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OZET

CAPRAZ SINIFLANDIRMA: TEORIK CERCEVE VE
UYGULAMALAR

Bekir SEN
Doktora, Elektrik ve Elektronik Miihendisligi Boliimii
Tez Damismani: Yrd. Doc. Dr. Yakup Ozkazanc
Aralik 2016, 110 sayfa

Oriintii tanimanin amaci karmagik karar verme islemlerine agiklik getirmek ve bunlari
hesaplamali olarak gercekleyebilmektir. Bunu yapabilmek i¢in Oriintii tanima algorit-
malar1 hangi sinifa ait oldugu bulunmak istenen verinin Ozniteliklerini, veri kiimesinde
daha onceden kayith Ozniteliklerle karsilagtirmakta ve karar vermektedir. Pratikte bir¢ok
probleme c¢oziim olan bu yaklasim, veri kiimesinde kayith olan Ozniteliklerle o6l¢iilen
ozniteliklerin farkli uzaylarin elemanlari oldugu durumda kullanilamamaktadir.  Veri
kiimesinde kayitli olan 6znitelikler ile Olciilebilen 6zniteliklerin farkli oldugu durumlardaki
siniflandirma problemi *¢apraz siniflandirma’ olarak nitelendirilmistir. Capraz siniflandirma,
Oriintii tanima algoritmalarinda kullanilacak 6znitelikleri dogrudan dl¢cemedigimiz veya
belirleyemedigimiz durumlarda siniflandirma ve tanima yapabilmeyi hedefleyen yeni bir

yaklagimdir.

Bu caligma, istatistiksel uzaklik dlciitlerinin incelenmesi, dogrusal minimum ortalama kare-
sel hata (DMOKH) kestiricisi tabanl ¢capraz siniflandirma, ¢apraz siniflandirmada giiriiltiili
Oznitelik modellemesi ve Kanonik Korelasyon Analizi (KKA) tabanli ¢capraz siniflandirma

yonteminin olusturulmasi temel bagliklarini igermektedir.

Uzaklik olgiitleri istatiksel Oriintii tanima ve siniflandirma problemlerinin temel araclarindan
birisidir. Bir¢ok alanda kullanilan uzaklik ol¢iitleri, iki objenin birbirlerinden ne kadar
ayrik oldugunu ifade etmek icin kullanilir. Bhattacharyya Uzaklik ol¢iitii de sinmiflarin
ayristirilabilirligini belirtmekte siklikla kullanilan istatiksel bir uzaklik Olgiitiidiir. Bu
calismada, smiflarin aynistirilabilirligi ile ilgili sinir degerleri belirleyebilme 6zelliginden
dolay1 ¢apraz smiflandirma yaklagimlarinin incelenmesinde Bhattacharyya Uzaklik Olciitii

kullanilmagtir.

DMOKH yontemi ¢apraz siniflandirmada kullanilabilecek en temel yontemlerden biridir. Bu

calismada DMOKH kestirici tanimlanmig ve ¢apraz siniflandirma problemine uygulanmugtir.



Olgiilemeyen ozniteliklerin dogrudan kestirilmesi esasina dayanan bu yontemin bagarimi

ayrintili olarak incelenmistir.

Giriiltiilii  6znitelik modeli, kestirim sonucunda ortaya c¢ikan hatanin, Olciilemeyen
Oznitelikler iizerinde giiriiltii olarak modellenmesi temeline dayanmaktadir. Bu model,
kestirim sonrasinda siniflandirma performanslarinin analitik olarak incelenmesine imkan
saglamaktadir. Bhattacharyya Uzaklik (BU) ile simiflandirma performansi arasindaki baginti

giirtiltiilii 6znitelik modeliyle ayrintili olarak incelenmistir.

KKA metodolojisinin ¢apraz siniflandirma icin nasil kullanilabilecegi incelenmis ve
bir yontem Onerilmistir. Bu yoOntemin Oznitelik se¢iminde sagladigi avantajlar

sunulmustur.

DMOKH kestiricisi kullanilarak yapilabilecek capraz simiflandirma ile KKA tabanli ¢capraz
siniflandirma yonteminin iligkisi incelenmis ve KKA tabanli capraz simiflandirmanin el-
deki tiim 6znitelikler kullanildigr durumda DMOKH yontemiyle ayni performans degerini

sagladig1 gosterilmistir.

Calismada sentetik ve gercek veri kiimeleri kullanilarak farkli ¢capraz tanima problemleri ile
uygulamalar calisitimistir. Onerilen yontemler, eskizler iizerinden yiiz tanima problemine
uygulanmus, sonuglar literatiirdeki diger yontemler ile karsilastirmali olarak gosterilmistir.
Ayrica, farkli mesafelerden elde edilmis farkli c¢oziintirliikteki yiiz imgeleri iizerinde de
Onerilen ¢apraz siiflandirma yontemi ile yiiz tanima uygulamasi yapilmis ve sonuglar

tartigtlmasgtir.

Anahtar Kelimeler: Oriintii Tanima, Capraz Siniflandirma, Kanonik Korelasyon Analizi,
Mesafe Ol(;ijtleri, DMOKH kestiricisi, Yiiz Tanima, Eskiz Tanima
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ABSTRACT

CROSS CLASSIFICATION: THEORETICAL FRAMEWORK AND
APPLICATIONS

Bekir SEN
Doctor of Philosophy, Department of Electrical and
Electronics Engineering
Supervisor: Assist. Prof. Dr. Yakup Ozkazanc
December 2016, 110 pages

Pattern identification algorithms can be exploited for single-class or multi-class identification
problems. In conventional applications, identification algorithms are based on functions of
measured features. However in some cases, we already have an identification algorithm but
the measured features are different from the expected features. In such cases, we can first
estimate the needed features from the measured ones and then use the identification algorithm
with the estimated features. This work proposes a framework for such Cross Classification

problems.

This study can be grouped under four different headings. These can be summarized as
follows; 1-distance measures, 2-Linear Minimum Mean Square Error (LMMSE) estimator
based cross classification, 3-noisy feature modelling for cross classification and 4-Canonical

Correlation Analysis base cross classification method.

Distance measure is one of the main instruments of statistical pattern recognition and clas-
sification problems. It is used to measure the separation of the two objects. Bhattacharyya
Distance is one of the statistical distance measures used for class separability problems. This
distance measure is utilised in this study for investigation of different cross classification

approaches, because of its usability in limit values for classification.

LMMSE based method is one of the most basic methods used for the cross-classification.
An LMMSE predictor based on the direct prediction of unmeasurable features principle is
defined in this study and it is applied to the cross classification problems. The performance

of this approach is investigated in detail.

The noisy feature model is based on modelling of the prediction errors as noise on unmeasur-
able features. This model enables the analytic study of the classification performances after

prediction. The correlation between Bhattacharyya Distance and classification performance

iii



is analysed using noisy feature model. The utilisation of CCA methodology for cross classi-
fication is investigated and a method is proposed in this work. Moreover, the advantages of

this method for feature selection and reduction is presented.

The relation between LMMSE based and CCA based cross classification is studied. The
CCA based classification is presented to perform similar to LMMSE method when all fea-
tures are employed. In this study we have also shown the applications of different cross-
classification problems using synthetic and real data sets. The proposed methods are applied
to face recognition from sketches problem and the results are presented with comparisons to
other methods in literature. In addition, the presented cross classification method is used for
the face recognition from facial pictures captured from different distances problem and the

results are discussed.

Keywords: Cross Classification, Canonical Correlation Analysis, Distance Measures,
LMMSE Estimator, Face Recognition, Sketch Recognition
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1. GIRIS

Oriintii tanimanin amaci karmagik karar verme islemlerine aciklik getirmek ve gelistirilen
yaklagimlar1 sayisal hesaplama sistemleri lizerinde calistirabilmektir [1]. Bu karar verme
islemleri, karmasik veri kiimeleri igcerisindeki belirli Oriintiileri bulma, 6grenme veya tanima
seklinde olabilmektedir. Oriintii tanima; etiketli verilerden giidiimlii 6grenme (supervised
learning) yontemi ile yapilabildigi gibi, etiketsiz veriler aracilig1 ile giidiimsiiz 6grenme
(unsupervised learning) yontemi ile de yapilabilmektedir [2]. Oriintii tanima yaklasimlari
genel olarak yapisal (structural) ve istatistiksel (statistical) Oriintii tanima olarak iki alt gruba
ayrilmistir [3]]. Sayisal verilere doniistiiriilebilen ve dl¢iilebilen bilgilerin belirli bir diizende
olusturdugu veri kiimelerine oriintii denir. Oriintii, ayn1 zamanda kaotik olmayan, karmasa
icermeyen yapisal veri seti anlamindadir [4]. Makine 6greniminin bir alt dali olan Oriintii
tanima, giiniimiizde olduk¢a yaygin kullanim alanlari bulmaktadir. Biyoloji, adli bilimler,

uzaktan algilama vb. disiplinler oriintii tanimanin siklikla kullandig1 alanlardandir.

Istatiksel Oriintii tanima yontemleri 6znitelikleri (features) yapisal oriintii tanima yontemleri
ise basit yapilar1 (primitives) kullanarak oriintiileri tanimaya calisirlar. Istatistiksel oriintii
tanima yaklasiminda, Oriintiiler bir 6znitelik uzayinda vektor olarak tanimlanirlar. Bu
vektorler, karar kurami (decision theory) yaklagimlari ile 6znitelik uzayinda ayristirilir veya
gruplanirlar [2, 5]. Yapisal oriintii tanima ise, hiyerarsik bir bakis agisindan Oriintiileri
tanimaya calisir. Sekil, uzunluk gibi morfolojik 6zellikler ile tanimlanan basit ve kiigiik
yapilar karmasik Oriintiileri tantmlamakta kullanilir. Tanima ve gruplama islemleri bu yapilar
tizerinden yapilir. Yapisal oriintii tanima yontemleri, jenerik olmayan ve yeni bir alana uygu-
lanmasi zor yontemlerdir. Tanima ve siniflandirma islemlerinde kullanilacak yapilar alan bil-
gisi birikimi gerektirmektedir [S]. Bu calismada capraz tanima problemi, giidiimlii 6grenme
tabanli istatistiksel tanima yontemleri cercevesi i¢inde ele alinmis ve alan bilgisi olmadan

kolaylikla uygulamaya gegirilebilecek genel bir teorik gerceve olusturulmusgtur.

Bu calismada capraz smiflandirma problemleri i¢in genel bir cerceve c¢izilmesi plan-
landigindan, istatistiksel Oriintli tanima yontemleri tercih edilmigtir. Geleneksel istatistik-
sel yontemler, tanima yapabilmek icin, hangi sinifa ait oldugu bulunmak istenen verinin
Ozniteliklerini, veri kiimesinde daha 6nceden kayith 6zniteliklerle karsilastirmakta ve karar
vermektedir. Pratikte bircok probleme ¢6ziim olan bu yontem, veri kiimesinde kayith olan
ozniteliklerle ol¢iilen/¢ikartilan 6zniteliklerin farkli uzaylarin elemanlari oldugu durumlarda
kullanilamamaktadir. Capraz tanima olarak tanimlanan bu yaklasim, Oriintii tanima algorit-
malarinda kullanilacak 6znitelikleri dogrudan 6lgemedigimiz veya belirleyemedigimiz du-

rumlarda siniflandirma ve tanima yapabilmeyi hedeflemektedir.



Capraz tanima problemi, yiiz-eskiz tanima, farkli duruslar altinda yiiz tanima, farkli
coziiniirliiklerdeki giivenlik kameralarindan yiiz tanima gibi pratik problemlerde karsimiza
cikabilmektedir. Bu pratik problemler 6zellikle sonraki yillarda ¢okga calisilmig olmasina
karsin [6, 7, 8], farkli problemlerde hizli ve etkin bir sekilde uygulanacak genel bir calisma
cergevesi ortaya konulamamistir. Bu calismada, ¢apraz tanima problemi tanimlanmis ve
genel bir calisma yapisi sunabilmek i¢in problemin ¢6ziimiine yonelik farkli yaklasimlar

ortaya konularak konu incelenmistir.

Capraz smiflandirma, c¢ozmeye calistigit problem bakimindan diger siniflandirma
problemlerine benzese de kullandigi yontem ve yaklasimlar bakimindan diger
siniflandirma yontemlerinden ayrilmaktadir. Bu boliimde, Capraz Simiflandirma prob-
lemi tanimladiktan sonra ¢6ziim yaklagimi kisaca sunulacak ve calismanin literatiire olan

katkis1 tanimlanacaktir.

1.1 Capraz Simiflandirma Nedir?

Standart Oriintii tanima yontemleri, dogrudan Olciilen Oznitelikler veya bu 6zniteliklerin
indirgenmis alt kiimeleri lizerinden Oriintiiyii tanimaya ¢alismaktadir. Standart Oriintii tanima
probleminde, taninmak istenen Oriintiinlin Olgiilen Oznitelikleri ile veri kiimesinde kayith
Oznitelikler ayn1 uzayda tanimlanmig vektorlerdir. Capraz tanima olarak sunulan problemde

ise durum daha farklidir.

Capraz tamimada amag; taminmak veya siniflandirilmak istenen objenin Olgiilebilen
oznitelikleri veri kiimesinde kayith Oznitelik uzayindan farkli bir 6znitelik uzaymin ele-
manlar1 oldugu durumda da tanima/siniflandirma yapabilmektir. Bu amaca ulagabilmek
icin tammma yapilacak uzay lizerine, taninacak objenin yani sira veri kiimesinde kayitl
ozniteliklerin de doniistiiriilmesi gerekmektedir. Olgiilen 6znitelik uzayinda tanima yap-
mayip, veri kiimesinde kayith 6znitelik uzayinda veya tanimlanacak yeni bir uzayda tanima

yapma yaklasimini Capraz Siniflandirma (CS) olarak tanimliyoruz.

Capraz smiflandirma, veri kiimesinde kayith Oznitelik veya Olgiilen Oznitelik uzayinda
yapilabildigi gibi yeni tanimlanacak ara uzaylarda da yapilabilir. Bu tez kapsaminda, secilen

bir ara uzay iizerinde capraz siniflandirmaya yonelik yaklagimlar ortaya konulmustur.

Herhangi iki nicelik veya iki kiime arasinda uzaklik ol¢iimiiniin veya karsilastirmanin an-
laml1 olabilmesi i¢in niceliklerin ayni tiirden olmasi gerekir. Capraz siniflandirma yontemi,
farkli olan 6znitelikleri belirli yontemler ile ortak bir uzaya indirgedikten sonra siniflandirma
yapmay1 hedeflemektedir. Capraz siniflandirma yapabilmek i¢in ol¢iilebilen 6zniteliklerden
siniflandiricinin tamimlandig1 uzaya gegisin agikca tanimlanmis olmasi gerekmektedir. X

uzay1 simiflandiricinin tanimlandig1 uzayi, Y uzayi ise dogrudan olgiilebilen 6zniteliklerin



tanimlandig1 uzayi ifade ederse, capraz siiflandirma yaklasimi {i¢ temel unsur ile ifade
edilebilir;

e Y uzayinda elde edilen Ozniteliklerin, X uzayina veya bir ara uzaya aktarilmasi
(Oznitelik kestirimi)

e X uzayina veya ara uzaya aktarilan 6zniteliklerden, siniflandirmada kullanilacak olan

ozniteliklerin ¢ikarimi (Oznitelik segimi)

e X uzayinda veya ara uzayda daha onceden tanimli olan siniflandirici kullanilarak

tanima/siniflandirma yapilmasi.

Y ve X uzayinda elde edilen Oznitelikler, farkli doniislim matrisleri ile farkli uzaylara
taginabilirler. Bu doniisiim ile, X uzayinda tasarlanan bir siniflandirici da farkl bir ara uzaya
tasinabilir. Y uzayinda tanimli bir siniflandiricinin 6nceden olmamasi sebebiyle 6znitelikler
X uzayina veya bagka bir ara uzaya aktarilirlar. Capraz siniflandirmanin bu ilk unsurundaki
Oznitelik kestiriminin yapilabilmesi i¢in X ve Y uzaylarindaki verilerin birbirleriyle ilintili

(correlated) olmast on kosulu vardir.

Oriintii tanima problemlerinde, yiiksek sayida 6zniteligin kullanilmasi, 6zellikle islem yiikii
acisindan tercih edilmeyen bir durumdur. Aktarilan 6zniteliklerden, siniflandirma perfor-

mansint olabildigince yiiksek tutacak 6zniteliklerin belirlenmesi gerekmektedir.

Son olarak ise, belirlenen indirgenmis Oznitelikler ile X uzaymmda veya ara uzayda
siniflandirma yapilacaktir. Capraz siniflandirma yonteminde, simiflandirict olarak herhangi
bir siniflandirict kullanilabilir. Dogrusal, karesel veya en yakin komsu siniflandiricilart bun-

lardan bazilaridir.

1.2 lcerik

Bu tezin yapisi ve icerigi su sekilde 6zetlenebilir:

Boliim [2’de smmif ayrigtirilabilirligi ve simflar arasi uzaklik Olgiitlerinin neler olduk-
lart gosterilmistir.  Capraz tanima yonteminin ne derecede bagarili olabilece8i simif
ayristirilabilirliginde bir Olcti olabilecek Bhattacharyya Uzaklik (BU) olgiitli lizerinden
incelenmigtir [9]]. Bhattacharyya Uzakligi’nin Gauss dagilimlar icin 6zel durumu, dogrusal
doniisiimlerden nasil etkilendigi ve Bhattacharyya Uzakligi’in hangi Ozelliklere sahip
doniisiimler altinda etkilenmedigi konular1 da bu boliimde ek alinmigtir. Dogrusal Mini-
mum Ortalama Karesel Hata (DMOKH) kestiricisi ile ¢apraz tanima yonteminin dogrusal ve
tersinir bir doniisiim icerdigi ve bu doniisiim sonucunda siif ayristirilabilirligine herhangi

bir degisiklik getirmeyecegi gosterilmistir.



Calismanin baslangi¢ noktasi olan en diisiik dogrusal karesel kestirici ve bu kestirim yontemi
ile capraz tanima yapmak i¢in 6zniteliklerin nasil kestirilecegi Boliim [3[de ele alman konu-

lardir.

Boliim ] de ¢apraz siniflandirmanin performansinin degerlendirmesi i¢in BU’ya dayanan bir
model Onerilmis ve yapay bir veri kiimesi tizerinde, siniflandirma performans: bu model ile

incelenmistir.

DMOKH Kkestirici ile capraz tanima ve performans degerlendirme incelemelerinden sonra;
siiflar arasindaki ilintiyi ortaya koyan yontemlerin Capraz Tanima i¢in basarili olabilecegi
ve tanima isleminin ara uzayda yapilmasinin faydali olabilecegi gozlenmistir. Bu sartlari
saglayan, ¢cok degiskenli iki veri kiimesi arasinda tanimlanan ve bu iki veri kiimesi arasindaki
ilintileri ortaya cikaran bir yaklasim olan Kanonik Korelasyon Analizi’nin (KKA) ¢apraz

tanima i¢in uygun bir altyap1 oldugu degerlendirilmistir.

Bolim [SJde Kanonik Korelasyon Analizi yontemi sunulmus, Capraz Tamimada kul-
lanilabilmesi i¢in gereklilikler ortaya konmus ve KKA ile Capraz Tanima icin bir yontem

Onerilmistir.

Onerilen capraz tamma yontemlerinin, sentetik ve gercek veriler ile uygulamalar1 Boliim
[efda yapilmuistir. Uzaklik 6lgiitleri ve simf ayristirilabilirligi ile ilgili incelenme iki farkli
veri kiimesi iizerinde teorik ve deneysel sonuglari kargilastirilmasiyla yapilmistir. Yine bu
boliimde, genetik verilerden koken ve haplogrup belirleme, farkli agilardan elde edilmis
fotograflardan yiiz tanima, eskizden yiiz tanima ve farkli mesafelerden elde edilmis farkli
coziiniirlige sahip goriintiilerden yliz tanima uygulamalar1 yapilmistir. Uygulamalarda,
problemlerin ¢apraz tamima yaklasimlar ile ¢oziimii sunulmus ve performans degerleri
incelenmistir. Uygulamalar hakkinda detay bilgi, benzer ¢alismalar ve sonuclar ilgili uygu-

lamalarla birlikte sunulmustur.

Boliim[7]de ¢calismadan ¢ikan sonug ve ¢ikarimlar sunulmus ve tartigimustir.

1.3 Tezin Katkisi

Bu calisma, capraz siniflandirma problemleri icin genel bir cerceve ¢izmektedir. Yapisal
Oriintli tanima yontemleri, genel olarak uygulamaya baglh alan bilgisi gerektirmektedir
[S]. Bu calismada 6nerilen yontem ise alan bilgisi gerektirmeyen genel bir yaklagim
niteligindedir. Onerilen yontem, bu sayede bircok farkli problemde uygulanabilecek bir
siniflandirma/tanima araci olusturmustur. Capraz siniflandirma problemi, bir¢ok farkli pratik
uygulamayi icermektedir. Oriintii tanima yontemlerinin gelistirildigi alan haricinde baska
bir alana aktarilmas1 zordur. Onerilen kanonik korelasyon analizi tabanli ¢apraz tanima

yontemi, analitik ¢6ziim temeline dayandigindan, farkli alanlara kolaylikla uygulanabilmek-



tedir.

Genel olarak Oriintii tammma yoOntemlerinde, secilen Ozniteliklere gore basar1 perfor-
mans1 degismektedir. Bu sebepten performans: artiracak 6zniteliklerin secilmesi olduk¢a
onemlidir. Capraz siniflandirma i¢in onerilen KKA tabanli yontem, 6zniteliklerin secilmesi

icin optimal bir yontem Onermektedir.

Capraz siniflandirma problemlerine, derinlemesine alan bilgisi gerektirmeden ¢6ziim
onermesi, bu ¢cozlimii analitik bir ¢erceve icerisinde sunmasi ve kullanilacak 6zniteliklerin

optimal olarak belirlenmesi, bu ¢calismanin 6zgiin yoniinii olusturmaktadir.
Calismada ayrica;

e Diisiik ¢oziintirliikteki yiiz imgelerinden tanima,

e Genetik verilerden etnik koken ve haplogrup belirleme,

e Eskizden yiiz tanima,

e Giivenlik kameras1 yiiz tanima

problemleri de 0Ozgiin bir sekilde capraz tanmima problemi olarak ele alinmis ve

calisilmasgtir.



2. SINIFLAR ARASI UZAKLIK OLCUTLERI

Istatiksel uzaklik olciitleri (statistical distance measures) oriintii tanima ve simiflandirma
problemlerinde yararlanilabilecek temel teorik araglardan birisidir. Bir¢ok alanda kullanilan
uzaklik Olciitleri, iki objenin birbirlerinden ne kadar ayrik oldugunu ifade etmek icin kul-
lanilir. Iki objenin farklilig1 6lciilebildigi gibi, benzerlikleri (similarity) de 6lciit olarak kul-
lanilabilir [10]. Objeler, tekil olabildikleri gibi, birden fazla objenin birlesimiyle olusan
kiimeler arasinda da uzaklik kavramlar1 tanimlanabilir. Oriintii tanimada, siniflarin birbirle-
rine veya bir objeye olan mesafeleri incelenirken, siniflara ait istatistiksel bilgiler kullanilir.
Smiflarin olasilik dagilimlart arasindaki fark, uzaklik oOlciitii olarak tanimlanir. Uzaklik
oOl¢iitleri simetrik ve liggen esitsizligini (triangle inequality) saglamasina ragmen, uzaklik
oOlciitii olarak kullanilan ve bu 6zellikleri saglamayan olciitler de simiflarin farkliliklarini
O0lcmekte kullanilmaktadir. Bu tiir dlgiitler iraksama (divergence) temelli mesafe ol¢iitleri
olarak tanimlanir. Iraksama temelli mesafe Ol¢iitlerinden, f-iraksama temelli mesafe olgiitleri
genis bir iraksama ailesini kapsamakta ve siniflar arasi farkliliklarin dlgiilmesinde siklikla
kullanilmaktadir. Kullback-Leibler, Bhattacharyya, Hellinger, Chernoff, Renyi uzaklik
oOlciitleri f-iraksamasi temelli uzaklik ol¢iitlerindendir [[11]]. Diger uzaklik ol¢iitleri hakkinda
ayrintil bilgi [10, 11} 12]’da bulunabilir.

Bu calismada ozelikle ilgilenecegimiz f-iraksamasi temelli bir Ol¢iit olan Bhattacharyya
Uzaklik (BU) olgiitiidiir. f-iraksamasi temelli yaklagimlar sayesinde uzaklik ol¢iitleri ile sinif
ayristirilabilirligi arasinda baginti kurulabilmektedir. Bayes tabanli karar verme mekaniz-
masinin, eldeki verilerin tam dagilimlar1 kullanildiginda optimal sonug¢ verdigi bilinmekte-
dir. Dogru dagilimlar pratikte bilinemedigi i¢in, bunlarin yerine belirli modeldeki dagilimlar
kullanilmaktadir. Bu model dagilimlarin kullanilmasi, f-iraksamasi tabanli mesafe olciitleri
ile simif ayristirllabilirligi icin bulunacak sinirlar etkilemektedir [13]. Bu konuda yapilan
caligmalar, pratik veriler ile siniflandirma performansinin alt ve {ist sinirlarini belirlemeye
yoneliktir [13} [14]. Sinif dagilimlarinin farkli formlarda modellenmesi siniflandirma sinir
degerlerinde degisikliklere sebep olabilmektedir. Bu tez kapsaminda, dagilimlarin farkli

formlarda modellenmesinin sinir degerlerine etkisi géz Oniine alinmayacaktir.

Iki dagilim arasindaki uzaklig1 6lgmekte kullanilan f-iraksamasi temelli mesafe olgiitlerinin

D(p1(x), pa(x)) =g(Ex{f (28)}) (2.1)

genel formu:

ile verilir.



Burada D mesafe olgiitiinii, 1 ve 2 birbirlerine mesafesi dl¢iilecek iki dagilimin etiketlerini,
p1(x) ve pa(x) bu objelerin (siiflarin) olasilik yogunluk fonksiyonlarini (pdf), g artan reel
bir fonksiyonu, f siirekli konveks reel (continous convex real) bir fonksiyonu ve E beklenen

degeri (expected value) ifade etmektedir.

f ve g fonksiyonlar1 farkl sekilde secilerek Kullback-Leibler iraksamasi, Hellinger Uzaklig1,

Jensen-Shannon raksamasi gibi f-iraksaklik olgiitleri tanimlanmaktadir [[15]].

f ve g fonksiyonlari

flx)=—Vx
g(x) = —In(—x)
olarak secildiginde Bhattacharyya Uzaklig1

(2.2)

BU=—In ( / \/mdx) (2.3)

olarak tanimlanir. BU Bhattacharyya Katsayisina (Bhattacharyya Coefficient) bagimli olarak
da tanimlanabilir [[16]]. Bhattacharyya Katsayis1 (BK):

BK(p1.p2) = [ V/pi(Opa(x)d (24

seklinde ifade edilir. Esitlik ve Esitlik birlestirildiginde,

BU = —In(BK) (2.5)

elde edilir.

p1(x) ve pa(x) dagilmlarinin es dagilimlar olmasi durumunda birbirleri arasindaki BU
olgiitii sifir olacaktir. Bu durum Esitlik[2.3] ve Esitlik[ 2.4]de degerlendirildiginde BU = 0 ve
BK = 1 olacaktir. pj(x) ve po(x) dagilimlari hi¢bir noktada ortiismedigi durumda ise Esitlik
[ 2.3]de integralin igerisi sifir ¢ikacagindan BU = o ve BK = 0 olacaktir. Buradan agikca

goriildiigii tizere, BK O ile 1 arasinda, BU ise 0 ile o arasinda degerler almaktadir.

