A SCENARIO-BASED QUERY PROCESSING
FRAMEWORK FOR VIDEO SURVEILLANCE

A DISSERTATION SUBMITTED TO
THE DEPARTMENT OF COMPUTER ENGINEERING
AND THE INSTITUTE OF ENGINEERING AND SCIENCE
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By
Ediz Saykol
September, 2009

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Assoc. Prof. Dr. Ugur Giidiikkbay (Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Prof. Dr. Ozgiir Ulusoy (Co-Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Prof. Dr. M. Volkan Atalay

il

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Assoc. Prof. Dr. A. Aydin Alatan

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Asst. Prof. Dr. Selim Aksoy

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet B. Baray
Director of the Institute

il

ABSTRACT

A SCENARIO-BASED QUERY PROCESSING
FRAMEWORK FOR VIDEO SURVEILLANCE

Ediz Saykol
Ph.D. in Computer Engineering
Supervisors: Assoc. Prof. Dr. Ugur Giidiikbay and
Prof. Dr. Ozgﬁr Ulusoy
September, 2009

Video surveillance has become one of the most interesting and challenging ap-
plication areas in video processing domain. Automated access to the semantic
content of surveillance videos to detect anomalies is among the basic tasks; how-
ever due to the high variability of the visual features and large size of the video
input, it still remains a challenging issue. A considerable amount of research deal-
ing with automated access to video surveillance has appeared in the literature;
however, significant semantic gaps in event models and content-based access still
remain. In this thesis, we propose a scenario-based query processing framework
for video surveillance archives, especially for indoor environments. A scenario is
specified as a sequence of event predicates that can be enriched with object-based
low-level features and directional predicates. We also propose a keyframe labeling
technique, which assigns labels to keyframes extracted based on keyframe detec-
tion algorithm, hence transforms the input video to an event sequence based
representation. The keyframe detection scheme relies on an inverted tracking
scheme, which is a view-based representation of the actual content by an inverted
index. We also devise mechanisms based on finite state automata using this event
sequence representation to detect a typical set of anomalous events in the scene,
which are also used for meta-data extraction. Our query processing framework
also supports inverse querying and view-based querying, for after-the-fact ac-
tivity analysis, since the inverted tracking scheme effectively tracks the moving
objects and enables view-based addressing of the scene. We propose a specific
surveillance query language to express the supported query types in a scenario-
based manner. We also present a visual query specification interface devised to
enhance the query-specification process. It has been shown through performance
experiments that the keyframe labeling algorithm significantly reduces the stor-

age requirements and yields a reasonable anomaly detection performance. We

v

have also conducted performance experiments to show that our query processing
technique has a high expressive power and satisfactory retrieval accuracy in video

surveillance.

Keywords: video surveillance, scenario-based querying, keyframe labeling, inverse
querying, view-based querying, anomaly detection, after-the-fact analysis.

OZET

GOZETIM VIDEOLARI ICIN SENARYO TABANLI
SORGULAMA CATISI

Ediz Saykol
Bilgisayar Miihendisligi, Doktora
Tez Yoneticileri: Do¢. Dr. Ugur Giidiikkbay ve
Prof. Dr. Ozgiir Ulusoy
Eyliil, 2009

Video gozetim son yillarda en cok ilgilenilen ve iizerinde calisilan video igleme

uygulama alanlarindan biridir. Olagandigi durum yakalamak icin anlamsal
icerige otomatik erigim en temel gorevlerdendir; ancak biiyiik girdi boyutu
ve gorsel ozelliklerdeki degiskenlik nedeniyle problem zorlugunu korumaktadir.
Literatiirde gozetim videolarina otomatik erigim alaninda yeterli ¢caligma yapilmig
olmasina ragmen olay modelleri ve igerik erigimi alanlarinda anlambilimsel ek-
siklikler bulunmaktadir. Bu tez kapsaminda o6zellikle i¢ mekan videolar: igin
senaryo tabanli sorgulama catisi 6nerilmektedir. Senaryo olay yiiklemlerinden
olusan bir dizi olarak belirlenmekte ve nesne tabanh disiik-diizey ozellikleri ve
yonsel yiiklemler ile zenginlestirilebilmektedir. Ayrica, anahtar ¢cerceve etiketleme
teknigi onerilmektedir. Bu teknik anahtar cerceve yakalama algoritmasindan ge-
len anahtar cercevelere etiket atayarak videonun olay dizisi olarak ifade edilmesini
saglamaktadir. Anahtar cerceve yakalama, icerigin bakig tabanli gosterilmesini
saglayan ters izleme yontemine dayanmaktadir. Bu olay dizisi gosterimi kul-
lanilarak olagandigi durum yakalamak amaciyla sonlu durum makinesi tabanlh
mekanizmalar gelistirilmigtir. Bu mekanizmalar ayrica yardimci veri cikarma
igleminde de kullanilmaktadir. Senaryo tabanli sorgulama catisi ters izleme
yontemini sayesinde olay sonu analizi icin ters sorgulama ve bakig tabanli sorgu-
lamay1 desteklemektedir. Desteklenen sorgu tiplerini ifade etmek amaciyla
ozel olarak tasarlanmig bir gozetim sorgu dili 6nerilmektedir. Sorgu dilinde
ifadeyi kolaylagtirmak icin ayrica gorsel sorgu belirleme arayiizii gelistirilmigtir.
Bagarim deneylerinde gosterildigi gibi anahtar cerceve etiketleme algoritmasi
bellek gereksinimini onemli ol¢iide diigiirmekte ve yeterli diizeyde olagandigi du-
rum yakalama bagarimi gostermektedir. Ayrica sorgulama iglemi basariminin
video gozetim alaninda etkili ifade giici ve yeterli erisim dogruluguna sahip
oldugunu gostermek icin deneyler yapilmistir.

vi

vii

Anahtar sézcikler: video gozetim, senaryo tabanli sorgulama, anahtar cerceve
etiketleme, ters sorgulama, bakis tabanli sorgulama, olagandigi durum yakalama,

olay sonu analizi.

Acknowledgement

I would like to express my sincere gratitude to my supervisors Assoc. Prof. Dr.
Ugur Giidiikbay and Prof. Dr. Ozgﬁr Ulusoy for their instructive comments,
suggestions, support, encouragement, and patience throughout the supervision of

the thesis.

[am grateful to Prof. Dr. M. Volkan Atalay, Assoc. Prof. Dr. A. Aydin
Alatan and Asst. Prof. Dr. Selim Aksoy for reading and reviewing this thesis.

Finally, T would like to express my deepest thanks to my family and to my

wife for their morale support.

viil

To my endless love,

X

Contents

1 Introduction
1.1 Contributions of the Thesis

1.2 Organization of the Thesis

2 Keyframe-Based Data Modeling
2.1 Keyframe Labeling oL
2.2 Moving Region Extraction
2.3 Inverted Tracking

2.4 Keyframe Detection oL

3 Histogram-Based Shape and Color
3.1 Histogram Construction

3.2 Similarity Calculation

4 Meta-Data Extraction

4.1 Object-based Meta-Data Extraction

11

13

17

20

21

24

26

CONTENTS

4.1.1 Color Descriptor .
4.1.2 Shape Descriptor .

4.1.3 Class Descriptor . .

4.2 Event-based Meta-Data Extraction

4.2.1 Single Object Annotation

4.2.2 Multi-Object Annotation

4.2.3 Post-Detection Process

5 Scenario-Based Querying

5.1 VSQL: Video Surveillance Query Language

5.1.1 Scenario-based Query

5.1.2 Event-based Query
5.1.3 Object-based Query
5.1.4 Inverse Query . . .

5.1.5 View-based Query

5.1.6 External Predicate Definition

5.2 Query Processing

5.2.1 Logical Operators on Query Results

5.2.2 View-based Query Processing

5.3 Visual Query Specification

6 Performance Experiments

xi

28

28

29

30

30

31

39

41

42

43

44

44

45

46

46

47

50

53

53

57

CONTENTS

6.1 Performance of Keyframe Labeling
6.1.1 Pixel-Level Analysis
6.1.2 Grid Size Analysis
6.1.3 Temporal Filtering Analysis
6.1.4 Storage Gain Analysis

6.2 Performance of Histogram-Based Approach

6.3 Performance of Object Classification

6.4 Performance of Semantic Annotation

7 Related Studies
7.1 Video Surveillance Systems L.

7.2 Comparison of Our System to Related Work

8 Conclusion

Bibliography

Appendix

A Grammar for Scenario-Based Querying
A.1 VSQL Grammar Specification
A.2 Rules for Query Processing

A.3 Sample Facts-base Snapshot

xii

o8

58

59

60

63

63

65

68

70

71

74

76

78

85

85

List of Figures

1.1

2.1

2.2

2.3

2.4

2.5

2.6

The architecture of our framework. The queries are handled by
the scenario-based query processing module, which communicates
with both the meta-data store and the querying interface. The
meta-data contains event and object features extracted by auto-
mated tools based on keyframe labeling. These automated tools

also trigger the real-time alerting module.
The semantic flow in information extraction.

The pseudo-code of the keyframe labeling algorithm.

The noise reduction filters applied on a sample frame. (a) Original
frame from PETS 2006 S1-T1-C dataset [2] at t;, (b) Processed

frame at 1, and (c) Processed frame at o = t; 4+ 0.25 seconds. . .

Inverted tracking on a sample frame. (a) Original frame from
PETS 2006 S1-T1-C dataset [2], (b) Processed frame for 8 x 8
grid, and (c) The Motion Appearance Mask (MAM) of the frame.

The pseudo-code of the keyframe detection algorithm.

