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OZET

KESIRLI BLACK-SCHOLES OPSiYON FIYATLAMA
DENKLEMLERININ YAKLASIK ANALITIK COZUMLERI
DOKTORA TEZi
MEHMET YAVUZ
BALIKESIR UNIVERSITESI FEN BIiLIMLERI ENSTIiTUSU
MATEMATIK ANABILIM DALI
(TEZ DANISMANI: DOC. DR. NECATI OZDEMIR)

BALIKESIR, EKIM - 2016

Bu tezde zaman-kesirli mertebeden kismi Black-Scholes opsiyon fiyatlama
denklemlerinin yaklasik analitik ¢6zlimleri ele alinmistir. Kesirli kismi
diferansiyel denklemlerin ¢o6ziim yontemlerinden olan Adomian Ayristirma
Yoéntemi (AAY), Kesirli Varyasyonel Iterasyon Metodu (KVIM), Laplace
Homotopi Pertiirbasyon Metodu (LHPM), Genellestirilmis Diferansiyel Doniistim
Metodu (GDDM), Cok Degiskenli Padé Yaklasimi (CPY) ve Sonlu Fark
Yaklasimi (SFY) incelenmistir. Calismanin asil amaci, bu metotlar1 kullanarak,
finans literatiiriinde 6nemli opsiyon fiyatlama modellerinden Kesirli Black-
Scholes Opsiyon Fiyatlama Denklemlerinin (KBSD) yaklasik analitik ¢éziimlerini
elde etmektir. Ilk olarak, Black-Scholes denklemi kesirli durumlar igin de
opsiyonun fiyatin1 hesaplayacak sekilde kesirli Black-Scholes denklemi olarak
yeniden tanimlanmis, daha sonra bu denkleme AAY, KVIM, LHPM, GDDM ve
CPY uygulanarak yaklasik analitik ¢oztimler elde edilmistir. Daha sonra da SFY
ile KBSD’nin  niimerik  ¢6ziimii  bulunmustur.  Bulunan  sonuglar
degerlendirildiginde kesirli Black-Scholes denkleminin yaklagik analitik ve
nlimerik ¢6ziimlerinin elde edilmesinde uygulanan yontemlerin son derece etkili
ve uyumlu oldugu gorilmiistiir. Elde edilen sonuglar tablo ve grafiklerle
sunulmustur. Calismamizda kullanilan kesirli tiirevler icin Caputo kesirli tiirevi
temel alinmistir.

ANAHTAR KELIMELER: kesirli kismi diferansiyel denklem, Black-Scholes
opsiyon fiyatlama modeli, kesirli Black-Scholes denklemi, yaklasik analitik
metotlar, cok degiskenli Padé yaklasimi, Caputo kesirli tiirevi.
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ABSTRACT

APPROXIMATE ANALYTICAL SOLUTIONS OF FRACTIONAL
BLACK-SCHOLES OPTION PRICING EQUATIONS
PH.D THESIS
MEHMET YAVUZ
BALIKESIR UNIVERSITY INSTITUTE OF SCIENCE

MATHEMATICS
(SUPERVISOR: ASSOC. PROF. DR. NECATI OZDEMIR)
BALIKESIR, OCTOBER 2016

In this thesis, approximate analytical solutions of time-fractional partial
Black-Scholes option pricing equations are considered. Adomian Decomposition
Method (ADM), Fractional Variational Iteration Method (FVIM), Laplace
Homotopy Perturbation Method (LHPM), Generalized Differential Transform
Method (GDTM), Multivariate Padé Approximation Method (MPAM) and Finite
Difference Method (FDM), which are used for solving fractional partial
differential equations, are studied. The main focus of this study is to obtain that
the solution of time-fractional Black-Scholes option pricing equation (FBSE) with
the initial condition for a European call option pricing problem using these
methods. First of all, we redefine the Black-Scholes equation as Fractional Black-
Scholes Equation (FBSE) that computes the option price for fractional values.
Then we have applied the ADM, FVIM, LHPM, GDTM and MPAM to the FBSE
in order to solve approximate analytically this equation. Also we have applied the
FDM to the FBSE for obtaining numerical solution. The obtained results denote
that the mentioned methods are very quick and accurate for FBSE. Also, the
results have been presented in tables and figures. The fractional derivative is
understood in the Caputo sense.

KEYWORDS: fractional partial differential equation, Black-Scholes option
pricing model, fractional Black-Scholes equation, approximate analytical
methods, multivariate Padé approximation, Caputo fractional derivative.
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ONSOZ

Matematiksel caligsma disiplininin kazanilmasinda lisansiistii egitimin yeri
oldukca onemlidir. Leonardo da Vinci’'nin de ifade ettigi gibi “Matematiksel
olarak gosterilemeyen higbir aragtirma gergek bilim sayilamaz.” Dolayisiyla bilim
yapabilmek i¢in matematik dilini 6grenmek ve bu dili diger disiplinlerle birlestirip
farkli tiirdeki problemlere uygulayabilmek biiyiikk 6nem arz eder. Bu siirecin
kazanilmasinda danismanlar siiphesiz basrolleri oynar. Ciinkii uzun soluklu
matematik diinyasinda ilerleyebilmenin anahtarlar1 kendilerindedir. Bu baglamda,
kendisinden lisansiistli egitimim boyunca farkli konularla tanisarak kazandigim
disiplinli calisma aligkanligi, 6zveri ve sabirla mesafe kat etme, her an potansiyel
motivasyonlu bulunma hali ve dogru bilgiye dogru zamanda yonlendirilme gibi
ozellikleri derinden yasadigim degerli hocam ve danigmanim Sayin Dog. Dr.
Necati OZDEMIR e sonsuz siikranlarimi arz ederim.

Doktora siirecimde kendisinden ¢ok fazla destek aldigim, 6zellikle finans
matematigi altyapisint kazanmamda {izerimde c¢ok emegi olan, ¢ok yogun
zamanlarinda bile bana zaman ayirabilen ve durusundan yiiksek motivasyon
kazandigim degerli hocam Saym Do¢. Dr. Yeliz Yolcu OKUR’a igten
tesekkiirlerimi sunarim. Ayrica tez izleme komitemde bulunan ve 6zellikle kesirli
kalkiiliis alaninda yoluma 1s1ik tutan Saymn Yrd. Dog¢. Dr. Derya AVCI’ya da
tesekkiirii bir borg bilirim.

Ayrica yasamimin her asamasinda varliklarindan biiyiik giiven duydugum,
her zaman destek, ilgi ve sevgilerini hissettigim basta annem olmak iizere tiim
aileme minnetlerimi sunuyorum.

Son olarak, lisansiistii egitimim boyunca kendilerine gereken ilgi ve
alakay1 gosteremedigimi diisiindiiglim ve bana bu siirecte manevi destekleriyle
sahip ¢ikan sevgili esim ve tezimi kendisine armagan ettiim biricik kizim
Giilvera’ya anlayis, sabir ve dualarindan dolayr ¢ok minnettarim.

iX



1. GIRIS

Bilimin degisik dallarinda ortaya c¢ikan problemlere ait matematiksel
modellerin  olusturulmast uygulamali matematikte karsilasilan en Onemli
problemlerden biridir. Bu problemler adi diferansiyel denklem, kismi diferansiyel
denklem, cebirsel-diferansiyel denklem ve son zamanlarda da kesirli mertebeden
diferansiyel denklem olarak karsimiza ¢ikmaktadir. Bu tip denklemlerin analitik
¢oziimleri denklemin yapisina gore degismektedir. Ozellikle analitik olarak
coziilemeyen denklemlerin nilimerik ¢6ziimlerinin arastirilmasi, matematiksel
modelleme teorisinin gelismesine biiyiik katki saglamistir. Bilgisayar teknolojisinin
gelismesi sonucunda, bu alanda yapilan caligmalar olduk¢a biiyiik bir hiz

kazanmustir.

Kesirli kalkiiliis terimi ilk olarak 30 Eylil 1695 yilinda {inlii matematikgi
L’Hospital’in, diferansiyel hesabin kurucusu olarak bilinen Leibnitz’e yazdigi
mektupta 1/2. mertebeden tiirevin ne anlama geldigini sormasiyla ortaya ¢ikmustir.
Daha sonralar1 keyfi mertebeden tiirev ve integral olarak adlandirmanin dogru
olacag1 diisiiniilse de L’Hospital’den giiniimiize kadar kesirli hesaplar adiyla

gelmistir.

Analitik ve yaklasik ¢6ziim yontemleri; kesirli kismi tiirevli diferansiyel
denklemleri, kesirli tiirevli adi diferansiyel denklemleri ve integral denklemlerini
¢ozmek i¢in Onerilebilir. En yaygin olarak kullanilan ¢6ziim yontemleri varyasyonel
iterasyon, homotopi pertiirbasyon, Adomian ayrisim, diferansiyel doniisiim yontemi
ve Padé yaklasimidir. Bunlara ek olarak diger klasik yaklasik ¢6ziim yontemleri de
vardir. Bu yontemlerden bazilari, Laplace doniisiimii, kesirli Green fonksiyonu ve

Mellin doniisiimii yontemleridir [1].

Opsiyon fiyatlama modelleri finans literatiiriinde oldukca genis bir alana
yayildigindan dolayr bu alanda yapilan farkli tiirde ¢alismalar mevcuttur. Kapali
sonlu fark metodu (KSFM), agsiz yerel Petrov-Galerkin metot (MLPG) [2],

kuadratik spline siralama metodu [3], B-Spline siralama metodu [4] ve Crank-



Nicolson metodu [5] ozellikle kesirli Black-Scholes opsiyon fiyatlama modelinin

niimerik ¢6ziimii lizerine yapilan bazi ¢aligmalardir.

Bu ¢alismada uygulamali matematigin temel konularindan olan kesirli kismi
tiirevli diferansiyel denklemlerin yaklasik analitik ve niimerik ¢6ziim yontemlerinden
Adomian Ayrisim Yéntemi (AAY), Varyasyonel Iterasyon Metodu (VIM), Laplace
Homotopi Pertiirbasyon Metodu (LHPM), Genellestirilmis Diferansiyel Doniisiim
Metodu (GDDM), Cok Degiskenli Padé Yaklasimi (CPY) ve Sonlu Fark Yaklagimi
(SFY) detayli bir sekilde ele alinmis, sonrasinda bu yontemler kullanilarak kesirli

Black-Scholes opsiyon fiyatlama modelinin ¢6ztimleri elde edilmistir.

Calisma, giris bolumiiyle beraber 4 ana bolimden olusmaktadir. Giris
boliimiinde niimerik ve analitik ¢6ziim yontemlerine kisaca deginilmis ve ¢alismanin

icerigiyle ilgili bilgi verilmistir.

Calismanin ikinci boliimiinde, ¢alisma boyunca kullanilacak olan temel tanim
ve teoremlere yer verilmistir. Ozellikle kesirli tiirev ve kesirli integral tanimlari

tizerinde durulmustur.

Ucgiincii boliimde, opsiyon fiyatlama modellerinden biri olan Black-Scholes
opsiyon fiyatlama modeli hakkinda bilgi verilmis, klasik Black-Scholes denkleminin
elde edilisi ve bu denklemden kesirli Black-Scholes denklemine gecis aktarilmistir.
Ayrica calisgmamizla dogrudan baglantili olmasi agisindan genellestirilmis Black-

Scholes denkleminin genel yapis1 hakkinda bilgiye yer verilmistir.

Calismanin dordinci ve son bolumiinde ise kesirli kismi diferansiyel
denklemlerin yaklasik analitik ve nlimerik ¢oziimleri ele alinmistir. Bu baglamda,
AAY, VIM, LHPM, GDDM, CPY ve SFY hakkinda detayli aciklama yapilmustir.
Yine bu boliimde ilgili metotlar kesirli Black-Scholes opsiyon fiyatlama modeli
tizerinde uygulanmis ve her bir metotla kesirli Black-Scholes denkleminin ¢6ziimii
elde edilmistir. Ayrica genellestirilmis kesirli Black-Scholes denkleminin AAY ile
¢Oziimiine de bu bolimde yer verilmistir. Elde edilen sonuglar sekil ve tablolarla

sunulmustur.

Bulunan sonuglar degerlendirildiginde AAY, VIM, LHPM, GDDM ve
CPY ’nin kesirli Black-Scholes denkleminin elde edilmesinde oldukea etkili ve hizli

bir ¢6ziim trettigi gézlenmistir. Bununla birlikte, bulunan analitik ¢6ztimler ile SFY

2



kullanilarak elde edilen yaklasik ¢oziimler karsilastirildiginda SFY’nin tam ¢6ziime
cok yakin sonuglar verdigi ortaya c¢ikmistir. Bulunan sonuglarin hassasiyetle
yorumlanabilmesi agisindan, karsilastirmada kullanilan verilerin gergek hayattan elde

edilen vanilla tipi alim opsiyonu verileri olmasina dikkat edilmistir.



2. TEMEL TANIM VE TEOREMLER

Bu béliim, ¢alismamizda kullanilan temel tanim ve teoremleri igermektedir.
Burada yer verilen teoremlerin ispatlar1 [1, 6-8] kaynaklarinda ayrintili olarak

verildiginden dolay1 ayrica ispatlar1 yapilmayacaktir.

2.1  Kesirli Kalkiiliisiin Temel Fonksiyonlar:

2.1.1 Tanim (Gamma Fonksiyonu)

I'(z) ile gosterilen Gamma fonksiyonu

oo

T(z)=[e'tdt 2.1)

0

genellestirilmis  integraliyle tanimlanir. Gamma fonksiyonunun en 6nemli

ozelliklerinden birisi
I(z+1)=2zI'(z) (2.2)

olmasidir. Bu durum kismi integrasyon yardimiyla asagidaki gibi gosterilebilir [1]:

oo o0
t=o0

I(z+1)= J.efttzdt = [—eittz l:o + zJ.efttHdt =zI'(z).

0 0

2.1.2 Tanim (Beta Fonksiyonu)

Beta fonksiyonu

B(z,w)= Jl.fz'l (1-7)"" dz, (Re(z)>0, Re(w)>0) (2.3)

0

seklinde tammlanir. Tanimdan B(z,w)= B(w,z) oldugu, yani Beta fonksiyonunun

simetrik olusu asikardir. Cogu zaman Beta fonksiyonu yerine Gamma fonksiyonunun

kesin degerlerinin kombinasyonlar1 kullanilir.



Beta fonksiyonu ile Gamma fonksiyonu arasindaki iligki

B(zw) =% 2.4

seklinde ifade edilir.

2.1.3 Tanim (Mittag-Leffler Fonksiyonu)

o >0 olmak tizere bir parametreli £ (z) Mittag-Leffler fonksiyonu tiim

o

kompleks uzayda asagidaki seri a¢ilimi ile tanimlanir [9]:

i zeC. 2.5)

7 a’n+1)

Mittag-Leffler tipi iki parametreli fonksiyona genellestirme hali ise

; an+ﬂ), a,f>0, ze C. (2.6)

seri acilimi ile verilir.

2.1.4 Tamim

R”, n— boyutlu reel Euclid uzayl, F:R" xR" x..xR"XRxU — R bir

fonksiyon ve u:U — R bilinmeyen fonksiyon olmak {izere,
F(D’"u(x),D'”"lu(x),...,Du(x),u(x),x) =0 (xeU) (2.7)

biciminde ifade edilen denkleme, m. mertebeden kismi tiirevli diferansiyel denklem

denir. Bu denklemin ¢6ziimii, dU, U ’nun sinir1 olmak iizere sinir sartlarini saglayan

fonksiyonlardan (2.7) denklemini saglayan tiim u ’larin bulunmasi islemidir [10].

2.1.5 Tamim

Eger f(x) fonksiyonu x = c noktasinda tiim mertebeden tiirevlere sahip ise

yani k=0,1,2,3,... igin £ (c¢) mevcut ise bu durumda,



~ 0 (. . (e . e 3
;fk!( )(x_k) =f(c)+f'(c)(x‘c)+f2( )(X-C) L )(x—c) +.. (2.8)

ifadesine f(x) fonksiyonunun x=c dolaymndaki Taylor seri ag¢ilimi denir. Eger

burada ¢ =0 ise (2.8) ifadesine Maclaurin seri agtlimi denir [11].

2.1.6 Tanim

x>0 ve f(x) reel fonksiyonu ig¢in f (x)e C[0,0) olmak iizere
f(x)=x"f(x) olacak sekilde bir p>pu,(ue€ R) reel sayisi varsa f(x) reel
fonksiyonuna C, uzayindadir, denir. Eger ne N ve f ") C, ise f(x) reel

fonksiyonuna C, uzayindadir, denir [12].

2.2 Kesirli Tiirevler ve Kesirli integraller

Son yillarda kesirli kalkiiliis, teorik matematikte oldugu kadar uygulamali
bilimlerde de 6nemli bir yere sahiptir. Kesirli kalkiiliis yeni bir matematik teorisi
degil, aksine klasik kalkiiliis tarihi kadar eskiye dayanan bir ge¢misi vardir. Burada
“kesirli kalkiiliis” ifadesiyle kastedilen anlam “keyfi mertebeden tiirev ve integral”
ile ilgilenen bir dal olmasidir. Kesirli kalkiilis ile ilgili literatiirde pek ¢ok kaynak
bulunmaktadir [1, 13-14].

Leibnitz, c¢alismalarinda y(x) fonksiyonunun 7. mertebeden tiirevini

gosteriminde d"y/ dx" ifadesini kullanmistir. Bu gosterimle ilgili olarak
L’Hospital’in, Leibnitz’e n ’nin tamsayr olmamasi (n=1/2) durumunda tiirevin

nasil tanimlanacagin1 sormasi ve bu soruya bir mektupla cevap olarak Leibnitz’in
n=1/2 i¢in tirevi tanimlamasiyla birlikte 1695 yilinda kesirli tiirev kavrami
literatiire girmistir [14]. Leibnitz’in “Bu durum su anda bir paradoks gibi goziikse de
bir giin ¢ok kullanish sonuglart ortaya ¢ikacaktir” seklindeki cevabi, aslinda kesirli
kalkiiliistin bugiinkii durumuna isaret etmektedir. Kesirli tiirev kavraminin ilk kez
kullanildig1 bu mektuptan sonra pek ¢ok matematik¢i bu konuda ¢alismalar yapmistir
[1, 14]. Bununla beraber, kesirli operatorlerin ilk kez fiziksel bir problemi ¢ézmek

icin kullanimi da 1823 yilinda Niels Henrik Abel tarafindan yapilmistir [15]. Abel’in
6



uygulamali fizik problemlerinde kesirli operatorleri kullanmasindan sonra Liouville
kapsamli bir ¢caligma yapmis ve konuyla ilgili pek ¢ok makale yaymlamistir [16].
Daha sonra 1847 yilinda, ¢ok sik kullanilan kesirli integral tipi Riemann-Liouville
integralinin tanimi Riemann tarafindan yapilmistir [17]. Buna ilaveten Weyl, Fourier

ve Cauchy’nin de kesirli kalkiiliis tizerine ¢alismalar1 bulunmaktadir [1].

Kesirli tiirevin birden fazla taniminin olmasi, problemin tiirline gére en uygun
tanimin kullanilmasi sonucu problemin en iyi ¢éziimiiniin elde edilmesini saglar. Bu
bolimde, literatiirde en sik kullanilan Griinwald-Letnikov, Riemann-Liouville ve
Caputo tipi kesirli tiirev ve integraller anlatilacaktir. Esasinda bu {i¢ tanimlama da
bazi sartlar altinda birbirine denktir. Bu tanimlar arasindaki temel fark, ilgilenilen

fonksiyonlarin tanim kiimeleri ve segilen yardimei parametrelerdir [1].

Son yillarda, kesirli diferensiyel denklemlerin analitik ve niimerik
coztimlerinde Riemann-Liouville tiirev operatorii yerine, Caputo anlaminda
tanimlanan tiirev operatorii daha ¢ok tercih edilmektedir. Bunun sebebi, baslangic
kosullarim1 igeren kesirli diferansiyel denklemlerin ¢6ziimii i¢cin Caputo tlirev
taniminin daha kullanighi olmasidir [18]. Calismamizda da baslangic kosullarin
iceren kesirli Black-Scholes ve genellestirilmis kesirli Black-Scholes diferansiyel
denklemi kullanildigindan dolayi, Caputo anlaminda tanimlanan tiirev operatorii

kullanilmastir.

2.2.1 Griinwald-Letnikov Kesirli Tiirev ve integral Operatorii

Kesirli tiirev Griinwald tarafindan 1867°de bir toplamin limiti olarak

asagidaki gibi tanimlamistir [19]:
2.2.1.1 Tamim

o e R, olsun.

%D (x) = yggh%g(—l)r rr((,,ﬁ)l)rj(fo(zx—;]fl))

(2.9)

ile tanimlanan % D operatoriine «. mertebeden Griinwald-Letnikov kesirli tiirevi

denir.



(=1 rl(“a(z:i)l) - rr((r__;;) (19

oldugundan (2.9) denklemi

S D7 £ (x) = lim —"

hﬁor(_a); F(rJrl)f(x—rh) (2.11)

m
haline doniisiir. Tirevin derecesi «, bir m tamsayisina esit oldugunda ( J
r

alisilmig binom katsayis1 olmak {izere (2.9) ifadesi m. dereceden tiireve indirgenmis

olur:

n . I'(m+1)
pary (r+1)l"(m—r+l)

o LNy e
=i Zo( ! r!(M—V)!f(x ) (2.12)

=£1L%himzn“(—1)r (m}/(x—rh).

1 (x—rh)

(2.12)’de bulunan sonug ise Af(x—rh)=f(x—rh)—f(x—(r+1)h) olmak iizere

klasik tiirev tanimni verir. Ornegin (2.12)’de m =1 ve m =2 i¢in sirasiyla:

“pf (x) = Df (x) = lim L) =S =) A (%)

h—0 h h—0 h

C f(x)=f'(x=h) . Af(x
GLDZf(x)zDZf(x)zyilg ( ) h ( )zlhlil(} h( )
elde edilir. Ayn1 zamanda & yerine —« yazilirsa, yani
4 I(—a+1) f(x—rh)

D (x)= yg(}ha;(_l)r C(r+1)T(-a—r+1)

=lim i il“(r-l—a)
=0T (@) & T(r+1)

(2.13)

f(x—rh)

ifadesine . mertebeden Griinwald-Letnikov kesirli integrali denir.



2.2.2 Riemann-Liouville Kesirli integral ve Tiirev Operatorii

Bir feC,, u>-1 fonksiyonu igin >0 mertebeli J; Riemann-Liouville

(RL) sol ve sag integral operatorii,

J;’if(x)=$j(x—t)a_1f(t)dt, x>a, (2.14)
J:_f(x)=$]i(t—x)a_1f(t)dt, x<a, (2.15)

seklinde tanimlanir. Ozel olarak Riemann-Liouville integral operatériinde =0 igin
JUf(x)=f(x) (2.16)
elde edilir.

2.2.2.1 Tanim

feC,, u>-1 olmak iizere, Riemann-Liouville integral operatorii igin

asagidaki ozellikler gecerlidir:

a) JEILf(x)=JPIEf(x)=J2 P f(x), e, 20, (2.17)

(y+1) (x

b) Ji(x=a) :1“(0(+7/+1)

—a)"", a>0,y>-1, x>0. (2.18)

Benzer sekilde bir f(x) fonksiyonunun o >0 mertebeli DY Riemann-

Liouville (RL) tiirev operatorii, Riemann-Liouville integral operatorii yardimiyla

hesaplanabilir. m—1<a<m, me Z* ve x> x, olmak iizere,

wDef(x)=D"| D f (x) | = D[ I f (x) | = ;:; (707 (x)] 2.19)

esitliginde (2.14) ve (2.15) ile verilen Riemann-Liouville integral operatoriinii

kullanarak Riemann-Liouville kesirli tiirevi,



Dz (x)=D" {WJ . f(t)dt} (220
! d" [ m-a—1 |
S ( fle-n f(t)dzJ

seklinde de ifade edilebilir.

