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ÖZET 

Yüksek Lisans Tezi 

 

                  KONVEKS FONKSĠYON SINIFLARI ĠÇĠN 

                  q-ĠNTEGRAL ĠÇEREN EġĠTSĠZLĠKLER 

 

Sinan ASLAN 

 

Ağrı İbrahim Çeçen Üniversitesi 

Fen Bilimleri Enstitüsü 

Matematik Anabilim Dalı 

 

Danışman: Doç. Dr. Ahmet Ocak AKDEMİR 

 

 

Konveks fonksiyonlar ve eşitsizlik teori birbiriyle yakından ilişkili iki konu olup 

birçok araştırmacının ilgisini çekmiş ve çok sayıda çalışma ortaya konmuştur. 

Özellikle konveks fonksiyonlar için integral eşitsizlikleri oldukça yoğun olarak 

irdelenmiş ve konveks fonksiyonların ortalama değerine ilişkin sınır bulma problemi 

ile ilgilenilmiştir. Bu konularda yapılan çalışmalarda Caputo türevi, Riemann-

Liouville integralleri, uyumlu kesirli türevler ve k-lokal kesirli integraller gibi farklı 

türev ve integral operatörleri de kullanılmıştır.  

Bu tez çalışmasında öncelikle konvekslik kavramı ve konvekslik türleri üzerinde 

genel bir inceleme yapılmıştır. Ardından kuantum hesabın analizine yer verilmiş ve 

q-türev, q-integral ile bu kavramların özellikleri üzerinde durulmuştur.  

Ardından konveks fonksiyon sınıfları üzerine q-integraller içeren bazı eşitsizlikler ve 

sonuçlara değinilmiştir. Son olarak ise q-integraller için Steffensen eşitsizliği, Grüss 

eşitsizliği, Chebysev eşitsizliği ve Ostrowski eşitsizliği gibi klasik integral 

eşitsizliklerine yer verilmiştir. Ayrıca m-konveks fonksiyonlar için q-integraller 

yardımıyla iki yeni integral eşitsizliği elde edilmiştir.  

 

2017, 68 sayfa 

 

Anahtar Kelimeler: q-türev, q-integral, kuantum kalkülüs, konveks fonksiyon, 

integral eşitsizlikler.   
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ABSTRACT 
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                INEQUALITIES INVOLVING q-INTEGRALS 

          FOR CONVEX FUNCTION CLASSES 

 

Sinan ASLAN 

 

Ağrı İbrahim Çeçen University 

Graduate School of Natural and Applied Sciences 

Department of Mathematics 

 

Supervisor: Assoc. Prof. Dr. Ahmet Ocak AKDEMİR 

 

 

Convex functions and inequality theory are two fields that has a close relationship, 

they have been attracted attentşon of many researchers and several studies have been 

presented. Especially, integral inequalities for convex functions have been dealed 

intensively and interested with the problem of finding bounds related to mean value 

of convex functions. In these studies that have been presented in this field, different 

derivative and integral operators such as Caputo derivative, Riemann-Liouville 

integrals, conformable fractional derivatives and k-local fractional derivatives have 

been used.  

 

In this thesis, firstly a general investigation has been performaed on the concept of 

convexity and the kinds of convexity. Later, analysis of quantum calculus have been 

presented and emphasized on q-derivative, q-integral and properties of them.  

After, it is referred to inequalities and results that include q-integrals on the classes of 

convex functions. Finally, classical integral inequalities such as Steffensen 

inequality, Grüss inequality, Chebysev inequality and Ostrowski inequality have 

been given. Besides, two new integral inequalities for m-convex functions have been 

obtained via q-integrals.   

2017, 68 pages 

Keywords: q-derivative, q-integral,  quantum calculus, convex function, integral 

inequalities.  
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1. GĠRĠġ 

Konvekslik kavramı ilk olarak Hermite tarafından Ekim 1881’de elde edilen bir 

sonucun, 1883 yılında Mathesis adlı dergide yayınlanmasıyla ortaya çıkmıştır. 

Hadamard’ın 1893 yılındaki çalışmasında konveksliğe rastlansa da konveks 

fonksiyonların sistematik olarak çalışılması 1905-1906 yıllarında Jensen ile başlar. 

Konveksliği ortaya koyan bu ilk çalışmaların ardından günümüze kadar konvekslik 

kavramı matematiksel analizde önemli bir yere sahip olmakla birlikte birçok yeni 

konuyla ilişkilendirilmiştir.  

Konveksliğin tanımı eşitsizlikle ifade edildiğinden ve eşitsizlik teoriesasen nicelikler 

arasında karşılaştırma üzerine çalışmaları konu edindiğinden Konveks Fonksiyonlar 

Teorisinde eşitsizliklerin önemli bir yeri vardır. Hardy, Littlewood, Pόlya, 

Beckenbach, Bellman, Mitrinović, Pachpatte, Pečarić ve Fink gibi matematikçiler 

Konveks Fonksiyonlar ile Eşitsizlikler Teorisi’ni bir arada inceleyerek bu iki konu 

arasındaki ilişkileri inşa eden ve geliştiren birçok makale yayınlamışlardır. Konveks 

fonksiyonları ihtiva eden eşitsizlikleri konu alan ilk temel çalışma 1934’te Hardy, 

Littlewood ve Pόlya tarafından yazılan “Inequalities” adlı kitaptır (Hardyet al. 1952). 

Diğer bir kayda değer çalışma ise E.F. Beckenbach ve R. Bellman tarafından 

1961’de yazılan 1934-1960 yılları arasında elde edilen bu konularda elde edilmiş 

eşitsizlikler içeren ve yine “Inequalities” adı verilen kitaptır (Beckenbach and 

Bellman 1961). Mitrinović’in 1970 yılında yayınladığı ve o zamana kadar ele 

alınmamış konulara değindiği “Analytic Inequalities”  isimli kitapta eşitsizlik teoride 

temel kaynaklardan biri olmuştur (Mitrinović 1970). 

Konveks Fonksiyonlar Teorisi ile ilişkili olan temel eşitsizliklerden en önemlileri 

1881 yılında Hermite tarafından elde edilen Hermite-Hadamard eşitsizliği ve 1938 

yılında Ostrowski tarafından elde edilen Ostrowski eşitsizliğidir. Hermite-Hadamard 

eşitsizliği ile ilgili çalışmaların büyük bir kısmı Dragomir ve Pearce tarafından 2000 

yılında yazılmış olan “Selected Topics on Hermite-Hadamard Inequalities and 

Applications” isimli kaynakta bir araya getirilmiştir (Dragomir and Pearce 2000). 
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Eşitsizlik teori ve konveks fonksiyonlar üzerine çalışmalar yürüten ve yeni birçok 

tanım ve teorem ortaya koyan diğer bilim insanları Özdemir, Kırmacı, Agarval, 

Anastassiou, Milovanovic, Fink, Roberts, Varberg, Barnett, Yıldırım, Sarıkaya, 

Ujević, Varošanec, Bullen, Cerone, Toader, Alomari, Qi, Pearce, Darus, Bakula, 

Pečarić, Set, Akdemir, Kavurmacı-Önalan, Avcı-Ardıç, Gürbüz, Ekinci ve İşcan 

şeklinde sıralanabilir. 

Set tarafından hazırlanan “Bazı Farklı Türden Konveks Fonksiyonlar İçin İntegral 

Eşitsizlikleri” başlıklı doktora tezinde  konveks ve  konveks 

fonksiyonlar ile birlikte farklı türden  konveks ve  konveks fonksiyonlar 

için Hermite-Hadamard tipli ve diğer bazı farklı türden konveks fonksiyonlar olan 

konveks, konveks, konveks, konveks, konveks, 

konveks ve konveks fonksiyonlar için yeni integral eşitsizlikleri verilmiştir. 

Bunların yanı sıra bazı genelleştirmeler de elde edilmiştir (Set 2010). 

Alomari’nin “Several Inequalities of Hermite-Hadamard, Ostrowski and Simpson 

Type for Convex, Convex and Convex Mappings and Applications” 

başlıklı doktora tezinde konveks, konveks ve  konveks fonksiyon 

sınıfları kullanılarak Hermite-Hadamard, Ostrowski ve Simpson tipli integral 

eşitsizlikleri elde edilmiştir ve bu eşitsizlikler için uygulamalar verilmiştir (Alomari 

2011). 

Kavurmacı-Önalan’ın “Bazı Farklı Türden Konveks Fonksiyonlar İçin Ostrowski ve 

Hermite-Hadamard Tipli İntegral Eşitsizlikler” başlıklı doktora tezinde farklı türden 

konveks fonksiyon sınıfları kullanılarak yeni baskın konveks fonksiyon kavramları 

tanımlanmış, bu yeni fonksiyon sınıfları için Hermite-Hadamard tipli integral 

eşitsizlikleri edilmiştir. Konveks fonksiyonlar için Hermite-Hadamard tipli; konveks 

ve konveks fonksiyonlar için Ostrowski tipli yeni integral eşitsizlikleri elde edilmiştir 

ve elde edilen bazı eşitsizlikler için uygulamalar verilmiştir (Kavurmacı 2012). 
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Konveks fonksiyonlar üzerine yapılan çalışmalarda temel olarak fonksiyon sınıfının 

özellikleri, diferansiyel ve integral hesabın bilinen özellikleri, ortalama fonksiyonu 

ve çeşitli klasik eşitsizlikler kullanılmıştır. Kimi çalışmalarda fonksiyonun 

tanımlandığı uzay değişkenlik göstermiş olup kimi çalışmalarda ise kullanılan 

matematiksel analiz işlemleri farklılık arz etmiştir. Temel felsefe olarak her yeni 

çalışmada sınırlarda iyileştirme, eşitsizliği genelleştirme, yeni bir tipten eşitsizlik 

elde etme ve bu eşitsizlikleri farklı fonksiyonel uzaylarda takdim etme 

benimsenmiştir.  

Konvekslik üzerine ilk çalışmalar reel sayıların alt aralıklarında yapılmış, ardından 

bu eşitsizlikler koordinatlarda konvekslik kavramı ile birlikte ℝ𝑛  uzayına taşınmıştır. 

Başta Dragomir olmak üzere bazı diğer araştırmacılar izotonik lineer fonksiyonel 

uzayında, normlu uzaylarda, Hilbert uzaylarda, Banach uzaylarda ve fraktal 

uzaylarda eşitsizlik çalışmaları yaparak konuyu genişletmişlerdir.  

Bazı araştırmacılar ise klasik türev ve integral için elde edilmiş sonuçları Caputo 

türev, Riemann-Liouville kesirli integraller, uyumlu kesirli integraller, k-lokal kesirli 

integraller kullanarak genelleştirmiş ve konuya yeni bir boyut kazandırmışlardır. 

Bu yeni boyutlardan biri de kuantum hesap yardımıyla elde edilmiş integral 

eşitsizlikler ve konveksliğin kuantum hesapta kullanılmasıdır. Kuantum hesap en 

genel ifadeyle limit kullanmaksızın elde edilen hesap olarak bilinir. Klasik türevden 

sadece diferansiyellenemeyen fonksiyonların kümesinde türev almayı sağlayan bir 

operatör farkıyla ayrılır. Kuantum diferansiyel operatörü ortogonal polinomlar, temel 

hipergeometrik fonksiyonlar, varyasyon analizi, mekanik ve görelilik teorisi gibi 

matematiğin ve fiziğin birçok alanındaki uygulamaları ile ilginç bir role sahiptir. Son 

yıllarda birçok araştırmacının dikkatini çeken ve üzerine çalışmalar yapılan q-

kalkülüs için türev, integral ve bu kavramların temel özellikleri inşa edilmiştir. 

Ayrıca, Hölder, Hermite-Hadamard, Trapezoid, Ostrowski, Cauchy-Bunyakovsky-

Schwarz, Grüss and Grüss-Čebyšev ve Steffensen eşitsizliği gibi birçok eşitsizlik q-

integraller iççin takdim edilmiştir. Bunun yanısıra q-değişken operatörü yardımıyla 

kesirli kuantum hesap kavramı da tanımlanmış ve bazı özellikleri ispat edilmiştir.  
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Bu yeni yapılan tanımların uygulamaları olarak, kesirli q-diferansiyel denklemler 

için birinci ve ikinci mertebeden başlangıç değer problemlerinin varlık ve tekliğiyle 

ilgili sonuçlar verilmiştir. Konuyla ilgili olarak Tariboon et al.,Jackson, Al-Salam, 

Agarwal, Ernst, Sudsutad et al., Ferreira, Annaby and Mansour, Bangerezako, Graef 

and Kong, Ahmad et al., Tariboon and Ntouyas, Noor  et al., Taf et al., Anastassiou, 

Pachpatte, Pólya ve Szegö gibi bilim insanlarının çalışmaları incelenebilir.  
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2.KURAMSAL TEMELLER 

2.1. Konveks Fonksiyonlarla Ġlgili Temel Tanım ve Özellikler 

Bu çalışmada kullanılacak bazı temel tanımlar aşağıda verilmiştir. 

Tanım 2.1.1. “Konveks Küme”: “𝐿 bir lineer uzay 𝐴 ⊆ 𝐿 ve 𝑥, 𝑦 ∈ 𝐴 keyfi olmak 

üzere 

𝐵 =  𝑧 ∈ 𝐿: 𝑧 = 𝑡𝑥 +  1 − 𝑡 𝑦, 0 ≤ 𝑡 ≤ 1 ⊆ 𝐴 

İse 𝐴 kümesine konveks küme denir. Eğer 𝑧 ∈ 𝐵 ise 𝑧 = 𝑡𝑥 +  1 − 𝑡 𝑦 eşitliğindeki 

𝑥 ve 𝑦’nin katsayıları için 𝑡 +  1 − 𝑡 = 1 bağıntısı her zaman doğrudur. Bu sebeple 

konveks küme tanımındaki 𝑡, 1 − 𝑡yerine  𝑡 + 𝑘 = 1 şartını sağlayan ve negatif 

olmayan 𝑡, 𝑘  reel sayıları alınabilir. Geometrik olarak 𝐵 kümesi uç noktaları 𝑥 ve 𝑦 

olan bir doğru parçasıdır. Bu durumda sezgisel olarak konveks küme, boş olmayan 

ve herhangi iki noktasını birleştiren doğru parçasını ihtiva eden kümedir” (Bayraktar 

2000). 

 

 

 

 

 

ġekil 2.1. Konveks küme 

  

x 
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ġekil 2.2. Konveks olmayan küme 

Tanım 2.1.2.(𝑱 −Konveks Fonksiyon) “𝐼, ℝ’de bir aralık olmak üzere her 𝑥, 𝑦 ∈ 𝐼 

için 

𝑓  
𝑥 + 𝑦

2
 ≤

𝑓 𝑥 + 𝑓(𝑦)

2
 

şartını sağlayan 𝑓 fonksiyonuna 𝐼 üzerinde Jensen anlamında konveks veya 

𝐽 −konveks fonksiyon denir” (Mitrinović 1970). 

Tanım 2.1.3. (Kesin 𝑱 −Konveks Fonksiyon)“Her 𝑥, 𝑦 ∈ 𝐼 ve  𝑥 ≠ 𝑦 için 

𝑓  
𝑥 + 𝑦

2
 <

𝑓 𝑥 + 𝑓(𝑦)

2
 

oluyorsa 𝑓 fonksiyonuna 𝐼 üzerinde kesin 𝐽 −konveks fonksiyon denir” (Mitrinović 

1970). 

Tanım 2.1.4. (Konveks Fonksiyon): “𝐼, ℝ’de bir aralık ve 𝑓: 𝐼 → ℝ bir fonksiyon 

olmak üzere her 𝑥, 𝑦 ∈ 𝐼 ve 𝛼 ∈  0,1   için, 

𝑓 𝛼𝑥 +  1 − 𝛼 𝑦 ≤ 𝛼𝑓 𝑥 +  1 − 𝛼 𝑓(𝑦) 

x 

y 
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şartını sağlayan 𝑓 fonksiyonuna konveks fonksiyon denir” (Pečarić et al. 1992). 

Eğer 𝛼 ∈ (0,1) aralığında alınırsa bu durumda 

𝑓 𝛼𝑥 +  1 − 𝑡 𝑦 < 𝛼𝑓 𝑥 +  1 − 𝛼 𝑓(𝑦) 

olur. Bu 𝑓 fonksiyonuna da strictly konveks fonksiyon denir.“−𝑓” konveks (strictly 

konveks) ise o zaman 𝑓’ ye konkav (strictly konkav) denir. 

Konveks fonksiyonun geometrik anlamı aşağıdaki gibidir: 

 

ġekil 2.3. Konveks fonksiyon 

Geometrik olarak 𝑡𝑎 + (1 − 𝑡)𝑏 noktasında; 𝑓’nin eğri üzerinde aldığı değer 

(𝑎, 𝑓(𝑎)) ve (𝑏, 𝑓 𝑏 ) noktalarını birleştiren doğru parçasının üzerinde aldığı 
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değerden her zaman daha küçüktür, yani bu iki noktayı birleştiren kiriş (doğru 

parçası)  her zaman eğrinin [𝑎, 𝑏] aralığında kalan kısmının üzerinde veya 

üstündedir. 

