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PREDICTIVE AND ADAPTIVE CHANNEL ESTIMATION MODELS FOR
COOPERATIVE WIRELESS COMMUNICATIONS

SUMMARY

Multipath fading, path loss, shadowing and noise are the most commonly known
channel impairments in wireless communication networks. Therefore, over the last
decades, different methods and techniques have been investigated in order to
improve the wireless channels and to recover the original transmitted signal at the
receiver. Among them, multiple input multiple output (MIMO) systems have been
proposed as an efficient technique that use multiple antennas at the transmitting and
receiving stations to create diversity environment that can directly mitigate the
effects of fading, increases the network’s capacity and provides a more robust
system.

Although, MIMO systems can provide significant diversity gain in wireless
communication networks, the use of multiple antennas is not quite appropriate for
wireless terminals due to the size of equipments, computational capacity and power
consumption. Therefore, cooperative communications emerged as an alternative
technique that can use single antenna at the transmitting and receiving stations.
Cooperative communications use neighboring nodes to form virtual antenna array
which provides space diversity gain equivalent to MIMO systems. Cooperative
communications are cost effective, useful and the best technology of future
generation wireless networks in terms of reducing the effect of multipath fading,
extension of coverage, less infrastructure, low power consumption, and preserving
the channel bandwidth.

Cooperative communication techniques have different schemes depending on the
type of network. The cooperation can be achieved between users or mobile stations
(MSs), base stations (BSs) or multicell processing (MCP) and between BSs and MSs
through dedicated relay stations (RSs) or MSs adopted as RSs for other MSs.
Cooperation with relay stations have highly been applied in literature due to their
numerous advantages including extension of network coverage, reliable
transmission, throughput enhancement, cost effective and easy implementation.
Relaying cooperations use different protocols for signal processing and the most
common protocols are amplify and forward (AF) and decode and forward (DF). AF
is a simple cooperative signaling method that is used to amplify and to retransmit the
noisy version of the original signal to the destination. Although noise is amplified,
the destination receives independent faded versions of the signal that can help to
make best decisions on the data detection. AF has gained too much attention in
research and has been very useful in understanding the concept of cooperative
communications. DF scheme is considered as digital repeater which decodes and re-
encodes the received signals prior to retransmission. Although, it can provide higher
performance with respect to noise, however, end to end delay constraints and
feasibility have been a question in real world applications.

In this thesis, cooperative communication network with multiple relays is considered
in order to handle the problem of channel impairments and to improve the signal
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quality received in wireless networks. Furthermore, due to the nature of wireless
communication networks, the receiver is always challenged by unknown channel
state information (CSI) and unknown transmitted signal. Therefore, signal processing
methods and techniques are indispensable at the receiver in order to estimate the
channel between the source and the destination, and to recover efficiently the original
transmitted signal.

In this way, Bayesian linear model (BLM) detector and least mean square (LMS)
algorithm are proposed for their unique advantages of being efficient and appropriate
for multipath wireless networks. BLM detector is based on computing the test
statistic and comparing it with the predetermined threshold in order to decide on the
presence or absence of the signal of interest. The presence of the signal is decided
when the test statistic is greater than the threshold. The main advantages of the BLM
detector is its linear computation, low implementation complexity and it is
appropriate for multipath channel models. The LMS algorithm is a linear adaptive
filter that is usually used to iteratively estimate the unknown parameters in dynamic
or non dynamic environment. The LMS algorithm has attracted too much attention
among adaptive filters due to its low computation complexity, feasibility and best
performance results.

In this thesis, the original contributions are divided in two chapters (i.e., Chapter 2
and Chapter 3). In chapter 2, a cooperative wireless network with multiple relays
operating in stationary environment is considered and two main assumptions are put
forth; the first assumption states that the channel state information (CSI) is available
at the destination and the original transmitted signal is corrupted by noise and other
unwanted signals. Therefore, the BLM detector is proposed, derived and
implemented in multiple relays network for the purpose of recovering efficiently the
transmitted signal. Hence, presenting a wireless network structure that can resist
against wireless channel impairments. In this part; single source, multiple AF relays,
and single destination are considered. The effects of relays positions from the source
and destination are evaluated. Different performance metrics are assessed such as the
receiver operating characteristics (ROCs), bit error probability and minimum mean
square error (MSE). Extensive numerical results show that the detection performance
of the BLM detector is superior compared to existing energy detection methods and
is proportional with the number of relays in the network, and the relay positioned far
from the source affects the system performance more than the relay located closer to
the destination.

The second assumption states that the channel state information (CSI) is not available
at the destination, and the transmitted signal is corrupted by noise and could not be
known by the receiver. Therefore, a novel LMS-BLM algorithm is proposed, derived
and implemented in cooperative wireless network for the purpose of channel
estimation and signal recovery at the destination. The algorithm is functionning in
such a way that the channel tap weights are only updated when the BLM detector
decides the presence of the signal otherwise the CSI remains unchanged. The
wireless network considered in this part is comprised of single source, multiple AF
relays and single destination, and the mode of transmission is half duplex signal
transmission. Different performance metrics are assessed such as receiver operating
characteristics (ROCs), complementary ROCs, average probability of error and mean
square error (MSE) learning curve. Mathematical and numerical analysis show that
the proposed algorithm is effective in providing satisfied detection performance and
low mean square error (MSE) at the receiver, and the receiver is highly controled by

xxil



the gradient step size for the best convergence and stability of the algorithm. It is also
observed that the position of the relays from the source should be reduced in order to
improve the system performance.

In chapter 3, a cooperative wireless network with multiple relays operating in non
stationary environment is considered. In this chapter, the main issue is multipath time
varying channels. Time varying channels are severe and challenging in wireless
networks which requires robust methods and techniques in order to ensure
sustainable system performance. This chapter is also divided in two parts: The first
part assumes that the channel state information (CSI) is available at the destination
and the performance of the BLM detector in multiple relays with time varying
channels is investigated. Different performance metrics are evaluated such as
receiver operating characteristics (ROCs), minimum mean square error (MSE) and
bit error probability (BEP) in various nodes speeds and different number of relays.
The results show that the BLM detector is effective and its performance decreases at
high speed of relays or destination which can be improved by increasing the number
of relays in the network. The results also show that the system performance
decreases when the cascading order increases.

In the second part of chapter 3, it is also considered that the CSI is not available at
the destination and the evaluation of performance of the LMS-BLM receiver in
multiple relays with time varying channels is carried out. During simulations,
different performance metrics are evaluated such as the ROCs, MSE learning curve
and bit error probability. The results show that the joint LMS-BLM receiver provides
superior performance and this can be affected by the high speed of nodes and
instability of the algorithm. Therefore, it is recommended to choose the appropriate
step size value in order to control the convergence and stability of the receiver, and
to ensure that the number of relays is sufficient so that the performance is
sustainable. The findings also show that the high speed of relays affects the system
performance more than the speed of the destination. Therefore, the speed of relays
should be put into account when designing the wireless networks.

The findings of this reseach work have proven that the joint LMS-BLM receiver can
provide higher detection performance and it is effective for signal recovery in
wireless networks for both stationary and non stationary environments. Its
performance can be particularly improved in networks with multiple relays.
Numerical analysis also confirmed that the proposed algorithm can be applied in the
current and future wireless networks with carrier frequencies in the range of 2GHZ
and low symbol periods of signal transmissions.
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ISBIRLIKLI KABLOSUZ HABERLESME ICiIN ONGORUSEL VE ADAPTIF
KANAL KESTIRIM MODELLERI

OZET

Kablosuz haberlesme aglarinda ¢ok yollu soniimleme, golgeleme ve giiriiltii bilinen
en yaygin kanaldan kaynakli bozucu etkenlerdir. Bu yiizden son yillarda bir¢ok farkli
yontem ve teknikler, kablosuz kanallar1 iyilestirmek ve alicida iletilen isareti geri
olusturmak i¢in arastirilmaktadir. Bunlarin arasinda verici ve alic1 istasyonlarda
coklu anten kullanan ve etkin bir teknik olan ¢ok giris ¢cok ¢ikislt sistemler (MIMO),
soniimleme etkisini dogrudan kaldiran, ag kapasitesini arttiran ve daha gii¢lii bir
sistem saglayan ¢esitleme ortam1 yaratmak i¢in onerilmistir.

Kablosuz haberlesme aglarinda MIMO sistemler kaydadeger cesitleme kazanci
saglamalarina ragmen ¢ok anten kullanimi; arag-gere¢ boyutu, hesaplama
karmasiklig1 ve gii¢ tiikketimi nedenleriyle kablosuz terminaller i¢in uygun degildir.
Bu yiizden, isbirlikli haberlesme, alici ve verici istasyonlarda tek anten kullanan
alternatif bir teknik olarak dogdu. Isbirlikli haberlesme, sanal anten dizisini
sekillendirmek icin MIMO sistemlerdekine denk olan uzay c¢esitleme kazanci
saglayan komsu diigiimleri kullanir. Isbirlikli haberlesme, maliyet verimli, kullanish
ve ¢ok yollu soniimleme etkisini azaltan, kapsama alanimi artiran, daha az yer
kaplayan, diisiik giic tiiketen ve kanal band genisligini koruyan gelecek nesil
kablosuz aglarin en 1yi teknolojisidir.

Isbirlikli haberlesme teknikleri, ag tiiriine bagli olarak degisen farkli yapilara
sahiptir. Isbirlikli ¢alisma, kullanicilar veya gezgin istasyonlar (MS) arasinda, baz
istasyonlar1 (BS) veya ¢ok hiicreli islemede ve BS ile MS arasinda aktarma
istasyonlart (RS) yoluyla veya diger MS icin RS olarak uyarlanmis MS yoluyla
gerceklestirilebilir. RS kullanan birlikte calisma, ag kapsama alaninin genisletilmesi,
givenilir haberlesme, hacim arttirilmasi, maliyet verimliligi ve kolay
uygulanabilirligi gibi 6zellikleri dahil eden sayisiz {istiinliiklerinden dolayi literatiirde
oldukca fazla kullanilmistir. Aktarma isbirlikleri isaret isleme icin farkli protokolleri
kullanir ve bunlar arasinda en yaygin kullanilanlar1 kuvvetlendir ve aktar (AF) ile
¢oz ve aktar (DF) protokolleridir. AF, iletilen isaretin giiriiltiilii halini
kuvvetlendirerek yeniden hedefe gdnderen basit bir isbirlikli isaretlesme yontemidir.
Giriiltiintin de kuvvetlenmesine ragmen hedef, iletilen isarertin bagimsiz
sonlimlenmis hallerini alir ve veri sezimi i¢in en iyi karar vermeyi ger¢eklestirmeyi
saglar. AF, aragtirmalarda oldukca dikkat c¢ekmistir ve isbirlikli haberlesmenin
anlagilmasinda ¢ok kullanishi olmustur. DF ise ¢oziip tekrardan kodlayarak alinan
isareti yeniden ileten sayisal bir tekrarlayici devresidir. Giriiltiiye karsi yiiksek
basarim saglamasina ragmen, uctan uca gecikme kisitlar1 ve uygulanabilirlik gercek
diinya uygulamalarinda bir sorun olarak yer tutmaktadir.

Tezde coklu aktarma birimleri ile olusturulan isbirlikli haberlesme aglari, kanal
bozukluklar1 problemini ¢6zmek ve kablosuz aglarda isaret kalitesini arttirmak i¢in
ele alinmistir. Dahasi, kablosuz haberlesme ag yapisi sebebiyle alici her zaman,
bilinmeyen iletilen isaret ve bilinmeyen kanal durum bilgisi (CSI) problemleriyle
kars1 karsiya kalir. Bu ylizden, isaret isleme yontem ve teknikleri, alicida kaynak ile
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hedef arasindaki kanal kestirimini gerceklestirmek ve iletilen isareti etkin bir sekilde
geri olusturmak i¢in gereklidir.

Bu bilgiler 15181nda, Bayesian dogrusal model (BLM) sezicisi ve en kii¢lik ortalama
kareler (LMS) algoritmasi, ¢ok yollu kablosuz aglar i¢in uygunluk ve verimlilik gibi
iistiin Ozellikleri sebebiyle Onerilmistir. BLM sezicisi, ilgilenilen isaretin varligina
veya yokluguna karar verebilmek i¢in test istatistigi hesaplayarak ve bunu onceden
belirlenmis esik degeri ile kiyaslayarak calisir. Test istatistigi secilen esik degerinden
biiyiik oldugunda isaretin varligina karar verilir. BLM sezicisinin temel stiinligii,
cok yollu kanal modelleri i¢in dogrusal hesaplama yapmasi ve diisiik uygulama
karmasikligina sahip olmasidir. LMS algortimasi dinamik veya dinamik olmayan
cevrelerde genellikle bilinmeyen parametreleri yinelemeli olarak kestirmekte
kullanilan dogrusal uyarlamali bir siizgectir. LMS algoritmasi, diisiik hesaplama
karmagiklig1, uygulanabilirligi ve yiiksek basarimi sayesinde uyarlamali stizgegler
arasinda oldukca ilgi ¢ekmistir.

Bu tezde, 6zgiin katkilar iki béliimde (Boliim 2 ve Boliim 3) yer almaktadir. Bolim
2’de duragan cevrelerde calisan c¢oklu aktarma birimlerini kullanan isbirlikli
kablosuz aglar ele alinmistir ve iki ana varsayim yapilmistir; ilkinde hedefte kanal
durum bilgisinin oldugunu ve iletilen isaretin giiriiltii ile istenmeyen isaretlerle
bozuldugunu varsaydik. Bu yiizden, iletilen igareti etkin sekilde geri olusturabilmek
ve kablosuz kanal bozucu etkenlerine direnen bir ag yapisi sunmak amaglariyla ¢coklu
tek kaynak, coklu AF aktarma birimleri ve tek hedef birimlerinin oldugu durum
diisiiniilmiistiir. Kaynak ve hedeften kaynaklanan aktarma biriminin konumunun
etkisi degerlendirilmistir. Alict c¢alisma karakteristikleri (ROC), bit hata olasilig
(BER) ve ortalama karesel hata (MSE) gibi farkli bagsarim olgiitleri ele alinmistir.
Sayisal sonuglar, BLM sezicisinin sezim bagariminin, mevcut enerji sezim
yontemlerinden daha i1y1 ve agdaki aktarma birimi sayisiyla orantili oldugunu ve
kaynaktan uzakta konumlanan aktarma biriminin sistem basarimini hedefe yakin
konumlandirilmis aktarma birimindeki duruma gore daha c¢ok etkilendigini
gostermektedir.

Ikinci olarak, kanal durum bilgisinin hedefte bilinmedigini ve iletilen isaretin giiriiltii
ile bozuldugunu ve alict tarafindan bilinmedigini varsaydik. Ayni zamanda tek
kaynakli, ¢oklu aktarmali ve tek hedefli yar1 yonlii isaret iletimini ele aldik. Bu
dogrultuda, alicida kanal kestirimi ve isaret kazamimi i¢in giigli LMS-BLM
algoritmasim1 6nerdik ve uyguladik. Algoritma, BLM sezicisinin isaretin varligina
karar verdigi zaman kanal katsay1 agirliklarinin giincellendigi sekilde ¢aligmaktadir
aksi durumda kanal durum bilgisi degismeden kalacaktir. Alici c¢alisma
karakteristikleri (ROC), biitliinleyici ROC, ortalama hata olasilig1 ve ortalama karesel
hata (MSE) 6grenme egrileri ve en uygun esik degeri gibi farkli basarim odlgiitleri ele
alinmistir. Matematiksel ve sayisal analizler, onerilen algoritmanin alicida diisiik
MSE ve memnun edici bir sezim performansi saglamasi dolayisiyla verimlidir ve
alici, algoritmanin kararlilig1 ve en iyi yakinsama i¢in tlirev adim boyutu tarafindan
kontrol edilmektedir. Kaynaga gore aktarma birimlerinin mesafesinin sistem
basarimini arttirmak i¢in azaltilmasi gerektigi gdzlenmistir.

Boliim 3’te duragan olmayan ortamlarda c¢alisan ¢oklu aktarma birimleri kullanan
isbirlikli kablosuz aglar1 ele aldik. Bu boliimde ana konular, ¢ok yollu zamanla
degisen kanallardir. Zamanla degisen kanallar, kablosuz aglarda siirdiirtilebilir sistem
basariminin temin edilmesi i¢in giiclii yontem ve teknikler gerektirdiginden oldukca
zorlayicidir. Bu bdliim ayn1 zamanda iki boliime ayrilmustir. Ik béliimde, hedefte
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kanal durum bilgisinin oldugunu varsaydik ve BLM sezicisinin basarimini ¢oklu
aktarma birimli zamanla degisen kanallarda arastirdik. Alic1 ¢caligma karakteristikleri
(ROC), en kiiclik ortalama karesel hata (MSE) ve bit hata olasilig1 (BER) gibi farkli
basarim Olgiitleri ¢esitli diigiim hizlar1 ve farkli aktarma birimi sayisina gore ele
alimmigtir. Sonuglar, BLM sezicisinin verimli ve onun basariminin hedef veya
aktaricinin yiiksek hizlarinda kétiilestigini gostermekte ve agdaki aktarici sayisinin
arttirllmasiyla 1iyilestirilebilecegini gostermistir. Ayrica sistem bagsariminin, seri
dizilimin artmasiyla diisecegi de gosterilmistir.

Boliim 3’iin ikinci boliimiinde hedef birimde CSI’'nin bilinmedigini varsaydik ve
LMS-BLM alicisinin ¢oklu aktaricili zamanla degisen kanallarda basarimini
degerlendirdik. Benzetimlerde, alici calisma karakteristikleri (ROC), ortalama
karesel hata (MSE) 6grenme egrileri ve bit hata olasilig1 gibi farkli bagarim olgiitleri
ele alinmistir. Sonuglar, birlesik LMS-BLM alicisinin algoritmanin kararsizligi ve
diigiimlerin yiiksek hizindan etkilenebilmesine ragmen {istiin basarim sagladigini
gostermektedir. Bu yiizden, alicinin kararliligini ve yakinsakligini kontrol edebilmek
ve siirdiiriilebilir basarimi saglamak icin adim boyu parametresinin uygun seg¢ilmesi
onerilmektedir. Bulgular, aktaricinin yiliksek hizlarda olmasinin hedefin hizindan
yiikksek oldugunda sistem basariminin daha ¢ok etkilendigini gostermistir. Bu
yiizden, aktarict hizlar1 kablosuz ag tasarimlar1 yapilirken géz dniine alinmalidir.

Bu aragtirmadan elde edilen bulgular, birlesik LMS-BLM alicisinin, hem duragan
hem de duragan olmayan kablosuz aglarda kanal kestirimi igin yiiksek sezim
basarim1 sagladigini ve etkin oldugunu kanitlamistir. Algoritmanin basarimi ¢oklu
aktarici kullanan aglarda 6zellikle iyilestirilebilir. Sayisal analizlerle gosterildigi gibi
onerilen yontem, 2GHz menzilinde tasiyict frekanslariyla ve diisiik simge
periyotlariyla isaret iletiminde simdiki ve gelecek kablosuz aglarda uygulanabilir.
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1. GENERAL INTRODUCTION

1.1 Background and Motivation

During the last decades, the demand for wireless communication services has
increased tremendously with high requirements of quality of services (QoS), high
data rates, stable connectivity at any mobility conditions and high security services.
Recent statistics have shown that the number of mobile subscribers has grobally
increased massively during the year 2000 to 2010, the first bilion landmark passed in
2002 and the fifth billion in the middle of 2010. More than a million new subscribers
per day have been added grobally during that period and 2020 forecasts show that
worldwide mobile penetration should reach 119% of the population. Among mobile
services, voice communication has been employed in a massive way and mobile
terminals are the preferred method of voice communication whereby the mobile
networks cover 90% of the world population [1]. This growth has been fueled by low
cost mobile phones, competitions of communication service providers, the grobal
economic changes and developments. Indeed, wireless communications have became
an essential technology of choice in the current and future interaction between people

and devices.

