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Abstract

A classical result on value sets of non-permutation polynomials over finite fields is due
to Wan (1993). Denoting the cardinality of the value set of f € Fy[x] by |V}|, Wan’s
result gives the upper bound |Vy| < ¢ — [‘%1}, where d is the degree of f. A proof of
this bound due to Turnwald, which was obtained by the use of symmetric polynomials
is given in Chapter 2. A generalization of this result was obtained by Aitken that we
also describe here. The work of Aitken focuses on value sets of pairs of polynomials
in F,[z], in particular, he studies the size of the intersection of their value sets. We
present pairs of particular polynomials whose value sets do not only have the same size
but are actually identical.

Clearly, a permutation polynomial f of IF,[z] satisfies |V}| = ¢. In Chapter 3, we discuss

permutation behaviour of pairs of polynomials in F,[x].



SONLU CISIMLER UZERINDEKI OZEL DEGER KUMELERINE SAHIP
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Sonlu cisimler tizerinde permiitasyon olmayan polinomlarin deger kiimeleri hakkindaki
klasik sonuglardan birisi Wan’ a aittir (1993). Derecesi d > 0 olan bir f € F[z]
polinomunun deger kiimesinin kardinalitesini, |V}| ile gosterirsek, Wan’ in sounucu
V¢ < ¢ — [£2], iist smirmm verir. Bu sonucun Turnwald tarafindan simetrik poli-
nomlar kullanilarak elde edilen kanit1 Boliim 2 ’de verilmigtir. Wan’ 1n st sinirinin
Aitken tarafindan elde edilen genellemesini de burada anlattik. Aitken’in calismasi
[F,[z] i¢indeki polinom ciftlerinin deger kiimeleri tizerine odaklamr, 6zel olarak, on-
larin deger kiimelerinin kesigimlerinin biiyiikliigii tizerinedir. Biz bu c¢alismada deger
kiimeleri ayni olan bazi polinom ¢iftlerini sunduk.

Bir permiitasyon polinomu olan f € F,[z], |V}| = ¢ esitligini saglar. Bolim 3’de,

polinom c¢iftlerinin permiitasyon olma yoniindeki davraniglarini inceledik.
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CHAPTER 1

Introduction

1.1. Introductory remarks

Throughout this thesis, IF;, denotes the finite field with ¢ elements, where ¢ = p",
and p is a prime number. We denote the multiplicative group of F, by F;.
We shall be studying value sets of polynomials over IF,. Recall that the value set V} of
a polynomial f € F,[z] is defined as Vy = {f(c¢) : ¢ € F,}. We denote the cardinality
of V; by | V4.

Value sets of polynomials over finite fields attracted significant interest since early
1950s. A wide range of results have been obtained, particularly on the size of |V,
where f is a polynomial in F,[z] of degree d. We refer the reader to Section 8.2 of [21],
Section 8.3 of [18], to the papers [17], [19] and the references therein for many inter-

esting results.

In this thesis we shall be concerned with some of the classical bounds for |V}| as
well as a generalization of Wan’s bound. We shall also study pairs of polynomials in

relation to their value sets.
In section 1.2 we introduce basic definitions, concepts and the notation that we use.

Chapter 2 starts with Wan’s bound on value sets of non-permutation polynomials.
This theorem is interesting since it shows that, among the polynomials of the same de-
gree d, there are no polynomials f € F,[z] such that |V| lies between ¢ and ¢ — [,
where [s] denotes the smallest integer > s. We note that when d is small, permuta-

tions and non-permutation polynomials are for apart in terms of the size of their value



sets. A proof, given later by Turnwald, uses symmetric polynomials, which we describe
in detail. A result by Cusick and Miiller determining polynomials that attain Wan’s
upper bound is also given in Chapter 2. Lower bounds for |V| in terms of the degree
d of f is known, see for example Theorem below, which is due to Wan, Shiue
and Chen. Wan’s bound was generalized by Aitken in [1]. Aitken uses multivariable
polynomials to study the size of the intersection of value sets of pairs of polynomials.
An extension of this idea to images of subsets of I, is also considered in [1], which we

outline in Section 2.2.

Polynomials of the form f+ x, where f is a permutation polynomial of Carlitz rank
n were studied in [13]. The aim was to give conditions on ¢, n to ensure f+z to be also
a permutation of F,, in other words to guarantee f to be a complete mapping of F,,.
We also consider particular polynomials f + x and g + x, which are not permutations

and we show that Vi, =V .

Chapter 3 deals with permutation behaviour of pairs of polynomials f(x) and g(z) =
f(z) + h(x). We present the interesting result of Cohen, Mullen, Shiue [7] on the
minimum possible degree of i when f, g are permutations of F, and p is sufficiently
large with respect to the deg(f(z)) = deg(g(xz)) = d > 3. The proof extensively
uses Dickson polynomials of the first kind. A corollary of this result is the Chowla-
Zassenhaus conjecture which was first proven by Cohen in [§]. The work in |13], which
was mentioned above, can be regarded as a variant of Cohen’s Theorem [8]. We end
this thesis by giving details of the proof of a result in [13], about V., where f is a

permutation polynomial of Carlitz rank 2.



1.2. Preliminaries

We recall that the value set Vy of f € Fy[z] is Vy = {f(c) : c € F,}. Let f € F,. For
a subset S C Fy, we put f(S) = {f(c) : ¢ € S}. Hence Vy = f(F,). A polynomial
f € F,[z] is a permutation polynomial if it induces a bijection from F, to F,. Clearly
|V¢| takes its maximum value when f is a permutation polynomial, i.e., |V}| = ¢ in this

case.

The next result is well-known, see for instance |15], and shows that any self-mapping

of F, can be expressed as a polynomial in F [z] of degree < g¢.

Lemma 1.2.1 For any function ¢ : F, — F,, there exists a unique polynomial f(x)

over F of degree < q — 1, such that the associated polynomial function f : c+— f(c)
satisfies ¢(c) = f(c) for every c € F,.

Dickson polynomials play an important role in the study of finite fields. We shall

also be using them in Chapter 3. Dickson polynomials may be defined over a ring.

Definition 1.2.1 Let R be a ring. For a € R we define the Dickson polynomial
D,.(a,x) of the first kind of degree m over R by,

Dn(a, ) = L(m._j)(—a)fxm—% (1.1)

for a € R.



A Dickson polynomial of the first kind also satisfies, see [14],

L3

m m—1 ) )
'+ ay = — . J (—z1m0) (21 + 22)™ ™,
m —
=0 J J

SE

and thus

o'+ 23 = Dy (21 + xg, x122),

where x1, x5 are indeterminates.

If we let z; = z, and 25 = 2, then we obtain the so-called functional equation,
a a™
D,, —a)=x" 4+ —. 1.2
(o420 ="+ 2 (12)
The following theorems are from [14] which give conditions for D,,(a,z) to be a

permutation polynomial.

Theorem 1.2.2 The monomial D,,(x,0) = 2™ is a permutation polynomial of F, if
and only if ged(m,q — 1) = 1.

Theorem 1.2.3 Let a € F). The Dickson polynomial Dy, (x,a) is a permutation poly-
nomial of F, if and only if ged(n,q* — 1) = 1.

