ISTANBUL TECHNICAL UNIVERSITY * GRADUATE SCHOOL OF

SCIENCE ENGINEERING AND TECHNOLOGY

DESIGNING, VERIFICATION AND VALIDATION OF RAILWAY
SIGNALING SYSTEMS USING COLOURED PETRI NETS

M.Sc. THESIS

Ali ELHAYEK

Department of Control and Automation Engineering

Control and Automation Program

Thesis Advisor: Prof. Dr Mehmet Turan SOYLEMEZ

DECEMBER 2016

ISTANBUL TECHNICAL UNIVERSITY * GRADUATE SCHOOL OF

SCIENCE ENGINEERING AND TECHNOLOGY

DESIGNING, VERIFICATION AND VALIDATION OF RAILWAY
SIGNALING SYSTEMS USING COLOURED PETRI NETS

M.Sc. THESIS

Ali ELHAYEK
(504131134)

Department of Control and Automation Engineering

Control and Automation Program

Thesis Advisor: Prof. Dr Mehmet Turan SOYLEMEZ

DECEMBER 2016

ISTANBUL TEKNIiK UNIiVERSITESI * FEN BiLIMLERI ENSTITUSU

DEMIRYOLU SiNYALIiZASYON SiSTEMLERI iCiN RENKLi PETRi AGLARINI
KULLANARAK TASARIM, DOGRULAMA VE ONAYLAMA

YUKSEK LISANS TEZI

Ali ELHAYEK
(504131134)

Kontrol ve Otomasyon Miihendisligi Anabilim Dah

Kontrol ve Otomasyon Miihendisligi Programm

Tez Damismani: Prof. Dr Mehmet Turan SOYLEMEZ

ARALIK 2016

Ali EIHayek, a M.Sc. student of ITU Graduate School of Science Engineering and
Technology student ID 504131134, successfully defended the thesis entitled
“DESIGNING, VERIFICATION AND VALIDATION USING COLOURED
PETRI NETS FOR RAILWAY SIGNALING SYSTEMS”, which he prepared after
fulfilling the requirements specified in the associated legislations, before the jury
whose signatures are below.

Thesis Advisor : prof. Dr Mehmet Turan SOYLEMEZ
ISTANBUL Technical University

Jury Members : Prof.Dr. Salman KURTULAN
ISTANBUL Technical University

Asst. Prof. Ozgur Turay KAYMAKCI
Yildiz Technical University

Data of Submission: 24 November 2016
Date of Defense: 14 December 2016

FOREWORD

I would like to thank my supervisor Prof. Dr Mehmet Turan S@ylemez for his
excellent guidance and support during this process. | also wish to thank all of the
respondents, without whose cooperation | would not have been able to conduct this
analysis.

| would like to thanks my friends here in Turkey for their support and for sharing me
the time while doing the thesis.

My sister Maha (ablam) deserve a particular note of thanks: your wise counsel and
kind words have, as always, served me well. Thanks for my parents for being the
light that show me the way.

Last thank will be for my beloved wife Hilal Rabia, for doing everything to help me
to reach this point. You are the best thing happened to me in Turkey.

| hope you enjoy your reading.

December 2016 Ali ElHayek
Mechatronics Engineer

vii

TABLE OF CONTENTS

Page

FOREWORD......coiiiiiie ettt sttt st st re et ene e s VIl
TABLE OF CONTENTS ...ttt IX
ABBREVIATIONS ...ttt ettt XI
LIST OF TABLES ...ttt X1
LIST OF FIGURES ...ttt XV
SUMMARY ottt bbb XVII
(@)74 = [OOSR XIX
1. INTRODUCTION ...ttt et 1
1.1 Components of a Railway Signalization Systemccccevevviinieniniennenn. 1
1.1.1 Traffic command center (TCC).....ccccoviieiieiiiicceese e 2
1.1.2 INterloCKiNg SYSTEIMc.oiuiiiiiiiieieiee e 2
113 SWILCNES .ttt 3
114 SIGNAIS ..ot 4
1.1.5 Track circuits and axle COUNTETS.cceieriririenieieie e 5

1.2 Railway Standards ... 5

2. FORMAL METHODS......coiiieit et 11
2.1 Discrete EVENT SYSIEM ...ocuiiiiiiiiieieiesie et 12
2.1.1 AULOMALA.......eiiiieiieiie ettt st e e n e nnn e neeanne s 12
2.1.2 Petri NELS (PINS) .oviieiiieiieiieieie ettt 13
2.1.2.1 Formal definition of petri NScccccveviiieiicie e 13
2.1.2.2 Basic properties of Petri NEtS.........covieririiiieieie e 14

2.1.3 Coloured petri NEtS (CPNS)c.eoiiiieiiecie e 15
2.1.3.1 A non-hierarchical colored petri Net...........cccooeieiinniiiniiceee, 15
2.1.3.2 Hierarchical colored petri Net...........cccoeoeiieieeie e 16
2.1.3.3 CPN PrOPEITIES ...c.vttiiieiieiieieie ettt 17
2.1.3.4 CPN and system DENAVIONc.ccveiieiiiiieie e 19

2.2 MOdel ChECKINGcviitiiiitiiiiiieeee e 19
2.2.1 Model checking proCedUIeScceiveiieiieieeie e 19
2.2.2 Temporal [OQICcoiiiiiiiieeiee e 20
2.2.3 Computational tree [0giC.........ccevviiiiieiiiieceece e 20

2.3 CPN AN CTL™ oo e 21
2.4 Demonstration for Railway Application...........cccccveviiiieiiiiiic e 21

3. CASE STUDY ..ottt sttt sttt re e na e s 23
3.1 Train Yard DetailS.......ccoccoiiiiiiiiiie e 23
3.2 Verification and Validation Crteriaccccceviveresiesieennee e 23

4. IMPLEMENTATIONoitii ittt 27
4.1 MOdel BUHING ..o 27
O R . = U o - Yo U | SO PR 27
4.1.2 SECHON IBT .oeiiieciee ettt nnees 28
4.1.3 INterlocking SYSEMociiiiiicce e s 30
414 SWITCRES ..ottt 32
4.1.5 Section 3T and Signal 2Dccoceriiiiiiiiiee e 33
4.1.6 Section 1ST, 2ST and 3STooiiiiieiie e e 36
4.1.7 Route releasing and fUSION SELS.........cccvvvverieiieiieeri e 36

4.2 VEITICALION ...t 37
4.3 ValibalION ..o 40
4.4 Maching Performanceccoeiiriiiie i 41

5. CONCLUSION .. .ottt 43

REFERENGCES ..ottt bbbt 45
APPENDICESottt et e e e e e e e e anne e 49
APPENTIX A ettt ettt et et a e re e reanaenres 50
APPENAIX B . 52
APPENTIX C ettt e e e re e anaenres 60

ABBREVIATIONS

APN
ASM
CENELEC
CTC
CPN
CTL
DES
FSM
IFS
LTL
LCC
PNs
RAMS
SIL
TCC
VDM

: Automation Petri Nets

: Abstract State Machines

: European Committee for Electrotechnical Standardization
: Centralized Traffic Control

: Colored Petri Nets

: Computational Tree Logic

: Discrete Event System

: Finite State Machine

. Infinite Firing Sequences

. linear time logic

: Local Command Center

: Petri Nets

: Reliability, Availability, Maintainability and Safety
. Safety Integrity Level

: Traffic Command Centre

: Vienna Development Method

Xi

LIST OF TABLES

Page
Table 1.1: The types and the definitions of common signals [6]...........cccccevververnenne. 4
Table 1.2: Failure rates for different SILS [10].ccccovviiiiiiiiieeeeeeeeeee e 6
Table 1.3: Some nodes 0f V-MOEL ..ot 8
Table 3.1: Interlocking table.coooviiii s 24
Table 4.1: MOUUIES NAMES.ocuiiiiiiiieieee et 27

Xiii

LIST OF FIGURES

Page
Figure 1.1: Block diagram of signalization SYStem.ccccecceveevviieiicse e, 2
Figure 1.2: Traffic command CENTIE.ccueviiieiieieee e 3
Figure 1.3: Dangers and safety measures in railway operations.............c.ccccccereennnn. 3
Figure 1.4: Schematic representation of a railway switch [6].c.ccocvovriiiiiicinnnn, 3
Figure 1.5: Scope of th main cenelec railway application standards.......................... 7
Figure 1.6: V-Model 1ife CYCIe........ccoiiiiiie e 7
Figure 2.1: State transition diagram...........ccceiveieiieieere e 13
Figure 2.2: WeIght OF @rCs.cocoiiiiiieieiieiese et 14
Figure 2.3: Number of tokens befor and after firing............ccccooveveiiiiiiic e 15
Figure 2.4: Impartial tranSitioNn.ccooveiiiiiiiiiei e 18
Figure 2.5: FaIrNeSsS PrOPEITIES.civiivieiieiieieeiie e stee ettt nee e 18
Figure 2.6: Unwind state graph to obtain infinite tree. ..., 21
Figure 3.1: RaIIWAY Yard.ccocoeiiiiieie e 23
FIQUIre 4.1 DECIArAtIONS.c..ooviiieiiieiiiiieieieie sttt 28
Figure 4.2: Model [ayOUL.cooiuiiiieeccc e 29
Figure 4.3: 1BT Section MOdel.ccoiiiiiiiie e 30
Figure 4.4: B2D changing color sequential diagram.cccccoeveviiiiieie e, 30
Figure 4.5: Interlocking MOdel.ccooiiiiiiiiieeee e 31
Figure 4.6: 1BT-2ST route reservation sequential diagram.cccccoeeevveeveenenne. 32
Figure 4.7: SWItCh-1 MOdEl...........ccooviiiiiii e, 33
Figure 4.8: Section 3t MOUEL.ccoveiieiiiie e 34
Figure 4.9: Signal 2D mOdel..........ooiiiiiii e 34
Figure 4.10: Signal 2D sequential diagram..............ccceevveviiieie i 35
Figure 4.11: Section 2ST MOel.ccooiiiiiiii e, 35
Figure 4.12: (A) 1st fusion sets, (B) 3st fuSION SEtS........cccvveveevieiieie e 37
Figure 4.13: System State SPACE MEPOIT.ovveivereriiriirieeieee e, 38
Figure 4.14: Safe dead Markings QUETY.ccviiiieiieiii et 39
Figure 4.15: Safe dead markings query result. ..., 39
Figure 4.16: Livelocks Checking QUEIY........ccviiiiiiiiiiiccie st 39
Figure 4.17: Self loops Checking QUETY. ..o, 39
Figure 4.18: First criterion checking QUETIY.c.coviiiiieiie i 40
Figure 4.19: First criterion checking query reSult...........ccooevereneneneninesieeee, 40
Figure 4.20: Second criterion checking QUETY.cocveiieiiieiie e 41
Figure 4.21: Second criterion checking query result with wrong initial conditions. 41
Figure 4.22: Machine SPeCIfiCAtiONS.c..ccveiiieiie i 41
Figure 4.23: System PerfOrmManCecouevireieiine s 41
Figure A.1: Train yard MOdel.ccoooieiiiiiiie s 50
Figure A.2: Firing of “LocKing” transSition.ccecvvereerueseeseereeseeseeseeseeseneseennes 51
Figure A.3: Firing of "Enteringrout” transition.ccocvevvereerreneneninesesieeeseeneens 51
Figure B.1: Main CPN mModel 1.........coiiuiiiii e 52
Figure B.2: State space nodes of model 1............cooviiiiiiiiiiiiee, 53

XV

Figure B.3:
Figure B.4:
Figure B.5:
Figure B.6:
Figure B.7:
Figure B.8:

Different marking of modell................ooiiiiiiiiiii e, 53
t0(2) FIrSt SCEONATIO. ..\ vttt ettt et ee e 53
Two enabled tranSition.o.vvuiiii e 54
Part of the state space report of modell.....................oooiiiiiiiia 54
MOdRI2. . 57
Model2 deadlock markings state space nodes............c.oevvvvieieiinnnnnnn. 57

FIigure B.O: MOdel3.o e 58
Figure B.10:Model3 Space State rePOrt.cccvevveieeiieie e 58
FIgure B.11: MOUEIA. ..ottt 59
Figure B.12: Model4 space state report and graph..........ccccceeevveveiieneese e 59

XVi

DESIGNING, VERIFICATION AND VALIDATION OF RAILWAY
SIGNALING SYSTEMS USING COLOURED PETRI NETS

SUMMARY

Every weekday just in United States of America, more than 7 million people use
railways in their transportation. In the same time railway is used widely as reliable
freight transportation solution. So in general, railway transportation can be
considered as a very vital transportation mean, this importance emerges from the fact
that railways are relatively cheap and environmental friendly. This enables them to
be the main transportation system in many countries.

Railways systems are exposed to accidents due to huge variety of reasons like
signaling system failures, human errors ...etc. As railways are used by a huge
number of people, the safety of railways became very important issue. This led some
governments to interfere by putting standards in order to organize the operations of
railway systems.

CENELEC is a safety reference name which states the necessary standards of
railway sector and it is composed from the following standards EN 50126, EN 50128
and EN 50129. Based on these standards, Safety Integrity Levels (SILs) were built.

Signalling systems are responsible for the operations of railway systems to ensure the
safety of trains and their other components. Signalling ensures optimal control for
traffic in order to avoid accidents.

Formal methods have a very important role in software development. Formal
methods are method use the discrete mathematic techniques and tools in software
and hardware development process, where the mathematical notations are used in the
design and the verification of software and hardware systems. The main purpose of
using formal methods is to reduce the risky consequences that can occur due to
serious specification and design errors by symbolically examine the entire state space
of a design Formal methods help in presenting precise record of the created software
that’s why it is used widely in verification and validation processes

To develop software using formal method, Formal Specifications are used to
describe the behavior and properties using formal language and semantics. Formal
Language is used to define Rules in a precise manner. Formal language describes the
grammar rules and justifies the general algorithms to be used. Semantics provide an
accurate mathematical meaning to every statement. These items together will provide
a formal model for the system that enables the developers to state the expected
properties and then formally verify it

Petri net as the models of DES. Petri net graphs depict structural information about
the simple and complex systems. Coloured Petri nets are a high-level Petri nets
graphical language. It is based on normal PNs, but colours were added to tokens and
places using expressions working with them.

