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ÖZET

ÇAPRAZ SINIFLANDIRMA: TEORİK ÇERÇEVE VE
UYGULAMALAR

Bekir ŞEN
Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Danışmanı: Yrd. Doç. Dr. Yakup Özkazanç
Aralık 2016, 110 sayfa

Örüntü tanımanın amacı karmaşık karar verme işlemlerine açıklık getirmek ve bunları
hesaplamalı olarak gerçekleyebilmektir. Bunu yapabilmek için örüntü tanıma algorit-
maları hangi sınıfa ait olduğu bulunmak istenen verinin özniteliklerini, veri kümesinde
daha önceden kayıtlı özniteliklerle karşılaştırmakta ve karar vermektedir. Pratikte birçok
probleme çözüm olan bu yaklaşım, veri kümesinde kayıtlı olan özniteliklerle ölçülen
özniteliklerin farklı uzayların elemanları olduğu durumda kullanılamamaktadır. Veri
kümesinde kayıtlı olan öznitelikler ile ölçülebilen özniteliklerin farklı olduğu durumlardaki
sınıflandırma problemi ’çapraz sınıflandırma’ olarak nitelendirilmiştir. Çapraz sınıflandırma,
örüntü tanıma algoritmalarında kullanılacak öznitelikleri doğrudan ölçemediğimiz veya
belirleyemediğimiz durumlarda sınıflandırma ve tanıma yapabilmeyi hedefleyen yeni bir
yaklaşımdır.

Bu çalışma, istatistiksel uzaklık ölçütlerinin incelenmesi, doğrusal minimum ortalama kare-
sel hata (DMOKH) kestiricisi tabanlı çapraz sınıflandırma, çapraz sınıflandırmada gürültülü
öznitelik modellemesi ve Kanonik Korelasyon Analizi (KKA) tabanlı çapraz sınıflandırma
yönteminin oluşturulması temel başlıklarını içermektedir.

Uzaklık ölçütleri istatiksel örüntü tanıma ve sınıflandırma problemlerinin temel araçlarından
birisidir. Birçok alanda kullanılan uzaklık ölçütleri, iki objenin birbirlerinden ne kadar
ayrık olduğunu ifade etmek için kullanılır. Bhattacharyya Uzaklık ölçütü de sınıfların
ayrıştırılabilirliğini belirtmekte sıklıkla kullanılan istatiksel bir uzaklık ölçütüdür. Bu
çalışmada, sınıfların ayrıştırılabilirliği ile ilgili sınır değerleri belirleyebilme özelliğinden
dolayı çapraz sınıflandırma yaklaşımlarının incelenmesinde Bhattacharyya Uzaklık ölçütü
kullanılmıştır.

DMOKH yöntemi çapraz sınıflandırmada kullanılabilecek en temel yöntemlerden biridir. Bu
çalışmada DMOKH kestirici tanımlanmış ve çapraz sınıflandırma problemine uygulanmıştır.
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Ölçülemeyen özniteliklerin doğrudan kestirilmesi esasına dayanan bu yöntemin başarımı
ayrıntılı olarak incelenmiştir.

Gürültülü öznitelik modeli, kestirim sonucunda ortaya çıkan hatanın, ölçülemeyen
öznitelikler üzerinde gürültü olarak modellenmesi temeline dayanmaktadır. Bu model,
kestirim sonrasında sınıflandırma performanslarının analitik olarak incelenmesine imkan
sağlamaktadır. Bhattacharyya Uzaklık (BU) ile sınıflandırma performansı arasındaki bağıntı
gürültülü öznitelik modeliyle ayrıntılı olarak incelenmiştir.

KKA metodolojisinin çapraz sınıflandırma için nasıl kullanılabileceği incelenmiş ve
bir yöntem önerilmiştir. Bu yöntemin öznitelik seçiminde sağladığı avantajlar
sunulmuştur.

DMOKH kestiricisi kullanılarak yapılabilecek çapraz sınıflandırma ile KKA tabanlı çapraz
sınıflandırma yönteminin ilişkisi incelenmiş ve KKA tabanlı çapraz sınıflandırmanın el-
deki tüm öznitelikler kullanıldığı durumda DMOKH yöntemiyle aynı performans değerini
sağladığı gösterilmiştir.

Çalışmada sentetik ve gerçek veri kümeleri kullanılarak farklı çapraz tanıma problemleri ile
uygulamalar çalışılmıştır. Önerilen yöntemler, eskizler üzerinden yüz tanıma problemine
uygulanmış, sonuçlar literatürdeki diğer yöntemler ile karşılaştırmalı olarak gösterilmiştir.
Ayrıca, farklı mesafelerden elde edilmiş farklı çözünürlükteki yüz imgeleri üzerinde de
önerilen çapraz sınıflandırma yöntemi ile yüz tanıma uygulaması yapılmış ve sonuçlar
tartışılmıştır.

Anahtar Kelimeler: Örüntü Tanıma, Çapraz Sınıflandırma, Kanonik Korelasyon Analizi,
Mesafe Ölçütleri, DMOKH kestiricisi, Yüz Tanıma, Eskiz Tanıma
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ABSTRACT

CROSS CLASSIFICATION: THEORETICAL FRAMEWORK AND
APPLICATIONS

Bekir ŞEN
Doctor of Philosophy, Department of Electrical and

Electronics Engineering
Supervisor: Assist. Prof. Dr. Yakup Özkazanç

December 2016, 110 pages

Pattern identification algorithms can be exploited for single-class or multi-class identification
problems. In conventional applications, identification algorithms are based on functions of
measured features. However in some cases, we already have an identification algorithm but
the measured features are different from the expected features. In such cases, we can first
estimate the needed features from the measured ones and then use the identification algorithm
with the estimated features. This work proposes a framework for such Cross Classification
problems.

This study can be grouped under four different headings. These can be summarized as
follows; 1-distance measures, 2-Linear Minimum Mean Square Error (LMMSE) estimator
based cross classification, 3-noisy feature modelling for cross classification and 4-Canonical
Correlation Analysis base cross classification method.

Distance measure is one of the main instruments of statistical pattern recognition and clas-
sification problems. It is used to measure the separation of the two objects. Bhattacharyya
Distance is one of the statistical distance measures used for class separability problems. This
distance measure is utilised in this study for investigation of different cross classification
approaches, because of its usability in limit values for classification.

LMMSE based method is one of the most basic methods used for the cross-classification.
An LMMSE predictor based on the direct prediction of unmeasurable features principle is
defined in this study and it is applied to the cross classification problems. The performance
of this approach is investigated in detail.

The noisy feature model is based on modelling of the prediction errors as noise on unmeasur-
able features. This model enables the analytic study of the classification performances after
prediction. The correlation between Bhattacharyya Distance and classification performance
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is analysed using noisy feature model. The utilisation of CCA methodology for cross classi-
fication is investigated and a method is proposed in this work. Moreover, the advantages of
this method for feature selection and reduction is presented.

The relation between LMMSE based and CCA based cross classification is studied. The
CCA based classification is presented to perform similar to LMMSE method when all fea-
tures are employed. In this study we have also shown the applications of different cross-
classification problems using synthetic and real data sets. The proposed methods are applied
to face recognition from sketches problem and the results are presented with comparisons to
other methods in literature. In addition, the presented cross classification method is used for
the face recognition from facial pictures captured from different distances problem and the
results are discussed.

Keywords: Cross Classification, Canonical Correlation Analysis, Distance Measures,
LMMSE Estimator, Face Recognition, Sketch Recognition
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SÖZLÜKÇE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
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6.2 CMU Veri Seti Yüz Tanıma Uygulaması . . . . . . . . . . . . . . . . . . . 57
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Şekil 6.13 U Ara Uzayına Aktarılmış Genetik Verilerin İlk 2 Öznitelik
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Doğrusal Minimum Ortalama Karesel Hata Linear Minimum Mean Square Error
En Yakın Ortalama Sınıflandırıcı Nearest Mean Classifier
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Olasılık Dağılım Fonksiyonu Probability Distribution Function
Ortalama Karesel Hata Mean Square Error
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Öznitelik Feature

xi
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1. GİRİŞ

Örüntü tanımanın amacı karmaşık karar verme işlemlerine açıklık getirmek ve geliştirilen
yaklaşımları sayısal hesaplama sistemleri üzerinde çalıştırabilmektir [1]. Bu karar verme
işlemleri, karmaşık veri kümeleri içerisindeki belirli örüntüleri bulma, öğrenme veya tanıma
şeklinde olabilmektedir. Örüntü tanıma; etiketli verilerden güdümlü öğrenme (supervised
learning) yöntemi ile yapılabildiği gibi, etiketsiz veriler aracılığı ile güdümsüz öğrenme
(unsupervised learning) yöntemi ile de yapılabilmektedir [2]. Örüntü tanıma yaklaşımları
genel olarak yapısal (structural) ve istatistiksel (statistical) örüntü tanıma olarak iki alt gruba
ayrılmıştır [3]. Sayısal verilere dönüştürülebilen ve ölçülebilen bilgilerin belirli bir düzende
oluşturduğu veri kümelerine örüntü denir. Örüntü, aynı zamanda kaotik olmayan, karmaşa
içermeyen yapısal veri seti anlamındadır [4]. Makine öğreniminin bir alt dalı olan örüntü
tanıma, günümüzde oldukça yaygın kullanım alanları bulmaktadır. Biyoloji, adli bilimler,
uzaktan algılama vb. disiplinler örüntü tanımanın sıklıkla kullandığı alanlardandır.

İstatiksel örüntü tanıma yöntemleri öznitelikleri (features) yapısal örüntü tanıma yöntemleri
ise basit yapıları (primitives) kullanarak örüntüleri tanımaya çalışırlar. İstatistiksel örüntü
tanıma yaklaşımında, örüntüler bir öznitelik uzayında vektör olarak tanımlanırlar. Bu
vektörler, karar kuramı (decision theory) yaklaşımları ile öznitelik uzayında ayrıştırılır veya
gruplanırlar [2, 5]. Yapısal örüntü tanıma ise, hiyerarşik bir bakış açısından örüntüleri
tanımaya çalışır. Şekil, uzunluk gibi morfolojik özellikler ile tanımlanan basit ve küçük
yapılar karmaşık örüntüleri tanımlamakta kullanılır. Tanıma ve gruplama işlemleri bu yapılar
üzerinden yapılır. Yapısal örüntü tanıma yöntemleri, jenerik olmayan ve yeni bir alana uygu-
lanması zor yöntemlerdir. Tanıma ve sınıflandırma işlemlerinde kullanılacak yapılar alan bil-
gisi birikimi gerektirmektedir [5]. Bu çalışmada çapraz tanıma problemi, güdümlü öğrenme
tabanlı istatistiksel tanıma yöntemleri çerçevesi içinde ele alınmış ve alan bilgisi olmadan
kolaylıkla uygulamaya geçirilebilecek genel bir teorik çerçeve oluşturulmuştur.

Bu çalışmada çapraz sınıflandırma problemleri için genel bir çerçeve çizilmesi plan-
landığından, istatistiksel örüntü tanıma yöntemleri tercih edilmiştir. Geleneksel istatistik-
sel yöntemler, tanıma yapabilmek için, hangi sınıfa ait olduğu bulunmak istenen verinin
özniteliklerini, veri kümesinde daha önceden kayıtlı özniteliklerle karşılaştırmakta ve karar
vermektedir. Pratikte birçok probleme çözüm olan bu yöntem, veri kümesinde kayıtlı olan
özniteliklerle ölçülen/çıkartılan özniteliklerin farklı uzayların elemanları olduğu durumlarda
kullanılamamaktadır. Çapraz tanıma olarak tanımlanan bu yaklaşım, örüntü tanıma algorit-
malarında kullanılacak öznitelikleri doğrudan ölçemediğimiz veya belirleyemediğimiz du-
rumlarda sınıflandırma ve tanıma yapabilmeyi hedeflemektedir.
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Çapraz tanıma problemi, yüz-eskiz tanıma, farklı duruşlar altında yüz tanıma, farklı
çözünürlüklerdeki güvenlik kameralarından yüz tanıma gibi pratik problemlerde karşımıza
çıkabilmektedir. Bu pratik problemler özellikle sonraki yıllarda çokça çalışılmış olmasına
karşın [6, 7, 8], farklı problemlerde hızlı ve etkin bir şekilde uygulanacak genel bir çalışma
çerçevesi ortaya konulamamıştır. Bu çalışmada, çapraz tanıma problemi tanımlanmış ve
genel bir çalışma yapısı sunabilmek için problemin çözümüne yönelik farklı yaklaşımlar
ortaya konularak konu incelenmiştir.

Çapraz sınıflandırma, çözmeye çalıştığı problem bakımından diğer sınıflandırma
problemlerine benzese de kullandığı yöntem ve yaklaşımlar bakımından diğer
sınıflandırma yöntemlerinden ayrılmaktadır. Bu bölümde, Çapraz Sınıflandırma prob-
lemi tanımladıktan sonra çözüm yaklaşımı kısaca sunulacak ve çalışmanın literatüre olan
katkısı tanımlanacaktır.

1.1 Çapraz Sınıflandırma Nedir?

Standart örüntü tanıma yöntemleri, doğrudan ölçülen öznitelikler veya bu özniteliklerin
indirgenmiş alt kümeleri üzerinden örüntüyü tanımaya çalışmaktadır. Standart örüntü tanıma
probleminde, tanınmak istenen örüntünün ölçülen öznitelikleri ile veri kümesinde kayıtlı
öznitelikler aynı uzayda tanımlanmış vektörlerdir. Çapraz tanıma olarak sunulan problemde
ise durum daha farklıdır.

Çapraz tanımada amaç; tanınmak veya sınıflandırılmak istenen objenin ölçülebilen
öznitelikleri veri kümesinde kayıtlı öznitelik uzayından farklı bir öznitelik uzayının ele-
manları olduğu durumda da tanıma/sınıflandırma yapabilmektir. Bu amaca ulaşabilmek
için tanıma yapılacak uzay üzerine, tanınacak objenin yanı sıra veri kümesinde kayıtlı
özniteliklerin de dönüştürülmesi gerekmektedir. Ölçülen öznitelik uzayında tanıma yap-
mayıp, veri kümesinde kayıtlı öznitelik uzayında veya tanımlanacak yeni bir uzayda tanıma
yapma yaklaşımını Çapraz Sınıflandırma (ÇS) olarak tanımlıyoruz.

Çapraz sınıflandırma, veri kümesinde kayıtlı öznitelik veya ölçülen öznitelik uzayında
yapılabildiği gibi yeni tanımlanacak ara uzaylarda da yapılabilir. Bu tez kapsamında, seçilen
bir ara uzay üzerinde çapraz sınıflandırmaya yönelik yaklaşımlar ortaya konulmuştur.

Herhangi iki nicelik veya iki küme arasında uzaklık ölçümünün veya karşılaştırmanın an-
lamlı olabilmesi için niceliklerin aynı türden olması gerekir. Çapraz sınıflandırma yöntemi,
farklı olan öznitelikleri belirli yöntemler ile ortak bir uzaya indirgedikten sonra sınıflandırma
yapmayı hedeflemektedir. Çapraz sınıflandırma yapabilmek için ölçülebilen özniteliklerden
sınıflandırıcının tanımlandığı uzaya geçişin açıkça tanımlanmış olması gerekmektedir. X
uzayı sınıflandırıcının tanımlandığı uzayı, Y uzayı ise doğrudan ölçülebilen özniteliklerin
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tanımlandığı uzayı ifade ederse, çapraz sınıflandırma yaklaşımı üç temel unsur ile ifade
edilebilir;

• Y uzayında elde edilen özniteliklerin, X uzayına veya bir ara uzaya aktarılması
(Öznitelik kestirimi)

• X uzayına veya ara uzaya aktarılan özniteliklerden, sınıflandırmada kullanılacak olan
özniteliklerin çıkarımı (Öznitelik seçimi)

• X uzayında veya ara uzayda daha önceden tanımlı olan sınıflandırıcı kullanılarak
tanıma/sınıflandırma yapılması.

Y ve X uzayında elde edilen öznitelikler, farklı dönüşüm matrisleri ile farklı uzaylara
taşınabilirler. Bu dönüşüm ile, X uzayında tasarlanan bir sınıflandırıcı da farklı bir ara uzaya
taşınabilir. Y uzayında tanımlı bir sınıflandırıcının önceden olmaması sebebiyle öznitelikler
X uzayına veya başka bir ara uzaya aktarılırlar. Çapraz sınıflandırmanın bu ilk unsurundaki
öznitelik kestiriminin yapılabilmesi için X ve Y uzaylarındaki verilerin birbirleriyle ilintili
(correlated) olması ön koşulu vardır.

Örüntü tanıma problemlerinde, yüksek sayıda özniteliğin kullanılması, özellikle işlem yükü
açısından tercih edilmeyen bir durumdur. Aktarılan özniteliklerden, sınıflandırma perfor-
mansını olabildiğince yüksek tutacak özniteliklerin belirlenmesi gerekmektedir.

Son olarak ise, belirlenen indirgenmiş öznitelikler ile X uzayında veya ara uzayda
sınıflandırma yapılacaktır. Çapraz sınıflandırma yönteminde, sınıflandırıcı olarak herhangi
bir sınıflandırıcı kullanılabilir. Doğrusal, karesel veya en yakın komşu sınıflandırıcıları bun-
lardan bazılarıdır.

1.2 İçerik

Bu tezin yapısı ve içeriği şu şekilde özetlenebilir:

Bölüm 2’de sınıf ayrıştırılabilirliği ve sınıflar arası uzaklık ölçütlerinin neler olduk-
ları gösterilmiştir. Çapraz tanıma yönteminin ne derecede başarılı olabileceği sınıf
ayrıştırılabilirliğinde bir ölçü olabilecek Bhattacharyya Uzaklık (BU) ölçütü üzerinden
incelenmiştir [9]. Bhattacharyya Uzaklığı’nın Gauss dağılımlar için özel durumu, doğrusal
dönüşümlerden nasıl etkilendiği ve Bhattacharyya Uzaklığı’ın hangi özelliklere sahip
dönüşümler altında etkilenmediği konuları da bu bölümde ek alınmıştır. Doğrusal Mini-
mum Ortalama Karesel Hata (DMOKH) kestiricisi ile çapraz tanıma yönteminin doğrusal ve
tersinir bir dönüşüm içerdiği ve bu dönüşüm sonucunda sınıf ayrıştırılabilirliğine herhangi
bir değişiklik getirmeyeceği gösterilmiştir.
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Çalışmanın başlangıç noktası olan en düşük doğrusal karesel kestirici ve bu kestirim yöntemi
ile çapraz tanıma yapmak için özniteliklerin nasıl kestirileceği Bölüm 3’de ele alınan konu-
lardır.

Bölüm 4’de çapraz sınıflandırmanın performansının değerlendirmesi için BU’ya dayanan bir
model önerilmiş ve yapay bir veri kümesi üzerinde, sınıflandırma performansı bu model ile
incelenmiştir.

DMOKH kestirici ile çapraz tanıma ve performans değerlendirme incelemelerinden sonra;
sınıflar arasındaki ilintiyi ortaya koyan yöntemlerin Çapraz Tanıma için başarılı olabileceği
ve tanıma işleminin ara uzayda yapılmasının faydalı olabileceği gözlenmiştir. Bu şartları
sağlayan, çok değişkenli iki veri kümesi arasında tanımlanan ve bu iki veri kümesi arasındaki
ilintileri ortaya çıkaran bir yaklaşım olan Kanonik Korelasyon Analizi’nin (KKA) çapraz
tanıma için uygun bir altyapı olduğu değerlendirilmiştir.

Bölüm 5’de Kanonik Korelasyon Analizi yöntemi sunulmuş, Çapraz Tanımada kul-
lanılabilmesi için gereklilikler ortaya konmuş ve KKA ile Çapraz Tanıma için bir yöntem
önerilmiştir.

Önerilen çapraz tanıma yöntemlerinin, sentetik ve gerçek veriler ile uygulamaları Bölüm
6’da yapılmıştır. Uzaklık ölçütleri ve sınıf ayrıştırılabilirliği ile ilgili incelenme iki farklı
veri kümesi üzerinde teorik ve deneysel sonuçları karşılaştırılmasıyla yapılmıştır. Yine bu
bölümde, genetik verilerden köken ve haplogrup belirleme, farklı açılardan elde edilmiş
fotoğraflardan yüz tanıma, eskizden yüz tanıma ve farklı mesafelerden elde edilmiş farklı
çözünürlüğe sahip görüntülerden yüz tanıma uygulamaları yapılmıştır. Uygulamalarda,
problemlerin çapraz tanıma yaklaşımları ile çözümü sunulmuş ve performans değerleri
incelenmiştir. Uygulamalar hakkında detay bilgi, benzer çalışmalar ve sonuçlar ilgili uygu-
lamalarla birlikte sunulmuştur.

Bölüm 7’de çalışmadan çıkan sonuç ve çıkarımlar sunulmuş ve tartışılmıştır.

1.3 Tezin Katkısı

Bu çalışma, çapraz sınıflandırma problemleri için genel bir çerçeve çizmektedir. Yapısal
örüntü tanıma yöntemleri, genel olarak uygulamaya bağlı alan bilgisi gerektirmektedir
[5]. Bu çalışmada önerilen yöntem ise alan bilgisi gerektirmeyen genel bir yaklaşım
niteliğindedir. Önerilen yöntem, bu sayede birçok farklı problemde uygulanabilecek bir
sınıflandırma/tanıma aracı oluşturmuştur. Çapraz sınıflandırma problemi, birçok farklı pratik
uygulamayı içermektedir. Örüntü tanıma yöntemlerinin geliştirildiği alan haricinde başka
bir alana aktarılması zordur. Önerilen kanonik korelasyon analizi tabanlı çapraz tanıma
yöntemi, analitik çözüm temeline dayandığından, farklı alanlara kolaylıkla uygulanabilmek-
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tedir.

Genel olarak örüntü tanıma yöntemlerinde, seçilen özniteliklere göre başarı perfor-
mansı değişmektedir. Bu sebepten performansı artıracak özniteliklerin seçilmesi oldukça
önemlidir. Çapraz sınıflandırma için önerilen KKA tabanlı yöntem, özniteliklerin seçilmesi
için optimal bir yöntem önermektedir.

Çapraz sınıflandırma problemlerine, derinlemesine alan bilgisi gerektirmeden çözüm
önermesi, bu çözümü analitik bir çerçeve içerisinde sunması ve kullanılacak özniteliklerin
optimal olarak belirlenmesi, bu çalışmanın özgün yönünü oluşturmaktadır.

Çalışmada ayrıca;

• Düşük çözünürlükteki yüz imgelerinden tanıma,

• Genetik verilerden etnik köken ve haplogrup belirleme,

• Eskizden yüz tanıma,

• Güvenlik kamerası yüz tanıma

problemleri de özgün bir şekilde çapraz tanıma problemi olarak ele alınmış ve
çalışılmıştır.
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2. SINIFLAR ARASI UZAKLIK ÖLÇÜTLERİ

İstatiksel uzaklık ölçütleri (statistical distance measures) örüntü tanıma ve sınıflandırma
problemlerinde yararlanılabilecek temel teorik araçlardan birisidir. Birçok alanda kullanılan
uzaklık ölçütleri, iki objenin birbirlerinden ne kadar ayrık olduğunu ifade etmek için kul-
lanılır. İki objenin farklılığı ölçülebildiği gibi, benzerlikleri (similarity) de ölçüt olarak kul-
lanılabilir [10]. Objeler, tekil olabildikleri gibi, birden fazla objenin birleşimiyle oluşan
kümeler arasında da uzaklık kavramları tanımlanabilir. Örüntü tanımada, sınıfların birbirle-
rine veya bir objeye olan mesafeleri incelenirken, sınıflara ait istatistiksel bilgiler kullanılır.
Sınıfların olasılık dağılımları arasındaki fark, uzaklık ölçütü olarak tanımlanır. Uzaklık
ölçütleri simetrik ve üçgen eşitsizliğini (triangle inequality) sağlamasına rağmen, uzaklık
ölçütü olarak kullanılan ve bu özellikleri sağlamayan ölçütler de sınıfların farklılıklarını
ölçmekte kullanılmaktadır. Bu tür ölçütler ıraksama (divergence) temelli mesafe ölçütleri
olarak tanımlanır. Iraksama temelli mesafe ölçütlerinden, f-ıraksama temelli mesafe ölçütleri
geniş bir ıraksama ailesini kapsamakta ve sınıflar arası farklılıkların ölçülmesinde sıklıkla
kullanılmaktadır. Kullback-Leibler, Bhattacharyya, Hellinger, Chernoff, Renyi uzaklık
ölçütleri f-ıraksaması temelli uzaklık ölçütlerindendir [11]. Diğer uzaklık ölçütleri hakkında
ayrıntılı bilgi [10, 11, 12]’da bulunabilir.

Bu çalışmada özelikle ilgileneceğimiz f-ıraksaması temelli bir ölçüt olan Bhattacharyya
Uzaklık (BU) ölçütüdür. f-ıraksaması temelli yaklaşımlar sayesinde uzaklık ölçütleri ile sınıf
ayrıştırılabilirliği arasında bağıntı kurulabilmektedir. Bayes tabanlı karar verme mekaniz-
masının, eldeki verilerin tam dağılımları kullanıldığında optimal sonuç verdiği bilinmekte-
dir. Doğru dağılımlar pratikte bilinemediği için, bunların yerine belirli modeldeki dağılımlar
kullanılmaktadır. Bu model dağılımların kullanılması, f-ıraksaması tabanlı mesafe ölçütleri
ile sınıf ayrıştırılabilirliği için bulunacak sınırları etkilemektedir [13]. Bu konuda yapılan
çalışmalar, pratik veriler ile sınıflandırma performansının alt ve üst sınırlarını belirlemeye
yöneliktir [13, 14]. Sınıf dağılımlarının farklı formlarda modellenmesi sınıflandırma sınır
değerlerinde değişikliklere sebep olabilmektedir. Bu tez kapsamında, dağılımların farklı
formlarda modellenmesinin sınır değerlerine etkisi göz önüne alınmayacaktır.

İki dağılım arasındaki uzaklığı ölçmekte kullanılan f-ıraksaması temelli mesafe ölçütlerinin
genel formu:

D(p1(x), p2(x)) = g
(

Ex

{
f
(

p1(x)
p2(x)

)})
( 2.1)

ile verilir.
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Burada D mesafe ölçütünü, 1 ve 2 birbirlerine mesafesi ölçülecek iki dağılımın etiketlerini,
p1(x) ve p2(x) bu objelerin (sınıfların) olasılık yoğunluk fonksiyonlarını (pdf), g artan reel
bir fonksiyonu, f sürekli konveks reel (continous convex real) bir fonksiyonu ve E beklenen
değeri (expected value) ifade etmektedir.

f ve g fonksiyonları farklı şekilde seçilerek Kullback-Leibler ıraksaması, Hellinger Uzaklığı,
Jensen-Shannon ıraksaması gibi f-ıraksaklık ölçütleri tanımlanmaktadır [15].

f ve g fonksiyonları

f (x) =−
√

x

g(x) =− ln(−x)
( 2.2)

olarak seçildiğinde Bhattacharyya Uzaklığı

BU =− ln
(∫ √

p1(x)p2(x)dx
)

( 2.3)

olarak tanımlanır. BU Bhattacharyya Katsayısına (Bhattacharyya Coefficient) bağımlı olarak
da tanımlanabilir [16]. Bhattacharyya Katsayısı (BK):

BK(p1, p2) =
∫ √

p1(x)p2(x)dx ( 2.4)

şeklinde ifade edilir. Eşitlik 2.3 ve Eşitlik 2.4 birleştirildiğinde,

BU =− ln(BK) ( 2.5)

elde edilir.

p1(x) ve p2(x) dağılımlarının eş dağılımlar olması durumunda birbirleri arasındaki BU
ölçütü sıfır olacaktır. Bu durum Eşitlik 2.3 ve Eşitlik 2.4’de değerlendirildiğinde BU = 0 ve
BK = 1 olacaktır. p1(x) ve p2(x) dağılımları hiçbir noktada örtüşmediği durumda ise Eşitlik
2.3’de integralin içerisi sıfır çıkacağından BU = ∞ ve BK = 0 olacaktır. Buradan açıkça

görüldüğü üzere, BK 0 ile 1 arasında, BU ise 0 ile ∞ arasında değerler almaktadır.

