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STATIC AEROELASTIC OPTIMIZATION OF ARW-2 WING WITH
MULTIDISCIPLINARY CODE COUPLING

SUMMARY

In last two decades, interest in multidisciplinary design analysis and optimization has
increased substantially. Besides of experimental studies, computational studies via
academic and commercial codes took a place in literature. There are also some
extended experimental database of a test case like ARW-2 wing which is selected as

design model in this study.

In the first step of this study, an accurate computational wing model which has
similar responses with experimental wing model is created. Due to the lack of some
properties of experimental wing in the literature, an inverse engineering problem
with multi objective optimization tools has been defined. The purpose of this effort is
to identify missing properties of the wing. After this identification, the computational
wing model is validated with experimental data for both static and dynamic

responses.

In the second step of this study, a static aeroelastic optimization problem has been set
by using previously validated ARW-2 computational wing model. The objectives of
the problem are maximization of lift over drag ratio and minimization of weight. The
problem is constrained with aerodynamic and structural criteria. As optimization
algorithm, NSGA-II is used to govern optimization process. According to the results,
pareto set for the optimum designs are acquired and the optimum design is selected

with a satisfactory improvement on the design.

During the study, calculations are performed by using commercial codes. As a finite
element solver ABAQUS 6.7-1 is used while FLUENT 6.3.26 is used to solve flow
equation. To couple these flow and structural solvers, MpCCI 3.0.6 is used. An
advanced optimization software ModeFrontier 4.0 is used to solve optimization

problems.
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COK DISIPLINLI KOD ESLEME iLE ARW-2 KANADININ STATIK
AEROELASTIK OPTIMIiZASYONU

OZET

Son yillarda, ¢ok disiplinli tasarim analizleri ve optimizasyona olan ilgi oldukga
artmistir. Deneysel c¢alismalarin yanisira, akademik ve ticari kodlar kullanarak
yapilan sayisal ¢aligmalar literatiirde yerini almistir. Bu ¢alismada model olarak
secilen ARW-2 kanadi gibi genis deneysel veritabani olan test durumlari yer

almaktadir.

Bu ¢aligmanin ilk asamasinda, deneysel kanat modeli ile benzer cevaplara sahip olan
sayisal bir kanat modeli olusturulmustur. Deneysel kanadin bir takim 6zelliklerinin
literatlirdeki eksiklerinden Otiirti, tersine mithendislik ile ¢cok amagli bir optimizasyon
problemi kurulmustur. Bu denemenin amaci, kanadin eksik ozelliklerinin teshis
edilmesidir. Bu teshisten sonra, sayisal kanat modeli statik ve dinamik cevaplarina

gore deneysel kanat modeli ile dogrulanmistir.

Calismanin ikinci agsamasinda, daha once dogrulanan ARW-2 sayisal kanat modeli
kullanilarak bir statik aeroelastik optimizasyon problemi tanimlanmistir. Problemin
amact kanadin tagima/siiriikleme oranini maksimize etmek ve agirligin1 minimize
etmektir. Problem aerodinamik ve yapisal kriter ile kisitlanmistir. Optimizasyon
algoritmasi1 olarak NSGA-II optimizasyon prosesini yiiriitmek lizere kullanilmistir.
Elde edilen sonuglara gore, optimum tasarimlar i¢in pareto kiimesi elde edilmis ve

optimum tasarim, tasarimda tatmin edici bir iyilestirme ile se¢ilmistir.

Calisma siiresince, sayisal hesaplarin yapilmasinda ticari kodlardan faydalanilmistir.
Sonlu elemanlar yontemi ¢oziiclisii olarak ABAQUS 6.7-1 kullanilirken, akis
denklemlerini ¢ozmek i¢cin FLUENT 6.3.26 kullanilmistir. Bu iki kodun
eslenmesinde ise MpCCI 3.0.6’dan faydalanilmistir. Gelismis bir optimizasyon
yazilimi olan ModeFrontier 4.0, optimizasyon problemlerini ¢6zmek {izere

kullanilmistir.

X1



Xii



1. INTRODUCTION

1.1 Motivation

The goal is to perform an aeroelastic optimization study based on ARW-2
(Aeroelastic Research Wing) wing model for steady-state conditions while both
aerodynamic and structural parameters can be used as optimization variables. Since
some of the structural properties of ARW-2 composite wing is missing in literature,
firstly, a reliable 3-D computational ARW-2 wing model is needed to be identified in
an inverse approach and validated with experimental results. The missing material
properties and thicknesses of the skin, ribs, axial bars and spars are defined as
optimization variables of an multi-objective optimization problem based on structural
mechanics. The objectives are minimization of the errors in the first five modal
frequencies, in mode shapes, in pre-defined static bending and torsional responses of
the wing model. An isotropic skin approach is used for simplicity. ModeFrontier is
used as an optimization tool and Abaqus as a FE structural solver. In the second step,
the computational ARW-2 model's aeroelastic response is validated with the
experimental results. By coupling Fluent and Abaqus softwares through MPCCI,
static aeroelastic analysis for Mach number 0.8 at angle of attack changing between
-1 to 3 degrees are performed for fluid-structure interaction validation. In the third
step, a multidisciplinary optimization study is performed on the verified
computational ARW-2 model in order to improve the lift/drag performance and static
displacement criteria of the wing while trying to reduce its weight. The angle of
attack, the thicknesses of ribs and spars are defined as design variables while a
multiobjective genetic algorithm (MOGA) is employed in the aeroelastic

optimization framework.



1.2 Background

1.2.1 Aeroelasticity

Aecroelasticity is a field of study that concerns the interaction between the
deformation of an elastic structure in an airstream and the resulting aerodynamic

force. This interdisciplinary study can be illustrated by Figure 1.1.
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Figure 1.1 : Schematic of the field of aeroelasticity [1]

The interaction of aerodynamic loading caused by steady flow and consequent elastic
deformation of the surface is called static aeroleasticity. This area has two types of
design problems. The most usual problem is the effect of elastic deformation on the
airloads in normal operating conditions. Flight stability, quality of control, influence
on performance and load distribution are related to these effects. Another problem
about static aeroelasticity is the instability of the structure which is called

“divergence”.

The most commonly posed problems about aeroelasticity are stability problems. The
deformation of the structure leads to a different aerodynamic load distribution on the
structure. The increase in the load leads to an increase in the deflection of the
structure and may lead to a failure in structure. When inertial forces have less effect,
we refer to this as a static aeroelasticity instability (divergence). On the other hand,
when the inertial forces are important, the resulting aeroelastic instability is called

“flutter”.



1.2.2 Multidisciplinary Optimization (MDO)

Many studies in aerospace industry need to be considered as multidisciplinary
problems due to their complexity and interaction between other disciplines like
aerodynamics, structural dynamics, heat transfer, vibration, control, etc. Developing
new and complex methodologies depends on the interaction of these different

disciplines, so that entire system is considered as a coupled system.

Coupled systems have complexity in their nature. One design requirement can be an
input by a discipline whereas this variable can be an output of another discipline.
This complexity may induce contradiction among disciplines. For example, one
aircraft design may be good from the point of view of structural dynamics as this
design is useless from another point of view. Designing an aircraft with high weight
would decrease the flexibility and suppress aeroelastic instabilities, however it
decreases aerodynamic performance of the aircraft. A systematic approach to solve
this kind of coupled problems is defined as ‘“Multi-disciplinary Optimization
(MDO)”. [2]

1.3 Outline

This thesis provides two major studies mainly about multi objective optimization by
using ARW-2 experimental wing model as a test case. First of all, background of
computational aeroelasticity and multidisciplinary optimization is provided in
chapter 2. In chapter 3, the computational framework and the methodology
developed and used in this study is described. In chapter 4, an inverse engineering
problem by using multi objective optimization tools are presented in order to
completely identify the test case ARW-2 computational wing model. In chapter 5, a

static aeroelastic optimization problem is defined and the results are presented.



2. LITERATURE REVIEW

2.1 Computational Aeroelasticity

In a computational framework, aeroelastic analysis requires a simultaneous analysis
of fluid and structural equations. To further improve the performance of the air
vehicle, implementation of multi-disciplinary optimization techniques into the
computational design process will be beneficial. The topic of computational
aeroelasticity has flourished in the last few decades with the great advances in
computer technology and algorithms. The Euler/ NavierStokes flow solvers have
been widely employed for the fluid domain as in the works of Farhangnia [3],
Bhardwaj [4], Karpel [5], Newman [6], Garcia and Gruswamy [7], Liu [8], Cai [9],
Kamakoti [10], Farhat [11-14], Gordnier [12], Feng and Soulaimani [13]. Recently,
reduced order models have been applied to fluid domain by Dowell [15] , Lieu [16]
and Haddadpour [17]. Structural analysis of the aeroelastic problem is performed by
using modal equations as in the works of Karpel [5], Farhangnia [3], Garcia and
Gruswamy [7], Liu [8]. The structural finite element method is employed in the
studies presented by Liu [8], Farhat and Lesoinne [11], Gordnier [12], Bhardwaj [4],
Relvas and Suleman [18], Gordnier [12]. To transform the physical data between
fluid and structure, three different methods of coupling can be used. These are
loosely coupled [19], closely coupled [8-13] and fully coupled methods [11].

Computational aeroelasticity with commercial codes are becoming more common
recently because of the industrial needs. Kuntz and Menter (20) used the commercial
software packages to perform an aeroelastic analysis of the AGARD 445.6 wing with
the high fidelity non-linear finite element solver ANSYS and the general purpose
finite volume based CFD code CFX-5. Mesh based Parallel Code Coupling Interface
(MpCCI) is used for the interfacing and data transfer between CSD and CFD solvers.
Love et al (19) used the Lockheed's unstructured CFD solver SPLITFLOW and the
MSC/Nastran CSD solver for the aeroelastic computations of an F-16 model in a

max-g pull-up maneuver. They used a loosely coupled method for the analysis. Data



transfers between the codes are done by using Multi-Disciplinary Computing
Environment (MDICE). Heinrich [21] used the DLR’S unstructured TAU code with
MSC/Nastran finite element solver for the aeroelastic analysis of an A340 like
aircraft. MpCClI is used for the loosely coupling of these codes.

Cavagna [22] used an interfacing method that can be applied on unmatching meshes
based on Moving Least Squares (MLS). They used Fluent for the fluid solver and the
MSC-Nastran for the structural solver for the aeroelastic analysis of the AGARD
445.6 wing. They used a user defined function (UDF) to implement the grid
deformation and scheme for the Crank-Nicolson algorithm for Fluent.

Thirifay and Geuzaine [23] studied the AGARD 445.6's aeroelastic problems both
with steady and the unsteady approximations in a loosely coupled method. In their
study they used a three dimensional unstructured CFD solver developed in
CANAERO and a CSD solver "the SAMCEF Mecano code" for their analysis. They
used the ALE method for the moving mesh method. MpCCI is used for the
aeroelastic code coupling tool.

Yosibash [24] designed an interface to couple a parallel spectral/hp element fluid
solver "Nektar" with the hp-FEM solid solver "StressCheck" for the direct numerical
solution (DNS) over AGARD 445.6 wing. ALE formulation is used for the fluid
structure coupling. They used the one-way coupling method with linear assumption
for the structural response and the two-way coupling method which considers the
non-linear effects of the structure. The ALE formulation of the Navier-Stokes
equations are also used in Svacek’s work [25]. The Reynolds averaged Navier Stokes
(RANS) system of equations with the Spallart-Almaras turbulence model were used
to compare the results with NASTRAN code solutions. Fazelzahed [26] highlighted
the effects of an external force and mass parameters such as the mass ratio and their
locations on the flutter speed and frequency by performing numerical simulations.
Unsteady aerodynamic pressure loadings were taken into account and the resulting
partial differential equations are converted into a set of eigenvalue equations through
the extended Galerkin’s approach.

Stanford et al. [27] used a design model of MAV (Micro Air Vehicle) with a low
aspect-ratio by using an aeroelastic code to couple a Navier-Stokes solver and a finite
element solver. For the steady laminar flow field, they solved 3-D incompressible
viscous Navier-Stokes equations and interpolated the computed wing pressures to the

FEA to solve the displacements using the structural membrane model. They



interpolated the displacement onto the model and remeshed CFD grid using a
mesh/slave moving-grid scheme. After repeating these steps until convergence is
achieved, they compared their results with the experimental data to validate the
computational model. Lim [28] studied the aeroelastic stability of a bearingless rotor
with a composite flexbeam. Numerical results were compared with both previously
published experimental results and theoretical values.

Xie [29], in his work, emphasized the importance of nonlinear aeroelastic stability
for the high-altitude long-endurance (HALE) aircraft model by using
MSC/NASTRAN as a FEM software and an unsteady aerodynamic code with planar
doublet lattice method.

In Pahlavanloo’s study [30], AGARD 445.6 wing model was used for dynamic
aeroelastic simulations by using EDGE code which is previously validated with
experiments. In this study, flutter boundary for AGARD wing in subsonic and
supersonic regions were presented and additional validation of aeroelastic
implementation of EDGE was provided. Edward [31] performed generalized
aeroelastic analysis method to apply on three cases which are restrained, unrestrained
and a wing model. A computer code for the generalization of a doublet lattice
method was applied to the calculation for the wing model for both incompressible
and subsonic flow conditions. To check accuracy of the code, for all cases aeroelastic
flutter, divergence speed and frequencies were compared with published results.
Jian-min [32] investigated aeroelastic characteristics of an airship by coupling a
SIMPLE method based finite volume code and a finite element code. They
developed a nonlinear finite element method to solve the structure equations of the
airship and derived the flow solver based on the Reynolds-averaged Navier-Stokes
equations. A Thin Plate Spline (TPS) is used as the interface to exchange the data
between fluid and structure codes.

A nonlinear aeroelastic analysis of a two-dimensional airfoil was presented in
Sarkar’s [33] study. Due to structural damage potential of stall aeroelastic instability,
aeroelastic instability and nonlinear dynamic response were investigated by
considering two different oscillation models one of which is pitching oscillation and
the other one is flap-edgewise oscillation. A quasi-steady Onera model was used to
calculate the nonlinear aerodynamic load in the dynamic stall regime. Another
nonlinear aeroelastic analysis was presented by Shams et al [34]. They used the

second-order form of nonlinear general flexible Euler-Bernoulli beam equations for



structural modeling. Aerodynamic loading on the model which is “Human Powered
Aircraft’s” (HPA) long, highly flexible wing were determined by using unsteady
linear aerodynamic theory based on “Wagner function”. The nonlinear integro
differentials aeroelastic equations were obtained from the combination of these two
types of formulations. Although their linear study for a test case had a good
agreement with experiments, the nonlinear model did not satisfy the experimental
data. Silva [35] presented an improvement to the development of CFD based
unsteady aerodynamic reduced-order model in his study. This improvement involves
the simultaneous excitation of the structural modes of the CFD based unsteady
aerodynamic system. CFL3Dv6.4 code which solves the three-dimensional, thin
layer, Reynolds-averaged Navier-Stokes equations with an upwind finite volume
formulation. The second-order backward time differencing with subiterations was
used for static and dynamic aeroelastic calculations. Another nonlinear aerolasticity
study in supersonic and hypersonic regimes was performed by Abbas et al [36].
Their study shows that the freeplay in the pitching degree-of-freedom and soft/hard
cubic stifness in the pitching and plunging degrees-of-freedom have significant
effects on the limit cycle oscillations exhibited by the aeroelastic system in the
supersonic and hypersonic regimes. They also investigated the effect of the radius of
gyration, the frequency ratio and post-flutter regimes on the aeroelastic system
behaviour by using Euler equations and CFL3D code. They concluded that the non
linear acrodynamic stiffness induces damaging effects for aeroelastic system at high

Mach numbers.

Computational aeroeleasticity has been also used in many applications other than
aerospace engineering. Chattot [37], in his study, used his previously validated code
and performed aeroelastic simulation of wind turbine to observe its vortex model.
Baxevanou [38] developed a novel aeroelastic numerical model which combines a
Navier—Stokes CFD solver with an elastic model and two coupling schemes for the
study of the aeroelastic behaviour of wind turbine blades undergoing classical flutter.
In the conclusion, the capabilities of the numerical model were presented to perform
an aeroelastic analysis accurately. Moreover, Braun [39] has performed CFD and
aeroelastic analysis on the CAARC (Commonwealth Advisory Aeronautical
Council) standard tall building by using numerical simulation techniques. A major

topic was referred to one of the first attempts to simulate the aeroelastic behavior of a



tall building employing complex CFD techniques. Numerical results were compared
with numerical and wind tunnel measurements with some important concluding

remarks about the simulation.

Recently, as a former study of this thesis, a robust aeroelastic optimization
methodology was developed by multidisciplinary code coupling approach employing
common softwares such as Fluent and Abaqus with Modefrontier and MpCCI as in
the work of Nikbay [76] and Oncii [77] for the aeroelastic optimization of AGARD
445.6 wing. After this methodology was successfully established, the current work
focuses on aeroelastic optimization of a more complicated 3D wing model of ARW 2

which has inner rib, spar and axial bar elements.

2.2 Multidisciplinary Optimization

Aircraft design is a complex engineering process that depends on the interaction of
different disciplines so that the system of these disciplines must be thought as a
coupled system. For instance, design of an aircraft wing with low weight would
improve the aerodynamics performance but this will increase the flexibility of the
wing which may lead to aeroelastic instability. Such a system can be solved by

aeroelastic optimization.

Therefore, the contradictory situations in aircraft design optimization process
disciplines such as aerodynamics, structural dynamics, propulsion, flight controls,
etc. must be thought as a whole system to find the optimized design. Moreover
design requirements enhanced with the developments in computer technology. The
increased complexity and the computational cost issues regarding multi-disciplinary
design leaded to a concept referred as “Multi-Disciplinary Optimization (MDO)”.
MDO which is a growing field of study has been particularly applied to aerospace

engineering problems.

As the capabilities of computational studies grow, the fidelity level of engineering
numerical analysis increase as well. These multifidelity models range from low
fidelity simple physics models to high-fidelity detailed computational simulation
models. Including higher-fidelity analyses in the design process, for example through
the use of computational fluid dynamic (CFD) analyses, leads to an increase in

complexity and computational expense. As a result, design optimization, which



requires large numbers of analyses of objectives and constraints, becomes more
expensive for some systems. Robinson [40] presented a methodology for improving
the computational efficiency of high-fidelity design, by using variable fidelity and
variable complexity in a design optimization framework. to minimize expensive
high-fidelity models at reduced computational cost, Surrogate-based-optimization
methods were used. The methods are useful in problems for which two models of the
same physical system exist: a high-fidelity model which is accurate and expensive,
and a low-fidelity model which is less costly but less accurate. Three methods were
demonstrated on a fixed-complexity analytical test problem and a variable
complexity wing design problem. The SQP-like method consistently outperformed
optimization in the high-fidelity space and the other variable complexity methods.
On the wing design problem, the combination of the SQP-like method and corrected
space mapping achieved 58% savings in high-fidelity function calls over
optimization directly in the high-fidelity space. These savings provided a reduction

in computational cost.

Alonso [41] presented a new approach for software architecture of a high-fidelity
multidisciplinary design framework that facilitates the reuse of existing components,
the addition of new ones, and the scripting of MDO procedures. The necessary
components of a high-fidelity aero-structural design environment for complete
aircraft configurations were implemented, and were demonstrated with two separate
aero-structural analyses: a supersonic jet and a launch vehicle. An aero-structural
solver that uses high-fidelity models for both disciplines as well as an accurate
coupling procedure was the core of the effort. The Euler or Navier—Stokes equations
were solved for aerodynamics side and a detailed finite-element model was used for
the primary structure. In Kodiyalam’s [42] study, Multidisciplinary Design
Optimization of a vehicle system for safety, NVH (noise, vibration and harshness)
and weight, in a scalable HPC (High Performance Environment) environment, was
addressed. HPC, utilizing several hundred processors in conjunction with
approximation methods, formal MDO strategies and engineering judgement were
used to obtain superior design solutions with significantly reduced elapsed
computing times. MDO solution time through HPC was significant in improvement
engineering productivity, so reinforcement the vehicle design were made possible.

Korngold [43] presented a new algorithm to perform multidisciplinary optimization.



Coupled nonhierarchic systems with discrete variable was efficiently optimized.
Through formulation of first and second order “Global Sensitivity Equations”, the
global approximation was optimized using branch and bound or simulated annealing.
The approximation was to decompose the system into the disciplines and use
designed experiments within the disciplines to build local response to the discipline
analysis. This algorithm based on established statistical methods was implemented

very well in an example problem.

Multidisciplinary optimization techniques were also used in more realistic problems.
For example, Venter [44] used particle swarm optimization method in his study for
multidisciplinary optimization of a transport aircraft. A new algorithm for
multidisciplinary optimization problems were introduced and the recommendations
for the use of the algorithm in future applications were provided. This algorithm was
applied to the multidisciplinary design of a typical long-range transport aircraft wing
of the Boeing 767 class. The wing was optimized relative to a reference wing. This
was an unconstrained problem which has a purpose of maximization the range for the
wing by varying the aspect ratio, the depth-to-chord ratio, the number of internal
spars and ribs and the wing cover construction. Gantois [45] performed multi-
disciplinary design of a large-scale civil aircraft wing by taking into account the
manufacturing cost. A multi level MDO process was constucted and implemented
through a hierarchical system. Calculation of the sensitivities and minimisation of the
operating costs, by taking variations of the 6 primary design parameters, was done by
the sequential quadratic programming algorithm EQO4UCF (Mark17) from the NAG
Fortran Library. This algorithm uses a quadratic approximation for the objective
function and employs linearised constraints. Drag sensitivities are obtained from
response surfaces created from CFD calculations. Thus, the possibility of
combination optimization parameters normally used in aircraft studies, relating to
weight and aerodynamic performance with a realistic cost component. The complex,
multidisciplinary nature of aerospace design problems have exposed a need to model
and manage uncertainities. A new method for propagating this uncertainity to find
robust design solution was developed and described in DeLaurentis’ [46] study. Both
the uncertainity modeling and efficient robust design technique were demonstrated
on an example problem involving the design of a supersonic transport aircraft using

the relaxed static stability technology. This study has been found to be an important
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aspect of modern aerospace problems, where emphasis on life-cycle disciplines will

introduce new uncertainities and require robust solutions.

A specific field of study in multi-disciplinary optimization is aeroelastic
optimization. Barcelos [47] presented a general optimization methodolgy for fluid
structure interaction problems based on turbulent flow models. The overall
optimization methodology was applied to the shape and thickness optimization of a
detailed wing model. The optimization results based on an inviscid and turbulent
flow model were compared. Using an approriate formulation of the optimization
problem, the optimization results based on the inviscid model can provide a general
idea about the overall layout of the optimum wing configuration. Another example
for aeroelastic optimization is Librescu’s [48] study about the optimization of thin
walled subsonic wings against divergence. The objective of the study was
maximization of the divergence speed while maintaining the total structural mass at a
constant value by using a new mathematical approach. A study of an investigation
into a minimum weight optimal design and aeroelastic tailoring of an aerobatic
aircraft wing structure was conducted by Guo [49]. After validating numerical model
considering experimental results, by employing gradient-based optimization method

the investigation was focused on aeroelastic tailoring of the wing box.
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3. COMPUTATIONAL FRAMEWORK

3.1 Design Model

The design model provides an interface between the analysis model and optimization
model. In general there is a relation between the physical design parameters and the
abstract optimization variables. A structural or an aerodynamic parameter can be
directly associated to an abstract optimization variable. Thicknesses of the structure
or angle of attack of a wing could be an abstract optimization variable. In some
cases, this relation becomes more complicated. Shape optimization could be an
example for this approach due to the design variables of the shape of the structure or

the boundary of the fluid domain.

In this study, to create parametric 3D wing model, CATIA V5 R17 software was
used. CATIA (Computer Aided Three Dimensional Interactive Application) is a
multi-platform CAD/CAM/CAE commercial software suite developed by the French
company Dassault Systems and marketed worldwide by IBM. Written in the C++
programming language, CATIA is the cornerstone of the Dassault Systemes product

lifecycle management software suite.

The software was created in the late 1970s and early 1980s to develop Dassault's
Mirage fighter jet, then was adopted in the aerospace, automotive, shipbuilding, and

other industries.