Due to the high demand of wireless communication services, wireless technologies
have been the most active development and a rapidly growing field in
communication industry. Mobile wireless technologies are divided into generations
with the first generation (1G) being the analog mobile radio system, second
generation (2G) being the first digital mobile system, the third generation (3G) being
the digital mobile system handling broadband data and the Long-Term Evolution
(LTE) which is also called the fourth generation (4G). The 4G service is set to offer a
fast and secure IP network and roaming mobile broadband solution to devices. Now,
the deployment of the fifth generation (5G) is another newest mobile wireless
innovation that is expected to increase the capacity over wireless networks and to

provide the speed three time faster than 4G [2, 3].

Wireless communications can be subdivided into different segments such as

applications, systems or coverage regions. Some wireless applications are voice,



internet access, web browsing, paging, short messaging, subscriber information
services, file transfer, video teleconferencing, sensing, and distributed control. The
evolution of wireless technologies has been accompanied by the evolution of mobile
devices that can support new applications and services in order to meet the QoS
required by users. The wireless systems including cellular telephone, wireless LAN:Ss,
wide area wireless networks, data systems, satellite systems, and ad-hoc wireless
networks, have been developed in order to meet the new technologies and customer
requirements. Classification of wireless network by coverage regions include in

building networks, campus, city, regional and global region networks [4].

Despite various advantages of wireless communication services, the performance gap
between wireline and wireless networks appears to be growing due to the huge
demand of wireless services and the nature of wireless communication channels.
Generally, wireless communication systems have experienced many challenges that
include signal distortion due to channel impairments such as shadowing, time
varying multipath fading, cochannel and adjacent channel interference, noise and
propagation loss. Thus, advanced signal processing algorithms and techniques have
to be explored in order to improve the wireless channels, ensure sustainability, higher
performance, and to meet the current and future wireless communications goals. In
literature, scholars have investigated different techniques, most of them are diversity
techniques and signal processing schemes (i.e., coding, modulation and detection)
which have attracted too much attention with the need to recover efficiently the

original transmitted signals at the receiver [5-8].

Motivated by the above background and associated challenges, this thesis has the aim
of exploring the advantages of cooperative communications with a particular focus
on relaying cooperation in providing diversity gain in wireless networks, and
proposing methods and techniques based on adaptive channel estimation as well as
data detection for the purpose of recovering the original transmitted signal at the
receiver. The study in this thesis assumes two kinds of wireless network
environments such as stationary and non stationary environments, discussing the

knowledge of channel state information (CSI) at the receiver.



1.2 Cooperative Wireless Communications

In wireless communication networks, diversity techniques have been explored for
their advantages to improve the wireless communication system. In this direction,
multiple input multiple output (MIMO) systems have attracted too much attention in
research as one of the techniques exploring the diversity gain. MIMO systems are
considered as a key technique in modern wireless cellular networks that employ
multiple antennas at both the transmitter and receiver stations. In MIMO systems,
base stations (BSs) and mobile stations (MSs) are equipped with multiple antennas
that make MIMO systems to be available at both the uplink and the downlink sides
as represented in Figure 1.1. MIMO techniques can be employed in different ways
such as transmit or receive diversity for enhancing the transmission reliability, spatial
multiplexing for improving the system data rates and beamforming for increasing the

network coverage [9-10].

Although using MIMO techniques can improve the wireless networks, in many ways
the use of multiple antennas at the MSs is not quite appropriate due to the size of
equipments, power consumption, signal processing and many other constraints. Thus,
cooperative communications emerged as an alternative technology to reap the
advantages of MIMO systems by employing single antenna at both the transmitter

and receiver stations [9].

Mobile Base
station station
(MS) (BS)

Figure 1.1 : MIMO Communications [9].



Cooperation can be done in various ways such as user or MSs cooperation, BSs
cooperation which is also called multicell processing (MCP) and cooperation
between BSs and MSs through dedicated relay stations (RSs) or MSs act as RSs as
shown in Figure 1.2. In MCP, the cooperation is done at the BSs level where BSs
cooperate among them in order to enhance the received signal at the destination. In
MSs cooperation, neighboring MSs retransmit the same signal from the source,
helping other MSs to get the quality signal. In relay cooperation, relay stations
retransmit the signal from the source to the destination. In this scenario, MSs may act

as relay stations in order to reduce additional equipments in the network [10-13].

RS

b) RS cooperation

MS

MS
W)

¢) MS acts as relay station d) MS or user cooperation

Figure 1.2 : Examples of various schemes for cooperative communications [13].



Cooperation schemes use protocols to process the signal from the source to the
destination. Three kinds of protocols are described in relaying signal processing such
as protocol I, protocol II and protocol III. All these protocols can transmit into phases
which are phase I and phase II as represented in Table 1.1. In protocol I, the source
transmits the message to the relay and the destination during relay-receive phase or
phase I. During relay-transmit phase or phase II, the source is silent and relay
forwards the processed message to the destination. In protocol II, the source only
transmits the message to the relay during phase 1. In phase II, the source and relay
transmit simultaneousely the message to the destination. In protocol III, the source
broadcasts the message to the relay and destination during phase 1. In phase II, the

source and the relay transmit the message to the destination [10-15].

Table 1.1 : Relaying protocols and transmission phases [12].

Phase Protocol I Protocol 11 Protocol 111
Phase | S » R,D S——»R S —» R
S—» D

R—» D R —» D

Phase II R—D S—» D S —» D

For all protocols stated above, relaying schemes for signal processing are necessary
in order to process the signal from the source. The most common relaying schemes
are amplify & forward (AF) and decode & forward (DF) that can be subdivided in

fixed or adaptive relaying schemes.

The AF which is also known as non generative relaying scheme, it simply scales the
received signal and retransmits the amplified version to the destination. Its
disadvantage is based on amplifying the signal together with the noise which requires
the receiver to use a high quality noise filter in oder to detect the intended signal. The
main advantages of this protocol are low implementation complexity and feasibility

[10,14].

The DF which is known as regenerative relaying scheme refer to the relay that
decodes the received signal in order to remove the noise and forwards a newly re-
encoded signal to the destination. There are different types of DF relaying schemes:

the basic DF, the selection DF, and the demodulate and forward (DaF) relaying



scheme. In basic DF, the relay decodes the received signal, re-encodes it in phase |
and forwards it to the destination in phase II. It means that the relay successfully
decoded the received signal in phase I; otherwise it does not send or remains idle in
phase II. In selection DF, if the relay failed to decode the received message from the
source in phase I, the source is allowed to retransmit the message by itself in phase
II. The diversity gain may be improved in selection DF mode if there is no condition
that the relay should participate in cooperation. In many cases, the channel decoding
or encoding is not possible due to the incapability of the transceiver, therefore, in this
case the DaF can be used to demodulate the received signal on symbol by symbol at

the relays and forward it to the destination [10-15].

1.3 Data Detection and Estimation Models

1.3.1 Data detection fundamentals

In practical situation for wireless communication systems, signals are more
appropriately modeled as random processes. Depending on the nature of the signal to
be transmitted such as speech, voice or video signals; it is unrealistic to assume that
the signal is known by the receiver. Moreover, due to the transmission process, the
received signal at the reveiver is corrupted by noise which makes it difficult for the
receiver to differentiate the original signal from the noisy signal. Therefore, the
receiver has to make decision according to the observation signal. Among various
detection methods that exist in literature, the simple hypothesis testing problem is the
simplest in which the probability density function (PDF) for each assumed
hypothesis is completely known. In this problem, there are two hypotheses or binary
hypothesis rules which refer to the absence of the signal or Hy and the presence of
the signal or H;. Based on these hypothesis testing rules, four kinds of decisions

cases can be available as follow [16]:
e Decide the presence of the signal (D;) when H; is true
e Decide the absence of the signal (Dy) when Hy is true
e Decide the presence of the signal (D;) when Hy is true

e Decide the absence of the signal (Dy) when H; is true



The first two cases are true decisions, whereas the last two cases are error decisions
that correspond to type I error or false alarm and type II error or miss detection

respectively.

In the theory of signal detection, some criteria are used for receiver decision. The
primary approaches to simple hypothesis testing are the Bayesian approach based on
minimizing of the Bayes risk and classical approach based on the Neyman Pearson

theorem.
e Bayes test:

In this approach, the source outputs are governed by priori probabilities ( £, and P,
for one dimensional space and B,B,..,P, for N dimensional space). These

probabilities represent the observer’s information (observation, S) about the source
before the experiment is conducted. Secondly, each experiment is assigned a cost so
that the decision rule will minimise the average cost or risk as low as possible.
According to the binary hypothesis, the decision rule must be Hy or H; which
indicates that the rule divides the total observation space Z into two zones such as Z
and Z, as shown in Figure 1.3. Then, whenever, the observation falls in Z,, it belongs

to hypothesis Hy and when it falls in Z, it belongs to hypothesis H; [17, 18].

H;
— — - Probabilistic transition
— — mechanism

Hy

Source Observation space

ZN{ZI, ZO}

Decision rule |

\

Decision

Figure 1.3 : Components of a decision model.

In addition, in Bayesian approach, we recognize two special cases, the first case is
when the two hypotheses are likely equal, in this case, the threshold becomes zero

which denotes a common situation in digital communication systems. This case



denotes minimum probability of error receiver. The second case is when a priori
probabilities are unknown. When this arise the decision rule will be based on

conditional probabilities since the decision regions can be determined. Based on
conditional probabilities, it is possible to find the probability of detection ( P,) (i.e.,
denotes the presence of the signal when it is), the probability of false alarm ( P, )
(i.e., indicates the presence of the signal when it is not), and the probability of miss
detection ( P,) (i.e., indicates the absence of the signal when it is present) as follows

[17]:

P, =, Py, (S|Hy)dS (L1
Py =, Py (S| H)dS (1.2)
By =], P (S| H)dS =1-F, (@3

e Neyman Pearson test:

In Neyman Pearson test, the assumption is such that the assignment of realistic costs
or a priori probabilities are difficult to find due to physical situation, therefore, an
alternative way is to work with the conditional probabilities P, and P, and optimize
the system by making the P, as small as possible and P, as large as possible. The

solution is obtained by using Lagrange multiplier as follows [17]:
F=P,+P, -] (14)

where F denotes a constrained function and P, =w'< .

The relation between Bayesian criterion and Neyman Pearson criterion is that for
both the optimum test is a likelihood ratio test (LRT). In spite of the dimensionality
of the observation space, the test is based on comparing a scalar variable LRT with a

threshold in order to make a decision. A complete performance of the test is obtained

by plotting the receiver operating characteristics (ROC) (i.e., F, against P, ) as the

threshold is varied [17].



e Linear model approach

Another practical method of designing a detector is the use of linear model. It
provides mathematical simplicity and general applicability to real world problems.
The linear model can be either classical or Bayesian. In classical linear model, the

data under H; are decribed as follows [19]:
y=HO+w (1.5)

where y is an NX1 vector of observations, H is a known NXK observation matrix
with N>K and of rank K, @ is a KX1 vector or parameters (which may be known or

not), and w is an NX1 noise vector with PDF (0, N,I'). The decision is made by

comparing the test statistic with the threshold (i.e., 7(y) >4 — H,).

In Bayesian linear model, y is an NX1 vector of observation, H is a known NxXK
observation matrix with N>K, @ is a PX1 random vector with 8 ~N'(0, Cep), and w
is an NX1 noise vector with PDF(0, N,I) and is independent of &. The decision is

made by comparing the test statistics with the predetermined threshold [19].

1.3.2 Classical and Bayesian estimation approaches

In the preceding section, the fundamental of data detection is introduced in which the
receiver has to make decision depending on the received signal. In some cases,
parameters associated to the received signal may not be known even though the
receiver made the true decision, in this case, estimation techniques are required in
order to recover efficiently the original transmitted signal. The parameters to be

estimated may be random or non random [20].

The estimation of non random signals is referred to as classical estimation (i.e.,
Figure 1.4) where the data information is summarized by the probability density
function (PDF) p(y;6), where y is the received signal, 8 is the parameter of
interest and the PDF is functionally dependent on 8. Therefore, the unknown KXx1
parameter vector & is assumed to be a deterministic constant. The common examples
of this type of estimation in literature include Cramer Rao lower bound (CRLB), best
linear unbiased estimator (BLUE), maximum likelihood estimator (MLE), least

squares estimator (LSE), to name just a few [20].



In situation of random signals, the estimation approach is refered to as Bayesian, in

this approach, the data information is described by a priori PDF p(8) which
specifies the knowledge about the parameter of interest & as indicated in Figure 1.4.
The solution of this approach is based on deriving the joint PDF p(y,0) which
involves the conditional PDF p(y/6) as the data information and a priori PDF
p(60) as prior information. In literature, common examples of this approach include

minimum mean square error (MMSE) estimator, maximum a posteriori (MAP)

estimator, linear minimum mean square error (LMMSE) estimator, etc [20].

Estimator selection
for signal processing

l

: : ; Yes No
Dimensionality a > Prior Knowledge > New Data or

problem more data
l No l Yes
Yes B -
Prior Knowledge [ ayesian
Approach
Y Yes
No Knowledge of
PDF
Yes/
Y No

Estimator selection

g
v Yes/
Classical Knowledge of No . )
> ——p
approach PDF Estimator selection

Figure 1.4 : Estimation characterization [20].

1.3.3 Adaptive filtering fundamentals

Adaptive filters find many application in real world application such as digital
communications, sonar, seismology among others. The implementation and
computation of adaptive filters seek to acheive to the optimum Wiener solution. The
important parameters for all adaptive filters are described by the Figure 1.5 that

represents the statistical filtering problem [21]:
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u(0), u(l),... Linear discrete time filter y(k) d(k)

Y

Estimation error
e(k)

Figure 1.5 : Block diagram of the statistical filtering problem [23].

Various linear adaptive filters have been developed so far with different applications
and performances. The choice of adaptive filter over another depends on the

consideration of some performance factors such as [21-23]:

e Rate of convergence: This means the number of adaptation cycle required in
order to converge to the optimum Wiener solution in the mean square error

sense.

e Misadjustement: A parameter that measures the deviation from the Wiener

solution.

e Tracking: It means the capability for an algorithm to track time varying

parameters particularly in non stationary environment.

e Robustness: An adaptive filter is robust when it can resist to disturbances that

cause errors in estimation.

e Computational requirements: It means the number of iteration required to
make a complete adaptation cycle of the algorithm, the required memory size

and investment needed in order to implement an algorithm.

e Structure and numerical properties: It means the structure of information flow
in the program and accuracy of numerical implementation of the algorithm,
respectively. An adaptive filtering algorithm is said to be numerically robust
if it is insensitive to variations in the wordlength used in its digital

implementation.

The common adaptive filters found in literature include:
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e Steepest descent algorithm (SDA):

SDA is a recursive adaptive filter that has the tracking capability of time variations in
signals statistics compared with Wiener filter. It is an efficient gradient type
algorithm, in the sense that it works with the true gradient vector not with an estimate
of it. The difficult task of this algorithm is to find the autocorrelation matrix R and
cross correlation P when calculating the MSE, therefore this makes it less useful in
adaptive filtering algorithm. The SDA updates the tap weights (i.e., W) coefficients

in the following general form as [21];
e ) = ()= gy () (1.6
with g, (k)= VJ(W (k)
Wk +1) = W (k) — % NI (k) (1.7)

If the tap input vector u(k) and the desired response d(k) are jointly stationary,

then, the mean square error or cost function J(W(k)) is given by:
JW (k) =0, -2P"W +W'RW (1.8)

where o is the variance of the desired signal. Then, the gradient of J(W(k)) is

given by:
VJW(k))=-"2P+2RW (1.9)
The optimal W, is found by setting the gradient to zero and we have:
W,=R'P (1.10)

(1.10) is the Wiener — Hopf equation in matrix form.

Substituting (1.9) in (1.7), we obtain the SDA equation as follows:
W(k+1)=W(k)+u[P—RW (k)] (1.11)

where g denotes the step size parameter.
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e Least mean square (LMS) algorithm:

LMS algorithm is a widely used adaptive filter formulated by Widrow and Hoff
(1960). It is in the family of stochastic gradient algorithm whereby it uses gradient
vector of the filter tap weights to converge to the optimal Wiener solution. The well
known feature of the LMS algorithm is its low implentation complexity which have
made it the benchmark against other adaptive filters. The calculation of the LMS
algorithm involves the substitution of the estimates of the correlation matrix R and

the cross correlation vector P in (1.11) as follows [22]:
VI (k) = =2u(k)d" (k) + 2u(k)u™ (k)W (k) (1.12)

with  R(k)=u(k)u" (k) and P(k)=u(k)d" (k), then a new recursive relation for

updating the tap weight vector is given by:
W(k+1)=W(k)+ ,uu(k)[d(k) —u” (k)Vf/(k)] (1.13)

Equivalently, the basic computation of the LMS algorithm is:

Filter output: (k) =W (kyu(k) (1.14)
Estimation error: e(k)=d(k)—y(k) (1.15)
Tap weight adaptation: W (k +1) = W (k) + pu(k)e’ (k) (1.16)

e Kalman filters (KF)

KF is a linear optimum filter with some distinctive features such as, mathematical
models which are described in terms of state concepts and the solution can be
computed recursively, which can be applied without modification to stationary and
nonstationary environments. In particular, each updated estimate of the state is
computed from the previous estimate and the new input data, so only the previous
estimate requires storage. KF algorithm can be described by the following equations

[24, 25]:
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W (k+1|k)=W (k| k-1)F(k+1,k)+G (k)e, (k)
G, (k)= F(k+1,k)P, (k,k—1)u" (k)C, (k)

P, (k)=[I~F(k,k=1G,(k)u" ()P, (k,k~1)

P (k+1,k)= F(k+1,k)P,(k)F" (k+1,k)+ R, (k)

(1.17)

where:

{Cn (k) = [u" (k) P, (K, k = u(k) + @, (5)T" (1.18)

e, (k) =y, (k)—u" (k)h,(k | k=1)

And R, is the correlation matrix of the process noise, @, is the correlation matrix of
the measurement noise which has to be estimated, G, is the Kalman gain, e, is the

error signal, W, is the channel state vector and F =« .

In addition to eliminating the need for storing the entire past observed data, KF
computes the estimate directly from all those past data at each step of the filtering
process. KF provides a unifying framework for the derivation of the complete family

of the recursive least quare (RLS) filter.
e Recursive least squares (RLS) algorithm

RLS algorithm may be viewed as a special case of the Kalman filter on the
measurement update equations. RLS algorithm does not require a priori information
when used for channel estimation as Kalman filter does, and its computational
complexity is less than the Kalman filter. Assuming that the system channel model
can be modeled as 1* order autoregressive process. Therefore the standard RLS can

be modified to an extended RLS algorithm that is computed as follows [24, 25].

W (k+1k)=aW (k|k-1)+G,(k)e (k)
e,(k)=y,(k) =W, (k| k—Du(k)
G, (k)=aP, (k,k—1u(k)A, (k) (1.19)
P (k)= P (k,k—1)—B, (k)
P (k+1,k)=a’P,(k)+ R, (k)

and:
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A, (k) = u" (k) P, (k. k= Du(k) + 1]‘1
L (1.20)
B, (k) = P, (k. k= Du(k)yu" (k) P, (k. k =1)| 1+u" (k) P, (k. k = Du(k) |

where R, means the correlation matrix of the process noise vector.

