

T.C.

SELÇUK ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ

ROBUST ADAPTIVE LEARNING APPROACH

OF ARTIFICIAL NEURAL NETWORKS

Alaa Ali Hameed HAMEED

DOKTORA TEZİ

Bilgisayar Mühendisliği Anabilim Dalı

Ocak-2017

KONYA

Her Hakkı Saklıdır

iv

 ÖZET

DOKTORA TEZİ

YAPAY SİNİR AĞLARI İÇİN SAĞLAM ADAPTİF ÖĞRENME

YAKLAŞIMI

Alaa Ali Hameed HAMEED

Selçuk Üniversitesi Fen Bilimleri Enstitüsü

Bilgisayar Mühendisliği Anabilim Dalı

Danışman: Yrd. Doç. Dr. Barış KOÇER

2016, 152 Sayfa

Jüri

Yrd. Doç. Dr. Barış KOÇER

Doç. Dr. Gülay TEZEL

Doç. Dr. Sabri KOÇER

Doç. Dr. Seral ÖZŞEN

Yrd. Doç. Dr. Onur İNAN

Adaptif filtre tekniklerin sinyal işlemede sıklıkla kullanılmaktadır. Genellikle adaptif filtrenin

kararlı durum hataların-karelerinin ortalaması (HKO) ve yakınsama hızı arasında bir seçim yapmak

gerekir. Bu seçim genelde adım boyutu parametresi ile ayarlanır. Küçük adım sayısı yavaş yakınsama ve

düşük kararlı durum hatasına sebep olurken tersi durum ise hızlı yakınsama ve yüksek kararlı durum

hatasına sebep olur. Bu sorunu aşabilmek için rekürsif invers (RI) ve ikinci seviye rekürsif inverse RI

algoritmalarının konveks kombinasyonları kullanılmıştır. Geliştirilen bu yeni metot sistem tanımlama ve

gürültü engelleme uygulamalarında kullanılmıştır. Önerilen metot, hataların karelerinin ortalaması (HKO)

ve yakınsama hızı bakımından “normalize en küçük ortalama kareler” (NEKOK)’nın konveks

kombinasyonu ile karşılaştırılmıştır. Deneysel sonuçlar, toplanır beyaz Gaussian gürültüsü (TBGG) ve

toplanır ilişkili Gaussian gürültüsü (TIGG) eklenmiş ortamlarda çalıştırıldığında, önerilen algoritmanın

daha hızlı yakınsadığını ve daha küçük HKO değerleri ortaya koyduğunu göstermiştir.

Manyetik rezonans görüntülerindeki (MRI) gürültüleri azaltmak tıbbi teşhiş alanında ilgi çekici

bir alan olmaya başlamış ve bu konuyla ilgili birçok metot önerilmiştir. Fakat bu algoritmaların çoğu

düşük kalite veya yavaş çalışmaktan muzdariptirler. Bu sorunu çözmek için önerilen tek boyutlu konveks

kombinasyon, iki boyutlu konveks kombinasyona dönüştürülmüştür. İki boyutlu konveks kombinasyon,

gürültü azaltma konusunda yüksek performans sunmaktadır. Algoritmanın performansını ölçmek için bir

MR görüntüsünün toplanır beyaz Gaussian gürültüsü (TBGG) ile bozulduğu varsayılmış ve bu bozulma

önerilen algoritma ile düzeltilmeye çalışılmıştır. Simülasyonlar algoritmanın görüntüyü başarılı bir

şekilde düzelttiğini göstermektedir.

Bu tezde bir öğretici ve bir öğreticisiz olmak üzere iki yeni yapay sinir ağı metodu önerilmiştir.

Öğreticili öğrenmede “değişken adaptif momentumlu geri yayılım algoritması” (DAMGY) adında yeni

bir sınıflandırıcı önerilmiştir. Bu algoritma geri yayılım algoritmasının modifiye edilmiş bir halidir ve

kararlı durum hataya yakınsama hızını arttırırken hata oranınıda düşürerek desen tanıma performansını

arttırmayı amaçlar. Bu algoritma girişin oto korelasyon matrisinin katsayılarını kontrol eden öğrenme

katsayısı tarafından kontrol edilir. Bu katsayı sayesinde ağırlıklar güncellenirken düşük hata oranı

yakalanmaktadır. Algoritmanın performansını ölçmek için k-en yakın komşu (k-EYK), Naive Bayes

(NB), doğrusal ayırteden analizi (DAA), Destek Vektör Makineleri (DVM), geri yayılım ve adaptif

momentumlu geri yayılım algoritması (AMGY) kullanılmış ve performans, yakınsama hızı, hataların

karelerinin ortalaması ve doğruluk bakımından değerlendirilmiştir.

v

Öğreticisiz öğrenmede, birçok yapay zekâ uygulamasında kullanılan kendi kendini düzenleyen

harita (KDH) algoritması birçok araştırmacının ilgisini çekmektedir. Bu tezde klasik KDH algoritmasına

adaptif bir öğrenme becerisi kazandıran bir algoritma önerilmiştir. Önerilen KDH algoritması değişken

öğrenme katsayısı ile optimal ağırlıkları ve kazanan nöronları kısa sürede bularak klasik KDH’un

dezavantajlarını yok etmektedir. Önerilen KDH algoritmasının optimum ağ ağırlıklarını bulma hızı diğer

öğreticisiz algoritmalarla karşılaştırılmıştır. Ayrıca önerilen KDH algoritması klasik KDH, kendi kendini

düzenleyen harita ile Gauss fonksiyonu (KDHGF) ve parametre-az kendi kendini düzenleyen harita

(PAKDH) algoritmalarıyla da karşılaştırılmıştır. Önerilen KDH algoritması yakınsama hız, niceleme hızı,

bulunan ağın topoloji hatası ve doğruluk kriterlerinde üstün performans gösterdiği gösterilmiştir.

DAMGY ve önerilen KDH algoritmasının performansı UCI ve KEEL veritabanlarından alınan veri setleri

ile de test edilmiştir.

Anahtar Kelimeler: Adaptif filtreler, iki boyutlu konveks kombinasyon, MRI, öğreticili

öğrenme, yapay sinir ağı, geri yayılım, adaptif momentum, öğreticisiz öğrenme, kendi kendini düzenleyen

harita (KDH), öğrenme katsayısı.

vi

ABSTRACT

Ph.D THESIS

ROBUST ADAPTIVE LEARNING APPROACH OF ARTIFICIAL NEURAL

NETWORKS

Alaa Ali Hameed HAMEED

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCE OF

SELÇUK UNIVERSITY

DOCTOR OF PHILOSOPHY IN COMPUTER ENGINEERING

Advisor: Assist. Prof. Dr. Barış KOÇER

2016, 152 Pages

Jury

Assist. Prof. Dr. Barış KOÇER

Assoc. Prof. Dr. Gülay TEZEL

Assoc. Prof. Dr. Sabri KOÇER

Assoc. Prof. Dr. Seral ÖZŞEN

Assist. Prof. Dr. Onur İNAN

Adaptive filtering techniques are frequently used in signal processing applications. In adaptive

filters, usually there is a trade-off between the steady-state mean-square error (MSE), and the initial

convergence rate of the filter. This trade-off is usually controlled by the step-size. A small step-size leads

to a relatively slow convergence rate with low MSE and vice versa. A new convex combination of

recursive inverse (RI) and second-order RI algorithms is developed to overcome this trade-off. The new

method used in system identification and noise cancellation applications. Proposed method is compared

to convex combination of the normalized least-mean-square (NLMS) algorithms in terms of mean-square

error (MSE) and rate of convergence. Simulations show that the proposed algorithm provides faster

convergence rate with lower MSE than combined NLMS algorithms in both additive white Gaussian

noise (AWGN) and additive correlated Gaussian noise (ACGN) environments.

De-noising magnetic resonance images (MRI) has recently become an interesting topic in

medical diagnosis applications. Many algorithms have been proposed for this purpose. However, these

algorithms usually suffer from poor performance or time consumption. In order to improve the MRI

images, the proposed 1-D convex combination method extended to 2-D convex combination. The 2-D

convex combination provides high performance in terms of noise removal. A de-noising experiment has

been conducted on MR image that is assumed to be corrupted by an additive white Gaussian noise

(AWGN) for testing purposes. Simulations show that the proposed algorithm successfully recovers the

image.

In this thesis we present two modified neural network algorithms. One of them is supervised and

the other is unsupervised learning. In the supervised learning, a novel machine learning classifier of back-

propagation algorithm with variable adaptive momentum (BPVAM) is proposed. The proposed algorithm

is a modified version of the BP algorithm to improve its convergence behavior in both sides, accelerate

the convergence process for accessing the optimum steady-state and minimizing the error misadjustment

to improve the recognized patterns superiorly. This algorithm is controlled by the adaptive momentum

parameter which is dependent on the eigenvalues of the autocorrelation matrix of the input. It provides

low error performance for the weights update. To discuss the performance measures of the BPVAM

algorithm and the other supervised learning algorithms such as K-nearest neighbours (K-NN), Naive

Bayes (NB), linear discriminant analysis (LDA), support vector machines (SVM), BP, and BP with

vii

adaptive momentum (BPAM) have been compared in term of speed of convergence, sum of squared error

(SSE), and accuracy.

In the unsupervised learning, the self-organizing map (SOM) has attracted attention of many

researchers, where it has successfully applied to a wide range of artificial intelligence applications. In this

thesis, new intelligent adaptive learning of the conventional SOM algorithm is proposed. The proposed

SOM overcomes the disadvantages of the conventional SOM by deriving a new variable learning rate that

can adaptively achieve the optimal weights and obtain the winner neurons in a short time. Performance of

the proposed SOM was compared with other unsupervised algorithms by examining the speed of finding

optimum network weight update. The proposed SOM algorithm was also compared with conventional

SOM, Gaussian-function with self-organizing map (GF-SOM), parameter-less self-organizing map

(PLSOM) algorithms. The proposed SOM algorithm showed superiority in terms of convergence rate,

quantization error (QE), topology error (TE) of preserving map and accuracy during the recognition

process. The BPVAM, and proposed SOM algorithms experiments were conducted using different

databases from UCI and KEEL repository.

Keywords: Adaptive filters, convex adaptive filtering, 2-D convex combination, MRI,

supervised learning, neural network, back-propagation, adaptive momentum, unsupervised learning, self-

organizing map (SOM), learning rate.

viii

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my supervisors Assist. Prof. Dr.

Barış Koçer and Assist. Prof. Dr. Mohammad Shukri Salman for their continuous

support, great guidance, endless help, knowledge and huge confidence they gave me.

I am also very grateful to Prof. Dr. Bekir Karlık for the advice and support, who

has shown a large interest in my work. His stimulating motivation and valuable ideas

helped me to complete this thesis. Our numerous discussions, either face-to-face or

through the email, have greatly improved this work. I thank him for constructive

criticism and careful revision of the text.

I would like to thank my thesis monitoring committee members Prof. Dr. Yüksel

Özbay, Assoc. Prof. Dr. Gülay Tezel, Assoc. Prof. Dr. Seral Özşen for all of their

guidance through this process; your discussion, ideas, and feedback have been

absolutely invaluable.

I would also like to thank my colleagues and friends for all their help and

collaboration. I also wish to thank my dear friend Murat Karakuş for his constant

support and encouragement throughout my graduate career.

My warm regards to my amazing family, father, mother, brothers (Mohammed

Ali Hameed, Ahmed Ali Hameed, Hussein Ali Hameed and Hassan Ali Hameed) and

sisters for their love, support, and constant encouragement.

Alaa Ali Hameed HAMEED

 KONYA-2016

ix

TABLE OF CONTENTS

ÖZET .. iv

ABSTRACT .. vi

ACKNOWLEDGMENTS ... viii

TABLE OF CONTENTS .. ix

LIST OF SYMBOLS AND ABBREVIATIONS .. xii

1. INTRODUCTION ... 1

1.1 Our Contributions .. 3

1.1.1 Adaptive filters ... 3

1.1.2 Artificial neural networks ... 4

1.1.2.1 Supervised learning algorithm .. 4

1.1.2.2 Unsupervised learning algorithm .. 5

1.2 Overview Of This Thesis ... 6

2. LITERATURE REVIEW ... 8

2.1 Adaptive Filters .. 8

2.2 Artificial Neural Network .. 11

2.2.1 Backpropagation (BP) algorithm .. 11

2.2.2 Self-organizing map (SOM) algorithm ... 12

3. ADAPTIVE FILTERING ... 14

3.1 Adaptive Filtering Configurations ... 15

3.1.1 System identification .. 15

3.1.2 Noise cancellation ... 16

3.2 Adaptation Algorithms ... 17

3.2.1 Normalized least-mean-square (NLMS) algorithm 17

3.2.2 Recursive inverse (RI) algorithm .. 18

3.2.3 Second order recursive inverse (second-order RI) algorithm 19

3.3 Convex Combination ... 21

3.3.1 Convex combination of RI algorithms.. 21

3.3.1.1 Tracking analysis of convexly combined RI algorithms....................... 23

3.3.2 Convex combination of RI and second-order RI algorithms 27

3.3.3 2-D Convex of RI and second-order RI algorithms 29

4. MACHINE LEARNING ... 33

x

4.1 Supervised Learning ... 33

4.1.1 Supervised learning approaches .. 34

4.1.2 Predictive model validation ... 36

4.1.3 Artificial neural network (ANN) ... 37

4.1.3.1 The biological paradigm ... 37

4.1.3.2 Basic structure of an ANN .. 38

4.1.3.3 Brief description of the ANN parameters ... 40

4.1.3.4 Neural networks neurodynamics ... 41

4.1.3.5 Neural networks architecture .. 42

4.1.3.5.1 Types of interconnections between neurons 42

4.1.3.5.2 The number of hidden neurons .. 42

4.1.3.5.3 The number of hidden layers ... 42

4.1.3.5.4 The perceptron ... 43

4.1.4 XOR problem with multilayer perceptron ... 44

4.1.5 Learning algorithms .. 46

4.1.5.1 The delta rule .. 47

4.1.5.2 Back-propagation (BP) algorithm .. 47

4.1.5.3 Back-propagation with adaptive filtering momentum (BPAM)

algorithm .. 53

4.1.5.4 Back-propagation algorithm with variable adaptive momentum

(BPVAM) algorithm .. 54

4.1.6 Statistical classification algorithms .. 55

4.1.6.1 K-NN classifier ... 55

4.1.6.2 Naïve bayes ... 56

4.1.6.3 Support vector machine... 56

4.1.6.4 Linear discriminant analysis ... 57

4.2 Unsupervised Learning ... 58

4.2.1 Unsupervised learning approaches ... 59

4.2.1.1 SOM algorithm ... 60

4.2.1.2 PLSOM algorithm ... 62

4.2.1.3 Proposed SOM algorithm .. 63

5. SIMULATION RESULTS .. 65

5.1 Convex Combination of Recursive Inverse (RI) Algorithms 65

5.1.1 1- D Convex combination of RI algorithms ... 65

xi

5.1.1.1 Convex combination of two RI algorithms ... 65

5.1.1.1.1 Additive white Gaussian noise .. 66

5.1.1.1.2 Additive correlated Gaussian noise ... 67

5.1.1.2 Convex combination of RI and second-order RI algorithms 69

5.1.1.2.1 Additive white Gaussian noise .. 70

5.1.1.2.2 Additive correlated Gaussian noise ... 72

5.1.2 2-D Convex combination of RI algorithms .. 75

5.1.2.1 Convex of two RI algorithms .. 75

5.1.2.2 Convex RI and second-order RI Algorithms .. 76

5.2 Back-propagation Algorithm with Variable Adaptive Momentum (BPVAM)

Algorithm .. 77

5.2.1 XOR problem .. 77

5.2.2 Comparison of performances .. 79

5.2.2.1 Breast cancer dataset ... 79

5.2.2.2 Heart dataset .. 81

5.2.2.3 Heart-statlog dataset .. 82

5.2.2.4 Iris dataset ... 84

5.2.2.5 Lung-cancer dataset .. 85

5.2.2.6 MAGIC Gamma telescope dataset .. 87

5.2.2.7 Wine dataset .. 88

5.3 Proposed SOM Algorithm ... 90

5.3.1 Appendicitis dataset .. 91

5.3.2 Balance dataset ... 93

5.3.3 Wisconsin breast dataset ... 95

5.3.4 Dermatology dataset ... 97

5.3.5 Ionosphere dataset... 99

5.3.6 Iris dataset ... 101

5.3.7 Sonar dataset ... 103

5.3.8 Wine dataset .. 105

6. CONCLUSION AND FUTURE WORK ... 108

REFERENCES.. 110

APPENDICES ... 123

ÖZGEÇMİŞ .. 137

xii

LIST OF SYMBOLS AND ABBREVIATIONS

1-D 1-Dimensional

2-D 2-Dimensional

ACGN Additive Correlated Gaussian Noise

ANN Artificial Neural Networks

AR Autoregressive model

AWGN Additive White Gaussian Noise

BMU Best Matching Unit

BP Backpropagation

BPAM BP with Adaptive Momentum

BPFM BP with Fixed Momentum

BPNN Backpropagation Neural Network

BPVAM Backpropagation Algorithm with Variable Adaptive Momentum

FIR Finite Impulse Response

GF-SOM Gaussian-Function with Self-Organizing Map

IIR Infinite Impulse Response

K-NN K-Nearest Neighbours

LDA Linear Discriminant Analysis

LMS Least Mean Square

LS Least-Squares

MRI Magnetic Resonance Images

MSE Mean-Square-Error

NB Naive Bayes

NLMS Normalized Least-Mean-Square

PLSOM Parameter-Less Self-Organizing Map

QE Quantization Error

RI Recursive Inverse

RLS Recursive-Least-Squares

RZA-LLMS Reweighted Zero-Attracting Leaky-Least-Mean Square

SNR Signal-to-Noise Ratio

SOM Self-Organizing Map

SSE Sum-of-Squared-Error

xiii

SVM Support Vector Machines

TDVSS Transform Domain LMS with Variable Step-Size

TE Topology Error

ZA-LLMS Zero-Attracting Leaky Least-Mean-Square

𝐈 Identity Matrix

𝐑 Autocorrelation matrix

𝐩 Cross-correlation vector

𝐰 Weight coefficients

𝐱 Input data

𝐷 Training set

𝐸 Expectation operator

𝐸𝑢 Euler number

𝐹𝑁 False Negatives

𝐹𝑃 False Positives

𝑁 Filter length

𝑄 Covariance matrix

𝑇 Transposition operator

𝑇𝑁 True Negatives

𝑇𝑃 True Positives

𝑑 Desired response

𝑒 Estimation error

𝑓 Activation function

𝑙𝑛(.) Natural logarithm

𝑞 Stochastic i.i.d.

𝑡 Target value

𝑣 Measurement noise

𝑦 Output

𝒉 Unknown system

𝛼 Adaptive momentum

𝛽 Forgetting factor

𝜂 Learning rate

𝜃 Threshold

𝜆 Convex combination parameter

xiv

𝜇 Step-size

𝜎 Width of Gaussian

𝜖 Scaling variable

𝜎2 Variance

1

1. INTRODUCTION

Digital filters are classified such as linear or non-linear, continuous-time or

discrete-time, and recursive or non-recursive (Ozbay et al., 2003). Adaptive filtering

techniques are frequently used in signal processing applications (Sayed, 2003; Sayed,

2008). The performance of adaptive filter algorithms is usually measured in terms of

convergence rate and/or the minimum mean-square-error (MSE). The optimum

performance of an adaptive filter is usually achieved by the Wiener filter (Haykin,

2002). However, Wiener filter requires a prior knowledge about the input signal.

While adaptive filter algorithms that does not require this prior knowledge. The

performance of this algorithms is controlled by a step-size parameter that generates a

trade-off between the convergence rate of the adaptive filter and its SS-MSE (Haykin,

2002; Sayed, 2003). A constant step-size parameter is used to update the filter

coefficients. This step-size parameter has a critical effect on the performance of the

algorithm. A relatively large step-size value provides a fast convergence but high MSE.

On the other hand, a small step-size causes slow convergence with low MSE.

To overcome such a trade-off, convex combination of adaptive filters started

appearing in the last decade (Arenas-Garcia et al., 2006; Mandic et al., 2007; Kosat and

Singer, 2009; Azpicueta-Ruiz et al., 2008; Trump, 2009a). Convex combination of

adaptive filter has provided an improved performance in both stationary and non-

stationary environments (Zhang and Chambers, 2006). The convex combination is

usually constructed by two adaptive filters; one of them provides fast convergence with

high output steady-state error and the other has slow convergence with low MSE

(Martinez-Ramon et al., 2002). The schematic diagram of the convex combination of

adaptive filters is shown in Fig. 2.1.

Therefore, a combination of such two systems would provide us, in a way, a

solution of such trade-off. This solution is done by extracting out the faster converging

part and the lower MSE part from the two filtering algorithms. By this the filter will

provide a performance with fast convergence and low error.

A 2-Dimensional (2-D) adaptive filter is an extension of 1-D adaptive filters

which deals with two dimensional signals (i.e., images) (Hadhoud and Thomas, 1998).

One of the most attracting applications of such algorithms is image de-noising.

Artificial neural networks is an interesting research that is well-known in the

area of machine learning and has provided the best solutions to many problems.

2

Currently it attracts more and more attendance in artificial intelligence. In general, the

Artificial neural networks try to model useful high-level abstractions, learning

hierarchies of concepts, and multiple-layer architectures for better data representations.

Artificial neural networks is capable of learning complex abstractions and it is known to

be especially useful for problems with high-dimensional input, such as speech and

image recognition.

Backpropagation neural network (BPNN) is a supervised machine learning that

has attracted the attention of many researchers in a wide range of applications. BPNN

has high capability to solve complex problems that cannot be solved using traditional

machine learning techniques (Karlik, 2014). There are many BPNN applications on

marketing (Iseri and Karlik, 2009; Chiang et al., 2006), bioinformatics (Karlik, 2013),

medicine (Behram et al., 2007; Karlik and Cemel, 2012), engineering (Dvir et al., 2006;

Karlik, 2000), and others (Karlik et al., 1998; Lee et al., 2005). Unfortunately, it has a

couple of obstacles that usually restrict its algorithm performance; the slow convergence

and the high steady-state error. To overcome these obstacles, the momentum technique

have been proposed, where it can speed up the convergence rate and decrease the

steepest descent error (Yu et al., 1993; Yu and Liu, 2002; Shao and Zheng, 2009),

efficiently.

Self-organizing map (SOM) as an unsupervised learning algorithm attracts many

researchers. It can be applied in various applications such as clustering, image

recognition, and sound recognition (Kohonen, 1990; Kohonen et al., 1996; Vesanto and

Alhoniemi, 2000). SOM projects the input samples from high dimensional space to the

low dimensional space (Kohonen, 1982; Kohonen, 2001). The architecture of SOM is

simply consists of an input layer and an output layer with highly interconnection

between each other where each connection is associated with a weight. The output is

organized as a two dimensional grid of neurons, where the data visualization of the

output is implemented during the learning process.

SOM algorithm does not require the knowledge of the target output in the

recognition process (Mukherjee, 1997). The conceptual idea is that each input vector is

multiplied by the weight vectors to calculate the distances. Furthermore the map nodes

output must be the same weight vectors (Kohonen, 1989; Song and Hopke, 1996; Kim

et al., 2002; Hoffmann, 2005; Marini et al., 2005; Bianchi et al., 2007). The winner

output node is determined by the shortest distance between the input vector and output

nodes. The winner weights node are updates for each input (Rojas, 1996; Astel et al.,

3

2007). The clustering inputs depending on the similarity of the input features (Fonseca

et al., 2006). The time consumption of training depends on dataset size and whether it

can reach the optimum weights.

1.1 Our Contributions

In this work we have proposed different algorithms; we have proposed a new

convex combination RI adaptive filter and we derive its tracking analysis; for artificial

neural networks we have proposed a new backpropagation algorithm called BPVAM,

and a new SOM algorithm.

1.1.1 Adaptive filters

In order to overcome the trade-off in the field of adaptive filtering, various

variable step-size LMS-type algorithms have been developed. Recently, Ahmad et al.

(2011) have proposed a new recursive inverse (RI) adaptive algorithm. This algorithm

has shown great performance compared to different adaptive algorithms with less or

comparable computational complexity (Ahmad et al., 2010b). It has shown robust

performance in impulsive noise and non-stationary environments (Ahmad et al., 2012;

Ahmad et al., 2013b). However, the trade-off between the convergence rate and the

MSE is not radically solved.

In this work, we propose a new RI convexly combined adaptive filtering

algorithms which provides a very high performance, in terms of convergence rate and

SS-MSE, compared to the other proposals. The new convex combination of RI

algorithms is to extract the fast convergence and low MSE properties of two adaptive

filters and combine their performances. The tracking performances of the convexly

combined RI algorithms have been discussed theoretically and experimentally. It shows

that the derived theoretical SS-MSE of the convexly combined RI algorithm is in match

with the experimental one.

The performance of proposed convex combinations has compared to various

adaptive algorithms and others convex combinations that shown in the literature (see

Chapter 3):

1. Normalized least-mean-square (NLMS) algorithm.

2. Recursive inverse (RI) algorithm.

4

3. Second order RI Algorithm.

4. Convex of Two NLMS Algorithms.

5. Convex of Two RI Algorithms.

6. Convex RI and second order RI Algorithms.

In additive white Gaussian noise (AWGN) and additive correlated Gaussian

noise (ACGN) environments in the settings of system identification, and noise

cancellation.

Simulation results show that the new combinations highly outperforms other

algorithm in terms of both MSE and convergence rate. Furthermore, the 2-D version of

the algorithm has shown high performance in image de-noising.

1.1.2 Artificial neural networks

The proposed neural networks algorithms are BPVAM which is for supervised

learning, and new SOM algorithm for unsupervised learning.

1.1.2.1 Supervised learning algorithm

The conventional BP algorithm has a couple of obstacles that usually limit its

performance; the slow convergence and the high steady-state error. To overcome these

obstacles, the new variable adaptive momentum technique has been proposed, where it

can speed up the convergence rate and decrease the steepest descent error SSE,

efficiently.

This momentum has been proposed as a learning rate in (Ahmad et al., 2011;

Ahmad et al., 2010a; Ahmad et al., 2013a; Hameed et al., 2014) and has been used

simply in various adaptive filtering applications successfully. This proposed adaptive

momentum is characterized by two parameters (𝜆, 𝛽) providing lower computational

cost and more robustness in various applications. It also shows better performance

deservedly over the conventional BP and BPAM algorithms in terms of speed of

convergence, SSE and accuracy.

To prove our claim, the performance of the proposed BP algorithm based on a

variable adaptive momentum, shortly called BPVAM, are compared to different

supervised machine learning techniques that take place in the literature (see Chapter 4):

1. K-nearest neighbours (K-NN).

5

2. Naive Bayes (NB).

3. Linear discriminant analysis (LDA).

4. Support vector machines (SVM).

5. Back-propagation (BP).

6. Back-propagation with adaptive momentum (BPAM).

For this purpose, the BPVAM and the other algorithms were applied on a

benchmark-XOR problem and various datasets such as breast cancer, heart, heart-

statlog, iris, lung-cancer, MAGIC gamma telescope, and wine datasets recorded at UCI

repository in order to compare their performance. The results show that the performance

of the BPVAM algorithm is better than the others.

1.1.2.2 Unsupervised learning algorithm

The major problem with SOMs is that they are very computationally expensive

which is a major drawback since as the dimensions of the data increases, dimension

reduction visualization techniques become more important, but unfortunately then time

to compute them also increases. For calculating the input features similarity map, the

more neighbors you use to calculate the distance the better similarity map you will get,

but the number of distances the algorithm needs to compute increases exponentially.

In this thesis a new adaptive learning rate of decreasing functions. The proposed

SOM algorithm overcomes many disadvantages of conventional SOM algorithm. It

needs less implementation time (fast convergence), obtains low Quantization Error (QE)

and better Topology Error (TE) preserving map during the recognition process.

Experiments also showed that the proposed algorithm is able to recognize more

features and getting a higher accuracy compared to different unsupervised machine

learning techniques that shown in the literature (see Chapter 4):

1. Conventional self-organizing map (SOM) algorithm.

2. Gaussian-function with self-organizing map (GF-SOM) algorithm.

3. Parameter-less self-organizing map (PLSOM) algorithm.

In this thesis, the new unsupervised learning algorithm is compared with

conventional SOM, GF-SOM and PLSOM algorithms using different criteria such as

QE, TE, CPU time and accuracy. Extensive experiments are conducted to evaluate the

performance of proposed algorithm using different well-known datasets such as

Appendicitis, Balance, Wisconsin breast, Dermatology, Ionosphere, Iris, Sonar and

6

Wine datasets from UCI and KEEL repositories. The new SOM outperforms the other

algorithms in terms of the used criteria as shown in the results.

1.2 Overview Of This Thesis

This thesis is organized as follows. Introduction and our contributions are

outlined in Chapter 1. Chapter 2 provides a literature review about the well-known

adaptive filters and their significance, where some adaptive filtering algorithms have

been presented by many researchers for better learning and adapting rates. Also,

machine learning in supervised and unsupervised learning have presented. BP neural

network, and SOM algorithms have presented with some of their variants.

Chapter 3 introduces the adaptive filters and their mechanism, system

identification and noise cancellation configurations, some adaptive filtering algorithms,

the proposed convex combinations including the one-dimensional (1-D), and two-

dimensional (2-D) convexly combined RI algorithms.

In Chapter 4, machine learning in supervised and unsupervised learning are

introduced. The supervised BP neural network and the unsupervised SOM learning

algorithms are briefly described. In addition the proposed BPVAM, and proposed SOM

algorithms derivations are proved.

