et al., Ferreira, Annaby and Mansour, Bangerezako, Graef
and Kong, Ahmad et al., Tariboon and Ntouyas, Noor et al., Taf et al., Anastassiou,

Pachpatte, PAlya ve Szeg6 gibi bilim insanlarinin galismalar1 incelenebilir.



2. KURAMSAL TEMELLER

2.1. Konveks Fonksiyonlarla Ilgili Temel Tanim ve Ozellikler

Bu caligmada kullanilacak bazi temel tanimlar asagida verilmistir.

Tamm 2.1.1. “Konveks Kiime”: “L bir lineer uzay A € L ve x,y € A keyfi olmak

Uzere

B={z€lLz=tx+ (1-1t)y, 0<t<1}cA

Ise A kiimesine konveks kiime denir. Eger z € B ise z = tx + (1 — t)y esitligindeki
x Ve y’nin katsayilari i¢in t + (1 — t) = 1 bagintis1 her zaman dogrudur. Bu sebeple
konveks kiime tanimindaki t, 1 —tyerine t+ k =1 sartim1 saglayan ve negatif
olmayan t, k reel sayilari alinabilir. Geometrik olarak B kiimesi u¢ noktalar1 x ve y
olan bir dogru parcasidir. Bu durumda sezgisel olarak konveks kiime, bos olmayan

ve herhangi iki noktasini birlestiren dogru pargasini ihtiva eden kiimedir” (Bayraktar

2000).

Sekil 2.1. Konveks kiime



Sekil 2.2. Konveks olmayan kiime

Tamm 2.1.2.(J —Konveks Fonksiyon) “I, R’de bir aralik olmak tizere her x,y € I

icin

f(x;ry) Sf(x) erf(y)

sartint saglayan f fonksiyonuna [ {izerinde Jensen anlaminda konveks veya

J —konveks fonksiyon denir” (Mitrinovi¢ 1970).

Tanim 2.1.3. (Kesin ] —Konveks Fonksiyon)“Her x,y € I ve x # y igin

f<xJ2ry) <f(x) erf(y)

oluyorsa f fonksiyonuna I izerinde kesin J —konveks fonksiyon denir” (Mitrinovic¢
1970).

Tamim 2.1.4. (Konveks Fonksiyon): “I, R’de bir aralik ve f:1 — R bir fonksiyon

olmak Uizere her x,y € I ve a € [0,1] igin,

flax+ (1 —a)y) s af(x) + A - a)f(¥)



sartin1 saglayan f fonksiyonuna konveks fonksiyon denir” (Pecari¢ et al. 1992).

Eger a € (0,1) araliginda alinirsa bu durumda

flax+ (1 -y) <af(x)+ (A -a)f )

olur. Bu f fonksiyonuna da strictly konveks fonksiyon denir.“—f" konveks (strictly

konveks) ise 0 zaman f’ ye konkav (strictly konkav) denir.

Konveks fonksiyonun geometrik anlami asagidaki gibidir:

yA

x ¥

a ta+(1-)b b

Sekil 2.3. Konveks fonksiyon

Geometrik olarak ta + (1 —t)b noktasinda; f’nin egri lizerinde aldigi deger

(a,f(a)) ve (b,f(b)) noktalarmmi birlestiren dogru pargasmnin iizerinde aldigi



degerden her zaman daha kiigiiktiir, yani bu iki noktay:1 birlestiren kiris (dogru
parcas1) her zaman egrinin [a,b] araliinda kalan kismimin {izerinde veya

Ustlindedir.

Sekil 2.3 den de goriildiigi gibi t€[0,1] oldugundan tf(a) < f(a) dir. Benzer
sekilde (1 —¢t)f(b) < f(b) dir. Yani tf(a), f(a)’nn (1—t)f(b) de f(b) nin

altindadir.

Dolaysiyla tf(a) + (1 — t)f(b), f(a)ile f(b) arasinda olur. Konkav fonksiyon i¢in

kirig f’ nin grafiginin [a, b] araliginda kalan kisminin {izerinde veya altindadir.
Teorem 2.1.1. (Ucgen Esitsizligi):“Herhangi bir x, y reel sayilar1 i¢in
lx +yl < |x| + |yl,
[Ix| = Iyl| < Ix —yl,
[Ix| = Iyl| < Ix + yl,
ve tiimevarim metoduyla
|x1 + -+ xnl < |X1| + o+ |xn|

esitsizlikleri gecerlidir” (Mitrinovi¢ et al. 1993).

Teorem 2.1.2. (Uggen Esitsizliginin Integral Versiyonu):“f, [a,b] arahiginda

stirekli reel degerli bir fonksiyon olsun. Bu taktirde

b b
[ reoan| < [ reolar @<n

esitsizligi gecerlidir” (Mitrinovi¢ et al. 1993).



Ornek 211.f:IcR-R, f(x)=|x| fonksiyonu [ (zerinde konveks

fonksiyondur.
COzum: f’nin konveks oldugunu gostermek icin x,y € I ve a € [0,1] i¢in
flax+(1-ay) < af @) + (1 - Df )
oldugunu gostermeliyiz. Buna gore
flax+ (1 —a)y) = |ax + (1 —a)y|

< |lax| + |(1 — a)y| (icgen esitsizliginden)
= alx| + (1 — )|yl
=af(0)+ A -a)f )

elde edilir. Ilk ve son ifadeden f fonksiyonunun konveksligi ispatlanmis olur

f(x) =|x| fonksiyonu x = 0da tireve sahip olmamasmma ragmen konveks

fonksiyondur.

v
x

Sekil 2.4.Aralik {izerinde konveks fonksiyon

Sonug¢ 2.1.1.“x,y € Rve p + q > 0 olmak tzere



f<px+qy) <pf(x)+qf(y)
p+q/ p+q

esitsizligi (2.1) esitsizligine denktir” (Mitrinovi¢ et al. 1993).

Teorem 2.1.3. (Holder Esitsizligi):“a = (a4, ...,a,) ve b = (b4, ..., b,) reel veya

kompleks sayilarin iki n —lisi olsun. Bu taktirde

Il
[N

1 1
— + —
olmak Uzere

(@p > 1ise,

(b)p < 0veya g < 0 ise,

1 1
D> by > (Zmup) (Zwqu)
k k=1 k=1

=1

esitsizlikleri gecerlidir” (Mitrinovi¢ 1970).
Teorem 2.1.4. (integraller icin Hélder Esitsizligi):“p > 1 ve % + i = 1 olsun. f ve

g, la, b] araliginda tanimh ve integrallenebilen iki fonksiyon olsun.|f|P ve |g|?,

[a, b] araliginda integrallenebilen fonksiyonlar ise
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1

b b % b Pl
f |f(x>g<x>|dxs<f |f<x)|de) <f |g(x)|qu>

esitsizligi gecerlidir” (Mitrinovi¢ et al. 1993)
Tamm 2.1.5. (Siireklilik):“f:S € R - R, x, € S ve € > 0 verilmis olsun. x € S ve

|x — x0] <6 icin |f(x) — f(xg)| < & olacak sekilde bir § > 0 sayis1 varsa f, x,’da
stireklidir denir” (Bayraktar 2010).

Tanmm 2.1.6. (Diizgiin Siireklilik):“f:S € R - R fonksiyonu ve &> 0 sayisi
verilmis olsun. |x; — x,| < § sartim1 saglayan her x1,x, € S icin |f(x1) — f(x2)| <

€ olacak sekilde bir § > 0 sayis1 varsa f, S’de diizgiin siireklidir denir” (Bayraktar
2010).

Tamim 2.1.7. (Lipschitz Sart1):“ f: S € R - R fonksiyonu igin

lf(x) = f)I| < M|x -yl

olacak sekilde bir M > 0 sayis1 varsa f, S’de Lipschitz sartin1 sagliyor denir”
(Bayraktar 2010).

Sonu¢ 2.1.2.“f, S’de Lipschitz sartin1 sagliyorsa f, S’de diizgiin stireklidir”
(Bayraktar 2010).

Teorem 2.1.5.“[a,b] S I°olsun. Eger f:1 - R  konveks bir fonksiyon ise

f Lipschitz sartin1 saglar. Sonug olarak f, [a, b] araliginda mutlak siirekli ve 1°’de

stireklidir”(Pecari¢ et al. 1992).

Teorem 2.1.6.“f fonksiyonu [a, b] araliginda konveks ise

11



a. f, (a, b) araliginda siireklidir ve
b. f, [a, b] araliginda sinirlidir” (Azpeitia 1994).

Tamim 2.1.8. (Artan ve Azalan Fonksiyonlar):“f, [ araliginda tanimli bir

fonksiyon ve xq, x, de I’da iki nokta olsun. Bu durumda

(@)xy > xq iken f(xy) > f(xy) ise f fonksiyonu I tizerinde artandir,
(b)x, > x;1 iken f(x;) < f(xq) ise f fonksiyonu I iizerinde azalandir,
(C)xy; > xq iken f(xy) = f(xy) ise f fonksiyonu I iizerinde azalmayandir,

(d)x, > xq1 iken f(xy) < f(xq) ise f fonksiyonu I iizerinde artmayandir

denir” (Adams and Essex 2010).

Teorem 2.1.7.%] agik bir aralik ve ] €I olmak Uzere f, I Uzerinde surekli ve J

uzerinde diferensiyellenebilir bir fonksiyon olsun. Bu durumda

(a) Her x € J icin f (x) > 0 isef fonksiyonu I iizerinde artandr.

(b) Her x € J icin f (x) < 0 isef fonksiyonu I iizerinde azalandr.

(c) Her x € J icin f (x) = 0 isef fonksiyonu I iizerinde azalmayandur.