2.2.3 Caputo Kesirli Tiirev Operatorii

En sik kullanilan kesirli tiirev tipi olan Caputo anlaminda tiirevin tanimi ve
detayli 6zellikleri [13, 20] kaynaklarinda mevcuttur. Bu yiizden, burada sadece

calismamizda kullanacagimiz 6zellikler verilecektir.
2.2.3.1 Tamim

m—-1<a<m, me N,x>0 ve feC”" olmak iizere, f(x) fonksiyonunun

D; f (x) notasyonu yardimiyla gosterilecek olan o. mertebeden Caputo kesirli

tiirevi,

Dl f(x)=Jr"D" f(x) =ﬁj(x—z)”"““ £ () de (2.21)

seklinde tamimlanir. Ayrica m—1<o<m, meZ" ve fe C", @ >~1 olmak iizere,

Caputo tiirevine ait

a) DZJCf(x)= f(x), (2.22)

b) JIDIf(x)=f(x)- f(k)(a) , a=0 (2.23)

ozellikleri verilebilir.
2.2.3.2 Tanim

m—1<a<m, me N olmak iizere, a. mertebeden Caputo zaman-kesirli

tiirev operatorii

10



_ d -1
_u(x,t) |T(m-a) eoom <0{<m(224)

Diu(x,t
T 0"u(x,1)

oa=me N

olarak tanimlanir [20].

2.2.3.3 Teorem

A>-1 olmak tizere f(x)=x"g(x) oldugunu ve g(x) fonksiyonunun da

oo

0<a<l olmak iizere R>0 yakinsaklik yarigapi ile g(x)= Zan (x—a)"

n=0
genellestirilmis kuvvet seri acilimina sahip oldugunu varsayalim. Bu durumda,

asagidaki sartlardan birisi saglandig: takdirde tim xe (0,R) igin

D! D f(x)=DIL’ f(x) (2.25)
esitligi saglanir [21].
a) f<A+1 ve y keyfi

b) B=A+]1, y keyfi ve m—1< B<m olmak iizere k=0,1,...,m—1 igin a, = 0.

Bu teoremin ispati [ 12]’de verilmistir.

Riemann-Liouville kesirli tiirev tanimiyla Caputo kesirli tiirev tanimi arasindaki

iligskiyi daha iyi ifade edebilmek i¢in birka¢ tane 6rnek verelim:

2.2.3.4 Ornek

Bazi 1>0 i¢in f(x)=e™ olsun, dyle ki f'(x)=1e™ dir. 0<a<1 icin

Caputo formunu kullanarak ve u = Ay doniisiimii yaparak

11



&z [e"]= 1 [ aetyedy = e [Fetydy

dx” I'(l-«) I'(l-a)
Ae™ e udu ™ - e
= —ul i ﬂ/a’—l —u (l Dl) ld ‘
F(l-a)L’ ‘ (ﬂj A T(1-e) J e u- (2.26)
ieix

= AT (1-a)=A%"
I'l-o) ( )
seklinde klasik tiirev ile bulunan sonug ile ayni sonug elde edilir. Riemann-Liouville
formu g6z 6niine alindiginda Caputo tipi kesirli tiirev ile bulunan sonugla ayn1 sonug

elde edilir. Yani,

Ax

dﬂl Ax d 1 * AMx=y) . ~«a d e © Ay -a
=L [Ty (= | [Ty
"] dx[l“(l—a)jo 2 y} dx{r(l—a)-[oe i

y o . (2.27)
3 a{m AT (1- 0{)} = a[ﬁ“‘le“] = A%e"
bulunur. Caputo kesirli tiirevinde u = x—y doniisiimii yapilirsa
()= ) () .29
x I'(l-o)

elde edilir. Ayn1 doniisiim 0 < @ <1 i¢in Riemann-Liouville tiirevi i¢in bir alternatif

olusturur:
da 1 d x -a
= — - du. 2.29
A r(i-a) de.*“’f(u)(x u) " du (229)
2.2.3.5 Ornek
f(x) fonksiyonunu x>0 igin f(x)=x" olarak ve x<0 i¢in f(x)=0
olarak tanimlayalim. Bu durumda x>0 i¢in f’(x)= px” ve x<0 i¢in f’(x)=0
oldugunu biliyoruz. Beta fonksiyonunun 6zelliginden a >0 ve b >0 i¢in
I a-1 b-1 F(a)F(b) a+b-1
— dy=—-"—"--+ 2.30
{y (x=») dy Nath) (2.30)

yazabiliriz. Bu durumda Caputo kesirli tiirevi

12



d’ x _ —
gl e

— p * o p-l _ (l—ot)—ld
F(l—a)-[oy (=) dy

b T(D(-0)
I'(l-a) T(p+1-a)

__Tp) e Tlpt) .

2.31)

I"(p—i-l—a) I"(p—OH-l)

olarak bulunur. Bu da klasik tiirevde bulunan sonug ile aynidir. Ornegin p =2 icin,

I'(p+1)=p(p-1)T(p-1) oldugundan %[x”]:ly(p—l)xpz =
x

bulunur. Simdi de Riemann-Liouville kesirli tiirev formunu kullanirsak,

j;’[xp]zr(ll-a)%[ﬁyp(x—y)'“dy}
ey )
1 4| T(pt)T(l-a) .\, (2.32)
_r(l—a)a I(p+2-a) X

__T(p+1) e _
_F(pr—a)(pH_a)x =

L(p+l) e
I(p-a+1)

elde edilir. Bu ise Caputo kesirli tiirev formuyla elde edilen sonugla aynidir. Son
olarak da Caputo ile Riemann-Liouville kesirli tiirev formlariyla elde edilen

sonuglarin birbiriyle ayn1 olmas1 gerekmedigine dair bir 6rnek verelim.

2.2.3.6 Ornek

f(x) fonksiyonu x>0 igin f(x)=1 olarak ve x<0 i¢gin f(x)=0 olarak
tanimlansin. Bu durumda x#0 iken f’(x)=0 oldugundan Caputo kesirli tiirev

sifirdir. Aslinda, tamsay1 mertebeden tiirevde oldugu gibi herhangi bir sabitin kesirli
mertebeden Caputo tiirevi de sifirdir. Fakat Riemann-Liouville kesirli tiirevde sifir

olmayabilir. x>0 ve 0<a <1 olmak {izere, (2.29) denklemini kullanarak

13



R ] Y N,

dx® F(l—a) dx F(l—a X
1 (2.33)
1 d| x* x
- S - #0
I(l-a)dx|l-a| T(l-a)

ifadesini elde ederiz. y > x>0 olmadig: siirece f(x)= f(x—y) oldugundan iireteg

formu

L ()= /()= /(=)

—Ot—ld
ri-a)

°° o -a-1
_L [1—o]r(l_a) Yy dy (2.34)

.« x|l X
I(l-a) a | T'(l-a)
olarak bulunur. Bu ise Riemann-Liouville formuyla aynidir. Urete¢ formundan kismi
integrasyon yardimiyla Caputo formu da elde edilebildiginden dolayi, (2.34)’de
u= f(x)- f(x—y) doniisiimiiyle kismi integrasyon uygulanirsa

[T/ ()7 (x-)]

o —o-1
—_— d
ri-a)

=[ [1-0] r(i 2] vy

B , (2.35)

| TV =) |+ ey

)

X
(1

= -a
ri-a) <

sonucu bulunur. Burada Caputo formuyla Riemann-Liouville formunun farklilig:

sinir terimlerinden kaynaklanmaktadir [18].
2.2.3.7 Tamim [22]
Bilesik fonksiyonun kesirli tiirevi
d°f=T(a+1)df, 0<a<l (2.36)
seklinde tanimlanir. Ayrica,

14



dy=f(x)(dx)", x=0, y(0)=0 (2.37)
denkleminin ¢6ziimii yani (a’x)‘z ya gore integral, asagidaki sonucu ortaya ¢ikarir.

2.2.3.8 Sonug [23]

(2.37) denkleminden

y:

S 2

F(E)AE) =af(x-£)" 7(¢)dg,  0<asl 238)

elde edilir. Kesirli tiirev ile kesirli integral arasindaki iligki ise

Z:;jff(f)(df)a=F(1+a)f(x)=a!f(x) (2.39)
d” u(x) 3 .
o | /(@) =en (u() (o () (2.40)

seklinde ifade edilebilir.

Ornegin, y'* (x)=f(x), y(a)=y, kesirli diferansiyel denkleminin ¢6ziimii,

[aty=a(y(x)-y(a)) = £(£) ()"

oldugundan

seklinde bulunur [23].

2.2.4 Kesirli Diferansiyel Denklemler

Bu boliimde kesirli diferansiyel denklemlerin siiflandirilmas: ve kesirli

diferansiyel denklemler ile ilgili tanimlar verilecektir.

15



2.2.4.1 Tanim

Bir veya daha fazla bagimsiz degiskenin kesirli tiirevlerini iceren herhangi
bir bagintiya kesirli diferansiyel denklem denir. Diger bir ifadeyle kesirli diferansiyel
denklemler, tam say1 tiirevleri yerine, kesirli tiirevlere sahip olan diferansiyel

denklemlerdir.

2.2.4.2 Ornek

Asagidaki gibi
xD2/3y(x)—D1/2y(x)—y(x)=cos(x) (2.41)
0 0’
Dfu(x,t)+x ”gx’t)+ ”a(f’t)=2z“+2x2+2, 150, O<a<l  (2.42)
X RS

seklinde verilen (2.41) ve (2.42) denklemleri birer kesirli diferansiyel denklemdir
[24]. Kesirli diferansiyel denklemleri asagidaki gibi siniflandirabiliriz:

a) Kesirli mertebeden adi diferansiyel denklemler: Eger kesirli mertebeden bir
diferansiyel denklemde bilinmeyen fonksiyon yalniz bir bagimsiz degiskene bagimli

ise bu kesirli diferansiyel denkleme kesirli adi diferansiyel denklem denir [25].

Ornegin,
D"y (x)+5y*(x)-3=0 (2.43)
D"y (t)+2D"y(t)=t (2.44)
DVy(x)+D"y(x)-2y(x)=0 (2.45)

denklemleri birer kesirli adi diferansiyel denklemdir [1].

b) Kesirli mertebeden kismi diferansiyel denklemler: Eger kesirli mertebeden bir
diferansiyel denklemde bilinmeyen fonksiyon iki veya daha fazla bagimsiz degiskene
bagimli ise bu kesirli diferansiyel denkleme kesirli kismi diferansiyel denklem denir

[25]. Ornegin,
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0’u(x,t)

D:Z“(x’t): ax2

,t>0, xe R, O0<a <l (2.46)

denklemi zaman-kesirli (time-fractional) bir kismi diferansiyel denklemdir [24].

0"u(x,1) _ 0’u(x,t) N ou (x,t)

PWE ¥ v +u(x,t), x>0 (2.47)

denklemi uzay-kesirli (space-fractional) bir kismi diferansiyel denklemdir [26].

al.Su(x’t) 1 aLZSu(x)t)
PRE = 5)62 FNE x>0, >0 (2.48)

denklemi ise uzay-zaman-kesirli (space-time-fractional) bir kismi diferansiyel

denklemdir [26].

Burada (2.46) denkleminin baslangi¢ kosulu u(x,0)=sinx seklinde, (2.47)
denkleminin baslangic kosullart u (O, t) =exp (—t) , U (O, t) =exp (—t) olarak ve

(2.48) kesirli kismi diferansiyel denkleminin baslangic  kosullar1 ise

u(x,O) = f(x) = ianx", u, (x,O) = g(x) = ibﬂx” seklindedir.
n=0 n=0

Diger bir smiflandirma sekli ise kesirli diferansiyel denklemlerin lineer olup

olmamasina goredir. Bir kesirli diferansiyel denklem eger;
a,(x)D"y(x)+a,,(x)D y(x)+..+a (x)D"y(x)+a,(x)y(x)=f(x) (2.49)

biciminde ise kesirli lineer diferansiyel denklem olarak adlandirilir. (2.49)

denkleminde D“, (i =1, 2,...,n) kesirli diferansiyel operatoriidiir ve lineerdir. Burada

kesirli lineer diferansiyel denklemde bagimli degisken y ve y 'nin kesirli tiirevleri

birinci derecedendir. Buradan hareketle lineer olmayan bir kesirli diferansiyel
denklem kesirli nonlineer diferansiyel denklem olarak adlandirilir. Bu tanimlar

dikkate alarak,
X*DVy(x)+y(x)=¢" (2.50)

veE
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D*y(x)+D?y(x)-y(x)=0 (2.51)
denklemleri lineer fakat
D*y(x)=y"(x) (2.52)
ve
y(x) D2y (x)+ D*y(x) = x° (2.53)

denklemleri nonlineerdir.
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3. KESIiRLI BLACK-SCHOLES OPSiYON FiYATLAMA
MODELI

Calismanin bu boliimiinde opsiyonun tanimi, opsiyonla ilgili temel kavramlar
ve en yaygin opsiyon fiyatlama modellerinden biri olan Black-Scholes opsiyon
fiyatlama modeli ele alinacaktir. Ayn1 zamanda Black-Scholes denklemi tizerinde bir
takim donistimler yapilarak elde edilen kesirli Black-Scholes denklemi sunulacaktir.
Bununla beraber genellestirilmis kesirli Black-Scholes denklemi de bu bdéliimde

verilecektir.

3.1  Opsiyonun Tanmim ve Opsiyonla ilgili Temel Kavramlar

3.1.1 Tanim (Opsiyon)

Opsiyonlar, degeri baska bir varligin degerine bagimli olarak degisen tiirev
tiriinlerdir (financial derivatives). Opsiyonlar belli bir vadeye kadar veya belli bir
vadede, opsiyona dayanak varlik (underlying asset) olusturan belli miktardaki bir
mali, finansal iiriinii, sermaye piyasasi aracini veya herhangi bir ekonomik gostergeyi
belli bir fiyattan alma (call) veya satma (put) hakkini, belli bir prim karsiliginda

opsiyonu satin alan kisiye veren sézlesmelerdir.

Opsiyonlar, konusunu olusturan kiymetlere gore farkl tiirlere ayrilir. Hisse
senedi opsiyonlari, hisse senedi endeks opsiyonlari, faiz orani opsiyonlari, altin

opsiyonlari ve doviz opsiyonlar1 opsiyon tiirlerine 6rnek verilebilir [27].
3.1.2 Tanim (Opsiyon Vadesi)

Opsiyon alicisinin alma yada satma hakkinin; saticisinin ise alma ya da satma
vitkiimliiliigiiniin hangi tarihe kadar gecerli oldugunu gosterir. Alicinin talebi halinde,
opsiyon saticisinin opsiyona konu olan dayanak varligi ne kadardan alacagini yada
ne kadardan satacagini belirleyen fiyat kullanim fiyatidir (exercise/strike price) ve

alic1 ile satict arasinda belirlenir.
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3.1.3 Tanim (Opsiyon Primi)

Opsiyon terminolojisinde opsiyonun fiyatini temsil eder. Opsiyonlar alinip
satilirken, alic1 sahip olacagi hak i¢in satictya bir prim dder. S6z konusu prim alici
icin maliyet olustururken saticiya bir gelir teskil eder. Opsiyonun alindiktan sonra
kullanildig: takdirde elde edilecek kar1 gosteren gercek deger ve bu degerin opsiyon
priminden ¢ikarilmasiyla bulunan zaman degerinden olusan opsiyon primi,
opsiyonun alim opsiyonu mu yoksa satim opsiyonu mu oldugu, kullanim fiyat1 ile
opsiyona dayanak olusturan varligin fiyati arasindaki fark, opsiyonun vadesine kalan
giin sayis1 ve dayanak varligin veya gostergenin dalgalanmasi gibi pek ¢ok durumdan
etkilenmektedir. Prim fiyati1 piyasadaki arz-talebe gore belirlenir ve hak kullanilsin

ya da kullanilmasin prim bedeli geri alinmaz.
3.1.4 Tanim (Alim Opsiyonu)

Bir opsiyon, alicisina, opsiyon konusu mali belli bir vade i¢inde (Amerikan
tipi) veya vade sonunda (Avrupa tipi) belli bir kullanim fiyatindan satin alma hakki
veriyor, saticisina da satma yiikiimliliigi tstlendiriyorsa bu tiir opsiyonlara satin
alma opsiyonu (call option) adi verilir. Alim opsiyonu alicisinin (saticisinin)

beklentisi dayanak varlik fiyatinin gelecekte yiikselmesidir (diismesidir).
3.1.5 Tanim (Satma Opsiyonu)

Alicisina, belirli bir varligi, bugiinden belirlenen bir fiyat tizerinden, belirli
bir vade i¢inde ya da vade sonunda satma hakk: veren opsiyonlara da satma opsiyonu
(put option) denir. Satim opsiyonu alicisinin (saticisinin) beklentisi dayanak varlik

fiyatinin gelecekte diismesidir (yiikselmesidir).

Bir alim opsiyonunda dayanak varligin spot piyasa fiyat1 (S), kullanim
fiyatindan (E) yiiksekse bu opsiyon kardadir. Ayni opsiyonda spot fiyat1 kullanim
fiyatinin altinda ise opsiyon zarardadir. Eger her iki fiyat birbirine esitse opsiyon
basabastadir. Bir satim opsiyonunda dayanak varligin spot piyasa fiyat1 kullanim
fiyatinin altinda ise, opsiyon kardadir. Spot piyasa fiyati1 kullanim fiyatinin tizerinde
ise opsiyon zarardadir. Her iki fiyat birbirine esit oldugunda basabas durumu s6z
konusudur. Asagidaki Tablo 3.1’de alim ve satim opsiyonlarinda kar, zarar ve

basabas durumlar1 gosterilmistir [28].
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Tablo 3.1: Alim-Satim opsiyonlarinda kar, zarar ve basabas durumlari.

Alim Opsiyonu Satim Opsiyonu
S>FE Karda Zararda
S=E Basabas Basabasg
S<E Zararda Karda

3.1.6 Tamim (Odeme Fonksiyonu-Payoff Function)

t =T aninda, Avrupa tipi satin alma opsiyonunun sahibi dayanak varligin o

andaki fiyat1 olan S =, degerini goz 6niine alip opsiyonu bozduracak ya da elinde
tutacaktir. Eger S, > E ise bozduracak ve opsiyonu S, fiyattan satarak (S, —F)

kadar kar elde edecektir. Aksi halde opsiyon satisindan zarar etmemek i¢in opsiyonu

devreye sokmayip elinde tutacaktir. Bu durumda opsiyonun degeri sifir olacaktir.

Ozetle, T vade zamaninda satin alma opsiyonunun V(S;,T) degeri

0, S, <E
S,—E, S, >F

-]
seklinde olacaktir. Yani
V(S,,T)=(S, —E)" =maks{S, - E,0}
yazilabilir. S, >0 olan tim durumlar géz oniine alindiginda maks{S, — E,0} ifadesi

S, nin bir fonksiyonudur. Bu fonksiyona 6deme fonksiyonu (payoff function)

denilmektedir. Avrupa tipi alim opsiyonunun 6deme fonksiyonuna ait grafik asagida

verilmistir [29].
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A V(S,.T)

Sekil 3.1: Avrupa tipi alim opsiyonuna ait 6deme fonksiyonu.

Avrupa tipi satim opsiyonunun sahibi ise opsiyonu S, <E olmasi
durumunda bozduracak diger durumlarda elinde tutacaktir. 7 vade zamaninda satma

opsiyonunun ¥ (S,,T) degeri

seklinde olacaktir. Yani
V(S,,T)=(E-S,) =maks{E-S,,0}

yazilabilir. Avrupa tipi satim opsiyonunun 6deme fonksiyonuna ait grafik asagida

verilmistir.

AV(S,.T)

Sekil 3.2: Avrupa tipi satim opsiyonuna ait deme fonksiyonu.
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Calismamizda standart opsiyonlar (vanilla opsiyonlar1) yani Avrupa tipi alim
ve satim opsiyonlar1 g6z Oniine alinacak olup Amerikan tipi opsiyonlara

deginilmeyecektir.

3.2 Opsiyon Fiyatlama Modelleri

Modern opsiyon fiyatlama modeli, ilk olarak Massachussetts Institute of
Technology’de 6gretim iiyesi olan Myron Scholes ve Boston’da finans danigsmani
olan Fisher Black (1973) tarafindan gelistirilmistir. Modele, her iki arastirmacinin
soyadindan olusan “Black-Scholes Opsiyon Fiyatlama Modeli” adi verilmistir. Bu
model uygulamada ¢ok sik kullanilan ve 1997°de ekonomi dalinda Nobel 6diilii alan
bir modeldir. [30, 31]. Black-Scholes opsiyon fiyatlama modelinden sonra, Cox,
Ross ve Rubinstein (1979) opsiyon fiyatlamada “Binomial Modeli” gelistirmislerdir
[32]. Onceden formiiliin kullanim alan1 sadece Avrupa tipi opsiyon sozlesmeleriyle
siirli iken, binomial modelle kullanim alani genislemistir. Daha sonra Derman ve
Kani (1994) Black-Scholes formiiliinii gelistirerek katkida bulunmuslardir [33].
Yorumlanmis Aga¢ Modeli (Implied Trees Model) adini verdikleri model “Derman-
Kani Modeli” olarak da anmilmaktadir. Son olarak da Derman-Kani Modeli, Chriss
(1996) tarafindan gelistirilmis ve bdylece hem Amerikan hem de Avrupa tipi
opsiyonlara uygulanabilme 6zelligine kavusmustur [34]. Biz bu ¢alismada Avrupa

tipi Black-Scholes opsiyon fiyatlama modelini ele alacagiz.