1.3.4 Classes and applications of adaptive filters
The classes and applications of adaptive filters depend on the structure of signal flow
in a certain adaptive filter. Some of the known classes of adaptive filters include

identification, inverse modeling, prediction and interference cancellation [21-23].
¢ Identification:
In this class, the adaptive filter seeks to provide a linear model that matches the

unknown plant [21]. The input of the unknown plant is the same as the input of an

adaptive filter as represented in Figure 1.6.

System output

Unknown plant

\

Adaptive filter

g

Figure 1.6: Identification model with adaptive filter [22].

This type of class finds many applications such as system identifacation and layered
earth modeling. Specifically, for the system identification application, the input is a
broadband signal that serves as the input of the unknown system as well as the
adaptive filter. When the output mean square error (MSE) is minimized, the adaptive

filter represents the unknown system model.

e Inverse modeling:

In this class, an adaptive filter tries to compensate and to provide a linear model that

represents the unknown noisy plant as shown in Figure 1.7.
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Delay

System output

» Plant > Adaptive filter

/

Figure 1.7: Inverse modeling with adaptive filter [23].

The inverse modeling finds various applications in signal processing such as
equalization whereby the original transmitted signal distorted by the channel plus
environment noise serves as the input to the adaptive filter and the desired signal is

the delayed version of the original transmitted signal [23].
e Prediction:

In this class, the function of the adaptive filter is to provide the best prediction of the
present value of a random signal. The present value serves as the desired signal of
the system, and past values of the signal supply the input of the adaptive filter as
represented in Figure 1.8 [23].

/4 dy "

Adaptive filter —»

/

Figure 1.8: Prediction model with adaptive filter [23].

A 4
A 4

Delay

The applications of this class of adaptive filter are signal detection, prediction coding

and spectrum analysis.
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e Interference cancellation:

The role of adaptive filter in this class is to cancel the unknown interference
contained in a primary signal. The primary signal works as the desired signal of the
system and the reference signal is used as the input to the filter as shown in Figure
1.9. Noise cancellation is one of the application of this class whereby an adaptive
noise canceller is used to substract noise from received signal in order to improve the
signal to noise ratio (SNR) [21]. Another application is beamforming which is used
in spatial filter where an array of antenna elements has adjustable weights so as to

control and cancel interfering signals arriving on the array [23].

Primary signal
V! + ¢
u y
—— > Adaptive filter > Z e
Reference signal System output

Figure 1.9: Interference cancellation model with adaptive filter [23].
1.4 Parameters of Radio Propagation and Fading Channel Models

1.4.1 Basic radio propagation parameters

In wireless communication networks, the channel between the source and the
receiver 1s experienced by different obstacles such as houses, buildings, trees and
other objects that act as reflectors of radio waves. Basically, radio waves are affected
by three physical phenomena such as reflection, diffraction and scattering as

represented in Figure 1.10 [4, 26].

Reflection is a physical phenomenon that occurs when a propagating electromagnetic
wave impings upon an object with very large dimensions compared to the
wavelength (i.e., surface of the earth, building,...etc.). Diffraction occurs when the
radio path between the transmitter and the receiver is obstructed by a surface that has
sharp irregularities like edges. At high frequencies, diffraction like reflection

depends on the geometry of object, amplitude, phase and polarization of the incident
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wave at the point of diffraction. Scattering occurs when the medium through which
waves travels consist of objects with dimensions that are small compared with the
wavelength, and where the number of obstacles per unit volume is large. Scattered
waves are produced by rough surfaces, small objects or by irregularities in the

channel [4].

Scattering

’ Line of sight

Figure 1.10: Multipath propagation in mobile radio networks.

The difference in times of signal propagation can also cause the signal degradation at
the receiver. This is caused by the difference in the arrival time of responses from the
longest path and the shortest path which is referred to delay spread. Depending on
the arrival time and phase, some interference signals are destructive or constructive.
Therefore, if the delay spread is greater than the symbol duration, the original signal
is distorted by both the noise and inter-symbol interference (ISI) and the channel
undergoes frequency selective fading, otherwise, the channel undergoes frequency

flat fading [4].

When a mobile node moves through a large distance, effects occur as large scale
fadings. On the other hand when a mobile node moves for short distances, rapid

variation of signal levels occur due to the constructive and destructive interference of
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multiple signal paths such as small scale fading. Therefore, depending on the time
variation in the channel and due to mobile speed characterized by the doppler

frequency, short term fading can be classified as either fast fading or slow fading [4].

1.4.2 Fading channel parameters

Wireless communication channels are highly affected by channel fading which
causes signal variations in amplitude, frequency, phase and delay. Theoretically, the
transmitted signals occupy a bandwidth smaller than the channel’s coherence
bandwidth whereby the channel fading process is correlated. In this case, all spectral
components have the same attenuation which is referred to as frequency non
selective or frequency flat. On the other hand, if the transmitted signals occupy a
bandwidth greater than the channel’s coherence bandwith, the phenomenon is refered
to as frequency selective fading whereby the spectral components of the transmitted
signal faded independently, thus, the received signal spectrum becomes distorted
since the relationships between various spectral components are not the same as in
the transmitted signal. Depending on the relative extend of multipath fading, the
fading frequency of a channel is characterized by frequency selective or frequency

flat fading for small scale fading as illustrated in Figure 1.11.

Other sources of signal degradation in response to the channel environment are
pathloss and shadowing. Pathloss is due to the signal propagation through space and
leads to the reduction of the average received signal power. It is noted that in both
theoretical and measurement based propagation models, this average received signal
power decreases logarithmically with distance in either outdoor or indoor radio
channels. In general form, the path loss is modeled in function of distance and

exponent v parameter as follows [4]:

- ds

PL(ds) oc| 2 (1.21)
So

where ds, is the close-in reference distance and ds indicates the separation distance

between the transmitter and the receiver. The path loss exponent v denotes the rate
at which the path loss increases with distance. This parameter changes depending on
the environment, in free space, the pathloss is proportional to the second power of

the distance, i.e., v =2, therefore, by doubling the distance between the transmitter
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and the receiver, the received power reduces to one fourth of the transmitted power.
Depending on the mobile radio environment, the path loss expondent v varies as

presented in Table 1.2 [4].

Table 1.2 : Path loss exponents for different environments [4].

Environment Path Loss Exponent, v
Free space 2
Urban area cellular radio 2.7t03.5
Shadowed urban cellular radio 3to5
In building line of sight 1.6t0 1.8
Obstructed in building 4t06
Obstructed in factories 2to3

Shadowing is caused by obstacles in the wireless channel and affect the received
signal by attenuating its power level. Variation in pathloss and shadowing occurs
when the mobile device moves through a distance on the order of the cell size and

this is refered to as large scale fading [4].

Fading Channel

Y Y

Large scale fading Small scale fading

Y Y Y Y

Path loss Shadowing Multi path fading Time variance
y Y Y Y
Frequency selective fading Flat fading Fast fading Slow fading
BW of signal >BW of channel | | BW of signal <BW of channel || Channel var.> Base Channel var.<Base
Delay spread > symbol period | | Delay spread < symbol period band var. band var.

Figure 1.11: Classification of fading channels.
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Multipath propagation can be modeled by different statistical models for fading
channels and the most common in literature are: Rayleigh, Rician and Nakagami-m

fading channels which are described in the following[5, 16].

In Rayleigh fading model, the transmission of a single tone with a constant amplitude
is considered. In a typical land wireless network, there is no line of sight (NLOS)
between the transmitter and the receiver antennas. Therefore, the radio waves from
the transmitter are obstracted in the channel and the receiver receives only reflected
radio waves. In this case, according to the central limit theorem, when the number of
radio waves is large, two quadrature components of the received signal r» are
uncorrelated with Gaussian random process with zero mean and variance °. In this
process, the envelope of the received signal at anytime instant undergoes a Rayleigh
distribution and its phase obeys a uniform distribution between —rt and © [5]. The
probability density function (PDF) and cummulative distribution function (CDF) of
the Rayleigh distribution are given respectively by [5]:

fR(r):Le[h’?] r=0 (1.22)
o
and ,

(1.23)

In Rician fading model, the line of sight (LOS) between the transmitter and the
receiver is considered. The received signal is composed by the direct path wave
which is a stationary nonfading signal with a constant amplitude and multiple
reflected waves that are independent random signals. When the number of reflected
signal waves is large, the sum of received signals r is a quadrature components that
can be modeled by Gaussian random process with zero mean and variance o . The
envelope of the reflected signal component has a Rayleigh probability distribution
and the sum of the received signal results is Rician envelope distribution [4, 5]. The

Rician distribution with the noncentrality parameter & has the probability density

function (PDF) and cummulative distribution (CDF) given respectively by [16]:
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Fr(r)=1-0, [E,L],QO (1.25)

where [,(.) is the zero order modified Bessel function and Q,(.,.) is the Marcum’s

Q-function. With £ =0, we obtain the Rayleigh density function as given in (1.22).

Nakagami-m is another useful fading model that is utilised in multipath fading
channels to characterise the statistics of signals transmission. It is very useful since
some data realizations do not work well with Rayleigh or Rician fading distribution.
Therefore, Nakagami-m becomes a more general method to define some fading
distribution with adjustable parameters. For X random variables, the probability

density function (PDF) of the Nakagami-m is defined as [5,16]:

__2 (m) [WT] 126
fX(X)_F(m)(n] x"e (1.26)

where 7 is the mean square of X defined as: 7= E[X’] and the parameter m is

2

n

————-,m=>1/2 and E[.] is the expectation operator.
E[(X =m)"]

defined as: m =

1.5 Diversity Parameters

1.5.1 Diversity techniques

In wireless networks, diversity techniques are used to mitigate the effects of
multipath fading without additional bandwidth ressources or the transmission power.
The basic idea of this technique is that, in multipath propagation environment,
signals are faded independently and some signals are highly faded while others are
less attenuated. Thus, the use of a proper combination technique decreases the
severity of fading and consequently it improves the network performance and

reliable transmission. Diversity techniques are particularly useful, since they can be

22



combined with other forms of diversity such as time, frequence and space diversity

as described below [4, 26-28]:

The time diversity can be achieved by transmitting symbols of identical message

with a separation in time of at least the coherence time of the channel or the
reciprocal of the fading rate 1/ f,. The coherence time is a statistical measure of the

period of time over which the channel fading process is uncorrelated. Some methods
are used to generate the time diversity such as repetition coding scheme whereby
symbols are transmitted over uncorrelated channels and for each stream of symbols
appropriate interleave is applied. Time interleaving can cause decoding delays,
therefore, it can be more effective in fast fading environment where the coherence
time of the channel is small. In slow fading channels, a large interleaver can result to
a significant delay which is untolerable for delay sensitive applications such as voice,

video and other multimedia transmission [26].

In frequency diversity, a number of different frequencies are used to transmit the
same message. The frequency separation should be large enough to ensure
independent fading during transmission and to guarantee the uncorrelation of fading
statistics for different frequencies. Frequency diversity can be achieved by different
techniques of spread spectum such as direct sequence spread spectrum (DSSS),
multicarrier modulation and frequency hopping. Spread spectrum techniques are
effective when the coherence bandwidth is small, otherwise it becomes ineffective to
provide frequency diversity. Frequency diversity can also result in bandwidth

inefficiency due to the introduction of redundancy in frequency domain [28].

Space or antenna diversity has been a popular technique in wireless networks for
providing diversity gain without additional bandwidth resources. This type of
diversity is typically implemented by using multiple antennas for transmission and/or
reception. Space diversity can be classified into two categories depending on whether
multiple antennas are used for transmission or reception such as receive and transmit

diversity [28].

In receive diversity, multiple antennas are arranged at the receiver side in order to
receive multiple copies of the transmitted signal. The receiver uses the diversity
combining method to combine the replicas of the transmitted signals in order to

increase the overall received SNR and mitigate multipath fading.
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In transmit diversity, multiple antennas are deployed at the transmitter side and the
transmitter processes the message and spread the same message accross multiple
antennas. The multiple antennas are separated physically by a proper distance which
vary with antenna height, propagation environment and frequency. Typically, a
separation of a few wavelength is enough to obtain uncorrelated signals. This type of
diversity is very attractive in the current and future generation wireless networks
since it does not result in loss of bandwidth as do time and frequency diversity. Two
forms of space diversity are met in literature such as polarization and angle diversity.
The polarization diversity ensures that signals are uncorrelated without separating
antennas far apart, while angle diversity is effective in transmissions with carrier

frequency larger than 10 GHz [26-28].

1.5.2 Diversity combining methods

In wireless communication systems, the performance of diversity techniques depends
on how multiple signal replicas are combined at the receiver to increase the quality
of the received signal. Depending on the complexity and the level of channel state
information (CSI) required for improving the performance of the system, there are
four main type of combining techniques including selection combining, switched

combining, equal gain combining and maximum ratio combining [4, 27, 28].

In selection combining, a simple combination is achieved whereby the signal with
the largest instantaneous SNR at every symbol interval is selected as the output, so

that the output SNR is corresponding to the best incoming signal [28].

In switched combining, the receiver scans all the diversity branches and selects a
particular branch with the SNR larger than the predefined threshold. The selected
signal is maintained until it reduces below that threshold. If this happens, the receiver
starts again scanning for looking the new branch to switch on. This scheme has less
performance compared to selection combining but it is simple in implementation
since it does not require simultaneous and continous monitoring of all the diversity
branches. Both selection and switched combining do not require the knowledge of
the CSI. Therefore, both of the schemes can be implemented in conjuction with

coherent and non coherent modulations [27].

Maximum ratio combining (MRC) is a linear combining method whereby the

weighting factor of each receiver antenna is chosen to be in proportion to its own
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signal voltage to noise power ratio. This scheme is optimum since it can maximize
the output SNR. Moreover, the maximum SNR output equals the sum of the
instantaneous SNRs of the individual signals. Each individual signal must be co
phased weighted with its corresponding amplitude and then summed. This scheme
requires the knowledge of the CSI on fading amplitude and signal phases. Therefore,
it is effective in conjuction with coherent detection and inefficient with non coherent

detection [28].

Equal gain combining (EGC) is a suboptimal and simple linear combining method. It
does not require the estimation of the fading amplitude for each individual branch. In
this scheme, the receiver sets the amplitudes of the weighting factors to be unity and
all the received signals are co-phased and then added together with equal gain. The
performance of equal gain combining is lower compared to the MRC, but the

implementation complexity is less than the one of the MRC [27, 28].

1.6 Performance Metrics

The following metrics play a central role when analyzing the performance of

cooperative wireless networks with multipath fadings and time varying channels.

1.6.1 Average error rates

The average error rates can be the instantaneous bit error rate (BER), bit error
probability (BEP), symbol error rate (SER) or packet error rate (PER). All these error
rates are determined by assuming a given channel realization and average noise
power. Their application is very wide for system characterization, particularly the
PER is the most important metric in real world systems. The only problem is the
derivation of BER and SER expressions, their approximations are usually utilised

whereas the closed form of the SER is easily found mathematically [4, 5].

1.6.2 Outage probability

The knowledge of outages are of prime importance in real world systems such as cell
dimension since it quantifies the probability that a certain performance can not be

met. In other words, outage probability P, is defined as the probability that the
received instantaneous SNR (y,) falls below a given value corresponding to the

maximum allowable probability of error ( P,). Lets y, be the typical minimum SNR
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required for acceptable performance. Therefore, the outage probability is given by

V4
P,=P(y, <y, = I P, (y)dy, where y, is the received SNR when considering

0
AWGN channels. The calculation of outage probability is also very important when
the channel does not vary sufficiently fast and this is typically for channel

realization, information rates as well as bit, symbol and packet errors [4, 5].

1.6.3 Channel capacity

In wireless communication systems, by considering that the CSI is known at the
receiver, there are two ways of defining the channel capacity such as Shannon
capacity or ergodic capacity and capacity with outage. Shannon capacity is defined
as the maximum data rate that can be transmitted over the AWGN channel with
asymptotically small error probability, assuming no constraints on delay or
complexity of the encoder and decoder. This capacity is given by C = Blog,(1+y)
where B defines the channel bandwidth and y is the instantaneous SNR given by

y=P/(N,B), P is the transmitted power and N, is the power spectral density of
noise. Shannon also defined this capacity as the mutual information maximized over

all possible input distributions as C = m(.’;t())( I(X,Y), where X is the input, Y is the
p

output, p(X) is the input distribution and C is the channel capacity expressed in

bits per second (bps). The capacity with outage is defined as the maximum rate that
can be transmitted over a channel with some outage probability corresponding to the
probability that the transmission can not be decoded with negligeable error

probability [4, 5].

1.6.4 Receiver operating characteristic (ROC)
ROC is a useful metric that measures the performance of a detector in form of a
graph of the probability of detection ( F, ) against the probability of false alarm ( P, ).

For example, the ROC of a LRT depends only on the probability density functions of
the observation under the hypotheses H; and Hy. In Neyman Pearson test, the slope

of the ROC corresponding to any specified value of P, represents the critical value

of the likelihood ratio. In Bayes test, the threshold 1 is determined by the a priori

probabilities and costs. Consequently, the probabilities of detection and false alarm
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are determined on the point of the ROC curve at which the tangent has slope 4 [16,
19].

1.6.5 Mean square error (MSE) learning curve

The MSE learning curve is another performance metric very useful for evaluating the
quality of the received signal in communication systems, since it clarifies the

operating characteristics of the estimation (filter) algorithm. It is based on the
ensemble averaging of the squared estimation error |e(k)|2 . Estimation errors being a
real world impairment in communication systems, the learning curve of the mean

square estimation error (i.e., J(k)=FE De(k)ﬂ) versus the adaptation cycle k,

provides us useful information about the system performance [23].

1.7 Purpose and Scope of the Thesis

The purpose of this thesis is to propose methods or techniques that can recover
effectively the original transmitted signal at the receiver in wireless networks with
multipath environment. This study focuses on diversity systems in wireless networks,
adaptive channel estimation, data detection methods and considering the knowledge
of channel state information at the receiver. In order to achieve the purpose of the

thesis the set objectives are outlined as follows:

» Identification of existing methods, techniques and their limitations in
mitigating the effect of channel impairments in wireless networks and
recovering the original transmitted signal at the receiver.

> Investigating different scenarios of implementing relaying cooperation with
the purpose of creating diversity environment and enhancing the signal
quality at the receiver.

» Deriving and implementing low complexity channel detection method in
cooperative wireless communications for both stationary and non stationary
environments.

» Deriving and implementing a low complexity adaptive channel estimation
and data detection algorithm in cooperative wireless communications for both

stationary and non stationary environments.
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» Evaluating the performance of the proposed method and technique and

comparing the findings with previous findings in literature.

1.8 Original Contributions of the Thesis

The main contributions of this thesis consist of deriving the data detection and
channel estimation models based on Bayesian linear model (BLM) detector and least
mean square (LMS) algorithm and implementing them in cooperative wireless
communications. These contributions are provided throughout the thesis as follows:

» Deriving and implementing Bayesian linear model (BLM) detector in
multiple relays based cooperative wireless communications in both
stationary and non stationary environments.

» Deriving and implementing the joint least mean square (LMS) algorithm
and Bayesian linear model (BLM) detector in multiple relays based
cooperative wireless communications in both stationary and non stationary
environments.

» Evaluating the performance of the proposed algorithms through simulations
by analysing the results and comparing them with previous outcomes in
literature.

