

İSTANBUL TECHNICAL UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY

M.Sc. Thesis by
Ahmet AYSAN

Department : Aeronautics and Astronautics Engineering

Programme : Aeronautics and Astronautics Engineering

June 2009

STRUCTURAL IDENTIFICATION AND
STATIC AEROELASTIC OPTIMIZATION OF ARW-2 WING

WITH MULTIDISCIPLINARY CODE COUPLING

İSTANBUL TECHNICAL UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY

M.Sc. Thesis by
Ahmet AYSAN

(511071101)

Date of submission : 04 May 2009
Date of defence examination: 08 June 2009

Supervisor (Chairman) : Assis. Prof. Dr. Melike NİKBAY (ITU)
Members of the Examining Committee : Prof. Dr. Metin Orhan KAYA (ITU)

 Prof. Dr. Serdar ÇELEBİ (ITU)

June 2009

STRUCTURAL IDENTIFICATION AND
STATIC AEROELASTIC OPTIMIZATION OF ARW-2 WING

WITH MULTIDISCIPLINARY CODE COUPLING

Haziran 2009

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

YÜKSEK LİSANS TEZİ
Ahmet AYSAN

(511071101)

Tezin Enstitüye Verildiği Tarih : 04 Mayıs 2009
Tezin Savunulduğu Tarih : 08 Haziran 2009

Tez Danışmanı : Yrd. Doç. Dr. Melike NİKBAY (İTÜ)
Diğer Jüri Üyeleri : Prof. Dr. Metin Orhan KAYA (İTÜ)

Prof. Dr. Serdar ÇELEBİ (İTÜ)

ÇOK DİSİPLİNLİ KOD EŞLEME İLE ARW-2 KANADININ YAPISAL
TANIMLANMASI VE STATİK AEROELASTİK OPTİMİZASYONU

 iii

FOREWORD

I would like to express my deep appreciation and thanks to my advisor, Assistant

Professor Melike Nikbay for her support and assistance. I am also grateful to her for

providing me full-time scholarship.

I would like to thank to my colleague Arda Yanangönül for both his support in my

work and always being with me . I would never proceed in my studies without his

guidance.

Many thanks to The Scientific and Technological Research Council of Turkey –

TÜBİTAK for financial support. This study is financed by the TÜBİTAK project

titled “Analysis and Reliability Based Design Optimization of Fluid-Structure

Interaction Problems Subject to Instability Phenomena” with the grant number

105M235.

I also would like to thank to ITU Institute of Science and Technology and the

academic staff of Aeronautics and Astronautics Faculty of Istanbul Technical

University for helping me with their valuable experience. I would like to thank to

Informatics Institute of Istanbul Technical University for providing their facilities.

Many friends of mine helped me during my graduate studies. I appreciate them for

their friendship.

Finally, I would like to express my deep appreciation to my family for their support,

love and patience.

June 2009

Ahmet Aysan

Astronautics and Aeronautics
Engineering

 iv

 v

TABLE OF CONTENTS

 Page

SUMMARY ... ix
1. INTRODUCTION.. 1

1.1 Motivation .. 1
1.2 Background .. 2

1.2.1 Aeroelasticity .. 2
1.2.2 Multidisciplinary Optimization (MDO).. 3

1.3 Outline .. 3
2. LITERATURE REVIEW.. 4

2.1 Computational Aeroelasticity... 4
2.2 Multidisciplinary Optimization .. 8

3. COMPUTATIONAL FRAMEWORK .. 12
3.1 Design Model ... 12
3.2 Analysis Model .. 12

3.2.1 FE Analysis (ABAQUS)... 12
3.2.2 CFD Analysis (FLUENT)... 14
3.2.3 Aeroelastic Coupling (MpCCI)... 15

3.3 Optimization Model ... 17
4. IDENTIFICATION OF AEROELASTIC RESEARCH WING (ARW-2) 22

4.1 Geometrical and Structural Properties of ARW-2 ... 23
4.2 ARW-2 Wing Finite Element Model ... 25
4.3 Application of Multi-Objective Optimization.. 27
4.4 Results .. 30

5. STATIC AEROELASTIC ANALYSIS AND OPTIMIZATION OF ARW-2
WING MODEL .. 36

5.1 Static Aeroelastic Analysis and Validation.. 36
5.2 Static Aeroelastic Optimization ... 39

5.2.1 Formulation of Optimization Problem.. 40
5.2.2 Optimization Framework .. 41
5.2.3 Optimization Results... 42

5.3 Conclusion.. 43
6. CONCLUSION AND RECOMMENDATIONS ... 44

6.1 Application of The Work ... 44
6.2 Recommendations and Future Work.. 45

REFERENCES... 47
APPENDICES .. 55
CURRICULUM VITA .. 85

 vi

ABBREVIATIONS

AGARD : Advisory Group for Aerospace Research and Development
ALE : Arbitrary Lagrangian Euleria
ARW : Aeroelastic Research Wing
CAD : Computer Aided Drafting
CFD : Computational Fluid Dynamics
CSD : Computational Structural Dynamics
FE : Finite Element
MDO : Multi-Disciplinary Optimization
MLS : Moving Least Squares
MOGA : Multi Objective Genetic Algorithm
MpCCI : Mesh Based Parallel Code Coupling Interface
NSGA : Non Dominated Sorting Genetic Algorithm
SQP : Sequential Quadratic Programming

 vii

LIST OF TABLES

 Page

Table 4.1: Paretos.. 30
Table 4.2: Optimum Design and Relative Errors.. 30
Table 5.1: Relative Errors Related to Static Aeroelastic Response 38
Table 5.2: Paretos.. 43
Table 5.3: Comparison of optimum and initial designs of ARW-2 43
Table A.1 : Material Properties of ARW-2... 83
Table A.2 : Geometrical Properties of ARW-2... 83

 viii

LIST OF FIGURES

 Page

Figure 1.1 : Schematic of the field of aeroelasticity [1].. 2
Figure 3.1 : MpCCI Coupling Process [81] .. 15
Figure 3.2 : Pre Contact Search [81]... 16
Figure 3.3 : Code Coupling Process [81] .. 17
Figure 4.1 : Aeroelastic Research Wing (ARW-2) [53] ... 24
Figure 4.2 : Right Side and Top Views of the wing [53].. 24
Figure 4.3 : Planform Area of the wing [53]... 25
Figure 4.4 : Structural Model of the Wing [53] .. 25
Figure 4.5 : Locations of ribs and spars [53] .. 26
Figure 4.6 : 3D CAD model of the wing created in CATIA..................................... 26
Figure 4.7 : Inner strucutral model of ARW-2 wing... 27
Figure 4.8 : ModeFrontier Flow Chart.. 29
Figure 4.9 : Mode Shapes of the Experimental Wing... 31
Figure 4.10 : Mode Shapes of the Computational Wing... 31
Figure 4.11 : Displacement of the Front spar of the Composite Skin and the Isotropic

Wing Subjected to a 100 lb Vertical Load Applied at the tip [4].......... 33
Figure 4.12 : Displacement of the front spar of the Isotropic Wing Model Subjected

to 100 lb Vertical Load Applied at the tip (Present Study)................... 33
Figure 4.13 : Displacement of the Rear Spar of the Composite Skin and the Isotropic

Wing Subjected to a 100 lb Vertical Load Applied at the tip [4].......... 33
Figure 4.14 : Displacement of the Rear Spar of the Isotropic Wing Model Subjected

to 100 lb Vertical Load Applied at the tip (Present Study)................... 34
Figure 4.15 : Displacement of the Front Spar of the Composite Skin and the

Isotropic Wing Subjected to a Twisting Load Applied at the tip [4] 34
Figure 4.16 : Displacement of the Front Spar of the Isotropic Wing Model Subjected

to a Twisting Load Applied at the tip (Present Study).......................... 34
Figure 4.17 : Displacement of the Rear Spar of the Composite Skin and the Isotropic

Wing Subjected to a Twisting Load Applied at the tip [4] 35
Figure 4.18 : Displacement of the Rear Spar of the Isotropic Wing Model Subjected

to Twisting Load Applied at the tip (Present Study)............................. 35
Figure 5.1 : Staggered Algorithm for the Aeroelastic Coupling............................... 37
Figure 5.2 : Residuals.. 38
Figure 5.3 : Wing-tip Deflections at M = 0.8.. 38
Figure 5.4 : Workflow of the optimization problem... 42

 ix

STATIC AEROELASTIC OPTIMIZATION OF ARW-2 WING WITH
MULTIDISCIPLINARY CODE COUPLING

SUMMARY

In last two decades, interest in multidisciplinary design analysis and optimization has

increased substantially. Besides of experimental studies, computational studies via

academic and commercial codes took a place in literature. There are also some

extended experimental database of a test case like ARW-2 wing which is selected as

design model in this study.

In the first step of this study, an accurate computational wing model which has

similar responses with experimental wing model is created. Due to the lack of some

properties of experimental wing in the literature, an inverse engineering problem

with multi objective optimization tools has been defined. The purpose of this effort is

to identify missing properties of the wing. After this identification, the computational

wing model is validated with experimental data for both static and dynamic

responses.

In the second step of this study, a static aeroelastic optimization problem has been set

by using previously validated ARW-2 computational wing model. The objectives of

the problem are maximization of lift over drag ratio and minimization of weight. The

problem is constrained with aerodynamic and structural criteria. As optimization

algorithm, NSGA-II is used to govern optimization process. According to the results,

pareto set for the optimum designs are acquired and the optimum design is selected

with a satisfactory improvement on the design.

During the study, calculations are performed by using commercial codes. As a finite

element solver ABAQUS 6.7-1 is used while FLUENT 6.3.26 is used to solve flow

equation. To couple these flow and structural solvers, MpCCI 3.0.6 is used. An

advanced optimization software ModeFrontier 4.0 is used to solve optimization

problems.

 x

 xi

ÇOK DİSİPLİNLİ KOD EŞLEME İLE ARW-2 KANADININ STATİK
AEROELASTİK OPTİMİZASYONU

ÖZET

Son yıllarda, çok disiplinli tasarım analizleri ve optimizasyona olan ilgi oldukça

artmıştır. Deneysel çalışmaların yanısıra, akademik ve ticari kodlar kullanarak

yapılan sayısal çalışmalar literatürde yerini almıştır. Bu çalışmada model olarak

seçilen ARW-2 kanadı gibi geniş deneysel veritabanı olan test durumları yer

almaktadır.

Bu çalışmanın ilk aşamasında, deneysel kanat modeli ile benzer cevaplara sahip olan

sayısal bir kanat modeli oluşturulmuştur. Deneysel kanadın bir takım özelliklerinin

literatürdeki eksiklerinden ötürü, tersine mühendislik ile çok amaçlı bir optimizasyon

problemi kurulmuştur. Bu denemenin amacı, kanadın eksik özelliklerinin teşhis

edilmesidir. Bu teşhisten sonra, sayısal kanat modeli statik ve dinamik cevaplarına

göre deneysel kanat modeli ile doğrulanmıştır.

Çalışmanın ikinci aşamasında, daha önce doğrulanan ARW-2 sayısal kanat modeli

kullanılarak bir statik aeroelastik optimizasyon problemi tanımlanmıştır. Problemin

amacı kanadın taşıma/sürükleme oranını maksimize etmek ve ağırlığını minimize

etmektir. Problem aerodinamik ve yapısal kriter ile kısıtlanmıştır. Optimizasyon

algoritması olarak NSGA-II optimizasyon prosesini yürütmek üzere kullanılmıştır.

Elde edilen sonuçlara göre, optimum tasarımlar için pareto kümesi elde edilmiş ve

optimum tasarım, tasarımda tatmin edici bir iyileştirme ile seçilmiştir.

Çalışma süresince, sayısal hesapların yapılmasında ticari kodlardan faydalanılmıştır.

Sonlu elemanlar yöntemi çözücüsü olarak ABAQUS 6.7-1 kullanılırken, akış

denklemlerini çözmek için FLUENT 6.3.26 kullanılmıştır. Bu iki kodun

eşlenmesinde ise MpCCI 3.0.6’dan faydalanılmıştır. Gelişmiş bir optimizasyon

yazılımı olan ModeFrontier 4.0, optimizasyon problemlerini çözmek üzere

kullanılmıştır.

 xii

 1

1. INTRODUCTION

1.1 Motivation

The goal is to perform an aeroelastic optimization study based on ARW-2

(Aeroelastic Research Wing) wing model for steady-state conditions while both

aerodynamic and structural parameters can be used as optimization variables. Since

some of the structural properties of ARW-2 composite wing is missing in literature,

firstly, a reliable 3-D computational ARW-2 wing model is needed to be identified in

an inverse approach and validated with experimental results. The missing material

properties and thicknesses of the skin, ribs, axial bars and spars are defined as

optimization variables of an multi-objective optimization problem based on structural

mechanics. The objectives are minimization of the errors in the first five modal

frequencies, in mode shapes, in pre-defined static bending and torsional responses of

the wing model. An isotropic skin approach is used for simplicity. ModeFrontier is

used as an optimization tool and Abaqus as a FE structural solver. In the second step,

the computational ARW-2 model's aeroelastic response is validated with the

experimental results. By coupling Fluent and Abaqus softwares through MPCCI,

static aeroelastic analysis for Mach number 0.8 at angle of attack changing between

-1 to 3 degrees are performed for fluid-structure interaction validation. In the third

step, a multidisciplinary optimization study is performed on the verified

computational ARW-2 model in order to improve the lift/drag performance and static

displacement criteria of the wing while trying to reduce its weight. The angle of

attack, the thicknesses of ribs and spars are defined as design variables while a

multiobjective genetic algorithm (MOGA) is employed in the aeroelastic

optimization framework.

 2

1.2 Background

1.2.1 Aeroelasticity

Aeroelasticity is a field of study that concerns the interaction between the

deformation of an elastic structure in an airstream and the resulting aerodynamic

force. This interdisciplinary study can be illustrated by Figure 1.1.

Figure 1.1 : Schematic of the field of aeroelasticity [1]

The interaction of aerodynamic loading caused by steady flow and consequent elastic

deformation of the surface is called static aeroleasticity. This area has two types of

design problems. The most usual problem is the effect of elastic deformation on the

airloads in normal operating conditions. Flight stability, quality of control, influence

on performance and load distribution are related to these effects. Another problem

about static aeroelasticity is the instability of the structure which is called

“divergence”.

The most commonly posed problems about aeroelasticity are stability problems. The

deformation of the structure leads to a different aerodynamic load distribution on the

structure. The increase in the load leads to an increase in the deflection of the

structure and may lead to a failure in structure. When inertial forces have less effect,

we refer to this as a static aeroelasticity instability (divergence). On the other hand,

when the inertial forces are important, the resulting aeroelastic instability is called

“flutter”.

 3

1.2.2 Multidisciplinary Optimization (MDO)

Many studies in aerospace industry need to be considered as multidisciplinary

problems due to their complexity and interaction between other disciplines like

aerodynamics, structural dynamics, heat transfer, vibration, control, etc. Developing

new and complex methodologies depends on the interaction of these different

disciplines, so that entire system is considered as a coupled system.

Coupled systems have complexity in their nature. One design requirement can be an

input by a discipline whereas this variable can be an output of another discipline.

This complexity may induce contradiction among disciplines. For example, one

aircraft design may be good from the point of view of structural dynamics as this

design is useless from another point of view. Designing an aircraft with high weight

would decrease the flexibility and suppress aeroelastic instabilities, however it

decreases aerodynamic performance of the aircraft. A systematic approach to solve

this kind of coupled problems is defined as “Multi-disciplinary Optimization

(MDO)”. [2]

1.3 Outline

This thesis provides two major studies mainly about multi objective optimization by

using ARW-2 experimental wing model as a test case. First of all, background of

computational aeroelasticity and multidisciplinary optimization is provided in

chapter 2. In chapter 3, the computational framework and the methodology

developed and used in this study is described. In chapter 4, an inverse engineering

problem by using multi objective optimization tools are presented in order to

completely identify the test case ARW-2 computational wing model. In chapter 5, a

static aeroelastic optimization problem is defined and the results are presented.

 4

2. LITERATURE REVIEW

2.1 Computational Aeroelasticity

In a computational framework, aeroelastic analysis requires a simultaneous analysis

of fluid and structural equations. To further improve the performance of the air

vehicle, implementation of multi-disciplinary optimization techniques into the

computational design process will be beneficial. The topic of computational

aeroelasticity has flourished in the last few decades with the great advances in

computer technology and algorithms. The Euler/ NavierStokes flow solvers have

been widely employed for the fluid domain as in the works of Farhangnia [3],

Bhardwaj [4], Karpel [5], Newman [6], Garcia and Gruswamy [7], Liu [8], Cai [9],

Kamakoti [10], Farhat [11-14], Gordnier [12], Feng and Soulaimani [13]. Recently,

reduced order models have been applied to fluid domain by Dowell [15] , Lieu [16]

and Haddadpour [17]. Structural analysis of the aeroelastic problem is performed by

using modal equations as in the works of Karpel [5], Farhangnia [3], Garcia and

Gruswamy [7], Liu [8]. The structural finite element method is employed in the

studies presented by Liu [8], Farhat and Lesoinne [11], Gordnier [12], Bhardwaj [4],

Relvas and Suleman [18], Gordnier [12]. To transform the physical data between

fluid and structure, three different methods of coupling can be used. These are

loosely coupled [19] , closely coupled [8-13] and fully coupled methods [11].

Computational aeroelasticity with commercial codes are becoming more common

recently because of the industrial needs. Kuntz and Menter (20) used the commercial

software packages to perform an aeroelastic analysis of the AGARD 445.6 wing with

the high fidelity non-linear finite element solver ANSYS and the general purpose

finite volume based CFD code CFX-5. Mesh based Parallel Code Coupling Interface

(MpCCI) is used for the interfacing and data transfer between CSD and CFD solvers.

Love et al (19) used the Lockheed's unstructured CFD solver SPLITFLOW and the

MSC/Nastran CSD solver for the aeroelastic computations of an F-16 model in a

max-g pull-up maneuver. They used a loosely coupled method for the analysis. Data

 5

transfers between the codes are done by using Multi-Disciplinary Computing

Environment (MDICE). Heinrich [21] used the DLR’S unstructured TAU code with

MSC/Nastran finite element solver for the aeroelastic analysis of an A340 like

aircraft. MpCCI is used for the loosely coupling of these codes.

Cavagna [22] used an interfacing method that can be applied on unmatching meshes

based on Moving Least Squares (MLS). They used Fluent for the fluid solver and the

MSC-Nastran for the structural solver for the aeroelastic analysis of the AGARD

445.6 wing. They used a user defined function (UDF) to implement the grid

deformation and scheme for the Crank-Nicolson algorithm for Fluent.

Thirifay and Geuzaine [23] studied the AGARD 445.6's aeroelastic problems both

with steady and the unsteady approximations in a loosely coupled method. In their

study they used a three dimensional unstructured CFD solver developed in

CANAERO and a CSD solver "the SAMCEF Mecano code" for their analysis. They

used the ALE method for the moving mesh method. MpCCI is used for the

aeroelastic code coupling tool.

Yosibash [24] designed an interface to couple a parallel spectral/hp element fluid

solver "Nektar" with the hp-FEM solid solver "StressCheck" for the direct numerical

solution (DNS) over AGARD 445.6 wing. ALE formulation is used for the fluid

structure coupling. They used the one-way coupling method with linear assumption

for the structural response and the two-way coupling method which considers the

non-linear effects of the structure. The ALE formulation of the Navier-Stokes

equations are also used in Svacek’s work [25]. The Reynolds averaged Navier Stokes

(RANS) system of equations with the Spallart-Almaras turbulence model were used

to compare the results with NASTRAN code solutions. Fazelzahed [26] highlighted

the effects of an external force and mass parameters such as the mass ratio and their

locations on the flutter speed and frequency by performing numerical simulations.

Unsteady aerodynamic pressure loadings were taken into account and the resulting

partial differential equations are converted into a set of eigenvalue equations through

the extended Galerkin’s approach.

Stanford et al. [27] used a design model of MAV (Micro Air Vehicle) with a low

aspect-ratio by using an aeroelastic code to couple a Navier-Stokes solver and a finite

element solver. For the steady laminar flow field, they solved 3-D incompressible

viscous Navier-Stokes equations and interpolated the computed wing pressures to the

FEA to solve the displacements using the structural membrane model. They

 6

interpolated the displacement onto the model and remeshed CFD grid using a

mesh/slave moving-grid scheme. After repeating these steps until convergence is

achieved, they compared their results with the experimental data to validate the

computational model. Lim [28] studied the aeroelastic stability of a bearingless rotor

with a composite flexbeam. Numerical results were compared with both previously

published experimental results and theoretical values.

Xie [29], in his work, emphasized the importance of nonlinear aeroelastic stability

for the high-altitude long-endurance (HALE) aircraft model by using

MSC/NASTRAN as a FEM software and an unsteady aerodynamic code with planar

doublet lattice method.

In Pahlavanloo’s study [30], AGARD 445.6 wing model was used for dynamic

aeroelastic simulations by using EDGE code which is previously validated with

experiments. In this study, flutter boundary for AGARD wing in subsonic and

supersonic regions were presented and additional validation of aeroelastic

implementation of EDGE was provided. Edward [31] performed generalized

aeroelastic analysis method to apply on three cases which are restrained, unrestrained

and a wing model. A computer code for the generalization of a doublet lattice

method was applied to the calculation for the wing model for both incompressible

and subsonic flow conditions. To check accuracy of the code, for all cases aeroelastic

flutter, divergence speed and frequencies were compared with published results.

Jian-min [32] investigated aeroelastic characteristics of an airship by coupling a

SIMPLE method based finite volume code and a finite element code. They

developed a nonlinear finite element method to solve the structure equations of the

airship and derived the flow solver based on the Reynolds-averaged Navier-Stokes

equations. A Thin Plate Spline (TPS) is used as the interface to exchange the data

between fluid and structure codes.

A nonlinear aeroelastic analysis of a two-dimensional airfoil was presented in

Sarkar’s [33] study. Due to structural damage potential of stall aeroelastic instability,

aeroelastic instability and nonlinear dynamic response were investigated by

considering two different oscillation models one of which is pitching oscillation and

the other one is flap-edgewise oscillation. A quasi-steady Onera model was used to

calculate the nonlinear aerodynamic load in the dynamic stall regime. Another

nonlinear aeroelastic analysis was presented by Shams et al [34]. They used the

second-order form of nonlinear general flexible Euler-Bernoulli beam equations for

 7

structural modeling. Aerodynamic loading on the model which is “Human Powered

Aircraft’s” (HPA) long, highly flexible wing were determined by using unsteady

linear aerodynamic theory based on “Wagner function”. The nonlinear integro

differentials aeroelastic equations were obtained from the combination of these two

types of formulations. Although their linear study for a test case had a good

agreement with experiments, the nonlinear model did not satisfy the experimental

data. Silva [35] presented an improvement to the development of CFD based

unsteady aerodynamic reduced-order model in his study. This improvement involves

the simultaneous excitation of the structural modes of the CFD based unsteady

aerodynamic system. CFL3Dv6.4 code which solves the three-dimensional, thin

layer, Reynolds-averaged Navier-Stokes equations with an upwind finite volume

formulation. The second-order backward time differencing with subiterations was

used for static and dynamic aeroelastic calculations. Another nonlinear aerolasticity

study in supersonic and hypersonic regimes was performed by Abbas et al [36].

Their study shows that the freeplay in the pitching degree-of-freedom and soft/hard

cubic stifness in the pitching and plunging degrees-of-freedom have significant

effects on the limit cycle oscillations exhibited by the aeroelastic system in the

supersonic and hypersonic regimes. They also investigated the effect of the radius of

gyration, the frequency ratio and post-flutter regimes on the aeroelastic system

behaviour by using Euler equations and CFL3D code. They concluded that the non

linear aerodynamic stiffness induces damaging effects for aeroelastic system at high

Mach numbers.

Computational aeroeleasticity has been also used in many applications other than

aerospace engineering. Chattot [37], in his study, used his previously validated code

and performed aeroelastic simulation of wind turbine to observe its vortex model.

Baxevanou [38] developed a novel aeroelastic numerical model which combines a

Navier–Stokes CFD solver with an elastic model and two coupling schemes for the

study of the aeroelastic behaviour of wind turbine blades undergoing classical flutter.

In the conclusion, the capabilities of the numerical model were presented to perform

an aeroelastic analysis accurately. Moreover, Braun [39] has performed CFD and

aeroelastic analysis on the CAARC (Commonwealth Advisory Aeronautical

Council) standard tall building by using numerical simulation techniques. A major

topic was referred to one of the first attempts to simulate the aeroelastic behavior of a

 8

tall building employing complex CFD techniques. Numerical results were compared

with numerical and wind tunnel measurements with some important concluding

remarks about the simulation.