When a Dickson polynomial D,,(x,a) is not a permutation polynomial, it is possi-
ble to determine the value set of D,,(z,a), as we state in the theorem below, which we
take from [6].

Theorem 1.2.4 Let D,,(x,a) be a Dickson polynomial of F,. Suppose q is odd with
2"[(¢* — 1) but 2" (¢* — 1). Then for each m > 1 and each a € F; we have

q—1 qg+1
% z,a)| — ’
Vouteol = Sged(m. g~ 1) * 2gedtmq 1)
where
(
1 if 277Yd but 2"t d and a is a non-square,
a=q1 if 2dbut2™ tdand1 <t <r-—2,
0 if otherwise.




Corollary 1.2.5 If ged(my,¢* — 1) = ged(ma, ¢*> — 1), then VD, @a)l = VDo, (2,0) |-

Theorem 1.2.6 Suppose q is even. Then for each n > 1, and each a € F} we have

B q—1 n qg+1
"~ 2gcd(m,q—1)  2gcd(m,q+ 1)

|VDm (z,a) |

Polynomials over finite fields are often studied in relation to their degrees. A rather
recent concept, concerning permutation polynomials of F, was introduced in [2]. We
first recall that the set of all permutation polynomials in F [z] of degree < ¢ forms
a group under the operation of composition and subsequent reduction mod x? — x.

Clearly this group is isomorphic to S,.

We also recall the following well-known result of Carlitz [4].

Theorem 1.2.7 The group of permutation polynomials can be generated by the mono-

mial 2772 and linear polynomials ax + b, a,b € F,, a # 0.

Proof of this result immediately follows from the equation

Py(z) = (—2)1 2+ )72+ 1)92 + 1 € F,[],

showing that the transposition (0, 1), and hence any transposition (0,a), a € F, can

be expressed as a composition of the monomials 2972 and linear polynomials.

Consequently, as pointed out in [10], with Py(z) = aox + a;, any permutation

polynomial f(x) of F, can be represented by a polynomial of the form

P,(xz) = P,(ag,a1, ..., an11;2) = (...((aox + al)q_2 + ag)q_z...an)q_2 + apt1, (1.3)

n > 0, where a1, a,41 € Fy, a; € F fori=0,2,--- ,n.

We note that f can have several representations of the form ([1.3)), i.e., the co-
efficients and the number n may vary. This fact motivates the following concept,

introduced in [2].

Definition 1.2.2 Let f be a permutation polynomial over F,. The Carlitz rank of f
1s the smallest integer n > 0 satisfying f = P, for a permutation P, of the form .

5



The Carlitz rank of f is denoted by Crk(f).

Let f be a permutation polynomial over F,, which is represented by a polynomial
in ((1.3). The nth convergent R, (x), associated to f, is defined as

Qp1T + 67171

Fn(z) = ant + f3

Y

where

o = apag—1 +ag—o and B = apfr—1 + Br-2, (1.4)
for k>2 and ap =0, ay =ag, fo=1, f1 =0.

Note that R, (z) is a linear polynomial when a,, = 0.

The set of poles of f is defined as

—Bi

(2

Op={x;:x; = i=1,---,n} CF,U{oco}

where «, B; are as in ((1.4)).

Note that the elements of O,, are not necessarily distinct.

It can be shown, see [2], that the values of f outside O,, are determined by R, (x).
That is,

f(c) = P.(c) = R,(c) for c € F,\O,.

Therefore when «,, = 0, then f(z) is a linear outside the poles. We remark that
the behaviour of polynomials P, (x) depend heavily on «,, being zero or not. In this

thesis we only consider the case a,, # 0.

The set f(O,,) can also be expressed in terms of R, (z) as follows,

Qn—1

fley=Pulo)=q ™"

Ru(ziq) ife=ux;, 2<i<mn,

ifc:xl,

if the poles are distinct and in F,.



CHAPTER 2

On Value Sets of non-permutation polynomials

2.1. Wan’s upper bound

Before giving the proof of the main theorem of this section, we need the following

lemmas and some observations.

Lemma 2.1.1 Let f € F,[z] be an arbitrary polynomial. If T[i_,(z — f(c;)) =
I ozt where {c1,...,cq} = Fy, then deg(TT,(x — f(c:))) = ¢ — u where u is

the least positive integer such that a, # 0.

Proof:
Assume

q q

[[@-re) = > aa"

i=1 i=0
= qur?+ a4+ aqxo.

Trivially, if u is the least positive integer such that a, # 0, then we obtain

q
H(l‘ - f(cl)) = aqu—u + CLq_H_l.qu_u_l + e+ (qulfo.
i=1

Hence deg(TT, (¢ — f(c:)) = ¢ — u.
O

Lemma 2.1.2 Let h be a non-zero polynomial over F, and let f € F,[x] be such that
hof=0. Then |V¢| < deg(h).



Proof: Our assumption h o f = 0 implies that h(f(z)) = 0 for all x € F,. Hence we
can say that roots of h(z) are the values of f(z), x € F,. On the other hand we know
that the number of distinct roots of h(z) is at most deg(h(z)). Thus we get,

Vil < deg(h(z)).
O
A polynomial f € F,[x1,xo,...,2,] is called symmetric if it satisfies f(xq,...,z,) =

f(®s01), - -, To(my) for any permutation o : {1,...,n} — {1,...,n}. The k-th elemen-

tary symmetric polynomial Sy is defined as

[I¢ =) =) (-1)Fsue™,
i=1 k=0
where ¢ is an indeterminate over Fy[zq,. .., z,].

In other words, Sp = 1 and

S1 = itz +-- a2y,

Sy = Ty +T1X3+ -+ T1T + T3+ 0+ Ty o T 1T,
S, = T1To-: - Tp.

We now recall the following well-known result, see for instance [15].

Lemma 2.1.3 (The fundamental theorem on symmetric polynomials)
Let f € Fylz1,...,2,] be a symmetric polynomial. Then there exists a uniquely
determined polynomial h € Fy[x1, %o, ..., z,] such that f(xy,...,z,) = h(S1,...,S),

where Sy, ..., Sy, € Fy[x1,...,x,] are elementary symmetric polynomials.

Since [].cp, (x —¢) = 27 — x, we get S(cr,...,¢q) =0 forall 1 <k < ¢—2, when
{c1,..., ¢} =TF,.

The following theorem is proven by Wan in [24]. The proof below uses the method
of the proof of Turnwald, [23]. We follow [20].