Şekil 2.3’ den de görüldüğü gibi  0,1t  olduğundan 𝑡𝑓(𝑎) ≤ 𝑓(𝑎) dir. Benzer 

şekilde  1 − 𝑡 𝑓(𝑏) ≤ 𝑓(𝑏) dir. Yani 𝑡𝑓(𝑎),  𝑓(𝑎)’nın   1 − 𝑡 𝑓(𝑏) de 𝑓(𝑏)’nin 

altındadır. 

Dolayısıyla 𝑡𝑓 𝑎 +  1 − 𝑡 𝑓(𝑏), 𝑓(𝑎)ile 𝑓(𝑏) arasında olur. Konkav fonksiyon için 

kiriş 𝑓’ nin grafiğinin [𝑎, 𝑏] aralığında kalan kısmının üzerinde veya altındadır. 

Teorem 2.1.1. (Üçgen EĢitsizliği):“Herhangi bir 𝑥, 𝑦 reel sayıları için 

 𝑥 + 𝑦 ≤  𝑥 +  𝑦 , 

  𝑥 −  𝑦  ≤  𝑥 − 𝑦 , 

  𝑥 −  𝑦  ≤  𝑥 + 𝑦 , 

ve tümevarım metoduyla 

 𝑥1 + ⋯ + 𝑥𝑛  ≤  𝑥1 + ⋯ +  𝑥𝑛   

eşitsizlikleri geçerlidir” (Mitrinović et al. 1993). 

Teorem 2.1.2. (Üçgen EĢitsizliğinin Ġntegral Versiyonu):“𝑓,  𝑎, 𝑏  aralığında 

sürekli reel değerli bir fonksiyon olsun. Bu taktirde 

  𝑓 𝑥 𝑑𝑥
𝑏

𝑎

 ≤   𝑓(𝑥) 𝑑𝑥
𝑏

𝑎

             (𝑎 < 𝑏) 

eşitsizliği geçerlidir” (Mitrinović et al. 1993). 
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Örnek 2.1.1. 𝑓: 𝐼 ⊂ ℝ → ℝ, 𝑓 𝑥 =  𝑥  fonksiyonu 𝐼 üzerinde konveks 

fonksiyondur. 

Çözüm: 𝑓’nin konveks olduğunu göstermek için 𝑥, 𝑦 ∈ 𝐼 ve 𝛼 ∈ [0,1] için 

𝑓 𝛼𝑥 +  1 − 𝛼 𝑦 ≤ 𝛼𝑓 𝑥 +  1 − 𝛼 𝑓(𝑦) 

olduğunu göstermeliyiz. Buna göre 

𝑓 𝛼𝑥 +  1 − 𝛼 𝑦 =  𝛼𝑥 +  1 − 𝛼 𝑦  

≤  𝛼𝑥 +   1 − 𝛼 𝑦    (üçgen eşitsizliğinden) 

= 𝛼 𝑥 +  1 − 𝛼  𝑦  

= 𝛼𝑓 𝑥 +  1 − 𝛼 𝑓(𝑦) 

elde edilir. İlk ve son ifadeden 𝑓 fonksiyonunun konveksliği ispatlanmış olur 

𝑓 𝑥 =  𝑥  fonksiyonu 𝑥 = 0da türeve sahip olmamasına rağmen konveks 

fonksiyondur. 

 

 

 

 

 

 

 

ġekil 2.4.Aralık üzerinde konveks fonksiyon 

Sonuç 2.1.1.“𝑥, 𝑦 ∈ ℝ ve 𝑝 + 𝑞 > 0 olmak üzere 

x 

y 

y 
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𝑓  
𝑝𝑥 + 𝑞𝑦

𝑝 + 𝑞
 ≤

𝑝𝑓 𝑥 + 𝑞𝑓(𝑦)

𝑝 + 𝑞
 

eşitsizliği (2.1) eşitsizliğine denktir” (Mitrinović et al. 1993). 

Teorem 2.1.3. (Hölder EĢitsizliği):“𝑎 =  𝑎1, … , 𝑎𝑛  ve 𝑏 =  𝑏1, … , 𝑏𝑛  reel veya 

kompleks sayıların iki 𝑛 −lisi olsun. Bu taktirde 

1

𝑝
+

1

𝑞
= 1 

olmak üzere 

(a)𝑝 > 1 ise, 

 𝑎𝑘𝑏𝑘 ≤    𝑎𝑘  𝑝
𝑛

𝑘=1

 

1

𝑝

   𝑏𝑘  𝑞
𝑛

𝑘=1

 

1

𝑞𝑛

𝑘=1

, 

(b)𝑝 < 0 veya 𝑞 < 0 ise, 

 𝑎𝑘𝑏𝑘 ≥    𝑎𝑘  𝑝
𝑛

𝑘=1

 

1

𝑝

   𝑏𝑘  𝑞
𝑛

𝑘=1

 

1

𝑞𝑛

𝑘=1

 

eşitsizlikleri geçerlidir” (Mitrinović 1970). 

Teorem 2.1.4. (Ġntegraller için Hölder EĢitsizliği):“𝑝 > 1 ve 
1

𝑝
+

1

𝑞
= 1 olsun. 𝑓 ve 

𝑔,   𝑎, 𝑏  aralığında tanımlı ve integrallenebilen iki fonksiyon olsun. 𝑓 𝑝  ve  𝑔 𝑞 , 

 𝑎, 𝑏  aralığında integrallenebilen fonksiyonlar ise 
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  𝑓 𝑥 𝑔 𝑥  
𝑏

𝑎

𝑑𝑥 ≤    𝑓(𝑥) 𝑝𝑑𝑥
𝑏

𝑎

 

1

𝑝

   𝑔(𝑥) 𝑞𝑑𝑥
𝑏

𝑎

 

1

𝑞

 

eşitsizliği geçerlidir” (Mitrinović et al. 1993) 

Tanım 2.1.5. (Süreklilik):“𝑓: 𝑆 ⊆ ℝ → ℝ, 𝑥0 ∈ 𝑆 ve 𝜀 > 0 verilmiş olsun. 𝑥 ∈ 𝑆 ve 

 𝑥 − 𝑥0 < 𝛿  için  𝑓 𝑥 − 𝑓 𝑥0  < 𝜀  olacak şekilde bir 𝛿 > 0 sayısı varsa 𝑓, 𝑥0’da 

süreklidir denir” (Bayraktar 2010). 

Tanım 2.1.6. (Düzgün Süreklilik):“𝑓: 𝑆 ⊆ ℝ → ℝ fonksiyonu ve 𝜀 > 0 sayısı 

verilmiş olsun.  𝑥1 − 𝑥2 < 𝛿 şartını sağlayan her 𝑥1, 𝑥2 ∈ 𝑆 için  𝑓 𝑥1 − 𝑓 𝑥2  <

𝜀 olacak şekilde bir 𝛿 > 0 sayısı varsa 𝑓, 𝑆’de düzgün süreklidir denir” (Bayraktar 

2010). 

Tanım 2.1.7. (Lipschitz ġartı):“ 𝑓: 𝑆 ⊆ ℝ → ℝ  fonksiyonu için 

 𝑓 𝑥 − 𝑓 𝑦  ≤ 𝑀 𝑥 − 𝑦  

olacak şekilde bir 𝑀 > 0 sayısı varsa 𝑓,    𝑆’de Lipschitz şartını sağlıyor denir” 

(Bayraktar 2010). 

Sonuç 2.1.2.“𝑓, 𝑆’de Lipschitz şartını sağlıyorsa 𝑓, 𝑆’de düzgün süreklidir” 

(Bayraktar 2010). 

Teorem 2.1.5.“ 𝑎, 𝑏 ⊆ 𝐼∘olsun. Eğer 𝑓: 𝐼 → ℝ  konveks bir fonksiyon ise 

𝑓  Lipschitz şartını sağlar. Sonuç olarak  𝑓,  𝑎, 𝑏  aralığında mutlak sürekli ve 𝐼∘’de 

süreklidir”(Pečarić et al. 1992). 

Teorem 2.1.6.“𝑓 fonksiyonu [𝑎, 𝑏] aralığında konveks ise 
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a. 𝑓, (𝑎, 𝑏) aralığında süreklidir ve 

b. 𝑓, [𝑎, 𝑏] aralığında sınırlıdır” (Azpeitia 1994). 

Tanım 2.1.8. (Artan ve Azalan Fonksiyonlar):“𝑓, 𝐼 aralığında tanımlı bir 

fonksiyon ve 𝑥1, 𝑥2 de 𝐼’da iki nokta olsun. Bu durumda 

(a)𝑥2 > 𝑥1 iken  𝑓 𝑥2 > 𝑓 𝑥1  ise 𝑓 fonksiyonu 𝐼 üzerinde artandır, 

(b)𝑥2 > 𝑥1 iken  𝑓 𝑥2 < 𝑓 𝑥1  ise 𝑓 fonksiyonu 𝐼 üzerinde azalandır, 

(c)𝑥2 > 𝑥1 iken  𝑓 𝑥2 ≥ 𝑓 𝑥1  ise 𝑓 fonksiyonu 𝐼 üzerinde azalmayandır, 

(d)𝑥2 > 𝑥1 iken  𝑓 𝑥2 ≤ 𝑓 𝑥1  ise 𝑓 fonksiyonu 𝐼 üzerinde artmayandır 

denir” (Adams and Essex 2010). 

Teorem 2.1.7.“𝐽 açık bir aralık ve 𝐽 ⊆ 𝐼 olmak üzere 𝑓, 𝐼 üzerinde sürekli ve 𝐽 

üzerinde diferensiyellenebilir bir fonksiyon olsun. Bu durumda 

(a) Her 𝑥 ∈ 𝐽 için 𝑓 ′ 𝑥 > 0 ise𝑓 fonksiyonu 𝐼 üzerinde artandır. 

(b) Her 𝑥 ∈ 𝐽 için 𝑓 ′ 𝑥 < 0 ise𝑓 fonksiyonu 𝐼 üzerinde azalandır. 

(c) Her 𝑥 ∈ 𝐽 için 𝑓 ′ 𝑥 ≥ 0 ise𝑓 fonksiyonu 𝐼 üzerinde azalmayandır. 

(d)Her 𝑥 ∈ 𝐽 için 𝑓 ′ 𝑥 ≤ 0 ise𝑓 fonksiyonu 𝐼 üzerinde artmayandır”(Adams and 

Essex 2010). 

Aşağıda konveks fonksiyonların türevleri ile artanlık (azalanlık) arasındaki ilişkiyi 

içeren sonuç ve teoremler verilmiştir. 

Sonuç 2.1.3.“𝑓, 𝑔 konveks fonsiyonlar ve 𝑔 aynı zamanda artan ise 𝑔 ∘ 𝑓 fonksiyonu 

konvekstir” (Roberts and Varberg 1973). 

Teorem 2.1.8. “Eğer 𝑓: 𝐼 → ℝ konveks (kesin konveks) bir fonksiyon ise 𝑓+
′  𝑥  ve 

𝑓−
′ 𝑥  var ve bu fonksiyonlar  𝐼°’de artandır (kesin artandır)”(Pečarić et al. 1992). 
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Teorem 2.1.9.“𝑓 fonksiyonu  𝑎, 𝑏  aralığında diferensiyellenebilir bir fonksiyon 

olsun. Bu durumda 𝑓 fonksiyonunun konveks olması için gerek ve yeter şart 𝑓 ′ ’nin 

artan (kesin artan) olmasıdır”(Pečarić et al. 1992). 

Teorem 2.1.10.“𝑓 fonksiyonunun 𝐼 açık aralığında ikinci türevi varsa, 𝑓 

fonksiyonunun bu aralık üzerinde konveks (kesin konveks) olması için gerek ve yeter 

şart 𝑥 ∈ 𝐼 için 

𝑓 ′′  𝑥 ≥ (>)0 

olmasıdır” (Pečarić et al. 1992) 
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2.2. Farklı Türden Bazı Konveks Fonksiyon Sınıfları 

Çeşitli konveks fonksiyon türleri vardır. Bunlardan en çok bilinen ve literatürde bu 

konuda çalışanlar tarafından sık kullanılan konveks fonksiyon türleri şunlardır: 

Tanım 2.2.1. (Quasi-Konveks Fonksiyon):“𝑆 ⊂ ℝ𝑛  boştan farklı bir küme 

ve 𝑓: 𝑆 → ℝ bir fonksiyon olsun.∀𝑥, 𝑦 ∈ 𝑆 ve 𝛼 ∈  0,1  için 

𝑓(𝛼𝑥 + (1 − 𝛼)𝑦) ≤ 𝑚𝑎𝑥 𝑓 𝑥 , 𝑓(𝑦)  

ise  𝑓’ye 𝑞𝑢𝑎𝑠𝑖 −konveks fonksiyon denir” (Dragomir and Pearce 1998). 

Eğer 

𝑓 𝛼𝑥 +  1 − 𝛼 𝑦 < 𝑚𝑎𝑥 𝑓 𝑥 , 𝑓(𝑦)  

ise𝑓’ye strictly 𝑞𝑢𝑎𝑠𝑖 −konveks fonksiyon denir. Aynı şartlar altında 

𝑓(𝛼𝑥 + (1 − 𝛼)𝑦) ≥ 𝑚𝑎𝑥 𝑓 𝑥 , 𝑓(𝑦)  

ise𝑓’ye 𝑞𝑢𝑎𝑠𝑖 −konkav fonksiyon ve 

𝑓 𝛼𝑥 +  1 − 𝛼 𝑦 > 𝑚𝑎𝑥 𝑓 𝑥 , 𝑓(𝑦)  

ise𝑓’ye strictly-𝑞𝑢𝑎𝑠𝑖 −konkav fonksiyon denir (Dragomir and Pearce 1998). 

Tanım 2.2.2.“𝑓 hem 𝑞𝑢𝑎𝑠𝑖 −konveks hem de 𝑞𝑢𝑎𝑠𝑖 −konkav ise 𝑓’ye 

𝑞𝑢𝑎𝑠𝑖 −monotonik denir” (Greenberg and Pierskalla 1971). 
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Sonuç 2.2.1.“Herhangi bir konveks fonksiyon 𝑞𝑢𝑎𝑠𝑖 −konveks fonksiyondur. Fakat 

tersi her zaman doğru değildir. Yani 𝑞𝑢𝑎𝑠𝑖 −konveks olup konveks olmayan 

fonksiyonlar vardır. 

Örneğin 𝑔:  −2,2 → ℝ, 

𝑔 𝑡 =  
 1,      𝑡 ∈  −2, −1 

𝑡2 ,      𝑡 ∈ (−1, 2]
  

fonksiyonu  −2,2   aralığında konveks değildir. Fakat 𝑔 fonksiyonu  −2,2  

aralığında 𝑞𝑢𝑎𝑠𝑖 −konveks fonksiyondur” (Ion 2007). 

 

ġekil 2.5. Quasi-konveks olup konveks olmayan fonksiyon 
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ġekil 2.6.Quasi -konveks olmayan fonksiyon 

Quasi-konveks olmayan bir fonksiyon: Fonksiyonun tanım kümesinde, değerleri 

kırmızı kesik çizginin altında kalan noktalar, iki kırmızı aralığın birleşimidir ve 

fonksiyon bu noktaların birleşiminde konveks değildir. 

Tanım 2.2.3. (Wright-Konveks Fonksiyon): “𝑓: 𝐼 → ℝ  bir fonksiyon ve 𝑦 >

𝑥, 𝛼 > 0 şartları altında her bir 𝑦 + 𝛼, 𝑥 ∈ 𝐼 için 

𝑓 𝑥 + 𝛼 − 𝑓 𝑥 ≤ 𝑓 𝑦 + 𝛼 − 𝑓(𝑦) 

eşitsizliği sağlanıyorsa 𝑓’ye 𝐼 ⊆ ℝ’de Wright-konveks fonksiyon denir” (Dragomir 

and Pearce 1998). 

Tanım 2.2.4. (Wright-Quasi-Konveks Fonksiyon): “𝑓: 𝐼 → ℝ  bir fonksiyon olsun. 

𝑦 > 𝑥, 𝛼 > 0 şartları altında ∀ 𝑥, 𝑦, 𝑦 + 𝛼 ∈ 𝐼 ve ∀𝛼 ∈  0,1   için 

1

2
 𝑓 𝑡𝑥 +  1 − 𝑡 𝑦 + 𝑓( 1 − 𝑡 𝑥 + 𝑡𝑦) ≤ 𝑚𝑎𝑥 𝑓 𝑥 , 𝑓(𝑦)  

veya 
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1

2
 𝑓 𝑦 + 𝑓(𝑥 + 𝛼) ≤ 𝑚𝑎𝑥 𝑓 𝑥 , 𝑓(𝑦 + 𝑡)  

eşitsizliklerinden biri sağlanıyorsa 𝑓’ye 𝐼 ⊆ ℝ’de Wright-quasi-konveks fonksiyon 

denir” (Dragomir and Pearce 1998). 