Recently, as a former study of this thesis, a robust aeroelastic optimization

methodology was developed by multidisciplinary code coupling approach employing

common softwares such as Fluent and Abaqus with Modefrontier and MpCCI as in

the work of Nikbay [76] and Öncü [77] for the aeroelastic optimization of AGARD

445.6 wing. After this methodology was successfully established, the current work

focuses on aeroelastic optimization of a more complicated 3D wing model of ARW 2

which has inner rib, spar and axial bar elements.

2.2 Multidisciplinary Optimization

Aircraft design is a complex engineering process that depends on the interaction of

different disciplines so that the system of these disciplines must be thought as a

coupled system. For instance, design of an aircraft wing with low weight would

improve the aerodynamics performance but this will increase the flexibility of the

wing which may lead to aeroelastic instability. Such a system can be solved by

aeroelastic optimization.

Therefore, the contradictory situations in aircraft design optimization process

disciplines such as aerodynamics, structural dynamics, propulsion, flight controls,

etc. must be thought as a whole system to find the optimized design. Moreover

design requirements enhanced with the developments in computer technology. The

increased complexity and the computational cost issues regarding multi-disciplinary

design leaded to a concept referred as “Multi-Disciplinary Optimization (MDO)”.

MDO which is a growing field of study has been particularly applied to aerospace

engineering problems.

As the capabilities of computational studies grow, the fidelity level of engineering

numerical analysis increase as well. These multifidelity models range from low

fidelity simple physics models to high-fidelity detailed computational simulation

models. Including higher-fidelity analyses in the design process, for example through

the use of computational fluid dynamic (CFD) analyses, leads to an increase in

complexity and computational expense. As a result, design optimization, which

 9

requires large numbers of analyses of objectives and constraints, becomes more

expensive for some systems. Robinson [40] presented a methodology for improving

the computational efficiency of high-fidelity design, by using variable fidelity and

variable complexity in a design optimization framework. to minimize expensive

high-fidelity models at reduced computational cost, Surrogate-based-optimization

methods were used. The methods are useful in problems for which two models of the

same physical system exist: a high-fidelity model which is accurate and expensive,

and a low-fidelity model which is less costly but less accurate. Three methods were

demonstrated on a fixed-complexity analytical test problem and a variable

complexity wing design problem. The SQP-like method consistently outperformed

optimization in the high-fidelity space and the other variable complexity methods.

On the wing design problem, the combination of the SQP-like method and corrected

space mapping achieved 58% savings in high-fidelity function calls over

optimization directly in the high-fidelity space. These savings provided a reduction

in computational cost.

Alonso [41] presented a new approach for software architecture of a high-fidelity

multidisciplinary design framework that facilitates the reuse of existing components,

the addition of new ones, and the scripting of MDO procedures. The necessary

components of a high-fidelity aero-structural design environment for complete

aircraft configurations were implemented, and were demonstrated with two separate

aero-structural analyses: a supersonic jet and a launch vehicle. An aero-structural

solver that uses high-fidelity models for both disciplines as well as an accurate

coupling procedure was the core of the effort. The Euler or Navier–Stokes equations

were solved for aerodynamics side and a detailed finite-element model was used for

the primary structure. In Kodiyalam’s [42] study, Multidisciplinary Design

Optimization of a vehicle system for safety, NVH (noise, vibration and harshness)

and weight, in a scalable HPC (High Performance Environment) environment, was

addressed. HPC, utilizing several hundred processors in conjunction with

approximation methods, formal MDO strategies and engineering judgement were

used to obtain superior design solutions with significantly reduced elapsed

computing times. MDO solution time through HPC was significant in improvement

engineering productivity, so reinforcement the vehicle design were made possible.

Korngold [43] presented a new algorithm to perform multidisciplinary optimization.

 10

Coupled nonhierarchic systems with discrete variable was efficiently optimized.

Through formulation of first and second order “Global Sensitivity Equations”, the

global approximation was optimized using branch and bound or simulated annealing.

The approximation was to decompose the system into the disciplines and use

designed experiments within the disciplines to build local response to the discipline

analysis. This algorithm based on established statistical methods was implemented

very well in an example problem.

Multidisciplinary optimization techniques were also used in more realistic problems.

For example, Venter [44] used particle swarm optimization method in his study for

multidisciplinary optimization of a transport aircraft. A new algorithm for

multidisciplinary optimization problems were introduced and the recommendations

for the use of the algorithm in future applications were provided. This algorithm was

applied to the multidisciplinary design of a typical long-range transport aircraft wing

of the Boeing 767 class. The wing was optimized relative to a reference wing. This

was an unconstrained problem which has a purpose of maximization the range for the

wing by varying the aspect ratio, the depth-to-chord ratio, the number of internal

spars and ribs and the wing cover construction. Gantois [45] performed multi-

disciplinary design of a large-scale civil aircraft wing by taking into account the

manufacturing cost. A multi level MDO process was constucted and implemented

through a hierarchical system. Calculation of the sensitivities and minimisation of the

operating costs, by taking variations of the 6 primary design parameters, was done by

the sequential quadratic programming algorithm E04UCF (Mark17) from the NAG

Fortran Library. This algorithm uses a quadratic approximation for the objective

function and employs linearised constraints. Drag sensitivities are obtained from

response surfaces created from CFD calculations. Thus, the possibility of

combination optimization parameters normally used in aircraft studies, relating to

weight and aerodynamic performance with a realistic cost component. The complex,

multidisciplinary nature of aerospace design problems have exposed a need to model

and manage uncertainities. A new method for propagating this uncertainity to find

robust design solution was developed and described in DeLaurentis’ [46] study. Both

the uncertainity modeling and efficient robust design technique were demonstrated

on an example problem involving the design of a supersonic transport aircraft using

the relaxed static stability technology. This study has been found to be an important

 11

aspect of modern aerospace problems, where emphasis on life-cycle disciplines will

introduce new uncertainities and require robust solutions.

A specific field of study in multi-disciplinary optimization is aeroelastic

optimization. Barcelos [47] presented a general optimization methodolgy for fluid

structure interaction problems based on turbulent flow models. The overall

optimization methodology was applied to the shape and thickness optimization of a

detailed wing model. The optimization results based on an inviscid and turbulent

flow model were compared. Using an approriate formulation of the optimization

problem, the optimization results based on the inviscid model can provide a general

idea about the overall layout of the optimum wing configuration. Another example

for aeroelastic optimization is Librescu’s [48] study about the optimization of thin

walled subsonic wings against divergence. The objective of the study was

maximization of the divergence speed while maintaining the total structural mass at a

constant value by using a new mathematical approach. A study of an investigation

into a minimum weight optimal design and aeroelastic tailoring of an aerobatic

aircraft wing structure was conducted by Guo [49]. After validating numerical model

considering experimental results, by employing gradient-based optimization method

the investigation was focused on aeroelastic tailoring of the wing box.

 12

3. COMPUTATIONAL FRAMEWORK

3.1 Design Model

The design model provides an interface between the analysis model and optimization

model. In general there is a relation between the physical design parameters and the

abstract optimization variables. A structural or an aerodynamic parameter can be

directly associated to an abstract optimization variable. Thicknesses of the structure

or angle of attack of a wing could be an abstract optimization variable. In some

cases, this relation becomes more complicated. Shape optimization could be an

example for this approach due to the design variables of the shape of the structure or

the boundary of the fluid domain.

In this study, to create parametric 3D wing model, CATIA V5 R17 software was

used. CATIA (Computer Aided Three Dimensional Interactive Application) is a

multi-platform CAD/CAM/CAE commercial software suite developed by the French

company Dassault Systems and marketed worldwide by IBM. Written in the C++

programming language, CATIA is the cornerstone of the Dassault Systemes product

lifecycle management software suite.

The software was created in the late 1970s and early 1980s to develop Dassault's

Mirage fighter jet, then was adopted in the aerospace, automotive, shipbuilding, and

other industries.

3.2 Analysis Model

3.2.1 FE Analysis (ABAQUS)

In the optimization process, finite element (FE), computational fluid dynamics

(CFD) calculations and the coupling of these two codes are performed depending on

the variation of the structural and aerodynamic variables.

 13

In this study ABAQUS, a finite element based solver is used as the structural solver.

All of the structural analyses are done by using the linear static analysis

approximation. Finite element method (FEM) is based on dividing a whole structure

into smaller cells. The solution procedure for a FEM in structural analysis can be

given as follows;

The first step is the processing step. In this step building of the finite element model,

the constraints and loads are defined. Moreover, mesh is prepared in this step. Next

step is FEA solver step. In this step assembling of the model and the solving of the

system of equations are done. Last step is the post-processing step. In this step the

results are sorted and displayed. The equations of motion for a structure can be

written as follows in a generalized way;

[]{ } []{ } []{ } { } { }a eM u D u K u F F+ + = + (3.1)

Where;

[]M : Mass matrix

[]D : Damping matrix

[]K : Stiffness matrix

{ }aF : Aerodynamic force column matrix

{ }eF : External load column matrix

{ }u : Displacement column matrix

Since the analysis will be performed in static analysis the time related terms with the

time derivatives of the equation (3.1) will be neglected. Moreover, in the aeroelastic

analysis only the aerodynamic forces will be taken into account.

Therefore, by using the assumptions above the system of linear equations generated

by the finite element method can be written as follows;

[]{ } { }eK u F= (3.2)

 14

Displacements and stresses induced by aerodynamic loads from the flow solver, will

be calculated by ABAQUS

3.2.2 CFD Analysis (FLUENT)

In this study aerodynamic loads will be calculated by FLUENT commercial

computational fluid dynamics solver. FLUENT is used for modeling fluid flow both

for structured and unstructured grids by using Navier-Stokes/Euler equations [79]. A

finite volume based approach is used to define the discrete equations. In our case as

the flow will be in transonic regime and the compressibility effects should be taken

into account the coupled solver will be used [79].

The fluid solver of the FLUENT solves the governing equations of continuity,

momentum and energy simultaneously [79]. In this study, flow will be assumed as

inviscid and Euler equations will be used. This is a valid approximation for high

Reynolds number flows according to the Prandtl’s boundary layer analysis.

Moreover, according to the Barcelos and Maute [47] inviscid flow models gives

acceptable results for maximizing the lift/drag optimization problems for transonic

cruise conditions.

The general Euler equations, in conservation form can be written as follows;

0. =∇+
∂
∂ F

t
w (3.3)

Where F is the flux vector with cartesian components. The fluid state conservative

variable, w is defined as

1

2

3

u
w u

u
E

ρ
ρ
ρ
ρ

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

 (3.4)

Governing equations are non-linear and coupled. In FLUENT in order to get

convergence several iterations are performed as the equations of continuity, energy

and momentum are solved simultaneously.

 15

3.2.3 Aeroelastic Coupling (MpCCI)

In order to couple FE code (ABAQUS) and CFD code (FLUENT), MpCCI (mesh

based parallel code coupling interface) is used. MpCCI gives user the opportunity of

using high fidelity simulation codes for different disciplines. The advantage of using

MpCCI is that it enables the exchange of data transfer between nonmatching meshes

of CFD and CSD codes in a multiphysics simulation [81]. MpCCI supports several

types of coupling regions and spaces. Line, surface or volume coupling depending on

the elements definitions can be done in two or three dimensional space.

Figure 3.1 : MpCCI Coupling Process [81]

In MpCCI, data exchange process are made in three steps. First of all, to make the

contact search easier the elements are split into triangles in 2D or tetrahedras in

3D.(a) Search for the elements is done by using the “Bucket Search” algorithm of

MpCCI [81]. Then, each triangle is bounded by a box which includes the triangle.(b)

After that step, “buckets” are formed by dividing the space into smaller squares or

cubes. (c) Finally, a list is formed by listing the closer triangles to the bucket to use

for the further steps.

 16

Figure 3.2 : Pre Contact Search [81]

Point-element relationships are used in the minimal distance algorithm. A list of

triangles which belong to elements was formed in the pre-contact search step. In this

step, the best triangle corresponding to the best element is determined and chosen.

Relative positions of the triangles and the node P is used in this process [81].

Projection of the point P is taken onto the surface of each triangle.

Interpolation of the quantitites (displacement, force, pressure,…) can be done by

using a flux or filed interpolation method [81]. In flux interpolation, preserving of the

integral is done by adapting the value to the element sizes. This method is used for

example for forces. In field interpolation, a conservative transfer is ensured by

keeping the value of the elements. It is used for example for pressures.

Performing code coupling with MpCCI is done in four steps;

• Preparation of Model Files

In this step FLUENT and ABAQUS models are prepared separately. The definition

of the coupling surfaces (upper wing, lower wing, tip) are given in this step. Then,

model files are written in input files for the CFD and CSD codes.

• Definition of the Coupling Process

The most important step of the aeroelastic coupling process is the definition of the

coupling process step. FLUENT and ABAQUS models of the wing are chosen via

user interface. Then, coupling regions described above, transfer quantities (nodal

displacements from the CSD code and the pressure values from the CFD code) and

the coupling algorithms are selected.

• Running the Co-Simulation

 17

In this step aeroelastic analysis are performed. MpCCI controls the rest of the

coupling process till to the specified coupling iterations or time.

• Post-Processing

Finally, the results for both CFD and the CSD code are examined by using the codes

own post-processing tools or the post-processing tools of MpCCI.

Figure 3.3 : Code Coupling Process [81]

After all the models are prepared, the solution procedure for the aeroelastic coupling

can be divided into steps. The solution strategy described below is performed until a

specified coupling time or iterations. CFD code calculates the surface pressures and

maps these pressures as nodal forces to the CSD code. CSD code calculates the

deformation of the structure under these pressure loads. Calculated nodal

displacement values are mapped onto the CFD modal as mesh displacements and

mesh is updated and CFD code performs the analysis.

3.3 Optimization Model

In mathematics, the simplest case of optimization, or mathematical programming,

refers to the study of problems in which one seeks to minimize or maximize a real

function by systematically choosing the values of variables from within an allowed

 18

set. This is actually a small subset of this field which comprises a large area of

applied mathematics and generalizes to study of means to obtain "best available"

values of some objective function given a defined domain where the elaboration is on

the types of functions and the conditions and nature of the objects in the problem

domain.

Adding more than one objective to an optimization problem adds complexity. For

example, if one wants to optimize a structural design, a design that is both light and

rigid might be required. Because of the conflict of these two objectives, a trade-off

exists. There will be one lightest design, one stiffest design, and an infinite number

of designs that are some compromise of weight and stiffness.

A typical multi-objective optimization problem can be formulated as;

{ }

{ }UL
n

n

n

nSsSs

ssssS

sgsg

shsh

szszszsz

s

g

h

z

≤≤ℜ∈=

ℜ∈≥

ℜ∈=

=
∈∈

,

)(0)(

)(0)(

)(),....,(),(min)(min 21

 (3.5)

Where s is a set of sn abstract parameters constrained by lower and upper bounds Ls

and Us , z is the set of objective functions of the problem. h is a set of hn equality

constraints and g is a set of gn inequality constraints.

The set of optimization variables are the parameters that affect the optimization

problem. These variables can be both geometrical variables and boundary conditions.

For instance, the optimization problem described in the next chapter has optimization

variables that are the thicknesses of ribs,spars,skins and axialbars and material

properties of an aircraft wing. However, the variables in the optimization problem

performed in the fifth chapter are the thicknesses of ribs, spars, skin and axialbars

and the angle of attack of the wing.

A constraint is a condition that must be satisfied during the design. Feasible design

means that design satisfies the constraints, contrarily infeasible design means that the

design does not satisfy the constraints. For example, designer may want the lift over

drag ratio of a wing to be maximum or not want the maximum stress to exceed the

 19

value of the material’s yield stress value or an unreasonable displacement over the

wing.

Objective function is the goal of the optimization problem that we want to minimize

or maximize. Most of the optimization problems are single objective or can be made

single objective by defining weight factors for the multi-objective functions. In the

following chapters study there are two objective functions in both optimization

problems and for the multiobjective optimization problems the algorithm will try to

find the pareto front.

Optimization problems can be generally solved by either gradient based algorithms

or evolutionary algorithms. In this study multi objective optimization problem will

be solved by genetic algorithm which is an evolutionary algorithm. Evolutionary

algorithms or genetic algorithms use the evolution theory to perform optimization. A

population evolves over generations to adapt to an environment by selection,

mutation and crossover [51]. There are three important terms related to the genetic

algorithms which are fitness, individual and genes. Fitness refers to the objective

function, individual refers to the design candidate and genes refer to the design

variables.

Multiobjective (MO) optimization tries to find the components of a vector-valued

objective function whereas the single objective optimization tries to find the single

valued objective function [52]. In MO problems, solution is a set of solutions called

“pareto-optimal set”.

The application of the evolutionary algorithms to a MO optimization problem can be

solved by using a multiobjective genetic algorithm (MOGA). Genetic algorithms are

capable of finding the global optima within complex design spaces whereas gradient

based algorithms can find the local optima points. Genetic algorithms can be used

almost for every optimization problem, where gradient based algorithms may have

some limitations. Gradient based algorithms needs the gradient information to

determine the search direction that’s why they need the existence of derivatives.

Genetic algorithms do not need to start from a point whereas gradient based

algorithms need a starting point. Genetic algorithms do not operate on design

variables directly. They use binary representation of the parameters.

 20

In this study, MOGA (multiobjective genetic algorithm) and NSGA-II (Non-

dominated Sorting Genetic Algorithm) were used as optimization algorithms.

NSGA-II is a fast and elitist multi-objective evolutionary algorithm. Its main features

are[80]:

• A fast non-dominated sorting procedure is implemented. Sorting the

individuals of a given population according to the level of non-domination is

a complex task: non-dominated sorting algorithms are in general

computationally expensive for large population sizes. The adopted solution

performs a clever sorting strategy.

• NSGA-II implements elitism for multiobjective search, using an elitism

preserving approach. Elitism is introduced storing all non-dominated

solutions discovered so far, beginning from the initial population. Elitism

enhances the convergence properties towards the true Pareto-optimal set.

• A parameter-less diversity preservation mechanism is adopted. Diversity and

spread of solutions is guaranteed without use of sharing parameters. It is used

the crowding distance, which estimates the density of solutions in the

objective space, and the crowded comparison operator, which guides the

selection process towards a uniformly spread Pareto frontier.

• The constraint handling method does not make use of penalty parameters.

The algorithm implements a modified definition of dominance in order to

solve constrained multi-objective problems efficiently.

• NSGA-II allows both continuous ("real-coded") and discrete ("binary coded")

design variables. The original feature is the application of a genetic algorithm

in the field of continuous variables.

On the other hand MOGA is an efficient multi-objective genetic algorithm that uses a

smart multi-search elitism. This new elitism operator is able to preserve some

excellent solutions without bringing premature convergence to local-optimal

frontiers.

For simplicity, MOGA requires only very few user-provided parameters, several

other parameters are internally settled in order to provide robustness and efficiency

to the optimizer. The algorithm attempts a total number of evaluations that is equal to

 21

the number of points in the design of experiment table (the initial population)

multiplied by the number of generations.

The size of each run is usually defined by the computing resources available. A rule

of thumb would suggest possibly to accumulate an initial DOE of at least 16 design

configuration and possibly more than var2()iable objectiven n , where var iablen is number of

variable and objectiven is number of objectives.

All of these optimization algorithms and process were employed by a commercial

software called “ModeFrontier” which is a multi-objective optimization and design

environment, developed to couple CAD(Computer Aided Drafting)/CAE(Computer

Aided Engineering) tools, Finite Element Structural Analysis and Computational

Fluid Dynamics (CFD) software. ModeFRONTIER is a GUI driven software written

in Java that wraps around the CAE tool, performing the optimization by modifying

the value assigned to the input variables, and analyzing the outputs as they can be

defined as objectives and/or constraints of the design problem. The logic of the

optimization loop can be set up in a graphical way, building up a "workflow"

structure by means of interconnected nodes. Serial and parallel connections and

conditional switches are available. ModeFRONTIER builds automatic chains and

steers many different external application programs using scripting (DOS script,

UNIX shell, Python Programming Language, Visual Basic, JavaScript, etc...) and

direct integrations nodes (with many CAE/CAD and other application programs). In

this study, DOS scripts were used to implement several commercial software (Fluent,

Abaqus and MpCCI)

 22

4. IDENTIFICATION OF AEROELASTIC RESEARCH WING (ARW-2)

In this chapter, the structural validation of ARW-2 (Aeroelastic Research Wing) by

employing multi-objective optimization techniques in an inverse approach is

considered. The objective is to identify a reliable 3-D computational ARW-2 wing

model and validate it with experimental results published by NASA “Drones for

Aerodynamic Structural Testing (DAST)” program. The purpose of this effort is to

create an isotropic computational model of ARW-2 wing which will be used in static

and dynamic aeroelastic studies. However, the structural definition of the composite

wing is not complete in literature. The thicknesses of ribs, spars, skin and axial bars

of the wing are missing geometrical properties. Furthermore the material data given

in the literature is not enough to establish a composite FE model of wing’s skin. To

remedy these deficiencies, a computational model which will have the similar

structural response with the experimental wing is required. In the first stage of this

research, an isotropic skin approach is used for simplicity. The errors in the first

five modal frequencies, mode shapes, pre-defined static bending and torsional

responses of the wing model is minimized simultaneously as the objectives of a

multi-objective optimization problem. The missing material properties and missing

thicknesses of the skin, ribs, axial bars and spars are computed as optimization

variables and identified in an inverse approach. In the second step; the computational

ARW-2 model’s structural response is validated with the experimental results. In this

study, commercial software “ModeFrontier” is used as a multi-disciplinary

optimization tool, “Abaqus” as a FE solver.

Many research studies used ARW-2 model for aeroleastic code validation purposes.

Sandford provided geometrical and structural properties of ARW-2 experimental

wing model[53]. In another study of him the steady state pressure measurements on

the wing model were presented[54]. Other than these two important studies, there are

also many studies that presents experimental data and background about the ARW-2

wing model [53-73]. By using these experimental data, a few computational studies

 23

were performed. In Bhardwaj’s Ph.D. thesis, an aeroelastic coupling procedure was

developed which performs static aeroelastic analysis using CFD and CSD code with

little code integration[4]. ARW-2 wing model was used for demonstration of the

aeroelastic coupling procedure by using ENSAERO (NASA Ames Research Center

CFD code) and a finite element wing-box code which was developed as a part of his

study. The results were compared with experimental data from an experimental study

conducted at NASA Langley Research Center. In his study, Bhardwaj created ARW

2 wing model with isotropic skin instead of composite skin. In present thesis, like

Bhardwaj’s approach, ARW-2 wing model is created with isotropic skin for

simplicity. The wing model is validated both with the experimental and

computational data which was presented by Bhardwaj. However, the thicknesses of

ribs, spars, skin and axial bars of the wing are missing geometrical properties.

Furthermore the material data given in the literature is not enough to establish a

composite FE model of the wing’s skin.

4.1 Geometrical and Structural Properties of ARW-2

At NASA Langley Research Center, “Drones for Aerodynamics and Structural

Testing – DAST” program intended to generate an extensive database of measured

steady and unsteady pressures for a supercritical wing model so that these results

could be used in computational studies for validation purposes. At the beginning of

the program, wing models were produced as rigid as possible in order to provide

simple comparisons for transonic aerodynamic computations. Next, a flexible wing

configuration was tested as part of this NASA program. Increasing flexibility of the

experimental wing provided more realistic data for comparison of aeroelastic

computational results with measurements.

The elastic wing configuration is known as DAST ARW-2 which has an aspect ratio

of 10.3, a leading-edge sweepback angle of 28.8o, and a supercritical airfoil. It is

produced with two inboard and one outboard trailing-edge control surfaces. Only the

outboard control surface was deflected to generate steady and unsteady flow over the

wing. The wing contour was performed from three different supercritical airfoils.

The wing primary structure consists of two main spars, one of which is at 25 % and

the other at 62 % of local chord. Ribs were placed perpendicular to the rear spar

every 13.2 in. except for the outboard wing-tip rib, which is also served as a spar end

 24

fitting. The spars and ribs were machined from 7075-T73 aluminum alloy. The wing

skin was made of fiberglass material with honeycomb panels sandwiched between

the middle two layers of fiberglass for areas of skin not located over the spars or ribs.

The number of layers of fiberglass used to make the skin varied from 13 at the

inboard end to 27 at the outboard end, with approximately 25 % of the layers at ± 45

deg orientation. Figure 4.1 shows the wing in the wind tunnel. Figure 4.2 shows right

and top views and Figure 4.3 demonstrates the planform area of the wing.

