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OZET

YUKSEK LiSANS TEZI

BAZI SINIR DEGER PROBLEMLERI VE YAKLASIM YONTEMLERI

SEMiH CAVUSOGLU

GAZIOSMANPASA UNIVERSITESI FEN BIiLIMLERI ENSTITUSU

MATEMATIK ANA BiLiM DALI
TEZ DANISMANI: PROF. DR. OKTAY MUHTAROGLU

Bu tezde ikinci mertebeden adi diferansiyel denklemler ile Sturm-Liouville
denklemleri ozellikleri ve ¢oziimleri lizerinde durulmus, sinir deger problemlerinin
yaklasik ¢ozlimlerinin bulunmasinda kullanilan matris doniisiimii ve 6zellikle de Sonlu
Farklar yontemine yer verilmistir.

Giris boliimiinde siir deger problemlerinin kullanildigi bilim dallar1 ve alanlardan
ornekler verilerek, ©nemi Tlzerinde durulmustur. Daha sonra ise smir deger
problemlerinin en 6nemlilerinden olan Sturm- Liouville denkleminin bazi tanim, teorem
ve ispatlara yer verilmistir. Sinir deger problemleri yaklasik ¢oéziimleri i¢in yapilan
niimerik ¢aligmalar siralanmistir.  Sonraki bdoliimlerde ikinci mertebeden adi
diferansiysel denklemler, smir deger problemleri ve Sturm-Liouville smir deger
problemleri ile ilgili tanim, teorem ve orneklere yer verilmistir. Son boliimde ise
yaklasim yontemlerinden bazilari uygulanmaistir.

2017, 73 SAYFA

ANAHTAR KELIMELER: Sinir deger problemi, Sturm-Liouville denklemi, Sonlu
farklar yontemi, Yaklasim yontemleri, Ozdeger, Ikinci mertebeden diferansiyel denklem



ABSTRACT

MASTER THESIS
SOME BOUNDARY VALUE PROBLEMS AND APPROXIMATION METHODS
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DEPARTMENT OF MATHEMATICS

SUPERVISOR: PROF. DR. OKTAY MUHTAROGLU

This thesis has focused on second-order ordinary differential equations with Sturm-
Liouville equation features and solutions, matrix transformation used in finding
approximate solutions to the boundary value problems and especially Finite Difference
method.

In the preamble by giving examples the disciplines and fields using boundary value
problems were emphasized. Then, a brief history of Sturm-Liouville, which is one of
the most importante boundary value problems is given. Numerical studies about
approximate solutions of boundary value problems were listed. In the following chapter
of the study some definitions theorems and examples related to the second-order
ordinary differential equations, boundary value problems and Sturm-Liouville boundary
value problems were given. In the last chapter some of the the approximation methods
were investigated.
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1. GIRIS

Fizik ve miihendisligin birgok problemi adi ve kismi diferansiyel denklemler sinir
deger problemlerine indirgeniyor. Ornegin, klasik mekanik problemleri, elektro
manyetik teori, kuantum mekanigi, kuantum fizigi, termodinamik problemleri, 1s1 iletim
problemleri ve dalga denklemlerinde sinir deger problemlerine olduk¢a sik
rastlanmaktadir. Dogada gergeklesen fiziksel olaylarin incelenmesi, fizik alaninda
bilimsel gelismelere yol agmistir. Fizik alanindaki bu bilimsel ¢aligmalarin matematik
biliminin gelismesinde ¢ok biiyiik etkisi olmustur. Matematiksel fizigin ve
miihendisligin pek ¢ok problemi sinir deger problemleri barindirmaktadir. Bu nedenle
teorik ve uygulamali matematik agisindan diferansiyel denklemler i¢in sinir deger
problemlerinin incelenmesi blyuk 6nem tasir. Bilindigi gibi cebir, geometri ve analiz
statik problemlerin birgogunun ¢6ziimii i¢in yeterli olmaktadir. Buna karsilik, dogadaki
olaylar1 tasvir eden yasalarin biiyiik bir ¢cogunlugu, bir veya daha fazla biyiikligiin,
diger bir takim biylikliiklere gore degisim hizlarini igerir. Bu degisim hizlan
matematiksel olarak tiirev ile ifade edilir. Problemler, tiirev yardimiyla adi diferansiyel
denklemler veya kismi tiirevli denklemler seklinde belirtilir. Bu tipteki bazi
problemlerde, arastirma yapilan bolgede veya bolgenin smir ¢izgisinin iizerinde
katsayilarin tekil (singiiler) noktalar1 olabilir. Bu tipteki denklemlere doniistiiriilen
fiziksel problemlerin ger¢ek coziimlerini bulmak c¢ok zor oldugu gibi genelde net
¢oziime ulasmak imkansizdir. Bazi1 yaklasik ¢oziim bulma yontemleri, denklemin
¢oziimiiniin sonsuz seri seklinde aranmasmna dayanmaktadir. Bdyle yontemlerin
esaslandirilmas1 i¢in sonsuz serinin yakinsakliginin ispatlanmasi ve Ozdeger
fonksiyonlarmin ortogonalliginin gosterilmesi gerekir. Ayrica matematiksel fizik
probleminin ¢oziimiiniin kararliliginin arastirilmasi da teorik ve pratik 6neme sahiptir.

Sturm-Liouville problemi de sinir deger problemlerinin en énemlilerinden birisidir.
Ik defa 1836 yilinda ortaya konulan Sturm-Liouville problemi admi, Jacques Charles
Frangois Sturm ve Joseph Liouville’nin ¢alismalarindan almigtir. Sinir  deger
problemleri uzun bir stire boyunca Laplace denkleminin harmonik ¢ozumlerini bulmak
amaciyla Dirichlet problemi olarak ¢alisilmistir ve problemin ¢6ziim yontemlerinden

birine de Dirichlet prensibi adi verilmistir.



Baslangigta 1s1 iletimi problemlerine uygulanan Sturm-Liouville teorisi glinimuzde
bir cok fiziksel problemin arastirilmasinda en etkin yontemlerin basinda yer almaktadir.
Genellikle kismi tiirevli denklemlerde degiskenlerin ayrilmasi yontemi kullanildiktan
sonra Sturm-Liouville denklemleri ile baglantili sinir deger problemleri ortaya ¢ikmustir.

Adi diferansiyel denklemler i¢in sinir deger probleminin arastirilmast G.D.
(Birkhoff, 1908) calismalariyla baslamistir. Birkhoff’un bu ¢alismalarinda 6zdeger
parametresine bagl lineer diferansiyel operatorler i¢in temel ¢6ziim sistemini olusturan
cOzlimlerin asimptotik davraniglari incelenmis ve bazi asimptotik esitlikler bulunmustur.
Ayrica Birkhoff’un bu caligmalarinda adi diferansiyel operatorler i¢in regiiler sinir
sartlar1 kavrami tanimlanmis ve uygun simir deger probleminin 6z fonksiyonlariin
tamlig1 hakkinda teorem ispatlanmistir.

(Tamarkin, 1928) c¢alismasinda sinir deger problemleri arastirilmistir. Denklemin
temel ¢oOziim sistemini olusturan fonksiyonlarin asimptotik davraniglari incelenmis,
regiiler ve giiclii regiiler sinir deger problemi kavrami tanimlanmistir. Giiglii regiiler
sinir deger probleminin 6zdegerleri i¢in asimptotik formiiller bulunmustur. Regiiler
problemler i¢in ise Green fonksiyonu degerlendirilmis ve kok fonksiyonlari iizerine
acilim teoremleri ispatlanmistir.

llerleyen yillarda bu konuda ¢ok sayida arastirma yapilmis ve yiizlerce kitap,
binlerce makale yazilmistir. (Andrews, 1986), (Atkinson, 1964), (Birkhoff,1908),
(Keller, 1992)

Son yillara kadarki ¢aligmalarda genellikle siirekli problemler incelenmis ve gegis
sartlarin1 iceren ¢ok az sayida arastirma yapilmistir. Gegis sartlar1 ile verilmig
stireksizlige sahip genellestirilmis Sturm-Liouville problemleri O. Sh. Mukhtarov ve
ark. ¢alismalarinda sistemli bir bi¢imde aragtirilmistir. (Mukhtarov, 2002, 2005, 2011)

Bu calismalarda sinir sartlarinda 6zdeger parametresi bulunduran ve gegis
sartlar1 ile verilen siireksiz Sturm-Liouville problemi incelenmistir. Mukhtarov ve
arkadaglarinin birlikte yazdigi 6zdeger parametresine bagli sinir sartlar1 ve 6zdeger
parametresine bagli gegis sartlar1 olan ¢alismalarinda problemin operator-teorik
yorumu, dzfonksiyonlarin ve 6zdegerlerin asimptotikligi, Green fonksiyonu, rezolvent
operatoriiniin degerlendirilmesi self-adjointligi incelenmistir.

S.Y.Yakubov ve Y.Y. Yakubov'un 1994' de yayimlanan (Yakubov, 1994)

kitabinda reguler diferansiyel operatorlerin genel teorisi kurulmus ve bu teoride yeni



yontemler gelistirilmistir. (Yakubov, 1999, 2000) son yillardaki ¢alismalarinda ise
irregiiler sinir-deger problemlerinin spektral 6zellikleri arastirilarak elde edilen sonuglar
bir ¢ok fiziksel problemlere uygulanmaistir.

Sayisal analiz, matematik problemlerinin bilgisayar yardimi ile ¢dziimlenme
tekniginin temelini teskil etmektedir ve genellikle analitik olarak ¢6zumleri ¢cok zor
veya imkansiz olan matematik problemleri belli hata araliklarinda ¢oziimlemek igin
kullanilir. Bilgisayar teknolojisi ile sayisal analiz metotlar1 birbirine paralel olarak
gelismistir. Bunun en giizel 6rnegi gliniimiiziin en popiiler sayisal analiz metotlarindan
biri olan "sonlu farklar" digeri ise "sonlu elemanlar" teorisidir. Bu teorilerin temeli
1930'larda atilmasina ragmen, bu yontemler el ile islem yapmaya uygun olmadigindan
dolayr gerekli ilgiyi o yillarda gormemis ve gelisen bilgisayar teknolojisiyle birlikte
genis ve yaygin kullanim alani bulmustur. Bunun yaninda analitik islemlerin bilgisayar
ortaminda yapilabilmesi sayisal analiz metotlarinin kullanilmasini zorunlu hale
getirmektedir. Bu da sayisal analiz ile ilgili metotlarin gelisimine neden olmustur.

Bailey, Gordon, Shampine’in  (Baily, 1978) 1978 de yayimlanmis bu
calismasindan baglayarak, Sturm Liouville problemleri icin sayisal ¢6ziimleri glinimize
dek yogun bigimde arastirillmaktadir. Bailey, Everitt, Weidmann, Zettl'in (Baily,1993)
yapmis olduklari calismada Tekil Sturm Liouville problemleri i¢in sayisal ¢dziim
yapmislardir.

Ledoux, Daele ve Berghe'nin 2005'de yayimlanmis ¢alismasinda Sturm Liouville
problemleri ve Schrédinger denklemleri igcin Matlab programinda sayisal ¢oziimler
yapmiglardir. Ayrica (Ledoux, 2009) yapmis olduklar1 ¢alismada baz1 Sturm-Liouville
problemlerinin 6zdegerleri i¢in sayisal ¢oziimler yapmislardir.