(d)Her x € icin f (x) < 0 isef fonksiyonu I iizerinde artmayandir”(Adams and
Essex 2010).

Asagida konveks fonksiyonlarin tilirevleri ile artanlik (azalanlik) arasindaki iliskiyi

iceren sonug ve teoremler verilmistir.

Sonug 2.1.3.“f, g konveks fonsiyonlar ve g ayn1 zamanda artan ise g o f fonksiyonu
konvekstir” (Roberts and Varberg 1973).

Teorem 2.1.8. “Eger f:1 — R konveks (kesin konveks) bir fonksiyon ise f,(x) ve

f-(x) var ve bu fonksiyonlar I°’de artandir (kesin artandir)”(Pecari¢ et al. 1992).
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Teorem 2.1.9.“f fonksiyonu (a,b) araliginda diferensiyellenebilir bir fonksiyon
olsun. Bu durumda f fonksiyonunun konveks olmasi igin gerek ve yeter sart f ’nin

artan (kesin artan) olmasidir”(Pecari¢ et al. 1992).

Teorem 2.1.10.“f fonksiyonunun [ ag¢ik araliginda ikinci tiirevi varsa, f
fonksiyonunun bu aralik iizerinde konveks (kesin konveks) olmasi i¢in gerek ve yeter

sart x € I i¢in

f ()= (>)0

olmasidir” (Pecari¢ et al. 1992)

13



2.2. Farkh Tiirden Baz1 Konveks Fonksiyon Siniflar:

Cesitli konveks fonksiyon tiirleri vardir. Bunlardan en ¢ok bilinen ve literatiirde bu

konuda ¢alisanlar tarafindan sik kullanilan konveks fonksiyon tiirleri sunlardir:

Tammm 2.2.1. (Quasi-Konveks Fonksiyon):“S ¢ R"® bostan farkli bir kiime
ve f:S — R bir fonksiyon olsun.vx,y € S ve a € [0,1] igin

flax + (1 = a)y) < max{f(x), f(y)}

Ise f’ye quasi —konveks fonksiyon denir” (Dragomir and Pearce 1998).

Eger

flax+ (1 = a)y) <max{f(x),f()}

isef’ye strictly quasi —konveks fonksiyon denir. Ayni sartlar altinda

flax + (1 - a)y) = max{f(x), f(y)}

isef’ye quasi —konkav fonksiyon ve

flax + (1 = a)y) > max{f(x), f(¥)}

isef’ye strictly-quasi —konkav fonksiyon denir (Dragomir and Pearce 1998).

Tammm 2.2.2.“f hem quasi —konveks hem de quasi—konkav ise f’ye

quasi —monotonik denir” (Greenberg and Pierskalla 1971).
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Sonug 2.2.1.“Herhangi bir konveks fonksiyon quasi —konveks fonksiyondur. Fakat
tersi her zaman dogru degildir. Yani quasi —konveks olup konveks olmayan

fonksiyonlar vardir.

Ornegin g:[-2,2] - R,

(1, te[-2,-1]
g(t)_{tz, te(-1,2]

fonksiyonu [—2,2] araliginda konveks degildir. Fakat g fonksiyonu [—2,2]
araliginda quasi —konveks fonksiyondur” (Ion 2007).

A

Sekil 2.5. Quasi-konveks olup konveks olmayan fonksiyon
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Sekil 2.6.Quasi -konveks olmayan fonksiyon

Quasi-konveks olmayan bir fonksiyon: Fonksiyonun tanim kiimesinde, degerleri
kirmiz1 kesik ¢izginin altinda kalan noktalar, iki kirmizi araligin birlesimidir ve

fonksiyon bu noktalarin birlesiminde konveks degildir.

Tanmm 2.2.3. (Wright-Konveks Fonksiyon): “f:/ - R bir fonksiyon ve y >
x, @ > 0 sartlar1 altinda her bir y + a, x € I i¢in

fG+a)-f) <f+a)—f)

esitsizligi saglaniyorsa f’ye I € R’de Wright-konveks fonksiyon denir” (Dragomir
and Pearce 1998).

Tamim 2.2.4. (Wright-Quasi-Konveks Fonksiyon): “f:1 — R bir fonksiyon olsun.
y > x, a > 0sartlari alinda V x,y,y + @ €  ve Va € [0,1] igin

1
> [f(tx + (1 —D)y) + (1 = O)x + ty)] < max{f(x), f()}
veya
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1
SUFO) + F( + @) < max{f (), fO + D)

esitsizliklerinden biri saglaniyorsa f’ye I € R’de Wright-quasi-konveks fonksiyon

denir” (Dragomir and Pearce 1998).

Tamm 2.2.5. (J —Quasi-Konveks Fonksiyon): “f:I — R fonksiyonu her x,y € I

icin

F(552) < max(rCo, £

sartin1 sagliyorsa f fonksiyonuna ] — quasi —konvekstir denir” (Dragomir and
Pearce 2000).

Tammm 2.2.6. (Log-Konveks Fonksiyon):“/,R’de bir aralik ve f:1 = R bir

fonksiyon olsun. Her x,y € Ive t € [0,1] i¢in

flex+ A —0y) < f{Of )
sartin1 saglayan f fonksiyonuna Log-konvekstir denir” (Pecari¢ et al. 1992).

Tammm 2.2.7(Godunova-Levin Fonksiyonu): “f:I — R negatif olmayan bir

fonksiyon, Vx,y € I,t € (0,1) olmak Uzere

sartin1 saglayan f fonksiyonuna Godunova-Levin fonksiyon veya Q(I) smifina aittir

denir.

Bu tanima denk olarak;
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f € Q()vex,y,z € I ise bu takdirde

fOE-x-2)+fOMN@y -y -2)+f(@Dz-x)(z-y)=0

esitsizligi saglanir” (Godunova and Levin 1985).

Tamim 2.2.8.(P —Fonksiyonu): “f: [ — R negatif olmayan bir fonksiyon olsun.

vx,y € I,t € [0,1] olmak Uzere;

fx+ (A -0y) < f(x)+ f()

sartin1 saglayan f fonksiyonuna P —fonksiyonu veya P(I) smifina aittir denir”
(Dragomir et al.1995).

Tanmmm 2.2.9.(m —Konveks Fonksiyon): “f:[0,b] = R ve b >0 olsun. Her
x,y €[0,b], « € [0,1] ve m € [0,1] icin

flax +m(1 - a)y) < af (x) + m(1 - a)f(y)
sart1 saglaniyorsa f fonksiyonuna m —konvekstir denir” (Toader 1984).
—f fonksiyonu m —konveks ise bu takdirde f fonksiyonu m —konkavdir. Ayrica
f(0) < 0i¢in [0, b] araliginda taniml1 tiim m —konveks fonksiyonlarin sinifi K,, (b)
ile gosterilir. Eger m = 1 alinirsa [0, b] Uzerinde m —konveks fonksiyon bilinen
konveks fonksiyona doniisiir.
Tammm 2.2.10. (Birinci Anlamda s —Konveks Fonksiyon): “R, = [0, o),

fiRy >R ve 0<s<1olsun. a®*+ ° =1 olmak Uzere her u,v € R, ve her

a, = 0icin
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flau+pv) s a*f(w) + B°f (V)

2

esitsizligi saglantyorsa f fonksiyonuna birinci anlamda s —konveks fonksiyon denir’
(Orlicz 1961).

Tamm 2.2.11.(ikinci Anlamda s —Konveks Fonksiyon): “R, = [0,2), f:R, —

Rve0<s<1olsun.a,f =0,a+ B =1 olmak lizere her u,v,h € R, igin

flau+pv) < a*f(w) + B°f(v)
esitsizligi saglaniyorsa f fonksiyonuna ikinci anlamda s —konveks fonksiyon denir.
Ikinci anlamda s —konveks fonksiyonlarin smifi K2 ile gosterilir”’(Breckner 1978).
Yukarida verilen her iki s —konvekslik tanimi s =1 icin bilinen konvekslige
dontisiir.

Ornek 2.2.1. “s € (0,1) ve a, b, c € R olsun. f: [0, ) — R fonksiyonu

a, t=20
f(t)_{bts+c, t>0

olarak tanimlansin. Bu takdirde
()b=0ve0 <c<aisef € K2 dir.
(ii)p > 0 ve c < 0ise f ¢ K2dir” (Hudzik and Maligranda 1994).

Tamm 2.2.12. (h —Konveks Fonksiyon): “h:] € R - R pozitif bir fonksiyon
olsun. Her x,y € I, a € (0,1) i¢in

flax + (1 —a)y)
< h(@)f() +h(1-a)f(y) (2.1)
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sartin1 saglayan negatif olmayan f:I € R — R fonksiyonuna h —konveks fonksiyon

veya SX (h, I) sinifina aittir denir” (Varosanec 2007).

“(2.3) esitsizliginin tersini dogrulayan f:I € R — R fonksiyonuna h —konkav
fonksiyon denir yani f € SV (h,I)’dir” (Varosanec 2007).

“Bu tamimdan agikc¢a su sonuglar ¢ikarilabilir: h(a) = a ise tim negatif olmayan

konveks fonksiyonlar SX(h,I) sinifina ve esitsizligin yon degistirmesi durumunda
tim negatif olmayan konkav fonksiyonlar SV (h,I) sinifina aittir; h(a) =§ ise
SX(h,I) = Q(I) smifina aittir; h(a) =1 ise SX(h,I) 2 P(I)’dir; s € (0,1) olmak
tizere h(a) = a° ise SX(h,I) 2 K2 dir’(Varosanec 2007).