In our research work, some assumptions and considerations are provided in each part

of the work and the obtained results have been published in conferences and journals.

1.9 Organization of the Thesis

In chapter 2, two parts are considered: the first part assumes that the channel state
information (CSI) is available at the destination and we propose, derive and
implement the Bayesian linear model (BLM) detector in multiple amplify and
forward (AF) relays based cooperative wireless communications. In this part, the
receiver operating characteristics (ROC), bit error probability and mean square error
(MSE) performance parameters are derived and numerical results are obtained
through simulations. The effects of relays positions from the source and number of

relays are also evaluated.

In the second part, it is assumed that the channel state information is not available at
the destination and the joint least mean square (LMS) algorithm and Bayesian linear

model (BLM) detector are derived and implemented in multiple AF relays based
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cooperative wireless communications in order to estimate the channel and detect the
original transmitted signal. In this part, the ROC, complementary ROC, MSE
learning curve and error probability are derived, numerical results are obtained and
compared through simulations. The effects of relays positions, number of relays and

gradient step size parameter are also investigated.

In chapter 3, two parts are also considered: the fisrt part assumes that the CSI is
available at the destination and assumes time varying channels. Therefore, the
performance of the BLM detector is evaluated in multiple relays with time varying
channels. In this part, the ROCs, minimum mean square error (MSE) and bit error
probability are derived and evaluated through simulation. The obtained results are
compared with other existing results in literature. The effects of nodes speeds and

number of relays in the network are also evaluated.

In the second part, it is considered that the CSI in not available at the receiver and the
unknown channel is varying with time. Therefore, the LMS-BLM receiver is
proposed and evaluated in multiple relays networks. The ROCs, bit error probability,
MSE learning curve and the minimum MSE are derived and evaluated through
simulation analysis. Different parameters are also investigated such as nodes speeds,

step size p and various number of relays in the system.

Finally, chapter 4 concludes the thesis with general conclusions, recommendations

and expected future works of the thesis.

1.10 Publications

During the execution of this thesis, the following Journals and conference papers

have been published:

1.10.1 Journals

e Gatera, O., Ilhan, H., Kayran, H., A. 2016. A novel LMS-BLM Algorithm
for AF Relays based Cooperative Wireless Networks. International Journal
of Electronics and Communications (AEU) 70 (2016) 1480-1488.

e Gatera, O., Ilhan, H., Kayran, H., A. 2016. Performance Analysis of
Differential BLM detector in AF Relay Networks with Time Varying

Channels. International Journal of Computing and Information Sciences.
Vol. 12, NO. 2, December 2016.
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1.10.2 Conference papers

Gatera, O., Ilhan, H., Kayran, H., A. 2016. LMS-BLM Receiver in AF
Based Cooperative Relay Networks. [8th IEEE  Mediterranean
Electrotechnical Conference. April 18-20, 2016, Limassol, Cyprus.

Gatera, O., Ilhan, H., Kayran, H., A. 2016. ROC Analysis of BLM
Detection in AF Relays Based Cooperative Wireless Networks. International
Conference on Sustainable Energy, Environment and Information
Engineering (SEEIE 2016) March 20-21, 2016, Bangkok, Thailand, pp:277-
281. ISBN: 978-1-60595-337-3.

Gatera, O., Ilhan, H., Kayran, H., A. 2015. BLM Detection in AF Relay
Networks.  International  Conference on  Signal Processing and
Communication Systems (ICSPCS’2015), Cairns, Australia, December, 14-
16, 2015.
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2. ADAPTIVE CHANNEL ESTIMATION AND DATA DETECTION
MODELS FOR COOPERATIVE WIRELESS COMMUNICATIONS IN
STATIONARY ENVIRONMENT

2.1 Introduction

In this chapter, a cooperative wireless network that comprises of single source (S),
multiple relays (Ry), and single destination/receiver is considered. It is assumed that
all nodes are equipped with single antenna and the transmission between nodes is
done in half duplex mode. It is also considered that the cooperation and
communication between nodes are done in stationary environment whereby all nodes

in the network do not move as depicted in Figure 2.1.
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Figure 2.1 : Network model in stationary environment.

In this chapter, two principal sections are considered; in the first section, we assume
that the channel state information (CSI) is available at the destination whereas the
received signal at the destination is corrupted by noise and other interferences.
Therefore, a data detection model based on Bayesian linear model (BLM) detector is
proposed for the purpose of recovering the original transmitted signal from noisy

signals.

In the second part, it is assumed that the channel state information (CSI) is not

available at the receiver and also the received signal is corrupted by noise and other



interferences. Therefore, an algorithm that is based on the combination of the least
mean square (LMS) and Bayesian linear model (BLM) detector is proposed for the
purpose of estimating the channel between the source & destination and the relay &

destination and recovering the original transmitted signal at the receiver.
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2.2 Bayesian Linear Model (BLM) Detector in Multiple AF Relays Based

Cooperative Wireless Networks

2.2.1 Abstract

In this part, the investigation of the performance of Bayesian linear model (BLM)
detector in multiple AF relays based cooperative wireless networks is carried out.
This part assumes that the channel state information (CSI) is available at the
destination and the received signal is corrupted by noise and other interference
signals. Therefore, a BLM detector at the receiver is proposed in order to recover the
original transmitted signal corrupted by noise and other interferences at the
destination. Performance evaluation of the proposed method is examined in terms of
receiver operating characteristics (ROC), bit error probability and mean square error
(MSE) performance. Computer simulations and results analysis are developed in

order to assess the effectiveness of the proposed algorithm.

2.2.2 Related work

In literature, studies on signal detection were addressed in various research works.
The most popular study on detection theory is investigated in [29] where the author
consider deterministic signals of uknown structure in Gaussian noise. This work is
extended for random amplitude signals with different fading channels such as
Rayleigh, Nakagami and Rician distribution [30]. In [31], closed form expressions of

the detection probability (P,) are derived over Rayleigh, Nakagami and Rician

fading channels with different diversity schemes such as equal gain combining
(EGC), selection combining (SC) and switch & stay combining (SSC). The same
analysis is done in [32] for low complexity diversity schemes such as square law
combining (SLC) and square law selection (SLS). Other methods are utilised to
evaluate the probability of detection such as moment generating function (MGF) by

considering the maximum ratio combining (MRC) detector at the receiver [33].

The assessment of signal detection is also addressed in cooperative relay networks,
the upper and lower bound expressions of the average probability of detection for
fixed gain relay networks are derived in [34]. In order to improve the energy
detection for low SNR, multihop cooperative diversity network over independent and

identically distributed (IID) Rayleigh fading channels is proposed in [35]. The
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probability of detection is also determined by using the method of Marcum Q-

function [36].

Based on the above literature review, this part use an alternative method based on
Bayesian linear model (BLM) detector in order to enhance the detection performance

at the receiver. The main contributions of this part include:

e Deriving and implementing the BLM detector in multiple amplify and

forward (AF) relays based cooperative wireless communications.
e Determining the test statistic of the system with BLM detection approach.

e Deriving the probabilities of detection, false alarm, miss detection and error

of the BLM detector.

¢ Deriving and evaluating the performance of the proposed algorithms in terms
of receiver operating characteristics (ROC) , minimum mean square error

(MSE) and bit error probability.

e Evaluating the effects of relays positions from the source and number of

relays on the system performance.

e Comparing the obtained results of the proposed method with other existing

methods in literature.

2.2.3 Bayesian linear model (BLM) detector description in M-relays networks

The receiver based on BLM detector contains a combiner and detector as represented

in Figure 2.2. The scheme comprises of the received signals (i.e.,

Veds Midsees Vias-os Vo )» tap weights (i.e., W, . W,,...Wy,...W,, ) and detection

parameters such as test statistic 7°(y), threshold A, and test hypotheses H, and H,.

As indicated before, the receiver decision based on hypotheses tests decides the
presence of the signal under hypothesis H, when the test statistic is greater than the

threshold that means the received signal is composed of the original transmitted
signal and corrupted by noise due to transmission medium. The receiver may also
decides the absence of the signal when the test statistic is less than the predefined
threshold which means that the received signal is only composed by the noise. It may
also happen that the receiver provides the wrong decision whereas there is a presence

of signal or absence of the signal.
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Figure 2.2: Block diagram of the BLM detector in M-relays networks.

As represented in Figure 2.2, the received signals from the source and various relays
at the destination are combined and the detector computes the test statistic which is
compared with the predetermined threshold in order to decide on the received signal

according to test hypotheses H, and H,.

2.2.4 System and channel models

As illustrated in the Figure 2.1, coefficients 4,4, and h, are channels between the

source & destination, the source & relays and the relays & destination. The system
signal processing comprises of two phases, in the first phase, the received signals
from the links between the source & destination and the source & relays are

respectively given by:

Vu (k) = [P hu(k) +w,, (k) @.1)
ysi(k) = }ihstu(k)—i_wsz(k) (22)

where P is the power of the source, u(k)is the signal generated by the source and
transmitted to relays and destination. Coefficients w (k) and w, (k) are assumed to
be complex additive white Gaussian noise with zero mean and variance N, . During

the second phase, the source is silent and each relay multiplies the received signal

v, (k) with the amplification factor G, and forwards it to the destination. In this
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case, orthogonal transmission is required in order to transmit N symbol at each
relay in the network. This can be realized by using time division multiple access
(TDMA) or frequency division multiple access (FDMA) [4,5]. Therefore, the

received signal y,, (k)at the destination is given by:

V() =BG R,y (k) +w, (k) 23)

The expression (2.3) can be simplified as:

(k) = [P, (k) +w, (k) (2.4)

where u (k) =G,y (k) indicates the generated signal at each relay in the network,
w,, (k) is the complex additive white Gaussian noise with zero mean and variance
N, and P, is the power at each relay. The amplification factor G, is expressed as

[15]:

1
G, < A (2.5)
E( hsi )Ps +N0

where E (.) represents the expectation operator. In matrix form, the system input

output can be represented as follows:

_ySd | Ehm’ 0 0 _usd 11 Wsd |
yld 0 \jFIhld 0 uld Wld
eee — cee “es A cee cee " eee 2'6
Jia 0 0 \jFihid 0 Uiq Wia 2)
LVwa | 0 0 SN V30 T | KV B R

Assuming that the received signals at the destination are independent and identically
distributed (i.i.d), and can be analyzed in linear model. Therefore, the matrix in (2.6)

can be represented by a linear equation as follows:

y=Hu+w 2.7)
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where yp indicates the column vector of the received signal, H indicates the

channel matrix, # indicates the column vector of the transmitted signal and w

indicates the column vector of the received noise at the destination.
2.2.5 Mathematical models

2.2.5.1 Receiver operating characteristics (ROC)

In general, the decision problem between the presence and absence of the signal in

non fading environment is governed by the following two hypotheses [16]:

B w: H, )3
y= Hu+w: H, @5)

The received signal may be the noise only or absence of the signal which

corresponds to the hypothesis H,,. Otherwise, the received signal is a combination of
the transmitted signal and the noise which corresponds to the hypothesis H, that
indicates the presence of the signal. The receiver decision is usually probabilistic
according to the hypotheses H, and H,. Considering the BLM detection approach,

the probabilities of density function (PDFs) of (2.8) are expressed respectively as

follows:

! exp| — ! Tyl H,
Qo) 2 det> (N, 0| 2, Y | 0

Sr() = (2.9)

1 T
X - . H
Q7)Y 2 det > (C, + NI) T { 2c N7 } !

where y is an Nx1 vector of observations, H 1is a known Nxp observation
matrix with N> P, u is an Px1 random vector with u(N(0,C,)),w is an N x1
noise vector with PDF N(0,NV,I) and is independent of u and C, is the covariance

of the source signal #. In non fading environment, the signal energy detection is
simply realized such that the received signal y(k) passes the process of filtering,

squaring, integrating and the decision statistic is given by [33]:

T=4 j () dk (2.10)
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where A is a constant. The decision statistic is seen to be a sum of squares of
Gaussian random variables whose distribution is a non central chi-square under H;
and central chi square under Hy. Thus, the PDF of 7" under Hy and H; can be written

as:

; “Texp| - T | H,
2°T(e)Ny" 2(Ny)
Jr (1) = el (2.11)
1 T \2N 2v+T «fZ T
—_— — exp _zr+l I, NEVL : H,
2N, \ 2y 2N, N,

where T'()) is the Gamma function and 7 (.) is the ¢” order modified Bessel

functions of the first kind. The parameter ¢ depends on the time bandwidth product

B /N,

2
|

[33]. The instantaneous signal to noise ratio (SNR) is defined by 7:‘}1,‘
(from node i to node j) where P is the power of the source and N, is the noise

power spectral density.

When the receiver decides the presence of the signal under hypothesis H;, the

detection performance is evaluated in terms of probability of detection (P,), and

when the receiver provides wrong decision under Hy, it implies the probability of

false alarm (P, ). Otherwise the receiver decides the absence of the signal or noise

only which corresponds to the probability of non detection ( P)). It may happen that

the receiver decides the absence of the signal whereas there is; this case indicates the

probability of missed detection ( P, ).

Theoretically, the probabilities of detection and non detection are respectively

defined as [16, 19]:
P,=P(T(y)>A |H)) (2.12)
and,
P =P(T()<A |H,) (2.13)
In (2.12), the probability of detection exists when the obtained test statistic is greater

than the predetermined threshold; in this case the receiver is allowed to process the
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received information signal from the transmitter. In (2.13) the test statistic is less
than the predetermined threshold, therefore there is an absence of the signal or only
the noise is present. In some cases the receiver may make error decisions.

Theoretically, error decision probabilities of the receiver such as P, and P, are

defined respectively by:

P,=P(T(y)>21 |H,) (2.14)
and,

P =P(T()<A |H) (2.15)
The relation between the probabilities of detection and missed detection is given by:

P, =1-P, (2.16)

m

where T'(y) is the test statistic of the receiver and A is the predetermined threshold.

Then, the closed form of the probabilities of detection (£,) and false alarm (P, )are

defined respectively by [32]:
«/2 A
P =QL{—7,£] (2.17)
o o

and

P I'(c,A/207%)

% o (2.18)

where, TI'(,.) 1s the upper incomplete Gamma function defined as
['(a,x)=["t""e"dt [16]. The parameter ¢ is the time bandwidth product of the

observed signal which signifies the number of observed samples ¢=N/2 with N

defines the degree of freedoms (DOFs) and A is the detection threshold. Q.(.,.) is

the ¢” order generalized Marcum Q-function defined as [16]:
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2

0O.(a,b) = J:O x: exp(— al 42-a jIH (ax)dx (2.19)

aC

The expression (2.19) can be simplified as:

< a’ (@’ /2) & b2\ (67 12)
Qc(a,b)—;exp(—?j p Z exp(—?]T (2.20)

k=0

Using the equation (2.20) and the relation in [16, Eq.8.352], equation (2.17)

becomes:

0. (@ ﬂj B iexp(_lJ (}//62 ) F(’HCJ : (202)) (2.21)

n! (n+c—1)!

In addition, we can mention that the threshold A is commonly determined by solving

the probability of false alarm in (2.18) as follows [19, 37]:

ﬂ k
[(c;A/207) ( A j“(zazJ (2.22)
————— =eXp| =
I'(c) 20 k!

k=0

where ¢ are even valued. Therefore, using (2.18) and (2.22) the threshold can be

derived iteratively as follows [19]:

(%)

k
r!

c—1
Aew=—Inp,+In| 1+ (2.23)
r=1

where A = 1/20c”. Analytically, using the BLM detection approach, the test statistic
T'(y) is derived as follows [19]:

T(y)=y"HC,H' (HCH" +NJI)"y (2.24)

The receiver decides the presence of the signal when the test statistic is greater than
the threshold (7'(y) > A ) for the hypothesis H, that indicates the presence of the

signal. Otherwise, the receiver decides the absence of the signal according to the

40



hypothesis H|,. In (2.24), the covariance matrix C, and the noise variance N I are

represented by the following diagonal matrix:

o, 0 .. O

0 2.0
C = 14 (2.25)

0 0 0 o]

where, o2, and o}, are the variances of the signal generated by the source and relays

respectively.
_ : 0 _
0O N ... 0
NI = 0 (2.26)
i 0O 0 0 N 0

The test statistic 7°(y) is evaluated by substituting the channel covariance matrix and

the noise variance matrix values in (2.24), after doing some variable changing, we

obtain the following expression:

T(y){

The test statistic (2.27) under test hypotheses is described as follows:

2

hy szd 2 & |hid|2 Gifi 2
—_— +) | —— IV 2.27
263d+Non ;[|hid|zo-zii+N0 |yd| 220

sd
hsd

2 2
Vsd Vsd | Sz Vid
Y t1 ‘gsd(O)‘ ;%d +1 S0
(2.28)
2 2
H T0) =L (ol + N |+ T (o + Ny | 2
Vsa sd (1) =1 Via T id(1)
where Vea = |hsd| O_sd/NO s Vea = a’/NO s Yia = |h,d| O',d/No > Yia = zd zd/
vd(l) _E|:yvd } (Ko-szd +N,), ld(l) = E[|y,d| } 51 +N,), vd(O) =N, and

2
id(0) — No
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The expression in (2.28) can be simplified as follows:

M
H, T(y)= a(O)Zzz(sd) + Zﬂiw)}(zz(rd)(i)
im1
(2.29)
2 < 2 .
H, T(y)= Ay Xasay t Zﬂi(l)lz(rd)(l)
-1
h . — }/sd N — j/id N — N
where: Oy =——— Ny, B 05 oy = ( dasd +N,),
Va1 Vi +1 Vet
B = ( KyOw+No), Xawy a0d x5, (i) are independent and identically

7 ld
distributed Chi-squared random variables with two degree of freedom for the source
& destination and relay & destination respectively.
The probabilities density functions (PDFs) of the test statistic 7'(y)in (2.29) are

determined as follows [19]:

1 o
PT;H)=——[ ¢y, (@)exp(=jeT)do

1 (2.30)
PTsH) =~ ¢y, (@)exp(=joT)do

T

It is shown that P(T;H,) and P(T;H,) are obtained from the inverse fourrier
transforms of the characteristic functions of 7°(y) according to the hypotheses Hy and

H, that are given by:

M
= +
P 1- 2]waw) III 2]wﬁw)
2.31)

1 M 1

¢TH1 = . + .

M M M 1
where, H Z , With L, = — , and where

I=1,1%i 1- ﬂ/(()) /ﬂi(O)

i R , with R, = ﬁ !

