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     Bu tezde ikinci mertebeden adi diferansiyel denklemler ile Sturm-Liouville 
denklemleri özellikleri ve çözümleri üzerinde durulmuş, sınır değer problemlerinin 
yaklaşık çözümlerinin bulunmasında kullanılan  matris dönüşümü ve özellikle de Sonlu 
Farklar yöntemine yer verilmiştir. 
 
    Giriş bölümünde sınır değer problemlerinin kullanıldığı bilim dalları ve alanlardan 
örnekler verilerek, önemi üzerinde durulmuştur. Daha sonra ise sınır değer 
problemlerinin en önemlilerinden olan Sturm- Liouville denkleminin bazı tanım, teorem 
ve ispatlara yer verilmiştir. Sınır değer problemleri yaklaşık çözümleri için yapılan 
nümerik çalışmalar sıralanmıştır. Sonraki bölümlerde ikinci mertebeden adi 
diferansiysel denklemler, sınır değer problemleri ve Sturm-Liouville sınır değer 
problemleri ile ilgili tanım, teorem ve örneklere yer verilmiştir. Son bölümde ise 
yaklaşım yöntemlerinden bazıları uygulanmıştır. 
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1. GİRİŞ 

       Fizik ve mühendisliğin birçok problemi adi ve kısmi diferansiyel denklemler sınır 

değer problemlerine indirgeniyor. Örneğin,  klasik mekanik problemleri, elektro 

manyetik teori, kuantum mekaniği, kuantum fiziği, termodinamik problemleri, ısı iletim 

problemleri ve dalga denklemlerinde sınır değer problemlerine oldukça sık 

rastlanmaktadır. Doğada gerçekleşen fiziksel olayların incelenmesi, fizik alanında 

bilimsel gelişmelere yol açmıştır. Fizik alanındaki bu bilimsel çalışmaların matematik 

biliminin gelişmesinde çok büyük etkisi olmuştur. Matematiksel fiziğin ve 

mühendisliğin pek çok problemi sınır değer problemleri barındırmaktadır. Bu nedenle 

teorik ve uygulamalı matematik açısından diferansiyel denklemler için sınır değer 

problemlerinin incelenmesi büyük önem taşır. Bilindiği gibi cebir, geometri ve analiz 

statik problemlerin birçoğunun çözümü için yeterli olmaktadır. Buna karşılık, doğadaki 

olayları tasvir eden yasaların büyük bir çoğunluğu, bir veya daha fazla büyüklüğün, 

diğer bir takım büyüklüklere göre değişim hızlarını içerir. Bu değişim hızları 

matematiksel olarak türev ile ifade edilir. Problemler, türev yardımıyla adi diferansiyel 

denklemler veya kısmi türevli denklemler şeklinde belirtilir. Bu tipteki bazı 

problemlerde, araştırma yapılan bölgede veya bölgenin sınır çizgisinin üzerinde 

katsayıların tekil (singüler) noktaları olabilir. Bu tipteki denklemlere dönüştürülen 

fiziksel problemlerin gerçek çözümlerini bulmak çok zor olduğu gibi genelde net 

çözüme ulaşmak imkansızdır. Bazı yaklaşık çözüm bulma yöntemleri, denklemin 

çözümünün sonsuz seri şeklinde aranmasına dayanmaktadır. Böyle yöntemlerin 

esaslandırılması için sonsuz serinin yakınsaklığının ispatlanması ve özdeğer 

fonksiyonlarının ortogonalliğinin gösterilmesi gerekir. Ayrıca matematiksel fizik 

probleminin çözümünün kararlılığının araştırılması da teorik ve pratik öneme sahiptir. 

       Sturm-Liouville problemi de sınır değer problemlerinin en önemlilerinden birisidir. 

İlk defa 1836 yılında ortaya konulan Sturm-Liouville problemi adını, Jacques Charles 

François Sturm ve Joseph Liouville’nin çalışmalarından almıştır. Sınır değer 

problemleri  uzun bir süre boyunca Laplace denkleminin harmonik çözümlerini bulmak 

amacıyla Dirichlet problemi olarak çalışılmıştır ve problemin çözüm yöntemlerinden 

birine de Dirichlet prensibi adı verilmiştir. 
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       Başlangıçta ısı iletimi problemlerine uygulanan Sturm-Liouville teorisi günümüzde 

bir çok fiziksel problemin araştırılmasında en etkin yöntemlerin başında yer almaktadır. 

Genellikle kısmî türevli denklemlerde değişkenlerin ayrılması yöntemi kullanıldıktan 

sonra Sturm-Liouville denklemleri ile bağlantılı sınır değer problemleri ortaya çıkmıştır. 

        Adi diferansiyel denklemler için sınır değer probleminin araştırılması  G.D. 

(Birkhoff, 1908) çalışmalarıyla başlamıştır. Birkhoff’un bu çalışmalarında özdeğer 

parametresine bağlı lineer diferansiyel operatörler için temel çözüm sistemini oluşturan 

çözümlerin asimptotik davranışları incelenmiş ve bazı asimptotik eşitlikler bulunmuştur. 

Ayrıca Birkhoff’un bu çalışmalarında adi diferansiyel operatörler için regüler sınır 

şartları kavramı tanımlanmış ve uygun sınır değer probleminin öz fonksiyonlarının 

tamlığı hakkında teorem ispatlanmıştır. 

  (Tamarkin, 1928)  çalışmasında sınır değer problemleri araştırılmıştır. Denklemin 

temel çözüm sistemini oluşturan fonksiyonların asimptotik davranışları incelenmiş, 

regüler ve güçlü regüler sınır değer problemi kavramı tanımlanmıştır. Güçlü regüler 

sınır değer probleminin özdeğerleri için asimptotik formüller bulunmuştur. Regüler 

problemler için ise Green fonksiyonu değerlendirilmiş ve kök fonksiyonları üzerine 

açılım teoremleri ispatlanmıştır. 

 İlerleyen yıllarda bu konuda çok sayıda araştırma yapılmış ve yüzlerce kitap, 

binlerce makale yazılmıştır. (Andrews, 1986), (Atkinson, 1964), (Birkhoff,1908), 

(Keller, 1992) 

 Son yıllara kadarki çalışmalarda genellikle sürekli problemler incelenmiş ve geçiş 

şartlarını içeren çok az sayıda araştırma yapılmıştır. Geçiş şartları ile verilmiş 

süreksizliğe sahip genelleştirilmiş Sturm-Liouville problemleri  O. Sh. Mukhtarov ve 

ark. çalışmalarında sistemli bir biçimde araştırılmıştır. (Mukhtarov, 2002, 2005, 2011) 

Bu çalışmalarda sınır şartlarında özdeğer parametresi bulunduran ve geçiş 

şartları ile verilen süreksiz Sturm-Liouville problemi incelenmiştir. Mukhtarov ve 

arkadaşlarının birlikte yazdığı özdeğer parametresine  bağlı sınır şartları ve özdeğer 

parametresine bağlı geçiş şartları olan çalışmalarında  problemin operatör-teorik 

yorumu, özfonksiyonların ve özdeğerlerin asimptotikliği,  Green fonksiyonu, rezolvent 

operatörünün değerlendirilmesi self-adjointliği incelenmiştir. 

  S.Y.Yakubov ve Y.Y. Yakubov'un  1994' de yayımlanan (Yakubov, 1994) 

kitabında reguler diferansiyel operatörlerin genel teorisi kurulmuş ve bu teoride yeni 
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yöntemler geliştirilmiştir. (Yakubov, 1999, 2000) son yıllardaki çalışmalarında  ise 

irregüler sınır-değer problemlerinin spektral özellikleri araştırılarak elde edilen sonuçlar 

bir çok fiziksel problemlere uygulanmıştır. 

 Sayısal analiz, matematik problemlerinin bilgisayar yardımı ile çözümlenme 

tekniğinin temelini teşkil etmektedir ve genellikle analitik olarak çözümleri çok zor 

veya imkânsız olan matematik problemleri belli hata aralıklarında çözümlemek için 

kullanılır. Bilgisayar teknolojisi ile sayısal analiz metotları birbirine paralel olarak 

gelişmiştir. Bunun en güzel örneği günümüzün en popüler sayısal analiz metotlarından 

biri olan "sonlu farklar" diğeri ise "sonlu elemanlar" teorisidir. Bu teorilerin temeli  

1930'larda atılmasına rağmen, bu yöntemler el ile işlem yapmaya uygun olmadığından 

dolayı gerekli ilgiyi o yıllarda görmemiş ve gelişen bilgisayar teknolojisiyle birlikte 

geniş ve yaygın kullanım alanı bulmuştur. Bunun yanında analitik işlemlerin  bilgisayar 

ortamında yapılabilmesi sayısal analiz metotlarının kullanılmasını zorunlu hale 

getirmektedir. Bu da sayısal analiz ile ilgili metotların gelişimine neden olmuştur. 

 Bailey, Gordon, Shampine’in  (Baily, 1978) 1978 de yayımlanmış bu 

çalışmasından başlayarak, Sturm Liouville problemleri için sayısal çözümleri günümüze 

dek yoğun biçimde araştırılmaktadır.  Bailey, Everitt, Weidmann, Zettl'in  (Baily,1993) 

yapmış oldukları çalışmada Tekil Sturm Liouville problemleri için sayısal çözüm 

yapmışlardır. 

 Ledoux, Daele ve Berghe'nin  2005'de yayımlanmış çalışmasında Sturm Liouville 

problemleri ve Schrödinger denklemleri için Matlab programında sayısal çözümler 

yapmışlardır. Ayrıca (Ledoux, 2009) yapmış oldukları çalışmada bazı Sturm-Liouville 

problemlerinin özdeğerleri için sayısal çözümler yapmışlardır. 

(Paine, 1981) çalışmasında  asimptotik doğruluk teknikleriyle birlikte sonlu 

farklar metodunu da kullanarak bazı Sturm-Liouville problemlerinin özdeğerleri için 

yaklaşık sonuçlar bulmuşlardır. (Andrew, 1986, 1989, 1994) çalışmalarına sonlu 

elemanlar yöntemini kullanarak bazı regüler Sturm Liouville problemlerinin özdeğerleri 

için yaklaşık sonuçlar elde etmişlerdir.  

            (Attili, 2005) Sturm-Liouville problemleri için Adomian Decomposition 

metodunu kullanarak bazı yaklaşık sonuçlar elde etmiştir. (Ghelardoni, 2001)  

SturmLiouville problemlerinin yaklaşık özdeğerlerini Prüfer ve Shooting yöntemlerini 

kullanarak elde etmişlerdir.  
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           Bu yüksek lisans tezinde ikinci mertebeden adi diferansiyel denklemler ile 

Sturm-Liouville denklemleri özellikleri ve çözümleri üzerinde durulmuş, sınır değer 

problemlerinin yaklaşık çözümlerinin  bulunmasında  kullanılan  matris dönüşümü ve 

özellikle de Sonlu Farklar yöntemine yer verilmiştir. Bu tezde bazı sınır değer 

problemlerinin yaklaşım yöntemleri ile incelenmesi hedeflenmektedir. Tez bu konuda 

kaynak oluşturma hedefi taşımaktadır. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

5 

2. TEMEL KAVRAMLAR  

 

2.1 Özdeğer ve Özfonksiyon 

 

Tanım 2.1  X, bir Banach uzayı    :A X X→   şeklinde tanımlı bir sınırlı lineer 

operatör olmak üzere 

Ay yλ=  

ya da I  birim operatör olmak üzere 

( ) 0A I yλ− =   

denkleminin sıfırdan farklı bir y çözümü varsa λ∈  sayısına A operatörünün özdeğeri, 

y fonksiyonuna ise λ  özdeğerine karşılık gelen özfonksiyonu denir. (Kandemir, 2015) 

 

2.2 Lineer Diferansiyel Operatör 

 

İkinci mertebeden lineer diferansiyel operatör  

 ( )
2

0 1 22( ) ( )  da x a x a x
dx dx

dL += +    

biçiminde tanımlanıyor.  

Kolayca görürüz ki  

2, ( )C Iϕ ψ ∈  ve  1 2,c c  ∈  

olmak üzere 

 1 2 1 2 ( )L c c c L c Lφ ψ φ ψ+ = +    

eşitliği sağlanır. 

Yani L operatörü lineerdir.  
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2.3  Süperpozisyon İlkesi 

 

Temel bir özellik olarak homojen lineer diferansiyel denklemlerin çözümlerinin lineer 

birleşimi de bir çözüm belirtir.  Eğer φ   ve  ψ  fonksiyonları için   0,   0,L Lφ ψ= =  

sağlanıyorsa, herhangi 1c  ve  2c  sabitleri için 

                                             1 2 1 2  ) 0(L c c c L c Lφ ψ φ ψ+ = + =    

eşitliği elde edilir.. Bu eşitlik süperpozisyon ilkesi olarak bilinir. (Al-Gwaiz, 2008) 

Not: Eğer her x noktasında   ( )0 0a x ≠  ise   (2.1.2) denkleminin her iki tarafını sıfırdan 

farklı  0a ’a bölerek, 1 2

0 0 0

'' ' ,a a fy y y
a a a

+ + =  denklemini elde ederiz. Burada 

1 2

0 0 0

,  ,a a fq r g
a a a

= = =      olarak alınırsa                                           

 '' '( ) ( ) ( )y q x y r x y g x+ + =   (2.1)                                              

eşitliği elde edilir.  

  

2.4  Regüler ve Singüler Denklem   

 

Tanım 2.2    

 0 1 2( ) '' ( ) ' ( ) ( )a x y a x y a x y f x+ + =   (2.2) 

ikinci mertebeden lineer diferansiyel denklemi verilsin. 