In Chapter 5, in section one, the proposed convex combinations of RI algorithms

compared to the performance of convex NLMS algorithms are discussed. In simulation

results the combinations performance were investigated in terms of the MSE and

convergence rate for system identification, and noise cancellation settings, in both

additive white Gaussian noise (AWGN) and additive correlated Gaussian noise (ACGN)

environments. In section two, the performance measures of proposed BPVAM

algorithm and the other supervised learning algorithms such as K-nearest neighbours

(K-NN), Naive Bayes (NB), linear discriminant analysis (LDA), support vector

machines (SVM), BP, and BP with adaptive momentum (BPAM) are compared in terms

of speed of convergence, sum-of-squared-error (SSE), and accuracy by implementing

benchmark XOR-problem and seven datasets from UCI repository. In the last section,

the proposed SOM algorithm was also compared to the conventional SOM, GF-SOM

and PLSOM algorithmsin terms of convergence rate, quantization error (QE), topology

error (TE) preserving map and accuracy during the recognition process. Extensive

experiments were conducted using eight different datasets from UCI and KEEL

7

repository.

Finally, the thesis is concluded in Chapter 6 with suggested future work.

8

2. LITERATURE REVIEW

This chapter will provide overviews about the adaptive filters, their problems

and development stages in general. Also, the artificial neural networks (ANN), its

architecture, and their advantages and disadvantages will present.

2.1 Adaptive Filters

Performing common processing operations on a sequence of data can be

considered as filtering the raw data (Canan et al., 1998). A digital filter with fixed

coefficients can be designed by using well defined proporties. However, in some

situations, where the specifications are not available or time-varying, a filter that

updating the coefficients with time is required which is called as an adaptive filter.

Adaptive filtering has shown a great interest by researchers during the last decades. This

interest is due to those vast application areas of adaptive filters (Muneyasu et al., 1998;

Haykin, 2002; Sayed, 2003; Salman, 2014; Gwadabe and Salman, 2015; Ma et al.,

2015).

LMS algorithm is one of the well-known adaptive filtering techniques which has

been used to solve many problems. However, the performance of an adaptive filter is

usually controlled by some parameters that usually generate a trade-off between the

convergence rate and SS-MSE. Since the LMS algorithm is a gradient descent based

algorithm, a constant step-size parameter is used to update the filter coefficients. This

step-size parameter has a critical effect on the performance of the algorithm. A large

step-size value provides a fast convergence but a high MSE where a small step-size

causes slow convergence with low MSE. This trade-off can be set in the favor of both

increase in the convergence rate and decrease in misadjustment for the best performance

by using a variable step-size (Aboulnasr and Mayyas, 1997; Turan and Salman, 2014).

The NLMS algorithm has been proposed to improve the performance of the

traditional LMS algorithm (Haykin, 2002). The NLMS algorithm provides a fast

convergence rate, and achieves a minimal steady-state error by normalizing the step-size

by the power of the input. Shin et al., (2004) have developed a variable step-size affine

projection algorithm to improve the convergence rate with lower misadjustment at early

stages of adaptation.

The recursive-least-squares (RLS) algorithm has been offering a superior

9

performance in adaptive filtering, which outperforms the LMS algorithm and its

versions (Maouche and Slock, 2000; Wang, 2009; Eksioglu and Tanc, 2011). The RLS

algorithm can keep the output performance in the steady-state on improving over time.

In the case of the least-squares (LS) algorithms, the performance is controlled by the

forgetting factor with a value close to unity to obtain the convergence and stability of

the algorithm at the same time.. A major drawback of the RLS algorithm is its high

computational complexity (Haykin, 2002).

Ahmad et al., (2011) has proposed a new RI adaptive filtering algorithm that

showed better performance compared to the transform domain LMS with variable step-

size (TDVSS) in terms of the convergence rate, and it is very comparable to the RLS

algorithm, with lower computational complexity than RLS algorithm by avoiding the

inversion of the autocorrelation matrix. Ahmad et al., (2010b) used the second-order

estimates of the correlations, the second-order RI algorithm has provided MSE

performance that cannot be attained using the TDVSS algorithm. It has shown robust

performance in impulsive noise and non-stationary environments (Ahmad et al., 2012;

Ahmad et al., 2013b). However, the trade-off between the convergence rate and the

MSE is not radically solved.

In the last decade, a convex combination of adaptive filtering algorithms has

been frequently used to overcome this trade-off (Kozat and Singer, 2000; Arenas-Garcia

et al., 2003; Arenas-Garcia et al., 2005; Arenas-Garcia et al., 2006; Azpicueta-Ruiz et

al., 2008; Silva and Nascimento, 2008; Trump, 2009a; Trump, 2009b; Azpicueta-Ruiz

et al., 2010). The main idea behind these proposals is to extract the fast convergence and

low MSE properties of two adaptive filters and combine their performances. However,

most of these proposals still converge to a relatively high MSE. The convex scheme

consists of combining two adaptive filters. One possibility is depicted in Fig. 2.1. The

output and error estimates of the adaptive filters are combined using the parameter 𝜆(𝑛).

Mandic et al., (2007) proposed a collaborative adaptive learning algorithm using

hybrid filters. They combined two different adaptive filters in order to attain lower MSE

with high convergence rate. However, the combined performance of their proposed

algorithm cannot exactly track the learning curves of both filters. Trump (2009b)

discussed the tracking performance of a combination of two NLMS adaptive filters. In

that paper, the combiner can track the learning curves of the combined filters.

10

Figure 2.1. The block diagram of the convex combination of adaptive filters

Salman et al., (2015) proposed a new convex combination of two different

algorithms as zero-attracting leaky least-mean-square (ZA-LLMS) and reweighted zero-

attracting leaky-least-mean square (RZA-LLMS) algorithms in sparse system

identification setting. The performances of the aforementioned algorithms has been

tested and compared to the result of the new combination. It showed that the proposed

algorithm has a good ability to track the MSD curves of the other algorithms under a

various noise environments.

A 2-Dimensional (2-D) adaptive filters is an extension of 1-D adaptive filters

which deals with two dimensional signals (i.e., images) (Hadhoud and Thomas, 1998).

One of the most attracting applications of such algorithms is image de-noising. There

are many 2-D adaptive algorithms such as: OBA, OBAI, TDBLMS, TDLMS, and

TDBLMS (Mikhael and Wu, 1989; Mikhael and Ghosh, 1992; Hadhoud and Thomas,

1998; Wang and Wang, 1998). Two-dimensional least-mean-square (TDLMS) updates

its coefficients in horizontal and vertical directions on a 2-D plane. Even though the 2-D

LMS algorithm has shown good performance in image de-noising systems, its

𝜆(𝑛)

𝑦2(𝑛)

𝑒2(𝑛)

-

+

1 − 𝜆(𝑛)

𝑦(𝑛)

+

-

𝑒1(𝑛)

𝑦1(𝑛) Adaptive filter

(1)

𝑑(𝑛)

+

𝐱(𝑛)

𝑑(𝑛)

Adaptation algorithm

Adaptive filter

(2)

Adaptation algorithm

11

performance still poor when the signal-to-noise ratio (SNR) is relatively low.

Magnetic resonance image (MRI) de-noising is one of the most interesting

applications in adaptive filters techniques, especially, if the SNR is relatively low

(Phatak et al., 2011) or the noise model is complicated. For instance, if the MRI data is

corrupted by Rician noise from the measurement process, this will reduce the accuracy

of any automatic analysis (Mustafa et al., 2012). The challenge, here, is to remove such

noise by segmentation, classification and registration (Chang et al., 2011). There are

many applications to denoising in the MRI such as, adaptive multi-scale data

condensation (Ray et al., 2012) total variation and local noise estimation (Varghees et

al., 2012) and adaptive non-local means filtering (Kang et al., 2013).

However, these algorithms usually suffer from poor performance or time

consumption. Hameed et al., (2014) proposed a 2-D version convex combination of

recursive inverse algorithms (RI) algorithm that provides fast convergence at the

beginning to save time and then provides high performance in terms of noise removal.

The de-noising experiment has been conducted on MR image that is assumed to be

corrupted by an additive white Gaussian noise (AWGN). Simulations showed that the

proposed algorithm successfully recovers the image.

2.2 Artificial Neural Network

Backpropagation (BP) neural networks, and Self-organizing map (SOM) are

common neural network algorithms, they provide high performances in solve many

different problems in a wide range of applications as shown in this literature.

2.2.1 Backpropagation (BP) algorithm

BP artificial neural networks algorithm is an interesting topic which has attracted

many researchers in various domains (Karlik et al., 1998; Karlik, 2000; Lee et al., 2005;

Chiang et al., 2006; Dvir et al., 2006; Behrman et al., 2007; Iseri and Karlik, 2009;

Karlik and Cemel, 2012; Karlik, 2013). However, it has a couple of obstacles that

usually restrict its algorithm performance; the slow convergence and the high steady-

state error. In order to speed up the convergence rate and decrease the steepest descent

error, the momentum technique has been proposed (Yu et al., 1993; Yu and Liu, 2002;

Shao and Zheng, 2009). Many versions of momentum have been proposed and trained

12

in different applications (Qiu et al., 1992; Istook and Martinez, 2002). The BP with

fixed momentum (BPFM) has been proposed by adding a momentum term to the

conventional BP weight update equation (Rumelhart and McClelland, 1986; Rumelhart

et al., 1988) which can speed up learning by reaching optimal steady-state error in short

time. Whereas, the fixed momentum is supposed to be constant within the range of

[0,1]. Unfortunately, when the fixed momentum is in the direction of the negative

gradient which is in an opposing direction to the previous update, it may cause the

weight to be arranged the slope of the error surface instead of down the slope as target.

The fixed momentum has also been extended to adaptive momentum by superiorly

adapting itself along with iterations, achieving optimal convergence speed in the BP

implementation. The adaptive momentum can update itself iteratively and automatically

during the iteration process and depending on the prediction of the output error (Wu et

al., 2002; Wu and Xu, 2002).

Yu and Liu (2002) proposed a new acceleration technique of BP algorithm by

deriving adaptive learning rate and momentum coefficient. The proposed adaptive

parameters are adjusted iteratively to access the optimum weight vectors in a short time

of process. Where, the new BP proved superior convergence compared to other

competing methods.

Shao and Zheng (2009,2011) have proposed a back-propagation with adaptive

momentum (BPAM) which provides better performance than the conventional BP

algorithm in terms of both convergence rate (decreasing time of convergence) and SSE.

In their study, the momentum is updating itself iteratively by multiplying the current

weights with the previous weights. If the momentum coecients are less than zero, they

are denied as positive value to accelerate learning by updating momentum. Otherwise

the momentum is considered as zero to maintain the error downhill.

2.2.2 Self-organizing map (SOM) algorithm

SOM which is most common unsupervised algorithm used in artificial neural

networks has been proposed by (Kohonen, 1990). SOM used to solve many problems of

different applications (Kaski et al., 1998; Tamukoh et al., 2004). It maps the input data

from high dimensional input vector to low dimensional maps according to the features

relations between the input data. The algorithm competitive layer used to learn

clustering the input vectors. SOM algorithm is suffers from the time consumption of

13

training. Training time depends on dataset size and whether the algorithm can reach the

optimum weights and the topology preservation.

Many versions of the SOM have been proposed to improve the vector

quantization and the topology preservation performances (Chi and Yang, 2006; Wong et

al., 2006; Brugger et al., 2008; Chi and Yang, 2008; Gorgonio and Costa, 2008; Yen

and Wu, 2008; Cottrell et al., 2009; Arous and Ellouze, 2010; Tasdemir et al., 2011;

Appiah et al., 2012; Ayadi et al., 2012; Yang et al., 2012). In (Brugger et al., 2008),

authors proposed a new way that can detect the cluster automatically by applying the

cluster algorithm (Bogdan and Rosenstiel, 2001) to the SOM.

Chi and Yang (2006) proposed a hybrid clustering by combining SOM, and the

ant K-means algorithm which is a meta-heuristic method that has been used to

investigate the optimum solutions of many problems. So, the ant K-means algorithm

used to guide the K-means algorithm to the place the objects with high probabilities

depending on the characteristic of pheromone updating. The SOM and ant K-means

algorithm has high performance compared to the conventional SOM algorithm, and

some clustering methods.

Another improvement proposed by (Tasdemir et al., 2011), which is

demonstrated that the neurons of SOM can be clustered hierarchically depending on the

density without needing the distance dissimilarity. In addition, the Gaussian-function

with self-organizing map (GF-SOM) algorithm has been widely used in many

applications as a neighborhood function.

To overcome the limitation of conventional SOM, Berglund & Sitte proposed a

new SOM called the Parameter-Less self-organizing map (PLSOM) algorithm

(Berglund and Sitte, 2006). Their algorithm calculates the local quadratic fitting error

instead of using the well-known neighbourhood size and learning parameters as in the

conventional SOM algorithm. The problem with PLSOM algorithm is in the initial

weight distribution which suffers from over-reliance and over-sensitivity to outliers.

This suffering continues even after a period of processing time (Berglund, 2010).

Yamaguchi et al., (2010) proposed an adaptive hierarchical competitive network

layer of SOM algorithm based on Tree-Structured. The proposed algorithm adapts

automatically to detect the optimum number of neurons, by adding or deleting the map

neurons using means error and frequency techniques.

14

3. ADAPTIVE FILTERING

Adaptive filtering has been implemented to overcome the limitations of the

conventional static filters, where the adaptive filter can deal with unknown or time

varying input signals in a various noise environments (Diniz, 1997). They have been

used in different applications such as: system identification (Glentis et al., 1999),

channel equalization/identification and interference suppression in communications

systems (Madhow and Honig, 1994; Gesbert and Duhamel, 2000), and acoustic echo

cancellation (Gay and Benesty, 2000). The main idea of filter adaptation is the output

signals of the filter depends on the weight coefficient vectors, that adjust itself

iteratively with time processing to minimize the error of estimation between filter output

and desired output. Fig. 3.1 illustrates the main diagram of an adaptive filter. It is shown

in the figure how to remove noise using adaptive filters, where 𝑦(𝑛) is the filter output,

𝑑(𝑛) is the desired response and 𝑒(𝑛) is the estimation error of the adaptive filter for

time iteration 𝑛.

Adaptive filters classified as; finite impulse response (FIR), and infinite impulse

response (IIR). IIR filters are beyond the scope of this thesis. The output of adaptive

FIR filter is obtained linearly by combining the present and past input signal

samples 𝑁 − 1, where 𝑁 is the number of the filter coefficients. Adaptive FIR filter is

preferred over adaptive IIR filter because of its robustness and simplicity. Moreover,

FIR filters have been used in many practical applications such as: channel estimation in

communications systems (Breining et al., 1999).

Figure 3.1. Block diagram of the statistical filtering problem

Desired response

𝑑(𝑛)

Input

𝐱(𝑛)

- +
Adaptive Filter

Output

𝑦(𝑛)

𝞢

Estimation error

𝑒(𝑛)

15

3.1 Adaptive Filtering Configurations

Two adaptive filtering configurations are presented in this thesis. One

application is system identification and the other is noise cancellation. Different

adaptive algorithms will be tested using this applications in additive white Gaussian

noise (AWGN) and additive correlated Gaussian noise (ACGN) environments.

3.1.1 System identification

This configuration has been used in several areas. The system identification is

necessary for many applications such as: identification of the acoustic echo path in

acoustic echo cancellation (Dogancay and Tanrikulu, 2001), channel identification in

communications systems (Gesbert and Duhamel, 2000). The adaptive filter is capable to

obtain a best fit of a linear model for an unknown system with a time varying model.

The unknown system and adaptive filter are fed simultaneously by the same input

signal, and the output of the unknown system added to measurement noise 𝑣(𝑛) to

provide the desired response signal of the adaptive filter 𝑑(𝑛), where 𝑑(𝑛) = 𝒉𝑇𝐱(𝑛) +

𝑣(𝑛), 𝒉 is the optimal filter coefficient vector (unknown system). Fig. 3.2 depicts the

system identification configuration.

Figure 3.2. System identification configuration

𝑦(𝑛)

𝑣(𝑛)

𝐱(𝑛)

-

+

+

𝑒(𝑛)

𝑑(𝑛)
Unknown System

Adaptive Filter

16

where 𝐱(𝑛), 𝑣(𝑛), 𝑦(𝑛), and 𝑒(𝑛), are the input signal, the measurement noise, adaptive

filter output signal and the irreducible error, respectively.

3.1.2 Noise cancellation

This configuration is used to eliminate noise by passing the received signal

through the configuration using adaptive algorithm. Static filters need to have prior

knowledge about the characteristics of the input signal or noise to estimate the desired

information. While, the adaptive filters do not require prior knowledge about input

signal. Noise cancellation is applied in radio communications and mobile phones,

because those are affected from high-noise signals. The adaptive noise cancellation is

depicted in Fig. 3.3.

Figure 3.3. Noise cancellation configuration

The desired response 𝑑(𝑛) includes the input 𝐱(𝑛) and an uncorrelated

noise 𝑣(𝑛). A second input 𝑣′(𝑛) used as a noise to feed the adaptive filter which is

uncorrelated with 𝑣(𝑛) and independent of 𝐱(𝑛) so that it can extract the desired

information. The filter coefficients of adaptive algorithm 𝐰(𝑛) adjust themselves

automatically to reduce the error 𝑒(𝑛) between 𝑦(𝑛) and 𝑑(𝑛), and obtain the desired

signal.

𝑦(𝑛) 𝑣′(𝑛)

-

+ 𝑒(𝑛)

𝑑(𝑛)

Adaptive Filter

𝐱(𝑛) + 𝑣(𝑛)

17

3.2 Adaptation Algorithms

In this section, some adaptive filters are reviewed. The first algorithm is the

normalized least-mean-square (NLMS) proposed in (Haykin, 2002), the second is the

recursive inverse (RI) by (Ahmad et al., 2011), and the last one is the second-order

recursive inverse (second-order RI) by (Ahmad et al., 2013b). These algorithms have

been used in diverse adaptive filtering applications.

3.2.1 Normalized least-mean-square (NLMS) algorithm

The least-mean-square (LMS) algorithm is a widely used adaptive algorithm

(Bouboulis and Theodoridis, 2010). It is characterized by its simplicity, robustness and

low cost (Haykin, 2002). This adaptive algorithm is based on the gradient descent

method of the cost function (𝐽(𝑛) = 𝑒2(𝑛)). The weight update equation of LMS

algorithm is derived as,

𝐰(𝑛) = 𝐰(𝑛 − 1) + 𝜇𝐱(𝑛)𝑒(𝑛) (3.1)

Where 𝜇 is the step-size, that controls the convergence rate and the stability of

the algorithm.

The LMS algorithm adjusts the tap weights vector in a recursive manner until

obtaining the optimum weights vector to access minimum error on the required signal

using (3.1). The step size is constant in the range of,

0 < 𝜇 <
2

𝜆𝑚𝑎𝑥
 (3.2)

Where 𝜆𝑚𝑎𝑥 is the input autocorrelation matrix 𝐑 with largest eigenvalue, used

to guarantee the stability. The trace of 𝐑 (sum of the eigenvalues) is used instead of

 𝜆𝑚𝑎𝑥. Therefore, the value of step-size is within 0 < 𝜇 <
2

𝑡𝑟𝑎𝑐𝑒 (𝐑)
. The trace (𝐑) =

‖𝐱(𝑛)‖2 is related to the power of the 𝐱(𝑛). The well-known step size is obtained as;

0 < 𝜇 <
2

‖𝐱(𝑛)‖2
 (3.3)

18

The step-size 𝜇 is inversely proportional to the power of the input signal.

Accordingly, when the power of the input is high, the step size is imposed to a small

value, on the other hand, when the power of the input is low the step size becomes large.

This relationship enables normalizing the step-size of the LMS algorithm according to

the input signal power. The normalized step-size provides a useful LMS-type algorithm,

commonly known as normalized LMS (NLMS) algorithm (Haykin, 2002).

The NLMS algorithm with normalized step-size term updates the weights vector

as,

𝐰(𝑛) = 𝐰(𝐧 − 𝟏) +
𝜇

𝐱𝑇(𝑛)𝐱(𝑛) + 𝜖
𝐱(𝑛)𝑒(𝑛) (3.4)

Where the step-size is in the range [0,2]. The importance of normalizing the step

size is improving the convergence behavior in the NLMS algorithm. So the algorithm

becomes powerful in non-stationary applications like speech recognition. In addition,

the speed of convergence is improved to achieve the minimum steady-state MSE

quickly (Azpicueta-Ruiz et al., 2010).

3.2.2 Recursive inverse (RI) algorithm

Any stationary discrete-time stochastic process can be expressed as:

𝐱(𝑛) = 𝑢(𝑛) + 𝑣(𝑛) (3.5)

Where 𝑢(𝑛) is the desired signal and 𝑣(𝑛) is the noise process. Removing noise

from 𝐱(𝑛) is a challenge in many signal-processing applications.

Many adaptive algorithms have been used to update the coefficients of the filter

shown in Fig. 3.1. In the recently proposed adaptive RI algorithm, the autocorrelation

matrix is recursively estimated and not its inverse. The weight-updated equation of the

RI is:

𝐰(𝑛) = [𝐈 − 𝜇(𝑛)𝐑(𝑛)]𝐰(𝑛 − 1) + 𝜇(𝑛)𝐩(𝑛) (3.6)

19

Where 𝑛 is the time parameter (𝑛 = 1,2, …), 𝐰(𝑛) is the filter weight vector at

time 𝑛 with length 𝑁 , 𝐈 is an 𝑁 × 𝑁 identity matrix, 𝜇(𝑛) is the variable step size, 𝐑(𝑛)

is the autocorrelation matrix of the tap-input vector, and 𝐩(𝑛) is the cross-correlation

vector between the tap-input vector and desired response of the adaptive filter. The

correlations of the tap-input vector and the desired response are recursively estimated

as:

𝐑(𝑛) = 𝛽𝐑(𝑛 − 1) + 𝐱(𝑛)𝐱𝑇(𝑛) (3.7)

𝐩(𝑛) = 𝛽𝐩(𝑛 − 1) + 𝑑(𝑛)𝐱(𝑛) (3.8)

Where 𝛽 is the forgetting factor, which is usually selected very close to unity,

and the step size μ(n) is given as:

𝜇(𝑛) =
𝜇0

1 − 𝛽𝑛
 𝑤ℎ𝑒𝑟𝑒 𝜇0 < 𝜇𝑚𝑎𝑥 (3.9)

Where 𝜇𝑚𝑎𝑥 <
2

𝜆𝑚𝑎𝑥(𝐑(𝑛))
 and 𝜆𝑚𝑎𝑥(𝐑(𝑛)) is the maximum eigenvalue of 𝐑(𝑛).

3.2.3 Second order recursive inverse (second-order RI) algorithm

In order to improve the performance of the RI algorithm, a second-order RI

estimate of the correlations with the same updated equation as in (3.6) can be used:

𝐑(𝑛) = 𝛽1𝐑(𝑛 − 1) + 𝛽2𝐑(𝑛 − 2) + 𝐱(𝑛)𝐱𝐓(𝑛) (3.10)

𝐩(𝑛) = 𝛽1𝐩(𝑛 − 1) + 𝛽2𝐩(𝑛 − 2) + 𝑑(𝑛)𝐱(𝑛) (3.11)

By selecting 𝛽1 = 𝛽2 =
1

2
𝛽, the computational complexity of the second-order

RI will be comparable to that of the first-order RI algorithm. Taking the expectation of

Eq. (3.10) gives:

20

𝐑̅(𝑛) =
1

2
𝛽1𝐑̅(𝑛 − 1) +

1

2
𝛽2𝐑̅(𝑛 − 2) + 𝐑𝐱𝐱 (3.12)

Where 𝐑𝐱𝐱 = 𝐸{𝐱(𝑛)𝐱𝑇(𝑛)} and 𝐑̅(𝑛) = 𝐸{𝐑(𝑛)}. After calculating the

transfer function of Eq. (3.12), its poles are:

𝑧1 =
1

4
(𝛽 − √𝛽2 + 8𝛽)

(3.13)

𝑧2 =
1

4
(𝛽 + √𝛽2 + 8𝛽)

Where 𝑧1 and 𝑧2 have magnitudes of less than unity if 𝛽 < 1. Solving Eq. (3.12)

with the initial conditions 𝐑̅(−2) = 𝐑̅(−1) = 𝐑̅(0) = 0 yields:

𝐑̅(𝑛) = (
1

𝛽 − 1
+ 𝛼1𝑧1

𝑘 + 𝛼2𝑧2
𝑘)𝐑𝐱𝐱 (3.14)

Where

𝛼1 =
𝛽 − 𝑧2

(1 − 𝛽)(𝑧2 − 𝑧1)

(3.15)

𝛼2 =
𝛽 − 𝑧1

(1 − 𝛽)(𝑧2 − 𝑧1)

Letting

𝛾(𝑛) =
1

𝛽 − 1
+ 𝛼1𝑧1

𝑛 + 𝛼2𝑧2
𝑛 (3.16)

The variable step size of the second-order RI algorithm is then:

𝜇(𝑛) =
𝜇0

𝛾(𝑛)
 (3.17)

21

Where 𝜇0 and 𝛾(𝑛) are defined in Eqs. (3.9) and (3.16), respectively. This

variable step size enables us to reach a low MSE that cannot to be attained by the

NLMS or the first-order RI algorithm.

3.3 Convex Combination

In this section, different RI convex combinations such as convex combination of

RI algorithms, convex combination of RI and second-order RI algorithms, and 2-D

convex of RI and second-order RI algorithms have been proposed to improve the

performance of the adaptive filters.

3.3.1 Convex combination of RI algorithms

Consider the combination of two adaptive filters in noise cancelation setting

which has been recently proposed in (Ma et al., 2015), as shown in Fig.3.4. Starting by

the update equation of the RI.

Figure 3.4. Convex combination of two adaptive filters for a noise cancelation setting

𝑒2(𝑛)

-
+

𝑦2(𝑛)

1 − 𝜆(𝑛)

𝑦(𝑛)

𝜆(𝑛)

+

-

𝑒1(𝑛)

𝑦1(𝑛)
𝐰1(𝑛)

𝑑(𝑛)

+

𝐱(𝑛)

𝐰2(𝑛)

𝑑(𝑛)

22

𝐰𝑖(𝑛) = [𝐈 − μ𝑖(𝑛)𝐑𝑖(𝑛)]𝐰𝑖(𝑛 − 1) + μ𝑖(𝑛)𝐩𝑖(𝑛) (3.18)

Where 𝑛 is the time index (𝑛 = 1,2, …), 𝐰𝑖(𝑛) is the ith filter weight vector at

time 𝑛 with length 𝑁 (𝑖 = 1, 2), I is an 𝑁 × 𝑁 identity matrix, μ𝑖(𝑛) is the ith variable

step-size, 𝐑𝑖(𝑛) is the ith autocorrelation matrix of the tap-input vector and 𝐩𝑖(𝑛) is the

ith cross-correlation vector between the tap-input vector 𝐱(𝑛) and desired response 𝑑(𝑛)

of the adaptive filter. The correlations are recursively estimated as the following,

𝐑𝑖(𝑛) = 𝛽𝐑𝑖(𝑛 − 1) + 𝐱(𝑛)𝐱𝑇(𝑛) (3.19)

𝐩𝑖(𝑛) = 𝛽𝐩𝑖(𝑛 − 1) + 𝑑(𝑛)𝐱(𝑛) (3.20)

Where 𝛽 is the forgetting factor with a value close to unity.

μ𝑖(𝑛) =
μ0

1 − 𝛽𝑛
 𝑤ℎ𝑒𝑟𝑒 μ0 < μ𝑚𝑎𝑥 (3.21)

Where μ𝑚𝑎𝑥 <
2

𝜆𝑚𝑎𝑥(𝐑𝑖(𝑛))
 and 𝜆𝑚𝑎𝑥(𝐑𝑖(𝑛)) is the maximum eigenvalue of

𝐑𝑖(𝑛).

The error of each individual filter is formulated as

𝑒𝑖(𝑛) = 𝑑(𝑛) − 𝐰𝑖
𝑇(𝑛 − 1)𝐱(𝑛) (3.22)

And the desired response is;

𝑑(𝑛) = 𝐱(𝑛) + 𝜈(𝑛) (3.23)

Where 𝜈(𝑛) is the measurement noise. The outputs of the two adaptive filters

can be combined according to (Arenas-Garcia et al., 2006; Azpicueta-Ruiz et al., 2008),

by the following equation,

𝑦(𝑛) = 𝜆(𝑛)𝑦1(𝑛) + [1 − 𝜆(𝑛)]𝑦2(𝑛) (3.24)

23

where 𝑦𝑖(𝑛) = 𝐰𝑖
𝑇(𝑛 − 1)𝐱(𝑛) and convex combination parameter, 𝜆(𝑛) is

given by,

𝜆(𝑛) =
𝐸[(𝑑(𝑛) − 𝑦2(𝑛))(𝑦1(𝑛) − 𝑦2(𝑛))]

𝐸[(𝑦1(𝑛) − 𝑦2(𝑛))2]
 (3.25)

The error signal of the above mentioned combination is given as,

 𝑒(𝑛) = 𝑑(𝑛) − 𝑦(𝑛)

= 𝑑(𝑛) − 𝜆(𝑛)𝑦1(𝑛) − (1 − 𝜆(𝑛))𝑦2(𝑛) (3.26)

3.3.1.1 Tracking analysis of convexly combined RI algorithms

In this section, the tracking analysis of the proposed algorithm is presented and

SS-MSE criterion is derived.

Let us start by the random walk model.