XVii

CTL is a branching time tree; the scenarios can be symbolized by hierarchical
structure in a graphical form where different scenarios can be applied. CTL* (or
ASK-CTL) is used to express the state and the transition properties of the models
interviewed by the state space of the coluored Petri net

In this research, a signalling system for a train yard is designed by CPN. The system
was verified and validated using model checking which is considered as one of the
formal methods. All the processes were performed according to CENELEC to
achieve minimum SIL 3.

XViii

DEMIRYOLU SiNYALIiZASYON SiSTEMLERI iCiN RENKLI PETRi AGLARINI
KULLANARAK TASARIM, DOGRULAMA VE ONAYLAMA

OZET

Sadece Amerika Birlesik Devletleri’nde hafta i¢i her giin 7 milyondan daha fazla kisi
ulasgimda demiryollari1 kullanmaktadir. Ayni zamanda demiryolu, glvenilir yik
tasimacilig1 yolu olarak yaygin bir sekilde kullanilmaktadir. Genel olarak demiryolu ¢ok
onemli bir ulagim yontemi olarak diisiiniilebilir, bu 6nem ise onun nispeten daha ucuz ve
cevre dostu olmasindan kaynaklanmaktadir. Bu da bir¢ok iilkede demiryollarinin ana
ulasim sistemi olarak kullanilmasina olanak saglamaktadir.

Demiryolu sistemlerinde esas olarak insan hatalar1 ve sistem arizalar1 gibi gesitli
sebeplerden dolay1 kazalar meydana gelmektedir. Cok sayida insanin demiryollarin
kullanmas1 demiryollarinin giivenligini de bu 6lgiide 6nemli kilmaktadir. Bu durum, bazi
hilkumetlerin demiryollar1 sistemlerinin operasyonlarinda diizenlemek i¢in standartlar
koyarak miidahale etmelerine sebep olmustur.

Demiryolu sistemlerinde ulasim ve tasimanin giivenli olarak gercgeklestirilmesini
saglayan en Onemli bilesen anklasman (interlock) sistemidir. Anklagman sisteminin
gelistirilmesinde izlenilecek olan temel adimlar Avrupa Elektroteknik Standardizasyon
Komitesi (European Committee for Electrotechnical Standardization - CENELEC) gibi
uluslararas1 komiteler tarafinca hazirlanan giivenlik standartlarinda tanimlanmustir.

EN 50126, EN 50128 ve EN 50129 standartlarindan olusan CENELEC, demiryolu
sektoriinde gerekli standartlari olusturan glivenlik referansinin adidir.

Gelistirilen sinyalizasyon sisteminin istenilen Giivenlik Biitiinliigii Seviyesi (Safety
Integrity Level - SIL) seviyesini saglayabilmesi igin bu giivenlik standartlarinca tavsiye
edilen yontem, teknik ve mimarilerin kullanilmasi yiiksek Onem arz etmektedir.
Uluslararas1 giivenlik standartlarinin ~ gereksinimlerine ek olarak, sinyalizasyon
sisteminin kurulacag: iilkeye ait ihtiyaglar ve giivenlik kriterleri de goz Oniinde
bulundurulmalidir.

Yazilim gelistirme siireci baslangicinda yazilimdan beklenen ¢iktilar veya baska bir
deyisle yazilim isterleri olusturulmalidir. Sonrasinda giivenlik standartlarinda tavsiye
edilen yontem ve mimarilerin istenilen SIL seviyesinin saglanabilmesi i¢in uygun bir
sekilde se¢ilmesi gerekmektedir. Segilen yontem ve mimariler yazilim isterlerini eksiksiz
saglayacak sekilde tasarimi gerceklestirecek olan grup tarafindan yazilim gelistirme
stirecinde kullanilmalidir.

Demiryolu sistemlerinde faaliyette bulunan trenler ve demiryolu sistemlerinin diger
bilesenlerinin gilivenligini saglanmasi sinyalizasyon sistemlerinin sorumlulugundadir.
Sinyalizasyon kazalardan kaginmak amaciyla, trafik i¢cin optimum kontrol saglamaktadir.
Bicimsel yontem yazilim gelistirmede ¢ok Onemli bir role sahiptir. Bigimsel yontem

ayrik matematik tekniklerinde ve yazilim ve donanim gelistirme siirecinde kullanilan

XiX

yontemlerdir. Matematiksel notasyonlar ise yazilim ve donanim sistemlerinin tasarim ve
gerceklemesinde kullanilmaktadir. Bigimsel yontemleri kullanmanin temel amaci, bir
tasarimin tim durum uzay modelini sembolik olarak inceleyerek énemli Ozellikler ve
tasarim hatalar1 nedeniyle olusabilecek riskli sonuglar1 azaltmaktir. Bigimsel yontemler
olusturulan yazilimda hassas kayit sunmaya yardimci olmaktadir bu nedenle gercekleme
ve dogrulama siireclerinde yaygin olarak kullanilmaktadir.

Bicimsel yontem kullanarak yazilim gelistirmek ig¢in, bigimsel dil ve semantik
kullanilarak davranis ve ozellikleri tanimlamak i¢in Kuralli Belirtim kullanilmaktir.
Bicimsel Dil kesin bir sekilde Kurallar tanimlamak i¢in kullanilmaktadir. Bi¢imsel dil,
dilbilgisi kurallarin1 tanimlamaktadir ve genel algoritmalarin kullanilmasini hakl
cikarmaktadir. Semantik her ifadeye kesin bir matematiksel anlam saglamaktadir. Bu
ogeler bir araya getirildiginde ise gelistiricilerin beklenen 6zellikleri belirtmelerine ve
daha sonra bi¢imsel olarak dogrulamalarmma olanak taniyan sistem igin bir bigimsel
model saglayacaktir.

Big¢imsel diller ya model tabanli (Soyut Durum Makineleri, Kiime ve sinif teorisi,
otomat tabanli modelleme ve Gergek zamanli sistemler i¢cin modelleme dilleri gibi)
ya da cebirsel tabanl olabilmektedir.

Petri aglar1 bir bigimsel yontemdir. Petri ag1 olaylar1 tanimlanmis kurallara dayali
olarak isleyen ve gegise izin veren kosullar1 gosterebilen bir cihazdir.

Petri aglar1 Ayrik Olayli Sistemlerin modellerinde kullanilmasi ve grafiklerin basit
ve karmasgik sistemlerin yapisal bilgilerini tasvir etmesi gibi bir¢ok avantaja sahiptir.

Renkli Petri aglari list diizey Petri aglar1 grafiksel dildir. Bu normal Petri aglarina
dayanamaktadir ancak jetonlara ve onlarla birlikte ¢alisan ifadeleri kullanan yerlere
renkler eklenmistir.

Model simmama, sistemin sonlu durum modelini ve bigimsel 6zelliklerini veren bir
otomatik tekniktir. Model sinama bu 6zelligin o modeldeki belirli durum i¢in tutulup
tutulmadigini sistematik olarak kontrol etmektedir.. Model sinama farkli alalarda
kullanilabilen genel bir gercekleme yaklasimi olarak diistiniilmektedir. Bunun yam
sira model smama Ozellikler i¢cin kismi gercekleme yapabilmektedir, bu da
gelistiricinin 6nemli olanlara odaklanmasin1 saglamaktadir. Model smmama diger
gercekleme yontemlerine nazaran daha hizli oldugu diistiniilmektedir.

Dallanan zaman tabani (Computational Tree Logic) dallanan zaman agacidir ki
burada senaryolar, farkli senaryolarin uygulanabildigi grafik formdaki hiyearsik
yapiyla sembolize edilebilmektedir.

Dallanan zaman tabani* Renkli Petri aginin durum uzayi tarafindan gosterilen
modellerinin durum ve gegis 6zelliklerini ifade etmek icin kullanilmaktadir.

Ikinci boliimiin sonunda Renkli Petri Aglar1 ve Dallanan Zaman Tabani* ile ilgili
tiim kavramlar1 acikladikan sonra, Renkli Petri aglarinin nasil ¢alistigini gostermek
ve Renkli Petri Aglh Dallanan Zaman Tabaninin ger¢ekleme ve dogrulama isleminde
kullanilabileceginden emin olmak i¢in basit tren istasyonuna bir 6rnek verilmis ve
tasarlanmistir.

XX

Ustelik sistemin durum uzay modeli gdsterilmistir ve sistemin durum uzay modeli
kullanilarak isaretleme konsepti (concept of marking) agiklanmustir.

Daha karmasik manevra istasyonu (bu c¢aligmadaki ana oOrnek) igiincii boliimde
gosterilmistir. Manevra istasyonunun bir giris ve ii¢ ¢ikisi olmakla birlikte istasyonun
hareket kurallar1 anklagman tablosuyla tanimlanmis ve bazi kurallar agiklanmistir.
Bu kurallar ger¢ekleme siirecinde kriter olarak kullanilmistir.

Manevra istasyonuna ait model Renkli Petri Aglart kullanilarak kurulmustur ve alti
trenin manevra istasyonunda tek yoOnden gececegi Onerilmistir. Manevra
istasyonunda li¢ ¢ikis oldugu icin ti¢ rota vardir. Olasi tiim senaryolar uygulanmistir.
Tiim senaryolarin sonunda tiim trenlerin manevra istasyonunun disinda olmasi
gerekmektedir.

Simiilasyon yiiriitiildiikten sonra tiim trenlerin manevra istasyonunun diginda oldugu
simiillasyonun sonunda gosterilmistir. Sistemin dogru bir sekilde calistigini
dogrulamak i¢in sistemin durum uzay modeli ve siki baglh bilesen grafigi
olusturulmustur ve sonra sistem durum uzay raporu da olusturulmustur. Bundan
sonra durum uzay modelinin sonuglarini ve sik1 bagl bilesen grafigini test etmek i¢in
bazi sorular yazilmistir.

Sistemi dogrulamak amaciyla iigiincii bolimde belirlenen kurallara gore sorgular da
yazilmistir. Bu sorgular tek tek incelenmistir ve sistemin belirlenen kurallara uygun
olarak ¢alistig1 gosterilmistir.

Tasarim, gercekleme ve dogrulama siirecinde kullanilan bilgisayarin 6zellikleri 4 GB
RAM, i5 CPU 2.53 GHz’dir. Kurulan siire¢ hafizada yaklasik 62 MB yer tutmustur
ve CPU’nun %29 unu 32 saniye mesgul etmistir.

Renkli Petri Aglan ile sistem modeli olusturmanin kolay oldugu gosterilmistir.
Gergekleme ve dogrulama siirecleri de kolaydir ¢linkii hesaplama agisindan pahali
degillerdir. Bu yiizden eger model olusturulduysa, sistemin tiim igaretlemelerini
(marking) taramak uzun zaman ve ¢aba gerektirmemektedir.

Isaretlemeleri (markings) sinamak sadece Renkli Petri Aglar1 araglarin1 (CPN Tools)
kullanarak ¢ok kolay olmamaktadir. Ciinkii giincel Petri Aglari araglari (CPN Tools)
yeterince gelistirilmemistir bu ylizden tiim isaretlemelerin(markings) manuel olarak
olusturulmas1 gerekmektedir. Alternatif olarak ise modelin isaretlemelerin
olusturmada karmasik olan (Graphviz - Graph Visualization Software gibi) bazi
araclar kullanilmaktadir.

Bu yontemin dezavantaji ise sistemin eksiksizligini garanti etmemesidir. Sadece
belirlenen 6zellikler sinanmaktadir. Dolayisiyla sistemin tiim 6nemli 6zelliklerinin
belirlenmesi gelistiricinin sorumlulugundadir.

Dallanan zaman tabanli Renkli Petri aglar1 mevcut petri ag1 sistemini dogrulamistir
ancak bu sistem i¢in bir PLC kodu olusturulmamistir. Bu ylizden dogrudan Renkli
petri ag1 modeline dayali PLC kodu olusturulabilme olasiligmin incelenmesi
gerekmektedir.

XXI

1. INTRODUCTION

Every weekday just in United States of America, more than 7 million people
use railways in their transportation [1]. In the same time railway is used widely
as reliable freight transportation solution. So in general, railway transportation
can be considered as a very vital transportation mean, this importance emerges
from the fact that railways are relatively cheap and environmental friendly. This

enables them to be the main transportation system in many countries [2].

As any other system, railway systems need to be controlled. In this case
controlling system is called signalling system. Signalling system is responsible
of operating railway system to ensure the safety of trains, passengers, fright and
other components. Signalling system ensures optimal control for traffic in order
to avoid accidents [3]. Signalling systems are required to deal with technical
failures and ergonomics too [4]. Signalling was started as a very simple process
like timetable operation, token signalling. But as the railway sector is
developing rapidly, there was a need for the development in signalling
consequently. Nowadays very complex technical systems are performing the
task of signalling. In modern systems, to have effective signalling system, a

number of components have to be synergetic integrated, including:

e Electrical and electronics systems.
e Logical design and software.
e Layout of signals and signal sighting.

e Interactions between signals and drivers.

1.1 Components of a Railway Signalization System

Railway signalization system consists of many components that work together

to guarantee the safety of the process (Figure 1.1)

Traffic Command
Centre (TCC)

{

Interlocking
System

{

Remote I'0
Units

{

Railway Yard
Flements

Figure 1.1: Block diagram of signalization system.
1.1.1 Traffic command center (TCC)

Traffic command center is a place where the railway line and train traffic are
monitored and controlled. TCC usually is equipped with monitoring system that
allows the operator (dispatcher in railways case) to monitor trains and signalling
elements along the track [5]. Dispatcher commands, which are mostly route
reservation requests, are sent to the interlocking system so they are checked

considering the current state of the railway yard.

When routing decisions for a given line are made centrally (TCC), this kind of
railway signalling is known as Centralized Traffic Control (CTC)
(Figure 1.2.a). When there is a problem in communication, a local command

center (LCC) can be used to control the station (Figure 1.2.b).

1.1.2 Interlocking system

When an interlocking system receives a route reservation request or any other
request from the dispatcher, it checks the validity of this request by checking
the conditions of the related elements on the ground. If the conditions on the
ground are compatible with the safety criteria saved in system, acceptance is
issued. Otherwise rejection is issued. Figure 1.3 shows the tasks of interlocking
system related to different danger types. The safety of the railway system and

the trains is the main purpose of interlocking system.

TCC

CIC
Machine
Remote Remote Remote Remote
Interlocking Interlocking Interlocking Interlocking
(a)
Interlocking Dispatcher
Local Local Local
Interlocking Interlocking Interlocking

Railway Yard Railway Yard

(B)

Railway Yard

Figure 1.2: Traffic command center.