Figure 4.1 : Aeroelastic Research Wing (ARW-2) [53]

Figure 4.2 : Right Side and Top Views of the wing [53]

 25

4.2 ARW-2 Wing Finite Element Model

ARW-2 wing geometrical model has been created by using CATIA V5 R17

software. The wing has three different supercritical airfoils. Through the coordinate

data of the airfoils given in a NASA Technical Report of Sandford [53], firstly

supercritical airfoils were created. Skin of the wing was created by assembling

airfoils via “Generative Shape Design” module of CATIA V5 R17. Also, the ribs and

spars are located according to the coordinates given in the NASA Technical Report

[53] as it is illustrated in Figure 4.4 and 4.5. In Figure 4.6 and 4.7, wing surface

model and structural model created in CATIA V5 are shown.

Figure 4.3 : Planform Area of the wing [53]

Figure 4.4 : Structural Model of the Wing [53]

 26

Figure 4.5 : Locations of ribs and spars [53]

Figure 4.6 : 3D CAD model of the wing created in CATIA

 27

Finite element (FE) model of the wing created in Abaqus 6.7-1 has 26,000

quadrilateral elements. As discussed before, the thicknesses of ribs, spars, skin and

axial bars of the wing are missing geometrical properties. Furthermore, the material

data given in the literature is not enough to establish a 3-D FE model of wing’s

composite skin. All these missing geometrical and material properties are defined as

“variables” in Abaqus parametrically. The aim is to reach a computational model,

which will have the same structural response with the experimental wing by iterating

these variables. This leads to an inverse engineering problem where the benefits of

numerical optimization methods can be used conveniently.

4.3 Application of Multi-Objective Optimization

In the first stage of this effort, instead of a composite skin model, an isotropic skin

approach was used for simplicity. In order to obtain a reliable computational wing

model, an inverse engineering optimization problem is set. For structural validation

purpose, the modal frequencies, mode shapes, pre-defined static bending and

torsional responses are considered. In the optimization problem, the objective is to

minimize the average of relative errors in first five modal frequencies and in static

bending displacements at wing tip on front and rear spars. This leads to a multi

objective optimization problem with 2 objectives.

Figure 4.7 : Inner strucutral model of ARW-2 wing

 28

Optimization variables are defined as the material properties such as Young

Modulus, mass density and Poisson’s ratio and the missing geometrical properties of

wing such as thicknesses of the ribs, axial bars and spars. The optimization problem

is formulated as;

Objective Functions : 1min()z , 2min()z

exp5

exp1

1 x100
5

comp
i i

i i

f f
fz

=

−
∑

=

exp exp

exp exp

2 x100
2

comp comp
forward forward rear rear

forward rear

u u u u
u u

z

− −
+

=

Constraints : >axial
lr

axial
lt

Optimization Variables : rib
it 17,....,2,1, =i

spar
jt 5,....,2,1, =j

axial
lt 4,....,2,1, =l

axial
lr

ribaxialsparskin EEEE ,,,

ribaxialsparskin mmmm ,,,

ribaxialsparskin νννν ,,,

Where rib
it , spar

jt , axial
lt are thicknesses of ribs, spars and axial bars respectively and

axial
lr is the radius of axial bars. ribaxialsparskin EEEE ,,, are young modulus,

ribaxialsparskin mmmm ,,, are mass density and ribaxialsparskin νννν ,,, are the poisson’s ratio

of skin, spars, axial bars and ribs.

The reference for modal frequencies and shapes are taken from the NASA Technical

Report and the displacements are taken from Bhardwaj’s Ph.D. thesis [4]. Errors of

modal frequencies and pre-defined static bending response of the wing model are

 29

minimized simultaneously as the objectives of this multi-objective optimization

problem.

The missing material properties and missing thicknesses of the ribs, axial bars and

spars are computed as optimization variables and identified in an inverse approach.

This optimization problem is set in commercial software ModeFrontier which is used

as a multi-disciplinary optimization tool. FE solver Abaqus is used to compute modal

frequencies and displacements. Figure 4.8 shows ModeFrontier flow chart which is

developed for this optimization problem.

In Figure 4.8, variables of the optimization problem are located at the left side of the

figure. In the center of the figure, Abaqus node is located to perform both modal

analysis and static analysis. Modal analysis computes first five natural frequencies

while static analysis computes the displacements of ARW-2 wing with a 100 lb

applied upward at the wing tip on the front spar. Objectives are located at the right

side of the Figure 4.8. The computational and experimental results are compared

with the modal and bending behaviors of the wing by minimization of the error

percentages between computational and experimental data. MOGT (Multi objective

Game Theory) and NSGA II (Non-dominated Sorting Genetic Algorithm II) are used

as optimization algorithms.

Figure 4.8 : ModeFrontier Flow Chart

 30

4.4 Results

First of all, MOGT (Multi objective Game Theory) is used and pareto optimal set

among 145 designs are taken as DOE (Design of Experiment) for the further

optimization analysis with NSGA II (Non-dominated Sorting Genetic Algorithm II).

By using NSGA II, 5000 different designs are evaluated and in table 4.1 pareto

optimal set is tabularized. Error of natural frequency is considered as major

objective. In order to arrive at a decision, weight of relative error of natural

frequency and relative error of wing tip displacement are considered as 60% and

40%, respectively. In this point of view, among the paretos shown in table 4.1, one of

them is selected as the best design. Table 4.2 shows the best design with objective

functions and their errors.

Paretos Relative Errors of Natural
Frequencies

Relative Errors of Wing Tip
Displacements

1 2.73 % 7.44 %
2 2.86 % 7.69 %
3 3.10 % 7.69 %
4 2.75 % 7.68 %
5 3.18 % 7.98 %
6 3.45 % 7.78 %
7 2.74 % 7.72 %
8 2.47 % 7.72 %
9 1.49 % 7.72 %
10 1.05 % 7.73 %
11 3.83 % 4.93 %
12 3.23 % 5.78 %
13 1.01 % 6.60 %

 Experimental Data Computational Data Relative Error
Mode 1 8.31 Hz. 7.83 Hz. 5.70 %
Mode 2 31.28 Hz. 31.08 Hz. 0.64 %
Mode 3 36.00 Hz. 36.52 Hz. 1.44 %
Mode 4 62.37 Hz. 62.32 Hz. 0.08 %
Mode 5 66.97 Hz. 66.92 Hz. 0.07 %

Forward Spar Wing Tip
Displacement (in) 1.90 Inch 1.80 Inch 5.26 %

Rear Spar Wing Tip
Displacement (in) 2.01 Inch 1.85 Inch 7.96 %

Table 4.1: Paretos

Table 4.2: Optimum Design and Relative Errors

 31

Although the error percentages are satisfactory, mode shapes and torsional response

of the wing model has to be verified in order to prove the reliability of the wing

configuration according to the optimum design. Therefore, mode shapes which are

published in the NASA Technical Report are compared with those of the found

optimum design [53]. Figure 4.9 shows the experimental wing’s mode shapes and

Figure 4.10 shows the computational wing’s mode shapes for comparison.

Figure 4.9 : Mode Shapes of the Experimental Wing

Figure 4.10 : Mode Shapes of the Computational Wing

 32

Bending is one of the most important structural criteria that has to be validated for

the computational wing model. Bhardwaj, in his Ph.D. thesis has validated ARW-2

wing model with isotropic wing skin by comparing bending and twisting behaviors

of the composite skin ARW-2 wing [4]. Figure 4.11 shows the comparison between

the displacements of the front spar of the composite skin and isotropic ARW-2 wings

with a 100 lb load applied upward at the wing tip on the front spar, besides Figure

4.12 shows the displacements of the front spar of ARW-2 computational wing

model. Figure 4.13 shows the displacements of the rear spar of the composite skin

and isotropic ARW-2 wings with a 100 lb load applied upward at the wing tip on the

front spar, and the Figure 4.14 shows the displacemets of rear spar of ARW-2

computational wing model. The bending behavior of ARW-2 wing model produced

at this study is coherent with the behavior of composite ARW-2 wing and

Bhardwaj’s wing model. On the other hand, torsional responses of the wing model

are compared with the experimental results. Displacements of the front and rear spars

of the ARW-2 wing with 1 lb applied upward at the wing tip on the front spar and 1

lb applied downward at the wing tip on the rear spar has been calculated for the

identified wing model. To compare torsional responses of the wing model, Figure

4.15, 4.16, 4.17 and 4.18 show the deflections of the front and rear spars of the

Bhardwaj’s isotropic, composite skin and identified ARW-2 wing model. Figure 4.15

and 4.16 show the displacements of the front spar while figure 4.17 and 4.18 show

the displacements of the rear spar. A good agreement is obtained for both bending

and torsional behaviors of ARW-2 wing model.

In this chapter, ARW-2 finite element wing model has been created and missing

properties are identified in an inverse engineering approach by using multi-objective

optimization tools. Inverse engineering problem is implemented successfully by

comparing modal and static bending responses of the wing. Furthermore, mode

shapes and torsional responses of wing has been compared with literature to prove

the reliability of ARW-2 wing model profoundly. It can be concluded from this

chapter that ARW-2 wing model is enabled to be used for further studies.

 33

Figure 4.11 : Displacement of the Front spar of the Composite Skin and the Isotropic
Wing Subjected to a 100 lb Vertical Load Applied at the tip [4]

Figure 4.12 : Displacement of the front spar of the Isotropic Wing Model Subjected
to 100 lb Vertical Load Applied at the tip (Present Study)

Figure 4.13 : Displacement of the Rear Spar of the Composite Skin and the Isotropic
Wing Subjected to a 100 lb Vertical Load Applied at the tip [4]

 34

Figure 4.14 : Displacement of the Rear Spar of the Isotropic Wing Model Subjected
to 100 lb Vertical Load Applied at the tip (Present Study)

Figure 4.15 : Displacement of the Front Spar of the Composite Skin and the Isotropic
Wing Subjected to a Twisting Load Applied at the tip [4]

Figure 4.16 : Displacement of the Front Spar of the Isotropic Wing Model Subjected
to a Twisting Load Applied at the tip (Present Study)

 35

Figure 4.17 : Displacement of the Rear Spar of the Composite Skin and the Isotropic
Wing Subjected to a Twisting Load Applied at the tip [4]

Figure 4.18 : Displacement of the Rear Spar of the Isotropic Wing Model Subjected
to Twisting Load Applied at the tip (Present Study)

 36

5. STATIC AEROELASTIC ANALYSIS AND OPTIMIZATION OF ARW-2

WING MODEL

5.1 Static Aeroelastic Analysis and Validation

In the previous chapter, missing material properties and thicknesses of ribs, spars,

skin and axial bars of computational ARW-2 wing model has been identified as an

inverse engineering problem by using multi-objective optimization tools. After

structural and aerodynamic responses of ARW-2 isotropic model have been

validated, static aeroelastic analysis is needed to be performed to ensure the

reliability of the computational model. Experimental data from the work of Sandford

et al. [54] is used for comparison of aeroelastic displacements at the wing tip. Several

boundary conditions with 0.8 Mach number and -1 to 3 degrees angle of attack are

used for static aeroelastic computations.

In aeroelastic analysis, mesh based parallel code coupling interface MpCCI 3.0.6 is

used to exchange the pressure and displacement information between Fluent and

Abaqus for a two-way loose coupling at each aeroelastic iteration.

All of the structural analyses are done by linear static analysis approximation with

26,000 hexahedral elements. The equations of motion for a structure can be written

as follows in a generalized way;

[]{ } []{ } []{ } { } { }a eM u D u K u F F+ + = + (5.1)

Since the analysis will be performed as static analysis the time terms with the time

derivatives of equation 5.1 will be neglected. Moreover, in the aeroelastic analysis

only the aerodynamic forces will be taken into account. Therefore, the system of

linear equations generated by the finite element method can be written as follows;

[]{ } { }aK u F= (5.2)

 37

Displacements will be calculated by Abaqus-6.7.1 [78] via using the aerodynamic

loads calculated from the flow solver, Fluent [79]. In this study MpCCI [81] (Mesh

based Parallel Code Coupling Interface) is used as an aeroelastic coupling interface.

MpCCI gives the opportunity to couple high fidelity simulation codes for multi

physics simulations. The advantage of using MpCCI is that it enables the exchange

of data transfer between nonmatching meshes of CFD and CSD codes in a multi

physics simulation. In this study a staggered algorithm is used for the aeroelastic

coupling which is shown in figure 5.1.

To validate the aeroelastic wing model, static aeroelastic analyses with five different

flow conditions are performed via MpCCI. The CFD and CSD models of the wing

are introduced to MpCCI and transfer quantities (surface pressures from the CFD and

nodal displacements from the CSD) were selected. In order to comprehend that the

solution is converged, the residuals of continuity, x-velocity, y-velocity, z-velocity

and energy equations calculated by Fluent are plotted in Figure 5.2. The figure shows

that the solutions converged since the residuals are very low. The aeroelastic results

are compared with the measurements of Sandford et al. [54] in which the wing tip

displacements were given. Figure 5.3 shows wing-tip deflections for both

experimental data and results of computational analyses at Mach number 0.8 and -1

to 3 degrees angle of attack.

Figure 5.1 : Staggered Algorithm for the Aeroelastic Coupling

 38

Figure 5.2 : Residuals

Table 5.1 shows the relative errors for computational model relative to experimental

data. The correlation of the static aeroelastic response is remarkably good.

Angle of Attack Experimental Data (mm) Computational Data
(mm)

Relative
Error

-1 2.86 2.821 1.37 %
0 2.88 2.881 0.05 %
1 2.86 2.841 0.07 %
2 2.96 2.963 0.09 %
3 3.00 3.003 0.10 %

Figure 5.3 : Wing-tip Deflections at M = 0.8

Table 5.1: Relative Errors Related to Static Aeroelastic Response

 39

5.2 Static Aeroelastic Optimization

The structurally and aeroelastically validated ARW-2 wing isotropic model will be

optimized in a multiobjective and multi-disciplinary optimization framework

developed for steady-state conditions while both aerodynamic and structural

parameters can be used as optimization variables. Numerical optimization is an

iterative scheme to reach the most desired design within a design space bounded by

the lower and upper limits of optimization variables[76].

For aeroelastic optimization problems, the structural and aerodynamic optimization

parameters can be cross-sectional and thickness dimensions of the structural

elements, the shape optimization parameters such as sweep, dihedral, and twist angle

of the wing, control nodes in the design elements representing the geometry, and the

Mach number and angles of attack. The optimization criteria q in equation 5.3 which

include the objective functions and the constraints can cover the aerodynamic

performance factors such as lift and drag, as well as the structural behavior

descriptors such as mass, displacements, stresses and strains. In general, for

aeroelastic optimization, the optimization criteria q depends on the aeroelastic

response of the system characterized by the structural displacement vector u and the

fluid state vector w , which in turn are functions of the physical design parameters, or

rather the abstract optimization variables s . Therefore,

(, ,)
(); ()

q q s u w
u u s w w s
=
= =

 (5.3)

Optimization studies require a high number of sequential analyses automatically and

needs longer computational time as compared to only-analysis studies. For that

reason, a serious research has been focusing on development of more efficient

optimization algorithms for problems with large analysis size. For only optimization

purposes simpler analysis models can be preferred in the iterative process and

parametric geometries can be used to reduce the number of optimization variables

that can sufficiently describe a problem. In this study, the multi-objective and

multidisciplinary optimization methodology which was presented in the work of

Nikbay et al. [76] will be extended to ARW-2 wing configuration [74].

 40

5.2.1 Formulation of Optimization Problem

For the optimization of ARW-2 wing, thicknesses of ribs and spars and angle of

attack are selected as design variables. There are two objective functions which are

maximizing the lift over drag ratio and minimizing the weight of the wing. There are

three aeroelastic constraints. The first constraint emposes that the maximum

deformation of the wing tip should not exceed 0.381 m. The second constraint

controls that the lift L can change only by an amount greater or equal to the variation

of the weight induced by the variation of the thicknesses of structural elements. The

third constraint limits that the Von Mises stress should not exceed the yield strength

(9.05*107 Pa). The overall optimization problem can be formulated as;

{ }min () , max ()
s S s S

LM s s
D∈ ∈

⎧ ⎫
⎨ ⎬
⎩ ⎭

 (5.4)

ℜ∈≤−
Δ
Δ

=)(012)(11 sg
L
Wsg (5.5)

ℜ∈≤−=)(01
381.0

)(2
max

2 sgusg (5.6)

ℜ∈≤−=)(01
10x05.9

)(37
max

3 sgsg σ (5.7)

1 2 3 1 2 3(, , ,) 2 6 0.25 , , 0.25s k k k k k kα α= − ≤ ≤ − ≤ ≤ (5.8)

where ()M s is the total mass of the wing, ()L s
D

 is the lift over drag value for the

wing, maxu is the maximum deflection at the wing tip, LΔ is the change in the lift of

the wing, WΔ is the change in the weight of the wing, maxσ is the maximum von

misses stress, α is the angle of attack. 1k , 2k and 3k are the abstract optimization

parameters used to vary the thicknesses of ribs (it , jt) and thicknesses of spars (kT).

To reduce the number of optimization variables, 17 ribs are divided into 2 groups as;

first half has index i and second half has index j . At the (1n +)th optimization

iteration the values of the design variables are updated as;

 41

(1) (0) (0) (1)
1. 1, 2,...,7n n

i i it t t k i+ += + = (5.9)

(1) (0) (0) (1)
2. 8,9,...,17n n

j j jt t t k j+ += + = (5.10)

(1) (0) (0) (1)
3. 1, 2,....,5n n

k k kT T T k k+ += + = (5.11)

where (0)
it , (0)

jt and (0)
kT are the thickness values for the ribs and spars at the initial

design. Modefrontier software has both gradient based and gradient-free algorithms.

In this work multi-objective genetic algorithm MOGA is chosen as the optimization

driver[52]. The scheduler used in this study is the implementation of Deb [75] which

is "Non-dominated Sorting Genetic Algorithm NSGA-II" which is a fast and elitist

multiobjective evolutionary algorithm[80].

5.2.2 Optimization Framework

For the aeroelastic optimization problem several commercial softwares were coupled

during the optimization process in this work. Fluent-6.3.26 and Abaqus-6.7.1 are

used to solve inviscid 3D Euler equations and to compute the structural response of

the aeroelastic system respectively. Mesh based parallel code coupling interface

MPCCI-3.0.6 is used to exchange the pressure and displacement information

between Fluent and Abaqus. Modefrontier 4.1 is used as a multi-objective and

multidisciplinary optimization software. In order to perform an optimization study a

workflow should be prepared in Modefrontier to govern the optimization process. In

this workflow the optimization variables (with their upper and lower bounds and

incrementations), scheduler, design of experiments, objectives, constraints, output

variables and the softwares are defined. Optimization workflow is prepared to

automate the multiobjective multidisciplinary optimization problem. Once the

workflow is run, it controls the optimization process automatically by using the well

prepared script files and models. Figure 5.4 shows the work flow of this optimization

problem. All script files prepared for this optimization problem are given in

Appendix.

In this work flow, Modefrontier's script files drive Abaqus and Fluent codes in batch

mode. In each optimization iteration, Modefrontier updates the thickness parameters

of the wing and create a new input file for Abaqus and also updates the angle of

attack parameter and creates a new case file for Fluent through the journal file of

 42

Fluent. The weight criteria is a direct output of Abaqus node. However, during fluid

structure iteraction iterations, MpCCI exchanges the displacement and pressure

values between Abaqus and Fluent before Abaqus evaluates the displacement criteria

finally.

Figure 5.4 : Workflow of the optimization problem

5.2.3 Optimization Results

6 design of experiments (DOE) with "Sobol sequence" are used and 100 generations

for the MOGA-II are defined. Sobol sequence distributes the experiments uniformly

in the design space [80]. Finally, a total number of 129 designs are generated for the

optimization problem. Solution of the problem took 188 hours on a workstation with

Intel(R) Core(TM)2 CPU 6700 @ 2.66 GHz processor, with 2 GB of RAM on

Microsoft Windows XP operating system. 36 designs were found to be feasible that

satisfy the constraint condition given in the optimization problem and 12 designs are

unfeasible that did not satisfy the constraint condition. Moreover, there are 9 error

designs that did not give any solution because of modeling or computational errors

resulted in the optimization workow. As a result, 2 designs are found in the pareto

front set for this optimization problem. These pareto designs are tabularized in table

5.2. First of the pareto designs is preferred as the best wing configuration due to

 43

lower W value. Table 5.3 shows a comparison between the initial and optimum

design of ARW-2 wing.

Angle of Attack 1k 2k 3k L
D

 Weight (W)
(Newton)

0 -0.22 -0.25 -0.25 11.836 507.42
0 -0.08 -0.23 -0.25 11.836 561.81

 Angle of Attack 1k 2k 3k L
D

 Weight (W)
(Newton)

Initial Design 2.5 0 0 0 10.76 597.284
Optimum Design 0 -0.22 -0.25 -0.25 11.836 507.42

Improvements % 9.09 % 15.04

5.3 Conclusion

Firstly, aeroelastic response of ARW-2 computational wing model with isotropic

skin is verified with experimental data of the real ARW-2 wing model which had

composite skin. Secondly, an aeroelastic optimization study is performed on ARW-2

wing geometry to increase lift over drag ratio and decrease the weight of the wing

while imposing constraints on wing tip displacement, maximum Von Mises stress

and the relation between lift and weight. Angle of attack and thicknesses of ribs and

spars are used as optimization parameters. Moreover, a multi-objective genetic

algorithm MOGA-II is used to control the optimization process. At the end of the

aeroelastic optimization study, the solution for a pareto-optimum set is given and the

best design configuration has been chosen. In this study, commonly used commercial

analysis tools such as Gambit, Fluent, Abaqus are employed as structural and flow

solvers. Thus, a strong and easy to apply multi-disciplinary optimization

methodology is successfully applied by implementing advanced optimization

techniques directly into the everyday used tools employed in aerospace industry. A

loose coupling software MpCCI is utilized for fluid-structure interaction while

advanced optimization software Modefrontier is used for MDO.

Table 5.2: Paretos

Table 5.3: Comparison of optimum and initial designs of ARW-2

 44

6. CONCLUSION AND RECOMMENDATIONS

One of the purposes of this study is to identify a complete configuration of ARW-2

computational wing model for further use. Due to its missing properties in literature,

FE structural model of the wing is determined by an inverse engineering through

optimization. Thus, an accurate and validated ARW-2 computational wing model is

created with its identified properties such as material and geometrical properties.

Another purpose of the study is to develop a methodology for static aeroelastic

optimization problems by using commercial codes. After the ARW-2 computational

wing model is identified and validated successfully with the experimental results, an

optimization problem which constraints wing tip deflection, maximum stress and a

relation between lift and weight is set concerning a couple process of CSD and CFD

codes in transonic regime. Both the validation and optimization results are

satisfactory.

6.1 Application of The Work

In this thesis, structural and aeroelastic validation and aeroelastic optimization

studies were performed by using highly complicated experimental wing model of

ARW-2 wing. In chapter 4, the missing geometrical and material properties of this

wing were identified by using multi-objective optimization tools. ARW-2 wing

model was generated by using a CAD software CATIA. As an optimization driver,

an advanced optimization software ModeFrontier was used via NSGA II

optimization algorithm. As FE solver, Abaqus 6-7.1 was employed to calculate

structural response of the wing. Although the structural analysis was performed in

Abaqus, HyperMesh was used to generate structural grid.

In chapter 5, an aeroelastic optimization problem for which ModeFrontier was used

was set. Considering transonic regime (M = 0.8), a coupling software MpCCI was

implemented to the optimization process. Abaqus was used to perform structural

 45

analysis as Fluent was used to compute steady-flow equations. MpCCI was used to

couple Fluent and Abaqus software in a loosely coupling way. CATIA is used to

create wing model and HyperMesh is used to generate mesh. CATIA and

HyperMesh were not implemented to the optimization process since any shape

parameter such as taper ratio and swept angle of the wing was not defined as

optimization variable.

6.2 Recommendations and Future Work

All of the experiences gained during this effort could be asset for further studies. The

identification and validation of ARW-2 wing model has been performed successfully

and the reliability of the computational model was satisfied. Thus, this identified

ARW-2 computational wing model could be used for any computational purposes

with confidence. In addition, other computational models of ARW-2 wing could be

created, if the identification method described in this study is applied. For example, a

computational ARW- wing model with composite skin will be soon identified with

the same methodolgy.

The future work for this study is to extend the study to dynamic aeroelasticity with

applications related to aeroelastic optimization either to suppress dynamic instability

of flutter or to predict flutter speed. Next, more complicated optimization problems

involving more advanced geometries and materials with composite modeling will be

studied to furthermore enhance virtual prototyping using MDO techniques. The

resulting large size optimization problems will be solved by parallel computing in the

MDO framework. Optimization problem employed in this study can be improved by

adding more constraints or changing the objectives of the problem. The methodolgy

developed in this study can be used for any other optimization problem in which

commercial or academic codes are used.