11_1[1 2]a)ﬁ(1) el B 2]“’181(1) 1:1,/¢i1_ﬁl(l)/ﬂi(l)

i 1= 2Ja’ﬂ(0) el B Zja)ﬁl(m

M
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Substituting (2.31) in (2.30), the PDFs for dual hop (2 segments) relays network are

given by:
1 = 1 do 1E L . ndo
P(T;H, ):—.[_ ———exp(—jol)—+— J _ xp(—]a)T)—
27 (1-2jo a(o) e 25 (1-2jp) 2
(2.32)
L 1 dw R . ndo
P(T;Hl):_j ———exp(—jol)—+— J —exp(—]a)T)—
27 (1-2j o) 7 =(1-2jop,) 27
After deriving (2.32) and making some variable changing, we obtain:
1 w T
P(T;H,)= exp| — ] ( j
" 4a ( 2 le Bio) 2B
(2.33)

P(T;H,)=

L exp i r
4o 2“(1) = 40 2ﬂ,»(1)

The probabilities of false alarm and detection can be determined as follows [19]:

o 1 A
P, = L P(T;H,)dT :EGXP(_ 2, j ;L exp( 2@((})] (2.34)

and

© 1 A 1 & A
P, =| P(T;H))dT =—exp| — +— > Rexp| —— 2.35
)=, PATSH)AT = p( 2%] 22 p[ 2%} (2.35)

2.2.5.2 Bit error probability performance analysis

The bit error probability (BEP) of a system that transmits with equal likely
probability is given by the following expression [38]:

BEP:%(l—Pd +P,) (2.36)

By substituting (2.34) and (2.35) in (2.36), the BEP is given by:
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M
BEP—l—l ex p[—ij—e p[ A j—z R,exp[—ij—L,exp[— A j (2.37)
2 4 2(1(1) 2(1(0) i=l Zﬂi(l) 2 i(0)

2.2.5.3 MSE performance analysis
The minimum mean square error (MMSE) estimator with Bayesian linear model
approach is given by [19]:

§s=HC H"(HC,H"+N,)'y (2.38)

Substituting (2.25) and (2.26) into (2.38), we obtain:

1).9 |hsd |2
P |hy, |2 O-s2+N0

B|h, I )
Blh, [ c;+N, (2.39)

sd

>
I

Blh, I o
Plh, | o] +N,

Since, the transmission of signals is orthogonal and all signals are independently
transmitted from the relays, the overall estimate is the summation of independent
estimation by using the following property: The MMSE estimator of s based on i

uncorrelated data vectors, assuming jointly Gaussian statistics is given by [16]:

M
=E(s|y Yoo i) =E(s|0)+E(s|32) 4+ E(s|3) =D E(s]y)  (2:40)
i=1

Therefore, the MMSE estimate § becomes:

. P|h,| o’ X Plh
s=_Llhyl o, S [y 0 (2.41)
P|hvd|0'+N ~'P|h,|"c’+N,
Then, the MSE is given by:
(2.42)
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2.2.6 Numerical results

In this study, simulation results are presented in order to investigate the performance
of the BLM detector through the ROCs, bit error probability and minimum MSE.
Four scenarios are considered; the first scenario evaluates the probability of detection
of the BLM detector with various number of relays, and compares it with the upper
and lower bounds of probability of detection given in [34]. The second scenario
evaluates the probability of detection and bit error probability for various positions of
relays with different number of relays. The third scenario evaluates the everage
probability of error with different number of relays. The fourth scenario evaluates the

mean square error (MSE) of the BLM detector with various number of relays.

It is considered that the variance of channel fading coefficient between nodes (i.e:

o;) is found by using path loss model equivalent to o} =d;" with v which

indicates the path loss exponent, here we take v =3 which corresponds to the

shadowed urban cellular radio environment [4], and &, which denotes the distance

between two nodes in the network and the distance between the source and the
destination equals to one whereas the distance between the source & relay and the

relay & destination varies according to the relation: d , =d_, +d,,.

During simulation, the signal is generated at the source and modulated with QPSK
and sent to all relays and destination node in the network. The channels between the
source & destination, source & relays, and relays & destination are generated with
Rayleigh fading distribution. Each relay amplifies the received signal from the
source only and forwards it to the destination. The amplification is done by only
multiplying the received signal with the amplification factor or gain which is given
by the expression in (2.5). At the destination node, the BLM detector computes the
signal energy for each link, combines all received signal energies from different links
and then determines the test statistic which is compared with the predetermined
threshold. The threshold is determined by solving the probability of false alarm given
by the expression (2.18). The probability of false alarm ( P,,) is taken between 0 and

1 and the bandwidth product ¢ equals to 2.

In Figure 2.3, the ROC is evaluated in M-relays (R=2, R=3 and R=4) with BLM
detector at the destination. The results show that the probability of detection increases

when the number of relays increase and the BLM detector results outperform the
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results of the upper and lower bound of probability of detection for the number of
relays higher than 2. In Figure 2.4, the ROCs of the BLM detector is also analyzed in
M-relays (R=2, R=3 and R=4) located at different distances from the source and
destination. The results show that the probability of detection increases as the number
of relays increases and when relays are closer to the source. The same observation
about the improved performance when relays are closer to the source is observed in
[39, 40]. In Figure 2.5, the error probability is investigated with M- relays (R=4, R=3
and R=4). The obtained results show that the error probability decreases when the
number of relays increases in the system and the Figure 2.6 shows that the bit error
probability improves much more when the relay is closer to the source than the relay
closer to the destination. In Figure 2.7, the MSE of the BLM detector is investigated

in M-relays and the results show that the MSE decreases as the number of relays

increases.
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Figure 2.3 : ROCs of the BLM detector with the upper & lower bounds.

46



.oo"‘"_'—é.—.‘z': mml ﬁ!:___— 4«14" 8 e
*® et L) - PRR
o POt L - 0~
09 &% =% - PR -
.. * .. f’ < 4"
g 4’,'. ;’ 444 A
. V/ P d P
e e < " ~
’ ,/ <<l /
07 a 2 « <
. ,' ', 44
I /7 == BLM-R=2[1,0.75,0.25]
064 ,-' 4‘ / === B M-R=3[1,0.75,0.25]
; 1 4 / === BLM-R=4[1,0.75,0.25]
s 05 ; I < y <4 BLM-R=2[1,0.25,0.75]
o .. ,’ < ~—m BLM-R=3[1,0.25,0.75]
314 @ BLM-R=4[1,0.25,0.75]
0.41;1 /
0.3 I//
0.2
0.1
0 01 0.2 0.3 04 05 06 07 0.8 0.9 1

Figure 2.4 : ROCs of the BLM detector with various relays positions.
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Figure 2.5 : Average error probability of the BLM detector in M-Relays network.
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Figure 2.7 : MSE of the BLM detector in M-Relays network.
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2.2.7 Summary

In this study, the Bayesian linear model (BLM) detector in amplify and forward
(AF) multiple relays network is proposed. It is also assumed that the CSI is available
at the destination and the network system is operating over independent and
identically distributed Rayleigh fading channels. Four scenarios are considered; the
first scenario is based on evaluating the receiver operating characteristics (ROC) and
comparing it with the upper and lower bound of the probability of detection (i.e.,
Figure 2.3). The second scenario evaluates the ROC and bit error rate in various
number of relays and different locations of the relays (i.e., Figure 2.4 and Figure
2.5). The third scenario evaluates the BER in various number of relays (i.e., Figure
2.6). The last scenario evaluates the minimum mean square error (MSE) of the BLM

detector with various number of relays (i.e., Figure 2.7).

The simulation results of the ROCs show that the bayesian linear model (BLM)
detector provides better detection performance than the upper and lower bound of the
probability of detection, and the detection performance increases when the number of
relays increases and when relays are closer to the source. The results of error
probability show that signal errors in the system decreases when the number of relays
increases in the system and when the distance between the source and relays is
reduced. Similarly, the results of MSEs show that the system performance improves
gradually as the number of relays increases in the network. The distance between the
source and relay is an important factor that determines the performance of the system
in a network that use multiple relays. In summary, the overall results have shown that
the BLM detector is effective in M-relays based cooperative communications and
can recover efficiently the original transmitted signal as the number of relays

increases in the network.
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2.3 A Novel LMS-BLM Algorithm for AF Relays Based Cooperative Wireless

Networks
2.3.1 Abstract

In this section, multiple AF relays based cooperative wireless networks are
considered. A number of studies in literature on wireless networks assume perfect
channel state information at the receiver (CSIR), but in reality, due to the nature of
wireless channels, little information is known on both the channel state information
(CSI) and original transmitted signal at the receiver. Therefore, the main contribution
in this work is based on proposing a novel algorithm that combines the least mean
square (LMS) and Bayesian linear model (BLM) detector for the purpose of
estimating the channel and recovering the original transmitted signal at the receiver.
Analytical and theoretical simulations on receiver operating characteristics (ROC),
complementary ROC, mean square errors (MSE) learning curves and probability of
error are presented. The assessment of the effects of gradient step size and number of

relays on both the detection performance and the MSE learning curve are carried out.

The main advantages of the proposed algorithm are low implementation complexity,
linear computation and can improve the detection performance of the receiver [23-

25].

2.3.2 Related work

In literature, most of the existing studies focus on either signal or energy detection
[29-34] and assume perfect CSI at the receiver or the transmitter or both [41-47]. In
[41], authors consider pilot symbol aided channel estimation for cooperation
diversity systems and focus on sub optimal linear minimum mean square estimator
(LMMSE) design. A complete study on training based channel estimation for relay
networks with AF transmission scheme is done in [42] and new estimation scheme
that directly estimates the overall channels from the source to the destination is
studied on both linear least square (LS) and minimum mean square error (MMSE)
estimators. In [43], a wireless network with AF relays is studied where an
autoregressive model is used to characterise the time varying channels and Kalman
filter is utilised for channel estimation. In [44], the expectation-maximization (EM)

algorithm is used to obtain the channel estimates in an iterative way. Space-
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alternating generalized expectation — maximization (SAGE) algorithm is used to
perform code-aided iterative channel estimation from the broadcasting signals with
AF protocol [45]. The problem of data detection and channel estimation is
investigated in [46] by proposing a combination of generalized likelihood ratio test
(GLRT) and least mean square (LMS) algorithm in DF relay networks. Iterative
channel estimation and data detection based on parallel interference cancellation

(PIC) at the receiver is proposed in [47].

In this study, by considering that the CSI is not available at the receiver and the
original transmitted signal is corrupted by unwanted signals, a novel algorithm is
proposed which combines the LMS algorithm and the BLM detector with the
purpose of recovering the desired signal. Therefore, the main contribution of this part
is based on implementing the proposed algorithm in cooperative wireless networks

with AF relays and examining the following performance metrics:

e Deriving the test statistic of the proposed algorithm.

e Deriving the probability densit functions of the test statistic.

e Deriving the probabilities of false alarm, detection and error of the receiver.

e Performing simulations for the mean square error (MSE) learning curve.

e Performing simulations for the theoretical and analytical receiver operating
characteristics (ROCs) of the system.

e Evaluating the effects of gradient step size and number of relays on the
ROCs.

e Evaluating the effects of gradient step size and number of relays on the MSE

learning curve.

The advantages of the proposed algorithm are based on simple matrix computations
of the BLM detector, low implementation complexity and feasibility of the LMS
algorithm compared to other existing adaptive algorithms such as RLS algorithm and
Kalman filters. The complexity of the LMS algorithm follows linear law whereas the
one of the RLS follows square law. Moreover, the use of the Kalman filters for
channel estimation requires the knowledge of some a priori information of the
channel availability at the receiver which is not the case when using the RLS
algorithm. Therefore, the computation complexity of the LMS and RLS becomes less
than the one of the Kalman filter [23-25]. In this part, simulation results show that

the obtained analytical results are in agreement with the theoretical results and the
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system can provide satisfactory results of the ROCs that are different from previous

studies [29-34].

2.3.3 System model

As represented the network model depicted in Figure 2.1, the channel estimation is
realized between the source and destination, and the relay and destination. We
assume that each relay forwards the received signal from the source only and does

not add additional traffic on the transmitted signal.

In this system model, pilot assisted estimation is considered and there is no any
assumption on the channel distribution characteristics instead the theoretic channel
during implementation is considered. Two phases of data transmission are
considered; in the first phase the source broadcasts the signal to the destination and
relays in the network. In the second phase, the source is silent and relays amplify and
forward the signal to the destination. The transmitted signals obey orthogonal
transmission which can be acheived by using time division multiple access (TDMA)
or frequency division multiple access (FDMA) [4]. Therefore, the
destination/receiver is equipped with LMS-BLM receiver for channel estimation and

data detection as described in Figure 2.8.

!
hok) | /_z\
T > A
+ (y) . Hew,
u(k) / e(k) 5 <A
h(k) /
| 4 Channel estimation Combination and detection

Figure 2.8 : Block diagram representing the LMS- BLM Receiver.

In the above scheme, the block diagram comprises of two main parts, the first part is
about channel estimation based on LMS algorithm and the second part comprises of
combiner and data detection with BLM detection approach. The overall test statistic is

compared with predetermined threshold which is derived from the expression (2.18).
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2.3.4 Mathematical and performance metric models

In reality, CSI is not available at the receiver and need to be estimated. In this
context, the source sends additional pilot symbols and the corresponding received
signal to the destination which are used to obtain the channel estimate. Therefore, the
proposed algorithm that is based on least mean square (LMS) algorithm for channel
estimation and Bayesian linear model (BLM) detector at the receiver is implemented
in wireless relays network in order to enhance the original transmitted signal
recovery. The LMS algorithm is a linear adaptive filtering algorithm that consists of
two basic processes such as filtering and adaptive processes. In filtering, given the
input signal, the output of the linear filter is computed and then the estimation error
is generated by comparing this output and the desired response. In adaptive process,
the automatic adjustment of the parameters of the filter is done in accordance with
the estimation error. From Figure 2.8, the observed signals at the destination can be

represented as:

Yo (k) = u(k)hy( ) (k) + (k)
Yia (k) =u,, (k)h()(ld)(k) +w(k)

(2.43)
Yia (k) =uy (k)hO(id) (k) +w(k)

Yara (k) =ty (k)hO(Md) (k) +w(k)

Assuming that the received signals can be modeled as linear form and all unknown
channels are independent random variables where each individual realization of the
channel path is independent for all time step k. Therefore, the linear form of the

received signal vector y at symbol time k can be written as:
y(k)=H (k)u(k)+w(k) (2.44)

where H denotes the channel matrix, # is the symbol vector simultaneously

transmitted by the source and W assumed to be the additive white Gaussian noise
vector with zero mean and covariance matrix NyI. Therefore, the LMS algorithm is

computed in the following recursion equations:
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(k)
e(k)=y(k)—d(k) (2.45)

The channel estimate H (k+1) is updated according to the estimation errors e(k),
M 1s the step size and u(k) is the transmitted signal at time step k. The mean square
error (MSE) is given by: E[e’(k)] = E[(y(k)—d(k))’]. After obtaining the channel

estimates, the BLM detector combines the received signals and computes the test

statistic as given in the following [19]:
T(y)=y " HC H' (HC H" +N,I)y (2.46)

The test statistic 7°( y)in (2.46) can be defined as the total signal energy received at

the receiver due to the combination of the energy signals between the source and

destination, and the relay and destination links. In order to decide about the presence

or absence of the signal, the test statistic is compared with the threshold A that is

derived from the closed form expression given in (2.18). In equation (2.46), the

covariance matrix equals C, = diag[c.,,0r, s> T»---, 00y ] and the noise variance

equals to NI =diag[N,,...,N,].

The test statistic (2.46) is evaluated by substituting the values of covariance matrix of
the transmitted signal and the noise variance matrix, after doing some variable

changing, we obtain the following expression:

)
1\ hyoy + N

A W o> L
T(y)= [ﬁ] v+ Z[%] Vi (2.47)
+ 0

In (2.47) y2, and y., are i.i.d random variables with N(0,1). According to the

hypotheses Ho and H;, the 7'(y) can be derived as follows:
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2 A 2
H . fv(y) _ hsdedN (&J +i hjio-zsz [ yid ]
0- -
o2+ N, )\ V) ko + Ny )\ Vo)

H T(J’) hsd sd(ySdJ +Zh [yld]

) Uia)

(2.48)

where 03 =Ny, U2 =Ny, U} =h%0% +N, and 02 =hic? +N,. The relation

(2.48) can be written again as follows:

M
H,:T(y)= d(O)stszd +Zﬂi(0)}(r2d )
=1
(2.49)
. A 2 < 5 2 /-
H :T(y)=amnxau+ Zﬂia))(rd (@)

i=1

72 2 12 2
0, - e A
i(0)

where: 05(0) , BT p
hgdagd +1 h,o, +1

) _ 2
sdo-vd7 ﬁ(n_h O',da No=1, xu

and x>, (i) are independent and identically distributed Chi-squared random variables

with one degree of freedom for the source and destination, and relay and destination

links respectively.

R 1 e R
P(T3 Hy)=—— [ 4., (@exp(-jol)do
T
(2.50)
N 1 ro R
P H) == ¢, (@exp(-jol)do
V/a 00 1

It is shown that P(f’; H,) and P(f; H,) are the inverse fourier transforms of the

characteristic functions of f“(y) according to the hypotheses Hy and H;. The

characteristic functions are given by:

1 g
b, = o ;
oo m 1,:1[ 1-2jwp,,
(2.51)
b = : +1M[ 1
Ty \/1_2ja)0?(1) i=1 \[1—2]'0’:‘3‘@

for,
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M l M L . A M 1
H = = Z . Wlth Li = — =
- \/1 —2jaPyo) \/ 1=2jof ) L \/1 ~ B! P
and for,
M M R A M 1
MN—->—"  wih =] ——
! \/1 —2jof, = \/ 1=2jof, == By By

Substituting (2.51) in (2.50), the PDFs for dual hop networks are derived as follows:

\ | o | do 13 L wdo
P(T;H)) =—| ————exp(—jol)—+ — _exp(—jol | —
° '[‘”(I—Zja)d(o))l/z 2 zujwa 2job)” o,

) (2.52)
| do , 1, o R
= NG exp(~ ]a)T) _ J‘_w 12

exp(—ja)f)‘;—j

Using [16, 19] and [48], the PDFs of the test statistic (2.52) can be derived as

follows:
. ~—-1/2 7 7 ~-1/2 .
P(T;H))=——=¢exp(———)+ X L —exXp(———=—) (2.53)
. f27za(0) 205(0) = ’27[,@(0) 2ﬁi(O)
and,

A

. £—1/2 e M oA T—]/z T
P(T H)) =—=—=¢exp(-—=—)+ 2R exp(— ) (2.54)
2ra,, 2, = }2%3“) 2,6’1(1)

Using the solutions found in (2.53) and (2.54), the probabilities of false alarm and
detection are respectively derived as follows [49, Sec.5.3. Eq. 21]:

o 1 1 1 L 1 l
P, = P(T;H,)dT =—T| = 2|+ 2 2.55
7 NF/3 {2 ] i= l»\¢ [ 1(0) ] (2-33)

and,

MR

Jro 12724,

i

_ipmyat—=——r| L L ¢ R L] (2.56)
A Nz |\ 2 28,
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Using the solutions (2.55) and (2.56), it is likely to design a receiver with minimum

probability of error (minPe). Therefore, the average probability of error (P,) is

defined as follows [16]:
P =P(H,/H)P(H,)+P(H,/ H,)P(H,) (2.57)
Assuming equal prior probabilities of signal transmission, we can write:
P(H)=P(H,)=1/2 (2.58)

Therefore, the P, becomes:

P =%P(HO/H1)+%P(H1/HO)
: , (2.59)
=5Pfa+5(1—%)

By substituting (2.55) and (2.56) in (2.59), the average probability of error (P, )

becomes:

RO T L N U L G A DR Y P R 260
"2 Zﬁ 2’26‘(1) 2‘/; 2,2‘5‘@) a 2\’7 2’2/}1-(0) 2‘/; 2’2:31(1> .