3.2 Analysis Model

3.2.1 FE Analysis (ABAQUS)

In the optimization process, finite element (FE), computational fluid dynamics
(CFD) calculations and the coupling of these two codes are performed depending on

the variation of the structural and aerodynamic variables.
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In this study ABAQUS, a finite element based solver is used as the structural solver.
All of the structural analyses are done by using the linear static analysis
approximation. Finite element method (FEM) is based on dividing a whole structure
into smaller cells. The solution procedure for a FEM in structural analysis can be

given as follows;

The first step is the processing step. In this step building of the finite element model,
the constraints and loads are defined. Moreover, mesh is prepared in this step. Next
step is FEA solver step. In this step assembling of the model and the solving of the
system of equations are done. Last step is the post-processing step. In this step the
results are sorted and displayed. The equations of motion for a structure can be

written as follows in a generalized way;

(M]f0}+ (010} ¢ (K)o} = 7} + ) o
Where;

[M]: Mass matrix

[D]: Damping matrix

[K]: Stiffness matrix

{Fa} : Aerodynamic force column matrix

{F.}: External load column matrix

{u} : Displacement column matrix

Since the analysis will be performed in static analysis the time related terms with the
time derivatives of the equation (3.1) will be neglected. Moreover, in the aeroelastic

analysis only the aerodynamic forces will be taken into account.

Therefore, by using the assumptions above the system of linear equations generated

by the finite element method can be written as follows;

[K]{u} =1{F.} (3.2)
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Displacements and stresses induced by aerodynamic loads from the flow solver, will

be calculated by ABAQUS

3.2.2 CFD Analysis (FLUENT)

In this study aerodynamic loads will be calculated by FLUENT commercial
computational fluid dynamics solver. FLUENT is used for modeling fluid flow both
for structured and unstructured grids by using Navier-Stokes/Euler equations [79]. A
finite volume based approach is used to define the discrete equations. In our case as
the flow will be in transonic regime and the compressibility effects should be taken

into account the coupled solver will be used [79].

The fluid solver of the FLUENT solves the governing equations of continuity,
momentum and energy simultaneously [79]. In this study, flow will be assumed as
inviscid and Euler equations will be used. This is a valid approximation for high
Reynolds number flows according to the Prandtl’s boundary layer analysis.
Moreover, according to the Barcelos and Maute [47] inviscid flow models gives
acceptable results for maximizing the lift/drag optimization problems for transonic

cruise conditions.

The general Euler equations, in conservation form can be written as follows;

oW = =
E+V.F =0 (33)

Where F is the flux vector with cartesian components. The fluid state conservative

variable, w is defined as

yo,
PY,
W=1 P (3.4)
PU;
E

Governing equations are non-linear and coupled. In FLUENT in order to get
convergence several iterations are performed as the equations of continuity, energy

and momentum are solved simultaneously.
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3.2.3 Aeroelastic Coupling (MpCCI)

In order to couple FE code (ABAQUS) and CFD code (FLUENT), MpCCI (mesh
based parallel code coupling interface) is used. MpCCI gives user the opportunity of
using high fidelity simulation codes for different disciplines. The advantage of using
MpCCI is that it enables the exchange of data transfer between nonmatching meshes
of CFD and CSD codes in a multiphysics simulation [81]. MpCCI supports several
types of coupling regions and spaces. Line, surface or volume coupling depending on

the elements definitions can be done in two or three dimensional space.
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Figure 3.1 : MpCCI Coupling Process [81]

In MpCCl, data exchange process are made in three steps. First of all, to make the
contact search easier the elements are split into triangles in 2D or tetrahedras in
3D.(a) Search for the elements is done by using the “Bucket Search” algorithm of
MpCCI [81]. Then, each triangle is bounded by a box which includes the triangle.(b)
After that step, “buckets” are formed by dividing the space into smaller squares or
cubes. (c) Finally, a list is formed by listing the closer triangles to the bucket to use

for the further steps.
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Point-element relationships are used in the minimal distance algorithm. A list of
triangles which belong to elements was formed in the pre-contact search step. In this
step, the best triangle corresponding to the best element is determined and chosen.
Relative positions of the triangles and the node P is used in this process [81].

Projection of the point P is taken onto the surface of each triangle.

Interpolation of the quantitites (displacement, force, pressure,...) can be done by
using a flux or filed interpolation method [81]. In flux interpolation, preserving of the
integral is done by adapting the value to the element sizes. This method is used for
example for forces. In field interpolation, a conservative transfer is ensured by

keeping the value of the elements. It is used for example for pressures.
Performing code coupling with MpCClI is done in four steps;
e Preparation of Model Files

In this step FLUENT and ABAQUS models are prepared separately. The definition
of the coupling surfaces (upper wing, lower wing, tip) are given in this step. Then,

model files are written in input files for the CFD and CSD codes.
e Definition of the Coupling Process

The most important step of the aeroelastic coupling process is the definition of the
coupling process step. FLUENT and ABAQUS models of the wing are chosen via
user interface. Then, coupling regions described above, transfer quantities (nodal
displacements from the CSD code and the pressure values from the CFD code) and

the coupling algorithms are selected.

e Running the Co-Simulation
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In this step aeroelastic analysis are performed. MpCCI controls the rest of the

coupling process till to the specified coupling iterations or time.
e Post-Processing

Finally, the results for both CFD and the CSD code are examined by using the codes

own post-processing tools or the post-processing tools of MpCCIL.
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Figure 3.3 : Code Coupling Process [81]

After all the models are prepared, the solution procedure for the aeroelastic coupling
can be divided into steps. The solution strategy described below is performed until a
specified coupling time or iterations. CFD code calculates the surface pressures and
maps these pressures as nodal forces to the CSD code. CSD code calculates the
deformation of the structure under these pressure loads. Calculated nodal
displacement values are mapped onto the CFD modal as mesh displacements and

mesh is updated and CFD code performs the analysis.

3.3 Optimization Model

In mathematics, the simplest case of optimization, or mathematical programming,
refers to the study of problems in which one seeks to minimize or maximize a real

function by systematically choosing the values of variables from within an allowed
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set. This is actually a small subset of this field which comprises a large area of
applied mathematics and generalizes to study of means to obtain "best available"
values of some objective function given a defined domain where the elaboration is on
the types of functions and the conditions and nature of the objects in the problem

domain.

Adding more than one objective to an optimization problem adds complexity. For
example, if one wants to optimize a structural design, a design that is both light and
rigid might be required. Because of the conflict of these two objectives, a trade-off
exists. There will be one lightest design, one stiffest design, and an infinite number

of designs that are some compromise of weight and stiffness.

A typical multi-objective optimization problem can be formulated as;

min 2(S) = Min{z, (), 2,(5),..... 2, ()]
h(s)=0  h(s)eR™

g(s)>0  g(s)eR™

S ={SE§R“5, S, SSSSU}

(3.5)

Where sis a set of n_abstract parameters constrained by lower and upper bounds s,
and s, Zis the set of objective functions of the problem. h is a set of n, equality

constraints and g is a set of n, inequality constraints.

The set of optimization variables are the parameters that affect the optimization
problem. These variables can be both geometrical variables and boundary conditions.
For instance, the optimization problem described in the next chapter has optimization
variables that are the thicknesses of ribs,spars,skins and axialbars and material
properties of an aircraft wing. However, the variables in the optimization problem
performed in the fifth chapter are the thicknesses of ribs, spars, skin and axialbars

and the angle of attack of the wing.

A constraint is a condition that must be satisfied during the design. Feasible design
means that design satisfies the constraints, contrarily infeasible design means that the
design does not satisfy the constraints. For example, designer may want the lift over

drag ratio of a wing to be maximum or not want the maximum stress to exceed the
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value of the material’s yield stress value or an unreasonable displacement over the

wing.

Objective function is the goal of the optimization problem that we want to minimize
or maximize. Most of the optimization problems are single objective or can be made
single objective by defining weight factors for the multi-objective functions. In the
following chapters study there are two objective functions in both optimization
problems and for the multiobjective optimization problems the algorithm will try to

find the pareto front.

Optimization problems can be generally solved by either gradient based algorithms
or evolutionary algorithms. In this study multi objective optimization problem will
be solved by genetic algorithm which is an evolutionary algorithm. Evolutionary
algorithms or genetic algorithms use the evolution theory to perform optimization. A
population evolves over generations to adapt to an environment by selection,
mutation and crossover [51]. There are three important terms related to the genetic
algorithms which are fitness, individual and genes. Fitness refers to the objective
function, individual refers to the design candidate and genes refer to the design

variables.

Multiobjective (MO) optimization tries to find the components of a vector-valued
objective function whereas the single objective optimization tries to find the single
valued objective function [52]. In MO problems, solution is a set of solutions called

“pareto-optimal set”.

The application of the evolutionary algorithms to a MO optimization problem can be
solved by using a multiobjective genetic algorithm (MOGA). Genetic algorithms are
capable of finding the global optima within complex design spaces whereas gradient
based algorithms can find the local optima points. Genetic algorithms can be used
almost for every optimization problem, where gradient based algorithms may have
some limitations. Gradient based algorithms needs the gradient information to
determine the search direction that’s why they need the existence of derivatives.
Genetic algorithms do not need to start from a point whereas gradient based
algorithms need a starting point. Genetic algorithms do not operate on design

variables directly. They use binary representation of the parameters.
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In this study, MOGA (multiobjective genetic algorithm) and NSGA-II (Non-
dominated Sorting Genetic Algorithm) were used as optimization algorithms.
NSGA-II is a fast and elitist multi-objective evolutionary algorithm. Its main features

are[80]:

e A fast non-dominated sorting procedure is implemented. Sorting the
individuals of a given population according to the level of non-domination is
a complex task: non-dominated sorting algorithms are in general
computationally expensive for large population sizes. The adopted solution

performs a clever sorting strategy.

e NSGA-II implements elitism for multiobjective search, using an elitism
preserving approach. Elitism is introduced storing all non-dominated
solutions discovered so far, beginning from the initial population. Elitism

enhances the convergence properties towards the true Pareto-optimal set.

e A parameter-less diversity preservation mechanism is adopted. Diversity and
spread of solutions is guaranteed without use of sharing parameters. It is used
the crowding distance, which estimates the density of solutions in the
objective space, and the crowded comparison operator, which guides the

selection process towards a uniformly spread Pareto frontier.

e The constraint handling method does not make use of penalty parameters.
The algorithm implements a modified definition of dominance in order to

solve constrained multi-objective problems efficiently.

e NSGA-II allows both continuous ("real-coded") and discrete ("binary coded")
design variables. The original feature is the application of a genetic algorithm

in the field of continuous variables.

On the other hand MOGA is an efficient multi-objective genetic algorithm that uses a
smart multi-search elitism. This new elitism operator is able to preserve some
excellent solutions without bringing premature convergence to local-optimal

frontiers.

For simplicity, MOGA requires only very few user-provided parameters, several
other parameters are internally settled in order to provide robustness and efficiency

to the optimizer. The algorithm attempts a total number of evaluations that is equal to
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the number of points in the design of experiment table (the initial population)

multiplied by the number of generations.

The size of each run is usually defined by the computing resources available. A rule
of thumb would suggest possibly to accumulate an initial DOE of at least 16 design

configuration and possibly more than 2(n n ), where n is number of

variable’ 'objective variable

variable and n is number of objectives.

objective

All of these optimization algorithms and process were employed by a commercial
software called “ModeFrontier” which is a multi-objective optimization and design
environment, developed to couple CAD(Computer Aided Drafting)/CAE(Computer
Aided Engineering) tools, Finite Element Structural Analysis and Computational
Fluid Dynamics (CFD) software. ModeFRONTIER is a GUI driven software written
in Java that wraps around the CAE tool, performing the optimization by modifying
the value assigned to the input variables, and analyzing the outputs as they can be
defined as objectives and/or constraints of the design problem. The logic of the
optimization loop can be set up in a graphical way, building up a "workflow"
structure by means of interconnected nodes. Serial and parallel connections and
conditional switches are available. ModeFRONTIER builds automatic chains and
steers many different external application programs using scripting (DOS script,
UNIX shell, Python Programming Language, Visual Basic, JavaScript, etc...) and
direct integrations nodes (with many CAE/CAD and other application programs). In
this study, DOS scripts were used to implement several commercial software (Fluent,

Abaqus and MpCCl)
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4. IDENTIFICATION OF AEROELASTIC RESEARCH WING (ARW-2)

In this chapter, the structural validation of ARW-2 (Aeroelastic Research Wing) by
employing multi-objective optimization techniques in an inverse approach is
considered. The objective is to identify a reliable 3-D computational ARW-2 wing
model and validate it with experimental results published by NASA “Drones for
Aerodynamic Structural Testing (DAST)” program. The purpose of this effort is to
create an isotropic computational model of ARW-2 wing which will be used in static
and dynamic aeroelastic studies. However, the structural definition of the composite
wing is not complete in literature. The thicknesses of ribs, spars, skin and axial bars
of the wing are missing geometrical properties. Furthermore the material data given
in the literature is not enough to establish a composite FE model of wing’s skin. To
remedy these deficiencies, a computational model which will have the similar
structural response with the experimental wing is required. In the first stage of this
research, an isotropic skin approach is used for simplicity. The errors in the first
five modal frequencies, mode shapes, pre-defined static bending and torsional
responses of the wing model is minimized simultaneously as the objectives of a
multi-objective optimization problem. The missing material properties and missing
thicknesses of the skin, ribs, axial bars and spars are computed as optimization
variables and identified in an inverse approach. In the second step; the computational
ARW-2 model’s structural response is validated with the experimental results. In this
study, commercial software “ModeFrontier” is used as a multi-disciplinary

optimization tool, “Abaqus” as a FE solver.

Many research studies used ARW-2 model for aeroleastic code validation purposes.
Sandford provided geometrical and structural properties of ARW-2 experimental
wing model[53]. In another study of him the steady state pressure measurements on
the wing model were presented[54]. Other than these two important studies, there are
also many studies that presents experimental data and background about the ARW-2

wing model [53-73]. By using these experimental data, a few computational studies
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were performed. In Bhardwaj’s Ph.D. thesis, an aeroelastic coupling procedure was
developed which performs static aeroelastic analysis using CFD and CSD code with
little code integration[4]. ARW-2 wing model was used for demonstration of the
aeroelastic coupling procedure by using ENSAERO (NASA Ames Research Center
CFD code) and a finite element wing-box code which was developed as a part of his
study. The results were compared with experimental data from an experimental study
conducted at NASA Langley Research Center. In his study, Bhardwaj created ARW
2 wing model with isotropic skin instead of composite skin. In present thesis, like
Bhardwaj’s approach, ARW-2 wing model is created with isotropic skin for
simplicity. The wing model is validated both with the experimental and
computational data which was presented by Bhardwaj. However, the thicknesses of
ribs, spars, skin and axial bars of the wing are missing geometrical properties.
Furthermore the material data given in the literature is not enough to establish a

composite FE model of the wing’s skin.

4.1 Geometrical and Structural Properties of ARW-2

At NASA Langley Research Center, “Drones for Aerodynamics and Structural
Testing — DAST” program intended to generate an extensive database of measured
steady and unsteady pressures for a supercritical wing model so that these results
could be used in computational studies for validation purposes. At the beginning of
the program, wing models were produced as rigid as possible in order to provide
simple comparisons for transonic aerodynamic computations. Next, a flexible wing
configuration was tested as part of this NASA program. Increasing flexibility of the
experimental wing provided more realistic data for comparison of aeroelastic

computational results with measurements.

The elastic wing configuration is known as DAST ARW-2 which has an aspect ratio
of 10.3, a leading-edge sweepback angle of 28.8°, and a supercritical airfoil. It is
produced with two inboard and one outboard trailing-edge control surfaces. Only the
outboard control surface was deflected to generate steady and unsteady flow over the
wing. The wing contour was performed from three different supercritical airfoils.
The wing primary structure consists of two main spars, one of which is at 25 % and
the other at 62 % of local chord. Ribs were placed perpendicular to the rear spar

every 13.2 in. except for the outboard wing-tip rib, which is also served as a spar end
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fitting. The spars and ribs were machined from 7075-T73 aluminum alloy. The wing
skin was made of fiberglass material with honeycomb panels sandwiched between
the middle two layers of fiberglass for areas of skin not located over the spars or ribs.
The number of layers of fiberglass used to make the skin varied from 13 at the
inboard end to 27 at the outboard end, with approximately 25 % of the layers at + 45
deg orientation. Figure 4.1 shows the wing in the wind tunnel. Figure 4.2 shows right

and top views and Figure 4.3 demonstrates the planform area of the wing.
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Figure 4.2 : Right Side and Top Views of the wing [53]
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Figure 4.3 : Planform Area of the wing [53]

4.2 ARW-2 Wing Finite Element Model

ARW-2 wing geometrical model has been created by using CATIA V5 R17
software. The wing has three different supercritical airfoils. Through the coordinate
data of the airfoils given in a NASA Technical Report of Sandford [53], firstly
supercritical airfoils were created. Skin of the wing was created by assembling
airfoils via “Generative Shape Design” module of CATIA V5 R17. Also, the ribs and
spars are located according to the coordinates given in the NASA Technical Report
[53] as it is illustrated in Figure 4.4 and 4.5. In Figure 4.6 and 4.7, wing surface

model and structural model created in CATIA V5 are shown.

Figure 4.4 : Structural Model of the Wing [53]
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Figure 4.5 : Locations of ribs and spars [53]

Figure 4.6 : 3D CAD model of the wing created in CATIA
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Figure 4.7 : Inner strucutral model of ARW-2 wing

Finite element (FE) model of the wing created in Abaqus 6.7-1 has 26,000
quadrilateral elements. As discussed before, the thicknesses of ribs, spars, skin and
axial bars of the wing are missing geometrical properties. Furthermore, the material
data given in the literature is not enough to establish a 3-D FE model of wing’s
composite skin. All these missing geometrical and material properties are defined as
“variables” in Abaqus parametrically. The aim is to reach a computational model,
which will have the same structural response with the experimental wing by iterating
these variables. This leads to an inverse engineering problem where the benefits of

numerical optimization methods can be used conveniently.

4.3 Application of Multi-Objective Optimization

In the first stage of this effort, instead of a composite skin model, an isotropic skin
approach was used for simplicity. In order to obtain a reliable computational wing
model, an inverse engineering optimization problem is set. For structural validation
purpose, the modal frequencies, mode shapes, pre-defined static bending and
torsional responses are considered. In the optimization problem, the objective is to
minimize the average of relative errors in first five modal frequencies and in static
bending displacements at wing tip on front and rear spars. This leads to a multi

objective optimization problem with 2 objectives.
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Optimization variables are defined as the material properties such as Young
Modulus, mass density and Poisson’s ratio and the missing geometrical properties of
wing such as thicknesses of the ribs, axial bars and spars. The optimization problem

is formulated as;
Objective Functions : min(z,), min(z,)

5 ‘ fiexp _ ficomp‘

2w
_ i
Z, = x100
5
comp exp comp exp
U'orward ~ U torward Uear —Urear
uexp exp
Zz — forward rear XlOO
2
Constraints : rla"ia' > tIaX‘a'
Optimization Variables : tirib Ji=12,...,17
spar _
t, ,]=12,....5
£ J=12,..4
raxial
|
Eskin ’ Espar ° Eaxial > Erib
mskin ’ mspar ’ maxial ’ mrib
Vskin > Vspar ’ Vaxial ’ Vrib

Where t™, P, t** are thicknesses of ribs, spars and axial bars respectively and

axial

I is the radius of axial bars. E,. ,E..,E. ..,E. are young modulus,

skin> =spar > —axial * —"rib

My > Moy, M v, are the poisson’s ratio

spar > Maiar» Myip ar€ mass density and v, Vo,V

skin» spar > axial °

of skin, spars, axial bars and ribs.

The reference for modal frequencies and shapes are taken from the NASA Technical
Report and the displacements are taken from Bhardwaj’s Ph.D. thesis [4]. Errors of

modal frequencies and pre-defined static bending response of the wing model are
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minimized simultaneously as the objectives of this multi-objective optimization

problem.

The missing material properties and missing thicknesses of the ribs, axial bars and
spars are computed as optimization variables and identified in an inverse approach.
This optimization problem is set in commercial software ModeFrontier which is used
as a multi-disciplinary optimization tool. FE solver Abaqus is used to compute modal
frequencies and displacements. Figure 4.8 shows ModeFrontier flow chart which is

developed for this optimization problem.
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Figure 4.8 : ModeFrontier Flow Chart

In Figure 4.8, variables of the optimization problem are located at the left side of the
figure. In the center of the figure, Abaqus node is located to perform both modal
analysis and static analysis. Modal analysis computes first five natural frequencies
while static analysis computes the displacements of ARW-2 wing with a 100 Ib
applied upward at the wing tip on the front spar. Objectives are located at the right
side of the Figure 4.8. The computational and experimental results are compared
with the modal and bending behaviors of the wing by minimization of the error
percentages between computational and experimental data. MOGT (Multi objective
Game Theory) and NSGA II (Non-dominated Sorting Genetic Algorithm II) are used

as optimization algorithms.
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4.4 Results

First of all, MOGT (Multi objective Game Theory) is used and pareto optimal set
among 145 designs are taken as DOE (Design of Experiment) for the further
optimization analysis with NSGA II (Non-dominated Sorting Genetic Algorithm II).
By using NSGA II, 5000 different designs are evaluated and in table 4.1 pareto
optimal set is tabularized. Error of natural frequency is considered as major
objective. In order to arrive at a decision, weight of relative error of natural
frequency and relative error of wing tip displacement are considered as 60% and
40%, respectively. In this point of view, among the paretos shown in table 4.1, one of
them is selected as the best design. Table 4.2 shows the best design with objective

functions and their errors.

Table 4.1: Paretos

Paretos Relative Errors of Natural Relative Errors of Wing Tip
Frequencies Displacements
1 2.73 % 7.44 %
2 2.86 % 7.69 %
3 3.10% 7.69 %
4 2.75 % 7.68 %
5 3.18% 7.98 %
6 3.45 % 7.78 %
7 2.74 % 7.72 %
8 247 % 7.72 %
9 1.49 % 7.72 %
10 1.05 % 7.73 %
11 3.83 % 4.93 %
12 323 % 5.78 %
13 1.01 % 6.60 %

Table 4.2: Optimum Design and Relative Errors

Experimental Data  Computational Data ~ Relative Error

Mode 1 831 Hz. 7.83 Hz, 5.70 %

Mode 2 31.28 Hz. 31.08 Hz. 0.64 %

Mode 3 36.00 Hz. 36.52 Hz. 1.44 %

Mode 4 62.37 Hz. 62.32 Hz. 0.08 %

Mode 5 66.97 Hz. 66.92 Hz. 0.07 %
Forward Spar Wing Tip 1.90 Inch 1.80 Inch 5.26 %

Displacement (in)

Rear Spar Wing Tip 2.01 Inch 1.85 Inch 7.96 %

Displacement (in)
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Although the error percentages are satisfactory, mode shapes and torsional response
of the wing model has to be verified in order to prove the reliability of the wing
configuration according to the optimum design. Therefore, mode shapes which are
published in the NASA Technical Report are compared with those of the found
optimum design [53]. Figure 4.9 shows the experimental wing’s mode shapes and

Figure 4.10 shows the computational wing’s mode shapes for comparison.

i

f=8.31 Hz f=231.28 Hz {=36.00 Hz f=82.37 Hz f=88.87 Hz

Figure 4.9 : Mode Shapes of the Experimental Wing

—_—

Mode 1 Mode 2

e

Mode 3 Mode 4

Mode 5

Figure 4.10 : Mode Shapes of the Computational Wing
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Bending is one of the most important structural criteria that has to be validated for
the computational wing model. Bhardwaj, in his Ph.D. thesis has validated ARW-2
wing model with isotropic wing skin by comparing bending and twisting behaviors
of the composite skin ARW-2 wing [4]. Figure 4.11 shows the comparison between
the displacements of the front spar of the composite skin and isotropic ARW-2 wings
with a 100 1b load applied upward at the wing tip on the front spar, besides Figure
4.12 shows the displacements of the front spar of ARW-2 computational wing
model. Figure 4.13 shows the displacements of the rear spar of the composite skin
and isotropic ARW-2 wings with a 100 Ib load applied upward at the wing tip on the
front spar, and the Figure 4.14 shows the displacemets of rear spar of ARW-2
computational wing model. The bending behavior of ARW-2 wing model produced
at this study is coherent with the behavior of composite ARW-2 wing and
Bhardwaj’s wing model. On the other hand, torsional responses of the wing model
are compared with the experimental results. Displacements of the front and rear spars
of the ARW-2 wing with 1 1b applied upward at the wing tip on the front spar and 1
Ib applied downward at the wing tip on the rear spar has been calculated for the
identified wing model. To compare torsional responses of the wing model, Figure
4.15, 4.16, 4.17 and 4.18 show the deflections of the front and rear spars of the
Bhardwa;j’s isotropic, composite skin and identified ARW-2 wing model. Figure 4.15
and 4.16 show the displacements of the front spar while figure 4.17 and 4.18 show
the displacements of the rear spar. A good agreement is obtained for both bending

and torsional behaviors of ARW-2 wing model.

