
 

 

 

 

 

 

 

 

 

 

PREDICTIVE AND ADAPTIVE CHANNEL ESTIMATION MODELS FOR 

COOPERATIVE WIRELESS COMMUNICATIONS 
 
 
 
 

 

 

 

 

 

 

 

 

 

Ph.D. THESIS 

 

Omar GATERA 

 

 

 

 

 

 

 

 

 

 

 

 

Department of Electronics & Communication Engineering 

 

Telecommunication Engineering Programme 

 

MARCH 2017 

ISTANBUL TECHNICAL UNIVERSITY  GRADUATE SCHOOL OF SCIENCE 

ENGINEERING AND TECHNOLOGY 

 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

PREDICTIVE AND ADAPTIVE CHANNEL ESTIMATION MODELS FOR 

COOPERATIVE WIRELESS COMMUNICATIONS 

Ph.D. THESIS 

 

Omar GATERA 

(504112309) 

Department of Electronics & Communication Engineering (Ph.D) 

 

Telecommunication Engineering Programme 
 

Thesis Advisor: Prof. Dr. Ahmet Hamdi KAYRAN 

MARCH 2017 

ISTANBUL TECHNICAL UNIVERSITY  GRADUATE SCHOOL OF SCIENCE 

ENGINEERING AND TECHNOLOGY 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

İSTANBUL TEKNİK ÜNİVERSİTESİ  FEN BİLİMLERİ ENSTİTÜSÜ 

İŞBİRLİKLİ KABLOSUZ HABERLEŞME İÇİN ÖNGÖRÜSEL VE 

ADAPTİF KANAL KESTİRİM MODELLERİ 

DOKTORA TEZİ 

 

Omar GATERA 

(504112309) 

Elektronik & Haberleşme Mühendisliği Anabilim Dalı 

 

Telekomünikasyon Mühendisliği Programı 

Tez Danışmanı: Prof. Dr. Ahmet Hamdi KAYRAN 

MART 2017 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

v 
 

 

 

 

Omar Gatera, a Ph.D student of İTU Graduate School of Science Engineering and 

Technology, student ID 504112309 successfully defended the thesis entitled 

‘‘PREDICTIVE AND ADAPTIVE CHANNEL ESTIMATION MODELS FOR 

COOPERATIVE WIRELESS COMMUNICATIONS’’, which he prepared after 

fulfilling the requirements specified in the associated legislations, before the jury 

whose signature below. 
 

 

Thesis Advisor : Prof. Dr. Ahmet Hamdi KAYRAN     

Istanbul Technical University 
…………………... 

Jury Members :          Prof. Dr. Hakan Ali ÇIRPAN 
Istanbul Technical University 

……………………. 

 Prof. Dr. Hasan Ümit Aygölü 

Istanbul Technical University 
……………………. 

 Prof. Dr. Aydın Akan 

Istanbul University 
……………………. 

 Assist. Prof. Dr. Haci ILHAN       
Yıldız Technical University 

……………………. 

 

 

 

 

Date of Submission:     24 January 2017 

Date of Defence     :      17 March 2017 



 

vi 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

vii 
 

 

 

 

 

 

 

 

 

To my spouse and children, 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

viii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

ix 
 

 

FOREWORD 

This research has been conducted by Omar Gatera under the supervision of Prof. Dr. 

Ahmet Hamdi Kayran in the Department of Electronics and Communication 

Engineering, Graduate School of Science Engineering and Technology, Istanbul 

Technical University, Istanbul, Turkey.  The Ph.D studies would have not been a 

success without the support of the following people. 

First of all, I would like to express my deepest gratitude to my supervisor, Prof. Dr. 

Ahmet Hamdi Kayran for his excellent supervision, guidance, encouragement and 

support during my Ph.D program. His experience and professional skills have shaped 

my research work as well as my academic knowledge.  

I would like also to extend my deepest thanks to the members of my supervisory 

commitee, including Prof. Dr. Hakan Ali Çırpan and Assist. Prof. Dr. Haci Ilhan for 

their suggestions, comments and inputs during the course of my research work and 

supervisory meetings. Their useful interactions and professional expertise added to 

the quality of this reseach work. A special thanks to Assist. Prof. Dr. Haci Ilhan for 

reviewing my research papers and improving my knowledge about research paper 

publications. 

I am also grateful to the government of Turkey through Türkiye scholarships for 

granting me the scholarship to pursue Ph.D studies at Istanbul Technical University 

(ITU). The financial support of the Istanbul Technical University through BAP 

projects is also gratefully acknowledged. 

I am also very grateful to the Government of Rwanda through the Ministry of labor 

and the Rwanda Standards Board (RSB) for granting me study leave and support to 

pursue my Ph.D studies in Turkey. I would like to thank my former Director General, 

Dr. Mark Cyubahiro Bagabe for his support, fatherly love and guidance during the 

period of my Ph.D program. My deepest thanks and appreciation also go to the 

Embassy of Rwanda in Turkey and to the Rwandan Community in Turkey (RCT) for 

creating a family and friendship atmosphere for Rwandans living in Turkey.  

I am also thankful to my colleagues and friends at Istanbul Technical University 

(ITU), especially to Mr. Mehmet Başaran- research assistant, Mr. Wiseborn M. 

Danquah, Mr. Ignatius K. Lusiba and Mr. Calvince Barack for their support during 

my reseach work as well as Y. Müh. Suat AKSU for allowing me to sit in the 

wireless communication laboratory during the period of my research work. 

I would like to extend my sincere appreciation and gratitude to my loving wife Bena 

Fadya who has always been on my side, encouraging and praying for me during my 

studies. I am also grateful to our kids: Samia, Sahia and Sahir for their unconditional 

love and prayers  which provided me with hope and motivation to reach my goal. I 

would like to thank my family, including my mother, brothers, sisters, cousins and 

my aunt Sister J. Berchmas for their encouragement, support and motivation during 

my studies. Finally, my thoughts, thanks and prayers go to my father who passed 

away while I was doing my Ph.D studies. Thank you all so much!. 

Istanbul, March, 2017.                                                                       Omar GATERA. 



 

x 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xi 
 

 

TABLE OF CONTENTS 

 Page 
 

FOREWORD ............................................................................................................. ix 
TABLE OF CONTENTS ......................................................................................... xi 
ABBREVIATIONS ................................................................................................. xiii 
SYMBOLS ................................................................................................................ xv 
LIST OF TABLES ................................................................................................. xvii 

LIST OF FIGURES ................................................................................................ xix 

SUMMARY ............................................................................................................. xxi 

ÖZET ...................................................................................................................... xxv 
1. GENERAL INTRODUCTION .......................................................................... 1 

1.1 Background and Motivation ........................................................................... 1 
1.2 Cooperative Wireless Communications ......................................................... 3 
1.3 Data Detection and Estimation Models .......................................................... 6 

1.3.1 Data detection fundamentals .................................................................. 6 
1.3.2 Classical and Bayesian estimation approaches ...................................... 9 

1.3.3 Adaptive filtering fundamentals........................................................... 10 
1.3.4 Classes and applications of adaptive filters ......................................... 15 

1.4 Parameters of Radio Propagation and Fading Channel Models ................... 17 

1.4.1 Basic radio propagation parameters ..................................................... 17 

1.4.2 Fading channel parameters................................................................... 19 

1.5 Diversity Parameters .................................................................................... 22 
1.5.1 Diversity techniques ............................................................................. 22 

1.5.2 Diversity combining methods .............................................................. 24 
1.6 Performance Metrics .................................................................................... 25 

1.6.1 Average error rates ............................................................................... 25 
1.6.2 Outage probability ............................................................................... 25 

1.6.3 Channel capacity .................................................................................. 26 
1.6.4 Receiver operating characteristic (ROC) ............................................. 26 
1.6.5 Mean square error (MSE) learning curve ............................................ 27 

1.7 Purpose and Scope of the Thesis .................................................................. 27 
1.8 Original Contributions of the Thesis ............................................................ 28 

1.9 Organization of the Thesis ........................................................................... 28 
1.10 Publications .................................................................................................. 29 

1.10.1 Journals ................................................................................................ 29 
1.10.2 Conference papers ................................................................................ 30 

2. ADAPTIVE CHANNEL ESTIMATION AND DATA DETECTION 

MODELS FOR COOPERATIVE WIRELESS COMMUNICATIONS IN 

STATIONARY ENVIRONMENT .................................................................. 31 
2.1 Introduction .................................................................................................. 31 
2.2 Bayesian Linear Model (BLM) Detector in Multiple AF Relays Based 

Cooperative Wireless Networks ................................................................... 33 
2.2.1 Abstract ................................................................................................ 33 
2.2.2 Related work ........................................................................................ 33 



 

xii 
 

2.2.3 Bayesian linear model (BLM) detector description in M-relays 

networks ............................................................................................... 34 
2.2.4 System and channel models ................................................................. 35 
2.2.5 Mathematical models ........................................................................... 37 
2.2.6 Numerical results .................................................................................. 45 

2.2.7 Summary .............................................................................................. 49 
2.3 A Novel LMS-BLM Algorithm for AF Relays Based Cooperative Wireless 

Networks ....................................................................................................... 51 
2.3.1 Abstract ................................................................................................ 51 
2.3.2 Related work ......................................................................................... 51 

2.3.3 System model ....................................................................................... 53 
2.3.4 Mathematical and performance metric models .................................... 54 
2.3.5 Numerical results .................................................................................. 58 

2.3.6 Summary .............................................................................................. 63 

3. ADAPTIVE CHANNEL ESTIMATION AND DATA DETECTION 

MODELS FOR COOPERATIVE WIRELESS NETWORKS IN NON 

STATIONARY ENVIRONMENT .................................................................. 65 
3.1 Introduction ................................................................................................... 65 
3.2 Bayesian Linear Model (BLM) Detector in Cooperative Wireless Networks 

with Time Varying Channels ........................................................................ 67 
3.2.1 Abstract ................................................................................................ 67 

3.2.2 Related work ......................................................................................... 67 
3.2.3 System and mathematical models ........................................................ 70 

3.2.4 Performance metrics analyses .............................................................. 74 
3.2.5 Numerical results .................................................................................. 78 

3.2.6 Summary .............................................................................................. 84 
3.3 Joint LMS-BLM Receiver for Cooperative Wireless Networks with Time 

Varying Channels ......................................................................................... 85 

3.3.1 Abstract ................................................................................................ 85 
3.3.2 Related work ......................................................................................... 85 

3.3.3 System model ....................................................................................... 87 
3.3.4 Mathematical models ........................................................................... 88 
3.3.5 Numerical results .................................................................................. 94 
3.3.6 Summary .............................................................................................. 99 

4. CONCLUSIONS ............................................................................................. 101 
REFERENCES ....................................................................................................... 105 
CURRICULUM VITAE ........................................................................................ 111 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

xiii 
 

 

ABBREVIATIONS 

1G : 

2G : 

3G : 

3GPP : 

4G : 

5G : 

AF : 

AWGN : 

BER : 

BEP : 

BLM : 

BS : 

CDF : 

CRLB : 

CSI : 

CSIR : 

DaF : 

DF : 

DOF : 

DSSS : 

EGC : 

EM : 

FDMA : 

GLRT : 

IID  : 

IP : 

ISI : 

KF : 

LANs : 

LMMSE : 

LMS : 

LRT : 

LTE : 

LS : 

LOS : 

MAP : 

MCP : 

MGF : 

MIMO : 

MLE : 

MMSE : 

M-PSK : 

MRC : 

MS : 

MSE : 

First generation 

Second generation 

Third generation 

Third Generation Partnership Project 

Fourth generation 

Fifth generation 

Amplify and Forward 

Additive White Gaussian Noise 

Bit Error Rate 

Bit Error Probability 

Bayesian Linear Model 

Base station 

Cummulative Distribution Function 

Cramer Rao Lower Bound 

Channel State Information  

Channel State Information at the Receiver 

Demodulate and Forward 

Decode and Forward 

Degree of Freedom 

Direct Sequence Spread Spectrum 

Equal Gain Combining 

Expectation Maximization 

Frequency Division Multiple Access 

Generalized Likelihood Ratio Test 

Independent and Identically Distributed 

Internet Protocol 

Intersymbol Interference 

Kalman Filter 

Local Area Networks 

Linear Minimum Mean Square Estimation 

Least Mean Square 

Likelihood Ratio Test 

Long Term Evolution 

Least Squares 

Line of Sight 

Maximum A Posteriori 

Multicell Processing 

Moment Generating Function 

Multiple Input Multiple Output 

Maximum Likelihood Estimation 

Minimum Mean Square Error 

Mary-Phase Shift Keying 

Maximum Ratio Combining 

Mobile Station 

Mean Square Error 



 

xiv 
 

NLOS : 

OFDM : 

PDF : 

PER : 

PIC : 

QPSK : 

QoS : 

RS : 

ROC : 

RLS : 

SAGE : 

SC : 

SDA : 

SEP : 

SLC : 

SLS : 

SNR : 

SSC : 

TDMA : 

WLANs : 

WiMAX : 

ZF : 

ZMCSCG : 

 Non-Line of Sight 

Orthogonal Frequency Division Multiplexing 

Probability Density Function 

Packet Error Rate 

Parallel Interference Cancellation 

Quadrature Phase Shift Keying 

Quality of Service 

Relay Station 

Receiver Operating Characteristic 

Recursive Least Squares 

Space Alternating Generalized Expectation Maximization 

Selection Combining 

Steepest Descent Algorithm 

Symbol Error Probability 

Square Law Selection 

Square Law Combining 

Signal to Noise Ratio 

Switch and Stay Combining 

Time Division Multiple Access 

Wireless Local Area Networks 

Worldwide Interoperability for Microwave Access 

Zero Forcing  

Zero Mean Circular Symmetric Complex Gaussian 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xv 
 

 

SYMBOLS 

S                             : Source station 

R                             : Relay Station 

D                             : Destination station 

H                            : Channel matrix 

T                             : Test statistic 

0H                           : Hypothesis for the absence of the signal 

1H                            : Hypothesis for the presence of the signal 

,u s                           : Transmitted signal components 
,y r                          : Received signal components 

w                             : Noise 

, , , ,sd si id si idh h h f g     : Channel components 

n                              : Cascading order 

N                            : Number of symbols 

k                              : Time 

sT                             : Symbol period 

                              : Speed 

,ija                         : Temporal correlation coefficients 

Df                            : Doppler frequency 

cf                               : Carrier frequency 

W                            : Tap weight 

d                             : Desired signal 

e                              : Error signal 
                             : Gradient step size 

                             : Threshold 
                              : Instantaneous SNR 

                             : Average SNR 

sP                             : Source power 

iP                             : Relay power 

sE                            : Source energy 

iE                            : Relay energy 

iG                            : Amplification gain 

0N                           : Noise power 
2 2 2 2, , ,s i M            : Signal variance 

, ,sd si id                  : Varying components 
2 2 2, ,sd si id                  : Variances of the varying components 

sgn(.)                       : Sign function 

(.)                         : Real function 

0 (.)J                        : Zero order Bessel function 

[.]tr                          : Trace operator 

(.)                          : Gamma function 



 

xvi 
 

(.,.)                       : Incomplete Gamma function 

(.,.)cQ                      : Generalized Marcum Q-function 

2
c                            : Chi-squared random variables 

c                              : Bandwidth product 

[.]E                          : Expectation operator 

                              : Characteristic function 

dP                            : Probability of detection 

faP                           : Probability of false alarm 

mP                            : Probability of miss detection 

eP                             : Probability of error 

eP                             : Average probability of error 

outP                             : Outage probability 

C                             : Capacity 

,u sC C                      : Covariance of the signal 

(.), ( )YP f y               : Probability density function 

( )YF y                      : Cummulative distribution function 

G                             : Kalman gain 

R                             : Correlation matrix 

P                             : Cross correlation matrix 

Q                             : Correlation matrix of the measurement noise 

M                               : Number of relays 

 

 

 

 

 

 

 

 

 

 

 



 

xvii 
 

 

LIST OF TABLES 

Page 

Table  1.1 : Relaying protocols and transmission phases [12]. ................................... 5 
Table  1.2 : Path loss exponents for different environments [4]. .............................. 20 
Table  3.1 : Dopple frequencies and associated nodes speeds. ................................. 79 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xviii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xix 
 

 

LIST OF FIGURES 

Page 

Figure 1.1 : MIMO Communications [9]. ................................................................... 3 

Figure 1.2 : Examples of various schemes for cooperative communications [13]. .... 4 
Figure 1.3 : Components of a decision model. ........................................................... 7 
Figure 1.4 : Estimation characterization [20]. .......................................................... 10 
Figure 1.5 : Block diagram of the statistical filtering problem [23]. ........................ 11 
Figure 1.6: Identification model with adaptive filter [22]. ....................................... 15 

Figure 1.7: Inverse modeling with adaptive filter [23]. ............................................ 16 
Figure 1.8: Prediction model with adaptive filter [23]. ............................................ 16 

Figure 1.9: Interference cancellation model with adaptive filter [23]. ..................... 17 
Figure 1.10: Multipath propagation in mobile radio networks. ................................ 18 
Figure 1.11: Classification of fading channels. ........................................................ 20 
Figure 2.1 : Network model in stationary environment. ........................................... 31 

Figure 2.2: Block diagram of the BLM detector in M-relays networks. .................. 35 
Figure 2.3 : ROCs of the BLM detector with the upper & lower bounds. ............... 46 

Figure 2.4 : ROCs of the BLM detector with various relays positions. ................... 47 
Figure 2.5 : Average error probability of the BLM detector in M-Relays network. 47 
Figure 2.6 : BEP of the BLM detector with various relays positions. ...................... 48 

Figure 2.7 : MSE of the BLM detector in M-Relays network. ................................. 48 

Figure 2.8 : Block diagram representing the LMS- BLM Receiver ......................... 53 

Figure 2.9 : ROCs of the LMS-BLM algorithm with the upper & lower bounds. ... 60 
Figure 2.10 : C-ROCs of the receiver with the upper & lower bounds. ................... 61 

Figure 2.11 : ROC of the LMS-BLM Algorithm with the upper & lower bounds. .. 61 

Figure 2.12 : MSE Learning curve with various step size (μ) and M-relays. ........... 62 
Figure 2.13 : Probability of error of the LMS-BLM receiver. .................................. 62 
Figure 3.1 : Network model with mobile terminals. ................................................. 65 

Figure 3.2 : ROC of the BLM detector for various nodes speeds and relays. .......... 81 
Figure 3.3: ROCs of the BLM detector with n*Rayleigh fading channels. .............. 81 
Figure 3.4: BER analysis in M-Relays with BLM detector and MRC detector. ...... 82 

Figure 3.5 : Effect of nodes speeds on the BLM detection performance. ................ 82 
Figure 3.6: BLM detection performance in AF and DF relays with nodes speeds. .. 83 

Figure 3.7: BEP results of the BLM detector in AF M-relays with nodes speeds. ... 83 

Figure 3.8 : Block diagram representing the LMS- BLM Receiver. ........................ 88 

Figure 3.9 : ROC of the receiver with M-relays in fast fading channels. ................. 96 
Figure 3.10 : MSE learning curve of the LMS-BLM Receiver with various relays. 96 
Figure 3.11 : ROC of the LMS-BLM Receiver with various nodes speeds. ............ 97 
Figure 3.12 : MSE learning curve of the LMS-BLM Receiver with nodes speeds. . 97 

Figure 3.13 : BER of the LMS-BLM Receiver with various step size (μ). .............. 98 
Figure 3.14 : BER for the LMS-BLM Receiver with nodes speeds and M-relays. .. 98 
Figure 3.15 : Effect of nodes’ mobilities on the LMS-BLM Receiver performance.99 

 

 



 

xx 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xxi 
 

 

PREDICTIVE AND ADAPTIVE CHANNEL ESTIMATION MODELS FOR 

COOPERATIVE WIRELESS COMMUNICATIONS 

SUMMARY 

 

Multipath fading, path loss, shadowing and noise are the most commonly known 

channel impairments in wireless communication networks. Therefore, over the last 

decades, different methods and techniques have been investigated in order to 

improve the wireless channels and to recover the original transmitted signal at the 

receiver. Among them, multiple input multiple output (MIMO) systems have been 

proposed as an efficient technique that use multiple antennas at the transmitting and 

receiving stations to create diversity environment that can directly mitigate the 

effects of fading, increases the network’s capacity and provides a more robust 

system. 

Although, MIMO systems can provide significant diversity gain in wireless 

communication networks, the use of multiple antennas is not quite appropriate for 

wireless terminals due to the size of equipments, computational capacity and power 

consumption. Therefore, cooperative communications emerged as an alternative 

technique that can use single antenna at the transmitting and receiving stations. 

Cooperative communications use neighboring nodes to form virtual antenna array 

which provides space diversity gain equivalent to MIMO systems. Cooperative 

communications are cost effective, useful and the best technology of future 

generation wireless networks in terms of reducing the effect of multipath fading, 

extension of coverage, less infrastructure, low power consumption, and preserving 

the channel bandwidth.  

Cooperative communication techniques have different schemes depending on the 

type of network. The cooperation can be achieved between users or mobile stations 

(MSs), base stations (BSs) or multicell processing (MCP) and between BSs and MSs 

through dedicated relay stations (RSs) or MSs adopted as RSs for other MSs. 