BU metrik olma sartlarin1 saglamamakta [[16]] ve bu sebepten bazen Bhattacharyya Irak-
samasi olarak da ifade edilebilmektedir. BK’ye dayanan d(pi,ps2) = v/1 — BK uzaklik
olciitii ise (Hellinger Mesafesi) metrik olma sartlarin1 saglamaktadir ve bazi ¢alismalarda
kullanilmustir [[17]].



Iki sinif arasindaki uzakligm olgiilmesinde BU’nin tercih edilmesinin temel sebebi, iki
siifin ayristirtlabilirlik performans: ile BU arasinda tanimli bir esitsizligin bulunabilme-
sidir. Iki simif ayristirilmasinda yapilacak hata olasihigi P, olarak tanimlandiginda; anali-
tik bir simiflandiricr ile ulasilabilecek hata olasiligi BU veya BK ile ifade edilebilmektedir
[16].

P, ile BK arasindaki iligki ise Esitlik[2.6]de

1
(5BK(p1,p2))* < 2P < BK(p1, p2) (2.6)

P, ile BU arasindaki iligki Esitlik de verildigi gibidir [16, 18} [19].

(%exp_BU(ph[Q))Z S 2Pe S exp—BU(P17P2) (27)

2.1 Gauss Dagilimlar: ve Bhattacharyya Uzakhg

Bayes kestiriciler, ortalama karesel hatanin minimum olmasin saglayan optimal kestirici-
lerdir. Bu kestiricilerin kapali formlarda ifadelerini bulabilmek N boyutlu uzaylarda ¢ok
katl1 integral alma islemleri gerektirdiginden olduk¢a zordur. Pratikte MOKH kestiricilerinin
yerine; dogrusal olma 6nkosulu olan DMOKH kestiricileri kullanilir. Dagilimlarin Gauss
(Jointly Gauss) dagilima sahip olmas1 durumunda DMOKH kestiricisi ile optimal MOKH
kestiricisi ayn1 olacakti. DMOKH kestiricisi ile ilgili ayrintil bilgi Boliim [3[de verilmistir.
Kestiricimizin dogrusal bir kestirici oldugu durumda, 6znitelikler dogrusal doniisiimlerden
gecirilecek ve sonrasinda siniflandirma yapilacaktir. Bu boliimde Gauss dagilimlara sahip

siiflarin dogrusal doniistimler altindaki BU degerleri incelenecektir.

X uzayindaki py, (x) dagilimina sahip 6znitelikler x; rastgele degiskeni ile, py, (x) dagilimina
sahip Oznitelikler x; rastgele degiskeni ile gosterilmistir. Xy ve X degisken vektorlerinin
ortalama deger vektorleri ly, ve Ly,, esdegisinti matrisleri ise Py, ve Py, ile gosterildiginde,

Gauss dagilimlar;
Px (x) = N(ﬂxl 7PX1)

Px; (X) = N(“meXz)

seklinde ifade edilmektedir.



Py... Px, (x) ve py, (x) dagilimlarinin ortalama esdegisinti matrisini gostermekte ve
Py, = %(le +Py,)

seklinde ifade edilmektedir. |.| matris determinantini ifade etmek iizere, N(My,,Py,) Ve
N, ,Py,) dagilimlarina sahip iki veri kiimesi (iki sinif) arasindaki Bhattacharyya Uzaklig1,
Esitlik[2.8]da verildigi gibidir [18].

| PXav |

— v (2.8)
Py, |2 [Py, |2

1 _ 1
BU (pxl (X> yPxy (X)) = g (l—lxl - “’xz )Tani (“'x1 - ﬂn) + E In
Caligmanin bundan sonraki kisminda, BU (py,(X), px,(x)) ifadesi kisaca BU, sekilde (X
uzayinda tamiml iki dagilim arasindaki uzaklik olarak) kullanilacaktir.

Dogrusal doniisiimlerin genel yapisi Esitlik [2.97de gosterildigi gibi ifade edilir.
y = Hx (29)

Dogrusal doniisiimler, dogrusal olmayan doniisiimlere gore analizinin daha kolay olmasi
sebebiyle sinyal islemede siklikla kullanilmaktadir. DMOKH kestiricisi de, dogrusal bir

kestirici oldugundan, bu kestiricisi ile yapilan kestirimler dogrusal doniistimlerdir.

Iddia-1:
Gauss dagilima sahip iki simif arasindaki Bhattacharyya Uzakligi, simiflar iizerinde yapilan

tersinir dogrusal doniisiimlerden etkilenmez:

y = Hx = BU, = BU, (2.10)

Ispat: Gostermek istedigimiz y = Hx kosulu saglandiginda BUy = BU, oldugudur. Gauss
dagilima sahip x; ve xp smiflarmin BU, degerlerinin nasil hesaplanacag: Esitlik [ 2.8]de
verilmigtir. Gauss dagilimlara sahip veriler, dogrusal doniisiimler sonrasinda yine Gauss
dagilim gosterirler. Bu durumda, y = Hx doniisiimii ile elde edilen y; ve y2 0znitelikleri i¢in

dagilimlar;

py(y) = N(”‘)’l ,Py,)

Py, (y) = N(l“')’27PYZ)

seklinde dagilim gosterecektir. yy ve y» arasindaki Bhattacharyya Uzakligi (BUy) ise Esitlik |
de gosterildigi gibi olacaktir.

| PYav |

_ (2.11)
1 T
[Py, |2|Py, |2

1 B 1
BU, = g(“}'l _“yz)TPyai (/Jyl _ﬂyz) + iln



[zleyecegimiz yol, BUj esitliginde ortalama deger vektorii ve esdegisinti matrislerinin yerine
esdeger bagintilarin1 yazmak olacaktir. Dogrusal doniisiim fonksiyonunu y = Hx seklinde
ifade edildiginde;

Ortalama deger vektorleri,

My 2 E (v} = E {Hx} = E{Hxi} = HE{x} = Hp,

Yey XEX]

My, = E {y}= E {Hx} =E{Hx;} = HE{x;} = Hpiy,
Yey2 XEX2

(2.12)

Esdegisinti matrisleri,

Py 2 E {(v—1)(v— 1)} = E {(Hx— Hyso)(Hx— Hp)T)

= E{(Hx; — Hpty, ) (Hxy —Hpty )" } = E{(H(X1 — ) ) (X1 — oy ) ' H' }
= HE{(x1 — fy, ) (x1 — iy )} ' H'
= HP, H”
Py, = HP, H' (2.13)

1
PYav = _(PY1 +PY2)

2
2

1
Py, £ 5(Py +Py)

T

olarak ifade edilebilmektedir.

Dogrusal doniisiim 6ncesi ve sonrasi Bhattacharyya Uzakliklar ise sirastyla Esitlik [2.14] ve
Esitlik[2.15]de verildigi sekildedir.

1 _ 1 Pray
BU, = g(ﬂxl _ﬂx:»)Tani (M, — ) + Eln% (2.14)
[Py, |2 [Py, |2
1 . 1 Py |
BU, = g (Hy, _“yz)TPyai (My, — Hyy) +§ln%
~ ~~ |PYI|2|PYZ|2
A T (2.15)
1A+ 11 B
= —In
8 2

olacaktir. H matrisi tersinir (|H| # 0) kare bir matris olmak iizere;
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A = (”'yl _“yz)TPy; (”'}'l _“yz)
[H(ﬂn _#xz)]T(HT)_IP;;,H_I [H(ﬂxl _“xz)]
I, — ey) T (HD)(HD) TP H  H (1, — )
M, _I"xz)TP;; (I"x1 _“xz)
[Pyl
[Py, |2 [Py, |2
_ [HPy, H| (2.16)
IHP, H” |2 |HP,,HT |2
_ [H| [P, ||H |
[H|2 [Py, |2 [T |2 [H|2 [Py, |2 [HT |2
_ [H|[HT||Py,,|
[H[HT [Py, |2|Py, |2
P,
[Py, |2 [Py, |2

(
(

ifadeleri elde edilir. Esitlik[2.13] ve Esitlik [2.16] birlestirildiginde

| . 1 Py, |

BUy = g(l—lxl _“xz)Tani(“’“ ~Ha)+ Elnm (2.17)
X1 X2 )

:BUX

elde edilir. Buradan goriilmektedir ki, Gauss dagilima sahip smiflar arasindaki Bhat-

tacharyya Uzaklig1 dogrusal ve tersinir doniisiimler altinda degismemektedir.

Cikarmm-1: Gauss dagilimlara sahip siniflar arasindaki BU dogrusal doniistimden etkilen-
miyorsa, dogrusal bir doniisiim olan dogrusal minimum ortalama karesel hata (DMOKH)
kestirici kullanarak kestirilen (|H| # 0 olmasi sart1 ile) 6zniteliklerin olusturdugu simiflarin

BU acisindan ayristirilabilirligi degismez.
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2.2 Tersinir ve Tiirevlenebilir Doniisiimler ve Bhattacharyya Uzakh@

Boliim [2.Ifde Gauss dagilima sahip smuflar iizerine uygulanan tersinir dogrusal
doniistimlerin BU degerini degistirmediginin ispati sunuldu. Bu boliimde ise iki istatistik-
sel dagilim arasindaki BU degerinin, tiirevsel esyap1 doniistimleri (diffeomorphism) altinda
degismedigini gosterecegiz.
Iddia-2:
Iki sinif arasindaki Bhattacharyya Uzaklig1, siniflar iizerinde yapilan doniisiim asagida veri-
len kurallara uydugu siirece degismez [20]].

e f tersinir bir fonksiyon

e f ve f~! tiirevlenebilir bir fonksiyon

y = f(x) = BU, = BU, (2.18)

Ispat: Olasihik yogunluk dagilimlart p, (X) ve py,(x), olan bir veri kiimesi iizerine f(x)

fonksiyonu uygulandiginda, elde edilen sinif dagilimlari py, (y) ve p,, (y) olmak iizere,

y = f(x)
dy = \J(x)|dx (2.19)
() = p(F T I )]

elde edilir.

Burada |J(x)|,

Bu bagint1 ispattaki en temel noktay1 olusturmaktadir.

(x) doniistimiiniin Jacobian matrisinin determinantini ifade etmektedir.

Bir diger nokta ise, Esitlik [ 2.5]de de acik¢a goriildiigii tizere BK degerleri ayni olan
siniflarin, BU degerlerinin de aym oldugudur. Oyleyse py,(x) ve py,(x) dagilimlarma
sahip siniflarma f(x) doniigiimiini uyguladiktan sonra BK degerinin degismedigini

gosterebilirsek, BU degerinin de degismedigini soyleyebiliriz.

Oncelikle p,(x) ve py(y) dagilimlar igin BK degeri yazildiginda

BK(pyx, (X), px, (x / \/ Px, (X) Py (X (2.20)

olacaktir.
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y = f(x) doniigiimiinden sonra,

BK(py, (¥), Py (¥ / /7o (¥) P ()l (221)

Bu noktadaki amag, doniisiim 6ncesi ve doniisiim sonrasi

olacaktir.

BK (px, (%), Py (X)) = BK(py, () P, (¥)) (2.22)

oldugunu gostermektir.

Esitlik ve Esitlik birlestirildiginde:

BK (py, (¥), Py, (¥ / \/ Py (¥) Py, (¥

F i —1
= [V o I o DIy
elde edilir. Yukardaki integralde degisken degistirme yontemiyle x = f _1(y) doniisii
yaparsak,
dy = |J(x)|dx
elde edilir.

BK (py ()2 (¥)) = [ 1I)1™" /oy (0P ()33l dx

= [ /pa®pudx (2.23)

= BK(Pyl (Y)apyz (¥)) = BK(px, (X), Px, (X))

Cikarim-2: Iki simf arasindaki Bhattacharyya Katsayisi, her iki simifa uygulanan tiirevsel
esyap1 fonksiyonlar: ile donistiiriildiigiinde degismez. Burada dikkat edilecek bir ayrinti
da Bhattacharyya Katsayisi’'nin de8ismezliginin dagilimlarin formundan bagimsiz ol-

masidir.

Sonu¢ olarak, X uzayinda Bhattacharyya Uzaklig1 acgisindan simiflarin ayristirllmasi ile

y = f(x) doniigiimii ile Y uzaymna gegildikten sonra Bhattacharyya Uzakligi agisindan
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ayristirtlmasi, f fonksiyonu tersinir bir tiirevsel esyap1 fonksiyonu f : R” = R",m = n oldugu

stirece esit ¢ikacaktir.

BK doniisiim f fonksiyon doniisiimiinden etkilenmediginden, Esitlik[2.7]de gosterilen per-

formans sinir degerleri de degismeyecektir.
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3. DMOKH KESTIRIMI ILE CAPRAZ SINIFLANDIRMA

Boliim [[Jde tanimlanan *Capraz Simiflandirma’ probleminin ¢6ziimii i¢in farkli yontemler
geligtirilebilir. Bu yontemlerin en temel olan1 Dogrusal Minimum Ortalama Karesel Hata
(DMOKRH) kestirici kullanarak gerceklestirilebilecek capraz siniflandirma yontemidir. Bu
yontem ile siniflar arasindaki Bhattacharyya Uzakliginin degismemesine karsin, siniflarin
ortalama deger vektorii ve esdegisinti matrisleri degismektedir. Veri kiimesinde kayitli ve-
rilerin istatistiksel nitelikleri kullanilarak onceden olusturulan optimal bir siniflandiricinin,
ortalama deger vektorii ve esdegisinti matrisi farkli bir veri seti ile kullanilmas1 sonucunda
daha diisiik performans gostermesi beklenen bir sonuctur. Yine de bu yaklasim, bilinen pratik
bir ¢oziimii olmayan problemlere ¢6ziim olmasi ve 6zellikle ¢capraz siniflandirma problemleri
icin genel bir ¢alisma cergevesi ¢izmesi acisindan 6nemlidir. DMOKH kestiriciler, ortalama
karesel hatanin en diisiik degerini vermesine ragmen, bu hatanin daha az sayida 6znitelik kul-
lan1ldig8inda nasil degisecegine dair bir bilgi sunmamaktadir. Bu boliim icerisinde sirasiyla;
Oznitelik kestirimine neden ihtiya¢ duyuldugu, DMOKH kestiricilerin yapisi, Onerilen capraz
siniflandirma yontemi ve son olarak sentetik veriler tizerindeki DMOKH ile kestirim perfor-

mansi1 gosterilmistir.

3.1 Ouznitelik Kestirimi

Oznitelik kestiriminde amag, siiflandirmada kullanilacak olan fakat eldeki Ornekten
Olciilemeyen Ozniteliklerin belirli bir kritere gore belirlenmesidir. Kestirilen 6zniteliklerin
bir alt kiimesi dogrudan siniflandirmada kullanilacag: i¢in; bu kestirim ¢apraz siniflandirma
acisindan da onemlidir. Kestirimde kullanilacak kriterler, secilen maliyet fonksiyonlarina
(cost function) gore belirlenirler. Ortalama mutlak hata ve ortalama karesel hata bunlardan
bazilaridir. Ortalama karesel hata, siirekli tiirevlenebilir bir fonksiyon olmasi dolayisiyla
sinyal isleme alaninda siklikla kullanilan bir maliyet fonksiyonudur. Ortalama karesel hata
genel formu Esitlik [3.1de verildigi gibidir.

OKH(£) = E[|x —&(y)|’] (3.1)

Minimum ortalama karesel hata (MOKH) kestiricisinin genel formu Egitlik [3.2]de verildigi
gibi tanimlanir.

mokH(Y) = E[x]y] (3.2)
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Cok boyutlu uzaylarda MOKH kestiricisinin kapali formda ¢6ziimiinii bulmak analitik olarak
zordur ve ¢ok katl integral dolayisiyla islem yiikii fazladir. Genellikle bunlarin yerine
dogrusal kestiriciler kullanilir. Gauss dagilimlar i¢in Esitlik [ 3.2]de verilen ifade, dogrusal
olarak bulunacag: icin MOKH kestirici de dogrusal ¢ikacaktir ve DMOKH kestiricileri ile

ayni olacaktir.

3.2 Dogrusal Minimum Ortalama Karesel Hata (DMOKH) Kestiricisi

DMOKH kestiricisi, Esitlik [3.I]de verilen ifadeye dogrusal olma kosulu eklendiginde ortaya

cikan kestiricidir. Genel formu

fpmokH(Y) = Ay +b

seklindedir. Bu kosul eklendiginde ortaya ¢ikacak beklenen hata yazildiginda

E[(x—%)" (x—%)] = E[(x— (Ay+b))" (x - (Ay +b))]
x"x] — E[x” (Ay +b)] — E[(Ay +b)"x] + E[(Ay +b)" (Ay +b)]
xTx] — E[x"Ay] — E[x"b] — E[y" ATx] — E[bx]
E[y" AT Ay] +E[b" Ay] +E[y’ ATb]" + E[b"b]
(3.3)

seklinde olacaktir.  Esitlik [ 3.3]ii b ve A degiskenlerine gore minimize etmek igin

sirastyla once b’ye gore tiirevi alinip sifira esitlenecek, sonra A’ya gore tiirevi alinip sifira

esitlenecektir.
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0 (E["] ~ E[x" Ay ~ E[x"b] ~ Ely' AT E[b'¥

+E[y' AT Ay] + E[b” Ay] + E[y" ATb)" +E[b"b])

= —E[x| — E[x| + AE[y| + AE[y] +2b =0 (34)

=b = —AE[y] + E[X]
= —Aly + s

Esitlik[3.3][de b = —Apy + py ifadesi yerine yazilip, tiirevi sifira esitlendiginde,

0= (E[(x— (Ay+ b)) (x~ (Ay +b)))
= 0 (El(x— (Ay — Ay 1)) (x— (Ay— Ay + 1))
= 0I5 p) ~ Ay~ )7 (x— i) — Ay — 1))
= O (Bl )" )]~ EL(x 1) (ALY~ )] (33
~E[(AQ )" (5~ )] + E[AL ~ )" (ALY 1))
=[x o)y — )]~ ELx— ) (¥ — )7 + 2AE (5~ ) (3 ~ )T
= —Pyxy + APy
=A =Py P!

ifadesi elde edilir. Bu ifadeden de acikca goriildiigii iizere DMOKH kestiricisi tanimlamak
icin x ve y degiskenlerinin ilk iki momentini bilmek yeterlidir. Xpyoku(y) = Ay + b kesti-
ricisi i¢in Esitlik ve Esitlik birlestirildiginde;

fpmoKH(Y) = Mx + PxyPy 1 (y — py) (3.6)

olarak bulunur. Xpyoky kestiricisi ile elde edilecek kestirimlerin iizerindeki hata esdegisinti

matrisi Ppyvoks 1s€;

Ppmokn = PPy Py Py Py — PP 1Py — Py PPy + Py
=Py PPy 2nyP 'Pyy + Pyx (3.7)

olarak bulunur. Bu esdegisinti matrisi, kestirimin belirsizligini ifade eden Onemli bir

belirtectir.
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Boliim [2.2]de Bhattacharyya Uzakliginin, tersinir, tersi ve kendisi tiirevlenebilen fonksiyon-
larla yapilan dontistimler altinda degismedigini gostermistik. Buradaki 6nemli bir nokta;
kestirim yapildiginda Bhattacharyya Uzakliginin gercek (kestirilmeyen) 6zniteliklerden daha
biiyiik Bhattacharyya Uzakligina sahip olabilmeleridir. Bu boliimde gosterilecek olan ise,
Bhattacharyya Uzakliginin daha biiyiik olmasinin, daha iyi bir siniflandirma performansini

her zaman garanti etmedigidir.

Dogrudan olgiilebilen Y veri kiimesi elemanlarinin Bhattacharyya Uzakligi, 6lciilemeyen
fakat kayithh X veri kiimesi elemanlarinin Bhattacharyya Uzakligindan daha fazla ola-
bilir. DMOKH doniisiimii ile Bhattacharyya Uzakliginin degismedigi gosterilmisti. Bu du-
rumda DMOKH kestirimi sonucunda kestirilen X Ozniteliklerinin Bhattacharyya Uzakligi,
gercek X Ozniteliklerinin Bhattacharyya Uzaklifindan daha biiyiik olur. Fakat kestirim
yapilmadan 6nce X veri kiimesinde tanimlanan bir siniflandiricinin, kestirimden sonra
dogrudan kestirilen degerler lizerinde kullanilmasi sebebiyle, siniflandirma performansinda

artis goriilmeyebilir.

3.3 Capraz Smflandirma Icin Yontem

Capraz Siniflandirma (CS) problemi icin Onerilen yontem; dogrudan Olciilemeyen
ozniteliklerin (x), olgiilebilen Ozniteliklerden (y) DMOKH yontemiyle kestirilmesi ve
kestirilen Oznitelikler iizerinden siniflandirma yapilmasina dayanmaktadir.  Kestirilen
ozniteliklerin bir alt kiimesi, dogrudan siniflandirmada kullanilacagi i¢in; bu kestirim ¢apraz
siniflandirma i¢in onemlidir. Cok boyutlu uzaylarda optimal Bayes kestiriminin kapali1 form
cOziimiinii bulmanin zor ve fazla islem getiren bir yapida olmasi dolayisiyla; bunun yerine
dogrusal kestirici kullanildigindan daha 6nce bahsetmistik. Dogrudan ol¢iilen y verilerine
bagli olarak, DMOKH kestiricisinin yapisi Esitlik [3.8de verildigi gibidir.

Xest = e+ Py Py~ (y — 1y) (3.8)

Onerilen yontem, temelde, x Oznitelikleri i¢in tasarlanmis siniflandiricilari, kestirilen X,
oznitelikleri i¢in calistirma prensibine dayanmaktadir. Bu yontem uygulandiginda elde

edilebilecek performans sinirlart Bolim [3.5]de incelenmistir.
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3.4 DMOKH Kestiricisi ve Sinif Dagilimlar:

Smiflar arasindaki ayristirilabilirlik Bhattacharyya Uzaklik 6l¢iitii kullanilarak Bolim [2]de,
DMOKH kestiricisi ise Bolim @’de ayrintili olarak incelenmistir. Bu boliimde ise, iki sinifa
ait verilerin bilindigi durumda DMOKH Kkestiricisi kullanilarak simiflandirma yapildiginda;
her bir siifin ortalama deger vektorii ve esdegisinti matrislerinin nasil degisecegi ince-
lenecektir. Oncelikle ayr1 ayr1 ortalama deger vektorii ve esdegisinti matrisi bilinen iki simf,
birlestirilip tek bir veri kiimesi olarak goriildii§iinde ortalama deger vektorii ile esdegisinti

matrisinin nasil degistigi incelenecektir.

Burada gosterilmek istenen, her iki sinifa ait veriler birlestirildiginde toplam veri kiimesinin

ortalama deger vektorii ve esdegisinti degerleridir.

ekil 3.17de iki ornek sinifa ait ikiser 6zniteligin dagilimi gosterilmistir.

20
2 Sinif1
[0 8]
ot %}O * o B2
10+
5 L

Oznitelik-2 (y)
m

20k

2AE

-30
-al

Oznitelik-1 ()

Sekil 3.1: Smf-1 ve Sinif-2’ye Ait Verilerin Dagilimi

x Oznitelikleri i¢in ¢ birinci sinifi, @, birinci sinifa ait ortalama deger vektoriinii, Py birinci
sinifa ait esdegisinti matrisini, c; ikinci sinifi, @,o ikinci sinifa ait ortalama deger vektoriinti,
P,» ikinci sinifa ait esdegisinti matrisini gostersin. X 6zniteligi i¢in ¢ = ¢1 U ¢, olmak iizere,
iki siif birlestirilmis tek bir veri olarak goriilmesi durumunda, i, siniflarin toplamindan
olusan verinin ortalama deger vektoriinii, P, siniflarin toplamindan olusan verinin esdegisinti

matrisini ifade etmektedir. Esit sayida 6rnek icermesi onkosulu ile siniflarin birlesmesiyle
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ortalama deger vektoriiniin, iki ortalama deger vektoriiniin ortalamasi olacaktir.

I-l'xl + #xZ

> (3.9

Uy =

p1(x) ve pa(x) sirastyla sinif-1 ve simif-2’nin olasilik yogunluk dagilimlarim ifade etmek

tizere, birlestirilmig veriler i¢in esdegisinti matrisi P ise;

Po— £ [(x— ) (x— )] = [ (x— o) (x— ) px)ax

=[x px - (P22

=3 [ =m0+ 5 [x— ) (x— ) pa(x)ax
> [ —‘ﬂ—‘ﬁx BB (x)ax

2 2
by [ B By BBy g
=5 [a=Eha=E dx+§/ = ‘%)%(x)dx
-5 [ EYER pwax— 2 [E2)x- B i xjax o
+% (x—‘%)(x—ﬂgz) pa(x) dx~|—§/ ﬂm ”;l) pa(x)dx |
_% (x—‘%)(”; dx——/ (Mt #xz 7 pa(x)dx
= %[P en T %ﬂxl“){l] + %”XZ“xZ - gMXIH'XZ - g#xzﬂx1+
%[Pcﬂ + %#xZ#;{z] + %uxlﬂfl - %uxzufl - %uxmfz
= %[chl +Pc, ]+ %”xl”){l + éﬂxzﬂ){z + %ﬂxzﬂgz + %#xlﬂ;

1 1 1 1
— —uxlufz - —uxzufl — —nxzuL - guxlnfz

uxluxﬁuxzuxz Bl — il
2 1

P

seklinde olacaktir.
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Esit sayida 6rnege sahip iki sinifa ait y oznitelikleri i¢in, y € ¢; ve y € ¢; siniflarina ait orta-
lama deger vektorleri ve esdegisinti matrislerinin bilindigi durumda; y € ¢y U ¢; verilerinin

ortalama vektoru

+
By = w (3.11)
ve esdegisinti matrisi
p_ Pyt P Byl ol — Bl — ol (3.12)
T ¢ 4 '

seklinde olacaktir.
y Ozniteliklerinden x dznitelikleri DMOKH kestirici ile Esitlik [3.8]de ifade edildigi sekilde
kestirildiginde,

Xcloy = M+ Py Py (y1 — pty) (3.13)

kestirilen degerler i¢in sinif ortalama vektorii;

I‘l')dest :yE [ﬂx—FnyPy_l(y—ﬂy)} :‘J'X+PXyP;1(“yl _“y) (314)

€cy

ayn1 sekilde sinif-2 i¢in ortalama vektor;

P, =R+ PoP (o —py) (3.15)
olacaktir.