Keyframe filtering applied on PETS 2006 [2] datasets (a) S1-T1-C,
originally has 3012 frames, 154 keyframes are extracted on the av-
erage; and (b) S2-T3-C, originally has 2551 frames, 138 keyframes

are extracted on the average. L.

xiil

14

LIST OF FIGURES

3.1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Angle histogram calculations. « is the polar angle for object pixel
p;. Ry region is an equivalence pixel class for angle histogram, and

R5 region is an equivalence pixel class for distance histogram.

The FSA for recognizing event sequence for crossover and move-

together. oL
The FSA for recognizing event sequence for deposit.
The FSA for recognizing event sequence for pickup.

FSA state transitions for crossover detection for PETS 2006 S1-
T1-C dataset [2]. (a) Transition from Sy to Si, (b) Transition from

S1 to Sy, and (c) Transition from Sy to S3 and crossover detection.

FSA state transitions for deposit detection for PETS 2004 leftbag
dataset [1]. (a) Transition from Sy to Sy, (b) Transition from S;

to Sy, and (c¢) Transition from S, to S3 and deposit detection.

FSA state transitions for pickup detection for PETS 2004 leftbag
dataset [1]. (a) Transition from Sy to Sy, (b) Transition from S

to Sy, and (c¢) Transition from Sy to S5 and pickup detection. . . .

Annotation of events. (a) 2 objects are detected at t1, and they are
classified as one human (H), and one non-human (NH). Then, they
are detected as two single objects at t2, and when NH stops at t3,
deposit is identified. (b) Similar to (a), but pick up is identified.
(c) H1 and H2 are classified as human at t1, and an object group is
detected at t2. By tracking the orientations of the objects within
t1-t3 time interval, crossover is identified. (d) Similar to (c),
except that move together is identified because H1 and H2 move

in the same direction.

Xiv

22

35

36

37

38

LIST OF FIGURES

5.1

5.2

5.3

5.4

5.9

6.1

6.2

6.3

6.4

The query-processing flowchart. A VSQL query submitted to the
GUTI passes through the parsing, binding, and processing steps; the

results are then presented to the user.
The conjunction operation applied on query results.
The disjunction operation applied on query results.

The specification of Query 5.11. The event sequence corresponding
to the scenario is shown in the first row of the scenario drawing
panel. The letters in the boxes on the drawing panel (‘E’, ‘CC’,
‘DD’, ‘PP’ and ‘L) denote enter, crossover, deposit, pickup and

leave event predicates, respectively.

Object specification: (a) name; (b) name of the owner/creator; (c)
type; (d) color; (e) shape of the object; (f), (g) and (h) are the

auxiliary interface elements.

ROC curve/Analysis of pixel-level algorithms. The learning con-
stant « varies from 0.6 to 0.8 in increments of 0.05. The temporal

duration constant 7isset to2and 3.

ROC curve analysis for the grid size parameter. (a) PETS 2006
dataset, and (b) PETS 2004 dataset.

ROC curve analysis for the temporal detection threshold parameter
tqg. (a) PETS 2006 dataset, and (b) PETS 2004 dataset..

The storage gain and the reduce in the input size for detection for
PETS 2004 and PETS 2006 datasets. The keyframe count that is
extracted by our technique significantly reduces not only the input
size for anomaly detection but also the storage space for after-the-

fact analysis.

XV

LIST OF FIGURES xXvi

6.5

6.6

6.7

Retrieval effectiveness results, (a) with the dataset used in [52, 51],
(b) with the dataset used in [40], and (c) with the two datasets
mixed. 66

Object classification accuracy analysis. 67

Semantic annotation accuracy analysis. 68

List of Tables

4.1

4.2

4.3

The state transition function dc for the automaton detecting

crossover and move-together. S, is the initial state, and S5 is the

final state accepting event sequence for crossover and move-together.

The state transition function §p for the automaton detecting de-
posit. Sy is the initial state, and S3 is the final state accepting

event sequence for deposit. L.

The state transition function ép for the automaton detecting
pickup. Sy is the initial state, and S3 is the final state accept-

ing event sequence for pickup. L.

xVii

33

33

Chapter 1

Introduction

In a traditional surveillance system, a human operator monitors multiple envi-
ronments simultaneously to detect, and possibly prevent, a dangerous situation.
Human perception and reasoning, however, are limited in their ability to pro-
cess the amount of spatial data perceived by the senses. These limits may vary,
depending on the complexity of the events and their time instances. In recent
years, the acceleration in capabilities of communication equipment and in auto-
matic video-processing techniques, combined with the decreasing cost of technical
devices, has resulted in increased interest in video surveillance applications. In

turn, these applications have augmented the capabilities of the human operators.

Video surveillance has become an interesting and challenging application do-
main in video processing. Automated access to the semantic content of surveil-
lance videos is among the interesting areas, basically to detect anomalous situa-
tions in the scene. An automated video surveillance system should support both
real-time alarm generation and offline inspection components to satisfy the re-
quirements of the operators [32]. In either side, the input video stream should be
processed appropriately so that the actions are correctly analyzed. The primary
challenges are the large input size and the high variability of the audio-visual
features, hence it still remains a challenging issue to access the semantic content

of the videos automatically.

CHAPTER 1. INTRODUCTION 2

The automated video surveillance processing generally starts with the detec-
tion of moving regions/objects. Background/foreground subtraction [11, 27, 19,
28, 31, 16] or temporal template-based methods [22, 4] are widely used to de-
tect moving objects. This first step is followed by tracking, classification, and
possibly understanding the object behavior [22, 23]. One of the basic aims in
understanding the object behavior is detecting the anomalies in the actions of
the objects [16, 22, 49, 50, 53, 20, 15]. Abnormal situations and anomalies are

reported to the operator and/or stored in a database for later inspection.

Providing a general solution to detect anomalous situations in video surveil-
lance is still an open research area. Reasonable accuracies can be achieved for
specific video surveillance applications by restricting the variable nature of the
video data. Detecting anomalies requires tracking the actions of moving regions.
A typical video stream has too many frames, hence too many moving regions to
deal with. Keyframe-based techniques reduce the number of regions to be pro-
cessed, but effective data models are required for anomaly detection. Pixel-level
or region-level detection techniques might have high processing costs or perfor-

mance limitations for on-the-fly detection due to the large input size.

One of the basic tasks in offline inspection is the content-based retrieval of
surveillance videos from the database. In the literature, the researchers generally
assume simple data structures for the semantic content: events and objects. The
event descriptors contain time information and the objects acting in the event.
Object indexing is not as frequent as event indexing and lacks low-level (or object-

based) features.

There are specific situations that can be regarded as a sequence of events,
and the existence of the whole sequence is of interest. We propose a scenario-
based query processing framework to detect such sequences in video-surveillance
archives, and hence reduce the gap between low-level features and high-level
semantic content. Our framework provides support for querying by event-based
and object-based features. The supported query types can be ordered to form a
scenario-based query where the temporal information among the (sub)queries is

also included in the scenario-based query expression.

CHAPTER 1. INTRODUCTION 3

System-Side

Operator-Side

VTN

)

Moving Region Extraction

Inverted Tracking

. Real-Time
Keyframe Labeling Alerting
Meta-Data Storage
VSQL
) uer
Scenario-based Query speg fi cz);ti on
Processing Interface

Figure 1.1: The architecture of our framework. The queries are handled by
the scenario-based query processing module, which communicates with both the
meta-data store and the querying interface. The meta-data contains event and
object features extracted by automated tools based on keyframe labeling. These
automated tools also trigger the real-time alerting module.

The architecture of our framework [36, 37| for indoor scenes (e.g., lobbies,
retail stores, etc.) with a fixed camera is shown in Figure 1.1. The framework
presents a keyframe-based data modeling scheme, which utilizes a new data rep-
resentation for object tracking. A scenario-based query processing component
is also presented, which provides support for scenario-based, event-based, and
object-based queries, where the low-level object features and directional predi-
cates can be used to improve expressiveness and effectiveness. Our query model
also supports inverse querying, as well as some statistical view-based query types
that can be used as tools for activity analysis in various domains, e.g., video

forensics. Our Video Surveillance Query Language (VSQL) has been designed

CHAPTER 1. INTRODUCTION 4

specifically for scenario-based querying purposes. A query-specification interface
has also been developed, which can be considered as the visual counterpart of
VSQL. The query-specification interface is as generic and flexible as our query

model.

1.1 Contributions of the Thesis

The main contributions of the thesis can be listed in two main areas:

Scenario-Based Query Processing:

e The major contribution of the thesis is the supported querying capabilities.
To the best of our knowledge, no video surveillance system has been in-
troduced in the literature that supports scenario-based querying enhanced
with object-based low-level features and directional predicates, as well as
inverse querying and view-based querying. Our observations have shown
that scenario-based querying provides an effective medium for after-the-fact
activity analysis, since the abnormalities can be expressed in an effective
form while preserving the temporal relations among events with a wide set
of low-level subqueries. The proposed query-processing framework provides
support for a wide range of query types valuable for video surveillance. The
supported query types include event and object queries enriched with the
low-level feature descriptors (e.g., color, shape) and directional predicates.
The query model of the framework allows scenario-based querying, where a,
scenario is a sequence of events ordered temporally. This type of querying

increases the retrieval quality of offline inspection.

e We devised a rule-based query-processing module for scenario-based query-
ing. We use Prolog as our inference engine. The extracted meta-data is
generic in the sense that the predicates are valid and valuable in almost ev-
ery type of video-surveillance application. Our rule-based query-processing
module provides a flexible mechanism for external predicate definition (i.e.,

simply by rule injection) so that our framework can be tailored to various

CHAPTER 1. INTRODUCTION 5

domains.

e We provide a textual query language, which we call Video Surveillance
Query Language (VSQL), and its visual counterpart to provide complete
querying and retrieval capability. These components are designed in a
generic and flexible manner so that they can be used in a variety of video-

surveillance domains.

