
ISTANBUL TECHNICAL UNIVERSITY  GRADUATE SCHOOL OF

SCIENCE ENGINEERING AND TECHNOLOGY

DESIGNING, VERIFICATION AND VALIDATION OF RAILWAY

SIGNALING SYSTEMS USING COLOURED PETRI NETS

M.Sc. THESIS

Ali ELHAYEK

Department of Control and Automation Engineering

Control and Automation Program

Thesis Advisor: Prof. Dr Mehmet Turan SÖYLEMEZ

DECEMBER 2016

ISTANBUL TECHNICAL UNIVERSITY  GRADUATE SCHOOL OF

SCIENCE ENGINEERING AND TECHNOLOGY

DESIGNING, VERIFICATION AND VALIDATION OF RAILWAY

SIGNALING SYSTEMS USING COLOURED PETRI NETS

M.Sc. THESIS

Ali ELHAYEK

(504131134)

Department of Control and Automation Engineering

Control and Automation Program

Thesis Advisor: Prof. Dr Mehmet Turan SÖYLEMEZ

DECEMBER 2016

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

DEMİRYOLU SİNYALİZASYON SİSTEMLERİ İÇİN RENKLİ PETRİ AĞLARINI
KULLANARAK TASARIM, DOĞRULAMA VE ONAYLAMA

YÜKSEK LISANS TEZI

Ali ELHAYEK

(504131134)

Kontrol ve Otomasyon Mühendisliği Anabilim Dalı

Kontrol ve Otomasyon Mühendisliği Programı

Tez Danışmanı: Prof. Dr Mehmet Turan SÖYLEMEZ

ARALIK 2016

v

Ali ElHayek, a M.Sc. student of İTU Graduate School of Science Engineering and

Technology student ID 504131134, successfully defended the thesis entitled

“DESIGNING, VERIFICATION AND VALIDATION USING COLOURED

PETRI NETS FOR RAILWAY SIGNALING SYSTEMS”, which he prepared after

fulfilling the requirements specified in the associated legislations, before the jury

whose signatures are below.

Thesis Advisor : Prof. Dr Mehmet Turan SÖYLEMEZ
ISTANBUL Technical University

Jury Members : Prof.Dr. Salman KURTULAN
..............................

ISTANBUL Technical University

 Asst. Prof. Özgür Turay KAYMAKÇI
..............................

Yıldız Technical University

Data of Submission: 24 November 2016

Date of Defense: 14 December 2016

vi

vii

FOREWORD

I would like to thank my supervisor Prof. Dr Mehmet Turan Söylemez for his

excellent guidance and support during this process. I also wish to thank all of the

respondents, without whose cooperation I would not have been able to conduct this

analysis.

I would like to thanks my friends here in Turkey for their support and for sharing me

the time while doing the thesis.

My sister Maha (ablam) deserve a particular note of thanks: your wise counsel and

kind words have, as always, served me well. Thanks for my parents for being the

light that show me the way.

Last thank will be for my beloved wife Hilal Rabia, for doing everything to help me

to reach this point. You are the best thing happened to me in Turkey.

I hope you enjoy your reading.

 December 2016 Ali ElHayek

Mechatronics Engineer

viii

ix

TABLE OF CONTENTS

 Page

FOREWORD .. VII

TABLE OF CONTENTS .. IX

ABBREVIATIONS .. XI

LIST OF TABLES .. XIII

LIST OF FIGURES ..XV

SUMMARY ... XVII

ÖZET ... XIX

1. INTRODUCTION ... 1
1.1 Components of a Railway Signalization System ... 1

1.1.1 Traffic command center (TCC).. 2

1.1.2 Interlocking system .. 2

1.1.3 Switches ... 3

1.1.4 Signals .. 4

1.1.5 Track circuits and axle counters... 5

1.2 Railway Standards ... 5

2. FORMAL METHODS .. 11
2.1 Discrete Event System ... 12

2.1.1 Automata .. 12

2.1.2 Petri nets (PNs) .. 13

2.1.2.1 Formal definition of petri nets ... 13

2.1.2.2 Basic properties of petri nets .. 14

2.1.3 Coloured petri nets (CPNs) .. 15

2.1.3.1 A non-hierarchical colored petri net .. 15

2.1.3.2 Hierarchical colored petri net ... 16

2.1.3.3 CPN properties ... 17

2.1.3.4 CPN and system behavior .. 19

2.2 Model Checking ... 19

2.2.1 Model checking procedures ... 19

2.2.2 Temporal logic ... 20

2.2.3 Computational tree logic .. 20

2.3 CPN and CTL* .. 21

2.4 Demonstration for Railway Application .. 21

3. CASE STUDY .. 23
3.1 Train Yard Details .. 23

3.2 Verification and Validation Criteria .. 23

4. IMPLEMENTATION ... 27
4.1 Model Building .. 27

4.1.1 Main layout .. 27

4.1.2 Section 1BT ... 28

4.1.3 Interlocking system .. 30

4.1.4 Switches ... 32

4.1.5 Section 3T and signal 2D ... 33

4.1.6 Section 1ST, 2ST and 3ST ... 36

4.1.7 Route releasing and fusion sets .. 36

4.2 Verification .. 37

4.3 Validation ... 40

4.4 Machine Performance .. 41

x

5. CONCLUSION .. 43

REFERENCES ... 45

APPENDICES .. 49
Appendix A .. 50

Appendix B .. 52

Appendix C .. 60

xi

ABBREVIATIONS

APN : Automation Petri Nets

ASM : Abstract State Machines

CENELEC : European Committee for Electrotechnical Standardization

CTC : Centralized Traffic Control

CPN : Colored Petri Nets

CTL : Computational Tree Logic

DES : Discrete Event System

FSM : Finite State Machine

IFS : Infinite Firing Sequences

LTL : linear time logic

LCC : Local Command Center

PNs : Petri Nets

RAMS : Reliability, Availability, Maintainability and Safety

SIL : Safety Integrity Level

TCC : Traffic Command Centre

VDM : Vienna Development Method

xii

xiii

LIST OF TABLES

Page

Table 1.1: The types and the definitions of common signals [6]. 4
Table 1.2: Failure rates for different SILs [10]. .. 6

Table 1.3: Some nodes of V-Model. ... 8
Table 3.1: Interlocking table. .. 24
Table 4.1: Modules names. ... 27

xiv

xv

LIST OF FIGURES

Page

Figure ‎1.1: Block diagram of signalization system. ... 2
Figure ‎1.2: Traffic command centre. .. 3

Figure ‎1.3: Dangers and safety measures in railway operations. 3
Figure ‎1.4: Schematic representation of a railway switch [6]. 3
Figure ‎1.5: Scope of th main cenelec railway application standards. 7
Figure ‎1.6: V-Model life cycle.. 7
Figure ‎2.1: State transition diagram. ... 13

Figure ‎2.2: Weight of arcs. ... 14
Figure ‎2.3: Number of tokens befor and after firing. .. 15
Figure ‎2.4: Impartial transition. .. 18
Figure ‎2.5: Fairness properties. ... 18

Figure ‎2.6: Unwind state graph to obtain infinite tree. ... 21
Figure ‎3.1: Railway yard. ... 23
Figure ‎4.1: Declarations. ... 28

Figure ‎4.2: Model layout. ... 29

Figure ‎4.3: 1BT section model. .. 30
Figure ‎4.4: B2D changing color sequential diagram. ... 30
Figure ‎4.5: Interlocking model. .. 31

Figure ‎4.6: 1BT-2ST route reservation sequential diagram. 32
Figure ‎4.7: Switch-1 model... 33

Figure ‎4.8: Section 3t model. .. 34
Figure ‎4.9: Signal 2D model ... 34
Figure ‎4.10: Signal 2D sequential diagram... 35

Figure ‎4.11: Section 2ST model. .. 35
Figure ‎4.12: (A) 1st fusion sets, (B) 3st fusion sets. .. 37

Figure ‎4.13: System state space report. .. 38
Figure ‎4.14: Safe dead markings query. ... 39

Figure ‎4.15: Safe dead markings query result. ... 39
Figure ‎4.16: Livelocks checking query. .. 39
Figure ‎4.17: Self loops checking query. ... 39
Figure ‎4.18: First criterion checking query. ... 40
Figure ‎4.19: First criterion checking query result. .. 40

Figure ‎4.20: Second criterion checking query. .. 41
Figure ‎4.21: Second criterion checking query result with wrong initial conditions. 41
Figure ‎4.22: Machine specifications. .. 41
Figure ‎4.23: System performance ... 41

Figure ‎A.1: Train yard model. .. 50
Figure ‎A.2: Firing of “Locking” transition. ... 51

Figure ‎A.3: Firing of "Enteringrout” transition. ... 51

Figure B.1: Main CPN model 1…………………………………………………………..52
Figure B.2: State space nodes of model 1……………………………………………... 53

xvi

Figure B.3: Different marking of model1…………………….………………………...53

Figure B.4: tr(2) first scenario………………………………………………………….53

Figure B.5: Two enabled transition…………………………………………………….54

Figure B.6: Part of the state space report of model1……………………………………54

Figure B.7: Model2……………………………………………………………………..57

Figure B.8: Model2 deadlock markings state space nodes……………………………..57

Figure B.9: Model3……………………………………………………………………..58

Figure B.10:Model3 space state report. .. 58

Figure ‎B.11: Model4. .. 59
Figure ‎B.12: Model4 space state report and graph. ... 59

xvii

DESIGNING, VERIFICATION AND VALIDATION OF RAILWAY

SIGNALING SYSTEMS USING COLOURED PETRI NETS

SUMMARY

 Every weekday just in United States of America, more than 7 million people use

railways in their transportation. In the same time railway is used widely as reliable

freight transportation solution. So in general, railway transportation can be

considered as a very vital transportation mean, this importance emerges from the fact

that railways are relatively cheap and environmental friendly. This enables them to

be the main transportation system in many countries.

Railways systems are exposed to accidents due to huge variety of reasons like

signaling system failures, human errors …etc. As railways are used by a huge

number of people, the safety of railways became very important issue. This led some

governments to interfere by putting standards in order to organize the operations of

railway systems.

CENELEC is a safety reference name which states the necessary standards of

railway sector and it is composed from the following standards EN 50126, EN 50128

and EN 50129. Based on these standards, Safety Integrity Levels (SILs) were built.

Signalling systems are responsible for the operations of railway systems to ensure the

safety of trains and their other components. Signalling ensures optimal control for

traffic in order to avoid accidents.