Theorem 2.1.4 Let f(x) € F,[z], with deg(f) = d > 0. Suppose f(z) is not a

permutation polynomial of F,. Then

qg—1
Vil <q- 1120 21)



Proof: (Turnwald, 1995)

First we consider the case d > ¢. Then we have [% = 1 and we are done.
Hence we can assume that 1 < d < ¢ — 1. Then |V} > 2, since |V}| < 2 implies
that f is a constant on F, but this gives a contradiction to Lemma [[.2.1, We put

F, ={c1,c,..., ¢}, and use Lemma to write

q q

[T~ fe) =3 (~1)* St ™.

i=1 k=0

Let k£ be the least positive integer such that S, # 0, if such k exists. Otherwise
we put £ = oco. We assume first that k satisfies 0 < kd < ¢ — 1. The polyno-
mial Si(f(x1),..., f(x,)) has degree at most kd < ¢ — 1. So by Lemma [2.1.3] it is
a polynomial in Sy(x1,...,2,),...,S-2(x1,...,2,). This implies that the degree of
Sk(f(z1),..., f(x,)) is at most ¢ — 2.
Hence, we have that Si(f(c1),...,f(¢,)) is a polynomial in Si(cq,...,¢),..., and
Sq—2(c1,...,¢q), all of which are zero. This implies that Sy = 0, which contradicts our
assumption that Sy # 0. Thus we obtain
q—1

k> —
Now, consider the polynomial h(z) = 27—z — [[_,(z — f(¢;)). By Lemma
deg(z? — T[], (z — f(¢;))) = ¢ — k and we have deg(h) < q — k.
On the other hand, we have h(z) = 0 if and only if [[__,(x — ¢;) = 2% — x, which is
equivalent to f being a permutation polynomial. Hence if f(x) is not a permutation
polynomial then h(x) # 0. But it is easy to see that f(c;) is aroot of g for all 1 <7 < gq.
Then from Lemma [2.1.2] we have [V}| < deg(h). So,

Vil < deg(h) <q—Fk.
Thus, we have [V} < ¢ — [£1]. O

Example 2.1.1 Let ¢ = 11 and f(z) = ((4z)° + 1)° + = be the non-permutation
polynomial satisfying f(x) = Pa(4,1,0; )+, where Py(z) is defined as in (1.9). Then

the polynomial f takes the following values over Fyq;.

f0)=1,f(1)=4,f(2) =9, f(3) =9, f(4) =3, f(5) =T,
f(6) =3, f(7) =0, f(8) =8, f(9) =7, f(10) =
Thus, Vy ={0,1,3,4,7,8,9}, so [V;] =7 < 11— [42].



Corollary 2.1.5 Let f(z) = (x+1)27 ' € F [z]. ThenV; =F {1} i.e., |V¢| = ¢—1.

Proof: From the proof of Theorem [2.1.4] it immediately follows that |Vy| = ¢ — 1.
Moreover, f(c) = c+ 1 Ve € F,)N\{0} and f(0) = 0.
O

Example 2.1.2 Let ¢ = 13. Consider the non-permutation polynomial g(x) = x'3 +

x'2 on Fi5. Then g takes the following values over 3.

Hence, V, = {0,2,3,4,5,6,7,8,9,10,11,12}, so |V,| = 12 and we obtain that
Vil=q- 5 =q-1.

The following theorem, which is given in [9], generalizes the Corolllary

Theorem 2.1.6 Let[F, be a finite field and K be a finite extension of F,. Take f(x) =
(z + 1)a?~t in F,z]. Then

) = (1 - §>|K|.

Let f(z) be a polynomial of degree d < q over F, . Because f(z) cannot attain any

element of F, more than d times, one can give a trivial lower bound of |V}| as
qg—1
I+ 1< vl (2.

where |m] denotes the greatest integer < m.

Let f(z) € Fylz] with ¢ = p". Define u,(f) to be the smallest positive integer z
such that 3 cp f(2)* # 0, if such z exists. Otherwise, define u,(f) = oc.

The following theorem, Theorem 2.1 in [25], gives a lower bound of |V|.

Theorem 2.1.7 If u,(f) < oo, then u,(f) +1 <|Vy|.

10



Proof: Let N, be the number of solutions of the equation f(x) = a over F,. Then

Ne=> (1= (fx)—a)*™") = = (fl@)—a)"

z€Fq z€F,

S (", )@y o p)

k=1 zclF,

Since (qgl) # 0 (modp) for 1 < k < ¢ — 1, we conclude that the polynomial N, (as a
polynomial of a) has degree ¢ — 1 — u,(f). Moreover we have N, = 0 for all a ¢ V.
Then there are at least ¢ — |Vy| elements a € F, such that N, = 0 (mod p). Hence,
q—1—u,(f) >q—|Vy|. This proves |Vy| > u,(f)+ 1.

From the theorem above, we have two corollaries. For the proofs, see [25].
Corollary 2.1.8 Let deg(f) = d and u,(f) < oo. Then

| +2 ifdlg—1,

|1 +1 ifdfg—1.

Vil >

Corollary 2.1.9 Let 3 < d < p. Suppose that dtq— 1. Then

2(q—1)
d2

q—1
d

Vil > | ]+

A polynomial f(z) over F, with degree d for which equality is obtained in is
called a minimal value set polynomial. These polynomials have been widely studied.
We may refer the reader to [5], |16], [11] and [3].

The following corollary, which is taken from [12], gives the condition for a polynomial

to be minimal value set polynomial.

Corollary 2.1.10 Let f(z) be a polynomial of degree d over F,, ¢ = p". Assume
2<d<pand

2(q — 1)
2 -1

q—1
d

Vil < | ]+

Then f(z) is a minimal value set polynomial, i.e.,
qg—1

Vil = LTJ + 1.

11



2.2. A generalization by Aitken

Definition 2.2.1 Let f be a polynomial over F,. The value polynomial associated to
f s defined by the formula

Oy (T) = [[(T - f(e)).
cely
Obviously, ®; is an element of F [T of degree ¢. In addition, we can generalize
this definition for any subset of F,. Let S be a subset of FF,. Then the value polynomial

associated to f and S, is defined as

Py s(T) = H(T — f(s)).

seS

The following lemmas and theorems are from [1].

Lemma 2.2.11 Let f € F,[z] be a polynomial of degree d. Then ®;(T)—T1 has degree

q—1

at most q — ==, or it is the zero polynomial.

Proof: Let F, = {c;...,¢,}. From the definition of the k-th elementary symmetric

polynomial Sy, we get

q

Oy(T) =T =Y (=1)FSk(fler), -+, fleg)) T

k=1
From the proof of Theorem|2.1.4} we know that if k < &%, then Sy(f(c1), -, f(c)) =
0. Thus the largest possible value of ¢ — k is ¢ — %. O

Let o be a permutation of {1,2,...,¢}, and F € F,[zy, xa, ..., 2. The polynomial
F, € Fylz1, 2o, ..., 2, is defined by the equation

Fg<3;'1, Ce ,xq) = F(xg(l), Ce ,a:o(q)).

Let b € F;, and let o3 be the unique permutation of {1,2,... ,q} satisfying ba; =

Aoy (i)-

Theorem 2.2.12 Suppose F' € Fy[z1,--- ,z,] is a polynomial of degree D, and G is a
subgroup of Ty of order g which satisfies F,, = F, Vb € G. If f € F [z] is a polynomial
of degree d and if dD < g, then

F(f(cl)vf(c2)>"' af(CQ)) = F(f(O),f(O), ,f(O))

where ¢; € Fy,.

12



Proof: Let h € F[t] be given as

h(t) = F(f(clt)w cre f(th)).

So, h has degree < g. Note that if b € GG, then

h(b) = F(f(eb), ..., flch)) = F(f(ao)), - faoq))
= Fo,(flar),..., flag))
= F(f(a1),..., f(aq))
= h(1).

has at least g zeroes, but its degree < g. Thus h(t) — h(1) = 0.