Kestirilen birinci sinif i¢in hata esdegisinti matrisleri;

PX]ext = E [(Xlest _l'l'X1est)(Xlest _“x]e‘vt)T}
= E[(1s +nyPy_] (Y1 —Hy) — (s +nyPy_] 1y, —1y)))

(ﬂx"‘nyP;l(yl _ﬂy) o (”x+nyP,v_1(“YI _“’y)»T] (3.16)

=E [(nyP;l (Y1 — Ky — (By, _ﬂy)))(PXyP;I(YI — My —(1y, _ﬂy)))T
= E [(PyPy (y1 — Hy,)) (PP (i — 1y,)']
=P,P, 'P, P, Py,
ve ayn sekilde simif-2 i¢in;
sze.s‘t = nyP;IP)QP;IPyX ( 317)

olarak elde edilir.
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Kestirim sonrasinda birinci ve ikinci sinifin toplam veri kiimesi i¢in ortalama deger

vektori;
+
uy, =FE2 (3.18)
2
ve esdegisinti matrisi
P, =P,P Py (3.19)

olarak bulunabilir.

Kestirim sonrasinda hesaplanan x, degeri, gercek x verileri iizerine bir hata eklenmis olarak

modellendiginde, sinif-1 veriler i¢in yapilan hatanin ortalama deger vektorii;

Xest =X+ 1M
= Wn, = E [x1,, —x1]
= Kty — Hxi
— (M1 — P — PP (11 — py) (3.20)
= —Ha+ w +Py Py (g — (B2 ;uyz))
_ Hx g“xl PP, ([.tyz . My )

ayni sekilde sinif-2 veriler i¢in yapilan hatanin ortalama deger vektort;

Hx1 —Hx —1/Hy1 —
% — nyp ( 5
olarak bulunur. Smif-1 verileri ilizerinde yapilacak kestirimde olusacak hatanin esdegisinti
matrisi (Pp,) ise;

uy2>

L, = (3.21)

Py = E [(—X1 + X1, — B, (—X1 + X1, — ;)]

= E[(—x1+ (e + PPy (y1 — 1)) + (1 — e — PPy (1)1 — p1y)))

(—X1 + (e + PPy (v — 1)) + (a1 — e — Py P (1 — 1))
= E[(—x1+ Py Py (yi — ) + B — PPy ()1 — 1))

(—xi +nyP;1(Y1 —ly)+ i _nyP;l(”'yl —pu,))"]
= E[(—xX1 + M1 +nyPy_l(_l-‘y1 + Wy +y1— My))

(—X1 4 a1 + PPy (— s + py +y1 — p1y))"]
= E [((=%1 + 1) + PPy (= py1 +¥1) (%1 + 1) + PPy (—py1 +31))" ]
=Py + PP Py PPy — Py i PPy — Py P Py

(3.22)
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ve ayni sekilde smif-2 icin kestirim sonrasinda olusacak hatanin esdegisinti matrisi
(Pn,)

Py, =Po+ PP PP Py — PP P, — PP Py (3.23)

olarak belirlenir.

Yapilan hatanin her iki sinif birlegimi i¢in ortalama deger vektorii (Uy) ve esdegisinti matrisi
(Py) Esitlik de gosterildigi gibidir:

—0
Hn . (3.24)
P, —P.—P,P, P,

Iki sinifa ait esit sayida 6rnek iceren x ve y Oznitelik vektorleri igin, her bir sinifin orta-

lama deger vektorii ile esdegisinti matrisleri ve iki sinifa ait toplam verilerin ortalama deger
vektorii ile esdegisinti matrisleri [Cizelge 3.1]de gosterilmistir.

Ayrica, y Ozniteliklerinden, sadece simif-1, sadece sinif-2 ve her iki simif elemanlar1 kul-

lanilarak kestirilen x Ozniteliklerinin kestirimleri ve kestirim hatalarina ait ortalama deger

vektorii ile esdegisinti matrisleri [Cizelge 3.2]de gosterilmistir.
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[Cizelge 3.2]de, kestirim hatasinin sifir ortalamal1 bir hata oldugu goriilmektedir. Kestirim
hatasi egdegisinti matrisi ise kestirilen verinin esdegisinti matrisinden (Py), Py Py lex mat-
risi ¢ikartilarak hesaplanmaktadir. Kestirimde yapilacak hata, kestirilen veriler {izerinde bir
miktar sapmaya sebep olacagindan, veriler iizerinde bir giiriiltii olarak modellenebilir. Bu
durum, kestirim sonrasindaki Ozniteliklerin esdegisinti matrislerinde bir miktar biiyiimeye
denk gelecektir. Kestirim hatasinin veriler iizerinde giiriiltii olarak modellenmesi Boliim

A de ayritili olarak incelenecektir.

X ve Y veri kiimeleri arasindaki korelasyon ne kadar biiyiikse (|Pyy|), kestirim hatasi
aynt oranda kiigiilecektir. Bolim [5/de sunulacak olan KKA tabanli ¢apraz smiflandirma

yonteminin basarisinda bu korelasyon degerinin etkisi incelenmistir.

3.5 Onerilen Capraz Smiflandirma Yonteminin Performans Sinirlar:

Bu boliimde Bhattacharyya Uzakligi agisindan, dogrudan gozlenen (y), lgiilemeyen (x)
ve kestirilen (X5 ) Oznitelikler kullanildig1 durumlardaki simiflandirma performanslari hata

olasiliklart (P,) agisindan incelenecektir.

x : stniflandiricisi bilinen, veri tabaninda kayitli 6znitelik vektoriinii,
y : Olciilebilen/g6zlenen 6znitelik vektoriinii,

Xes - Y Oznitelik vektorleri kullanilarak kestirilen x vektoriinii ifade etmektedir.

c1 ve ¢ olasilik dagilimlar ile tantmlanmus iki sinifi ifade etmek iizere; P, ile Bhattacharyya
Katsayist (BK) arasindaki iliski Esitlik [3.25]de

1
(EBK(cl,cz))z < 2P, < BK(cy,c2) (3.25)

P, ile Bhattacharyya Uzaklig1 (BU) arasindaki iliski Esitlik[3.26[de verildigi gibidir [16, 18]
19].
1

(Eexp_BU(cl’CZ))z <2P, < exp—BU(Cucz) (3.26)

Asagidaki ornekte; sentetik olarak iiretilen x ve y Oznitelikleri icin Bhattacharyya Uzaklig
ile tanimlanan siniflandirma performansi sinir degerleri gosterilmistir. Ayrica, y 6znitelikleri
ile ¢y, ¢ siniflart istatistikleri kullanilarak elde edilen X,y Ozniteliklerinin siniflandirma per-

formanst sinir degerleri ile olan iligkisi agiklanmugtir.
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Ornek:

Kullanilan veriler, iki boyutlu uzayda (x ve y 0znitelik uzay1) Gauss dagilima sahip iki sinifi
ifade eden ’sentetik’ veriler tiretilerek tammmlanmistir. Ortalama deger vektorii ve esdegisinti
matrisi rastgele {iretilen bu verilerde ¢ ve c¢; siniflar1 belirtmek iizere;

Smif-1 o6znitelikleri dagilimlari,

x€cy = N(4.51,0.14)
y€cp:=N(5.95,1.18)

Smif-2 znitelikleri dagilimlari,

X € ¢z 1= N(6.65,0.93)
y € cp:=N(7.47,0.17)

olarak tretilmistir. x Ozniteliklerinin veri kiimesinde kayitl 6znitelikleri, y ise Ol¢tilebilen

oznitelikleri ifade ettigi varsayilacaktir.

[Sekil ~3.2de goriilen birinci grafik, oOlgiilebilen y Ozniteliklerin dagilim grafigidir. |
[Sekil 3.2]de goriilen ikinci grafik, dlgemedigimiz x verileri igin dagilim grafigidir.
[3.2]de goriilen iigilincii grafik, simf istatistikleri kullanilarak elde edilen DMOKH kesti-

ricisi ile Olgiilemeyen veriler icin yapilan kestirim sonucunda bulunan x.g’a ait dagilim

grafigidir.
15 T T T T T T T T T
Sinif, - Mormal(d.561,0.14 1 Sinf,: Narmal(.65,0.93)
1L Sinify +3inify:Mormal(5.58,1.69) i
05~ - |
0 | | | E M
0 1 2 3 4 g 5 )7 g 9 10
15 T T T T T T T T T
Sinify - Mormal(5.95,1.18 ) Sinit,: Mormal(7.47 0.17)
1L Slnn‘1 +Smn‘2 Mormal(8.71,1.25) = i
05t =
. I ) I W | |

0 1 2 3 4 5 B z 7 g 9 10

T T T T T T z T T T
Sinify : Mormal{g.13,0.04) Sint,: Mormal(f.23,0.27) :
Sinify, +Zinif,: Marmal(.71,0.43)

Sekil 3.2: Olgiilebilen(y), Gercek(x) ve Kestirilen(x,s) Degerlerin Olasilik Dagilimlari
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y verilerinde BK degerleri icin, veriler iizerinden hesaplanan BK = 0.27 ve teorik olarak
hesaplanan BK = 0.28 (verinin Gauss dagilima sahip oldugu varsayilmistir) bulunmustur.
Veriler iizerinden hesaplanan ve verilerin istatistiksel 6zellikleri ile hesaplanan BK degerleri
birbirleri ile biiylik Olgiide tutarli ¢ikmistir. Bu da veriler icin Gauss kabullenmesi ya-
pabilecegimizin bir gostergesidir. y verileri i¢cin BK degeri BK = 0.28 ve hata olasilig1
degeri P, = 0.05 olarak bulunmustur. Esitlik [ 2.6]e gore beklenen sinir degerleri 0.009 <
e < 0.138 seklinde olacaktir. Burada dagilimlarin kesisim noktast siniflandirict icin
esik olarak kullanildiginda, bu degerlerin Esitlik [ 2.6]de verilen sinir degerlerini sagladig:

goriilmektedir.

x verileri i¢in BK = 0.52 ve P, = 0.14 olarak bulunmustur. Esitlik|[2.6]e gore beklenen sinir
degerleri 0.034 < P, < 0.259 seklinde olacaktir. Bu degerlerin de Esitlik [2.6]de verilen sinir
degerlerini sagladig: goriilmektedir.

Xesr hesaplanan BK ve P, degerleri Bolim [2.1]de belirtilen iddia ile uyumluluk gésterecek

sekilde y verilerine ait olan BK ve P, ile ayn1 ¢ikmustir.

Tipik bir capraz siniflandirma probleminde, Olciilemeyen verilere ait bir siniflandiricinin
onceden bilindigini diistinebiliriz. [Sekil 3.27deki x verilerine ait olan simiflandirict diiz ¢izgi
ile gosterilmistir. Noktali ¢izgi ile gosterilen ¢izgi ise, X, verilerine ait olan kestiricidir.
Pratikte X, verilerine ait olan noktal ¢izgi ile ifade edilen siniflandirict 6nceden bilinemez.
Dolayisiyla, bu 6rnekte her ne kadar x,,; lizerinden hesaplanan P, kiiciik goriinse de, her-
hangi bir problemde kullanilacak siniflandirict i¢in hesaplanan P, degeri, Esitlik [ 2.67deki

sinirlarin i¢ine diismeyebilir.

Cikarim-4: Boliim [3.3]de onerilen yontem ile ¢apraz simiflandirma problemi ¢oziilmeye
calisildiginda, sadece x kestiricisi bilindigi icin, capraz simiflandirmanin performansinin
ne olacagimi ve hangi sinirlar arasinda kalabilecegini Bhattacharyya Katsayisina bakarak

degerlendirmek dogru olmayacaktir.

Bu sonuca bagl olarak yapilacak hatanin hangi sinirlar arasinda kalmasi gerektigine dair bir

oneri Boliim 4 de sunulacaktir.
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[Sekil 3.3]deki ilk grafikte DMOKH kestiricisi ile yapilan kestirim sonucunda yaptigimiz

hatanin dagilimi goriilmektedir.

Kestirim Hatasi(x-x__):Mormali-1.74e-014 0.761)
07 T T T T T T T T

06~ B

04 -

03 B

02~ B

01+ -

Sekil 3.3: Hata(x — x,5) nin Olasilik Dagilimi1

DMOKH kestiricisi sayesinde sifir ortalamal1 bir hata dagilimi elde edilmistir. Veriler
tizerinden, dagilim N(-1.74e-14, 0.761) olarak belirlenmistir. Hata dagiliminin ifadesi
Esitlik gosterildigi gibidir. Esitlik ile hesaplanan dagilim ise N(0, 0.762)
olarak bulunmustur.  Sonuglarin ayni olmasi, Gauss kabullenmemizin dogrulugunun
gostergesidir. Hatanin degisinti matrisi degeri Bolim [ffde onerdigimiz yaklasimin temelini
olusturmaktadir.

N(0,P,— PP, 'Py,) (3.27)

Esitlik[3.27] kestirim sonrasinda yapilacak hatanin esdegisinti matrisini ifade etmektedir. Bu
hata, kestirim sonucunda hesaplanan degerler {izerindeki belirsizligin bir ifadesidir.
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4. CAPRAZ SINIFLANDIRMA iCiN GURULTU MODELI

Boliim [3[de ¢apraz smiflandirmada dogrusal minimum ortalama karesel hata kestiricisi
kullandigimizda, Bhattacharyya Uzakligi degerinin simiflandirma performans: ile ilgili
dogrudan bir bilgi veremeyecegini ortaya konulmustu. Bu bdliimde siniflandirma per-
formans1 acisindan yeni bir model Onerilmektedir. Bu modelde, kestirim sonucunda or-
taya cikan hata, oOlciilemeyen Oznitelikler iizerinde giiriiltii olarak modellenecektir. Bu
sayede kestirim sonrasinda smiflandirma performanslari analitik olarak incelenebilecek-
tir. Siniflandirma performansi acisindan, kestirimde yapilan hata, lgiilemeyen 6znitelikler
tizerinde bir giirtiltii gibi diisliniildiigiinde Bhattacharyya UzakliZ1 degerinin nasil degistigi

gosterilmisgtir.

4.1 Giiriiltii Modeli ve Stmiflandirma Performansi

x vektorii siniflandiricisi bilinen, veri kiimesinde kayithi 6znitelik vektoriinii, y vektort,
Olciilebilen/gozlenen Oznitelik vektoriinii, X, ise y Oznitelik vektorleri kullanilarak kesti-
rilen x vektorlerini ifade etmektedir. 1) normal dagilima sahip giiriiltii olmak iizere, kes-
tirilen X,y Ozniteliklerini X,y = X+ N seklinde modelledigimizde BU (py, (X), px, (X)) ve
BU (px,y, (X), Px,,, (X)) degerlerinin normal dagilima sahip dznitelikler i¢in nasil degisti§ini
belirlemek istiyoruz. py, (x) ifadesi x Oznitelik vektoriiniin sinif-1’e ait olan drneklerinin
dagilimini, p,, (x) ise sinif-2 ye ait olan verilerin dagilimini ifade etmektedir. Pxeq, (x) ifadesi
ise y Oznitelik vektorlerinden kestirilen Xeg¢ verilerinin sinif-1 e ait orneklerinin dagilimini,
Pxeq, (X) smf-2ye ait olan verilerin dagilimlarini ifade etmektedir. BU (px, (X), px, (X))
ifadesi bu bolimde BU (x1,xy) ifadesi ile kisaltilacaktir.

Normal dagilimlar i¢in BU degeri Esitlik|[4.1]da gosterildigi gibidir.

‘ anv ’

_— (4.1
P, |2[P,,|2

1 B 1
BU (px, (X), px, (X)) = 3 (Mx, — ”Xz)TPavl (K, — Mx,) + 5 In
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Iddia-3:
X; Olcebildigimiz y Ozniteliklerinden kestirmek istedigimiz Oznitelikler, ) giiriiltii olmak
lzere,
Xy - N(ﬂxl ,le)
X2 N(I"’mexz)
ve
N : N(uy,Py) olmak iizere,
Xest) = X1+ 1M
Xest, = X2+ 1M
olarak tanimlandiginda,
BU (x1,x2) > BU (Xest, , Xest, ) (4.2)

olacaktir. Esitligin saglanmasi, ancak ve ancak;
e Giiriiltii esdegisinti matrisinin sifir olmas1 (P;, = 0) veya
e Ozniteliklerin egdegisinti matrislerinin (P,, = Py,) ve ortalama degerlerinin (i, =
My, ) esit olmasiyla saglanabilir.

ispat: Gostermek istedigimiz, Esitlik e gore X1,xp arasindaki BU degerinin Xy, , Xegr,
arasindaki uzakliktan biiyiik oldugudur. Esitlik [ 4.1i iki parca olarak goriip, her bir
parca icin bunun dogru oldugunu, dolayisiyla esitsizligin tamami i¢in dogru oldugunu

gosterecegiz.

Xest, :X1+n:>ng[1 :N(”x1+“n7Px1+P71) (43)
Xest; = X2 +Tl = Xesty - N(”’xz +”'117Px2 +PT])

Esitlik [4.1]in sag tarafindaki birinci kisim igin A, ikinci kisim B ifadesini kullanacagiz. Bu

durumu:

BU (x1,X2) = A+ B,

1 _

A2 g(ﬂm — ) Py (B — ) (4.4)
1 P

Bx é Z1n | 1xav| 1
2 [Py 2Py

BU(Xestl 7Xes12> = Axest + By

est

1 _
Axest = g (”xestl - ”xesrz )TPCIVL)S[ (”xestl - l‘l'xestz ) ( 45)
A 1 |Pavxest | )

B esi :_1n<
2R, PP,

2
esl‘l

seklinde ifade edecegiz.
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Esitlik i¢in; Ay > A,,, ve By > B,,, ifadelerini ayr1 ayn gostermemiz, BU (x1,Xp) >

BU (Xeg, , Xest, ) ifadesinin ispati igin yeterli olacaktur.

est

Esitlik in birinci kismu i¢in;

Ax Z Axest
1 Tp-1 1 Tp-1 (4.6)
g (“xl - “XZ) Pavx (l‘l'xl - l'l'x2) Z g (“xestl - “l'xestz ) Pavxm (“xestl - l‘l’xestz )
esitsizligini gdstermemiz gerekiyor.
1 _
Axesr = g (”xestl - ”xeslz )TPaVigsl (uxestl - ”xesrz )
1 _
= g (e + iy — o — 1) (Pav, +Py) ™ (fhy + By — B, — ) (4.7)
1 -
= g(l—lm - “m)T(Pavx + Pn) l(ﬂxl —HUy,)
Bu noktada, pozitif taniml1 matrisler i¢in
m’ Am >m’Bm = |A| > [B| (4.8)
esitligi (ispat A.EK’te verilmistir) kullanildiginda, Ay > A,,, olmasi i¢in
[Pyl = |(Pay, +Pp) | (4.9)
olmasi yeterlidir. Pozitif tanimli matrislerde,
|A+B| > |A|+ (B (4.10)
esitligi (ispat B.EK’te verilmistir) kullanildiginda
|(Pay, +Pn)| = [Pay, |
1 1
(4.11)

<
|(Pav, +Pn)[  [Pa, |
|(Pay, +Pp) ™| < [P,

avy

Esitlik sonucunda, [4.97de sunulan esitsizligin saglandig1 gosterilmis olur.
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Esitlik[ 4.4/ nin 2. pargasi i¢in,

= HXest

P, | 1 Pay,,,, | (4.12)
In( :

B, > B

! ) > Sin( )

A - 5 1 1
2 Py, |7|P:

P T
[Py [2[Pyy |2

|

ESfl ES[Z |

esitsizliginin saglanmasi yeterlidir.  Esitsizlikteki, In fonksiyonu monotonik artan bir

fonksiyon oldugundan, bunun saglanabilmesi i¢in,

|Pavx| > ’Pavxest‘
1 1 = 1
Py 2Py, 2 [Py, 2Py

Xesty

(4.13)

2
estz

olmasi yeterlidir. Bu esitsizligin her iki tarafinin karesi alindiginda esitsizlik bozulmaya-

caktir,
|Pan |2 |P('wxest |2 ( 4 14)
|le ||Px2| 4 |Pxest1 ||Pxest2 |
Bu esitsizlik,
P, [*|P.|P
Lo [P PP [P (115

N |Pan ’2 |Pxest1 | |Pxest2 |
seklinde de yazilabilir. Yukardaki esitsizligin sag tarafinin birden kiiciik oldugunu gostermek

ispatin tamamlanmasi i¢in yeterli olacaktir.

Pay, P |Pi| [Py, + Py P[Py [Py,
P, [2[Pry [[Pry, | [P, [2[Pyy + P[Py, + P
PG, +PY 2Py Py, [Py Py |
 |Puy, 2Py, Py, + Py Py + PPy + P2
[P, PPy, + PP P, + 2P P, P P |
N |Pz21vXPx1sz + PzzzvXle Pﬂ + ngxszPn +P5vxP%1|

est] esty

(4.16)

Esitlik | 4.16/de P, yerine P, = le_ersz yazdigimizda,
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[Pav,, [*[P, |[Ps, | [P%, Py P, + P Py Py + 2Py Py Py Py |

|Pan |2 ‘Pxestl ’ |Pxest2 | |Pav le PXZ + Pavx(

P2, Py Py, + 3Py, P2 Py + 3Poy Py PPy + 1P, P2 Py + 3Py, P Py P+ (

p— PX
|PZVXPX1PXZ + 2PanPx1Px2PT] + Pavx (P - sz)zpn + ( L

Py, +P;,
2P Py + Py, (

]PavXle P, + 2Pn P, PP, + P,27 P, Px y

le +Px

2)P, Py +P7, Py

LES

|PavXPx1 sz + 2PT] PanPX1 sz + P2 le PX2 |

X +PX
P2, P, Py, + P, Py P Py + 1P, P2 P, + 1P, P2 pn+< Pl pa |

avy™® xp

P2, P, Py, +2P,P,, P, P, + PPy, Px2 |

(P}, +P%, +2P, Py
|P§VXPx1Px2 + Py Py Py, Py + Pavx (Py, — PXZ)QP,, + %Pavx2le P, Py + 2

|P3MPXl Py, + 2P, P, P Py, + P% P, P,

2P121|

Py 2P Py ) |
7 n

|P§vxle P,, +2PyP,, Py Py, + P% P, P, |

P, —P. )2
|P§vxPx1 sz + 2PavxPx1 szPn + %Pavx (le _ PXz)ZPn + (%

|P§VXPX1 P,, +2P,P,, P, P, + P2 2P Py |

+P, PP}

- PP,
P2, P, Py, + 2P Py, Py Py, + P2P, Py, + 1P, (P, —P,,)2P, + Pl p2)

|PZVXPX1 sz + 2P71 Panle sz + P%] le PX2 |

P2, Py Py, + 2Py Py Py Py + PRP Py, + 5(Pyy — Py 2Py (P, + 5Py

|P§vxle P, + 2Py Py, Py Py, + P% P, P,|

a |P3VXlePx2 + ZPHPanle sz +P127PXIPX2 + %(le - sz)an%(le + sz +Pﬂ)|

(4.17)

Esitlik de, paydaki ifadenin aynis1 paydada da bulunmaktadir. Pozitif tanimli matrisler
icin |A+ B| > |A|+ |B| bagmtisini (ispat B.EK’te verilmistir) kullandigimizda esitlik [ 4.17/de

paydanin paydan biiyiik oldugu ve esitsizligin saglandigini goriiliir.

1 1
- 1 > |Pavxest | ’le ‘ 2 ’PXZ ‘ 2 = |Pan| > ‘Pavxest ’

> 1 (4.18)
|Pan||Px

ol —

1 1 1 1 = 1
esty | 2 |P-xest2 | 2 |le | 2 |Px2 | 2 |Pxestl | 2 | Xesty |

P P
| 1an| : 2 ’ @Vxest ‘ ( 419)
|le|§ |sz|j |PX

1 1
est] |2 | Xesty | 2

Esitlik[4.TT] ve Esitlik [4.19) birlestirildiginde, ispat tamamlanmig olmaktadir.

Cikarim-5: Boliim 4] Iddia-3’de gosterilen model ile Boliim de onerilen DMOKH kes-

tirici ile ¢apraz siniflandirma yontemi birlestirildiginde, giiriiltii esdegisinti matrisini yerine

(Py), kestirimde yapilacak hatanin esdegisinti (P, ,) matrisi kullanabilir. Bu durum, kesti-

rilen 6zniteliklerin, hatali dl¢iilen 6znitelikler olarak yorumlanmasiyla esdegerdir.

Cikarim-6: Capraz Simflandirma problemi igin Bolim [3.3]de onerilen yontem kul-
lanildiginda; kestirim hatas1 esdegisinti matrisi, Boliim deki Iddia-3’de kullanilan model-

deki giiriiltii esdegisinti matrisi olarak alindiginda,
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P, .: Kestirim hatasi esdegisinti matrisi
Py Giiriilti esdegiginti matrisi
P,,: Siif-1’e ait esdegisinti matrisi

P,,: Simf-2’ye ait esdegisinti matrisi

olmak iizere, Esitlik [ 4.1fda P, yerine Py, + Py ve Py, yerine Py, + Py yazlarak elde
edilen Bhattacharyya Uzakligi, yapilabilecek simiflandiricr i¢in Esitlik [ 3.26]de gosterilen
sinirlar1 belirler.  Diger bir ifadeyle;, DMOKH kestiricisi kullanilarak yapilan ¢apraz
siniflandirma sonrasinda analitik olarak bulunabilecek istatistiksel siniflandiricinin perfor-
mans degerleri, sadece x| ve X nin istatistiksel ozelliklerine degil, x; +1 ve x2 + 1 ’nin

istatiksel ozelliklerine bagimhidir.
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5. CAPRAZ SINIFLANDIRMA iCIN KKA YAKLASIMI

Onceki boliimlerde dogrudan olgiilen 6zniteliklerinden, dogrusal en kiiciik ortalama kare-
sel hata kestirici (DMOKH) ile dogrudan odlciilemeyen Ozniteliklerin kestirilmesi ve ¢apraz

siniflandirma yapilmasi problemi ¢aligilmisti.