(Paine, 1981) calismasinda asimptotik dogruluk teknikleriyle birlikte sonlu
farklar metodunu da kullanarak bazi Sturm-Liouville problemlerinin 6zdegerleri igin
yaklasik sonuglar bulmuslardir. (Andrew, 1986, 1989, 1994) calismalarina sonlu
elemanlar yontemini kullanarak bazi regiiler Sturm Liouville problemlerinin 6zdegerleri

i¢in yaklasik sonuclar elde etmislerdir.

(Attili, 2005) Sturm-Liouville problemleri icin Adomian Decomposition
metodunu kullanarak bazi yaklasik sonuclar elde etmistir. (Ghelardoni, 2001)
SturmLiouville problemlerinin yaklasik 6zdegerlerini Priifer ve Shooting yontemlerini

kullanarak elde etmislerdir.



Bu yiksek lisans tezinde ikinci mertebeden adi diferansiyel denklemler ile
Sturm-Liouville denklemleri 6zellikleri ve ¢oziimleri {izerinde durulmus, smir deger
problemlerinin yaklagik ¢oziimlerinin bulunmasinda kullanilan matris doniisiimii ve
ozellikle de Sonlu Farklar yontemine yer verilmistir. Bu tezde bazi smir deger
problemlerinin yaklagim yontemleri ile incelenmesi hedeflenmektedir. Tez bu konuda

kaynak olusturma hedefi tagimaktadir.



2. TEMEL KAVRAMLAR
2.1 Ozdeger ve Ozfonksiyon

Tamim 2.1 X, bir Banachuzayr A: X — X seklinde tanimli bir sinirli lineer

operator olmak Uzere
Ay =1y
yada | birim operator olmak Uizere

(A-21)y=0

denkleminin sifirdan farkli bir y ¢oziimii varsa A € C sayisina A operatoriiniin 6zdegeri,

y fonksiyonuna ise 4 6zdegerine karsilik gelen 6zfonksiyonu denir. (Kandemir, 2015)
2.2 Lineer Diferansiyel Operator

Ikinci mertebeden lineer diferansiyel operator

d? d
Lzao(x)WjLal(x)d—x +a,(X)

biciminde tanimlaniyor.
Kolayca goririz Ki

o, eC*(1) ve C,C, eC
olmak Uzere

L(cg+cy) =clo+c,Ly

esitligi saglanir.

Yani L operat6ru lineerdir.



2.3 Siiperpozisyon ilkesi

Temel bir 6zellik olarak homojen lineer diferansiyel denklemlerin ¢ézimlerinin lineer

birlesimi de bir ¢6ziim belirtir. Eger 4 ve y fonksiyonlarii¢in Lg= 0, Ly = O,
saglan1yorsa, herhangi C, ve C, sabitleri icin

L(cg+cy) =clLg+c,ly=0
esitligi elde edilir.. Bu esitlik stiperpozisyon ilkesi olarak bilinir. (Al-Gwaiz, 2008)

Not: Eger her x noktasinda @, (X) #0 ise (2.1.2) denkleminin her iki tarafin1 sifirdan

a f
farkli @,’a bolerek, y"+i y'+a—2 y= e denklemini elde ederiz. Burada
0 0 0
a, a, f
q=—,r=—=,0=— olarak alinirsa
aO aO
y"+a(x)y+r(x)y=g(x) (2.1)
esitligi elde edilir.

2.4 Reguler ve Singuler Denklem
Tanim 2.2

a,(x)y"+a (x)y+a,(x)y = f(x) (2.2)
ikinci mertebeden lineer diferansiyel denklemi verilsin.

ao(x) #0 (vxicin) durumunda (2.2) denklemine I araliginda regtiler denklem, aksi

durumda , eger en az bir ¢ e | noktasmda a,(c)=0 oluyorsa singiler denklem ve ¢

noktasina ise denklemin singiiler noktasi denir. (Al-Gwaiz, 2008)



2.5 Baslangic Deger Problemi

Teorem 2.1 Eger q, r ve g fonksiyonlari I araliginda siirekli, X, , I araliginda keyfi bir

nokta ise (2.1) denkleminin her y,7 sayilar1 ve her X, € | noktast igin

o(%)=7.0'(%)=7 (2.3)
sartlarin1 saglayan ¢oziimii vardir ve tekdir.

(2.3) sartlarma baslangig kosullar1 ve (2.1)-(2.3) sistemine ise baslangi¢ deger
problemi denir. (Al-Gwaiz, 2008)

2.6 Yuksek Mertebeden Lineer Diferansiyel Denklemler

Tanim 2.3

d n—ly dy

y e =
v +---+a1dx+ao(><)y f(x),a,(0)%0  (24)

d n
dx"

a, (X)——+a,,(x)
bicimindeki denkleme n. mertebeden homojen olmayan lineer diferansiyel denklem

denir. Burada a,,a,,...,a, katsayilar1 ve f fonksiyonu bir (a,b) araliginda tanimli ve

stirekli fonksiyonlar: gostermektedir.

n n-1

d'y
dx"

y

+a,,(x) v

a, (x) +...+a13—i+a0(x)y=0,an(x)¢0 (2.5)
denklemine ise n. mertebeden homojen lineer diferansiyel denklem denir.
(Kandemir,2015)

Tanim 2.4

dny dnfly dny
L(y)=3,0) 55+ 8007t +ot o+ (X)y (2.6)

seklinde yazilan ifadeye lineer diferansiyel ifade denir. L doniisiimiine ise diferansiyel

operator denir.

Boylece (2.2.1) denklemi



Ly = f(x) (2.7)
biciminde gosterilir.

Teorem 2.2 (2.4) esitligi ile tanimlanan L operatorii lineerdir. Yani, vy, Y,,..., Y, N.
mertebeden turevlenebilir fonksiyonlar ve c,,c,,...,c, herhangi keyfi sabitler olmak

Uzere

L(C,Y, +C Y, +-tCyYy ) =CL (Y, )+ CL(Y, ) +..+C,L(Y,) (2.8)
esitligi saglanir.
Teoremin ispat1 agiktir.

Tamm 2.5 vy,,vY,,....y, herhangi fonksiyonlar ve c,,c,,...,c, keyfi sabitler olmak

Uzere
Gy +CY, +...+CY, (2.9)
ifadesine vy,,Y,,...,y, fonksiyonlarinin lineer birlesimi denir.

Teorem 2.3 v,,Y,,...,y, fonksiyonlar1 (2.5) homojen lineer diferansiyel denkleminin

birbirinden farkl1 ¢dziimleri ise c,,c,,...,C, keyfi sabitler olmak tzere
Yy=0CY, +GCY, +...+CY, (2.10)
fonksiyonu da (2.2.2) homojen lineer diferansiyel denkleminin bir ¢éziimadur.

Tanim 2.6 vy,,Y,,..., Y, fonksiyonlar: herhangi bir (a,b) araliginda (n—1) -inci

mertebeden tlrevlenebilen fonksiyonlar olsun. Bu durumda,

Y1 Yo Yy
it Y, Yo'

W (Y0 Yorn Vo) =| - : ; (2.11)
yln—l yzn—l L yn n-1



determinantina y,,Y,,..., y, fonksiyonlarinin Wronskiyan: denir.

Teorem2.4 vy,Y,,..., Yy, fonksiyonlarmin her biri (2.5) denkleminin ¢6ztimu ise bu

fonksiyonlarin lineer bagimli olmasi igin gerek ve yeter kosul W (yl, Youeens yn) =0

olmasidir.

Tamm 2.7 n-tane y,,Yy,,...,y, fonksiyonu bir (a,b) araliginda n. mertebeden

(2.5) homojen lineer diferansiyel denkleminin bagimsiz ¢oziimleri ise c,,C,,...,C, Keyfi

sabitler olmak Uzere
y=GCY, tCY,+..+CY, (2.12)

lineer birlesimine (2.5) homojen lineer diferansiyel denkleminin genel ¢6zumu denir.

2.7 Kesme Hatasi

Tamm 2.8 Matematik islemler yerine, yaklasik olanlarmmin alinmasiyla ortaya ¢ikan
hatalara kesme hatasi denir. Ornek olarak Taylor serisi agilimiyla yapilan hatay
gosterebiliriz.

X.., — X =h olmak tizere

" (n)
' y Xi y Xi n
Y(X)=Y(x)+y'(x)h+ 2(! )h2+...+ n(' )h +R,
aciliminda
R — y(n)(é) hn+l
" (n+1)!

esitligi yapilan hatay1 gostermektedir.



3. iKiNCi MERTEBEDEN SINIR DEGER PROBLEMLERI

Klasik ikinci mertebeden lineer smir deger problemi
y +P(y +Q(X)y=¢(x) (3.1)

bicimindeki ikinci mertebeden lineer diferansiyel denkleminden ve

a,y(a)+ ﬂly‘(a) =N

. (3.2)
a,y(0)+ B,y (0) =7,

bigimindeki sinir sartlarindan olusur. Burada P(x), Q(x) ve @(X), [a, b] araliginda

strekli ve a,,0,,8, b, 7.7, €R ve o’ +pB7#0ve a,”+p,°#0 dir.
Tamm 3.1  #(X)=0, 7,=,=0 ise (3.1)-(3.2) simr deger problemine homojen
siir deger problemi, aksi halde ise homojen olmayan sinir deger problemi denir.

BOylece homojen sinir deger problemi

y +P(X)y +Q(x)y=0 (3.3)

denklemi ve

a,y(@)+py (@) =0

. (3.4)
a,y(b)+ B,y (b)=0

sinir kosullart ile tanimlanir.

Sinir deger problemlerinin ¢oziimiinde 6nce 2. mertebeden diferansiyel denklemin
genel ¢6ziimii bulunur. Genel ¢ozliimdeki keyfi sabitler, sinir kosullarin1 saglayacak
sekilde belirlenir. Boylece sinir deger probleminin ¢éziimii hem diferansiyel denklemi
hem de sinir kosullarini saglar.

Not: Homojen sinir deger problemlerinin daima y(x) =0 ¢6ziimii vardir. Bu ¢oziime

denklemin asikar (trivial) ¢6ziimii denir. Denklemin eger sifirdan farkli (y(x) #0)

cozimleri var ise bu ¢oziimlere ise agikar olmayan ¢oziimler adi verilir.
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Teorem 3.1 Y,(X) ve Y,(X) fonksiyonlar:

y +P(X)y +Q(x)y=0 (3.5)

diferansiyel denkleminin lineer bagimsiz iki ¢6ziimii olsun. Buna gore (3.3),(3.4)
homojen sinir deger probleminin asikar olmayan ¢oztimlerinin olmasi igin gerek ve

yeter kosul

oy, (@)+BY,(@) ay,(@)+By,(@) ~0

: : = (3.6)
Y, (b)+B,y.(0)  a,y,(0)+ A,y ,(b)

olmasidir. (Bronson, 2000)

Teorem 3.2 (3.1)-(3.2) homojen olmayan sinir deger probleminin bir tek ¢oziime sahip
olmasi i¢in gerek ve yeter kosul (3.3)- (3.4) homojen sinir deger probleminin Sadece

asikar ¢6ziime sahip olmasidir. (Bronson,2000)

Baska bir deyisle, homojen olmayan problemin bir tek ¢6ziime sahip olmasi igin

gerek ve yeter kosul homojen denklemin bir tek ¢6ziime sahip olmasidir.

Tamim 3.2 (3.3)-(3.4) homojen sinir deger probleminin P ve Q katsayi fonksiyonlari

X degiskeni ile birlikte keyfi bir A parametresine bagli ise o halde sinir deger problemi
y +P(XA)Y +Q(xA)y=0 (3.7)

a,y(@)+py (@) =0

. (3.8)
a,y(b)+ B,y (b)=0

biciminde ifade edilir.