Keyframe-Based Meta-Data Extraction:

e In our data model, we introduce a new data representation scheme for
region tracking, which we call Inverted Tracking. The main benefit of this
scheme is that it addresses the scene in a view-based manner with respect
to the human operators’ points of view. Since the operators inspect the
scene to determine abnormalities performed by moving objects, fixed view-
based addressing is employed as a part of our data model to enhance its
expressive power. For example, the most popular paths of moving objects
and the number of objects entering the scene from the left/right side can

be queried.

e We propose a keyframe detection and labeling scheme based on inverted
tracking. A keyframe is detected if a change occurs in the Motion Appear-
ance Mask (MAM) of the frame when compared to that of the previous
frame. MAM is a binary representation of the motion, where a 1 in this
mask denotes the presence of a motion in that cell. The keyframes are
categorized into 4 simple types, namely join, split, move, and stop based
on the appearances of the identified moving regions. The input stream is
represented as a temporally-ordered sequence of keyframe labels, and the
anomaly detection is carried out on this sequence. Since an anomaly can
be represented by a sub-sequence of keyframe labels, the complexity of the
anomaly detection tasks is reduced. Since the anomalies have to be stored
in a database for after-the-fact analysis, the required storage space is sig-

nificantly reduced.

e We also provide mechanisms to detect a typical set of anomalous situa-

tions including crossover, deposit, and pickup. To this end, we devise three

CHAPTER 1. INTRODUCTION 6

separate Finite State Automata to recognize the sequences corresponding
to these behaviors. The inputs of these Finite State Automata are the
keyframe labels that we assign to the extracted keyframes. Experimental
results show that the use of our keyframe labeling technique with these
mechanisms yields a reasonable anomaly detection performance. Hence,
the mechanisms based on Finite State Automata can be utilized for an
on-the-fly anomaly detection scheme together with the keyframe labeling

technique.

e A histogram-based approach, originally proposed for content-based retrieval
for query-by-color-and-shape [38], is utilized for the object-level meta-data
extraction process. This approach is used to obtain high-level descriptors
for color and shape information. The shape histograms are also used for
obtaining class types (e.g., human, non-human, object group) for moving

objects.

1.2 Organization of the Thesis

The thesis is organized as follows: Chapter 2 presents the keyframe-based data
modeling techniques that form a basis for the meta-data extraction process.
Chapter 3 describes the histogram-based approach to encode shape and color fea-
tures of the objects. In addition to the usage of these features in content-based
retrieval, the histogram-based approach is used in several aspects of meta-data
extraction process. Chapter 4 provides description of the meta-data extraction
process employed in the scenario-based querying framework. Chapter 5 presents
the scenario-based query model that we employ. The supported query types,
query expression techniques, and the query processing strategies are described
based on the extracted meta-data. Chapter 6 presents the experiments evalu-
ating the performance of the data modeling, meta-data extraction, and query
processing techniques. Chapter 7 describes some of the existing studies that are
related with our work. A comparison of our work to these systems is also pro-

vided in this chapter. Chapter 8 concludes the thesis. Appendix A provides the

CHAPTER 1. INTRODUCTION 7

grammar for video surveillance query language (VSQL) and the rules used by the
query processor for scenario-based querying. It also gives a snapshot of a sample

fact-base to illustrate how the meta-data is obtained and used to process queries.

Chapter 2

Keyframe-Based Data Modeling

In video processing, storage requirement is a very crucial issue due to huge size
of the video data. Keyframe-based video processing techniques are popular since
they reduce the storage requirements significantly by storing only the data at
the keyframes. A keyframe is generally identified when there is a change in
the spatio-temporal relations among the salient objects in the scene [13]. In
video surveillance, there are abnormal situations to be detected, and hence, there
could be other conditions based on the change in the global motion of the scene
to detect keyframes. To cover most of the abnormal situations, our keyframe
detection algorithm categorizes the keyframes into four primitive types, namely
join, split, move, and stop, based on the appearances of the extracted moving
regions. These four labels are among the primitive event types and it is observed
that they can be used to detect typical abnormal situations such as crossover,
deposit, and pickup. As a result of this step, a label is assigned for each keyframe

and the input video stream is represented as a sequence of events [35].

Our multi-layered data model contains region-level information at the lowest
level; e.g., pixel-data for moving regions and motion orientation. At the next level,
object-level information is extracted; e.g., class type (e.g., human, non-human,
object group) and color and shape feature vectors. At the third level, primitive
object actions are annotated; e.g., stop, move, and enter. At the highest level,

conceptual event predicates are detected to identify activities, e.g.; crossover,

8

CHAPTER 2. KEYFRAME-BASED DATA MODELING 9

Raw Video Moving Classified Annotated Conceptual
Data Regions Objects "] Actions Predicates

\ 4
\ 4

Figure 2.1: The semantic flow in information extraction.

deposit, approach. This information-extraction scheme, shown in Figure 2.1, is
explained in the following subsections. Annotated actions and conceptual pred-
icates are the primary aspects of our meta-data and used directly in the query

model.

2.1 Keyframe Labeling

The keyframe labeling technique that we employ categorizes the keyframes into
four primitive types, namely join, split, move, and stop. This keyframe labeling
technique relies on moving region extraction and tracking steps where the ex-
tracted moving regions are tracked with respect to a grid-based representation,
which we call Inverted Tracking. The appearances of the identified moving re-
gions are stored in the Motion Appearance Mask (MAM) for each frame f, where
a 1 in this mask represents the presence of a motion in that cell. The keyframe
labeling computations for f are performed based on MAM; and MAM;_,. Hence,
the keyframe labeling technique produces a temporal ordering of the keyframe
labels as an event sequence that can be used to detect basic anomalies, such as
crossover, deposit, and pickup. From a different perspective, it is a transfor-
mation from an image sequence representation to event sequence representation,
where the anomalies can be considered as pre-defined event sequences. Thus, the
problem reduces to detecting anomalous sequences in a set of sequences, which is

much easier to process.

The pseudo-code of our keyframe labeling algorithm is given in Figure 2.2. At

the first step, the moving regions are extracted for each frame. This step includes

CHAPTER 2. KEYFRAME-BASED DATA MODELING

Inputs: V, the input video stream;
ts, the size threshold;
t,, the temporal object appearance threshold;
tq, the temporal detection threshold;
Outputs: K, the list of keyframe labels;
1. for each frame f in V
/* moving region extraction */
2. extract the set of moving regions Ry
3. for each element 7 in Ry
4. if size(r) < ts
5. remove 7 from Ry
6. else
7. increment temporal-appearance (r)
/* inverted tracking */
8. if temporal-appearance(r) > t,
9. set the cell(r) to 1 in MAM;
/* keyframe detection */
10. if isKeyframe(MAM;)
11. compute keyframe label Iy
12. increment temporal-count(ls)
13. if temporal-count(iy) >ty
14. push [y onto K
15. MAM;_y <« My
16. clear My
17. endfor

Figure 2.2: The pseudo-code of the keyframe labeling algorithm.

10

foreground extraction scheme where morphological operations are applied a pri-

ori. The morphological operations help us group the moving pixels into moving

regions by using minimum and maximum object size filters. Through these op-

erations, the salient regions are extracted at the end of the first step. At the

next step, the motion appearance mask of the frame is computed and compared

with that of the previous frame in order to detect whether the current frame is

a keyframe. At the last step, the identified keyframe is labeled. Both in moving

region detection and keyframe detection steps, temporal filtering is applied to

minimize the effect of temporal noise. The temporal filtering is applied by hold-

ing the number of frames that the extracted region has appeared and the number

CHAPTER 2. KEYFRAME-BASED DATA MODELING 11

of frames that a keyframe is labeled, which are followed by a thresholding scheme.

2.2 Moving Region Extraction

The moving region extraction is one of the crucial parts of the keyframe labeling
algorithm, since all of the computations are performed based on the extracted
moving regions. We employ an adaptive background maintenance scheme to
extract the moving regions, similar to the one proposed in [11]. We combine the
scheme with three-frame differencing to detect the moving pixels. Then, we apply
region grouping methods and morphological operations to these pixels to identify

the moving regions.

This technique can be described as follows: Let I(x,y) denote the intensity
value of a pixel at (z,y) in video frame f. Hence, M¢(z,y) = 1 if (z,y) is moving
in frame f, where My(z,y) is a vector holding moving pixels. A threshold vector
Tr(x,y) for a frame f is needed for detecting pixel motions. The basic test
condition to detect moving pixels with respect to Ty(z,y) can be formulated as

in Equation 2.1:

1, if ([Ip(z,y) — Iy 1(z,y)| > Ty(z,y)) and
My(z,y) = (f(z,y) — Ir—o(z,y)| > Ty(z,y)) (2.1)

0, otherwise

The (moving) pixel intensities that are larger than the background intensities
(Bf(z,y)) are used to fill in the region of a moving object. This step requires a
background maintenance task based on the previous intensity values of the pixels.
Similarly, the threshold is updated based on the observed moving-pixel informa-
tion in the current frame. A statistical background and threshold maintenance

scheme is employed, as given in Equations 2.2-2.5:

Bo(z,y) =0, (2.2)

CHAPTER 2. KEYFRAME-BASED DATA MODELING 12

O[Bf—l(xay) + (1 - CY)If_I(J?,y), Mf(ﬂ?,y) = 07
Bffl(xay)v Mf(,’L‘,y) = 13

To(z,y) =1, (2.4)

Bf(xay) = {

Toa.y) =3 -1 @Y+ A=)kl (@,y) = Bz), M(z,y) =0
7 Tfﬁl(x,y), Mf(x,y) =1,

where « is the learning constant and the constant & is set to 5 in Equation 2.5 [11].

