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ABSTRACT

SENESCENCE AND IMMORTALITY GENES

AS MARKERS OF HEPATOCELLULAR

CARCINOGENESIS

Ayça Arslan Ergül

Ph.D. in Molecular Biology and Genetics

Supervisor: Prof. Dr. Mehmet Öztürk

August 2009

Cellular senescence is a tumor-suppression mechanism, and immortalization

facilitates neoplastic transformation. Both mechanisms may be highly relevant to

hepatocellular carcinoma (HCC) development. We worked on two major aspects

of cellular senescence and immortality in HCC. First, we analyzed the role of

ZEB2 (Smad-interacting protein SIP1, ZFXH1B) gene for a senescence-related

role in HCC. Then, we extended our work on the identification and analysis of

a senescence and immortality gene network (SIGN) in relation to hepatocellular

carcinogenesis. ZEB2 is a transcriptional repressor of E-cadherin, and induces

epithelial-mesenchymal transition (EMT), a key process involved in tumor metas-

tasis and progression. However, ZEB2 is also a repressor of telomerase reverse

transcriptase (TERT) gene, which encodes a key enzyme required for telomere

maintenance and tumor cell immortality. We performed in-vivo, in-silico and

in-vitro studies to explore potential implications of ZEB2 in hepatocellular carci-

noma (HCC). Tissue expression of ZEB2 transcripts displayed stepwise decreases

in HCC lesions, as compared to liver cirrhosis. This inverse correlation suggested

that sustained ZEB2 expression is not compatible with HCC progression. Next,
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we studied in vitro effects of ZEB2 knockdown and overexpression in HCC cells.

Huh7 clones stably transfected with a specific ZEB2-shRNA expression vector

displayed increased colony formation and increased proliferation. Conversely,

Hep3B cells stably transfected with ZEB2 expression vector displayed permanent

cell cycle arrest associated with increased senescence-associated β-galactosidase

activity. ZEB2-induced senescence arrest was correlated with the repression of

TERT expression and concomitant upregulation of cyclin-dependent kinase in-

hibitor p21Cip1. Transient expression of ZEB2 did not induce p21Cip1 expression,

suggesting an indirect mechanism. Finally, ZEB2 overexpression was not com-

patible with in vitro survival of cancer cells, as ZEB2-overexpressing Hep3B and

A431 clones depleted progressively during in vitro culture and expansion. These

observations suggest that the ZEB2 gene, aside from its role in EMT, also plays

a negative role in HCC cell growth and survival.

In the other study, we integrated gene expression data from senescence pro-

grammed and immortal HCC cells with the data from cirrhosis and HCC tissues

to generate a SIGN signature. The SIGN signature accurately classified nor-

mal liver, cirrhosis, dysplasia and HCC lesions, and indicated that senescence-

to-immortality conversion first occured during dysplasia-to-early HCC transi-

tion. Senescence-to-immortality conversion contributed also to tumor progres-

sion. This conversion was accompanied by hepatic dedifferentiation and increased

expression of cell proliferation, chromosome modification and DNA damage re-

sponse genes. Thus, HCC immortalization is closely associated with the ac-

quisition of stem/progenitor-like features. Finally, we identified a large set of

upregulated DNA damage checkpoint and DNA repair genes that showed signif-

icant associations with tumor initiation and progression. These genes may serve

as potential targets for HCC prevention and therapy.

Keywords: Senescence, Liver Cancer, Gene Expression Profiling, Biological Path-

ways, ZEB2, p21Cip1, TERT
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ÖZET

HEPATOSELÜLER KARSİNOGENEZ BELİRTECİ OLARAK

YAŞLANMA VE ÖLÜMSÜZLÜK GENLERİ

Ayça Arslan Ergül

Moleküler Biyoloji ve Genetik Bölümü Doktora

Tez Yöneticisi: Prof. Dr. Mehmet Öztürk

Ağustos 2009

Hücre yaşlanması tümör baskılayıcı bir mekanizmadır ve ölümsüzlük, neoplas-

tik dönüşümü kolaylaştırır. Her iki mekanizma da hepatoselüler karsinom (HCC)

gelişimi ile yakından ilişkilidir. Biz, HCC’de hücre yaşlanması ve ölümsüzlügünü

iki açıdan çalıştık. Önce, ZEB2 (Smad ile etkileşen protein SIP1, ZFHX1B)

geninin HCC’deki yaşlanma ile ilişkili rolünü inceledik. Sonra, çalışmamızı, hep-

atoselüler kanser ile ilişkili yaşlanma ve ölümsüzlük gen ağı (SIGN)’nın belirlen-

mesi ve analizi yönünde genişlettik. ZEB2, E-kaderin’i baskılar ve tümör metas-

tazında ve gelişiminde anahtar rol oynayan, epitel-mezenkimal geçiş (EMT)’yi,

indükler. Öte yandan ZEB2, telomer muhafazası ve tümör hücre ölümsüzlügü için

gerekli enzim, telomeraz ters transkriptaz (TERT)’i baskılar. Biz, ZEB2’nin hep-

atoselüler kanserdeki potansiyel anlamını keşfetmek için, in-vivo, in-vitro ve in-

silico çalıştık. ZEB2 transkriptlerinin doku ifadeleri, HCC lezyonlarında, karaciğer

sirozuna kıyasla dereceli olarak azalma gösterdi. Bu ters bağıntı, ZEB2 ifadesinin,

HCC’nin ilerlemesiyle uyumlu olmadığını akla getirdi. Sonra, HCC hücrelerinde

ZEB2’nin azaltılması ve artırılmasının in vitro etkilerini çalıştık. Özgün bir

ZEB2-shRNA ifade vektörü ile kararlı şekilde transfekte edilen Huh7 klonları,

koloni oluşumunda ve çoğalmada artış gösterdiler. Karşıt şekilde, ZEB2 ifade
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vektörü ile transfekte edilen Hep3B hücrelerinin, yaşlanma ilişkili β-galaktozidaz

aktivitesi ile, kalıcı hücre döngüsü hapsine girdiklerini gördük. ZEB2 ile indüklenen

yaşlanma hapsi, TERT ifadesinin baskılanması ve eşlik eden siklin-bağımlı kinaz

engelleyici p21Cip1’in ifadesindeki artış ile bağıntılı idi. ZEB2’nin geçici ifadesi,

p21Cip1 ifadesindeki artışı indüklemedi. Son olarak, ZEB2’yi aşırı ifade eden

Hep3B ve A431 klonlarının, in vitro kültürde dereceli olarak azalması ile ZEB2

aşırı ifadesinin, kanser hücrelerinin in vitro yaşamı ile uyumlu olmadığı sonucuna

varıldı. Bu gözlemler, ZEB2 geninin, EMT’deki rolünün dışında, HCC hücre

büyümesi ve yaşamasında negatif rol oynadığını düşündürdü.

Diğer çalışmamızda SIGN imzasını oluşturmak için, yaşlanmaya program-

lanmış ve ölümsüz HCC hücrelerinden gelen gen ifade datasını, siroz ve HCC

dokularından gelen data ile birleştirdik. SIGN imzası normal karaciğer, siroz, dis-

plazi ve HCC lezyonlarını doğrulukla sınıflandırdı ve yaşlanmadan ölümsüzlüğe

dönüşümün, ilk olarak displaziden erken HCC’ye geçişte gerçekleştiğini belirledi.

Bu dönüşüm, tümör ilerlemesine de katkıda bulunur. Yaşlanmadan ölümsüzlüğe

dönüşüme, hepatik geri başkalaşım ile ve hücre çoğalması, kromozom değişimi ve

DNA hasar yanıtı genlerindeki ifade artışı eşlik etti. Bu nedenle, HCC ölümsüzlüğü,

kök hücre/öncü hücre benzeri özellikler ile yakından ilişkilidir. Son olarak, DNA

hasar kontrol noktası ve DNA tamir genlerindeki artış ile, tümör başlangıcı ve

ilerlemesi arasında ilişki bulduk. Bu genler, HCC’nin engellenmesinde ve ter-

apisinde potansiyel hedefler olabilirler.

Anahtar Kelimeler: Yaşlanma, Karaciğer kanseri, Gen ifade analizi, Biyolojik

yolaklar, ZEB2, p21Cip1, TERT
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Chapter 1

INTRODUCTION

1.1 Hepatocellular carcinoma

Hepatocellular carcinoma (HCC) is the fifth most-common cancer worldwide,

with more than 600,000 new cases reported and an equal number of deaths each

year [1]. HCC develops on a chronic liver disease and cirrhosis background for

the majority (70% to 90%) of the cases. Major risk factors of HCC can be listed

as hepatitis B, hepatitis C, alcoholic liver disease, and nonalcoholic steatohepati-

tis. HCC incidence is increasing in Europe and North America, mostly due to

hepatitis C virus (HCV) infection [2, 3].

In spite of diverse risk factors, there are common mechanisms affected (Figure

1.1). Hepatitis B and aflatoxin B1, a mutagen, both affect the genome. p53 inac-

tivation is observed in HCV-, HBV and aflatoxin-B1 induced HCC. Also in HBV-,

HCV-, and alcohol-induced HCC, inflammation, necrosis, and regeneration are

common processes [4].

Although not precisely identified, HCC generally follows a progression as de-

scribed in Figure 1.2. It takes 20-30 years to develop a chronic liver disease after

infection with hepatitis viruses. In some of the patients cirrhosis and HCC arise

2



Figure 1.1: Major risk factors and mechanisms responsible from hepatocellular
carcinoma. HBV, hepatitis B virus; HCV, hepatitis C virus. Adapted from Farazi
and DePinho, 2006 [4].

in sites of chronic hepatitis. HCC can be classified into well differentiated, mod-

erately differentiated, and poorly differentiated tumors, the latter being the most

malignant type [4, 5].

Treatment options of this cancer are limited, thus, it is necessary to identify

novel genes involved in HCC to implement new diagnostic and treatment options.

However, the molecular pathogenesis of HCC largely remains unsolved [2, 4, 5,

6, 7]. Only a few genetic alterations, namely those affecting p53, β-catenin and

p16INK4a, have been implicated at moderate frequencies in these cancers [6].

The only consistent and highly frequent change in HCC is the reactivation of

telomerase activity, which has been detected in more than 80% of cases [2, 8, 9,

10, 11]. Telomerase activity in HCC is linked to the reactivation of telomerase

reverse transcriptase (TERT) expression [11].

TERT catalyses the addition of telomere sequences to the chromosome ends

3



Figure 1.2: Histopatological progression of HCC. HBV, HCV, alcohol, and afla-
toxin are the major risk factors leading to HCC by inducing cycles of necrosis and
proliferation. After chronic liver disease or damage, collagen is accumulated and
causes fibrosis. Deposition of fibrotic tissue and abnormal liver nodules are char-
acteristics of cirrhosis. Nodules then become hyperplastic and finally dysplastic
which eventually progress to HCC. Genomic instability is observed in nodules and
characterize HCC most prominently with the loss or mutation of p53. Adapted
from Farazi and DePinho, 2006 [4].
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Figure 1.3: Major pathways that are activated in HCC are shown. These path-
ways, the Akt, the myc, the β-catenin, the hedgehog, and the met pathways are
activated in 20-60% in HCCs. Telomerase activation is the most frequent event
in HCC. Adapted from El-Serag and Rudolph, 2007 [2]

.
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to maintain chromosomal integrity during subsequent cell divisions [12]. Appar-

ently, HCC development requires consistent telomerase activity, as telomerase

deficiency in mice causes a significant decline in the occurrence of high-grade

liver malignancies [13]. It is currently unclear how TERT expression is repressed

in normal hepatocytes, but released in HCC cells. The integration of HBV DNA

sequences into the TERT gene provides evidence for a virus-induced deregulation

of TERT expression [13], but this appears to occur rarely, as only four cases have

been reported so far [14, 15]. HBV X and PreS2 proteins may upregulate TERT

expression [16, 17] but HBV X was also shown to repress the TERT promoter

[18].

1.2 Senescence

Replicative immortality is a common acquired feature of all cancers. Somatic cells

have a limited number of cell divisions due to end replication problem at the ends

of the chromosomes, namely telomeric sequences. Replicative senescence is the

inevitable consequence of this problem which is also a strong barrier in preventing

cancer cell immortality. Senescent phenotype is charaterized by growth arrest and

apoptosis resistance, also altered gene expressions accompany these phenotypic

changes. A pre-senescent cell can turn into a senescent cell in diverse ways.

Dysfunctional damage as well as non-telomeric DNA damage, strong mitogenic

signals and also chromatin perturbations may cause this shift [19].

Most human somatic cells are telomerase deficient. Telomerase reverse tran-

scriptase (TERT) enzyme is repressed in somatic cells during differentiation and

this leads to progressive erosion of telomeric DNA in each round of cell division.

This form of senescence is called replicative or telomere-dependent senescence

(Figure 1.4).

Human chromosome telomere ends are composed of TTAGGG repeats (5-20
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and promotes cell transformation. DNA damage response
and oncogene-induced senescence are established follow-
ing DNA hyper-replication immediately after oncogene
expression. Senescent cells arrest with partly replicated
DNA, where DNA replication origins have fired multiple
times, prematurely terminated DNA replication forks and
DNA double-strand breaks are present [23,24].

ROS-induced senescence, the other telomere-indepen-
dent senescence pathway is gaining importance (for a re-
cent review see Ref. [25]). Mitochondria are the major
intracellular sources of ROS which are mainly generated
at the respiratory chain. Therefore, ROS have been sus-
pected for many years as cellular metabolites involved in
organismal aging [26]. ROS are also generated in the cyto-
plasm by the NOX family of enzymes [27]. Experimental
induction of ROS accumulation in cells (for example by
mild H2O2 treatment or glutathione depletion) induces
senescence-like growth arrest in different cell types,
whereas anti-oxidant treatment can inhibit senescence
[25]. More importantly, ROS have been identified as critical
mediators of both telomere-dependent and oncogene-in-
duced senescence. Telomere-dependent senescence arrest

is accelerated in cells grown under high O2 conditions. In-
versely, cells grown under low O2 conditions display in-
creased lifespan ([28], see Ref. [25]). ROS also play a
critical role in Ras-induced senescence [29,30].

Currently, mechanisms of ROS-induced senescence are
not fully understood. It is generally accepted that oxidative
stress and ROS eventually cause DNA damage, whereby
DNA damage response may contribute to senescence
induction. The relationship between mitochondrial dys-
function, ROS, DNA damage and telomere-dependent
senescence has recently been demonstrated [31]. However,
ROS may also induce modifications in the cellular signaling
pathways resulting in senescence arrest. For example, ROS
induce senescence in hematopoietic stem cells by activat-
ing p38 MAPK [32].

Whether induced by telomere dysfunction, DNA repli-
cation stress following oncogene activation, or ROS accu-
mulation, DNA damage is one of the common steps in
the generation of senescence arrest via p53 activation
(Fig. 1). Upstream checkpoint kinases, such as ATM or
ATR are activated in response to DNA damage in the form
of double-stand breaks. These kinases phosphorylate
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Fig. 1. DNA damage and p53 activation play a central role in different senescence pathways. DNA damage (often in the form of double-strand breaks)
activate upstream kinases (ATM and ATR) leading to p53 phosphorylation by CHK1 and CHK2 kinases. Phosphoryated p53 is released from MDM, and
stabilized in order to induce senescence arrest or apoptosis (not shown here).
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Figure 1.4: Different pathways that lead to senescence. DNA damage and p53
activation play a central role in all pathways [20].
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kb) in a DNA-protein complex formed by six telomere-specific proteins, called

“shelterin” [21] . Telomeres get shorten with every cell division because cellular

DNA polymerases are unable to copy the ends of linear DNA. By this perspective,

telomeres are often referred as the “cell cycle counter” for the cell [22] . The loss

of telomeres were thought to be the signal for senescence induction. Now we know

that disruption of telomeric structure induces senescence and shortened telomeres

contribute to this process [23]. Chromosomal end-to-end fusions through DNA

repair pathways is induced by loss of telomere protection. Also dysfunctional

telomeres recruit DNA damage machinery by inducing a double-stranded DNA

break response [24].

Oncogene-induced senescence had been identified as a response to expression

of Ras oncogene in normal fibroblasts [25]. The expression of oncogenic Ras

in primary human or rodent cells results in permanent G1 arrest. The arrest

was accompanied by accumulation of p53 and p16INK4a, and was phenotypically

identical to senescence. In addition to Ras, other oncogenes including Raf, Mos,

Mek, Myc and Cyclin E also induce senescence [26]. On the other hand, the loss

of PTEN tumor suppressor gene also leads to senescence [27]. Oncogene-induced

senescence is also primarily a DNA damage response (Figure 1.4).

Reactive oxygen species (ROS)-induced senescence is the other telomere-

independent senescence pathway. Mitochondria are the major intracellular sources

of ROS which are mainly generated at the respiratory chain. ROS have been

identified as critical mediators of both telomere-dependent and oncogene-induced

senescence. Telomere-dependent senescence arrest is accelerated in cells grown

under high O2 conditions. In the opposite, cells have a longer lifespan when

grown under low O2 conditions [28].

DNA damage is one of the common steps in generation of senescence arrest in

all pathways of senescence (Figure 1.4). Senescence arrest which is mediated by

p53 starts with activation of upstream checkpoint kinases, such as ATM or ATR,
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in response to DNA damage in the form of double-strand breaks. These kinases

then phosphorylate CHK1 and CHK2 that in turn phosphorylate p53. With the

phosphorylation, MDM2 protein is displaced and p53 is activated. p53 activating

pathway is critical in both telomere-dependent and oncogene-induced senescence

[29, 30].

Other mechanisms of senescence include INK4 locus encoding two inhibitors

of cyclin-dependent kinases. p16INK4a and p15INK4b, and ARF a p53 regulatory

protein [31]. p16INK4a and p15INK4b connect some senescent initiating signals

to the retinoblastoma (Rb) pathway, independent of p53 activation. Cells that

escape senescence often display inactivation of p16INK4a, p15INK4b and ARF either

by homozygous deletion or by shutting-down gene expression.

p21Cip1 is one of the main targets of p53 for the induction of cell cycle arrest

following DNA damage [32]. Pathways that generate DNA damage response and

p53 activation use p21Cip1 as a major mediator of cellular senescence to control

pRb protein [33]. Exceptionally, p21Cip1 can be activated by p53-independent

pathways to induce senescence [34].

Senescent cells cannot enter into S phase and initiate DNA synthesis, hence

accumulate at G1 phase of the cell cycle. Retinoblastoma protein (pRb), binds to

and inhibits E2F factors which are required for the transition of proliferating cells

from G1 to S phase. Cyclin-dependent kinases (CDKs), specifically CDK4/6 and

CDK2 phosphorylate pRb, cause it to be released from E2F [31]. The senescence

arrest is mediated by inhibition of pRb phosphorylation by CDK4 and CDK2.

CDKIs inhibit actions of CDKS and are the major proteins that are involved

in the control of senescence arrest. Well-known CDKIs, p16INK4a and p15INK4b)

inhibit CDK4/CDK6, and p21Cip1 inhibits CDK2 (Figure 1.5).
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number of in vitro studies with hepatocytes, as well as
numerous descriptive in vivo studies in liver tissue provide
sufficient evidence that hepatocytes can undergo senes-
cence type changes.

In vitro senescence in hepatocytes: as stated earlier,
limited proliferative capacity of somatic cells is controlled
by replicative senescence. The experimental study of repli-
cative senescence is done traditionally by serial culture of
primary cells. Initially observed in fibroblasts, this phe-
nomenon has also been well understood in some epithelial
cells, mammary epithelial cells in particular [54]. On the
other hand, our knowledge of hepatocyte replicative senes-
cence is highly limited. In contrast to in vivo conditions,
mature hepatocytes are extremely resistant to cell prolifer-
ation in cell culture. Usually, more than 99.9% of adult liver
hepatocytes do not divide and can only be maintained in
culture for a few weeks at most. A small progenitor-type
cell population (so called small hepatocytes) has been
shown to proliferate in vitro, but they usually stop growing
at passages 5–7, with an ill-defined senescence-like pheno-
type [55].

Fetal hepatocytes display better proliferation capacity
in culture. A few studies have shown that these fetal cells
enter replicative senescence, as shown by senescence-
associated b-galactosidase assay (SABG) at population dou-
bling (PD) 30–35 [55]. This is accompanied by progressive
shortening of telomeres down to !6 kbp, as these cells like
adult hepatocytes lack telomerase activity. However, it was
possible to immortalize these fetal hepatocytes by stable

expression of TERT [55]. Such immortalized cells have been
expanded beyond known senescence barriers (>300 PD).

In vivo senescence in liver tissue: in contrast to in vitro
studies, in vivo senescence of human hepatocytes is better
known. Indeed, the liver is one of the rare tissues where
in vivo evidence for senescence has been convincingly
and independently demonstrated by different investigators
[6–9]. Replicative senescence (as tested by SABG assay)
displayed a gradual increase from 10% in normal liver, to
84% in cirrhosis ([6,7]. It was also detected in 60% HCCs
[6]. It has also been demonstrated that telomere shorten-
ing in cirrhosis is restricted to hepatocytes and this hepa-
tocyte-specific shortening was correlated with SABG
staining [7].

Potential mechanisms of senescence in hepatocytes and
the liver: as presented in detail in the previous section,
multiple pathways of senescence have been described in
different experimental systems. Key molecules that are al-
ready involved in senescence arrest have also been sum-
marized. The published data on different senescence
pathways in the liver is fragmented and control mecha-
nisms involved in hepatocyte senescence are not com-
pletely understood. Therefore, existing data on
hepatocellular senescence together with potential mecha-
nisms that may be involved in this process will be
presented.

For reasons previously described, almost nothing is
known about molecular mechanisms involved in replica-
tive senescence and immortalization of hepatocytes in cul-
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Fig. 2. All known senescence pathways converge at the level of activation of CDKIs (p15INK4b, p16INK4a and p21Cip1) that keep the pRb protein under the
active form. The pRb protein inhibits E2F action and prevents the expression of growth-promoting genes for cell cycle exit. Furthermore, pRb recruits
growth-promoting genes into a facultative chromatin structure for permanent silencing and growth arrest.
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Figure 1.5: Senescence pathways whether induced by oncogenes or ROS, or
through telomere shortening, all converge at the level of activation of CDKIs
(p16INK4a, p15INK4b) and p21Cip1. CDKIs keep the Rb protein in the active form.
The Rb protein prevents the expression of growth-promoting genes for cell cycle
exit [20].
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1.3 Senescence in HCC

Cellular senescence appears to play a major role in liver diseases [2]. Adult

hepatocytes, like other somatic cells, are programmed for senescence, a mecha-

nism that blocks excessive cell proliferation by a telomere-dependent mechanism

[19, 33, 20]. In contrast to in vivo conditions, mature hepatocytes are resistant

to cell proliferation in cell culture. Fetal hepatocytes which have better prolifer-

ation capacity in culture, were shown to enter replicative senescence [35]. This

is accompanied by progressive shortening of telomeres down to ∼6 kbp, as these

cells like adult hepatocytes lack telomerase activity.

Chronic liver diseases are associated with progressive telomere shortening

leading to the cellular senescence that is observed frequently in cirrhosis, but

also in some HCCs [10, 36, 37, 38, 39]. Wiemann et al. showed that replicative

senescence (as tested by SABG assay) displayed a gradual increase from 10% in

normal liver, to 84% in cirrhosis. Telomere lengths were shorter in cirrhosis when

compared to noncirrhotic tissues. Also it was shown that telomere shortening

was hepatocyte-specific and not observed in lymphocytes and stellate cells [39].

Experimental animal models also provide strong evidence for a critical role of

cellular senescence in HCC [40, 41].However, the role of cellular senescence and

immortality in human HCC remains elusive.

HCC is characterized by mutational inactivation of p53. By epigenetic mech-

anisms like promoter methylation, well-known CDKIs, p16INK4a, p15INK4b, and

p21Cip1 are often inactivated in this cancer. In the cirrhosis phase, some cells by-

pass senescence barrier and start to proliferate. More than 80% of HCCs display

telomerase activity, so those cells are able to continue proliferating. Inactiva-

tion of major CDKIs also play a critical role in HCC development by conferring

premalignant and malignant cells to proliferate indefinitely (Figure 1.6).
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HCCs upon implantation into livers of athymic mice [12].
However, these tumors regressed rapidly upon restoration
of p53 expression. Tumor regression was due to differenti-
ation and massive senescence induction, followed by im-
mune-mediated clearance of senescent cells. These
observations may indicate that oncogene-induced senes-
cence is also involved in HCC. On the other hand, HCCs in-
duced by tet-regulated c-Myc activation in mouse liver
cells differentiate into mature hepatocytes and biliary cells
or undergo senescence [90]. Thus, senescence induction
may also be relevant to oncogene inactivation in HCC. In
this regard, c-Myc down-regulation and senescence induc-
tion in several HCC cell lines as a response to TGF-b was
observed (S. Senturk, M. Ozturk, unpublished data).

So far, all the reported examples of senescence induc-
tion in HCC cells are in the form of a telomere-independent
permanent cell cycle arrest. Until recently, it was unknown
whether replicative senescence could also be induced in
immortal cancer cells. Ozturk et al. reported recently that
immortal HCC cells can revert spontaneously to a replica-
tive senescence phenotype [91]. Immortal HCC cells gener-
ated progeny that behaved, in vitro, similar to normal
somatic cells. Such senescence-programmed progeny
lacked telomerase activity due to TERT repression (proba-
bly mediated by SIP1 gene), and displayed progressive
telomere shortening in cell culture, resulting in senescence
arrest. It will be interesting to test whether such spontane-
ous reversal of replicative immortality is involved in well

known tumor dormancy and/or spontaneous tumor
regression.

7. Concluding remarks

Cellular senescence has gained great interest in recent
years following the demonstration that it also occurs
in vivo. It is also highly interesting that senescence can
be mediated by a large number of pathways and mole-
cules, as is the case for apoptosis. Recent findings that
implicate secreted molecules in senescence induction
strongly suggest that cellular senescence is not just a cellu-
lar event, but also a physiologically relevant process for the
whole organism. In terms of tumor biology, oncogene-in-
duced senescence that may serve as anti-tumor mecha-
nism in pre-neoplastic lesions underlines its clinical
relevance. On the other hand, induced or spontaneous
senescence that is observed in cancer cells is promising
to explore new approaches for tumor prevention and treat-
ment. The role of senescence bypass and cellular immortal-
ity in hepatocellular carcinogenesis is not well defined.
But, many findings (inactivation of senescence-mediator
genes such as p53, p16INK4a and p15INK4b, as well as reacti-
vation of TERT) indicate that senescence mechanisms and
their aberrations are critically involved in HCC. We may
expect that this field will attract more attention in coming
years for a better definition of senescence implications in
hepatocellular carcinogenesis.
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Fig. 3. Role of cellular senescence and immortalization in hepatocellular carcinogenesis. Chronic liver injury (triggered by major etiological factors HBV,
HCV and alcohol) leading to cirrhosis is a common cause of HCC. Hepatocytes having no telomerase activity undergo progressive telomere shortening and
DNA damage during this process. Consequently, CDKIs (primarily p16INK4a and p21Cip1) are activated gradually to induce senescence in the preneoplastic
cirrhosis stage. Mutation and expression analyses in HCC strongly suggest that neoplastic cells bypass the senescence barrier by inactivating major
senescence-inducing genes (p53, p16INK4a and p15INK4b). Moreover, they acquire the ability of unlimited proliferation (immortality) by re-expressing the
TERT enzyme. Chromosomal instability that is generated by telomere erosion may contribute to additional mutations necessary for tumor progression.
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Figure 1.6: Role of cellular senescence and immortalization in hepatocellular
carcinogenesis. HBV, HCV and alcohol are the major causes of HCC, and all
lead to hepatitis. Chronic hepatitis is followed by liver cirrhosis for a subset of
cases. CDKI activation leads to senescence during cirrhosis. Cells which lack
telomerase activity cease to proliferate at this stage. Yet some cells can overcome
the senescence barrier by p16INK4a, p15INK4b silencing and via p53 mutations.
TERT derepression enable cells to proliferate by preventing telomere lengths
from shortening.
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1.3.1 Reprogramming of replicative senescence in HCC

Our group have reported the replicative senescence induction in hepatocellular

carcinoma-derived cells [42]. In that study, hepatocellular carcinoma cells were

shown to engage in replicative senescence program independent from p53 and

pRb pathways. Yet, this phenomenon was characterized with hTERT repression,

telomere shortening, and senescence arrest. Immortal, presenescence and senes-

cence programmed clones were obtained from the same parental cell, Huh7. This

spontaneous generation of senescence programmed clones were unique in their life

span. Although immortal clones had the same replication potential even after

150 population doublings, senescence programmed clones had lost their ability

to replicate after 80 population doublings. This finding were of great impor-

tance since it demonstrated the reversal of immortality phenotype in a cancerous

cell line. What we observed in cancerous cells was replicative senescence, but

not a stress-induced premature senescence-like arrest. Senescent clones displayed

telomerase repression, progressive telomere shortening, and permanent growth ar-

rest with senescence-associated morphological changes and positive SABG stain-

ing.

The replicative senescence arrest that we observed in these cells was not de-

pendent on p53, p16INK4a, p14ARF, or p21Cip1 gene. Huh7 cells express a mutant

p53 protein, and they are deficient in p16INK4a expression [42]. The lack of induc-

tion of these genes indicates that there are additional genes involved in senescence

arrest in these tumor derived cells.

1.4 SIP1/ZEB2/ZFHX1B gene and its relation-

ship with HCC and senescence

In the study by Ozturk et al. [42], we analyzed the expression of genes that have

been implicated in hTERT regulation. HCC cells have telomerase reactivation,

13



and this is also a marker for Huh7 cells. Yet in C3 clones. which were derived

from Huh7 cells, TERT gene was repressed. This led us to search for genes that

can repress TERT expression. In Lin and Elledge paper [43], negative regulators

of TERT were identified (Figure 1.7).

Figure 1.7: Regulators of TERT promoter. Repressive proteins are shown in red
and activating proteins in green. [43]

We analyzed seven candidate genes, only one of them, ZEB2, was found to be

differentially expressed between senescent and immortal clones. ZEB2 was not

expressed in immortal C1 clone, but in senescent C3 clone. Expression of ZEB2

was inversely related with TERT expression. When ZEB2 is depleted through

shRNA in C3 cells, these cells rescued from senescence, started to proliferate

again as measured by BrdU assay, and also TERT is up-regulated (Figure 1.8).

TERT expression is controlled by a dozen transcriptional regulators, including

ZEB2 acting as a repressor [44, 43]. The ZEB2 gene, also called SMAD interacting

protein-1 or ZFHX1B, is better known for its role in epithelial-mesenchymal tran-

sition (EMT) as a repressor of E-cadherin [45]. Based on this EMT-promoting

activity, ZEB2 is considered to positively contribute to tumor progression. Con-

versely, the same gene could play an anti-tumor role as a repressor of the TERT

gene, encoding a key enzyme required for telomere maintenance and tumor cell

immortality[43, 42]. Moreover, ZEB2 could inhibit cell proliferation directly by

attenuation of cyclin-D expression [46].
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Figure 1.8: ShRNA mediated down-regulation of endogeneous ZEB2 transcripts
in senescent cells. A) In senescent C3 cells, shRNA mediated down-regulation
leads to the up-regulation of TERT. The increase in TERT expression is sig-
nificant even at day 5, and as evidenced by the increase in day 30, it is not
temporary. B) BrdU incorporation assay and cell photos of C3 cells are given.
ShRNA downregulation of ZEB2 causes cells to start proliferating. C) Colony
formation ability of senescent cells are recovered. C3 cells on the left, C3 cells
with Sh-ZEB2 are on the right. [42]
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The role of ZEB2 in HCC is poorly known. It has been reported to repress

E-cadherin expression in HCC cells, leading to increased cell invasiveness [47].

ZEB2 is a member of two-handed zincfinger/homeodomain proteins. In target

promoters, it binds to 5’-CACCT sequences [48]. ZEB2 acts as a repressor and

two zinc finger clusters are required and must be intact for its activity [49].

ZEB2 is essential for embryonic neural and neural crest development [50]

and its mutations cause severe defects in mouse [51] and in humans, namely

Hirschsprung disease [52] and Mowat-Wilson disease [53].

E-cadherin down regulation is known to be the critical molecular feature of

epithelial-mesenchymal transition [54]. ZEB2 induces EMT by down regulating

E-cadherin transcription via direct binding of ZEB2 to E2 boxes at E-cadherin

promoter [45, 55] and repressing genes of epithelial cell-cell junctions [56]. Also

ZEB2 is mentioned in breast tumor cell migration since it is induced in vimentin

positive migratory cells [57]. Other studies have shown that in breast carcinomas

and effusions [58] and HCC cell lines [47], suppression of E-cadherin by Snail

and ZEB2 is correlated with cancer invasions. These data implicate ZEB2 as a

promoter of invasion in malignant epithelial tumors. ZEB2 was identified in yeast-

two-hybrid studies as a protein binding to the MH2 domain of Smad1. It was then

discovered to bind to activated, receptor regulated Smads [48]. Smad proteins are

intracellular mediators of TGF-β signaling [59]. ZEB2 is a transcriptional target

of TGF-β pathway and has been implicated in repression of hTERT downstream

of a TGF-β signal [43].

1.5 DNA damage repair

DNA damage alter cellular dynamics including biochemical pathways, cellular

growth and pathways related to cell cycle. Four pathways are activated in re-

sponse to DNA damage. These are DNA repair, transcriptional response, DNA

16



damage checkpoints, and apoptosis 1.9. DNA repair pathways enable the reversal

of the damage. This may be the removal of the incorrect base or structure and

restoration of the original double helix structure. Damage can be of different

kind, but mostly it prevents the DNA replication or causes mistakes in the DNA

sequence. It is vital to prevent further DNA replication and this is maintained

by DNA damage checkpoints. This type of response prevents cell cycle from con-

tinuing so that the damage is not transmitted to daughter cells. Transcriptional

response is the changes in transcription according to the needs of the cell after

checkpoint activation. If the damage is harmful to the cell and if it disrupts the

genomic stability of the cell, then apoptosis is induced [60].

Figure 1.9: DNA damage response reactions in mammalian cells. These four
pathways function independently or by a common protein in response to DNA
damage. [60]

DNA repair mechanisms include direct repair, base excision repair (BER), nu-

cleotide excision repair (NER), double-strand break repair, and cross-link repair.

Direct repair utilizes two protein machineries; photolyase and methylguanine
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DNA methyltransferase. In BER, a DNA glycosylase recognizes oxidized/reduced

bases, alkylated bases, deaminated bases or base mismatches. If there is a bulky

DNA lesion, then NER is the repair system. These lesions may be formed by

protein addition to DNA, exposure to radiation or by chemicals. Double-strand

breaks are formed upon exposure to reactive oxygen species, ionizing radiation

or after V(D)J recombinations. Homologous recombination and single-strand

annealing are two ways of repairing double-strand breaks. Cross-link repair is

utilized when an interstrand DNA cross-link is formed. Chemotherapeutic drugs

and bifunctional DNA-damaging agents induce formation of these structures.

Hepatitis B and hepatitis C viruses induce the release of free radicals, which

cause inflammation. Free radicals contribute to DNA damage. The p53 pathway

is the major player in response to this oxidative stress [61].

1.6 Gene expression profiling

Gene expression profiling utilizes the state-of-the-art technology, microarrays, to

reveal all of the expressed genes in a given sample, at a given time point. Each

tumor or tissue is unique in its expression profile. By obtaining a small sample

from different tumor or tissue even from the same tissue at different time points,

it is possible to learn what set of genes are actively transcribed. By gene expres-

sion profiling, it is possible to classify tumors into homogenous subtypes that are

characterized by distinct molecular pathways that maintain the malignant pheno-

type, discover genes associated with other prognosis and/or pathological features

of the tumors, and to provide potentially new therapeutic targets and monitor

response to therapy. In year 2002, a study had published pioneering the subject

[62]. By profiling tumors of young patients, they had identified a signature of

poor prognosis consisting of 70 genes. Then, 295 patients with primary breast

carcinomas were classified as having a gene-expression signature associated with
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either a poor prognosis or a good prognosis [62]. Segal and collegues, defined

module-level analysis of a cancer compendium from multiple studies to obtain a

global view of shared and unique molecular modules in human cancer [63]. Can-

cer module map showed that activation and repression of some modules (e.g. cell

cycle) was shared across multiple cancer types and could be related to general

tumorigenic processes. In 2004, 406 survival genes were listed to uncover some of

the molecular pathways responsible for the differences in subclasses of HCC [64].

These genes enabled the prediction of two distinctive subclasses that are highly

associated with the survival of the patients. In this study, it is also found that

while dysregulation in proliferation and survival pathways are common to all can-

cers, there are other pathways that may be specific for certain types of cancers.

Many other studies have followed these works. Ultimate aim for most of these

work is to find the signature genes that can discriminate the tumor associated

processes.

Microarrays have developed in the last decade, and still in its progression.

There are several platforms for microarray experiments and Affymetrix GeneChip

Arrays are one of the most frequently utilized systems. GeneChip Human Genome

U133 plus 2 Arrays enables to analyze whole genome expression on a single chip.

It analyzes the relative expression level of more than 47,000 transcripts corre-

sponding to 38,500 well characterized genes. The probe sets were designed from

sequences in GenBank, dbEST and RefSeq databases. GeneChip arrays are man-

ufactured via photolithography and combinatorial chemistry 1.

Bioinformatics tools are utilized to analyze microarrays data. In the most

conventional way, a microarray data is normalized to equilibrate the signal inten-

sities among experiments, so the variation is reduced. Robust multichip average

(RMA) is a widely used normalization method. It has three steps: background

adjustment, quantile normalization, and summarization. Quantile normalization

1http://www.affymetrix.com/
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makes the distribution of probe intensities for each array in a set of arrays the

same [65].