In this chapter, ARW-2 finite element wing model has been created and missing
properties are identified in an inverse engineering approach by using multi-objective
optimization tools. Inverse engineering problem is implemented successfully by
comparing modal and static bending responses of the wing. Furthermore, mode
shapes and torsional responses of wing has been compared with literature to prove
the reliability of ARW-2 wing model profoundly. It can be concluded from this
chapter that ARW-2 wing model is enabled to be used for further studies.
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Figure 4.11 : Displacement of the Front spar of the Composite Skin and the Isotropic
Wing Subjected to a 100 1b Vertical Load Applied at the tip [4]
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Figure 4.12 : Displacement of the front spar of the Isotropic Wing Model Subjected
to 100 Ib Vertical Load Applied at the tip (Present Study)
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Figure 4.13 : Displacement of the Rear Spar of the Composite Skin and the Isotropic
Wing Subjected to a 100 1b Vertical Load Applied at the tip [4]
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Figure 4.14 : Displacement of the Rear Spar of the Isotropic Wing Model Subjected
to 100 Ib Vertical Load Applied at the tip (Present Study)
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Figure 4.15 : Displacement of the Front Spar of the Composite Skin and the Isotropic
Wing Subjected to a Twisting Load Applied at the tip [4]
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Figure 4.16 : Displacement of the Front Spar of the Isotropic Wing Model Subjected
to a Twisting Load Applied at the tip (Present Study)
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Figure 4.17 : Displacement of the Rear Spar of the Composite Skin and the Isotropic
Wing Subjected to a Twisting Load Applied at the tip [4]
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Figure 4.18 : Displacement of the Rear Spar of the Isotropic Wing Model Subjected
to Twisting Load Applied at the tip (Present Study)
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5. STATIC AEROELASTIC ANALYSIS AND OPTIMIZATION OF ARW-2
WING MODEL

5.1 Static Aeroelastic Analysis and Validation

In the previous chapter, missing material properties and thicknesses of ribs, spars,
skin and axial bars of computational ARW-2 wing model has been identified as an
inverse engineering problem by using multi-objective optimization tools. After
structural and aerodynamic responses of ARW-2 isotropic model have been
validated, static aeroelastic analysis is needed to be performed to ensure the
reliability of the computational model. Experimental data from the work of Sandford
et al. [54] is used for comparison of aeroelastic displacements at the wing tip. Several
boundary conditions with 0.8 Mach number and -1 to 3 degrees angle of attack are

used for static aeroelastic computations.

In aeroelastic analysis, mesh based parallel code coupling interface MpCCI 3.0.6 is
used to exchange the pressure and displacement information between Fluent and

Abaqus for a two-way loose coupling at each aeroelastic iteration.

All of the structural analyses are done by linear static analysis approximation with
26,000 hexahedral elements. The equations of motion for a structure can be written

as follows in a generalized way;

[M{uj+[DJ{uj+[KJ{u} = {F} +{F] (5.1)

Since the analysis will be performed as static analysis the time terms with the time
derivatives of equation 5.1 will be neglected. Moreover, in the aeroelastic analysis
only the aerodynamic forces will be taken into account. Therefore, the system of

linear equations generated by the finite element method can be written as follows;

[KH{u}={F.} (5.2)
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Displacements will be calculated by Abaqus-6.7.1 [78] via using the aerodynamic
loads calculated from the flow solver, Fluent [79]. In this study MpCCI [81] (Mesh
based Parallel Code Coupling Interface) is used as an aeroelastic coupling interface.
MpCCI gives the opportunity to couple high fidelity simulation codes for multi
physics simulations. The advantage of using MpCCI is that it enables the exchange
of data transfer between nonmatching meshes of CFD and CSD codes in a multi
physics simulation. In this study a staggered algorithm is used for the aeroelastic

coupling which is shown in figure 5.1.
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Figure 5.1 : Staggered Algorithm for the Aeroelastic Coupling

To validate the aeroelastic wing model, static aeroelastic analyses with five different
flow conditions are performed via MpCCI. The CFD and CSD models of the wing
are introduced to MpCClI and transfer quantities (surface pressures from the CFD and
nodal displacements from the CSD) were selected. In order to comprehend that the
solution is converged, the residuals of continuity, x-velocity, y-velocity, z-velocity
and energy equations calculated by Fluent are plotted in Figure 5.2. The figure shows
that the solutions converged since the residuals are very low. The aeroelastic results
are compared with the measurements of Sandford et al. [54] in which the wing tip
displacements were given. Figure 5.3 shows wing-tip deflections for both
experimental data and results of computational analyses at Mach number 0.8 and -1

to 3 degrees angle of attack.
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Figure 5.3 : Wing-tip Deflections at M = 0.8

Table 5.1 shows the relative errors for computational model relative to experimental

data. The correlation of the static aeroelastic response is remarkably good.

Table 5.1: Relative Errors Related to Static Aeroelastic Response

Angle of Attack Experimental Data (mm) Computational Data Relative

(mm) Error
-1 2.86 2.821 1.37 %
0 2.88 2.881 0.05 %
1 2.86 2.841 0.07 %
2 2.96 2.963 0.09 %
3 3.00 3.003 0.10 %
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5.2 Static Aeroelastic Optimization

The structurally and aeroelastically validated ARW-2 wing isotropic model will be
optimized in a multiobjective and multi-disciplinary optimization framework
developed for steady-state conditions while both aerodynamic and structural
parameters can be used as optimization variables. Numerical optimization is an
iterative scheme to reach the most desired design within a design space bounded by

the lower and upper limits of optimization variables[76].

For aeroelastic optimization problems, the structural and aerodynamic optimization
parameters can be cross-sectional and thickness dimensions of the structural
elements, the shape optimization parameters such as sweep, dihedral, and twist angle
of the wing, control nodes in the design elements representing the geometry, and the

Mach number and angles of attack. The optimization criteria ¢ in equation 5.3 which

include the objective functions and the constraints can cover the aerodynamic
performance factors such as lift and drag, as well as the structural behavior
descriptors such as mass, displacements, stresses and strains. In general, for

aeroelastic optimization, the optimization criteria  depends on the aeroelastic

response of the system characterized by the structural displacement vector U and the
fluid state vector W, which in turn are functions of the physical design parameters, or

rather the abstract optimization variables s . Therefore,

q=0q(s,u,w)
u=u(s); W= W(S) (5.3)

Optimization studies require a high number of sequential analyses automatically and
needs longer computational time as compared to only-analysis studies. For that
reason, a serious research has been focusing on development of more efficient
optimization algorithms for problems with large analysis size. For only optimization
purposes simpler analysis models can be preferred in the iterative process and
parametric geometries can be used to reduce the number of optimization variables
that can sufficiently describe a problem. In this study, the multi-objective and
multidisciplinary optimization methodology which was presented in the work of

Nikbay et al. [76] will be extended to ARW-2 wing configuration [74].
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5.2.1 Formulation of Optimization Problem

For the optimization of ARW-2 wing, thicknesses of ribs and spars and angle of
attack are selected as design variables. There are two objective functions which are
maximizing the lift over drag ratio and minimizing the weight of the wing. There are
three aeroelastic constraints. The first constraint emposes that the maximum
deformation of the wing tip should not exceed 0.381 m. The second constraint
controls that the lift L can change only by an amount greater or equal to the variation
of the weight induced by the variation of the thicknesses of structural elements. The
third constraint limits that the Von Mises stress should not exceed the yield strength

(9.05*10" Pa). The overall optimization problem can be formulated as;

. L

mpMO x| 5] 54)
2AW

gl(S)ZT—lﬁo g,(s)eR (5.5
umax

92(8)=0381—130 9,(s)eR (5.6)

s)=——mx __]1<( s)eR
9( )—W s 9;(s) € (5.7)
S=(0{,k1,k2,k3) —-2<a<é6 —025Sk1,k2,k3 <0.25 (5.8)

where M(S) is the total mass of the wing, %(S) is the lift over drag value for the

wing, U__is the maximum deflection at the wing tip, AL is the change in the lift of

max

the wing, AW is the change in the weight of the wing, o_,  is the maximum von

max

misses stress, « is the angle of attack. k;, k, and k, are the abstract optimization

parameters used to vary the thicknesses of ribs (t; , t;) and thicknesses of spars (T, ).

To reduce the number of optimization variables, 17 ribs are divided into 2 groups as;

first half has index i and second half has index j. At the (n+1)® optimization

iteration the values of the design variables are updated as;
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ti(n+1) = ti(o) + ti(o).kl(ml) i= 1, 2, cees 7 (5.9)

]

(n+1) _ +(0) (0) 1o (n+1) P
t: —tj +tj .k2 J—8,9,...,17 (5.10)

Tk(nH) :Tk(O) -l-Tk(O).k?an) k = 1, 2,....,5 (5.11)

where t, ti” and T are the thickness values for the ribs and spars at the initial

design. Modefrontier software has both gradient based and gradient-free algorithms.
In this work multi-objective genetic algorithm MOGA is chosen as the optimization
driver[52]. The scheduler used in this study is the implementation of Deb [75] which
is "Non-dominated Sorting Genetic Algorithm NSGA-II" which is a fast and elitist

multiobjective evolutionary algorithm|[80].

5.2.2 Optimization Framework

For the aeroelastic optimization problem several commercial softwares were coupled
during the optimization process in this work. Fluent-6.3.26 and Abaqus-6.7.1 are
used to solve inviscid 3D Euler equations and to compute the structural response of
the aeroelastic system respectively. Mesh based parallel code coupling interface
MPCCI-3.0.6 is used to exchange the pressure and displacement information
between Fluent and Abaqus. Modefrontier 4.1 is used as a multi-objective and
multidisciplinary optimization software. In order to perform an optimization study a
workflow should be prepared in Modefrontier to govern the optimization process. In
this workflow the optimization variables (with their upper and lower bounds and
incrementations), scheduler, design of experiments, objectives, constraints, output
variables and the softwares are defined. Optimization workflow is prepared to
automate the multiobjective multidisciplinary optimization problem. Once the
workflow is run, it controls the optimization process automatically by using the well
prepared script files and models. Figure 5.4 shows the work flow of this optimization
problem. All script files prepared for this optimization problem are given in

Appendix.

In this work flow, Modefrontier's script files drive Abaqus and Fluent codes in batch
mode. In each optimization iteration, Modefrontier updates the thickness parameters
of the wing and create a new input file for Abaqus and also updates the angle of

attack parameter and creates a new case file for Fluent through the journal file of
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Fluent. The weight criteria is a direct output of Abaqus node. However, during fluid
structure iteraction iterations, MpCCI exchanges the displacement and pressure
values between Abaqus and Fluent before Abaqus evaluates the displacement criteria

finally.
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Figure 5.4 : Workflow of the optimization problem
5.2.3 Optimization Results

6 design of experiments (DOE) with "Sobol sequence" are used and 100 generations
for the MOGA-II are defined. Sobol sequence distributes the experiments uniformly
in the design space [80]. Finally, a total number of 129 designs are generated for the
optimization problem. Solution of the problem took 188 hours on a workstation with
Intel(R) Core(TM)2 CPU 6700 @ 2.66 GHz processor, with 2 GB of RAM on
Microsoft Windows XP operating system. 36 designs were found to be feasible that
satisfy the constraint condition given in the optimization problem and 12 designs are
unfeasible that did not satisfy the constraint condition. Moreover, there are 9 error
designs that did not give any solution because of modeling or computational errors
resulted in the optimization workow. As a result, 2 designs are found in the pareto
front set for this optimization problem. These pareto designs are tabularized in table

5.2. First of the pareto designs is preferred as the best wing configuration due to
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lower W value. Table 5.3 shows a comparison between the initial and optimum

design of ARW-2 wing.

Table 5.2: Paretos

Angle of Attack K, k, K, L Weight (W)
D (Newton)
0 -0.22  -025 -0.25 11.836 507.42
0 -0.08 -0.23 -0.25 11.836 561.81

Table 5.3: Comparison of optimum and initial designs of ARW-2

Angle of Attack K, K, K, L Weight (W)
D (Newton)
Initial Design 2.5 0 0 0 10.76 597.284
Optimum Design 0 -0.22  -025 -0.25 11.836 507.42
Improvements % 9.09 % 15.04

5.3 Conclusion

Firstly, aeroelastic response of ARW-2 computational wing model with isotropic
skin is verified with experimental data of the real ARW-2 wing model which had
composite skin. Secondly, an aeroelastic optimization study is performed on ARW-2
wing geometry to increase lift over drag ratio and decrease the weight of the wing
while imposing constraints on wing tip displacement, maximum Von Mises stress
and the relation between lift and weight. Angle of attack and thicknesses of ribs and
spars are used as optimization parameters. Moreover, a multi-objective genetic
algorithm MOGA-II is used to control the optimization process. At the end of the
aeroelastic optimization study, the solution for a pareto-optimum set is given and the
best design configuration has been chosen. In this study, commonly used commercial
analysis tools such as Gambit, Fluent, Abaqus are employed as structural and flow
solvers. Thus, a strong and easy to apply multi-disciplinary optimization
methodology is successfully applied by implementing advanced optimization
techniques directly into the everyday used tools employed in aerospace industry. A
loose coupling software MpCCI is utilized for fluid-structure interaction while

advanced optimization software Modefrontier is used for MDO.
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6. CONCLUSION AND RECOMMENDATIONS

One of the purposes of this study is to identify a complete configuration of ARW-2
computational wing model for further use. Due to its missing properties in literature,
FE structural model of the wing is determined by an inverse engineering through
optimization. Thus, an accurate and validated ARW-2 computational wing model is

created with its identified properties such as material and geometrical properties.

Another purpose of the study is to develop a methodology for static aeroelastic
optimization problems by using commercial codes. After the ARW-2 computational
wing model is identified and validated successfully with the experimental results, an
optimization problem which constraints wing tip deflection, maximum stress and a
relation between lift and weight is set concerning a couple process of CSD and CFD
codes in transonic regime. Both the validation and optimization results are

satisfactory.

6.1 Application of The Work

In this thesis, structural and aeroelastic validation and aeroelastic optimization
studies were performed by using highly complicated experimental wing model of
ARW-2 wing. In chapter 4, the missing geometrical and material properties of this
wing were identified by using multi-objective optimization tools. ARW-2 wing
model was generated by using a CAD software CATIA. As an optimization driver,
an advanced optimization software ModeFrontier was used via NSGA I
optimization algorithm. As FE solver, Abaqus 6-7.1 was employed to calculate
structural response of the wing. Although the structural analysis was performed in

Abaqus, HyperMesh was used to generate structural grid.

In chapter 5, an aeroelastic optimization problem for which ModeFrontier was used
was set. Considering transonic regime (M = 0.8), a coupling software MpCCI was

implemented to the optimization process. Abaqus was used to perform structural
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analysis as Fluent was used to compute steady-flow equations. MpCCI was used to
couple Fluent and Abaqus software in a loosely coupling way. CATIA is used to
create wing model and HyperMesh is used to generate mesh. CATIA and
HyperMesh were not implemented to the optimization process since any shape
parameter such as taper ratio and swept angle of the wing was not defined as

optimization variable.

6.2 Recommendations and Future Work

All of the experiences gained during this effort could be asset for further studies. The
identification and validation of ARW-2 wing model has been performed successfully
and the reliability of the computational model was satisfied. Thus, this identified
ARW-2 computational wing model could be used for any computational purposes
with confidence. In addition, other computational models of ARW-2 wing could be
created, if the identification method described in this study is applied. For example, a
computational ARW- wing model with composite skin will be soon identified with

the same methodolgy.

The future work for this study is to extend the study to dynamic aeroelasticity with
applications related to aeroelastic optimization either to suppress dynamic instability
of flutter or to predict flutter speed. Next, more complicated optimization problems
involving more advanced geometries and materials with composite modeling will be
studied to furthermore enhance virtual prototyping using MDO techniques. The
resulting large size optimization problems will be solved by parallel computing in the
MDO framework. Optimization problem employed in this study can be improved by
adding more constraints or changing the objectives of the problem. The methodolgy
developed in this study can be used for any other optimization problem in which

commercial or academic codes are used.
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APPENDIX A.1

# -*- coding: mbcs -*-

# Abaqus/CAE Version 6.7-1 replay file

# Internal Version: 2007_05_01-12.35.33 79448

# from driverUtils import executeOnCaeGraphicsStartup

# executeOnCaeGraphicsStartup()

#: Executing "onCaeGraphicsStartup()™ in the site directory ...

from abaqus import *

from abaqusConstants import *

session.Viewport(name="Viewport: 1%, origin=(0.0, 0.0), width=195.41015625,
height=197.16796875)

session.viewports[*“Viewport: 1"].makeCurrent()

session.viewports[*Viewport: 1°].maximize()

from caeModules import *

from driverUtils import executeOnCaeStartup

executeOnCaeStartup()

Mdb QO

#: A new model database has been created.

#: The model "'Model-1" has been created.

session.viewports[“Viewport: 1"].setValues(displayedObject=None)

mdb .Mode lFromInputFile(name="deviation”,
inputFileName="deviation.inp")

#: The model "deviation" has been created.

#: The part "PART-1" has been imported from the input file.

#: The model "deviation” has been imported from an input file.

#: Please scroll up to check for error and warning messages.

a = mdb.models["deviation"].rootAssembly

session.viewports[*“Viewport: 1"].setValues(displayedObject=a)

a = mdb.models["Model-1"].rootAssembly

session.viewports["Viewport: 1"].setValues(displayedObject=a)

del mdb.models["Model-1"]

a = mdb.models["deviation"].rootAssembly

session.viewports[*Viewport: 1"].setValues(displayedObject=a)

a = mdb.models["deviation®].rootAssembly

del a.features["PART-1-1"]

a = mdb.models["deviation"].rootAssembly

del a.features["Datum csys-1-"]

del mdb.models["deviation®].rootAssembly.sets["LVL10000"]

p = mdb.models["deviation®].parts["PART-1"]

session.viewports["Viewport: 1"].setValues(displayedObject=p)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=5352.97,
farPlane=9703.74, width=3084.17, height=2143.61, cameraPosition=(7519.99,
-3466.37, -532.259), cameraUpVector=(-0.0861421, 0.35512, 0.930843))

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=5384_53,
farPlane=9672.19, width=3102.36, height=2156.25, viewOffsetX=40.8618,
viewOffsetY=59.7212)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=5590.68,
farPlane=9401.03, width=3221.13, height=2238.8, cameraPosition=(8438.48,
9.77291, 2493.57), cameraUpVector=(-0.629375, 0.134674, 0.765343),
viewOffsetX=42.4262, viewOffsetY=62.0076)

mdb .saveAs(pathName="arw")

#: The model database has been saved to "arw.cae'.

session.viewports[“Viewport: 1"].view.setValues(nearPlane=5718.77,
farPlane=9272.94, width=2008.49, height=1395.97, viewOffsetX=-23.9007,
viewOffsetY=109.813)

session.viewports[“Viewport: 1°"].view.setValues(nearPlane=5734.08,
farPlane=9257.63, width=2013.87, height=1399.71, viewOffsetX=206.599,
viewOffsetY=-69.4471)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=5734_11,
farPlane=9257.6, width=2013.88, height=1399.72, viewOffsetX=122.944,
viewOffsetY=-110.256)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=5792.58,
farPlane=9162.09, width=2034.42, height=1413.99, cameraPosition=(8174.23,
1539.49, 3172.96), cameraUpVector=(-0.720976, 0.0832939, 0.687936),
viewOffsetX=124.198, viewOffsetY=-111.38)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=5790,
farPlane=9164.67, width=2033.51, height=1413.36, viewOffsetX=128.263,
viewOffsetY=32.8905)

session.viewports["Viewport: 1"].view.setValues(nearPlane=5789._31,
farPlane=9165.36, width=2163.05, height=1503.4, viewOffsetX=144._.087,
viewOffsetY=39.232)
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session.viewports[*"Viewport: 1"].view.setValues(nearPlane=5773.73,
farPlane=9180.94, width=2157.23, height=1499.35, viewOffsetX=655.14,
viewOffsetY=-476.686)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6030.7,
farPlane=8923.97, width=194.339, height=135.073, viewOffsetX=525.113,
viewOffsetY=-434._388)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6032.32,
farPlane=8922.35, width=194.392, height=135.109, viewOffsetX=403.341,
viewOffsetY=-343.513)

session.viewports[“Viewport: 1"].view.setValues(viewOffsetX=366.314,
viewOffsetY=-296.244)

session.viewports[“Viewport: 1"].view.setValues(viewOffsetX=287.533,
viewOffsetY=-227.902)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6042.3,
farPlane=8912.38, width=111.57, height=77.545, viewOffsetX=296.363,
viewOffsetY=-238.324)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6043.23,
farPlane=8911.44, width=111.587, height=77.557, viewOffsetX=262.152,
viewOffsetY=-207.157)

session.viewports[“Viewport: 1"].view.setValues(viewOffsetX=220.886,
viewOffsetY=-170.413)

session.viewports["Viewport: 1"].view.setValues(viewOffsetX=190.361,
viewOffsetY=-138.192)

session.viewports[“Viewport: 1"].view.setValues(viewOffsetX=142.312,
viewOffsetY=-106.762)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6039.88,
farPlane=8914.79, width=128.82, height=89.5344, viewOffsetX=14.1378,
viewOffsetY=-4_47018)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6040.96,
farPlane=8913.72, width=128.843, height=89.5504, viewOffsetX=-37.423,
viewOffsetY=49.0504)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6044.67,
farPlane=8910, width=94.6165, height=65.7618, viewOffsetX=-46.2223,
viewOffsetY=50.5403)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6045.46,
farPlane=8909.21, width=94.6289, height=65.7704, viewOffsetX=-72.3064,
viewOffsetY=71.9272)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6042.93,
farPlane=8911.74, width=107.05, height=74.4035, viewOffsetX=-135.369,
viewOffsetY=108.718)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6043.82,
farPlane=8910.85, width=107.066, height=74.4145, viewOffsetX=-162.942,
viewOffsetY=138.999)

session.viewports["Viewport: 1"].view.setValues(viewOffsetX=-203.946,
viewOffsetY=175.447)

session.viewports[*Viewport: 1"].view.setValues(viewOffsetX=-231.499,
viewOffsetY=197.034)

session.viewports[“Viewport: 1°].view.setValues(viewOffsetX=-277.168,
viewOffsetY=229.468)

session.viewports[“Viewport: 1"].view.setValues(viewOffsetX=-309.602,
viewOffsetY=255.394)

session.viewports["Viewport: 1"].view.setValues(viewOffsetX=-339.433,
viewOffsetY=276.655)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=5854.3,
farPlane=9100.37, width=1637.37, height=1138.03, viewOffsetX=-187.223,
viewOffsetY=379.293)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=5842.64,
farPlane=9112.04, width=1634.11, height=1135.76, viewOffsetX=131.032,
viewOffsetY=30.8542)

p = mdb.models["deviation®].parts["PART-1"]

e = p.elements

elements = e.getSequenceFromMask(mask=(" [#FFFFFFFf:340 #7FFFFFFF ]°, ), )

p-Set(elements=elements, name="Upper")

#: The set "Upper”™ has been created (10911 elements).