We employ a view-based motion tracking approach similar to the Motion
History Image (MHI) technique proposed in [4]. MHI detects and tracks the
parameters (i.e., structure and orientation) of the moving regions. In an MHI,
the pixel intensity is encoded as a function of the temporal history of the motion
at that pixel, where the pixels that moved more recently are brighter. MHI(x,y)
of f is constructed by the update rule in Equation 2.6:

T, Mf(ﬂ?,y) = 17

MHI ¢(z,y) =
max((), MHIf—1($7y) - 1)7 Mf(ﬂ?,y) = 07

where 7 denotes the temporal extent of a motion.

A set of filters is applied to reduce the effect of noise in moving region detec-
tion. First of all, a distance filter is applied to the extracted moving regions such
that the closer regions are joined. The distance threshold for this operation is
adjusted with respect to the perimeter of the smaller region to be joined. As the
next step, a size filtering is applied to the moving regions, which filters out the
regions below the size threshold ¢;. The size filtering that we apply is based on

both the area and perimeter of a region.

The last filtering scheme that we employ is temporal filtering. The temporal
appearance of a moving region is counted and the region is filtered out if it fails
to be present in a pre-defined number of frames. This temporal threshold %,
is computed with respect to the frame rate of the input stream in order to be

consistent in terms of seconds. For example, for a temporal threshold duration

CHAPTER 2. KEYFRAME-BASED DATA MODELING 13

of 0.25 seconds, t, will be 6 if the input video stream is 24 frames-per-second.
To elaborate further, the noise reduction filters that we applied are shown in
Figure 2.3 on a sample frame. In Figure 2.3 (a) and (b), the original frame and
its corresponding processed version at time ¢, are shown, respectively. The object
in the bottom-right corner in Figure 2.3 (b) is failed to pass the temporal filter
since it has not appeared in sufficient number of frames. However, as shown in
Figure 2.3 (c¢), the same object is extracted since it passed the temporal filter ¢,.
On the other hand, the smallest rectangle without an object label in the mid-left
part of the scene in Figure 2.3 (c) is failed to pass the size threshold.

2.3 Inverted Tracking

The wnverted tracking scheme provides a way to keep track of the object appear-
ances on a video. The term “inverted” is generally used to imply that a mapping
or an index from the content is stored along with the actual content. Here, the
actual content is the extracted moving regions and a view-based mapping is held
along with the content. In this scheme, instead of processing moving regions,
the corresponding inverted index is processed for semantic analysis of the input
stream. In other words, the inverted tracking scheme constitutes a data model

for our keyframe labeling algorithm.

Figure 2.4 illustrates the inverted-tracking technique that we employ on a
sample video frame. The video frame I(z, y) is divided into a pre-defined number
of cells corresponding to the subdivisions in z and y directions. In Figure 2.4 (b),
an 8 x 8 grid is used to hold the moving object appearances. The moving object

appearance data is represented in MAM as shown in Figure 2.4 (c).

While computing the moving object appearance within a cell, we consider
the center-of-mass (¢,,) of the region corresponding to the moving object. ¢, =

(Ze,, s Ye,,) 1s computed as in Equation 2.7:

_E?ﬁi _Z??Ji
Le,, = y U — T

m

(2.7)

Cm

n n

where n is the total number of pixels in a region.

CHAPTER 2. KEYFRAME-BASED DATA MODELING 14

Figure 2.3: The noise reduction filters applied on a sample frame. (a) Original
frame from PETS 2006 S1-T1-C dataset [2] at t;, (b) Processed frame at ¢;, and
(c) Processed frame at to = ¢; + 0.25 seconds.

CHAPTER 2. KEYFRAME-BASED DATA MODELING 15

oOo|lo|rpr O O|O|O]|O

oOojlojlo o o|o|o|o

o o|lr | O O|O O|O

oOjlojlo oo |o|o|o

oOjlojlo o o|lo|o|o

o o o o o oo o
O o o o o oo o

o/ o/, | O, |]O O|O

(c)

Figure 2.4: Inverted tracking on a sample frame. (a) Original frame from PETS
2006 S1-T1-C dataset [2], (b) Processed frame for 8 x 8 grid, and (¢) The Motion
Appearance Mask (MAM) of the frame.

CHAPTER 2. KEYFRAME-BASED DATA MODELING 16

Definition 2.1 (Appearance within a Cell) The region r has appeared in a
cell i if ¢, of r is inside the boundaries of i, inclusively. To break ties, the

boundaries are assumed to belong to the cell on the left and down.

Since more than one object might appear in a cell, the technique holds object
lists for each cell. If an object is moving in a cell 7, it is kept in the object-
appearance list of the cell 7 until it leaves the boundaries of the cell. If the object
stops, it is not dropped from the list until a certain amount of time has passed.
A specific type of motion where an object enters the scene, stops for a certain
time, and then leaves the scene is called loitering [3]; this activity is considered
a potential abnormal situation. Hence, our inverted tracking scheme does not
drop objects until the maximum amount of time (generally taken as 60 seconds)
has passed to detect loitering, simply by tracing the object appearance lists.
However, if the object stops and then starts moving before loitering happened,
we can detect that the previously stopped region is moving again by tracing back
the object list belonging to that cell. Based on the assumption that the objects
will be seen after occlusion before loitering, this delayed dropping of objects from
appearance lists also helps handle the occlusion problem of tracking and cope

with object tracking errors.

The object-appearance lists are updated under two conditions: the first one
is when a new region r is detected. Based on the value of the ¢, of r, the cell ¢
that r has appeared in is found and r is appended to that cell’s list with a time
stamp. The second update condition is when a region r has passed through the
boundary between two cells. In this case, r is moved from the list of the cell in

which it previously appeared to the list of the newly entered cell.

The most challenging issue in this scheme is the selection of the grid size.
Object-based heuristics could be applied to select the grid size as a function of
the smallest or the largest object/region size. These heuristics might work, but
in our opinion, the grid size has to be selected in a way that is independent
of the pixel-level parameters (e.g., size, perimeter). The main reason is that the
inverted tracking scheme is a view-based data model on top of the pixel-level, and

hence, the view-based scheme has more adaptive processing capabilities on various

CHAPTER 2. KEYFRAME-BASED DATA MODELING 17

datasets when loosely coupled with the pixel-level representation. Another reason
is the fact that using a variable grid size based on the pixel-level parameters of
the objects makes on-the-fly processing complex. Hence, we used fixed grid sizes

in our experiments.

2.4 Keyframe Detection

The keyframe detection scheme operates only on the motion appearance masks
of the current frame and the previous frame, which makes the processing easier.
The pseudo-code of the keyframe detection algorithm is shown in Figure 2.5. This
algorithm corresponds to the steps 10 and 11 of the keyframe labeling algorithm
shown in Figure 2.2, where a temporal filtering is applied after the keyframe

detection to reduce the mis-detection rate based on sudden changes in MAM;.

Inputs: f, the frame of the input video stream;
MAMy, the motion appearance mask of f;
MAM;_,, the motion appearance mask of f —1;
tstop, the temporal threshold for detecting stop;
|MAM;| denotes the total number of ls in MAM;y;
Outputs: [;, the label of the keyframe;

1. if |MAMy| > |[MAM;_,|

2. l; = SPLIT

3. else if |MAM;| < |MAM;_|

4. l; = JOIN

5. else if MAMy N MAM;y_ #0
6. l; = MOVE

7. else /* MAMy= MAM;_; */
8. stop-count « stop-count +1
9. if stop-count > ts40p

10. lf = STOP

Figure 2.5: The pseudo-code of the keyframe detection algorithm.

Definition 2.2 (Keyframe) Frame f is a keyframe if (MAM; #+ MAM;_,)
V (MAM; = MAM;_, = ... = MAM;_y, if k > fs), where MAM; denotes the

CHAPTER 2. KEYFRAME-BASED DATA MODELING 18

Motion Appearance Mask of f, and fy denotes the maximum allowed number of

frames without motion.

We employed a filtering mechanism to reduce the number of keyframes further
in such a way that if the current and previous frames are labeled as MOVE, the
current frame is not labeled as a keyframe. Figure 2.6 shows the effect of this
keyframe filtering step on a sample video. As expected, the number of extracted
frames without filtering increases in parallel with the grid size due to the number
of frames with MOVE label. However, the final keyframe count is almost constant
for various grid sizes when this filtering is applied. Since the labels assigned
to the keyframes do not change with this filter, the impact of the grid size to
the keyframe labeling algorithm is minimized without degrading the detection

performance.

CHAPTER 2. KEYFRAME-BASED DATA MODELING 19

Keyframe Filtering
S1-T1-C Dataset of PETS 2006
350
300
250 M Keyframes
a3 Extracted
% 200 M Keyframes
s Filtered
2 150 O Final Keyframe
S 100 Count
H*
50
0
4 6 8 10 12 14 16
Grid Size
(a)
Keyframe Filtering
S2-T3-C Dataset of PETS 2006
400
350
300 M Keyframes
3 250 Extracted
€ B Keyframes
g 200 i
5, Filtered
< 150 O Final Keyframe
© Count
& 100
50
0
4 6 8 10 12 14 16
Grid Size

(b)

Figure 2.6: Keyframe filtering applied on PETS 2006 [2] datasets (a) S1-T1-C,
originally has 3012 frames, 154 keyframes are extracted on the average; and (b)
S2-T3-C, originally has 2551 frames, 138 keyframes are extracted on the average.

Chapter 3

Histogram-Based Shape and
Color

Histogram-Based Approach (HBA) is proposed to encode the shape and color low-
level features of the moving objects identified by the preprocessing steps discussed
in Chapter 2. HBA is basically motivated with some of the basic principles of
human visual system. The human visual system identifies objects with the edges
they contain, both on the boundary and in the interior, based on the intensity
differences among pixels [8]. These intensity differences are captured with respect

to the center of mass of these pixels.