 46

 47

REFERENCES

[1] Hodges H. D., and Pierce G. A., 2002: Introduction to Structural Dynamics and
Aeroelasticity, Cambridge Aerospace Series.

[2] Sobieszczanski-Sobieski and J., Haftka, R. T., 1996, Multidisciplinary
aerospace design optimization: Survey of recent developments, 34th
Proceedings of the AIAA Aerospace Sciences Meeting and Exhibit,
Reno, Nevada, January.

[3] Farhangnia M., Guruswamy G., and Biringen S., 1996, Transonic-buffet
associated aeroelasticity of a supercritical wing. In 34th Aerospace
Science Meeting and Exhibit, January 15-18 1996, Reno, NV. AIAA.

[4] Bhardwaj M. K., 1997, A CFD/CSD Interaction Methodology for Aircraft
Wings. PhD thesis, Virginia Polytechnic Institute and State
University, USA.

[5] Karpel M., Yaniv S., and Livshits D. S., 1996, Integrated solution for
computational static aeroelastic problems. In 6th AIAA, NASA and
ISSMO Symposium on Multidisiplinary Analysis and Optimization,
4-6 September 1996, Bellevue, WA. AIAA.

[6] Newman III J. C., Newman P. A., Taylor III A. C., and Hou G.J.-W., 1999,
Efficient nonlinear static wing analysis. Computers and Fluids,
28:615-628.

[7] Garcia J.A. and Guruswamy G.P., 1999, Static aeroelastic characteristics of an
advanced wing with a control surface using navier-stokes equations.
In 37th Aerospace Science Meeting and Exhibit, 11-14 January,1999,
Reno, NV. AIAA.

[8] Liu F., Cai J., Zhu Y., Wong A.S.F., and Tsai H.M., 2000, Calculation of wing
utter by a coupled cfd and csd method. In 38th AIAA Aerospace
Sciences Meeting and Exhibit, 10-13 January 2000, Reno, NV. AIAA.

[9] Cai J., Liu F., and Tsai H.M., 2001, Static aero-elastic computation with a
coupled cfd and csd method. In 39th AIAA Aerospace Sciences
Meeting and Exhibit, 8-11 January 2001, Reno, NV. AIAA.

[10] Kamakoti R., Yongsheng L., and Regisford S., 2002, Computational
aeroelasticity using a pressure-based solver. In 40th Aerospace
Sciences Meeting and Exhibit, 14-17 January, 2002, Reno, NV.
AIAA.

[11] Farhat C. and Lesoinne M., 2000, Two effcient staggered procedures for the
serial and parallel solution of three-dimensional nonlinear transient
aeroelastic problems. Comp. Meth. Appl.Mech.Eng., 182:499 - 515.

 48

[12] Gordnier R. and Fithen R., 2003, Coupling of a nonlinear finite element
structural method with a navier-stokes solver. Computers and
Structures, 81:75-89.

[13] Lim Feng Z. and Soulaimani A., 2006, Nonlinear aeroelasticity computations
in transonic flows using tightly coupling algoritms. In 2006 ASME
Pressure Vessels and Piping Division Conference, 2327 July 2006,
Vancouver, BC, Canada. ASME.

[14] Farhat C., Lesoinne M., and Maman N., 1995, Mixed explicit/implicit time
integration of coupled aeroelastic problems: Three-field formulation,
geometric conservation and distributed solution. Int J. Num.
Meth.Fluids, 21:807-835.

[15] Dowell E.H., Thomas J.P., and Hall K.C., 2004, Transonic limit cycle
oscillation analysis using reduced order aerodynamic models. Journal
of Fluids and Structures, 19:17-17.

[16] Lieu T., Farhat C., and Lesoinne M., 2006, Reduced-order fluid-structure
modeling of a complete aircraft configuration. Computer Methods in
Applied Mechanics and Engineering, 195:5730-5742.

[17] Haddadpour H., Behbahani-Nejad M., and Firouz-Abadi R.D., 2007,
Reduced-order aerodynamic model for aeroelastic analysis of complex
configurations in incompressible flow. Journal of Aircraft, 44:1015-
1019.

[18] Relvas A. and Suleman A., 2006, Fluid-structure interaction modelling of
nonlinear aeroelastic structures using the finite element corotational
theory. Journal of Fluids and Structures, 22:59-75.

[19] Love M., Garza T.D.L., Charlton E., and Egle D., 2000, Computational
aeroelasticity in high performance aircraft flight loads. In International
Council of the Aeronautical Sciences (ICAS) 2000 Congress.

[20] Kuntz M. and Menter F.R., 2004, Simulation of uid-structure interactions in
aeronautical applications. In European Congress on Computational
Methods in Applied Sciences and Engineering ECCOMAS 2004, 24-
28 July 2004, Jyvaskyla, number 133-144.

[21] Heinrich, R., Ahrem, R., Guenther, G., Kersken, H. P., Krueger, W. And
Neumann, J., 2001, Aeroelastic computation using the AMANDA
simulation environment, Proceedings of the CEAS Conference on
Multidisciplinary Design and Optimization (DGLR-Bericht 2001–
2005), June 25–26, pp. 19–30.

[22] Cavagna, L., Quaranta, G., Mantegazza, P., Merlo, E., Marchetti, D. And
Martegani, M., 2005, Preliminary assessment of the complete
aeroelastic simulation of the M-346 in transonic condition with a CFD
Navier-Stokes solver, XVIII Congresso Nazionale AIDAA, Volterra.

[23] Thirifay, F. and Geuzaine, P., 2004, Numerical Simulations of Fluid-Structure
Interaction Problems using MpCCI, 5th MpCCI User Forum, March,
Schloss Birlinghoven, Snakt Augustin, Germany.

[24] Yosibash, Z., Kirby, R. M., Myers, M., Szabo, B. and Karniadakis, G.,
2003, High-order finite elements for fluid-stucture interaction

 49

problems, 44th AIAA/ASME/ASCE/AHS Structures, Structural
Dynamics and Materials Conference, 7-10 April, Norfolk, Virginia.

[25] Svácek, P., 2005, Application of finite element method in aeroelasticity, Journal
of Computational and Applied Mathematics, 215, pp. 586-594

[26] Fazelzadeh S.A., Mazidi A., Kalantari H., 2009, Bending-torsional flutter of
wings with an attached mass subjected to a follower force, Journal of
Sound and Vibration 323 : 148-162

[27] Stanford B., Ifju P., Albertani R., Shyy W., 2008, Fixed membrane wings for
micro air vehicles: Experimental characterization, numerical
modeling, and tailoring, Progress in Aerospace Sciences 44 : 258-294

[28] Lim I., Lee I., 2009, Aeroelastic analysis of bearingless rotors with a composite
flexbeam, Composite Structures, 88 : 570-578

[29] Xie C. C., Leng, J. Z., Yang C., 2007, Geometrical nonlinear aeroelastic
stability analysis of a composite high-aspect-ratio wing, Aeroelasticity
Branch, Aircraft Design Institute, Beijing University of Aero. &
Astro., Beijing 100083, China

[30] Pahlavanloo P., 2007, Dynamic Aeroelastic Simulation of the AGARD 445.6
wing using Edge, Swedish Defence Research Agency Defence and
Security, Systems and Technology Technical Report No:FOI-R-
2259—SE

[31] Edwards J. W., Wieseman C. D., 2008, Flutter and Divergence Analysis
Using the Generalized Aeroelastic Analysis Method, JOURNAL OF
AIRCRAFT, Vol. 45, No. 3, May–June 2008

[32] Jian-min L., Chuan-jing L., Lei-ping X., 2008, INVESTIGATION OF
AIRSHIP AEROELASTICITY USING FLUIDSTRUCTURE
INTERACTION, Journal of Hydrodynamics, 20 (2) : 164-171

[33] Sarkar S., Bijl H., 2008, Nonlinear aeroelastic behavior of an oscillating airfoil
during stall-induced vibration, Journal of Fluids and Structures 24
(2008) 757–777

[34] Shams S., Sadr Lahidjani M.H., Haddadpour H., 2008, Nonlinear aeroelastic
response of slender wings based on Wagner function, Thin-Walled
Structures 46 (2008) 1192– 1203

[35] Silva, W. A., 2008, Simultaneous Excitation of Multiple-Input/Multiple-Output
CFD-Based Unsteady Aerodynamic Systems, JOURNAL OF
AIRCRAFT, Vol. 45, No. 4.

[36] Abbas L. K., Chen Q., O’Donnell K., Valentine D. , Marzocca P., 2007,
Numerical studies of a non-linear aeroelastic system with plunging
and pitching freeplays in supersonic/hypersonic regimes, Aerospace
Science and Technology 11 : 405–418

[37] Chattot J., 2007, Helicoidal vortex model for wind turbine aeroelastic
simulation, Computers and Structures 85 : 1072–1079

[38] Baxevanou C.A., Chaviaropoulos P.K., Voutsinas S.G., Vlachos N.S., 2008,
Evaluation study of a Navier– Stokes CFD aeroelastic model of wind

 50

turbine airfoils in classical flutter, Journal of Wind Engineering and
Industrial Aerodynamics 96 : 1425– 1443

[39] Braun A. L., Awruch A. M., 2009, Aerodynamic and aeroelastic analyses on
the CAARC standard tall building model using numerical simulation,
Computers and Structures 87 : 564–581

[40] Robinson T. D., Willcox K. E., Eldred M. S., Haimes R., 2001, Multifidelity
Optimization for Variable-Complexity Design, American Institute of
Aeronautics and Astronautics, Aerospace Computational Design
Laboratory Massachusetts Institute of Technology, Cambridge, MA,
02139

[41] Alonso J. J., LeGresley P., van der Weide E., Joaquim R. R. A. M., J. J.
Reuther, 2004, pyMDO: A Framework for High-Fidelity Multi-
Disciplinary Optimization, 10th AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference August 30 – September 1,
2004, Albany, New York

[42] Kodiyalam S., Yang R.J., Gu L., Tho C.-H., 2004, Multidisciplinary design
optimization of a vehicle system in a scalable, high performance
computing environment

[43] Korngold J. C., Gabriele G. A., 1997, Multidisciplinary Analysis and
Optimization of Discrete Problems Using Response Surface Methods,
Journal of Mechanical Design, Vol. 119:427-433

[44] Venter G., Sobieszczanski-Sobieski J., 2004, Multidisciplinary optimization of
a transport aircraft wing using particle swarm optimization, Struct
Multidisc Optim 26, 121–131

[45] K. Gantois, A.J. Morris, 2004, The multi-disciplinary design of a large-scale
civil aircraft wing taking account of manufacturing costs, Struct
Multidisc Optim 28, 31–46.

[46] DeLaurentis D. A., Mavris D. N., 2001, Uncertainty Modeling and
Management in Multidisciplinary Analysis and Synthesis, Aerospace
Systems Design Laboratory (ASDL) School of Aerospace
Engineering, Georgia Institute of Technology Atlanta, GA 30332-
0150

[47] Barcelos, M. and Maute, K., 2008, Aeroelastic design optimization for laminar
and turbulent flows, Computer Methods in Applied Mechanics and
Engineering, 197 :1813-1832.

[48] Librescu L., Maalawi K.Y., 2008, Aeroelastic design optimization of thin-
walled subsonic wings against divergence, Thin-Walled Structures 47
: 89– 97

[49] Guo S., 2007, Aeroelastic optimization of an aerobatic aircraft wing structure,
Aerospace Science and Technology 11 : 396–404

[50] Nikbay, M., 2002, Coupled sensitivity analysis by discrete-analytical direct and
adjoint methods with applications to aeroelastic optimization and
sonic boom minimization, PhD thesis, Department of Aerospace
Engineering, University of Colorado.

 51

[51] Ghosh, A. and Dehuri, S., 2004, Evolutionary Algorithms for Multi-Criterion
Optimization: A Survey, International Journal of computing &
Information Sciences, 2 (1) : 38-57.

[52] Sasaki, D., Obayashi, S. and Nakahashi, K., 2002, Navier-Stokes optimization
of supersonic wings with four objectives using evolutionary
algorithm, Journal of Aircraft, 39 (4):621-629.

[53] Sandford M.C., Seidel D.A., Escktrom C.V., and Spain C.V., 1989,
Geometrical and Structural properties of an Aeroelastic Research
Wing (ARW-2). NASA Technical Memorandum 4110.

[54] Sandford M.C., Seidel D.A., and Escktrom C.V., 1994, Steady Pressure
Measurements on an aeroelastic Research Wing (ARW-2). NASA
Technical Memorandum 109046.

[55] Sandford, Maynard Seidel C., David A. and Eckstrom, Clinton V., 1987,
Measured Unsteady Transonic Aerodynamic Characteristics of an
Elastic Supercritical Wing. J. Aircraft, vol. 24, no. 4, pp. 225-230.

[56] Seidel, David A. Eckstrom, Clinton V. and Sandford, Maynard C., 1989,
Transonic Region of High Dynamic Response Encountered on an
Elastic Supercritical Wing. J. Aircraft, vol. 26, no. 9, pp. 870-875

[57] Eckstrom, Clinton V. Seidel, David A. and Sandford, Maynard C., 1990,
Unsteady Pressure and Structural Response Measurements on an
Elastic Supercritical Wing. J. Aircraft, vol. 27, no. 1, pp. 75-80.

[58] Seidel, David A. Sandford, Maynard C. and Eckstrom, Clinton V., 1991,
Unsteady-Pressure and Dynamic-Deflection Measurements on an
Aeroelastic Supercritical Wing. NASA TM-4278.

[59] Eckstrom, Clinton V.; Seidel, David A.; and Sandford, Maynard C., 1994,
Measurement of Unsteady Pressure and Structural Response for an
Elastic Supercritical Wing. NASA TP 3443

[60] Seidel, David A. Adams, William M., Jr. Eckstrom, Clinton V. and
Sandford, Maynard C., 1989, Investigation and Suppression of High
Dynamic Response Encountered on an Elastic Supercritical Wing.
“Transonic Unsteady Aerodynamics and Aeroelasticity 1987”. NASA
CP-3022, Part 2, pp. 427-448

[61] Byrdsong, Thomas A. Adams, Richard R. and Sandford, Maynard C.,
1990, Close-Range Photogrammetry Measurement of Static
Deflections for an Aeroelastic Supercritical Wing. NASA TM-4194.

[62] Byrdsong, Thomas A. Adams, Richard R. and Sandford, Maynard C.,
1990, Close-Range Photogrammetry Measurement of Static
Deflections for an Aeroelastic Supercritical Wing. Supplement to
NASA TM-4194.

[63] Eckstrom, Clinton V., 1983, Loads Calibrations of Strain Gage Bridges on the
DAST Project Aeroelastic Research Wing (ARW-2). NASA TM-
87677.

[64] Murrow, H. N. and Eckstrom, C. V., 1979, Drones for Aerodynamic and
Structural Testing (DAST)-A Status Report. J. Aircraft, vol. 16, no. 8,
pp. 521-526.

 52

[65] Byrdsong, Thomas A. and Brooks, Cuyler W., Jr., 1980, Wind Tunnel
Investigation of Longitudinal and Lateral-Directional Stability and
Control Characteristics of a 0.237-Scale Model of a Remotely Piloted
Research Vehicle With a Thick, High-Aspect-Ratio Supercritical
Wing. NASA TM-81790.

[66] Byrdsong, Thomas A. and Brooks, Cuyler W., Jr., 1983, Wind Tunnel
Investigation of Aerodynamic Loading on a 0.237-Scale Model of a
Remotely Piloted Research Vehicle With a Thick, High-Aspect-Ratio
Supercritical Wing. NASA TM-84614.

[67] Adams, William M., Jr. Tiffany, Sherwood H and Bardusch, Richard E.,
1987, Active Suppression of an “Apparent Shock Induced Instability”.
AIAA Paper 87-0881.

[68] Chapin, William G., 1983, Dynamic-Pressure Measurements Using an
Electronically Scanned Pressure Module. NASA TM-84650.

[69] Roos, Frederick W., 1978, Shock Oscillations and Pressure Fluctuation
Measurements on Supercritical and Conventional Airfoils.
“Advanced Technology Airfoil Research, Volume 2”. NASA CP-
2046, pp. 201-219

[70] Cohen, David E., 1998, Trim Angle of Attack of Flexible Wings Using Non-
Linear Aerodynamics. PhD Dissertation in Aerospace Engineering,
Virginia Polytechnic Institute and State University, Blacksburg, VA.

[71] Whitlow, Woodrow, Jr. and Bennett, Robert M., 1982, Application of a
Transonic Potential Flow Code to the Static Aeroelastic Analysis of
Three-Dimensional Wings, AIAA Paper 82-0689.

[72] Bennett, Robert M. Seidel, David A. and Sandford, Maynard C., 1985,
Transonic Calculations for a Flexible Supercritical Wing and
Comparison with Experiment. AIAA Paper 85-0665.

[73] Bhardwaj, Manoj K. Kapania, Rakesh K. Reichenbach, Eric and
Guruswamy, Guru P, 1998, A Computational Fluid
Dynamics/Computational Structural Dynamics Interaction
Methodology for Aircraft Wings. AIAA Journal, vol. 36, no. 12, pp.
2179-2186

[74] Nikbay M. and Aysan A., 2009, Identicifation of structural and aeroelastic
properties of a Computational ARW-2 wing model by using multi-
objective optimization techniques. In International Forum on
Aeroelasticity and Structural Dynamics, Seattle, WA. IFASD.

[75] Deb K., Pratap A., Agarwal S., and Meyarivan T., 2000, A Fast and Elitist
Multi-Objective Genetic Algorithm NSGA-II. KanGAL Report
2000001.

[76] Nikbay M., Oncu L., and Aysan A., 2008, A multi-disciplinary code coupling
approach for analysis and optimization of aeroelastic systems. In 12th
AIAA/ISSMO Multidisciplinary Analysis and Optimization
Conference, 10 - 12 Sep 2008 , Victoria, British Columbia, Canada.
AIAA.

 53

[77] Oncu L., 2008, Multidisiplinary Design Optimization of Aerospace Structures
with Static Aeroelastic Criteria. MS Thesis, Istanbul Technical
University, Turkey, 2008

[78] Abaqus 6.7 version documentation. Simulia

[79] Fluent 6.3.26 Version Documentation. ANSYS Inc

[80] Modefrontier V4 Version Documentation. Esteco

[81] MpCCI 3.0.6 Version Documentation. Fraunhofer-Institute SCAI

 54

 55

APPENDICES

 APPENDIX A.1 : Abaqus Python Script

 APPENDIX A.2 : Fluent Journal File

 APPENDIX A.3 : Properties of ARW-2 Computational Model

 57

APPENDIX A.1

-*- coding: mbcs -*-
Abaqus/CAE Version 6.7-1 replay file
Internal Version: 2007_05_01-12.35.33 79448
from driverUtils import executeOnCaeGraphicsStartup
executeOnCaeGraphicsStartup()
#: Executing "onCaeGraphicsStartup()" in the site directory ...
from abaqus import *
from abaqusConstants import *
session.Viewport(name='Viewport: 1', origin=(0.0, 0.0), width=195.41015625,
 height=197.16796875)
session.viewports['Viewport: 1'].makeCurrent()
session.viewports['Viewport: 1'].maximize()
from caeModules import *
from driverUtils import executeOnCaeStartup
executeOnCaeStartup()
Mdb()
#: A new model database has been created.
#: The model "Model-1" has been created.
session.viewports['Viewport: 1'].setValues(displayedObject=None)
mdb.ModelFromInputFile(name='deviation',
 inputFileName='deviation.inp')
#: The model "deviation" has been created.
#: The part "PART-1" has been imported from the input file.
#: The model "deviation" has been imported from an input file.
#: Please scroll up to check for error and warning messages.
a = mdb.models['deviation'].rootAssembly
session.viewports['Viewport: 1'].setValues(displayedObject=a)
a = mdb.models['Model-1'].rootAssembly
session.viewports['Viewport: 1'].setValues(displayedObject=a)
del mdb.models['Model-1']
a = mdb.models['deviation'].rootAssembly
session.viewports['Viewport: 1'].setValues(displayedObject=a)
a = mdb.models['deviation'].rootAssembly
del a.features['PART-1-1']
a = mdb.models['deviation'].rootAssembly
del a.features['Datum csys-1']
del mdb.models['deviation'].rootAssembly.sets['LVL10000']
p = mdb.models['deviation'].parts['PART-1']
session.viewports['Viewport: 1'].setValues(displayedObject=p)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5352.97,
 farPlane=9703.74, width=3084.17, height=2143.61, cameraPosition=(7519.99,
 -3466.37, -532.259), cameraUpVector=(-0.0861421, 0.35512, 0.930843))
session.viewports['Viewport: 1'].view.setValues(nearPlane=5384.53,
 farPlane=9672.19, width=3102.36, height=2156.25, viewOffsetX=40.8618,
 viewOffsetY=59.7212)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5590.68,
 farPlane=9401.03, width=3221.13, height=2238.8, cameraPosition=(8438.48,
 9.77291, 2493.57), cameraUpVector=(-0.629375, 0.134674, 0.765343),
 viewOffsetX=42.4262, viewOffsetY=62.0076)
mdb.saveAs(pathName='arw')
#: The model database has been saved to "arw.cae".
session.viewports['Viewport: 1'].view.setValues(nearPlane=5718.77,
 farPlane=9272.94, width=2008.49, height=1395.97, viewOffsetX=-23.9007,
 viewOffsetY=109.813)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5734.08,
 farPlane=9257.63, width=2013.87, height=1399.71, viewOffsetX=206.599,
 viewOffsetY=-69.4471)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5734.11,
 farPlane=9257.6, width=2013.88, height=1399.72, viewOffsetX=122.944,
 viewOffsetY=-110.256)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5792.58,
 farPlane=9162.09, width=2034.42, height=1413.99, cameraPosition=(8174.23,
 1539.49, 3172.96), cameraUpVector=(-0.720976, 0.0832939, 0.687936),
 viewOffsetX=124.198, viewOffsetY=-111.38)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5790,
 farPlane=9164.67, width=2033.51, height=1413.36, viewOffsetX=128.263,
 viewOffsetY=32.8905)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5789.31,
 farPlane=9165.36, width=2163.05, height=1503.4, viewOffsetX=144.087,
 viewOffsetY=39.232)

 58

session.viewports['Viewport: 1'].view.setValues(nearPlane=5773.73,
 farPlane=9180.94, width=2157.23, height=1499.35, viewOffsetX=655.14,
 viewOffsetY=-476.686)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6030.7,
 farPlane=8923.97, width=194.339, height=135.073, viewOffsetX=525.113,
 viewOffsetY=-434.388)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6032.32,
 farPlane=8922.35, width=194.392, height=135.109, viewOffsetX=403.341,
 viewOffsetY=-343.513)
session.viewports['Viewport: 1'].view.setValues(viewOffsetX=366.314,
 viewOffsetY=-296.244)
session.viewports['Viewport: 1'].view.setValues(viewOffsetX=287.533,
 viewOffsetY=-227.902)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6042.3,
 farPlane=8912.38, width=111.57, height=77.545, viewOffsetX=296.363,
 viewOffsetY=-238.324)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6043.23,
 farPlane=8911.44, width=111.587, height=77.557, viewOffsetX=262.152,
 viewOffsetY=-207.157)
session.viewports['Viewport: 1'].view.setValues(viewOffsetX=220.886,
 viewOffsetY=-170.413)
session.viewports['Viewport: 1'].view.setValues(viewOffsetX=190.361,
 viewOffsetY=-138.192)
session.viewports['Viewport: 1'].view.setValues(viewOffsetX=142.312,
 viewOffsetY=-106.762)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6039.88,
 farPlane=8914.79, width=128.82, height=89.5344, viewOffsetX=14.1378,
 viewOffsetY=-4.47018)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6040.96,
 farPlane=8913.72, width=128.843, height=89.5504, viewOffsetX=-37.423,
 viewOffsetY=49.0504)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6044.67,
 farPlane=8910, width=94.6165, height=65.7618, viewOffsetX=-46.2223,
 viewOffsetY=50.5403)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6045.46,
 farPlane=8909.21, width=94.6289, height=65.7704, viewOffsetX=-72.3064,
 viewOffsetY=71.9272)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6042.93,
 farPlane=8911.74, width=107.05, height=74.4035, viewOffsetX=-135.369,
 viewOffsetY=108.718)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6043.82,
 farPlane=8910.85, width=107.066, height=74.4145, viewOffsetX=-162.942,
 viewOffsetY=138.999)
session.viewports['Viewport: 1'].view.setValues(viewOffsetX=-203.946,
 viewOffsetY=175.447)
session.viewports['Viewport: 1'].view.setValues(viewOffsetX=-231.499,
 viewOffsetY=197.034)
session.viewports['Viewport: 1'].view.setValues(viewOffsetX=-277.168,
 viewOffsetY=229.468)
session.viewports['Viewport: 1'].view.setValues(viewOffsetX=-309.602,
 viewOffsetY=255.394)
session.viewports['Viewport: 1'].view.setValues(viewOffsetX=-339.433,
 viewOffsetY=276.655)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5854.3,
 farPlane=9100.37, width=1637.37, height=1138.03, viewOffsetX=-187.223,
 viewOffsetY=379.293)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5842.64,
 farPlane=9112.04, width=1634.11, height=1135.76, viewOffsetX=131.032,
 viewOffsetY=30.8542)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=('[#ffffffff:340 #7fffffff]',),)
p.Set(elements=elements, name='Upper')
#: The set 'Upper' has been created (10911 elements).
set1 = mdb.models['deviation'].parts['PART-1'].sets['Upper']
leaf = dgm.LeafFromSets(sets=(set1,))
session.viewports['Viewport: 1'].partDisplay.displayGroup.either(leaf=leaf)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5842.62,
 farPlane=9112.05, width=1634.1, height=1135.76, viewOffsetX=129.376,
 viewOffsetY=-181.066)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5675.56,
 farPlane=9397.21, width=1587.38, height=1103.29, cameraPosition=(8534.81,
 -1128.06, -1528.92), cameraUpVector=(-0.116427, 0.122274, 0.985644),
 viewOffsetX=125.677, viewOffsetY=-175.889)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5681.49,
 farPlane=9391.28, width=1589.05, height=1104.44, viewOffsetX=-64.1688,
 viewOffsetY=-209.882)