Bu béliimde ise, ¢apraz siniflandirma problemleri icin yeni bir yaklagim olan Kanonik Ko-
relasyon Analizi (KKA) tabanli yontem sunulacaktir. Kanonik korelasyon analizi, es sayida
ornek iceren ¢ok degiskenli iki veri kiimesi arasinda en yiiksek korelasyonu saglayacak
doniistimleri bulmakta kullanilan bir yontemdir. Capraz siniflandirma problemine bir ¢6ziim
olarak onerilen KKA tabanl yontem, KKA’nin dogasi geregi, birbiriyle en yiiksek kore-
lasyonu gosteren o6znitelikleri segmesi sayesinde basarili performans sergilemektedir. Eldeki
verilerin tamaminin kullanilmasi durumunda, DMOKH ve KKA tabanl ¢apraz siniflandirma
yontemleri ayn1 performans degerlerini gostermektedir. Kullanilan 6zniteliklerin sayisi
azaltildiginda KKA tabanli yaklastm DMOKH ile capraz siniflandirmaya gore ¢ok daha
iyi sonuglar vermektedir. KKA tabanli yaklasim, korelasyonlar1 yiiksek olanlari se¢mesi

sayesinde, optimal bir 6znitelik se¢cim yOntemi olarak da karsimiza ¢ikmaktadir.

Boliim igerisinde, Oncelikle Kanonik Korelasyon Analizinin temelleri sunulacaktir. Son-
rasinda KKA ile oOznitelik kestirimi sunulacak ve son olarak KKA tabanli c¢apraz

siniflandirma yontemi ortaya konulacaktir.

5.1 Kanonik Korelasyon Analizi

Kanonik Korelasyon Analizi (KKA), ¢ok boyutlu (multivariate) iki degisken kiimesi
arasindaki dogrusal benzerligi ortaya cikaran istatistiksel bir yontemdir [21]. H. Hotelling
tarafindan 1936’da ortaya konulan [22] bu yontem, temelde iki degisken kiimesine uygu-
lanacak iki farkli dogrusal doniisiimii belirleyen temel vektorleri bulmay1 hedeflemektedir.
Bu iki temel vektor kiimesinin 6zelligi, iizerlerine yapilan izdiisiimlerin sonucunda ortaya

cikan yeni ara uzaylarin birbirleri ile olan korelasyonunu maksimize ediyor olmalaridir.

KKA’nin temel yapisi [Sekil 5.1]de gosterilmisgtir.
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X Y

N x K M x K

A B

M x N M x M

WV V

U V

M x K M x K

Sekil 5.1: Kanonik Korelasyon Analizi

Oncelikle burada X ve Y uzaylarini tammlayacak olursak;

X : Her bir kolonu, bir 6rnege ait N adet oznitelik igeren, X1, X7,X3...Xx olmak iizere toplam
K ornege ait oznitelikleri iceren ve ortalama deger vektorii sifir olan (i, = 0) X € RV*K

matrisi ,

Y : Her bir kolonu, bir 6rnege ait M adet oznitelik iceren, y,y2,y3...yx olmak iizere toplam
K oOrnege ait Oznitelikleri iceren ve ortalama deger vektorii sifir olan (L, =0) Y € RM*K

matrisi,

U : X degiskenleri kiimesi icin olusturulan kanonik degiskenleri ifade etmektedir. X
kiimesindeki verilerin, KKA sonucunda elde edilen A dogrusal doniigim matrisi ile
garplrnlyla U = AX elde edilir. U € Rmin(rank(X),mnk(Y))XK ve A € Rmin(mnk(X),rank(Y))xN
boyutlarindadir. U matrisinin i. kolonu, i. 6rnege ait kanonik degiskenleri ifade etmekte-
dir.

V: Y degiskenleri kiimesi i¢in olusturulan kanonik degiskenleri ifade etmektedir. Y
kiimesindeki verilerin, KKA sonucunda elde edilen B dogrusal doniisim matrisi ile
carpimiyla V = BY elde edilir. 'V € Rmin(rank(X),rank(Y))xK yo B c Rmin(rank(X),rank(Y))xM
boyutlarindadir. 'V matrisinin i. kolonu, i. 6rnege ait kanonik degiskenleri ifade etmekte-
dir.
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Kanonik Korelasyon Analizi, U ve V degisken kiimelerinin satirlar1 arasindaki korelasyonu
maksimize eden analiz yontemidir ve KKA bu 6zelligi garanti eden A ve B matrislerini
belirlemek i¢in kullanilir. U ve V matrislerinin her bir satir1, yeni uzaylarda 6zniteliklere
karsilik gelmektedir. KKA sonucunda, bu yeni 6znitelikler (U ve V matrislerinin satirlari)
korelasyonu biiyiikten kiigtige olmak iizere siralanmig olacaktir. Bu islem esnasinda X ve Y
uzaylarini min(rank(X),rank(Y)) boyutunda bir ara uzaya indirgenir. A matrisinin her bir
satir1 lizerine X veri setinden alinan her bir 6rnek (X matrisinin kolonlar1) yansitildiginda
elde edilen U matrisinin birinci 6zniteligi (satir1) ile B matrisinin her bir satir1 iizerine Y veri
setinden alinan her bir 6rnek (Y matrisinin kolonlar1) yansitildiginda elde edilen V matrisi-
nin birinci 6zniteligi (satir1) en yiiksek korelasyonu gostermektedir. X ve Y veri setlerinin
izdiisiimlerinin korelasyonunu maksimize edecek vektorleri (A ve B matrislerinin satirlart)
matematiksel olarak gostermek istedigimizde; a;, A matrisinin, by ise B matrisinin birinci

satirin1 gosteren kolon vektorii olmak iizere, kanonik korelasyon katsayisi (p),
al XY’b,
p —
\/ (@l XXTa) (bTYY b))

(5.1)

seklinde ifade edilir ~a; ve b; vektorlerinin ozelligi, p’yu maksimize edecek ol-

malaridir.

Optimizasyon Problemi:
Kanonik korelasyonu p maksimize eden a; ve by vektorleri
max al XYTb,

aj,b (5.2)
kisie:  alXXTa; =1 blYY'b; =1

probleminin ¢oziimiine esittir. YY? tersi almabilen bir matris olarak kabul edildiginde,
Esitlik [ 5.3]de verilen optimizasyon probleminin ¢oziilmesiyle a; esitliginin elde
edilebilecegi gosterilebilir [23, 24].

max al XYT(vYT)"'yXTa,

A (5.3)

kisit a{XXTaI =1

Esitlik[5.2) ve Esitlik [5.3] Esitlik[5.47de verilen genellestirilmis 6zdeger 6zvektor problemi-
nin en biiyilik 6zdegerlerine karsilik gelen 6zvektorlerini bulmaktadir [25]].

XY (YYT)"lyxTa; = nXXTa, (5.4)
7N, a; Ozvektoriine karsilik gelen 6zdegerdir. X uzayi i¢in M adet 6zvektor, Esitlik [ 5.5[de
verilen optimizasyon probleminin ¢oziilmesi ile elde edilir [23]].

max trace(ATXYT (YYT)1YXTA)

(5.5)
kisit . ATXXTA =1
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M < N kabullenmesi yapildiginda, A matrisi M x N boyutunda olacak ve N uzunlugunda M

adet 6zvektorden olusacaktir.

Ayni yontemle XX tersi alinabilen bir matris oldugu kabul edildiginde,

max bIvxT (xx?)~1xYTb,
b1 (5.6)
kisit . bTYY'b =1
problemi tanimlamir. Esitlik [ 5.2] ve Esitlik [ 5.6] Esitlik [ 5.7de verilen genellestirilmis
0zdeger 6zvektor probleminin en biiyilik 6zdegerlerine karsilik gelen 6zvektorlerini bulmak-
tadir [25]].

YXT(XXT)"!'XY"b; = nYY'b, (5.7)

1N, by dzvektoriine karsilik gelen 6zdegerdir. Y uzayi icin M adet 6zvektor, Esitlik [ 5.8]de

verilen optimizasyon probleminin ¢oziilmesi ile elde edilir [23].

max trace(BTYXT (XXT)~!XY'B)
B

(5.8)
kisit : BIYY'B=1I

M < N kabullenmesi yapildiginda, B matrisi M x N boyutunda olacak ve N uzunlugunda M

adet 6zvektorden olusacaktir.

Elde edilen A ve B matrisi kullanilarak U ve V veri matrislerini olusturdugumuzda, bu iki
matrisin tanimli oldugu; U,V € RM uzayinda, U ve V arasinda birbiri ile en yiiksek korelas-
yonu gosteren veriler birinci satirlarindaki degiskenler, en diisiik korelasyonu gosterenler ise

son satirlarindaki veriler olacaktir.

Kanonik Korelasyon Analizi i¢in kullanilabilecek bir diger gosterim de genellestirilmis
0zdeger 0zvektor problemi gosterimidir. p; i. 6zdegeri, z; i. Ozvektorii ifade etmek iizere,

genellestirilmis 6zdeger 6zvektor problemi Esitlik[5.9]ile ifade edilir.

Ez;, = piFZi ( 59)

KKA i¢in blok matris gésteriminde,

g |0 Po| p_ [P0
P, 0 0 P

olarak secildiginde, x ve y vektorlerinin boyutu sirasiyla N ve M olmak iizere, z 6zdeger

(5.10)

ozvektorlerin boyutu i = N 4+ M olacaktir.
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aj
L= 5.11
‘ [bi] ( )

Esitlik Esitlik ve Esitlik birlestirildiginde, Esitlik elde edilir.

F'Ez; = pjz;
~1
i:1:>[Px 0] b Py z) = PiZ
0 P [P, 0
[px o]llo Polfar ] [ar] (5.12)
0 P,| [Py 0]|b| by
0 Px_lny_ [ ay ] [ a d
[Py_lex 0 __b1_:p1_b1_

Esitlik coziimlendiginde P;lnybl = piay ve Py 1Pyxal = p1by olmak iizere iki
P, 'Pyb,

denklem kiimesi ortaya cikar. a; = 6

ifadesi ikinci denklem kiimesinde yerine

yazildiginda;

P, 'Pyb;
p1
PP, P 'Pyb; = piby

plbl = Py_ll)yx

ayni yontem ile a; 6zdeger 6zvektorii de ¢oziimlendiginde ise;

P.'P,P 'Pya; = pia (5.1
PPy P 'Pyb; = pib;
elde edilir [24]. Bu formiilasyon, KKA’nin Esitlik ve Esitlik ile tanimlanan

0zdeger-6zvektor problemi ile ¢oziildiigiinii gosterir.

KKA yonteminin, U,V € R uzayinda, veri kiimeleri arasindaki korelasyonu biiyiikten
kiigiige dogru olan 6zvektorler seklinde siralamasi, p7 > p3 > p3 > ... siiflandirma/tanima
icin 6nemli bir altyap1 saglamaktadir. Bu siralama, 6zniteliklerin indirgenmesi probleminde
de optimal bir ¢ozlim saglayacaktir. U ve V matrislerinin satirlarindaki kanonik korelasyon
sayesinde RM uzayinda, U icin tasarlanmis bir smiflandiric1 veya tanima yontemi, ayni
uzayda taniml1 V' verileri i¢in de kullanilabilir. Birbirleri ile yiiksek korelasyon gosteren
ozniteliklerin ayn1 simiflandiricida, korelasyon gdstermeyenlere gore daha iyi performans

vermesi beklenen bir durumdur.
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Kanonik Korelasyon Analizi, siniflandirmada farkli calismalarda kullamilmiglardir.  iki
veri kiimesi lizerinde calisan Kanonik Korelasyon Analizi’nin siniflandirma icin kul-
laniminda birinci veri kiimesi olarak orneklerin Oznitelikleri, ikinci veri kiimesi olarak
da smiflarin etiketleri se¢ilmistir [26, 27, 28]]. Bu 6nerilen yontem, siniflar i¢in atanan
etiketlerde yapilacak degisikliklerden etkilenmekte ve farkli etiketler ile farkli perfor-
mans sonuglart olugsmaktadir [29]. Bu problemin iistesinden gelebilmek i¢in sinif etik-
leri yerine agirliklandirilmis etileketlerin kullanildigi KKA tabanli yontemler gelistirilmigtir
(29, 130]].

5.2 KKA ile Oznitelik Belirleme ve Oznitelik indirgeme

Boliim [[.Ifde temel unsurlart verilen ¢apraz tanima yaklagiminin birinci unsurunun Y veri
kiimesinden, X veya U veri kiimesine kestirim oldufunu soylemistik. X veri kiimesi,
Olciilemeyen fakat daha onceden kayith olan verileri, Y ise Olciilebilen fakat siniflandiricisi
bilinmeyen verileri ifade edecek sekilde KKA ile 6znitelik belirlenebilir. U ise, [Sekil 5.1]de
gosterilen X degiskenleri kiimesi icin olusturulan kanonik degiskenlerin bulundugu ara uzay1

ifade etmektedir.

Boliim [3[de Y verilerinden X verilerini kestirmek icin DMOKH yo6nteminin kullanimi
gosterilmisti. Bu boliimde ise amag X verisini kestirmek yerine, U verilerini kestirmek ve U

uzayinda bir siniflandirict tanimlamak olacaktir.

KKA yontemi, X ve Y veri kiimeleri iizerinde A ve B matris doniisiimlerini tanimlar. Bu
doniistimler sonucunda, X ve Y uzaylarindaki veriler U ve V ara uzaylarindaki verileri
donlismektedir. U ve V ara uzayindaki verilerin ilk sirasindaki oznitelikleri birbirleri ile
en yiiksek korelasyonu gostermektedir. Ikinci siradaki oznitelikler ise ikinci en yiiksek
korelasyonu gostermektedir. Bu doniisiim sonrasinda U ve V ara uzaylarindaki verilerin
Oznitelikleri, birbirleri ile korelasyonu yiiksek olandan diisiik olana dogru dizilmis olmak-
tadir. X uzayindaki K adet veri A kanonik korelasyon doniigiim matrisi ile U uzay: verilerine
doniigtiiriildigiinde, x;j j. 0rnedin X uzayindaki i. 6zniteligini, uj; j. 6rnegin U uzayindaki i.

Ozniteligini belirtmek lizere;

U=AX
Uppug2...u1K a11212---A1N X11X12.--X1K
Uz1u22... UK . a21422...A2N X21X22...X2K ( 5-14)
UM1um2. .- UMK aM1am2---AMN XN1XN2---XNK

seklinde ifade edilebilir.
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¥ij J. 0rmegin Y uzayindaki i. 6zniteligini, vj; j. Orne8in V uzayindaki i. dzniteligini belirt-

mek iizere;

V =BY
V11V12---VIK b11b12...bim yuy2---YiK
V21V22...V2K _ b21b22...bam ¥21Y22---Y2K (5.15)
VM1VM2--- VMK byi1bmz...bmm YM1YM2---YMK

ile doniistiiriildiigiinde, K adet verinin M boyutlu U € RM uzayindaki birinci 6znitelikleri
(u11,uq2,...,u1g) ile, K adet verinin M boyutlu V € RM uzayindaki birinci Oznitelikleri
(V11,V12,..., V1K) istatistiksel olarak birbirleri arasinda en yiiksek korelasyonu gosteren
oznitelikler olacaklardir. Aym sekilde, K adet verinin M boyutlu U € RM uzayindaki ikinci
oznitelikleri ile (uzq,uzz,...,u3K), K adet verinin M boyutlu V € RM uzayindaki ikinci
oznitelikleri (va1,v22,...,V2K) istatistiksel olarak birbirleri arasinda ikinci yiiksek korelas-
yonu gosteren Oznitelikler olacaklardir. Diger bir ifade ile U ve V ara uzaylarindaki verilerin
oznitelikleri kendi aralarinda yiiksek korelasyon gosterenden diisiik korelasyon gosterene
dogru dizilmis olacaklardir. KKA ile saglanan bu 6zellik, U uzayinda tanimlanmig olan bir

siniflandiricinin V uzayindaki veriler ile de bagsarili sekilde calismasini saglamaktadir.

Ayrica U ve V veri kiimelerinde, korelasyonu yiiksekten diisiige dogru siralanmig olan
Oznitelikler, simiflandirmada kullanilacak oznitelik sayisinda indirgeme yapilmasi duru-

munda, 6zniteliklerin secilmesinde 6nemli bir altyap1 ve optimalite saglamaktadir.
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N x K M x K

M x K M x K

Sekil 5.2: Kanonik Korelasyon Analizi ile Oznitelik Belirleme

[Sekil 5.2fde gosterilen U ve V matrislerinin siitunlar: her bir 6rnege ait 6znitelikleri belirt-
mektedir. KKA yonteminin, korelasyonu yiiksekten diisiik olana dogru siralama 6zelliginden
dolay1, U ve V matrislerinin birinci satirlart birbirleri ile en yiiksek korelasyonu gosteren
Oznitelikleri ifade edecektir. Bu durumda, tanima/siniflandirma asamasinda kullanilacak
Ozniteliklerin sayisinin azaltilmasi gerektiginde, yiiksek korelasyonu gosteren Ozniteliklerin

secilmesiyle optimal bir 0znitelik indirgemesi yapilmis olacaktir.

5.3 KKA ile Capraz Smiflandirma

KKA yonteminin ¢apraz Siiflandirma problemlerinde kullanilmasi i¢in 6nerilen yontem |

[Sekil 5.3]de grafiksel olarak gosterilmistir.
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[A, B, r]=EGITIM(X, Y) M

N
=

X Veri Kiimesi
(Dogrudan

Olciilemeyen > X

Oznitelikler)

N x K

[A, B, r]=KKA(X, Y)

Y Veri Kiimesi

(Dogrudan S Y
Olciilebilen [ ]

Oznitelikler)

X Veri Kiimesi
(Dogrudan
Olclilemeyen
Oznitelikler)

Siniflandirici

z
Siniflandiriimasi
istenen Ornegin B r
L . MxM
Oznitelikleri MxM

—_— A
(Dogrudan z
Olcilebilen
Oznitelikler)

Mx1 Mx1

Sekil 5.3: KKA ile Capraz Tanima YOntemi

ekil 5.3[de, X matrisinin her bir kolonu, x; € RV uzayinda, N boyutlu dogrudan
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olciilemeyen oOznitelikler ile tamimlanan 6rnegi, Y matrisinin her bir kolonu, y; € RM
uzayinda, M boyutlu dogrudan Olciilebilen 6znitelikler ile tanimlanan 6rnegi ifade etmek-
tedir. X € RN uzayinda bir simiflandiric1 tammlandiginda Y uzayindaki ozniteliklerin X
uzayma DMOKH Kkestiricisi ile kestirilip sonrasinda ¢apraz siniflandirma yapilabilecegi
Boliim gosterilmigti. Bu boliimde ise ara bir doniigiimii de iceren ve daha iyi sonuglar
vermesi beklenen de goriilen U € RM uzayinda capraz tamima yapilacaktir.

[Sekil 5.3[de A ve B matrisleri sirasiyla X ve Y uzayi i¢in KKA doniisiim matrislerini, r
matrisi X ve Y uzaylar arasindaki kanonik korelasyonlar1 gosteren kosegen matrisini

(p2 0 .. 0 0 0]
0 p 0 .. 0 0
r=
0 0 Pt O
0 0 0 0p2

ifade etmektedir.

z vektorii ise Y uzayinda tanimli olan ve siniflandirilmasi istenen ornegi ifade etmekte-
dir.

KKA kullanarak capraz siniflandirma egitim ve test asamalarindan olusmaktadir. Egitim

asamasinda yapilacak iglemler;

e X ve Y veri kiimeleri arasinda KKA yontemini kullanarak, A,B matrislerinin ve
ozniteliklerin korelasyonunu gosteren r kdsegen matrisinin bulunmasi. Bulunan A, B
doniisiim matrisleri sirastyla X uzaymdan U ara uzayina ve Y uzaymdan V ara uzayina

gecislerde kullanilir.

e U < R uzayinda kullanilacak 6znitelik sayisinin belirlenmesi ve bu 6znitelikler icin
bir simflandiricinin tasarlanmasi. Oznitelikler, korelasyonu yiiksek olandan diisiik
olana dogru siralandigindan, 6zniteliklerin gerektiginde bu sirayla indirgenmesi op-

timal bir yaklagim indirgeme yaklagimidir.
seklindedir. Egitimden sonraki test asamasinda ise yapilacaklar;
e X veri kiimesindeki 6rneklerin A matrisi ile U uzayina taginmasi.

e 7z Ornegi B matrisi ile V uzayina sonrasinda da r kosegen matrisi ile U uzayina

taginmasi.
e Siiflandirmanin U € R ara uzayinda herhangi bir siiflandiric1 ile yapilmasidir.

Bu yontem i¢in olan kabullenmelerimiz,
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e X veY veri kiimelerinin birbiri ile ilintisiz olmamalar1 ((|Py,| # 0))
e X ve Y veri kiimeleri icin KKA yapabilmek i¢in yeterince verinin olmasidir

Test asamasinda, test edilecek (siniflandirilacak) verinin egitim asamasinda kullanilan veri-
lerden olmas1 gerekmemektedir. KKA ile X ve Y veri kiimeleri arasindaki genel davranig

modellenmeye calisilmaktadir.

KKA doniigiim matrisleri ile X verilerinin U uzayindaki izdiigtimleri, Y verilerinin V
uzayindaki izdiistimleri olugturulur. U ve V uzayindaki verilerin 6znitelikleri birbirleri ile en
yiiksek korelasyonu olusturacak sekilde yapilanmis olurlar. Bu sayede, 6znitelik sayisinda
azaltma yapilmasi1 gerektigi durumda, sondan baglayarak ozniteliklerin atilmasi, 6znitelik

seciminde optimal bir yontem olarak kullanilabilir.

KKA ile ¢apraz tanima uygulamalart Béliim [6|iginde yer almaktadur.
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6. UYGULAMALAR

Capraz simiflandirma problemleri icin Onerilen yontemler, pratikte bir¢cok uygulama alani
bulabilmektedir. Tek boyutlu uzayda Gauss dagilima sahip iki veri kiimesi arasindaki sinif
aynistirilabilirligi Bolim [3.5]de sentetik veriler tizerinden sayisal olarak incelenmisti. Bu
boliimde ise, gercek veri kiimeleri lizerinden ¢apraz siniflandirma icin 6nerilen yontemlerin
uygulamalar1 ve performanslar: incelenecektir. Calisilan uygulamalar, DMOKH ile ¢apraz
tanima ve KKA tabanli ¢apraz tamima/siniflandirma uygulamalarini kapsamaktadir. Yapilan
tiim uygulamalarda Boliim [3.3[de anlatilan dogrusal minimum ortalama karesel hata kes-
tiricisi (DMOKH) ile ¢apraz tanima ve Boliim [5.2]de onerilen kanonik korelasyon analizi
(KKA) tabanli capraz tanima teknigi kullanilmistir.

Bolim @de IRIS veri kiimesi [31}, 32] kullanilmistir. Bu veri kiimesi {izerinde, Boliim
B[de anlatilan DMOKH kestiricisi kullanilarak ¢apraz tanima problemi calisilmis ve hata

olasiliklart degerlendirilmistir.

Boliim [6.2]de *CMU (Carnegie Mellon University) Face Images’ veri kiimesi kullanilmistir
[33]. Farkli acidan ¢ekilen yiiz fotograflar1 iizerinde DMOKH kestirimi tabanli ¢apraz
tanima yontemi calisilmis ve performans degerleri sunulmustur.  Ayrica smiflarin
ayristirilabilirliginin DMOKH kestiricisi altinda nasil etkilendigi de bu uygulamada

gosterilmisgtir.

Boliim [6.3] KKA ve DMOKH tabanli ¢apraz simiflandirma yontemlerinin karsilagtirmasini
icermektedir. Genetik veriler iizerinden yapilan calismada etnik koken belirlenmesi oto-

zomal veriler iizerinden ¢alisilmugtir.

Boliim [6.4f/de KKA ve DMOKH tabanli ¢apraz smiflandirma ile yapilan gercekgi bir
uygulamada farkli sonuglar ¢ikmasinin sebepleri incelenmistir. Genetik veriler iizerinden
yapilan uygulamada, otozomal genetik veriler iizerinden bireylerin haplogrup kestirimleri

yapilmugtir.

Boliim [6.5[de, farkli a¢i altinda elde edilmis yiiz fotograflarinda KKA capraz

siniflandirmanin nasil yapilabilecegi incelemis ve sonuglar tartigilmistir.

Boliim [6.6/de, kriminal amagli robot resimlerden KKA tabanli yiiz tanima uygulamasi
calisgtlmisti.  Robot resimler kriminal caligmalarda siklikla kullanilmaktadir.  Gorgii
taniklarinin ifadelerine dayanilarak olusturulan bu robot resimler (eskiz), veri kiimesinde
daha onceden kayith fotograflarla karsilagtirilmakta ve tamima yapilmaya caligilmaktadir.
188 kisiye fotograf-eskiz iceren ’"CUHK Yiiz Eskiz Veri Kiimesi’ ve 126 kisiye ait fotograf-
eskiz iceren *AR Yiiz Veri Kiimesi’ [34] olarak adlandirilan veri kiimesi kullanilarak yapilan
uygulamada, KKA tabanli ¢apraz tanima yontemi sunulmus ve performans degerlendirmesi

yapilmistir.

47



Bolim [6.7/de, giivenlik kameralarinda yiiz tanima problemi incelenmistir. ~ Giivenlik
kameralar1 farkli mesafelerden farkli ¢oziiniirliiklerde yiiz goriintiileri elde etmektedir.
Ozellikle uzaktan elde edilmis yiiz fotograflari, veri kiimesinde daha 6nceden kayitl olan
fotograflardan daha diisiik coziiniirliikte olmaktadir. Bu calismada 100 kisiye ait farkl
mesafelerden elde edilmis goriintiileri igeren, ’Long Distance Heterogeneous Face Database
(LDHF)’ veri kiimesi kullanilmistir [35, 136]. Bu veri kiimesinde KKA tabanli uzak mesafe

yiiz tanimanin nasil yapilacagi ag¢iklanmis ve uygulama sonuclar1 degerlendirilmistir.

6.1 IRIS Veri Kiimesi Uygulamasi

Bu boliimde, dogrusal minimum ortalama karesel hata kestiricisi (DMOKH) ile capraz
tanima yaklasimi, 6rnek bir problem olarak siisen bitkisi tiirlerini tanimada kullanilmistir.
Iris Setosa, Iris Versicolour ve Iris Virginica olmak iizere 3 farkl: tiire ait elliser 6rnek iceren
IRIS veri kiimesi [37] kullanilmigtir. Toplam 150 6rnege ait veri iceren veri kiimesinde, her
bir ornek i¢in sirasiyla canak yaprak uzunlugu, ¢canak yaprak genisligi, ta¢ yaprak uzunlugu

ve ta¢ yaprak genisligi olmak iizere 4 farkli 6znitelik bulunmaktadir.

Olgiilebilen (y), dlciilemeyen (x) ve kestirilen (x,y ) veriler iizerinden karesel siniflandiricilar

(quadratic classifier) kullanilarak ¢apraz tanima gerceklestirilmistir.