Tanim 2.2.13.(Starshaped Fonksiyon): “b > 0 olmak uzere f:[0,b] —
Rfonksiyonu, her x € [0, b]ve a € [0,1]icin

flax) < af(x)

sartin1 sagliyorsa bu fonksiyona starshaped fonksiyon denir” (Toader 1984).
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3.MATERYAL ve YONTEM

3.1. g-Diferansiyelle ilgili Temel Tanim ve Ozellikler
Tamim 3.1.1. Herhangi bir keyfi f(x) fonksiyonunu goz 6niine alalim,
de f(x) = f(qx) = f(x)
ifadesine g-diferansiyel denir.(Kac et al. 1943).
Ornek 3.1.1f (x) = x fonksiyonu igin d, f(x) degerini bulunuz.
Cozim 3.1.1
dof (x) = f(gx) — f(x)
= qx—x
=(q—Dx
olarak bulunur.

Tamm 3.1.2.(iki Fonksiyonun Carpmmmn q-Diferansiyeli):f(x) ve g (x)
herhangi iki fonksiyon olmak uzere,

dq (f (). g(x)) = f(gx). g(gx) — f(x). g(x)
= f(gx).9(qx) — f(x).g(x) = f(gx). g(x) + f(gx). g(x)
= f(g0)(g(qx) — g(x)) + g(x)(f (gx) — f(x))
sonug olarak,
dg(f()g(x)) = f(qx)dqg(x) + g(x)d,f (x)
seklinde bulunur. (Yardimei 2005).

Ornek 3.1.2. f(x) = x ve g(x) = x> fonksiyonlar1 igin d, (f(x)g(x)) degerini
bulunuz.

Coziim 3.1.2.

dy(f)g(x)) = f(q)dag(x) + g(x)dy f(x)
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= qx((q%)* — x?) + x*(gx — x)
= q3x3 —qx% + ¢% — x3
— q3x3 — 53

=x°(¢° - 1)
olarak bulunur.

Tamm3.1.3.(iki Fonksiyonun Toplaminin q-Diferansiyeli): f (x) ve g(x) herhangi
iki fonksiyon olmak Gzere,

dq (f0) + g(0)) = (f(gx) + g(gx)) = (f(x) + g(x))
= f(qx) — f(x) + g(qx) — g(x)
=dof(x) +dgg(x)
seklinde bulunur.

Ornek 3.1.3.f(x) = x veg(x) = x? fonksiyonlar1 i¢in d, (f(x) + g(x)) degerini
bulunuz.

Co6ziim 3.1.3.
dq(f(x) + g(x)) = dgf (x) + dg g (x)
= f(qx) = f(x) + g(qx) — g(x)
= qx — x + ¢*x* — x?
=x*(g* =D +x(g—1)
=x(q-Dx@+D+1)

olarak bulunur.

Tamm 3.1.4. (Bir Fonksiyonun bir Sabitle Carpiminin q-Diferansiyeli): A  bir
sabit f(x) bir fonksiyon olmak (zere,

d,(Af (%)) = 2qx — Ax
=x(qg—1)

= 2dy f ()

22



seklinde bulunur.
Ornek 3.1.4f (x) = x ve A bir sabit olmak iizere d, (l f (x)) degerini bulunuz.
GC6zim 3.1.4
dy (Af () = Ad, f (x)
= Aqx — Ax
=x(q—-1)
olarak bulunur.

Tammm 3.1.5 (iki Fonksiyonun Farkimn q-Diferansiyeli) f(x) veg(x)
fonksiyon -1€ R olmak iizere,

dg (f () = 9(0) = dy (f() + (-1). g @)
= d,f(0) +dg ((-1). g ()
= d,f() + (~1).d, ()
=d,f(x) — dyg(x)

seklinde bulunur.

Iki

Ornek 3.1.5f(x) = x ve g(x) = x* fonksiyonlar1 i¢in d, (f(x) — g(x)) degerini

bulunuz.
C6ziim3.1.5.
do(f(x) = 9(2)) = dy (x — x?)

=d,(x+ (—1).x?)

= (gx + (-1).q*x*) — (x + (-=1).x%)

=qx — q*x* —x + x?

=x(q—-1)—x*(@* -1
=x(q —1). (1 —x(q + 1))

olarak bulunur.

Tammm 3.1.6.(Sabit Fonksiyonun g-Diferansiyeli):f(x) = ¢ sabit bir fonksiyon

olmak Uzere,
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def (x) = fgx) — f(x)
=c—c
=0
seklinde bulunur.
3.2. g-Turevle ilgili Temel Tanmim ve Ozellikler

Tamm 3.2.1Simdide g-diferansiyel yardimiyla g- tiirev tanimlayalim.

dof) _ f(a) = F(x)

dgx qx —x

D,f(x) = 3.1)

f (x)in g-turevi denir.(Yardimci 2005).
Ornek 3.2.1 f(x) = x™,n € Z* fonksiyonun g-turevini bulunuz.
Cozim 3.2.1

D f(x) = Dy (x™)

_ (gx)" —x"

B gx — x

_x¥*(@" -1
x(q—1)

Tanim 3.2.2n € Z*olmak iizere,

ifadesine n nin g —benzeri denir.

Ayrica
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olacaktir. Bu ifade x™ nin siradan tiirev haline benzemektedir. Eger ¢ = 1 igin
esitligin her iki tarafinin limiti alinirsa

lim D, x™ = lim[n] x™*
q-1 q-1

= li{n(l +q+q?.q" Y. x"1
q—)

— (1 + 1 + 12 + e 1Tl—1)x1’l—1
=nx"!
olacaktir. Clnki,

lim[n] =lim(1+q+q*+-+q*H=n
q-1 q-1

olacaktir. Yani [n] g-analizinde, siradan analizdeki n pozitif tam sayisi ile ayni roli
oynamaktadir.(Yardimci 2005).

Tanim 3.2.3

olarak tanimlanir.(Yardimct 2005).

Tamm 3.2.4 (iki Fonksiyonun Carpiminin q-Tirevi): f(x) ve g(x) herhangi iki
fonksiyon olmak tizere, (3.1) ifadesinden yararlanarak asagidaki g-tirevi elde ederiz

d, (f (x). g(x))

dqx

_f@0).dgg(x0) + 9(). do f(x)
(q—1).x

dqg(x)
(q—Dx

D (f(x).9(x)) =

dqf (x)

= f(gx). @ - Dx

+g(x).
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= f(gx).Dyg(x) + g(x).D, f (x)

simetriden dolayi,

Dy (f(x).g(x)) = g(qx). Dy f (x) + £ (x). Dy g (x)
elde edilir.(Yardimei 2005).

Ornek 3.2.2f(x) = x ve g(x) = x? fonksiyonlar1 icin D, (f(x).g(x)) degerini
bulunuz.
C6zim 3.2.2

2,2 2
q°xc—x , qx — X

Dy (f(x). g(x0)) = q(x)

(q—l)x+ qx —x

x%(q* — 1)
=gx———— +x°
x(qg—1)

=qx?.(q + 1) + x?
=x*(q*+q+1)

seklinde bulunur.

Tamim 3.2.5 (iki Fonksiyonun Bolimiinin g-Tarevi): f(x) ve g(x) herhangi iki
fonksiyon olmak lzere, g(x) # 0 ve g(qx) # 0 olsun

fG) = f(x)
fx)
g(x)m—f(x)

esitligin her iki tarafinin g-tlirevini alalim.

£
D, (g (x) g(—’;)> = D f (x)
g(qx)-Dq (%) + %Dqg(x) = qu(x)

) <f(x)> _ Def () -LED,9()
\g) 9(gx)
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D fx)\  g).Dyf(x) — f(x)Dyg(x)
\g)

B 90)-9(q%)
olur. (Yardimci 2005).

Ornek 3.2.3 f(x) = x ve g(x) = x? fonksiyonlari i¢in

f(x)
P <m)

degerini bulunuz.

Coziim 3.2.3

seklinde bulunur.

Tamm 3.2.6(iki Fonksiyonun Toplaminin q-Turevi):f(x) ve g(x) herhangi iki
fonksiyon olmak Uzere,

flgx) + g(gx) — f(x) — g(x)

qx — x

_ f(qx) — f(x) N g(qx) — g(x)

qx —x qx —x

D, (f(x) +g(x)) =

=Dy f(x) + Dgg(x)
seklinde bulunur.

Ornek3.2.4f (x) = x ve g(x) = x* fonksiyonlar igin D, (f(x) + g(x)) degerlerini
bulunuz.
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GCb6zim 3.2.4
Dy (f(x) + g(x)) = D, (x + x?)
= D, (x) + Dy (x?)

2,2 2
X—Xx xX“—x
q ICI

qx —x qx — x

x*(q—-1).(qg+1)
x(q—1)

= 1+x(g+1)

=1+

olarak bulunur.

Tamim 3.2.7 (Bir Fonksiyon Bir (4) Sabitle Carpiminin q-TUrevi): A bir sabit
f(x) herhangi bir fonksiyon olmak Uzere,

Af(x) = Af (%)

D, (Af ) = ax —x
_ Af(qx) - f(x)
4 qx — x
= Aqu(x)

seklinde bulunur.

Ornek3.2.5f(x) = xve A sabit olmak uzere, Af(x) fonksiyonun g-tiirevini
bulunuz.

C6zim 3.2.5

Agx — A
D, (1)) = ==

X —X

X —X
|

qx —x
=1
olarak bulunur.

Tamm 3.2.8 (Iki Fonksiyonun Farkimin q-Turevi):f(x) ve g(x) herhangi iki
fonksiyon olmak tizere,

Dy (f(x) = g(x)) = Dg(f(x) + (=1)g(x))
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=Dy f (x) + (=1)Dy9(x)
= D,f(x) ~ D,g(x)
seklinde bulunur.