3.2.1 Black-Scholes Opsiyon Fiyatlama Modeli (BSOFM)

Black-Scholes opsiyon fiyat1 hesaplama modeli, temettii 6demesi yapmayan
Avrupa tipi opsiyonlarin primlerini hesaplamak tizere 1973 yilinda Fischer Black ve
Myron Scholes tarafindan gelistirilmistir. Modelin temel dayanagi, finansal tirliniin
nakit hesabinda kisa pozisyon, alim opsiyonu hesabinda ise uzun pozisyon tutarak

risksiz faiz oraninda getiri elde eden bir portfoy kurma diisiincesidir [35].
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Herhangi bir opsiyon degeri i¢in Black-Scholes modelini elde etmek tizere bir

portfdy ele alalm. 7, opsiyonda uzun pozisyonu (+), hisse senedinde A kadar agik

pozisyonu (—) temsil eden bir portfdy olsun. Portfdy degerini
m=V(S,t)-AS
ile ifade edelim. Hisse senedinin fiyat dinamigi/fiyat siireci ise

dS = uSdt + o SdX

stokastik diferansiyel denklemi ile ifade edilmektedir. Denklem geometrik Brown
stirecini gostermekte olup X bir Brown siirecini tanimlamaktadir. Portfoy degerinin

nasil degistigini gorebilmek amaciyla portfoyiin toplam diferansiyelini alirsak,

dr=dV (S,t)-AdS
elde ederiz. V(S,¢) terimine Taylor agilimin uygulayarak,

2
aIV(S,t)=a—Va’z+a—Va’S+la d

ds’
ot oS 2 0S8’

yazabiliriz. Bu durumda portfoydeki toplam degisim

2
a’7r=a—Va’t+a—VdS+la d

—dS? —AdS
a aS 29S8

seklinde olur. Simdi dS ve dS” degerlerini bulup son denklemde yerine yazalim.
dS? =(uS)’ di* +(oS)  dX* +28* ucdxdt

ve limit durumu igin Brown hareketinin &zelliklerinden df —0 ve dX* —dt

oldugundan dS’ = (1S )2 dt yazilabilir. Buradan hareketle
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2
= e s 12 i s
ot A 208

yazabiliriz. Denklemde dikkat edilirse stokastik degisken olan X terimini
iceren dS ifadesi mevcuttur. A=g—g olarak belirledigimiz takdirde denklem

tamamen deterministik bir yapiya doniisecektir:

2
a’fr=a—Va’t-|-la d

o’S?dt. 3.1
ot 2 9S? G-

Tesadiifi degiskenin ortadan kaldirilmas: riskin ortadan kaldirilmast demek
oldugundan, varliklar arasindaki korelasyondan yararlanarak riski elimine eden bir

portféy olusturulmus oldu. Ancak burada dikkat edilirse risksiz bir portfoy
olusturmanin bir 6n kosulu bulunmaktadir: A =3—Z. Bu ifadeye literatiirde “delta
korumasi (delta hedging)” denilmektedir. Diger taraftan risksiz portfoydeki degisimi

dr =rrdt (3.2)

olarak da yazabiliriz. Simdi, (3.1), (3.2) denklemlerinden ve 7z =V —AS esitliginden

yararlanarak
2
a—de+la—VazSzdt =7 V—a—VS dt
208 A

yazabiliriz. Bu son denklemde dt ifadeleri yok edilirse,

a1 ER4 C14 +
¥+502S2 aS2+r(t)S£—r(t)V=0, (S,t)e R"x(0,T) (3.3)

lineer, parabolik, Black-Scholes kismi diferansiyel denklemi elde edilir [36, 37].
Burada dayanak varligin ¢ anindaki fiyat1 S olmak iizere, V' (S,f) Avrupa tipi

opsiyonun fiyatin1 gostermektedir. 7 vade zamanini, r(¢) risksiz faiz oranini ve
0(S,t) de dayanak varligin standart sapmasini (volatilite) géstermektedir. (3.3)

denkleminde,
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V(0,6)=0, S — o icin V(S,6)~ S (3.4)
ve

V(S,T)=max(S—E,O0). (3.5)

(3.3) denkleminde yapilacak ilk sey sirasiyla 9V /9S ve 0°F /9S> terimleriyle

¢arpim durumunda olan S ve S” terimlerinden kurtulmaktir. Ayni zamanda (3.3)
denklemini (3.4) siir kosullarina bagli olarak ¢6zmek amaciyla,

2t

S=FEe', t=T-—, V=Ev(x7). (3.6)
(o}

dontisiimlerini yapalim [38]. Bu durumda ilk terim,

v Eav(x,r) B Eav(x,’[) or

A= = = 3.7
ot ot Jr ot G.7)
or o’ 5 .
olarak bulunur. v = ~ oldugundan (3.7) denklemi
0
o _ 1 ov(xnr) (3.8)
ot 2 or
haline doniisiir. Ayrica,
a_VzEav(x,T)zEav(x,T)a_x (3.9)
oS oS ox dS
ox__| Idugundan (3.3) denkleminde 3. teri
e — = =—o0 ndan (3.3) denkleminde 3. terim
s R s O
0
s o) (3.10)
oS ox
olarak bulunur. Yine (3.3) denkleminde,
2 2 2 2
oS\ adS ) dS ox~\ dS ox 98

oldugundan,
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1 0%V

elde edilir. Tiim terimlerde ortak olan E degeri yok edilirse,

1 ,ov ov 1 ,0% 1 ,0v
—V——0 —+r—+—0 ———0

2 9r  dx 2  ox* 2 ox
ve buradan

i_a_zv 2r ov  dv 2r
or  ox’ 62 ox ox o

elde edilir. k =2r/0” doniisiimii yapilirsa (3.3) denklemi

av 2%y ov

+(k=1)——hkv
oar ax ox

seklini alir [37, 39]. Burada smir kosul ise
v(x,0)= (e" —1,0)+ = max(e" —1,0)

seklindedir.

2 2
19V jogr L gogep| O oLy v 1 Llypdv 1,
209S° 2 ax ox S? 2 2

ad

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

Avrupa tipi alim opsiyonu V(S,?) i¢in (3.3)-(3.4)’de verilen Black-Scholes kismi

diferansiyel denkleminin ¢6zimii

2

y——

1n(S/E)+(r+Z](T—t) 1n(S/E)+[
d = , d, =
: oNT —t ? (o}
|4 e
ve N je 2" dx olmak lizere,
27r -
V(S,t)=SN(d,)-Ee" "N (d,)
seklinde verilir [40].
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3.2.2 Kaesirli Black-Scholes Denklemi (KBSD)

Simdi de Black-Scholes denkleminin kesirli halini g6z 6niine alalim. Kesirli
mertebeden tiirev ve integral tanimlarini kullanarak Black-Scholes kismi diferansiyel
denklemini kesirli hale getirmek i¢in zaman-tiirevli terimi «. mertebeye
genisletilebilir. Bu durumda zaman-kesirli Black-Scholes KDD asagidaki gibi olur
[41, 42]:

a -« I+« :
0 V:(rV—rSa—Vj 0 T0*®) 200V g o<l (18)
oS )T(2-a) 2 as

Ayrica 0<a <1 ve k=2r/oc’ olmak iizere, V(S,t) Avrupa tipi opsiyon igin

zaman-kesirli Black-Scholes denklemi,

v(x,0)=max(ex—1,0) (3.19)
baslangi¢ kosulu ile
0% 9%y v
—=—+(k-1)——-kv 3.20
or*  ox’ ( )ax (320)

seklinde de yazilabilir [43-45].

(3.3) Black-Scholes denkleminde deneysel olarak bir takim doniistimler
yapilarak Genellestirilmis Kesirli Black-Scholes Denklemi (GKBSD) Cen ve Le
(2011) tarafindan
ov

o 2
I L 0.08(2+sinx) 2L +0.06x X 0.06v=0, 0<ar<l  (3.21)
or” ox ox

olarak verilmistir. Bu denklemde o ve r degerleri 6zel olarak o = 0.4(2+Sin x) ve

r=0.06 seklinde secilmistir. Bu 6zel degerler kullanilarak elde edilen yaklasik
¢Oziimler tam c¢oziime olduk¢a yakin sonuglar vermektedir. (3.21) denkleminde

baslangi¢ kosulu
v(x,0)=max(x—256’°‘°6,0) (3.22)
seklindedir [46].
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4. KESIRLI KISMi DIFERANSIYEL DENKLEMLERIN
ANALITIK-NUMERIK COZUMLERI VE KESIRLI
BLACK-SCHOLES DENKLEMINE UYGULANMASI

Klasik tamsayr mertebeli kismi diferansiyel denklemlerin (KDD)
genellestirilmis hali olan kesirli mertebeden kismi diferansiyel denklemler (KKDD),
fiziksel ve matematiksel problemlerin ¢6ziimiinde-modellenmesinde, biyolojik
siireclerde ve sistemlerde olduk¢a sik kullanilmaktadir [1, 14, 47-51]. Kesirli
diferansiyel denklemlerin tam ¢oziimleri genel olarak mevcut olmadigindan dolayzi,

yaygin olarak yaklasik analitik veya niimerik metotlar kullanilmaktadir [52].

Bizim c¢alismamizla alakali olmasi agisindan, literatiirde finans iizerine de
bircok giiclii niimerik ve analitik metotlar sunulmustur. Bu metotlardan, Sumudu
dontisimi ve Laplace doniisiimii kullanilarak elde edilen homotopi pertiirbasyon
methodu (HPM), [44, 53, 54], homotopi analiz metodu (HAM) [55, 56], kesirli
varyasyonel iterasyon metodu (KVIM) [57, 58], Sumudu déniisiimii ile varyasyonel
iterasyon metodu, Adomian ayrisim yontemi (AAY) [59] ve sonlu fark yaklasimi
(SFY) [5, 45, 46, 60, 61] Black-Scholes opsiyon fiyatlama modeli i¢in analitik ve

yaklasik ¢oziim saglayan nispeten yeni yaklasimlardir.

Calismamizin bu boliimiinde, kesirli kismi diferansiyel denklemlerle ilgili
bahsi gecen metotlardan AAY, KVIM, KLHPM, GDDM, CPY ve SFY’den
bahsedecegiz. Calismamizda denklemlerin ¢6ziimleri ve grafikler Maple 14 paket
programiyla hesaplanmistir. Ayrica tam ¢6ziimler i¢in de Matlab R2008b

programindan yararlanilmistir.

4.1 Adomian Aynistirma Yoéntemi

Adomian (1923-1996) tarafindan 1980’lerde gelistirilen ve literatiirde
problemlerin seri ¢oziimleri i¢in en ¢ok basvurulan yontemlerden biri olarak kabul
edilen Adomian ayristirma yontemi [62], farkli tiirdeki lineer ve nonlineer

diferansiyel denklemlerin analitik ve niimerik ¢oziimleri i¢in kullanilmistir. Ayrica
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Adomian, lineer ve nonlineer diferansiyel denklemleri tanimlayan ve farkli ¢6ziim
yontemleri sunan stokastik sistemleri gelistirmistir [63]. Bununla beraber Wazwaz ve
El-Sayed Adomian ayrisim yontemini daha da kullanish hale getirmislerdir [64].
Daha sonra, yaygin olarak kullanilan difiizyon-konveksiyon-tepkime denklemlerinin
acik ve seri ¢oziimlerini elde etmede Adomian ayrisim metodunun nasil kullanildigi

El-Wakil ve arkadaslar tarafindan agiklanmistir [65].

(24

D? =37 ifadesi a. mertebeden Caputo kesirli tiirevi gostersin. me N, f
t

nonlineer bir fonksiyon ve g de bilinen bir fonksiyonu gostermek {izere
Diu(x,t)=f(u,uu,)+g(xt), m—l<a<m 4.1)

zaman-kesirli kismi diferansiyel denklemini g6z oOniine alalim. (4.1) denklemini

lineer ve nonlineer olarak kisimlara ayirdigimizda
Dfu(x,t)+ Lu(x,t)+ Nu(x,t)=g(x,t), x>0 (4.2)

denklemi elde edilir. Burada L lineer, N nonlineer operatér olup, & ’dan daha

kiiciik mertebeden tiirevleri igerebilirler. (4.2) denkleminin her iki tarafina D

operatdriiniin tersi olan J“ operatoriinii uygularsak,

k=0

elde edilir. Adomian ayrisim metodu ile ilgili olarak [64, 65]’te bulunan sonuclara

goére u (x,t) *nin sonsuz seri seklinde ayrigimi
u(x,t)zZun(x,t) (4.4)
n=0
olarak ve (4.3) denklemindeki nonlineer fonksiyonun ayrisimi

Nu=Y 4, (4.5)
n=0

ifadesiyle verilir. Burada A, ler Adomian polinomlar: olarak isimlendirilir. (4.4) ve

(4.5) ayrisimlari (4.3) denkleminin her iki tarafinda yerine konulursa
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m=1 Yk k
Dou,(x,1)= —il(x O+)t +J% Zu (x,1) +ZA (4.6)
n=0 k=0 at k
bulunur. Son denklemden, asagidaki yineleme yoluyla iterasyonlar elde edilir

k

< a + a
zy(x,O )%+J g(xt),
u, (x,6)==J"(Luy+ 4,),

u, (x,8) ==J° (Lu, + 4,), @.7)
w,, (x,0)==J(Lu,+ 4,).

A, Adomian polinomunun genel formu,

we ()

seklindedir. Bu durumda u (x,7) yaklasik ¢6ziimii kesik seri yardimiyla

Ve

lim ¢, (x,0)=u(x,1)

olarak bulunur [66]. Bununla beraber, cogu zaman tam ¢oziim kapali formda elde

edilebilir. Ayrica, ayrisim seri ¢ozlimleri genellikle ¢ok hizli yakinsar. Ayrisim

serilerinin yakinsaklig1 [67]de detayli olarak incelenmistir

4.1.1 Ornek

Adomian ayrisim metodu i¢in

u(x,0)= (1+lex)2 (4.8)

baslangi¢c kosuluna sahip (4.9) nonlineer zaman-kesirli Fisher denklemini [68] g6z
Oniine alalim:
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Diu(x,t)=u, (x,t)+ 6u(x,t)(1—u(x,t)), t>0, xe R, 0<a<l 4.9)

(4.9) Fisher denklemini ve (4.8) baslangi¢ kosulunu (4.7) denkleminde yerine

yazarsak, asagidaki rekiirans bagintisini elde ederiz:

1

uy(x,t)=u(x,0)= =,
(1+¢%) (4.10)
uj+1(x,t)=J“((uj)xx+6uj—6Aj), j=0.

Burada 4, ’ler N =u" nonlineer fonksiyonunun Adomian polinomlaridir. Simdi

(4.10) denklemini kullanarak ayrigim serisinin ilk birkag terimini bulalim:

1
uO(x’t): 22
1-|-e")
ul(x,t)= 10e t

(1+.e")3 T(a+1)’

50¢(—1+2¢") g«
u, (x,t) = - ,
(1+¢")"  T(2e+1)

50 (20 ~15¢* —6¢" +5)(T(ar+1)) ~12¢'T(2a+1) g

()= (1+e) (T (a+1)) T(3a+1)°

Boylece devam edilerek (4.10) ayrisim serisinin diger terimleri de bulunur ve
u(x,t) =u, (x,t) +u, (x,t)+u2 (x,t)+...

ile ifade edilen ¢6zlimii

( ) 1 . 10&" t* +SOex(—1+2ex) 12« N
u(x,t)=
(1+e’f)2 (l-f-ex)3 F(OH'I) (1+ex)4 F(ZOH'I)

seklinde bulunur [66].

32



4.1.2 Ornek

Nonlineer zaman-kesirli
iju(x,t)-l—u(x,t)ux (x,t) =x+xt’, t>0, xe R, 0<a<1 (4.11)
adveksiyon denklemi [66]
u(x,0)=0 (4.12)

baslangi¢c kosuluyla verilsin. Adomian ayrisim metodunu kullanarak, (4.11) kesirli

diferansiyel denklemi ve (4.12) baslangi¢ kosulu (4.7)’de yerine yazilirsa,

uy(x,1) =u(x,0)+J“(x+xt2) =X(I’(ct:+1)+ r(2§;23)J,

(4.13)
U, (x,2) =—J“(Aj), j=20

rekiirans bagmtist elde edilir. Burada 4, ler N =uu,  nonlineer fonksiyonun

Adomian polinomlar1 olarak adlandirilir. (4.13) rekiirans bagintist yardimiyla ayrisim

serisinin ilk birkag¢ terimini bulalim:

tO( 2ta+2
o (1) =){r(a+1)+ F(a+3)]’

u(xt)=_x( L(2a+1) N 4T (2c+3) 1" . 4T (20+5) P J
X T(a+1)T(3a+1) T(e+)T(a+3)T(3a+3) T(a+3)'T(3a+5))
o (x Q:z;{ Fa+ )T (4a+1)i™  8C(20+5)[(4a+7)0" J
2\ Xs 1“(0(+1)31"(3a+1)1“(5a+1) I'(o+3)T (3 +5)T(500+7) )

Béylece devam edilerek (4.13) ayrisim serisinin u (x,¢) ¢6zimii

= S 207 T(2a+1)r” . 4T (2c+3) 8" N
)= [(a+1) T(e+3) T(a+1)’'T(3a+l) T(e+1])I(e+3)(3e+3)

olarak bulunur [66].
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4.1.3 Ornek

Bir boyutlu lineer homojen olmayan

0%u N ou _ =

VG g—mSin(X)‘i'tCOS(X), t>0, xeR, 0<a<l (414)

zaman-kesirli dalga denklemi [69]
u(x,0)=0 (4.15)

baslangi¢c kosuluyla verilsin. Adomian ayrisim metodunu kullanarak, (4.14) kesirli

diferansiyel denklemi ve (4.15) baslangi¢ kosulu (4.7)’de yerine yazilirsa,

l-a

I'(2-a)

«f O .
uﬁl(x,t):—J (auj(x,t)j, j=0

uo(x,t)zu(x,O)-i—J"’( sin(x)+tcos(x)]:tsin(x)+

(4.16)

rekiirans bagintis1 elde edilir. (4.16) rekiirans bagintis1 yardimiyla ayrigim serisinin

ilk birkag terimi:

a+l

uo(x,t)=tsin(x)+mcos(x),
a o+l 2a+1
t)=-J — t)|=——
u, (x,1) (axuo(x, ) Fas2) COS(x)+I‘(20(+2) sin(x),
a t2a+1 t3a+1
) ==J% — ,t) |=———si - ,
> (x:1) (axul(x )= T ar2) ) gy )

Bu sekilde devam edilerek geriye kalan terimler de elde edilebilir. Bu durumda

(4.14)-(4.15) kesirli diferansiyel denkleminin seri formundaki ¢6ztimii
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+a a+l 2041
t t t

r(2+a) oS ar2)

200+1 3a+l
t . t

T(2a+2) Sm(x)_r(z.mz)

u(x,t) =tsin(x)+ sin( x)

cos(x)+...=¢sin(x)

ile verilir [69].

Ornek 4.1.1, Ornek 4.1.2 ve Ornek 4.1.3’te de goriildiigi gibi seri ¢oziimiine
ait terimlerin bulunmasi i¢in Adomian ayristirma yontemi uygulandiginda, klasik
diferansiyel denklem ve kesirli diferansiyel denklemde sadece kullanilan tiirev
operatorleri ve ters tiirev operatorlerinin tiirii degismektedir. Yani, farkli olarak,
kesirli diferansiyel denklemler i¢in kesirli tiirev ve ters kesirli tiirev operatorii
uygulanirken, klasik diferansiyel denklemler i¢in klasik tiirev ve ters tiirev operatorii

uygulanmaktadir.

Adomian ayrisim metodu ayni zamanda lineer denklemlerin ¢ézimiinde de

kullanilabilir. Bunu géstermek i¢in, baslangi¢ kosulu
u(x,0)=f(x), 0<a<l, u(x,0)—>0, >0
seklinde verilen lineer, zaman-kesirli

ou d’u "u
+a,(x)u+a (x)a—+ a, (x)¥+...+ a,(x) ¥

0%u
ot”

=q(x,t), t>0, xeR
4.17)

kismi diferansiyel denklemini goze alalim. Ayrisim metodu (4.17) denkleminin

Diu+ay(x)u+a (x)Lu+a,(x)Lyu+..+a,(x)L,u=qg(xt1) (4.18)

t
formunda yazilmasini gerektirir. Burada

2 n
L=2 1 =a—2,...,Lm _9
ox T ox T ox”

seklindedir. (4.18) denkleminin her iki tarafina D] operatériiniin tersi olan J*

operatorii uygulanirsa
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elde edilir. Bu durumda u, (x,¢) ler rekiirans bagmtisiyla elde edilmek tizere, u (x,t)

¢Ozimii,
u(x,t)=Zun(x,t) (4.20)
seri ¢ozlimiyle verilir. (4.20) denklemini (4.19) denkleminin her iki tarafinda yerine

yazarsak,

oo mlak

> (x.)= kzoa—;(x,W);—k!—J“[ao(x)(iu” (x,t)j+...+a,, (x)L”x(iun (x,t)j—q(x,t)J

n=0 n=0

bulunur. Boylece asagidaki rekiirans bagintisi elde edilir:

uy(x,1) = T(x,0+)%+J“(q(x,t)),

u_/ﬂ(x,t)=—J“(a0(x)uj(x,t)+a1(x)L u, (x,t)+..+a,(x)L u.(x,t)),jZO.

1x7j nx"" j

4.21)

Bu durumda u(x,?) yaklasik ¢6ziimiine

gy ()= Y, (xr),  lim g, (xe)=u(x)

ile ulasilir [24].

4.2  Kesirli Black-Scholes Denkleminin Adomian Ayristirma Metodu

ile Coziimii

Kesirli Black-Scholes denklemini Adomian ayrisim metodu ile ¢ézmek i¢in

(3.19) baslangi¢ kosuluyla birlikte (3.20) denklemini (4.21)’de yerine yazarsak,
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v (x,7) =v(x,0)= max(ex —1,0)

Vi (x7)=J" (LZxV./ (x,7)+(k=1) L, (x,7) - kv, (x’T))

rekiirans bagintis1 elde edilir. Bu bagintiyr kullanarak bazi ayirisim serileri agagidaki

gibi bulunur:

vy (x,7) = max(ex —1,0),

v (x,7) =J% (Lyv, (x,7)+ (k=1) L v, (x,7) — kv, (x,7))
=J“(e" +(k-1)e —kmax(e" —1,0))
=J (ke“‘ —kmax(e“‘ —1,0))

T T
=%k —max (e* ~1,0) k ,
“*Tla+) max (e ~1,0) T(a+1)

k*r” - Kt*
I'(a+1) I'(e+1)
k2,z.2af
_—ex’
T(2a+1)

(
_Je £0+(k—1)0‘k[ma"(ex‘l’o)r(k;::l) - F(I€22+1)D

—k’t” e kK’t”
I'(e+1) I'(a+1)

Bu sekilde devam edilerek ayrisim serisinin geriye kalan terimleri de hesaplanabilir.

Boylece kesirli Black-Scholes denkleminin ayrisim metodu ile ¢oziimii, seri

formunda
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n=0
. k™ kt“ ,
=rnax(e —1,0)+F(a+l)e —F(OH_l)max(e —1,0)
2 20 2 2
+Lmax(e"—l,0)—Lex
I'(2a+1) I'(2a+1)
kSTSa k373a
- =1,0)+———¢" )
T(3a+1) max e )+F(3a+1)e (4-22)
o 2 2 3. 3a
—max (e —1,0)[ 1-— L, KT KT
F(a+1) F(2a'+1) F(3c¥+1)

(a+1) T(2a+1) T(Ea+l)

NS Kz Kot
-
= max(ex —I,O)Ea (—kl'd)+ e’ (I—Ea (_kfa))

seklinde bulunur. Burada E,(z) bir parametreli Mittag-Leffler fonksiyonunu

gostermektedir. & =1 i¢in (4.22) ¢6ziimii

v(x,r) = max (ex - I,O)e_'” +e” (1 - e’“)

seklinde verilir. Bu ise klasik Black-Scholes denkleminin tam ¢6ziimiidiir. (4.22) de

elde edilen v(x,7) ¢oziimiine ait grafikler asagida Sekil 4.1 ve Sekil 4.2’de

verilmistir:

v(X,T)

Sekil 4.1: (3.19)-(3.20) denkleminin x = 0.3 igin ¢oziimii (S =100, E =80, 0 =0.2, r =0.04).
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Sekil 4.2: (3.19)-(3.20) denkleminin x =—0.3 igin ¢6ziimii (S =80, £=100, 0 =0.2, r=0.04).