HBA processes the information based on the interrelation among pixels to
encode shape and color content. This processing is similar to the human vi-
sual system in the sense that it considers the pixels in the interior and on the
boundary of the objects with respect to the center of mass. In this scheme, each
pixel provides a piece of information about the shape and color content of the
objects [38].

The low-level feature vectors generated by HBA can be used in many ways.
First of all, HBA can be used for content-based querying and retrieval of image
and video data according to the shape and color content [14, 39]. In this the-

sis, this scheme is also used for the object-level meta-data extraction process of

20

CHAPTER 3. HISTOGRAM-BASED SHAPE AND COLOR 21

the scenario-based querying framework. The shape histograms are also used for

obtaining class values for moving objects.

3.1 Histogram Construction

There are three histograms for encoding shape and color information in HBA,
where two of them are used to store the shape content of the objects, and one
of them is used for the color content. The three histograms can be described as

follows:

Distance Histogram stores the Euclidean distance between the center of mass
of an object (¢,,) and all of the pixels within the object. The distance
between a pixel p and ¢, is re-scaled with respect to the maximum distance
dmar among the pixels (i.e., the distance of the farthest pair of pixels).
The scaled distance accumulates into the corresponding bin in the distance
histogram. In other words, instead of a constant scale for the objects, an
object-specific scale metric is employed, which eases to satisfy the scale
invariance by keeping the total number of bins in the distance histogram
constant for all of the objects. We set the dimensionality A of the distance
histogram to 10 for storing pixel-wise distance information with respect to
10 levels.

Angle Histogram stores the counter-clockwise angle between pixel vectors and
the unit vector on the z-axis (e;). The pixel vector v, for a pixel p is a
vector directed from ¢, to p. The unit vector e, is translated to c,,. As
illustrated in Figure 3.1, « is the counter-clockwise angle, polar angle, for
p; and increments the corresponding bin in the angle histogram. This type
of information storage is novel since it provides an easy and intuitive way to
capture angular distribution of the pixels around a fixed object point (¢y,).
We set the dimensionality A of the angle histogram to 36 with a swapping
angle of 10°.

Color Histogram stores the three-dimensional vector ¢; = (h;, s;,v;) in HSV

CHAPTER 3. HISTOGRAM-BASED SHAPE AND COLOR 22

Figure 3.1: Angle histogram calculations. « is the polar angle for object pixel p;.
R, region is an equivalence pixel class for angle histogram, and R, region is an
equivalence pixel class for distance histogram.

color space for all of the pixels p; belonging to an object. We have quan-
tized the HSV color space as follows: A circular quantization of 20° steps
sufficiently separates the hues such that the six primary colors are repre-
sented with three sub-divisions. Saturation and intensity are quantized to
3 levels leading to a proper perceptual tolerance along these dimensions.
Hence, 18 hues, 3 saturations, 3 intensities, and 4 gray levels are encoded
yielding 166 unique colors; i.e., a color feature vector of A = 166 dimensions
(see [43] for details). To improve the effectiveness of the histogram, the con-
tributions of the pixels are weighted according to a probabilistic measure
in a way similar to the one proposed in [6]. A distance weighting-scheme is
employed in the calculation of the pixel weights from the neighborhood, in
which the effects of the closer pixels are increased. The probability of the
occurrence of a color within its some neighborhood, P, is a good estimate
for the local color activity within some neighborhood. If the neighborhood
of a color is uniform, then P is higher, and vice versa. In this approach,
the contribution of uniform regions is decreased and that of singular points

is increased. The computations are based on the following equation:

(3.1)

CHAPTER 3. HISTOGRAM-BASED SHAPE AND COLOR 23

where w, is the weight of pixel p, and N,(c) is the number of pixels having
color ¢ as p within the neighborhood of p. w. is the weight assigned to the
unique color c. The color weights can be set to 1, but to embed global color

information to the equation, w, can be computed as:

(3.2)

where N, is the number of pixels having color ¢, and Np is the area of the

object.

In HBA, the pixel weights are also scaled with respect to the distances
of the pixels within the neighborhood of a pixel. Rectangular or octagonal
n xn neighborhood settings are valid for our approach. Having performed a
reasonable amount of experiments, the neighborhood of the pixels is chosen
as 5 X 5 octagonal windows, since the use of octagonal neighborhoods is

more intuitive from the distance point of view.

The two histograms that store shape information are constructed with respect
to the center of mass (¢,,) of the object. The reasons for selecting ¢, are given
in [38].

The three histograms are scale, rotation and translation invariant. The scale
invariance is provided by re-scaling with respect to the maximum object distance
(i.e., the distance of the farthest pair of pixels in the object) for distance his-
togram, by dividing each bin by the total number of pixels for angle histogram.
The weighted storage of the pixels (see Equation 3.1) provides scale invariance

for color histogram.

The translation invariance of the histograms is quite obvious and the rotation
invariance is an issue for the angle histogram only. For rotation normalization, the
major axis of the object is found by traversing the boundary of the object. The
major axis is the line segment connecting the farthest pair of pixels [52]. Then,
the angle a4 between the major axis and the x-axis is computed (for the object
in Figure 3.1, apra = 150°). It can be observed that 0° < apa < 180°. The

object is then rotated clockwise so that the major axis becomes horizontal, i.e.,

CHAPTER 3. HISTOGRAM-BASED SHAPE AND COLOR 24

the object is rotated —a;jr4 degrees. Since the angle histogram is filled according

to this rotated form of the object, the angle histogram is rotation invariant.

3.2 Similarity Calculation

We used the histogram intersection technique [47] for the similarity calculations
between test objects and trained objects. In this technique, two normalized
histograms (i.e., combined feature vectors) are intersected as a whole to end up
with a distance value. Both of the histograms must be of the same size, and
the distance between the histograms is a floating point number between 0 and 1.
Equivalence is designated with similarity value 1, and the similarity between two

histograms decreases in parallel with the similarity value approaches to 0.

Let Hy[1..n] and H,[l..n] denote two normalized histograms of size n, and Sy, m,
denote the similarity value between H; and H,. Then, Sy, g, can be expressed

as: >or min(H, [7], Ha[i))

min(|Hy|, |H|)
where |H| denotes the Li-norm (i.e., length) of a histogram H.

SHl,HQ = (33)

In HBA, since the extracted low-level object content is composed of three
separate histograms, the total similarity between the query object and a database

object is determined as follows:

Sc X + Sp X + 54 X
Sy =2¢ e D * WD 4 wA, (3.4)
We + Wp + Wy

where S¢, Sp, and S4 denote similarities in color, distance, and shape histograms,
computed by histogram intersection, respectively. In this equation, color, dis-
tance, and angle histograms are linearly combined with pre-specified weights w¢,

wp, and w4, respectively.

The color and shape features, as being the most frequent descriptors, are
used in most of the existing systems in a combined way. The main reason for

this combined usage is to improve the retrieval effectiveness. A global distance

CHAPTER 3. HISTOGRAM-BASED SHAPE AND COLOR 25

value can be obtained by linear combination of three partial distances with ap-
propriate weights [24] during the classification process. A possible set of weights
can be determined by performing similarity calculations for each of the two fea-
ture vectors separately. The average-case retrieval accuracies as a result of these
two similarity calculations are normalized and used as feature weights in the lin-
ear combination. This pre-computed weight assignment provides more effective

results since this approach reflects the characteristics of the datasets.

Chapter 4

Meta-Data Extraction

The meta-data is generic in the sense that the extracted predicates appear in al-
most any type of video-surveillance application. The set of rules used in querying
can be tailored to specific applications by defining domain-specific predicates in
terms of these basic ones. The extracted meta-data includes both object-based
facts (i.e., class value, color, shape) and event-based facts (event-label, acting
objects, frame number), which are stored at keyframes in a video. The cell-id
suggested by the inverted-tracking scheme is also stored with the object-based
and event-based meta-data facts to provide view-based querying support. We
inserted a video-id descriptor to each of the facts to discriminate the meta-data

with respect to different video files in an archive.

Object-based meta-data: The object-based facts contain the class value of the
object as well as high-level color and shape descriptors (see <classdesc>,
<colordesc>, and <shapedesc> in Appendix A.1). The object class type is
determined by the classification algorithm. High-level feature descriptors
are determined by performing similarity calculations between the feature
vectors of the objects and the pre-defined vectors corresponding to a pre-
defined set of colors and shape primitives. Since the color and shape feature
vectors of the objects may change in time (especially color), this object

information is stored when a keyframe is obtained. Hence, keyframe number

26

CHAPTER 4. META-DATA EXTRACTION 27

and cell id are stored along with the fact. The fact about object information

is as follows:

object-info(video-id, object-id, object-class-desc,
object-color-desc, object-shape-desc,

keyframe-number, cell-id).

Event-based meta-data: Event-based meta-data is composed of facts for both
single-object events and multi-object events. Since an event occurs at a spe-
cific keyframe, the meta-data for event-based facts are stored at keyframes.
The event labels for both single and multi object event types are also stored
separately with the video ids and keyframe number to be used within the

inverse querying support. The facts about events are as follows:
event-info(video-id, event-label, keyframe-number, cell-id).

single-object-event-label(video-id, object-id,

keyframe-number, cell-id).

multi-object-event-label(video-id, first-object-id,
second-object-id, direction,

keyframe-number, cell-id).

We used an interval-based extension scheme to utilize the fact storage mech-
anism. If the same event is triggered for at least two consecutive keyframes, a
keyframe interval is stored with the event fact instead of separate facts with con-
secutive keyframe numbers. This interval extension is applied for all facts where
it is applicable. This type of fact storage reduces the storage costs of the system
significantly. Query processing mechanism is also capable of processing interval
based fact storage. A sample listing for the facts-base to clarify the meta-data

storage mechanism that we use is given in Appendix A.3.