Danger
Type
Non-continuous | continuous
Danger External
: Rail vehicles guideway guideway
Reason environment \ .
locations locations
Protective Prot_ ot Front Following Flank S Speed
Function gamst rotection | protection | protection e e targetin|
obstacles P P P elements gelng

Figure 1.3: Dangers and safety measures in railway operations.
1.1.3 Switches
Switches are used in the railways to enable trains to move between tracks.
When interlocking system issues an acceptance for a TCC request, switches

positions are maintained or changed based on the request. Switches have to be
on normal or reverse position (Figure 1.4).

[]

\4

"
\

Figure 1.4: Schematic representation of a railway switch [6].

In modern signalization, switch position must be monitored by two sensors,
where if position indicators show switch at both positions at the same time,

system assumes that the switch is on a faulty state.

1.1.4 Signals

Railway signals (or optical wayside signals) are used along the rail line on
certain points to inform train driver about the status of the next railway blocks
[3].

Signals are the devices used by interlocking system to authorize the driver to
enter a block. So train drivers have to pay attention to signals on the right side
(or left- different between countries) with respect to their direction of
movement. Despite of the differences between standards of countries in this
field, in general red is used to prophet the entrance to a block, green gives
complete authority to enter a block, yellow gives authority to enter a block with

caution.

In Turkey, additional aspects are used for railways near station areas. The
fourth aspect that is clarified in Table 1.1 (a bottom yellow sign) indicates a line
change ahead [6]. The dwarf signals are used at the exits of secondary lines of
the railway fields. They indicate that the train will be changing lines through a

switch (or a set of switches).

Table 1.1: The types and the definitions of common signals [6].

Type of Schematic Color Definitions
Signal

The up coming two blocks are

Green (G) available; the train can keep on.

The up coming block is available, but
Yellow (Y) the second block is not. Train can
Keep but carefully.

Stop, the coming block is not

@ Red (R) available
Four-aspect 0 i ead and h -
. Yellow-Green(YG A diverge ahead and the coming two
Tall Signal (YC) blocks are available.
@ Yellow-Yellow A diverge ahead and the coming
(YY) block is available. But the second
block is not.

Yellow-Red (YR) Keep on very carefully (stop when
necessary).

Table 1.1 (Continued): The types and the definitions of common signals [6].

Green (G)

Coming two blocks are available; the
train can keep on.

Three-aspect

Tall Signal Yellow (Y)

The coming block is available, but
the second block is not. Train can
Keep on but carefully.

Red (R)

Stop, the coming block is not
available.

Green (G)

Coming two blocks are available; the
train can keep on.

O | [Feer

Three-aspect

Dwarf Signal Yellow (Y)

The coming block is available, but
the second block is not. Train can
Keep but carefully.

Red (R)

Stop, the coming block is not
available.

Yellow-Red (YR)

Keep on very carefully (stop when
necessary).

Two-aspect Yellow (Y)

The coming block is available, but
the second block is not. Train can

Keep but carefully.

dwarf Signal 3]
Stop, the coming block is not

Red (R) available.

00 |[ee

Keep on very carefully (stop when
necessary).

Yellow-Red (YR)

1.1.5 Track circuits and axle counters

Track circuits and axle counters are used to detect the location of the train on
the rail. Different techniques and combinations are used to detect the train

location. More information about detection technics are explained in [3].

As signalling systems are composed from multi integrated systems, the process
of proving system safety became complex [7, 8]. Moreover railways systems
are exposed to accidents due to huge variety of reasons like signaling system
failures, human errors ...etc. As railways are used by a huge number of people,
the safety of railways became very important issue. This led some governments
to interfere by putting standards in order to organize the operations of railway
systems [1] [2].

1.2 Railway Standards

Developing hardware section to be compatible with logical design and software

of interlocking system is one from the hardest tasks in signalling system design

[9]. CENELEC- (European Committee for Electrotechnical Standardization) - is
a safety reference name which states the necessary standards of railway sector
and it is composed from the following standards EN 50126, EN 50128 and EN
50129. Based on these standards, Safety Integrity Levels (SILs) were built [10].
SIL indicates the maximum failure rate that can be accepted [7]. Table 1.2
shows failure rates for different SILs. For a system to be SIL 4, it means that
during 10,000 working years the system must not face any failure, where A in

Table 1.2 indicates to failure rate.

Table 1.2: Failure rates for different SILs [10].

SIL Failure Rate
4 10°h <A< 10%h
3 10%h <A< 107"/h
2 107/h <A< 10%h
1 10°%h <A <10

In general standards are divided to:

e Basic standard:
1. IEC 61508: Functional safety of electrical/
electronic/programmable electronic safety-related systems
[11].
e Specific CENELEC standards derived from IEC 61508:

1. EN50126-1:2012 - Railway applications - The Specification and
Demonstration of Reliability, Availability, Maintainability and Safety
(RAMS) [12].

2. EN 50129:2003 - Railway applications - Communication, signalling and
processing systems - Safety related electronic systems for signalling
[13].

3. EN 50159:2010 - Railway applications - Communication, signalling and
processing systems - Safety-related communication in transmission

systems [14].

4. EN 50128:2011 - Railway applications - Communication, signalling and

processing systems - Software for railway control and protection

systems.

Software development processes can be done according to these standards

(Figure 1.5) [15].

Total Railway EN 50126
System (RAMS)

Individual Sub- EN 50126 ENS50129 EN50128 EN50159
System (RAMS) (System Safety) | (Software) [Communication

[| | B || e |

Figure 1.5: Scope of th main CENELEC railway application standards.
Conventional VV-model was created for software development purposes. V-
Model illustrates how to build the software of a signalling system using EN

50128 (Figure 1.6).

Ag

V

System Development Phase

Software Planning Phase

Software Assessment Plan

Software Maintenance Phase

Software Maintenance Records

System requirement Specification
System architecture description
Hardware documents

Safety Requirements

Software Requirement Phase

Software Quality Assurance Plan
Software Configuration Mgmt Plan
Software Verification Plan
Software Validation Plan
flaintenance Plan

Overall Test Specification

Software Requirements Specification

Software Architecture Phase

A

Software Design Specification
Software Interface Specification
Software Integration Test Spec
Sw/Hw Integration Test Spec

Software Assessment Plan
Software Assessment Report

Software Change Records

v 4

Software Validation Phase

Overall Software Test Report
Software Validation Report

V 4

Software Integration Phase

Software Integration Test Report
Sw/Hw Integration Test Report

gs
i

Software Component Design Phase

-| Software Component Testing Phase

Software Component Design Specification
fr C

Test Specifi

Verification
Report

Software Component Test Report

Verification
Report

Safh

Phase

e C

p

Software Source Code & Supporting Documentation

ANSYS Confidential

Figure 1.6: V-Model life cycle.
The model can be divided into left section and right section. The first section
(surrounded by green) of the model shows that must go under verification to
make sure that it is functioning in a proper way, second section of V-Model

(surrounded by red) shows that system must be validated too in order to see if
it performs the right function or not. If any negative result in validation appears
at any point, the developer is required to repeat the developing steps from the
point related point on the first section of the model (as it can be seen in
Figure 1.6 every point in validation section is related to a point in verification

process). EN 50128 defines the proper criteria for every node in V-Model.

Table 1.3 shows some details of these producers. Following these procedures
will help to achieve software which is analyzable, testable, verifiable and
maintainable [15]. As it is noticed, formal methods have a very important role

in software development, so in the next chapter Formal methods will be

reviewed.
Table 1.3: Some nodes of VV-Model.
Node Name Method
Formal Methods
Software Requirements Modelling
Specification Structured methodology

Decision Tables

Defensive Programming

Fault Detection & Diagnosis

Error Detecting Codes

Failure Assertion Programming

Diverse Programming

Memorizing Executed Cases

Software Error Effect Analysis
Software Architecture

Graceful Degradation

Information Encapsulation

Fully Defined Interface

Formal Methods

Modelling

Structured Methodology

Modelling supported by computer aided design and specification tools

Table 1.3 (Continued): Some nodes of V-Model.

Software Design and

Implementation

Formal Methods

Modelling

Structured methodology

Components

Analyzable Programs

Strongly Typed Programming Language

Structured Programming

Programming Language

Language Subset

Procedural programming

2. FORMAL METHODS

Formal methods are method use the discrete mathematic techniques and tools in
software and hardware development process, where the mathematical notations are
used in the design and the verification of software and hardware systems. Formal
methods help in presenting precise record of the created software [19]. Formal
methods are well-formed statements in a mathematical logic in which the formal
verifications are rigorous deductions. The main purpose of using formal methods is
to reduce the risky consequences that can occur due to serious specification and

design errors by symbolically examine the entire state space of a design [20, 21].

To develop software using formal method, Formal Specifications are used to
describe the behavior and properties using formal language and semantics. Formal
Language is used to define Rules in a precise manner. Formal language describes
the grammar rules and justifies the general algorithms to be used. Semantics provide
an accurate mathematical meaning to every statement. These items together will
provide a formal model for the system that enables the developers to state the
expected properties and then formally verify it [22, 23].

Formal methods can be classified based on their main purpose; it can be descriptive
or analytic. Descriptive methods focus on specifications as a tool for review and
discussion, while analytic methods focus on the utility of specifications as a
mathematical model for analyzing and predicting the behavior of (hardware and
software) systems. Analytic formal methods work on emphasizing mechanization
and general design specification languages capable of supporting efficient automated
deduction [24]. Formal language can be based on mathematical model or on a
standardized programming or specification language. Formal specification can be
(partly) executable. Generally only subsets of formal specification languages, e.g. of
Z and VDM, are machine executable [25]. Formal languages can be either model-
based (such as abstract state machines (ASM), Set and category theory, automata-
based modelling and modelling languages for Real-time systems) or algebraic based,

for more information reader is suggested to refer to [19].

11

2.1 Discrete Event System

To study the discrete event system (DES), appropriate models must be developed,
that accurately defines the behavior of these systems and provides a framework to
help in satisfying the design targets, controlling the system, and evaluating the
performance of the system. Automaton was conducted for these purposes. As
aforementioned, automata and its related languages can be used to in formal way to

study the logical behavior of DES.

2.1.1 Automata

An automaton can be defined as a device that is capable of representing a language

according to well defined rules.

A language defined over an event set E is a set of finite-length strings formed from

events in E.

e Asan example, let E = {a, b, c} be the set of events. Then languages may be

defined as:
L1 = /e, a, acb} that consisting of three strings only. (¢ denotes empty string).

L2 = {all possible strings of length 3 starting with event b} which contains nine

strings.
L3 = {all possible strings of finite length which start with event c.

An automaton consists from places (which represent states) and transitions (which
represent events). To understand how automata works, Let the event set be E = {a, b,
c}. Consider the state transition diagram in Figure 2.1, where nodes represent states
(places) X = {xi, X2, X3}, and labeled arcs represent transitions between these states.

This directed graph provides a description of the dynamics of an automaton [20].

To describe how the transitions between states occur, a function must be defined. For

the case in Figure 2.1 function can be defined as follows:
fiXXE -X

This means, when a state is associated with an appropriate event it will led to a state.

12

77N a £ O\ —
—F'._\;\xi/._.' |\ x2) b fix1, a)=x1 flx1, c)=x3
< PA f(x2, a)=x1 f(x2, b)=x2
o\, //a,,: f(x3, a)=f(x3, c}J=x2 f{x3, b)=x3
B Y
Wx3)) b
N

Figure 2.1: State transition diagram.
For the state transition diagram the notation f(x,, a) = x; means that if the automaton
IS in state Xp, then upon the “occurrence” of event “a”, the automaton will make an
instantaneous transition to state x;. More than one event can be written in the same

notation, as example
f(x1, cba) = f(f(xy, cb), a) = f(f(f(x4, c), b), a) = f(f(xs, b), &) = f(x3, a) = x..

Automaton can be defined formally as in [20]. In this work another method for DES

modelling will be used, it is Coloured Petri Nets.

2.1.2 Petri nets (PNs)

It was firstly introduced by Carl Adam Petri in 1960°s, somehow petri nets is related
to automata as they represent the transition function of DES [20]. PNs have some
advantages over automata in both graphical and mathematical features- automaton
can always be represented as a Petri net; on the other hand, not all Petri nets can be
represented as finite-state automata [9]. A Petri net is a device that operates events
based on defined rules and can show the conditions that enable a transition. PNs have
a lot of advantages that motivate considering Petri net as the models of DES. Petri
net graphs depict structural information about the simple and complex systems [20].
In general, PNs consist of three types of components: places (circles), transitions
(rectangles) and arcs (arrows). Where places represent possible states of the system,
transitions are events or actions which cause the change of state, and every arc
simply connects a place with a transition or a transition with a place. Next section

shows the formal definition of petri nets.

2.1.2.1 Formal definition of petri nets

Petri nets are defined in the literature by [26];

13

PN =P, T, AW, M, (2.1)

P: {P1, P2 ... Pp}, finite set of places,

T: {t1, to ... tn}, finite set of transitions,

e AC(PXT)U(TXxP)isasetofarcs,

e W:A— {123...}isaweight function,

e MqoyP— {0123...} is the initial marking
e PNT=@andPUT+#d.

2.1.2.2 Basic properties of petri nets

e A transition t is said to be enabled if each input place P of t is marked at least

W(P, t) tokens, where W(P, t) is the weight of arc from place P to transition t.
X(Pi) = W(Pl,t]) fOT' all PL' € I(t]) (22)

Where x(P;) is the number of tokens on i place and I(t;) is the sets of input places of
transition t;. To in Figure 2.2.a is enabled as the number of tokens in P and Py is
more than the weight of the related arcs, but for Ty in Figure 2.2.b is not enabled as

the number of tokens in Py and P, is less than the weight of the related arcs.

e An enabled transition may or may not fire (depending on whether or not the

event actually takes place).

Figure 2.2: Weight of arcs.
e A firing of an enabled transition t removes W(P, t) tokens from each input
place P of t and adds W(t, P) tokens to each output place P of t, where W(t, P)

is the weight of the arc from t to P.

14

e where x'(P;) is the number of tokens on i"" place after the firing of transition j
[26]. If the inequality in Equ.2 is applied for PO in Figure 2.3, x'(P,)=1, left
part of inequality is (3-2-0=1).

e Other models were built based on petri nets like Automation Petri Nets
(APN) [21], other models were classified as high level petri nets like
Stochastic Petri Nets, Colored Petri Nets and Object Oriented Petri Nets [27].

In this work Coloured Petri Nets will be used.

X’(Pi) = X(Pi) - W(Pl,t]) + W(tl’ Pl) (23)

(A) (B)

Figure 2.3: Number of tokens befor and after firing.