Karesel siniflandiricilar, karesel bir fonksiyon ile hesaplanan sonsal olasilig1 (posterior prob-
ability) maksimize eden simiflandiricilardir ve genel yapilar1 Esitlik [ 6.1fde gosterildigi
sekildedir.

gi(z) =2 Wiz+wlz+w; (6.1)

i sinif numarasini, g;(z) ayristirma fonksiyonunu ifade etmektedir. Eldeki bir 6rnegin hangi
sinifa ait oldugunu belirlemek i¢in, her sinif icin ayristirma fonksiyonu hesaplanir ve 6rnek
en yiiksek ayrigtirma degerini gosteren sinifa atamir. p;(z), i. smifa ait olasilik dagilimini,
P(c;) i. smifa ait 6nsel olasihigi (Prior Probability) ifade etmek iizere, Bayes kuralina

gore;

P(ci)p(z|ci)
p(z)
elde edilir. N, dagilimin tanimli oldugu uzayin boyutu olmak iizere, Gauss dagilimlar i¢in

esitlik;

gl’(Z) = P(Cill) = ( 62)

) = 2n NP Pexp(—5(z— pi) P (2 — i) Pei)
- p(z)

gi(z (6.3)

sekline doniisiir. Ifade monotonik artan bir fonksiyon oldugundan, tiim ifadenin 6nce
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karesini almak, sonra logaritmasini almak ve en son olarak da sabit terimleri at-
mak karsilagtirma yapilacak g;(z) fonksiyonlariin siralamasini degistirmeyecektir. Bu
islem sonucunda Gauss dagilimlar i¢in kullanilacak ayrigtirma fonksiyonu Esitlik [ 6.4]de

gosterildigi sekilde olacaktir.

i(2) = —5 (= i) B (2 i) — Slog () + P(cr) (64

Siniflandiricilarin siniflandirma hatasi olasih@gi (P,) degerlerinin Esitlik de verilen
siirlar icerisinde kalip kalmadig1 incelenecektir.

(%exp—BU(Cl,cz))Z < 2Pe < exp—BU(Cl,Cz) (65)

Olgiilemeyen (X) veri kiimesi igin hazirlanan karesel siniflandirici (KSy), kestirilen (x5 ) ve-
rileri icin dogrudan kullanilacak ve P, degerinin hangi sinirlar arasinda kaldig1 incelenecek-

tir.

Veri Kiimesi

IRIS veri kiimesinde her ne kadar 3 farkl: tiire ait 6rnek veriler bulunsa da bu uygulama ilk
iki tiir siisen bitkisine ait 50 x 2 ornek icin 4 farkli 6znitelik iizerinden calisilmigtir. 2 farkl
siisen tiiriine ait toplam 100 6rnege ait veriden, iris versicolor tiirii slisen bitkisine ait 6rnekler
Smif-1, iris virginica tiirli siisen bitkisine ait ornekleri ise Sinif-2 olarak isimlendirilmistir.
Her bir 6rneginin veri bankasinda kayith ta¢ yaprak 6znitelikleri (3. ve 4. 6znitelikler) X veri
kiimesini, kayith olmayan fakat ol¢iilebilen canak yaprak oznitelikleri (1. ve 2. dznitelikler)
Y veri kiimesini olusturmaktadir. Sonug olarak, X ilk elli satir1 Smif-1 sonraki elli satir
Smif-2’ye ait ta¢ yaprak ozniteliklerini iceren 100 x 2 boyutunda, Y ise ilk elli satir1 Simif-1
sonraki elli satir1 Stmif-2’ye ait ¢canak yaprak Ozniteliklerini iceren 100 x 2 boyutunda veri

kiimeleridir.

Amac¢

X veri kiimesi 0znitelikleri (ta¢ yaprak Oznitelikleri) i¢in tamimlanmis bir siniflandirict kul-
lanilarak, Y veri kiimesi Oznitelikleri (¢anak yaprak 6znitelikleri) Olciilen bir 6rnegin hangi
sinifa (siisen tiirtine) ait oldugunu belirlemektir. Ayrica, hangi sinifa ait oldugunu bulmak
icin Boliim [3.3]de 6nerilen DMOKH kestirici tabanli ¢apraz tanima yontemi kullanildiginda,

siniflandirma performans degerlerinin Esitlik[ 6.5]ile uygunlugunu incelenecektir.

Deney
Bu deneyde yapacaklarimiz sirasiyla asagidaki gibidir.

e Basamak-1: Dogrudan Olcemedigimiz Ozniteliklerin (X veri kiimesi Oznitelikleri
(ta¢ yaprak oznitelikleri)) DMOKH kestirim yontemi ile dogrudan 6lgebildigimiz

ozniteliklerinden (canak yaprak 6znitelikleri) kestirimi,
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Basamak-2:  Kestirilen x,y Oznitelikleri ic¢in yeni bir smiflandirict (KSy,,)

tanimlanmasi,

Basamak-3: KS

Xest

mansi ile kargilagtirilmast,

siniflandiricisinin performansinin, KS, siiflandiricisinin perfor-

Basamak-4: Xes degerleri lizerinde KS, smiflandiricisinin  performans

degerlendirmesi,

Basamak-5: x,y Oznitelikleri i¢in K'S, smiflandiricisinin performansinin Bolim (A deki

Iddia-3 ile uygunlugunun gosterilmesi.

Basamak-1

X ve Y veri kiimesi 0zniteliklerinin dagilimu sirasiyla [Sekil 6.1| ve [Sekil 6.2]de goriildiigii

gibidi

X, (canak yaprak genisligi)

I.

+  Sinif-1 *or
* Sinif-2 *
3.9¢ .
+ *¥*
#* *
+ * * %+ *
#* * *
3- + ++ FE%E *+ ¥k * ¥ * % .
++ +++%+ + *
* 4k + # # * + + * *
+ + % + * #*
+ ++ * *
25 % + + +* ¥ * -
+ +
+ + +
* +
2r + -
| | | |

5 6 7 8
X, (canak yaprak uzunlugu)

Sekil 6.1: iki Tiir Siisen Bitkisinin Canak Yaprak (X Veri Kiimesi) Oznitelikleri
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25¢ ¥ k¥ -
+ Sinif-1 .
— *  Sinif-2 FEEE K ¥ ¥ *
=) ¥ ¥ *
R4 FkkkE K *
S 2 kKKK * k-
=2 EE =
= ¥ K KK K K ¥
O * +
g + +  + *
o 1.5} + R -
o + + +++ #
=, +
et + + + +
+ ++
1 . | + + + T+ | | I_
3 4 4] 6 I

Y, (tac yaprak uzunlugu)

Sekil 6.2: Iki Tiir Siisen Bitkisinin Ta¢ Yaprak (Y Veri Kiimesi) Oznitelikleri

P esdegisinti matrisini, i ortalama de8er vektoriinii ifade etmek iizere;

6.26 0.44 0.12]
] ’ PX - [

Kullanilan X veri seti icin; fy =
st e [2.87 0.12 0.11

4.90] B [0.68 0.29]
s y —

Kullanilan Y veri seti icin; gy = [ 1.68 0.29 0.18

045 0.14
ve Pyy =
Y017 0.08
Py, 1y, Pyy ve py degerlerini bildigimiz durumda DMOKH kestiricisi ile Egitlik [ 6.6] kulla-
narak yapilan kestirimde Xest Oznitelikleri [Sekil 6.3[de verildigi gibi bulunmustur.

] olarak hesaplanmistir.
Xest = ﬂx‘|‘nyPy_1(y—ﬂy> (6.6)
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T T T T T T
++

— 3.2¢| + Sinif-1 + . +
10 + +
= * Sinif-2 + .+ 7 +
= 3.1t +++tT 4 F + 4
[ " + + +
O ++T
o 4 o

- +++ + -
ﬁ ++Jr + oy Tt
% 29¢ #* % + i
> P N

* +
E 28' " **;jﬁé** 7
*

S % k¥t
™ 2.?_ ***\" % * .
0 L
1
HN 26_ ** ** _

By w7

5 55 6 65 7 75

X oet (¢canak yaprak uzunlugu)

Sekil 6.3: Kestirilen (x,s;) Veri Kiimesi Oznitelikleri

X, Y ve X,y veri kiimelerinin dagilimlar1 Gauss olarak kabul edilip, Esitlik ve Esitlik |
2.8 kullanildiginda, veri kiimelerine ait BK degerleri:

BK, = 0.84
BK, =0.24
BK,,, = 0.24

Xest

olarak belirlenmistir. BK, = BK,

bir sonuctur.

olmast Bolim [2.1[deki Iddia-1 dogrultusunda beklenen

est

Basamak-2

[Sekil 6.4]de siyah ¢izgi ile gosterilen X veri kiimesi i¢in belirlenen karesel siniflandiricidir
(KSy). Bu karesel siniflandirici, g; (x) ayristirma fonksiyonun g (x) ayristirma fonksiyonuna
esitlenmesi ile bulunan karar verme sinir1 ile tanimlanmigtir. Bulunan karesel siiflandirici

i¢in hesaplanan hatali siniflandirma olasilik degeri, P,, = 0.29 olarak belirlenmistir.
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1+ Sinif-1

+ o+
*  SInif-2

=
N 3 5 _KS}{ "
E" .
— /
©
o # ++% +
v
0 3 * ¥¥ K+¥ ++ ++ -
0 * ¥ +
g + %+ + o+
= * * ¥ #
03 * ok n
% 25 + =% ¥ % + :
e * *
— * *
|
»e

2r * ]

7 8
X, (¢canak yaprak uzunlugu)

Sekil 6.4: Her Iki Tiir Siisen Bitkisinin X Veri Kiimesi Karesel Siniflandiricist

[Sekil 6.5[de siyah ¢izgi ile gosterilen Y veri kiimesi i¢in bulunan karesel simiflandiricidir
(KSy). Bu karesel smiflandiric, g1(y) ayristirma fonksiyonun g»(y) ayristirma fonksiyo-
nuna esitlenmesi ile bulunan karar verme siniri ile karakterize edilmigstir. Bulunan kare-
sel smiflandiricr igin hesaplanan hatali smiflandirma olasilik degeri, P, = 0.03 olarak

hesaplanmustir.
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2.5 + o+ -
. + —
Sinif-1 N N
— *  SInif-2 A+ +
=) KS + + +
Roig Y ++++ + +
S 2t -+ + o+
=2 ++ + +
= ¥+ +  ++ + + +
| -
O
g * * +
o 1.5F ¥ okEE E++ -
o * * KAk +
=, F o HEERRAE
et EE T
* * %
1k * ok Ok Kk -

3 4 5 6 7
Y, (tac yaprak uzunlugu)

Sekil 6.5: Her Iki Tiir Siisen Bitkisinin ¥ Veri Kiimesi Karesel Smiflandiricisi

[Sekil 6.6de siyah ¢izgi ile gosterilen X, veri kiimesi i¢in bulunan karesel simiflandiricidir
(KSx

siyonuna esitlenmesi ile bulunan karar verme siniridir. Bulunan karesel siniflandirict igin

) Bu karesel siniflandirict, gj (x5 ) ayristirma fonksiyonun ga(xes) ayristirma fonk-
hesaplanan hatali simiflandirma olasilik degeri, P, = 0.03 olarak hesaplanmigtir. Fakat
gercek problemlerde biitiin x,.,; de8erleri elde bulunmadigindan, KSy, , siniflandiricisi tasar-

lanamayacaktir. Bunun yerine yapilabilecek olan KS, kestiricisini kullanmaktir.
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1+ Sinif-1
*  Sinif-2
—KS

¥est

Xt (canak yaprak genisligi)

X

- . . |
5 5.5 6 6.5 7 7.5
(¢canak yaprak uzunlugu)

x'lest

Sekil 6.6: Her Iki Tiir Siisen Bitkisinin X, Veri Kiimesi Karesel Siniflandiricist (KSy. ) ve

est

X Veri Kiimesi Karesel Siniflandiricisi (KSy)

Basamak-3

DMOKH kestiricisi ile elde edilen X, veri kiimesinin elemanlarinin, Y veri kiimesi eleman-
larinin dogrusal bir doniisiimden gecirilmis hali oldugunu soylemistik. Verinin kendisi veya
tersinir dogrusal doniisiimden ge¢mis hali siniflarin ayristirilabilirlikleri bakimindan 6zdes
bilgilere sahiptirler. Bu sebepten, karesel siniflandiriciy1, birbirine karsilik gelen Y ve X,y

veri kiimeleri tizerinden tasarladigimizda P, = P, olmasi beklenen bir sonugtur.

Basamak-4

CS problemini tamimlarken, X veri kiimesindeki, x 6zniteliklerine ait bir siniflandiricinin
bilindigini kabullenmistik. Oyleyse burada X,y Oznitelikleri igin tanimladigimz P,
degeri, pratikte bilinebilen bir simiflandirict i¢in hesaplanmis hata ihtimali olarak karsimiza
cikmaktadir. Gercek CS problemlerinde yapilacak hata olasilik degerini bulabilmek i¢in,
Xqsr Oznitelikleri ile, bilinen KS) siniflandiricisin1 kullanmak gerekmektedir. Bu durumda
ulagilabilecek ve [A’exw seklinde gosterilebilecek yeni bir hata olasilig1 tanimlanabilir.
@’de kirmiz1 noktali ¢izgi ile gosterilen karesel siniflandirici KSy olup, X.s Oznitelikleri

izerine uygulandiginda yapilan hata:

55



}?ew = 0.15 olarak bulunmustur.

Basamak-5
Basamak-1’de 6l¢iilen BK degerleri Esitlik [ 6.77de yerine konuldugunda

1
(EBK(CI,CZ))Z < 2P, < BK(cy,c2) (6.7)

x Oznitelikleri i¢in: 0.0879 < P, =0.29 <0.4193
y Oznitelikleri i¢in: 0.0073 < P, = 0.03 <0.1211
X, Oznitelikleri i¢in: 0.0073 < P, =0.03<0.1211

esitsizliklerinin saglandig1 goriilmektedir. x.5 Oznitelikleri i¢in KS, kullamildiginda hata
olasilig1 Basamak-4’de I/’\exw = 0.15 olarak bulunmugtu. Bu deger, 0.0073 < I/D\ew <0.1211
esitsizligini saglamamaktadir. KS, simiflandiricis1 farklh veri kiimesinden (X veri kiimesi)
olusturulmast dolayisiyla bu husus celigkili bir durum degildir DMOKH kestiricisi
ile capraz simiflandirma yapilmak istendiginde, sinir degerlerinin ne sekilde degismesi
gerektigi Boliim [.1[de yer alan Cikarim-6 da ifade edilmisti. Esitlik [4.1] Cikarim-6 ile
birlestirildiginde kestirilen Ozniteliklerin X,;; = X + 1 olarak tanimlanmasi ile yeni elde
edilen éf(xm degeri é?(xm = 0.7163 olarak bulunmugtur. ﬁ{xm ve I/D;Xm Esitlik | 6.7[e

yerlestirildiginde, Xeg¢ Oznitelikleri icin;

0.0641 <P, =0.1500 < 0.3582

esitsizliginin saglandig1 goriilmektedir. Bu sonuclar, karesel siniflandiricinin siisen bitki tipi

tanima problemi agisindan makul bir performansi oldugunu ifade etmektedir.
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6.2 CMU Veri Seti Yiiz Tammma Uygulamasi

Veri Kiimesi

Calismada CMU (Carnegie Mellon University) Face Images’ veri kiimesi [33]
kullanilmigtir. Bu veri kiimesi; 20 kisinin 4 farkli acidan(6n-iist-sag-sol), 4 farkl1 yiiz ifadesi
ile (normal-iizglin-mutlu-sinirli) giines gozliiklii ve giines gozliiksiiz 20 x 4 x 4 x 2 = 640
adet gri seviyeli (grayscale) yiiz imgesinden olugsmaktadir. Her bir imge 128 x 120 piksel
coziiniirlige sahiptir.

Sekil 6.7: CMU Veri Kiimesinden Ornekler

Amac
Bu uygulamada amag, soldan-rastgele yiiz ifadeli-giines gozliiksiiz olarak verilen bir yiiz
goriintiisiiniin, veri bankasinda olan dnden-rastgele yiiz ifadeli-giines gozliiksiiz kayitlardan

hangisine ait oldugunun belirlenmesi olarak tanimlanmustir.
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Deney
Bu calismada, yliz ifadelerine ait 6znitelikler, ilk 70 temel bilesen vektorleri (principal com-

ponents) olarak secilmistir [38]].

Oncelikle 20 kisiye ait 4 farkli yiiz ifadesi-giines gozliiksiiz-6nden cekilmis 80 (20 x 4 x 1 x
1) adet imgenin ilk 70 temel bilesen vektorii X veri kiimesi olarak, 20 kisiye ait 4 farkl yiiz
ifadesi-giines gozliiksiiz-soldan ¢ekilmis 80 (20 x 4 x 1 x 1) adet imgenin ilk 70 temel bilesen
vektorii Y veri kiimesi olarak tamimlanmistir. X veri kiimesi dogrudan dlgemedigimiz, Y
veri kiimesi ise dogrudan 6lgebildigimiz fakat siniflandiricisini bilmedigimiz veri kiimelerini

ifade etmektedir.

Veri kiimeleri arasinda; soldan cekilmis imgelerden (Y veri kiimesi), onden c¢ekilmis
imgelere (X veri kiimesi) Esitlik[6.6]da ifade edilen dogrusal minimum ortalama karesel hata
(DMOKR) kestiricisi ile kestirim yapilmistir. Bu kestirim i¢in X veri kiimesindeki 20 kisiye
ait 4 farkl yiiz ifadesinde-giines gozliiksiiz-6nden c¢ekilmis (X veri kiimesi) imgelerin temel
bilesenlerine karsilik 20 kisiye ait 4 farkli yiiz ifadesinde-giines gozliiksiiz-soldan ¢ekilmis
(Y veri kiimesi) imgelerin temel bilesenleri kullanilmistir. [Sekil 6.77da 20 kisiye ait 80
yiiz imgesinin bulundugu X veri kiimesinin ilk 20 6rnegi gosterilmektedir. [Sekil 6.77deki
her bireyin 4 farkl yiiz ifadesinden olusan 4 imgelik gruplari, X veri kiimesinin siniflarim
olusturdugundan X veri kiimesindeki 20 birey toplam 20 sinifi olusturmakta ve her siif
toplam 4 yiiz imgesinden olugmaktadir. Y veri kiimesi de ayn1 sekilde, soldan ¢ekilmis 20

kisiye ait 80 yiiz imgesi icermekte ve toplam 20 siniftan olugmaktadir.

80 yliz imgesi iizerinden, soldan ¢ekilmis imgelerin temel bilesen vektorlerinden dnden
cekilmis imgelerin temel bilegsen vektorlerine yapilan dogrusal minimum ortalama karesel
hata kestiriminde, 6zdegerlerin toplaminin %90’na karsilik gelen ilk 70 adet temel bilesen

kullanilmagtir.
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Sekil 6.8: On-Normal ve Sol-Normal Test Goriintii Ornekleri

Sinif Ayristirilabilirligi

Bu uygulamada, [Sekil 6.8]de gosterilen On-normal-giines gozliiksiiz ve sol-normal-
giines gozliiksiiz imgelerin Oznitelikler uzayinda ayristirilabilirligi incelenecektir.  Sinif

ayristirilabilirligi testi igin X ve Y veri kiimesindeki [Sekil 6.8[de gosterilen 2 bireyden her
birine ait 4 farkli (normal-iizgiin-mutlu-sinirli) yiiz imgesinin temel bilesenleri kullanilmistir.

Ayristirilabilirlik iki farkli agidan ele alinacaktir:
e Siniflar aras1 Bhattacharyya Uzaklig1 (BU) ve

e Sinif icerisindeki her ornegin ait oldugu ve ait olmadig: siniflara olan Mahalanobis
Uzakliklar1 (MU).

Mahalanobis uzaklig1, uzayda bir noktanin bir dagilima olan uzakligini 6lgmek i¢in kullanilir
ve Esitlik[6.8]deki sekilde ifade edilir.

MU = (t— ) P (t— )2 (6.8)

Burada, t test vektoriinii, X veri kiimesine mesafesi Olciilecek test 6rnegi, Py ve i, X veri

kiimesine ait esdegisinti matrisi ve ortalama deger vektorii olarak alinir.
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Test Goriintiileri BU Degerleri

Smif aynistirilabilirligi, X ve Y veri kiimesi ornekleri i¢in ayri ayri incelenecektir. Test igin
X veri kiimesindeki 1. kisiye ait 4 farkli yiiz ifadesi ile elde edilen imgeler sinmif-1, 2. kisiye
ait 4 farkh yiiz ifadesi ile elde edilen imgeler sinif-2 olarak gruplandirilmigtir. Ayni sekilde
Y veri kiimesindeki 1. kisiye ait 4 farkl yiiz ifadesi ile elde edilen imgeler sinif-1, 2. kisiye
ait 4 farkl yiiz ifadesi ile elde edilen imgeler simif-2 olarak gruplanmugtir. Sinif-1 ve sinif-2
ait 6nden cekilen yiiz imgelerine ait ornek [Sekil 6.8]de iistte, soldan ¢ekilen yiiz imgelerine

ait ornek [Sekil 6.8 de altta goriilmektedir.

Onden cekilen yiiz imgelerinin (X veri kiimesi) smnif-1 ve sinif-2 dagilimlar1 Gauss olarak

kabul edilip simif istatistikleri hesaplandiktan sonra siniflar arasindaki BU degeri (BU,)
Esitlik[2.8]ile

BU, = 466.15

olarak belirlenmistir.

Soldan ¢ekilen yiiz imgelerinin (Y veri kiimesi) sinif-1 ve sinif-2 dagilimlar1 Gauss olarak
kabul edilip simf istatistikleri hesaplandiktan sonra siniflar arasindaki BU degeri (BU,)
Esitlik ile bulunmustur.

BU, = 294.46

Soldan cekilen yiiz goriintiileri (Y veri kiimesi) kullanilarak kestirilen onden cekilmis
goriintli Oznitelikleri i¢in sinif-1 ve simif-2 dagilimlart Gauss olarak kabul edilip sif is-
tatistikleri hesaplandiktan sonra simiflar arasindaki BU degeri (BU,,, ) Esitlik ile

bulunmustur.

BU

Xest

=294.46

olarak bulunmustur. Bu sonug, Esitlik ile ispatlanan, doniisiim altinda BU’nin

degismedigi sonucuyla tutarlidir.
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Test Goriintiilerinin Mahalanobis Uzaklik Olgiitii Degerleri

Ozniteligi bilinen bir 6rnegin hangi sinifa ait oldugunu bulmak icin kullanilabilecek temel

bir yontem Mahalanobis mesafe olciitiidiir [39]]. |Cizelge 6.1] ve [Cizelge 6.2/da 8 ornek

goriintiiye ait MU degerleri gosterilmigtir. MUj;, ifadesi, i.simfa ait ,j. ornek verinin k.

sinifa olan Mahalanobis uzakligini ifade etmektedir.

Cizelge 6.1: Test ve Kestirilen Goriintiilerin 1.Sinifa Olan Mahalanobis Uzakliklar

MU11,1 MU12,1 MU13,1 MU14,1 MU11,2 MU12.2 MU13,2 MU14,2
Test 236.24 | 228.25 | 193.09 | 137.41 | 7852.82 7212.10 7891.95 8005.29
Kestirim | 232.48 | 225.64 | 187.12 | 128.07 | 15482.80 | 14832.75 | 15072.52 | 14485.41

[Cizelge 6.1fde goriildiigii iizere, X veri kiimesindeki test imgesi 6znitelikleri i¢in elde edilen
MU\, degerleri ile kestirim ile elde edilen 6zniteliklerin i¢in hesaplanan MU\, , degerleri
birbirlerine oldukca yakindir. Fakat X veri kiimesindeki test imgesi Oznitelikleri i¢in elde
edilen MU, degerleri ile kestirim ile elde edilen ozniteliklerin i¢in hesaplanan MU, _,
degerleri oldukga farklidir. MUj._, ifadesi siuf-1"e ait bir 6rnegin sinif-2’ye olan Maha-
lanobis Uzakligini ifade ettiginden dolay1, biiyiik olmasi siniflandirma performansina olumlu
etki edecektir.

Cizelge 6.2: Test ve Kestirilen Goriintiilerin 2.Sinifa Olan Mahalanobis Uzakliklar

MU21.’1 MU22,1 MU23,1 MU, , MU2172 MU22,2 MU23_’2 MU2472
Test 2801.50 | 2564.05 | 823.82 | 2506.31 | 15166.17 | 13558.53 | 1509.06 | 14530.22
Kestirim | 2729.93 | 2497.38 | 807.05 | 2436.69 | 2185.02 | 2218.56 | 2016.78 | 2477.81

de ise MU, . degerleri, dogrudan test goriintiileri kullamldiginda yanlg
simiflandirma yapmaktadir. Ornegin, test goriintiileri icin MU, = 2801.50 < MU, , =

15166.17 oldugu i¢in Mahalanobis tabanli bir siniflandiric1 bu 6rnegi yanlis olarak 1.sinifin
Kestirilen ozniteliklerde ise MUy, , = 2729.93 >
MU, , = 2185.02 oldugundan Mahalanobis tabanli bir siniflandirict bu 6rnegi dogru olarak

bir eleman1 olarak nitelendirecektir.

2.s1n1fin bir elemam olarak siniflandiracaktir.

Cikarim-7 BU olciitii, simif ayristirilabilirligi acisindan kullanilabilse de, DMOKH kes-
tiricisi tabanli capraz tanima uygulamalarinda performansi hakkinda kesin bilgi ver-
mez. Bunun sebebi, kestirilen degerlerin, simmiflandirma asamasinda veri bankasindaki
degerlerle (bu 6rnekte; 6nden cekilmis fotograflarin oznitelikleri) kiyaslanarak kullanilacak
olmasidir. Diger bir ifadeyle, kestirim degerleri BU agisindan ayristirilabilir olmasina karsin,
siiflandiricilar kestirim yapilan Oznitelikler yerine dogrudan olciilemeyen oznitelikler

(bu ornekte X veri kiimesi (0nden cekilen yiiz imgeleri)) ilizerinden tanimlandigindan,
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siniflandirmada kullanildiklar1 zaman kétii bir performans gosterilebilirler. Bunun tersi de

gerceklesebilir.
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6.3 Genetik Isaretleyiciler ile Etnik Koken Belirleme Uygulamasi

Bu uygulamada, kendisini Beyaz-Amerikali (caucasian) olarak tanmimlayan 258 erkek
(smmf-1), Afrikali-Amerikali (African-American) olarak tanimlayan 254 erkek (sinif-2)
ve kendini Hispanik olarak tamimlayan 138 erkek (sinif-3) bireyin otozomal ve Y-DNA
isaretleyicilerinin bulundugu STDR veri kiimesi kullanilmistir [40]. Otozomal genetik
isaretleyiciler (marker), giivenlik giicleri tarafindan kriminal uygulamalarda kullanilan
standart genetik verilerdir. Kigilerden alinan dokular vasitasiyla, kromozomlar iizerinde
tanimlanan bu isaretleyicilere STR (Short Tandem Repeat) isaretleyicisi denilmektedir. Kul-
lanilan veri kiimesinde otozomal veriler icin 16 cift isaretleyici bulunmaktadir ve bu genetik
imza 2 x 16 adet tamsayi ile ifade edilmektedir. Bu tamsayilardan, cinsiyeti belirleyen 1 ¢ift
(kiimemizdeki tiim bireyler ayni cinsiyette oldugundan) veri setine dahil edilmemistir. Y-
DNA verileri ise yalnizca erkeklerde bulunan Y kromozomu iizerinden 6lgiilen 17 tane STR

ile tanimlanmaktadir ve 17 tane tamsay1 ile ifade edilir [41].