Ornek3.2.6f(x) = x veg(x) = x? fonksiyonlar1 icin D, (f (x) — g(x)) degerini
bulunuz.

Coziim 3.2.6
Dy (f(x) = g(x)) = Dy (x — x?)
= D, (x + (—1Dx?)
= Dyx + (=1)D,x*

s 2
=3 qu — qu

_qx—x q°x*—x*
T gx—x  qx—x

_,_ ¥@-1.@+1)
x(q—1)

=1-x(g+1)

olarak bulunur.
Ornek3.2.7 f(x) = In x fonksiyonun g-diferansiyelini ve g-tiirevini bulunuz.
dg(Inx) =Ingx —Inx

X
—
X

=Ingq
d,(Inx)

dqx

D,(Inx) =

_Ingx—Inx
x(g-1)

_ Ingq
“x(@-1D
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Ornek3.2.8 f(x) = x3 fonksiyonun g-diferansiyel ve g-tiirevini bulunuz.

Coziim 3.2.8

dq (x3) — q3x3 _ x3

=x°(¢° - 1)

olur.

33 _ o3
p,(x¥)=1"%
qx — x
_x*(@°-1)
x(q—1)

_2*(@-D+q+49%
x(q—1)

=x*(1+q+4q%)

Tamim 3.2.9. (Sabit Fonksiyonun g-Turevi):f(x) = ¢ sabit bir fonksiyon olmak
uzere,

fgx) = f(c)

qx — x

qu(x) =

c—¢C

Cqx—x

=0
Ornek3.2.9. f(x) = 10 fonksiyonu icin D, f (x) degerini bulunuz.

Co6zum 3.2.9.
flax) = f(x)

qx —x

qu(x) =

0
Cqx—x
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3.3.(x — @)™ nin g-Benzeri ve g-Tlrevi:

Genel Taylor Formlunde D lineer operatorl yerine D, lineer operatoriinii alalim.

{Py(x), Py (%), cer en e } polinomlar dizisi de yine bu teoremdeki ti¢ sart1 saglasin. Eger
a=0

olarak secersek
X
P,(x) = T

olarak alabiliriz. Cunkd;
1. Py(0) = 1ve p,(0) =0 (vn = 1)

x? o"
Po(x) === =1 Py(0) = 1p,(0) === =10
2.derP,(x) =n

[0] [n]!

3. Dan(x) =P, (%)

Eger a # 0 ve D = D, olarak secersek acaba P,(x) nasil olacaktir? Bu sorunun
yanitin1 Genel Taylor Formiilii yardimiyla bulalim.

Po(x) =1, DyPi(x)=P(x) ,P(a)=0
olmalidir.

dy Py (x) _ P;(gx) — Py (x) —1
dgx - x(g-1)

D,P(x)=1 =

Pi(qx) = P1(x) = x(q - 1)
Pi(aq) —Pi(a) =ap —a
Pi(aq) =aq—avePi(a) =0
olmalidir. O halde,

P(x)=x—a
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olarak bulunacaktir. Simdi de P, (x) i bulmaya ¢alisalim.

DyP;(x) = P, (x) ve P;(a) =0

olmalidur.
P. —P.
D, Py (x) = z(za(c; _ 1; () _
Py(gx) — P,(x) = (x —a)x (@ — 1)
Py(aq) — P,(a) =0 = P,(aq) =0
olmalidir.

P,(a) = 0veP,(aq) =0
olacagi icin,

P,(x) = (x — a)(x — qa)

olacaktir. Bunu sinayalim.

P(qx) = P, (x) _

D,Py(x) = =D S*
olmalidir. Buna gére,
D,Py(x) = (qa — q)(gx —xa(tz)_— 1()x —a)(x —aq)
_ - a)lqlgx —a) - (x — aq)]
x(q—1)

(x —a)(q’x —qa — x + qa)
x(g—1)

_ (x—a)(¢*x—x)
- x(q-1D

_(x—a)x(@® -1
 x(q-1D

q° -1
-1

= (x —a)[2]

=(x—-a)
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oysa
D P, (x) = (x — a)
olmaliydi. O halde esitligi saglamak icin

(x —a)(x — qa)

Py(x) = 2]

olmalidir. Simdi de P;(x)’ i bulalim.
qus(x) = P,(x), P;(a) =0
olmalidir.

dePs(x) _ Ps(qx) —Ps(x) _ (x—a)(x — qa)

Pabs) =35 x@a-D [

—a)(x — —1
P(q0) — Py = 2D [zﬁamq )

Ps(aq) —P3(a) = 0 = P3(aq) =0

x(q —D(x—a)(x — qa)
[2]

P3(qx) — P3(x)

denkleminde x = qa alirsak,
P;(¢*a) — P3(qa) = 0 = P3(q*a) =0
olacaktir.
P3;(a) =0, P3(aq) =0, P;(ag®) =0
olacagindan dolay1
P3(x) = (x —a)(x — qa)(x — q*)

olacaktir. Bunu sinayalim.

Ps(gx) —P3(x) _ (x —a)(x —qa)
x(q—-1) 2]

qug(X) =

olmalidir. Buna gore,

_ (gx—a)(gx — qa)(gx — q’a) — (x — @) (x — qa) (x — q°a)

D3P3(x) (=1
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_ (gx—a)qx —a)q(x —qa) — (x — ) (x — qa) (x — ¢*a)
x(qg—1)

_ G-a)—qa)l(gx — a)q® - (x — ¢*a)]
x(q—1)

_ (x—a)(x - qa)(@*x — aq® — x + q°a)
B x(q—1)

_ G-a)&-qox(@® -1
x(q—1)

_ ¢ —1
= (x—a)(x—qa)q_1

= (x —a)(x — qa)[3]

oysa

iy - £ 06200

olmaliydi. O halde esitligi saglamak i¢in
(x —a)(x — qa)(x — ¢°a)

P = B112]
olacaktir.
Pl (X) =X—a
_ (x—a)(x —qa)
p2(x) = 2]

(- a)(x - qa)(x — g%a)
Pa() = BI2]

oldugundan P, (x) polinomunu a # 0 i¢in asagidaki sekilde ifade edebiliriz.

P,(x) = (x —a)(x — qa)(x — q*a) ...(x — q"a)
[n]!

(Yardimci 2005).

Tamim 3.3.1 n! in g-benzeri asagidaki sekilde tanimlanmustir.
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(Yardime1 2005).

Tamim 3.3.2 (x — a)™ polinomunun g-benzeri asagidaki sekildeki tanimlanmigtir.
1 n=20

(x - a)] =

(x —a)(x —qa) ..(x —q"a) n=>1

(Yardimc1 2005).
Onerme 3.3.1n > 1 igin
D, (x — a)y" = [n](x — @)
dir.
Ispat 3.3.1 Bu 6nermenin ispatin1 tiime varim ydntemi ile yapacagiz.
n=1,

gx—q—x+a
D — =D —a) =
 (x—a), (x—a) =1

=1=[1](x — a)j

olacagi i¢in onerme n = 1 i¢in dogrudur. Varsayalim ki,
D (x — a)y" = [n](x — @)

ifadesi baz1 k degerleri i¢in dogru olsun
no_ -1
Dy(x —a), = [n](x—a)y

k+1 degeri icin de dogru oldugunu gosterelim. iki fonksiyonun ¢arpiminin g-
tirevinden yararlanarak,

x—a)f =(x-a)(x—qa) ... (x—q" ') (x — g*a) = (x — @)k (x — g*a)

D,(x —a)ktt =D, ((x — )k (x - qka))
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= (x —a)kD,(x — ¢*a) + (gx — ¢*a)D, (x — a)¥

. _ _ Ak
= (x - )} (“’x 1o “)) +9( = ¢ QI (x - @)
= (x — a)k (qx —qta-x+ qka> + q(x — ¢* ta)[k](x — a)k1
’ x(q—1) i !
-1
= (x—-a) <%> +q(x - ¢" [kl (x — a)§™

= (x—a)f +qx — ¢ ' [k](x — ) (x — qa) ... (x — ¢ *a)
= (x—a)§ +qlk](x — a)§
= (x — a)g (1 + qlk])
= (x — @)k [k + 1]

elde edilir. Boylece ispat tamamlanmis olmaktadir.(Yardime1 2005)

3.4. (x — a) Polinomunun Ozelikleri
Genelde

x—a)7*™ # (x—a)](x —a)}

dir. (Yardime1 2005).

Onerme 3.4.1.
x—a)p™ = (x—a)f(x—q"a); mn >0
Ispat 3.4.1
(x — @I = (x — a)(x — q@) (x — q2a) ... (x — " 1@) (x — q"a) ... (x — g™+ 1a)
=((x - a)(x —qa) .. (x = q""a)) ((x —q"a)(x - q(@"a)) . (x - q"_l(qma)))

= (k- @)f (- q" )]
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(x—a)g™ = (x-a)F(x—q"a)y

Esitliginde m = —n olarak alinirsak asagidaki ifadeyi elde ederiz.