Cooperation with relay stations have highly been applied in literature due to their 

numerous advantages including extension of network coverage, reliable 

transmission, throughput enhancement, cost effective and easy implementation. 

Relaying cooperations use different protocols for signal processing and the most 

common protocols are amplify and forward (AF) and decode and forward (DF). AF 

is a simple cooperative signaling method that is used to amplify and to retransmit the 

noisy version of the original signal to the destination. Although noise is amplified, 

the destination receives independent faded versions of the signal that can help to 

make best decisions on the data detection. AF has gained too much attention in 

research and has been very useful in understanding the concept of cooperative 

communications. DF scheme is considered as digital repeater which decodes and re-

encodes the received signals prior to retransmission. Although, it can provide higher 

performance with respect to noise, however, end to end delay constraints and 

feasibility have been a question in real world applications. 

In this thesis, cooperative communication network with multiple relays is considered 

in order to handle the problem of channel impairments and to improve the signal 
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quality received in wireless networks. Furthermore, due to the nature of wireless 

communication networks, the receiver is always challenged by unknown channel 

state information (CSI) and unknown transmitted signal. Therefore, signal processing 

methods and techniques are indispensable at the receiver in order to estimate the 

channel between the source and the destination, and to recover efficiently the original 

transmitted signal.  

In this way, Bayesian linear model (BLM) detector and least mean square (LMS) 

algorithm are proposed for their unique advantages of being efficient and appropriate 

for multipath wireless networks. BLM detector is based on computing the test 

statistic and comparing it with the predetermined threshold in order to decide on the 

presence or absence of the signal of interest. The presence of the signal is decided 

when the test statistic is greater than the threshold. The main advantages of the BLM 

detector is its linear computation, low implementation complexity and it is 

appropriate for multipath channel models. The LMS algorithm is a linear adaptive 

filter that is usually used to iteratively estimate the unknown parameters in dynamic 

or non dynamic environment. The LMS algorithm has attracted too much attention 

among adaptive filters due to its low computation complexity, feasibility and best 

performance results. 

In this thesis, the original contributions are divided in two chapters (i.e., Chapter 2 

and Chapter 3). In chapter 2, a cooperative wireless network with multiple relays 

operating in stationary environment is considered and two main assumptions are put 

forth;  the first assumption states that the channel state information (CSI) is available 

at the destination and the original transmitted signal is corrupted by noise and other 

unwanted signals. Therefore, the BLM detector is proposed, derived and 

implemented in multiple relays network for the purpose of recovering efficiently the 

transmitted signal. Hence, presenting a wireless network structure that can resist 

against wireless channel impairments. In this part; single source, multiple AF relays, 

and single destination are considered. The effects of relays positions from the source 

and destination are evaluated. Different performance metrics are assessed such as the 

receiver operating characteristics (ROCs), bit error probability and minimum mean 

square error (MSE). Extensive numerical results show that the detection performance 

of the BLM detector is superior compared to existing energy detection methods and 

is proportional with the number of relays in the network, and the relay positioned far 

from the source affects the system performance more than the relay located closer to 

the destination. 

The second assumption states that the channel state information (CSI) is not available 

at the destination, and the transmitted signal is corrupted by noise and could not be 

known by the receiver. Therefore, a novel LMS-BLM algorithm is proposed, derived 

and implemented in cooperative wireless network for the purpose of channel 

estimation and signal recovery at the destination. The algorithm is functionning in 

such a way that the channel tap weights are only updated when the BLM detector 

decides the presence of the signal otherwise the CSI remains unchanged. The 

wireless network considered in this part is comprised of single source, multiple AF 

relays and single destination, and the mode of transmission is half duplex signal 

transmission. Different performance metrics are assessed such as receiver operating 

characteristics (ROCs), complementary ROCs, average probability of error and mean 

square error (MSE) learning curve. Mathematical and numerical analysis show that 

the proposed algorithm is effective in providing satisfied detection performance and 

low mean square error (MSE) at the receiver, and the receiver is highly controled by 
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the gradient step size for the best convergence and stability of the algorithm. It is also 

observed that the position of the relays from the source should be reduced in order to 

improve the system performance. 

In chapter 3, a cooperative wireless network with multiple relays operating in non 

stationary environment is considered. In this chapter, the main issue is multipath time 

varying channels. Time varying channels are severe and challenging in wireless 

networks which requires robust methods and techniques in order to ensure 

sustainable system performance. This chapter is also divided in two parts: The first 

part assumes that the channel state information (CSI) is available at the destination 

and the performance of the BLM detector in multiple relays with time varying 

channels is investigated. Different performance metrics are evaluated such as 

receiver operating characteristics (ROCs), minimum mean square error (MSE) and 

bit error probability (BEP) in various nodes speeds and different number of relays. 

The results show that the BLM detector is effective and its performance decreases at 

high speed of relays or destination which can be improved by increasing the number 

of relays in the network. The results also show that the system performance 

decreases when the cascading order increases. 

In the second part of chapter 3, it is also considered that the CSI is not available at 

the destination and the evaluation of performance of the LMS-BLM receiver in 

multiple relays with time varying channels is carried out. During simulations, 

different performance metrics are evaluated such as the ROCs, MSE learning curve 

and bit error probability.The results show that the joint LMS-BLM receiver provides 

superior performance and this can be affected by the high speed of nodes and 

instability of the algorithm. Therefore, it is recommended to choose the appropriate 

step size value in order to control the convergence and stability of the receiver, and 

to ensure that the number of relays is sufficient so that the performance is 

sustainable. The findings also show that the high speed of relays affects the system 

performance more than the speed of the destination. Therefore, the speed of relays 

should be put into account when designing the wireless networks.  

The findings of this reseach work have proven that the joint LMS-BLM receiver can 

provide higher detection performance and it is effective for signal recovery in 

wireless networks for both stationary and non stationary environments. Its 

performance can be particularly improved in networks with multiple relays. 

Numerical analysis also confirmed that the proposed algorithm can be applied in the 

current and future wireless networks with carrier frequencies in the range of 2GHZ 

and low symbol periods of signal transmissions. 
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İŞBİRLİKLİ KABLOSUZ HABERLEŞME İÇİN ÖNGÖRÜSEL VE ADAPTİF 

KANAL KESTİRİM MODELLERİ 

ÖZET 

 

Kablosuz haberleşme ağlarında çok yollu sönümleme, gölgeleme ve gürültü bilinen 

en yaygın kanaldan kaynaklı bozucu etkenlerdir. Bu yüzden son yıllarda birçok farklı 

yöntem ve teknikler, kablosuz kanalları iyileştirmek ve alıcıda iletilen işareti geri 

oluşturmak için araştırılmaktadır. Bunların arasında verici ve alıcı istasyonlarda 

çoklu anten kullanan ve etkin bir teknik olan çok giriş çok çıkışlı sistemler (MIMO), 

sönümleme etkisini doğrudan kaldıran, ağ kapasitesini arttıran ve daha güçlü bir 

sistem sağlayan çeşitleme ortamı yaratmak için önerilmiştir.   

Kablosuz haberleşme ağlarında MIMO sistemler kaydadeğer çeşitleme kazancı 

sağlamalarına rağmen çok anten kullanımı; araç-gereç boyutu, hesaplama 

karmaşıklığı ve güç tüketimi nedenleriyle kablosuz terminaller için uygun değildir. 

Bu yüzden, işbirlikli haberleşme, alıcı ve verici istasyonlarda tek anten kullanan 

alternatif bir teknik olarak doğdu. İşbirlikli haberleşme, sanal anten dizisini 

şekillendirmek için MIMO sistemlerdekine denk olan uzay çeşitleme kazancı 

sağlayan komşu düğümleri kullanır. İşbirlikli haberleşme, maliyet verimli, kullanışlı 

ve çok yollu sönümleme etkisini azaltan, kapsama alanını artıran, daha az yer 

kaplayan, düşük güç tüketen ve kanal band genişliğini koruyan gelecek nesil 

kablosuz ağların en iyi teknolojisidir. 

İşbirlikli haberleşme teknikleri, ağ türüne bağlı olarak değişen farklı yapılara 

sahiptir. İşbirlikli çalışma, kullanıcılar veya gezgin istasyonlar (MS) arasında, baz 

istasyonları (BS) veya çok hücreli işlemede ve  BS ile MS arasında aktarma 

istasyonları (RS) yoluyla veya diğer MS için RS olarak uyarlanmış MS yoluyla 

gerçekleştirilebilir. RS kullanan birlikte çalışma, ağ kapsama alanının genişletilmesi, 

güvenilir haberleşme, hacim arttırılması, maliyet verimliliği ve kolay 

uygulanabilirliği gibi özellikleri dahil eden sayısız üstünlüklerinden dolayı literatürde 

oldukça fazla kullanılmıştır. Aktarma işbirlikleri işaret işleme için farklı protokolleri 

kullanır ve bunlar arasında en yaygın kullanılanları kuvvetlendir ve aktar (AF) ile 

çöz ve aktar (DF) protokolleridir. AF, iletilen işaretin gürültülü halini 

kuvvetlendirerek yeniden hedefe gönderen basit bir işbirlikli işaretleşme yöntemidir. 

Gürültünün de kuvvetlenmesine rağmen hedef, iletilen işarertin bağımsız 

sönümlenmiş hallerini alır ve veri sezimi için en iyi karar vermeyi gerçekleştirmeyi 

sağlar. AF, araştırmalarda oldukça dikkat çekmiştir ve işbirlikli haberleşmenin 

anlaşılmasında çok kullanışlı olmuştur. DF ise çözüp tekrardan kodlayarak alınan 

işareti yeniden ileten sayısal bir tekrarlayıcı devresidir. Gürültüye karşı yüksek 

başarım sağlamasına rağmen, uçtan uca gecikme kısıtları ve uygulanabilirlik gerçek 

dünya uygulamalarında bir sorun olarak yer tutmaktadır. 

Tezde çoklu aktarma birimleri ile oluşturulan işbirlikli haberleşme ağları, kanal 

bozuklukları problemini çözmek ve kablosuz ağlarda işaret kalitesini arttırmak için 

ele alınmıştır. Dahası, kablosuz haberleşme ağ yapısı sebebiyle alıcı her zaman, 

bilinmeyen iletilen işaret ve bilinmeyen kanal durum bilgisi (CSI) problemleriyle 

karşı karşıya kalır. Bu yüzden, işaret işleme yöntem ve teknikleri, alıcıda kaynak ile 
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hedef arasındaki kanal kestirimini  gerçekleştirmek ve iletilen işareti etkin bir şekilde 

geri oluşturmak için gereklidir.   

Bu bilgiler ışığında, Bayesian doğrusal model (BLM) sezicisi ve en küçük ortalama 

kareler (LMS) algoritması, çok yollu kablosuz ağlar için uygunluk ve verimlilik gibi 

üstün özellikleri sebebiyle önerilmiştir. BLM sezicisi, ilgilenilen işaretin varlığına 

veya yokluğuna karar verebilmek için test istatistiği hesaplayarak ve bunu önceden 

belirlenmiş eşik değeri ile kıyaslayarak çalışır. Test istatistiği seçilen eşik değerinden 

büyük olduğunda işaretin varlığına karar verilir. BLM sezicisinin temel üstünlüğü, 

çok yollu kanal modelleri için doğrusal hesaplama yapması ve düşük uygulama 

karmaşıklığına sahip olmasıdır. LMS algortiması dinamik veya dinamik olmayan 

çevrelerde genellikle bilinmeyen parametreleri yinelemeli olarak kestirmekte 

kullanılan doğrusal uyarlamalı bir süzgeçtir. LMS algoritması, düşük hesaplama 

karmaşıklığı, uygulanabilirliğı ve yüksek başarımı sayesinde uyarlamalı süzgeçler 

arasında oldukça ilgi çekmiştir.  

Bu tezde, özgün katkılar iki bölümde (Bölüm 2 ve Bölüm 3) yer almaktadır. Bölüm 

2’de durağan çevrelerde çalışan çoklu aktarma birimlerini kullanan işbirlikli 

kablosuz ağlar ele alınmıştır ve iki ana varsayım yapılmıştır; ilkinde hedefte kanal 

durum bilgisinin olduğunu ve iletilen işaretin gürültü ile istenmeyen işaretlerle 

bozulduğunu varsaydık. Bu yüzden, iletilen işareti etkin şekilde geri oluşturabilmek 

ve kablosuz kanal bozucu etkenlerine direnen bir ağ yapısı sunmak amaçlarıyla çoklu 

aktarma içeren ağlarda alıcıda BLM sezicisini önerdik ve uyguladık. Bu bölümde; 

tek kaynak, çoklu AF aktarma birimleri ve tek hedef birimlerinin olduğu durum 

düşünülmüştür. Kaynak ve hedeften kaynaklanan aktarma biriminin konumunun 

etkisi değerlendirilmiştir. Alıcı çalışma karakteristikleri (ROC), bit hata olasılığı 

(BER) ve ortalama karesel hata (MSE) gibi farklı başarım ölçütleri ele alınmıştır. 

Sayısal sonuçlar, BLM sezicisinin sezim başarımının, mevcut enerji sezim 

yöntemlerinden daha iyi ve ağdaki aktarma birimi sayısıyla orantılı olduğunu ve 

kaynaktan uzakta konumlanan aktarma biriminin sistem başarımını hedefe yakın 

konumlandırılmış aktarma birimindeki duruma göre daha çok etkilendiğini 

göstermektedir.  

İkinci olarak, kanal durum bilgisinin hedefte bilinmediğini ve iletilen işaretin gürültü 

ile bozulduğunu ve alıcı tarafından bilinmediğini varsaydık. Aynı zamanda tek 

kaynaklı, çoklu aktarmalı ve tek hedefli yarı yönlü işaret iletimini ele aldık. Bu 

doğrultuda, alıcıda kanal kestirimi ve işaret kazanımı için güçlü LMS-BLM 

algoritmasını önerdik ve uyguladık. Algoritma, BLM sezicisinin işaretin varlığına 

karar verdiği zaman kanal katsayı ağırlıklarının güncellendiği şekilde çalışmaktadır 

aksi durumda kanal durum bilgisi değişmeden kalacaktır. Alıcı çalışma 

karakteristikleri (ROC), bütünleyici ROC, ortalama hata olasılığı ve ortalama karesel 

hata (MSE) öğrenme eğrileri ve en uygun eşik değeri gibi farklı başarım ölçütleri ele 

alınmıştır. Matematiksel ve sayısal analizler, önerilen algoritmanın alıcıda düşük 

MSE ve memnun edici bir sezim performansı sağlaması dolayısıyla verimlidir ve 

alıcı, algoritmanın kararlılığı ve en iyi yakınsama için türev adım boyutu tarafından 

kontrol edilmektedir. Kaynağa göre aktarma birimlerinin mesafesinin sistem 

başarımını arttırmak için azaltılması gerektiği gözlenmiştir. 

Bölüm 3’te durağan olmayan ortamlarda çalışan çoklu aktarma birimleri kullanan 

işbirlikli kablosuz ağları ele aldık. Bu bölümde ana konular, çok yollu zamanla 

değişen kanallardır. Zamanla değişen kanallar, kablosuz ağlarda sürdürülebilir sistem 

başarımının temin edilmesi için güçlü yöntem ve teknikler gerektirdiğinden oldukça 

zorlayıcıdır. Bu bölüm aynı zamanda iki bölüme ayrılmıştır. İlk bölümde, hedefte 
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kanal durum bilgisinin olduğunu varsaydık ve BLM sezicisinin başarımını çoklu 

aktarma birimli zamanla değişen kanallarda araştırdık. Alıcı çalışma karakteristikleri 

(ROC), en küçük ortalama karesel hata (MSE) ve bit hata olasılığı (BER) gibi farklı 

başarım ölçütleri çeşitli düğüm hızları ve farklı aktarma birimi sayısına göre ele 

alınmıştır. Sonuçlar, BLM sezicisinin verimli ve onun başarımının hedef veya 

aktarıcının yüksek hızlarında kötüleştiğini göstermekte ve ağdaki aktarıcı sayısının 

arttırılmasıyla iyileştirilebileceğini göstermiştir. Ayrıca sistem başarımının, seri 

dizilimin artmasıyla düşeceği de gösterilmiştir.  

Bölüm 3’ün ikinci bölümünde hedef birimde CSI’nın bilinmediğini varsaydık ve 

LMS-BLM alıcısının çoklu aktarıcılı zamanla değişen kanallarda başarımını 

değerlendirdik. Benzetimlerde, alıcı çalışma karakteristikleri (ROC), ortalama 

karesel hata (MSE) öğrenme eğrileri ve bit hata olasılığı gibi farklı başarım ölçütleri 

ele alınmıştır. Sonuçlar, birleşik LMS-BLM alıcısının algoritmanın kararsızlığı ve 

düğümlerin yüksek hızından etkilenebilmesine rağmen üstün başarım sağladığını 

göstermektedir. Bu yüzden, alıcının kararlılığını ve yakınsaklığını kontrol edebilmek 

ve sürdürülebilir başarımı sağlamak için adım boyu parametresinin uygun seçilmesi 

önerilmektedir. Bulgular, aktarıcının yüksek hızlarda olmasının hedefin hızından 

yüksek olduğunda sistem başarımının daha çok etkilendiğini göstermiştir. Bu 

yüzden, aktarıcı hızları kablosuz ağ tasarımları yapılırken göz önüne alınmalıdır.  

Bu araştırmadan elde edilen bulgular, birleşik LMS-BLM alıcısının, hem durağan 

hem de durağan olmayan kablosuz ağlarda kanal kestirimi için yüksek sezim 

başarımı sağladığını ve etkin olduğunu kanıtlamıştır. Algoritmanın başarımı çoklu 

aktarıcı kullanan ağlarda özellikle iyileştirilebilir. Sayısal analizlerle gösterildiği gibi 

önerilen yöntem, 2GHz menzilinde taşıyıcı frekanslarıyla ve düşük simge 

periyotlarıyla işaret iletiminde şimdiki ve gelecek kablosuz ağlarda uygulanabilir. 
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1. GENERAL INTRODUCTION 

1.1 Background and Motivation 

During the last decades, the demand for wireless communication services has 

increased tremendously with high requirements of quality of services (QoS), high 

data rates, stable connectivity at any mobility conditions and high security services. 

Recent statistics have shown that the number of mobile subscribers has grobally 

increased massively during the year 2000 to 2010, the first bilion landmark passed in 

2002 and the fifth billion in the middle of 2010. More than a million new subscribers 

per day have been added grobally during that period and 2020 forecasts show that 

worldwide mobile penetration should reach 119% of the population. Among mobile 

services, voice communication has been employed in a massive way and mobile 

terminals are the preferred method of voice communication whereby the mobile 

networks cover 90% of the world population [1]. This growth has been fueled by low 

cost mobile phones, competitions of communication service providers, the grobal 

economic changes and developments. Indeed, wireless communications have became 

an essential technology of choice in the current and future interaction between people 

and devices.  

Due to the high demand of wireless communication services, wireless technologies 

have been the most active development and a rapidly growing field in 

communication industry. Mobile wireless technologies are divided into generations 

with the first generation (1G) being the analog mobile radio system, second 

generation (2G) being the first digital mobile system, the third generation (3G) being 

the digital mobile system handling broadband data and the Long-Term Evolution 

(LTE) which is also called the fourth generation (4G). The 4G service is set to offer a 

fast and secure IP network and roaming mobile broadband solution to devices. Now, 

the deployment of the fifth generation (5G) is another newest mobile wireless 

innovation that is expected to increase the capacity over wireless networks and to 

provide the speed three time faster than 4G [2, 3].  

Wireless communications can be subdivided into different segments such as 

applications, systems or coverage regions. Some wireless applications are voice, 
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internet access, web browsing, paging, short messaging, subscriber information 

services, file transfer, video teleconferencing, sensing, and distributed control. The 

evolution of wireless technologies has been accompanied by the evolution of mobile 

devices that can support new applications and services in order to meet the QoS 

required by users. The wireless systems including cellular telephone, wireless LANs, 

wide area wireless networks, data systems, satellite systems, and ad-hoc wireless 

networks, have been developed in order to meet the new technologies and customer 

requirements. Classification of wireless network by coverage regions include in 

building networks, campus, city, regional and global region networks [4]. 

Despite various advantages of wireless communication services, the performance gap 

between wireline and wireless networks appears to be growing due to the huge 

demand of wireless services and the nature of wireless communication channels. 

Generally, wireless communication systems have experienced many challenges that 

include signal distortion due to channel impairments such as shadowing, time 

varying multipath fading, cochannel and adjacent channel interference, noise and 

propagation loss. Thus, advanced signal processing algorithms and techniques have 

to be explored in order to improve the wireless channels, ensure sustainability, higher 

performance, and to meet the current and future wireless communications goals. In 

literature, scholars have investigated different techniques, most of them are diversity 

techniques and signal processing schemes (i.e., coding, modulation and detection) 

which have attracted too much attention with the need to recover efficiently the 

original transmitted signals at the receiver [5-8].  

Motivated by the above background and associated challenges, this thesis has the aim 

of exploring the advantages of cooperative communications with a particular focus 

on relaying cooperation in providing diversity gain in wireless networks, and 

proposing methods and techniques based on adaptive channel estimation as well as 

data detection for the purpose of recovering the original transmitted signal at the 

receiver. The study in this thesis assumes two kinds of wireless network 

environments such as stationary and non stationary environments, discussing the 

knowledge of channel state information (CSI) at the receiver.  