4.3 Genellestirilmis Kesirli Black-Scholes Denkleminin Adomian

Ayrisim Metodu ile Coziimii

Bu kisimda (3.21) genellestirilmis kesirli Black-Scholes denkleminin
Adomian ayrisim metodu ile yaklasik analitik ¢6zlimiinii verecegiz. Bunun ig¢in
oncelikle (3.22) baslangi¢ kosuluyla birlikte (3.21) diferansiyel denklemini (4.21)’de

yerine yazarsak,

Vo (X,T) =V(x,0) = max(x_zse—o.%’())

Vin

(x,7)=J" (0.08(2+ sin x)’ x’L, v, (x,7)+0.06xL, v, (x,7)—0.06v, (x,z'))

rekiirans bagintis1 elde edilir. Bu bagintiy1 kullanarak bazi ayirisim serileri agagidaki

gibi bulunur:
Vo (x,7)= max(x—25e"°'°6,0),
v (x,7)=J" (0.08 (2+sin x)2 x*L, v, (x,7)+0.06xL, v, (x,7)—0.06v, (x,Z'))

=J” (—0.06 max (x—25¢7%,0)+ 0.06x)

(04

- ﬁ(—o.% max (x—25¢%,0) + 0.06x)
—0.06) 7" .
=%(max(x—256 0'06,0)—)6'),
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v, (x,7)=J" (0.08 (2+sinx)’ x’L, v, (x,7)+0.06xL, v, (x,7) - 0.06v, (x, T))

- J{O'%((o.%)r“ j(max(x—ZSe_o'%,O)—x)J

I'(a+1)

2 2«
= —( }O(;)Z):l-; (max (x —25¢70% 0) -Xx ) ,

vy (x,7) =J(0.08(2+sinx)" XL, v, (%,7) + 0.06xL, v, (x,7) = 0.06v, (x,7))

=J“ (—0,06(%J(max (x —25¢70% 0) “y )J

_ (~0.06)"

= FGar) max(x—ZSe‘o'OG,O)—x),

Bu sekilde devam edilerek ayrisim serisinin geriye kalan terimleri de hesaplanabilir.
Boylece genellestirilmis kesirli Black-Scholes denkleminin Adomian ayrisim metodu

ile ¢oziimii, seri formunda

(0.06) 7"

= max(x—25e’°‘°6,0)— o+ D

max (x—25¢7"%,0)-x
(max( )-x)

(0.06)’ 7
T(3ar+1)
(0.06)z% (0.06) 72 (0.06)’ 7> }

= —-25¢7%,0)|1- -
max (x - 25e ){ Fla+])  T(2a+1) T(Ba+l)

(0.06)" 72

+m(max(x—256_o'06,0)—x)—

(max(x—256_°'06,0)—x)

T(a+1) T(2a+1) T(3e+1)

+x[1—[1— (0:06)7" _ (0.06)° ™ _(0.06)' 7 +J]

= max (x—25¢™",0) E, (-0.067 ) + x(1- E, (~0.067" )

(4.23)

ile verilir. (4.23) denkleminin & =1 i¢in tam ¢6zlimii ise
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v(x,7)=max (x _ 25e'°'°6,0) o007 x(l : e'°'°6’)

seklinde elde edilir. (4.23) ¢oziimiine ait grafikler asagida Sekil 4.3 ve Sekil 4.4’de

verilmistir.

Sekil 4.3: (3.21)-(3.22) denkleminin x = 0.3 i¢gin ¢6ziimii.

0.0

Sekil 4.4: (3.21)-(3.22) denkleminin x =1.0 i¢in ¢6ziimii.
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4.4  Varyasyonel iterasyon Metodu

1978 yilinda gelistirilen genel Lagrange carpani yontemi [70] ilk olarak
kuantum mekaniginde nonlineer problemlerin ¢6ziimii i¢in kullanilmistir. Daha sonra
bu yontem baz almarak J.H. He tarafindan varyasyonel iterasyon metodu (VIM)
gelistirilmigtir [71]. Varyasyonel iterasyon metodu hizli ve tam ¢6ziime daha yakin
seri yaklagimlar sundugu igin ¢ok fazla tercih edilen metotlar arasindadir. Kullanilan
alanlar ve c¢esitli diferansiyel denklemlere uygulanisi ile ilgili detayh bilgiler [72-

80]’de verilmistir.

4.4.1 Varyasyonel iterasyon Metodunda Temel Enstriimanlar

Varyasyonel iterasyon metoduna ge¢meden once, bu yontemin temel
kavramlar1 verilecektir. Genel Lagrange carpani, duragan (stationary) sartlar ve
sinirlandirilmis (restricted) varyasyon seklinde siralanan bu kavramlar orneklerle

aciklanacaktir.

4.4.1.1 Genel Lagrange Carpani

Bilindigi gibi Lagrange carpani, optimizasyon problemlerinde ve varyasyon

hesabinda sik kullanilan kavramlardan biridir. Bu kavrami daha iyi anlayabilmek i¢in
f(x)=0, xe R (4.24)

cebirsel denklemini ele alalim [81]. (4.24) denkleminin yaklasik kokii x, ise bu

durumda
f (xn) #0
yazilabilir. Bunu daha net gorebilmek i¢in
X, =X, +/1f(xn)

seklindeki diizeltme (correction) denklemini yazalim. Burada A genel Lagrange

carpanidir ve
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dx, .,
—l = () 4.25
i (4.25)

ile optimal olarak belirlenebilir. Ayrica (4.25) denklemi bizi ¢ok iyi bilinen

seklindeki Newton iterasyon formiiliine gotiiriir. Lagrange carpani yardimiyla

diizeltme fonksiyonunu insa etmenin birka¢ yontemi vardir. x, icin diizeltme

fonksiyonu, g(x) bir yardimei fonksiyon olmak iizere,

xn+1 = xn + /lg(xn)f(xn)
seklinde yazilabilir. Carpanin belirlenmesinden sonra genel bir iterasyon formiilii

w_ . g(xn)f(xn)
nel = Xy g(xn)f’(xn)-i-g,(xn)f(xn)

(4.26)

olarak elde edilir. Kullanilan yardimci fonksiyonun degeri, iterasyondaki tiim
adimlar boyunca sifir ya da kii¢iik bir deger olmamalidir. Yani | g(x, )| >1 olmalidir.

-ax,

g(x,)=e ™ olarak segilirse (4.26) iterasyon denklemi

N A C) (4.27)

sekline doniisiir. f’(x,) kiigiik oldugunda (4.27) iterasyon formiilii ¢ok etkili

olmaktadir [109]. Aym1 zamanda genel Lagrange carpanini kullanarak asagidaki

iterasyon formiilleri de elde edilebilir [81]:
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4.4.1.2 Duragan Kosullar

Varyasyon hesabinin en basit problemi [82],

-g,(x)y (4.28)

J= jF(y,y’;x)dx+g1(x)y

X

X=X X=Xy

fonksiyonelinin maksimum ya da minimum degeri igin bir y= f(x) fonksiyonu

belirlemektir. (4.28) fonksiyonelinin ekstremum sart1 (duragan sart1),

oJ = 5J-F(y,y';x)dx+ g (x)é‘y‘X:X] -g,(x)6y

X

X=X,

= J-5F(y,y';x)dx+ g (x) 5yL:X] -g,(x)dy

X

X=X,

v 82 Sy

X=Xy

d—F5y+ dF;é'y' x+ g0y
dy dy

vmy 2,0y

X=X,

vy g,0y

X=X,

olmasim gerektirir. Yukaridaki son bagintidan, keyfi dy degeri i¢in,

ar_d d—F, =0 (4.29)
dy dx\dy

denklemini ve
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dF

W(XI)_& (x,)=0 (4.30)
d_F,(xz)_g2(x2)=O (4.31)

dy

sinir kosullarini elde ederiz. Burada (4.29) denklemine Euler-Lagrange diferansiyel
denklemi ya da Euler denklemi denir. (4.30)-(4.31) denklemleri ise dogal simr

kosullar: olarak isimlendirilir [82].

4.4.1.3 Simirh Varyasyon

Varyasyonel iterasyon yonteminde sinirli varyasyonun nasil bir role sahip

oldugunu géstermek igin basit bir 6rnek verelim. Oncelikle,
x’=3x+2=0 (4.32)

cebirsel denklemini dikkate alalim. (4.32) denklemini, X sinirlt degisken olmak

lzere,
x-Xx=3x+2=0 (4.33)

seklinde tekrar yazalim. Baslangicta X ’in degeri biliniyor kabul edilir, yani tahmini

bir deger atanir. (4.33) denklemi x’e goére ¢oziiliirse,

2
x=—"— (4.34)
3—x

bulunur. Bu deger iterasyon formunda yazilirsa,

X, = (4.35)

denklemi elde edilir. Bulunan sonu¢ Newton iterasyon formiiliiyle kiyaslanirsa

asagidaki Tablo 4.1°de goriildiigii gibi etkili bir sonug ortaya ¢ikar.
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Tablo 4.1: Bulunan formiil ile Newton formtiliiniin karsilastirilmast.

Iterasyon Denklem (4.35) New;(;r;;tggsyon
0 0.500 0.500
1 0.800 0.875
2 0.909 0.987
3 0.956 0.999
4 0.978 1.000
5 0.989 1.000
6 0.994 1.000
7 0.997 1.000
8 0.998 1.000
9 0.999 1.000

Varyasyonel iterasyon yonteminin temel kavramlarini belirttikten sonra, bu
yontemin problemlerin ¢éztimiinde nasil uygulandigini ve temel amacinin ne

oldugunu gostermek i¢in,
L[u(x,t)]JrN[u(x,t)]:g(x,t) (4.36)

genel nonlineer diferansiyel denklem sistemini goz onitine alalim. (4.36) nonlineer

sisteminde L lineer bir operatér, N nonlineer bir operatér ve g(x,¢) de verilen

stirekli bir fonksiyondur. Varyasyonel iterasyon metodunun temel karakteri, (4.36)

ifadesi i¢in,
u,, (x,t)=u, (x,t)+j./1(§){Lun (&)+Ni, (£)-g(&)}ds, n=0 (437)

formundaki diizeltme fonksiyonelini olusturmaktir. (4.37) diizeltme fonksiyonelinde,

A, kismi integrasyon yardimiyla optimal olarak belirlenen Lagrange ¢arpani, u,, n.

yaklasik ¢oziim, u, , sinirli varyasyonu gostermektedir. Yani, ou, =0 [81].

no

4.4.1.3.1 Ornek

Bir boyutlu lineer ve u (0) =1 baslangic sartiyla verilen
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u'=2xu=0 (4.38)

diferansiyel denklemine varyasyonel iterasyon yontemini uygulayalim. (4.38)

denklemine ait (4.37) diizeltme fonksiyoneli

+
S e 2
Y

—2mu,(&)}dE, n=0 (4.39)

n+l

olarak verilir. (4.39) denkleminin her iki tarafina varyasyon uygularsak,
Su,,, (x)=0u, (x)+ 501{@12 (&)-2tu, (f)}dfj, n=0
0

elde edilir. Sinirli varyasyondan dolay1 2¢5u, =0 oldugundan,

Su,, (x) = Su, (x)+ 5{ [ (£) dfj (4.40)
0
elde edilir. (4.40) denkleminde kismi integrasyon uygulanirsa,

Su,., = du, + Su, ( 5j M (€)dé
’ (4.41)
=5(1+4]._, Ju, -] A, (£)dé

sonucu bulunur. u ., in ekstremum (stationary) kosulundan dolayr ou, =0

n+l

olacagindan, (4.41) denkleminden (1+ ﬂ| i ): 0 ve buradan da 4 = -1 bulunur [79].

Bu deger (4.39) denkleminde yerine yazilirsa, (4.38) diferansiyel denklemi igin

diizeltme fonksiyoneli,

X

unﬂ(x):un()C)—J.{u;(gg —2tu, (&)} dé

0

sekline dontisiir. u, =1 alinirsa asagidaki yaklasimlar elde edilir:
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uy(x) =1, (x)—j:{u(') (&)= 20, (£)}dE =14 .

x 4

w, (x) =1, (x)—.([{ul'(f)—%ul(5)}d§=1+x2 +’;_!,

4 6

u3(x)=u2(x)—{{u;(.f)—Ztuz(.f)}d§=l+x2 +%+%,

4 6 8

u4(x)=u3(x)—£{u;(5)—21u3(§)}d§=1+x2 +;—!+%+Z—!,

, (%) = 4, (3) = [{u, (&) 200, (&)} b

. x4 6 xS 2n
=l+x +—+—+—+...+
2t 31 41 n!

Boylece u(x)=Ilimu, (x) ifadesiile

n—sco

tam ¢Oziimii elde edilir [84].
4.4.1.3.2 Ornek

Iki boyutlu lineer ve

u(x,O)z—l,
u(s(x),t) =0, t=0,
du _ 0s(x)

ox ot

baslangi¢ kosullariyla beraber verilen

ou o’u

E—?, OSXSS(Z), t=20
X

(4.42)

(4.43)

Stefan diferansiyel denklemine [83] varyasyonel iterasyon yontemini uygulayalim.

Bu durumda (4.42)-(4.43) denkleminin diizeltme fonksiyoneli, Ni, (&,¢)=—i, (£,1)

olmak iizere,
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()= () JUEN T+ (V) . n20 (o

seklinde verilir. §Nu, (&£,¢) =0 oldugunu goz éniine alarak, (4.44) denkleminin her

iki tarafinin u, bagimsiz degiskenine gére varyasyonunu alirsak,

Gy (5= 0, 50+ A(E) o)+ (V)

=ou, (x,t)+ A(&,1)du, :

A(&,1)

e +_([/1”(§,t)5und§
=0

bulunur. Bu esitlik bizi,

-4 (61)

&=x

=0 A(&.1) .. =0 A(&,1)

ekstremum (duragan) kosullarina gétiiriir. Bu ise Lagrange ¢arpanimin A(&,1)=¢&—x

oldugu sonucunu verir. Bu sonucu (4.44) fonksiyonelinde yerine yazarsak,

tyy (o1 xt+§ {agz )(N(ﬁn))}df (4.45)

iterasyon formiiliinii elde ederiz. u, (x,t)=—x+e’t baslangic degerini (4.45)

iterasyon formiiliinde yerine yazarsak,

2
u (x,t)=—x+e' +—¢,

52 4
u,(x,t)=—x+e' +—e +—¢,
TR
2 4 xG
u,(x,t)=—x+e’' +—e' +—e' +—¢,
STRPTRENT
2 4 6 2n
—t X t X t X t X t
u, (x,t)=—x+e +t—et+—e +—e +..+ e
217 T el (2n)!

genel formiiliinii elde ederiz. Bu da
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u(x,t)=-x+e "' cosh(x)
tam ¢Oztiimiinii verir [83].
Simdi de kesirli mertebeden diferansiyel denklemler ic¢in varyasyonel

iterasyon yontemini ele alalm. D} = EYa ifadesi «. mertebeden Caputo kesirli tiirevi
t

gostersin. me N, f(x),g(x) ve ¢(x,¢) siirekli fonksiyonlar ve R[x]|de x’e gore

diferansiyel operator olmak tizere
Dlu(x,t)=R[x]u(x,t)+q(x,t), m-l<a<m, t>0, xeR (4.46)

zaman-kesirli kismi diferansiyel denklemini géz Oniine alalim. (4.46) denkleminin

baslangi¢ ve sinir deger sartlar

(4.47)
u(x,t)%O, |x|%oo, t>0
ve
ou(x,0)
0 = = 1 SZ
u(%0)=1(x), ot g (%), SEss (4.48)
u(x,t)%O, |x|%oo, t>0

seklinde verilir. (4.46)-(4.48) denkleminin diizeltme fonksiyonelinin ve iterasyon
formiiliiniin nasil elde edildigini gosterelim [69]. (4.37)’de verilen yonteme gore

(4.46) zaman-kesirli diferansiyel denklemi i¢in diizeltme fonksiyoneli

Il
<
=~
—
=
=~
~
+
—
O e

(=87 4N 2 ()= RL, (58) -0
(4.49)

olarak verilir. J/, . mertebeden (f=a+1-m), t’ye gore Riemann-Liouville

kesirli integral operatorii ve A genel Lagrange carpanidir. Boylece diizeltme

fonksiyoneli yaklasik olarak
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ukH(x,t)=uk(x,t)+ﬂﬂ(§)(%uk(x,f)—R[x]sz(x,f)—q(x,f)ﬂdf (4.50)

bigiminde ifade edilebilir. Iterasyonun kisith degiskenleri igin &4, =0 olacagindan

(4.50) fonksiyonelini duragan hale getirirsek,

Ou,,, (x,t) = Su, (x,1)+ 5}1(5) (;—;uk (x,f)—q(x,f)jdf (4.51)

olur. Burada Lagrange carpanlari,
m=1 igin (0<0(S1), A=-1ve
m=2 i¢gin (1<a<2), A=&—t

olarak bulunur. Bu Lagrange carpanlar1 (4.49) diizeltme fonksiyonelinde yerine

yazilirsa m =1 ve m =2 i¢in sirasiyla,

Uy (x,0) =u, (x,8)=J/ {ﬂ(%uk (x,t) - R[x]u, (x,t)—q(x,t)ﬂ (4.52)

ue, (x.0)=u, (x,0)+ F(ci—l) j;(t—f)a_z (f—t)[%uk (x,&)—R[x]u, (x,f)—q(x,f)]df
=u, (x,1)— (lf{(;l)) _:[(t—f)a_l (%uk (x,&)—R[x]u, (x,f)—q(x,f)jdf

iterasyon formiilleri bulunur. (4.52) ve (4.53) formiillerinden yararlanarak

o

e, (x,0)=u, (x,0)—(a=1)J (;—auk (x,8)—R[x]u, (x,t)—q(x,t)j (4.54)

formiilii elde edilir. u, baslangic iterasyonu ise baslangi¢c ve sinir kosullarina gére

olusturulabilir.
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4.4.1.3.3 Ornek

Varyasyonel iterasyon metodu ile ilgili yukarida verilen bilgiler 1s18inda

(4.46) denkleminin formatina gore,
u(x,0)=0, u,(x,0)=0 (4.55)
baslangi¢ kosullariyla verilen

o 2
J ”—a—z‘+u=6x3z+(x3—6x)t3, t>0, xe R, l<a<?2 (4.56)
ot ox

homojen olmayan lineer Klein-Gordon zaman-kesirli diferansiyel denklemini [69]
g0z Oniine alalim. (4.54) iterasyon formiiliine gore, (4.55)-(4.56) kesirli diferansiyel
denklemi i¢in iterasyon formiilii,

0" 0’
ue, (x,t)=u, (x,0)—(a—1)J7 ulxr) u(f’t)+u(x,t)—6x3t—(x3—6x)t3
ot ox

(4.57)
bi¢iminde verilir. (4.55) baslangi¢ kosullar: dikkate alinarak u, =0 oldugu goriiliir.

Yeni elde edilen (4.57) iterasyon formiiliinii ve #, =0 oldugunu kullanarak,

to (x1) =”0(x>l)‘(“‘l)(‘6x3L—(x3 —6x)6t—a+3J

I'(x+2) I'(a+4)
ta+1 6ttx+3
=(a-1)] 68—+ (x —6x)—2L—|,
(e )[ - x)l“(a+4)j
u, (x t)—6x3 " +6(x3—6x) i
A I'(a+2) I'(a+4)

Bu sekilde devam edilerek diger yaklasik ¢oziimler de bulunabilir. Bu durumda
(4.55)-(4.56) Klein-Gordon zaman-kesirli diferansiyel denkleminin & =2 i¢in tam

¢Ozimi
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3

u(x,t)=xt

olarak verilir [69].

(24

Simdi de benzer sekilde D =? ifadesi a. mertebeden Caputo kesirli tiirevini, f

nonlineer bir fonksiyonu ve g de bilinen bir fonksiyonu géstermek iizere, baslangic

ve sinir kosullari

u(x,0)=h(x), O<a<l,

(4.58)
u(x,t)%O, |x|%oo, t>0
ve
d
u(x0)=h(x), 20 p <<,
ot (4.59)
u(x,t)%O, |x|—><>0, t>0
seklinde verilen
Diu(x,t)= f(uuu )+g(xt), m—l<a<m, t>0, xeR (4.60)

formundaki nonlineer = zaman-kesirli  diferansiyel denkleminin  diizeltme
fonksiyonelinin ve iterasyon bagintisinin nasil elde edildigini gosterelim [66]. (4.37)
’de verilen yonteme gore (4.60) nonlineer zaman-kesirli diferansiyel denklemi i¢in

diizeltme fonksiyoneli,

b )=, (50) [ 200 2 (5= (808, (5), ) () o

0

seklinde yazilabilir. Burada A Lagrange carpani ve i, (i, )x (i, )xx siirlandirilmis

varyasyonlar yani, i, = 0. Buna gore fonksiyoneli duragan hale getirirsek

5u,m(x,t):5uk(x,r)+5jz(§)[aa—;muk(x,§)— g(x,g*)jdf

olur. Lagrange carpanlari,
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m=11i¢in (0<a<l), A=-1 ve
m=2 i¢in (I<a<2), A=&—t

olarak bulunur. Dolayistyla m =1 igin iterasyon bagintisi,
) = )= [ (€)= () o). ) ()t 0
0

ve baslangi¢ kosulu
uy (x,0)=h(x) (4.62)
seklindedir. m = 2 igin ise iterasyon bagintisi,

i (X.) =14 (x,t)+j-(§—t)(%uk (x,f)—f(uk,(uk)x,(uk)xx)—g(x,f)jdf (4.63)

olarak bulunur. Bu durumda baslangi¢ sarti,
uy (x,1) =h(x)+tk(x) (4.64)
ile verilir. (4.61)-(4.64) iterasyon formiillerinden yararlanarak
u(x,t)zllgguk(x,t) (4.65)

¢cozlimii elde edilir. u, baslangi¢ iterasyonu ise baslangi¢ ve sinir kosullarina goére

olusturulabilir.
4.4.1.3.4 Ornek

(4.60) formatinda verilen ve baslangi¢ kosullari
u(x,O) =x7, ut(x,O) =-2x° (4.66)

olan
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0" 0
%:%(u(x,t) ”é;c’t)} (>0, xe R, 1<ar<?2 (4.67)

nonlineer zaman-kesirli hiperbolik diferansiyel denklemini [85] géz Oniine alalim.

(4.63) iterasyon formiiliine gore (4.67) diferansiyel denklemi i¢in iterasyon formiilii,

uM(x,r>=uk<x,r>+j<f—r>{%uk(xf) a[uku,f:)%j’f)]}dg (4.68)

Cox

seklinde verilir. Baglangi¢c kosullarindan hareketle u, = x> —2tx" baslangic degeri

bulunur. Bu degeri ve (4.68)’deki iterasyonu kullanarak asagidaki yaklasik degerler

de hesaplanabilir:

u, (x,t) =x* 267,

u (x,6)=x7 (1=20 437 =41 + 21%),

174 6 192 5 168 ¢ 96, 24
42 56 72 90

Bu sekilde geriye kalan terimler de hesaplanirsa (4.66)-(4.67) kesirli diferansiyel
denkleminin seri ¢oziimii varyasyonel iterasyon metodu ile elde edilmis olur.
Varyasyonel iterasyon yonteminin ¢oziimlerde etkinligi ve yakinsakligi {izerine
yapilan cesitli ¢alismalar ve analizler, yontemin son derece basarili ve istenen

¢Oziime ¢ok fazla islem gerekmeden ulasildigi konusunda birbirini desteklemektedir

[85-87].