𝐰0(𝑛) = 𝐰0(𝑛 − 1) + 𝑞(𝑛) (3.27)

Where 𝑞(𝑛) is a stochastic i.i.d. with zero mean and covariance matrix 𝑄 =

𝐸{𝑞(𝑛)𝑞(𝑛)}. The weight error vector of ith filter is defined as:

𝐰̃𝑖(𝑛) = 𝐰0(𝑛) − 𝐰𝑖(𝑛) (3.28)

The a priori error is defined as,

𝑒𝑖,𝑎(𝑛) = 𝐱𝑇(𝑛)[𝐰0(𝑛) − 𝐰𝑖(𝑛 − 1)] (3.29)

And the a posteriori error,

𝑒𝑖,𝑝(𝑛) = 𝐱𝑇(𝑛)[𝐰0(𝑛) − 𝐰𝑖(𝑛)] (3.30)

Now, we calculate the overall output error by subtracting the overall output of

24

filters in (3.24) form the desired response and by using (3.29) and (3.30),

𝑒𝑎(𝑛) = 𝑑(𝑛) − 𝜆(𝑛)𝑦1(𝑛) − (1 − 𝜆(𝑛))𝑦2(𝑛)

 = 𝑑(𝑛) − 𝜆(𝑛)𝑦1(𝑛) − 𝑦2(𝑛) − 𝜆(𝑛)𝑦2(𝑛)

 = 𝑒2,𝑎(𝑛) − 𝜆(𝑛)[−𝑑(𝑛) + 𝑦1(𝑛) + 𝑑(𝑛) − 𝑦2(𝑛)]

 = 𝑒2,𝑎(𝑛) − 𝜆(𝑛)[−𝑒1,𝑎(𝑛) + 𝑒2,𝑎(𝑛)]

 = 𝑒2,𝑎(𝑛) + 𝜆(𝑛)𝑒1,𝑎(𝑛) − 𝜆(𝑛)𝑒2,𝑎(𝑛)

 = (1 − 𝜆(𝑛))𝑒2,𝑎(𝑛) + 𝜆(𝑛)𝑒1,𝑎(𝑛) (3.31)

Evaluate 𝐸[𝑒𝑎
2(𝑛)] using (3.31),

𝐸[𝑒𝑎
2(𝑛)] = 𝐸 [((1 − 𝜆(𝑛))𝑒2,𝑎(𝑛) + 𝜆(𝑛)𝑒1,𝑎(𝑛)) ((1 − 𝜆(𝑛))𝑒2,𝑎(𝑛) + 𝜆(𝑛)𝑒1,𝑎(𝑛))]

= (1 − 𝜆(𝑛))
2
𝐸[𝑒2,𝑎

2 (𝑛)] + 2𝜆(𝑛)(1 − 𝜆(𝑛))𝐸[𝑒1,𝑎(𝑛)𝑒2,𝑎(𝑛)]

 +𝜆2(𝑛)𝐸[𝑒2,𝑎
2 (𝑛)] (3.32)

To evaluate 𝐸[𝑒𝑎
2(𝑛)],we first need to evaluate the cross terms in (3.32),

𝐸[𝑒1,𝑎(𝑛)𝑒2,𝑎(𝑛)]

= 𝐸[(𝐰0(𝑛) − 𝐰1(𝑛 − 1))𝑇𝐱(𝑛)𝐱𝑇(𝑛)(𝐰0(𝑛) − 𝐰2(𝑛 − 1))] (3.33)

Subtracting both sides of (3.18) from 𝐰0(𝑛)and by using (3.29) and (3.30) we

get,

𝐰̃𝑖(𝑛) = 𝐰̃𝑖(𝑛 − 1) − μ𝑖(𝑛)𝐱(𝑛)𝑒𝑖(𝑛) + μ𝑖(𝑛)𝛽𝑖𝜉𝑖(𝑛 − 1) (3.34)

Where 𝜉𝑖(𝑛 − 1) = 𝐑(𝑛)𝐰𝑖(𝑛 − 1) − 𝐩(𝑛). Multiplying both sides of (3.34) by

𝐱𝑇(𝑛) from the left side gives,

𝑒𝑖,𝑝(𝑛) = 𝑒𝑖,𝑎(𝑛) − μ𝑖(𝑛)𝐱𝑇(𝑛)𝐱(𝑛)𝑒𝑖(𝑛) + μ𝑖(𝑛)𝛽𝑖𝐱
𝑇(𝑛)𝜉𝑖(𝑛 − 1) (3.35)

Substituting (3.35) in (3.34) yields:

25

𝐰̃𝑖(𝑛) = 𝐰̃𝑖(𝑛 − 1) − μ𝑖(𝑛)𝛽𝑖𝜉𝑖(𝑛 − 1)

+
μ𝑖(𝑛)𝐱(𝑛)

μ𝑖(𝑛)𝐱𝑇(𝑛)𝐱(𝑛)
[𝑒𝑖,𝑎(𝑛) − 𝑒𝑖,𝑝(𝑛) + μ𝑖(𝑛)𝛽𝑖𝐱

𝑇(𝑛)𝜉𝑖(𝑛 − 1)] (3.36)

Note that 𝑡𝑟{𝐱(𝑛)𝐱𝑇(𝑛)𝜉𝑖(𝑛 − 1)} = 𝑡𝑟{𝜉𝑖(𝑛 − 1)𝐱𝑇(𝑛)𝐱(𝑛)} (Haykin, 2002)

and hence 𝐱(𝑛)𝐱𝑇(𝑛)𝜉𝑖(𝑛 − 1) ≈ 𝜉𝑖(𝑛 − 1)𝐱𝑇(𝑛)𝐱(𝑛). Rearranging (3.36) provides;

𝐰̃𝑖(𝑛) −
𝐱(𝑛)

𝐱𝑇(𝑛)𝐱(𝑛)
𝑒𝑖,𝑎(𝑛) = 𝐰̃𝑖(𝑛 − 1) −

𝐱(𝑛)

𝐱𝑇(𝑛)𝐱(𝑛)
𝑒𝑖,𝑝(𝑛) (3.37)

Multiplying both side of the first filter in (3.37) by their counterpart of the

second filter yields:

𝐰̃1
𝑇(𝑛)𝐰̃2(𝑛) +

𝑒1,𝑎(𝑛)𝑒2,𝑎(𝑛)

𝐱𝑇(𝑛)𝐱(𝑛)
= 𝐰̃1

𝑇(𝑛 − 1)𝐰̃2(𝑛 − 1) +
𝑒1,𝑝(𝑛)𝑒2,𝑝(𝑛)

𝐱𝑇(𝑛)𝐱(𝑛)
 (3.38)

Applying the random walk model is to derive the following expression for the

expectation of the inner product of the weight error vectors of the two individual filters

at the time instant 𝑛 gives,

 𝐸[(𝐰0(𝑛) − 𝐰1(𝑛 − 1))𝑇(𝐰0(𝑛) − 𝐰2(𝑛 − 1))

= 𝐸[𝐰0(𝑛 − 1) + 𝑞(𝑛) − 𝐰1(𝑛 − 1))𝑇(𝐰0(𝑛 − 1) + 𝑞(𝑛)

− 𝐰2(𝑛 − 1))] = 𝐸[𝐰̃1(𝑛 − 1) + 𝑞(𝑛))𝑇(𝐰̃2(𝑛 − 1) + 𝑞(𝑛))]

= 𝐸[𝐰̃1
𝑇(𝑛 − 1)𝐰̃2(𝑛 − 1)] + 𝐸[𝐰̃1

𝑇(𝑛 − 1)𝑞(𝑛)]

+ 𝐸[𝑞𝑇(𝑛)𝐰̃2(𝑛 − 1)] + 𝐸[𝑞(𝑛)𝑞(𝑛)]

= 𝐸[𝐰̃1
𝑇(𝑛 − 1)𝐰̃2(𝑛 − 1)] + 𝑇𝑟{𝑄} (3.39)

Substituting (3.39) into (3.38) and simplifying gives,

𝐸[𝐰̃1
𝑇(𝑛)𝐰̃2(𝑛)] + 𝐸 [

𝑒1,𝑎(𝑛)𝑒2,𝑎(𝑛)

𝐱𝑇(𝑛)𝐱(𝑛)
]

= 𝐸[𝐰̃1
𝑇(𝑛 − 1)𝐰̃2(𝑛 − 1)] + 𝐸 [

𝑒1,𝑝(𝑛)𝑒2,𝑝(𝑛)

𝐱𝑇(𝑛)𝐱(𝑛)
] + 𝑇𝑟{𝑄} (3.40)

26

In the steady state assume,

𝐸[𝐰̃1
𝑇(𝑛)𝐰̃2(𝑛)] ≈ 𝐸[𝐰̃1

𝑇(𝑛 − 1)𝐰̃2(𝑛 − 1)] (3.41)

And hence,

𝐸 [
𝑒1,𝑎(𝑛)𝑒2,𝑎(𝑛)

𝐱𝑇(𝑛)𝐱(𝑛)
] = 𝐸 [

𝑒1,𝑝(𝑛)𝑒2,𝑝(𝑛)

𝐱𝑇(𝑛)𝐱(𝑛)
] + 𝑇𝑟{𝑄} (3.42)

Now, if we substitute (3.35) in (3.42) and rearrange we obtain,

𝐸[𝑒1,𝑎(𝑛)μ2(𝑛)𝑒2(𝑛)] + 𝐸[𝑒2,𝑎(𝑛)μ1(𝑛)𝑒1(𝑛)]

= 𝐸[μ1(𝑛)μ2(𝑛)𝐱𝑇(𝑛)𝐱(𝑛)𝑒1(𝑛)𝑒2(𝑛)] + 𝑇𝑟{𝑄} (3.43)

Now substitute 𝑒𝑖(𝑛) = 𝑒𝑖,𝑎(𝑛) + 𝜈(𝑛) in (3.43), having in mind 𝐱𝑇(𝑛)𝐱(𝑛) ≈

𝐸{𝐱𝑇(𝑛)𝐱(𝑛)} = 𝜎𝐱
2 and 𝐸[𝑒𝑖,𝑎(𝑛) 𝜈(𝑛)] = 0 and simplifying,

μ2(𝑛)𝐸 [𝑒1,𝑎(𝑛) (𝑒2,𝑎(𝑛) + 𝜈(𝑛))] + μ1(𝑛)𝐸 [𝑒2,𝑎(𝑛) (𝑒1,𝑎(𝑛) + 𝜈(𝑛))]

= μ1(𝑛)μ2(𝑛)𝐸 [𝐱𝑇(𝑛)𝐱(𝑛) (𝑒1,𝑎(𝑛) + 𝜈(𝑛)) (𝑒2,𝑎(𝑛) + 𝜈(𝑛))]

+ 𝑇𝑟{𝑄} (3.44)

Substituting (3.44) in (3.33) and taking limn→∞ gives,

𝑙𝑖𝑚𝑛→∞𝐸[𝑒1,𝑎(𝑛)𝑒2,𝑎(𝑛)] = 𝑧(𝑛)[μ1(𝑛)μ2(𝑛)𝜎𝑣
2𝐸[𝐱𝑇(𝑛)𝐱(𝑛)] + 𝑇𝑟{𝑄}] (3.45)

Where 𝑧(𝑛) =
1

µ1(𝑛)+µ2(𝑛)−µ1(𝑛)µ2(𝑛)𝐸[𝐱𝑇(𝑛)𝐱(𝑛)]

For a single filter case, we have,

𝑙𝑖𝑚𝑛→∞𝐸[𝑒𝑖,𝑎(𝑛)𝑒𝑖,𝑎(𝑛)]

=
1

2μ𝑖(𝑛) − μ𝑖
2(𝑛)𝐸[𝐱𝑇(𝑛)𝐱(𝑛)]

[μ𝑖
2(𝑛)𝜎𝑣

2𝐸[𝐱𝑇(𝑛)𝐱(𝑛)]

+ 𝑇𝑟{𝑄}] (3.46)

27

Substituting (3.45) and (3.46) in (3.32) gives:

𝑙𝑖𝑚𝑛→∞𝐸[𝑒𝑎
2(𝑛)]

=
2𝜆(∞)(1 − 𝜆(∞))

μ1(𝑛) + μ2(𝑛) − μ1(𝑛)μ2(𝑛)𝐸[𝐱𝑇(𝑛)𝐱(𝑛)]
[μ1(𝑛)μ2(𝑛)𝜎𝑣

2𝐸[𝐱𝑇(𝑛)𝐱(𝑛)] + 𝑇𝑟{𝑄}]

 +
𝜆2(∞)

2μ1(𝑛) − μ1
2(𝑛)𝐸[𝐱𝑇(𝑛)𝐱(𝑛)]

[μ1
2(𝑛)𝜎𝑣

2𝐸[𝐱𝑇(𝑛)𝐱(𝑛)] + 𝑇𝑟{𝑄}]

+
(1 − 𝜆(∞))2

2μ2(𝑛) − μ2
2(𝑛)𝐸[𝐱𝑇(𝑛)𝐱(𝑛)]

[μ2
2(𝑛)𝜎𝑣

2𝐸[𝐱𝑇(𝑛)𝐱(𝑛)]

+ 𝑇𝑟{𝑄}] (3.47)

3.3.2 Convex combination of RI and second-order RI algorithms

To obtain better combination than in section (3.3.1), we combine RI and second-

order RI algorithms, where the update equation same as in (3.18). The μ𝑖(𝑛) is the 𝑖𝑡ℎ

variable step-size of (3.9) and (3.17). 𝐑𝑖(𝑛) is the 𝑖𝑡ℎ autocorrelation matrix and 𝐩𝑖(𝑛)

is the 𝑖𝑡ℎ cross-correlation of RI and second order RI algorithms. The correlations of the

tap-input vector and the desired response are recursively estimated by the following,

𝐑1(𝑛) = 𝛽𝐑1(𝑛 − 1) + 𝐱(𝑛)𝐱𝑇(𝑛) (3.48)

𝐩1(𝑛) = 𝛽𝐩1(𝑛 − 1) + 𝑑(𝑛)𝐱(𝑛) (3.49)

𝐑2(𝑛) = 𝛽1𝐑2,(𝑛 − 1) + 𝛽2𝐑2(𝑛 − 2) + 𝐱(𝑛)𝐱𝑇(𝑛) (3.50)

𝐩2(𝑛) = 𝛽1𝐩2(𝑛 − 1) + 𝛽2𝐩2(𝑛 − 2) + 𝑑(𝑛)𝐱(𝑛) (3.51)

𝜇1(𝑛) =
𝜇0

1 − 𝛽𝑛
 where 𝜇0 < 𝜇𝑚𝑎𝑥 (3.52)

Where 𝜇𝑚𝑎𝑥 <
2

𝜆𝑚𝑎𝑥(𝐑1(𝑛))
 and 𝜆𝑚𝑎𝑥(𝐑1(𝑛)) is the maximum eigenvalue of

𝐑1(𝑛).

28

On the other hand, the variable step-size 𝜇2(𝑛) of the second-order RI is:

𝜇2(𝑛) =
𝜇0

𝛾(𝑛)
 (3.53)

Where 𝜇0 and 𝛾(𝑛) are defined in section (3.2).

The RI and second-order RI Algorithms are combined in the noise cancellation

setting, as shown in Fig. 3.5.

Figure 3.5. Convex combination of two adaptive filters for system identification setting

The output estimated error of the 𝑖𝑡ℎ adaptive filter of each combined algorithms

shows as,

𝑒𝑖(𝑛) = 𝑑(𝑛) − 𝐰𝑖
𝑇(𝑛 − 1)𝐱(𝑛) (3.54)

𝑑(𝑛) = 𝒉𝑇𝐱(𝑛) + 𝑣(𝑛) (3.55)

𝑦(𝑛) 𝜆(𝑛)

𝑦2(𝑛)

𝐱(𝑛)

+

+

+

-

-

𝑒2(𝑛)

𝑒1(𝑛)

1 − 𝜆(𝑛)

𝑦1(𝑛)

𝒉(𝑛)

𝐰1(𝑛)

𝐰𝟐(𝑛)

𝒉(𝑛)

𝑣(𝑛)

𝑣(𝑛)

29

And

𝑦𝑖(𝑛) = 𝐰𝑖
𝑇(𝑛 − 1)𝐱(𝑛) (3.56)

Where 𝐰𝑖
𝑇(𝑛) is the tap weight vector, 𝑦𝑖(𝑛) is the output of the 𝑖𝑡ℎ adaptive

filter with 𝑖 = 1,2, 𝒉 is the optimal filter coefficient, and 𝑣(𝑛) is the measurement

noise.

The overall output filter combination can be computed similar to (3.24),

𝑦(𝑛) = 𝜆(𝑛)(𝐰1
𝑇(𝑛 − 1)𝐱(𝑛)) + [1 − 𝜆(𝑛)](𝐰2

𝑇(𝑛 − 1)𝐱(𝑛)) (3.57)

Where the 𝐰1(𝑛), and 𝐰2(𝑛) are the weight vectors of combined algorithms.

𝜆(𝑛) is given in (3.25).

Replacing (3.55) and (3.24) in (3.26) the error signal of the combination yields;

𝑒(𝑛) = 𝒉𝑇𝐱(𝑘) + 𝑣(𝑘) − 𝜆(𝑛)𝑦1(𝑛) − (1 − 𝜆(𝑛))𝑦2(𝑛) (3.58)

The 𝑒(𝑛) is the total output error combination in the system identification

setting.

3.3.3 2-D Convex of RI and second-order RI algorithms

The update equation in (3.18) can be extended to 2-D form in a convex

combination of two RI algorithms such below:

𝐰𝑖,𝑛(𝑘1, 𝑘2) = [𝐈 − μ𝑖(𝑛)𝐑𝑖,𝑛]𝐰𝑖,𝑛−1(𝑘1, 𝑘2) + μ𝑖(𝑛)𝐩𝑖,𝑛 (3.59)

Where 𝐰𝑖,𝑛(𝑘1, 𝑘2) is the extended weight vector of 2-D form with size 𝑁 × 𝑁

and at time 𝑛, 𝑖 = 1,2, 𝑘1 = 0,1, … , 𝑁 − 1 and 𝑘2 = 0,1,⋯ , 𝑁 − 1. 𝐑1,𝑛,𝐩1,𝑛,𝐑2,𝑛, and

𝐩2,𝑛 are respectively given by,

𝐑1,𝑛 = 𝛽𝐑1,𝑛−1 + 𝐱(𝑚1, 𝑚2)𝐱
𝑇(𝑚1,𝑚2) (3.60)

30

𝐩1,𝑛 = 𝛽𝐩1,𝑛−1 + 𝑑(𝑚1,𝑚2)𝐱(𝑚1, 𝑚2) (3.61)

𝐑2,𝑛 = 𝛽1𝐑2,𝑛−1 + 𝛽2𝐑2,𝑛−2 + 𝐱(𝑚1,𝑚2)𝐱
𝑇(𝑚1,𝑚2) (3.62)

𝐩2,𝑛 = 𝛽1𝐩2,𝑛−1 + 𝛽2𝐩2,𝑛−2 + 𝑑(𝑚1, 𝑚2)𝐱(𝑚1,𝑚2) (3.63)

Where 𝐱(𝑚1, 𝑚2) is the filter input and 𝑑(𝑚1,𝑚2)is the desired output. The

filter input 𝐱(𝑚1, 𝑚2) and tap-weight vector 𝐰𝑖,𝑛(𝑘1, 𝑘2) can be defined using the

following column-ordered vectors such as,

𝐱(𝑚1,𝑚2) =

[

𝐱(𝑚1,𝑚2)
⋮

𝐱(𝑚1, 𝑚2 − 𝑁 + 1)
⋮

𝐱(𝑚1 − 𝑁 + 1,𝑚2)
⋮

𝐱(𝑚1 − 𝑁 + 1,𝑚2 − 𝑁 + 1)]

 (3.64)

And

𝐰𝑖,𝑛(𝑘1, 𝑘2) =

[

𝐰𝑖,𝑛(0,0)

⋮
𝐰𝑖,𝑛(0, 𝑁 − 1)

⋮
𝐰𝑖,𝑛(𝑁 − 1,0)

⋮
𝐰𝑖,𝑛(𝑁 − 1,𝑁 − 1)]

 (3.65)

A possible way of data reuse is shown in Fig. 3.6. In this scheme, as shown in

Fig. 3.6 (a), we can consider a mask, i.e. 3 × 3 pixels, which moves horizontally to the

right by one column at a time until the end of each row. Afterward, the same process is

repeated with the next row below until the last 9 pixels of the image are reached. At the

end of each process of the mask, the data can be reshaped as shown in Fig. 3.6 (b),

starting from the last pixel in the lower right corner going left and up.

31

(a) (b)

Figure 3.6. Rectangular configuration of data-reusing in 2-D plane

The 𝑖𝑡ℎ filter output is given by the following 2-D convolution:

𝑦𝑖,𝑛(𝑚1,𝑚2) = ∑ ∑ 𝐰𝑖,𝑛(𝑘1, 𝑘2)

𝑁−1

𝑘2=0

𝑁−1

𝑘1=0

𝐱(𝑚1 − 𝑘1, 𝑚2 − 𝑘2) (3.66)

Fig. 3.7 shows the convex combination of two RI adaptive filters in 2-D form.

Figure 3.7. The block diagram of a 2-D convex RI algorithm

𝑒2(𝑛1, 𝑛2)

-
+

𝑦2(𝑛1, 𝑛2)

1 − 𝜆(𝑛1, 𝑛2)

𝑦(𝑛1, 𝑛2)

𝜆(𝑛1, 𝑛2)

+

-

𝑒1(𝑛1, 𝑛2)

𝑦1(𝑛1, 𝑛2)
𝐰1(𝑚1, 𝑚2)

𝑑(𝑛1, 𝑛2)

+

𝐱(𝑛1, 𝑛2)

𝐰2(𝑚1, 𝑚2)

𝑑(𝑛1, 𝑛2)

32

The output of the 2-D convexly combined algorithms can be computed as

(Andersso, 1985),

𝑦𝑛(𝑚1,𝑚2) = 𝜆(𝑚1, 𝑚2)𝑦1,𝑛(𝑚1,𝑚2) + [1 − 𝜆(𝑚1,𝑚2)]𝑦2,𝑛(𝑚1, 𝑚2) (3.67)

33

4. MACHINE LEARNING

Because of the modifications in technology huge amounts of data is recorded

every day and the analyzing for these data cannot be done using classical statistics

methods. So the best way to deal with this amount of information is using machine

learning (Langley and Simon, 1995; Duffy, 1997).

Machine learning consists of intelligent methods which can teach programs how

to make decisions. Those methods attracted attentions of researhers and have applied in

all areas of computer science and beyond. Machine learning methods have used in many

applications such as credit scoring, drug design, fraud detection, spam filters, stock

trading.

Machine learning is about building systems that take data and make a correct

prediction of solutions, without interference of human. The problems can be solved by

machine learning methods presented by:

 Classification: which is a process of selecting incoming data and decide to

which category these data belong to. A well-known example for it is the

spam e-mail detection. A classifier can determine an e-mail is normal or

spam.

 Regression: which is the process that can analyze the changing of output

according to the change in one input while holding the other inputs at fixed

values.

 Clustering: which is a process of partitioning the data into groups based on

similarity, where the methods do not have prior knowledge about output.

 Associations: which is the process of discovering the interesting relations

between variables in big databases.

Machine learning methods are divided into supervised and unsupervised

methods. Supervised algorithms are trained from labeled training data (source) which

consists of known observations to predict the label of unseen data (target).

Unsupervised machine learning algorithms deals with registering unlabeled data

instances to clusters depending on similarities.

4.1 Supervised Learning

Supervised learning is the most studied and famous field in machine learning

34

(Kotsiantis et al., 2007; Dollar et al., 2006), it is predicting the class of each instance in

a dataset using training set. The training set is used to build a model which is used to

classify testing set instances. Let the training set 𝐷 = {(𝐱1, 𝑐1), (𝐱2, 𝑐2), … , (𝐱𝑁, 𝑐𝑁)},

with 𝑁 data instances which can be described as a vector of features, 𝐱 =

{𝐱(1), 𝐱(2),… , 𝐱(𝑝)}, where 𝑝 is input feature count, and output of the system can take

a value from 𝑐 = {𝑐(1), 𝑐(2), … , 𝑐(𝑘)}, where the 𝑘 is class label count. The supervised

algorithm builds a model from training data 𝐷 to assign the actual output as a class label

to new or unseen input vectors of 𝐱𝑁+1, 𝐱𝑁+2, …

4.1.1 Supervised learning approaches

Many methods have been introduced in the field of supervised learning

(Kotsiantis et al., 2006), they can be categorized into different approaches such as

decision trees, instance-based learning, learning regressions, linear models, kernel

methods, Bayesian classifiers, and artificial neural networks.

Decision trees (Myles et al., 2004) is widely used approach in the machine

learning. The method has hierarchical models and it divides the data variable gradually

the each branch descending from that node corresponds to one of the possible values for

this variable. The leaf nodes of a decision tree contain the class label assigned to each

sub region of the problem.

Instance-based learning methods do not provide a certain model like other

approaches. They works by store the values of training inputs until the new instance

examine be to classify. To assign the class label of new instances the new instances

should be related to the stored instances. Finally classification approach will be related

to the nearest category similar to it (De Mantaras and Armengol, 1998).

Linear models are simple methods for classification and prediction (Kutner et al.,

2005). They have been widely used in statistical applications for a long time. The linear

models are easy to understand, where the output is usually a weighted sum of the data

inputs. The weight’s magnitude shows the significance of each variable and its sign

indicates if the effect is positive or negative on the system. The disadvantage in these

methods can not be sufficient with nonlinear problems, where the resulting solution may

not fit the data.

Kernel methods provide a simple connection from non-linearity to linearity

problems (Scholkopf and Smola, 2002). These methods use to solve the nonlinear

35

problems by mapping them to linear separable problems with low dimentions. Then

these problems can be modeling easier. The goal of this mapping will make the data

more easily to separate with these new dimensions. The first approach was used with

these methods by solving the binary classification problems using support vector

machine.

Support vector machine is a common classifier can map the training data into a

feature space with the help of a kernel function. The mapping is computing the

similarity between two given observations. This transformation makes the problem

linearly separable and then can use the decision hyperplanes between classes (Burges,

1998). However the training time will be very high to achieved very accurate results,

but it is efficiency in high-dimensional problems, and good classifier for treatment the

nonlinear problems.

Bayesian classifiers, which is depending on Bayes rule that used to classify the

new input 𝐱 depending on its variables, the class of the system can be chosen according

to its maximum probability (Rosenblatt, 1962).

Artificial neural networks (Ripley, 2007; Haykin, 2009) are a model that tries to

simulate the structure of functional aspects of biological neural networks. These

networks consist of an interconnected group of processing units called neurons, and

processes information using a connection is approach to computation. They are

composed by one or more layers of processing units connected with each other. Each

processing unit aggregates the inputs that it could receive from the environment or

could be the outputs of other processing units, and sends the result, which is a weighted

sum of the inputs in the simplest case, to other processing units. The connection

between processing units are modeled with weights.

The simplest networks are called perceptrons (Rosenblatt, 1962) which have a

single layer of processing units. Although these classifiers are able to distinguish labels

in a binary classification problem by linear discrimination function, they present some

limitations. If a set of instances is not linearly separable, perceptrons cannot make

model where all instances are classified properly. Instead of them Multi layered

perceptrons have been created to try to solve this problem (Williams and Hinton, 1986).

These networks are usually used to model inputs and outputs by means of nonlinear

discrimination functions. There are several ways with which a network can be trained

for solving the problems. However, the well-known and widely used learning algorithm

to estimate the values of the weights is the back propagation algorithm (Williams and

36

Hinton, 1986), which uses gradient descent to tune network parameters to get best fit a

training set of input-output pairs. Artificial neural networks usually provide higher

accuracies than other methods.

4.1.2 Predictive model validation

The performance of classification methods need to evaluate to know how well

the classifiers work, where many criteria used to test the algorithm performances. The

validation technique is a simple procedure to estimate the correct classes. The correct

classes can be count it as a right class, because it is similar to actual class. On the other

hand, wrong class considering as error. In the supervised learning there are several

measures to evaluate performance, one of these measures depend on the error rate, also

the percentage of the correct predicted classes over the total actual data as

Accuracy =
TP + TN

TP + FP + TN + FN
 (4.1)

Also, sensitivity and specificity used to evaluate the algorithm performances.

Sensitivity =
TP

TP + FN
 (4.2)

Specificity =
TN

TN + FP
 (4.3)

Where, 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, and 𝐹𝑁 are the number of true positives, true negatives,

false positives, and false negatives, respectively. The maximum number of correct

classified instances is the score of obtained result from algorithm.

Many evaluation methods have used such as k-fold cross validation (Stone,

1974). This method works by dividing all instances of dataset into k of approximately

equal size. Each partition with using as a testing, using trained model of k-1 subsets.

The process will repeated for all k subsets. Finally, the k accuracy values of tested

partitions are sums and averaged by k to obtain final accuracy.

Another common technique using to compute the accuracy is called leave-one-

out method (Mosteller and Tukey, 1968). Where this method is a special case of k-fold

37

cross validation. The accuracy computation similar to k-fold cross validation, but the

number of k-fold is equals to the number of instance of dataset.

4.1.3 Artificial neural network (ANN)

This section we will see the biological background of ANN, and where the idea

come from, in addition the basic structure of an ANN with neurodynamics, architecture

and its parameters will describe in details.

4.1.3.1 The biological paradigm

ANN is inspired from human brain structure particularly the neurological part.

ANN tries to simulate the working of biological networks (Ripley, 2007). However they

are much far from their operation capacities because of complexity of the biological

networks (Destexhe and Sejnowski, 1995). The cells found in human brain are called

neurons. The information or signals are transferred between the neurons throught

connections called as axons. The information receives to a neuron through its dendrites.

Human brain contains about 100 billion neurons and 1014 synapses, the simple

structure of a neuron shown in Fig. 4.1.

Figure 4.1. Schematic structure of a nerve cell

Synapses

Cell Body

Dendrites

Axon

Out

Nucleus

38

The processing in the biological brain is very powerful because it acts in a

parallel manner and also it is very tolerant to faults. The fault tolerance came from the

neural multi pathways which makes the information spreads in many directions and

allow it to deal with noise in perfect ways (Carnevale and Rosenthal, 1992).

Biological neuron is so complicated so that even the most powerful

supercomputers cannot simulate one neuron. The researchers are forced to simplify the

structure of neurons while developing ANN.

ANN is different from other conventional computational techniques. The system

designers of ANN do not need to know the rules and models that are required to

perform the desired task. Instead it needs to train the system using the training samples.

Training is similar to the process of the teaching children to recognize certain shapes

letters and colors.

While ANN deals with the information in parallel way, computers deals with it

in a serial fashion. While human brain sends information in milliseconds (10-3 s),

computers sends it in much faster about nanosecond (10-9 s) range but brain still much

better than computers in pattern recognition because it works in parallel way and every

neuron works as a processor.