 

3 
 

1.2 Cooperative Wireless Communications 

In wireless communication networks, diversity techniques have been explored for 

their advantages to improve the wireless communication system. In this direction, 

multiple input multiple output (MIMO) systems have attracted too much attention in 

research as one of the techniques exploring the diversity gain. MIMO systems are 

considered as a key technique in modern wireless cellular networks that employ 

multiple antennas at both the transmitter and receiver stations. In MIMO systems, 

base stations (BSs) and mobile stations (MSs) are equipped with multiple antennas 

that make MIMO systems to be available at both the uplink and the downlink sides 

as represented in Figure 1.1. MIMO techniques can be employed in different ways 

such as transmit or receive diversity for enhancing the transmission reliability, spatial 

multiplexing for improving the system data rates and beamforming for increasing the 

network coverage [9-10]. 

Although using MIMO techniques can improve the wireless networks, in many ways 

the use of multiple antennas at the MSs is not quite appropriate due to the size of 

equipments, power consumption, signal processing and many other constraints. Thus, 

cooperative communications emerged as an alternative technology to reap the 

advantages of MIMO systems by employing single antenna at both the transmitter 

and receiver stations [9].  

Mobile 

station 

(MS)

Base 

station 

(BS)

Channel 

medium

 

Figure 1.1 : MIMO Communications [9]. 
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Cooperation can be done in various ways such as user or MSs cooperation, BSs 

cooperation which is also called multicell processing (MCP) and cooperation 

between BSs and MSs through dedicated relay stations (RSs) or MSs act as RSs as 

shown in Figure 1.2. In MCP, the cooperation is done at the BSs level where BSs 

cooperate among them in order to enhance the received signal at the destination. In 

MSs cooperation, neighboring MSs retransmit the same signal from the source, 

helping other MSs to get the quality signal. In relay cooperation, relay stations 

retransmit the signal from the source to the destination. In this scenario, MSs may act 

as relay stations in order to reduce additional equipments in the network [10-13].  

BS

MS

BS

BS

MS

MS

MS

MSMS

a) BS cooperation or MCP                  b) RS cooperation

c) MS acts as relay station         d) MS or user cooperation

 

Figure 1.2 : Examples of various schemes for cooperative communications [13]. 
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Cooperation schemes use protocols to process the signal from the source to the 

destination. Three kinds of protocols are described in relaying signal processing such 

as protocol I, protocol II and protocol III. All these protocols can transmit into phases 

which are phase I and phase II as represented in Table 1.1. In protocol I, the source 

transmits the message to the relay and the destination during relay-receive phase or 

phase I. During relay-transmit phase or phase II, the source is silent and relay 

forwards the processed message to the destination. In protocol II, the source only 

transmits the message to the relay during phase I. In phase II, the source and relay 

transmit simultaneousely the message to the destination. In protocol III, the source 

broadcasts the message to the relay and destination during phase I. In phase II, the 

source and the relay transmit the message to the destination [10-15]. 

Table  1.1 : Relaying protocols and transmission phases [12]. 

S            R,D

R               D

S               R S              R

S             D

R                 D

S                 D

R              D

S               D

Protocol I Protocol II Protocol IIIPhase

Phase I

Phase II

 

For all protocols stated above, relaying schemes for signal processing are necessary 

in order to process the signal from the source. The most common relaying schemes 

are amplify & forward (AF) and decode & forward (DF) that can be subdivided in 

fixed or adaptive relaying schemes. 

The AF which is also known as non generative relaying scheme, it simply scales the 

received signal and retransmits the amplified version to the destination. Its 

disadvantage is based on amplifying the signal together with the noise which requires 

the receiver to use a high quality noise filter in oder to detect the intended signal. The 

main advantages of this protocol are low implementation complexity and feasibility 

[10,14].  

The DF which is known as regenerative relaying scheme refer to the relay that 

decodes the received signal in order to remove the noise and forwards a newly re-

encoded signal to the destination. There are different types of DF relaying schemes: 

the basic DF, the selection DF, and the demodulate and forward (DaF) relaying 
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scheme. In basic DF, the relay decodes the received signal, re-encodes it in phase I 

and forwards it to the destination in phase II. It means that the relay successfully 

decoded the received signal in phase I; otherwise it does not send or remains idle in 

phase II. In selection DF, if the relay failed to decode the received message from the 

source in phase I, the source is allowed to retransmit the message by itself in phase 

II. The diversity gain may be improved in selection DF mode if there is no condition 

that the relay should participate in cooperation. In many cases, the channel decoding 

or encoding is not possible due to the incapability of the transceiver, therefore, in this 

case the DaF can be used to demodulate the received signal on symbol by symbol at 

the relays and forward it to the destination [10-15]. 

1.3 Data Detection and Estimation Models 

1.3.1 Data detection fundamentals 

In practical situation for wireless communication systems, signals are more 

appropriately modeled as random processes. Depending on the nature of the signal to 

be transmitted such as speech, voice or video signals; it is unrealistic to assume that 

the signal is known by the receiver. Moreover, due to the transmission process, the 

received signal at the reveiver is corrupted by noise which makes it difficult for the 

receiver to differentiate the original signal from the noisy signal. Therefore, the 

receiver has to make decision according to the observation signal. Among various 

detection methods that exist in literature, the simple hypothesis testing problem is the 

simplest in which the probability density function (PDF) for each assumed 

hypothesis is completely known. In this problem, there are two hypotheses or binary 

hypothesis rules which refer to the absence of the signal or H0 and the presence of 

the signal or H1. Based on these hypothesis testing rules, four kinds of decisions 

cases can be available as follow [16]: 

 Decide the presence of the signal (D1) when H1 is true 

 Decide the absence of the signal (D0) when H0 is true 

 Decide the presence of the signal (D1) when H0 is true 

 Decide the absence of the signal (D0) when H1 is true 
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The first two cases are true decisions, whereas the last two cases are error decisions 

that correspond to type I error or false alarm and type II error or miss detection 

respectively.  

In the theory of signal detection, some criteria are used for receiver decision. The 

primary approaches to simple hypothesis testing are the Bayesian approach based on 

minimizing of the Bayes risk and classical approach based on the Neyman Pearson 

theorem.  

 Bayes test:  

In this approach, the source outputs are governed by priori probabilities ( 1P  and 2P  

for one dimensional space and 1 2, ,..., NP P P  for N dimensional space). These 

probabilities represent the observer’s information (observation, S) about the source 

before the experiment is conducted. Secondly, each experiment is assigned a cost so 

that the decision rule will minimise the average cost or risk as low as possible. 

According to the binary hypothesis, the decision rule must be H0 or H1 which 

indicates that the rule divides the total observation space Z into two zones such as Z0 

and Z1 as shown in Figure 1.3. Then, whenever, the observation falls in Z0, it belongs 

to hypothesis H0 and when it falls in Z1, it belongs to hypothesis H1 [17, 18].  

Probabilistic transition 

mechanism
Source Observation space

Decision rule

Decision

H1

H0 Z~{Z1,  Z0}

 

Figure 1.3 : Components of a decision model. 

In addition, in Bayesian approach, we recognize two special cases, the first case is 

when the two hypotheses are likely equal, in this case, the threshold becomes zero 

which denotes a common situation in digital communication systems. This case 
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denotes minimum probability of error receiver. The second case is when a priori 

probabilities are unknown. When this arise the decision rule will be based on 

conditional probabilities since the decision regions can be determined. Based on 

conditional probabilities, it is possible to find the probability of detection ( dP ) (i.e., 

denotes the presence of the signal when it is), the probability of false alarm ( faP ) 

(i.e., indicates the presence of the signal when it is not), and the probability of miss 

detection ( mP ) (i.e., indicates the absence of the signal when it is present) as follows 

[17]: 

 
0

1
| 0( | )fa S H

Z
P P S H dS   (1.1) 

 
1

1
| 1( | )d S H

Z
P P S H dS   (1.2) 

 
1

0
| 1( | ) 1m S H d

Z
P P S H dS P    (1.3) 

 Neyman Pearson test: 

In Neyman Pearson test,  the assumption is such that the assignment of realistic costs 

or a priori probabilities are difficult to find due to physical situation, therefore, an 

alternative way is to work with the conditional probabilities faP  and dP  and optimize 

the system by making the faP  as small as possible and dP  as large as possible. The 

solution is obtained by using Lagrange multiplier as follows [17]: 

 
'[ ]m faF P P     (1.4) 

where F denotes a constrained function and 'faP    . 

The relation between Bayesian criterion and Neyman Pearson criterion is that for 

both the optimum test is a likelihood ratio test (LRT). In spite of the dimensionality 

of the observation space, the test is based on comparing a scalar variable LRT with a 

threshold in order to make a decision. A complete performance of the test is obtained 

by plotting the receiver operating characteristics (ROC) (i.e., dP  against faP ) as the 

threshold is varied [17].  
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 Linear model approach 

Another practical method of designing a detector is the use of linear model. It 

provides mathematical simplicity and general applicability to real world problems. 

The linear model can be either classical or Bayesian. In classical linear model, the 

data under H1 are decribed as follows [19]: 

  y Hθ w  (1.5) 

where y  is an N×1 vector of observations, H  is a known N×K observation matrix 

with N>K and of rank K, θ  is a K×1 vector or parameters (which may be known or 

not), and w  is an N×1 noise vector with PDF (0, 0N I ). The decision is made by 

comparing the test statistic with the threshold (i.e., 1( )T y H  ).  

In Bayesian linear model, y  is an N×1 vector of observation, H  is a known N×K 

observation matrix with N>K, θ  is a P×1 random vector with θ ~ (0, Cθ), and w  

is an N×1 noise vector with PDF(0, 0N I ) and is independent of θ . The decision is 

made by comparing the test statistics with the predetermined threshold [19]. 

1.3.2 Classical and Bayesian estimation approaches  

In the preceding section, the fundamental of data detection is introduced in which the 

receiver has to make decision depending on the received signal. In some cases, 

parameters associated to the received signal may not be known even though the 

receiver made the true decision, in this case, estimation techniques are required in 

order to recover efficiently the original transmitted signal. The parameters to be 

estimated may be random or non random [20]. 

The estimation of non random signals is referred to as classical estimation (i.e., 

Figure 1.4) where the data information is summarized by the probability density 

function (PDF) ( ; )p y  , where y  is the received signal, θ  is the parameter of 

interest and the PDF is functionally dependent on θ. Therefore, the unknown K×1 

parameter vector θ  is assumed to be a deterministic constant. The common examples 

of this type of estimation in literature include Cramer Rao lower bound (CRLB), best 

linear unbiased estimator (BLUE), maximum likelihood estimator (MLE), least 

squares estimator (LSE), to name just a few [20]. 
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In situation of random signals, the estimation approach is refered to as Bayesian, in 

this approach, the data information is described by a priori PDF ( )p   which 

specifies the knowledge about the parameter of interest θ as indicated in Figure 1.4. 

The solution of this approach is based on deriving the joint PDF ( , )p y   which 

involves the conditional PDF ( / )p y   as the data information and a priori PDF  

( )p   as prior information. In literature, common examples of this approach include 

minimum mean square error (MMSE) estimator, maximum a posteriori (MAP) 

estimator, linear minimum mean square error (LMMSE) estimator, etc [20]. 

Estimator selection 

for signal processing

Dimensionality a 

problem
Prior Knowledge

New Data or 

more data

Prior Knowledge
Bayesian 

Approach

Knowledge of 

PDF

Estimator selection

Classical 

approach

Knowledge of 

PDF
Estimator selection

Yes

No Yes

No

Yes

Yes

Yes/

No

Yes/

No

No

 

Figure 1.4 : Estimation characterization [20]. 

1.3.3 Adaptive filtering fundamentals 

Adaptive filters find many application in real world application such as digital 

communications, sonar, seismology among others. The implementation and 

computation of adaptive filters seek to acheive to the optimum Wiener solution. The 

important parameters for all adaptive filters are described by the Figure 1.5 that 

represents the statistical filtering problem [21]: 
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Linear discrete time filter 


Estimation error

e(k)

y(k)

+-

d(k)u(0), u(1),...

 

Figure 1.5 : Block diagram of the statistical filtering problem [23]. 

Various linear adaptive filters have been developed so far with different applications 

and performances. The choice of adaptive filter over another depends on the 

consideration of some performance factors such as [21-23]: 

 Rate of convergence: This means the number of adaptation cycle required in 

order to converge to the optimum Wiener solution in the mean square error 

sense. 

 Misadjustement: A parameter that measures the deviation from the Wiener 

solution. 

 Tracking: It means the capability for an algorithm to track time varying 

parameters particularly in non stationary environment. 

 Robustness: An adaptive filter is robust when it can resist to disturbances that 

cause errors in estimation. 

 Computational requirements: It means the number of iteration required to 

make a complete adaptation cycle of the algorithm, the required memory size 

and investment needed in order to implement an algorithm. 

 Structure and numerical properties: It means the structure of information flow 

in the program and accuracy of numerical implementation of the algorithm, 

respectively. An adaptive filtering algorithm is said to be numerically robust 

if it is insensitive to variations in the wordlength used in its digital 

implementation. 

The common adaptive filters found in literature include: 
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 Steepest descent algorithm (SDA): 

SDA is a recursive adaptive filter that has the tracking capability of time variations in 

signals statistics compared with Wiener filter. It is an efficient gradient type 

algorithm, in the sense that it works with the true gradient vector not with an estimate 

of it. The difficult task of this algorithm is to find the autocorrelation matrix R and 

cross correlation P when calculating the MSE, therefore this makes it less useful in 

adaptive filtering algorithm. The SDA updates the tap weights (i.e., W ) coefficients 

in the following general form as [21]: 

 
1

( 1) ( ) ( )
2

WW k W k g k    (1.6) 

with ( ) ( ( ))Wg k J W k  

 
1

( 1) ( ) ( ( ))
2

W k W k J W k     (1.7) 

If the tap input vector ( )u k  and the desired response ( )d k  are jointly stationary, 

then, the mean square error or cost function ( ( ))J W k  is given by: 

 
2( ( )) 2 T T
dJ W k   P W W RW  (1.8) 

where 2
d  is the variance of the desired signal. Then, the gradient of ( ( ))J W k  is 

given by: 

 ( ( )) 2 2J W k   P RW   (1.9) 

The optimal 0W  is found by setting the gradient to zero and we have: 

 
1

0
W R P  (1.10) 

 (1.10) is the Wiener – Hopf equation in matrix form.  

Substituting (1.9) in (1.7), we obtain the SDA equation as follows: 

  ( 1) ( ) ( )W k W k W k   P R  (1.11) 

where   denotes the step size parameter. 
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 Least mean square (LMS) algorithm: 

LMS algorithm is a widely used adaptive filter formulated by Widrow and Hoff 

(1960). It is in the family of stochastic gradient algorithm whereby it uses gradient 

vector of the filter tap weights to converge to the optimal Wiener solution. The well 

known feature of the LMS algorithm is its low implentation complexity which have 

made it the benchmark against other adaptive filters. The calculation of the LMS 

algorithm involves the substitution of the estimates of the correlation matrix R and 

the cross correlation vector P in (1.11) as follows [22]: 

 ˆ ˆ( ( )) 2 ( ) ( ) 2 ( ) ( ) ( )H HJ W k u k d k u k u k W k     (1.12) 

with  ( ) ( ) ( )Hk u k u kR  and ˆ ( ) ( ) ( )Hk u k d kP , then a new recursive relation for 

updating the tap weight vector is given by: 

 ˆ ˆ ˆ( 1) ( ) ( ) ( ) ( ) ( )HW k W k u k d k u k W k     
 

 (1.13) 

Equivalently, the basic computation of the LMS algorithm is: 

Filter output: ˆ( ) ( ) ( )Hy k W k u k  (1.14) 

Estimation error: ( ) ( ) ( )e k d k y k   (1.15) 

Tap weight adaptation: *ˆ ˆ( 1) ( ) ( ) ( )W k W k u k e k    (1.16) 

 Kalman filters (KF) 

KF is a linear optimum filter with some distinctive features such as, mathematical 

models which are described in terms of state concepts and the solution can be 

computed recursively, which can be applied without modification to stationary and 

nonstationary environments. In particular, each updated estimate of the state is 

computed from the previous estimate and the new input data, so only the previous 

estimate requires storage. KF algorithm can be described by the following equations 

[24, 25]: 
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ˆ ˆ( 1| ) ( | 1) ( 1, ) ( ) ( )

( ) ( 1, ) ( , 1) ( ) ( )

( ) [ ( , 1) ( ) ( )] ( , 1)

( 1, ) ( 1, ) ( ) ( 1, ) ( )

n n n n

H

n n n

H

n n n

H

n n n

k k k k k k k e k

k k k k k u k k

k I k k k u k k k

k k k k k k k k

     


  


   
     

W W F G

G F P C

P F G P

P F P F R

 (1.17) 

where: 

 

1( ) [ ( ) ( , 1) ( ) ( )]

ˆ( ) ( ) ( ) ( | 1)

H

n n n

H

n n n

k u k k k u k k

e k y k u k h k k

   


  

C P Q
 (1.18) 

And nR  is the correlation matrix of the process noise, nQ  is the correlation matrix of 

the measurement noise which has to be estimated, nG  is the Kalman gain, ne  is the 

error signal, nW  is the channel state vector and F . 

In addition to eliminating the need for storing the entire past observed data, KF 

computes the estimate directly from all those past data at each step of the filtering 

process. KF provides a unifying framework for the derivation of the complete family 

of the recursive least quare (RLS) filter. 

 Recursive least squares (RLS) algorithm 

RLS algorithm may be viewed as a special case of the Kalman filter on the 

measurement update equations. RLS algorithm does not require a priori information 

when used for channel estimation as Kalman filter does, and its computational 

complexity is less than the Kalman filter. Assuming that the system channel model 

can be modeled as 1
st
 order autoregressive process. Therefore the standard RLS can 

be modified to an extended RLS algorithm that is computed as follows [24, 25]. 

 

*

2

ˆ ˆ( 1| ) ( | 1) ( ) ( )

ˆ( ) ( ) ( | 1) ( )

( ) ( , 1) ( ) ( )

( ) ( , 1) ( )

( 1, ) ( ) ( )

n n n n

H

n n n

n n n

n n n

n n n

k k k k k e k

e k y k k k u k

k k k u k k

k k k k

k k k k







    


  

  


  
   

W W G

W

G P A

P P B

P P R

 (1.19) 

and: 
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1

1

( ) ( ) ( , 1) ( ) 1

( ) ( , 1) ( ) ( ) ( , 1) 1 ( ) ( , 1) ( )

H

n n

H H

n n n n

k u k k k u k

k k k u k u k k k u k k k u k





      


       

A P

B P P P

 (1.20) 

where nR  means the correlation matrix of the process noise vector. 

1.3.4 Classes and applications of adaptive filters 

The classes and applications of adaptive filters depend on the structure of signal flow 

in a certain adaptive filter. Some of the known classes of adaptive filters include 

identification, inverse modeling, prediction and interference cancellation [21-23]. 

 Identification:  

In this class, the adaptive filter seeks to provide a linear model that matches the 

unknown plant [21]. The input of the unknown plant is the same as the input of an 

adaptive filter as represented in Figure 1.6. 

System output

u

Unknown plant

Adaptive filter



y

d
+

-

e

 

Figure 1.6: Identification model with adaptive filter [22]. 

This type of class finds many applications such as system identifacation and layered 

earth modeling. Specifically, for the system identification application, the input is a 

broadband signal that serves as the input of the unknown system as well as the 

adaptive filter. When the output mean square error (MSE) is minimized, the adaptive 

filter represents the unknown system model. 

 Inverse modeling: 

In this class, an adaptive filter tries to compensate and to provide a linear model that 

represents the unknown noisy plant as shown in Figure 1.7. 
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Delay

Plant Adaptive filter



d

y

+

-

u

System output

e

 

Figure 1.7: Inverse modeling with adaptive filter [23]. 

The inverse modeling finds various applications in signal processing such as 

equalization whereby the original transmitted signal distorted by the channel plus 

environment noise serves as the input to the adaptive filter and the desired signal is 

the delayed version of the original transmitted signal [23].   

 Prediction:  

In this class, the function of the adaptive filter is to provide the best prediction of the 

present value of a random signal. The present value serves as the desired signal of 

the system, and past values of the signal supply the input of the adaptive filter as 

represented in Figure 1.8 [23]. 

Delay Adaptive filter -

+

ey
d

u

 

Figure 1.8: Prediction model with adaptive filter [23]. 

The applications of this class of adaptive filter are signal detection, prediction coding 

and spectrum analysis. 
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 Interference cancellation:  

The role of adaptive filter in this class is to cancel the unknown interference 

contained in a primary signal. The primary signal works as the desired signal of the 

system and the reference signal is used as the input to the filter as shown in Figure 

1.9. Noise cancellation is one of the application of this class whereby an adaptive 

noise canceller is used to substract noise from received signal in order to improve the 

signal to noise ratio (SNR) [21]. Another application is beamforming which is used 

in spatial filter where an array of antenna elements has adjustable weights so as to 

control and cancel interfering signals arriving on the array [23].  