Bu problemin A parametresinin bazi degerleri i¢in asikar olmayan ¢ozlimlere sahip
olacaginin arastirilmasi énemli bir problemdir. Bu tiirdeki sinir deger problemlerine

0zdeger problemi denir.

(3.10)-(3.11) probleminin agikar olmayan ¢oziimlere sahip A degerlerine problemin
Ozdegerleri , bu 6zdegerlere karsilik gelen ve asikar olmayan ¢oztimlere ise problemin

ozfonksiyonlar1 denir.

11



Uygulamali matematikte en sik karsilasilan sinir kosullar1 asagida verilmistir.
1. Periyodik smir kosullart:
y(=L)=y(L) y'(=L)=y'(L)

2. Aynlabilir sinir kosullart:

aly(a)+a2y'(a) =N
ﬂly(b)+,82y'(b)= V2

3. Dirichlet sinir kosullar::
y(a) =N y(b) =7
4. Neumann sinir kosullari:

y'(a):71 y'(b)=7’2

12



4. STURM-LIOUVILLE SINIR DEGER PROBLEMIi
4.1 Sturm-Liouville Denklemi

Sturm-Liouville sinir deger problemi
d dy
Lly[=— —
[v] dx[p(X) dx}q(X)y, (4.11)

operatori yardimiyla
L[y]+4r(x)y=0 (4.1.2)

biciminde ifade edilir. (4.1.2) denkleminde p, q, r fonksiyonlar1 [a,b] araliginda

stirekli ve p>0, >0 oldugu kabul edilir. Bu denklemin

ay(a)+a,p(a)y'(a)=0

by(b)+b,p(b)y'(b)=0 (4.1.3)

siir kosullarini saglayan ¢oziimlerinin bulunmasi problemi Sturm-Liouville problemi

olarak adlandirilir. Burada
a’+a,” #0, b?+hb,%#0 (4.1.4)
oldugu dogal olarak kabul edilir.

Eger A=p degeri i¢in (4.1.2) denkleminin (4.1.3)sin1ir kosullarini saglayan agikar

olmayan ¢6zimu varsa p —ye 6zdeger, uygun ¢oziime ise 6zfonksiyon denir.
Eger (4.1.2) Sturm-Liouville 6zdeger probleminde;

1. p ve q fonksiyonlar1 bir [a, b] araliginda p>0 ve r>0 sartlarini sagliyorsa

Reguler Sturm-Liouville 6zdeger problemi denir.
2. Reguler olmayan Sturm-Liouville problemine Singuler Sturm-Liouville 6zdeger

problemi denir.
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3. p,q, r fonksiyonlari [a, b] araliginda siirekli, p>0 ve r>0 ve sinir kosullari
p(a)=p(b) p'(a)=p'(b) ise periyodik Sturm-Liouville 6zdeger problemi

denir.

Not: Simdi ise ikinci mertebeden genel diferansiyel denklemin Sturm-Liouville

formunda nasil yazilabilecegine inceleyelim:
8, (x)y"+a,(x)y +a,(x)y + 4a,(x)y =0 (4.1.5)

(4.1.5) denkleminin Sturm-Liouville denklemi olmasi i¢in
(py')'=py"+p'y'=a,(x)y"+a,(x)y’

olacak bigimde p fonksiyonunun mevcut olmasidir. Yani a,'(x)=a,(x) olmasidir.

Fakat her denklem igin a,'(x)=a,(x) esitligi saglanamaz.
Simdi, (4.1.5) denklemin & = z(X) ile carparsak

#(X)3g(X)y "+ ()2, (x)y + p(X)a, (X)y + Au(X)a; (x)y =0 (4.1.6)
denklemini elde ederiz. Bu denklemin Sturm-Liouville bi¢giminde olmasi i¢in

P(x) = u(X)3y(x) ve p'(x) = u(x)a,(x)

X X
esitliklerinin saglanmas: gerekir. Buradan, p'(X) = %,(%(X) #0) denklemi elde
J'al(x) dx
edilir. Bu denklemin ¢oztimi, p(x)=e **  bulunur. Bu p(x)’ i kullanarak,

al(x)dx

_ p(X) — 1 e'[ao(x) (4'1.7)

3(x)  a(x)

esitligi elde edilir. Bulunan (4.1.7) ifadesi (4.1.6) denkleminde yerine yazilirsa

al(x)d al(x)dx a (x

X ' )dx
{efao(x) y-]_i_z(z)g;ejaom y_,_l%ejao(x) y=0 (4.1.8)
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denklemi elde edilir ki, bu denklem de Sturm-Liouville tipindeki bir denklemdir.
Burada a,(x) ve (X) bir [a,b] araliginda siirekli ve 8,(X)# 0 olmas sartlarimn:
Onceden kabul etmemiz gerekir.

Ornek 4.1 Xy xy'+ Ay =0, xela,b] , (a>0) (4.1.9)

denklemini Sturm-Liouville denklemi haline getirelim.

Cozim: (4.1.7) esitligini kullanarak

a (X) X Inx
1 [2 a1 [Zax e x 1
H a,y (X) X’ x> XX X ( :

elde edilir. Denklemi _Lile garpilarak, (xy')'+ /11 y =0 Sturm-Liouville formu
X X
elde edilmis olur.

Sturm-Liouville probleminin bazi 6zelliklerinin tanim ve ispatina gecelim.

4.2 Lagrange Ozdesligi

Teorem 4.2.1 Kabul edelim ki u ile v, a<x<b araliginda ikinci mertebeden

tirevlenebilir fonksiyonlar olsun. Bu durumda

d (PW u,v]) 4.2.1)

uL[v]-vL[u] = X

esitligi saglanir.

Ispat:
uL[v]—vL[u]=u[(pv')+av]-v[(pu')+qu]

=u(pv')+uqv-v(pu')-vqu
=up'v'+upv"—vp'u'—=vpu"

=p'(uv'=vu')+ p(uv'-vu")

15



= p'W [u,v]+ pW [u,v]

- (W [uv))

elde edilir. Boylece

uL[v]—vL[u] = (;j_x( pW [u,v])

Elde edilen bu 6zdeslige Lagrange 6zdesligi denir.
4.3 Green Formulu

Teorem 4.3.1 Kabul edelimki uile v [a,b] araliginda ikinci mertebeden

tirevlenebilir fonksiyonlar olsun. Bu durumda
b
a

(uLvI-vL[u]) e = (pOOW [u.v])

D ey T

(4.3.1)
esitligi elde edilir.
ispat: (4.2.1) esitliginin her iki tarafim [a,b]-de integralleyerek (4.3.1) elde edilir.

Lagrange 0zdesliginin bir sonucu olan (4.3.1) esitligine Green Formull adi verilir.

Eger (4.3.1) denkleminde u ve v fonksiyonlar1 sinir kosullarini saglarsa

(a, #0,b, #0 olmak tzere)
p(x)[u '(x)v(x)—u(x)v'(x)]lj1
= p(b)[u'(b)v(b)—u(b)v'(b)]— p(a)[u'(a)v(a)—u(a)v'(a)]

_ p(b){—%u(b)v(b)+%u(b)v(b)}— p(a){—%u(a)v(a)+;iu(a)v(a)} ~0

2 2 2
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esitligi elde edilir. O halde &, veya b, den herhangi birinin sifir olmasi durumunda

(4.3.1) in sag tarafinin sifir oldugu kolayca gorulir.
Bdylece L diferansiyel operatorii (4.1.1) esitligi ile tanimli ise ve uilev

(4.1.3) sinir kosullarini saglarsa Lagrange 6zdesliginden

j {L[u]v-uL[v]}dx =0 (4.3.2)

esitligi elde edilir.
Simdi (4.3.1) denklemini farkli bir sekilde yazalim.

Eger a<x<b araliginda tanimli reel degerli u ile v fonksiyonlarinin i¢ ¢arpimini
b
(u,v) :ju(x)v(x)dx (4.3.3)

bi¢iminde tanimlarsak (4.3.2) denklemi
(L[u],v) =(u,L[v]) (4.3.4)
biciminde ifade edilir.

Not: Eger u ile v kompleks degerli fonksiyonlar ise i¢ ¢arpimlari
b —
{(u,v) :ju(x)v(x)dx (4.3.5)
biciminde tanimlanir.
4.4 Ozdegerlerin Reelligi
Teorem 4.4.1 Sturm-Liouville probleminin tiim 6zdegerleri reeldir. (Boyce,1992)
Ispat: Teoremi ispatlamak igin, kabul edelim ki A (4.1.2) Sturm-Liouville

probleminin kompleks 6zdegeri ve ¢ de bu 6zdegere karsilik gelen kompleks

0zfonksiyonu olsun.
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wile v reel sabitler ve U(x) ile V(x) reel degerli fonksiyonlar olmak iizere,
A=H+iv ve @(X)=U(X)+iV (x) olsun. Eger (4.3.4) ifadesinde
U=¢, V=¢ alirsak
(Lig1.6)= (4. LI¢]) (4.4.1)
L[#] = Ar¢ oldugundan
(Arg,¢)=(p,Ar¢) (4.4.2)

biciminde yazilabilir. (4.3.6) i¢ ¢arpim tanimindan

[0 (X09(3(x) 0= B0 T (x)7() o (343)

esitligi elde edilir. Burada r(x) reel degerli fonksiyon oldugundan

(z—Z)jr(x)qﬁ(x)&(x) dx=0 (4.4.4)

esitligi elde edilir.
_ b

r(x)g(x)¢(x) dx=[r(x)[p(x)[ dx>0 (4.4.5)

a

D ——y T

oldugu igin (4.4.4)’den A —21=0 yani A = A elde edilir. Bu ise A nin reel
oldugu anlamina gelir.

Boylece Sturm-Liouville probleminin 6zdegerlerinin reel oldugu gosterilmis olur.

Not: Ozdegerler reel oldugu icin tiim 6zfonksiyonlarin reel degerli fonksiyonlar

oldugunu kabul edebiliriz.
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4.5 Ozfonksiyonlarin Ortogonalligi

Teorem 4.5.1 Bir Sturm-Liouville probleminde birbirinden farkli A, ve 4, (4 #4,)

ozdegerlerine karsilik gelen 6zfonksiyonlar sirasiyla ¢ ve ¢, olmak lizere

b

[r04: ()¢, (x)dx =0 (45.)

esitligi saglanir. (Boyce,1992)

( Bu durumda , Sturm-Liouville sinir deger probleminde farkli 6zdegerlere karsilik

gelen 6zfonksiyon r(x) agirlik fonksiyonuna gore “ortogonaldir” denir.)

Ispat: ¢ ve @, sirastyla, A, ve A, dzdegerlerine karsilik gelen 6zfonksiyonlar

olsun. O halde
Lig]l=Ard, Lig]1=4r4, (4.5.2)

esitlikleri saglanir. (4.3.4) esitliginde U=¢, V=¢, alirsak,

<ﬂ1r¢11 ¢2> = <¢1, 4 r¢2> yazilir.