ANN is easy to build and it can deals with large noisy data. They are typically

suitable to deal with nonlinear problems in which there are unknown rules.

They are very good in dealing with noisy or uncompleted data, because the

spread in parallel minimizes the effect of loss data.

While training for ANN is relatively simple; a pre-processing is very important.

But the process still easier comparing to modeling problems with conventional

statistical methods.

4.1.3.2 Basic structure of an ANN

Artificial neural network consist of neurons which are the main items of the

structure. Basically, ANN structure consist of three layers input layer, hidden layer, and

output layer as shown in Fig. 4.2 and each layer consist of neurons. Some ANN may

have multiple hidden layers, depending on the problem.

39

Figure 4.2. A basic schema of artificial neural network (ANN)

Neurons in brain communicate with each other by sending information using

complex connection so ANN tries to simulate the same action by communicating each

other using weighted connections. The weights could be negative or positive. Positive

weights means the neuron is in excitation, while negative weights the neuron is in

inhibition. In Fig. 4.2 shows the inputs (𝐱1, 𝐱2, … , 𝐱𝑖) are connected to hidden layer

neuron 𝑗 with weights (𝐰1𝑗, 𝐰2𝑗, … , 𝐰𝑖𝑗). Each neuron receives the sum of multiplied

inputs by its associated weight coefficients. At that moment the output should be

transferred to an activation function 𝑓(𝐻𝑗), that is non-linear to give the final output

(𝑜𝑗). A commonly used transfer function is sigmoid function because of its

differentiable properties is a simple, especially when backpropagation algorithm used.

The backpropagation ANN computes the output similar to feed forward ANN

where it takes the input multiplied by its weights and all inputs are summed in each

neuron then transferred to threshold function. The goal of BP algorithm is minimizing

the error between output and the target. It propagates the error back to the network and

the weights will be rearranged proportionally to the size of their error. This process is

done forward and backward until the error drops under a specified minimum value.

To construct an ANN, labeled train data must presented to the system. The input

data should be categorized as training or validation, where the training is the process of

making ANN understands the pattern of data, and the validation is the process of testing

the classification ability of ANN. The structure of an ANN must be defined exactly

(number of neurons, number of hidden layers, types of activation functions used… etc.).

The process of training is selecting the optimum weights that triggers a desired output

𝐻𝑗 𝐱2

𝐱𝑖

𝐱1 𝐰1𝑗

𝐰2𝑗

𝐰𝑖𝑗

∑ 𝐰𝑖𝑗𝐱𝑖

𝑖

 f (.) 𝑂𝑗

Activation

Function (f)

40

when a certain data enters the ANN and then validation process should be applied to

whether the network working fine in selecting the desired output for certain input data.

Changing the number of neurons or number of hidden layers or activation

function are options for reaching the good classification results in an ANN. The error

estimation can prove the best ANN structure, for example if an ANN is over trained (not

halted in the right time) the problem of curve fitting will happen and the system will try

to fit itself instead of creating a generalized model. This will result bad prediction for

validation of test sets. Another problem may happen if the system is not trained for long

time it may settle at local minima and also will give bad results because the system

generates a sub optimal model.

4.1.3.3 Brief description of the ANN parameters

Learning rate determines how much correction will be done in each iteration to

the weights to reduce the error in the output. Small learning rate will increase the time

of training, but it will make a better chance to reach the optimal weights by achieving

minimum error, but will increase the chance of dropping the system into local minima.

Large learning rate values will reduce the time of training, but it will increase the

chance to overshoots the optimum values and in some cases the system will not be able

to learn anything. To get rid of this dilemma the learning rate values should be tested for

most appropriate value for certain application.

Momentum is a coefficent which determines the ratio of current weight to add

updated weight as an extra term. If we assume system convergences to the minimum

error step by step, momentum helps increasing the size of the steps. It also helps to

avoid stuck in local minima. A big momentum will speed up the system convergence.

On the other hand, a very small momentum cannot avoid local minima, and slow down

the convergence of learning.

Training tolerance is the criteria that prove the network performance in the

manner of accuracy obtained in the learning stage from training dataset. The testing

tolerance is the accuracy that achieved on the test dataset using the optimal training

model.

Error function should decrease constantly and converge to a minimum during

training. System can decide if it should stop or not according to error function value. So

it is an indication whether the ANN model is reached the optimal or suboptimal value.

41

4.1.3.4 Neural networks neurodynamics

The input layer of ANN acts as a buffer between the input data and ANN

system, some of the input data should be scaled, converted, encoded, or normalized to

be suitable for ANN.

The output layer for ANN works as the same of the input layer, but it transfers

information to the outside of ANN. In some cases a post-processing is needed for the

output, scaling may be made to it and it depends on the type of the system related to the

ANN system.

To determine the actual output, the sum of multiplication between input data and

weight coefficients are connected to transfer function 𝑓 of the ANN. The function will

decide the output, in general the activation functions used in hidden layer are in

nonlinear characteristic. This mechanizm is shown clearly by,

𝑜𝑗 = 𝑓𝑗 (∑𝐰𝑖𝑗𝐱𝑖

𝑖

) (4.4)

 The popular functions are used Logistic, and Hyperbolic functions.

 Logistic: 𝑓(𝐱) =
1

1+𝑒−𝐱 (4.5)

Hyperbolic tangent: 𝑓(𝐱) =
𝑒𝐱−𝑒−𝐱

𝑒𝐱+𝑒−𝐱
 (4.6)

The logistic functions are commonly used due to the ease of computing, it is in

boundaries between 0 to 1. The derivative is given by;

𝑓̀(𝐱) = 𝑓(𝐱)(1 − 𝑓(𝐱)) (4.7)

Applying the output of neuron 𝑜𝑗 in logistic function 𝑓𝑗 becomes,

𝑓𝑗 =
1

1 + 𝑒−∑ 𝐰𝑖𝑗𝐱𝑖𝑖 −𝜃𝑗
 (4.8)

42

Where 𝜃𝑗 is the threshold.

The output decided in logostic function depending on this condition as,

𝑓𝑗 = {
1, 𝑖𝑓 ∑𝐰𝑖𝑗𝐱𝑖

𝑖

> 𝜃𝑗

0, 𝑒𝑙𝑠𝑒 (4.9)

The weights are initially selected randomly or using an algorithm. These weights

are adjusted during training to minimize the output error, iteratively.

4.1.3.5 Neural networks architecture

4.1.3.5.1 Types of interconnections between neurons

Each layer is a fully connected to other through neurons. Every neuron connects

to all neurons of next layer and each connection between these neurons represented with

weight coefficients. Neurons receives stimulus from input and processes the information

to produce the output. The input processing method of neurons and connections

between neurons can be structured in different ways. The commonly used neural

network structure is called multi-layer perceptron (MLPs), which process the data from

input to output in one direction.

4.1.3.5.2 The number of hidden neurons

Choosing the optimum number of hidden neurons have been discussed by many

researchers. Generally, it can be smaller to the number of inputs. But there is no rule can

give a fixed number of hidden neurons in the hidden layer. The suitable number of

hidden neurons depends on the problem. However many rules are suggested by

researchers that are related to select the number of hidden neurons.

4.1.3.5.3 The number of hidden layers

Some researcher demonstrated that, linear separable data can be divided without

43

hidden layers. So that means, with linear problems the simpler techniques can also

work. On the other hand, in the nonlinear problems a wide variety of applications two

hidden layers are needed to find solution. Two hidden layers make it skillful to solve

different complicated problems in the MLP. Commonly used transfer functions are

sigmoid, step, and threshold functions.

4.1.3.5.4 The perceptron

The perceptron model is a mathematical expression of a biological neuron.

Biologically, the neurons receives signals via dendrite from neighboring neurons to

process it, then transmit it to next neurons through the axons. The perceptron received

signals as numerical values from its neighboors, and each signal is multipled by a

weight value to obtain the output. Then output pass through threshold function to

calculate the actual output. The perceptron is widely used with classification problems,

which is about classifying input 𝐱 into class 𝑐 using neuron 𝑗 as the following,

∑𝐰𝑖𝑗𝐱𝑖 > 𝜃 (4.10)

As 𝐰𝑖𝑗 is the weight links from input 𝑖 to neuron 𝑗, 𝐱𝑖 is the received signal

vector, and 𝜃 is the threshold on neuron 𝑗.

The weight 𝐰𝑖𝑗 of perceptron is shown by,

𝐰𝑖𝑗(𝑛) = 𝐰𝑖𝑗(𝑛 − 1) + 𝜂𝛿𝑗𝐱𝑖(𝑛) (4.11)

Where 𝐰𝑖𝑗(𝑛) is the weight coefficients vector which is updated in each

iteration 𝑛, 𝜂 is the learning rate in the range [0,1] and 𝛿𝑗 is the estimated error of

neuron 𝑗 is given by;

𝛿𝑗 = 𝑡𝑗 − 𝑜𝑗 (4.12)

Where 𝑡𝑗 and 𝑜𝑗 are the target output and the desired output values from neuron

𝑗, respectively.

44

The 𝛿𝑗 process will minimize iteratively until obtain the optimum 𝐰𝑖𝑗. A single

perceptron can solve binary Boolean (logic) functions such as AND, OR and NOT.

Unfortunately a single perceptron seems only can solve linear problems that show

limitations of its capability to solve many of nonlinear problems. (Minsky and Paperi,

1969) conclude that perceptron cannot solve nonlinear problems such as (XOR)

problem.

4.1.4 XOR problem with multilayer perceptron

Linear separability is defined as a linear hyperplane that can separate the

instances into two separate regions, if there were 𝑛 inputs and 𝑛 > 2, see the equation,

∑𝐰𝑖𝑗𝐱𝑗

𝑛

𝑖=1

= 𝜃𝑗 (4.13)

As we know the hyperplane can divide the solution space into two partitions. In

most cases this plane seperates the data into classes and the finding suitable plane

problem is called classification problem. In some cases when the classes are more than

two (𝑛 > 2) it is very difficult to find suitable separation planes but particular ANNs

(e.g. MLPs) can learn to separate these kind of classes.

The perceptron can solve most cases of Boolean linear and separable functions

but not the XOR problem, because XOR function is the simplest nonseparable function,

where the output function is 0 if its two inputs are the same; on the other hand, output is

1 if the inputs are different. The XOR truth table is Table 4.1.

Table 4.1. Truth table of XOR function

x1 x2 Output (𝑂𝑗)

0

0

1

1

0

1

0

1

0

1

1

0

The multilayer perceptron model (MLP) model can solve the XOR problem

using two neurons in the hidden layer easily. The inputs are linked to hidden neurons

with appropriate weights as shown in Fig. 4.3.

45

Figure 4.3. Diagram of perceptron model with activation function

The perceptron classifies the input data depending on the following equation,

𝑦 = 𝑓(𝐻𝑗)

= 𝑓(𝐰1𝑗𝐱1 + 𝐰2𝑗𝐱2, 𝜃)

= {
1, 𝑖𝑓 𝐰1𝑗𝐱1 + 𝐰2𝑗𝐱2 ≥ 𝜃

0 , 𝑒𝑙𝑠𝑒 𝐰1𝑗𝐱1 + 𝐰2𝑗𝐱2 < 𝜃
 (4.14)

Where 𝐻𝑗 is the neuron of the overall output that will pass through activation

function 𝑓, 𝜃 is the threshold value, 𝐰1𝑗 and 𝐰2𝑗 are the weights on the connection

between inputs (𝐱1,𝐱2) and hidden neurons 𝑗.

A set of weight values will be calculated to achieve the required output, the two

lines on the 𝐱1 and 𝐱2 plane are obtained by,

𝜃 = 𝐰1𝑗𝐱1 + 𝐰2𝑗𝐱2 (4.15)

𝒘2𝑗

𝐰1𝑗

𝐻𝑗

𝐱2

𝐱1

∑𝐰𝑖𝑗𝐱𝑖

𝑖

 f (.) 𝑦

Activation

Function (f)

46

Figure 4.4. The separation of nonlinear XOR data points

Fig. 4.4 shows outputs of the XOR Boolean function. As it seen in the figure

XOR has nonlinear separable output, where it is not possible to separate the 0s and 1s

using one hyperplane. MLP with two hyperplanes is a great technique to solve XOR

function.

4.1.5 Learning algorithms

The learning concept in the ANN corresponds to weight coefficient adjustment

procedure. ANNs is famous for using “learning idea” exhaustively. Learning process

uses training dataset that contains inputs and corresponding target values. The goal of

network is minimizing the error between the target values 𝑡(𝑛) and the desired output

𝑜(𝑛) until reach the correct output with minimum error estimation 𝐸(𝑛). The weights

are adjusted gradually and iteratively during the learning time. The common learning

algorithm is called backpropagation algorithm.

Many learning algorithms have been proposed, but in this chapter only mostly

famous algorithms which are Delta rule, and backpropagation (BP) algorithms are

refered where the learning in these algorithms are adjusting the weights 𝐰𝑖𝑗(𝑛) and the

biases 𝑏𝑗(𝑛) to minimize the overall squared error 𝐸(𝑛) by,

1

1

-1

-1

𝑦, 𝜃𝑗 = 0
𝑦, 𝜃𝑗 = 1

𝑦, 𝜃𝑗 = 1

x2

x
1

0

0

47

𝐸(𝑛) =
1

2
∑‖𝑡(𝑛) − 𝑜(𝑛)‖2

𝑖

 (4.16)

Where 𝑖, 𝑡(𝑛), and 𝑜(𝑛) are the the input patterns, the target, and the estimated

output, respectively. Weight coefficients are adjusted until minimized error obtained in

a suitable time period. The error surface will moves down gradually untill fall to ravine.

4.1.5.1 The delta rule

Widrow and Hoff were proposed the Delta rule in (Widrow and Hoff, 1960). It is

also called least mean square (LMS) algorithm and most commonly applied learning

rule. Delta rule learning is simply comparing input and the output vectors to predict the

correct answer. If the difference is big, the algorithm will adjust the weight vector to

minimize the difference, otherwise the convergence will reach the steady-state with

minimum error. There isn’t hidden neuron in Delta rule so it is a simple linear function.

The weight change 𝐰𝑖𝑗(𝑛) is given by,

∆𝐰𝑖𝑗(𝑛) = 𝜂𝛿𝑗(𝑛)𝐱𝑖(𝑛) (4.17)

Where 𝜂 is the learning rate betwen [0,1], and updated weight on neuron 𝑗.

The Delta rule error calculated by,

𝛿𝑗 = 𝑡(𝑛) − 𝑜(𝑛) (4.18)

Where 𝑜(𝑛) given by,

𝑜(𝑛) = ∑𝐱𝑖(𝑛)𝐰𝑖𝑗

𝑁

𝑖=1

(𝑛) (4.19)

4.1.5.2 Back-propagation (BP) algorithm

BP algorithm is a supervised learning one; that is applied with a known dataset

of input-target samples and has been used in prediction and classification applications.

48

Fig. 4.5 illustrates the BP architecture in details. It consists of an input layer, one or

more hidden layer, and an output layer. Layers are connected sequentially starting from

the input layer through the hidden layers to the output layer. Where the connections

between layers contain weights and each layer includes one or more neurons.

Figure 4.5. Schematic representation of back-propagation architecture

The basic idea behind BP is to minimize the overall output error gradually

during the learning process. Whereas the training sets are estimated iteratively through

the input layer to predict the correct output. The BP process is divided in two stages:

forward and backward process. In the forward process, the BP architecture is described

𝐰𝑗𝑘

𝐱2

𝐱3

𝐱𝑖

𝐱1

𝑦

𝐰𝑖𝑗

𝑘

𝑖

𝑗

S F

 S F

 S F

 S F

 S F

Input Layer

Hidden Layer

Output Layer

S: Summation of (𝐱*w).

F: Sigmoid function.

49

as: 𝐱 are the inputs to the neural network with 𝑖 neurons, 𝐰𝑖𝑗 are the weights of

interconnections between inputs and hidden layers, and 𝑗 neurons for the hidden layer.

Hidden layer is defined by,

𝐻𝑗 = 𝑏𝑖𝑛 + ∑𝐱𝑖𝐰𝑖𝑗

𝑁

𝑖=1

 (4.20)

Where 𝑏𝑖𝑛 is a bias input layer, hidden layer will pass through activation

function (𝑓). In this study, sigmoid function has been used as a good activation function

(Karlik and Olgac, 2011),

𝑓(𝐻𝑗) =
1

1 + 𝑒−(𝐻𝑗)
, (4.21)

After calculating the overall output by multiplying the output of the hidden layer

neurons with the hidden layer weights 𝐰𝑗𝑘, the results, then, pass through a sigmoid

function (called threshold) as shown below;

𝑦𝑘 = 𝑏𝑛 + ∑ 𝐰𝑗𝑘𝑓(𝐻𝑗)

𝑚

𝑗=1

 (4.22)

Where 𝑏𝑛 is the bias of hidden layer and 𝑘 output neurons.

To predict the correct output by obtaining minimum error 𝐸 for each pattern (𝑝)

by subtracting the overall output o from the target 𝑡;

𝐸 =
1

2
∑(𝑡𝑗 − 𝑜𝑗)

2

𝑝

𝑗=1

 (4.23)

We can minimize 𝐸 by using an iterative process of gradient descent for each

weight which is updated using the increment;

∆𝐰𝑘𝑗 = −
𝜂𝜕𝐸

𝜕𝐰𝑘𝑗
 𝑓𝑜𝑟 𝑗 = 0,1, … , 𝑛 (4.24)

50

Where 𝜂 defines learning coefficient which represent the step size of each

iteration in the negative gradient direction. One all partial derivatives are computed as,

𝜕𝐸

𝜕𝐰𝑘𝑗
=

𝜕𝐸

𝜕 𝑛𝑒𝑡𝑘

𝜕 𝑛𝑒𝑡𝑘
𝜕 𝐰𝑘𝑗

 (4.25)

𝜕 𝑛𝑒𝑡𝑘
𝜕 𝐰𝑘𝑗

=
𝜕

𝜕 𝐰𝑘𝑗
∑𝐰𝑘𝑗𝑦𝑗 =

𝑗

∑
𝜕 𝐰𝑘𝑗. 𝑦𝑗

𝜕 𝐰𝑘𝑗
= 𝑦𝑗

𝑗

 (4.26)

In the backward process, weights on the connections between all layers will be

updated to minimize the error between target (or desired) and output until finding the

optimum weights with minimum 𝐸 (Ozbay and kalik, 2002). The error of belonging to

neutons of layer k called “delata” (shortly ∂) is computed by,

𝛿𝑜 = −
𝜕𝐸

𝜕 𝑛𝑒𝑡𝑘
 (4.27)

(4.25) is placed instead of both (4.26) and (4.27);

𝜕𝐸

𝜕𝐰𝑘𝑗
= −𝛿𝑜 . 𝑦𝑗 (4.28)

The backpropagation step computes the gradient of 𝐸 with respect to the input.

We can perform gradient descent by adding to each weight 𝐰𝑘𝑗the increment ∆𝐰𝑘𝑗,

∆𝐰𝑘𝑗 = 𝜂𝛿𝑜 . 𝑦𝑗 (4.29)

If we denote the backpropagation error at the 𝑗𝑡ℎ node by 𝛿𝑗, we can then

express the partial derivative of 𝑒 with respect to 𝐰𝑖𝑗 as,

𝛿𝑜 = −
𝜕𝐸

𝜕𝑛𝑒𝑡𝑘
 = −

𝜕𝐸

𝜕𝑜𝑘

𝜕𝑜𝑘

𝜕𝑛𝑒𝑡𝑘
 (4.30)

51

𝜕𝐸

𝜕𝑜𝑘
= −(𝑡𝑘 − 𝑜𝑘) (4.31)

(4.31) is defined local error for 𝑘 neurons.

𝜕𝑜𝑘

𝜕𝑛𝑒𝑡𝑘
= 𝑓̀𝑘(𝑛𝑒𝑡𝑘) (4.32)

The last two equations are placed instead of (4.30),

𝛿𝑜 = (𝑡𝑘 − 𝑜𝑘)𝑓̀𝑘(𝑛𝑒𝑡𝑘) (4.33)

For 𝑘 neurons, (4.29) is placed instead of the last one;

 ∆𝐰𝑘𝑗 = 𝜂(𝑡𝑘 − 𝑜𝑘)𝑓̀𝑘(𝑛𝑒𝑡𝑘)𝑦𝑗 (4.34)

If we denote the backpropagation error at the jth (hidden layer) by 𝛿𝑗, we can

then express the partial derivative of 𝐸 with respect to 𝐰𝑗𝑖 as,

∆𝐰𝑗𝑖 = − 𝜂
𝜕𝐸

𝜕𝐰𝑗𝑖
= −𝜂

𝜕𝐸

𝜕 𝑛𝑒𝑡𝑗

𝜕 𝑛𝑒𝑡𝑗

𝜕 𝐰𝑗𝑖
= −𝜂

𝜕𝐸

𝜕 𝑛𝑒𝑡𝑗
𝐱𝑖

= −𝜂 (−
𝜕𝐸

𝜕𝑦𝑗
− 𝜂

𝜕𝑦𝑗

𝜕 𝑛𝑒𝑡𝑗
) 𝐱𝑖 = 𝜂 (

𝜕𝐸

𝜕𝑦𝑗
) 𝑓̀𝑗(𝑛𝑒𝑡𝑗)𝐱𝑖 (4.35)

We can perform grdient decent by adding to each weight 𝐰𝑗𝑖 the increment 𝐰𝑗𝑖

as,

∆𝐰𝑗𝑖 = 𝜂𝛿𝑦𝑥𝑖 (4.36)

However, factor not directly promoted. In particular, the effect of the output

layed,

−
𝜕𝐸

𝜕𝑦𝑗
= −∑

𝜕𝐸

𝜕𝑛𝑒𝑡𝑘

𝜕𝑛𝑒𝑡𝑘
𝜕𝑦𝑗

=

𝑘

∑(−
𝜕𝐸

𝜕𝑛𝑒𝑡𝑘
)

𝜕

𝜕𝑦𝑗
𝑘

∑𝐰𝑘𝑗

𝑘

𝑦𝑗

52

= ∑(−
𝜕𝐸

𝜕𝑛𝑒𝑡𝑘
)

𝑘

𝐰𝑘𝑗 = ∑𝛿𝑜𝐰𝑘𝑗

𝑘

 (4.37)

In this case, 𝛿𝑦 can be found;

𝛿𝑦 = 𝑓𝑗(𝑛𝑒𝑡𝑗)∑𝛿𝑜𝐰𝑘𝑗

𝑘

 (4.38)

Transfer (threshold) is used as a function of the sigmoid function,

𝑓𝑗(𝑛𝑒𝑡𝑗) = 𝑦𝑗 =
1

1 + 𝑒−𝑛𝑒𝑡𝑗
 (4.39)

Whether the derivative of this expression, when necessary simplification, the

following equations are obtained;

 𝑓𝑗(𝑛𝑒𝑡𝑗) =
1

1+𝑒
−𝑛𝑒𝑡𝑗

1+𝑒
−𝑛𝑒𝑡𝑗−1

1+𝑒
−𝑛𝑒𝑡𝑗

 (4.40)

𝜕𝑦𝑗

𝜕𝑛𝑒𝑡𝑘
= 𝑦𝑗(1 − 𝑦𝑗) (4.41)

When similar works are made for 𝑘 layer, the following equations are obtained;

𝜕𝑜𝑘

𝜕𝑛𝑒𝑡𝑘
= 𝑓̀𝑘(𝑛𝑒𝑡𝑘) = 𝑜𝑘(1 − 𝑜𝑘) (4.42)

𝛿𝑜 = (𝑡𝑘 − 𝑜𝑘)𝑜𝑘(1 − 𝑜𝑘) (4.43)

𝛿𝑦 = 𝑦𝑗(1 − 𝑦𝑗)∑𝛿𝑜𝐰𝑘𝑗

𝑘

 (4.44)

After adding learning and momentum coefficients, updating the weights for both

hidden (𝐰𝑗𝑖) and output (𝐰𝑘𝑗) layer are obtained such as,

53

∆𝐰𝑗𝑖(𝑛 + 1) = 𝜂𝛿𝑦𝐱𝑖(𝑛) + 𝛼∆𝐰𝑗𝑖(𝑛) (4.45)

∆𝐰𝑘𝑗(𝑛 + 1) = 𝜂𝛿𝑜𝑦𝑖(𝑛) + 𝛼∆𝐰𝑘𝑗(𝑛) 𝑛 = 0,1, … (4.46)

Where 𝑛 represents number of iteration and 𝜂 is the learning rate (Karlik, 2000).

The biases (bias weights) are updated by,

𝑏𝑗(𝑛) = 𝑏𝑗(𝑛) + 𝜂. 𝑓(𝐻𝑗) (1 − 𝑓(𝐻𝑗)) 𝐱𝑖(𝑛)𝐰𝑗(𝑛)𝑒(𝑛) (4.47)

4.1.5.3 Back-propagation with adaptive filtering momentum (BPAM) algorithm

Adaptive momentum is an efficient way to speed-up BPNN process and improve

the algorithm's accuracy. Shao and Zheng (2009) proposed an adaptive momentum

algorithm called BPAM. The weight update equation has been derived as;

∆𝐰(𝑛) = −𝜂𝐸𝐰(𝐰(𝑛)) + 𝛼(𝑛)∆𝐰(𝑛 − 1) 𝑛 = 0,1, … (4.48)

Where 𝛼 is the adaptive momentum and updated by the following:

𝛼𝑖(𝑛) = {𝛼
−𝜂𝐸𝐰(𝐰(𝑛)). ∆𝐰(𝑛 − 1)

‖∆𝐰(𝑛 − 1)‖2
, 𝑖𝑓𝐸𝐰(𝐰(𝑛)). ∆𝐰(𝑛 − 1) < 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (4.49)

Where 𝛼𝑖(𝑛) = (𝛼0(𝑛), 𝛼1(𝑛), … , 𝛼𝑗(𝑛)) are changing corresponding to the

equation above, 𝑖 = 0,1, … 𝑗.

The BPAM adaptive momentum adjusts itself iteratively by multiplying the

current weight coefficients by the previous updated coefficients. If the momentum

coefficients are less than zero, they are given a positive value to accelerate learning by

updating momentum. Otherwise the momentum is considered as zero to maintain the

error downhill.

54

4.1.5.4 Back-propagation algorithm with variable adaptive momentum (BPVAM)

algorithm

In the BPAM algorithm, 𝛼 (the adaptive momentum) is controlled by the

learning rate parameter 𝜂. This 𝜂 is dependent on the eigenvalues of the autocorrelation

matrix of the input. If these eigenvalues are relatively high, 𝜂 should be selected

relatively small to provide a low error performance and, hence, the convergence rate of

the algorithm will be low. On the other hand, if the eigenvalues of the autocorrelation

matrix are relatively small, 𝜂 can be selected relatively high which, in turn, provides

high convergence rate but also high error performance.

If we consider estimating the autocorrelation matrix, 𝐑(𝑛), of the input

recursively as:

𝐑(𝑛 + 1) = 𝛽𝐑(𝑛) + 𝐑𝐱𝐱 (4.50)

Where 𝛽 is the forgetting factor (0 ≪ 𝛽 < 1), 𝐑𝐱𝐱 = 𝐸{𝐱(𝑛)𝐱𝑇(𝑛)}, 𝐸 is the

expectation operator, 𝑇 is the transposition operator and 𝐱(𝑛) are the inputs. Taking

expected value for both sides of (4.50),

𝐑̅(𝑛) =
1 − 𝛽𝑛

1 − 𝛽
𝐑𝐱𝐱 (4.51)

Where 𝐑̅(𝑛) = 𝐸{𝐑(𝑛)}. Solving (4.51) in the steady-state (𝑛 → ∞) yields:

𝐑̅(∞) =
1

1 − 𝛽
 (4.52)

Equation (4.52) implies that the eigenvalues of the estimated autocorrelation

matrix increase exponentially, and in the limit they become
1

1−𝛽
 times the original one.

In this study, following the same procedure of (Ahmad et al., 2011), we propose

a new backpropagation algorithm with variable adaptive momentum. The proposed

variable momentum is expressed by (Ahmad et al., 2011):

55

𝛼(𝑛) =
𝜆

1 − 𝛽𝑛
 (4.53)

Where 𝜆 <
2−2𝛽

𝑚𝑎𝑥 𝑒𝑖𝑔𝑒𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓𝐑𝐱𝐱

In (4.53), for enough large 𝛽, the term 1 − 𝛽𝑛 reaches unity and, at the

beginning, 𝛼(𝑛) is relatively large to provide a fast convergence of the weights update

in (4.45) and (4.46) and after some time is becomes very close to 𝜆 (a small positive

constant), hence, it provides low error performance for the weights update in (4.45) and

(4.46).

∆𝐰𝑗𝑖(𝑛 + 1) = 𝜂𝛿𝑦𝐱𝑖(𝑛) + (
𝜆

1 − 𝛽𝑛
)∆𝐰𝑗𝑖(𝑛) (4.54)

∆𝐰𝑘𝑗(𝑛 + 1) = 𝜂𝛿𝑜𝑦𝑖(𝑛) + (
𝜆

1 − 𝛽𝑛
)∆𝐰𝑘𝑗(𝑛), 𝑛 = 0,1, … (4.55)

Where 𝑛 represents number of iteration, and ∆𝐰 is defined as updating the

weights.

4.1.6 Statistical classification algorithms

4.1.6.1 K-NN classifier

The k-nearest neighbours (K-NN) is a non-parametric classifier, and one of the

most popular and simple methods, which has been used to solve different types of

problems in data mining (Shouman et al., 2012). K-NN is able to classify instances

based on majority class or closest neighbours of 𝐱 in the training set (Derelioglu and

Gugen, 2011). By partitioning the feature space into K regions are to find the closest

feature space of new instance (Larose, 2005). In this study the Euclidean distance has

been used to compute the distance between both of neighbouring instances 𝐱, and 𝑦.

√∑(𝐱𝑖 − 𝑦𝑖)2 (4.56)

56

Where 𝐱 = (𝐱1, 𝐱2, … , 𝐱𝑁) and 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑁), however, 𝑁 is n-

dimensional space. Moreover K-NN has more robustness to noisy training data (Duda et

al., 2001; EI Gayar et al, 2006).