Clustering utilizes statistical algorithms to group genes depending on the

similarity in gene expression patterns. Cluster analyzes have to be visualized by

other tools, which eventually produce a graphical picture, in which every data

is represented on a color scale depending on downregulation or upregulation of

individual genes [66].
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Chapter 2

OBJECTIVES AND

RATIONALE

Hepatocellular carcinoma (HCC) is one of the most frequent cancers in the world

and causing high number of deaths each year. Current therapies are far from ade-

quate. Development of new therapeutic strategies depends on better understand-

ing the molecular pathogenesis of HCC. Few genes are found to play role in

transforming a normal hepatocyte to a cancerous one. It is necessary to identify

novel genes involved in HCC to implement new diagnostic and treatment options.

Replicative immortality is a common acquired feature of all cancers. Somatic cells

have a limited number of cell divisions due to end replication problem at the ends

of the chromosomes, namely telom- eric sequences. Replicative senescence is the

inevitable consequence of this problem which is also a strong barrier in preventing

cancer cell immortality.

In this study, we worked on two major aspects of cellular senescence and im-

mortality in HCC. First, we analyzed the role of ZEB2 (Smad-interacting protein

SIP1, ZFXH1) gene for a senescence-related role in HCC. ZEB2 gene is actually

involved in epithelial-mesenchymal transition, but it also represses telomerase re-

verse transcriptase enzyme by directly binding to the promoter of TERT gene.
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We observed that when we down-regulate ZEB2 via shRNA in senescent cells,

these cells start to proliferate again and retain their immortal properties. We

worked on Hep3B cells that overexpress ZEB2 gene, and observed high percent-

age of senescent cells among them. BrdU assays also conrmed the low prolifer-

ation rate. Further we found that these Hep3B-ZEB2 cells have relatively high

expression of p21. We repeated the experiments on another system, tet-regulated

overexpression of ZEB2 in A431 cells which we obtained from our collaborators.

Also in liver tumors, we checked the ex- pression of ZEB2 and found that ZEB2 is

downregulated in liver tumors. We now are able to say that ZEB2 has anti-growth

effects in HCC. Then, we extended our work on the identication and analysis of

a senescence and immortality gene network (SIGN) in relation to hepatocellular

carcinogenesis. We worked on the microarray analysis of liver tumors, obtained

from HCC patients with a cirrhosis background. We obtained a list of signature

genes that can discriminate tumor from cirrhosis. We were able to compare the

gene signatures coming from senescent-immortal clones with the genes coming

from cirrhosis-tumor tissues. By this way, we tried to identify the genes that are

responsible from the tumorigenesis process in the liver. We also utilized another

in-vivo data set to test our signicant genes. We are now able to discriminate the

different stages of HCC.
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Chapter 3

MATERIALS AND METHODS

3.1 MATERIALS

3.1.1 Cell Culture Solutions

PBS, 10X NaCl, 80 g; KCl, 2 g; KH2PO4, 2.4 g, Na2HPO4, 14.4 g; dissolved in

1 L of ddH2O. pH of the 10X buffer should be around 6.8, when diluted to

1X, pH should be 7.2–7.4.

DMEM-10 medium To 500 ml Dulbecco’s modified Eagle’s medium (Biochrom)

supplemented with 3.7 g/L NaHCO3, 1 g/L D-Glucose and stable glu-

tamine, add 50 ml fetal calf serum (passed through 0.2 µm filter), 5 ml

penicillin/streptomycin solution, 5 ml non-essential aminoacids, store at

4◦C, warm to 37◦C prior to use.

RPMI-10 medium To 500 ml RPMI medium (Gibco), add 50 ml fetal calf

serum (passed through 0.2 µm filter), 5 ml penicillin/streptomycin solution,

5 ml non-essential aminoacids, store at 4◦C, warm to 37◦C prior to use.
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3.1.2 Microbiology Solutions

LB medium Tryptone, 10 g; yeast extract, 5 g; NaCl, 5 g; add 1 L ddH2O and

autoclave immediately after preparation.

Agar medium Add 10% (w/v) bacto agar to LB medium, autoclave, pour onto

plates and wait at room temperature until agar solidifies.

3.1.3 Western Blot Solutions

Protein lysis buffer Tris 1M, pH 8.0, 50 µL; NaCl, 2M, 125 µL; 25X proteinase

inhibitor coctail, 40 µL; NP40, 10 µL; filtered ddH2O, 775 µL.

RIPA lysis buffer Tris 1M, pH 8.0, 50 µL; NaCl, 2M, 300 µL; 25X proteinase

inhibitor coctail, 40 µL; NP40, 10 µL; 10% SDS, 10 µL; filtered ddH2O,

775 µL.

10% (w/v) SDS Wear mask, SDS is irritative to respiratory tract. Dissolve

10 g lauryl sulfate in 90 ml ddH2O with stirring, then bring to 100 ml final

volume.

Transfer Buffer, 1X Glycine, 2.25 g; Tris base, 5.81 g; SDS (from 10% SDS

solution), 3.7 ml; methanol, 200 ml; to final volume of 1 L with ddH2O.

Transfer buffer should be prepared freshly for each experiment.

Running Buffer, 5X Tris base, 15.1 g; glycine, 95 g; SDS (from 10% SDS

solution), 50 ml; bring to 1 L with ddH2O. Store at 4◦C and do not adjust

pH. pH should be around 8.3 for the 1X solution. When diluted to 1X,

water should be added first in order to prevent excess bubbling.

Wet transfer buffer, 1X Tris base, 6 g; glycine, 28.8 g; SDS (from 10% SDS

solution), 1 ml; methanol, 200 ml; bring to 1 L with ddH2O.
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TBS, 10X Trisma base, 12.19 g; NaCl, 87 g; bring to 1 L with ddH2O, adjust

to pH 8.0 with 1N HCl.

Gel staining solution Coomassie brilliant blue G.250, 100 mg; absolute ethanol,

50 ml; phosphoric acid (85%), 100 ml; bring to final volume of 1 L with

ddH2O. Filter the solution through Whatman paper, store at 4◦C.

Gel de-stain solution In ddH2O, add 20% methanol and 7% acetic acid.

30% acrylamide Wear mask, dissolve 146 g acrylamide and 4 g N’-N’-bis-

methylene acrylamide in 500 ml ddH2O. Filter for 20 min, store at dark

and 4◦C.

APS, 10% (w/v) Dissolve 0.1 g ammonium persulfate in 1 ml ddH2O.

Gel loading buffer, 2X ddH2O, 3.55 ml; 0.5 M Tris HCl, pH 6.8, 1.25 ml;

glycerol, 2.5 ml; 10% (w/v) SDS, 2 ml; 0.5% (w/v) Bromophenol blue, 0.2

ml. Store at room temperature. Add 5% β-mercaptoethanol to buffer prior

to use.

1.5 M Tris-HCl, pH 8.8 Tris base, 27.23 g; ddH2O, 80 ml. Adjust pH with

6N HCl. Bring total volume to 150 ml with ddH2O. Store at 4◦C.

0.5 M Tris-HCl, pH 6.8 Tris base, 6 g; ddH2O, 60 ml. Adjust pH with 6N

HCl. Bring total volume to 100 ml with ddH2O. Store at 4◦C.

Gel formulations (10 ml) Mix 30% acrylamide, tris buffer and SDS according

to the gel percentage as described in the Table 3.1. For resolving gel, 1.5

M Tris-HCl, pH 8.8; for stacking gel, 0.5 M Tris-HCl, pH 6.8 Immediately

prior to pouring the gel, add 50 µL 10% APS and 5 µL TEMED for the

resolving gel; add 50 µL 10% APS and 10 µL TEMED for the stacking gel;

swirl gently to initiate polymerization.

Blocking solution Milk powder, 2.5 g; TBS, 50 ml; Tween-20, 250 µL.
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Table 3.1: SDS-PAGE Gel Formulations

Percent gel ddH2O 30% acrylamide Tris buffer 10% SDS
(ml) (ml) (ml) (ml)

5% 5.7 1.7 2.5 0.1
8% 4.7 2.7 2.5 0.1
10% 4.1 3.3 2.5 0.1
12% 3.4 4.0 2.5 0.1
15% 2.4 5.0 2.5 0.1

Stripping solution 10% (w/v) SDS, 10 ml; 1 M Tris-HCl, pH 6.8, 3.125 ml;

β-mercaptoethanol, 357 µL; to final volume of 50 ml with ddH2O.

3.1.4 Agarose gel solutions

Etidium bromide Wear mask and gloves, dissolve 0.2 g in 20 ml ddH2O. Store

at dark and 4◦C.

TAE, 50X Tris base, 242 g; Tritiplex III (EDTA), 37.2 g; glacial acetic acid,

57.1 ml; bring to 1 L with ddH2O, stir over night to dissolve.

Agarose gel, 2% Weigh 2 g of agarose powder and add to 100 ml TAE buffer.

Boil and cool down, add 1 µg/µL etidium bromide, swirl and pour onto gel

casting apparatus.

3.1.5 SABG solutions

SABG buffer Mix 200 mM citric acid, 600 µL; Na-P buffer, 600 µL; 100 mM K

ferrocyanide, 150 µL; 100 mM K ferricyanide, 150 µL; 2 M NaCl, 225 µL;

100 mM MgCl2, 60 µL; 40 mg/ml X-gal solution, 75 µL; ddH2O, 1140 µL.

Adjust pH to 6.0 with NaH2PO4. Pass through 0.2 µm cellulose acetate

filter, keep away from light and prepare freshly just before the experiment.

NaH2PO4, 1M dissolve 4.8 g sodium phosphate in 40 ml ddH2O, store at 4◦C.
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Na2HPO4, 1M dissolve 7.12 g di-sodium hydrogen phosphate di-hydrate in 40

ml ddH2O, heat to 40◦C in a water bath to prevent precipitation, store at

4◦C.

X-gal, 40 mg/ml dissolve 0.2 g in 5 ml dimethyl formamide, store at -20◦C, in

dark.

K ferricyanide, 100 mM Dissolve 0.658 g potassium ferricyanide in 20 ml

ddH2O, store at 4◦C, in dark.

K ferrocyanide, 100 mM Dissolve 0.844 g potassium ferrocyanide in 20 ml

ddH2O, store at 4◦C, in dark.

MgCl2, 100 mM Dissolve 0.406 g magnesium chloride in 20 ml ddH2O, store

at 4◦C.

NaCl, 2M Dissolve 2.34 g natrium chloride in 20 ml ddH2O.

Citric acid, 200 mM Dissolve 2.85 g trisodium citrate in 40 ml ddH2O, adjust

pH to 6.0 with HCl.

Na-P buffer Mix 10.20 ml Na2HPO4, 1M and 29.80 ml NaH2PO4, 1M, adjust

pH to 6.0 with NaH2PO4, 1M.

3% formaldehyde Mix 3 ml of 37% formaldehyde and 36 ml ddH2O. Prepare

freshly before the experiment.

3.1.6 Microarray reagents

All reagents used for the microarray experiments were purchased from Affymetrix.

GeneChip Human Genome U133 Plus 2 (HG-U133 Plus 2.0, Affymetrix, P/N

900467), One-Cycle cDNA synthesis kit (Affymetrix, P/N 900431), IVT labeling

kit (Affymetrix, P/N 900449), Poly-A exogenous positive controls (Affymetrix,

P/N 900443) were utilized.
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3.2 METHODS

3.2.1 Tissues

Surgically resected tissues were snap frozen in liquid nitrogen and stored at -

80◦C. The use of human material for research has been pre-approved by Ankara

University Ethical Committee. For the tumor samples, tissues were resected

inside the tumor. For the nontumor samples, tissues were resected from the ad-

jacent tissue surrounding the tumor. The use of human material for research has

been pre-approved by the Ankara University and Dokuz Eylul University Ethical

Committees, and the written consent was obtained for each patient. Histology

slides were prepared for all samples and scored by an experienced pathologist.

Histology slides were prepared for all samples and analyzed by an experimented

pathologist Dr. Önder Bozdoĝan.

3.2.2 Cell lines

HCC cell lines, Hep3B and Huh7, HepG2, Hep40, Hep3B, PLC/PRF/5, Snu182,

Snu387, Snu398, Snu423, Snu449, Snu475, Focus, Mahlavu, and SKHep1, squa-

mous epidermoid cell line A431 cells were used. HCC cell lines were grown in

DMEM-10 or RPMI-10 (for Snu cell lines only) media. Hep3B clones that stably

express ZEB2, Hep3B-S1, -S3, and -S4 were cultivated in DMEM-10 medium.

For time intervals, medium was supplemented with 200 µg/ml geneticin 418

(neomycin) for the maintanence of stable expression of ZEB2. Huh7 clones, C1,

C3, g12, and g11 that harbor empty pcDNA3 vector were cultivated like Hep3B

clones. For all Huh7 and Hep3B, for each subculturing, passage numbers were

recorded.

A431 cells were stably transfected with dox-on plasmid system that expresses

ZEB2 with the addition of doxycycline. Culture medium for A431/ZEB2 cells was

supplemented with 60 µg/ml hygromycin B (Roche) and 0.5 µg/ml puromycin
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(Sigma). For ZEB2 induction, cells were plated at low density (1500-2500 cells/well

in 6-well plates). Plating day was designated as day -2. At day 0, culture medium

was replaced with fresh culture medium supplemented with 2 µg/ml Dox (Doxy-

cycline, Sigma). Medium was changed every 3 days with the fresh medium sup-

plemented with Dox. A431/ZEB2 cells were a gift from Eugene Tulchinsky from

Leicester University, details about these clones can be found in Mejlvang et al.

[46].

Huh7 and Hep3B clones were generated by Nuri Öztürk, former member of

our group, and details were described in Ph.D. thesis of the researcher [67]. For

all cells, medium was replaced in every 3 days, and cells were subcultured to new

flasks or plates when confluency was over 80%. Cryopreservation was performed

as follows: cells were trypsinized and pelleted. Cell pellets were suspended in

growth medium supplemented with 8% DMSO and placed in a cryotube. Tubes

were placed immediately to -20◦C for 1 hour, then -80◦C overnight, and then

stored in liquid nitrogen for long term storage.

3.2.3 RNA isolation

Immortal, presenescent and senescent cells (described above) were plated in trip-

licate and subjected to RNA extraction. Frozen tissue samples were cut into 20

µm thick slices, and scraped into microtubes for RNA extraction. Two 6 µm

slices were also cut for pathological examination of tissues to be used for RNA

extraction. Both cells and tissues were homogenized using a 0.8 mm needle before

processing the sample. Total RNA isolation kit (Promega, Madison, USA) and

NucleoSpin RNA II Kit (MN Macherey-Nagel) were used for RNA extraction for

the cell lines and for the tissues, respectively. DNAse digestion was performed

according to the kit protocol. RNA concentrations were determined by Nan-

oDrop spectrophotometer (NanoDrop, USA). All but two tissue RNA samples

were analyzed using Agilent Bioanalyzer, and two with integrity number < 4.0
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were discarded from the study. Two tissue samples without Agilent data have

been evaluated according to the quality of microarray data (Table 4.3). Cell

line RNA quality was evaluated by the ratio of 18S to 28S RNAs by Agilent

Bioanalyzer; all samples passed this quality control test (data not shown).

3.2.4 cDNA preparations

cDNAs were synthesized from DNase I-treated RNA using RevertAid First Strand

cDNA synthesis kit (MBI Fermentas). 1-4 µg of RNA was used for cDNA syn-

thesis. RNAs were first heated to 70◦C for 5 min, together with oligo dT primer,

then incubated at 37◦C for 5 min, in a mixture containing buffer, dNTP and

RNase inhibitor, and finally incubated at 42◦C for 1 h followed by 70◦C for 10

min for the synthesis of first strand cDNA by using reverse transcriptase enzyme.

All reagents were supplied by the kit.

3.2.5 Semi-quantitative RT-PCR

cDNAs were used as templates for PCR. Primers were designed using Primer3

program1. The main criteria was to skip an intron to prevent amplifications

from genomic DNA. All primers were designed to amplify transcripts spanning

two adjacent exons with an intronic sequence in the genome. The primer list

is given in Table 3.2. PCR amplifications were performed in 25 µL of volume.

1X PCR buffer supplemented with (NH4)2SO4, 1.5 mM MgCl2, 200 µM dNTP,

10 pmoles of each primer, and 1 U of Taq DNA polymerase were mixed in the

presence of ddH2O. All PCR reagents were purchased from Fermentas. Thermal

cycler conditions were as follows: an initial denaturation of 94◦C for 5 min,

followed by cycles of 94◦C, 30 sec; annealing temperature, 30 sec; 72◦C, 30 sec.

A final extension of 72◦C, 10 min was performed. Number of cycles were differed

for each primer set (Table 3.2). TC-512, Techne or TechGene, Techne thermal

1http://fokker.wi.mit.edu/primer3/input.htm
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Table 3.2: Primer List

Gene Sequence (5’ to 3’) Annealing
temperature

hTERT–F CGGAAGAGTGTCTGGAGCAA 58◦C
hTERT–R GGATGAAGCGGAGTCTGGA 58◦C
hZEB2–F ATGGCTGTGTCACTGCGCTGA 60◦C
hZEB2–R GGAAGACAAGCTTCATATTGC 60◦C
mZEB2–F GGCTTACCTGCAGAGCATC 60◦C
mZEB2–R CCTCTGAACTGTCGTCCATC 60◦C

E-Cadherin–F TCCCATCAGCTGCCCAGAAA 60◦C
E-Cadherin–R TGACTCCTGTGTTCCTGTTA 60◦C

β-Actin–F GAAATGGTGCGTGACATTAAG 60◦C
β-Actin–R CTAGAAGCATTTGCGGTGGA 60◦C
GAPDH–F GGCTGAGAACGGGAAGCTTGTCAT 60◦C
GAPDH–R CAGCCTTCTCCATGGTGGTGAAGA 60◦C

cyclers were used for PCR reactions. GAPDH was used as an internal control for

PCR reactions.

PCR products were analyzed on a 2% (w/v) agarose gel prepared with

TAE buffer and stained with 1 µg/ml ethidium bromide and visualized under UV

transillumination using Gel-Doc 2000, Bio-Rad or ChemiCapt, Vilber Lourmat

visualization systems.

3.2.6 Quantitative real-time RT-PCR

The iCycler iQ PCR machine (Bio-Rad) was used. Reactions were performed in

20 µL volume consisting 2X Master Mix (Finnzymes), primers and ddH2O. Reac-

tion conditions were as follows: 94◦C, 5 min for initial denaturation; 45 cycles of

the loop 95◦C, 30 sec; 60◦C, 30 sec; 72◦C, 30 sec. Data collection is enabled after

this reaction. All reactions were followed by melting curve analysis: 94◦C, 30 sec

for initial denaturation, 60◦C, 30 sec; 80 cycles starting with 60◦C, 15 sec and

then increase set point temperature after cycle 2 by 0.5◦C. Melt curve data col-

lection and analysis enabled after this reaction. 45 cycles of amplification enabled
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Table 3.3: Antibodies used in western blot (WB), immunofluorescence (IF), and
immunoperoxidase (IP) experiments and corresponding dilutions.

Anti-: Link: Company: Catalog no: Dilution:
BrdU — Dako M0744 1:500 (IF)
p21 — Calbiochem OP64 1:100 (IP, WB)

c-Myc — SantaCruz sc-40 1:150 (IF, IP)
p16 — SantaCruz sc-468 1:200 (IP)
p15 — SantaCruz sc-612 1:200 (IP)

E-Cadherin — SantaCruz sc-7870 1:500 (WB)
ZEB2 — SantaCruz sc-18392 1:500 (IF)

Calnexin — Sigma C4731 1:10000 (WB)
Rabbit FITC Dako F0054 1:150 (IF)
Mouse FITC Dako F0479 1:150 (IF)
Rabbit HRP Sigma A6154 1:5000 (WB)
Mouse HRP Sigma A0168 1:5000 (WB)

almost all products to be saturated. Melting curve analysis was done as a quality

control to verify the amplification of the single gene product. Expression lev-

els were calculated using the following formula: 2 −[(Ct(Gene of interest)−Ct(β−actin)].

β-actin was used as an internal control for real-time PCR experiments. All ex-

periments were done in triplicate and Ct values >35 or <11 were excluded from

data analysis.

3.2.7 Antibodies

Antibodies used and the corresponding dilution factors are given in the Table

3.3.

3.2.8 Western Blotting

Western blotting experiments were started with total protein lysates from cells.

Cells were trypsinized or scraped from flasks or plates respectively. Cell pellets

were suspended in RIPA lysis buffer or protein lysis buffer, 30 min incubation

on ice was followed by centrifugation at 13000 rpm, 20 min at 4◦C. Supernatants

were transferred into a new tube, stored at -20◦C and 2 µL of each sample were
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taken for Bradford assay. For the Bradford assay, a BSA curve was drawn with

0, 1, 2, 4, 8, 16, 32 µL of BSA (1 mg/ml) and Bradford solution (Sigma, B6916).

A formula was obtained and used for calculation of concentration of the protein

samples. Protein samples were mixed with Bradford reagent, equilibrated at

room temperature for 10 min, and then measured at 590 nm wavelength by using

spectrophotometer (Beckman, DU640). Defined amounts of protein was mixed

with loading buffer and run on a SDS-Page gel at constant voltage at room

temperature, together with protein markers (Fermentas, SM0671, SM0441) under

denaturing conditions. Bio-Rad Mini-Protean Tetra Cell apparatus was used

for electrophoresis and wet transfer. For semi-dry transfer, Bio-Rad Transblot

Semidry apparatus was used. After electrophoresis, proteins were transferred

to PVDF membranes (Roche), either by semi-dry or wet transfer. Semi-dry

transfer was held at room temperature, at a constant voltage of 12 V, 20-30

min. Wet transfer was held at 4◦C, at a constant voltage of 80 V, 90 min.

Gels were then stained with gel staining solution to validate the efficiency of

transfer. Membranes were immediately soaked in blocking buffer for 1 h. Primary

antibody incubations were performed in blocking buffer at room temperature,1

h or at 4◦C, overnight. 30 min of 6X washing with Tween-20 supplemented

TBS was followed by secondary antibody incubation at room temperature for

45-50 min. Washing step was repeated and HRP substrate was added for 5 min

(ECL-plus, Amersham). Developer ensured the transfer of bands from PVDF

to X-ray films (Kodak), by using a hyperprocessor (Amersham). To validate

equal loading, immunoblotting steps were repeated for calnexin antibody. Before

calnexin incubation, membranes were either passed through stripping solution or

blocking solution depending on the molecular weights of the target proteins.
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3.2.9 Immunofluorescence

Cells were seeded on coverslips in 6-well plates. On the day of experiment cells

were taken out from cell culture facility, washed twice with PBS, then fixed with

methanol for 5 min. Removal of excess methanol through washing steps was

followed by 1 h incubation with PBS supplemented with 1% BSA. Incubation

with primary and secondary antibody was performed in PBS-BSA, 1h at room

temperature. After each antibody incubation, cells were washed with PBS sup-

plemented with 0.1% Tween-20 for 5 min intervals, 3 times. DAPI (Roche) was

applied as a counterstain with a dilution of 1:10000, for 5 min. 10 min of ddH2O

removed the precipitates and cleared background signals. Coverslips were covered

onto glass slides with mounting medium (Dako), images were taken with Zeiss

microscope attached with an AxioCam.

3.2.10 Immunoperoxidase

Cells that were seeded onto coverslips one or two days before the experiment,

were fixed with 4% formaldehyde for 10 min, washed with ddH2O and PBS for

3 min. Cells were permeabilized in PBS supplemented with 0.5% saponin and

0.5% TritonX for 3 times at 5 min intervals, washed with PBS for 3 min, and

then incubated at 37◦C for 1 h in the presence of 10% FCS, 0.3% TritonX in

PBS. Primary antibody incubations were performed in 2% FCS, 0.3% TritonX

in PBS, overnight at 4◦C and 1 h at room temperature. Secondary antibody

(DakoCytomation Envision+Dual link) was performed in the same solution with

primary antibody, 1h at room temperature. After each antibody incubation, cells

were washed with PBS supplemented with 2% FCS and 0.3% TritonX for 5 min

intervals, 3 times. DAB detection solution (Dako) was applied onto coverslips

and waited till the color change is obvious (15 sec–3 min). Counterstaining was

done with hematoxylene and coverslips were attached to glass slides with glycerol.
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3.2.11 Senescence-associated beta-galactosidase (SABG)

assays

SABG activity was detected using a described protocol [68]. Briefly, cells were

seeded onto plates for a confluency of 50-80% confluency on the day of experi-

ment. Tissues were cut as 6 µm slices onto glass plates and stored in -80◦C for a

maximum of 1 day. Cells or tissues were washed with PBS twice, fixed with 4%

formaldehyde at room temperature. SABG buffer was applied onto cells, plates

were covered with aluminum folio, placed in a CO2 free incubator set at 37◦C,

for 16-18 hours. After incubation, counterstaining was done with nuclear fast

red for 3 min. Images were taken by using Zeiss microscope. SABG-positive

and -negative cells were identified and counted manually by three independent

observers under inverted light microscope.

3.2.12 Long term BrdU labeling assay

For long term BrdU labeling assay, cells were replaced with a fresh medium

with 1 µg/ml BrdU 24 hours before the experiment. On the day of experiment,

cells reached at a confluency of 50-80%. After 24 hours, cells were fixed with

cold ethanol for 15 min, washed with PBS 2-3 times, then 2N HCl was applied

for 20 min. Excess HCl was removed by 15 min of washing with PBS. After

incubation with PBS supplemented with 0.1% Tween-20 and 3% BSA for 1 h,

primary and secondary antibodies were applied in the same solution. Washing

steps were performed after antibody incubations, counterstaining was done with

DAPI. Coverslips were covered onto glass slides with mounting medium (Dako),

images were taken with Zeiss microscope attached with an AxioCam.
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3.2.13 Statistical Analysis

For the comparison of 2 groups, Student t-test was used. A p value of less than

0.01 was considered to be significant.

3.2.14 Microarray experiments

Microarray experiments were performed on Affymetrix platform. GeneChip Hu-

man Genome U133 Plus 2 (HG-U133 Plus 2.0, Affymetrix, P/N 900467) arrays

were utilized. Protocols that were supplied by the manufacturer were strictly

followed [69].

Sample preparation Isolated total RNA was evaporated (when necessary) to

reach a concentration of more than 1 µg/µL. 8-10 µg of RNA was converted to

double-stranded cDNA by using One-Cycle cDNA synthesis kit (Affymetrix, P/N

900431). To provide exogenous positive controls, a set of poly-A RNA controls

are added to the RNA samples. These poly-A controls are synthesized from B.

subtillis genes. Poly A control stock was diluted with Poly-A control dilution

buffer according to the dilution scheme. RNA concentrations at the beginning of

the experiment and cRNA concentrations before fragmentation were measured

by ND-1000 spectrophotometer (NanoDrop) and also Agilent 2100 Bioanalyzer

(Agilent Technologies). Bioanalyzer also utilized to determine the integrity of

RNA and for fragmentation efficiency. For these purposes, RNA Nano LabChip

(Agilent Technologies) was used to obtain RNA integrity numbers (RIN), digital

RNA gels, and 18S/28S values.

First Strand cDNA synthesis 8-10 µg of sample RNA and diluted poly-A

controls were added to a microfuge tube, and 2 µg of T7-Oligo(dT) primer (50

µg) was also added. Volume was completed to 12 µg with RNase-free water.

In a thermal cycler, the mixture was incubated at 70◦C for 10 min, then it was
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cooled to 4◦C for at least 2 min. In another tube, First-Strand Master Mix was

prepared by adding 4 µL of 5X 1st Strand Reaction Mix, 2 µL of 0.1M DTT, 1

µL of 10 mM dNTP, to a total volume of 7 µL. After a brief centrifuge, 7 µL

of First-Strand Master Mix was added to each RNA/T7-Oligo(dT) Primer Mix.

After a brief centrifuge, tubes were placed in 42◦C for 2 min. Finally 2 µL of

SuperScript II was added to the mixture, and tubes were placed immediately

into 42◦C to be incubated for 1 hour. Tubes were cooled down to 4◦C before

continuing to the next step.

Second Strand cDNA synthesis Second-Strand Master Mix were prepared

according to the recipe given in Table 3.4. 130 µL of Second-Strand Master Mix

to each first-strand synthesis sample. This mixture was incubated at 16◦C for 2

hours, then 2 µL of T4 DNA Polymerase was added to each sample and incubated

for 5 min at 16◦C. To finalize the reaction, 10 µL of 0.5M EDTA was added to

the tubes.

Table 3.4: Preparation of Second-Strand Master Mix

Component Volume
RNase-free water 91 µL

5X 2nd Strand Reaction Mix 30 µL
10mM dNTP 3 µL

E. coli DNA ligase 1 µL
E. coli DNA Polymerase I 4 µL

RNase H 1 µL
Total volume 130 µL

Cleanup of Double-Stranded cDNA Double-stranded cDNA synthesis re-

action was immediately followed by cleanup protocol. 600 µL of cDNA Binding

Buffer was added to the mixture, vortexed by 3 seconds, the mixture then ap-

plied to cDNA Cleanup Spin Column, and centrifuged. 750 µL of cDNA Wash
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Buffer which contains alcohol was used to wash the column, which is then dried

by centrifugation. Finally cDNA was recovered by 14 µL of cDNA Elution Buffer.

Synthesis of Biotin-Labeled cRNA The double-stranded cDNA served as

a template in in vitro transcription (IVT) reaction to obtain biotinylated and

amplified cRNA. IVT labeling kit (Affymetrix, P/N 900449) was used. Biotin

labeling reaction was started with 6 or 12 µL of cDNA, depending on the starting

RNA. Then the mixture was prepared according to the Table 3.5.

Table 3.5: Preparation of IVT Reaction Mix

Component Volume
Template cDNA 6 or 12 µL
RNase-free Water to a final volume

of 40 µL
10X IVT Labeling Buffer 4 µL
IVT Labeling NTP Mix 12 µL

IVT Labeling Enzyme Mix 4 µL
Total Volume 40 µL

After mixing the reagents, mixture was incubated at 37◦C in a thermal cycler

for 16 hours.

Cleanup and quantification of Biotin Labeled cRNA 60 µL of RNase-

free water was added to the IVT reaction and mixed. Then 350 µL of IVT cRNA

Binding Buffer and 250 µL of 96% ethanol were added to the mixture, by vor-

texing in between. Sample was applied to IVT cRNA Cleanup Spin Column,

centrifuged, washed with IVT cRNA Wash Buffer. Another washing was per-

formed with 80% ethanol, and membrane dried by centrifugation. Finally first

11 then 10 µL of RNase-free water was used to elute the cRNA. Purified cRNA

was quantified by using NanoDrop Spectrophotometer, then calculated for the

total amount of labeled RNA. Labeled RNA was calculated with the following

formula:
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adjusted cRNA yield = RNAm - (total RNAi)

RNAm = amount of cRNA measured after IVT (µg)

total RNAi = starting amount of total RNA (µg)

y = fraction of cDNA reaction used in IVT

Fragmenting the cRNA Fragmenting the cRNA is required before hybridiza-

tion, cRNA is fragmented to 35 to 200 base fragments by metal induced hydroly-

sis. 20 µg of labeled cRNA was fragmented with 8 µL of 5X Fragmentation Buffer

in a final volume of 40 µL supplied by RNase-free water. Reactions took place

at 95◦C for 35 minutes. Tubes were placed on ice immediately. Fragmentation

efficiency were monitored by Agilent Systems.

Target Hybridizations 15 µg of fragmented RNA was hybridized to GeneChips.

Poly-A exogenous positive controls (Affymetrix, P/N 900443) and probe sets for

non-eukaryotic transcripts (Affymetrix, P/N 900454), which serve as controls for

hybridization, washing, and staining procedures were added in the hybridization

cocktails. Hybridization cocktail was prepared according to the Table 3.6.

Table 3.6: Hybridization Cocktail

Component Volume
Framented and Labeled cRNA 15 µg

Control Oligonucleotide B2 (3 nM) 5 µL
20X Eukaryotic Hybridization 15 µL

Controls (bioB, bioC, bioD, cre)
2X Hybridization Mix 150 µL

DMSO 30 µL
Nuclease Free Water to a final volume

of 300 µL
Total volume 300 µL

Hybridization cocktail was heated to 99◦C for 5 minutes in a heat block. A

probe array was equilibrated to room temperature, and then wetted with 200 µL
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of Pre-Hybridization Mix. The probe array filled with Pre-Hybridization Mix was

incubated to 45◦C for 10 minutes in hybridization oven. Hybridization cocktail

was moved to 45◦C heat block for 5 minutes. After centrifuging at high speed,

pre-hybridization mix was removed and probe arrays were filled with 250 µL of

hybridization cocktail. Probe arrays were placed in hybridization oven, rotated

at 60◦C, at 45 rpm. Hybridization took place in GeneChip Hybridization Oven

640 (Affymetrix) for 17 hours. Suggested incubation time was 16 hours, but due

to the low efficiency of RNAs extracted from tissues, this duration was prolonged

to 17 hours.

Fluidics and Scanning Immediately following hybridization, the GeneChip

arrays were washed and stained with streptavidin phycoerythrin conjugate us-

ing an automated protocol (FS450−0001) on a GeneChip Fluidics Station 450

(Affymetrix), followed by scanning on a GeneArray Scanner (Affymetrix). First

fluidics station was primed using the “Prime−450” module, then the experiment

descriptions were recorded to the GCOS software. Wash Buffer A and Wash

Buffer B were placed in the appropriate positions in the fluidics station, probe

arrays then placed in the sockets. 600 µL of each of Stain Cocktail 1 and 2 and

800 µL of Array Holding Buffer were also placed in microfuge tubes. Washing

protocol followed by the fluidics station is given in Table 3.7. Probe arrays were

immediately scanned.

Data Storage GeneChip Operating Software (GCOS, Affymetrix) was used

to collect and store the data. Image data (*.dat file), cell intensity data (*.cel

file), and expression cell intensity data (*.chp) files were created and stored. Also

from all experiments a report file (*.rpt) was created and array quality measures

(presence %, actin and gapdh hybridization values) were extracted.

40



Table 3.7: Fluidics Protocol

Post Hyb 10 cycles of 2 mixes/cycle
Wash #1 with Wash Buffer A at 30◦C
Post Hyb 6 cycles of 15 mixes/cycle
Wash #2 with Wash Buffer B at 50◦C

Stain the probe array for 5
1st Stain minutes with Stain

Cocktail 1 at 35◦C
Post Stain 10 cycles of 4 mixes/cycle

Wash with Wash Buffer A at 30◦C
Stain the probe array for

2nd Stain 5 minutes with Stain
Cocktail 2 at 35◦C

Stain the probe array for
3rd Stain 5 minutes with Stain

Cocktail 3 at 35◦C
Final Wash 15 cycles of 4 mixes/cycle

with Wash Buffer A at 35◦C
Array Holding Fill the probe array with

Buffer Array Holding Buffer

3.2.15 Data processing and quality control

GeneChip Operating Software (GCOS, Affymetrix) was used to collect and store

the data. CEL files were uploaded to RMAExpress program to assess the quality

of the arrays at the image level2. Quality assessment of the Affymetrix datasets

was performed using affy PLM3. Affy PLM was used to detect artifacts on arrays

that could pose potential quality problems and also for assessment of homogene-

ity of expression signal across arrays. Accordingly, NUSE and RLE plots were

drawn by using PLM as the summarization method; outliers with high deviation

from the average probe intensity value were identified and excluded from further

analyses. CDF files were required for RmaExpress to process CEL files. CDF file

“hgu133plus2AnnoData.zip” was downloaded4.

2http://rmaexpress.bmbolstad.com
3http://www.bioconductor.org/packages/2.4/bioc/html/affyPLM.html
4http://www.affymetrix.com
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3.2.16 Data Import.

BRB Array Tools5 developed by Dr. Richard Simon and BRB-ArrayTools De-

velopment Team were used extensively for exploratory and statistical analysis

of the arrays. CEL files were imported into BRB-Array Tools. During import,

”justRMA” normalization was applied without any filtering criteria.

3.2.17 Class Comparison.

In order to find a subset of genes that can discriminate tumor samples from

cirrhosis samples, class comparison tool from BRB Array Tools was utilized. At

a significance level of 0.05, random variance model was used.

3.2.18 Hierarchical Clustering

For all cluster analyses, Cluster 3.0 program6 was used. First data was adjusted

by centering genes and arrays separately based on mean values, then average

linkage was applied to genes and arrays using correlation (uncentered) similarity

metric. Cluster files were visualized by Java Treeview7.

3.2.19 Intersection lists

Common probe-sets between the two significant gene lists were found by CROP-

PER8 and custom perl-codes developed in Bilkent University.

3.2.20 Scatterplots

To find the genes changing in the same direction between HCC and immortal

samples and between cirrhosis and senescent samples, scatterplots were drawn in

5http://linus.nci.nih.gov/BRB-ArrayTools.html
6http://bonsai.ims.u-tokyo.ac.jp/ mdehoon/software/cluster/
7http://jtreeview.sourceforge.net
8http://katiska.uku.fi/jmpaanan/cgi-bin/cropper/multi.pl”
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BRB Array Tools by using 1.5 fold change.

3.2.21 Pathways Analysis

DAVID9 [70] was used to identify the pathways associated with different gene

lists by using Functional Annotation Clustering. As the cutoff for significance;

we selected biological groups with >1.3 enrichment score, >5 FDR, and >0.05

Benjamini Hochberg multiple test corrected values.

3.2.22 Clinical Dataset Analysis

Wurmbach data [71] was downloaded10. 75 CEL files were uploaded into BRB-

ArrayTools by using ”justRMA” normalization method without any filters. Five

classes set from Wurmbach data were as follows: control (n=10), cirrhosis (n=13),

dysplasia (n=17), early HCC (n=18), and advanced HCC (n=17).