Buradan da

<Z1r¢17¢2>_<¢1122r¢2> =0 (4.5.3)

esitligi elde edilir. (4.3.6) ‘daki i¢ ¢arpim tanimindan yararlanirsak
b

/11_[ r(x)¢ (x)¢,(x) dx—zzi¢l(x)F(x)¢_2(x) dx=0 (4.5.4)

a

denklemi bulunur. Burada 4,,r(X), ¢, () ifadeleri reel oldugundan

(A=2)[r(x)4(x)é,(x) dx=0 (4.5.5)

D C, &

elde edilir. Kabulimiizde 4 # 4, oldugundan
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D ey T

r(x)¢ (x)g,(x) dx=0 (4.5.6)
elde edilerek teorem ispatlanmis olur.
4.6 Ozdegerlerin Basitligi

Teorem 4.6.1 Sturm-Liouville probleminin biitiin 6zdegerleri basittir.
Yani, Sturm-Liouville denkleminin her bir 6zdegerine lineer bagimsiz yalnizca bir

ozfonksiyon karsilik gelir. (Boyce,1992)

Ispat: Kabul edelimki ¢, ve @, (4.1.2) denkleminin A 6zdegerine karsilik gelen iki

6zfonksiyon olsun. Bu durumda ¢, ve ¢, (4.1.3) sinir kosullarini saglayacagindan

a1¢1(a)+az¢1l(a) =0

(4.6.1)
a, (a) +a,0, I(a) =0
esitlikleri yazilabilir. Boylece
A'(a)=—"d(a), ¢'(a)=—"(a) (462)
esitlikleri elde edilir. @, ve ¢, ‘nin x=a noktasindaki wronskiyani
W4 4,](a) = (a)¢, (@) -4 (@), (a) (4.6.3)

40 -2, (2) - -2 (a) o) -0

2

olarak bulunmus olur.

Boylece ¢, ve ¢, 6zfonksiyonlarinin [a,b] araliginda lineer bagimli oldugunu

gosterilmis olur.
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4.7 Ozdegerlerin Monoton Artan Dizi Teskil Etmesi

Teorem 4.7.1 Sturm-Liouville probleminin 6zdegerleri monoton artan ve de sonlu
y1gilma noktasina sahip olmayan bir dizi teskil eder.
Yani, dlizgiin bir Sturm-Liouville probleminin sonsuz sayida 6zdegeri vardir. Ayrica bu

Ozdegerler 4 <4, <4, <..<A, <.. biciminde artan bir dizi olusturur. (Boyce,1992)
Ispat:

(py)+(Ar—q)y=0 (4.7.1)
denklemi

a,y(a)-by'(a)=0

, (4.7.2)
a,y(b)+hb,y'(b)=0
siir kosullar ile verilen Sturm-Liouville denklemi birinci mertebeden
1
y'=—x (4.7.3)
p
x'=(q-A4r)y (4.7.4)
diferansiyel denklem sistemine doniistiiriiliir.(4.7.3) denkleminde, x = Rcosé,
y = Rsin @ kutupsal koordinatlari ile
y=Rsiné
. (4.7.5)
py =Rcos@
Priifer doniistimleri (4.7.3), (4.7.4) denklemlerine uygularsak
R cos@—R@ sin@ =(q— Ar)Rsin @ (4.7.6)
R'sin@+Ré& cos&=£RcosH (4.7.7)

p

21



esitlikleri elde edilir. (4.7.6) denklemi sin@ ile (4.7.7) denklemi cos@ ile garpilip bu

esitlikleri taraf tarafa toplanarak
R':§(£+q—/1r}sin 20 (4.7.8)
P

esitligi elde edilir. Benzer sekilde (4.7.6) denklemi cos@ ile (4.7.7) denklemi sin @ ile
carpilip bu esitlikleri taraf tarafa ¢ikarilirsa

6?'=30052¢9+(M—q)sin29 (4.7.9)
p

esitligi elde edilir. (4.7.9) esitligi R’den bagimsizdir. Dolayisiyla her A sayisi ve

herhangi bir a€R sayzs1 i¢in bu denklemin, 6, (a) = a kosulunu saglayan bir tek 6,

¢Ozimii vardir.

Eger 6, fonksiyonu (4.7.9) denkleminin bir ¢cozimi ise A sayis1 (4.7.1), (4.7.2) Sturm-
Liouville probleminin bir 6zdegeri ve Y, = R, sin @, fonksiyonu da bu dzdegere karsilik

gelen 6zfonksiyon olsun.

Eger Y, fonksiyonu (4.7.2) smir kosullarin1 sagliyorsa

0=aY,(a)-hY,'(a)=R, (a){aisin 0, (a)—%cos@l (a)} (4.7.10)

=

O:aZYl(b)—szi'(b):Rlb{azsinel(b)— b, cos@l(b)} (4.7.11)

p(b)
esitlikleri gegerlidir. Bundan dolay1 X =a noktasindaki kosulun saglanmasi i¢in
(4.7.9) denkleminin @, ¢c6zimi
a,=01ise a="/, ve

b,
aip(a)ZO

a =0 ise 0£a<% ve tana =
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olmak tzere 6, (a) = o esitligi saglanmalidir. Benzer sekilde

a, =0 ise ﬁz% ve

b2
a,p(b)

a, #0 ise %</3S7z ve tanp =

olmak tzere, 8, (b)=+(n-1)z (neN) esitligi saglanmalidur.

Adi diferansiyel denklemler teorisinden 6, (b)’nin A’ya gore surekli ve artan

oldugunu biliyoruz.

Bu durumda eger 6, (b) <% olacak bigcimde bir A sayisi varsa ve A2 — oo igin

0, (b) > o ise bu durumda vneN icin

6, (b)=p+(n-1)x ve 4, <4, olur.

Boylece teorem ispatlanmis olur. (Gonzélez, 1996)

4.8 Ortonormal Ozfonksiyonlar Dizisi

A, 6zdegerinin karsilik gelen dzfonsiyonlar ¢ ’ler ise teorem 4.5.1 ‘e gore

¢, 0,, 05, 4,,... 6zfonksiyonlar climlesi [a,b] araliginda r(x) agirlik fonksiyonuna gore

ortogonaldir. Yani

D C—— T

r(x)d,(x)¢,(x) dx=0,(n=m) (4.8.1)
esitligi saglanir.
Q = j r(x)[ 4, (x)]2 dx (4.8.2)

ve
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O, =—¢,(x), n=12,.. (4.8.3)
gosterirsek
Tr(x)[@n(x)]z dx =1 (4.8.4)

elde edilir. (CDn (X)) dizisine [a,b] araliginda “ortonormal 6zfonksiyonlar dizisi”

denir. \/Q, ‘e “@ ’in normu” adi verilir ve

@ =||¢n||=ﬁr<x>[¢n<x>]z o 485)

seklinde gosterilir. Sonug olarak, Regiiler Sturm-Liouville probleminde ¢,

ozfonksiyonlarini ||¢n|| normuna bolerek ,{<Dn} ortonormal 6zfonksiyon dizisi elde

edilir.

(@)= {”Z_”} (4.8.6)

ortonormal 6zfonksiyon dizisi elde edilebilir.

Ornek 4.3
y'+iy=0, (0<x<L)
y(0)=0, y(L)=0

probleminin ortonormal 6zfonksiyon sistemini bulalim.

2 _2
C6zim:  Bu problemin 6zdegerlerinin, 4, =" ”Kz ,n=1,2,... oldugunu ve bu 4,

. NxX
’lere karsilik gelen 6zfonksiyonlarin Y, (X) =&, sin T,(O <x<L),(n=123,..)
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oldugunu kolayca bulabiliriz. BOylece {¢n} ctimlesi, [0, L] araliginda r (X) =1 agirlik

fonksiyonuna goére ortogonal bir fonksiyon ctmlesidir ve

i nzx mzx )
jan sin T.am sinT =0,(n=m)’dir. Ote yandan ¢, ’nin normu
0

L
||(/5n||=\/jan2 sinznil_xdx =a“\E’ (0<x< L) dir.
0

Boylece,

2
{CD“}:”Z_:”:{\Esmnil_x}’(n:l’z“") (4.8.7)

ctimlesi, problemin ortonormal fonksiyon cimlesidir.

4.9 Ozfonksiyon A¢ilimi

Teorem4.9.1 {® }”  (4.1.2)ve(4.1.3) Sturm-Liouville denkleminin
ortonormal 6zfonksiyonlar dizisi olsun. f fonksiyonu [a,b] araliginda siirekli, f ",

[a,b] araliginda pargali siirekli ve f, (4.1.3) sinir kosullarini sagliyor olsun.

C :Tr(x)f(x)Qn(x)dx (4.9.1)

katsayilar olmak iizere, f fonksiyonu L, [a, b] Hilbert uzayinda
f(x)=2.C,0,(x) (4.92)
n=1
bi¢iminde seri a¢ilimina sahiptir.

Ispat: {®,}" | (41.2)ve (4.1.3) Sturm-Liouville denkleminin ortonormal

6zfonksiyonlar dizisi olmak tzere f(x) fonksiyonu [a,b] araliginda
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f(0=3.C,0,(9 (4.9.3)

ozfonksiyonlar serisi bigiminde gosterilebilir olsun. C,,C,,C,... katsyayilarini
belirlemek i¢in (4.9.3) esitliginin her iki tarafin1 r (X) D (X) ile carpip a’dan b’ye

integrallersek

o0

j]‘r( x) f ()@, (x)dx=>_C,

n=1

r(x)®,(x)®, (x)dx (4.9.4)

D ey T

elde edilir. Ozfonksiyonlar ortogonal oldugundan m=n igin
b 2
j r(x) f ()@, (x)dx=C j )[@,(¥)] dx (4.9.5)

esitligi elde edilir. Buradan

ir(x) f ()@, (x)dx

r(x)[®,(x)] dx

C =

n

(4.9.6)

D ey T

olur. Boylece f (X)fonksiyonunu verilen Sturm-Liouville probleminin

6zfonksiyonlar1 cinsinden ifade eden ve C, katsayilari (4.9.6) esitligi ile elde edilen

(4.9.1) 6zfonksiyon serisi tanimlanmig olur.

Homojen olmayan

L[y]+ury=f,(a<x<b) (4.9.7)
a)+a,y'(a)=0
ay(a) Zyl (a) (4.9.8)
by(b)+b,y'(b)=0
siir deger problemini gdzoniine alalim. Bu probleme uygun
L[y]+ury=0 (4.9.9)
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ay(a)+a,y'(a)=0

. (4.9.10)
by(b)+b,y'(b)=0
homojen problemin 6zdegerleri A, 4,,..., 4,,.. ve bu 6zdegerlere karsilik gelen
ozfonksiyonlar ¢,4,,...,4,,.. olsun. Bu takdirde ¢ fonksiyonu
L[¢,]+A,ré, =0 (4.9.11)
a)+a,g '(a)=0
a6 (2) 2¢“| (2) (4.9.12)
bl¢n (b) + b2¢n (b) = 0
esitliklerini saglar. Bu fonksiyonlar [a,b] araliginda r agirlik fonksiyonuna gore
ortogonaldir. Yani,
b
I r(x)g,(x)@, (x)dx =0 esitligi saglanir. Simdi y fonksiyonunu
y =2 (X) (4.9.13)
n=1

biciminde tanimlayalim. c katsayilarin1 6yle segmeye ¢alisacagiz ki, y fonksiyonu
(4.9.7), (4.9.8) problemini saglasin. Her bir ¢, , (4.9.8) sinir kosullarini sagladigindan,

y fonksiyonu da (4.9.8) sinir kosularini saglar. Simdi

L[gcmn(x)}wrgcmn(x) - 1 (x)
esitliginden
3 e LA, 00] A3 ()= £
esitligi elde edilir. Buradan, L[g,]=4,ré, oldugundan
(1= A)C (00 = T (%) (4.9.19)

n=1
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esitligi elde edilir. Simdi esitligin her iki yan1 ¢, (x) ile carpar ve a’dan b’ye integral

alinirsa ve {¢n} fonksiyonlar sisteminin ortogonalliginden yararlanilirsa

0 o b

- (/J - ﬂ’n )Cn r¢n (X)¢m (X)dX = Z(:u - ﬂ’n )an r¢n (X)¢m (X)dX

n=1 2

N s 1

n

b b

(1= 20)Co [ 180 ()X = £ (X) ¢, (X)X

a a

esitligi bulunur. Buradan

f (X) ¢, (x)dx
Yo =% (4.9.15)