4.1.6.2 Naïve bayes

Naïve Bayes (NB) classifier is characterized as easy and fast to implement

because it requires a small training data which is to estimate the parameters (means and

variances of the variable) for classification (Keramati and Yousefi, 2011). The main

idea behind NB process is independently investigating attributes of data sets (Kim,

2009; Hou et al., 2010; Murphy, 2006), and it is easy to expand the model for very large

datasets.

4.1.6.3 Support vector machine

Support Vector Machine (SVM) is one of the useful and well-known supervised

learning algorithms which have been widely attracting many researchers due to its high

classification accuracies in wide variety of fields (Vapnik, 1995; Baesens et al., 2003).

SVM has proved its the ability in solving non-linear problems (Martens et al., 2009).

However, SVM suffers from high computational complexity which causes an increase

usage of memory and time consumption with big data implementation. The working

principle in the non-linearly applications is to map the training set into high-dimensional

feature. Linearly separable used to find a maximum margin by investigating the optimal

hyperplane (separating hyperplane) between the classes (Huang et al., 2002). The

linearly separable method has clearly depicted in Fig. 4.6.

Gaussian radial kernel function is usually used to transfer non-linear data to a

high-dimensional feature space (Burbidge et al., 2001). The kernel function is given by,

𝐾(𝐱𝑖, 𝐱𝑗) = 𝑒𝑥𝑝 (−
‖𝐱𝑖 − 𝐱𝑦‖

2

2𝜎2
) (4.57)

Where 𝐱𝑖 is defined as input of the training set.

57

Figure 4.6. SVM estimate the hyperplane of best classes separate

The SVM separating hyperplanes can be depicted for investigating classification

using the lemma by,

𝐹(𝐱) = 𝑠𝑔𝑛 (∑𝑎𝑖𝑦𝑖𝐾(𝐱𝑖, 𝐱𝑗) + 𝑏) (4.58)

Where 𝑎𝑖 is the Lagrangian method for mapping data to high-dimensional space,

𝑦𝑖 is the class label of 𝐱𝑖 and 𝑏 is the bias, sgn function which describes the instances;

i.e., +1 for a positive class or -1 for the negative class,

4.1.6.4 Linear discriminant analysis

Linear Discriminant Analysis (LDA) is characterized by its simplicity and

success in solving different types of problems (Yang and Yang, 2003). LDA provides a

linear combination of features by creating a new variable (Karlik, 2014). LDA is based

upon the concept of searching for a linear combination of variables which are predicted

by the best separation of two target classes. The discrimination is to compute the

Mahalanobis distance between two classes by,

Support Vectors

Optimal Hyperplane

Margin

Support Vectors

Class 2

Class 1

58

∆2= 𝛽𝑇(𝜇1 − 𝜇2) (4.59)

Where ∆ is defined Mahalanobis distance, 𝜇1 and 𝜇2 are mean vectors, and 𝛽 is

the coefficient vector.

4.2 Unsupervised Learning

Unsupervised learning is one of the mostly studied fields in machine learning. It

aims to extract structures from data instances. Its goal is finding the groups of similar

features in the dataset without prior knowledge about data, which is also called

clustering. The clustering can find a suitable structure from collected data which are

characterized by several values. These groups are cruited depending on the similarity of

the data instances. Each group is called cluster. The conventional clustering methods

have categorized into two major groups as hierarchical and partitional.

The clustering can be defined as follows. Let the data set 𝐷 = {(𝐱(1),… , 𝐱(𝑁)}

are the set of instances described as a vector of features in a space of dimension 𝐹, that

is, 𝐱(𝑖) ∈ ℜ𝐹 , ∀𝑖∈ {1, … , 𝑁}. The process assigns a cluster label 𝑐(𝑖) to each instance,

with 𝑐(𝑖) ∈ {1,… , 𝑘}, depending on the similarity measurement between all instances.

The clusters count 𝑘 can not be predicted easily, so it is needed to consider all data

instance. A common way is estimating similarity among input data.

The way of using similarity plays an important role in clustering approaches,

such as hierarchical or partitional. Most commonly used similarity technique is the

concept of distance which measures how much this object is close to that cluster.

Mostly used distance measurement techniques are Euclidean, Minkowski, and

Mahalanobis distances.

The Euclidean distance is calculated the distance between two instances of the

same length given by,

(𝐱(𝑛), 𝐱(𝑛 + 1)) = √∑(𝐱𝑗(𝑛) − 𝐱𝑗(𝑛 + 1))2

𝐹

𝑗=1

 (4.60)

The Minkowski distance is a generalization Euclidean distance as defined by,

59

(𝐱(𝑛), 𝐱(𝑛 + 1)) = √∑𝐰𝑗
𝑟(𝐱𝑗(𝑛) − 𝐱𝑗(𝑛 + 1))𝑟

𝐹

𝑗=1

 (4.61)

 Where 𝑟 is the Minkowski distance, actually it is Manhattan distance has

measures with 𝑟 = 1, 𝐰𝑗 is a possible weight for feature 𝑗.

The Mahalanobis distance is defined by,

(𝐱(𝑛), 𝐱(𝑛 + 1)) = √(𝐱(𝑛) − 𝐱(𝑛 + 1))
𝑇
∑−1(𝐱(𝑛) − 𝐱(𝑛 + 1)) (4.62)

Where Σ is the covariance matrix in a space of dimension 𝑓.

4.2.1 Unsupervised learning approaches

Different starting points and criterias usually lead to different categories of

clustering algorithms (Everitt et al., 2001; Xu and Wunsch, 2005). Generally clustering

techniques can be classified into hierarchical clustering, partitional clustering, and

probabilistic clustering, depended on the characteristics of the generated clusters.

Partitional clustering groups the elements exclusively, so that any element belonging to

one specific cluster cannot be a member of another cluster. On the other hand,

hierarchical clustering produces a hierarchical structure of clusters. Hierarchical

clustering proceeds successively by either merging smaller clusters into larger ones or

by splitting larger clusters into smaller ones. Finally, probabilistic clustering provides a

cluster membership probability for every element, where elements have a specific

probability of being members of several clusters. Some of the clustering techniques

above are used throughout this thesis.

A clustering method which used commonly is the Kohonen self-organizing map

or SOM, which is a type of neural network that can perform unsupervised learning

Kohonen (1990).

60

4.2.1.1 SOM algorithm

The architecture of SOM consists of an input and an output layer connected to

each other where each connection is associated with a weight. The topologies of neuron

connections used for SOM map are hexagonal and rectangular (Tasdemir et al., 2011;

Wong et al., 2006). The SOM output layer consists of 2-D grid of 𝑧 × 𝑑 neurons in low

dimension. The input vectors 𝐱𝑖 = { 𝐱1, 𝐱2, … , 𝐱𝑛}, 𝑖 = 1, 2, … 𝑛, where 𝑖 is the

number of input vectors and 𝑛 is the input units. Each 𝑖 is associated to the SOM map

through weight vector 𝐰 = (𝐰𝑛1, 𝐰𝑛2, … ,𝐰𝑛𝑑), where the 𝑑 is the SOM dimension as

shown in Fig. 4.7.

Figure 4.7. Illustration of the kohonen SOM architecture

The learning process of conventional SOM consists of the following steps:

Firstly, initialize the weight vector 𝐰𝑛,𝑑 randomly as grid of 𝑧 × 𝑑 neurons. Secondly,

feed the SOM network by the input vector 𝐱 from dataset. Input vector 𝐱 is fed to all

neurons, synchronously. Thirdly, after calculating the distance between input and output

neurons, find the closest neuron to input (smallest distance), called best matching unit

w
n,d

z

x
n
 x

2
 x

3
 x

1

61

(BMU). The BMU of the winner neuron 𝑐 is calculated using Euclidian distances,

𝑐 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑖

(‖𝐰𝑖(𝑛) − 𝐱(𝑛)‖) (4.63)

This process is repeated for all other input vectors in the dataset. Finally, the

weight vectors of winner neuron are updated in an each iteration of learning process

using,

 𝐰𝑖(𝑛 + 1) = 𝐰𝑖(𝑛) + 𝛼(𝑛) . [𝐱(𝑛) − 𝐰𝑖(𝑛)] (4.64)

Where, 𝛼(𝑛) is the learning rate.

One variant of SOM algorithm is the GF-SOM algorithm. It has been a widely

used in many applications as a neighborhood function. Weight vectors update for GF-

SOM is done using,

𝐰𝑖(𝑛 + 1) = 𝐰𝑖(𝑛) + ℎ𝑐,𝑖(𝑛)[𝐱(𝑛) − 𝐰𝑖(𝑛)] (4.65)

Where ℎ𝑐,𝑖 is the Gaussian neighborhood function defined as,

ℎ𝑐,𝑖(𝑛) = 𝛼(𝑛) . 𝑒𝑥 𝑝 (−
 ⃦𝑟𝑐 − 𝑟𝑖 ⃦

2𝜎2(𝑛)
) (4.66)

Where ⃦𝑟𝑐 − 𝑟𝑖 ⃦ is the Euclidean distance between the positions of the winning

neuron 𝑐 and the neuron 𝑖 on the grid in each weight updating and 𝜎(𝑛) is the width of

Gaussian. The 𝛼(𝑛) and 𝜎(𝑛) are decreasing gradually during the learning process by

constants factors 𝛿𝛼 and 𝛿𝜎, respectively, as

𝛼(𝑛 + 1) = 𝛿𝛼. 𝛼(𝑛) (4.67)

𝜎(𝑛 + 1) = 𝛿𝜎. 𝜎(𝑛) (4.68)

62

4.2.1.2 PLSOM algorithm

The main idea behind PLSOM is to overcome the limitation of conventional

SOM. The PLSOM does not need the learning rate annealing scheme or the

neighborhood size annealing schemes as in the conventional SOM algorithm (Berglund

and Sitte, 2006). The basic process of PLSOM depends on its efficiency in fitting the

input data. The fitting error is computed using the scaling variable 𝜖 by normalizing the

distance between the input space 𝐱(𝑛) and the weight vector 𝐰𝑐(𝑛) of the winner

neuron 𝑐. The variable 𝜖 is applies to scale the weight update equation as in (4.72) and

to determine the size of the neighborhood as in (4.73). The scaling variable 𝜖 is

calculated as,

𝜖(𝑛) =
‖𝐰𝑐(𝑛) − 𝐱(𝑛)‖

𝜌(𝑛)
 (4.69)

Where

𝜌(𝑛) = 𝑚𝑎𝑥(‖𝐱(𝑛) − 𝐰𝑐(𝑛)‖, 𝜌(𝑛 − 1)) (4.70)

𝜌(0) = ‖𝐱(0) − 𝐰𝑐(0)‖ (4.71)

If 𝜖 is large the map will fit input space poorly. It will require large

readjustments which in tern means that further iterations are required. On the other

hand, if 𝜖 is small the map fitting will be satisfactory and no large update is required. In

PLSOM, the weight vectors of the winner neuron are updated using,

𝐰𝑖(𝑛 + 1) = 𝐰𝑖(𝑛) + 𝜖(𝑛). ℎ𝑐,𝑖(𝑛)[𝐱(𝑛) − 𝐰𝑖(𝑛)] (4.72)

The used neighborhood function is the Gaussian neighborhood ℎ𝑐,𝑖, given as,

ℎ𝑐,𝑖(𝑛) = 𝑒𝑥𝑝 (−
 ⃦𝑟𝑐 − 𝑟𝑖 ⃦

𝛩(𝜖(𝑛))2
) (4.73)

Where ⃦𝑟𝑐 − 𝑟𝑖 ⃦ is the distance between the positions of the winning neuron c

63

and the neuron 𝑖 on the map as mentioned before in the conventional SOM. The

𝛩(𝜖(𝑛)), is used for scaling the neighborhood function as,

𝛩(𝜖(𝑛 + 1)) = 𝛽. 𝜖(𝑛), 𝛩(𝜖(𝑛 + 1)) ≥ 𝜃𝑚𝑖𝑛 (4.74)

In addition, there is another way to calculate 𝛩(𝜖(𝑛)) shown in (4.75) and

(4.76), where 𝛽 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∀𝑛, and 𝜃𝑚𝑖𝑛 is constant.

𝛩(𝜖(𝑛)) = (𝛽 − 𝜃𝑚𝑖𝑛)𝜖(𝑛) + 𝜃𝑚𝑖𝑛 (4.75)

𝛩(𝜖(𝑛)) = (𝛽 − 𝜃𝑚𝑖𝑛)𝑙𝑛(1 + 𝜖(𝑛))(𝐸𝑢 − 1) + 𝜃𝑚𝑖𝑛 (4.76)

Where 𝑙𝑛(.) and Eu are the natural logarithm and Euler number, respectively.

4.2.1.3 Proposed SOM algorithm

In this thesis a new adaptive learning rate 𝛼(𝑛) of SOM algorithm was derived.

The eigenvalues of the autocorrelation matrix 𝐑(𝑛) of the input is the key factor in

selecting 𝛼(𝑛). The eigenvalues and adaptive learning rate should be selected in an

inversely proportional way. To guarantee a low QE performance and low convergence

rate in case of relatively high eigenvalues, the 𝛼(𝑛) should be selected with relatively

small value. A relatively high value of 𝛼(𝑛) can be selected to provide high

convergence rate in case of relatively small eigenvalues of the autocorrelation matrix

𝐑(𝑛). This, of course, might results in a high error performance as a side effect.

Recursively estimating the input’s the autocorrelation matrix, 𝐑(𝑛),

𝐑(𝑛 + 1) = 𝛽. 𝐑(𝑛) + 𝐑𝐱𝐱 (4.77)

Here 𝛽 is the forgetting factor (0 << 𝛽 < 1), 𝐑𝐱𝐱 = 𝐸{𝐱(𝑛)𝐱𝑇 (𝑛)}, 𝐸 is the

expectation operator, 𝑇 is the transposition operator and 𝐱(𝑛) is the input. Taking

expected value for both sides of (4.77),

64

R̅(𝑛) =
1 − 𝛽𝑛

1 − 𝛽
𝐑𝐱𝐱 (4.78)

Where 𝐑̅(𝑛) = 𝐸{𝐑(𝑛)}. By solving (4.76) in the steady-state (𝑛 → ∞) we get,

𝐑̅(∞) =
1

1 − 𝛽
 (4.79)

According to (4.79), the eigenvalues of the estimated autocorrelation matrix will

increase exponentially, and at the limit they become
1

1−𝛽
 times the original

autocorrelation matrix.

Based on the same technique of (Berglund, 2010), we are proposing a new

variable adaptive learning of SOM algorithm in this thesis. The weight vectors are

derived in similar manner as in (Kohonen, 1982; Kohonen, 2001) as,

𝐰𝑖(𝑛 + 1) = 𝐰𝑖(𝑛) + 𝛼(𝑛). [𝐱(𝑛) − 𝐰𝑖(𝑛)], 𝑛 = 0, 1, . . . (4.80)

Where 𝐰𝑖(𝑛 + 1) is defined as updating the weights.

The proposed variable adaptive learning is defined by (Ahmad et al., 2011).

𝛼(𝑛) =
𝜆

1 − 𝛽𝑛
 (4.81)

The idea behind (4.81) is simple. If 𝛽 is large enough, at the beginning, where 𝑛

is small, the term (1 − 𝛽𝑛) will be relatively small and, hence, 𝛼(𝑛) will be relatively

large which will guarantee faster convergence of the updated weights in (4.80). After a

while, when 𝑛 increases enough, the term (1 − 𝛽𝑛) will be very close to one and, hence,

𝛼(𝑛) is approximately equal to 𝜆 (a small positive constant), hence, it will guarantee

low error performance for the updated weights in (4.80).

65

5. SIMULATION RESULTS

This work includes three sections which are convex combination of RI

algorithms, BPVAM, and proposed SOM algorithm. The proposed algorithms have

been tested in different application to prove the performance.

The compared methods were coded in MATLAB R2010b. The experiments

were run on a Core (TM) i7-3612QM CPU (2.10 GHZ) PC equipped with 8,00 GB of

RAM with Windows 7 Ultimate operating system.

5.1 Convex Combination of Recursive Inverse (RI) Algorithms

Convex combination of RI algorithms has been presented in 1-D convex

combination RI, and 2-D convex combination RI algorithms.

5.1.1 1- D Convex combination of RI algorithms

The combinations here have been tested in noise cancellation and system

identification settings using different adaptive algorithms.

5.1.1.1 Convex combination of two RI algorithms

In this section, the performance of the proposed algorithm is compered to its

theoretical steady-state (SS) MSE given in (3.47), and to the performance of the NLMS

algorithm in additive white Gaussian noise (AWGN) and additive correlated Gaussian

noise (ACGN) environments for the noise cancelation setting shown in Fig. 3.4.

The input signal is assumed to be a white Gaussian process with zero mean and

unity variance. Simulations are implemented with a filter length 𝑁 = 16 taps and 300

independent runs. For simplicity, the expectation operation in Eq. (3.25) can be replaced

by,

 𝑃𝐱(𝑛) = (1 − 𝛾)𝑃𝐱(𝑛 − 1) + 𝛾𝐱2(𝑛) (5.1)

Where 𝐱(𝑛) is the signal to be averaged and 𝛾 = 0.01.

66

5.1.1.1.1 Additive white Gaussian noise

In the first experiment, the theoretical and experimental SS-MSE performances

of the convex RI algorithm are compared to each other in AWGN environment. Also,

the performance of the convex RI algorithm is compared to that of the convex NLMS

algorithm in terms of the convergence rate and SS-MSE. The AWGN process is

assumed with zero mean and variance 𝜎𝑣
2 = 2 × 10−4. Simulations were performed

with the following parameter: For the convex RI: 𝛽1 = 0.994, μ1 = 0.001, 𝛽2 = 0.998

and μ2 = 0.00003. For the convex NLMS: μ1 = 0.45 and μ2 = 0.1. Fig. 5.1 presents

the performances of convex RI and NLMS algorithms. From the figure, it is noticed that

the theoretical and experimental SS-MSEs of the convex RI algorithm are in match (-58

dB). On the other hand, under them same conditions, the convex RI algorithm

converges to the SS-MSE faster than the NLMS algorithm by approximately 350

iteration with 5.6 dB lower MSE. Fig. 5.2 shows the evolution curves of 𝜆 for both

algorithms. The evolution of 𝜆 in the case of the RI approaches its minimum value

much faster than that of the NLMS algorithm, which confirms the results in Fig. 5.1.

Figure 5.1. MSE combination curves of NLMS (MSE= -52.4 dB) and RI algorithms (MSE= -58 dB) in

AWGN

0 500 1000 1500 2000 2500
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

iteration

M
S

E

combination RI

slow NLMS

fast RI

fast NLMS

combination NLMS

SS MSE

slow RI

67

Figure 5.2. Evolution curves of 𝜆 in AWGN with 30 dB SNR

5.1.1.1.2 Additive correlated Gaussian noise

To show the effect of the noise correlation on the performances (theoretical and

experimental) of the convex RI algorithm, the input signal is assumed to be corrupted

by an ACGN. The ACGN is created the AR(1) process given as: (𝜂(𝑛) = 0.9𝜂(𝑛) +

𝜈(𝑛)), where 𝜈(𝑛) is an AWGN process with zero mean and variance 𝜎𝑣
2 = 2 × 10−4.

The algorithms are simulated with the same parameters of the experiment in Section

5.1.1.1.1.

Fig. 5.3 shows that the theoretical and experimental SS errors of the convex RI

are again in match. Also, the convex RI algorithm converges to 6.5 dB lower SS-MSE

than the convex NLMS with almost 350 iteration faster convergence rate. Fig. 5.4

proves convex RI faster than NLMS.

0 500 1000 1500 2000 2500
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Iteration




NLMS


RI

68

Figure 5.3. MSE combination curves of NLMS (MSE= -44.5 dB) and RI algorithms (MSE= -51 dB) in

ACGN

Figure 5.4. Evolution curves of λ in ACGN with 30 dB SNR

0 500 1000 1500 2000 2500
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

iteration

M
S

E

combination RI
fast NLMS

fast RI
SS MSE

slow NLMS

slow RI

combination NLMS

0 500 1000 1500 2000 2500
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Iteration




NLMS


RI

69

5.1.1.2 Convex combination of RI and second-order RI algorithms

Consider the combination of 2 adaptive filters in the system identification

setting, as shown in Fig. 3.5.

In this thesis, in order to test the performance of the proposed algorithm under

different noise environments, we compare the performances of combined RI and NLMS

algorithms in a system identification setting for both AWGN and ACGN environments.

The received signal was generated using a fourth-order autoregressive (AR(4)) model:

𝐱(𝑛) = 1.79𝐱(𝑛 − 1) − 1.85𝐱(𝑛 − 2) + 1.27𝐱(𝑛 − 3) − 0.41𝐱(𝑛 − 4) + 𝑣0(𝑛), (5.2)

Where 𝑣0 is a white Gaussian signal with zero mean and variance 𝜎𝑣0
2 = 0.15.

This variance value is selected in order to provide a unity power of the input signal

𝐱(𝑛):

In practice, the expectation operators in (3.25) can be replaced by (5.1).

Simulations were done with the following parameters: the filter length 𝑁 = 16

taps, and noise variance in both experiments is selected to maintain the signal-to-noise

ratio (SNR) at 30 dB. All the experiments are averaged over 200 independent runs. The

unknown system is assumed to be a low-pass filter with the impulse response depicted

in Fig. 5.5.

70

Figure 5.5. Impulse response of the unknown system

5.1.1.2.1 Additive white Gaussian noise

In this experiment, the input signal 𝐱(𝑛) is assumed to be corrupted with

AWGN. Simulations are done with the following parameters: for NLMS: 𝜇1 = 0.5 and

𝜇2 = 0.1. For RI: 𝛽 = 0.991, 𝜇0 = 0.00146. For the second-order RI: 𝛽 = 0.997, 𝜇0 =

0.05. From Fig. 5.6, we observe a fast convergence at the beginning followed by a

slower second convergence with lower MSE for both algorithms. The combination

curve follows the fast converging and the low MSE curves in both cases. However, the

RI algorithm converges faster than the NLMS algorithm (3700 iterations faster) with 8

dB lower MSE. Fig. 5.7 shows the evolution curves of 𝜆 for both algorithms. The

evolution of 𝜆 in the case of the RI approaches its minimum value much faster than that

of the NLMS algorithm. This high performance of the convex RI is due to the use of the

variable step size and the instantaneous estimates of the correlations which, in turn,

enhance the performance of the proposed algorithm.

0 2 4 6 8 10 12 14 16
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time

A
m

p
lit

u
d
e

71

Figure 5.6. MSE combination curves of NLMS and RI algorithms in AWGN with 30 dB SNR

Figure 5.7. Evolution curves of 𝜆 in AWGN with 30 dB SNR

0 1000 2000 3000 4000 5000 6000 7000 8000
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Iteration

M
S

E

combination RIslow RI

combination NLMS

fast RI

fast NLMS

slow NLMS

0 1000 2000 3000 4000 5000 6000 7000 8000
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Iteration




NLMS


RI

72

In order to check the robustness of the proposed algorithm according to the

change in the SNR values, Fig. 5.8 is provided. It is easy to note that the proposed

algorithm keeps a fixed difference in its MSE value with respect to the convex NLMS

algorithm.

Figure 5.8. MSE for convex RI and NLMS algorithms with different SNR’s in AWGN

5.1.1.2.2 Additive correlated Gaussian noise

Now, in order to investigate the performance of the proposed algorithm due to

the change in noise type, the input signal 𝐱(𝑛) is assumed to be corrupted with ACGN.

The ACGN is created using 𝐴𝑅(1)(𝜂(𝑛) = 0.9𝜂(𝑛 − 1) + 𝑣(𝑛)), where 𝑣(𝑛) is an

additive white Gaussian signal with zero mean and variance that maintains 30 dB SNR.

Simulations are done with the following parameters: for NLMS: 𝜇1 = 0.5 and 𝜇2 = 0.1.

For RI: 𝛽 = 0.99, 𝜇0 = 0.0015. For the second-order RI: 𝛽 = 0.997, 𝜇0 = 0.05. From

Fig. 5.9, we observe a fast convergence at the beginning followed by a slower second

convergence with lower MSE for both algorithms. The combination curve follows the

fast converging and the low MSE curves in both cases. However, the RI algorithm

converges faster than the NLMS algorithm (850 iterations faster) with 9.5 dB lower

0 5 10 15 20 25 30
-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

SNR (dB)

M
S

E
 (

d
B

)

Convex RI

Convex NLMS

73

MSE.

From this, we note that the proposed algorithm performs better than the convex

NLMS algorithm with a higher difference (9.5 dB) than the case of the AWGN process

(8 dB difference). This improvement is due to the instantaneous estimate of the

correlations.

Fig. 5.10 shows the evolution curves of λ for both algorithms. The evolution of λ

in the case of the RI approaches its minimum value faster than that of the NLMS

algorithm, which confirms the results in Fig. 5.9. On the other hand, the evolution curve

of 𝜆 in the case of the NLMS algorithm fails to reach that minimum value, which means

that the NLMS algorithm fails to reach the optimum MSE.

Figure 5.9. MSE combination curves of NLMS and RI algorithms in ACGN with 30 dB SNR

To investigate the performance of the proposed algorithm due to the change in

the SNR values, Fig. 5.11 is provided. We note that the proposed algorithm almost

keeps a fixed difference in its MSE value with respect to the convex NLMS algorithm

(around 9 dB difference).

0 1000 2000 3000 4000 5000 6000 7000 8000
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Iteration

M
S

E

combination NLMS fast NLMS

fast RIcombination RI

slow NLMS

slow RI

74

Figure 5.10. Evolution curves of λ in ACGN with 30 dB SNR

Figure 5.11. MSE for convex RI and NLMS algorithms with different SNR’s in ACGN

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration




RI


NLMS

0 5 10 15 20 25 30
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

SNR (dB)

M
S

E
 (

d
B

)

Convex RI

Convex NLMS

75

5.1.2 2-D Convex combination of RI algorithms

5.1.2.1 Convex of two RI algorithms

In this experiment, an MRI image having breast cancer is tested. The input

image is assumed to be normalized and of size 204 × 204 pixels with 150 graylevels,

and corrupted by an AWGN with zero mean and variance normalized (𝜎2 = 0.3). For

the fast algorithm: 𝛽 = 0.998 and μ0 = 0.0005. For the slow algorithm: 𝛽 = 0.992 and

μ0 = 0.000001.

Fig. 5.12 (a) shows the original image. Fig. 5.12 (b) shows the image corrupted

by an AWGN. Fig. 5.12 (c) shows the image recovered by the fast RI algorithm. It is

very easy to note the fast convergence of the algorithm (the top part of the image is

relatively clear). Also, the high MSE can be figured out by the relative darkness of the

image. In Fig. 5.12 (d), which shows the image recovered by the slow RI algorithm, the

slow convergence and the lower MSE are figured out by the dark region at the top of the

image and the relatively clearer recovered image, respectively. Fig. 5.12 (e), combines

the better performances of Fig. 5.12 (c) and Fig. 5.12 (d). Hence, we can see in Fig. 5.12

(e) the clear top of the image (fast convergence) and the clearer whole image (low

MSE) very easily.

76

Figure 5.12. (a) Original image of breast cancer, (b) Original image corrupted by an AWGN, (c)

Recovered image using the fast RI algorithm (PSNR = 30 dB), (d) Recovered image using the slow RI

(PSNR= 33.5 dB), and (e) Recovered image using the convex combination of RI algorithms (PSNR=

35.3 dB)

5.1.2.2 Convex RI and second-order RI algorithms

The second experiment is done to test the performance of the proposed 2-D

convex combination RI algorithm. The MRI input is of size 204 × 204 pixels with 150

gray levels and corrupted by AWGN in zero mean and normalized variance (𝜎2 = 0.3).

For the RI algorithm: 𝛽 = 0.991 and 𝜇0 = 0.0015. For the second-order RI: 𝛽 = 0.999

and 𝜇0 = 0.00015.

Fig. 5.13 (a) shows the original MRI of a brain and Fig. 5.13 (b) shows the

image with AWGN. Fig. 5.13 (c) shows the recovered image using the RI algorithm.

We notice that the figure is not well recovered; in other words, the MSE is relatively

high. Fig. 5.13 (d) depicts the recovered image using the second-order RI algorithm.

Even though the figure looks very clear, the top side of the figure is relatively dark due

to the slow convergence behavior of the algorithm. Fig. 5.13 (e) combines the

performance of both algorithms; i.e., the figure is as clear as that in Fig. 5.13 (d) with no

dark region at the top side as of Fig. 5.13 (c).

(a) (b)

(c) (d) (e)

77

Figure 5.13. (a) Original image of brain, (b) noisy image corrupted by an AWGN, (c) recovered image by

2-D RI, (d) recovered image by 2-D 2nd order RI, and (e) recovered image by 2-D convex combination of

RI algorithms

5.2 Back-propagation Algorithm with Variable Adaptive Momentum (BPVAM)

Algorithm

5.2.1 XOR problem

XOR problem is one of the non-linear problems that can be perfectly solved

using the BP algorithm. To minimize the cost of solving this problem and to improve

the quality of the predicted output by the BP algorithm, several types of adaptive

momentum techniques have been suggested in (Yu et al., 1993; Yu and Liu, 2002; Shao

and Zheng, 2009). In this experiment, we demonstrate the robustness of our proposed

algorithm in investigating the speed of convergence and achieving a lower

misadjustment (steady-state) error compared to the conventional BP and PBPAM

algorithms. The experiment has been performed using the following parameters: for

neural network structure: one hidden layer with two neurons. For the BP algorithm: 𝜂 =

0.8, and 𝛼 = 0.0001. For the BPAM algorithm: 𝜂 = 0.8, and 𝛼 = 0.000007. For the

proposed algorithm: 𝜂 = 0.8, 𝜆 = 0.0001,𝛽 = 0.999.