4.4.2 Kesirli Varyasyonel iterasyon Metodu

Varyasyonel iterasyon metodunun kesirli hali i¢in, (2.14) Riemann-Liouville
kesirli integral operatériinii (4.49) denklemine uygularsak, yeni diizeltme

fonksiyoneli
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U (x,0) =, (x,0)+ F(ari .I{ (aauk—(x’g)—R[x]ﬁk(x,f)—q(x,f)j}(dg)d

olarak elde edilir. Son bulunan fonksiyonel duragan hale getirilirse,

5uk+1<x,t>=5uk(x,f)+4j{ﬂ<f)[M—R[x]ak(x,f)—q(x,ﬁﬂ}(dg)“

I(er+1) 0"

denklemi elde edilir. Simdi du *nun katsayilarini ayr1 ayri sifira esitlersek,

0"A(¢)

=0
o&”

1+A(&)=

bulunur ve boylece genellestirilmis Lagrange carpani /1(§ ) =-1 olarak bulunur. Bu

durumda kesirli varyasyonel iterasyon metoduna gore iterasyon formiilii, 0 < @ <1

ve u, (x,t) baslangi¢ kosulu olmak iizere,

I'(x+1) o&”

Su,,, (x,6) = u, (5,6)=—2 j{(a” (56) Ry, (x,.f)—q(x,f)j}(d.f)a

seklinde elde edilir [58].

4.5  Kaesirli Black-Scholes Denkleminin Kesirli Varyasyonel iterasyon

Metodu ile Coziimii

Bu kisimda kesirli Black-Scholes denklemini kesirli varyasyonel iterasyon
metodu yardimiyla c¢ozecegiz. (3.19)-(3.20) kesirli Black-Scholes denkleminde

kesirli varyasyonel iterasyon metodunu uygularsak,

tlo%y, 9% v p
Vo (x,T)zvn(x,T)— ! I{ - axz” —(k-1) a” +kvn}(d§)

I'(a+1) 8{,‘”’ x

iterasyon formiiliinii elde ederiz. Boylece baslangi¢ yaklagimi
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Vo (x,7) = max (e" —1,0)

ile verilir. Bu baslangic degerini kullanarak iterasyon yardimiyla diger degerler de

asagidaki gibi bulunur:

—(k-1) aaVO

v (x,7) = v, (x,7)

I(a+1 Haf“ B ax2 °}<d§)a

ke’ +max(ex_1,o)%

=max(e"—1,0)—e“‘ F(a+1)

kt* kt*®
= “-1,0)| 1- g :
max e ’)( Ima+u]+elma+u

v, (x,7)=v,(x,7)

fjo"w 9w v, p
(k-1 d
e+l '([{85’:“ ox’ )ax 1}( $)

& 2
=max(e"—1,0 —e"[ k7 + (_kT ) ]

r a+1) F(2a+1)

(k)

-k

+max(e’r -1,0
a+1

r(2a+1)J

—kf”’)2
(20+1)

N
T“ k
){r( "
=max(ex—1,0)[l—r(]::1) T(‘
(=)

| kT®
e [r(a+1) B 1“(20{+1)J’

vy (x,7)=v, (x,7) - (0{+1 J{aga aaxvzz _(k_l)a(—a_‘:"'k"z}(dsr)a

:max(ex—l,O)—e"[ sl n (_kfa)z + (_kfaf }

T(a+1) T(2a+1) T(3a+1)
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or (k) (k) }

=max(e"—l,0)[1+ —kz” " (_kra)Z + (—kr“)3}

T(a+1) T(2e+1) T(3a+1)

[ () () J
r

(a+1) T'(2a+1) TI'(3a+l)

Bu sekilde devam edilerek, serinin geriye kalan terimleri de hesaplanabilir. Boylece
kesirli Black-Scholes denkleminin kesirli varyasyonel iterasyon metodu ile ¢6ziimii,

seri formunda

v(x,r) =limv, (x, T)

- k™ kt*” s
=max(e —1,0)+r(a+1)e —r(a+1)max(e —1,0)
kZTZDl
——e
F(2a+1)
k3T3a
—e
F(3a+1)

kZTZDJ
+—
T(2a+1)

k3T3a

—mmax(ex —1,0)+

X

max(e"—l,O)—

X

N kTD/ k22.2a k373a
=max(e —1,0) 1- + - +
F(a+1) F(2a+1) F(3a+1)

a 2 2a 3 3da
por| K _kTT | kTT (4.69)
T(a+1) T(2a+1) T(3a+l)

_ max(ex —I,O)Ea (—kz'“)+ex (I—Ea (—kz-a))

seklinde bulunur. Burada Ea(z) bir parametreli Mittag-Leffler fonksiyonunu

gostermektedir. o =1 ig¢in (4.69) ¢oziimii
v(x,T) = max (ex - l,O)e’k’ +e" (1 - e’kf)

seklinde verilir. Bu ise klasik Black-Scholes denkleminin tam ¢6ztimiidiir.
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4.6  Kesirli Laplace Homotopi Pertiirbasyon Metodu

Ozellikle fiziksel problemlerin ¢6ziimlerinde kullanilan ve tam ¢dziimlere ¢ok
hizli bir sekilde yakinsayan seri ¢oziimlere sahip olan Kesirli Laplace homotopi

pertiirbasyon metodunun (KLHPM) ¢6ziim yontemini agiklayabilmek i¢in

Dlu(x,t)+R[x]u(x,t)+ N[x]u(x,t)=q(x,1)

(4.70)
u(x,O)zh(x), t>0, xeR, O0<a<l

nonlineer zaman-kesirli diferansiyel denklemini g6z oOniine alalim. Bu denklemde
_9”
o’

fonksiyondur. Simdi (4.70) denkleminin her iki tarafina Laplace doniisiimii

D* R[x] lineer operator, N|[x| nonlineer operatér ve g (x,7) de siirekli bir

uygularsak,
L[Dt”’u (x,t)]+ L[R [x]u (x,t)+ N[x]u (x,t)} = L[q(x,t)]
elde ederiz. Buradan da

saL[u(x,t)]—S“—lu(x,O)-i—L[R[x]u(x,t)-i— N[x]u(x,t)]—L[q(x,t)] =0 @)
Ll:u(x,t)] = s_lh(x)+s_”L[q(x,t)]—S_”L[R[x]u(x,t)+N[x]u(x,t)]

bulunur. (4.71) denkleminin her iki tarafina ters Laplace doniisiimii uygularsak,

G(x,t) denklemin baslangi¢ kosulunu gostermek tizere
u(x,t) = G(x,t)—L_1 (S_“L [R[x]u(x,t)+ N[x]u(x,t)]) (4.72)

denklemi elde edilir. Simdi klasik HPM teknigini kullanarak, pe [0,1] homotopi

parametresi olmak {izere (4.70) denkleminin ¢oziimiiniin
u(x,t)= Z plu, (x,1) (4.73)
n=0

kuvvet serisi seklinde ifade edilebilecegini kabul edelim. Nonlineer terim
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Nu(x,t):Zp"Hn(u) (4.74)

seklinde aynstirilabilir. Son denklemde H,, wu,,u,,...,u, fonksiyonlarinin He

polinomu olarak ifade edilir ve bu polinomlar

oo

Hn(uo,ul,uz,...,u 19 [ [Zpuﬂ , n=0,1,2,3,...
p=0

n'ap =

denklemiyle hesaplanabilir. (4.73) ve (4.74) denklemini (4.72) denkleminde yazarak
HPM tekniginin 6zelliklerini kullanirsak [88, 89]

Mx

el e

n=0 n=0

denklemi elde edilir. Denklemin her iki tarafinda p nin aymi kuvvetlerinin

derecelerini esitlersek,

P’ iuy(x,t)=G(x,1),

plauy (x.0) =L (L[ R[x]u, (x.0)+ H, () ]),
Py (x,t) =L (5L R[x]u, (x,0) + H, () ]),
P’y (x,t) =L (s L[ R[x]u, (x,0)+ H, (u) ]),
piuy (x,t) =L (s L[ R[x]uy (x.0)+ H, () ])

yaklasimlarinm elde ederiz. Bu sekilde devam edilerek u, (x,t) nin diger bilesenleri

de bulunabilir ve boylece

N
xt:}, Z

n=1

yaklasik ¢oziimii elde edilir.
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4.7 Kesirli  Black-Scholes  Denkleminin Laplace  Homotopi

Pertiirbasyon Metodu ile Coziimii

Bu boliimde (3.20) Black-Scholes opsiyon fiyatlama denkleminin Laplace
homotopi pertiirbasyon ¢oziimii ile nasil elde edildigini gosterecegiz. Simdi (3.20)

denkleminin her iki tarafina Laplace doniisiimii uygulayalim. Bu durumda,
s“L[v(x,7)]=5""v(x,0) = Lv, + (k=1)v, —kv]
bulunur. Buradan da
L[v(x7)] =5V (x,0)+5 L[ v, +(k=1)v, k]
(4.75)

1 s _101e L ~1)v, -
_;max(e 1,0)+S0[L[Vxx+(k v, kv]

elde edilir. (4.75) denkleminde her iki tarafa ters Laplace dontisiimii uygularsak
v(x,7)= max(ex —1,0)+L_ ( L[v +(k=1)v, —kv])

denklemini elde ederiz. Simdi de HPM uygulayarak,

> p"v,(x,7)=max(e" ~1,0)+ p[L-‘ [S%L[i p"H, (V)DJ (4.76)

n=0

esitligini buluruz. Burada H,(v) He polinomlaridir ve bu He polinomlarmin

bilesenleri
H,(v)=v, . +(k=1)v, +kv,, n20, neN

seklinde bulunur. (4.76) denkleminde p nin uygun kuvvetlerinin katsayilarini

birbirine esitlersek,
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P’ v (x,7) =max(ex —1,0),

p v (x7)=L" (S_D’L[Ho (V)]) :_ex%"—max(ex _1’0)%’

kY —kr*)’
posted = ()= a0 T

3 ) 4.77)

—kr”® —kt*

vy (n7) =L (s LLH, (v) ) =‘€x%+max(g ~10) r((3a+)1)’
k)" —kz®)’

p' v, (x7)=L" (s_“L[Hn_1 (V)]) =—ex%+max(ex _1’0) I(‘(nat-i-)l)

elde edilir, 6yle ki, (3.20) probleminin v(x,7) ¢oziimii, E,(z) bir-parametreli

Mittag-Leffler fonksiyonu olmak tizere,

v(x,7)= limi pv(x,7)= max(ex - l,O)Ea (—kT“)+ e (l—Ea (—kT“))
n=0

p—l

seklinde bulunur [44].

4.8 Genellestirilmis Diferansiyel Doniisiim Metodu

Genellestirilmis diferansiyel doniisim metodu (GDDM); diferansiyel
doniisim metodu (DDM), genellestirilmis Taylor formiilii ve Caputo tiirev tanimi
temel alinarak gelistirilmistir. Bu boliimde diferansiyel doniistim metodu (DDM) ve
genellestirilmis Taylor formiilii ile ilgili tanimlar ve teoremler verilecek; bu tanim ve
teoremler yardimiyla da genellestirilmis diferansiyel doniisim metodu ele

alinacaktir.

4.8.1 Diferansiyel Doniisiim Metodu

Ilk olarak diferansiyel doniisiim metodu Zhou tarafindan elektrik devre

analizinde uygulanan lineer ve nonlineer baslangi¢ deger probleminin ¢oziimiinde
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kullanilmistir [90]. Diferansiyel doniisiim metodunu bir-boyutlu ve iki-boyutlu

diferansiyel doniisiim seklinde ikiye ayirarak inceleyebiliriz.

4.8.1.1 Bir-Boyutlu Diferansiyel Doniisiim Metodu

Bir-boyutlu y(x) fonksiyonunun diferansiyel déniisiimii,

Y (k) =%[d;yx€{x)} ) (4.78)

seklinde tanimlanir. Burada y(x) asil (orijinal) fonksiyon, Y (k) da T —fonksiyonu

olarak isimlendirilen déniisiim fonksiyonudur [91]. Y (k) min diferansiyel ters

doniisiimii ise
y(x) =327 (k) (4.79)
k=0

bi¢ciminde tanimlanir. (4.78) ve (4.79) denklemlerini birlikte diistiniirsek,

y(x)=i£{dky (X)L (4.80)

— k| dxt

denklemi elde edilir. (4.80) denklemine bakildiginda, diferansiyel doniisiimiin Taylor
seri agilimindan tiiretildigi akla gelmektedir. Fakat bu metot simgesel olarak tiirevleri
hesaplamamaktadir. Bununla beraber, niimerik yaklasim i¢in gerekli tiirevlerin
hesaplamalari, asagidaki Tablo 4.2°de goriildiigii gibi, asil fonksiyonlarin déniisiim
denklemleri olarak tanimlanan bir iteratif yontemle hesaplanabilir [91]. Calisma
boyunca kii¢iik harflerle asil (orijinal) fonksiyonu, biiyiik harflerle de asil fonksiyona

ait doniisiim (transform) fonksiyonunu gosterecegiz.
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Tablo 4.2: Bir-boyutlu diferansiyel doniisiim metodunun temel islemleri.

Asil Fonksiyon

Doniistim Fonksiyonu

y(x)=u(x)£v(x)

Y (k)=U (k)£V (k)

y(x)=cw(x)

Y (k)=cW (k)

Y(k)=(k+1)W (k+1)

Y(k)=(k+1)(k+2)..(k+ )W (k+))

4.8.1.2 iki-Boyutlu Diferansiyel Doniisiim Metodu

w(x,y) asil fonksiyon olmak iizere,

W (k,h)

ak-%—hw(x,y)

(4.81)
k h
ox’dy lx,y)—(om

seklinde tamimlanan ve T - fonksiyonu olarak da tanimlanan W (k,h) fonksiyonuna

déniisiim fonksiyonu denir. W (k, /) "nin ters diferansiyel doniisiimii de,

w(x,y):iiW(k,h)xkyh (4.82)

ile tanimlanir. (4.81) ve (4.82) denklemleri yardimiyla
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o x"yh |:ak+hw(x,y)j|
= (4.83)
(x.) kzz(;hzz:; k'h!|  ox“9y” (x.2)=(0.,0)

denklemi elde edilir [91, 92]. (4.83) denkleminden de anlasilacag1 gibi iki-boyutlu

diferansiyel doniisiim iki-boyutlu Taylor seri agilimindan iiretilmistir. Iki-boyutlu

diferansiyel dontisiimle alakali temel islemler asagidaki Tablo 4.3’te verilmistir:

Tablo 4.3: iki-boyutlu diferansiyel déniisiim metodunun temel islemleri.

Asil Fonksiyon

Doniisiim Fonksiyonu

w(x,y) =u(x,y)iv(x,y)

W (k) =U (k,h) £V (k.h)

w(x,y)=cu(x,y)

W (k.h)=cU (k.h)

w(x,y)= a”g);’y) W (k,h)=(k+1)U(k+1,h)
Wi, y)=au(£:y) W (k1) = (h+ 1)U (k,h+1)
w(x,) a;;‘rg;;y) W (ko) = (k4 1) (k +2)o(k + ) (h+ 1) (34 2) (b4 $)U(k + 7+ 5)

w(x,y)=u(x,y)v(x,»)

W (k.h) = Z}iU(r,h—s)V(k—r,s)

l, k=mvek=n

,y)=x"y" W (k,h)=38(k—mh—n)=
W(xy) e ( ) ( " n) {0, k#zmvek#n
ou(x,y) ov(x,y) k. b
w(x,y)= 3 S W(k,h)=ZZ(r+1)(k—r+1)U(r+1,h—s)V(k—r+l,s)
X X 720520

k

W (kh)=S (s +1)(h=s+ 1)U (rh—s+ 1)V (k= r.s+1)

r=0s=

o
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Tablo 4.3 (devam)

w(x,y)= ax’ W(k,h):iik r+1)(h—s+ 1)U (k—r+1,5)V (r,h-s+1)

=0 s=0

kh:i;’ZiZ:;hZ:U (r,h—s-p)V(t,5)T (k—r—t,p)

t=0 p=0

LN -7 k_k=r _h_ h=s
() =u(x.y) ox ox W (k,h) =ZZZZ (t+1)(k=r=t+ 1)U (r,h=s=p)V(t+1,8)T(k=r—t+1,p)
=0 1=0 5=0 p=0
%y (x,y) K ker h hes
(ry)=u(nr)vxr) =55 W (k,h =2222k r=t+2)(k=r—t+1)U(r,h=s—p)V (t,5)T(k=r—t+2,p)
=0 1=0 s=0 p=0

Tablo 4.3’te verilen 6zelliklerin gosterimi ve daha genis bilgi i¢in [26, 91-95]
kaynaklarina bakilabilir.

4.8.1.2.1 Teorem

w(x,y)=u(x,y)*v(x,y)fonksiyonu igin diferansiyel doniisiim fonksiyonu

W(k,h)=U (k,h)£V (k,h) seklindedir [94].

4.8.2 Genellestirilmis Taylor A¢ilim

Verilen bir y = f (x) fonksiyonuna iliskin Taylor agilimi birkac farklr sekilde

tanimlanmustir. Ornegin, Riemann tarafindan

o hm+r

fx+h)=Y] -

— (m+r+l)

(J:H—rf)(x)
seklinde tammlanmistir [42]. Burada J"*", (m+r). mertebeden Riemann-Liouville

kesirli integral operatoriinii gostermektedir. Diger bir genellestirme ise Watanabe

tarafindan yapilmistir. Bu genellestirme formiilii m < ¢, x> x, >a ve
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L (e

R,, =(Jf+"ﬁf+k)(x)+mo

olmak tizere,

n—l (X _ )CO )a+k

f(x)=2

Z Tarkr &S R

seklindedir [96]. Burada DZ** terimi, (a+k). mertebeden Riemann-Liouville
kesirli tiirev operatoriidiir. Yani (2.20) denkleminde tanimlandigr sekliyle

RD* = D esitligi yazilabilir.
4.8.2.1 Teorem (Genellestirilmis Taylor Formiilii):

0<a<lve D\"f(x)e C(a,b] olsun. k=0,1,...,n+1 igin,

D r)(£)

< (x_a)m (
((n+1)er+1)

(n+1)er
2 —F(ia—i-l) x—a) (4.84)

f(x)=

(D;“f)(a)+r(‘

olur. Burada Vxe (a,b], a<é<x ve D! =D7-D?---D? dir. Bu teoremin ispati

icin [12]’den yararlanilabilir. =1 icin, (4.84) Caputo genellestirilmis Taylor
formtilii, klasik Taylor formiiliinii verir.

4.8.3 Genellestirilmis Diferansiyel Doniisiim Yontemi

Genellestirilmis diferansiyel doniisiim yontemini (GDDY) iyi kavrayabilmek
icin diferansiyel doniisiim yonteminde oldugu gibi bir-boyutlu GDDY ve iki-boyutlu
GDDY olarak iki sekilde inceleyecegiz.

4.8.3.1 Bir-Boyutlu Genellestirilmis Diferansiyel Doniisiim Yontemi

Bir-boyutlu (tek degiskenli) bir y(x) fonksiyonunun k. mertebeden tiirevinin

genellestirilmis diferansiyel doniistimii, 0 < & <1 olmak {izere,
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Fa(k)z—[(Djz ) f(x)} (4.85)

I'(ck+1)

seklinde tamimlanir. (4.85) denkleminde D** = p*.p*...D* (k—defa) olarak

verilir [95]. F, (k) 'mn diferansiyel ters doniisiimii ise,
= ZFa (x=x,) ) (4.80)
k=

seklindedir. (4.85) denklemi (4.86)’de yerine yazilip, (4.84) genellestirilmis Taylor

formiili de kullanilarak
= ak - (x—x,) \E ~
INAGICEEY _Z—F(akﬂ)((Dx‘)) f)x)=r(x) @8

elde edilir. (4.87) ifadesi yardimiyla f(x) fonksiyonunun yaklasik degeri smirl seri

formunda
f(x)= 2 Fu (k) (x=x)"

olarak yazilabilir. Goriildigu lizere, genellestirilmis diferansiyel doniisiimii, klasik
diferansiyel doniisiimiiniin keyfi mertebeden tiirevli halidir. Yani, GDDY’de =1
almirsa DDY elde edilir. (4.85) ve (4.86)’de verilen tanimlar gbz 6niine alinarak bir-

boyutlu genellestirilmis diferansiyel doniisiimiin temel 6zellikleri s6yle 6zetlenebilir:

4.8.3.1.1 Teorem

4.8.3.1.2 Teorem
f(x)=cg(x) ise, F,(k)=cG,(k)olur. (c—sabit)

4.8.3.1.3 Teorem

£(x)=g(x)h(x) ise, , (k)= G, (m)H, (k—m) olur.

=0
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F

o

(%)

4.8.3.1.4 Teorem

T(er(k+1)+1)
I'(ak+1)

f(x)=D;g(x) ise, F, (k)= G, (k+1) dir.

ispat

(4.85)’de verilen doniisiim taniminda f(x)’in degeri yazilirsa,

= ﬁ[(g’; )k Dig (x)lzx0

1 o \FH
=F(ak+1)[(D"°) g(x)on
_ T(e(k+1)+1) Lk
_F(ak+1)1“(a(k+1)+l)[( ) g(x)}
_T(e(k+1)+1)
© [(ek+1)

G,(k+1)

bulunur. Béylece Teorem 4.8.3.1.4’{in ispat1 tamamlanmis olur.

dir.

4.8.3.1.5 Teorem

1, k=n,

f(x)=(x=x,)" ise, 5(k—n)={0’ ken

4.8.4.1.6 Ornek

Bir nonlineer

Dy(x)=»*(x)+1, O<a<l, 0<x<l

kesirli diferansiyel denklemini

»(0)=0

olmak tizere, F,(k)=J(k—n)

(4.88)

(4.89)

baslangi¢ sartiyla géz Oniine alalim [97]. Teorem 4.8.3.1.4 ve Teorem 4.8.3.1.5’1

kullanarak, (4.88) denkleminin her iki tarafina genellestirilmis diferansiyel doniisiim

uygularsak, (4.88) diferansiyel denklemi,
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I'(ok+a+1) K-
F(akeT) Y, (k+1)=)_Y,(m)Y, (k—m)+8(k)

m=0

haline doniigiir. Buradan da

Ya(k+1)=%{iYa(m)Ya(k—m)+§(k)} (4.90)

m=0
elde edilir. (4.89) baslangi¢ sartinin genellestirilmis diferansiyel doniistimii ise,
Y,(0)=0 (4.91)

olarak verilir. (4.90) rekiirans bagintis1 ve (4.91) doniistiiriilmiis baslangi¢ kosulu
birlikte kullanildiginda, (4.88)-(4.89) diferansiyel denkleminin GDD ¢6ziimiine ait

bazi terimler su sekilde elde edilir:

1 T(2a+1)
T(e+1) T(3a+1)

2 T(2a+1)T(4a+1)
T(a+1) T(3e+1) T(5a+1)’

n(e)=0.  1,(7)=——xtD {

I(e+1)' T(7a+1)

4F(20{+1)F(40{+1)+F(20{+1)2
I (3a+1) T(5a+1) F(3a+1)2 ’

Boylece, (4.88) denkleminin O (xm) hata mertebesine kadar ¢6ziimii

1 .1 TQa+l),, 2 T(2a+l)T(4a+1)

Y= R "T(a+1) TGa+1) " " T(a+1) T(Ga+1) T(5a+1)
F(6a+1)  [4F(2e+1)T(da+1) T(2a+1) |,

rmu)“r(mu){ r(3a+1) T(50!+1)+F(30{+1)2]x

Sa

olarak elde edilir [97].
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4.8.3.2 Iki-Boyutlu Genellestirilmis Diferansiyel Déniisiim Yontemi

Iki degiskenli u(x,y) fonksiyonunun u(x,y)= f(x)g(») olacak sekilde,
tek degiskenli iki fonksiyonun ¢arpimi olarak gosterilebilecegini varsayalim. Iki-
boyutlu diferansiyel doniisimiin Tablo 4.3’te verilen temel o6zelliklerinden

yararlanarak, u (x, y) fonksiyonu, 0< ¢, S<1 olmak iizere;

- h=0 (4.92)
=2 2 U (k) (r=3,)" (3 n)”

seklinde ifade edilebilir. (4.92) denklemindeki U, ,(k,h)=F, (k)G,(h) ifadesi
u(x,y) nin spektrumu olarak isimlendirilir. u (x, y) fonksiyonunun genellestirilmis

iki-boyutlu diferansiyel doniisimi,

1 o \k B
F(O(k+1)r(ﬂh+1) [(DXO) (Df)) u(x’y):|(x0’y0) (4.93)

olarak verilir [97]. (4.93) denkleminde &= =1 olmasi durumunda (4.92)-(4.93)

Uy p(kh)=

tanimlarindan, klasik iki-boyutlu diferansiyel doniisiimiin elde edilecegi asikardir.