( )0 0a x ≠   ( x∀ için ) durumunda  (2.2) denklemine I aralığında regüler denklem, aksi 

durumda , eğer en az bir   c I∈  noktasında ( )0 0a c =   oluyorsa  singüler denklem ve c 

noktasına ise denklemin singüler noktası denir. (Al-Gwaiz, 2008) 
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2.5  Başlangıç Değer Problemi 

 

Teorem 2.1  Eğer q, r ve g fonksiyonları I aralığında sürekli, 0x  , I aralığında keyfi bir 

nokta ise (2.1) denkleminin her ,γ η  sayıları ve her 0x I∈  noktası için   

 ( ) ( )0 0, 'x xϕ γ ϕ η= =   (2.3)                                                                  

şartlarını sağlayan çözümü vardır ve tekdir.  

(2.3)  şartlarına  başlangıç koşulları ve (2.1)-(2.3)  sistemine ise  başlangıç değer 

problemi denir. (Al-Gwaiz, 2008) 

 

2.6  Yüksek Mertebeden Lineer Diferansiyel Denklemler  

 

Tanım 2.3    

  ( ) ( )1 1 01

1

( ) ( )  .. ) 0. , (
n

n n n

n

n n

d y dya x a x a a x y f x a x
dx dx dx

d y
− −

−

+ + + = ≠+  (2.4) 

biçimindeki  denkleme n. mertebeden homojen olmayan lineer diferansiyel denklem 

denir. Burada 0 1, ,..., na a a  katsayıları ve f fonksiyonu bir (a,b) aralığında tanımlı ve 

sürekli fonksiyonları göstermektedir.  

 ( )1 1 01

1

( ) ( ) ( ) 0 ... 0,
n

n n nn n

nd y dya x a x a a x y a x
dx dx dx

d y
− −

−

+ + + = ≠+   (2.5) 

denklemine ise n. mertebeden homojen lineer diferansiyel denklem denir. 

(Kandemir,2015) 

Tanım 2.4 
      

 ( ) ( )
1

1 1 01  ..) ( .( )
n n

n nn n n

nd yd y d ya x a x a a x y
dx dx d

L
x

y − −

−

+ + += +   (2.6)  

şeklinde yazılan ifadeye lineer diferansiyel ifade denir. L dönüşümüne ise diferansiyel 

operatör denir.  

Böylece (2.2.1) denklemi 
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 ( )Ly f x=   (2.7) 

biçiminde gösterilir. 

Teorem 2.2   (2.4) eşitliği ile tanımlanan L operatörü lineerdir. Yani,  1 2, ,..., ny y y  n. 

mertebeden  türevlenebilir fonksiyonlar ve  1 2, ,..., nc c c  herhangi keyfi sabitler olmak 

üzere   

 ( ) ( ) ( ) ( )1 1 2 2 1 1 2 2... ...n n n nL c y c y c y c L y c L y c L y+ + + = + + +   (2.8) 

eşitliği sağlanır. 

Teoremin ispatı açıktır.    

Tanım  2.5   1 2, ,..., ny y y  herhangi fonksiyonlar ve 1 2, ,..., nc c c  keyfi sabitler olmak 

üzere   

 1 1 2 2 ... n nc y c y c y+ + +   (2.9) 

ifadesine   1 2, ,..., ny y y  fonksiyonlarının lineer birleşimi denir. 

Teorem 2.3   1 2, ,..., ny y y  fonksiyonları  (2.5) homojen lineer diferansiyel denkleminin 

birbirinden farklı çözümleri ise 1 2, ,..., nc c c  keyfi sabitler olmak üzere 

 1 1 2 2 ... n ny c y c y c y= + + +   (2.10) 

fonksiyonu da (2.2.2) homojen lineer diferansiyel denkleminin bir çözümüdür. 

Tanım 2.6   1 2, ,..., ny y y  fonksiyonları herhangi bir ( ),a b  aralığında ( )1n −  -inci 

mertebeden  türevlenebilen fonksiyonlar olsun. Bu durumda, 

  

 ( )

1 2

1 2
1 2

1 1 1
1 2

...
' ' ... '

, ,...,

...

n

n
n

n n n
n

y y y
y y y

W y y y

y y y− − −

=
   

  (2.11) 
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determinantına  1 2, ,..., ny y y  fonksiyonlarının Wronskiyanı denir. 

Teorem 2.4   1 2, ,..., ny y y  fonksiyonlarının her biri (2.5) denkleminin çözümü ise bu 

fonksiyonların lineer bağımlı olması için gerek ve yeter koşul ( )1 2, ,..., 0nW y y y =  

olmasıdır. 

Tanım 2.7  n-tane  1 2, ,..., ny y y  fonksiyonu bir ( ),a b  aralığında n. mertebeden          

(2.5) homojen lineer diferansiyel denkleminin bağımsız çözümleri ise 1 2, ,..., nc c c  keyfi 

sabitler olmak üzere 

 1 1 2 2 ... n ny c y c y c y= + + +   (2.12) 

lineer birleşimine (2.5) homojen lineer diferansiyel denkleminin genel çözümü denir. 

 

2.7 Kesme Hatası 

 

Tanım 2.8 Matematik işlemler yerine, yaklaşık olanlarının alınmasıyla ortaya çıkan 

hatalara kesme hatası denir. Örnek olarak Taylor serisi açılımıyla yapılan hatayı 

gösterebiliriz. 

1i ix x h+ − =  olmak üzere  

( ) ( ) ( ) ( ) ( ) ( )2
1

''
' ...

2! !

n
i i n

i i i n

y x y x
y x y x y x h h h R

n+ = + + + + +   

açılımında 
( ) ( )
( )

1

1 !

n
n

n

y
R h

n
ξ +=

+
 

eşitliği yapılan hatayı göstermektedir. 
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3. İKİNCİ MERTEBEDEN SINIR DEĞER PROBLEMLERİ 

 

Klasik ikinci mertebeden lineer  sınır değer problemi  

                                       '' '( ) ( ) )y P x y Q x y xφ+ + = (                                                   (3.1) 

biçimindeki ikinci mertebeden lineer diferansiyel denkleminden ve   

 
'

1 1 1
'

2 2 2

( ) ( )

( ) ( )

y a y a
y b y b

α β γ

α β γ

+ =

+ =
  (3.2) 

biçimindeki sınır şartlarından oluşur. Burada   P(x), Q(x) ve )xφ( ,  [ ],a b  aralığında 

sürekli ve 1 2 1 2 1 2, , , , ,α α β β γ γ ∈   ve   2 2
1 1 0α β+ ≠  ve   2 2

2 2 0α β+ ≠  dır.  

Tanım 3.1      ) 0xφ( = ,   1 2 0γ γ= =       ise (3.1)-(3.2) sınır değer problemine  homojen 

sınır değer problemi, aksi halde ise homojen olmayan sınır değer problemi  denir.  

Böylece homojen sınır değer problemi   

 '' '( ) ( ) 0y P x y Q x y+ + =   (3.3) 

denklemi ve    

 
'

1 1
'

2 2

( ) ( ) 0

( ) ( ) 0

y a y a
y b y b

α β

α β

+ =

+ =
  (3.4) 

sınır koşulları ile tanımlanır. 

       Sınır değer problemlerinin çözümünde önce  2. mertebeden diferansiyel denklemin 

genel çözümü bulunur. Genel çözümdeki keyfi sabitler, sınır koşullarını  sağlayacak 

şekilde belirlenir. Böylece sınır değer probleminin çözümü hem diferansiyel denklemi  

hem de sınır koşullarını sağlar. 

Not:  Homojen sınır değer problemlerinin daima  ( ) 0y x =  çözümü  vardır. Bu çözüme 

denklemin aşikar (trivial) çözümü denir. Denklemin eğer sıfırdan farklı  ( )( ) 0y x ≠  

çözümleri var ise bu çözümlere ise aşikar olmayan çözümler adı verilir. 
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Teorem 3.1   1( )y x  ve  2 ( )y x  fonksiyonları    

 '' '( ) ( ) 0y P x y Q x y+ + =   (3.5) 

diferansiyel denkleminin lineer bağımsız iki çözümü olsun. Buna göre (3.3),(3.4) 

homojen sınır değer probleminin aşikar olmayan çözümlerinin olması için gerek ve 

yeter koşul   

 
' '

1 1 1 1 1 2 1 2
' '

2 1 2 1 2 2 2 2

( ) ( ) ( ) ( )
0

( ) ( ) ( ) ( )
y a y a y a y a
y b y b y b y b

α β α β
α β α β

+ +
=

+ +
  (3.6) 

olmasıdır. (Bronson, 2000) 

Teorem 3.2   (3.1)-(3.2) homojen olmayan sınır değer probleminin bir tek çözüme sahip 

olması için gerek ve yeter koşul (3.3)- (3.4) homojen sınır değer probleminin  sadece 

aşikar çözüme sahip olmasıdır. (Bronson,2000) 

    Başka bir deyişle, homojen olmayan problemin bir tek çözüme sahip olması için 

gerek ve yeter koşul homojen denklemin bir tek çözüme sahip olmasıdır. 

Tanım 3.2  (3.3)-(3.4) homojen sınır değer probleminin P ve Q   katsayı fonksiyonları  

x değişkeni ile birlikte keyfi bir  λ  parametresine bağlı  ise o halde sınır değer problemi 

                                          '' '( , ) ( , ) 0y P x y Q x yλ λ+ + =   (3.7) 

 
'

1 1
'

2 2

( ) ( ) 0

( ) ( ) 0

y a y a
y b y b

α β

α β

+ =

+ =
  (3.8) 

biçiminde ifade edilir.                                                            

       Bu problemin λ parametresinin bazı değerleri için aşikar olmayan çözümlere sahip 

olacağının araştırılması önemli bir problemdir. Bu türdeki sınır değer problemlerine 

özdeğer problemi  denir. 

 (3.10)-(3.11) probleminin aşikar olmayan çözümlere sahip λ  değerlerine problemin  

özdeğerleri , bu özdeğerlere karşılık gelen ve aşikar olmayan çözümlere ise problemin 

özfonksiyonları denir.  
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Uygulamalı matematikte en sık karşılaşılan sınır koşulları aşağıda verilmiştir. 

1. Periyodik sınır koşulları: 

                                      ( ) ( )y L y L− =              '( ) '( )y L y L− =                                       

2. Ayrılabilir sınır koşulları: 

( ) ( )
( ) ( )

1 2 1

1 2 2

'

'

y a y a

y b y b

α α γ

β β γ

+ =

+ =
 

3. Dirichlet sınır koşulları: 

( ) 1y a γ=    ( ) 2y b γ=  

4. Neumann sınır koşulları: 

( ) 1'y a γ=    ( ) 2'y b γ=  
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4. STURM-LIOUVILLE  SINIR DEĞER  PROBLEMİ 

 

4.1 Sturm-Liouville Denklemi 

 

Sturm-Liouville sınır değer problemi 

                                                 [ ] ( ) ( ) ,d dyL y p x q x y
dx dx

 ≡ +  
                         (4.1.1) 

operatörü yardımıyla 

 [ ] ( ) 0L y r x yλ+ =   (4.1.2)                                                                                                    

biçiminde ifade edilir. (4.1.2) denkleminde  p, q, r  fonksiyonları   [ ],a b   aralığında 

sürekli ve  p>0,  r≥0  olduğu kabul edilir. Bu denklemin                                                        

 
( ) ( ) ( )
( ) ( ) ( )

1 2

1 2

' 0

' 0

a y a a p a y a

b y b b p b y b

+ =

+ =
  (4.1.3) 

sınır koşullarını sağlayan çözümlerinin bulunması problemi  Sturm-Liouville problemi 

olarak adlandırılır.  Burada 

                                               2 2
1 2 0,a a+ ≠         2 2

1 2 0b b+ ≠                                   (4.1.4) 

olduğu doğal olarak kabul edilir. 

 Eğer  λ=μ  değeri için (4.1.2) denkleminin (4.1.3)sınır koşullarını sağlayan aşikar 

olmayan çözümü varsa μ –ye özdeğer, uygun çözüme ise özfonksiyon denir. 

Eğer  (4.1.2)  Sturm-Liouville özdeğer probleminde; 

1. p ve q fonksiyonları bir  [ ],a b  aralığında  p>0 ve r>0 şartlarını sağlıyorsa 

Regüler Sturm-Liouville özdeğer problemi denir. 

2. Regüler olmayan Sturm-Liouville problemine  Singüler Sturm-Liouville özdeğer 

problemi denir. 
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3. p, q, r fonksiyonları [ ],a b  aralığında sürekli,  p>0 ve r>0  ve sınır koşulları 

( ) ( )p a p b=  ( ) ( )' 'p a p b=   ise  periyodik  Sturm-Liouville özdeğer problemi 

denir. 

Not: Şimdi ise ikinci mertebeden genel diferansiyel denklemin Sturm-Liouville 

formunda nasıl yazılabileceğine inceleyelim: 

                                       0 1 2 3'' '( ) ( ) ( ( ) 0)a x y a x y a x y a x yλ+ + + =                                   (4.1.5) 

(4.1.5) denkleminin Sturm-Liouville denklemi olması için 

( ) 0 1' ' ' '' ' ' ( ) ( )' 'apy py p y a x yy x += + =  

olacak biçimde  p  fonksiyonunun mevcut olmasıdır. Yani   0 1( )' ( )a x a x=   olmasıdır.  

Fakat  her denklem için  0 1( )' ( )a x a x=   eşitliği sağlanamaz. 