Hence, h(t) — h(1)
= h(0).

In particular h(1)
|

Lemma 2.2.13 Let f € Fy[z] be a polynomial with degree d, satisfying f(0) = 0.
Suppose that S is a subset of F, with s elements, and G is a subgroup of ¥ of order
g that acts on S. Then ®;s(T) — T° has degree at most s — g/d or it is the zero

polynomial.

Proof: Let S ={c¢;, -+ ,c¢.}. Then

S

(I)f,S<T> -71° = Z(_1>ksk(f<cll)7 T 7f(cis))T87k'

k=1

Put Fy(xy, - ,xy) = Sk(xiy, -+ ,x;,). Clearly, Fy is invariant under G. By Theorem

2.2.12 if k < g/d, then we have

Se(flen), - flew)) = Fr(f(er), -, fleg)) = Fr(£(0), ..., £(0)).

However,

Fu(f(0),..., f(0)) = Su(0,...,0) = 0.

Hence we obtain that the term T°7% of ®¢(T) — T* is the zero for 0 < k < g/d. So
this implies that ®;g(7") — T has degree at most s — g/d.

O
Let S = {s1,52,...,5:} be a subset of F,, and let f € F,[z]. We define f[S] to be
the set of all values f(s), s € S, with multiplicities. Note that f[F,| = V;if f is a

permutation polynomial.

13



Theorem 2.2.14 Let fi, fa be non-constant polynomials over F, with degrees at most

d. Then the size of the intersection of f1[F,] and fo[F,] is either q or is at most ¢ — =+

—
d

Proof:
Let consider polynomials ®y, (T') = [[.cx, (T'— fi(c)) and @4,(T) = [T cp, (T'— f2(d)).
Then any element of the intersection of fi[F,| and f3[[F,] is the root of the polynomial
®s — Py, . By Lemma , O — Py, has degree at most g — % or it is the zero

polynomial. So this gives that the size of intersection is either ¢ or is at most ¢ — %.

|

Corollary 2.2.15 Let f(z) be a polynomial over a finite field F, with positive degree
d. If f(z) is not a permutation polynomial of F,, then

qg—1
Vil<q—ri==
Vil <q—[—1
where [s] denotes the smallest integer > s.
Proof: Take fi(z) = f(x) and fo(z) = = in Theorem [2.2.14] O

Theorem 2.2.16 Let fi, fo € F,[z] be non-constant polynomials of degree d such that
f1(0) = f2(0). Suppose that G is a subgroup of F; with g elements, and Sy and S, are
subsets of Iy, both with size s and invariant under multiplication by elements of G.

Then the size of the intersection of f1[S1] and f3[Ss] is either s or is at most s — g/d.

Proof: W.L.O.G, we can assume that f1(0) = f2(0) = 0. Let consider the polynomial
s 5, — Py, Then any element of the intersection of f1[S1] and fo[Ss] is the root
of &y g — Py, 5,. By Lemma [2.2.13] it has degree at most s — g/d or it is the zero

polynomial. Thus the size of intersection is either s or is at most s — g/d.

a

Example 2.2.3 Let ¢ = 11, f; = 327 +423 and fo = 227 +x. Take the trivial subgroup
of F;, G = {1}. Assume S, = {2,3,5,6} and Sy = {1,7,9,10}. Then we have the

following values,

f1(2) = 97 f1(3> = 37 f1<5) = 37 f1(6) = 87
fo(1) =3, fo(7) =8, f2(9) =6, f2(10) =8.

Thus the size of intersection of fi[S1] and fi[Ss] is 2 <4 —1/7.
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2.3. On value sets of pairs of particular polynomials

As we described in the previous section, Aitken studies the size of the intersec-
tion of value sets of pairs of polynomials. In this section, we focus on polynomials
F(z) = f(z) + z and G(z) = g(z) + =, where f, g are permutation polynomials of
a given Carlitz rank. The behaviour of this type of polynomials have been studied
in [13], in connection with complete mappings. More details of this work can be found
in Chapter 3.

Since F(x) = f(x) + x, where f(x) is a permutation polynomial in the form ([1.3]),

we define the poles of F' as the roots of the denominators of

o+ i o oz + fiw + By

R; =
(#)+ e &z + b .z + b

1< <n.

’

In other words, ”the poles of F(z)” are the same as on the poles of f(x). We note that
F(z) = R,(z) + x for z ¢ O,.
We give conditions on f, g so that Vy,, and V., are actually identical. We first study

monic permutation polynomials f, g with Carlitz rank 3.

Theorem 2.3.17 Let q be odd, b € F; with b> 4+ 1# 0, and fy(z) = ((x972 +b)7 % +
b)17 and f_(x) = ((x972 = )92 = b)9=2 be permutation polynomials over F;[z] of Car-
litz rank 3. Put Fy(z) = fi(x) + 2z and F_(z) = f_(z) + =, we have Vp, = Vi_.

Proof: First of all, we find the set of poles of F, (z) and F_(x), which we denote
by OF, Oy, respectively.

—b _ 1
pri %m0 g prgh

-1
O;_ :{07 Tﬂ

We can obtain F(OF) and F_(O53) as follows.

b -1 —b —b
F+(0):b2+17 F—F(T):OJ F+<b2+1):b2+17

—b 1 b b
FO=grp FE=0 FEp=5m



Therefore F (OF) = F_(Oz). Moreover, using the definition of the 3rd convergents

R3 and R; associated to f, and f_, we get

bxr +1

_ pt _
Fi(z)=Rj(x)+z = (b2+1)x—|—b+x

for z € F,\OF, and

for y € F,\ O3

Weput Vi, ={u€eF, : u=F (z) for some x € F,\O7 } and
Vo={ueF, : u=F_(y) for some y € F,\O5 }. We now prove that V, = V_.

Let u € V4, that is

0+ 1)z +2bx+1
B+Dx+b

So, we have

(V¥ +1D)a* + (26— (u®@*+ 1))z +1—bu=0

In order that this equation has a solution, we need A = u?(b* + 1)* — 4 to be a

square. Suppose A =~% > 0. Then we have the solutions,

. 2o+ u*+1)—~ . =20+ u(0*+1)+ 7
b 2(b2 4 1) T 2(b2 4 1)

Now, take y; = u — x9 and yo = u — x1, then one can easily check that y; and ys
are the solutions of F__(y) = u.
Thus we get u € V_. Hence we get V. C V_. One can similarly show that V C V.

It is proved in [13] that when b* + 1 # 0, then Vp+ and Vp- satisfy

1 1
Ve < ming3+ |21, g} and V| < minf3+ 20—, g},
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Example 2.3.4 Let ¢ = 11 and b = 2 wn Theorem |2.5.17. Then consider the polyno-

mials,

Fo(z)=((2"+2)°+2)+2, F(z)=(2"-2)°-2)°"+u

Note that b* +1 =15 # —1. The poles are OF = {0,5,4} and Oy = {0,6,7}.

