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Adaptif filtre tekniklerin sinyal işlemede sıklıkla kullanılmaktadır. Genellikle adaptif filtrenin 

kararlı durum hataların-karelerinin ortalaması (HKO) ve yakınsama hızı arasında bir seçim yapmak 

gerekir. Bu seçim genelde adım boyutu parametresi ile ayarlanır. Küçük adım sayısı yavaş yakınsama ve 

düşük kararlı durum hatasına sebep olurken tersi durum ise hızlı yakınsama ve yüksek kararlı durum 

hatasına sebep olur. Bu sorunu aşabilmek için rekürsif invers (RI) ve ikinci seviye rekürsif inverse RI 

algoritmalarının konveks kombinasyonları kullanılmıştır. Geliştirilen bu yeni metot sistem tanımlama ve 

gürültü engelleme uygulamalarında kullanılmıştır. Önerilen metot, hataların karelerinin ortalaması (HKO) 

ve yakınsama hızı bakımından “normalize en küçük ortalama kareler” (NEKOK)’nın konveks 

kombinasyonu ile karşılaştırılmıştır. Deneysel sonuçlar, toplanır beyaz Gaussian gürültüsü (TBGG) ve 

toplanır ilişkili Gaussian gürültüsü (TIGG) eklenmiş ortamlarda çalıştırıldığında, önerilen algoritmanın 

daha hızlı yakınsadığını ve daha küçük HKO değerleri ortaya koyduğunu göstermiştir. 

Manyetik rezonans görüntülerindeki (MRI) gürültüleri azaltmak tıbbi teşhiş alanında ilgi çekici 

bir alan olmaya başlamış ve bu konuyla ilgili birçok metot önerilmiştir. Fakat bu algoritmaların çoğu 

düşük kalite veya yavaş çalışmaktan muzdariptirler. Bu sorunu çözmek için önerilen tek boyutlu konveks 

kombinasyon, iki boyutlu konveks kombinasyona dönüştürülmüştür. İki boyutlu konveks kombinasyon, 

gürültü azaltma konusunda yüksek performans sunmaktadır. Algoritmanın performansını ölçmek için bir 

MR görüntüsünün toplanır beyaz Gaussian gürültüsü (TBGG) ile bozulduğu varsayılmış ve bu bozulma 

önerilen algoritma ile düzeltilmeye çalışılmıştır. Simülasyonlar algoritmanın görüntüyü başarılı bir 

şekilde düzelttiğini göstermektedir. 

Bu tezde bir öğretici ve bir öğreticisiz olmak üzere iki yeni yapay sinir ağı metodu önerilmiştir. 

Öğreticili öğrenmede “değişken adaptif momentumlu geri yayılım algoritması” (DAMGY) adında yeni 

bir sınıflandırıcı önerilmiştir. Bu algoritma geri yayılım algoritmasının modifiye edilmiş bir halidir ve 

kararlı durum hataya yakınsama hızını arttırırken hata oranınıda düşürerek desen tanıma performansını 

arttırmayı amaçlar. Bu algoritma girişin oto korelasyon matrisinin katsayılarını kontrol eden öğrenme 

katsayısı tarafından kontrol edilir. Bu katsayı sayesinde ağırlıklar güncellenirken düşük hata oranı 

yakalanmaktadır. Algoritmanın performansını ölçmek için k-en yakın komşu (k-EYK), Naive Bayes 

(NB), doğrusal ayırteden analizi (DAA), Destek Vektör Makineleri (DVM), geri yayılım ve adaptif 

momentumlu geri yayılım algoritması (AMGY) kullanılmış ve performans, yakınsama hızı, hataların 

karelerinin ortalaması ve doğruluk bakımından değerlendirilmiştir. 
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Öğreticisiz öğrenmede, birçok yapay zekâ uygulamasında kullanılan kendi kendini düzenleyen 

harita (KDH) algoritması birçok araştırmacının ilgisini çekmektedir. Bu tezde klasik KDH algoritmasına 

adaptif bir öğrenme becerisi kazandıran bir algoritma önerilmiştir. Önerilen KDH algoritması değişken 

öğrenme katsayısı ile optimal ağırlıkları ve kazanan nöronları kısa sürede bularak klasik KDH’un 

dezavantajlarını yok etmektedir. Önerilen KDH algoritmasının optimum ağ ağırlıklarını bulma hızı diğer 

öğreticisiz algoritmalarla karşılaştırılmıştır. Ayrıca önerilen KDH algoritması klasik KDH, kendi kendini 

düzenleyen harita ile Gauss fonksiyonu (KDHGF) ve parametre-az kendi kendini düzenleyen harita 

(PAKDH) algoritmalarıyla da karşılaştırılmıştır. Önerilen KDH algoritması yakınsama hız, niceleme hızı, 

bulunan ağın topoloji hatası ve doğruluk kriterlerinde üstün performans gösterdiği gösterilmiştir. 

DAMGY ve önerilen KDH algoritmasının performansı UCI ve KEEL veritabanlarından alınan veri setleri 

ile de test edilmiştir. 

 

Anahtar Kelimeler: Adaptif filtreler, iki boyutlu konveks kombinasyon, MRI, öğreticili 

öğrenme, yapay sinir ağı, geri yayılım, adaptif momentum, öğreticisiz öğrenme, kendi kendini düzenleyen 

harita (KDH), öğrenme katsayısı. 
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Adaptive filtering techniques are frequently used in signal processing applications. In adaptive 

filters, usually there is a trade-off between the steady-state mean-square error (MSE), and the initial 

convergence rate of the filter. This trade-off is usually controlled by the step-size. A small step-size leads 

to a relatively slow convergence rate with low MSE and vice versa. A new convex combination of 

recursive inverse (RI) and second-order RI algorithms is developed to overcome this trade-off. The new 

method used in system identification and noise cancellation applications. Proposed method is compared 

to convex combination of the normalized least-mean-square (NLMS) algorithms in terms of mean-square 

error (MSE) and rate of convergence. Simulations show that the proposed algorithm provides faster 

convergence rate with lower MSE than combined NLMS algorithms in both additive white Gaussian 

noise (AWGN) and additive correlated Gaussian noise (ACGN) environments. 

De-noising magnetic resonance images (MRI) has recently become an interesting topic in 

medical diagnosis applications. Many algorithms have been proposed for this purpose. However, these 

algorithms usually suffer from poor performance or time consumption. In order to improve the MRI 

images, the proposed 1-D convex combination method extended to 2-D convex combination. The 2-D 

convex combination provides high performance in terms of noise removal. A de-noising experiment has 

been conducted on MR image that is assumed to be corrupted by an additive white Gaussian noise 

(AWGN) for testing purposes. Simulations show that the proposed algorithm successfully recovers the 

image. 

In this thesis we present two modified neural network algorithms. One of them is supervised and 

the other is unsupervised learning. In the supervised learning, a novel machine learning classifier of back-

propagation algorithm with variable adaptive momentum (BPVAM) is proposed. The proposed algorithm 

is a modified version of the BP algorithm to improve its convergence behavior in both sides, accelerate 

the convergence process for accessing the optimum steady-state and minimizing the error misadjustment 

to improve the recognized patterns superiorly. This algorithm is controlled by the adaptive momentum 

parameter which is dependent on the eigenvalues of the autocorrelation matrix of the input. It provides 

low error performance for the weights update. To discuss the performance measures of the BPVAM 

algorithm and the other supervised learning algorithms such as K-nearest neighbours (K-NN), Naive 

Bayes (NB), linear discriminant analysis (LDA), support vector machines (SVM), BP, and BP with 
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adaptive momentum (BPAM) have been compared in term of speed of convergence, sum of squared error 

(SSE), and accuracy. 

In the unsupervised learning, the self-organizing map (SOM) has attracted attention of many 

researchers, where it has successfully applied to a wide range of artificial intelligence applications. In this 

thesis, new intelligent adaptive learning of the conventional SOM algorithm is proposed. The proposed 

SOM overcomes the disadvantages of the conventional SOM by deriving a new variable learning rate that 

can adaptively achieve the optimal weights and obtain the winner neurons in a short time. Performance of 

the proposed SOM was compared with other unsupervised algorithms by examining the speed of finding 

optimum network weight update. The proposed SOM algorithm was also compared with conventional 

SOM, Gaussian-function with self-organizing map (GF-SOM), parameter-less self-organizing map 

(PLSOM) algorithms. The proposed SOM algorithm showed superiority in terms of convergence rate, 

quantization error (QE), topology error (TE) of preserving map and accuracy during the recognition 

process. The BPVAM, and proposed SOM algorithms experiments were conducted using different 

databases from UCI and KEEL repository. 

  

Keywords: Adaptive filters, convex adaptive filtering, 2-D convex combination, MRI, 

supervised learning, neural network, back-propagation, adaptive momentum, unsupervised learning, self-

organizing map (SOM), learning rate. 
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1. INTRODUCTION 

 

Digital filters are classified such as linear or non-linear, continuous-time or 

discrete-time, and recursive or non-recursive (Ozbay et al., 2003). Adaptive filtering 

techniques are frequently used in signal processing applications (Sayed, 2003; Sayed, 

2008).  The performance of adaptive filter algorithms is usually measured in terms of 

convergence rate and/or the minimum mean-square-error (MSE). The optimum 

performance of an adaptive filter is usually achieved by the Wiener filter (Haykin, 

2002). However, Wiener filter requires a prior knowledge about the input signal. 

While adaptive filter algorithms that does not require this prior knowledge. The 

performance of this algorithms is controlled by a step-size parameter that generates a 

trade-off between the convergence rate of the adaptive filter and its SS-MSE (Haykin, 

2002; Sayed, 2003). A constant step-size parameter is used to update the filter 

coefficients. This step-size parameter has a critical effect on the performance of the 

algorithm. A relatively large step-size value provides a fast convergence but high MSE. 

On the other hand, a small step-size causes slow convergence with low MSE. 

To overcome such a trade-off, convex combination of adaptive filters started 

appearing in the last decade (Arenas-Garcia et al., 2006; Mandic et al., 2007; Kosat and 

Singer, 2009; Azpicueta-Ruiz et al., 2008; Trump, 2009a). Convex combination of 

adaptive filter has provided an improved performance in both stationary and non-

stationary environments (Zhang and Chambers, 2006). The convex combination is 

usually constructed by two adaptive filters; one of them provides fast convergence with 

high output steady-state error and the other has slow convergence with low MSE 

(Martinez-Ramon et al., 2002). The schematic diagram of the convex combination of 

adaptive filters is shown in Fig. 2.1. 

Therefore, a combination of such two systems would provide us, in a way, a 

solution of such trade-off. This solution is done by extracting out the faster converging 

part and the lower MSE part from the two filtering algorithms. By this the filter will 

provide a performance with fast convergence and low error. 

A 2-Dimensional (2-D) adaptive filter is an extension of 1-D adaptive filters 

which deals with two dimensional signals (i.e., images) (Hadhoud and Thomas, 1998). 

One of the most attracting applications of such algorithms is image de-noising. 

Artificial neural networks is an interesting research that is well-known in the 

area of machine learning and has provided the best solutions to many problems. 
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Currently it attracts more and more attendance in artificial intelligence. In general, the 

Artificial neural networks try to model useful high-level abstractions, learning 

hierarchies of concepts, and multiple-layer architectures for better data representations. 

Artificial neural networks is capable of learning complex abstractions and it is known to 

be especially useful for problems with high-dimensional input, such as speech and 

image recognition.  

Backpropagation neural network (BPNN) is a supervised machine learning that 

has attracted the attention of many researchers in a wide range of applications. BPNN 

has high capability to solve complex problems that cannot be solved using traditional 

machine learning techniques (Karlik, 2014). There are many BPNN applications on 

marketing (Iseri and Karlik, 2009; Chiang et al., 2006), bioinformatics (Karlik, 2013), 

medicine (Behram et al., 2007; Karlik and Cemel, 2012), engineering (Dvir et al., 2006; 

Karlik, 2000), and others (Karlik et al., 1998; Lee et al., 2005). Unfortunately, it has a 

couple of obstacles that usually restrict its algorithm performance; the slow convergence 

and the high steady-state error. To overcome these obstacles, the momentum technique 

have been proposed, where it can speed up the convergence rate and decrease the 

steepest descent error (Yu et al., 1993; Yu and Liu, 2002; Shao and Zheng, 2009), 

efficiently. 

Self-organizing map (SOM) as an unsupervised learning algorithm attracts many 

researchers. It can be applied in various applications such as clustering, image 

recognition, and sound recognition (Kohonen, 1990; Kohonen et al., 1996; Vesanto and 

Alhoniemi, 2000). SOM projects the input samples from high dimensional space to the 

low dimensional space (Kohonen, 1982; Kohonen, 2001). The architecture of SOM is 

simply consists of an input layer and an output layer with highly interconnection 

between each other where each connection is associated with a weight. The output is 

organized as a two dimensional grid of neurons, where the data visualization of the 

output is implemented during the learning process. 

SOM algorithm does not require the knowledge of the target output in the 

recognition process (Mukherjee, 1997). The conceptual idea is that each input vector is 

multiplied by the weight vectors to calculate the distances. Furthermore the map nodes 

output must be the same weight vectors (Kohonen, 1989; Song and Hopke, 1996; Kim 

et al., 2002; Hoffmann, 2005; Marini et al., 2005; Bianchi et al., 2007). The winner 

output node is determined by the shortest distance between the input vector and output 

nodes. The winner weights node are updates for each input (Rojas, 1996; Astel et al., 
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2007). The clustering inputs depending on the similarity of the input features (Fonseca 

et al., 2006). The time consumption of training depends on dataset size and whether it 

can reach the optimum weights. 

  

1.1 Our Contributions 

 

In this work we have proposed different algorithms; we have proposed a new 

convex combination RI adaptive filter and we derive its tracking analysis; for artificial 

neural networks we have proposed a new backpropagation algorithm called BPVAM, 

and a new SOM algorithm. 

 

1.1.1 Adaptive filters 

 

In order to overcome the trade-off in the field of adaptive filtering, various 

variable step-size LMS-type algorithms have been developed. Recently, Ahmad et al. 

(2011) have proposed a new recursive inverse (RI) adaptive algorithm. This algorithm 

has shown great performance compared to different adaptive algorithms with less or 

comparable computational complexity (Ahmad et al., 2010b). It has shown robust 

performance in impulsive noise and non-stationary environments (Ahmad et al., 2012; 

Ahmad et al., 2013b). However, the trade-off between the convergence rate and the 

MSE is not radically solved. 

In this work, we propose a new RI convexly combined adaptive filtering 

algorithms which provides a very high performance, in terms of convergence rate and 

SS-MSE, compared to the other proposals. The new convex combination of RI 

algorithms is to extract the fast convergence and low MSE properties of two adaptive 

filters and combine their performances. The tracking performances of the convexly 

combined RI algorithms have been discussed theoretically and experimentally. It shows 

that the derived theoretical SS-MSE of the convexly combined RI algorithm is in match 

with the experimental one. 

The performance of proposed convex combinations has compared to various 

adaptive algorithms and others convex combinations that shown in the literature (see 

Chapter 3): 

1. Normalized least-mean-square (NLMS) algorithm. 

2. Recursive inverse (RI) algorithm. 
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3. Second order RI Algorithm. 

4. Convex of Two NLMS Algorithms. 

5. Convex of Two RI Algorithms. 

6. Convex RI and second order RI Algorithms. 

In additive white Gaussian noise (AWGN) and additive correlated Gaussian 

noise (ACGN) environments in the settings of system identification, and noise 

cancellation. 

Simulation results show that the new combinations highly outperforms other 

algorithm in terms of both MSE and convergence rate. Furthermore, the 2-D version of 

the algorithm has shown high performance in image de-noising. 

 

1.1.2 Artificial neural networks 

 

The proposed neural networks algorithms are BPVAM which is for supervised 

learning, and new SOM algorithm for unsupervised learning. 

 

1.1.2.1 Supervised learning algorithm 

 

The conventional BP algorithm has a couple of obstacles that usually limit  its 

performance; the slow convergence and the high steady-state error. To overcome these 

obstacles, the new variable adaptive momentum technique has been proposed, where it 

can speed up the convergence rate and decrease the steepest descent error SSE, 

efficiently. 

This momentum has been proposed as a learning rate in (Ahmad et al., 2011; 

Ahmad et al., 2010a; Ahmad et al., 2013a; Hameed et al., 2014) and has been used 

simply in various adaptive filtering applications successfully. This proposed adaptive 

momentum is characterized by two parameters (𝜆, 𝛽) providing lower computational 

cost and more robustness in various applications. It also shows better performance 

deservedly over the conventional BP and BPAM algorithms in terms of speed of 

convergence, SSE and accuracy.  

To prove our claim, the performance of the proposed BP algorithm based on a 

variable adaptive momentum, shortly called BPVAM, are compared to different 

supervised machine learning techniques that take place in the literature (see Chapter 4): 

1. K-nearest neighbours (K-NN). 
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2. Naive Bayes (NB). 

3. Linear discriminant analysis (LDA). 

4. Support vector machines (SVM). 

5. Back-propagation (BP). 

6. Back-propagation with adaptive momentum (BPAM). 

For this purpose, the BPVAM and the other algorithms were applied on a 

benchmark-XOR problem and various datasets such as breast cancer, heart, heart-

statlog, iris, lung-cancer, MAGIC gamma telescope, and wine datasets recorded at UCI 

repository in order to compare their performance. The results show that the performance 

of the BPVAM algorithm is better than the others. 

 

1.1.2.2 Unsupervised learning algorithm 

 

The major problem with SOMs is that they are very computationally expensive 

which is a major drawback since as the dimensions of the data increases, dimension 

reduction visualization techniques become more important, but unfortunately then time 

to compute them also increases. For calculating the input features similarity map, the 

more neighbors you use to calculate the distance the better similarity map you will get, 

but the number of distances the algorithm needs to compute increases exponentially. 

In this thesis a new adaptive learning rate of decreasing functions. The proposed 

SOM algorithm overcomes many disadvantages of conventional SOM algorithm. It 

needs less implementation time (fast convergence), obtains low Quantization Error (QE) 

and better Topology Error (TE) preserving map during the recognition process. 

Experiments also showed that the proposed algorithm is able to recognize more 

features and getting a higher accuracy compared to different unsupervised machine 

learning techniques that shown in the literature (see Chapter 4): 

1. Conventional self-organizing map (SOM) algorithm. 

2. Gaussian-function with self-organizing map (GF-SOM) algorithm. 

3. Parameter-less self-organizing map (PLSOM) algorithm. 

In this thesis, the new unsupervised learning algorithm is compared with 

conventional SOM, GF-SOM and PLSOM algorithms using different criteria such as 

QE, TE, CPU time and accuracy. Extensive experiments are conducted to evaluate the 

performance of proposed algorithm using different well-known datasets such as 

Appendicitis, Balance, Wisconsin breast, Dermatology, Ionosphere, Iris, Sonar and 
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Wine datasets from UCI and KEEL repositories. The new SOM outperforms the other 

algorithms in terms of the used criteria as shown in the results. 

 

1.2 Overview Of This Thesis 

 

This thesis is organized as follows. Introduction and our contributions are 

outlined in Chapter 1. Chapter 2 provides a literature review about the well-known 

adaptive filters and their significance, where some adaptive filtering algorithms have 

been presented by many researchers for better learning and adapting rates. Also, 

machine learning in supervised and unsupervised learning have presented. BP neural 

network, and SOM algorithms have presented with some of their variants. 

Chapter 3 introduces the adaptive filters and their mechanism, system 

identification and noise cancellation configurations, some adaptive filtering algorithms, 

the proposed convex combinations including the one-dimensional (1-D), and two-

dimensional (2-D) convexly combined RI algorithms. 

In Chapter 4, machine learning in supervised and unsupervised learning are 

introduced. The supervised BP neural network and the unsupervised SOM learning 

algorithms are briefly described. In addition the proposed BPVAM, and proposed SOM 

algorithms derivations are proved. 

In Chapter 5, in section one, the proposed convex combinations of RI algorithms 

compared to the performance of convex NLMS algorithms are discussed. In simulation 

results the combinations performance were investigated in terms of the MSE and 

convergence rate for system identification, and noise cancellation settings, in both 

additive white Gaussian noise (AWGN) and additive correlated Gaussian noise (ACGN) 

environments. In section two, the performance measures of proposed BPVAM 

algorithm and the other supervised learning algorithms such as K-nearest neighbours 

(K-NN), Naive Bayes (NB), linear discriminant analysis (LDA), support vector 

machines (SVM), BP, and BP with adaptive momentum (BPAM) are compared in terms 

of speed of convergence, sum-of-squared-error (SSE), and accuracy by implementing 

benchmark XOR-problem and seven datasets from UCI repository. In the last section, 

the proposed SOM algorithm was also compared to the conventional SOM, GF-SOM 

and PLSOM algorithmsin terms of convergence rate, quantization error (QE), topology 

error (TE) preserving map and accuracy during the recognition process. Extensive 

experiments were conducted using eight different datasets from UCI and KEEL 
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repository. 

Finally, the thesis is concluded in Chapter 6 with suggested future work. 
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2. LITERATURE REVIEW 

 

This chapter will provide overviews about the adaptive filters, their problems 

and development stages in general. Also, the artificial neural networks (ANN), its 

architecture, and their advantages and disadvantages will present. 

 

2.1 Adaptive Filters 

 

Performing common processing operations on a sequence of data can be 

considered as filtering the raw data (Canan et al., 1998). A digital filter with fixed 

coefficients can be designed by using well defined proporties. However, in some 

situations, where the specifications are not available or time-varying, a filter that 

updating the coefficients with time is required which is called as an adaptive filter. 

Adaptive filtering has shown a great interest by researchers during the last decades. This 

interest is due to those vast application areas of adaptive filters (Muneyasu et al., 1998; 

Haykin, 2002; Sayed, 2003; Salman, 2014; Gwadabe and Salman, 2015; Ma et al., 

2015).  

LMS algorithm is one of the well-known adaptive filtering techniques which has 

been used to solve many problems. However, the performance of an adaptive filter is 

usually controlled by some parameters that usually generate a trade-off between the 

convergence rate and SS-MSE. Since the LMS algorithm is a gradient descent based 

algorithm, a constant step-size parameter is used to update the filter coefficients. This 

step-size parameter has a critical effect on the performance of the algorithm. A large 

step-size value provides a fast convergence but a high MSE where a small step-size 

causes slow convergence with low MSE. This trade-off can be set in the favor of both 

increase in the convergence rate and decrease in misadjustment for the best performance 

by using a variable step-size (Aboulnasr and Mayyas, 1997; Turan and Salman, 2014). 

The NLMS algorithm has been proposed to improve the performance of the 

traditional LMS algorithm (Haykin, 2002). The NLMS algorithm provides a fast 

convergence rate, and achieves a minimal steady-state error by normalizing the step-size 

by the power of the input. Shin et al., (2004) have developed a variable step-size affine 

projection algorithm to improve the convergence rate with lower misadjustment at early 

stages of adaptation. 

The recursive-least-squares (RLS) algorithm has been offering a superior 
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performance in adaptive filtering, which outperforms the LMS algorithm and its 

versions (Maouche and Slock, 2000; Wang, 2009; Eksioglu and Tanc, 2011). The RLS 

algorithm can keep the output performance in the steady-state on improving over time. 

In the case of the least-squares (LS) algorithms, the performance is controlled by the 

forgetting factor with a value close to unity to obtain the convergence and stability of 

the algorithm at the same time.. A major drawback of the RLS algorithm is its high 

computational complexity (Haykin, 2002). 

Ahmad et al., (2011) has proposed a new RI adaptive filtering algorithm that 

showed better performance compared to the transform domain LMS with variable step-

size (TDVSS) in terms of the convergence rate, and it is very comparable to the RLS 

algorithm, with lower computational complexity than RLS algorithm by avoiding the 

inversion of the autocorrelation matrix. Ahmad et al., (2010b) used the second-order 

estimates of the correlations, the second-order RI algorithm has provided MSE 

performance that cannot be attained using the TDVSS algorithm. It has shown robust 

performance in impulsive noise and non-stationary environments (Ahmad et al., 2012; 

Ahmad et al., 2013b). However, the trade-off between the convergence rate and the 

MSE is not radically solved. 

In the last decade, a convex combination of adaptive filtering algorithms has 

been frequently used to overcome this trade-off (Kozat and Singer, 2000; Arenas-Garcia 

et al., 2003; Arenas-Garcia et al., 2005; Arenas-Garcia et al., 2006; Azpicueta-Ruiz et 

al., 2008; Silva and Nascimento, 2008; Trump, 2009a; Trump, 2009b; Azpicueta-Ruiz 

et al., 2010). The main idea behind these proposals is to extract the fast convergence and 

low MSE properties of two adaptive filters and combine their performances. However, 

most of these proposals still converge to a relatively high MSE. The convex scheme 

consists of combining two adaptive filters. One possibility is depicted in Fig. 2.1. The 

output and error estimates of the adaptive filters are combined using the parameter 𝜆(𝑛). 

Mandic et al., (2007) proposed a collaborative adaptive learning algorithm using 

hybrid filters. They combined two different adaptive filters in order to attain lower MSE 

with high convergence rate. However, the combined performance of their proposed 

algorithm cannot exactly track the learning curves of both filters. Trump (2009b) 

discussed the tracking performance of a combination of two NLMS adaptive filters. In 

that paper, the combiner can track the learning curves of the combined filters. 
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Figure 2.1. The block diagram of the convex combination of adaptive filters  

 

Salman et al., (2015) proposed a new convex combination of two different 

algorithms as zero-attracting leaky least-mean-square (ZA-LLMS) and reweighted zero-

attracting leaky-least-mean square (RZA-LLMS) algorithms in sparse system 

identification setting. The performances of the aforementioned algorithms has been 

tested and compared to the result of the new combination. It showed that the proposed 

algorithm has a good ability to track the MSD curves of the other algorithms under a 

various noise environments. 