Adaptive filter 
e

System output

d
+

-

yu

Reference signal 

Primary signal 

 

Figure 1.9: Interference cancellation model with adaptive filter [23]. 

1.4 Parameters of Radio Propagation and Fading Channel Models 

1.4.1 Basic radio propagation parameters  

In wireless communication networks, the channel between the source and the 

receiver is experienced by different obstacles such as houses, buildings, trees and 

other objects that act as reflectors of radio waves. Basically, radio waves are affected 

by three physical phenomena such as reflection, diffraction and scattering as 

represented in Figure 1.10 [4, 26].  

Reflection is a physical phenomenon that occurs when a propagating electromagnetic 

wave impings upon an object with very large dimensions compared to the 

wavelength (i.e., surface of the earth, building,…etc.). Diffraction occurs when the 

radio path between the transmitter and the receiver is obstructed by a surface that has 

sharp irregularities like edges. At high frequencies, diffraction like reflection 

depends on the geometry of object, amplitude, phase and polarization of the incident 
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wave at the point of diffraction. Scattering occurs when the medium through which 

waves travels consist of objects with dimensions that are small compared with the 

wavelength, and where the number of obstacles per unit volume is large. Scattered 

waves are produced by rough surfaces, small objects or by irregularities in the 

channel [4]. 

 

Figure 1.10: Multipath propagation in mobile radio networks. 

The difference in times of signal propagation can also cause the signal degradation at 

the receiver. This is caused by the difference in the arrival time of responses from the 

longest path and the shortest path which is referred to delay spread. Depending on 

the arrival time and phase, some interference signals are destructive or constructive. 

Therefore, if the delay spread is greater than the symbol duration, the original signal 

is distorted by both the noise and inter-symbol interference (ISI) and the channel 

undergoes frequency selective fading, otherwise, the channel undergoes frequency 

flat fading [4]. 

When a mobile node moves through a large distance, effects occur as large scale 

fadings. On the other hand when a mobile node moves for short distances, rapid 

variation of signal levels occur due to the constructive and destructive interference of 
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multiple signal paths such as small scale fading. Therefore, depending on the time 

variation in the channel and due to mobile speed characterized by the doppler 

frequency, short term fading can be classified as either fast fading or slow fading [4]. 

1.4.2 Fading channel parameters 

Wireless communication channels are highly affected by channel fading which 

causes signal variations in amplitude, frequency, phase and delay. Theoretically, the 

transmitted signals occupy a bandwidth smaller than the channel’s coherence 

bandwidth whereby the channel fading process is correlated. In this case, all spectral 

components have the same attenuation which is referred to as frequency non 

selective or frequency flat. On the other hand, if the transmitted signals occupy a 

bandwidth greater than the channel’s coherence bandwith, the phenomenon is refered 

to as frequency selective fading whereby the spectral components of the transmitted 

signal faded independently, thus, the received signal spectrum becomes distorted 

since the relationships between various spectral components are not the same as in 

the transmitted signal. Depending on the relative extend of multipath fading, the 

fading frequency of a channel is characterized by frequency selective or frequency 

flat fading for small scale fading as illustrated in Figure 1.11.  

Other sources of signal degradation in response to the channel environment are 

pathloss and shadowing. Pathloss is due to the signal propagation through space and 

leads to the reduction of the average received signal power. It is noted that in both 

theoretical and measurement based propagation models, this average received signal 

power decreases logarithmically with distance in either outdoor or indoor radio 

channels. In general form, the path loss is modeled in function of distance and 

exponent   parameter as follows [4]: 

 
___

0

( )
ds

PL ds
ds


 

  
 

 (1.21) 

where 0ds  is the close-in reference distance and ds  indicates the separation distance 

between the transmitter and the receiver. The path loss exponent   denotes the rate 

at which the path loss increases with distance. This parameter changes depending on 

the environment, in free space, the pathloss is proportional to the second power of 

the distance, i.e., 2  , therefore, by doubling the distance between the transmitter 
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and the receiver, the received power reduces to one fourth of the transmitted power. 

Depending on the mobile radio environment, the path loss expondent   varies as 

presented in Table 1.2 [4]. 

Table  1.2 : Path loss exponents for different environments [4]. 

Environment Path Loss Exponent, v

2

2.7 to 3.5

3 to 5

1.6 to 1.8

4 to 6

2 to 3Obstructed in factories

Obstructed in building

In building line of sight

Shadowed urban cellular radio

Urban area cellular radio

Free space

 

Shadowing is caused by obstacles in the wireless channel and affect the received 

signal by attenuating its power level. Variation in pathloss and shadowing occurs 

when the mobile device moves through a distance on the order of the cell size and 

this is refered to as large scale fading [4]. 

Fading Channel

Large scale fading Small scale fading

Path loss Shadowing Multi path fading Time variance

Frequency selective fading 

BW of signal >BW of channel 

Delay spread > symbol period

Flat fading 

BW of signal < BW of channel 

Delay spread < symbol period 

Fast fading

Channel var.> Base 

band var.

Slow fading

Channel var.<Base 

band var.

 

Figure 1.11: Classification of fading channels. 
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Multipath propagation can be modeled by different statistical models for fading 

channels and the most common in literature are: Rayleigh, Rician and Nakagami-m 

fading channels which are described in the following[5, 16]. 

In Rayleigh fading model, the transmission of a single tone with a constant amplitude 

is considered. In a typical land wireless network, there is no line of sight (NLOS) 

between the transmitter and the receiver antennas. Therefore, the radio waves from 

the transmitter are obstracted in the channel and the receiver receives only reflected 

radio waves. In this case, according to the central limit theorem, when the number of 

radio waves is large, two quadrature components of the received signal r  are 

uncorrelated with Gaussian random process with zero mean and variance σ
2
. In this 

process, the envelope of the received signal at anytime instant undergoes a Rayleigh 

distribution and its phase obeys a uniform distribution between –π and π [5]. The 

probability density function (PDF) and cummulative distribution function (CDF) of 

the Rayleigh distribution are given respectively by [5]: 
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(1.23) 

In Rician fading model, the line of sight (LOS) between the transmitter and the 

receiver is considered. The received signal is composed by the direct path wave 

which is a stationary nonfading signal with a constant amplitude and multiple 

reflected waves that are independent random signals. When the number of reflected 

signal waves is large, the sum of received signals r  is a quadrature components that 

can be modeled by Gaussian random process with zero mean and variance 2
r . The 

envelope of the reflected signal component has a Rayleigh probability distribution 

and the sum of the received signal results is Rician envelope distribution [4, 5]. The 

Rician distribution with the noncentrality parameter   has the probability density 

function (PDF) and cummulative distribution (CDF) given respectively by [16]: 
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and, 

 1( ) 1 , , 0R
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

 

 
    

 

 (1.25) 

where  0 (.)I  is the zero order modified Bessel function and 1(.,.)Q  is the Marcum’s 

Q-function. With 0  , we obtain the Rayleigh density function as given in (1.22). 

Nakagami-m is another useful fading model that is utilised in multipath fading 

channels to characterise the statistics of signals transmission. It is very useful since 

some data realizations do not work well with Rayleigh or Rician fading distribution. 

Therefore, Nakagami-m becomes a more general method to define some fading 

distribution with adjustable parameters. For X  random variables, the probability 

density function (PDF) of the Nakagami-m is defined as [5,16]: 
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 (1.26) 

where   is the mean square of X  defined as: 2[ ]E X   and the parameter m is 

defined as: 
2

2
, 1/ 2

[( ) ]
m m

E X




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
 and [.]E  is the expectation operator. 

1.5 Diversity Parameters 

1.5.1 Diversity techniques 

In wireless networks, diversity techniques are used to mitigate the effects of 

multipath fading without additional bandwidth ressources or the transmission power. 

The basic idea of this technique is that, in multipath propagation environment, 

signals are faded independently and some signals are highly faded while others are 

less attenuated. Thus, the use of a proper combination technique decreases the 

severity of fading and consequently it improves the network performance and 

reliable transmission. Diversity techniques are particularly useful, since they can be 
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combined with other forms of diversity such as time, frequence and space diversity 

as described below [4, 26-28]: 

The time diversity can be achieved by transmitting symbols of identical message 

with a separation in time of at least the coherence time of the channel or the 

reciprocal of the fading rate 1/ df . The coherence time is a statistical measure of the 

period of time over which the channel fading process is uncorrelated. Some methods 

are used to generate the time diversity such as repetition coding scheme whereby 

symbols are transmitted over uncorrelated channels and for each stream of symbols 

appropriate interleave is applied. Time interleaving can cause decoding delays, 

therefore, it can be more effective in fast fading environment where the coherence 

time of the channel is small. In slow fading channels, a large interleaver can result to 

a significant delay which is untolerable for delay sensitive applications such as voice, 

video and other multimedia transmission [26]. 

In frequency diversity, a number of different frequencies are used to transmit the 

same message. The frequency separation should be large enough to ensure 

independent fading during transmission and to guarantee the uncorrelation of fading 

statistics for different frequencies. Frequency diversity can be achieved by different 

techniques of spread spectum such as direct sequence spread spectrum (DSSS), 

multicarrier modulation and frequency hopping. Spread spectrum techniques are 

effective when the coherence bandwidth is small, otherwise it becomes ineffective to 

provide frequency diversity. Frequency diversity can also result in bandwidth 

inefficiency due to the introduction of redundancy in frequency domain [28].  

Space or antenna diversity has been a popular technique in wireless networks for 

providing diversity gain without additional bandwidth resources. This type of 

diversity is typically implemented by using multiple antennas for transmission and/or 

reception. Space diversity can be classified into two categories depending on whether 

multiple antennas are used for transmission or reception such as receive and transmit 

diversity [28]. 

In receive diversity, multiple antennas are arranged at the receiver side in order to 

receive multiple copies of the transmitted signal. The receiver uses the diversity 

combining method to combine the replicas of the transmitted signals in order to 

increase the overall received SNR and mitigate multipath fading. 
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In transmit diversity, multiple antennas are deployed at the transmitter side and the 

transmitter processes the message and spread the same message accross multiple 

antennas. The multiple antennas are separated physically by a proper distance which 

vary with antenna height, propagation environment and frequency. Typically, a 

separation of a few wavelength is enough to obtain uncorrelated signals. This type of 

diversity is very attractive in the current and future generation wireless networks 

since it does not result in loss of bandwidth as do time and frequency diversity. Two 

forms of space diversity are met in literature such as polarization and angle diversity. 

The polarization diversity ensures that signals are uncorrelated without separating 

antennas far apart, while angle diversity is effective in transmissions with carrier 

frequency larger than 10 GHz [26-28]. 

1.5.2 Diversity combining methods 

In wireless communication systems, the performance of diversity techniques depends 

on how multiple signal replicas are combined at the receiver to increase the quality 

of the received signal. Depending on the complexity and the level of channel state 

information (CSI) required for improving the performance of the system, there are 

four main type of combining techniques including selection combining, switched 

combining, equal gain combining and maximum ratio combining [4, 27, 28]. 

In selection combining, a simple combination is achieved whereby the signal with 

the largest instantaneous SNR at every symbol interval is selected as the output, so 

that the output SNR is corresponding to the best incoming signal [28]. 

In switched combining, the receiver scans all the diversity branches and selects a 

particular branch with the SNR larger than the predefined threshold. The selected 

signal is maintained until it reduces below that threshold. If this happens, the receiver 

starts again scanning for looking the new branch to switch on. This scheme has less 

performance compared to selection combining but it is simple in implementation 

since it does not require simultaneous and continous monitoring of all the diversity 

branches. Both selection and switched combining do not require the knowledge of 

the CSI. Therefore, both of the schemes can be implemented in conjuction with 

coherent and non coherent modulations [27]. 

Maximum ratio combining (MRC) is a linear combining method whereby the 

weighting factor of each receiver antenna is chosen to be in proportion to its own 
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signal voltage to noise power ratio. This scheme is optimum since it can maximize 

the output SNR. Moreover, the maximum SNR output equals the sum of the 

instantaneous SNRs of the individual signals. Each individual signal must be co 

phased weighted with its corresponding amplitude and then summed. This scheme 

requires the knowledge of the CSI on fading amplitude and signal phases. Therefore, 

it is effective in conjuction with coherent detection and inefficient with non coherent 

detection [28]. 

Equal gain combining (EGC) is a suboptimal and simple linear combining method. It 

does not require the estimation of the fading amplitude for each individual branch. In 

this scheme, the receiver sets the amplitudes of the weighting factors to be unity and 

all the received signals are co-phased and then added together with equal gain. The 

performance of equal gain combining is lower compared to the MRC, but the 

implementation complexity is less than the one of the MRC [27, 28].  

1.6 Performance Metrics 

The following metrics play a central role when analyzing the performance of 

cooperative wireless networks with multipath fadings and time varying channels. 

1.6.1 Average error rates 

The average error rates can be the instantaneous bit error rate (BER), bit error 

probability (BEP), symbol error rate (SER) or packet error rate (PER). All these error 

rates are determined by assuming a given channel realization and average noise 

power. Their application is very wide for system characterization, particularly the 

PER is the most important metric in real world systems. The only problem is the 

derivation of BER and SER expressions, their approximations are usually utilised 

whereas the closed form of the SER is easily found mathematically [4, 5].  

1.6.2 Outage probability  

The knowledge of outages are of prime importance in real world systems such as cell 

dimension since it quantifies the probability that a certain performance can not be 

met. In other words, outage probability outP  is defined as the probability that the 

received instantaneous SNR  ( s ) falls below a given value corresponding to the 

maximum allowable probability of error   ( eP ). Lets 0  be the typical minimum SNR 
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required for acceptable performance. Therefore, the outage probability is given by

0

0

0

( ) ( )
sout sP P P d



       , where s  is the received SNR when considering 

AWGN channels. The calculation of outage probability is also very important when 

the channel does not vary sufficiently fast and this is typically for channel 

realization, information rates as well as bit, symbol and packet errors [4, 5]. 

1.6.3 Channel capacity  

In wireless communication systems, by considering that the CSI is known at the 

receiver, there are two ways of defining the channel capacity such as Shannon 

capacity or ergodic capacity and capacity with outage. Shannon capacity is defined 

as the maximum data rate that can be transmitted over the AWGN channel with 

asymptotically small error probability, assuming no constraints on delay or 

complexity of the encoder and decoder. This capacity is given by 2log (1 )C B    

where  B  defines the channel bandwidth and   is the instantaneous SNR given by 

0/ ( )tP N B  , tP  is the transmitted power and 0N  is the power spectral density of 

noise. Shannon also defined this capacity as the mutual information maximized over 

all possible input distributions as 
( )
max ( , )
p X

C I X Y , where X  is the input, Y  is the 

output, ( )p X  is the input distribution and  C  is the channel capacity expressed in 

bits per second (bps). The capacity with outage is defined as the maximum rate that 

can be transmitted over a channel with some outage probability corresponding to the 

probability that the transmission can not be decoded with negligeable error 

probability [4, 5]. 

1.6.4 Receiver operating characteristic (ROC) 

ROC is a useful metric that measures the performance of a detector in form of a 

graph of the probability of detection ( dP ) against the probability of false alarm ( faP ). 

For example, the ROC of a LRT depends only on the probability density functions of 

the observation under the hypotheses H1 and H0. In Neyman Pearson test, the slope 

of the ROC corresponding to any specified value of faP  represents the critical value 

of the likelihood ratio. In Bayes test, the threshold   is determined by the a priori 

probabilities and costs. Consequently, the probabilities of detection and false alarm 
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are determined on the point of the ROC curve at which the tangent has slope   [16, 

19]. 

1.6.5 Mean square error (MSE) learning curve 

The MSE learning curve is another performance metric very useful for evaluating the 

quality of the received signal in communication systems, since it clarifies the 

operating characteristics of the estimation (filter) algorithm. It is based on the 

ensemble averaging of the squared estimation error 
2

( )e k . Estimation errors being a 

real world impairment in communication systems, the learning curve of the mean 

square estimation error (i.e., 
2

( ) ( )J k E e k 
 

) versus the adaptation cycle k, 

provides us useful information about the system performance [23]. 

1.7 Purpose and Scope of the Thesis 

The purpose of this thesis is to propose methods or techniques that can recover 

effectively the original transmitted signal at the receiver in wireless networks with 

multipath environment. This study focuses on diversity systems in wireless networks, 

adaptive channel estimation, data detection methods and considering the knowledge 

of channel state information at the receiver. In order to achieve the purpose of the 

thesis the set objectives are outlined as follows: 

 Identification of existing methods, techniques and their limitations in 

mitigating the effect of channel impairments in wireless networks and 

recovering the original transmitted signal at the receiver. 

 Investigating different scenarios of implementing relaying cooperation with 

the purpose of creating diversity environment and enhancing the signal 

quality at the receiver. 

 Deriving and implementing low complexity channel detection method in 

cooperative wireless communications for both stationary and non stationary 

environments. 

 Deriving and implementing a low complexity adaptive channel estimation 

and data detection algorithm in cooperative wireless communications for both 

stationary and non stationary environments. 
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 Evaluating the performance of the proposed method and technique and 

comparing the findings with previous findings in literature. 

1.8 Original Contributions of the Thesis 

The main contributions of this thesis consist of deriving the data detection and 

channel estimation models based on Bayesian linear model (BLM) detector and least 

mean square (LMS) algorithm and implementing them in cooperative wireless 

communications. These contributions are provided throughout the thesis as follows: 

 Deriving and implementing Bayesian linear model (BLM) detector in 

multiple relays based cooperative wireless communications in both 

stationary and non stationary environments. 

 Deriving and implementing the joint least mean square (LMS) algorithm 

and Bayesian linear model (BLM) detector in multiple relays based 

cooperative wireless communications in both stationary and non stationary 

environments. 

 Evaluating the performance of the proposed algorithms through simulations 

by analysing the results and comparing them with previous outcomes in 

literature. 

In our research work, some assumptions and considerations are provided in each part 

of the work and the obtained results have been published in conferences and journals.  

1.9 Organization of the Thesis 

In chapter 2, two parts are considered: the first part assumes that the channel state 

information (CSI) is available at the destination and we propose, derive and 

implement the Bayesian linear model (BLM) detector in multiple amplify and 

forward (AF) relays based cooperative wireless communications. In this part, the 

receiver operating characteristics (ROC), bit error probability and mean square error 

(MSE) performance parameters are derived and numerical results are obtained 

through simulations. The effects of relays positions from the source and number of 

relays are also evaluated.  

In the second part, it is assumed that the channel state information is not available at 

the destination and the joint least mean square (LMS) algorithm and Bayesian linear 

model (BLM) detector are derived and implemented in multiple AF relays based 
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cooperative wireless communications in order to estimate the channel and detect the 

original transmitted signal. In this part, the ROC, complementary ROC, MSE 

learning curve and error probability are derived, numerical results are obtained and 

compared through simulations. The effects of relays positions, number of relays and 

gradient step size parameter are also investigated. 

In chapter 3, two parts are also considered: the fisrt part assumes that the CSI is 

available at the destination and assumes time varying channels. Therefore, the 

performance of the BLM detector is evaluated in multiple relays with time varying 

channels. In this part, the ROCs, minimum mean square error (MSE) and bit error 

probability are derived and evaluated through simulation. The obtained results are 

compared with other existing results in literature. The effects of nodes speeds and 

number of relays in the network are also evaluated. 

In the second part, it is considered that the CSI in not available at the receiver and the 

unknown channel is varying with time. Therefore, the LMS-BLM receiver is 

proposed and evaluated in multiple relays networks. The ROCs, bit error probability, 

MSE learning curve and the minimum MSE are derived and evaluated through 

simulation analysis. Different parameters are also investigated such as nodes speeds, 

step size μ and various number of relays in the system. 

Finally, chapter 4 concludes the thesis with general conclusions, recommendations 

and expected future works of the thesis.   

1.10 Publications  

During the execution of this thesis, the following Journals and conference papers 

have been published: 

1.10.1 Journals 

 Gatera, O., Ilhan, H., Kayran, H., A. 2016. A novel LMS-BLM Algorithm 

for AF Relays based Cooperative Wireless Networks. International Journal 

of Electronics and Communications (AEÜ) 70 (2016) 1480-1488. 

 Gatera, O., Ilhan, H., Kayran, H., A. 2016. Performance Analysis of 

Differential BLM detector in AF Relay Networks with Time Varying 

Channels. International Journal of Computing and Information Sciences. 

Vol. 12, N0. 2, December 2016.  
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1.10.2 Conference papers 

 Gatera, O., Ilhan, H., Kayran, H., A. 2016. LMS-BLM Receiver in AF 

Based Cooperative Relay Networks. 18th IEEE Mediterranean 

Electrotechnical Conference. April 18-20, 2016, Limassol, Cyprus. 