BU metrik olma şartlarını sağlamamakta [16] ve bu sebepten bazen Bhattacharyya Irak-
saması olarak da ifade edilebilmektedir. BK’ye dayanan d(p1, p2) =

√
1−BK uzaklık

ölçütü ise (Hellinger Mesafesi) metrik olma şartlarını sağlamaktadır ve bazı çalışmalarda
kullanılmıştır [17].
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İki sınıf arasındaki uzaklığın ölçülmesinde BU’nın tercih edilmesinin temel sebebi, iki
sınıfın ayrıştırılabilirlik performansı ile BU arasında tanımlı bir eşitsizliğin bulunabilme-
sidir. İki sınıf ayrıştırılmasında yapılacak hata olasılığı Pe olarak tanımlandığında; anali-
tik bir sınıflandırıcı ile ulaşılabilecek hata olasılığı BU veya BK ile ifade edilebilmektedir
[16].

Pe ile BK arasındaki ilişki ise Eşitlik 2.6’de

(
1
2

BK(p1, p2))
2 ≤ 2Pe ≤ BK(p1, p2) ( 2.6)

Pe ile BU arasındaki ilişki Eşitlik 2.7’de verildiği gibidir [16, 18, 19].

(
1
2

exp−BU(p1,p2))2 ≤ 2Pe ≤ exp−BU(p1,p2) ( 2.7)

2.1 Gauss Dağılımları ve Bhattacharyya Uzaklığı

Bayes kestiriciler, ortalama karesel hatanın minimum olmasını sağlayan optimal kestirici-
lerdir. Bu kestiricilerin kapalı formlarda ifadelerini bulabilmek N boyutlu uzaylarda çok
katlı integral alma işlemleri gerektirdiğinden oldukça zordur. Pratikte MOKH kestiricilerinin
yerine; doğrusal olma önkoşulu olan DMOKH kestiricileri kullanılır. Dağılımların Gauss
(Jointly Gauss) dağılıma sahip olması durumunda DMOKH kestiricisi ile optimal MOKH
kestiricisi aynı olacaktır. DMOKH kestiricisi ile ilgili ayrıntılı bilgi Bölüm 3’de verilmiştir.
Kestiricimizin doğrusal bir kestirici olduğu durumda, öznitelikler doğrusal dönüşümlerden
geçirilecek ve sonrasında sınıflandırma yapılacaktır. Bu bölümde Gauss dağılımlara sahip
sınıfların doğrusal dönüşümler altındaki BU değerleri incelenecektir.

X uzayındaki px1(x) dağılımına sahip öznitelikler x1 rastgele değişkeni ile, px2(x) dağılımına
sahip öznitelikler x2 rastgele değişkeni ile gösterilmiştir. x1 ve x2 değişken vektörlerinin
ortalama değer vektörleri µx1µx1µx1 ve µx2µx2µx2 , eşdeğişinti matrisleri ise Px1 ve Px2 ile gösterildiğinde,
Gauss dağılımlar;

px1(x) = N(µx1µx1µx1,Px1)

px2(x) = N(µx2µx2µx2,Px2)

şeklinde ifade edilmektedir.

8



Pxav , px1(x) ve px2(x) dağılımlarının ortalama eşdeğişinti matrisini göstermekte ve

Pxav =
1
2(Px1 +Px2)

şeklinde ifade edilmektedir. |.| matris determinantını ifade etmek üzere, N(µx1µx1µx1,Px1Px1Px1) ve
N(µx2µx2µx2,Px2Px2Px2) dağılımlarına sahip iki veri kümesi (iki sınıf) arasındaki Bhattacharyya Uzaklığı,
Eşitlik 2.8’da verildiği gibidir [18].

BU(px1(x), px2(x)) =
1
8
(µx1µx1µx1−µx2µx2µx2)

T P−1
xav(µx1µx1µx1−µx2µx2µx2)+

1
2

ln
|Pxav |

|Px1|
1
2 |Px2|

1
2

( 2.8)

Çalışmanın bundan sonraki kısmında, BU(px1(x), px2(x)) ifadesi kısaca BUx şekilde (X
uzayında tanımlı iki dağılım arasındaki uzaklık olarak) kullanılacaktır.

Doğrusal dönüşümlerin genel yapısı Eşitlik 2.9’de gösterildiği gibi ifade edilir.

y = Hx ( 2.9)

Doğrusal dönüşümler, doğrusal olmayan dönüşümlere göre analizinin daha kolay olması
sebebiyle sinyal işlemede sıklıkla kullanılmaktadır. DMOKH kestiricisi de, doğrusal bir
kestirici olduğundan, bu kestiricisi ile yapılan kestirimler doğrusal dönüşümlerdir.

İddia-1:
Gauss dağılıma sahip iki sınıf arasındaki Bhattacharyya Uzaklığı, sınıflar üzerinde yapılan
tersinir doğrusal dönüşümlerden etkilenmez:

yyy =HxHxHx⇒ BUy = BUx ( 2.10)

İspat: Göstermek istediğimiz yyy = HxHxHx koşulu sağlandığında BUy = BUx olduğudur. Gauss
dağılıma sahip x1x1x1 ve x2x2x2 sınıflarının BUx değerlerinin nasıl hesaplanacağı Eşitlik 2.8’de
verilmiştir. Gauss dağılımlara sahip veriler, doğrusal dönüşümler sonrasında yine Gauss
dağılım gösterirler. Bu durumda, yyy =HxHxHx dönüşümü ile elde edilen y1y1y1 ve y2y2y2 öznitelikleri için
dağılımlar;

py1(y) = N(µy1µy1µy1,Py1)

py2(y) = N(µy2µy2µy2,Py2)

şeklinde dağılım gösterecektir. y1y1y1 ve y2y2y2 arasındaki Bhattacharyya Uzaklığı (BUy) ise Eşitlik
2.11’de gösterildiği gibi olacaktır.

BUy =
1
8
(µy1µy1µy1−µy2µy2µy2)

T P−1
yav(µy1µy1µy1−µy2µy2µy2)+

1
2

ln
|Pyav |

|Py1|
1
2 |Py2|

1
2

( 2.11)
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İzleyeceğimiz yol, BUy eşitliğinde ortalama değer vektörü ve eşdeğişinti matrislerinin yerine
eşdeğer bağıntılarını yazmak olacaktır. Doğrusal dönüşüm fonksiyonunu y = Hx şeklinde
ifade edildiğinde;

Ortalama değer vektörleri,

µy1µy1µy1 , E
y∈y1
{y}= E

x∈x1
{Hx}= E{Hx1}= HE{x1}= Hµx1µx1µx1

µy2µy2µy2 , E
y∈y2
{y}= E

x∈x2
{Hx}= E{Hx2}= HE{x2}= Hµx2µx2µx2

( 2.12)

Eşdeğişinti matrisleri,

Py1 , E
y∈y1
{(y−µyµyµy)(y−µyµyµy)

T}= E
x∈x1
{(Hx−Hµxµxµx)(Hx−Hµxµxµx)

T}

= E{(Hx1−Hµx1µx1µx1)(Hx1−Hµx1µx1µx1)
T}= E{(H(x1−µx1µx1µx1)(x1−µx1µx1µx1)

T HT}

= HE{(x1−µx1µx1µx1)(x1−µx1µx1µx1)}
T HT

= HPx1HT

Py2 , HPx2HT

Pyav ,
1
2
(Py1 +Py2)

= H(
(Px1 +Px2)

2
)HT

Pxav ,
1
2
(Px1 +Px2)

( 2.13)

olarak ifade edilebilmektedir.

Doğrusal dönüşüm öncesi ve sonrası Bhattacharyya Uzaklıkları ise sırasıyla Eşitlik 2.14 ve
Eşitlik 2.15’de verildiği şekildedir.

BUx =
1
8
(µx1µx1µx1−µx2µx2µx2)

T P−1
xav(µx1µx1µx1−µx2µx2µx2)+

1
2

ln
|Pxav|

|Px1|
1
2 |Px2|

1
2

( 2.14)

BUy =
1
8
(µy1µy1µy1−µy2µy2µy2)

T P−1
yav(µy1µy1µy1−µy2µy2µy2)︸ ︷︷ ︸

A

+
1
2

ln
|Pyav |

|Py1 |
1
2 |Py2 |

1
2︸ ︷︷ ︸

B

=
1
8

A+
1
2

lnB

( 2.15)

olacaktır. H matrisi tersinir (|H| 6= 0) kare bir matris olmak üzere;
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A , (µy1µy1µy1−µy2µy2µy2)
T P−1

yav(µy1µy1µy1−µy2µy2µy2)

= [H(µx1µx1µx1−µx2µx2µx2)]
T (HT )−1P−1

xavH−1[H(µx1µx1µx1−µx2µx2µx2)]

= (µx1µx1µx1−µx2µx2µx2)
T (HT )(HT )−1P−1

xavH−1H(µx1µx1µx1−µx2µx2µx2)

= (µx1µx1µx1−µx2µx2µx2)
T P−1

xav(µx1µx1µx1−µx2µx2µx2)

B =
|Pyav |

|Py1|
1
2 |Py2|

1
2

=
|HPxavHT |

|HPx1HT | 12 |HPx2HT | 12

=
|H||Pxav ||HT |

|H| 12 |Px1|
1
2 |HT | 12 |H| 12 |Px2|

1
2 |HT | 12

=
|H||HT ||Pxav|

|H||HT ||Px1|
1
2 |Px2|

1
2

=
|Pxav |

|Px1|
1
2 |Px2|

1
2

( 2.16)

ifadeleri elde edilir. Eşitlik 2.15 ve Eşitlik 2.16 birleştirildiğinde

BUy =
1
8
(µx1µx1µx1−µx2µx2µx2)

T P−1
xav(µx1µx1µx1−µx2µx2µx2)+

1
2

ln
|Pxav |

|Px1|
1
2 |Px2|

1
2

= BUx

( 2.17)

elde edilir. Buradan görülmektedir ki, Gauss dağılıma sahip sınıflar arasındaki Bhat-
tacharyya Uzaklığı doğrusal ve tersinir dönüşümler altında değişmemektedir.

Çıkarım-1: Gauss dağılımlara sahip sınıflar arasındaki BU doğrusal dönüşümden etkilen-
miyorsa, doğrusal bir dönüşüm olan doğrusal minimum ortalama karesel hata (DMOKH)
kestirici kullanarak kestirilen (|H| 6= 0 olması şartı ile) özniteliklerin oluşturduğu sınıfların
BU açısından ayrıştırılabilirliği değişmez.
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2.2 Tersinir ve Türevlenebilir Dönüşümler ve Bhattacharyya Uzaklığı

Bölüm 2.1’de Gauss dağılıma sahip sınıflar üzerine uygulanan tersinir doğrusal
dönüşümlerin BU değerini değiştirmediğinin ispatı sunuldu. Bu bölümde ise iki istatistik-
sel dağılım arasındaki BU değerinin, türevsel eşyapı dönüşümleri (diffeomorphism) altında
değişmediğini göstereceğiz.

İddia-2:
İki sınıf arasındaki Bhattacharyya Uzaklığı, sınıflar üzerinde yapılan dönüşüm aşağıda veri-
len kurallara uyduğu sürece değişmez [20].

• f tersinir bir fonksiyon

• f ve f−1 türevlenebilir bir fonksiyon

y = f (x)⇒ BUy = BUx ( 2.18)

İspat: Olasılık yoğunluk dağılımları px1(x) ve px2(x), olan bir veri kümesi üzerine f (x)
fonksiyonu uygulandığında, elde edilen sınıf dağılımları py1(y) ve py2(y) olmak üzere,

y = f (x)

dy = |J(x)|dx

py(y) = px( f−1(y))
∣∣J( f−1(y))

∣∣−1

( 2.19)

elde edilir.

Burada |J(x)|, y = f (x) dönüşümünün Jacobian matrisinin determinantını ifade etmektedir.
Bu bağıntı ispattaki en temel noktayı oluşturmaktadır.

Bir diğer nokta ise, Eşitlik 2.5’de de açıkça görüldüğü üzere BK değerleri aynı olan
sınıfların, BU değerlerinin de aynı olduğudur. Öyleyse px1(x) ve px2(x) dağılımlarına
sahip sınıflarına f (x) dönüşümünü uyguladıktan sonra BK değerinin değişmediğini
gösterebilirsek, BU değerinin de değişmediğini söyleyebiliriz.

Öncelikle px(x) ve py(y) dağılımları için BK değeri yazıldığında

BK(px1(x), px2(x)) =
∫ √

px1(x)px2(x)dx ( 2.20)

olacaktır.
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y = f (x) dönüşümünden sonra,

BK(py1(y), py2(y)) =
∫ √

py1(y)py2(y)dy ( 2.21)

olacaktır.

Bu noktadaki amaç, dönüşüm öncesi ve dönüşüm sonrası

BK(px1(x), px2(x)) = BK(py1(y), py2(y)) ( 2.22)

olduğunu göstermektir.

Eşitlik 2.19 ve Eşitlik 2.21 birleştirildiğinde:

BK(py1(y), py2(y)) =
∫ √

py1(y)py2(y)dy

=
∫ √

px1( f−1(y))|J(x)|−1 px2( f−1(y))|J(x)|−1dy

elde edilir. Yukardaki integralde değişken değiştirme yöntemiyle x = f−1(y) dönüşü
yaparsak,

dy = |J(x)|dx
elde edilir.

BK(py1(y), py2(y)) =
∫
|J(x)|−1

√
px1(x)px2(x) |J(x)|dx

=
∫ √

px1(x)px2(x)dx

⇒ BK(py1(y), py2(y)) = BK(px1(x), px2(x))

( 2.23)

Çıkarım-2: İki sınıf arasındaki Bhattacharyya Katsayısı, her iki sınıfa uygulanan türevsel
eşyapı fonksiyonları ile dönüştürüldüğünde değişmez. Burada dikkat edilecek bir ayrıntı
da Bhattacharyya Katsayısı’nın değişmezliğinin dağılımların formundan bağımsız ol-
masıdır.

Sonuç olarak, X uzayında Bhattacharyya Uzaklığı açısından sınıfların ayrıştırılması ile
y = f (x) dönüşümü ile Y uzayına geçildikten sonra Bhattacharyya Uzaklığı açısından
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ayrıştırılması, f fonksiyonu tersinir bir türevsel eşyapı fonksiyonu f : Rn⇒Rn,m= n olduğu
sürece eşit çıkacaktır.

BK dönüşüm f fonksiyon dönüşümünden etkilenmediğinden, Eşitlik 2.7’de gösterilen per-
formans sınır değerleri de değişmeyecektir.
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3. DMOKH KESTİRİMİ İLE ÇAPRAZ SINIFLANDIRMA

Bölüm 1’de tanımlanan ’Çapraz Sınıflandırma’ probleminin çözümü için farklı yöntemler
geliştirilebilir. Bu yöntemlerin en temel olanı Doğrusal Minimum Ortalama Karesel Hata
(DMOKH) kestirici kullanarak gerçekleştirilebilecek çapraz sınıflandırma yöntemidir. Bu
yöntem ile sınıflar arasındaki Bhattacharyya Uzaklığının değişmemesine karşın, sınıfların
ortalama değer vektörü ve eşdeğişinti matrisleri değişmektedir. Veri kümesinde kayıtlı ve-
rilerin istatistiksel nitelikleri kullanılarak önceden oluşturulan optimal bir sınıflandırıcının,
ortalama değer vektörü ve eşdeğişinti matrisi farklı bir veri seti ile kullanılması sonucunda
daha düşük performans göstermesi beklenen bir sonuçtur. Yine de bu yaklaşım, bilinen pratik
bir çözümü olmayan problemlere çözüm olması ve özellikle çapraz sınıflandırma problemleri
için genel bir çalışma çerçevesi çizmesi açısından önemlidir. DMOKH kestiriciler, ortalama
karesel hatanın en düşük değerini vermesine rağmen, bu hatanın daha az sayıda öznitelik kul-
lanıldığında nasıl değişeceğine dair bir bilgi sunmamaktadır. Bu bölüm içerisinde sırasıyla;
öznitelik kestirimine neden ihtiyaç duyulduğu, DMOKH kestiricilerin yapısı, önerilen çapraz
sınıflandırma yöntemi ve son olarak sentetik veriler üzerindeki DMOKH ile kestirim perfor-
mansı gösterilmiştir.

3.1 Öznitelik Kestirimi

Öznitelik kestiriminde amaç, sınıflandırmada kullanılacak olan fakat eldeki örnekten
ölçülemeyen özniteliklerin belirli bir kritere göre belirlenmesidir. Kestirilen özniteliklerin
bir alt kümesi doğrudan sınıflandırmada kullanılacağı için; bu kestirim çapraz sınıflandırma
açısından da önemlidir. Kestirimde kullanılacak kriterler, seçilen maliyet fonksiyonlarına
(cost function) göre belirlenirler. Ortalama mutlak hata ve ortalama karesel hata bunlardan
bazılarıdır. Ortalama karesel hata, sürekli türevlenebilir bir fonksiyon olması dolayısıyla
sinyal işleme alanında sıklıkla kullanılan bir maliyet fonksiyonudur. Ortalama karesel hata
genel formu Eşitlik 3.1’de verildiği gibidir.

OKH(x̂) = E[‖x− x̂(y)‖2] ( 3.1)

Minimum ortalama karesel hata (MOKH) kestiricisinin genel formu Eşitlik 3.2’de verildiği
gibi tanımlanır.

x̂MOKH(y) = E[x|y] ( 3.2)
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Çok boyutlu uzaylarda MOKH kestiricisinin kapalı formda çözümünü bulmak analitik olarak
zordur ve çok katlı integral dolayısıyla işlem yükü fazladır. Genellikle bunların yerine
doğrusal kestiriciler kullanılır. Gauss dağılımlar için Eşitlik 3.2’de verilen ifade, doğrusal
olarak bulunacağı için MOKH kestirici de doğrusal çıkacaktır ve DMOKH kestiricileri ile
aynı olacaktır.

3.2 Doğrusal Minimum Ortalama Karesel Hata (DMOKH) Kestiricisi

DMOKH kestiricisi, Eşitlik 3.1’de verilen ifadeye doğrusal olma koşulu eklendiğinde ortaya
çıkan kestiricidir. Genel formu

x̂DMOKH(y) = Ay+b

şeklindedir. Bu koşul eklendiğinde ortaya çıkacak beklenen hata yazıldığında

E[(x− x̂)T (x− x̂)] = E[(x− (Ay+b))T (x− (Ay+b))]

= E[xTx]−E[xT (Ay+b)]−E[(Ay+b)T x]+E[(Ay+b)T (Ay+b)]

= E[xTx]−E[xT Ay]−E[xT b]−E[yT AT x]−E[bT x]

+E[yT AT Ay]+E[bT Ay]+E[yT AT b]T +E[bT b]
( 3.3)

şeklinde olacaktır. Eşitlik 3.3’ü b ve A değişkenlerine göre minimize etmek için
sırasıyla önce b’ye göre türevi alınıp sıfıra eşitlenecek, sonra A’ya göre türevi alınıp sıfıra
eşitlenecektir.
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∂

∂b
(E[xTx]−E[xT Ay]−E[xT b]−E[yT AT x]−E[bT x]

+E[yT AT Ay]+E[bT Ay]+E[yT AT b]T +E[bT b])

=−E[x]−E[x]+AE[y]+AE[y]+2b = 0

⇒ b =−AE[y]+E[x]

=−Aµyµyµy +µxµxµx

( 3.4)

Eşitlik 3.3’de b =−Aµyµyµy +µxµxµx ifadesi yerine yazılıp, türevi sıfıra eşitlendiğinde,

0 =
∂

∂A
(E[(x− (Ay+b))T (x− (Ay+b))])

=
∂

∂A
(E[(x− (Ay−Aµyµyµy +µxµxµx))

T (x− (Ay−Aµyµyµy +µxµxµx))])

=
∂

∂A
(E[((x−µxµxµx)−A(y−µyµyµy))

T ((x−µxµxµx)−A(y−µyµyµy))])

=
∂

∂A
(E[(x−µxµxµx)

T (x−µxµxµx)]−E[((x−µxµxµx))
T (A(y−µyµyµy))]

−E[(A(y−µyµyµy))
T ((x−µxµxµx))]+E[(A(y−µyµyµy))

T (A(y−µyµyµy))])

=−E[(x−µxµxµx)(y−µyµyµy)
T ]−E[(x−µxµxµx)(y−µyµyµy)

T ]+2AE[(y−µyµyµy)(y−µyµyµy)
T ]

=−Pxy +APy

⇒A = PxyP−1
y

( 3.5)

ifadesi elde edilir. Bu ifadeden de açıkça görüldüğü üzere DMOKH kestiricisi tanımlamak
için x ve y değişkenlerinin ilk iki momentini bilmek yeterlidir. x̂DMOKH(y) = Ay+b kesti-
ricisi için Eşitlik 3.4 ve Eşitlik 3.5 birleştirildiğinde;

x̂DMOKH(y) = µxµxµx +PxyP−1
y (y−µyµyµy) ( 3.6)

olarak bulunur. x̂DMOKH kestiricisi ile elde edilecek kestirimlerin üzerindeki hata eşdeğişinti
matrisi PDMOKH ise;

PDMOKH = PT
yxP−1

yy PyyP−1
yy Pyx−PT

yxP−1
yy Pyx−PxyP−1

yy Pyx +Pxx

= PxyP−1
yy Pyx−2PxyP−1

yy Pyx +Pxx

= Px−PxyP−1
y Pyx ≥ 0

( 3.7)

olarak bulunur. Bu eşdeğişinti matrisi, kestirimin belirsizliğini ifade eden önemli bir
belirteçtir.
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Bölüm 2.2’de Bhattacharyya Uzaklığının, tersinir, tersi ve kendisi türevlenebilen fonksiyon-
larla yapılan dönüşümler altında değişmediğini göstermiştik. Buradaki önemli bir nokta;
kestirim yapıldığında Bhattacharyya Uzaklığının gerçek (kestirilmeyen) özniteliklerden daha
büyük Bhattacharyya Uzaklığına sahip olabilmeleridir. Bu bölümde gösterilecek olan ise,
Bhattacharyya Uzaklığının daha büyük olmasının, daha iyi bir sınıflandırma performansını
her zaman garanti etmediğidir.

Doğrudan ölçülebilen Y veri kümesi elemanlarının Bhattacharyya Uzaklığı, ölçülemeyen
fakat kayıtlı X veri kümesi elemanlarının Bhattacharyya Uzaklığından daha fazla ola-
bilir. DMOKH dönüşümü ile Bhattacharyya Uzaklığının değişmediği gösterilmişti. Bu du-
rumda DMOKH kestirimi sonucunda kestirilen X özniteliklerinin Bhattacharyya Uzaklığı,
gerçek X özniteliklerinin Bhattacharyya Uzaklığından daha büyük olur. Fakat kestirim
yapılmadan önce X veri kümesinde tanımlanan bir sınıflandırıcının, kestirimden sonra
doğrudan kestirilen değerler üzerinde kullanılması sebebiyle, sınıflandırma performansında
artış görülmeyebilir.

3.3 Çapraz Sınıflandırma İçin Yöntem

Çapraz Sınıflandırma (ÇS) problemi için önerilen yöntem; doğrudan ölçülemeyen
özniteliklerin (x), ölçülebilen özniteliklerden (y) DMOKH yöntemiyle kestirilmesi ve
kestirilen öznitelikler üzerinden sınıflandırma yapılmasına dayanmaktadır. Kestirilen
özniteliklerin bir alt kümesi, doğrudan sınıflandırmada kullanılacağı için; bu kestirim çapraz
sınıflandırma için önemlidir. Çok boyutlu uzaylarda optimal Bayes kestiriminin kapalı form
çözümünü bulmanın zor ve fazla işlem getiren bir yapıda olması dolayısıyla; bunun yerine
doğrusal kestirici kullanıldığından daha önce bahsetmiştik. Doğrudan ölçülen y verilerine
bağlı olarak, DMOKH kestiricisinin yapısı Eşitlik 3.8’de verildiği gibidir.

xest = µxµxµx +PxyPy
−1(y−µyµyµy) ( 3.8)

Önerilen yöntem, temelde, x öznitelikleri için tasarlanmış sınıflandırıcıları, kestirilen xest

öznitelikleri için çalıştırma prensibine dayanmaktadır. Bu yöntem uygulandığında elde
edilebilecek performans sınırları Bölüm 3.5’de incelenmiştir.
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3.4 DMOKH Kestiricisi ve Sınıf Dağılımları

Sınıflar arasındaki ayrıştırılabilirlik Bhattacharyya Uzaklık ölçütü kullanılarak Bölüm 2’de,
DMOKH kestiricisi ise Bölüm 3.2’de ayrıntılı olarak incelenmiştir. Bu bölümde ise, iki sınıfa
ait verilerin bilindiği durumda DMOKH kestiricisi kullanılarak sınıflandırma yapıldığında;
her bir sınıfın ortalama değer vektörü ve eşdeğişinti matrislerinin nasıl değişeceği ince-
lenecektir. Öncelikle ayrı ayrı ortalama değer vektörü ve eşdeğişinti matrisi bilinen iki sınıf,
birleştirilip tek bir veri kümesi olarak görüldüğünde ortalama değer vektörü ile eşdeğişinti
matrisinin nasıl değiştiği incelenecektir.

Burada gösterilmek istenen, her iki sınıfa ait veriler birleştirildiğinde toplam veri kümesinin
ortalama değer vektörü ve eşdeğişinti değerleridir.

Şekil 3.1’de iki örnek sınıfa ait ikişer özniteliğin dağılımı gösterilmiştir.

Şekil 3.1: Sınıf-1 ve Sınıf-2’ye Ait Verilerin Dağılımı

x öznitelikleri için c1 birinci sınıfı, µµµx1 birinci sınıfa ait ortalama değer vektörünü, Px1 birinci
sınıfa ait eşdeğişinti matrisini, c2 ikinci sınıfı, µµµx2 ikinci sınıfa ait ortalama değer vektörünü,
Px2 ikinci sınıfa ait eşdeğişinti matrisini göstersin. x özniteliği için c = c1∪ c2 olmak üzere,
iki sınıf birleştirilmiş tek bir veri olarak görülmesi durumunda, µµµx sınıfların toplamından
oluşan verinin ortalama değer vektörünü, Px sınıfların toplamından oluşan verinin eşdeğişinti
matrisini ifade etmektedir. Eşit sayıda örnek içermesi önkoşulu ile sınıfların birleşmesiyle
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ortalama değer vektörünün, iki ortalama değer vektörünün ortalaması olacaktır.