2.1.3 Coloured petri nets (CPNs)

Coloured Petri nets are a high-level Petri nets graphical language. It is based on
normal PNs, but colours were added to tokens and places using expressions working
with them. They have well-defined semantics and well known for specifying
distributed and concurrent systems which makes it very efficient formal modelling
technique [28-31]. As CPN tokens have colours (data value), this helps in reducing
the number of places if it is compared with normal petri net [32].

CPN can be classified as non-hierarchical Colored Petri Net and hierarchical Colored
Petri Net.

2.1.3.1 A non-hierarchical colored petri net
It is a nine-tuple

CPN = (P,T,A % V,CG,E,I) (2.4)

15

where [28, 29]:
1. P is afinite set of places.
2. T is a finite set of transitions such that P N T = @,
3.ACPxTUTxP isaset of directed arcs.
4. ¥ is a finite set of non-empty color sets.

5. V is a finite set of typed variables such that Type[v] € X for all variables v €
V.

6. C: P — X is acolor set function that assigns a color set to each place.

7. G : T — EXPRYV is a guard function that assigns a guard to each transition t
such that Type[G(t)] = Bool.

8. E: A — EXPRV is an arc expression function that assigns an arc expression
to each arc such that Type[E(a)] = C(p)ms’, where p is the place connected to the

arc a.

9. 1: P — EXPR® is an initialization function that assigns an initialization

expression to each place p such that Type[l (p)] = C(p)wms.

2.1.3.2 Hierarchical colored petri net
It is a four-tuple
CPNg = (S,SM,PS, FS) (2.5)
Where [29]:
1. Sisafinite set of modules. Each module is a Colored Petri Net Module
s = ((PS,T5,4%,55,V°,V*,C5, G, E*,)T, Pioye, PT*)
It is required that (P UT *H)N(P? U T *2) = ¢ for all s1, s2 € S such that s1 #
S2.
2. SM : Tgp — S is a submodule function that assigns a submodule to each

substitution transition. It is required that the module hierarchy is acyclic.
3. PS is a port-socket relation function that assigns a port-socket relation

PS(t) € Py (£) x PM®

vore L0 each substitution transition t. It is required

. MS refers to “multiset.”

16

that ST (p) = PT(»’),C(p) =C(p’) and | (p)<>forall (p, p’) € PS(t)and all t €
Tsup-

4. FS c 27 is set of non-empty fusion sets such that C(p) = C(p’) and | (p)<>= |
(p)<>forallp,p’efsandall fs € FS.

Appendix A explains how CPN works. To see more explanations about hierarchical
and non- hierarchical colored petri net, reader is suggested to refer to [30]. Colored

petri net has mathematical structure and mathematical properties.

2.1.3.3 CPN properties

A. Home Properties
1. Home Marking

A markingm € N™ of a Petri net is a home-marking if it is reachable from
all reachable markings. A set of markings M < N™ of a Petri net is a home

space if for all reachable marking m a marking in M is reachable from m [25].

B. Liveness Properties

1. Dead Marking: when CPN reaches a marking that does not lead to other

marking\s, this marking is known as dead marking [30, 31].
Given a marked net <N, my> let m € R(N,mg) be a reachable marking. It is
said that m is a dead marking if no transition is enabled at m. i.e., if <N, m>
is dead. A marked net <N, my> is deadlocking if there exists a dead
reachable marking [33]. If there are more than one dead marking it means
that the system has no home marking.

2. Dead Transition Instances: When a transition is not enabled within any
marking, this transition is considered as dead transition [30].

3. Live Transition Instances: if there is exist an infinite sequence of markings
where a transition can happen infinitely and can be reached from any
marking and can be reached from the initial marking, there is a live
transition in the system [30].

C. Fairness Properties

Fairness is only relevant if there are infinite firing sequences (IFS) [34]. And

they provide information about how often a transition can occur [32].

1. Impartial Transition Instances: It is the set of transitions that form a main

part in the infinite sequences, and by remove or deactivate this transition the

17

infinite sequences are over [30]. As it can be seen from Figure 2.4 that all
the transitions are occur in every IFS [34]. All of the Transitions in
Figure 2.4 are considered as impartial transition.

P1 P2
" _h{" >
I'*,r’ _—

t1 l
t4 t2
3 l
e ‘o)
\ S N @)
P4 P3

Figure 2.4: Impartial transition.

2. Fair Transition Instances: the transition occurs infinitely often in all infinite
occurrence sequences where it is infinitely often enabled [32]. t1 in
Figure 2.5 is fair transition instance.

3. Just Transition Instances: when the transition occurs infinitely often in every
IFS where t is continuously enabled from some point onward [34]. t6 in
Figure 2.5 is just transition instance.

4. Transition Instances with No Fairness: not just, i.e., there is an IFS where t
is continuously enabled from some points onward and does not fire anymore
[34]. t2, t3, t4 and t5 in Figure 2.5 have no fair.

t1

p2 p3
t2 t3 t4 t5
p1
p4 p5
t6

Figure 2.5: Fairness properties.
D. Boundedness: It refers to the property of token on a place not exceeding a given

positive integer.

18

Place pi € P in Petri net N with initial state X, is said to be k-bounded, or k-safe,
if X(pi) <k for all states x € R(N), that is, for all reachable states [20].

2.1.3.4 CPN and system behavior

State space analysis is used to investigate the functional behavior of systems. System
events sequences can be inspected and visualized as a state space. Nodes in the state
space represent states, and arcs represent state changes. Every node represents a state
of the system (the values of the places can be viewed), and every state of the system
is defined as marking (a marking represents a picture of the nodes of the state space).
Transfer between markings requires some proper event to occur [31, 35]. CPN
provides strongly connected component (SCC) graph which shows a set of nodes that
are strongly connected to each other’s [30]. One useful method in formal verification
is to generate all possible space state of the system and examine them. CPN is
supported by ML code to help in analyzing space states; moreover it is augmented by

ASK-CTL as external tool for the same purpose, this will be explained later.

2.2 Model Checking

Model checking is an automated technique that gives a finite-state model of a system
and a formal property. it systematically checks whether this property holds for a
given state in that model. Model checking is considered as a general verification
approach that can be used in different fields. Moreover, it is capable of doing partial
verification for properties, which enables the developer to focus on the important
ones. Model checking is considered fast relative to other verifications methods. But
in the same time it just checks the stated requirements, which means that it can just
validate the stated criteria without guarantee of completeness. One of its
disadvantages, it suffers from state-space explosion (the number of state-space
exceed the ability of computer) [36], but for applications such as the interlocking
system if state-space explosion is exists it means that there is a problem, that's why it

looks as very suitable solution for interlocking system applications.

2.2.1 Model checking procedures

The process of model checking was initiated by [37]:

19

1. Modelling: Constructing a model that is accepted by a model checking tool
(CPN will be used to build the model in this research).

2. Specifications: The properties under concern that are needed to be stated.
Usually the specifications are given in some logical formalism like temporal
logic. It is the developer responsibility to state all important properties to be
validated. Model checker will validate the stated properties if it is valid even
if the system in general is not valid (completeness is not guaranteed).

3. Verification: In general the verification is completely automatic. But
sometimes the developer is required to be involved into the process to
analyze the results. Developers can be supported with an error trace in case of

negative results.

2.2.2 Temporal logic

Temporal logic is a formalism for describing sequences of transitions between states
in a reactive system (system react to certain events). There are several types of
temporal logic. Linear Time Logic (LTL) is a special case - infinite sequence of
states where each point in time has a unique successor [23, 37]. But LTL does not
permit quantifying along paths, e.g. state the existence of a path satisfying a specific
property. Computational Tree Logic (CTL) is an extension of LTL which permits
quantifying along paths by using universal and existential quantifiers to the modal
operators.

2.2.3 Computational tree logic

CTL is a branching time tree; the scenarios can be symbolized by hierarchical
structure in a graphical form where different scenarios can be applied [38, 39]. The
name comes from considering paths in the computational tree gotten by unwinding
the FSM. Due to its ability in showing possesses safety or liveness properties it is
used in formal verification. For example CTL is used to realize home properties,
liveness properties and fairness properties. CTL* is high level CTL (it can quantify
paths and deal with temporal operators).

Traditionally, temporal logics use Kripeke structure model concurrent systems, [36,
37] show formal definition of Kripeke structure and its properties. The tree of CTL*
is formed by unwound the Kripeke structure into an infinite tree rooted at the initial

state. Figure 2.6 shows an example of unwinding a graph into a tree. Paths in this tree

20

represent all possible computations starting from the initial state of the modeled

system. Then the temporal operators describe the path properties through the tree.

{Meo} R

{x =0}
{x=1,x#0}

(le 3) (S2. 3)/ \Sl 3)
(5314/ \(s_s:a) (s;;L) (52, 4) \(Ss=j)

®)
Figure 2.6: Unwind state graph to obtain infinite tree.

2.3 CPNand CTL*

CTL* (or ASK-CTL) is used to express the state and the transition properties of the
models interviewed by the state space of the coluored Petri net [26]. It can be applied
over the state space of CPN and can deal with state information and transition
information. Other tools like model checker were added which can help in checking
the formula against the current state space, and returns the true value of the given
formula [40].

2.4 Demonstration for Railway Application

In Appendix B, a model for train yard was built by CPN tools, the system was

verified then some criteria were proposed to be validated.

3. CASE STUDY

A train layout will be studied in this Chapter. Operations rules and restrictions will

be discussed as well.

3.1 Train Yard Details

The layout contains 3 lines, it consists of 5 sections. Layout is protected by signal
B2D (Figure 3.1).

ST

g gHURCE Sl ic: WG
o
18T w: -‘
SF\).Ali.kﬁ,'

Figure 3.1: Railway yard.
Operation after train entering section 1BT is going to be discussed. Table 3.1 shows
the rules for movements in the yard. One direction flow will be under consideration
(from left to right). Authorization by signal 2D is based on next signal related to the
reserved rout (in 1BT-2ST 2D authorization type is based on signal 52DA).

3.2 Verification and Validation Criteria

After the system is built, the system must be verified to check if it is working in a proper
way. It must not contain non-safe deadlock and live-lock. Then the system is going to be
validated according to next rules.
1. No more than one permission can be given in 1BT at the same time.
2. B2D is not giving permission if a rout is reserved or there is another train in
1BT.

23

Table 3.1: Interlocking table.

Rout No. Route Selection Position of Switches 2D Next Signal Light
G
YY
1 1BT-1ST SW1 reverse Y
YG R
G
G
Y
2 1BT-2ST SW1, SW3 normal YG
Y YY
R
G
; LBT.3ST SW1 normal Yy v
SW3 reverse
YG R

3. No train leaves 1BT without a reserved rout.

4. For 1BT_1ST to be reserved, none of the routs must be reversed, a train must
be on section 1BT, section 1ST must be free, section 3T must be free and
request to reserve 1BT_1ST from TCC must be delivered.

5. For 1BT_2ST to be reserved, none of the routs must be reversed, a train must
be on section 1BT, section 2ST must be free, section 3T must be free and
request to reserve 1BT_2ST from TCC must be delivered.

6. For 1BT_3ST to be reserved, none of the routs must be reversed, a train must
be on section 1BT, section 3ST must be free, section 3T must be free and
request to reserve 1BT_3ST from TCC must be delivered.

7. No train can enter 3T without permission from 2D.

8. In 1BT_2ST reservation case, for 2D to give permission, SW1 and SW3 must
be normal, 1BT_2ST rout must be reserved and 52DA is not red.

9. In 1BT_1ST reservation case, for 2D to give permission, SW1 must be
reversed, 1BT_1ST rout must be reserved and 54D is not red.

10. In 1BT_3ST reservation case, for 2D to give permission, SW1 must be
normal, SW3 must be reversed, 1BT_3ST rout must be reserved and 52DB is
not red.

11. No train can enter 3T if there is another train in the section.

(Next rules will be applied for 1ST, 2ST and 3ST).

24

12. While train is going out from 3T section, it must be sure that the train is going
to the appropriate section

13. For 52DA to give permission 1BT_2ST rout must be reserved.

25

4. IMPLEMENTATION

This chapter will review the model details and discuss the verification and validation

procedures.

4.1 Model Building

4.1.1 Main layout

The system was divided into modules in order to ease the modeling and bugging of a
system. These modules were connected to each other’s in a layout (Figure 4.2). The

modules are shown in Table 4.1.

Table 4.1: Modules names.

Module Name Name Meaning
S1BT Section 1BT
S3T Section 3T
S1ST Section 1ST
S2ST Section 2ST
S3ST Section 3ST

SW1 Switch 1
SW2 Switch 3
Interlocking Interlocking processes

Declarations in Figure 4.1 were used to define the variables related to each color.
The colors shown in Figure 4.2 have no operational meaning; they were just used to
illustrate the model. Places in layout apart from “Depo”, “Out1ST”, “Out2ST” and
“Out3ST” are used to connect between the modules. When simulation is started, all
tokens of trains are outside 1BT (at place “Depo”), and when it is finished tokens of
trains will be on “OutIST”, “Out2ST” and “Out3ST” places. If simulation is

completed and at least one train token is inside a module, this means that the model

27

has a fault. The module was hierarchically built (2.1.3.2 Hierarchical colored petri

net). From now and on “token” are going to be used insisted “train token”.

colset BOOL = bool;

var b:BOOL;

var b2:B00L;

var b3:BO0L;

colset INT = int;

var n:INT;

colset INTINF = intinf;

colset STRING = string;

colset TCC=index rout with 1..3;
var tcc:TCC;

colset INTxTCC = product INT * TCC;
colset TRAIN=index tr with 1..5;
var tt:TRAIN;

colset INTXTRAIN = product INT * TRAIN;
colset SIG=with r|g|y|yylvelyr;

var sign:S5IG;

var sign2:5IG;

colset SW=with actv;

var sw:SW;

Figure 4.1: Declarations.
4.1.2 Section 1BT

When a train leaves “Depo”place, it enters the first section “1BT”. Layout is
connected with SIBT through “Depo” place. Figure 4.3 shows the model of 1BT.
The places surrounded by red are connected with interlocking module. For analysis
purpose, trains were numbered and transition “ApplBT” was connected to

interlocking module.

When a train arrives to place “P02_App1BT”- assuming the train driver is obeying
the rules - it waits there till permission is issued from signal B2D which is

represented by place “B2D”.

Before B2D gives authority to enter section 1BT, it must be checked that there no
reserved route and that the section is empty. B2D becomes red again when the train

is inside the section. Figure 4.4 shows how these procedures are performed.