Tanım 2.2.5. (𝑱 −Quasi-Konveks Fonksiyon): “𝑓: 𝐼 → ℝ fonksiyonu her 𝑥, 𝑦 ∈ 𝐼 

için 

𝑓  
𝑥 + 𝑦

2
 ≤ 𝑚𝑎𝑥 𝑓 𝑥 , 𝑓(𝑦)  

şartını sağlıyorsa 𝑓 fonksiyonuna 𝐽 − 𝑞𝑢𝑎𝑠𝑖 −konvekstir denir” (Dragomir and 

Pearce 2000). 

Tanım 2.2.6. (Log-Konveks Fonksiyon):“𝐼, ℝ’de bir aralık ve  𝑓: 𝐼 → ℝ bir 

fonksiyon olsun. Her 𝑥, 𝑦 ∈ 𝐼ve 𝑡 ∈  0,1   için 

𝑓(𝑡𝑥 + (1 − 𝑡)𝑦) ≤ 𝑓𝑡(𝑥)𝑓1−𝑡(𝑦) 

şartını sağlayan 𝑓 fonksiyonuna Log-konvekstir denir” (Pečarić et al. 1992). 

Tanım 2.2.7(Godunova-Levin Fonksiyonu): “𝑓: 𝐼 → ℝ negatif olmayan bir 

fonksiyon, ∀𝑥, 𝑦 ∈ 𝐼, 𝑡 ∈  0,1  olmak üzere 

𝑓 𝑡𝑥 +  1 − 𝑡 𝑦 ≤
𝑓 𝑥 

𝑡
+

𝑓(𝑦)

1 − 𝑡
 

şartını sağlayan 𝑓 fonksiyonuna Godunova-Levin fonksiyon veya 𝑄(𝐼) sınıfına aittir 

denir. 

Bu tanıma denk olarak; 
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𝑓 ∈ 𝑄(𝐼)ve𝑥, 𝑦, 𝑧 ∈ 𝐼 ise bu takdirde 

𝑓 𝑥  𝑥 − 𝑦  𝑥 − 𝑧 + 𝑓 𝑦  𝑦 − 𝑥  𝑦 − 𝑧 + 𝑓 𝑧  𝑧 − 𝑥  𝑧 − 𝑦 ≥ 0 

eşitsizliği sağlanır” (Godunova and Levin 1985). 

Tanım 2.2.8.(𝑷 −Fonksiyonu): “𝑓: 𝐼 → ℝ negatif olmayan bir fonksiyon olsun. 

∀𝑥, 𝑦 ∈ 𝐼, 𝑡 ∈  0,1  olmak üzere; 

𝑓 𝑡𝑥 +  1 − 𝑡 𝑦 ≤ 𝑓 𝑥 + 𝑓(𝑦) 

şartını sağlayan 𝑓 fonksiyonuna 𝑃 −fonksiyonu veya 𝑃(𝐼) sınıfına aittir denir” 

(Dragomir et al.1995). 

Tanım 2.2.9.(𝒎 −Konveks Fonksiyon): “𝑓: [0, 𝑏] → ℝ ve  𝑏 > 0 olsun. Her 

𝑥, 𝑦 ∈  0, 𝑏 , 𝛼 ∈  0,1   ve  𝑚 ∈  0,1    için 

𝑓 𝛼𝑥 + 𝑚 1 − 𝛼 𝑦 ≤ 𝛼𝑓 𝑥 + 𝑚 1 − 𝛼 𝑓 𝑦  

şartı sağlanıyorsa 𝑓 fonksiyonuna 𝑚 −konvekstir denir” (Toader 1984). 

−𝑓 fonksiyonu 𝑚 −konveks ise bu takdirde 𝑓 fonksiyonu 𝑚 −konkavdır. Ayrıca 

𝑓(0) ≤ 0 için  0, 𝑏  aralığında tanımlı tüm 𝑚 −konveks fonksiyonların sınıfı 𝐾𝑚(𝑏) 

ile gösterilir. Eğer 𝑚 = 1 alınırsa   0, 𝑏  üzerinde 𝑚 −konveks fonksiyon bilinen 

konveks fonksiyona dönüşür. 

Tanım 2.2.10. (Birinci Anlamda 𝒔 −Konveks Fonksiyon): “ℝ+ = [0, ∞),  

𝑓: ℝ+ → ℝ ve 0 < 𝑠 ≤ 1 olsun. 𝛼𝑠 + 𝛽𝑠 = 1 olmak üzere her 𝑢, 𝑣 ∈ ℝ+ ve her 

𝛼, 𝛽 ≥ 0 için 
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𝑓 𝛼𝑢 + 𝛽𝑣 ≤ 𝛼𝑠𝑓(𝑢) + 𝛽𝑠𝑓(𝑣) 

eşitsizliği sağlanıyorsa 𝑓 fonksiyonuna birinci anlamda 𝑠 −konveks fonksiyon denir” 

(Orlicz 1961). 

Tanım 2.2.11.(Ġkinci Anlamda 𝒔 −Konveks Fonksiyon): “ℝ+ = [0, ∞),  𝑓: ℝ+ →

ℝ ve 0 < 𝑠 ≤ 1 olsun. 𝛼, 𝛽 ≥ 0, 𝛼 + 𝛽 = 1 olmak üzere her 𝑢, 𝑣, 𝑕 ∈ ℝ+ için 

𝑓 𝛼𝑢 + 𝛽𝑣 ≤ 𝛼𝑠𝑓(𝑢) + 𝛽𝑠𝑓(𝑣) 

eşitsizliği sağlanıyorsa 𝑓 fonksiyonuna ikinci anlamda 𝑠 −konveks fonksiyon denir. 

İkinci anlamda 𝑠 −konveks fonksiyonların sınıfı 𝐾𝑠
2 ile gösterilir”(Breckner 1978). 

Yukarıda verilen her iki 𝑠 −konvekslik tanımı 𝑠 = 1 için bilinen konveksliğe 

dönüşür. 

Örnek 2.2.1. “𝑠 ∈ (0,1) ve 𝑎, 𝑏, 𝑐 ∈ ℝ olsun. 𝑓: [0, ∞) → ℝ fonksiyonu 

𝑓 𝑡 =  
𝑎,             𝑡 = 0
𝑏𝑡𝑠 + 𝑐,    𝑡 > 0

  

olarak tanımlansın. Bu takdirde 

(i)𝑏 ≥ 0 ve 0 ≤ 𝑐 ≤ 𝑎 ise 𝑓 ∈ 𝐾𝑠
2 dir. 

(ii)𝑏 > 0 ve 𝑐 < 0 ise 𝑓 ∉ 𝐾𝑠
2dir” (Hudzik and Maligranda 1994). 

Tanım 2.2.12. (𝒉 −Konveks Fonksiyon): “𝑕: 𝐽 ⊆ ℝ → ℝ  pozitif bir fonksiyon 

olsun. Her 𝑥, 𝑦 ∈ 𝐼,  𝛼 ∈ (0,1) için 

𝑓 𝛼𝑥 +  1 − 𝛼 𝑦 

≤ 𝑕 𝛼 𝑓 𝑥 + 𝑕 1 − 𝛼 𝑓 𝑦                                       (2.1) 
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şartını sağlayan negatif olmayan 𝑓: 𝐼 ⊆ ℝ → ℝ fonksiyonuna 𝑕 −konveks fonksiyon 

veya 𝑆𝑋(𝑕, 𝐼) sınıfına aittir denir” (Varošanec 2007). 

“(2.3) eşitsizliğinin tersini doğrulayan 𝑓: 𝐼 ⊆ ℝ → ℝ fonksiyonuna 𝑕 −konkav 

fonksiyon denir yani 𝑓 ∈ 𝑆𝑉(𝑕, 𝐼)’dır” (Varošanec 2007). 

“Bu tanımdan açıkça şu sonuçlar çıkarılabilir: 𝑕 𝛼 = 𝛼 ise tüm negatif olmayan 

konveks fonksiyonlar 𝑆𝑋(𝑕, 𝐼) sınıfına ve eşitsizliğin yön değiştirmesi durumunda 

tüm negatif olmayan konkav fonksiyonlar 𝑆𝑉(𝑕, 𝐼) sınıfına aittir; 𝑕 𝛼 =
1

𝛼
  ise 

𝑆𝑋 𝑕, 𝐼 = 𝑄(𝐼) sınıfına aittir; 𝑕 𝛼 = 1 ise 𝑆𝑋 𝑕, 𝐼 ⊇ 𝑃(𝐼)’dır; 𝑠 ∈  0,1  olmak 

üzere 𝑕 𝛼 = 𝛼𝑠 ise 𝑆𝑋 𝑕, 𝐼 ⊇ 𝐾𝑠
2 dir”(Varošanec 2007). 

Tanım 2.2.13.(Starshaped Fonksiyon): “𝑏 > 0  olmak üzere 𝑓: [0, 𝑏] →

ℝfonksiyonu, her 𝑥 ∈  0, 𝑏 ve  𝛼 ∈  0,1 için 

𝑓 𝛼𝑥 ≤ 𝛼𝑓 𝑥  

şartını sağlıyorsa bu fonksiyona starshaped fonksiyon denir” (Toader 1984). 
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3.MATERYAL ve YÖNTEM 

3.1. q-Diferansiyelle ilgili Temel Tanım ve Özellikler 

Tanım 3.1.1.  Herhangi bir keyfi 𝑓 𝑥   fonksiyonunu göz önüne alalım, 

𝑑𝑞 𝑓 𝑥  = 𝑓 𝑞𝑥 − 𝑓 𝑥  

İfadesine q-diferansiyel denir.(Kac et al. 1943). 

Örnek 3.1.1𝑓 𝑥  = 𝑥 fonksiyonu için 𝑑𝑞 𝑓 𝑥  değerini bulunuz. 

Çözüm 3.1.1 

𝑑𝑞𝑓 𝑥 = 𝑓 𝑞𝑥 − 𝑓 𝑥  

=   𝑞𝑥 − 𝑥 

  =  𝑞 − 1 𝑥 

olarak bulunur. 

Tanım 3.1.2.(Ġki Fonksiyonun Çarpımının q-Diferansiyeli):𝑓 𝑥  𝑣𝑒 𝑔  𝑥  

herhangi iki fonksiyon olmak üzere, 

𝑑𝑞 𝑓 𝑥 . 𝑔 𝑥  = 𝑓 𝑞𝑥 . 𝑔 𝑞𝑥 − 𝑓 𝑥 . 𝑔 𝑥  

= 𝑓 𝑞𝑥 . 𝑔 𝑞𝑥 − 𝑓 𝑥 . 𝑔 𝑥 − 𝑓 𝑞𝑥 . 𝑔 𝑥 + 𝑓 𝑞𝑥 . 𝑔 𝑥  

      = 𝑓 𝑞𝑥  𝑔 𝑞𝑥 − 𝑔 𝑥  + 𝑔 𝑥  𝑓 𝑞𝑥 − 𝑓 𝑥   

sonuç olarak, 

𝑑𝑞 𝑓 𝑥 𝑔 𝑥   = 𝑓 𝑞𝑥 𝑑𝑞𝑔 𝑥 + 𝑔 𝑥 𝑑𝑞𝑓 𝑥  

şeklinde bulunur. (Yardımcı 2005). 

Örnek 3.1.2. 𝑓 𝑥 = 𝑥 𝑣𝑒 𝑔 𝑥 = 𝑥2 fonksiyonları için 𝑑𝑞 𝑓 𝑥 𝑔 𝑥   değerini 

bulunuz.  

Çözüm 3.1.2. 

𝑑𝑞 𝑓 𝑥 𝑔 𝑥  =  𝑓 𝑞𝑥 𝑑𝑞𝑔 𝑥 + 𝑔 𝑥 𝑑𝑞𝑓 𝑥  
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           = 𝑞𝑥  𝑞𝑥 2 − 𝑥2 + 𝑥2 𝑞𝑥 − 𝑥  

= 𝑞3𝑥3 − 𝑞𝑥3 + 𝑞3 − 𝑥3   

= 𝑞3𝑥3 − 𝑥3                            

= 𝑥3 𝑞3 − 1                           

olarak bulunur. 

Tanım3.1.3.(Ġki Fonksiyonun Toplamının q-Diferansiyeli):𝑓 𝑥  𝑣𝑒 𝑔 𝑥  herhangi 

iki fonksiyon olmak üzere, 

  𝑑𝑞 𝑓 𝑥 + 𝑔 𝑥  =  𝑓 𝑞𝑥 + 𝑔 𝑞𝑥  −  𝑓 𝑥 + 𝑔 𝑥   

                        = 𝑓 𝑞𝑥 − 𝑓 𝑥 + 𝑔 𝑞𝑥 − 𝑔 𝑥  

 = 𝑑𝑞𝑓 𝑥 + 𝑑𝑞𝑔 𝑥  

şeklinde bulunur. 

Örnek 3.1.3.𝑓 𝑥 = 𝑥 𝑣𝑒𝑔 𝑥 = 𝑥2 fonksiyonları için 𝑑𝑞 𝑓 𝑥 + 𝑔 𝑥   değerini 

bulunuz. 

Çözüm 3.1.3. 

              𝑑𝑞 𝑓 𝑥 + 𝑔 𝑥   = 𝑑𝑞𝑓 𝑥 + 𝑑𝑞𝑔 𝑥  

                                                                        = 𝑓 𝑞𝑥 − 𝑓 𝑥 + 𝑔 𝑞𝑥 − 𝑔 𝑥  

                                                    = 𝑞𝑥 − 𝑥 + 𝑞2𝑥2 − 𝑥2 

                                                         = 𝑥2 𝑞2 − 1 + 𝑥 𝑞 − 1  

                                                           = 𝑥 𝑞 − 1  𝑥 𝑞 + 1 + 1  

olarak bulunur. 

 

Tanım 3.1.4. (Bir Fonksiyonun bir Sabitle Çarpımının q-Diferansiyeli): λ   bir 

sabit 𝑓 𝑥  bir fonksiyon olmak üzere, 

𝑑𝑞 𝜆𝑓 𝑥  = 𝜆𝑞𝑥 − 𝜆𝑥 

                     = 𝜆𝑥 𝑞 − 1  

                 = 𝜆𝑑𝑞𝑓 𝑥  
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şeklinde bulunur. 

Örnek 3.1.4𝑓 𝑥 = 𝑥  ve λ bir sabit olmak üzere 𝑑𝑞 𝜆𝑓 𝑥   değerini bulunuz. 

Çözüm 3.1.4 

𝑑𝑞 𝜆𝑓 𝑥  = 𝜆𝑑𝑞𝑓 𝑥  

                     = 𝜆𝑞𝑥 − 𝜆𝑥 

                      = 𝜆𝑥 𝑞 − 1  

olarak bulunur. 

Tanım 3.1.5 (Ġki Fonksiyonun Farkının q-Diferansiyeli) 𝑓 𝑥  𝑣𝑒𝑔 𝑥    İki 

fonksiyon    -1∈ ℝ 𝑜𝑙𝑚𝑎𝑘 ü𝑧𝑒𝑟𝑒, 

𝑑𝑞 𝑓 𝑥 − 𝑔 𝑥  = 𝑑𝑞 𝑓 𝑥 +  −1 . 𝑔 𝑥   

= 𝑑𝑞𝑓 𝑥 + 𝑑𝑞  −1 . 𝑔 𝑥   

=  𝑑𝑞𝑓 𝑥 +  −1 . 𝑑𝑞𝑔 𝑥  

                                                              = 𝑑𝑞𝑓 𝑥 − 𝑑𝑞𝑔 𝑥  

şeklinde bulunur. 

Örnek 3.1.5𝑓 𝑥 = 𝑥 𝑣𝑒 𝑔 𝑥 = 𝑥2 fonksiyonları için 𝑑𝑞 𝑓 𝑥 − 𝑔 𝑥   değerini 

bulunuz. 

Çözüm3.1.5. 

𝑑𝑞 𝑓 𝑥 − 𝑔 𝑥  = 𝑑𝑞 𝑥 − 𝑥2  

                                          = 𝑑𝑞 𝑥 +  −1 . 𝑥2  

                                                                              =  𝑞𝑥 +  −1 . 𝑞2𝑥2 −  𝑥 +  −1 . 𝑥2  

                                               = 𝑞𝑥 − 𝑞2𝑥2 − 𝑥 + 𝑥2 

                                                   = 𝑥 𝑞 − 1 − 𝑥2 𝑞2 − 1  

                                                        = 𝑥 𝑞 − 1 .  1 − 𝑥 𝑞 + 1   

olarak bulunur. 

Tanım 3.1.6.(Sabit Fonksiyonun q-Diferansiyeli):𝑓 𝑥 = 𝑐 sabit bir fonksiyon 

olmak üzere, 
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𝑑𝑞𝑓 𝑥 = 𝑓 𝑞𝑥 − 𝑓 𝑥  

= 𝑐 − 𝑐  

= 0         

şeklinde bulunur. 

3.2. q-Türevle ilgili Temel Tanım ve Özellikler 

Tanım 3.2.1Şimdide q-diferansiyel yardımıyla q- türev tanımlayalım. 

𝐷𝑞𝑓 𝑥 =
𝑑𝑞𝑓 𝑥 

𝑑𝑞𝑥
=

𝑓 𝑞𝑥 − 𝑓 𝑥 

𝑞𝑥 − 𝑥
                                               (3.1) 

𝑓 𝑥 ,in q-türevi denir.(Yardımcı 2005). 