A 2-Dimensional (2-D) adaptive filters is an extension of 1-D adaptive filters 

which deals with two dimensional signals (i.e., images) (Hadhoud and Thomas, 1998). 

One of the most attracting applications of such algorithms is image de-noising. There 

are many 2-D adaptive algorithms such as: OBA, OBAI, TDBLMS, TDLMS, and 

TDBLMS (Mikhael and Wu, 1989; Mikhael and Ghosh, 1992; Hadhoud and Thomas, 

1998; Wang and Wang, 1998). Two-dimensional least-mean-square (TDLMS) updates 

its coefficients in horizontal and vertical directions on a 2-D plane. Even though the 2-D 

LMS algorithm has shown good performance in image de-noising systems, its 
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performance still poor when the signal-to-noise ratio (SNR) is relatively low. 

Magnetic resonance image (MRI) de-noising is one of the most interesting 

applications in adaptive filters techniques, especially, if the SNR is relatively low 

(Phatak et al., 2011) or the noise model is complicated. For instance, if the MRI data is 

corrupted by Rician noise from the measurement process, this will reduce the accuracy 

of any automatic analysis (Mustafa et al., 2012). The challenge, here, is to remove such 

noise by segmentation, classification and registration (Chang et al., 2011). There are 

many applications to denoising in the MRI such as, adaptive multi-scale data 

condensation (Ray et al., 2012) total variation and local noise estimation (Varghees et 

al., 2012) and adaptive non-local means filtering (Kang et al., 2013). 

However, these algorithms usually suffer from poor performance or time 

consumption. Hameed et al., (2014) proposed a 2-D version convex combination of 

recursive inverse algorithms (RI) algorithm that provides fast convergence at the 

beginning to save time and then provides high performance in terms of noise removal. 

The de-noising experiment has been conducted on MR image that is assumed to be 

corrupted by an additive white Gaussian noise (AWGN). Simulations showed that the 

proposed algorithm successfully recovers the image. 

  

2.2 Artificial Neural Network 

 

Backpropagation (BP) neural networks, and Self-organizing map (SOM) are 

common neural network algorithms, they provide high performances in solve many 

different problems in a wide range of applications as shown in this literature. 

 

2.2.1 Backpropagation (BP) algorithm 

 

BP artificial neural networks algorithm is an interesting topic which has attracted 

many researchers in various domains (Karlik et al., 1998; Karlik, 2000; Lee et al., 2005; 

Chiang et al., 2006; Dvir et al., 2006; Behrman et al., 2007; Iseri and Karlik, 2009; 

Karlik and Cemel, 2012; Karlik, 2013). However, it has a couple of obstacles that 

usually restrict its algorithm performance; the slow convergence and the high steady-

state error. In order to speed up the convergence rate and decrease the steepest descent 

error, the momentum technique has been proposed (Yu et al., 1993; Yu and Liu, 2002; 

Shao and Zheng, 2009). Many versions of momentum have been proposed and trained 
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in different applications (Qiu et al., 1992; Istook and Martinez, 2002). The BP with 

fixed momentum (BPFM) has been proposed by adding a momentum term to the 

conventional BP weight update equation (Rumelhart and McClelland, 1986; Rumelhart 

et al., 1988) which can speed up learning by reaching optimal steady-state error in short 

time. Whereas, the fixed momentum is supposed to be constant within the range of 

[0,1]. Unfortunately, when the fixed momentum is in the direction of the negative 

gradient which is in an opposing direction to the previous update, it may cause the 

weight to be arranged the slope of the error surface instead of down the slope as target. 

The fixed momentum has also been extended to adaptive momentum by superiorly 

adapting itself along with iterations, achieving optimal convergence speed in the BP 

implementation. The adaptive momentum can update itself iteratively and automatically 

during the iteration process and depending on the prediction of the output error (Wu et 

al., 2002; Wu and Xu, 2002).  

Yu and Liu (2002) proposed a new acceleration technique of BP algorithm by 

deriving adaptive learning rate and momentum coefficient. The proposed adaptive 

parameters are adjusted iteratively to access the optimum weight vectors in a short time 

of process. Where, the new BP proved superior convergence compared to other 

competing methods. 

Shao and Zheng (2009,2011) have proposed a back-propagation with adaptive 

momentum (BPAM) which provides better performance than the conventional BP 

algorithm in terms of both convergence rate (decreasing time of convergence) and SSE. 

In their study, the momentum is updating itself iteratively by multiplying the current 

weights with the previous weights. If the momentum coecients are less than zero, they 

are denied as positive value to accelerate learning by updating momentum. Otherwise 

the momentum is considered as zero to maintain the error downhill. 

 

2.2.2 Self-organizing map (SOM) algorithm 

 

SOM which is most common unsupervised algorithm used in artificial neural 

networks has been proposed by (Kohonen, 1990). SOM used to solve many problems of 

different applications (Kaski et al., 1998; Tamukoh et al., 2004). It maps the input data 

from high dimensional input vector to low dimensional maps according to the features 

relations between the input data. The algorithm competitive layer used to learn 

clustering the input vectors. SOM algorithm is suffers from the time consumption of 
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training. Training time depends on dataset size and whether the algorithm can reach the 

optimum weights and the topology preservation. 

Many versions of the SOM have been proposed to improve the vector 

quantization and the topology preservation performances (Chi and Yang, 2006; Wong et 

al., 2006; Brugger et al., 2008; Chi and Yang, 2008; Gorgonio and Costa, 2008; Yen 

and Wu, 2008; Cottrell et al., 2009; Arous and Ellouze, 2010; Tasdemir et al., 2011; 

Appiah et al., 2012; Ayadi et al., 2012; Yang et al., 2012).  In (Brugger et al., 2008), 

authors proposed a new way that can detect the cluster automatically by applying the 

cluster algorithm (Bogdan and Rosenstiel, 2001) to the SOM.  

Chi and Yang (2006) proposed a hybrid clustering by combining SOM, and the 

ant K-means algorithm which is a meta-heuristic method that has been used to 

investigate the optimum solutions of many problems. So, the ant K-means algorithm 

used to guide the K-means algorithm to the place the objects with high probabilities 

depending on the characteristic of pheromone updating. The SOM and ant K-means 

algorithm has high performance compared to the conventional SOM algorithm, and 

some clustering methods. 

Another improvement proposed by (Tasdemir et al., 2011), which is 

demonstrated that the neurons of SOM can be clustered hierarchically depending on the 

density without needing the distance dissimilarity. In addition, the Gaussian-function 

with self-organizing map (GF-SOM) algorithm has been widely used in many 

applications as a neighborhood function. 

To overcome the limitation of conventional SOM, Berglund & Sitte proposed a 

new SOM called the Parameter-Less self-organizing map (PLSOM) algorithm 

(Berglund and Sitte, 2006). Their algorithm calculates the local quadratic fitting error 

instead of using the well-known neighbourhood size and learning parameters as in the 

conventional SOM algorithm. The problem with PLSOM algorithm is in the initial 

weight distribution which suffers from over-reliance and over-sensitivity to outliers. 

This suffering continues even after a period of processing time (Berglund, 2010). 

Yamaguchi et al., (2010) proposed an adaptive hierarchical competitive network 

layer of SOM algorithm based on Tree-Structured. The proposed algorithm adapts 

automatically to detect the optimum number of neurons, by adding or deleting the map 

neurons using means error and frequency techniques. 
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3. ADAPTIVE FILTERING 

 

Adaptive filtering has been implemented to overcome the limitations of the 

conventional static filters, where the adaptive filter can deal with unknown or time 

varying input signals in a various noise environments (Diniz, 1997). They have been 

used in different applications such as: system identification (Glentis et al., 1999), 

channel equalization/identification and interference suppression in communications 

systems (Madhow and Honig, 1994; Gesbert and Duhamel, 2000), and acoustic echo 

cancellation (Gay and Benesty, 2000). The main idea of filter adaptation is the output 

signals of the filter depends on the weight coefficient vectors, that adjust itself 

iteratively with time processing to minimize the error of estimation between filter output 

and desired output. Fig. 3.1 illustrates the main diagram of an adaptive filter. It is shown 

in the figure how to remove noise using adaptive filters, where 𝑦(𝑛) is the filter output, 

𝑑(𝑛) is the desired response and 𝑒(𝑛) is the estimation error of the adaptive filter for 

time iteration 𝑛.  

Adaptive filters classified as; finite impulse response (FIR), and infinite impulse 

response (IIR). IIR filters are beyond the scope of this thesis. The output of adaptive 

FIR filter is obtained linearly by combining the present and past input signal 

samples 𝑁 − 1, where 𝑁 is the number of the filter coefficients. Adaptive FIR filter is 

preferred over adaptive IIR filter because of its robustness and simplicity. Moreover, 

FIR filters have been used in many practical applications such as: channel estimation in 

communications systems (Breining et al., 1999). 

 

 
 

Figure 3.1. Block diagram of the statistical filtering problem 
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3.1 Adaptive Filtering Configurations 

 

Two adaptive filtering configurations are presented in this thesis. One 

application is system identification and the other is noise cancellation. Different 

adaptive algorithms will be tested using this applications in additive white Gaussian 

noise (AWGN) and additive correlated Gaussian noise (ACGN) environments. 

 

3.1.1 System identification 

 

This configuration has been used in several areas. The system identification is 

necessary for many applications such as: identification of the acoustic echo path in 

acoustic echo cancellation (Dogancay and Tanrikulu, 2001), channel identification in 

communications systems (Gesbert and Duhamel, 2000). The adaptive filter is capable to 

obtain a best fit of a linear model for an unknown system with a time varying model. 

The unknown system and adaptive filter are fed simultaneously by the same input 

signal, and the output of the unknown system added to measurement noise 𝑣(𝑛) to 

provide the desired response signal of the adaptive filter 𝑑(𝑛), where 𝑑(𝑛) = 𝒉𝑇𝐱(𝑛) +

𝑣(𝑛), 𝒉 is the optimal filter coefficient vector (unknown system). Fig. 3.2 depicts the 

system identification configuration.  

 

 

 

Figure 3.2. System identification configuration 
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where 𝐱(𝑛), 𝑣(𝑛), 𝑦(𝑛), and 𝑒(𝑛), are the input signal, the measurement noise, adaptive 

filter output signal and the irreducible error, respectively. 

 

3.1.2 Noise cancellation 

 

This configuration is used to eliminate noise by passing the received signal 

through the configuration using adaptive algorithm. Static filters need to have prior 

knowledge about the characteristics of the input signal or noise to estimate the desired 

information. While, the adaptive filters do not require prior knowledge about input 

signal. Noise cancellation is applied in radio communications and mobile phones, 

because those are affected from high-noise signals. The adaptive noise cancellation is 

depicted in Fig. 3.3.  

 

 

 

Figure 3.3. Noise cancellation configuration 

 

The desired response 𝑑(𝑛) includes the input 𝐱(𝑛) and an uncorrelated 
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uncorrelated with 𝑣(𝑛) and independent of 𝐱(𝑛) so that it can extract the desired 

information. The filter coefficients of adaptive algorithm 𝐰(𝑛) adjust themselves 

automatically to reduce the error 𝑒(𝑛) between 𝑦(𝑛) and 𝑑(𝑛), and obtain the desired 

signal. 
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3.2 Adaptation Algorithms 

 

In this section, some adaptive filters are reviewed. The first algorithm is the 

normalized least-mean-square (NLMS) proposed in (Haykin, 2002), the second is the 

recursive inverse (RI) by (Ahmad et al., 2011), and the last one is the second-order 

recursive inverse (second-order RI) by (Ahmad et al., 2013b). These algorithms have 

been used in diverse adaptive filtering applications. 

 

3.2.1 Normalized least-mean-square (NLMS) algorithm 

 

The least-mean-square (LMS) algorithm is a widely used adaptive algorithm 

(Bouboulis and Theodoridis, 2010). It is characterized by its simplicity, robustness and 

low cost (Haykin, 2002). This adaptive algorithm is based on the gradient descent 

method of the cost function (𝐽(𝑛) = 𝑒2(𝑛)). The weight update equation of LMS 

algorithm is derived as, 

 

𝐰(𝑛) = 𝐰(𝑛 − 1) + 𝜇𝐱(𝑛)𝑒(𝑛)                                                   (3.1) 

 

Where 𝜇 is the step-size, that controls the convergence rate and the stability of 

the algorithm. 

The LMS algorithm adjusts the tap weights vector in a recursive manner until 

obtaining the optimum weights vector to access minimum error on the required signal 

using (3.1). The step size is constant in the range of, 

 

0 < 𝜇 <
2

𝜆𝑚𝑎𝑥
                                                            (3.2) 

 

Where 𝜆𝑚𝑎𝑥 is the input autocorrelation matrix 𝐑 with largest eigenvalue, used 

to guarantee the stability. The trace of 𝐑 (sum of the eigenvalues) is used instead of 

 𝜆𝑚𝑎𝑥. Therefore, the value of step-size is within 0 < 𝜇 <
2

𝑡𝑟𝑎𝑐𝑒 (𝐑)
. The trace (𝐑) =

‖𝐱(𝑛)‖2 is related to the power of the 𝐱(𝑛). The well-known step size is obtained as; 

 

0 < 𝜇 <
2

‖𝐱(𝑛)‖2
                                                       (3.3) 



 

18 
 

 

The step-size 𝜇 is inversely proportional to the power of the input signal. 

Accordingly, when the power of the input is high, the step size is imposed to a small 

value, on the other hand, when the power of the input is low the step size becomes large. 

This relationship enables normalizing the step-size of the LMS algorithm according to 

the input signal power. The normalized step-size provides a useful LMS-type algorithm, 

commonly known as normalized LMS (NLMS) algorithm (Haykin, 2002). 

The NLMS algorithm with normalized step-size term updates the weights vector 

as, 

 

𝐰(𝑛) = 𝐰(𝐧 − 𝟏) +
𝜇

𝐱𝑇(𝑛)𝐱(𝑛) + 𝜖
𝐱(𝑛)𝑒(𝑛)                                  (3.4) 

 

Where the step-size is in the range [0,2]. The importance of normalizing the step 

size is improving the convergence behavior in the NLMS algorithm. So the algorithm 

becomes powerful in non-stationary applications like speech recognition. In addition, 

the speed of convergence is improved to achieve the minimum steady-state MSE 

quickly (Azpicueta-Ruiz et al., 2010). 

 

3.2.2 Recursive inverse (RI) algorithm 

 

Any stationary discrete-time stochastic process can be expressed as: 

 

𝐱(𝑛) = 𝑢(𝑛) + 𝑣(𝑛)                                                          (3.5) 

 

Where 𝑢(𝑛) is the desired signal and 𝑣(𝑛) is the noise process. Removing noise 

from 𝐱(𝑛) is a challenge in many signal-processing applications.  

Many adaptive algorithms have been used to update the coefficients of the filter 

shown in Fig. 3.1. In the recently proposed adaptive RI algorithm, the autocorrelation 

matrix is recursively estimated and not its inverse. The weight-updated equation of the 

RI is: 

 

𝐰(𝑛) = [𝐈 − 𝜇(𝑛)𝐑(𝑛)]𝐰(𝑛 − 1) + 𝜇(𝑛)𝐩(𝑛)                                  (3.6) 
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Where 𝑛 is the time parameter (𝑛 = 1,2, … ), 𝐰(𝑛) is the filter weight vector at 

time 𝑛 with length 𝑁 , 𝐈 is an 𝑁 × 𝑁 identity matrix, 𝜇(𝑛) is the variable step size, 𝐑(𝑛) 

is the autocorrelation matrix of the tap-input vector, and 𝐩(𝑛) is the cross-correlation 

vector between the tap-input vector and desired response of the adaptive filter. The 

correlations of the tap-input vector and the desired response are recursively estimated 

as: 

 

𝐑(𝑛) = 𝛽𝐑(𝑛 − 1) + 𝐱(𝑛)𝐱𝑇(𝑛)                                                      (3.7) 

 

𝐩(𝑛) = 𝛽𝐩(𝑛 − 1) + 𝑑(𝑛)𝐱(𝑛)                                                         (3.8) 

 

Where 𝛽 is the forgetting factor, which is usually selected very close to unity, 

and the step size μ(n) is given as: 

 

𝜇(𝑛) =
𝜇0

1 − 𝛽𝑛
 𝑤ℎ𝑒𝑟𝑒 𝜇0 < 𝜇𝑚𝑎𝑥                                             (3.9) 

 

Where 𝜇𝑚𝑎𝑥 <
2

𝜆𝑚𝑎𝑥(𝐑(𝑛))
 and 𝜆𝑚𝑎𝑥(𝐑(𝑛)) is the maximum eigenvalue of 𝐑(𝑛). 

 

3.2.3 Second order recursive inverse (second-order RI) algorithm 

 

In order to improve the performance of the RI algorithm, a second-order RI 

estimate of the correlations with the same updated equation as in (3.6) can be used: 

 

𝐑(𝑛) = 𝛽1𝐑(𝑛 − 1) + 𝛽2𝐑(𝑛 − 2) + 𝐱(𝑛)𝐱𝐓(𝑛)                                     (3.10) 

 

𝐩(𝑛) = 𝛽1𝐩(𝑛 − 1) + 𝛽2𝐩(𝑛 − 2) + 𝑑(𝑛)𝐱(𝑛)                                       (3.11) 

 

By selecting 𝛽1 = 𝛽2 =
1

2
𝛽, the computational complexity of the second-order 

RI will be comparable to that of the first-order RI algorithm. Taking the expectation of 

Eq. (3.10) gives: 
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𝐑̅(𝑛) =
1

2
𝛽1𝐑̅(𝑛 − 1) +

1

2
𝛽2𝐑̅(𝑛 − 2) + 𝐑𝐱𝐱                                      (3.12) 

 

Where 𝐑𝐱𝐱 = 𝐸{𝐱(𝑛)𝐱𝑇(𝑛)} and 𝐑̅(𝑛) = 𝐸{𝐑(𝑛)}. After calculating the 

transfer function of Eq. (3.12), its poles are: 

 

𝑧1 =
1

4
(𝛽 − √𝛽2 + 8𝛽) 

(3.13) 

𝑧2 =
1

4
(𝛽 + √𝛽2 + 8𝛽)                                                           

 

Where 𝑧1 and 𝑧2 have magnitudes of less than unity if 𝛽 < 1. Solving Eq. (3.12) 

with the initial conditions 𝐑̅(−2) = 𝐑̅(−1) = 𝐑̅(0) = 0 yields: 

 

𝐑̅(𝑛) = (
1

𝛽 − 1
+ 𝛼1𝑧1

𝑘 + 𝛼2𝑧2
𝑘)𝐑𝐱𝐱                                    (3.14) 

 

Where 

 

𝛼1 =
𝛽 − 𝑧2

(1 − 𝛽)(𝑧2 − 𝑧1)
 

(3.15) 

𝛼2 =
𝛽 − 𝑧1

(1 − 𝛽)(𝑧2 − 𝑧1)
 

 

Letting 

 

𝛾(𝑛) =
1

𝛽 − 1
+ 𝛼1𝑧1

𝑛 + 𝛼2𝑧2
𝑛                                       (3.16) 

 

The variable step size of the second-order RI algorithm is then: 

 

𝜇(𝑛) =
𝜇0

𝛾(𝑛)
                                                             (3.17) 
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Where 𝜇0 and 𝛾(𝑛) are defined in Eqs. (3.9) and (3.16), respectively. This 

variable step size enables us to reach a low MSE that cannot to be attained by the 

NLMS or the first-order RI algorithm. 

 

3.3 Convex Combination 

 

In this section, different RI convex combinations such as convex combination of 

RI algorithms, convex combination of RI and second-order RI algorithms, and 2-D 

convex of RI and second-order RI algorithms have been proposed to improve the 

performance of the adaptive filters. 

 

3.3.1 Convex combination of RI algorithms 

 

Consider the combination of two adaptive filters in noise cancelation setting 

which has been recently proposed in (Ma et al., 2015), as shown in Fig.3.4. Starting by 

the update equation of the RI. 

 

 
 

Figure 3.4. Convex combination of two adaptive filters for a noise cancelation setting 

 

𝑒2(𝑛) 

- 
+ 

𝑦2(𝑛) 

1 − 𝜆(𝑛) 

𝑦(𝑛) 

𝜆(𝑛) 

+ 

- 

𝑒1(𝑛) 

𝑦1(𝑛) 
𝐰1(𝑛)  

 

𝑑(𝑛) 

+  

𝐱(𝑛) 

 

 

𝐰2(𝑛) 

𝑑(𝑛) 
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𝐰𝑖(𝑛) = [𝐈 − μ𝑖(𝑛)𝐑𝑖(𝑛)]𝐰𝑖(𝑛 − 1) + μ𝑖(𝑛)𝐩𝑖(𝑛)                               (3.18) 

 

Where 𝑛 is the time index (𝑛 = 1,2, … ), 𝐰𝑖(𝑛) is the ith filter weight vector at 

time 𝑛 with length 𝑁 (𝑖 =  1, 2), I is an 𝑁 × 𝑁 identity matrix, μ𝑖(𝑛) is the ith variable 

step-size, 𝐑𝑖(𝑛) is the ith autocorrelation matrix of the tap-input vector and 𝐩𝑖(𝑛) is the 

ith cross-correlation vector between the tap-input vector 𝐱(𝑛) and desired response 𝑑(𝑛) 

of the adaptive filter. The correlations are recursively estimated as the following,  

 

𝐑𝑖(𝑛) = 𝛽𝐑𝑖(𝑛 − 1) + 𝐱(𝑛)𝐱𝑇(𝑛)                                                  (3.19) 

 

𝐩𝑖(𝑛) = 𝛽𝐩𝑖(𝑛 − 1) + 𝑑(𝑛)𝐱(𝑛)                                                     (3.20) 

 

Where 𝛽 is the forgetting factor with a value close to unity. 

 

μ𝑖(𝑛) =
μ0

1 − 𝛽𝑛
 𝑤ℎ𝑒𝑟𝑒 μ0 < μ𝑚𝑎𝑥                                             (3.21) 

 

Where μ𝑚𝑎𝑥 <
2

𝜆𝑚𝑎𝑥(𝐑𝑖(𝑛))
 and 𝜆𝑚𝑎𝑥(𝐑𝑖(𝑛)) is the maximum eigenvalue of 

𝐑𝑖(𝑛). 

The error of each individual filter is formulated as 

 

𝑒𝑖(𝑛) = 𝑑(𝑛) − 𝐰𝑖
𝑇(𝑛 − 1)𝐱(𝑛)                                       (3.22) 

 

And the desired response is; 

 

𝑑(𝑛) = 𝐱(𝑛) + 𝜈(𝑛)                                          (3.23) 

 

Where 𝜈(𝑛) is the measurement noise. The outputs of the two adaptive filters 

can be combined according to (Arenas-Garcia et al., 2006; Azpicueta-Ruiz et al., 2008), 

by the following equation, 

 

𝑦(𝑛) = 𝜆(𝑛)𝑦1(𝑛) + [1 − 𝜆(𝑛)]𝑦2(𝑛)                            (3.24) 
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where   𝑦𝑖(𝑛) = 𝐰𝑖
𝑇(𝑛 − 1)𝐱(𝑛) and convex combination parameter, 𝜆(𝑛) is 

given by, 

 

𝜆(𝑛) =  
𝐸[(𝑑(𝑛) − 𝑦2(𝑛))(𝑦1(𝑛) − 𝑦2(𝑛))]

𝐸[(𝑦1(𝑛) − 𝑦2(𝑛))2]
                                     (3.25) 

 

The error signal of the above mentioned combination is given as, 

 

  𝑒(𝑛) = 𝑑(𝑛) − 𝑦(𝑛)                                                

= 𝑑(𝑛) − 𝜆(𝑛)𝑦1(𝑛) − (1 − 𝜆(𝑛))𝑦2(𝑛)                        (3.26) 

 

3.3.1.1 Tracking analysis of convexly combined RI algorithms 

 

In this section, the tracking analysis of the proposed algorithm is presented and 

SS-MSE criterion is derived. 

Let us start by the random walk model.  