Bu c¢alismada her ne kadar, otozomal ve Y-DNA verilerinin, bireylerin etnik veya irksal
kokeninin belirlenmesinde ne kadar basarili olarak kullanilabilecegini goreceksek de; asil
gostermek istedigimiz capraz siniflandirmanin performansi degil, hangi sartlar alinda KKA

ve DMOKH ile ¢apraz tanima yapmanin birbirlerine denk olacagini ortaya koymaktir.

Deney Ortami
c1 128 Beyaz-Amerikali’dan, ¢, 254 Afrikali-Amerikali’dan ve ¢3 138 Hispanik’den olugan
3 farkl1 sinifi ifade etmektedir. Bu 3 sinif toplam 128+254+138 = 650 farkli bireye ait verileri

icermektedir.

KKA ve DMOKH tabanli ¢apraz siniflandirma i¢in verilerin tamami 6grenme asamasinda

kullanilmigtir. Test asamasinda ayni veri kiimesi kullanilmistir.

650 farkli bireye ait Y-DNA (17 adet 6znitelik) verileri 650 x 17 boyutunda Y veri kiimesini,
otozomal (30 adet 6znitelik) veriler ise 650 x 30 boyutundaki X veri kiimesini olusturmustur.
DMOKA ve KKA tabanli capraz siniflandirmada, Y uzayi 6znitelikleri (Y-DNA) 6l¢iilebilen,
X uzayr Oznitelikleri (otozomal) veri bankasinda kayitli olan verileri ifade etmektedir.
Giinlimiizde etnik koken belirleme X veri kiimesinde tanimli olan otozomal 6znitelikler
tizerinden belirlenmektedir. Burada gostermek istedigimiz ise, elimizde Y-DNA 6znitelikleri
(Y veri kiimesi) 0znitelikleri oldugu durumda etnik kokenin nasil belirlenebilecegidir. Uygu-
lanacak capraz siiflandirma yontemleri, Y uzayinda tanimhi 6zniteliklerinden, X uzay1 veya
U uzay1 6zniteliklerini kestirmeyi amaclamaktadir. Boylece, Y uzayinda tanimli olan Y-
DNA 06znitelikleri ile etnik koken belirlenmeye c¢alisilacaktir. KKA sonrasinda ulagilan ara

uzaylar U ve V ara uzaylari olarak adlandirilmustir.

Deneyde; X (otozomal Oznitelik), Y (Y-DNA 0znitelik) uzaylar1 ve U, V ara uzaylar
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icin karesel siiflandiricilar tasarlanmistir. X, Y, U, ve V uzaylarindaki 3 smifin kare-
sel smiflandiricilar ile simiflandirilma hatalart sirasiyla Ex, Ey, Ey ve Ey olarak ifade
edilmigstir. X uzayindaki DMOKH tabanh ¢apraz simiflandirma hatasi Epyokmn,, U ara
uzaymdaki KKA tabanli ¢apraz simflandirma hatas1 Exka, ve X uzayindaki KKA tabanl
capraz siniflandirma performans: Exxa, olarak gosterilmistir. X uzayinda yapilan KKA ta-
banh capraz simflandirma, U uzayinda gegirilen verilerin AT (AAT)~! doniisiimii ile elde
edilir. Yapilan hatali sinifflandirma oranlar Ex, Ey, Ey ve Ey, bulunduklari uzaylarinin kare-
sel siniflandiricilar ile 3 sinifa ayrildiginda hatali siniflandirilan 6rneklerin toplam 6rneklere

oranini ifade etmektedir.
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Sekil 6.9: Genetik Veriler ile Etnik Koken Belirleme Probleminde Simiflandirma Hata

Oranin Kullanilan Oznitelik Sayisina Gore Degisimi

[Sekil — 6.9[de kullanilan Oznitelik sayilarina gore smiflandiricilarin hata olasiliklart
verilmigtir. Burada ilk asamada dikkat ¢ceken, X uzayi i¢in tasarlanan siniflandiricinin per-
formans verilerindeki, Epyokn, (kirmizi grafik) ve Exga, (siyah grafik) i¢in tiim 6znitelik
degerlerinde ayni egilimi gostermesi ve yakin sonuglar vermesidir. Bunun sebebi, Y
uzayimndan sirastyla V, U ve X uzaylarina ge¢ilmesinin DMOKH ile ayn1 yonteme denk

gelmesidir. Niimerik islemlerden dolay: olugan hatalar, birebir ayn1 sonuglarin ¢ikmamasina
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sebep olmustur.

Ikinci 6nemli nokta, U uzayimndaki karesel simiflandiricilarda biitiin 6znitelikler (17 adet
Oznitelik) kullamldiginda olusan hata orammmin Ekga, (sant grafik), Epyokm, ile aym
olmasidir.  Oznitelik indirgeme islemi yapilmadigi durumda (17 Ozniteligin tamamiyla
siniflandirma yapildigr durum) DMOKH ile KKA tabanli ¢apraz siniflandirma yontemleri
tamamen ayni verileri kullandigr icin aym performansi gostermistir. Bu durum, X ve U

uzayinin birbirlerinin dogrusal doniisiimleri olmasi ile de agiklanabilir.

Y ile V arasinda da dogrusal bir doniisiim olmasi sebebiyle, biitiin 6znitelikler kullanildig1
durumda ayni bilgiyi iceren veri kiimelerine doniisiirler. Bu sebepten Ey (yesil grafik) ve Ey

(mor grafik) biitlin 6znitelikler kullanildiginda esit performans degerine ulagsmustir.

Ayrica, otozomal Ozniteliklerden (X veri kiimesi) 17 0znitelik kullanilarak etnik koken be-
lirlemede hata oram1 Ex = 0.27, Y-DNA 0zniteliklerden (Y veri kiimesi) 17 6znitelik kul-
lanilarak etnik koken belirlemede hata oran1 Ey = 0.32 olarak hesaplanmistir. Bu durum
farkli sayida oznitelikler icin [Sekil  6.9/de Ex ve Ey ile gosterilmistir. Aym sekilde, U
uzayinda yapilacak bir siniflandirmada ise 17 6znitelik i¢in Ey = 0.25 olarak hesaplanmistir.
[Sekil 6.9[de acik mavi renk ile gosterilen grafikte, farkli sayida 6znitelikler kullanildiginda,

ulagilabilecek hata oranmi gosterilmistir.

[Sekil " 6.107de X uzayindaki ilk iki Ozniteligin degerleri (mavi grafik), bu ozniteliklerin
DMOKH kestiricisi ile kestirilmesi durumunda ortaya ¢ikan oznitelikler (kirmiz1 grafik) ve
KKA tabanli ¢apraz tanimayla X uzayma gecilmesi durumunda ortaya c¢ikan Oznitelikler

(yesil grafik) gosterilmistir. Oznitelikler sifir ortalamali olarak ¢izilmislerdir.
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Sekil 6.10: Otozomal Veri Kiimesinin ilk 2 Oznitelik Degerleri ve Kestirimi Degerleri

[Sekil 6.10[de goriildiigii iizere Xxxa ve Xpmoxm grafikleri birbirlerine yakin degerler iiretse

de, niimerik hatalardan dolay1 tamamen ayni degerleri iiretememiglerdir.

[Sekil " 6.117de U uzayindaki ilk iki Ozniteligin degerleri (mavi grafik), bu ozniteliklerin
DMOKH kestiricisi ile kestirilmesi durumunda ortaya ¢ikan Oznitelikler (kirmizi grafik) ve
KKA tabanli capraz tanimayla X uzayina gecilmesi durumunda ortaya ¢ikan Oznitelikler

(yesil grafik) gosterilmistir. Oznitelikler sifir ortalamali olarak ¢izilmislerdir.
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Sekil 6.11: U Ara Uzayina Aktarilmis Genetik Verilerin Ilk 2 Oznitelik Degerleri

[Sekil 6.11fde goriildiigii tizere U uzayindaki Upyokn ve Ugga grafikleri birbirlerine yakin
degerler iiretmistir. X verilerinin A KKA doniisiim matrisi ile doniistiiriilmesiyle elde edilen

U verileri ile KKA ve DMOKH yontemiyle kestirilen U verileri birbirlerine yakin degerler

tiretmisgtir.
[Sekil 6.12] ve [Sekil 6.13[de sirasiyla X ve U uzayindaki ilk iki 6znitelik igin yapilacak

hatalarin karesi gosterilmisgtir.
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Sekil 6.12: Otozomal Veri Kiimesinin Ilk 2 Oznitelik Degerlerinin ve Kestirimlerinin Or-

talama Karesel Hatas1
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Sekil 6.13: U Ara Uzayna Aktarilmis Genetik Verilerin Ilk 2 Oznitelik Degerlerinin ve

Kestirimlerinin Ortalama Karesel Hatasi

[Sekil 6.12] ve |Sekil 6.13[de goriilen ilk iki Oznitelik i¢in X uzayinda yapilacak ortalama

karesel hata sirasiyla Ex = 1.46 ve Ex = 1.24 olarak bulunmustur. Ik iki 6znitelik icin
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U uzayinda yapilacak ortalama karesel hata ise sirasiyla Ey = 0.87 ve Ey = 0.94 olarak
bulunmustur. U uzayinda yapilacak karesel hatanin diisiik olmasinin sebebi, U uzayinda
ozniteliklerin birbirleri ile daha yiliksek korelasyon gosterecek sekilde siralanmasidir. Bu
ozelligi sayesinde KKA tabanli ¢apraz siniflandirmada kullanilacak 6znitelik sayisinda in-
dirgeme yapilmasi gerektiginde, kanonik korelasyonlar: biiytikten kiiclige dogru siralanmis

ozniteliklerin se¢ilmesi anlamli bir yontem olacaktir.

Bu uygulamada, kanonik korelasyonlar sirasiyla [0.4868 0.3392 0.3043 0.2835 0.2539
0.2379 0.2171 0.2058 0.1920 0.1796 0.1570 0.1488 0.1222 0.1162 0.1015 0.0928 0.0665]
olarak bulunmusgtur. Bu degerler aslinda X ve Y uzaylart arasinda ilintinin kuvvetli ol-
madiginin bir gostergesidir. Bu husus Amerika Birlesik Devletleri (ABD) popiilasyonunda
Y-DNA ile CODIS otozomal veriler arasinda giiclii bir ilinti olmadigim gostermektedir.
ABD popiilasyonunda atasal koken (Y-DNA) ile otozomal (anne ve babadan gelen)

Ozniteliklerinin ilintisinin sinirl oldugu ortaya ¢cikmaktadir.
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6.4 YDNA ve Otozomal Veri Kiimesi ile Haplogrup Belirleme Uygulamasi

Bu uygulamada, Boliim[6.3]de etnik koken belirleme i¢in kullanilan deney seti kullanilmistir.
Bu defa capraz tanima problemi belirlemek icin degil Y-DNA’lar iizerinden tanimlanan
haplogruplar1 belirlemek i¢in calisilmistir. Nesilden nesile aktarilan DNA’larin kopyalan-
malarinda zaman zaman olusan hatalar nedeni ile farkli Y-DNA siniflar1 olusmustur ve bu
gruplara haplogrup adi verilmektedir. Y kromozomu erkek bireye babasindan degismeden
aktarilir, ancak bazen aktarim hatalar1 olusabilmektedir. Bu hatalar DNA aktarimi ile
bir sonraki nesle aynen kopyalanirlar. Bu kopyalama hatalarina mutasyon denir. Uzun
yillar boyunca meydana gelen mutasyonlar sonucu insan topluluklarinin belirli gen gruplari
olugsmustur. Y-DNA icin harflerle sembolize edilen bu gruplara Y-DNA haplogrouplar1 den-
mektedir. STDR veri kiimesinde, Y-DNA’lar iizerinden tanimlanmis toplam 12 haplogruba
ait 650 erkek birey bulunmaktadir [40].

En yakin ortalama siniflandiricist (nearest mean classifier), verilen bir 6rnegi, en yakinindaki
sinif ortalamasina eglestiren bir simiflandiricidir. 650 bireye ait bu veri kiimesi Y-
DNA iizerinden en yakin ortalama deger smiflandiricisi yaklagik 0.07 hata olasilif1 ile
siniflandirilabilirken, otozomal veri kiimesi en yakin ortalama deger siniflandiricisi ile 0.84
hata olasilig1 ile ayristirabilmektedir. Bu uygulamada, otozomal 6znitelikler tizerinden hap-
logrup ayristirilmasi ¢apraz tanima problemi olarak ele alinarak, ¢apraz tanima yontemleri

ile tanima oranlarinin hangi seviyelerde oldugu incelenecektir.

Deney Ortamm

STDR veri kiimesi [40], 12 farkli haplogrupdan 650 kisiye ait Y-DNA isaretleyicilerini ve
ayn1 650 kisiye ait 16 cift STR isaretleyicini icermektedir. Y-DNA isaretleyicileri i¢in, ¢;,
i:1,..,12 toplam 12 farkli haplogrubu (12 sinifi) ifade etmek iizere her bir haplogrupdaki
ornek sayisi sirasiyla; ¢y : 192,¢5 :29,¢3 :3,¢4 :45,¢5: 31,¢c6:5,¢7:22,¢c8: 1,¢9:19,c10 :
18,c11 : 281, c12 : 4 kisidir.

KKA ve DMOKH tabanli ¢apraz siniflandirma i¢in verilerin tamami 6grenme asamasinda

kullanilmigtir. Test agsamasinda ayni veri kiimesi kullanilmistir.

Kullanilan veri kiimesinde otozomal veriler i¢in 16 cift isaretleyici bulunmaktadir ve bu
genetik imza 2 x 16 adet tamsay1 ile ifade edilmektedir. Bu tamsayilardan, cinsiyeti be-
lirleyen 1 ¢ift (kiimemizdeki tiim bireyler aynmi cinsiyette oldugundan) veri setine dahil
edilmemistir. Y-DNA verileri ise yalnizca erkeklerde bulunan Y kromozomu iizerinden

Olciilen 17 tane STR ile tanimlanmaktadir ve 17 tane tamsayi ile ifade edilir [41]].

650 farkli bireye ait Y-DNA (17 adet 6znitelik) verileri 650 x 17 boyutunda X veri kiimesini,
otozomal (30 adet 6znitelik) veriler ise 650 x 30 boyutundaki Y veri kiimesini olusturmustur.

KKA sonrasinda ulagilan ara uzaylar U ve V ara uzaylari olarak adlandirilmustir.
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Deneyde; X, Y, U ve V uzaylar i¢in en yakin ortalama siniflandiricilart tasarlanmistir.
Bu smiflandiricilar, siniflandirilmak istenen Ornegin simif ortalamalarina olan kartezyen
uzakligini kullanirlar. Ornek, en yakin sinifa atanir. X, Y, U ve V uzaylarindaki 12 siifin en
yakin ortalama siniflandiricilar ile siniflandirilma hata oranlar1 Ex, Ey, Ey ve Ey olarak ifade
edilmigtir. X uzayindaki DMOKH tabanli ¢capraz siniflandirma performansi Epyokhy . U ara
uzaymdaki KKA tabanli ¢apraz simflandirma performans1 Eggy,, ve X uzayindaki KKA
tabanli ¢apraz siiflandirma hata oranlar1 Exka, olarak gosterilmistir. X uzayimnda yapilan
KKA tabanli capraz siniflandirma, U uzayina gegirilen verilerin A7 (AAT)~! doniisiimii ile
elde edilir. Yapilan hatali siniflandirma oranlart Ey, Ey, Ey ve Ey, bulunduklari uzaylariin
en yakin ortalama siniflandiricilart ile 12 sinifa ayrildiginda hatali simiflandirilan 6rneklerin

toplam orneklere oranini ifade etmektedir.

DMOKA ve KKA tabanli capraz simiflandirmada, Y wuzay1r Oznitelikleri (otozomal
oznitelikler) olciilebilen, X uzay1 6znitelikleri (Y-DNA) veri bankasinda kayith olan veri-
leri ifade etmektedir. Uygulanacak ¢apraz siniflandirma yontemleri X uzay1 veya U uzayi

Ozniteliklerini kestirmeyi amag¢lamaktadir.
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Sekil 6.14: Genetik Veriler ile Y-DNA Haplogrubu Belirleme Hata Orani

ekil  6.147de kullanilan Oznitelik sayilarina gore simiflandiricilarin hata olasiliklar
verilmigtir. Burada ilk asamada dikkat ¢eken, X uzay1 i¢in tasarlanan simiflandiricinin
simflandirma hata oranlan, Ey,, ., (kirmizi grafik) ve Ex,., (siyah grafik) i¢in tiim

Oznitelik degerlerinde ayni degeri gostermesidir. Bunun sebebi, Y uzayindan sirasiyla V,
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U ve X uzaylarina gecilmesinin DMOKH ile ayn1 yonteme denk gelmesidir.

Ikinci 6nemli nokta, U uzayimndaki karesel siniflandiricilarda tiim oznitelikler (17 adet
oznitelik) kullanildiginda yapilacak hata oraminin Ey (agik mavi grafik), Ex (koyu mavi
grafik) ile aym olmasidir. Oznitelik indirgeme islemi yapilmadig1 durumda (17 6zniteligin
tamamiyla siniflandirma yapildig1 durum) U uzay: ile X uzay1 birebir aym bilgiyi iceren
uzaylar oldugundan ve tamamen ayn1 verileri kullandig1 i¢in esit performans gostermistir.
Bu durum, X ve U uzaymin birbirlerinin dogrusal doniisiimleri olmasi sebebiyle de

aciklanabilir.

[Sekil 6.14]de haplogruplarin bulunmast igin en iyi performansin Y-DNA verileri (X veri
kiimesi) kullanilarak, Ex = 0.07 hata orani ile bulunabildigi goriilmektedir. Bu beklenen bir
sonuctur, zira haplogruplar dogrudan Y-DNA iizerinden tanimlanan etiketlerdir. Otozomal
veriler (Y veri kiimesi) iizerinden ise bu ayristirmanin Ey = 0.84 hata orani ile yapilabildigi
goriilmektedir. DMOKH ile X uzayina gegip burada capraz simiflandirma hata olasiligini
Exproxn = Exgra = 0.61°e kadar indirebilmektedir. Fakat esas etkili yontem KKA ile ¢apraz
siiflandirma yontemidir ve Ey,., = 0.47 hata olasilig1 ile otozomal veriler iizerinden hap-

logrup tahmini yapabilmektedir.

650 bireye ait Y-DNA ve otozomal verilere baktigimizda, U ve V uzaylar1 arasindaki
en biiylik korelasyon katsayisinin 0.4868 oldugu goriilmektedir. Bu korelasyon, basarili
bir capraz siniflandirma yapabilmek icin yeterince yiiksek degildir. Bu sebepten capraz

siniflandirma performansi X uzayindaki performanslara yetisememektedir.

Ote yandan, bireyin gelmis ge¢mis tiim atalar1 ve analarinin genetiginin toplam imzasi olan
otozomal verilerin ¢ok kisith bir kismi ile yalnizca atasal koken ile ilgili Y-DNA haplotipinin
belirli bir hata ile kestirilebilecegi ortaya konmustur. Giivenirliligi diisiik olsa da Y-DNA
kestiriminin otozomal iizerinden yapilabilmesi, adli arastirmalar acisindan az da olsa bir

kiymet arz etmektedir.
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6.5 Diisiik Coziiniirliiklii Imgelerden Yiiz Tammma Uygulamasi

Giivenlik kameralarindan elde edilen yiiz fotograflar1 genellikle acili ve diisiik ¢coziiniirliikte
olmaktadir. Bu durum, giivenlik kameralarinda yiiz tanima yapmay1 zorlastirmaktadir. Bu
uygulamada diisiik ¢oziiniirliiklii yiiz fotograflari, gercek giivenlik kamerasi goriintiilerinden
degil, asag1 Ornekleme yoOntemiyle yiiksek c¢oOziiniirliiklii goriintiilerden olusturulmustur.
Giivenlik amacli elde edilmis uzak mesafe ve diisiik ¢coziintirliiklii fotograflardan yiiz tanima

uygulamasina yonelik bir ¢calisma ise B6liim [6.7/de sunulmustur.

Bu uygulamada, ayni 151k kosulunda ¢ekilmis, 40 kisiye ait, 10 farkli yiiz ifadesi igceren
112 x 92 piksel boyutunda yiiksek ¢oziiniirliiklii (YC) gri seviyeli toplam 400 yiiz fotografi

kullanilmistir [42]]. Ornek bireye ait 10 farkl yiiz imgesi [Sekil 6.15[de verilmistir.

Sekil 6.15: Ornek Bireye Ait 10 Farkli Agidan Elde Edilmis Yiiksek Coziiniirliiklii Yiiz

Imgeleri

Yiiksek ¢oziiniirliikteki bu veri kiimesi agsag1 ornekleme (downsampling) yontemiyle 6 x 3
boyutlarina indirilmigtir. Boylece toplam 40 bireye ait ve her birey i¢in 10 farkli agidan

elde edilmis 400 adet diisiik ¢oziiniirliiklii (DC) goriintii elde edilmistir. Her bir diisiik
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Sekil 6.16: Ornek Bireye Ait 10 Farkli A¢idan Elde Edilmis Diisiik Coziiniirliiklii Yiiz

Imgeleri

¢Oziiniirliiklii goriintii, 6 x 3 olmak iizere 18 pikselden olusmaktadir. Bu diisiik ¢oziiniirliiklii

goriintiilerden, ornek bireye ait 10 farkli yiiz imgesi [Sekil _6.16[de gosterilmistir. DC
goriintiilerin olusturdugu veri kiimesi 400 x 18 boyutundadir.

Bu uygulamada, eldeki 1 adet diisiik ¢oziiniirliiklii (DC) fotografin kime ait oldugunun
ne dogrulukla bulabilecegini problemi ¢alisilmistir. Capraz siniflandirmanin performansini
degerlendirebilmek icin 40 kisilik veri kiimesi yirmiger kisilik egitim ve test gruplarina
boliinmiistiir. Egitim grubundaki 20 kisiye ait veriler ile KKA ve DMOKH doéniisiim para-
metreleri bulunmus, daha sonra bu parametreler ile test grubundaki 20 kisi iizerinde tanima

yapilmistir.
Deney Ortanm

Bu uygulamada, egitim grubundaki 20 bireyin 10 farkli ac¢idan elde edilmis yiiksek
¢oziiniirliik ve diisiik ¢oziintirliikteki yiiz imgelerinin KKA ve DMOKH kestirim parametre-

lerini bulmak i¢in kullanilmisgtir.

Test grubundaki 20 bireyin 10 farkli agidan elde edilmis yiiksek coziiniirlik ve diisiik
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coziiniirliikteki yiiz imgeleri ise, capraz dogrulama stratejilerinden olan birini disarda
birakma (leave one out) yontemi kullanilarak test edilmigtir. Test grubundaki 199 YC
yliz imgesi icin siniflandiricilar tanimlanmig 1 yiiz imgesi ise dogru siniflandirmanin
yapilip yapilmadigini belirlemek icin kullanilmistir. Ayni islem DC yiiz imgelerine de
uygulanmigtir.  Bu test isglemi, test grubundaki 200 imge i¢in ayri ayr1 yapilmis ve

siniflandirma hata orani olarak hesaplanmistir.

Yiiksek ¢oziiniirliiklii yiiz imgelerini iceren X veri kiimesi, her biri 112 x 92 boyutunda olan
200 adet imge iceren 10304 x 200 boyutunda bir veri kiimesidir. X veri kiimesindeki bir
bireye ait farkli acilardan elde edilmis imgeler bir sinifi olusturmaktadir. X veri kiimesinin
biiyiik olmasi dolayisiyla, 6znitelikler iizerinde indirgeme islemi yapilmistir. Boyutunun
indirgenmesi i¢in, Temel Bilesenler Analizi (TBA) uygulanmistir. Toplam 6zdegerlerin
%9011 olusturulan ilk 110 temel bilesen, YC goriintiileri ifade etmek i¢in kullanilmistir.
200 YC goriintiiniin temel bilesenlerini iceren X veri kiimesi 110 x 200 boyutuna indirgenmis

ve bu indirgenen veri kiimesi bundan sonra X veri kiimesi olarak anilmustir.

Diisiik c¢oziiniirliiklii yiiz imgelerini igceren Y veri kiimesi, her biri 6 x 3 boyutunda olan 200
adet imge iceren 18 x 200 boyutunda bir veri kiimesidir. Y veri kiimesindeki bir bireye ait

farkli agilardan elde edilmis imgeler bir sinifi olusturmaktadir.

Siniflandirma i¢in, en yakin ortalama siniflandiricist (nearest mean classifier) kullanilmagtir.
Bu simiflandirici, smiflandirilmak istenen oOrnege, smmf ortalamasi en yakin simifi

eslestirmektedir.

Xpmokw, Y verilerinden DMOKH kestiricisi ile kestirilen X verilerini ifade etmekte-
dir. UpmokH, Xpmokn Vverilerinin U uzayma izdiisiimiinii ifade etmektedir. Iz diistim
Upmoxn = AXpyokn bagintisiyla bulunabilmektedir. Uggs, KKA tabanl ¢apraz tanima
yontemiyle elde edilen verilerdir. Bu veriler, Y uzayindaki verilerin B matrisi ile U uzayina
izdiistimlerinin bulunmasiyla hesaplanir. Xxxa, Uxga verilerinin X uzayina izdiistimii olarak

hesaplanir.

Burada kullanilan 6 x 3 boyutlarindaki goriintiiler, yiiksek coziiniirliikteki goriintiilerin agag1

orneklenmesi (downsample) yoluyla elde edilmistir.

[Sekil 6.177de DMOKH ve KKA tabanli yontemlerin ve dogrudan uzaylar iizerinde

tanimlanacak siniflandiricilarin performanslart verilmistir.
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Sekil 6.17: Diisiik Coziiniirliik ve Farkli A¢ilardan Yiiz Tanimada ’Birini Digsarda Birak’

Stratejisi ile 20 Sinifin Siniflandirma Hata Orani

[Sekil " 6.17de, ilk 18 Oznitelik kullanildig1 durumda, en diisiik hata oran1 Ex = 0.02 ile
(koyu mavi grafik) yiiksek ¢oziiniirliikteki goriintiilerden elde edilmistir. KKA ile capraz
simflandirmada ise Ey,, = 0.11 hata oranina (sar grafik) ulasilmistir. DMOKH Kkestiricisi
kullanilarak yapilan ¢apraz simmiflandirmada ise Ex,,, ., = 0.24 hata oram (kirmizi grafik)
elde edilmistir. Diisiik ¢oziiniirliikteki goriintiilerin dogrudan kullanimindan Ey = 0.12 hata
oranina (yesil grafik) ulasilmistir. Bu sonuglar KKA ile capraz siniflandirmanin basariyla
yapilabileceginin gostergesidir. KKA, ranki diisiik olan veri kiimesi boyutunda 6znitelik i¢in
A ve B doniisiim matrisleri bulmaktadir. Bu 6rnekte, DC goriintiilerin her biri 18 boyutlu
oldugundan dolay1 toplam 18 adet kanonik korelasyon elde edilmistir. Bu kanonik kore-
lasyonlar biiyiikten kiiclige dogru sirasiyla, [1.0000 1.0000 0.9999 0.9999 0.9998 0.9997
0.9994 0.9991 0.9989 0.9982 0.9968 0.9950 0.9923 0.9903 0.9884 0.9873 0.9837 0.9712]

olarak bulunmustur.