 Gatera, O., Ilhan, H., Kayran, H., A. 2016. ROC Analysis of BLM 

Detection in AF Relays Based Cooperative Wireless Networks. International 

Conference on Sustainable Energy, Environment and Information 

Engineering (SEEIE 2016) March 20-21, 2016, Bangkok, Thailand, pp:277-

281. ISBN: 978-1-60595-337-3. 

 Gatera, O., Ilhan, H., Kayran, H., A. 2015. BLM Detection in AF Relay 

Networks. International Conference on Signal Processing and 

Communication Systems (ICSPCS’2015), Cairns, Australia, December, 14-

16, 2015.  
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2. ADAPTIVE CHANNEL ESTIMATION AND DATA DETECTION 

MODELS FOR COOPERATIVE WIRELESS COMMUNICATIONS IN 

STATIONARY ENVIRONMENT 

2.1 Introduction 

In this chapter, a cooperative wireless network that comprises of single source (S), 

multiple relays (RM), and single destination/receiver is considered. It is assumed that 

all nodes are equipped with single antenna and the transmission between nodes is 

done in half duplex mode. It is also considered that the cooperation and 

communication between nodes are done in stationary environment whereby all nodes 

in the network do not move as depicted in Figure 2.1. 

D

R1

S

hs1

hsd

RM

h1d

hsi
hid

Ri

hsM hMd

 

Figure 2.1 : Network model in stationary environment. 

In this chapter, two principal sections are considered; in the first section, we assume 

that the channel state information (CSI) is available at the destination whereas the 

received signal at the destination is corrupted by noise and other interferences. 

Therefore, a data detection model based on Bayesian linear model (BLM) detector is 

proposed for the purpose of recovering the original transmitted signal from noisy 

signals. 

In the second part, it is assumed that the channel state information (CSI) is not 

available at the receiver and also the received signal is corrupted by noise and other 
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interferences. Therefore, an algorithm that is based on the combination of the least 

mean square (LMS) and Bayesian linear model (BLM) detector is proposed for the 

purpose of estimating the channel between the source & destination and the relay & 

destination and recovering the original transmitted signal at the receiver. 
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2.2 Bayesian Linear Model (BLM) Detector in Multiple AF Relays Based 

Cooperative Wireless Networks 

2.2.1 Abstract 

In this part, the investigation of the performance of Bayesian linear model (BLM) 

detector in multiple AF relays based cooperative wireless networks is carried out. 

This part assumes that the channel state information (CSI) is available at the 

destination and the received signal is corrupted by noise and other interference 

signals. Therefore, a BLM detector at the receiver is proposed in order to recover the 

original transmitted signal corrupted by noise and other interferences at the 

destination. Performance evaluation of the proposed method is examined in terms of 

receiver operating characteristics (ROC), bit error probability and mean square error 

(MSE) performance. Computer simulations and results analysis are developed in 

order to assess the effectiveness of the proposed algorithm. 

2.2.2 Related work 

In literature, studies on signal detection were addressed in various research works. 

The most popular study on detection theory is investigated in [29] where the author 

consider deterministic signals of uknown structure in Gaussian noise. This work is 

extended for random amplitude signals with different fading channels such as 

Rayleigh, Nakagami and Rician distribution [30]. In [31], closed form expressions of 

the detection probability ( dP ) are derived  over Rayleigh, Nakagami and Rician 

fading channels with different diversity schemes such as equal gain combining 

(EGC), selection combining (SC) and switch & stay combining (SSC). The same 

analysis is done in [32] for low complexity diversity schemes such as square law 

combining (SLC) and square law selection (SLS). Other methods are utilised to 

evaluate the probability of detection such as moment generating function (MGF) by 

considering the maximum ratio combining (MRC) detector at the receiver [33]. 

The assessment of signal detection is also addressed in cooperative relay networks, 

the upper and lower bound expressions of the average probability of detection for 

fixed gain relay networks are derived in [34]. In order to improve the energy 

detection for low SNR, multihop cooperative diversity network over independent and 

identically distributed (IID) Rayleigh fading channels is proposed in [35]. The 
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probability of detection is also determined by using the method of Marcum Q-

function [36]. 

Based on the above literature review, this part use an alternative method based on 

Bayesian linear model (BLM) detector in order to enhance the detection performance 

at the receiver. The main contributions of this part include: 

 Deriving and implementing the BLM detector in multiple amplify and 

forward (AF) relays based cooperative wireless communications. 

 Determining the test statistic of the system with BLM detection approach. 

 Deriving the probabilities of detection, false alarm, miss detection and error 

of the BLM detector. 

 Deriving and evaluating the performance of the proposed algorithms in terms 

of receiver operating characteristics (ROC) , minimum mean square error 

(MSE) and bit error probability. 

 Evaluating the effects of relays positions from the source and number of 

relays on the system performance. 

 Comparing the obtained results of the proposed method with other existing 

methods in literature. 

2.2.3 Bayesian linear model (BLM) detector description in M-relays networks 

The receiver based on BLM detector contains a combiner and detector as represented 

in Figure 2.2. The scheme comprises of the received signals (i.e., 

1, ,..., ,...,sd d id Mdy y y y  ), tap weights (i.e., 1, ,..., ,...,sd d id MdW W W W  ) and detection 

parameters such as test statistic ( )T y , threshold  , and test hypotheses 0H  and 1H . 

As indicated before, the receiver decision based on hypotheses tests decides the 

presence of the signal under hypothesis 1H  when the test statistic is greater than the 

threshold that means the received signal is composed of the original transmitted 

signal and corrupted by noise due to transmission medium. The receiver may also 

decides the absence of the signal when the test statistic is less than the predefined 

threshold which means that the received signal is only composed by the noise. It may 

also happen that the receiver provides the wrong decision whereas there is a presence 

of signal or absence of the signal. 
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T(Y)
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
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sdy

1dy

idy

Mdy

sdW
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idW

MdW

0H
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Figure 2.2: Block diagram of the BLM detector in M-relays networks. 

As represented in Figure 2.2, the received signals from the source and various relays 

at the destination are combined and the detector computes the test statistic which is 

compared with the predetermined threshold in order to decide on the received signal 

according to test hypotheses 0H  and 1H . 

2.2.4 System and channel models 

As illustrated in the Figure 2.1, coefficients ,sd sih h  and 
idh  are channels between the 

source & destination, the source & relays and the relays & destination. The system 

signal processing comprises of two phases, in the first phase, the received signals 

from the links between the source & destination and the source & relays are 

respectively given by: 

 ( ) ( ) ( )sd s sd sdy k P h u k w k   (2.1) 

 ( ) ( ) ( )si s si siy k P h u k w k   (2.2) 

where 
sP  is the power of the source, ( )u k is the signal generated by the source and 

transmitted to relays and destination. Coefficients ( )sdw k  and ( )siw k are assumed to 

be complex additive white Gaussian noise with zero mean and variance 
0N . During 

the second phase, the source is silent and each relay multiplies the received signal 

( )siy k  with the amplification factor 
iG  and forwards it to the destination. In this 
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case, orthogonal transmission is required in order to transmit N
th

 symbol at each 

relay in the network. This can be realized by using time division multiple access 

(TDMA) or frequency division multiple access (FDMA) [4,5]. Therefore, the 

received signal ( )idy k at the destination is given by: 

 ( ) ( ) ( )id i i id si idy k PGh y k w k   (2.3) 

The expression (2.3) can be simplified as: 

 ( ) ( ) ( )id i id id idy k Ph u k w k   (2.4) 

where ( ) ( )id i siu k G y k  indicates the generated signal at each relay in the network, 

( )idw k  is the complex additive white Gaussian noise with zero mean and variance 

0N  and 
iP  is the power at each relay. The amplification factor 

iG  is expressed as 

[15]:  

 2

0

1

( )
i

si s

G
E h P N




 (2.5) 

where E (.) represents the expectation operator. In matrix form, the system input 

output can be represented as follows: 

 

1 11 1 1
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dd d d

id id idi id

Md Md Md
M Md

P hy u w

Phy u w

y u wPh

y u wP h

 
      
      
      
             
      
      
                  

 
(2.6) 

Assuming that the received signals at the destination are independent and identically 

distributed (i.i.d), and can be analyzed in linear model. Therefore, the matrix in (2.6) 

can be represented by a linear equation as follows: 

 y = Hu+ w  (2.7) 
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where y  indicates the column vector of the received signal, H  indicates the 

channel matrix, u  indicates the column vector of the transmitted signal and w  

indicates the column vector of the received noise at the destination.  

2.2.5 Mathematical models 

2.2.5.1 Receiver operating characteristics (ROC) 

In general, the decision problem between the presence and absence of the signal in 

non fading environment is governed by the following two hypotheses [16]: 

 
0

1

:

:

H

H


 


w
y

Hu+ w
 (2.8) 

The received signal may be the noise only or absence of the signal which 

corresponds to the hypothesis 
0H . Otherwise, the received signal is a combination of 

the transmitted signal and the noise which corresponds to the hypothesis 
1H  that 

indicates the presence of the signal. The receiver decision is usually probabilistic 

according to the hypotheses 
0H  and 

1H . Considering the BLM detection approach, 

the probabilities of density function (PDFs) of (2.8) are expressed respectively as 

follows: 
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 (2.9) 

where y  is an 1N   vector of observations, H  is a known N p  observation 

matrix with N P , u  is an 1P  random vector with (0, ))uN Cu( ,w  is an 1N   

noise vector with PDF 
0(0, )N N I  and is independent of u  and 

uC  is the covariance 

of the source signal u . In non fading environment, the signal energy detection is 

simply realized such that the received signal ( )y k  passes the process of filtering, 

squaring, integrating and the decision statistic is given by [33]: 

 
2

( )T A y k dk   (2.10) 
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where A  is a constant. The decision statistic is seen to be a sum of squares of 

Gaussian random variables whose distribution is a non central chi-square under H1 

and central chi square under H0. Thus, the PDF of T  under H0 and H1 can be written 

as: 
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 (2.11) 

where (.)  is the Gamma function and (.)cI  is the thc  order modified Bessel 

functions of the first kind. The parameter c depends on the time bandwidth product 

[33]. The instantaneous signal to noise ratio (SNR) is defined by 
2

0/ij sh P N   

(from node i to node j) where 
sP  is the power of the source and 

0N  is the noise 

power spectral density.  

When the receiver decides the presence of the signal under hypothesis H1, the 

detection performance is evaluated in terms of probability of detection (
dP ), and 

when the receiver provides wrong decision under H0, it implies the probability of 

false alarm ( faP ). Otherwise the receiver decides the absence of the signal or noise 

only which corresponds to the probability of non detection (
nP ). It may happen that 

the receiver decides the absence of the signal whereas there is; this case indicates the 

probability of missed detection (
mP ).  

Theoretically, the probabilities of detection and non detection are respectively 

defined as [16, 19]: 

 
1P ( ( ) | )dP T y H   (2.12) 

and,  

 
0P ( ( ) | )nP T y H   (2.13) 

In (2.12), the probability of detection exists when the obtained test statistic is greater 

than the predetermined threshold; in this case the receiver is allowed to process the 
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received information signal from the transmitter. In (2.13) the test statistic is less 

than the predetermined threshold, therefore there is an absence of the signal or only 

the noise is present. In some cases the receiver may make error decisions. 

Theoretically, error decision probabilities of the receiver such as 
faP  and 

mP   are 

defined respectively by: 

 
0( ( ) | )faP P T y H   (2.14) 

and, 

 
1( ( ) | )mP P T y H   (2.15) 

The relation between the probabilities of detection and missed detection is given by: 

 1m dP P   (2.16) 

where ( )T y  is the test statistic of the receiver and   is the predetermined threshold. 

Then, the closed form of the  probabilities of detection ( )dP  and false alarm ( )faP are 

defined respectively by [32]: 

 
2
,d cP Q

 

 

 
   

 

 (2.17) 

and  

 

2( , / 2 )

( )
fa

c
P

c

 



 (2.18) 

where, (.,.)  is the upper incomplete Gamma function defined as 

1( , ) a t
xa x t e dt 
   [16]. The parameter c  is the time bandwidth product of the 

observed signal which signifies the number of observed samples / 2c N  with N 

defines the degree of freedoms (DOFs) and   is the detection threshold. (.,.)cQ  is 

the thc  order generalized Marcum Q-function defined as  [16]: 
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The expression (2.19) can be simplified as: 
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Using the equation (2.20) and the relation in [16, Eq.8.352], equation (2.17) 

becomes: 
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In addition, we can mention that the threshold   is commonly determined by solving 

the probability of false alarm in (2.18) as follows [19, 37]: 
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where c  are even valued. Therefore, using (2.18) and (2.22) the threshold can be 

derived iteratively as follows [19]: 
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where ' 2/ 2   . Analytically, using the BLM detection approach, the test statistic 

( )T y  is derived as follows [19]: 

 
1

0( ) ( )T T T

u uT y N  y HC H HC H I y  (2.24) 

The receiver decides the presence of the signal when the test statistic is greater than 

the threshold ( ( )T y  ) for the hypothesis 
1H  that indicates the presence of the 

signal. Otherwise, the receiver decides the absence of the signal according to the 
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hypothesis 
0H . In (2.24), the covariance matrix 

uC  and the noise variance 
0N I  are 

represented by the following diagonal matrix: 

 

2

2

1

2

0 ... 0

0 ... 0

... ... ... ...

0 0 0

sd

d

u

Md







 
 
 
 
 
  

C
 

(2.25) 

where, 2
sd  and 2

Md  are the variances of the signal generated by the source and relays 

respectively.  
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The test statistic ( )T y  is evaluated by substituting the channel covariance matrix and 

the noise variance matrix values in (2.24), after doing some variable changing, we 

obtain the following expression:  
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The test statistic (2.27) under test hypotheses is described as follows: 
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where 
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The expression in (2.28) can be simplified as follows: 
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, 2
2( )sd  and 2

2( ) ( )rd i  are independent and identically 

distributed Chi-squared random variables with two degree of freedom for the source 

& destination and relay & destination respectively. 

The probabilities density functions (PDFs) of the test statistic ( )T y in (2.29) are 

determined as follows [19]: 
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It is shown that 0( ; )P T H  and 1( ; )P T H  are obtained from the inverse fourrier 

transforms of the characteristic functions of ( )T y according to the hypotheses H0 and 

H1 that are given by: 
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Substituting (2.31) in (2.30), the PDFs for dual hop (2 segments) relays network are 

given by: 
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After deriving (2.32) and making some variable changing, we obtain: 
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The probabilities of false alarm and detection can be determined as follows [19]: 
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2.2.5.2 Bit error probability performance analysis 

The bit error probability (BEP) of a system that transmits with equal likely 

probability is given by the following expression [38]: 
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By substituting (2.34) and (2.35) in (2.36), the BEP is given by: 
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2.2.5.3 MSE performance analysis 

The minimum mean square error (MMSE) estimator with Bayesian linear model 

approach is given by [19]: 
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Substituting (2.25) and (2.26) into (2.38), we obtain: 
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Since, the transmission of signals is orthogonal and all signals are independently 

transmitted from the relays, the overall estimate is the summation of independent 

estimation by using the following property: The MMSE estimator of s based on i 

uncorrelated data vectors, assuming jointly Gaussian statistics is given by [16]: 
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Therefore, the MMSE estimate ŝ  becomes: 
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Then, the MSE is given by: 
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2.2.6 Numerical results 

In this study, simulation results are presented in order to investigate the performance 

of the BLM detector through the ROCs, bit error probability and minimum MSE. 

Four scenarios are considered; the first scenario evaluates the probability of detection 

of the BLM detector with various number of relays, and compares it with the upper 

and lower bounds of probability of detection given in [34]. The second scenario 

evaluates the probability of detection and bit error probability for various positions of 

relays with different number of relays. The third scenario evaluates the everage 

probability of error with different number of relays. The fourth scenario evaluates the 

mean square error (MSE) of the BLM detector with various number of relays. 

It is considered that the variance of channel fading coefficient between nodes (i.e: 

2

h ) is found by using path loss model equivalent to  2

h ijd
   with   which 

indicates the path loss exponent, here we take 3   which corresponds to the 

shadowed urban cellular radio environment [4], and 
ijd  which denotes the distance 

between two nodes in the network and the distance between the source and the 

destination equals to one whereas the distance between the source & relay and the 

relay & destination varies according to the relation: sd sr rdd d d  . 

During simulation, the signal is generated at the source and modulated with QPSK 

and sent to all relays and destination node in the network. The channels between the 

source & destination, source & relays, and relays & destination are generated with 

Rayleigh fading distribution. Each relay amplifies the received signal from the 

source only and forwards it to the destination. The amplification is done by only 

multiplying the received signal with the amplification factor or gain which is given 

by the expression in (2.5). At the destination node, the BLM detector computes the 

signal energy for each link, combines all received signal energies from different links 

and then determines the test statistic which is compared with the predetermined 

threshold. The threshold is determined by solving the probability of false alarm given 

by the expression (2.18). The probability of false alarm ( faP ) is taken between 0 and 

1 and the bandwidth product c equals to 2. 

In Figure 2.3, the ROC is evaluated in M-relays (R=2, R=3 and R=4) with BLM 

detector at the destination. The results show that the probability of detection increases 

when the number of relays increase and the BLM detector results outperform the 
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results of the upper and lower bound of probability of detection for the number of 

relays higher than 2.   In Figure 2.4, the ROCs of the BLM detector is also analyzed in 

M-relays (R=2, R=3 and R=4) located at different distances from the source and 

destination. The results show that the probability of detection increases as the number 

of relays increases and when relays are closer to the source. The same observation 

about the improved performance when relays are closer to the source is observed in 

[39, 40]. In Figure 2.5, the error probability is investigated with M- relays (R=4, R=3 

and R=4). The obtained results show that the error probability decreases when the 

number of relays increases in the system and the Figure 2.6 shows that the bit error 

probability improves much more when the relay is closer to the source than the relay 

closer to the destination. In Figure 2.7, the MSE of the BLM detector is investigated 

in M-relays and the results show that the MSE decreases as the number of relays 

increases.  

 

Figure 2.3 : ROCs of the BLM detector with the upper & lower bounds. 
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Figure 2.4 : ROCs of the BLM detector with various relays positions. 

 

Figure 2.5 : Average error probability of the BLM detector in M-Relays network.  
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Figure 2.6 : BEP of the BLM detector with various relays positions. 

 

 
 

Figure 2.7 : MSE of the BLM detector in M-Relays network. 
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2.2.7 Summary 

In this study, the Bayesian linear model (BLM) detector in  amplify and forward 

(AF) multiple relays network is proposed. It is also assumed that the CSI is available 

at the destination and the network system is operating over independent and 

identically distributed Rayleigh fading channels. Four scenarios are considered; the 

first scenario is based on evaluating the receiver operating characteristics (ROC) and 

comparing it with the upper and lower bound of the probability of detection (i.e., 

Figure 2.3). The second scenario evaluates the ROC and bit error rate in various 

number of relays and different locations of the relays (i.e., Figure 2.4 and Figure 

2.5). The third scenario evaluates the BER in various number of relays (i.e., Figure 

2.6). The last scenario evaluates the minimum mean square error (MSE) of the BLM 

detector with various number of relays (i.e., Figure 2.7).  

The simulation results of the ROCs show that the bayesian linear model (BLM) 

detector provides better detection performance than the upper and lower bound of the 

probability of detection, and the detection performance increases when the number of 

relays increases and when relays are closer to the source. The results of error 

probability show that signal errors in the system decreases when the number of relays 

increases in the system and when the distance between the source and relays is 

reduced. Similarly, the results of MSEs show that the system performance improves 

gradually as the number of relays increases in the network. The distance between the 

source and relay is an important factor that determines the performance of the system 

in a network that use multiple relays. In summary, the overall results have shown that 

the BLM detector is effective in M-relays based cooperative communications and 

can recover efficiently the original transmitted signal as the number of relays 

increases in the network.   
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2.3 A Novel LMS-BLM Algorithm for AF Relays Based Cooperative Wireless 

Networks 

2.3.1 Abstract  

In this section, multiple AF relays based cooperative wireless networks are 

considered. A number of studies in literature on wireless networks assume perfect 

channel state information at the receiver (CSIR), but in reality, due to the nature of 

wireless channels, little information is known on both the channel state information 

(CSI) and original transmitted signal at the receiver. Therefore, the main contribution 

in this work is based on proposing a novel algorithm that combines the least mean 

square (LMS) and Bayesian linear model (BLM) detector for the purpose of 

estimating the channel and recovering the original transmitted signal at the receiver. 

Analytical and theoretical simulations on receiver operating characteristics (ROC), 

complementary ROC, mean square errors (MSE) learning curves and probability of 

error are presented. The assessment of the effects of gradient step size and number of 

relays on both the detection performance and the MSE learning curve are carried out. 

The main advantages of the proposed algorithm are low implementation complexity, 

linear computation and can improve the detection performance of the receiver [23-

25]. 

2.3.2 Related work 

In literature, most of the existing studies focus on either signal or energy detection 

[29-34] and assume perfect CSI at the receiver or the transmitter or both [41-47]. In 

[41], authors consider pilot symbol aided channel estimation for cooperation 

diversity systems and focus on sub optimal linear minimum mean square estimator 

(LMMSE) design. A complete study on training based channel estimation for relay 

networks with AF transmission scheme is done in [42] and new estimation scheme 

that directly estimates the overall channels from the source to the destination is 

studied on both linear least square (LS) and minimum mean square error (MMSE) 

estimators. In [43], a wireless network with AF relays is studied where an 

autoregressive model is used to characterise the time varying channels and Kalman 

filter is utilised for channel estimation. In [44], the expectation-maximization (EM) 

algorithm is used to obtain the channel estimates in an iterative way. Space-
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alternating generalized expectation – maximization (SAGE) algorithm is used to 

perform code-aided iterative channel estimation from the broadcasting signals with 

AF protocol [45]. The problem of data detection and channel estimation is 

investigated in [46] by proposing a combination of generalized likelihood ratio test 

(GLRT) and least mean square (LMS) algorithm in DF relay networks. Iterative 

channel estimation and data detection based on parallel interference cancellation 

(PIC) at the receiver is proposed in [47].  