µµµx =
µµµx1 +µµµx2

2
( 3.9)

p1(x) ve p2(x) sırasıyla sınıf-1 ve sınıf-2’nin olasılık yoğunluk dağılımlarını ifade etmek
üzere, birleştirilmiş veriler için eşdeğişinti matrisi Px ise;

Px = E
[
(x−µµµx)(x−µµµx)

T ]= ∫
(x−µµµx)(x−µµµx)

T p(x)dx

=
∫
(x−µµµx)(x−µµµx)

T (
p1(x)+ p2(x)

2
)dx

=
1
2

∫
(x−µµµx)(x−µµµx)

T p1(x)dx+
1
2

∫
(x−µµµx)(x−µµµx)

T p2(x)dx

=
1
2

∫
(x− µµµx1

2
− µµµx2

2
)(x− µµµx1

2
− µµµx2

2
)T p1(x)dx

+
1
2

∫
(x− µµµx1

2
− µµµx2

2
)(x− µµµx1

2
− µµµx2

2
)T p2(x)dx

=
1
2

∫
(x− µµµx1

2
)(x− µµµx1

2
)T p1(x)dx+

1
2

∫
(
µµµx2

2
)(

µµµx2

2
)T p1(x)dx

− 1
2

∫
(x− µµµx1

2
)(

µµµx2

2
)T p1(x)dx− 1

2

∫
(
µµµx2

2
)(x− µµµx1

2
)T p1(x)dx

+
1
2

∫
(x− µµµx2

2
)(x− µµµx2

2
)T p2(x)dx+

1
2

∫
(
µµµx1

2
)(

µµµx1

2
)T p2(x)dx

− 1
2

∫
(x− µµµx2

2
)(

µµµx1

2
)T p2(x)dx− 1

2

∫
(
µµµx1

2
)(x− µµµx2

2
)T p2(x)dx

=
1
2
[Pcx1 +

1
4

µµµx1µµµ
T
x1]+

1
8

µµµx2µµµ
T
x2−

1
8

µµµx1µµµ
T
x2−

1
8

µµµx2µµµ
T
x1+

1
2
[Pcx2 +

1
4

µµµx2µµµ
T
x2]+

1
8

µµµx1µµµ
T
x1−

1
8

µµµx2µµµ
T
x1−

1
8

µµµx1µµµ
T
x2

=
1
2
[Pcx1 +Pcx2 ]+

1
8

µµµx1µµµ
T
x1 +

1
8

µµµx2µµµ
T
x2 +

1
8

µµµx2µµµ
T
x2 +

1
8

µµµx1µµµ
T
x1

− 1
8

µµµx1µµµ
T
x2−

1
8

µµµx2µµµ
T
x1−

1
8

µµµx2µµµ
T
x1−

1
8

µµµx1µµµ
T
x2

=
Pcx1 +Pcx2

2
+

µµµx1µµµT
x1 +µµµx2µµµT

x2−µµµx1µµµT
x2−µµµx2µµµT

x1
4

( 3.10)

şeklinde olacaktır.

20



Eşit sayıda örneğe sahip iki sınıfa ait y öznitelikleri için, y ∈ c1 ve y ∈ c2 sınıflarına ait orta-
lama değer vektörleri ve eşdeğişinti matrislerinin bilindiği durumda; y ∈ c1∪ c2 verilerinin
ortalama vektörü

µµµy =
µµµy1 +µµµy2

2
( 3.11)

ve eşdeğişinti matrisi

Py =
Py1 +Py2

2
+

µµµy1µµµT
y1 +µµµy2µµµT

y2−µµµy1µµµT
y2−µµµy2µµµT

y1

4
( 3.12)

şeklinde olacaktır.

y özniteliklerinden x öznitelikleri DMOKH kestirici ile Eşitlik 3.8’de ifade edildiği şekilde
kestirildiğinde,

xc1est = µµµx +PxyP−1
y (y1−µµµy) ( 3.13)

kestirilen değerler için sınıf ortalama vektörü;

µµµx1est = E
y∈c1

[
µµµx +PxyP−1

y (y−µµµy)
]
= µµµx +PxyP−1

y (µµµy1−µµµy) ( 3.14)

aynı şekilde sınıf-2 için ortalama vektör;

µµµx2est = µµµx +PxyP−1
y (µµµy2−µµµy) ( 3.15)

olacaktır.

Kestirilen birinci sınıf için hata eşdeğişinti matrisleri;

Px1est = E
[
(x1est −µµµx1est )(x1est −µµµx1est )

T ]
= E[(µµµx +PxyP−1

y (y1−µµµy)− (µµµx +PxyP−1
y (µµµy1−µµµy)))

(µµµx +PxyP−1
y (y1−µµµy)− (µµµx +PxyP−1

y (µµµy1−µµµy)))
T ]

= E
[
(PxyP−1

y (y1−µµµy− (µµµy1−µµµy)))(PxyP−1
y (y1−µµµy− (µµµy1−µµµy)))

T ]
= E

[
(PxyP−1

y (y1−µµµy1))(PxyP−1
y (y1−µµµy1))

T ]
= PxyP−1

y Py1P−1
y Pyx

( 3.16)

ve aynı şekilde sınıf-2 için;

Px2est = PxyP−1
y Py2P−1

y Pyx ( 3.17)

olarak elde edilir.
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Kestirim sonrasında birinci ve ikinci sınıfın toplam veri kümesi için ortalama değer
vektörü;

µµµxest =
µµµx1 +µµµx2

2
( 3.18)

ve eşdeğişinti matrisi

Pxest = PxyP−1
y Pyx ( 3.19)

olarak bulunabilir.

Kestirim sonrasında hesaplanan xest değeri, gerçek x verileri üzerine bir hata eklenmiş olarak
modellendiğinde, sınıf-1 veriler için yapılan hatanın ortalama değer vektörü;

xest = x+η

⇒ µµµη1 = E [x1est − x1]

= µµµx1est −µµµx1

=−(µµµx1−µµµx−PxyP−1
y (µµµy1−µµµy))

=−µµµx1 +
µµµx1 +µµµx2

2
+PxyP−1

y (µµµy1− (
µµµy1 +µµµy2

2
))

=
µµµx2−µµµx1

2
−PxyP−1

y (
µµµy2−µµµy1

2
)

( 3.20)

aynı şekilde sınıf-2 veriler için yapılan hatanın ortalama değer vektörü;

µµµη2 =
µµµx1−µµµx2

2
−PxyP−1

y (
µµµy1−µµµy2

2
) ( 3.21)

olarak bulunur. Sınıf-1 verileri üzerinde yapılacak kestirimde oluşacak hatanın eşdeğişinti
matrisi (Pη1) ise;

Pη1 = E
[
(−x1 +x1est −µµµη1)(−x1 +x1est −µµµη1)

T ]
= E[(−x1 +(µµµx +PxyP−1

y (y1−µµµy))+(µµµx1−µµµx−PxyP−1
y (µµµy1−µµµy)))

(−x1 +(µµµx +PxyP−1
y (y1−µµµy))+(µµµx1−µµµx−PxyP−1

y (µµµy1−µµµy)))
T ]

= E[(−x1 +PxyP−1
y (y1−µµµy)+µµµx1−PxyP−1

y (µµµy1−µµµy))

(−x1 +PxyP−1
y (y1−µµµy)+µµµx1−PxyP−1

y (µµµy1−µµµy))
T ]

= E[(−x1 +µµµx1 +PxyP−1
y (−µµµy1 +µµµy +y1−µµµy))

(−x1 +µµµx1 +PxyP−1
y (−µµµy1 +µµµy +y1−µµµy))

T ]

= E
[
((−x1 +µµµx1)+PxyP−1

y (−µµµy1 +y1))((−x1 +µµµx1)+PxyP−1
y (−µµµy1 +y1))

T ]
= Px1 +PxyP−1

y Py1P−1
y Pyx−Px1y1P−1

y Pyx−PxyP−1
y Py1x1

( 3.22)
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ve aynı şekilde sınıf-2 için kestirim sonrasında oluşacak hatanın eşdeğişinti matrisi
(Pη2)

Pη2 = Px2 +PxyP−1
y Py2P−1

y Pyx−Px2y2P−1
y Pyx−PxyP−1

y Py2x2 ( 3.23)

olarak belirlenir.

Yapılan hatanın her iki sınıf birleşimi için ortalama değer vektörü (µµµη ) ve eşdeğişinti matrisi
(Pη ) Eşitlik 3.27’de gösterildiği gibidir:

µµµη = 0

Pη = Px−PxyP−1
y Pyx

( 3.24)

İki sınıfa ait eşit sayıda örnek içeren x ve y öznitelik vektörleri için, her bir sınıfın orta-
lama değer vektörü ile eşdeğişinti matrisleri ve iki sınıfa ait toplam verilerin ortalama değer
vektörü ile eşdeğişinti matrisleri Çizelge 3.1’de gösterilmiştir.

Ayrıca, y özniteliklerinden, sadece sınıf-1, sadece sınıf-2 ve her iki sınıf elemanları kul-
lanılarak kestirilen x özniteliklerinin kestirimleri ve kestirim hatalarına ait ortalama değer
vektörü ile eşdeğişinti matrisleri Çizelge 3.2’de gösterilmiştir.
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rü

E
şd
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iş

in
ti

M
at

ri
si

x 1
es

t
µµ µ

x
+

P x
yP
−

1
y
(µµ µ

y1
−

µµ µ
y)

P x
yP
−

1
y

P c
y1

P−
1

y
P y

x

x 2
es

t
µµ µ

x
+

P x
yP
−

1
y
(µµ µ

y2
−

µµ µ
y)

P x
yP
−

1
y

P y
2P
−

1
y

P y
x

x e
st

µµ µ
x1
+

µµ µ
x2

2
P x

yP
−

1
y

P y
x

η
1

µµ µ
x2
−

µµ µ
x1

2
−

P x
yP
−

1
y
(µµ µ

y2
−

µµ µ
y1

2
)

P x
1
+

P x
yP
−

1
y

P y
1P
−

1
y

P y
x
−

P x
1y

1P
−

1
y

P y
x
−

P x
yP
−

1
y

P y
1x

1

η
2

µµ µ
x1
−

µµ µ
x2

2
−

P x
yP
−

1
y
(µµ µ

y1
−

µµ µ
y2

2
)

P x
2
+

P x
yP
−

1
y

P y
2P
−

1
y

P y
x
−

P x
2y

2P
−

1
y

P y
x
−

P x
yP
−

1
y

P y
2x

2

η
0

P x
−

P x
yP
−

1
y

P y
x

25



Çizelge 3.2’de, kestirim hatasının sıfır ortalamalı bir hata olduğu görülmektedir. Kestirim
hatası eşdeğişinti matrisi ise kestirilen verinin eşdeğişinti matrisinden (Px), PxyP−1

y Pyx mat-
risi çıkartılarak hesaplanmaktadır. Kestirimde yapılacak hata, kestirilen veriler üzerinde bir
miktar sapmaya sebep olacağından, veriler üzerinde bir gürültü olarak modellenebilir. Bu
durum, kestirim sonrasındaki özniteliklerin eşdeğişinti matrislerinde bir miktar büyümeye
denk gelecektir. Kestirim hatasının veriler üzerinde gürültü olarak modellenmesi Bölüm
4’de ayrıntılı olarak incelenecektir.

X ve Y veri kümeleri arasındaki korelasyon ne kadar büyükse (|Pxy|), kestirim hatası
aynı oranda küçülecektir. Bölüm 5’de sunulacak olan KKA tabanlı çapraz sınıflandırma
yönteminin başarısında bu korelasyon değerinin etkisi incelenmiştir.

3.5 Önerilen Çapraz Sınıflandırma Yönteminin Performans Sınırları

Bu bölümde Bhattacharyya Uzaklığı açısından, doğrudan gözlenen (y), ölçülemeyen (x)
ve kestirilen (xest) öznitelikler kullanıldığı durumlardaki sınıflandırma performansları hata
olasılıkları (Pe) açısından incelenecektir.

x : sınıflandırıcısı bilinen, veri tabanında kayıtlı öznitelik vektörünü,
y : ölçülebilen/gözlenen öznitelik vektörünü,
xest : y öznitelik vektörleri kullanılarak kestirilen x vektörünü ifade etmektedir.

c1 ve c2 olasılık dağılımları ile tanımlanmış iki sınıfı ifade etmek üzere; Pe ile Bhattacharyya
Katsayısı (BK) arasındaki ilişki Eşitlik 3.25’de

(
1
2

BK(c1,c2))
2 ≤ 2Pe ≤ BK(c1,c2) ( 3.25)

Pe ile Bhattacharyya Uzaklığı (BU) arasındaki ilişki Eşitlik 3.26’de verildiği gibidir [16, 18,
19].

(
1
2

exp−BU(c1,c2))2 ≤ 2Pe ≤ exp−BU(c1,c2) ( 3.26)

Aşağıdaki örnekte; sentetik olarak üretilen x ve y öznitelikleri için Bhattacharyya Uzaklığı
ile tanımlanan sınıflandırma performansı sınır değerleri gösterilmiştir. Ayrıca, y öznitelikleri
ile c1, c2 sınıfları istatistikleri kullanılarak elde edilen xest özniteliklerinin sınıflandırma per-
formansı sınır değerleri ile olan ilişkisi açıklanmıştır.
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Örnek:
Kullanılan veriler, iki boyutlu uzayda (x ve y öznitelik uzayı) Gauss dağılıma sahip iki sınıfı
ifade eden ’sentetik’ veriler üretilerek tanımlanmıştır. Ortalama değer vektörü ve eşdeğişinti
matrisi rastgele üretilen bu verilerde c1 ve c2 sınıfları belirtmek üzere;
Sınıf-1 öznitelikleri dağılımları,

x ∈ c1 := N(4.51,0.14)

y ∈ c1 := N(5.95,1.18)

Sınıf-2 öznitelikleri dağılımları,

x ∈ c2 := N(6.65,0.93)

y ∈ c2 := N(7.47,0.17)

olarak üretilmiştir. x özniteliklerinin veri kümesinde kayıtlı öznitelikleri, y ise ölçülebilen
öznitelikleri ifade ettiği varsayılacaktır.

Şekil 3.2’de görülen birinci grafik, ölçülebilen y özniteliklerin dağılım grafiğidir.
Şekil 3.2’de görülen ikinci grafik, ölçemediğimiz x verileri için dağılım grafiğidir. Şekil
3.2’de görülen üçüncü grafik, sınıf istatistikleri kullanılarak elde edilen DMOKH kesti-
ricisi ile ölçülemeyen veriler için yapılan kestirim sonucunda bulunan xest’a ait dağılım
grafiğidir.

Şekil 3.2: Ölçülebilen(y), Gerçek(x) ve Kestirilen(xest) Değerlerin Olasılık Dağılımları
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y verilerinde BK değerleri için, veriler üzerinden hesaplanan BK = 0.27 ve teorik olarak
hesaplanan BK = 0.28 (verinin Gauss dağılıma sahip olduğu varsayılmıştır) bulunmuştur.
Veriler üzerinden hesaplanan ve verilerin istatistiksel özellikleri ile hesaplanan BK değerleri
birbirleri ile büyük ölçüde tutarlı çıkmıştır. Bu da veriler için Gauss kabullenmesi ya-
pabileceğimizin bir göstergesidir. y verileri için BK değeri BK = 0.28 ve hata olasılığı
değeri Pe = 0.05 olarak bulunmuştur. Eşitlik 2.6’e göre beklenen sınır değerleri 0.009 ≤
¶e ≤ 0.138 şeklinde olacaktır. Burada dağılımların kesişim noktası sınıflandırıcı için
eşik olarak kullanıldığında, bu değerlerin Eşitlik 2.6’de verilen sınır değerlerini sağladığı
görülmektedir.

x verileri için BK = 0.52 ve Pe = 0.14 olarak bulunmuştur. Eşitlik 2.6’e göre beklenen sınır
değerleri 0.034≤ Pe ≤ 0.259 şeklinde olacaktır. Bu değerlerin de Eşitlik 2.6’de verilen sınır
değerlerini sağladığı görülmektedir.

xest hesaplanan BK ve Pe değerleri Bölüm 2.1’de belirtilen iddia ile uyumluluk gösterecek
şekilde y verilerine ait olan BK ve Pe ile aynı çıkmıştır.

Tipik bir çapraz sınıflandırma probleminde, ölçülemeyen verilere ait bir sınıflandırıcının
önceden bilindiğini düşünebiliriz. Şekil 3.2’deki x verilerine ait olan sınıflandırıcı düz çizgi
ile gösterilmiştir. Noktalı çizgi ile gösterilen çizgi ise, xest verilerine ait olan kestiricidir.
Pratikte xest verilerine ait olan noktalı çizgi ile ifade edilen sınıflandırıcı önceden bilinemez.
Dolayısıyla, bu örnekte her ne kadar xest üzerinden hesaplanan Pe küçük görünse de, her-
hangi bir problemde kullanılacak sınıflandırıcı için hesaplanan Pe değeri, Eşitlik 2.6’deki
sınırların içine düşmeyebilir.

Çıkarım-4: Bölüm 3.3’de önerilen yöntem ile çapraz sınıflandırma problemi çözülmeye
çalışıldığında, sadece x kestiricisi bilindiği için, çapraz sınıflandırmanın performansının
ne olacağını ve hangi sınırlar arasında kalabileceğini Bhattacharyya Katsayısına bakarak
değerlendirmek doğru olmayacaktır.

Bu sonuca bağlı olarak yapılacak hatanın hangi sınırlar arasında kalması gerektiğine dair bir
öneri Bölüm 4’de sunulacaktır.

28



Şekil 3.3’deki ilk grafikte DMOKH kestiricisi ile yapılan kestirim sonucunda yaptığımız
hatanın dağılımı görülmektedir.

Şekil 3.3: Hata(x− xest)’nın Olasılık Dağılımı

DMOKH kestiricisi sayesinde sıfır ortalamalı bir hata dağılımı elde edilmiştir. Veriler
üzerinden, dağılım N(-1.74e-14, 0.761) olarak belirlenmiştir. Hata dağılımının ifadesi
Eşitlik 3.27 gösterildiği gibidir. Eşitlik 3.27 ile hesaplanan dağılım ise N(0, 0.762)
olarak bulunmuştur. Sonuçların aynı olması, Gauss kabullenmemizin doğruluğunun
göstergesidir. Hatanın değişinti matrisi değeri Bölüm 4’de önerdiğimiz yaklaşımın temelini
oluşturmaktadır.

N(0,Px−PxyP−1
y Pyx) ( 3.27)

Eşitlik 3.27, kestirim sonrasında yapılacak hatanın eşdeğişinti matrisini ifade etmektedir. Bu
hata, kestirim sonucunda hesaplanan değerler üzerindeki belirsizliğin bir ifadesidir.
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4. ÇAPRAZ SINIFLANDIRMA İÇİN GÜRÜLTÜ MODELİ

Bölüm 3’de çapraz sınıflandırmada doğrusal minimum ortalama karesel hata kestiricisi
kullandığımızda, Bhattacharyya Uzaklığı değerinin sınıflandırma performansı ile ilgili
doğrudan bir bilgi veremeyeceğini ortaya konulmuştu. Bu bölümde sınıflandırma per-
formansı açısından yeni bir model önerilmektedir. Bu modelde, kestirim sonucunda or-
taya çıkan hata, ölçülemeyen öznitelikler üzerinde gürültü olarak modellenecektir. Bu
sayede kestirim sonrasında sınıflandırma performansları analitik olarak incelenebilecek-
tir. Sınıflandırma performansı açısından, kestirimde yapılan hata, ölçülemeyen öznitelikler
üzerinde bir gürültü gibi düşünüldüğünde Bhattacharyya Uzaklığı değerinin nasıl değiştiği
gösterilmiştir.

4.1 Gürültü Modeli ve Sınıflandırma Performansı

x vektörü sınıflandırıcısı bilinen, veri kümesinde kayıtlı öznitelik vektörünü, y vektörü,
ölçülebilen/gözlenen öznitelik vektörünü, xest ise y öznitelik vektörleri kullanılarak kesti-
rilen x vektörlerini ifade etmektedir. ηηη normal dağılıma sahip gürültü olmak üzere, kes-
tirilen xest özniteliklerini xest = x +ηηη şeklinde modellediğimizde BU(px1(x), px2(x)) ve
BU(pxest1

(x), pxest2
(x)) değerlerinin normal dağılıma sahip öznitelikler için nasıl değiştiğini

belirlemek istiyoruz. px1(x) ifadesi x öznitelik vektörünün sınıf-1’e ait olan örneklerinin
dağılımını, px2(x) ise sınıf-2 ye ait olan verilerin dağılımını ifade etmektedir. pxest1

(x) ifadesi
ise y öznitelik vektörlerinden kestirilen xest verilerinin sınıf-1 e ait örneklerinin dağılımını,
pxest2

(x) sınıf-2’ye ait olan verilerin dağılımlarını ifade etmektedir. BU(px1(x), px2(x))
ifadesi bu bölümde BU(x1,x2) ifadesi ile kısaltılacaktır.

Normal dağılımlar için BU değeri Eşitlik 4.1’da gösterildiği gibidir.

BU(px1(x), px2(x)) =
1
8
(µµµx1−µµµx2)

T P−1
av (µµµx1−µµµx2)+

1
2

ln
|Pxav |

|Px1|
1
2 |Px2|

1
2

( 4.1)
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İddia-3:
x; ölçebildiğimiz y özniteliklerinden kestirmek istediğimiz öznitelikler, ηηη gürültü olmak
üzere,
x1 : N(µµµx1,Px1)

x2 : N(µµµx2,Px2)

ve
ηηη : N(µµµη ,Pη) olmak üzere,
xest1 = x1 +ηηη

xest2 = x2 +ηηη

olarak tanımlandığında,
BU(x1,x2)≥ BU(xest1,xest2) ( 4.2)

olacaktır. Eşitliğin sağlanması, ancak ve ancak;

• Gürültü eşdeğişinti matrisinin sıfır olması (Pη = 0) veya

• Özniteliklerin eşdeğişinti matrislerinin (Px1 = Px2) ve ortalama değerlerinin (µµµx1 =

µµµx2) eşit olmasıyla sağlanabilir.

İspat: Göstermek istediğimiz, Eşitlik 4.1’e göre x1,x2 arasındaki BU değerinin xest1,xest2

arasındaki uzaklıktan büyük olduğudur. Eşitlik 4.1’i iki parça olarak görüp, her bir
parça için bunun doğru olduğunu, dolayısıyla eşitsizliğin tamamı için doğru olduğunu
göstereceğiz.

xest1 = x1 +ηηη ⇒ xest1 : N(µµµx1 +µµµη ,Px1 +Pη)

xest2 = x2 +ηηη ⇒ xest2 : N(µµµx2 +µµµη ,Px2 +Pη)
( 4.3)

Eşitlik 4.1’in sağ tarafındaki birinci kısım için A, ikinci kısım B ifadesini kullanacağız. Bu
durumu:

BU(x1,x2) = Ax +Bx

Ax ,
1
8
(µµµx1−µµµx2)

T P−1
av (µµµx1−µµµx2)

Bx ,
1
2

ln
|Pxav |

|Px1|
1
2 |Px2 |

1
2

( 4.4)

BU(xest1 ,xest2) = Axest +Bxest

Axest ,
1
8
(µµµxest1

−µµµxest2
)T P−1

avxest
(µµµxest1

−µµµxest2
)

Bxest ,
1
2

ln(
|Pavxest

|

|Pxest1
| 12 |Pxest2

| 12
)

( 4.5)

şeklinde ifade edeceğiz.
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Eşitlik 4.4 için; Ax ≥ Axest ve Bx ≥ Bxest ifadelerini ayrı ayrı göstermemiz, BU(x1,x2) ≥
BU(xest1,xest2) ifadesinin ispatı için yeterli olacaktır.

Eşitlik 4.4’in birinci kısmı için;

Ax ≥ Axest

1
8
(µµµx1−µµµx2)

T P−1
avx

(µµµx1−µµµx2)≥
1
8
(µµµxest1

−µµµxest2
)T P−1

avxest
(µµµxest1

−µµµxest2
)

( 4.6)

eşitsizliğini göstermemiz gerekiyor.

Axest =
1
8
(µµµxest1

−µµµxest2
)T P−1

avxest
(µµµxest1

−µµµxest2
)

=
1
8
(µµµx1 +µµµη −µµµx2−µµµη)

T (Pavx +Pη)
−1(µµµx1 +µµµη −µµµx2−µµµη)

=
1
8
(µµµx1−µµµx2)

T (Pavx +Pη)
−1(µµµx1−µµµx2)

( 4.7)

Bu noktada, pozitif tanımlı matrisler için

mT Am≥mT Bm⇒ |A| ≥ |B| ( 4.8)

eşitliği (ispat A.EK’te verilmiştir) kullanıldığında, Ax ≥ Axest olması için

|P−1
avx
| ≥ |(Pavx +Pη)

−1| ( 4.9)

olması yeterlidir. Pozitif tanımlı matrislerde,

|A+B| ≥ |A|+ |B| ( 4.10)

eşitliği (ispat B.EK’te verilmiştir) kullanıldığında

|(Pavx +Pη)| ≥ |Pavx |
1

|(Pavx +Pη)|
≤ 1
|Pavx |

|(Pavx +Pη)
−1| ≤ |P−1

avx
|

( 4.11)

Eşitlik 4.11 sonucunda, 4.9’de sunulan eşitsizliğin sağlandığı gösterilmiş olur.
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Eşitlik 4.4’nin 2. parçası için,

Bx ≥ Bxest

⇒1
2

ln(
|Pavx |

|Px1|
1
2 |Px2|

1
2
)≥ 1

2
ln(

|Pavxest
|

|Pxest1
| 12 |Pxest2

| 12
)

( 4.12)

eşitsizliğinin sağlanması yeterlidir. Eşitsizlikteki, ln fonksiyonu monotonik artan bir
fonksiyon olduğundan, bunun sağlanabilmesi için,

|Pavx |
|Px1|

1
2 |Px2 |

1
2
≥

|Pavxest
|

|Pxest1
| 12 |Pxest2

| 12
( 4.13)

olması yeterlidir. Bu eşitsizliğin her iki tarafının karesi alındığında eşitsizlik bozulmaya-
caktır,

|Pavx |2

|Px1||Px2|
≥
|Pavxest

|2

|Pxest1
||Pxest2

|
( 4.14)

Bu eşitsizlik,

1≥
|Pavxest

|2|Px1 ||Px2|
|Pavx |2|Pxest1

||Pxest2
|

( 4.15)

şeklinde de yazılabilir. Yukardaki eşitsizliğin sağ tarafının birden küçük olduğunu göstermek
ispatın tamamlanması için yeterli olacaktır.

|Pavxest
|2|Px1||Px2|

|Pavx |2|Pxest1
||Pxest2

|
=

|Pavx +Pη |2|Px1 ||Px2|
|Pavx |2|Px1 +Pη ||Px2 +Pη |

=
|P2

avx
+P2

η +2PηPavx ||Px1Px2|
|Pavx |2|Px1Px2 +Px1Pη +Px2Pη +P2

η |

=
|P2

avx
Px1Px2 +P2

ηPx1Px2 +2PηPavxPx1Px2|
|P2

avx
Px1Px2 +P2

avx
Px1Pη +P2

avx
Px2Pη +P2

avx
P2

η |

( 4.16)

Eşitlik 4.16’de Pavx yerine Pavx =
Px1+Px2

2 yazdığımızda,
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|Pavxest
|2|Px1 ||Px2|

|Pavx |2|Pxest1
||Pxest2

|
=

|P2
avx

Px1Px2 +P2
ηPx1Px2 +2PηPavxPx1Px2|

|P2
avx

Px1Px2 +Pavx(
Px1+Px2

2 )Px1Pη +Pavx(
Px1+Px2

2 )Px2Pη +P2
avx

P2
η |

=
|P2

avx
Px1Px2 +2PηPavxPx1Px2 +P2

ηPx1Px2|

|P2
avx

Px1Px2 +
1
2PavxP2

x1
Pη + 1

2PavxPx1Px2Pη + 1
2PavxP2

x2
Pη + 1

2PavxPx2Px1Pη +(
Px1+Px2

2 )2P2
η |

=
|P2

avx
Px1Px2 +2PηPavxPx1Px2 +P2

ηPx1Px2 |

|P2
avx

Px1Px2 +PavxPx1Px2Pη + 1
2PavxP2

x1
Pη + 1

2PavxP2
x2

Pη +
(Px1+Px2)

2

4 P2
η |

=
|P2

avx
Px1Px2 +2PηPavxPx1Px2 +P2

ηPx1Px2|

|P2
avx

Px1Px2 +PavxPx1Px2Pη + 1
2Pavx(Px1−Px2)

2Pη + 1
2Pavx2Px1Px2Pη +

(P2
x1
+P2

x2
+2Px1Px2
4 P2

η |

=
|P2

avx
Px1Px2 +2PηPavxPx1Px2 +P2

ηPx1Px2|

|P2
avx

Px1Px2 +2PavxPx1Px2Pη + 1
2Pavx(Px1−Px2)

2Pη +
(Px1−Px2)

2+4Px1 Px2
4 P2

η |

=
|P2

avx
Px1Px2 +2PηPavxPx1Px2 +P2

ηPx1Px2 |

|P2
avx

Px1Px2 +2PavxPx1Px2Pη + 1
2Pavx(Px1−Px2)

2Pη +(
(Px1−Px2)

2

4 +Px1Px2)P2
η |

=
|P2

avx
Px1Px2 +2PηPavxPx1Px2 +P2

ηPx1Px2|

|P2
avx

Px1Px2 +2PηPavxPx1Px2 +P2
ηPx1Px2 +

1
2Pavx(Px1−Px2)

2Pη +
(Px1−Px2)

2

4 P2
η |

=
|P2

avx
Px1Px2 +2PηPavxPx1Px2 +P2

ηPx1Px2|
|P2

avx
Px1Px2 +2PηPavxPx1Px2 +P2

ηPx1Px2 +
1
2(Px1−Px2)

2Pη(Pavx +
1
2Pη)|

=
|P2

avx
Px1Px2 +2PηPavxPx1Px2 +P2

ηPx1Px2|
|P2

avx
Px1Px2 +2PηPavxPx1Px2 +P2

ηPx1Px2 +
1
2(Px1−Px2)

2Pη
1
2(Px1 +Px2 +Pη)|

( 4.17)

Eşitlik 4.17’de, paydaki ifadenin aynısı paydada da bulunmaktadır. Pozitif tanımlı matrisler
için |A+B| ≥ |A|+ |B| bağıntısını (ispat B.EK’te verilmiştir) kullandığımızda eşitlik 4.17’de
paydanın paydan büyük olduğu ve eşitsizliğin sağlandığını görülür.