2.3.5 Numerical results

In this study, simulation results are presented in order to investigate the performance
of the LMS-BLM receiver. Three scenarios are considered; the first scenario
compares the probabilities of detection of the LMS-BLM receiver for different
number of relays and the upper & lower bounds of probability of detection as given
in [34]. The second scenario evaluates the effects of variable number of relays and
step size on the learning curve of the LMS-BLM receiver. The third scenario
evaluates the probability of error for different number of relays. In the process of
channel estimation using LMS algorithm, it is assumed that both CSI and original

transmitted signal are not known at the receiver. In this case, a training signal u(k) is
generated and sent to the destination and producing the outputu” (k) = A, (k)< u(k). It

is also assumed that the unknown filter #4,(k) is a FIR filter with order P. In the

58



presence of noise, the observation y(k) can be expressed by y(k)=u’(k)+w(k)
where the noise w(k) is assumed to be white. In practice, when the length of the
filter h,(k) is unknown, a large value of P can be chosen in order to make sure that

it is overestimated. In this case, it is assumed that the length of 2 is known. For all

deemed scenarios, the average SNR is identical for each link SNR=y_, =7, =7,

At the source, the signal is generated and transmitted to all relays and destination
node. The relay amplifies the received signal from the source only and forwards it to
the destination. The amplification is done by only multiplying the received signal
with the amplification factor or gain. At the destination terminal, the channels
between the source and destination, the relays and destination are estimated using the
LMS algorithm. This is followed by the BLM detector for detecting the original
signal from noise. The BLM detector is based on detecting the signal energy for each
link and then computing the test statistic which is compared with the predefined
threshold as represented in Figure 2.8. The threshold is determined by using the
expression (2.18) that represents an ideal detection condition in wireless network. In

this formula, the P, is taken between 0 and 1 and the bandwidth product u is 2.

In the first scenario, there are three cases: in the first case, it is assumed that less
information is known about CSI and original transmitted signal at the receiver. In
this case, the LMS-BLM receiver is used for channel estimation and data detection
between the source and destination, and the relay and destination links. In the second
case, the upper and lower bounds of the probability of detection are plotted for
comparison purposes. The results in Figure 2.9 show that with one and five relays
(R=1 and R=5) the proposed algorithm provides higher detection performance
comparing with the upper & lower bounds of the probability of detection. The
probabilities of missed detection of the LMS-BLM algorithm with one and five
relays indicate better results than the results of the upper and lower bounds in [34] as
presented in Figure 2.10. The results in Figure 2.11 show that the analytical
probability of detection of the LMS-BLM method is slightly equivalent to the upper
bound of the probability of detection which justify the higher performance of our
proposed algorithm. The theoretical probability of detection provides higher
performance than the upper and lower bounds of probability of detection in [34] and

marks a 10% difference with analytical results due to some formula approximation.
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In the second scenario, the evaluation of the effect of step size and number of relays
on the MSE learning curve is carried out. During simulation, the theoretical channel
A 1is chosen such that its length corresponds to the order value of the FIR filter with
number of steps equal to P =10. In this scenario, we investigate the effect of variable
gradient step size of values equal to 4 =0.002 and ,=0.004 and variable number
of relays from R=1 and R=5 on the MSE learning curve of the LMS-BLM receiver.
The results in Figure 2.12 shows that when the value of step size and the number of
relays increases, the MSE decreases faster. The gradient step size for the LMS
algorithm is very important since it determines the convergence of the algorithm and

therefore the accuracy of the estimation errors.

In the third scenario, the probability of error is found analytically and plotted in
Figure 2.13. In this scenario, we propose different number of relays from R=1, 5 and
8 and consider a range of SNR from -10dB to 10dB. The results show that the

probability of error improves when the number of relays increases which proves the

accuracy of the analytical results.
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2.3.6 Summary

In this section, a novel LMS-BLM receiver was proposed and its performance was
evaluated by considering a wireless network employing multiple relays strategy. The
main contribution in this paper was to propose an effective tool that can recover the
original transmitted signal from noise at the receiver. Simulation results were
presented through three different scenarios. The first scenario assumed that little
information is known on CSI and original transmitted signal at the receiver. The
investigation was carried out on the probability of detection for different number of
relays and compared with the upper and lower bounds of the probability of detection

as given in [34]. The second scenario investigated the effects of variable step size u

and various number of relays on the MSE learning curve of the system. The results
showed that the higher the number of active relays available in the network the
higher the probability of detection. The higher the gradient step size, the higher the
LMS algorithm’s descent speed. The third scenario investigated the probability of
error and the results showed that the probability of error decreases as the number of
relays increases. The results of the receiver operating characteristics (ROCs) and the
MSE learning curve of the receiver showed that the proposed algorithm is effective.
The proposed algorithm can be applied in the current or future generation wireless

networks where cooperative communications with relays strategy is applicable.
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3. ADAPTIVE CHANNEL ESTIMATION AND DATA DETECTION
MODELS FOR COOPERATIVE WIRELESS NETWORKS IN NON
STATIONARY ENVIRONMENT

3.1 Introduction

This chapter considers a typical wireless communication system consisting of a
single source (S), multiple mobile relays (Ry) and single mobile destination as
depicted in Figure 3.1. An example of this scenario could be a cellular network with
fixed base station communicating with mobile terminals and other mobile terminals
acting as relay stations. Therefore, due to the mobility of mobile terminals, the

channel gain between nodes in the network varies with time.

Figure 3.1 : Network model with mobile terminals.

In this model, the transmission is considered to be done in two phases and half
duplex mode. In the first phase, the source broadcasts the signal to relays and

destination. In the second phase, the source is silent and relays amplify or
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demodulate the received signal from the source only and forward it to the
destination. In this case, orthogonal transmission is required in order to transmit N
symbols without interfering each other. This can be realized by using time division

multiple access (TDMA) or frequency division multiple access (FDMA) [4].

In this chapter, we have two principal sections, in the first section, we assume that
the CSI is available at the destination but the original transmitted signal is unknown
due to noise and other interference signals. Therefore, the performance of the BLM
detector is investigated in order to assess its ability to recover the original transmitted

signal in time varying channels.

In the second part, it is assumed that the CSI is not available at the destination and
the unknown channels between communicating links is varying with time. Therefore,
the performnace of the LMS-BLM receiver is investigated in cooperative wireless

network with time varying channels.
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3.2 Bayesian Linear Model (BLM) Detector in Cooperative Wireless Networks
with Time Varying Channels

3.2.1 Abstract

Time-varying channels are the fundamental phenomenon that affect the performance
of signal transmissions in wireless networks. Fading caused by channel variations
can be classified as slow or fast fading depending on the mobility of nodes in the
networks. Therefore, multiple relays are considered in this paper for their ability to
create diversity environment that can directly mitigate the effects caused by
multipath fadings in wireless networks. In this part, a wireless network with mobile
terminals is investigated and it is assumed that the channel state information (CSI) is
available at the destination, and original transmitted signal is corrupted by noise and
other interferences. Therefore, the main contributions are based on implementing
multiple amplify and forward (AF), and demodulate and forward (DaF) relays, and
proposing the Bayesian linear model (BLM) detector for recovering the original
transmitted signal at the receiver. The performance investigation is done through
analytical and numerical analysis in terms of receiver operating characteristics
(ROC), minimum mean square error (MSE) and bit error probability over
n*Rayleigh fading channels. The results have shown that the proposed method is
effective in recovering the original signal in time varying channels, the performance
can be improved by increasing the number of relays in the network and the
performance decreases when the Rayleigh cascading order increases. The proposed
method can be applied in the current or future wireless networks (e.g., 4G/LTE
wireless networks, 5G wireless networks, etc.) that allow multiple relays, use of high

carrier frequencies and low symbol periods.
3.2.2 Related work

In literature, the problem of detection was initially discussed on energy detection of
deterministic and random signals [29-34] without considering the time varying

1Ssues.
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The investigation of time varying channels is studied in [51-59], by evaluating their
effects and proposing solutions in wireless communication networks. In [51,52], they
consider multiple AF relays based cooperative system with maximum ratio
combining (MRC) at the destination and investigate the effects of both the mobile
cooperating nodes speeds, and the receivers’ channel state information (CSI)
estimation rates on the system outage performance. The fading links are considered
to be frequency-flat time varying Rayleigh fading and modeled by a first-order
autoregressive process (AR-1). They found that the results experience asymptotic
floor due to time varying channels and these can be elimanated by a well designed
fast tracking loops at the receiver. In [53], they investigate the effect of time varying
channels on the bit error rate (BER) performance. In this study, the performance of
different reception methods, including cooperative maximum likelihood detection,
maximum likelihood detection, Alamouti’s receiver, zero forcing detection and
decision feedback detection are also evaluated. They found that time varying nature
contributes to the error flooring effect. In [54, 55], they study on dual-hop AF
relaying over time varying Rayleigh fading channels with differential M-PSK
modulation and non-coherent detection. A first order time series model is utilized to
characterize the time varying nature of the cascaded channel in two symbol detection
systems. The results in this paper have shown that error floor and performance

degradation occur at high SNR and fast fading.

In [56], the effect of mobile velocity on communications fading channels is
investigated and an analytical model to evaluate it in a multipath fading channel is
presented. A Markov process is used to characterize the effect of velocity which
captures the correlated nature of the channel. Different schemes are considered such
as closed loop power control, channel coding, and finite interleaving in order to
evaluate their sensitivity on the mobile velocity. In [57], they investigate the
performance degradation due to rapidly time varying channels in a repetition based
coherent cooperative system. They found that the mobility of the source affects the
system performance more than the mobility of the destination for both the AF and
the demodulate and forward (DaF) relays. In this paper, they developed a ML
detection rules for a variety of mobile scenarios. In [58], they investigate the
performance of differential amplify and forward (D-AF) relaying for multi-node

wireless communications over time varying Rayleigh fading channels. They use a

68



first order auto-regressive model to characterize the time varying nature of the
channels. They develop and propose a new set of combining weights for signal
detection at the destination and compare them with the conventional combining
scheme through simulations. They also derive the pairwise probabilty (PEP) that is
used to obtain the approximate total average BER. They found that the system
performance is related to the autocorrelation of the direct and cascaded channels and
an irreducible error floor exists at high signal to noise ratio (SNR) in time varying
channels. In [59], the modulation and detection for simple receivers in rapidly time
varying channels are evaluated. They use first order autoregressive (AR-1) channel
model and various performance metrics to evaluate the advantages of each
modulation scheme. Due to the mobility of two communicating nodes, different
research papers suggested n*Rayleigh fading channel, because the time varying
channel between those nodes results in two or more independent Rayleigh fading

process generated by independent group of scatterers around those nodes in motion

[60, 61].

Therefore, based on the above literature review, new results are derived by proposing
the Bayesian linear model (BLM) detector in multiple relays networks with time

varying channels. The main contributions are described as follows:

e Investigating on existing solutions and their limitations in literature about

time varying channels in wireless communication networks.

e Implementing the BLM detector in multiple AF and DaF relays based

cooperative wireless networks with time varying channels.

e Deriving the probabilities of detection and false alarm, bit error probability

and minimum mean square error (MSE) of the system.

e Evaluating the performance of the BLM detector in terms of receiver
operating characteristics (ROCs), bit error probability and minimum MSE

performance over n*Rayleigh fading channels.

e Performing computer simulations, evaluating the performance of the
proposed system through different scenarios and compare the obtained results

with the existing ones in literature.
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3.2.3 System and mathematical models

As depicted in Figure 3.1, h,f;,g, are the channels between the source and

destination, the source and relays, and the relays and destination, respectively, from
i"™ to j™ node. In this paper, we consider two kinds of channel fading distribution; the
classical Rayleigh fading channel and the n*Rayleigh fading channel. In classical
Rayleigh fading channel, the probability density function (PDF) is given by [5, 62]:

1
S ) Z:GXp(—Q 3.1)
' 4 4
then, the corresponding cumulative distribution function (CDF) is given by:
" 4
Fyﬁ (y)=1-exp (—?j (3.2)

The second channel fading distribution considered in this paper is n*Rayleigh fading

channel with the PDF defined by [60]:

Ky i
= exp(—xy"" 3.3
S N= e (") (3.3)
and its CDF is given by:
K.(é—pn) y
F (r)= I(pn,xy™” (3.4)

where y represents the instantaneous SNR of the channel between node 1 and node j

(i.e., node denotes source, relay or destination stations) and its average is 7,

Kk=2&/n7"", £=0.6102%n+0.4263 and 7=0.6102*%n+0.4263 are parameters
defined in [60], p =&/ n where n is the cascading order, I'(.) is the gamma function

and I'(.,.) is the incomplete gamma function.

As discussed before, the signal transmission is done in two phases. Therefore, the

received signals at the destination and relays in both phases are represented as:

v.u () = B h(k)u(k) +w,, (k) (3.5)
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v, () = P, £, (yu(k) +w, (k) (3.6)

vl (k) = \[PG.g,(k)y, (k) +w, (k) (3.7)

(3.7) can be simplified as:
v 0= [Rg,, (ol (k) +w,, (k) (33)

where P is the power of the source, P is the power of the relay, u(k) is the signal
generated and encoded differentially by the source and transmitted to the destination
and relays, w,,(k), w, (k) and w,(k) are zero mean circular symmetric complex
Gaussian (ZMCSCG) noises with variance N,, u/ (k)=G,y, (k) indicates the
generated signal at each relay, and G, is the amplification gain with AF relaying
strategy.

In time varying channels, the amplification factor is related to the Jakes’

autocorrelation model. When the CSI is avalaible at the relay, the amplification

factor is given by [15]:

2 1

" E(f0f )R+ N, G2

where E (

£ (k)|2 ) =a)*|f (1)|2 + (1 —af,.(kfl))éé . It is noted that the performance of
the AF relay networks highly depends on the proper choice of the amplification gain.
In DaF relaying scheme, the received signal from the source is detected by each relay
according to symbol by symbol basis as represented by the following expression
[15]:

ul (k) = Sen(R{ f3,,(0)}) (3.10)
where, « (k) is the generated signal at each relay by using DaF protocol, Sgn(.) is
the sign function and % indicates the real function. The Sgn() function can be

defined as:
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I, ifx>0,
Sgn(x)=40, ifx=0, (3.11)
-1, ifx<0

After demodulating/modulating the signal, each relay forwards the modulated signal

to the destination and the received signal is given by:
V" () =B g " (k) +w, (k) (3.12)

As mentioned before, in this model, we consider fixed base station (BS), mobile
stations (MSs) and other MSs that act as relay stations (RSs). Due to the mobility of
nodes, the channel link between nodes in the network is modeled by first order
autoregressive (AR-1) model process in order to characterize the time varying nature
of links. The channel link between the source & destination, the source & relay, and

the relay & destination are defined as follows [51, 59]:

h(k)=a,h(k—1)+ /1 —a e, (k) (3.13)
fR) =a,f,(k-D)+{1-ae, (k) (3.14)
(k) = a, g, (k=D +1-a &, (k) (3.15)

where ¢ ,(k),e,(k) and ¢,(k) are varying components that obey circular
symmetric ~ complex  Gaussian (ZMCSCG) noises  processes  with
CN(0,52),CN(0,52) and CN(0,5,) , a,,, a, and a, are the temporal correlation
coefficients with values between 0 and 1. The temporal correlation is related to the
channel variation rate, when a, =0, the channel realization becomes independent and
identically distributed (i.i.d), and when a,=1, the channel becomes quasi static

fading. The relationship between the Doppler shift and temporal correlation is
governed by the approximation known on Jakes’ autocorrelation model as follows

[56, 57]:

a; = E[ hy(k+0)h (k) | = J, 2 f,T)) (3.16)
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where J,(.) is the zero order Bessel function of the first kind, f, = f.o/c=v0/A is

the Doppler frequency due to the mobility of nodes. The Jakes’ autocorrelation of the
source and destination, source and relays, and relays and destination links are
respectively given by: a,=J(27f,T),a,=J,27xfT) and a,=J,2xfT)J,2xf,T.).

Assuming that the relays and destination accurately estimate the CSI and all channels
estimates are the same despite some channel variation. Therefore, the channel gains
knowledge can be described as circularly complex Gaussian random processes.
Considering the transmission of the first symbol of the N™ length block, the channel
gains knowledge 4'(k), /', (k),g". (k) can be described as follows [51, 52]:

h'(k) ~ CN (al;'h(D),(1- a2 )52 (3.17)
[ (k) ~CN (ay £,(0),(1-a* )57 (3.18)
(k) ~CN (' g,y (1), (1 —az* )55 ) (3.19)

Due to time varying channels, the density knowledge statistics of the received signals

for each link are given by:

' (k) ~ CN (u(k)aly (D), P’ (k) (1-al* )52 + N, ) (3.20)
'3 (k) ~ CN (u(k)al;” £,(1), P (k)1 —a}* )3} + N, ) (3.21)
" (k) ~ CN (uy ()aly" g,y (1), Py (k)1 = a* )35 + N, ) (3.22)

From equation (3.20), (3.21) and (3.22), the average SNR for the source and
destination, source and relays, and relays and destination links are respectively given

by:

Eazagk—l)
7, = s 323
T E =% 52 + N, -2
E 2%
Vi = = (3.24)

T E(1-a2*M)s2+ N,
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2(k-1)
Esaid

E,(1-ay"")8, + N,

Via = (3.25)
The average SNR for each link 1is obtained by assuming that:

E[Jh()|" 1= El| £, () 1= El|lg., (D] 1=1, where E[.] denotes the expectation operator

and P. = P, =1. The received signals (3.5), (3.6) and (3.8) can be grouped in matrix

form as follows:

I ysd | \Ehjd O 0 I usd 11 Wsd |
Via 0 \/Elgld 0 Uy W
— e cee A e + A (3‘26)
Vi 0 0 \/E_igid 0 Uy Wia
] |0 0 v Ey gy | [ 4

where y,, in (3.26) refers to the received signal with AF relays network or DaF

relays network (i.e., y, = {y or{y,™} and wu, ~ {u} ‘or{u"}). Assuming that

signals are transmitted orthogonally, therefore, the received signals at the destination
can be represented by: y=Hu+w, where y indicates the column vector of the

received signals with AF or DaF, H denotes the channel matrix,  is the column
vector of the transmitted signal generated by the source and relays and w refers to
the noise vector received at the destination.

3.2.4 Performance metrics analyses

In this section, the performance analysis is done in terms of the receiver operating
characteristics (ROC), bit error probability and minimum mean square error (MSE).
3.2.4.1 Receiver operating characteristic (ROC)

Theoretically, the ROC is defined as the detection performance of the receiver

evaluated by plotting the curve of the probability of detection ( P,) against the

probability of false alarm ( P, ) which are given in (2.12) and (2.14), respectively.
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The exact closed form expressions of the probabilities of detection and false alarm

over AWGN are also given in (2.17) and (2.18), respectively.