Yine bu tanimlar1 goz 6niine alarak asagidaki sonuglari elde edebiliriz:

4.8.3.2.1 Teorem

Uup(ksh), V, g(kh), W, 5 (k,h) sirastyla — u(x,y), v(x,»), w(x,»)

fonksiyonlarinin diferansiyel doniistimleri olsun. Buna gore,

a) Eger u(x,y)=v(x,y)tw(x,y) ise, U, ,(k,h) =V, ;(k,h)£W, ;4 (k,h) saglanir.

b) Eger u(x,y)=kv(x,y), ke R ise, U, ,(k,h)=kV, ;(k,h) saglanr.

k h

) Eger u(x,y)=v(x,y)w(x,y) ise, U, ,(k,h)=DD V, s(rih=s)W, ,(k—r,s)
r=0 s=0

saglanir.

d) Eger u(x,y)=(x-x,)" (x-x,)" ise, U, 4 (k.h)=38(k—n)S(h—m) saglanir.
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4.8.3.2.2 Teorem

Eger 0 < ar <1 igin u(x,y)=D{v(x,y) ise

o(k+1)+1)
I'(otk+1)

r
Up (k)= ( Vs (k+1,h)

esitligi saglanir.
ispat

(4.92) tanimindan yola ¢ikarak,

U“’ﬂ(k’h)zr(ak+1)1r(ﬁh+1)[(D’Z)k(D ) Dt y)lw)
N\ (ak+1)1r(ﬂh+1)[(D’Z)kﬂ(l)ﬁ)hv(x’y )L,m
T R (I CARCEIN
4 F(?((i;i)l;l) V, 5 (k+1h)
bulunur.

4.8.3.2.3 Teorem
Eger u(x,y)=f(x)g(»), 4>-1i¢in f(x)=x"h(x) ve h(x) fonksiyonu da

h(x)= i a,(x—x, )”k genellestirilmis Taylor serisine sahip ve

=~
Il
(=]

a) f<A+1 ve o keyfi deger,
b) B2 A+], o keyfideger, a, =0, k=0,1,..m—1 ve m=1<f<m

kosullarindan birisi saglaniyor ise, (4.93) genellestirilmis diferansiyel doniisim

ifadesi,

1 ok h
U“’ﬂ(k’h)zr(ak+1)r(ﬁh+1)[D% (0] utx)| (#54)

(x570)
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seklinde yazilabilir. Yukaridaki Teorem 4.8.3.2.1, Teorem 4.8.3.2.2 ve Teorem
4.8.3.2.3’ten ¢ikan sonuglar goz Oniine alinarak, genellestirilmis iki-boyutlu

diferansiyel doniisiime ait temel islemler Tablo 4.4 te verilmistir [98].

Tablo 4.4: Genellestirilmis iki-boyutlu DD yonteminin temel 6zellikleri.

Asil Fonksiyon Doniisiim Fonksiyonu
u(x,y)=v(x,p) £ w(x,y) U, s(k.h) =V, ,(k,h)£W, 4(k.h)
u(x,y) =cv(x,) U, ,(k,h) =<V, ,(k.h)
u(x,y)=Div(x,y) Ua,ﬂ(k,h)=lw§ﬂ(k+l,h), 0<a<l
u(x,y)=D2v(x,y) Ua‘ﬁ(k,h)=IWVw(k,h+l), 0<p<1

T(a(k+1)+1)T(B(h+1)+1)

u(x,y)=D{Dv(x,y) U, ,(k.h)= V,s(k+1h+1), 0<a,B<1

“r T(ek+1)T(Bh+1)
u(x,y)=D!v(x,y) U,z (k.h) =mn,ﬁ(k+ y/a.h), m-1<y<l
()= D D (1) Uy alho) = )y s 1)
u(ey)=(x=x)" (y=5)" Uy (ko) =8 (k=) (= m)
u(x, ) =v(x,y) w(x.) U, ,(kh)= ZZV/,(h — )W, (k= r.s)

u(x,y)=v(x,y)w(x,y)q(x,») Ua/,(k,h)=i]§ﬁ
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4.8.3.2.4 Ornek

Genellestirilmis diferansiyel doniisiim metodunu daha iyi anlayabilmek igin

zaman-kesirli

Diu=Dlu+6u(l-u), 0<a<l, xeR, 1>0 (4.95)
Fisher denklemini
1
u(x,0)=——— (4.96)
(l-l-ex)

baslangi¢ kosulu ile beraber goz oniine alalim. (4.95) denklemi sadece zaman-kesirli
oldugundan (uzay-kesirli olmadigindan) S =1 alip, Tablo 4.4’teki ilgili 6zellikleri de
kullanarak (4.95) denkleminin her iki tarafina genellestirilmis diferansiyel doniisim

yontemini uygulayalim. Bu durumda (4.95) denklemi,

IN'a(h+1)+1

(h D)) e

I'(ah+1) ’
k_ h

=(k+1)(k+2)U,, (k+2,h)+6U,, (k,h)=6> > U, (r,h—s)U,, (k-r,s)
r=0 s=0

sekline doniisiir. Yani,

I'(ah+1)

U“’l(k’h+l)=r(a(h+1)+1)

o (4.97)
{(k+1)(k+2)Um1 (k+2,h)+6U,, (k,h)-6>-> U, (r,h=s)U,, (k—r,s)}

r=0 s=0

bulunur. (4.96) ve (4.92) denklemlerinin seri formlarin1 birbirine esitlersek,

U,,(k,0), k=0,1,2,... baslangi¢ doniisiim sabitleri,

1 1 1 1 1
Ua’1<0,0)=z, Ua,1(1’0)=_29 Ua,l(2’0)=gﬂ Ua’1(3,0)=&, Ua’1(4,0)=—%
(4.98)

olarak bulunur. (4.98) denklemini (4.97)’da uygulayarak U, (k,%) ' asagidaki
Tablo 4.5’de verilen baz1 degerlerini buluruz.
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Tablo 4.5: Ornek 4.8.3.2.4 i¢in U, (k, ) in baz1 degerleri.

h
k
0 I 2

5 25

0 174 AT (er+1) 8T (2cr+1)
-5 25

I -1/4 8T (a+1) 8T (2cr+1)
-5 25

2 1/16 16T (e +1) 8T (20 +1)
5 -25

3 1748 24T (a+1) 24T (2a+1)
5 425

4 -1 85 96T (e +1) 384T (2c+1)

Elde edilen bu degerleri (4.92)’te yerine yazip bazi sadelestirmeler de yapildiktan

sonra, (4.95)-(4.96) denkleminin seri formu

1 5 o 25 20 1 5 o 25 2o
u(x,t)=|—+ 1"+ N "+ P |x
4 4r(e+1)  ST(2a+1) 4 8C(a+1)  8(2a+1)

1 5 o 25 . ) 1 5 o 25 ra ;
+| —=—= - A O A o - U+ X
16 16F(a+1) 8F(2a+1) 48 24F(a+1) 24F(2a+1)

1 5 o 425 e 4
+| ——+ t + T+ X
96 96I'(a+1) 384T (2 +1)
seklinde elde edilir. Diger bir gosterimle,

u(x,t)= l—lx+sz+Lx3—ix4+...
4 4 16 48 96

55 5, 5, 5, t*
XX ——Xx +—Xx +..
4 8 16 24 96 I(a+1)
25 25 25 , 25 , 425 , *
—t—X—— X ——X +t—X t.. |
I'(2a+1)

X X X
&8 8 8 24 384

yazilabilir. Kapali formda ise,
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1 10¢* t* 50e” (2@‘ - 1) 12

u(x,t)= + + + 4.99
(x1) (1+ex)2 (1+e)‘)3 [(a+1) (1+ex)4 I(2a+1) (4:59)

olarak yazilabilir. & — 1 i¢in, (4.99) denklemi

1 108 25¢"(2e"-1)
u(x,t)= -+ St — '+
(1+ex) (1+ex) (1+e")
ve buradan da

1

) =————— (4.100)
“(o) (1+e"’5')2

kapali ¢6ziim elde edilir. (4.100) ¢oziimii (4.95)-(4.96) Fisher denkleminin standart

formunun tam ¢6ziimiudiir [98].

4.9 Kesirli Black-Scholes Denkleminin Genellestirilmis Diferansiyel

Doniisiim Metodu ile Coziimii

(3.20) Black-Scholes kesirli diferansiyel denkleminin v(x,7) ¢6ziimiiniin tek
degiskenli iki fonksiyonun c¢arpimi seklinde ifade edilebilecegini varsayalim.
Denklem sadece zaman-kesirli oldugundan dolayr £ =1 alalim ve denklemin her iki

tarafina genellestirilmis iki-boyutlu diferansiyel doniisiim uygulayalim. Bu durumda

lineer zaman-kesirli (3.20) denklemi,

INea(h+1)+1
( (A+1) )Ua’l(p,h-i—l)=(p+1)(p+2)Ua,l(p+2,h)
I(ah+1) @.101)
+(k=1)(p+1)U,, (p+1,h)-kU,, (p,h)
halini alir. Diger bir gosterimle
U, (ph) =— ) (pe2)U, (pe2h)
e\ P D(a(h+1)+1) 0 APTalPTe (4.102)

+(k=1)(p+1)U,,(p+1,h)-kU,,(p,h)]
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yazilabilir. Denklem (3.19) ile (4.92)’in seri formlarin1 birbirine esitleyerek
baslangic doniisiim katsayilarint yani, (3.19) baslangic kosulunun iki-boyutlu
diferansiyel déniisiimii olan U, (p,0),p=0,1,2,... degerleri asagidaki gibi elde
edilir:

U, (0,0)=0, U, (1,0)=1, U, (2,0)=—, U,,(3,0)=

1 1
~ , U, (4,0)=— (4.103
5 1(4,0) o (4103)

1
6
(4.103) denklemini (4.102)’de uygulayarak asagidaki Tablo 4.6’da verildigi gibi
U, (p,h) 1 baz1 degerleri elde edilebilir.

Tablo 4.6: Denklem (4.102) igin U, (p, %) ’in bazi degerleri.

h

p

0 1 2 3
0 0 k/T(a+1) —k* /T (2 +1) /T (3a+1)
{ { 0 0 0
2 1/2 0 0 0
3 1/6 0 0 0
4 1/24 0 0 0

Tablodaki degerleri (4.92)’te yerine yazarsak, (3.19)-(3.20) denkleminin seri formu

su sekilde bulunur:

TD( 5 TZa ; ,Z.Sa
v(x,7)=| 0+k —k +k +...
T(a+l)  T(2a+1)  T(3a+l)

TD( TZLV T3D/
+[1+0 -0 +0 .. |x
F(a+1) F(2a+1) F(3a+1)
o 2o 3
L S +0—" .. |x
2 T(a+l) TQa+l) T(3a+l)
o 20 3a
N O S | +0—r +.. X
6 T(a+l) T(2a+l) T(3a+l)
o 2o 3o
N B S S +0—" o xt+
24 T(a+l) T(2a+1) T(3a+l)

77



Boylece x >0 igin v(x,7) ifadesini
2 3 4 o 20 3a
v(n7)=| x+ e T s +(k)7—+(_k2)7—+(k3)7—+.__
2 6 24 (a+1) T2a+1) " /T(3a+1)

formunda yazabiliriz. Kapali formda gésterimi, E, (z) Mittag-Leffler fonksiyonunu

gostermek tizere,

v(x,7)=(e"~1)- _1+z((f{—z+)l —e z ('W)l) ¢ —E, (~kz")
(4.104)
seklinde verilir. x =0 olmak lizere & =1 igin tam ¢6ziim ise
v(x,7)=e"—e™"
olarak elde edilir [99]. (4.104) ¢oziimiinin o =1.00, & =0.75, ¢ =0.50ve a=0.25

degerleri i¢in grafikleri asagida sirayla verilmistir:

161
14
- 1.2

= 08
0.6
0.4
0.2

NS Ton 0 085
x Yhieoip MR

Sekil 4.5: (3.19)-(3.20) denkleminin @ =1.00 igin ¢oziimii.
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Sekil 4.6: (3.19)-(3.20) denkleminin ¢ =0.75 igin ¢dziimii.

Ry
Y

Sekil 4.7: (3.19)-(3.20) denkleminin ¢ = 0.50 i¢in ¢dziimii.
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Sekil 4.8: (3.19)-(3.20) denkleminin & = 0.25 igin ¢dziimii.

x<0 i¢in baslangic kosulu v(x,0)= max(e" —1,0) =0 oldugundan dolay1
genellestirilmis diferansiyel doniisiim metodu x <0 i¢in bu probleme uygulanmaz.
Asagida verilen Sekil 4.9, a=0.25, o =0.50, ¢ =0.75 ve or=1.00 degerleri i¢in
(3.20) denkleminde verilen £ =70 uygulama fiyatli opsiyonun fiyatindaki degisimi

gostermektedir.

alfa=1.00

—a&— alfa=0.25 —a—alfa=0.50 —e— alfa=0.75

V(S
e 8 8 8 8 B8 & 8

-]

140

Sekil 4.9: « nin dort farkli degeri igin opsiyon fiyatlari.
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Sekil 4.9’a gére =1 iken opsiyon uygulama aninda (z7=T7) en diisik fiyata

sahiptir. o degerleri azaldik¢a, opsiyonun pirimi artmaktadir. a=0.25 olmasi
durumu ise opsiyona gereginden fazla fiyat bi¢ilmesi (overpriced) durumu olarak

degerlendirilebilir.

4.10 Padé Yaklasim

Fransiz matematik¢i Henri Eugéne Padé’nin doktora calismasiyla literatiire
giren ve Cuyt [100] tarafindan teorisi ve kavramlar1 daha da sistemli hale getirilen
Pad¢é yaklasiminin hem tek degiskenlisi hem de cok degiskenlisi i¢in bir takim
calismalar mevcuttur. Tek degiskenli Padé yaklasimi igin literatiirde farkli tiir
caligmalar [12, 101] olmasina ragmen ¢ok degiskenli Padé yaklagimi iizerine yapilan
calismalarin azhg dikkat ¢ekmektedir. Ozellikle kesirli mertebeden diferansiyel
denklemler {izerine yapilan ¢alismalar yok denecek kadar azdir [79]. Bu calismada
cok (iki) degiskenli Padé yaklasiminin kesirli diferansiyel denklemlere uygulanisi ele
alacaktir. Cok degiskenli Padé yaklasimina gegmeden once tek degiskenli Padé

yaklasiminin temel tanim ve teoremleri verilecektir.

4.10.1 Tek Degiskenli Padé Yaklasim
Kuvvet serisi ile gosterilen
f(x)=c,+ex+ox’ +...=) cx' (¢, #0) (4.105)
i=0

fonksiyonunu ele alalim. Bu durumda kuvvet serisinin Padé yaklagima,

2 m
a,tax+c,x +..+a,x

2 n
by+bx+bx" +..+bx

[m/n] = (4.106)

seklinde iki polinomun orani olarak tanimlanir. (4.106)’te m payin derecesini, n ise
paydanin derecesini gosterir. Pay ve payda sirasiyla m+1 ve n+1 tane katsayiya

sahiptir. (4.106) denkleminin tanimsiz olmamasi i¢in 5, =1 alinmalidir. Bu kabulle

tim yaklasgimda m+n+1 tane bilinmeyen katsayr vardir. [m/n] ifadesi (4.105)
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kuvvet serisinin ilk m+n+1 terimine karsilik gelir [102]. (4.105)’deki m+n

dereceli kuvvet serisine karsilik gelen Padé yaklagimini

oo 2 m

; a,taxtcex +..+a x
Mepl =2 m—+ O(x") (4.107)
i=0

by +bx+b,x* +..+b x"
seklinde yazabiliriz. Son denklem kullanilarak,

(bo +bx+b,x* +...+ bnx”)(c0 +ex+e,x’ + ) = (ao +ax+c,x’ +..+ amx’”)+ o (x””"”)
(4.108)

elde edilir. (4.108) denkleminde x"*',x"** .., x"*" Kkatsayilarinin esitliginden

yararlanarak
bncm—n+1 + bn—lcm—n+2 ot bOcm+l = 0
'bn m—n+2 + bn—lcm—n+3 +..t bOCm+2 = 0 (4 109)
be,+b _c . +..+bc,. =0

sistemi elde edilir. 5, =1 oldugundan, (4.107) denkleminde paydadaki »— tane

bilinmeyen katsay1 i¢in (4.109) denklemi n— tane lineer denklemden olusur. Diger

bir gosterimle,

cm—n+1 cnz—n+2 Cm—n+3 t cm bn cm+1

cm—n+2 Cm—n+3 cm—n+4 cm+1 bn—l Cm+2

Cm—n+3 Cm—n+4 Cm—n+5 Cm+2 bn—2 == Cm+3
L cm cm+1 cm+2 cm+n—1 AL bl ] _cm+n ]

matris formu yazilabilir. Bu esitlikten b, katsayilar1 bulunabilir. Ayrica q,,4,,...,a,,

katsay1lari (4.108) denkleminde 1, x,x7,...,x" terimlerinin katsayilariyla esitlenerek,
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a, =¢,

a, =c, +bc,

a,=c, +bc, +b,c, (4.110)
min(m,n)

am = cm + blcm—l

olarak bulunur. Boylece (4.109) ve (4.110) denklemlerindeki a ve b katsayilari,
(4.106) denklemindeki Padé yaklagimmin tiim terimlerinin katsayilar1 olarak

tanimlanir. Boylece, bu terimlerden elde edilen denklemlere de Padé denklemleri

denir. Padé denklemleri yardimiyla Zcixi kuvvet serisine karsilik gelen (x””").
i=0

dereceden [m/n] Padé yaklagimi olusturulur. Bundan sonraki gdsterimlerde bir p

polinomunun kesin polinom derecesi dp ile ve bir g kuvvet serisinin derecesi de

wq ile gosterilecektir. Bu durumda, verilen bir f (x)= Zcixi kuvvet serisini goz
i=0

oniine alalim. Bu f(x) fonksiyonu ig¢in (m,n). mertebeden Padé yaklasim

problemi, pay ve payda polinomlar1 olan
p(x):zm:a,.xi ve q(x)=>bx'
i=0 i

polinomlarin1 bulmayi ifade eder. Yani, tek degiskenli f* fonksiyonunun (m,n)

mertebeden Padé¢ yaklasimi,

[m/n]f(x)= =0 | ’ (4.111)

seklinde verilir. (4.109) ve (4.110) denklemleri yardimiyla [m/n] f(x) elde

edilirken

op<m
og<n (4.112)
o( fg—p)zm+n+1
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durumlart mevcuttur. Padé polinomlari ile ilgili 6zellikleri daha iyi anlayabilmek i¢in

asagidaki teoremleri verelim [102].
4.10.1.1 Teorem

Eger p,,q, ve p,,q, polinomlart (4.112) sartlarin1 sagliyorsa, bu durumda

P9, = P,.q, ifadesi saglanir.
ispat

o(fq,—p)zm+n+1 ve o(fg,—p,)2m+n+1 oldugundan, p,.q, - p,.q,
ifadesi  (fq,-p,)q,—(fa,—p,)g, seklinde de  yazilabilir. ~ Buradan
o(p.q,—p,.q,)2m+n+1 elde edilir. Fakat (p.g,—p,.q,)(x) polinomunun

derecesi en fazla (m+n) olacagindan p,.g, = p,.q, olur.

Teorem 4.10.1.1’in bir sonucu olarak p,/q, ve p,/q, rasyonel ifadeleri birbirine

denktir.

4.10.1.2 Teorem

Bir f fonksiyonu igin (m,n) dereceli Padé yaklasimi [m, n] olmak {izere,

(x)

her m,n20 sayis1 i¢in f fonksiyonuna ait bir tek (m,n) dereceli [m,n](x) yaklasimi

vardir.
4.10.1.3 Teorem (Padé Yaklasiminin Hesabi)
Bir f fonksiyonuna ait (m,n) dereceli Padé yaklasim,
[m,n] =2 (x) seklinde veriliyor ve
(*)
qo\ X
c ¢ +1-n N !
" " F (x)=)cx', m=20
D,,= , (D =detD, , # 0) ise, ( ;‘ '
Cm+n—1 T Cm Fm (x) = 0) m< 0

olmak iizere,
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1 Cm+l 1 cm+1
X)=— , = — .
pO( ) D : Dm,n qO( ) D : Dmn
cm+n Cm+n
olur.
ispat
|D |¢ 0 oldugundan, b, =1 i¢in (4.109) denklem sisteminin tek ¢6ziimii

m,n

oldugu belirtilmisti. Benzer sekilde asagidaki homojen denklem sistemi de asikar

olmayan (nontrivial) ¢6ziime sahiptir.