 59

session.viewports['Viewport: 1'].view.setValues(nearPlane=5745.71,
 farPlane=9331.13, width=1607.01, height=1116.93, cameraPosition=(8468.29,
 -667.63, -2251.86), cameraUpVector=(-0.0230808, 0.109438, 0.993726),
 viewOffsetX=-64.8942, viewOffsetY=-212.255)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5743.43,
 farPlane=9333.41, width=1606.37, height=1116.49, viewOffsetX=94.6297,
 viewOffsetY=-111.264)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5716.11,
 farPlane=9360.73, width=1924.83, height=1337.83, viewOffsetX=65.2702,
 viewOffsetY=-83.6425)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5702.12,
 farPlane=9374.72, width=1920.12, height=1334.55, viewOffsetX=63.165,
 viewOffsetY=-155.418)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5767.01,
 farPlane=9290.02, width=1941.97, height=1349.74, cameraPosition=(8878.49,
 410.116, -1114.21), cameraUpVector=(-0.194233, 0.120276, 0.973554),
 viewOffsetX=63.8838, viewOffsetY=-157.187)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5764.26,
 farPlane=9292.78, width=1941.05, height=1349.1, viewOffsetX=42.2206,
 viewOffsetY=-180.711)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5630,
 farPlane=9390.75, width=1895.84, height=1317.68, cameraPosition=(8762.03,
 2535.28, -675.796), cameraUpVector=(-0.276317, 0.0458166, 0.959974),
 viewOffsetX=41.2372, viewOffsetY=-176.502)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=(
 '[#0:340 #80000000 #ffffffff:371 #7fffffff]',),)
p.Set(elements=elements, name='Lower')
#: The set 'Lower' has been created (11904 elements).
session.viewports['Viewport: 1'].view.setValues(nearPlane=5635.69,
 farPlane=9385.06, width=1897.76, height=1319.01, viewOffsetX=173.949,
 viewOffsetY=-178.603)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5613.27,
 farPlane=9347.33, width=1890.21, height=1313.76, cameraPosition=(8351.98,
 2924.59, 2059.48), cameraUpVector=(-0.650446, 0.177618, 0.738493),
 viewOffsetX=173.257, viewOffsetY=-177.892)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5614.23,
 farPlane=9346.39, width=1890.53, height=1313.99, viewOffsetX=295.874,
 viewOffsetY=-30.434)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5717.8,
 farPlane=9225.42, width=1925.41, height=1338.23, cameraPosition=(8080.4,
 2350.94, 3104.16), cameraUpVector=(-0.739782, 0.31419, 0.594985),
 viewOffsetX=301.332, viewOffsetY=-30.9955)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5713.41,
 farPlane=9229.81, width=1923.93, height=1337.2, viewOffsetX=316.695,
 viewOffsetY=17.7602)
leaf = dgm.Leaf(leafType=DEFAULT_MODEL)
session.viewports['Viewport: 1'].partDisplay.displayGroup.replace(leaf=leaf)
set1 = mdb.models['deviation'].parts['PART-1'].sets['Lower']
set2 = mdb.models['deviation'].parts['PART-1'].sets['Upper']
leaf = dgm.LeafFromSets(sets=(set1, set2,))
session.viewports['Viewport: 1'].partDisplay.displayGroup.either(leaf=leaf)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=('[#0:721 #ff800000 #ffffffff #3fffff]',
),)
p.Set(elements=elements, name='Tip')
#: The set 'Tip' has been created (63 elements).
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=(
 '[#0:712 #80000000 #ffffffff:8 #7fffff]',),)
p.Set(elements=elements, name='Root')
#: The set 'Root' has been created (280 elements).
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=('[#0:723 #ffc00000 #ffffffff:9 #1f]',
),)
p.Set(elements=elements, name='Tra')
#: The set 'Tra' has been created (303 elements).
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=(
 '[#0:733 #ffffffe0 #ffffffff:10 #fffff]',),)
p.Set(elements=elements, name='Spar1')
#: The set 'Spar1' has been created (367 elements).

 60

p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=('[#0:744 #fff00000 #ffffffff:8 #1fff]',
),)
p.Set(elements=elements, name='Spar2')
#: The set 'Spar2' has been created (281 elements).
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=('[#0:753 #ffffe000 #ffffffff:14 #7f]',
),)
p.Set(elements=elements, name='AuxSpar')
#: The set 'AuxSpar' has been created (474 elements).
set1 = mdb.models['deviation'].parts['PART-1'].sets['AuxSpar']
set2 = mdb.models['deviation'].parts['PART-1'].sets['Root']
set3 = mdb.models['deviation'].parts['PART-1'].sets['Spar1']
set4 = mdb.models['deviation'].parts['PART-1'].sets['Spar2']
set5 = mdb.models['deviation'].parts['PART-1'].sets['Tip']
set6 = mdb.models['deviation'].parts['PART-1'].sets['Tra']
leaf = dgm.LeafFromSets(sets=(set1, set2, set3, set4, set5, set6,))
session.viewports['Viewport: 1'].partDisplay.displayGroup.either(leaf=leaf)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5830.87,
 farPlane=8925.41, width=1963.48, height=1364.69, viewOffsetX=249.6,
 viewOffsetY=-29.619)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5748.32,
 farPlane=8949.46, width=1935.68, height=1345.37, cameraPosition=(7534.62,
 3658.96, 3308.21), cameraUpVector=(-0.806623, 0.146993, 0.572497),
 viewOffsetX=246.066, viewOffsetY=-29.1997)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=(
 '[#0:768 #ffffff80 #ffffffff:58 #7ffff]',),)
p.Set(elements=elements, name='Ribs')
#: The set 'Ribs' has been created (1900 elements).
set1 = mdb.models['deviation'].parts['PART-1'].sets['Ribs']
set2 = mdb.models['deviation'].parts['PART-1'].sets['Upper']
leaf = dgm.LeafFromSets(sets=(set1, set2,))
session.viewports['Viewport: 1'].partDisplay.displayGroup.either(leaf=leaf)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5634.85,
 farPlane=9268.28, width=1897.47, height=1318.81, viewOffsetX=85.4888,
 viewOffsetY=-40.1581)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5825.44,
 farPlane=9154.96, width=1961.65, height=1363.42, cameraPosition=(8491.08,
 707.6, 2501.76), cameraUpVector=(-0.628073, 0.229744, 0.743466),
 viewOffsetX=88.3804, viewOffsetY=-41.5164)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5817.35,
 farPlane=9163.05, width=1958.93, height=1361.53, viewOffsetX=88.2576,
 viewOffsetY=-41.4587)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5676.92,
 farPlane=9261.35, width=1911.65, height=1328.66, cameraPosition=(8095.58,
 2591.4, 2952.43), cameraUpVector=(-0.717606, 0.0645619, 0.693451),
 viewOffsetX=86.1271, viewOffsetY=-40.4579)
p = mdb.models['deviation'].parts['PART-1']
s = p.elements
side2Elements = s.getSequenceFromMask(mask=(
 '[#ffffffff:39 #7f #0:23 #fffff800 #ffffffff:2 #fc01ffff #ffffffff:3',
 ' #fffff #0:24 #fffff800 #ffffffff:33 #1fffffff #0 #fffffe00',
 ' #ffffffff:3 #ff0fffff #ffffffff:12 #7fffff #fffffffc #ffffffff:12 #3ffff',
 ' #0 #fffffffe #ffffffff:20 #7ffff #0:14 #ffff0000 #ffffffff:139',
 ' #7fffffff]',),)
p.Surface(side2Elements=side2Elements, name=',')
#: The surface ',' has been created (8756 mesh faces).
p = mdb.models['deviation'].parts['PART-1']
s = p.elements
side1Elements = s.getSequenceFromMask(mask=(
 '[#0:39 #ffffff80 #ffffffff:23 #7ff #0:2 #3fe0000 #0:3',
 ' #fff00000 #ffffffff:24 #7ff #0:33 #e0000000 #ffffffff #1ff',
 ' #0:3 #f00000 #0:12 #ff800000 #3 #0:12 #fffc0000',
 ' #ffffffff #1 #0:20 #fff80000 #ffffffff:14 #ffff]',),)
p.Surface(side1Elements=side1Elements, name='Surf-2')
#: The surface 'Surf-2' has been created (2155 mesh faces).
a=mdb.models['deviation'].parts['PART-1']
a.SurfaceByMerge(name='Upper', surfaces=(a.surfaces[','], a.surfaces['Surf-2'],
))
mdb.models['deviation'].parts['PART-1'].deleteSurfaces(surfaceNames=(',',
 'Surf-2',))
session.viewports['Viewport: 1'].view.setValues(nearPlane=5694.98,
 farPlane=9243.3, width=1933.46, height=1343.82, viewOffsetX=77.6875,

 61

 viewOffsetY=37.0261)
p = mdb.models['deviation'].parts['PART-1']
s = p.elements
side1Elements = s.getSequenceFromMask(mask=(
 '[#0:39 #ffffff80 #ffffffff:23 #7ff #0:2 #3fe0000 #0:3',
 ' #fff00000 #ffffffff:24 #7ff #0:33 #e0000000 #ffffffff #1ff',
 ' #0:3 #f00000 #0:12 #ff800000 #3 #0:12 #fffc0000',
 ' #ffffffff #1 #0:20 #fff80000 #ffffffff:14 #ffff]',),)
side2Elements = s.getSequenceFromMask(mask=(
 '[#ffffffff:39 #7f #0:23 #fffff800 #ffffffff:2 #fc01ffff #ffffffff:3',
 ' #fffff #0:24 #fffff800 #ffffffff:33 #1fffffff #0 #fffffe00',
 ' #ffffffff:3 #ff0fffff #ffffffff:12 #7fffff #fffffffc #ffffffff:12 #3ffff',
 ' #0 #fffffffe #ffffffff:20 #7ffff #0:14 #ffff0000 #ffffffff:139',
 ' #7fffffff]',),)
p.Surface(side1Elements=side1Elements, side2Elements=side2Elements,
 name='Upper')
#: The surface 'Upper' has been edited (10911 mesh faces).
set1 = mdb.models['deviation'].parts['PART-1'].sets['Lower']
set2 = mdb.models['deviation'].parts['PART-1'].sets['Upper']
leaf = dgm.LeafFromSets(sets=(set1, set2,))
session.viewports['Viewport: 1'].partDisplay.displayGroup.either(leaf=leaf)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5707.59,
 farPlane=9263.45, width=1937.73, height=1346.79, viewOffsetX=77.8594,
 viewOffsetY=37.108)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6025.17,
 farPlane=8716.22, width=2045.55, height=1421.73, cameraPosition=(-1284.77,
 4653.61, -5836.01), cameraUpVector=(0.70178, 0.55534, 0.446209),
 viewOffsetX=82.1916, viewOffsetY=39.1728)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6011.61,
 farPlane=8729.79, width=2040.95, height=1418.53, viewOffsetX=79.9387,
 viewOffsetY=-47.7641)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5756.55,
 farPlane=9045.93, width=1954.36, height=1358.35, cameraPosition=(-2353.82,
 -3522.53, -4578.83), cameraUpVector=(0.170674, 0.871574, -0.459596),
 viewOffsetX=76.5471, viewOffsetY=-45.7376)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5767.45,
 farPlane=9035.04, width=1958.06, height=1360.92, viewOffsetX=425.85,
 viewOffsetY=-49.7919)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5767.47,
 farPlane=9035.01, width=1958.07, height=1360.93, viewOffsetX=340.546,
 viewOffsetY=-101.372)
p = mdb.models['deviation'].parts['PART-1']
s = p.elements
side1Elements = s.getSequenceFromMask(mask=(
 '[#0:362 #ffffffc0 #ffffffff:3 #7ffff #0:21 #ffffff00 #ffffffff:2',
 ' #7fffffff #0:7 #ffffffff:3 #1fffff #0:24 #ff800000 #ffffffff:3',
 ' #7f #0:6 #ff000000 #ffffffff:3 #1 #0:25 #fffffc00',
 ' #ffffffff:2 #3ffff #0:6 #ff800000 #ffffffff:3 #7 #0:12',
 ' #fffe0000 #ffffffff:16 #7fffff #0:7 #fffffffe #ffffffff:2 #fff',
 ' #0:29 #ffffffe0 #3fff #0:14 #3fffff00 #0:3 #ffe00000',
 ' #ffffffff #ffff #fc000000 #ffffffff #3f #0:16 #ffffff80',
 ' #ffffffff #1 #0:4 #80000000 #ffffffff:29 #ffff #0:2',
 ' #ffffff00 #ffffffff:7 #fff #0:10 #ffffff80 #ffffffff:25 #3ffffff]',),)
p.Surface(side1Elements=side1Elements, name='Surf-2')
#: The surface 'Surf-2' has been created (3743 mesh faces).
p = mdb.models['deviation'].parts['PART-1']
s = p.elements
side2Elements = s.getSequenceFromMask(mask=(
 '[#0:340 #80000000 #ffffffff:21 #3f #0:3 #fff80000 #ffffffff:21',
 ' #ff #0:2 #80000000 #ffffffff:7 #0:3 #ffe00000 #ffffffff:24',
 ' #7fffff #0:3 #ffffff80 #ffffffff:6 #ffffff #0:3 #fffffffe',
 ' #ffffffff:25 #3ff #0:2 #fffc0000 #ffffffff:6 #7fffff #0:3',
 ' #fffffff8 #ffffffff:12 #1ffff #0:16 #ff800000 #ffffffff:7 #1',
 ' #0:2 #fffff000 #ffffffff:29 #1f #ffffc000 #ffffffff:14 #c00000ff',
 ' #ffffffff:3 #1fffff #0 #ffff0000 #3ffffff #0 #ffffffc0',
 ' #ffffffff:16 #7f #0 #fffffffe #ffffffff:4 #7fffffff #0:29',
 ' #ffff0000 #ffffffff:2 #ff #0:7 #fffff000 #ffffffff:10 #7f',
 ' #0:25 #fc000000 #ffffffff:31 #7fffffff]',),)
p.Surface(side2Elements=side2Elements, name='Surf-3')
#: The surface 'Surf-3' has been created (8161 mesh faces).
a=mdb.models['deviation'].parts['PART-1']
a.SurfaceByMerge(name='Lower', surfaces=(a.surfaces['Surf-2'],
 a.surfaces['Surf-3'],))
mdb.models['deviation'].parts['PART-1'].deleteSurfaces(surfaceNames=('Surf-2',
 'Surf-3',))
p = mdb.models['deviation'].parts['PART-1']
s = p.elements

 62

side1Elements = s.getSequenceFromMask(mask=(
 '[#0:362 #ffffffc0 #ffffffff:3 #7ffff #0:21 #ffffff00 #ffffffff:2',
 ' #7fffffff #0:7 #ffffffff:3 #1fffff #0:24 #ff800000 #ffffffff:3',
 ' #7f #0:6 #ff000000 #ffffffff:3 #1 #0:25 #fffffc00',
 ' #ffffffff:2 #3ffff #0:6 #ff800000 #ffffffff:3 #7 #0:12',
 ' #fffe0000 #ffffffff:16 #7fffff #0:7 #fffffffe #ffffffff:2 #fff',
 ' #0:29 #ffffffe0 #3fff #0:14 #3fffff00 #0:3 #ffe00000',
 ' #ffffffff #ffff #fc000000 #ffffffff #3f #0:16 #ffffff80',
 ' #ffffffff #1 #0:4 #80000000 #ffffffff:29 #ffff #0:2',
 ' #ffffff00 #ffffffff:7 #fff #0:10 #ffffff80 #ffffffff:25 #3ffffff]',),)
side2Elements = s.getSequenceFromMask(mask=(
 '[#0:340 #80000000 #ffffffff:21 #3f #0:3 #fff80000 #ffffffff:21',
 ' #ff #0:2 #80000000 #ffffffff:7 #0:3 #ffe00000 #ffffffff:24',
 ' #7fffff #0:3 #ffffff80 #ffffffff:6 #ffffff #0:3 #fffffffe',
 ' #ffffffff:25 #3ff #0:2 #fffc0000 #ffffffff:6 #7fffff #0:3',
 ' #fffffff8 #ffffffff:12 #1ffff #0:16 #ff800000 #ffffffff:7 #1',
 ' #0:2 #fffff000 #ffffffff:29 #1f #ffffc000 #ffffffff:14 #c00000ff',
 ' #ffffffff:3 #1fffff #0 #ffff0000 #3ffffff #0 #ffffffc0',
 ' #ffffffff:16 #7f #0 #fffffffe #ffffffff:4 #7fffffff #0:29',
 ' #ffff0000 #ffffffff:2 #ff #0:7 #fffff000 #ffffffff:10 #7f',
 ' #0:25 #fc000000 #ffffffff:31 #7fffffff]',),)
p.Surface(side1Elements=side1Elements, side2Elements=side2Elements,
 name='Lower')
#: The surface 'Lower' has been edited (11904 mesh faces).
session.viewports['Viewport: 1'].view.setValues(nearPlane=5767.47,
 width=1958.07, height=1360.93, viewOffsetX=356.417, viewOffsetY=-204.533)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5671.54,
 farPlane=9233.68, width=1925.5, height=1338.29, cameraPosition=(5767.72,
 6109.89, -3285.66), cameraUpVector=(-0.478641, 0.393739, 0.784775),
 viewOffsetX=350.488, viewOffsetY=-201.131)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5675.64,
 farPlane=9229.58, width=1926.89, height=1339.26, viewOffsetX=321.457,
 viewOffsetY=-162.231)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5631.56,
 farPlane=9321.03, width=1911.93, height=1328.86, cameraPosition=(7825.97,
 3536.76, 2849.74), cameraUpVector=(-0.711028, -0.0310708, 0.702477),
 viewOffsetX=318.96, viewOffsetY=-160.971)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5633.44,
 farPlane=9319.14, width=1912.57, height=1329.3, viewOffsetX=328.755,
 viewOffsetY=-172.651)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5535.67,
 farPlane=9426.89, width=1879.38, height=1306.23, cameraPosition=(8073.3,
 4059.8, 1485.32), cameraUpVector=(-0.513995, -0.145636, 0.84534),
 viewOffsetX=323.049, viewOffsetY=-169.654)
set1 = mdb.models['deviation'].parts['PART-1'].sets['Tip']
set2 = mdb.models['deviation'].parts['PART-1'].sets['Tra']
leaf = dgm.LeafFromSets(sets=(set1, set2,))
session.viewports['Viewport: 1'].partDisplay.displayGroup.either(leaf=leaf)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5539.84,
 farPlane=9422.71, width=1880.8, height=1307.22, viewOffsetX=346.159,
 viewOffsetY=-183.121)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5491.09,
 farPlane=9456.25, width=1864.25, height=1295.72, cameraPosition=(7687.25,
 5046.25, 359.806), cameraUpVector=(-0.303354, -0.249571, 0.919614),
 viewOffsetX=343.113, viewOffsetY=-181.51)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5699.08,
 farPlane=9248.25, width=284.194, height=197.525, viewOffsetX=86.8153,
 viewOffsetY=-122.523)
p = mdb.models['deviation'].parts['PART-1']
s = p.elements
side2Elements = s.getSequenceFromMask(mask=(
 '[#0:721 #ff800000 #ffffffff #3fffff]',),)
p.Surface(side2Elements=side2Elements, name='Tip')
#: The surface 'Tip' has been created (63 mesh faces).
session.viewports['Viewport: 1'].view.setValues(nearPlane=5717.38,
 farPlane=9229.95, width=153.562, height=106.731, viewOffsetX=88.1244,
 viewOffsetY=-135.643)
p = mdb.models['deviation'].parts['PART-1']
s = p.elements
side2Elements = s.getSequenceFromMask(mask=(
 '[#0:723 #ffc00000 #ffffffff:9 #1f]',),)
p.Surface(side2Elements=side2Elements, name='Tra')
#: The surface 'Tra' has been created (303 mesh faces).
session.viewports['Viewport: 1'].view.setValues(nearPlane=5676.01,
 farPlane=9271.33, width=507.457, height=352.701, viewOffsetX=44.4887,
 viewOffsetY=-97.8188)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5671.86,