Burada 6zellikle dikkat ¢ekilmesi gereken nokta, X veri kiimesindeki YC goriintiilerin boyut
indirgemesinde kullanilan 6zdeger 6zvektorlerin, KKA icin kullanilan kestirim parametrele-
rinin (A, B) ve DMOKH i¢in kullamilan Esitlik | 3.6]de kullanilan kestirim parametrelerinin
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(U, Pxy, Py, fy) test grubunun tamamen diginda tutulan bir egitim grubundan bulunmasidur. |
[Sekil 6.177de grafikte gosterilen performans degerleri, egitim ve test gruplarinin tamamen

ayrildig1 durumda elde edilmis hatali siniflandirma oranlarin1 géstermektedir.

Egitim grubundaki bireylerden elde edilen boyut indirgeme 6zdeger 6zvektorleri, KKA kes-
tirim parametreleri ve DMOKH kestirim parametreleri ayn1 kalmak kaydiyla, hata oram
hesabin1 40 bireye ait 400 imge lizerinden birini digsarda birak yontemi ile belirledigimizde
elde edilen sonuglar [Sekil 6.18[deki gibi bulunmustur. Bu deneyde, her bir ’birini digini
birak’ asamasinda 399 imge lizerinden 40 farkli simif i¢in simiflandiricilar tanimlanmig ve
disarda birakilan 1 imgenin dogru sinifa atanip atanmadig: incelenmistir. Bu iglem 400 defa

tekrar edilmis ve hata oran1 hesaplanmugtir.
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Sekil 6.18: Diisiik Coziiniirliik ve Farkli Acilardan Yiiz Tanimada ’Birini Disarda Birak’

Stratejisi ile 40 Sinifin Siniflandirma Hata Orani1

Burada KKA ile yapilan ¢capraz simiflandirma hata oram Ey,., = 0.1075 degerine diigmiistiir.
20 simf lizerinden yapilan deneyde Ey,,, = 0.11 hata oran1 gosteren yontemin 40 sinifin
oldugu veri kiimesinde, Ey,,, = 0.1075 hata oran1 gostermesi, yontemin saglam oldugunun

bir gOstergesidir.
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Ayn1 problemde, her seferinde bir kisiye ait 5 veriyi test icin ayirip, 395 veri lizerinden KKA
ve DMOKH hesapladigimizda ve 395 veri lizerinden siiflandiriciy: tasarladifimizda elde
ettigimiz siniflandirma performansi [Sekil 6.197de gosterildigi gibi bulunmustur.
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Sekil 6.19: Diisiik Coziiniirliik ve Farkli A¢ilardan Yiiz Tanimada *Besini Disarda Birak’

Stratejisi ile 40 Sinifin Siniflandirma Hata Orani

Daha ortalamaci bir yaklagim olan begini disarda birak yontemi ile calisilan KKA ile ¢capraz
tanimanin performansinin giderek iyilestigi gozlenmektedir. [Sekil 6.197de V uzayinda
tanimlanan siniflandiricinin simiflandirma hata oraninin (mor grafik), U uzayinda tanimlanan
siniflandiricinin siniflandirma hata oraninin (acik mavi grafik) ve U uzayinda tanimlanan
KKA tabanli yaklagimla elde edilen siniflandirma hatali oraninin (sar1 grafik) kullanilan
oznitelik say1 arttik¢a azaldig1 gozlenmektedir. Bu azalis, ilk 0zniteliklerde daha fazla, son-
rakilerde da az olmaktadir. Bu durum KKA tabanli yontemde 6zniteliklerin korelasyonu
biiyiikten kiiciige olacak sirayla dizmesinden kaynaklanmaktadir. KKA tabanli bu yontem
kullanilacak 6znitelik sayis1 sabit oldugunda, 6zniteliklerin secimi i¢in optimal bir yontem
de sunmus olmaktadir. 18 Ozniteligin tamami kullanildiginda hatali siniflandirma orant,
Ey =0.1150, Ey = 0.1250 ve Ey,,, = 0.13 olarak bulunmustur.

Burada, daha onceki uygulamada oldugu gibi X uzayinda tamima hata oraninin Ex = 0.11
diisiik ¢cikmasinin sebebi, temel bilesenler analizi ile elde edilmis 6zniteliklerin ayrigtirma

bagsariminin iyi olmasidir.

18 Ozniteligin tamami kullanildigi durumda, YC verileri iceren X veri kiimesinde
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siiflandirma yapmak (Ex = 0.11) ile Y veri kiimesindeki DC goriintiileri kullanarak KKA
tabanli ¢apraz simiflandirma yapmak (Ey,,, = 0.13) ¢ok yakin hatali siniflandirma oranlar

gostermistir.

Dogrudan Y veri kiimesindeki DC imgelerin 18 0zniteligi kullanildiginda hatali
siniflandirma oran1 Ey = 0.1950 iken, Y veri kiimesindeki DC goriintiilerden ilk 18 6znitelik
kullanilarak yapilan siniflandirmada KKA tabanli ¢apraz simiflandirma da bu deger Ey, ., =

0.13’e kadar diismiistiir.

Aymni veri kiimesi kullanilarak yapilan benzer bir calisma [43]’da sunulmustur. Bu ¢alismada
kestirim yapilmadan, dogrudan diisiik ¢oziiniirliikteki imgeler lizerinden aralikli gdsterim
tabanli siniflandirma (sparse representation based classification (SRC)) yapilmistir. 6 x 3
boyutundaki DC goriintiiler ile SRC kullanilarak yapilan tamimada %72, 6nerilen KKA ta-

banli ¢capraz tanima ile %89 tanima oram elde edilmistir.
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6.6 Eskizden Yiiz Tanmima Problemi

Robot resim ile suga karisan kisilerin belirlenmesi kriminal calismalarda siklikla kullanilan
standartlagmig bir yontemdir. Gorgii taniklarinin ifadelerine dayanilarak olusturulan bu es-
kizlerin giivenlik kuvvetleri kayitlarindaki ¢cok sayida fotograf ile kargilastirilmasi ve basarili

bir sekilde eslestirilmesi zorlu bir Oriintii tanima problemidir.

Ozellikle gectigimiz on yilda yiiz tanima yontemlerinin gelismesiyle beraber eskiz tanima
konusunda da caligsmalar artmistir. Eskiz tanimada kullanilan robot resimler genel olarak
tic farkli sekilde olusturulabilmektedir. Bunlar; gorerek-eskiz (view-sketch), kriminal-eskiz
(forensic sketch) ve kompozit-eskiz (composite sketch) [44] olarak siralanabilir. Gorerek-
eskiz, polis ressami tarafindan kisinin resmine bakilarak ¢izilen eskizlerdir ve daha ¢ok eskiz
tanima icin gelistirilen yontemlerin test edilmesinde kullanilmakta olup gercek adli uygu-
lamalarda kullanilma imkani simirhidir [44]. Kriminal-eskiz, gorgii taniklarinin anlatimlar
dogrultusunda bir polis ressami tarafindan ¢izilen eskizlerdir. Kompozit-eskiz ise, yiiziin
her bir parcasinin bir kiitiiphaneden secilmesi ile bilgisayar ortaminda olusturulan eskizler-
dir [44]. Eskizlerin, fotograflardan farklari, sadece temel yiiz ozelliklerini icerip, ayrinti

ozellikleri icermemeleridir [43]].

Eskizden yiiz tanima konusunda 6zellikle son on yil igerisinde cesitli ¢alismalar yapilmagtir.
Eskiz tanima ile ilgili yapilan ilk ¢aligmalar, standart yiiz tanima yontemlerinin 6niglemleme
yapilmig fotograflar lizerine uygulanmasi ile gerceklestirilmistir. Bunlardan 0zyiiz (eigen-
face) yontemine dayanan bir ¢alismada [46] toplam 7 eskizden tanima yapma hedeflenmis,
elastik grafik esleme (elastic graph matching) yontemine dayanan diger bir calismada
[47, 48] ise toplam 13 eskiz iceren veri kiimesinde yiiz tanima calisilmistir. Eskiz tanima
konusuna ilginin artmasi ve daha kapsamli veri kiimelerinin olusturulmasi sonrasinda yapilan

caligmalarda iki temel yaklasim 6n plana ¢cikmistir [44] :
e fotograf ve eskiz uzaylar1 doniisiimii
e fotograf ve eskiz uzayindan bagimsiz 6znitelik belirlenmesi

Bu yaklagimlardan birincisi, eskiz uzayindaki bir veriden fotograf uzayimna (veya tersi)
bir doniisiim yapmakta ve sentezlenen fotograf (veya tersi) i¢in, fotograf uzayinda (veya
tersi) tanima yapmaya calismaktadir. Bu yaklasimda, 6zdoniisiim (eigentransform) [49],
lokal dogrusal gomme (local linear embedding) [45] ve coklu dlcekli Markov rastgele
alanlar1 (multiscale Markov random fields) [50] yontemleri ile calismalar yapilmistir. Bu
yaklagimin, sentez agsamasi gergeklestirmesi zor ve tanima performansini dogrudan etkileyen
bir asamadir [44]]. Ikinci yaklasim ise, her iki uzayda da degismeyen oznitelikler belirleme
esasina dayanmaktadir. Bu yaklagim ile yapilan ¢alismalar ortak ayirt edici uzay (com-

mon discriminant space) [31], birlikte eslesik enformasyon izdiisiimii (coupled information-

80



theoretic projection(CITP)) [52] ve kismi en kiiciik kareler (partial least squares (PLS)) [S3]
yontemlerini iceren yaklagimlardir. Bu tez kapsaminda, literatiirde yer alan yaklasimlara
alternatif olarak, KKA’nin etkili bir eskiz tanima yontemi olarak kullanilabilecegi ortaya

konulmustur.

6.6.1 KKA ile Eskiz Tanima Yontemi

KKA ile tanimlanan yeni ara uzaylar birbirleri ile en yiiksek kanonik korelasyonu gosteren
Ozniteliklerin bulundugu uzaylar oldugundan, bu uzaylarda tanima yapmanin bagarili

sonuclar vermesi beklenmektedir. Eskiz tanima icin Onerilen yontemin basamaklarinin neler

oldugu [Sekil 6.207de temsili olarak gosterilmistir.

[W,, W,,A, B, rI=EGITIM(X, Y, R, S) R>S

Oniglemleme Ve

FOtOéraf Kolon Vektdriine A
Veri %Déﬂuwm X W)(:TBA(X) X S xR U
Kimesi > ) —_—

Eskiz Oniglemleme Ve

. Kolon Vektiriine W =TBA(Y)
e S5 Y Py ]2 ]

M x K

TEST(W,, W,,, A, B, 1)

Onislemleme Ve
Fotograf Kolon Vektdriine _
Vﬂf oin )( W, )( A, LJ
Kimesi — d ’
RxK -5 xK
Nx K En Yakin
Komsu
Eslemesi
Taninacak Sn‘iﬁ\ewi?e.ye
Eskizler Doniisiim Wy BS S
s T| B
(p adet) _— d V
MxP SxP oyp

Sekil 6.20: KKA ile Eskiz Tanima Egitim ve Test Basamaklar1 Gosterimi

KKA ile eskiz tanimada gerceklestirilen alt islemler egitim asamasinda;

e Fotograf ve eskiz 6nislemleme
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e Oznitelik belirleme doniisiimlerinin bulunmas: ve 6zniteliklerin belirlenmesi ve
e KKA ile ara uzay doniistimlerinin bulunmasi ve ara uzaya gecilmesi
tanima (test) asamasinda ise;
e Fotograf ve eskiz dnislemleme
e Oznitelik belirlenmesi
e KKA ile ara uzaya gecilmesi ve
e Simiflandirmanin yapilmasi
olarak ozetlenebilir.

Fotograf ve Eskiz Onislemleme

Veri kiimesi igerisinde bulunan her bireye ait fotograf ve eskiz ciftlerinin standart hale
getirilmesi i¢in Oncelikle dondiirme ve Olcekleme islemlerinin yapilmasi gerekmektedir.
Onislemleme sonucunda tiim fotograf ve eskizlerde, yiiz icin tamimlanan ayirt edici nok-
talar aym koordinatlara getirilir. Bu asamada; g6z merkezleri, ¢ene-alin noktalari, kulak
veya dudak kenarlar1 gibi belirleyiciler kullanilabilir. Bu iglem hem egitim asamasinda hem

de tanima agamasinda yapilmalidir.

Oznitelik Belirleme Déniisiimlerinin Bulunmasi ve Ozniteliklerin Belirlenmesi

Kullanilacak oznitelikler, temel bilesen analizi (TBA) yontemi ile elde edilmistir [38]). Islem
yapilan veri sayisini indirgemek ve veriler iizerindeki giiriiltii etkisini azaltmak icin, en
yiiksek Ozdegerlere karsilik gelen belirli sayidaki 6zvektoriin kullanilmasi yeterlidir. X
uzayi, kisilere ait fotograflarin bulundugu, Y uzayi ise karsilik gelen eskizlerin bulundugu
uzaylar1 belirtmek iizere, X ve Y uzayindan indirgenmis veriler sirasiyla X; ve Y; uzayi
olarak isimlendirilecektir. X; matrisi, X matrisinin ilk R adet temel bilegeni iceren ve R < N
olmak iizere X; € R®*K matrise indirgenecektir. K : fotograf ve eskiz veri kiimesindeki
ornek sayisini belirtmektedir. Y, matrisi ise Y matrisinin ilk S adet temel bileseni iceren
ve S < M olmak iizere Yy € RS*K matrisine indirgenecektir. Burada N: fotograf veri
kiimesindeki her bir 6rnegin 6znitelik sayisini, M : eskiz veri kiimesindeki her bir 6rnegin
Oznitelik sayisini, R : fotograf veri kiimesindeki orneklerin indirgenmis 6znitelik sayisini, S :

eskiz veri kiimesindeki 6rneklerin indirgenmis 6znitelik sayisini ifade etmektedir.

Bu islem, egitim asamasinda, ilgili temel bilesenleri belirlemek icin gerekli doniisiimleri
(W, ve Wy) bulabilmek i¢in yapilmali, tanima agamasinda ise bu doniigiim vektorleri kul-
lanilmahidir. W, X uzayindaki verilerin RR boyutuna indirgenmesi i¢in (R < N) ilk R
adet temel bilesenin bulunabilmesi icin olusturulmus R¥*VN boyutundaki doniisiim matri-
sidir. Wy ise, Y uzayindaki verilerin Y, € R’ boyutuna indirgenmesi icin (R < ) ilk R adet
temel bilesenin bulunabilmesi i¢in olusturulmus Wy, € R>M boyutundaki doniisiim matrisi-
dir.
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KKA ile Ara-Uzay Doniisiimlerinin Bulunmasi ve Ara-Uzaya Gec¢ilmesi

KKA metodolojisi kullanilarak, X; ve Y, uzaylarindaki verilerin KKA doniisiimleri birbir-
leri 1le maksimum korelasyon yapisini tanimlayacaktir. Bu islem sonucunda X; matrisin-
den elde edilecek veriler U, Y, matrisinden elde edilecek veriler ise V matrisi olarak ad-
landirilacaktir. Bu matrislerin bulundugu uzaylar sirastyla (S < R kabul edilmistir), U € RS*K
ve V € R5*K olacaktir. Bu islem, egitim asamasinda kanonik korelasyon doniisiimii (A ve
B) matrislerini ve kosegen korelasyon matrisini (r) bulmak icin yapilmali, tanima samasinda

bu matrisler kullanilmalidir.

Tanima Testi

Tanima asamasinda, taninmasi istenen toplam P adet eskizin temel bilesenleri iceren T,
(T, € RS*P) matrisi olusturulur. Fotograf veri kiimesinin de ara uzay doniisiimlerini iceren
U (U € RS*K) matrisinde ise toplam fotograf verisinin K adet 6rnegi bulunmaktadir. Tanima

icin en yakin komsu eslestirilmesi yapilarak, eskiz ilgili fotografla egslestirilir.

6.6.2 KKA ile Eskiz Tammma Uygulamasi

Bu calismada, ’CUHK Yiiz Eskiz Veri Kiimesi (CUFS)’ [S0] kullanilmistir. Bu veri
kiimesindeki 188 fotograf "Hong Kong Cin Universitesi Ogrenci Veri Bankas1 (CUHK Stu-
dent Data Set)’ [S0] icerisinden, 126 yiiz fotografi ise AR Veri Bankas1’ [34]] icerisinden
almmustir. Alinin fotograflardan 6nden ve normal 1s1k altinda ¢ekilmis yiiz fotograflarinin,
ressamlar tarafindan fotograflara bakarak gorerek-eskizleri cizilerek "CUHK Yiiz Eskiz
Veri Kiimesi (CUFS)’ olusturulmustur. [Sekil 6.21]de veri kiimelerinden alinmis Srnekler

gosterilmigtir.
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Sekil 6.21: (a) CUHK Yiiz Eskiz Veri Kiimesi, (b) AR Yiiz Eskiz Veri Kiimesi

Onislemleme asamasinda, veri kiimelerindeki her bir verinin (fotograflar ve eskizler),
g6z merkezleri yatayda ayni hizaya gelecek sekilde veriler dondiiriilmiis, g6z merkezleri
arasindaki mesafe sabit olacak sekilde tekrar olceklendirilmistir. Bu islem sonrasinda elde
edilen verilerin tamaminda, g6z merkezleri sabit bir koordinata gelecek sekilde ve veri
boyutu 250 x 200 olacak sekilde kesilip Oniglemleme asamas1 tamamlanmistir. Verilerdeki

kontrast seviyeleri degistirilmemistir. Onislemleme sonrasinda elde edilen 6rnek Verilerl

[Sekil 6.22]de verilmektedir.
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Sekil 6.22: Dondiirme-Olgekleme ve Koordinat Sabitleme Sonrast Ornekler

Eskiz tanima sisteminin egitimi asamasinda birini disarida birak (leave one out) yontemi
uygulanmistir.  Oznitelik belirleme isleminde temel bilesen analizi yapilmis ve temel
bilesenlerden 6zdegerleri toplaminin yaklasik %90’ iceren ilk 50 tanesi Oznitelik olarak
secilmigtir. Bu Oznitelikleri olugturan W, ve W, matrisleri test agamasinda dogrudan
kullanilmigtir. Elde edilen 6znitelikler tizerinde KKA uygulanmis ve kanonik doniisiim mat-
risleri (A, B) ile kanonik korelasyon matrisi (r) bulunmustur. Egitim asamasinda bulunan
bu matrislerden kanonik doniisiim matrisleri (A, B) test asamasinda ’KKA ile ara uzaya

gecilmesi’ basamaginda kullanilmisgtir.

Tamima, norm-2 uzayinda T, matrisindeki verilere U matrisinden en yakin olan verinin
eslenmesi seklinde yapilmistir. Bu yontem sonucunda CUHK Yiiz Eskiz Veri Kiimesi’nde
9%99.47, AR Yiiz Eskiz Veri Kiimesi’'nde %99.19 olmak iizere toplamda %99.36 oraninda

basarili tantma oranina ulasilmigtir. KKA ile eskiz tanima ve diger yontemlerin tanima per-

formanslarinin karsilagtirilmast ise[Cizelge 6.3]de verilmistir.
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Cizelge 6.3: Eskiz Tanima Bagar1 Oran1 Karsilagtirmasi

Yontem Tanima Performansi(%)
TBA+Ozdoniisiim [43] 75
TBA+MultiscaleMRF [45]] 84.3
TBA+MultiscaleMRF [45]] 84.3
LFDA+SIFT [54] 99.27
LFDA+MLBP [54] 98.60
LFDA+SIFT+MLBP [54] 99.47
TBA+KKA (6nerilen) 99.36

Cizelgeye genel olarak bakildiginda, temel bilesenler analizi (TBA) tabanli yaklagimlarin,
lokal Oznitelik ayristmi analizi (LFDA) tabanh yaklasimlardan daha diisiik performans
gosterdikleri goriilmektedir. TBA tabanli 6zniteliklerin bulunmasi kolaydir ve genellikle
alan bilgisi gerektirmez. LFDA tabanli Ozniteliklerin bulunmasi ise, genellikle alan bil-
gisi gerektirir ve deneyseldir. Ayrica, ¢oziilmek istenen probleme gore biiyiik degisiklikler
gosterebilirler. Bu calismada Onerilen KKA esash eskiz tanima yontemiyle, TBA tabanh

olmasina kargin LFDA tabanli yaklagimlarin performanslarina ulagmistir.

Bu uygulamada %99.36 gibi yiiksek bir performans degeri elde edilmesinde, veri
kiimesindeki eskizlerin tek bir ressam tarafindan c¢izilen gorerek-eskizlerden olugsmasinin
biiytik etkisi vardir. Pratik uygulamalarda, gorerek-eskizlerin yerine kriminal-eskizlerin kul-
lanilmasi, yontemin performansinda diislise sebep olacaktir. Daha Once de bahsedildigi
tizere, gorerek-eskizler genelde eskiz-yliz tantma yontemlerinin performanslarini 6l¢gmekte

kullanilmaktadir.

Bu uygulamada ulagilan yiiksek tanima orani, herhangi bir ¢apraz tanima probleminde, alan

bilgisi kullanilmadan da basarili sonuglarin elde edilebilecegini gostermektedir.
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6.7 Giivenlik Kamerasi Yiiz Tanima Problemi

Yiiz tanima problemi uzun yillardir {izerinde ¢alisilan temel bir oriintii tanima problemidir.
Giivenlik kameralarinin kullanimimin hizla artmasina ragmen, giivenlik kameralar1 yiiz
tanima algoritmalari i¢in yeterince kaliteli goriintiiler saglayamamaktadir. Bu tiir kameralar-
dan elde edilen goriintiilerde, uygulamada iki temel problem ortaya ¢ikmaktadir; ¢oziiniirliik
ve aydinlatma. Giivenlik kameralar1, genis goriis acis1 istenmesinden dolay1, kamera iizerine
diisen yiiz goriintiileri genellikle diisiik c¢oOziiniirliiktedir. Coziiniirliik problemi ¢oziilse
bile, farkli 151k sartlarinda goriintiilerin elde edilmesi problemi ortaya c¢ikabilmektedir.
Ozellikle az 151k iceren ortamlarda problem daha da artmaktadir. Karanlik ortamlarda genel-
likle kizilotesi 1s1kla aydinlatma sonrasinda elde edilen goriintiilerden yararlanilmaktadir
[35]. Ozellikle yakin kizilotesi (Near-Infrared (NIR) ) 1s1k kullanmak bu durumlarda
oldukga avantaj saglamaktadir. Farkli 1s1k kaynaklarinin kullanilmasina ait karsilastirmalar

[55.156]’da ayrintili sekilde incelenmistir.

Yiiz tamima problemi uzun yillardir calisilmis olmasina kargin; diisiik ¢oziiniirliik ve farkl

aydinlatmalar altinda tanima problemi yeterince basarili bigimde ¢oziilememistir.

Bu ¢alismada, farkli uzakliklardan elde edilmis giivenlik kameras: goriintiileri i¢cin KKA ta-
banli ¢apraz siniflandirma, gercek bir veri kiimesi iizerinden ¢alisilmistir. Calismada, *Long
Distance Heterogeneous Face Database (LDHF)’ veri kiimesi kullanilmugtir [35,36]. Bu veri

kiimesi 100 kisiye ait farkli mesafelerden elde edilmis yiiz fotograflar1 icermektedir.

Yiiz tanima problemleri ilk ¢alisilmaya baslandiginda, problemin basitlestirilmesi icin farkli
mesafelerden, farkli ¢oziiniirliiklerde, farkli 11k ortamlarinda elde edilmis yiiz goriintiileri
kullanilmamus; aksine yiiksek coziiniirliikte kullanilan goriintiilerle yiiksek tanima oran-
larmma ulasilmistir.  Giiniimiizde giivenlik kameralarinda, kapsama alanini maksimize
etmek amaciyla genis agili kameralarin kullanilmasiyla; goriintiisii elde edilmek iste-
nen yiiz fotografi genelde 32 x 32 piksel icerisinde kalacak sekilde elde edilmektedir.
Diisiik ¢oziiniirliikte elde edilen yiiz goriintiisii ise, yiizler arasindaki ayirt edici 6zellik
sayisint diistirmektedir [8]. Elde edilen yiiz goriintlisii ¢oziiniirliigli 64 x 64 pikselin
altinda oldugunda, kullanilan yiiz tanima yontemlerin basarimi biiyiik oranda diismektedir
[S7]. Giivenlik kameras: yliz tanima problemi, diisiik ¢oziiniirliikte (DC) elde edilen yiiz
goriintiisiiniin veri kiimesindeki yliksek ¢oziiniirliikteki (YC) goriintiiye eslestirilmesi prob-

lemidir.

Diisiik ¢oziintirliiklii yiiz tanima problemi icin iki temel yaklagim kullanilmaktadir. Birinci
ve daha geleneksel olan iki basamakli bir yaklagimdir [S8]]. Bu yaklagimda YC goriintii, agsag1
ornekleme yontemleriyle DC goriintiiye doniistiiriiliir veya DC goriintii siiper ¢oziintirliik
(Super-Resolution (SC) ) yontemleriyle YC goriintiilere doniistiiriiliir. YC goriintiilerin

DC goriintiilere doniistiirtilmesi yontemi, ayirt edici 6zniteliklerin azalmasi ve diisiik per-
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formans gostermesi dolayisiyla fazla kullanilmamaktadir [S8, 59, 60]. DC goriintiilerden
YC goriintiilerin elde edilmeye calisiimasi yaklasimi daha fazla kullanilmaktadir [61]. Bu
konuda literatiirde tanimlanmis pek ¢ok siiper ¢oziiniirliik yontemi olmasina karsin; pratik
uygulamalarda hizli ve basit olmas1 dolayisiyla aradegerleme yontemleri kullanilmaktadir
[58]. Ogrenme Tabanl Siiper Coziiniirlik (learning-based super-resolution) yontemi
goreceli yeni ve basarimi diger yontemlerden daha yiiksek bir yontemdir [62, [63]. Iki
basamakli yontemde, SC goriintii elde edildikten sonra DC ve YC goriintiiler ayn1 uzayda
tanimlanmig oldugundan, standart yiiz tanima yontemleri ¢alistirilabilmektedir. SC goriintii
olusturma yontemindeki ana fikir, DC goriintiide goriinmeyen bilgiyi yeniden olusturmaktir
[8]. Diisiik ¢oziiniirliiklii goriintiilerden yiiz tamimada kullanilan ikinci yaklagim ise, her iki
goriintiiyii de esdeger yiiz alan1 (eigenface domain) gibi farkli bir alana gecirmektedir [64].