1
(x—a)" = m
(Yardimci 2005).
Onerme 3.4.2 Herhangi iki tam say1 olan m ve n i¢in asagidaki esitlik dogrudur.
(x—a)g™ =(x-a)F(x—qra)y
ispat 3.4.2
1.m=-m <0 ve n> 0 icin esitligin dogru oldugunu gosterelim
(x— @) (x—q"a)f = (x—a)g" (x—q ™),
(x—q™a),

A
M
(x—q™),

(x—q™a) (x=q" (@™ a) "
el .
) (x—q™a),
(x—q™ a);l <m
7 n m
(x—qm)(x—q (g™ a))q
(x—a)g™ n>m
_ 1 ,
- m_n—(x—a)g_m n<m
t(x —qrm )q }
=@x-a)y ™
— +
=(x—a)g™
2. m>0ven=-n <0 igin esitligin dogru oldugunu gosterelim.
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(= @) (x = q" ) = (= @) (= q" )"

_ G-of
'\
(x—qm™),
f(x qm n’a)q (x —a Zn—n ,\
; >
(x - )n m>=n
= 4 q ’
, (J,C_ar,)ﬁn — m<n
\(x —qn -m (qm—n a))q (X — gqmn )q )
(x — a)g”‘"' m > nl
— 1 ' ,
- ———=(x—a) ™" m<n
(x=qma). " " )
= (x — a)g”_“’
=x-a)y*™
3. —m=-m <0ven=-n <0 icin énermedeki esitligin dogru oldugunu
gosterelim.
(- - "D = - a);" (x—g™a) "
_ 1
= , , , —
(x=aa); (x=a (a7 a))
1
= , i ,_ , mr ~ ,_ ) n'
(x_qn(qm na)) (x_qm na)q
q

1 C
= :(x_a)(;m -n

(x — q‘m"”'a);n,+n,

= +
—(x—a)g1 n

(Yardimce1 2005).
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(x — a)g nin bir baska ozelligi ise,
(a—x)g # (—1)"(x —a)g
olmasidir. Bunun yerine n > 1 igin;
(@-03 = (a—x)@-q)a—q) ..@a-q"x)

= (a-xq@ ta—x)qg* (@ *a—x)...q" (ag'™ —x)

(n—1n

=q z (x-(x-qg'a)x—q?a)..(x— ¢ ")(-D"

= (1T - gy
q q q

(Yardimci 2005).

3.5. Baz1 Ozel Polinomlarin q — Tiirevleri:

1
D <;> -D s
Na-—ag) T\ (x-q (@),
= Dg(1-q"a)g"
= [-nl(1 - gy

D,(a—x)! = D, ((—1D)"q"*V/2(x — q'"a)})

= (_1)nq(n—1)n/2 [n](x — ql_”a)g_l
= —1(=1)" ! [n]q" g DO-2/2(y — q—n+z(q_1a))z_l
= —[n]g" "1 (—1)r " 1qr-D@-2)/2 (x — g2 (q—la));l_l

=—[nlg" " (aq™! =07
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= —[n](a — q)3 "

D( 1 >:(a—x)f;Dq1—1.Dq(a—x)g‘
"\ (a—-x) (a —qx)g(a—x)g

—D,(a —x)g

CEY I HCEE )

I (G
(- q(a— )

__ [nl(a—gx)(a—g*s)...(a - q"*qx)
(a—x)g(a—gx)(a—q*x)...(a—q""qx)

[n]

~@-0ta-q'x)

[n]

(a—x)g(a—q"x)

[n]

+1
(a —x)g

(Yardimci 2005).
3.6. g-Trigonometrik Fonksiyonlar

g-trigonometrik fonksiyonlar asagidaki sekilde tanimlanmaktadir.

eix_e—ix Eix_E—ix
. q q i q q
singjx = — SIN_x =
a 20 a 20
eix_|_e—ix EiX+E—ix
_ 9 q _q q
cosge = —————C0Sx = ~———
: Yig—e My -
SINgx = 57 = Siny /o«
ve
eixq _l_e—ixq
C0Sgx = —1——" = cos,»
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ix ix ix —ix ix ix —ix —ix
e EYy e ET  + et BV + e ETY,
4

€0oSqx COSyx =

_ 2 + elququ + e—lqulxq
4

ix ix _ pix —ix _ ,—ix ix —ix —ix
e gEY g —et BTy e EY  t e ETY
—4

sinquiqu =

ezququ + e—lqu—qu —_ 2
4

elde edilir. Sonug olarak
c05,xCOSyx + sing=SIN x = 1 ifadesi sinx® + cosx* = 1 nin g-benzeridir.

Simdi de q trigonometrik fonksiyonlarin tiirevlerini zincir kuralindan yararlanarak
hesaplayalim u = u(x) = ix, f(x) = e,* olarak secelim.

1.
eix _e—ix
. r q q
—i(D ix _p —ix)
=5 W€ g € q
1, . o
=2—L_(leq1x + e, ”‘)
_ eqzx _I_eq—lx
2
= oSy
2
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(Yardimci 2005).

3.7. q - integral

= g e

= —Sin,x

i _ q q
D,SiNs = D, <—2L_ )

= Zil_(iEq X 4 iE, )

1 . .
E(quqx + Eq qu)

= COS,x

Eq x + Eq—zx
2

D,COS,x =D, (
1 . »
- E(iquqx — ik, qu)
— E(Eqiqx —FE —iqx)
2

q

1. .
= 51 (B £

= —SIqu

Tamm 3.7.1. D, F(x) = f(x)ise F ye nin q karsit tiirevi denir ve

[ red,

ile gosterilir.Analizdekine benzer olarak

Dygx) =0 gkx)=c

dir. Gunku, g(x) = 272, al-xibir formal kuvvet serisine esitse,Dgg(x) = 0
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oldugundan her i i¢in g‘ai = ai bulunur. Bui € Z* i¢in ai = 0
veg fonksiyonu sabit bir fonksiyonudur, anlamina gelir.

Kuantum analizde degisken doniisiimii yalnizca u = u(x) = ax? bicimindeki
fonksiyonlara uygulanabilir. F(x),f nin bir g-karsit tiirevi olmak tizere,

ff(u) dgu = F(u) = F(u(x))

dir.(Vulas 2009).

Teorem 3.7.1

[redy = a-ax) afa)
i=0

Ispat 3.7.1.f(x) keyfi bir fonksiyon olsun f fonksiyonun q karsit tiirevi F(x)
fonksiyonunu  olusturmak igin M, (F (x)) = F(qx) dogrusal operatoriini

tanimlayalim. M, Operatorii ve q tiirev tanimindan

Fq0) = F(x) _

(@ = Dx f)

1
(q_—l)x(Mq —1)F(x) =

esitligi kolayca goriiliir.

1
1—

Fx) = 7= ((1 = 9)xf ()
q

= (1 — @ Cef () + qxf(qx) + ¢*xf (g*x) + )
=(1- q)xZ q'f(q'x) ve
i=0

[r@de = a-ox) ar(a)
i=0

bulunur. Bu seriye f fonksiyonunun Jackson integrali denir.(Vulas 2009).

Teorem 3.7.2. 0 < |q| < 1 olsun uygun bir 0 < a < 1 igin |f(x)x?|, [0, A] Araligi

tizerinde sinirlysa
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f f)dyx =x(1—q) z q'f(q'x) (3.2)
i=0
ile tanimlanan jackson integrali (0. A] tizerinde f fonksiyonunun q karsiti tiirevi olan
bir F fonksiyonuna yakinsar. Ayrica F(0) = 0 olmak uzere F fonksiyonu x = 0
da sureklidir.(Vulas 2009).
Ispat 3.7.2 (0, A] Uzerinde |f(x)x%| < M olsun. Herhangi 0 < x < A4,i € Z* igin
F(a0)((d'x)) <M = |f(a'x)] < M(q'x)
dir. Bdylece, 0 < x < A i¢in
|qif(qix)| < Mx—a(ql—a)i

bulunur. 1 —a > 0 ve 0 < g < 1den dolayz, (3.2) daki serinin genel terimi yakinsak
bir geometrik serisinin genel terimiyle siirli oldugundan (3.2) in sag tarafi uygun
bir F fonksiyonun noktasal olarak yakinsar.(3.2) dan F(0) = 0 oldugu goriiliir. F(X)
in x = 0 da siirekli oldugunu gosterelim.Ve > 0 igin |x| < § oldukca

|F(x) — F(0)| =

x(1-q) Z q' f(q'x)
i=0

< (1=l ) M@
i=0

Mésl—e(1 —
< (H q)
1-¢q

<g&

saglanir. F fonksiyonun x = 0 da siirekli oldugu goriiliir. Ayrica 0<x<Ave
0 < g <1loldugundan 0 < qgx < Adir ve F fonksiyonun g-diferansiyellesebilir
oldugu ve f nin g-karst tiirevi oldugu acik¢a goriiliir.(Vulas. 2009)

Tamm 3.7.2 0 < a < b olsun. Belirli g-integral,

b 0
[ f@dg =ba -0 a'f(a'h) 33)
0 i=0

olmak tizere
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fb fO)dgx = fb ) dgx — f f()dgx (34)
a 0 0

esitligiyle tanimlanir.

0 < € < b olmak Uzere [€,b] Uzerinde (3.3) toplami sonsuz sayida terimden olugur
ve bu Riemann toplamidir. Buradan q— 1 igin b(1 — q)q' - 0 ve toplamy,[e, b]
tizerinde Riemann integraline yakinsar. € keyfi oldugundan f fonksiyonu kapali
araliginda siireklidir ve

b b
liny j F()dy = j F)dx
0 0

gerceklenir.(Vulas 2009).

Tamm 3.7.3 f fonksiyonunun R* U {0} daki genellestirilmis q-integrali,

ff(x)dqx = i jf(x)dqx
J .

=—00 i
l ql+1

toplamiyla tanimlanir.

q
f f)dy =1 —q)q'f(q")

qi+1

oldugundan

i=—o0

[ r@de=a-a Y ¢ ra)Es)
J |

olarak elde edilir.(Vulas 2009).

Onerme 3.7.1 x*f(x),a < 1iken x = 0 noktasinin bir komsulugunda ve a > 1
iken yeterince biiyiik x ler i¢in sinirliysa genellestirilmis q integrali yakinsaktir.