[ré(x)dx

a

D ey T

gosterirsek , (—A4,)c, =7, elde edilir. Yani (4.9.13) fonksiyonunun (4.9.7)

denkleminin ¢ozimu olabilmesi igin, C, katsayilarinin
(£—2,)C,=7,,(n=12.3,...) (4.9.16)

bagintilarin1 saglamasi gerekir. Boylece iki durum ortaya cikabilir:

1. Birinci durumda p 6zdeger olmasin. Yani, her n=1,2,3,... igin x = A “dir.
Bu durumda (4.9.15) den
C,=—2" (n=123,..) (4.9.17)
H—A

n

elde edilir. Boylece homojen olmayan (4.9.7)-(4.9.8) sinir deger problemlerinin

0

y= Z%%(X) (4.9.18)

biciminde yalniz bir ¢oziimii vardir.
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2. Ikinci durumda ise p 6zdegerlerden birine esit olsun. u = A, olursa,
(4.9.15) denklemi n=N i¢in 0.C,, =y, bicimindedir.

a) u=A4, vey, =0 ise (4.9.15) denkleminde C, katsayilarini elde etmek
miimkiin degildir. Boylece (4.9.7)-(4.9.8) sinir deger problemlerinin ¢ozimii
yoktur.

b) u=4, ve y, =0 ise (4.9.15) denklemi her C, i¢in saglanir. Boylece

(4.8.3)-(4.8.4) sinir deger problemlerinin ¢6ziimii vardir ve tek degildir.

y=Cud+ D, —Tth

n=LnzN H =74,
bicimindedir. , =0, (4.9.15) denklemi geregi

b

[ 1094, (x)dx=0

a

olmasini gerektirir. Yani, ¢ = A, olmasi halinde (4.9.7)-(4.9.8) sinir deger probleminin
yalniz ve yalmz f'nin 4, ‘e karsilik gelen 6zfonksiyona dik (ortogonal) olmasi halinde

¢oziilebilir. Bu kosula Fredholm Alternetifi denir. (Caglayan, 2012)
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5. STURM-LIOUVILLE ACILIMI
5.1 Sturm-Liouville Denklemi

Bir L lineer operatort verilsin ve
Ly =Ay (5.1.1)

denklemini g6z oniine alalim. Burada A bir sabit parametredir. Bu denklemi saglayan

fonksiyona 6zfonksiyon, A ’nin ilgili degerine ise 6zdeger denir.

Boylece eger v, (X) , bir A4, 6zdegerine karsilik gelen 6zfonksiyon ise
Ly, (X) = Ao (X) (5.1.2)

esitligi yazilir. Bu kesimde L operatorinu

2

L= q(x)—j'7 (5.13)

biciminde tanimlayacagiz. Burada ¢ (X) , verilen (a,b) araliginda tanimli X’in

fonksiyondur. Bu durumda y, ikinci mertebeden diferansiyel denklemi sagladigindan

d?y
dx?

+{2-q(x)}y=0 (5.14)
bicimde yazilabilir ve (X) , Y yerine yazilirsa

v, (X)+{4,—a(X)}v, (x)=0 (5.1.5)

denklemi elde edilir. Eger bu denklemi alip n’nin yerine m yazar, sirastyla ¥, (X) ve

Vo (X) ile ¢arpip ¢ikarirsak

(;Lm _ﬁn)v/m (X)V/n (X) =V (X)er; (X)_V/n (X)l//r"n (X)

- (0v (0w, (0 ()
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esitligi elde edilir. Boylece, eger v, (X) ve iy, (X) , X=a ve Xx=b’de ikisi de sifirsa,

her iki tarafi a’dan b’ye integrallersek

(=) [ (0 (0K 1 0, (1) (0, (3] =0

elde edilir. Eger A4, # 4, oluyorsa

b

v (X)w, (x)dx=0 (5.1.6)

a

b %
‘dir. (X) ozfonksiyonlar1t «, = Ut//n2 (X) dxj sabiti ile ¢arpilirsa elde edilen

a

o, (X) =a.y, (X) ozfonksiyonlari i¢in

b

[#2 (x)ax=1 (5.1.7)

a

esitligini elde edilir. Boylece ¢, (X) fonksiyonlar1 bir ortonormal sistem olusturur.
Asil problem, bir keyfi f (X) fonksiyonunun hangi sartlar altinda bayagi Fourier serisi

cinsinden agilabilecegini belirlemektir. Bundan sonra (l//n) 6zfonksiyonlar sistemini

ortonormal kabul edecegiz. f fonksiyonunun Fourier serisine agilimi

fF(x)= icny/n (x) (5.1.8)

biciminde olsun. v, (X) ile carpilip, a’dan b’ye integrali alinirsa

Cpn :_b[ f (), (x)dx (5.1.9)

biciminde ifade edilir.
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5.2 Homojen Olmayan Sturm-Liouville Problemi

Simdi homojen olmayan

O"+{A-q(x)} ©(x) = f(x) (5.2.1)

denklemini g6z Oniine alalim. Bu durumda (D(X,/L) fonksiyonunun (5.1.4)

denkleminin ¢6zlimleri ile ifade edilebilir oldugunu gosterecegiz.

¢ ve v fonksiyonlarinin W (¢,t//) = ¢(x).y/'(x)—¢'(x).y/(x) bicimindeki
Wronskiyan1 W, (¢,/) ya da kisaca W (¢,y) biciminde gésterilsin. O zaman ¢(X, 1)

ve (X, 4) (5.1.4) denkleminin W (¢, ) =1 olacak bicimde iki ¢6ziimii olsun. O

zaman (5.2.1) in ¢bzimi

d)(x,/l):z//(x,ﬂ,)jgé(y,/l) f (y)dy+¢(x,/1)'b[z//(y,/l) f(y)dy (5.2.2)

a

bi¢iminde elde edilir. Eger (5.2.2) ifadesini (5.2.1)-de yerine yazarsak bunun boyle

oldugu goriiliir.

Simdi

(5.2.3)

fonksiyonunun 6zelliklerine bakalim. Kolayca gosterebiliriz Ki

&(x)- g (x)= 3 2 20 =a0va ()} -, nwn )

= A=A, n-0

=icnwn(X)(1—ifl j= f(x) - 20(x)

n

esitligi saglanir. Boylece homojen olmayan denklemin ¢6ziimii homojen denklemin

¢oziimleri ile ifade edilmis olur.
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5.3 Sturm Liouville A¢ihim

Kabul edelim ki q(x), x”in bir reel fonksiyonu(a,b) araliginn tiim noktalarinda siirekli
olsun. Klasik Sturm-Liouvillede (a,b) araligi siurli bir arahk ve q(X) x —a ve

X — b de sonlu limite sahiptir. (Titchmarsh,1962)

Teorem 5.1 Eger (X) yukaridaki sartlar1 saglarsa ve o verilirse (5.1.4) denkleminin

a<x<Db araliginda
¢(a)=sina, ¢'(a)=-cosa (5.3.1)

sartlarini saglayan ¢ (x) = ¢ (X, A) ¢dziimii vardir. Her bir x i¢in ¢(x,4), 2' nmn bir

tam fonksiyonudur.

(5.1.4) denkleminin ¢(x,1), z(x,4) ¢dzimleri

#(a,1)=sine, ¢'(a,,1):—cosa} (5.3.2)

x(b,A)=sing, x'(b,A)=-cosp
sartlarini saglayan ¢oziimler olsun.
LW (92)= () 2" (X)- 2 (X)8"(x)

={q(x)-2}$(x) 2(x)~{a(x)- 4} 2 (x)g(x) =0

oldugu i¢in W (¢, ;() x’ten bagimsizdir ve sadece A’nin bir fonksiyonudur ve w(L)

olarak gosterilir. Yukaridaki teorem agikca gosterir ki

®(x,1)= Z(X”l)iqzﬁ(y.i)f (y)dy+¢vfl)((’j))iz(y,i)f (y)dy  (53.3)

biciminde A’nin bir tam fonksiyonudur.

Eger f(x) fonksiyonu stirekli ise, ®(x, 4) (5.2.1) denklemini sagliyorsa smir

kosullarindan A’nin tiim degerleri igin
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CD(a,/i)COSaHD'(a,/%)sma=0} (5.3.4)

®(b,A)cos f+@'(b,A)sin =0

elde edilir. w(A)’nin tiim sifirlarinin 4,, A,,.. gibi reel ve basit sifir oldugunu kabul

edelim. Sonra ¢(x,4,) ve y(x,4,) 6zfonksiyonlarmin wronskiyani sifir oldugundan,

2(X,24,), ¢(x.4,)"in
2(%,2,) =k d(x 4,) (5.3.5)
bigiminde sabitle garpimidir. Bdylece ¢(x, 1) ’in residiisii 4 =4, igin

W.?;n)¢(x,zn)f¢(y,zn)f(y)dy

a

ifadeye esit olur. Yukaridaki formiiller gosterir ki f (X) fonksiyonun acilimi

(%) =gw.@ 0004)[9(0.2)F ey (5:3.6)

bicimindedir. Bu Sturm- Liouville agilimidir.

Bayag1 Fourier Serisi q(x)=0 durumu icin elde edilir. Bu durumda (5.1.4) denklemi

d’y
dx?

+4y=0

bicimindedir ve bu denklem igin

sin{(x—a)v2
p(x,A)=- {(ﬁ) /1}, 2(x,A)= N

bigiminde elde edilebilir. Boylece w(4) 'min sifirlar, 4, = {nz/(b-a)} ,(n=12,...).
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W'(i)=b_—acos{(b—a)ﬁ}zm

24 24

n n

Boylece (5.3.6) agilimi « =0 ve £ =0 durumu igin
2 & x—a)t y—a
f(X)=—— ) sin| nt—— || sin| nz=—— |f (y)d
) b—anzzll ( ﬂb—aj;[ ( ﬂb—a} (y)ey
Fourier sinds serisini verir.

Benzer sekilde o = %7[, p= %72’ alinarak

1 % 2 & x—a )} y—a
f(x)=——| f(y)dy+—— —_— — |f(y)d
(x) b—a;[ (y) y+b_a;cos(nﬂb_aj£cos(nﬁb_aj (y)dy
kosinis serisi elde edilir.

Teorem 5.2 f(x) fonksiyonu (a,b) araliginda integrallenebilir fonksiyon olsun. Eger

a< x<bicin (5.3.6) de ifade edilen Sturm Liouville agilimi, bayagi bir Fourier serisi

ile esyakinsar. Ozellikle, eger f (x), X’ in yakin komsulugunda sinirli varyasyona
sahipse, %{ f(x+0)+ f(x- O)} "a yakinsar.
Simdi

1
o D(x,A)d4, (5.3.7)

integralini gozoniine alalm. Burada ®(x,4) (5.3.3) ifadesi ile tamimli ise

A-diizleminde asagidaki bigimde tanimh olanbiiyiik kapali cevrel ¢izgi olsun. A =S ve
s =o +it gosterelim. s- dizlemdeki ceyrek kareyi olusturan asagidaki dogru pargalarini

tanimlayalim;
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[+ 2
o= 0<t<

b-a b-a
3 3
n+§72' n+§ﬂ'
t= 0<o<

b-a b-a

Bu egriye uygun gelen burada A diizlemindeki egrinin iist diizlemdeki kismini alt

diizleme simetrik yansitalim. Boylece bir kapali egri elde ediyoruz.