Şimdi, (4.1.5) denklemin   ( )xµ µ=   ile çarparsak 

                          0 1 2 3'' '( ) ( ) ( ) ( ) ( ) ( ) ) 0) ( (a x y a x y a xx x x xy a x yµ µ µλµ + + + =                      (4.1.6) 

denklemini elde ederiz. Bu denklemin Sturm-Liouville biçiminde olması için  

0( ) ( ) ( )p x x a xµ=  ve 1'( ) ( ) ( )p x x a xµ=   

eşitliklerinin sağlanması gerekir. Buradan, 1
0

0

( ) ( )'( ) , ( ( ) 0)
( )

p x a xp x a x
a x

= ≠  denklemi elde 

edilir. Bu denklemin çözümü, 
1

0

( )
( )( )

a x dx
a xp x e∫=  bulunur. Bu p(x)’ i kullanarak, 

            
( ) ( )

1

0

( )
( )

0 0

( ) 1 a x dx
a xp x e

a x a x
µ ∫
= =                 (4.1.7) 

eşitliği elde edilir. Bulunan  (4.1.7) ifadesi  (4.1.6) denkleminde yerine yazılırsa 

 
1 1 1

0 0 0

'( ) ( ) ( )
( ) ( ) ( )32

0 0

( )( )' 0
( ) ( )

a x a x a xdx dx dx
a x a x a xa xa xe y e y e y

a x a x
λ

 ∫ ∫ ∫
+ + =  

 
             (4.1.8) 
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denklemi elde edilir ki, bu denklem de Sturm-Liouville  tipindeki bir denklemdir. 

Burada  0 ( )a x  ve  1( )a x  bir  [ ],a b   aralığında sürekli ve  0 ( ) 0a x ≠  olması şartlarını 

önceden kabul etmemiz gerekir. 

Örnek 4.1    2 '' ' 0x y xy yλ+ + =  ,  [ ],x a b∈  ,  ( )0a >    (4.1.9) 

 denklemini Sturm-Liouville denklemi haline getirelim. 

Çözüm:    (4.1.7) eşitliğini kullanarak     

                     
( )

1
20

( ) ln
( )

2 2 2
0

1 1 1a x x xdx dxa x x e xe e
a x x x x x

µ ∫ ∫= = = = =                            (4.1.10) 

elde edilir. Denklemi  1
x

µ =  ile çarpılarak, ( ) 1' ' 0xy y
x

λ+ =  Sturm-Liouville formu 

elde edilmiş olur. 

      Sturm-Liouville probleminin bazı özelliklerinin tanım ve ispatına  geçelim. 

 

4.2  Lagrange Özdeşliği 

 

Teorem 4.2.1 Kabul edelim ki  u ile v , a x b≤ ≤  aralığında  ikinci mertebeden 

türevlenebilir fonksiyonlar olsun. Bu durumda 

 [ ]( )[ ] [ ]  ,duL vL pW u v
dx

v u− =   (4.2.1) 

eşitliği sağlanır. 

 

İspat:                   

 ( ) ( )' ' ' '[ ] [ ]uL vL u pv qv v pu quv u− = + − +           

( ) ( )' ' ' 'u pv uqv v pu vqu= + − −  
' ' '' ' ' ''up v upv vp u vpu= + − −  

( ) ( )' ' ' '' ''p uv vu p uv vu= − + −  
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[ ] [ ]' , ' ,p W u v pW u v= +  

[ ]( ),d pW u v
dx

=
 

 elde edilir. Böylece 

 [ ]( )[ ] [ ] ,duL vL pW u v
dx

v u− =    

Elde edilen bu özdeşliğe Lagrange özdeşliği denir. 

 

4.3 Green Formülü 

 

Teorem 4.3.1  Kabul edelim ki  u ile  v  [ ],a b     aralığında  ikinci mertebeden 

türevlenebilir fonksiyonlar olsun. Bu durumda 

                                           ( ) [ ]( )[ ] [ ( ) , ]
b b

a a
uL v vL u dx p x W u v− =∫ │                         

(4.3.1) 

eşitliği elde edilir. 

İspat:   (4.2.1) eşitliğinin her iki tarafını   [ ],a b -de integralleyerek  (4.3.1) elde edilir. 

Lagrange özdeşliğinin bir sonucu olan (4.3.1) eşitliğine  Green Formülü  adı verilir.  

   

Eğer  (4.3.1) denkleminde u ve v fonksiyonları sınır koşullarını sağlarsa   

 ( 2 20, 0a b≠ ≠  olmak üzere) 

( ) ( )( )[ ( ) )' (' ]
b

a
p x u x v x u x v x− │  

( ) ( ) ( ) ( )( )[ ( ) ( )] (' ' )[ ( ) ( )]' 'b b b b b a a ap u v u v ap u u av v= −− −  

( ) ( ) ( )1 1 1 1

2 2 2 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) 0p v u vb b a ab u b b b b a a a a a
b a

u v u v
b

p
a

   
= − + − − + =   

   
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eşitliği elde edilir. O  halde 2a  veya  2b   den herhangi birinin sıfır olması durumunda 

(4.3.1)  in sağ tarafının sıfır olduğu kolayca görülür.  

       Böylece L diferansiyel operatörü (4.1.1) eşitliği ile  tanımlı  ise ve   u ile v   

(4.1.3) sınır koşullarını sağlarsa Lagrange özdeşliğinden   

 { [ ] [ ]} 0
b

a

L u v uL v dx− =∫   (4.3.2) 

eşitliği elde edilir.  

Şimdi (4.3.1) denklemini farklı bir  şekilde yazalım. 

Eğer   a x b≤ ≤   aralığında  tanımlı reel değerli u ile v fonksiyonlarının iç çarpımını 

 ( ) ( ),
b

a

u v u x v x dx〈 〉 = ∫   (4.3.3) 

biçiminde tanımlarsak  (4.3.2)  denklemi 

 [ ], [ ],L u v u L v=   (4.3.4)              

biçiminde ifade edilir. 

Not: Eğer u ile v kompleks değerli fonksiyonlar ise iç  çarpımları  

 ( ) ( ),
b

a

u v u x v x dx〈 〉 = ∫   (4.3.5) 

biçiminde tanımlanır. 

 

4.4  Özdeğerlerin Reelliği 

 

Teorem 4.4.1   Sturm-Liouville probleminin tüm özdeğerleri reeldir. (Boyce,1992) 

İspat:   Teoremi ispatlamak için, kabul edelim ki λ  (4.1.2) Sturm-Liouville  

probleminin kompleks özdeğeri ve ϕ de bu özdeğere karşılık gelen kompleks 

özfonksiyonu olsun. 
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μ ile υ reel sabitler ve U(x) ile V(x) reel değerli fonksiyonlar olmak üzere, 

  µ iλ ν= +   ve    ( ) ( )  ( )x U x iV xφ = +   olsun. Eğer  (4.3.4)  ifadesinde   

   ,  u vφ φ= =   alırsak 

                                                        [ ], [ ],L Lφ φ φ φ=                                           (4.4.1) 

  [ ]L rφ λ φ=   olduğundan 

                                ,,r rλ φ φ φ λ φ=                      (4.4.2) 

biçiminde yazılabilir. (4.3.6) iç çarpım tanımından 

 ( ) ( ) ( ) ( ) ( ) ( )  
b b

a a

r x x x dx x r x x dxλ φ φ φ λ φ=∫ ∫   (4.4.3) 

eşitliği elde edilir. Burada r(x) reel değerli fonksiyon  olduğundan 

                 ( ) ( ) ( ) ( )  0
b

a

r x x x dxλ λ φ φ− =∫              (4.4.4)

  

eşitliği elde edilir. 

 ( ) ( ) ( ) ( ) ( ) 2
  0

b b

a a

r x x x dx r x x dxφ φ φ= >∫ ∫        (4.4.5) 

olduğu için  (4.4.4)’den   0λ λ− =   yani   λ λ=   elde edilir. Bu ise λ ’nın reel 

olduğu anlamına gelir. 

Böylece Sturm-Liouville probleminin özdeğerlerinin reel olduğu gösterilmiş olur. 

Not: Özdeğerler reel olduğu için tüm özfonksiyonların reel değerli fonksiyonlar 

olduğunu kabul edebiliriz. 
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4.5 Özfonksiyonların  Ortogonalliği 

 

Teorem 4.5.1  Bir  Sturm-Liouville probleminde  birbirinden farklı  1λ  ve 2λ  ( )1 2λ λ≠

özdeğerlerine karşılık gelen özfonksiyonlar sırasıyla  1φ  ve 2φ  olmak üzere 

                                               1 2( ) ( ) ( ) 0
b

a

r x x x dxφ φ =∫             (4.5.1) 

eşitliği sağlanır. (Boyce,1992) 

( Bu durumda , Sturm-Liouville sınır değer probleminde farklı özdeğerlere karşılık 

gelen özfonksiyon r(x) ağırlık fonksiyonuna göre “ortogonaldir” denir.) 

İspat:   1φ  ve 2φ   sırasıyla, 1λ  ve  2λ  özdeğerlerine karşılık gelen özfonksiyonlar  

olsun. O halde                              

 1 1 1 2 2 2[ ] , [ ]L Lr rφ λ φ φ λ φ= =   (4.5.2) 

eşitlikleri sağlanır. (4.3.4) eşitliğinde    1 2    ,u vφ φ= =   alırsak,  

  1 1 2 1 2 2, ,r rλ φ φ φ λ φ=   yazılır.  

Buradan da 

 1 1 2 1 2 2, 0,r rλ φ φ φ λ φ− =   (4.5.3) 

eşitliği elde edilir. (4.3.6) ‘daki iç çarpım tanımından yararlanırsak 

 ( ) ( ) ( ) ( ) ( ) ( )221 1 1 2  0
b b

a a

r x x x dx x r x x dxλ φ φ λ φ φ− =∫ ∫                (4.5.4) 

denklemi bulunur. Burada  ( )2 2, ( ),r x xλ φ  ifadeleri reel olduğundan    

 ( ) ( ) ( ) ( )1 2 1 2  0
b

a

r x x x dxλ λ φ φ− =∫      (4.5.5) 

elde edilir.  Kabulümüzde 1 2λ λ≠  olduğundan                             
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 ( ) ( ) ( )1 2  0
b

a

r x x x dxφ φ =∫   (4.5.6) 

elde edilerek teorem ispatlanmış olur. 

 

4.6  Özdeğerlerin Basitliği 

 

Teorem 4.6.1   Sturm-Liouville probleminin bütün özdeğerleri basittir. 

Yani, Sturm-Liouville  denkleminin her bir özdeğerine lineer bağımsız yalnızca  bir 

özfonksiyon karşılık gelir. (Boyce,1992) 

İspat: Kabul edelim ki 1φ  ve 2φ  (4.1.2) denkleminin λ  özdeğerine karşılık gelen iki 

özfonksiyon olsun. Bu durumda  1φ  ve 2φ  (4.1.3) sınır koşullarını sağlayacağından 

 
( ) ( )
( ) ( )

1 1 2 1

1 2 2 2

' 0

' 0

a a a a

a a a a

φ φ

φ φ

+ =

+ =
  (4.6.1) 

eşitlikleri yazılabilir. Böylece   

 ( ) ( ) ( ) ( )1 1
1 1 2 2

2 2

' , 'a aa a a a
a a

φ φ φ φ= − = −   (4.6.2)    

eşitlikleri elde edilir.  1φ  ve 2φ  ‘nin   x=a   noktasındaki wronskiyanı            

   

                                  [ ]( )1 2 1 2 1 2, ( ) '( ) '( ) ( )W a a a a aφ φ φ φ φ φ= −                               (4.6.3) 

( ) ( )1 1
1 2 1 2

2 2

( ) ( ) 0a aa a a a
a a

φ φ φ φ
   

= − − − =   
   

 

olarak bulunmuş olur.  

Böylece  1φ  ve 2φ  özfonksiyonlarının  [ ],a b  aralığında lineer bağımlı olduğunu 

gösterilmiş olur. 
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4.7  Özdeğerlerin Monoton Artan Dizi Teşkil Etmesi 

 

Teorem 4.7.1  Sturm-Liouville probleminin özdeğerleri monoton artan ve de sonlu 

yığılma noktasına sahip olmayan  bir dizi teşkil eder.  

Yani, düzgün bir Sturm-Liouville probleminin sonsuz sayıda özdeğeri vardır. Ayrıca bu 

özdeğerler   1 2 3 ... ...nλ λ λ λ< < < < <    biçiminde artan bir dizi oluşturur. (Boyce,1992) 

İspat:   

 ( )( ') ' 0py r q yλ+ − =   (4.7.1) 

denklemi 

 
( ) ( )
( ) ( )

1 1

2 2

' 0

' 0

a y a b y a

a y b b y b

− =

+ =
  (4.7.2) 

sınır koşulları ile verilen Sturm-Liouville denklemi birinci mertebeden   

 
1'y x
p

=   (4.7.3) 

 ( )'x q r yλ= −   (4.7.4) 

diferansiyel denklem sistemine dönüştürülür.(4.7.3) denkleminde, cosx R θ= , 

siny R θ= kutupsal koordinatları ile 

 '

sin
cos

y R
py R

θ

θ

=

=
  (4.7.5) 

Prüfer dönüşümleri (4.7.3), (4.7.4) denklemlerine uygularsak 

 ' 'cos sin ( ) sinR R q r Rθ θ θ λ θ− = −   (4.7.6) 

 ' ' 1sin cos cosR R R
p

θ θ θ θ+ =   (4.7.7) 
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eşitlikleri elde edilir. (4.7.6)  denklemi sinθ  ile (4.7.7) denklemi cosθ  ile çarpılıp bu 

eşitlikleri taraf  tarafa toplanarak 

 1' sin 2
2
RR q r

p
λ θ

 
= + − 

 
  (4.7.8) 

eşitliği elde edilir. Benzer şekilde (4.7.6) denklemi cosθ  ile (4.7.7) denklemi sinθ  ile 

çarpılıp bu eşitlikleri taraf  tarafa çıkarılırsa 

 ( )2 21' cos sinr q
p

θ θ λ θ= + −   (4.7.9) 

eşitliği elde edilir. (4.7.9) eşitliği R’den bağımsızdır. Dolayısıyla her λ sayısı ve 

herhangi bir α∈ℝ  sayısı için bu denklemin, ( )aλθ α=  koşulunu sağlayan bir tek λθ  

çözümü vardır. 