Formal methods have a very important role in software development. Formal

methods are method use the discrete mathematic techniques and tools in software

and hardware development process, where the mathematical notations are used in the

design and the verification of software and hardware systems. The main purpose of

using formal methods is to reduce the risky consequences that can occur due to

serious specification and design errors by symbolically examine the entire state space

of a design Formal methods help in presenting precise record of the created software

that’s why it is used widely in verification and validation processes

To develop software using formal method, Formal Specifications are used to

describe the behavior and properties using formal language and semantics. Formal

Language is used to define Rules in a precise manner. Formal language describes the

grammar rules and justifies the general algorithms to be used. Semantics provide an

accurate mathematical meaning to every statement. These items together will provide

a formal model for the system that enables the developers to state the expected

properties and then formally verify it

Petri net as the models of DES. Petri net graphs depict structural information about

the simple and complex systems. Coloured Petri nets are a high-level Petri nets

graphical language. It is based on normal PNs, but colours were added to tokens and

places using expressions working with them.

xviii

CTL is a branching time tree; the scenarios can be symbolized by hierarchical

structure in a graphical form where different scenarios can be applied. CTL* (or

ASK-CTL) is used to express the state and the transition properties of the models

interviewed by the state space of the coluored Petri net

In this research, a signalling system for a train yard is designed by CPN. The system

was verified and validated using model checking which is considered as one of the

formal methods. All the processes were performed according to CENELEC to

achieve minimum SIL 3.

xix

DEMİRYOLU SİNYALİZASYON SİSTEMLERİ İÇİN RENKLİ PETRİ AĞLARINI
KULLANARAK TASARIM, DOĞRULAMA VE ONAYLAMA

ÖZET

Sadece Amerika Birleşik Devletleri’nde hafta içi her gün 7 milyondan daha fazla kişi

ulaşımda demiryollarını kullanmaktadır. Aynı zamanda demiryolu, güvenilir yük

taşımacılığı yolu olarak yaygın bir şekilde kullanılmaktadır. Genel olarak demiryolu çok

önemli bir ulaşım yöntemi olarak düşünülebilir, bu önem ise onun nispeten daha ucuz ve

çevre dostu olmasından kaynaklanmaktadır. Bu da birçok ülkede demiryollarının ana

ulaşım sistemi olarak kullanılmasına olanak sağlamaktadır.

Demiryolu sistemlerinde esas olarak insan hataları ve sistem arızaları gibi çeşitli

sebeplerden dolayı kazalar meydana gelmektedir. Çok sayıda insanın demiryollarını

kullanması demiryollarının güvenliğini de bu ölçüde önemli kılmaktadır. Bu durum, bazı

hükumetlerin demiryolları sistemlerinin operasyonlarında düzenlemek için standartlar

koyarak müdahale etmelerine sebep olmuştur.

Demiryolu sistemlerinde ulaşım ve taşımanın güvenli olarak gerçekleştirilmesini

sağlayan en önemli bileşen anklaşman (interlock) sistemidir. Anklaşman sisteminin

geliştirilmesinde izlenilecek olan temel adımlar Avrupa Elektroteknik Standardizasyon

Komitesi (European Committee for Electrotechnical Standardization - CENELEC) gibi

uluslararası komiteler tarafınca hazırlanan güvenlik standartlarında tanımlanmıştır.

EN 50126, EN 50128 ve EN 50129 standartlarından oluşan CENELEC, demiryolu

sektöründe gerekli standartları oluşturan güvenlik referansının adıdır.

Geliştirilen sinyalizasyon sisteminin istenilen Güvenlik Bütünlüğü Seviyesi (Safety

Integrity Level - SIL) seviyesini sağlayabilmesi için bu güvenlik standartlarınca tavsiye

edilen yöntem, teknik ve mimarilerin kullanılması yüksek önem arz etmektedir.

Uluslararası güvenlik standartlarının gereksinimlerine ek olarak, sinyalizasyon

sisteminin kurulacağı ülkeye ait ihtiyaçlar ve güvenlik kriterleri de göz önünde

bulundurulmalıdır.

Yazılım geliştirme süreci başlangıcında yazılımdan beklenen çıktılar veya başka bir

deyişle yazılım isterleri oluşturulmalıdır. Sonrasında güvenlik standartlarında tavsiye

edilen yöntem ve mimarilerin istenilen SIL seviyesinin sağlanabilmesi için uygun bir

şekilde seçilmesi gerekmektedir. Seçilen yöntem ve mimariler yazılım isterlerini eksiksiz

sağlayacak şekilde tasarımı gerçekleştirecek olan grup tarafından yazılım geliştirme

sürecinde kullanılmalıdır.

Demiryolu sistemlerinde faaliyette bulunan trenler ve demiryolu sistemlerinin diğer

bileşenlerinin güvenliğini sağlanması sinyalizasyon sistemlerinin sorumluluğundadır.

Sinyalizasyon kazalardan kaçınmak amacıyla, trafik için optimum kontrol sağlamaktadır.

Biçimsel yöntem yazılım geliştirmede çok önemli bir role sahiptir. Biçimsel yöntem

ayrık matematik tekniklerinde ve yazılım ve donanım geliştirme sürecinde kullanılan

xx

yöntemlerdir. Matematiksel notasyonlar ise yazılım ve donanım sistemlerinin tasarım ve

gerçeklemesinde kullanılmaktadır. Biçimsel yöntemleri kullanmanın temel amacı, bir

tasarımın tüm durum uzay modelini sembolik olarak inceleyerek önemli özellikler ve

tasarım hataları nedeniyle oluşabilecek riskli sonuçları azaltmaktır. Biçimsel yöntemler

oluşturulan yazılımda hassas kayıt sunmaya yardımcı olmaktadır bu nedenle gerçekleme

ve doğrulama süreçlerinde yaygın olarak kullanılmaktadır.

Biçimsel yöntem kullanarak yazılım geliştirmek için, biçimsel dil ve semantik

kullanılarak davranış ve özellikleri tanımlamak için Kurallı Belirtim kullanılmaktır.

Biçimsel Dil kesin bir şekilde Kurallar tanımlamak için kullanılmaktadır. Biçimsel dil,

dilbilgisi kurallarını tanımlamaktadır ve genel algoritmaların kullanılmasını haklı

çıkarmaktadır. Semantik her ifadeye kesin bir matematiksel anlam sağlamaktadır. Bu

öğeler bir araya getirildiğinde ise geliştiricilerin beklenen özellikleri belirtmelerine ve

daha sonra biçimsel olarak doğrulamalarına olanak tanıyan sistem için bir biçimsel

model sağlayacaktır.

Biçimsel diller ya model tabanlı (Soyut Durum Makineleri, Küme ve sınıf teorisi,

otomat tabanlı modelleme ve Gerçek zamanlı sistemler için modelleme dilleri gibi)

ya da cebirsel tabanlı olabilmektedir.

Petri ağları bir biçimsel yöntemdir. Petri ağı olayları tanımlanmış kurallara dayalı

olarak işleyen ve geçişe izin veren koşulları gösterebilen bir cihazdır.

Petri ağları Ayrık Olaylı Sistemlerin modellerinde kullanılması ve grafiklerin basit

ve karmaşık sistemlerin yapısal bilgilerini tasvir etmesi gibi birçok avantaja sahiptir.

Renkli Petri ağları üst düzey Petri ağları grafiksel dildir. Bu normal Petri ağlarına

dayanamaktadır ancak jetonlara ve onlarla birlikte çalışan ifadeleri kullanan yerlere

renkler eklenmiştir.

Model sınama, sistemin sonlu durum modelini ve biçimsel özelliklerini veren bir

otomatik tekniktir. Model sınama bu özelliğin o modeldeki belirli durum için tutulup

tutulmadığını sistematik olarak kontrol etmektedir.. Model sınama farklı alalarda

kullanılabilen genel bir gerçekleme yaklaşımı olarak düşünülmektedir. Bunun yanı

sıra model sınama özellikler için kısmi gerçekleme yapabilmektedir, bu da

geliştiricinin önemli olanlara odaklanmasını sağlamaktadır. Model sınama diğer

gerçekleme yöntemlerine nazaran daha hızlı olduğu düşünülmektedir.

Dallanan zaman tabanı (Computational Tree Logic) dallanan zaman ağacıdır ki

burada senaryolar, farklı senaryoların uygulanabildiği grafik formdaki hiyearşik

yapıyla sembolize edilebilmektedir.

Dallanan zaman tabanı* Renkli Petri ağının durum uzayı tarafından gösterilen

modellerinin durum ve geçiş özelliklerini ifade etmek için kullanılmaktadır.

İkinci bölümün sonunda Renkli Petri Ağları ve Dallanan Zaman Tabanı* ile ilgili

tüm kavramları açıkladıkan sonra, Renkli Petri ağlarının nasıl çalıştığını göstermek

ve Renkli Petri Ağlı Dallanan Zaman Tabanının gerçekleme ve doğrulama işleminde

kullanılabileceğinden emin olmak için basit tren istasyonuna bir örnek verilmiş ve

tasarlanmıştır.

xxi

Üstelik sistemin durum uzay modeli gösterilmiştir ve sistemin durum uzay modeli

kullanılarak işaretleme konsepti (concept of marking) açıklanmıştır.

Daha karmaşık manevra istasyonu (bu çalışmadaki ana örnek) üçüncü bölümde

gösterilmiştir. Manevra istasyonunun bir giriş ve üç çıkışı olmakla birlikte istasyonun

hareket kuralları anklaşman tablosuyla tanımlanmış ve bazı kurallar açıklanmıştır.

Bu kurallar gerçekleme sürecinde kriter olarak kullanılmıştır.

Manevra istasyonuna ait model Renkli Petri Ağları kullanılarak kurulmuştur ve altı

trenin manevra istasyonunda tek yönden geçeceği önerilmiştir. Manevra

istasyonunda üç çıkış olduğu için üç rota vardır. Olası tüm senaryolar uygulanmıştır.

Tüm senaryoların sonunda tüm trenlerin manevra istasyonunun dışında olması

gerekmektedir.

Simülasyon yürütüldükten sonra tüm trenlerin manevra istasyonunun dışında olduğu

simülasyonun sonunda gösterilmiştir. Sistemin doğru bir şekilde çalıştığını

doğrulamak için sistemin durum uzay modeli ve sıkı bağlı bileşen grafiği

oluşturulmuştur ve sonra sistem durum uzay raporu da oluşturulmuştur. Bundan

sonra durum uzay modelinin sonuçlarını ve sıkı bağlı bileşen grafiğini test etmek için

bazı sorular yazılmıştır.

Sistemi doğrulamak amacıyla üçüncü bölümde belirlenen kurallara göre sorgular da

yazılmıştır. Bu sorgular tek tek incelenmiştir ve sistemin belirlenen kurallara uygun

olarak çalıştığı gösterilmiştir.

Tasarım, gerçekleme ve doğrulama sürecinde kullanılan bilgisayarın özellikleri 4 GB

RAM, i5 CPU 2.53 GHz’dir. Kurulan süreç hafızada yaklaşık 62 MB yer tutmuştur

ve CPU’nun %29 unu 32 saniye meşgul etmiştir.

Renkli Petri Ağları ile sistem modeli oluşturmanın kolay olduğu gösterilmiştir.

Gerçekleme ve doğrulama süreçleri de kolaydır çünkü hesaplama açısından pahalı

değillerdir. Bu yüzden eğer model oluşturulduysa, sistemin tüm işaretlemelerini

(marking) taramak uzun zaman ve çaba gerektirmemektedir.

İşaretlemeleri (markings) sınamak sadece Renkli Petri Ağları araçlarını (CPN Tools)

kullanarak çok kolay olmamaktadır. Çünkü güncel Petri Ağları araçları (CPN Tools)

yeterince geliştirilmemiştir bu yüzden tüm işaretlemelerin(markings) manuel olarak

oluşturulması gerekmektedir. Alternatif olarak ise modelin işaretlemelerin

oluşturmada karmaşık olan (Graphviz - Graph Visualization Software gibi) bazı

araçlar kullanılmaktadır.