Örnek 3.2.1 𝑓 𝑥 = 𝑥𝑛 , 𝑛 ∈ ℤ+ fonksiyonun q-türevini bulunuz. 

Çözüm 3.2.1 

𝐷𝑞𝑓 𝑥 = 𝐷𝑞 𝑥𝑛  

                    =
 𝑞𝑥 𝑛 − 𝑥𝑛

𝑞𝑥 − 𝑥
 

                    =
𝑥𝑛 𝑞𝑛 − 1 

𝑥 𝑞 − 1 
 

                  =
𝑞𝑛 − 1

𝑞 − 1
𝑥𝑛−1 

 

Tanım 3.2.2𝑛 ∈ ℤ+olmak üzere, 

 

 𝑛 =
𝑞𝑛 − 1

𝑞 − 1
 

ifadesine 𝑛 nin 𝑞 −benzeri denir. 

 

 

Ayrıca 
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 n =
qn − 1

q − 1
= 1 + 𝑞 + 𝑞2 + ⋯𝑞𝑛−1 

 

şeklinde de ifade edilebilir. Bu tanıma göre yukarıdaki örneğe geri dönersek 

𝐷𝑞𝑥𝑛 =
𝑞𝑛 − 1

𝑞 − 1
𝑥𝑛−1 =  𝑛 . 𝑥𝑛−1 

olacaktır. Bu ifade 𝑥𝑛  nın sıradan türev haline benzemektedir. Eğer 𝑞 → 1 için 

eşitliğin her iki tarafının limiti alınırsa  

lim
𝑞→1

𝐷𝑞𝑥𝑛 = lim
𝑞→1

 𝑛 𝑥𝑛−1 

        =     lim
𝑞→1

 1 + q + q2 … qn−1 . 𝑥𝑛−1 

                                                   =  1 + 1 + 12 + ⋯ 1𝑛−1 𝑥𝑛−1 

       = 𝑛𝑥𝑛−1 

olacaktır. Çünkü, 

lim
𝑞→1

 𝑛 = lim
𝑞→1

 1 + 𝑞 + 𝑞2 + ⋯ + 𝑞𝑛−1 = 𝑛 

olacaktır. Yani  𝑛  q-analizinde, sıradan analizdeki n pozitif tam sayısı ile aynı rolü 

oynamaktadır.(Yardımcı 2005). 

Tanım 3.2.3 

 ∞ =
1

1 − 𝑞
 

olarak tanımlanır.(Yardımcı 2005). 

Tanım 3.2.4 (Ġki Fonksiyonun Çarpımının q-Türevi): 𝑓 𝑥  𝑣𝑒 𝑔 𝑥  herhangi iki 

fonksiyon olmak üzere, (3.1) ifadesinden yararlanarak aşağıdaki q-türevi elde ederiz 

𝐷𝑞 𝑓 𝑥 . 𝑔 𝑥  =
𝑑𝑞 𝑓 𝑥 . 𝑔 𝑥  

𝑑𝑞𝑥
 

                                                        =
𝑓 𝑞𝑥 . 𝑑𝑞𝑔 𝑥 + 𝑔 𝑥 . 𝑑𝑞𝑓 𝑥 

 𝑞 − 1 . 𝑥
 

                                                             = 𝑓 𝑞𝑥 .
𝑑𝑞𝑔 𝑥 

 𝑞 − 1 𝑥
+ 𝑔 𝑥 .

𝑑𝑞𝑓 𝑥 

 𝑞 − 1 𝑥
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                                                          = 𝑓 𝑞𝑥 . 𝐷𝑞𝑔 𝑥 + 𝑔 𝑥 . 𝐷𝑞𝑓 𝑥  

simetriden dolayı, 

                        𝐷𝑞 𝑓 𝑥 . 𝑔 𝑥  = 𝑔 𝑞𝑥 . 𝐷𝑞𝑓 𝑥 + 𝑓 𝑥 . 𝐷𝑞𝑔 𝑥  

elde edilir.(Yardımcı 2005). 

Örnek 3.2.2𝑓 𝑥 = 𝑥 𝑣𝑒 𝑔 𝑥 = 𝑥2 fonksiyonları için 𝐷𝑞 𝑓 𝑥 . 𝑔 𝑥   değerini 

bulunuz. 

Çözüm 3.2.2 

𝐷𝑞 𝑓 𝑥 . 𝑔 𝑥  = 𝑞 𝑥 
𝑞2𝑥2 − 𝑥2

 𝑞 − 1 𝑥
+ 𝑥2 .

𝑞𝑥 − 𝑥

𝑞𝑥 − 𝑥
 

               = 𝑞𝑥
𝑥2 𝑞2 − 1 

𝑥 𝑞 − 1 
+ 𝑥2 

           = 𝑞𝑥2 .  𝑞 + 1 + 𝑥2 

     = 𝑥2 𝑞2 + 𝑞 + 1  

şeklinde bulunur. 

 

Tanım 3.2.5 (Ġki Fonksiyonun Bölümünün q-Türevi): 𝑓 𝑥  ve 𝑔 𝑥  herhangi iki 

fonksiyon olmak üzere, 𝑔 𝑥 ≠ 0  𝑣𝑒 𝑔 𝑞𝑥 ≠ 0 olsun 

𝑓 𝑥 = 𝑓 𝑥  

𝑔 𝑥 
𝑓 𝑥 

𝑔 𝑥 
= 𝑓 𝑥  

eşitliğin her iki tarafının q-türevini alalım. 

  𝐷𝑞  𝑔 𝑥 
𝑓 𝑥 

𝑔 𝑥 
 = 𝐷𝑞𝑓 𝑥  

𝑔 𝑞𝑥 . 𝐷𝑞  
𝑓 𝑥 

𝑔 𝑥 
 +

𝑓 𝑥 

𝑔 𝑥 
𝐷𝑞𝑔 𝑥 = 𝐷𝑞𝑓 𝑥  

                                         𝐷𝑞  
𝑓 𝑥 

𝑔 𝑥 
 =

𝐷𝑞𝑓 𝑥 −
𝑓 𝑥 

𝑔 𝑥 
𝐷𝑞𝑔 𝑥 

𝑔 𝑞𝑥 
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                                                  𝐷𝑞  
𝑓 𝑥 

𝑔 𝑥 
 =

𝑔 𝑥 . 𝐷𝑞𝑓 𝑥 − 𝑓 𝑥 𝐷𝑞𝑔 𝑥 

𝑔 𝑥 . 𝑔 𝑞𝑥 
 

olur. (Yardımcı 2005). 

Örnek 3.2.3 𝑓 𝑥 = 𝑥 ve 𝑔 𝑥 = 𝑥2 fonksiyonları için 

  𝐷𝑞  
𝑓 𝑥 

𝑔 𝑥 
  

değerini bulunuz. 

Çözüm 3.2.3 

 

𝐷𝑞  
𝑓 𝑥 

𝑔 𝑥 
 =

𝑥2 𝑞𝑥−𝑥

𝑞𝑥−𝑥
− 𝑥

𝑞2𝑥2−𝑥2

𝑞𝑥−𝑥

𝑥2𝑞2𝑥2
 

    =
𝑥2 − 𝑥2 𝑞 + 1 

𝑥4𝑞2
 

=
−𝑥2

𝑥4𝑞2
 

= −
1

𝑥2𝑞
 

şeklinde bulunur. 

 

Tanım 3.2.6(Ġki Fonksiyonun Toplamının q-Türevi):𝑓 𝑥  𝑣𝑒 𝑔 𝑥  herhangi iki 

fonksiyon olmak üzere, 

𝐷𝑞 𝑓 𝑥 + 𝑔 𝑥  =
𝑓 𝑞𝑥 + 𝑔 𝑞𝑥 − 𝑓 𝑥 − 𝑔 𝑥 

𝑞𝑥 − 𝑥
 

                              =
𝑓 𝑞𝑥 − 𝑓 𝑥 

𝑞𝑥 − 𝑥
+

𝑔 𝑞𝑥 − 𝑔 𝑥 

𝑞𝑥 − 𝑥
 

       = 𝐷𝑞𝑓 𝑥 + 𝐷𝑞𝑔 𝑥  

şeklinde bulunur. 

Örnek3.2.4𝑓 𝑥 = 𝑥 𝑣𝑒 𝑔 𝑥 = 𝑥2 fonksiyonları için 𝐷𝑞 𝑓 𝑥 + 𝑔 𝑥   değerlerini 

bulunuz.  
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Çözüm 3.2.4 

𝐷𝑞 𝑓 𝑥 + 𝑔 𝑥  = 𝐷𝑞 𝑥 + 𝑥2  

                                         = 𝐷𝑞 𝑥) + 𝐷𝑞(𝑥2  

                                               =
𝑞𝑥 − 𝑥

 𝑞𝑥 − 𝑥
+

𝑞2𝑥2 − 𝑥2

𝑞𝑥 − 𝑥
 

                                                  = 1 +
𝑥2 𝑞 − 1 .  𝑞 + 1 

𝑥 𝑞 − 1 
 

                                    =     1 + 𝑥 𝑞 + 1  

olarak bulunur. 

Tanım 3.2.7 (Bir Fonksiyon Bir  𝝀  Sabitle Çarpımının q-Türevi): λ bir sabit 

𝑓 𝑥  herhangi bir fonksiyon olmak üzere, 

𝐷𝑞 𝜆𝑓 𝑥  =
𝜆𝑓 𝑥 − 𝜆𝑓 𝑥 

𝑞𝑥 − 𝑥
 

                    = 𝜆
𝑓 𝑞𝑥 − 𝑓 𝑥 

𝑞𝑥 − 𝑥
 

      = 𝜆𝐷𝑞𝑓 𝑥  

şeklinde bulunur. 

Örnek3.2.5𝑓 𝑥 = 𝑥 𝑣𝑒  𝜆 sabit olmak üzere, 𝜆𝑓 𝑥  fonksiyonun q-türevini 

bulunuz. 

Çözüm 3.2.5 

𝐷𝑞 𝜆𝑓 𝑥  =
𝜆𝑞𝑥 − 𝜆𝑥

𝑞𝑥 − 𝑥
 

                      = 𝜆
𝑞𝑥 − 𝑥

𝑞𝑥 − 𝑥
 

         = 𝜆 

olarak bulunur. 

Tanım 3.2.8 (Ġki Fonksiyonun Farkının q-Türevi):𝑓 𝑥  𝑣𝑒 𝑔 𝑥  herhangi iki 

fonksiyon olmak üzere, 

𝐷𝑞 𝑓 𝑥 − 𝑔 𝑥  = 𝐷𝑞 𝑓 𝑥 +  −1 𝑔 𝑥   
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= 𝐷𝑞𝑓 𝑥 +  −1 𝐷𝑞𝑔 𝑥  

= 𝐷𝑞𝑓 𝑥 − 𝐷𝑞𝑔 𝑥  

şeklinde bulunur. 

Örnek3.2.6𝑓 𝑥 = 𝑥 ve𝑔 𝑥 = 𝑥2 fonksiyonları için 𝐷𝑞 𝑓 𝑥 − 𝑔 𝑥   değerini 

bulunuz. 

Çözüm 3.2.6 

𝐷𝑞 𝑓 𝑥 − 𝑔 𝑥  = 𝐷𝑞 𝑥 − 𝑥2  

                                           = 𝐷𝑞 𝑥 +  −1 𝑥2  

                                             = 𝐷𝑞𝑥 +  −1 𝐷𝑞𝑥2 

                                             = 𝐷𝑞𝑥 − 𝐷𝑞𝑥2 

                                                =
𝑞𝑥 − 𝑥

𝑞𝑥 − 𝑥
−

𝑞2𝑥2 − 𝑥2

𝑞𝑥 − 𝑥
 

                                                   = 1 −
𝑥2 𝑞 − 1 .  𝑞 + 1 

𝑥 𝑞 − 1 
 

                                            = 1 − 𝑥 𝑞 + 1  

olarak bulunur. 

Örnek3.2.7 𝑓 𝑥 = ln 𝑥 fonksiyonun q-diferansiyelini ve q-türevini bulunuz. 

     𝑑𝑞 ln 𝑥 = ln 𝑞𝑥 − ln 𝑥 

         = ln
𝑞𝑥

𝑥
 

       = ln 𝑞 

𝐷𝑞 ln 𝑥 =
𝑑𝑞 ln 𝑥 

𝑑𝑞𝑥
 

                 =
ln 𝑞𝑥 − ln 𝑥

𝑥 𝑞 − 1 
 

         =
ln 𝑞

𝑥 𝑞 − 1 
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Örnek3.2.8 𝑓 𝑥 = 𝑥3 fonksiyonun q-diferansiyel ve q-türevini bulunuz. 

Çözüm 3.2.8 

𝑑𝑞 𝑥3 = 𝑞3𝑥3 − 𝑥3 

              = 𝑥3 𝑞3 − 1  

olur. 

 

𝐷𝑞 𝑥3 =
𝑞3𝑥3 − 𝑥3

𝑞𝑥 − 𝑥
 

                  =
𝑥3 𝑞3 − 1 

𝑥 𝑞 − 1 
 

                                     =
𝑥3 𝑞 − 1  1 + 𝑞 + 𝑞2 

𝑥 𝑞 − 1 
 

                          = 𝑥2 1 + 𝑞 + 𝑞2  

      = 𝑥2 3  

      =  3 𝑥2 

 

Tanım 3.2.9. (Sabit Fonksiyonun q-Türevi):𝑓 𝑥 = 𝑐 sabit bir fonksiyon olmak 

üzere, 

𝐷𝑞𝑓 𝑥 =
𝑓 𝑞𝑥 − 𝑓 𝑐 

𝑞𝑥 − 𝑥
 

     =
𝑐 − 𝑐

𝑞𝑥 − 𝑥
 

 = 0        

Örnek3.2.9.  𝑓 𝑥 = 10 fonksiyonu için 𝐷𝑞𝑓 𝑥  𝑑𝑒ğ𝑒𝑟𝑖𝑛𝑖  bulunuz. 

Çözüm 3.2.9. 

𝐷𝑞𝑓 𝑥 =
𝑓 𝑞𝑥 − 𝑓 𝑥 

𝑞𝑥 − 𝑥
 

 =
0

𝑞𝑥 − 𝑥
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= 0          

 

3.3. 𝒙 − 𝜶 𝒏 nin q-Benzeri ve q-Türevi: 

Genel Taylor Formülünde D lineer operatörü yerine 𝐷𝑞  lineer operatörünü alalım. 

 𝑃0 𝑥 , 𝑃1 𝑥 , ………   polinomlar dizisi de yine bu teoremdeki üç şartı sağlasın. Eğer  

𝛼 = 0  

olarak seçersek 

  𝑃𝑛 𝑥 =
𝑥𝑛

 𝑛 !
 

olarak alabiliriz. Çünkü; 

1. 𝑃0 0 = 1 𝑣𝑒 𝑝𝑛 0 = 0  ∀𝑛 ≥ 1  

 𝑃0 𝑥 =
𝑥0

 0 !
= 1  𝑃0 0 = 1 𝑝𝑛 0 =

0𝑛

 𝑛 !
= 0 

      2. 𝑑𝑒𝑟𝑃𝑛 𝑥 = 𝑛 

      3. 𝐷𝑞𝑃𝑛 𝑥 = 𝑃𝑛−1 𝑥  

𝐷𝑞1 =
𝑑𝑞1

𝑑𝑞1
= 0 

Eğer 𝛼 ≠ 0 𝑣𝑒 𝐷 = 𝐷𝑞 olarak seçersek acaba 𝑃𝑛 𝑥  nasıl olacaktır? Bu sorunun 

yanıtını Genel Taylor Formülü yardımıyla bulalım. 

                            𝑃0 𝑥 = 1  ,     𝐷𝑑𝑃1 𝑥 = 𝑃0 𝑥         , 𝑃1 𝛼 = 0  

olmalıdır. 

𝐷𝑞𝑃1 𝑥 = 1  ⇒  
𝑑𝑞𝑃1 𝑥 

𝑑𝑞𝑥
=

𝑃1 𝑞𝑥 − 𝑃1 𝑥 

𝑥 𝑞 − 1 
= 1 

𝑃1 𝑞𝑥 − 𝑃1 𝑥 = 𝑥 𝑞 − 1  

𝑃1 𝑎𝑞 − 𝑃1 𝑎 = 𝑎𝑝 − 𝑎 

𝑃1 𝑎𝑞 = 𝑎𝑞 − 𝑎 𝑣𝑒 𝑃1 𝑎 = 0 

olmalıdır. O halde, 

𝑃1 𝑥 = 𝑥 − 𝑎 



 
 

32 
 

olarak bulunacaktır. Şimdi de 𝑃2 𝑥  i bulmaya çalışalım. 

𝐷𝑞𝑃2 𝑥 = 𝑃1 𝑥  𝑣𝑒  𝑃2 𝑎 = 0  

olmalıdır. 

𝐷𝑞𝑃2 𝑥 =
𝑃2 𝑞𝑥 − 𝑃2 𝑥 

𝑥 𝑞 − 1 
= 𝑥 − 𝑎 

𝑃2 𝑞𝑥 − 𝑃2 𝑥 =  𝑥 − 𝑎 𝑥  𝑞 − 1  

𝑃2 𝑎𝑞 − 𝑃2 𝑎 = 0 ⇒  𝑃2 𝑎𝑞 = 0  

olmalıdır.  