(a) (b)

(c) (d) (e)

78

From Fig. 5.14, we can see the effectiveness of the proposed algorithm

outperforming the other algorithms by giving a higher prediction, and the output is

closer to the real output than the other algorithms with a minimum misadjustment error.

In Fig. 5.14, we can see the convergence curves behavior. The proposed algorithm

outperforms the other algorithms in a faster convergence rate and a lower SSE.

Figure 5.14. SSE results of BP, BPAM, and proposed algorithms for XOR problem

The gradient errors of the proposed method are decrease quickly to optimize the

weight coefficients that guess the correct class in a shorter time (around 1000

iterations). The BPAM and BP algorithms need 1500 and 1800 iterations, respectively,

to reach the optimum SSE. According to Table 5.1, the proposed algorithm needs less

time to reach minimum error compared to the other algorithms.

Table 5.1. Error convergence behavior in iterations for XOR problem

Algorithm SSE for 1000 iterations SSE for 2000 iterations

BP

BPAM

Proposed

0.527

0.1351

0.00592

0.05391

0.04697

3.273e-005

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Iteration

S
S

E
 (

d
B

)

BP

proposed

BPAM

79

5.2.2 Comparison of performances

The performance of the proposed method has been compared to other machine

learning methods such as NB, KNN, LDA, SVM, BP, and BPAM algorithms. Table 5.2

describes the properties of each type of datasets used in this study. These datasets are

summarized according to the number of samples, attributes, and classes. All the datasets

has numeric features and no missing values. Each dataset has been normalized between

[0,1], and 70% of each dataset was used as a training set, and 30% as testing. Also 10

fold cross validation applied for performance measurement. Normal test results and the

cross validation results sperated by coma and cross validation results marked by star. As

it seen in the results, cross validation have worse classification performance than normal

test when %70 of data selected as train set and the rest for test set. 𝜂, 𝛼, 𝜆 and 𝛽 values

are determined according to experiments that presented in Appendix 1 section.

Table 5.2. The properties of used datasets

Data set # instances # attributes # classes

Breast Cancer

Heart

Heart-Statlog

Iris

Lung-Cancer

MAGIC Gamma Telescope

Wine

198

297

270

150

32

19020

178

32

13

13

4

56

10

13

2

5

2

3

3

2

3

5.2.2.1 Breast cancer dataset

This dataset consists of 198 instances, 32 attributes, and 2 classes. The structure

of MLP consists of 32 neurons for the input layer, 4 neurons for one hidden layer, one

neuron for the output layer. The performances of the proposed BPVAM algorithm and

the other supervised learning algorithms were compared using the breast cancer dataset.

In this experiment, according to the accuracies results of all algorithms as seen in Table

5.3, BPVAM, SVM, and BP algorithms are slightly better than the other supervised

learning algorithms.

According to SSE curves as seen in Fig. 5.15, the BPVAM algorithm is slightly

better than both BP and BPAM algorithms. For each MLP structure, the following

parameters were used; for the BP algorithm: 𝜂 = 0.9, and 𝛼 = 0.01; for the BPAM

80

algorithm: 𝜂 = 0.9, and 𝛼 = 0.01; and for the proposed BPVAM algorithm: 𝜂 = 0.9,

𝜆 = 0.0085, 𝛽 = 0.992.

Table 5.3. Comparison of accuracies by using different algorithms for breast cancer dataset

Method Classification

Accuracy (%)

K-NN (Yang et al., 2010)

NB (Kotsiantis and Pintelas, 2004)

SVM (Yang et al., 2010)

LDA (Yang et al., 2010)

BP (Kotsiantis and Pintelas, 2004)

BP (our result)

BPAM

BPVAM (Proposed)

76.80

74.58

77.80

71.70

76.13

77.59, 76.44*

75.86

77.59, 76.44*

Table 5.4. Error convergence behavior in iterations for breast cancer dataset

Algorithm
SSE for 460

iterations

SSE for 1000

iterations

CPU time

(seconds)
Sensitivity Specificity

BP

BPAM

BPVAM (Proposed)

5.721

5.708

5.452

4.707, 6.295*

4.718

4.678, 5.485*

19.1569

158.3878

31.1534

90.24

90.00

90.24

47.05

44.44

47.05

Figure 5.15. SSE results of BP, BPAM, and proposed algorithms for breast cancer dataset

0 100 200 300 400 500 600 700 800 900 1000
4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

Iteration

S
S

E
 (

d
B

)

BP

proposed

BPAM

81

The BPVAM algorithm provides the lowest SSE compared to the conventional

BP and BPAM algorithms by 460 and 1000 iterations, respectively. The BPVAM does

not require more processing time to be implemented than the BPAM algorithm, and

gives the correct prediction within shorter time as seen Table 5.4.

5.2.2.2 Heart dataset

The heart dataset has been widely used in machine learning techniques and many

methods has been modified to improve the data accuracy. This dataset consists of 297

instances, 13 attributes, and 5 classes. So the structure of the MLP consists of 13

neurons for the input layer, 13 neurons for one hidden layer, one neuron for the output

layer. For each MLP structure, the following parameters were used; for the BP

algorithm: 𝜂 = 0.03, and 𝛼 = 0.01; for the BPAM algorithm: 𝜂 = 0.03, and 𝛼 = 0.9;

and for the proposed BPVAM algorithm: 𝜂 = 0.03, 𝜆 = 0.022, 𝛽 = 0.995. As seen in

Table 5.5, the performances of testing results for the BPVAM, BPAM, and conventional

BP algorithms are almost the same but better than the other supervised learning

algorithms.

Table 5.5. Comparison of accuracies by using different algorithms for heart dataset

 Method Classification

Accuracy (%)

K-NN (Yang and Kecman, 2008; Yang et al., 2010)

NB (Saetern and Eiamkanitchat, 2014)

SVM (Yang and Kecman, 2008; Yang et al., 2010)

LDA (Yang and Kecman, 2008; Yang et al., 2010)

BP (our result)

BPAM

BPVAM (Proposed)

59.90, 58.00

55.77

58.60, 56.80

53.90, 53.70

61.96, 54.80*

61.96

61.96, 54.80*

Table 5.6. Error convergence behaviourin iterations for heart dataset

Algorithm
SSE for 25

iterations

SSE for 1000

iterations
CPU time (seconds)

BP

BPAM

BPVAM (Proposed)

10.3

9.93

6.69

3.969, 5.346*

3.958

3.961, 5.31*

40.6071

203.0041

47.6271

According to SSE curves, as seen in Fig. 5.16, the BPVAM algorithm is faster

than both the BP and BPAM algorithms. As seen in Table 5.6, BPVAM is 2 times better

than both the conventional BP and BPAM according to SSE by 25 iterations. Regarding

82

the CPU processing time, the proposed BPVAM algorithm is three times faster than the

BPAM algorithm, but it takes a little extra time than the conventional BP algorithm.

Figure 5.16. SSE results of BP, BPAM, and proposed algorithms for heart dataset

5.2.2.3 Heart-statlog dataset

This dataset consists of 270 instances, 13 attributes, and 2 classes. Thus, the

structure of MLP consist 240 of 13 neurons for the input layer, 13 neurons for one

hidden layer, one neuron for the output layer. For each MLP structure, the following

parameters were used; for the BP algorithm: 𝜂 = 0.1, and 𝛼 = 0.05; for the BPAM

algorithm: 𝜂 = 0.1, and 𝛼 = 0.00027; and for the proposed BPVAM algorithm: 𝜂 =

0.1, 𝜆 = 0.025, 𝛽 = 0.996. Table 5.7 shows that the accuracies of testing results for

the conventional BP and the proposed BPVAM algorithm (88.75%) is better than those

of the BPAM and the other supervised learning algorithms.

 In Fig. 5.17, we can see that the BPVAM algorithm is faster than both the BP

and BPAM algorithms. According to SSE curves as seen in Table 5.8, all algorithms

have shown approximately the same performance. Regarding CPU processing time, the

0 50 100 150 200 250 300
4

5

6

7

8

9

10

11

Iteration

S
S

E
 (

d
B

)

proposed

BP

BPAM

83

proposed BPVAM algorithm is nearly the same as the conventional BP algorithm and

three times faster than the BPAM algorithm.

Table 5.7. Comparison of accuracies by using different algorithms for heart-statlog dataset

 Method Classification

Accuracy (%)

K-NN (Mendialdua et al., 2012)

NB (Mendialdua et al., 2012)

SVM (Wang et al., 2014; Wang et al., 2015)

LDA (Mendialdua et al., 2012)

BP (Wang et al., 2014; Wang et al., 2015)

BP (our result)

BPAM

BPVAM (Proposed)

86.66

83.71

81.48, 81.48

85.19

79.18, 77.41

88.75, 83.36*

88.75

88.75, 83.36*

Table 5.8. Error convergence behaviour in iterations for heart-statlog dataset

Algorithm
SSE for 20

iterations

SSE for 400

iterations

CPU time

(seconds)
Sensitivity Specificity

BP

BPAM

BPVAM (Proposed)

0.141

0.139

0.122

0.111, 0.106*

0.11

0.11, 0.105*

19.1257

94.0686

22.7605

89.36

89.36

89.36

87.87

87.87

87.87

Figure 5.17. SSE results of BP, BPAM, and proposed algorithms for heart-statlog dataset

5 10 15 20 25 30 35 40 45 50
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

Iteration

S
S

E
 (

d
B

)

proposed

BP

BPAM

84

5.2.2.4 Iris dataset

This dataset consists of 150 instances, 4 attributes, and 3 classes. Thus, the

structure of MLP consists of 4 neurons for the input layer, 4 neurons for one hidden

layer, 3 neurons for the output layer. For each MLP structure, the following parameters

were used; for the BP algorithm:𝜂 = 0.05, and 𝛼 = 0.001; for the BPAM algorithm:

𝜂 = 0.05, and 𝛼 = 0.0003; and for the proposed BPVAM algorithm: 𝜂 = 0.05, 𝜆 =

0.02, 𝛽 = 0.998. As seen in Table 5.9, the accuracies of testing results for the

conventional BP, BPAM, and the proposed BPVAM is 100 % which are better than the

other supervised learning algorithms used previously in literature.

Table 5.9. Comparison of accuracies by using different algorithms for iris dataset

 Method Classification

Accuracy (%)

K-NN (Yang and Kecman, 2008; Yang et al., 2010)

NB (Wickramasinghe et al., 2005; Huang et al., 2011)

SVM (Wang et al., 2014; Wang et al., 2015; Yang and

Kecman, 2008; Wickramasinghe et al., 2005)

LDA (Yang and Kecman, 2008; Yang et al., 2010)

BP (Wang et al., 2014; Wang et al., 2015)

BP (our result)

BPAM

BPVAM (Proposed)

96.70, 94.90

93.33, 96.40

96.00, 96.00,

98.00, 93.33

98.00, 97.90

96.60, 97.33

100, 93.33*

100

100, 94.00*

Table 5.10. Error convergence behaviour in iterations for iris dataset

Algorithm
SSE for 80

iterations

SSE for 2000

iterations
CPU time (seconds)

BP

BPAM

BPVAM (Proposed)

2.24

1.99

0.2534

0.184, 0.188*

0.18

0.18, 0.185*

28.4858

68.8120

37.8458

According to the SSE curves see Fig. 5.18, the BPVAM algorithm has better

excess steady-state curve and shorter time (about 80 iterations) than the other

algorithms. Regarding the CPU processing time, the conventional BP algorithm is faster

than both the BPAM and the proposed BPVAM algorithms. But the BPVAM algorithm

is faster than the BPAM algorithm as shown in Table 5.10.

85

Figure 5.18. SSE results of BP, BPAM, and proposed algorithms for iris dataset

5.2.2.5 Lung-cancer dataset

In literature, there are many studies on the lung-cancer dataset. But researchers

have not obtained high accuracy yet by using this dataset. This dataset consists of 32

instances, 56 attributes, and 3 classes. Thus, the structure of MLP consists of 56 neurons

for the input layer, 20 neurons for one hidden layer, and one neuron for the output layer.

For each MLP structure, the following parameters were used; for the BP algorithm: 𝜂 =

0.1, and 𝛼 = 0.05; for the BPAM algorithm: 𝜂 = 0.1, and 𝛼 = 0.00001; and for the

proposed BPVAM algorithm: 𝜂 = 0.1, 𝜆 = 0.005, 𝛽 = 0.998.

The proposed BPVAM algorithm is compared to the BP and BPAM algorithms,

and other supervised learning algorithms in literature. The testing results show that the

proposed algorithm with the BP and BPAM algorithms have the highest accuracy rate

compared to the other methods, as illustrated in Table 5.11.

The convergence speed of the proposed algorithm clearly shows the efficiency

of the proposed momentum in enabling the proposed algorithm to outperform the

conventional BP and BPAM algorithms as seen in Fig. 5.19. The proposed algorithm

converges to the lowest SSE in almost 100 iterations. On the other hand, the other

50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

Iteration

S
S

E
 (

d
B

)

BP

proposed

BPAM

86

algorithms need more than 500 iterations to reach the optimum SSE. Moreover, as seen

in Table 5.12, the CPU processing time for the conventional BP algorithm is less than

both the BPAM and the proposed BPVAM algorithms. But the BPVAM algorithm

requires approximately 8 times less processing time than the BPAM algorithm.

Table 5.11. Comparison of accuracies by using different algorithms for lung-cancer dataset

 Method Classification

Accuracy (%)

NB (Saetern and Eiamkanitchat, 2014)

SVM (Wang et al., 2014; Wang et al., 2015)

BP (Wang et al., 2014; Wang et al., 2015)

BP (our result)

BPAM

BPVAM (Proposed)

59.37

50.00, 50.00

44.37, 43.75

60.00, 65.00*

60.00

60.00, 65.00*

Table 5.12. Error convergence behaviour in iterations for lung-cancer dataset

Algorithm
SSE for 170

iterations

SSE for 1000

iterations
CPU time (seconds)

BP

BPAM

BPVAM (Proposed)

0.561

0.624

0.183

0.0063, 0.0072*

0.006

0.0054, 0.0065*

13.3849

132.4760

18.3145

Figure 5.19. SSE results of BP, BPAM, and proposed algorithms for lung-cancer dataset

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

Iteration

S
S

E
 (

d
B

)

BP

proposed

BPAM

87

5.2.2.6 MAGIC Gamma telescope dataset

Our above simulations ensured that the proposed BPVAM has high

improvement compared to the BP and BPAM algorithms, and other supervised learning

algorithms. To compare its performance to the other algorithms in big size datasets, we

selected the MAGIC Gamma Telescope dataset. This dataset consists of 19020

instances, 10 attributes, and 2 classes. Thus, the structure of MLP consists of 10 neurons

for the input layer, 5 neurons for one hidden layer, and one neuron for the output layer.

For each MLP structure, the following parameters were used; for the BP algorithm:𝜂 =

0.7, and 𝛼 = 0.001; for the BPAM algorithm: 𝜂 = 0.7, and 𝛼 = 0.06; and for the

proposed BPVAM algorithm: 𝜂 = 0.7, 𝜆 = 0.025, 𝛽 = 0.99.

Table 5.13 shows that the accuracy of the testing results for the proposed

BPVAM algorithm (85.80%) is better than those of the conventional BP, BPAM and the

other supervised learning algorithms.

Table 5.13. Comparison of accuracies by using different algorithms for MAGIC gamma telescope dataset

 Method Classification

Accuracy (%)

K-NN (Huang et al., 2011; Mendialdua et al., 2012;

Barnabe-Lortie et al., 2015)

NB (Huang et al., 2011)

SVM (Huang et al., 2011; Barnabe-Lortie et al., 2015)

LDA (Huang et al., 2011)

BP (our result)

BPAM

BPVAM (Proposed)

76.58, 82.57,

77.89

72.71

78.91, 78.98

78.15

85.00

85.50

85.80

Table 5.14. Error Convergence Behaviour in Iterations for MAGIC gamma telescope dataset

Algorithm
SSE for 200

iterations

SSE for 1000

iterations

CPU time

(seconds)
Sensitivity Specificity

BP

BPAM

BPVAM (Proposed)

1.282

1.292

1.207

1.127

1.125

1.113

1.5907e+003

5.2759e+003

1.7688e+003

88.68

87.99

88.12

78.32

80.62

80.92

In Fig. 5.20, we can see that the BPVAM algorithm is faster than the

conventional BP and BPAM algorithms. According to SSE as seen in Table 5.14, the

proposed BPVAM algorithm outperforms the other algorithms, where it keeps lower

SSE until the end of the process. Regarding CPU processing time, the proposed

BPVAM algorithm is nearly the same as the conventional BP algorithm and three times

faster than the BPAM algorithm.

88

Figure 5.20. SSE results of BP, BPAM, and proposed algorithms for MAGIC gamma telescope dataset

5.2.2.7 Wine dataset

This well-known dataset recorded by UCI repository consists of 178 instances,

13 attributes, and 3 classes. Thus, the structure of MLP consists of 13 neurons for the

input layer, 7 neurons for one hidden layer, and one neuron for the output layer. For

each MLP structure, the following parameters are used; for the BP algorithm: 𝜂 = 0.9,

and 𝛼 = 0.01; for the BPAM algorithm: 𝜂 = 0.9, and 𝛼 = 0.00001; and for the

proposed BPVAM algorithm: 𝜂 = 0.9, 𝜆 = 0.0002, 𝛽 = 0.9998. As seen in Table

5.15, the proposed algorithm provides the highest accuracy (100 %) among the other

algorithms.

According to SSE results as seen in Fig. 5.21, the proposed BPVAM algorithm

provides better performance than the conventional BP and the BPAM algorithms. As

seen in Table 5.16, the convergence behavior of the proposed algorithm is close to that

of conventional BP algorithm, but approximately it is 3 times faster than the BPAM

algorithm.

50 100 150 200 250 300 350 400 450 500
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Iteration

S
S

E
 (

d
B

)

proposed

BP

BPAM

89

Table 5.15. Comparison of accuracies by using different algorithms for wine dataset

 Method Classification

Accuracy (%)

K-NN (Yang and Kecman, 2008; Yang et al., 2010)

NB (Wickramasinghe et al., 2005; Macskassy, 2011)

SVM (Wang et al., 2014; Wang et al., 2015; Yang and Kecman,

2008; Wickramasinghe et al., 2005)

LDA (Yang and Kecman, 2008; Yang et al., 2010)

BP (Wang et al., 2014; Wang et al., 2015; Sarangi et al., 2013)

BP (our result)

BPAM

BPVAM (Proposed)

97.80, 96.10

90.57, 96.50

95.31, 95.51, 98.90,

92.45

98.90, 98.50

26.29, 26.97, 95.39

98.11, 97.71*

98.11

100, 98.33*

Table 5.16. Error Convergence Behaviour in Iterations for wine dataset

Algorithm
SSE for 200

iterations

SSE for 500

iterations
CPU time (seconds)

BP

BPAM

BPVAM (Proposed)

0.81

0.73

0.54

0.186, 0.144*

0.135

0.133, 0.131*

11.1229

40.9503

12.7453

Figure 5.21. SSE results of BP, BPAM, and proposed algorithms for wine dataset

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Iteration

S
S

E
 (

d
B

)

BP

proposed

BPAM

90

5.3 Proposed SOM Algorithm

Extensive experiments were conducted in this section to investigate the

performance of the proposed SOM using a different datasets and scenarios. It was

compared against the conventional SOM, GF-SOM, and PLSOM algorithms.

Comparisons were done using accuracy, number of iteration, quantization error (QE),

topology error (TE), and CPU time consumption. QE values were recorded over 50

iterations in all experiments for all algorithms and all datasets. Table 5.17, shows the

detailed description of the used datasets in this study such as the number of samples,

attributes, and classes. These datasets were collected from UCI and KEEL repository.

All datasets values were normalized using Min-Max normalization between 0 and 1. All

the datasets divided in to 70% training set and 30% testing set. Moreover, for all

algorithms, experiments were conducted separately to select their optimal parameters.

The GF-SOM parameters of (Wang et al., 2015), are lr: 0.3, map height: 6, map width:

8, map neighborhood function: Gaussian, and initial neighborhood size: 8.

𝑄𝐸 =
∑ 𝑑(‖𝐰𝑐(𝑛) − 𝐱(𝑛)‖)𝑛

𝑖=1

𝑛
 (5.3)

where QE is the average distance between the inputs and winner neuron (BMU).

𝑇𝐸 =
∑ 𝑢(𝐱𝑖)

𝑛
𝑖=1

𝑛
 (5.4)

where 𝑢(𝐱𝑖) is 1 if the current and next best matching units (BMUs) are not

adjacent neurons, otherwise 𝑢(𝐱𝑖) is 0.

Values of 𝛿𝛼, 𝛿𝜎, 𝛽 and 𝜆 are determined according to experiments that

presented in Appendix 2 section.

Table 5.17. Summary of used datasets from UCI repository

Data set # instances # attributes # classes

Appendicitis

Balance

Wisconsin Breast

Dermatology

Ionosphere

Iris

Sonar

Wine

106

625

699

366

351

150

208

178

7

4

9

33

34

4

60

13

2

3

2

6

2

3

2

3

91

5.3.1 Appendicitis dataset

To evaluate the performance of the proposed SOM against other algorithms, we

used Appendicitis dataset. The dataset consist of 106 instances, each with 7 attributes

and 2 classes (patient has appendicitis (class label 1) or not (class label 0)). The

structure of the used Kohonen maps consists of 7 neurons for the input layer with 2-D

grid of 7×2 neurons in competitive layer. In this experiment, the used algorithms were

implemented under the following parameters: for the conventional SOM algorithm,

𝛿𝛼 = 0.55, for GF-SOM, 𝛿𝛼 = 0.5, and 𝛿𝜎 = 0.001 , for the PLSOM algorithm, 𝛽 =

1.14, and for the proposed SOM, 𝜆 = 0.00062, and 𝛽 = 0.994.

Table 5.18 shows that the classification accuracy of the PLSOM and proposed

SOM algorithms are much better than other algorithms including algorithms in (Shao

and Zheng, 2009; Shao and Zheng, 2011). However, the proposed SOM obtained that

accuracy with only 20 iterations while PLSOM needed 50 iteration to reach that

accuracy.

Furthermore, comparing the QE of all algorithms shows that the QE of proposed

SOM is much less than the others. It also converges faster than the other algorithms as

shown in Fig. 5.22. Regarding topology preserving, Fig. 5.23, shows that the proposed

SOM is efficient in preserving the topology of the map. The preservation of the map

started early in iterations 3, while PLSOM started at 7th iteration. Moreover, the

proposed SOM algorithm has CPU processing time close to the conventional SOM

(~1.5 msec/itr), which is lower than that of the PLSOM algorithm (~20 msec/itr).

Table 5.18. Performances comparison of the conventional SOM, GF-SOM, PLSOM and proposed

algorithms for appendicitis dataset

Appendicitis Dataset
Accuracy

(%)

iteration
QE

CPU time

(msec/itr)

GF-SOM (Wang et al., 2014; Wang et al., 2015)

GF-SOM (our)

conventional SOM

PLSOM

Proposed SOM

73.87, 75.47

81.25

81.25

90.63

90.63

1000

50

50

50

20

–

0.1443

0.1441

0.1714

0.1408

–

56.16

52.1

73.01

53.67

92

Figure 5.22. QE results of the conventional SOM, GF-SOM, PLSOM and proposed SOM algorithms for

Appendicitis dataset

Figure 5.23. TE results of the conventional SOM, GF-SOM, PLSOM and proposed SOM algorithms for

Appendicitis dataset

5 10 15 20 25 30 35 40 45 50

0.145

0.15

0.155

0.16

0.165

0.17

0.175

0.18

0.185

0.19

Iteration

Q
E

proposed

PLSOM

GF-SOM

SOM

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Iteration

T
E

PLSOM

SOM

GF-SOM

proposed

93

5.3.2 Balance dataset

In the 2nd experiment the performances of all algorithms are compared using

Balance dataset. The Balance dataset consists of 625 instances with 4 attributes and 3

classes (left, balanced and right). The structure of Kohonen maps of this dataset consists

of 4 neurons for the input layer with 2-D grid of 4×3 neurons in competitive layer. In

this experiment the used algorithms were implemented under the following parameters:

for the conventional SOM algorithm, 𝛿𝛼 = 0.15, for GF-SOM, 𝛿𝛼 = 0.8, and 𝛿𝜎 =

0.0085, for the PLSOM algorithm, 𝛽 = 2, and for the proposed SOM, 𝜆 = 0.003 and

𝛽 = 0.99.

Table 5.19 shows that the classification accuracy of the proposed SOM

algorithm is much better than other conventional SOM and PLSOM algorithms and

comparable to performances of algorithms in (Wang et al., 2014; Wang et al., 2015).

Also, algorithms needed from 45 to 50 iterations reach their best accuracies.

Furthermore, comparing the QE of all algorithms shows that the proposed SOM

reaches better QE (9th iteration) but it fails in maintaining this low error and starts to get

higher QE with more iterations. The other algorithms got higher QE but converged after

nearly 10 iterations as shown in Fig. 5.24. Regarding topology preserving, Fig. 5.25

shows that the proposed SOM same as other algorithms suffered from fluctuations

before it reached its steady state after 14 iterations. PLSOM, on the other hand, reached

it at his 8th iteration. This can be justified by the way the algorithms are clustering the

given data. While some algorithms keep searching for new clusters at each iteration,

other algorithms are fixing the clusters at first iterations. Algorithms which keep

searching for more clusters will show some fluctuations on TE before reaching zero TE

as shown in Fig. 5.25. This on the other hand helps to improve accuracy of that

algorithm. Moreover, the proposed SOM algorithm has CPU processing time very close

to the conventional SOM (~0.30 msec/itr), which is much lower than that of the

PLSOM algorithm (~100 msec/itr).

94

Table 5.19. Performance comparison of the conventional SOM, GF-SOM, PLSOM and proposed SOM

algorithms for Balance dataset

Balance Dataset
Accuracy

(%)

iteration
QE

CPU time

(msec/itr)

GF-SOM (Wang et al., 2014; Wang et al., 2015)

GF-SOM (our)

conventional SOM

PLSOM

Proposed SOM

73.04, 73.44

63.10

61.50

63.10

75.94

1000

50

50

50

45

–

0.239

0.242

0.227

0.233

–

59.952

57.72

158.5

58.03

Figure 5.24. QE results of the conventional SOM, GF-SOM, PLSOM and proposed SOM algorithms for

Balance dataset

5 10 15 20 25 30 35 40 45 50
0.2

0.22

0.24

0.26

0.28

0.3

0.32

Iteration

Q
E

SOM

GF-SOM

PLSOMproposed

95

Figure 5.25. TE results of the conventional SOM, GF-SOM, PLSOM and proposed SOM algorithms for

Balance dataset

5.3.3 Wisconsin breast dataset

This experiment uses one of the most popular datasets in the UCI repository

called Wisconsin Breast dataset. The dataset consists of 699 instances, 9 attributes and 2

classes (2 for benign, 4 for malignant). The structure of the used Kohonen maps consists

of 8 neurons for the input layer with 2-D grid of 8×2 neurons in competitive layer.

The basic parameters used in this experiment are: for the conventional SOM

algorithm: 𝛿𝛼 = 0.3, for GF-SOM: 𝛿𝛼 = 0.1, and 𝛿𝜎 = 1.5, for the PLSOM algorithm:

𝛽 = 0.6, and for the proposed SOM: 𝜆 = 0.0015, and 𝛽 = 0.95. According to the

classification accuracy, the proposed SOM obtains the highest accuracy (100%) as

given in Table 5.20. Proposed SOM needed only 20 iterations to reach is accuracy. The

PLSOM accuracy is the lowest among compared algorithms (~3% lower). Even though

all algorithms converged nearly after same number of iterations, the proposed SOM had

the minimum QE among those algorithms as shown in Fig 5.26.

Fig. 5.27 shows that when other algorithms had fluctuations before reaching

steady state, proposed SOM reaches the steady state earlier for topology error (TE=0)

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Iteration

T
E

PLSOM

SOM

GF-SOM

proposed

96

after 3 iterations. For CPU processing time, algorithms have close processing times with

PLSOM recording the highest processing time per iteration (~ 5 msec/itr higher than the

proposed SOM).

Table 5.20. Performance comparison of the conventional SOM, GF-SOM, PLSOM and proposed SOM

algorithms for Wisconsin Breast dataset

Wisconsin Breast Dataset
Accuracy

(%)

iteration
QE

CPU time

(msec/itr)

GF-SOM (Wang et al., 2014; Wang et al., 2015)

GF-SOM (our)

conventional SOM

PLSOM

Proposed SOM

95.49, 95.99

99.04

99.04

96.65

100

1000

50

50

50

20

–

0.148

0.148

0.18

0.147

–

42.744

39.312

44.93

39,624

Figure 5.26. QE results of the conventional SOM, GF-SOM, PLSOM and proposed SOM algorithms for

Wisconsin Breast dataset

5 10 15 20 25 30 35 40 45 50

0.15

0.16

0.17

0.18

0.19

0.2

0.21

Iteration

Q
E

PLSOM

proposed

GF-SOM

SOM

97

Figure 5.27. TE results of the conventional SOM, GF-SOM, PLSOM and proposed SOM algorithms for

Wisconsin Breast dataset

5.3.4 Dermatology dataset

The fourth experiment uses Dermatology dataset from UCI repository. Dataset

consists of 366 instances, 33 attributes and 6 classes (psoriasis, seboreic dermatitis,

lichen planus, pityriasisrosea, cronic dermatitis and pityriasisrubrapilaris). The structure

of all the used Kohonen maps consists of 33 neurons for the input layer and 2-D grid

size is 33×6 neurons in competitive layer. In this experiment the used algorithms were

implemented under the following parameters: for the conventional SOM algorithm,

𝛿𝛼 = 0.4, for GF-SOM, 𝛿𝛼 = 0.4, and 𝛿𝜎 = 0.02, for the PLSOM algorithm, 𝛽 = 13.5,

and for the proposed SOM, 𝜆 = 0.005, and 𝛽 = 0.99.

Table 5.21 shows performance comparison among the different algorithms.