Bu yöntemin dezavantajı ise sistemin eksiksizliğini garanti etmemesidir. Sadece

belirlenen özellikler sınanmaktadır. Dolayısıyla sistemin tüm önemli özelliklerinin

belirlenmesi geliştiricinin sorumluluğundadır.

Dallanan zaman tabanlı Renkli Petri ağları mevcut petri ağı sistemini doğrulamıştır

ancak bu sistem için bir PLC kodu oluşturulmamıştır. Bu yüzden doğrudan Renkli

petri ağı modeline dayalı PLC kodu oluşturulabilme olasılığının incelenmesi

gerekmektedir.

xxii

1

1. INTRODUCTION

Every weekday just in United States of America, more than 7 million people

use railways in their transportation [1]. In the same time railway is used widely

as reliable freight transportation solution. So in general, railway transportation

can be considered as a very vital transportation mean, this importance emerges

from the fact that railways are relatively cheap and environmental friendly. This

enables them to be the main transportation system in many countries [2].

 As any other system, railway systems need to be controlled. In this case

controlling system is called signalling system. Signalling system is responsible

of operating railway system to ensure the safety of trains, passengers, fright and

other components. Signalling system ensures optimal control for traffic in order

to avoid accidents [3]. Signalling systems are required to deal with technical

failures and ergonomics too [4]. Signalling was started as a very simple process

like timetable operation, token signalling. But as the railway sector is

developing rapidly, there was a need for the development in signalling

consequently. Nowadays very complex technical systems are performing the

task of signalling. In modern systems, to have effective signalling system, a

number of components have to be synergetic integrated, including:

 Electrical and electronics systems.

 Logical design and software.

 Layout of signals and signal sighting.

 Interactions between signals and drivers.

1.1 Components of a Railway Signalization System

Railway signalization system consists of many components that work together

to guarantee the safety of the process (Figure ‎1.1) .

2

Figure ‎1.1: Block diagram of signalization system.

1.1.1 Traffic command center (TCC)

Traffic command center is a place where the railway line and train traffic are

monitored and controlled. TCC usually is equipped with monitoring system that

allows the operator (dispatcher in railways case) to monitor trains and signalling

elements along the track [5]. Dispatcher commands, which are mostly route

reservation requests, are sent to the interlocking system so they are checked

considering the current state of the railway yard.

When routing decisions for a given line are made centrally (TCC), this kind of

railway signalling is known as Centralized Traffic Control (CTC)

(Figure ‎1.2.a). When there is a problem in communication, a local command

center (LCC) can be used to control the station (Figure ‎1.2.b).

1.1.2 Interlocking system

When an interlocking system receives a route reservation request or any other

request from the dispatcher, it checks the validity of this request by checking

the conditions of the related elements on the ground. If the conditions on the

ground are compatible with the safety criteria saved in system, acceptance is

issued. Otherwise rejection is issued. Figure ‎1.3 shows the tasks of interlocking

system related to different danger types. The safety of the railway system and

the trains is the main purpose of interlocking system.

3

Figure ‎1.2: Traffic command center.

Figure ‎1.3: Dangers and safety measures in railway operations.

1.1.3 Switches

Switches are used in the railways to enable trains to move between tracks.

When interlocking system issues an acceptance for a TCC request, switches

positions are maintained or changed based on the request. Switches have to be

on normal or reverse position (Figure ‎1.4).

Figure ‎1.4: Schematic representation of a railway switch [6].

4

In modern signalization, switch position must be monitored by two sensors,

where if position indicators show switch at both positions at the same time,

system assumes that the switch is on a faulty state.

1.1.4 Signals

Railway signals (or optical wayside signals) are used along the rail line on

certain points to inform train driver about the status of the next railway blocks

[3].

Signals are the devices used by interlocking system to authorize the driver to

enter a block. So train drivers have to pay attention to signals on the right side

(or left- different between countries) with respect to their direction of

movement. Despite of the differences between standards of countries in this

field, in general red is used to prophet the entrance to a block, green gives

complete authority to enter a block, yellow gives authority to enter a block with

caution.

In Turkey, additional aspects are used for railways near station areas. The

fourth aspect that is clarified in Table 1.1 (a bottom yellow sign) indicates a line

change ahead [6]. The dwarf signals are used at the exits of secondary lines of

the railway fields. They indicate that the train will be changing lines through a

switch (or a set of switches).

Table ‎1.1: The types and the definitions of common signals [6].

Type of

Signal
Schematic Color Definitions

Four-aspect

Tall Signal

Green (G)
 The up coming two blocks are

available; the train can keep on.

Yellow (Y)

The up coming block is available, but

the second block is not. Train can

Keep but carefully.

Red (R)
Stop, the coming block is not

available.

Yellow-Green(YG) A diverge ahead and the coming two

blocks are available.

Yellow-Yellow

(YY)

A diverge ahead and the coming

block is available. But the second

block is not.

Yellow-Red (YR) Keep on very carefully (stop when

necessary).

5

Table ‎1.1 (Continued): The types and the definitions of common signals [6].

Three-aspect

Tall Signal

Green (G) Coming two blocks are available; the

train can keep on.

Yellow (Y)
The coming block is available, but

the second block is not. Train can

Keep on but carefully.

Red (R) Stop, the coming block is not

available.

Three-aspect

Dwarf Signal

Green (G) Coming two blocks are available; the

train can keep on.

Yellow (Y)
The coming block is available, but

the second block is not. Train can

Keep but carefully.

Red (R)
Stop, the coming block is not

available.

Yellow-Red (YR)
Keep on very carefully (stop when

necessary).

Two-aspect

dwarf Signal

Yellow (Y)
The coming block is available, but

the second block is not. Train can

Keep but carefully.

Red (R)
Stop, the coming block is not

available.

Yellow-Red (YR)
Keep on very carefully (stop when

necessary).

1.1.5 Track circuits and axle counters

Track circuits and axle counters are used to detect the location of the train on

the rail. Different techniques and combinations are used to detect the train

location. More information about detection technics are explained in [3].

As signalling systems are composed from multi integrated systems, the process

of proving system safety became complex [7, 8]. Moreover railways systems

are exposed to accidents due to huge variety of reasons like signaling system

failures, human errors …etc. As railways are used by a huge number of people,

the safety of railways became very important issue. This led some governments

to interfere by putting standards in order to organize the operations of railway

systems [1] [2].

1.2 Railway Standards

Developing hardware section to be compatible with logical design and software

of interlocking system is one from the hardest tasks in signalling system design

6

[9]. CENELEC- (European Committee for Electrotechnical Standardization) - is

a safety reference name which states the necessary standards of railway sector

and it is composed from the following standards EN 50126, EN 50128 and EN

50129. Based on these standards, Safety Integrity Levels (SILs) were built [10].

SIL indicates the maximum failure rate that can be accepted [7]. Table 1.2

shows failure rates for different SILs. For a system to be SIL 4, it means that

during 10,000 working years the system must not face any failure, where λ in

Table 1.2 indicates to failure rate.

Table ‎1.2: Failure rates for different SILs [10].

SIL Failure Rate

4 10
-9

/h ≤ λ ˂ 10
-8

/h

3 10
-8

/h ≤ λ ˂ 10
-7

/h

2 10
-7

/h ≤ λ ˂ 10
-6

/h

1 10
-6

/h ≤ λ ˂ 10
-5

/h

In general standards are divided to:

 Basic standard:

1. IEC 61508: Functional safety of electrical/

electronic/programmable electronic safety-related systems

[11].

 Specific CENELEC standards derived from IEC 61508:

1. EN 50126-1:2012 - Railway applications - The Specification and

Demonstration of Reliability, Availability, Maintainability and Safety

(RAMS) [12].

2. EN 50129:2003 - Railway applications - Communication, signalling and

processing systems - Safety related electronic systems for signalling

[13].

3. EN 50159:2010 - Railway applications - Communication, signalling and

processing systems - Safety-related communication in transmission

systems [14].

7

4. EN 50128:2011 - Railway applications - Communication, signalling and

processing systems - Software for railway control and protection

systems.

Software development processes can be done according to these standards

(Figure ‎1.5) [15].

Figure ‎1.5: Scope of th main CENELEC railway application standards.

Conventional V-model was created for software development purposes. V-

Model illustrates how to build the software of a signalling system using EN

50128 (Figure ‎1.6).

Figure ‎1.6: V-Model life cycle.

The model can be divided into left section and right section. The first section

(surrounded by green) of the model shows that must go under verification to

make sure that it is functioning in a proper way, second section of V-Model

8

(surrounded by red) shows that system must be validated too in order to see if

it performs the right function or not. If any negative result in validation appears

at any point, the developer is required to repeat the developing steps from the

point related point on the first section of the model (as it can be seen in

Figure ‎1.6 every point in validation section is related to a point in verification

process). EN 50128 defines the proper criteria for every node in V-Model.

Table ‎1.3 shows some details of these producers. Following these procedures

will help to achieve software which is analyzable, testable, verifiable and

maintainable [15]. As it is noticed, formal methods have a very important role

in software development, so in the next chapter Formal methods will be

reviewed.

Table ‎1.3: Some nodes of V-Model.

Node Name Method

Software Requirements

Specification

Formal Methods

Modelling

Structured methodology

Decision Tables

Software Architecture

Defensive Programming

Fault Detection & Diagnosis

Error Detecting Codes

Failure Assertion Programming

Diverse Programming

Memorizing Executed Cases

Software Error Effect Analysis

Graceful Degradation

Information Encapsulation

Fully Defined Interface

Formal Methods

Modelling

Structured Methodology

Modelling supported by computer aided design and specification tools

9

Table ‎1.3 (Continued): Some nodes of V-Model.

Software Design and

Implementation

Formal Methods

Modelling

Structured methodology

Components

Analyzable Programs

Strongly Typed Programming Language

Structured Programming

Programming Language

Language Subset

Procedural programming

10

11

2. FORMAL METHODS

Formal methods are method use the discrete mathematic techniques and tools in

software and hardware development process, where the mathematical notations are

used in the design and the verification of software and hardware systems. Formal

methods help in presenting precise record of the created software [19]. Formal

methods are well-formed statements in a mathematical logic in which the formal

verifications are rigorous deductions. The main purpose of using formal methods is

to reduce the risky consequences that can occur due to serious specification and

design errors by symbolically examine the entire state space of a design [20, 21].

To develop software using formal method, Formal Specifications are used to

describe the behavior and properties using formal language and semantics. Formal

Language is used to define Rules in a precise manner. Formal language describes

the grammar rules and justifies the general algorithms to be used. Semantics provide

an accurate mathematical meaning to every statement. These items together will

provide a formal model for the system that enables the developers to state the

expected properties and then formally verify it [22, 23].

Formal methods can be classified based on their main purpose; it can be descriptive

or analytic. Descriptive methods focus on specifications as a tool for review and

discussion, while analytic methods focus on the utility of specifications as a

mathematical model for analyzing and predicting the behavior of (hardware and

software) systems. Analytic formal methods work on emphasizing mechanization

and general design specification languages capable of supporting efficient automated

deduction [24]. Formal language can be based on mathematical model or on a

standardized programming or specification language. Formal specification can be

(partly) executable. Generally only subsets of formal specification languages, e.g. of

Z and VDM, are machine executable [25]. Formal languages can be either model-

based (such as abstract state machines (ASM), Set and category theory, automata-

based modelling and modelling languages for Real-time systems) or algebraic based,

for more information reader is suggested to refer to [19].