𝑃2 𝑎 = 0 𝑣𝑒𝑃2 𝑎𝑞 = 0 

olacağı için,  

𝑃2 𝑥 =  𝑥 − 𝑎  𝑥 − 𝑞𝑎  

olacaktır. Bunu sınayalım. 

𝐷𝑞𝑃2 𝑥 =
𝑃2 𝑞𝑥 − 𝑃2 𝑥 

𝑥 𝑞 − 1 
= 𝑥 − 𝑎  

olmalıdır. Buna göre,  

𝐷𝑞𝑃2 𝑥 =
 𝑞𝑎 − 𝑞  𝑞𝑥 − 𝑎𝑞 −  𝑥 − 𝑎  𝑥 − 𝑎𝑞 

𝑥 𝑞 − 1 
 

     =
 𝑥 − 𝑎  𝑞 𝑞𝑥 − 𝑎 −  𝑥 − 𝑎𝑞  

𝑥 𝑞 − 1 
 

=
 𝑥 − 𝑎  𝑞2𝑥 − 𝑞𝑎 − 𝑥 + 𝑞𝑎 

𝑥 𝑞 − 1 
 

 

=
 𝑥 − 𝑎  𝑞2𝑥 − 𝑥 

𝑥 𝑞 − 1 
 

=
 𝑥 − 𝑎 𝑥 𝑞2 − 1 

𝑥 𝑞 − 1 
 

=  𝑥 − 𝑎 
𝑞2 − 1

𝑞 − 1
 

=  𝑥 − 𝑎  2  
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oysa 

𝐷𝑞𝑃2 𝑥 =  𝑥 − 𝑎  

olmalıydı. O halde eşitliği sağlamak için 

𝑃2 𝑥 =
 𝑥 − 𝑎  𝑥 − 𝑞𝑎 

 2 
 

olmalıdır. Şimdi de 𝑃3 𝑥 ′ i bulalım. 

𝐷𝑞𝑃3 𝑥 = 𝑃2 𝑥 ,  𝑃3 𝑎 = 0 

olmalıdır. 

𝐷𝑞𝑃3 𝑥 =
𝑑𝑞𝑃3 𝑥 

𝑑𝑞𝑥
 =  

𝑃3 𝑞𝑥 − 𝑃3 𝑥 

𝑥 𝑞 − 1 
=

 𝑥 − 𝑎  𝑥 − 𝑞𝑎 

 2 
 

𝑃3 𝑞𝑥 − 𝑃3 𝑥  =  
 𝑥 − 𝑎  𝑥 − 𝑞𝑎 𝑥 𝑞 − 1 

 2 
 

𝑃3 𝑎𝑞 − 𝑃3 𝑎  =  0 ⇒   𝑃3 𝑎𝑞 = 0                 

𝑃3 𝑞𝑥 − 𝑃3 𝑥  =   
𝑥 𝑞 − 1  𝑥 − 𝑎  𝑥 − 𝑞𝑎 

 2 
 

denkleminde 𝑥 = 𝑞𝑎 alırsak, 

𝑃3 𝑞
2𝑎 − 𝑃3 𝑞𝑎 = 0 ⇒  𝑃3 𝑞

2𝑎 = 0 

olacaktır. 

𝑃3 𝑎 = 0 ,   𝑃3 𝑎𝑞 = 0 , 𝑃3 𝑎𝑞2 = 0 

olacağından dolayı                                                 

𝑃3 𝑥 =  𝑥 − 𝑎  𝑥 − 𝑞𝑎  𝑥 − 𝑞2  

olacaktır. Bunu sınayalım. 

𝐷𝑞𝑃3 𝑥 =
𝑃3 𝑞𝑥 − 𝑃3 𝑥 

𝑥 𝑞 − 1 
=

 𝑥 − 𝑎  𝑥 − 𝑞𝑎 

 2 
 

olmalıdır. Buna göre, 

𝐷3𝑃3 𝑥          =
 𝑞𝑥 − 𝑎  𝑞𝑥 − 𝑞𝑎  𝑞𝑥 − 𝑞2𝑎 −  𝑥 − 𝑎  𝑥 − 𝑞𝑎  𝑥 − 𝑞2𝑎 

𝑥 𝑞 − 1 
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                                 =  
 𝑞𝑥 − 𝑎 𝑞 𝑥 − 𝑎 𝑞 𝑥 − 𝑞𝑎 −  𝑥 − 𝑎  𝑥 − 𝑞𝑎  𝑥 − 𝑞2𝑎 

𝑥 𝑞 − 1 
 

       =    
 𝑥 − 𝑎  𝑥 − 𝑞𝑎   𝑞𝑥 − 𝑎 𝑞2 −  𝑥 − 𝑞2𝑎  

𝑥 𝑞 − 1 
 

  =   
 𝑥 − 𝑎  𝑥 − 𝑞𝑎  𝑞3𝑥 − 𝑎𝑞2 − 𝑥 + 𝑞2𝑎 

𝑥 𝑞 − 1 
    

=    
 𝑥 − 𝑎  𝑥 − 𝑞𝑎 𝑥 𝑞3 − 1 

𝑥 𝑞 − 1 
                           

=    𝑥 − 𝑎  𝑥 − 𝑞𝑎 
𝑞3 − 1

𝑞 − 1
                                   

         =   𝑥 − 𝑎  𝑥 − 𝑞𝑎  3                                                       

oysa 

𝐷𝑞𝑃3 𝑥 =
 𝑥 − 𝑎  𝑥 − 𝑞𝑎 

 2 
 

olmalıydı. O halde eşitliği sağlamak için  

𝑃3 𝑥 =
 𝑥 − 𝑎  𝑥 − 𝑞𝑎  𝑥 − 𝑞2𝑎 

 3  2 
 

olacaktır. 

𝑃1 𝑋 = 𝑥 − 𝑎                                       

𝑝2 𝑥 =
 𝑥 − 𝑎  𝑥 − 𝑞𝑎 

 2 
 

𝑃3 𝑥 =
 𝑥 − 𝑎  𝑥 − 𝑞𝑎  𝑥 − 𝑞2𝑎 

 3  2 
 

olduğundan 𝑃𝑛 𝑥  polinomunu 𝑎 ≠ 0 için aşağıdaki şekilde ifade edebiliriz. 

𝑃𝑛 𝑥 =
 𝑥 − 𝑎  𝑥 − 𝑞𝑎  𝑥 − 𝑞2𝑎 …  𝑥 − 𝑞𝑛−1𝑎 

 𝑛 !
 

(Yardımcı 2005). 

 

Tanım 3.3.1 n! in q-benzeri aşağıdaki şekilde tanımlanmıştır.   
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 𝑛 ! =  

1                                            𝑛 = 0          

 𝑛  𝑛 − 1 …  1                    𝑛 = 1,2,3, …

  

 (Yardımcı 2005). 

 

 

 

Tanım 3.3.2  𝑥 − 𝑎 𝑛  polinomunun q-benzeri aşağıdaki şekildeki tanımlanmıştır. 

 𝑥 − 𝑎 𝑞
𝑛 =  

1                                                                         𝑛 = 0 

 𝑥 − 𝑎  𝑥 − 𝑞𝑎 …  𝑥 − 𝑞𝑛−1𝑎                 𝑛 ≥ 1

  

 

(Yardımcı 2005). 

Önerme 3.3.1 𝒏 ≥ 𝟏 için  

𝐷𝑞 𝑥 − 𝑎 𝑞
𝑛

=  𝑛  𝑥 − 𝑎 𝑞
𝑛−1 

  dir.                                                

Ġspat 3.3.1 Bu önermenin ispatını tüme varım yöntemi ile yapacağız. 

𝑛 = 1, 

𝐷𝑞 𝑥 − 𝑎 𝑞 = 𝐷𝑞 𝑥 − 𝑎 =
𝑞𝑥 − 𝑞 − 𝑥 + 𝑎

𝑥 𝑞 − 1 
= 1 =  1  𝑥 − 𝑎 𝑞

0  

olacağı için önerme 𝑛 = 1 için doğrudur. Varsayalım ki,  

𝐷𝑞 𝑥 − 𝑎 𝑞
𝑛

=  𝑛  𝑥 − 𝑎 𝑞
𝑛−1 

ifadesi bazı k değerleri için doğru olsun  

𝐷𝑞 𝑥 − 𝑎 𝑞
𝑛

=  𝑛  𝑥 − 𝑎 𝑞
𝑛−1 

k+1 değeri için de doğru olduğunu gösterelim. İki fonksiyonun çarpımının q-

türevinden yararlanarak, 

 𝑥 − 𝑎 𝑞
𝑘+1  =  𝑥 − 𝑎  𝑥 − 𝑞𝑎 …… 𝑥 − 𝑞𝑘−1𝑎  𝑥 − 𝑞𝑘𝑎 =  𝑥 − 𝑎 𝑞

𝑘 𝑥 − 𝑞𝑘𝑎  

𝐷𝑞 𝑥 − 𝑎 𝑞
𝑘+1 = 𝐷𝑞   𝑥 − 𝑎 𝑞

𝑘 𝑥 − 𝑞𝑘𝑎   
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                         =  𝑥 − 𝑎 𝑞
𝑘𝐷𝑞 𝑥 − 𝑞𝑘𝑎 +  𝑞𝑥 − 𝑞𝑘𝑎 𝐷𝑞 𝑥 − 𝑎 𝑞

𝑘  

                       =  𝑥 − 𝑎 𝑞
𝑘  

 𝑞𝑥 − 𝑞𝑘𝑎 −  𝑥 − 𝑞𝑘𝑎 

𝑥 𝑞 − 1 
 + 𝑞 𝑥 − 𝑞𝑘−1𝑎  𝑘  𝑥 − 𝑎 𝑞

𝑘−1 

                =  𝑥 − 𝑎 𝑞
𝑘  

𝑞𝑥 − 𝑞𝑘𝑎 − 𝑥 + 𝑞𝑘𝑎

𝑥 𝑞 − 1 
 + 𝑞 𝑥 − 𝑞𝑘−1𝑎  𝑘  𝑥 − 𝑎 𝑞

𝑘−1 

=      𝑥 − 𝑎 𝑞
𝑘  

𝑥 𝑞 − 1 

𝑥 𝑞 − 1 
 + 𝑞 𝑥 − 𝑞𝑘−1𝑎  𝑘  𝑥 − 𝑎 𝑞

𝑘−1 

 

             =  𝑥 − 𝑎 𝑞
𝑘 + 𝑞 𝑥 − 𝑞𝑘−1𝑎  𝑘  𝑥 − 𝑎  𝑥 − 𝑞𝑎 …  𝑥 − 𝑞𝑘−2𝑎  

                        =     𝑥 − 𝑎 𝑞
𝑘 + 𝑞 𝑘  𝑥 − 𝑎 𝑞

𝑘  

                         =  𝑥 − 𝑎 𝑞
𝑘 1 + 𝑞 𝑘   

=  𝑥 − 𝑎 𝑞
𝑘 𝑘 + 1  

elde edilir. Böylece ispat tamamlanmış olmaktadır.(Yardımcı 2005) 

 

𝟑. 𝟒.  𝒙 − 𝒂 𝒒
𝒏 Polinomunun Özelikleri 

Genelde 

 𝑥 − 𝑎 𝑞
𝑚+𝑛 ≠  𝑥 − 𝑎 𝑞

𝑚 𝑥 − 𝑎 𝑞
𝑛  

dir. (Yardımcı 2005). 

 

Önerme 3.4.1. 

 𝑥 − 𝑎 𝑞
𝑚+𝑛 =  𝑥 − 𝑎 𝑞

𝑚 𝑥 − 𝑞𝑚𝑎 𝑞
𝑛                        𝑚, 𝑛 > 0    

Ġspat 3.4.1 

 𝑥 − 𝑎 𝑞
𝑚+𝑛 =  𝑥 − 𝑎  𝑥 − 𝑞𝑎  𝑥 − 𝑞2𝑎 …  𝑥 − 𝑞𝑚−1𝑎  𝑥 − 𝑞𝑚𝑎 …  𝑥 − 𝑞𝑚+𝑛−1𝑎  

=  𝑥 − 𝑎  𝑥 − 𝑞𝑎 …  𝑥 − 𝑞𝑚−1𝑎    𝑥 − 𝑞𝑚𝑎  𝑥 − 𝑞 𝑞𝑚𝑎  …  𝑥 − 𝑞𝑛−1 𝑞𝑚𝑎    

                              =  𝑥 − 𝑎 𝑞
𝑚 𝑥 − 𝑞𝑚𝑎 𝑞

𝑛  
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 𝑥 − 𝑎 𝑞
𝑚+𝑛 =  𝑥 − 𝑎 𝑞

𝑚 𝑥 − 𝑞𝑚𝑎 𝑞
𝑛  

Eşitliğinde 𝑚 = −𝑛 olarak alınırsak aşağıdaki ifadeyi elde ederiz. 

 𝑥 − 𝑎 𝑞
−𝑛 =

1

 𝑥 − 𝑞−𝑛𝑎 𝑞
𝑛  

(Yardımcı 2005). 

Önerme 3.4.2 Herhangi iki tam sayı olan m ve n için aşağıdaki eşitlik doğrudur. 

 𝑥 − 𝑎 𝑞
𝑚+𝑛 =  𝑥 − 𝑎 𝑞

𝑚 𝑥 − 𝑞𝑚𝑎 𝑞
𝑛  

Ġspat 3.4.2  

𝟏. m = −m′ < 0  ve  𝑛 > 0 için eşitliğin doğru olduğunu gösterelim 

 𝑥 − 𝑎 𝑞
𝑚 𝑥 − 𝑞𝑚𝑎 𝑞

𝑛 =  𝑥 − 𝑎 𝑞
−𝑚 ′

 𝑥 − 𝑞−𝑚 ′
 
𝑞

𝑛
 

=
 𝑥 − 𝑞−𝑚 ′

𝑎 
𝑞

𝑛

 𝑥 − 𝑞−𝑚 ′
 
𝑞

𝑚 ′  

 

=

 
 
 
 

 
 
  𝑥 − 𝑞−𝑚 ′

𝑎 
𝑞

𝑚 ′

 𝑥 − 𝑞𝑚 ′
 𝑞−𝑚 ′

𝑎 
𝑞

𝑛−𝑚 ′

 

 𝑥 − 𝑞−𝑚 ′
𝑎 

𝑞

𝑚 ′                                    𝑛 ≥ 𝑚′

 𝑥 − 𝑞−𝑚 ′
𝑎 

𝑞

𝑛

 𝑥 − 𝑞−𝑚 ′
  𝑥 − 𝑞𝑛 𝑞−𝑚 ′

𝑎  
𝑞

𝑚 ′ −𝑛
                                                                              𝑛 < 𝑚′

 
 
 
 

 
 
 

 

 

 

=       

 
 

 
 x − a q

n−m ′
                                                                                 n ≥ m′

1

 𝑥 − 𝑞𝑛−𝑚 ′
 
𝑞

𝑚 ′ −𝑛
 =  𝑥 − 𝑎 𝑞

𝑛−𝑚 ′
                                                     𝑛 < 𝑚 ′  

 
 

 
 

 

=  𝑥 − 𝑎 𝑞
𝑛−𝑚 ′

 

=  𝑥 − 𝑎 𝑞
𝑛+𝑚  

2. 𝑚 ≥ 0 ve 𝑛 = −𝑛′ < 0 için eşitliğin doğru olduğunu gösterelim. 
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 𝑥 − 𝑎 𝑞
𝑚 𝑥 − 𝑞𝑚𝑎 𝑞

𝑚 =  𝑥 − 𝑎 𝑞
𝑚 𝑥 − 𝑞𝑚𝑎 𝑞

−𝑛 ′
 

=
 𝑥 − 𝑎 𝑞

𝑚

 𝑥 − 𝑞𝑚−𝑛 ′
 
𝑞

𝑛 ′  

                    =          

 
  
 

  
  𝑥 − 𝑞𝑚−𝑛 ′

𝑎 
𝑞

𝑛 ′

 𝑥 − 𝑎 𝑞
𝑚−𝑛 ′

 𝑥 − 𝑞𝑚−𝑛 ′
 
𝑞

𝑛 ′                                   𝑚 ≥ 𝑛′

 𝑥 − 𝑎 𝑞
𝑚

 𝑥 − 𝑞𝑛 ′ −𝑚
 𝑞𝑚−𝑛 ′

𝑎  
𝑞

𝑚

 𝑥 − 𝑞𝑚−𝑛 ′
 
𝑞

𝑛 ′ −𝑚
          𝑚 < 𝑛

 
  
 

  
 

 

 

=

 
 

 
 𝑥 − 𝑎 𝑞

𝑚−𝑛 ′
                                                 𝑚 ≥ 𝑛′

1

 𝑥 − 𝑞𝑚−𝑛 ′
𝑎 

𝑞

𝑛 ′ −𝑚
=  𝑥 − 𝑎 𝑞

𝑚−𝑛 ′
        𝑚 < 𝑛′

 
 

 
 

                           =  𝑥 − 𝑎 𝑞
𝑚−𝑛 ′

 

                           =  𝑥 − 𝑎 𝑞
𝑚+𝑛  

 

3.  −𝑚 = −𝑚′ < 0 ve 𝑛 = −𝑛′ < 0  için önermedeki eşitliğin doğru olduğunu 

gösterelim. 