Eğer λθ  fonksiyonu  (4.7.9) denkleminin bir çözümü ise λ sayısı  (4.7.1), (4.7.2)  Sturm-

Liouville probleminin bir özdeğeri ve sinY Rλ λ λθ=  fonksiyonu da bu özdeğere karşılık 

gelen özfonksiyon olsun. 

Eğer Yλ fonksiyonu  (4.7.2) sınır koşullarını sağlıyorsa  

 ( ) ( ) ( ) ( ) ( ) ( )1
1 1 10 ' sin cosba Y a bY a R a a a a

p aλ λ λ λ λθ θ
 

= − = − 
 

  (4.7.10) 

 ve 

 ( ) ( ) ( ) ( ) ( )2
2 2 20 ' sin cosba Y b b Y b R b a b b

p bλ λ λ λ λθ θ
 

= − = − 
 

  (4.7.11) 

eşitlikleri geçerlidir. Bundan dolayı  x a=  noktasındaki koşulun sağlanması için 

 (4.7.9) denkleminin λθ  çözümü 

1 0a =  ise 2
πα =   ve 

1 0a ≠  ise   0
2
πα≤ <   ve 

( )
1

1

tan 0b
a p a

α = ≥  
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olmak üzere ( )aλθ α= eşitliği sağlanmalıdır. Benzer şekilde 

2 0a =  ise 2
πβ =    ve 

 2 0a ≠  ise  
2
π β π< ≤  ve  

( )
2

2

tan 0b
a p b

β = ≤  

olmak üzere, ( ) ( )1b nλθ β π= + −   ( )n∈  eşitliği sağlanmalıdır. 

Adi diferansiyel denklemler teorisinden  ( )bλθ ’nin  λ’ya göre sürekli  ve artan 

olduğunu biliyoruz. 

Bu durumda eğer ( )
2

bλ
πθ <  olacak biçimde bir λ sayısı varsa  ve λ →∞  için 

( )bλθ →∞  ise bu durumda  n∀ ∈  için 

( ) ( )1
n

b nλθ β π= + −  ve 1n nλ λ +<  olur. 

 Böylece teorem ispatlanmış olur. (González, 1996) 

 

4.8  Ortonormal Özfonksiyonlar Dizisi  

   

nλ  özdeğerinin karşılık gelen özfonsiyonlar nφ ’ler  ise  teorem 4.5.1 ‘e göre 

1 2 3, , ..., ,...nφ φ φ φ   özfonksiyonlar cümlesi [ ],a b  aralığında r(x) ağırlık fonksiyonuna göre 

ortogonaldir. Yani 

 ( ) ( ) ( ) ( ) 0,
b

n m
a

r x x x dx n mφ φ = ≠∫   (4.8.1) 

eşitliği sağlanır.  

                       ( ) ( )
2

 
b

n n
a

Q r x x dxφ  = ∫                                      (4.8.2) 

ve 
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            ( )1          1, 2,. ., .nn
n

x n
Q

φ =Φ =                              (4.8.3) 

gösterirsek 

 ( ) ( )
2

1
b

n
a

r x x dx  Φ =∫   (4.8.4) 

elde edilir.  ( )( )n xΦ   dizisine [ ],a b   aralığında “ortonormal özfonksiyonlar dizisi” 

denir. nQ  ‘e  “ nφ ’in normu”  adı verilir ve       

 ( ) ( )
2

 
b

n n n
a

Q r x x dxφ φ  = = ∫   (4.8.5) 

şeklinde  gösterilir. Sonuç olarak, Regüler Sturm-Liouville probleminde nφ  

özfonksiyonlarını    nφ   normuna bölerek ,{ }nΦ  ortonormal özfonksiyon dizisi elde 

edilir. 

 { } n
n

nφ
φ  Φ =  

  
  (4.8.6) 

ortonormal özfonksiyon dizisi elde edilebilir. 

Örnek 4.3   

'' 0y yλ+ =  ,   ( )0 x L< <   

0 0,  ( ) ( 0)y y L= =  

probleminin ortonormal özfonksiyon sistemini bulalım. 

Çözüm:    Bu problemin özdeğerlerinin,  
2 2

2n
n

L
πλ =  , 1, 2,...n =  olduğunu ve bu nλ

’lere karşılık gelen özfonksiyonların  ( ) ( )sin , 0n n
n xy x a x L

L
π

= ≤ ≤  , ( )1,2,3,...n =  
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olduğunu kolayca bulabiliriz.  Böylece { }nφ cümlesi,  [ ]0, L  aralığında ( ) 1r x =  ağırlık 

fonksiyonuna göre ortogonal bir fonksiyon cümlesidir ve 

( )
0

sin . sin 0,n m

L n x m xa a
L L

n mπ π
= ≠∫ ’dir.  Öte yandan  nφ ’nin normu 

2 2

0

sin
2n n n

L n x La dx a
L
πφ == ∫ ,     ( )0 x L≤ ≤ ’dir.  

 Böylece,                           

 { } ( )2 sin , 1,2,...n
n

n

n x n
L L

φ π
φ

  Φ = = = 
  

  (4.8.7) 

cümlesi, problemin ortonormal fonksiyon cümlesidir. 

 

4.9  Özfonksiyon Açılımı 

 

Teorem 4.9.1  { } 1n n

∞

=
Φ   (4.1.2) ve (4.1.3)   Sturm-Liouville  denkleminin 

ortonormal özfonksiyonlar dizisi olsun. f   fonksiyonu  [ ],a b  aralığında sürekli, 'f ,  

[ ],a b  aralığında parçalı sürekli ve f ,  (4.1.3) sınır koşullarını sağlıyor olsun. 

                                                   ( ) ( ) ( )
b

n n
a

C r x f x x dx= Φ∫                 (4.9.1) 

katsayılar olmak üzere, f fonksiyonu  [ ]2 ,L a b  Hilbert uzayında 

                                                               1
( ) ( )n n

n
f x C x

∞

=

= Φ∑                              (4.9.2) 

biçiminde seri açılımına sahiptir. 

İspat: { } 1n n

∞

=
Φ   (4.1.2) ve (4.1.3)   Sturm-Liouville  denkleminin ortonormal 

özfonksiyonlar dizisi olmak üzere ( )f x   fonksiyonu  [ ],a b  aralığında 



  

26 

 
1

( ) ( )n n
n

f x C x
∞

=

= Φ∑   (4.9.3) 

özfonksiyonlar serisi biçiminde gösterilebilir olsun. 1 2 3, , ...C C C  katsyayılarını 

belirlemek için (4.9.3) eşitliğinin her iki tarafını  ( ) ( )mr x xΦ  ile çarpıp a’dan b’ye  

integrallersek 

 ( ) ( ) ( ) ( )
1

( ) . ( ) .
b b

m n n m
na a

r x f x x dx C r x x x dx
∞

=

Φ = Φ Φ∑∫ ∫   (4.9.4) 

elde edilir. Özfonksiyonlar ortogonal olduğundan m n=  için 

 ( ) ( ) ( )[ ]
2

( ) . ( )
b b

m n n
a a

r x f x x dx C r x x dxΦ = Φ∫ ∫   (4.9.5) 

eşitliği elde edilir. Buradan  

 
( ) ( )

( )[ ]
2

( ) .

( )

b

m
a

n b

n
a

r x f x x dx
C

r x x dx

Φ
=

Φ

∫

∫
  (4.9.6) 

olur.  Böylece ( )f x fonksiyonunu verilen Sturm-Liouville probleminin 

özfonksiyonları cinsinden ifade eden ve  nC  katsayıları (4.9.6) eşitliği ile elde edilen 

(4.9.1) özfonksiyon serisi tanımlanmış olur.         

 

Homojen olmayan   

 [ ] ( ),L y ry f a x bµ+ = < <   (4.9.7) 

 
( ) ( )
( ) ( )

1 2

1 2

' 0

' 0

a y a a y a

b y b b y b

+ =

+ =
  (4.9.8) 

sınır değer problemini gözönüne alalım. Bu probleme uygun 

 [ ] 0L y ryµ+ =   (4.9.9) 
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( ) ( )
( ) ( )

1 2

1 2

' 0

' 0

a y a a y a

b y b b y b

+ =

+ =
  (4.9.10) 

homojen problemin özdeğerleri 1 2, ,..., ,..nλ λ λ  ve bu özdeğerlere karşılık gelen 

özfonksiyonlar 1 2, ,..., ,..nφ φ φ  olsun. Bu takdirde nφ  fonksiyonu 

 [ ] 0n n nL rφ λ φ+ =   (4.9.11) 

 
( ) ( )
( ) ( )

1 2

1 2

' 0

' 0
n n

n n

a a a a

b b b b

φ φ

φ φ

+ =

+ =
  (4.9.12) 

eşitliklerini sağlar. Bu fonksiyonlar [a,b] aralığında r ağırlık fonksiyonuna göre 

ortogonaldir. Yani, 

( ) ( ) ( ) 0
b

n m
a

r x x x dxφ φ =∫  eşitliği sağlanır. Şimdi y fonksiyonunu 

 
1

( )n n
n

y c xφ
∞

=

=∑   (4.9.13) 

biçiminde tanımlayalım. c katsayılarını öyle seçmeye çalışacağız ki, y fonksiyonu 

(4.9.7), (4.9.8) problemini sağlasın. Her bir nφ  , (4.9.8)  sınır koşullarını sağladığından, 

y fonksiyonu da (4.9.8) sınır koşularını sağlar. Şimdi 

                                       
( )

1 1
( ) ( )n n n n

n n
L c x r c x f xφ µ φ

∞ ∞

= =

  + =  
∑ ∑

  

eşitliğinden 

[ ]
1 1

( ) ( ) ( )n n n n
n n

c L x r c x f xφ µ φ
∞ ∞

= =

+ =∑ ∑   

eşitliği elde edilir. Buradan, [ ]n n nL rφ λ φ= −  olduğundan 

 ( ) ( )
1

( )n n n
n

c r x f xµ λ φ
∞

=

− =∑   (4.9.14) 
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eşitliği elde edilir.  Şimdi eşitliğin her iki yanı ( )m xφ  ile çarpar ve a’dan b’ye integral 

alınırsa  ve  { }nφ  fonksiyonlar sisteminin ortogonalliğinden yararlanılırsa 

 ( ) ( )
1 1

( ) ( ) ( ) ( )
b b

n n n m n n n m
n na a

c r x x dx c r x x dxµ λ φ φ µ λ φ φ
∞ ∞

= =

− = −∑ ∑∫ ∫   

( ) ( )2 ( ) ( )
b b

m m m m
a a

c r x dx f x x dxµ λ φ φ− =∫ ∫   

eşitliği bulunur. Buradan 

 
( )

2

( )

( )

b

m
a

m b

m
a

f x x dx

r x dx

φ
γ

φ
=
∫

∫
  (4.9.15) 

gösterirsek , ( )m m mcµ λ γ− =   elde edilir. Yani (4.9.13) fonksiyonunun  (4.9.7) 

denkleminin çözümü olabilmesi için, nC  katsayılarının 

 ( ) ( ), 1, 2,3,...n n nC nµ λ γ− = =   (4.9.16) 

bağıntılarını sağlaması gerekir. Böylece iki durum ortaya çıkabilir: 

 

1. Birinci durumda μ  özdeğer olmasın. Yani, her  n=1,2,3,… için nµ λ≠  ‘dir.  

Bu durumda (4.9.15) den  

 , ( 1, 2,3,...)n
n

n

C nγ
µ λ

= =
−

  (4.9.17) 

elde edilir. Böylece homojen olmayan  (4.9.7)-(4.9.8) sınır değer problemlerinin 

 
1

( )n
n

n n

y xγ φ
µ λ

∞

=

=
−∑   (4.9.18) 

biçiminde  yalnız bir çözümü vardır. 
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2. İkinci durumda ise μ özdeğerlerden birine eşit olsun. Nµ λ=  olursa,   

(4.9.15) denklemi n=N için    0. N NC γ=   biçimindedir. 

a) Nµ λ=  ve 0Nγ ≠   ise  (4.9.15)  denkleminde NC  katsayılarını elde etmek 

mümkün değildir. Böylece (4.9.7)-(4.9.8) sınır değer problemlerinin çözümü 

yoktur. 

b) Nµ λ=  ve 0Nγ =  ise  (4.9.15) denklemi her NC için sağlanır. Böylece      

(4.8.3)-(4.8.4) sınır değer problemlerinin çözümü vardır ve tek değildir. 