⇒ 1≥
|Pavxest

||Px1 |
1
2 |Px2|

1
2

|Pavx ||Pxest1
| 12 |Pxest2

| 12
⇒ |Pavx |
|Px1|

1
2 |Px2 |

1
2
≥

|Pavxest
|

|Pxest1
| 12 |Pxest2

| 12
( 4.18)

⇒ |Pavx |
|Px1|

1
2 |Px2|

1
2
≥

|Pavxest
|

|Pxest1
| 12 |Pxest2

| 12
( 4.19)

Eşitlik 4.11 ve Eşitlik 4.19 birleştirildiğinde, ispat tamamlanmış olmaktadır.

Çıkarım-5: Bölüm 4 İddia-3’de gösterilen model ile Bölüm 3.3’de önerilen DMOKH kes-
tirici ile çapraz sınıflandırma yöntemi birleştirildiğinde, gürültü eşdeğişinti matrisini yerine
(Pη), kestirimde yapılacak hatanın eşdeğişinti (Peest ) matrisi kullanabilir. Bu durum, kesti-
rilen özniteliklerin, hatalı ölçülen öznitelikler olarak yorumlanmasıyla eşdeğerdir.

Çıkarım-6: Çapraz Sınıflandırma problemi için Bölüm 3.3’de önerilen yöntem kul-
lanıldığında; kestirim hatası eşdeğişinti matrisi, Bölüm 4’deki İddia-3’de kullanılan model-
deki gürültü eşdeğişinti matrisi olarak alındığında,
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Peest : Kestirim hatası eşdeğişinti matrisi
Pη : Gürültü eşdeğişinti matrisi
Px1: Sınıf-1’e ait eşdeğişinti matrisi
Px2: Sınıf-2’ye ait eşdeğişinti matrisi

olmak üzere, Eşitlik 4.1’da Px1 yerine Px1 + Pη ve Px2 yerine Px2 + Pη yazılarak elde
edilen Bhattacharyya Uzaklığı, yapılabilecek sınıflandırıcı için Eşitlik 3.26’de gösterilen
sınırları belirler. Diğer bir ifadeyle; DMOKH kestiricisi kullanılarak yapılan çapraz
sınıflandırma sonrasında analitik olarak bulunabilecek istatistiksel sınıflandırıcının perfor-
mans değerleri, sadece x1 ve x2’nin istatistiksel özelliklerine değil, x1 +ηηη ve x2 +ηηη’nın
istatiksel özelliklerine bağımlıdır.
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5. ÇAPRAZ SINIFLANDIRMA İÇİN KKA YAKLAŞIMI

Önceki bölümlerde doğrudan ölçülen özniteliklerinden, doğrusal en küçük ortalama kare-
sel hata kestirici (DMOKH) ile doğrudan ölçülemeyen özniteliklerin kestirilmesi ve çapraz
sınıflandırma yapılması problemi çalışılmıştı.

Bu bölümde ise, çapraz sınıflandırma problemleri için yeni bir yaklaşım olan Kanonik Ko-
relasyon Analizi (KKA) tabanlı yöntem sunulacaktır. Kanonik korelasyon analizi, eş sayıda
örnek içeren çok değişkenli iki veri kümesi arasında en yüksek korelasyonu sağlayacak
dönüşümleri bulmakta kullanılan bir yöntemdir. Çapraz sınıflandırma problemine bir çözüm
olarak önerilen KKA tabanlı yöntem, KKA’nın doğası gereği, birbiriyle en yüksek kore-
lasyonu gösteren öznitelikleri seçmesi sayesinde başarılı performans sergilemektedir. Eldeki
verilerin tamamının kullanılması durumunda, DMOKH ve KKA tabanlı çapraz sınıflandırma
yöntemleri aynı performans değerlerini göstermektedir. Kullanılan özniteliklerin sayısı
azaltıldığında KKA tabanlı yaklaşım DMOKH ile çapraz sınıflandırmaya göre çok daha
iyi sonuçlar vermektedir. KKA tabanlı yaklaşım, korelasyonları yüksek olanları seçmesi
sayesinde, optimal bir öznitelik seçim yöntemi olarak da karşımıza çıkmaktadır.

Bölüm içerisinde, öncelikle Kanonik Korelasyon Analizinin temelleri sunulacaktır. Son-
rasında KKA ile öznitelik kestirimi sunulacak ve son olarak KKA tabanlı çapraz
sınıflandırma yöntemi ortaya konulacaktır.

5.1 Kanonik Korelasyon Analizi

Kanonik Korelasyon Analizi (KKA), çok boyutlu (multivariate) iki değişken kümesi
arasındaki doğrusal benzerliği ortaya çıkaran istatistiksel bir yöntemdir [21]. H. Hotelling
tarafından 1936’da ortaya konulan [22] bu yöntem, temelde iki değişken kümesine uygu-
lanacak iki farklı doğrusal dönüşümü belirleyen temel vektörleri bulmayı hedeflemektedir.
Bu iki temel vektör kümesinin özelliği, üzerlerine yapılan izdüşümlerin sonucunda ortaya
çıkan yeni ara uzayların birbirleri ile olan korelasyonunu maksimize ediyor olmalarıdır.
KKA’nın temel yapısı Şekil 5.1’de gösterilmiştir.
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Şekil 5.1: Kanonik Korelasyon Analizi

Öncelikle burada X ve Y uzaylarını tanımlayacak olursak;

X : Her bir kolonu, bir örneğe ait N adet öznitelik içeren, x1,x2,x3...xK olmak üzere toplam
K örneğe ait öznitelikleri içeren ve ortalama değer vektörü sıfır olan (µµµx = 0) X ∈ RN×K

matrisi ,

Y : Her bir kolonu, bir örneğe ait M adet öznitelik içeren, y1,y2,y3...yK olmak üzere toplam
K örneğe ait öznitelikleri içeren ve ortalama değer vektörü sıfır olan (µµµy = 0) Y ∈ RM×K

matrisi,

U : X değişkenleri kümesi için oluşturulan kanonik değişkenleri ifade etmektedir. X

kümesindeki verilerin, KKA sonucunda elde edilen A doğrusal dönüşüm matrisi ile
çarpımıyla U = AX elde edilir. U ∈ Rmin(rank(X),rank(Y))×K ve A ∈ Rmin(rank(X),rank(Y))×N

boyutlarındadır. U matrisinin i. kolonu, i. örneğe ait kanonik değişkenleri ifade etmekte-
dir.

V: Y değişkenleri kümesi için oluşturulan kanonik değişkenleri ifade etmektedir. Y

kümesindeki verilerin, KKA sonucunda elde edilen B doğrusal dönüşüm matrisi ile
çarpımıyla V = BY elde edilir. V ∈ Rmin(rank(X),rank(Y))×K ve B ∈ Rmin(rank(X),rank(Y))×M

boyutlarındadır. V matrisinin i. kolonu, i. örneğe ait kanonik değişkenleri ifade etmekte-
dir.
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Kanonik Korelasyon Analizi, U ve V değişken kümelerinin satırları arasındaki korelasyonu
maksimize eden analiz yöntemidir ve KKA bu özelliği garanti eden A ve B matrislerini
belirlemek için kullanılır. U ve V matrislerinin her bir satırı, yeni uzaylarda özniteliklere
karşılık gelmektedir. KKA sonucunda, bu yeni öznitelikler (U ve V matrislerinin satırları)
korelasyonu büyükten küçüğe olmak üzere sıralanmış olacaktır. Bu işlem esnasında X ve Y
uzaylarını min(rank(X),rank(Y)) boyutunda bir ara uzaya indirgenir. A matrisinin her bir
satırı üzerine X veri setinden alınan her bir örnek (X matrisinin kolonları) yansıtıldığında
elde edilen U matrisinin birinci özniteliği (satırı) ile B matrisinin her bir satırı üzerine Y veri
setinden alınan her bir örnek (Y matrisinin kolonları) yansıtıldığında elde edilen V matrisi-
nin birinci özniteliği (satırı) en yüksek korelasyonu göstermektedir. X ve Y veri setlerinin
izdüşümlerinin korelasyonunu maksimize edecek vektörleri (A ve B matrislerinin satırları)
matematiksel olarak göstermek istediğimizde; a1,A matrisinin, b1 ise B matrisinin birinci
satırını gösteren kolon vektörü olmak üzere, kanonik korelasyon katsayısı (ρ),

ρ =
aT

1 XYT b1√
(aT

1 XXT a1)(bT
1 YYT b1)

( 5.1)

şeklinde ifade edilir. a1 ve b1 vektörlerinin özelliği, ρ’yu maksimize edecek ol-
malarıdır.

Optimizasyon Problemi:
Kanonik korelasyonu ρ maksimize eden a1 ve b1 vektörleri

max
a1,b1

aT
1 XYT b1

kısıt : aT
1 XXT a1 = 1 bT

1 YYT b1 = 1
( 5.2)

probleminin çözümüne eşittir. YYT tersi alınabilen bir matris olarak kabul edildiğinde,
Eşitlik 5.3’de verilen optimizasyon probleminin çözülmesiyle a1 eşitliğinin elde
edilebileceği gösterilebilir [23, 24].

max
a1

aT
1 XYT (YYT )−1YXT a1

kısıt : aT
1 XXT a1 = 1

( 5.3)

Eşitlik 5.2 ve Eşitlik 5.3, Eşitlik 5.4’de verilen genelleştirilmiş özdeğer özvektör problemi-
nin en büyük özdeğerlerine karşılık gelen özvektörlerini bulmaktadır [25].

XYT (YYT )−1YXT a1 = ηXXT a1 ( 5.4)

η , a1 özvektörüne karşılık gelen özdeğerdir. X uzayı için M adet özvektör, Eşitlik 5.5’de
verilen optimizasyon probleminin çözülmesi ile elde edilir [23].

max
A

trace(AT XYT (YYT )−1YXT A)

kısıt : AT XXT A = I
( 5.5)
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M ≤ N kabullenmesi yapıldığında, A matrisi M×N boyutunda olacak ve N uzunluğunda M

adet özvektörden oluşacaktır.

Aynı yöntemle XXT tersi alınabilen bir matris olduğu kabul edildiğinde,

max
b1

bT
1 YXT (XXT )−1XYT b1

kısıt : bT
1 YYT b1 = 1

( 5.6)

problemi tanımlanır. Eşitlik 5.2 ve Eşitlik 5.6, Eşitlik 5.7’de verilen genelleştirilmiş
özdeğer özvektör probleminin en büyük özdeğerlerine karşılık gelen özvektörlerini bulmak-
tadır [25].

YXT (XXT )−1XYT b1 = ηYYT b1 ( 5.7)

η , b1 özvektörüne karşılık gelen özdeğerdir. Y uzayı için M adet özvektör, Eşitlik 5.8’de
verilen optimizasyon probleminin çözülmesi ile elde edilir [23].

max
B

trace(BT YXT (XXT )−1XYT B)

kısıt : BT YYT B = I
( 5.8)

M ≤ N kabullenmesi yapıldığında, B matrisi M×N boyutunda olacak ve N uzunluğunda M

adet özvektörden oluşacaktır.

Elde edilen A ve B matrisi kullanılarak U ve V veri matrislerini oluşturduğumuzda, bu iki
matrisin tanımlı olduğu; U,V ∈ RM uzayında, U ve V arasında birbiri ile en yüksek korelas-
yonu gösteren veriler birinci satırlarındaki değişkenler, en düşük korelasyonu gösterenler ise
son satırlarındaki veriler olacaktır.

Kanonik Korelasyon Analizi için kullanılabilecek bir diğer gösterim de genelleştirilmiş
özdeğer özvektör problemi gösterimidir. ρi i. özdeğeri, zi i. özvektörü ifade etmek üzere,
genelleştirilmiş özdeğer özvektör problemi Eşitlik 5.9 ile ifade edilir.

Ezi = ρiFzi ( 5.9)

KKA için blok matris gösteriminde,

E =

[
0 Pxy

Pyx 0

]
,F =

[
Px 0
0 Py

]
( 5.10)

olarak seçildiğinde, x ve y vektörlerinin boyutu sırasıyla N ve M olmak üzere, z özdeğer
özvektörlerin boyutu i = N +M olacaktır.
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zi =

[
ai

bi

]
( 5.11)

Eşitlik 5.9, Eşitlik 5.10 ve Eşitlik 5.11 birleştirildiğinde, Eşitlik 5.12 elde edilir.

F−1Ezi = ρizi

i = 1⇒

[
Px 0
0 Py

]−1[
0 Pxy

Pyx 0

]
z1 = ρ1z1[

Px 0
0 Py

]−1[
0 Pxy

Pyx 0

][
a1

b1

]
= ρ1

[
a1

b1

]
[

0 P−1
x Pxy

P−1
y Pyx 0

][
a1

b1

]
= ρ1

[
a1

b1

]
( 5.12)

Eşitlik 5.12 çözümlendiğinde P−1
x Pxyb1 = ρ1a1 ve P−1

y Pyxa1 = ρ1b1 olmak üzere iki

denklem kümesi ortaya çıkar. a1 =
P−1

x Pxyb1
ρ1

ifadesi ikinci denklem kümesinde yerine
yazıldığında;

ρ1b1 = P−1
y Pyx

P−1
x Pxyb1

ρ1

P−1
y PyxP−1

x Pxyb1 = ρ
2
1 b1

aynı yöntem ile a1 özdeğer özvektörü de çözümlendiğinde ise;

P−1
x PxyP−1

y Pyxa1 = ρ
2
1 a1

P−1
y PyxP−1

x Pxyb1 = ρ
2
1 b1

( 5.13)

elde edilir [24]. Bu formülasyon, KKA’nin Eşitlik 5.9 ve Eşitlik 5.10 ile tanımlanan
özdeğer-özvektör problemi ile çözüldüğünü gösterir.

KKA yönteminin, U,V ∈ RM uzayında, veri kümeleri arasındaki korelasyonu büyükten
küçüğe doğru olan özvektörler şeklinde sıralaması, ρ2

1 ≥ ρ2
2 ≥ ρ2

3 ≥ ... sınıflandırma/tanıma
için önemli bir altyapı sağlamaktadır. Bu sıralama, özniteliklerin indirgenmesi probleminde
de optimal bir çözüm sağlayacaktır. U ve V matrislerinin satırlarındaki kanonik korelasyon
sayesinde RM uzayında, U için tasarlanmış bir sınıflandırıcı veya tanıma yöntemi, aynı
uzayda tanımlı V verileri için de kullanılabilir. Birbirleri ile yüksek korelasyon gösteren
özniteliklerin aynı sınıflandırıcıda, korelasyon göstermeyenlere göre daha iyi performans
vermesi beklenen bir durumdur.
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Kanonik Korelasyon Analizi, sınıflandırmada farklı çalışmalarda kullanılmışlardır. İki
veri kümesi üzerinde çalışan Kanonik Korelasyon Analizi’nin sınıflandırma için kul-
lanımında birinci veri kümesi olarak örneklerin öznitelikleri, ikinci veri kümesi olarak
da sınıfların etiketleri seçilmiştir [26, 27, 28]. Bu önerilen yöntem, sınıflar için atanan
etiketlerde yapılacak değişikliklerden etkilenmekte ve farklı etiketler ile farklı perfor-
mans sonuçları oluşmaktadır [29]. Bu problemin üstesinden gelebilmek için sınıf etik-
leri yerine ağırlıklandırılmış etileketlerin kullanıldığı KKA tabanlı yöntemler geliştirilmiştir
[29, 30].

5.2 KKA ile Öznitelik Belirleme ve Öznitelik İndirgeme

Bölüm 1.1’de temel unsurları verilen çapraz tanıma yaklaşımının birinci unsurunun Y veri
kümesinden, X veya U veri kümesine kestirim olduğunu söylemiştik. X veri kümesi,
ölçülemeyen fakat daha önceden kayıtlı olan verileri, Y ise ölçülebilen fakat sınıflandırıcısı
bilinmeyen verileri ifade edecek şekilde KKA ile öznitelik belirlenebilir. U ise, Şekil 5.1’de
gösterilen X değişkenleri kümesi için oluşturulan kanonik değişkenlerin bulunduğu ara uzayı
ifade etmektedir.

Bölüm 3’de Y verilerinden X verilerini kestirmek için DMOKH yönteminin kullanımı
gösterilmişti. Bu bölümde ise amaç X verisini kestirmek yerine, U verilerini kestirmek ve U
uzayında bir sınıflandırıcı tanımlamak olacaktır.

KKA yöntemi, X ve Y veri kümeleri üzerinde A ve B matris dönüşümlerini tanımlar. Bu
dönüşümler sonucunda, X ve Y uzaylarındaki veriler U ve V ara uzaylarındaki verileri
dönüşmektedir. U ve V ara uzayındaki verilerin ilk sırasındaki öznitelikleri birbirleri ile
en yüksek korelasyonu göstermektedir. İkinci sıradaki öznitelikler ise ikinci en yüksek
korelasyonu göstermektedir. Bu dönüşüm sonrasında U ve V ara uzaylarındaki verilerin
öznitelikleri, birbirleri ile korelasyonu yüksek olandan düşük olana doğru dizilmiş olmak-
tadır. X uzayındaki K adet veri A kanonik korelasyon dönüşüm matrisi ile U uzayı verilerine
dönüştürüldüğünde, xij j. örneğin X uzayındaki i. özniteliğini, uij j. örneğin U uzayındaki i.

özniteliğini belirtmek üzere;

U = AX
u11u12...u1K

u21u22...u2K

...

uM1uM2...uMK

=


a11a12...a1N

a21a22...a2N

...

aM1aM2...aMN




x11x12...x1K

x21x22...x2K

...

xN1xN2...xNK


( 5.14)

şeklinde ifade edilebilir.
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yij j. örneğin Y uzayındaki i. özniteliğini, vij j. örneğin V uzayındaki i. özniteliğini belirt-
mek üzere;

V = BY
v11v12...v1K

v21v22...v2K

...

vM1vM2...vMK

=


b11b12...b1M

b21b22...b2M

...

bM1bM2...bMM




y11y12...y1K

y21y22...y2K

...

yM1yM2...yMK


( 5.15)

ile dönüştürüldüğünde, K adet verinin M boyutlu U ∈ RM uzayındaki birinci öznitelikleri
(u11,u12, ...,u1K) ile, K adet verinin M boyutlu V ∈ RM uzayındaki birinci öznitelikleri
(v11,v12, ...,v1K) istatistiksel olarak birbirleri arasında en yüksek korelasyonu gösteren
öznitelikler olacaklardır. Aynı şekilde, K adet verinin M boyutlu U ∈ RM uzayındaki ikinci
öznitelikleri ile (u21,u22, ...,u2K), K adet verinin M boyutlu V ∈ RM uzayındaki ikinci
öznitelikleri (v21,v22, ...,v2K) istatistiksel olarak birbirleri arasında ikinci yüksek korelas-
yonu gösteren öznitelikler olacaklardır. Diğer bir ifade ile U ve V ara uzaylarındaki verilerin
öznitelikleri kendi aralarında yüksek korelasyon gösterenden düşük korelasyon gösterene
doğru dizilmiş olacaklardır. KKA ile sağlanan bu özellik, U uzayında tanımlanmış olan bir
sınıflandırıcının V uzayındaki veriler ile de başarılı şekilde çalışmasını sağlamaktadır.

Ayrıca U ve V veri kümelerinde, korelasyonu yüksekten düşüğe doğru sıralanmış olan
öznitelikler, sınıflandırmada kullanılacak öznitelik sayısında indirgeme yapılması duru-
munda, özniteliklerin seçilmesinde önemli bir altyapı ve optimalite sağlamaktadır.
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Şekil 5.2: Kanonik Korelasyon Analizi İle Öznitelik Belirleme

Şekil 5.2’de gösterilen U ve V matrislerinin sütunları her bir örneğe ait öznitelikleri belirt-
mektedir. KKA yönteminin, korelasyonu yüksekten düşük olana doğru sıralama özelliğinden
dolayı, U ve V matrislerinin birinci satırları birbirleri ile en yüksek korelasyonu gösteren
öznitelikleri ifade edecektir. Bu durumda, tanıma/sınıflandırma aşamasında kullanılacak
özniteliklerin sayısının azaltılması gerektiğinde, yüksek korelasyonu gösteren özniteliklerin
seçilmesiyle optimal bir öznitelik indirgemesi yapılmış olacaktır.

5.3 KKA ile Çapraz Sınıflandırma

KKA yönteminin çapraz Sınıflandırma problemlerinde kullanılması için önerilen yöntem
Şekil 5.3’de grafiksel olarak gösterilmiştir.
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Şekil 5.3: KKA ile Çapraz Tanıma Yöntemi

Şekil 5.3’de, X matrisinin her bir kolonu, xi ∈ RN uzayında, N boyutlu doğrudan
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ölçülemeyen öznitelikler ile tanımlanan örneği, Y matrisinin her bir kolonu, yi ∈ RM

uzayında, M boyutlu doğrudan ölçülebilen öznitelikler ile tanımlanan örneği ifade etmek-
tedir. X ∈ RN uzayında bir sınıflandırıcı tanımlandığında Y uzayındaki özniteliklerin X
uzayına DMOKH kestiricisi ile kestirilip sonrasında çapraz sınıflandırma yapılabileceği
Bölüm 3.3 gösterilmişti. Bu bölümde ise ara bir dönüşümü de içeren ve daha iyi sonuçlar
vermesi beklenen Şekil 5.3’de görülen U ∈ RM uzayında çapraz tanıma yapılacaktır.

Şekil 5.3’de A ve B matrisleri sırasıyla X ve Y uzayı için KKA dönüşüm matrislerini, r
matrisi X ve Y uzayları arasındaki kanonik korelasyonları gösteren köşegen matrisini

r =



ρ2
1 0 ... 0 0 0

0 ρ2
2 0 ... 0 0

... ... ... ... ...

... ... ... ... ...

0 0 ... ρ2
m−1 0

0 0 ... 0 0ρ2
m


ifade etmektedir.

z vektörü ise Y uzayında tanımlı olan ve sınıflandırılması istenen örneği ifade etmekte-
dir.

KKA kullanarak çapraz sınıflandırma eğitim ve test aşamalarından oluşmaktadır. Eğitim
aşamasında yapılacak işlemler;

• X ve Y veri kümeleri arasında KKA yöntemini kullanarak, A,B matrislerinin ve
özniteliklerin korelasyonunu gösteren r köşegen matrisinin bulunması. Bulunan A, B
dönüşüm matrisleri sırasıyla X uzayından U ara uzayına ve Y uzayından V ara uzayına
geçişlerde kullanılır.

• U ∈ RM uzayında kullanılacak öznitelik sayısının belirlenmesi ve bu öznitelikler için
bir sınıflandırıcının tasarlanması. Öznitelikler, korelasyonu yüksek olandan düşük
olana doğru sıralandığından, özniteliklerin gerektiğinde bu sırayla indirgenmesi op-
timal bir yaklaşım indirgeme yaklaşımıdır.

şeklindedir. Eğitimden sonraki test aşamasında ise yapılacaklar;

• X veri kümesindeki örneklerin A matrisi ile U uzayına taşınması.

• z örneği B matrisi ile V uzayına sonrasında da r köşegen matrisi ile U uzayına
taşınması.

• Sınıflandırmanın U ∈ RM ara uzayında herhangi bir sınıflandırıcı ile yapılmasıdır.

Bu yöntem için olan kabullenmelerimiz,
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• X ve Y veri kümelerinin birbiri ile ilintisiz olmamaları ((|Pxy| 6= 0))

• X ve Y veri kümeleri için KKA yapabilmek için yeterince verinin olmasıdır

Test aşamasında, test edilecek (sınıflandırılacak) verinin eğitim aşamasında kullanılan veri-
lerden olması gerekmemektedir. KKA ile X ve Y veri kümeleri arasındaki genel davranış
modellenmeye çalışılmaktadır.

KKA dönüşüm matrisleri ile X verilerinin U uzayındaki izdüşümleri, Y verilerinin V
uzayındaki izdüşümleri oluşturulur. U ve V uzayındaki verilerin öznitelikleri birbirleri ile en
yüksek korelasyonu oluşturacak şekilde yapılanmış olurlar. Bu sayede, öznitelik sayısında
azaltma yapılması gerektiği durumda, sondan başlayarak özniteliklerin atılması, öznitelik
seçiminde optimal bir yöntem olarak kullanılabilir.