 𝑥 − 𝑎 𝑞
𝑚  𝑥 − 𝑞𝑚𝑎 𝑞

𝑛 =  𝑥 − 𝑎 𝑞
−𝑚 ′

 𝑥 − 𝑞−𝑚 ′
𝑎 

𝑞

−𝑛 ′

 

                                                          =  
1

 𝑥 − 𝑞−𝑚 ′
𝑎 

𝑞

𝑚 ′

 𝑥 − 𝑞−𝑛 ′
 𝑞−𝑚 ′

𝑎  
𝑞

𝑛 ′  

                                                                 =
1

 𝑥 − 𝑞𝑛 ′
 𝑞−𝑚 ′ −𝑛 ′

𝑎  
𝑞

𝑚 ′

 𝑥 − 𝑞−𝑚 ′ −𝑛 ′
𝑎 

𝑞

𝑛 ′
 

                                                          =   
1

 𝑥 − 𝑞−𝑚 ′ −𝑛 ′
𝑎 

𝑞

𝑚 ′ +𝑛 ′ =  𝑥 − 𝑎 𝑞
−𝑚 ′ −𝑛 ′

 

                                =  𝑥 − 𝑎 𝑞
𝑚+𝑛  

(Yardımcı 2005). 
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 𝒙 − 𝒂 𝒒
𝒏 nin bir baĢka özelliği ise, 

 𝑎 − 𝑥 𝑞
𝑛 ≠  −1 𝑛 𝑥 − 𝑎 𝑞

𝑛  

olmasıdır. Bunun yerine 𝑛 ≥ 1 için; 

 𝑎 − 𝑥 𝑞
𝑛       =    𝑎 − 𝑥  𝑎 − 𝑞𝑥  𝑎 − 𝑞2𝑥 …  𝑎 − 𝑞𝑛−1𝑥  

            =    𝑎 − 𝑥 𝑞 𝑞−1𝑎 − 𝑥 𝑞2 𝑞−2𝑎 − 𝑥 … . 𝑞𝑛−1 𝑎𝑞1−𝑛 − 𝑥  

                       =  𝑞
 𝑛−1 𝑛

2  𝑥 − 𝑎  𝑥 − 𝑞−1𝑎  𝑥 − 𝑞−2𝑎 …  𝑥 − 𝑞1−𝑛𝑎  −1 𝑛  

=  −1 𝑛𝑞
 𝑛−1 𝑛

2  𝑥 − 𝑞1−𝑛𝑎 𝑞
𝑛  

(Yardımcı 2005). 

 

3.5. Bazı Özel Polinomların q – Türevleri: 

1. 

𝐷𝑞  
1

 𝑥 − 𝑎 𝑞
𝑛 = 𝐷𝑞  

1

 𝑥 − 𝑞−𝑛 𝑞𝑛𝑎  
𝑞

𝑛  

                            = 𝐷𝑞 1 − 𝑞𝑛𝑎 𝑞
−𝑛  

                            =   −𝑛  1 − 𝑞𝑛𝑎 𝑞
−𝑛−1 

 

 

 

2. 

𝐷𝑞 𝑎 − 𝑥 𝑞
𝑛 = 𝐷𝑞  −1 𝑛𝑞𝑛 𝑛−1 2  𝑥 − 𝑞1−𝑛𝑎 𝑞

𝑛  

=  −1 𝑛𝑞 𝑛−1 𝑛 2  𝑛  𝑥 − 𝑞1−𝑛𝑎 𝑞
𝑛−1 

= −1 −1 𝑛−1 𝑛 𝑞𝑛−1𝑞 𝑛−1  𝑛−2 2  𝑥 − 𝑞−𝑛+2 𝑞−1𝑎  
𝑞

𝑛−1
 

= − 𝑛 𝑞𝑛−1 −1 𝑛−1𝑞 𝑛−1  𝑛−2 2  𝑥 − 𝑞−𝑛+2 𝑞−1𝑎  
𝑞

𝑛−1
 

= − 𝑛 𝑞𝑛−1 𝑎𝑞−1 − 𝑥 𝑞
𝑛−1 
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= − 𝑛  𝑎 − 𝑞𝑥 𝑞
𝑛−1 

3. 

𝐷𝑞  
1

 𝑎 − 𝑥 𝑞
𝑛 =

 𝑎 − 𝑥 𝑞
𝑛𝐷𝑞1 − 1. 𝐷𝑞 𝑎 − 𝑥 𝑞

𝑛

 𝑎 − 𝑞𝑥 𝑞
𝑛 𝑎 − 𝑥 𝑞

𝑛  

              =
−𝐷𝑞 𝑎 − 𝑥 𝑞

𝑛

 𝑎 − 𝑞𝑥 𝑞
𝑛 𝑎 − 𝑥 𝑞

𝑛  

             =
 𝑛  𝑎 − 𝑞𝑥 𝑞

𝑛−1

 𝑎 − 𝑞𝑥 𝑞
𝑛 𝑎 − 𝑥 𝑞

𝑛  

                                                             =
 𝑛  𝑎 − 𝑞𝑥  𝑎 − 𝑞2𝑥 … .  𝑎 − 𝑞𝑛−2𝑞𝑥 

 𝑎 − 𝑥 𝑞
𝑛 𝑎 − 𝑞𝑥  𝑎 − 𝑞2𝑥 … .  𝑎 − 𝑞𝑛−1𝑞𝑥 

 

            =
 𝑛 

 𝑎 − 𝑥 𝑞
𝑛 𝑎 − 𝑞𝑛𝑥 

 

           =
 𝑛 

 𝑎 − 𝑥 𝑞
𝑛 𝑎 − 𝑞𝑛𝑥 

 

  =     
 𝑛 

 𝑎 − 𝑥 𝑞
𝑛+1 

 

(Yardımcı 2005). 

3.6.  q-Trigonometrik Fonksiyonlar 

q-trigonometrik fonksiyonlar aşağıdaki şekilde tanımlanmaktadır. 

𝑠𝑖𝑛𝑞𝑥 =
𝑒𝑞

𝑖𝑥 − 𝑒𝑞
−𝑖𝑥

2𝑖
𝑆İ𝑁𝑞𝑥 =

𝐸𝑞
𝑖𝑥 − 𝐸𝑞

−𝑖𝑥

2𝑖
 

𝑐𝑜𝑠𝑞𝑥 =
𝑒𝑞

𝑖𝑥 + 𝑒𝑞
−𝑖𝑥

2
𝐶𝑂𝑆𝑞𝑥 =

𝐸𝑞
𝑖𝑥 + 𝐸𝑞

−𝑖𝑥

2
 

𝑆İ𝑁𝑞𝑥 =
𝑒𝑖𝑥

1 𝑞 − 𝑒−𝑖𝑥
1 𝑞 

2𝑖
= 𝑠𝑖𝑛1 𝑞 𝑥  

ve 

𝐶𝑂𝑆𝑞𝑥 =
𝑒𝑖𝑥

𝑞 + 𝑒−𝑖𝑥
𝑞

2
= 𝑐𝑜𝑠1 𝑞 𝑥  
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𝑐𝑜𝑠𝑞𝑥 .𝐶𝑂𝑆𝑞𝑥 =
𝑒𝑖𝑥

𝑞 . 𝐸𝑖𝑥
𝑞 + 𝑒𝑖𝑥

𝑞𝐸−𝑖𝑥
𝑞 + 𝑒𝑖𝑥

𝑞𝐸𝑖𝑥
𝑞 + 𝑒−𝑖𝑥

𝑞𝐸−𝑖𝑥
𝑞

4
 

=
2 + 𝑒𝑖𝑥

𝑞𝐸𝑖𝑥
𝑞 + 𝑒−𝑖𝑥

𝑞𝐸
𝑖𝑥

𝑞

4
 

𝑠𝑖𝑛𝑞𝑥𝑆İ𝑁𝑞𝑥 =
𝑒𝑖𝑥

𝑞𝐸𝑖𝑥
𝑞 − 𝑒𝑖𝑥

𝑞𝐸−𝑖𝑥
𝑞 − 𝑒−𝑖𝑥

𝑞𝐸𝑖𝑥
𝑞 + 𝑒−𝑖𝑥

𝑞𝐸−𝑖𝑥
𝑞

−4
 

= −
𝑒𝑖𝑥

𝑞𝐸𝑖𝑥
𝑞 + 𝑒−𝑖𝑥

𝑞𝐸−𝑖𝑥
𝑞 − 2

4
 

elde edilir. Sonuç olarak                                                                                                       

𝑐𝑜𝑠𝑞𝑥𝐶𝑂𝑆𝑞𝑥 + 𝑠𝑖𝑛𝑞𝑥𝑆İ𝑁𝑞𝑥 = 1 𝑖𝑓𝑎𝑑𝑒𝑠𝑖 𝑠𝑖𝑛𝑥2 + 𝑐𝑜𝑠𝑥2 = 1 nin q-benzeridir.  

Şimdi de q trigonometrik fonksiyonların türevlerini zincir kuralından yararlanarak 

hesaplayalım 𝑢 = 𝑢 𝑥 = 𝑖𝑥, 𝑓 𝑥 = 𝑒𝑞
𝑥      olarak seçelim. 

1. 

 

𝐷𝑞𝑠𝑖𝑛𝑞𝑥 = 𝐷𝑞  
𝑒𝑖𝑥

𝑞 − 𝑒−𝑖𝑥
𝑞

2𝑖
  

                      =
1

2𝑖
 𝐷𝑞𝑒𝑖𝑥

𝑞 − 𝐷𝑞𝑒−𝑖𝑥
𝑞  

               =
1

2𝑖
 𝑖𝑒𝑞

𝑖𝑥 + 𝑖𝑒𝑞
−𝑖𝑥  

  =
𝑒𝑞

𝑖𝑥 + 𝑒𝑞
−𝑖𝑥

2
 

=        𝑐𝑜𝑠𝑞𝑥  

2 

𝐷𝑞𝑐𝑜𝑠𝑞𝑥 =      𝐷𝑞  
𝑒𝑞

𝑖𝑥 − 𝑒𝑞
−𝑖𝑥

2
  

=
1

2
 𝑖𝑒𝑞

𝑖𝑥 − 𝑖𝑒𝑞
−𝑖𝑥  

=    
𝑖

2
 𝑒𝑞

𝑖𝑥 − 𝑒𝑞
−𝑖𝑥  
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=  
1

2𝑖
 𝑒𝑞

−𝑖𝑥 − 𝑒𝑞
𝑖𝑥  

=   −𝑠𝑖𝑛𝑞𝑥  

3 

𝐷𝑞𝑆İ𝑁𝑞𝑥 =       𝐷𝑞  
𝐸𝑞

𝑖𝑥 − 𝐸𝑞
−𝑖𝑥

2𝑖
  

=   
1

2𝑖
 𝑖𝐸𝑞

𝑖𝑞𝑥 + 𝑖𝐸𝑞
−𝑖𝑞𝑥   

=      
1

2
 𝐸𝑞

𝑖𝑞𝑥 + 𝐸𝑞
−𝑖𝑞𝑥   

= 𝐶𝑂𝑆𝑞𝑥  

4 

𝐷𝑞𝐶𝑂𝑆𝑞𝑥 = 𝐷𝑞  
𝐸𝑞

𝑖𝑥 + 𝐸𝑞
−𝑖𝑥

2
  

=
1

2
 𝑖𝐸𝑞

𝑖𝑞𝑥 − 𝑖𝐸𝑞
−𝑖𝑞𝑥   

=  
𝑖

2
 𝐸𝑞

𝑖𝑞𝑥 − 𝐸𝑞
−𝑖𝑞𝑥   

    =
1

2𝑖
 𝐸𝑞

−𝑖𝑞𝑥 − 𝐸𝑞
𝑖𝑞𝑥   

= −𝑆İ𝑁𝑞𝑥  

(Yardımcı 2005). 

3.7.  q – Ġntegral 

Tanım 3.7.1. 𝐷𝑞𝐹 𝒙 = 𝑓 𝒙 𝑖𝑠𝑒  𝐹 𝑦𝑒 nin q karşıt türevi denir ve 

 𝑓 𝑥 𝑑𝑞𝑥  

ile gösterilir.Analizdekine benzer olarak 

𝐷𝑞𝑔 𝑥 = 0 ⇔ 𝑔 𝑥 = 𝑐  

dir. Çünkü, 𝑔 𝑥 =  𝑎𝑖
𝑥 𝑖∞

𝑖=0 bir formal kuvvet serisine eşitse,𝐷𝑞𝑔 𝑥 = 0 
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olduğundan her 𝑖 için 𝑞𝑖𝑎𝑖 = 𝑎𝑖  bulunur. Bu 𝑖 ∈ ℤ+ için 𝑎𝑖 = 0 

ve𝑔 fonksiyonu sabit bir fonksiyonudur, anlamına gelir. 

Kuantum analizde değişken dönüşümü yalnızca 𝑢 = 𝑢 𝑥 = 𝑎𝑥𝛽  biçimindeki 

fonksiyonlara uygulanabilir. 𝐹 𝑥 ,f nin bir q-karşıt türevi olmak üzere, 

 𝑓 𝑢 𝑑𝑞𝑢 = 𝐹 𝑢 = 𝐹 𝑢 𝑥   

dir.(Vulaş 2009). 

Teorem 3.7.1 

 𝑓 𝑥 𝑑𝑞𝑥 =  1 − 𝑞 𝑥  𝑞𝑖𝑓 𝑞𝑖𝑥 

∞

𝑖=0

 

Ġspat 3.7.1.𝑓 𝑥  keyfi bir fonksiyon olsun f fonksiyonun q karşıt türevi 𝐹 𝑥  

fonksiyonunu oluşturmak için 𝑀𝑞 𝐹 𝑥  = 𝐹 𝑞𝑥  doğrusal operatörünü 

tanımlayalım. 𝑀𝑞  Operatörü ve q türev tanımından 

1

 𝑞 − 1 𝑥
 𝑀𝑞 − 1 𝐹 𝑥 =

𝐹 𝑞𝑥 − 𝐹 𝑥 

 𝑞 − 1 𝑥
= 𝑓 𝑥  

eşitliği kolayca görülür. 

𝐹 𝑥 =
1

1 − 𝑀𝑞
  1 − 𝑞 𝑥𝑓 𝑥   

 

                                   =  1 − 𝑞  𝑥𝑓 𝑥 + 𝑞𝑥𝑓 𝑞𝑥 + 𝑞2𝑥𝑓 𝑞2𝑥 + ⋯   

                  =  1 − 𝑞 𝑥  𝑞𝑖𝑓 𝑞𝑖𝑥 

∞

𝑖=0

 𝑣𝑒                        

 𝑓 𝑥 𝑑𝑞𝑥 =      1 − 𝑞 𝑥  𝑞𝑖𝑓 𝑞𝑖𝑥 

∞

𝑖=0

 

bulunur. Bu seriye 𝑓 fonksiyonunun Jackson integrali denir.(Vulaş 2009). 

 

Teorem 3.7.2.  0 <  𝑞 < 1 olsun uygun bir 0 ≤ 𝑎 < 1 için  𝑓 𝑥 𝑥𝑎  ,  0, 𝐴  Aralığı  

üzerinde sınırlıysa  
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 𝑓 𝑥 𝑑𝑞𝑥 = 𝑥 1 − 𝑞  𝑞𝑖𝑓 𝑞𝑖𝑥 

∞

𝑖=0

                       (3.2) 

ile tanımlanan jackson integrali  (0. 𝐴  üzerinde f fonksiyonunun q karşıtı türevi olan 

bir F fonksiyonuna yakınsar. Ayrıca 𝐹 0 = 0 olmak üzere F fonksiyonu 𝑥 = 0 

da süreklidir.(Vulaş 2009). 