12

2.1 Discrete Event System

To study the discrete event system (DES), appropriate models must be developed,

that accurately defines the behavior of these systems and provides a framework to

help in satisfying the design targets, controlling the system, and evaluating the

performance of the system. Automaton was conducted for these purposes. As

aforementioned, automata and its related languages can be used to in formal way to

study the logical behavior of DES.

2.1.1 Automata

An automaton can be defined as a device that is capable of representing a language

according to well defined rules.

A language defined over an event set E is a set of finite-length strings formed from

events in E.

 As an example, let E = {a, b, c} be the set of events. Then languages may be

defined as:

L1 = {ε, a, acb} that consisting of three strings only. (ε denotes empty string).

L2 = {all possible strings of length 3 starting with event b} which contains nine

strings.

L3 = {all possible strings of finite length which start with event c.

An automaton consists from places (which represent states) and transitions (which

represent events). To understand how automata works, Let the event set be E = {a, b,

c}. Consider the state transition diagram in Figure ‎2.1, where nodes represent states

(places) X = {x1, x2, x3}, and labeled arcs represent transitions between these states.

This directed graph provides a description of the dynamics of an automaton [20].

To describe how the transitions between states occur, a function must be defined. For

the case in Figure ‎2.1 function can be defined as follows:

𝑓: 𝑋 × 𝐸 → 𝑋

This means, when a state is associated with an appropriate event it will led to a state.

13

Figure ‎2.1: State transition diagram.

For the state transition diagram the notation f(x2, a) = x1 means that if the automaton

is in state x2, then upon the “occurrence” of event “a”, the automaton will make an

instantaneous transition to state x1. More than one event can be written in the same

notation, as example

 f(x1, cba) = f(f(x1, cb), a) = f(f(f(x1, c), b), a) = f(f(x3, b), a) = f(x3, a) = x2.

Automaton can be defined formally as in [20]. In this work another method for DES

modelling will be used, it is Coloured Petri Nets.

2.1.2 Petri nets (PNs)

It was firstly introduced by Carl Adam Petri in 1960`s, somehow petri nets is related

to automata as they represent the transition function of DES [20]. PNs have some

advantages over automata in both graphical and mathematical features- automaton

can always be represented as a Petri net; on the other hand, not all Petri nets can be

represented as finite-state automata [9]. A Petri net is a device that operates events

based on defined rules and can show the conditions that enable a transition. PNs have

a lot of advantages that motivate considering Petri net as the models of DES. Petri

net graphs depict structural information about the simple and complex systems [20].

In general, PNs consist of three types of components: places (circles), transitions

(rectangles) and arcs (arrows). Where places represent possible states of the system,

transitions are events or actions which cause the change of state, and every arc

simply connects a place with a transition or a transition with a place. Next section

shows the formal definition of petri nets.

2.1.2.1 Formal definition of petri nets

Petri nets are defined in the literature by [26];

14

𝑃𝑁 = 𝑃, 𝑇, 𝐴, 𝑊, 𝑀0 (2.1)

 P: {P1, P2 … Pn}, finite set of places,

 T: {t1, t2 … tm}, finite set of transitions,

 A ⊆ (P x T) ∪ (T x P) is a set of arcs,

 W: A → {1 2 3 …} is a weight function,

 M0: P → {0 1 2 3 …} is the initial marking

 P ∩ T = Ø and P ∪ T ≠ Ø.

2.1.2.2 Basic properties of petri nets

 A transition t is said to be enabled if each input place P of t is marked at least

W(P, t) tokens, where W(P, t) is the weight of arc from place P to transition t.

𝑥(𝑃𝑖) ≥ 𝑊(𝑃𝑖 , 𝑡𝑗) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑃𝑖 ∈ 𝐼(𝑡𝑗) (2.2)

Where x(Pi) is the number of tokens on i
th

 place and I(tj) is the sets of input places of

transition tj. T0 in Figure ‎2.2.a is enabled as the number of tokens in P0 and P1 is

more than the weight of the related arcs, but for T0 in Figure ‎2.2.b is not enabled as

the number of tokens in P0 and P1 is less than the weight of the related arcs.

 An enabled transition may or may not fire (depending on whether or not the

event actually takes place).

Figure ‎2.2: Weight of arcs.

 A firing of an enabled transition t removes W(P, t) tokens from each input

place P of t and adds W(t, P) tokens to each output place P of t, where W(t, P)

is the weight of the arc from t to P.

15

 where 𝑥′(𝑃𝑖) is the number of tokens on i
th

 place after the firing of transition j

[26]. If the inequality in Equ.2 is applied for P0 in Figure ‎2.3, 𝑥′(𝑃0)=1, left

part of inequality is (3-2-0=1).

 Other models were built based on petri nets like Automation Petri Nets

(APN) [21], other models were classified as high level petri nets like

Stochastic Petri Nets, Colored Petri Nets and Object Oriented Petri Nets [27].

In this work Coloured Petri Nets will be used.

x′(Pi) ≥ x(Pi) − W(Pi, tj) + W(tj, Pi) (2.3)

Figure ‎2.3: Number of tokens befor and after firing.

2.1.3 Coloured petri nets (CPNs)

Coloured Petri nets are a high-level Petri nets graphical language. It is based on

normal PNs, but colours were added to tokens and places using expressions working

with them. They have well-defined semantics and well known for specifying

distributed and concurrent systems which makes it very efficient formal modelling

technique [28-31]. As CPN tokens have colours (data value), this helps in reducing

the number of places if it is compared with normal petri net [32].

CPN can be classified as non-hierarchical Colored Petri Net and hierarchical Colored

Petri Net.

2.1.3.1 A non-hierarchical colored petri net

It is a nine-tuple

CPN = (P, T, A, Σ, V, C, G, E, I) (2.4)

16

where [28, 29]:

1. P is a finite set of places.

2. T is a finite set of transitions such that P ∩ T = ∅,

3. A ⊆ P × T ∪ T × P is a set of directed arcs.

4. Σ is a finite set of non-empty color sets.

5. V is a finite set of typed variables such that Type[v] ∈ Σ for all variables v ∈

V.

6. C : P → Σ is a color set function that assigns a color set to each place.

7. G : T → EXPRV is a guard function that assigns a guard to each transition t

such that Type[G(t)] = Bool.

8. E : A → EXPRV is an arc expression function that assigns an arc expression

to each arc such that Type[E(a)] = C(p)MS
1
, where p is the place connected to the

arc a.

9. I : P → EXPR∅ is an initialization function that assigns an initialization

expression to each place p such that Type[I (p)] = C(p)MS.

2.1.3.2 Hierarchical colored petri net

It is a four-tuple

CPNH = (S, SM, PS, FS) (2.5)

Where [29]:

1. S is a finite set of modules. Each module is a Colored Petri Net Module

𝑠 = ((𝑃𝑠, 𝑇𝑠, 𝐴𝑠 , 𝛴𝑠, 𝑉𝑠, 𝑉𝑠, 𝐶𝑠 , 𝐺𝑠, 𝐸𝑠 , 𝐼𝑠)𝑇𝑠𝑢𝑏
𝑠 , 𝑃𝑝𝑜𝑟𝑡

𝑠 , 𝑃𝑇𝑠)

 It is required that (P
s1

 ∪T
s1

)∩(P
s2 ∪ T

s2
) = ∅ for all s1, s2 ∈ S such that s1 ≠

s2.

2. SM : Tsub → S is a submodule function that assigns a submodule to each

substitution transition. It is required that the module hierarchy is acyclic.

3. PS is a port-socket relation function that assigns a port-socket relation

𝑃𝑆(𝑡) ⊆ 𝑃𝑠𝑜𝑐𝑘 (𝑡) × 𝑃𝑝𝑜𝑟𝑡
𝑆𝑀(𝑡)

 to each substitution transition t. It is required

1
 MS refers to “multiset.”

17

that ST (p) = PT(p’),C(p) = C(p’) and I (p)<> for all (p, p’) ∈ PS(t) and all t ∈

Tsub.

4. FS ⊆ 2
P
 is set of non-empty fusion sets such that C(p) = C(p’) and I (p)<>= I

(p’)<> for all p, p’∈ f s and all f s ∈ FS.

Appendix A explains how CPN works. To see more explanations about hierarchical

and non- hierarchical colored petri net, reader is suggested to refer to [30]. Colored

petri net has mathematical structure and mathematical properties.

2.1.3.3 CPN properties

A. Home Properties

1. Home Marking

A marking 𝑚 ∈ 𝑁𝑚 of a Petri net is a home-marking if it is reachable from

all reachable markings. A set of markings 𝑀 ⊆ 𝑁𝑚 of a Petri net is a home

space if for all reachable marking m a marking in M is reachable from m [25].

B. Liveness Properties

1. Dead Marking: when CPN reaches a marking that does not lead to other

marking\s, this marking is known as dead marking [30, 31].

Given a marked net <N, m0> let m ∈ R(N,m0) be a reachable marking. It is

said that m is a dead marking if no transition is enabled at m. i.e., if <N, m>

is dead. A marked net <N, m0> is deadlocking if there exists a dead

reachable marking [33]. If there are more than one dead marking it means

that the system has no home marking.

2. Dead Transition Instances: When a transition is not enabled within any

marking, this transition is considered as dead transition [30].

3. Live Transition Instances: if there is exist an infinite sequence of markings

where a transition can happen infinitely and can be reached from any

marking and can be reached from the initial marking, there is a live

transition in the system [30].

C. Fairness Properties

Fairness is only relevant if there are infinite firing sequences (IFS) [34]. And

they provide information about how often a transition can occur [32].

1. Impartial Transition Instances: It is the set of transitions that form a main

part in the infinite sequences, and by remove or deactivate this transition the

18

infinite sequences are over [30]. As it can be seen from Figure ‎2.4 that all

the transitions are occur in every IFS [34]. All of the Transitions in

Figure ‎2.4 are considered as impartial transition.

Figure ‎2.4: Impartial transition.

2. Fair Transition Instances: the transition occurs infinitely often in all infinite

occurrence sequences where it is infinitely often enabled [32]. t1 in

Figure ‎2.5 is fair transition instance.

3. Just Transition Instances: when the transition occurs infinitely often in every

IFS where t is continuously enabled from some point onward [34]. t6 in

Figure ‎2.5 is just transition instance.

4. Transition Instances with No Fairness: not just, i.e., there is an IFS where t

is continuously enabled from some points onward and does not fire anymore

[34]. t2, t3, t4 and t5 in Figure ‎2.5 have no fair.

Figure ‎2.5: Fairness properties.

D. Boundedness: It refers to the property of token on a place not exceeding a given

positive integer.

19

Place pi ∈ P in Petri net N with initial state x0 is said to be k-bounded, or k-safe,

if x(pi) ≤ k for all states x ∈ R(N), that is, for all reachable states [20].

2.1.3.4 CPN and system behavior

State space analysis is used to investigate the functional behavior of systems. System

events sequences can be inspected and visualized as a state space. Nodes in the state

space represent states, and arcs represent state changes. Every node represents a state

of the system (the values of the places can be viewed), and every state of the system

is defined as marking (a marking represents a picture of the nodes of the state space).