In this study, by considering that the CSI is not available at the receiver and the 

original transmitted signal is corrupted by unwanted signals, a novel algorithm is 

proposed which combines the LMS algorithm and the BLM detector with the 

purpose of recovering the desired signal. Therefore, the main contribution of this part 

is based on implementing the proposed algorithm in cooperative wireless networks 

with AF relays and examining the following performance metrics: 

 Deriving the test statistic of the proposed algorithm. 

 Deriving the probability densit functions of the test statistic. 

 Deriving the probabilities of false alarm, detection and error of the receiver. 

 Performing simulations for the mean square error (MSE) learning curve. 

 Performing simulations for the theoretical and analytical receiver operating 

characteristics (ROCs) of the system. 

 Evaluating the effects of gradient step size and number of relays on the 

ROCs. 

 Evaluating the effects of gradient step size and number of relays on the MSE 

learning curve. 

The advantages of the proposed algorithm are based on simple matrix computations 

of the BLM detector, low implementation complexity and feasibility of the LMS 

algorithm compared to other existing adaptive algorithms such as RLS algorithm and 

Kalman filters. The complexity of the LMS algorithm follows linear law whereas the 

one of the RLS follows square law. Moreover, the use of the Kalman filters for 

channel estimation requires the knowledge of some a priori information of the 

channel availability at the receiver which is not the case when using the RLS 

algorithm. Therefore, the computation complexity of the LMS and RLS becomes less 

than the one of the Kalman filter [23-25]. In this part, simulation results show that 

the obtained analytical results are in agreement with the theoretical results and the 
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system can provide satisfactory results of the ROCs that are different from previous 

studies [29-34]. 

2.3.3 System model  

As represented the network model depicted in Figure 2.1, the channel estimation is 

realized between the source and destination, and the relay and destination. We 

assume that each relay forwards the received signal from the source only and does 

not add additional traffic on the transmitted signal. 

In this system model, pilot assisted estimation is considered and there is no any 

assumption on the channel distribution characteristics instead the theoretic channel 

during implementation is considered. Two phases of data transmission are 

considered; in the first phase the source broadcasts the signal to the destination and 

relays in the network. In the second phase, the source is silent and relays amplify and 

forward the signal to the destination. The transmitted signals obey orthogonal 

transmission which can be acheived by using time division multiple access (TDMA) 

or frequency division multiple access (FDMA) [4]. Therefore, the 

destination/receiver is equipped with LMS-BLM receiver for channel estimation and 

data detection as described in Figure 2.8. 
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''








H1

T(y)

h0(k)

h(k)

u(k)

w(k)

e(k)
+



D

Channel estimation Combination and detection

y(k)

 

Figure 2.8 : Block diagram representing the LMS- BLM Receiver. 

In the above scheme, the block diagram comprises of two main parts, the first part is 

about channel estimation based on LMS algorithm and the second part comprises of 

combiner and data detection with BLM detection approach. The overall test statistic is 

compared with predetermined threshold which is derived from the expression (2.18). 
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2.3.4 Mathematical and performance metric models 

In reality, CSI is not available at the receiver and need to be estimated. In this 

context, the source sends additional pilot symbols and the corresponding received 

signal to the destination which are used to obtain the channel estimate. Therefore, the 

proposed algorithm that is based on least mean square (LMS) algorithm for channel 

estimation and Bayesian linear model (BLM) detector at the receiver is implemented 

in wireless relays network in order to enhance the original transmitted signal 

recovery. The LMS algorithm is a linear adaptive filtering algorithm that consists of 

two basic processes such as filtering and adaptive processes. In filtering, given the 

input signal, the output of the linear filter is computed and then the estimation error 

is generated by comparing this output and the desired response. In adaptive process, 

the automatic adjustment of the parameters of the filter is done in accordance with 

the estimation error. From Figure 2.8, the observed signals at the destination can be 

represented as: 
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(2.43) 

Assuming that the received signals can be modeled as linear form and all unknown 

channels are independent random variables where each individual realization of the 

channel path is independent for all time step k. Therefore, the linear form of the 

received signal vector y  at symbol time k can be written as: 

        k k k k y H u w  (2.44) 

where H  denotes the channel matrix, u  is the symbol vector simultaneously 

transmitted by the source and w  assumed to be the additive white Gaussian noise 

vector with zero mean and covariance matrix 0N I . Therefore, the LMS algorithm is 

computed in the following recursion equations: 
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d H u

e y d

H H e u

 (2.45) 

The channel estimate  ˆ 1k H  is updated according to the estimation errors  ke , 

  is the step size and )ku(  is the transmitted signal at time step k. The mean square 

error (MSE) is given by:  2 2[ ( )] [( ( ) ( )) ]E k E k k e y d . After obtaining the channel 

estimates, the BLM detector combines the received signals and computes the test 

statistic as given in the following [19]: 

 
1

0
ˆ ˆ ˆ ˆ ˆ( ) ( )T T T

u uT y N  y HC H HC H I y  (2.46) 

The test statistic ˆ( )T y in (2.46) can be defined as the total signal energy received at 

the receiver due to the combination of the energy signals between the source and 

destination, and the relay and destination links. In order to decide about the presence 

or absence of the signal, the test statistic is compared with the threshold   that is 

derived from the closed form expression given in (2.18). In equation (2.46), the 

covariance matrix equals 2 2 2 2

1[ , ,..., ,..., ]u sd d id Mddiag    C  and the noise variance 

equals to 
0 0 0[ ,..., ]N diag N NI = .  

The test statistic (2.46) is evaluated by substituting the values of covariance matrix of 

the transmitted signal and the noise variance matrix, after doing some variable 

changing, we obtain the following expression:  

 

2 2 2 2
2 2

2 2 2 2
10 0

ˆ ˆ
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ˆ ˆ

M
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T y y y

h N h N

 

 

   
           

  (2.47) 

In (2.47) 2
sdy  and 2

idy  are i.i.d random variables with N(0,1). According to the 

hypotheses H0 and H1, the ˆ( )T y  can be derived as follows: 
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 (2.48) 

where  2
(0) 0N  , 2

(0) 0i N  , 
2 2 2
(1) 0

ˆ
sd sdh N    and 

2 2 2
(1) 0

ˆ
i id idh N   . The relation 

(2.48) can be written again as follows: 
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 (2.49) 

where: 
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(1)
ˆ

i id idh  , 0 1N  , 2
sd  

and 2 ( )rd i  are independent and identically distributed Chi-squared random variables 

with one degree of freedom for the source and destination, and relay and destination 

links respectively. 
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It is shown that 0
ˆ( ; )P T H  and 1

ˆ( ; )P T H  are the inverse fourier transforms of the 

characteristic functions of ˆ( )T y  according to the hypotheses H0 and H1. The 

characteristic functions are given by: 
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 (2.51) 

for, 
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Substituting (2.51) in (2.50), the PDFs for dual hop networks are derived as follows: 
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 (2.52) 

Using [16, 19] and [48], the PDFs of the test statistic (2.52) can be derived as 

follows:  
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Using the solutions found in (2.53) and (2.54), the probabilities of false alarm and 

detection are respectively derived as follows [49, Sec.5.3. Eq. 21]: 
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Using the solutions (2.55) and (2.56), it is likely to design a receiver with minimum 

probability of error (minPe). Therefore, the average probability of error (
eP ) is 

defined as follows [16]: 

 0 1 1 1 0 0( / ) ( ) ( / ) ( )eP P H H P H P H H P H   (2.57) 

Assuming equal prior probabilities of signal transmission, we can write:  

 1 0( ) ( ) 1 2P H P H   (2.58) 

Therefore, the 
eP  becomes: 
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By substituting (2.55) and (2.56) in (2.59), the average probability of error ( eP ) 

becomes: 
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 (2.60) 

2.3.5 Numerical results 

In this study, simulation results are presented in order to investigate the performance 

of the LMS-BLM receiver. Three scenarios are considered; the first scenario 

compares the probabilities of detection of the LMS-BLM receiver for different 

number of relays and the upper & lower bounds of probability of detection as given 

in [34]. The second scenario evaluates the effects of variable number of relays and 

step size on the learning curve of the LMS-BLM receiver. The third scenario 

evaluates the probability of error for different number of relays. In the process of 

channel estimation using LMS algorithm, it is assumed that both CSI and original 

transmitted signal are not known at the receiver. In this case, a training signal ( )u k  is 

generated and sent to the destination and producing the output *

0( ) ( ) ( )u k h k u k  . It 

is also assumed that the unknown filter 
0 ( )h k  is a FIR filter with order P. In the 
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presence of noise, the observation ( )y k  can be expressed by *( ) ( ) ( )y k u k w k   

where the noise ( )w k  is assumed to be white. In practice, when the length of the 

filter 
0 ( )h k  is unknown, a large value of P can be chosen in order to make sure that 

it is overestimated. In this case, it is assumed that the length of  P  is known. For all 

deemed scenarios, the average SNR is identical for each link 
sd si idSNR      . 

At the source, the signal is generated and transmitted to all relays and destination 

node. The relay amplifies the received signal from the source only and forwards it to 

the destination. The amplification is done by only multiplying the received signal 

with the amplification factor or gain. At the destination terminal, the channels 

between the source and destination, the relays and destination are estimated using the 

LMS algorithm. This is followed by the BLM detector for detecting the original 

signal from noise. The BLM detector is based on detecting the signal energy for each 

link and then computing the test statistic which is compared with the predefined 

threshold as represented in Figure 2.8. The threshold is determined by using the 

expression (2.18) that represents an ideal detection condition in wireless network. In 

this formula, the 
faP  is taken between 0 and 1 and the bandwidth product u is 2. 

In the first scenario, there are three cases: in the first case, it is assumed that less 

information is known about CSI and original transmitted signal at the receiver. In 

this case, the LMS-BLM receiver is used for channel estimation and data detection 

between the source and destination, and the relay and destination links. In the second 

case, the upper and lower bounds of the probability of detection are plotted for 

comparison purposes. The results in Figure 2.9 show that with one and five relays 

(R=1 and R=5) the proposed algorithm provides higher detection performance 

comparing with the upper & lower bounds of the probability of detection. The 

probabilities of missed detection of the LMS-BLM algorithm with one and five 

relays indicate better results than the results of the upper and lower bounds in [34] as 

presented in Figure 2.10. The results in Figure 2.11 show that the analytical 

probability of detection of the LMS-BLM method is slightly equivalent to the upper 

bound of the probability of detection which justify the higher performance of our 

proposed algorithm. The theoretical probability of detection provides higher 

performance than the upper and lower bounds of probability of detection in [34] and 

marks a 10% difference with analytical results due to some formula approximation. 
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In the second scenario, the evaluation of the effect of step size and number of relays 

on the MSE learning curve is carried out. During simulation, the theoretical channel 

h  is chosen such that its length corresponds to the order value of the FIR filter with 

number of steps equal to 10P  . In this scenario, we investigate the effect of variable 

gradient step size of values equal to 0.002   and 0.004   and variable number 

of relays from R=1 and R=5 on the MSE learning curve of the LMS-BLM receiver. 

The results in Figure 2.12 shows that when the value of step size and the number of 

relays increases, the MSE decreases faster. The gradient step size for the LMS 

algorithm is very important since it determines the convergence of the algorithm and 

therefore the accuracy of the estimation errors.  

In the third scenario, the probability of error is found analytically and plotted in 

Figure 2.13. In this scenario, we propose different number of relays from R=1, 5 and 

8 and consider a range of SNR from -10dB to 10dB. The results show that the 

probability of error improves when the number of relays increases which proves the 

accuracy of the analytical results.  

 

Figure 2.9 : ROCs of the LMS-BLM algorithm with the upper & lower bounds. 
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Figure 2.10 : C-ROCs of the receiver with the upper & lower bounds. 

 

Figure 2.11 : ROC of the LMS-BLM Algorithm with the upper & lower bounds. 
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Figure 2.12 : MSE Learning curve with various step size (μ) and M-relays. 

 

Figure 2.13 : Probability of error of the LMS-BLM receiver. 
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2.3.6 Summary 

In this section, a novel LMS-BLM receiver was proposed and its performance was 

evaluated by considering a wireless network employing multiple relays strategy. The 

main contribution in this paper was to propose an effective tool that can recover the 

original transmitted signal from noise at the receiver. Simulation results were 

presented through three different scenarios. The first scenario assumed that little 

information is known on CSI and original transmitted signal at the receiver. The 

investigation was carried out on the probability of detection for different number of 

relays and compared with the upper and lower bounds of the probability of detection 

as given in [34]. The second scenario investigated the effects of variable step size   

and various number of relays on the MSE learning curve of the system. The results 

showed that the higher the number of active relays available in the network the 

higher the probability of detection. The higher the gradient step size, the higher the 

LMS algorithm’s descent speed. The third scenario investigated the probability of 

error and the results showed that the probability of error decreases as the number of 

relays increases. The results of the receiver operating characteristics (ROCs) and the 

MSE learning curve of the receiver showed that the proposed algorithm is effective. 

The proposed algorithm can be applied in the current or future generation wireless 

networks where cooperative communications with relays strategy is applicable. 
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3. ADAPTIVE CHANNEL ESTIMATION AND DATA DETECTION 

MODELS FOR COOPERATIVE WIRELESS NETWORKS IN NON 

STATIONARY ENVIRONMENT 

3.1 Introduction 

This chapter considers a typical wireless communication system consisting of a 

single source (S), multiple mobile relays (RM) and single mobile destination as 

depicted in Figure 3.1. An example of this scenario could be a cellular network with 

fixed base station communicating with mobile terminals and other mobile terminals 

acting as relay stations. Therefore, due to the mobility of mobile terminals, the 

channel gain between nodes in the network varies with time. 

R1

R2
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Ri
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D

1sf

2sf

sif
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h

1dg

2dg

idg

Mdg

 

Figure 3.1 : Network model with mobile terminals. 

In this model, the transmission is considered to be done in two phases and half 

duplex mode. In the first phase, the source broadcasts the signal to relays and 

destination. In the second phase, the source is silent and relays amplify or 
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demodulate the received signal from the source only and forward it to the 

destination. In this case, orthogonal transmission is required in order to transmit N 

symbols without interfering each other. This can be realized by using time division 

multiple access (TDMA) or frequency division multiple access (FDMA) [4]. 

In this chapter, we have two principal sections, in the first section, we assume that 

the CSI is available at the destination but the original transmitted signal is unknown 

due to noise and other interference signals. Therefore, the performance of the BLM 

detector is investigated in order to assess its ability to recover the original transmitted 

signal in time varying channels. 

In the second part, it is assumed that the CSI is not available at the destination and 

the unknown channels between communicating links is varying with time. Therefore, 

the performnace of the LMS-BLM receiver is investigated in cooperative wireless 

network with time varying channels. 
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3.2 Bayesian Linear Model (BLM) Detector in Cooperative Wireless Networks 

with Time Varying Channels 

3.2.1 Abstract 

Time-varying channels are the fundamental phenomenon that affect the performance 

of signal transmissions in wireless networks. Fading caused by channel variations 

can be classified as slow or fast fading depending on the mobility of nodes in the 

networks. Therefore, multiple relays are considered in this paper for their ability to 

create diversity environment that can directly mitigate the effects caused by 

multipath fadings in wireless networks. In this part, a wireless network with mobile 

terminals is investigated and it is assumed that the channel state information (CSI) is 

available at the destination, and original transmitted signal is corrupted by noise and 

other interferences. Therefore, the main contributions are based on implementing 

multiple amplify and forward (AF), and demodulate and forward (DaF) relays, and 

proposing the Bayesian linear model (BLM) detector for recovering the original 

transmitted signal at the receiver. The performance investigation is done through 

analytical and numerical analysis in terms of receiver operating characteristics 

(ROC), minimum mean square error (MSE) and bit error probability over 

n*Rayleigh fading channels. The results have shown that the proposed method is 

effective in recovering the original signal in time varying channels, the performance 

can be improved by increasing the number of relays in the network and the 

performance decreases when the Rayleigh cascading order increases. The proposed 

method can be applied in the current or future wireless networks (e.g., 4G/LTE 

wireless networks, 5G wireless networks, etc.) that allow multiple relays, use of high 

carrier frequencies and low symbol periods.  

3.2.2 Related work 

In literature, the problem of detection was initially discussed on energy detection of 

deterministic and random signals [29-34] without considering the time varying 

issues.  
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The investigation of time varying channels is studied in [51-59], by evaluating their 

effects and proposing solutions in wireless communication networks. In [51,52], they 

consider multiple AF relays based cooperative system with maximum ratio 

combining (MRC) at the destination and investigate the effects of both the mobile 

cooperating nodes speeds, and the receivers’ channel state information (CSI) 

estimation rates on the system outage performance. The fading links are considered 

to be frequency-flat time varying Rayleigh fading and modeled by a first-order 

autoregressive process (AR-1). They found that the results experience asymptotic 

floor due to time varying channels and these can be elimanated by a well designed 

fast tracking loops at the receiver. In [53], they investigate the effect of time varying 

channels on the bit error rate (BER) performance. In this study, the performance of 

different reception methods, including cooperative maximum likelihood detection, 

maximum likelihood detection, Alamouti’s receiver, zero forcing detection and 

decision feedback detection are also evaluated. They found that time varying nature 

contributes to the error flooring effect. In [54, 55], they study on dual-hop AF 

relaying over time varying Rayleigh fading channels with differential M-PSK 

modulation and non-coherent detection. A first order time series model is utilized to 

characterize the time varying nature of the cascaded channel in two symbol detection 

systems. The results in this paper have shown that error floor and performance 

degradation occur at high SNR and fast fading.  

In [56], the effect of mobile velocity on communications fading channels is 

investigated and an analytical model to evaluate it in a multipath fading channel is 

presented. A Markov process is used to characterize the effect of velocity which 

captures the correlated nature of the channel. Different schemes are considered such 

as closed loop power control, channel coding, and finite interleaving in order to 

evaluate their sensitivity on the mobile velocity. In [57], they investigate the 

performance degradation due to rapidly time varying channels in a repetition based 

coherent cooperative system. They found that the mobility of the source affects the 

system performance more than the mobility of the destination for both the AF and 

the demodulate and forward (DaF) relays. In this paper, they developed a ML 

detection rules for a variety of mobile scenarios. In [58], they investigate the 

performance of differential amplify and forward (D-AF) relaying for multi-node 

wireless communications over time varying Rayleigh fading channels. They use a 
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first order auto-regressive model to characterize the time varying nature of the 

channels. They develop and propose a new set of combining weights for signal 

detection at the destination and compare them with the conventional combining 

scheme through simulations. They also derive the pairwise probabilty (PEP) that is 

used to obtain the approximate total average BER. They found that the system 

performance is related to the autocorrelation of the direct and cascaded channels and 

an irreducible error floor exists at high signal to noise ratio (SNR) in time varying 

channels.  In [59], the modulation and detection for simple receivers in rapidly time 

varying channels are evaluated. They use first order autoregressive (AR-1) channel 

model and various performance metrics to evaluate the advantages of each 

modulation scheme. Due to the mobility of two communicating nodes, different 

research papers suggested n*Rayleigh fading channel, because the time varying 

channel between those nodes results in two or more independent Rayleigh fading 

process generated by independent group of scatterers around those nodes in motion 

[60, 61]. 

Therefore, based on the above literature review, new results are derived by proposing 

the Bayesian linear model (BLM) detector in multiple relays networks with time 

varying channels. The main contributions are described as follows: 

 Investigating on existing solutions and their limitations in literature about 

time varying channels in wireless communication networks. 

 Implementing the BLM detector in multiple AF and DaF relays based 

cooperative wireless networks with time varying channels.  

 Deriving the probabilities of detection and false alarm, bit error probability 

and minimum mean square error (MSE) of the system. 

 Evaluating the performance of the BLM detector in terms of receiver 

operating characteristics (ROCs), bit error probability and minimum MSE 

performance over n*Rayleigh fading channels. 

 Performing computer simulations, evaluating the performance of the 

proposed system through different scenarios and compare the obtained results 

with the existing ones in literature.  
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3.2.3 System and mathematical models 

As depicted in Figure 3.1, , ,ij ijh f g  are the channels between the source and 

destination, the source and relays, and the relays and destination, respectively, from 

i
th

 to j
th

 node. In this paper, we consider two kinds of channel fading distribution; the 

classical Rayleigh fading channel and the n*Rayleigh fading channel. In classical 

Rayleigh fading channel,  the probability density function (PDF) is given by [5, 62]: 

 
1

( ) exp
ij
f




 

 
  

 
 (3.1) 

then, the corresponding cumulative distribution function (CDF) is given by: 

 ( ) 1 exp
ij

F





 
   

 
 (3.2) 

The second channel fading distribution considered in this paper is n*Rayleigh fading 

channel with the PDF defined by [60]: 

  
1

1/( ) exp
( )

ij

nf
n

 



 
 





 


 (3.3) 

and its CDF is given by: 

    
( )

1/,
( )

ij

n
nF n

 




  





 


 (3.4) 

where   represents the instantaneous SNR of the channel between node i and node j 

(i.e., node denotes source, relay or destination stations) and its average is  , 

1/2 / n   , 0.6102* 0.4263n    and 0.6102* 0.4263n    are parameters 

defined in [60], / n   where n is the cascading order, (.)  is the gamma function 

and (.,.)  is the incomplete gamma function. 