CHAPTER 4. META-DATA EXTRACTION 28

4.1 Object-based Meta-Data Extraction

The object-based meta-data contains high-level color and shape descriptors and
a class value for the objects in our scenario-based querying framework. Due
to the nature of video surveillance, the specification of complex queries on the
shape and color content within scenarios is quite uncommon. An operator might
simply query the abnormalities with a few keywords describing the color and
shape information of the object; e.g., man with a black coat, box-shaped blue bag.
However, the proposed Histogram-Based Approach (HBA) can be utilized for
searches based on the color and/or shape content of the objects. HBA is used to
obtain high-level descriptors for color and shape information, as well as utilized

in the classification scheme to obtain a class label.

4.1.1 Color Descriptor

A set of primary colors is chosen to obtain a high-level color descriptor. The
primary colors are encoded in a color histogram, and the histogram intersection
technique is used to obtain the similarities between the primary color histograms
and the color histogram of the object. The most similar primary color label is
chosen as the high-level color descriptor for the object. The label corresponding

to the primary color of the object is used as the color meta-data.

4.1.2 Shape Descriptor

High-level shape descriptors are obtained in a similar way as color descriptors. A
set, of primitive shapes that an operator may use to label an object is chosen to
obtain a high-level shape descriptor. The shape histograms are constructed for
these shape elements. Since our feature vectors are scale and rotation invariant,
sample figures for box, cone, cylinder, and sphere are used to encode the shape
information. The most similar pre-defined shape element is chosen as the high-

level shape descriptor for the object. A more standard way of specifying high-level

CHAPTER 4. META-DATA EXTRACTION 29

shape descriptors might be used to increase the expressive power of the queries.

4.1.3 Class Descriptor

The objects are categorized into only three classes: human, non-human, and
object-group. The low-level color and shape features extracted are used to obtain
a class type. The color vector stores the distance-weighted intensity values in
order to take the color distribution around a pixel into account. This type of
color-feature encoding is different from traditional color vectors, and as shown
in [38], aids the object-classification process. The shape vector is a composition
of a region’s angular and distance spans ([38, 39]), which are computed based on
the region’s center of mass (c,,). These encoding schemes are invariant under

scale, rotation, and translation, and have an effective expressive power [39].

In our k-nearest neighbors based classification scheme, the color and shape
information can be linearly combined with proper weights and we use the tempo-
ral averages of these vectors computed during tracking. A global distance value
can be obtained by linear combination of three partial distances with appropriate
weights during the classification process [24]. A possible set of weights can be de-
termined by performing similarity calculations for each of the two feature vectors
separately. The average-case retrieval accuracies as a result of these two similarity
calculations are normalized and used as feature weights in the linear combination.
This pre-computed weight assignment provides more effective results since this

approach reflects the characteristics of the datasets.

We have used the PETS 2004 [1] and PETS 2006 [2] benchmark datasets for
the training phases. 918 human, 94 non-human, and 133 object-group samples
from PETS 2004 dataset; and 1674 human, 313 non-human, and 492 object-group
samples from PETS 2006 dataset are selected. The number of nearest neighbors
(k) is chosen as 10, and a fivefold cross validation method is employed, where
the 20% of the samples are used each time for testing. The preprocessing steps
include the extraction of the moving regions and their corresponding color and

shape vectors. The weights of the color feature vectors are found to be lower than

CHAPTER 4. META-DATA EXTRACTION 30

the other two feature vectors (i.e., distance and angular spans), as expected, since
the color information is less discriminative in video surveillance domain. The
classification algorithm outputs percentages for the class types (e.g., 47% human,
34% non-human, 19% object-group), and the moving region is classified as the
type with the highest percentage value. Effective clustering techniques to further

split the object groups can be embedded to improve the classification scheme.

4.2 FEvent-based Meta-Data Extraction

Having classified the moving objects in a video sequence, we annotated the actions
of objects automatically. Counting the number of moving objects gives an impor-
tant clue about the annotation of an event, since the number of moving objects
changes at the time of an event. Hence, we utilized a keyframe-based annotation
process, where a keyframe is identified when the total number of moving objects
changes or the cell-id of an object changes. This keyframe-based processing pro-
vides an easier way for detecting conceptual abnormalities. As shown in [13], this
type of annotation and meta-data usage reduces the search space and enables

efficient querying when the video archives are large.

4.2.1 Single Object Annotation

Our system detects the following basic single-object actions: enter, leave, stop,
stop-and-go, and eight directional forms of move coupled with the directional
predicates (see <direction> in Appendix A.l1). The orientation of a moving
region, as suggested by our tracking algorithm, is used to directly annotate move
actions. When an object stops and moves again later, we annotate the action as
a stop-and-go type after detecting the object’s next move within a certain time
interval. If this type of action takes more time than allowed, then we annotate
the action as loitering. The other types of single-object actions are rather easier

to detect using the inverted tracking algorithm.

CHAPTER 4. META-DATA EXTRACTION 31

4.2.2 Multi-Object Annotation

Multi-object actions are also annotated in our framework. These actions are
approach, depart, deposit, pick-up, crossover, and move-together. The first two
can be identified by tracking the Euclidean distance between two objects with
respect to the center of mass of the objects in consecutive frames. If the distance
between two objects in a previous frame is greater /smaller than the distance in the
current frame, these two objects are approaching/departing to/from each other.
The remaining four types of multi-object actions are the primary sources for
anomalous situations. They are relatively harder to detect and require complex

mechanisms, as described in the sequel.

The keyframe labeling algorithm (see Figure 2.2) that we employ transforms
the input video stream to a textual representation of sequence of events in the
video. The steps dealing with moving regions are performed once and a tex-
tual representation of the video with a relatively smaller size is achieved. The
anomaly detection, then, becomes detecting a sequence of event labels in this in-
put sequence. We devise three finite state automata for crossover, move-together,
deposit, and pick up. Formally, a deterministic Finite State Automaton (FSA) is
denoted as a quintuple (X, S, Sy, §, F), where X is the input alphabet (a finite,
non-empty set of symbols); S is a finite, non-empty set of states; Sy is an initial
state where Sy € S; 0 is the state transition function such that § : S x ¥ — S;
and F'is the set of final states, where F* C S. The finite state automata that we
devised for crossover, move-together, deposit, and pickup will be discussed based
on this notation. The input to these finite state automata is the sequence of
keyframe labels representing the input video stream. Reasonable detection ac-
curacies are achieved in our experiments, which is important for using keyframe
labeling technique in anomaly detection. Having detected the anomalies, the

facts-base is populated accordingly and a real-time alerting scheme is triggered.

CHAPTER 4. META-DATA EXTRACTION 32

4.2.2.1 Crossover and Move-Together

A crossover situation occurs when at least two moving objects move in opposite
directions and cross each other, whereas a move-together situation occurs when
the objects move in the same direction and the faster object passes the slower
object. These situations can be extended for more than two objects in a similar
manner. In both situations, tracking the moving objects based on the locations to
detect crossover situation requires high processing cost. The FSA-based approach
operates in a more effective way since the input size is reduced. When detection
is of concern, crossover and move-together can be detected by a single FSA-based
mechanism, with the only difference that the motion direction of the objects at

the time of occlusion has to be taken into consideration.

SPLIT JOIN SPLIT

JOIN, MOVE, SPLIT, MOVE, JOIN, MOVE,
STOP STOP STOP

Figure 4.1: The FSA for recognizing event sequence for crossover and move-
together.

Let FSAc = (X, Sc, So, 0c, Fc) represent the finite state automaton detecting
crossover and move-together event occurrences S¢ = {Sy, S1, S2, 53}, ¥ = {JOIN,
SPLIT, MOVE, STOP}, and Fp = {Ss}. Figure 4.1 presents FSA¢ and Table 4.1

gives the state transition function dc.

A sample crossover detection by FSAc on a sample video of PETS 2006
dataset [2] is shown in Figure 4.4. At the beginning, the active state s. of FSA¢

CHAPTER 4. META-DATA EXTRACTION 33

| [SPLIT | JOIN | MOVE | STOP |

So | 51 So So So
St St S St St
So Ss So So So
S3 | So So So So

Table 4.1: The state transition function d- for the automaton detecting crossover
and move-together. Sy is the initial state, and S is the final state accepting event
sequence for crossover and move-together.

is at Sy. When the objects shown in Figure 4.4 (a) enters the scene, s, be-
comes 51, and eventually |MAM;| = 2, where | MAM;| denotes the total number
of 1s in MAM;. When the execution reaches at Figure 4.4 (b), |MAM;| =1
and |MAM;_,| = 2, which signals JOIN, hence s, reaches at S,. Finally in Fig-
ure 4.4 (c), |MAM;| = 2 again and |MAM;_,| = 1, which signals SPLIT and makes

s. reach the final state Ss.

4.2.2.2 Deposit

A deposit situation occurs when a moving object leaves a relatively smaller object
(e.g., suitcase, bag) in the video scene. Effective motion models are required for

detecting the moving object’s action.

| [SPLIT | JOIN | MOVE | STOP |

Sg Sg Sg 51 Sg
51 52 50 51 Sl
Sa |l So So S3 S3
Sz || So So So So

Table 4.2: The state transition function dp for the automaton detecting deposit.
Sp is the initial state, and S3 is the final state accepting event sequence for deposit.

Let FSAp (3, Sp, So, dp, Fp) represent the finite state automaton detecting
deposit event occurrences Sp = {Sy, S1, 52,53}, ¥ = {JOIN, SPLIT, MOVE,
STOP}, and Fp = {S;}. Figure 4.2 presents FSAp and Table 4.2 gives the state

transition function dp.