(l—qO (x))bo +xb, +x°b, +...+x"b, =0
b, =0

m+l-n~"n

b,+c,b+..+c

m+1

C

b+..+c,b, =0.

m+n—1

b, +c

CWI+}’I

Boylece katsayilar matrisinin determinanti sifir olur. Diger bir ifadeyle,

I-g,(x) x - X"
cm+1 cm a cm+1—n — 0
Cm+n cm+n—1 e cm

yazilabilir. Son denklemde f(x)gq, (x)ifadesini dikkate alirsak;

f(x) xf(x) - x"f(x)
f (x)qo(x)=% c”;“ c’” CI (4.113)
cm+n CWH—H—I Cm

elde edilir. p,(x) polinomu f(x)g,(x) serilerindeki m ’den kiigiik ya da m ’ye esit
dereceye sahip tiim terimleri igerdiginden dolayi, (4.113) ifadesinde po(x) ‘in

determinant formati elde edilir. Bu ise ispat1 tamamlar [79].
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4.10.2 Cok Degiskenli Padé Yaklasim

Iki degiskenli fonksiyonlar, ikiden fazla degiskene sahip fonksiyonlara

genigletilebileceginden  dolayr  ¢alismamiz  iki  degiskenli  fonksiyonlarla

sinirlanacaktir.

f(xy)= X 3y’ 4.114)
1, =
Taylor seri agilimiyla temsil edilen ¢ift degiskenli f'(x,y) fonksiyonunu ele alalim.

f(x) =X ¢x' fonksiyonu igin Padé yaklagiminin
i=0

m X m—1 . m-n .
2ex' xXex .. o x"Xex 1 x 4 X
i=0 i=0 i=0
@ C .. C
1 1-
p(_x): Cont1 o Contion 3 q(X)= Wf+ m . m+ " (4115)
C C. .. C
Cm+n cm+n—l cm oy “ "

polinomlarryla  verildigini biliyoruz. (4.115) denkleminde p(x) ve ¢(x)
determinantlarindaki  j. satn  x”"7'(j=2,.,n+1) ile carpip, j. siitunu
x’(j=2,..,n+1) e bolelim. Bu da pay ve paydanin x™ ile carpildigi anlamina

gelir. Boylece, D =detD, , #0 ise,

m . m—1 . m-n .
2cx' x2Xex .. x"Xex
i=0 i=0 i=0
m+1 m m+1-n
cm+1x Cm.x Cm+1_n.x
m+n m+n-1 m
p(x) |c,.,x CorontX c,x 4116
= - (4.116)
q(x) 1 x X
m+1 m m+1-n
Cm_Hx me Cm+1_nx
m+n m+n-1 m
cm+nx cm+n—1x me

elde ederiz. (4.116) determinant1 dogrudan iki degiskenli f'(x,y) fonksiyonu i¢in de

k .
yazilabilir. X ¢,x" toplamu yerine f(x,y) fonksiyonunun k. mertebeden Taylor seri
i=0

agilimimin kismi toplamlar dizisi ve c,x* terimi yerine f (x,y) fonksiyonundaki k.
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dereceden tiim terimleri iceren bir ifade yazilabilir. Burada iki-degiskenli cyxiyj
teriminin derecesi (i+ ) dir. Tek degiskenli Padé polinomlarinda oldugu gibi

burada da, Padé polinomlarini

m o m—1 L m—n i
1 1 1
2 cx'y’ 2 cx'y 2 cx'y
i+j=0 i+j=0 i+j=0
2 cx'y’ 2 X'y 2 'y’
X = |i+j=m+1 i+j=m i+ j=m+l-n .
p(x.7) (4.117)
2 X'y X ooex'y . 2 oex'y
i+j=m+n i+ j=m+n—1 i+ j=m
ve
1 1 1
2 cx'y’ 2 oexy 2 cx'y
i+ j=m+1 i+j=m i+j=m+l-n
q(x,y)= : : N : (4.118)
2 X'y X oex'y 2 cx'y’
i+j=m+n i+ j=m+n—1 i+j=m

seklinde tammlarsak, p(x,y) ve g(x,y) polinomlarin

mn+m mn+n

p(xy)= X ax'y',  q(xy)= X bx'y’ (4.119)

i+ j=mn i+ j=mn

formatinda da yazabiliriz [103]. (4.119) denklemleri i¢in

o(p)zmn, d(p)<mn+m
w(q)2mn, 9(q)<mn+n (4.120)

a)[(fq—p)(x,y)] >mn+m+n+l
esitsizlikleri yazilabilir.
4.10.2.1 Teorem

Eger p(x,y) ve g(x,y) polinomlart (4.117) ve (4.118) ile verilirse,

(fa=p)(xy)= 2, dx'y olur.

i+jzmn+m+n+1
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ispat

Eger, 4,(x,y)= Y, ax'y ,m),

i+ j=mn+k

Z bx'y’ (k=0,..,n)

i+j=mn+k

Ve

C.(x,y)= = > ¢x'y (k=012,..)

i+ j=mn+k

olarak tanimlanirsa ( fq— p)(x, y) = Z a’ X'y’ ifadesi i¢in asagidaki denklem

i+j2mn+m+n+1

sistemleri yazilabilir [100]:

0
=
A~
™
=
=
_|_
9!
=
oo
=
>
N
34

(4.121)

ém (%,3) B, (x,»)+C,_, (%) B,(x,y)=4,(x,»)

Cm+1 ('x’y)BO (x’y)+cn1+l—n (x’y)Bn ('x’y) = O
: (4.122)
C,..(x,y)B,(x,y)+..+C,(x,y)B,(x,y)=0

Burada £ <0 i¢in C, =0 dir. Bu ifadeler goz 6niine alindiginda,

= Zm: A, ( X, y ve q X, y z B x y olarak da ifade edilebilir.

k=0 k=0

Cm (x’y) C'm+1—n (x9y)
B,(x,y)= : : (4.123)
Cm+n—l(x9y) Cm (‘x9y)

olarak se¢ip, Cramer kuralim uygulayarak B, (x, y) icin (4.122) homojen denklem

sistemini ¢6zdiikten sonra, (4.121)’deki A4, (x,y) ’de yerine yazarsak, (4.117) ve

(4.118) Padé denklemlerini elde ederiz. Bu denklemler (4.120) i¢in bir ¢dziim
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olusturur. Boylece ispat tamamlanmus olur. Burada p(x,y) ve ¢(x,y)

denklemlerine Padé denklemleri denir.

(4.124)

[m.n],,, =

ifadesine de f'(x,y) fonksiyonunun (m,n). dereceden indirgenemez Padé yaklasimi

ad1 verilir.

4.10.2.2 Teorem

Her m ve n saysi i¢in f(x,y) fonksiyonunun bir tek (m,n) dereceli iki-

degiskenli Padé yaklasimi vardir [103].
4.10.2.3 Ornek

Birinci-mertebeden kuasi-lineer homojen
u+(1+t)u, =0 (4.125)

kismi diferansiyel denklemini

u(x,0)=

x-1 (4.126)
. .

baslangi¢ kosuluyla birlikte ele alalim. Bu denklemin seri formundaki ¢6ziimii

n=0 (4.127)
xt* ¢ xt* t* xt* £ xt

ve analitik ¢6ziimii

x—t—1
u(xt)= [+2

seklinde verilir [104]. Bu durumda (4.127) denkleminin yaklasik ¢oziimiinii m =3
ve n=1 i¢in ¢ok degiskenli Padé yaklasimi ile ¢6zelim. (4.127) denkleminin Padé

polinomlarinin elde etmek i¢in (4.117) ve (4.118) denklemlerini kullanirsak,
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dx t o wm £ £ 1yt @ £ 1. x ¢
2 2 4 4 8 8 16 2 2 4 4 8 2 2 4
(x t)— _x_t3+i x_tz_i _x_t+ﬁ
P 16 3 8 16 48
AL e XL
32 64 16 32 8 16
_xts(t+l—x)(t—2x)
- 256
Y]
1 1 1
oy 2 F 2 X (t+2)(2x—t
)= L f o x p) at(t42)(2x)
16 32 8 16 4 8 256
£ o £ o F
32 64 16 32 8 16

polinomlarmi elde ederiz. Bdylece (4.125) denkleminin (3,1). mertebeden Padé

yaklasimai ile ¢ozliimii

seklinde elde edilir [105].

4.11 Kesirli Black-Scholes Denkleminin Cok Degiskenli Padé

Yaklagimi ile Coziimii

Bu boliimde Black-Scholes opsiyon fiyatlama denkleminin analitik ¢6ziimii ile

cok degiskenli Padé yaklasik ¢6ziimii arasinda dogrudan bir iliski oldugunu
gosterecegiz. (3.20) denkleminin ¢oziimii E,(z) Mittag-Leffler fonksiyonu olmak

tizere Boliim 4.2°de
v(x,7) = max(e"~1,0)E, (~kz")+e* (1-E, (k7)) (4.128)

seklinde verilmisti. & =1 i¢in tam ¢6zlimii ise
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v(x,T) = max (ex - 1,0)€_kT +e* (1 - e_kT)
olarak elde edilmisti. Simdi (4.128) denklemini,

e"(l—Ea(—kT“)), S<E (x<0)
v(x,7)= (4.129)
(e"—l)Ea(—kz'“)+e"(I—Ea(—kr“)), S>E (x>0)

olarak pargali fonksiyon seklinde ele alip ayr1 ayr1 inceleyelim [106].

1. Durum: Ilk olarak hisse senedi fiyatimin uygulama fiyatindan kii¢iik oldugu

durumu (S < E) goz oniine alalim. Boylece,

(4.130)

x2 x3 k,z.ol kZ,Z.Za k3T3a
=l1l+x+—+—+...||1-|1- + — +...
21 3! F(a+1) F(2a+1) F(3a+1)

elde edilir. (4.130) denkleminde e =1 igin seri agilimi

¥ X kt kK'tt kK7
v(x,7)=l+x+—=+—=+._.||1-| l-—+—~— +...
2! 3! (2 (3)

Kt* kBT kBxr? kPt
+ - +
6 2 2
N kxr’ ~ k*x*t? N kx’t N Kx*t’ ~ k*x’t? N Kx’t?
6 4 6 12 12 36

=kt + kxt -

(4.131)

seklinde olur. Simdi (4.131) denkleminin m =3 ve n=2 i¢in ¢ok degiskenli Padé
yaklasimi ile yaklasik ¢6ziimiinii bulalim. m =3 ve n=2 i¢in Padé denklemlerini

elde etmek i¢in (4.117) ve (4.118) denklemlerini kullanirsak,
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2.2 3.3 2 2 2 2.2
kr+er—kT +k6T —k;T +er kr+er—kT kt
xt® kBx*tt ket Bt Exr? kit k’t?
p(x7)= - + ~ + fox —
6 4 6 6 2 2
Kx*t? ~ kK x*t? kxt’ _ k*x*t? N k't kBt _ k*xt? N kx’t
12 12 6 4 6 6 2 2
= ik7z'7 —ik’;z'8 +Lk°r° +lk5x275 —Lk(’xr6 —lk“x%'4 +Lk3x473 +ik7x2'7
36 72 216 12 24
1 6.2_6 7 5.3..5 1 4 4 _4 1 8 8 1 7.2 1 6.3_6 1 5.4_5 1 3.6..3
——kx T +—kxr ——k Xt ——kxrt+—k'x T ——kxr+— X' ——kxt
6 2 12 72 8 8 48 72
(4.132)
ve
1 1 1
Bxt® Xt kSt BT Bxrt kPt k*t?
q(x,7)= - + - + Joxt —
6 4 6 6 2 2
x*t’ _ Kx’r? k*xt? g kK*x*t? 4 ki’ kBt . k*xt? N kx*t
12 12 6 4 6 6 2 2
1 3.5_7 1 3.3_3 1 2.4_2 1 4 24 1 5 5 1 6_2_6 6 6
=—Fkxt ——kxtT+—kxtT+=-k'xt —-——kx—+—k’'x 7T ——k’x7
24 12 8 12 72 36
+lk3x41'3 +ik“x“1'4 —Lksx%5 —lk4x3r4 +Lk5x275 +Lk616 —ikzxsr2 +—k*x%?
8 144 36 9 12 36 12 36
(4.133)

polinomlarini elde ederiz. (4.132) ve (4.133) denklemlerinde £ =2 alirsak [61] yani,

r=0.04 ve 0=0.2 i¢in Avrupa tipi satin alma opsiyonunu goéz oniine alirsak, bu

durumda v(x,7) i¢in (3,2). mertebeden Padé yaklagimi

,T

5.2] =200 3o 4 84 00 4 36020 a8 - 24x'r 4 60 + 48"
(x.7) q(x,z') 3

=36x77° +28x°7° —12x*r = 32x7° + 24x77" - 12x°7° + 6x*7° = x°/[167* + x° =3x° +3x*

+24x° 7 —16x7* —16xX°7° + Ix* 7+ 8x°7* —8x'7° + 5x* 1 = 3x°7 - 24x7° - 12X’ 7 +18x°77]
(4.134)

seklinde elde edilir. (4.134) Pad¢ yaklasimi i¢in elde edilen degerlerin tam ¢6ziim ile
karsilastirildigi degerler asagidaki Sekil 4.10°da ve Tablo 4.7°de gosterilmistir.
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Sekil 4.10: =1 i¢in S<E iken tam ¢6ziim ve CPY ile ¢6ziim.

(a) Tam ¢6ziim

Tablo 4.7: =1 i¢in S < E iken elde edilen niimerik degerler.

(b) CPY ile ¢6ziim

X T Vim Vepy Mutlak Hata
-0.030459207 0.01 0.0192072869 0.0192072927 0.0000000057
-0.051293294 0.02 0.0372500327 0.0372501228 0.0000000901
-0.072570693 0.03 0.0541589841 0.0541594194 0.0000004353
-0.105360516 0.04 0.0691952885 0.0691964599 0.0000011714
-0.139262067 0.05 0.0827914463 0.0827937732 0.0000023269
-0.162518929 0.06 0.0961176291 0.0961221845 0.0000045554
-0.198450939 0.07 0.1071262470 0.1071326101 0.0000063631
-0.223143551 0.08 0.1182849688 0.1182949423 0.0000099735
-0.261364764 0.09 0.1268419372 0.1268521246 0.0000101874
-0.287682072 0.10 0.1359519352 0.1359652354 0.0000133002

(4.130) denkleminde o =0.75 i¢in seri a¢ilimi:
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x2 x3 k7«'3/4 k2T3/2 k3T9/4
v(x,7)=|1+x+—+—+._.|[1-|1- + - +..
21 3! r(7/4) T(5/2) T(13/4)

=1.088065253k7"" +0.7522527782k*"* +0.3922711649k° 7%
+1.088065253kx7"° +0.75225277k*x7'* + 0.3922711649k> x7*%
+0.5440326265kx’ 7" —0.3761263891k*x°7"° + 0.1961355824kx* %%
+0.1813442088kx’t"7 —0.1253754630k°x°7"° + 0.06537852748k>x’°* + ..

(4.135)

Basitlik icin 7°” =a alalim, bu durumda yeni degiskene gore fonksiyonumuz,

v(x,a)=1.088065253ka + 0.7522527782ka’ +0.3922711649k’a’
+1.088065253kxa —0.7522527782k*xa” +0.3922711649k xa’
+0.5440326265kx*a —0.3761263891k°x*a’ +0.1961355824k’x*a’
+0.1813442088kx’a —0.1253754630k"x’a’ + 0.06537852748k’x’a’

(4.136)

haline gelir. Padé polinomlarini elde etmek i¢in matris formunda kolaylik i¢in

A=1.088065253ka+0.7522527782k*a” +0.392271164k’a’
+1.08806525kxa —0.752252778k*xa” + 0.3922711649k’xa’
+0.5440326265kx’a—0.3761263891k*x*a’ + 0.1813442088kx’a
B =1.088065253ka+0.7522527782k*a> +0.3922711649k’a’

+1.088065253kxa —0.7522527782k*xa” +0.5440326265kx’a

C =1.088065253ka +0.7522527782ka* +1.088065253kxa
D=0.1961355824k’xa’ —0.1253754630k*x’a’

E =0.3922711649k"xa’ —0.3761263891kx’a’ +0.1813442088kx’a
F =0.3922711649a’ —0.7522527782k"xa’ +0.5440326265kc*a
G =0.06537852748k’xa’

dontistimlerini yaparak, (4.136) icin Padé denklemlerini elde etmek amaciyla (4.117)
ve (4.118) denklemlerini kullanalim. Boylece,

=
a

p(x,a)=

QT
O =
Y

ve
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matris formlarini elde ederiz. Tekrar 7" = a déniisiimii yapip, k =2 alirsak, (4.135)

denklemi igin (4,2). mertebeden Padé yaklagimini,

[4, 2](x n= 0.013026837°°[651471.6x°7"° +1954414.67x*7'° —1810348.51x*z**

—4647704.26x°77% +8850142.55x’7° —7728726.01x°7>% +3908829.34x°7"
+3908829.34x77"* +17700285.11x7° —9295408.52x7>% + 6990085.7 1x7*’
+2423600.71x°7° —3351196.74xc°" —20107180.44x7°" —1611450.82x°7""
—-268575.14x°7"7 —805725.41x°7°" —1611450.82x*7°" + 20970257.127*° (4.137)
+14541604.237° —20107180.447°"° +194234.76x° + 64744.92x" +388469.52x°
+388469.52x*1/[87049.57° + 23399.18x’7"° —13338.59x°7"° +1092.67x*7"”
—13911.13x° 7% + 41733.39x°7%% = 55644.52x7>% +14508.25x°7* —58033x7°
+3215.51x*7"" —9646.53x° "7 +2325.47x"]

seklinde elde ederiz. (4.137) Padé yaklasimi i¢in elde edilen degerlerin tam ¢6ziim

ile karsilastirildigr degerler asagidaki Sekil 4.11°de ve Tablo 4.8’de gosterilmistir.

02
018
0.16
o ~ U
o i 0.12:
:« > 01 ;
008]
006{ "
o
R Y o 005 o4 0
405 (T 406 » 0 ©
L S e 0O, L i oe 0T
(a) Tam ¢6ziim (b) CPY ile ¢6ztim
Sekil 4.11: & =0.75 i¢in S < E iken tam ¢6ziim ve CPY ile ¢dziim.
Tablo 4.8: &=0.75 i¢in S < E iken elde edilen niimerik degerler.
X T Vi Very Mutlak Hata
-0.094310679 0.01 0.0599716467 0.0599738058 0.0000021591
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Tablo 4.8 (devam)

-0.150822890 0.02 0.0925994741 0.0926148852 0.0000154112
-0.210721031 0.03 0.1152927131 0.1153369079 0.0000441948
-0.261364764 0.04 0.1329422039 0.1330336847 0.0000914808
-0.287682072 0.05 0.1498923340 0.1500704963 0.0001781623
-0.328504067 0.06 0.1617503859 0.1620290845 0.0002786986
-0.385662481 0.07 0.1682984694 0.1686524698 0.0003540004
-0.462035460 0.08 0.1692860416 0.1695946085 0.0003085669
-0.510825624 0.09 0.1731115123 0.1734115420 0.0003000297
-0.544727175 0.10 0.1781249964 0.1784796455 0.0003546491

(4.130) denkleminde e = 0.5 igin seri agilimi:

x2 x3 le/Z kZT k3T3/2
v(x,7)=|l+x+—=+—+..||1-|1- + - +...

21 3! r(3/2) Ir(2) r(5/2)
v(x,7)=1.12837916k7"° - k*7+0.75225277k°7"° +1.12837916kxt™ — k’xT

+0.75225277k* x7"° + 0.56418958kx*7°° —0.5k*x* 7+ 0.37612638 1k x*7"°
+0.18806319kx 7% —0.1667k*x* 7+ 0.12537546k>x*7"° + 0.047015798kx*7°7
—0.0416667k*x*t+0.03134386k>x* " + ...

(4.138)
Basitlik icin 7%° = a alirsak, bu durumda yeni degiskene gére fonksiyonumuz,

v(x,a)=1.12837916ka - k’a’ +0.75225277k’a’ +1.12837916kxa — k*xa’
+0.75225277kxa’> +0.56418958kc’a — 0.5k x*a” +0.376126381k’x*a’
+0.18806319%x’a—0.1667k*x’a” +0.12537546kx’a’ +0.047015798kx*a
—0.0416667k*x*a* +0.03134386k°x*a’ + ...

(4.139)

olur. Padé¢ polinomlarini elde etmek i¢in matris formunda kolaylik i¢in
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A=1.1283791ka—k*a* +0.7522527k*a® +1.128379 1 kxa — k*xa’
+0.7522527k*xa® + 0.5641895k*a — 0.5k*x*a* + 0.376126381k°x*a’

+0.18806319%kx’a —0.1667k*x’a® + 0.047015798kx"a
B=1.12837916ka—k’a’ +0.75225277k’a’ +1.12837916kxa — k’*xa’

+0.75225277k’xa’ +0.56418958kx’a — 0.5k x*a” +0.18806319kx’a

C =1.12837916ka—k*a* +0.75225277k’a’ +1.12837916kxa — k*xa® +0.56418958kx"a
D =0.12537546k’x’a’ —0.0416667k*x"a*

E =0.376126381k’x’a’ —0.1667k*x’a” +0.047015798kx"a

F =0.75225277k’xa’ - 0.5k*x*a® +0.18806319kx’a

G =0.03134386kx"a’

dontsiimlerini yaparak, (4.139) i¢in Padé denklemlerini elde etmek amaciyla (4.117)
ve (4.118) denklemlerini kullanalim. Boylece,

=
a

p(x,a)=

QT
O =
oy

ve
I 1

1
q(x,a):D E F
G D E

matris formlarini elde ederiz. Tekrar 7°° = a doniisimii yapip, k = 2 alirsak, (4.138)

denklemi i¢in (5,2). mertebeden Padé yaklagimini;

[5.2],,.,, =—0.37612638907""(226.87409297"°x" — 5127 "x +10.6347231 1z "°x

—53.69911185x’7 —10247” + 680.62227887"° + 8.507778487" x*
—214.7964474x°7 +53.17361553¢t*°x* = 418.194671 1x7 +127.6166773x’ 7"
—x’+127.6166773x7"° — 3847 — 6x* —18x" — 24x7)]

/[7.089815404x°7°° —32x7 — 21.2694462 1x7%° + 647 — x° + 4x°]
(4.140)

seklinde elde ederiz. (4.140) Padé yaklasimi i¢in elde edilen degerlerin tam ¢oziim
ile karsilastirildig1 degerler asagidaki Sekil 4.12°de ve Tablo 4.9°de gosterilmistir.
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Sekil 4.12: =0.5 i¢in S < E iken tam ¢dziim ve CPY ile ¢oziim.

Tablo 4.9: v=0.5 i¢in S < E iken elde edilen niimerik degerler.