 

𝐰0(𝑛) = 𝐰0(𝑛 − 1) + 𝑞(𝑛)                                         (3.27) 

 

Where 𝑞(𝑛) is a stochastic i.i.d. with zero mean and covariance matrix 𝑄 =

𝐸{𝑞(𝑛)𝑞(𝑛)}. The weight error vector of ith filter is defined as: 

 

𝐰̃𝑖(𝑛) = 𝐰0(𝑛) − 𝐰𝑖(𝑛)                                           (3.28) 

 

The a priori error is defined as, 

 

𝑒𝑖,𝑎(𝑛) = 𝐱𝑇(𝑛)[𝐰0(𝑛) − 𝐰𝑖(𝑛 − 1)]                                (3.29) 

 

And the a posteriori error, 

 

𝑒𝑖,𝑝(𝑛) = 𝐱𝑇(𝑛)[𝐰0(𝑛) − 𝐰𝑖(𝑛)]                                      (3.30) 

 

Now, we calculate the overall output error by subtracting the overall output of 
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filters in (3.24) form the desired response and by using (3.29) and (3.30), 

 

𝑒𝑎(𝑛) = 𝑑(𝑛) − 𝜆(𝑛)𝑦1(𝑛) − (1 − 𝜆(𝑛))𝑦2(𝑛) 

              = 𝑑(𝑛) − 𝜆(𝑛)𝑦1(𝑛) − 𝑦2(𝑛) − 𝜆(𝑛)𝑦2(𝑛) 

                             = 𝑒2,𝑎(𝑛) − 𝜆(𝑛)[−𝑑(𝑛) + 𝑦1(𝑛) + 𝑑(𝑛) − 𝑦2(𝑛)] 

    = 𝑒2,𝑎(𝑛) − 𝜆(𝑛)[−𝑒1,𝑎(𝑛) + 𝑒2,𝑎(𝑛)] 

       = 𝑒2,𝑎(𝑛) + 𝜆(𝑛)𝑒1,𝑎(𝑛) − 𝜆(𝑛)𝑒2,𝑎(𝑛) 

 = (1 − 𝜆(𝑛))𝑒2,𝑎(𝑛) + 𝜆(𝑛)𝑒1,𝑎(𝑛)                                   (3.31) 

 

Evaluate 𝐸[𝑒𝑎
2(𝑛)] using (3.31), 

 

𝐸[𝑒𝑎
2(𝑛)] = 𝐸 [((1 − 𝜆(𝑛))𝑒2,𝑎(𝑛) + 𝜆(𝑛)𝑒1,𝑎(𝑛)) ((1 − 𝜆(𝑛))𝑒2,𝑎(𝑛) + 𝜆(𝑛)𝑒1,𝑎(𝑛))]

=  (1 − 𝜆(𝑛))
2
𝐸[𝑒2,𝑎

2 (𝑛)] + 2𝜆(𝑛)(1 − 𝜆(𝑛))𝐸[𝑒1,𝑎(𝑛)𝑒2,𝑎(𝑛)]

                       +𝜆2(𝑛)𝐸[𝑒2,𝑎
2 (𝑛)]                                                                                            (3.32)

 

 

To evaluate 𝐸[𝑒𝑎
2(𝑛)],we first need to evaluate the cross terms in (3.32), 

 

𝐸[𝑒1,𝑎(𝑛)𝑒2,𝑎(𝑛)]

= 𝐸[(𝐰0(𝑛) − 𝐰1(𝑛 − 1))𝑇𝐱(𝑛)𝐱𝑇(𝑛)(𝐰0(𝑛) − 𝐰2(𝑛 − 1))]      (3.33) 

 

Subtracting both sides of (3.18) from 𝐰0(𝑛)and by using (3.29) and (3.30) we 

get, 

 

𝐰̃𝑖(𝑛) =  𝐰̃𝑖(𝑛 − 1) − μ𝑖(𝑛)𝐱(𝑛)𝑒𝑖(𝑛) + μ𝑖(𝑛)𝛽𝑖𝜉𝑖(𝑛 − 1)                     (3.34) 

 

Where 𝜉𝑖(𝑛 − 1) = 𝐑(𝑛)𝐰𝑖(𝑛 − 1) − 𝐩(𝑛). Multiplying both sides of (3.34) by 

𝐱𝑇(𝑛) from the left side gives, 

 

𝑒𝑖,𝑝(𝑛) = 𝑒𝑖,𝑎(𝑛) − μ𝑖(𝑛)𝐱𝑇(𝑛)𝐱(𝑛)𝑒𝑖(𝑛) + μ𝑖(𝑛)𝛽𝑖𝐱
𝑇(𝑛)𝜉𝑖(𝑛 − 1)            (3.35) 

 

Substituting (3.35) in (3.34) yields: 
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𝐰̃𝑖(𝑛) = 𝐰̃𝑖(𝑛 − 1) − μ𝑖(𝑛)𝛽𝑖𝜉𝑖(𝑛 − 1)

+
μ𝑖(𝑛)𝐱(𝑛)

μ𝑖(𝑛)𝐱𝑇(𝑛)𝐱(𝑛)
[𝑒𝑖,𝑎(𝑛) − 𝑒𝑖,𝑝(𝑛) + μ𝑖(𝑛)𝛽𝑖𝐱

𝑇(𝑛)𝜉𝑖(𝑛 − 1)]  (3.36) 

 

Note that 𝑡𝑟{𝐱(𝑛)𝐱𝑇(𝑛)𝜉𝑖(𝑛 − 1)} = 𝑡𝑟{𝜉𝑖(𝑛 − 1)𝐱𝑇(𝑛)𝐱(𝑛)} (Haykin, 2002) 

and hence 𝐱(𝑛)𝐱𝑇(𝑛)𝜉𝑖(𝑛 − 1) ≈ 𝜉𝑖(𝑛 − 1)𝐱𝑇(𝑛)𝐱(𝑛). Rearranging (3.36) provides; 

 

𝐰̃𝑖(𝑛) −
𝐱(𝑛)

𝐱𝑇(𝑛)𝐱(𝑛)
𝑒𝑖,𝑎(𝑛) = 𝐰̃𝑖(𝑛 − 1) −

𝐱(𝑛)

𝐱𝑇(𝑛)𝐱(𝑛)
𝑒𝑖,𝑝(𝑛)                  (3.37) 

 

Multiplying both side of the first filter in (3.37) by their counterpart of the 

second filter yields: 

 

𝐰̃1
𝑇(𝑛)𝐰̃2(𝑛) +

𝑒1,𝑎(𝑛)𝑒2,𝑎(𝑛)

𝐱𝑇(𝑛)𝐱(𝑛)
= 𝐰̃1

𝑇(𝑛 − 1)𝐰̃2(𝑛 − 1) +
𝑒1,𝑝(𝑛)𝑒2,𝑝(𝑛)

𝐱𝑇(𝑛)𝐱(𝑛)
         (3.38) 

 

Applying the random walk model is to derive the following expression for the 

expectation of the inner product of the weight error vectors of the two individual filters 

at the time instant 𝑛 gives, 

 

  𝐸[(𝐰0(𝑛) − 𝐰1(𝑛 − 1))𝑇(𝐰0(𝑛) − 𝐰2(𝑛 − 1))      

= 𝐸[𝐰0(𝑛 − 1) + 𝑞(𝑛) − 𝐰1(𝑛 − 1))𝑇(𝐰0(𝑛 − 1) + 𝑞(𝑛)

− 𝐰2(𝑛 − 1))] = 𝐸[𝐰̃1(𝑛 − 1) + 𝑞(𝑛))𝑇(𝐰̃2(𝑛 − 1) + 𝑞(𝑛))]   

= 𝐸[𝐰̃1
𝑇(𝑛 − 1)𝐰̃2(𝑛 − 1)] + 𝐸[𝐰̃1

𝑇(𝑛 − 1)𝑞(𝑛)]

+ 𝐸[𝑞𝑇(𝑛)𝐰̃2(𝑛 − 1)] + 𝐸[𝑞(𝑛)𝑞(𝑛)]

= 𝐸[𝐰̃1
𝑇(𝑛 − 1)𝐰̃2(𝑛 − 1)] + 𝑇𝑟{𝑄}                                                     (3.39) 

 

Substituting (3.39) into (3.38) and simplifying gives, 

 

𝐸[𝐰̃1
𝑇(𝑛)𝐰̃2(𝑛)] + 𝐸 [

𝑒1,𝑎(𝑛)𝑒2,𝑎(𝑛)

𝐱𝑇(𝑛)𝐱(𝑛)
]     

= 𝐸[𝐰̃1
𝑇(𝑛 − 1)𝐰̃2(𝑛 − 1)] + 𝐸 [

𝑒1,𝑝(𝑛)𝑒2,𝑝(𝑛)

𝐱𝑇(𝑛)𝐱(𝑛)
] + 𝑇𝑟{𝑄}             (3.40) 
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In the steady state assume, 

 

𝐸[𝐰̃1
𝑇(𝑛)𝐰̃2(𝑛)] ≈ 𝐸[𝐰̃1

𝑇(𝑛 − 1)𝐰̃2(𝑛 − 1)]                               (3.41) 

 

And hence, 

 

𝐸 [
𝑒1,𝑎(𝑛)𝑒2,𝑎(𝑛)

𝐱𝑇(𝑛)𝐱(𝑛)
] = 𝐸 [

𝑒1,𝑝(𝑛)𝑒2,𝑝(𝑛)

𝐱𝑇(𝑛)𝐱(𝑛)
] + 𝑇𝑟{𝑄}                               (3.42) 

 

Now, if we substitute (3.35) in (3.42) and rearrange we obtain, 

 

𝐸[𝑒1,𝑎(𝑛)μ2(𝑛)𝑒2(𝑛)] + 𝐸[𝑒2,𝑎(𝑛)μ1(𝑛)𝑒1(𝑛)]

= 𝐸[μ1(𝑛)μ2(𝑛)𝐱𝑇(𝑛)𝐱(𝑛)𝑒1(𝑛)𝑒2(𝑛)] + 𝑇𝑟{𝑄}                              (3.43) 

 

Now substitute 𝑒𝑖(𝑛) = 𝑒𝑖,𝑎(𝑛) +  𝜈(𝑛) in (3.43), having in mind 𝐱𝑇(𝑛)𝐱(𝑛) ≈

𝐸{𝐱𝑇(𝑛)𝐱(𝑛)} = 𝜎𝐱
2 and 𝐸[𝑒𝑖,𝑎(𝑛) 𝜈(𝑛)] = 0 and simplifying, 

 

μ2(𝑛)𝐸 [𝑒1,𝑎(𝑛) (𝑒2,𝑎(𝑛) + 𝜈(𝑛))] + μ1(𝑛)𝐸 [𝑒2,𝑎(𝑛) (𝑒1,𝑎(𝑛) + 𝜈(𝑛))]     

= μ1(𝑛)μ2(𝑛)𝐸 [𝐱𝑇(𝑛)𝐱(𝑛) (𝑒1,𝑎(𝑛) + 𝜈(𝑛)) (𝑒2,𝑎(𝑛) + 𝜈(𝑛))]

+ 𝑇𝑟{𝑄}                                                                                                                                     (3.44) 

 

Substituting (3.44) in (3.33) and taking limn→∞ gives, 

 

𝑙𝑖𝑚𝑛→∞𝐸[𝑒1,𝑎(𝑛)𝑒2,𝑎(𝑛)] = 𝑧(𝑛)[μ1(𝑛)μ2(𝑛)𝜎𝑣
2𝐸[𝐱𝑇(𝑛)𝐱(𝑛)] + 𝑇𝑟{𝑄}]           (3.45) 

Where 𝑧(𝑛) =
1

µ1(𝑛)+µ2(𝑛)−µ1(𝑛)µ2(𝑛)𝐸[𝐱𝑇(𝑛)𝐱(𝑛)]
 

 

For a single filter case, we have, 

 

𝑙𝑖𝑚𝑛→∞𝐸[𝑒𝑖,𝑎(𝑛)𝑒𝑖,𝑎(𝑛)]

=
1

2μ𝑖(𝑛) − μ𝑖
2(𝑛)𝐸[𝐱𝑇(𝑛)𝐱(𝑛)]

[μ𝑖
2(𝑛)𝜎𝑣

2𝐸[𝐱𝑇(𝑛)𝐱(𝑛)]

+ 𝑇𝑟{𝑄}]                                                                                                       (3.46) 
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Substituting (3.45) and (3.46) in (3.32) gives: 

 

𝑙𝑖𝑚𝑛→∞𝐸[𝑒𝑎
2(𝑛)]

=
2𝜆(∞)(1 − 𝜆(∞))

μ1(𝑛) + μ2(𝑛) − μ1(𝑛)μ2(𝑛)𝐸[𝐱𝑇(𝑛)𝐱(𝑛)]
[μ1(𝑛)μ2(𝑛)𝜎𝑣

2𝐸[𝐱𝑇(𝑛)𝐱(𝑛)] + 𝑇𝑟{𝑄}] 

                           +
𝜆2(∞)

2μ1(𝑛) − μ1
2(𝑛)𝐸[𝐱𝑇(𝑛)𝐱(𝑛)]

[μ1
2(𝑛)𝜎𝑣

2𝐸[𝐱𝑇(𝑛)𝐱(𝑛)] + 𝑇𝑟{𝑄}]  

+
(1 − 𝜆(∞))2

2μ2(𝑛) − μ2
2(𝑛)𝐸[𝐱𝑇(𝑛)𝐱(𝑛)]

[μ2
2(𝑛)𝜎𝑣

2𝐸[𝐱𝑇(𝑛)𝐱(𝑛)]

+ 𝑇𝑟{𝑄}]                                                                                                       (3.47) 

 

3.3.2 Convex combination of RI and second-order RI algorithms 

 

To obtain better combination than in section (3.3.1), we combine RI and second-

order RI algorithms, where the update equation same as in (3.18). The μ𝑖(𝑛) is the 𝑖𝑡ℎ 

variable step-size of (3.9) and (3.17). 𝐑𝑖(𝑛) is the 𝑖𝑡ℎ autocorrelation matrix and 𝐩𝑖(𝑛) 

is the 𝑖𝑡ℎ cross-correlation of RI and second order RI algorithms. The correlations of the 

tap-input vector and the desired response are recursively estimated by the following, 

 

𝐑1(𝑛) = 𝛽𝐑1(𝑛 − 1) + 𝐱(𝑛)𝐱𝑇(𝑛)                                                           (3.48) 

 

𝐩1(𝑛) = 𝛽𝐩1(𝑛 − 1) + 𝑑(𝑛)𝐱(𝑛)                                                              (3.49) 

 

𝐑2(𝑛) = 𝛽1𝐑2,(𝑛 − 1) + 𝛽2𝐑2(𝑛 − 2) + 𝐱(𝑛)𝐱𝑇(𝑛)                            (3.50) 

 

𝐩2(𝑛) = 𝛽1𝐩2(𝑛 − 1) + 𝛽2𝐩2(𝑛 − 2) + 𝑑(𝑛)𝐱(𝑛)                                (3.51) 

  

𝜇1(𝑛) =
𝜇0

1 − 𝛽𝑛
 where 𝜇0 < 𝜇𝑚𝑎𝑥                                                     (3.52) 

 

Where 𝜇𝑚𝑎𝑥 <
2

𝜆𝑚𝑎𝑥(𝐑1(𝑛))
 and 𝜆𝑚𝑎𝑥(𝐑1(𝑛)) is the maximum eigenvalue of 

𝐑1(𝑛).  
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On the other hand, the variable step-size 𝜇2(𝑛) of the second-order RI is: 

 

𝜇2(𝑛) =
𝜇0

𝛾(𝑛)
                                                                 (3.53) 

 

Where 𝜇0 and 𝛾(𝑛) are defined in section (3.2). 

The RI and second-order RI Algorithms are combined in the noise cancellation 

setting, as shown in Fig. 3.5. 

 

 

 

Figure 3.5. Convex combination of two adaptive filters for system identification setting 

 

The output estimated error of the 𝑖𝑡ℎ adaptive filter of each combined algorithms 

shows as, 

 

𝑒𝑖(𝑛) = 𝑑(𝑛) − 𝐰𝑖
𝑇(𝑛 − 1)𝐱(𝑛)                                         (3.54) 

 

𝑑(𝑛) = 𝒉𝑇𝐱(𝑛) + 𝑣(𝑛)                                                         (3.55) 

𝑦(𝑛) 𝜆(𝑛) 
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1 − 𝜆(𝑛) 
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And 

 

𝑦𝑖(𝑛) = 𝐰𝑖
𝑇(𝑛 − 1)𝐱(𝑛)                                                        (3.56) 

 

Where 𝐰𝑖
𝑇(𝑛) is the tap weight vector, 𝑦𝑖(𝑛) is the output of the 𝑖𝑡ℎ adaptive 

filter with 𝑖 = 1,2, 𝒉 is the optimal filter coefficient, and 𝑣(𝑛) is the measurement 

noise.  

The overall output filter combination can be computed similar to (3.24), 

 

𝑦(𝑛) = 𝜆(𝑛)(𝐰1
𝑇(𝑛 − 1)𝐱(𝑛)) + [1 − 𝜆(𝑛)](𝐰2

𝑇(𝑛 − 1)𝐱(𝑛))                     (3.57) 

 

Where the 𝐰1(𝑛), and 𝐰2(𝑛) are the weight vectors of combined algorithms. 

𝜆(𝑛) is given in (3.25). 

Replacing (3.55) and (3.24) in (3.26) the error signal of the combination yields; 

 

𝑒(𝑛) = 𝒉𝑇𝐱(𝑘) + 𝑣(𝑘) − 𝜆(𝑛)𝑦1(𝑛) − (1 − 𝜆(𝑛))𝑦2(𝑛)                       (3.58) 

 

The 𝑒(𝑛) is the total output error combination in the system identification 

setting. 

 

3.3.3 2-D Convex of RI and  second-order RI algorithms 

 

The update equation in (3.18) can be extended to 2-D form in a convex 

combination of two RI algorithms such below: 

 

𝐰𝑖,𝑛(𝑘1, 𝑘2) = [𝐈 − μ𝑖(𝑛)𝐑𝑖,𝑛]𝐰𝑖,𝑛−1(𝑘1, 𝑘2) + μ𝑖(𝑛)𝐩𝑖,𝑛                               (3.59) 

 

Where 𝐰𝑖,𝑛(𝑘1, 𝑘2) is the extended weight vector of 2-D form with size 𝑁 × 𝑁 

and at time 𝑛, 𝑖 = 1,2, 𝑘1 = 0,1, … , 𝑁 − 1 and 𝑘2 = 0,1,⋯ , 𝑁 − 1. 𝐑1,𝑛,𝐩1,𝑛,𝐑2,𝑛, and 

𝐩2,𝑛 are respectively given by, 

 

𝐑1,𝑛 = 𝛽𝐑1,𝑛−1 + 𝐱(𝑚1, 𝑚2)𝐱
𝑇(𝑚1,𝑚2)                                                 (3.60) 
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𝐩1,𝑛 = 𝛽𝐩1,𝑛−1 + 𝑑(𝑚1,𝑚2)𝐱(𝑚1, 𝑚2)                                                    (3.61) 

 

𝐑2,𝑛 = 𝛽1𝐑2,𝑛−1 + 𝛽2𝐑2,𝑛−2 + 𝐱(𝑚1,𝑚2)𝐱
𝑇(𝑚1,𝑚2)                          (3.62) 

 

𝐩2,𝑛 = 𝛽1𝐩2,𝑛−1 + 𝛽2𝐩2,𝑛−2 + 𝑑(𝑚1, 𝑚2)𝐱(𝑚1,𝑚2)                              (3.63) 

 

Where 𝐱(𝑚1, 𝑚2) is the filter input and 𝑑(𝑚1,𝑚2)is the desired output. The 

filter input 𝐱(𝑚1, 𝑚2) and tap-weight vector 𝐰𝑖,𝑛(𝑘1, 𝑘2) can be defined using the 

following column-ordered vectors such as, 

𝐱(𝑚1,𝑚2) =

[
 
 
 
 
 
 

𝐱(𝑚1,𝑚2)
⋮

𝐱(𝑚1, 𝑚2 − 𝑁 + 1)
⋮

𝐱(𝑚1 − 𝑁 + 1,𝑚2)
⋮

𝐱(𝑚1 − 𝑁 + 1,𝑚2 − 𝑁 + 1)]
 
 
 
 
 
 

                                (3.64) 

 

And 

 

𝐰𝑖,𝑛(𝑘1, 𝑘2) =

[
 
 
 
 
 
 

𝐰𝑖,𝑛(0,0)

⋮
𝐰𝑖,𝑛(0, 𝑁 − 1)

⋮
𝐰𝑖,𝑛(𝑁 − 1,0)

⋮
𝐰𝑖,𝑛(𝑁 − 1,𝑁 − 1)]

 
 
 
 
 
 

                                         (3.65) 

 

A possible way of data reuse is shown in Fig. 3.6. In this scheme, as shown in 

Fig. 3.6 (a), we can consider a mask, i.e. 3 × 3 pixels, which moves horizontally to the 

right by one column at a time until the end of each row. Afterward, the same process is 

repeated with the next row below until the last 9 pixels of the image are reached. At the 

end of each process of the mask, the data can be reshaped as shown in Fig. 3.6 (b), 

starting from the last pixel in the lower right corner going left and up.  
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(a)                                                      (b) 

 

Figure 3.6. Rectangular configuration of data-reusing in 2-D plane 

 

The 𝑖𝑡ℎ filter output is given by the following 2-D convolution: 

 

𝑦𝑖,𝑛(𝑚1,𝑚2) = ∑ ∑ 𝐰𝑖,𝑛(𝑘1, 𝑘2)

𝑁−1

𝑘2=0

𝑁−1

𝑘1=0

𝐱(𝑚1 − 𝑘1, 𝑚2 − 𝑘2)                            (3.66) 

 

Fig. 3.7 shows the convex combination of two RI adaptive filters in 2-D form. 

  

 

 

Figure 3.7. The block diagram of a 2-D convex RI algorithm 
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The output of the 2-D convexly combined algorithms can be computed as 

(Andersso, 1985), 

 

𝑦𝑛(𝑚1,𝑚2) = 𝜆(𝑚1, 𝑚2)𝑦1,𝑛(𝑚1,𝑚2) + [1 − 𝜆(𝑚1,𝑚2)]𝑦2,𝑛(𝑚1, 𝑚2)          (3.67) 
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4. MACHINE LEARNING 

 

Because of the modifications in technology huge amounts of data is recorded 

every day and the analyzing for these data cannot be done using classical statistics 

methods. So the best way to deal with this amount of information is using machine 

learning (Langley and Simon, 1995; Duffy, 1997). 

Machine learning consists of intelligent methods which can teach programs how 

to make decisions. Those methods attracted attentions of researhers and have applied in 

all areas of computer science and beyond. Machine learning methods have used in many 

applications such as credit scoring, drug design, fraud detection, spam filters, stock 

trading. 

Machine learning is about building systems that take data and make a correct 

prediction of solutions, without interference of human. The problems can be solved by 

machine learning methods presented by: 

 Classification: which is a process of selecting incoming data and decide to 

which category these data belong to. A well-known example for it is the 

spam e-mail detection. A classifier can determine an e-mail is normal or 

spam. 

 Regression: which is the process that can analyze the changing of output 

according to the change in one input while holding the other inputs at fixed 

values. 

 Clustering: which is a process of partitioning the data into groups based on 

similarity, where the methods do not have prior knowledge about output. 

 Associations: which is the process of discovering the interesting relations 

between variables in big databases. 

Machine learning methods are divided into supervised and unsupervised 

methods. Supervised algorithms are trained from labeled training data (source) which 

consists of known observations to predict the label of unseen data (target). 

Unsupervised machine learning algorithms deals with registering unlabeled data 

instances to clusters depending on similarities. 

 

4.1 Supervised Learning 

 

Supervised learning is the most studied and famous field in machine learning 
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(Kotsiantis et al., 2007; Dollar et al., 2006), it is predicting the class of each instance in 

a dataset using training set. The training set is used to build a model which is used to 

classify testing set instances. Let the training set 𝐷 =  {(𝐱1, 𝑐1), (𝐱2, 𝑐2), … , (𝐱𝑁, 𝑐𝑁)}, 

with 𝑁 data instances which can be described as a vector of features, 𝐱 =

{𝐱(1), 𝐱(2),… , 𝐱(𝑝)}, where 𝑝 is input feature count, and output of the system can take 

a value from 𝑐 = {𝑐(1), 𝑐(2), … , 𝑐(𝑘)}, where the 𝑘 is class label count. The supervised 

algorithm builds a model from training data 𝐷 to assign the actual output as a class label 

to new or unseen input vectors of 𝐱𝑁+1, 𝐱𝑁+2, … 

 

4.1.1 Supervised learning approaches 

 

Many methods have been introduced in the field of supervised learning 

(Kotsiantis et al., 2006), they can be categorized into different approaches such as 

decision trees, instance-based learning, learning regressions, linear models, kernel 

methods, Bayesian classifiers, and artificial neural networks. 

Decision trees (Myles et al., 2004) is widely used approach in the machine 

learning. The method has hierarchical models and it divides the data variable gradually 

the each branch descending from that node corresponds to one of the possible values for 

this variable. The leaf nodes of a decision tree contain the class label assigned to each 

sub region of the problem. 

Instance-based learning methods do not provide a certain model like other 

approaches. They works by store the values of training inputs until the new instance 

examine be to classify. To assign the class label of new instances the new instances 

should be related to the stored instances. Finally classification approach will be related 

to the nearest category similar to it (De Mantaras and Armengol, 1998). 

Linear models are simple methods for classification and prediction (Kutner et al., 

2005). They have been widely used in statistical applications for a long time. The linear 

models are easy to understand, where the output is usually a weighted sum of the data 

inputs. The weight’s magnitude shows the significance of each variable and its sign 

indicates if the effect is positive or negative on the system. The disadvantage in these 

methods can not be sufficient with nonlinear problems, where the resulting solution may 

not fit the data. 

Kernel methods provide a simple connection from non-linearity to linearity 

problems (Scholkopf and Smola, 2002). These methods use to solve the nonlinear 
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problems by mapping them to linear separable problems with low dimentions. Then 

these problems can be modeling easier. The goal of this mapping will make the data 

more easily to separate with these new dimensions. The first approach was used with 

these methods by solving the binary classification problems using support vector 

machine. 

Support vector machine is a common classifier can map the training data into a 

feature space with the help of a kernel function. The mapping is computing the 

similarity between two given observations. This transformation makes the problem 

linearly separable and then can use the decision hyperplanes between classes (Burges, 

1998). However the training time will be very high to achieved very accurate results, 

but it is efficiency in high-dimensional problems, and good classifier for treatment the 

nonlinear problems. 

Bayesian classifiers, which is depending on Bayes rule that used to classify the 

new input 𝐱 depending on its variables, the class of the system can be chosen according 

to its maximum probability (Rosenblatt, 1962). 