 63

 farPlane=9274.03, width=507.087, height=352.443, cameraPosition=(7617.91,
 5168.88, 66.7488), cameraUpVector=(-0.247693, -0.263823, 0.932226),
 viewOffsetX=44.4562, viewOffsetY=-97.7473)
a=mdb.models['deviation'].parts['PART-1']
a.SurfaceByMerge(name='Couple', surfaces=(a.surfaces['Lower'],
 a.surfaces['Tip'], a.surfaces['Tra'], a.surfaces['Upper'],))
session.viewports['Viewport: 1'].view.setValues(nearPlane=5700.22,
 farPlane=9245.68, width=274.491, height=190.781, viewOffsetX=7.14359,
 viewOffsetY=-85.4685)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5703.17,
 farPlane=9242.68, width=274.633, height=190.879, cameraPosition=(7564.61,
 5243.36, -276.982), cameraUpVector=(-0.190391, -0.267398, 0.94459),
 viewOffsetX=7.14728, viewOffsetY=-85.5127)
session.viewports['Viewport: 1'].view.setValues(viewOffsetX=-3.14798,
 viewOffsetY=-10.6634)
p = mdb.models['deviation'].parts['PART-1']
s = p.elements
side1Elements = s.getSequenceFromMask(mask=(
 '[#0:39 #ffffff80 #ffffffff:23 #7ff #0:2 #3fe0000 #0:3',
 ' #fff00000 #ffffffff:24 #7ff #0:33 #e0000000 #ffffffff #1ff',
 ' #0:3 #f00000 #0:12 #ff800000 #3 #0:12 #fffc0000',
 ' #ffffffff #1 #0:20 #fff80000 #ffffffff:14 #ffff #0:161',
 ' #ffffffc0 #ffffffff:3 #7ffff #0:21 #ffffff00 #ffffffff:2 #7fffffff',
 ' #0:7 #ffffffff:3 #1fffff #0:24 #ff800000 #ffffffff:3 #7f',
 ' #0:6 #ff000000 #ffffffff:3 #1 #0:25 #fffffc00 #ffffffff:2',
 ' #3ffff #0:6 #ff800000 #ffffffff:3 #7 #0:12 #fffe0000',
 ' #ffffffff:16 #7fffff #0:7 #fffffffe #ffffffff:2 #fff #0:29',
 ' #ffffffe0 #3fff #0:14 #3fffff00 #0:3 #ffe00000 #ffffffff',
 ' #ffff #fc000000 #ffffffff #3f #0:16 #ffffff80 #ffffffff',
 ' #1 #0:4 #80000000 #ffffffff:29 #ffff #0:2 #ffffff00',
 ' #ffffffff:7 #fff #0:10 #ffffff80 #ffffffff:25 #3ffffff]',),)
side2Elements = s.getSequenceFromMask(mask=(
 '[#ffffffff:39 #7f #0:23 #fffff800 #ffffffff:2 #fc01ffff #ffffffff:3',
 ' #fffff #0:24 #fffff800 #ffffffff:33 #1fffffff #0 #fffffe00',
 ' #ffffffff:3 #ff0fffff #ffffffff:12 #7fffff #fffffffc #ffffffff:12 #3ffff',
 ' #0 #fffffffe #ffffffff:20 #7ffff #0:14 #ffff0000 #ffffffff:161',
 ' #3f #0:3 #fff80000 #ffffffff:21 #ff #0:2 #80000000',
 ' #ffffffff:7 #0:3 #ffe00000 #ffffffff:24 #7fffff #0:3 #ffffff80',
 ' #ffffffff:6 #ffffff #0:3 #fffffffe #ffffffff:25 #3ff #0:2',
 ' #fffc0000 #ffffffff:6 #7fffff #0:3 #fffffff8 #ffffffff:12 #1ffff',
 ' #0:16 #ff800000 #ffffffff:7 #1 #0:2 #fffff000 #ffffffff:29',
 ' #1f #ffffc000 #ffffffff:14 #c00000ff #ffffffff:3 #1fffff #0',
 ' #ffff0000 #3ffffff #0 #ffffffc0 #ffffffff:16 #7f #0',
 ' #fffffffe #ffffffff:4 #7fffffff #0:29 #ffff0000 #ffffffff:2 #ff',
 ' #0:7 #fffff000 #ffffffff:10 #7f #0:25 #fc000000 #ffffffff:31',
 ' #7fffffff #0:8 #ff800000 #ffffffff:11 #1f]',),)
p.Surface(side1Elements=side1Elements, side2Elements=side2Elements,
 name='Couple')
#: The surface 'Couple' has been edited (23181 mesh faces).
session.viewports['Viewport: 1'].view.setValues(nearPlane=5642.51,
 farPlane=9303.34, width=781.103, height=542.894, viewOffsetX=16.57,
 viewOffsetY=48.0843)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5636.54,
 farPlane=9309.31, width=780.277, height=542.32, viewOffsetX=152.528,
 viewOffsetY=-12.8392)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5641.27,
 farPlane=9313.45, width=780.931, height=542.775, cameraPosition=(7853.65,
 4776.12, 450.949), cameraUpVector=(-0.302516, -0.275963, 0.91232),
 viewOffsetX=152.656, viewOffsetY=-12.85)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5641.19,
 farPlane=9313.54, width=780.92, height=542.767, viewOffsetX=236.521,
 viewOffsetY=-24.7179)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5614.33,
 farPlane=9340.4, width=980.074, height=681.186, viewOffsetX=235.395,
 viewOffsetY=-24.6002)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5614.93,
 farPlane=9339.79, width=980.179, height=681.259, viewOffsetX=235.42,
 viewOffsetY=-116.96)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5591.06,
 farPlane=9363.66, width=1156.38, height=803.726, viewOffsetX=234.419,
 viewOffsetY=-116.463)
mdb.save()
#: The model database has been saved to "arw.cae".
set1 = mdb.models['deviation'].parts['PART-1'].sets['Lower']
set2 = mdb.models['deviation'].parts['PART-1'].sets['Spar1']
set3 = mdb.models['deviation'].parts['PART-1'].sets['Tip']
set4 = mdb.models['deviation'].parts['PART-1'].sets['Tra']

 64

leaf = dgm.LeafFromSets(sets=(set1, set2, set3, set4,))
session.viewports['Viewport: 1'].partDisplay.displayGroup.either(leaf=leaf)
session.viewports['Viewport: 1'].partDisplay.setValues(sectionAssignments=ON,
 engineeringFeatures=ON)
session.viewports['Viewport: 1'].view.setValues(cameraPosition=(1390.98,
 8603.95, -227.551), cameraUpVector=(0, 0, 1), cameraTarget=(1390.98,
 1190.06, -227.551), viewOffsetX=0, viewOffsetY=0)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6805.06,
 farPlane=8330.57, width=912.714, height=634.368, viewOffsetX=493.441,
 viewOffsetY=132.97)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6812.46,
 farPlane=8323.17, width=913.705, height=635.057, viewOffsetX=-132.748,
 viewOffsetY=141.446)
session.viewports['Viewport: 1'].view.setValues(viewOffsetX=-705.781,
 viewOffsetY=139.595)
session.viewports['Viewport: 1'].view.setValues(viewOffsetX=-1175.13,
 viewOffsetY=109.046)
p = mdb.models['deviation'].parts['PART-1']
e = p.elementEdges
elementEdges = e.getSequenceFromMask(mask=(
 '[#0:23467 #1 #0 #4:2 #0:10 #4:2 #0:2',
 ' #4:2 #0:3 #2 #0:2 #2:2 #0:8 #2:2', ' #0:2 #2:2 #0:9 #2 #0:2 #2:2 #0:8',
 ' #2:2 #0:2 #2:2 #0:11 #1 #0 #4:2', ' #0:7 #1:2 #0:6 #1:2 #8:3 #0:6 #8:2',
 ' #0:3 #8:2 #0:4 #8:2 #0:4 #8:2 #0:4', ' #8:3 #0:6 #1 #0:2 #4:2 #0:4 #1',
 ' #0:2 #4:2 #0:4 #1 #0:2 #4:2 #0:4', ' #4:2 #0:4 #4:2 #0:4 #1 #0:2 #4:2',
 ' #0:4 #4:2 #0:4 #4:2 #0:4 #1 #0:2', ' #4:2 #0:4 #4:2 #0:4 #4:2 #0:4 #1',
 ' #0:2 #4:2 #0:4 #4:2 #0:4 #4:2 #0:4', ' #1 #0:2 #4:2 #0:4 #1 #0:2 #1',
 ' #0:2 #4:2 #0:4 #1 #0:2 #1 #0:2', ' #1 #0:2 #1 #0:2 #1 #0:2 #1',
 ' #0:2 #1 #0:2 #4:2 #0:4 #1 #0:2', ' #1 #0:2 #1 #0:2 #1 #0:2 #4:2',
 ' #0:4 #1 #0:2 #1 #0:2 #1 #0:2', ' #1 #0:2 #4 #0:2 #1 #0 #1',
 ' #0 #1 #0 #1 #0 #1 #0', ' #1 #0 #1 #0 #1 #0:2 #4:2',
 ' #0:3 #2 #0 #2 #0 #2 #0', ' #2 #0 #2 #0 #2 #0 #2]',),)
p.Stringer(elementEdges=elementEdges, name='Stringer-1')
session.viewports['Viewport: 1'].view.setValues(nearPlane=6795.99,
 farPlane=8339.65, width=977.627, height=679.485, viewOffsetX=536.172,
 viewOffsetY=192.964)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6803.88,
 farPlane=8331.75, width=978.763, height=680.275, viewOffsetX=90.5506,
 viewOffsetY=201.122)
session.viewports['Viewport: 1'].view.setValues(viewOffsetX=-396.352)
session.viewports['Viewport: 1'].view.setValues(viewOffsetX=-941.763,
 viewOffsetY=165.423)
session.viewports['Viewport: 1'].view.setValues(viewOffsetX=-1475.27,
 viewOffsetY=136.665)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6357.06,
 farPlane=8778.57, width=4625.64, height=3214.99, viewOffsetX=-604.141,
 viewOffsetY=267.256)
p = mdb.models['deviation'].parts['PART-1']
e = p.elementEdges
elementEdges = e.getSequenceFromMask(mask=(
 '[#0:23462 #4 #0:2 #1:2 #0:8 #1:2 #0:2',
 ' #1:2 #0:14 #8 #0 #8:2 #0:10 #8:2', ' #0:2 #8:2 #0:8 #8 #0 #8:2 #0:10',
 ' #8 #0 #8 #0 #8 #0 #8', ' #0 #4:3 #0:6 #8 #0 #4 #0:5',
 ' #4 #0 #4 #0:7 #8 #0 #8', ' #0 #8 #0:5 #2 #0:4 #2:2 #0:2',
 ' #8 #0 #8 #0:3 #8 #0 #8', ' #0:4 #8 #0 #8:2 #0:4 #4 #0:2',
 ' #1 #0 #1 #0:3 #4 #0:2 #1', ' #0 #1 #0:3 #4 #0:2 #1 #0',
 ' #1 #0:3 #1 #0 #1 #0:3 #1', ' #0 #1 #0:3 #4 #0:2 #1 #0',
 ' #1 #0:3 #1 #0 #1 #0:3 #1', ' #0 #1 #0:3 #4 #0:2 #1 #0',
 ' #1 #0:3 #1 #0 #1 #0:3 #1', ' #0 #1 #0:3 #4 #0:2 #1 #0',
 ' #1 #0:3 #1 #0 #1 #0:3 #1', ' #0 #1 #0:3 #4 #0:2 #1 #0',
 ' #1 #0:3 #4 #0:2 #4 #0:2 #1', ' #0 #1 #0:3 #4 #0:2 #4 #0:2',
 ' #4 #0:2 #4 #0:2 #4 #0:2 #4', ' #0:2 #4 #0:2 #1 #0 #1 #0:3',
 ' #4 #0:2 #4 #0:2 #4 #0:2 #4', ' #0:2 #1 #0 #1 #0:3 #4 #0:2',
 ' #4 #0:2 #4 #0:2 #4 #0:2 #4', ' #0 #4 #0 #4 #0 #4 #0',
 ' #4 #0 #4 #0 #4 #0 #4', ' #0 #1:2 #0:2 #1:2 #8 #0 #8',
 ' #0 #8 #0 #8 #0 #8 #0', ' #8 #0 #8]',),)
p.Stringer(elementEdges=elementEdges, name='Stringer-2')
set1 = mdb.models['deviation'].parts['PART-1'].sets['Spar1']
set2 = mdb.models['deviation'].parts['PART-1'].sets['Spar2']
leaf = dgm.LeafFromSets(sets=(set1, set2,))
session.viewports['Viewport: 1'].partDisplay.displayGroup.either(leaf=leaf)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6660.81,
 farPlane=8356.44, width=1097.77, height=762.99, viewOffsetX=550.379,
 viewOffsetY=207.945)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6669.63,
 farPlane=8347.62, width=1099.22, height=764, viewOffsetX=54.3964,
 viewOffsetY=56.757)

 65

session.viewports['Viewport: 1'].view.setValues(nearPlane=6669.63,
 farPlane=8347.62, width=1099.22, height=764, viewOffsetX=-394.426,
 viewOffsetY=141.398)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6669.63,
 farPlane=8347.62, width=1099.22, height=764, viewOffsetX=-896.706,
 viewOffsetY=53.4155)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6707.67,
 farPlane=8309.58, width=762.647, height=530.067, viewOffsetX=-958.055,
 viewOffsetY=81.9445)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6713.88,
 farPlane=8303.36, width=763.353, height=530.558, viewOffsetX=-1451.6,
 viewOffsetY=75.8332)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6200.76,
 farPlane=8816.49, width=4898.91, height=3404.91, viewOffsetX=-521.762,
 viewOffsetY=134.126)
p = mdb.models['deviation'].parts['PART-1']
e = p.elementEdges
elementEdges = e.getSequenceFromMask(mask=('[#0:23829 #4 #0 #4 #0:2 #4 #0',
 ' #4 #0 #4 #0:2 #4 #1 #0', ' #1 #0 #1 #0:2 #1 #0 #1',
 ' #0 #1 #0 #1 #0:2 #1 #0', ' #1 #0 #1 #0 #1 #0:2 #1',
 ' #0 #1 #0 #1 #0:2 #1 #0', ' #1 #0 #1 #0 #1 #0 #1',
 ' #0 #8 #0:3 #1 #0 #1 #0', ' #1 #0 #1 #0 #1 #0 #1',
 ' #0 #4 #0:3 #1 #0 #1 #0:3', ' #4 #0 #4 #0 #4 #0:2 #4',
 ' #0:2 #1:3 #0 #1 #0 #1 #0:2', ' #1 #0 #1 #0 #1 #0:2 #1',
 ' #0 #1 #0 #1 #0 #8 #0:3', ' #1 #0 #1 #0:3 #1:2 #0:2 #4',
 ' #0 #4 #0:2 #1:3 #0 #1 #0', ' #1 #0 #1 #0 #1 #0 #1',
 ' #0 #1 #0:2 #4:2 #0:4 #4 #0:2', ' #4:2 #0:3 #1 #0 #1:2 #0 #4:2',
 ' #0:2 #1 #0 #4:2 #0:3 #4 #0:2', ' #4 #0 #1 #0:3 #1 #0 #1',
 ' #0:5 #8 #0:2 #8 #0:5 #2:2 #0:4', ' #2 #0 #4 #0:2 #4 #0:6 #4:2',
 ' #0:5 #1 #0:5 #2 #0:2 #2:2 #0:7', ' #2 #0:2 #2 #0:12 #1 #0 #4:2',
 ' #0:10 #1:2]',),)
p.Stringer(elementEdges=elementEdges, name='Stringer-3')
session.viewports['Viewport: 1'].view.setValues(nearPlane=6691.43,
 farPlane=8325.82, width=878.782, height=610.784, viewOffsetX=657.601,
 viewOffsetY=204.393)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6698.55,
 farPlane=8318.7, width=879.717, height=611.435, viewOffsetX=350.801,
 viewOffsetY=231.35)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6698.55,
 width=879.718, height=611.435, viewOffsetX=-160.808, viewOffsetY=196.589)
session.viewports['Viewport: 1'].view.setValues(viewOffsetX=-768.678,
 viewOffsetY=211.741)
session.viewports['Viewport: 1'].view.setValues(viewOffsetX=-1179.57,
 viewOffsetY=143.11)
p = mdb.models['deviation'].parts['PART-1']
e = p.elementEdges
elementEdges = e.getSequenceFromMask(mask=('[#0:23828 #1 #0 #1 #0 #2 #1',
 ' #0 #1 #0 #1 #0 #2 #1', ' #0:2 #4 #0 #4 #0 #1:2 #0',
 ' #4 #0 #4 #0 #4 #0 #1:2', ' #0 #4 #0 #4 #0 #4 #0',
 ' #1:2 #0 #4 #0 #4 #0 #2', ' #1 #0 #4 #0 #4 #0 #4',
 ' #0 #4 #0 #4 #0:2 #1:2 #0', ' #4 #0 #4 #0 #4 #0 #4',
 ' #0 #4 #0 #4 #0:2 #1:2 #0', ' #4 #0 #4 #1:2 #0 #1 #0',
 ' #1 #0 #1:2 #0 #4:2 #0:3 #4', ' #0 #4 #0 #1:2 #0 #4 #0',
 ' #4 #0 #1:2 #0 #4 #0 #4', ' #0 #4 #0:2 #1:2 #0 #4 #0',
 ' #4:3 #0:2 #2 #1 #0 #1 #0', ' #4:2 #0:3 #4 #0 #4 #0 #4',
 ' #0 #4 #0 #4 #0 #4 #0:2', ' #4 #0:2 #1 #0 #1 #0:3 #4',
 ' #0:2 #1:3 #0:4 #4 #0:2 #1:2 #0', ' #4 #0:2 #1:3 #0 #4:2 #0:3 #4:3',
 ' #0:5 #8:3 #0:5 #8:2 #0:4 #8:2 #0:8', ' #1 #0 #1 #0 #1 #0:5 #1',
 ' #8 #0:4 #1:2 #0:6 #8 #0 #8', ' #0 #8 #0:6 #8 #0 #8 #0',
 ' #8 #0:2 #4 #0 #4 #0 #4', ' #0:7 #4 #0:2 #1:2]',),)
p.Stringer(elementEdges=elementEdges, name='Stringer-4')
session.viewports['Viewport: 1'].view.setValues(nearPlane=6221.1,
 farPlane=8796.15, width=4765.64, height=3312.29, viewOffsetX=40.6804,
 viewOffsetY=109.338)
mdb.models['deviation'].Material(name='AxialBar')
mdb.models['deviation'].materials['AxialBar'].Density(table=((2.7e-09,),))
mdb.models['deviation'].materials['AxialBar'].Elastic(table=((40000.0, 0.4),))
mdb.models['deviation'].Material(name='Spars')
mdb.models['deviation'].materials['Spars'].Density(table=((3.6e-09,),))
mdb.models['deviation'].materials['Spars'].Elastic(table=((39250.0, 0.23022),
))
mdb.models['deviation'].Material(name='Skins')
mdb.models['deviation'].materials['Skins'].Density(table=((2.7e-09,),))
mdb.models['deviation'].materials['Skins'].Elastic(table=((31000.0, 0.35087),
))
mdb.models['deviation'].Material(name='Ribs')
mdb.models['deviation'].materials['Ribs'].Density(table=((3.6e-09,),))

 66

mdb.models['deviation'].materials['Ribs'].Elastic(table=((60000.0, 0.39998),))
mdb.models['deviation'].PipeProfile(name='Upper1', r=17.1, t=3.1)
mdb.models['deviation'].PipeProfile(name='Upper2', r=13.8, t=1.0)
mdb.models['deviation'].PipeProfile(name='Lower1', r=13.0, t=1.0)
mdb.models['deviation'].PipeProfile(name='Lower2', r=5.8, t=1.0)
mdb.models['deviation'].BeamSection(name='Lower1', profile='Lower1',
 integration=DURING_ANALYSIS, poissonRatio=0.0, material='AxialBar',
 temperatureVar=LINEAR)
mdb.models['deviation'].BeamSection(name='Lower2', profile='Lower2',
 integration=DURING_ANALYSIS, poissonRatio=0.0, material='AxialBar',
 temperatureVar=LINEAR)
mdb.models['deviation'].BeamSection(name='Upper1', profile='Upper1',
 integration=DURING_ANALYSIS, poissonRatio=0.0, material='AxialBar',
 temperatureVar=LINEAR)
mdb.models['deviation'].BeamSection(name='Upper2', profile='Upper2',
 integration=DURING_ANALYSIS, poissonRatio=0.0, material='AxialBar',
 temperatureVar=LINEAR)
mdb.models['deviation'].HomogeneousShellSection(name='Skin_Tra',
 preIntegrate=OFF, material='Skins', thickness=30.0,
 poissonDefinition=DEFAULT, thicknessModulus=None, temperature=GRADIENT,
 useDensity=OFF, nodalThicknessField='', integrationRule=SIMPSON,
 numIntPts=5)
mdb.models['deviation'].HomogeneousShellSection(name='Skin_Lower',
 preIntegrate=OFF, material='Skins', thickness=1.0,
 poissonDefinition=DEFAULT, thicknessModulus=None, temperature=GRADIENT,
 useDensity=OFF, nodalThicknessField='', integrationRule=SIMPSON,
 numIntPts=5)
mdb.models['deviation'].HomogeneousShellSection(name='Skin_Upper',
 preIntegrate=OFF, material='Skins', thickness=1.0,
 poissonDefinition=DEFAULT, thicknessModulus=None, temperature=GRADIENT,
 useDensity=OFF, nodalThicknessField='', integrationRule=SIMPSON,
 numIntPts=5)
mdb.models['deviation'].HomogeneousShellSection(name='Skin_Tip',
 preIntegrate=OFF, material='Skins', thickness=50.0,
 poissonDefinition=DEFAULT, thicknessModulus=None, temperature=GRADIENT,
 useDensity=OFF, nodalThicknessField='', integrationRule=SIMPSON,
 numIntPts=5)
mdb.models['deviation'].HomogeneousShellSection(name='Skin_Root',
 preIntegrate=OFF, material='Skins', thickness=20.0,
 poissonDefinition=DEFAULT, thicknessModulus=None, temperature=GRADIENT,
 useDensity=OFF, nodalThicknessField='', integrationRule=SIMPSON,
 numIntPts=5)
mdb.models['deviation'].HomogeneousShellSection(name='Rib01', preIntegrate=OFF,
 material='Ribs', thickness=9.8, poissonDefinition=DEFAULT,
 thicknessModulus=None, temperature=GRADIENT, useDensity=OFF,
 nodalThicknessField='', integrationRule=SIMPSON, numIntPts=5)
mdb.models['deviation'].HomogeneousShellSection(name='Rib02', preIntegrate=OFF,
 material='Ribs', thickness=26.0, poissonDefinition=DEFAULT,
 thicknessModulus=None, temperature=GRADIENT, useDensity=OFF,
 nodalThicknessField='', integrationRule=SIMPSON, numIntPts=5)
mdb.models['deviation'].HomogeneousShellSection(name='Rib03', preIntegrate=OFF,
 material='Ribs', thickness=4.0, poissonDefinition=DEFAULT,
 thicknessModulus=None, temperature=GRADIENT, useDensity=OFF,
 nodalThicknessField='', integrationRule=SIMPSON, numIntPts=5)
mdb.models['deviation'].HomogeneousShellSection(name='Rib04', preIntegrate=OFF,
 material='Ribs', thickness=20.0, poissonDefinition=DEFAULT,
 thicknessModulus=None, temperature=GRADIENT, useDensity=OFF,
 nodalThicknessField='', integrationRule=SIMPSON, numIntPts=5)
mdb.models['deviation'].HomogeneousShellSection(name='Rib05', preIntegrate=OFF,
 material='Ribs', thickness=25.0, poissonDefinition=DEFAULT,
 thicknessModulus=None, temperature=GRADIENT, useDensity=OFF,
 nodalThicknessField='', integrationRule=SIMPSON, numIntPts=5)
mdb.models['deviation'].HomogeneousShellSection(name='Rib06', preIntegrate=OFF,
 material='Ribs', thickness=30.4, poissonDefinition=DEFAULT,
 thicknessModulus=None, temperature=GRADIENT, useDensity=OFF,
 nodalThicknessField='', integrationRule=SIMPSON, numIntPts=5)
mdb.models['deviation'].HomogeneousShellSection(name='Rib07', preIntegrate=OFF,
 material='Ribs', thickness=9.2, poissonDefinition=DEFAULT,
 thicknessModulus=None, temperature=GRADIENT, useDensity=OFF,
 nodalThicknessField='', integrationRule=SIMPSON, numIntPts=5)
mdb.models['deviation'].HomogeneousShellSection(name='Rib08', preIntegrate=OFF,
 material='Ribs', thickness=2.4, poissonDefinition=DEFAULT,
 thicknessModulus=None, temperature=GRADIENT, useDensity=OFF,
 nodalThicknessField='', integrationRule=SIMPSON, numIntPts=5)
mdb.models['deviation'].HomogeneousShellSection(name='Rib09', preIntegrate=OFF,
 material='Ribs', thickness=5.8, poissonDefinition=DEFAULT,
 thicknessModulus=None, temperature=GRADIENT, useDensity=OFF,