(a) Tam ¢oziim

v(x, 1)

(b) CPY ile ¢6ziim

X T Viam Vepy Mutlak Hata
-0.182321557 0.005 0.1179336530 0.1180861820 0.0001525294
-0.382321557 0.006 0.1046210933 0.1047878395 0.0001667462
-0.885423230 0.007 0.0676492994 0.0675087033 0.0001405961
-0.536893450 0.008 0.1015353165 0.1017493667 0.0002140502
-0.235675801 0.009 0.1443018610 0.1447560420 0.0004541815
-0.051293294 0.010 0.1546941890 0.1552679373 0.0005737483
-0.709253762 0.011 0.0977995954 0.0980183133 0.0002187179
-0.650946216 0.015 0.1178105405 0.1184099336 0.0005993931
-0.981471074 0.018 0.1110073193 0.1114611149 0.0004537956
-1.050946216 0.020 0.0886063225 0.0881330686 0.0004732539

2. Durum: Ikinci olarak hisse senedi fiyatmin uygulama fiyatindan biiyiik oldugu

durumu (S > E) goz éniine alalim. Boylece

98



v(x,7)=(e" 1) E, (~kz* )+ e* (1= E, (~kz)) = e ~ E, (~kz")

_3ES (k")
Sn!l ST (an+l)
x2 x3 kTD( kZTZDl k3z_3a (4'141)
= l+x+—+—+... || 1= + - +
21 31 F(a+1) F(2a+l) F(3a+1)
xZ x3 x4 kTD( kZZ_ZDl k3z_3a

+—+ - +
2 6 24 F(a+1) F(2a+l) F(3a+1)
seri acilimi elde edilir. (4.141) denkleminde & =1 igin seri agilimi:

¥ x x Kt kBt k't
v(x,z')=x+7+z+—+kr— - +

+ (4.142)
24 2 6 24

seklinde bulunur. Simdi de (4.142) denkleminin m =n =2 i¢in ¢ok degiskenli Padé
yaklasimi ile yaklasik ¢oziimiinii bulalim. m =n =2 i¢in Padé denklemlerini elde

etmek amaciyla (4.117) ve (4.118) denklemlerini kullanirsak,

x2 2.2
x+k7+7— x+kt 0
x3 k37:3 x2 kZTZ
nr)=| = g x+kz
p(x7) 6 6 2
x_4 ~ k'r? x_3 Kt x_2 _k21'2
24 24 6 6 2 2
_ X krxt xk't N k7 N Fr'x Xkt 2k*7T°x
12 12 12 12 12 12 3
3,32 44 2 2.2 4 (4.143)
_Zka +k2‘x _kz'x
3 6 6
ve
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1 1 1
xt® Bx*t* kPt BT Bxrt kPt k*t?
q(x,7)= - + - + Joxt —
6 4 6 6 2 2
x*t’ _ kK x*t? kxt? ~ kK*x*t? N kit kBt ~ k*xt? N kx*t
12 12 6 4 6 6 2 2

K'rt kKoxr xt ke Box B X x° k3z‘3x3+k5’r5

12 212 T 24 1 24
3.3.2 6.6 462246 4_4 4_4 2 ; (4.144)
kETxt k't ktxt kttx” o xk"tt kKTTx
- + + — +
12 144 24 48 24 48

polinomlarini elde ederiz. (4.143) ve (4.144) denklemlerinde k£ =1.6 alirsak yani,

r=0.2 ve 0 =0.5 i¢cin Avrupa tipi satin alma opsiyonunu géz Oniine alirsak, bu

durumda (4.142) i¢in (2,2). mertebeden Padé yaklasimu,

[2, 2](x 0= [-0.546133x7* —1.7066677°x° + 0.0833333x” —0.1333337x"

—2.7306677°x +0.87381337° +1.0922677"x — 0.42666677°x"

+0.87381337°x - 0.1333333x77]/[0.5461337" —1.280007°x°

+0.0833333x" —0.26666677x" —0.68266677°x +0.213337°x’ (4.145)
—0.04166667x” +0.0069444x° +0.22755567°x" + 0.43690677°

—0.3413337°x” +0.11650847° + 0.06666677x" +0.05333337°x*

—0.2730667x7" +0.13653337%x’]

seklinde olur. (4.145) Padé yaklasimi icin elde edilen degerlerin tam ¢6ziim ile

karsilastirildigi degerler asagidaki Sekil 4.13°de ve Tablo 4.10°da gosterilmistir.
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vix,T

(a) Tam ¢oziim (b) CPY ile ¢6ztim

Sekil 4.13: =1 i¢in S > E iken tam ¢dziim ve CPY ile ¢dziim.

Tablo 4.10: =1 igin S > E iken elde edilen niimerik degerler.

101

X T Viam Vepy Mutlak Hata
0.061875404 0.01 0.0797024666 0.0797022906 0.0000001761
0.116533816 0.02 0.1550889226 0.1550910424 0.0000021198
0.287682072 0.03 0.3801995456 0.3801802601 0.0000192855
0.717235435 0.04 1.1107564410 1.1106526810 0.0001037600
0.510825624 0.05 0.7435503209 0.7431672251 0.0003830958
0.421033434 0.06 0.6150711989 0.6141430591 0.0009281398
0.245839283 0.07 0.3846497928 0.3846644396 0.0000146468
0.601324223 0.08 0.9446799111 0.9444559516 0.0002239595
0.216533816 0.09 0.3758773283 0.3758865244 0.0000091961
0.001455645 0.10 0.1493129160 0.1493127856 0.0000001304

(4.141) denkleminde « =0.75 i¢in seri a¢ilimi yapilirsa,
v(x,T)=x+—2+—3+x—4+ LCA + LA 23
2 6 24 T(7/4) I'(5/2) T(13/4) TI(4)




=x+0.5x" +0.166667x’ +0.0416667x* +1.0880653k7"" —0.7522527k’7"”

(4.146)
+0.39227117k°0*% - 0.166667k*7°
elde edilir. Islemde kolaylik i¢in 7°” =a déniisiimii yapilirsa,
v(x,a)=x+0.5x" +0.166667x° + 0.0416667x" +1.0880653ka (4.147)

-0.7522527k*a* +0.39227117k’a’ = 0.166667k*a*

elde edilir. Ayrica

A=x+0.5x>+0.166667x" +1.0880653ka —0.7522527k*a* +0.39227117k*a’
B=x+0.5x" +1.0880653ka —0.7522527k*a*

dontisiimlerini yaparak, (4.147) i¢in Padé denklemlerini elde etmek amaciyla (4.117)

ve (4.118) denklemlerini kullanirsak,

A B x+1.0880653ka
4 4 3
p(x,a)= %—k L 0.166667x +0.39227117k d’ 0.5x* —0.7522527k*a’
4 4 3
0 W ka 0.166667x° +0.39227117ka
24 6
Ve
1 1 1
x ka?
q(x.a)= e 0.166667x° +0.39227117k°a> 0.5x% —0.7522527ka>
4 4 3
0 %— k: 0.166667x° +0.39227117k

matris formlarini elde ederiz. Tekrar 7" =a doniisimii yapip, k =1.6 alirsak,

(4.146) denklemi igin (3,2). mertebeden Padé yaklagimini;
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[3,2] =-0.0032567[-3532394.647%7 —1422580.957°* x* —144557.237* " x*

—1342406 477X’ — 65646.087° " x° —1276390.647*x*
—14552.697°x" =1296960.427°x* —17308.837"°x” +922910.657° "«
—214006.637°%x” —59268.267'°x” —673864.737> % x"* —662904.37°x —1870018.57° > x
~-1679.377°7x* + 6717.477° 7 x" —528283.547° " x* = 6717.47t""x* +3911301.377°
—6478850.327°% +1929.30x" —3858.61x7 +321.55x"]/[2158.887° + 6090.117°*
+12119.987%° —164.717°x* +329.427°x° +988.267°x* —232.320° " x* +193.027" x*

+3.1416x" +1858.557>"x” —=12.57x” +12.57x°]

—22203.357"x¢

(4.148)

seklinde elde ederiz. (4.148) Padé yaklasimi icin elde edilen degerlerin tam ¢6ziim
ile karsilastirildig1 degerler asagidaki Sekil 4.14°de ve Tablo 4.11°de gosterilmistir.

v(x, 1)

1
08
X “ 01

08
[y
X 01

(a) Tam ¢6ziim (b) CPY ile ¢6ztim

Sekil 4.14: =0.75 i¢in S > E iken tam ¢oziim ve CPY ile ¢6ziim.

Tablo 4.11: =0.75 igin S > E iken elde edilen niimerik degerler.

—3721542.847"°x —50575.587°x°

b T Vi Very Mutlak Hata
0.440456873 0.01 0.6065929722 0.6062753604 0.0003176118
0.702604958 0.02 1.1063780590 1.1019599440 0.0044181150
0.523915259 0.03 0.8046850214 0.8037610335 0.0009239879
0.398920573 0.04 0.6316035856 0.6313161406 0.0002874450
0.604120542 0.05 0.9939607544 0.9920649699 0.0018957845
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Tablo 4.11 (devam)

0.161268148 0.06 0.3603910115 0.3604642362 0.0000732247
0.371563556 0.07 0.6549550900 0.6547571279 0.0001979621
0.009478744 0.08 0.2327775533 0.2330508522 0.0002732989
0.154150680 0.09 0.4071327343 0.4074492640 0.0003165297
0.223143551 0.10 0.5067295016 0.5070631779 0.0003336763
(4.141) denkleminde & = 0.5 i¢in seri agilimi yapilirsa,
x2 3 4 kTO.S kZT kSTl.S k472
v(x,7)=x+—+—+—+ - - —
2 6 24 TI(3/2) T(2) r(5/2) 1(3)
=x+0.5x> +0.166667x" +0.0416667x" +1.1283792k7" (4.149)
-k’ +0.7522528k’7"° - 0.5k*7*
elde edilir. Kolaylik icin 7*° = ¢ doniisiimii yapilirsa,
v(x,a) =x+1.1283792ka+0.5x* = k’*a’ +0.166667x’
(4.150)

+0.7522528ka’ +0.0416667x" —0.5k*a’

bulunur. Ayn1 zamanda

A=x+1.1283792ka+0.5x* —k*a’ +0.166667x° +0.7522528k’a’
B=x+1.1283792ka+0.5x" - k*a’

dontistimlerini yaparak, (4.150) icin Padé denklemlerini elde etmek amaciyla (4.117)
ve (4.118) denklemlerini kullanirsak,

A B x+1.1283792ka
xt k'at
p(x,a)= 2 0.166667x” +0.7522528ka’ 0.5x* -k’a’
4 4 4
0 X _ka 0.166667x° +0.7522528k°a>
24 2
Ve
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1 1 1

xt kat
Q(x:a) = a_

0.166667x" +0.7522528k’a’ 0.5x° —k*a’

xt kat

24 2

0.166667x° +0.7522528k’a’

polinomlarini elde ederiz. Tekrar 7°° = a doniisimii yapip, k =1.6 alirsak, (4.149)

denklemi igin (3,2). mertebeden Padé yaklagimini;

[3.2], ,, =0.1880632[-35047°x" +30.167"°x" +10635.87°x + 97149.877"°x” +1026.47x’

+103316.27%x +28461.8877° x> —120.647%°x” +8279.67°x* +11735.67"°x* +97149.97°°x
+18770.537°x% + 33606.917%x° +3705.977"°x° + 2627.477%x° +120.67°°x° —15812.27>°x°
+342.127x7 +342.127x° +1235.327"°x° +1581.227%°x* +148167.397" — 29404.67*°
+19201.947°° +66.82x" —5.57x" —33.41x*]/[19429.977* +18270.37>° +2000.27°
—494.1377x* +988.267°x +2964.787°x% —232.327"°x* +1937x* +3.14x"* +1858.557"°x°
—12.57x" +12.57x°]

(4.151)
olarak buluruz. (4.151) Padé yaklasimi i¢in elde edilen degerlerin tam ¢oziim ile

karsilastirildig: degerler asagidaki Sekil 4.15°de ve Tablo 4.12°de gosterilmistir.

(a) Tam ¢oziim (b) CPY ile ¢oziim

Sekil 4.15: =0.5 i¢in S > E iken tam ¢dziim ve CPY ile ¢oziim.
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Tablo 4.12: & =0.5 igin S > E iken elde edilen niimerik degerler.

X T Viam Vepy Mutlak Hata
0.154150680 0.01 0.3243898510 0.3243627730 0.0000270776
0.503455345 0.02 0.8661138562 0.8656581289 0.0004557273
0.467769214 0.03 0.8458217946 0.8451944819 0.0006273127
0.366629924 0.04 0.7218083708 0.7209764316 0.0008319392
0.240139484 0.05 0.5748540320 0.5739498130 0.0009042194
0.083381609 0.06 0.4113579346 0.4107805646 0.0005773700
0.139761942 0.07 0.4927793411 0.4918048113 0.0009745298
0.632434897 0.08 1.2413361680 1.2420474390 0.0007112710
0.223143551 0.09 0.6239103446 0.6229615523 0.0009487923
0.011428696 0.10 0.3988490665 0.3982299526 0.0006191139

Yukaridaki Sekil 4.10, 4.11, 4.12, 4.13, 4.14, 4.15 ve Tablo 4.7, 4.8, 4.9,
4.10, 4.11, 4.12 g6z 6niine alindiginda o =1, o =0.75 ve = 0.5 degerleri i¢in ¢ok
degiskenli Padé yaklasimi ile elde edilen sayisal degerlerin analitik ¢6ziim ile
bulunan degerlere ¢ok yakin oldugu gozlenmektedir. Bu sonuglar Padé yaklasiminin
kesirli Black-Scholes denkleminin ¢oziimiiniin niimerik olarak elde edilmesinde

oldukga etkili bir yontem oldugunu ortaya koymaktadir.

4.12  Sonlu Fark Yaklasim (SFY)

Sonlu fark metotlar1 diferansiyel denklemlerin yaklasik ¢6ziimlerini bulmada
kullanilir. Euler (1768) tarafindan ilk kullanildiginda tek boyutlu problemlerin
¢Oztimlerinde uygulanmistir. Daha sonralar1 bilgisayarla hesaplamanin gelismesiyle
birlikte karmagsik problemlerin ¢6ziimlerini elde etmek icin sonlu fark metotlart
gelistirilmigtir. Bu boliimde en yaygin sonlu fark yaklasimi olan agik yontem

(explicit method) verilecektir. Diferansiyel operatér yaklasimlari Taylor seri
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acilimlarina dayanir. Simdi f* fonksiyonunun x in komsulugunda ikinci mertebeden

stirekli bir fonksiyon oldugunu g6z 6niine alalim. 4 > 0 i¢in Taylor seri agilimi

2

f(x+h)=f(x)+hf’(x)+%f”(x)+0(h3) (4.152)
seklindedir. (4.152) denklemini ileri fark seklinde

7= LI o)

olarak yazabiliriz. Dolayisiyla ileri fark yaklagimi

of (x) f(x+h)-f(x)

ox h

seklinde yazilabilir. £ > 0 i¢in sonlu fark yaklasimi ayni zamanda

f(x—h)=f(x)—hf’(x)+—f”(x)—0(h3) (4.153)

olarak da yazilabilir. Béylece (4.153) denklemi asagidaki gibi geri fark olarak ifade
edilebilir:

Boylece geri fark yaklasimi da s6yledir:

ox h

Y (x)_S(x)-1(x=h)

Ayrica, geri fark ve ileri fark yaklagimlarini birlestirerek merkezi fark formiilii

f(x+h)—f(x—h)+
2h

[(x)= o(r)

seklinde bulunur. Bu durumda merkezi fark yaklagimi
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of (x) f(x+h)—f(x—h).

ox 2h

(4.152) ve (4.153) denklemlerinde bazi diizenlemeler yapilirsa, ikinci mertebeden
merkezi fark yaklagimi

O’ f(x)  f(x+h)=2f(x)+[f(x—h)

ox? h?

denklemiyle ifade edilir. Buna ilaveten, f (x, y) gibi iki degiskenli fonksiyonlar i¢in

h=Ax olmak fiizere fx(x,y) kismi tiirevinin ileri fark ve geri fark yaklasimlar

sirastyla

af(x,y) f(x+h,y)—f(x,y)

ox h

ve

o (x,y)  f(xy)-f(x=hy)

ox h

olarak verilir. Bu durumda f, (x, y) kismi tiirevinin merkezi fark yaklasimi

o (x,y)  f(x+hy)=f(x=hy)

ox 2h

Ikinci mertebeden f. (x, y) kismi tiirevinin merkezi fark yaklagimi

82f(x,y) f(x+hy)=2f(xy)+f(x=hy)

ox? h’

ve son olarak, #=Ax ve k=Ay olmak {lizere ikinci mertebeden fxy(x, y) kismi

tiirevinin merkezi fark yaklagimi

azf(x,y) f(x+hy+k)=f(x,y+k)+ f(x+hy)+ f(xp)

oxdy hk

seklindedir [107].
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4.13 Kesirli Black-Scholes Denkleminin Sonlu Fark Yaklagim ile

Coziimii

Simdi Black-Scholes denkleminin sonlu fark yaklasimi ile ¢oziimiinii elde
etmek icin ac¢ik metodu kullanalim. Acik metodun tiiretilmesi icin geri fark ve
merkezi fark yaklagimi kullanilir [40]. (3.20) kesirli Black-Scholes denkleminde
o =1 aliarak elde edilen (3.3) klasik Black-Scholes denklemini g6z oniine alalim.

E opsiyonun uygulama fiyati, S . ve §__ sirasiyla opsiyonun minimum ve

min max
maksimum degerlerini gdstermek tizere, Avrupa tipi satin alma opsiyonu i¢in sinir

kosullar1

C(S,T)=max(S-E,0),
C(Spn»t) =0,
C(Spunrt) = S = Ee 1™

max

seklinde ifade edilebilir [41]. A¢ik metodun elde edilmesi i¢in S nin bolgesi ve ¢
diskritize edilecektir. [z,,T] ve [S,,,.S

min >~ max ]

araliklar1 sirasiyla M ve N parcaya

bolinerek,

, 1, St<T,

AS:M’ Smin SS SSmax
N

elde edilir. Daha sonra S ve ¢ nin genel notasyonlar {izerinde bazi diizenlemeler

yapilarak

t,=t,+iAt, (i=0,1,..,M),
S, =S, +kAS (k=0,1,..,N)

yazilabilir. Gosterimin kolay olmasi agisindan bundan sonra (Sk,tl.) noktalar1 i¢in

opsiyon fiyatinin yaklasik degerini
V(S.t)=w,,

olarak gosterecegiz. Bu durumda Avrupa tipi satin alma opsiyonunun baslangi¢ ve

sinir kogullart M, N ve w,; cinsinden su sekilde olur:
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W, =max (S, - E,0),
Wy, =0,

_ —_ _r(tM_tI)
wy,; =8, —Ee .

oV (S;.) OV (St) 9 (
\%

S, .t

k>7i

)

kismi

Buradan, Black-Scholes denklemindeki

b

ot, as,

3s,?

tirevlerinin A7,AS ve w, ; cinsinden geri ve merkezi fark yaklagimlari

aV(Skati) Wi T Wi
a A

aV(Skati) - Wit — Wi,
as, 2AS

an(Sk 9ti) _ Wk+1,i - 2Wk,i + Wk—l,i
aS,’ (AS)’

olarak bulunur. (4.154), (4.155) ve (4.156) denklemlerini (3.3)

denkleminde yerine yazarsak,

2
w, .—=Ww, . o

k k,i-1
#-F—Skz

At 2

Wi — 2Wk,i T W, +

(AS)’

elde ederiz. Bu son denklemi daha basit ifade edebilmek i¢in
2
At o i] Sl
AS AS
S 2
=1-Atio*| =& | +r¢,
por-ade( & ]
2
(S )45l
AS AS

notasyonlarini kullanalim. Bu durumda i=M ,M —1,...,1 ve k=1,2,

(Xk =5

1
7/k =5At

lzere
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(4.155)

(4.156)

Black-Scholes

..., N =1 olmak



Wil SOW + ﬂkwk,i + VWi (4.157)

denklemi elde edilir.

) @ @ L
1 — 1 ®
k—1 k k+1

Sekil 4.16: A¢ik metodun molekiilleri.

Yukaridaki Sekil 4.16, agik metodun temel prensibini ifade etmekte olup (4.157)
denklemini agiklamaktadir. i ifadesi zamani, & ifadesi de hisse senedi fiyatini

gostermektedir. Acik metot iizerinde ¢, B, ve y, katsayilari ile birlikte i. satirdaki

siyah noktalarin degerlerinin toplami, (i—l). satir ve k. slitundaki siyah noktalarin

degerine esittir [41].

Diger taraftan, vektor formunda ifade etmek gerekirse;

wi =l . (4.158)

W, .
N-Li Jn_1x1

(4.157) denklemi her bir i=M,M —1,...,1 ve k=1,2,.... N -1 i¢in yazilirsa M X N

tane denklem olusur. Bu denklemler her bir i i¢in (4.158) denklemindeki gibi matris

formunda
W) = gyl 4 0

olarak yazilabilir. Burada 4 matrisi (N —-1IxXN —1) boyutunda
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o B, 7, - 0 0
a=| OB A 00
o - IBN—Z V-2
0 - . By N-IxN-1
ve ') matrisi
oWy,
0
y(z‘): :
0
VNN )y
4.13.1 Ornek

Uygulama fiyat1 953, hisse senedi fiyat1 100$ olan, volatilitesi %50, risksiz
faiz oran1 %10 ve 7' =0.25 olan Avrupa tipi alim opsiyonunu g6z Oniine alalim. Bu
durumda opsiyonun alim fiyat1 13.6953$ olarak hesaplanir. Opsiyonun alim fiyatini

acitk metotla hesaplamak i¢in uygun S =0, S _ =150, dS=2, dt=1/1200

parametrelerini segersek [40], bu durumda agik metot kullanilarak hesaplanan alim

opsiyonu fiyat1 13.6982$ seklinde olacaktir.
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Tam G6zim

50 100 150

Sekil 4.17: Tam ¢6ziim ile SFY ile ¢6ziimiin karsilastiriimasi.

50 <.

40

V(S,)

150

Sekil 4.18: Alim opsiyonu fiyat1 i¢in agik ¢6ziim metodu.
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5. SONUC VE ONERILER

Bu c¢alismada elde edilen sonuglar ve oneriler su sekilde siralanabilir:

e Adomian ayrisim metodu, varyasyonel iterasyon metodu, Laplace
homotopi pertiirbasyon metodu, genellestirilmis diferansiyel doniisiim
metodu, cok degiskenli Padé yaklasimi ve sonlu fark metodu, finans
literatiiriinde 6nemli bir yere sahip olan kesirli Black-Scholes opsiyon
fiyatlama probleminin ¢6ziimiiniin bulunmasi iizerinde basariyla
uygulandi.

e Bu problemin ilgili metotlar yardimiyla yaklasik analitik ¢6ziimleri ve
a=1, ¢=0.75, ¢=0.50, or=0.25 durumlar i¢in opsiyonun fiyatinin
ayr1 ayn grafiklerle yorumlar verildi.

e Bununla birlikte calismada Adomian ayristm metodu kullanilarak
genellestirilmis  kesirli Black-Scholes denkleminin yaklasik analitik
¢coziimi elde edildi ve ¢6ziim fonksiyonunun grafikleri yorumlandi.

e Elde edilen sonuglar degerlendirildiginde AAY, KVIM, LHPM, GDDM
ve SFY nin kesirli Black-Scholes denkleminin ¢dziimiiniin bulunmasinda
oldukea etkili ve hizli bir seri ¢oziim tirettigi gortldii.

e CPY’nin literatiirdeki nadir uygulamalarindan biri olan bu c¢aligmada
CPY’nin tam ¢oziime ¢ok yakin sonuglar verdigi gozlemlendi.

e Bulunan sonuclarin karsilastirilmasinda kullanilan verilerin  gergek
hayattan elde edilen Avrupa tipi vanilla alim opsiyonu verileri olmasiyla,
elde edilen ¢oziimler hassasiyetle yorumlandi.

e (alismada elde edilen yaklasik analitik ¢oziimler ¢=1, a=0.75,

a=0.50 ve a=0.25 durumlan i¢in géz Oniine alindiginda opsiyonun

kullanim zamanminda (7 anminda) « degerleri azaldikga opsiyon igin

O0denen pirimin (payoff) arttig1 gézlemlendi. Yani =1 igin opsiyon en
diistik fiyata sahip iken o =0.25 olmasi halinde opsiyona gereginden

fazla fiyat bigilmesi (overpriced) durumunun ortaya ¢iktigi gorildii.
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Bu calismada Black-Scholes denkleminde temettii 6demesi (dividend
payment) yapilmadigi varsayimi géz oniine alinmistir. Bu alanda bundan
sonra yapilacak caligmalarda, Black-Scholes denkleminde temettii
parametresi de ilave edilerek ¢6ziim yapilabilir ve kesirli mertebeden
tiirevlere gore sonuclar yorumlanabilir.

Bununla beraber ilgili seri yaklagimlar Avrupa tipi satim opsiyonunu (put
option) veren problem i¢in de uygulanabilir.

Ayrica kesirli kismi diferansiyel denklemlerin ¢oziimlerinde kullanilan
metotlar farkli tip opsiyonlarin (Amerikan tipi opsiyon, bariyer opsiyonu,
hisse senedi endeks opsiyonlari, doviz opsiyonlari, vadeli islem
sozlesmeleri tizerine opsiyonlar vb.) fiyatlandirilmasinda kullanilabilecegi

gibi diger finansal problemlere de uygulanabilir.
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