CHAPTER 4. META-DATA EXTRACTION 34

JOIN, SPLIT

MOVE, STOP

L

JOIN, SPLIT, MOVE, STOP
STOP

Figure 4.2: The FSA for recognizing event sequence for deposit.

A sample deposit detection by FSAp on a sample video of PETS 2004
dataset [1] is shown in Figure 4.5. At the beginning, the active state sq of FSAp
is at Sp. When the object shown in Figure 4.5 (a) enters the scene, s; becomes
S1, and eventually |MAM;| = 1. When the execution reaches at Figure 4.5 (b),
|MAM;| = 2 and |MAM;_,| = 1, which signals SPLIT, hence s, reaches at S,.
Finally in Figure 4.5 (c), MOVE is detected when |MAM;| = 2 and |MAM;_| = 2,

which makes s; reach the final state Ss.

4.2.2.3 Pickup

Pickup can be considered as the dual of deposit; thus a pickup situation occurs
when a moving object picks up a relatively smaller object (e.g., suitcase, bag) in
the video scene. Similarly, effective motion models are required for detecting the

moving object’s action.

Let FSAp = (X, Sp, So, 0p, Fp) represent the finite state automaton detecting
pickup event occurrences Sp = {Sy, S, 59,53}, ¥ = {JOIN, SPLIT, MOVE,
STOP}, and Fp = {Ss}. Figure 4.3 presents FSAp and Table 4.3 gives the state

CHAPTER 4. META-DATA EXTRACTION 35

| [SPLIT | JOIN | MOVE | STOP |

So | So So St So
Si So So St S
So So So Ss So
S3 | So So So So

Table 4.3: The state transition function ¢p for the automaton detecting pickup.
Sp is the initial state, and Ss is the final state accepting event sequence for pickup.

transition function dp.

MOVE STOP MOVE

JOIN, SPLIT, JOIN, SPLIT,
STOP STOP

Figure 4.3: The FSA for recognizing event sequence for pickup.

A sample pickup detection by FSAp on a sample video of PETS 2004
dataset [1] is shown in Figure 4.6. At the beginning, the active state s, of FSAp
is at Sp. When the object shown in Figure 4.6 (a) enters the scene, s; becomes
S1, and eventually |MAM;| = 1. When the execution reaches at Figure 4.6 (b),
|MAM;| = 1 but sufficiently many frames have passed for ¢,,, which signals
STOP, hence s4 reaches at S,. Finally in Figure 4.6 (c), MOVE is detected when
|MAM;| =1 and |MAM;_,| = 1, which makes s; reach the final state S;.

CHAPTER 4. META-DATA EXTRACTION 36

Figure 4.4: FSA state transitions for crossover detection for PETS 2006 S1-T1-C
dataset [2]. (a) Transition from Sy to Sy, (b) Transition from S; to S, and (c)
Transition from S to S3 and crossover detection.

CHAPTER 4. META-DATA EXTRACTION 37

Figure 4.5: FSA state transitions for deposit detection for PETS 2004 leftbag
dataset [1]. (a) Transition from Sy to Sy, (b) Transition from S; to Ss, and (c)
Transition from S5 to S3 and deposit detection.

38

CHAPTER 4. META-DATA EXTRACTION

;--uhfL

4--5.11
JEBERL
N A

N

--nh,L

Figure 4.6: FSA state transitions for pickup detection for PETS 2004 leftbag

Transition from S; to Sz, and (c)

to S3 and pickup detection.

)

b

(

to Sl,

Transition from Sy

)

a

(

dataset [1].

Transition from S,

CHAPTER 4. META-DATA EXTRACTION 39

4.2.3 Post-Detection Process

Post-processing is applied after the detection process in event-based meta-data
extraction. This step populates the fact-base by determining the objects partici-
pating in an abnormal event, motion directions of the objects, etc. The directional
relations between the moving objects are handled by the help of the inverted
tracking scheme. Single object facts are added directly and a post-processing
step is required for multi-object events. If more than two objects are detected
in a keyframe, the multi-object actions (predicates) are extracted for all of the
object pairs. Single-object predicates are also extracted throughout the appear-
ance of the objects in the scene. The following sequence of operations for two
moving objects illustrates the post-detection process for event-based meta-data

extraction:

Two objects O; and O, are identified. The annotation scheme throws
enter(O;) and enter(Oy).

e On the next keyframe, move predicates are thrown with the valid direc-
tions for O; and O,. Based on the Euclidean distance between O; and Os,

approach or depart predicate is thrown.

o If F'SAp or FSAp accepted a sequence of keyframe labels a priori, and O
and O, are classified as human and non-human, respectively, then a deposit

or pick-up predicate is stored (see Figure 4.7 (a) and (b)).

o If F'SA. accepted a sequence of keyframe labels a priori, and both O; and O,
are human, then crossover and/or move-together fact is extracted depending

on the humans’ orientations (see Figure 4.7 (¢) and (d)).

o If FSA- accepted a sequence of keyframe labels a priori, and both O; and
Oy are non-human, the event could be mowve-together, assuming that the

two objects are thrown by a human outside the camera’s field of view.

e To improve the accuracy of retrieval, the directional relations for multi-

object actions are also identified (e.g., deposit(Oy, Oq, south) is extracted).

CHAPTER 4. META-DATA EXTRACTION 40

H H H
NH NH
I
I I I
t1 t2 t3
()
H H H
NH NH
I
| | |
t1 t2 t3
(b)
H1 H1 H1
H2
H2 H2
| | |
t1 t2 t3
(c)
H1 H1 H1
| | |
tL 2 t3
(d)

Figure 4.7: Annotation of events. (a) 2 objects are detected at t1, and they are
classified as one human (H), and one non-human (NH). Then, they are detected
as two single objects at t2, and when NH stops at t3, deposit is identified.
(b) Similar to (a), but pick up is identified. (c) H1 and H2 are classified as
human at t1, and an object group is detected at t2. By tracking the orientations
of the objects within t1-t3 time interval, crossover is identified. (d) Similar to
(c), except that move together is identified because H1 and H2 move in the
same direction.

Chapter 5

Scenario-Based Querying

One of the most important tasks in automated video surveillance is query process-
ing. Existing systems generally support textual searches for event queries [41, 46].
Some systems also support object queries to some extent [21]. However, not every
abnormal situation can be queried by keywords, predicates, etc. Some situations
can be treated as a sequence of events and the whole sequence is of interest. One
of the main contributions of our work is the scenario-based querying capability
to detect such sequences, which is not easy to handle in real time. By ordering
the events in a scenario, the temporal information about the events is included

in the query specification.

Scenario-based querying by an effective set of semantic and low-level fea-
tures improves the retrieval effectiveness of the framework and decreases the time
needed for offline inspection. These gains are more meaningful when the number
of events to be searched is relatively large and hard to identify as suspicious in

real time, as in after-the-fact analysis in video forensics.

We observe that there is a need for enhancing object queries with low-level fea-
ture descriptors. When suspicious events occur, directional specifications about
objects give valuable information. Our approach provides support for a wide

range of event and object queries, including low-level features and directional

41

CHAPTER 5. SCENARIO-BASED QUERYING 42

predicates, to be posed as a part of the scenario. We also include some special-
ized query types to provide coherent support for after-the-fact activity analysis.
Inverse querying, most popular path, and most abnormal region query types are
currently supported. Due to the flexible nature of our data and query models,

more complex queries can be formulated.

5.1 VSQL: Video Surveillance Query Language

Our Video Surveillance Query Language (VSQL) provides support for integrated
querying of video surveillance archives by semantic and low-level features. Se-
mantic subqueries contain 12 single-object event types and 6 multi-object event
types, which can be combined to form more complex queries. The timegap value
has more meaning when specified between the same kind of event types (e.g., a
pair of single-object events or a pair of multi-object events). Descriptive keywords
can be supplied for the color and shape features of objects. Instead of a detailed
expression of these low-level features, an intuitive way of query specification is
chosen in our model. It is more realistic that the human operators inspecting
(i.e., querying) the videos would choose these features themselves from a set of
pre-specified labels corresponding to the primary colors and a set of primitive
shapes. VSQL also provides support for inverse querying, which returns a list
of objects or events that occurred within a certain time interval. The grammar

specification for VSQL is given in Appendix A.1.

Our query model can be easily tailored to various video-surveillance domains.
The extracted semantic predicates are the basic ones that can happen in almost
every video-surveillance application. Since a rule-based model is chosen for query
processing, different context models for different domains can be applied by ex-

tending the predicate specifications.

CHAPTER 5. SCENARIO-BASED QUERYING 43

5.1.1 Scenario-based Query

A scenario-based query consists of a scenario part and an object information part.
The scenario part is a semantic sequence of single-object and/or multi-object
event subqueries ordered temporally. Single-object queries are enter/leave scene,
stop/stop-and-go, and move in 8 directions. Multi-object queries include ap-
proach/depart, deposit/pick-up, and crossover/move-together. Directional pred-
icates can be used to enrich the multi-object queries. The object information
part is a list of object-based information predicates including low-level features
and/or class labels for objects. The following examples illustrate the scenario-
based queries in VSQL.

Query 5.1 A person enters a lobby with a bag, deposits his bag, and leaves the
lobby.

select segment

from all

where objectA = objdata(class=human),

objectB = objdata(class=non-human)

and enter(objectA) enter(objectB)
deposit(objectA,objectB) leave(objecth)

The query strings are formed by object and event conditions. Object condi-
tions are expressed by <objcondition> and event conditions are expressed by
<event-condition>, as stated in the grammar for VSQL in Appendix A.1. Based
on the fact-base snapshot in Appendix A.3, the result of the scenario-based query
is the segment [12,17].