Kolayca gosterebiliriz ki (5.3.7) integrali 6zfonksiyonlar sistemine agilimina sonlu

kismi toplamina esit olacak .

Simdi ise sina # 0,sin B # 0 oldugunu diisiinelim. Bunun igin
¢( Y, /1) = COS{S(y — a)}sin a+0 {|s|1ei(ya) }
){(X, /1) = COS{S(b = x)}sin B+0 {|S|—1ei(bx) }

asimptotik esitliklerinden yararlanacagiz.

Yukaridaki ¢eyrek karede (s- diizleminde tanimlanan)

w(4)=s.sin{s(b—a)}sinasin ﬂ+0{ei(b‘a)} (5.3.8)

asimptotik esitligi saglanir.

Ceyrek karede, |sin {s (b— a)}| > Ae'®? esitsizligi saglandigl igin

w(l/l) ~ssin {s(b—;)}sinasin I {“O(ﬁ]}

asimptotik esitligi ve dolayisiyla
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;((x,/l)gz)(x,/l)_cos{s(b—x)}cos{s(y—a)}+ ol e
w(4) - ssin{s(b—a)} O{ }

z(x,A)
w(2)

[8(y.2) f(y)dy =

.X[cos{s(b— x)jcos{s(y-

a)} L v
s.sin{s(b—a)} f(y)dy+o{|_£ |f(y)|d)/}

asimptotik esitlikleri saglanacak.

0< o6 <x—a oldugunu kabul edelim. O halde sonuncu terim

O(W} {| il y}

asimptotik ifadesine esit olacak

dy / ds = 2s oldugu i¢in bu terim (5.3.7) integralinde asagidaki toplamay1 ortaya
cikariyor.

j{e"‘i+i|f(y)|dy}0[ J|ds| {je Hih(y)wy}

&’nin secilmesi ile ikinci terim istenilen kadar kiiglik yapilabilir ve &’y1 sabit tutarak

n — oo alinarak limite gegilirse 2. terim sifira yaklasir, ¢ilinkii bu ifade asagidaki gibidir.
1
[n+§jﬂ/(b—a) 5

[n+1]7r/(b—a)
o i 3J_ I i J. e— (n+%)ﬁ/(b—a)do_
n

0 n 0

- n+1 7/(b-a
:O(LJ+O£9 5( 3) ( )} olur.
noé

Benzer sekilde X <y <b arahigindaki ®(x,1)’nin diger terimlerinde de uygulanur.

Boylece (5.3.7) ifadesi
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f(y)dy+

1 J.{JX. cos{s(b—x)}cos{s(y—a)}

27 ssin{s(b—a)}

+j’. cos{s(b—y)jcos{s(x-a)}

s.sin{s(b-a)} f(y)dy}dﬂwo(l) (5.3.9)

integraline esittir. Bu formuildeki ilk terim f (x)’in Fourier Kosints Serisinin kismi
toplamina esittir. Bunu residii hesabiyla kolayca gosterebiliriz. Bununla da teoremin

ispati bitti.

Bu teorem Sturm-Liouville agilimi ile Fourier Serileri arasinda iligkiyi gostermektedir.

sina =0 yada sin =0 durumlar iginde teorem benzer sekilde ispatlanabilir.

f fonksiyonunun , x noktasinin komsulugunda sinirli varyasyonlu oldugu durumunda,

Fourier serileri teorisine basvurmadan da sonug kolaylikla elde edilebilir. Ilk adimda

cos{s(b-x)}cos{s(y—a)} . {ei(b—X)+i(Y—a) } o (e’i(x’y))

sin{s(b—a)} r e'*?)

elde edilir. a<y<x-¢ araliginda, f(y)= j(y)+k(y) olsun;

burada j(y) mutlak surekli fonksiyondur ve
X—3

_[ |k(y)|dy < g ’dir. Buradan

a

[n+%)n/(b—a) s . s
[ dt][ e lk(y)|dy<[edt [ [k(y)|dy<e/s elde edilr.
0 0 a

Kismi integrasyon uygularsak

i(x-5-a)

iCOS{S(b —x)} j(y)dy = O(QT]

esitligi elde edilir ki bu ise sifira yakinsayan bir terimdir.
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.X[ cos{s(b—x)}cos{s(y—a)}
5 sin{s(b—a)}

f(y)dy

ifadesini inceleyelim. Burada f (y) yerine f(x—0) yazarsak

f(x-0) czzos{s(b— X)}

sin{s(b-a)] [sin{s(x—a)}—sin{s(x—a—5)}]

-2 1o )]

ifadesi elde edilir. Bu ise (5.3.7 integralinde iist yartya uygun olan Emf (x)+0()

terimini ortaya ¢ikarir. Bdylece f fonksiyonu sinirli varyasyonlu oldugu igin,

f(x—0)—f(y)=9(y)—h(y) yazilabilir. Burada g(y) ve h(y) fonksiyonlari pozitif ve

monoton azalan ve y — x iken sifira yakinsar. Ikinci ortalama deger teoreminden,

X 5
I recos{s(y—a)}g(y)dy =g(x—0) I recos{s(y—a)}dy

X=0

=g(x-0o)re j COS{S(y—a)}dy:O[g(X—5) ei(xa)J

9

elde edilir. Bu (5.3.7) ifadesinde

jo‘g(’;‘s)hdﬂ:o{g(x—s}

terimini ortaya ¢ikariyor ki, burada da & ’y1 istedigimiz kadar kiigiik segebiliriz.
Benzer durumlar h(y) iceren terimler ile y>x olan terimler icin de gecerlidir. Boylece

teorem ispatlanmis olur.

Simdi ise




yazarak (5.1.6)-(5.1.9) formiillerinin gegerliligini gorebiliriz.

Eger x=a olursa benzer sonug gegerli olur ve sina#0 durumu ayni yontemle

kamtlanabilir. Eger sino=0 olursa, ®(x,A) sifir olur ve f(a+0)=0 durumu haric

benzer sonug gecerli olmaz. x=b durum benzer bicimde incelenir.

Ayrica alttaki sonucu elde ederiz:

Teorem 5.3 Eger f(x), (@,b) araliginda integrallenebilir fonksiyon ve a<x<b ise

Gl (X)
d(x,4)= 5.3.10
(2)=2= (5:3.10)
esitligi saglanir.
Ispat: Eger
J-tb(x,/1) ;
z-A

integrali kapal1 egri lizere benzer sekilde hesaplanirsa kolayca (5.3.10) agilimi1 elde

edilir.

Not: Bu seri ®(x, 4)’nin Sturm-Liouville agilimidir ve

D (X, A)w, (X)dx. (5.3.11)

o
>
R 1

A-2

n

ifadesi kolayca gosterilebilir.
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6. IKINCi MERTEBEDEN DIiFERANSIYEL DENKLEMLERIN NUMERIK
cOzUM METODLARI

6.1 Sonlu Farklar Metodu

Sonlu farklar metodu, sinir deger probleminin [a, b] araligin1 N tane noktaya

bolerek kesikli bir sistem haline ¢evirmek esasina dayanir. Boylece sinir deger problemi
cebirsel esitlik haline doniigmiis olur.
Sonlu fark yontemi ana 6zelligi uygun farklar ile tiirev ifadelerini degistirerek

ayrik denklemler elde etmektir.

Simdi asagidaki sinir-deger problemini goz oniine alalim.

Y+ p()y"+q(x)y = f(x) (6.1.1)
y(@)=a (6.12)
y(b)=4

(6.1.1)-(6.1.2) sinir-deger problemi sonlu farklar yontemiyle birka¢ adimda

cozllen bir sistem haline gelir. (Kahvecioglu,2004)

[k adim olarak, sinir deger probleminin tanim araligi olan [a, b] araligi N tane

esit araliga boliindir.
[a, b] = [%, %JUDx, %1U -+ - Ulxy 0 %y 1,

Burada, a=X,< X << X< X, =b oldugu kabul edilir, X,,X,,..., X, noktalarina ise

diigim noktas1 denir.

he b-a (6.1.3)

ifadesine ise adim aralig1 denir. Sonlu farklar metodunda N ne kadar buyuk segilirse

yaklagik ¢oziimlerdeki hata miktari o kadar azalir.

Diiglim noktalar1
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X =a+ih 0<i<N (6.1.4)

esitligi yardimiyla belirlendikten sonra ikinci adimda, sinir deger probleminde bulunan
tiirev ifadelerinin yerine yaklasik deger ifadeleri yazilir. Bu ifadeler ise Taylor Serileri

yardimiyla elde edilir. Taylor Serileri

Y(Xi+1) = Y(Xi)+ y'(xi)(xm =X )"’@(Xm =X )2 T (6-1-5)

olarak tanimlandigindan, (6.1.5) Taylor serisi agilimindan y'(x; ) ifadesi cekilirse,

birinci tiirev i¢in sonlu farklar ifadeleri sirasiyla,

1. Illeri fark béliinmiis sonlu farklar formli
X )=y (x
y'(xi):ww(h) (6.1.6)
2. Geri fark boliinmiis sonlu farklar formiila

V(%)= y(Xi)_hy(x”)w(h) (6.L7)

3. Merkezi fark sonlu farklar formuli

V(%)= y(x‘”)z_hy(xi‘l) +o(h?) (6.0.8)

biciminde elde edilir.

(6.1.5) Taylor serisi agilimindan y"(Xi) ifadesi cekilirse, ikinci tirev icin sonlu farklar

ifadeleri sirasiyla,
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1- leri fark sonlu boliinmiis sonlu farklar formiilii

() = L)) V) o

- (6.1.9)
2- Geri fark boliinmiis sonlu farklar formiilii
) =2v(x .
yr()= 2 y(,:'z'l)”(x'”)w(h) (6.1.10)
3- Merkezi fark boliinmiis sonlu farklar formiilii
o )=2 . .
y"(Xi): y(XHl) y(XI)+y(XI1)+O(h2) (6111)

hZ
biciminde ifade edilir.

Merkezi farklarda kesme hatasinin mertebesinin h? olmasi, merkezi farklarla tiirev
hesaplamanin daha dogru sonug verecegini gosterir. Daha yiiksek dogrulukta boliinmiis

fark turev formdlleri, Taylor Serisi’nden daha fazla terim almak yoluyla elde edilir.

(6.1.8)-(6.1.11) merkezi fark turev ifadeleri (6.1.1) sinir deger probleminde yerine

yazilarak

P Z BNV py e dt gy, = F(x), i= Lo N1 (6112)

(1_%hpiJ yifl+(_2+h2qi)yi +(l+%hpijyiﬂ =h*f (Xi)'lS I<N-1 (6.1.13)

yo :a! yN+1 :ﬁ (6114)

esitlikleri elde edilir. Elde edilen yaklasik sonug esitligi, sinir degerleri ile birlikte
secilen X; diigim noktalarina uygulanarak sonlu sayida bilinmeyenli denklem sistemi

elde edilir.