It must be noticed that when a place has a socket “In” it means that this place is
controlled from another module, vice versa when it has socket “Out” it means that it
is controlled in current module and its values can be read from another module/s.
While the train is passing transition “IntoS1BT”, the value of place “At1BT_Status”
is replaced from “false” by “true”. At this stage the train cannot leave 1BT as long as
there is no permission given from signal 2D. But before giving authorization, a route

must be reserved.

28

17 (1,tr(1))++
1017 (1er(1))++

g |1 (2,0r(2))++

P17 (3,r(3))++
MNTxTRAIN

-

]

— P1BT_15T
EOOL

/

S1BT

At1BT_Status

1’ false

f

BOO.-_l/ 1" false

Inter-
Locking

P1BT_35T

‘;/;173:_25T

M

Lo

™
| Sw1 | PSW1_R

SW

1" acty
PSWI1_N1, 1 act\ﬂ

PSW3_R
S

=

1°r

PS4D (10 1°r
516G Lpp35T

1 false

1-1"false

BOOL
oo

TRAIN

1
P52DH

v

TRAIN

S|

Figure 4.2: Model layout.

29

“false

1] l‘falsel

)
INTxTRA]

C(Ler(1))++

=
i T
P
—
ol
b
+

17 (6,tr(8))

false

PO3_CrossingB2D

TRAIN

1'fa
At1BT_Status

true

Ise

1 1 false

false

g S

sign

Em—
LeavingB2D

T -

Figure 4.3: 1BT section model.

Interlocking

187 82D
| . T
| Train is Coming |
N
! A
| I No Reserved Rout
: 18T Empty :‘
l .
I B20D is Green B2Dis green
Il\ Trianisin 1BT :
|
| B2D is Red B2Dis Red
™~ T

Figure 4.4: B2D changing color sequential diagram.

4.1.3

There are three possibilities for routes as it was shown in Table 3.1. 1BT-2ST will be
considered from now and on. Interlocking module is shown in Figure 4.5. Elements
surrounded by red represent TCC elements, from where the route reservation
requests will be sent. Transition “TCC” will not be enabled if there is a reserved

route or there is no train in section 1BT - (in reality there is no need for a train to be

in section 1BT

Interlocking system

30

1°(1,rout(1))++
1°(2,rout(1))++
1°(3,rout(1))++
1% (4 rout(1))

I NTXTC c

O b W
e e B

1
1

usion o E

BOOL INT BOOL

true

(| tee ;.K tee
\IS " ch

[tee=rout(1),b=true,b2+false,b3=f

true
» R1BT_1ST h / (———O R1BT_2ST

P1BT_1ST

true

‘ [tce=rout(2),b=true,b2=false b3=false]

2.
ﬂ
Ry

Ab;\ Q g - | ! h, T
ue
— P1BT_25ST j ;

J b
RoutlRelase
=

S

b b
@ ’Else k-)1 Rout2Relase @
\. [Fusion 2]
BOOL
b
BOOL b .

b Rout3Relase @

d BOOL
I,
\. »{(P1eT

B%Ll' false[

Figure 4.5: Interlocking model.

31

but this condition is considered here for simulation purposes). Elements surrounded

by blue are responsible for route releasing process which will be explained later.

After a request is issued from TCC to reserve a certain route, based on the requested
route, a group of parameters is needed to be checked. In 1BT-2ST case, transition
“RIBT-2ST” is responsible for reserving 1BT-2ST route. In case that no route is
reserved, a train is in section 1BT, suitable request for route reservation, section 3T
and 2ST are empty, transition “R1BT-2ST” will put “true” on place “P1BT-2ST” as
an indication that the rout is reserved. Figure 4.6 depicts the sequence of route

reservation.

For routes 1BT-1ST and 1BT-3ST to be reserved, the same procedures will be
followed, but the elements needed to be checked will be different.

3T 18 Interlocking 25T Dispatcher

I
Rout Request

T
I
|
|
I

Train in 1BT

Section Empty

Section Empty

.7.A_A_7_._

No Reserved Rout

|
1BT-157 is Reserved

T
|
|
|
|
|
[
|
|
|
|
|
|
|
|
|
|
| |

I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
I
|
|
|
|
|
|
|
|
|
|
|

A

Figure 4.6: 1Bt-2ST route reservation sequential diagram.
4.1.4 Switches

After a rout is reserved, moving elements of train line must be set at certain positions
according to the reserved route (In case of 1BT-2ST both SW1 and SW3 must be
normal). Figure 4.7 shows SW1 model, it was proposed that switches works ideally.
In general, switch must be either normal or reverse if there is no running process.
Switch can be nether normal nor reverse just during the switching process for a
certain time, but it can never be both in the same time. Switch 1 movement activated
based on the reserved route. If 1BT_2ST or 1BT_3ST is reserved, it will be checked
if the switch is in reversed position or not. If yes it will be moved to the normal

place, if no it will be locked in this position. In case of 1BT_1ST the opposite will be

32

applied. Same procedures are applied for Switch 3, but it is just related to 1BT_2ST
and 1BT_3ST.

[b=true]

sSW SW b
SW1_NtoR2 SW1_NtoR1 @

SW A BOOL

Y 1 acty

g PSWl_ﬂRl 1 actv l:§ PSWD
SW

A

SwW

SW1_RtoMN2

b
@ SW1_RtoNla

BOOL

[b=true]

b
@ SW1_RtoN1b

BOOL

Figure 4.7: Switch-1 model.
After moving elements are locked to the appropriate positions, the train must be
authorized to enter section 3T.

4.1.5 Section 3T and signal 2D

Signal 2D is responsible for authorizing the train to enter section 3T (Figure 4.8). As
signal 2D is related to three lines, it was modeled in a separated module. Signal 2D
module is interfaced with interlocking, switches, next signal for every line and to
place “App_3T”. Signal 2D module is shown in Figure 4.9. A group of elements
must be checked before authorization. As we are dealing with 1BT_2ST route, the
module will check the following conditions:

1. Rout 1BT_2ST is reversed.

2. Switches 1 and 3 are at normal position.

If these conditions are satisfied, based on the next signal color of the related section
Signal 2D color will be changed (Table 3.1). Supposing that signal 52DA is yellow-
green, Figure 4.10 shows the Sequential Diagram of changing the color of signal 2D

from red to yellow.

33

PSWWI1_MN J_._, 1" actv
n PS40 ;1 1°r
PSWI1_R)) o 1)
51G
Pep_0oN) ¢ . PSW3_N 1) 1" act
SI n S
b
PS2DANEN 171
Y O) n
P2D_0ON Signal2b 51G
. r W
[sign<>r] ja . . - - PSWZ_R
Y : 1r z sign £ n
- sign 1 1'r SW
Entering3T FzZD .
PS2DE; 1 1'r
sign o "—'—]
: 5IG
PO3_Crossing2D)
[sign<=r] L
[sign=r] TRAIN . T
> sign P20_Off
Into3T
fals
true b P1BT_Z25T P1BT_35T P1BT_15T
i 2
AL3T Leaving3T2 n BOGL BOOL n BOOL
1 TRAIN it /] LeavingzTi
2avin
Llalse J Tl F a
s
\ tt » Leaving3T3
AR3T_Status 1= ﬂﬂm—/
/3 18
false &
true
0]
Fall o
EO
false
~
~
T
¥ya . | ?
[sign=y orelse sign =g y
[sign=y| orelse sign=4g] E 17 actv
S e » Gl
»)
2 ———o SW - .
VG2 BOOL =E| orelse sign=yy orelse sig
"
fod .
-4 S J
>
¥
. sign
[signEr] JY b _/l
[sign=y orelse sign=g]
S
Eal
61 o4
¥a
-
1
sign2 sign2
b ~ 2D_Or} ~ sign2
/. PR S
n o1 Sianz2
si-;|n_2/}
A
- Pswa_ Rl v ~
| sign SW
L =ign
1‘r]g—/

)‘ P52DB: D
5IG

Figure 4.9: Signal 2D model

34

When 2D authorizes for train to enter, train can enter 3T section. In the moment train
get into section 3T, Signal 2D becomes red again and token on place “At3T Status”
becomes “true”. Based on the reserved route, the train will take a path from the exit
places of module S3T. On 1BT_2ST route case, token will pass through transition
“Leaving3T2” and replacing the token on place “At3T Status” to “false” again. By

leaving section 3T, train enters section 2ST (Figure 4.11).

52DA Interiecking 20 swi Sw3
: 1BT-25T is Reserved : :
> |
| Nermal |
| Normal
yellow' reen I[\
/I
|

e e L

e
———— |

|
|
|
|
|
|
|
| Train into 3T
T
|
|
|
|
|

Figure 4.10: Signal 2D sequential diagram.

1
W
\O INT
[I
1 ——_ o € i —~
oy
(Poz_appasT) — - .
TRAIN N vy N
tt T (-
false Y 4 o LO Q C h
=

true
1" false

1 1 false

—

\ false W [sign<>r]

L true] - EE
- Leaving25T[PS2DA

7
tt ¥

Y

sIG

Y N D,

% Out2sT » 1 —rJ
TRAIN

Figure 4.11: Section 2ST model.

35

416 Section 1ST, 2ST and 3ST

Train needs extra authorization to enter section 2ST from section 3T, as 2D is the
signal that protects the whole targeted yard. The colored transitions in Figure 4.11
are responsible for changing signal 52DA color. As model is just concerning with the
yard in Figure 3.1, signal 52DA is changed randomly when 1BT_2ST route is
reserved (same thing for 52DB and 54D). When the train gets into place “At2ST”,
token on place “At3T_Status” becomes “true”. While train is on place “At2ST” there
is a possibility that Signal 52DA is red. In this case, train will wait and in the mean
while transitions responsible for changing signal 52DA are enabled and will be fired
randomly. This process will keep on till signal 52DA is not red. This process is
virtual process, not for realization. This process can continue infinitely, so transition
“R” in SIST was provided with place “n” which has one token. This place will
prevent generating red color over signal 52DA more than once. It is just modeled to
simulate the waiting of the train when the signal is red. When signal 52DA is not red,

train can pass and reserved route can be released.

4.1.7 Route releasing and fusion sets
To understand releasing mechanism using fusions, fusions must be reviewed first.

Till now tokens moved between modules using ports and sockets. Fusion sets enable
places in different modules to be joined together into one compound place across the

hierarchical structure of the model [30].

Fusion sets were used in order to release routes. For this purpose 4 sets were used
(Figure 4.5, Figure 4.11 and Figure 4.12). In 1BT_2ST case, after train is leaving 1ST
section, a “true” token will be generated over place “Syn_S1ST”. Because it is fusion
with place “Syn_S1ST” in interlocking module, the same token will be generated on
place “Syn_S1ST” in interlocking module. By moving to interlocking module it will
be noticed that transition “Rout2Relase” is enabled due to the existence of token in
place “Syn S1ST” and place “P1BT 2ST”. By firing transition ‘“Rout2Relase”,
tokens on both places will be lose causing 1BT_2ST to release. Same rule is applied

for other routes.

Fusion 3 set is used to prevent train token to leave section 1BT if a route is not
reserved (Figure 4.3 and Figure 4.5). Such a procedure cannot be realized, because

section 1BT departure is something related to driver’'s commitment of movement

36

laws. But it was used here to reduce the number of enabled transitions at the same
time, because multi enabled transitions at the same time cause random order of firing

which increases the number of state spaces.

t

Syn_S1ST r
t‘,l'E\\l]I'\ BOOL 1 e]_'|
rmle e —_— [sign<>r] ;
[sign<>r] Sioh] sign
e :
g —_— /iINg3ST PS2D
Leaving1sT[® o ED FeEEngas - >]\ ==Rh
r “\ /

1
Out

(A) | (8)

Figure 4.12: (A) 1ST fusion sets, (B) 3ST fusion sets.
According to simulation, system is working properly. Next section shows the

procedures of making sure that system does not contain any liveness and fairness.

4.2 Verification

State Space will be used to verify the modeled system. Before a state space can be
calculated, it is necessary to generate the state space code and to draw SCC graph.
By generating a state space report, a report like in Figure 4.13 is resulted.

The report was generated by proposing that 6 trains are passing using the 3 routes.
Figure 4.13 shows part of the state space report for the system. The system has 3205
nodes/markings and 6985 arcs in space state and Scc graph. According to [29], if
state space and Scc have the same number of nodes and arcs means that the system
has no cycles. System has no home marking that can be reachable from any marking
that can be reached from initial marking. System has 8 dead markings. Those dead
markings cannot be classified as safe or not safe without checking it. Because the
existence of dead markings is something normal in this case study as all tokens of
trains will stop in some places so the system will stop. The report shows that the
system has 1 dead transition which is used to change SW1 position from reverse to
normal when a request reservation for 1BT_3ST route is delivered. This transition is
not used because when the report was generated, 1BT_3ST route request came after
1BT_3ST route request so there was no need to change the position of SW1 through

that transition.

37

Statistics

State Space
Nodes: 3205
Lrca: 6985
Secs: 1
Status: Full

Scc Graph
Nodes: 3205
Arcs: 6985
Secs: o]

Home Properties

Home Markings
None
Liveness Properties

Dead Markings

8 [3205,3203,3202,3201,3186,...]

Dead Transition Instances
SW1'SWl RtolNlb 1

Live Transition Instances
None

Fairness Properties

Ho infinite occurrence seguences.

Figure 4.13: System state space report.
Figure 4.13 shows that the system has no fairness too. To check if the dead lock is
safe or not, query in Figure 4.14 was used. The query shows that all the 8 dead

markings are considered safe.

This query works by defining what is the safe marking. It was defined here by the
places (with “TRAIN” colour) as empty places. The only places excluded from these
conditions are place “Out1ST”, place “Out2ST” and place “Out3ST”, because trains
are supposed to leave all sections at the end. The markings that were classified as
dead marking will be checked if they are safe according to the criteria that were
defined. Figure 4.15 shows that all the dead markings were classified as safe dead
markings. Figure 4.16 and Figure 4.17 show the queries that were used to check the
existence of livelocks and self-loops respectively. Both of the queries confirm that

system has no livelocks and self-loops.

System was verified that it is working properly. Now it needs to be validated to

check if it preforms the required tasks or not.