Analytically, assuming that the CSI is available at the receiver,by using the Bayesian

linear model (BLM) detection approach the test statistic in time varying channels is

given by [19]:
T"(y)=y"HC H' (HC H" +N,I)"y (3.27)
In (3.27), the covariance matrix C, =diag[c.,,0.,...,0.,] and the noise

variance matrix N,I = diag[N,,..., N,]. Therefore, by substituting the covariance and

noise variance values in (3.27), the test statistic in time varying channels is derived

as:

K hs ’ < 1'2 hi 7
T"(y)= h# Yl + Zo;d|—d||yid|2 (3.28)
sd

2
o,+N, i=1 |hid| o, +N,

According to the hypotheses Hy and Hj, the test statistic is represented as follows:

2 2
H ,TV(y) vd(l a2(k 1)) uN N, Vsd ld(l aZ(k ])) ;NO yid|
0" =
sd(l_ wa 1))53211 + N, |30, i1 O'd(l aZ(k 1))551 +N, 195(0)‘
(3.29)
2 2
1T () =03 0-a o[22 + Yo 1-a s |
) i1 )
where, '9(20) =Ny, 191%0) =N, 19(21) =0y, (1-ay" )8y + N, and

G =ou(l—ay“ )8, + N,. The expression (3.29) can be simplified as follows:

M
Hy: TV (3) = & 2oty + O Bio Lo

i=l1

) (3.30)
H :T'(y)= a(l)ZZZ(sd) +Z:3i<1>7(22<rd>

i=1

ou(—as")ouN,
ou(l=ay )y + Ny~

ou(l=ay"")5,N
ou(l=ay* ") + Ny

where, o) =

ﬂi(O)

ay =oy(l—al "oy, and By =oc,(1-ay ")5,. It is also shown that the
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parameters g, and 5., (i) are independent and identically distributed Chi-

squared random variables with two degree of freedom for the source & destination
and the relay & destination respectively. The probability density functions (PDFs) of

the test statistics in (3.30) are determined as follows:

v 1 = .l
PT" s Hy) =~ [, (@) exp(=jeT " )do
T
(3.31)
P(T";H,))= Lr b, (w)exp(—joT" )dw
2 de

The characteristic functions of 7" (y)according to the hypotheses Hy and H; in

P(T";H,) and P(T";H,) are given by [32, 33]:

M
b, = +
T 1- 2/0)05(0) H 1- 2]a)ﬂ,(0)
(3.32)
1 M 1
¢TV = 0 Vv + . 174
no1=2joay, o 1-2jop,
[ P i =11
where, = - and where,
i 1= 2]a)ﬂ(0) i=1 1_2]0151"20) et ﬂl[(/O) /,Bzw)
M 1 M é M
[I——=>—3— and, &=]] ————; substituting (3.32) in
i=1 1_2.]wﬁi(l) el B 2]a’ﬁ(1) Patl B ﬂz(n /,B,(l)

(3.31), the PDFs for dual hop (2 segments) relays network are derived as follows:

gyl L a 1 Z do
P(TV’HO)_ZI-W(l—ZJwa(O))eXp( JwTV) 2 ZL‘J(l 2jop )exp( JwTV)Z;z

(3.33)
exp(—ijV)d—w

o (1- 2 ﬂ o

N AN O S y
P =] (1—2;wa(l))eXp ]a)T) > ZII

(3.33) is the inverse fourrier transformation, therefore the PDFs are derived as

follows:
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P(T";H,)=———¢exp| — 14
" 4a (0) 20‘(0> =1 :31<0> Zﬁf?m

P(TV'H)—LGXP( ] i ( r ]
o 40‘(V1> 2 (Vl) 14/3(1) 2/’%)

The probabilities of false alarm and detection of the BLM detector can be determined

(3.34)

as follows:

0 1 A 1 ¥ A
P,=| P(T";H)dT" ==exp| ——— |+— cexp| — 3.35
=], P H)AT" = p( 20%)} 2V p( 2%)} (335)

i=1

and,

> v 1 A
Pd—L P(T" ;H,)dT —Eexp 7 5) Z§ exp| — 2@?1) (3.36)

i=l1

3.2.4.2 Minimum mean square error (MSE) and bit error probability (BEP)

performance analysis

The BER is a metric that describes the nature of the system behavior and the quality
of the signal detected at the receiver. In our network model, the receiver is equipped
with BLM detector, whereby the minimum mean square error (MMSE) estimate of

the transmitted signal is given by [19]:
s =HCH"(HCH" +N,I)"y (3.37)
Using (3.26) and associated covariance and noise matrix values, (3.37) is derived as

follows:

a P | hs | 09 < I)l id 02
§ = d | sd Z Pihfo yid (3.38)
=1 £

Then, this can be simplified as:

Z(k 1))

§V B P (1 2(k—1))§2 O_2 i
Pa-p %52 or 4N, Y T L. 2<k “)5 N

0

(3.39)
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The mean square error can be derived as follows:
MSE, = E{(s—3")[ } (3.40)

The bit error probability (BEP) can be evaluated by using the expression (2.38) given
in [38].

Substituting (3.35) and (3.36) in (2.38), we obtain:

11 A A 1 A A
BEP" = ———Jexp| - —exp| — —— gﬁexp[— }—V/iexp[— ] (3.41)
2 4{ [ 20{1)] [ 2a1, ]} 42{ 280 2B

3.2.5 Numerical results

The BLM detector is proposed in multiple relays cooperative wireless network with
time varying channels. Simulation results are presented in order to investigate the
performance of the BLM detector in terms of ROCs, bit error probability and
minimum MSE. Six scenarios are considered; the first scenario investigates the
receiver operating characteristics (ROCs) with different number of relays and various
nodes speeds. The second scenario evaluates the ROCs of the BLM detector over
n*Rayleigh fading channels. The third scenario compares the BER performance of
the BLM detector with the one of the MRC detector. The fourth scenario investigates
the effects of mobility of the relays only or destination only on the detection
performance. The fifth scenario investigates the detection performance of the BLM
detector in multiple AF and DaF relays networks. The sixth scenario evaluates the bit

error probability (BEP) performance in multiple AF relays.

During signal transmission, we consider two phases as discussed before: in the first
phase, the source generates and modulates the signal in differential QPSK, where
u(k) = w(kyu(k —1) with w(k) = {e’**'V ,k =0,.., N -1} which denotes the set of M-PSK
symbols and u(0)=1 as initial reference symbol. The modulated signal is
broadcasted to all relays and destination. During the second phase, the source is
silent and each relay amplifies or demodulates the received signal from the source
only and forwards it to the destination. The destination uses the BLM detector to

combine and to compute the test statistic that is compared with the predetermined
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threshold. The receiver decides the presence of the signal when the test statistic is

greater than the threshold, otherwise it decides the absence of the signal.

During simulations, different parameters are utilised such as the carrier frequency
equals to 2GHz and the symbol period equals to 0.1 ms which represents the
parameters used in the current wireless technologies. Various velocities are
calculated in Table 3.1, in normal circumstances, the value of 75 km/h is assumed to
be a typical vehicle speed as claimed in literature and high speeds are also common
in vehicles and trains [55]. Depending on the node speed, the associated fading is
classified as slow fading for very low speed node and fast fading for high speed node

as decribed in Table 3.1.

In Figure 3.2, the ROCs of the BLM detector are analyzed in multiple relays (R=2,
R=3 and R=4) and various node speeds (i.e., 27 km/h and 108km/h) which
correspond to slow fading and fast fading channels. The results show that the
probability of detection increases when the number of relays increases. Figure 3.3
depicts the detection performance of the BLM detector between the Rayleigh and
2*Rayleigh fading channel (n=2). The results show that the system performance
decreases as the number of cascading n increases and this can be compansated by

providing high diversity gain in the network or increasing the number of relays.

Table 3.1 : Doppler frequencies and associated nodes speeds.

fo)| Tms) | fol, | £GHD)| 0=92km/n) | Type of fading
0 0.1 0 2 0 Slow fading
50 0.1 0.005| 2 27 Slow fading
100 0.1 0.01 2 54 Fast fading
200 0.1 0.02 2 108 Fast fading
400 0.1 0.04 2 216 Fast fading
600 0.1 0.06 2 324 Fast fading
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Figure 3.4 depicts the BER results between the BLM detector and the MRC detector
in multiple relays (R=1, R=2 and R=4) with slow fading channels (i.e. 27km/h). The
results have shown that the BER performance of the BLM detector is almost
equivalent to the MRC detector given in [58], and the BER performance improves
when the number of relays increases. The purpose of comparing the BLM detector
with the MRC detector is described in literature whereby, the MRC detector has been
proven to be an ideal combining technique and signal detector in wireless networks
with multipath environment. Therefore, this comparison provides to us useful

information about the performance of the BLM detector.

Figure 3.5 represents the effect of the mobility of the relays and destination on the
system performance. The results show that the mobility of relays affects the detection
performance more than the mobility of destination, therefore, this should put into
account when designing a wireless network. Figure 3.6 depicts the comparison of the
detection performance of the BLM detector between the amplify and forward (AF)
and demodulate and forward (DaF). The results show that the DaF outperforms the
AF for higher number of relays, but for low number of relays AF performs better
than DaF. Therefore, DaF requires sufficient number of relays for the receiver to
provide better performance. Figure 3.7 depicts the bit error probability performance
of the BLM detector. The results show that the performance improves when the

number of relays increases.
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Figure 3.2 : ROC of the BLM detector for various nodes speeds and relays.
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3.2.6 Summary

The performance of the BLM detector in multiple relays with time varying channels
was investigated. Six scenarios were considered; the first scenario investigated the
receiver operating characteristics (ROCs) with various number of relays and nodes
speeds (i.e., Figure 3.2). The findings showed that the high speed of nodes affects the
system performance, particularly, when the network has few number of relays. The
second scenario evaluated the ROCs over n*Rayleigh fading channels. The findings
showed that the detection performance decreases when the Rayleigh cascading order
n increases (i.e., Figure 3.3 for n=1 and n=2). The third scenario compared the BER
performance of the BLM detector with the MRC detector. The findings showed that
the BLM detector results are roughly closer to the ones of the MRC detector (i.e.,
Figure 3.4). The purpose of this comparison was that in literature, the MRC detector
has proven to be an ideal combining technique and detector in wireless networks
with multipath channels. Therefore, these results provided us with useful information
about the effectiveness of the proposed method. The fourth scenario investigated the
effects of the mobility of relays only or destination only on the detection
performance (i.e., Figure 3.5). The results showed that the mobility of relays affects
the receiver detection performance more than the mobility of the destination.
Therefore, the speeds of relays must be put into account when designing a wireless
network with multiple relays. The fifth scenario investigated the detection
performance of the BLM detector in multiple AF and DaF relays network (i.e.,
Figure 3.6). The results showed that DaF outperformed AF for higher number of
relays and for low number of relays AF performed better than DaF. The sixth
scenario evaluated the bit error probability (BEP) performance in multiple AF relays
(i.e., Figure 3.7). The results showed that it is beneficial to increase the number of
relays in the network in order to minimise the error rates at the receiver. The
simulation parameters utilised in this study and the obtained results demonstrated
that the BLM detector can be utilised in the current and future wireless networks that

use carrier frequency in the range of 2 Ghz and multiple relays in the network.
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3.3 Joint LMS-BLM Receiver for Cooperative Wireless Networks with Time
Varying Channels

3.3.1 Abstract

In non stationary environment, transmitted signals are mostly challenged by
multipath time varying channels. In most of studies, diversity techniques have been
proven to mitigate the effects of channel impairments in wireless networks including
fading caused by time varying channels. In this study, multiple relays are considered
in order to create diversity environment that can compensate the loss of signal during
transmission. Futhermore, it is assumed that the dynamic channel state information
(CSI) and original transmitted signal are unknown at the receiver; therefore, the main
contributions are based on proposing the joint least mean square (LMS) algorithm
and Bayesian linear model (BLM) detector for the purpose of estimating the channel
and evaluating its performance in recovering the original transmitted signal in time
varying channels. Analytical and numerical analyses on receiver operating
characteristics (ROC), mean square errors (MSE) learning curves, minimum mean
square error (MSE) and bit error probability are presented. The results have shown
that the proposed algorithm is effective in tracking the time varying channels and its
performance can be improved by increasing the number of relays in the network, and
choosing the appropriate step size for the stability and convergence of the algorithm.
The proposed algorithm can be applied in the current and future wireless networks

that use carrier frequencies in the range of 2GHz and multiple relays.
3.3.2 Related work

In literature, different studies have investigated the time varying channels and their
effects in wireless networks [51, 52, 55-59, 63]. Their findings have shown that most
of the results experience error floors due to time varying channels and which can be
eliminated by well designed fast tracking loops at the receivers. Although channel
estimation and data detection are known from the past years in different studies, they
are still largely unexplored particulary in wireless networks with time varying
channels. The most common studies on data detection only focus on signal energy
detection [29-36, 38] and channel estimation using common estimation methods [41,

42].
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In cooperative diversity systems, [46] proposed a new adaptive algorithm for
estimating the channel between the relay and destination in DF relay networks when
the presence of an input training sequence is probabilistic and obeys Bernoulli
random variable. The proposed algorithm combines the generalized likelihood ratio
test (GLRT) detector and the classical least mean square (LMS) channel estimator.
The effect of autocorrelation channels and channel estimation based on linear
minimum mean square error (LMMSE) estimator are evaluated in [63, 64] for a wide
range of scenarios, including different gain and mobility conditions of relays. In [65],
they investigate the channel estimation in time varying multiple relay cooperative
network. In [66], data detection and channel estimation are investigated in OFDM-
based AF cooperative vehicular communication system with multiple relays. In [67],
the performance of adaptive gain multiple relays AF cooperative system with both
conventional relaying (CR) and best relay selection (BR) scheme is investigated.
They found that the mobility of source and the destination affects the system
performance, and the BR provides higher asymptotic error limit than CR scheme. In
[68], AF protocol in time varying Rice fading are considered and the MAP
estimation is derived in time varying channels is derived. In [69], an autoregressive
model for the combined AF time varying relay channel is presented and then a causal
iterative channel estimation method based on Kalman filter is derived for time
varying channels. The findings have shown that the mobility of relays has a
significant impact on the BER performance and has to be considered in practical
system design. In [70], AF wireless relay networks are considered; then, an iterative
channel estimation and data detection based on interference cancellation (PIC) at the
receiver is proposed. In [71-75], stationarity and non stationarity of the LMS

algorithm are investigated for different scenarios of wireless network systems.

Based on the above literature review, none of the works reported has studied the
performance of the LMS-BLM receiver in multiple relays network with time varying
channels. In addition, most of the studies assume perfect CSI at the receiver but in
practical conditions, channel estimation schemes are always indispensable in
wireless networks. Therefore, the main contributions in this section are based on

considering no CSI at the receiver and performing the following tasks:

e Investigating the LMS-BLM receiver in multiple AF relays based cooperative

wireless networks with time varying channels.
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e Deriving and evaluating the performance of the LMS-BLM receiver in terms
of receiver operating characteristics (ROCs), MSE learning curve, bit error
probability and MSE performance in multiple relays with time varying

channels.

e Performing computer simulations, results analysis based on the derived
performance metrics and evaluating the effect of node velocities and step size

parameter on the system performance.

3.3.3 System model

As represented the network model depicted in Figure 3.1, the channel estimation is
realized between the source and destination, and the relay and destination. It is also
assumed that the relay can forwards the received signal from the source only and do

not add additional traffic on the transmitted signal.

In this system model, pilot assisted estimation is considered and there is no any
assumption on the channel distribution characteristics instead we consider theoretic
channel during implementation. Two phases of data transmission are considered; in
the first phase the source broadcasts the signal to the destination and to relays in the
network. In the second phase, the source is silent, relays amplify and forward the
signal to the destination. The transmitted signals obey orthogonal transmission which
can be achieved by using time division multiple access (TDMA) or frequency
division multiple access (FDMA) [51, 52]. Therefore, the destination/receiver is
equipped with LMS-BLM receiver for channel estimation and data detection which

are described in the following sections.

In Figure 3.8, the LMS-BLM receiver scheme is presented; two main parts are

shown: in the first part, the LMS algorithm is used to estimate the unknown channel
h,(k) and the second part comprises of combiner and data detector using the BLM
detection approach. The receiver is composed by N tap transversal adaptive filter, the
input sequence u(k)=[u(k),u(k—1),...,u(k—N +1)]T is considered to be known
stationary input vector, the coefficients
hy(k)= [ho(sd)(k),ho(ld)(k),...,ho(,.d),...,hO(Md)(k)]T are considered to be unknown time
varying channels, w(k) is unknown independent and identically distributed (i.i.d)

observation noise which is assumed to be white, d(k) is the desired output signal
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and y(k) is the observation with time varying model. In these models & denotes the

time index and N indicates the data length.

hosa (k)

LMS
Algorithm|

A

BLM
Detector

y y(k)
e(k) N d(k)

Figure 3.8 : Block diagram representing the LMS- BLM Receiver.

3.3.4 Mathematical models

In real world application, it is obvious to consider a non stationary environment in
which the transmitters and/or the receivers are assumed to have a certain motion. In
literature, the cause of non stationarity can be classified in two ways: the first cause
is when the source supplying the desired response is both noisy and time varying. In
this case, the correlation matrix of the tap inputs of the adaptive filtering algorithm
remains fixed whereas the crosscorrelation vector between the tap inputs and the
desired response is assumed to be time varying form. The second cause arises when
the stochastic source of tap inputs applied to the algorithm is non stationary. In this
case, both the correlation matrix of the tap inputs and their cross correlation vectors

with the desired response assume time varying forms.

In this analysis, we consider pilot assisted estimation and we do not put any
assumption on the channel distribution characteristics instead we consider theoretic
channel during implementation. We also assume channel identification problem for

identifying the dynamic channel system, whereby the training signal u(k) is sent to
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the unknown time varying channel h,(k) which is considered as finite impulse
response (FIR) filter with unknown length P. Since the unknown channel A,(k) is

considered to be time varying, without loss of generality, it is modeled by first order

Markovian non stationary as follows [51, 74]:

hy (k) = phy (k1) +1- p* (k) (3.42)

where o denotes a temporal parameter approximated by Jakes’ autocorrelation

model as defined before as p=J,(27f,T.) and Q(k)~ N(0,57) is a non stationary

unknown noise with zero mean, independent and identically distributed (i.i.d)

process independent of u(k) and w(k).

Assuming that the receiver accurately estimated the unknown channel h,(k),

therefore, the channel knowledge of (3.42) is given by:

hy (k) ~ N (p* by (1),(1 - p**)5%) (3.43)

The observation is considered to be time varying with the following expression [42,

43]:
(k) = hy (k) * u(k) + w(k) (3.44)

where w(k) 1s unknown 1.i.d observation noise which assumed to be white with
density knowledge (w(k) ~ N(0,N,)). The density knowledge of the observation is
given by:

(k) ~ N(u(k) oy (D, (k)(1 = p*")S” + Ny) (3.45)

Generally, the estimation in time varying channels can be a challenging task due to
random parameters and system’s time evolution experiences asymptotic floor which
can be eliminated by well designed tracking loops at the receivers [51,76]. Therefore,
the LMS algorithm is proposed for estimating an unknown dynamic channel. The

algorithm computes the update equation as follows:
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d(k) = h(k)u" (k)
e(k) = y(k)—d(k) (3.46)
h(n+1) = ph(k)+ ue" (k)u(k)

The channel estimate is updated according to the temporal autocorrelation parameter
p and the constant step size parameter x . The step size g must be choosen in the
interval of O0<u<2/¢,,, where &, 1s the maximum eigenvalue of the input
signal autocorrelation matrix R. In order to ensure the stability of the LMS

algorithm, the ¢

max

is upper bounded, and 4 is best choosen in the interval of
0< u<1/tr[R], where tr[.] denotes the trace operator. Note that the adaptation is

only happened when the detector decides the presence of the signal according to the
hypothesis H;, otherwise, the detector decides the absence of the signal according to

the hypothesis Hy described as follows:

{Ho :y(k) = w(k) 547

H, 1 y(k) = u(k)hy (k) +w(k)

3.3.4.1 Receiver operating characteristic (ROC)

Theoretically, the ROC is defined as the detection performance of the receiver
evaluated by plotting the curve of the probability of detection ( P,) against the
probability of false alarm (P, ) which are given in (2.12) and (2.14), respectively.
The exact closed form expressions of the probabilities of detection and false alarm

over AWGN are given in (2.17) and (2.18), respectively.