Now we compute the value sets of these polynomials,

Fo0)=7, F_(0)=4,
Fy(1)=3, F_(1)=38,
F (2)=7F_(2)=3,
Fy(3)=6, F_(3)=6,
Fi(4) =4, F_(4)=3,
Fi(5)=0, F_(5)=T,
F(6) =4, F_(6)=0,
Fy(7)=8, F.(7)=T,
Fi(8) =5, F.(8)=5,
F.(9)=8, F_(9)=4,

F((10) =4, F_(10)=8

Hence F*(O3) = {0,4,7} = F~(03), V; = V_ = {3,5,6,8} Therefore Vp, =
Vi = {0737475a6a 778}7 and |VF+| = |VF*| =T7< m'ln{?) + 6, 11}

The theorem below is a generalization of the Theorem [2.3.17|to polynomials F, (z) =
fi(z)+zand F_(z) = f_(x) 4+ x, where f, and f_ are permutation polynomials with

representations,

fi(z) = Py(1,b,...,0;2) and f_(x) = P,(1,—b,—b,...,0;x). (2.3)

for n > 2.
We first calculate the values a;, 8; in (1.4), i = 1,...,6 for the polynomials f. (z).

Since

&0207 60:17
Oélzl, 51:0
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and
a; = ba; 1 + g, Bi = bBi1 + Bi—e,
we have ,

az=b, By =1,

as=0"+1, f3=0,

ay=b>+2b, By =0*+1,

a5 =b"+ 30+ 1, B =b*+ 20,

ag = b +4b> 4+ 3b, Bs = b* +3b* + 1.

Similarly, &;, i, i = 1,...,6 for the polynomial f_(x) are

a =0, fo=1,

@ =1, /=0,

dy = —b, B =1,

as=b>+1, B3 =—b,

ay = —b>—2b, By =10"+1,

as =b'+30%+1, B = —b> — 2b,

g = —b® — 4b> — 3b, g = b* 4+ 3b* + 1.

These calculations motivate the following lemma.

Lemma 2.3.18 Let a5, 3 and &;,B; are as defined in , corresponding to the
polynomials f, and f_ in , respectively. Then f; = a;_1 and ; = a1 for
i€{1,2,3,...,n} .

Proof:
It is sufficient to show that (8; = a;_1. We use induction on i.
Note that for i = 1, we get 81 = ap = 0.
Now assume that 5, = a;_1 for t < i — 1. By definition, 3; = bf;_1 + Bi_2. Then we

have,

18



Bi = bay s + a3 = 1.

Now, it is clear that
a; = —a; and §; = B;, if 7 is even and

a; = oy and B; = —f;, If i is odd.

Now, let Rf(x) be the nth convergent of f,(z) and R, (x) be the nth convergent
of f_(z). Suppose that a,, # 0. Then we get

n— + Bn—l
RJF _ Ay 1T
» (@) ant + By
and

R,,; (x) — Oé'rl—lx F Bn—l )

— QR + ﬁn

By straightforward calculations, we get

R, (z) = —R}!(—x).

n

for x € Fq\{g—z}.
We also note that R} is 1-1 on Fq\{—g—z} and R, is 1-1 on Fq\{g—z}. Moreover, we

have

apn—12+Bn-1
Q1 Qn-1ZHPn-1y 57171
Ry = U men)
—an(F 5 ) T B
(a%_l - CVn/ﬂn—l)x + an—lﬁn—l - Bnﬁn—l
(—OénOén,1 + @nﬁn)x + 67% - anﬁnfl '

By using Lemma [2.3.18] we have

} (2.4)

RoRi) =v Voe RN, ~Put b
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We use the notation,
O ={—-x1=0,—x9,—23,...,—x,} to denote the set of poles of f, (or F) and
O, ={x1 =0,29,23,...,x,} for the set of poles of f_ (or F_).

We again put,
Vi={uelF,:u=F.(z) forsome z € F\O;},
Vo={uelF,:u=F_(y) for someyeF\O, }

We now give the main theorem.

Theorem 2.3.19 Let F, be of odd characteristic. Let f,(x) = P,(1,b,b,...,0;2) and
fo(x) = P,(1,=b,—b,...,0;x) be permutations of F, with representations as in ,
for some b € F; such that |OF| =0, | =n and O CFy. Then Vi, a1 = Vi_(2)4a-

Proof:
Since fi(z) = R} (x) for x € F\O; and f_(y) = R, (y) for y € F,\O,;, we have;

Oénx2 + (an—l i ﬁn)x . 571,—1
F.(x)=Rl(z)+x= oz & B, for z € F,\O;,

n 2 n— + n + n— —
Fe) = Ry (y) +y = DL O BNE RS gy gm0,

We first prove that V, = V_.

Let uw € Vi, ie., Fiy(x) = u. Then we have

O‘an + (a1 + B — au)z — By — ufy, = 0. (2.5)

We put A = (a1 + Bn — apu)? — 4, (Bn1 — uBy).
Assuming that A is a square in [F,, we have the solutions of the equation (2.5 as

—(an_1+ B — anu) — o —(ap_1 + 6 —au) +v
r1 = ) Tg =
20, 2au,

?

where 72 = A > 0.
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Let y; = u — x5 and y» = u — x;. Then one can check that y; and ys are solutions
of F_(y) = u. Hence, u € V_. Similarly one can prove that V_ C V., and hence we
obtain V, = V_.

Now we check if 0 is in V or V_.

Let x € F,\O;", and hence F(z) = R} (x) + x. Suppose

2
R:(IL’) 4= [67%44 + (an—l + ﬂn)m + Bn—l _ 0
anl + Bn

We put A = (a_1+3,)? =4, B,—1. We wish to solve a, 2%+ (a1 +6n)x+ 3,1 = 0.
We note that putting R, (y) +y = 0, we obtain the same A.

Now if A = 6? for some 6 € F,, then

- —(Oén,1 + Bn) - 9 o —(Oén,1 + Bn) + 9
Ty = y L2 =
20y, 20,
are the solutions of Rt (z)+ x = 0. Then y; = —x; and ys = —x5 are the solutions of

R (y) +y=0.

If, on the other hand, A # 6 for any 6 € F,, then we cannot find z € F,\ O, such
that F. (z) = 0. Also we cannot have y € F,\O,, such that F_(y) = 0. Therefore
0 € V, if and only if 0 € V_, as already shown above, and that 0 € V, = V_ only when

(1 + Bn)? — 4Bt is a square in F,.

Now we turn our attention to the values F; and F_ take on O, and O, , respectively.

Recall that O = {0, —xq, —23,..., —x,} and O, = {0, 3, z3,...,z,} are the sets
of poles of fi, f_, respectively. We claim that F(0) = —F_(0) and F(—z;) =
—F_(z;) for i € {2,3,...,n}.

Clearly,
ag—;l —x; ifi=1
Fo(—xi) =
and
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Qn

0;1 +x; ifi=1
F_(.TZ) = "

Firstly, consider ¢ = 1, that is 1 = 0. Then we have,

Oy

F+(O) = o :

Qp—1
F_(0)=— ”

Hence F, (0) = —F_(0). Now consider x; € O, with 2 < i <n. We have

— Q1T + Bro1
—0pTi—1 + ﬁn

Fi(=zi) = Ry (—%i-1) — @ =

)

and

_ Qp_1Ti—1 — /Bn—l
F_ i) = R i— i = i
() = R, (zi-1) + @ o1 ¢

Thus, we get F\ (—z;) = —F_(x;) for 2 < i < n, proving our claim.