As discussed before, the signal transmission is done in two phases. Therefore, the 

received signals at the destination and relays in both phases are represented as:  

 ( ) ( ) ( ) ( )sd s sdy k P h k u k w k   (3.5) 
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 ( ) ( ) ( ) ( )si s si siy k P f k u k w k   (3.6) 

 ( ) ( ) ( ) ( )AF

id i i id si idy k PG g k y k w k   (3.7) 

(3.7) can be simplified as: 

 ( ) ( ) ( ) ( )AF AF

id i id id idy k Pg k u k w k   (3.8) 

where sP  is the power of the source, iP  is the power of the relay, ( )u k  is the signal 

generated and encoded differentially by the source and transmitted to the destination 

and relays, ( )sdw k , ( )siw k  and ( )idw k  are zero mean circular symmetric complex 

Gaussian (ZMCSCG) noises with variance 0N , ( ) ( )AF

id i siu k G y k  indicates the 

generated signal at each relay, and iG  is the amplification gain with AF relaying 

strategy. 

In time varying channels, the amplification factor is related to the Jakes’ 

autocorrelation model. When the CSI is avalaible at the relay, the amplification 

factor is given by [15]: 

  
2

2

0

1

( )
i

si s

G
E f k P N




 
(3.9) 

where    
2 22( 1) 2( 1) 2( ) (1) 1k k

si si si siE f k a f a     . It is noted that the performance of 

the AF relay networks highly depends on the proper choice of the amplification gain. 

In DaF relaying scheme, the received signal from the source is detected by each relay 

according to symbol by symbol basis as represented by the following expression 

[15]: 

   *( ) ( )DaF

id si siu k Sgn f y k   (3.10) 

where, ( )DaF
idu k  is the generated signal at each relay by using DaF protocol, (.)Sgn  is 

the sign function and   indicates the real function. The (.)Sgn  function can be 

defined as: 
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1, 0,

( ) 0, 0,

1, 0

if x

Sgn x if x

if x




 
 

 (3.11) 

After demodulating/modulating the signal, each relay forwards the modulated signal 

to the destination and the received signal is given by: 

 ( ) ( ) ( )DaF DaF

id i id id idy k Pg u k w k   (3.12) 

As mentioned before, in this model, we consider fixed base station (BS), mobile 

stations (MSs) and other MSs that act as relay stations (RSs). Due to the mobility of 

nodes, the channel link between nodes in the network is modeled by first order 

autoregressive (AR-1) model process in order to characterize the time varying nature 

of links. The channel link between the source & destination, the source & relay, and 

the relay & destination are defined as follows [51, 59]: 

 2( ) ( 1) 1 ( )sd sd sdh k a h k a k     (3.13) 

 2( ) ( 1) 1 ( )si si si si sif k a f k a k     (3.14) 

 2( ) ( 1) 1 ( )id id id id idg k a g k a k     (3.15) 

where ( ), ( )sd sik k   and ( )id k  are varying components that obey circular 

symmetric complex Gaussian (ZMCSCG) noises processes with 

2 2(0, ), (0, )sd siCN CN   and 2(0, )idCN   , sda , sia  and ida  are the temporal correlation 

coefficients with values between 0 and 1. The temporal correlation is related to the 

channel variation rate, when 
ija =0, the channel realization becomes independent and 

identically distributed (i.i.d), and when ija =1, the channel becomes quasi static 

fading. The relationship between the Doppler shift and temporal correlation is 

governed by the approximation known on Jakes’ autocorrelation model as follows 

[56, 57]: 

 
*

0( ) ( ) (2 )ij ij ij d sa E h k h k J f T       (3.16) 
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where 0 (.)J  is the zero order Bessel function of the first kind, / /D cf f c     is 

the Doppler frequency due to the mobility of nodes. The Jakes’ autocorrelation of the 

source and destination, source and relays, and relays and destination links are 

respectively given by: 0(2 )sd d sa J f T , 0(2 )si i sa J f T  and 0 0(2 ) (2 )id i s d sa J f T J f T  . 

Assuming that the relays and destination accurately estimate the CSI and all channels 

estimates are the same despite some channel variation. Therefore, the channel gains 

knowledge can be described as circularly complex Gaussian random processes. 

Considering the transmission of the first symbol of the N
th

 length block, the channel 

gains knowledge '( ), ' ( ), ' ( )si idh k f k g k  can be described as follows [51, 52]: 

  1 2( 1) 2'( ) (1),(1 )k k
sd sd sdh k CN a h a  ~  (3.17) 

  ' 1 2( 1) 2( ) (1),(1 )k k
si si si si sif k CN a f a  ~  (3.18) 

  ' 1 2( 1) 2( ) (1),(1 )k k
id id id id idg k CN a g a  ~  (3.19) 

Due to time varying channels, the density knowledge statistics of the received signals 

for each link are given by: 

  1 2 2( 1) 2
0' ( ) ( ) (1), ( )(1 )k k

sd sd s sd sdy k CN u k a h Pu k a N  ~  (3.20) 

  1 2 2( 1) 2
0' ( ) ( ) (1), ( )(1 )k k

si si si s si siy k CN u k a f Pu k a N  ~  (3.21) 

  1 2 2( 1) 2
0' ( ) ( ) (1), ( )(1 )k k

id id id id i id id idy k CN u k a g Pu k a N  ~  (3.22) 

From equation (3.20), (3.21) and (3.22), the average SNR for the source and 

destination, source and relays, and relays and destination links are respectively given 

by: 
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2( 1) 2
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2( 1)

2( 1) 2
0(1 )

k
s id

id k
s id id

E a

E a N









 
 (3.25) 

The average SNR for each link is obtained by assuming that: 

2 2 2
[ (1) ] [ (1) ] [ (1) ] 1si idE h E f E g   , where [.]E  denotes the expectation operator 

and 1s iP P  . The received signals (3.5), (3.6) and (3.8) can be grouped in matrix 

form as follows: 

 

1 11 1 1

0 ... 0

0 ... 0

...... ... ...... ... ...

0 0 0

... ... ...... ... ......

0 0 ...

s sd
sd sd sd

dd d d

id id idi id

Md Md Md
M Md

E hy u w

E gy u w

y u wE g

y u wE g

 
      
      
      
             
      
      
                  

 (3.26) 

where idy  in (3.26) refers to the received signal with AF relays network or DaF 

relays network (i.e., { } { }AF DaF
id id idy y or y  and { } { }AF DaF

id id idu u or u ). Assuming that 

signals are transmitted orthogonally, therefore, the received signals at the destination 

can be represented by:  y Hu w , where y  indicates the column vector of the 

received signals with AF or DaF, H  denotes the channel matrix, u  is the column 

vector of the transmitted signal generated by the source and relays and w  refers to 

the noise vector received at the destination.   

3.2.4 Performance metrics analyses 

In this section, the performance analysis is done in terms of the receiver operating 

characteristics (ROC), bit error probability and minimum mean square error (MSE). 

3.2.4.1 Receiver operating characteristic (ROC) 

Theoretically, the ROC is defined as the detection performance of the receiver 

evaluated by plotting the curve of the probability of detection ( dP ) against the 

probability of false alarm ( faP ) which are given in (2.12) and (2.14), respectively. 
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The exact closed form expressions of the probabilities of detection and false alarm 

over AWGN are also given in (2.17) and (2.18), respectively.  

Analytically, assuming that the CSI is available at the receiver,by using the Bayesian 

linear model (BLM) detection approach the test statistic in time varying channels is 

given by [19]: 

 
1

0( ) ( )V T T T

u uT y N  y HC H HC H I y  (3.27) 

In (3.27), the covariance matrix 
2 2 2

1[ , ,..., ]u sd s sMC diag     and the noise 

variance matrix 0 0 0[ ,..., ]N diag N NI . Therefore, by substituting the covariance and 

noise variance values in (3.27), the test statistic in time varying channels is derived 

as: 

 

2 22 2
2 2

2 22 2
10 0

( )
M

sd sd id idV
sd id

isd sd id id

h h
T y y y

h N h N

 

 

 
 

  (3.28) 

According to the hypotheses H0 and H1, the test statistic is represented as follows: 
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 (3.29) 

where, 2
(0) 0N  , 2

(0) 0i N  , 2 2 2( 1) 2
(1) 0(1 )k

sd sd sda N      and 

2 2 2( 1) 2
(1) 0(1 )k
i id id ida N     . The expression (3.29) can be simplified as follows: 

 

2 2
0 (0) 2( ) (0) 2( )

1

2 2
1 (1) 2( ) (1) 2( )

1

: ( )

: ( )

M
V

sd i rd

i

M
V

sd i rd

i

H T y

H T y

   

   






 





 






 (3.30) 

where, 
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2 2( 1) 2
(1) (1 )k

sd sd sda     and 2 2( 1) 2
(1) (1 )k
i id id ida    . It is also shown that the 
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parameters 2
2( )sd  and 2

2( ) ( )rd i  are independent and identically distributed Chi-

squared random variables with two degree of freedom for the source & destination 

and the relay & destination respectively. The probability density functions (PDFs) of 

the test statistics in (3.30) are determined as follows: 
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 (3.31) 

The characteristic functions of ( )VT y according to the hypotheses H0 and H1 in 

0( ; )VP T H  and 1( ; )VP T H  are given by [32, 33]: 
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(3.32) 

 

where,  
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 ; substituting (3.32) in 

(3.31), the PDFs for dual hop (2 segments) relays network are derived as follows: 
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(3.33) is the inverse fourrier transformation, therefore the PDFs are derived as 

follows: 
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 (3.34) 

The probabilities of false alarm and detection of the BLM detector can be determined 

as follows: 
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and,  
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3.2.4.2 Minimum mean square error (MSE) and bit error probability (BEP) 

performance analysis 

The BER is a metric that describes the nature of the system behavior and the quality 

of the signal detected at the receiver. In our network model, the receiver is equipped 

with BLM detector, whereby the minimum mean square error (MMSE) estimate of 

the transmitted signal is given by [19]: 
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Using (3.26) and associated covariance and noise matrix values, (3.37) is derived as 

follows: 
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Then, this can be simplified as: 
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The mean square error can be derived as follows: 
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The bit error probability (BEP) can be evaluated by using the expression (2.38) given 

in [38]. 

Substituting (3.35) and (3.36) in (2.38), we obtain: 
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3.2.5 Numerical results 

The BLM detector is proposed in multiple relays cooperative wireless network with 

time varying channels. Simulation results are presented in order to investigate the 

performance of the BLM detector in terms of ROCs, bit error probability and 

minimum MSE. Six scenarios are considered; the first scenario investigates the 

receiver operating characteristics (ROCs) with different number of relays and various 

nodes speeds. The second scenario evaluates the ROCs of the BLM detector over 

n*Rayleigh fading channels. The third scenario compares the BER performance of 

the BLM detector with the one of the MRC detector. The fourth scenario investigates 

the effects of mobility of the relays only or destination only on the detection 

performance. The fifth scenario investigates the detection performance of the BLM 

detector in multiple AF and DaF relays networks. The sixth scenario evaluates the bit 

error probability (BEP) performance in multiple AF relays. 

During signal transmission, we consider two phases as discussed before: in the first 

phase, the source generates and modulates the signal in differential QPSK, where 

( ) ( ) ( 1)u k k u k  with 2 /( ) { , 0,.., 1}j k Nk e k N    which denotes the set of M-PSK 

symbols and (0) 1u   as initial reference symbol. The modulated signal is 

broadcasted to all relays and destination. During the second phase, the source is 

silent and each relay amplifies or demodulates the received signal from the source 

only and forwards it to the destination. The destination uses the BLM detector to 

combine and to compute the test statistic that is compared with the predetermined 
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threshold. The receiver decides the presence of the signal when the test statistic is 

greater than the threshold, otherwise it decides the absence of the signal.  

During simulations, different parameters are utilised such as the carrier frequency 

equals to 2GHz and the symbol period equals to 0.1 ms which represents the 

parameters used in the current wireless technologies. Various velocities are 

calculated in Table 3.1, in normal circumstances, the value of 75 km/h is assumed to 

be a typical vehicle speed as claimed in literature and high speeds are also common 

in vehicles and trains [55]. Depending on the node speed, the associated fading is 

classified as slow fading for very low speed node and fast fading for high speed node 

as decribed in Table 3.1. 

In Figure 3.2, the ROCs of the BLM detector are analyzed in multiple relays (R=2, 

R=3 and R=4) and various node speeds (i.e., 27 km/h and 108km/h) which 

correspond to slow fading and fast fading channels. The results show that the 

probability of detection increases when the number of relays increases. Figure 3.3 

depicts the detection performance of the BLM detector between the Rayleigh and 

2*Rayleigh fading channel (n=2). The results show that the system performance 

decreases as the number of cascading n increases and this can be compansated by 

providing high diversity gain in the network or increasing the number of relays.  

Table  3.1 : Doppler frequencies and associated nodes speeds. 

Type of fading

Slow fading

Fast fading

Slow fading

Fast fading

Fast fading

Fast fading32420.060.1600

400 0.1 0.04 2 216

10820.020.1200

100 0.1 0.01 2 54

2720.0050.150

0 0.1 0 2 0

( / )D

c

cf
km h

f
 ( )cf GHzD sf T( )sT ms( )Df Hz
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Figure 3.4 depicts the BER results between the BLM detector and the MRC detector 

in multiple relays (R=1, R=2 and R=4) with slow fading channels (i.e. 27km/h). The 

results have shown that the BER performance of the BLM detector is almost 

equivalent to the MRC detector given in [58], and the BER performance improves 

when the number of relays increases. The purpose of comparing the BLM detector 

with the MRC detector is described in literature whereby, the MRC detector has been 

proven to be an ideal combining technique and signal detector in wireless networks 

with multipath environment. Therefore, this comparison provides to us useful 

information about the performance of the BLM detector.  

Figure 3.5 represents the effect of the mobility of the relays and destination on the 

system performance. The results show that the mobility of relays affects the detection 

performance more than the mobility of destination, therefore, this should put into 

account when designing a wireless network. Figure 3.6 depicts the comparison of the 

detection performance of the BLM detector between the amplify and forward (AF) 

and demodulate and forward (DaF). The results show that the DaF outperforms the 

AF for higher number of relays, but for low number of relays AF performs better 

than DaF. Therefore, DaF requires  sufficient number of relays for the receiver to 

provide better performance. Figure 3.7 depicts the bit error probability performance 

of the BLM detector. The results show that the performance improves when the 

number of relays increases.  
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Figure 3.2 : ROC of the BLM detector for various nodes speeds and relays. 

 

Figure 3.3: ROCs of the BLM detector with n*Rayleigh fading channels. 
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Figure 3.4: BER analysis in M-Relays with BLM detector and MRC detector. 

 
 

Figure 3.5 : Effect of nodes speeds on the BLM detection performance. 

0 5 10 15 20 25 30
10

-4

10
-3

10
-2

10
-1

10
0

P(dB)

B
E

R

 

 

AF-MRC,R=2[54km/hr]

AF-MRC,R=2[108km/hr]

AF-MRC,R=2[216km/hr]

AF-MRC,R=2[324km/hr]

AF-BLM,R=2[54km/hr]

AF-BLM,R=2[108km/hr]

AF-BLM,R=2[216km/hr]

AF-BLM,R=2[324km/hr]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
fa

P
d

 

 

2R-BLM-[RS=27km/h, DS=27km/h]

2R-BLM-[RS=27km/h, DS=108km/h]

2R-BLM-[RS=108km/h, DS=27km/h]



 

83 
 

 

Figure 3.6: BLM detection performance in AF and DF relays with nodes speeds. 

 

Figure 3.7: BEP results of the BLM detector in AF M-relays with nodes speeds. 
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3.2.6 Summary 

The performance of the BLM detector in multiple relays with time varying channels 

was investigated. Six scenarios were considered; the first scenario investigated the 

receiver operating characteristics (ROCs) with various number of relays and nodes 

speeds (i.e., Figure 3.2). The findings showed that the high speed of nodes affects the 

system performance, particularly, when the network has few number of relays. The 

second scenario evaluated the ROCs over n*Rayleigh fading channels. The findings 

showed that the detection performance decreases when the Rayleigh cascading order 

n increases (i.e., Figure 3.3 for n=1 and n=2). The third scenario compared the BER 

performance of the BLM detector with the MRC detector. The findings showed that 

the BLM detector results are roughly closer to the ones of the MRC detector (i.e., 

Figure 3.4). The purpose of this comparison was that in literature, the MRC detector 

has proven to be an ideal combining technique and detector in wireless networks 

with multipath channels. Therefore, these results provided us with useful information 

about the effectiveness of the proposed method. The fourth scenario investigated the 

effects of the mobility of relays only or destination only on the detection 

performance (i.e., Figure 3.5). The results showed that the mobility of relays affects 

the receiver detection performance more than the mobility of the destination. 

Therefore, the speeds of relays must be put into account when designing a wireless 

network with multiple relays. The fifth scenario investigated the detection 

performance of the BLM detector in multiple AF and DaF relays network (i.e., 

Figure 3.6). The results showed that DaF outperformed AF for higher number of 

relays and for low number of relays AF performed better than DaF. The sixth 

scenario evaluated the bit error probability (BEP) performance in multiple AF relays 

(i.e., Figure 3.7). The results showed that it is beneficial to increase the number of 

relays in the network in order to minimise the error rates at the receiver. The 

simulation parameters utilised in this study and the obtained results demonstrated 

that the BLM detector can be utilised in the current and future wireless networks that 

use carrier frequency in the range of 2 Ghz and multiple relays in the network. 
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3.3 Joint LMS-BLM Receiver for Cooperative Wireless Networks with Time 

Varying Channels 

3.3.1 Abstract  

In non stationary environment, transmitted signals are mostly challenged by 

multipath time varying channels. In most of studies, diversity techniques have been 

proven to mitigate the effects of channel impairments in wireless networks including 

fading caused by time varying channels. In this study, multiple relays are considered 

in order to create diversity environment that can compensate the loss of signal during 

transmission. Futhermore, it is assumed that the dynamic channel state information 

(CSI) and original transmitted signal are unknown at the receiver; therefore, the main 

contributions are based on proposing the joint least mean square (LMS) algorithm 

and Bayesian linear model (BLM) detector for the purpose of estimating the channel 

and evaluating its performance in recovering the original transmitted signal in time 

varying channels. Analytical and numerical analyses on receiver operating 

characteristics (ROC), mean square errors (MSE) learning curves, minimum mean 

square error (MSE) and bit error probability are presented. The results have shown 

that the proposed algorithm is effective in tracking the time varying channels and its 

performance can be improved by increasing the number of relays in the network, and 

choosing the appropriate step size for the stability and convergence of the algorithm. 

The proposed algorithm can be applied in the current and future wireless networks 

that use carrier frequencies in the range of 2GHz and multiple relays.    

3.3.2 Related work 

In literature, different studies have investigated the time varying channels and their 

effects in wireless networks [51, 52, 55-59, 63]. Their findings have shown that most 

of the results experience error floors due to time varying channels and which can be 

eliminated by well designed fast tracking loops at the receivers. Although channel 

estimation and data detection are known from the past years in different studies, they 

are still largely unexplored particulary in wireless networks with time varying 

channels. The most common studies on data detection only focus on signal energy 

detection [29-36, 38] and channel estimation using common estimation methods [41, 

42].  
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In cooperative diversity systems, [46] proposed a new adaptive algorithm for 

estimating the channel between the relay and destination in DF relay networks when 

the presence of an input training sequence is probabilistic and obeys Bernoulli 

random variable. The proposed algorithm combines the generalized likelihood ratio 

test (GLRT) detector and the classical least mean square (LMS) channel estimator. 

The effect of autocorrelation channels and channel estimation based on linear 

minimum mean square error (LMMSE) estimator are evaluated in [63, 64] for a wide 

range of scenarios, including different gain and mobility conditions of relays. In [65], 

they investigate the channel estimation in time varying multiple relay cooperative 

network. In [66], data detection and channel estimation are investigated in OFDM-

based AF cooperative vehicular communication system with multiple relays. In [67], 

the performance of adaptive gain multiple relays AF cooperative system with both 

conventional relaying (CR) and best relay selection (BR) scheme is investigated. 

They found that the mobility of source and the destination affects the system 

performance, and the BR provides higher asymptotic error limit than CR scheme. In 

[68], AF protocol in time varying Rice fading are considered and the MAP 

estimation is derived in time varying channels is derived. In [69], an autoregressive 

model for the combined AF time varying relay channel is presented and then a causal 

iterative channel estimation method based on Kalman filter is derived for time 

varying channels. The findings have shown that the mobility of relays has a 

significant impact on the BER performance and has to be considered in practical 

system design. In [70], AF wireless relay networks are considered; then, an iterative 

channel estimation and data detection based on interference cancellation (PIC) at the 

receiver is proposed. In [71-75], stationarity and non stationarity of the LMS 

algorithm are investigated for different scenarios of wireless network systems. 