setl = mdb.models["deviation"].parts["PART-1"].sets["Upper"]

leaf = dgm.LeafFromSets(sets=(setl, ))

session.viewports[“Viewport: 1"].partDisplay.displayGroup.either(leaf=1eaf)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=5842.62,
farPlane=9112.05, width=1634.1, height=1135.76, viewOffsetX=129.376,
viewOffsetY=-181.066)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=5675.56,
farPlane=9397.21, width=1587.38, height=1103.29, cameraPosition=(8534.81,
-1128.06, -1528.92), cameraUpVector=(-0.116427, 0.122274, 0.985644),
viewOffsetX=125.677, viewOffsetY=-175.889)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=5681.49,
farPlane=9391.28, width=1589.05, height=1104.44, viewOffsetX=-64.1688,
viewOffsetY=-209.882)
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session.viewports[*"Viewport: 1"].view.setValues(nearPlane=5745.71,
farPlane=9331.13, width=1607.01, height=1116.93, cameraPosition=(8468.29,
-667.63, -2251.86), cameraUpVector=(-0.0230808, 0.109438, 0.993726),
viewOffsetX=-64.8942, viewOffsetY=-212.255)
session.viewports[*"Viewport: 1"].view.setValues(nearPlane=5743.43,
farPlane=9333.41, width=1606.37, height=1116.49, viewOffsetX=94.6297,
viewOffsetY=-111.264)
session.viewports[“Viewport: 1"].view.setValues(nearPlane=5716.11,
farPlane=9360.73, width=1924.83, height=1337.83, viewOffsetX=65.2702,
viewOffsetY=-83.6425)
session.viewports[“Viewport: 1"].view.setValues(nearPlane=5702.12,
farPlane=9374.72, width=1920.12, height=1334.55, viewOffsetX=63.165,
viewOffsetY=-155.418)
session.viewports[*"Viewport: 1"].view.setValues(nearPlane=5767.01,
farPlane=9290.02, width=1941.97, height=1349.74, cameraPosition=(8878.49,
410.116, -1114.21), cameraUpVector=(-0.194233, 0.120276, 0.973554),
viewOffsetX=63.8838, viewOffsetY=-157.187)
session.viewports[*"Viewport: 1"].view.setValues(nearPlane=5764.26,
farPlane=9292.78, width=1941.05, height=1349.1, viewOffsetX=42.2206,
viewOffsetY=-180.711)
session.viewports[*“Viewport: 1"].view.setValues(nearPlane=5630,
farPlane=9390.75, width=1895.84, height=1317.68, cameraPosition=(8762.03,
2535.28, -675.796), cameraUpVector=(-0.276317, 0.0458166, 0.959974),
viewOffsetX=41.2372, viewOffsetY=-176.502)
= mdb.models["deviation®].parts["PART-1"]
= p.elements
lements = e.getSequenceFromMask(mask=(
"[#0:340 #80000000 #FFFfffff:371 #7FFFfeet 17, ), )
p-Set(elements=elements, name="Lower")
#: The set "Lower” has been created (11904 elements).
session.viewports[*"Viewport: 1"].view.setValues(nearPlane=5635.69,
farPlane=9385.06, width=1897.76, height=1319.01, viewOffsetX=173.949,
viewOffsetY=-178.603)
session.viewports[“Viewport: 1"].view.setValues(nearPlane=5613.27,
farPlane=9347.33, width=1890.21, height=1313.76, cameraPosition=(8351.98,
2924.59, 2059.48), cameraUpVector=(-0.650446, 0.177618, 0.738493),
viewOffsetX=173.257, viewOffsetY=-177.892)
session.viewports[“Viewport: 1"].view.setValues(nearPlane=5614.23,
farPlane=9346.39, width=1890.53, height=1313.99, viewOffsetX=295.874,
viewOffsetY=-30.434)
session.viewports[*Viewport: 1"].view.setValues(nearPlane=5717.8,
farPlane=9225.42, width=1925.41, height=1338.23, cameraPosition=(8080.4,
2350.94, 3104.16), cameraUpVector=(-0.739782, 0.31419, 0.594985),
viewOffsetX=301.332, viewOffsetY=-30.9955)
session.viewports[*"Viewport: 1"].view.setValues(nearPlane=5713.41,
farPlane=9229.81, width=1923.93, height=1337.2, viewOffsetX=316.695,
viewOffsetY=17.7602)
leaf = dgm.Leaf(leafType=DEFAULT_MODEL)
session.viewports["Viewport: 1"]._partDisplay.displayGroup.replace(leaf=leaf)

setl = mdb.models["deviation®].parts["PART-1"].sets["Lower"]
set2 = mdb.models["deviation™].parts["PART-1"].sets["Upper~]
leaf = dgm.LeafFromSets(sets=(setl, set2, ))

session.viewports[“Viewport: 1"].partDisplay.displayGroup.either(leaf=1eaf)

p = mdb.models["deviation®].parts[“PART-1"]

e = p.elements

elements = e.getSequenceFromMask(mask=("[#0:721 #ff800000 #fFfFfffff #3fFFff ]°,
). )

p-Set(elements=elements, name="Tip")

#: The set "Tip" has been created (63 elements).

mdb.models["deviation®™] .parts["PART-1"]

p-elements

ments = e.getSequenceFromMask(mask=(

"[#0:712 #80000000 #FFFFFFFfF:8 #7FFFFF 17, ), )

p-Set(elements=elements, name="Root")

#: The set "Root" has been created (280 elements).

p mdb.models["deviation®™] .parts["PART-1"]

e = p.elements

elements = e.getSequenceFromMask(mask=("[#0:723 #ffc00000 #FfFFFffff:9 #1f ]°,
). )

p-Set(elements=elements, name="Tra")

#: The set "Tra" has been created (303 elements).

p = mdb.models["deviation®].parts["PART-1"]

e = p.elements

elements = e.getSequenceFromMask(mask=(
"[#0:733 #FFffffe0 #FFFFFFFF:10 #FFFFF 17, ), )

p-Set(elements=elements, name="Sparl-®)

#: The set "Sparl® has been created (367 elements).
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mdb.models["deviation™] .parts["PART-1"]

p-elements
ments = e.getSequenceFromMask(mask=("[#0:744 #fffO0000 #FFFFffff:8 #1fff ]°,
). )

p-Set(elements=elements, name="Spar2®)
#: The set "Spar2®" has been created (281 elements).

p mdb.models[“deviation®] .parts["PART-1"]

e p-elements

elements = e.getSequenceFromMask(mask=("[#0:753 #ffffe000 #FFFfffff:14 #7Ff ]-,

), )

p-Set(elements=elements, name="AuxSpar"®)
#: The set "AuxSpar®™ has been created (474 elements).

p
e
e

@ 1

setl = mdb.models["deviation™].parts["PART-1"].sets["AuxSpar"]

set2 = mdb.models["deviation"].parts["PART-1"].sets["Root"]

set3 = mdb.models["deviation®].parts["PART-1"].sets["Sparl-]

set4d = mdb.models["deviation®].parts["PART-1"].sets["Spar2-]

set5 = mdb.models["deviation™].parts["PART-1"].sets["Tip"]

set6 = mdb.models["deviation®].parts["PART-1"].sets["Tra"]

leaf = dgm.LeafFromSets(sets=(setl, set2, set3, set4, set5, set6, ))

session.viewports[“Viewport: 1"].partDisplay.displayGroup.either(leaf=1eaf)
session.viewports[“Viewport: 1"].view.setValues(nearPlane=5830.87,
farPlane=8925.41, width=1963.48, height=1364.69, viewOffsetX=249.6,
viewOffsetY=-29.619)
session.viewports[“Viewport: 1"].view.setValues(nearPlane=5748.32,
farPlane=8949.46, width=1935.68, height=1345.37, cameraPosition=(7534.62,
3658.96, 3308.21), cameraUpVector=(-0.806623, 0.146993, 0.572497),
viewOffsetX=246.066, viewOffsetY=-29.1997)
p mdb.models[“deviation®] .parts["PART-1"]
e = p.elements
elements = e.getSequenceFromMask(mask=(
"[#0:768 #FFFFFF80 #FFFFFFFF:58 #7FFFF 17, ), )
p-Set(elements=elements, name="Ribs")
#: The set "Ribs" has been created (1900 elements).
mdb.models["deviation™] .parts["PART-1"].sets["Ribs"]
mdb.models["deviation™] .parts["PART-1"].sets["Upper"]
leaf = dgm.LeafFromSets(sets=(setl, set2, ))
session.viewports[“Viewport: 1"].partDisplay.displayGroup.either(leaf=1eaf)
session.viewports[“Viewport: 1"].view.setValues(nearPlane=5634.85,
farPlane=9268.28, width=1897.47, height=1318.81, viewOffsetX=85.4888,
viewOffsetY=-40.1581)
session.viewports[“Viewport: 1"].view.setValues(nearPlane=5825.44,
farPlane=9154.96, width=1961.65, height=1363.42, cameraPosition=(8491.08,
707.6, 2501.76), cameraUpVector=(-0.628073, 0.229744, 0.743466),
viewOffsetX=88.3804, viewOffsetY=-41.5164)
session.viewports[“Viewport: 1"].view.setValues(nearPlane=5817.35,
farPlane=9163.05, width=1958.93, height=1361.53, viewOffsetX=88.2576,
viewOffsetY=-41.4587)
session.viewports[*"Viewport: 1"].view.setValues(nearPlane=5676.92,
farPlane=9261.35, width=1911.65, height=1328.66, cameraPosition=(8095.58,
2591.4, 2952.43), cameraUpVector=(-0.717606, 0.0645619, 0.693451),
viewOffsetX=86.1271, viewOffsetY=-40.4579)
= mdb.models["deviation®].parts["PART-1"]
= p.elements
ide2Elements = s.getSequenceFromMask(mask=(
"[H#EFEFFFFF:39 #7F #0:23 #FFFFF800 #FFFFFFff:2 #FcOLFFFf #FFFFrfrfff: 3",
" #EFFFT #0:24 #FFFFF800 #FFFFFFFF:-33 #1FFFFFff #0 #FfFFffe00”,
" #EFEFFFFF:3 #FFOFFFFTf #FFFFFfff 12 #7FFFFF #FFFFfffc #FFFFfrfrff:12 #3FFFF7,
" #0 #FFFffffe #FFFFFFFF:20 #7FFFF #0:14 #FFFFO000 #FFFFFFFF:1397,
" HTEEEFFFF 17, ), )
p-Surface(side2Elements=side2Elements, name=",")
#: The surface "," has been created (8756 mesh faces).
= mdb.models["deviation®].parts["PART-1"]
= p.elements
delElements = s.getSequenceFromMask(mask=(
"[#0:39 #FFFFFF80 #FFFFFFFF:23 #7FF #0:2 #3fe0000 #0:3",
" #FFFO0000 #FFFFFFFF:24 #7fFF #0:33 #e0000000 #FFFFFfff #1FF",
" #0:3 #F00000 #0:12 #FF800000 #3 #0:12 #FFFcO000",
" #EFEFFFFF #1 #0:20 #FFF80000 #FFFFFFFF:14 #FFFF 17, ), )
p-Surface(sidelElements=sidelElements, name="Surf-2%)
#: The surface "Surf-2" has been created (2155 mesh faces).
a=mdb.models[“deviation®].parts[“"PART-1"]
a.SurfaceByMerge(name="Upper", surfaces=(a.surfaces[","], a.surfaces["Surf-2"],
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mdb.models["deviation®™] .parts["PART-1"].deleteSurfaces(surfaceNames=(",",
"Surf-27, ))

session.viewports[“Viewport: 1"].view.setValues(nearPlane=5694.98,
farPlane=9243.3, width=1933.46, height=1343.82, viewOffsetX=77.6875,
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viewOffsetY=37.0261)
= mdb.models["deviation®].parts["PART-1"]
= p.elements
idelElements = s.getSequenceFromMask(mask=(
"[#0:39 #FFFFFf80 #FFFFFfff:23 #7FfF #0:2 #3fe0000 #0:3",
" #FFFO0000 #FFFFFFFF:24 #71FF #0:33 #e0000000 #FFFFffff #1FF",
" #0:3 #F00000 #0:12 #FFB00000 #3 #0:12 #FFFcO000",
" #FFEFFFFF #1 #0:20 #FFF80000 #FFFFFFFF:14 #FFFF 17, ), )
side2Elements = s.getSequenceFromMask(mask=(
"[HEFEFFFFF:39 #7F #0:23 #FFFFF800 #FFFFFfff:2 #FcOLFFff #FFFFrFfff: 3",
" H#EFFFT #0:24 #FFFFF800 #FFFFFFFF:33 #1FFFFfff #0 #FFFffe00”,
" H#EFEFFFFF 3 #FFOFFFFF #FFFFFrfrf:12 #7FFFFF #FFFFfffc #TFFFFFrff:12 #37FFF",
" #0 #FFFffffe #FFFFFFFF:20 #7FFFF #0:14 #FFFFO000 #FFFFFFFF:1397,
" HTEEFFEFFF 17, ),
p-Surface(sidelElements=sidelElements, side2Elements=side2Elements,
name="Upper*)
#: The surface "Upper® has been edited (10911 mesh faces).
setl = mdb.models["deviation™].parts["PART-1"].sets["Lower"]
set2 = mdb.models["deviation®].parts["PART-1"].sets["Upper"]
leaf = dgm.LeafFromSets(sets=(setl, set2, ))
session.viewports[*Viewport: 1"].partDisplay.displayGroup.either(leaf=1eaf)
session.viewports[*"Viewport: 1"].view.setValues(nearPlane=5707.59,
farPlane=9263.45, width=1937.73, height=1346.79, viewOffsetX=77.8594,
viewOffsetY=37.108)
session.viewports[“Viewport: 1"].view.setValues(nearPlane=6025.17,
farPlane=8716.22, width=2045.55, height=1421.73, cameraPosition=(-1284.77,
4653.61, -5836.01), cameraUpVector=(0.70178, 0.55534, 0.446209),
viewOffsetX=82.1916, viewOffsetY=39.1728)
session.viewports[“Viewport: 1"].view.setValues(nearPlane=6011.61,
farPlane=8729.79, width=2040.95, height=1418.53, viewOffsetX=79.9387,
viewOffsetY=-47.7641)
session.viewports[“Viewport: 1"].view.setValues(nhearPlane=5756.55,
farPlane=9045.93, width=1954.36, height=1358.35, cameraPosition=(-2353.82,
-3522.53, -4578.83), cameraUpVector=(0.170674, 0.871574, -0.459596),
viewOffsetX=76.5471, viewOffsetY=-45.7376)
session.viewports[“Viewport: 1"].view.setValues(nhearPlane=5767.45,
farPlane=9035.04, width=1958.06, height=1360.92, viewOffsetX=425.85,
viewOffsetY=-49.7919)
session.viewports[*"Viewport: 1"].view.setValues(nearPlane=5767.47,
farPlane=9035.01, width=1958.07, height=1360.93, viewOffsetX=340.546,
viewOffsetY=-101.372)
mdb.models[“deviation™] .parts["PART-1"]
p.elements
elElements = s.getSequenceFromMask(mask=(
[#O 362 #FFFFFfcO #FFFFFFFF:3 #7FFFF #0:21 #FFFFFFO0 #FFFFFFFF:27,
#TFFFFEFF #0:7 #FFFFFFFF:3 #1FFFFF #0:24 #FF800000 #FFFFffff: 3",
" #7F #0:6 #FF000000 #FFFFFFFF:3 #1 #0:25 #FFFFFcO0”,
" #EFEFFFFF:2 #3FFFF #0:6 #FF800000 #FFFFFFFF:3 #7 #0:127,
" #FFFe0000 #FFFFFFFF:16 #7FFFFF #0:7 #FFfffffe #FFFFFfFff:2 #FFF7,
" #0:29 #FFfFfffe0 #3ffFf #0:14 #3FFFFFO0 #0:3 #Ffe00000",
" #FFEFFFFF #FFFF #fc000000 #FFFFFFFF #3F #0:16 #FFFFFF80°~,
" #FFFFFFFF #1 #0:4 #80000000 #FFFFFFFF:29 #FFFF #0:2",
" #EFEFFFO0 #FFFFFFFF:7 #FFF #0:10 #FFFFFF80 #FFFFFFFF:25 #3FFFFFF 17, ), )
p.Surface(sidelElements=sidelElements, name="Surf-2%)
#: The surface "Surf-2" has been created (3743 mesh faces).
= mdb.models["deviation®].parts["PART-1"]
= p.elements
ide2Elements = s.getSequenceFromMask(mask=(
[#O 340 #80000000 #FFFFFFFF:21 #3F #0:3 #FFF80000 #FFFFFfFff:21",
#FF #0:2 #80000000 #FFFFFFFF:7 #0:3 #FFe00000 #FFFFFFFF 247,
" H#TFEFFT #0:3 #FFFFFF80 #FFFFFFff:6 #FFFFff #0:3 #fffffffe”
" #EFFFFFFF:25 #3FF #0:2 #FFFcO0000 #FFFFFFff:6 #7FFFFf #0:3',
#EFFFFFF8 #FFFFFFFF-12 #1FFFF #0:16 #FF800000 #FFFFFFFF:7 #1",
#0:2 #FFFFFO00 #FFFFFFFF:29 #1F #FFFFCO00 #FFFFFFFF:14 #cO0000FF",
#EFFFFFFf:3 #1FFFFF #0 #FFFFO000 #3FFFFFF #0 #FFFFFfcO”,
#EFFFFFFF:16 #7F #0 #FFfffffe #FFFFrfrfff:4 #7FFFFFFF #0:297,
" #FFFFO000 #FFFFFFFF:2 #FF #0:7 #FFFFFO00 #FFFFFFFF:10 #7F",
" #0:25 #fc000000 #FFFFFFFF:31 #7FFFFFFF 17, ), )
p.Surface(side2Elements=side2Elements, name="Surf-3")
#: The surface "Surf-3" has been created (8161 mesh faces).
a=mdb.models[“deviation®].parts["PART-1"]
a.SurfaceByMerge(name="Lower", surfaces=(a.surfaces["Surf-2"],
a.surfaces["Surf-3"], ))
mdb._.models["deviation®] .parts["PART-1"].deleteSurfaces(surfaceNames=("Surf-2",
“Surf-37, ))
mdb.models[*“deviation®].parts[“PART-1"]
p-elements
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sidelElements = s.getSequenceFromMask(mask=(
[#O 362 #FFFFFfcO #FFFFFFFF:3 #7FFFF #0:21 #FFFFFFO0 #FFFFFFFF:27,
#TFFFFEFF #0:7 #FFFFFFFF:3 #1FFFFF #0:24 #FF800000 #FFFFffff: 3",
" #7F #0:6 #FF000000 #FFFFFFFF:3 #1 #0:25 #FFFFFc00”,
" #EFEFFFFF:2 #3FFFF #0:6 #FF800000 #FFFFFFFF:3 #7 #0:127,
" #FFFe0000 #FFFFFFFF:16 #7FFFFF #0:7 #FFfffffe #FFFFFfff:2 #FFF7,
" #0:29 #FFffffe0 #3ffFf #0:14 #3FFFFFO0 #0:3 #Ffe00000",
" H#EFEFFFFF #FFFF #fc000000 #FFFFFFFF #3F #0:16 #FFFFFF80°~,
" #FFFFFFFF #1 #0:4 #80000000 #FFFFFFFF:29 #FFFF #0:2",
" #EFEFFFO0 #FFFFFFFF:7 #FFF #0:10 #FFFFFF80 #FFFFFFFF:25 #3FFFFFF 17, ), )
side2Elements = s.getSequenceFromMask(mask=(
"[#0:340 #80000000 #FFFFFFFf:21 #3F #0:3 #FFF80000 #FFFFFFFF:-21",
" #Ff #0:2 #80000000 #FFFFFFFF:7 #0:3 #FFe00000 #FFFFFFff:24",
" H#TFFEFFF #0:3 #FFFFFF80 #FFFFFfff:6 #FFFFff #0:3 #fffffffe”,
" #FFFFFFFF:25 #3FF #0:2 #FFFc0000 #FFFFFFFf:6 #7FFFFF #0:37,
" H#EFEFFFF8 #FFFFFFFF:-12 #1FFFF #0:16 #FF800000 #FFFFFFff:7 #1",
" #0:2 #FFFFFOO0 #FFFFFFFF:29 #1F #FFFFcO00 #FFFFFFFF:14 #cO0000FF",
" #EFEFFFFF:3 #1FFFFF #0 #FFFFO000 #3FFFFFF #0 #FFFFFfcO”,
" #EFFFFFFF:16 #7F #0 #fffffffe #FFFFfrfff:-4 #7FFFFFFF #0:297,
" #FFFF0000 #FFFFFFFF:2 #FF #0:7 #FFFFFO00 #FFFFFFFF:10 #7F",
" #0:25 #fc000000 #FFFFFFFF:31 #7FFFFFFF 17, ), )
p.-Surface(sidelElements=sidelElements, side2Elements=side2Elements,
name="Lower")
#: The surface "Lower® has been edited (11904 mesh faces).
session.viewports[“Viewport: 1"].view.setValues(nearPlane=5767.47,
width=1958.07, height=1360.93, viewOffsetX=356.417, viewOffsetY=-204.533)
session.viewports[*"Viewport: 1"].view.setValues(nhearPlane=5671.54,
farPlane=9233.68, width=1925.5, height=1338.29, cameraPosition=(5767.72,
6109.89, -3285.66), cameraUpVector=(-0.478641, 0.393739, 0.784775),
viewOffsetX=350.488, viewOffsetY=-201.131)
session.viewports[*"Viewport: 1"].view.setValues(nearPlane=5675.64,
farPlane=9229.58, width=1926.89, height=1339.26, viewOffsetX=321.457,
viewOffsetY=-162.231)
session.viewports[“Viewport: 1"].view.setValues(nearPlane=5631.56,
farPlane=9321.03, width=1911.93, height=1328.86, cameraPosition=(7825.97,
3536.76, 2849.74), cameraUpVector=(-0.711028, -0.0310708, 0.702477),
viewOffsetX=318.96, viewOffsetY=-160.971)
session.viewports[“Viewport: 1"].view.setValues(nearPlane=5633.44,
farPlane=9319.14, width=1912.57, height=1329.3, viewOffsetX=328.755,
viewOffsetY=-172.651)
session.viewports[“Viewport: 1"].view.setValues(nearPlane=5535.67,
farPlane=9426.89, width=1879.38, height=1306.23, cameraPosition=(8073.3,
4059.8, 1485.32), cameraUpVector=(-0.513995, -0.145636, 0.84534),
viewOffsetX=323.049, viewOffsetY=-169.654)

setl = mdb.models["deviation®].parts["PART-1"].sets["Tip"]
set2 = mdb.models["deviation®].parts["PART-1"].sets["Tra"]
leaf = dgm.LeafFromSets(sets=(setl, set2, ))