3.2.23 Prediction analysis

We performed binary tree classifier for utilizing gene expression profile to predict

the class of future samples using BRB array tools. The individual binary classi-

fiers were based on the Support Vector Machines incorporating genes that were

differentially expressed among genes at the 0.001 significance level as assessed by

the random variance t-test.

3.2.24 Creation of immortality- and senescence-associated

gene lists

Class comparison tool was applied to Wurmbach [71] and Boyault [72] datasets,

independently at an alpha level < 0.001 and/or < 0.01. For the former, pairwise

9http://david.abcc.ncifcrf.gov/
10http://www.ncbi. nlm.nih.gov/pro-jects/geo” (GSE 6764)
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comparisons based on a progressive staging were performed: normal vs. cirrhosis,

cirrhosis vs. dysplasia, dysplasia vs. early HCC, early HCC vs. advanced HCC.

For Boyault data [72], class comparison lists between specified pairs were deter-

mined, then filtered to reduce the probeset information into genes. For each gene

with multiple probesets, the probeset with the highest discriminating p-value

was chosen. These genes were then assessed for their expression modulation

in Huh7 clones immortality/senescence dataset. The genes whose expression was

upregulated in immortal clones were called immortality-associated genes, whereas

those with increased expression in senescent clones were considered as senescence-

associated genes. A custom PERL routine by Raşit Öztürk was used to identify

the proportion of immortality and senescence genes in each class comparison gene

list. Briefly, genes are classified according to their fold change values (up if >1

or down if <1) of the two classes to be compared (e.g., Class I: control vs. Class

II: cirrhosis). In the second filtering step, fold change between immortal versus

senescence groups was assessed such that a probeset was considered upregulated

or downregulated if the fold change value between immortal and senescent classes

was equal to or bigger than 1.5 or equal to or less than 0.66, respectively. The

numbers of upregulated and downregulated probesets were counted and these

counts were used to perform a two-tailed Fishers exact test to assess whether the

divergence between the numbers of immortality versus senescence genes within a

list was significant.
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Chapter 4

RESULTS

4.1 Downregulation and the Anti-growth Effect

of ZEB2 in Hepatocellular Carcinoma

4.1.1 Extraction of ZEB2 expression from the publicly

available microarray datasets

To explore the expression patterns of ZEB2 in different liver disease stages, we

first performed in silico analysis of publicly available global expression data. Mi-

croarray expression dataset recently generated by Wurmbach et al. [71] was

selected for this study, as it is composed of a well-defined set of liver tissues at dif-

ferent stages of HCC development, ranging from a normal liver to very advanced

HCC. The reported data was normalized and average probe intensities were cal-

culated for individual samples. We regrouped samples reported by Wurmbach

et al. [71] into five categories: normal liver (n=10), cirrhosis (n=12), dysplasia

(early and late dysplasia combined; n=17), early HCC (very early and early HCC

combined; n=17), and advanced HCC (advanced and very advanced HCC com-

bined; n=15). As shown in Figure 4.1, cirrhosis samples displayed significantly

increased ZEB2 expression, when compared to normal liver samples (p<0.005).
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One-Way ANOVA was performed with significant results (F=12.9; p= 000). Ac-

cordingly, pairwise t-tests were performed to see which of the groups were signifi-

cantly different from others.Thereafter, ZEB2 levels displayed stepwise decreases

in dysplasia, early HCC and advanced HCC, respectively. When compared to

cirrhosis, this decrease was statistically significant for all three categories (p val-

ues 0.0061, 0.0001 and <0.0001 for dysplasia, early HCC and advanced HCC,

respectively). A statistical difference was also evident between normal liver and

advanced HCC (p<0.001).

Figure 4.1: ZEB2 expression is induced in cirrhosis, but lost during malignant
progression of HCC. In silico reanalysis of ZEB2 expression in normal liver, HCV-
induced cirrhosis, dysplasia and HCC. Global expression data reported by Wurm-
bach et al. [71] was normalized and probe intensities for each disease group were
used for comparison.

4.1.2 ZEB2 expression in tumor and nontumor pairs

To confirm in silico observations, we tested ZEB2 expression in seven pairs of

tumor and nontumor liver tissues from cirrhotic patients by quantitative PCR
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analysis. The expression of ZEB2 in cirrhotic tissues was high but displayed

variability between patients (Figure 4.2). In contrast, all paired HCC samples

displayed consistently lower levels of ZEB2 expression, as compared to cirrhotic

liver samples.

Figure 4.2: Real-time quantitative PCR analysis of ZEB2 expression in seven
pairs of HCC and non-tumor liver tissues (all cirrhosis), indicating consistent
loss of expression in tumors. Real-time PCR analysis was performed for ZEB2
and β-actin in triplicate, and Ct values were determined. Relative levels of ZEB2
transcripts were calculated using β-actin as reference. Numbers below the x axis
indicate patient codes.Tumors, gray bars; cirrhosis; white bars.

Together, in silico and in vivo tumor studies that correlated with each other

indicated that ZEB2 expression is downregulated during malignant progression

from cirrhosis to HCC.

4.1.3 Senescence-like growth arrest in ZEB2-overexpressing

Hep3B clones

Hep3B cells were transfected with Flag-tagged ZEB2 vector, and early passages

(passages 6-9) of G418-resistant clones were screened for ZEB2 overexpression by
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RT-PCR and three clones (S1, S3 and S4 clones) were selected together with an

empty vector-derived C1 clone Figure 4.3.

Figure 4.3: ZEB2 represses TERT expression and induces senescence-like growth
arrest in HCC-derived Hep3B cells. RT-PCR data showing that ZEB2-expressing
clones display repression of telomerase reverse transcriptase (TERT) transcrip-
tion. RT; reverse transcriptase.

We were not able to show Flag-ZEB2 expression by immunoperoxidase or by

immunofluorescence assays using commercially available anti-Flag antibody in

any of the clones, probably because of the low level of expression (data not shown).

Next, we compared the levels of TERT expression in the same set of clones. We

observed a partial repression of TERT transcript levels in all ZEB2-expressing

clones, as compared to the C1 clone Figure 4.3. Based on our previously published

data on senescence induction associated with TERT repression in Huh7 clones

[42], we screened Hep3B-derived clones with senescence markers. The C1 control

clone was usually free of senescence-associated β-galactosidase (SABG)-positive

cells, except for one or two cells that were occasionally observed (Figure 4.4-top

left).

In contrast, SABG-positive and flattened cells were abundant in S1, S3 and

S4 clones (4.4, top right and bottom). In order to confirm senescence-like arrest

and to quantify the rates of permanently arrested cells in different Hep3B-derived
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Figure 4.4: ZEB2-expressing clones display positive staining for SABG. Senescent
cells (blue) were abundant in ZEB2-expressing S1, S3 and S4 clones, but not in C1
clone. ZEB2-expressing clones (S1, S3 and S4) were generated after transfection
of Hep3B cells with Flag-tagged ZEB2 expression vector. C1; negative control
clone generated with empty vector.
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clones, we calculated the DNA labeling index after long-term (24h) BrdU label-

ing under mitogenic stimulation, as described previously [42], [73]. Low-density

clonogenic conditions were used for this assay. Colonies were derived from dif-

ferent clones and labeled with BrdU for 24h, followed by anti-BrdU fluorescence

staining. Cell nuclei were then counterstained with DAPI and observed under

a fluorescent microscope. Colonies derived from the C1 control clone displayed

permanently arrested (i.e. BrdU-negative) cells at low rates, whereas colonies de-

rived from ZEB2-overexpressing clones usually had higher rates of permanently

arrested cells (Figure 4.5).

To test the significance of these findings, BrdU-positive and BrdU-negative

cells were counted in randomly selected colonies (n=10) that were derived from

each clone. Then, a DNA labelling index (mean±SD) was calculated for each

clone tested. This index was 13±10% for C1-derived colonies. In contrast, ZEB2-

overexpressing clones displayed permanently arrested cells at significantly higher

index rates (Figure 4.6).

The DNA labeling indices were 45±15%, 38±12% and 34±13% for S1, S3

and S4, respectively (p < 0.001 for any ZEB2-expressing clone versus C1 clone).

These observations provided plausible evidence that ectopic expression of ZEB2

in Hep3B HCC cells results in senescence-like growth arrest in association with

the repression of TERT expression in these cells. Senescence arrest in different

cell types is commonly mediated by an induced expression of p15INK4b, p16INK4a

and/or p21Cip1 cyclin-kinase inhibitors (reviewed by [20]). Therefore, we com-

pared the expression of these senescence mediators in clones C1 and S4. Both

clones were plated in triplicate and subjected to immunoperoxidase staining using

appropriate antibodies. There was no detectable expression of p15INK4b in either

the C1 or in the S4 clones. p16INK4a expression was positive in both C1 and S4

clones, as reported previously for the parental Hep3B cells [74]. In contrast, we

observed a significant difference in the rates of p21Cip1-expressing cells (Figure
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Figure 4.5: ZEB2-expressing S1, S3 and S4 clones generate colonies with high
rates of permanently arrested cells, as demonstrated with negative BrdU incor-
poration into nuclear DNA after 24h BrdU labeling. (a) Double immunostaining
using anti-BrdU antibody (green) and DAPI (red). BrdU-positive nuclei, yellow;
BrdU-negative nuclei; red in merged pictures. Studies were performed with the
following passage numbers: 3B-C1, passages 13-17; 3B-S1 and 3B-S3, passage 9;
3B-S4, passage 6.
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Figure 4.6: Quantitative analysis of permanent growth arrest showing a signif-
icant increase of non-proliferating cells in ZEB2-expressing clones. Data rep-
resent mean values (bars) with standard deviation (lines) of % BrdU-negative
(non-proliferating) cells in randomly selected colonies (n=10 for each clone). C1;
control clone.
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4.7).

As represented in Figure 4.8, the ZEB2-overexpressing S4 clone displayed cells

with nuclear p21Cip1 at a rate of 26% (±1%), as compared to C1 cells that showed

background staining only (2±1%).

4.1.4 Sustained expression of ZEB2 is not compatible with

the expansion of Hep3B cell line

Based on partial responses of Hep3B clones to ZEB2 overexpression (for example,

only 25% of cells were positive for p21Cip1 expression), we were unsure whether

its stable expression was maintained during in vitro expansion. Therefore, we

kept S1, S3 and S4 cells in culture until they reached the passages 15-19, and we

examined them.

We compared the rates of SABG-positive cells to those of early passages.

SABG-positive and SABG-negative cells were counted on randomly selected colonies

(n > 6 colonies for each passage and each clone tested). Mean values (± s.d.)

of SABG index (% SABG-positive) were calculated and illustrated in Figure 4.9.

The SABG index values of early passages were 13±3%, 28±14%, 20±5%, and

37±7% for C1, S1, S3 and S4, respectively. Statistical comparison of SABG in-

dexes of early passage ZEB2 expressing clones with that of C1 clone indicated

a significant increase in ZEB2 expressing clones (p values: 0.0026, 0.0008, and

<0.0001 for S1,S3 and S4, respectively). At late passages, the C1, S1, S3 and S4

clones displayed 8±4%, 9±2.5%, 8±3% and 26±8% SABG-positive cells, respec-

tively. Thus, the senescence rates in late passage of S1 and S3 clones dropped

to background levels observed in C1 clone, whereas S4 clone displayed a partial

(30%) loss.

We observed a general loss in RT-PCR levels of ectopically expressed ZEB2

transcripts in later passages, as compared to early passages (Figure 4.10). This

correlated with the restitution of E-cadherin protein levels that were repressed
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Figure 4.7: p21Cip1 expression is induced in a fraction of ZEB2-expressing S4
clones, as compared to C1 control clone. S4 and C1 clones were plated at equal
cell density in triplicate and the expression of p21Cip1, p15INK4b and p16INK4a were
tested by immunocytochemistry using appropriate antibodies. Representative
examples of immunostaining patterns were shown here.
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Figure 4.8: p21Cip1-positive and total number of cells tested in 4.7 were counted
manually (in triplicate), percent p21Cip1-positive cells were calculated and plotted
as mean (bars) ± s.d. (lines).

in early passages (Figure 4.11). Similarly, telomerase activity, which had been

inhibited in early passage cells, was restored to control levels at in late passages

(Figure 4.12). Respective p values for the telomerase activity assay are given in

Table 4.1. Finally, we did not observe high levels of senescent cells, nor did we

observe nuclear p21Cip1 expression in late passages.

Taken together, these observations strongly suggested that ZEB2 overexpres-

sion was not maintained and its effects were not lost progressively during in vitro

expansion of Hep3B cells.

4.1.5 Sustained expression of ZEB2 is not compatible with

the expansion of A431 cells

To validate our observations using another cell line, we used A431/ZEB2 clone

with Dox-regulated expression of 6xMyc-tagged human ZEB2 [46]. Treatment of

this clone with Dox was previously shown to induce rapid accumulation of ZEB2
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Figure 4.9: ZEB2 effects in Hep3B clones are reversible. Late passages of ZEB2-
transfected S1, S3 and S4 cell lines were compared with their early passages. C1;
negative control. (A) SABG-positive senescent cells are depleted in late passages.
SABG index was determined by manual counting of individual colonies. E: early
passages; L: late passages. Early passages: C1, p12; S1, S3, p9; S4, p8. Late
Passages: C1, p19; S1, S3, p16; S4, p15.

Table 4.1: p values for the telomerase data in Figure 4.12

C1E vs. Early pas. of each clone p value
C1E vs S1E 0.0003
C1E vs S3E 0.0001
C1E vs S4E 0.0027

C1L vs. Late pas. of each clone
C1L vs S1L 0.0011
C1L vs S3L 0.0115
C1L vs S4L 0.0114

Early vs. Late for each clone
C1E vs C1L 0.0327
S1E vs S1L 0.0007
S3E vs SEL 0.0001
S4E vs S4L 0.0083
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Figure 4.10: In vitro expansion of S1, S3 and S4 clones is not compatible with
ZEB2 overexpression. Late passages (passages 15-19) of ZEB2-transfected S1,
S3 and S4 cell lines were compared with their early passages (passages 6-9).
Down-regulation of ectopic ZEB2 expression in late passages. ZEB2 and GAPDH
(control) transcripts were tested by RT-PCR. Early passages: 3B-S4, p7; 3B-S3,
p6; 3B-S1, p6; 3B-C1, p10. Late passages: 3B-S4, p20; 3B-S3, p21; 3B-S1, p21;
3B-C1, p25.

Figure 4.11: Loss of ZEB2-mediated E-cadherin repression in late passages. E-
cadherin and calnexin (control) were tested by western blotting. Early passages:
3B-S4, p7; 3B-S3, p6; 3B-S1, p6; 3B-C1, p10. Late passages: 3B-S4, p20; 3B-S3,
p21; 3B-S1, p21; 3B-C1, p25.
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Figure 4.12: ZEB2-expressing clones display decreased telomerase activity at
early, but not in late passages. Telomerase activity was presented in reference to
positive control in telomerase assay. C1: negative control, E: Early passages, L:
Late passages.
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protein in 95–98% of cell nuclei, leading to cell scattering and dramatic mor-

phological conversion from an epithelial cell state to a fibroblast-like phenotype

(Figure 4.13).

Figure 4.13: A431 cells change their morphology upon ZEB2 induction. ZEB2
induction with the addition of doxycyclin (on the left) induces a morphological
shape change leading to cell scattering. Normal morphology of these cells is given
on the right.

We analyzed A431/ZEB2 cells under low density clonogenic conditions. As

shown in Figure 4.14 and 4.15, after 3 days of Dox treatment, colonies displayed

75±27% nuclear Myc-ZEB2. When cells were left to grow in the presence of Dox,

Myc-ZEB2 positive cells in colonies were progressively depleted to 31±19% and

17±13%, at days 6 and 9, respectively. There was no detectable expression in

the absence of Dox.

To test time-dependent senescence effects of ZEB2 in A431/ZEB2 cells, we

first performed SABG staining assays. A431/ZEB2 cells were completely negative
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Figure 4.14: Tetracycline-regulated ZEB2 expression in A431/ZEB2 cells induces
permanent growth arrest and its forced expression is not compatible with cell ex-
pansion. Dox-induced Myc-tagged ZEB2 (Myc-ZEB2) expression in A431/ZEB2
cells is lost progressively in cell culture. ZEB2 immunofluorescence (green) and
nuclear DAPI staining (red) were shown. Merged pictures (Merge) identify ZEB2-
positive (yellow) and -negative (red) cells. Nearly all Dox-induced cells display
positive Myc-ZEB2 staining at day 3, followed by a progressive loss of expression.
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Figure 4.15: Quantitative analysis confirms loss of ZEB2 expression. Cell colonies
were counted, and mean (bars) and s.d. (lines) values were calculated. day 3:
mean=75, SD=27, n=12; day 6: mean=31, SD=19, n=18; day 9: mean=17,
SD=13, n=19.
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for SABG in the presence or in the absence of ZEB2 expression (data not shown).

Therefore, we used long term BrdU labeling assay as an alternative approach

[46, 73]. As shown in Figures 4.16 and 4.17, cells at terminal growth arrest

(i.e. negative for BrdU staining after 24h mitogenic stimulation) were detected

at low rates in uninduced A431/ZEB2 cells (3±3%, 7±7% and 9±7% at days

3, 6, and 9, respectively). The induction of ZEB2 expression raised the ratios

of terminally arrested cells to 14±7%, 34±18% and 22±10% at days 3, 6 and

9, respectively. This increase of growth-arrested cells by ZEB2 expression was

statistically significant (p < 0.0001, at all time points tested). When the rates of

Myc-ZEB2 positive cells (Figure 4.16) are compared with that of BrdU negative

cells (Figure 4.17), it is easily noticeable that ZEB2 expression causes a delayed

growth arrest. Myc-ZEB2 expression was maximum at day 3, whereas the rate

of growth arrested cells reached a peak at day 6. Myc-ZEB2 levels decreased

gradually at days 6 and 9, and this was accompanied with a decrease of BrdU

negative cells at day 9.

Thus, as we observed with Hep3B cells, ZEB2 also induces growth arrest in

A431 cells, but both cell lines are able to escape this restriction by progressively

down-regulating ZEB2 expression. If this is indeed the case, if maintained in the

presence of Dox for a long time, the whole surviving cell population of A431/ZEB2

clone should become Myc-ZEB2-negative. We tested this possibility by using an

experimental protocol that is described in Figure 4.18. A431/ZEB2 cells were

passaged in medium supplemented with hygromycin and puromycin, in absence

(set II) or in the presence of Dox (set I) until day 23. At day 23, medium

supplemented with Dox was added in both sets, and cells were subjected to Myc-

ZEB2 staining at day 25. As shown in Figure 4.19, long term growth of cells

in the presence of Dox to keep ZEB2 expression induced (set I) resulted in the

loss of Myc-SIP expression, as only a few weakly positive cells remained in the

pool (Figure 4.19 top). This was in sharp contrast with set I where nearly all
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Figure 4.16: ZEB2-induction (Dox+) results in increased rates of permanently
growth arrested cells. Cells were incubated in fresh BrdU-supplemented medium
for 24h prior to BrdU (green) and DAPI (red) staining. The figure shows repre-
sentative illustrations (days 6 and 9), in the presence (+) or absence (-) of Dox
treatment.
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Figure 4.17: Quantitative analysis of BrdU-negative non proliferating cells. Dox-
induced cells (gray bars) display a delayed increase at day 6, followed by a drop
at day 9. * denotes that the observed changes in ratios between days were
statistically significant. day3: mean=14, SD=7, n=24; **: p<0.0001, day6:
mean=34, SD=18, n=32;. *: p<0.0014, day9: mean=23, SD=10, n=18. For the
non-induced state: day 3: mean=3, SD=3, n=24; day 6: mean=7, SD=7, n=14;
day 9: mean=9, SD=7, n=16
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cells were strongly positive for Myc-ZEB2 (Figure 4.19 bottom). This experiment

was repeated with another lot of A431/ZEB2 cells with 13 days of Dox induction,

followed by 2 days of release. Again, virtually all ZEB2-positive cells were deleted

(data not shown).

Figure 4.18: Loss of ZEB2 expressing cells over long term culture under induced
conditions. Schematic representation of cell culture conditions where cells were
subcultivated in the presence (set I) or in the absence (set II) of Dox for 23 days,
followed by Dox induction for 2 days.
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Figure 4.19: Cells exposed to continuous Dox treatment (set I) have lost Myc-
ZEB2 expression almost completely, as opposed to strongly positive non-induced
cells (set II).
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4.2 A Major Role for Senescence and Immor-

tality Gene Network in Hepatocellular Car-

cinoma

4.2.1 Microarray experiments with HCC and cirrhosis sam-

ples

Microarray experiments require high quality RNA with high concentration. Ag-

ilent 2100 Bioanalyzer (Agilent Technologies) is a microcapillary electrophoretic

technique that seperates RNA in an automated fashion. It calculates an RNA

integrity number (RIN) which is based on a 1-10 scale, 10 representing the high-

est quality [75]. System also produces an electropherogram, showing the marker

as the first appearing peak, and then small rRNA fragments are plotted. Ra-

tio of 28S to 18S rRNA fragments is a common way of analyzing RNA, usually

through conventional RNA agarose gel electrophoresis. Agilent system calculates

28S/18S rRNA ratios via this electropherogram and also produces a virtual gel

photo. Interpretation of electropherogram is given in Figure 4.20

Agilent Analyses For the microarray experiments RNA was isolated from 64

samples. All of them (except two) were analyzed by Agilent system but a portion

of the RNAs were analyzed with an earlier version of the system. Electrophero-

grams and virtual gel photos of the samples analyzed in the newer and earlier

version of the Agilent system are given in Appendix. Two samples were not

tested since no RNA left after the microarray experiment.

RIN values obtained from Agilent are summarized in the Table 4.2.1. MRC5

cell line was used as a positive control. RNA was isolated from early and late

clones and RIN values were obtained from Agilent System. A perfect RIN value,
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Figure 4.20: Each electropherogram is divided into nine segments: a pre-region,
a marker region, a 5S region, a fast region, an 18S region, an inter region, a
28S region, a precursor region and a post region. Marker is shown as the first
appearing peak. The 5S-region covers the small rRNA fragments (5S and 5.8S
rRNA and tRNA). The 18S region and 28S region cover the 18S rRNA peak and
28S rRNA peak, respectively. Figure adapted from Ref. [75]
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10, was obtained from early passage MRC5 and also from the late passage cells,

RIN values were 8.5. Overall RIN values were ranged between 1.1 and 10. RNAs

with RIN values lower than 4 were not included in the final analysis. These RNAs

if included in the microarray experiments also gave lower presence and absence

values. FC-NT and BG-T, although they have RIN values higher than 4, were not

included in the analysis regarding to other quality measurements. MC-T and MC-

NT were excluded from the analysis because with the pathology examinations,

they were identified as cholangiocarcinoma which is a different pathology than

HCC. Ses-NT, RE-NT, KaK-NT, HG-NT, HK-NT, MST-NT, MAS-NT, OU-NT,

and RU-NT were not included in the microarray experiments despite their high

RIN values, they are saved for future analysis. Agilent Bioanalyzer plots of the

samples that were not included in the analysis due to low RNA quality and plots

of the samples that were saved for future analysis are given in Appendix.

Data processing and quality control CEL files were uploaded to RMA-

Express program to assess the quality of the arrays at the image level. NUSE

(Normalized Unscaled Standard Error) and RLE (Relative Log Expression) plots

were drawn using affyPLM package Figures 4.21 and 4.22. AffyPLM is a tool to

detect artifacts on arrays that could pose potential quality problems and also for

assessment of homogeneity of expression signal across arrays. Outliers with high

deviation from the average probe intensity value were identified and excluded

from further analyses. Accordingly, from 46 samples that have been included in

NUSE and RLE plots, 39 have passed the criteria NUSE < 1.05, RLE < 0.1. .

MA-plots Evaluation of the individual array qualities were done using MA-

plots which gives the relation between the intensity levels and distribution of the

ratios. It compares log 2 transformed intensities to the avarage of all the other

samples. MA-plots for each array is compared to the calculated median of all

arrays. Perfect correlation is given as blue line and LOESS are given as red line.
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Tissue Hospital Agilent Included in
RIN values the analysis

1 FC-T Ankara 2.7 No
2 FC-NT Ankara 5.5 No
3 BG-T Ankara 4.2 No
4 BG-NT Ankara 5.4 Yes
5 IA-T Ankara 3 No
6 IA-NT Ankara 4.2 Yes
7 YA-T Ankara 7.0 Yes
8 YA-NT Ankara 6.8 Yes
9 MA-T Ankara 8.3 Yes
10 MA-NT Ankara 2.3 No
11 ET-T Ankara 8.5 Yes
12 ET-NT Ankara 7.6 Yes
13 VA-T Izmir 6.6 Yes
14 VA-NT Izmir NA Yes
15 SB-T Izmir NA Yes
16 SB-NT Izmir 6.7 Yes
17 MC-T Izmir 6.9 No
18 MC-NT Izmir 8.8 No
19 FM-T Izmir 7.6 Yes
20 FM-NT Izmir 4.0 Yes
21 ASF-T Ankara 8.4 Yes
22 ASF-NT Ankara 4.3 Yes
23 EK-T Ankara 7.4 Yes
24 EK-NT Ankara 2.2 Yes
25 AM-T Ankara 7.8 Yes
26 AM-NT Ankara 6.7 Yes
27 GS-T Ankara 2.6 No
28 GS-NT Ankara 1.9 No
29 281207-T Izmir 8.0 Yes
30 281207-NT Izmir 7.1 Yes
31 SA-T Ankara 8.8 Yes
32 SA-NT Ankara 4.3 Yes
33 HY-T Ankara 6.4 Yes
34 HY-NT Ankara 8.2 Yes
35 SO-NT Ankara 7.8 Yes
36 CO-T Ankara 3.9 No
37 AO-T Izmir 8.1 Yes
38 TA-T Izmir 8.8 Yes
39 TA-NT Izmir 8.8 Yes
40 FiC-T Izmir 7.8 Yes
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Table 4.2: Agilent Values of the RNAs isolated from HCC and cirrhosis tissues

Tissue Hospital Agilent Included in
RIN values the analysis

41 HU-NT Izmir 8.3 Yes
42 IP-T Ankara 7.8 Yes
43 MB-NT Izmir 8.5 Yes
44 HaU-NT Izmir 8.9 Yes
45 OC-NT Izmir 8.2 Yes
46 RH-NT Izmir 7.3 Yes
47 IT-NT Izmir 8.4 Yes
48 SeS-NT Izmir 8.8 Yes
49 RE-NT Izmir 8.2 No
50 KaK-NT Izmir 9.1 No
51 HG-NT Izmir 8.0 No
52 HK-NT Izmir 7.4 No
53 MST-NT Izmir 6.5 No
54 MAS-NT Izmir 6.6 No
55 OU-NT Izmir 8.8 No
56 RU-NT Izmir 5.9 No
57 MB-T Izmir NA No
58 KK-T Ankara 3.7 No
59 KK-NT Ankara 1.1 No
60 SS-T Ankara 1.2 No
61 SS-NT Ankara NA No
62 SO-T Ankara 1.0 No
63 MRC5-E Cell Line 10.0 No
64 MRC5-L Cell Line 8.5 No
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Figure 4.21: NUSE values plotted for 46 arrays. Each bar represents an individual
array. Mean value is shown with a black line. NUSE values are on the y axis.
Red arrows indicate outlier samples that were not included in the analyses.

Figure 4.22: RLE values plotted for 46 arrays. Each bar represents an individual
array. Mean value is shown with a black line. RLE values are on the y axis. Red
arrows indicate outlier samples that were not included in the analyses.
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Representative MA-plots can be found in Appendix. MA-plots were drawn in R

with the code given below:

> source ("http://bioconductor.org/bioclite.R")

> bioclite ("affy")

> library (affy)

> library (affyPLM)

> mydata1 <-ReadAffy()

> pdf (file=‘‘MAplot1.pdf’’)

> MAplot (mydata1, plot.method=‘‘smoothscatter’’,

ylim=c(-3,3), nrpoints=256)

> dev.off()

Clinical data of the samples Clinical data including origin of the samples

-which hospital the samples were collected from-, sample ID, patient code, age,

gender, etiology, tumor size, and diagnosis are given in Table 4.3. Tumor samples

were all HCC and nontumor samples were diagnosed with cirrhosis in most of the

cases. Tumor sizes differed with diameters ranged from 2.5 to 26 cm. Etiologies

were HBV for 2, HCV for 6 and HBV+HDV for 2 samples. Not all of the

information were available for all of the samples. There are missing information

regarding the clinical data which was substituted by pathology examinations.

Tissue samples were analyzed by pathologists at the hospital centers immediately

after the tissues were resected. After samples arrived our lab, slides obtained from

tissue samples were examined again by pathologist Dr. Önder Bozdoğan.
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Table 4.3: Cirrhosis and hepatocellular carcinoma samples used for microarray
analyses

Sample ID Sample Type Age (yr) Gender Etiology Pathology
Pathology

Ankara-1NT Cirrhosis 45 male HBV cirrhosis
Ankara-6NT Cirrhosis 50 male HBV cirrhosis
Izmir-3NT Cirrhosis 65 male HBV cirrhosis
Izmir-4NT Cirrhosis 52 female HCV cirrhosis
Izmir-1NT Cirrhosis 56 male HBV cirrhosis
Izmir-6NT Cirrhosis 64 male HCV cirrhosis
Izmir-7NT Cirrhosis 41 male HBV+HDV cirrhosis
Izmir-8 NT Cirrhosis 48 female HBV cirrhosis
Izmir-9NT Cirrhosis 52 male HBV cirrhosis
Izmir-10NT Cirrhosis 48 male HBV cirrhosis
Izmir-11NT Cirrhosis 50 male HBV cirrhosis
Ankara-8NT Cirrhosis 30 female HBV cirhosis
Ankara-12NT Cirrhosis 41 male HBV+HDV cirrhosis
Ankara-2NT Cirrhosis 52 male HBV N/A
Ankara-3NT Cirrhosis 62 male HCV N/A
Ankara-4NT Cirrhosis 60 male HBV N/A
Izmir-2NT Cirrhosis 44 female N/A N/A

Ankara-5NT Cirrhosis N/A male N/A N/A
Izmir-5NT Cirrhosis N/A male N/A N/A
Izmir-12NT Cirrhosis N/A female N/A N/A
Ankara-1T HCC 45 male HBV WD HCC
Ankara-2T HCC 52 male HBV HCC
Ankara-3T HCC 62 male HCV HCC
Ankara-4T HCC 60 male HBV HCC
Ankara-6T HCC 50 male HBV HCC
Izmir-1T HCC 56 male HBV Focal HCC
Izmir-2T HCC 44 female N/A MD HCC
Izmir-3T HCC 65 male HBV WD HCC
Izmir-4T HCC 52 female HCV MD. HCC

Ankara-7T HCC 69 male HBV MD HCC
Ankara-9T HCC 62 male HCV MD HCC
Izmir-10T HCC 49 male HBV MD HCC
Izmir-11T HCC 59 male HBV MD HCC

Ankara-10T HCC N/A male HBV MD HCC
Ankara-5T HCC N/A male N/A N/A
Ankara-11T HCC N/A male N/A N/A

Izmir-5T HCC N/A male N/A N/A
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4.2.2 Establishing a senescence and immortality gene net-

work signature for cirrhosis and hepatocellular car-

cinoma.

We previously described the generation of immortal and senescence programmed

clones from the HCC-derived Huh7 cell line. Immortal clones were tumorigenic,

and were able to sustain cell proliferation beyond 150 population doublings

(PD), while senescence programmed clones were not tumorigenic, and entered

senescence-like permanent growth arrest after ∼ 80 PD [42]. To generate a SIGN

expression data, we first obtained global gene expression profiles of immortal

and senescence-programmed clones, as well as of liver cirrhosis and HCC tumor

tissues. Then we integrated in vitro and in vivo datasets.

Two immortal clones were tested after 150 PD following clone isolation. Two

senescence programmed clones were analyzed at both presenescent (20-30 PD

before senescence arrest) and senescent (∼ 80 PD) states. Three biological repli-

cates were used for RNA extraction from clonal cells with a total of 18 cell line

samples. A total of 6390 probe-sets showed differential expression between im-

mortal, presenescent and senescent cells (P < 0.05; dataset not shown). We also

identified 10185 probe-sets that displayed differential expression between cirrhosis

and tumor samples (p < 0.05; dataset not shown). Next, we integrated significant

probe-sets generated from in vitro cell line and in vivo clinical samples (Figure

4.23). 1909 probe-sets were found to be common.

To demonstrate the ability of 1909 probe-sets to differentiate between senes-

cence and immortality, we performed unsupervised hierarchical cluster analyses.

Immortal and senescence programmed (presenescent and senescent) Huh7 clones

formed two separate clusters (Figure 4.24).
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Figure 4.23: Venn diagram of probe-sets selected by two-tailed unpaired Welch’s
t-test and class comparison test in BRB array tools from in vitro cell line and in
vivo tissue analysis data, respectively. Red circle represents the number of probe-
sets differentially expressed between presenescent, senescent and immortal cells
(P < 0.05). Blue circle represents number of probe-sets differentially expressed
between cirrhosis and HCC tissue samples (P < 0.05). A total of 1909 probe-sets
that display differential expression in both cell lines and tissues was selected as
SIGN probe-sets.
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Figure 4.24: Unsupervised cluster analysis of Huh7-derived immortal, presenes-
cent and senescent clones with 1909 probesets.
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Next, we used our 1909 probe-sets for comparison of cirrhosis and HCC tis-

sues. As expected, these samples also formed two major clusters. One cluster

included 85% (17/20) of cirrhosis, and the other 71% (14/17) of HCC samples

(Figure 4.25). Cirrhosis and HCC have been considered as in vivo states of hep-

atocellular senescence and immortality, respectively. Hence, our in vitro and in

vivo data combined, identified a SIGN signature that could serve for classifi-

cation of different hepatic lesions with respect to the states of senescence and

immortality.

4.2.3 Discriminating between preneoplastic and neoplas-

tic stages of hepatocellular carcinogenesis by the

SIGN signature.

Because HCC typically develops in close association with pre-existing cirrhosis, it

is widely believed that human hepatocellular carcinogenesis is a stepwise process

starting with dysplastic nodules that lead to early HCC foci that in turn progress

to advanced HCC by a process of dedifferentiation and increasing tumor size [4].

We tested the predictive power of the SIGN signature for the classification of

these sequential events using an independent clinical dataset generated for the

study of HCV-associated hepatocellular carcinogenesis [71]. We regrouped tissue

samples into five stages; namely normal liver, cirrhosis, dysplasia, early HCC and

advanced HCC. By unsupervised cluster analysis with the SIGN signature, the

tissue samples formed two major clusters; one of all normal liver, cirrhosis and

dysplasia samples, as well as two early HCCs, and the other all but two HCC

samples (Figure 4.26, sample IDs are shown in Figure 4.27).

Thus, the SIGN signature was quite informative for discriminating between

preneoplastic and neoplastic lesions of the liver. Indeed, a binary tree analysis (P

< 0.001; Figure 4.28) distinguished normal liver and cirrhosis from dysplasia and
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Figure 4.25: Unsupervised cluster analysis of HCC and cirrhosis samples with
1909 probesets. Experimental dendrogram showing the clustering of tissue sam-
ples into cirrhosis and HCC subgroups (top). The findings indicate that 1909
probesets represent the SIGN signature. Scaled-down representation of the entire
cluster of gene probesets and samples based on similarities in gene expression
were shown on the bottom of figure
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Figure 4.26: Hierarchical clustering of gene expression data from [71]. Exper-
imental dendrogram showing the clustering of hepatocellular carcinoma (HCC)
tissues separetely from normal liver, cirrhosis and dysplasia tissues (top), and
scaled-down representation of the entire cluster of 1909 gene probesets and 72
tissue samples based on similarities in gene expression (bottom).
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Figure 4.27: Unsupervised cluster analysis of 10 normal liver, 13 cirrhosis, 17
dysplasia, 18 early HCC, and 17 advanced HCC samples with SIGN probesets.
This figure shows the sample clustering with sample IDs.

HCC (97% accurate classification), cirrhosis from normal liver (100% accuracy),

and dysplasia from HCC (94% accuracy). Early and advanced HCCs were also

differentiated from each other, but less accurately (74% accuracy).

These findings suggest that progressive steps of hepatocellular carcinogene-

sis are accompanied by significant changes in the expression of senescence- and

immortality-associated genes. To study the significant changes between each

step, we generated classifier probesets by a pair-wise class comparison analysis

and identified genes that displayed a > 1.5-fold change between senescent and im-

mortal cells. The ratios of the number of senescence- and immortality-associated

genes between each successive step were compared (Figure 4.29).

The transition from normal liver to cirrhosis was associated with a significant

enrichment in senescence genes (P < 0.005), in confirmation of the view that cir-

rhosis is a state of in vivo senescence [39]. Transition from cirrhosis to dysplasia

did not affect the balance between senescence- and immortality-associated genes

(P = 0.189). In contrast, the transition from dysplasia to the early HCC stage

demonstrated a highly significant enrichment of immortality-associated genes (P

< 2X10−6). This 8 indicated that a senescence-to-immortality switch takes place
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Figure 4.28: Classification of 72 liver tissue samples by binary tree analysis using
SIGN probesets.
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Figure 4.29: Differential expression of senescence- and immortality-associated
genes between different liver lesions. Genes with more than 1.5-fold expression
change between senescence-arrested and immortal cells were identified by a pair-
wise class comparison of different lesions, and data were presented as % ratios of
senescence-upregulated (blue) and immortality-upregulated (red) genes.

83



in the transition between the premalignant and malignant stages during hepa-

tocellular carcinogenesis. Moreover, the immortality-associated genes were much

more prominent in advanced HCCs compared to early HCCs (P < 3X10−13 ),

strongly suggesting that conversion to immortality is a continuous and progres-

sive event in HCC.

4.2.4 The contribution of senescence- and immortality-

related biological processes to hepatocellular carci-

noma development and tumor heterogeneity.