Based on the above literature review, none of the works reported has studied the 

performance of the LMS-BLM receiver in multiple relays network with time varying 

channels. In addition, most of the studies assume perfect CSI at the receiver but in 

practical conditions, channel estimation schemes are always indispensable in 

wireless networks. Therefore, the main contributions in this section are based on 

considering no CSI at the receiver and performing the following tasks: 

 Investigating the LMS-BLM receiver in multiple AF relays based cooperative 

wireless networks with time varying channels.  
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 Deriving and evaluating the performance of the LMS-BLM receiver in terms 

of receiver operating characteristics (ROCs), MSE learning curve, bit error 

probability and MSE performance in multiple relays with time varying 

channels. 

 Performing computer simulations, results analysis based on the derived 

performance metrics and evaluating the effect of node velocities and step size 

parameter on the system performance. 

3.3.3 System model  

As represented the network model depicted in Figure 3.1, the channel estimation is 

realized between the source and destination, and the relay and destination. It is also 

assumed that the relay can forwards the received signal from the source only and do 

not add additional traffic on the transmitted signal. 

In this system model, pilot assisted estimation is considered and there is no any 

assumption on the channel distribution characteristics instead we consider theoretic 

channel during implementation. Two phases of data transmission are considered; in 

the first phase the source broadcasts the signal to the destination and to relays in the 

network. In the second phase, the source is silent, relays amplify and forward the 

signal to the destination. The transmitted signals obey orthogonal transmission which 

can be achieved by using time division multiple access (TDMA) or frequency 

division multiple access (FDMA) [51, 52]. Therefore, the destination/receiver is 

equipped with LMS-BLM receiver for channel estimation and data detection which 

are described in the following sections.  

In Figure 3.8, the LMS-BLM receiver scheme is presented; two main parts are 

shown: in the first part, the LMS algorithm is used to estimate the unknown channel 

0 ( )kh  and the second part comprises of combiner and data detector using the BLM 

detection approach. The receiver is composed by N tap transversal adaptive filter, the 

input sequence  ( ) ( ), ( 1),..., ( 1)
T

k u k u k u k N   u  is considered to be known 

stationary input vector, the coefficients 

0 0( ) 0(1 ) 0( ) 0( )( ) ( ), ( ),..., ,..., ( )
T

sd d id Mdk h k h k h h k   h  are considered to be unknown time 

varying channels, ( )w k  is unknown independent and identically distributed (i.i.d) 

observation noise which is assumed to be white, ( )d k  is the desired output signal 
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and ( )y k  is the observation with time varying model. In these models k  denotes the 

time index and N indicates the data length.  

LMS 

Algorithm

+ w(k)

+
d(k)

+

-

e(k)

BLM 

Detector

y(k)-

( )sdu k( )u k 1 ( )du k ( )idu k ( )Mdu k

0( ) ( )sdh k 0(1 ) ( )dh k 0( ) ( )idh k 0( ) ( )Mdh k

 

Figure 3.8 : Block diagram representing the LMS- BLM Receiver. 

3.3.4 Mathematical models 

In real world application, it is obvious to consider a non stationary environment in 

which the transmitters and/or the receivers are assumed to have a certain motion. In 

literature, the cause of non stationarity can be classified in two ways: the first cause 

is when the source supplying the desired response is both noisy and time varying. In 

this case, the correlation matrix of the tap inputs of the adaptive filtering algorithm 

remains fixed whereas the crosscorrelation vector between the tap inputs and the 

desired response is assumed to be time varying form. The second cause arises when 

the stochastic source of tap inputs applied to the algorithm is non stationary. In this 

case, both the correlation matrix of the tap inputs and their cross correlation vectors 

with the desired response assume time varying forms. 

In this analysis, we consider pilot assisted estimation and we do not put any 

assumption on the channel distribution characteristics instead we consider theoretic 

channel during implementation. We also assume channel identification problem for 

identifying the dynamic channel system, whereby the training signal ( )ku  is sent to 
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the unknown time varying channel 0 ( )kh  which is considered as finite impulse 

response (FIR) filter with unknown length P. Since the unknown channel 0 ( )kh  is 

considered to be time varying, without loss of generality, it is modeled by first order 

Markovian non stationary as follows [51, 74]: 

 2
0 0( ) ( 1) 1 ( )k k k     h h  (3.42) 

where   denotes a temporal parameter approximated by Jakes’ autocorrelation 

model as defined before as 0(2 )d sJ f T   and 2( ) ~ (0, )k N   is a non stationary 

unknown noise with zero mean, independent and identically distributed (i.i.d) 

process independent of ( )ku  and ( )w k .  

Assuming that the receiver accurately estimated the unknown channel 0 ( )kh , 

therefore, the channel knowledge of (3.42) is given by: 

 
' 1 2( 1) 2
0 0( ) ~ ( (1),(1 ) )k kk    Nh h  (3.43) 

The observation is considered to be time varying with the following expression [42, 

43]: 

 0( ) ( ) ( ) ( )y k k k w k  h u  (3.44) 

where ( )w k  is unknown i.i.d observation noise which assumed to be white with 

density knowledge ( 0( ) ~ (0, )w k NN ). The density knowledge of the observation is 

given by: 

 
1 2 2( 1) 2
0 0'( ) ~ ( ( ) (1), ( )(1 ) )k kk N k k N    y u h u  (3.45) 

Generally, the estimation in time varying channels can be a challenging task due to 

random parameters and system’s time evolution experiences asymptotic floor which 

can be eliminated by well designed tracking loops at the receivers [51,76]. Therefore, 

the LMS algorithm is proposed for estimating an unknown dynamic channel. The 

algorithm  computes the update equation as follows: 
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 (3.46) 

The channel estimate is updated according to the temporal autocorrelation parameter 

  and the constant step size parameter  . The step size   must be choosen in the 

interval of max0 2 /   , where max  is the maximum eigenvalue of the input 

signal autocorrelation matrix R . In order to ensure the stability of the LMS 

algorithm, the max  is upper bounded, and   is best choosen in the interval of 

0 1/ [ ]tr  R , where [.]tr  denotes the trace operator. Note that the adaptation is 

only happened when the detector decides the presence of the signal according to the 

hypothesis H1, otherwise, the detector decides the absence of the signal according to 

the hypothesis H0 described as follows: 

 
0

1 0

: ( ) ( )

: ( ) ( ) ( ) ( )

H y k w k

H y k k k w k




  u h
 (3.47) 

3.3.4.1 Receiver operating characteristic (ROC) 

Theoretically, the ROC is defined as the detection performance of the receiver 

evaluated by plotting the curve of the probability of detection ( dP ) against the 

probability of false alarm ( faP ) which are given in (2.12) and (2.14), respectively. 

The exact closed form expressions of the probabilities of detection and false alarm 

over AWGN are  given in (2.17) and (2.18), respectively. 

The detection decision is made by comparing the test statistic and the predetermined 

threshold    and the detector decides the presence of the signal when the test 

statistic is greater than the threshold   ( ( )T y  ). Therefore, the observation signal 

received at the destination from the source and each relay in the network (i.e., Figure 

3.8) can be written as follows: 
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where ( ) *id i siu k G y , the amplification gain is 2 1/2
0( ) 0{ / ( [| | ] }i i si sG E E h E N  ,  

iE denotes the energy of each relay, sE  is the energy of the source and 

0( )( ) ( ) ( )si siy u k h k w k   is the received signal at the relay. Assuming that the 

observation (3.48) can be written in linear form as  y Hu w , the BLM detector 

computes the test statistic using the following expression [19]: 

 1
0

ˆ ˆ ˆ ˆ ˆ( ) ( )V T T T
u uT y N  y HC H HC H I y  (3.49) 

where the covariance matrix 2 2 2

0 1[ , ,..., ]u idiag   C  and the noise variance

0 0 0[ ,..., ]N diag N NI . The closed form expression of the test statistic is given by: 
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According to the test hypotheses, the test statistic is determined as follows: 
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where 
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identically distributed Chi-squared random variables with one degree of freedom for 

the source and destination, and the relay and destination respectively. 

The probability density functions of the test statistic ˆ( )T y is determined as follows 

[19]: 
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The characteristic functions of ˆ ( )VT y according to the hypotheses H0 and H1 in 

0
ˆ( ; )P T H  and 1

ˆ( ; )P T H  are given by: 
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where,  
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introducing (3.54) in (3.53), the PDFs for dual hop (2 segments) relays network are 

derived as follows: 
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 (3.55) represents the inverse fourrier transform and its solution is derived as follows 

[48]. 
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Using solutions found in (3.56) and (3.57), the probabilities of false alarm and 

detection are respectively derived by using [49, Sec.5.3.Eq. 21]:  
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where (.,.)  is the upper incomplete Gamma function.  

3.3.4.2 Minimum mean square error (MSE) and bit error probability (BEP) 

performance analysis 

In network model of Figure 3.1, the receiver is equipped with BLM detector, 

whereby the minimum mean square error (MMSE) estimate of the transmitted signal 

is given by [19]: 

 1

0
ˆ ˆ ˆ ˆ ˆˆ ( )V T T

u u N  s HC H HC H I y  (3.60) 

Using (3.48), covariance and noise matrix values, (3.60) is derived as follows: 
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The mean square error can be derived as follows: 
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The expression (3.62) denotes the Bayesian MSE of the system. 

The bit error probability (BEP) for the LMS-BLM receiver can be determined by 

using the formula given in (2.36) and [38]. Substituting  (3.58) and (3.59) into (2.36), 

we obtain: 
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3.3.5 Numerical results 

In this study, simulation results are presented in order to investigate the performance 

of the LMS-BLM receiver in multiple relays with time varying channels. During 

simulations, the theoretical channel h  is chosen such that its length corresponds to 

the order value of the FIR filter with number of steps equal to 10. Two phases are 

considered during transmission: in the first phase, the signal is generated randomly 

and transmitted to all relays and destination in the network. In the second phase, the 

source is silent and each relay amplifies the received signal from the source only and 

forwards it to the destination. The amplification at the relay is done by only 

multiplying the received signal with the amplification gain. At the destination, the 

receiver has to estimate the channel and to recover the original transmitted signal 

from the source by using the LMS-BLM receiver. The LMS agorithm is functioning 

such a way that the channel weights are updated only when the BLM detector 

decides the presence of the signal, otherwise the channel estimates remain 

unchanged.  

In this analysis, four scenarios are considered: in the first scenario, the receiver 

operating characteristics (ROC) and MSE learning curve are evaluated for different 

number of relays and same nodes mobility. In the second scenario, the ROC and 
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MSE learning curve are investigated in multiple relays and various velocities of 

relays and destination. In the third scenario, the BER is evaluated in multiple relays 

for different step size (μ), number of relays and nodes’ mobility. The fourth scenario 

investigates the effects of mobility of relay only, destination only or relay and 

destination on the BER of the system.  

In Figure 3.9, the ROC is investigated by considering multiple AF relays (i.e. R=2, 

R=3 and R=4), relays and destination are moving at the same speed of 108 km/h. In 

this simulation, we consider a system with carrier frequency of 2cf GHz , symbol 

period of 0.1sT ms , doppler frequency of 200Df Hz  and the normalized doppler 

frequency of 0.02D sf T  . The findings have shown that the probability of detection 

improves when the number of relays increases and the direct link presents less 

detection performance compared to other links. In Figure 3.10, the MSE learning 

curve is investigated with various number of relays in fast fading channels. The 

findings show that the MSE improves when the number of relays is increased. 

In Figure 3.11 and Figure 3.12, the ROC and MSE learning curve are investigated in 

multiple relays with various velocities of relays and destination (i.e., 0km/h, 27km/h, 

54km/h, 108km/h, 216km/h and 324km/h). The results show that the high node speed 

affects the probability of detection and exhibits the high MSE  at the receiver. This 

can be improved by increasing the number of relays in the network and using 

appropriate receiver algorithm that can detect the signal efficiently. 

In Figure 3.13, the bit error probability is evaluated in multiple relays by varying the 

step size (i.e., mu=0.002, 0.004 and 0.008) that controls the convergence of the LMS 

algorithm, and node speed of 108km/h. The results show that the BER decreases 

quikly when the value of the step size increases. Similarly, when the number of 

relays increases, the BER improves as shown in Figure 3.13. The nodes speed also 

affects the BER performance and this can be compansated by increasing the number 

of relays as shown the results in Figure 3.14. In Figure 3.15, the effect of nodes 

speed is investigated for relay speed only, destination speed only, and when the relay 

and destination have the same speed. The findings showed that the mobility of relays 

affects the BER performance much more than the mobility of destination and the 

mobility of both relays and destination affects the BER performance much more than 

the mobility of relays only or destination only. 
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Figure 3.9 : ROC of the receiver with M-relays in fast fading channels. 

 

Figure 3.10 : MSE learning curve of the LMS-BLM Receiver with various relays. 
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Figure 3.11 : ROC of the LMS-BLM Receiver with various nodes speeds. 

 

Figure 3.12 : MSE learning curve of the LMS-BLM Receiver with nodes speeds.  
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Figure 3.13 : BER of the LMS-BLM Receiver with various step size (μ). 

 

Figure 3.14 : BER for the LMS-BLM Receiver with nodes speeds and M-relays. 
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Figure 3.15 : Effect of nodes’ mobilities on the LMS-BLM Receiver performance.  
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choosen in the specified range in order to ensure the stability and good convergence 

of the algorithm. 

In the fourth scenario, the effects of mobility of relays only or mobility of destination 

only were evaluated (i.e., Figure 3.15). The findings showed that the mobility of 

relays affects the BER performance more than the mobility of destination. Therefore, 

the mobility of relays must be put into account when designing a wireless network.  

In this study, different scenarios and simulation parameters have proven that the 

proposed receiver can be applied in the current and future wireless networks where 

carrier frequencies are in the range of 2GHz and networks that can allow the use of 

multiple relays.  
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4. CONCLUSIONS 

In this thesis, theoretical and numerical findings on proposed models of channel 

estimation and data detection for cooperative wireless communications were 

presented. The effects of channel impairments (i.e., time varying multipath fading, 

shadowing, noise, etc.) on wireless communication networks were discussed. 

Consequently, relaying networks based cooperative wireless communications were 

assessed due to their role in providing diversity gain in wireless networks that can 

mitigate directly the effects caused by multipath fadings. Numerous advantages of 

relaying cooperations in wireless networks were pointed out such as the coverage 

extension, throughput enhancement, reduction of power consumption at the 

transmitter as well as the receiver, low implementation complexity and costs. 

Relaying cooperations also found various applications in wireless systems such as 

3GPPLTE, WiMAX, WLANs, vehicle to vehicle communications and wireless 

sensor networks. Signal processing protocols for relaying cooperations were also 

considered by focusing on common protocols in literature such as amplify and 

forward (AF) protocol, and decode and forward (DF) protocol.   

Even though, relaying cooperation can address the problem of channel impairments, 

it was revealed that the receiver would still be challenged by the unknown channel 

state information (CSI) and unknown transmitted signal. Therefore, practical models 

related to adaptive channel estimation and data detection in cooperative wireless 

communications were investigated. Two main schemes based on Bayesian linear 

model (BLM) detector and least mean square (LMS) algorithm were proposed and 

implemented in multiple relays in order to address the problem of signal recovery at 

the reicever. The proposed algorithms presented some advantages including linear 

computations, low implementation complexity and feasibility.  

Specifically, the main contributions were mainly examined into two chapters (i.e., 

Chapter 2 and Chapter 3); in chapter 2, a network model operating in stationary 

environment was proposed and divided in two main parts as follows: 

In the first part, a wireless network with AF multiple relays was considered and it 

was assumed that the channel state information (CSI) was available at the 
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destination. Therefore, the BLM detector was proposed for signal recovery at the 

destination. The results of receiver operating characteristics (ROC) of the BLM 

detector were compared with the energy detector combined with the maximum ratio 

combining (MRC) and found that the proposed method provides higher detection 

performance in all scenarios considered (i.e., Figure 2.3).  The effects of the number 

of ralays on receiver performance were also evaluated and found that the 

performance improved proportionally with the number of relays in the network (i.e., 

Figure 2.5 and Figure 2.7). In addition, the effect of relay position from the source 

and destination was investigated and it was found that the system performance 

improved when the relay was closer to the source (i.e., Figure 2.4 and Figure 2.6). 

Therefore, wireless network designers should consider the relays’ positions for 

enhancing the system performance. 

In the second part, a wireless network with AF multiple relays was considered and it 

was assumed that the CSI was not available at the destination. In this case, the joint 

LMS-BLM algorithm was proposed in order to estimate the channel and recover the 

original signal from noisy signals. Different performance metrics were evaluated 

including receiver operating characteristics (ROCs), complementary ROCs, 

probability of error and MSE learning curve. The results of the ROCs and C-ROCs 

showed that the performance improved as the number of relays increased in the 

network (i.e., Figure 2.9, Figure 2.10 and Figure 2.11). The minimum MSE could 

also be achieved by choosing the appropriate step size μ that controls the 

convergence and stability of the algorithm (i.e., Figure 2.12). The results of the error 

probability also showed that it improved proportionally with the number of relays 

(i.e., Figure 2.13).   

The third chapter considered a wireless network model in non stationary 

environments. In this chapter, a typical wireless network that comprised of fixed base 

station (BS), multiple mobile stations (MSs) acted as relays and single mobile 

destination that could move at any direction was considered. In this chapter, two 

main parts were also considered as follows:  

The first part of chapter 3 assumed that the CSI was available at the destination and 

the performance of the BLM detector in multiple AF and DaF relays with time 

varying channels was evaluated. In this part, the generated signal at the source was 

encoded differentially and transmitted to the relays and destination. At the receiver, 
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differential decoder with BLM detector was utilised in order to recover efficiently 

the transmitted signal. The probability of detection and BER performance metrics 

were evaluated in multiple relays with different node speeds and different number of 

relays. The obtained results were compared with differential MRC detector and 

showed that the proposed BLM detector was effective and could detect efficiently 

the transmitted signal in multiple relays with time varying channels (i.e., Figure 3.4). 

In addition, the effects of nodes speeds were evaluated and found that the high speed 

of relays affected the system performance much more than the speed of destination 

(i.e., Figure 3.5). The high speed of nodes could also increase the cascading order of 

Rayleigh channel model, which could decrease the detection performance (i.e., 

Figure 3.3). Furthermore, the AF protocol and DaF protocol were compared and 

found that the DaF outperformed the AF for higher number of relays and AF was 

better for low number of relays (i.e., Figure 3.6). The effects of number of relays 

with same speeds were also evaluated and found that the higher number of relays 

could compansate the loss of signals due to high speeds (i.e., Figure 3.7).    

The second part of chapter 3 assumed that the CSI was not available at the 

destination and the performance of the LMS-BLM receiver in multiple AF relays 

with time varying channels was evaluated. In this part, the LMS algorithm estimated 

the unknown dynamic channel while the BLM detector recovered the transmitted 

signal from noisy signals. The joint algorithm was working in a way that the tap 

weights of the channels were only updated when the BLM detector decided the 

presence of the signal, otherwise, the channel remained invariable until the next step. 

The performance analysis considered different nodes speeds, different number of 

relays and different steep sizes μ of the LMS algorithm in order to evaluate the 

effectiveness of the proposed algorithm. Different performance metrics were 

considered in order to evaluate the performance of the proposed algorithm such as 

ROCs, MSE learning curve, and bit error probability performance. The findings 

showed that the proposed algorithm was effective, with the ability to estimate the 

channel and recover the transmitted signal in time varying channels (i.e., Figure 3.9, 

Figure 3.10). The effects of nodes speeds were also evaluated and found that the 

speeds affected the system performance in various scenarios considered (i.e.,Figure 

3.11, Figure 3.12, Figure 3.14, and Figure 3.15). Furthermore, the network 

performance could be improved by increasing the number of relays in the networks 
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and choosing the appropriate step size μ  within the appropriate range for the LMS 

algorithm (i.e., Figure 3.13). Various numerical parameters utilized in this thesis 

have proven that the proposed methods can be applied in the current and future 

wireless networks that can support carrier frequencies classified in the range of 

2GHz and can employ multiple relays. 

In summary, this thesis proposed and derived new models based on Bayesian linear 

model (BLM) detector and least mean square (LMS) algorithm and implemented 

them in cooperative wireless communications. The performance of the proposed 

methods was evaluated in both stationary and non stationary environments. It is 

recommended that network designer should assess the position of relays in stationary 

environment and the speed of relays in non stationary environment so as to obtain the 

desired signal at the receiver. Even though different performance parameters and 

assumptions were considered and investigated in this thesis, some other important 

metrics can be considered in future works as follows: 

 Investigating the performance of the LMS-BLM receiver in relays networks  

with the application of test bed or emulation models. 

 Assessing the performance of the LMS-BLM receiver in relays networks by 

using other relaying protocols such as detect and forward protocol or 

compress and forward protocol. 

 Exploring and deriving other performance metrics such as ergodic capacity, 

bit error rate (BER), outage probability and power allocation in relays 

networks with the LMS-BLM receiver. 

 Examining the detection performance of the BLM detector or the LMS-

BLM receiver over various channel fading distribution such as Rician, 

Nakagami-m, etc. 

 Comparing the LMS-BLM receiver with other existing schemes such as 

zero-forcing equalization, maximum likelihood sequential estimation, etc. 

 Mobility and link states prediction models for cooperative wireless 

networks with multiple relays. 
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