1,

n
N N n

n n N n

y C γφ φ
µ λ

∞

= ≠

= +
−∑     

biçimindedir. 0Nγ = , (4.9.15) denklemi gereği 

( )( ) 0
b

N
a

f x x dxφ =∫  

 olmasını gerektirir. Yani, Nµ λ=  olması halinde (4.9.7)-(4.9.8) sınır değer probleminin 

yalnız ve yalnız f’nin Nλ  ‘e karşılık gelen özfonksiyona dik (ortogonal) olması halinde 

çözülebilir. Bu koşula Fredholm Alternetifi denir. (Çağlayan,  2012) 
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5. STURM-LİOUVİLLE AÇILIMI 

 

5.1 Sturm-Liouville Denklemi 

 

Bir  L lineer operatörü  verilsin ve 

 Ly yλ=   (5.1.1) 

denklemini göz önüne alalım. Burada λ  bir sabit parametredir.  Bu denklemi sağlayan 

fonksiyona özfonksiyon, λ ’nın ilgili değerine ise özdeğer denir.  

Böylece eğer ( )n xψ , bir nλ  özdeğerine karşılık gelen özfonksiyon  ise  

 ( ) ( )n n nL x xψ λψ=   (5.1.2) 

eşitliği yazılır. Bu kesimde  L operatörünü  

 ( )
2

2

dL q x
dx

≡ −   (5.1.3) 

biçiminde tanımlayacağız. Burada ( )q x , verilen  (a,b) aralığında tanımlı x’in 

fonksiyondur. Bu durumda y, ikinci mertebeden diferansiyel denklemi sağladığından  

 ( ){ }
2

2 0d y q x y
dx

λ+ − =   (5.1.4) 

 biçimde yazılabilir ve  ( )n xψ , y yerine yazılırsa 

 ( ) ( ){ } ( )" 0n n nx q x xψ λ ψ+ − =   (5.1.5) 

denklemi elde edilir. Eğer bu denklemi alıp n’nin yerine m yazar, sırasıyla ( )n xψ  ve 

( )m xψ  ile çarpıp çıkarırsak 

                ( ) ( ) ( ) ( ) ( ) ( ) ( )'' ''
m n m n m n n mx x x x x xλ λ ψ ψ ψ ψ ψ ψ− = −  

                     ( ) ( ) ( ) ( ){ }' '
m n n m

d x x x x
dx

ψ ψ ψ ψ= −   
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eşitliği elde edilir. Böylece, eğer ( )m xψ  ve ( )n xψ  , x a=  ve  x b= ’de ikisi de sıfırsa, 

her iki tarafı a’dan b’ye integrallersek 

( ) ( ) ( ) ( ) ( ) ( ) ( )' ' 0
bb

m n m n m n n m
a a

x x dx x x x xλ λ ψ ψ ψ ψ ψ ψ− = − =  ∫  

elde edilir. Eğer n mλ λ≠  oluyorsa 

 ( ) ( ) 0
b

m n
a

x x dxψ ψ =∫   (5.1.6) 

‘dır. ( )n xψ  özfonksiyonları  ( )
1

2
2

b

n n
a

x dxα ψ
−

 
=  
 
∫  sabiti ile çarpılırsa elde edilen 

( ) ( )n n nx xφ α ψ=  özfonksiyonları için 

 ( )2 1
b

n
a

x dxφ =∫   (5.1.7) 

eşitliğini elde edilir. Böylece  ( )n xφ  fonksiyonları bir ortonormal sistem oluşturur. 

Asıl problem, bir keyfi ( )f x  fonksiyonunun hangi şartlar altında bayağı  Fourier serisi 

cinsinden açılabileceğini belirlemektir.  Bundan sonra ( )nψ  özfonksiyonlar sistemini 

ortonormal kabul edeceğiz. f fonksiyonunun Fourier serisine açılımı 

 ( ) ( )
0

n n
n

f x c xψ
∞

=

=∑   (5.1.8) 

biçiminde olsun. ( )m xψ  ile çarpılıp, a’dan b’ye  integrali alınırsa 

 ( ) ( )
b

m m
a

c f x x dxψ= ∫    (5.1.9) 

biçiminde ifade edilir.  
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5.2   Homojen Olmayan Sturm-Liouville Problemi  

     

Şimdi homojen olmayan 

                                           { }'' ( ) ( ) ( )q x x f xλΦ + − Φ =   (5.2.1) 

denklemini göz önüne alalım. Bu durumda ( ),x λΦ  fonksiyonunun  (5.1.4) 

denkleminin çözümleri ile ifade edilebilir olduğunu göstereceğiz.  

ϕ ve  ψ fonksiyonlarının  ( ) ( ) ( ) ( ) ( ), . ' ' .W x x x xφ ψ φ ψ φ ψ= −  biçimindeki 

Wronskiyanı ( ),xW φ ψ  ya da kısaca ( ),W φ ψ  biçiminde gösterilsin.  O zaman ( ),xφ λ  

ve ( ),xψ λ  (5.1.4) denkleminin  ( ), 1W φ ψ =  olacak biçimde iki çözümü olsun. O 

zaman  (5.2.1) in çözümü 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , ,
x b

a x

x x y f y dy x y f y dyλ ψ λ φ λ φ λ ψ λΦ = +∫ ∫   (5.2.2) 

biçiminde elde edilir. Eğer (5.2.2) ifadesini (5.2.1)-de yerine yazarsak bunun böyle  

olduğu görülür. 

Şimdi 

 ( ) ( ) ( )
0

, n n

n n

c x
x x

ψ
λ

λ λ

∞

=

Φ = Φ =
−∑   (5.2.3) 

fonksiyonunun özelliklerine bakalım.  Kolayca gösterebiliriz ki 

( ) ( ) ( ) ( ) ( ){ } ( )
0 0

"
" ( ) n n n n n n

n nn n

c x q x x c x
x q x x

ψ ψ λψ
λ λ λ λ

∞ ∞

= =

− −
Φ − Φ = =

− −∑ ∑  

                               ( )
0

1 ( ) ( )n n
n n

c x f x xλψ λ
λ λ

∞

=

 
= − = − Φ − 
∑   

eşitliği sağlanır. Böylece homojen olmayan denklemin çözümü homojen denklemin 

çözümleri ile ifade edilmiş olur.  
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5.3   Sturm Liouville Açılımı 

 

Kabul edelim ki  ( )q x , x’in bir reel fonksiyonu ( ),a b  aralığının tüm noktalarında sürekli  

olsun. Klasik Sturm-Liouvillede ( ),a b  aralığı sınırlı bir aralık ve  ( )q x  x a→  ve 

x b→  de sonlu limite sahiptir. (Titchmarsh,1962) 

Teorem 5.1 Eğer ( )q x yukarıdaki şartları sağlarsa ve ∝ verilirse (5.1.4) denkleminin 

a x b≤ ≤  aralığında  

 ( ) ( )sin , ' cosa aφ α φ α= = −   (5.3.1) 

şartlarını sağlayan ( ) ( ),x xφ φ λ=  çözümü vardır.  Her bir x için  ( ),xφ λ , 'λ  nın bir 

tam fonksiyonudur. 

 (5.1.4) denkleminin ( ) ( ), , ,x xφ λ χ λ  çözümleri 

 
( ) ( )
( ) ( )

, sin , ' , cos

, sin , ' , cos

a a

b b

φ λ α φ λ α

χ λ β χ λ β

= = − 


= = − 
  (5.3.2) 

şartlarını sağlayan çözümler olsun. 

( ) ( ) ( ) ( ) ( ), " "d W x x x x
dx

φ χ φ χ χ φ= −  

( ){ } ( ) ( ) ( ){ } ( ) ( ) 0q x x x q x x xλ φ χ λ χ φ= − − − =   

olduğu için ( ),W φ χ  x’ten bağımsızdır  ve sadece λ’nın bir fonksiyonudur ve  w(λ) 

olarak gösterilir. Yukarıdaki teorem  açıkça gösterir ki  

 ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ), ,
, , ,

x b

a x

x x
x y f y dy y f y dy

w w
χ λ φ λ

λ φ λ χ λ
λ λ

Φ = +∫ ∫   (5.3.3) 

biçiminde λ’nın bir tam fonksiyonudur. 

Eğer f(x) fonksiyonu sürekli ise, ( ),x λΦ  (5.2.1) denklemini sağlıyorsa sınır 

koşullarından  λ’nın tüm değerleri için 
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( ) ( )
( ) ( )

, cos ' , sin 0

, cos ' , sin 0

a a

b b

λ α λ α

λ β λ β

Φ +Φ = 


Φ +Φ = 
  (5.3.4) 

elde edilir. w(λ)’nin tüm sıfırlarının 0 1, ,..λ λ  gibi reel ve basit sıfır olduğunu kabul 

edelim. Sonra ( ), nxφ λ  ve ( ), nxχ λ  özfonksiyonlarının wronskiyanı sıfır olduğundan, 

( ), nxχ λ , ( ), nxφ λ ’in  

 ( ) ( ), ,n n nx k xχ λ φ λ=   (5.3.5) 

biçiminde sabitle çarpımıdır. Böylece ( ),xφ λ ’in residüsü nλ λ=  için 

( ) ( ) ( ), , ( )
'

b
n

n n
n a

k x y f y dy
w

φ λ φ λ
λ ∫  

ifadeye eşit olur. Yukarıdaki formüller gösterir ki ( )f x  fonksiyonun açılımı 

 
( ) ( ) ( )

0
( ) , , ( )

'

b
n

n n
n n a

kf x x y f y dy
w

φ λ φ λ
λ

∞

=

=∑ ∫   (5.3.6) 

biçimindedir. Bu Sturm- Liouville açılımıdır.  

 Bayağı Fourier Serisi q(x)=0 durumu için elde edilir. Bu durumda  (5.1.4) denklemi  

2

2 0d y y
dx

λ+ =   

biçimindedir ve bu denklem için 

( )
( ){ }sin

,
x a

x
λ

φ λ
λ

−
= −  ,  ( )

( ){ }sin
,

b x
x

λ
χ λ

λ

−
=  

( )
( ){ }sin

.
b a

w
λ

λ
λ

−
=    

biçiminde elde edilebilir. Böylece ( )w λ ’nın  sıfırları, ( ){ } ( )2
, 1, 2,... .n n b a nλ π= − =   
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( ) ( ){ } ( ) ( )1
' cos

2 2

n

n
n n

b ab aw b aλ λ
λ λ

− −−
= − =   

Böylece  (5.3.6) açılımı  0α =  ve 0β =  durumu için 

1

2( ) sin sin ( )
b

n a

x a y af x n n f y dy
b a b a b a

π π
∞

=

− −   =    − − −   
∑ ∫   

 Fourier  sinüs  serisini verir. 

Benzer şekilde  
1 1,
2 2

α π β π= =   alınarak   

1

1 2( ) ( ) cos cos ( )
b b

na a

x a y af x f y dy n n f y dy
b a b a b a b a

π π
∞

=

− −   = +    − − − −   
∑∫ ∫    

kosinüs  serisi elde edilir.  

 

Teorem 5.2  ( )f x  fonksiyonu ( ),a b  aralığında integrallenebilir fonksiyon olsun. Eğer  

a x b< < için (5.3.6) de ifade edilen Sturm Liouville açılımı,  bayağı bir Fourier serisi 

ile eşyakınsar. Özellikle, eğer f (x), x’ in yakın komşuluğunda sınırlı varyasyona 

sahipse,  ( ) ( ){ }1 0 0
2

f x f x+ + −   ’a yakınsar.   

Şimdi  

 ( )1 , ,
2

x d
i

λ λ
π

Φ∫   (5.3.7) 

integralini gözönüne alalım. Burada ( ),x λΦ  (5.3.3)  ifadesi  ile tanımlı ise  

 λ-düzleminde aşağıdaki biçimde tanımlı olanbüyük kapalı çevrel çizgi olsun. 2sλ =  ve 

s itσ= +  gösterelim. s- düzlemdeki çeyrek kareyi oluşturan aşağıdaki doğru parçalarını 

tanımlayalım; 
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1 1
2 20

1 1
2 20

n n
t

b a b a

n n
t

b a b a

π π
σ

π π
σ

    + +        = ≤ ≤
− − 

 
 
    + +        = ≤ ≤

− − 
 
 

 

Bu eğriye uygun gelen burada  λ  düzlemindeki eğrinin üst düzlemdeki kısmını alt 

düzleme simetrik yansıtalım. Böylece bir kapalı eğri elde ediyoruz. 

Kolayca gösterebiliriz ki (5.3.7) integrali özfonksiyonlar sistemine açılımına sonlu 

kısmi toplamına eşit olacak .  

Şimdi ise sin 0,sin 0α β≠ ≠  olduğunu düşünelim. Bunun için 

( ) ( ){ }
( ){ }

( ) ( ){ }
( ){ }

1

1

, cos sin

, cos sin

i y a

i b x

e

e

y s y a O s

x s b x O s

φ λ α

χ λ β

−

−

−

−

= − +

= − +
  

asimptotik eşitliklerinden yararlanacağız. 

Yukarıdaki çeyrek karede (s- düzleminde tanımlanan)  

 ( ) ( ){ } ( ){ }.sin sin sin i b aw s s b a O eλ α β −= − +       (5.3.8) 

   

asimptotik eşitliği sağlanır.   

Çeyrek karede,  ( ){ } ( )sin i b as b a Ae −− >  eşitsizliği sağlandığı için  

( ) ( ){ }
1 1 11

.sin sin sin
O

w ss s b aλ α β

   = +    −    
 

asimptotik eşitliği ve dolayısıyla 
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( ) ( )
( )

( ){ } ( ){ }
( ){ }

( )cos cos, ,
.

.sin

i y xs b x s y ax x eO
w ss s b a

χ λ φ λ
λ

−− −   = +  
−   

  ve 

                                              

( )
( ) ( ),

, ( )
x

a

x
y f y dy

w
χ λ

φ λ
λ

=∫                         

                     
( ){ } ( ){ }

( ){ }
( )

2

cos cos 1( ) ( ) .
.sin

x x
i y x

a a

s b x s y a
f y dy O e f y dy

s s b a s
−

 − −  = +  
−   

∫ ∫   

asimptotik eşitlikleri sağlanacak. 