Ispat 3.7.2 (3.5)mn sagindaki seriyi

i q'f(q") = i qa ' flqg7")+ i q' f(q")
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seklinde ikiye aywalim. Ikinci toplam(0,1] Araligindaki q-integralidir. Verilen
birinci kosul altinda toplamin yakinsakligin1 gosterilir. Birinci toplam yeterince
buylk x ler ve a > 1 kosulunu saglayan bir  «aicin [x*f(a)| < M, (M > 0)

oldugundan yeterince biyuk i lerde

|q—if(q—i)| — qi(a—l)lq—aif(q—i)l < Mqi(a—l)

bulunur. Buna gore birinci serinin genel terimi yakinsak bir geometrik serinin genel
terimiyle Ustten sinirlandigindan mutlak yakinsaktir.(Vulas. 2009)

Teorem 3.7.3 (g-integralin Temel Teoremi): 0 < a < b < o ve f fonksiyonunun
bir karsit tiirevi F olsun F, x = 0 da strekliyse

b
[r@ay =ro) - F@

dir.(Vulas 2009).

Ispat 3.7.3F fonksiyonu, x = 0 da siirekli oldugundan, bir sabit farkiyla Jackson
formulayle verilir

FGO =x(1-9) ) ¢'f(q'x) + F(0)
i=0
buradan
f f(x)dyx = F(a) — F(b)
0

ve sonlu bir b icin

b
ff(X)dqx =F(b) — F(a)
0

oldugundan iddia kolaylikla elde edilir.(Vulas 2009).

Sonug 3.7.1 x = 0 noktasmnin bir komsulugunda f' (x) varsa ve x = 0 da siirekliyse

b

| Pof @y = 1) - F(@ G6)

a

dir.

46



Ispat 3.7.1. L Hospital kuraliyla

flax) — f(x)
x(q—1)

elde edilir. D,f(0) = f '(0) tamimlanarak, Dyf(x)x =0 da siirekli yapilir. g-
integralin temel teoreminden sonuca ulasilir. Carpilan iki fonksiyonun g-tiirevi

=f(0)

Py Paf (0 = g

D,(f(). 9(0)) = F()Dgg(x) + g(qx). Dy f (x)(3.7)
(x 3.6) ve (3.7)den,

b b
ff(x) Dag(x)dgx = f(b)g(b) — f(a)g(a) — f 9(qx) . Dy f (x)dqx(3.8)

g-analizdeki kismi integrasyon formiilii elde edilir. (Vulas 2009).

3.8 g- Gamma ve Beta Fonksiyonlar1.

Gamma fonksiyonun g-benzeri

o]

L@ = J x'1E, (1 — @gx)dyx, t >0
0

Integraliyle tanimlanir. jackson integrali yardimiyla gamma fonksiyonu igin

[o0]

IMOE f x"1E,((1 - q)gx)dy«,t >0
0

1\ [
= (m) fxt_lEq(q.X)dqx
0
t-1 =2

= (ﬁ) Z qti (qi+1; q)oo

[=—00

(@ De o Y
S (A-gtt ; (q; Q)

esitligi bulunur ve buradan gamma fonksiyonu,
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_ CHP
CE®

I, (®) (1-g'* (3.9)

olarak kutuplar1 hari¢ genisletilir.

Gamma fonksiyonunun sagladigi bazi esitlikler gq-Gamma fonksiyonu icin de
gerceklenir:

g gamma fonksiyonun tanimindan
rt+1)=tr(t
r'n+1)=nL,neN

fonksiyonel esitliklerinin g-benzerleri,

(@ Qoo i
L) =—=—-01-g)'"
=T, 9
(@ Do e
= 1-— t—1 1-—
- T, 0P -0
1-¢q
= 1_qtl"q(1:+1)
ve
(@ Do . @Dy
I n+1)=——-——(1- n—_—_""" —[n|
R s W i cws Thal
olarak elde edilir. Beta fonksiyonunun g-benzeri:
MOING)
t,s) =——— 3.10
Bt =Tayy G0
olarak tanimlanir. Tanimindan
I, (), (s)
_q q _
ﬁq(t,S) - qu(t_l_s) ﬁq(sit)

Simetri 6zelligi kolayca goriiliir.

(3.9) ve (3.10) ile verilen g-gamma tanimi yerine yazilirsa
t+s.

(0,9 Qo

Bo(t:5) =1 ~q) (@5, 95 Do

bulunur. t > 0 ise g-binom teoreminden,
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(% Do (G5 q)L
(qS; q)oo : (q, q)l

“ (4" q)_
=@- q)z: @ Qo |
i=0

By(t,s) =(1—q)

(3.11)

elde edilir. g-beta fonksiyonunun simetri 6zeligi ve g-binom teoremi kullanarak

i+1
Buts) = (1 - q)z(qlﬂ’z)) 4,5 >0

(3.11) de g™ = t dersek,

B,(6,5) = (1 - )Z((qstc;))l ti

belirli g- integral tanimindan

1

By (t,s) = th_l (1—qgx);tdx st>0
0

g- beta fonksiyonunun integral tanimina ulasilir.(Vulas 2009).
3.9. g-Integralin Geometrik Anlam

g- integralinin geometrik anlami1 asagidaki sekilde gosterildigi gibi sonsuz ¢okluktaki
dikdortgenlerin alanlarinin toplamidir.
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Sekil 3.1.g-integralin Geometrik Anlam1

Sekilden de gortldiigi gibi [a, b] araligin1 sonsuz goklukta araliklara boliinmiistiir.
Bu alanlarin toplami bize - integrali verecektir. Bu durum analizdeki belirli
integralin tanimina benzemektedir. Eger g — 1 i¢in limit alirsak,

lim (1~ q)b; ¢ f(a'b)

ifadesinde dikdortgenlerin genisligi sifira yaklasacak ve bu durum bu limiti Riemann

toplamina yakinsayacaktir. O halde f(x), [a, b] araliginda siirekli ise,

b b
}Ii_r)rijf(x)dqx =ff(x)dx
0 0

olacaktir.
¢ 7 ¢/t
fdgx = | fldgx — [ flx)dgx
o o

= (1 — q) Z qj+kf(qj+k) _ (1 _ q) z qj+k+1]c(qj+k+1)
k=0 k=0

sonug¢ olarak
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¢
f fdyx =0 -q¢ f(¢’)
g/
elde edilecektir. (Yardimc1 2005).

3.10. g-Integral ile Tlgili Baza Onemli Lemma ve Teoremler:

Lemma 3.10.1. f:I =[a.b] € R - Rfonksiyonu I’(I’nin ici) iizerinde bir g-
diferensiyellenebilen fonksiyon olsun. D,, 0 < g < 1 olmak tzere I Uzerinde surekli
ve integrallenebilir ise bu takdirde

_af@+fb) _qb-a)
1+gq  1+4g

1
f(l -1+ Q0D f((1 —t)a+tb)d,t.
0

b
1
mf f(x)dqx

esitligi gecerlidir (Noor et al.2015).

Teorem 3.10.1.f:1 = [a.b] € R —> R fonksiyonu I’(I’nin igi) iizerinde bir g-
diferensiyellenebilen fonksiyon olarak verilsin. D,, 0 <q <1 olmak uzere I
tizerinde siirekli ve integrallenebilir olsun. Eger |Dq f |r,r > 1 olmak tzere konveks
fonksiyon ise bu takdirde

b
1 qf (a) + f(b)
b—aff(x)dqx_ 1+gq

1

q(1+3q% +2¢ v
Dy f )|

A+qg+qH)(A+q)3

D f@| +

<q(b—a) q2+q+q3 = q(1 +4q +q%)
1+q 1+q3 1+q+q¢5)1+q)?

esitsizligi gecerlidir (Noor et al. 2015).

Teorem 3.10.2.f:1 = [a.b] € R —» R fonksiyonu I°(I’nin igi) iizerinde bir g-
diferensiyellenebilen fonksiyon olarak verilsin. D,, 0 <q <1 olmak Uzere I

tizerinde siirekli ve integrallenebilir olsun. Eger |Dq f |r,p,r > 1, %+% = 1 olmak

uzere konveks fonksiyon ise bu takdirde

af@+f(b)
1+q

b
1
P aff(x)dqx

1

q(1+ 3q2 + 2q3) v
D f D)

(1+q+q¢)A+q)3

|qu(a)|r +

_ab-a q2+q+ @)\ [ q+4q9+4q%)
T o 1+g 1+q)? 1+q+q)HA+9q)

esitsizligi gecerlidir (Noor et al. 2015).
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Teorem 3.10.3.f:1 = [a.b] € R > R fonksiyonu I°(I’nin igi) iizerinde bir g-
diferensiyellenebilen fonksiyon olarak verilsin. D,, 0 <q <1 olmak Uzere I

tizerinde siirekli ve integrallenebilir olsun. Eger |Dq f |r,p,r > 1, %+% = 1 olmak

Uzere quasi-konveks fonksiyon ise bu takdirde

af@+f(b)
1+q

b
1
P aff(x)dqx

1

w10, @1 o, r ) )

<q@—a)q0+q+q35q0+q+q%
— 1+4g¢ (1+q)3 (1+q)3

esitsizligi gecerlidir (Noor et al. 2015).