Artificial neural networks (Ripley, 2007; Haykin, 2009) are a model that tries to 

simulate the structure of functional aspects of biological neural networks. These 

networks consist of an interconnected group of processing units called neurons, and 

processes information using a connection is approach to computation. They are 

composed by one or more layers of processing units connected with each other. Each 

processing unit aggregates the inputs that it could receive from the environment or 

could be the outputs of other processing units, and sends the result, which is a weighted 

sum of the inputs in the simplest case, to other processing units. The connection 

between processing units are modeled with weights. 

The simplest networks are called perceptrons (Rosenblatt, 1962) which have a 

single layer of processing units. Although these classifiers are able to distinguish labels 

in a binary classification problem by linear discrimination function, they present some 

limitations. If a set of instances is not linearly separable, perceptrons cannot make 

model where all instances are classified properly. Instead of them Multi layered 

perceptrons have been created to try to solve this problem (Williams and Hinton, 1986). 

These networks are usually used to model inputs and outputs by means of nonlinear 

discrimination functions. There are several ways with which a network can be trained 

for solving the problems. However, the well-known and widely used learning algorithm 

to estimate the values of the weights is the back propagation algorithm (Williams and 
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Hinton, 1986), which uses gradient descent to tune network parameters to get best fit a 

training set of input-output pairs. Artificial neural networks usually provide higher 

accuracies than other methods.  

 

4.1.2 Predictive model validation 

 

The performance of classification methods need to evaluate to know how well 

the classifiers work, where many criteria used to test the algorithm performances. The 

validation technique is a simple procedure to estimate the correct classes. The correct 

classes can be count it as a right class, because it is similar to actual class. On the other 

hand, wrong class considering as error. In the supervised learning there are several 

measures to evaluate performance, one of these measures depend on the error rate, also 

the percentage of the correct predicted classes over the total actual data as 

 

Accuracy =
TP + TN

TP + FP + TN + FN
                                        (4.1) 

 

Also, sensitivity and specificity used to evaluate the algorithm performances. 

 

Sensitivity =
TP

TP + FN
                                                       (4.2) 

 

Specificity =
TN

TN + FP
                                                       (4.3) 

 

Where, 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, and 𝐹𝑁 are the number of true positives, true negatives, 

false positives, and false negatives, respectively. The maximum number of correct 

classified instances is the score of obtained result from algorithm. 

Many evaluation methods have used such as k-fold cross validation (Stone, 

1974). This method works by dividing all instances of dataset into k of approximately 

equal size. Each partition with using as a testing, using trained model of k-1 subsets. 

The process will repeated for all k subsets. Finally, the k accuracy values of tested 

partitions are sums and averaged by k to obtain final accuracy. 

Another common technique using to compute the accuracy is called leave-one-

out method (Mosteller and Tukey, 1968). Where this method is a special case of k-fold 
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cross validation. The accuracy computation similar to k-fold cross validation, but the 

number of k-fold is equals to the number of instance of dataset. 

 

4.1.3 Artificial neural network (ANN) 

 

This section we will see the biological background of ANN, and where the idea 

come from, in addition the basic structure of an ANN with neurodynamics, architecture 

and its parameters will describe in details. 

 

4.1.3.1 The biological paradigm 

 

ANN is inspired from human brain structure particularly the neurological part. 

ANN tries to simulate the working of biological networks (Ripley, 2007). However they 

are much far from their operation capacities because of complexity of the biological 

networks (Destexhe and Sejnowski, 1995). The cells found in human brain are called 

neurons. The information or signals are transferred between the neurons throught 

connections called as axons. The information receives to a neuron through its dendrites. 

Human brain contains about 100 billion neurons and 1014 synapses, the simple 

structure of a neuron shown in Fig. 4.1. 

 

 

 

Figure 4.1. Schematic structure of a nerve cell 
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The processing in the biological brain is very powerful because it acts in a 

parallel manner and also it is very tolerant to faults. The fault tolerance came from the 

neural multi pathways which makes the information spreads in many directions and 

allow it to deal with noise in perfect ways (Carnevale and Rosenthal, 1992). 

Biological neuron is so complicated so that even the most powerful 

supercomputers cannot simulate one neuron. The researchers are forced to simplify the 

structure of neurons while developing ANN. 

ANN is different from other conventional computational techniques. The system 

designers of ANN do not need to know the rules and models that are required to 

perform the desired task. Instead it needs to train the system using the training samples. 

Training is similar to the process of the teaching children to recognize certain shapes 

letters and colors. 

While ANN deals with the information in parallel way, computers deals with it 

in a serial fashion. While human brain sends information in milliseconds (10-3 s), 

computers sends it in much faster about nanosecond (10-9 s) range but brain still much 

better than computers in pattern recognition because it works in parallel way and every 

neuron works as a processor.  

ANN is easy to build and it can deals with large noisy data. They are typically 

suitable to deal with nonlinear problems in which there are unknown rules. 

They are very good in dealing with noisy or uncompleted data, because the 

spread in parallel minimizes the effect of loss data. 

While training for ANN is relatively simple; a pre-processing is very important. 

But the process still easier comparing to modeling problems with conventional 

statistical methods. 

 

4.1.3.2 Basic structure of an ANN 

 

Artificial neural network consist of neurons which are the main items of the 

structure. Basically, ANN structure consist of three layers input layer, hidden layer, and 

output layer as shown in Fig. 4.2 and each layer consist of neurons. Some ANN may 

have multiple hidden layers, depending on the problem. 
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Figure 4.2. A basic schema of artificial neural network (ANN) 

 

Neurons in brain communicate with each other by sending information using 

complex connection so ANN tries to simulate the same action by communicating each 

other using weighted connections. The weights could be negative or positive. Positive 

weights means the neuron is in excitation, while negative weights the neuron is in 

inhibition. In Fig. 4.2 shows the inputs  (𝐱1, 𝐱2, … , 𝐱𝑖) are connected to hidden layer 

neuron 𝑗 with weights (𝐰1𝑗, 𝐰2𝑗, … , 𝐰𝑖𝑗). Each neuron receives the sum of multiplied 

inputs by its associated weight coefficients. At that moment the output should be 

transferred to an activation function 𝑓(𝐻𝑗), that is non-linear to give the final output 

(𝑜𝑗). A commonly used transfer function is sigmoid function because of its 

differentiable properties is a simple, especially when backpropagation algorithm used. 

The backpropagation ANN computes the output similar to feed forward ANN 

where it takes the input multiplied by its weights and all inputs are summed in each 

neuron then transferred to threshold function. The goal of BP algorithm is minimizing 

the error between output and the target. It propagates the error back to the network and 

the weights will be rearranged proportionally to the size of their error. This process is 

done forward and backward until the error drops under a specified minimum value. 

To construct an ANN, labeled train data must presented to the system. The input 

data should be categorized as training or validation, where the training is the process of 

making ANN understands the pattern of data, and the validation is the process of testing 

the classification ability of ANN. The structure of an ANN must be defined exactly 

(number of neurons, number of hidden layers, types of activation functions used… etc.). 

The process of training is selecting the optimum weights that triggers a desired output 
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when a certain data enters the ANN and then validation process should be applied to 

whether the network working fine in selecting the desired output for certain input data. 

Changing the number of neurons or number of hidden layers or activation 

function are options for reaching the good classification results in an ANN. The error 

estimation can prove the best ANN structure, for example if an ANN is over trained (not 

halted in the right time) the problem of curve fitting will happen and the system will try 

to fit itself instead of creating a generalized model. This will result bad prediction for 

validation of test sets. Another problem may happen if the system is not trained for long 

time it may settle at local minima and also will give bad results because the system 

generates a sub optimal model. 

 

4.1.3.3 Brief description of the ANN parameters 

 

Learning rate determines how much correction will be done in each iteration to 

the weights to reduce the error in the output. Small learning rate will increase the time 

of training, but it will make a better chance to reach the optimal weights by achieving 

minimum error, but will increase the chance of dropping the system into local minima. 

Large learning rate values will reduce the time of training, but it will increase the 

chance to overshoots the optimum values and in some cases the system will not be able 

to learn anything. To get rid of this dilemma the learning rate values should be tested for 

most appropriate value for certain application. 

Momentum is a coefficent which determines the ratio of current weight to add 

updated weight as an extra term. If we assume system convergences to the minimum 

error step by step, momentum helps increasing the size of the steps. It also helps to 

avoid stuck in local minima. A big momentum will speed up the system convergence. 

On the other hand, a very small momentum cannot avoid local minima, and slow down 

the convergence of learning. 

Training tolerance is the criteria that prove the network performance in the 

manner of accuracy obtained in the learning stage from training dataset. The testing 

tolerance is the accuracy that achieved on the test dataset using the optimal training 

model. 

Error function should decrease constantly and converge to a minimum during 

training. System can decide if it should stop or not according to error function value. So 

it is an indication whether the ANN model is reached the optimal or suboptimal value. 
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4.1.3.4 Neural networks neurodynamics 

 

The input layer of ANN acts as a buffer between the input data and ANN 

system, some of the input data should be scaled, converted, encoded, or normalized to 

be suitable for ANN. 

The output layer for ANN works as the same of the input layer, but it transfers 

information to the outside of ANN. In some cases a post-processing is needed for the 

output, scaling may be made to it and it depends on the type of the system related to the 

ANN system. 

To determine the actual output, the sum of multiplication between input data and 

weight coefficients are connected to transfer function 𝑓 of the ANN. The function will 

decide the output, in general the activation functions used in hidden layer are in 

nonlinear characteristic. This mechanizm is shown clearly by, 

 

𝑜𝑗 = 𝑓𝑗 (∑𝐰𝑖𝑗𝐱𝑖

𝑖

)                                                        (4.4) 

 

 The popular functions are used Logistic, and Hyperbolic functions. 

 

        Logistic:    𝑓(𝐱) =
1

1+𝑒−𝐱                                                            (4.5) 

 

Hyperbolic tangent:   𝑓(𝐱) =
𝑒𝐱−𝑒−𝐱

𝑒𝐱+𝑒−𝐱
                                                           (4.6) 

 

The logistic functions are commonly used due to the ease of computing, it is in 

boundaries between 0 to 1. The derivative is given by; 

 

𝑓̀(𝐱) = 𝑓(𝐱)(1 − 𝑓(𝐱))                                                   (4.7) 

 

Applying the output of neuron 𝑜𝑗  in logistic function 𝑓𝑗 becomes,  

 

𝑓𝑗 =
1

1 + 𝑒−∑ 𝐰𝑖𝑗𝐱𝑖𝑖 −𝜃𝑗
                                                 (4.8) 
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Where 𝜃𝑗  is the threshold. 

The output decided in logostic function depending on this condition as, 

 

𝑓𝑗 = {
1,        𝑖𝑓 ∑𝐰𝑖𝑗𝐱𝑖

𝑖

> 𝜃𝑗                                               

0, 𝑒𝑙𝑠𝑒                                                          (4.9) 

 

 

The weights are initially selected randomly or using an algorithm. These weights 

are adjusted during training to minimize the output error, iteratively. 

 

4.1.3.5 Neural networks architecture 

  

4.1.3.5.1 Types of interconnections between neurons 

 

Each layer is a fully connected to other through neurons. Every neuron connects 

to all neurons of next layer and each connection between these neurons represented with 

weight coefficients. Neurons receives stimulus from input and processes the information 

to produce the output. The input processing method of neurons and connections 

between neurons can be structured in different ways. The commonly used neural 

network structure is called multi-layer perceptron (MLPs), which process the data from 

input to output in one direction. 

 

4.1.3.5.2 The number of hidden neurons 

 

Choosing the optimum number of hidden neurons have been discussed by many 

researchers. Generally, it can be smaller to the number of inputs. But there is no rule can 

give a fixed number of hidden neurons in the hidden layer. The suitable number of 

hidden neurons depends on the problem. However many rules are suggested by 

researchers that are related to select the number of hidden neurons. 

 

4.1.3.5.3 The number of hidden layers 

 

Some researcher demonstrated that, linear separable data can be divided without 
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hidden layers. So that means, with linear problems the simpler techniques can also 

work. On the other hand, in the nonlinear problems a wide variety of applications two 

hidden layers are needed to find solution. Two hidden layers make it skillful to solve 

different complicated problems in the MLP. Commonly used transfer functions are 

sigmoid, step, and threshold functions. 

 

4.1.3.5.4 The perceptron 

 

The perceptron model is a mathematical expression of a biological neuron. 

Biologically, the neurons receives signals via dendrite from neighboring neurons to 

process it, then transmit it to next neurons through the axons. The perceptron received 

signals as numerical values from its neighboors, and each signal is multipled by a 

weight value to obtain the output. Then output pass through threshold function to 

calculate the actual output. The perceptron is widely used with classification problems, 

which is about classifying input 𝐱 into class 𝑐 using neuron 𝑗 as the following, 

 

∑𝐰𝑖𝑗𝐱𝑖 > 𝜃                                                            (4.10) 

 

As 𝐰𝑖𝑗 is the weight links from input 𝑖 to neuron 𝑗, 𝐱𝑖 is the received signal 

vector, and 𝜃 is the threshold on neuron 𝑗. 

The weight 𝐰𝑖𝑗 of perceptron is shown by, 

 

𝐰𝑖𝑗(𝑛) = 𝐰𝑖𝑗(𝑛 − 1) + 𝜂𝛿𝑗𝐱𝑖(𝑛)                                   (4.11) 

 

Where 𝐰𝑖𝑗(𝑛) is the weight coefficients vector which is updated in each 

iteration 𝑛, 𝜂 is the learning rate in the range [0,1] and 𝛿𝑗 is the estimated error of 

neuron 𝑗 is given by; 

 

𝛿𝑗 = 𝑡𝑗 − 𝑜𝑗                                                                  (4.12) 

 

Where 𝑡𝑗 and 𝑜𝑗 are the target output and the desired output values from neuron 

𝑗, respectively.  
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The 𝛿𝑗 process will minimize iteratively until obtain the optimum 𝐰𝑖𝑗. A single 

perceptron can solve binary Boolean (logic) functions such as AND, OR and NOT. 

Unfortunately a single perceptron seems only can solve linear problems that show 

limitations of its capability to solve many of nonlinear problems. (Minsky and Paperi, 

1969) conclude that perceptron cannot solve nonlinear problems such as (XOR) 

problem. 

 

4.1.4 XOR problem with multilayer perceptron 

 

Linear separability is defined as a linear hyperplane that can separate the 

instances into two separate regions, if there were 𝑛 inputs and 𝑛 > 2, see the equation,  

 

∑𝐰𝑖𝑗𝐱𝑗

𝑛

𝑖=1

= 𝜃𝑗                                                           (4.13) 

 

As we know the hyperplane can divide the solution space into two partitions. In 

most cases this plane seperates the data into classes and the finding suitable plane 

problem is called classification problem. In some cases when the classes are more than 

two (𝑛 > 2) it is very difficult to find suitable separation planes but particular ANNs 

(e.g. MLPs) can learn to separate these kind of classes. 

The perceptron can solve most cases of Boolean linear and separable functions 

but not the XOR problem, because XOR function is the simplest nonseparable function, 

where the output function is 0 if its two inputs are the same; on the other hand, output is 

1 if the inputs are different. The XOR truth table is Table 4.1. 

 

Table 4.1. Truth table of XOR function 

 

x1 x2 Output (𝑂𝑗) 

0 

0 

1 

1 

0 

1 

0 

1 

0 

1 

1 

0 

 

The multilayer perceptron model (MLP) model can solve the XOR problem 

using two neurons in the hidden layer easily. The inputs are linked to hidden neurons 

with appropriate weights as shown in Fig. 4.3.  
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Figure 4.3. Diagram of perceptron model with activation function 

  

The perceptron classifies the input data depending on the following equation, 

 

𝑦 = 𝑓(𝐻𝑗)                                                      

= 𝑓(𝐰1𝑗𝐱1 + 𝐰2𝑗𝐱2, 𝜃)                      

= {
1,               𝑖𝑓 𝐰1𝑗𝐱1 + 𝐰2𝑗𝐱2 ≥ 𝜃

0 ,           𝑒𝑙𝑠𝑒 𝐰1𝑗𝐱1 + 𝐰2𝑗𝐱2 < 𝜃
                                (4.14) 

 

Where 𝐻𝑗 is the neuron of the overall output that will pass through activation 

function 𝑓, 𝜃 is the threshold value, 𝐰1𝑗 and 𝐰2𝑗 are the weights on the connection 

between inputs (𝐱1,𝐱2) and hidden neurons 𝑗. 

A set of weight values will be calculated to achieve the required output, the two 

lines on the 𝐱1 and 𝐱2 plane are obtained by, 

 

𝜃 = 𝐰1𝑗𝐱1 + 𝐰2𝑗𝐱2                                          (4.15) 

 

𝒘2𝑗 

𝐰1𝑗  

𝐻𝑗 

𝐱2 

𝐱1  

 

∑𝐰𝑖𝑗𝐱𝑖

𝑖

 f (.) 𝑦 

Activation 

Function (f) 
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Figure 4.4. The separation of nonlinear XOR data points 

 

Fig. 4.4 shows outputs of the XOR Boolean function. As it seen in the figure 

XOR has nonlinear separable output, where it is not possible to separate the 0s and 1s 

using one hyperplane. MLP with two hyperplanes is a great technique to solve XOR 

function. 

 

4.1.5 Learning algorithms 

 

The learning concept in the ANN corresponds to weight coefficient adjustment 

procedure. ANNs is famous for using “learning idea” exhaustively. Learning process 

uses training dataset that contains inputs and corresponding target values. The goal of 

network is minimizing the error between the target values 𝑡(𝑛) and the desired output 

𝑜(𝑛) until reach the correct output with minimum error estimation 𝐸(𝑛). The weights 

are adjusted gradually and iteratively during the learning time. The common learning 

algorithm is called backpropagation algorithm. 

Many learning algorithms have been proposed, but in this chapter only mostly 

famous algorithms which are Delta rule, and backpropagation (BP) algorithms are 

refered where the learning in these algorithms are adjusting the weights 𝐰𝑖𝑗(𝑛)  and the 

biases 𝑏𝑗(𝑛) to minimize the overall squared error 𝐸(𝑛) by, 

 

1 

1 

-1 

-1 

𝑦, 𝜃𝑗 = 0 
𝑦, 𝜃𝑗 = 1 

𝑦, 𝜃𝑗 = 1 

x2 

x
1
 

0 

0 
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𝐸(𝑛) =
1

2
∑‖𝑡(𝑛) − 𝑜(𝑛)‖2

𝑖

                                       (4.16) 

 

Where 𝑖, 𝑡(𝑛), and 𝑜(𝑛) are the the input patterns, the target, and the estimated 

output, respectively. Weight coefficients are adjusted until minimized error obtained in 

a suitable time period. The error surface will moves down gradually untill fall to ravine. 

 

4.1.5.1 The delta rule 

 

Widrow and Hoff were proposed the Delta rule in (Widrow and Hoff, 1960). It is 

also called least mean square (LMS) algorithm and most commonly applied learning 

rule. Delta rule learning is simply comparing input and the output vectors to predict the 

correct answer. If the difference is big, the algorithm will adjust the weight vector to 

minimize the difference, otherwise the convergence will reach the steady-state with 

minimum error. There isn’t hidden neuron in Delta rule so it is a simple linear function. 

The weight change 𝐰𝑖𝑗(𝑛) is given by, 

 

∆𝐰𝑖𝑗(𝑛) = 𝜂𝛿𝑗(𝑛)𝐱𝑖(𝑛)                                                     (4.17) 

 

Where 𝜂 is the learning rate betwen [0,1], and updated weight on neuron 𝑗.  

The Delta rule error calculated by, 

 

𝛿𝑗 = 𝑡(𝑛) − 𝑜(𝑛)                                                    (4.18) 

 

Where 𝑜(𝑛) given by, 

 

𝑜(𝑛) = ∑𝐱𝑖(𝑛)𝐰𝑖𝑗

𝑁

𝑖=1

(𝑛)                                            (4.19) 

 

4.1.5.2 Back-propagation (BP) algorithm 

 

BP algorithm is a supervised learning one; that is applied with a known dataset 

of input-target samples and has been used in prediction and classification applications. 
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Fig. 4.5 illustrates the BP architecture in details. It consists of an input layer, one or 

more hidden layer, and an output layer. Layers are connected sequentially starting from 

the input layer through the hidden layers to the output layer. Where the connections 

between layers contain weights and each layer includes one or more neurons. 

 

 

 

Figure 4.5. Schematic representation of back-propagation architecture 

 

The basic idea behind BP is to minimize the overall output error gradually 

during the learning process. Whereas the training sets are estimated iteratively through 

the input layer to predict the correct output. The BP process is divided in two stages: 

forward and backward process. In the forward process, the BP architecture is described 

𝐰𝑗𝑘 

 

𝐱2 

𝐱3 

𝐱𝑖 

𝐱1  
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𝑗 
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  S F 
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F: Sigmoid function. 
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as: 𝐱 are the inputs to the neural network with 𝑖 neurons, 𝐰𝑖𝑗 are the weights of 

interconnections between inputs and hidden layers, and 𝑗 neurons for the hidden layer. 

Hidden layer is defined by, 

 

𝐻𝑗 = 𝑏𝑖𝑛 + ∑𝐱𝑖𝐰𝑖𝑗

𝑁

𝑖=1

                                               (4.20) 

 

Where 𝑏𝑖𝑛 is a bias input layer, hidden layer will pass through activation 

function (𝑓). In this study, sigmoid function has been used as a good activation function 

(Karlik and Olgac, 2011), 

 

𝑓(𝐻𝑗) =
1

1 + 𝑒−(𝐻𝑗)
,                                                (4.21) 

 

After calculating the overall output by multiplying the output of the hidden layer 

neurons with the hidden layer weights 𝐰𝑗𝑘, the results, then, pass through a sigmoid 

function (called threshold) as shown below; 

 

𝑦𝑘 = 𝑏𝑛 + ∑ 𝐰𝑗𝑘𝑓(𝐻𝑗)

𝑚

𝑗=1

                                             (4.22) 

 

Where 𝑏𝑛 is the bias of hidden layer and 𝑘 output neurons. 

To predict the correct output by obtaining minimum error 𝐸 for each pattern (𝑝) 

by subtracting the overall output o from the target 𝑡; 

 

𝐸 =
1

2
∑(𝑡𝑗 − 𝑜𝑗)

2

𝑝

𝑗=1

                                              (4.23) 

 

We can minimize 𝐸 by using an iterative process of gradient descent for each 

weight which is updated using the increment; 

 

∆𝐰𝑘𝑗 = −
𝜂𝜕𝐸

𝜕𝐰𝑘𝑗
          𝑓𝑜𝑟   𝑗 = 0,1, … , 𝑛                         (4.24) 



 

50 
 

 

Where 𝜂 defines learning coefficient which represent the step size of each 

iteration in the negative gradient direction. One all partial derivatives are computed as, 

 

𝜕𝐸

𝜕𝐰𝑘𝑗
= 

𝜕𝐸

𝜕 𝑛𝑒𝑡𝑘

𝜕 𝑛𝑒𝑡𝑘
𝜕 𝐰𝑘𝑗

                                             (4.25) 

 

𝜕 𝑛𝑒𝑡𝑘
𝜕 𝐰𝑘𝑗

= 
𝜕

𝜕 𝐰𝑘𝑗
∑𝐰𝑘𝑗𝑦𝑗 =

𝑗

∑
𝜕 𝐰𝑘𝑗. 𝑦𝑗

𝜕 𝐰𝑘𝑗
= 𝑦𝑗

𝑗

                    (4.26) 

 

In the backward process, weights on the connections between all layers will be 

updated to minimize the error between target (or desired) and output until finding the 

optimum weights with minimum 𝐸 (Ozbay and kalik, 2002). The error of belonging to 

neutons of layer k called “delata” (shortly ∂) is computed by, 

 

𝛿𝑜 = −
𝜕𝐸

𝜕 𝑛𝑒𝑡𝑘
                                                        (4.27) 

 

(4.25) is placed instead of both (4.26) and (4.27); 

  

𝜕𝐸

𝜕𝐰𝑘𝑗
= −𝛿𝑜 . 𝑦𝑗                                                         (4.28) 

 

The backpropagation step computes the gradient of 𝐸 with respect to the input. 

We can perform gradient descent by adding to each weight 𝐰𝑘𝑗the increment ∆𝐰𝑘𝑗, 

  

∆𝐰𝑘𝑗 = 𝜂𝛿𝑜 . 𝑦𝑗                                                           (4.29) 

 

If we denote the backpropagation error at the 𝑗𝑡ℎ node by 𝛿𝑗, we can then 

express the partial derivative of 𝑒 with respect to 𝐰𝑖𝑗 as, 

 

𝛿𝑜 = −
𝜕𝐸

𝜕𝑛𝑒𝑡𝑘
 = −

𝜕𝐸

𝜕𝑜𝑘

𝜕𝑜𝑘

𝜕𝑛𝑒𝑡𝑘
                                            (4.30) 
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𝜕𝐸

𝜕𝑜𝑘
= −(𝑡𝑘 − 𝑜𝑘)                                                     (4.31) 

 

(4.31) is defined local error for 𝑘 neurons. 