0 x aδ< < −   olduğunu kabul edelim. O halde sonuncu terim 

2 2
1 ( )

xi

x

eO O f y dy
s s

δ

δ

−

−

      +        
∫        

asimptotik ifadesine eşit olacak 

   2dy ds s=  olduğu için bu terim (5.3.7) integralinde aşağıdaki toplamayı ortaya 

çıkarıyor.  

1( ) ( )
x x

i i

x x

dse f y dy O ds O e f y dy
s s

δ δ

δ δ

− −

− −

     
+ = +             

∫ ∫ ∫ ∫   

δ’nın seçilmesi ile ikinci terim istenilen kadar küçük yapılabilir ve  δ’yı sabit tutarak 

n →∞  alınarak limite geçilirse 2. terim sıfıra yaklaşır, çünkü bu ifade aşağıdaki gibidir.  

                         

( )
( )

( )1 1/ /
13 3 /
3

0 0

1 1
n b a n b a

n b a
iO e dt O e d

n n

π π
δ π

δ σ

   + − + −         − + − −  

   
   

+   
   
   

∫ ∫   

( )1 /
31 n b a

O O e
n

δ π

δ

 − + − 
 

  = +        
 olur. 

Benzer şekilde  x y b≤ ≤  aralığındaki ( ),x λΦ ’nin  diğer terimlerinde de uygulanır. 

Böylece  (5.3.7) ifadesi  
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( ){ } ( ){ }
( ){ }

cos cos1 ( )
2 .sin

x

a

s b x s y a
f y dy

i s s b aπ

 − − +
−

∫ ∫   

 
( ){ } ( ){ }

( ){ } ( )
cos cos

( ) 1
.sin

b

x

s b y s x a
f y dy d o

s s b a
λ

− − + +
− 

∫   (5.3.9) 

integraline eşittir. Bu formüldeki ilk terim ( )f x ’in  Fourier Kosinüs Serisinin kısmi 

toplamına eşittir. Bunu residü hesabıyla kolayca gösterebiliriz. Bununla da teoremin 

ispatı bitti.  

 Bu teorem Sturm-Liouville açılımı ile Fourier Serileri arasında ilişkiyi göstermektedir. 

sin 0α =  ya da sin 0β =  durumları içinde teorem benzer şekilde ispatlanabilir. 

f fonksiyonunun , x noktasının komşuluğunda sınırlı varyasyonlu olduğu durumunda, 

Fourier serileri teorisine  başvurmadan da sonuç kolaylıkla elde edilebilir. İlk adımda 

( ){ } ( ){ }
( ){ }

( ) ( )

( )
( )( )cos cos

sin

i b x i y a
i x y

i b a

s b x s y a eO O e
s b a e

− + −
− −

−

− −   = = 
−   

  

elde edilir. a y x δ≤ ≤ −   aralığında, ( ) ( ) ( )f y j y k y= +   olsun; 

 burada j(y) mutlak sürekli fonksiyondur ve 

( )
x

a

k y dy
δ

ε
−

<∫ ’dır. Buradan 

( )
( )

1
2

0 0

( ) ( )
n b a

x x
i x y t

a a

dt e k y dy e dt k y d y
π

δ δ
δ ε δ

 + −  − ∞ − 
− − −≤ <∫ ∫ ∫ ∫  elde edilir. 

Kısmi integrasyon uygularsak 

( ){ }
( )

cos ( )
x i x a

x

es b x j y dy O
s

δ

δ

− −

−

 
− =   

 
∫  

eşitliği elde edilir ki bu ise sıfıra yakınsayan bir terimdir. 
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( ){ } ( ){ }
( ){ }

cos cos
( )

sin

x

x

s b x s y a
f y dy

s b aδ−

− −

−∫  

ifadesini inceleyelim. Burada  ( )f y  yerine ( )0f x −  yazarsak 

( ){ }
( ){ } ( ){ } ( ){ }2

cos
( 0) sin sin

sin
s b x

f x s x a s x a
s s b a

δ
−

 − − − − − −
 

( ){ }2

( 0) 1
2

if x O e
s

δ−−
= +  

 ifadesi elde edilir. Bu ise (5.3.7  integralinde üst yarıya uygun olan 
1 ( ) (1)
2

if x oπ +  

terimini ortaya çıkarır. Böylece f fonksiyonu sınırlı varyasyonlu olduğu için, 

( 0) ( ) ( ) ( )f x f y g y h y− − = −  yazılabilir. Burada ( )g y  ve ( )h y fonksiyonları pozitif ve 

monoton azalan ve y x→  iken sıfıra yakınsar. İkinci ortalama değer teoreminden, 

( ){ } ( ){ }cos ( ) ( ) cos
x

x x

re s y a g y dy g x re s y a dy
ξ

δ δ

δ
− −

− = − −∫ ∫  

( ){ } ( )( )( ) cos i x a

x

g xg x re s y a dy O e
s

ξ

δ

δδ −

−

 −
= − − =   

 
∫   

elde edilir. Bu (5.3.7) ifadesinde 

{ }( ) (g xO d O g xδ λ δ
λ
−

= −∫   

terimini ortaya çıkarıyor ki, burada da  δ  ’yı istediğimiz kadar küçük seçebiliriz. 

Benzer durumlar  h(y) içeren terimler ile y>x  olan terimler için de geçerlidir. Böylece 

teorem ispatlanmış olur. 

Şimdi ise 

( ) ( ) ( )
1
2

, ,
'

n
n n

n

kx x
w

ψ φ λ
λ

 
=   
 
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yazarak  (5.1.6)-(5.1.9) formüllerinin geçerliliğini görebiliriz. 

 Eğer x=a olursa benzer sonuç geçerli olur ve  sinα≠0 durumu  aynı yöntemle 

kanıtlanabilir. Eğer sinα=0 olursa, ( ),x λΦ  sıfır olur ve ( 0) 0f a + =  durumu hariç 

benzer sonuç geçerli olmaz. x=b  durum  benzer biçimde incelenir. 

 Ayrıca alttaki sonucu elde ederiz: 

Teorem 5.3 Eğer f(x),  ( ),a b   aralığında integrallenebilir fonksiyon  ve a x b< <  ise 

 ( ) ( )
0

, n n

n n

c x
x

ψ
λ

λ λ

∞

=

Φ =
−∑  (5.3.10) 

eşitliği sağlanır.  

İspat: Eğer 

( ),x
dz

z
λ
λ

Φ
−∫  

integrali kapalı eğri üzere benzer şekilde hesaplanırsa kolayca (5.3.10) açılımı elde 

edilir.  

Not: Bu seri ( ),x λΦ ’nin Sturm-Liouville açılımıdır ve  

 ( ) ( ), .
b

n
n

n a

c x x dxλ ψ
λ λ

= Φ
− ∫   (5.3.11) 

ifadesi kolayca gösterilebilir. 
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6.  İKİNCİ MERTEBEDEN DİFERANSİYEL DENKLEMLERİN  NÜMERİK 

ÇÖZÜM METODLARI 

 

6.1  Sonlu Farklar Metodu  

 

Sonlu farklar metodu, sınır değer probleminin [ ],a b  aralığını N tane noktaya 

bölerek kesikli bir sistem haline çevirmek esasına dayanır. Böylece sınır değer problemi 

cebirsel eşitlik haline dönüşmüş olur. 

       Sonlu fark yöntemi ana özelliği uygun farklar ile türev ifadelerini değiştirerek 

ayrık denklemler elde etmektir.  

Şimdi aşağıdaki sınır-değer problemini göz önüne alalım. 

 '' ( ) '' ( ) )y p x y q x y f x+ + = (   (6.1.1) 

 
( )
( )

y a
y b

α
β

=
=

  (6.1.2) 

      (6.1.1)-(6.1.2) sınır-değer problemi sonlu farklar yöntemiyle birkaç adımda 

çözülen bir sistem haline gelir. (Kahvecioğlu,2004) 

    İlk adım olarak, sınır değer probleminin tanım aralığı olan [ ],a b  aralığı N tane 

eşit aralığa bölünür.  

 ] [ 0 1 1 2 1[ ] [ ],    ,  ,   · · · ,  ,[ ]N Na b x x x x x x−=      

Burada,   0 1 1 · · ·   N Na x x x x b−= < < < < =  olduğu kabul edilir, 0 1, ,..., Nx x x  noktalarına ise 

düğüm noktası denir. 

                                                            b ah
N
−

=                                                        (6.1.3) 

 ifadesine ise adım aralığı denir. Sonlu farklar metodunda N  ne kadar büyük seçilirse 

yaklaşık çözümlerdeki hata miktarı o kadar azalır. 

Düğüm noktaları 
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                                            ,ix a i h= +   0 i N≤ ≤                  (6.1.4) 

eşitliği yardımıyla belirlendikten sonra ikinci adımda, sınır değer probleminde bulunan 

türev ifadelerinin yerine yaklaşık değer ifadeleri yazılır. Bu ifadeler ise Taylor Serileri 

yardımıyla elde edilir. Taylor Serileri 

 ( ) ( ) ( )( ) ( ) ( )2
1 1 1

''
' ...

2
i

i i i i i i i

y x
y x y x y x x x x x+ + += + − + − +   (6.1.5) 

 1i ix x h+ − =   

olarak tanımlandığından, (6.1.5) Taylor serisi açılımından ( )' iy x  ifadesi çekilirse, 

birinci türev için sonlu farklar ifadeleri sırasıyla, 

 

1. İleri fark bölünmüş sonlu farklar formülü 

            ( ) ( ) ( )1' ( )i i
i

y x y x
y x o h

h
+ −

= +                                (6.1.6) 

2. Geri fark bölünmüş sonlu farklar formülü 

 ( ) ( ) ( )1' ( )i i
i

y x y x
y x o h

h
−−

= +   (6.1.7) 

3. Merkezi fark sonlu farklar formülü 

 ( ) ( ) ( )1 1 2' ( )
2

i i
i

y x y x
y x o h

h
+ −−

= +   (6.1.8) 

biçiminde elde edilir. 

(6.1.5) Taylor serisi açılımından ( )'' iy x  ifadesi çekilirse, ikinci türev için sonlu farklar 

ifadeleri sırasıyla, 
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      1- İleri fark sonlu bölünmüş sonlu farklar formülü 

 ( ) ( ) ( ) ( )2 1
2

2
'' ( )i i i

i

y x y x y x
y x o h

h
+ +− +

= +   (6.1.9) 

      2- Geri fark bölünmüş sonlu farklar formülü 

     ( ) ( ) ( ) ( )1 2
2

2
'' ( )i i i

i

y x y x y x
y x o h

h
− −− +

= +   (6.1.10) 

3- Merkezi fark bölünmüş sonlu farklar formülü 

 ( ) ( ) ( ) ( )1 1 2
2

2
'' ( )i i i

i

y x y x y x
y x o h

h
+ −− +

= +   (6.1.11) 

biçiminde ifade edilir.  

      Merkezi farklarda kesme hatasının mertebesinin 2h  olması, merkezi farklarla türev 

hesaplamanın daha doğru sonuç vereceğini gösterir. Daha yüksek doğrulukta bölünmüş 

fark türev formülleri, Taylor Serisi’nden daha fazla terim almak yoluyla elde edilir. 

(6.1.8)-(6.1.11) merkezi fark türev ifadeleri (6.1.1) sınır değer probleminde yerine 

yazılarak  

               
1 1 1 1

2

2 ,  ( ) ( ) ( )  1,  . . . ,  1,
2

i i i i i
i i i i

y y y y yp x q x y f x i N
h h

+ − + −− + −
+ + = = −   (6.1.12) 

  ( ) ( )2 2
1 1

1 11 2 1 ,1 1,
2 2i i i i i i ihp y h q y hp y h f x i N− +

   − + − + + + = ≤ ≤ −   
   

  (6.1.13) 

 0 1, Ny yα β+= =   (6.1.14) 

eşitlikleri elde edilir. Elde edilen yaklaşık sonuç eşitliği, sınır değerleri ile birlikte 

seçilen ix  düğüm  noktalarına uygulanarak sonlu  sayıda bilinmeyenli denklem sistemi 

elde edilir.  

 Sınır koşulları 1i =  ‘den  1i N= −   ‘e kadar denklemde yerine yazılarak elde edilen 

denklem sisteminin katsayılar matrisi  
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2
1 1

2
2 2 2

2
1 1

2

12 1
2

1 11 2 1

. . .

. .

. . . . .

. . .

.

2 2

12 1
2

11 2
2

. .

N N

N N

h q hp

hp h q hp

h q

A

hp

hp h q

− −

 
 
 
 
 
 =  
 
 
 
 
 

− + +

− − + +

− + +

− +


−

  (6.1.15) 

 

biçiminde elde edilir. Denklem sisteminde bulunan denklemlerin sabit terimleri ise, 

 

 

2
1 1

2

2
1 1

11 , 1
2

, , 2,3,..., 2
11 , 1
2

i

N N

i

h f hp i

h f i N

h f hp i N

b

α

β− −

 − − = 
 

= −





=

− + = −




 





  (6.1.16) 

şeklinde  elde edilir.  ( )1 2 3 1, , ,..., ,T
N Ny y y y y y−=  olmak üzere  

 

1

2

1

.

.

.