Teorem 3.10.4.f:1 = [a.b] € R —> R fonksiyonu I°(I’nmn igi) iizerinde bir g-
diferensiyellenebilen fonksiyon olarak verilsin. D,, 0 <q <1 olmak Uzere I

tizerinde siirekli ve integrallenebilir olsun. Eger |Dq f |r,r > 1 olmak (zere quasi-
konveks fonksiyon ise bu takdirde

?(b—a)(2+q+q>)
1+t

af@ +f(b)
1+gq

i

<

(sup{|Dyf(@)],|Dyf (b)

b
1
T a f f(x)dgx

esitsizligi gecerlidir (Noor et al. 2015).
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4. ARASTIRMA BULGULARI

Bu boliimde, arastirmada derlenen bulgulara yer verilecektir.

4.1. g-Steffensen’s Esitsizligi
Oncelikle literatiirde Steffensen esitsizligi olarak bilinen esitlik verilmistir.

Teorem4.1.1. f ve gla,b] arahiginda integrallenebilir iki fonksiyon olsun. f

fonksiyonu azalan ve Vx € (a,b),0 < g(x) <1, A = fabg(x)dx olarak verilsin. Bu
takdirde

atd

ff(xjdxsz(x)g(@dxzf F(x)dx
b-A @ a

esitsizligi gecerlidir (Gauchman 2004).

Tanmmm 4.1.1. x € [a,b] ve gx € [a,b] olmak iizere eger f(qx) < f(x)
(f(gx) = f(x)) oluyorsa f (x) g-artandir (q-azalandir).

f(x)’in [a,b] Uzerinde g-artan (g-azalan) olmas: igin gerek ve yeter sart
(D) (%) = 0 (D, f)(x) < 0) olmasidur.

Ayrica, eger f(x)artan (azalan) ise bu durumda f (x) g-artandir (q-azalandur).
Steffensen esitsizliginin q-analog versiyonu asagidaki teoremde ispat edilmistir.

Teorem 4.1.2. 0< g < 1,b>0,n € Z* oldugunu kabul edelim. a = bg™ olmak
Uzere F,G:[a,b] — Rfonksiyonlar1 verilsin ve [a,b] Uzerinde F g-azalan,
0< G <1 olsun. Ayrica k,! € {0,1, ...,n} olmak Uizere [a, b] lizerinde

b
b—clSJG(x)dquck—a, F > 0ise
a
ve

b
ck—aSJG(x)dqub—cl, F < 0ise

a

sartlar1 saglansin. Bu takdirde
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b b Cr

J-F[x] dqxﬂfF(x]G[x]dquJ F(x)d,x. (4.1)

esitsizligi gecerlidir (Gauchman 2004).

Ispat: Yalnizca (4.1) esitsizliginin sol tarafi ve F > 0 durumu igin ispat yapilacaktir.
Diger kisimlarin ispat1 benzer sekilde goriilebilir. Yapilacak olan ispat Steffensen’s
esitsizliginin ispatina oldukg¢a benzer bir yolla elde edilecektir. Teoremin sartlar1 ve
F’nin g-azalan olusu dikkate almirsa j=0,1,..,I —1,icin F(¢) =F [c}-) ve

j=101,..,n—1licin F[cH}-) = F(g,) yazilir.

b b

fy(xjs(xjdqx—fﬂx)dqx
= JEI F[x]G(x]dqx+fF(x]G(xjdqx_fF[xjdqx
:JE:F[x)G[xjdqx—ff'(x)[l_ﬁ(xj]dqx

= J- F(x)G(x)d,x — (1 —q) bz q}'F[c}-) [1 — G[c}.]]
= J- F[x]G[x]dqx —(1- q]bz g'F(c,) [1 — G(c}-]]

- f FEIG(dex — F@)(1- b ) ¢’ +Fe)(1-ab ) a76(c)

= J- F(x)G(x)d x —F(c)(b— ;) + F(c) J G(x)d, x

Z

c

= J-: F(x)G(x)d x — F(c,) f G(x)d,x+ F(c;) f G(x)d,x

Z
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cq b b

- J- F(x)G(x)d,x — F(c;) f G(x)d x — f G(x)d,x

[ a £y

c

= J.: F(x)G(x)d,x — F(c;) j:.: G(x)d x= JEL[F(x] — F(e)]G(x)d x

2

n—Il—-1

=(1-q)g Z a’[F(e+;) —F(e)]6(es;) = 0.

i=o
4.2. g-Griiss’ Esitsizligi ve Uygulamalari
Literattrde iyi bilinen Griss’ esitsizligi su sekilde ifade edilebilir.

Teorem 4.2.1.F ve G fonksiyonlari [a, b] araliginda integrallenebilen iki fonksiyon
olsun. m,M, @, ¢ reel sabitler olmak Uzere Vx € [a, b] icin

m < F(x) =M, ¢ = G(x) = ¢ verilsin. Bu takdirde

b

biJFGfix—ﬁdexfﬂdx i%(M—m)tic;b—q:).

Z

esitsizligigecerlidir (Gauchman 2004).

Teorem  4.2.2(Discrete  Griiss”  Esitsizli§i)u; =0  ve =1 = 0. ve
%,V ) =1,..,n reel saylar olmak (zere x = (20, s X s ¥ = Vg, o V),

u = (uy,..u,)verilsin. m,M, @ ¢ reel sabitler olmak (zere m <x,< M,

@ =y; =¢,j= 1, ..,m,olsun. Bu durumda

E? =1 U;%;V; _ (Ef =1 u}-x}-) (E;! =1 U; ¥V J')

n n n
=1 =1 i=1 %

< (M -m)(p— o).

esitsizligi gecerlidir (Gauchman 2004).

Ispat:T (x, y)asagidaki sekilde verilsin.

T [x’ };r:] _ _;;'!:1 u_;l'x_;l'}r_;l' . (Ef: 1 u_;l'x_;l') (Ef: 1 u_;l'}r_;l')

1 ] )
j=1 Uj =1 U; =1 Uj

Bu durumda,
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2o ux; _ (2?21 u}-x}-)‘

]
=1 u}-

T(x,x) = S
§=1 "7

olacaktir.

Agirlikl kareli-aritmetik ortalama esitsizligi geregi T (x, x) = 0 olmalidir. Cauchy-
Schwarz esitsizliginden T*(x,¥) < T{x,x)T (v, ¥). Gerekli hesaplama yapilirsa

(4]

e = (o o) (B ) LS i,

T
=15 j=1 U5 =1t

oldugu goriiliir. Ayrica

=g Uj g U;

yazilir.

(M—m)
4

Aritmetik-Geometrik ortalama esitsizliginden T (x,x) < veT (v, v) = @

elde edilir. Dahasi

(M —m)*(6 - 0)*

T2(x,y) < T(x,x)T(y,y) < 18

yazilir ki buradan [T (x, x)| < [1f4)(M —-m)(¢p — o).

Teorem 4.2.3.(g-Griiss’ Esitsizligi) m, M, ¢, ¢ reel sabitler olmak lzere Vx € [a, b]
icinm = F(x) =M, ¢ = G(x) = ¢ olarak verilsin. Bu durumda

b

1 1 : 1
TﬂjF(x]E(x]dqx—WJF[x:]dqxfG[x]dqx £E(M—m] (¢ — o).

b

b

= (]

esitsizligi gecerlidir (Gauchman 2004).

g-Griiss’ esitsizliginin bir uygulamasi olarak asagidaki teorem verilmistir.

Teorem 4.2.4. m, M reel sabitler, r negatif olmayan bir tamsay1 ve Vx € [a, b] i¢in
m < [D;“f} (x) =M sartim saglayan f:[a,b] = R fonksiyonu verilsin. Bu

takdirde

b

f Rorr(a,x) = [(Df) () - (Dz£)(a)] &

Z

—qa;*l| _(b-a)?

[r+2]' |~ 4 +1]

(M —m). (4.2)
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esitsizligi gecerlidir (Gauchman 2004).

Ispat: Kabul edelim ki

(b _ I?:x._:]‘l"+:|.
— r+1 — q
bu durumda
(B—gqu) ' =(b—gu)(b—g“x) .. (b— g™ x) < (b—qa)(b—q“a)..(b —g"""a) = (b— qa);"*

olarak yazilir.

Ayrica, m = F(x) = M, 0= G(x) < ((b—qa);™*)/([r + 1]1). dir.

g-Griiss’ esitsizligi yardimiyla,

Bf fmnmm w_l—a]:fmqufr:mdqx

a

rl

oldugu aciktir. Taylor kalan formiilii yardimiyla

b b

J. F(x)G(x)d,x = J. R,.s(ax)dx, (4.4)

il a

b b
f F(x)dqx = f (D57 F)@)dgx = (D5F) () - (D5£)(a) (45)
Gerekli hesaplamalar yapilarak,

b b b

J- G(x)d x= o _: 1]!J-(b — qx];"'ldqx =— o EJ!J D (b— x];”dqx

il @ @

(b — a)7* (4.6)

T +2]'

elde edilir. (4.4)-(4.6) da elde edilen ifadeler (4.3) te yerine yazilirsa,

b

[ Rorslen) -5 (01O - (2N @] S

a2

r+2 r
(b—a); ib—a(b—qa]q“

[r+ 2] 4 [r+ 1]

bulunur.
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Sonug 4.2.1. [a, b] Uzerinde m = [qu][x] = M verilsin. Bu durumda

b—a)?
[(bg—a)f(a) + (b—qa)f(b)]| = b—a) (M —m).

b
1
f R -

esitsizligi gecerlidir (Gauchman 2004).
Ispat. (4.2) esitsizliginde v = 0 alinarak ispat tamamlanur.

4.3. d-Chebyshev’s Esitsizligi ve Uygulamalari
Chebyshev’s esitsizliginin g-analogversiyonu asagidaki teoremde verilmistir.