Ġspat 3.7.2  (0, 𝐴  Üzerinde  𝑓 𝑥 𝑥𝑎  < 𝑀 olsun. Herhangi 0 ≤ 𝑥 < 𝐴, 𝑖 ∈ ℤ+ için 

 𝑓 𝑞𝑖𝑥   𝑞𝑖𝑥 
𝑞
  < 𝑀 ⇒  𝑓 𝑞𝑖𝑥  < 𝑀 𝑞𝑖𝑥 

−𝑎
 

dir. Böylece, 0 < 𝑥 ≤ 𝐴  için 

 𝑞𝑖𝑓 𝑞𝑖𝑥  < 𝑀𝑥−𝑎 𝑞1−𝑎 𝑖 

bulunur. 1 − 𝑎 > 0 ve 0 < 𝑞 < 1den dolayı, (3.2) daki serinin genel terimi yakınsak 

bir geometrik serisinin genel terimiyle sınırlı olduğundan  3.2  ın sağ tarafı uygun 

bir F fonksiyonun noktasal olarak yakınsar. 3.2  dan 𝐹 0 = 0 olduğu görülür. 𝐹 𝑋  

in 𝑥 = 0 da sürekli olduğunu gösterelim.∀𝜀 > 0 için  𝑥 < 𝛿 oldukça 

 𝐹 𝑥 − 𝐹 0  =  𝑥 1 − 𝑞  𝑞𝑖

∞

𝑖=0

𝑓 𝑞𝑖𝑥   

<  1 − 𝑞  𝑥  𝑀

∞

𝑖=0

𝑥−𝑎 𝑞1−𝑎 𝑖 

<
𝑀𝛿1−𝑎 1 − 𝑞 

1 − 𝑞1−𝑎
 

< 𝜀                  

sağlanır. F fonksiyonun 𝑥 = 0 da sürekli olduğu görülür. Ayrıca     𝑜 < 𝑥 < 𝐴 ve                  

0 < 𝑞 < 1 olduğundan  0 < 𝑞𝑥 ≤ 𝐴 dır ve 𝐹 fonksiyonun q-diferansiyellesebilir 

olduğu ve f nin q-karşıt türevi olduğu açıkça görülür.(Vulaş. 2009) 

Tanım 3.7.2    0 < 𝑎 < 𝑏  olsun. Belirli q-integral, 

 𝑓 𝑥 𝑑𝑞𝑥 = 𝑏 1 − 𝑞  𝑞𝑖𝑓 𝑞𝑖𝑏 

∞

𝑖=0

𝑏

0

 3.3  

olmak üzere 
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 𝑓 𝑥 

𝑏

𝑎

𝑑𝑞𝑥 =  𝑓 𝑥 

𝑏

0

𝑑𝑞𝑥 −  𝑓 𝑥 𝑑𝑞𝑥

𝑎

0

 3.4  

eşitliğiyle tanımlanır. 

0 < 𝜖 < 𝑏 olmak üzere  𝜖, 𝑏   üzerinde  3.3  toplamı sonsuz sayıda terimden oluşur 

ve bu Riemann toplamıdır. Buradan q→ 1 için 𝑏 1 − 𝑞 𝑞𝑖 → 0 ve toplamı, 𝜖, 𝑏  

üzerinde Riemann integraline yakınsar. 𝜖 keyfi olduğundan f fonksiyonu kapalı 

aralığında süreklidir ve  

lim
𝑞→1

 𝑓 𝑥 𝑑𝑞𝑥

𝑏

0

=  𝑓 𝑥 𝑑𝑥

𝑏

0

 

gerçeklenir.(Vulaş 2009). 

Tanım 3.7.3 f fonksiyonunun ℝ+ ∪  0  𝑑𝑎𝑘𝑖 genelleştirilmiş q-integrali,  

 𝑓 𝑥 

∞

0

𝑑𝑞𝑥 =   𝑓 𝑥 

𝑞 𝑖

𝑞 𝑖+1

∞

𝑖=−∞

𝑑𝑞𝑥  

toplamıyla tanımlanır. 

 𝑓 𝑥 

𝑞 𝑖

𝑞 𝑖+1

𝑑𝑞𝑥 =  1 − 𝑞 𝑞𝑖𝑓 𝑞𝑖  

olduğundan 

 𝑓 𝑥 

∞

0

𝑑𝑞𝑥 =  1 − 𝑞  𝑞𝑖

∞

𝑖=−∞

𝑓 𝑞𝑖  3.5  

olarak elde edilir.(Vulaş 2009). 

Önerme 3.7.1 𝑥𝑎𝑓 𝑥 , 𝑎 < 1 iken 𝑥 = 0 noktasının bir komşuluğunda ve 𝑎 > 1 

iken yeterince büyük x ler için sınırlıysa genelleştirilmiş q integrali yakınsaktır. 

Ġspat 3.7.2   3.5 ın sağındaki seriyi 

 𝑞𝑖𝑓 𝑞𝑖 =  𝑞−𝑖

∞

𝑖=1

∞

𝑖=∞

𝑓 𝑞−𝑖 +  𝑞𝑖

∞

𝑖=0

𝑓 𝑞𝑖  
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şeklinde ikiye ayıralım. İkinci toplam  (0,1  Aralığındaki q-integralidir. Verilen 

birinci koşul altında toplamın yakınsaklığını gösterilir. Birinci toplam yeterince 

büyük x ler ve 𝑎 > 1 koşulunu sağlayan bir    𝛼için  𝑥𝑎𝑓 𝑎  < 𝑀,  𝑀 > 0  

olduğundan yeterince büyük 𝑖 lerde 

 𝑞−𝑖𝑓 𝑞−𝑖  = 𝑞𝑖 𝛼−1  𝑞−𝛼𝑖𝑓 𝑞−𝑖  < 𝑀𝑞𝑖 𝛼−1  

bulunur. Buna göre birinci serinin genel terimi yakınsak bir geometrik serinin genel 

terimiyle üstten sınırlandığından mutlak yakınsaktır.(Vulaş. 2009) 

Teorem 3.7.3  (q-Ġntegralin Temel Teoremi): 0 ≤ 𝑎 < 𝑏 ≤ ∞ ve 𝑓 fonksiyonunun 

bir karşıt türevi 𝐹 olsun 𝐹, 𝑥 = 0 𝑑𝑎 𝑠ü𝑟𝑒𝑘𝑙𝑖𝑦𝑠𝑒  

 𝑓 𝑥 

𝑏

𝑎

𝑑𝑞𝑥 = 𝐹 𝑏 − 𝐹 𝑎  

dır.(Vulaş 2009). 

Ġspat 3.7.3𝐹 fonksiyonu, 𝑥 = 0 da sürekli olduğundan, bir sabit farkıyla Jackson 

formülüyle verilir 

𝐹 𝑥 = 𝑥 1 − 𝑞  𝑞𝑖𝑓 𝑞𝑖𝑥 + 𝐹 0 

∞

𝑖=0

 

buradan 

 𝑓 𝑥 

𝑎

0

𝑑𝑞𝑥 = 𝐹 𝑎 − 𝐹 𝑏  

ve sonlu bir 𝑏 için 

 𝑓 𝑥 

𝑏

0

𝑑𝑞𝑥 = 𝐹 𝑏 − 𝐹 𝑎  

olduğundan iddia kolaylıkla elde edilir.(Vulaş 2009). 

Sonuç 3.7.1 𝑥 = 0 noktasının bir komşuluğunda 𝑓 ′ 𝑥  varsa ve 𝑥 = 0 da sürekliyse 

 𝐷𝑞𝑓 𝑥 𝑑𝑞𝑥 = 𝑓 𝑏 − 𝑓 𝑎 

𝑏

𝑎

 3.6  

dir. 



 
 

47 
 

Ġspat 3.7.1. L Hospital kuralıyla 

lim
𝑥→0

𝐷𝑞𝑓 𝑥 = lim
𝑥→0

𝑓 𝑞𝑥 − 𝑓 𝑥 

𝑥 𝑞 − 1 
= 𝑓 ′ 0  

elde edilir. 𝐷𝑞𝑓 0 = 𝑓 ′ 0  tanımlanarak, 𝐷𝑞𝑓 𝑥 𝑥 = 0 da sürekli yapılır. q-

integralin temel teoreminden sonuca ulaşılır. Çarpılan iki fonksiyonun q-türevi  

𝐷𝑞 𝑓 𝑥 . 𝑔 𝑥  = 𝑓 𝑥 𝐷𝑞𝑔 𝑥 + 𝑔 𝑞𝑥 . 𝐷𝑞𝑓 𝑥  3.7  

 ∗ 3.6  ve  3.7 den, 

 𝑓 𝑥 

𝑏

𝑎

𝐷𝑞𝑔 𝑥 𝑑𝑞𝑥 = 𝑓 𝑏 𝑔 𝑏 − 𝑓 𝑎 𝑔 𝑎 −  𝑔 𝑞𝑥 

𝑏

𝑎

. 𝐷𝑞𝑓 𝑥 𝑑𝑞𝑥  3.8  

q-analizdeki kısmi integrasyon formülü elde edilir. (Vulaş 2009). 

 

3.8   q- Gamma ve Beta Fonksiyonları. 

Gamma fonksiyonun q-benzeri 

𝛤𝑞 𝑡 =  𝑥𝑡−1𝐸𝑞  1 − 𝑞 𝑞𝑥 𝑑𝑞𝑥

∞

0

, 𝑡 > 0     

İntegraliyle tanımlanır. jackson integrali yardımıyla gamma fonksiyonu için 

𝛤𝑞 𝑡 =  𝑥𝑡−1𝐸𝑞  1 − 𝑞 𝑞𝑥 𝑑𝑞𝑥

∞

0

, 𝑡 > 0 

=  
1

1 − 𝑞
 

𝑡

 𝑥𝑡−1𝐸𝑞 𝑞𝑥 𝑑𝑞𝑥

∞

0

 

     =  
1

1 − 𝑞
 

𝑡−1

 𝑞𝑡𝑖 𝑞𝑖+1; 𝑞 
∞

∞

𝑖=−∞

 

=
 𝑞; 𝑞 ∞

 1 − 𝑞 𝑡−1
 

𝑞𝑡𝑖

 𝑞; 𝑞 𝑖

∞

𝑖=0

 

eşitliği bulunur ve buradan gamma fonksiyonu, 
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𝛤𝑞 𝑡 =
 𝑞; 𝑞 ∞

 𝑞𝑡 ; 𝑞 ∞

 1 − 𝑞 1−𝑡              (3.9)    

olarak kutupları hariç genişletilir. 

Gamma fonksiyonunun sağladığı bazı eşitlikler q-Gamma fonksiyonu için de 

gerçeklenir:  

q gamma fonksiyonun tanımından 

𝛤 𝑡 + 1 = 𝑡𝛤 𝑡  

      𝛤 𝑛 + 1 = 𝑛!, 𝑛 ∈ 𝑁 

fonksiyonel eşitliklerinin q-benzerleri, 

𝛤𝑞 𝑡 =
 𝑞: 𝑞 ∞

 𝑞𝑡𝑞 ∞

 1 − 𝑞 1−𝑡  

                                         =
 𝑞; 𝑞 ∞

 1 − 𝑞𝑡  𝑞𝑡+1; 𝑞 ∞

 1 − 𝑞 1−𝑡−1 1 − 𝑞  

=   
1 − 𝑞

1 − 𝑞𝑡
𝛤𝑞 𝑡 + 1  

ve 

𝛤𝑞 𝑛 + 1 =
 𝑞; 𝑞 ∞

 𝑞𝑛+1; 𝑞 ∞

 1 − 𝑞 −𝑛 =
 𝑞; 𝑞 𝑛

 1 − 𝑞 𝑛
=  𝑛 ! 

olarak elde edilir. Beta fonksiyonunun q-benzeri: 

𝛽𝑞 𝑡, 𝑠 =
𝛤𝑞 𝑡 𝛤𝑞 𝑠 

𝛤𝑞 𝑡 + 𝑠 
            (3.10)  

olarak tanımlanır. Tanımından 

𝛽𝑞 𝑡, 𝑠 =
𝛤𝑞 𝑡 𝛤𝑞 𝑠 

𝛤𝑞 𝑡 + 𝑠 
= 𝛽𝑞 𝑠, 𝑡  

Simetri özelliği kolayca görülür. 

 3.9  ve  3.10   ile verilen q-gamma tanımı yerine yazılırsa 

𝛽𝑞 𝑡, 𝑠 =  1 − 𝑞 
 𝑞, 𝑞𝑡+𝑠; 𝑞 ∞

 𝑞𝑡 , 𝑞𝑠; 𝑞 ∞
 

bulunur. 𝑡 > 0 ise q-binom teoreminden, 
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𝛽𝑞 𝑡, 𝑠 =  1 − 𝑞 
 𝑞; 𝑞 ∞

 𝑞𝑠; 𝑞 ∞
 

 𝑞𝑠; 𝑞 𝑖

 𝑞; 𝑞 𝑖
𝑞𝑡𝑖

∞

𝑖=0

 

                                               =  1 − 𝑞  
 𝑞𝑖+1; 𝑞 

∞

 𝑞𝑖+𝑠; 𝑞 ∞
𝑞𝑡𝑖

∞

𝑖=0

                           (3.11) 

elde edilir. q-beta fonksiyonunun simetri özeliği ve q-binom teoremi kullanarak 

𝛽𝑞 𝑡, 𝑠 =  1 − 𝑞  
 𝑞𝑖+1; 𝑞 

∞

 𝑞𝑖+𝑡 ; 𝑞 ∞
𝑞𝑠𝑖 , 𝑠 > 0

∞

𝑖=0

 

(3.11) de 𝑞𝑛 = 𝑡 dersek, 

𝛽𝑞 𝑡, 𝑠 =  1 − 𝑞  
 𝑞𝑡 ; 𝑞 𝑖

 𝑞𝑠𝑡; 𝑞 𝑖
𝑞𝑡𝑖

∞

𝑖=0

 

belirli q- integral tanımından  

𝛽𝑞 𝑡, 𝑠 =  𝑥𝑡−1

1

0

 1 − 𝑞𝑥 𝑞
𝑠−1𝑑𝑥      𝑠, 𝑡 > 0     

q- beta fonksiyonunun integral tanımına ulaşılır.(Vulaş 2009). 

3.9. q-Ġntegralin Geometrik Anlamı 

q- integralinin geometrik anlamı aşağıdaki şekilde gösterildiği gibi sonsuz çokluktaki 

dikdörtgenlerin alanlarının toplamıdır. 
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ġekil 3.1.q-İntegralin Geometrik Anlamı 

 

Şekilden de görüldüğü gibi  𝑎, 𝑏  aralığını sonsuz çoklukta aralıklara bölünmüştür. 

Bu alanların toplamı bize q- integrali verecektir. Bu durum analizdeki belirli 

integralin tanımına benzemektedir. Eğer 𝑞 → 1 için limit alırsak, 

lim
𝑞→1

 1 − 𝑞 𝑏  𝑞𝑗𝑓 𝑞𝑗𝑏 

∞

𝑗 =0

 

ifadesinde dikdörtgenlerin genişliği sıfıra yaklaşacak ve bu durum bu limiti Riemann 

toplamına yakınsayacaktır. O halde 𝑓 𝑥 ,  𝑎, 𝑏  aralığında sürekli ise, 

lim
𝑞→1

 𝑓 𝑥 𝑑𝑞𝑥 =

𝑏

0

 𝑓 𝑥 𝑑𝑥

𝑏

0

 

olacaktır.  

 𝑓 𝑥 𝑑𝑞𝑥 =  𝑓 𝑥 𝑑𝑞𝑥 −  𝑓 𝑥 𝑑𝑞𝑥

𝑞 𝑗+1

0

𝑞 𝑗

0

𝑞 𝑗

𝑞 𝑗+1

 

                                           =  1 − 𝑞  𝑞𝑗+𝑘𝑓 𝑞𝑗 +𝑘 −  1 − 𝑞  𝑞𝑗 +𝑘+1𝑓 𝑞𝑗 +𝑘+1 

∞

𝑘=0

∞

𝑘=0

 

sonuç olarak 
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 𝑓 𝑥 

𝑞 𝑗

𝑞 𝑗 +1

𝑑𝑞𝑥 =  1 − 𝑞 𝑞𝑗𝑓 𝑞𝑗   

elde edilecektir. (Yardımcı 2005). 

3.10. q-Ġntegral ile Ġlgili Bazı Önemli Lemma ve Teoremler: 

Lemma 3.10.1. 𝑓: 𝐼 =  𝑎. 𝑏 ⊂ ℝ → ℝfonksiyonu 𝐼°(𝐼’nın içi) üzerinde bir 𝑞-

diferensiyellenebilen fonksiyon olsun. 𝐷𝑞 , 0 < 𝑞 < 1 olmak üzere 𝐼 üzerinde sürekli 

ve integrallenebilir ise bu takdirde 

1

𝑏 − 𝑎
 𝑓 𝑥 𝑑𝑞𝑥 −

𝑞𝑓 𝑎 + 𝑓(𝑏)

1 + 𝑞

𝑏

𝑎

=
𝑞(𝑏 − 𝑎)

1 + 𝑞
  1 −  1 + 𝑞 𝑡 𝐷𝑞𝑓  1 − 𝑡 𝑎 + 𝑡𝑏 𝑑𝑞𝑡.

1

0

 

eşitliği geçerlidir (Noor et al.2015). 

Teorem 3.10.1.𝑓: 𝐼 =  𝑎. 𝑏 ⊂ ℝ → ℝ fonksiyonu 𝐼°(𝐼’nın içi) üzerinde bir 𝑞-

diferensiyellenebilen fonksiyon olarak verilsin. 𝐷𝑞 , 0 < 𝑞 < 1 olmak üzere 𝐼 

üzerinde sürekli ve integrallenebilir olsun. Eğer  𝐷𝑞𝑓 
𝑟
, 𝑟 ≥ 1 olmak üzere konveks 

fonksiyon ise bu takdirde  

 
1

𝑏 − 𝑎
 𝑓 𝑥 𝑑𝑞𝑥 −

𝑞𝑓 𝑎 + 𝑓(𝑏)

1 + 𝑞

𝑏

𝑎

  

≤
𝑞(𝑏 − 𝑎)

1 + 𝑞
 
𝑞 2 + 𝑞 + 𝑞3 

 1 + 𝑞 3  

1−
1

𝑟

 
𝑞(1 + 4𝑞 + 𝑞2)

 1 + 𝑞 + 𝑞2  1 + 𝑞 3  𝐷𝑞𝑓(𝑎) 
𝑟

+
𝑞(1 + 3𝑞2 + 2𝑞3)

 1 + 𝑞 + 𝑞2 (1 + 𝑞)3  𝐷𝑞𝑓(𝑏) 
𝑟
 

1

𝑟

 

eşitsizliği geçerlidir (Noor et al. 2015). 