N

N

y
y

y

y
y

−

 
 
 
 
 =  
 
 
 
  

  (6.1.17) 

 

biçimde yazılırsa ,  Ay b=  lineer sistemi tridiagonaldir ve tridiagonal lineer sistemlerin 

çözümü çok iyi çalışılmış bir problemdir. (Atkinson, 2011)  
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Örnek 6.1.1      
( ) ( )

'' 0

0 0 , 1 1

y y

y y

− =

= =
                                   (6.1.18) 

sınır değer probleminin özdeğerlerini bulalım. 

 

Çözüm:   1 1
2

2'' i i iy y yy
h

+ −− +
=

 

merkezi fark türev ifadesi  (6.1.18) denkleminde yerine yazılırsa 

 1 1
2

2 0i i i
i

y y y y
h

+ −− +
− =       ve       2

1 12 0i i i iy y y h y+ −− + − =    

 2
1 1(2 ) 0i i iy h y y− +− + + =   (6.1.19) 

 denklemleri elde edilir. Sınır koşulları  0 0y = ,   10 1y =    olmak üzere,  N=10  seçilirse 

   
1 0 0.1
10

h −
= =   adım aralığı elde edilir. Sınır koşulları ve adım aralığı                   

        (6.1.19) denkleminde sırasıyla yerine yazılarak 

( )

( )

( )

2
0 1 2

2
1 2 3

2
8 9 10

(2 0.1 ) 0

(2 0.1 ) 0

...

(2 0.1 ) 0

y y y

y y y

y y y

− + + =

− + + =

− + + =

 

 

lineer denklem sistemi elde edilir. Lineer denklem sistemi matris formunda 
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1

2

8

9

2.01 1 0 0 0 0
1 2.01 1 0 0 0

.0 1 2.01 1 0 .

. .
0 0 0 1 2.01 1 .
0 0 0 0 1 2.01 1

y
y

y
y

−     
    −     
    −

=    
    
    −
    

− −     







     

  

 

matris formunda  yazılabilir. Bu sistemin çözümü ile yaklaşık çözümler elde edilmiş 

olur. Sistemin çözümü  Matlab programı ile yapılmış olup yaklaşık çözümler ve gerçek 

çözümler aşağıdaki tabloda gösterilmiştir. 

  

xi Gerçek 
Özdeğerler 

Yaklaşık 
Özdeğerler 

Hata 
Yüzdesi 

0 0 0 0.00% 

0.1 0.085234 0.085244 1.17% 

0.2 0.171320 0.171341 1.23% 

0.3 0.259122 0.259152 1.16% 

0.4 0.349517 0.349554 1.06% 

0.5 0.443409 0.443452 0.97% 

0.6 0.541740 0.541784 0.81% 

0.7 0.645493 0.645534 0.64% 

0.8 0.755705 0.755739 0.45% 

0.9 0.873482 0.873502 0.23% 

1 1 1 0.00% 

 
Tablo 6.1.1 (Örnek 6.1.1 özdeğerler  tablosu) 
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Şekil 6.1.1 (Örnek 6.1.1 özdeğerler grafiği) 

 

Örnek 6.1.2       2 ( )'' 12 0  0, ) 0(1y x y y= = =                (6.1.20) 

sınır değer probleminin gerçek çözümü ile sonlu farklar yöntemiyle yaklaşık çözümünü 

bulup karşılaştıralım. 

Çözüm:             (6.1.20) denkleminin gerçek çözümü 

 4
1 2y x c x c= + +   

olup  sınır  koşulları uygulanırsa 

 ( )2 1(0) 0, 0, 1 0, 1y C y C= = = = −   

elde edilir.  [ ]0,1   aralığını 10 parçaya bölerek  gerçek çözümleri hesaplarsak 

 

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1  2  3  4  5  6  7  8  9  1 0  1 1  

Gerçek Özdeğerler Yaklaşık Özdeğerler
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xi Gerçek çözümler 

0 0 

0.1 -0.0999 

0.2 -0.1984 

0.3 -0.2919 

0.4 -0.3744 

0.5 -0.4375 

0.6 -0.4704 

0.7 -0.4599 

0.8 -0.3904 

0.9 -0.2439 

1 1 

 

Tablo 6.1.2:   (Örnek 6.1.2 için gerçek çözüm tablosu) 

 

Şimdi ise sonlu farklar yöntemini uygulayalım: 

 1 1
2

2'' i i iy y yy
h

+ −− +
=

 
      türev ifadesi  (6.1.20)  probleminde yerine yazılırsa 

1 1 2
2

2
12i j i

i

y y y
x

h
+ −− +

=  

denklemi elde edilir. Gerekli düzenlemeler yapılarak 

 2 2
1 12 12i i i iy y y h x+ −− + =   (6.1.21) 

 eşitliği elde edilmiş olur. 

 N=10 için adım aralığını 1 0 0.1
10

h −
= =   seçelim. 

 Sınır değerleri ile düğüm noktalarını değerlerini  (6.1.21) denkleminde yerine yazarak 
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0
2 2

1 2 3 2
2 2

2 3 4 3

2 2
7 8 9 8

1

0

2 12

2 12
.
.
.

2 12
0i

y
y y y h x
y y y h x

y y y h x
y +

=

− + =

− + =

− + =
=

  

denklem sistemi elde edilir. Lineer denklem sistemi  matris formunda yazılarak 

2 2
1 1

2 2
2 2

8
2 2

9 9

2 1 0 . . 0 12
1 2 1 . . 0 12

..0 1 2 . . .

... . . . . .

.0 0 0 1 2 0
0 0 0 0 1 2 12 1

y h x
y h x

y
y h x

−    
   −    
   −

=    
   
   −
   

− −        

    

 

ifadesi elde edilmiş olur. Sistem çözülerek yaklaşık çözümler elde edilmiş olur. 

 

i  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

iy
 

-0.099 -0.1968 -0.2898 -0.372 -0.435 -0.468 -0.4578 -0.3888 -0.243 

 
Tablo 6.1.3:   Örnek 6.1.2 için yaklaşık çözüm tablosu 

 

 

Şimdi ise örnek (6.1.2)’nin gerçek ve yaklaşık çözümlerini karşılaştıralım. 
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Tablo 6.1.4 (Örnek 6.1.2) için çözüm karşılaştırma tablosu 

 

 

 

Şekil 6.1.2 (Örnek 6.1.2) için çözüm karşılaştırma grafiği 

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Yaklaşık Çözüm

Gerçek Çözüm

xi 
Gerçek 

Çözüm 

Yaklaşık 

çözüm 

Değişim 

% 

0 0 0 0 

0.1 -0.0999 -0.099 0.90% 

0.2 -0.1984 -0.1968 0.81% 

0.3 -0.2919 -0.2898 0.72% 

0.4 -0.3744 -0.372 0.64% 

0.5 -0.4375 -0.435 0.57% 

0.6 -0.4704 -0.468 0.51% 

0.7 -0.4599 -0.4578 0.46% 

0.8 -0.3904 -0.3888 0.41% 

0.9 -0.2439 -0.243 0.37% 

1 1 1 0 
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 Örnek 6.1.3        

                                                          

''
(0) 0
(1) 0

y y
y
y

λ=
=
=

                                   (6.1.22) 

sınır değer  problemini çözelim. 

Çözüm:      (6.1.22) sınır değer probleminin analitik çözümü  

        (  )  y x Asin x Bcos xλ λ= − + −    (6.1.23) 

biçiminde elde edilir. Sınır koşulları yerine konulursa 

(0) 0y =      için       0 0 0(0)y Asin Bcos= + =   yazılırsa  0B =  elde edilir.                      

   (1) 0y =     için 1  ( )  =0y Asin λ= −  

 0A ≠  olmak üzere         n nλ π− =        1, 2,  . . .n =  

Böylece özdeğerler            

            2 2
n nλ π= −        1, 2,  . . .n =                                     (6.1.24) 

eşitliği biçiminde, özvektörler ise 

   ( )ny x sinn xπ=   (6.1.25) 

 eşitliği olarak bulunur. Buradan (6.1.22) denkleminin gerçek çözümleri aşağıdaki 

tablodaki gibi bulunur. 

 

1λ  2λ  3λ  …. 18λ  19λ  

-9.8696 -39.4784 -88.8264 … -3197.7518 -3562.9271 

 

Tablo 6.1.5  Örnek 6.1.3 ‘in gerçek özdeğerler tablosu 
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Şekil 6.1.3  örnek 6.1.3 ‘in gerçek özdeğerler değişim grafiği 

 

Şimdi ise    (6.1.22)  Sturm-Liouville sınır değer problemini sonlu farklar yöntemi ile 

çözelim: 

1 1
2

2'' i i iy y yy
h

+ −− +
=   türev  ifadesini  (6.1.22) denkleminde yerine yazarsak 

1 1
2

2i i i
h i

y y y y
h

λ+ −− +
=       

 0 1
10,Ny y h
N+= = =    

……. 

 ( )1 12

1 2i i i h iy y y y
h

λ+ −− + =   (6.1.26) 

denklemi elde edilir. 

20N =    seçilerek adım aralığı    1 0,05
20

h = =   olarak bulunur. Sınır değerleri , h 

adım aralığı ve düğüm noktaları (6.1.26) denkleminde yerine yazılarak 

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19



  

53 

1i =   için                       ( )2 1 0 12

1 2 hy y y y
h

λ− + =                 
 

( )2 1 12

1 2 hy y y
h

λ− =
 

2i =  için      ( )3 2 1 22

1 2 hy y y y
h

λ− + =   

….     ……. 

18i =  için                       ( )19 18 17 182

1 2 hy y y y
h

λ− + =   

19i =  için                       ( )20 19 18 192

1 2 hy y y y
h

λ− + =
   ,

 ( )19 18 192

1 2 hy y y
h

λ− + =   

 

denklem sistemi elde edilir. Elde edilen lineer denklem sistemi matris formunda  

1 1

2 2

2

18 18

19 19

1 0 0 . 0
1 1 0 . 0

. .. . . . . .1

. .. . . . . .
0 0 . 1 1
0 0 .

2

2
1

2

20

h

y y
y y

h
y y
y y

λ

    
    
    
    

=    
    
    
    
     

−
−



−

 −

 

biçimde yazılır. Tridiagonal ( ) ( )1 1N N− × −  matrisi çözülerek (6.1.22) probleminin 

yaklaşık çözümleri elde edilmiş olur. Aşağıdaki tabloda (6.1.22) probleminin gerçek 

özdeğerleri ile yaklaşık özdeğerleri verilmiştir.  
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Tablo 6.1.6 ( örnek 6.1.3 ‘in özdeğerler karşılaştırma  tablosu) 

  Gerçek Özdeğerler Yaklaşık Özdeğerler 

1 -9.869604401 -9.84933 

2 -39.4784176 -39.15479 

3 -88.82643961 -87.19478 

4 -157.9136704 -152.78640 

5 -246.74011 -234.31458 

6 -355.3057584 -329.77180 

7 -483.6106157 -436.80760 

8 -631.6546817 -552.78640 

9 -799.4379565 -674.85243 

10 -986.9604401 -800.00000 

11 -1194.222133 -925.14757 

12 -1421.223034 -1047.21360 

13 -1667.963144 -1163.19240 

14 -1934.442463 -1270.22820 

15 -2220.66099 -1365.68542 

16 -2526.618727 -1447.21360 

17 -2852.315672 -1512.80522 

18 -3197.751826 -1560.84521 

19 -3562.927189 -1590.15067 
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Şekil 6.1.4 ( örnek 5.1.3 ‘in özdeğerler karşılaştırma  grafiği) 

 

Örnek 6.1.4      
''

(0) (1) 0

xy e y y
y y

λ− + =
= =

                                (6.1.27) 

Sturm-Liouville denkleminin özdeğerlerini sonlu farklar yöntemi ile bulalım. 

Çözüm:         '' xy e y yλ− + =  denkleminde  ''y   ifadesinin yerine  

 1 1
2

2'' i i iy y yy
h

+ −− +
=  

merkezi sonlu fark denklemi yazılırsa 

1 1
2

2 xii i i
i h i

y y y e y y
h

λ+ −− +
− + =    

ifadesi elde edilir. Buradan gerekli düzenlemeler ile 

 ( ) 2
1 12

1 2 ix
i i i i iy y y e y h y

h
λ+ −− + − + =   (6.1.28) 

eşitliği elde edilmiş olur. Adım aralığını bulmak için   10N =   seçilirse adım aralığı 
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-2500
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0
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Gerçek Özdeğerler

Yaklaşık Özdeğerler
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1 0 0.1
10

h −
= =    bulunur. 

1 9i≤ ≤   olmak üzere sırasıyla denklemimizde yerine yazarak 

1i =   için                                       1 2 2
2 1 0 1 12

1 ( (2 ) )xy e h y y h y
h

λ− + + − =   

2i =  için            1 2 2
3 2 1 2 22

1 ( (2 ) )xy e h y y h y
h

λ− + + − =   

…     … 

9i =  için                          9 2 2
10 9 8 9 92

1 ( (2 ) )xy e h y y h y
h

λ− + + − =  

denklemleri elde edilir. Bu denklemlerde   (0) (1) 0y y= =  sınır koşulları da yerine 

yazılarak lineer denklem sistemi oluşturulur. Katsayılar matrisinin özdeğerleri 

bulunduğunda Sturm-Liouville denkleminin yaklaşık özdeğerleri bulunmuş olur. 

iAy yλ=   olmak üzere,  

 

1

2

8

9

2

2

2

2

2

1 0 0 . 02
1 1 0 . 0
. . . . . .1
. . . . . .
0 0 . 1 12
0 0 . 0 1 2

2

x

x

x

x

h e
h e

A
h

h e
h e

 +
 + 
 

=  
 
 +
 

+ 

  

 

katsayılar matrisi 1 2 3 8 9( , , ,.... , )Ty y y y y y=  olmak üzere A matrisinin özdeğerleri 

( ) 0iA I yλ− =  
denklemi yardımıyla bulunur. A matrisinin öz değerleri aynı zamanda (6.1.27)  

Sturm-Liouville probleminin de özdeğerleridir. 
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Aşağıdaki tabloda  (6.1.27) Sturm-Liouville problemin gerçek özdeğerleri ile N=10, 

N=20 ve N=100 için yaklaşık özdeğerleri verilmiştir. 