Transfer between markings requires some proper event to occur [31, 35]. CPN

provides strongly connected component (SCC) graph which shows a set of nodes that

are strongly connected to each other’s [30]. One useful method in formal verification

is to generate all possible space state of the system and examine them. CPN is

supported by ML code to help in analyzing space states; moreover it is augmented by

ASK-CTL as external tool for the same purpose, this will be explained later.

2.2 Model Checking

Model checking is an automated technique that gives a finite-state model of a system

and a formal property. it systematically checks whether this property holds for a

given state in that model. Model checking is considered as a general verification

approach that can be used in different fields. Moreover, it is capable of doing partial

verification for properties, which enables the developer to focus on the important

ones. Model checking is considered fast relative to other verifications methods. But

in the same time it just checks the stated requirements, which means that it can just

validate the stated criteria without guarantee of completeness. One of its

disadvantages, it suffers from state-space explosion (the number of state-space

exceed the ability of computer) [36], but for applications such as the interlocking

system if state-space explosion is exists it means that there is a problem, that`s why it

looks as very suitable solution for interlocking system applications.

2.2.1 Model checking procedures

The process of model checking was initiated by [37]:

20

1. Modelling: Constructing a model that is accepted by a model checking tool

(CPN will be used to build the model in this research).

2. Specifications: The properties under concern that are needed to be stated.

Usually the specifications are given in some logical formalism like temporal

logic. It is the developer responsibility to state all important properties to be

validated. Model checker will validate the stated properties if it is valid even

if the system in general is not valid (completeness is not guaranteed).

3. Verification: In general the verification is completely automatic. But

sometimes the developer is required to be involved into the process to

analyze the results. Developers can be supported with an error trace in case of

negative results.

2.2.2 Temporal logic

Temporal logic is a formalism for describing sequences of transitions between states

in a reactive system (system react to certain events). There are several types of

temporal logic. Linear Time Logic (LTL) is a special case - infinite sequence of

states where each point in time has a unique successor [23, 37]. But LTL does not

permit quantifying along paths, e.g. state the existence of a path satisfying a specific

property. Computational Tree Logic (CTL) is an extension of LTL which permits

quantifying along paths by using universal and existential quantifiers to the modal

operators.

2.2.3 Computational tree logic

CTL is a branching time tree; the scenarios can be symbolized by hierarchical

structure in a graphical form where different scenarios can be applied [38, 39]. The

name comes from considering paths in the computational tree gotten by unwinding

the FSM. Due to its ability in showing possesses safety or liveness properties it is

used in formal verification. For example CTL is used to realize home properties,

liveness properties and fairness properties. CTL* is high level CTL (it can quantify

paths and deal with temporal operators).

Traditionally, temporal logics use Kripeke structure model concurrent systems, [36,

37] show formal definition of Kripeke structure and its properties. The tree of CTL*

is formed by unwound the Kripeke structure into an infinite tree rooted at the initial

state. Figure ‎2.6 shows an example of unwinding a graph into a tree. Paths in this tree

21

represent all possible computations starting from the initial state of the modeled

system. Then the temporal operators describe the path properties through the tree.

Figure ‎2.6: Unwind state graph to obtain infinite tree.

2.3 CPN and CTL*

CTL* (or ASK-CTL) is used to express the state and the transition properties of the

models interviewed by the state space of the coluored Petri net [26]. It can be applied

over the state space of CPN and can deal with state information and transition

information. Other tools like model checker were added which can help in checking

the formula against the current state space, and returns the true value of the given

formula [40].

2.4 Demonstration for Railway Application

In Appendix B, a model for train yard was built by CPN tools, the system was

verified then some criteria were proposed to be validated.

22

23

3. CASE STUDY

A train layout will be studied in this Chapter. Operations rules and restrictions will

be discussed as well.

3.1 Train Yard Details

The layout contains 3 lines, it consists of 5 sections. Layout is protected by signal

B2D (Figure ‎3.1).

Figure ‎3.1: Railway yard.

Operation after train entering section 1BT is going to be discussed. Table 3.1 shows

the rules for movements in the yard. One direction flow will be under consideration

(from left to right). Authorization by signal 2D is based on next signal related to the

reserved rout (in 1BT-2ST 2D authorization type is based on signal 52DA).

3.2 Verification and Validation Criteria

After the system is built, the system must be verified to check if it is working in a proper

way. It must not contain non-safe deadlock and live-lock. Then the system is going to be

validated according to next rules.

1. No more than one permission can be given in 1BT at the same time.

2. B2D is not giving permission if a rout is reserved or there is another train in

1BT.

24

Table ‎3.1: Interlocking table.

Rout No. Route Selection Position of Switches 2D Next Signal Light

1 1BT-1ST SW1 reverse

YY
G

Y

YG R

2 1BT-2ST SW1, SW3 normal

G
G

Y

Y

YG

YY

R

3 1BT-3ST
SW1 normal

SW3 reverse

YY
G

Y

YG R

3. No train leaves 1BT without a reserved rout.

4. For 1BT_1ST to be reserved, none of the routs must be reversed, a train must

be on section 1BT, section 1ST must be free, section 3T must be free and

request to reserve 1BT_1ST from TCC must be delivered.

5. For 1BT_2ST to be reserved, none of the routs must be reversed, a train must

be on section 1BT, section 2ST must be free, section 3T must be free and

request to reserve 1BT_2ST from TCC must be delivered.

6. For 1BT_3ST to be reserved, none of the routs must be reversed, a train must

be on section 1BT, section 3ST must be free, section 3T must be free and

request to reserve 1BT_3ST from TCC must be delivered.

7. No train can enter 3T without permission from 2D.

8. In 1BT_2ST reservation case, for 2D to give permission, SW1 and SW3 must

be normal, 1BT_2ST rout must be reserved and 52DA is not red.

9. In 1BT_1ST reservation case, for 2D to give permission, SW1 must be

reversed, 1BT_1ST rout must be reserved and 54D is not red.

10. In 1BT_3ST reservation case, for 2D to give permission, SW1 must be

normal, SW3 must be reversed, 1BT_3ST rout must be reserved and 52DB is

not red.

11. No train can enter 3T if there is another train in the section.

(Next rules will be applied for 1ST, 2ST and 3ST).

25

12. While train is going out from 3T section, it must be sure that the train is going

to the appropriate section

13. For 52DA to give permission 1BT_2ST rout must be reserved.

26

27

4. IMPLEMENTATION

This chapter will review the model details and discuss the verification and validation

procedures.

4.1 Model Building

4.1.1 Main layout

The system was divided into modules in order to ease the modeling and bugging of a

system. These modules were connected to each other’s in a layout (Figure ‎4.2). The

modules are shown in Table ‎4.1.

Table ‎4.1: Modules names.

Module Name Name Meaning

S1BT Section 1BT

S3T Section 3T

S1ST Section 1ST

S2ST Section 2ST

S3ST Section 3ST

SW1 Switch 1

SW2 Switch 3

Interlocking Interlocking processes

Declarations in Figure 4.1 were used to define the variables related to each color.

The colors shown in Figure ‎4.2 have no operational meaning; they were just used to

illustrate the model. Places in layout apart from “Depo”, “Out1ST”, “Out2ST” and

“Out3ST” are used to connect between the modules. When simulation is started, all

tokens of trains are outside 1BT (at place “Depo”), and when it is finished tokens of

trains will be on “Out1ST”, “Out2ST” and “Out3ST” places. If simulation is

completed and at least one train token is inside a module, this means that the model

28

has a fault. The module was hierarchically built (2.1.3.2 Hierarchical colored petri

net). From now and on “token” are going to be used insisted “train token”.

Figure ‎4.1: Declarations.

4.1.2 Section 1BT

When a train leaves “Depo”place, it enters the first section “1BT”. Layout is

connected with S1BT through “Depo” place. Figure ‎4.3 shows the model of 1BT.

The places surrounded by red are connected with interlocking module. For analysis

purpose, trains were numbered and transition “App1BT” was connected to

interlocking module.

When a train arrives to place “P02_App1BT”- assuming the train driver is obeying

the rules - it waits there till permission is issued from signal B2D which is

represented by place “B2D”.

Before B2D gives authority to enter section 1BT, it must be checked that there no

reserved route and that the section is empty. B2D becomes red again when the train

is inside the section. Figure ‎4.4 shows how these procedures are performed.

It must be noticed that when a place has a socket “In” it means that this place is

controlled from another module, vice versa when it has socket “Out” it means that it

is controlled in current module and its values can be read from another module/s.

While the train is passing transition “IntoS1BT”, the value of place “At1BT_Status”

is replaced from “false” by “true”. At this stage the train cannot leave 1BT as long as

there is no permission given from signal 2D. But before giving authorization, a route

must be reserved.

29

Figure ‎4.2: Model layout.

30

Figure ‎4.3: 1BT section model.

Figure ‎4.4: B2D changing color sequential diagram.

4.1.3 Interlocking system

There are three possibilities for routes as it was shown in Table ‎3.1. 1BT-2ST will be

considered from now and on. Interlocking module is shown in Figure ‎4.5. Elements

surrounded by red represent TCC elements, from where the route reservation

requests will be sent. Transition “TCC” will not be enabled if there is a reserved

route or there is no train in section 1BT - (in reality there is no need for a train to be

in section 1BT

31

Figure ‎4.5: Interlocking model.

32

but this condition is considered here for simulation purposes). Elements surrounded

by blue are responsible for route releasing process which will be explained later.

After a request is issued from TCC to reserve a certain route, based on the requested

route, a group of parameters is needed to be checked. In 1BT-2ST case, transition

“R1BT-2ST” is responsible for reserving 1BT-2ST route. In case that no route is

reserved, a train is in section 1BT, suitable request for route reservation, section 3T

and 2ST are empty, transition “R1BT-2ST” will put “true” on place “P1BT-2ST” as

an indication that the rout is reserved. Figure ‎4.6 depicts the sequence of route

reservation.

For routes 1BT-1ST and 1BT-3ST to be reserved, the same procedures will be

followed, but the elements needed to be checked will be different.

Figure ‎4.6: 1Bt-2ST route reservation sequential diagram.

4.1.4 Switches

After a rout is reserved, moving elements of train line must be set at certain positions

according to the reserved route (In case of 1BT-2ST both SW1 and SW3 must be

normal). Figure ‎4.7 shows SW1 model, it was proposed that switches works ideally.

In general, switch must be either normal or reverse if there is no running process.

Switch can be nether normal nor reverse just during the switching process for a

certain time, but it can never be both in the same time. Switch 1 movement activated

based on the reserved route. If 1BT_2ST or 1BT_3ST is reserved, it will be checked

if the switch is in reversed position or not. If yes it will be moved to the normal

place, if no it will be locked in this position. In case of 1BT_1ST the opposite will be

33

applied. Same procedures are applied for Switch 3, but it is just related to 1BT_2ST

and 1BT_3ST.

Figure ‎4.7: Switch-1 model.

After moving elements are locked to the appropriate positions, the train must be

authorized to enter section 3T.