38

fun ValidTerminal n=(Mark.S1BT'Depo 1 n=[] andalso
Mark.S1BT'PB2_ApplBT 1 n=[] andalso
Mark.S1BT'PB3_CrossingB2D 1 n=[] andalso
Mark.S1BT"At1BT 1 n=[] andalso
Mark.S1BT'App3T 1 n=[] andalso
Mark.S3T'PB3_Crossing2D 1 n=[] andalso
Mark.S3T'At3T 1 n=[] andalso
Mark.S3T'App2ST 1 n=[] andalso
Mark.S3T ' App3ST [1 andalso
Mark.S3T ApplST Jandalso
Mark.S1ST"At1ST] andalso
Mark.525T"At25T] andalso
Mark.S3ST'At3ST 1 n=[])
fun InvalidTerminal()=Prediodes(ListDeadMarkings(),fn n=»not{ValidTerminal n),Nolimit);
let

val fid=TextID.openOut"DeadlockMarkings.txt"

wval = TextI0.output(fid,"MNot safe deadlock markings:in")

val _ = EvallNodes{InvalidTerminal(),fn n=>INT.output({fid,n))

in

TextIO.closeOut(fid)
end;

1
1
1
1

I—':i:lfjjj

[
[
[
[
)

Figure 4.14: Safe dead markings query.

4

File Edit Format View Help

Not safe deadlock markings:

Figure 4.15: Safe dead markings query result.

fun ListTerminalSCCs()=PredAllSccs{SccTerminal);
fun InvalidTermSCC()=PredSccs(ListTerminalSCCs(),fn n=»not(SccTrivial n),Nolimit);
let

val fid=TextIO.openDut"Absencelflivelocks.txt"

val = if InvalidTermSCC()=[]

then TextIO.output(fid, No Livelocks!™)

else TextID.output(fid,"yes Livelocks!")

in

TextI0.closeQut(fid)

end;

Figure 4.16: Livelocks checking query.

fun SelfloopTerminal n={0utNodes(n)=[n])
fun InvalidTerminal()=PredNodes(EntireGraph,fn n=:(5elfloopTerminal n),Nolimit);
let

val fid=TextI0.openDut"ListOfSelfloops.txt"

val _ = TextIO.output(fid,"self terminals markings:yn")
val _ = EvallNodes{InvalidTerminal(),fn n=>INT.output(fid,n))
in
TextIO.closeOut{fid)
end;

Figure 4.17: Self loops checking query.

39

4.3 Validation

In section 3.2 were mentioned. In this section these criteria are going to be tested and
validated. Not all of the criteria will be explained here, because some of them work
in the same mechanism but with changes in the input Appendix C shows the whole
queries.

To check if no more than one train can be in 1BT at the same time, query in

Figure 4.18 was used.

fun UnexpectedMarking n =(Mark.S1BT P82 ApplBT 1 n =[tr(1)] andalso
Mark.S1BT'At1BT 1 n =[tr(2)]);

val myASKCTLformula=INV{NOT(NF(" No Than one Train can be in 1BT",UnexpectedMarking)));
eval node myASKCTLformula Inithode;

Figure 4.18: First criterion checking query.
This query works by checking if there is any marking that have more than one train
in the places of the section 1BT. But is it applied just for two places at the same time
so it must be repeated between all the places of the section 1BT. If the system
satisfies the first criterion, a result like Figure 4.19 will appear. If not the “true”

surrounded by red will be “false”.

val UnexpectedMarking = fn : Mode -> bool
val myASKCTLformula =
MOT
(EXIST_UNTIL (TT,NOT (NOT (NF [" Mo Than one Train can be in 1BT{fn)11]1)
VA

val it biool

Figure 4.19: First criterion checking query result.
To see if B2D is not giving permission if a rout is reserved or there is another train in
1BT, query in Figure 4.20 is used. It works by defining the proper initial conditions
for every place related to signal B2D and defining the final condition of B2D place.
As long as the conditions are true, the result will be “true” (the same in Figure 4.20).
To confirm that signal B2D does not authorize to the train to enter in improper
conditions, the proper initial conditions were changed and the result was “false”.
Initial conditions were changed continuously to check all the possible probabilities.

Figure 4.21 shows the result of the second criterion with wrong initial conditions.

40

fun StartMarking n =(Mark.S1BT'P83 CrossingB2D 1 n =[] andalso
Mark.S1BT'At1BT 1 n =[] andalso
Mark.S1BT'B2D 1 n=[r] andalso
Mark.TCC*P1BT_15T 1 n=[] andalso
Mark.TCC'P1BT_25T 1 n=[] andalso
Mark.TCC'P1BT 35T 1 n=[]);
fun EndMarking n =(Mark.S1BT'B2D 1 n=[g]);
val myASKCTLformula=POS(AND(NF("it can happen”,StartMarking),
EXIST UNTIL((NF("",StartMarking)),
MF({" PB3 to PB2", EndMarking))));
eval node myASKCTLformula InitNode;

Figure 4.20: Second criterion checking query.

val StartMarking = fn : Node -> boaol
val EndMarking = fn : Mode -> bool
val myASKCTLformula =
EXIST _LINTIL
(TT,
NOT
{OR

NOT (EXIST_LIN g "o NF (" PO3 o PO2"fn))000) ¢ A

val it = : bool

Figure 4.21: Second criterion checking query result with wrong initial conditions.

The rest of the queries will be shown in Appendix C.

4.4 Machine Performance

The process of modeling, validation and verification were done using a machine with

the specifications shown in Figure 4.22

System
Processor Intel(R) Core(Th]) i3 CPU M 460 @ 2.53GHz 2.533 GHz
Installed memory (RAM): 4.00 GB (3.80 GE usable)
System type: £4-bit Operating Systemn, x64-based processor
Pen and Touch: Mo Pen or Touch Input is available for this Display

Figure 4.22: Machine specifications.

While building the state space model of the system, as it can be seen in Figure 4.23,

the process occupies about 62 MB from the memory and about 29% of the CPU in

32 second.

94 cpntools (32 bit) (2) 28.2% 61.9 MB 0 MB/s

Figure 4.23: System performance

41

0 Mbps

5. CONCLUSION

In this work, railway signalling system verification and validation using CPN was
demonstrated. It is shown that it is easy to build a system model using CPN. The
verification and validation processes were easy too, as they are computationally not
expensive (see 4.4). So, if the model was generated, it does not take long time and

effort to scan the whole markings of the system.

Checking the marking is not easy using just CPN tools. Because the current CPN
tools are not developed enough so you need to generate all of the markings in a
manual way. Alternatively, you can use some tools which are little complex in

building the markings of the model (like Graphviz - Graph Visualization Software).

The disadvantage of this method is that it does not guarantee the completeness of the
system. Only the stated properties are being checked. So, it is the developer's
responsibility to state the whole important properties of the system in order to be
checked.

CPN with CTL* could validate an existing petri net system, but do not generate a
PLC code for this system. It must be seen if it is possible to generate plc code based
on the CPN model directly.

43

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

Peterman, David Randall, and William J. Mallet. “The Federal Role in
Rail Transit Safety”. Congressional Research Service, 20009.

"Meeting the standard-engineering acceptance.”" RAILWAY SAFETY-
PAPERS FROM THE RAILWAY TECHNOLOGY CONFERENCE HELD
AT RAILTEX 2000, NATIONAL EXHIBITION CENTRE,
BIRMINGHAM, UK, 21-23 NOVEMBER 2000. 2001.

Anders, E., “Railway signalling & interlocking: international compendium”.
Eurailpress, 2009.

Cook, S. R. "Railway signalling-achieving concurrent safety and reliability."
RAILWAY SAFETY-PAPERS FROM THE RAILWAY TECHNOLOGY
CONFERENCE HELD AT RAILTEX 2000, NATIONAL EXHIBITION
CENTRE, BIRMINGHAM, UK, 21-23 NOVEMBER 2000. 2001.

ERiS, 0. "BIR DEMIRYOLU ANKLASMAN SISTEMININ PLC iLE
GERCEKLENMESI”, (Master Thesis), (2011).

Durmus, Mustafa Seckin. “A CONTROL AND AUTOMATION
ENGINEERING APPROACH TO RAILWAY INTERLOCKING SYSTEM
DESIGN”, (Ph.D. Thesis), (2014).

Jansen, H., and H. Schabe. "Computer architectures and safety integrity
level apportionment.” Safety and Security in Railway Engineering (2010): 19.

Stephens, E. J. "C580/120/2000 Seeing the light." IMECHE CONFERENCE
TRANSACTIONS. Vol. 5. Professional Engineering Publishing; 1998, 2001.

Durmus, Mustafa Seckin, et al. "Synchronizing automata and Petri net
based controllers.”" Electrical and Electronics Engineering (ELECO), 2011 7th
International Conference on. IEEE, 2011.

Belmonte, Fabien, et al. "Role of supervision systems in railway
safety."Safety and Security in Railway Engineering (2010): 59.

International Electrotechnical Commission. "Functional safety of
electrical/electronic/programmable electronic safety related systems.” IEC
61508 (2000).

EN50126, C. E. N. E. L. E. C. "Railway application—The specification and
demonstration of dependability, reliability, availability, maintainability and
safety (RAMS)." (2000).

45

[13]

[14]

[15]

[16

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

EN50129, C. E. N. E. L. E. C. "Railway applications-Communication,
signalling and processing systems-Safety related electronic systems for
signalling.” British Standards Institution, United Kingdom. ISBN (2003):
0580-4181.

EN, BS. "50159: 2010 Railway applications—Communication, signalling and
processing systems—Safety-related communication in transmission
systems.” M.: ®I'VII «Crangaprundopm (2010).

EN, BS. "50128: 2011." Railway applications—Communication, signalling
and processing systems—Software for railway control and protection
systems, BSI Standards Publication (2011).

Dean, Neville. “Teaching and learning formal methods”. Morgan Kaufmann,
1996.

Jackson, Daniel. "Lightweight formal methods." FME 2001: Formal
Methods for Increasing Software Productivity. Springer Berlin Heidelberg,
2001. 1-1.

R. W. Butler (2001-08-06). "What is Formal Methods?". Retrieved 2006-11-
16 http://shemesh.larc.nasa.gov/fm/fm-what.html

Almeida, José Bacelar, et al. "An overview of formal methods tools and
techniques." Rigorous Software Development. Springer London, 2011. 15-44.

Cassandras, Christos G., and Stephane Lafortune. “Introduction to
discrete event systems”. Springer Science & Business Media, 2009.

Durmus, Mustafa Se¢kin, and Mehmet Turan Soylemez. "Automation
Petri Net Based Railway Interlocking and Signalization Design." Int.
Symposium on Innovations in Intelligent Systems and Applications. 2009.

Monin, Jean-Francois. “Understanding formal methods”. Springer Science
& Business Media, 2012.

Kropf, Thomas. “Introduction to formal hardware verification”. Springer
Science & Business Media, 2013.

Kelly, John C., et al. "formal methods specification and verification
guidebook for software and computer systems volume i: planning and
technology insertion.” NASA, July (1995).

Voros, Nikolaos S., Wolfgang Mueller, and Colin Snook. "An Introduction
to Formal Methods." UML-B Specification for Proven Embedded Systems
Design. Springer US, 2004. 1-20.\

Cheng, Allan, Sgren Christensen, and Kjeld Hgyer Mortensen. "Model
checking Coloured Petri Nets-exploiting strongly connected
components."DAIMI Report Series 26.519 (1997).

as Vojnar, Tom. "Various kinds of petri nets in simulation and modelling."

46

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]
[39]

[40]

(1997).

She, Xiaoli, Jiyuan Zhao, and Jian Yang. "Functional safety verification on
railway signaling system with Colored Petri Nets." Intelligent Transportation
Systems (ITSC), 2014 IEEE 17th International Conference on. IEEE, 2014.

Wu, Daohua, and Eckehard Schnieder. "Scenario-based system design
with colored Petri nets: an application to train control systems." Software &
Systems Modeling (2016): 1-23.

Jensen, Kurt, and Lars M. Kristensen. “Coloured Petri nets: modelling and
validation of concurrent systems”. Springer Science & Business Media, 20009.

Nufiez, Manuel, et al., eds.” Applying Formal Methods: Testing,
Performance, and M/E-Commerce” FORTE 2004 Workshops The
FormEMC, EPEW, ITM, Toledo, Spain, October 1-2, 2004. Vol. 3236.
Springer, 2004.

Katsaros, Panagiotis. "A roadmap to electronic payment transaction
guarantees and a Colored Petri Net model checking approach.” Information
and software technology 51.2 (2009): 235-257.

van Schuppen, J. H., M. Silva, and C. Seatzu. "Control of discrete-event
systems-Automata and Petri Net perspectives.” Lecture notes in control and
information sciences 433 (2013). p.249

van der Aalst,W. “Fairness, Place Transition Invariants, and Siphons and
Traps”, Available at (http://cpntools.org) , (Reached on: 18.03.2016).

Jensen, Kurt, Sgren Christensen, and Lars M. Kristensen. "CPN tools
state space manual.” Department of Computer Science, Univerisity of
Aarhus(2006).

Baier, Christel, and Joost-Pieter Katoen.” Principles of model checking”.
Vol. 26202649. Cambridge: MIT press, 2008.

Clarke, Edmund M., Orna Grumberg, and Doron Peled. “Model
Checking”. MIT press, 1999.

URL.: https://en.wikipedia.org/wiki/Tree_structure (Reached on: 19.04.2016).

URL.: https://en.wikipedia.org/wiki/Computation_tree_logic_(Reached on:
19.04.2016).

Christensen, Soren, and Kjeld H. Mortensen. "Design/CPN ASK-CTL
Manual." University of Aarhus (1996).

47

APPENDICES

Appendix A: How CPN works
Appendix B: Demonstration

Appendix C: Validation Queries

49

Appendix A

As it was mentioned before, CPN like any petri net consists of places (eclipses) and
transitions (rectangles), the token is carried over the places, every place must have a
color, and the token on the place must belong to the same color of the place, Figure
A.1 shows a partial view from a net that was used in [20], It can be seen that “P01-
OutRoutplace color is defined as “TRAIN” and “p22-SigOft” place color is defined
as “SIG”. “tr(1)” token belongs to “TRAIN” and “s” token belongs to “SIG”.
“tr(1)” cannot be held by “SIG” and “s” cannot be held to by “P01-OutRout”.

: =
p22-Sigoff

17 tr{1)++ SIG
1 tr(2)

oct

1" free

frea .
P12-1stTrack Locking |—
1.1 free
¥ T T e R e
o =

Figure A.1: Train yard model.