session.viewports[“Viewport: 1"].partDisplay.displayGroup.either(leaf=leaf)
session.viewports[*"Viewport: 1"].view.setValues(nearPlane=5539.84,
farPlane=9422_.71, width=1880.8, height=1307.22, viewOffsetX=346.159,
viewOffsetY=-183.121)
session.viewports[*"Viewport: 1"].view.setValues(nearPlane=5491.09,
farPlane=9456.25, width=1864.25, height=1295.72, cameraPosition=(7687.25,
5046.25, 359.806), cameraUpVector=(-0.303354, -0.249571, 0.919614),
viewOffsetX=343.113, viewOffsetY=-181.51)
session.viewports["Viewport: 1"].view.setValues(nearPlane=5699.08,
farPlane=9248_.25, width=284.194, height=197.525, viewOffsetX=86.8153,
viewOffsetY=-122_.523)
= mdb.models["deviation®].parts["PART-1"]
= p.elements
ide2Elements = s.getSequenceFromMask(mask=(
"[#0:721 #FF800000 #FFFFFFFf #3FFFFF 17, ), )
p-Surface(side2Elements=side2Elements, name="Tip")
#: The surface "Tip" has been created (63 mesh faces).
session.viewports["Viewport: 1°"].view.setValues(nearPlane=5717.38,
farPlane=9229.95, width=153.562, height=106.731, viewOffsetX=88.1244,
viewOffsetY=-135.643)
= mdb.models["deviation®].parts["PART-1"]
= p.elements
ide2Elements = s.getSequenceFromMask(mask=(
"[#0:723 #FFcO00000 #FFFFFFFF:Q #1F 17, ), )
p-Surface(side2Elements=side2Elements, name="Tra")
#: The surface "Tra" has been created (303 mesh faces).
session.viewports["Viewport: 1"].view.setValues(nearPlane=5676.01,
farPlane=9271.33, width=507.457, height=352.701, viewOffsetX=44.4887,
viewOffsetY=-97.8188)
session.viewports[*"Viewport: 1"].view.setValues(nearPlane=5671.86,
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farPlane=9274.03, width=507.087, height=352.443, cameraPosition=(7617.91,
5168.88, 66.7488), cameraUpVector=(-0.247693, -0.263823, 0.932226),
viewOffsetX=44_4562, viewOffsetY=-97.7473)
a=mdb.models["deviation®].parts["PART-1"]
a.SurfaceByMerge(name="Couple®, surfaces=(a.surfaces["Lower"],
a.surfaces["Tip"], a.surfaces["Tra"], a.surfaces["Upper-"], ))
session.viewports[“Viewport: 1"].view.setValues(nearPlane=5700.22,
farPlane=9245.68, width=274.491, height=190.781, viewOffsetX=7.14359,
viewOffsetY=-85.4685)
session.viewports[*"Viewport: 1"].view.setValues(nearPlane=5703.17,
farPlane=9242_.68, width=274.633, height=190.879, cameraPosition=(7564.61,
5243.36, -276.982), cameraUpVector=(-0.190391, -0.267398, 0.94459),
viewOffsetX=7.14728, viewOffsetY=-85.5127)
session.viewports["Viewport: 1"].view.setValues(viewOffsetX=-3.14798,
viewOffsetY=-10.6634)
= mdb.models["deviation®].parts[“"PART-1"]
= p.elements
idelElements = s.getSequenceFromMask(mask=(
"[#0:39 #FFFFFF80 #FFFFFFFF:23 #7FF #0:2 #3fe0000 #0:3",
" #FFFO0000 #FFFFFFFF:24 #7fF #0:33 #e0000000 #FFFFffff #1FF",
" #0:3 #F00000 #0:12 #FF800000 #3 #0:12 #FFFcO000",
" #EFFFFFFF #1 #0:20 #FFF80000 #FFFFFFFF:14 #FFFF #0:1617,
" #EFFFFFcO #FFFFFFFF:3 #7FFFF #0:21 #FFFFFFO0 #FFFFFFFF:2 #7FFFFFFFT,
" #0:7 #FFFEFEFFF:3 #1FFFFF #0:24 #TFF800000 #FFFFFFFF:3 #7F",
" #0:6 #FFO00000 #FFFFFFFF:3 #1 #0:25 #FFFFFcO0 #FFFFFFFF-2",
" #3FFFTF #0:6 #FF800000 #FFFFFFFF:3 #7 #0:12 #FFFe0000",
" H#EFFFFFFf:16 #7FFFFF #0:7 #Fffffffe #FFFFFFFf:2 #FFF #0:29",
" #FFFFffe0 #3FFF #0:14 #3FFFFFO0 #0:3 #Ffe00000 #FFFFFFFF",
" #FFFF #fc000000 #FFFFFFFF #3T #0:16 #FFFFFF80 #FFFFFfff",
" #1 #0:4 #80000000 #FFFFFFFF:29 #FFFF #0:2 #FFFFFFO0”,
" #EEEFFFFF:7 #FFF #0:10 #FFFFFF80 #FFFFFFFF:25 #3FFFFFF 17, ), )
side2Elements = s.getSequenceFromMask(mask=(
[#ffffffff 39 #7F #0:23 #FFFFF800 #FFFFFFff:2 #FcOLFFFf #FFFFFfff: 3",
#FFFFF #0:24 #FFFFF800 #FFFFFFFF:33 #1FFFFFff #0 #fFFffe00”,
" #EFEEFFFFf:3 #FFOFFFFF #FFFFffff:12 #7FFFFF #FFFffffc #ffffffff:12 #IFFFF",
" #0 #FFFffffe #FFFFFFFF:20 #7FFFF #0:14 #FFFFO000 #FFFFFFFF:1617,
" #3F #0:3 #FFF80000 #FFFFFFFF:21 #FF #0:2 #80000000",
" #EFEFFFFF:7 #0:3 #Ffe00000 #FFFFFFFF:24 #7FFFFF #0:3 #FFFFFF80°,
" #FFEEFFFff:6 #FFFFfFf #0:3 #FFfffffe #FFFFFfff:25 #3FF #0:2",
" #FFFc0000 #FFFFFFFF:6 #7FFFFF #0:3 #FFFFFFF8 #FFFFFFFF:-12 #1FFFF",
" #0:16 #FF800000 #FFFFFFFf:7 #1 #0:2 #FFFFFO00 #FFFFFFFF:29",
#1F #FFFFc000 #FFFFFFFF:14 #cO00000FF #FFFFFFFF:3 #1FFFFF #0",
#FFFFO000 #3FFFFFF #0 #FFFFFfcO #FFFFFFFF:16 #7F #0°,
#EfFfffffe #FFFFFfff-4 #7FFFFFFF #0:29 #FFFFO000 #FFFFFFFF-2 #FF",
#0:7 #FFFFFO00 #FFFFFFFF:-10 #7F #0:25 #fc000000 #FFFFFFFF:-31",
" H#TFFFFFFF #0:8 #FF800000 #FFFFFFFF:11 #1F 17, ), )
p-Surface(sidelElements=sidelElements, side2Elements=side2Elements,
name="Couple®)
#: The surface "Couple” has been edited (23181 mesh faces).
session.viewports[“Viewport: 1"].view.setValues(nearPlane=5642.51,
farPlane=9303.34, width=781.103, height=542.894, viewOffsetX=16.57,
viewOffsetY=48.0843)
session.viewports[*Viewport: 1"].view.setValues(nhearPlane=5636.54,
farPlane=9309.31, width=780.277, height=542_.32, viewOffsetX=152.528,
viewOffsetY=-12.8392)
session.viewports["Viewport: 1"].view.setValues(nearPlane=5641.27,
farPlane=9313.45, width=780.931, height=542.775, cameraPosition=(7853.65,
4776.12, 450.949), cameraUpVector=(-0.302516, -0.275963, 0.91232),
viewOffsetX=152.656, viewOffsetY=-12.85)
session.viewports[*"Viewport: 1"].view.setValues(nearPlane=5641.19,
farPlane=9313.54, width=780.92, height=542.767, viewOffsetX=236.521,
viewOffsetY=-24_.7179)
session.viewports[“Viewport: 1"].view.setValues(nearPlane=5614.33,
farPlane=9340.4, width=980.074, height=681.186, viewOffsetX=235.395,
viewOffsetY=-24_6002)
session.viewports[“Viewport: 1"].view.setValues(nearPlane=5614.93,
farPlane=9339.79, width=980.179, height=681.259, viewOffsetX=235.42,
viewOffsetY=-116.96)
session.viewports[“Viewport: 1°"].view.setValues(nearPlane=5591.06,
farPlane=9363.66, width=1156.38, height=803.726, viewOffsetX=234.419,
viewOffsetY=-116.463)
mdb.save()
#: The model database has been saved to "arw.cae'.

p
s
s

setl = mdb.models["deviation®].parts["PART-1"].sets["Lower"]
set2 = mdb.models["deviation®].parts["PART-1"].sets["Sparl-]
set3 = mdb.models["deviation®].parts["PART-1"].sets["Tip"]
set4 = mdb.models["deviation™].parts["PART-1"].sets["Tra"]
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leaf = dgm.LeafFromSets(sets=(setl, set2, set3, set4, ))

session.viewports["Viewport: 1"].partDisplay.displayGroup.either(leaf=1eaf)

session.viewports[*“Viewport: 1"].partDisplay.setValues(sectionAssignments=0N,
engineeringFeatures=0N)

session.viewports["Viewport: 1"].view.setValues(cameraPosition=(1390.98,
8603.95, -227.551), cameraUpVector=(0, 0, 1), cameraTarget=(1390.98,
1190.06, -227.551), viewOffsetX=0, viewOffsetY=0)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6805.06,
farPlane=8330.57, width=912.714, height=634.368, viewOffsetX=493.441,
viewOffsetY=132.97)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6812.46,
farPlane=8323.17, width=913.705, height=635.057, viewOffsetX=-132.748,
viewOffsetY=141.446)

session.viewports["Viewport: 1"].view.setValues(viewOffsetX=-705.781,
viewOffsetY=139.595)

session.viewports[*Viewport: 1"].view.setValues(viewOffsetX=-1175.13,

viewOffsetY=109.046)

= mdb.models["deviation®].parts["PART-1"]

= p.elementEdges

lementEdges = e.getSequenceFromMask(mask=(
"[#0:23467 #1 #0 #4:2 #0:10 #4:2 #0:2",

" #4:2 #0:3 #2 #0:2 #2:2 #0:8 #2:27, " #0:2 #2:2 #0:9 #2 #0:2 #2:2 #0:8",
" #2:2 #0:2 #2:2 #0:11 #1 #0 #4:2", " #0:7 #1:2 #0:6 #1:2 #8:3 #0:6 #8:2",
" #0:3 #8:2 #0:4 #8:2 #0:4 #8:2 #0:4", " #8:3 #0:6 #1 #0:2 #4:2 #0:4 #1-,
" #H0:2 #4:2 #0:4 #1 #0:2 #4:2 #0:4", " #4:2 #0:4 #4:2 #0:4 #1 #0:2 #4:2%,
" #0:4 #4:2 #0:4 #4:2 #0:4 #1 #0:27, " #4:2 #0:4 #4:2 #0:4 #4:2 #0:4 #1-,
" #0212 #4:2 #0:4 #4:2 #0:4 #4:2 #0:47, " #1 #0:2 #4:2 #0:4 #1 #0:2 #17,

" H#HO:2 #4:2 #0:4 #1 #0:2 #1 #0:2", " #1 #0:2 #1 #0:2 #1 #0:2 #1-,

" #HO:2 #1 #0:2 #4:2 #0:4 #1 #0:27, " #1 #0:2 #1 #0:2 #1 #0:2 #4:2%,

" #0:4 #1 #0:2 #1 #0:2 #1 #0:2", " #1 #0:2 #4 #0:2 #1 #0 #1-,

" HO #1 #O #1 #0 #1 #0", " #1 #0 #1 #0 #1 #0:2 #4:2
" #0:3 #2 #0 #2 #0 #2 #0", " #2 #0 #2 #0 #2 #0 #2 ]', ). )
p-Stringer(elementEdges=elementEdges, name="Stringer-17)
session.viewports[“Viewport: 1"].view.setValues(nearPlane=6795.99,
farPlane=8339.65, width=977.627, height=679.485, viewOffsetX=536.172,
viewOffsetY=192.964)
session.viewports[“Viewport: 1"].view.setValues(nearPlane=6803.88,
farPlane=8331.75, width=978.763, height=680.275, viewOffsetX=90.5506,
viewOffsetY=201.122)
session.viewports[“Viewport: 1"].view.setValues(viewOffsetX=-396.352)
session.viewports[“Viewport: 1"].view.setValues(viewOffsetX=-941.763,
viewOffsetY=165.423)
session.viewports[“Viewport: 1"].view.setValues(viewOffsetX=-1475.27,
viewOffsetY=136.665)
session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6357.06,
farPlane=8778.57, width=4625.64, height=3214.99, viewOffsetX=-604.141,
viewOffsetY=267.256)
= mdb.models["deviation®].parts["PART-1"]
= p.elementEdges
lementEdges = e.getSequenceFromMask(mask=(
"[#0:23462 #4 #0:2 #1:2 #0:8 #1:2 #0:2",
" #1:2 #0:14 #8 #0 #8:2 #0:10 #8:2", " #0:2 #8:2 #0:8 #8 #0 #8:2 #0:10",
" #8 #0 #8 #0 #8 #0 #8", " #0 #4:3 #0:6 #8 #0 #4 #0:5",
#4 #0 #4 #0:7 #8 #0 #8", " #0 #8 #0:5 #2 #0:4 #2:2 #0:2",
#O 4 #8 #0 #8:2 #0:4 #4 #0:2%,
#1 #0 #1 #0:3 #4 #0:2 #1°, #0 #1 #0:3 #4 #0:2 #1 #0",
3 #1%, T #0 #1 #0:3 #4 #0:2 #1 #0",
2
2
2
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3 #1%, T #0 #1 #0:3 #4 #0:2 #1 #0",
#1 #0 #1 #0:3 #1", " #0 #1 #0:3 #4 #0:2 #1 #0",
3 #1%, " #0 #1 #0:3 #4 #0:2 #1 #0",
#4 #0:2 #4 #0:2 #1", " #0 #1 #0:3 #4 #0:2 #4 #0:2",
#4 #0:2 #4 #0:2 #4%, " #0:2 #4 #0:2 #1 #0 #1 #0:3",
#4 #0:2 #4 #0:2 #4%, " #0:2 #1 #0 #1 #0:3 #4 #0:2",
12 #4 #0:2 #4%, " #0 #4 #0 #4 #0 #4 #0",
#4 #0 #4 #0 #4 #0 #47, " #0 #1:2 #0:2 #1:2 #8 #0 #8",
#0 #8 #0 #8 #0 #8 #0", " #8 #0 #8 1", )., )
p.Stringer(elementEdges=elementEdges, name="Stringer-27)
setl mdb.models["deviation™] .parts["PART-1"].sets["Sparl™]
set2 = mdb.models["deviation®].parts["PART-1"].sets["Spar2”]
leaf = dgm.LeafFromSets(sets=(setl, set2, ))
session.viewports[“Viewport: 1"].partDisplay.displayGroup.either(leaf=1eaf)
session.viewports[“Viewport: 1"].view.setValues(nearPlane=6660.81,
farPlane=8356.44, width=1097.77, height=762.99, viewOffsetX=550.379,
viewOffsetY=207.945)
session.viewports["Viewport: 1"].view.setValues(nearPlane=6669.63,
farPlane=8347.62, width=1099.22, height=764, viewOffsetX=54.3964,
viewOffsetY=56.757)
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session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6669.63,
farPlane=8347.62, width=1099.22, height=764, viewOffsetX=-394.426,
viewOffsetY=141.398)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6669.63,
farPlane=8347.62, width=1099.22, height=764, viewOffsetX=-896.706,
viewOffsetY=53.4155)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6707.67,
farPlane=8309.58, width=762.647, height=530.067, viewOffsetX=-958.055,
viewOffsetY=81.9445)

session.viewports[*"Viewport: 1"].view.setValues(nhearPlane=6713.88,
farPlane=8303.36, width=763.353, height=530.558, viewOffsetX=-1451.6,
viewOffsetY=75.8332)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6200.76,
farPlane=8816.49, width=4898.91, height=3404.91, viewOffsetX=-521.762,
viewOffsetY=134.126)

mdb.models[“deviation®] .parts["PART-1"]

p-.elementEdges

elementEdges = e.getSequenceFromMask(mask=("[#0:23829 #4 #0 #4 #0:2 #4 #0",

p
e

#4

#0 #4 #0:2 #4 #1 #0", " #1 #0 #1 #0:2 #1 #0 #17,
#1 #0 #1 #0:2 #1 #07, " #1 #0 #1 #0 #1 #0:2 #1°,
#1 #0 #1 #0:2 #1 #07, " #1 #0 #1 #0 #1 #0 #1°,
#8 #0:3 #1 #0 #1 #0", " #1 #0 #1 #0 #1 #0 #1°,

#A4 #0:3 #1 #0 #1 #0:3", " #4 #0 #4 #0 #4 #0:2 #4",

12 #1:3 #0 #1 #0 #1 #0:2", " #1 #0 #1 #0 #1 #0:2 #1",

#1 #0 #1 #0 #8 #0:3", " #1 #0 #1 #0:3 #1:2 #0:2 #4",

#A #0:2 #1:3 #0 #1 #0", " #1 #0 #1 #0 #1 #0 #1°,

#1 #0:2 #4:2 #0:4 #4 #0:2", " #4:2 #0:3 #1 #0 #1:2 #0 #4:2",
2 #1 #O #4:2 #0:3 #4 #0:2", " #4 #0 #1 #0:3 #1 #0 #1°,

5 #8 #0:2 #8 #0:5 #2:2 #0:4, " #2 #0 #4 #0:2 #4 #0:6 #4:2",
15 #1 #0:5 #2 #0:2 #2:2 #0:7", " #2 #0:2 #2 #0:12 #1 #0 #4:2",
110 #1:2 1%, ), )

p-Stringer(elementEdges=elementEdges, name="Stringer-37)
session.viewports[“Viewport: 1"].view.setValues(nearPlane=6691.43,
farPlane=8325.82, width=878.782, height=610.784, viewOffsetX=657.601,
viewOffsetY=204.393)
session.viewports[“Viewport: 1"].view.setValues(nhearPlane=6698.55,
farPlane=8318.7, width=879.717, height=611.435, viewOffsetX=350.801,
viewOffsetY=231.35)
session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6698.55,
width=879.718, height=611.435, viewOffsetX=-160.808, viewOffsetY=196.589)
session.viewports[“Viewport: 1"].view.setValues(viewOffsetX=-768.678,
viewOffsetY=211.741)
session.viewports[“Viewport: 1°].view.setValues(viewOffsetX=-1179.57,
viewOffsetY=143.11)

mdb.models["deviation®™] .parts["PART-1"]

p.elementEdges
mentEdges = e.getSequenceFromMask(mask=("[#0:23828 #1 #0 #1 #0 #2 #1°-,

p:
e =
ele

#0

#1 #0 #1 #0 #2 #17, " #0:2 #4 #0 #4 #0 #1:2 #0",
#0 #4 #0 #4 #0 #1:27, " #0 #4 #0 #4 #0 #4 #0",

2 #0 #4 #0 #4 #0 #27, " #1 #0 #4 #0 #4 #0 #4",

#4 #0 #4 #0:2 #1:2 #07, " #4 #0 #4 #0 #4 #0 #4°,

#4 #0 #4 #0:2 #1:2 #07, " #4 #0 #4 #1:2 #0 #1 #0",

2 #0:3 #4°, " #0 #4 #0 #1:2 #0 #4 #0",

#0 #47, " #0 #4 #0:2 #1:2 #0 #4 #0°",

#0 #1 #07, " #4:2 #0:3 #4 #0 #4 #0 #4-°,

4 #0:27, " #4 #0:2 #1 #0 #1 #0:3 #4°,

4 #0:2 #1:2 #0", " #4 #0:2 #1:3 #0 #4:2 #0:3 #4:3",

0
0:5 #8:2 #0:4 #8:2 #0:8", " #1 #0 #1 #0 #1 #0:5 #1-°,

“H0:4 #1:2 #0:6 #8 #0 #8°, " #0 #8 #0:6 #8 #O #8 #0",

#0:2 #4 #0 #4 #0 #4°, " #0:7 #4 #0:2 #1:2 1", ). )

p.Stringer(elementEdges=elementEdges, name="Stringer-4-)
session.viewports[“Viewport: 1"].view.setValues(nearPlane=6221.1,
farPlane=8796.15, width=4765.64, height=3312.29, viewOffsetX=40.6804,
viewOffsetY=109.338)

mdb .

mdb
mdb

mdb .

mdb

mdb.

mdb.
mdb.

mdb

mdb

mdb .

models[“deviation®] . .Material (name="AxialBar")

.models["deviation"] .materials["AxialBar"].Density(table=((2.7e-09, ), ))
-.models["deviation®] .materials["AxialBar"].Elastic(table=((40000.0, 0.4), ))

models[“deviation®] .Material (name="Spars"®)

.models["deviation"] .materials["Spars”] .Density(table=((3.6e-09, ), ))

models["deviation®].materials["Spars®].Elastic(table=((39250.0, 0.23022),

models[“deviation®] .Material (name="Skins")
models["deviation®].materials["Skins"].Density(table=((2.7e-09, ), ))

.models["deviation®].materials["Skins"] .Elastic(table=((31000.0, 0.35087),

-.models["deviation"] .-Material (name="Ribs")