KKA ile çapraz tanıma uygulamaları Bölüm 6 içinde yer almaktadır.
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6. UYGULAMALAR

Çapraz sınıflandırma problemleri için önerilen yöntemler, pratikte birçok uygulama alanı
bulabilmektedir. Tek boyutlu uzayda Gauss dağılıma sahip iki veri kümesi arasındaki sınıf
ayrıştırılabilirliği Bölüm 3.5’de sentetik veriler üzerinden sayısal olarak incelenmişti. Bu
bölümde ise, gerçek veri kümeleri üzerinden çapraz sınıflandırma için önerilen yöntemlerin
uygulamaları ve performansları incelenecektir. Çalışılan uygulamalar, DMOKH ile çapraz
tanıma ve KKA tabanlı çapraz tanıma/sınıflandırma uygulamalarını kapsamaktadır. Yapılan
tüm uygulamalarda Bölüm 3.3’de anlatılan doğrusal minimum ortalama karesel hata kes-
tiricisi (DMOKH) ile çapraz tanıma ve Bölüm 5.2’de önerilen kanonik korelasyon analizi
(KKA) tabanlı çapraz tanıma tekniği kullanılmıştır.

Bölüm 6.1’de IRIS veri kümesi [31, 32] kullanılmıştır. Bu veri kümesi üzerinde, Bölüm
3’de anlatılan DMOKH kestiricisi kullanılarak çapraz tanıma problemi çalışılmış ve hata
olasılıkları değerlendirilmiştir.

Bölüm 6.2’de ’CMU (Carnegie Mellon University) Face Images’ veri kümesi kullanılmıştır
[33]. Farklı açıdan çekilen yüz fotoğrafları üzerinde DMOKH kestirimi tabanlı çapraz
tanıma yöntemi çalışılmış ve performans değerleri sunulmuştur. Ayrıca sınıfların
ayrıştırılabilirliğinin DMOKH kestiricisi altında nasıl etkilendiği de bu uygulamada
gösterilmiştir.

Bölüm 6.3, KKA ve DMOKH tabanlı çapraz sınıflandırma yöntemlerinin karşılaştırmasını
içermektedir. Genetik veriler üzerinden yapılan çalışmada etnik köken belirlenmesi oto-
zomal veriler üzerinden çalışılmıştır.

Bölüm 6.4’de KKA ve DMOKH tabanlı çapraz sınıflandırma ile yapılan gerçekçi bir
uygulamada farklı sonuçlar çıkmasının sebepleri incelenmiştir. Genetik veriler üzerinden
yapılan uygulamada, otozomal genetik veriler üzerinden bireylerin haplogrup kestirimleri
yapılmıştır.

Bölüm 6.5’de, farklı açı altında elde edilmiş yüz fotoğraflarında KKA çapraz
sınıflandırmanın nasıl yapılabileceği incelemiş ve sonuçlar tartışılmıştır.

Bölüm 6.6’de, kriminal amaçlı robot resimlerden KKA tabanlı yüz tanıma uygulaması
çalışılmıştır. Robot resimler kriminal çalışmalarda sıklıkla kullanılmaktadır. Görgü
tanıklarının ifadelerine dayanılarak oluşturulan bu robot resimler (eskiz), veri kümesinde
daha önceden kayıtlı fotoğraflarla karşılaştırılmakta ve tanıma yapılmaya çalışılmaktadır.
188 kişiye fotoğraf-eskiz içeren ’CUHK Yüz Eskiz Veri Kümesi’ ve 126 kişiye ait fotoğraf-
eskiz içeren ’AR Yüz Veri Kümesi’ [34] olarak adlandırılan veri kümesi kullanılarak yapılan
uygulamada, KKA tabanlı çapraz tanıma yöntemi sunulmuş ve performans değerlendirmesi
yapılmıştır.
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Bölüm 6.7’de, güvenlik kameralarında yüz tanıma problemi incelenmiştir. Güvenlik
kameraları farklı mesafelerden farklı çözünürlüklerde yüz görüntüleri elde etmektedir.
Özellikle uzaktan elde edilmiş yüz fotoğrafları, veri kümesinde daha önceden kayıtlı olan
fotoğraflardan daha düşük çözünürlükte olmaktadır. Bu çalışmada 100 kişiye ait farklı
mesafelerden elde edilmiş görüntüleri içeren, ’Long Distance Heterogeneous Face Database
(LDHF)’ veri kümesi kullanılmıştır [35, 36]. Bu veri kümesinde KKA tabanlı uzak mesafe
yüz tanımanın nasıl yapılacağı açıklanmış ve uygulama sonuçları değerlendirilmiştir.

6.1 IRIS Veri Kümesi Uygulaması

Bu bölümde, doğrusal minimum ortalama karesel hata kestiricisi (DMOKH) ile çapraz
tanıma yaklaşımı, örnek bir problem olarak süsen bitkisi türlerini tanımada kullanılmıştır.
Iris Setosa, Iris Versicolour ve Iris Virginica olmak üzere 3 farklı türe ait ellişer örnek içeren
IRIS veri kümesi [37] kullanılmıştır. Toplam 150 örneğe ait veri içeren veri kümesinde, her
bir örnek için sırasıyla çanak yaprak uzunluğu, çanak yaprak genişliği, taç yaprak uzunluğu
ve taç yaprak genişliği olmak üzere 4 farklı öznitelik bulunmaktadır.

Ölçülebilen (y), ölçülemeyen (x) ve kestirilen (xest) veriler üzerinden karesel sınıflandırıcılar
(quadratic classifier) kullanılarak çapraz tanıma gerçekleştirilmiştir.

Karesel sınıflandırıcılar, karesel bir fonksiyon ile hesaplanan sonsal olasılığı (posterior prob-
ability) maksimize eden sınıflandırıcılardır ve genel yapıları Eşitlik 6.1’de gösterildiği
şekildedir.

gi(z) = zT Wiz+wT
i z+wi ( 6.1)

i sınıf numarasını, gi(z) ayrıştırma fonksiyonunu ifade etmektedir. Eldeki bir örneğin hangi
sınıfa ait olduğunu belirlemek için, her sınıf için ayrıştırma fonksiyonu hesaplanır ve örnek
en yüksek ayrıştırma değerini gösteren sınıfa atanır. pi(z), i. sınıfa ait olasılık dağılımını,
P(ci) i. sınıfa ait önsel olasılığı (Prior Probability) ifade etmek üzere, Bayes kuralına
göre;

gi(z) = P(ci|z) =
P(ci)p(z|ci)

p(z)
( 6.2)

elde edilir. N, dağılımın tanımlı olduğu uzayın boyutu olmak üzere, Gauss dağılımlar için
eşitlik;

gi(z) =
2π−N/2|Pi|−1/2exp(−1

2(z−µµµ i)
T P−1

i (z−µµµ i))P(ci)

p(z)
( 6.3)

şekline dönüşür. İfade monotonik artan bir fonksiyon olduğundan, tüm ifadenin önce
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karesini almak, sonra logaritmasını almak ve en son olarak da sabit terimleri at-
mak karşılaştırma yapılacak gi(z) fonksiyonlarının sıralamasını değiştirmeyecektir. Bu
işlem sonucunda Gauss dağılımlar için kullanılacak ayrıştırma fonksiyonu Eşitlik 6.4’de
gösterildiği şekilde olacaktır.

gi(z) =−
1
2
((z−µµµ i)

T P−1
i (z−µµµ i))−

1
2

log(|Pi|)+P(ci) ( 6.4)

Sınıflandırıcıların sınıflandırma hatası olasılığı (Pe) değerlerinin Eşitlik 6.5’de verilen
sınırlar içerisinde kalıp kalmadığı incelenecektir.

(
1
2

exp−BU(c1,c2))2 ≤ 2Pe ≤ exp−BU(c1,c2) ( 6.5)

Ölçülemeyen (X) veri kümesi için hazırlanan karesel sınıflandırıcı (KSx), kestirilen (xest) ve-
rileri için doğrudan kullanılacak ve Pe değerinin hangi sınırlar arasında kaldığı incelenecek-
tir.

Veri Kümesi
IRIS veri kümesinde her ne kadar 3 farklı türe ait örnek veriler bulunsa da bu uygulama ilk
iki tür süsen bitkisine ait 50 x 2 örnek için 4 farklı öznitelik üzerinden çalışılmıştır. 2 farklı
süsen türüne ait toplam 100 örneğe ait veriden, iris versicolor türü süsen bitkisine ait örnekler
Sınıf-1, iris virginica türü süsen bitkisine ait örnekleri ise Sınıf-2 olarak isimlendirilmiştir.
Her bir örneğinin veri bankasında kayıtlı taç yaprak öznitelikleri (3. ve 4. öznitelikler) X veri
kümesini, kayıtlı olmayan fakat ölçülebilen çanak yaprak öznitelikleri (1. ve 2. öznitelikler)
Y veri kümesini oluşturmaktadır. Sonuç olarak, X ilk elli satırı Sınıf-1 sonraki elli satırı
Sınıf-2’ye ait taç yaprak özniteliklerini içeren 100 x 2 boyutunda, Y ise ilk elli satırı Sınıf-1
sonraki elli satırı Sınıf-2’ye ait çanak yaprak özniteliklerini içeren 100 x 2 boyutunda veri
kümeleridir.

Amaç
X veri kümesi öznitelikleri (taç yaprak öznitelikleri) için tanımlanmış bir sınıflandırıcı kul-
lanılarak, Y veri kümesi öznitelikleri (çanak yaprak öznitelikleri) ölçülen bir örneğin hangi
sınıfa (süsen türüne) ait olduğunu belirlemektir. Ayrıca, hangi sınıfa ait olduğunu bulmak
için Bölüm 3.3’de önerilen DMOKH kestirici tabanlı çapraz tanıma yöntemi kullanıldığında,
sınıflandırma performans değerlerinin Eşitlik 6.5 ile uygunluğunu incelenecektir.

Deney
Bu deneyde yapacaklarımız sırasıyla aşağıdaki gibidir.

• Basamak-1: Doğrudan ölçemediğimiz özniteliklerin (X veri kümesi öznitelikleri
(taç yaprak öznitelikleri)) DMOKH kestirim yöntemi ile doğrudan ölçebildiğimiz
özniteliklerinden (çanak yaprak öznitelikleri) kestirimi,
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• Basamak-2: Kestirilen xest öznitelikleri için yeni bir sınıflandırıcı (KSxest )

tanımlanması,

• Basamak-3: KSxest sınıflandırıcısının performansının, KSy sınıflandırıcısının perfor-
mansı ile karşılaştırılması,

• Basamak-4: xest değerleri üzerinde KSx sınıflandırıcısının performans
değerlendirmesi,

• Basamak-5: xest öznitelikleri için KSx sınıflandırıcısının performansının Bölüm 4’deki
İddia-3 ile uygunluğunun gösterilmesi.

Basamak-1
X ve Y veri kümesi özniteliklerinin dağılımı sırasıyla Şekil 6.1 ve Şekil 6.2’de görüldüğü
gibidir.

Şekil 6.1: İki Tür Süsen Bitkisinin Çanak Yaprak (X Veri Kümesi) Öznitelikleri
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Şekil 6.2: İki Tür Süsen Bitkisinin Taç Yaprak (Y Veri Kümesi) Öznitelikleri

P eşdeğişinti matrisini, µµµ ortalama değer vektörünü ifade etmek üzere;

Kullanılan X veri seti için; µxµxµx =

[
6.26
2.87

]
, Px =

[
0.44 0.12
0.12 0.11

]

Kullanılan Y veri seti için; µyµyµy =

[
4.90
1.68

]
, Py =

[
0.68 0.29
0.29 0.18

]

ve Pxy =

[
0.45 0.14
0.17 0.08

]
olarak hesaplanmıştır.

Py, µyµyµy, Pxy ve µxµxµx değerlerini bildiğimiz durumda DMOKH kestiricisi ile Eşitlik 6.6 kulla-
narak yapılan kestirimde xest öznitelikleri Şekil 6.3’de verildiği gibi bulunmuştur.

xest = µxµxµx +PxyPy
−1(y−µyµyµy) ( 6.6)
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Şekil 6.3: Kestirilen (xest) Veri Kümesi Öznitelikleri

X , Y ve Xest veri kümelerinin dağılımları Gauss olarak kabul edilip, Eşitlik 2.5 ve Eşitlik
2.8 kullanıldığında, veri kümelerine ait BK değerleri:
BKx = 0.84
BKy = 0.24
BKxest = 0.24
olarak belirlenmiştir. BKy = BKxest olması Bölüm 2.1’deki İddia-1 doğrultusunda beklenen
bir sonuçtur.

Basamak-2
Şekil 6.4’de siyah çizgi ile gösterilen X veri kümesi için belirlenen karesel sınıflandırıcıdır
(KSx). Bu karesel sınıflandırıcı, g1(x) ayrıştırma fonksiyonun g2(x) ayrıştırma fonksiyonuna
eşitlenmesi ile bulunan karar verme sınırı ile tanımlanmıştır. Bulunan karesel sınıflandırıcı
için hesaplanan hatalı sınıflandırma olasılık değeri, Pex = 0.29 olarak belirlenmiştir.
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Şekil 6.4: Her İki Tür Süsen Bitkisinin X Veri Kümesi Karesel Sınıflandırıcısı

Şekil 6.5’de siyah çizgi ile gösterilen Y veri kümesi için bulunan karesel sınıflandırıcıdır
(KSy). Bu karesel sınıflandırıcı, g1(y) ayrıştırma fonksiyonun g2(y) ayrıştırma fonksiyo-
nuna eşitlenmesi ile bulunan karar verme sınırı ile karakterize edilmiştir. Bulunan kare-
sel sınıflandırıcı için hesaplanan hatalı sınıflandırma olasılık değeri, Pey = 0.03 olarak
hesaplanmıştır.
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Şekil 6.5: Her İki Tür Süsen Bitkisinin Y Veri Kümesi Karesel Sınıflandırıcısı

Şekil 6.6’de siyah çizgi ile gösterilen Xest veri kümesi için bulunan karesel sınıflandırıcıdır
(KSxest ). Bu karesel sınıflandırıcı, g1(xest) ayrıştırma fonksiyonun g2(xest) ayrıştırma fonk-
siyonuna eşitlenmesi ile bulunan karar verme sınırıdır. Bulunan karesel sınıflandırıcı için
hesaplanan hatalı sınıflandırma olasılık değeri, Pexest

= 0.03 olarak hesaplanmıştır. Fakat
gerçek problemlerde bütün xest değerleri elde bulunmadığından, KSxest sınıflandırıcısı tasar-
lanamayacaktır. Bunun yerine yapılabilecek olan KSx kestiricisini kullanmaktır.
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Şekil 6.6: Her İki Tür Süsen Bitkisinin Xest Veri Kümesi Karesel Sınıflandırıcısı (KSxest ) ve

X Veri Kümesi Karesel Sınıflandırıcısı (KSx)

Basamak-3
DMOKH kestiricisi ile elde edilen Xest veri kümesinin elemanlarının, Y veri kümesi eleman-
larının doğrusal bir dönüşümden geçirilmiş hali olduğunu söylemiştik. Verinin kendisi veya
tersinir doğrusal dönüşümden geçmiş hali sınıfların ayrıştırılabilirlikleri bakımından özdeş
bilgilere sahiptirler. Bu sebepten, karesel sınıflandırıcıyı, birbirine karşılık gelen Y ve Xest

veri kümeleri üzerinden tasarladığımızda Pey = Pexest
olması beklenen bir sonuçtur.

Basamak-4
ÇS problemini tanımlarken, X veri kümesindeki, x özniteliklerine ait bir sınıflandırıcının
bilindiğini kabullenmiştik. Öyleyse burada xest öznitelikleri için tanımladığımız Pexest

değeri, pratikte bilinebilen bir sınıflandırıcı için hesaplanmış hata ihtimali olarak karşımıza
çıkmaktadır. Gerçek ÇS problemlerinde yapılacak hata olasılık değerini bulabilmek için,
xest öznitelikleri ile, bilinen KSx sınıflandırıcısını kullanmak gerekmektedir. Bu durumda
ulaşılabilecek ve P̂exest

şeklinde gösterilebilecek yeni bir hata olasılığı tanımlanabilir. Şekil
6.6’de kırmızı noktalı çizgi ile gösterilen karesel sınıflandırıcı KSx olup, xest öznitelikleri
üzerine uygulandığında yapılan hata:
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P̂exest
= 0.15 olarak bulunmuştur.

Basamak-5
Basamak-1’de ölçülen BK değerleri Eşitlik 6.7’de yerine konulduğunda

(
1
2

BK(c1,c2))
2 ≤ 2Pe ≤ BK(c1,c2) ( 6.7)

x öznitelikleri için: 0.0879≤ Pex = 0.29≤ 0.4193
y öznitelikleri için: 0.0073≤ Pey = 0.03≤ 0.1211
xest öznitelikleri için: 0.0073≤ Pexest

= 0.03≤ 0.1211

eşitsizliklerinin sağlandığı görülmektedir. xest öznitelikleri için KSx kullanıldığında hata
olasılığı Basamak-4’de P̂exest

= 0.15 olarak bulunmuştu. Bu değer, 0.0073≤ P̂exest
≤ 0.1211

eşitsizliğini sağlamamaktadır. KSx sınıflandırıcısı farklı veri kümesinden (X veri kümesi)
oluşturulması dolayısıyla bu husus çelişkili bir durum değildir. DMOKH kestiricisi
ile çapraz sınıflandırma yapılmak istendiğinde, sınır değerlerinin ne şekilde değişmesi
gerektiği Bölüm 4.1’de yer alan Çıkarım-6 da ifade edilmişti. Eşitlik 4.1, Çıkarım-6 ile
birleştirildiğinde kestirilen özniteliklerin xest = x +ηηη olarak tanımlanması ile yeni elde
edilen B̂Kxest değeri B̂Kxest = 0.7163 olarak bulunmuştur. B̂Kxest ve P̂exest

Eşitlik 6.7’e
yerleştirildiğinde, xest öznitelikleri için;

0.0641≤ P̂exest
= 0.1500≤ 0.3582

eşitsizliğinin sağlandığı görülmektedir. Bu sonuçlar, karesel sınıflandırıcının süsen bitki tipi
tanıma problemi açısından makul bir performansı olduğunu ifade etmektedir.
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6.2 CMU Veri Seti Yüz Tanıma Uygulaması

Veri Kümesi
Çalışmada ’CMU (Carnegie Mellon University) Face Images’ veri kümesi [33]
kullanılmıştır. Bu veri kümesi; 20 kişinin 4 farklı açıdan(ön-üst-sağ-sol), 4 farklı yüz ifadesi
ile (normal-üzgün-mutlu-sinirli) güneş gözlüklü ve güneş gözlüksüz 20 x 4 x 4 x 2 = 640
adet gri seviyeli (grayscale) yüz imgesinden oluşmaktadır. Her bir imge 128 x 120 piksel
çözünürlüğe sahiptir.

Şekil 6.7: CMU Veri Kümesinden Örnekler

Amaç
Bu uygulamada amaç, soldan-rastgele yüz ifadeli-güneş gözlüksüz olarak verilen bir yüz
görüntüsünün, veri bankasında olan önden-rastgele yüz ifadeli-güneş gözlüksüz kayıtlardan
hangisine ait olduğunun belirlenmesi olarak tanımlanmıştır.
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Deney
Bu çalışmada, yüz ifadelerine ait öznitelikler, ilk 70 temel bileşen vektörleri (principal com-
ponents) olarak seçilmiştir [38].

Öncelikle 20 kişiye ait 4 farklı yüz ifadesi-güneş gözlüksüz-önden çekilmiş 80 (20 x 4 x 1 x
1) adet imgenin ilk 70 temel bileşen vektörü X veri kümesi olarak, 20 kişiye ait 4 farklı yüz
ifadesi-güneş gözlüksüz-soldan çekilmiş 80 (20 x 4 x 1 x 1) adet imgenin ilk 70 temel bileşen
vektörü Y veri kümesi olarak tanımlanmıştır. X veri kümesi doğrudan ölçemediğimiz, Y
veri kümesi ise doğrudan ölçebildiğimiz fakat sınıflandırıcısını bilmediğimiz veri kümelerini
ifade etmektedir.

Veri kümeleri arasında; soldan çekilmiş imgelerden (Y veri kümesi), önden çekilmiş
imgelere (X veri kümesi) Eşitlik 6.6’da ifade edilen doğrusal minimum ortalama karesel hata
(DMOKH) kestiricisi ile kestirim yapılmıştır. Bu kestirim için X veri kümesindeki 20 kişiye
ait 4 farklı yüz ifadesinde-güneş gözlüksüz-önden çekilmiş (X veri kümesi) imgelerin temel
bileşenlerine karşılık 20 kişiye ait 4 farklı yüz ifadesinde-güneş gözlüksüz-soldan çekilmiş
(Y veri kümesi) imgelerin temel bileşenleri kullanılmıştır. Şekil 6.7’da 20 kişiye ait 80
yüz imgesinin bulunduğu X veri kümesinin ilk 20 örneği gösterilmektedir. Şekil 6.7’deki
her bireyin 4 farklı yüz ifadesinden oluşan 4 imgelik grupları, X veri kümesinin sınıflarını
oluşturduğundan X veri kümesindeki 20 birey toplam 20 sınıfı oluşturmakta ve her sınıf
toplam 4 yüz imgesinden oluşmaktadır. Y veri kümesi de aynı şekilde, soldan çekilmiş 20
kişiye ait 80 yüz imgesi içermekte ve toplam 20 sınıftan oluşmaktadır.

80 yüz imgesi üzerinden, soldan çekilmiş imgelerin temel bileşen vektörlerinden önden
çekilmiş imgelerin temel bileşen vektörlerine yapılan doğrusal minimum ortalama karesel
hata kestiriminde, özdeğerlerin toplamının %90’na karşılık gelen ilk 70 adet temel bileşen
kullanılmıştır.
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Şekil 6.8: Ön-Normal ve Sol-Normal Test Görüntü Örnekleri

Sınıf Ayrıştırılabilirliği
Bu uygulamada, Şekil 6.8’de gösterilen ön-normal-güneş gözlüksüz ve sol-normal-
güneş gözlüksüz imgelerin öznitelikler uzayında ayrıştırılabilirliği incelenecektir. Sınıf
ayrıştırılabilirliği testi için X ve Y veri kümesindeki Şekil 6.8’de gösterilen 2 bireyden her
birine ait 4 farklı (normal-üzgün-mutlu-sinirli) yüz imgesinin temel bileşenleri kullanılmıştır.
Ayrıştırılabilirlik iki farklı açıdan ele alınacaktır:

• Sınıflar arası Bhattacharyya Uzaklığı (BU) ve

• Sınıf içerisindeki her örneğin ait olduğu ve ait olmadığı sınıflara olan Mahalanobis
Uzaklıkları (MU).

Mahalanobis uzaklığı, uzayda bir noktanın bir dağılıma olan uzaklığını ölçmek için kullanılır
ve Eşitlik 6.8’deki şekilde ifade edilir.

MU = (t−µµµx)
T Px

−1(t−µµµx)
1
2 ( 6.8)

Burada, t test vektörünü, X veri kümesine mesafesi ölçülecek test örneği, Px ve µµµx X veri
kümesine ait eşdeğişinti matrisi ve ortalama değer vektörü olarak alınır.
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Test Görüntüleri BU Değerleri
Sınıf ayrıştırılabilirliği, X ve Y veri kümesi örnekleri için ayrı ayrı incelenecektir. Test için
X veri kümesindeki 1. kişiye ait 4 farklı yüz ifadesi ile elde edilen imgeler sınıf-1, 2. kişiye
ait 4 farklı yüz ifadesi ile elde edilen imgeler sınıf-2 olarak gruplandırılmıştır. Aynı şekilde
Y veri kümesindeki 1. kişiye ait 4 farklı yüz ifadesi ile elde edilen imgeler sınıf-1, 2. kişiye
ait 4 farklı yüz ifadesi ile elde edilen imgeler sınıf-2 olarak gruplanmıştır. Sınıf-1 ve sınıf-2
ait önden çekilen yüz imgelerine ait örnek Şekil 6.8’de üstte, soldan çekilen yüz imgelerine
ait örnek Şekil 6.8’de altta görülmektedir.

Önden çekilen yüz imgelerinin (X veri kümesi) sınıf-1 ve sınıf-2 dağılımları Gauss olarak
kabul edilip sınıf istatistikleri hesaplandıktan sonra sınıflar arasındaki BU değeri (BUx)
Eşitlik 2.8 ile

BUx = 466.15

olarak belirlenmiştir.

Soldan çekilen yüz imgelerinin (Y veri kümesi) sınıf-1 ve sınıf-2 dağılımları Gauss olarak
kabul edilip sınıf istatistikleri hesaplandıktan sonra sınıflar arasındaki BU değeri (BUy)
Eşitlik 2.8 ile bulunmuştur.

BUy = 294.46

Soldan çekilen yüz görüntüleri (Y veri kümesi) kullanılarak kestirilen önden çekilmiş
görüntü öznitelikleri için sınıf-1 ve sınıf-2 dağılımları Gauss olarak kabul edilip sınıf is-
tatistikleri hesaplandıktan sonra sınıflar arasındaki BU değeri (BUxest ) Eşitlik 2.8 ile
bulunmuştur.

BUxest = 294.46

olarak bulunmuştur. Bu sonuç, Eşitlik 2.23 ile ispatlanan, dönüşüm altında BU’nın
değişmediği sonucuyla tutarlıdır.
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Test Görüntülerinin Mahalanobis Uzaklık Ölçütü Değerleri
Özniteliği bilinen bir örneğin hangi sınıfa ait olduğunu bulmak için kullanılabilecek temel
bir yöntem Mahalanobis mesafe ölçütüdür [39]. Çizelge 6.1 ve Çizelge 6.2’da 8 örnek
görüntüye ait MU değerleri gösterilmiştir. MUi j,k ifadesi, i.sınıfa ait , j. örnek verinin k.

sınıfa olan Mahalanobis uzaklığını ifade etmektedir.

Çizelge 6.1: Test ve Kestirilen Görüntülerin 1.Sınıfa Olan Mahalanobis Uzaklıkları

MU11,1 MU12,1 MU13,1 MU14,1 MU11,2 MU12,2 MU13,2 MU14,2

Test 236.24 228.25 193.09 137.41 7852.82 7212.10 7891.95 8005.29

Kestirim 232.48 225.64 187.12 128.07 15482.80 14832.75 15072.52 14485.41

Çizelge 6.1’de görüldüğü üzere, X veri kümesindeki test imgesi öznitelikleri için elde edilen
MU1:,1 değerleri ile kestirim ile elde edilen özniteliklerin için hesaplanan MU1:,1 değerleri
birbirlerine oldukça yakındır. Fakat X veri kümesindeki test imgesi öznitelikleri için elde
edilen MU1:,2 değerleri ile kestirim ile elde edilen özniteliklerin için hesaplanan MU1:,2

değerleri oldukça farklıdır. MU1:,2 ifadesi sınıf-1’e ait bir örneğin sınıf-2’ye olan Maha-
lanobis Uzaklığını ifade ettiğinden dolayı, büyük olması sınıflandırma performansına olumlu
etki edecektir.