The integration of senescence- and immortality-associated gene expression data

with in vivo tissue data provided us a unique opportunity to address the contri-

bution of senescence- and immortality-related biological processes to HCC. First,

we identified cirrhosis- and HCC-associated classifier probesets among the SIGN

probesets (dataset not shown). Then, we used Functional Annotation Clustering

program provided by DAVID bioinformatics resources [70] to identify significant

biological processes (dataset not shown). The genes that are upregulated in

HCC formed significant clusters in chromosome organization (nucleosome assem-

bly, chromatin assembly and modification), cytoskeletal organisation, prolifera-

tion related processes such as checkpoint control, spindle organization, mitotic

sister chromatid segregation, centrosome cycling, DNA unwinding and replica-

tion, DNA damage response, ribosome biogenesis, protein export from nucleus,

and phosphorylation. The genes downregulated in HCC identified another of set

of biological processes. This set included lipid- steroid- amino acid-amine and

alcohol metabolism, amino acid and aromatic compound catabolism, blood co-

agulation and immune response.

We used pair-wise classification data (dataset not shown) for gene annotation
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cluster analyses for different lesions of hepatocellular carcinogenesis to iden-

tify significant biological process genes associated with each lesion (dataset not

shown). As compared to a normal liver, cirrhosis was associated with downregu-

lation of acute inflammatory response and classical complement activation genes,

and with upregulation of anatomical structure morphogenesis genes.

The comparison of cirrhosis with dysplasia did not reveal any significant data,

but the transition from dysplasia to early HCC was associated with significant

changes in a large set of biological processes. The genes upregulated in early

HCC clustered with cell proliferation-related processes including mitosis, cell cy-

cle checkpoint, DNA packaging and DNA replication. Genes involved in ubiq-

uitin cycle, RNA metabolism, RNA processing, and DNA repair were also up-

regulated. Early HCC development was associated also with downregulation of

genes involved in different metabolic processes and hepatic functions. The most

specifically affected processes were lipid, monocarboxylic acid, amine, fat-soluble

vitamin, and alcohol metabolisms. Other affected processes included blood co-

agulation, classical complement activation, regulation of biological quality, and

defense response.

4.2.5 DNA damage response genes as potential therapeu-

tic targets

We repeatedly observed the upregulation of DDR genes in different steps and

classes of HCC (datasets not shown). Although some genes such as TOP2A have

been already associated to HCC [76], the role of these genes in HCC remains elu-

sive. Therefore, we further analyzed the expression changes of DDR genes [77].

We identified 64 genes that were upregulated in HCC as compared to cirrho-

sis Figure 4.30. The most affected processes included DNA damage checkpoint

(24 genes), double-strand DNA break repair (20 genes), base-excision repair (12

genes), nucleotide-excision repair (nine genes) and DNA mismatch repair (nine
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genes). Some of these genes were upregulated during transition from dysplasia

to early HCC, and others in advanced HCCs as compared to early HCCs. We

also compared two major SIGN classes of HCC; normal-like 1A tumors versus

2A tumors. Class 2A tumors showed upregulation of 31 genes involved in DNA

damage checkpoint, base-excision, nucleotide-excision, double-strand break and

mismatch repair processes.
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Figure 4.30: Upregulation of DNA damage response genes in hepatocellular car-
cinoma
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Chapter 5

DISCUSSION

5.1 Downregulation and the anti-growth effect

of ZEB2 in hepatocellular carcinoma.

ZEB2 was initially discovered as a SMAD-interacting multi-zinc finger protein

with specific DNA-binding activity [78]. This protein also acted as a strong re-

pressor of a set of genes [78], including E-cadherin [45]. As E-cadherin is involved

in epithelial cell adhesion, its repression by ZEB2 was associated with disruption

of cell-cell adhesion, induction of invasion and reduction of unidirectional cell

migration, leading to the hypothesis that it may be a promoter of invasion in ma-

lignant epithelial tumors [45]. A potential tumor-promoting role for ZEB2 was

also proposed for HCC. Miyoshi et al. [47] reported that ZEB2 expression in HCC

cells suppressed E-cadherin expression, and enhanced the expression of several

matrix proteinase family members. These changes were accompanied by mor-

phologic changes into fibroblastoid features and acceleration of invasion activity.

These findings led to the hypothesis that ZEB2 expression may be induced during

HCC progression and activate cancer invasion [47]. The discovery of TERT as a

novel repressed target of ZEB2 by Lin and Elledge [43] provided the first evidence

for further involvement of this gene in cancer. Upregulation of TERT expression

88



is a critical, if not essential step for malignant transformation [20, 78]. Repression

of TERT or inhibition of telomerase activity have been shown to induce tumor

cell apoptosis or senescence almost consistently [78]. Here, we demonstrate that

ectopic expression of ZEB2 in HCC-derived Hep3B cells induces not only TERT

repression, but also senescence-like terminal growth arrest. In close correlation

with these observations, cancer cells engineered to express ZEB2 ectopically did

not survive during in vitro cell expansion and were replaced by ZEB2-negative

progeny. Inversely, knockdown of endogenous ZEB2 by RNA interference in Huh7

cells resulted in increased clonogenicity and enhanced cell proliferation in Huh7

clones.

The mechanisms of ZEB2-induced senescence induction in HCC cells are not

fully known. However, the induction of p21Cip1 in ZEB2-expressing, senescence-

positive Hep3B cells (Figure 4.7) strongly suggests that this well-known senes-

cence inducing protein is involved in this process. Also unknown is the mechanism

by which p21Cip1 is induced in these cells. It is highly likely that ZEB2 is not

directly involved in this induction. However, an indirect role via repression of

TERT cannot be excluded. As ZEB2-expressing early clones displayed inhibited

telomerase activity in correlation with TERT repression, deficient telomerase ac-

tivity could trigger p21Cip1 inductive signals, as observed previously in telomere-

deficient cells [79].

In vivo relevance of our in vitro observations awaits further investigations.

However, our in silico and RT-PCR studies with nontumor liver and HCC tumor

samples indicate that relative levels of ZEB2 transcripts are high in cirrhosis, but

low in HCC. Liver cirrhosis is characterized by telomerease deficiency, telomere

shortening and senescence arrest of hepatocytes [2, 20, 39], whereas HCC cells

are usually telomerase proficient and considered to be immortal [20]. Based on

interesting similarities between our in vivo and in vitro observations, we pro-

pose that ZEB2 may display anti-tumor activities in HCC, at least under certain
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conditions.

It is noteworthy that weak or undetectable expression of ZEB2 was limited to

a subgroup of HCC cell lines, including Huh7, Hep3B, HepG2 and PLC/PRF/5

(Figure 5.1).

Figure 5.1: The expression of ZEB2 in HCC-derived cell lines. Total RNA from
each cell lines was analyzed by RT-PCR using ZEB2-specific PCR primers.

This subgroup has recently been identified as epithelial HCC cell lines [80].

Here, we studied and observed growth-limiting effects in Huh7 and Hep3B cells

belonging to this epithelial subgroup. Another subgroup of HCC cell lines, in-

cluding SNU182, SNU387, SNU398, SNU449, SNU475, Focus and SKHep1 that

express high levels of ZEB2 (Figure 5.1) has been classified as mesenchymal HCC

cell lines. The effects of ZEB2 in this mesenchymal HCC cell line subgroup are

presently unknown. However, it appears that these mesenchymal HCC cell lines

can tolerate high levels of ZEB2 expression. Thus, we expect that ZEB2 plays

different and/or additional roles in mesenchymal HCC cell lines. Taken together,

these observations provide further evidence for differential roles of ZEB2 in epithe-

lial and mesenchymal HCC cells. Further studies are underway for understanding

additional implications of ZEB2 in HCC.
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5.2 A Major Role for the Senescence and Im-

mortality Gene Network in Hepatocellular

Carcinoma

Hepatocellular senescence is a process gaining growing interest in the phys-

iopathology field of chronic liver diseases [20], yet the observations are fragmented

and somewhat contradictory. Telomere shortening and senescence have been ob-

served in hepatocytes of cirrhotic liver, and replicative senescence was proposed

as a key mechanism that contributes to cirrhosis development [10, 36, 38, 39].

However, a recent study reported that senescence in fibrosis and cirrhosis is lim-

ited primarily to stellate cells [81]. Controversies also exist regarding the role of

senescence in HCC. These tumors display both TERT expression and telomerase

activity [11], as an indication of telomere maintenance and cellular immortality.

However, they often display extremely short telomeres, and even senescent cells

at high levels [10, 36, 37, 38], as observed in aging tissues such as cirrhotic liver.

To better understand the role of cellular senescence in hepatocellular carcino-

genesis, we explored the expression of senescence- and immortality-associated

genes in HCC and its preneoplastic lesions, including cirrhosis. A complete set of

genes associated with hepatocyte senescence and immortality was lacking. There-

fore, we first determined differentially expressed genes in presenescent, senescent

and immortal clones derived from a well-differentiated HCC cell line. We also

determined differentially expressed genes between liver cirrhosis and HCC. Then,

we obtained a set of genes by integrating the cell line and tissue data to generate

a SIGN signature. This signature was tested against independent clinical datasets

to analyze the role of senescence and immortality genes in hepatocellular carcino-

genesis and tumor heterogeneity. This novel approach allowed us to show that

cellular senescence and immortality mechanisms are deeply involved in HCC.
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The SIGN signature alone was able to classify a normal liver, cirrhosis, dys-

plasia, and early HCC with high accuracy, and differentiated advanced HCC from

early HCC with moderate accuracy. The cirrhosis was significantly enriched in

senescence genes in confirmation of previous observations describing cirrhosis as

a state of cellular senescence [39]. Hepatocellular carcinogenesis from cirrhotic

lesions was associated with a significant increase in the ratio of upregulated im-

mortality genes in early HCC, but not in dysplasia state. Thus, the development

of dysplasia in cirrhotic liver is apparently a senescence-independent event. The

prevalence of immortality genes became much more significant in advanced HCCs.

This finding indicates that the transition from senescence to immortality is a pro-

gressive event in HCC, and it correlates with a recent report that shows higher

telomerase activity and longer telomeres in advanced HCCs as compared to early

HCCs [82]. Thus, the gain of immortality in cancer cells is not a single step

event, but rather, a continuous and progressive event that goes along with tumor

progression. This would not be totally unexpected, as four immortalization com-

plementation groups have been described and a dozen chromosomes were shown

to induce senescence, providing evidence for a multi-level control of senescence

pathways [83]. It is highly likely that early HCC cells have bypassed some but

not all senescence-inducing pathways, and that as tumors progress they bypass

additional senescence controls.

We also identified critical senescence- and immortality-associated biological

processes taking place in different steps of hepatocellular carcinogenesis. A large

number of biological processes were significantly affected during transition from

dysplasia to early HCC, and from early to advanced HCC. We observed a pro-

gressive decline in the expression of hepatocyte-specific genes involved in inter-

mediary metabolism, complement activation and blood coagulation, indicative

of hepatocyte dedifferentiation, a well-known feature of HCC [84]. Our findings

connect this old concept to the gain of hepatocellular immortality. Hepatocyte
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dedifferentiation was accompanied by the upregulation of genes involved cell pro-

liferation, DDR, and chromatin modification. This may indicate that hepatocyte

immortalization during hepatocellular carcinogenesis is associated with the gain

of stem cell-like features [84]. In addition to the capacity of self-renewal, cancer

stem cells display chromatin remodeling and resistance to DNA damage [85, 86].

The availability of large-scale genomic analysis and gene expression profiling

methods contributed significantly to a better understanding of tumor heterogene-

ity and molecular classification of tumors [87]. Here, we show that senescence

and immortality genes play a major role in the molecular heterogeneity of HCC.

We reclassified a recently described HCC cohort using SIGN signature, detailed

explanations on the classification of HCC samples from Boyault data set can be

obtained from PhD Thesis by Sevgi Bağışlar, August 2009, Bilkent University].

The upregulation of a large set of DDR genes in HCC, and the association of

this process with tumor progression indicate that liver malignancy is associated

with acquired ability to deal with DNA damage. This finding correlates with well-

known resistance of HCCs to currently available therapies. Thus, although DNA

repair deficiency increases tumor susceptibility in normal cells, increased repair

capacity may be beneficial for tumor cells. It will be interesting to investigate

whether DNA damage response genes that are upregulated in HCC may serve as

novel targets for combined therapies using DNA damaging agents together with

DNA repair inhibitors.

In summary, our findings demonstrate that senescence and its bypass (i.e.

immortality) play a central role in human hepatocellular carcinogenesis as well

as in the molecular classification of HCC. These findings may serve in designing

new prognostic and therapeutic approaches.
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Appendix A

A.1 Aminoacid alignments for human and mouse

SIP1 proteins

A.2 RIN values

A.2.1 RIN values of the samples that were used in the

analysis

The Agilent Bioanalyzer plots given in Figure A.2 belong to the samples that

were included in the bioinformatic analysis and used to define SIGN signature.

A.2.2 RIN values of the samples that are saved for future

analysis

The samples listed in Figure A.3 have high RIN values and exhibited ideal RNA

plots indicating high quality RNA. These samples were not included in microarray

analysis but reserved for future experiments. They may be used in validation

experiments.
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Figure A.1: Aminoacid alignments for human and mouse SIP1 proteins. High-
lighted sequences indicate Zinc Finger Domain N-term, Smad Binding Domain,
Homeodomain, and ZInc Finger C-term, respectively.
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Figure 1.4: Electropherograms and virtual gel photos of RNA samples. Sample
5: MA-Tumor, Sample 5a: MA-Nontumor, Sample 6: ET-Tumor, Sample 6a:
ET-Tumor, Sample 7: VA-Tumor, Sample 8a: SB-Nontumor, 9: MC-Tumor, 9a:
MC-Nontumor
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Figure 1.4: Electropherograms and virtual gel photos of RNA samples. Sample
5: MA-Tumor, Sample 5a: MA-Nontumor, Sample 6: ET-Tumor, Sample 6a:
ET-Tumor, Sample 7: VA-Tumor, Sample 8a: SB-Nontumor, 9: MC-Tumor, 9a:
MC-Nontumor
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ET-T

Figure 1.4: Electropherograms and virtual gel photos of RNA samples. Sample
5: MA-Tumor, Sample 5a: MA-Nontumor, Sample 6: ET-Tumor, Sample 6a:
ET-Tumor, Sample 7: VA-Tumor, Sample 8a: SB-Nontumor, 9: MC-Tumor, 9a:
MC-Nontumor
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ET-NT

Figure 1.4: Electropherograms and virtual gel photos of RNA samples. Sample
5: MA-Tumor, Sample 5a: MA-Nontumor, Sample 6: ET-Tumor, Sample 6a:
ET-Tumor, Sample 7: VA-Tumor, Sample 8a: SB-Nontumor, 9: MC-Tumor, 9a:
MC-Nontumor
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VA-T

Figure 1.4: Electropherograms and virtual gel photos of RNA samples. Sample
5: MA-Tumor, Sample 5a: MA-Nontumor, Sample 6: ET-Tumor, Sample 6a:
ET-Tumor, Sample 7: VA-Tumor, Sample 8a: SB-Nontumor, 9: MC-Tumor, 9a:
MC-Nontumor
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SB-NT

Figure 1.5: Electropherograms and virtual gel photos of RNA samples. Sample
8: FM-Nontumor, 10a: FM-Tumor, 11: ASF-Tumor, 11a: ASF-Tumor, 12: EK-
Tumor, 12a: EK-Nontumor, 9: AM-Tumor, Sample 10: AM-Nontumor
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FM-NT

Figure 1.5: Electropherograms and virtual gel photos of RNA samples. Sample
8: FM-Nontumor, 10a: FM-Tumor, 11: ASF-Tumor, 11a: ASF-Tumor, 12: EK-
Tumor, 12a: EK-Nontumor, 9: AM-Tumor, Sample 10: AM-Nontumor
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FM-T

Figure 1.5: Electropherograms and virtual gel photos of RNA samples. Sample
8: FM-Nontumor, 10a: FM-Tumor, 11: ASF-Tumor, 11a: ASF-Tumor, 12: EK-
Tumor, 12a: EK-Nontumor, 9: AM-Tumor, Sample 10: AM-Nontumor
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ASF-T

Figure 1.5: Electropherograms and virtual gel photos of RNA samples. Sample
8: FM-Nontumor, 10a: FM-Tumor, 11: ASF-Tumor, 11a: ASF-Tumor, 12: EK-
Tumor, 12a: EK-Nontumor, 9: AM-Tumor, Sample 10: AM-Nontumor
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ASF-NT

Figure 1.5: Electropherograms and virtual gel photos of RNA samples. Sample
8: FM-Nontumor, 10a: FM-Tumor, 11: ASF-Tumor, 11a: ASF-Tumor, 12: EK-
Tumor, 12a: EK-Nontumor, 9: AM-Tumor, Sample 10: AM-Nontumor
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EK-T

Figure 1.5: Electropherograms and virtual gel photos of RNA samples. Sample
8: FM-Nontumor, 10a: FM-Tumor, 11: ASF-Tumor, 11a: ASF-Tumor, 12: EK-
Tumor, 12a: EK-Nontumor, 9: AM-Tumor, Sample 10: AM-Nontumor
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Figure 1.5: Electropherograms and virtual gel photos of RNA samples. Sample
8: FM-Nontumor, 10a: FM-Tumor, 11: ASF-Tumor, 11a: ASF-Tumor, 12: EK-
Tumor, 12a: EK-Nontumor, 9: AM-Tumor, Sample 10: AM-Nontumor
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AM-T AM-NT

Figure A.2: Agilent Bioanalyzer plots of the samples that were included in mi-
croarray experiments
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Figure A.3: Agilent Bioanalyzer plots of RNA samples that are saved for future
experiments
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A.2.3 RIN values of the samples with low RNA quality

Samples with low RIN value (< 4) or with highly degraded RNA plots were not

included in the microarray analysis. These plots are shown in Figures A.4.

A.3 MA-plots

Representative MA-plots of microarray experiments are given in Figure A.5.

117



!"#$%&&'&(")*+%()$,&-.-/-0&1

!"#$%&&'(#)*&+)',-$')%./&#'0''1' '23456

2$+&+345, 6078&

2$+&9:;<4;=35=>:;, 6?&;@ABC

32$+&25=>:&'60D&A&E0D1, -7-&

2$+&(;=4@3>=F&$GHI43&J2($K, E7E&&&JL7-67-8K&

24DGC=&MC5@@>;@&9:C:3,

24DGC=&MC5@@>;@&*5I4C, &

N+#$%&&'&(")*+%()$,&-.-/-0&1

!"#$%&&'(#)*&+)',-$')%./&#'7''1' '89456

2$+&+345, 8?7?&

2$+&9:;<4;=35=>:;, 86&;@ABC

32$+&25=>:&'60D&A&E0D1, -78&

2$+&(;=4@3>=F&$GHI43&J2($K, ?70&&&JL7-67-8K&

24DGC=&MC5@@>;@&9:C:3,

24DGC=&MC5@@>;@&*5I4C, &

:$%;.#<+'+%=&#',-$')%./&#'7''1' '89456

5%.# 3+%$+'3>?#'@<+A B<C'3>?#'@<+A 9$#% D'-,'+-+%&'9$#%

18S 864 1,001 5.9 10.5

28S 1,898 2,628 2.9 5.1

(+#$%&&'&(")*+%()$,&-.-/-0&1

!"#$%&&'(#)*&+)',-$')%./&#'E''1' 'F9456

2$+&+345, OE7P&

2$+&9:;<4;=35=>:;, 0P&;@ABC

32$+&25=>:&'60D&A&E0D1, -7-&

2$+&(;=4@3>=F&$GHI43&J2($K, P7E&&&JL7-67-8K&

24DGC=&MC5@@>;@&9:C:3,

24DGC=&MC5@@>;@&*5I4C, &

:$%;.#<+'+%=&#',-$')%./&#'E''1' 'F9456

5%.# 3+%$+'3>?#'@<+A B<C'3>?#'@<+A 9$#% D'-,'+-+%&'9$#%

18S 610 806 2.5 2.8

L!#$%&&'&(")*+%()$,&-.-/-0&1

!"#$%&&'(#)*&+)',-$')%./&#'G''1' 'H2456

2$+&+345, 6067?&

2$+&9:;<4;=35=>:;, 680&;@ABC

32$+&25=>:&'60D&A&E0D1, P7P&

2$+&(;=4@3>=F&$GHI43&J2($K, /7O&&&JL7-67-8K&

24DGC=&MC5@@>;@&9:C:3,

24DGC=&MC5@@>;@&*5I4C, &

:$%;.#<+'+%=&#',-$')%./&#'G''1' 'H2456

5%.# 3+%$+'3>?#'@<+A B<C'3>?#'@<+A 9$#% D'-,'+-+%&'9$#%

18S 892 962 6.7 2.4

28S 1,856 2,607 22.0 7.8

6E--&4QR43=&JL7-67-87"(P?-K S&9:RF3>@T=&6--P#6--.&+@>C4;=&%4<T;:C:@>4DU&(;<7 V3>;=4W, /AOA6--0&.,8/,-O&VX

70II'#J/#$+KB*L%$M-+#6-+%&'(59'5%<-KNBO7PIGQGPK7IIQ4IG4IPK0P47E4EIRJ%C V5@4 :YP .

9345=4W,
X:W>Y>4W,

/AOA6--0&.,6P,P-&VX
/AOA6--0&.,/.,6/&VXZ5=5&V5=T,

[G\53F:=4%:=5C&2$+&$5;:
9,]777^[G\53F:=4%:=5C&2$+&$5;:^Z[.6O-/0/O^6--0#-/#-O^EO#6P#P-7Q5W

+DD5F&9C5DD,

B&#S+$-/T#$-;$%.'3*..%$M

!"#$%%&%'()*+$'),-%./.0.1%2

!"#$%&&'(#)*&+)',-$')%./&#'0''1' '2345

3,+%+456- 78/%

3,+%9:;<5;=46=>:;- 7%;?@AB

43,+%36=>:%&C1D%@%E1D2- .8.%

3,+%';=5?4>=F%,GHI54%J3',K- ,@+%%%J"8.C8.7K%

35DGB=%LB6??>;?%9:B:4-

35DGB=%LB6??>;?%*6I5B- %

!"#,$%%&%'()*+$'),-%./.0.1%2

!"#$%&&'(#)*&+)',-$')%./&#'6''1' '23475

3,+%+456- EEM80%

3,+%9:;<5;=46=>:;- E.M%;?@AB

43,+%36=>:%&C1D%@%E1D2- .81%

3,+%';=5?4>=F%,GHI54%J3',K- M8C%%%J"8.C8.7K%

35DGB=%LB6??>;?%9:B:4-

35DGB=%LB6??>;?%*6I5B- %

8$%9.#:+'+%;&#',-$')%./&#'6''1' '23475

7%.# <+%$+'<=>#'?:+@ A:B'<=>#'?:+@ C$#% D'-,'+-+%&'C$#%

18S 786 983 7.8 6.7

28S 1,812 2,640 5.9 5.0

C1EC./#$%%&%'()*+$'),-%./.0.1%2

!"#$%&&'(#)*&+)',-$')%./&#'E''1' 'FGHFIE45

3,+%+456- M.87%

3,+%9:;<5;=46=>:;- 77%;?@AB

43,+%36=>:%&C1D%@%E1D2- E87%

3,+%';=5?4>=F%,GHI54%J3',K- 18.%%%J"8.C8.7K%

35DGB=%LB6??>;?%9:B:4-

35DGB=%LB6??>;?%*6I5B- %

8$%9.#:+'+%;&#',-$')%./&#'E''1' 'FGHFIE45

7%.# <+%$+'<=>#'?:+@ A:B'<=>#'?:+@ C$#% D'-,'+-+%&'C$#%

18S 840 1,001 7.2 11.9

28S 1,821 2,669 11.1 18.4

C1EC./#,$%%&%'()*+$'),-%./.0.1%2

!"#$%&&'(#)*&+)',-$')%./&#'G''1' 'FGHFIE475

3,+%+456- E078.%

3,+%9:;<5;=46=>:;- ENC%;?@AB

43,+%36=>:%&C1D%@%E1D2- E8.%

3,+%';=5?4>=F%,GHI54%J3',K- /8E%%%J"8.C8.7K%

35DGB=%LB6??>;?%9:B:4-

35DGB=%LB6??>;?%*6I5B- %

8$%9.#:+'+%;&#',-$')%./&#'G''1' 'FGHFIE475

7%.# <+%$+'<=>#'?:+@ A:B'<=>#'?:+@ C$#% D'-,'+-+%&'C$#%

18S 767 966 15.1 10.4

28S 1,731 2,410 15.1 10.4

CE..%5OP54=%J"8.C8.78('NM.K Q%9:PF4>?R=%C..N#C../%+?>B5;=%$5<R;:B:?>5DS%';<8 T4>;=5U- 0@V@C..1%/-70-.V%T!

FHII'#J/#$+KA*L%$M-+#5-+%&'(7C'7%:-KNAEFOIPGPOKFIIG4IP4IOKHO4FQ4QIRJ%B T6?5 :W0 /

9456=5U-
!:U>W>5U-

0@V@C..1%/-CN-N.%T!
0@V@C..1%/-0/-C0%T!X6=6%T6=R-

YGZ64F:=5$:=6B%3,+%,6;:
9-[888\YGZ64F:=5$:=6B%3,+%,6;:\XY/CV.010V\C..1#.0#.V\EV#CN#N.8O6U

+DD6F%9B6DD-

A&#S+$-/T#$-9$%.'<*..%$M'U-:+=:*#B'RRR

!"#$%%&%'()*+$'),-%./.0.1%2

!"#$%&&'(#)*&+)',-$')%./&#'0''1' '2345

3,+%+456- 78/%

3,+%9:;<5;=46=>:;- 7%;?@AB

43,+%36=>:%&C1D%@%E1D2- .8.%

3,+%';=5?4>=F%,GHI54%J3',K- ,@+%%%J"8.C8.7K%

35DGB=%LB6??>;?%9:B:4-

35DGB=%LB6??>;?%*6I5B- %

!"#,$%%&%'()*+$'),-%./.0.1%2

!"#$%&&'(#)*&+)',-$')%./&#'6''1' '23475

3,+%+456- EEM80%

3,+%9:;<5;=46=>:;- E.M%;?@AB

43,+%36=>:%&C1D%@%E1D2- .81%

3,+%';=5?4>=F%,GHI54%J3',K- M8C%%%J"8.C8.7K%

35DGB=%LB6??>;?%9:B:4-

35DGB=%LB6??>;?%*6I5B- %

8$%9.#:+'+%;&#',-$')%./&#'6''1' '23475

7%.# <+%$+'<=>#'?:+@ A:B'<=>#'?:+@ C$#% D'-,'+-+%&'C$#%

18S 786 983 7.8 6.7

28S 1,812 2,640 5.9 5.0

C1EC./#$%%&%'()*+$'),-%./.0.1%2

!"#$%&&'(#)*&+)',-$')%./&#'E''1' 'FGHFIE45

3,+%+456- M.87%

3,+%9:;<5;=46=>:;- 77%;?@AB

43,+%36=>:%&C1D%@%E1D2- E87%

3,+%';=5?4>=F%,GHI54%J3',K- 18.%%%J"8.C8.7K%

35DGB=%LB6??>;?%9:B:4-

35DGB=%LB6??>;?%*6I5B- %

8$%9.#:+'+%;&#',-$')%./&#'E''1' 'FGHFIE45

7%.# <+%$+'<=>#'?:+@ A:B'<=>#'?:+@ C$#% D'-,'+-+%&'C$#%

18S 840 1,001 7.2 11.9

28S 1,821 2,669 11.1 18.4

C1EC./#,$%%&%'()*+$'),-%./.0.1%2

!"#$%&&'(#)*&+)',-$')%./&#'G''1' 'FGHFIE475

3,+%+456- E078.%

3,+%9:;<5;=46=>:;- ENC%;?@AB

43,+%36=>:%&C1D%@%E1D2- E8.%

3,+%';=5?4>=F%,GHI54%J3',K- /8E%%%J"8.C8.7K%

35DGB=%LB6??>;?%9:B:4-

35DGB=%LB6??>;?%*6I5B- %

8$%9.#:+'+%;&#',-$')%./&#'G''1' 'FGHFIE475

7%.# <+%$+'<=>#'?:+@ A:B'<=>#'?:+@ C$#% D'-,'+-+%&'C$#%

18S 767 966 15.1 10.4

28S 1,731 2,410 15.1 10.4

CE..%5OP54=%J"8.C8.78('NM.K Q%9:PF4>?R=%C..N#C../%+?>B5;=%$5<R;:B:?>5DS%';<8 T4>;=5U- 0@V@C..1%/-70-.V%T!

FHII'#J/#$+KA*L%$M-+#5-+%&'(7C'7%:-KNAEFOIPGPOKFIIG4IP4IOKHO4FQ4QIRJ%B T6?5 :W0 /

9456=5U-
!:U>W>5U-

0@V@C..1%/-CN-N.%T!
0@V@C..1%/-0/-C0%T!X6=6%T6=R-

YGZ64F:=5$:=6B%3,+%,6;:
9-[888\YGZ64F:=5$:=6B%3,+%,6;:\XY/CV.010V\C..1#.0#.V\EV#CN#N.8O6U

+DD6F%9B6DD-

A&#S+$-/T#$-9$%.'<*..%$M'U-:+=:*#B'RRR

!"#$

!"#$%&&'(#)*&+)',-$')%./&#'0''1' '2345

%&'(')*+, -./01(

%&'("234*35)+5623, 7.(389:;

)%&'(%+562(<=7>(9(-7>?, @0@(

%&'(A35*8)65B(&CDE*)(F%A&G, =0.(((FH0@=0@/G(

%*>C;5(!;+88638("2;2),

%*>C;5(!;+88638(I+E*;, (

2$%6.#7+'+%8&#',-$')%./&#'0''1' '2345

9%.# :+%$+':;<#'=7+> ?7@':;<#'=7+> A$#% B'-,'+-+%&'A$#%

18S 1,170 1,522 2.1 1.2

!"#&$

!"#$%&&'(#)*&+)',-$')%./&#'C''1' '23495

%&'(')*+, 1/0J(

%&'("234*35)+5623, J=(389:;

)%&'(%+562(<=7>(9(-7>?, @0@(

%&'(A35*8)65B(&CDE*)(F%A&G, =0-(((FH0@=0@/G(

%*>C;5(!;+88638("2;2),

%*>C;5(!;+88638(I+E*;, (

2$%6.#7+'+%8&#',-$')%./&#'C''1' '23495

9%.# :+%$+':;<#'=7+> ?7@':;<#'=7+> A$#% B'-,'+-+%&'A$#%

18S 1,673 1,789 0.3 0.5

KL#$

!"#$%&&'(#)*&+)',-$')%./&#'D''1' 'E:45

%&'(')*+, 170M(

%&'("234*35)+5623, JM(389:;

)%&'(%+562(<=7>(9(-7>?, @0@(

%&'(A35*8)65B(&CDE*)(F%A&G, -0.(((FH0@=0@/G(

%*>C;5(!;+88638("2;2),

%*>C;5(!;+88638(I+E*;, (

KL#&$

!"#$%&&'(#)*&+)',-$')%./&#'F''1' 'E:495

%&'(')*+, -70/(

%&'("234*35)+5623, N(389:;

)%&'(%+562(<=7>(9(-7>?, @0@(

%&'(A35*8)65B(&CDE*)(F%A&G, &9'(((FH0@=0@/G(

%*>C;5(!;+88638("2;2),

%*>C;5(!;+88638(I+E*;, (

=-@@(*OP*)5(FH0@=0@/0LAJ1@G Q("2PB)68R5(=@@J#=@@.('86;*35($*4R32;286*>S(A340 T)635*U, M9N9=@@7(7,JN,=@(TV

C0GG'#H/#$+I?*J%$K-+#5-+%&'(9A'9%7-IL?MCNGFOFNICGGO4GF4GNICG40D4GCPH%@ T+8* 2WJ .

")*+5*U,
V2U6W6*U,

M9N9=@@7(7,-J,@=(TV
M9N9=@@7(7,J1,@N(TVX+5+(T+5R,

YCZ+)B25*$25+;(%&'(&+32
",[000\YCZ+)B25*$25+;(%&'(&+32\XY.=N@M7MN\=@@7#@M#@N\=@#-J#@=0O+U

'>>+B(";+>>,

?&#Q+$-/R#$-6$%.':*..%$K

!!"#

!"#$%&&'(#)*&+)',-$')%./&#'0''1' '2234

$%&'&()*+ ,-./0'

$%&'1234)35(*5623+ 78'39:;<

($%&'$*562'=87>':',7>?+ @/A'

$%&'B35)9(65C'%DEF)('G$B%H+ @/A'''GI/J8/J0H'

$)>D<5'K<*99639'12<2(+

$)>D<5'K<*99639'L*F)<+ '

5$%6.#7+'+%8&#',-$')%./&#'0''1' '2234

9%.# :+%$+':;<#'=7+> ?7@':;<#'=7+> A$#% B'-,'+-+%&'A$#%

18S 1,749 1,868 1.7 1.0

28S 3,560 4,151 6.4 3.9

!!"%#

!"#$%&&'(#)*&+)',-$')%./&#'C''1' '22394

$%&'&()*+ 08/-'

$%&'1234)35(*5623+ 8-'39:;<

($%&'$*562'=87>':',7>?+ J/J'

$%&'B35)9(65C'%DEF)('G$B%H+ ,/,'''GI/J8/J0H'

$)>D<5'K<*99639'12<2(+

$)>D<5'K<*99639'L*F)<+ '

MM"#

!"#$%&&'(#)*&+)',-$')%./&#'D''1' '::34

$%&'&()*+ ../,'

$%&'1234)35(*5623+ 88'39:;<

($%&'$*562'=87>':',7>?+ J/J'

$%&'B35)9(65C'%DEF)('G$B%H+ ,/8'''GI/J8/J0H'

$)>D<5'K<*99639'12<2(+

$)>D<5'K<*99639'L*F)<+ '

MM"%#

!"#$%&&'(#)*&+)',-$')%./&#'E''1' '::394

$%&'&()*+ ,,/.'

$%&'1234)35(*5623+ -'39:;<

($%&'$*562'=87>':',7>?+ J/J'

$%&'B35)9(65C'%DEF)('G$B%H+ %:&'''GI/J8/J0H'

$)>D<5'K<*99639'12<2(+

$)>D<5'K<*99639'L*F)<+ '

8,JJ')NO)(5'GI/J8/J0/MB@-JH P'12OC(69Q5'8JJ@"8JJA'&96<)35'#)4Q32<296)>R'B34/ S(635)T+ .:U:8JJ7'7+@U+8J'SV

FGHH'#I/#$+J?*K%$L-+#4-+%&'(9A'9%7-JM?DFNHOEONJFHHE3HO3HNJFH3GP3HFQI%@ S*9) 2W. A

1()*5)T+
V2T6W6)T+

.:U:8JJ7'7+,@+J8'SV

.:U:8JJ7'7+@-+JU'SVX*5*'S*5Q+
YDZ*(C25)#25*<'$%&'%*32
1+[///\YDZ*(C25)#25*<'$%&'%*32\XYA8UJ.7.U\8JJ7"J."JU\8J",@"J8/N*T

&>>*C'1<*>>+

?&#R+$-/S#$-6$%.':*..%$L'T-7+;7*#@'QQQ

!!"#

!"#$%&&'(#)*&+)',-$')%./&#'0''1' '2234

$%&'&()*+ ,-./0'

$%&'1234)35(*5623+ 78'39:;<

($%&'$*562'=87>':',7>?+ @/A'

$%&'B35)9(65C'%DEF)('G$B%H+ @/A'''GI/J8/J0H'

$)>D<5'K<*99639'12<2(+

$)>D<5'K<*99639'L*F)<+ '

5$%6.#7+'+%8&#',-$')%./&#'0''1' '2234

9%.# :+%$+':;<#'=7+> ?7@':;<#'=7+> A$#% B'-,'+-+%&'A$#%

18S 1,749 1,868 1.7 1.0

28S 3,560 4,151 6.4 3.9

!!"%#

!"#$%&&'(#)*&+)',-$')%./&#'C''1' '22394

$%&'&()*+ 08/-'

$%&'1234)35(*5623+ 8-'39:;<

($%&'$*562'=87>':',7>?+ J/J'

$%&'B35)9(65C'%DEF)('G$B%H+ ,/,'''GI/J8/J0H'

$)>D<5'K<*99639'12<2(+

$)>D<5'K<*99639'L*F)<+ '

MM"#

!"#$%&&'(#)*&+)',-$')%./&#'D''1' '::34

$%&'&()*+ ../,'

$%&'1234)35(*5623+ 88'39:;<

($%&'$*562'=87>':',7>?+ J/J'

$%&'B35)9(65C'%DEF)('G$B%H+ ,/8'''GI/J8/J0H'

$)>D<5'K<*99639'12<2(+

$)>D<5'K<*99639'L*F)<+ '

MM"%#

!"#$%&&'(#)*&+)',-$')%./&#'E''1' '::394

$%&'&()*+ ,,/.'