 67

 nodalThicknessField='', integrationRule=SIMPSON, numIntPts=5)
mdb.models['deviation'].HomogeneousShellSection(name='Rib10', preIntegrate=OFF,
 material='Ribs', thickness=1.2, poissonDefinition=DEFAULT,
 thicknessModulus=None, temperature=GRADIENT, useDensity=OFF,
 nodalThicknessField='', integrationRule=SIMPSON, numIntPts=5)
mdb.models['deviation'].HomogeneousShellSection(name='Rib11', preIntegrate=OFF,
 material='Ribs', thickness=1.4, poissonDefinition=DEFAULT,
 thicknessModulus=None, temperature=GRADIENT, useDensity=OFF,
 nodalThicknessField='', integrationRule=SIMPSON, numIntPts=5)
mdb.models['deviation'].HomogeneousShellSection(name='Rib12', preIntegrate=OFF,
 material='Ribs', thickness=6.0, poissonDefinition=DEFAULT,
 thicknessModulus=None, temperature=GRADIENT, useDensity=OFF,
 nodalThicknessField='', integrationRule=SIMPSON, numIntPts=5)
mdb.models['deviation'].HomogeneousShellSection(name='Rib13', preIntegrate=OFF,
 material='Ribs', thickness=19.6, poissonDefinition=DEFAULT,
 thicknessModulus=None, temperature=GRADIENT, useDensity=OFF,
 nodalThicknessField='', integrationRule=SIMPSON, numIntPts=5)
mdb.models['deviation'].HomogeneousShellSection(name='Rib14', preIntegrate=OFF,
 material='Ribs', thickness=7.8, poissonDefinition=DEFAULT,
 thicknessModulus=None, temperature=GRADIENT, useDensity=OFF,
 nodalThicknessField='', integrationRule=SIMPSON, numIntPts=5)
mdb.models['deviation'].HomogeneousShellSection(name='Rib15', preIntegrate=OFF,
 material='Ribs', thickness=2.2, poissonDefinition=DEFAULT,
 thicknessModulus=None, temperature=GRADIENT, useDensity=OFF,
 nodalThicknessField='', integrationRule=SIMPSON, numIntPts=5)
mdb.models['deviation'].HomogeneousShellSection(name='Rib16', preIntegrate=OFF,
 material='Ribs', thickness=40.4, poissonDefinition=DEFAULT,
 thicknessModulus=None, temperature=GRADIENT, useDensity=OFF,
 nodalThicknessField='', integrationRule=SIMPSON, numIntPts=5)
mdb.models['deviation'].HomogeneousShellSection(name='Rib17', preIntegrate=OFF,
 material='Ribs', thickness=41.2, poissonDefinition=DEFAULT,
 thicknessModulus=None, temperature=GRADIENT, useDensity=OFF,
 nodalThicknessField='', integrationRule=SIMPSON, numIntPts=5)
mdb.models['deviation'].HomogeneousShellSection(name='Spar01',
 preIntegrate=OFF, material='Spars', thickness=1.0,
 poissonDefinition=DEFAULT, thicknessModulus=None, temperature=GRADIENT,
 useDensity=OFF, nodalThicknessField='', integrationRule=SIMPSON,
 numIntPts=5)
mdb.models['deviation'].HomogeneousShellSection(name='Spar02',
 preIntegrate=OFF, material='Spars', thickness=4.0,
 poissonDefinition=DEFAULT, thicknessModulus=None, temperature=GRADIENT,
 useDensity=OFF, nodalThicknessField='', integrationRule=SIMPSON,
 numIntPts=5)
mdb.models['deviation'].HomogeneousShellSection(name='Spar03',
 preIntegrate=OFF, material='Spars', thickness=4.0,
 poissonDefinition=DEFAULT, thicknessModulus=None, temperature=GRADIENT,
 useDensity=OFF, nodalThicknessField='', integrationRule=SIMPSON,
 numIntPts=5)
mdb.models['deviation'].HomogeneousShellSection(name='Spar04',
 preIntegrate=OFF, material='Spars', thickness=2.0,
 poissonDefinition=DEFAULT, thicknessModulus=None, temperature=GRADIENT,
 useDensity=OFF, nodalThicknessField='', integrationRule=SIMPSON,
 numIntPts=5)
mdb.models['deviation'].HomogeneousShellSection(name='Spar05',
 preIntegrate=OFF, material='Spars', thickness=5.2,
 poissonDefinition=DEFAULT, thicknessModulus=None, temperature=GRADIENT,
 useDensity=OFF, nodalThicknessField='', integrationRule=SIMPSON,
 numIntPts=5)
set1 = mdb.models['deviation'].parts['PART-1'].sets['Spar2']
set2 = mdb.models['deviation'].parts['PART-1'].sets['Upper']
leaf = dgm.LeafFromSets(sets=(set1, set2,))
session.viewports['Viewport: 1'].partDisplay.displayGroup.either(leaf=leaf)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6080.72,
 farPlane=9216.12, width=4658.1, height=3237.54, viewOffsetX=-82.9433,
 viewOffsetY=-81.9077)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5246.46,
 farPlane=9373.18, width=4019.02, height=2793.36, cameraPosition=(8056.21,
 2007.03, 2914.6), cameraUpVector=(-0.435767, 0.129486, 0.890697),
 viewOffsetX=-71.5637, viewOffsetY=-70.6702)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5521.58,
 farPlane=9098.08, width=2423.64, height=1684.52, viewOffsetX=-44.4642,
 viewOffsetY=-120.725)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5539.61,
 farPlane=9080.04, width=2431.55, height=1690.02, viewOffsetX=120.451,
 viewOffsetY=-32.4299)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements

 68

elements = e.getSequenceFromMask(mask=('[#0:827 #fff80000 #ffffffff:3 #7ff]',
),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Upper1', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=('[#0:827 #fff80000 #ffffffff:3 #7ff]',
),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Upper1', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=('[#0:835 #fffffff8 #ffffffff:2 #7ff]',
),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Upper2', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=('[#0:835 #fffffff8 #ffffffff:2 #7ff]',
),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Upper2', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=('[#0:831 #fffff800 #ffffffff:3 #7]',),
)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Lower1', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=('[#0:831 #fffff800 #ffffffff:3 #7]',),
)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Lower1', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=('[#0:838 #fffff800 #ffffffff:3 #7f]',
),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Lower2', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=('[#0:838 #fffff800 #ffffffff:3 #7f]',
),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Lower2', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=('[#ffffffff:340 #7fffffff]',),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Skin_Upper', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=('[#ffffffff:340 #7fffffff]',),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Skin_Upper', offset=0.0)
set1 = mdb.models['deviation'].parts['PART-1'].sets['Lower']
set2 = mdb.models['deviation'].parts['PART-1'].sets['Upper']
leaf = dgm.LeafFromSets(sets=(set1, set2,))
session.viewports['Viewport: 1'].partDisplay.displayGroup.either(leaf=leaf)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=(
 '[#0:340 #80000000 #ffffffff:371 #7fffffff]',),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Skin_Lower', offset=0.0)

 69

p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=(
 '[#0:340 #80000000 #ffffffff:371 #7fffffff]',),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Skin_Lower', offset=0.0)
set1 = mdb.models['deviation'].parts['PART-1'].sets['Lower']
set2 = mdb.models['deviation'].parts['PART-1'].sets['Tip']
leaf = dgm.LeafFromSets(sets=(set1, set2,))
session.viewports['Viewport: 1'].partDisplay.displayGroup.either(leaf=leaf)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=('[#0:721 #ff800000 #ffffffff #3fffff]',
),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Skin_Tip', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=('[#0:721 #ff800000 #ffffffff #3fffff]',
),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Skin_Tip', offset=0.0)
set1 = mdb.models['deviation'].parts['PART-1'].sets['AuxSpar']
set2 = mdb.models['deviation'].parts['PART-1'].sets['Ribs']
set3 = mdb.models['deviation'].parts['PART-1'].sets['Root']
set4 = mdb.models['deviation'].parts['PART-1'].sets['Spar1']
set5 = mdb.models['deviation'].parts['PART-1'].sets['Spar2']
set6 = mdb.models['deviation'].parts['PART-1'].sets['Tra']
leaf = dgm.LeafFromSets(sets=(set1, set2, set3, set4, set5, set6,))
session.viewports['Viewport: 1'].partDisplay.displayGroup.either(leaf=leaf)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=('[#0:723 #ffc00000 #ffffffff:9 #1f]',
),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Skin_Tra', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=('[#0:723 #ffc00000 #ffffffff:9 #1f]',
),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Skin_Tra', offset=0.0)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5554.15,
 farPlane=9066.07, width=2189.64, height=1521.88, viewOffsetX=-75.2251,
 viewOffsetY=-71.5781)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=(
 '[#0:712 #80000000 #ffffffff:8 #7fffff]',),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Skin_Root', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=(
 '[#0:712 #80000000 #ffffffff:8 #7fffff]',),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Skin_Root', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=(
 '[#0:733 #ffffffe0 #ffffffff:10 #fffff]',),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Spar01', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=(
 '[#0:733 #ffffffe0 #ffffffff:10 #fffff]',),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']

 70

p.SectionAssignment(region=region, sectionName='Spar01', offset=0.0)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5644.41,
 farPlane=8975.81, width=1737.34, height=1207.51, viewOffsetX=-58.0833,
 viewOffsetY=-45.6684)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=('[#0:744 #fff00000 #ffffffff:8 #1fff]',
),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Spar02', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=('[#0:744 #fff00000 #ffffffff:8 #1fff]',
),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Spar02', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=(
 '[#0:753 #ffffe000 #1fff #7fe00000 #0 #3ffffc00]',),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Spar03', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=(
 '[#0:753 #ffffe000 #1fff #7fe00000 #0 #3ffffc00]',),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Spar03', offset=0.0)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5631.69,
 farPlane=8988.53, width=1733.42, height=1204.79, viewOffsetX=129.967,
 viewOffsetY=-31.5154)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5627.21,
 farPlane=8870.11, width=1732.04, height=1203.83, cameraPosition=(7770.96,
 444.394, 3474.56), cameraUpVector=(-0.483216, 0.148934, 0.862741),
 viewOffsetX=129.864, viewOffsetY=-31.4903)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=(
 '[#0:754 #7ffe000 #801ffe00 #c0001fff #c00003ff #1ff801ff #fc007ff0',
 ' #fe0001ff #fffc003f #ff000000 #1fffff #c000fffe #f8003fff #ffe000ff',
 ' #7f80001]',),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Spar04', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=(
 '[#0:754 #7ffe000 #801ffe00 #c0001fff #c00003ff #1ff801ff #fc007ff0',
 ' #fe0001ff #fffc003f #ff000000 #1fffff #c000fffe #f8003fff #ffe000ff',
 ' #7f80001]',),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Spar04', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=(
 '[#0:754 #f8000000 #1ff #3fffe000 #0 #e007fe00 #3ff800f',
 ' #1fffe00 #3ffc0 #ffffff #ffe00000 #3fff0001 #7ffc000 #1fff00',
 ' #f807fffe #7f]',),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Spar05', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=(
 '[#0:754 #f8000000 #1ff #3fffe000 #0 #e007fe00 #3ff800f',
 ' #1fffe00 #3ffc0 #ffffff #ffe00000 #3fff0001 #7ffc000 #1fff00',
 ' #f807fffe #7f]',),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Spar05', offset=0.0)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5627.38,
 farPlane=8869.93, width=1732.09, height=1203.87, viewOffsetX=-126.349,

 71

 viewOffsetY=63.2738)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=(
 '[#0:817 #fffff800 #7ffffff #ff000000 #3fffff #0:3 #ffc00000',
 ' #ffffffff:2 #7ffff]',),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Rib01', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=(
 '[#0:817 #fffff800 #7ffffff #ff000000 #3fffff #0:3 #ffc00000',
 ' #ffffffff:2 #7ffff]',),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Rib01', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=(
 '[#0:818 #f8000000 #ffffff #ffc00000 #ffffffff:3 #3fffff]',),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Rib02', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=(
 '[#0:818 #f8000000 #ffffff #ffc00000 #ffffffff:3 #3fffff]',),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Rib02', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=('[#0:812 #ffc00000 #ffffffff:4 #7ff]',
),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Rib03', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=('[#0:812 #ffc00000 #ffffffff:4 #7ff]',
),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Rib03', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=(
 '[#0:808 #ffffff00 #ffffffff:3 #3fffff]',),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Rib04', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=(
 '[#0:808 #ffffff00 #ffffffff:3 #3fffff]',),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Rib04', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=('[#0:804 #fffffff8 #ffffffff:3 #ff]',
),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Rib05', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=('[#0:804 #fffffff8 #ffffffff:3 #ff]',
),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Rib05', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=('[#0:800 #ffc00000 #ffffffff:3 #7]',),
)

 72

region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Rib06', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=('[#0:800 #ffc00000 #ffffffff:3 #7]',),
)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Rib06', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=(
 '[#0:797 #fffffff0 #ffffffff:2 #3fffff]',),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Rib07', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=(
 '[#0:797 #fffffff0 #ffffffff:2 #3fffff]',),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Rib07', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=('[#0:793 #ffff0000 #ffffffff:3 #f]',),
)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Rib08', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=('[#0:793 #ffff0000 #ffffffff:3 #f]',),
)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Rib08', offset=0.0)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5627.38,
 farPlane=8869.93, width=1732.1, height=1203.87, viewOffsetX=0.00469208,
 viewOffsetY=43.9698)
session.viewports['Viewport: 1'].view.setValues(viewOffsetX=593.166,
 viewOffsetY=-205.228)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=('[#0:790 #fffffe00 #ffffffff:2 #ffff]',
),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Rib09', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=('[#0:790 #fffffe00 #ffffffff:2 #ffff]',
),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Rib09', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=('[#0:786 #ff800000 #ffffffff:3 #1ff]',
),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Rib10', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=('[#0:786 #ff800000 #ffffffff:3 #1ff]',
),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Rib10', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=(
 '[#0:783 #ffc00000 #ffffffff:2 #7fffff]',),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']

 73

p.SectionAssignment(region=region, sectionName='Rib11', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=(
 '[#0:783 #ffc00000 #ffffffff:2 #7fffff]',),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Rib11', offset=0.0)
session.viewports['Viewport: 1'].view.setValues(viewOffsetX=826.57,
 viewOffsetY=-321.052)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5676.22,
 farPlane=8821.09, width=1282.23, height=891.194, viewOffsetX=627.059,
 viewOffsetY=-263.076)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=(
 '[#0:780 #fe000000 #ffffffff:2 #3fffff]',),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Rib12', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=(
 '[#0:780 #fe000000 #ffffffff:2 #3fffff]',),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Rib12', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=(
 '[#0:778 #fffffffe #ffffffff #1ffffff]',),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Rib13', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=(
 '[#0:778 #fffffffe #ffffffff #1ffffff]',),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Rib13', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=('[#0:775 #fffff800 #ffffffff:2 #1]',),
)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Rib14', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=('[#0:775 #fffff800 #ffffffff:2 #1]',),
)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Rib14', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=('[#0:772 #ff800000 #ffffffff:2 #7ff]',
),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Rib15', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=('[#0:772 #ff800000 #ffffffff:2 #7ff]',
),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Rib15', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=('[#0:770 #ffff0000 #ffffffff #7fffff]',
),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Rib16', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']

 74

e = p.elements
elements = e.getSequenceFromMask(mask=('[#0:770 #ffff0000 #ffffffff #7fffff]',
),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Rib16', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=('[#0:768 #ffffff80 #ffffffff #ffff]',
),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Rib17', offset=0.0)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=('[#0:768 #ffffff80 #ffffffff #ffff]',
),)
region = regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.SectionAssignment(region=region, sectionName='Rib17', offset=0.0)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5686.35,
 farPlane=8810.97, width=1284.52, height=892.784, viewOffsetX=628.177,
 viewOffsetY=-263.545)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5604.29,
 farPlane=8893.02, width=1879.79, height=1306.52, viewOffsetX=619.112,
 viewOffsetY=-259.742)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5607.76,
 farPlane=8889.55, width=1880.95, height=1307.33, viewOffsetX=619.495,
 viewOffsetY=-259.903)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5759.14,
 farPlane=8738.17, width=751.855, height=522.566, viewOffsetX=636.218,
 viewOffsetY=-266.919)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5756.58,
 farPlane=8740.73, width=751.521, height=522.334, viewOffsetX=635.935,
 viewOffsetY=-266.8)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5714.38,
 farPlane=8782.93, width=1063.96, height=739.489, viewOffsetX=631.273,
 viewOffsetY=-264.844)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5715.39,
 farPlane=8781.92, width=1064.15, height=739.621, viewOffsetX=631.385,
 viewOffsetY=-264.891)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5608.97,
 farPlane=8888.34, width=1836.96, height=1276.75, viewOffsetX=619.629,
 viewOffsetY=-259.959)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5613.37,
 farPlane=8883.95, width=1838.4, height=1277.75, viewOffsetX=620.115,
 viewOffsetY=-260.163)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5505.77,
 farPlane=8991.54, width=2604.15, height=1809.97, viewOffsetX=608.229,
 viewOffsetY=-255.176)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5512.06,
 farPlane=8985.25, width=2607.13, height=1812.04, viewOffsetX=-141.252,
 viewOffsetY=58.8667)
set1 = mdb.models['deviation'].parts['PART-1'].sets['Lower']
leaf = dgm.LeafFromSets(sets=(set1,))
session.viewports['Viewport: 1'].partDisplay.displayGroup.either(leaf=leaf)
set1 = mdb.models['deviation'].parts['PART-1'].sets['Upper']
leaf = dgm.LeafFromSets(sets=(set1,))
session.viewports['Viewport: 1'].partDisplay.displayGroup.either(leaf=leaf)
p = mdb.models['deviation'].parts['PART-1']
e = p.elements
elements = e.getSequenceFromMask(mask=('[#0:827 #fff80000 #ffffffff:14 #7f]',
),)
region=regionToolset.Region(elements=elements)
p = mdb.models['deviation'].parts['PART-1']
p.assignBeamSectionOrientation(region=region, method=N1_COSINES, n1=(0.0, 0.0,
 -1.0))
#: Beam orientations have been assigned to the selected regions.
mdb.save()
#: The model database has been saved to "arw.cae".
a = mdb.models['deviation'].rootAssembly
session.viewports['Viewport: 1'].setValues(displayedObject=a)
a1 = mdb.models['deviation'].rootAssembly
a1.DatumCsysByDefault(CARTESIAN)
p = mdb.models['deviation'].parts['PART-1']
a1.Instance(name='PART-1-1', part=p, dependent=ON)
session.viewports['Viewport: 1'].assemblyDisplay.setValues(

 75

 adaptiveMeshConstraints=ON)
mdb.models['deviation'].FrequencyStep(name='Step-1', previous='Initial',
 numEigen=5)
session.viewports['Viewport: 1'].assemblyDisplay.setValues(step='Step-1')
session.viewports['Viewport: 1'].assemblyDisplay.setValues(loads=ON, bcs=ON,
 predefinedFields=ON, connectors=ON, adaptiveMeshConstraints=OFF)
session.viewports['Viewport: 1'].view.setValues(cameraPosition=(1551.44,
 910.229, 7314.48), cameraUpVector=(0, 1, 0))
set1 = mdb.models['deviation'].rootAssembly.instances['PART-1-1'].sets['Upper']
leaf = dgm.LeafFromSets(sets=(set1,))
session.viewports['Viewport: 1'].assemblyDisplay.displayGroup.either(leaf=leaf)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6733.49,
 farPlane=7975.51, width=3879.57, height=2696.44, viewOffsetX=-911.915,
 viewOffsetY=-279.077)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6890.72,
 farPlane=7818.27, width=2574.56, height=1789.41, viewOffsetX=-1072.19,
 viewOffsetY=-188.378)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6910.23,
 farPlane=7798.76, width=2581.85, height=1794.48, viewOffsetX=-897.348,
 viewOffsetY=-322.32)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6066.22,
 farPlane=8545.79, width=2266.51, height=1575.3, cameraPosition=(-2369.59,
 1269.38, 6182.49), cameraUpVector=(-0.0788834, 0.991242, -0.105909),
 viewOffsetX=-787.747, viewOffsetY=-282.952)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6568.1,
 farPlane=8093.16, width=2454.02, height=1705.63, cameraPosition=(-179.299,
 1088.55, 7107.43), cameraUpVector=(-0.104985, 0.993227, -0.0497881),
 viewOffsetX=-852.92, viewOffsetY=-306.361)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6546.55,
 farPlane=8114.71, width=2445.97, height=1700.04, viewOffsetX=-887.295,
 viewOffsetY=-325.181)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6334.13,
 farPlane=8303.01, width=2366.61, height=1644.88, cameraPosition=(-1196.38,
 1138.13, 6782.69), cameraUpVector=(0.0323912, 0.999272, -0.0201586),
 viewOffsetX=-858.504, viewOffsetY=-314.63)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6521.57,
 farPlane=8115.56, width=963.186, height=669.449, viewOffsetX=-1091.26,
 viewOffsetY=-56.6488)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6529.34,
 farPlane=8107.79, width=964.334, height=670.246, viewOffsetX=-1072.04,
 viewOffsetY=-272.641)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6494.79,
 farPlane=8142.34, width=1307.03, height=908.429, viewOffsetX=-1036.31,
 viewOffsetY=-246.978)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6484.47,
 farPlane=8152.66, width=1304.95, height=906.986, viewOffsetX=-975.166,
 viewOffsetY=-472.671)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6473.49,
 farPlane=8163.64, width=1474.36, height=1024.73, viewOffsetX=-949.085,
 viewOffsetY=-460.922)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6462.49,
 farPlane=8174.64, width=1471.85, height=1022.99, viewOffsetX=-929.577,
 viewOffsetY=-482.507)
session.viewports['Viewport: 1'].view.setValues(cameraPosition=(-1196.38,
 1138.13, 6782.69), cameraUpVector=(-0.380919, 0.906497, -0.182109))
session.viewports['Viewport: 1'].view.setValues(nearPlane=6484.74,
 farPlane=8152.39, width=1226.71, height=852.605, viewOffsetX=-992.473,
 viewOffsetY=-487.656)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6494.53,
 farPlane=8142.6, width=1228.56, height=853.891, viewOffsetX=-1054.96,
 viewOffsetY=-25.3491)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6562.76,
 farPlane=8074.37, width=668.673, height=464.752, viewOffsetX=-1112.86,
 viewOffsetY=-78.7983)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6568.23,
 farPlane=8068.9, width=669.23, height=465.139, viewOffsetX=-1029.03,
 viewOffsetY=-154.127)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6460.6,
 farPlane=8176.53, width=1578.18, height=1096.89, viewOffsetX=-1143.73,
 viewOffsetY=-260.105)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6448.86,
 farPlane=8188.27, width=1575.31, height=1094.9, viewOffsetX=-967.684,
 viewOffsetY=291.009)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6407.55,
 farPlane=8229.58, width=2004.77, height=1393.39, viewOffsetX=-966.606,
 viewOffsetY=338.132)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6392.89,

 76

 farPlane=8244.24, width=2000.19, height=1390.2, viewOffsetX=-676.627,
 viewOffsetY=136.732)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6249.28,
 farPlane=8441.31, width=1955.26, height=1358.97, cameraPosition=(-603.881,
 -1561.57, 6549.69), cameraUpVector=(-0.563055, 0.817458, 0.121374),
 viewOffsetX=-661.427, viewOffsetY=133.66)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6254.95,
 farPlane=8435.63, width=1957.03, height=1360.21, viewOffsetX=-715.563,
 viewOffsetY=203.18)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6254.96,
 farPlane=8435.62, width=1957.04, height=1360.21, cameraPosition=(-603.881,
 -1561.57, 6549.69), cameraUpVector=(-0.125315, 0.94252, 0.309761),
 viewOffsetX=-715.564, viewOffsetY=203.18)
session.viewports['Viewport: 1'].view.setValues(viewOffsetX=-1082.39,
 viewOffsetY=-94.2426)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6309.36,
 farPlane=8381.22, width=1639.63, height=1139.6, viewOffsetX=-1114.24,
 viewOffsetY=25.4386)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6297.21,
 farPlane=8393.37, width=1636.47, height=1137.4, viewOffsetX=-946.292,
 viewOffsetY=-302.899)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6185.24,
 farPlane=8505.35, width=2636.9, height=1832.74, viewOffsetX=-817.475,
 viewOffsetY=-346.516)
set1 = mdb.models['deviation'].rootAssembly.instances['PART-1-1'].sets['Lower']
set2 = mdb.models['deviation'].rootAssembly.instances['PART-1-1'].sets['Upper']
leaf = dgm.LeafFromSets(sets=(set1, set2,))
session.viewports['Viewport: 1'].assemblyDisplay.displayGroup.either(leaf=leaf)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6395.02,
 farPlane=8295.57, width=841.411, height=584.81, viewOffsetX=-1231.1,
 viewOffsetY=131.082)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6401.84,
 farPlane=8288.75, width=842.308, height=585.434, viewOffsetX=-1171.83,
 viewOffsetY=-42.0184)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6332.43,
 farPlane=8358.16, width=1454.07, height=1010.63, viewOffsetX=-1175.76,
 viewOffsetY=27.7708)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6321.57,
 farPlane=8369.01, width=1451.58, height=1008.9, viewOffsetX=-1148.74,
 viewOffsetY=-189.94)
session.viewports['Viewport: 1'].view.setValues(viewOffsetX=-1145.8,
 viewOffsetY=-167.879)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6757.84,
 farPlane=7945.37, width=1551.76, height=1078.53, cameraPosition=(773.41,
 -241.889, 7182.97), cameraUpVector=(-0.129596, 0.98143, 0.141423),
 viewOffsetX=-1224.88, viewOffsetY=-179.465)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6745.04,
 farPlane=7958.17, width=1548.82, height=1076.49, viewOffsetX=-1220.99,
 viewOffsetY=-259.155)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6747.74,
 farPlane=8000.83, width=1549.45, height=1076.92, cameraPosition=(2177.01,
 -634.011, 7124.84), cameraUpVector=(-0.463913, 0.857246, 0.223415),
 viewOffsetX=-1221.48, viewOffsetY=-259.259)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6747.66,
 farPlane=8000.91, width=1549.43, height=1076.91, viewOffsetX=-1201.06,
 viewOffsetY=108.086)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6579.35,
 farPlane=8194.76, width=1510.78, height=1050.05, cameraPosition=(2448.38,
 -1663.99, 6795.13), cameraUpVector=(-0.33555, 0.867378, 0.367507),
 viewOffsetX=-1171.1, viewOffsetY=105.39)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6584.29,
 farPlane=8189.82, width=1511.92, height=1050.84, viewOffsetX=-1263.89,
 viewOffsetY=-55.3734)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6584.29,
 farPlane=8189.81, width=1511.92, height=1050.84, viewOffsetX=-1084.67,
 viewOffsetY=159.084)
session.viewports['Viewport: 1'].view.setValues(cameraPosition=(350.339,
 630.188, 7366.18), cameraUpVector=(0, 1, 0), cameraTarget=(350.339,
 630.188, -47.6956), viewOffsetX=0, viewOffsetY=0)
session.viewports['Viewport: 1'].view.setValues(nearPlane=7012.38,
 farPlane=7800.01, width=2334.1, height=1622.28, viewOffsetX=-25.3026,
 viewOffsetY=2.20023)
set1 = mdb.models['deviation'].rootAssembly.instances['PART-1-1'].sets['Lower']
set2 = mdb.models['deviation'].rootAssembly.instances['PART-1-1'].sets['Upper']
leaf = dgm.LeafFromSets(sets=(set1, set2,))
session.viewports['Viewport: 1'].assemblyDisplay.displayGroup.either(leaf=leaf)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6995.4,