Conventional SOM, PLSOM and proposed SOM got the same accuracy (70.91%) with

proposed SOM reaching this value using only 10 iterations. Again PLSOM recorded the

highest CPU time per iteration among other algorithms. Even though the other

algorithms converged in the first 6 iterations while proposed SOM converged after 18

iterations, the proposed SOM recorded better QE than all other algorithms as shown in

2 4 6 8 10 12 14 16 18 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Iteration

T
E

GF-SOM

proposed

SOM

PLSOM

98

Fig 5.28. Fig 5.29 shows that the proposed SOM reached zero TE after 3 iteration which

is faster than conventional SOM and GF-SOM (5 iterations).

Table 5.21. Performance comparison of the conventional SOM, GF-SOM, PLSOM and proposed SOM

algorithms for Dermatology dataset

Dermatology Dataset
Accuracy

(%)

iteration
QE

CPU time

(msec/itr)

GF-SOM (Wang et al., 2014; Wang et al., 2015)

GF-SOM (our)

conventional SOM

PLSOM

Proposed SOM

31.42, 31.42

68.18

70.91

70.91

70.91

1000

50

50

50

10

–

0.177

0.178

0.175

0.173

–

48.05

43.99

56.47

44.62

Figure 5.28. QE results of the conventional SOM, GF-SOM, PLSOM and proposed SOM algorithms for

Dermatology dataset

5 10 15 20 25 30 35 40 45 50
0.172

0.174

0.176

0.178

0.18

0.182

0.184

0.186

Iteration

Q
E

proposedPLSOM

GF-SOM

SOM

99

Figure 5.29. TE results of the conventional SOM, GF-SOM, PLSOM and proposed SOM algorithms for

Dermatology dataset

5.3.5 Ionosphere dataset

Ionosphere dataset UCI repository has been widely used by many researchers for

classification purposes. Dataset had 2 classes (good and bad) with 351 instances and 34

attributes. In this experiment, the proposed SOM performance is compared with the

other algorithms based on accuracy, number of iterations, QE, TE and CPU time. The

structure of Kohonen maps of this dataset consists of 34 neurons for the input layer with

2-D grid of 34×2 neurons in competitive layer. The used algorithms were implemented

under the following parameters, for the conventional SOM algorithm: 𝛿𝛼 = 0.4, for GF-

SOM: 𝛿𝛼 = 0.2, and 𝛿𝜎 = 5, for the PLSOM algorithm: 𝛽 = 1.9, and for the proposed

SOM: 𝜆 = 0.0025, and 𝛽 = 0.98.

In Table 5.22, the proposed SOM is providing the best classification result over

other algorithms with 80.56%. The proposed learning rate is clearly showing that the

weight vector update equation has achieved the optimum weights and obtained highest

accuracy with lowest quantization error (QE = 0.099).

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Iteration

T
E

SOM

GF-SOM

proposed

PLSOM

100

Even though the proposed algorithm has converged slower than the other

algorithms, it still recorded the best QE as in shown Fig. 5.30. In Fig. 5.31, the proposed

SOM outperforms conventional SOM, GF-SOM and PLSOM by reaching zero TE in

one less iteration. For CPU processing time, PLSOM algorithm consumed almost

double of the time required per iteration compared to other algorithms.

Table 5.22. Performance comparison of the conventional SOM, GF-SOM, PLSOM and proposed SOM

algorithms for Ionosphere dataset

Ionosphere Dataset
Accuracy

(%)

iteration
QE

CPU time

(msec/itr)

GF-SOM (Wang et al., 2014; Wang et al., 2015)

GF-SOM (our)

conventional SOM

PLSOM

Proposed SOM

79.37, 80.06

68.52

68.52

68.52

80.56

1000

10

20

10

10

–

0.1

0.1

0.116

0.099

–

57.41

54.29

109.2

56.16

Figure 5.30. QE results of the conventional SOM, GF-SOM, PLSOM and proposed SOM algorithms for

Ionosphere dataset

5 10 15 20 25 30 35 40 45 50
0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

Iteration

Q
E

SOM

GF-SOM proposed

PLSOM

101

Figure 5.31. TE results of the conventional SOM, GF-SOM, PLSOM and proposed SOM algorithms for

Ionosphere dataset

5.3.6 Iris dataset

Another dataset we used to examine the efficiency and investigate the

performance of the proposed SOM algorithm against other algorithms is Iris dataset. Iris

dataset consists of 150 instances, 4 attributes and 3 classes (iris setosa, iris versicolour

and iris virginica). The structure of the used Kohonen maps consists of 4 neurons for the

input layer with 2-D grid of 4×3 neurons in competitive layer.

The basic parameters used in this experiment are: parameters settings for the

conventional SOM algorithm: 𝛿𝛼 = 0.9, for GF-SOM: 𝛿𝛼 = 0.4, and 𝛿𝜎 = 0.01, for the

PLSOM algorithm: 𝛽 = 3.5, and for the proposed SOM: 𝜆 = 0.005, and 𝛽 = 0.98. The

comparative results are summarized in Table 5.23, where the GF-SOM, PLSOM and

proposed SOM algorithms has obtained highest accuracy with 100%. Algorithms had

very close QE values (see Fig. 5.32) with less CPU time requirement for the proposed

SOM (40.25 msec/itr).

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Iteration

T
E

proposed

GF-SOM

SOM

PLSOM

102

The topology preservation of the proposed SOM is better than other algorithms

by obtained the optimum map early in the iterations 3. The PLSOM it suffered from

instability and needed more time to maintain the topology as shown in Fig. 5.33.

Table 5.23. Performance comparison of the conventional SOM, GF-SOM, PLSOM and proposed SOM

algorithms for Iris dataset

Iris Dataset
Accuracy

(%)

iteration
QE

CPU time

(msec/itr)

GF-SOM (Wang et al., 2014; Wang et al., 2015)

GF-SOM (our)

conventional SOM

PLSOM

Proposed SOM

90.66, 90.00

100

93.33

100

100

1000

7

10

5

5

–

0.265

0.265

0.265

0.264

–

46.49

39.31

74.88

40.25

Figure 5.32. QE results of the conventional SOM, GF-SOM, PLSOM and proposed SOM algorithms for

Iris dataset

5 10 15 20 25 30 35 40 45 50
0.26

0.27

0.28

0.29

0.3

0.31

0.32

Iteration

Q
E GF-SOM

proposed

SOM

PLSOM

103

Figure 5.33. TE results of the conventional SOM, GF-SOM, PLSOM and proposed SOM algorithms for

Iris dataset

5.3.7 Sonar dataset

The seventh experiment for testing the proposed SOM algorithm was conducted

using Sonar dataset. Dataset consists of 208 instances, 60 attributes and 2 classes (rock

and mine). The structure of Kohonen maps of this dataset consists of 60 neurons for the

input layer with 2-D grid of 60×2 neurons in competitive layer. In this experiment the

used algorithms were implemented under the following parameters: for the conventional

SOM algorithm, 𝛿𝛼 = 0.7, for GF-SOM, 𝛿𝛼 = 0.28, and 𝛿𝜎 = 0.01, for the PLSOM

algorithm, 𝛽 = 0.4, and for the proposed SOM, 𝜆 = 0.0000095, and 𝛽 = 0.999.

Table 5.24, shows the proposed SOM algorithm higher performance than all

other with accuracy (max 71.43%). The proposed SOM has minimum QE value (QE =

220.9) which is better than other algorithms and faster (see Fig. 5.34). Fig. 5.35 shows

that all algorithms reached zero TE after only 2 iterations except for PLSOM which

reached it after 5 iterations. For CPU processing time, PLSOM algorithm consumed

almost double of the time required per iteration compared to other algorithms.

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Iteration

T
E

SOM

PLSOM

proposed

GF-SOM

104

Table 5.24. Performances comparison of the conventional SOM, GF-SOM, PLSOM and proposed SOM

algorithms for Sonar dataset

Sonar Dataset
Accuracy

(%)
iteration QE

CPU time

(msec/itr)

GF-SOM (Wang et al., 2014; Wang et al., 2015)

GF-SOM (our)

conventional SOM

PLSOM

Proposed SOM

55.77, 54.33

57.14

57.14

68.25

71.43

1000

50

50

50

40

–

283.3

284.2

230.9

220.9

–

47.42

43.7

86.11

44.3

Figure 5.34. QE results of the conventional SOM, GF-SOM, PLSOM and proposed SOM algorithms for

Sonar dataset

5 10 15 20 25 30 35 40 45 50
220

230

240

250

260

270

280

290

300

310

320

Iteration

Q
E

SOM

GF-SOM

PLSOM
proposed

105

Figure 5.35. TE results of the conventional SOM, GF-SOM, PLSOM and proposed SOM algorithms for

Sonar dataset

5.3.8 Wine dataset

The last experiment for evaluating the proposed SOM algorithm was conducted

using Wine dataset from UCI repository. Wine dataset contains 3 classes (1, 2 and 3)

and 178 instances with 13 attributes. The structure of the used Kohonen maps consists

of 13 neurons for the input layer with 2-D grid of 13×3 neurons in competitive layer.

The basic parameters used in this experiment for the conventional SOM

algorithm: 𝛿𝛼 = 0.9, for GF-SOM: 𝛿𝛼 = 0.6, and 𝛿𝜎 = 2.4, for the PLSOM algorithm:

𝛽 = 1.4, and for the proposed SOM: 𝜆 = 0.009, and 𝛽 = 0.98. Table 5.25. shows that

the proposed SOM algorithm recorded the best accuracy of 94.34 among other

algorithms followed by PLSOM with 86.79%.

Fig. 5.36 shows that all algorithms had a fast convergence rates. The proposed

SOM algorithm recorded the lowest QE with QE = 0.097 as shown in Table 5.25. The

proposed SOM algorithm keep trying to improve the accuracy and map at each iteration

shows some fluctuations on TE as in Fig 5.37. While all algorithms required almost

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

Iteration

T
E

GF-SOM

SOM

PLSOM

proposed

106

same CPU processing time per iteration, PLSOM required almost 1.5 times the CPU

time.

Table 5.25. Performance comparison of the conventional SOM, GF-SOM, PLSOM and proposed SOM

algorithms for Wine dataset

Wine Dataset
Accuracy

(%)

iteration
QE

CPU time

(msec/itr)

GF-SOM (Wang et al., 2014; Wang et al., 2015)

GF-SOM (our)

conventional SOM

PLSOM

Proposed SOM

61.79, 61.80

81.13

71.70

86.79

94.34

1000

50

50

15

15

–

0.117

0.127

0.113

0.097

–

53.35

50.544

77.06

52.1

Figure 5.36. QE results of the conventional SOM, GF-SOM, PLSOM and proposed SOM algorithms for

Wine dataset

5 10 15 20 25 30 35 40 45 50
0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

Iteration

Q
E

SOM

GF-SOM PLSOM
proposed

107

Figure 5.37. TE results of the conventional SOM, GF-SOM, PLSOM and proposed SOM algorithms for

Wine dataset

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Iteration

T
E

proposed

GF-SOM

SOM

PLSOM

108

6. CONCLUSION AND FUTURE WORK

In this thesis, we presented a new convex combination of adaptive filtering

algorithms. This combination has been proposed to overcome some of the difficulties

experienced with the above-mentioned adaptive filters. We have presented the convex

combination of the recently proposed RI and second-order RI algorithms. Their

combined performances are compared to the combined performances of the NLMS

algorithms in system identification, and noise cancellation settings. Simulation results

have been showing that the proposed combination of the RI algorithms provides much

better performance, in terms of MSE and rate of convergence, than that of the combined

NLMS algorithms in both AWGN and ACGN environments. This gain in performance

is due to the use of the instantaneous estimates of the correlations and the variable step-

size in the update equation of the proposed algorithm.

The 2-D version of the recently proposed convex combination of RI algorithms

has been presented. The proposed algorithm uses instantaneous estimates of the

correlations which, in turn, enables the algorithm to provide high performance. The

performance of the proposed algorithm has been investigated by de-noising MR images

which are buried in an AWGN. The proposed algorithm is always capable of de-noising

images successfully.

The main problems of artificial neural networks for both clustering and classifier

algorithms to solve complexity applications are; scalability, nonlinear, problem domain

of input parameters, noise, new objects, high dimensional data, constraints, and

interpretation and usability (Lopes et al., 2016). Recently, new neural network

algorithms are demonstrated better performance for solving complexity applications

than the conventional neural network algorithms. These techniques compared with the

other machine learning algorithms and handcraft features need extra more time for

training and testing, and then haven't been widely used for complexity applications yet.

In addition, a new artificial neural network algorithms shows high performance

in different aspects:

 For the supervised learning, the improved back-propagation algorithm with

variable adaptive momentum to update the weights vectors according to

input vector has been developed. This algorithm is controlled by the learning

rate parameter which is dependent on the eigenvalues of the autocorrelation

matrix of the input. It provides low error performance for the weights update.

109

This improved version of the BP algorithm by using a new variable adaptive

momentum technique has been compared to well-known supervised learning

algorithms such as SVM, NB, LD, K-NN, BP, and BPAM methods. The

proposed BPVAM algorithm provides a faster convergence behavior than

the BP and BPAM algorithms and minimizes the misadjustment error in

steady-state optimum solution. The performance of the proposed algorithm

outperformed those of the SVM, NB, LD, and K-NN algorithms and capable

to predict the target classes, superiorly. In addition to that, it is robust at

different training data sets. It shows the highest accuracy among the

available machine learning methods in literature. On the other hand, it

requires lower number of computation than the other well-known algorithms.

 For the unsupervised learning, we proposed a new adaptive learning rate for

the conventional SOM algorithm. In this new unsupervised learning

algorithm the weights updating is controlled adaptively, and the optimal

weights are obtained in a short time compared to the conventional SOM and

PLSOM algorithms. Moreover, the optimum weight vectors are also

improved and provided lower quantization error. The proposed SOM

algorithm showed higher performance compared to the conventional SOM,

GF-SOM and PLSOM algorithms. Experimental results showed that the

proposed SOM algorithm generally outperformed the other algorithms in

terms of convergence rate, the misadjustment quantization error, preserving

the topology of the map, the CPU processing time and accuracy.

In addition, the convergence phenomenon of BPVAM and proposed SOM

algorithms were compared to those mentioned algorithms using the well-known datasets

taken from the UCI and KEEL machine learning repository.

As a future work; the convergence analysis of 2-D version of “convex adaptive

filters algorithms” may be derived. For the BPVAM algorithm; the other activation

functions such as logistic sigmoid, hyperbolic tangent, and radial basis functions may be

applied in the proposed BPVAM algorithm. For the proposed SOM algorithm, it is

being planned to compare the performance of the proposed algorithm with well-known

supervised learning algorithms using the same data sets. Moreover, it can be applied on

bioinformatics data which needs to be invested in collecting samples of cases and

controls and obtaining genotypes. Also, many different big data applications can be

implemented.

110

REFERENCES

Aboulnasr, T. and Mayyas, K., 1997, A robust variable step-size LMS-type algorithm:

Analysis and simulations, IEEE Transactions on Signal Processing, 45, 631-639.

Ahmad, M. S., Kukrer, O. and Hocanin, A., 2010a, An efficient recursive inverse

adaptive filtering algorithm for channel equalization, European Wireless

Conference (EW), 88-92.

Ahmad, M. S., Kukrer, O. and Hocanin, A., 2010b, Recursive Inverse Adaptive Filter

with Second Order Estimation of Autocorrelation Matrix, IEEE International

Symposium on Signal Processing and Information Technology (ISSPIT), 482-484.

Ahmad, M. S., Kukrer, O. and Hocanin, A., 2011, Recursive inverse adaptive filtering

algorithm, Digital Signal Processing, 21(4), 491-496.

Ahmad, M. S., Kukrer, O. and Hocanin, A., 2012, Robust Recursive Inverse Adaptive

Algorithm In Impulsive Noise, Circuits, Systems and Signal Processing, 31(2),

703-710.

Ahmad, M. S., Kukrer, O. and Hocanin, A., 2013a, A 2-D recursive inverse adaptive

algorithm, Signal, Image and Video Processing, 7, 221-226.

Ahmad, M. S., Kukrer, O. and Hocanin, A., 2013b, Recursive Inverse Adaptive

Algorithm: A Second-Order Version, A Fast Implementation Technique, and

Further Results, Signal, Image and Video Processing, 9(3), 665-673.

Andersso, P., 1985, Adaptive Forgetting in Recursive Identification Through Multiple

Models, International Journal of Control, 42(5), 1175-1193.

Appiah, K., Hunter, A., Dickinson, P. and Meng, H., 2012, Implementation and

applications of tri-state self-organizing maps on FPGA, IEEE Transactions on

Circuits and Systems for Video Technology, 22(8), 1150–1160.

Arenas-Garcia, J., Figueiras-Vidal, A. R. and Sayed, A. H., 2005, Tracking properties of

a convex combination of two adaptive filters, IEEE/SP 13th Workshop on

Statistical Signal Processing (SSP2005), doi:10.1109/SSP.2005.1628574, 109-

114.

Arenas-Garcia, J., Figueiras-Vidal, A. R. and Sayed, A. H., 2006, Mean-square

performance of convex combination of two adaptive filters, IEEE Transactions on

Signal Processing, 54, 1078-1090.

Arenas-Garcia, J., Martinez-Ramon, M., Gomez-Verdejo, V. and Figueiras-Vidal, A.,

R., 2003, Multiple plant identifier via adaptive lms convex combination, IEEE

International Symposium on Intelligent Signal Processing, 137-142.

111

Arous, N. and Ellouze, N., 2010, On the search of organization measures for a Kohonen

map case study: Speech signal recognition, International Journal of Digital

Content Technology and its Applications, 4(3), 75-84

Astel, A., Tsakovski, S., Barbieri, P. and Simeonov, V., 2007, Comparison of self-

organizing maps classification approach with cluster and principal components

analysis for large environmental data sets, Water Research, 41(19), 4566-4578.

Ayadi, T., Hamdani, T. M. and Alimi, A. M., 2012, MIGSOM: Multilevel interior

growing self-organizing maps for high dimensional data clustering, Neural

Processing Letters, 36(3), 235-256.

Azpicueta-Ruiz, L. A., Figueiras-Vidal, A. R. and Arenas-Garcia, J., 2008, A

normalized adaptation scheme for the convex combination of two adaptive filters,

In IEEE International Conference Acoustics, Speech and Signal Processing,

3137-3149.

Azpicueta-Ruiz, L. A., Zeller, M., Arenas-Garca, J. and Kellermann, W., 2010, Novel

schemes for nonlinear acoustic echo cancellation based on filter combinations,

IEEE International Conference on Acoustics, Speech and Signal Processing, 193-

196.

Azpicueta-Ruiz, L. A., Zeller, M., Figueiras-Vidal, A. R. and Arenas-Garcia, J., 2010,

Least-squares adaptation of affine combinations of multiple adaptive filters,

Proceedings of the IEEE International Symposium on Circuits and Systems

(ISCAS), 2976-2979.

Baesens, B., Van Gestel, T., Viaene, S., Stepanova, M., Suykens, J., Van thienen, J.,

2003, Benchmarking state-of-the-art classisication algorithms for credit scoring,

The Journal of the Operational Research Society, 54(6), 627-635.

Barnabe-Lortie, V., Bellinger, C. and Japkowicz, N., 2015, Active learning for one-class

classification, 2015 IEEE 14th International Conference on Machine Learning and

Applications (ICMLA), 390-395.

Behrman, M., Linder, R., Assadi, A. H., Stacey, B. R. and Backonja, M. M., 2007,

Classification of patients with pain based on neuropathic pain symptoms:

comparison of an artificial neural network against an established scoring system,

European Journal of Pain, 11(4), 370-376.

Berglund, E. and Sitte, J., 2006, The parameterless self-organizing map algorithm, IEEE

Transactions on Neural Networks, 17(2), 305-316.

Berglund, E., 2010, Improved PLSOM algorithm, Applied Intelligence, 32(1), 122-130.

Bianchi, D., Calogero, R. and Tirozzi B., 2007, Kohonen neural networks and genetic

classification, Mathematical Computer Modelling, 45(1), 34-60.

Bielza, C., and Larranaga, P., 2014, Discrete Bayesian network classifiers: a

survey. ACM Computing Surveys (CSUR), 47(1), 5.

112

Bogdan, M. and Rosenstiel, W., 2001, Detection of cluster in self-organizing maps for

controlling a prostheses using nerve signals, In Proceedings of 9th European

Symposium on Artificial Neural Networks (ESANN), 131-136.

Bouboulis, P. and Theodoridis, S., 2010, The complex Gaussian kernel LMS algortihm,

In International Conference on Artificial Neural Networks, 11-20.

Breining, C., Dreiscitel, P., Hansler, E., Mader, A., Nitsch, B., Puder, H., Schertler, T.,

Schmidt, G. and Tilp, J., 1999, Acoustic echo control. An application of very-

high-order adaptive filters, IEEE Signal Processing Magazine, 16(4), 42-69.

Brugger, D., Bogdan, M. and Rosenstiel, W., 2008, Automatic cluster detection in

Kohonen’s SOM, IEEE Transactions on Neural Networks, 19(3), 442-459.

Burbidge, R., Trotter, M., Buxton, B. and Holden, S., 2001, Drug design by machine

learning: support vector machines for pharmaceutical data analysis, Computers

and Chemistry, 26(1), 5-14.

Burges, C. J., 1998, A tutorial on support vector machines for pattern recognition, Data

mining and knowledge discovery, 2(2), 121-167.

Carnevale, N. T. and Rosenthal, S., 1992, Kinetics of diffusion in a spherical cell. i. no

solute buffering, Journal of Neuroscience Methods, 41(3), 205-216.

Canan, S., Ozbay, Y. and Karlik, B., 1998, A method for removing low varying

frequency trend from ECG signal, Proceedings of the IEEE Biomedical

Engineering Days, 144–146, 1998.

Chang, H. H., Hsieh, T. J., Ting, Y. N. and Chu, W. C., 2011, Rician noise removal in

mr images using an adaptive trilateral filter, International Conference on

Biomedical Engineering and Informatics (BMEI), 467-471.

Chi, S. C. and Yang, C. C., 2006, Integration of ant colony som and k-means for

clustering analysis, International Conference on Knowledge-Based Intelligent

Information and Engineering Systems, 1–8.

Chi, S. C. and Yang, C. C., 2008, A two-stage clustering method combining ant colony

SOM and k-means, Journal of Information Science and Engineering, 24(5), 1445-

1460.

Chiang, W. Y. K., Zhang, D. and Zhou, L., 2006, Predicting and explaining patronage

behavior toward web and traditional stores using neural networks: a comparative

analysis with logistic regression, Decision Support Systems, 41(2), 514-531.

Cottrell, M., Gaubert, P., Eloy, C., Francois, D., Hallaux, G., Lacaille, J. and Verleysen,

M., 2009, Fault prediction in aircraft engines using self-organizing maps,

International Workshop on Self-Organizing Maps. Springer Berlin Heidelberg,

5629, 37-44.

113

De Mantaras, R. L. and Armengol, E., 1998, Machine learning from examples:

Inductive and Lazy methods, Data and Knowledge Engineering, 25(1), 99-123.

Derelioglu, G. and Gurgen, F., 2011, Knowledge discovery using neural approach for

SME's credit risk analysis problem in Turkey, Expert Systems with Applications,

38(8), 9313-9318.

Destexhe, A, and Sejnowski, T. J., 1995, G protein activation kinetics and spillover of

gamma-aminobutyric acid may account for differences between inhibitory

responses in the hippocampus and thalamus, Proceedings of the National

Academy of Sciences, 92(21), 9515-9519.

Diniz, P. S. R., 1997, Adaptive filtering: algorithms and practical implementations,

Kluwer Academic Publishers, Boston, USA.

Dogancay, K. and Tanrıkulu, O., 2001, Adaptive filtering algorithms with selective

partial update, IEEE Transaction Circuits and Systems-II, 48(8), 762-769.

Dollar, P., Tu, Z. and Belongie, S., 2006, Supervised learning of edges and object

boundaries. In 2006 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR'06), 2, 1964-1971.

Duda, R. O., Hart, P. E. and Stork, D. G., 2001, Pattern classification, John Wiley and

Sons, NJ, USA.

Duffy, A. H. B., 1997, The'what'and'how'of learning in design, invited paper, IEEE

Intelligent Systems, 12(3), 71-76.

Dvir, D., David, A. B., Sadeh, A. and Shenhar, A. J., 2006, Critical managerial factors

affecting defense projects success: a comparison between neural network and

regression analysis, Engineering Applications of Artificial Intelligence, 19(5),

535-543.

EIGayar, N., Schwenker, F. and Palm, G., 2006, A study of the robustness of KNN

classifiers trained using soft labels, Artificial Neural Networks in Pattern

Recognition, 67-80.

Eksioglu, E. M. and Tanc, A. K., 2011, RLS algorithm with convex regularization,

IEEE Signal Processing Letters, 18(8), 470-473.

Everitt, B. S., Landau, S. and Leese, M., 2001, Cluster Analysis, Arnold, London, UK.

Fonseca, A. M., Biscaya, J. L., Aires-de-Sousa, J. and Lobo, A. M., 2006, Geographical

classification of crude oils by Kohonen self-organizing maps, Analytica Chimica

Acta, 556(2), 374-382.

Gay, S. L. and Benesty, J., 2000, Acoustic signal processing for telecommunication,

Kluwer Academic Publishers, Boston, USA.

114

Gesbert, D. and Duhamel, P., 2000, Unbiased blind adaptive channel identification,

IEEE Transactions on Signal Processing, 48(1), 148–158.

Glentis, G. O., Berberidis, K. and Theodoridis, S., 1999, Efficient least squares adaptive

algorithms for FIR transversal filtering, IEEE Signal Processing Magazine, 16(4),

13–41.

Gorgonio, F. L. and Costa, J. A. F., 2008, Combining parallel self-organizing maps and

k-means to cluster distributed data, 11th IEEE International Conference on

Computational Science and Engineering Workshops, 53-58.

Gwadabe, T. R. and Salman, M. S., 2015, A new leaky-LMS algorithm with analysis,

International Arab Journal of Information Technology.

Hadhoud, M. M. and Thomas, D. W., 1998, The Two-Dimensional Adaptive LMS

(TDLMS) Algorithm, IEEE Transactions on Circuits and Systems, 35(5), 485-

494.

Hameed, A. A., Salman, M. S. and Karlik, B., 2014, A new 2-D convex combination of

recursive inverse algorithms, IEEE 34th International Conference on Electronics

and Nanotechnology (ELNANO), 273-276.

Haykin, S., 2002, Adaptive filter theory, Prentice-Hall Information and System Sciences

Series, NJ, 2002.

Haykin, S., 2009, Neural networks and learning machines, Upper Saddle River, NJ,

USA.

Hoffmann, M., 2005, Numerical control of Kohonen neural network for scattered data

approximation, Numerical Algorithms, 39(1), 175-186.

Hou, Y. T., Chang, Y., Chen, T., Laih, C. S. and Chen, C.M., 2010, Malicious web

content detection by machine learning, Expert Systems with Applications, 37(1),

55-60.

Huang, C., Davis, L. S. and Townshend, J. R. G., 2002, An assessment of support

vector machines for land cover classification, International Journal of Remote

Sensing, 23(4), 725-749.

Huang, H., Pasquier, M. and Quek, C., 2011, Decision support system based on

hierarchical co-evolutionary fuzzy approach: A case study in detecting gamma ray

signals, Expert Systems with Applications, 38(9), 10719-10729.

Iseri, A. and Karlik, B., 2009, An artificial neural networks approach on automobile

pricing, Expert Systems with Applications, 36(2), 2155-2160.

Istook, E. and Martinez, T., 2002, Improved backpropagation learning in neural

networks with windowed momentum, International Journal of Neural Systems,

12(3-4), 303-318.

115

Kang, B., Choi, O., Kim, J. D. and Hwang, D., 2013, Noise reduction in magnetic

resonance images using adaptive non-local means filtering, Electronics Letters,

49(5), 324-326.

Karlik, B. and Cemel, S. S., 2012, Diagnosing diabetes from breath odor using artificial

neural networks, Turkiye Klinikleri Journal of Medical Sciences, 32(2), 331-336.

Karlik, B. and Olgac, A. V., 2011, Performance analysis of various activation functions

in generalized MLP architectures of neural networks, International Journal of

Artificial Intelligence and Expert Systems, 1(4), 111-122.

Karlik, B., 2000, Differentiating type of muscle movement via AR modeling and neural

networks classification, Turkish Journal of Electrical Engineering and Computer

Science, 7(1-3), 45-52.

Karlik, B., 2013, Soft computing methods in bioinformatics: A Comprehensive Review,

Mathematical and Computational Applications, 18(3), 176-197.

Karlik, B., 2014, Machine learning algorithms for characterization of EMG signals,

International Journal of Information and Electronics Engineering, 4(3), 189-194.

Karlik, B., Ozkaya, E., Aydin, S. and Pakdemirli, M., 1998, Vibration of a beam-mass

system using artificial neural networks, Computer and Structures, 69, 339-347.

Kaski, S., Honkela, T., Lagus, K., and Kohonen, T. 1998. WEBSOM–self-organizing

maps of document collections. Neurocomputing, 21(1), 101-117.

Keramati, A. and Yousefi, N., 2011, A proposed classification of data mining

techniques in credit scoring, Proceedings 2nd International Conference on

Industrial Engineering and Operations Management (IEOM 2011), 416-424.

Kim, C. I., Yu, I. K. and Song, Y. H., 2002, Kohonen neural network and wavelet

transform based approach to short-term load forecasting, Electric Power Systems

Research, 63(3), 169-176.

Kim, Y., 2009, Boosting and measuring the performance of ensembles for a successful

database marketing, Expert Systems with Applications, 36(2), 2161-2176.

Kohonen, T., 2001, Self-organizing maps, Springer, Berlin.

Kohonen, T., 1982, Self-organized formation of topologically correct feature maps,

Biological Cybernetics, 43(1), 59-69.

Kohonen, T., 1989, Self-Organization and Associative Memory Process, Springer-

Verlag, Berlin.

Kohonen, T., 1990, The self-organizing maps, Proceedings of the IEEE, 78(9), 1464-

1480.