The detection decision is made by comparing the test statistic and the predetermined
threshold A and the detector decides the presence of the signal when the test
statistic is greater than the threshold 4 (7'(y)> A ). Therefore, the observation signal
received at the destination from the source and each relay in the network (i.e., Figure

3.8) can be written as follows:
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Vsa (k) = u(k)ho(oq) (k) +w(k)

Yia (k) = wiy (k) hoiqy (k) + (k)
(3.48)

Yau (k) = uy, (k)hO(iM)(k) +w(k)

where u, (k) =G, *y,, the amplification gain is G, ={E, /(E[| by ['1E, + Ny},
E.denotes the energy of each relay, E, is the energy of the source and
Va =u(k)hy (k) +w(k) is the received signal at the relay. Assuming that the

observation (3.48) can be written in linear form as y = Hu+w, the BLM detector

computes the test statistic using the following expression [19]:
77 (y)=y" HC,H" (HC,H" + N,I)"'y (3.49)

where the covariance matrix C, =diag[o,,o;,...,0;] and the noise variance

NI =diag[N,,...,N,]. The closed form expression of the test statistic is given by:

. h2 o2 M W o’
TV(y){%Jyfd +Z[%]yé (3.50)

122 72 2
hy0y + N, 1\ hyoi, + N,

According to the test hypotheses, the test statistic is determined as follows:
Iy Ny

2
Yia

12

oy + N, Miao)

i 0% 1= )85+, +Z hioh (ol (1-a")a5 + ), Y
ﬁfdcfd +N, MTy) = ﬁfio'iz +N,

SR
Hy:T'(y)= y‘i’]+ _hyouy

122
Mo i o + N

(3.51)

H:T'(y)=

Diaqy

2 I 2 2 20k—1)\ 2
where Moy = Ny ) Tiaoy = Ny > Ny =0u(l—a )0, + N, and

Maqy =0w(1—a**)S, + N, and (3.51) can be simplified as:

M
H, 3TV(J’) = d(O)Zszd +Zﬂi(0)ll§l(i)
=1
(3.52)
~V A 2 & A 2 /-
H :T" (y)=au X +Zﬂi(l)Zid (0)

i=1
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n 12 2 2 2(k-1)\ o2
o - Rey . Ruol(al(1-a? )8l +1)
= 2 0 =7 5 0 %o = )
h,o,+1 hvdo;d +1

where ¢«
0 =
hd sd+1

jl\iflo-izd (O-izd (1 - )531 + 1)

hlol +1

By = , Ny=1, y., and y; are independent and

identically distributed Chi-squared random variables with one degree of freedom for

the source and destination, and the relay and destination respectively.

The probability density functions of the test statistic f( y)is determined as follows
[19]:

P(T";H,) = 2i j " 8 () exp(—jol” )do
JT d—* ‘Ho
(3.53)
- 1 = e
P(T";H)=—] ¢, (@)exp(-jol")dew
27 -0

The characteristic functions of 7" (y)according to the hypotheses Hy and H; in

P(f’ ;H,) and P(f’ ; H)) are given by:

M
T 1/2 +H

o (1 2]0)05(0)) i-1 (1= 2]a)ﬁl(0))l/2

) (3.54)
(- 2]0)0!(1))1/2 H (1- 2]60ﬂ(1>)m
; Y P M
where, 1,_[(1 2}(0[3(0))1/2 ;(1 2](oﬂ(0))”2 , with -=111_£ 0 ﬂ;{o)/ﬂ,(m)l/z
; y 5 M
and 1,_[(1 2]60,3(1))”2 :Z(l 2]60ﬁ(1))”2 i b 1111, (1- ,31(1)/ﬁ(1))1/2 Y

introducing (3.54) in (3.53), the PDFs for dual hop (2 segments) relays network are

derived as follows:

1 1 d E, . Aa\do
2% (1—2ja)a() 277 2 “(1-2j ,5 ) 2z

(3.55)
A 1 odo TG = : o\ do
P(T"H)=~| ————exp(-jol" )—+~ ——————exp|-jol" | —
2L@ (1-2j0d}) " 243 L (1-2jof,)" | )zfr
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(3.55) represents the inverse fourrier transform and its solution is derived as follows

[48].

P(T";H,)=

and,

P(T;H)) =

1 1
exp(——=— ) ———0XP(— %) 3.57
2,277 &), 280, =2 At Bl 2B, 527

Using solutions found in (3.56) and (3.57), the probabilities of false alarm and
detection are respectively derived by using [49, Sec.5.3.Eq. 21]:

e . 1 1 1 MoF 11
:jP(TV;HO)dTV: r{ /1}2 ! r[—, ~ AJ (3.58)
A

ofr | 2724 —odr |2 2030,

(0)

and,

A A 1 (1 u oD, 1
=\P(T";H)dT" = r—,— A (3.59)
! | Wz |2 2ag) Z‘ f 2’ 2/31(1)

where I'(.,.) is the upper incomplete Gamma function.

3.3.4.2 Minimum mean square error (MSE) and bit error probability (BEP)

performance analysis

In network model of Figure 3.1, the receiver is equipped with BLM detector,
whereby the minimum mean square error (MMSE) estimate of the transmitted signal

is given by [19]:
' =HC H'(HC H +N,I)"y (3.60)

Using (3.48), covariance and noise matrix values, (3.60) is derived as follows:
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w__ Plhyl o . Blh[ o
' L ey (3.61)
P lh,| o,+N, o B | h, [ oy +N,
The mean square error can be derived as follows:
A 2
MSE, =E{‘(s—§V) } (3.62)

The expression (3.62) denotes the Bayesian MSE of the system.

The bit error probability (BEP) for the LMS-BLM receiver can be determined by
using the formula given in (2.36) and [38]. Substituting (3.58) and (3.59) into (2.36),

we obtain:

11 (11 (11 Yl p o [1 1 E (11
BEP' =———=Dlm,—- Al =T| — =1 |- = oA | -—=T) o =4 3.63
N [2 24, ] INm [2 26, ] ;LJZ [2 280, ] Wr [2 2B ]} (369

3.3.5 Numerical results

In this study, simulation results are presented in order to investigate the performance
of the LMS-BLM receiver in multiple relays with time varying channels. During
simulations, the theoretical channel % is chosen such that its length corresponds to
the order value of the FIR filter with number of steps equal to 10. Two phases are
considered during transmission: in the first phase, the signal is generated randomly
and transmitted to all relays and destination in the network. In the second phase, the
source is silent and each relay amplifies the received signal from the source only and
forwards it to the destination. The amplification at the relay is done by only
multiplying the received signal with the amplification gain. At the destination, the
receiver has to estimate the channel and to recover the original transmitted signal
from the source by using the LMS-BLM receiver. The LMS agorithm is functioning
such a way that the channel weights are updated only when the BLM detector
decides the presence of the signal, otherwise the channel estimates remain

unchanged.

In this analysis, four scenarios are considered: in the first scenario, the receiver
operating characteristics (ROC) and MSE learning curve are evaluated for different

number of relays and same nodes mobility. In the second scenario, the ROC and
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MSE learning curve are investigated in multiple relays and various velocities of
relays and destination. In the third scenario, the BER is evaluated in multiple relays
for different step size (p), number of relays and nodes’ mobility. The fourth scenario
investigates the effects of mobility of relay only, destination only or relay and

destination on the BER of the system.

In Figure 3.9, the ROC is investigated by considering multiple AF relays (i.e. R=2,

R=3 and R=4), relays and destination are moving at the same speed of 108 km/h. In

this simulation, we consider a system with carrier frequency of f, =2GHz, symbol
period of 7, =0.1ms, doppler frequency of f, =200Hz and the normalized doppler
frequency of f,7. =0.02. The findings have shown that the probability of detection

improves when the number of relays increases and the direct link presents less
detection performance compared to other links. In Figure 3.10, the MSE learning
curve is investigated with various number of relays in fast fading channels. The

findings show that the MSE improves when the number of relays is increased.

In Figure 3.11 and Figure 3.12, the ROC and MSE learning curve are investigated in
multiple relays with various velocities of relays and destination (i.e., Okm/h, 27km/h,
54km/h, 108km/h, 216km/h and 324km/h). The results show that the high node speed
affects the probability of detection and exhibits the high MSE at the receiver. This
can be improved by increasing the number of relays in the network and using

appropriate receiver algorithm that can detect the signal efficiently.

In Figure 3.13, the bit error probability is evaluated in multiple relays by varying the
step size (i.e., mu=0.002, 0.004 and 0.008) that controls the convergence of the LMS
algorithm, and node speed of 108km/h. The results show that the BER decreases
quikly when the value of the step size increases. Similarly, when the number of
relays increases, the BER improves as shown in Figure 3.13. The nodes speed also
affects the BER performance and this can be compansated by increasing the number
of relays as shown the results in Figure 3.14. In Figure 3.15, the effect of nodes
speed is investigated for relay speed only, destination speed only, and when the relay
and destination have the same speed. The findings showed that the mobility of relays
affects the BER performance much more than the mobility of destination and the
mobility of both relays and destination affects the BER performance much more than

the mobility of relays only or destination only.
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Figure 3.9 : ROC of the receiver with M-relays in fast fading channels.
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Figure 3.12 : MSE learning curve of the LMS-BLM Receiver with nodes speeds.

97



10°
=P = 3R-mu=0.002-LMSBLM[108km/h] | |
> =B~ 3R-mu=0.004-LMSBLM[108km/h]
Sho > =@ * 3R-mu=0.008-LMSBLM[108km/h]
| -~
. % N
b - Nl
Nn. **~>~
x O Bl Py
W10 O B, PP
m .. i [ | e
‘0. ‘|,
.n. }
} .0 “l.‘
’0..“’. \""-.
""ti.,.a D g,
..o. ."i_
©:0..4 O~|.
*0..
'9'--0--.0.?
10° if
0 2 4 6 8 10 12 14 16 18 20
SNR(dB)

Figure 3.13 : BER of the LMS-BLM Receiver with various step size (1).

BER

3.6 ; “ - 5.
» %= 1R-LMS-BLM[27km/h] ‘aa-g. g g..g..g
=4 = 2R-LMS-BLM[27km/h]
=0= 3R-LMS-BLM[27km/h]
1037 =2 = 1R-LMS-BLM[108km/h]
=p= 2R-LMS-BLM[108km/h]
«=EF = 3R-LMS-BLM[108km/h]

\k.

..
38 ‘o..’
ool

10 12 14 16 18
SNR(dB)

10

20

Figure 3.14 : BER for the LMS-BLM Receiver with nodes speeds and M-relays.

98



10

BER

«*B+ 2R.LMS-BLM[D=108km/h]
=P = 2R:LMS-BLM[R=108km/h]
2R:LMS-BLM[R,D=108km/h]
2R:LMS-BLM[FN=0km/h]
«*B+ 3R.LMS-BLM[D=108km/h]
=P = 3R:LMS-BLM[R=108km/h]
3R:LMS-BLM[R,D=108kmvh]
=0~ 3R-LMS-BLM[FN=0km/H]

10°

0 2 4 6 8 10 12 14 16 18 20
SNR(dB)

Figure 3.15 : Effect of nodes’ mobilities on the LMS-BLM Receiver performance.
3.3.6 Summary

This study investigated the performance of the LMS-BLM receiver in AF relays
network with time varying channels. Four scenarios were considered: The first
scenario evaluated the ROCs and MSE learning curve (i.e., Figure 3.9 and Figure
3.10) with various number of relays (i.e., R=2, R=3 and R=4) and nodes’ speed of
108km/h. The findings showed that the performance of the ROC and MSE learning
curve improves when the number of relays increases in the network. The second
scenario evaluated the ROCs and MSE learning curve (i.e., Figure 3.11 and Figure
3.12) with various nodes speeds (i.e., Okm/h, 27km/h, 54km/h, 108km/h, 216km/h,
and 324km/h). The findings showed that the high speed of nodes affects the system
performance particularly when there are few relays in the network. The third scenario

evaluated the effect of step size x, various number of relays, and various number of

nodes speeds (i.e., Figure 3.13 and Figure 3.14) on the BER performance. The
findings showed that the BER improves when the step size value and number of

relays increase at low speeds of nodes. Therefore, the step size x should be well
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choosen in the specified range in order to ensure the stability and good convergence

of the algorithm.

In the fourth scenario, the effects of mobility of relays only or mobility of destination
only were evaluated (i.e., Figure 3.15). The findings showed that the mobility of
relays affects the BER performance more than the mobility of destination. Therefore,

the mobility of relays must be put into account when designing a wireless network.

In this study, different scenarios and simulation parameters have proven that the
proposed receiver can be applied in the current and future wireless networks where
carrier frequencies are in the range of 2GHz and networks that can allow the use of

multiple relays.
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4. CONCLUSIONS

In this thesis, theoretical and numerical findings on proposed models of channel
estimation and data detection for cooperative wireless communications were
presented. The effects of channel impairments (i.e., time varying multipath fading,
shadowing, noise, etc.) on wireless communication networks were discussed.
Consequently, relaying networks based cooperative wireless communications were
assessed due to their role in providing diversity gain in wireless networks that can
mitigate directly the effects caused by multipath fadings. Numerous advantages of
relaying cooperations in wireless networks were pointed out such as the coverage
extension, throughput enhancement, reduction of power consumption at the
transmitter as well as the receiver, low implementation complexity and costs.
Relaying cooperations also found various applications in wireless systems such as
3GPPLTE, WiMAX, WLANSs, vehicle to vehicle communications and wireless
sensor networks. Signal processing protocols for relaying cooperations were also
considered by focusing on common protocols in literature such as amplify and

forward (AF) protocol, and decode and forward (DF) protocol.

Even though, relaying cooperation can address the problem of channel impairments,
it was revealed that the receiver would still be challenged by the unknown channel
state information (CSI) and unknown transmitted signal. Therefore, practical models
related to adaptive channel estimation and data detection in cooperative wireless
communications were investigated. Two main schemes based on Bayesian linear
model (BLM) detector and least mean square (LMS) algorithm were proposed and
implemented in multiple relays in order to address the problem of signal recovery at
the reicever. The proposed algorithms presented some advantages including linear

computations, low implementation complexity and feasibility.

Specifically, the main contributions were mainly examined into two chapters (i.e.,
Chapter 2 and Chapter 3); in chapter 2, a network model operating in stationary

environment was proposed and divided in two main parts as follows:

In the first part, a wireless network with AF multiple relays was considered and it

was assumed that the channel state information (CSI) was available at the
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destination. Therefore, the BLM detector was proposed for signal recovery at the
destination. The results of receiver operating characteristics (ROC) of the BLM
detector were compared with the energy detector combined with the maximum ratio
combining (MRC) and found that the proposed method provides higher detection
performance in all scenarios considered (i.e., Figure 2.3). The effects of the number
of ralays on receiver performance were also evaluated and found that the
performance improved proportionally with the number of relays in the network (i.e.,
Figure 2.5 and Figure 2.7). In addition, the effect of relay position from the source
and destination was investigated and it was found that the system performance
improved when the relay was closer to the source (i.e., Figure 2.4 and Figure 2.6).
Therefore, wireless network designers should consider the relays’ positions for

enhancing the system performance.

In the second part, a wireless network with AF multiple relays was considered and it
was assumed that the CSI was not available at the destination. In this case, the joint
LMS-BLM algorithm was proposed in order to estimate the channel and recover the
original signal from noisy signals. Different performance metrics were evaluated
including receiver operating characteristics (ROCs), complementary ROCs,
probability of error and MSE learning curve. The results of the ROCs and C-ROCs
showed that the performance improved as the number of relays increased in the
network (i.e., Figure 2.9, Figure 2.10 and Figure 2.11). The minimum MSE could
also be achieved by choosing the appropriate step size p that controls the
convergence and stability of the algorithm (i.e., Figure 2.12). The results of the error
probability also showed that it improved proportionally with the number of relays

(i.e., Figure 2.13).

The third chapter considered a wireless network model in non stationary
environments. In this chapter, a typical wireless network that comprised of fixed base
station (BS), multiple mobile stations (MSs) acted as relays and single mobile
destination that could move at any direction was considered. In this chapter, two

main parts were also considered as follows:

The first part of chapter 3 assumed that the CSI was available at the destination and
the performance of the BLM detector in multiple AF and DaF relays with time
varying channels was evaluated. In this part, the generated signal at the source was

encoded differentially and transmitted to the relays and destination. At the receiver,

102



differential decoder with BLM detector was utilised in order to recover efficiently
the transmitted signal. The probability of detection and BER performance metrics
were evaluated in multiple relays with different node speeds and different number of
relays. The obtained results were compared with differential MRC detector and
showed that the proposed BLM detector was effective and could detect efficiently
the transmitted signal in multiple relays with time varying channels (i.e., Figure 3.4).
In addition, the effects of nodes speeds were evaluated and found that the high speed
of relays affected the system performance much more than the speed of destination
(i.e., Figure 3.5). The high speed of nodes could also increase the cascading order of
Rayleigh channel model, which could decrease the detection performance (i.e.,
Figure 3.3). Furthermore, the AF protocol and DaF protocol were compared and
found that the DaF outperformed the AF for higher number of relays and AF was
better for low number of relays (i.e., Figure 3.6). The effects of number of relays
with same speeds were also evaluated and found that the higher number of relays

could compansate the loss of signals due to high speeds (i.e., Figure 3.7).

The second part of chapter 3 assumed that the CSI was not available at the
destination and the performance of the LMS-BLM receiver in multiple AF relays
with time varying channels was evaluated. In this part, the LMS algorithm estimated
the unknown dynamic channel while the BLM detector recovered the transmitted
signal from noisy signals. The joint algorithm was working in a way that the tap
weights of the channels were only updated when the BLM detector decided the
presence of the signal, otherwise, the channel remained invariable until the next step.
The performance analysis considered different nodes speeds, different number of
relays and different steep sizes p of the LMS algorithm in order to evaluate the
effectiveness of the proposed algorithm. Different performance metrics were
considered in order to evaluate the performance of the proposed algorithm such as
ROCs, MSE learning curve, and bit error probability performance. The findings
showed that the proposed algorithm was effective, with the ability to estimate the
channel and recover the transmitted signal in time varying channels (i.e., Figure 3.9,
Figure 3.10). The effects of nodes speeds were also evaluated and found that the
speeds affected the system performance in various scenarios considered (i.e.,Figure
3.11, Figure 3.12, Figure 3.14, and Figure 3.15). Furthermore, the network

performance could be improved by increasing the number of relays in the networks
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and choosing the appropriate step size u within the appropriate range for the LMS
algorithm (i.e., Figure 3.13). Various numerical parameters utilized in this thesis
have proven that the proposed methods can be applied in the current and future
wireless networks that can support carrier frequencies classified in the range of

2GHz and can employ multiple relays.

In summary, this thesis proposed and derived new models based on Bayesian linear
model (BLM) detector and least mean square (LMS) algorithm and implemented
them in cooperative wireless communications. The performance of the proposed
methods was evaluated in both stationary and non stationary environments. It is
recommended that network designer should assess the position of relays in stationary
environment and the speed of relays in non stationary environment so as to obtain the
desired signal at the receiver. Even though different performance parameters and
assumptions were considered and investigated in this thesis, some other important

metrics can be considered in future works as follows:

e Investigating the performance of the LMS-BLM receiver in relays networks
with the application of test bed or emulation models.

e Assessing the performance of the LMS-BLM receiver in relays networks by
using other relaying protocols such as detect and forward protocol or
compress and forward protocol.

e Exploring and deriving other performance metrics such as ergodic capacity,
bit error rate (BER), outage probability and power allocation in relays
networks with the LMS-BLM receiver.

e Examining the detection performance of the BLM detector or the LMS-
BLM receiver over various channel fading distribution such as Rician,
Nakagami-m, etc.

e Comparing the LMS-BLM receiver with other existing schemes such as
zero-forcing equalization, maximum likelihood sequential estimation, etc.

e Mobility and link states prediction models for cooperative wireless

networks with multiple relays.
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