models["deviation®].materials["Ribs"].Density(table=((3.6e-09, ), ))
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mdb._.models["deviation™] .materials["Ribs"].Elastic(table=((60000.0, 0.39998), ))
mdb.models["deviation®™] .PipeProfile(name="Upperl®, r=17.1, t=3.1)
mdb.models["deviation®] .PipeProfile(name="Upper2®, r=13.8, t=1.0)
mdb.models["deviation™] .PipeProfile(name="Lowerl®, r=13.0, t=1.0)
mdb.models[“deviation®].PipeProfile(name="Lower2", r=5.8, t=1.0)
mdb.models["deviation®] .BeamSection(name="Lowerl®", profile="Lowerl",
integration=DURING_ANALYSIS, poissonRatio=0.0, material="AxialBar",
temperatureVar=LINEAR)
mdb.models["deviation®].BeamSection(name="Lower2", profile="Lower2",
integration=DURING_ANALYSIS, poissonRatio=0.0, material="AxialBar",
temperatureVar=LINEAR)
mdb.models["deviation®] .BeamSection(name="Upperl®, profile="Upperl-,
integration=DURING_ANALYSIS, poissonRatio=0.0, material="AxialBar",
temperatureVar=LINEAR)
mdb.models["deviation®] .BeamSection(name="Upper2*®, profile="Upper2-”,
integration=DURING_ANALYSIS, poissonRatio=0.0, material="AxialBar",
temperatureVar=LINEAR)
mdb.models["deviation®"] .HomogeneousShel lSection(name="Skin_Tra",
prelntegrate=0FF, material="Skins", thickness=30.0,
poissonDefinition=DEFAULT, thicknessModulus=None, temperature=GRADIENT,
useDensity=0FF, nodalThicknessField="", integrationRule=SIMPSON,
numlntPts=5)
mdb.models["deviation®] .HomogeneousShel ISection(hame="Skin_Lower",
prelntegrate=0OFF, material="Skins", thickness=1.0,
poissonDefinition=DEFAULT, thicknessModulus=None, temperature=GRADIENT,
useDensity=0FF, nodalThicknessField="", integrationRule=SIMPSON,
numlntPts=5)
mdb.models["deviation®] .HomogeneousShel ISection(hame="Skin_Upper"~,
prelntegrate=0OFF, material="Skins", thickness=1.0,
poissonDefinition=DEFAULT, thicknessModulus=None, temperature=GRADIENT,
useDensity=0FF, nodalThicknessField="", integrationRule=SIMPSON,
numlntPts=5)
mdb.models[“deviation®] .HomogeneousShel ISection(name="Skin_Tip~,
prelntegrate=0FF, material="Skins", thickness=50.0,
poissonDefinition=DEFAULT, thicknessModulus=None, temperature=GRADIENT,
useDensity=0FF, nodalThicknessField="", integrationRule=SIMPSON,
numlntPts=5)
mdb.models[“deviation®] .HomogeneousShel ISection(name="Skin_Root",
prelntegrate=0OFF, material="Skins", thickness=20.0,
poissonDefinition=DEFAULT, thicknessModulus=None, temperature=GRADIENT,
useDensity=0FF, nodalThicknessField="", integrationRule=SIMPSON,
numlntPts=5)
mdb.models["deviation®].HomogeneousShellSection(name="Rib01", prelntegrate=0OFF,
material="Ribs", thickness=9.8, poissonDefinition=DEFAULT,
thicknessModulus=None, temperature=GRADIENT, useDensity=0FF,
nodalThicknessField="", integrationRule=SIMPSON, numlntPts=5)
mdb.models["deviation®] .HomogeneousShel ISection(name="Rib02", prelntegrate=0FF,
material="Ribs", thickness=26.0, poissonDefinition=DEFAULT,
thicknessModulus=None, temperature=GRADIENT, useDensity=0FF,
nodalThicknessField="", integrationRule=SIMPSON, numlntPts=5)
mdb.models["deviation®] .HomogeneousShel ISection(name="Rib03", prelntegrate=0FF,
material="Ribs", thickness=4.0, poissonDefinition=DEFAULT,
thicknessModulus=None, temperature=GRADIENT, useDensity=0FF,
nodalThicknessField="", integrationRule=SIMPSON, numlntPts=5)
mdb.models["deviation®] .HomogeneousShel ISection(name="Rib04", prelntegrate=0FF,
material="Ribs", thickness=20.0, poissonDefinition=DEFAULT,
thicknessModulus=None, temperature=GRADIENT, useDensity=0FF,
nodalThicknessField="", integrationRule=SIMPSON, numlntPts=5)
mdb.models[“deviation®].HomogeneousShellSection(name="Rib05", prelntegrate=0FF,
material="Ribs", thickness=25.0, poissonDefinition=DEFAULT,
thicknessModulus=None, temperature=GRADIENT, useDensity=0FF,
nodalThicknessField="", integrationRule=SIMPSON, numlntPts=5)
mdb.models[“deviation®] .HomogeneousShelISection(nhame="Rib06", prelntegrate=0FF,
material="Ribs", thickness=30.4, poissonDefinition=DEFAULT,
thicknessModulus=None, temperature=GRADIENT, useDensity=0FF,
nodalThicknessField="", integrationRule=SIMPSON, numlntPts=5)
mdb.models["deviation®] .HomogeneousShel ISection(nhame="Rib07", prelntegrate=0FF,
material="Ribs", thickness=9.2, poissonDefinition=DEFAULT,
thicknessModulus=None, temperature=GRADIENT, useDensity=0FF,
nodalThicknessField="", integrationRule=SIMPSON, numlntPts=5)
mdb.models["deviation®] .HomogeneousShelISection(nhame="Rib08", prelntegrate=0FF,
material="Ribs", thickness=2.4, poissonDefinition=DEFAULT,
thicknessModulus=None, temperature=GRADIENT, useDensity=0FF,
nodalThicknessField="", integrationRule=SIMPSON, numlntPts=5)
mdb.models["deviation®] .HomogeneousShellSection(hame="Rib09", prelntegrate=0FF,
material="Ribs", thickness=5.8, poissonDefinition=DEFAULT,
thicknessModulus=None, temperature=GRADIENT, useDensity=0FF,
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nodalThicknessField="", integrationRule=SIMPSON, numIntPts=5)
mdb.models["deviation"] .HomogeneousShellSection(hame="Rib10", prelntegrate=0FF,
material="Ribs", thickness=1.2, poissonDefinition=DEFAULT,
thicknessModulus=None, temperature=GRADIENT, useDensity=0FF,
nodalThicknessField="", integrationRule=SIMPSON, numIntPts=5)
mdb.models["deviation®] .HomogeneousShellSection(hame="Rib11", prelntegrate=0FF,
material="Ribs", thickness=1.4, poissonDefinition=DEFAULT,
thicknessModulus=None, temperature=GRADIENT, useDensity=0FF,
nodalThicknessField="", integrationRule=SIMPSON, numIntPts=5)
mdb.models["deviation®] .HomogeneousShellSection(hame="Rib12", prelntegrate=0FF,
material="Ribs", thickness=6.0, poissonDefinition=DEFAULT,
thicknessModulus=None, temperature=GRADIENT, useDensity=0FF,
nodalThicknessField="", integrationRule=SIMPSON, numIntPts=5)
mdb.models["deviation®].HomogeneousShellSection(name="Rib13", prelntegrate=0OFF,
material="Ribs", thickness=19.6, poissonDefinition=DEFAULT,
thicknessModulus=None, temperature=GRADIENT, useDensity=0FF,
nodalThicknessField="", integrationRule=SIMPSON, numlntPts=5)
mdb.models["deviation”] .HomogeneousShellSection(hame="Rib14", prelntegrate=0FF,
material="Ribs", thickness=7.8, poissonDefinition=DEFAULT,
thicknessModulus=None, temperature=GRADIENT, useDensity=0FF,
nodalThicknessField="", integrationRule=SIMPSON, numlntPts=5)
mdb.models["deviation®].HomogeneousShellSection(name="Rib15", prelntegrate=0OFF,
material="Ribs", thickness=2.2, poissonDefinition=DEFAULT,
thicknessModulus=None, temperature=GRADIENT, useDensity=0FF,
nodalThicknessField="", integrationRule=SIMPSON, numlntPts=5)
mdb.models["deviation®].HomogeneousShellSection(name="Rib16", prelntegrate=0OFF,
material="Ribs", thickness=40.4, poissonDefinition=DEFAULT,
thicknessModulus=None, temperature=GRADIENT, useDensity=0FF,
nodalThicknessField="", integrationRule=SIMPSON, numlntPts=5)
mdb.models["deviation®] .HomogeneousShelISection(name="Ribl7", prelntegrate=0FF,
material="Ribs", thickness=41.2, poissonDefinition=DEFAULT,
thicknessModulus=None, temperature=GRADIENT, useDensity=0FF,
nodalThicknessField="", integrationRule=SIMPSON, numlntPts=5)
mdb.models[“deviation®™] .HomogeneousShel ISection(name="Spar01-,
prelntegrate=0OFF, material="Spars®, thickness=1.0,
poissonDefinition=DEFAULT, thicknessModulus=None, temperature=GRADIENT,
useDensity=0FF, nodalThicknessField="", integrationRule=SIMPSON,
numlntPts=5)
mdb.models["deviation®"] .HomogeneousShel ISection(name="Spar02°-,
prelntegrate=0OFF, material="Spars”, thickness=4.0,
poissonDefinition=DEFAULT, thicknessModulus=None, temperature=GRADIENT,
useDensity=0FF, nodalThicknessField="", integrationRule=SIMPSON,
numlntPts=5)
mdb.models["deviation®] .HomogeneousShel ISection(name="Spar03",
prelntegrate=0OFF, material="Spars”, thickness=4.0,
poissonDefinition=DEFAULT, thicknessModulus=None, temperature=GRADIENT,
useDensity=0FF, nodalThicknessField="", integrationRule=SIMPSON,
numlntPts=5)
mdb.models["deviation®] .HomogeneousShel ISection(name="Spar04-,
prelntegrate=0OFF, material="Spars®, thickness=2.0,
poissonDefinition=DEFAULT, thicknessModulus=None, temperature=GRADIENT,
useDensity=0FF, nodalThicknessField="", integrationRule=SIMPSON,
numlntPts=5)
mdb.models["deviation®] .HomogeneousShel ISection(name="Spar05°-,
prelntegrate=0OFF, material="Spars®, thickness=5.2,
poissonDefinition=DEFAULT, thicknessModulus=None, temperature=GRADIENT,
useDensity=0FF, nodalThicknessField="", integrationRule=SIMPSON,
numlntPts=5)

setl = mdb.models["deviation®].parts["PART-1"].sets["Spar2”]
set2 = mdb.models["deviation™].parts["PART-1"].sets["Upper"]
leaf = dgm.LeafFromSets(sets=(setl, set2, ))

session.viewports[*"Viewport: 1"].partDisplay.displayGroup.either(leaf=1eaf)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6080.72,
farPlane=9216.12, width=4658.1, height=3237.54, viewOffsetX=-82.9433,
viewOffsetY=-81.9077)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=5246.46,
farPlane=9373.18, width=4019.02, height=2793.36, cameraPosition=(8056.21,
2007.03, 2914.6), cameraUpVector=(-0.435767, 0.129486, 0.890697),
viewOffsetX=-71.5637, viewOffsetY=-70.6702)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=5521.58,
farPlane=9098.08, width=2423.64, height=1684.52, viewOffsetX=-44.4642,
viewOffsetY=-120.725)

session.viewports["Viewport: 1"].view.setValues(nearPlane=5539.61,

farPlane=9080.04, width=2431.55, height=1690.02, viewOffsetX=120.451,

viewOffsetY=-32.4299)

mdb.models[“deviation®] .parts["PART-1"]

p-elements

o
Inn
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elements = e.getSequenceFromMask(mask=("[#0:827 #Fff80000 #FFFfffff:3 #7FF 1",
). )

region = regionToolset._Region(elements=elements)

p mdb.models[“deviation™] .parts["PART-1"]

p-SectionAssignment(region=region, sectionName="Upperl®, offset=0.0)
mdb.models["deviation®™] .parts["PART-1"]

p-elements
ments = e.getSequenceFromMask(mask=("[#0:827 #fff80000 #FFffffff:3 #7ffF |-,
), )

region = regionToolset._Region(elements=elements)
p = mdb.models["deviation®].parts["PART-1"]
p.-SectionAssignment(region=region, sectionName="Upperl®, offset=0.0)
mdb.models["deviation™] .parts["PART-1"]

p-elements
ments = e.getSequenceFromMask(mask=("[#0:835 #fffffff8 #FFffffff:2 #7ffF ]°,
). )
region = regionToolset.Region(elements=elements)
mdb.models["deviation™] .parts["PART-1"]
p-SectionAssignment(region=region, sectionName="Upper2®, offset=0.0)
mdb.models[“deviation®] .parts["PART-1"]

p-elements
ments = e.getSequenceFromMask(mask=("[#0:835 #fffffff8 #fFffffff:2 #7fF |-,
). )

region = regionToolset._Region(elements=elements)
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p = mdb.models["deviation®].parts["PART-1"]

p-SectionAssignment(region=region, sectionName="Upper2®, offset=0.0)

p = mdb.models["deviation®].parts["PART-1"]

e = p.elements

elements = e.getSequenceFromMask(mask=("[#0:831 #FfFfff800 #FFFfffff:3 #7 17, ),

)

region = regionToolset_Region(elements=elements)
mdb.models["deviation®™] .parts["PART-1"]
p.SectionAssignment(region=region, sectionName="Lowerl®, offset=0.0)

p = mdb.models["deviation®].parts["PART-1"]
e = p.elements
elements = e.getSequenceFromMask(mask=("[#0:831 #FffFff800 #fFFfffff:3 #7 17, ),

)

region = regionToolset.Region(elements=elements)
mdb.models["deviation®™] .parts["PART-1"]
p-SectionAssignment(region=region, sectionName="Lowerl®, offset=0.0)
mdb.models[“deviation®] .parts["PART-1"]

p-elements
ments = e.getSequenceFromMask(mask=("[#0:838 #fffff800 #fFfFFfffff:3 #7f ]°,
). )
region = regionToolset._Region(elements=elements)

mdb.models[“deviation®] .parts["PART-1"]
ectionAssignment(region=region, sectionName="Lower2", offset=0.0)
mdb.models["deviation®].parts["PART-1"]

p-elements
ments = e.getSequenceFromMask(mask=("[#0:838 #fFfff800 #FfFffffff:3 #7F ]°,
). )
region = regionToolset._Region(elements=elements)
= mdb.models["deviation®].parts["PART-1"]
ectionAssignment(region=region, sectionName="Lower2®, offset=0.0)
mdb.models["deviation™].parts["PART-1"]
= p.elements
elements = e.getSequenceFromMask(mask=("[#FFFFFFff:340 #7FFFFFFF ]°, ), )
region = regionToolset._Region(elements=elements)

p = mdb.models["deviation"].parts["PART-1"]
p-SectionAssignment(region=region, sectionName="Skin_Upper*®, offset=0.0)
p = mdb.models["deviation®].parts["PART-1"]
e = p.elements
elements = e.getSequenceFromMask(mask=(" [#FFFFFfff:340 #7FFFFFFF 17, ), )
region = regionToolset.Region(elements=elements)

p = mdb.models["deviation"].parts["PART-1"]
p-SectionAssignment(region=region, sectionName="Skin_Upper®, offset=0.0)

o
1

he]
1

® ®T
o 1

® ®TTO
11wl

® T T
1wl

setl = mdb.models["deviation®].parts["PART-1"].sets["Lower"]
set2 = mdb.models["deviation®].parts["PART-1"].sets["Upper"]
leaf = dgm.LeafFromSets(sets=(setl, set2, ))

session.viewports[*"Viewport: 1"].partDisplay.displayGroup.either(leaf=1eaf)
p = mdb.models["deviation®].parts["PART-1"]
e = p.elements
elements = e.getSequenceFromMask(mask=(
"[#0:340 #80000000 #FFFFFFFF:371 #7FFFFFFF 17, ), )
region = regionToolset._Region(elements=elements)
p = mdb.models["deviation®].parts["PART-1"]
p-SectionAssignment(region=region, sectionName="Skin_Lower", offset=0.0)
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p = mdb.models["deviation"].parts["PART-1"]
e = p.elements
elements = e.getSequenceFromMask(mask=(
"[#0:340 #80000000 #FFFFFFFF:-371 #7FFFFFFF 17, ), )
region = regionToolset_Region(elements=elements)
p = mdb.models["deviation®].parts["PART-1"]
p.-SectionAssignment(region=region, sectionName="Skin_Lower", offset=0.0)

setl = mdb.models["deviation™].parts["PART-1"].sets["Lower"]
set2 = mdb.models["deviation™].parts["PART-1"].sets["Tip"]
leaf = dgm.LeafFromSets(sets=(setl, set2, ))

session.viewports[“Viewport: 1"].partDisplay.displayGroup.either(leaf=1eaf)

p = mdb.models["deviation®].parts["PART-1"]

e = p.elements

elements = e.getSequenceFromMask(mask=("[#0:721 #ff800000 #ffffffff #3fFFff ]°,
). )

region = regionToolset._Region(elements=elements)

p = mdb.models["deviation®].parts["PART-1"]

p-SectionAssignment(region=region, sectionName="Skin_Tip", offset=0.0)

p = mdb.models["deviation®].parts["PART-1"]

e = p.elements

elements = e.getSequenceFromMask(mask=("[#0:721 #ff800000 #FFffffff #3FFFff ]",

). )
region = regionToolset._Region(elements=elements)
p = mdb.models["deviation®].parts[“PART-1"]
p.SectionAssignment(region=region, sectionName="Skin_Tip", offset=0.0)

setl = mdb.models["deviation™].parts["PART-1"].sets["AuxSpar"]

set2 = mdb.models["deviation®].parts["PART-1"].sets["Ribs"]

set3 = mdb.models["deviation®].parts["PART-1"].sets["Root"]

set4d = mdb.models["deviation®].parts["PART-1"].sets["Sparl-]

set5 = mdb.models["deviation™].parts["PART-1"].sets["Spar2-]

set6 = mdb.models["deviation®].parts["PART-1"].sets["Tra"]

leaf = dgm.LeafFromSets(sets=(setl, set2, set3, set4, set5, set6, ))

session.viewports[“Viewport: 1"].partDisplay.displayGroup.either(leaf=1eaf)
p = mdb.models["deviation®].parts["PART-1"]
e = p.elements
elements = e.getSequenceFromMask(mask=("[#0:723 #Ffc00000 #FFFFFfff:-9 #1F 1",
). )
region = regionToolset.Region(elements=elements)
= mdb.models["deviation®].parts["PART-1"]
p-SectionAssignment(region=region, sectionName="Skin_Tra", offset=0.0)
mdb.models[“deviation®] .parts["PART-1"]
p-elements
ments = e.getSequenceFromMask(mask=("[#0:723 #ffc00000 #FFFFFFff:9 #1f ]°,
). )
region = regionToolset._Region(elements=elements)
p = mdb.models["deviation®].parts[“PART-1"]
p.SectionAssignment(region=region, sectionName="Skin_Tra", offset=0.0)
session.viewports[*"Viewport: 1"].view.setValues(nearPlane=5554_15,
farPlane=9066.07, width=2189.64, height=1521.88, viewOffsetX=-75.2251,
viewOffsetY=-71.5781)
p mdb.models["deviation™] .parts["PART-1"]
e = p.elements
elements = e.getSequenceFromMask(mask=(
"[#0:712 #80000000 #FFFFFFFfF:8 #7FFFFF 17, ), )
region = regionToolset.Region(elements=elements)
p = mdb.models["deviation®].parts["PART-1"]
p-SectionAssignment(region=region, sectionName="Skin_Root", offset=0.0)
p = mdb.models["deviation®].parts["PART-1"]
e = p.elements
elements = e.getSequenceFromMask(mask=(
"[#0:712 #80000000 #FFFFFFff:8 #7FFFFF 17, ), )
region = regionToolset._Region(elements=elements)
p = mdb.models["deviation®].parts["PART-1"]
p-SectionAssignment(region=region, sectionName="Skin_Root", offset=0.0)
p = mdb.models["deviation®].parts["PART-1"]
e = p.elements
elements = e.getSequenceFromMask(mask=(
"[#0:733 #FFfFfffe0 #FFFFFFFF:-10 #FFFFF 17, ), )
region = regionToolset._Region(elements=elements)
mdb.models["deviation®™] .parts["PART-1"]
p.SectionAssignment(region=region, sectionName="Spar0l1®, offset=0.0)
p = mdb.models["deviation®].parts["PART-1"]
e = p.elements
elements = e.getSequenceFromMask(mask=(
"[#0:733 #FFffffe0 #FFFFFFFF:10 #FFFFF 17, ), )
region = regionToolset._Region(elements=elements)
p = mdb.models["deviation®].parts["PART-1"]
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p.SectionAssignment(region=region, sectionName="Spar0l®, offset=0.0)
session.viewports["Viewport: 1"].view.setValues(nhearPlane=5644_41,
farPlane=8975.81, width=1737.34, height=1207.51, viewOffsetX=-58.0833,
viewOffsetY=-45.6684)
mdb.models["deviation®].parts["PART-1"]
p-elements
ments = e.getSequenceFromMask(mask=("[#0:744 #fffO0000 #FFFFffff:8 #1fff ]°,
). )
region = regionToolset._Region(elements=elements)
= mdb.models["deviation®].parts["PART-1"]
p.SectionAssignment(region=region, sectionName="Spar02®, offset=0.0)
= mdb.models["deviation®].parts["PART-1"]
p-elements
ments = e.getSequenceFromMask(mask=("[#0:744 #fffO0000 #FFFFFfff:8 #1fff ]°,
). )
region = regionToolset._Region(elements=elements)
p mdb.models["deviation™] .parts["PART-1"]
ectionAssignment(region=region, sectionName="Spar02®, offset=0.0)
mdb.models["deviation®™] .parts["PART-1"]
p-elements
ments = e.getSequenceFromMask(mask=(
"[#0:753 #Ffffe000 #1ffFf #7Fe00000 #0 #3FFFfcO0 1", ), )
region = regionToolset._Region(elements=elements)
p = mdb.models["deviation®].parts[“PART-1"]
p.SectionAssignment(region=region, sectionName="Spar03®, offset=0.0)
p = mdb.models["deviation®].parts["PART-1"]
e = p.elements
elements = e.getSequenceFromMask(mask=(
"[#0:753 #FFffe000 #1ffFf #7fe00000 #0 #3FFFfcO0 1", ), )
region = regionToolset.Region(elements=elements)
p = mdb.models["deviation®].parts["PART-1"]
p-SectionAssignment(region=region, sectionName="Spar03®, offset=0.0)
session.viewports[“Viewport: 1"].view.setValues(nearPlane=5631.69,
farPlane=8988.53, width=1733.42, height=1204.79, viewOffsetX=129.967,
viewOffsetY=-31.5154)
session.viewports[*"Viewport: 1"].view.setValues(nearPlane=5627.21,
farPlane=8870.11, width=1732.04, height=1203.83, cameraPosition=(7770.96,
444 _.394, 3474.56), cameraUpVector=(-0.483216, 0.148934, 0.862741),
viewOffsetX=129.864, viewOffsetY=-31.4903)
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p = mdb.models["deviation®].parts["PART-1"]
e = p.elements
elements = e.getSequenceFromMask(mask=(

"[#0:754 #7¥fe000 #801ffe00 #cOOO1fff #cO0003FF #1FFBO1FF #FcOO7FfFO",
" #Fe0001ff #FFfc003f #FF0O00000 #1FFFFF #cOO00FfFfe #FBO03FFF #FfFeOOOFF",
" #7€80001 1°, ), )
region = regionToolset._Region(elements=elements)
p mdb.models["deviation™] .parts["PART-1"]
p-SectionAssignment(region=region, sectionName="Spar04®, offset=0.0)
= mdb.models["deviation®].parts["PART-1"]
p-elements
ments = e.getSequenceFromMask(mask=(
"[#0:754 #7¥fe000 #801ffe00 #cOOO1fff #cO0003FF #1FFBO1FF #FcOO7FfFO",
" #Fe0001FF #FFFcO03f #FFO00000 #1FFFFF #cOOOFfFfe #F8003FFF #FfeOOOFF",
" #7€80001 17, ). )
region = regionToolset.Region(elements=elements)
p = mdb.models["deviation"].parts["PART-1"]
p-SectionAssignment(region=region, sectionName="Spar04®, offset=0.0)
p = mdb.models["deviation®].parts[“PART-1"]
e = p.elements
elements = e.getSequenceFromMask(mask=(
"[#0:754 #F8000000 #1ff #3FfFfe000 #0 #e007fe00 #3FF800F",
" #1FFfe00 #3ffcO #FFFFFF #Ffe00000 #3FFF0001 #7FFcO00 #1FFFOO",
" #F807fFffe #7F 17, ), )
region = regionToolset.Region(elements=elements)
= mdb.models["deviation®].parts["PART-1"]
p-SectionAssignment(region=region, sectionName="Spar05®, offset=0.0)
= mdb.models["deviation®].parts["PART-1"]
e = p.elements
elements = e.getSequenceFromMask(mask=(
"[#0:754 #f8000000 #1ff #3ffFfe000 #0 #e007fe00 #3FFB00F",
" #1Fffe00 #3ffcO #FFFFFF #FFe00000 #3FFF0001 #7FFcO00 #1FFFOO",
" #f807fFffe #7F 17, ), )
region = regionToolset._Region(elements=elements)
p = mdb.models["deviation®].parts["PART-1"]
p-SectionAssignment(region=region, sectionName="Spar05®, offset=0.0)
session.viewports[“Viewport: 1"].view.setValues(nearPlane=5627.38,
farPlane=8869.93, width=1732.09, height=1203.87, viewOffsetX=-126.349,
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viewOffsetY=63.2738)

mdb.models["deviation™] .parts["PART-1"]

p-.elements
ments = e.getSequenceFromMask(mask=(

"[#0:817 #FFFFF800 #7FFFFFF #FF000000 #3FFFFF #0:3 #FFc00000",

" HEFEFFFFf:2 #7FFFF 17, ), )
region = regionToolset._Region(elements=elements)

p mdb.models[“deviation™] .parts["PART-1"]
p.SectionAssignment(region=region, sectionName="Rib01", offset=0.0)
= mdb.models["deviation®].parts["PART-1"]

p-elements
ments = e.getSequenceFromMask(mask=(

"[#0:817 #FFFFF800 #7FFFFFF #FF000000 #3FFFFF #0:3 #FFc00000",

" HEEEFFFFf-2 #7FFFF 17, ), )
region = regionToolset._Region(elements=elements)

p = mdb.models["deviation®].parts[“PART-1"]
p.SectionAssignment(region=region, sectionName="Rib01", offset=0.0)
mdb.models["deviation™] .parts["PART-1"]

p-elements
ments = e.getSequenceFromMask(mask=(

"[#0:818 #F8000000 #FFFFFf #FFcO0000 #FFFFFFFF:3 #3FFFFF 17, ),
region = regionToolset._Region(elements=elements)
mdb.models["deviation®™] .parts["PART-1"]
p.SectionAssignment(region=region, sectionName="Rib02", offset=0.0)
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p = mdb.models["deviation®].parts["PART-1"]
e = p.elements
elements = e.getSequenceFromMask(mask=(