 

𝜕𝑜𝑘

𝜕𝑛𝑒𝑡𝑘
= 𝑓̀𝑘(𝑛𝑒𝑡𝑘)                                                     (4.32) 

 

The last two equations are placed instead of (4.30), 

 

𝛿𝑜 = (𝑡𝑘 − 𝑜𝑘)𝑓̀𝑘(𝑛𝑒𝑡𝑘)                                          (4.33) 

 

For 𝑘 neurons, (4.29) is placed instead of the last one; 

 

 ∆𝐰𝑘𝑗 = 𝜂(𝑡𝑘 − 𝑜𝑘)𝑓̀𝑘(𝑛𝑒𝑡𝑘)𝑦𝑗                                    (4.34) 

 

If we denote the backpropagation error at the jth (hidden layer) by 𝛿𝑗, we can 

then express the partial derivative of 𝐸 with respect to 𝐰𝑗𝑖 as, 

 

∆𝐰𝑗𝑖 = − 𝜂
𝜕𝐸

𝜕𝐰𝑗𝑖
= −𝜂

𝜕𝐸

𝜕 𝑛𝑒𝑡𝑗

𝜕 𝑛𝑒𝑡𝑗

𝜕 𝐰𝑗𝑖
= −𝜂

𝜕𝐸

𝜕 𝑛𝑒𝑡𝑗
𝐱𝑖                  

= −𝜂 (−
𝜕𝐸

𝜕𝑦𝑗
− 𝜂

𝜕𝑦𝑗

𝜕 𝑛𝑒𝑡𝑗
) 𝐱𝑖 = 𝜂 (

𝜕𝐸

𝜕𝑦𝑗
) 𝑓̀𝑗(𝑛𝑒𝑡𝑗)𝐱𝑖        (4.35) 

 

We can perform grdient decent by adding to each weight 𝐰𝑗𝑖 the increment 𝐰𝑗𝑖 

as, 

 

∆𝐰𝑗𝑖 = 𝜂𝛿𝑦𝑥𝑖                                                 (4.36) 

 

However, factor not directly promoted. In particular, the effect of the output 

layed, 

 

−
𝜕𝐸

𝜕𝑦𝑗
= −∑

𝜕𝐸

𝜕𝑛𝑒𝑡𝑘

𝜕𝑛𝑒𝑡𝑘
𝜕𝑦𝑗

=

𝑘

∑(−
𝜕𝐸

𝜕𝑛𝑒𝑡𝑘
)

𝜕

𝜕𝑦𝑗
𝑘

∑𝐰𝑘𝑗

𝑘

𝑦𝑗                                  
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= ∑(−
𝜕𝐸

𝜕𝑛𝑒𝑡𝑘
)

𝑘

𝐰𝑘𝑗 = ∑𝛿𝑜𝐰𝑘𝑗

𝑘

                       (4.37) 

  

In this case, 𝛿𝑦 can be found; 

 

𝛿𝑦 = 𝑓𝑗(𝑛𝑒𝑡𝑗)∑𝛿𝑜𝐰𝑘𝑗

𝑘

                                       (4.38) 

 

Transfer (threshold) is used as a function of the sigmoid function, 

 

𝑓𝑗(𝑛𝑒𝑡𝑗) = 𝑦𝑗 =
1

1 + 𝑒−𝑛𝑒𝑡𝑗
                                        (4.39) 

 

Whether the derivative of this expression, when necessary simplification, the 

following equations are obtained; 

 

 𝑓𝑗(𝑛𝑒𝑡𝑗) =
1

1+𝑒
−𝑛𝑒𝑡𝑗

1+𝑒
−𝑛𝑒𝑡𝑗−1

1+𝑒
−𝑛𝑒𝑡𝑗

                                    (4.40) 

 

𝜕𝑦𝑗

𝜕𝑛𝑒𝑡𝑘
= 𝑦𝑗(1 − 𝑦𝑗)                                           (4.41) 

 

When similar works are made for 𝑘 layer, the following equations are obtained; 

 

𝜕𝑜𝑘

𝜕𝑛𝑒𝑡𝑘
= 𝑓̀𝑘(𝑛𝑒𝑡𝑘) = 𝑜𝑘(1 − 𝑜𝑘)                              (4.42) 

 

𝛿𝑜 = (𝑡𝑘 − 𝑜𝑘)𝑜𝑘(1 − 𝑜𝑘)                                   (4.43) 

 

𝛿𝑦 = 𝑦𝑗(1 − 𝑦𝑗)∑𝛿𝑜𝐰𝑘𝑗

𝑘

                                  (4.44) 

 

After adding learning and momentum coefficients, updating the weights for both 

hidden (𝐰𝑗𝑖) and output (𝐰𝑘𝑗) layer are obtained such as, 
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∆𝐰𝑗𝑖(𝑛 + 1) = 𝜂𝛿𝑦𝐱𝑖(𝑛) + 𝛼∆𝐰𝑗𝑖(𝑛)                                             (4.45) 

  

∆𝐰𝑘𝑗(𝑛 + 1) = 𝜂𝛿𝑜𝑦𝑖(𝑛) + 𝛼∆𝐰𝑘𝑗(𝑛)        𝑛 = 0,1, …              (4.46) 

 

Where 𝑛 represents number of iteration and 𝜂 is the learning rate (Karlik, 2000). 

The biases (bias weights) are updated by, 

 

𝑏𝑗(𝑛) = 𝑏𝑗(𝑛) + 𝜂. 𝑓(𝐻𝑗) (1 − 𝑓(𝐻𝑗)) 𝐱𝑖(𝑛)𝐰𝑗(𝑛)𝑒(𝑛)                    (4.47) 

 

4.1.5.3 Back-propagation with adaptive filtering momentum (BPAM) algorithm 

 

Adaptive momentum is an efficient way to speed-up BPNN process and improve 

the algorithm's accuracy. Shao and Zheng (2009) proposed an adaptive momentum 

algorithm called BPAM. The weight update equation has been derived as; 

 

∆𝐰(𝑛) = −𝜂𝐸𝐰(𝐰(𝑛)) + 𝛼(𝑛)∆𝐰(𝑛 − 1)            𝑛 = 0,1, …                   (4.48) 

 

Where 𝛼 is the adaptive momentum and updated by the following: 

 

𝛼𝑖(𝑛) = {𝛼
−𝜂𝐸𝐰(𝐰(𝑛)). ∆𝐰(𝑛 − 1)

‖∆𝐰(𝑛 − 1)‖2
, 𝑖𝑓𝐸𝐰(𝐰(𝑛)). ∆𝐰(𝑛 − 1) < 0                             

0,                                                                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                   (4.49)

 

 

Where 𝛼𝑖(𝑛) = (𝛼0(𝑛), 𝛼1(𝑛), … , 𝛼𝑗(𝑛)) are changing corresponding to the 

equation above, 𝑖 = 0,1, … 𝑗. 

The BPAM adaptive momentum adjusts itself iteratively by multiplying the 

current weight coefficients by the previous updated coefficients. If the momentum 

coefficients are less than zero, they are given a positive value to accelerate learning by 

updating momentum. Otherwise the momentum is considered as zero to maintain the 

error downhill. 
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4.1.5.4 Back-propagation algorithm with variable adaptive momentum (BPVAM) 

algorithm 

 

In the BPAM algorithm, 𝛼 (the adaptive momentum) is controlled by the 

learning rate parameter 𝜂. This 𝜂 is dependent on the eigenvalues of the autocorrelation 

matrix of the input. If these eigenvalues are relatively high, 𝜂 should be selected 

relatively small to provide a low error performance and, hence, the convergence rate of 

the algorithm will be low. On the other hand, if the eigenvalues of the autocorrelation 

matrix are relatively small, 𝜂 can be selected relatively high which, in turn, provides 

high convergence rate but also high error performance. 

If we consider estimating the autocorrelation matrix, 𝐑(𝑛), of the input 

recursively as: 

  

𝐑(𝑛 + 1) = 𝛽𝐑(𝑛) + 𝐑𝐱𝐱                                                    (4.50) 

 

Where 𝛽 is the forgetting factor (0 ≪ 𝛽 < 1), 𝐑𝐱𝐱 = 𝐸{𝐱(𝑛)𝐱𝑇(𝑛)}, 𝐸 is the 

expectation operator, 𝑇 is the transposition operator and 𝐱(𝑛) are the inputs. Taking 

expected value for both sides of (4.50), 

 

𝐑̅(𝑛) =
1 − 𝛽𝑛

1 − 𝛽
𝐑𝐱𝐱                                                     (4.51) 

 

Where 𝐑̅(𝑛) = 𝐸{𝐑(𝑛)}. Solving (4.51) in the steady-state (𝑛 → ∞) yields: 

 

𝐑̅(∞) =
1

1 − 𝛽
                                                              (4.52) 

 

Equation (4.52) implies that the eigenvalues of the estimated autocorrelation 

matrix increase exponentially, and in the limit they become 
1

1−𝛽
 times the original one. 

In this study, following the same procedure of (Ahmad et al., 2011), we propose 

a new backpropagation algorithm with variable adaptive momentum. The proposed 

variable momentum is expressed by (Ahmad et al., 2011): 
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𝛼(𝑛) =
𝜆

1 − 𝛽𝑛
                                                   (4.53) 

 

Where 𝜆 <
2−2𝛽

𝑚𝑎𝑥 𝑒𝑖𝑔𝑒𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓𝐑𝐱𝐱
 

In (4.53), for enough large 𝛽, the term 1 − 𝛽𝑛 reaches unity and, at the 

beginning, 𝛼(𝑛) is relatively large to provide a fast convergence of the weights update 

in (4.45) and (4.46) and after some time is becomes very close to 𝜆 (a small positive 

constant), hence, it provides low error performance for the weights update in (4.45) and 

(4.46). 

 

∆𝐰𝑗𝑖(𝑛 + 1) = 𝜂𝛿𝑦𝐱𝑖(𝑛) + (
𝜆

1 − 𝛽𝑛
)∆𝐰𝑗𝑖(𝑛)                                             (4.54) 

  

∆𝐰𝑘𝑗(𝑛 + 1) = 𝜂𝛿𝑜𝑦𝑖(𝑛) + (
𝜆

1 − 𝛽𝑛
)∆𝐰𝑘𝑗(𝑛), 𝑛 = 0,1, …              (4.55) 

 

Where 𝑛 represents number of iteration, and ∆𝐰 is defined as updating the 

weights. 

 

4.1.6 Statistical classification algorithms 

 

4.1.6.1 K-NN classifier 

 

The k-nearest neighbours (K-NN) is a non-parametric classifier, and one of the 

most popular and simple methods, which has been used to solve different types of 

problems in data mining (Shouman et al., 2012). K-NN is able to classify instances 

based on majority class or closest neighbours of 𝐱 in the training set (Derelioglu and 

Gugen, 2011). By partitioning the feature space into K regions are to find the closest 

feature space of new instance (Larose, 2005). In this study the Euclidean distance has 

been used to compute the distance between both of neighbouring instances 𝐱, and 𝑦. 

 

√∑(𝐱𝑖 − 𝑦𝑖)2                                                            (4.56) 
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Where 𝐱 = (𝐱1, 𝐱2, … , 𝐱𝑁) and 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑁), however, 𝑁 is n-

dimensional space. Moreover K-NN has more robustness to noisy training data (Duda et 

al., 2001; EI Gayar et al, 2006). 

 

4.1.6.2 Naïve bayes 

 

Naïve Bayes (NB) classifier is characterized as easy and fast to implement 

because it requires a small training data which is to estimate the parameters (means and 

variances of the variable) for classification (Keramati and Yousefi, 2011). The main 

idea behind NB process is independently investigating attributes of data sets (Kim, 

2009; Hou et al., 2010; Murphy, 2006), and it is easy to expand the model for very large 

datasets. 

 

4.1.6.3 Support vector machine 

 

Support Vector Machine (SVM) is one of the useful and well-known supervised 

learning algorithms which have been widely attracting many researchers due to its high 

classification accuracies in wide variety of fields (Vapnik, 1995; Baesens et al., 2003). 

SVM has proved its the ability in solving non-linear problems (Martens et al., 2009). 

However, SVM suffers from high computational complexity which causes an increase 

usage of memory and time consumption with big data implementation. The working 

principle in the non-linearly applications is to map the training set into high-dimensional 

feature. Linearly separable used to find a maximum margin by investigating the optimal 

hyperplane (separating hyperplane) between the classes (Huang et al., 2002). The 

linearly separable method has clearly depicted in Fig. 4.6. 

Gaussian radial kernel function is usually used to transfer non-linear data to a 

high-dimensional feature space (Burbidge et al., 2001). The kernel function is given by, 

 

𝐾(𝐱𝑖, 𝐱𝑗) = 𝑒𝑥𝑝 (−
‖𝐱𝑖 − 𝐱𝑦‖

2

2𝜎2
)                                          (4.57) 

 

Where 𝐱𝑖 is defined as input of the training set. 

 



 

57 
 

 

 

Figure 4.6. SVM estimate the hyperplane of best classes separate 

 

The SVM separating hyperplanes can be depicted for investigating classification 

using the lemma by, 

 

𝐹(𝐱) = 𝑠𝑔𝑛 (∑𝑎𝑖𝑦𝑖𝐾(𝐱𝑖, 𝐱𝑗) + 𝑏)                                    (4.58) 

 

Where 𝑎𝑖 is the Lagrangian method for mapping data to high-dimensional space, 

𝑦𝑖 is the class label of 𝐱𝑖 and 𝑏 is the bias, sgn function which describes the instances; 

i.e., +1 for a positive class or -1 for the negative class, 

 

4.1.6.4 Linear discriminant analysis 

 

Linear Discriminant Analysis (LDA) is characterized by its simplicity and 

success in solving different types of problems (Yang and Yang, 2003). LDA provides a 

linear combination of features by creating a new variable (Karlik, 2014). LDA is based 

upon the concept of searching for a linear combination of variables which are predicted 

by the best separation of two target classes. The discrimination is to compute the 

Mahalanobis distance between two classes by, 
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∆2= 𝛽𝑇(𝜇1 − 𝜇2)                                                     (4.59) 

 

Where ∆ is defined Mahalanobis distance, 𝜇1 and 𝜇2 are mean vectors, and 𝛽 is 

the coefficient vector.  

 

4.2 Unsupervised Learning 

 

Unsupervised learning is one of the mostly studied fields in machine learning. It 

aims to extract structures from data instances. Its goal is finding the groups of similar 

features in the dataset without prior knowledge about data, which is also called 

clustering. The clustering can find a suitable structure from collected data which are 

characterized by several values. These groups are cruited depending on the similarity of 

the data instances. Each group is called cluster. The conventional clustering methods 

have categorized into two major groups as hierarchical and partitional. 

The clustering can be defined as follows. Let the data set 𝐷 = {(𝐱(1),… , 𝐱(𝑁)} 

are the set of instances described as a vector of features in a space of dimension 𝐹, that 

is, 𝐱(𝑖) ∈ ℜ𝐹 , ∀𝑖∈ {1, … , 𝑁}. The process assigns a cluster label 𝑐(𝑖) to each instance, 

with 𝑐(𝑖) ∈ {1,… , 𝑘}, depending on the similarity measurement between all instances. 

The clusters count 𝑘 can not be predicted easily, so it is needed to consider all data 

instance. A common way is estimating similarity among input data.  

The way of using similarity plays an important role in clustering approaches, 

such as hierarchical or partitional. Most commonly used similarity technique is the 

concept of distance which measures how much this object is close to that cluster. 

Mostly used distance measurement techniques are Euclidean, Minkowski, and 

Mahalanobis distances.  

The Euclidean distance is calculated the distance between two instances of the 

same length given by, 

 

(𝐱(𝑛), 𝐱(𝑛 + 1)) = √∑(𝐱𝑗(𝑛) − 𝐱𝑗(𝑛 + 1))2

𝐹

𝑗=1

                      (4.60) 

 

The Minkowski distance is a generalization Euclidean distance as defined by, 
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(𝐱(𝑛), 𝐱(𝑛 + 1)) = √∑𝐰𝑗
𝑟(𝐱𝑗(𝑛) − 𝐱𝑗(𝑛 + 1))𝑟

𝐹

𝑗=1

                  (4.61) 

 

 Where 𝑟 is the Minkowski distance, actually it is Manhattan distance has 

measures with 𝑟 = 1, 𝐰𝑗 is a possible weight for feature 𝑗.  

The Mahalanobis distance is defined by, 

 

(𝐱(𝑛), 𝐱(𝑛 + 1)) = √(𝐱(𝑛) − 𝐱(𝑛 + 1))
𝑇
∑−1(𝐱(𝑛) − 𝐱(𝑛 + 1))        (4.62) 

 

Where Σ is the covariance matrix in a space of dimension 𝑓. 

 

4.2.1 Unsupervised learning approaches 

 

Different starting points and criterias usually lead to different categories of 

clustering algorithms (Everitt et al., 2001; Xu and Wunsch, 2005). Generally clustering 

techniques can be classified into hierarchical clustering, partitional clustering, and 

probabilistic clustering, depended on the characteristics of the generated clusters. 

Partitional clustering groups the elements exclusively, so that any element belonging to 

one specific cluster cannot be a member of another cluster. On the other hand, 

hierarchical clustering produces a hierarchical structure of clusters. Hierarchical 

clustering proceeds successively by either merging smaller clusters into larger ones or 

by splitting larger clusters into smaller ones. Finally, probabilistic clustering provides a 

cluster membership probability for every element, where elements have a specific 

probability of being members of several clusters. Some of the clustering techniques 

above are used throughout this thesis.  

A clustering method which used commonly is the Kohonen self-organizing map 

or SOM, which is a type of neural network that can perform unsupervised learning 

Kohonen (1990).  
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4.2.1.1 SOM algorithm 

 

The architecture of SOM consists of an input and an output layer connected to 

each other where each connection is associated with a weight. The topologies of neuron 

connections used for SOM map are hexagonal and rectangular (Tasdemir et al., 2011; 

Wong et al., 2006). The SOM output layer consists of 2-D grid of 𝑧 × 𝑑 neurons in low 

dimension. The input vectors 𝐱𝑖 = { 𝐱1, 𝐱2, … , 𝐱𝑛}, 𝑖 =  1, 2, …  𝑛, where 𝑖 is the 

number of input vectors and 𝑛 is the input units. Each 𝑖 is associated to the SOM map 

through weight vector 𝐰 =   (𝐰𝑛1, 𝐰𝑛2, … ,𝐰𝑛𝑑), where the 𝑑 is the SOM dimension as 

shown in Fig. 4.7. 

 

 

 

Figure 4.7. Illustration of the kohonen SOM architecture 

 

The learning process of conventional SOM consists of the following steps: 

Firstly, initialize the weight vector 𝐰𝑛,𝑑 randomly as grid of 𝑧 × 𝑑 neurons. Secondly, 

feed the SOM network by the input vector 𝐱 from dataset. Input vector 𝐱 is fed to all 

neurons, synchronously. Thirdly, after calculating the distance between input and output 

neurons, find the closest neuron to input (smallest distance), called best matching unit 
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(BMU). The BMU of the winner neuron 𝑐 is calculated using Euclidian distances, 

 

𝑐 = 𝑎𝑟𝑔 𝑚𝑖𝑛 
𝑖

(‖𝐰𝑖(𝑛) − 𝐱(𝑛)‖)                                            (4.63) 

 

This process is repeated for all other input vectors in the dataset. Finally, the 

weight vectors of winner neuron are updated in an each iteration of learning process 

using, 

 

 𝐰𝑖(𝑛 + 1) = 𝐰𝑖(𝑛) + 𝛼(𝑛) . [𝐱(𝑛) − 𝐰𝑖(𝑛)]                             (4.64) 

 

Where, 𝛼(𝑛) is the learning rate.  

One variant of SOM algorithm is the GF-SOM algorithm. It has been a widely 

used in many applications as a neighborhood function. Weight vectors update for GF-

SOM is done using, 

 

𝐰𝑖(𝑛 + 1) = 𝐰𝑖(𝑛) + ℎ𝑐,𝑖(𝑛)[𝐱(𝑛) − 𝐰𝑖(𝑛)]                              (4.65) 

 

Where ℎ𝑐,𝑖 is the Gaussian neighborhood function defined as, 

 

ℎ𝑐,𝑖(𝑛) =  𝛼(𝑛) . 𝑒𝑥 𝑝 (−
  ⃦𝑟𝑐 − 𝑟𝑖  ⃦

2𝜎2(𝑛)
)                                     (4.66) 

 

Where   ⃦𝑟𝑐 − 𝑟𝑖 ⃦ is the Euclidean distance between the positions of the winning 

neuron 𝑐 and the neuron 𝑖 on the grid in each weight updating and 𝜎(𝑛) is the width of 

Gaussian. The 𝛼(𝑛) and 𝜎(𝑛)  are decreasing gradually during the learning process by 

constants factors  𝛿𝛼 and 𝛿𝜎, respectively, as 

 

𝛼(𝑛 + 1) = 𝛿𝛼. 𝛼(𝑛)                                                 (4.67) 

 

𝜎(𝑛 + 1) = 𝛿𝜎. 𝜎(𝑛)                                                (4.68) 
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4.2.1.2 PLSOM algorithm 

 

The main idea behind PLSOM is to overcome the limitation of conventional 

SOM. The PLSOM does not need the learning rate annealing scheme or the 

neighborhood size annealing schemes as in the conventional SOM algorithm (Berglund 

and Sitte, 2006). The basic process of PLSOM depends on its efficiency in fitting the 

input data. The fitting error is computed using the scaling variable 𝜖 by normalizing the 

distance between the input space 𝐱(𝑛) and the weight vector 𝐰𝑐(𝑛) of the winner 

neuron 𝑐. The variable 𝜖 is applies to scale the weight update equation as in (4.72) and 

to determine the size of the neighborhood as in (4.73). The scaling variable 𝜖 is 

calculated as, 

 

𝜖(𝑛) =
‖𝐰𝑐(𝑛) − 𝐱(𝑛)‖

𝜌(𝑛)
                                               (4.69) 

 

Where 

 

𝜌(𝑛) = 𝑚𝑎𝑥(‖𝐱(𝑛) − 𝐰𝑐(𝑛)‖, 𝜌(𝑛 − 1))                     (4.70) 

 

𝜌(0) = ‖𝐱(0) − 𝐰𝑐(0)‖                                                    (4.71) 

 

If 𝜖 is large the map will fit input space poorly. It will require large 

readjustments which in tern means that further iterations are required. On the other 

hand, if 𝜖 is small the map fitting will be satisfactory and no large update is required. In 

PLSOM, the weight vectors of the winner neuron are updated using, 

 

𝐰𝑖(𝑛 + 1) = 𝐰𝑖(𝑛) +  𝜖(𝑛). ℎ𝑐,𝑖(𝑛)[𝐱(𝑛) − 𝐰𝑖(𝑛)]               (4.72) 

 

The used neighborhood function is the Gaussian neighborhood ℎ𝑐,𝑖, given as, 

 

ℎ𝑐,𝑖(𝑛) = 𝑒𝑥𝑝 (−
  ⃦𝑟𝑐 − 𝑟𝑖  ⃦

𝛩(𝜖(𝑛))2
)                                         (4.73) 

 

Where   ⃦𝑟𝑐 − 𝑟𝑖   ⃦ is the distance between the positions of the winning neuron c 
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and the neuron 𝑖 on the map as mentioned before in the conventional SOM. The 

𝛩(𝜖(𝑛)), is used for scaling the neighborhood function as,  

 

𝛩(𝜖(𝑛 + 1)) = 𝛽. 𝜖(𝑛),        𝛩(𝜖(𝑛 + 1)) ≥ 𝜃𝑚𝑖𝑛                                 (4.74) 

 

In addition, there is another way to calculate 𝛩(𝜖(𝑛)) shown in (4.75) and 

(4.76), where 𝛽 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∀𝑛, and 𝜃𝑚𝑖𝑛 is constant. 

 

𝛩(𝜖(𝑛)) = (𝛽 − 𝜃𝑚𝑖𝑛)𝜖(𝑛) + 𝜃𝑚𝑖𝑛                                           (4.75) 

 

𝛩(𝜖(𝑛)) = (𝛽 − 𝜃𝑚𝑖𝑛)𝑙𝑛(1 + 𝜖(𝑛))(𝐸𝑢 − 1) + 𝜃𝑚𝑖𝑛          (4.76) 

 

Where 𝑙𝑛(. ) and Eu are the natural logarithm and Euler number, respectively. 

 

4.2.1.3 Proposed SOM algorithm 

 

In this thesis a new adaptive learning rate 𝛼(𝑛) of SOM algorithm was derived. 

The eigenvalues of the autocorrelation matrix 𝐑(𝑛) of the input is the key factor in 

selecting 𝛼(𝑛). The eigenvalues and adaptive learning rate should be selected in an 

inversely proportional way. To guarantee a low QE performance and low convergence 

rate in case of relatively high eigenvalues, the 𝛼(𝑛) should be selected with relatively 

small value. A relatively high value of 𝛼(𝑛) can be selected to provide high 

convergence rate in case of relatively small eigenvalues of the autocorrelation matrix 

𝐑(𝑛). This, of course, might results in a high error performance as a side effect. 

Recursively estimating the input’s the autocorrelation matrix, 𝐑(𝑛), 

 

𝐑(𝑛 + 1) = 𝛽. 𝐑(𝑛) + 𝐑𝐱𝐱                                       (4.77) 

 

Here 𝛽 is the forgetting factor (0 << 𝛽 < 1), 𝐑𝐱𝐱 = 𝐸{𝐱(𝑛)𝐱𝑇 (𝑛)}, 𝐸 is the 

expectation operator, 𝑇 is the transposition operator and 𝐱(𝑛) is the input. Taking 

expected value for both sides of (4.77), 

 



 

64 
 

R̅(𝑛) =
1 − 𝛽𝑛

1 − 𝛽
𝐑𝐱𝐱                                                (4.78) 

 

Where 𝐑̅(𝑛) = 𝐸{𝐑(𝑛)}. By solving (4.76) in the steady-state (𝑛 → ∞) we get, 

 

𝐑̅(∞) =
1

1 − 𝛽
                                                       (4.79) 

 

According to (4.79), the eigenvalues of the estimated autocorrelation matrix will 

increase exponentially, and at the limit they become 
1

1−𝛽
 times the original 

autocorrelation matrix. 