Teorem 4.3.1. F(x) ve G(x) fonksiyonlar1 [a, b] Uzerinde birlikte g-artan veya g-
azalan fonksiyonlar olsun. Bu takdirde

b b

J-F(x]{?[x]dqxzﬁff'(x]dqxjG(x]dqx (4.7)

@ @

esitsizligi gecerlidir (Gauchman 2004).

Eger fonksiyonlardan biri g-artan digeri q-azalan ise bu durumda (4.7) esitsizligi yon
degistirir.

g-Chebyshev’s esitsizliginin bir uygulamasi agagidaki teoremde ispat edilmistir.

Teorem 4.3.2. (i)D]™*f nin [a, b] lizerinde g-artan oldugunu kabul edelim D] *?f >

0 olsun. Bu durumda

[b _ a];+2

_[[D;+lf) (b) - [D;+1f)[:aj:| A[r +1]!

b

< f R,,.s(ax)dx— [(Df)(0) — (D;f)(@)]

3

(b—qa);™

e G

esitsizligi gecerlidir.
(ii)DZ7 f nin [a, b] Uzerinde g-azalan oldugunu kabul edelim (Dg**f < 0 olsun).
Bu durumda

b

05 [ Ry, s@nax—[(21)®) - (037)(@)]

a

(b—ga)]™
[r+ 2]
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a:]r+;

< (05 F)(@) — (07 ) I} g

(4.10)

esitsizligi gecerlidir (Gauchman 2004).
Ispat. DI™*f nin [a, b] lizerinde g-artan ve

( —I‘.]‘.‘X.' r+1

F) = (077F) @), 6() =5

oldugunu kabul edelim. Bu takdirde g-Chebyshev esitsizligi, F(x) ve G(x)
fonksiyonlar1 [a, b] lizerinde birlikte g-artan olduklar1 kullanilirsa

b b b

fF(x]G(x]dqub—iﬂj F(x]dqxfﬁ[x]dqx (4.11)

@ @ o

yazilir. Gerekli hesaplamalar yapildiginda

b ( _I'-]' ]1"+1

F(x)G(x)d,x = [:D’"“f)(] dx= | R, -(ax)dx, (4.12)
[r+ 1]

@ @ a

b

| Fedgx = [ (05 War = (0;N @ = (03)) - (P3)(@) (413)

il

b

fG(x]dqx = f%%x= - [r-: Bl f D, (b —x]’;*'qux

@ @ o

(b _ ﬂj:+2

1
—_ b — x)TH2|E =
(b =237 =73y

[r+ 2]

(4.14)

elde edilir. (4.12) — (4.14) deki ifadeler (4.11) de yerine yazilirsa

b

[ Rarslanaze < [(051) ) - o) @) 8= -

Lur)

ﬂ-} r+2

+ 2]

bulunur ki

b

[ Bars(anag — [(D1)®) - (057) (@]

o

(b—qa)z™ _
[r+2]t —

elde edilmis olur.
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Teoremin sartlar1 ve Teorem 4.2.4 kullanilarak sol tarafin ispat1 goriiliir. D;“ nin g-

azalan olmas1 durumunda da benzer ispat yapilir.
Teorem 4.3.2 de eger r = 0 alinirsa asagidaki sonug elde edilir.
Sonug 4.3.1.

i) DZf = 0 ise bu durumda
—2[(0.1)B) — (0,1 @] 6 - 2

- 1
< f FO)d, = - (G = Of (@ + (b —af B <0 (415)
ii) DZf < 0 ise bu durumda

0< | Fdx— 15 (ba= f (@ + (b= q@)f (b))

=

[(D,f)(a) = (D, F)(B)](B — a); (4.16)

= | =

Gauchman 2004 yilindaki ¢alismasinda g-konvekslikle iliskili asagidaki esitsizligi
elde etmistir.

f(x) fonksiyonu [a,b] Uzerinde g-konveks olsun ve F(x) = (D f)(x),
G(x) =x— a verilsin. Bu durumda F(x) ve G(x) fonksiyonlar1 g-artandir. Q-
Chebyshev’s esitsizligi yardimiyla,

f[x — a][qu)[x] d,x = 5 i af[ﬂqf)[x]dqxf[x —a)d,x (4.17)

yazilir. Kismi integrasyon uygulanarak

b

J.[:x —a) [qu) (x)dyx=(b—a)f(b) — J. flgx)d x (4.18)
bulunur. Ayrica

b

f(ﬂqf)(xj dyx = f(b) — f(a) (4.19)

(ird

60



ve

J[x —a)d x Ex — aj‘? B = “?1::3 (4.20)

elde edilir.

(4.18)-(4.20) ifadeleri (4.17) de yerine yazilir, eger f(x) g-convex ise bu durumda

j Flg)d,x < %q [(b— qa)f(a) + (qb — @) F(b)] (421)

esitsizligi gecerlidir (Gauchman 2004).
4.4. g- Hermite- Hadamard Esitsizligi

f(x) fonksiyonu [a, b] Uzerinde konveks olmak tzere

f(a_l-b)ibiaff[xjdxﬂw (422)

2

esitsizligi literatiirde Hermite-Hadamard esitsizligi olarak bilinir.
Teorem 4.4.1.9- Hermite- Hadamard Esitsizligi

i) f fonksiyonu g-konveks ve monoton olsun. Ayrica f fonksiyonu g-azalan iken
¢, = (ag +b)/(1+q), ve f fonksiyonu g-artan iken ise ¢, = (ag +5b)/(1+q),
olarak verilsin. Bu takdirde

Fle - 22 jf(){

b
1

— an- flx)d,x (4.23)
esitsizligi gecerlidir.

(it)f fonksiyonu g-konveks ve monoton olsun. Ayrica f fonksiyonu g-azalan iken
¢, = (ag + b)/(1+q), ve f fonksiyonu g-artan iken ise ¢, < (ag +b)/(1 +q),
olarak verilsin. Bu takdirde

fled S5 | Flax)dyx (429)

esitsizligi gecerlidir.
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(iti)f fonksiyonu g-konveks ise bu durumda

| f@) dox £ o 1ba - (@) + (b - q)f B)] (425)
q

| flan) dox < (b - q@)f (@) + (ab— )F )] (+26)
i

J’f(.’x] -;f(qx] d x< f(aj +f(bj (4_2?]

@ - 2

esitsizligi gecerlidir (Gauchman 2004).

Teorem 4.42. f:1 =[a.b] € R— R fonksiyonu I'(I’min igi) iizerinde bir g-
diferensiyellenebilen fonksiyon olarak verilsin. D,, 0 <q <1 olmak Uzere I

tizerinde siirekli ve integrallenebilir olsun. Eger |Dq f |T,r >1 olmak uzere m-
konveks fonksiyon ise bu takdirde

L[ af(@)+fB)
e FCLE

rl

i
T

oy

Ta+qrgda+gr |qu (m,]

i
glb—a)fql2+q+ ‘i‘!:'x)l T g(l+4g+g7) D.f( q(1+3q°+ 2%
T l+g (1+g)° (1+g+g1+q) J@

esitsizligi gecerlidir.

ispat. | D, f| fonksiyonunun konveksligi, Lemma 3.10.1 ve Power-Mean esitsizligi
kullanilarak,
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i

qb —a) (q(2 + g +47)
1+g ( A + ) ) (fll—{l+q]t|[{1—ﬂlﬂqf{a]| +mt|qu(

I ., . L

gib—a) fgi2+g+q7)\ 7 g(1+4g+g7) g{l+3g°+ 2gq7) | b\

T 1+g ( 1+q)° ) ([1+ﬁ'+ﬁ' 1+ q)° D""f{u [1+q+q:][1+ q]!m DJ(E] )
elde edilir.

Teorem 4.43.f:1 =[a.b] c R—> R fonksiyonu I’(I’nin igi) iizerinde bir g-
diferensiyellenebilen fonksiyon olarak verilsin. D,, 0 <q <1 olmak uzere I

tizerinde siirekli ve integrallenebilir olsun. Eger |Dq f |r,p,r > 1, %+% =1 olmak
uzere m-konveks fonksiyon ise bu takdirde

B
F@+fe) 1 free
| 1+g b-a f)dgx
a
L . 1
gib—a) (qg(2+qg+qg2)? g(l+4g+g7) r g(1+3g*+2q% | By T
T 1+gq ( 1+q)° )(I:l+ﬁ‘+ﬁ‘ 11 +q)° Def (a) [1+q+q:j[1+qj!m D""f(m, )

esitsizligi gecerlidir.

ispat.|Dq f |rf0nksiy0nunun konveksligi, Lemma 3.10.1 ve Holder esitsizligi

kullanilarak,
qf(i}:qf(b} jf‘: Yagx q(b a) j(i—(1+q}t}ﬂqf{{1—t}a+tb:}d t
= q(b_ jj(l— E1+q]t]1" 1- [1+q]t]r£= JS((A—ta+th)d,t

1

B r
q{b_ﬂ} j|1 (1+q)tld :) jli—(1+q}t||qu{(1—t}a+tb}| d :)

L

e

|
qlb —a) (g2 + g+ g N\F r b
Tt q ( ST ](!ll—{l+q]t|[{1—t]|ﬂqf{a:]| +mt|ﬂqf(a

ispat tamamlanir.
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5.TARTISMA ve SONUC

Bu calismada kuantum integral ve tiirevlerle ilgili temel tanim ve teoremler
verilmistir. Ayrica kuantum hesabin konvekslik kavrami ile iliskisi incelenerek
kuantum integraller igeren bazi esitsizlikler ele alinmistir.

Konuyla ilgilenen aragtirmacilar Lemma 3.10.1 e benzer integral 6zdeslikleri elde
ederek farkli tiirden konveks fonksiyon siniflari i¢in yeni integral esitsizlikler elde

edebilir.
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