4.1.5 Section 3T and signal 2D

Signal 2D is responsible for authorizing the train to enter section 3T (Figure ‎4.8). As

signal 2D is related to three lines, it was modeled in a separated module. Signal 2D

module is interfaced with interlocking, switches, next signal for every line and to

place “App_3T”. Signal 2D module is shown in Figure ‎4.9. A group of elements

must be checked before authorization. As we are dealing with 1BT_2ST route, the

module will check the following conditions:

1. Rout 1BT_2ST is reversed.

2. Switches 1 and 3 are at normal position.

If these conditions are satisfied, based on the next signal color of the related section

Signal 2D color will be changed (Table ‎3.1). Supposing that signal 52DA is yellow-

green, Figure ‎4.10 shows the Sequential Diagram of changing the color of signal 2D

from red to yellow.

34

Figure ‎4.8: Section 3T model.

Figure ‎4.9: Signal 2D model

35

When 2D authorizes for train to enter, train can enter 3T section. In the moment train

get into section 3T, Signal 2D becomes red again and token on place “At3T_Status”

becomes “true”. Based on the reserved route, the train will take a path from the exit

places of module S3T. On 1BT_2ST route case, token will pass through transition

“Leaving3T2” and replacing the token on place “At3T_Status” to “false” again. By

leaving section 3T, train enters section 2ST (Figure ‎4.11).

Figure ‎4.10: Signal 2D sequential diagram.

Figure ‎4.11: Section 2ST model.

36

4.1.6 Section 1ST, 2ST and 3ST

Train needs extra authorization to enter section 2ST from section 3T, as 2D is the

signal that protects the whole targeted yard. The colored transitions in Figure ‎4.11

are responsible for changing signal 52DA color. As model is just concerning with the

yard in Figure ‎3.1, signal 52DA is changed randomly when 1BT_2ST route is

reserved (same thing for 52DB and 54D). When the train gets into place “At2ST”,

token on place “At3T_Status” becomes “true”. While train is on place “At2ST” there

is a possibility that Signal 52DA is red. In this case, train will wait and in the mean

while transitions responsible for changing signal 52DA are enabled and will be fired

randomly. This process will keep on till signal 52DA is not red. This process is

virtual process, not for realization. This process can continue infinitely, so transition

“R” in S1ST was provided with place “n” which has one token. This place will

prevent generating red color over signal 52DA more than once. It is just modeled to

simulate the waiting of the train when the signal is red. When signal 52DA is not red,

train can pass and reserved route can be released.

4.1.7 Route releasing and fusion sets

To understand releasing mechanism using fusions, fusions must be reviewed first.

Till now tokens moved between modules using ports and sockets. Fusion sets enable

places in different modules to be joined together into one compound place across the

hierarchical structure of the model [30].

Fusion sets were used in order to release routes. For this purpose 4 sets were used

(Figure ‎4.5, Figure ‎4.11 and Figure ‎4.12). In 1BT_2ST case, after train is leaving 1ST

section, a “true” token will be generated over place “Syn_S1ST”. Because it is fusion

with place “Syn_S1ST” in interlocking module, the same token will be generated on

place “Syn_S1ST” in interlocking module. By moving to interlocking module it will

be noticed that transition “Rout2Relase” is enabled due to the existence of token in

place “Syn_S1ST” and place “P1BT_2ST”. By firing transition “Rout2Relase”,

tokens on both places will be lose causing 1BT_2ST to release. Same rule is applied

for other routes.

Fusion 3 set is used to prevent train token to leave section 1BT if a route is not

reserved (Figure ‎4.3 and Figure ‎4.5). Such a procedure cannot be realized, because

section 1BT departure is something related to driver`s commitment of movement

37

laws. But it was used here to reduce the number of enabled transitions at the same

time, because multi enabled transitions at the same time cause random order of firing

which increases the number of state spaces.

Figure ‎4.12: (A) 1ST fusion sets, (B) 3ST fusion sets.

According to simulation, system is working properly. Next section shows the

procedures of making sure that system does not contain any liveness and fairness.

4.2 Verification

State Space will be used to verify the modeled system. Before a state space can be

calculated, it is necessary to generate the state space code and to draw SCC graph.

By generating a state space report, a report like in Figure ‎4.13 is resulted.

The report was generated by proposing that 6 trains are passing using the 3 routes.

Figure ‎4.13 shows part of the state space report for the system. The system has 3205

nodes/markings and 6985 arcs in space state and Scc graph. According to [29], if

state space and Scc have the same number of nodes and arcs means that the system

has no cycles. System has no home marking that can be reachable from any marking

that can be reached from initial marking. System has 8 dead markings. Those dead

markings cannot be classified as safe or not safe without checking it. Because the

existence of dead markings is something normal in this case study as all tokens of

trains will stop in some places so the system will stop. The report shows that the

system has 1 dead transition which is used to change SW1 position from reverse to

normal when a request reservation for 1BT_3ST route is delivered. This transition is

not used because when the report was generated, 1BT_3ST route request came after

1BT_3ST route request so there was no need to change the position of SW1 through

that transition.

38

Figure ‎4.13: System state space report.

Figure ‎4.13 shows that the system has no fairness too. To check if the dead lock is

safe or not, query in Figure ‎4.14 was used. The query shows that all the 8 dead

markings are considered safe.

This query works by defining what is the safe marking. It was defined here by the

places (with “TRAIN” colour) as empty places. The only places excluded from these

conditions are place “Out1ST”, place “Out2ST” and place “Out3ST”, because trains

are supposed to leave all sections at the end. The markings that were classified as

dead marking will be checked if they are safe according to the criteria that were

defined. Figure ‎4.15 shows that all the dead markings were classified as safe dead

markings. Figure ‎4.16 and Figure ‎4.17 show the queries that were used to check the

existence of livelocks and self-loops respectively. Both of the queries confirm that

system has no livelocks and self-loops.

System was verified that it is working properly. Now it needs to be validated to

check if it preforms the required tasks or not.

39

Figure ‎4.14: Safe dead markings query.

Figure ‎4.15: Safe dead markings query result.

Figure ‎4.16: Livelocks checking query.

Figure ‎4.17: Self loops checking query.

40

4.3 Validation

In section 3.2 were mentioned. In this section these criteria are going to be tested and

validated. Not all of the criteria will be explained here, because some of them work

in the same mechanism but with changes in the input Appendix C shows the whole

queries.

To check if no more than one train can be in 1BT at the same time, query in

Figure ‎4.18 was used.

Figure ‎4.18: First criterion checking query.

This query works by checking if there is any marking that have more than one train

in the places of the section 1BT. But is it applied just for two places at the same time

so it must be repeated between all the places of the section 1BT. If the system

satisfies the first criterion, a result like Figure ‎4.19 will appear. If not the “true”

surrounded by red will be “false”.

Figure ‎4.19: First criterion checking query result.

To see if B2D is not giving permission if a rout is reserved or there is another train in

1BT, query in Figure ‎4.20 is used. It works by defining the proper initial conditions

for every place related to signal B2D and defining the final condition of B2D place.

As long as the conditions are true, the result will be “true” (the same in Figure ‎4.20).

To confirm that signal B2D does not authorize to the train to enter in improper

conditions, the proper initial conditions were changed and the result was “false”.

Initial conditions were changed continuously to check all the possible probabilities.

Figure ‎4.21 shows the result of the second criterion with wrong initial conditions.

41

Figure ‎4.20: Second criterion checking query.

Figure ‎4.21: Second criterion checking query result with wrong initial conditions.

The rest of the queries will be shown in Appendix C.

4.4 Machine Performance

The process of modeling, validation and verification were done using a machine with

the specifications shown in Figure ‎4.22

Figure ‎4.22: Machine specifications.

While building the state space model of the system, as it can be seen in Figure ‎4.23,

the process occupies about 62 MB from the memory and about 29% of the CPU in

32 second.

Figure ‎4.23: System performance

42

43

5. CONCLUSION

In this work, railway signalling system verification and validation using CPN was

demonstrated. It is shown that it is easy to build a system model using CPN. The

verification and validation processes were easy too, as they are computationally not

expensive (see ‎4.4). So, if the model was generated, it does not take long time and

effort to scan the whole markings of the system.

Checking the marking is not easy using just CPN tools. Because the current CPN

tools are not developed enough so you need to generate all of the markings in a

manual way. Alternatively, you can use some tools which are little complex in

building the markings of the model (like Graphviz - Graph Visualization Software).

The disadvantage of this method is that it does not guarantee the completeness of the

system. Only the stated properties are being checked. So, it is the developer`s

responsibility to state the whole important properties of the system in order to be

checked.

CPN with CTL* could validate an existing petri net system, but do not generate a

PLC code for this system. It must be seen if it is possible to generate plc code based

on the CPN model directly.

44

45

REFERENCES

[1] Peterman, David Randall, and William J. Mallet. “The Federal Role in

Rail Transit Safety”. Congressional Research Service, 2009.

[2] "Meeting the standard-engineering acceptance." RAILWAY SAFETY-

PAPERS FROM THE RAILWAY TECHNOLOGY CONFERENCE HELD

AT RAILTEX 2000, NATIONAL EXHIBITION CENTRE,

BIRMINGHAM, UK, 21-23 NOVEMBER 2000. 2001.

[3] Anders, E., “Railway signalling & interlocking: international compendium”.

Eurailpress, 2009.

[4] Cook, S. R. "Railway signalling-achieving concurrent safety and reliability."

RAILWAY SAFETY-PAPERS FROM THE RAILWAY TECHNOLOGY

CONFERENCE HELD AT RAILTEX 2000, NATIONAL EXHIBITION

CENTRE, BIRMINGHAM, UK, 21-23 NOVEMBER 2000. 2001.

[5] ERİŞ, O. ”BİR DEMİRYOLU ANKLAŞMAN SİSTEMİNİN PLC İLE

GERÇEKLENMESİ”, (Master Thesis), (2011).

[6] Durmuş, Mustafa Seçkin. “A CONTROL AND AUTOMATION

ENGINEERING APPROACH TO RAILWAY INTERLOCKING SYSTEM

DESIGN”, (Ph.D. Thesis), (2014).

[7] Jansen, H., and H. Schäbe. "Computer architectures and safety integrity

level apportionment." Safety and Security in Railway Engineering (2010): 19.

[8] Stephens, E. J. "C580/120/2000 Seeing the light." IMECHE CONFERENCE

TRANSACTIONS. Vol. 5. Professional Engineering Publishing; 1998, 2001.

[9] Durmuş, Mustafa Seçkin, et al. "Synchronizing automata and Petri net

based controllers." Electrical and Electronics Engineering (ELECO), 2011 7th

International Conference on. IEEE, 2011.

[10] Belmonte, Fabien, et al. "Role of supervision systems in railway

safety."Safety and Security in Railway Engineering (2010): 59.

[11] International Electrotechnical Commission. "Functional safety of

electrical/electronic/programmable electronic safety related systems." IEC

61508 (2000).

[12] EN50126, C. E. N. E. L. E. C. "Railway application–The specification and

demonstration of dependability, reliability, availability, maintainability and

safety (RAMS)." (2000).

46

[13] EN50129, C. E. N. E. L. E. C. "Railway applications-Communication,

signalling and processing systems-Safety related electronic systems for

signalling." British Standards Institution, United Kingdom. ISBN (2003):

0580-4181.

[14] EN, BS. "50159: 2010 Railway applications–Communication, signalling and

processing systems–Safety-related communication in transmission

systems." М.: ФГУП «Стандартинформ (2010).