Based on the same technique of (Berglund, 2010), we are proposing a new 

variable adaptive learning of SOM algorithm in this thesis. The weight vectors are 

derived in similar manner as in (Kohonen, 1982; Kohonen, 2001) as, 

 

𝐰𝑖(𝑛 + 1) = 𝐰𝑖(𝑛) + 𝛼(𝑛). [𝐱(𝑛) − 𝐰𝑖(𝑛)],   𝑛 =  0, 1, . . .           (4.80) 

 

Where 𝐰𝑖(𝑛 + 1) is defined as updating the weights.  

The proposed variable adaptive learning is defined by (Ahmad et al., 2011). 

 

𝛼(𝑛) =
𝜆

1 − 𝛽𝑛
                                                         (4.81) 

 

The idea behind (4.81) is simple. If  𝛽 is large enough, at the beginning, where 𝑛 

is small, the term (1 − 𝛽𝑛) will be relatively small and, hence, 𝛼(𝑛) will be relatively 

large which will guarantee faster convergence of the updated weights in (4.80). After a 

while, when 𝑛 increases enough, the term (1 − 𝛽𝑛) will be very close to one and, hence, 

𝛼(𝑛) is approximately equal to 𝜆 (a small positive constant), hence, it will guarantee 

low error performance for the updated weights in (4.80). 
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5. SIMULATION RESULTS 

 

This work includes three sections which are convex combination of RI 

algorithms, BPVAM, and proposed SOM algorithm. The proposed algorithms have 

been tested in different application to prove the performance. 

The compared methods were coded in MATLAB R2010b. The experiments 

were run on a Core (TM) i7-3612QM CPU (2.10 GHZ) PC equipped with 8,00 GB of 

RAM with Windows 7 Ultimate operating system. 

 

5.1 Convex Combination of Recursive Inverse (RI) Algorithms 

 

Convex combination of RI algorithms has been presented in 1-D convex 

combination RI, and 2-D convex combination RI algorithms. 

 

5.1.1 1- D Convex combination of RI algorithms 

 

The combinations here have been tested in noise cancellation and system 

identification settings using different adaptive algorithms. 

 

5.1.1.1 Convex combination of two RI algorithms 

 

In this section, the performance of the proposed algorithm is compered to its 

theoretical steady-state (SS) MSE given in (3.47), and to the performance of the NLMS 

algorithm in additive white Gaussian noise (AWGN) and additive correlated Gaussian 

noise (ACGN) environments for the noise cancelation setting shown in Fig. 3.4.  

The input signal is assumed to be a white Gaussian process with zero mean and 

unity variance. Simulations are implemented with a filter length 𝑁 =  16 taps and 300 

independent runs. For simplicity, the expectation operation in Eq. (3.25) can be replaced 

by, 

 

  𝑃𝐱(𝑛) = (1 − 𝛾)𝑃𝐱(𝑛 − 1) + 𝛾𝐱2(𝑛)                                  (5.1) 

 

Where 𝐱(𝑛) is the signal to be averaged and 𝛾 = 0.01. 
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5.1.1.1.1 Additive white Gaussian noise 

 

In the first experiment, the theoretical and experimental SS-MSE performances 

of the convex RI algorithm are compared to each other in AWGN environment. Also, 

the performance of the convex RI algorithm is compared to that of the convex NLMS 

algorithm in terms of the convergence rate and SS-MSE. The AWGN process is 

assumed with zero mean and variance 𝜎𝑣
2 = 2 × 10−4. Simulations were performed 

with the following parameter: For the convex RI: 𝛽1 = 0.994, μ1 = 0.001, 𝛽2 = 0.998 

and μ2 = 0.00003. For the convex NLMS: μ1 = 0.45 and μ2 =  0.1. Fig. 5.1 presents 

the performances of convex RI and NLMS algorithms. From the figure, it is noticed that 

the theoretical and experimental SS-MSEs of the convex RI algorithm are in match (-58 

dB). On the other hand, under them same conditions, the convex RI algorithm 

converges to the SS-MSE faster than the NLMS algorithm by approximately 350 

iteration with 5.6 dB lower MSE. Fig. 5.2 shows the evolution curves of 𝜆 for both 

algorithms. The evolution of 𝜆 in the case of the RI approaches its minimum value 

much faster than that of the NLMS algorithm, which confirms the results in Fig. 5.1. 

 

 

  

Figure 5.1. MSE combination curves of NLMS (MSE= -52.4 dB) and RI algorithms (MSE= -58 dB) in 

AWGN 
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Figure 5.2. Evolution curves of 𝜆 in AWGN with 30 dB SNR 

 

5.1.1.1.2 Additive correlated Gaussian noise 

 

To show the effect of the noise correlation on the performances (theoretical  and 

experimental) of the convex RI algorithm, the input signal is assumed to be corrupted 

by an ACGN. The ACGN is created the AR(1) process given as: (𝜂(𝑛) = 0.9𝜂(𝑛) +

𝜈(𝑛)), where 𝜈(𝑛) is an AWGN process with zero mean and variance 𝜎𝑣
2 = 2 × 10−4. 

The algorithms are simulated with the same parameters of the experiment in Section 

5.1.1.1.1.  

Fig. 5.3 shows that the theoretical and experimental SS errors of the convex RI 

are again in match. Also, the convex RI algorithm converges to 6.5 dB lower SS-MSE 

than the convex NLMS with almost 350 iteration faster convergence rate. Fig. 5.4 

proves convex RI faster than NLMS. 
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Figure 5.3. MSE combination curves of NLMS (MSE= -44.5 dB) and RI algorithms (MSE= -51 dB) in 

ACGN 

 

 

 

Figure 5.4. Evolution curves of  λ in ACGN with 30 dB SNR 
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5.1.1.2 Convex combination of RI and second-order RI algorithms 

 

Consider the combination of 2 adaptive filters in the system identification 

setting, as shown in Fig. 3.5. 

In this thesis, in order to test the performance of the proposed algorithm under 

different noise environments, we compare the performances of combined RI and NLMS 

algorithms in a system identification setting for both AWGN and ACGN environments. 

The received signal was generated using a fourth-order autoregressive (AR(4)) model:  

 

𝐱(𝑛) = 1.79𝐱(𝑛 − 1) − 1.85𝐱(𝑛 − 2) + 1.27𝐱(𝑛 − 3) − 0.41𝐱(𝑛 − 4) + 𝑣0(𝑛), (5.2) 

 

Where 𝑣0 is a white Gaussian signal with zero mean and variance 𝜎𝑣0
2 = 0.15. 

This variance value is selected in order to provide a unity power of the input signal 

𝐱(𝑛): 

In practice, the expectation operators in (3.25) can be replaced by (5.1). 

Simulations were done with the following parameters: the filter length 𝑁 = 16 

taps, and noise variance in both experiments is selected to maintain the signal-to-noise 

ratio (SNR) at 30 dB. All the experiments are averaged over 200 independent runs. The 

unknown system is assumed to be a low-pass filter with the impulse response depicted 

in Fig. 5.5. 
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Figure 5.5. Impulse response of the unknown system 

 

5.1.1.2.1 Additive white Gaussian noise 

 

In this experiment, the input signal 𝐱(𝑛) is assumed to be corrupted with 

AWGN. Simulations are done with the following parameters: for NLMS: 𝜇1 = 0.5 and 

𝜇2 = 0.1. For RI: 𝛽 = 0.991, 𝜇0 = 0.00146. For the second-order RI: 𝛽 = 0.997, 𝜇0 =

0.05. From Fig. 5.6, we observe a fast convergence at the beginning followed by a 

slower second convergence with lower MSE for both algorithms. The combination 

curve follows the fast converging and the low MSE curves in both cases. However, the 

RI algorithm converges faster than the NLMS algorithm (3700 iterations faster) with 8 

dB lower MSE. Fig. 5.7 shows the evolution curves of 𝜆 for both algorithms. The 

evolution of 𝜆 in the case of the RI approaches its minimum value much faster than that 

of the NLMS algorithm. This high performance of the convex RI is due to the use of the 

variable step size and the instantaneous estimates of the correlations which, in turn, 

enhance the performance of the proposed algorithm. 
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Figure 5.6. MSE combination curves of NLMS and RI algorithms in AWGN with 30 dB SNR 

 

 

 

Figure 5.7. Evolution curves of 𝜆 in AWGN with 30 dB SNR 
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In order to check the robustness of the proposed algorithm according to the 

change in the SNR values, Fig. 5.8 is provided. It is easy to note that the proposed 

algorithm keeps a fixed difference in its MSE value with respect to the convex NLMS 

algorithm. 

 

 

 

Figure 5.8. MSE for convex RI and NLMS algorithms with different SNR’s in AWGN 

 

5.1.1.2.2 Additive correlated Gaussian noise 

 

Now, in order to investigate the performance of the proposed algorithm due to 

the change in noise type, the input signal 𝐱(𝑛) is assumed to be corrupted with ACGN. 

The ACGN is created using 𝐴𝑅(1)(𝜂(𝑛) = 0.9𝜂(𝑛 − 1) + 𝑣(𝑛)), where 𝑣(𝑛) is an 

additive white Gaussian signal with zero mean and variance that maintains 30 dB SNR. 

Simulations are done with the following parameters: for NLMS: 𝜇1 = 0.5 and 𝜇2 = 0.1. 

For RI: 𝛽 = 0.99, 𝜇0 = 0.0015. For the second-order RI: 𝛽 = 0.997, 𝜇0 = 0.05. From 

Fig. 5.9, we observe a fast convergence at the beginning followed by a slower second 

convergence with lower MSE for both algorithms. The combination curve follows the 

fast converging and the low MSE curves in both cases. However, the RI algorithm 

converges faster than the NLMS algorithm (850 iterations faster) with 9.5 dB lower 
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MSE.  

From this, we note that the proposed algorithm performs better than the convex 

NLMS algorithm with a higher difference (9.5 dB) than the case of the AWGN process 

(8 dB difference). This improvement is due to the instantaneous estimate of the 

correlations.  

Fig. 5.10 shows the evolution curves of λ for both algorithms. The evolution of λ 

in the case of the RI approaches its minimum value faster than that of the NLMS 

algorithm, which confirms the results in Fig. 5.9. On the other hand, the evolution curve 

of 𝜆 in the case of the NLMS algorithm fails to reach that minimum value, which means 

that the NLMS algorithm fails to reach the optimum MSE. 

 

 

 

Figure 5.9. MSE combination curves of NLMS and RI algorithms in ACGN with 30 dB SNR 

 

To investigate the performance of the proposed algorithm due to the change in 

the SNR values, Fig. 5.11 is provided. We note that the proposed algorithm almost 

keeps a fixed difference in its MSE value with respect to the convex NLMS algorithm 
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Figure 5.10. Evolution curves of  λ in ACGN with 30 dB SNR 

 

 

 

 

Figure 5.11. MSE for convex RI and NLMS algorithms with different SNR’s in ACGN 
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5.1.2 2-D Convex combination of RI algorithms 

 

5.1.2.1 Convex of two RI algorithms 

 

In this experiment, an MRI image having breast cancer is tested. The input  

image is assumed to be normalized and of size 204 × 204 pixels with 150 graylevels, 

and corrupted by an AWGN with zero mean and variance normalized (𝜎2 = 0.3). For 

the fast algorithm: 𝛽 = 0.998 and μ0 = 0.0005. For the slow algorithm: 𝛽 = 0.992 and 

μ0 = 0.000001. 

Fig. 5.12 (a) shows the original image. Fig. 5.12 (b) shows the image corrupted 

by an AWGN. Fig. 5.12 (c) shows the image recovered by the fast RI algorithm. It is 

very easy to note the fast convergence of the algorithm (the top part of the image is 

relatively clear). Also, the high MSE can be figured out by the relative darkness of the 

image. In Fig. 5.12 (d), which shows the image recovered by the slow RI algorithm, the 

slow convergence and the lower MSE are figured out by the dark region at the top of the 

image and the relatively clearer recovered image, respectively. Fig. 5.12 (e), combines 

the better performances of Fig. 5.12 (c) and Fig. 5.12 (d). Hence, we can see in Fig. 5.12 

(e) the clear top of the image (fast convergence) and the clearer whole image (low 

MSE) very easily. 
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Figure 5.12. (a) Original image of breast cancer, (b) Original image corrupted by an AWGN, (c) 

Recovered image using the fast RI algorithm (PSNR = 30 dB), (d) Recovered image using the slow RI 

(PSNR= 33.5 dB), and (e) Recovered image using the convex combination of RI algorithms (PSNR=  

35.3 dB ) 

 

5.1.2.2 Convex RI and second-order RI algorithms 

 

The second experiment is done to test the performance of the proposed 2-D 

convex combination RI algorithm. The MRI input is of size 204 × 204 pixels with 150 

gray levels and corrupted by AWGN in zero mean and normalized variance (𝜎2 = 0.3). 

For the RI algorithm: 𝛽 = 0.991 and 𝜇0 = 0.0015. For the second-order RI: 𝛽 = 0.999 

and 𝜇0 = 0.00015. 

Fig. 5.13 (a) shows the original MRI of a brain and Fig. 5.13 (b) shows the 

image with AWGN. Fig. 5.13 (c) shows the recovered image using the RI algorithm. 

We notice that the figure is not well recovered; in other words, the MSE is relatively 

high. Fig. 5.13 (d) depicts the recovered image using the second-order RI algorithm. 

Even though the figure looks very clear, the top side of the figure is relatively dark due 

to the slow convergence behavior of the algorithm. Fig. 5.13 (e) combines the 

performance of both algorithms; i.e., the figure is as clear as that in Fig. 5.13 (d) with no 

dark region at the top side as of Fig. 5.13 (c). 

 

(a) (b)

(c) (d) (e)
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Figure 5.13. (a) Original image of brain, (b) noisy image corrupted by an AWGN, (c) recovered image by 

2-D RI, (d) recovered image by 2-D 2nd order RI, and (e) recovered image by 2-D convex combination of 

RI algorithms 

 

5.2 Back-propagation Algorithm with Variable Adaptive Momentum (BPVAM) 

Algorithm 

 

5.2.1 XOR problem 

 

XOR problem is one of the non-linear problems that can be perfectly solved 

using the BP algorithm. To minimize the cost of solving this problem and to improve 

the quality of the predicted output by the BP algorithm, several types of adaptive 

momentum techniques have been suggested in (Yu et al., 1993; Yu and Liu, 2002; Shao 

and Zheng, 2009). In this experiment, we demonstrate the robustness of our proposed 

algorithm in investigating the speed of convergence and achieving a lower 

misadjustment (steady-state) error compared to the conventional BP and PBPAM 

algorithms. The experiment has been performed using the following parameters: for 

neural network structure: one hidden layer with two neurons. For the BP algorithm: 𝜂 =

0.8, and 𝛼 = 0.0001. For the BPAM algorithm: 𝜂 = 0.8, and 𝛼 = 0.000007. For the 

proposed algorithm: 𝜂 = 0.8, 𝜆 = 0.0001,𝛽 = 0.999. 

(a) (b)

(c) (d) (e)
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From Fig. 5.14, we can see the effectiveness of the proposed algorithm 

outperforming the other algorithms by giving a higher prediction, and the output is 

closer to the real output than the other algorithms with a minimum misadjustment error. 

In Fig. 5.14, we can see the convergence curves behavior. The proposed algorithm 

outperforms the other algorithms in a faster convergence rate and a lower SSE.  

 

 

 

Figure 5.14. SSE results of BP, BPAM, and proposed algorithms for XOR problem 

 

The gradient errors of the proposed method are decrease quickly to optimize the 

weight coefficients that guess the correct class in a shorter time (around 1000 

iterations). The BPAM and BP algorithms need 1500 and 1800 iterations, respectively, 

to reach the optimum SSE. According to Table 5.1, the proposed algorithm needs less 

time to reach minimum error compared to the other algorithms. 

 

Table 5.1. Error convergence behavior in iterations for XOR problem 

 

Algorithm SSE for 1000 iterations SSE for 2000 iterations 

BP 

BPAM 

Proposed 

0.527 

0.1351 

0.00592 

0.05391 

0.04697 

3.273e-005 
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5.2.2 Comparison of performances 

 

The performance of the proposed method has been compared to other machine 

learning methods such as NB, KNN, LDA, SVM, BP, and BPAM algorithms. Table 5.2 

describes the properties of each type of datasets used in this study. These datasets are 

summarized according to the number of samples, attributes, and classes. All the datasets 

has numeric features and no missing values. Each dataset has been normalized between 

[0,1], and 70% of each dataset was used as a training set, and 30% as testing. Also 10 

fold cross validation applied for performance measurement. Normal test results and the 

cross validation results sperated by coma and cross validation results marked by star. As 

it seen in the results, cross validation have worse classification performance than normal 

test when %70 of data selected as train set and the rest for test set. 𝜂, 𝛼, 𝜆 and 𝛽 values 

are determined according to experiments that presented in Appendix 1 section. 

 

Table 5.2. The properties of used datasets 

 

Data set # instances # attributes # classes 

Breast Cancer 

Heart 

Heart-Statlog 

Iris 

Lung-Cancer 

MAGIC Gamma Telescope 

Wine 

198 

297 

270 

150 

32 

19020 

178 

32 

13 

13 

4 

56 

10 

13 

2 

5 

2 

3 

3 

2 

3 

 

5.2.2.1 Breast cancer dataset 

 

This dataset consists of 198 instances, 32 attributes, and 2 classes. The structure 

of MLP consists of 32 neurons for the input layer, 4 neurons for one hidden layer, one 

neuron for the output layer. The performances of the proposed BPVAM algorithm and 

the other supervised learning algorithms were compared using the breast cancer dataset. 

In this experiment, according to the accuracies results of all algorithms as seen in Table 

5.3, BPVAM, SVM, and BP algorithms are slightly better than the other supervised 

learning algorithms.  

According to SSE curves as seen in Fig. 5.15, the BPVAM algorithm is slightly 

better than both BP and BPAM algorithms. For each MLP structure, the following 

parameters were used; for the BP algorithm: 𝜂 = 0.9, and 𝛼 = 0.01; for the BPAM 
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algorithm: 𝜂 = 0.9, and 𝛼 = 0.01; and for the proposed BPVAM algorithm: 𝜂 = 0.9, 

𝜆 = 0.0085, 𝛽 = 0.992. 

 

Table 5.3.  Comparison of accuracies by using different algorithms for breast cancer dataset 

 

Method Classification 

Accuracy (%) 

K-NN (Yang et al., 2010) 

NB (Kotsiantis and Pintelas, 2004) 

SVM (Yang et al., 2010) 

LDA (Yang et al., 2010) 

BP (Kotsiantis and Pintelas, 2004) 

BP (our result)  

BPAM  

BPVAM (Proposed) 

76.80 

74.58 

77.80 

71.70 

76.13 

77.59, 76.44* 

75.86 

77.59, 76.44* 

 

Table 5.4. Error convergence behavior in iterations for breast cancer dataset 

 

Algorithm 
SSE for 460 

iterations 

SSE for 1000 

iterations 

CPU time 

(seconds) 
Sensitivity Specificity 

BP 

BPAM 

BPVAM (Proposed) 

5.721  

5.708  

5.452 

4.707, 6.295* 

4.718 

4.678, 5.485* 

19.1569 

158.3878 

31.1534 

90.24 

90.00 

90.24 

47.05 

44.44 

47.05 

 

 
 

Figure 5.15. SSE results of BP, BPAM, and proposed algorithms for breast cancer dataset 
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The BPVAM algorithm provides the lowest SSE compared to the conventional 

BP and BPAM algorithms by 460 and 1000 iterations, respectively. The BPVAM does 

not require more processing time to be implemented than the BPAM algorithm, and 

gives the correct prediction within shorter time as seen Table 5.4.  

 

5.2.2.2 Heart dataset 

 

The heart dataset has been widely used in machine learning techniques and many 

methods has been modified to improve the data accuracy. This dataset consists of 297 

instances, 13 attributes, and 5 classes. So the structure of the MLP consists of 13 

neurons for the input layer, 13 neurons for one hidden layer, one neuron for the output 

layer. For each MLP structure, the following parameters were used; for the BP 

algorithm: 𝜂 = 0.03, and 𝛼 = 0.01; for the BPAM algorithm: 𝜂 = 0.03, and 𝛼 = 0.9; 

and for the proposed BPVAM algorithm: 𝜂 = 0.03, 𝜆 = 0.022, 𝛽 = 0.995. As seen in 

Table 5.5, the performances of testing results for the BPVAM, BPAM, and conventional 

BP algorithms are almost the same but better than the other supervised learning 

algorithms.  

 

Table 5.5. Comparison of accuracies by using different algorithms for heart dataset 

 

 Method Classification 

Accuracy (%) 

K-NN (Yang and Kecman, 2008; Yang et al., 2010) 

NB (Saetern and Eiamkanitchat, 2014) 

SVM (Yang and Kecman, 2008; Yang et al., 2010) 

LDA (Yang and Kecman, 2008; Yang et al., 2010) 

BP (our result)  

BPAM  

BPVAM (Proposed)  

59.90, 58.00 

55.77 

58.60, 56.80 

53.90, 53.70 

61.96, 54.80* 

61.96 

61.96, 54.80* 

 

Table 5.6. Error convergence behaviourin iterations for heart dataset 

 

Algorithm 
SSE for 25  

iterations 

SSE for 1000 

iterations 
CPU time (seconds) 

BP 

BPAM 

BPVAM (Proposed) 

10.3  

9.93  

6.69  

3.969, 5.346* 

3.958 

3.961, 5.31* 

40.6071 

203.0041 

47.6271 

 

According to SSE curves, as seen in Fig. 5.16, the BPVAM algorithm is faster 

than both the BP and BPAM algorithms. As seen in Table 5.6, BPVAM is 2 times better 

than both the conventional BP and BPAM according to SSE by 25 iterations. Regarding 
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the CPU processing time, the proposed BPVAM algorithm is three times faster than the 

BPAM algorithm, but it takes a little extra time than the conventional BP algorithm. 

 

 
 

Figure 5.16. SSE results of BP, BPAM, and proposed algorithms for heart dataset 

 

5.2.2.3 Heart-statlog dataset 

 

This dataset consists of 270 instances, 13 attributes, and 2 classes. Thus, the 

structure of MLP consist 240 of 13 neurons for the input layer, 13 neurons for one 

hidden layer, one neuron for the output layer. For each MLP structure, the following 

parameters were used; for the BP algorithm: 𝜂 = 0.1, and 𝛼 = 0.05; for the BPAM 

algorithm: 𝜂 = 0.1, and 𝛼 = 0.00027; and for the proposed BPVAM algorithm: 𝜂 =

0.1, 𝜆 = 0.025, 𝛽 = 0.996. Table 5.7 shows that the accuracies of testing results for 

the conventional BP and the proposed BPVAM algorithm (88.75%) is better than those 

of the BPAM and the other supervised learning algorithms. 

 In Fig. 5.17, we can see that the BPVAM algorithm is faster than both the BP 

and BPAM algorithms. According to SSE curves as seen in Table 5.8, all algorithms 

have shown approximately the same performance. Regarding CPU processing time, the 
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proposed BPVAM algorithm is nearly the same as the conventional BP algorithm and 

three times faster than the BPAM algorithm. 

 

Table 5.7. Comparison of accuracies by using different algorithms for heart-statlog dataset 

 

 Method Classification 

Accuracy (%) 

K-NN (Mendialdua et al., 2012) 

NB (Mendialdua et al., 2012) 

SVM (Wang et al., 2014; Wang et al., 2015) 

LDA (Mendialdua et al., 2012) 

BP (Wang et al., 2014; Wang et al., 2015) 

BP (our result)  

BPAM  

BPVAM (Proposed) 

86.66 

83.71 

81.48, 81.48 

85.19 

79.18, 77.41 

88.75, 83.36* 

88.75 

88.75, 83.36* 

 

Table 5.8. Error convergence behaviour in iterations for heart-statlog dataset 

 

Algorithm 
SSE for 20  

iterations 

SSE for 400 

iterations 

CPU time 

(seconds) 
Sensitivity Specificity 

BP 

BPAM 

BPVAM (Proposed) 

0.141  

0.139  

0.122  

0.111, 0.106* 

0.11 

0.11, 0.105* 

19.1257 

94.0686 

22.7605 

89.36 

89.36 

89.36 

87.87 

87.87 

87.87 

 

 

 

Figure 5.17. SSE results of BP, BPAM, and proposed algorithms for heart-statlog dataset 
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5.2.2.4 Iris dataset 

 

This dataset consists of 150 instances, 4 attributes, and 3 classes. Thus, the 

structure of MLP consists of 4 neurons for the input layer, 4 neurons for one hidden 

layer, 3 neurons for the output layer. For each MLP structure, the following parameters 

were used; for the BP algorithm:𝜂 = 0.05, and 𝛼 = 0.001; for the BPAM algorithm: 

𝜂 = 0.05, and 𝛼 = 0.0003; and for the proposed BPVAM algorithm: 𝜂 = 0.05, 𝜆 =

0.02, 𝛽 = 0.998. As seen in Table 5.9, the accuracies of testing results for the 

conventional BP, BPAM, and the proposed BPVAM is 100 % which are better than the 

other supervised learning algorithms used previously in literature.  