"[#0:818 #F8000000 #FFFFff #FFcO0000 #FFFFFFFF:3 #3FFFFF 17, ),

region = regionToolset._Region(elements=elements)
p = mdb.models["deviation®].parts["PART-1"]
p.SectionAssignment(region=region, sectionName="Rib02", offset=0.0)
mdb.models["deviation®™] .parts["PART-1"]

p-elements
ments = e.getSequenceFromMask(mask=("[#0:812 #ffc00000 #FFffffff
). )

region = regionToolset._Region(elements=elements)
p = mdb.models["deviation®].parts[“PART-1"]
p.SectionAssignment(region=region, sectionName="Rib03", offset=0.0)
= mdb.models["deviation®].parts["PART-1"]

p-elements
ments = e.getSequenceFromMask(mask=("[#0:812 #ffc00000 #FFFfffff
). )
region = regionToolset._Region(elements=elements)
mdb.models["deviation®].parts["PART-1"]
p-SectionAssignment(region=region, sectionName="Rib03", offset=0.0)
= mdb.models[“deviation®].parts[“"PART-1"]
e = p.elements
elements = e.getSequenceFromMask(mask=(
"[#0:808 #FFFFFFO0 #FFFFFFFF:3 #3FFFFF 17, ), )
region = regionToolset._Region(elements=elements)
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p = mdb.models["deviation®].parts["PART-1"]
p.SectionAssignment(region=region, sectionName="Rib04", offset=0.0)
p = mdb.models["deviation®].parts["PART-1"]

e = p.elements

elements = e.getSequenceFromMask(mask=(

"[#0:808 #FFFFFf00 #FFFFFfff:3 #3FFFFF 17, ), )
region = regionToolset._Region(elements=elements)
p = mdb.models["deviation®].parts["PART-1"]
p-SectionAssignment(region=region, sectionName="Rib04", offset=0.0)

p = mdb.models["deviation®].parts["PART-1"]

e = p.elements

elements = e.getSequenceFromMask(mask=("[#0:804 #Ffffffff8 #FFFfffff
). )

region = regionToolset.Region(elements=elements)
mdb.models["deviation®].parts["PART-1"]
p.SectionAssignment(region=region, sectionName="Rib05", offset=0.0)
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p = mdb.models["deviation®].parts["PART-1"]

e = p.elements

elements = e.getSequenceFromMask(mask=("[#0:804 #fffffff8 #fFIfffff
). )

region = regionToolset._Region(elements=elements)

p = mdb.models["deviation®].parts["PART-1"]

p.SectionAssignment(region=region, sectionName="Rib05", offset=0.0)

p = mdb.models["deviation®].parts["PART-1"]

e = p.elements

elements = e.getSequenceFromMask(mask=("[#0:800 #ffc00000 #FFFfffff
)
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region = regionToolset_Region(elements=elements)
mdb.models["deviation®™] .parts["PART-1"]
p.SectionAssignment(region=region, sectionName="Rib06", offset=0.0)
= mdb.models["deviation®].parts["PART-1"]
p-elements
ments = e.getSequenceFromMask(mask=("[#0:800 #ffc00000 #FFFFFfff:3 #7 1", ),
)
region = regionToolset.Region(elements=elements)
mdb.models["deviation™] .parts["PART-1"]
p-SectionAssignment(region=region, sectionName="Rib06", offset=0.0)
mdb.models[“deviation®] .parts["PART-1"]
e = p.elements
elements = e.getSequenceFromMask(mask=(
"[#0:797 #FFFFFFFO #FFFFFFFF-2 #3FFFFF 17, ), )

region = regionToolset._Region(elements=elements)
p = mdb.models["deviation®].parts["PART-1"]
p.SectionAssignment(region=region, sectionName="Rib07", offset=0.0)
mdb.models["deviation™] .parts["PART-1"]

p-elements
ments = e.getSequenceFromMask(mask=(

"[#0:797 #FFFFFFFO #FFFFFFFF-2 #3FFFFF 17, ), )
region = regionToolset._Region(elements=elements)
mdb.models["deviation®™] .parts["PART-1"]
p.SectionAssignment(region=region, sectionName="Rib07", offset=0.0)
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p = mdb.models["deviation®].parts["PART-1"]

e = p.elements

elements = e.getSequenceFromMask(mask=("[#0:793 #FffFFff0000 #FfFFFFfff:3 #F 17, ),
)

region = regionToolset._Region(elements=elements)
p = mdb.models["deviation®].parts["PART-1"]
p.SectionAssignment(region=region, sectionName="Rib08", offset=0.0)
= mdb.models["deviation®].parts["PART-1"]

p-elements
ments = e.getSequenceFromMask(mask=("[#0:793 #FfFfFfO0000 #FFFFFfff:3 #f 1", ),
)

region = regionToolset._Region(elements=elements)

p = mdb.models["deviation®].parts[“PART-1"]
p.SectionAssignment(region=region, sectionName="Rib08", offset=0.0)
session.viewports[*"Viewport: 1"].view.setValues(nearPlane=5627.38,

farPlane=8869.93, width=1732.1, height=1203.87, viewOffsetX=0.00469208,
viewOffsetY=43.9698)

session.viewports[“Viewport: 1"].view.setValues(viewOffsetX=593.166,
viewOffsetY=-205.228)

mdb.models["deviation®™].parts["PART-1"]

p-elements
ments = e.getSequenceFromMask(mask=("[#0:790 #fffffe00 #FFFfffff:2 #FFff ]°,
). )

region = regionToolset._Region(elements=elements)
p = mdb.models["deviation®].parts["PART-1"]
p.SectionAssignment(region=region, sectionName="Rib09", offset=0.0)

p
e
e

(ORI

p
e
e

o 1

p = mdb.models[“deviation®].parts["PART-1"]

e = p.elements

elements = e.getSequenceFromMask(mask=("[#0:790 #Ffffffe00 #FfFFfffff:2 #FFFF 1",
). )

region = regionToolset.Region(elements=elements)

p = mdb.models["deviation"].parts["PART-1"]

p.SectionAssignment(region=region, sectionName="Rib09", offset=0.0)

p = mdb.models["deviation®].parts[“PART-1"]

e = p.elements

elements = e.getSequenceFromMask(mask=("[#0:786 #ff800000 #ffffffff:3 #1ff ]°,
). )

region = regionToolset._Region(elements=elements)

p = mdb.models["deviation®].parts[“PART-1"]

p-SectionAssignment(region=region, sectionName="Rib1l0", offset=0.0)

p = mdb.models["deviation"].parts["PART-1"]

e = p.elements

elements = e.getSequenceFromMask(mask=("[#0:786 #ff800000 #Fffffffff:3 #1ff ]°,
). )

region = regionToolset._Region(elements=elements)

mdb.models["deviation®™] .parts["PART-1"]

p.SectionAssignment(region=region, sectionName="Ribl10", offset=0.0)

p = mdb.models["deviation®].parts["PART-1"]

e = p.elements

elements = e.getSequenceFromMask(mask=(
"[#0:783 #FFc00000 #FFFFFFFF:2 #7FFFFF 17, ), )

region = regionToolset._Region(elements=elements)

p = mdb.models["deviation®].parts["PART-1"]

o
1
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.SectionAssignment(region=region, sectionName="Ribll", offset=0.0)
= mdb.models["deviation®].parts["PART-1"]
= p.elements
ements = e.getSequenceFromMask(mask=(

"[#0:783 #Ffc00000 #FFFFFFFf-2 #7FFFFF 17, ), )
region = regionToolset._Region(elements=elements)
p = mdb.models["deviation®].parts["PART-1"]
p.SectionAssignment(region=region, sectionName="Ribll", offset=0.0)
session.viewports["Viewport: 1"].view.setValues(viewOffsetX=826.57,

viewOffsetY=-321.052)
session.viewports[“Viewport: 1"].view.setValues(nearPlane=5676.22,

farPlane=8821.09, width=1282.23, height=891.194, viewOffsetX=627.059,

viewOffsetY=-263.076)
p = mdb.models["deviation®].parts["PART-1"]
e p-elements
elements = e.getSequenceFromMask(mask=(

"[#0:780 #fe000000 #FFFFFFFf 2 #3FFFFF 17, ), )
region = regionToolset._Region(elements=elements)
p = mdb.models["deviation®].parts["PART-1"]
p.SectionAssignment(region=region, sectionName="Ribl1l2", offset=0.0)

p
p
e
el

p = mdb.models["deviation®].parts["PART-1"]
e = p.elements
elements = e.getSequenceFromMask(mask=(

"[#0:780 #Fe000000 #FFFFFFff:2 #3FFFFF 17, ), )
region = regionToolset.Region(elements=elements)
mdb.models["deviation™] .parts["PART-1"]
p-SectionAssignment(region=region, sectionName="Ribl1l2", offset=0.0)
= mdb.models[“deviation®].parts[“"PART-1"]
p-elements
ments = e.getSequenceFromMask(mask=(
"[#0:778 #Fffffffe #FFFfffff #1FFFFFF 17, ), )
region = regionToolset._Region(elements=elements)
p = mdb.models["deviation®].parts[“PART-1"]
p.SectionAssignment(region=region, sectionName="Ribl13", offset=0.0)
p = mdb.models["deviation®].parts["PART-1"]
e = p.elements
elements = e.getSequenceFromMask(mask=(
"[#0:778 #FFfffffe #FFFfrffff #1FFFFFF 17, ), )
region = regionToolset._Region(elements=elements)
mdb.models["deviation®™] .parts["PART-1"]
p.SectionAssignment(region=region, sectionName="Ribl13", offset=0.0)
p = mdb.models["deviation®].parts["PART-1"]
e = p.elements
elements = e.getSequenceFromMask(mask=("[#0:775 #fFFFFf800 #FFFFFFff:2 #1 ]°, ),
)
region = regionToolset._Region(elements=elements)
p mdb.models[“deviation™] .parts["PART-1"]
p.SectionAssignment(region=region, sectionName="Ribl4", offset=0.0)
= mdb.models["deviation®].parts["PART-1"]
p-elements
ments = e.getSequenceFromMask(mask=("[#0:775 #FfFFFf800 #FFFfffff:2 #1 17, ),
)
region = regionToolset._Region(elements=elements)
p = mdb.models["deviation®].parts[“PART-1"]
p.SectionAssignment(region=region, sectionName="Ribl1l4", offset=0.0)
mdb.models["deviation®].parts["PART-1"]
p-elements
ments = e.getSequenceFromMask(mask=("[#0:772 #Fff800000 #FFFfffff:2 #7ff ]°,
). )
region = regionToolset._Region(elements=elements)
mdb.models["deviation®].parts["PART-1"]

he]
1

p
e
e

(ORI

o
1

p
e
e

(ORI

® ®T
o I

p:

p.SectionAssignment(region=region, sectionName="Rib1l5", offset=0.0)

p = mdb.models["deviation®].parts["PART-1"]

e = p.elements

elements = e.getSequenceFromMask(mask=("[#0:772 #ff800000 #FFFFffff:2 #7ffF ]°,
). )

region = regionToolset._Region(elements=elements)
p = mdb.models["deviation®].parts["PART-1"]
-SectionAssignment(region=region, sectionName="Ribl5", offset=0.0)
mdb.models["deviation®™] .parts["PART-1"]

p-elements
ments = e.getSequenceFromMask(mask=("[#0:770 #FFFFO000 #FFFfffff #7FFFFF ]°,
). )

region = regionToolset.Region(elements=elements)
p = mdb.models["deviation®].parts["PART-1"]
p.SectionAssignment(region=region, sectionName="Ribl16", offset=0.0)
p = mdb.models["deviation®].parts["PART-1"]

p
p
e
e

o 1
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e = p.elements

elements = e.getSequenceFromMask(mask=("[#0:770 #FFFfO000 #FFFfffff #7FFFFF ],
). )

region = regionToolset.Region(elements=elements)

= mdb.models["deviation®].parts["PART-1"]

p.SectionAssignment(region=region, sectionName="Ribl16", offset=0.0)

mdb.models[“deviation®] .parts["PART-1"]

e p-elements

elements = e.getSequenceFromMask(mask=("[#0:768 #ffffff80 #fFffffff #ffff ]°,
). )

region = regionToolset._Region(elements=elements)

p = mdb.models["deviation®].parts["PART-1"]

p.SectionAssignment(region=region, sectionName="Ribl7", offset=0.0)

mdb.models["deviation®].parts["PART-1"]

p-elements

ments = e.getSequenceFromMask(mask=("[#0:768 #FFffff80 #FFffffff #FFff ]°,

). )

region = regionToolset._Region(elements=elements)

p = mdb.models["deviation®].parts["PART-1"]

p.SectionAssignment(region=region, sectionName="Ribl7", offset=0.0)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=5686.35,
farPlane=8810.97, width=1284.52, height=892.784, viewOffsetX=628.177,
viewOffsetY=-263.545)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=5604.29,
farPlane=8893.02, width=1879.79, height=1306.52, viewOffsetX=619.112,
viewOffsetY=-259.742)

session.viewports[*Viewport: 1"].view.setValues(nhearPlane=5607.76,
farPlane=8889 .55, width=1880.95, height=1307.33, viewOffsetX=619.495,
viewOffsetY=-259.903)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=5759.14,
farPlane=8738.17, width=751.855, height=522.566, viewOffsetX=636.218,
viewOffsetY=-266.919)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=5756.58,
farPlane=8740.73, width=751.521, height=522.334, viewOffsetX=635.935,
viewOffsetY=-266.8)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=5714_38,
farPlane=8782.93, width=1063.96, height=739.489, viewOffsetX=631.273,
viewOffsetY=-264.844)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=5715.39,
farPlane=8781.92, width=1064.15, height=739.621, viewOffsetX=631.385,
viewOffsetY=-264.891)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=5608.97,
farPlane=8888.34, width=1836.96, height=1276.75, viewOffsetX=619.629,
viewOffsetY=-259.959)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=5613.37,
farPlane=8883.95, width=1838.4, height=1277.75, viewOffsetX=620.115,
viewOffsetY=-260.163)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=5505.77,
farPlane=8991 .54, width=2604.15, height=1809.97, viewOffsetX=608.229,
viewOffsetY=-255.176)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=5512.06,
farPlane=8985.25, width=2607.13, height=1812.04, viewOffsetX=-141.252,
viewOffsetY=58.8667)

setl = mdb.models["deviation®].parts["PART-1"].sets["Lower"]

leaf = dgm.LeafFromSets(sets=(setl, ))

session.viewports[“Viewport: 1"].partDisplay.displayGroup.either(leaf=leaf)

setl = mdb.models["deviation®].parts["PART-1"].sets["Upper"]

leaf = dgm.LeafFromSets(sets=(setl, ))

session.viewports[“Viewport: 1°].partDisplay.displayGroup.either(leaf=leaf)

p = mdb.models["deviation®].parts["PART-1"]

e = p.elements

elements = e.getSequenceFromMask(mask=("[#0:827 #Fff80000 #FFFfffff:14 #7Ff ]-,
). )

region=regionToolset._Region(elements=elements)

p = mdb.models["deviation"].parts["PART-1"]

p.assignBeamSectionOrientation(region=region, method=N1_COSINES, n1=(0.0, 0.0,

o ©
|

® ®T
@ 1

-1.0))
#: Beam orientations have been assigned to the selected regions.
mdb.save()

#: The model database has been saved to "arw.cae'.

a = mdb.models["deviation®].rootAssembly
session.viewports[*Viewport: 1"].setValues(displayedObject=a)
al = mdb.models["deviation"].rootAssembly
al_DatumCsysByDefaul t (CARTESIAN)

p = mdb.models["deviation®].parts["PART-1"]
al.Instance(name="PART-1-1", part=p, dependent=O0N)
session.viewports[*Viewport: 1"].assemblyDisplay.setValues(
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adaptiveMeshConstraints=0N)

mdb.models["deviation™] .FrequencyStep(name="Step-1", previous="Initial",
numEigen=5)

session.viewports[“Viewport: 1"].assemblyDisplay.setValues(step="Step-1-)

session.viewports["Viewport: 1"].assemblyDisplay.setValues(loads=0ON, bcs=0N,
predefinedFields=ON, connectors=0ON, adaptiveMeshConstraints=0FF)

session.viewports[“Viewport: 1"].view.setValues(cameraPosition=(1551.44,
910.229, 7314.48), cameraUpVector=(0, 1, 0))

setl = mdb.models["deviation™].rootAssembly.instances["PART-1-1"].sets["Upper"]

leaf = dgm.LeafFromSets(sets=(setl, ))

session.viewports[“Viewport: 1"].assemblyDisplay.displayGroup.either(leaf=leaf)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6733.49,
farPlane=7975.51, width=3879.57, height=2696.44, viewOffsetX=-911.915,
viewOffsetY=-279.077)

session.viewports[*"Viewport: 1"].view.setValues(nhearPlane=6890.72,
farPlane=7818.27, width=2574.56, height=1789.41, viewOffsetX=-1072.19,
viewOffsetY=-188.378)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6910.23,
farPlane=7798.76, width=2581.85, height=1794.48, viewOffsetX=-897.348,
viewOffsetY=-322.32)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6066.22,
farPlane=8545.79, width=2266.51, height=1575.3, cameraPosition=(-2369.59,
1269.38, 6182.49), cameraUpVector=(-0.0788834, 0.991242, -0.105909),
viewOffsetX=-787.747, viewOffsetY=-282.952)

session.viewports[*“Viewport: 1"].view.setValues(nearPlane=6568.1,
farPlane=8093.16, width=2454_.02, height=1705.63, cameraPosition=(-179.299,
1088.55, 7107.43), cameraUpVector=(-0.104985, 0.993227, -0.0497881),
viewOffsetX=-852.92, viewOffsetY=-306.361)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6546.55,
farPlane=8114.71, width=2445.97, height=1700.04, viewOffsetX=-887.295,
viewOffsetY=-325.181)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6334._13,
farPlane=8303.01, width=2366.61, height=1644.88, cameraPosition=(-1196.38,
1138.13, 6782.69), cameraUpVector=(0.0323912, 0.999272, -0.0201586),
viewOffsetX=-858.504, viewOffsetY=-314.63)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6521.57,
farPlane=8115.56, width=963.186, height=669.449, viewOffsetX=-1091.26,
viewOffsetY=-56.6488)

session.viewports["Viewport: 1"].view.setValues(nearPlane=6529.34,
farPlane=8107.79, width=964.334, height=670.246, viewOffsetX=-1072.04,
viewOffsetY=-272.641)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6494.79,
farPlane=8142.34, width=1307.03, height=908.429, viewOffsetX=-1036.31,
viewOffsetY=-246.978)

session.viewports[*"Viewport: 1"].view.setValues(nhearPlane=6484_47,
farPlane=8152.66, width=1304.95, height=906.986, viewOffsetX=-975.166,
viewOffsetY=-472.671)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6473.49,
farPlane=8163.64, width=1474_.36, height=1024.73, viewOffsetX=-949.085,
viewOffsetY=-460.922)

session.viewports[*“Viewport: 1"].view.setValues(nearPlane=6462.49,
farPlane=8174.64, width=1471.85, height=1022.99, viewOffsetX=-929.577,
viewOffsetY=-482_.507)

session.viewports[“Viewport: 1"].view.setValues(cameraPosition=(-1196.38,
1138.13, 6782.69), cameraUpVector=(-0.380919, 0.906497, -0.182109))

session.viewports["Viewport: 1"].view.setValues(nearPlane=6484_74,
farPlane=8152.39, width=1226.71, height=852.605, viewOffsetX=-992.473,
viewOffsetY=-487.656)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6494_.53,
farPlane=8142.6, width=1228.56, height=853.891, viewOffsetX=-1054.96,
viewOffsetY=-25.3491)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6562.76,
farPlane=8074.37, width=668.673, height=464.752, viewOffsetX=-1112.86,
viewOffsetY=-78.7983)

session.viewports["Viewport: 1"].view.setValues(nearPlane=6568.23,
farPlane=8068.9, width=669.23, height=465.139, viewOffsetX=-1029.03,
viewOffsetY=-154_127)

session.viewports[*Viewport: 1"].view.setValues(nearPlane=6460.6,
farPlane=8176.53, width=1578.18, height=1096.89, viewOffsetX=-1143.73,
viewOffsetY=-260.105)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6448.86,
farPlane=8188.27, width=1575.31, height=1094.9, viewOffsetX=-967.684,
viewOffsetY=291.009)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6407.55,
farPlane=8229.58, width=2004.77, height=1393.39, viewOffsetX=-966.606,
viewOffsetY=338.132)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6392.89,
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farPlane=8244 .24, width=2000.19, height=1390.2, viewOffsetX=-676.627,
viewOffsetY=136.732)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6249.28,
farPlane=8441.31, width=1955.26, height=1358.97, cameraPosition=(-603.881,
-1561.57, 6549.69), cameraUpVector=(-0.563055, 0.817458, 0.121374),
viewOffsetX=-661.427, viewOffsetY=133.66)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6254_95,
farPlane=8435.63, width=1957.03, height=1360.21, viewOffsetX=-715.563,
viewOffsetY=203.18)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6254.96,
farPlane=8435.62, width=1957.04, height=1360.21, cameraPosition=(-603.881,
-1561.57, 6549.69), cameraUpVector=(-0.125315, 0.94252, 0.309761),
viewOffsetX=-715.564, viewOffsetY=203.18)

session.viewports["Viewport: 1"].view.setValues(viewOffsetX=-1082.39,
viewOffsetY=-94_2426)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6309.36,
farPlane=8381.22, width=1639.63, height=1139.6, viewOffsetX=-1114.24,
viewOffsetY=25.4386)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6297.21,
farPlane=8393.37, width=1636.47, height=1137.4, viewOffsetX=-946.292,
viewOffsetY=-302.899)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6185.24,
farPlane=8505.35, width=2636.9, height=1832.74, viewOffsetX=-817.475,
viewOffsetY=-346.516)

setl = mdb.models["deviation™].rootAssembly.instances["PART-1-1"].sets["Lower"]
set2 = mdb.models["deviation™].rootAssembly.instances["PART-1-1"].sets["Upper"]
leaf = dgm.LeafFromSets(sets=(setl, set2, ))

session.viewports[“Viewport: 1"].assemblyDisplay.displayGroup.either(leaf=leaf)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6395.02,
farPlane=8295.57, width=841.411, height=584.81, viewOffsetX=-1231.1,
viewOffsetY=131.082)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6401.84,
farPlane=8288.75, width=842.308, height=585.434, viewOffsetX=-1171.83,
viewOffsetY=-42.0184)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6332.43,
farPlane=8358.16, width=1454_.07, height=1010.63, viewOffsetX=-1175.76,
viewOffsetY=27.7708)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6321.57,
farPlane=8369.01, width=1451.58, height=1008.9, viewOffsetX=-1148.74,
viewOffsetY=-189.94)

session.viewports[“Viewport: 1"].view.setValues(viewOffsetX=-1145.8,
viewOffsetY=-167.879)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6757.84,
farPlane=7945.37, width=1551.76, height=1078.53, cameraPosition=(773.41,
-241.889, 7182.97), cameraUpVector=(-0.129596, 0.98143, 0.141423),
viewOffsetX=-1224.88, viewOffsetY=-179.465)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6745.04,
farPlane=7958.17, width=1548.82, height=1076.49, viewOffsetX=-1220.99,
viewOffsetY=-259.155)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6747.74,
farPlane=8000.83, width=1549.45, height=1076.92, cameraPosition=(2177.01,
-634.011, 7124.84), cameraUpVector=(-0.463913, 0.857246, 0.223415),
viewOffsetX=-1221.48, viewOffsetY=-259.259)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6747.66,
farPlane=8000.91, width=1549.43, height=1076.91, viewOffsetX=-1201.06,
viewOffsetY=108.086)

session.viewports[*"Viewport: 1"].view.setValues(nhearPlane=6579.35,
farPlane=8194.76, width=1510.78, height=1050.05, cameraPosition=(2448.38,
-1663.99, 6795.13), cameraUpVector=(-0.33555, 0.867378, 0.367507),
viewOffsetX=-1171.1, viewOffsetY=105.39)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6584_29,
farPlane=8189.82, width=1511.92, height=1050.84, viewOffsetX=-1263.89,
viewOffsetY=-55.3734)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6584.29,
farPlane=8189.81, width=1511.92, height=1050.84, viewOffsetX=-1084.67,
viewOffsetY=159.084)

session.viewports[“Viewport: 1"].view.setValues(cameraPosition=(350.339,
630.188, 7366.18), cameraUpVector=(0, 1, 0), cameraTarget=(350.339,
630.188, -47.6956), viewOffsetX=0, viewOffsetY=0)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=7012.38,
farPlane=7800.01, width=2334.1, height=1622.28, viewOffsetX=-25.3026,
viewOffsetY=2.20023)

setl = mdb.models["deviation®].rootAssembly.instances["PART-1-1"].sets["Lower"]

set2 mdb.models["deviation®™].rootAssembly.instances["PART-1-1"].sets["Upper™]

leaf = dgm.LeafFromSets(sets=(setl, set2, ))

session.viewports[“Viewport: 1"].assemblyDisplay.displayGroup.either(leaf=leaf)

session.viewports[*Viewport: 1"].view.setValues(nearPlane=6995.4,
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farPlane=7816.99, width=2328.45, height=1618.35, viewOffsetX=69.1233,
viewOffsetY=-68.5785)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6916.79,
farPlane=8118.55, width=2302.29, height=1600.17, cameraPosition=(-220.483,
14.6936, 7318.5), cameraUpVector=(-0.0174268, 0.996487, 0.0819126),
viewOffsetX=68.3466, viewOffsetY=-67.8079)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6920.09,
farPlane=8115.25, width=2303.39, height=1600.94, viewOffsetX=187.399,
viewOffsetY=-56.1716)