116

Kohonen, T., Oja, E., Simula, O., Visa, A. and Kangas, J., 1996, Engineering

applications of the self-organizing map, Proceedings of the IEEE, 84(9), 1358-

1384.

Kosat, S. S. and Singer, A. C., 2009, A performance-weighted mixture of LMS filters,

In IEEE International Conference on Acoustics, Speech, and Signal Processing,

3101-3104.

Kotsiantis, S. B. and Pintelas, P. E., 2004, Hybrid feature selection instead of ensembles

of classifiers in medical decision support, Proceedings of Information Processing

and Management of Uncertainty in Knowledge-Based Systems, 4-9.

Kotsiantis, S. B., Zaharakis, I. D. and Pintelas, P. E., 2006, Machine learning: a review

of classification and combining techniques, Artificial Intelligence Review, 26(3),

159-190.

Kotsiantis, S. B., Zaharakis, I. D. and Pintelas, P. E., 2007, Supervised machine

learning: A review of classification techniques, Artificial Intelligence Review,

26(3), 159-190.

Kozat, S. S. and Singer, A. C., 2000, Multi-stage adaptive signal processing algorithms,

Proceedings of the IEEE Sensor Array and Multichannel Signal Processing

Workshop, 380-384.

Kutner, M. H., Nachtsheim, C. J., Neter, J. and Li, W., 2005, Applied linear statistical

models, McGraw-Hill Irwin, New York, USA.

Langley, P. and Simon, H. A., 1995, Applications of machine learning and rule

induction. Communications of the ACM, 38(11), 54-64.

Larose, D. T., 2005, K-nearest neighbor algorithm, Discovering Knowledge in Data an

Introduction to Data Mining, John Wiley and Sons,90-106, NJ, USA.

Lee, K., Booth, D. and Alam, P., 2005, A comparison of supervised and unsupervised

neural networks in predicting bankruptcy of Korean rms, Expert Systems with

Applications, 29(1), 1-16.

Lopes, L. A., Machado, V. P., Rabelo, R. A. L., Fernandes, R. A. S. and Lima, B. V. A.,

2016, Automatic labelling of clusters of discrete and continuous data with

supervised machine learning, Knowledge-Based Systems, 106, 231-241.

Ma, W., Qu, H., Gui, G., Xu, L., Zhao, J. and Chen, B., 2015, Maximum correntropy

criterion based sparse adaptive filtering algorithms for robust channel estimation

under non-gaussian environments, Journal of the Franklin Institute, 352(7), 2708-

2727.

Macskassy, S. A., 2011, Relational classifiers in a non-relational world: using

homophily to create relations, The Tenth International Conference on Machine

Learning and Applications, 1, 406-411.

117

Madhow, U. and Honig, M. L., 1994, MMSE interference suppression for direct-

sequence spread-spectrum CDMA, IEEE Transactions on Communications,

42(12), 3178–3188.

Maouche, K. and Slock, D. T. M., 2000, Fast subsampled-updating stabilized fast

transversal filter (FSU SFTF) RLS algorithm for adaptive filtering, IEEE

Transactions on Signal Processing, 48(8), 2248-2257.

Mandic, D., Vayanos, P., Boukis, C., Jelfs, B., Goh, S. L., Gautama, T. and Rutkowski,

T., 2007, Collaborative adaptive learning using hybrid filters, In IEEE

International Conference on Acoustics, Speech, and Signal Processing-

ICASSP’07, 3, 921-924.

Marini, F., Zupan, J. and Magri, A. L., 2005, Class-modeling using Kohonen artificial

neural networks, AnalyticaChimicaActa, 544(1), 306-314.

Martens, D., Baesens, B. B. and Van Gestel, T., 2009, Decompositional rule extraction

from support vector machines by active learning, IEEE Transactions on

Knowledge and Data Engineering, 21(2), 178-191.

Martinez-Ramon, M., Arenas-Garcia, J., Navia-Vazquez, A. and Figueiras-Vidal, A. R.,

2002, An Adaptive Combination of Adaptive Filters for Plant Identification, In the

Proceedings of 14th International Conference on Digital Signal Processing, 1195-

1198.

Mendialdua, I., Fernandez, N. O., Sierra, B. and Lazkano, E., 2012, Positive predictive

value based dynamic K-nearest neighbor, Advances in Knowledge-based and

Intelligent Information and Engineering Systems, 59-68.

Mikhael, W. B. and Ghosh, S. M., 1992, Two-dimensional block adaptive filtering

algorithms, In Proceedings of IEEE International Symposium on Circuits and

Systems, 1219-1222.

Mikhael, W. B. and Wu, F. H., 1989, A fast block fir adaptive digital filtering algorithm

with individual adaptation of parameters, IEEE Transactions on Circuits and

Systems, 36, 1-10.

Minsky, M. and Papert, S. A., 1969, Perceptrons, MIT Press, Cambridge, MA, USA.

Mosteller, F. and Tukey, J. W., 1968, Data analysis, including statistics, Addison-

Wesley, 2.

Mukherjee, A., 1997, Self-organizing neural network for identification of natural

modes, Journal of Computing in Civil Engineering, 11(1), 74-77.

Muneyasu, M., Hinamoto, T. and Yagi, H., 1998, A realization of 2-d adaptive filters

using affine projection algorithm, Journal of the Franklin Institute, 335(7), 1185-

1193.

118

Murphy, K. P., 2006, Naive Bayes classifier, University of British Columbia,

Vancouver, Canada.

Mustafa, Z. A., Abrahim, B. A. and Kadah, Y. M., 2012, K11. Modified hybrid median

filter for image denoising, National Radio Science Conference (NRSC), 705-712.

Myles, A. J., Feudale, R. N., Liu, Y., Woody, N. A. and Brown, S. D., 2004, An

introduction to decision tree modeling, Journal of Chemometrics, 18(6), 275-285.

Ozbay, Y. and Karlik, B., 2002, A fast training back-propagation algorithm on

windows, In Proceedings of 3rd International Symposium on Mathematical and

Computational Applications, 204-210.

Ozbay, Y., Karlik, B. and Kavsaoglu A. R., 2003, A Windows-based digital filter

design, Mathematical and Computational Applications, 8(3), 287-294.

Phatak, K., Jakhade, S., Nene, A., Kamathe, R. S. and Joshi, K. R., 2011, Wavelet

domain filtering of mr image sequences with appropriate filtering approach based

on mr image type, International Conference on Signal Processing,

Communications, Computing and Networking Technologies (ICSCCN), 9(2), 520-

525.

Qiu, G., Varley, M. R. and Terrell, T. J., 1992, Accelerated training of backpropagation

networks by using adaptive momentum step, Electronics Letters, 28(4), 377-379.

Ray, D., Majumder, D. D. and Das, A., 2012, Noise reduction and image enhancement

of mri using adaptive multiscale data condensation, International Conference on

Recent Advances in Information Technology (RAIT), 107-113.

Ripley, B. D., 2007, Pattern recognition and neural networks, Cambridge University

Press, UK.

Rojas, R., 1996, Neural Networks-A Systematic Introduction, Springer-Verlag, Berlin.

Rosenblatt, F., 1962, Principles of neurodynamics. perceptrons and the theory of brain

mechanisms, Spartan Books, Washingotn D.C., USA

Rumelhart, D. E. and McClelland, J. L., 1986, Parallel distributed processing:

explorations in the microstructure of cognition, MIT Press Cambridge, 2, MA,

USA.

Rumelhart, D. E., Hinton, G. E. and Williams, R. J., 1988, Learning representations by

backpropagating errors, In Neurocomputing: Foundations of Research, 3, 696-

699.

Saetern, K. and Eiamkanitchat, N., 2014, An ensemble K-nearest neighbor with neuro-

fuzzy method for classification, Recent Advances in Information and

Communication Technology, 43-51.

119

Salman, M. S., 2014, Sparse leaky-LMS algorithm for system identification and its

convergence analysis, International Journal of Adaptive Control and Signal

Processing, 28(10), 1065-1072.

Salman, M. S., Hameed, A. A., Turan, C. and Karlik, B., 2015, A new sparse convex

combination of ZA-LLMS and RZA-LLMS algorithms. In 2015 23nd Signal

Processing and Communications Applications Conference (SIU), 711-714.

Sarangi, P. P., Mishra, B. S. P., Majhi, B., Dehuri, S. and Mohan, F., 2013, Hybrid

supervised learning in MLP using real-coded GA and back-propagation,

International Journal of Computer Applications, 62(21), 32-39.

Sayed, A. H., 2003, Fundamentals of adaptive filtering, John Wiley and Sons, NJ, USA.

Sayed, A. H., 2008, Adaptive filters, John Wiley and Sons, NJ, USA.

Scholkopf, B. and Smola, A. J., 2002, Learning with kernels: support vector machines,

regularization, optimization, and beyond, MIT Press Cambridge, MA, USA..

Seber, G. A. and Lee, A. J., 2012, Linear regression analysis, John Wiley and Sons, 936,

NJ, USA.

Shao, H. and Zheng, G., 2009, A new BP algorithm with adaptive momentum for FNNs

training, WRI Global Congress on Intelligent Systems, 4, 16-20.

Shao, H. and Zheng, G., 2011, Convergence analysis of a back-propagation algorithm

with adaptive momentum, Neurocomputing, 74(5), 749-752.

Shin, H. C., Sayed, A. H. and Song, W. J., 2004, Variable step-size NLMS and affine

projection algorithms, IEEE Signal Processing Letters, 11(2), 132-135.

Shouman, M., Turner, T. And Stocker, R., 2012, Applying K-nearest neighbor in

diagnosing heart disease patients, International Journal of Information and

Education Technology, 2(3), 220-223.

Silva, M. T. M. and Nascimento, V. H., 2008, Improving the tracking capability of

adaptive filters via convex combination, IEEE Transactions on Signal Processing,

56(7), 3137-3149.

Song, X. H. and Hopke, P. K., 1996, Kohonen neural network as a pattern recognition

method based on the weight interpretation, Analytical Chimica Acta, 334(1), 57-

66.

Stone, M., 1974, Cross-validatory choice and assessment of statistical

predictions, Journal of the Royal Statistical Society, 111-147.

Tamukoh, H., Aso, T., Horio, K. and Yamakawa, T. 2004, Self-organizing map

hardware accelerator system and its application to realtime image enlargement,

Proceedings. 2004 IEEE International Joint Conference on Neural Networks, 4,

2683-2687.

120

Tasdemir, K., Milenov, P. and Tapsall, B., 2011, Topology-based hierarchical clustering

of self-organizing maps, IEEE Transactions on Neural Networks, 22(3), 474-485.

Trump, T., 2009a, Steady state analysis of an output signal based combination of two

nlms adaptive filters, Proceedings of the 17th European Signal Processing

Conference, 1720-1724.

Trump, T., 2009b, Tracking performance of a combination of two NLMS adaptive

filters, IEEE 15th Workshop on Statistical Signal Processing, 29, 181-184.

Turan, C. and Salman, M. S., 2014, A sparse function controlled variable step-size LMS

algorithm for system identification, Proceedings of the Signal Processing and

Communications Applications Conference, 329-332.

Vapnik, V., 1995, The nature of statistical learning theory, Springer-Verlag, Berlin.

Varghees, V. N., Manikandan, M. S. and Gini, R., 2012, Adaptive mri image denoising

using total-variation and local noise estimation, International Conference on

Advances in Engineering, Science and Management (ICAESM), 506-511.

Vesanto J. and Alhoniemi, E., 2000, Clustering of the self-organizing map, IEEE

Transactions on Neural Networks, 11(3), 586-600.

Wang, J., 2009, A variable forgetting factor RLS adaptive filtering algorithm, 3rd IEEE

International Symposium on Microwave, Antenna, Propagation and EMC

Technologies for Wireless Communications, 1127-1130.

Wang, K. J., Adrian, A. M., Chen, K. H. and Wang, K. M., 2015, An improved

electromagnetism-like mechanism algorithm and its application to the prediction

of diabetes mellitus, Journal of Biomedical Informatics, 54, 220-229.

Wang, K. J., Chen, K. H. and Angelia, M. A., 2014, An improved artificial immune

recognition system with the opposite sign test for feature selection, Knowledge-

Based Systems, 71, 126-145.

Wang, T. and Wang, C. L., 1998, A new two-dimensional block adaptive fir filtering

algorithm and its application to image restoration, IEEE Transactions on Image

Processing, 7, 238-246.

Wickramasinghe, L. K., Alahakoon, L. D. and Smith, K. A., 2005, Computation of

meta-learning classifiers in distributed data mining using a novel cognitive

memory model, IEEE/WIC/ACM International Conference on Intelligent Agent

Technology, 180-186.

Widrow, B. and Hoff, M. D., 1960, Adaptive Switching Circuits, 1960 IRE WESCON

Convention Record, Part 4, 96-104.

121

Williams, D. R. G. H. R. and Hinton, G. E., 1986, Learning representations by back-

propagating errors, Nature, 323, 533-536.

Witten, I. H. and Frank, E., 2005, Data Mining: Practical machine learning tools and

techniques, Morgan Kaufmann, San Francisco, USA .

Wong, M. L. D., Jack, L. B., and Nandi, A. K., 2006, Modified self-organising map for

automated novelty detection applied to vibration signal monitoring, Mechanical

Systems and Signal Processing, 20(3), 593-610.

Wu, W. and Xu, Y., 2002, Deterministic convergence of an online gradient method for

neural networks, Journal of Computational and Applied Mathematics, 144(1-2),

335-347.

Wu, W., Feng, G. and Li, X., 2002, Training multilayer perceptrons via minimization of

sum of ridge functions, Advances in Computational Mathematics, 17(4), 331-347.

Xu, R. and Wunsch, D., 2005, Survey of clustering algorithms, IEEE Transactions on

Neural Networks, 16(3), 645-678.

Yamaguchi, T., Ichimura, T. and Mackin, K. J., 2010, Adaptive learning algorithm in

tree-structured self-organizing feature map, Proceedings of Joint 5th International

Conference on Soft Computing and Intelligent Systems and 11th International

Symposium on Advanced Intelligent Systems(SCIS & ISIS 2010), 1429-1434.

Yang, J. and Yang, J.y., 2003, Why can LDA be performed in PCA transformed space?,

Pattern Recognition, 36(2), 563-566.

Yang, L., Ouyang, Z. and Shi, Y., 2012, A modified clustering method based on self-

organizing maps and its applications, Procedia Computer Science, 9, 1371–1379.

Yang, T. and Kecman, V., 2008, Adaptive local hyperplane classification,

Neurocomputing, 71(13), 3001-3004.

Yang, T., Vojislav, K., Longbing, C. and Chengqi, Z., 2010, Testing adaptive local

hyperplane form multi-class classification by double cross-validation, The 2010

International Joint Conference on Neural Networks (IJCNN), pp.

Yen, G. G. and Wu, Z., 2008, Ranked centroid projection: A data visualization approach

with self-organizing maps, IEEE Transactions on Neural Networks, 19(2), 245-

259.

Yu, C. C. and Liu, B. D., 2002, A backpropagation algorithm with adaptive learning

rate and momentum coefficient, Proceedings of the 2002 International Joint

Conference on Neural Networks, 2, 1218-1223.

Yu, X., Loh, N. K. and Miller, W. C., 1993, A new acceleration technique for the

backpropagation algorithm, In IEEE International Conference on Neural

Networks, 3, 1157-1161.

122

Zhang, Y. and Chambers, J. A., 2006, Convex combination of adaptive filters for a

variable tap-length LMS algorithm, IEEE Signal Processing Letters, 13(10), 628-

631.

123

APPENDICES

APPENDIX-1 Error performance (SSE) of BP, BPAM, and BPVAM algorithms are

compared using different 𝜂 and 𝛼 parameters.

1. Breast Cancer Dataset

Table 1. Error convergence behavior of BP algorithm in 400 iterations for breast cancer dataset

𝜂

𝛼
0.7 0.8 0.9

0.03

0.02

0.01

6.42

6.38

6.34

6.175

6.17

6.08

6.19

6.034

6.033

Table 2. Error convergence behavior of BPAM algorithm in 400 iterations for breast cancer dataset

𝜂

𝛼
0.7 0.8 0.9

0.03

0.02

0.01

6.4

6.34

8.08

5.75

6.65

6.3

5.6

5.6

5.97

Table 3. Error convergence behavior of BPVAM algorithm in 400 iterations for breast cancer dataset

𝜂

𝜆/𝛽

0.7 0.8 0.9

0.0087

0.994

0.0086

0.993

0.0085

0.992

6.4

6.32

6.6

6.07

6.04

6.06

5.9

5.9

5.88

124

2. Heart Dataset

Table 4. Error convergence behavior of BP algorithm in 100 iterations for heart dataset

𝜂

𝛼
0.005 0.004 0.003

0.03

0.02

0.01

4.32

4.32

4.33

4.5

4.5

4.5

5.12

5.14

5.161

Table 5. Error convergence behavior of BPAM algorithm in 100 iterations for heart dataset

𝜂

𝛼
0.05 0.04 0.03

0.11

0.1

0.09

4.26

4.27

4.28

4.34

4.36

4.37

4.6

4.6

4.6

Table 6. Error convergence behavior of BPVAM algorithm in 100 iterations for heart dataset

𝜂

𝜆/𝛽

0.05 0.04 0.03

0.0087

0.994

0.0086

0.993

0.0085

0.992

4.24

4.21

4.22

4.266

4.25

4.263

4.3

4.3

4.34

125

3. Heart-Statlog Dataset

Table 7. Error convergence behavior of BP algorithm in 20 iterations for heart-statlog dataset

𝜂

𝛼
0.3 0.2 0.1

0.07

0.06

0.05

0.12

0.12

0.12

0.1228

0.123

0.123

0.14

0.141

0.141

Table 8. Error convergence behavior of BPAM algorithm in 20 iterations for heart-statlog dataset

𝜂

𝛼
0.3 0.2 0.1

0.00029

0.00028

0.00027

0.12

0.12

0.12

0.12

0.12

0.124

0.133

0.138

0.136

Table 9. Error convergence behavior of BPVAM algorithm in 20 iterations for heart-statlog dataset

𝜂

𝜆/𝛽

0.3 0.2 0.1

0.027

0.998

0.026

0.997

0.025

0.996

0.453

0.12

0.12

0.453

0.127

0.12

0.45

0.172

0.123

126

4. Iris Dataset

Table 10. Error convergence behavior of BP algorithm in 150 iterations for iris dataset

𝜂

𝛼
0.07 0.06 0.05

0.003

0.002

0.001

0.801

0.8

0.8

1.34

1.35

1.34

1.84

1.84

1.84

Table 11. Error convergence behavior of BPAM algorithm in 150 iterations for iris dataset

𝜂

𝛼
0.07 0.06 0.05

0.0005

0.0004

0.0003

0.99

0.53

0.28

0.25

0.23

0.82

0.45

0.44

0.92

Table 12. Error convergence behavior of BPVAM algorithm in 150 iterations for iris dataset

𝜂

𝜆/𝛽

0.07 0.06 0.05

0.04

0.9991

0.03

0.999

0.02

0.998

22.05

22.05

0.242

22.05

22.05

0.244

22.05

22.05

0.244

127

5. Lung-cancer Dataset

Table 13. Error convergence behavior of BP algorithm in 150 iterations for lung-cancer dataset

𝜂

𝛼
0.3 0.2 0.1

0.07

0.06

0.05

0.83

0.83

0.84

0.154

0.154

0.154

0.97

1.02

1.01

Table 14. Error convergence behavior of BPAM algorithm in 150 iterations for lung-cancer dataset

𝜂

𝛼
0.3 0.2 0.1

0.00003

0.00002

0.00001

0.04

0.09

0.05

0.09

0.1

0.21

1.53

0.87

1.12

Table 15. Error convergence behavior of BPVAM algorithm in 150 iterations for lung-cancer dataset

𝜂

𝜆/𝛽

0.7 0.8 0.9

0.007

0.9991

0.006

0.999

0.005

0.998

4.73

0.023

0.077

4.75

0.05

0.12

4.75

0.108

0.21

128

6. Wine Dataset

Table 16. Error convergence behavior of BP algorithm in 150 iterations for wine dataset

𝜂

𝛼
0.7 0.8 0.9

0.03

0.02

0.01

0.98

0.98

0.99

0.97

0.964

0.98

0.94

0.95

0.96

Table 17. Error convergence behavior of BPAM algorithm in 150 iterations for wine dataset

𝜂

𝛼
0.7 0.8 0.9

0.00003

0.00002

0.00001

0.37

0.7

0.98

0.33

0.37

0.9

0.964

0.96

0.95

Table 18. Error convergence behavior of BPVAM algorithm in 150 iterations for wine dataset

𝜂

𝜆/𝛽

0.7 0.8 0.9

0.0004

0.99991

0.0003

0.9999

0.0002

0.9998

0.99

0.99

0.97

0.986

0.93

0.87

0.95

0.81

0.73

129

APPENDIX-2 Error performance (QE) of the conventional SOM, GF-SOM, PLSOM

and proposed SOM algorithms are compared using different 𝛿𝛼, 𝛿𝜎, 𝛽 and 𝜆 parameters

in 20 iterations.

1. Appendicitis dataset

Table 1. QE results of the conventional SOM algorithm for appendicitis dataset

𝛿𝛼 0.57 0.56 0.55

QE 0.142 0.142 0.1416

Table 2. QE results of the GF-SOM algorithm for appendicitis dataset

𝛿𝛼

δσ

0.7 0.6 0.5

0.003

0.002

0.001

0.145

0.145

0.145

0.142

0.142

0.142

0.1442

0.1442

0.144

Table 3. QE results of the PLSOM algorithm for appendicitis dataset

𝛽 1.16 1.15 1.14

QE 0.173 0.172 0.171

Table 4. QE results of the proposed SOM algorithm for appendicitis dataset

𝜆

𝛽

0.00064 0.00063 0.00062

0.996

0.995

0.994

0.14

0.13

0.123

0.125

0.132

0.141

0.143

0.142

0.132

130

2. Balance Dataset

Table 5. QE results of the conventional SOM algorithm for balance dataset

𝛿𝛼 0.17 0.16 0.15

QE 0.24 0.25 0.24

Table 6. QE results of the GF-SOM algorithm for balance dataset

𝛿𝛼

δσ

1 0.9 0.8

0.0087

0.0086

0.0085

0.242

0.242

0.242

0.239

0.24

0.238

0.24

0.24

0.24

Table 7. QE results of the PLSOM algorithm for balance dataset

𝛽 4 3 2

QE 0.22 0.22 0.23

Table 8. QE results of the proposed SOM algorithm for balance dataset

𝜆

𝛽

0.005 0.004 0.003

0.992

0.991

0.99

0.2

0.2

0.22

0.21

0.21

0.22

0.2

0.216

0.2

131

3. Wisconsin Breast Dataset

Table 9. QE results of the conventional SOM algorithm for wisconsin dataset

𝛿𝛼 0.5 0.4 0.3

QE 0.1485 0.1485 0.1484

Table 10. QE results of the GF-SOM algorithm for wisconsin dataset

𝛿𝛼

δσ

0.3 0.2 0.1

1.7

1.6

1.5

0.1484

0.1484

0.1484

0.1484

0.1484

0.1484

0.1484

0.1484

0.1484

Table 11. QE results of the PLSOM algorithm for wisconsin dataset

𝛽 0.8 0.7 0.6

QE 0.188 0.183 0.18

Table 12. QE results of the proposed SOM algorithm for wisconsin dataset

𝜆

𝛽

0.0017 0.0016 0.0015

0.97

0.96

0.95

0.1483

0.1481

0.148

0.1483

0.1481

0.148

0.1482

0.148

0.1479

132

4. Dermatology Dataset

Table 13. QE results of the conventional SOM algorithm for dermatology dataset

𝛿𝛼 0.6 0.5 0.4

QE 0.181 0.181 0.18

Table 14. QE results of the GF-SOM algorithm for dermatology dataset

𝛿𝛼

δσ

0.6 0.5 0.4

0.04

0.03

0.02

0.179

0.181

0. 18

0.177

0.181

0.18

0.177

0.182

0.177

Table 15. QE results of the PLSOM algorithm for dermatology dataset

𝛽 13.7 13.6 13.5

QE 0.188 0.177 0.176

Table 16. QE results of the proposed SOM algorithm for dermatology dataset

𝜆

𝛽

0.007 0.006 0.005

0.992

0.991

0.99

0.174

0.176

0.18

0.179

0.176

0.1732

0.184

0.179

0.173

133

5. Ionosphere Dataset

Table 17. QE results of the conventional SOM algorithm for ionosphere dataset

𝛿𝛼 0.6 0.5 0.4

QE 0.1 0.1 0.1

Table 18. QE results of the GF-SOM algorithm for ionosphere dataset

𝛿𝛼

δσ

0.4 0.3 0.2

7

6

5

0.1

0.1

0.1

0.1

0.1

0.1

0.09

0.09

0.1

Table 19. QE results of the PLSOM algorithm for ionosphere dataset

𝛽 2.1 2 1.9

QE 0.118 0.117 0.117

Table 20. QE results of the proposed SOM algorithm for ionosphere dataset

𝜆

𝛽

0.0027 0.0026 0.0025

0.991

0.99

0.98

0.104

0.103

0.1

0.104

0.103

0.1

0.104

0.1

0.1

134

6. Iris Dataset

Table 21. QE results of the conventional SOM algorithm for iris dataset

𝛿𝛼 1.1 1 0.9

QE 0.2653 0.2655 0.265

Table 22. QE results of the GF-SOM algorithm for iris dataset

𝛿𝛼

δσ

0.6 0.5 0.4

0.03

0.02

0.01

0.3

0.2653

0.2653

0.2655

0.2655

0.2655

0.2881

0.2651

0.265

Table 23. QE results of the PLSOM algorithm for iris dataset

𝛽 3.7 3.6 3.5

QE 0.267 0.2656 0.264

Table 24. QE results of the proposed SOM algorithm for iris dataset

𝜆

𝛽

0.007 0.006 0.005

0.991

0.99

0.98

0.2654

0.2653

0.2651

0.2653

0.2652

0.265

0.2652

0.2652

0.265

135

7. Sonar Dataset

Table 25. QE results of the conventional SOM algorithm for sonar dataset

𝛿𝛼 0.9 0.8 0.7

QE 286.8 286.8 284.2

Table 26. QE results of the GF-SOM algorithm for sonar dataset

𝛿𝛼

δσ

0.3 0.29 0.28

0.03

0.02

0.01

283.6

283.6

283.6

283.5

283.5

283.5

283.4

283.4

283.4

Table 27. QE results of the PLSOM algorithm for sonar dataset

𝛽 0.6 0.5 0.4

QE 241.5 233.3 230.3

Table 28. QE results of the proposed SOM algorithm for sonar dataset

𝜆

𝛽

0.0000097 0.0000096 0.0000095

0.9992

0.9991

0.999

223.5

224.9

224.8

224

224.6

224.6

223.5

225.1

224.3

136

8. Wine Dataset

Table 29. QE results of the conventional SOM algorithm for wine dataset

𝛿𝛼 1.1 1 0.9

QE 0.137 0.138 0.133

Table 30. QE results of the GF-SOM algorithm for wine dataset

𝛿𝛼

δσ

0.8 0.7 0.6

2.6

2.5

2.4

0.134

0.133

0.152

0.132

0.13

0.13

0.153

0.158

0.13

Table 31. QE results of the PLSOM algorithm for wine dataset

𝛽 1.6 1.5 1.4

QE 0.155 0.138 0.124

Table 32. QE results of the proposed SOM algorithm for wine dataset

𝜆

𝛽

0.011 0.01 0.009

0.991

0.99

0.98

0.095

0.095

0.134

0.095

0.095

0.13

0.15

0.16

0.095

137

ÖZGEÇMİŞ

KİŞİSEL BİLGİLER

Adı Soyadı : Alaa Ali Hameed HAMEED

Uyruğu : Irak

Doğum Yeri ve Tarihi : Bağdat, 21 Ekim 1985

Telefon : +90 534 571 11 74

Faks :

e-mail : dr.alaa85@yahoo.com & alaa.hameed@selcuk.edu.tr

EĞİTİM

Derece Adı, İlçe, İl Bitirme Yılı

Lise : Al-Muthanna Lisesi, Bağdat 2005

Üniversite :
Al-Mamon Üniversitesi, Bilgisayar Mühendisliği

Teknikleri, Bağdat
2009

Yüksek Lisans :
Doğu Akdeniz Üniversi, Bilgisayar Mühendisliği,

Gazimağusa
2012

Doktora : Selçuk Üniversitesi, Bilgisayar Mühendisliği, Konya 2017

UZMANLIK ALANI

Dijital Sinyal ve Görüntü İşleme, Uyarlamalı Filtreler, Yapay Sinir Ağları ve Makine

öğrenmesi.

YABANCI DİLLER

Arapça (anadili), Türkçe, İngilizce

YAYINLAR

Hameed, A. A., Salman, M. S. and Karlik, B., 2014, A new 2-D convex combination of

recursive inverse algorithms, IEEE 34th International Conference on Electronics

and Nanotechnology (ELNANO), 273-276.

Salman, M. S., Hameed, A. A., Turan, C. and Karlik, B., 2015, A new sparse convex

combination of ZA-LLMS and RZA-LLMS algorithms. In 2015 23nd Signal

Processing and Communications Applications Conference (SIU), 711-714

(Doktora tezinden).

Salman, M. S., Hameed, A. A. and Karlik, B., 2013, Convex combination ofrecursive

inverse algorithms, Turkish Journal of Electrical Engineering and Computer

Sciences, DOI: 10.3906/elk-1306-232 (Doktora tezinden).

Hameed, A. A., Karlik, B. and Salman, M. S., 2016, Back-propagation algorithm with

variable adaptive momentum, Knowledge-Based Systems, 114, 79-87 (Doktora

tezinden).

Hameed, A. A., Salman, M. S. and Karlik, B., Analysis of convexly combined recursive

inverse algorithms, (under review), (Doktora tezinden).

138

Hameed, A. A., Karlik, B. and Salman, M. S, Robust adaptive learning approach of self-

organizing maps, (under review), (Doktora tezinden).