Çizelge 6.2: Test ve Kestirilen Görüntülerin 2.Sınıfa Olan Mahalanobis Uzaklıkları

MU21,1 MU22,1 MU23,1 MU24,1 MU21,2 MU22,2 MU23,2 MU24,2

Test 2801.50 2564.05 823.82 2506.31 15166.17 13558.53 1509.06 14530.22

Kestirim 2729.93 2497.38 807.05 2436.69 2185.02 2218.56 2016.78 2477.81

Çizelge 6.2’de ise MU2:,: değerleri, doğrudan test görüntüleri kullanıldığında yanlış
sınıflandırma yapmaktadır. Örneğin, test görüntüleri için MU21,1 = 2801.50 < MU21,2 =

15166.17 olduğu için Mahalanobis tabanlı bir sınıflandırıcı bu örneği yanlış olarak 1.sınıfın
bir elemanı olarak nitelendirecektir. Kestirilen özniteliklerde ise MU21,1 = 2729.93 >

MU21,2 = 2185.02 olduğundan Mahalanobis tabanlı bir sınıflandırıcı bu örneği doğru olarak
2.sınıfın bir elemanı olarak sınıflandıracaktır.

Çıkarım-7 BU ölçütü, sınıf ayrıştırılabilirliği açısından kullanılabilse de, DMOKH kes-
tiricisi tabanlı çapraz tanıma uygulamalarında performansı hakkında kesin bilgi ver-
mez. Bunun sebebi, kestirilen değerlerin, sınıflandırma aşamasında veri bankasındaki
değerlerle (bu örnekte; önden çekilmiş fotoğrafların öznitelikleri) kıyaslanarak kullanılacak
olmasıdır. Diğer bir ifadeyle, kestirim değerleri BU açısından ayrıştırılabilir olmasına karşın,
sınıflandırıcılar kestirim yapılan öznitelikler yerine doğrudan ölçülemeyen öznitelikler
(bu örnekte X veri kümesi (önden çekilen yüz imgeleri)) üzerinden tanımlandığından,
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sınıflandırmada kullanıldıkları zaman kötü bir performans gösterilebilirler. Bunun tersi de
gerçekleşebilir.
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6.3 Genetik İşaretleyiciler ile Etnik Köken Belirleme Uygulaması

Bu uygulamada, kendisini Beyaz-Amerikalı (caucasian) olarak tanımlayan 258 erkek
(sınıf-1), Afrikalı-Amerikalı (African-American) olarak tanımlayan 254 erkek (sınıf-2)
ve kendini Hispanik olarak tanımlayan 138 erkek (sınıf-3) bireyin otozomal ve Y-DNA
işaretleyicilerinin bulunduğu STDR veri kümesi kullanılmıştır [40]. Otozomal genetik
işaretleyiciler (marker), güvenlik güçleri tarafından kriminal uygulamalarda kullanılan
standart genetik verilerdir. Kişilerden alınan dokular vasıtasıyla, kromozomlar üzerinde
tanımlanan bu işaretleyicilere STR (Short Tandem Repeat) işaretleyicisi denilmektedir. Kul-
lanılan veri kümesinde otozomal veriler için 16 çift işaretleyici bulunmaktadır ve bu genetik
imza 2 x 16 adet tamsayı ile ifade edilmektedir. Bu tamsayılardan, cinsiyeti belirleyen 1 çift
(kümemizdeki tüm bireyler aynı cinsiyette olduğundan) veri setine dahil edilmemiştir. Y-
DNA verileri ise yalnızca erkeklerde bulunan Y kromozomu üzerinden ölçülen 17 tane STR
ile tanımlanmaktadır ve 17 tane tamsayı ile ifade edilir [41].

Bu çalışmada her ne kadar, otozomal ve Y-DNA verilerinin, bireylerin etnik veya ırksal
kökeninin belirlenmesinde ne kadar başarılı olarak kullanılabileceğini göreceksek de; asıl
göstermek istediğimiz çapraz sınıflandırmanın performansı değil, hangi şartlar altında KKA
ve DMOKH ile çapraz tanıma yapmanın birbirlerine denk olacağını ortaya koymaktır.

Deney Ortamı
c1 128 Beyaz-Amerikalı’dan, c2 254 Afrikalı-Amerikalı’dan ve c3 138 Hispanik’den oluşan
3 farklı sınıfı ifade etmektedir. Bu 3 sınıf toplam 128+254+138 = 650 farklı bireye ait verileri
içermektedir.

KKA ve DMOKH tabanlı çapraz sınıflandırma için verilerin tamamı öğrenme aşamasında
kullanılmıştır. Test aşamasında aynı veri kümesi kullanılmıştır.

650 farklı bireye ait Y-DNA (17 adet öznitelik) verileri 650 x 17 boyutunda Y veri kümesini,
otozomal (30 adet öznitelik) veriler ise 650 x 30 boyutundaki X veri kümesini oluşturmuştur.
DMOKA ve KKA tabanlı çapraz sınıflandırmada, Y uzayı öznitelikleri (Y-DNA) ölçülebilen,
X uzayı öznitelikleri (otozomal) veri bankasında kayıtlı olan verileri ifade etmektedir.
Günümüzde etnik köken belirleme X veri kümesinde tanımlı olan otozomal öznitelikler
üzerinden belirlenmektedir. Burada göstermek istediğimiz ise, elimizde Y-DNA öznitelikleri
(Y veri kümesi) öznitelikleri olduğu durumda etnik kökenin nasıl belirlenebileceğidir. Uygu-
lanacak çapraz sınıflandırma yöntemleri, Y uzayında tanımlı özniteliklerinden, X uzayı veya
U uzayı özniteliklerini kestirmeyi amaçlamaktadır. Böylece, Y uzayında tanımlı olan Y-
DNA öznitelikleri ile etnik köken belirlenmeye çalışılacaktır. KKA sonrasında ulaşılan ara
uzaylar U ve V ara uzayları olarak adlandırılmıştır.

Deneyde; X (otozomal öznitelik), Y (Y-DNA öznitelik) uzayları ve U, V ara uzayları

63



için karesel sınıflandırıcılar tasarlanmıştır. X, Y, U, ve V uzaylarındaki 3 sınıfın kare-
sel sınıflandırıcılar ile sınıflandırılma hataları sırasıyla EX , EY , EU ve EV olarak ifade
edilmiştir. X uzayındaki DMOKH tabanlı çapraz sınıflandırma hatası EDMOKHX , U ara
uzayındaki KKA tabanlı çapraz sınıflandırma hatası EKKAU ve X uzayındaki KKA tabanlı
çapraz sınıflandırma performansı EKKAX olarak gösterilmiştir. X uzayında yapılan KKA ta-
banlı çapraz sınıflandırma, U uzayında geçirilen verilerin AT (AAT )−1 dönüşümü ile elde
edilir. Yapılan hatalı sınıflandırma oranları EX , EY , EU ve EV , bulundukları uzaylarının kare-
sel sınıflandırıcılar ile 3 sınıfa ayrıldığında hatalı sınıflandırılan örneklerin toplam örneklere
oranını ifade etmektedir.

Şekil 6.9: Genetik Veriler ile Etnik Köken Belirleme Probleminde Sınıflandırma Hata

Oranın Kullanılan Öznitelik Sayısına Göre Değişimi

Şekil 6.9’de kullanılan öznitelik sayılarına göre sınıflandırıcıların hata olasılıkları
verilmiştir. Burada ilk aşamada dikkat çeken, X uzayı için tasarlanan sınıflandırıcının per-
formans verilerindeki, EDMOKHX (kırmızı grafik) ve EKKAX (siyah grafik) için tüm öznitelik
değerlerinde aynı eğilimi göstermesi ve yakın sonuçlar vermesidir. Bunun sebebi, Y
uzayından sırasıyla V, U ve X uzaylarına geçilmesinin DMOKH ile aynı yönteme denk
gelmesidir. Nümerik işlemlerden dolayı oluşan hatalar, birebir aynı sonuçların çıkmamasına
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sebep olmuştur.

İkinci önemli nokta, U uzayındaki karesel sınıflandırıcılarda bütün öznitelikler (17 adet
öznitelik) kullanıldığında oluşan hata oranının EKKAU (sarı grafik), EDMOKHX ile aynı
olmasıdır. Öznitelik indirgeme işlemi yapılmadığı durumda (17 özniteliğin tamamıyla
sınıflandırma yapıldığı durum) DMOKH ile KKA tabanlı çapraz sınıflandırma yöntemleri
tamamen aynı verileri kullandığı için aynı performansı göstermiştir. Bu durum, X ve U
uzayının birbirlerinin doğrusal dönüşümleri olması ile de açıklanabilir.

Y ile V arasında da doğrusal bir dönüşüm olması sebebiyle, bütün öznitelikler kullanıldığı
durumda aynı bilgiyi içeren veri kümelerine dönüşürler. Bu sebepten EY (yeşil grafik) ve EV

(mor grafik) bütün öznitelikler kullanıldığında eşit performans değerine ulaşmıştır.

Ayrıca, otozomal özniteliklerden (X veri kümesi) 17 öznitelik kullanılarak etnik köken be-
lirlemede hata oranı EX = 0.27, Y-DNA özniteliklerden (Y veri kümesi) 17 öznitelik kul-
lanılarak etnik köken belirlemede hata oranı EY = 0.32 olarak hesaplanmıştır. Bu durum
farklı sayıda öznitelikler için Şekil 6.9’de EX ve EY ile gösterilmiştir. Aynı şekilde, U
uzayında yapılacak bir sınıflandırmada ise 17 öznitelik için EU = 0.25 olarak hesaplanmıştır.
Şekil 6.9’de açık mavi renk ile gösterilen grafikte, farklı sayıda öznitelikler kullanıldığında,
ulaşılabilecek hata oranı gösterilmiştir.

Şekil 6.10’de X uzayındaki ilk iki özniteliğin değerleri (mavi grafik), bu özniteliklerin
DMOKH kestiricisi ile kestirilmesi durumunda ortaya çıkan öznitelikler (kırmızı grafik) ve
KKA tabanlı çapraz tanımayla X uzayına geçilmesi durumunda ortaya çıkan öznitelikler
(yeşil grafik) gösterilmiştir. Öznitelikler sıfır ortalamalı olarak çizilmişlerdir.
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Şekil 6.10: Otozomal Veri Kümesinin İlk 2 Öznitelik Değerleri ve Kestirimi Değerleri

Şekil 6.10’de görüldüğü üzere XKKA ve XDMOKH grafikleri birbirlerine yakın değerler üretse
de, nümerik hatalardan dolayı tamamen aynı değerleri üretememişlerdir.

Şekil 6.11’de U uzayındaki ilk iki özniteliğin değerleri (mavi grafik), bu özniteliklerin
DMOKH kestiricisi ile kestirilmesi durumunda ortaya çıkan öznitelikler (kırmızı grafik) ve
KKA tabanlı çapraz tanımayla X uzayına geçilmesi durumunda ortaya çıkan öznitelikler
(yeşil grafik) gösterilmiştir. Öznitelikler sıfır ortalamalı olarak çizilmişlerdir.
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Şekil 6.11: U Ara Uzayına Aktarılmış Genetik Verilerin İlk 2 Öznitelik Değerleri

Şekil 6.11’de görüldüğü üzere U uzayındaki UDMOKH ve UKKA grafikleri birbirlerine yakın
değerler üretmiştir. X verilerinin A KKA dönüşüm matrisi ile dönüştürülmesiyle elde edilen
U verileri ile KKA ve DMOKH yöntemiyle kestirilen U verileri birbirlerine yakın değerler
üretmiştir.

Şekil 6.12 ve Şekil 6.13’de sırasıyla X ve U uzayındaki ilk iki öznitelik için yapılacak
hataların karesi gösterilmiştir.
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Şekil 6.12: Otozomal Veri Kümesinin İlk 2 Öznitelik Değerlerinin ve Kestirimlerinin Or-

talama Karesel Hatası

Şekil 6.13: U Ara Uzayına Aktarılmış Genetik Verilerin İlk 2 Öznitelik Değerlerinin ve

Kestirimlerinin Ortalama Karesel Hatası

Şekil 6.12 ve Şekil 6.13’de görülen ilk iki öznitelik için X uzayında yapılacak ortalama
karesel hata sırasıyla EX = 1.46 ve EX = 1.24 olarak bulunmuştur. İlk iki öznitelik için
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U uzayında yapılacak ortalama karesel hata ise sırasıyla EU = 0.87 ve EU = 0.94 olarak
bulunmuştur. U uzayında yapılacak karesel hatanın düşük olmasının sebebi, U uzayında
özniteliklerin birbirleri ile daha yüksek korelasyon gösterecek şekilde sıralanmasıdır. Bu
özelliği sayesinde KKA tabanlı çapraz sınıflandırmada kullanılacak öznitelik sayısında in-
dirgeme yapılması gerektiğinde, kanonik korelasyonları büyükten küçüğe doğru sıralanmış
özniteliklerin seçilmesi anlamlı bir yöntem olacaktır.

Bu uygulamada, kanonik korelasyonlar sırasıyla [0.4868 0.3392 0.3043 0.2835 0.2539
0.2379 0.2171 0.2058 0.1920 0.1796 0.1570 0.1488 0.1222 0.1162 0.1015 0.0928 0.0665]
olarak bulunmuştur. Bu değerler aslında X ve Y uzayları arasında ilintinin kuvvetli ol-
madığının bir göstergesidir. Bu husus Amerika Birleşik Devletleri (ABD) popülasyonunda
Y-DNA ile CODİS otozomal veriler arasında güçlü bir ilinti olmadığını göstermektedir.
ABD popülasyonunda atasal köken (Y-DNA) ile otozomal (anne ve babadan gelen)
özniteliklerinin ilintisinin sınırlı olduğu ortaya çıkmaktadır.
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6.4 YDNA ve Otozomal Veri Kümesi ile Haplogrup Belirleme Uygulaması

Bu uygulamada, Bölüm 6.3’de etnik köken belirleme için kullanılan deney seti kullanılmıştır.
Bu defa çapraz tanıma problemi belirlemek için değil Y-DNA’lar üzerinden tanımlanan
haplogrupları belirlemek için çalışılmıştır. Nesilden nesile aktarılan DNA’ların kopyalan-
malarında zaman zaman oluşan hatalar nedeni ile farklı Y-DNA sınıfları oluşmuştur ve bu
gruplara haplogrup adı verilmektedir. Y kromozomu erkek bireye babasından değişmeden
aktarılır, ancak bazen aktarım hataları oluşabilmektedir. Bu hatalar DNA aktarımı ile
bir sonraki nesle aynen kopyalanırlar. Bu kopyalama hatalarına mutasyon denir. Uzun
yıllar boyunca meydana gelen mutasyonlar sonucu insan topluluklarının belirli gen grupları
oluşmuştur. Y-DNA için harflerle sembolize edilen bu gruplara Y-DNA haplogroupları den-
mektedir. STDR veri kümesinde, Y-DNA’lar üzerinden tanımlanmış toplam 12 haplogruba
ait 650 erkek birey bulunmaktadır [40].

En yakın ortalama sınıflandırıcısı (nearest mean classifier), verilen bir örneği, en yakınındaki
sınıf ortalamasına eşleştiren bir sınıflandırıcıdır. 650 bireye ait bu veri kümesi Y-
DNA üzerinden en yakın ortalama değer sınıflandırıcısı yaklaşık 0.07 hata olasılığı ile
sınıflandırılabilirken, otozomal veri kümesi en yakın ortalama değer sınıflandırıcısı ile 0.84
hata olasılığı ile ayrıştırabilmektedir. Bu uygulamada, otozomal öznitelikler üzerinden hap-
logrup ayrıştırılması çapraz tanıma problemi olarak ele alınarak, çapraz tanıma yöntemleri
ile tanıma oranlarının hangi seviyelerde olduğu incelenecektir.

Deney Ortamı
STDR veri kümesi [40], 12 farklı haplogrupdan 650 kişiye ait Y-DNA işaretleyicilerini ve
aynı 650 kişiye ait 16 çift STR işaretleyicini içermektedir. Y-DNA işaretleyicileri için, ci,
i : 1, ..,12 toplam 12 farklı haplogrubu (12 sınıfı) ifade etmek üzere her bir haplogrupdaki
örnek sayısı sırasıyla; c1 : 192,c2 : 29,c3 : 3,c4 : 45,c5 : 31,c6 : 5,c7 : 22,c8 : 1,c9 : 19,c10 :
18,c11 : 281,c12 : 4 kişidir.

KKA ve DMOKH tabanlı çapraz sınıflandırma için verilerin tamamı öğrenme aşamasında
kullanılmıştır. Test aşamasında aynı veri kümesi kullanılmıştır.

Kullanılan veri kümesinde otozomal veriler için 16 çift işaretleyici bulunmaktadır ve bu
genetik imza 2 x 16 adet tamsayı ile ifade edilmektedir. Bu tamsayılardan, cinsiyeti be-
lirleyen 1 çift (kümemizdeki tüm bireyler aynı cinsiyette olduğundan) veri setine dahil
edilmemiştir. Y-DNA verileri ise yalnızca erkeklerde bulunan Y kromozomu üzerinden
ölçülen 17 tane STR ile tanımlanmaktadır ve 17 tane tamsayı ile ifade edilir [41].

650 farklı bireye ait Y-DNA (17 adet öznitelik) verileri 650 x 17 boyutunda X veri kümesini,
otozomal (30 adet öznitelik) veriler ise 650 x 30 boyutundaki Y veri kümesini oluşturmuştur.
KKA sonrasında ulaşılan ara uzaylar U ve V ara uzayları olarak adlandırılmıştır.
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Deneyde; X, Y, U ve V uzayları için en yakın ortalama sınıflandırıcıları tasarlanmıştır.
Bu sınıflandırıcılar, sınıflandırılmak istenen örneğin sınıf ortalamalarına olan kartezyen
uzaklığını kullanırlar. Örnek, en yakın sınıfa atanır. X, Y, U ve V uzaylarındaki 12 sınıfın en
yakın ortalama sınıflandırıcılar ile sınıflandırılma hata oranları EX , EY , EU ve EV olarak ifade
edilmiştir. X uzayındaki DMOKH tabanlı çapraz sınıflandırma performansı EDMOKHX , U ara
uzayındaki KKA tabanlı çapraz sınıflandırma performansı EKKAU ve X uzayındaki KKA
tabanlı çapraz sınıflandırma hata oranları EKKAX olarak gösterilmiştir. X uzayında yapılan
KKA tabanlı çapraz sınıflandırma, U uzayına geçirilen verilerin AT (AAT )−1 dönüşümü ile
elde edilir. Yapılan hatalı sınıflandırma oranları EX , EY , EU ve EV , bulundukları uzaylarının
en yakın ortalama sınıflandırıcıları ile 12 sınıfa ayrıldığında hatalı sınıflandırılan örneklerin
toplam örneklere oranını ifade etmektedir.

DMOKA ve KKA tabanlı çapraz sınıflandırmada, Y uzayı öznitelikleri (otozomal
öznitelikler) ölçülebilen, X uzayı öznitelikleri (Y-DNA) veri bankasında kayıtlı olan veri-
leri ifade etmektedir. Uygulanacak çapraz sınıflandırma yöntemleri X uzayı veya U uzayı
özniteliklerini kestirmeyi amaçlamaktadır.

Şekil 6.14: Genetik Veriler ile Y-DNA Haplogrubu Belirleme Hata Oranı

Şekil 6.14’de kullanılan öznitelik sayılarına göre sınıflandırıcıların hata olasılıkları
verilmiştir. Burada ilk aşamada dikkat çeken, X uzayı için tasarlanan sınıflandırıcının
sınıflandırma hata oranları, EXDMOKH (kırmızı grafik) ve EXKKA (siyah grafik) için tüm
öznitelik değerlerinde aynı değeri göstermesidir. Bunun sebebi, Y uzayından sırasıyla V,
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U ve X uzaylarına geçilmesinin DMOKH ile aynı yönteme denk gelmesidir.

İkinci önemli nokta, U uzayındaki karesel sınıflandırıcılarda tüm öznitelikler (17 adet
öznitelik) kullanıldığında yapılacak hata oranının EU (açık mavi grafik), EX (koyu mavi
grafik) ile aynı olmasıdır. Öznitelik indirgeme işlemi yapılmadığı durumda (17 özniteliğin
tamamıyla sınıflandırma yapıldığı durum) U uzayı ile X uzayı birebir aynı bilgiyi içeren
uzaylar olduğundan ve tamamen aynı verileri kullandığı için eşit performans göstermiştir.
Bu durum, X ve U uzayının birbirlerinin doğrusal dönüşümleri olması sebebiyle de
açıklanabilir.

Şekil 6.14’de haplogrupların bulunması için en iyi performansın Y-DNA verileri (X veri
kümesi) kullanılarak, EX = 0.07 hata oranı ile bulunabildiği görülmektedir. Bu beklenen bir
sonuçtur, zira haplogruplar doğrudan Y-DNA üzerinden tanımlanan etiketlerdir. Otozomal
veriler (Y veri kümesi) üzerinden ise bu ayrıştırmanın EY = 0.84 hata oranı ile yapılabildiği
görülmektedir. DMOKH ile X uzayına geçip burada çapraz sınıflandırma hata olasılığını
EXDMOKH = EXKKA = 0.61’e kadar indirebilmektedir. Fakat esas etkili yöntem KKA ile çapraz
sınıflandırma yöntemidir ve EUKKA = 0.47 hata olasılığı ile otozomal veriler üzerinden hap-
logrup tahmini yapabilmektedir.

650 bireye ait Y-DNA ve otozomal verilere baktığımızda, U ve V uzayları arasındaki
en büyük korelasyon katsayısının 0.4868 olduğu görülmektedir. Bu korelasyon, başarılı
bir çapraz sınıflandırma yapabilmek için yeterince yüksek değildir. Bu sebepten çapraz
sınıflandırma performansı X uzayındaki performanslara yetişememektedir.

Öte yandan, bireyin gelmiş geçmiş tüm ataları ve analarının genetiğinin toplam imzası olan
otozomal verilerin çok kısıtlı bir kısmı ile yalnızca atasal köken ile ilgili Y-DNA haplotipinin
belirli bir hata ile kestirilebileceği ortaya konmuştur. Güvenirliliği düşük olsa da Y-DNA
kestiriminin otozomal üzerinden yapılabilmesi, adli araştırmalar açısından az da olsa bir
kıymet arz etmektedir.
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6.5 Düşük Çözünürlüklü İmgelerden Yüz Tanıma Uygulaması

Güvenlik kameralarından elde edilen yüz fotoğrafları genellikle açılı ve düşük çözünürlükte
olmaktadır. Bu durum, güvenlik kameralarında yüz tanıma yapmayı zorlaştırmaktadır. Bu
uygulamada düşük çözünürlüklü yüz fotoğrafları, gerçek güvenlik kamerası görüntülerinden
değil, aşağı örnekleme yöntemiyle yüksek çözünürlüklü görüntülerden oluşturulmuştur.
Güvenlik amaçlı elde edilmiş uzak mesafe ve düşük çözünürlüklü fotoğraflardan yüz tanıma
uygulamasına yönelik bir çalışma ise Bölüm 6.7’de sunulmuştur.

Bu uygulamada, aynı ışık koşulunda çekilmiş, 40 kişiye ait, 10 farklı yüz ifadesi içeren
112 x 92 piksel boyutunda yüksek çözünürlüklü (YÇ) gri seviyeli toplam 400 yüz fotoğrafı
kullanılmıştır [42]. Örnek bireye ait 10 farklı yüz imgesi Şekil 6.15’de verilmiştir.

Şekil 6.15: Örnek Bireye Ait 10 Farklı Açıdan Elde Edilmiş Yüksek Çözünürlüklü Yüz

İmgeleri

Yüksek çözünürlükteki bu veri kümesi aşağı örnekleme (downsampling) yöntemiyle 6 x 3
boyutlarına indirilmiştir. Böylece toplam 40 bireye ait ve her birey için 10 farklı açıdan
elde edilmiş 400 adet düşük çözünürlüklü (DÇ) görüntü elde edilmiştir. Her bir düşük
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Şekil 6.16: Örnek Bireye Ait 10 Farklı Açıdan Elde Edilmiş Düşük Çözünürlüklü Yüz

İmgeleri

çözünürlüklü görüntü, 6 x 3 olmak üzere 18 pikselden oluşmaktadır. Bu düşük çözünürlüklü
görüntülerden, örnek bireye ait 10 farklı yüz imgesi Şekil 6.16’de gösterilmiştir. DÇ
görüntülerin oluşturduğu veri kümesi 400 x 18 boyutundadır.

Bu uygulamada, eldeki 1 adet düşük çözünürlüklü (DÇ) fotoğrafın kime ait olduğunun
ne doğrulukla bulabileceğini problemi çalışılmıştır. Çapraz sınıflandırmanın performansını
değerlendirebilmek için 40 kişilik veri kümesi yirmişer kişilik eğitim ve test gruplarına
bölünmüştür. Eğitim grubundaki 20 kişiye ait veriler ile KKA ve DMOKH dönüşüm para-
metreleri bulunmuş, daha sonra bu parametreler ile test grubundaki 20 kişi üzerinde tanıma
yapılmıştır.

Deney Ortamı

Bu uygulamada, eğitim grubundaki 20 bireyin 10 farklı açıdan elde edilmiş yüksek
çözünürlük ve düşük çözünürlükteki yüz imgelerinin KKA ve DMOKH kestirim parametre-
lerini bulmak için kullanılmıştır.

Test grubundaki 20 bireyin 10 farklı açıdan elde edilmiş yüksek çözünürlük ve düşük
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çözünürlükteki yüz imgeleri ise, çapraz doğrulama stratejilerinden olan birini dışarda
bırakma (leave one out) yöntemi kullanılarak test edilmiştir. Test grubundaki 199 YÇ
yüz imgesi için sınıflandırıcılar tanımlanmış 1 yüz imgesi ise doğru sınıflandırmanın
yapılıp yapılmadığını belirlemek için kullanılmıştır. Aynı işlem DÇ yüz imgelerine de
uygulanmıştır. Bu test işlemi, test grubundaki 200 imge için ayrı ayrı yapılmış ve
sınıflandırma hata oranı olarak hesaplanmıştır.

Yüksek çözünürlüklü yüz imgelerini içeren X veri kümesi, her biri 112 x 92 boyutunda olan
200 adet imge içeren 10304 x 200 boyutunda bir veri kümesidir. X veri kümesindeki bir
bireye ait farklı açılardan elde edilmiş imgeler bir sınıfı oluşturmaktadır. X veri kümesinin
büyük olması dolayısıyla, öznitelikler üzerinde indirgeme işlemi yapılmıştır. Boyutunun
indirgenmesi için, Temel Bileşenler Analizi (TBA) uygulanmıştır. Toplam özdeğerlerin
%90’ını oluşturulan ilk 110 temel bileşen, YÇ görüntüleri ifade etmek için kullanılmıştır.
200 YÇ görüntünün temel bileşenlerini içeren X veri kümesi 110 x 200 boyutuna indirgenmiş
ve bu indirgenen veri kümesi bundan sonra X veri kümesi olarak anılmıştır.

Düşük çözünürlüklü yüz imgelerini içeren Y veri kümesi, her biri 6 x 3 boyutunda olan 200
adet imge içeren 18 x 200 boyutunda bir veri kümesidir. Y veri kümesindeki bir bireye ait
farklı açılardan elde edilmiş imgeler bir sınıfı oluşturmaktadır.

Sınıflandırma için, en yakın ortalama sınıflandırıcısı (nearest mean classifier) kullanılmıştır.
Bu sınıflandırıcı, sınıflandırılmak istenen örneğe, sınıf ortalaması en yakın sınıfı
eşleştirmektedir.

XDMOKH , Y verilerinden DMOKH kestiricisi ile kestirilen X verilerini ifade etmekte-
dir. UDMOKH , XDMOKH verilerinin U uzayına izdüşümünü ifade etmektedir. İz düşüm
UDMOKH = AXDMOKH bağıntısıyla bulunabilmektedir. UKKA, KKA tabanlı çapraz tanıma
yöntemiyle elde edilen verilerdir. Bu veriler, Y uzayındaki verilerin B matrisi ile U uzayına
izdüşümlerinin bulunmasıyla hesaplanır. XKKA, UKKA verilerinin X uzayına izdüşümü olarak
hesaplanır.