               

Tablo 6.1.7    (Örnek 6.1.4  için gerçek ve yaklaşık özdeğerler tablosu) 

  Gerçek Özdeğerler 
Yaklaşık 

Özdeğerler    
(N=10) 

Yaklaşık 
Özdeğerler 

(N=20) 

Yaklaşık 
Özdeğerler 
(N=100) 

1 11.5424 11.4613 11.5221 11.5416 

2 41.1867 39.9047 40.8631 41.1738 

3 90.5404 84.1565 88.9087 90.4747 

4 159.6296 139.9117 154.5023 159.4219 

5 248.4569 201.7154 236.0313 247.9500 

6 357.0230 263.5182 331.4889 355.9722 

7 485.3281 319.2698 438.5250 483.3823 

8 633.3724 363.5100 554.5039 630.0545 

9 801.1558 391.8903 676.5700 795.8441 

10     801.7176 980.5876 

11     926.8651 1184.1026 

12     1048.9310 1406.1883 

13     1164.9096 1646.6255 

14     1271.9451 1905.1770 

15     1367.4017 2181.5876 

16     1448.9288 2475.5845 

17     1514.5181 2786.8776 

18     1562.5518 3115.1597 

19     1591.8296 3460.1067 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
97       39912.9519 

98       39962.2410 

99       39991.8101 
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Şekil 6.1.5   (Örnek 6.1.4 ‘in yaklaşık özdeğerler değişim grafiği) 
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6.2 Matris Dönüşümü ile Çözüm 

 

                 ( )'' 0y q yλ+ − =              (6.2.1) 

 
(0) 0
( ) 0

y
y π

=
=

  (6.2.2) 

Sturm-Liouville problemi verilsin. Burada  [ ]1 0,q C π∈ olduğunu kabul edeceğiz. 

Bu problem    

 

( )
( )

( )
( ) ( ) ( )

( )

( )
( )

( )
( )

' 0 1 0 0
( )

'' ' '0 0 1 0

01 0 0 0 0
' 0 '0 0 1 0 0

y x y x y x
q x

y x y x y x

y y
y y

λ

π
π

        
= + −        
        

        
+ =        

        

  (6.2.3) 

biçiminde yazılabilir. Burada 

( ) ( )
( )'

y x
Y x

y x
 

=  
 

 ,  1 2

0 1 0 0 1 0 0 0
, , ,

0 0 1 0 0 0 1 0
A B C C       
= = = =       
       

 

olarak kabul edilmiştir.  

Böylece (6.2.1)-(6.2.2) denklemleri 

                  ( ) ( ) ( ) ( )' ( ) ,Y x AY x q x BY xλ= + −       0 x π< <   (6.2.4) 

( ) ( )1 20 0C Y C Y π+ =   eşitlikleri biçimde yazılabilir. 

         jx jh=        ,    0,1, 2,...j n= ,       h
n
π

=      olmak üzere, (6.2.4) 

denkleminde  sonlu farklar yöntemi uygulanırsa 

 ( )1 1j j j j h jY Y hAY h q BYλ+ +− = + −   
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 1 0 1 0nC Y C Y+ =   

eşitlikleri elde edilmiş olur. Buradan 

 ( )2 2
1 12 ,j j j j h jy h q y y h yλ+ −− + + − =   

denklemi elde edilir. Burada     

( )j jq q x= ,       hλ ,   λ ’ nın hesaplanan özdeğerleri,   jY   , ( )jY x  ‘nin  hesaplanmış 

hali olarak alınmıştır.  

Böylece  

( )1 1j j j j h jY hAY Y h q BYλ+ +− = + −     

denkleminden 

( ) ( )( )1j j h jI hA Y I h q B Yλ+− = + −  

denklemi elde edilmiş olur. 

( )I hA−   matrisinin tersi  ( )I hA+  matrisi olduğundan 

 ( ) ( )1I hA I hA−− = +  

yazılabilir. Buna göre    

 ( ) ( )( )1j j h j j jY I hA I h q B Y M Yλ+ = + + − =   (6.2.5) 

eşitliği elde edilir. 

( )j jM x M=   olarak gösterilirse jM  matrisinin özdeğerleri, 

 ( )22 2 2 2
1,2

1 2 4 2
2 h j h jh h q h h qµ λ λ = − + ± − + − + 
 

   (6.2.6) 

ve özvektörleri  
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( )1,2 2

1,2

1
1 1 j

j hh q
h

ν
λ µ

 
 =
  − + − −  

  (6.2.7) 

 biçiminde elde edilir. Böylece 

 ( ) ( )22 2cos , 2cosh j j h jh q xλ θ λ θ− − = =   (6.2.8) 

dönüşümü uygulanırsa,    özdeğerleri,    1,2 cos sin ji
j j e θµ θ θ ±= ± =    

özvektörleri

               

( ) ( )1 2

1 1
,1 11 1j j

j j
i iv v

e e
h h

θ θ−

   
   = =
   − −
   

 

biçiminde yazılmış olur. 

Şimdi 

 1
j j j jM P D P −=    ve (6.2.9) 

 
0

0

j

j

i

j i

e
D

e

θ

θ−

 
=  
  

  

ifadeleri  (6.2.5) ifadesinde yerine yazılırsa 

 1
1j j j j j j jY M Y P D P Y−
+ = =   

eşitliği elde edilir. Eşitliğin her iki tarafına  1
1jP −
+   uygulanırsa 

 1 1 1
1 1 1j j j j j j jP Y P P D P Y− − −
+ + +=   (6.2.10) 

ifadesi bulunur.   1
j j jZ P Y−=   olduğundan, (6.2.10) ifadesi yeniden 
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 1
1 1j j j jZ P D Z−
+ +=   (6.2.11) 

ifadesine dönüşür.  

1
1jP −
+  ifadesini Taylor teoremine göre açarsak 

 ( ) ( )
2

1 1 1 2 1
1 12 ,

j j
j j j j jx x x x

d dP P h P x h P x x x
dx dx

ζ− − − −
+ += =

= + + < <   (6.2.12) 

eşitliğini elde ederiz. Elde edilen (6.2.12) eşitliğini  (6.2.11)’de yerine yazarak 

( ) ( )
2

1 2 1
1 2

j j
j j j j jx x x x

d dZ I h P x P h P x P D Z
dx dx

− −
+ = =

 
= + + 
   

eşitliğini elde ederiz. Burada 

    ( )1

j
j j ix x

d P x P D if S
dx

−

=
=    ve             1 11 ,

1 1j j

j

i i i
x x

f S
xe eθ θ θ−

=

− ∂
= =  −∂−  

  

olarak  tanımlarsak 

 

 
2

1
2 ( ) .

j
j jx x

d P x P D const h
dx

−

=
≤   

ifadesinden 

 ( )( )3
1 , 0,1, 2,... 1j j j jZ D ihf S O h Z j n+ = + + = −   (6.2.13) 

elde edilir. Burada const h’ın lineer bağımsız bir sabitidir. 

(6.2.1)- (6.2.2)  probleminin özdeğerleri, 2kλ =  olarak bulunmuştu. 

( ) 22 hhθ λ λ= −  

x’e bağlı olmadığından, P sabit matris olduğundan (6.2.3) denklemi 
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( )

( )

0

0

h

h

i

i

e
D

e

θ λ

θ λ−

 
=  
  

 

olmak üzere 

 1 , 0,1, 2,..., 1j jZ DZ j n+ = = −   

şeklinde olur. Sınır  koşullarından 

0
n

nZ D Z= ,           j j jY P Z=  

 1 0 0 2 0n nC P Z C P Z+ =   

elde edilir. Böylece 

 ( ) [ ]1 2det ,h nC P C PDψ λ = +   

bulunur. hλ ,  (6.2.1)-(6.2.2) denkleminin özdeğeridir ve denklemin çözümü 

 

 ( )
1 1

0 2sin 0ni ni
h ni ni e e n

e e
θ θ

θ θψ λ θ−
−= = − = =   

 , 1, 2,..., 1k kh k n
n
πθ = = = −   

biçimindedir.(6.2.8) denkleminden 

( )21arccos 2
2 hhθ λ = − 

 
 

( )21cos cos arccos 2
2 hhθ λ  = −    

 

( )21cos 2
2 hhθ λ= −  
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( ) 2
, 2 2

1 42 2cos sin , 1,2,..., 1
2h k
khkh k n

h h
λ  = − = = − 

 
 

eşitlikleri bulunmuş olur. Böylece sonuç olarak  

                                             

2
, 2

4 sin , 1,2,..., 1
2h k
kh k n

h
λ  = = − 

 
            (6.2.14) 

özdeğerleri elde edilir. Benzer şekilde, ( ) 0q x ≠    ise 

 ( ) ( )

1
2

02 2 4
1

2
0

2

1

n

j
k j

h n

j j

k q
k O h k

k q

λ

−

=
−

=

 
 −
 = − + 
 

−  

∑

∑
  (6.2.15) 

 

eşitliği elde edilir. (Oger,2005) 

Örnek 6.2.1      '' 0y yλ+ =    Sturm-Liouville denkleminden ve  (0) 0y = , ( ) 0y π =  

   sınır şartlarından oluşan problemin özfonksiyonlarını bulalım. 

Çözüm:   '' ( )y q x y yλ− + =    denkleminde  ( ) 0q x =   olduğundan,  (6.2.7) ‘ye göre 

  2
, 2

4 sin , 1, 2,..., 1
2h k
kh k n

h
λ  = = − 

 
   

denklemine göre,   n=20 seçersek,  
20

h π
=   olur.  0 20k n< < =  ‘den özvektörler 

aşağıdaki tabloda verilmiştir. 

1λ  2λ        3λ  ... 17λ  18λ  19λ  

0.99794387 3.967183046 8.834546258 … 153.195379 158.0478862 161.0014906 

 
Tablo 6.2.1( n=20 q(x)=0 için özdeğerler tablosu) 
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Şekil 6.2.1 ( Örnek 5.2.1 için özdeğerler grafiği) 

 

Örnek 6.2.2      '' xy e y yλ− + =   , (0) 0, ( ) 0y y π= =                 (6.2.16) 

 probleminin gerçek özdeğerleri aşağıdaki tablodaki gibi bulunmuştur. 

 

k kλ  

1 4.89667 

2 10.04519 

3 16.01927 

. 

. 

. 

. 

. 

. 

18 331.06934 

19 368.06713 

20 407.06524 

 

Tablo 6.2.2 ( örnek 5.2.2 özdeğerleri) 
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Şekil 6.2.2 ( Örnek 5.2.2 özdeğerler değişim grafiği) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20



  

67 

7. TARTIŞMA VE SONUÇ 

 

Bu tez çalışmasında ikinci mertebeden adi diferansiyel denklemler tanımlanarak 

sınır değer problemlerinin özellikleri ile çözümleri üzerinde durulmuştur. En önemli 

sınır değer problemlerinden olan Sturm-Liouville problemleri detaylı bir şekilde 

incelenip gerçek çözümleri yanında yaklaşık çözüm yolları irdelenmiştir. Sonlu Farklar 

yöntemi ve matris dönüşü ile yaklaşık çözümleri hesaplanıp, gerçek çözümleri 

karşılaştırmalı tablolar ve grafikler hazırlanmıştır.  

Matematiksel fiziğin ve mühendisliğin pek çok problemi sınır değer 

problemlerine indirgendiğinden yaklaşık çözümlerin minimum hata ile gerçek 

çözümlere en yakın şekilde hesaplanmasının gerekliliği vurgulanarak, özellikle Sonlu 

Farklar yönteminde   h adım aralığı ne kadar küçük seçilirse yaklaşık çözümlerdeki hata 

miktarı o kadar azaldığı görülmüştür. 
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9. EKLER 

 

 

1- N = 10;  

2- h = 1/N; 

3-  x = (0:h:1)'; 

4-  b = zeros(N+1,1); 

5-  b(2:N) = 12 * h^2 * x(2:N).^2; 

6-  A = sparse(N+1,N+1); 

7-  A(1,1) = 1.0; A(N+1,N+1) = 1.0; 

8-  for j=2:N 

9-  A(j,[j-1, j, j+1]) = [1, -2, 1]; 

10-  end  

11-  Y = A \ b;  

 

Ek.1 : Örnek 6.1.2 için MATLAB kodu: 

 

1- N=10; 

2- h=1/N; 

3- for i=1:N-2 

4- A(i,i)=-2*1/h^2; 

5- A(9,9)=-2*1/h^2; 

6- A(i,i+1)=1*1/h^2; 

7- A(i+1,i)=1*1/h^2; 

8- end 

9- x= linspace(0,1,9); 

10- J=eig(A); 

11- plot(x,J) 

 

Ek.2: Örnek  6.1.3 için MATLAB kodu: 
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Matematik   Öğretmeni 

        İş Deneyimi 2001-2002  : MEB Hafik Cumhuriyet İlköğretim Okulu   

Matematik Öğretmeni 

1999-2001 : MEB Hafik İmam Hatip Lisesi Matematik  

Öğretmeni 

1999-     : Göreve başlama 
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