[15] EN, BS. "50128: 2011." Railway applications—Communication, signalling

and processing systems—Software for railway control and protection

systems, BSI Standards Publication (2011).

[16 Dean, Neville. “Teaching and learning formal methods”. Morgan Kaufmann,

1996.

[17] Jackson, Daniel. "Lightweight formal methods." FME 2001: Formal

Methods for Increasing Software Productivity. Springer Berlin Heidelberg,

2001. 1-1.

[18] R. W. Butler (2001-08-06). "What is Formal Methods?". Retrieved 2006-11-

16 http://shemesh.larc.nasa.gov/fm/fm-what.html

[19] Almeida, José Bacelar, et al. "An overview of formal methods tools and

techniques." Rigorous Software Development. Springer London, 2011. 15-44.

[20] Cassandras, Christos G., and Stephane Lafortune. “Introduction to

discrete event systems”. Springer Science & Business Media, 2009.

[21] Durmuş, Mustafa Seçkin, and Mehmet Turan Söylemez. "Automation

Petri Net Based Railway Interlocking and Signalization Design." Int.

Symposium on Innovations in Intelligent Systems and Applications. 2009.

[22] Monin, Jean-François. “Understanding formal methods”. Springer Science

& Business Media, 2012.

[23] Kropf, Thomas. “Introduction to formal hardware verification”. Springer

Science & Business Media, 2013.

[24] Kelly, John C., et al. "formal methods specification and verification

guidebook for software and computer systems volume i: planning and

technology insertion." NASA, July (1995).

[25] Voros, Nikolaos S., Wolfgang Mueller, and Colin Snook. "An Introduction

to Formal Methods." UML-B Specification for Proven Embedded Systems

Design. Springer US, 2004. 1-20.\

[26] Cheng, Allan, Søren Christensen, and Kjeld Høyer Mortensen. "Model

checking Coloured Petri Nets-exploiting strongly connected

components."DAIMI Report Series 26.519 (1997).

[27] as Vojnar, Tom. "Various kinds of petri nets in simulation and modelling."

47

(1997).

[28] She, Xiaoli, Jiyuan Zhao, and Jian Yang. "Functional safety verification on

railway signaling system with Colored Petri Nets." Intelligent Transportation

Systems (ITSC), 2014 IEEE 17th International Conference on. IEEE, 2014.

[29] Wu, Daohua, and Eckehard Schnieder. "Scenario-based system design

with colored Petri nets: an application to train control systems." Software &

Systems Modeling (2016): 1-23.

[30] Jensen, Kurt, and Lars M. Kristensen. “Coloured Petri nets: modelling and

validation of concurrent systems”. Springer Science & Business Media, 2009.

[31] Núñez, Manuel, et al., eds.” Applying Formal Methods: Testing,

Performance, and M/E-Commerce” FORTE 2004 Workshops The

FormEMC, EPEW, ITM, Toledo, Spain, October 1-2, 2004. Vol. 3236.

Springer, 2004.

[32] Katsaros, Panagiotis. "A roadmap to electronic payment transaction

guarantees and a Colored Petri Net model checking approach." Information

and software technology 51.2 (2009): 235-257.

[33] van Schuppen, J. H., M. Silva, and C. Seatzu. "Control of discrete-event

systems-Automata and Petri Net perspectives." Lecture notes in control and

information sciences 433 (2013). p.249

[34] van der Aalst,W. “Fairness, Place Transition Invariants, and Siphons and

Traps”, Available at (http://cpntools.org) , (Reached on: 18.03.2016).

[35] Jensen, Kurt, Søren Christensen, and Lars M. Kristensen. "CPN tools

state space manual." Department of Computer Science, Univerisity of

Aarhus(2006).

[36] Baier, Christel, and Joost-Pieter Katoen.” Principles of model checking”.

Vol. 26202649. Cambridge: MIT press, 2008.

[37] Clarke, Edmund M., Orna Grumberg, and Doron Peled. “Model

Checking”. MIT press, 1999.

[38] URL: https://en.wikipedia.org/wiki/Tree_structure (Reached on: 19.04.2016).

[39] URL: https://en.wikipedia.org/wiki/Computation_tree_logic (Reached on:

19.04.2016).

[40] Christensen, Soren, and Kjeld H. Mortensen. "Design/CPN ASK-CTL

Manual." University of Aarhus (1996).

48

49

APPENDICES

Appendix A: How CPN works

Appendix B: Demonstration

Appendix C: Validation Queries

50

Appendix A

As it was mentioned before, CPN like any petri net consists of places (eclipses) and

transitions (rectangles), the token is carried over the places, every place must have a

color, and the token on the place must belong to the same color of the place, Figure

A.1 shows a partial view from a net that was used in [20], It can be seen that “P01-

OutRout”place color is defined as “TRAIN” and “p22-SigOff” place color is defined

as “SIG”. “tr(1)” token belongs to “TRAIN” and “s” token belongs to “SIG”.

“tr(1)” cannot be held by “SIG” and “s” cannot be held to by “P01-OutRout”.

Figure A.1: Train yard model.

As it in petri nets, places and transition are connected through arcs, in CPN arcs must

have inscriptions, which indicate which type of token is going to be transferred by

arcs. For arcs going out of places, inscriptions can be either variable (which just

moves the token in the place) or token name (which just accepts specified token from

place color).

For arcs going out of transitions it is the same for the ones going out of places, but if

the inscription is variable, the transition must have another arc as input which has the

same inscription. In order to fire the transition all input arcs must be enabled. When

the transition is enabled it becomes green in Figure A.1. “EnteringRout” transition is

not enabled because “p21-SigOn” place does not have a token. “Locking” transition

is enabled (it is green) and can be fired.

By firing “Locking” transition, the token on “p22-SigOff” place will be moved to

“p21-SigOn” place (Figure A.2). With these conditions, “EnteringRout” transition is

enabled and can be fired.

51

Figure A.2: Firing of “Locking” transition.

By firing “EnteringRout” transition, 3 moves will be done:

1. “p12-1stTrack” place will send “free” token and receive “occ” token.

2. The token on “p02-OutRout” place will be moved to “p04-CrossingSignal”

place.

3. The token on “p21-SigOn” place will go and come back to the same place

through “EnteringRout” transition (Figure A.3).

Figure A.3: Firing of "EnteringRout” transition.

52

Appendix B

The main model in [20] is used with small modifications (Figure B.1) to demonstrate

the ability of CPN verification and validation.

Figure B.1: Main CPN model 1.

In this model, it was proposed that there is a section in the track protected by a

signal. Two trains will pass from this section. The rules of the section are that the

two trains cannot enter the sections without permission from the signal, trains can be

in the section at the same time and the trains are not allowed to go back through the

section. By generating the state space nodes, arrangement in Figure B.2 is resulted.

Node1 is the initial marking, there are two possibilities, tr(1) can pass first or tr(2)

can pass first If tr(1) passes first marking2 is reached, but if tr(2) passes first

marking3 is reached (Figure B.3). Based on every possibility, different scenarios can

occur. Figure B.2 and Figure B.3 show the different scenarios, tr(1) is the first

scenario which is surrounded by red and tr(2) is the first scenario which is

surrounded by blue.

53

Figure B.2: State space nodes of model 1.

Figure B.3: Different marking of model1.

Figure B.4 shows the markings that occurred based on tr(2) First scenario. tr(1)

cannot move till marking7, because the token is in P21 not in P22 (shown in red in

Figure B.4). After reaching marking9, there are two enabled transitions-

“Approaching” transition and “LeavingFirstTrack” transition. One of them will fired

first randomly. After that, the process will be continued based on the random order

that was applied (Figure B.5).

Figure B.4: tr(2) first scenario.

54

Figure B.5: Two enabled transition.

Figure B.6 shows part of the state space report of model1. The system has 52

nodes/markings and 70 arcs in space state and Scc graph. Node52 is home marking

which means that it is reachable from any marking that can be reached from initial

marking. Moreover node52 is dead marking. When node52 is reached, no other event

can occur and this can be confirmed in Figure B.2.

Figure B.6: Part of the state space report of model1.

Model1 must have one deadlock marking when both trains leave the section. To

make sure that the system reaches a safe deadlock, next query was used.

--

(*Query 1*)

fun ValidTerminal n=(Mark.fo'P01 1 n=[] andalso

55

Mark.fo'P02 1 n=[] andalso

Mark.fo'P04 1 n=[] andalso

Mark.fo'P03 1 n=[] andalso

Mark.fo'P05 1 n=[])

fun InvalidTerminal()=PredNodes(ListDeadMarkings(),fn n=>not(ValidTerminal

n),NoLimit);

let

 val fid=TextIO.openOut"DeadlockMarkings.txt"

 val _ = TextIO.output(fid,"List of deadlock markings:\n")

 val _ = EvalNodes(InvalidTerminal(),fn n=>INT.output(fid,n))

 in

 TextIO.closeOut(fid)

end;

--

In this query, the criterion of the safe deadlock was defined, so it examines all the

deadlock of the system then shows the unsafe deadlock. For model1 it was found that

there is no unsafe deadlock.

To examine if the system has self-loop next query was implemented, and it showed

that there is no self-loop, which means that safe termination cases are included in the

list of dead markings.

--

(*Query2*)

fun SelfLoopTerminal n=(OutNodes(n)=[n])

fun InvalidTerminal()=PredNodes(EntireGraph,fn n=>(SelfLoopTerminal

n),NoLimit);

let

 val fid=TextIO.openOut"ListOfSelfLoops.txt"

 val _ = TextIO.output(fid,"List of self terminals:\n")

 val _ = EvalNodes(InvalidTerminal(),fn n=>INT.output(fid,n))

 in

 TextIO.closeOut(fid)

end;

--

56

To examine if the system has livelocks, next query was implemented, and it showed

that system has no livelocks.

--

(*Query3*)

fun ListTerminalSCCs()=PredAllSccs(SccTerminal);

fun InvalidTermSCC()=PredSccs(ListTerminalSCCs(),fn n=>not(SccTrivial

n),NoLimit);

let

 val fid=TextIO.openOut"AbsenceOfLiveLocks.txt"

 val _ = if InvalidTermSCC()=[]

 then TextIO.output(fid,"No Livelocks!")

 else TextIO.output(fid,"yes Livelocks!")

 in

 TextIO.closeOut(fid)

end;

--

Till now the mentioned queries verify the system and show that system can work

probably. To validate the system ASK-CTL queries are going to be used. The first

property to be checked is that train will not go back. Next query show if the train can

go back between any two points. And for Model1 this property is validated. This

query must be implemented between every two points in the section.

(*Query4*)

fun StartMarking n =(Mark.fo'P02 1 n =[tr(1)]);

fun EndMarking n =(Mark.fo'P03 1 n =[tr(1)]);

val myASKCTLformula=POS(AND(NF("olmuyor",StartMarking),

 EXIST_UNTIL((NF("",StartMarking)),

 NF(" P03 to P02", EndMarking))));

eval_node myASKCTLformula InitNode;

--

Last restriction to be validated, no more than one train can be in the section at the

same time, next query was used for this purposes, all the possible probabilities was

57

examined. The query shows that it is not possible for more than one train to be in the

section at the same time.