 77

 farPlane=7816.99, width=2328.45, height=1618.35, viewOffsetX=69.1233,
 viewOffsetY=-68.5785)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6916.79,
 farPlane=8118.55, width=2302.29, height=1600.17, cameraPosition=(-220.483,
 14.6936, 7318.5), cameraUpVector=(-0.0174268, 0.996487, 0.0819126),
 viewOffsetX=68.3466, viewOffsetY=-67.8079)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6920.09,
 farPlane=8115.25, width=2303.39, height=1600.94, viewOffsetX=187.399,
 viewOffsetY=-56.1716)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6631.48,
 farPlane=9127.69, width=2207.33, height=1534.17, cameraPosition=(-1865.8,
 -2661.68, 6214.72), cameraUpVector=(-0.00416913, 0.885759, 0.464128),
 viewOffsetX=179.583, viewOffsetY=-53.8289)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6643.58,
 farPlane=9115.58, width=2211.36, height=1536.97, viewOffsetX=278.492,
 viewOffsetY=55.8566)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6816.92,
 farPlane=8942.24, width=843.124, height=586.001, viewOffsetX=-38.5574,
 viewOffsetY=269.977)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6823.77,
 farPlane=8935.39, width=843.971, height=586.59, viewOffsetX=-6.95788,
 viewOffsetY=23.1275)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6754.13,
 farPlane=9005.04, width=1457.88, height=1013.28, viewOffsetX=31.7655,
 viewOffsetY=103.564)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6743.21,
 farPlane=9015.96, width=1455.52, height=1011.64, viewOffsetX=103.974,
 viewOffsetY=-72.0918)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6378.09,
 farPlane=8593.69, width=1376.71, height=956.864, cameraPosition=(1324.69,
 -4420.59, 5291.39), cameraUpVector=(-0.490844, 0.586429, 0.644339),
 viewOffsetX=98.3442, viewOffsetY=-68.1883)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6509.13,
 farPlane=8462.66, width=433.615, height=301.378, viewOffsetX=-27.1302,
 viewOffsetY=-223.217)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6512.71,
 farPlane=8459.08, width=433.854, height=301.544, viewOffsetX=-24.0681,
 viewOffsetY=-210.592)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6685.06,
 farPlane=8055.71, width=445.336, height=309.524, cameraPosition=(1364.73,
 -1959.52, 6824.71), cameraUpVector=(-0.453981, 0.809599, 0.372088),
 viewOffsetX=-24.705, viewOffsetY=-216.165)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6683.56,
 farPlane=8057.2, width=445.236, height=309.455, viewOffsetX=-35.0748,
 viewOffsetY=-290.999)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6516.8,
 farPlane=8223.97, width=1816.45, height=1262.49, viewOffsetX=44.3894,
 viewOffsetY=-68.1547)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6503.4,
 farPlane=8237.37, width=1812.71, height=1259.9, viewOffsetX=130.618,
 viewOffsetY=-69.8512)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6932.11,
 farPlane=8251.06, width=1932.21, height=1342.95, cameraPosition=(-592.768,
 -412.966, 7231.58), cameraUpVector=(-0.142403, 0.982223, 0.122307),
 viewOffsetX=139.229, viewOffsetY=-74.4559)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6916.94,
 farPlane=8266.22, width=1927.98, height=1340.02, viewOffsetX=138.924,
 viewOffsetY=89.7906)
session.viewports['Viewport: 1'].view.setValues(nearPlane=7005.64,
 farPlane=7909.14, width=1952.71, height=1357.2, cameraPosition=(-37.5807,
 770.994, 7354.68), cameraUpVector=(-0.148235, 0.988595, -0.0265733),
 viewOffsetX=140.706, viewOffsetY=90.9421)
set1 = mdb.models['deviation'].rootAssembly.instances['PART-1-1'].sets['Lower']
set2 = mdb.models['deviation'].rootAssembly.instances['PART-1-1'].sets['Upper']
leaf = dgm.LeafFromSets(sets=(set1, set2,))
session.viewports['Viewport: 1'].assemblyDisplay.displayGroup.either(leaf=leaf)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6931.4,
 farPlane=7983.39, width=2643.29, height=1837.18, viewOffsetX=170.621,
 viewOffsetY=235.231)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6912.4,
 farPlane=8002.38, width=2636.04, height=1832.14, viewOffsetX=74.0059,
 viewOffsetY=39.6208)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6601.29,
 farPlane=9560.22, width=2517.4, height=1749.68, cameraPosition=(-3525.79,
 -1643.16, 5849.17), cameraUpVector=(-0.0371787, 0.940378, 0.338094),
 viewOffsetX=70.6751, viewOffsetY=37.8376)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6616.14,

 78

 farPlane=9545.38, width=2523.06, height=1753.62, viewOffsetX=132.185,
 viewOffsetY=163.181)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6801.11,
 farPlane=8479.58, width=2593.6, height=1802.65, cameraPosition=(-825.001,
 -739.507, 7143.13), cameraUpVector=(0.053723, 0.979269, 0.19531),
 viewOffsetX=135.881, viewOffsetY=167.743)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6986.13,
 farPlane=8294.56, width=1053.12, height=731.958, viewOffsetX=-117.705,
 viewOffsetY=368.472)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6994.62,
 farPlane=8286.07, width=1054.4, height=732.848, viewOffsetX=-58.0239,
 viewOffsetY=-29.5533)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6921.18,
 farPlane=8359.51, width=1711.59, height=1189.62, viewOffsetX=14.2195,
 viewOffsetY=-86.1161)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6908.46,
 farPlane=8372.23, width=1708.45, height=1187.43, viewOffsetX=21.1172,
 viewOffsetY=-156.927)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6145.38,
 farPlane=8430.49, width=1519.74, height=1056.27, cameraPosition=(2227.11,
 -2971.28, 6154.93), cameraUpVector=(-0.267589, 0.795895, 0.543091),
 viewOffsetX=18.7847, viewOffsetY=-139.594)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6279.04,
 farPlane=8296.82, width=652.986, height=453.849, viewOffsetX=-40.4579,
 viewOffsetY=-232.08)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6284.37,
 farPlane=8291.49, width=653.541, height=454.234, viewOffsetX=-17.9792,
 viewOffsetY=-243.534)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6067.33,
 farPlane=8404.94, width=630.97, height=438.546, cameraPosition=(2746.25,
 -3527.41, 5603.8), cameraUpVector=(-0.448786, 0.618353, 0.645159),
 viewOffsetX=-17.3583, viewOffsetY=-235.123)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6070.26,
 farPlane=8402.01, width=631.275, height=438.758, viewOffsetX=-96.0362,
 viewOffsetY=-183.43)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6131.08,
 farPlane=8379.03, width=637.6, height=443.155, cameraPosition=(2587.72,
 -3427.57, 5739.71), cameraUpVector=(-0.446176, 0.642514, 0.622979),
 viewOffsetX=-96.9984, viewOffsetY=-185.268)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6098.31,
 farPlane=8411.79, width=875.364, height=608.409, viewOffsetX=-96.4799,
 viewOffsetY=-184.278)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6098.9,
 farPlane=8411.2, width=875.449, height=608.468, viewOffsetX=-202.927,
 viewOffsetY=-175.426)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6063.53,
 farPlane=8446.57, width=1137.29, height=790.454, viewOffsetX=-201.75,
 viewOffsetY=-174.409)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6064.38,
 farPlane=8445.72, width=1137.45, height=790.568, viewOffsetX=-201.778,
 viewOffsetY=-174.433)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6238.71,
 farPlane=8312.49, width=1170.15, height=813.294, cameraPosition=(2232.45,
 -2711.65, 6297), cameraUpVector=(-0.263109, 0.819228, 0.509548),
 viewOffsetX=-207.578, viewOffsetY=-179.447)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6090.46,
 farPlane=8460.74, width=2400.28, height=1668.28, viewOffsetX=-155.056,
 viewOffsetY=80.9321)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6073.26,
 farPlane=8477.94, width=2393.51, height=1663.57, viewOffsetX=-6.69122,
 viewOffsetY=75.8535)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6480.11,
 farPlane=8239.88, width=2553.85, height=1775.02, cameraPosition=(1307.9,
 -1535.1, 6977.97), cameraUpVector=(-0.18034, 0.932789, 0.312062),
 viewOffsetX=-7.13947, viewOffsetY=80.9349)
set1 = mdb.models['deviation'].rootAssembly.instances['PART-1-1'].sets['Lower']
set2 = mdb.models['deviation'].rootAssembly.instances['PART-1-1'].sets['Upper']
leaf = dgm.LeafFromSets(sets=(set1, set2,))
session.viewports['Viewport: 1'].assemblyDisplay.displayGroup.either(leaf=leaf)
a = mdb.models['deviation'].rootAssembly
n1 = a.instances['PART-1-1'].nodes
nodes1 = n1.getSequenceFromMask(mask=(
 '[#ffffffff:39 #3fffff #0:580 #1c000001 #ff000000 #1 #fe000000',
 ' #ffffffff:8 #1ffff #3fc000 #f0000000 #1fff #0:20 #f0000000',
 ' #ffffffff:34 #ffffff #1c00000 #0:11 #700000 #10000c0 #0:29',
 ' #7ffff #ffffe #0:2 #fffff800 #ffffffff #fff]',),)
region = regionToolset.Region(nodes=nodes1)

 79

mdb.models['deviation'].EncastreBC(name='BC-1', createStepName='Step-1',
 region=region)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6460.08,
 farPlane=8259.91, width=2545.96, height=1769.53, viewOffsetX=16.098,
 viewOffsetY=-89.5619)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5115.25,
 farPlane=8754.32, width=2015.95, height=1401.16, cameraPosition=(4832.95,
 -3655.22, 4015.16), cameraUpVector=(-0.0758582, 0.643096, 0.762019),
 viewOffsetX=12.7468, viewOffsetY=-70.9173)
set1 = mdb.models['deviation'].rootAssembly.instances['PART-1-1'].sets['Upper']
leaf = dgm.LeafFromSets(sets=(set1,))
session.viewports['Viewport: 1'].assemblyDisplay.displayGroup.either(leaf=leaf)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5181.45,
 farPlane=8688.12, width=2042.05, height=1419.29, viewOffsetX=530.147,
 viewOffsetY=-34.5942)
session.viewports['Viewport: 1'].view.setValues(nearPlane=4995.68,
 farPlane=8873.89, width=3655.37, height=2540.61, viewOffsetX=742.674,
 viewOffsetY=226.375)
session.viewports['Viewport: 1'].assemblyDisplay.setValues(loads=OFF, bcs=OFF,
 predefinedFields=OFF, connectors=OFF)
mdb.Job(name='vibrate', model='deviation', type=ANALYSIS,
 explicitPrecision=SINGLE, nodalOutputPrecision=SINGLE, description='',
 parallelizationMethodExplicit=DOMAIN, multiprocessingMode=DEFAULT,
 numDomains=1, userSubroutine='', numCpus=1, preMemory=512.0,
 standardMemory=512.0, standardMemoryPolicy=MODERATE, scratch='',
 echoPrint=OFF, modelPrint=OFF, contactPrint=OFF, historyPrint=OFF)
mdb.jobs['vibrate'].submit(consistencyChecking=OFF)
#: The job input file "vibrate.inp" has been submitted for analysis.
#: Job vibrate: Analysis Input File Processor completed successfully.
#: Job vibrate: Abaqus/Standard completed successfully.
#: Job vibrate completed successfully.
session.viewports['Viewport: 1'].assemblyDisplay.setValues(
 adaptiveMeshConstraints=ON)
del mdb.models['deviation'].steps['Step-1']
session.viewports['Viewport: 1'].assemblyDisplay.setValues(step='Initial')
mdb.models['deviation'].StaticStep(name='Step-1', previous='Initial',
 maxNumInc=400)
session.viewports['Viewport: 1'].assemblyDisplay.setValues(step='Step-1')
session.viewports['Viewport: 1'].assemblyDisplay.setValues(loads=ON, bcs=ON,
 predefinedFields=ON, connectors=ON, adaptiveMeshConstraints=OFF)
session.viewports['Viewport: 1'].view.setValues(width=3655.37, cameraPosition=(
 1198.75, 1399.87, 7241.94), cameraUpVector=(0, 1, 0), cameraTarget=(
 1198.75, 1399.87, -171.924), viewOffsetX=0, viewOffsetY=0)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6528.88,
 farPlane=8035.03, width=4802.8, height=3338.12, viewOffsetX=-267.633,
 viewOffsetY=-510.937)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6614.25,
 farPlane=7949.66, width=4041.29, height=2808.84, viewOffsetX=-436.297,
 viewOffsetY=-473.859)
set1 = mdb.models['deviation'].rootAssembly.instances['PART-1-1'].sets['Upper']
leaf = dgm.LeafFromSets(sets=(set1,))
session.viewports['Viewport: 1'].assemblyDisplay.displayGroup.either(leaf=leaf)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6778.82,
 farPlane=7785.09, width=2857.34, height=1985.95, viewOffsetX=-732.372,
 viewOffsetY=-535.019)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6800.18,
 farPlane=7763.73, width=2866.34, height=1992.21, viewOffsetX=-458.791,
 viewOffsetY=-763.224)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6800.25,
 farPlane=7763.66, width=2866.37, height=1992.23, viewOffsetX=-412.33,
 viewOffsetY=-882.301)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5771.4,
 farPlane=8759.49, width=2432.7, height=1690.81, cameraPosition=(-2325.65,
 -1278.12, 5775.54), cameraUpVector=(-0.0967619, 0.927763, 0.360407),
 viewOffsetX=-349.946, viewOffsetY=-748.813)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5825.37,
 farPlane=8705.52, width=2455.45, height=1706.62, viewOffsetX=-303.463,
 viewOffsetY=-723.474)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6391.46,
 farPlane=8190.26, width=2694.06, height=1872.47, cameraPosition=(-613.497,
 451.568, 6954.21), cameraUpVector=(-0.0173398, 0.99168, 0.127556),
 viewOffsetX=-332.952, viewOffsetY=-793.779)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6579.06,
 farPlane=8002.66, width=1096.2, height=761.898, viewOffsetX=-753.764,
 viewOffsetY=-399.192)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6570.75,
 farPlane=8010.97, width=1094.81, height=760.935, viewOffsetX=-710.661,

 80

 viewOffsetY=-761.408)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6481.09,
 farPlane=8100.63, width=1884.62, height=1309.88, viewOffsetX=-580.122,
 viewOffsetY=-697.209)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6467.23,
 farPlane=8114.49, width=1880.59, height=1307.07, viewOffsetX=-355.955,
 viewOffsetY=-1017.72)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6467.21,
 farPlane=8114.51, width=1880.58, height=1307.07, viewOffsetX=-321.658,
 viewOffsetY=-1053.92)
session.viewports['Viewport: 1'].view.setValues(cameraPosition=(-613.497,
 451.568, 6954.21), cameraUpVector=(-0.34847, 0.936628, 0.0360202))
session.viewports['Viewport: 1'].view.setValues(viewOffsetX=-847.535,
 viewOffsetY=-554.719)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5855.86,
 farPlane=8100.89, width=1702.81, height=1183.51, cameraPosition=(1657.44,
 -4161.04, 4709.8), cameraUpVector=(-0.402782, 0.584855, 0.704068),
 viewOffsetX=-767.417, viewOffsetY=-502.281)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5878.39,
 farPlane=8078.36, width=1709.36, height=1188.07, viewOffsetX=-784.225,
 viewOffsetY=-22.752)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6065.04,
 farPlane=7891.71, width=275.579, height=191.537, viewOffsetX=-945.978,
 viewOffsetY=-238.638)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6067.33,
 farPlane=7889.43, width=275.683, height=191.609, viewOffsetX=-941.029,
 viewOffsetY=-238.169)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6215.62,
 farPlane=7824.36, width=282.421, height=196.293, cameraPosition=(1702.88,
 -3162.09, 5650.42), cameraUpVector=(-0.451843, 0.682807, 0.574119),
 viewOffsetX=-964.029, viewOffsetY=-243.99)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6214.74,
 farPlane=7825.24, width=282.382, height=196.265, viewOffsetX=-990.214,
 viewOffsetY=-321.775)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6505.6,
 farPlane=7722.44, width=295.598, height=205.451, cameraPosition=(868.49,
 -1805.1, 6505.23), cameraUpVector=(-0.468727, 0.805179, 0.363293),
 viewOffsetX=-1036.56, viewOffsetY=-336.835)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6503.87,
 farPlane=7724.17, width=295.519, height=205.396, viewOffsetX=-1047.06,
 viewOffsetY=-446.63)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6284.97,
 farPlane=7943.07, width=2076.82, height=1443.46, viewOffsetX=-970.471,
 viewOffsetY=-369.792)
set1 = mdb.models['deviation'].rootAssembly.instances['PART-1-1'].sets['Lower']
set2 = mdb.models['deviation'].rootAssembly.instances['PART-1-1'].sets['Upper']
leaf = dgm.LeafFromSets(sets=(set1, set2,))
session.viewports['Viewport: 1'].assemblyDisplay.displayGroup.either(leaf=leaf)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6269.85,
 farPlane=7958.19, width=2071.82, height=1439.99, viewOffsetX=-1018.51,
 viewOffsetY=-211.469)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6756.45,
 farPlane=7936.47, width=2232.62, height=1551.75, cameraPosition=(570.191,
 2107.37, 7181.28), cameraUpVector=(-0.0516678, 0.993643, -0.100023),
 viewOffsetX=-1097.56, viewOffsetY=-227.881)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6716.27,
 farPlane=7976.64, width=2521.98, height=1752.87, viewOffsetX=-525.897,
 viewOffsetY=-236.469)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6698.08,
 farPlane=7994.83, width=2515.15, height=1748.12, viewOffsetX=-904.166,
 viewOffsetY=-702.163)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6824.01,
 farPlane=7868.9, width=1468.26, height=1020.5, viewOffsetX=-958.302,
 viewOffsetY=-571.248)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6835.63,
 farPlane=7857.28, width=1470.77, height=1022.23, viewOffsetX=-962.915,
 viewOffsetY=-1052.05)
session.viewports['Viewport: 1'].view.setValues(viewOffsetX=-879.468,
 viewOffsetY=-1040.13)
session.viewports['Viewport: 1'].view.setValues(cameraPosition=(570.191,
 2107.37, 7181.28), cameraUpVector=(-0.467155, 0.875414, -0.124164))
session.viewports['Viewport: 1'].view.setValues(viewOffsetX=-1117.89,
 viewOffsetY=-482.816)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6972.12,
 farPlane=7720.79, width=409.087, height=284.33, viewOffsetX=-1161.18,
 viewOffsetY=-641.462)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6975.5,

 81

 farPlane=7717.41, width=409.286, height=284.468, viewOffsetX=-1161.74,
 viewOffsetY=-641.773)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6809.05,
 farPlane=7728.34, width=399.52, height=277.68, cameraPosition=(186.338,
 579.448, 7126.51), cameraUpVector=(-0.396858, 0.916625, 0.047986),
 viewOffsetX=-1134.02, viewOffsetY=-626.459)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6758.83,
 farPlane=7778.56, width=840.109, height=583.905, viewOffsetX=-1135.32,
 viewOffsetY=-538.255)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6752.39,
 farPlane=7785, width=839.308, height=583.349, viewOffsetX=-1134.24,
 viewOffsetY=-537.742)
session.viewports['Viewport: 1'].view.setValues(nearPlane=6044.47,
 farPlane=7981.9, width=751.315, height=522.191, cameraPosition=(2338.96,
 -2884.95, 5769.92), cameraUpVector=(-0.433826, 0.68925, 0.580284),
 viewOffsetX=-1015.33, viewOffsetY=-481.365)
session.viewports['Viewport: 1'].view.setValues(nearPlane=5733.63,
 farPlane=8292.75, width=3388.57, height=2355.18, viewOffsetX=-869.583,
 viewOffsetY=-402.388)
a = mdb.models['deviation'].rootAssembly
n1 = a.instances['PART-1-1'].nodes
nodes1 = n1.getSequenceFromMask(mask=(
 '[#ffffffff:39 #3fffff #0:580 #1c000001 #ff000000 #1 #fe000000',
 ' #ffffffff:8 #1ffff #3fc000 #f0000000 #1fff #0:20 #f0000000',
 ' #ffffffff:34 #ffffff #1c00000 #0:11 #700000 #10000c0 #0:29',
 ' #7ffff #ffffe #0:2 #fffff800 #ffffffff #fff]',),)
region = regionToolset.Region(nodes=nodes1)
mdb.models['deviation'].EncastreBC(name='BC-1', createStepName='Step-1',
 region=region)
session.viewports['Viewport: 1'].assemblyDisplay.setValues(loads=OFF, bcs=OFF,
 predefinedFields=OFF, connectors=OFF)
mdb.Job(name='couple', model='deviation', type=ANALYSIS,
 explicitPrecision=SINGLE, nodalOutputPrecision=SINGLE, description='',
 parallelizationMethodExplicit=DOMAIN, multiprocessingMode=DEFAULT,
 numDomains=1, userSubroutine='', numCpus=1, preMemory=256.0,
 standardMemory=256.0, standardMemoryPolicy=MODERATE, scratch='',
 echoPrint=OFF, modelPrint=OFF, contactPrint=OFF, historyPrint=OFF)
mdb.jobs['couple'].writeInput(consistencyChecking=OFF)
#: The job input file has been written to "couple.inp".
session.viewports['Viewport: 1'].partDisplay.setValues(sectionAssignments=OFF,
 engineeringFeatures=OFF)
p = mdb.models['deviation'].parts['PART-1']
session.viewports['Viewport: 1'].setValues(displayedObject=p)
mdb.save()
#: The model database has been saved to "arw.cae".

 82

APPENDIX A.2

file
read-case
arw_steady.cas
q
define
bc
pff
farfield
no
0
no
0.8
no
216
no
0
no
0.999390827
no
0.034899496
q
q
solve
monitors
force
dc
yes
5
6
7
8
no
yes
no
no
0
0.999390827
0.034899496
lc
yes
no
yes
no
no
0
0.034899496
0.999390827
q
q
q
file
write-case
arw_steady2.cas
q
exit

 83

APPENDIX A.3

Table A.1 : Material Properties of ARW-2

 Young Modulus (MPa) Mass Density (kg/m3) Poisson’s Ratio
Skin 31000 2700 0.35087

Axial Bars 40000 2700 0.4
Spars 39250 3600 0.23022
Ribs 60000 3600 0.39998

Table A.2 : Geometrical Properties of ARW-2

 Thickness (mm) Radius (mm)
Rib 1 9.8
Rib 2 26.0
Rib 3 4.0
Rib 4 20.0
Rib 5 25.0
Rib 6 30.4
Rib 7 9.2
Rib 8 2.4
Rib 9 5.8
Rib 10 1.2
Rib 11 1.4
Rib 12 6.0
Rib 13 19.6
Rib 14 7.8
Rib 15 2.2
Rib 16 40.4
Rib 17 41.2
Spar 1 1.0
Spar 2 4.0
Spar 3 4.0
Spar 4 2.0
Spar 5 5.2

Axial Bar 1 17.1 3.1
Axial Bar 2 13.8 1.0
Axial Bar 3 13.0 1.0
Axial Bar 4 5.8 1.0

 85

CURRICULUM VITA

Candidate’s full name: Ahmet AYSAN

Place and date of birth: GÖLCÜK – 09.11.1984

Permanent Address: Gülbağ Mah. Avni Dilligil Sok. No : 38/4 Mecidiyeköy-
İSTANBUL

Universities and
Colleges attended: Istanbul Technical University

Publications:
 Nikbay, M., Öncü, L., Aysan, A., A multi-disciplinary code coupling approach for

analysis and optimization of aeroelastic systems. In 12th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference, 10 – 12 Sep 2008,
Victoria, British Columbia, Canada, AIAA, 2008.