session.viewports[*"Viewport: 1"].view.setValues(nhearPlane=6631.48,
farPlane=9127.69, width=2207.33, height=1534.17, cameraPosition=(-1865.8,
-2661.68, 6214.72), cameraUpVector=(-0.00416913, 0.885759, 0.464128),
viewOffsetX=179.583, viewOffsetY=-53.8289)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6643.58,
farPlane=9115.58, width=2211.36, height=1536.97, viewOffsetX=278.492,
viewOffsetY=55.8566)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6816.92,
farPlane=8942.24, width=843.124, height=586.001, viewOffsetX=-38.5574,
viewOffsetY=269.977)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6823.77,
farPlane=8935.39, width=843.971, height=586.59, viewOffsetX=-6.95788,
viewOffsetY=23.1275)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6754._13,
farPlane=9005.04, width=1457.88, height=1013.28, viewOffsetX=31.7655,
viewOffsetY=103.564)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6743.21,
farPlane=9015.96, width=1455.52, height=1011.64, viewOffsetX=103.974,
viewOffsetY=-72.0918)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6378.09,
farPlane=8593.69, width=1376.71, height=956.864, cameraPosition=(1324.69,
-4420.59, 5291.39), cameraUpVector=(-0.490844, 0.586429, 0.644339),
viewOffsetX=98.3442, viewOffsetY=-68.1883)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6509.13,
farPlane=8462.66, width=433.615, height=301.378, viewOffsetX=-27.1302,
viewOffsetY=-223.217)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6512.71,
farPlane=8459.08, width=433.854, height=301.544, viewOffsetX=-24.0681,
viewOffsetY=-210.592)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6685.06,
farPlane=8055.71, width=445_.336, height=309.524, cameraPosition=(1364.73,
-1959.52, 6824.71), cameraUpVector=(-0.453981, 0.809599, 0.372088),
viewOffsetX=-24.705, viewOffsetY=-216.165)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6683.56,
farPlane=8057.2, width=445.236, height=309.455, viewOffsetX=-35.0748,
viewOffsetY=-290.999)

session.viewports[*Viewport: 1"].view.setValues(nearPlane=6516.8,
farPlane=8223.97, width=1816.45, height=1262.49, viewOffsetX=44.3894,
viewOffsetY=-68.1547)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6503.4,
farPlane=8237.37, width=1812.71, height=1259.9, viewOffsetX=130.618,
viewOffsetY=-69.8512)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6932.11,
farPlane=8251.06, width=1932.21, height=1342.95, cameraPosition=(-592.768,
-412.966, 7231.58), cameraUpVector=(-0.142403, 0.982223, 0.122307),
viewOffsetX=139.229, viewOffsetY=-74_.4559)

session.viewports[“Viewport: 1°"].view.setValues(nearPlane=6916.94,
farPlane=8266.22, width=1927.98, height=1340.02, viewOffsetX=138.924,
viewOffsetY=89.7906)

session.viewports[*Viewport: 1"].view.setValues(nearPlane=7005.64,
farPlane=7909.14, width=1952.71, height=1357.2, cameraPosition=(-37.5807,
770.994, 7354.68), cameraUpVector=(-0.148235, 0.988595, -0.0265733),
viewOffsetX=140.706, viewOffsetY=90.9421)

setl = mdb.models["deviation®].rootAssembly.instances["PART-1-1"].sets["Lower™]

set2 = mdb.models["deviation™].rootAssembly.instances["PART-1-1"].sets["Upper"]

leaf = dgm.LeafFromSets(sets=(setl, set2, ))

session.viewports[“Viewport: 1"].assemblyDisplay.displayGroup.either(leaf=leaf)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6931.4,
farPlane=7983.39, width=2643.29, height=1837.18, viewOffsetX=170.621,
viewOffsetY=235.231)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6912.4,
farPlane=8002.38, width=2636.04, height=1832.14, viewOffsetX=74.0059,
viewOffsetY=39.6208)

session.viewports["Viewport: 1"].view.setValues(nearPlane=6601.29,
farPlane=9560.22, width=2517.4, height=1749.68, cameraPosition=(-3525.79,
-1643.16, 5849.17), cameraUpVector=(-0.0371787, 0.940378, 0.338094),
viewOffsetX=70.6751, viewOffsetY=37.8376)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6616.14,
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farPlane=9545.38, width=2523.06, height=1753.62, viewOffsetX=132.185,
viewOffsetY=163.181)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6801.11,

farPlane=8479.58, width=2593.6, height=1802.65, cameraPosition=(-825.001,
-739.507, 7143.13), cameraUpVector=(0.053723, 0.979269, 0.19531),
viewOffsetX=135.881, viewOffsetY=167.743)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6986.13,

farPlane=8294 .56, width=1053.12, height=731.958, viewOffsetX=-117.705,
viewOffsetY=368.472)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6994.62,

sess

Sess

Sess

Sess

sess

Sess

Sess

Sess

Sess

sess

Sess

Sess

sess

sess

Sess

Sess

setl
set2

leaf

sess
a:
nl =
node

regi

farPlane=8286.07, width=1054.4, height=732.848, viewOffsetX=-58.0239,
viewOffsetY=-29.5533)

ion.viewports["Viewport: 1"].view.setValues(nearPlane=6921.18,
farPlane=8359.51, width=1711.59, height=1189.62, viewOffsetX=14.2195,
viewOffsetY=-86.1161)

ion.viewports[“Viewport: 1"].view.setValues(nearPlane=6908.46,
farPlane=8372.23, width=1708.45, height=1187.43, viewOffsetX=21.1172,
viewOffsetY=-156.927)

ion.viewports[“Viewport: 1"].view.setValues(nearPlane=6145.38,
farPlane=8430.49, width=1519.74, height=1056.27, cameraPosition=(2227.11,
-2971.28, 6154.93), cameraUpVector=(-0.267589, 0.795895, 0.543091),
viewOffsetX=18.7847, viewOffsetY=-139.594)

ion.viewports[“Viewport: 1"].view.setValues(nearPlane=6279.04,
farPlane=8296.82, width=652.986, height=453.849, viewOffsetX=-40.4579,
viewOffsetY=-232.08)

ion.viewports["Viewport: 1"].view.setValues(nearPlane=6284.37,
farPlane=8291.49, width=653.541, height=454_.234, viewOffsetX=-17.9792,
viewOffsetY=-243.534)

ion.viewports[“Viewport: 1"].view.setValues(nearPlane=6067.33,
farPlane=8404.94, width=630.97, height=438.546, cameraPosition=(2746.25,
-3527.41, 5603.8), cameraUpVector=(-0.448786, 0.618353, 0.645159),
viewOffsetX=-17.3583, viewOffsetY=-235.123)

ion.viewports[“Viewport: 1"].view.setValues(nearPlane=6070.26,
farPlane=8402.01, width=631.275, height=438.758, viewOffsetX=-96.0362,
viewOffsetY=-183.43)

ion.viewports[“Viewport: 1"].view.setValues(nearPlane=6131.08,
farPlane=8379.03, width=637.6, height=443.155, cameraPosition=(2587.72,
-3427.57, 5739.71), cameraUpVector=(-0.446176, 0.642514, 0.622979),
viewOffsetX=-96.9984, viewOffsetY=-185.268)

ion.viewports[“Viewport: 1"].view.setValues(nearPlane=6098.31,
farPlane=8411.79, width=875.364, height=608.409, viewOffsetX=-96.4799,
viewOffsetY=-184.278)

ion.viewports["Viewport: 1"].view.setValues(nearPlane=6098.9,
farPlane=8411.2, width=875.449, height=608.468, viewOffsetX=-202.927,
viewOffsetY=-175.426)

ion.viewports[“Viewport: 1"].view.setValues(nearPlane=6063.53,
farPlane=8446.57, width=1137.29, height=790.454, viewOffsetX=-201.75,
viewOffsetY=-174_409)

ion.viewports[“Viewport: 1"].view.setValues(nearPlane=6064.38,
farPlane=8445.72, width=1137.45, height=790.568, viewOffsetX=-201.778,
viewOffsetY=-174.433)

ion.viewports[“Viewport: 1"].view.setValues(nearPlane=6238.71,
farPlane=8312.49, width=1170.15, height=813.294, cameraPosition=(2232.45,
-2711.65, 6297), cameraUpVector=(-0.263109, 0.819228, 0.509548),
viewOffsetX=-207.578, viewOffsetY=-179.447)

ion.viewports["Viewport: 1"].view.setValues(nearPlane=6090.46,
farPlane=8460.74, width=2400.28, height=1668.28, viewOffsetX=-155.056,
viewOffsetY=80.9321)

ion.viewports["Viewport: 1"].view.setValues(nearPlane=6073.26,
farPlane=8477.94, width=2393.51, height=1663.57, viewOffsetX=-6.69122,
viewOffsetY=75.8535)

ion.viewports[“Viewport: 1"].view.setValues(nearPlane=6480.11,
farPlane=8239.88, width=2553.85, height=1775.02, cameraPosition=(1307.9,
-1535.1, 6977.97), cameraUpVector=(-0.18034, 0.932789, 0.312062),
viewOffsetX=-7.13947, viewOffsetY=80.9349)

= mdb.models["deviation®].rootAssembly.instances["PART-1-1"].sets["Lower"]
mdb.models["deviation®™].rootAssembly.instances["PART-1-1"].sets["Upper™]
dgm.LeafFromSets(sets=(setl, set2, ))

ion.viewports["Viewport: 1"].assemblyDisplay.displayGroup.either(leaf=1eaf)
mdb.models["deviation®].rootAssembly

a.instances["PART-1-1"].nodes

sl = nl.getSequenceFromMask(mask=(

" [HEFFFFFFF:-39 #3FFFFF #0:580 #1c000001 #FFO00000 #1 #Fe000000",

" #EFFFFFFF:8 #1FFFF #3Fc000 #F0000000 #1fFFF #0:20 #F0O000000",

" #EFFFFFFF:34 #FFFFFF #1c00000 #0:11 #700000 #10000cO #0:29*,

" H#HTFEFT #ffffe #0:2 #FFFFF800 #FFFFFFFF #FFF 17, ), )

on = regionToolset.Region(nodes=nodesl)
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mdb.models["deviation"] .EncastreBC(name="BC-1", createStepName="Step-1-,
region=region)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6460.08,
farPlane=8259.91, width=2545.96, height=1769.53, viewOffsetX=16.098,
viewOffsetY=-89.5619)

session.viewports[*"Viewport: 1"].view.setValues(nhearPlane=5115.25,
farPlane=8754.32, width=2015.95, height=1401.16, cameraPosition=(4832.95,
-3655.22, 4015.16), cameraUpVector=(-0.0758582, 0.643096, 0.762019),
viewOffsetX=12.7468, viewOffsetY=-70.9173)

setl = mdb.models["deviation®].rootAssembly.instances["PART-1-1"].sets["Upper"]

leaf = dgm.LeafFromSets(sets=(setl, ))

session.viewports[“Viewport: 1"].assemblyDisplay.displayGroup.either(leaf=leaf)

session.viewports["Viewport: 1"].view.setValues(nearPlane=5181.45,
farPlane=8688.12, width=2042.05, height=1419.29, viewOffsetX=530.147,
viewOffsetY=-34.5942)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=4995.68,
farPlane=8873.89, width=3655.37, height=2540.61, viewOffsetX=742.674,
viewOffsetY=226.375)

session.viewports[“Viewport: 1"].assemblyDisplay.setValues(loads=0FF, bcs=0FF,
predefinedFields=0FF, connectors=0FF)

mdb.Job(name="vibrate", model="deviation®, type=ANALYSIS,
explicitPrecision=SINGLE, nodalOutputPrecision=SINGLE, description="",
parallelizationMethodExplicit=DOMAIN, multiprocessingMode=DEFAULT,
numbDomains=1, userSubroutine="", numCpus=1, preMemory=512.0,
standardMemory=512.0, standardMemoryPolicy=MODERATE, scratch="",
echoPrint=0FF, modelPrint=0FF, contactPrint=0FF, historyPrint=0FF)

mdb . jobs["vibrate"].submit(consistencyChecking=0FF)

#: The job input file "vibrate.inp"™ has been submitted for analysis.

#: Job vibrate: Analysis Input File Processor completed successfully.

#: Job vibrate: Abaqus/Standard completed successfully.

#: Job vibrate completed successfully.

session.viewports[“Viewport: 1"].assemblyDisplay.setValues(
adaptiveMeshConstraints=0N)

del mdb.models["deviation®].steps["Step-1-"]

session.viewports[*Viewport: 1"].assemblyDisplay.setValues(step="Initial")

mdb._.models["deviation®™].StaticStep(name="Step-1", previous="Initial",
maxNumlnc=400)

session.viewports[“Viewport: 1"].assemblyDisplay.setValues(step="Step-1-)

session.viewports["Viewport: 1"].assemblyDisplay.setValues(loads=ON, bcs=0N,
predefinedFields=0ON, connectors=0ON, adaptiveMeshConstraints=0FF)

session.viewports[“Viewport: 1"].view.setValues(width=3655.37, cameraPosition=(
1198.75, 1399.87, 7241.94), cameraUpVector=(0, 1, 0), cameraTarget=(
1198.75, 1399.87, -171.924), viewOffsetX=0, viewOffsetY=0)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6528.88,
farPlane=8035.03, width=4802.8, height=3338.12, viewOffsetX=-267.633,
viewOffsetY=-510.937)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6614.25,
farPlane=7949.66, width=4041.29, height=2808.84, viewOffsetX=-436.297,
viewOffsetY=-473.859)

setl = mdb.models["deviation®].rootAssembly.instances["PART-1-1"].sets["Upper™]

leaf = dgm.LeafFromSets(sets=(setl, ))

session.viewports[*Viewport: 1°].assemblyDisplay.displayGroup.either(leaf=leaf)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6778.82,
farPlane=7785.09, width=2857.34, height=1985.95, viewOffsetX=-732.372,
viewOffsetY=-535.019)

session.viewports["Viewport: 1"].view.setValues(nearPlane=6800.18,
farPlane=7763.73, width=2866.34, height=1992.21, viewOffsetX=-458.791,
viewOffsetY=-763.224)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6800.25,
farPlane=7763.66, width=2866.37, height=1992.23, viewOffsetX=-412.33,
viewOffsetY=-882.301)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=5771.4,
farPlane=8759.49, width=2432.7, height=1690.81, cameraPosition=(-2325.65,
-1278.12, 5775.54), cameraUpVector=(-0.0967619, 0.927763, 0.360407),
viewOffsetX=-349.946, viewOffsetY=-748.813)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=5825._37,
farPlane=8705.52, width=2455.45, height=1706.62, viewOffsetX=-303.463,
viewOffsetY=-723.474)

session.viewports[*“Viewport: 1°"].view.setValues(nearPlane=6391.46,
farPlane=8190.26, width=2694.06, height=1872.47, cameraPosition=(-613.497,
451.568, 6954.21), cameraUpVector=(-0.0173398, 0.99168, 0.127556),
viewOffsetX=-332.952, viewOffsetY=-793.779)

session.viewports["Viewport: 1"].view.setValues(nearPlane=6579.06,
farPlane=8002.66, width=1096.2, height=761.898, viewOffsetX=-753.764,
viewOffsetY=-399.192)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6570.75,
farPlane=8010.97, width=1094.81, height=760.935, viewOffsetX=-710.661,
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viewOffsetY=-761.408)

session.viewports["Viewport: 1"].view.setValues(nearPlane=6481.09,
farPlane=8100.63, width=1884.62, height=1309.88, viewOffsetX=-580.122,
viewOffsetY=-697.209)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6467.23,
farPlane=8114.49, width=1880.59, height=1307.07, viewOffsetX=-355.955,
viewOffsetY=-1017.72)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6467.21,
farPlane=8114.51, width=1880.58, height=1307.07, viewOffsetX=-321.658,
viewOffsetY=-1053.92)

session.viewports[*Viewport: 1"].view.setValues(cameraPosition=(-613.497,
451.568, 6954.21), cameraUpVector=(-0.34847, 0.936628, 0.0360202))

session.viewports["Viewport: 1"].view.setValues(viewOffsetX=-847.535,
viewOffsetY=-554_719)

session.viewports[*Viewport: 1"].view.setValues(nhearPlane=5855.86,
farPlane=8100.89, width=1702.81, height=1183.51, cameraPosition=(1657.44,
-4161.04, 4709.8), cameraUpVector=(-0.402782, 0.584855, 0.704068),
viewOffsetX=-767.417, viewOffsetY=-502.281)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=5878.39,
farPlane=8078.36, width=1709.36, height=1188.07, viewOffsetX=-784.225,
viewOffsetY=-22.752)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6065.04,
farPlane=7891.71, width=275.579, height=191.537, viewOffsetX=-945.978,
viewOffsetY=-238.638)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6067.33,
farPlane=7889.43, width=275.683, height=191.609, viewOffsetX=-941.029,
viewOffsetY=-238.169)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6215.62,
farPlane=7824_36, width=282.421, height=196.293, cameraPosition=(1702.88,
-3162.09, 5650.42), cameraUpVector=(-0.451843, 0.682807, 0.574119),
viewOffsetX=-964.029, viewOffsetY=-243.99)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6214.74,
farPlane=7825.24, width=282.382, height=196.265, viewOffsetX=-990.214,
viewOffsetY=-321.775)

session.viewports[*“Viewport: 1"].view.setValues(nearPlane=6505.6,
farPlane=7722.44, width=295.598, height=205.451, cameraPosition=(868.49,
-1805.1, 6505.23), cameraUpVector=(-0.468727, 0.805179, 0.363293),
viewOffsetX=-1036.56, viewOffsetY=-336.835)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6503.87,
farPlane=7724_17, width=295.519, height=205.396, viewOffsetX=-1047.06,
viewOffsetY=-446.63)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6284.97,
farPlane=7943.07, width=2076.82, height=1443.46, viewOffsetX=-970.471,
viewOffsetY=-369.792)

setl = mdb.models["deviation®].rootAssembly.instances["PART-1-1"].sets["Lower™]
set2 = mdb.models["deviation®].rootAssembly.instances["PART-1-1"].sets["Upper™]
leaf = dgm.LeafFromSets(sets=(setl, set2, ))

session.viewports[*Viewport: 1°].assemblyDisplay.displayGroup.either(leaf=leaf)

session.viewports[*Viewport: 1"].view.setValues(nhearPlane=6269.85,
farPlane=7958.19, width=2071.82, height=1439.99, viewOffsetX=-1018.51,
viewOffsetY=-211.469)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6756.45,
farPlane=7936.47, width=2232.62, height=1551.75, cameraPosition=(570.191,
2107.37, 7181.28), cameraUpVector=(-0.0516678, 0.993643, -0.100023),
viewOffsetX=-1097.56, viewOffsetY=-227_881)

session.viewports["Viewport: 1"].view.setValues(nearPlane=6716.27,
farPlane=7976.64, width=2521.98, height=1752.87, viewOffsetX=-525.897,
viewOffsetY=-236.469)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6698.08,
farPlane=7994.83, width=2515.15, height=1748.12, viewOffsetX=-904.166,
viewOffsetY=-702.163)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6824.01,
farPlane=7868.9, width=1468.26, height=1020.5, viewOffsetX=-958.302,
viewOffsetY=-571.248)

session.viewports["Viewport: 1"].view.setValues(nearPlane=6835.63,
farPlane=7857.28, width=1470.77, height=1022.23, viewOffsetX=-962.915,
viewOffsetY=-1052.05)

session.viewports[“Viewport: 1"].view.setValues(viewOffsetX=-879.468,
viewOffsetY=-1040.13)

session.viewports[“Viewport: 1"].view.setValues(cameraPosition=(570.191,
2107.37, 7181.28), cameraUpVector=(-0.467155, 0.875414, -0.124164))

session.viewports[“Viewport: 1°].view.setValues(viewOffsetX=-1117.89,
viewOffsetY=-482.816)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6972.12,
farPlane=7720.79, width=409.087, height=284_.33, viewOffsetX=-1161.18,
viewOffsetY=-641.462)

session.viewports[*Viewport: 1"].view.setValues(nearPlane=6975.5,
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farPlane=7717.41, width=409.286, height=284.468, viewOffsetX=-1161.74,
viewOffsetY=-641.773)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6809.05,
farPlane=7728.34, width=399.52, height=277.68, cameraPosition=(186.338,
579.448, 7126.51), cameraUpVector=(-0.396858, 0.916625, 0.047986),
viewOffsetX=-1134.02, viewOffsetY=-626.459)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=6758.83,
farPlane=7778.56, width=840.109, height=583.905, viewOffsetX=-1135.32,
viewOffsetY=-538.255)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6752.39,
farPlane=7785, width=839.308, height=583.349, viewOffsetX=-1134.24,
viewOffsetY=-537.742)

session.viewports[*"Viewport: 1"].view.setValues(nearPlane=6044._47,
farPlane=7981.9, width=751.315, height=522.191, cameraPosition=(2338.96,
-2884.95, 5769.92), cameraUpVector=(-0.433826, 0.68925, 0.580284),
viewOffsetX=-1015.33, viewOffsetY=-481.365)

session.viewports[“Viewport: 1"].view.setValues(nearPlane=5733.63,
farPlane=8292.75, width=3388.57, height=2355.18, viewOffsetX=-869.583,
viewOffsetY=-402.388)

a = mdb.models["deviation®].rootAssembly

nl = a.instances["PART-1-1"].nodes

nodesl = nl.getSequenceFromMask(mask=(
" [#EFEFFFFF:39 #3FFFFF #0:580 #1c000001 #FFO00000 #1 #Fe000000",
" #EFEFFFFF:8 #1FFFF #3Fc000 #Ff0000000 #1FFF #0:20 #F0O000000",
" #EFEFFFFF:34 #FFFFFF #1c00000 #0:11 #700000 #10000cO #0:29",
" H#TEEFT #ffffe #0:2 #FFFFF800 #FFFFFFFf #FFF 17, ), )

region = regionToolset._Region(nodes=nodesl)

mdb.models["deviation®] .EncastreBC(name="BC-1", createStepName="Step-1-,
region=region)

session.viewports[*Viewport: 1"].assemblyDisplay.setValues(loads=0FF, bcs=0FF,
predefinedFields=0FF, connectors=0FF)

mdb.Job(hame="couple”, model="deviation”, type=ANALYSIS,
explicitPrecision=SINGLE, nodalOutputPrecision=SINGLE, description=""-,
parallelizationMethodExplicit=DOMAIN, multiprocessingMode=DEFAULT,
numDomains=1, userSubroutine="", numCpus=1, preMemory=256.0,
standardMemory=256.0, standardMemoryPolicy=MODERATE, scratch="",
echoPrint=0FF, modelPrint=0FF, contactPrint=0FF, historyPrint=0FF)

mdb . jobs["couple®] .writelnput(consistencyChecking=0FF)

#: The job input file has been written to "couple.inp".

session.viewports[*“Viewport: 1"]._.partDisplay.setValues(sectionAssignments=0FF,
engineeringFeatures=0FF)

p = mdb.models["deviation®].parts["PART-1"]

session.viewports["Viewport: 1"].setValues(displayedObject=p)

mdb.save()

#: The model database has been saved to "arw.cae'.
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APPENDIX A.2

file
read-case
arw_steady.cas
q

define

bc

pff
farfield

no

0

no

0.8

no

216

no

0

no
0.999390827
no
0.034899496

q

q
solve

monitors
force

dc

yes

5

6

7

8

no

yes

no

no

0
0.999390827
0.034899496
Ic

yes

no

yes

no

no

0
0.034899496
0.999390827

0 0.0

file
write-case
arw_steady?2.cas

q -
exit
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APPENDIX A.3

Table A.1 : Material Properties of ARW-2

Young Modulus (MPa)  Mass Density (kg/m3 )  Poisson’s Ratio

Skin 31000 2700 0.35087
Axial Bars 40000 2700 0.4

Spars 39250 3600 0.23022

Ribs 60000 3600 0.39998

Table A.2 : Geometrical Properties of ARW-2

Thickness (mm) Radius (mm)

Rib 1 9.8

Rib 2 26.0

Rib 3 4.0

Rib 4 20.0

Rib 5 25.0

Rib 6 30.4

Rib 7 9.2

Rib 8 2.4

Rib 9 5.8

Rib 10 1.2

Rib 11 1.4

Rib 12 6.0

Rib 13 19.6

Rib 14 7.8

Rib 15 2.2

Rib 16 40.4

Rib 17 41.2

Spar 1 1.0

Spar 2 4.0

Spar 3 4.0

Spar 4 2.0

Spar 5 5.2
Axial Bar 1 17.1 3.1
Axial Bar 2 13.8 1.0
Axial Bar 3 13.0 1.0
Axial Bar 4 5.8 1.0
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