Burada kullanılan 6 x 3 boyutlarındaki görüntüler, yüksek çözünürlükteki görüntülerin aşağı
örneklenmesi (downsample) yoluyla elde edilmiştir.

Şekil 6.17’de DMOKH ve KKA tabanlı yöntemlerin ve doğrudan uzaylar üzerinde
tanımlanacak sınıflandırıcıların performansları verilmiştir.
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Şekil 6.17: Düşük Çözünürlük ve Farklı Açılardan Yüz Tanımada ’Birini Dışarda Bırak’

Stratejisi ile 20 Sınıfın Sınıflandırma Hata Oranı

Şekil 6.17’de, ilk 18 öznitelik kullanıldığı durumda, en düşük hata oranı EX = 0.02 ile
(koyu mavi grafik) yüksek çözünürlükteki görüntülerden elde edilmiştir. KKA ile çapraz
sınıflandırmada ise EUKKA = 0.11 hata oranına (sarı grafik) ulaşılmıştır. DMOKH kestiricisi
kullanılarak yapılan çapraz sınıflandırmada ise EXDMOKH = 0.24 hata oranı (kırmızı grafik)
elde edilmiştir. Düşük çözünürlükteki görüntülerin doğrudan kullanımından EY = 0.12 hata
oranına (yeşil grafik) ulaşılmıştır. Bu sonuçlar KKA ile çapraz sınıflandırmanın başarıyla
yapılabileceğinin göstergesidir. KKA, rankı düşük olan veri kümesi boyutunda öznitelik için
A ve B dönüşüm matrisleri bulmaktadır. Bu örnekte, DÇ görüntülerin her biri 18 boyutlu
olduğundan dolayı toplam 18 adet kanonik korelasyon elde edilmiştir. Bu kanonik kore-
lasyonlar büyükten küçüğe doğru sırasıyla, [1.0000 1.0000 0.9999 0.9999 0.9998 0.9997
0.9994 0.9991 0.9989 0.9982 0.9968 0.9950 0.9923 0.9903 0.9884 0.9873 0.9837 0.9712]
olarak bulunmuştur.

Burada özellikle dikkat çekilmesi gereken nokta, X veri kümesindeki YÇ görüntülerin boyut
indirgemesinde kullanılan özdeğer özvektörlerin, KKA için kullanılan kestirim parametrele-
rinin (A, B) ve DMOKH için kullanılan Eşitlik 3.6’de kullanılan kestirim parametrelerinin
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(µxµxµx,Pxy,Py,µyµyµy) test grubunun tamamen dışında tutulan bir eğitim grubundan bulunmasıdır.
Şekil 6.17’de grafikte gösterilen performans değerleri, eğitim ve test gruplarının tamamen
ayrıldığı durumda elde edilmiş hatalı sınıflandırma oranlarını göstermektedir.

Eğitim grubundaki bireylerden elde edilen boyut indirgeme özdeğer özvektörleri, KKA kes-
tirim parametreleri ve DMOKH kestirim parametreleri aynı kalmak kaydıyla, hata oranı
hesabını 40 bireye ait 400 imge üzerinden birini dışarda bırak yöntemi ile belirlediğimizde
elde edilen sonuçlar Şekil 6.18’deki gibi bulunmuştur. Bu deneyde, her bir ’birini dışını
bırak’ aşamasında 399 imge üzerinden 40 farklı sınıf için sınıflandırıcılar tanımlanmış ve
dışarda bırakılan 1 imgenin doğru sınıfa atanıp atanmadığı incelenmiştir. Bu işlem 400 defa
tekrar edilmiş ve hata oranı hesaplanmıştır.

Şekil 6.18: Düşük Çözünürlük ve Farklı Açılardan Yüz Tanımada ’Birini Dışarda Bırak’

Stratejisi ile 40 Sınıfın Sınıflandırma Hata Oranı

Burada KKA ile yapılan çapraz sınıflandırma hata oranı EUKKA = 0.1075 değerine düşmüştür.
20 sınıf üzerinden yapılan deneyde EUKKA = 0.11 hata oranı gösteren yöntemin 40 sınıfın
olduğu veri kümesinde, EUKKA = 0.1075 hata oranı göstermesi, yöntemin sağlam olduğunun
bir göstergesidir.
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Aynı problemde, her seferinde bir kişiye ait 5 veriyi test için ayırıp, 395 veri üzerinden KKA
ve DMOKH hesapladığımızda ve 395 veri üzerinden sınıflandırıcıyı tasarladığımızda elde
ettiğimiz sınıflandırma performansı Şekil 6.19’de gösterildiği gibi bulunmuştur.

Şekil 6.19: Düşük Çözünürlük ve Farklı Açılardan Yüz Tanımada ’Beşini Dışarda Bırak’

Stratejisi ile 40 Sınıfın Sınıflandırma Hata Oranı

Daha ortalamacı bir yaklaşım olan beşini dışarda bırak yöntemi ile çalışılan KKA ile çapraz
tanımanın performansının giderek iyileştiği gözlenmektedir. Şekil 6.19’de V uzayında
tanımlanan sınıflandırıcının sınıflandırma hata oranının (mor grafik), U uzayında tanımlanan
sınıflandırıcının sınıflandırma hata oranının (açık mavi grafik) ve U uzayında tanımlanan
KKA tabanlı yaklaşımla elde edilen sınıflandırma hatalı oranının (sarı grafik) kullanılan
öznitelik sayı arttıkça azaldığı gözlenmektedir. Bu azalış, ilk özniteliklerde daha fazla, son-
rakilerde da az olmaktadır. Bu durum KKA tabanlı yöntemde özniteliklerin korelasyonu
büyükten küçüğe olacak sırayla dizmesinden kaynaklanmaktadır. KKA tabanlı bu yöntem
kullanılacak öznitelik sayısı sabit olduğunda, özniteliklerin seçimi için optimal bir yöntem
de sunmuş olmaktadır. 18 özniteliğin tamamı kullanıldığında hatalı sınıflandırma oranı,
EV = 0.1150, EU = 0.1250 ve EUKKA = 0.13 olarak bulunmuştur.

Burada, daha önceki uygulamada olduğu gibi X uzayında tanıma hata oranının EX = 0.11
düşük çıkmasının sebebi, temel bileşenler analizi ile elde edilmiş özniteliklerin ayrıştırma
başarımının iyi olmasıdır.

18 özniteliğin tamamı kullanıldığı durumda, YÇ verileri içeren X veri kümesinde
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sınıflandırma yapmak (EX = 0.11) ile Y veri kümesindeki DÇ görüntüleri kullanarak KKA
tabanlı çapraz sınıflandırma yapmak (EUKKA = 0.13) çok yakın hatalı sınıflandırma oranları
göstermiştir.

Doğrudan Y veri kümesindeki DÇ imgelerin 18 özniteliği kullanıldığında hatalı
sınıflandırma oranı EY = 0.1950 iken, Y veri kümesindeki DÇ görüntülerden ilk 18 öznitelik
kullanılarak yapılan sınıflandırmada KKA tabanlı çapraz sınıflandırma da bu değer EUKKA =

0.13’e kadar düşmüştür.

Aynı veri kümesi kullanılarak yapılan benzer bir çalışma [43]’da sunulmuştur. Bu çalışmada
kestirim yapılmadan, doğrudan düşük çözünürlükteki imgeler üzerinden aralıklı gösterim
tabanlı sınıflandırma (sparse representation based classification (SRC)) yapılmıştır. 6 x 3
boyutundaki DÇ görüntüler ile SRC kullanılarak yapılan tanımada %72, önerilen KKA ta-
banlı çapraz tanıma ile %89 tanıma oranı elde edilmiştir.
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6.6 Eskizden Yüz Tanıma Problemi

Robot resim ile suça karışan kişilerin belirlenmesi kriminal çalışmalarda sıklıkla kullanılan
standartlaşmış bir yöntemdir. Görgü tanıklarının ifadelerine dayanılarak oluşturulan bu es-
kizlerin güvenlik kuvvetleri kayıtlarındaki çok sayıda fotoğraf ile karşılaştırılması ve başarılı
bir şekilde eşleştirilmesi zorlu bir örüntü tanıma problemidir.

Özellikle geçtiğimiz on yılda yüz tanıma yöntemlerinin gelişmesiyle beraber eskiz tanıma
konusunda da çalışmalar artmıştır. Eskiz tanımada kullanılan robot resimler genel olarak
üç farklı şekilde oluşturulabilmektedir. Bunlar; görerek-eskiz (view-sketch), kriminal-eskiz
(forensic sketch) ve kompozit-eskiz (composite sketch) [44] olarak sıralanabilir. Görerek-
eskiz, polis ressamı tarafından kişinin resmine bakılarak çizilen eskizlerdir ve daha çok eskiz
tanıma için geliştirilen yöntemlerin test edilmesinde kullanılmakta olup gerçek adli uygu-
lamalarda kullanılma imkanı sınırlıdır [44]. Kriminal-eskiz, görgü tanıklarının anlatımları
doğrultusunda bir polis ressamı tarafından çizilen eskizlerdir. Kompozit-eskiz ise, yüzün
her bir parçasının bir kütüphaneden seçilmesi ile bilgisayar ortamında oluşturulan eskizler-
dir [44]. Eskizlerin, fotoğraflardan farkları, sadece temel yüz özelliklerini içerip, ayrıntı
özellikleri içermemeleridir [45].

Eskizden yüz tanıma konusunda özellikle son on yıl içerisinde çeşitli çalışmalar yapılmıştır.
Eskiz tanıma ile ilgili yapılan ilk çalışmalar, standart yüz tanıma yöntemlerinin önişlemleme
yapılmış fotoğraflar üzerine uygulanması ile gerçekleştirilmiştir. Bunlardan özyüz (eigen-
face) yöntemine dayanan bir çalışmada [46] toplam 7 eskizden tanıma yapma hedeflenmiş,
elastik grafik eşleme (elastic graph matching) yöntemine dayanan diğer bir çalışmada
[47, 48] ise toplam 13 eskiz içeren veri kümesinde yüz tanıma çalışılmıştır. Eskiz tanıma
konusuna ilginin artması ve daha kapsamlı veri kümelerinin oluşturulması sonrasında yapılan
çalışmalarda iki temel yaklaşım ön plana çıkmıştır [44] :

• fotoğraf ve eskiz uzayları dönüşümü

• fotoğraf ve eskiz uzayından bağımsız öznitelik belirlenmesi

Bu yaklaşımlardan birincisi, eskiz uzayındaki bir veriden fotoğraf uzayına (veya tersi)
bir dönüşüm yapmakta ve sentezlenen fotoğraf (veya tersi) için, fotoğraf uzayında (veya
tersi) tanıma yapmaya çalışmaktadır. Bu yaklaşımda, özdönüşüm (eigentransform) [49],
lokal doğrusal gömme (local linear embedding) [45] ve çoklu ölçekli Markov rastgele
alanları (multiscale Markov random fields) [50] yöntemleri ile çalışmalar yapılmıştır. Bu
yaklaşımın, sentez aşaması gerçekleştirmesi zor ve tanıma performansını doğrudan etkileyen
bir aşamadır [44]. İkinci yaklaşım ise, her iki uzayda da değişmeyen öznitelikler belirleme
esasına dayanmaktadır. Bu yaklaşım ile yapılan çalışmalar ortak ayırt edici uzay (com-
mon discriminant space) [51], birlikte eşleşik enformasyon izdüşümü (coupled information-
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theoretic projection(CITP)) [52] ve kısmi en küçük kareler (partial least squares (PLS)) [53]
yöntemlerini içeren yaklaşımlardır. Bu tez kapsamında, literatürde yer alan yaklaşımlara
alternatif olarak, KKA’nın etkili bir eskiz tanıma yöntemi olarak kullanılabileceği ortaya
konulmuştur.

6.6.1 KKA ile Eskiz Tanıma Yöntemi

KKA ile tanımlanan yeni ara uzaylar birbirleri ile en yüksek kanonik korelasyonu gösteren
özniteliklerin bulunduğu uzaylar olduğundan, bu uzaylarda tanıma yapmanın başarılı
sonuçlar vermesi beklenmektedir. Eskiz tanıma için önerilen yöntemin basamaklarının neler
olduğu Şekil 6.20’de temsili olarak gösterilmiştir.

Şekil 6.20: KKA ile Eskiz Tanıma Eğitim ve Test Basamakları Gösterimi

KKA ile eskiz tanımada gerçekleştirilen alt işlemler eğitim aşamasında;

• Fotoğraf ve eskiz önişlemleme

81



• Öznitelik belirleme dönüşümlerinin bulunması ve özniteliklerin belirlenmesi ve

• KKA ile ara uzay dönüşümlerinin bulunması ve ara uzaya geçilmesi

tanıma (test) aşamasında ise;

• Fotoğraf ve eskiz önişlemleme

• Öznitelik belirlenmesi

• KKA ile ara uzaya geçilmesi ve

• Sınıflandırmanın yapılması

olarak özetlenebilir.

Fotoğraf ve Eskiz Önişlemleme
Veri kümesi içerisinde bulunan her bireye ait fotoğraf ve eskiz çiftlerinin standart hale
getirilmesi için öncelikle döndürme ve ölçekleme işlemlerinin yapılması gerekmektedir.
Önişlemleme sonucunda tüm fotoğraf ve eskizlerde, yüz için tanımlanan ayırt edici nok-
talar aynı koordinatlara getirilir. Bu aşamada; göz merkezleri, çene-alın noktaları, kulak
veya dudak kenarları gibi belirleyiciler kullanılabilir. Bu işlem hem eğitim aşamasında hem
de tanıma aşamasında yapılmalıdır.

Öznitelik Belirleme Dönüşümlerinin Bulunması ve Özniteliklerin Belirlenmesi
Kullanılacak öznitelikler, temel bileşen analizi (TBA) yöntemi ile elde edilmiştir [38]. İşlem
yapılan veri sayısını indirgemek ve veriler üzerindeki gürültü etkisini azaltmak için, en
yüksek özdeğerlere karşılık gelen belirli sayıdaki özvektörün kullanılması yeterlidir. X
uzayı, kişilere ait fotoğrafların bulunduğu, Y uzayı ise karşılık gelen eskizlerin bulunduğu
uzayları belirtmek üzere, X ve Y uzayından indirgenmiş veriler sırasıyla Xd ve Yd uzayı
olarak isimlendirilecektir. Xd matrisi, X matrisinin ilk R adet temel bileşeni içeren ve R≤ N

olmak üzere Xd ∈ RR×K matrise indirgenecektir. K : fotoğraf ve eskiz veri kümesindeki
örnek sayısını belirtmektedir. Yd matrisi ise Y matrisinin ilk S adet temel bileşeni içeren
ve S ≤ M olmak üzere Yd ∈ RS×K matrisine indirgenecektir. Burada N: fotoğraf veri
kümesindeki her bir örneğin öznitelik sayısını, M : eskiz veri kümesindeki her bir örneğin
öznitelik sayısını, R : fotoğraf veri kümesindeki örneklerin indirgenmiş öznitelik sayısını, S :
eskiz veri kümesindeki örneklerin indirgenmiş öznitelik sayısını ifade etmektedir.

Bu işlem, eğitim aşamasında, ilgili temel bileşenleri belirlemek için gerekli dönüşümleri
(Wx ve Wy) bulabilmek için yapılmalı, tanıma aşamasında ise bu dönüşüm vektörleri kul-
lanılmalıdır. Wx, X uzayındaki verilerin RR boyutuna indirgenmesi için (R ≤ N) ilk R
adet temel bileşenin bulunabilmesi için oluşturulmuş RR×N boyutundaki dönüşüm matri-
sidir. Wy ise, Y uzayındaki verilerin Yd ∈ RS boyutuna indirgenmesi için (R≤ S) ilk R adet
temel bileşenin bulunabilmesi için oluşturulmuş Wy ∈ RS×M boyutundaki dönüşüm matrisi-
dir.
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KKA ile Ara-Uzay Dönüşümlerinin Bulunması ve Ara-Uzaya Geçilmesi
KKA metodolojisi kullanılarak, Xd ve Yd uzaylarındaki verilerin KKA dönüşümleri birbir-
leri ile maksimum korelasyon yapısını tanımlayacaktır. Bu işlem sonucunda Xd matrisin-
den elde edilecek veriler U, Yd matrisinden elde edilecek veriler ise V matrisi olarak ad-
landırılacaktır. Bu matrislerin bulunduğu uzaylar sırasıyla (S≤R kabul edilmiştir), U∈RS×K

ve V ∈ RS×K olacaktır. Bu işlem, eğitim aşamasında kanonik korelasyon dönüşümü (A ve
B) matrislerini ve köşegen korelasyon matrisini (r) bulmak için yapılmalı, tanıma şamasında
bu matrisler kullanılmalıdır.

Tanıma Testi
Tanıma aşamasında, tanınması istenen toplam P adet eskizin temel bileşenleri içeren Tv

(Tv ∈ RS×P) matrisi oluşturulur. Fotoğraf veri kümesinin de ara uzay dönüşümlerini içeren
U (U ∈ RS×K) matrisinde ise toplam fotoğraf verisinin K adet örneği bulunmaktadır. Tanıma
için en yakın komşu eşleştirilmesi yapılarak, eskiz ilgili fotoğrafla eşleştirilir.

6.6.2 KKA ile Eskiz Tanıma Uygulaması

Bu çalışmada, ’CUHK Yüz Eskiz Veri Kümesi (CUFS)’ [50] kullanılmıştır. Bu veri
kümesindeki 188 fotoğraf ’Hong Kong Çin Üniversitesi Öğrenci Veri Bankası (CUHK Stu-
dent Data Set)’ [50] içerisinden, 126 yüz fotoğrafı ise ’AR Veri Bankası’ [34] içerisinden
alınmıştır. Alının fotoğraflardan önden ve normal ışık altında çekilmiş yüz fotoğraflarının,
ressamlar tarafından fotoğraflara bakarak görerek-eskizleri çizilerek ’CUHK Yüz Eskiz
Veri Kümesi (CUFS)’ oluşturulmuştur. Şekil 6.21’de veri kümelerinden alınmış örnekler
gösterilmiştir.
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Şekil 6.21: (a) CUHK Yüz Eskiz Veri Kümesi, (b) AR Yüz Eskiz Veri Kümesi

Önişlemleme aşamasında, veri kümelerindeki her bir verinin (fotoğraflar ve eskizler),
göz merkezleri yatayda aynı hizaya gelecek şekilde veriler döndürülmüş, göz merkezleri
arasındaki mesafe sabit olacak şekilde tekrar ölçeklendirilmiştir. Bu işlem sonrasında elde
edilen verilerin tamamında, göz merkezleri sabit bir koordinata gelecek şekilde ve veri
boyutu 250× 200 olacak şekilde kesilip önişlemleme aşaması tamamlanmıştır. Verilerdeki
kontrast seviyeleri değiştirilmemiştir. Önişlemleme sonrasında elde edilen örnek veriler
Şekil 6.22’de verilmektedir.
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Şekil 6.22: Döndürme-Ölçekleme ve Koordinat Sabitleme Sonrası Örnekler

Eskiz tanıma sisteminin eğitimi aşamasında birini dışarıda bırak (leave one out) yöntemi
uygulanmıştır. Öznitelik belirleme işleminde temel bileşen analizi yapılmış ve temel
bileşenlerden özdeğerleri toplamının yaklaşık %90’ını içeren ilk 50 tanesi öznitelik olarak
seçilmiştir. Bu öznitelikleri oluşturan Wx ve Wy matrisleri test aşamasında doğrudan
kullanılmıştır. Elde edilen öznitelikler üzerinde KKA uygulanmış ve kanonik dönüşüm mat-
risleri (A, B) ile kanonik korelasyon matrisi (r) bulunmuştur. Eğitim aşamasında bulunan
bu matrislerden kanonik dönüşüm matrisleri (A, B) test aşamasında ’KKA ile ara uzaya
geçilmesi’ basamağında kullanılmıştır.

Tanıma, norm-2 uzayında Tv matrisindeki verilere U matrisinden en yakın olan verinin
eşlenmesi şeklinde yapılmıştır. Bu yöntem sonucunda CUHK Yüz Eskiz Veri Kümesi’nde
%99.47, AR Yüz Eskiz Veri Kümesi’nde %99.19 olmak üzere toplamda %99.36 oranında
başarılı tanıma oranına ulaşılmıştır. KKA ile eskiz tanıma ve diğer yöntemlerin tanıma per-
formanslarının karşılaştırılması ise Çizelge 6.3’de verilmiştir.
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Çizelge 6.3: Eskiz Tanıma Başarı Oranı Karşılaştırması

Yöntem Tanıma Performansı(%)

TBA+Özdönüşüm [45] 75

TBA+MultiscaleMRF [45] 84.3

TBA+MultiscaleMRF [45] 84.3

LFDA+SIFT [54] 99.27

LFDA+MLBP [54] 98.60

LFDA+SIFT+MLBP [54] 99.47

TBA+KKA(önerilen) 99.36

Çizelgeye genel olarak bakıldığında, temel bileşenler analizi (TBA) tabanlı yaklaşımların,
lokal öznitelik ayrışımı analizi (LFDA) tabanlı yaklaşımlardan daha düşük performans
gösterdikleri görülmektedir. TBA tabanlı özniteliklerin bulunması kolaydır ve genellikle
alan bilgisi gerektirmez. LFDA tabanlı özniteliklerin bulunması ise, genellikle alan bil-
gisi gerektirir ve deneyseldir. Ayrıca, çözülmek istenen probleme göre büyük değişiklikler
gösterebilirler. Bu çalışmada önerilen KKA esaslı eskiz tanıma yöntemiyle, TBA tabanlı
olmasına karşın LFDA tabanlı yaklaşımların performanslarına ulaşmıştır.

Bu uygulamada %99.36 gibi yüksek bir performans değeri elde edilmesinde, veri
kümesindeki eskizlerin tek bir ressam tarafından çizilen görerek-eskizlerden oluşmasının
büyük etkisi vardır. Pratik uygulamalarda, görerek-eskizlerin yerine kriminal-eskizlerin kul-
lanılması, yöntemin performansında düşüşe sebep olacaktır. Daha önce de bahsedildiği
üzere, görerek-eskizler genelde eskiz-yüz tanıma yöntemlerinin performanslarını ölçmekte
kullanılmaktadır.

Bu uygulamada ulaşılan yüksek tanıma oranı, herhangi bir çapraz tanıma probleminde, alan
bilgisi kullanılmadan da başarılı sonuçların elde edilebileceğini göstermektedir.
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6.7 Güvenlik Kamerası Yüz Tanıma Problemi

Yüz tanıma problemi uzun yıllardır üzerinde çalışılan temel bir örüntü tanıma problemidir.
Güvenlik kameralarının kullanımının hızla artmasına rağmen, güvenlik kameraları yüz
tanıma algoritmaları için yeterince kaliteli görüntüler sağlayamamaktadır. Bu tür kameralar-
dan elde edilen görüntülerde, uygulamada iki temel problem ortaya çıkmaktadır; çözünürlük
ve aydınlatma. Güvenlik kameraları, geniş görüş açısı istenmesinden dolayı, kamera üzerine
düşen yüz görüntüleri genellikle düşük çözünürlüktedir. Çözünürlük problemi çözülse
bile, farklı ışık şartlarında görüntülerin elde edilmesi problemi ortaya çıkabilmektedir.
Özellikle az ışık içeren ortamlarda problem daha da artmaktadır. Karanlık ortamlarda genel-
likle kızılötesi ışıkla aydınlatma sonrasında elde edilen görüntülerden yararlanılmaktadır
[35]. Özellikle yakın kızılötesi (Near-Infrared (NIR) ) ışık kullanmak bu durumlarda
oldukça avantaj sağlamaktadır. Farklı ışık kaynaklarının kullanılmasına ait karşılaştırmalar
[55, 56]’da ayrıntılı şekilde incelenmiştir.

Yüz tanıma problemi uzun yıllardır çalışılmış olmasına karşın; düşük çözünürlük ve farklı
aydınlatmalar altında tanıma problemi yeterince başarılı biçimde çözülememiştir.

Bu çalışmada, farklı uzaklıklardan elde edilmiş güvenlik kamerası görüntüleri için KKA ta-
banlı çapraz sınıflandırma, gerçek bir veri kümesi üzerinden çalışılmıştır. Çalışmada, ’Long
Distance Heterogeneous Face Database (LDHF)’ veri kümesi kullanılmıştır [35, 36]. Bu veri
kümesi 100 kişiye ait farklı mesafelerden elde edilmiş yüz fotoğrafları içermektedir.

Yüz tanıma problemleri ilk çalışılmaya başlandığında, problemin basitleştirilmesi için farklı
mesafelerden, farklı çözünürlüklerde, farklı ışık ortamlarında elde edilmiş yüz görüntüleri
kullanılmamış; aksine yüksek çözünürlükte kullanılan görüntülerle yüksek tanıma oran-
larına ulaşılmıştır. Günümüzde güvenlik kameralarında, kapsama alanını maksimize
etmek amacıyla geniş açılı kameraların kullanılmasıyla; görüntüsü elde edilmek iste-
nen yüz fotoğrafı genelde 32× 32 piksel içerisinde kalacak şekilde elde edilmektedir.
Düşük çözünürlükte elde edilen yüz görüntüsü ise, yüzler arasındaki ayırt edici özellik
sayısını düşürmektedir [8]. Elde edilen yüz görüntüsü çözünürlüğü 64 × 64 pikselin
altında olduğunda, kullanılan yüz tanıma yöntemlerin başarımı büyük oranda düşmektedir
[57]. Güvenlik kamerası yüz tanıma problemi, düşük çözünürlükte (DÇ) elde edilen yüz
görüntüsünün veri kümesindeki yüksek çözünürlükteki (YÇ) görüntüye eşleştirilmesi prob-
lemidir.

Düşük çözünürlüklü yüz tanıma problemi için iki temel yaklaşım kullanılmaktadır. Birinci
ve daha geleneksel olan iki basamaklı bir yaklaşımdır [58]. Bu yaklaşımda YÇ görüntü, aşağı
örnekleme yöntemleriyle DÇ görüntüye dönüştürülür veya DÇ görüntü süper çözünürlük
(Super-Resolution (SÇ) ) yöntemleriyle YÇ görüntülere dönüştürülür. YÇ görüntülerin
DÇ görüntülere dönüştürülmesi yöntemi, ayırt edici özniteliklerin azalması ve düşük per-
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formans göstermesi dolayısıyla fazla kullanılmamaktadır [58, 59, 60]. DÇ görüntülerden
YÇ görüntülerin elde edilmeye çalışılması yaklaşımı daha fazla kullanılmaktadır [61]. Bu
konuda literatürde tanımlanmış pek çok süper çözünürlük yöntemi olmasına karşın; pratik
uygulamalarda hızlı ve basit olması dolayısıyla aradeğerleme yöntemleri kullanılmaktadır
[58]. Öğrenme Tabanlı Süper Çözünürlük (learning-based super-resolution) yöntemi
göreceli yeni ve başarımı diğer yöntemlerden daha yüksek bir yöntemdir [62, 63]. İki
basamaklı yöntemde, SÇ görüntü elde edildikten sonra DÇ ve YÇ görüntüler aynı uzayda
tanımlanmış olduğundan, standart yüz tanıma yöntemleri çalıştırılabilmektedir. SÇ görüntü
oluşturma yöntemindeki ana fikir, DÇ görüntüde görünmeyen bilgiyi yeniden oluşturmaktır
[8]. Düşük çözünürlüklü görüntülerden yüz tanımada kullanılan ikinci yaklaşım ise, her iki
görüntüyü de eşdeğer yüz alanı (eigenface domain) gibi farklı bir alana geçirmektedir [64].
Bu yöntem daha iyi sonuç vermesine rağmen, fazla işlem gücü gerektirmektedir [65].