We observe that ;1 = xi — b for i > 2. We also note that

-1 _ Pn
Fy(—z1) = F(0) = o - = o

and
Fo(=0) = R (=) = 0 = Ry (=22 - B B
Hence Fy(—z1) = —F(—xy).
In fact, such a relation holds for all ¢ > 1, namely F,(—xz;) = —F,(—zpy1_;) for

1> 1.
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In order to prove that F\(—z;) = —F.(—x,41-;) for i > 2, we need to show that

the relation F'y(—x;) = ;1 — x; for ¢ > 2.

We use induction on ¢. Firstly consider ¢ = 2. Then

671—1 o /Bn—l

— xz —
ﬁn Qp_1

Fi(=22) = Ry (—a1) — 22 = R (0) — 22 =

Now assume that Fy(—z;) = x,11-; — x;, le., Rf(—x;1) = xp41-; for some i,

2 <i<n-—1. We wish to show that R} (—z;) = ;.
1
Tn—i+1

Since x,_; = — b, we have

1 —;_1Ti—1 + Bn
Tpoy = ———— —b = —b
Ri(=xi1) —0p1%i—1 + Bn-1

(_an + an—lb)xi—l ot Bn - ﬁn—lb
—Qp_1%i—1 + Bn1

—Qp_2Ti—1 + Bn_2
—Qp_1Ti—1 + Bpoa

Using ;1 = zi — b, we get

i

%72_2 + ban—Q + ﬁn—2
%7:71 + ban—l + Bn—l

Bnaji — Op—2
anT; — Olp—1

Q1T — 671—1

anX; — ﬂn
We therefore have
Rf(—z;) = xps.
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We use (2.4)) to obtain —z; = R, (z,—;). Adding x,,,1_; to both sides, we get

R, (Tn—i) + Tny1—i = Tny1-i — Ti,

which yields F_(zp11-;) = Tpi1-i — ;. We finally get

Py (=zi) = F(tny1-0) = =P (= Tnp1-4)-

In other words, F, (O;) = F_(O;,), which completes the proof.

Remark 2.3.1 Ifn is odd, then F+(—an+1) = —F(—x%). Thus, F+(—x%) = 0.

We emphasize that the result of Aitken is on the size of the intersection of value
sets of pairs of polynomials. For polynomials of the form f 4 x and g + x, where f, g
are permutations of Carlitz rank 2 and 3, we have partial results on the intersection of

the size of their value sets. We plan to obtain more results in this direction.
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CHAPTER 3

Permutation behaviour of pairs of polynomials

In this chapter we focus on permutation behaviour of pairs of polynomials of the
form f(z) and g(x) = f(z)+h(x) where f, g € F,[z] are monic polynomials of the same
degree d. Section 3.1 describes a result of Cohen, Mullen and Shiue [7] , on the lower
bound of the degree of h(x), given in terms of d. In section 3.2, we outline a recent
result of [13], on permutation behaviour of g(z) = f(x) + , where f is a permutation

polynomial of Carlitz rank n.

3.1. On differences

In this section we describe a result of Cohen, Mullen and Shiue, which shows that the
degree of the difference h(x) of two permutation polynomials f(x) and g(z) = f(z) +
h(z) € F,[z] of the same degree d > 3 satisfies deg(h(z)) > % when p > (d* — 3d+4)*.

We recall that a polynomial f(z) € Fylz] of degree d is called normalized if the

coefficient of 91 is the zero.

The following lemmas are taken from [8].

Lemma 3.1.1 Let f be a monic, normalized polynomial of Fy[x| with deg(f) = d,
and p > d > 2. Suppose that f decomposes as f = fo(f1) over F,. If dy = deg(f1),
dy = deg(fs) and d = dids , then f; and fy can be regarded as monic, normalized

di—r

polynomials over IF,,. Moreover if the coefficient of x i f1 is a, then the coefficient

of 247" in f is dyar.

Proof: Suppose, § # 0 is the leading coefficient of f;. We substitute fi(z) and fo(z)
by 871 fi(z) and fo(Bx), respectively. Then we get that a monic polynomial fi(x).

Hence f, is a monic since f is a monic. Denote the coefficient of z%~! in f, by ~.
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Then we replace fi(z) by fi(z) + dy'y and fo(x) by fo(z — dy'y). Thus we obtain
that fy is normalized. This being so, the final claim of the lemma comes from a basic
calculation. Therefore, f; must be a normalized polynomial.

O

Lemma 3.1.2 Suppose that [ is a monic, normalized permutation polynomial of T,
of odd degree d > 3 and p > (d*> — 3d + 4)*>. Then f = fo(f1) where f1, fo are monic
normalized polynomials of degrees dy, ds, respectively with d = didy and polynomial f,

can be expressed as,
fi(z) = D, (a,2™) + « (3.1)

for some integers my, my with mymg = dy > 3, a € Fy, a # 0.
Moreover if my = 1 in (2.1), i.e., fi(z) = 2% + «, we can assume that o # 0 unless

f(z) =22

We now state and prove the main theorem of this section.

Theorem 3.1.3 |7/ Suppose [ and g are monic permutation polynomials of odd de-
gree d > 3 over a finite field F,, where p > (d> —3d +4)?. Let h = f — g and t be the
degree of h. Assume t > 1. Then t > %d.

Moreover, if d > 5 and t < d — 3, then gcd(t,d) > 1.

N | Ot

Proof: First of all we consider the case t = d — 1. Our assumption d < 3, i.e., d <
implies that d — 1 > %d. Then we have ¢ > ‘%d. So, we can assume t < d — 1.

We normalize f and g so that they are both monic. Now assume that f(z) = fo(l(x))
and g(x) = go(l(x)) for some normalized permutation polynomial [(z). Also we can
choose () such that its degree e is maximal and we write deg(fy) = deg(go) = do,
where d = ed.

If e =d, then dy = 1 i.e., fo(x) = 2+ a and go(x) = = + b for some constants a,b. But
in this case, deg(f — g) = deg(a — b) = 0 = ¢, a contradiction to our assumption ¢ > 1.
So, we get e < d.

Let h(z) = ho(l(z)) where deg(hy) = to and t = ety. Suppose e > 1. Then ged(t,d) > 1.
Moreover, t < ‘%d if and only if t; < %. We may replace f and g by fy and gq. For
the rest of this proof we may assume e = 1. In other words, we can assume f and g

are monic, normalized polynomials.
Next, we consider the case t = d — 2, then d cannot be 3 otherwise ¢ # 3?" Also

in this case, if d > 5, then t > %d with equality only if d = 5, = 3 as in the Example
3.1.5, Thus we may also assume t < d — 3 with d > 5.
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From Lemma |3.1.2] we have that f = fo(f1) and g = g2(g1) are normalized and

fi(x) = Dy (a,2™) +, a #0, a € F), m =mymg > 3, (3.2)
g1(x) = Dy, (b, 2*2) + 8, b #0, BETF,, k = kiky > 3. (3.3)

Moreover in (3.2)) if m; = 1, then a # 0 unless f(x) = 2% and a similar statement holds

for g(z).
Recall the definition of Dickson polynomial in (1.1),

13

Din(a,z) = Eg}}(”a;j)(—ayxm%.

vl3

Jj=0

Now, we prove the theorem considering the following three cases:

Case 1: m; =1,k =1.
Then we have fi(z) = 2™ + a and gi(x) = 2F + B with a8 # 0. Since e = 1, we
have (m,k) = 1. From Lemma t = max{d — m,d — k}. Since k|n and m|n,
ged(t,d) = k > 1 or ged(t,d) = m > 1. Also k|d and m|d and ged(k,m) = 1 implies

km|n. Then we have 3m < km < d. So, m < %. Assume t = d — m, then

2d  3d
> .