 

Table 5.9. Comparison of accuracies by using different algorithms for iris dataset 

 

 Method Classification 

Accuracy (%) 

K-NN (Yang and Kecman, 2008; Yang et al., 2010) 

NB (Wickramasinghe et al., 2005; Huang et al., 2011) 

SVM (Wang et al., 2014; Wang et al., 2015; Yang and 

Kecman, 2008; Wickramasinghe et al., 2005) 

LDA (Yang and Kecman, 2008; Yang et al., 2010) 

BP (Wang et al., 2014; Wang et al., 2015) 

BP (our result)  

BPAM 

BPVAM (Proposed) 

96.70, 94.90 

93.33, 96.40 

96.00, 96.00, 

98.00, 93.33 

98.00, 97.90 

96.60, 97.33 

100, 93.33* 

100 

100, 94.00* 

 

Table 5.10. Error convergence behaviour in iterations for iris dataset 

 

Algorithm 
SSE for 80  

iterations 

SSE for 2000 

iterations 
CPU time (seconds) 

BP 

BPAM 

BPVAM (Proposed) 

2.24  

1.99  

0.2534  

0.184, 0.188* 

0.18 

0.18, 0.185* 

28.4858 

68.8120 

37.8458 

  

According to the SSE curves see Fig. 5.18, the BPVAM algorithm has better 

excess steady-state curve and shorter time (about 80 iterations) than the other 

algorithms. Regarding the CPU processing time, the conventional BP algorithm is faster 

than both the BPAM and the proposed BPVAM algorithms. But the BPVAM algorithm 

is faster than the BPAM algorithm as shown in Table 5.10. 
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Figure 5.18. SSE results of BP, BPAM, and proposed algorithms for iris dataset 

 

5.2.2.5 Lung-cancer dataset 

 

In literature, there are many studies on the lung-cancer dataset. But researchers 

have not obtained high accuracy yet by using this dataset. This dataset consists of 32 

instances, 56 attributes, and 3 classes. Thus, the structure of MLP consists of 56 neurons 

for the input layer, 20 neurons for one hidden layer, and one neuron for the output layer. 

For each MLP structure, the following parameters were used; for the BP algorithm: 𝜂 =

0.1, and 𝛼 = 0.05; for the BPAM algorithm: 𝜂 = 0.1, and 𝛼 = 0.00001; and for the 

proposed BPVAM algorithm: 𝜂 = 0.1, 𝜆 = 0.005, 𝛽 = 0.998. 

The proposed BPVAM algorithm is compared to the BP and BPAM algorithms, 

and other supervised learning algorithms in literature. The testing results show that the 

proposed algorithm with the BP and BPAM algorithms have the highest accuracy rate 

compared to the other methods, as illustrated in Table 5.11.  

The convergence speed of the proposed algorithm clearly shows the efficiency 

of the proposed momentum in enabling the proposed algorithm to outperform the 

conventional BP and BPAM algorithms as seen in Fig. 5.19. The proposed algorithm 

converges to the lowest SSE in almost 100 iterations. On the other hand, the other 
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algorithms need more than 500 iterations to reach the optimum SSE. Moreover, as seen 

in Table 5.12, the CPU processing time for the conventional BP algorithm is less than 

both the BPAM and the proposed BPVAM algorithms. But the BPVAM algorithm 

requires approximately 8 times less processing time than the BPAM algorithm. 

 

Table 5.11. Comparison of accuracies by using different algorithms for lung-cancer dataset 

 

 Method Classification 

Accuracy (%) 

NB (Saetern and Eiamkanitchat, 2014) 

SVM (Wang et al., 2014; Wang et al., 2015) 

BP (Wang et al., 2014; Wang et al., 2015) 

BP (our result)  

BPAM 

BPVAM (Proposed) 

59.37 

50.00, 50.00 

44.37, 43.75 

60.00, 65.00* 

60.00 

60.00, 65.00* 

 

Table 5.12. Error convergence behaviour in iterations for lung-cancer dataset 

 

Algorithm 
SSE for 170  

iterations 

SSE for 1000 

iterations 
CPU time (seconds) 

BP 

BPAM 

BPVAM (Proposed) 

0.561  

0.624  

0.183  

0.0063, 0.0072* 

0.006 

0.0054, 0.0065* 

13.3849 

132.4760 

18.3145 

 

 

 

Figure 5.19. SSE results of BP, BPAM, and proposed algorithms for lung-cancer dataset 
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5.2.2.6 MAGIC Gamma telescope dataset 

 

Our above simulations ensured that the proposed BPVAM has high 

improvement compared to the BP and BPAM algorithms, and other supervised learning 

algorithms. To compare its performance to the other algorithms in big size datasets, we 

selected the MAGIC Gamma Telescope dataset. This dataset consists of 19020 

instances, 10 attributes, and 2 classes. Thus, the structure of MLP consists of 10 neurons 

for the input layer, 5 neurons for one hidden layer, and one neuron for the output layer. 

For each MLP structure, the following parameters were used; for the BP algorithm:𝜂 =

0.7, and 𝛼 = 0.001; for the BPAM algorithm: 𝜂 = 0.7, and 𝛼 = 0.06; and for the 

proposed BPVAM algorithm: 𝜂 = 0.7, 𝜆 = 0.025, 𝛽 = 0.99. 

Table 5.13 shows that the accuracy of the testing results for the proposed 

BPVAM algorithm (85.80%) is better than those of the conventional BP, BPAM and the 

other supervised learning algorithms.  

 

Table 5.13. Comparison of accuracies by using different algorithms for MAGIC gamma telescope dataset 

 

 Method Classification 

Accuracy (%) 

K-NN (Huang et al., 2011; Mendialdua et al., 2012; 

Barnabe-Lortie et al., 2015) 

NB (Huang et al., 2011) 

SVM (Huang et al., 2011; Barnabe-Lortie et al., 2015) 

LDA (Huang et al., 2011) 

BP (our result)  

BPAM  

BPVAM (Proposed) 

76.58, 82.57, 

77.89  

72.71  

78.91, 78.98  

78.15  

85.00 

85.50 

85.80 

 

Table 5.14. Error Convergence Behaviour in Iterations for MAGIC gamma telescope dataset 

 

Algorithm 
SSE for 200  

iterations 

SSE for 1000 

iterations 

CPU time 

(seconds) 
Sensitivity Specificity 

BP 

BPAM 

BPVAM (Proposed) 

1.282  

1.292  

1.207 

1.127  

1.125  

1.113  

1.5907e+003  

5.2759e+003  

1.7688e+003 

88.68 

87.99 

88.12 

78.32 

80.62 

80.92 

 

In Fig. 5.20, we can see that the BPVAM algorithm is faster than the 

conventional BP and BPAM algorithms. According to SSE as seen in Table 5.14, the 

proposed BPVAM algorithm outperforms the other algorithms, where it keeps lower 

SSE until the end of the process. Regarding CPU processing time, the proposed 

BPVAM algorithm is nearly the same as the conventional BP algorithm and three times 

faster than the BPAM algorithm. 
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Figure 5.20. SSE results of BP, BPAM, and proposed algorithms for MAGIC gamma telescope dataset 

 

5.2.2.7 Wine dataset 

 

This well-known dataset recorded by UCI repository consists of 178 instances, 

13 attributes, and 3 classes. Thus, the structure of MLP consists of 13 neurons for the 

input layer, 7 neurons for one hidden layer, and one neuron for the output layer. For 

each MLP structure, the following parameters are used; for the BP algorithm: 𝜂 = 0.9, 

and 𝛼 = 0.01; for the BPAM algorithm: 𝜂 = 0.9, and 𝛼 = 0.00001; and for the 

proposed BPVAM algorithm: 𝜂 = 0.9, 𝜆 = 0.0002, 𝛽 = 0.9998. As seen in Table 

5.15, the proposed algorithm provides the highest accuracy (100 %) among the other 

algorithms. 

According to SSE results as seen in Fig. 5.21, the proposed BPVAM algorithm 

provides better performance than the conventional BP and the BPAM algorithms. As 

seen in Table 5.16, the convergence behavior of the proposed algorithm is close to that 

of conventional BP algorithm, but approximately it is 3 times faster than the BPAM 

algorithm. 
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Table 5.15. Comparison of accuracies by using different algorithms for wine dataset 

 

 Method Classification 

Accuracy (%) 

K-NN (Yang and Kecman, 2008; Yang et al., 2010) 

NB (Wickramasinghe et al., 2005; Macskassy, 2011) 

SVM (Wang et al., 2014; Wang et al., 2015; Yang and Kecman, 

2008; Wickramasinghe et al., 2005) 

LDA (Yang and Kecman, 2008; Yang et al., 2010) 

BP (Wang et al., 2014; Wang et al., 2015; Sarangi et al., 2013) 

BP (our result)  

BPAM  

BPVAM (Proposed) 

97.80, 96.10 

90.57, 96.50 

95.31, 95.51, 98.90, 

92.45 

98.90, 98.50 

26.29, 26.97, 95.39 

98.11, 97.71* 

98.11 

100, 98.33* 

  

Table 5.16. Error Convergence Behaviour in Iterations for wine dataset 

 

Algorithm 
SSE for 200  

iterations 

SSE for 500 

iterations 
CPU time (seconds) 

BP 

BPAM 

BPVAM (Proposed) 

0.81  

0.73  

0.54  

0.186, 0.144* 

0.135  

0.133, 0.131* 

11.1229 

40.9503 

12.7453 

 

 

 

Figure 5.21. SSE results of BP, BPAM, and proposed algorithms for wine dataset 
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5.3 Proposed SOM Algorithm 

 

Extensive experiments were conducted in this section to investigate the 

performance of the proposed SOM using a different datasets and scenarios. It was 

compared against the conventional SOM, GF-SOM, and PLSOM algorithms. 

Comparisons were done using accuracy, number of iteration, quantization error (QE), 

topology error (TE), and CPU time consumption. QE values were recorded over 50 

iterations in all experiments for all algorithms and all datasets. Table 5.17, shows the 

detailed description of the used datasets in this study such as the number of samples, 

attributes, and classes. These datasets were collected from UCI and KEEL repository. 

All datasets values were normalized using Min-Max normalization between 0 and 1. All 

the datasets divided in to 70% training set and 30% testing set. Moreover, for all 

algorithms, experiments were conducted separately to select their optimal parameters. 

The GF-SOM parameters of (Wang et al., 2015), are lr: 0.3, map height: 6, map width: 

8, map neighborhood function: Gaussian, and initial neighborhood size: 8.  

 

𝑄𝐸 =
∑ 𝑑(‖𝐰𝑐(𝑛) − 𝐱(𝑛)‖)𝑛

𝑖=1

𝑛
                                      (5.3) 

 

where QE is the average distance between the inputs and winner neuron (BMU).  

𝑇𝐸 =
∑ 𝑢(𝐱𝑖)

𝑛
𝑖=1

𝑛
                                                               (5.4) 

where 𝑢(𝐱𝑖) is 1 if the current and next best matching units (BMUs) are not 

adjacent neurons, otherwise 𝑢(𝐱𝑖) is 0. 

Values of 𝛿𝛼, 𝛿𝜎, 𝛽  and 𝜆 are determined according to experiments that 

presented in Appendix 2 section. 

 

Table 5.17. Summary of used datasets from UCI repository 

 

Data set # instances # attributes # classes 

Appendicitis 

Balance 

Wisconsin Breast 

Dermatology 

Ionosphere 

Iris 

Sonar 

Wine 

106 

625 

699 

366 

351 

150 

208 

178 

7 

4 

9 

33 

34 

4 

60 

13 

2 

3 

2 

6 

2 

3 

2 

3 
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5.3.1 Appendicitis dataset 

 

To evaluate the performance of the proposed SOM against other algorithms, we 

used Appendicitis dataset. The dataset consist of 106 instances, each with 7 attributes 

and 2 classes (patient has appendicitis (class label 1) or not (class label 0)). The 

structure of the used Kohonen maps consists of 7 neurons for the input layer with 2-D 

grid of 7×2 neurons in competitive layer. In this experiment, the used algorithms were 

implemented under the following parameters: for the conventional SOM algorithm, 

𝛿𝛼 = 0.55, for GF-SOM, 𝛿𝛼 = 0.5, and 𝛿𝜎 = 0.001 , for the PLSOM algorithm, 𝛽 =

1.14, and for the proposed SOM, 𝜆 = 0.00062, and 𝛽 = 0.994.   

Table 5.18 shows that the classification accuracy of the PLSOM and proposed 

SOM algorithms are much better than other algorithms including algorithms in (Shao 

and Zheng, 2009; Shao and Zheng, 2011). However, the proposed SOM obtained that 

accuracy with only 20 iterations while PLSOM needed 50 iteration to reach that 

accuracy.   

Furthermore, comparing the QE of all algorithms shows that the QE of proposed 

SOM is much less than the others.  It also converges faster than the other algorithms as 

shown in Fig. 5.22. Regarding topology preserving, Fig. 5.23, shows that the proposed 

SOM is efficient in preserving the topology of the map.  The preservation of the map 

started early in iterations 3, while PLSOM started at 7th iteration. Moreover, the 

proposed SOM algorithm has CPU processing time close to the conventional SOM 

(~1.5 msec/itr), which is lower than that of the PLSOM algorithm (~20 msec/itr). 

 

Table 5.18. Performances comparison of the conventional SOM, GF-SOM, PLSOM and proposed 

algorithms for appendicitis dataset 

 

Appendicitis Dataset 
Accuracy             

(%) 

# 

iteration 
QE 

CPU time 

(msec/itr) 

GF-SOM (Wang et al., 2014; Wang et al., 2015) 

GF-SOM (our) 

conventional SOM  

PLSOM  

Proposed SOM 

73.87, 75.47 

81.25 

81.25 

90.63 

90.63 

1000 

50 

50 

50 

20 

– 

0.1443 

0.1441 

0.1714 

0.1408 

– 

56.16 

52.1 

73.01 

53.67 
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Figure 5.22. QE results of the conventional SOM, GF-SOM, PLSOM and proposed SOM algorithms for 

Appendicitis dataset 

 

 

 

Figure 5.23. TE results of the conventional SOM, GF-SOM, PLSOM and proposed SOM algorithms for 

Appendicitis dataset 
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5.3.2 Balance dataset 

 

In the 2nd experiment the performances of all algorithms are compared using 

Balance dataset. The Balance dataset consists of 625 instances with 4 attributes and 3 

classes (left, balanced and right). The structure of Kohonen maps of this dataset consists 

of 4 neurons for the input layer with 2-D grid of 4×3 neurons in competitive layer. In 

this experiment the used algorithms were implemented under the following parameters: 

for the conventional SOM algorithm, 𝛿𝛼 = 0.15, for GF-SOM, 𝛿𝛼 =  0.8, and 𝛿𝜎 =

0.0085, for the PLSOM algorithm, 𝛽 = 2, and for the proposed SOM, 𝜆 = 0.003   and 

𝛽 = 0.99.   

Table 5.19 shows that the classification accuracy of the proposed SOM 

algorithm is much better than other conventional SOM and PLSOM algorithms and 

comparable to performances of algorithms in (Wang et al., 2014; Wang et al., 2015). 

Also, algorithms needed from 45 to 50 iterations reach their best accuracies.   

Furthermore, comparing the QE of all algorithms shows that the proposed SOM 

reaches better QE (9th iteration) but it fails in maintaining this low error and starts to get 

higher QE with more iterations. The other algorithms got higher QE but converged after 

nearly 10 iterations as shown in Fig. 5.24. Regarding topology preserving, Fig. 5.25 

shows that the proposed SOM same as other algorithms suffered from fluctuations 

before it reached its steady state after 14 iterations. PLSOM, on the other hand, reached 

it at his 8th iteration. This can be justified by the way the algorithms are clustering the 

given data. While some algorithms keep searching for new clusters at each iteration, 

other algorithms are fixing the clusters at first iterations. Algorithms which keep 

searching for more clusters will show some fluctuations on TE before reaching zero TE 

as shown in Fig. 5.25. This on the other hand helps to improve accuracy of that 

algorithm.  Moreover, the proposed SOM algorithm has CPU processing time very close 

to the conventional SOM (~0.30 msec/itr), which is much lower than that of the 

PLSOM algorithm (~100 msec/itr). 
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Table 5.19. Performance comparison of the conventional SOM, GF-SOM, PLSOM and proposed SOM 

algorithms for Balance dataset 

 

Balance Dataset 
Accuracy             

(%) 

# 

iteration 
QE 

CPU time 

(msec/itr) 

GF-SOM (Wang et al., 2014; Wang et al., 2015) 

GF-SOM (our) 

conventional SOM  

PLSOM  

Proposed SOM 

73.04, 73.44 

63.10 

61.50 

63.10 

75.94 

1000 

50 

50 

50 

45 

– 

0.239 

0.242 

0.227 

0.233 

– 

59.952 

57.72 

158.5 

58.03 

 

 

 

Figure 5.24. QE results of the conventional SOM, GF-SOM, PLSOM and proposed SOM algorithms for 

Balance dataset 
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Figure 5.25. TE results of the conventional SOM, GF-SOM, PLSOM and proposed SOM algorithms for 

Balance dataset 

 

5.3.3 Wisconsin breast dataset 

 

This experiment uses one of the most popular datasets in the UCI repository 

called Wisconsin Breast dataset. The dataset consists of 699 instances, 9 attributes and 2 

classes (2 for benign, 4 for malignant). The structure of the used Kohonen maps consists 

of 8 neurons for the input layer with 2-D grid of 8×2 neurons in competitive layer.  

The basic parameters used in this experiment are: for the conventional SOM 

algorithm: 𝛿𝛼 = 0.3, for GF-SOM: 𝛿𝛼 = 0.1, and 𝛿𝜎 = 1.5, for the PLSOM algorithm: 

𝛽 = 0.6, and for the proposed SOM: 𝜆 = 0.0015, and 𝛽 = 0.95. According to the 

classification accuracy, the proposed SOM obtains the highest accuracy (100%) as 

given in Table 5.20. Proposed SOM needed only 20 iterations to reach is accuracy. The 

PLSOM accuracy is the lowest among compared algorithms (~3% lower). Even though 

all algorithms converged nearly after same number of iterations, the proposed SOM had 

the minimum QE among those algorithms as shown in Fig 5.26. 

Fig. 5.27 shows that when other algorithms had fluctuations before reaching 

steady state, proposed SOM reaches the steady state earlier for topology error  (TE=0) 
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after 3 iterations. For CPU processing time, algorithms have close processing times with 

PLSOM recording the highest processing time per iteration (~ 5 msec/itr higher than the 

proposed SOM). 

 

Table 5.20. Performance comparison of the conventional SOM, GF-SOM, PLSOM and proposed SOM 

algorithms for Wisconsin Breast dataset 

 

Wisconsin Breast Dataset 
Accuracy             

(%) 

# 

iteration 
QE 

CPU time 

(msec/itr) 

GF-SOM (Wang et al., 2014; Wang et al., 2015) 

GF-SOM (our) 

conventional SOM  

PLSOM  

Proposed SOM 

95.49, 95.99 

99.04 

99.04 

96.65 

100 

1000 

50 

50 

50 

20 

– 

0.148 

0.148 

0.18 

0.147 

– 

42.744 

39.312 

44.93 

39,624 

 

 

 

Figure 5.26. QE results of the conventional SOM, GF-SOM, PLSOM and proposed SOM algorithms for 

Wisconsin Breast dataset 
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Figure 5.27. TE results of the conventional SOM, GF-SOM, PLSOM and proposed SOM algorithms for 

Wisconsin Breast dataset 

 

5.3.4 Dermatology dataset 

 

The fourth experiment uses Dermatology dataset from UCI repository. Dataset 

consists of 366 instances, 33 attributes and 6 classes (psoriasis, seboreic dermatitis, 

lichen planus, pityriasisrosea, cronic dermatitis and pityriasisrubrapilaris). The structure 

of all the used Kohonen maps consists of 33 neurons for the input layer and 2-D grid 

size is 33×6 neurons in competitive layer. In this experiment the used algorithms were 

implemented under the following parameters: for the conventional SOM algorithm, 

𝛿𝛼 = 0.4, for GF-SOM, 𝛿𝛼 = 0.4, and 𝛿𝜎 = 0.02, for the PLSOM algorithm, 𝛽 = 13.5, 

and for the proposed SOM, 𝜆 = 0.005, and 𝛽 = 0.99. 

Table 5.21 shows performance comparison among the different algorithms. 

Conventional SOM, PLSOM and proposed SOM got the same accuracy (70.91%) with 

proposed SOM reaching this value using only 10 iterations. Again PLSOM recorded the 

highest CPU time per iteration among other algorithms. Even though the other 

algorithms converged in the first 6 iterations while proposed SOM converged after 18 

iterations, the proposed SOM recorded better QE than all other algorithms as shown in 
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Fig 5.28. Fig 5.29 shows that the proposed SOM reached zero TE after 3 iteration which 

is faster than conventional SOM and GF-SOM (5 iterations). 

 

Table 5.21. Performance comparison of the conventional SOM, GF-SOM, PLSOM and proposed SOM 

algorithms for Dermatology dataset 

 

Dermatology Dataset 
Accuracy             

(%) 

# 

iteration 
QE 

CPU time 

(msec/itr) 

GF-SOM (Wang et al., 2014; Wang et al., 2015) 

GF-SOM (our) 

conventional SOM  

PLSOM  

Proposed SOM 

31.42, 31.42 

68.18 

70.91 

70.91 

70.91 

1000 

50 

50 

50 

10 

– 

0.177 

0.178 

0.175 

0.173 

– 

48.05 

43.99 

56.47 

44.62 

 

 

 

Figure 5.28. QE results of the conventional SOM, GF-SOM, PLSOM and proposed SOM algorithms for 

Dermatology dataset 
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Figure 5.29. TE results of the conventional SOM, GF-SOM, PLSOM and proposed SOM algorithms for 

Dermatology dataset 

 

5.3.5 Ionosphere dataset 

 

Ionosphere dataset UCI repository has been widely used by many researchers for 

classification purposes. Dataset had 2 classes (good and bad) with 351 instances and 34 

attributes. In this experiment, the proposed SOM performance is compared with the 

other algorithms based on accuracy, number of iterations, QE, TE and CPU time. The 

structure of Kohonen maps of this dataset consists of 34 neurons for the input layer with 

2-D grid of 34×2 neurons in competitive layer. The used algorithms were implemented 

under the following parameters, for the conventional SOM algorithm: 𝛿𝛼 = 0.4, for GF-

SOM: 𝛿𝛼 = 0.2, and 𝛿𝜎 = 5, for the PLSOM algorithm: 𝛽 = 1.9, and for the proposed 

SOM: 𝜆 = 0.0025, and 𝛽 = 0.98. 

In Table 5.22, the proposed SOM is providing the best classification result over 

other algorithms with 80.56%. The proposed learning rate is clearly showing that the 

weight vector update equation has achieved the optimum weights and obtained highest 

accuracy with lowest quantization error (QE = 0.099).   
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Even though the proposed algorithm has converged slower than the other 

algorithms, it still recorded the best QE as in shown Fig. 5.30. In Fig. 5.31, the proposed 

SOM outperforms conventional SOM, GF-SOM and PLSOM by reaching zero TE in 

one less iteration. For CPU processing time, PLSOM algorithm consumed almost 

double of the time required per iteration compared to other algorithms. 

 

Table 5.22. Performance comparison of the conventional SOM, GF-SOM, PLSOM and proposed SOM 

algorithms for Ionosphere dataset 

 

Ionosphere Dataset 
Accuracy             

(%) 

# 

iteration 
QE 

CPU time 

(msec/itr) 

GF-SOM (Wang et al., 2014; Wang et al., 2015) 

GF-SOM (our) 

conventional SOM  

PLSOM  

Proposed SOM 

79.37, 80.06 

68.52 

68.52 

68.52 

80.56 

1000 

10 

20 

10 

10 

– 

0.1 

0.1 

0.116 

0.099 

– 

57.41 

54.29 

109.2 

56.16 

 

 

 

Figure 5.30. QE results of the conventional SOM, GF-SOM, PLSOM and proposed SOM algorithms for 

Ionosphere dataset 
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Figure 5.31. TE results of the conventional SOM, GF-SOM, PLSOM and proposed SOM algorithms for 

Ionosphere dataset 

 

5.3.6 Iris dataset 

 

Another dataset we used to examine the efficiency and investigate the 

performance of the proposed SOM algorithm against other algorithms is Iris dataset. Iris 

dataset consists of 150 instances, 4 attributes and 3 classes (iris setosa, iris versicolour 

and iris virginica). The structure of the used Kohonen maps consists of 4 neurons for the 

input layer with 2-D grid of 4×3 neurons in competitive layer.  

The basic parameters used in this experiment are: parameters settings for the 

conventional SOM algorithm: 𝛿𝛼 = 0.9, for GF-SOM: 𝛿𝛼 = 0.4, and 𝛿𝜎 = 0.01, for the 

PLSOM algorithm: 𝛽 = 3.5, and for the proposed SOM: 𝜆 = 0.005, and 𝛽 = 0.98. The 

comparative results are summarized in Table 5.23, where the GF-SOM, PLSOM and 

proposed SOM algorithms has obtained highest accuracy with 100%. Algorithms had 

very close QE values (see Fig. 5.32) with less CPU time requirement for the proposed 

SOM (40.25 msec/itr). 
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The topology preservation of the proposed SOM is better than other algorithms 

by obtained the optimum map early in the iterations 3. The PLSOM it suffered from 

instability and needed more time to maintain the topology as shown in Fig. 5.33.  