--

(*Query5*)

fun UnexpectedMarking n =(Mark.fo'P02 1 n=[tr(1)] andalso

 Mark.fo'P03 1 n=[tr(2)]);

val myASKCTLformula=INV(NOT(NF("olmuyor",UnexpectedMarking)));

eval_node myASKCTLformula InitNode;

 --

The queries show that the system is working properly. To make sure that that the

queries are working properly, model 1 was modified by adding two exit places to the

system, “P07” and “P08” model2 was resulted (Figure B.7)

Figure B.7: Model2.

It can be seen from the space state nodes that there are 4 possible dead markings for

model2, space state report shows the number of deadlock markings space state

nodes. It is noticed from Figure B.8 that all the dead markings have the same settings

apart from the last two places. It can be seen too that model2 has no home markings.

Figure B.8: Model2 deadlock markings state space nodes.

58

Qurey1 was used to prove that those deadlock markings are safe – some changes

where applied to the query to fit with model2. It is not necessary to test other query

on model2 because it has no big difference from model1. So new model were

produced (model3) by modifying model1 by adding a loop to the end of the net as

shown in Figure B.9.

Figure B.9: Model3.

Figure B.10 shows that the number of state space nodes and arcs is not the same of

Scc Graph`s, which indicates that there is a cycle\s in model3, from Figure B.9 the

existence of cycles can be approved, It can be seen too that the nodes involved in the

cycle are the same in Figure B.9 and in Figure B.10, the system has no deadlock

markings, but it has 4 home markings- same markings involved on the cycle. Query3

was implemented to model3 in and it emphasized that the model3 has livelocks.

Figure B.10:Model3 space state report.

59

Model4 was generated by adding a cycle in the middle of model1 (Figure B.11), the

area surrounded by red is the modified part, when train comes to P04 a random rout

will be followed, either by entering the loop or by staying on the normal track. Figure

B.12 shows model4 state space report, from the report the existence of cycle\s can be

figured out easily, by examining the state space graphs, the existence of livelocks

loops can be easily observed too. From the results, the ability of CPN tools to model,

verify and validate the system was demonstrated.

Figure B.11: Model4.

Figure B.12: Model4 space state report and graph.

60

Appendix C

The rules were mentioned in 3.2 will be written again followed by its query.

1. No more than one train can be in 1BT at the same time.

fun UnexpectedMarking n =(Mark.S1BT'P02_App1BT 1 n =[tr(1)] andalso

 Mark.S1BT'At1BT 1 n =[tr(1)]);

val myASKCTLformula=INV(NOT(NF(" No Than one Train can be in

1BT",UnexpectedMarking)));

eval_node myASKCTLformula InitNode;

--

2. B2D is not giving permission if a rout is reserved or there is another train in

1BT.

fun StartMarking n =(Mark.S1BT'P03_CrossingB2D 1 n =[] andalso

Mark.S1BT'At1BT 1 n =[] andalso

Mark.S1BT'B2D 1 n=[r] andalso

Mark.TCC'P1BT_1ST 1 n=[true] andalso

Mark.TCC'P1BT_2ST 1 n=[] andalso

Mark.TCC'P1BT_3ST 1 n=[]);

fun EndMarking n =(Mark.S1BT'B2D 1 n=[g]);

val myASKCTLformula=POS(AND(NF("it can happen",StartMarking),

 EXIST_UNTIL((NF("",StartMarking)),

 NF(" P03 to P02", EndMarking))));

eval_node myASKCTLformula InitNode;

--

3. No train leaves 1BT without a reserved rout.

fun UnexpectedMarking n =(Mark.S1BT'At1BT 1 n =[tr(1)] andalso

Mark.TCC'P1BT_1ST 1 n=[] andalso

Mark.TCC'P1BT_2ST 1 n=[] andalso

Mark.TCC'P1BT_3ST 1 n=[]);

val myASKCTLformula=INV(NOT(NF(" it cannot

happen",UnexpectedMarking)));

eval_node myASKCTLformula InitNode;

--

4. For 1BT_1ST to be reserved, none of the routs must be reversed, a train must

be on section 1BT, section 1ST must be free, section 3T must be free and

request to reserve 1BT_1ST from TCC must be delivered.

fun StartMarking n =(Mark.S1BT'At1BT_Status 1 n =[true] andalso

Mark.S1ST'At1ST_Status 1 n =[false] andalso

Mark.TCC'P1BT_1ST 1 n=[] andalso

Mark.TCC'P1BT_2ST 1 n=[] andalso

Mark.TCC'P1BT_3ST 1 n=[true] andalso

Mark.TCC'PTCC 1 n=[rout(1)]);

fun EndMarking n =(Mark.TCC'P1BT_1ST 1 n=[true]);

61

val myASKCTLformula=POS(AND(NF("it can happen",StartMarking),

 EXIST_UNTIL((NF("",StartMarking)),

 NF(" P03 to P02", EndMarking))));

eval_node myASKCTLformula InitNode;

--

5. For 1BT_2ST to be reserved, none of the routs must be reversed, a train must

be on section 1BT, section 2ST must be free, section 3T must be free and

request to reserve 1BT_2ST from TCC must be delivered.

fun StartMarking n =(Mark.S1BT'At1BT_Status 1 n =[true] andalso

Mark.S2ST'At2ST_Status 1 n =[false] andalso

Mark.TCC'P1BT_1ST 1 n=[] andalso

Mark.TCC'P1BT_2ST 1 n=[] andalso

Mark.TCC'P1BT_3ST 1 n=[] andalso

Mark.TCC'PTCC 1 n=[rout(1)]);

fun EndMarking n =(Mark.TCC'P1BT_2ST 1 n=[true]);

val myASKCTLformula=POS(AND(NF("it can happen",StartMarking),

 EXIST_UNTIL((NF("",StartMarking)),

 NF(" P03 to P02", EndMarking))));

eval_node myASKCTLformula InitNode;

--

6. For 1BT_3ST to be reserved, none of the routs must be reversed, a train must

be on section 1BT, section 3ST must be free, section 3T must be free and

request to reserve 1BT_3ST from TCC must be delivered.

fun StartMarking n =(Mark.S1BT'At1BT_Status 1 n =[true] andalso

Mark.S3ST'At3ST_Status 1 n =[false] andalso

Mark.TCC'P1BT_1ST 1 n=[] andalso

Mark.TCC'P1BT_2ST 1 n=[] andalso

Mark.TCC'P1BT_3ST 1 n=[] andalso

Mark.TCC'PTCC 1 n=[rout(3)]);

fun EndMarking n =(Mark.TCC'P1BT_3ST 1 n=[true]);

val myASKCTLformula=POS(AND(NF("it can happen",StartMarking),

 EXIST_UNTIL((NF("",StartMarking)),

 NF(" P03 to P02", EndMarking))));

eval_node myASKCTLformula InitNode;

--

7. No train can enter 3T without permission from 2D.

fun StartMarking n =(Mark.S3T'P02_App3T 1 n =[tr(1)] andalso

 Mark.S3T'P2D 1 n =[r]);

fun EndMarking n =(Mark.S3T'P03_Crossing2D 1 n =[tr(1)]);

val myASKCTLformula=POS(AND(NF("it can happen",StartMarking),

 EXIST_UNTIL((NF("",StartMarking)),

 NF(" P03 to P02", EndMarking))));

eval_node myASKCTLformula InitNode;

--

62

8. In 1BT_2ST reservation case, for 2D to give permission, SW1 and SW3 must

be normal, 1BT_2ST rout must be reserved and 52DA is not red.

fun StartMarking n =(Mark.SW1'PSW1_N 1 n =[actv] andalso

Mark.SW3'PSW3_N 1 n =[actv] andalso

Mark.TCC'P1BT_2ST 1 n=[true] andalso

Mark.S3T'P2D_ON 1 n=[r]);

fun EndMarking n =(Mark.S3T'P2D 1 n=[y]

orelse Mark.S3T'P2D 1 n=[g]);

val myASKCTLformula=POS(AND(NF("it can happen",StartMarking),

 EXIST_UNTIL((NF("",StartMarking)),

 NF(" P03 to P02", EndMarking))));

eval_node myASKCTLformula InitNode;

--

9. In 1BT_1ST reservation case, for 2D to give a permission, SW1 must be

reversed, 1BT_1ST rout must be reserved and 54D is not red.

fun StartMarking n =(Mark.SW1'PSW1_R 1 n =[actv] andalso

Mark.TCC'P1BT_1ST 1 n=[true] andalso

Mark.S3T'P2D_ON 1 n=[r]);

fun EndMarking n =(Mark.S3T'P2D 1 n=[yy]

orelse Mark.S3T'P2D 1 n=[yg]);

val myASKCTLformula=POS(AND(NF("it can happen",StartMarking),

 EXIST_UNTIL((NF("",StartMarking)),

 NF(" P03 to P02", EndMarking))));

eval_node myASKCTLformula InitNode;

--

10. In 1BT_3ST reservation case, for 2D to give permission, SW1 must be

normal, SW3 must be reversed, 1BT_3ST rout must be reserved and 52DB is

not red.

fun StartMarking n =(Mark.SW1'PSW1_N 1 n =[actv] andalso

Mark.SW3'PSW3_R 1 n =[actv] andalso

Mark.TCC'P1BT_3ST 1 n=[true] andalso

Mark.S3T'P2D_ON 1 n=[r]);

fun EndMarking n =(Mark.S3T'P2D 1 n=[yy]

orelse Mark.S3T'P2D 1 n=[yg]);

val myASKCTLformula=POS(AND(NF("it can happen",StartMarking),

 EXIST_UNTIL((NF("",StartMarking)),

 NF(" P03 to P02", EndMarking))));

eval_node myASKCTLformula InitNode;

--

11. No train can enter 3T if there is another train in the section.

(Next rules will be applied for 1ST, 2ST and 3ST).

fun UnexpectedMarking n =(Mark.S3T'P02_App3T 1 n =[tr(2)] andalso

 Mark.S3T'At3T 1 n =[tr(1)]);

63

val myASKCTLformula=INV(NOT(NF(" it can not

happen",UnexpectedMarking)));

eval_node myASKCTLformula InitNode;

--

12. While train is going out of 3T section, it must assure that the section that the

train is going to, is cannot be entered if the appropriate rout is not reserved.

fun UnexpectedMarking n =(Mark.S3T'App1ST 1 n =[tr(2)] andalso

 Mark.TCC'P1BT_1ST 1 n =[true]);

val myASKCTLformula=INV(NOT(NF(" it can not

happen",UnexpectedMarking)));

eval_node myASKCTLformula InitNode;

--

13. For 52DA to give permission, 1BT_2ST rout be reserved.

fun StartMarking n =(Mark.S2ST'P52DA 1 n =[r] andalso

Mark.TCC'P1BT_2ST 1 n=[]);

fun EndMarking n =(Mark.S2ST'P52DA 1 n=[yy]

orelse Mark.S2ST'P52DA 1 n=[g]

orelse Mark.S2ST'P52DA 1 n=[y]

orelse Mark.S2ST'P52DA 1 n=[yg]);

val myASKCTLformula=POS(AND(NF("it can happen",StartMarking),

 EXIST_UNTIL((NF("",StartMarking)),

 NF(" P03 to P02", EndMarking))));

eval_node myASKCTLformula InitNode;

--