Case 2: m; >1and k; = 1.
Then we have f(x) = Dy, (a,2™)+a and g (x) = 2*+ . Since e = 1, ged(k, my) = 1.
By Lemma [3.1.1] we have ¢t = max{d — 2mgy,d — k} where my > 1 since t # d — 2. So,
for each possible value of ¢, gcd(t,d) > 1.
Now there are 2 cases:
If £ < 2mgy, then t = d — k. Since k|d, mq|d and ged(k,mq) = 1, kma|d. So, we get

. Hence,

m

k
E<

t k 1 1
—=1l-=>1-—>1--=

2 3
d d mo 3 3

> —.
5
If £ > 2mgy, then t = d — 2my. We can assume m; > 5, otherwise fi(x) is not a

permutation polynomial. We also have =2 < since mymgy = m|d. Thus,

1
mi

t 2my 2 2 3
LA L N R
d d mi 5 5

Case 3: my >1and k; > 1.
In this case we have fi(z) = D, (a,2™) + «, gi(x) = Dy, (b, 2*?) + 3. Since e = 1,
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(ma, ke) = 1. Lemma implies that ¢t = max{d — 2my, d — 2ks}.

Now there are four cases:
If mg # 0 and ko # 0, then t = d — 2mg or t = d — 2ky. W.L.O.G, we can assume

t =d — 2msy. Then we have,

If mo = 1,ky # 1 or mg # 1,ky = 1, then for each case t = d — 2, and we get a

contradiction to our assumption.

If my = ko = 1 and a # b then by using the definition of Dickson polynomial, we
can observe that there is no cancellation, i.e., we have non-zero term with degree d — 2.

Hence we will obtain t = d — 2. So, again we have a contradiction.

If my = ke =1 and a = b, then we will have gcd(k,m) = 1. In case gcd(k,m) > 1, we
get f1 = fo(D,(a,z)) and g1 = go(D,(a,x)) with r = gcd(k, m). Since f; is as in (3.2)),
this gives a contradiction to maximality of m. By a similar argument £ is maximal.

We also have,

h=f—-g= f2<Dm(a’7x) + O{) - gZ(Dk<a7$) +6)

Applying the identity
k

a a
D —)=aF+ =
k<a7x+x) T +$k

see the formula ((1.2), we deduce that

ha+2) = folDnla,a+ =) +a) = gDy, + =) + B)

= f(:cm+£+oz)— (x’“+a—k+ﬁ)

- 2 I‘m g2 xk

= fo(a™ + az® + a™x™) — go(a® 4 B2 + aFa”)

d | 4 d
— ((Zztm o (Zam 4 AVt
((ma)z +o (ma + A)z +-)

d d
(%ﬁxdik—k-“—i-(E&k—i—B)xdi%—l—'--),

where
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folw) =2 + AxV 2 4 ...
92(1') :$N+B$N_2_|_...

with N = %.

We note that d — m and d — k are even while d — 2m and d — 2k are odd so that

no cancellation occurs among the displayed terms. Moreover by the maximality of m,
d—2k

if o = 0 the coefficient of 2972™ is non-zero and similarly that of = is non-zero if

g =0.
Also k and m both divide d with k > 5, m > 5. Depending on « or 8 being zero, we

have:

;

max{d —2m,d — 2k} ifa=p=0,

t = maz{d—m,d—2k} ifa#0,

maz{d —m,d — k} if aff #0
\

We also note that if &« = 0, 8 # 0, then we have t = max{d — 2m,d — k}, and
the proof is the same case as o # 0, = 0. Clearly in each case gcd(t,d) = k or
ged(t,d) = m so that ged(t,n) > 1.

Now, we have three cases concerning t;
Case 3.1: Assume m < k. Then t = d — 2m. Since d > 5, we obtain

t 2
12
P =

ol Ww

d
Similar argument can be used for k£ < m.

Case 3.2: We have two subcases:
First of all, assume m < 2k. On the other hand d > 5m since d > km and k > 5. So

in this case, we get

t 1 m S 4 - 3
d d 5 5
Secondly, assume m > 2k. Since d > km > and m > 5, we have d > 5k. Then in

this case, we get

2k

12>
72

ot W

t
d



Case 3.3: Assume m < k. Then t = d — m. So, we get

t m
-—=1—-—>
d d —

| w

The case k < m follows similarly. |

The following example shows that deg(h(x)) may attain the lower bound.
Example 3.1.5 Assume p=2 mod 5. Let
g(x) = Ds(a,2™) = 2°™ — 5ax™™ + 5a*z™ and f(x) = 2™

where Dy(a, z) = x°—5ax3+5a%x is the Dickson polynomial of degree 5 with ged(m, p—
1)=1.

Now f(z) is a permutation polynomial, see Theorem[1.2.9, since ged(m,p — 1) =
1. Also g(z) is a permutation polynomial Theorem since p = 2 modb, i.e.,
ged(5,p* — 1) = 1. Thus both f and g are permutations of F,. Consider the difference

h(z) = f(z) — g(x) = +5az®™ — 5a’z™

So, deg(h(x)) =t = 3m. Note that 5m = d. Thus we get t = 3d/5.

The theorem that we have just proved yields a proof of the well-known Chowla-

Zassenhaus conjecture as a special case. The first proof of the conjecture was given by
Cohen in (1990), see [8]. We state it below.

Theorem 3.1.4 Let p be a prime satisfying p > (d* — 3d + 4)* and f(z) € F,[z] be
a permutation polynomial of degree d > 2. Then, there is no integer ¢ with 1 < c < p

such that f(x) + cx is also a permutation polynomial of F,,.

Proof: Let ¢ be an arbitrary constant with 1 < ¢ < p and take g(z) = f(z) + cz.
Assume g¢(z) is a permutation polynomial. Then h(z) = f(x) — g(z) = cz so that
deg(h) =t =1 < 5d/3 with d > 2. Hence we get a contradiction to Theorem [3.1.3]

30



3.2. A special case

As mentioned in the previous section, Chowla- Zassenhaus conjecture (the Theorem
of Cohen [8]) states that if p is sufficiently large, when compared with the degree d
of polynomials f(z) and g(z) + x, then f + x is not a permutation of F, while f is.
We recall that a permutation polynomial f is called a complete mapping if f + x is
also a permutation polynomial. This work of Isik, Topuzoglu, Winterhof [13], takes
a different viewpoint and studies the similar problem of existence of complete maps

when f is a polynomial in F [x] of Carlitz rank n.