 

Table 5.23. Performance comparison of the conventional SOM, GF-SOM, PLSOM and proposed SOM 

algorithms for Iris dataset 

 

Iris Dataset 
Accuracy             

(%) 

# 

iteration 
QE 

CPU time 

(msec/itr) 

GF-SOM (Wang et al., 2014; Wang et al., 2015) 

GF-SOM (our) 

conventional SOM  

PLSOM  

Proposed SOM 

90.66, 90.00 

100 

93.33 

100 

100 

1000 

7 

10 

5 

5 

– 

0.265 

0.265 

0.265 

0.264 

– 

46.49 

39.31 

74.88 

40.25 

 

 

 

Figure 5.32. QE results of the conventional SOM, GF-SOM, PLSOM and proposed SOM algorithms for 

Iris dataset 
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Figure 5.33. TE results of the conventional SOM, GF-SOM, PLSOM and proposed SOM algorithms for 

Iris dataset 

 

5.3.7 Sonar dataset 

 

The seventh experiment for testing the proposed SOM algorithm was conducted 

using Sonar dataset. Dataset consists of 208 instances, 60 attributes and 2 classes (rock 

and mine). The structure of Kohonen maps of this dataset consists of 60 neurons for the 

input layer with 2-D grid of 60×2 neurons in competitive layer. In this experiment the 

used algorithms were implemented under the following parameters: for the conventional 

SOM algorithm, 𝛿𝛼 = 0.7, for GF-SOM, 𝛿𝛼 = 0.28, and 𝛿𝜎 = 0.01, for the PLSOM 

algorithm, 𝛽 = 0.4, and for the proposed SOM, 𝜆 = 0.0000095, and 𝛽 = 0.999. 

Table 5.24, shows the proposed SOM algorithm higher performance than all 

other with accuracy (max 71.43%). The proposed SOM has minimum QE value (QE = 

220.9) which is better than other algorithms and faster (see Fig. 5.34). Fig. 5.35 shows 

that all algorithms reached zero TE after only 2 iterations except for PLSOM which 

reached it after 5 iterations. For CPU processing time, PLSOM algorithm consumed 

almost double of the time required per iteration compared to other algorithms. 
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Table 5.24. Performances comparison of the conventional SOM, GF-SOM, PLSOM and proposed SOM 

algorithms for Sonar dataset 

 

Sonar Dataset 
Accuracy             

(%) 
# iteration QE 

CPU time 

(msec/itr) 

GF-SOM (Wang et al., 2014; Wang et al., 2015) 

GF-SOM (our) 

conventional SOM  

PLSOM  

Proposed SOM 

55.77, 54.33 

57.14 

57.14 

68.25 

71.43 

1000 

50 

50 

50 

40 

– 

283.3 

284.2 

230.9 

220.9 

– 

47.42 

43.7 

86.11 

44.3 

 

 

 

Figure 5.34. QE results of the conventional SOM, GF-SOM, PLSOM and proposed SOM algorithms for 

Sonar dataset 
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Figure 5.35. TE results of the conventional SOM, GF-SOM, PLSOM and proposed SOM algorithms for 

Sonar dataset 

 

5.3.8 Wine dataset 

 

The last experiment for evaluating the proposed SOM algorithm was conducted 

using Wine dataset from UCI repository. Wine dataset contains 3 classes (1, 2 and 3) 

and 178 instances with 13 attributes. The structure of the used Kohonen maps consists 

of 13 neurons for the input layer with 2-D grid of 13×3 neurons in competitive layer.  

The basic parameters used in this experiment for the conventional SOM 

algorithm: 𝛿𝛼 = 0.9, for GF-SOM: 𝛿𝛼 = 0.6, and 𝛿𝜎 = 2.4, for the PLSOM algorithm: 

𝛽 = 1.4, and for the proposed SOM: 𝜆 = 0.009, and 𝛽 = 0.98.  Table 5.25. shows that 

the proposed SOM algorithm recorded the best accuracy of 94.34 among other 

algorithms followed by PLSOM with 86.79%. 

Fig. 5.36 shows that all algorithms had a fast convergence rates. The proposed 

SOM algorithm recorded the lowest QE with QE = 0.097 as shown in Table 5.25. The 

proposed SOM algorithm keep trying to improve the accuracy and map at each iteration 

shows some fluctuations on TE as in Fig 5.37. While all algorithms required almost 
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same CPU processing time per iteration, PLSOM required almost 1.5 times the CPU 

time. 

 

Table 5.25. Performance comparison of the conventional SOM, GF-SOM, PLSOM and proposed SOM 

algorithms for Wine dataset 

 

Wine Dataset 
Accuracy             

(%) 

# 

iteration 
QE 

CPU time 

(msec/itr) 

GF-SOM (Wang et al., 2014; Wang et al., 2015) 

GF-SOM (our) 

conventional SOM  

PLSOM  

Proposed SOM 

61.79, 61.80 

81.13 

71.70 

86.79 

94.34 

1000 

50 

50 

15 

15 

– 

0.117 

0.127 

0.113 

0.097 

– 

53.35 

50.544 

77.06 

52.1 

 

 

 

Figure 5.36. QE results of the conventional SOM, GF-SOM, PLSOM and proposed SOM algorithms for 

Wine dataset 
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Figure 5.37. TE results of the conventional SOM, GF-SOM, PLSOM and proposed SOM algorithms for 

Wine dataset 
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6. CONCLUSION AND FUTURE WORK 

 

In this thesis, we presented a new convex combination of adaptive filtering 

algorithms. This combination has been proposed to overcome some of the difficulties 

experienced with the above-mentioned adaptive filters. We have presented the convex 

combination of the recently proposed RI and second-order RI algorithms. Their 

combined performances are compared to the combined performances of the NLMS 

algorithms in system identification, and noise cancellation settings. Simulation results 

have been showing that the proposed combination of the RI algorithms provides much 

better performance, in terms of MSE and rate of convergence, than that of the combined 

NLMS algorithms in both AWGN and ACGN environments. This gain in performance 

is due to the use of the instantaneous estimates of the correlations and the variable step-

size in the update equation of the proposed algorithm. 

The 2-D version of the recently proposed convex combination of RI algorithms 

has been presented. The proposed algorithm uses instantaneous estimates of the 

correlations which, in turn, enables the algorithm to provide high performance. The 

performance of the proposed algorithm has been investigated by de-noising MR images 

which are buried in an AWGN. The proposed algorithm is always capable of de-noising 

images successfully. 

The main problems of artificial neural networks for both clustering and classifier 

algorithms to solve complexity applications are; scalability, nonlinear, problem domain 

of input parameters, noise, new objects, high dimensional data, constraints, and 

interpretation and usability (Lopes et al., 2016). Recently, new neural network 

algorithms are demonstrated better performance for solving complexity applications 

than the conventional neural network algorithms. These techniques compared with the 

other machine learning algorithms and handcraft features need extra more time for 

training and testing, and then haven't been widely used for complexity applications yet. 

In addition, a new artificial neural network algorithms shows high performance 

in different aspects: 

 For the supervised learning, the improved back-propagation algorithm with 

variable adaptive momentum to update the weights vectors according to 

input vector has been developed. This algorithm is controlled by the learning 

rate parameter which is dependent on the eigenvalues of the autocorrelation 

matrix of the input. It provides low error performance for the weights update. 
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This improved version of the BP algorithm by using a new variable adaptive 

momentum technique has been compared to well-known supervised learning 

algorithms such as SVM, NB, LD, K-NN, BP, and BPAM methods. The 

proposed BPVAM algorithm provides a faster convergence behavior than 

the BP and BPAM algorithms and minimizes the misadjustment error in 

steady-state optimum solution. The performance of the proposed algorithm 

outperformed those of the SVM, NB, LD, and K-NN algorithms and capable 

to predict the target classes, superiorly. In addition to that, it is robust at 

different training data sets. It shows the highest accuracy among the 

available machine learning methods in literature. On the other hand, it 

requires lower number of computation than the other well-known algorithms. 

 For the unsupervised learning, we proposed a new adaptive learning rate for 

the conventional SOM algorithm. In this new unsupervised learning 

algorithm the weights updating is controlled adaptively, and the optimal 

weights are obtained in a short time compared to the conventional SOM and 

PLSOM algorithms. Moreover, the optimum weight vectors are also 

improved and provided lower quantization error. The proposed SOM 

algorithm showed higher performance compared to the conventional SOM, 

GF-SOM and PLSOM algorithms. Experimental results showed that the 

proposed SOM algorithm generally outperformed the other algorithms in 

terms of convergence rate, the misadjustment quantization error, preserving 

the topology of the map, the CPU processing time and accuracy. 

In addition, the convergence phenomenon of BPVAM and proposed SOM 

algorithms were compared to those mentioned algorithms using the well-known datasets 

taken from the UCI and KEEL machine learning repository. 

As a future work; the convergence analysis of 2-D version of “convex adaptive 

filters algorithms” may be derived. For the BPVAM algorithm; the other activation 

functions such as logistic sigmoid, hyperbolic tangent, and radial basis functions may be 

applied in the proposed BPVAM algorithm. For the proposed SOM algorithm, it is 

being planned to compare the performance of the proposed algorithm with well-known 

supervised learning algorithms using the same data sets. Moreover, it can be applied on 

bioinformatics data which needs to be invested in collecting samples of cases and 

controls and obtaining genotypes. Also, many different big data applications can be 

implemented.   
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APPENDICES 

 

APPENDIX-1 Error performance (SSE) of BP, BPAM, and BPVAM algorithms are 

compared using different 𝜂 and 𝛼 parameters. 

1. Breast Cancer Dataset 

 

Table 1. Error convergence behavior of BP algorithm in 400 iterations for breast cancer dataset 

𝜂  

𝛼 
0.7 0.8 0.9 

0.03 

0.02 

0.01 

6.42 

6.38 

6.34 

6.175 

6.17 

6.08 

6.19 

6.034 

6.033 

 

Table 2. Error convergence behavior of BPAM algorithm in 400 iterations for breast cancer dataset 

𝜂  

𝛼 
0.7 0.8 0.9 

0.03 

0.02 

0.01 

6.4 

6.34 

8.08 

5.75 

6.65 

6.3 

5.6 

5.6 

5.97 

 

Table 3. Error convergence behavior of BPVAM algorithm in 400 iterations for breast cancer dataset 

𝜂 

𝜆/𝛽 

0.7 0.8 0.9 

0.0087 

0.994 

0.0086 

0.993 

0.0085 

0.992 

6.4 

6.32 

6.6 

6.07 

6.04 

6.06 

5.9 

5.9 

5.88 
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2. Heart Dataset 

 

Table 4. Error convergence behavior of BP algorithm in 100 iterations for heart dataset 

𝜂  

𝛼 
0.005 0.004 0.003 

0.03 

0.02 

0.01 

4.32 

4.32 

4.33 

4.5 

4.5 

4.5 

5.12 

5.14 

5.161 

 

Table 5. Error convergence behavior of BPAM algorithm in 100 iterations for heart dataset 

𝜂  

𝛼 
0.05 0.04 0.03 

0.11 

0.1 

0.09 

4.26 

4.27 

4.28 

4.34 

4.36 

4.37 

4.6 

4.6 

4.6 

 

Table 6. Error convergence behavior of BPVAM algorithm in 100 iterations for heart dataset 

𝜂 

𝜆/𝛽 

0.05 0.04 0.03 

0.0087 

0.994 

0.0086 

0.993 

0.0085 

0.992 

4.24 

4.21 

4.22 

4.266 

4.25 

4.263 

4.3 

4.3 

4.34 
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3. Heart-Statlog Dataset 

 

Table 7. Error convergence behavior of BP algorithm in 20 iterations for heart-statlog dataset 

𝜂  

𝛼 
0.3 0.2 0.1 

0.07 

0.06 

0.05 

0.12 

0.12 

0.12 

0.1228 

0.123 

0.123 

0.14 

0.141 

0.141 

 

Table 8. Error convergence behavior of BPAM algorithm in 20 iterations for heart-statlog dataset 

𝜂  

𝛼 
0.3 0.2 0.1 

0.00029 

0.00028 

0.00027 

0.12 

0.12 

0.12 

0.12 

0.12 

0.124 

0.133 

0.138 

0.136 

 

Table 9. Error convergence behavior of BPVAM algorithm in 20 iterations for heart-statlog dataset 

𝜂 

𝜆/𝛽 

0.3 0.2 0.1 

0.027 

0.998 

0.026 

0.997 

0.025 

0.996 

0.453 

0.12 

0.12 

0.453 

0.127 

0.12 

0.45 

0.172 

0.123 
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4. Iris Dataset 

 

Table 10. Error convergence behavior of BP algorithm in 150 iterations for iris dataset 

𝜂  

𝛼 
0.07 0.06 0.05 

0.003 

0.002 

0.001 

0.801 

0.8 

0.8 

1.34 

1.35 

1.34 

1.84 

1.84 

1.84 

 

Table 11. Error convergence behavior of BPAM algorithm in 150 iterations for iris dataset 

𝜂  

𝛼 
0.07 0.06 0.05 

0.0005 

0.0004 

0.0003 

0.99 

0.53 

0.28 

0.25 

0.23 

0.82 

0.45 

0.44 

0.92 

 

Table 12. Error convergence behavior of BPVAM algorithm in 150 iterations for iris dataset 

𝜂 

𝜆/𝛽 

0.07 0.06 0.05 

0.04 

0.9991 

0.03 

0.999 

0.02 

0.998 

22.05 

22.05 

0.242 

22.05 

22.05 

0.244 

22.05 

22.05 

0.244 

 

 

  



 

127 
 

5. Lung-cancer Dataset 

 

Table 13. Error convergence behavior of BP algorithm in 150 iterations for lung-cancer dataset 

𝜂  

𝛼 
0.3 0.2 0.1 

0.07 

0.06 

0.05 

0.83 

0.83 

0.84 

0.154 

0.154 

0.154 

0.97 

1.02 

1.01 

 

Table 14. Error convergence behavior of BPAM algorithm in 150 iterations for lung-cancer dataset 

𝜂  

𝛼 
0.3 0.2 0.1 

0.00003 

0.00002 

0.00001 

0.04 

0.09 

0.05 

0.09 

0.1 

0.21 

1.53 

0.87 

1.12 

 

Table 15. Error convergence behavior of BPVAM algorithm in 150 iterations for lung-cancer dataset 

𝜂 

𝜆/𝛽 

0.7 0.8 0.9 

0.007 

0.9991 

0.006 

0.999 

0.005 

0.998 

4.73 

0.023 

0.077 

4.75 

0.05 

0.12 

4.75 

0.108 

0.21 

 

 

 

  



 

128 
 

6. Wine Dataset 

 

Table 16. Error convergence behavior of BP algorithm in 150 iterations for wine dataset 

𝜂  

𝛼 
0.7 0.8 0.9 

0.03 

0.02 

0.01 

0.98 

0.98 

0.99 

0.97 

0.964 

0.98 

0.94 

0.95 

0.96 

 

Table 17. Error convergence behavior of BPAM algorithm in 150 iterations for wine dataset 

𝜂  

𝛼 
0.7 0.8 0.9 

0.00003 

0.00002 

0.00001 

0.37 

0.7 

0.98 

0.33 

0.37 

0.9 

0.964 

0.96 

0.95 

 

Table 18. Error convergence behavior of BPVAM algorithm in 150 iterations for wine dataset 

𝜂 

𝜆/𝛽 

0.7 0.8 0.9 

0.0004 

0.99991 

0.0003 

0.9999 

0.0002 

0.9998 

0.99 

0.99 

0.97 

0.986 

0.93 

0.87 

0.95 

0.81 

0.73 
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APPENDIX-2 Error performance (QE) of the conventional SOM, GF-SOM, PLSOM 

and proposed SOM algorithms are compared using different 𝛿𝛼, 𝛿𝜎, 𝛽 and 𝜆 parameters 

in 20 iterations. 

 

1. Appendicitis dataset 

 

Table 1. QE results of the conventional SOM algorithm for appendicitis dataset 

𝛿𝛼 0.57 0.56 0.55 

QE 0.142 0.142 0.1416 

 

Table 2. QE results of the GF-SOM algorithm for appendicitis dataset 

𝛿𝛼  

δσ 

0.7 0.6 0.5 

0.003 

0.002 

0.001 

0.145 

0.145 

0.145 

0.142 

0.142 

0.142 

0.1442 

0.1442 

0.144 

 

Table 3. QE results of the PLSOM algorithm for appendicitis dataset 

𝛽 1.16 1.15 1.14 

QE 0.173 0.172 0.171 

 

Table 4. QE results of the proposed SOM algorithm for appendicitis dataset 

𝜆  

𝛽 

0.00064 0.00063 0.00062 

0.996 

0.995 

0.994 

0.14 

0.13 

0.123 

0.125 

0.132 

0.141 

0.143 

0.142 

0.132 
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2. Balance Dataset 

  

 

Table 5. QE results of the conventional SOM algorithm for balance dataset 

𝛿𝛼 0.17 0.16 0.15 

QE 0.24 0.25 0.24 

 

Table 6. QE results of the GF-SOM algorithm for balance dataset 

𝛿𝛼  

δσ 

1 0.9 0.8 

0.0087 

0.0086 

0.0085 

0.242 

0.242 

0.242 

0.239 

0.24 

0.238 

0.24 

0.24 

0.24 

 

Table 7. QE results of the PLSOM algorithm for balance dataset 

𝛽 4 3 2 

QE 0.22 0.22 0.23 

 

Table 8. QE results of the proposed SOM algorithm for balance dataset 

𝜆  

𝛽 

0.005 0.004 0.003 

0.992 

0.991 

0.99 

0.2 

0.2 

0.22 

0.21 

0.21 

0.22 

0.2 

0.216 

0.2 
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3. Wisconsin Breast Dataset 

  

 

Table 9. QE results of the conventional SOM algorithm for wisconsin dataset 

𝛿𝛼 0.5 0.4 0.3 

QE 0.1485 0.1485 0.1484 

 

Table 10. QE results of the GF-SOM algorithm for wisconsin dataset 

𝛿𝛼  

δσ 

0.3 0.2 0.1 

1.7 

1.6 

1.5 

0.1484 

0.1484 

0.1484 

0.1484 

0.1484 

0.1484 

0.1484 

0.1484 

0.1484 

 

Table 11. QE results of the PLSOM algorithm for wisconsin dataset 

𝛽 0.8 0.7 0.6 

QE 0.188 0.183 0.18 

 

Table 12. QE results of the proposed SOM algorithm for wisconsin dataset 

𝜆  

𝛽 

0.0017 0.0016 0.0015 

0.97 

0.96 

0.95 

0.1483 

0.1481 

0.148 

0.1483 

0.1481 

0.148 

0.1482 

0.148 

0.1479 
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4. Dermatology Dataset 

 

 

Table 13. QE results of the conventional SOM algorithm for dermatology dataset 

𝛿𝛼 0.6 0.5 0.4 

QE 0.181 0.181 0.18 

 

Table 14. QE results of the GF-SOM algorithm for dermatology dataset 

𝛿𝛼  

δσ 

0.6 0.5 0.4 

0.04 

0.03 

0.02 

0.179 

0.181 

0. 18 

0.177 

0.181 

0.18 

0.177 

0.182 

0.177 

 

Table 15. QE results of the PLSOM algorithm for dermatology dataset 

𝛽 13.7 13.6 13.5 

QE 0.188 0.177 0.176 

 

Table 16. QE results of the proposed SOM algorithm for dermatology dataset 

𝜆  

𝛽 

0.007 0.006 0.005 

0.992 

0.991 

0.99 

0.174 

0.176 

0.18 

0.179 

0.176 

0.1732 

0.184 

0.179 

0.173 
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5. Ionosphere Dataset 

 

 

Table 17. QE results of the conventional SOM algorithm for ionosphere dataset 

𝛿𝛼 0.6 0.5 0.4 

QE 0.1 0.1 0.1 

 

Table 18. QE results of the GF-SOM algorithm for ionosphere dataset 

𝛿𝛼  

δσ 

0.4 0.3 0.2 

7 

6 

5 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.09 

0.09 

0.1 

 

Table 19. QE results of the PLSOM algorithm for ionosphere dataset 

𝛽 2.1 2 1.9 

QE 0.118 0.117 0.117 

 

Table 20. QE results of the proposed SOM algorithm for ionosphere dataset 

𝜆  

𝛽 

0.0027 0.0026 0.0025 

0.991 

0.99 

0.98 

0.104 

0.103 

0.1 

0.104 

0.103 

0.1 

0.104 

0.1 

0.1 
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6. Iris Dataset 

 

 

Table 21. QE results of the conventional SOM algorithm for iris dataset 

𝛿𝛼 1.1 1 0.9 

QE 0.2653 0.2655 0.265 

 

Table 22. QE results of the GF-SOM algorithm for iris dataset 

𝛿𝛼  

δσ 

0.6 0.5 0.4 

0.03 

0.02 

0.01 

0.3 

0.2653 

0.2653 

0.2655 

0.2655 

0.2655 

0.2881 

0.2651 

0.265 

 

Table 23. QE results of the PLSOM algorithm for iris dataset 

𝛽 3.7 3.6 3.5 

QE 0.267 0.2656 0.264 

 

Table 24. QE results of the proposed SOM algorithm for iris dataset 

𝜆  

𝛽 

0.007 0.006 0.005 

0.991 

0.99 

0.98 

0.2654 

0.2653 

0.2651 

0.2653 

0.2652 

0.265 

0.2652 

0.2652 

0.265 
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7. Sonar Dataset 

 

 

Table 25. QE results of the conventional SOM algorithm for sonar dataset 

𝛿𝛼 0.9 0.8 0.7 

QE 286.8 286.8 284.2 

 

Table 26. QE results of the GF-SOM algorithm for sonar dataset 

𝛿𝛼  

δσ 

0.3 0.29 0.28 

0.03 

0.02 

0.01 

283.6 

283.6 

283.6 

283.5 

283.5 

283.5 

283.4 

283.4 

283.4 

 

Table 27. QE results of the PLSOM algorithm for sonar dataset 

𝛽 0.6 0.5 0.4 

QE 241.5 233.3 230.3 

 

Table 28. QE results of the proposed SOM algorithm for sonar dataset 

𝜆  

𝛽 

0.0000097 0.0000096 0.0000095 

0.9992 

0.9991 

0.999 

223.5 

224.9 

224.8 

224 

224.6 

224.6 

223.5 

225.1 

224.3 
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8. Wine Dataset 

 

 

Table 29. QE results of the conventional SOM algorithm for wine dataset 

𝛿𝛼 1.1 1 0.9 

QE 0.137 0.138 0.133 

 

Table 30. QE results of the GF-SOM algorithm for wine dataset 

𝛿𝛼  

δσ 

0.8 0.7 0.6 

2.6 

2.5 

2.4 

0.134 

0.133 

0.152 

0.132 

0.13 

0.13 

0.153 

0.158 

0.13 

 

Table 31. QE results of the PLSOM algorithm for wine dataset 

𝛽 1.6 1.5 1.4 

QE 0.155 0.138 0.124 

 

Table 32. QE results of the proposed SOM algorithm for wine dataset 

𝜆  

𝛽 

0.011 0.01 0.009 

0.991 

0.99 

0.98 

0.095 

0.095 

0.134 

0.095 

0.095 

0.13 

0.15 

0.16 

0.095 

 

 

 

 

 

 

  



 

137 
 

ÖZGEÇMİŞ 

 

KİŞİSEL BİLGİLER 

 

Adı Soyadı : Alaa Ali Hameed HAMEED 

Uyruğu : Irak 

Doğum Yeri ve Tarihi : Bağdat, 21 Ekim 1985 

Telefon : +90 534 571 11 74 

Faks :  

e-mail : dr.alaa85@yahoo.com & alaa.hameed@selcuk.edu.tr 

 

EĞİTİM 

 

Derece Adı, İlçe, İl Bitirme Yılı 

Lise : Al-Muthanna Lisesi, Bağdat 2005 

Üniversite : 
Al-Mamon Üniversitesi, Bilgisayar Mühendisliği 

Teknikleri, Bağdat 
2009 

Yüksek Lisans : 
Doğu Akdeniz Üniversi, Bilgisayar Mühendisliği, 

Gazimağusa 
2012 

Doktora : Selçuk Üniversitesi, Bilgisayar Mühendisliği, Konya 2017 

 

UZMANLIK ALANI 

Dijital Sinyal ve Görüntü İşleme, Uyarlamalı Filtreler, Yapay Sinir Ağları ve Makine 

öğrenmesi. 

 

YABANCI DİLLER 

Arapça (anadili), Türkçe, İngilizce 

 

YAYINLAR 

Hameed, A. A., Salman, M. S. and Karlik, B., 2014, A new 2-D convex combination of 

recursive inverse algorithms, IEEE 34th International Conference on Electronics 

and Nanotechnology (ELNANO), 273-276. 

 

Salman, M. S., Hameed, A. A., Turan, C. and Karlik, B., 2015, A new sparse convex 

combination of ZA-LLMS and RZA-LLMS algorithms. In 2015 23nd Signal 

Processing and Communications Applications Conference (SIU), 711-714 

(Doktora tezinden). 

 

Salman, M. S., Hameed, A. A. and Karlik, B., 2013, Convex combination ofrecursive 

inverse algorithms, Turkish Journal of Electrical Engineering and Computer 

Sciences, DOI: 10.3906/elk-1306-232 (Doktora tezinden). 

 

Hameed, A. A., Karlik, B. and Salman, M. S., 2016, Back-propagation algorithm with 

variable adaptive momentum, Knowledge-Based Systems, 114, 79-87 (Doktora 

tezinden). 

 

Hameed, A. A., Salman, M. S. and Karlik, B., Analysis of convexly combined recursive 

inverse algorithms, (under review), (Doktora tezinden). 

 



 

138 
 

Hameed, A. A., Karlik, B. and Salman, M. S, Robust adaptive learning approach of self-

organizing maps, (under review), (Doktora tezinden). 