$%&'1234)35(*5623+ -'39:;<

($%&'$*562'=87>':',7>?+ J/J'

$%&'B35)9(65C'%DEF)('G$B%H+ %:&'''GI/J8/J0H'

$)>D<5'K<*99639'12<2(+

$)>D<5'K<*99639'L*F)<+ '

8,JJ')NO)(5'GI/J8/J0/MB@-JH P'12OC(69Q5'8JJ@"8JJA'&96<)35'#)4Q32<296)>R'B34/ S(635)T+ .:U:8JJ7'7+@U+8J'SV

FGHH'#I/#$+J?*K%$L-+#4-+%&'(9A'9%7-JM?DFNHOEONJFHHE3HO3HNJFH3GP3HFQI%@ S*9) 2W. A

1()*5)T+
V2T6W6)T+

.:U:8JJ7'7+,@+J8'SV

.:U:8JJ7'7+@-+JU'SVX*5*'S*5Q+
YDZ*(C25)#25*<'$%&'%*32
1+[///\YDZ*(C25)#25*<'$%&'%*32\XYA8UJ.7.U\8JJ7"J."JU\8J",@"J8/N*T

&>>*C'1<*>>+

?&#R+$-/S#$-6$%.':*..%$L'T-7+;7*#@'QQQ

118



!"#$%&&'&(")*+%()$,&-.-/-0&1

!"#$%&&'(#)*&+)',-$')%./&#'0''1' '23456

2$+&+345, 6078&

2$+&9:;<4;=35=>:;, 6?&;@ABC

32$+&25=>:&'60D&A&E0D1, -7-&

2$+&(;=4@3>=F&$GHI43&J2($K, E7E&&&JL7-67-8K&

24DGC=&MC5@@>;@&9:C:3,

24DGC=&MC5@@>;@&*5I4C, &

N+#$%&&'&(")*+%()$,&-.-/-0&1

!"#$%&&'(#)*&+)',-$')%./&#'7''1' '89456

2$+&+345, 8?7?&

2$+&9:;<4;=35=>:;, 86&;@ABC

32$+&25=>:&'60D&A&E0D1, -78&

2$+&(;=4@3>=F&$GHI43&J2($K, ?70&&&JL7-67-8K&

24DGC=&MC5@@>;@&9:C:3,

24DGC=&MC5@@>;@&*5I4C, &

:$%;.#<+'+%=&#',-$')%./&#'7''1' '89456

5%.# 3+%$+'3>?#'@<+A B<C'3>?#'@<+A 9$#% D'-,'+-+%&'9$#%

18S 864 1,001 5.9 10.5

28S 1,898 2,628 2.9 5.1

(+#$%&&'&(")*+%()$,&-.-/-0&1

!"#$%&&'(#)*&+)',-$')%./&#'E''1' 'F9456

2$+&+345, OE7P&

2$+&9:;<4;=35=>:;, 0P&;@ABC

32$+&25=>:&'60D&A&E0D1, -7-&

2$+&(;=4@3>=F&$GHI43&J2($K, P7E&&&JL7-67-8K&

24DGC=&MC5@@>;@&9:C:3,

24DGC=&MC5@@>;@&*5I4C, &

:$%;.#<+'+%=&#',-$')%./&#'E''1' 'F9456

5%.# 3+%$+'3>?#'@<+A B<C'3>?#'@<+A 9$#% D'-,'+-+%&'9$#%

18S 610 806 2.5 2.8

L!#$%&&'&(")*+%()$,&-.-/-0&1

!"#$%&&'(#)*&+)',-$')%./&#'G''1' 'H2456

2$+&+345, 6067?&

2$+&9:;<4;=35=>:;, 680&;@ABC

32$+&25=>:&'60D&A&E0D1, P7P&

2$+&(;=4@3>=F&$GHI43&J2($K, /7O&&&JL7-67-8K&

24DGC=&MC5@@>;@&9:C:3,

24DGC=&MC5@@>;@&*5I4C, &

:$%;.#<+'+%=&#',-$')%./&#'G''1' 'H2456

5%.# 3+%$+'3>?#'@<+A B<C'3>?#'@<+A 9$#% D'-,'+-+%&'9$#%

18S 892 962 6.7 2.4

28S 1,856 2,607 22.0 7.8

6E--&4QR43=&JL7-67-87"(P?-K S&9:RF3>@T=&6--P#6--.&+@>C4;=&%4<T;:C:@>4DU&(;<7 V3>;=4W, /AOA6--0&.,8/,-O&VX

70II'#J/#$+KB*L%$M-+#6-+%&'(59'5%<-KNBO7PIGQGPK7IIQ4IG4IPK0P47E4EIRJ%C V5@4 :YP .

9345=4W,
X:W>Y>4W,

/AOA6--0&.,6P,P-&VX
/AOA6--0&.,/.,6/&VXZ5=5&V5=T,

[G\53F:=4%:=5C&2$+&$5;:
9,]777^[G\53F:=4%:=5C&2$+&$5;:^Z[.6O-/0/O^6--0#-/#-O^EO#6P#P-7Q5W

+DD5F&9C5DD,

B&#S+$-/T#$-;$%.'3*..%$M

!"#$

!"#$%&&'(#)*&+)',-$')%./&#'0''1' '2345

%&'(')*+, -./01(

%&'("234*35)+5623, 7.(389:;

)%&'(%+562(<=7>(9(-7>?, @0@(

%&'(A35*8)65B(&CDE*)(F%A&G, =0.(((FH0@=0@/G(

%*>C;5(!;+88638("2;2),

%*>C;5(!;+88638(I+E*;, (

2$%6.#7+'+%8&#',-$')%./&#'0''1' '2345

9%.# :+%$+':;<#'=7+> ?7@':;<#'=7+> A$#% B'-,'+-+%&'A$#%

18S 1,170 1,522 2.1 1.2

!"#&$

!"#$%&&'(#)*&+)',-$')%./&#'C''1' '23495

%&'(')*+, 1/0J(

%&'("234*35)+5623, J=(389:;

)%&'(%+562(<=7>(9(-7>?, @0@(

%&'(A35*8)65B(&CDE*)(F%A&G, =0-(((FH0@=0@/G(

%*>C;5(!;+88638("2;2),

%*>C;5(!;+88638(I+E*;, (

2$%6.#7+'+%8&#',-$')%./&#'C''1' '23495

9%.# :+%$+':;<#'=7+> ?7@':;<#'=7+> A$#% B'-,'+-+%&'A$#%

18S 1,673 1,789 0.3 0.5

KL#$

!"#$%&&'(#)*&+)',-$')%./&#'D''1' 'E:45

%&'(')*+, 170M(

%&'("234*35)+5623, JM(389:;

)%&'(%+562(<=7>(9(-7>?, @0@(

%&'(A35*8)65B(&CDE*)(F%A&G, -0.(((FH0@=0@/G(

%*>C;5(!;+88638("2;2),

%*>C;5(!;+88638(I+E*;, (

KL#&$

!"#$%&&'(#)*&+)',-$')%./&#'F''1' 'E:495

%&'(')*+, -70/(

%&'("234*35)+5623, N(389:;

)%&'(%+562(<=7>(9(-7>?, @0@(

%&'(A35*8)65B(&CDE*)(F%A&G, &9'(((FH0@=0@/G(

%*>C;5(!;+88638("2;2),

%*>C;5(!;+88638(I+E*;, (

=-@@(*OP*)5(FH0@=0@/0LAJ1@G Q("2PB)68R5(=@@J#=@@.('86;*35($*4R32;286*>S(A340 T)635*U, M9N9=@@7(7,JN,=@(TV

C0GG'#H/#$+I?*J%$K-+#5-+%&'(9A'9%7-IL?MCNGFOFNICGGO4GF4GNICG40D4GCPH%@ T+8* 2WJ .

")*+5*U,
V2U6W6*U,

M9N9=@@7(7,-J,@=(TV
M9N9=@@7(7,J1,@N(TVX+5+(T+5R,

YCZ+)B25*$25+;(%&'(&+32
",[000\YCZ+)B25*$25+;(%&'(&+32\XY.=N@M7MN\=@@7#@M#@N\=@#-J#@=0O+U

'>>+B(";+>>,

?&#Q+$-/R#$-6$%.':*..%$K

!"#$

!"#$%&&'(#)*&+)',-$')%./&#'0''1' '2345

%&'(')*+, -./01(

%&'("234*35)+5623, 7.(389:;

)%&'(%+562(<=7>(9(-7>?, @0@(

%&'(A35*8)65B(&CDE*)(F%A&G, =0.(((FH0@=0@/G(

%*>C;5(!;+88638("2;2),

%*>C;5(!;+88638(I+E*;, (

2$%6.#7+'+%8&#',-$')%./&#'0''1' '2345

9%.# :+%$+':;<#'=7+> ?7@':;<#'=7+> A$#% B'-,'+-+%&'A$#%

18S 1,170 1,522 2.1 1.2

!"#&$

!"#$%&&'(#)*&+)',-$')%./&#'C''1' '23495

%&'(')*+, 1/0J(

%&'("234*35)+5623, J=(389:;

)%&'(%+562(<=7>(9(-7>?, @0@(

%&'(A35*8)65B(&CDE*)(F%A&G, =0-(((FH0@=0@/G(

%*>C;5(!;+88638("2;2),

%*>C;5(!;+88638(I+E*;, (

2$%6.#7+'+%8&#',-$')%./&#'C''1' '23495

9%.# :+%$+':;<#'=7+> ?7@':;<#'=7+> A$#% B'-,'+-+%&'A$#%

18S 1,673 1,789 0.3 0.5

KL#$

!"#$%&&'(#)*&+)',-$')%./&#'D''1' 'E:45

%&'(')*+, 170M(

%&'("234*35)+5623, JM(389:;

)%&'(%+562(<=7>(9(-7>?, @0@(

%&'(A35*8)65B(&CDE*)(F%A&G, -0.(((FH0@=0@/G(

%*>C;5(!;+88638("2;2),

%*>C;5(!;+88638(I+E*;, (

KL#&$

!"#$%&&'(#)*&+)',-$')%./&#'F''1' 'E:495

%&'(')*+, -70/(

%&'("234*35)+5623, N(389:;

)%&'(%+562(<=7>(9(-7>?, @0@(

%&'(A35*8)65B(&CDE*)(F%A&G, &9'(((FH0@=0@/G(

%*>C;5(!;+88638("2;2),

%*>C;5(!;+88638(I+E*;, (

=-@@(*OP*)5(FH0@=0@/0LAJ1@G Q("2PB)68R5(=@@J#=@@.('86;*35($*4R32;286*>S(A340 T)635*U, M9N9=@@7(7,JN,=@(TV

C0GG'#H/#$+I?*J%$K-+#5-+%&'(9A'9%7-IL?MCNGFOFNICGGO4GF4GNICG40D4GCPH%@ T+8* 2WJ .

")*+5*U,
V2U6W6*U,

M9N9=@@7(7,-J,@=(TV
M9N9=@@7(7,J1,@N(TVX+5+(T+5R,

YCZ+)B25*$25+;(%&'(&+32
",[000\YCZ+)B25*$25+;(%&'(&+32\XY.=N@M7MN\=@@7#@M#@N\=@#-J#@=0O+U

'>>+B(";+>>,

?&#Q+$-/R#$-6$%.':*..%$K

!!"#

!"#$%&&'(#)*&+)',-$')%./&#'0''1' '2234

$%&'&()*+ ,-./0'

$%&'1234)35(*5623+ 78'39:;<

($%&'$*562'=87>':',7>?+ @/A'

$%&'B35)9(65C'%DEF)('G$B%H+ @/A'''GI/J8/J0H'

$)>D<5'K<*99639'12<2(+

$)>D<5'K<*99639'L*F)<+ '

5$%6.#7+'+%8&#',-$')%./&#'0''1' '2234

9%.# :+%$+':;<#'=7+> ?7@':;<#'=7+> A$#% B'-,'+-+%&'A$#%

18S 1,749 1,868 1.7 1.0

28S 3,560 4,151 6.4 3.9

!!"%#

!"#$%&&'(#)*&+)',-$')%./&#'C''1' '22394

$%&'&()*+ 08/-'

$%&'1234)35(*5623+ 8-'39:;<

($%&'$*562'=87>':',7>?+ J/J'

$%&'B35)9(65C'%DEF)('G$B%H+ ,/,'''GI/J8/J0H'

$)>D<5'K<*99639'12<2(+

$)>D<5'K<*99639'L*F)<+ '

MM"#

!"#$%&&'(#)*&+)',-$')%./&#'D''1' '::34

$%&'&()*+ ../,'

$%&'1234)35(*5623+ 88'39:;<

($%&'$*562'=87>':',7>?+ J/J'

$%&'B35)9(65C'%DEF)('G$B%H+ ,/8'''GI/J8/J0H'

$)>D<5'K<*99639'12<2(+

$)>D<5'K<*99639'L*F)<+ '

MM"%#

!"#$%&&'(#)*&+)',-$')%./&#'E''1' '::394

$%&'&()*+ ,,/.'

$%&'1234)35(*5623+ -'39:;<

($%&'$*562'=87>':',7>?+ J/J'

$%&'B35)9(65C'%DEF)('G$B%H+ %:&'''GI/J8/J0H'

$)>D<5'K<*99639'12<2(+

$)>D<5'K<*99639'L*F)<+ '

8,JJ')NO)(5'GI/J8/J0/MB@-JH P'12OC(69Q5'8JJ@"8JJA'&96<)35'#)4Q32<296)>R'B34/ S(635)T+ .:U:8JJ7'7+@U+8J'SV

FGHH'#I/#$+J?*K%$L-+#4-+%&'(9A'9%7-JM?DFNHOEONJFHHE3HO3HNJFH3GP3HFQI%@ S*9) 2W. A

1()*5)T+
V2T6W6)T+

.:U:8JJ7'7+,@+J8'SV

.:U:8JJ7'7+@-+JU'SVX*5*'S*5Q+
YDZ*(C25)#25*<'$%&'%*32
1+[///\YDZ*(C25)#25*<'$%&'%*32\XYA8UJ.7.U\8JJ7"J."JU\8J",@"J8/N*T

&>>*C'1<*>>+

?&#R+$-/S#$-6$%.':*..%$L'T-7+;7*#@'QQQ

!!"#

!"#$%&&'(#)*&+)',-$')%./&#'0''1' '2234

$%&'&()*+ ,-./0'

$%&'1234)35(*5623+ 78'39:;<

($%&'$*562'=87>':',7>?+ @/A'

$%&'B35)9(65C'%DEF)('G$B%H+ @/A'''GI/J8/J0H'

$)>D<5'K<*99639'12<2(+

$)>D<5'K<*99639'L*F)<+ '

5$%6.#7+'+%8&#',-$')%./&#'0''1' '2234

9%.# :+%$+':;<#'=7+> ?7@':;<#'=7+> A$#% B'-,'+-+%&'A$#%

18S 1,749 1,868 1.7 1.0

28S 3,560 4,151 6.4 3.9

!!"%#

!"#$%&&'(#)*&+)',-$')%./&#'C''1' '22394

$%&'&()*+ 08/-'

$%&'1234)35(*5623+ 8-'39:;<

($%&'$*562'=87>':',7>?+ J/J'

$%&'B35)9(65C'%DEF)('G$B%H+ ,/,'''GI/J8/J0H'

$)>D<5'K<*99639'12<2(+

$)>D<5'K<*99639'L*F)<+ '

MM"#

!"#$%&&'(#)*&+)',-$')%./&#'D''1' '::34

$%&'&()*+ ../,'

$%&'1234)35(*5623+ 88'39:;<

($%&'$*562'=87>':',7>?+ J/J'

$%&'B35)9(65C'%DEF)('G$B%H+ ,/8'''GI/J8/J0H'

$)>D<5'K<*99639'12<2(+

$)>D<5'K<*99639'L*F)<+ '

MM"%#

!"#$%&&'(#)*&+)',-$')%./&#'E''1' '::394

$%&'&()*+ ,,/.'

$%&'1234)35(*5623+ -'39:;<

($%&'$*562'=87>':',7>?+ J/J'

$%&'B35)9(65C'%DEF)('G$B%H+ %:&'''GI/J8/J0H'

$)>D<5'K<*99639'12<2(+

$)>D<5'K<*99639'L*F)<+ '

8,JJ')NO)(5'GI/J8/J0/MB@-JH P'12OC(69Q5'8JJ@"8JJA'&96<)35'#)4Q32<296)>R'B34/ S(635)T+ .:U:8JJ7'7+@U+8J'SV

FGHH'#I/#$+J?*K%$L-+#4-+%&'(9A'9%7-JM?DFNHOEONJFHHE3HO3HNJFH3GP3HFQI%@ S*9) 2W. A

1()*5)T+
V2T6W6)T+

.:U:8JJ7'7+,@+J8'SV

.:U:8JJ7'7+@-+JU'SVX*5*'S*5Q+
YDZ*(C25)#25*<'$%&'%*32
1+[///\YDZ*(C25)#25*<'$%&'%*32\XYA8UJ.7.U\8JJ7"J."JU\8J",@"J8/N*T

&>>*C'1<*>>+

?&#R+$-/S#$-6$%.':*..%$L'T-7+;7*#@'QQQ

!"##$#%&'#()*+#,

!"#$%&&'(#)*&+)',-$')%./&#'0''1' '2!

-./#/012& %3456+4#

-./#!78918:02:)78& 5'%#8;<=*

0-./#-2:)7#$'>?#<#%>?,& @+4#

-./#A8:1;0):B#.CDE10#F-A.G& 4+H###FI+@'+@JG#

-1?C*:#K*2;;)8;#!7*70&

-1?C*:#K*2;;)8;#L2E1*& -A.&#4+H@#

3$%4.#5+'+%6&#',-$')%./&#'0''1' '2!

7%.# 8+%$+'89:#';5+< =5>'89:#';5+< ?$#% @'-,'+-+%&'?$#%

18S 1,114 1,337 22.5 1.6

28S 2,413 2,877 6.0 0.4

M/#M##$#%&'#()*+#,

!"#$%&&'(#)*&+)',-$')%./&#'A''1' 'B?'B

-./#/012& %3>J'+@#

-./#!78918:02:)78& >N%#8;<=*

0-./#-2:)7#$'>?#<#%>?,& %+J#

-./#A8:1;0):B#.CDE10#F-A.G& >+>###FI+@'+@JG#

-1?C*:#K*2;;)8;#!7*70&

-1?C*:#K*2;;)8;#L2E1*& -A.&#>+>@#

3$%4.#5+'+%6&#',-$')%./&#'A''1' 'B?'B

7%.# 8+%$+'89:#';5+< =5>'89:#';5+< ?$#% @'-,'+-+%&'?$#%

18S 1,558 1,986 352.8 19.0

28S 3,372 4,131 530.1 28.6

OP##$#%&'#()*+#,

!"#$%&&'(#)*&+)',-$')%./&#'CD''1' 'EF

-./#/012& %3NN5+>#

-./#!78918:02:)78& 5J6#8;<=*

0-./#-2:)7#$'>?#<#%>?,& %+'#

-./#A8:1;0):B#.CDE10#F-A.G& >+4###FI+@'+@JG#

-1?C*:#K*2;;)8;#!7*70&

-1?C*:#K*2;;)8;#L2E1*& -A.&#>+4@#

3$%4.#5+'+%6&#',-$')%./&#'CD''1' 'EF

7%.# 8+%$+'89:#';5+< =5>'89:#';5+< ?$#% @'-,'+-+%&'?$#%

18S 1,549 1,976 262.6 18.2

28S 3,387 4,069 323.5 22.4

AQ##$#%&'#()*+#,

!"#$%&&'(#)*&+)',-$')%./&#'CC''1' 'GH

-./#/012& %3565+%#

-./#!78918:02:)78& 65%#8;<=*

0-./#-2:)7#$'>?#<#%>?,& %+@#

-./#A8:1;0):B#.CDE10#F-A.G& 6+>###FI+@'+@JG#

-1?C*:#K*2;;)8;#!7*70&

-1?C*:#K*2;;)8;#L2E1*& -A.&#6+>@#

3$%4.#5+'+%6&#',-$')%./&#'CC''1' 'GH

7%.# 8+%$+'89:#';5+< =5>'89:#';5+< ?$#% @'-,'+-+%&'?$#%

18S 1,556 1,868 281.4 16.8

28S 3,404 4,025 280.3 16.7

'%@@#1RS10:#FI+@'+@J+TA45@G U#!7SB0);V:#'@@4W'@@6#/;)*18:#M19V87*7;)1?3#A89+ Q0)8:1(& J<N<'@@>#4&4@&@@#QX

ICDD'#J/#$+K=*L%$M-+#B-+%&'(7?'7%5-KN=OIADP0PAKIDD0QDRQDPKCRQDSQSTUJ%> Q2;1 7Y5 %@

!012:1(&
X7()Y)1(&

J<N<'@@>#4&@4&45#QX
J<N<'@@>#4&'6&N@#QXZ2:2#Q2:V&

[C\20B7:1M7:2*#-./#.287
!&]+++^[C\20B7:1M7:2*#-./#.287^Z[6'H@N>NH^'@@>W@JW@N^%JW@4W45+R2(

/??2B#!*2??&

=&#V+$-/W#$-4$%.'8*..%$M'2-5+95*#>'UUU

119



!"#$

!"#$%&&'(#)*&+)',-$')%./&#'0''1' '2!34

%&'(')*+, --./(

%&'(0123*24)+4512, 67(289:;

)%&'(%+451(<=>?(9(6>?@, A.A(

%&'(B24*8)54C(&DEF*)(G%B&H, 6.A(((GI.A=.AJH(

%*?D;4(K;+88528(01;1),

%*?D;4(K;+88528(L+F*;, (

!"#&$

!"#$%&&'(#)*&+)',-$')%./&#'56''1' '2!374

%&'(')*+, 67/.-(

%&'(0123*24)+4512, >>(289:;

)%&'(%+451(<=>?(9(6>?@, 6.J(

%&'(B24*8)54C(&DEF*)(G%B&H, 7.>(((GI.A=.AJH(

%*?D;4(K;+88528(01;1),

%*?D;4(K;+88528(L+F*;, (

8$%9.#:+'+%;&#',-$')%./&#'56''1' '2!374

7%.# 2+%$+'2<=#'>:+? @:A'2<=#'>:+? B$#% C'-,'+-+%&'B$#%

18S 1,456 1,977 19.3 10.9

28S 2,985 4,170 29.6 16.8

!+EM;*(66

!"#$%&&'(#)*&+)',-$')%./&#'55''1' '2%./&#'55

%&'(')*+, -.6(

%&'(0123*24)+4512, =(289:;

)%&'(%+451(<=>?(9(6>?@, A.A(

%&'(B24*8)54C(&DEF*)(G%B&H, &9'(((GI.A=.AJH(

%*?D;4(K;+88528(01;1),

%*?D;4(K;+88528(L+F*;, (

!+EM;*(6=

!"#$%&&'(#)*&+)',-$')%./&#'5D''1' '2%./&#'5D

%&'(')*+, -.N(

%&'(0123*24)+4512, =(289:;

)%&'(%+451(<=>?(9(6>?@, A.A(

%&'(B24*8)54C(&DEF*)(G%B&H, &9'(((GI.A=.AJH(

%*?D;4(K;+88528(01;1),

%*?D;4(K;+88528(L+F*;, (

=6AA(*OM*)4(GI.A=.AJ.!B-/AH P(01MC)58Q4(=AA-#=AA7('85;*24($*3Q21;185*?R(B23. S)524*T, N9U9=AA>(>,-U,=A(SV

D566'#E/#$+F@*G%$H-+#4-+%&'(7B'7%:-FI@JD06KLK0FD66L36K360FD635M36DNE%A S+8* 1WJ 7

0)*+4*T,
V1T5W5*T,

N9U9=AA>(>,6-,A=(SV
N9U9=AA>(>,-/,AU(SVX+4+(S+4Q,

YDZ+)C14*$14+;(%&'(&+21
0,[...\YDZ+)C14*$14+;(%&'(&+21\XY7=UAN>NU\=AA>#AN#AU\=A#6-#A=.O+T

'??+C(0;+??,

@&#O+$-/P#$-9$%.'2*..%$H'Q-:+<:*#A'NNN

!"##$%

!"#$%&&'(#)*&+)',-$'.%//#$

&'()(%$"* +,-.)

&'()/012$13%"3401* 5,.)16789

&$:;93)<9"66416)/090%*

&$:;93)<9"66416)!"=$9* )

>?@A

!"#$%&&'(#)*&+)',-$')%01&#'2''3' '4567

&'()(%$"* B-5)

&'()/012$13%"3401* +B)16789

%&'()&"340)CDE:)7)5E:F* .-.)

&'()G13$6%43H)';I=$%)J&G'K* 5-D)))J?-.D-.,K)

&$:;93)<9"66416)/090%*

&$:;93)<9"66416)!"=$9* )

LM@A

!"#$%&&'(#)*&+)',-$')%01&#'8''3' '9:67

&'()(%$"* ,5N-O)

&'()/012$13%"3401* DPD.O)16789

%&'()&"340)CDE:)7)5E:F* .-E)

&'()G13$6%43H)';I=$%)J&G'K* O-N)))J?-.D-.,K)

&$:;93)<9"66416)/090%*

&$:;93)<9"66416)!"=$9* )

;$%<0#=+'+%>&#',-$')%01&#'8''3' '9:67

?%0# @+%$+'@AB#'C=+D E=/'@AB#'C=+D F$#% G'-,'+-+%&'F$#%

18S 806 943 53.6 10.4

28S 1,743 2,269 44.5 8.6

LM@'A

!"#$%&&'(#)*&+)',-$')%01&#'H''3' '9:6?7

&'()(%$"* ND5-5)

&'()/012$13%"3401* 5PE.,)16789

%&'()&"340)CDE:)7)5E:F* D-N)

&'()G13$6%43H)';I=$%)J&G'K* N-.)))J?-.D-.,K)

&$:;93)<9"66416)/090%*

&$:;93)<9"66416)!"=$9* )

;$%<0#=+'+%>&#',-$')%01&#'H''3' '9:6?7

?%0# @+%$+'@AB#'C=+D E=/'@AB#'C=+D F$#% G'-,'+-+%&'F$#%

18S 827 878 6.6 1.6

28S 1,818 2,286 16.0 3.8

D5..)$QR$%3)J?-.D-.,-SG+O.K T)/0RH%46U3)D..+@D..V)(649$13)A$2U109064$:P)G12- W%413$#* N75.7D..E)5.*5+*,O)W>

82II'#J1#$+KE*L%$M-+#7-+%&'(?F'?%=-KNEO8PIQRQPK8IIR6IQ62IK826QS622TJ%/ W"6$ 0XN B

/%$"3$#*
>0#4X4$#*

N75.7D..E)B*NO*55)W>
N75.7D..E)5.*5.*.N)W>Y"3")W"3U*

Z;["%H03$A03"9)&'()'"10
/*\---]Z;["%H03$A03"9)&'()'"10]YZVDB.NENB]D..E@.N@5.]D5@NO@55-Q"#

(::"H)/9"::*

E&#U+$-1V#$-<$%0'@*00%$M

!"#$%&

!"#$%&&'(#)*&+)',-$')%./&#'0''1' '2(3456

"'()(*+,- ./$0.)

"'()#123+24*,4512- 67.89)2:;<=

*"'()",451)>6?@);)/?@A- 608)

"'()B24+:*54C)'DEF+*)G"B'H- /I0I)))GJ0I60I$H)

"+@D=4)K=,::52:)#1=1*-

"+@D=4)K=,::52:)L,F+=- )

7$%8.#9+'+%:&#',-$')%./&#'0''1' '2(3456

;%.# <+%$+'<=>#'?9+@ 69A'<=>#'?9+@ B$#% C'-,'+-+%&'B$#%

18S 858 1,036 129.9 21.1

28S 1,719 2,326 303.2 49.2

M(%N

!"#$%&&'(#)*&+)',-$')%./&#'4''1' '<B5D

"'()(*+,- .7O8/0I)

"'()#123+24*,4512- 6?7?$9)2:;<=

*"'()",451)>6?@);)/?@A- /0O)

"'()B24+:*54C)'DEF+*)G"B'H- ?0?)))GJ0I60I$H)

"+@D=4)K=,::52:)#1=1*-

"+@D=4)K=,::52:)L,F+=- )

7$%8.#9+'+%:&#',-$')%./&#'4''1' '<B5D

;%.# <+%$+'<=>#'?9+@ 69A'<=>#'?9+@ B$#% C'-,'+-+%&'B$#%

18S 839 930 1,220.4 18.1

28S 1,653 2,178 2,082.8 30.9

B(%N

!"#$%&&'(#)*&+)',-$')%./&#'E''1' 'FB5D

"'()(*+,- I09)

"'()#123+24*,4512- P)2:;<=

*"'()",451)>6?@);)/?@A- I0I)

"'()B24+:*54C)'DEF+*)G"B'H- ';()))GJ0I60I$H)

"+@D=4)K=,::52:)#1=1*-

"+@D=4)K=,::52:)L,F+=- )

!(%'N

!"#$%&&'(#)*&+)',-$')%./&#'G''1' '2B5;D

"'()(*+,- /I/06)

"'()#123+24*,4512- P8P)2:;<=

*"'()",451)>6?@);)/?@A- I0I)

"'()B24+:*54C)'DEF+*)G"B'H- 60.)))GJ0I60I$H)

"+@D=4)K=,::52:)#1=1*-

"+@D=4)K=,::52:)L,F+=- )

7$%8.#9+'+%:&#',-$')%./&#'G''1' '2B5;D

;%.# <+%$+'<=>#'?9+@ 69A'<=>#'?9+@ B$#% C'-,'+-+%&'B$#%

18S 611 790 1.1 1.1

6/II)+QR+*4)GJ0I60I$0MB8.IH S)#1RC*5:T4)6II8%6IIO)(:5=+24)N+3T21=1:5+@7)B230 U*524+V- P;/I;6II?)/I-/8-$.)U!

HIJJ'#K/#$+L6*M%$N-+#D-+%&'(;B';%9-LO6GHPJ0Q0PLHJJQ5J05IJLHI50E5IIRK%A U,:+ 1W$ 9

#*+,4+V-
!1V5W5+V-

P;/I;6II?)9-P.-//)U!
P;/I;6II?)/I-/I-IP)U!X,4,)U,4T-

&DY,*C14+N14,=)"'()',21
#-Z000[&DY,*C14+N14,=)"'()',21[X&O69IP?P9[6II?%IP%/I[6/%P.%//0Q,V

(@@,C)#=,@@-

6&#S+$-/T#$-8$%.'<*..%$N'3-9+=9*#A'RRR

!"#$%

!"#$%&&'(#)*&+)',-$')%./&#'0''1' '23456

&$"'"()*+ ,-./0'

&$"'1234)35(*5623+ 789:,'3;<=>

(&$"'&*562'?9@A'<':@AB+ ./@'

&$"'C35);(65D'$EFG)('H&C$I+ 0/7'''HJ/.9/.-I'

&)AE>5'K>*;;63;'12>2(+

&)AE>5'K>*;;63;'L*G)>+ '

7$%8.#9+'+%:&#',-$')%./&#'0''1' '23456

5%.# 2+%$+'2;<#'=9+> ?9@'2;<#'=9+> 3$#% A'-,'+-+%&'3$#%

18S 649 726 15.8 2.1

28S 1,415 1,717 12.2 1.6

M&1-#L

!"#$%&&'(#)*&+)',-$')%./&#'B''1' 'C(DE4F

&$"'"()*+ 9-/-'

&$"'1234)35(*5623+ :.N'3;<=>

(&$"'&*562'?9@A'<':@AB+ 9/0'

&$"'C35);(65D'$EFG)('H&C$I+ @/-'''HJ/.9/.-I'

&)AE>5'K>*;;63;'12>2(+

&)AE>5'K>*;;63;'L*G)>+ '

7$%8.#9+'+%:&#',-$')%./&#'B''1' 'C(DE4F

5%.# 2+%$+'2;<#'=9+> ?9@'2;<#'=9+> 3$#% A'-,'+-+%&'3$#%

18S 824 1,098 3.6 14.3

28S 1,771 2,342 8.6 33.7

O"#$

!"#$%&&'(#)*&+)',-$')%./&#'GH''1' 'I345

&$"'"()*+ P@/N'

&$"'1234)35(*5623+ 9N-'3;<=>

(&$"'&*562'?9@A'<':@AB+ ./.'

&$"'C35);(65D'$EFG)('H&C$I+ 9/9'''HJ/.9/.-I'

&)AE>5'K>*;;63;'12>2(+

&)AE>5'K>*;;63;'L*G)>+ '

O"#%

!"#$%&&'(#)*&+)',-$')%./&#'GG''1' 'I346

&$"'"()*+ :8:,P/7'

&$"'1234)35(*5623+ -8.07'3;<=>

(&$"'&*562'?9@A'<':@AB+ ./-'

&$"'C35);(65D'$EFG)('H&C$I+ ,/.'''HJ/.9/.-I'

&)AE>5'K>*;;63;'12>2(+

&)AE>5'K>*;;63;'L*G)>+ '

7$%8.#9+'+%:&#',-$')%./&#'GG''1' 'I346

5%.# 2+%$+'2;<#'=9+> ?9@'2;<#'=9+> 3$#% A'-,'+-+%&'3$#%

18S 781 920 204.2 17.4

28S 1,679 1,990 109.7 9.3

9:..')QR)(5'HJ/.9/.-/!C7P.I S'12RD(6;T5'9..7#9..,'";6>)35'%)4T32>2;6)A8'C34/ U(635)V+ 0<:.<9..@':.+:7+-P'UM

JGHH'#K/#$+L?*M%$N-+#6-+%&'(53'5%9-LO?PJBHQ0QBLJHH04HQ4GHLJG4QR4GGSK%@ U*;) 2WP N

1()*5)V+
M2V6W6)V+

0<:.<9..@'N+0P+::'UM
0<:.<9..@':.+:.+.0'UMX*5*'U*5T+

YEZ*(D25)%25*>'&$"'$*32
1+[///\YEZ*(D25)%25*>'&$"'$*32\XY,9N.0@0N\9..@#.0#:.\9:#0P#::/Q*V

"AA*D'1>*AA+

?&#T+$-/U#$-8$%.'2*..%$N'D-9+;9*#@'SSS

!"#!$%&'

!"#$%&&'(#)*&+)',-$')%./&#'0''1' '23425678

()*+*,-./ 01$+

()*+2345-46,.6734/ #!+489:;

,()*+(.673+<!"=+9+#"=>/ $1$+

()*+?46-8,76@+)ABC-,+D(?)E/ "1#+++DF1$!1$GE+

(-=A;6+H;.88748+23;3,/

(-=A;6+H;.88748+I.C-;/ (?)/+"1#$+

!"#!$%&)'

!"#$%&&'(#)*&+)',-$')%./&#'9''1' '2342567:8

()*+*,-./ ##!1"+

()*+2345-46,.6734/ #GJ+489:;

,()*+(.673+<!"=+9+#"=>/ #1#+

()*+?46-8,76@+)ABC-,+D(?)E/ 01K+++DF1$!1$GE+

(-=A;6+H;.88748+23;3,/

(-=A;6+H;.88748+I.C-;/ (?)/+01K$+

;$%<.#=+'+%>&#',-$')%./&#'9''1' '2342567:8

:%.# ?+%$+'?@A#'B=+C D=E'?@A#'B=+C F$#% G'-,'+-+%&'F$#%

18S 1,665 2,277 25.1 22.3

28S 3,347 4,590 28.3 25.1

LM&'

!"#$%&&'(#)*&+)',-$')%./&#'H''1' 'I?78

()*+*,-./ K!N1N+

()*+2345-46,.6734/ G%%+489:;

,()*+(.673+<!"=+9+#"=>/ $1$+

()*+?46-8,76@+)ABC-,+D(?)E/ J1J+++DF1$!1$GE+

(-=A;6+H;.88748+23;3,/

(-=A;6+H;.88748+I.C-;/ (?)/+J1J$+

;$%<.#=+'+%>&#',-$')%./&#'H''1' 'I?78

:%.# ?+%$+'?@A#'B=+C D=E'?@A#'B=+C F$#% G'-,'+-+%&'F$#%

18S 1,339 1,591 9.4 2.2

OF&)

!"#$%&&'(#)*&+)',-$')%./&#'6''1' 'JK7:

()*+*,-./ !K%1!+

()*+2345-46,.6734/ JJK+489:;

,()*+(.673+<!"=+9+#"=>/ #1$+

()*+?46-8,76@+)ABC-,+D(?)E/ 01J+++DF1$!1$GE+

(-=A;6+H;.88748+23;3,/

(-=A;6+H;.88748+I.C-;/ (?)/+01J$+

;$%<.#=+'+%>&#',-$')%./&#'6''1' 'JK7:

:%.# ?+%$+'?@A#'B=+C D=E'?@A#'B=+C F$#% G'-,'+-+%&'F$#%

18S 1,616 2,206 51.0 20.6

28S 3,540 4,508 49.2 19.9

!#$$+-PQ-,6+DF1$!1$G1M?JN$E R+23Q@,78S6+!$$J&!$$%+*87;-46+'-5S43;387-=T+?451 U,746-V/ K9#G9!$$"+"/#G/!%+UO

2455'#L/#$+MD*N%$O-+#8-+%&'(:F':%=-MPD62Q5030QM2553750749M4Q7957R9SL%E U.8- 3WG "

2,-.6-V/
O3V7W7-V/

K9#G9!$$"+%/G$/JG+UO
K9#G9!$$"+"/#K/K$+UOX.6.+U.6S/

YAZ.,@36-'36.;+()*+).43
2/[111\YAZ.,@36-'36.;+()*+).43\XY%!0$K"K0\!$$"&$K&#G\#0&G$&JG1P.V

*==.@+2;.==/

D&#T+$-/U#$-<$%.'?*..%$O'V-=+@=*#E'SSS

!"#!$%&'

!"#$%&&'(#)*&+)',-$')%./&#'0''1' '23425678

()*+*,-./ 01$+

()*+2345-46,.6734/ #!+489:;

,()*+(.673+<!"=+9+#"=>/ $1$+

()*+?46-8,76@+)ABC-,+D(?)E/ "1#+++DF1$!1$GE+

(-=A;6+H;.88748+23;3,/

(-=A;6+H;.88748+I.C-;/ (?)/+"1#$+

!"#!$%&)'

!"#$%&&'(#)*&+)',-$')%./&#'9''1' '2342567:8

()*+*,-./ ##!1"+

()*+2345-46,.6734/ #GJ+489:;