As it in petri nets, places and transition are connected through arcs, in CPN arcs must
have inscriptions, which indicate which type of token is going to be transferred by
arcs. For arcs going out of places, inscriptions can be either variable (which just
moves the token in the place) or token name (which just accepts specified token from

place color).

For arcs going out of transitions it is the same for the ones going out of places, but if
the inscription is variable, the transition must have another arc as input which has the
same inscription. In order to fire the transition all input arcs must be enabled. When
the transition is enabled it becomes green in Figure A.1. “EnteringRout” transition is
not enabled because “p21-SigOn” place does not have a token. “Locking” transition

is enabled (it is green) and can be fired.

By firing “Locking” transition, the token on “p22-SigOff” place will be moved to
“p21-SigOn” place (Figure A.2). With these conditions, “EnteringRout” transition is

enabled and can be fired.

50

SIG

1's

5
- > p22-5igoff
17tr(1)++ SIG
17tr(2)
(PO1-OutRout 110 1 tr(1)
- 1 1 occ s |5
1" free

free

Appraching

PO2-OutRout 110 1°tr(2)

P11-AppTrack

TRACKSTA

free oc

1" free

free
Locking
3 RiL ;L free|

7

Figure A.2: Firing of “Locking” transition.

By firing “EnteringRout” transition, 3 moves will be done:

1. “pl2-1stTrack” place will send “free” token and receive “occ” token.

2. The token on “p02-OutRout” place will be moved to “p04-CrossingSignal”
place.

3. The token on “p21-SigOn” place will go and come back to the same place

through “EnteringRout” transition (Figure A.3).

~
s1G
1s
3
17 tr(1)++ SIG
17tr(2)
(POL-OutRout A0 17 &r{1)
_ 1) 1 occ s
TRAIN 1 fra s
free
Approching .“ P1l1-AppTrack
oc
Lackir
g
—
PO4-AtFirstTrack 1) 1 free|
TRA] l/

Figure A.3: Firing of "EnteringRout” transition.

51

Appendix B

The main model in [20] is used with small modifications (Figure B.1) to demonstrate

the ability of CPN verification and validation.

s(/ -] »{ p2i-Sigon

SIG, .
175

1 er(1) 4% ‘/';'2_2;;;‘\

e e S, (S p—
PO1-OutRout 32 }E:Eg“ Bl
catpedl, 1 1 free

1" free

) free s |s
Appraching Pli-AppTrack
“ TRACKSTA
PD2-CutRo ut

TRAIN

free oc

1'free 3

fi r
P12-1stTrack Lecking p3l-Routlock
1.1 free
o= y TREEE ROUTE
ocg
PD3-CrossingSignal
TRAIN
Inta 1stTrack

PD4-AtFirstTrack
TRAL
free 4w
LeawingFirstTrack [~ o0 Pp13-2ndTrack unLacking p32-LockStare 1 1°r

TRACKSTA ROUTE

POS-Ar2ndTrack free
TRAIN

L 4
,_
ROUTE

tt
Y

LeavingRout

PO&-OutTrack

TRAIN

Figure B.1: Main CPN model 1.
In this model, it was proposed that there is a section in the track protected by a
signal. Two trains will pass from this section. The rules of the section are that the
two trains cannot enter the sections without permission from the signal, trains can be
in the section at the same time and the trains are not allowed to go back through the
section. By generating the state space nodes, arrangement in Figure B.2 is resulted.
Nodel is the initial marking, there are two possibilities, tr(1) can pass first or tr(2)
can pass first If tr(1) passes first marking2 is reached, but if tr(2) passes first
marking3 is reached (Figure B.3). Based on every possibility, different scenarios can
occur. Figure B.2 and Figure B.3 show the different scenarios, tr(1) is the first
scenario which is surrounded by red and tr(2) is the first scenario which is

surrounded by blue.

52

36 51 52
-E-B--

x.‘o«

WLt

m 16 (20) 25
21 22 13
PR, DLOE
S S O e L ol UL O g O €
T
WAt R 02
10 lll

w-"

Figure B.2: State space nodes of model 1.

| 1

first_pperation'POL 1: 17 er{l)++] | 3 2

17 er(2) first_operation 'PO1 1: 17 er(1)|first_operation'POL 1¢ 17 tr(2)
| first_pperation'P02 1: empty first_operation 'PO2 1: 17 tr(2)| first_pperation'PO2 1: 17 tr(1)
first_opperation'PO3 1: empty first_operation P03 1: empty |first_operation'P03 1! empty
first_pperation'P04 1! empty first_operation'P04 1: empry |first_pperation'P04 1! empty
| first_operation'POS 1: empty first_operation'POS 1: empty |first_pperation'PO05 1! empty
first_pperation'P12 1: 17 free first_pperation'P12 1: 1 free |first_pperation'P12 1: 17 free
| first_operation'P11 1: 1" free first_operation P11 1: 1" occ |first_operation'P11 1t 17 occ
first_pperation'P13 1: 1" free first_operation P13 1: 1" free |first_operation'P13 1: 17 free
first_pperation'p221: 175 first_eoperatien'p221: 17 s first_pperation'p221: 1735

| first_pperation'p21 1: empty first_operation'p21 1: empry |first_pperation'p21 1! empty
first_pperation'p33 1! empty first_eperation'p33 1: empty |first_cperation'p33 1: empty
|first_pperation'p321: 1°r first_pperation'p32 1: 1°r first_pperation'p32 1: 171
first_pperation'p31 1: empty first_operation'p31 1: empty |first_operation'p31 1: empty
first_pperation'PO6 1: empty first_pperation POB 1t empty |first_operation'PO6 1! empty

Figure B.3: Different marking of model1.
Figure B.4 shows the markings that occurred based on tr(2) First scenario. tr(1)
cannot move till marking7, because the token is in P21 not in P22 (shown in red in
Figure B.4). After reaching marking9, there are two enabled transitions-
“Approaching” transition and “LeavingFirstTrack” transition. One of them will fired
first randomly. After that, the process will be continued based on the random order

that was applied (Figure B.5).

1:

first_operation'PO1 1: 17 tr{l)+4+] 3: 5: 7:

1°tr(2) first_operation'P01 1: 1" tr(1)] first_operation'P01 1: 1" tr{1)}first_operation'P01 1: 1" tr(1)
first_operation'P02 1: empty first_operation'P0O2 1: 1" tr(2)| first_operation'P02 1: 1" tr(2)\ first_operation'P02 1: ampty
first_operation'P03 1: empty first_operation'P03 1. empty | first_operation'P03 1: empty |first_operation'P03 1: 1" tr(2)
first_operation'P04 1: empty first_operation'P04 1: empty | first_operation'P04 1: empty |first_operation'P04 1: empty
first_operation'P05S 1: empty first_operation'P0S 1: empty | first_operation'P0S 1: ampty |first_operation'P05 1: empty
first_operation'P12 1: 1" free first_operation'P12 1; 1'free | first_operation'’P12 1: 1" frea|first_operation'P12 1: 1" occ
first_operation'P11 1: 1" free first_operation'P11 1: 1" occ | first_operation'P11 1: 1" oce |first_operation'P11 1: 1° oce
first_operation'P12 1: 1" frea first_operation'P13 1: 1 free | first_operation'P12 1: 1" free|first_operation'P13 1: 1" frea
first_operation'p22 1: 1°s first_operation'p22 1: 1" s first_operation'p22 1: ampty[first_operation p22 1: empty
first_operation'p21 1: empty first_operation'p21 1: empty | first_operation'p21 1: 1°s Jfirst_operation'p21 1: 1" s
first_operation'p33 1: empty first_operation'p33 1. empty | first_operation'p33 1: empty [TI1SL_operauonpag 1; 2mpry
first_operation'p32 1: 1°r first_operation'p32 1: 1°r first_operation'p32 1: empty |first_opaeration'p32 1: empty
first_operation'p31 1: empty first_operation'p31 1: empty | first_operation'p31 1: 1°r first_operation'p31 1: 1°r
first_operation'P06 1: empty first_operation'P06 1: empty | first_operation'P06 1: ampty |first_operation'P06 1: ampty

Figure B.4: tr(2) first scenario.

53

=N 12: 13:

first_operation'P01 1; 1" tr(1)f first_ocperation'P01 1: empty | first_operation'P01 1: 17 tr(1)
first_operation'P02 1; empty | first_operation'P02 1: 17 tr(1)} first_operation'P02 1: empty
first_operation'P03 1: empty | first_operation'P03 1: empty | first_operation'P03 1: empty
first_operation'P04 1: 1" tr(2)| first_operation'P04 1: 1" tr(2)} first_operation'P04 1: empty
first_operation'P0OS 1: empty | first_operation'P05 1: empty | first_operation'P05S 1: 17 tr(2)
first_operation'P12 1; 1’ occ | first_operation'P12 1: 1" acc | first_operation'P12 1: 1" free
first_operation'P11 1; 1" free | first_cperation'P11 1: 1" acc | first_operation'P11 1: 1" free
first_operation'P13 1: 1 free | first_operation'P13 1: 1 free| first_operation'P13 1: 1" occ
first_operation'p22 1: 1 s first_operation'p22 1: 1' s first_operation'p22 1: 1' s
first_operation'p21 1: empty | first_operation'p21 1: empty | first_operation'p21 1: empty
first_operation'p33 1: empty | first_operation'p33 1: empty | first_operation'p33 1: empty
first_operation'p32 1: empty | first_operation'p32 1: empty | first_operation'p32 1: empty
first_operation'p31 1: 1°r first_oparation'p31 1: 1°r first_operation'p31 1: 1°r
first_operation'P0& 1: empty | first_operation'P06 1: empty | first_operation'P06 1: empty

Figure B.5: Two enabled transition.
Figure B.6 shows part of the state space report of modell. The system has 52
nodes/markings and 70 arcs in space state and Scc graph. Node52 is home marking
which means that it is reachable from any marking that can be reached from initial
marking. Moreover node52 is dead marking. When node52 is reached, no other event

can occur and this can be confirmed in Figure B.2.

Statistics

State Space
Nodes: 52
Lrcs: 70
Secs: o]
Status: Full

S5ce Graph
Nodes: 52
Rrcs: 70
Secs: a

Home Properties

Heme Markings

[321]

Liveness Properties

Dead Markings
[321]

Dead Transiticn Instances
Nene

Live Transiticn Instances

HNeone
Fairness Properties

Neo infinite cccurrence segquences.

Figure B.6: Part of the state space report of modell.
Modell must have one deadlock marking when both trains leave the section. To

make sure that the system reaches a safe deadlock, next query was used.

(*Query 1%)

fun ValidTerminal n=(Mark.fo'P01 1 n=[] andalso

54

Mark.fo'P02 1 n=[] andalso
Mark.fo'P04 1 n=[] andalso
Mark.fo'P03 1 n=[] andalso
Mark.fo'P05 1 n=[])

fun InvalidTerminal()=PredNodes(ListDeadMarkings(),fn n=>not(ValidTerminal
n),NoLimit);

let
val fid=TextlO.openOut"DeadlockMarkings.txt"
val _ = TextlO.output(fid,"List of deadlock markings:\n")
val _ = EvalNodes(InvalidTerminal(),fn n=>INT.output(fid,n))
in
TextlO.closeOut(fid)
end;

In this query, the criterion of the safe deadlock was defined, so it examines all the
deadlock of the system then shows the unsafe deadlock. For modell it was found that

there is no unsafe deadlock.

To examine if the system has self-loop next query was implemented, and it showed
that there is no self-loop, which means that safe termination cases are included in the

list of dead markings.

(*Query2¥*)

fun SelfLoopTerminal n=(OutNodes(n)=[n])

fun InvalidTerminal()=PredNodes(EntireGraph,fn n=>(SelfLoopTerminal
n),NoLimit);

let
val fid=TextlO.openOut"ListOfSelfLoops.txt"
val _ = TextlO.output(fid,"List of self terminals:\n™)
val _ = EvalNodes(InvalidTerminal(),fn n=>INT.output(fid,n))
in
TextlO.closeOut(fid)
end;

55

To examine if the system has livelocks, next query was implemented, and it showed

that system has no livelocks.

(*Query3*)

fun ListTerminalSCCs()=PredAllSccs(SccTerminal);

fun InvalidTermSCC()=PredSccs(ListTerminalSCCs(),fn n=>not(SccTrivial
n),NoLimit);

let
val fid=TextlO.openOut"AbsenceOfLiveLocks.txt"
val _ = if InvalidTermSCC()=[]
then TextlO.output(fid,"No Livelocks!")
else TextlO.output(fid,"yes Livelocks!")
in
TextlO.closeOut(fid)
end;

Till now the mentioned queries verify the system and show that system can work
probably. To validate the system ASK-CTL queries are going to be used. The first
property to be checked is that train will not go back. Next query show if the train can
go back between any two points. And for Modell this property is validated. This

query must be implemented between every two points in the section.

(*Query4™)
fun StartMarking n =(Mark.fo'P02 1 n =[tr(1)]);
fun EndMarking n =(Mark.fo'P03 1 n =[tr(1)]);
val myASKCTLformula=POS(AND(NF("olmuyor",StartMarking),
EXIST_UNTIL((NF("",StartMarking)),
NF(" PO3 to P02", EndMarking))));

eval_node myASKCTLformula InitNode;

Last restriction to be validated, no more than one train can be in the section at the

same time, next query was used for this purposes, all the possible probabilities was

56

examined. The query shows that it is not possible for more than one train to be in the

section at the same time.

(*Query5¥)
fun UnexpectedMarking n =(Mark.fo'P02 1 n=[tr(1)] andalso
Mark.fo'P03 1 n=[tr(2)]);
val myASKCTLformula=INV(NOT(NF("olmuyor",UnexpectedMarking)));

eval_node myASKCTLformula InitNode;

The queries show that the system is working properly. To make sure that that the
queries are working properly, model 1 was modified by adding two exit places to the
system, “P07” and “P08” model2 was resulted (Figure B.7)

P06-OutTrack

None

PO8-2ndExit
TRAIN TRAIN

Dead Markings
[97,98,99,100]

Figure B.7: Model2.
It can be seen from the space state nodes that there are 4 possible dead markings for
model2, space state report shows the number of deadlock markings space state
nodes. It is noticed from Figure B.8 that all the dead markings have the same settings
apart from the last two places. It can be seen too that model2 has no home markings.