Sinir kosullar1 i=1 ‘den i=N -1 ‘e kadar denklemde yerine yazilarak elde edilen

denklem sisteminin katsayilar matrisi
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-2+h?qg, 1+%hp1

1 1
1—Ehp2 -2+h?q, 1+§hp2
A=l . : . : . (6.1.15)

-2+h’q,, 1+%hpN_1

1—1hpN -2+h*q,
2
biciminde elde edilir. Denklem sisteminde bulunan denklemlerin sabit terimleri ise,

WQ—@—%mJa , i=1

b =lh’f, . i=23,..,N-2 (6.1.16)

Wm4—@+%meﬁ,i:N—l

seklinde elde edilir. yT = (yl, Yor Yareens Yyt yN) olmak Uzere

Yi
Yz

y=| . (6.1.17)

Yna
Yn

bi¢cimde yazilirsa, Ay =b lineer sistemi tridiagonaldir ve tridiagonal lineer sistemlerin

¢Oziimii ¢ok 1iyi ¢alisilmis bir problemdir. (Atkinson, 2011)
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) y'-y=0
Ornek 6.1.1 (6.1.18)
y(0)=0, y(1)=1

siir deger probleminin 6zdegerlerini bulalim.

v Yia—2Yi+VYia
- =

Cozam: y
merkezi fark turev ifadesi (6.1.18) denkleminde yerine yazilirsa

Yinr = 2h)2/I T _ y, =0 ve Yia =2V + Yy —h%y, =0

Yia—(2+h*)y +y,, =0 (6.1.19)
denklemleri elde edilir. Sinir kosullar1 Y, =0, Y,,=1 olmak tizere, N=10 secilirse

1-0
h= E =0.1 adim aralig1 elde edilir. Sinir kosullar1 ve adim aralig

(6.1.19) denkleminde sirasiyla yerine yazilarak

Yo _(2+(O-1)2)y1 +Y,=0

Y, —(2+(0.2))y, +y, =0

Ys _(2+(0-1)2)Y9 + VYo = 0

lineer denklem sistemi elde edilir. Lineer denklem sistemi matris formunda
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(201 1 0 0 0 Ify,] o
1 201 1 0 o {y,| |0
1 —201

[
]

0o 0 0 1 201 1 [yl |.
o 0 0 0 1 =201|y] |1

matris formunda yazilabilir. Bu sistemin ¢6ztimii ile yaklasik ¢éziimler elde edilmis
olur. Sistemin ¢6zimi Matlab programi ile yapilmis olup yaklasik ¢6ziimler ve gercek

cozlmler asagidaki tabloda gosterilmistir.

Xi ) Gergek _Yaklaslk Hata
Ozdegerler Ozdegerler | Yzdesi
0 0 0 0.00%
0.1 0.085234 0.085244 | 1.17%
0.2 0.171320 0.171341 | 1.23%
0.3 0.259122 0.259152 | 1.16%
0.4 0.349517 0.349554 | 1.06%
0.5 0.443409 0.443452 | 0.97%
0.6 0.541740 0.541784 0.81%
0.7 0.645493 0.645534 | 0.64%
0.8 0.755705 0.755739 | 0.45%
0.9 0.873482 0.873502 | 0.23%
1 1 1 0.00%

Tablo 6.1.1 (Ornek 6.1.1 6zdegerler tablosu)
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—B— Gercek Ozdegerler Yaklasik Ozdegerler

0.9 v
0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1 A

Sekil 6.1.1 (Ornek 6.1.1 6zdegerler grafigi)

Ornek 6.1.2 y"=12x*> y(0) =0, y(1) =0 (6.1.20)

siir deger probleminin gercek ¢ézlimii ile sonlu farklar yontemiyle yaklagik ¢éziimiinii

bulup karsilagtiralim.

Cozim: (6.1.20) denkleminin gergek ¢ozumu
y=x*+CcX+c,

olup smir kosullar1 uygulanirsa

y(0)=0,C, =0,y(1)=0,C, =-1

elde edilir. [0,1] araligii 10 pargaya bolerek gergek ¢oziimleri hesaplarsak
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X Gercek ¢cozumler
0 0
0.1 -0.0999
0.2 -0.1984
0.3 -0.2919
0.4 -0.3744
0.5 -0.4375
0.6 -0.4704
0.7 -0.4599
0.8 -0.3904
0.9 -0.2439
1 1

Tablo 6.1.2: (Ornek 6.1.2 igin gercek ¢ozim tablosu)

Simdi ise sonlu farklar yontemini uygulayalim:

y"= Yiss = 2h32/' *Yig tlrev ifadesi (6.1.20) probleminde yerine yazilirsa

Yia 2yj Y
h2

=12x°

denklemi elde edilir. Gerekli diizenlemeler yapilarak
V... — 2y, + Y., =h?12x? (6.1.21)
esitligi elde edilmis olur.

N=10 i¢in adim araligin1 h = % =0.1 secelim.

Sinir degerleri ile diigiim noktalarini degerlerini (6.1.21) denkleminde yerine yazarak
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Yo =
Y, —2Y, + Y, =12h*x,’?
Y, =2y, +Y, =12h*x?

Y, —2Y, + Y, =12h*x;
yi+l = 0

denklem sistemi elde edilir. Lineer denklem sistemi matris formunda yazilarak

ifadesi elde edilmis olur. Sistem ¢oziilerek yaklagik ¢oziimler elde edilmis olur.

2 1 0 0[v.] [ 12h°x? |
1 2 1 0y, 12h%x,?
0 1 -2 B
0 0 0 1 -2 01}y, .

(0 0 0 0 1 -2y | [12h*x?-1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

y.

-0.099

-0.1968

-0.2898

-0.372

-0.435

-0.468

-0.4578

-0.3888

-0.243

Tablo 6.1.3: Ornek 6.1.2 icin yaklasik ¢6ziim tablosu

Simdi ise 6rnek (6.1.2)’nin gergek ve yaklasik ¢oziimlerini karsilastiralim.
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Gercgek Yaklasik Degisim

X Cozim ¢6zim %

0 0 0 0
0.1 -0.0999 -0.099 0.90%
0.2 -0.1984 -0.1968 0.81%
0.3 -0.2919 -0.2898 0.72%
0.4 -0.3744 -0.372 0.64%
0.5 -0.4375 -0.435 0.57%
0.6 -0.4704 -0.468 0.51%
0.7 -0.4599 -0.4578 0.46%
0.8 -0.3904 -0.3888 0.41%
0.9 -0.2439 -0.243 0.37%

1 1 1 0

Tablo 6.1.4 (Ornek 6.1.2) icin ¢oziim karsilastirma tablosu

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

-0.7

-0.8

-0.9

T T T T T T T T T T — 1
0&1 02 03 04 05 06 07 08 09 /1

AN /-

AN /

N /

\—/ Yaklasik Coziim

e Gergek COzUm

Sekil 6.1.2 (Ornek 6.1.2) i¢in ¢oziim karsilastirma grafigi
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Ornek 6.1.3

y"'=A21y
y(0)=0 (6.1.22)
y@ =0

sinir deger problemini ¢ozelim.

Cozum:  (6.1.22) sinir deger probleminin analitik ¢oziimii

y(X) = Asiny=2 X+ Bcosyv-2 x (6.1.23)
biciminde elde edilir. Sinir kosullar1 yerine konulursa
y(0)=0 icin y(0) =Asin0+BcosO0=0 yazilirsa B=0 elde edilir.
y@) =0 icin y(1) = Asiny-1 =0
A =0 olmak Uzere annﬂ n=12, ...
Boylece 6zdegerler
A =-n’n’ n=12, ... (6.1.24)
esitligi biciminde, 6zvektorler ise
y.(X) = sinnzx (6.1.25)

esitligi olarak bulunur. Buradan (6.1.22) denkleminin ger¢ek ¢oziimleri asagidaki
tablodaki gibi bulunur.

A 4 A Ay Ay

-9.8696 -39.4784 -88.8264 . -3197.7518 | -3562.9271

Tablo 6.1.5 Ornek 6.1.3 ‘in gercek 6zdegerler tablosu
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0 ' T T T T T T T T T T T T T T T T 1

1 2 3 4 7 8 9 10 11 12 13 14 15 16 17 18 19
500

-1000 \

-1500 \

-2000 \

-2500 \

-3000 \\
-3500

-4000

Sekil 6.1.3 Ornek 6.1.3 “in gercek 6zdegerler degisim grafigi

Simdi ise (6.1.22) Sturm-Liouville sinir deger problemini sonlu farklar yontemi ile

cozelim:
y"= Yisa — Zh{I Vi tirev ifadesini (6.1.22) denkleminde yerine yazarsak
. =2V. + V.
y|+1 h)gl yl—l — ﬂ'hyl
Yo =Yna =0, =N
1
F(yiﬂ_zyi + yi—l)zﬁ'hyi (6.1.26)

denklemi elde edilir.

N =20 segilerek adim aralign h= % =0,05 olarak bulunur. Sinir degerleri , h

adim aralig1 ve diiglim noktalar1 (6.1.26) denkleminde yerine yazilarak
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S 1 1
i=1 icin (Y, =2y, + Yo =4 Y,) —(¥,—2y, =4Y,)

h? h®
o 1
i=2icin F(ys_zyz_'_yl:ﬂhyZ)
. - 1
=18 icin F(ylg _2y18 + Y7 :A’hyls)
. - 1 1
i1=19 icin F(yzo —2Y15+ Y15 = Z’hle) F(_zylg T Yig = Zhylg)

denklem sistemi elde edilir. Elde edilen lineer denklem sistemi matris formunda

(-2 1 0 0 . 0(Y Y1
1 -2 1 0 . 0]y, Y,
1
el
0 0 . 1 -2 1|y, Yis
_O 0 . 0 1 _2__y19_ _y19_

bi¢imde yazilir. Tridiagonal (N —1)x (N —1) matrisi ¢6ziilerek (6.1.22) probleminin

yaklasik ¢oziimleri elde edilmis olur. Asagidaki tabloda (6.1.22) probleminin gercek

Ozdegerleri ile yaklasik 6zdegerleri verilmistir.
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Gergek Ozdegerler | Yaklasik Ozdegerler

1 -9.869604401 -9.84933

2 -39.4784176 -39.15479

3 -88.82643961 -87.19478

4 -157.9136704 -152.78640
5 -246.74011 -234.31458
6 -355.3057584 -329.77180
7 -483.6106157 -436.80760
8 -631.6546817 -552.78640
9 -799.4379565 -674.85243
10 -986.9604401 -800.00000
11 -1194.222133 -925.14757
12 -1421.223034 -1047.21360
13 -1667.963144 -1163.19240
14 -1934.442463 -1270.22820
15 -2220.66099 -1365.68542
16 -2526.618727 -1447.21360
17 -2852.315672 -1512.80522
18 -3197.751826 -1560.84521
19 -3562.927189 -1590.15067

Tablo 6.1.6 (6rnek 6.1.3 “in 6zdegerler karsilastirma tablosu)
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-500
-1000
-1500
\ == Gercek Ozdegerler
-2000 .
\ —o—Yaklasik Ozdegerler
2500

-3000 \\
-3500

X
-4000
Sekil 6.1.4 ( 6rnek 5.1.3 ‘in 6zdegerler karsilagtirma grafigi)
.. —v'+e*v=1
Ornek 6.1.4 yrey=4y (6.1.27)
y(0)=y(@®)=0

Sturm-Liouville denkleminin 6zdegerlerini sonlu farklar yontemi ile bulalim.

Cozum: —y"+e*y =4y denkleminde y" ifadesinin yerine
n yi+ - 2y| + yi_
y" =i = 1

merkezi sonlu fark denklemi yazilirsa

_ Yia _2yi Y
hZ

+ery, =AY,

ifadesi elde edilir. Buradan gerekli duzenlemeler ile

1 X; 2

F(_yﬂl + ZYi - yi—l) +evy, = Ah Yi (6.1.28)

esitligi elde edilmis olur. Adim araligin1 bulmak igcin N =10 segilirse adim araligi
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h= 11_—0 =0.1 bulunur.