,()*+(.673+<!"=+9+#"=>/ #1#+

()*+?46-8,76@+)ABC-,+D(?)E/ 01K+++DF1$!1$GE+

(-=A;6+H;.88748+23;3,/

(-=A;6+H;.88748+I.C-;/ (?)/+01K$+

;$%<.#=+'+%>&#',-$')%./&#'9''1' '2342567:8

:%.# ?+%$+'?@A#'B=+C D=E'?@A#'B=+C F$#% G'-,'+-+%&'F$#%

18S 1,665 2,277 25.1 22.3

28S 3,347 4,590 28.3 25.1

LM&'

!"#$%&&'(#)*&+)',-$')%./&#'H''1' 'I?78

()*+*,-./ K!N1N+

()*+2345-46,.6734/ G%%+489:;

,()*+(.673+<!"=+9+#"=>/ $1$+

()*+?46-8,76@+)ABC-,+D(?)E/ J1J+++DF1$!1$GE+

(-=A;6+H;.88748+23;3,/

(-=A;6+H;.88748+I.C-;/ (?)/+J1J$+

;$%<.#=+'+%>&#',-$')%./&#'H''1' 'I?78

:%.# ?+%$+'?@A#'B=+C D=E'?@A#'B=+C F$#% G'-,'+-+%&'F$#%

18S 1,339 1,591 9.4 2.2

OF&)

!"#$%&&'(#)*&+)',-$')%./&#'6''1' 'JK7:

()*+*,-./ !K%1!+

()*+2345-46,.6734/ JJK+489:;

,()*+(.673+<!"=+9+#"=>/ #1$+

()*+?46-8,76@+)ABC-,+D(?)E/ 01J+++DF1$!1$GE+

(-=A;6+H;.88748+23;3,/

(-=A;6+H;.88748+I.C-;/ (?)/+01J$+

;$%<.#=+'+%>&#',-$')%./&#'6''1' 'JK7:

:%.# ?+%$+'?@A#'B=+C D=E'?@A#'B=+C F$#% G'-,'+-+%&'F$#%

18S 1,616 2,206 51.0 20.6

28S 3,540 4,508 49.2 19.9

!#$$+-PQ-,6+DF1$!1$G1M?JN$E R+23Q@,78S6+!$$J&!$$%+*87;-46+'-5S43;387-=T+?451 U,746-V/ K9#G9!$$"+"/#G/!%+UO

2455'#L/#$+MD*N%$O-+#8-+%&'(:F':%=-MPD62Q5030QM2553750749M4Q7957R9SL%E U.8- 3WG "

2,-.6-V/
O3V7W7-V/

K9#G9!$$"+%/G$/JG+UO
K9#G9!$$"+"/#K/K$+UOX.6.+U.6S/

YAZ.,@36-'36.;+()*+).43
2/[111\YAZ.,@36-'36.;+()*+).43\XY%!0$K"K0\!$$"&$K&#G\#0&G$&JG1P.V

*==.@+2;.==/

D&#T+$-/U#$-<$%.'?*..%$O'V-=+@=*#E'SSS

!"#$

!"#$%&&'(#)*&+)',-$')%./&#'01''2' '3456

%$&'&()*+ ,-./0'

%$&'1234)35(*5623+ 780'39:;<

(%$&'%*562'=.>?':'@>?A+ 0/0'

%$&'B35)9(65C'$DEF)('G%B$H+ ,/@'''GI/0./0JH'

%)?D<5'K<*99639'12<2(+

%)?D<5'K<*99639'L*F)<+ %B$+',/@0'

7$%8.#9+'+%:&#',-$')%./&#'01''2' '3456

6%.# 4+%$+'4;<#'=9+> ?9@'4;<#'=9+> A$#% B'-,'+-+%&'A$#%

18S 1,780 1,902 1.7 0.5

.@00')MN)(5'GI/0./0J/"B,-0H O'12NC(69P5'.00,#.00Q'&96<)35'R)4P32<296)?S'B34/ T(635)U+ 7:@J:.00>'>+@J+.Q'TV

10CC'#D/#$+E?*F%$G-+#H-+%&'(6A'6%9-EI?J1KCLMLKE1CCM5CL50NE0K5NC5ONPD%@ T*9) 2WQ >

1()*5)U+
V2U6W6)U+

7:@J:.00>'Q+J0+,J'TV
7:@J:.00>'>+@7+70'TVX*5*'T*5P+

YDZ*(C25)R25*<'%$&'$*32
1+[///\YDZ*(C25)R25*<'%$&'$*32\XYQ.807>78\.00>#07#@J\@8#J0#,J/M*U

&??*C'1<*??+

?&#Q+$-/R#$-8$%.'4*..%$G'S-9+;9*#@'PPP

!"##$%

!"#$%&&'(#)*&+)',-$'.%//#$

&'()(%$"* +,-.+)

&'()/012$13%"3401* 56,)1789:

&$;<:3)=:"77417)/0:0%*

&$;<:3)=:"77417)!">$:* (::)?3@$%)A"BC:$;)

DEF'G

!"#$%&&'(#)*&+)',-$')%01&#'2''3' '45678

&'()(%$"* 5HIJ-.J)

&'()/012$13%"3401* KK,)1789:

%&'()&"340)LMK;)8)5K;N* 5.6)

&'()O13$7%43P)'<B>$%)Q&O'R* M.+)))QS.,M.,6R)

&$;<:3)=:"77417)/0:0%*

&$;<:3)=:"77417)!">$:* &O'*)M.+,)

9$%:0#;+'+%<&#',-$')%01&#'2''3' '45678

7%0# =+%$+'=>?#'@;+A 4;/'=>?#'@;+A B$#% C'-,'+-+%&'B$#%

18S 1,801 1,916 0.3 0.0

28S 3,594 3,702 0.4 0.0

TE

!"#$%&&'(#)*&+)',-$')%01&#'D''3' 'E5

&'()(%$"* 5HU+J.I)

&'()/012$13%"3401* I,6)1789:

%&'()&"340)LMK;)8)5K;N* 5.6)

&'()O13$7%43P)'<B>$%)Q&O'R* I.U)))QS.,M.,6R)

&$;<:3)=:"77417)/0:0%*

&$;<:3)=:"77417)!">$:* &O'*)I.U,)

9$%:0#;+'+%<&#',-$')%01&#'D''3' 'E5

7%0# =+%$+'=>?#'@;+A 4;/'=>?#'@;+A B$#% C'-,'+-+%&'B$#%

18S 1,561 1,884 173.5 12.1

28S 3,297 4,185 251.7 17.5

?/

!"#$%&&'(#)*&+)',-$')%01&#'F''3' '!G

&'()(%$"* +HIU,.6)

&'()/012$13%"3401* 5HK+M)1789:

%&'()&"340)LMK;)8)5K;N* 5.+)

&'()O13$7%43P)'<B>$%)Q&O'R* K.M)))QS.,M.,6R)

&$;<:3)=:"77417)/0:0%*

&$;<:3)=:"77417)!">$:* &O'*)K.M,)

9$%:0#;+'+%<&#',-$')%01&#'F''3' '!G

7%0# =+%$+'=>?#'@;+A 4;/'=>?#'@;+A B$#% C'-,'+-+%&'B$#%

18S 1,556 1,868 642.3 17.2

28S 3,417 4,118 814.2 21.8

M5,,)$VC$%3)QS.,M.,6.AO+-,R W)/0CP%47@3)M,,+FM,,I)(74:$13)G$2@10:074$;H)O12. X%413$#* 68K8M,,K)5M*6-*MK)XY

D2HH'#I1#$+J4*K%$L-+#8-+%&'(7B'7%;-JM4NDOHPQPOJDHHQ6HR6HQJ226FD6D2SI%/ X"7$ 0ZU 5,

/%$"3$#*
Y0#4Z4$#*

68K8M,,K)55*+M*M5)(Y
68K8M,,K)55*6-*MM)(Y["3")X"3@*

D<\"%P03$G03":)&'()'"10
/*]...^D<\"%P03$G03":)&'()'"10^[DIMJ,UKUJ^M,,KF,6F,K^55F+MFM5.V"#

(;;"P)/:";;*

4&#T+$-1U#$-:$%0'=*00%$L

!"##$%

!"#$%&&'(#)*&+)',-$'.%//#$

&'()(%$"* +,-.,)

&'()/012$13%"3401* 56-)1789:

&$;<:3)=:"77417)/0:0%*

&$;<:3)=:"77417)!">$:* )

?(@A)))B)&'(@(&&(C)D

!"#$%&&'(#)*&+)',-$')%01&#'2''3' '4567'

&'()(%$"* +EF-G.F)

&'()/012$13%"3401* 5EGF6)1789:

%&'()&"340)B+G;)8)5G;D* 5.H)

&'()I13$7%43J)'<K>$%)L&I'M* F.-)))LN.-+.-6M)

&$;<:3)=:"77417)/0:0%*

&$;<:3)=:"77417)!">$:* )

8$%90#:+'+%;&#',-$')%01&#'2''3' '4567'

<%0# 4+%$+'4=>#'?:+@ A:/'4=>#'?:+@ 5$#% B'-,'+-+%&'5$#%

18S 1,599 2,116 607.6 20.9

28S 3,305 4,306 859.2 29.5

ON@'))B)&'(@(&&(C)D

!"#$%&&'(#)*&+)',-$')%01&#'C''3' 'DE6<

&'()(%$"* +EF+6.,)

&'()/012$13%"3401* 5EF-P)1789:

%&'()&"340)B+G;)8)5G;D* -.G)

&'()I13$7%43J)'<K>$%)L&I'M* ,.G)))LN.-+.-6M)

&$;<:3)=:"77417)/0:0%*

&$;<:3)=:"77417)!">$:* )

8$%90#:+'+%;&#',-$')%01&#'C''3' 'DE6<

<%0# 4+%$+'4=>#'?:+@ A:/'4=>#'?:+@ 5$#% B'-,'+-+%&'5$#%

18S 1,309 1,449 88.8 3.0

28S 2,853 3,379 74.8 2.6

QC@'))B)&'(@(&&(C)D

!"#$%&&'(#)*&+)',-$')%01&#'F''3' 'GH6<

&'()(%$"* 5E6-,.6)

&'()/012$13%"3401* FRF)1789:

%&'()&"340)B+G;)8)5G;D* 5.P)

&'()I13$7%43J)'<K>$%)L&I'M* ,.R)))LN.-+.-6M)

&$;<:3)=:"77417)/0:0%*

&$;<:3)=:"77417)!">$:* )

8$%90#:+'+%;&#',-$')%01&#'F''3' 'GH6<

<%0# 4+%$+'4=>#'?:+@ A:/'4=>#'?:+@ 5$#% B'-,'+-+%&'5$#%

18S 1,646 1,766 28.4 1.9

28S 3,622 4,176 46.1 3.1

+5--)$ST$%3)LN.-+.-6.?I,P-M U)/0TJ%47V3)+--,@+--R)(74:$13)A$2V10:074$;E)I12. W%413$#* H8++8+--G)5*-G*5F)WO

C2II'#J1#$+KA*L%$M-+#7-+%&'(<5'<%:-KNAOCPIQRQPKCIIR6IQ6CCK2C6QI62STJ%/ W"7$ 0XH 5-

/%$"3$#*
O0#4X4$#*

H8++8+--G)5+*H-*5P)WO
H8++8+--G)5*-H*-F)WOY"3")W"3V*

Z<["%J03$A03":)&'()'"10
/*\...]Z<["%J03$A03":)&'()'"10]YZR+F-HGHF]+--G@-H@++]5+@H-@5P.S"#

(;;"J)/:";;*

A&#U+$-1V#$-9$%0'4*00%$M

!"#

!"#$%&&'(#)*&+)',-$')%./&#'0''1' '234

$%&'&()*+ ,-./01.'

$%&'2345)46(*6734+ /-089'4:;<=

($%&'$*673'>.?@';'/?@A+ /1/'

$%&'B46):(76C'%DEF)('G$B%H+ I10'''GJ1K.1K0H'

$)@D=6'L=*::74:'23=3(+

$)@D=6'L=*::74:'M*F)=+ $B%+'I10K'

5$%6.#7+'+%8&#',-$')%./&#'0''1' '234

9%.# 3+%$+'3:;#'<7+= >7?'3:;#'<7+= @$#% A'-,'+-+%&'@$#%

18S 1,518 1,849 335.3 10.4

28S 3,265 4,073 361.1 11.2

$N

!"#$%&&'(#)*&+)',-$')%./&#'B''1' '(C

$%&'&()*+ .-9.,1?'

$%&'2345)46(*6734+ /-/?8'4:;<=

($%&'$*673'>.?@';'/?@A+ /1/'

$%&'B46):(76C'%DEF)('G$B%H+ 81,'''GJ1K.1K0H'

$)@D=6'L=*::74:'23=3(+

$)@D=6'L=*::74:'M*F)=+ $B%+'81,K'

5$%6.#7+'+%8&#',-$')%./&#'B''1' '(C

9%.# 3+%$+'3:;#'<7+= >7?'3:;#'<7+= @$#% A'-,'+-+%&'@$#%

18S 1,521 1,930 356.2 14.7

28S 3,267 4,049 382.6 15.8

N*O

!"#$%&&'(#)*&+)',-$')%./&#'D''1' 'C%E

$%&'&()*+ 9-KI01K'

$%&'2345)46(*6734+ /-PPK'4:;<=

($%&'$*673'>.?@';'/?@A+ /1.'

$%&'B46):(76C'%DEF)('G$B%H+ ?1P'''GJ1K.1K0H'

$)@D=6'L=*::74:'23=3(+

$)@D=6'L=*::74:'M*F)=+ $B%+'?1PK'

5$%6.#7+'+%8&#',-$')%./&#'D''1' 'C%E

9%.# 3+%$+'3:;#'<7+= >7?'3:;#'<7+= @$#% A'-,'+-+%&'@$#%

18S 1,543 1,974 924.8 22.8

28S 3,239 4,165 1,150.2 28.3

NQ

!"#$%&&'(#)*&+)',-$')%./&#'F''1' 'CG

$%&'&()*+ /9-K091K'

$%&'2345)46(*6734+ I-??.'4:;<=

($%&'$*673'>.?@';'/?@A+ /1/'

$%&'B46):(76C'%DEF)('G$B%H+ ?1K'''GJ1K.1K0H'

$)@D=6'L=*::74:'23=3(+

$)@D=6'L=*::74:'M*F)=+ $B%+?'

5$%6.#7+'+%8&#',-$')%./&#'F''1' 'CG

9%.# 3+%$+'3:;#'<7+= >7?'3:;#'<7+= @$#% A'-,'+-+%&'@$#%

18S 1,546 1,825 978.0 7.0

28S 3,194 4,065 1,123.1 8.0

./KK')RS)(6'GJ1K.1K01"B,IKH T'23SC(7:U6'.KK,V.KK8'&:7=)46'#)5U43=3:7)@-'B451 W(746)X+ 0;?;.KK?'/.+0I+.?'W!

HIJJ'#K/#$+L>*M%$N-+#4-+%&'(9@'9%7-LO>FHPJ0Q0PLHJJQRJBRJQLIIRSHRHITK%? W*:) 3Y0 /K

2()*6)X+
!3X7Y7)X+

0;?;.KK?'//+,.+./'&!
0;?;.KK?'//+0I+..'&!Z*6*'W*6U+

[D\*(C36)#36*='$%&'%*43
2+]111^[D\*(C36)#36*='$%&'%*43^Z[8.PK9?9P^.KK?VK0VK?^//V,.V./1R*X

&@@*C'2=*@@+

>&#U+$-/V#$-6$%.'3*..%$N'W-7+:7*#?'TTT

120



!"#$

!"#$%&&'(#)*&+)',-$')%./&#'0''1' '2!34

%&'(')*+, --./(

%&'(0123*24)+4512, 67(289:;

)%&'(%+451(<=>?(9(6>?@, A.A(

%&'(B24*8)54C(&DEF*)(G%B&H, 6.A(((GI.A=.AJH(

%*?D;4(K;+88528(01;1),

%*?D;4(K;+88528(L+F*;, (

!"#&$

!"#$%&&'(#)*&+)',-$')%./&#'56''1' '2!374

%&'(')*+, 67/.-(

%&'(0123*24)+4512, >>(289:;

)%&'(%+451(<=>?(9(6>?@, 6.J(

%&'(B24*8)54C(&DEF*)(G%B&H, 7.>(((GI.A=.AJH(

%*?D;4(K;+88528(01;1),

%*?D;4(K;+88528(L+F*;, (

8$%9.#:+'+%;&#',-$')%./&#'56''1' '2!374

7%.# 2+%$+'2<=#'>:+? @:A'2<=#'>:+? B$#% C'-,'+-+%&'B$#%

18S 1,456 1,977 19.3 10.9

28S 2,985 4,170 29.6 16.8

!+EM;*(66

!"#$%&&'(#)*&+)',-$')%./&#'55''1' '2%./&#'55

%&'(')*+, -.6(

%&'(0123*24)+4512, =(289:;

)%&'(%+451(<=>?(9(6>?@, A.A(

%&'(B24*8)54C(&DEF*)(G%B&H, &9'(((GI.A=.AJH(

%*?D;4(K;+88528(01;1),

%*?D;4(K;+88528(L+F*;, (

!+EM;*(6=

!"#$%&&'(#)*&+)',-$')%./&#'5D''1' '2%./&#'5D

%&'(')*+, -.N(

%&'(0123*24)+4512, =(289:;

)%&'(%+451(<=>?(9(6>?@, A.A(

%&'(B24*8)54C(&DEF*)(G%B&H, &9'(((GI.A=.AJH(

%*?D;4(K;+88528(01;1),

%*?D;4(K;+88528(L+F*;, (

=6AA(*OM*)4(GI.A=.AJ.!B-/AH P(01MC)58Q4(=AA-#=AA7('85;*24($*3Q21;185*?R(B23. S)524*T, N9U9=AA>(>,-U,=A(SV

D566'#E/#$+F@*G%$H-+#4-+%&'(7B'7%:-FI@JD06KLK0FD66L36K360FD635M36DNE%A S+8* 1WJ 7

0)*+4*T,
V1T5W5*T,

N9U9=AA>(>,6-,A=(SV
N9U9=AA>(>,-/,AU(SVX+4+(S+4Q,

YDZ+)C14*$14+;(%&'(&+21
0,[...\YDZ+)C14*$14+;(%&'(&+21\XY7=UAN>NU\=AA>#AN#AU\=A#6-#A=.O+T

'??+C(0;+??,

@&#O+$-/P#$-9$%.'2*..%$H'Q-:+<:*#A'NNN

!"##$%

!"#$%&&'(#)*&+)',-$'.%//#$

&'()(%$"* +,-.)

&'()/012$13%"3401* 5,.)16789

&$:;93)<9"66416)/090%*

&$:;93)<9"66416)!"=$9* )

>?@A

!"#$%&&'(#)*&+)',-$')%01&#'2''3' '4567

&'()(%$"* B-5)

&'()/012$13%"3401* +B)16789

%&'()&"340)CDE:)7)5E:F* .-.)

&'()G13$6%43H)';I=$%)J&G'K* 5-D)))J?-.D-.,K)

&$:;93)<9"66416)/090%*

&$:;93)<9"66416)!"=$9* )

LM@A

!"#$%&&'(#)*&+)',-$')%01&#'8''3' '9:67

&'()(%$"* ,5N-O)

&'()/012$13%"3401* DPD.O)16789

%&'()&"340)CDE:)7)5E:F* .-E)

&'()G13$6%43H)';I=$%)J&G'K* O-N)))J?-.D-.,K)

&$:;93)<9"66416)/090%*

&$:;93)<9"66416)!"=$9* )

;$%<0#=+'+%>&#',-$')%01&#'8''3' '9:67

?%0# @+%$+'@AB#'C=+D E=/'@AB#'C=+D F$#% G'-,'+-+%&'F$#%

18S 806 943 53.6 10.4

28S 1,743 2,269 44.5 8.6

LM@'A

!"#$%&&'(#)*&+)',-$')%01&#'H''3' '9:6?7

&'()(%$"* ND5-5)

&'()/012$13%"3401* 5PE.,)16789

%&'()&"340)CDE:)7)5E:F* D-N)

&'()G13$6%43H)';I=$%)J&G'K* N-.)))J?-.D-.,K)

&$:;93)<9"66416)/090%*

&$:;93)<9"66416)!"=$9* )

;$%<0#=+'+%>&#',-$')%01&#'H''3' '9:6?7

?%0# @+%$+'@AB#'C=+D E=/'@AB#'C=+D F$#% G'-,'+-+%&'F$#%

18S 827 878 6.6 1.6

28S 1,818 2,286 16.0 3.8

D5..)$QR$%3)J?-.D-.,-SG+O.K T)/0RH%46U3)D..+@D..V)(649$13)A$2U109064$:P)G12- W%413$#* N75.7D..E)5.*5+*,O)W>

82II'#J1#$+KE*L%$M-+#7-+%&'(?F'?%=-KNEO8PIQRQPK8IIR6IQ62IK826QS622TJ%/ W"6$ 0XN B

/%$"3$#*
>0#4X4$#*

N75.7D..E)B*NO*55)W>
N75.7D..E)5.*5.*.N)W>Y"3")W"3U*

Z;["%H03$A03"9)&'()'"10
/*\---]Z;["%H03$A03"9)&'()'"10]YZVDB.NENB]D..E@.N@5.]D5@NO@55-Q"#

(::"H)/9"::*

E&#U+$-1V#$-<$%0'@*00%$M

!"#$%&

!"#$%&&'(#)*&+)',-$')%./&#'0''1' '2(3456

"'()(*+,- ./$0.)

"'()#123+24*,4512- 67.89)2:;<=

*"'()",451)>6?@);)/?@A- 608)

"'()B24+:*54C)'DEF+*)G"B'H- /I0I)))GJ0I60I$H)

"+@D=4)K=,::52:)#1=1*-

"+@D=4)K=,::52:)L,F+=- )

7$%8.#9+'+%:&#',-$')%./&#'0''1' '2(3456

;%.# <+%$+'<=>#'?9+@ 69A'<=>#'?9+@ B$#% C'-,'+-+%&'B$#%

18S 858 1,036 129.9 21.1

28S 1,719 2,326 303.2 49.2

M(%N

!"#$%&&'(#)*&+)',-$')%./&#'4''1' '<B5D

"'()(*+,- .7O8/0I)

"'()#123+24*,4512- 6?7?$9)2:;<=

*"'()",451)>6?@);)/?@A- /0O)

"'()B24+:*54C)'DEF+*)G"B'H- ?0?)))GJ0I60I$H)

"+@D=4)K=,::52:)#1=1*-

"+@D=4)K=,::52:)L,F+=- )

7$%8.#9+'+%:&#',-$')%./&#'4''1' '<B5D

;%.# <+%$+'<=>#'?9+@ 69A'<=>#'?9+@ B$#% C'-,'+-+%&'B$#%

18S 839 930 1,220.4 18.1

28S 1,653 2,178 2,082.8 30.9

B(%N

!"#$%&&'(#)*&+)',-$')%./&#'E''1' 'FB5D

"'()(*+,- I09)

"'()#123+24*,4512- P)2:;<=

*"'()",451)>6?@);)/?@A- I0I)

"'()B24+:*54C)'DEF+*)G"B'H- ';()))GJ0I60I$H)

"+@D=4)K=,::52:)#1=1*-

"+@D=4)K=,::52:)L,F+=- )

!(%'N

!"#$%&&'(#)*&+)',-$')%./&#'G''1' '2B5;D

"'()(*+,- /I/06)

"'()#123+24*,4512- P8P)2:;<=

*"'()",451)>6?@);)/?@A- I0I)

"'()B24+:*54C)'DEF+*)G"B'H- 60.)))GJ0I60I$H)

"+@D=4)K=,::52:)#1=1*-

"+@D=4)K=,::52:)L,F+=- )

7$%8.#9+'+%:&#',-$')%./&#'G''1' '2B5;D

;%.# <+%$+'<=>#'?9+@ 69A'<=>#'?9+@ B$#% C'-,'+-+%&'B$#%

18S 611 790 1.1 1.1

6/II)+QR+*4)GJ0I60I$0MB8.IH S)#1RC*5:T4)6II8%6IIO)(:5=+24)N+3T21=1:5+@7)B230 U*524+V- P;/I;6II?)/I-/8-$.)U!

HIJJ'#K/#$+L6*M%$N-+#D-+%&'(;B';%9-LO6GHPJ0Q0PLHJJQ5J05IJLHI50E5IIRK%A U,:+ 1W$ 9

#*+,4+V-
!1V5W5+V-

P;/I;6II?)9-P.-//)U!
P;/I;6II?)/I-/I-IP)U!X,4,)U,4T-

&DY,*C14+N14,=)"'()',21
#-Z000[&DY,*C14+N14,=)"'()',21[X&O69IP?P9[6II?%IP%/I[6/%P.%//0Q,V

(@@,C)#=,@@-

6&#S+$-/T#$-8$%.'<*..%$N'3-9+=9*#A'RRR

!"#$%

!"#$%&&'(#)*&+)',-$')%./&#'0''1' '23456

&$"'"()*+ ,-./0'

&$"'1234)35(*5623+ 789:,'3;<=>

(&$"'&*562'?9@A'<':@AB+ ./@'

&$"'C35);(65D'$EFG)('H&C$I+ 0/7'''HJ/.9/.-I'

&)AE>5'K>*;;63;'12>2(+

&)AE>5'K>*;;63;'L*G)>+ '

7$%8.#9+'+%:&#',-$')%./&#'0''1' '23456

5%.# 2+%$+'2;<#'=9+> ?9@'2;<#'=9+> 3$#% A'-,'+-+%&'3$#%

18S 649 726 15.8 2.1

28S 1,415 1,717 12.2 1.6

M&1-#L

!"#$%&&'(#)*&+)',-$')%./&#'B''1' 'C(DE4F

&$"'"()*+ 9-/-'

&$"'1234)35(*5623+ :.N'3;<=>

(&$"'&*562'?9@A'<':@AB+ 9/0'

&$"'C35);(65D'$EFG)('H&C$I+ @/-'''HJ/.9/.-I'

&)AE>5'K>*;;63;'12>2(+

&)AE>5'K>*;;63;'L*G)>+ '

7$%8.#9+'+%:&#',-$')%./&#'B''1' 'C(DE4F

5%.# 2+%$+'2;<#'=9+> ?9@'2;<#'=9+> 3$#% A'-,'+-+%&'3$#%

18S 824 1,098 3.6 14.3

28S 1,771 2,342 8.6 33.7

O"#$

!"#$%&&'(#)*&+)',-$')%./&#'GH''1' 'I345

&$"'"()*+ P@/N'

&$"'1234)35(*5623+ 9N-'3;<=>

(&$"'&*562'?9@A'<':@AB+ ./.'

&$"'C35);(65D'$EFG)('H&C$I+ 9/9'''HJ/.9/.-I'

&)AE>5'K>*;;63;'12>2(+

&)AE>5'K>*;;63;'L*G)>+ '

O"#%

!"#$%&&'(#)*&+)',-$')%./&#'GG''1' 'I346

&$"'"()*+ :8:,P/7'

&$"'1234)35(*5623+ -8.07'3;<=>

(&$"'&*562'?9@A'<':@AB+ ./-'

&$"'C35);(65D'$EFG)('H&C$I+ ,/.'''HJ/.9/.-I'

&)AE>5'K>*;;63;'12>2(+

&)AE>5'K>*;;63;'L*G)>+ '

7$%8.#9+'+%:&#',-$')%./&#'GG''1' 'I346

5%.# 2+%$+'2;<#'=9+> ?9@'2;<#'=9+> 3$#% A'-,'+-+%&'3$#%

18S 781 920 204.2 17.4

28S 1,679 1,990 109.7 9.3

9:..')QR)(5'HJ/.9/.-/!C7P.I S'12RD(6;T5'9..7#9..,'";6>)35'%)4T32>2;6)A8'C34/ U(635)V+ 0<:.<9..@':.+:7+-P'UM

JGHH'#K/#$+L?*M%$N-+#6-+%&'(53'5%9-LO?PJBHQ0QBLJHH04HQ4GHLJG4QR4GGSK%@ U*;) 2WP N

1()*5)V+
M2V6W6)V+

0<:.<9..@'N+0P+::'UM
0<:.<9..@':.+:.+.0'UMX*5*'U*5T+

YEZ*(D25)%25*>'&$"'$*32
1+[///\YEZ*(D25)%25*>'&$"'$*32\XY,9N.0@0N\9..@#.0#:.\9:#0P#::/Q*V

"AA*D'1>*AA+

?&#T+$-/U#$-8$%.'2*..%$N'D-9+;9*#@'SSS

!"#!$%&'

!"#$%&&'(#)*&+)',-$')%./&#'0''1' '23425678

()*+*,-./ 01$+

()*+2345-46,.6734/ #!+489:;

,()*+(.673+<!"=+9+#"=>/ $1$+

()*+?46-8,76@+)ABC-,+D(?)E/ "1#+++DF1$!1$GE+

(-=A;6+H;.88748+23;3,/

(-=A;6+H;.88748+I.C-;/ (?)/+"1#$+

!"#!$%&)'

!"#$%&&'(#)*&+)',-$')%./&#'9''1' '2342567:8

()*+*,-./ ##!1"+

()*+2345-46,.6734/ #GJ+489:;

,()*+(.673+<!"=+9+#"=>/ #1#+

()*+?46-8,76@+)ABC-,+D(?)E/ 01K+++DF1$!1$GE+

(-=A;6+H;.88748+23;3,/

(-=A;6+H;.88748+I.C-;/ (?)/+01K$+

;$%<.#=+'+%>&#',-$')%./&#'9''1' '2342567:8

:%.# ?+%$+'?@A#'B=+C D=E'?@A#'B=+C F$#% G'-,'+-+%&'F$#%

18S 1,665 2,277 25.1 22.3

28S 3,347 4,590 28.3 25.1

LM&'

!"#$%&&'(#)*&+)',-$')%./&#'H''1' 'I?78

()*+*,-./ K!N1N+

()*+2345-46,.6734/ G%%+489:;

,()*+(.673+<!"=+9+#"=>/ $1$+

()*+?46-8,76@+)ABC-,+D(?)E/ J1J+++DF1$!1$GE+

(-=A;6+H;.88748+23;3,/

(-=A;6+H;.88748+I.C-;/ (?)/+J1J$+

;$%<.#=+'+%>&#',-$')%./&#'H''1' 'I?78

:%.# ?+%$+'?@A#'B=+C D=E'?@A#'B=+C F$#% G'-,'+-+%&'F$#%

18S 1,339 1,591 9.4 2.2

OF&)

!"#$%&&'(#)*&+)',-$')%./&#'6''1' 'JK7:

()*+*,-./ !K%1!+

()*+2345-46,.6734/ JJK+489:;

,()*+(.673+<!"=+9+#"=>/ #1$+

()*+?46-8,76@+)ABC-,+D(?)E/ 01J+++DF1$!1$GE+

(-=A;6+H;.88748+23;3,/

(-=A;6+H;.88748+I.C-;/ (?)/+01J$+

;$%<.#=+'+%>&#',-$')%./&#'6''1' 'JK7:

:%.# ?+%$+'?@A#'B=+C D=E'?@A#'B=+C F$#% G'-,'+-+%&'F$#%

18S 1,616 2,206 51.0 20.6

28S 3,540 4,508 49.2 19.9

!#$$+-PQ-,6+DF1$!1$G1M?JN$E R+23Q@,78S6+!$$J&!$$%+*87;-46+'-5S43;387-=T+?451 U,746-V/ K9#G9!$$"+"/#G/!%+UO

2455'#L/#$+MD*N%$O-+#8-+%&'(:F':%=-MPD62Q5030QM2553750749M4Q7957R9SL%E U.8- 3WG "

2,-.6-V/
O3V7W7-V/

K9#G9!$$"+%/G$/JG+UO
K9#G9!$$"+"/#K/K$+UOX.6.+U.6S/

YAZ.,@36-'36.;+()*+).43
2/[111\YAZ.,@36-'36.;+()*+).43\XY%!0$K"K0\!$$"&$K&#G\#0&G$&JG1P.V

*==.@+2;.==/

D&#T+$-/U#$-<$%.'?*..%$O'V-=+@=*#E'SSS

!"#!$%&'

!"#$%&&'(#)*&+)',-$')%./&#'0''1' '23425678

()*+*,-./ 01$+

()*+2345-46,.6734/ #!+489:;

,()*+(.673+<!"=+9+#"=>/ $1$+

()*+?46-8,76@+)ABC-,+D(?)E/ "1#+++DF1$!1$GE+

(-=A;6+H;.88748+23;3,/

(-=A;6+H;.88748+I.C-;/ (?)/+"1#$+

!"#!$%&)'

!"#$%&&'(#)*&+)',-$')%./&#'9''1' '2342567:8

()*+*,-./ ##!1"+

()*+2345-46,.6734/ #GJ+489:;

,()*+(.673+<!"=+9+#"=>/ #1#+

()*+?46-8,76@+)ABC-,+D(?)E/ 01K+++DF1$!1$GE+

(-=A;6+H;.88748+23;3,/

(-=A;6+H;.88748+I.C-;/ (?)/+01K$+

;$%<.#=+'+%>&#',-$')%./&#'9''1' '2342567:8

:%.# ?+%$+'?@A#'B=+C D=E'?@A#'B=+C F$#% G'-,'+-+%&'F$#%

18S 1,665 2,277 25.1 22.3

28S 3,347 4,590 28.3 25.1

LM&'

!"#$%&&'(#)*&+)',-$')%./&#'H''1' 'I?78

()*+*,-./ K!N1N+

()*+2345-46,.6734/ G%%+489:;

,()*+(.673+<!"=+9+#"=>/ $1$+

()*+?46-8,76@+)ABC-,+D(?)E/ J1J+++DF1$!1$GE+

(-=A;6+H;.88748+23;3,/

(-=A;6+H;.88748+I.C-;/ (?)/+J1J$+

;$%<.#=+'+%>&#',-$')%./&#'H''1' 'I?78

:%.# ?+%$+'?@A#'B=+C D=E'?@A#'B=+C F$#% G'-,'+-+%&'F$#%

18S 1,339 1,591 9.4 2.2

OF&)

!"#$%&&'(#)*&+)',-$')%./&#'6''1' 'JK7:

()*+*,-./ !K%1!+

()*+2345-46,.6734/ JJK+489:;

,()*+(.673+<!"=+9+#"=>/ #1$+

()*+?46-8,76@+)ABC-,+D(?)E/ 01J+++DF1$!1$GE+

(-=A;6+H;.88748+23;3,/

(-=A;6+H;.88748+I.C-;/ (?)/+01J$+

;$%<.#=+'+%>&#',-$')%./&#'6''1' 'JK7:

:%.# ?+%$+'?@A#'B=+C D=E'?@A#'B=+C F$#% G'-,'+-+%&'F$#%

18S 1,616 2,206 51.0 20.6

28S 3,540 4,508 49.2 19.9

!#$$+-PQ-,6+DF1$!1$G1M?JN$E R+23Q@,78S6+!$$J&!$$%+*87;-46+'-5S43;387-=T+?451 U,746-V/ K9#G9!$$"+"/#G/!%+UO

2455'#L/#$+MD*N%$O-+#8-+%&'(:F':%=-MPD62Q5030QM2553750749M4Q7957R9SL%E U.8- 3WG "

2,-.6-V/
O3V7W7-V/

K9#G9!$$"+%/G$/JG+UO
K9#G9!$$"+"/#K/K$+UOX.6.+U.6S/

YAZ.,@36-'36.;+()*+).43
2/[111\YAZ.,@36-'36.;+()*+).43\XY%!0$K"K0\!$$"&$K&#G\#0&G$&JG1P.V

*==.@+2;.==/

D&#T+$-/U#$-<$%.'?*..%$O'V-=+@=*#E'SSS

!"#$

!"#$%&&'(#)*&+)',-$')%./&#'01''2' '3456

%$&'&()*+ ,-./0'

%$&'1234)35(*5623+ 780'39:;<

(%$&'%*562'=.>?':'@>?A+ 0/0'

%$&'B35)9(65C'$DEF)('G%B$H+ ,/@'''GI/0./0JH'

%)?D<5'K<*99639'12<2(+

%)?D<5'K<*99639'L*F)<+ %B$+',/@0'

7$%8.#9+'+%:&#',-$')%./&#'01''2' '3456

6%.# 4+%$+'4;<#'=9+> ?9@'4;<#'=9+> A$#% B'-,'+-+%&'A$#%

18S 1,780 1,902 1.7 0.5

.@00')MN)(5'GI/0./0J/"B,-0H O'12NC(69P5'.00,#.00Q'&96<)35'R)4P32<296)?S'B34/ T(635)U+ 7:@J:.00>'>+@J+.Q'TV

10CC'#D/#$+E?*F%$G-+#H-+%&'(6A'6%9-EI?J1KCLMLKE1CCM5CL50NE0K5NC5ONPD%@ T*9) 2WQ >

1()*5)U+
V2U6W6)U+

7:@J:.00>'Q+J0+,J'TV
7:@J:.00>'>+@7+70'TVX*5*'T*5P+

YDZ*(C25)R25*<'%$&'$*32
1+[///\YDZ*(C25)R25*<'%$&'$*32\XYQ.807>78\.00>#07#@J\@8#J0#,J/M*U

&??*C'1<*??+

?&#Q+$-/R#$-8$%.'4*..%$G'S-9+;9*#@'PPP

!"##$%

!"#$%&&'(#)*&+)',-$'.%//#$

&'()(%$"* +,-.+)

&'()/012$13%"3401* 56,)1789:

&$;<:3)=:"77417)/0:0%*

&$;<:3)=:"77417)!">$:* (::)?3@$%)A"BC:$;)

DEF'G

!"#$%&&'(#)*&+)',-$')%01&#'2''3' '45678

&'()(%$"* 5HIJ-.J)

&'()/012$13%"3401* KK,)1789:

%&'()&"340)LMK;)8)5K;N* 5.6)

&'()O13$7%43P)'<B>$%)Q&O'R* M.+)))QS.,M.,6R)

&$;<:3)=:"77417)/0:0%*

&$;<:3)=:"77417)!">$:* &O'*)M.+,)