6.7.1 KKA ile Güvenlik Kamerasında Yüz Tanıma Yöntemi

DMOKH kestirimine dayalı çapraz sınıflandırma yönteminde YÇ görüntü öznitelikleri DÇ
görüntü özniteliklerinden kestirilmekte ve tanıma yapılmaktadır. Bu yöntem için sadece
ortalama değer vektörü ve eşdeğişinti matrislerinin yeterli olduğu vurgulanmıştı. Fakat
bu yaklaşımda; YÇ özniteliklerine dönüşüm sonrasında özniteliklerin, sınıflandırma per-
formansını arttırıcı şekilde organize edilmesine yardımcı bir yöntem bulunmamaktadır.
Öznitelikler üzerindeki gürültü, sınıflandırma performansını olumsuz yönde etkileyebilmek-
tedir. KKA tabanlı çapraz tanıma yöntemi farklı çözünürlükte yüz tanımada öznitelik seçimi
için üç basamaklı bir yaklaşım önermektedir. Bu yöntemdeki ana fikir, sınıflandırma algorit-
masının YÇ ve DÇ görüntülerin tanımlı olduğu uzaydan farklı bir ara uzayda yapılmasıdır.
Son yıllarda çapraz tanıma problemlerini ara uzayda çözmeye çalışan başka yaklaşımlarda
geliştirilmiştir [58, 60, 43]. Bu çalışmada, güvenlik kamerasından elde edilen farklı
çözünürlükte yüz tanıma problemi için kullanılabilecek ara uzayın KKA ile tanımlanması
önerilmektedir.

Önerilen bu yöntemin basamaklarının neler olduğu Şekil 6.23’de temsili olarak
gösterilmiştir.
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Şekil 6.23: KKA ile Farklı Çözünürlükte Yüz Tanıma İşlem Basamakları Gösterimi

Burada yapılan işlemler eğitim aşamasında;

• YÇ ve DÇ görüntü önişlemleme

• Öznitelik belirleme dönüşümlerinin bulunması ve özniteliklerin belirlenmesi ve

• KKA ile ara uzay dönüşümlerinin bulunması ve ara uzaya geçilmesi

tanıma (test) aşamasında ise;

• YÇ ve DÇ görüntü önişlemleme

• Öznitelik belirlenmesi

• KKA ile ara uzaya geçilmesi ve

• Sınıflandırmanın yapılması

şeklinde sıralanabilir.
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YÇ ve DÇ Görüntü Önişlemleme
Veri kümesi içerisinde kullanılan YÇ ve DÇ görüntülerin standart hale getirilmesi için
öncelikle döndürme ve ölçekleme işlemlerinin yapılması gerekmektedir. Önişlemleme sonu-
cunda, YÇ görüntülerde yüz için tanımlanan ayırt edici noktaların aynı çerçeveye oturtulması
sağlanmış olur. Aynı işlem DÇ görüntülere de uygulanır. Fakat DÇ ve YÇ görüntülerin bir-
birleriyle hizalanmış olması gerekmez. Bu aşamada; göz merkezleri, çene-alın noktaları, ku-
lak veya dudak kenarları gibi belirleyiciler kullanılabilir. Bu işlemler hem eğitim aşamasında
hem de tanıma aşamasında yapılmalıdır.

Öznitelik Belirleme Dönüşümlerinin Bulunması ve Özniteliklerin Belirlenmesi
Kullanılacak öznitelikler, temel bileşen analizi (TBA) yöntemi ile elde edilmiştir [38]. İşlem
yapılan veri sayısını indirgemek ve veriler üzerindeki gürültü etkisini azaltmak için, en
yüksek özdeğerlere karşılık gelen belirli sayıdaki özvektörün kullanılması yeterlidir. Bu
işlem sonrasında X ve Y uzayından indirgenmiş veriler sırasıyla Xd ve Yd olarak isim-
lendirilecektir. Xd matrisi, X matrisinin ilk R adet temel bileşeni içeren ve R ≤ N olmak
üzere Xd ∈ RR×K matrise indirgenecektir. Yd matrisi ise Y matrisinin ilk S adet temel
bileşeni içeren ve S≤M olmak üzere Yd ∈ RS×K matrisine indirgenecektir. Burada, K : DÇ
ve YÇ veri kümesindeki örnek sayısını, N: YÇ veri kümesindeki her bir örneğin öznitelik
sayısını, M : DÇ veri kümesindeki her bir örneğin öznitelik sayısını, R : YÇ veri kümesindeki
örneklerin indirgenmiş öznitelik sayısını, S : DÇ veri kümesindeki örneklerin indirgenmiş
öznitelik sayısını ifade etmektedir.

Bu işlem, eğitim aşamasında, ilgili temel bileşenleri belirlemek için gerekli dönüşümleri
(Wx ve Wy) bulabilmek için yapılmalı ve tanıma aşamasında ise bu dönüşüm vektörleri kul-
lanılmalıdır. Wx, X uzayındaki verilerin RR boyutuna indirgenmesi için (R ≤ N) ilk R adet
temel bileşenin bulunabilmesi için oluşturulmuş Wx ∈ RR×N boyutundaki dönüşüm mat-
risidir. Wy ise, Y uzayındaki verilerin RS boyutuna indirgenmesi için (R ≤ S) ilk R adet
temel bileşenin bulunabilmesi için oluşturulmuş Wy ∈ RS×M boyutundaki dönüşüm matrisi-
dir.

KKA ile Ara-Uzay Dönüşümlerinin Bulunması ve Ara-Uzaya Geçilmesi
KKA yöntemi kullanılarak, Xd ve Yd uzaylarındaki verilerin KKA dönüşümleri birbirleri
ile maksimum korelasyon yapısını tanımlayacaktır. Bu işlem sonucunda Xd matrisinden
elde edilecek veriler U, Yd matrisinden elde edilecek veriler de V matrisleri olarak ad-
landırılacaktır. Bu matrislerin bulunduğu uzaylar sırasıyla (S ≤ R kabul edilmiştir), U ∈ RS

ve V ∈ RS olacaktır. Bu işlem, eğitim aşamasında kanonik korelasyon dönüşüm (A ve B)
matrislerini ve köşegen korelasyon matrisini (r) bulmak için yapılmalı ve tanıma aşamasında
bu matrisler kullanılmalıdır.
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Tanıma Testi
Tanıma aşamasında, tanınması istenen toplam P adet DÇ temel bileşenleri içeren Tv (Tv ∈
RS×P) matrisi oluşturulur. YÇ veri kümesinin de ara uzay dönüşümlerini içeren U (U ∈
RS×K) matrisinde ise toplam, YÇ verisinin K adet örneği bulunmaktadır. Tanıma için en
yakın komşu eşleştirilmesi yapılarak, DÇ görüntünün ilgili YÇ eşleştirmesi yapılır.

6.7.2 KKA ile Farklı Çözünürlükte Yüz Tanıma Uygulaması

Çalışmada kullanılan ’Long Distance Heterogeneous Face Database (LDHF)’ [35, 36],
görünür ve yakın kızılötesi bantta görüntüler içermektedir. Görüntüler açık alanda 60m,
100m ve 150m mesafeden, kapalı alanda ise 1m mesafeden elde edilmiştir. Toplam 100
kişiye ait görünür ve yakın kızılötesi görüntü 4 farklı uzaklık için sağlanmıştır. Bu çalışma
LDHF veri kümesinden çekilen 1m (YÇ) ve 150m (DÇ) mesafeden görünür bantta elde
edilen görüntüler ile yapılmıştır. Çalışma, az sayıda görüntü verisi ile yapıldığından çapraz
doğrulama (Cross-Validation) yöntemi ile test edilmiştir. 99 DÇ ve YÇ görüntü eğitim
için kullanılmış, 1 görüntü ise test için ayrılmıştır. Bu işlem her bir görüntü için ayrı ayrı
tekrarlanmış ve tanıma performansı belirlenmiştir.

LDHF veri kümesindeki yüz görüntüleri öncelikle göz pozisyonları aynı olacak şekilde
hizalanmıştır. Göz hizalaması esnasında YÇ görüntüler 292×202 boyutunda, DÇ görüntüler
ise 43×32 boyutunda olacak şekilde ölçeklendirilmiştir. Hizalama ve ölçeklendirme öncesi
1m mesafeden elde edilmiş görüntüler Şekil 6.24’de, 60m mesafeden elde edilmiş görüntüler
ise Şekil 6.25’de gösterilmiştir.

Şekil 6.24: 1m Mesafeden Elde Edilmiş Görüntü Örnekleri
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Şekil 6.25: 150 m Mesafeden Elde Edilmiş Görüntü Örnekleri

Hizalama ve ölçeklendirme sonrasında elde edilen YÇ görüntü örnekleri Şekil 6.26’de, DÇ
görüntü örnekleri ise Şekil 6.27’de gösterilmiştir.

Şekil 6.26: Önişlemle Sonrası YÇ Yüz Görüntüsü Örnekleri
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Şekil 6.27: Önişlemle Sonrası DÇ Yüz Görüntüsü Örnekleri

Eğitim aşamasında, 99 DÇ ve 99 YÇ görüntü bu aşama için girdi, Wx,Wy,A,B,r paramet-
releri ise çıktıdır. YÇ görüntüler xi ∈ R58984 : i = 1..99 olacak şekilde kolon vektörlerine
dönüştürülmüş ve X ∈ R58984×99 matrisini oluşturmuştur. Aynı şekilde DÇ görüntüler
yi ∈ R1376 : i = 1..99 olacak şekilde kolon vektörlerine dönüştürülmüş ve Y ∈ R1376×99 mat-
risini oluşturmuştur. X ve Y matrisleri için temel bileşenler analizi (TBA) yapılmış ve eğitim
aşamasında Wx,Wy olarak saklanmıştır. TBA sonrasında herbir DÇ ve YÇ görüntünün
98 temel bileşen vektörü indirgenmiş veri kümesi olarak saklanmıştır. DÇ görüntüler için
Yd ∈ R98×99 ve YÇ görüntüler için Xd ∈ R98×99 matrisleri elde edilmiştir. Bu matrisler
üzerine uygulanan KKA sonrasında, kanonik korelasyon dönüşümünü yapacak A ve B mat-
risleri elde edilmiştir.

Test aşamasında, 100 YÇ görüntü kolon vektörü olarak gösterilmiş ve X ∈ R58984×100 mat-
risi elde edilmiştir. Bu görüntülerin ilk 98 temel bileşeni eğitim aşamasında kaydedilen
Wx ile seçilmiş ve sonrasında yine eğitim aşamasında kaydedilen A matrisi dönüşümüyle
veriler U uzayına aktarılmıştır. Sınıflandırılması istenen DÇ görüntü kolon vektörü olarak
gösterilmiş ve T ∈ R1376 vektörü elde edilmiştir. Bu görüntünün ilk 98 temel bileşeni eğitim
aşamasında kaydedilen Wy ile seçilmiş ve sonrasında yine eğitim aşamasında kaydedilen
B matrisi dönüşümüyle V uzayına aktarılmıştır. U uzayındaki verilerden Tv vektörüne en
yakın olan vektör sınıflandırılacak kişi olarak seçilmiştir. Bu kapalı küme tanıma strate-
jisi pratikte kullanım alanı olmasa da, yöntemlerin güçlü ve zayıf yönlerini göstermekte
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başarılı bir sınama yöntemdir. Toplam Eşleşme Karakteristiği (Cumulative Match Charac-
teristic(CMC)) gösterim yöntemi kapalı küme sınıflandırma stratejisi uygulandığında, rank
gösterimi ile anlamlı sonuçlar göstermektedir. Rank, yöntemlerin performansını test etmekte
kullanılan bir gösterimdir. DÇ bir görüntü örneğinin, en olası YÇ görüntü eşleniğine rank-1
eşleniği, sonraki olası eşleniğine rank-2 eşleniği olarak isimlendirilir. Rank-n eşleniği, n.
olası eşleniği anlamındadır. Bir yöntemin rank-n performansı, doğru eşleniğin ilk n aday
içerisinde bulunması ile ölçülür. Önerilen yöntem, TBA yöntemi ile 60 ve 98 öznitelik
kullanılarak karşılaştırılmıştır. 60 öznitelik, özdeğer özvektörlerin toplamının %95’ini kap-
samaktadır.

Rank-1, Rank-3 ile Rank-5 tanıma oranları Çizelge 6.4’de gösterilmiştir.

Çizelge 6.4: Farklı Çözünürlükte Yüz Tanıma için Rank-1, Rank-3 ve Rank-5 Tanıma

Oranları

Yöntem Rank-1 Rank-3 Rank-5

KKA-60 Bileşen 36% 51% 67%

TBA-60 Bileşen 6% 13% 17%

KKA-98 Bileşen 42% 70% 84%

TBA-98 Bileşen 8% 14% 20%

Çizelgede gösterildiği üzere, Rank-5 performansı göze alındığında, PCA sınıflandırma %20
başarısına ulaşırken, önerilen yöntem %84 başarıyla sınıflandırma yapabilmiştir.

Tüm rank değerleri için tanıma performansları ise Şekil 6.28’da gösterilmiştir.
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Şekil 6.28: Farklı Mesafe Yüz Tanıma İçin, TBA ve Önerilen Yöntemin Tüm Rank

Değerleri Başarım Oranları

Şekil 6.28’de görüldüğü üzere, rank değeri arttıkça sınıflandırma performansı artmaktadır.
Önerilen KKA tabanlı yöntem, TBA yöntemine göre her zaman daha iyi sonuç vermek-
tedir. Bu durum, TBA yönteminde özniteliklerin temel bileşenlerden seçilmesine karşılık,
önerilen yöntemde temel bileşenlerin yüksek korelasyon gösterecek öznitelik dönüşümlerini
kullanma esasından kaynaklanmaktadır.

Rank-5 için, önerilen ve TBA tabanlı tanıma performansının, kullanılacak öznitelik sayısına
göre durumu Şekil 6.29’de gösterilmiştir.

95



Şekil 6.29: Farklı Mesafe Yüz Tanıma İçin, TBA ve Önerilen Yöntemin Rank-5 Tanıma

Oranları

Her iki yöntem için de, kullanılacak öznitelik sayısısın artması performansı arttırmaktadır.
Önerilen yöntemde performans artışı, öznitelik sayısı arttıkça eğimini azalmaktadır. Bu du-
rum, önerilen KKA tabanlı yöntemin öznitelikleri belirleme stratejisinden kaynaklanmak-
tadır. Kanonik korelasyonların büyükten küçüğe doğru dizilmesi ile, her kullanılan bileşen
kendisinden önce gelen bileşenden daha az performansı arttırmaktadır. Tanıma için kul-
lanılacak özniteliklerden, en yüksek korelasyonu gösterenler baştaki bileşenler olarak yer
almaktadır. TBA tabanlı uygulamada ise, özniteliklerin sınıflandırma açısından özel bir di-
zilimi söz konusu değildir.
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7. SONUÇLAR

Bu çalışmada öncelikle çapraz sınıflandırma problemi ortaya konulmuş ve çapraz
sınıflandırma problemine temel oluşturacak yaklaşımlar incelenmiştir. Çapraz sınıflandırma
için geliştirilen yaklaşım ve yöntemler bazı pratik tanıma ve sınıflandırma problemlerine
uygulanmış ve sonuçlar karşılaştırmalı olarak etüt edilmiştir.

Sınıf ayrıştırılabilirliği için bir ölçüt olan Bhattacharyya Katsayısı veya Bhattacharyya
uzaklık ölçütü farklı özelliklerdeki dağılımlar için incelenmiştir. Farklı dönüşümler altında
sınıf ayrıştırılabilirliğinin nasıl etkilendiği Bölüm 2’de gösterilmiştir. Yine aynı bölümde,
teorik gösterimlere ek olarak bazı deneysel sonuçlar da ele alınmıştır.

Çapraz sınıflandırma yöntemlerinin incelenmesinde başlangıç noktası olan DMOKH ta-
banlı çapraz sınıflandırma yöntemi Bölüm 3’de incelenmiştir. Burada DMOKH kestiri-
cisi ayrıntılı olarak sunulmuştur. Gauss dağılıma sahip sınıflar varsayımında DMOKH ta-
banlı çapraz sınıflandırma için bilinmesi gereken sınıf istatistikleri ve bunlar ile yapılacak
DMOKH kestiricisinin nasıl belirlendiği incelenmiştir. Doğrudan ölçülebilen ve doğrudan
ölçülemeyen öznitelikler arasında bir ilinti (correlation) bulunduğu sürece, DMOKH kes-
tiricisi ile özniteliklerin kestirilip, sınıflandırma yapılabileceği gösterilmiştir. Ayrıca
DMOKH tabanlı çapraz sınıflandırma ile elde edilen özniteliklerin ayrıştırılabilirliği Bhat-
tacharyya uzaklık ölçütü üzerinden incelemiştir. DMOKH tabanlı çapraz tanımada Bhat-
tacharyya mesafe ölçütünün değişmediği de Bölüm 2.1’de gösterilmiştir. Tersi alınabilir ve
türevlenebilir dönüşümlerle yapılan kestirimlerde Bhattacharyya Uzaklığı’nın değişmediği
Bölüm 2.2’de gösterilmiştir. Burada, çapraz sınıflandırma problemi için, Bhattacharyya
Uzaklığı ve sınıflandırma performansı arasında, beklenin aksine, doğrudan bir ilinti olmadığı
gösterilmiştir. Sınıflandırma performansı hata olasılığı ile Bhattacharyya Uzaklığı arasındaki
ilişki, Bölüm 3.5’de gösterilmiştir.

Ortalama değer vektörleri ve eşdeğişinti matrisleri bilinen, eşit sayıda örnek içeren iki
veri setinin birleşmesiyle elde edilen yeni veri kümesinin ortalama değer vektörünün ve
eşdeğişinti matrisinin ne olacağı Bölüm 3.4’de gösterilmiştir. Doğrudan ölçülemeyen ve
doğrudan ölçülebilen öznitelikler arasındaki eşdeğişinti matrislerinin (Pxy) de bilinmesi
durumunda, DMOKH ile elde edilen sınıfların ve bunların birleşiminin ortalama değer
vektörleri ve eşdeğişinti matrisleri Bölüm 3.4’de gösterilmiştir.

Bölüm 3’de kestirimle elde edilen değerler üzerinden hesaplanan BU değerinin sınıflandırma
performansı hakkında doğrudan bir bilgi vermediği gösterilmiştir.

Bölüm 4’de ise kestirilen özniteliklerin orijinal öznitelikler + gürültü şeklinde model-
lendiğinde; BU değerinin ölçemediğimiz öznitelik BU değerinden küçük veya eşit olduğu
ispatlanmıştır. Eşitliğin sağlanabilmesi için, kestirim hatasının olmaması veya eşdeğişinti
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matrislerinin birbirlerine eşit olması gerektiği Bölüm 4.1’de gösterilmiştir. Bu çalışma son-
rasında, kestirilen özniteliklerinin, doğrudan ölçülemeyen öznitelikler için tasarlanan ve
Eşitlik 2.7’de belirtilen sınırlar arasında kalan bir sınıflandırıcı ile sınıflandırıldığında per-
formansın hangi aralıkta olabileceği gösterilmiştir.

Bölüm 5’de, çapraz sınıflandırma için KKA tabanlı yeni bir yöntem önerilmiş ve bu yöntem
ile öznitelik belirlemesi/indirgenmesi konuları incelenmiştir. KKA tabanlı bu yöntem,
kanonik korelasyonları büyükten küçüğe sıralaması sayesinde özniteliklerin belirlenmesi
veya indirgenmesi aşamasında da optimal bir yöntem olarak karşımıza çıkmaktadır. Kul-
lanılan her öznitelik ile sistemin performansı artmakta fakat bu performans artışı kendisin-
den bir önceki özniteliğin sağladığı performans artışından daha az olmaktadır. KKA tabanlı
çapraz sınıflandırma yönteminin uygulanması esnasında, probleme dair özel bir alan bil-
gisinin gerekmemesi, önerilen yöntemin önemli bir özelliğidir.

Bölüm 6.1’de IRIS veri kümesi ile, Bölüm 6.2’de CMU veri kümesi ile DMOKH kestirici
tabanlı çapraz sınıflandırma yaklaşımı ve sınıf ayrıştırılabilirliği Bhattacharyya Uzaklığı kul-
lanılarak incelenmiştir.

Bölüm 6.3 ve Bölüm 6.4’de gerçek genetik veriler üzerinde bazı çapraz sınıflandırma
problemleri çalışılmıştır. Bu uygulamada doğrudan ölçülebilen ve doğrudan ölçülemeyen
veri kümeleri arasındaki ilintinin çapraz sınıflandırma performansını doğrudan etkilediği
gösterilmiştir. Ayrıca otozomal genetik işaretleyiciler ile %84 gibi yüksek bir hata oranı
ile belirlenebilen Y-DNA haplogruplarının, önerilen yöntem ile %47 hata oranı ile belir-
lenebilmesi sağlanmıştır.

Bölüm 6.5’de düşük çözünürlüklü imgelerden yüz tanıma uygulaması çalışılmıştır.
Bu çalışmada yüksek çözünürlüklü görüntüler sentetik olarak düşük çözünürlüklü
görüntülere dönüştürülmüştür. 6 x 3 boyutuna kadar indirilen bu görüntüler ile in-
san gözüyle yapılamayacak olan yüz tanıması önerilen yöntem ile başarılı bir şekilde
yapılabilmiştir.

Bölüm 6.6’de eskizden yüz tanıma için şimdiye kadar yapılan ilgili çalışmalar sunulmuş
ve problem KKA tabanlı çapraz sınıflandırma yöntemi kullanılarak çalışılmıştır. Önerilen
yaklaşım, fotoğraf veya eskiz uzayında değil, KKA tabanlı bir dönüşüm ile verile-
rin korelasyonlarının maksimum olduğu ara uzayda tanıma yapma esasına dayanmak-
tadır. TBA ile kullanılacak özniteliklerin belirlenmesi/indirgenmesi, bu öznitelikler ile
KKA gerçekleştirilmesi bu yönteminin eskiz tanımada kullanılması yeni bir yaklaşımdır.
Önerilen yöntemde KKA sonrasında öznitelikler, korelasyonu yüksek olandan az olana
doğru sıralanmış olduğu için, istenilen sayıda özniteliğin optimal şekilde seçilmesine izin
vermektedir. Çalışma sonrasında eskizden yüz tanıma problemi için önerilen yöntem ile
yüksek tanıma oranlarına ulaşıldığı gözlenmiştir. Görerek-eskiz yöntemi ile oluşturulmuş
veri kümesi üzerinde yapılan uygulamanın, kriminal-eskiz verileri üzerinde de başarılı
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sonuçlar vereceği düşünülmektedir. Bu uygulamada da, alan bilgisi kullanmadan, KKA ta-
banlı yöntem ile başarılı bir tanıma yapılabileceği gösterilmiştir.

Bölüm 6.7’de güvenlik kamerası görüntülerinden yüz tanıma problemi çalışılmıştır. Konu
hakkında ayrıntılı literatür taraması verilmiş ve sonrasında KKA tabanlı tanıma yöntemi
sunulmuştur. LDHF veri kümesi üzerinde yapılan uygulama ile KKA tabanlı yöntemin
yüksek tanıma oranlarına ulaştığı gösterilmiştir.

Bu çalışmada önerilen yöntem, alan bilgisi gerektirmemektedir. Bu özelliği ile bundan sonra
yapılabilecek birçok çapraz tanıma problemine hızlıca uygulanabilecek bir çerçeve olarak or-
taya çıkmaktadır. Uzaktan algılama problemleri, kızıl ötesi kamera görüntülerinden görünür
bant görüntülerin tanınması gibi problemler bunlardan bazılarıdır.

Makine öğreniminin bir kolu olan alan uyarlaması (domain adaptation) son yıllarda üzerinde
çalışılan konulardandır [66]. Alan uyarlaması, eğitim aşamasında kullanılan objelerin
tanımlandığı uzay ile sınıflandırmada kullanılacak objelerin tanımlandığı uzayın farklı ol-
ması durumunda tanıma yapabilmeyi amaçlamaktadır [67]. Alan uyarlaması için öznitelik
tabanlı [68, 69], tekrar ağırlıklandırma tabanlı [70], destek vektör makinesi tabanlı [71, 72]
algoritmalar geliştirilmiştir. Önerilen KKA tabanlı çapraz tanıma yöntemi, öznitelik tabanlı
bir yöntem olup, alan uyarlaması konusuna geniş bir çerçeve olmaktadır. Çapraz tanıma
ile ilgili gelecekte yapılacak çalışmalarda, alan uyarlaması ile birlikte ele alınarak tez kap-
samında ortaya konulan teorik çerçeve ile alan uyarlaması yöntemlerinin geliştirilmesinde
kullanılabilir.

Önerilen kanonik korelasyon analizi tabanlı yöntem, özniteliklerin yüksek korelasyon
gösterenden düşük korelasyon gösterene doğru dizilmesi ile öznitelik seçiminde de op-
timal bir yöntem olarak sunulmuştu. Kullanılacak öznitelik sayısının sınıflandırma per-
formansına etkisi bundan sonrası için üzerinde çalışılabilecek bir konu olarak karşımıza
çıkmaktadır.
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- Şen, B., Özkazanç, Y., Face Recognition from Low Resolution Images Using Canonical
Correlation Analysis, 1st International Symposium on Digital Forensics and Security

(ISDFS), 20-21 Mayıs, Elazığ, Turkiye, 2013
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A. EK

İddia
m vektör, A ve B pozitif tanımlı kare matrisler olmak üzere;

mT Am > mT Bm⇒ |A|> |B| ( A.1)

İspat

mT Am > mT Bm

mmT AmmT > mmT BmmT

M , mmT ⇒ |M||A||MT |> |M||B||MT |

|M|2|A|> |M|2|B|

⇒|A|> |B|

( A.2)
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B. EK

İddia
Pozitif tanımlı matrisler için, matrislerin toplamının determinantı, her bir matrisin determi-
natlarının toplamından daha büyüktür

|A+B| ≥ |A|+ |B| ( B.1)

İspat

A+B = B
1
2 (B

−1
2 AB

−1
2 + I)B

1
2

C , (B
−1
2 AB

−1
2 + I)

⇒ A+B = B
1
2 (C+ I)B

1
2

( B.2)

olarak tanımlanabilir.

λ j: C matrisinin özdeğerleri olmak üzere, C pozitif tanımlı bir matris ise,

|C+ I|= ∏
j
(λ j +1)≥ 1+∏

j
λ j = 1+ |C| ( B.3)

ifadesi her zaman yazılabilir.

Eşitlik B.2 ve Eşitlik B.3 birleştirildiğinde,

|A+B|= |B|
1
2 |C+ I||B|

1
2

|A+B|= |B||C+ I|

≥ |B|(1+ |C|)

= |B|(1+ |B−
1
2 AB−

1
2 )

= |B|(1+ |A|/|B|)

= |A|+ |B|

⇒ |A+B| ≥ |A|+ |B|

( B.4)

olarak gösterilmiş olur.
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