Bu yontem daha iyi sonu¢ vermesine ragmen, fazla islem giicii gerektirmektedir [65]].

6.7.1 KKA ile Giivenlik Kamerasinda Yiiz Tanima Yontemi

DMOKH kestirimine dayali ¢capraz siniflandirma yonteminde YC goriintii 6znitelikleri DC
goriintii 6zniteliklerinden kestirilmekte ve tanima yapilmaktadir. Bu yOntem i¢in sadece
ortalama deger vektorii ve esdegisinti matrislerinin yeterli oldugu vurgulanmisti. Fakat
bu yaklasimda; YC Ozniteliklerine doniisiim sonrasinda ozniteliklerin, siniflandirma per-
formansini arttirict sekilde organize edilmesine yardimci bir yontem bulunmamaktadir.
Oznitelikler iizerindeki giiriiltii, stniflandirma performansim olumsuz yonde etkileyebilmek-
tedir. KKA tabanli ¢apraz tanima yontemi farkli ¢oziintirliikte yiiz tanimada 6znitelik se¢imi
icin ili¢ basamakli bir yaklagim onermektedir. Bu yontemdeki ana fikir, siniflandirma algorit-
masinin YC ve DC goriintiilerin tanimli oldugu uzaydan farkli bir ara uzayda yapilmasidir.
Son yillarda ¢apraz tanima problemlerini ara uzayda ¢ozmeye calisan bagka yaklagimlarda
gelistirilmistir [38, 160, 43]. Bu c¢alismada, giivenlik kamerasindan elde edilen farkli
coziiniirliikte yiiz tanima problemi i¢in kullanilabilecek ara uzayin KKA ile tanimlanmasi

onerilmektedir.

Onerilen bu yontemin basamaklarinin neler oldugu [Sekil 6.23{de temsili olarak

gosterilmisgtir.
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Sekil 6.23: KKA ile Farkli Coziiniirliikte Yiiz Tanima Islem Basamaklar1 Gosterimi

Burada yapilan islemler egitim asamasinda;
e YC ve DC goriintii onislemleme
e Oznitelik belirleme doniisiimlerinin bulunmasi ve dzniteliklerin belirlenmesi ve
e KKA ile ara uzay doniisiimlerinin bulunmasi ve ara uzaya gecilmesi
tanima (test) asamasinda ise;
e YC ve DC goriintii 6nislemleme
e Oznitelik belirlenmesi
e KKA ile ara uzaya gecilmesi ve
e Siniflandirmanin yapilmasi

seklinde siralanabilir.
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YC ve DC Gériintii Onislemleme

Veri kiimesi icerisinde kullanilan YC ve DC goriintiilerin standart hale getirilmesi icin
oncelikle dondiirme ve 6lgekleme islemlerinin yapilmasi gerekmektedir. Onislemleme sonu-
cunda, YC goriintiilerde yiiz i¢in tanimlanan ayirt edici noktalarin ayni ¢erceveye oturtulmast
saglanmis olur. Ayni iglem DC goriintiilere de uygulanir. Fakat DC ve YC goriintiilerin bir-
birleriyle hizalanmis olmasi gerekmez. Bu asamada; goz merkezleri, ¢cene-alin noktalari, ku-
lak veya dudak kenarlar1 gibi belirleyiciler kullanilabilir. Bu iglemler hem egitim asamasinda

hem de tanima agamasinda yapilmalidir.

Oznitelik Belirleme Déoniisiimlerinin Bulunmasi ve Ozniteliklerin Belirlenmesi

Kullanilacak oznitelikler, temel bilesen analizi (TBA) yontemi ile elde edilmistir [38]]. Islem
yapilan veri sayisini indirgemek ve veriler iizerindeki giiriiltii etkisini azaltmak icin, en
yiiksek 6zdegerlere karsilik gelen belirli sayidaki 6zvektoriin kullanilmasi yeterlidir. Bu
islem sonrasinda X ve Y uzayindan indirgenmis veriler sirasiyla X; ve Y; olarak isim-
lendirilecektir. X; matrisi, X matrisinin ilk R adet temel bileseni iceren ve R < N olmak

iizere X; € RR*K

matrise indirgenecektir. Y, matrisi ise Y matrisinin ilk S adet temel
bileseni iceren ve S < M olmak iizere Y, € RS*X matrisine indirgenecektir. Burada, K : DC
ve YC veri kiimesindeki ornek sayisini, N: YC veri kiimesindeki her bir 6rne8in 6znitelik
sayisini, M : DC veri kiimesindeki her bir 6rnegin 6znitelik sayisini, R : YC veri kiimesindeki
orneklerin indirgenmis Oznitelik sayisini, S : DC veri kiimesindeki orneklerin indirgenmis

Oznitelik sayisim ifade etmektedir.

Bu islem, egitim asamasinda, ilgili temel bilesenleri belirlemek i¢in gerekli doniisiimleri
(W, ve W) bulabilmek i¢in yapilmali ve tanima agsamasinda ise bu doniigiim vektorleri kul-
lanilmalidir. W, X uzayindaki verilerin RR boyutuna indirgenmesi i¢in (R < N) ilk R adet
temel bilesenin bulunabilmesi i¢in olusturulmus W, € RV boyutundaki doniisiim mat-
risidir. Wy, ise, ¥ uzayindaki verilerin RS boyutuna indirgenmesi icin (R < S) ilk R adet
temel bilesenin bulunabilmesi i¢in olusturulmus Wy, € R5*M boyutundaki doniisiim matrisi-
dir.

KKA ile Ara-Uzay Doniisiimlerinin Bulunmasi ve Ara-Uzaya Gecilmesi

KKA yontemi kullanilarak, X; ve Y, uzaylarindaki verilerin KKA doniisiimleri birbirleri
ile maksimum korelasyon yapisini tanimlayacaktir. Bu islem sonucunda X,; matrisinden
elde edilecek veriler U, Y, matrisinden elde edilecek veriler de V matrisleri olarak ad-
landirilacaktir. Bu matrislerin bulundugu uzaylar sirastyla (S < R kabul edilmistir), U € RS
ve V € RS olacaktir. Bu islem, egitim asamasinda kanonik korelasyon doniisiim (A ve B)
matrislerini ve kosegen korelasyon matrisini (r) bulmak i¢in yapilmali ve tanima asamasinda

bu matrisler kullanilmalidir.
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Tanima Testi

Tanima asamasinda, taninmasi istenen toplam P adet DC temel bilesenleri iceren T, (T, €
R5*P) matrisi olusturulur. YC veri kiimesinin de ara uzay doniisiimlerini iceren U (U €
R5*K) matrisinde ise toplam, YC verisinin K adet 6rnegi bulunmaktadir. Tanima igin en

yakin komsu eslestirilmesi yapilarak, DC goriintiiniin ilgili YC eslestirmesi yapilir.

6.7.2 KKA ile Farkh Coziiniirliikte Yiiz Tamima Uygulamasi

Calismada kullanilan ’Long Distance Heterogeneous Face Database (LDHF)’ [35) 36],
goriinlir ve yakin kizilotesi bantta goriintiiler icermektedir. Goriintiiler agik alanda 60m,
100m ve 150m mesafeden, kapali alanda ise 1m mesafeden elde edilmistir. Toplam 100
kisiye ait goriiniir ve yakin kizilotesi goriintii 4 farkli uzaklik i¢in saglanmistir. Bu calisma
LDHF veri kiimesinden cekilen Im (YC) ve 150m (DC) mesafeden goriiniir bantta elde
edilen goriintiiler ile yapilmistir. Calisma, az sayida goriintii verisi ile yapildigindan capraz
dogrulama (Cross-Validation) yontemi ile test edilmistir. 99 DC ve YC goriintii egitim
icin kullanilmig, 1 goriintii ise test icin ayrilmistir. Bu iglem her bir goriintii icin ayr1 ayri

tekrarlanmis ve tanima performansi belirlenmisgtir.

LDHF veri kiimesindeki yiiz goriintiileri oncelikle gbz pozisyonlar1 ayni olacak sekilde
hizalanmistir. G6z hizalamasi esnasinda YC goriintiiler 292 x 202 boyutunda, DC goriintiiler
ise 43 x 32 boyutunda olacak sekilde olceklendirilmistir. Hizalama ve 6l¢eklendirme dncesi
1m mesafeden elde edilmis goriintiiler[Sekil 6.24]de, 60m mesafeden elde edilmis goriintiiler

ise[Sekil 6.25[de gosterilmistir.

Sekil 6.24: 1m Mesafeden Elde Edilmis Goriintii Ornekleri
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Sekil 6.25: 150 m Mesafeden Elde Edilmis Goriintii Ornekleri

Hizalama ve 6l¢eklendirme sonrasinda elde edilen YC goriintii 6rnekleri [Sekil 6.26[de, DC
goriintii ornekleri ise [Sekil 6.277de gosterilmistir.

Sekil 6.26: Onislemle Sonras1 YC Yiiz Goriintiisii Ornekleri
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Sekil 6.27: Onislemle Sonras1 DC Yiiz Goriintiisii Ornekleri

Egitim asamasinda, 99 DC ve 99 YC goriintii bu asama icin girdi, Wy, Wy, A, B,r paramet-

releri ise ciktidir. YC goriintiiler x; € R84

i = 1..99 olacak sekilde kolon vektorlerine
doniistiiriilmiis ve X € R°3%4*% matrisini olusturmustur. Aym sekilde DC goriintiiler
yi € R1376 ;i = 1..99 olacak sekilde kolon vektdrlerine doniistiiriilmiis ve Y € R'376%99 mat-
risini olusturmustur. X ve Y matrisleri icin temel bilesenler analizi (TBA) yapilmis ve egitim
asamasinda W,, W, olarak saklanmigtir. TBA sonrasinda herbir DC ve YC goriintiiniin
98 temel bilesen vektorii indirgenmis veri kiimesi olarak saklanmigtir. DC goriintiiler i¢in
Y, € R%*% ve YC goriintiiler i¢in X; € R%3*% matrisleri elde edilmistir. Bu matrisler
tizerine uygulanan KKA sonrasinda, kanonik korelasyon doniigiimiinii yapacak A ve B mat-

risleri elde edilmistir.

Test asamasinda, 100 YC goriintii kolon vektorii olarak gosterilmis ve X e R>8984x100 mja¢
risi elde edilmistir. Bu goriintiilerin ilk 98 temel bilegeni egitim asamasinda kaydedilen
W, ile secilmis ve sonrasinda yine egitim asamasinda kaydedilen A matrisi doniisiimiiyle
veriler U uzayina aktarilmigtir. Siniflandirilmast istenen DC goriintii kolon vektorii olarak
gosterilmis ve T € R1376 vektorii elde edilmistir. Bu goriintiiniin ilk 98 temel bileseni egitim
agamasinda kaydedilen W, ile secilmis ve sonrasinda yine eitim asamasinda kaydedilen
B matrisi doniisiimiiyle V uzayina aktarilmigtir. U uzayindaki verilerden T, vektoriine en
yakin olan vektor siniflandirilacak kisi olarak sec¢ilmistir. Bu kapali kiime tanima strate-

jisi pratikte kullanim alan1 olmasa da, yontemlerin gii¢lii ve zayif yonlerini gostermekte
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bagarili bir sinama yontemdir. Toplam Eslesme Karakteristigi (Cumulative Match Charac-
teristic(CMC)) gosterim yontemi kapali kiime siniflandirma stratejisi uygulandiginda, rank
gosterimi ile anlamli sonuglar gostermektedir. Rank, yontemlerin performansini test etmekte
kullanilan bir gosterimdir. DC bir goriintii 6rneginin, en olas1 YC goriintii eslenigine rank-1
eslenigi, sonraki olas1 eslenigine rank-2 eslenigi olarak isimlendirilir. Rank-n eslenigi, n.
olast eslenigi anlamindadir. Bir yontemin rank-n performansi, dogru eslenigin ilk n aday
icerisinde bulunmasi ile 6lciiliir. Onerilen yontem, TBA yontemi ile 60 ve 98 6znitelik
kullanilarak karsilagtirilmigtir. 60 6znitelik, 6zde8er 6zvektorlerin toplaminin %95’ini kap-

samaktadir.

Rank-1, Rank-3 ile Rank-5 tanima oranlari [Cizelge 6.4]de gosterilmistir.

Cizelge 6.4: Farkli Coziiniirliikte Yiiz Tanima i¢in Rank-1, Rank-3 ve Rank-5 Tanima

Oranlari

Yontem Rank-1 Rank-3 Rank-5

KKA-60 Bilesen  36% 51% 67%
TBA-60 Bilesen 6% 13% 17%
KKA-98 Bilesen  42% 70% 84%

TBA-98 Bilesen 8% 14% 20%

Cizelgede gosterildigi tizere, Rank-5 performansi goze alindiginda, PCA siniflandirma %20

basarisina ulagirken, Onerilen yontem %84 basariyla siniflandirma yapabilmistir.

Tiim rank degerleri i¢in tanima performanslari ise [Sekil 6.28da gosterilmistir.
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Sekil 6.28: Farkli Mesafe Yiiz Tamima Icin, TBA ve Onerilen Yontemin Tiim Rank

Degerleri Bagarim Oranlari

[Sekil 6.28de goriildiigii tizere, rank degeri arttik¢a siniflandirma performansi artmaktadur.
Onerilen KKA tabanli yontem, TBA yontemine gore her zaman daha iyi sonug¢ vermek-
tedir. Bu durum, TBA yonteminde ozniteliklerin temel bilesenlerden se¢ilmesine karsilik,
onerilen yontemde temel bilesenlerin yiiksek korelasyon gosterecek 6znitelik doniigiimlerini
kullanma esasindan kaynaklanmaktadir.

Rank-5 i¢in, Onerilen ve TBA tabanli tanima performansinin, kullanilacak 6znitelik sayisina

gore durumu [Sekil 6.29]de gosterilmistir.
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Sekil 6.29: Farkli Mesafe Yiiz Tanima icin, TBA ve Onerilen Yontemin Rank-5 Tanima

Oranlari

Her iki yontem i¢in de, kullanilacak 6znitelik sayisisin artmasi performans: arttirmaktadir.
Onerilen yontemde performans artisi, 6znitelik sayisi arttikca egimini azalmaktadir. Bu du-
rum, Onerilen KKA tabanli yontemin 6znitelikleri belirleme stratejisinden kaynaklanmak-
tadir. Kanonik korelasyonlarin biiyiikten kiigiige dogru dizilmesi ile, her kullanilan bilesen
kendisinden Once gelen bilesenden daha az performansi arttirmaktadir. Tanima i¢in kul-
lanilacak oOzniteliklerden, en yiiksek korelasyonu gosterenler bastaki bilesenler olarak yer
almaktadir. TBA tabanli uygulamada ise, ozniteliklerin siniflandirma acisindan 6zel bir di-

zilimi s6z konusu degildir.
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7. SONUCLAR

Bu calismada oOncelikle capraz smiflandirma problemi ortaya konulmus ve capraz
siniflandirma problemine temel olusturacak yaklasimlar incelenmistir. Capraz siniflandirma
icin geligtirilen yaklasim ve yontemler bazi pratik tanima ve siniflandirma problemlerine

uygulanmig ve sonuglar karsilagtirmali olarak etiit edilmistir.

Smif ayristirilabilirligi i¢in bir Olciit olan Bhattacharyya Katsayist veya Bhattacharyya
uzaklik ol¢iitii farkli 6zelliklerdeki dagilimlar icin incelenmigtir. Farkli doniisiimler altinda
sinif ayrigtirtlabilirliginin nasil etkilendigi Bolim [2fde gosterilmistir. Yine ayni boliimde,

teorik gosterimlere ek olarak bazi deneysel sonuclar da ele alinmigtir.

Capraz siniflandirma yontemlerinin incelenmesinde baglangi¢ noktast olan DMOKH ta-
banli ¢apraz smiflandirma yontemi Bolim [3[de incelenmistir. Burada DMOKH kestiri-
cisi ayrmtili olarak sunulmustur. Gauss dagilima sahip siniflar varsayiminda DMOKH ta-
banli capraz simiflandirma icin bilinmesi gereken sif istatistikleri ve bunlar ile yapilacak
DMOKH kestiricisinin nasil belirlendigi incelenmistir. Dogrudan 6lgiilebilen ve dogrudan
Olciilemeyen 6znitelikler arasinda bir ilinti (correlation) bulundugu siirece, DMOKH kes-
tiricisi ile Ozniteliklerin kestirilip, simiflandirma yapilabilecegi gosterilmistir.  Ayrica
DMOKH tabanh ¢apraz simiflandirma ile elde edilen 6zniteliklerin ayristirilabilirligi Bhat-
tacharyya uzaklik oOlgiitii tizerinden incelemistir. DMOKH tabanli ¢apraz tanimada Bhat-
tacharyya mesafe 6lgiitiiniin degismedigi de Boliim [2.1]de gosterilmistir. Tersi almabilir ve
tiirevlenebilir doniistimlerle yapilan kestirimlerde Bhattacharyya Uzakligi’nin degismedigi
Boliim [2.2]de gosterilmistir. Burada, gapraz siiflandirma problemi igin, Bhattacharyya
Uzaklig1 ve siniflandirma performansi arasinda, beklenin aksine, dogrudan bir ilinti olmadig1
gosterilmigtir. Siniflandirma performansi hata olasilig1 ile Bhattacharyya Uzaklig1 arasindaki
iligki, Boliim [3.5]de gosterilmistir.

Ortalama deger vektorleri ve esdegisinti matrisleri bilinen, esit sayida ornek iceren iki
veri setinin birlesmesiyle elde edilen yeni veri kiimesinin ortalama deger vektoriiniin ve
esdegisinti matrisinin ne olacagi Bolim [3.4/de gosterilmistir. Dogrudan olgiilemeyen ve
dogrudan olgiilebilen Oznitelikler arasindaki esdegisinti matrislerinin (Py,) de bilinmesi
durumunda, DMOKH ile elde edilen simiflarin ve bunlarin birlesiminin ortalama deger

vektorleri ve esdegisinti matrisleri Bolim [3.4]de gosterilmistir.

Boliim [3]de kestirimle elde edilen degerler iizerinden hesaplanan BU degerinin siniflandirma

performansi hakkinda dogrudan bir bilgi vermedigi gosterilmistir.

Boliim f]de ise kestirilen Ozniteliklerin orijinal oznitelikler + giiriilti seklinde model-
lendiginde; BU degerinin 6lgemedigimiz 6znitelik BU degerinden kiiciik veya esit oldugu

ispatlanmistir. Esitligin saglanabilmesi i¢in, kestirim hatasinin olmamasi veya esdegisinti
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matrislerinin birbirlerine esit olmasi gerektigi Bolim [@.1[de gosterilmistir. Bu caligma son-
rasinda, kestirilen Ozniteliklerinin, dogrudan ol¢iilemeyen Oznitelikler icin tasarlanan ve
Esitlik [ 2.7]de belirtilen sinirlar arasinda kalan bir smiflandirici ile siniflandirildiginda per-
formansin hangi aralikta olabilecegi gosterilmistir.

Bolim [5de, ¢apraz siniflandirma igin KKA tabanli yeni bir yontem 6nerilmis ve bu yontem
ile Oznitelik belirlemesi/indirgenmesi konular1 incelenmigtir. KKA tabanli bu yontem,
kanonik korelasyonlar1 biiyiikten kii¢iige siralamasi sayesinde Ozniteliklerin belirlenmesi
veya indirgenmesi asamasinda da optimal bir yontem olarak karsimiza ¢ikmaktadir. Kul-
lanilan her 6znitelik ile sistemin performansi artmakta fakat bu performans artis1 kendisin-
den bir Onceki Ozniteligin sagladigi performans artisindan daha az olmaktadir. KKA tabanli
capraz smiflandirma yonteminin uygulanmasi esnasinda, probleme dair 6zel bir alan bil-

gisinin gerekmemesi, Onerilen yontemin onemli bir 6zelligidir.

Boliim [6.17de IRIS veri kiimesi ile, Boliim [6.2Jde CMU veri kiimesi ile DMOKH kestirici
tabanl ¢apraz siniflandirma yaklasimi ve sinif ayristirilabilirligi Bhattacharyya Uzakligi kul-

lanilarak incelenmistir.

Bolim [6.3] ve Bolim [6.4de gercek genetik veriler iizerinde bazi ¢apraz smiflandirma
problemleri calisilmigtir. Bu uygulamada dogrudan 6lciilebilen ve dogrudan odlgiilemeyen
veri kiimeleri arasindaki ilintinin ¢apraz siniflandirma performansini dogrudan etkiledigi
gosterilmigtir. Ayrica otozomal genetik isaretleyiciler ile %84 gibi yiiksek bir hata orani
ile belirlenebilen Y-DNA haplogruplarinin, onerilen yontem ile %47 hata oram ile belir-

lenebilmesi saglanmusgtir.

Boliim [6.5]de diisiik c¢Oziiniirlikli imgelerden yiiz tamima uygulamasi caligilmistir.
Bu calismada yiiksek coziiniirliikli goriintiiler sentetik olarak diisiik ¢oziiniirliikli
goriintiilere doniistiiriilmiistii. 6 x 3 boyutuna kadar indirilen bu goriintiiler ile in-
san goziiyle yapilamayacak olan yiliz tanimasi Onerilen yontem ile basarili bir sekilde

yapilabilmistir.

Boliim [6.6]de eskizden yiiz tanima i¢in simdiye kadar yapilan ilgili ¢aligmalar sunulmus
ve problem KKA tabanli capraz siniflandirma yontemi kullanilarak caligilmistir. Onerilen
yaklagim, fotograf veya eskiz uzayinda degil, KKA tabanli bir doniigsiim ile verile-
rin korelasyonlarinin maksimum oldugu ara uzayda tanmima yapma esasina dayanmak-
tadir. TBA ile kullanilacak Ozniteliklerin belirlenmesi/indirgenmesi, bu 6znitelikler ile
KKA gercgeklestirilmesi bu yonteminin eskiz tanimada kullanilmasi yeni bir yaklagimdir.
Onerilen yontemde KKA sonrasinda oznitelikler, korelasyonu yiiksek olandan az olana
dogru siralanmis oldugu icin, istenilen sayida 6zniteligin optimal sekilde secilmesine izin
vermektedir. Calisma sonrasinda eskizden yiiz tanima problemi ic¢in Onerilen yontem ile
yiiksek tanima oranlarina ulagildigr gozlenmistir. Gorerek-eskiz yontemi ile olusturulmusg

veri kiimesi iizerinde yapilan uygulamanin, kriminal-eskiz verileri {izerinde de basaril
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sonuglar verecegi diisiiniilmektedir. Bu uygulamada da, alan bilgisi kullanmadan, KKA ta-

banli yontem ile basarili bir tantma yapilabilecegi gosterilmistir.

Boliim [6.7]de giivenlik kameras1 goriintiilerinden yiiz tanima problemi ¢aligilmistir. Konu
hakkinda ayrintili literatiir taramas1 verilmis ve sonrasinda KKA tabanli tanima yontemi
sunulmugstur. LDHF veri kiimesi iizerinde yapilan uygulama ile KKA tabanli yontemin

yiiksek tanima oranlarina ulastig1 gosterilmisgtir.

Bu calismada Onerilen yontem, alan bilgisi gerektirmemektedir. Bu 6zelligi ile bundan sonra
yapilabilecek bir¢cok ¢apraz tanima problemine hizlica uygulanabilecek bir cerceve olarak or-
taya ¢cikmaktadir. Uzaktan algilama problemleri, kizil 6tesi kamera goriintiilerinden goriiniir

bant goriintiilerin taninmasi gibi problemler bunlardan bazilaridir.

Makine dgreniminin bir kolu olan alan uyarlamasi (domain adaptation) son yillarda iizerinde
caligilan konulardandir [66]]. Alan uyarlamasi, e8itim asamasinda kullanilan objelerin
tanimlandig1 uzay ile simiflandirmada kullanilacak objelerin tanimlandig1 uzayin farkl ol-
mas1 durumunda tanima yapabilmeyi amag¢lamaktadir [67]. Alan uyarlamasi i¢in 0znitelik
tabanl [68, 69|, tekrar agirliklandirma tabanli [[70], destek vektor makinesi tabanh 71} [72]
algoritmalar gelistirilmistir. Onerilen KKA tabanli ¢apraz tanima yontemi, 6znitelik tabanli
bir yontem olup, alan uyarlamasi konusuna genis bir cerceve olmaktadir. Capraz tanima
ile ilgili gelecekte yapilacak ¢aligsmalarda, alan uyarlamas: ile birlikte ele alinarak tez kap-
saminda ortaya konulan teorik cerceve ile alan uyarlamasi yontemlerinin gelistirilmesinde
kullanilabilir.

Onerilen kanonik korelasyon analizi tabanli yontem, ozniteliklerin yiiksek korelasyon
gosterenden diisiik korelasyon gosterene dogru dizilmesi ile Oznitelik seciminde de op-
timal bir yontem olarak sunulmugstu. Kullanilacak 6znitelik sayisinin siniflandirma per-
formansina etkisi bundan sonrasi i¢in iizerinde calisilabilecek bir konu olarak kargimiza

cikmaktadir.
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A. EK

iddia

m vektor, A ve B pozitif taniml1 kare matrisler olmak iizere;

m’ Am > m’Bm = |A| > |B| (A1)

Ispat

m’ Am > m’Bm
mm’ Amm’ > mm’”Bmm’
M 2 mm” = M||A|MT| > [M||B||M”| (A2)
M[*|A| > [M[*[B|

=|A]> B
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B. EK

Iddia
Pozitif tanimli matrisler i¢in, matrislerin toplaminin determinanti, her bir matrisin determi-

natlarinin toplamindan daha biiyiiktiir

|A+B| > [A]+[B| (B.1)

Ispat

1 —1 —1 1
A+B=B2(BTABT +1)B?
C2 (B7AB? +1) (B.2)
— A+B=B2(C+I)B:

olarak tanimlanabilir.

Aj: C matrisinin 6zdegerleri olmak iizere, C pozitif tanimli bir matris ise,

IC+I=T]](A;+1) >1+]]A =1+IC] (B.3)
J J

ifadesi her zaman yazilabilir.

Esitlik ve Esitlik birlestirildiginde,

A +B| = [B|2|C+I||B|2
IA+B| = [B||C+1]
> |B[(1+[C])
= B|(1+[B2AB™?) (B.4)
= [B[(1+|A[/[B])
= |A|+|B]
= |A+B| > |A|+[B|

olarak gosterilmis olur.
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