9$%:0#;+'+%<&#',-$')%01&#'2''3' '45678

7%0# =+%$+'=>?#'@;+A 4;/'=>?#'@;+A B$#% C'-,'+-+%&'B$#%

18S 1,801 1,916 0.3 0.0

28S 3,594 3,702 0.4 0.0

TE

!"#$%&&'(#)*&+)',-$')%01&#'D''3' 'E5

&'()(%$"* 5HU+J.I)

&'()/012$13%"3401* I,6)1789:

%&'()&"340)LMK;)8)5K;N* 5.6)

&'()O13$7%43P)'<B>$%)Q&O'R* I.U)))QS.,M.,6R)

&$;<:3)=:"77417)/0:0%*

&$;<:3)=:"77417)!">$:* &O'*)I.U,)

9$%:0#;+'+%<&#',-$')%01&#'D''3' 'E5

7%0# =+%$+'=>?#'@;+A 4;/'=>?#'@;+A B$#% C'-,'+-+%&'B$#%

18S 1,561 1,884 173.5 12.1

28S 3,297 4,185 251.7 17.5

?/

!"#$%&&'(#)*&+)',-$')%01&#'F''3' '!G

&'()(%$"* +HIU,.6)

&'()/012$13%"3401* 5HK+M)1789:

%&'()&"340)LMK;)8)5K;N* 5.+)

&'()O13$7%43P)'<B>$%)Q&O'R* K.M)))QS.,M.,6R)

&$;<:3)=:"77417)/0:0%*

&$;<:3)=:"77417)!">$:* &O'*)K.M,)

9$%:0#;+'+%<&#',-$')%01&#'F''3' '!G

7%0# =+%$+'=>?#'@;+A 4;/'=>?#'@;+A B$#% C'-,'+-+%&'B$#%

18S 1,556 1,868 642.3 17.2

28S 3,417 4,118 814.2 21.8

M5,,)$VC$%3)QS.,M.,6.AO+-,R W)/0CP%47@3)M,,+FM,,I)(74:$13)G$2@10:074$;H)O12. X%413$#* 68K8M,,K)5M*6-*MK)XY

D2HH'#I1#$+J4*K%$L-+#8-+%&'(7B'7%;-JM4NDOHPQPOJDHHQ6HR6HQJ226FD6D2SI%/ X"7$ 0ZU 5,

/%$"3$#*
Y0#4Z4$#*

68K8M,,K)55*+M*M5)(Y
68K8M,,K)55*6-*MM)(Y["3")X"3@*

D<\"%P03$G03":)&'()'"10
/*]...^D<\"%P03$G03":)&'()'"10^[DIMJ,UKUJ^M,,KF,6F,K^55F+MFM5.V"#

(;;"P)/:";;*

4&#T+$-1U#$-:$%0'=*00%$L

!"##$%

!"#$%&&'(#)*&+)',-$'.%//#$

&'()(%$"* +,-.,)

&'()/012$13%"3401* 56-)1789:

&$;<:3)=:"77417)/0:0%*

&$;<:3)=:"77417)!">$:* )

?(@A)))B)&'(@(&&(C)D

!"#$%&&'(#)*&+)',-$')%01&#'2''3' '4567'

&'()(%$"* +EF-G.F)

&'()/012$13%"3401* 5EGF6)1789:

%&'()&"340)B+G;)8)5G;D* 5.H)

&'()I13$7%43J)'<K>$%)L&I'M* F.-)))LN.-+.-6M)

&$;<:3)=:"77417)/0:0%*

&$;<:3)=:"77417)!">$:* )

8$%90#:+'+%;&#',-$')%01&#'2''3' '4567'

<%0# 4+%$+'4=>#'?:+@ A:/'4=>#'?:+@ 5$#% B'-,'+-+%&'5$#%

18S 1,599 2,116 607.6 20.9

28S 3,305 4,306 859.2 29.5

ON@'))B)&'(@(&&(C)D

!"#$%&&'(#)*&+)',-$')%01&#'C''3' 'DE6<

&'()(%$"* +EF+6.,)

&'()/012$13%"3401* 5EF-P)1789:

%&'()&"340)B+G;)8)5G;D* -.G)

&'()I13$7%43J)'<K>$%)L&I'M* ,.G)))LN.-+.-6M)

&$;<:3)=:"77417)/0:0%*

&$;<:3)=:"77417)!">$:* )

8$%90#:+'+%;&#',-$')%01&#'C''3' 'DE6<

<%0# 4+%$+'4=>#'?:+@ A:/'4=>#'?:+@ 5$#% B'-,'+-+%&'5$#%

18S 1,309 1,449 88.8 3.0

28S 2,853 3,379 74.8 2.6

QC@'))B)&'(@(&&(C)D

!"#$%&&'(#)*&+)',-$')%01&#'F''3' 'GH6<

&'()(%$"* 5E6-,.6)

&'()/012$13%"3401* FRF)1789:

%&'()&"340)B+G;)8)5G;D* 5.P)

&'()I13$7%43J)'<K>$%)L&I'M* ,.R)))LN.-+.-6M)

&$;<:3)=:"77417)/0:0%*

&$;<:3)=:"77417)!">$:* )

8$%90#:+'+%;&#',-$')%01&#'F''3' 'GH6<

<%0# 4+%$+'4=>#'?:+@ A:/'4=>#'?:+@ 5$#% B'-,'+-+%&'5$#%

18S 1,646 1,766 28.4 1.9

28S 3,622 4,176 46.1 3.1

+5--)$ST$%3)LN.-+.-6.?I,P-M U)/0TJ%47V3)+--,@+--R)(74:$13)A$2V10:074$;E)I12. W%413$#* H8++8+--G)5*-G*5F)WO

C2II'#J1#$+KA*L%$M-+#7-+%&'(<5'<%:-KNAOCPIQRQPKCIIR6IQ6CCK2C6QI62STJ%/ W"7$ 0XH 5-

/%$"3$#*
O0#4X4$#*

H8++8+--G)5+*H-*5P)WO
H8++8+--G)5*-H*-F)WOY"3")W"3V*

Z<["%J03$A03":)&'()'"10
/*\...]Z<["%J03$A03":)&'()'"10]YZR+F-HGHF]+--G@-H@++]5+@H-@5P.S"#

(;;"J)/:";;*

A&#U+$-1V#$-9$%0'4*00%$M

!"#

!"#$%&&'(#)*&+)',-$')%./&#'0''1' '234

$%&'&()*+ ,-./01.'

$%&'2345)46(*6734+ /-089'4:;<=

($%&'$*673'>.?@';'/?@A+ /1/'

$%&'B46):(76C'%DEF)('G$B%H+ I10'''GJ1K.1K0H'

$)@D=6'L=*::74:'23=3(+

$)@D=6'L=*::74:'M*F)=+ $B%+'I10K'

5$%6.#7+'+%8&#',-$')%./&#'0''1' '234

9%.# 3+%$+'3:;#'<7+= >7?'3:;#'<7+= @$#% A'-,'+-+%&'@$#%

18S 1,518 1,849 335.3 10.4

28S 3,265 4,073 361.1 11.2

$N

!"#$%&&'(#)*&+)',-$')%./&#'B''1' '(C

$%&'&()*+ .-9.,1?'

$%&'2345)46(*6734+ /-/?8'4:;<=

($%&'$*673'>.?@';'/?@A+ /1/'

$%&'B46):(76C'%DEF)('G$B%H+ 81,'''GJ1K.1K0H'

$)@D=6'L=*::74:'23=3(+

$)@D=6'L=*::74:'M*F)=+ $B%+'81,K'

5$%6.#7+'+%8&#',-$')%./&#'B''1' '(C

9%.# 3+%$+'3:;#'<7+= >7?'3:;#'<7+= @$#% A'-,'+-+%&'@$#%

18S 1,521 1,930 356.2 14.7

28S 3,267 4,049 382.6 15.8

N*O

!"#$%&&'(#)*&+)',-$')%./&#'D''1' 'C%E

$%&'&()*+ 9-KI01K'

$%&'2345)46(*6734+ /-PPK'4:;<=

($%&'$*673'>.?@';'/?@A+ /1.'

$%&'B46):(76C'%DEF)('G$B%H+ ?1P'''GJ1K.1K0H'

$)@D=6'L=*::74:'23=3(+

$)@D=6'L=*::74:'M*F)=+ $B%+'?1PK'

5$%6.#7+'+%8&#',-$')%./&#'D''1' 'C%E

9%.# 3+%$+'3:;#'<7+= >7?'3:;#'<7+= @$#% A'-,'+-+%&'@$#%

18S 1,543 1,974 924.8 22.8

28S 3,239 4,165 1,150.2 28.3

NQ

!"#$%&&'(#)*&+)',-$')%./&#'F''1' 'CG

$%&'&()*+ /9-K091K'

$%&'2345)46(*6734+ I-??.'4:;<=

($%&'$*673'>.?@';'/?@A+ /1/'

$%&'B46):(76C'%DEF)('G$B%H+ ?1K'''GJ1K.1K0H'

$)@D=6'L=*::74:'23=3(+

$)@D=6'L=*::74:'M*F)=+ $B%+?'

5$%6.#7+'+%8&#',-$')%./&#'F''1' 'CG

9%.# 3+%$+'3:;#'<7+= >7?'3:;#'<7+= @$#% A'-,'+-+%&'@$#%

18S 1,546 1,825 978.0 7.0

28S 3,194 4,065 1,123.1 8.0

./KK')RS)(6'GJ1K.1K01"B,IKH T'23SC(7:U6'.KK,V.KK8'&:7=)46'#)5U43=3:7)@-'B451 W(746)X+ 0;?;.KK?'/.+0I+.?'W!

HIJJ'#K/#$+L>*M%$N-+#4-+%&'(9@'9%7-LO>FHPJ0Q0PLHJJQRJBRJQLIIRSHRHITK%? W*:) 3Y0 /K

2()*6)X+
!3X7Y7)X+

0;?;.KK?'//+,.+./'&!
0;?;.KK?'//+0I+..'&!Z*6*'W*6U+

[D\*(C36)#36*='$%&'%*43
2+]111^[D\*(C36)#36*='$%&'%*43^Z[8.PK9?9P^.KK?VK0VK?^//V,.V./1R*X

&@@*C'2=*@@+

>&#U+$-/V#$-6$%.'3*..%$N'W-7+:7*#?'TTT

Figure A.4: Agilent Bioanalyzer plots of RNA samples with low quality. These
samples were not included in microarray experiments
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Figure A.5: MA-plots of tissues
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a b s t r a c t

Cellular senescence is a process leading to terminal growth arrest with characteristic mor-
phological features. This process is mediated by telomere-dependent, oncogene-induced
and ROS-induced pathways, but persistent DNA damage is the most common cause. Senes-
cence arrest is mediated by p16INK4a- and p21Cip1-dependent pathways both leading to ret-
inoblastoma protein (pRb) activation. p53 plays a relay role between DNA damage sensing
and p21Cip1 activation. pRb arrests the cell cycle by recruiting proliferation genes to facul-
tative heterochromatin for permanent silencing. Replicative senescence that occurs in
hepatocytes in culture and in liver cirrhosis is associated with lack of telomerase activity
and results in telomere shortening. Hepatocellular carcinoma (HCC) cells display inactivat-
ing mutations of p53 and epigenetic silencing of p16INK4a. Moreover, they re-express telo-
merase reverse transcriptase required for telomere maintenance. Thus, senescence bypass
and cellular immortality is likely to contribute significantly to HCC development. Onco-
gene-induced senescence in premalignant lesions and reversible immortality of cancer
cells including HCC offer new potentials for tumor prevention and treatment.

! 2008 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Senescence is an evolutionary term meaning ‘‘the pro-
cess of becoming old”; the phase from full maturity to
death characterized by accumulation of metabolic prod-
ucts and decreased probability of reproduction or survival
[1]. The term ‘‘cellular senescence” was initially used by
Hayflick and colleagues to define cells that ceased to divide
in culture [2]. Today, cellular senescence is recognized as a
response of proliferating somatic cells to stress and dam-
age from exogenous and endogenous sources. It is charac-
terized by permanent cell cycle arrest. Senescent cells also
display altered morphology and an altered pattern of gene
expression, and can be recognized by the presence of

senescence markers such as senescence-associated
b-galactosidase (SABG), p16INK4A, senescence-associated
DNA-damage foci and senescence-associated heterochro-
matin foci (for a review see Ref. [3]). This cellular response
has both beneficial (anti-cancer) and probably deleterious
(such as tissue aging) effects on the organism. Most of
our knowledge of cellular senescence is derived from
in vitro studies performed with fibroblasts, and some epi-
thelial cells such as mammary epithelial cells. Animal
models are increasingly being used to study cellular senes-
cence in vivo. Telomerase-deficient mouse models lacking
RNA subunit (TERC!/!) have been very useful in demon-
strating the critical role of telomeres in organ aging and tu-
mor susceptibility [4]. Other mouse models including
tumor suppressor gene-deficient and oncogene-expressing
mice were also used extensively.

Compared to other tissues and cancer models, the role
of senescence in liver cells and its implications in hepato-
cellular carcinogenesis have been less explored. One of
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the main obstacles is the lack of adequate in vitro systems.
As hepatocytes can not divide in cell culture, the study of
their replicative senescence mechanisms is not easy. Nev-
ertheless, these cells are able to quit their quiescent state
in vivo and proliferate massively in response to partial
hepatectomy or liver injury [5]. This capacity can be ex-
plored to study in vivo senescence of hepatocytes using ro-
dent models. Studies with clinical samples indicate that
hepatocyte senescence occurs in vivo in patients with
chronic hepatitis, cirrhosis and HCC [6–8]. In contrast to
the paucity of studies directly addressing cellular senes-
cence, the critical role of telomere shortening (as a feature
associated with replicative senescence) in cirrhosis and
HCC development is well established [9]. Telomeres in nor-
mal liver show a consistent but slow shortening during
aging. In contrast, hepatocyte DNA telomere shortening is
accelerated in patients with chronic liver disease with
shortest telomeres described in cirrhotic liver and HCC.
Telomerase-deficient mice have also been used elegantly
to demonstrate the critical roles of telomerase and telo-
meres in liver regeneration and experimentally induced
cirrhosis [10,11]. A major accomplishment in recent years
was the demonstration of critical role played by senes-
cence for the clearance of ras-induced murine liver carci-
nomas following p53 restoration [12].

Despite a relatively important progress, the mecha-
nisms of hepatocellular senescence and the role of cellular
immortality in HCC remain ill-known issues. As one of the
rare tissues with ample clinical data on senescence-related
aberrations, liver may serve as an excellent model to fur-
ther explore the relevance of cellular senescence in human
biology. Moreover, a better understanding of senescence
and immortality in hepatic tissues may help to develop
new preventive and therapeutic approaches for severe li-
ver diseases such as cirrhosis and HCC. Here we will review
recent progress on senescence and immortality mecha-
nisms with a specific emphasis on hepatocellular
carcinogenesis.

2. Senescence pathways

Cellular senescence has long been considered as a
mechanism that limits the number of cell divisions (or
population doublings) in response to progressive telomere
shortening. Most human somatic cells are telomerase-defi-
cient because of the repression of telomerase reverse
transcriptase (TERT) expression. Therefore, proliferating
somatic cells undergo progressive telomere DNA erosion
as a function of their number of cell divisions. This form
of senescence is now called as replicative or telomere-
dependent senescence (Fig. 1).

Human chromosome telomere ends are composed of
TTAGGG repeats (5–20 kb) in a DNA-protein complex
formed by six telomere-specific proteins, called ‘‘shelterin”
[13]. Telomeric DNA has a structure called ‘‘t-loop” which
is formed as a result of invasion of the single stranded G-
rich sequence into the double-stranded telomeric tract.
Since the 1930s, it has been known that telomeres, with
telomere-binding proteins, prevent genomic instability
and the loss of essential genetic information by ‘‘capping”

chromosome ends. They are also indispensable for proper
recombination and chromosomal segregation during cell
division. Telomeres become shorter with every cell divi-
sion in somatic cells, because of replication complex’s
inability to copy the ends of linear DNA, which also makes
them a ‘‘cell cycle counter” for the cell [14]. Telomeres are
added to the end of chromosomes with a complex contain-
ing the RNA template TERC and the reverse transcriptase
TERT [15]. Most somatic cells lack telomerase activity be-
cause the expression of TERT is repressed, in contrast to
TERC expression. The lack of sufficient TERT expression in
somatic cells is the main cause of telomere shortening dur-
ing cell replication. This telomerase activity also helps to
maintain telomere integrity by telomere capping [15].

The loss of telomeres has long been considered to be the
critical signal for senescence induction. It is now well
known that telomere-dependent senescence is induced
by a change in the protected status of shortened telomeres,
whereby the loss of telomere DNA contributes to this
change [16]. The loss of telomere protection or any other
cause of telomere dysfunction results in inappropriate
chromosomal end-to-end fusions through non-homolo-
gous end joining or homologous recombination DNA repair
pathways [17]. These DNA repair pathways are used prin-
cipally to repair double-strand DNA breaks (DSBs). Thus, it
is highly likely that the open-ended telomere DNA is
sensed as a DSB by the cell machinery when telomere
structure becomes dysfunctional. Accordingly, dysfunc-
tional telomeres elicit a potent DSB type DNA damage re-
sponse by recruiting phosphorylated H2AX, 53BP1, NBS1
and MDC1 [18].

Telomere-dependent senescence is not the only form of
senescence. At least two other forms of telomere-indepen-
dent senescence are presently known: (1) oncogene-in-
duced senescence; and (2) reactive oxygen species (ROS)-
induced senescence (Fig. 1).

Oncogene-induced senescence had initially been identi-
fied as a response to expression of Ras oncogene in normal
cells ([19], for a recent review see [20]). The expression of
oncogenic Ras in primary human or rodent cells results in
permanent G1 arrest. The arrest was accompanied by accu-
mulation of p53 and p16INK4a, and was phenotypically
indistinguishable from cellular senescence. This landmark
observation suggested that the onset of cellular senescence
does not simply reflect the accumulation of cell divisions,
but can be prematurely activated in response to an onco-
genic stimulus [19]. In 10 years following this important
discovery, telomere-independent forms of senescence have
become a new focus of extensive research leading to the
recognition of senescence as a common form of stress re-
sponse. Moreover, oncogene-induced senescence is now
recognized as a novel mechanism contributing to the ces-
sation of growth of premalignant or benign neoplasms to
prevent malignant cancer development [21]. In addition
to Ras, other oncogenes including Raf, Mos, Mek, Myc
and Cyclin E also induce senescence [20]. Conversely, the
loss of PTEN tumor suppressor gene also leads to senes-
cence [22]. Similar to telomere-dependent senescence,
oncogene-induced senescence is also primarily a DNA
damage response (Fig. 1). Experimental inactivation of
DNA damage response abrogates Ras-induced senescence
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and promotes cell transformation. DNA damage response
and oncogene-induced senescence are established follow-
ing DNA hyper-replication immediately after oncogene
expression. Senescent cells arrest with partly replicated
DNA, where DNA replication origins have fired multiple
times, prematurely terminated DNA replication forks and
DNA double-strand breaks are present [23,24].

ROS-induced senescence, the other telomere-indepen-
dent senescence pathway is gaining importance (for a re-
cent review see Ref. [25]). Mitochondria are the major
intracellular sources of ROS which are mainly generated
at the respiratory chain. Therefore, ROS have been sus-
pected for many years as cellular metabolites involved in
organismal aging [26]. ROS are also generated in the cyto-
plasm by the NOX family of enzymes [27]. Experimental
induction of ROS accumulation in cells (for example by
mild H2O2 treatment or glutathione depletion) induces
senescence-like growth arrest in different cell types,
whereas anti-oxidant treatment can inhibit senescence
[25]. More importantly, ROS have been identified as critical
mediators of both telomere-dependent and oncogene-in-
duced senescence. Telomere-dependent senescence arrest

is accelerated in cells grown under high O2 conditions. In-
versely, cells grown under low O2 conditions display in-
creased lifespan ([28], see Ref. [25]). ROS also play a
critical role in Ras-induced senescence [29,30].

Currently, mechanisms of ROS-induced senescence are
not fully understood. It is generally accepted that oxidative
stress and ROS eventually cause DNA damage, whereby
DNA damage response may contribute to senescence
induction. The relationship between mitochondrial dys-
function, ROS, DNA damage and telomere-dependent
senescence has recently been demonstrated [31]. However,
ROS may also induce modifications in the cellular signaling
pathways resulting in senescence arrest. For example, ROS
induce senescence in hematopoietic stem cells by activat-
ing p38 MAPK [32].

Whether induced by telomere dysfunction, DNA repli-
cation stress following oncogene activation, or ROS accu-
mulation, DNA damage is one of the common steps in
the generation of senescence arrest via p53 activation
(Fig. 1). Upstream checkpoint kinases, such as ATM or
ATR are activated in response to DNA damage in the form
of double-stand breaks. These kinases phosphorylate
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Fig. 1. DNA damage and p53 activation play a central role in different senescence pathways. DNA damage (often in the form of double-strand breaks)
activate upstream kinases (ATM and ATR) leading to p53 phosphorylation by CHK1 and CHK2 kinases. Phosphoryated p53 is released from MDM, and
stabilized in order to induce senescence arrest or apoptosis (not shown here).
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downstream factors including CHK1 and CHK2 that in turn
phosphorylate p53. Phosphorylation of p53 results in its
activation by the displacement of the MDM2 protein. Crit-
ical involvement of this p53 activating pathway has been
reported for both telomere-dependent [33], and onco-
gene-induced senescence [34].

Other mechanisms of senescence that are apparently
not driven by DNA damage should also be discussed here.
Of particular interest is the INK4 locus encoding two inhib-
itors of cyclin-dependent kinases (p16INK4a, p15INK4b), and
ARF, a p53 regulatory protein (for a review see Ref. [35]).
p16INK4a and p15INK4b connect some senescent initiating
signals to the retinoblastoma (Rb) pathway, independent
of p53 activation. These proteins are easily activated in cell
culture and induce senescence arrest. Cells that escape
senescence often display inactivation of p16INK4a, and
sometimes p15INKb and ARF either by homozygous deletion
or by shutting-down gene expression. A prominent role for
p16INK4a in senescence and tumor suppression in humans
has emerged, despite some confusion due to the fact that
a relatively small DNA segment encodes the 3 proteins of
the INK4 locus. p16INK4a is activated during telomere-
dependent and oncogene-induced senescence [19,36].
Moreover, its expression is induced in aging tissues [37].
The mechanisms of regulation of p16INK4a expression are
not well known. Although individual components of INK4
locus can respond independently to positively – (for exam-
ple to Ras) or negatively – (for example c-Myc) acting sig-
nals, the entire INK4 locus might be coordinately regulated
by epigenetic mechanisms (reviewed in Ref. [35]).

A very recent addition to the list of senescence mecha-
nisms is to be qualified as ‘‘senescence induced by secreted
proteins”. It was reported many years ago that TGF-b is a
mediator of oncogene-induced senescence [38]. This
mechanism of induction is of particular interest, because
it suggests that not only intrinsic cellular factors, but also
extracellular or secreted proteins can induce senescence.
Recent discovery of several other secreted proteins, includ-
ing IGFBP7 and IL6 as autocrine/paracrine mediators of
oncogene-induced senescence arrest, provide strong sup-
port for an extracellularly induced form of senescence
[39–41]. This new form of senescence regulation is remi-
niscent of the so called active apoptosis induction by death
ligands. Thus, an active form of cellular senescence in-
duced by ‘‘aging ligands” could be a major physiological
regulator of tissue/organism aging.

3. Cyclin-dependent inhibitors as commonmediators of
senescence arrest

We have already stated that senescence and apoptosis
share interesting similarities. Another similarity between
these cellular processes is the convergence of different
pathways in a common place to induce the same cell fate,
independent of the initial signal. Similarly to caspase acti-
vation, prior to apoptosis induction by different stimuli,
most if not all senescence pathways result in the activation
of cyclin-dependent kinase inhibitors (CDKIs) in order to
induce permanent cell cycle arrest. Senescent cells accu-
mulate at G1 phase of the cell cycle due to an inability to

enter into S phase in order to initiate DNA synthesis. The
transition of proliferating cells from G1 to S phase requires
the release of E2F factors from their inhibitory partner ret-
inoblastoma protein (pRb) following phosphorylation by
cyclin-dependent kinases (CDKs), in particular by CDK4/
CDK6 and CDK2 at this stage of the cycle [35]. The senes-
cence arrest is mediated by inhibition of pRb phosphoryla-
tion by CDK4 and CDK2. The activities of these enzymes are
controlled by different mechanisms, but the major proteins
involved in the control of senescence arrest are CDKIs. Al-
most all known CDKIs have been reported to be implicated
in senescence arrest, but three of them are best character-
ized: p16INK4a and p15INK4b which inhibit CDK4/CDK6, and
p21Cip1 which inhibits CDK2 (Fig. 2).

p21Cip1 is one of the main targets of p53 for the induc-
tion of cell cycle arrest following DNA damage [42]. Path-
ways that generate DNA damage response and p53
activation use p21Cip1 as a major mediator of cellular
senescence to control pRb protein [43]. Exceptionally,
p21Cip1 can be activated by p53-independent pathways to
induce senescence [44].

The Rb protein plays two important and complemen-
tary roles that are necessary to initiate and to permanently
maintain the cell cycle arrest in senescent cells. pRb pro-
teins firstly contribute to the exit from the cell cycle by
arresting cells at G1 phase, as expected [45]. In senescent
cells, this exit is complemented with a dramatic remodel-
ing of chromatin through the formation of domains of fac-
ultative heterochromatin called SAHF [46–48]. SAHF
contain modifications and associated proteins characteris-
tic of transcriptionally silent heterochromatin. Prolifera-
tion-promoting genes, such as E2F target genes are
recruited into SAHF in a pRb protein-dependent manner.
This recruitment is believed to contribute to irreversible
silencing of these proliferation-promoting genes [49].

4. Senescence of hepatocytes and chronic liver disease

Hepatocytes in the adult liver are quiescent cells, they
are renewed slowly, approximately once a year, as esti-
mated by telomere loss which is 50–120 bp per year in
healthy individuals [50,51]. However, the liver has an ex-
tremely powerful regenerative capacity, as demonstrated
experimentally in rodents, and as observed in patients
with chronic liver diseases [5]. This regenerative capacity
is due mostly to the ability of mature hepatocytes to prolif-
erate in response to a diminution of total liver mass either
experimentally, or following exposure to viral and non vir-
al hepatotoxic agents. In addition, the adult liver seems to
harbor hepatocyte-progenitor cells (<0.10% of total hepato-
cyte mass) that are able to restore liver hepatocyte popula-
tions [52]. However, hepatocytes, like any other somatic
cells, do not have unlimited replicative capacity, due to
the lack of telomerase activity that is needed to avoid telo-
mere shortening during successive cell divisions. This is
best exemplified by decreased hepatocyte proliferation in
liver cirrhosis stage of chronic liver diseases [53], providing
in vivo evidence for the exhaustion of hepatocyte prolifer-
ation capacity. Senescence mechanisms in hepatocytes and
in liver tissue are not well known. However, a limited
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number of in vitro studies with hepatocytes, as well as
numerous descriptive in vivo studies in liver tissue provide
sufficient evidence that hepatocytes can undergo senes-
cence type changes.

In vitro senescence in hepatocytes: as stated earlier,
limited proliferative capacity of somatic cells is controlled
by replicative senescence. The experimental study of repli-
cative senescence is done traditionally by serial culture of
primary cells. Initially observed in fibroblasts, this phe-
nomenon has also been well understood in some epithelial
cells, mammary epithelial cells in particular [54]. On the
other hand, our knowledge of hepatocyte replicative senes-
cence is highly limited. In contrast to in vivo conditions,
mature hepatocytes are extremely resistant to cell prolifer-
ation in cell culture. Usually, more than 99.9% of adult liver
hepatocytes do not divide and can only be maintained in
culture for a few weeks at most. A small progenitor-type
cell population (so called small hepatocytes) has been
shown to proliferate in vitro, but they usually stop growing
at passages 5–7, with an ill-defined senescence-like pheno-
type [55].

Fetal hepatocytes display better proliferation capacity
in culture. A few studies have shown that these fetal cells
enter replicative senescence, as shown by senescence-
associated b-galactosidase assay (SABG) at population dou-
bling (PD) 30–35 [55]. This is accompanied by progressive
shortening of telomeres down to !6 kbp, as these cells like
adult hepatocytes lack telomerase activity. However, it was
possible to immortalize these fetal hepatocytes by stable

expression of TERT [55]. Such immortalized cells have been
expanded beyond known senescence barriers (>300 PD).

In vivo senescence in liver tissue: in contrast to in vitro
studies, in vivo senescence of human hepatocytes is better
known. Indeed, the liver is one of the rare tissues where
in vivo evidence for senescence has been convincingly
and independently demonstrated by different investigators
[6–9]. Replicative senescence (as tested by SABG assay)
displayed a gradual increase from 10% in normal liver, to
84% in cirrhosis ([6,7]. It was also detected in 60% HCCs
[6]. It has also been demonstrated that telomere shorten-
ing in cirrhosis is restricted to hepatocytes and this hepa-
tocyte-specific shortening was correlated with SABG
staining [7].

Potential mechanisms of senescence in hepatocytes and
the liver: as presented in detail in the previous section,
multiple pathways of senescence have been described in
different experimental systems. Key molecules that are al-
ready involved in senescence arrest have also been sum-
marized. The published data on different senescence
pathways in the liver is fragmented and control mecha-
nisms involved in hepatocyte senescence are not com-
pletely understood. Therefore, existing data on
hepatocellular senescence together with potential mecha-
nisms that may be involved in this process will be
presented.

For reasons previously described, almost nothing is
known about molecular mechanisms involved in replica-
tive senescence and immortalization of hepatocytes in cul-
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Fig. 2. All known senescence pathways converge at the level of activation of CDKIs (p15INK4b, p16INK4a and p21Cip1) that keep the pRb protein under the
active form. The pRb protein inhibits E2F action and prevents the expression of growth-promoting genes for cell cycle exit. Furthermore, pRb recruits
growth-promoting genes into a facultative chromatin structure for permanent silencing and growth arrest.
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ture. There are only a few demonstrations of hepatocyte
immortalization in vitro. Thus, ectopically expressed TERT
may induce hepatocyte immortalization. However, as the
published data using TERT immortalization is scarce, it is
highly likely that the immortalization of hepatocytes is
not an easy task even with a well-established protocol that
works with other epithelial cell types such as mammary
epithelial cells. The mechanisms of in vitro senescence
induction in hepatocytes are also mostly unknown. Rapid
induction of a senescence arrest in cultured hepatocytes
suggests that these cells display robust telomere-indepen-
dent senescence-inducing systems that are functional
in vitro. However, they remain to be discovered. It is highly
likely that, similar to other somatic cells, p53 and RB path-
ways in general, and some CDKIs in particular are also in-
volved in hepatocyte senescence, but the evidence is
lacking for the time being.

Telomere shortening during aging is slow (55–120 base
pairs per year) and stabilizes at mid age in healthy liver, so
that the loss of telomeric DNA does not reach a level to in-
duce telomere dysfunction and DNA damage response
[50,51]. Other forms of telomere-independent senescence
such as ROS-induced senescence may also be rare under
normal physiological conditions. On the other hand, telo-
mere loss is accelerated in chronic liver disease to reach
lowest levels in the cirrhotic liver [7,51]. Therefore, one
plausible mechanism involved in cirrhosis is probably telo-
mere-dependent senescence, or replicative senescence.
The relevance of replicative senescence to liver tissue aging
has been demonstrated experimentally using telomerase-
deficient mice. Late generation telomerase-deficient mice
display critically shortened telomeres and an impaired li-
ver growth response to partial hepatectomy. A subpopula-
tion of telomere-shortened hepatic cells displayed
impaired proliferative capacity that is associated with
SABG activity [11,56]. On the other hand, it has been re-
ported that mouse liver cells are highly resistant to exten-
sive telomere dysfunction. Conditional deletion of the
telomeric protein TRF2 in hepatocytes resulted in telomer-
ic accumulation of phospho-H2AX and frequent telomere
fusions, indicating loss of telomere protection. However,
there was no induction of p53 and liver function appeared
unaffected. The loss of TRF2 did not compromise liver
regeneration after partial hepatectomy. Liver regeneration
occurred without cell division involving endoreduplication
and cell growth, thereby circumventing the chromosome
segregation problems associated with telomere fusions.
Thus, it appears that hepatocytes display intrinsic resis-
tance to telomere dysfunction, although they are appar-
ently vulnerable to severe telomere loss [57].

Hepatocyte senescence that is observed in severe
chronic liver diseases such as cirrhosis may also be induced
by telomere-independent pathways. Chronic liver injury
observed under such conditions is accompanied with
inflammation, cell death, and oxidative stress [58–60].
Some of the etiological factors such as HCV and alcohol in-
duce mitochondrial dysfunction may result in ROS accu-
mulation [61,62]. Thus, ROS-induced senescence may also
occur during cirrhosis, although this has not yet been re-
ported. The status of DNA damage in chronic liver disease
is less well-known. 8-Hydroxydeoxyguanosine, an indica-

tor of DNA lesions produced by ROS, was reported to be in-
creased in chronic liver disease [63]. On the other hand, the
upregulation of DNA repair enzymes in cirrhosis has also
been reported [64]. Increased DNA repair activity in cirrho-
sis which may reflect increased DNA damages as a conse-
quence of chronic liver injury, but also inhibition of DNA
damage responses such as senescence were observed. Ta-
ken together, these observations suggest that the primary
cause of senescence in cirrhotic patients is telomere dys-
function and that ROS may also play additional roles.

Among senescence-related proteins, p16INK4a and
p21Cip1 expression was found to be high in cirrhosis, as
compared to normal liver and tumor tissues [65], suggest-
ing that these major senescence-inducing proteins accu-
mulate in the cirrhotic liver. Promoter methylation of
these CDKIs was also studied. Chronic liver disease sam-
ples displayed lower levels of methylation as compared
to HCCs [66]. Thus, the progression of chronic liver disease
towards cirrhosis is accompanied with a progressive acti-
vation of different CDKIs, as expected.

5. Senescence pathway aberrations and telomerase
reactivation in hepatocellular carcinoma

As stated earlier, p53 and retinoblastoma (Rb) pathways
play a critical role in senescence arrest as observed in dif-
ferent in vitro and in vivo models. Indirect evidence sug-
gests that these pathways may also be important in
hepatocellular senescence. The accumulation of p21 and
p16 in cirrhotic liver tissues has been reported indepen-
dently by different reports. On the other hand, HCC rarely
develops in liver tissues absent of chronic liver disease.
More than 80% of these cancers are observed in patients
with cirrhosis [9]. As the appearance of proliferating malig-
nant cells from this senescence stage requires the bypass of
senescence, the status of both p53 and RB pathways in HCC
is of great importance in terms of molecular aspects of
hepatocellular carcinogenesis.

HCC is one of the major tumors displaying frequent p53
mutations [67,68]. The overall p53 mutation frequency in
HCC is around 30%. Both the frequency and the spectrum
of p53 mutations show great variations between tumors
from different geographical areas of the World. A hotspot
mutation (codon 249 AGG? AGT) has been linked to
exposure to aflatoxins which are known to be potent
DNA damaging agents (for a review see Ref. [67]).
Although, it is unknown whether aflatoxins are able to
generate a DNA damage-dependent senescence response
in hepatocytes, their association with DNA damage and
p53 mutation provides indirect evidence for such an abil-
ity. Other p53 mutations described in HCCs from low afla-
toxin areas may similarly be correlated with other DNA
damaging agents, such as ROS which are known to accu-
mulate in the livers of patients with chronic liver diseases,
including cirrhosis.

Another player of senescence arrest, the p16 gene is
rarely mutated in HCC, but its epigenetic silencing by pro-
moter methylation is highly frequent in this cancer. More
than 50% of HCCs display de novo methylation of the pro-
moter of CDKN2A gene, encoding p16 protein, resulting in
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loss of gene expression [67]. Major components of p53 and
Rb pathways in the same set of HCCs with different etiolo-
gies have been analyzed [69]. Retinoblastoma pathway
alterations (p16 INK4a, p15INK4b or RB1 genes) were present
in 83% of HCCs, whereas p53 pathway alterations (p53 or
ARF genes) were detected in only 31% of tumors. Altera-
tions in both Rb and p53 pathways were present in 30%
of HCCs. Thus, it appears that either the Rb and/or the
p53 pathway are affected in the great majority of HCCs,
and that both pathways are affected in at least one third
of these tumors. Unfortunately, p53 and p16INK4a aberra-
tions observed in HCC have not yet been studied in relation
to senescence aberrations. However, these observations
provide supporting evidence on the critical role of senes-
cence-controlling pathways in the development of HCC.

The lack of telomerase activity in normal and cirrhotic
liver correlates with progressive loss of telomere
sequences ending up with a senescence arrest. The
emergence of malignant hepatocytes from this senes-
cence-dominated cirrhotic milieu would require not only
the bypass of senescence, but also a way of survival despite
critically shortened telomeres. Additionally, the prolifera-
tive expansion of neoplastic cells in order to form
sustained tumor masses would require telomeres at a min-
imal length required to maintain intact chromosomal
structures.

Many studies showed that telomerase activity is a hall-
mark of all human cancers, including 80–90% of HCCs
[70–72]. It is currently unclear how the TERT expression
is repressed and released in normal hepatocytes and HCC
cells, respectively. The integration of HBV DNA sequences
into TERT gene provides evidence for a virus-induced
deregulation of TERT expression, but this appears to rarely
occur, as only four cases have been reported thus far [73–
75]. Hbx and PreS2 proteins may upregulate TERT expres-
sion [76,77]. The molecular mechanisms involved in TERT
suppression in somatic cells and its reactivation in cancer
cells are ill-known. The TERT promoter displays binding
sites for a dozen of transcriptional regulators: estrogen
receptor, Sp1, Myc and ER81 acting positively, and vitamin
D receptor, MZF-2, WT1, Mad, E2F1 and SMAD interacting
protein-1 (SIP1, also called ZEB-2 or ZFHX1B) acting nega-
tively [78]. Despite high telomerase activity, telomeres in
HCC were repeatedly found to be highly shortened
[65,79,80]. However, 30 telomere overhangs were found
to be increased in nearly 40% HCCs [80]. Moreover, the
expression of several telomeric proteins is increased in
HCC [80,81].