97

first_operation'PO1 1: empty
first_operation'P02 1: empty
first_operation'P03 1: empty
first_operation'P04 1: empty
first_operation'P05S 1: empty
first_operation'P12 1: 1" free
first_operation'P11 1: 1" free
first_operation'P12 1: 1’ free
first_operation'p22 1: 1's
first_operation'p21 1: empty
first_operation'p23 1: empty
first_operation'p32 1: 1'r
first_operation'p31 1: empty
first_operation'P06 1: empty
first_operation'P07 1: empty
first_operation'P08 1: 1" tr{1)++
1°tr(2)

98: 99: 100: }
first_operation'P01 1: empty | |first_operation'PO1 1; empty f!rst_operat!on‘PlJl 1: empty
first_operation'P02 1: empty | |first_operation'P02 1: empty | first_operation’P02 1: empty
first_operation'P03 1: empty | |first_operation'P03 1: empty | | first_operationPOZ 1: empty
first_operation'P04 1: empty | |first_operation'P04 1; empty f!rst_operat!on‘P04 1: empty
first_operation'P0S 1: empty | |first_operation'P05 1: empty | first_operation'P0S 1: empty
first_operation'P12 1: 1 free| |first_operation'P12 1: 1 free | first_operation’P12 1: 1" free
first_operation'P11 1: 1 free| |first_operation'P11 1: 1 free | first_operation’P11 1: 1" free
first_operation’P13 1: 1 free| first_operation'P13 1: 1 free | first_operationP13 1: 1'free
first_operation'p22 1: 1" s first_operation'p22 1: 1" s first_operation'p22 1: 1°s5
first_operation'p21 1: empty | |first_operation'p21 1; empty f!rst_operat!on‘pzl 1: empty
first_operation'p33 1: empty | |first_operation'p33 1; empty f!fSt_DDEFat!Uﬂ‘D33 1: empty
first_operation'p32 1: 1°r first_operation'p32 1: 1'r first_operation'p32 1: 1°r
first_operation'p31 1: empty | |first_operation'p31 1; empty f!rst_operat!on‘p31 1: empty
first_operation'P06 1: empty | |first_operation'P06 1: empty | first_operation’P0& 1: empty
first_operation'P07 1: 1" tr(1)| |first_operation'P07 1: 1" tr(2)| |first_operation’P07 1. 17 tr(1)++
first_operation'P08 1: 1 tr(2)| |first_operation'POB 1: 1" tr(1)| 1 tr(2)

first_operation'PO8 1: empty

Figure B.8: Model2 deadlock markings state space nodes.

57

Qureyl was used to prove that those deadlock markings are safe — some changes
where applied to the query to fit with model2. It is not necessary to test other query
on model2 because it has no big difference from modell. So new model were
produced (model3) by modifying modell by adding a loop to the end of the net as

shown in Figure B.9.

Figure B.9: Model3.

Figure B.10 shows that the number of state space nodes and arcs is not the same of
Scc Graph's, which indicates that there is a cycle\s in model3, from Figure B.9 the
existence of cycles can be approved, It can be seen too that the nodes involved in the
cycle are the same in Figure B.9 and in Figure B.10, the system has no deadlock
markings, but it has 4 home markings- same markings involved on the cycle. Query3

was implemented to model3 in and it emphasized that the model3 has livelocks.

State Space

Hodes: 75
Rrca: 138
Seca: a
Status: Full
Sce Graph

Nodes: 352
Rrcs: 90
Seca: i}

Home Properties
Home Markings
[70,73,74,75]
Liwveness Properties
Dead Markings
Hone
Dead Transiticn Instances
None
Live Transition Instances
first cperation'll 1
first cperaticn'l2 1
Fairneas ?roperties
Impartial Transiticn Instances
first_cperaticn'll 1
first cperation'lZ 1
Fair Transition Instances
Hone
Just Transiticn Instances
None
Transiticn Instances with Mo Fairneass
first_cperaticn'Appreching 1
first cperation'EnteringRout 1
first cperaticn'IntolstTrack 1
first:operation'LeavingFirstTrack 1
first operation'LeavingRout 1
first cperaticn'Locking 1
first_cperaticn'unLocking 1

Figure B.10:Model3 space state report.

58

Model4 was generated by adding a cycle in the middle of modell (Figure B.11), the
area surrounded by red is the modified part, when train comes to P04 a random rout
will be followed, either by entering the loop or by staying on the normal track. Figure
B.12 shows model4 state space report, from the report the existence of cycle\s can be
figured out easily, by examining the state space graphs, the existence of livelocks
loops can be easily observed too. From the results, the ability of CPN tools to model,

verify and validate the system was demonstrated.

free
EnteringRout P1

occ
PO2-CrassingSign al
— TRAII
— L
k—} Inte1stTrack
t
-
loop3 loopt
t
Pass PO4-AtFirstTrack
TRAL
=
- free —
pass LeavingFirstTrack | - ol S PLI
loop 2 -
" TRAIN
TRAIN
Qi_n racl
TRAIN,
t
k4
r
|Leavinanut|.‘.
Figure B.11: Model4.
Statistics
State Space
Hodes: B8
Ares: 13¢
Secs: 0
Status: Full
Seg Graph
Nodes: 7€
Arcs: 11z
Secs:]
Home Properties
Home Markings
Hone
Liwveness Properties
Dead Markings
[gg]
Dead Transition Instances
None
Live Transition Instances
Hone ((o 19 { as
Fairness Properties I)l 2 7 |(>| 1it e NET

Fair Transition Instances

--- J\ - Sl -
Impartial Transicion Instances ‘*_.. —
first operation'loopZ 1 17
first_cperation’loop3 1 \ J\] '-J‘/\

Hone

Transition Instances with Mo Fairness
first_cperation’Bpproching 1
fizst_operstion'lesvingBout 1

Figure B.12: Model4 space state report and graph.

59

Appendix C

The rules were mentioned in 3.2 will be written again followed by its query.

1. No more than one train can be in 1BT at the same time.

fun UnexpectedMarking n =(Mark.S1BT'P02_Appl1BT 1 n =[tr(1)] andalso
Mark.S1IBT'At1BT 1 n =[tr(1)]);

val myASKCTLformula=INV(NOT(NF(" No Than one Train can be in

1BT",UnexpectedMarking)));

eval_node myASKCTLformula InitNode;

2. B2D is not giving permission if a rout is reserved or there is another train in
1BT.

fun StartMarking n =(Mark.S1BT'P03_CrossingB2D 1 n =[] andalso
Mark.S1BT'At1BT 1 n =[] andalso
Mark.S1BT'B2D 1 n=[r] andalso
Mark. TCC'P1BT_1ST 1 n=[true] andalso
Mark. TCC'P1BT_2ST 1 n=[] andalso
Mark. TCC'P1BT _3ST 1 n=[]);
fun EndMarking n =(Mark.S1BT'B2D 1 n=[q]);
val myASKCTLformula=POS(AND(NF("it can happen",StartMarking),
EXIST_UNTIL((NF("",StartMarking)),
NF(" P03 to P02", EndMarking))));
eval_node myASKCTLformula InitNode;

3. No train leaves 1BT without a reserved rout.

fun UnexpectedMarking n =(Mark.S1BT'At1BT 1 n =[tr(1)] andalso
Mark. TCC'P1BT_1ST 1 n=[] andalso

Mark. TCC'P1BT_2ST 1 n=[] andalso

Mark. TCC'P1BT _3ST 1 n=[]);

val myASKCTLformula=INV(NOT(NF(" it cannot
happen”,UnexpectedMarking)));

eval_node myASKCTLformula InitNode;

4. For 1BT_1ST to be reserved, none of the routs must be reversed, a train must
be on section 1BT, section 1ST must be free, section 3T must be free and

request to reserve 1BT_1ST from TCC must be delivered.

fun StartMarking n =(Mark.S1BT'At1BT_Status 1 n =[true] andalso
Mark.S1ST'At1ST_Status 1 n =[false] andalso

Mark. TCC'P1BT_1ST 1 n=[] andalso

Mark. TCC'P1BT_2ST 1 n=[] andalso

Mark. TCC'P1BT_3ST 1 n=[true] andalso

Mark. TCC'PTCC 1 n=[rout(1)]);

fun EndMarking n =(Mark. TCC'P1BT_1ST 1 n=[true]);

60

val myASKCTLformula=POS(AND(NF("it can happen",StartMarking),
EXIST_UNTIL((NF("",StartMarking)),
NF(" P03 to P02", EndMarking))));
eval_node myASKCTLformula InitNode;

For 1BT_2ST to be reserved, none of the routs must be reversed, a train must
be on section 1BT, section 2ST must be free, section 3T must be free and

request to reserve 1BT_2ST from TCC must be delivered.

fun StartMarking n =(Mark.S1BT'At1BT_Status 1 n =[true] andalso
Mark.S2ST'At2ST_Status 1 n =[false] andalso
Mark. TCC'P1BT_1ST 1 n=[] andalso
Mark. TCC'P1BT_2ST 1 n=[] andalso
Mark. TCC'P1BT_3ST 1 n=[] andalso
Mark. TCC'PTCC 1 n=[rout(1)]);
fun EndMarking n =(Mark. TCC'P1BT_2ST 1 n=[true]);
val myASKCTLformula=POS(AND(NF("it can happen",StartMarking),
EXIST_UNTIL((NF("",StartMarking)),
NF(" P03 to P02", EndMarking))));
eval_node myASKCTLformula InitNode;

For 1BT_3ST to be reserved, none of the routs must be reversed, a train must
be on section 1BT, section 3ST must be free, section 3T must be free and

request to reserve 1BT_3ST from TCC must be delivered.

fun StartMarking n =(Mark.S1BT'At1BT_Status 1 n =[true] andalso
Mark.S3ST'At3ST_Status 1 n =[false] andalso
Mark. TCC'P1BT_1ST 1 n=[] andalso
Mark. TCC'P1BT_2ST 1 n=[] andalso
Mark. TCC'P1BT_3ST 1 n=[] andalso
Mark. TCC'PTCC 1 n=[rout(3)]);
fun EndMarking n =(Mark. TCC'P1BT_3ST 1 n=[true]);
val myASKCTLformula=POS(AND(NF("it can happen",StartMarking),
EXIST_UNTIL((NF("",StartMarking)),
NF(" P03 to P02", EndMarking))));
eval_node myASKCTLformula InitNode;

No train can enter 3T without permission from 2D.

fun StartMarking n =(Mark.S3T'P02_App3T 1 n =[tr(1)] andalso
Mark.S3T'P2D 1 n =[r]);
fun EndMarking n =(Mark.S3T'P03_Crossing2D 1 n =[tr(1)]);
val myASKCTLformula=POS(AND(NF("it can happen”,StartMarking),
EXIST_UNTIL((NF("",StartMarking)),
NF(" PO3 to P02", EndMarking))));
eval_node myASKCTLformula InitNode;

61

8.

In 1BT_2ST reservation case, for 2D to give permission, SW1 and SW3 must
be normal, 1BT_2ST rout must be reserved and 52DA is not red.

fun StartMarking n =(Mark.SW1'PSW1 N 1 n =[actv] andalso
Mark.SW3'PSW3_N 1 n =[actv] andalso
Mark. TCC'P1BT_2ST 1 n=[true] andalso
Mark.S3T'P2D_ON 1 n=[r]);
fun EndMarking n =(Mark.S3T'P2D 1 n=[y]
orelse Mark.S3T'P2D 1 n=[g]);
val myASKCTLformula=POS(AND(NF("it can happen",StartMarking),
EXIST_UNTIL((NF("" StartMarking)),
NF(" P03 to P02", EndMarking))));
eval_node myASKCTLformula InitNode;

In 1BT_1ST reservation case, for 2D to give a permission, SW1 must be

reversed, 1BT_1ST rout must be reserved and 54D is not red.

10.

fun StartMarking n =(Mark.SW1'PSW1 R 1 n =[actv] andalso
Mark. TCC'P1BT_1ST 1 n=[true] andalso
Mark.S3T'P2D_ON 1 n=[r]);
fun EndMarking n =(Mark.S3T'P2D 1 n=[yy]
orelse Mark.S3T'P2D 1 n=[yq]);
val myASKCTLformula=POS(AND(NF("it can happen",StartMarking),
EXIST_UNTIL((NF("",StartMarking)),
NF(" P03 to P02", EndMarking))));
eval_node myASKCTLformula InitNode;

In 1BT_3ST reservation case, for 2D to give permission, SW1 must be
normal, SW3 must be reversed, 1BT_3ST rout must be reserved and 52DB is

not red.

11.

fun StartMarking n =(Mark.SW1'PSW1 N 1 n =[actv] andalso
Mark.SW3'PSW3_R 1 n =[actv] andalso
Mark. TCC'P1BT_3ST 1 n=[true] andalso
Mark.S3T'P2D_ON 1 n=[r]);
fun EndMarking n =(Mark.S3T'P2D 1 n=[yy]
orelse Mark.S3T'P2D 1 n=[yq]);
val myASKCTLformula=POS(AND(NF("it can happen",StartMarking),
EXIST_UNTIL((NF(™,StartMarking)),
NF(" P03 to P02", EndMarking))));
eval_node myASKCTLformula InitNode;

No train can enter 3T if there is another train in the section.
(Next rules will be applied for 1ST, 2ST and 3ST).

fun UnexpectedMarking n =(Mark.S3T'P02_App3T 1 n =[tr(2)] andalso
Mark.S3T'At3T 1 n =[tr(1)]);

62

12.

val myASKCTLformula=INV(NOT(NF(" it can not
happen”,UnexpectedMarking)));
eval_node myASKCTLformula InitNode;

While train is going out of 3T section, it must assure that the section that the

train is going to, is cannot be entered if the appropriate rout is not reserved.

13.

fun UnexpectedMarking n =(Mark.S3T'Appl1ST 1 n =[tr(2)] andalso

Mark. TCC'P1BT_1ST 1 n =[true]);
val myASKCTLformula=INV(NOT(NF(" it can not
happen",UnexpectedMarking)));
eval_node myASKCTLformula InitNode;

For 52DA to give permission, 1BT_2ST rout be reserved.

fun StartMarking n =(Mark.S2ST'P52DA 1 n =[r] andalso
Mark. TCC'P1BT_2ST 1 n=[]);
fun EndMarking n =(Mark.S2ST'P52DA 1 n=[yy]
orelse Mark.S2ST'P52DA 1 n=[g]
orelse Mark.S2ST'P52DA 1 n=[y]
orelse Mark.S2ST'P52DA 1 n=[yq]);
val myASKCTLformula=POS(AND(NF("it can happen",StartMarking),
EXIST_UNTIL((NF("" StartMarking)),
NF(" P03 to P02", EndMarking))));
eval_node myASKCTLformula InitNode;

63