Teorem 3.10.2.𝑓: 𝐼 =  𝑎. 𝑏 ⊂ ℝ → ℝ fonksiyonu 𝐼°(𝐼’nın içi) üzerinde bir 𝑞-

diferensiyellenebilen fonksiyon olarak verilsin. 𝐷𝑞 , 0 < 𝑞 < 1 olmak üzere 𝐼 

üzerinde sürekli ve integrallenebilir olsun. Eğer  𝐷𝑞𝑓 
𝑟
, 𝑝, 𝑟 > 1,

1

𝑝
+

1

𝑟
= 1 olmak 

üzere konveks fonksiyon ise bu takdirde  

 
𝑞𝑓 𝑎 + 𝑓(𝑏)

1 + 𝑞
−

1

𝑏 − 𝑎
 𝑓(𝑥)𝑑𝑞𝑥

𝑏

𝑎

  

≤
𝑞(𝑏 − 𝑎)

1 + 𝑞
 
𝑞(2 + 𝑞 + 𝑞3)

 1 + 𝑞 3
 

1

𝑝

 
𝑞(1 + 4𝑞 + 𝑞2)

(1 + 𝑞 + 𝑞2) 1 + 𝑞 3
 𝐷𝑞𝑓 𝑎  

𝑟
+

𝑞(1 + 3𝑞2 + 2𝑞3)

 1 + 𝑞 + 𝑞2  1 + 𝑞 3
 𝐷𝑞𝑓(𝑏) 

𝑟
 

1

𝑟

 

eşitsizliği geçerlidir (Noor et al. 2015). 
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Teorem 3.10.3.𝑓: 𝐼 =  𝑎. 𝑏 ⊂ ℝ → ℝ fonksiyonu 𝐼°(𝐼’nın içi) üzerinde bir 𝑞-

diferensiyellenebilen fonksiyon olarak verilsin. 𝐷𝑞 , 0 < 𝑞 < 1 olmak üzere 𝐼 

üzerinde sürekli ve integrallenebilir olsun. Eğer  𝐷𝑞𝑓 
𝑟
, 𝑝, 𝑟 > 1,

1

𝑝
+

1

𝑟
= 1 olmak 

üzere quasi-konveks fonksiyon ise bu takdirde  

 
𝑞𝑓 𝑎 + 𝑓(𝑏)

1 + 𝑞
−

1

𝑏 − 𝑎
 𝑓(𝑥)𝑑𝑞𝑥

𝑏

𝑎

  

≤
𝑞(𝑏 − 𝑎)

1 + 𝑞
 
𝑞(2 + 𝑞 + 𝑞3

 1 + 𝑞 3
 

1

𝑝

 
𝑞(2 + 𝑞 + 𝑞3)

 1 + 𝑞 3
 𝑠𝑢𝑝  𝐷𝑞𝑓 𝑎  ,  𝐷𝑞𝑓(𝑏)    

1

𝑟

 

eşitsizliği geçerlidir (Noor et al. 2015). 

Teorem 3.10.4.𝑓: 𝐼 =  𝑎. 𝑏 ⊂ ℝ → ℝ fonksiyonu 𝐼°(𝐼’nın içi) üzerinde bir 𝑞-

diferensiyellenebilen fonksiyon olarak verilsin. 𝐷𝑞 , 0 < 𝑞 < 1 olmak üzere 𝐼 

üzerinde sürekli ve integrallenebilir olsun. Eğer  𝐷𝑞𝑓 
𝑟
, 𝑟 > 1 olmak üzere quasi-

konveks fonksiyon ise bu takdirde  

 
𝑞𝑓 𝑎 + 𝑓(𝑏)

1 + 𝑞
−

1

𝑏 − 𝑎
 𝑓(𝑥)𝑑𝑞𝑥

𝑏

𝑎

 ≤
𝑞2 𝑏 − 𝑎 (2 + 𝑞 + 𝑞3)

 1 + 𝑞 4  𝑠𝑢𝑝  𝐷𝑞𝑓(𝑎) ,  𝐷𝑞𝑓(𝑏)   
1

𝑟  

eşitsizliği geçerlidir (Noor et al. 2015). 
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4. ARAġTIRMA BULGULARI 

Bu bölümde, araştırmada derlenen bulgulara yer verilecektir. 

4.1. q-Steffensen’s EĢitsizliği  

Öncelikle literatürde Steffensen eşitsizliği olarak bilinen eşitlik verilmiştir.   

Teorem4.1.1. 𝑓 ve 𝑔 𝑎, 𝑏  aralığında integrallenebilir iki fonksiyon olsun. 𝑓 

fonksiyonu azalan ve ∀𝑥 ∈ (𝑎, 𝑏), 0 ≤ 𝑔(𝑥) ≤ 1, 𝜆 = ∫ 𝑔 𝑥 𝑑𝑥
𝑏

𝑎
 olarak verilsin. Bu 

takdirde 

 

eşitsizliği geçerlidir (Gauchman 2004).  

Tanım 4.1.1. 𝑥 ∈ [𝑎, 𝑏] ve 𝑞𝑥 ∈ [𝑎, 𝑏] olmak üzere eğer 𝑓(𝑞𝑥) ≤ 𝑓(𝑥)        

(𝑓(𝑞𝑥) ≥ 𝑓(𝑥)) oluyorsa 𝑓(𝑥) q-artandır (q-azalandır). 

𝑓(𝑥)’in [𝑎, 𝑏] üzerinde q-artan (q-azalan) olması için gerek ve yeter şart  

(𝐷𝑞𝑓) 𝑥 ≥ 0 ((𝐷𝑞𝑓)(𝑥) ≤ 0) olmasıdır.   

Ayrıca, eğer 𝑓(𝑥)artan (azalan) ise bu durumda 𝑓(𝑥) q-artandır (q-azalandır). 

Steffensen eşitsizliğinin q-analog versiyonu aşağıdaki teoremde ispat edilmiştir.   

Teorem 4.1.2.  olduğunu kabul edelim.  olmak 

üzere fonksiyonları verilsin ve [𝑎, 𝑏] üzerinde 𝐹 q-azalan, 

  olsun. Ayrıca  olmak üzere [𝑎, 𝑏] üzerinde 

𝑏 − 𝑐𝑙 ≤  𝐺 𝑥 𝑑𝑞𝑥
𝑏

𝑎

≤ 𝑐𝑘 − 𝑎, 𝐹 ≥ 0 𝑖𝑠𝑒 

ve 

𝑐𝑘 − 𝑎 ≤  𝐺 𝑥 𝑑𝑞𝑥
𝑏

𝑎

≤ 𝑏 − 𝑐𝑙 , 𝐹 ≤ 0 𝑖𝑠𝑒 

 

şartları sağlansın. Bu takdirde 
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eşitsizliği geçerlidir (Gauchman 2004). 

Ġspat: Yalnızca (4.1) eşitsizliğinin sol tarafı ve 𝐹 ≥ 0 durumu için ispat yapılacaktır. 

Diğer kısımların ispatı benzer şekilde görülebilir. Yapılacak olan ispat Steffensen’s 

eşitsizliğinin ispatına oldukça benzer bir yolla elde edilecektir. Teoremin şartları ve 

𝐹’nin q-azalan oluşu dikkate alınırsa için  ve 

 için  yazılır.  
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4.2. q-Grüss’ EĢitsizliği ve Uygulamaları 

Literatürde iyi bilinen Grüss’ eşitsizliği şu şekilde ifade edilebilir.  

Teorem 4.2.1.𝐹 ve 𝐺 fonksiyonları [𝑎, 𝑏] aralığında integrallenebilen iki fonksiyon 

olsun.  reel sabitler olmak üzere ∀𝑥 ∈ [𝑎, 𝑏] için 

 verilsin. Bu takdirde 

 

eşitsizliğigeçerlidir (Gauchman 2004). 

Teorem 4.2.2.(Discrete Grüss’ Eşitsizliği)  ve  ve   

 reel sayılar olmak üzere ,  

verilsin.  reel sabitler olmak üzere ,

, , olsun. Bu durumda 

 

eşitsizliği geçerlidir (Gauchman 2004). 

Ġspat:𝑇 𝑥, 𝑦 aşağıdaki şekilde verilsin.  

 

Bu durumda, 
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olacaktır.  

Ağırlıklı kareli-aritmetik ortalama eşitsizliği gereği 𝑇(𝑥, 𝑥) ≥ 0 olmalıdır. Cauchy-

Schwarz eşitsizliğinden  Gerekli hesaplama yapılırsa 

 

olduğu görülür. Ayrıca 

 

yazılır.  

Aritmetik-Geometrik ortalama eşitsizliğinden
 

ve  

elde edilir. Dahası 

 

yazılır ki  buradan  

Teorem 4.2.3.(q-Grüss’ Eşitsizliği)  reel sabitler olmak üzere ∀𝑥 ∈ [𝑎, 𝑏] 

için ,  olarak verilsin. Bu durumda  

 

eşitsizliği geçerlidir (Gauchman 2004). 

q-Grüss’ eşitsizliğinin bir uygulaması olarak aşağıdaki teorem verilmiştir.  

Teorem 4.2.4. 𝑚, 𝑀 reel sabitler, 𝑟 negatif olmayan bir tamsayı ve ∀𝑥 ∈ [𝑎, 𝑏]  için 

  şartını sağlayan  fonksiyonu verilsin. Bu 

takdirde 
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eşitsizliği geçerlidir (Gauchman 2004). 

Ġspat: Kabul edelim ki 

 

bu durumda 

 

olarak yazılır.  

Ayrıca,  dir.  

q-Grüss’ eşitsizliği yardımıyla, 

 

olduğu açıktır. Taylor kalan formülü yardımıyla  

 

 

Gerekli hesaplamalar yapılarak,  

 

elde edilir. (4.4)-(4.6) da elde edilen ifadeler (4.3) te yerine yazılırsa,  

 

bulunur.  

 



 
 

58 
 

Sonuç 4.2.1. [𝑎, 𝑏] üzerinde  verilsin. Bu durumda 

 

eşitsizliği geçerlidir (Gauchman 2004). 

Ġspat. (4.2) eşitsizliğinde  alınarak ispat tamamlanır. 

4.3. q-Chebyshev’s EĢitsizliği ve Uygulamaları 

Chebyshev’s eşitsizliğinin q-analogversiyonu aşağıdaki teoremde verilmiştir.  

Teorem 4.3.1.  ve  fonksiyonları [𝑎, 𝑏] üzerinde birlikte q-artan veya q-

azalan fonksiyonlar olsun. Bu takdirde 

 

eşitsizliği geçerlidir (Gauchman 2004). 

Eğer fonksiyonlardan biri q-artan diğeri q-azalan ise bu durumda (4.7) eşitsizliği yön 

değiştirir.  

q-Chebyshev’s eşitsizliğinin bir uygulaması aşağıdaki teoremde ispat edilmiştir. 

Teorem 4.3.2.  nin  𝑎, 𝑏  üzerinde q-artan olduğunu kabul edelim 𝐷𝑞
𝑟+2𝑓 ≥

0 olsun. Bu durumda 

 

eşitsizliği geçerlidir. 

 nin  𝑎, 𝑏  üzerinde q-azalan olduğunu kabul edelim (𝐷𝑞
𝑟+2𝑓 ≤ 0 𝑜𝑙𝑠𝑢𝑛). 

Bu durumda 
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eşitsizliği geçerlidir (Gauchman 2004). 

Ġspat.  nin  𝑎, 𝑏  üzerinde q-artan ve 

 

olduğunu kabul edelim. Bu takdirde q-Chebyshev eşitsizliği,  ve  

fonksiyonları [𝑎, 𝑏] üzerinde birlikte q-artan oldukları kullanılırsa 

 

yazılır. Gerekli hesaplamalar yapıldığında  

 

 

 

 

elde edilir.  deki ifadeler (4.11) de yerine yazılırsa  

 

bulunur ki  

 

elde edilmiş olur.  
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Teoremin şartları ve Teorem 4.2.4 kullanılarak sol tarafın ispatı görülür.  nin q-

azalan olması durumunda da benzer ispat yapılır.  

Teorem 4.3.2 de eğer 𝑟 = 0 alınırsa aşağıdaki sonuç elde edilir.  

Sonuç 4.3.1.  

i) 𝐷𝑞
2𝑓 ≥ 0 ise bu durumda 

 

ii) 𝐷𝑞
2𝑓 ≤ 0 ise bu durumda 

 

 

Gauchman 2004 yılındaki çalışmasında q-konvekslikle ilişkili aşağıdaki eşitsizliği 

elde etmiştir.  

 fonksiyonu [𝑎, 𝑏] üzerinde q-konveks olsun ve , 

 verilsin. Bu durumda  ve  fonksiyonları q-artandır. q-

Chebyshev’s eşitsizliği yardımıyla, 

 

yazılır. Kısmi integrasyon uygulanarak 

 

bulunur. Ayrıca 
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ve 

 

elde edilir.  

(4.18)-(4.20)  ifadeleri (4.17) de yerine yazılır, eğer  q-convex ise bu durumda 

 

eşitsizliği geçerlidir (Gauchman 2004). 

4.4. q- Hermite- Hadamard EĢitsizliği 

𝑓(𝑥) fonksiyonu [𝑎, 𝑏] üzerinde konveks olmak üzere  

 

eşitsizliği literatürde Hermite-Hadamard eşitsizliği olarak bilinir.  

Teorem 4.4.1.q- Hermite- Hadamard EĢitsizliği 

𝑖) 𝑓 fonksiyonu q-konveks ve monoton olsun. Ayrıca 𝑓 fonksiyonu q-azalan iken 

 ve 𝑓 fonksiyonu q-artan iken ise  

olarak verilsin. Bu takdirde  

 
eşitsizliği geçerlidir. 

𝑓 fonksiyonu q-konveks ve monoton olsun. Ayrıca 𝑓 fonksiyonu q-azalan iken 

 ve 𝑓 fonksiyonu q-artan iken ise  

olarak verilsin. Bu takdirde 

 

eşitsizliği geçerlidir. 
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𝑓 fonksiyonu q-konveks ise bu durumda 

 

 

 

eşitsizliği geçerlidir (Gauchman 2004). 

Teorem 4.4.2. 𝑓: 𝐼 =  𝑎. 𝑏 ⊂ ℝ → ℝ fonksiyonu 𝐼°(𝐼’nın içi) üzerinde bir 𝑞-

diferensiyellenebilen fonksiyon olarak verilsin. 𝐷𝑞 , 0 < 𝑞 < 1 olmak üzere 𝐼 

üzerinde sürekli ve integrallenebilir olsun. Eğer  𝐷𝑞𝑓 
𝑟
, 𝑟 ≥ 1 olmak üzere m-

konveks fonksiyon ise bu takdirde 

 

 

eşitsizliği geçerlidir.  

Ġspat. fonksiyonunun konveksliği, Lemma 3.10.1 ve Power-Mean eşitsizliği 

kullanılarak,  
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elde edilir.  

Teorem 4.4.3.𝑓: 𝐼 =  𝑎. 𝑏 ⊂ ℝ → ℝ fonksiyonu 𝐼°(𝐼’nın içi) üzerinde bir 𝑞-

diferensiyellenebilen fonksiyon olarak verilsin. 𝐷𝑞 , 0 < 𝑞 < 1 olmak üzere 𝐼 

üzerinde sürekli ve integrallenebilir olsun. Eğer  𝐷𝑞𝑓 
𝑟
, 𝑝, 𝑟 > 1,

1

𝑝
+

1

𝑟
= 1 olmak 

üzere m-konveks fonksiyon ise bu takdirde 

 

 

eşitsizliği geçerlidir.  

Ġspat. fonksiyonunun konveksliği, Lemma 3.10.1 ve Hölder eşitsizliği 

kullanılarak,  

 

 

 

 

ispat tamamlanır.  
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5.TARTIġMA ve SONUÇ 

Bu çalışmada kuantum integral ve türevlerle ilgili temel tanım ve teoremler 

verilmiştir. Ayrıca kuantum hesabın konvekslik kavramı ile ilişkisi incelenerek 

kuantum integraller içeren bazı eşitsizlikler ele alınmıştır. 

Konuyla ilgilenen araştırmacılar Lemma 3.10.1 e benzer integral özdeşlikleri elde 

ederek farklı türden konveks fonksiyon sınıfları için yeni integral eşitsizlikler elde 

edebilir.  
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Bölümüne kayıt yaptırıp 2015 yılında mezun oldu. 2015 yılında Ağrı İbrahim Çeçen 

Üniversitesi Fen Bilimleri Enstitüsü Matematik Anabilim Dalında yüksek lisan 

öğrenimine başladı. Halen Ağrı Merkez İmam Hatip ortaokulunda görevine devam 

etmektedir. Evli ve iki çocuk babasıdır. 
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