Another ill-known aspect of TERT activity in HCC cells is
the cellular origin of these malignant cells. It is presently
unclear whether HCC arises from mature hepatocytes
which lack telomerase activity, or stem/progenitor cell-like
cells that may already express TERT at sufficient levels to
maintain telomere integrity. In the non-tumor area sur-
rounding the cancer tissue, telomerase activity could not
be detected, or was detected at very low levels.

The importance of telomerase activity in HCC
development has been studied experimentally using telo-
merase-deficient mouse model. These mice show in-
creased susceptibility to adenoma development (tumor
initiation), but they are quite resistant to fully malignant

tumor development [82]. Likewise, telomerase deletion
limits the progression of p53-mutant HCCs with short telo-
meres [83]. These observations suggest that the aberra-
tions affecting telomerase activity and senescence
controlling genes such as p53 may cooperate during hepa-
tocellular carcinogenesis.

In summary, HCC is characterized by mutational inacti-
vation of p53, a major player in DNA damage-induced
senescence. In addition, p15INK4b, p16INK4a, p21Cip1 CDKIs
are often inactivated in this cancer mostly by epigenetic
mechanisms involving promoter methylation. These
changes may play a critical role in the bypass of senescence
that is observed in most cirrhosis cases, allowing some ini-
tiated cells to escape senescence control and proliferate. In
the absence of telomerase activity such cells would proba-
bly not survive due to telomere loss. However, since more
than 80% of HCCs display telomerase activity, it is highly
likely that the telomerase reactivation, together with the
inactivation of major CDKIs, plays a critical role in HCC
development by conferring premalignant or malignant
cells the ability to proliferate indefinitely (Fig. 3). However,
cellular immortality is not sufficient for full malignancy
[84]. Thus, senescence-related aberrations that are ob-
served in HCC cells, may confer a partial survival advan-
tage that would need to be complemented by other
genetic or epigenetic alterations.

6. Senescence as an anti-tumor mechanism in
hepatocellular carcinoma

Senescence in normal somatic cells and tissues is ex-
pected. How about cancer cells and tumors? Initial studies
using different cancer cell lines provided ample evidence
for the induction of senescence by different genetic as well
as chemical or biological treatments [85]. Thus, it appeared
that cancer cells, immortalized by definition, do have a
hidden senescence program that can be revealed by differ-
ent senescence-inducing stimuli. These studies provided
preliminary evidence for considering senescence induction
as an anti-cancer therapy. The in vivo relevance of these
observations and expectations became evident only very
recently. Senescence was observed in tumors or pre-neo-
plastic lesions. SABG activity as well as several other senes-
cence markers were detected in lung adenomas, but not in
adenocarcinomas observed in oncogenic Ras ‘‘knock-in”
mice [86]. Ras-driven mouse T-cell lymphomas entered
senescence after drug therapy, when apoptosis was
blocked [87]. The first direct evidence of cellular senes-
cence in humans was reported for the melanocytic nevus
[88].

Senescence response of HCC cells was not the subject of
intensive study until very recently. Therefore the potential
role of senescence in these tumors is less well understood.
Treatment of HCC cell lines with 5-aza-2-deoxycytidine in-
duced the expression of p16INK4a, hypophosphorylation of
pRb and G1 arrest associated with positive SABG staining
[89]. Recent findings indicate that senescence induction
is a powerful mechanism of HCC regression. Xue et al. ex-
pressed H-ras oncogene and suppressed endogenous p53
expression in mouse hepatoblasts which produced massive
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HCCs upon implantation into livers of athymic mice [12].
However, these tumors regressed rapidly upon restoration
of p53 expression. Tumor regression was due to differenti-
ation and massive senescence induction, followed by im-
mune-mediated clearance of senescent cells. These
observations may indicate that oncogene-induced senes-
cence is also involved in HCC. On the other hand, HCCs in-
duced by tet-regulated c-Myc activation in mouse liver
cells differentiate into mature hepatocytes and biliary cells
or undergo senescence [90]. Thus, senescence induction
may also be relevant to oncogene inactivation in HCC. In
this regard, c-Myc down-regulation and senescence induc-
tion in several HCC cell lines as a response to TGF-b was
observed (S. Senturk, M. Ozturk, unpublished data).

So far, all the reported examples of senescence induc-
tion in HCC cells are in the form of a telomere-independent
permanent cell cycle arrest. Until recently, it was unknown
whether replicative senescence could also be induced in
immortal cancer cells. Ozturk et al. reported recently that
immortal HCC cells can revert spontaneously to a replica-
tive senescence phenotype [91]. Immortal HCC cells gener-
ated progeny that behaved, in vitro, similar to normal
somatic cells. Such senescence-programmed progeny
lacked telomerase activity due to TERT repression (proba-
bly mediated by SIP1 gene), and displayed progressive
telomere shortening in cell culture, resulting in senescence
arrest. It will be interesting to test whether such spontane-
ous reversal of replicative immortality is involved in well

known tumor dormancy and/or spontaneous tumor
regression.

7. Concluding remarks

Cellular senescence has gained great interest in recent
years following the demonstration that it also occurs
in vivo. It is also highly interesting that senescence can
be mediated by a large number of pathways and mole-
cules, as is the case for apoptosis. Recent findings that
implicate secreted molecules in senescence induction
strongly suggest that cellular senescence is not just a cellu-
lar event, but also a physiologically relevant process for the
whole organism. In terms of tumor biology, oncogene-in-
duced senescence that may serve as anti-tumor mecha-
nism in pre-neoplastic lesions underlines its clinical
relevance. On the other hand, induced or spontaneous
senescence that is observed in cancer cells is promising
to explore new approaches for tumor prevention and treat-
ment. The role of senescence bypass and cellular immortal-
ity in hepatocellular carcinogenesis is not well defined.
But, many findings (inactivation of senescence-mediator
genes such as p53, p16INK4a and p15INK4b, as well as reacti-
vation of TERT) indicate that senescence mechanisms and
their aberrations are critically involved in HCC. We may
expect that this field will attract more attention in coming
years for a better definition of senescence implications in
hepatocellular carcinogenesis.
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Fig. 3. Role of cellular senescence and immortalization in hepatocellular carcinogenesis. Chronic liver injury (triggered by major etiological factors HBV,
HCV and alcohol) leading to cirrhosis is a common cause of HCC. Hepatocytes having no telomerase activity undergo progressive telomere shortening and
DNA damage during this process. Consequently, CDKIs (primarily p16INK4a and p21Cip1) are activated gradually to induce senescence in the preneoplastic
cirrhosis stage. Mutation and expression analyses in HCC strongly suggest that neoplastic cells bypass the senescence barrier by inactivating major
senescence-inducing genes (p53, p16INK4a and p15INK4b). Moreover, they acquire the ability of unlimited proliferation (immortality) by re-expressing the
TERT enzyme. Chromosomal instability that is generated by telomere erosion may contribute to additional mutations necessary for tumor progression.
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Tumor cells have the capacity to proliferate indefinitely that is
qualified as replicative immortality. This ability contrasts with the
intrinsic control of the number of cell divisions in human somatic
tissues by a mechanism called replicative senescence. Replicative
immortality is acquired by inactivation of p53 and p16INK4a genes
and reactivation of hTERT gene expression. It is unknown whether
the cancer cell replicative immortality is reversible. Here, we show
the spontaneous induction of replicative senescence in p53-and
p16INK4a-deficient hepatocellular carcinoma cells. This phenome-
non is characterized with hTERT repression, telomere shortening,
senescence arrest, and tumor suppression. SIP1 gene (ZFHX1B) is
partly responsible for replicative senescence, because short hairpin
RNA-mediated SIP1 inactivation released hTERT repression and
rescued clonal hepatocellular carcinoma cells from senescence
arrest.

immortality ! liver cancer ! SIP1 ! telomerase ! p53

Tumor cells are clonal (1), and tumorigenesis usually requires
three to six independent mutations in the progeny of pre-

cancerous cells (2). For this to occur, preneoplastic somatic cells
would need to breach the replicative senescence barriers. Rep-
licative senescence is a telomere-dependent process that sets a
limit to the successive rounds of cell division in human somatic
cells (3). Progressive telomere shortening is observed in almost
all dividing normal cells. This phenomenon is linked to the lack
of efficient hTERT expression that is observed in most human
somatic cells (3). Replicative senescence (permanent growth
arrest also called M1 stage) is believed to be initiated by a DNA
damage-type signal generated by critically shortened telomeres,
or by the loss of telomere integrity, leading to the activation of
cell cycle checkpoint pathways involving p53, p16INK4a, and"or
retinoblastoma (pRb) proteins (4, 5). In the absence of func-
tional p53 and p16INK4a"pRb pathway responses, telomeres
continue to shorten resulting in crisis (also called M2 stage).
Cells that bypass the M2 stage by reactivating hTERT expression
gain the ability for indefinite cell proliferation, also called
immortality (3, 4, 6). There is accumulating evidence that cancer
cells undergo a similar process during carcinogenesis to acquire
immortality. Telomerase activity associated with hTERT reex-
pression is observed in !80% of human tumors (7), and senes-
cence controlling p53 and p16INK4A genes are commonly inacti-
vated in the majority of human cancers (8). Moreover,
experimental transformation of normal human cells to tumor
cells requires hTERT-mediated immortalization, as well as
inactivation of p53 and pRb genes (9).

Aberrant expression of hTERT, together with the loss of p53
and p16INK4a"pRb control mechanisms, suggests that the repli-
cative immortality is a permanent and irreversible characteristic
of cancer cells. Although some cancer cells may react to extrinsic
factors by a senescence-like stress response, this response is
immediate, telomere-independent, and cannot be qualified as
replicative senescence (10). Experimental inactivation of telom-
erase activity in cancer cells mostly results in cell death (11),
whereas ectopic expression of p53, p16INK4a, or pRb provokes an

immediate senescence-like growth arrest or cell death (10).
Thus, to date there is no experimental evidence for spontaneous
reprogramming of replicative senescence in immortalized cancer
cells. Using hepatocellular carcinoma (HCC)-derived Huh7 cells
as a model system, here we show that cancer cells with replicative
immortality are able to spontaneously generate progeny with
replicative senescence. Thus, we provide preliminary evidence
for the reversibility of cancer cell immortality. The replicative
senescence of cancer cells shares many features with normal cell
replicative senescence such as repression of hTERT expression,
telomere shortening, and permanent growth arrest with mor-
phological hallmarks of senescence. However, the p53 gene is
mutated, whereas p16INK4a promoter is hypermethylated in these
cells. Thus, we show that fully malignant and tumorigenic HCC
cells that display aberrant hTERT expression and lack functional
p53 and p16INK4a genes are able to revert from replicative
immortality to replicative senescence by an intrinsic mechanism.
Furthermore, we demonstrate that the SIP1 gene, encoding a
zinc-finger homeodomain transcription factor protein involved
in TGF-! signaling (12, 13) and hTERT regulation (14), serves
as a molecular switch between replicative immortality and
replicative senescence fates in HCC cells.

Results
When analyzing clones from established cancer cell lines, we
observed that some clones change morphology and cease pro-
liferation at late passages with features reminiscent of cellular
senescence (data not shown). We reasoned that this could be an
indication for generation of progeny programmed for replicative
senescence. We surveyed a panel of HCC and breast carcinoma
cell lines and hTERT-immortalized human mammary epithelial
cells (hTERT-HME). Plated at low clonogenic density, cells
were maintained in culture until they performed 6–10 popula-
tion doublings (PD), and tested for senescence-associated !-
galactosidase (SABG) activity (15). Different cancer cell lines
generated progeny with greatly contrasting SABG staining
patterns. The first group, represented here by HCC-derived
Huh7 and breast cancer-derived T-47D and BT-474 cell lines,
generated heterogeneously staining colonies. Cells of some
colonies were mostly positive for SABG, but others displayed
significantly diminished or complete lack of staining (Fig. 1A).
The second group, represented by HCC-derived Hep3B and
Mahlavu, and hTERT-HME generated only SABG-negative
colonies (Fig. 1B). Manual counting of randomly selected col-
onies demonstrated that mean SABG-labeling indexes for Huh7,
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T-47D and BT-474 progenies were 45 ! 23%, 40 ! 29%, and
33 ! 7%, respectively (Fig. 1C, lanes 1–3). In contrast, Hep3B,
Mahlavu, and hTERT-HME progenies displayed "3 ! 3%
mean SABG-labeling indexes (Fig. 1C, lanes 4–6). Clones from
representative cell lines were expanded and subjected to the
same analysis. SABG-staining patterns of all clones tested were
closely similar to the patterns of their respective parental cell
lines. For example, mean SABG staining indexes of Huh7-
derived clones were 14 ! 15%, 47 ! 27%, and 17 ! 11% (Fig.
1C, lanes 7–9), whereas Hep3B-derived clones generated "2 !
3% SABG-positive progenies (Fig. 1C, lanes 10–12). We spec-
ulated that the first group of cell lines comprised progenies in
different stages of replicative senescence process at the time of
analysis, whereas the second group of cell lines were composed
mostly of immortal cells. The results obtained with the first
group were unexpected. These cell lines have been established
#20 years ago (16–18) and expanded in culture over many years,
with PD well beyond the known senescence barriers for normal
human cells (3), but they were still capable of generating
presumably senescent progeny.

The study of a potentially active replicative senescence pro-
gram in the progeny of immortal cancer cell lines requires the
long-term follow up of single cell-derived clones. To this end, we

chose to focus our investigations on Huh7 cell line. We expanded
different Huh7-derived clones in long-term culture and exam-
ined their potential to undergo replicative senescence. Some
clones performed #100 PD in culture with stable proliferation
rates and heterogeneous SABG staining, whereas others sus-
tained a limited number of PD, then entered a growth arrest
phase with full SABG staining patterns. For example, C3 clone
performed only 80 PD, whereas C1 clone replicated #150 PD.
Permanently arrested C3 cells (PD 80) displayed enlarged size,
f lattened shape, and fully positive SABG staining, whereas early
passage C3 (PD 57) and C1 (PD 179) cells displayed normal
morphology with heterogeneous SABG staining (Fig. 2A Upper).
Normal human cells at replicative senescence (M1) are refrac-
tory to mitotic stimulation and display "5% BrdUrd index (19).
Growth-arrested C3 cells displayed very low BrdUrd staining
(2 ! 2%), in contrast to early passage C3 and late passage C1
cells, which exhibited 89 ! 6%, and 96 ! 3% BrdUrd indexes,
respectively (Fig. 2A Lower). Senescent C3 cells remained
growth arrested, but alive when maintained in culture for at least
3 months, with no emergence of immortal clones (data not
shown).

Biological mechanisms of replicative senescence observed
here are of particular interest, because senescence-regulatory
p53 is inactivated (20–22) and p16INK4a promoter is hypermethy-
lated (23) in Huh7 cells. Accordingly, there was no change in p53
levels, whereas the low level p16INK4a expression did not in-
crease, but decreased in senescent C3 (PD 80) cells, when
compared to presenescent C3 (PD 57) or immortal C1 (PD 179)
cells. Retinoblastoma protein (pRb) displayed partial hypophos-

Fig. 1. Established human cancer cell lines generate senescence-associated
!-galactosidase (SABG)-expressing progeny. (A) Representative pictures of
HCC (Huh7) and breast cancer (T-47D and BT-474) cell lines that generate both
SABG-positive (Upper) and SABG-negative (Lower) colonies. (B) Representa-
tive pictures of HCC (Hep3B and Mahlavu) and telomerase-immortalized
mammary epithelial (hTERT-HME) cell lines that generate only SABG-negative
colonies. Cells were plated at clonogenic density to generate colonies with
6–10 population doublings, and stained for SABG activity (blue), followed by
eosin counterstaining (red). (C) Quantification of SABG-positive cells in colo-
nies. Randomly selected colonies (n " 10) obtained from parental (lanes 1–6)
cell lines and expanded clones (lanes 7–12) were counted to calculate the
average % SABG positive cells per colony (% SABG index). Lanes 1–6 designate
Huh7, T-47D, BT-474, Hep3B, Mahlavu, and hTERT-HME, respectively. Lanes
7–9 are Huh7-derived C1, C3, and C11 clones, and lanes 10–12 are Hep3B-
derived 3B-C6, 3B-C11, and 3B-C13 clones. Error bars indicate SD.

Fig. 2. p53-and p16INK4a-deficient Huh7 cells generate progeny that un-
dergo in vitro and in vivo replicative senescence resulting in loss of tumori-
genicity. (A) Huh7-derived clones C3 and C1 were tested for replicative senes-
cence arrest by SABG and BrdUrd staining at different passages. Presenescent
C3 and immortal C1 cells display low SABG staining (Upper) and high BrdUrd
incorporation (Lower), whereas senescent C3 cells are fully positive for SABG
(Upper) and fail to incorporate BrdUrd into DNA after mitogenic stimuli
(Lower). (B) p53 and p16INK4a protein levels show no increase in senescent C3
cells, compared to presenescent C3 and immortal C1 cells, but senescent C3
cells display partial hypophosphorylation of pRb. Calnexin was used as a
loading control. Proteins were tested by Western blotting. PS, presenescent
(PD 57); S, senescent (PD 80); I, immortal (PD 179). (C) C1 cells (black line) were
fully tumorigenic, but C3 cells (red line) were not in nude mice. (D) C1 tumors
displayed low SABG staining (Upper Right), whereas implanted C3 cells re-
maining at the injection site are fully positive for SABG in situ (Upper Left), as
well as after short-term in vitro selection (Lower). Animals were injected with
presenescent C3 (PD 59) and immortal C1 (PD 119) cells, and tumors and
nontumorigenic cell samples were collected at day 35 and analyzed.
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phorylation in senescent C3 cells, apparently in a p53- and
p16INK4a-independent manner (Fig. 2B). Cyclin E and A levels
were also decreased, but p21cip1 levels were elevated in both
presenescent and senescent C3 cells (Fig. 5A, which is published
as supporting information on the PNAS web site). Cyclin D1,
CDK4, and CDK2 protein levels (Fig. 5A) and p14ARF transcript
levels (Fig. 5B) did not change.

Cancer cell senescence that we characterized here shared
many features with normal cell replicative senescence (3), except
that it was not accompanied with wild-type p53 or p16INK4a

induction. However, in vivo relevance of the replicative senes-
cence observed in cell culture is debated (6). Therefore, we
compared in vivo replicative potentials of C3 (PD 59) and C1
(PD 119) cells in CD-1 nude mice. C3 cells did not form visible
tumors, whereas C1 cells were fully tumorigenic in the same set
of animals (Fig. 2C), like parental Huh7 cells (data not shown;
ref. 24). C1 tumors collected at day 35 displayed scattered but
low-rate SABG-positive staining, but remnant C3 cell masses
collected from their injection sites were fully SABG-positive
(Fig. 2D Upper). For confirmation, these remnants were re-
moved from two different animals, passaged twice in cell culture
for selection, and examined. Nearly all cells displayed senescence
features including enlarged size, f lattened shape, and highly
positive SABG staining (Fig. 2D Lower). We concluded that loss
of C3 tumorigenicity was due to replicative senescence in vivo.

Replicative senescence, also called telomere-dependent se-
nescence is associated with progressive telomere shortening due
to inefficient telomerase activity (3). When compared to paren-
tal Huh7 cells, presenescent C3 cells at PD 57 had telomeres that
have already been shortened to !7 kbp from !12 kbp. These
cells eroded their telomeres to "5 kbp at the onset of senescence.
In contrast, immortal C1 clone (PD 179) telomeres did not
shorten (Fig. 3A). These observations showed a perfect corre-
lation with telomerase activity and hTERT expression. Immortal
C1 cells displayed robust telomerase activity, whereas both
presenescent and senescent C3 cells had no detectable telom-
erase activity (Fig. 3B). Accordingly, the expression of hTERT
gene was high in C1, but barely detectable in C3 cells (Fig. 3C).
Thus, senescence observed with C3 cells was characterized with
the loss of hTERT expression and telomerase activity, associated
with telomere shortening.

Mechanisms of hTERT expression are presently unclear, but
several genes including SIP1, hSIR2, c-myc, Mad1, Menin, Rak,
and Brit1 have been implicated (14, 25). Therefore, we analyzed
their expression in C1 and C3 clones. All tested genes, except
SIP1, were expressed at similar levels in both C1 and C3 clones,
independent of hTERT expression (Fig. 6, which is published as
supporting information on the PNAS web site). SIP1 transcripts
were undetectable in C1 cells, but elevated in C3 cells, moder-
ately in presenescent, but strongly in senescent stages (Fig. 3C).
We verified these findings with another Huh7-derived clone
(G12) that displayed replicative senescence resulting in perma-
nent cell proliferation arrest. Like C3, presenescent G12 cells
that displayed low SABG staining with high BrdUrd index (98 #
1%), became fully positive for SABG, and nearly negative for
BrdUrd (3 # 2%) at the onset of senescence (Fig. 7, which is
published as supporting information on the PNAS web site).
Presenescent G12 cells displayed only a weak hTERT repression
associated with a slight increase in SIP1 expression, whereas
SIP1 was strongly elevated in hTERT-negative senescent cells
(Fig. 3D). Thus, there was a close correlation between SIP1
expression and hTERT repression in all Huh7 clones tested. The
analysis of SIP1 and hTERT expression in primary HCCs and
their corresponding nontumor liver tissues confirmed this rela-
tionship. SIP1 transcript levels were high, but hTERT expression
was low in nontumor liver tissues, whereas respective HCC
tumors displayed diminished SIP1 expression associated with
up-regulated hTERT expression (Fig. 3E).

The SIP1 gene (Zinc finger homeobox 1B; ZFHX1B) en-
codes a transcriptional repressor protein that interacts with
SMAD proteins of the TGF-! signaling pathway and CtBP
corepressor (12, 13). This gene has recently been implicated in
TGF-!-dependent regulation of hTERT expression in breast
cancer cells (14). Our observations implicated SIP1 gene as a
candidate regulator of replicative senescence in HCC cells. To
investigate whether SIP1 expression constitutes a protective
barrier against hTERT expression and senescence bypass, we
constructed SIP1 short hairpin RNA (shRNA)-expressing
plasmids, based on a reported effective SIP1 siRNA sequence
(14). SIP1 shRNA was expressed by using either G-418-
resistance plasmid pSuper.retro.neo$GFP or puromycin-
resistance plasmid pSUPER.puro (see shRNA in Methods).
Presenescent C3 cells at PD 75 were used for transfections, 3–4
weeks before expected senescence arrest stage.
pSuper.retro.neo$GFP-based SIP1 shRNA suppressed the
accumulation in SIP1 when expressed transiently (Fig. 4A, day
5). This resulted in a weak increase in hTERT expression.
Transfected cells were maintained in culture in the presence of
500 "g!ml G-418 and observed for 30 days. At this period, C3
cells transfected with a control plasmid reached senescence-
arrested stage with further up-regulation of SIP1 expression
(Fig. 4A, day 30) and resistance to BrdUrd incorporation after
mitogenic stimuli (BrdUrd index % 3 # 1%; Fig. 4B Upper
Left). In sharp contrast, SIP1 shRNA-transfected cells lost

Fig. 3. C3 clonal cells undergo telomere-dependent replicative senescence
associated with SIP1 expression and hTERT repression. SIP1 expression is lost,
whereas hTERT is induced in primary HCC tumors. (A) Genomic DNAs from
parental Huh7 and immortal C1 cells display long telomeres, whereas C3
telomeres are progressively shortened in presenescent and senescent stages,
respectively. Equal amounts of genomic DNAs were blotted with a telomere
repeat probe. C. Low, short telomere control DNA. (B) Presenescent and
senescent C3 cells have lost telomerase activity, as measured by TRAP assay.
Telomerase activity was shown as % value of test samples (# SD) compared to
‘‘high positive’’ control sample. (C) hTERT expression as tested by RT-PCR was
high in immortal C1, but decreased to weakly detectable levels in C3 cells.
Inversely, SIP1 expression tested by RT-PCR was undetectable in C1 cells, but
showed a progressive increase in presenescent and senescent C3 cells. (D)
Inverse relationship between SIP1 and hTERT expression was confirmed with
another senescence-programmed Huh7 clone named G12 (for SABG and
BrdUrd assays, see Fig. 7). hTERT expression in G12 showed a slight decrease in
presenescent stage, followed by a loss at the onset of senescence. Inversely,
the expression of SIP1 gene was weakly positive in presenescent G12, but
highly positive in senescent G12 cells. C1 was used as control. PS, presenescent;
S, senescent; I, immortal. (E) Negative correlation between hTERT and SIP1
expression in primary tumors (T) and nontumor liver tissues (NT).
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SIP1 expression and up-regulated hTERT transcripts (Fig. 4A,
day 30). Furthermore, SIP1-inactivated cells escaped senes-
cence, as evidenced with 70 ! 9% BrdUrd index (Fig. 4B Upper
Right). Morphologically, SIP1 shRNA-transfected cells formed
proliferating clusters, whereas cells transfected with control
plasmid displayed hallmarks of senescence such as scattering,
enlargement, and multiple nuclei (Fig. 4B Lower). Twelve
independent clones were selected from SIP1 shRNA-
transfected C3 cells. All but one of these clones have per-
formed so far "15 PD beyond the expected senescence barrier
(data not shown). As an additional confirmatory assay, C3 cells
were transfected with the puromycin-selectable pSUPER.puro-
based SIP1 shRNA vector and subjected to puromycin selec-
tion. SIP1 shRNA-transfected cells survived and formed large
number of colonies after 30 days of puromycin selection. In
contrast, no surviving colony was obtained from cells trans-
fected with the control plasmid, as expected (Fig. 4C).

Discussion
Our observations provide experimental evidence for the gen-
eration of senescence-arrested clones from immortal HCC and
breast cancer cell lines. Detailed analysis of clones from
HCC-derived Huh7 cell line further indicates that what we
observe is a replicative senescence, but not a stress-induced
premature senescence-like arrest. Clonal C3 cells displayed
telomerase repression, progressive telomere shortening, and
permanent growth arrest after #80 PD with senescence-
associated morphological changes and positive SABG stain-
ing. Similar changes have also been observed with G12,
another independently derived clone. Thus, we demonstrate
that immortal cancer cells have the intrinsic ability to repro-
gram the replicative senescence. As expected, this shift in cell
fate results in a complete loss of tumorigenicity. The replica-
tive senescence arrest that we identified with clonal C3 cells
was not accompanied with the induction of the p53, p16INK4a,
p14ARF, or p21Cip1 gene. The nonparticipation of p53 and
p16INK4a to the senescence arrest described here was expected,
in the light of published observations showing that Huh7 cells
express a mutant p53 protein (20–22) and they are deficient in
p16INK4a expression (23). Although the levels of p21Cip1 protein
displayed a slight increase in C3 cells, this was not related to
senescence arrest, as early passage proliferating C3 cells also
displayed this slight increase (Fig. 5). The early loss of hTERT
expression in this clone could contribute to early p21Cip1

up-regulation, because hTERT is known to down-regulate
p21Cip1 promoter activity (26). p53, p16INK4a, p14ARF, and
p21Cip1 form a group of replicative senescence-related cell
cycle checkpoint genes. The lack of induction of these genes in
senescence-arrested C3 cells clearly indicates that there are
additional genes involved in senescence arrest in these tumor-
derived cells.

The loss of hTERT expression in senescence programmed
clones prompted us to analyze the expression of genes that have
been implicated in hTERT regulation. Among seven candidate
genes studied, only one, the SIP1 gene, displayed a differential
expression between immortal and senescence-programmed
clones. This gene has been identified as a mediator of TGF-!-
regulated repression of hTERT expression in a breast cancer cell
line, although it was not effective in an osteosarcoma cell line
(14). In our studies, SIP1 was not expressed in immortal hTERT-
expressing C1 clone, but expressed in senescence-programmed
hTERT-repressed C3 and G12 clones (Fig. 3 B and C). Further-
more, experimental depletion of SIP1 transcripts resulted in
hTERT up-regulation in C3 clonal cells (Fig. 4A). This effect has
been confirmed by using SKHep1, another HCC cell line (data
not shown). Thus, we demonstrate that the SIP1 gene acts as an
hTERT repressor in HCC cells. More importantly, we also
showed the bypass of senescence arrest after functional inacti-
vation of SIP expression by shRNA in senescence-programmed
C3 clonal cells. In contrast to C3 cells transfected with a control
plasmid, SIP1 shRNA-treated cells displayed continued prolif-
eration beyond PD #80 as evidenced by 70% BrdUrd incorpo-
ration index, and formation of large number of colonies. Se-
lected shRNA-transfected clones from these experiments have
already performed "15 PD beyond the senescence barrier. Thus,
our findings indicate that the functional inactivation of SIP1 in
senescence-programmed cancer cells is sufficient to bypass
senescent arrest.

SIP1 is a zinc finger and homeodomain containing tran-
scription factor that exerts a repressive activity by binding to
CACCT sequences in regulatory elements of target genes (12,
27). The SIP1 gene is expressed at high levels in almost all
human somatic tissues tested, including liver (28). Therefore,
we also performed comparative analysis of hTERT and SIP1
expression in nontumor liver and primary HCC tissues. SIP1

Fig. 4. ShRNA-mediated down-regulation of endogeneous SIP1 transcripts
releases hTERT repression and rescues C3 cells from senescence arrest. (A) At
day 5 after transfection, SIP1 shRNA-transfected cells (Sh-SIP1) show decreased
expression of SIP1 and weak up-regulation of hTERT expression. At day 30, the
expression of SIP1 is lost completely, and hTERT expression is stronger. (B) Cells
transfected with empty vector (Control) are senescence-arrested as evidenced
by resistance to BrdUrd incorporation (Upper Left) and morphological
changes (Lower Left), but cells transfected with SIP1 shRNA vector (Sh-SIP1)
escaped senescence arrest as indicated by high BrdUrd index (Upper Right)
and proliferating cell clusters (Lower Right). (C) Colony-forming assay shows
that C3 cells formed large number of colonies following puromycin selection
after transfection with a puromycin-resistant SIP1-shRNA-expressing plasmid
(Right), whereas cells transfected with empty vector did not survive (Left).
SIP1 shRNA was expressed by using either G-418-resistance plasmid
pSuper.retro.neo$GFP (A and B) or puromycin-resistance plasmid pSUPER.
puro (C). Presenescent C3 cells at PD 75 were transfected with either SIP1
shRNA-expressing or empty plasmid vectors, maintained in culture in the
presence of appropriate selection media and tested at days 5 (A) and 30 (A–C).
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was strongly positive in nontumor liver samples, but its ex-
pression was significantly decreased in corresponding HCC
samples. Inversely, hTERT expression was negative or low in
nontumor liver samples, but highly positive in HCC tumors
(Fig. 3E). We also detected complete loss of SIP1 expression
in 5 of 14 (36%) of HCC cell lines (data not shown). Taken
together with in vitro studies, these observations strongly
suggest that SIP1 acts as a tumor suppressor gene in HCC.
Although SIP1, as a repressor of E-cadherin promoter, has
been suggested to be a promoter of invasion in malignant
epithelial tumors (29), a tumor suppressive activity by the
repression of hTERT and inhibition of senescence arrest is not
precluded.

Hepatocellular carcinoma is one of the most common
cancers worldwide. Liver cirrhosis is the major etiology of this
tumor with limited therapeutic options (30, 31). Telomere
shortening and senescence play a major role in liver cirrhosis,
from which the neoplastic HCC cells emerge with high rates of
telomerase reactivation (32). Furthermore, p53 and p16INK4a

are the most frequently inactivated genes in these tumors. This
fact enhances the importance of our findings for potential
therapeutic applications of replicative senescence program-
ming in HCC.

Methods
Tissues, Cells, and Clones. Snap-frozen HCC and nontumor liver
tissues were used. HCC and breast cancer cell lines T-47D
(ATCC) and BT-474 (ATCC) were cultivated as described (33).
hTERT-HME cells (Clontech) were cultivated in DMEM!
Ham’s F-12 (Biochrom) containing insulin (3.5 !g!ml), EGF
(0.1 ng!ml), hydrocortison (0.5 !g!ml), and 10% FBS (Bio-
chrom). Huh7- and Hep3B-derived isogenic clones were ob-
tained by either G-418 selection after transfection with neomy-
cin-resistance pcDNA3.1 (Invitrogen) or pEGFP-N2 (Clontech)
plasmids, or by low-density cloning. Huh7-derived isogenic
clones C1 and C3 were obtained with pCDNA3.1, and G12 with
pEGFP-N2. Huh7-derived C11, and Hep3B-derived 3B-C6,
3B-C11 and 3B-C13 were obtained by low-density cloning. Cells
transfected with calcium phosphate!DNA-precipitation method
were cultivated in the presence of geneticin G-418 sulfate (500
!g!ml; GIBCO), and isolated single cell-derived colonies were
picked up by using cloning cylinders and expanded in the
presence of 200 !g!ml geneticin G-418 sulfate. For low-density
cloning, cells were plated at 30 cells per cm2 and single-cell
derived colonies were expanded. Initial cell stocks were pre-
pared when total number of cells became 1–3 ! 107, and the
number of accumulated population doubling (PD) at this stage
was estimated to be 24, assuming that the progeny of the initial
colony-forming cells performed at least 24 successive cell divi-
sions until that step. Subsequent passages were performed every
4–7 days, and the number of additional PD was determined by
using a described protocol (34).

Low-Density Clonogenic Assay. Cells (30–50 per cm2) were plated
in six-well plates and grown 1–3 weeks to obtain isolated colonies
formed with 100–1,000 cells. The medium was changed every 4
days, and colonies were subjected to SABG staining (see below).

In Vivo Studies. Cells were injected s.c. into CD-1 nude mice
(Charles River Breeding Laboratory). Tumors and nontumori-
genic cells at the injection sites were collected at day 35 and
analyzed directly or after in vitro culture by SABG assay (see
below). These experiments have been approved by the Bilkent
University Animal Ethics Committee.

SABG Assay. SABG activity was detected by using a described
protocol (15). After DAPI or eosin counterstaining, SABG-
positive and negative cells were identified and counted.

BrdUrd Incorporation Assay. Subconfluent cells were labeled with
BrdUrd for 24 h in freshly added culture medium and tested as
described (33), using anti-BrdUrd antibody (Dako) followed by
tetramethylrhodamine B isothiocyanate-labeled secondary an-
tibody (Sigma). DAPI (Sigma) was used for counterstaining.

Immunoblotting. Antibodies against cyclin D1, CDK4, CDK2,
p21Cip1, pRb (all from Santa Cruz Biotechnology), cyclin E
(Transduction), cyclin A (Abcam), p16INK4a (Abcam), p53 (clone
6B10; ref. 35), and calnexin (Sigma) were used for immunoblot-
ting as described (33).

RT-PCR. RT-PCR expression analysis was performed as described
(33), using primers listed in Table 1, which is published as
supporting information on the PNAS web site.

TRAP and Telomere Length Assays. Telomerase activity and telo-
mere length assays were performed by using TeloTAGGG
Telomerase PCR ELISAPLUS and TeloTAGGG Telomere
Length Assay (Roche Diagnostics), following kit instructions.

shRNA. SIP1-directed shRNA was designed according to a pre-
viously described effective siRNA sequence (14) using the
pSUPER RNAi system instructions (Oligoengine) and cloned
into pSuper.retro.neo"GFP and pSUPER.puro (Oligoengine),
respectively. SIP1 shRNA-encoding sequence was inserted
by using 5#-GATCCCCCTGCCATCTGATCCGCTCTT-
TCAAGAGAAGAGCGGATCAGATGGCAGTTTTTA-3#
(sense) and 5#-AGCTTAAAAACTGCCATCTGATCCGC-
TCTTCTCTTGAAAG AGCGGATCAG ATGGCAGGGG-3#
(antisense) oligonucleotides.

The integrity of the inserted shRNA-coding sequence has been
confirmed by nucleic acid sequencing of recombinant plasmids.
Clone C3 cells were transfected with calcium phosphate precipita-
tion method, using either pSuper.retro.neo"GFP-based or pSU-
PER.puro-based SIP1 shRNA expression plasmid, and cells were
maintained in the presence of 500 !g!ml geneticin G-418 sulfate
and 2 !g!ml puromycin (Sigma), respectively. Empty vectors were
used as control. Media changed every 3 days, and cells were tested
at days 5 and 30.
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ABSTRACT

Cellular senescence is a tumor-suppression mechanism, and immortalization facilitates 

neoplastic transformation. Both mechanisms may be highly relevant to hepatocellular 

carcinoma (HCC) development and its molecular heterogeneity. We integrated gene 

expression data from senescence-programmed and immortal HCC cells with the data from 

cirrhosis and HCC tissues to generate a senescence and immortality gene network (SIGN) 

signature. The SIGN signature accurately classified normal liver, cirrhosis, dysplasia and 

HCC lesions, and indicated that senescence-to-immortality switch occurs during dysplasia-to 

early HCC transition. Senescence-to-immortality transition contributes also to tumor 

progression. The SIGN signature identified several HCC classes, including one “normal-like”, 

and two with increased expression of immortality genes. Senescence-to-immortality transition 

was accompanied by hepatic dedifferentiation and increased expression of cell proliferation, 

chromosome modification and DNA damage response genes. Thus, HCC immortalization is 

closely associated with the acquisition of stem/progenitor-like features. Finally, we identified a 

large set of upregulated DNA damage checkpoint and DNA repair genes that showed 
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significant associations with tumor initiation and progression. These genes may serve as 

potential targets for HCC prevention and therapy.