1<i<9 olmak iizere sirasiyla denklemimizde yerine yazarak

o 1 )
i=1 icin F(—yz+(2+e1h2)y1—yo)=ﬂlh2y1
. .. 1 X a2 2
i=2icin F(—yg+(2+e1h )Y, = Y1) = Ah%Y,

. - 1 Xg | 2 2
i=9 icin F(—ylo+(2+e h*)Ys —Ys) = 407y,

denklemleri elde edilir. Bu denklemlerde y(0) = y(1) =0 sinir kosullar1 da yerine

yazilarak lineer denklem sistemi olusturulur. Katsayilar matrisinin 6zdegerleri

bulundugunda Sturm-Liouville denkleminin yaklagik 6zdegerleri bulunmus olur.

Ay =AY olmak tizere,

[2+h%" 1 0 0
1 2 +h%e® 1 0
1
A=te |
0 0 : 1 2+ h%e*
0 0 . 0 1

1
2+h%e* |

katsayilar matrisi yT = (yl, Yoi Y3ieYao yg) olmak {izere A matrisinin 6zdegerleri

(A=1%)y=0

denklemi yardimiyla bulunur. A matrisinin 6z degerleri ayn1 zamanda (6.1.27)

Sturm-Liouville probleminin de 6zdegerleridir.
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Asagidaki tabloda (6.1.27) Sturm-Liouville problemin gergek 6zdegerleri ile N=10,

N=20 ve N=100 i¢in yaklasik 6zdegerleri verilmistir.

. Yaklasik Yaklasik Yaklasik
Gergek Ozdegerler Ozdegerler Ozdegerler Ozdegerler
(N=10) (N=20) (N=100)
1 11.5424 11.4613 11.5221 11.5416
2 41.1867 39.9047 40.8631 41.1738
3 90.5404 84.1565 88.9087 90.4747
4 159.6296 139.9117 154.5023 159.4219
5 248.4569 201.7154 236.0313 247.9500
6 357.0230 263.5182 331.4889 355.9722
7 485.3281 319.2698 438.5250 483.3823
8 633.3724 363.5100 554.5039 630.0545
9 801.1558 391.8903 676.5700 795.8441
10 801.7176 980.5876
11 926.8651 1184.1026
12 1048.9310 1406.1883
13 1164.9096 1646.6255
14 1271.9451 1905.1770
15 1367.4017 2181.5876
16 1448.9288 2475.5845
17 1514.5181 2786.8776
18 1562.5518 3115.1597
19 1591.8296 3460.1067
9.7 39912..9519
98 39962.2410
99 39991.8101

Tablo 6.1.7 (Ornek 6.1.4 igin gercek ve yaklasik dzdegerler tablosu)
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Sekil 6.1.5 (Ornek 6.1.4 “in yaklasik 6zdegerler degisim grafigi)

58




6.2 Matris Doniisiimii ile C6ziim

y'+(A-q)y=0 (6.2.1)
0)=0
iiﬂ)) _0 (6.2.2)

Sturm-Liouville problemi verilsin. Burada g e C'[0,7]oldugunu kabul edecegiz.

Bu problem

(6.2.3)
1 0] y(0)] [0 O] y(x)]| [O
+ =
0 0]ly'(0)] [1 O]|y'(x)| |O
bi¢iminde yazilabilir. Burada
Oyl 2o shel Shefs et @
y'(x) 00 10 00 10
olarak kabul edilmistir.
Bdylece (6.2.1)-(6.2.2) denklemleri
Y'(x)=AY (x)+(q(x)-2)BY(x), O<x<=z (6.2.4)

CY(0)+C,Y(7)=0 esitlikleri bigimde yazilabilir.

x,=jh , j=012..n, h :% olmak (izere, (6.2.4)

denkleminde sonlu farklar yontemi uygulanirsa

Y., —Y; =hAY,, +h(q; - 4,)BY,
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CY,+CY =0
esitlikleri elde edilmis olur. Buradan
~Yia+(hPa;+2)y; -y, =4y,
denklemi elde edilir. Burada

q; = q(xj ) A,, A’ nin hesaplanan 6zdegerleri, Y, Y (Xj) ‘nin hesaplanmis

hali olarak alinmstir.

Boylece

Y., —hAY,, =Y, +h(q; - 4,)BY,
denkleminden

(1=hA)Y,; =(1+h(a;-4)B)Y,
denklemi elde edilmis olur.

(1—hA) matrisinin tersi (1+hA) matrisi oldugundan
(1-hA)" =(1+hA)
yazilabilir. Buna gore
Yia=(1+hA)(1+h(a;-4,)B)Y, =My, (6.2.5)
esitligi elde edilir.

M(x;)=M; olarak gosterilirse M; matrisinin 6zdegerleri,

£ :%(Z—hzﬂh +h’q, J_r\/—4+(2—h2/1h +h’q, )zj (6.2.6)

ve Ozvektorleri
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Vi, = —1[1+h2(qj —ﬂh)]—ﬂ«fz (6.2.7)
biciminde elde edilir. Boylece
2-h*(4,-q;)=2cosd(x;, 4, ) =2cosb, (6.2.8)
doniisiimii uygulanirsa, 6zdegerleri, 1, =C0s6, £sin6; = e
Ozvektorleri
i R e TR
biciminde yazilmis olur.
Simdi
M,=PDP" ve (6.2.9)
o2
0 e
ifadeleri (6.2.5) ifadesinde yerine yazilirsa
Yi,=M)Y, =P Dij*le
esitligi elde edilir. Esitligin her iki tarafina PH[l uygulanirsa
P Y1 =P PD,PY, (6.2.10)

. . —1 o . . .
ifadesi bulunur.  Z; = P,Y; oldugundan, (6.2.10) ifadesi yeniden
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VA P.

j+l

-1
D,Z, (6.2.12)

j+l =
ifadesine dontisiir.

P, ifadesini Taylor teoremine gére aarsak

. . d -
PMl:Pj 1+h&P 1(X)

o NG N (6212

X=X dx’

esitligini elde ederiz. Elde edilen (6.2.12) esitligini (6.2.11)’de yerine yazarak

d
dx

prht-L pi(y)
R e

]

P~ (x)

Zj+1:(l+h Pj]Djzj

esitligini elde ederiz. Burada

d
—pt
¥

_ PD,=ifs Ve f, =

olarak tanimlarsak

— P (X < const.h

wx, 1D

ifadesinden
Z;,=(D;+ihf;s+0(n*))z;,j=012,..n-1 (6.2.13)
elde edilir. Burada const h’1n lineer bagimsiz bir sabitidir.
(6.2.1)- (6.2.2) probleminin 6zdegerleri, A =k® olarak bulunmustu.
6(1)=2-h,

x’e bagli olmadigindan, P sabit matris oldugundan (6.2.3) denklemi
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g?h) 0
D= _
0 e_le(ﬂﬁ)

Z,,=DZ,,j=012,.,n-1

olmak Uzere

seklinde olur. Smir kosullarindan

Z,=D"Z,, Y. =PZ

i i
CPRZ,+C,PZ =0
elde edilir. Boylece

v () =det[C,P+C,PD, ],

bulunur. 4,, (6.2.1)-(6.2.2) denkleminin 6zdegeridir ve denklemin ¢dziimii

bicimindedir.(6.2.8) denkleminden

0 = arccos (%(2 ~h?4, )J

1 2
cosf = cos(arccos (5(2 -h°A4, )D

Ll e
0050_2(2 h’4,)
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Aok =%(2—2cos kh) =%sin2 (k—zhjk =12,..,n-1

esitlikleri bulunmus olur. Bdylece sonug olarak

Ao Z%Sinz[k—:j’k =12,..,n-1 (6.2.14)

Ozdegerleri elde edilir. Benzer sekilde, ( (X) #0 ise

_ 3 _
2y \Jk*—q;
A=k ——L———|+0(h%k*) (6.2.15)

esitligi elde edilir. (Oger,2005)
Ornek 6.2.1  y"+Ay=0 Sturm-Liouville denklemindenve y(0)=0, y(z)=0
sinir sartlarindan olusan problemin 6zfonksiyonlarini bulalim.

Géziim: —y"+q(x)y =1y denkleminde q(x)=0 oldugundan, (6.2.7) ‘ye gore

A =hi25i”2 (k_zhjk =12,..n-1

denklemine gore, n=20 secgersek, h = 210 olur.  O0<k<n=20 “den 6zvektorler

asagidaki tabloda verilmistir.

A z A Ay hg h

0.99794387 | 3.967183046 | 8.834546258 | ... 153.195379 | 158.0478862 | 161.0014906

Tablo 6.2.1( n=20 q(x)=0 i¢in 6zdegerler tablosu)
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180
160 —
140 /
120 /

100 /

80 /
60 /

40 /
20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Sekil 6.2.1 ( Ornek 5.2.1 i¢in 6zdegerler grafigi)

Ornek 6.2.2 —y"+e*y=21y ,y(0)=0,y(7)=0 (6.2.16)

probleminin gergek 6zdegerleri agsagidaki tablodaki gibi bulunmustur.

k A

1 4.89667
2 10.04519
3 16.01927
18 331.06934
19 368.06713
20 407.06524

Tablo 6.2.2 ( 6rnek 5.2.2 6zdegerleri)
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450

400

350

300

250

200

150

100

50

1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Sekil 6.2.2 ( Ornek 5.2.2 6zdegerler degisim grafigi)
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7. TARTISMA VE SONUC

Bu tez ¢alismasinda ikinci mertebeden adi diferansiyel denklemler tanimlanarak
sinir deger problemlerinin 6zellikleri ile ¢ozimleri Uzerinde durulmustur. En dnemli
sinir deger problemlerinden olan Sturm-Liouville problemleri detayli bir sekilde
incelenip gercek ¢oziimleri yaninda yaklasik ¢6ziim yollar1 irdelenmistir. Sonlu Farklar
yontemi ve matris doniisii ile yaklasik ¢oziimleri hesaplanip, gercek c¢ozimleri
karsilastirmali tablolar ve grafikler hazirlanmustir.

Matematiksel fizigin ve mihendisligin pek c¢ok problemi smir deger
problemlerine indirgendiginden yaklasik ¢6ziimlerin minimum hata ile gercgek
¢oziimlere en yakin sekilde hesaplanmasiin gerekliligi vurgulanarak, dzellikle Sonlu
Farklar yonteminde h adim aralig1 ne kadar kiciik se¢ilirse yaklasik ¢6ziimlerdeki hata

miktar1 o kadar azaldig1 goriilmiistiir.
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9. EKLER

1- N=10;

2- h=1/N;

3- x=(0:h:1);

4- b =zeros(N+1,1);

5- b(2:N) =12 * h"2 * x(2:N)."2;
6- A =sparse(N+1,N+1);

7- A(1,1) = 1.0; A(N+1,N+1) = 1.0;
8- forj=2:N

9- AG.0-1.j,j+1]) =1, -2, 1J;
10- end

11- Y=A\D;

Ek.1: Ornek 6.1.2 icin MATLAB kodu:

1- N=10;

2- h=1/N;

3- fori=1:N-2

4- A(i,i)=-2*1/h"2;

5- A(9,9)=-2*1/h"2;
6- A(i,i+1)=1*1/h"2;
7- A(i+1,i)=1*1/h"2;
8- end

9- x= linspace(0,1,9);
10- J=eig(A);

11- plot(x,J)

Ek.2: Ornek 6.1.3 icin MATLAB kodu:
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