Theorem 3.2.5 |15/ Let f(x) € F,[z] be of Carlitz rank n, with a representation

f(z) = Py(ap,0,as...,0;2). Suppose a,, # 0 where v, is as in . If g > 2n — 1,
then f + x is not a complete mapping.

When ¢ > 2n + 1 and hence f + x is not a permutation of I, the value set V., is
also studied in [13], see Theorem 3. When f is of Carlitz rank 2, the values of |V ,|

were also given in [13], Proposition 5. We use the notation of [13], and put
ag = co, a1 =0, ag =c; and a3 =0

and give the details of the proof of Proposition 5, in [13].

We shall be concerned with the permutation polynomial f(z) = ((coz)? 2 +¢1)772 €
F,[z] for odd ¢ with ¢, ¢; # 0 and ¢y # —1. Let F(z) = f(z)4+2 = ((coz)? > +¢1)1 2 +x.
Then by definition of poles, Oy = {0, ———}. We can also use the 2nd convergent Ry ().

coc1

z(cocrx + (co + 1))

F(z) = Ry(z)+ 2 = for z € F,\O..

coc1x + 1
Moreover, we know the set F'(O,),
1 1 1
Fl0)=—, F(——)=——.
© €1 ( 0001) CoC1
We note that F'(x) =0 for z = % Since ¢y # —1, this is the only element ¢ in
F, with F(c) = 0.
We observe that F'(z) = F(y) if and only if y = —%. Since assuming

F(x) = F(y), that is

z(cocrr + (co+ 1)) ylcocry + (o + 1))

coc1xr + 1 cocry + 1

9
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1
one gets y = —Laztotl)

(coc1)?z+coct
On the other hand assuming y = —%. Then,
cocrxr + (co + 1)
Fly) = F(=

(coc1)?x + cocq
z(cocrx + o+ 1)
cocir + 1
= F(x).

Note that in this case F' is not 1-1 on F,\ Os. Thus if we consider the case z = y,

ie.,
il __coclx +'(Co'+'1)‘ (3‘4)
(CoCl)2$'+'Cocl
then we obtain x; and xs such that F'(z;) = F(x).
If we assume (3.4]), then we have
(coct)?x® + 2cpc1x 4+ o+ 1 = 0. (3.5)

To solve the equation (3.5), we need A = 4(coc;)?(—cp) > 0 to be a square. But
this holds only if —c¢( is a square.

Moreover, if —co = A* with A € F,, then we get

—1+A —1-A
, Lo = .
CoC1 CoC1

Ir1 =

Finally, in case —cy = A?, we have F(x,) = F(zy) with z; # .

Next, we determine when F(0) = + and F(=1) =

—1 . .
- e — have pre-images in F,\Os.

C

Lemma 3.2.6 Let F(z) = ((coz)? 2+ ¢1)7 % +x. Then
(a) If 1+ 4co is a square, then F'(0) = F(c) for some c € F},.
(b) If co(co + 4) is a square, then F(=L) = F(c) for some ¢ € F,;\ Oy .

cocl

Proof:
(a) If
1 z(cocrz + (o + 1))

F = — = = F
(0) 1 cocir + 1 (),
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then we have coc?x? + c;z — 1 = 0 and to solve this equation, we need

c3(1+44c) > 0 to be a square,

which implies that 1 4 4¢j is a square.

7 -1 -1 z(cpcrz + (o + 1))

)=—= = F(2),

CoC1 CoC1 cocix + 1
0 0 0

then we obtain the equation (cocp)?z? + (coer)(co + 2) + 1 = 0 and again to solve it,
we need

(coc1)?co(co +4) >0 to be a square.

Hence, co(co + 4) must be a square.

With the observation above we have the following result.

Theorem 3.2.7 Let q be an odd prime power and f(x) = ((cox)?2? + ¢1)72 be a per-
mutation polynomial over F,, with cy,cy # 0 and ¢y # —1. If F(x) = f(x) + z, then
|Ve| depends on —co, (14 4cg), and co(4 + o), as follows.

(i) If —co is a square and (1 + 4cy), co(4 + co) are non-squares, then |Vp| = 2.

(ii) If —co is a square and one of (1 + 4co) and co(4 + co) is a non-square, then
Vp| = 2.

(iii) If —co, (1+4co) and co(4+ o) are all non-squares, then |Vi| = 2.

(iv) If —co, (1 +4co), co(4+ co) are all squares, then |Vp| = L.

(v) If —cy is a non-square, one of (1 + 4cy) and co(4 + o) is a non-square, then
V| = 242

(vi) If —co is a non-square, (1+4co) and co(4+co) are both squares, then |Vp| = 51,
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Proof:

(i) If —c¢p is a square, (1 + 4cg) and ¢o(4 + ¢o) are non-squares, then this gives the
maximum value for |Vg| since there exist distinct elements xy, x5 such that F(x;) =
F(x5) and we have zy = % with F(zg) = 0 and F(F,\Oz2) N F(O3) = 0. Thus we
obtain,

¢—2-2-1_q+5

Vel=2+2+1
Vel =2+2+ 1+ —— :

(ii) If —c¢p is a square, one of (14 4c¢y) and ¢(4 + ¢o) is a non-square, then

qg—2-1-2 q+3
2 Wy 2 4

Ve =24+14+1+

(iii) If —c¢p is a non-square, (1 + 4¢g) and ¢o(4 + ¢p) are non-squares, then

2—-1 q+3
2 2

Vel =1+2+ 1=

(iv) If —cy is a square, (14 4¢g) and ¢o(4 + ¢o) are squares, then

g—2-1-2 g+1

Vel =2+1
|F| + 1+ 5 5

(v) If —¢g is a non-square, one of (1 + 4cg) and ¢o(4 + ¢o) is a non-square, then

2—-1 q+1
2 2

|VF|=1+1+q_

(vi) If —¢p is a non-square, (1 + 4¢g) and cy(4 + ¢o) are squares, then there do
not exist distinct elements x4, xs such that F(x;) = F(z3). However there exists
Ty = —4eo) guch that F(z9) = 0 and for each pole x1, x5 € Oy we have x,y such that

coC1

F(z,) = F(z), F(x2) = F(y). Therefore,
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-2-1 -1
|%ﬂ=1+q S

|

Example 3.2.6 Let ¢ =7 and F(z) = ((coz)® +¢1)° +x. In Ty, the elements 0,1,2,4
are squares and 3,5,6 are non-squares. Hence we can obtain some examples for some
of the cases in Theorem |3.2.7.

If we take co = 5, then —cy = 2 is a square. Also we have 1 4+ 4cq = 0 is a square,
co(4 + co) = 3 is a non-square. So, we are in Case (iii).

Now take any ¢, € Fr, say ¢y = 4. Then the values of F' over F; are follows:

Hence, we obtain Vi = {0,1,2,4,6}, i.e.,

+3
Vil =5 = 1=,

If we take co = 2, then —cq = 5 is not a square. Also we have 1 4 4cq = 2 is a square,
co(4+ co) =5 is not a square. So we are in Case (vi).
Now take any c; € Fr7, say c; = 6. Then the polynomial F' takes the following values

over I :

Thus, we obtain Vg = {0,1,3,6} i.e.,

+1
\VF1:4:qT.
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