Query 5.2 Two people enter a lobby, they meet, shake hands, and then leave.

select segment

from all

CHAPTER 5. SCENARIO-BASED QUERYING 44

where objectA = objdata(class=human),

objectB = objdata(class=human)
and enter(objectA) enter(objectB)
crossover(objectA,objectB)

leave(objectA) leave(objectA)

5.1.2 Event-based Query

Users may want to query all occurrences of a single object or multi-object event

in the archive. Query 5.3 is an example of event-based querying.

Query 5.3 Where have all the crossovers happened in videos 1 and 4?

select frames
from 1,4

where objectA = objdata(class=human),

objectB = objdata(class=human)

and crossover(objectA, objectB)

5.1.3 Object-based Query

The existence or appearance of an object can be queried. The low-level features
(color, shape) and class values (human, non-human, object-group) of the objects

can be used to enrich the query. Query 5.4 is an example of object-based querying.

Query 5.4 List the frames where a black object has appeared.

select frames
from all

where objectA = objdata(class=non-human, color=black)

CHAPTER 5. SCENARIO-BASED QUERYING 45

Another type of object-query specification uses the unification concept in Pro-
log, a mechanism which binds variables to atoms. The query processor returns
all the objects satisfying some pre-specified conditions, such as color, shape and
class type. The result of this type of querying is a list of object labels bound to
the variables in the query. This type of querying is more meaningful when the
video archive is well-annotated, which means that the objects in videos have been
assigned labels (e.g., domain-specific names) a priori. Query 5.5 is an example

of object-based querying with unification.

Query 5.5 List the names of all the persons with a black coat.

select OBJECTX
from all

where O0BJECTX = objdata(class=human, color=black)

5.1.4 Inverse Query

Inverse querying means retrieving the list of events or objects appearing within
a certain time interval in a video. This inverse querying is very valuable for
offline inspection and is most effective when domain-specific activity analysis is

of concern. Queries 5.6 and 5.7 are examples of inverse querying.

Query 5.6 Which events occurred between keyframes 5 and 25 in video 17

select events
from 1

where inverse(5, 25)

Query 5.7 Which objects appear between keyframes 5 and 10 in videos 3 and 4?

select objects
from 3,4

where inverse(5, 10)

CHAPTER 5. SCENARIO-BASED QUERYING 46

5.1.5 View-based Query

Since operators look at a fixed scene and inspect moving objects while trying
to figure out the abnormal situations, a fixed view-based addressing provides
a medium for view-based querying of the scene content, which is provided by
the inverted tracking scheme. Examples of supported queries include the most
popular path of the moving objects, the number of objects entering the scene
from the left/right side, and the cell in which a specific event happened most
frequently. Queries 5.8 and 5.9 are examples of the most popular path and the

most abnormal region query types.

Query 5.8 What is the most popular path in video 19

select most-popular-path

from 1

Query 5.9 What is the most abnormal region in videos 3 and 4%

select most—-abnormal-region

from 3,4

5.1.6 External Predicate Definition

Our query model allows for defining external predicates in terms of the existing
ones. The following is a simple example of external predicate definition following
the Prolog conventions. The 16-cell grid is ordered row-wise, starting from the
top-left corner, with cells 1, 5, 9 and 13 on the left. Thus, enter-left specifies a

predicate of entrance from the left of the scene.

enter-left(V, X, F, G) :- enter(V, X, F, 1);
enter(V, X, F, 5);
enter(V, X, F, 9);
enter(V, X, F, 13).

CHAPTER 5. SCENARIO-BASED QUERYING 47

Once the enter-left predicate has been specified, it can be used as the existing
predicate in scenario-based and event-based querying, as shown in Query 5.10.
Note that a timegap value of 60 seconds is used for querying loitering. Note also
that mowve-any is another external predicate defined to query the move predicate

in any of the eight directions.

Query 5.10 List all the loitering intervals caused by the entrances from the left

i video 3.

select frames
from 3
where objectA = objdata(class=human) and

enter-left(objectA) stop(objectA) 60 move-any(objectA)

5.2 Query Processing

Rule-based modeling is an effective way of querying video databases [13]. Hence,
a rule-based model has been designed for querying video surveillance archives.
Figure 5.1 shows the flow of execution in our query processing scheme. A VSQL
query is sent to our inference engine, Prolog, which processes the meta-data (i.e.,
fact-base) by using a set of rules (i.e., rule-base). Our rule-base is customizable
to specific applications since external predicates can be defined in terms of the

existing events.

Prior to this rule-based processing, the submitted query string is parsed using
a lexical analyzer. Variables (objects unbounded to a value prior to querying)
can be specified as part of the query that is to be bound to meta-data after query
processing. Scenario with bounded atoms/variables is processed by the inference
engine to produce the result set. Logical operators can be applied for the result
sets of the query types, which enables conjunction and disjunction on more than

one queries.

CHAPTER 5. SCENARIO-BASED QUERYING

48

Graphical User Interface (GUI)

Query Result
Presentation

Visua Query

target

filtering
results

Specification | |

binding atoms
and/or variables

SWI Prolog ! Rule Fact
Inference Engine

Scenario with Bounded
Atoms/Variables

Rule-Based Query Processing

Figure 5.1: The query-processing flowchart. A VSQL query submitted to the
GUT passes through the parsing, binding, and processing steps; the results are

then presented to the user.

CHAPTER 5. SCENARIO-BASED QUERYING 49

The result of a scenario-based query is a set of intervals, where each subquery
is satisfied in an interval element in the result set. Satisfying a scenario-based
query means that all subqueries in the scenario have to occur in a specific temporal

interval.

Definition 5.1 (Result of a Scenario-based Query in a Video) The result
Rs,; of a scenario-based query S in a video v; is a set of intervals specified as fol-

lows:

Rs; = {[ss,es]| all the events in S ezist in order within [ss, es| in video v;}.

Definition 5.2 (Result of a Scenario-based Query) The result Rs of a
scenario-based query S for all the videos in the archive is a set of pairs speci-

fied as follows:

Rg = {(i, Rg;)|i denotes the index of video v; in the archive}.

The inference engine returns a list of keyframe numbers as the result of an
event-based query, where the event specified in the query has occurred based on
the facts. This result is not a set of intervals because an event occurs at a single

keyframe.

Definition 5.3 (Result of an Event-based Query in a Video) The result
Rp; of an event-based query E in a video v; is a set of frame numbers, speci-

fied as follows:
Rg; = {fE| event E occurs in fg}.
Definition 5.4 (Result of an Event-based Query) The result Rp of an

event-based query E for all the videos in the archive is a set of pairs, specified as

follows:

Rp ={(i, Rp;)|i denotes the index of video v; in the archive}.

CHAPTER 5. SCENARIO-BASED QUERYING 50

The inference engine returns a list of keyframes as the result of an object-based
query, where the object has appeared. If unification is used in the object-based
query, then the result is a list of object labels bounded to the unbounded variable

in the query string.

A list of event labels or object labels is the result set for inverse querying.
Since there might be so many event labels during the time interval specified
in the query string, only the important ones that are valuable for after-the-
fact analysis are selected for the result set. These are crossover, move-together,
deposit, pickup, enter, leave, stop, and stop-and-go. The result for Query 5.6
is {(1, {enter, deposit, stop, leave})} for the time interval between 5% and 25"

keyframes.

5.2.1 Logical Operators on Query Results

The intervals in the result sets can be categorized into two types: non-atomic and
atomic. Non-atomicity implies that the condition holds for every frame within the
interval. Thus, the condition holds for any sub-interval of a non-atomic interval.
Conversely, the condition associated with an atomic interval does not hold for
all of its sub-intervals. The intervals in the results of scenario-based queries
are atomic, hence they cannot be broken into parts. With this fact in mind,
logical conjunction and disjunction operations can be applied to the scenario-
based queries. Since the result of an event-based query is a set of frames, the
logical operations can be applied directly on the results. Similarly, these logical
operations can be applied directly to object-based queries and inverse queries,

since the results are simple sets.

5.2.1.1 Conjunction

Assume two scenario-based queries and their results R, and R,, that contain
atomic intervals. Figure 5.2 presents the pseudo-code for obtaining the conjunc-

tion Rc = Ry A Ry of the query results.

CHAPTER 5. SCENARIO-BASED QUERYING 51

Rc = Ry N Ry is computed as follows:
1. initialize the conjunction R¢ to 0,
2. V; (i,Ry;)-pair in R,

2.1 if 3 (i, Ry;)-pair in Ry, then

2.1.1 compute RC’,i as Rl,i/\RQ,i,
2.1.2 append (i, Rc;) to Rc

Rc; = Ri; A Ry at line 2.1.1 is computed as follows:
1. initialize the conjunction R¢; to 0,
2. VY, where [sq;,e1] is the j"-interval in Ry

2.1 V), where [sy,egx] is the kth-interval in Ry ;

2.1.1 if sy, <s1; & ey > e1;, then append [sgj,e2;] to Ry,
2.1.2 if sy > s1; & ey < ey, then append [s1j,e1] to Ry,

2.1.3 otherwise R¢; remains unchanged.

Figure 5.2: The conjunction operation applied on query results.

5.2.1.2 Disjunction

Similar arguments also hold for disjunction. We can assume two scenario-based
queries and their results R; and Ry, which contain atomic intervals. Figure 5.3
presents the pseudo-code for obtaining the disjunction Rp = RV Rs of the query
results. Assuming R; as in Eq. 5.1 and R, as in Eq. 5.2, the disjunction Rp can

be determined as follows:
Assume two scenario-based queries and their results
Ry = {(1,{[50,325], [447, 740]}), (3, {[25, 285], [780, 940]}) }, (5.1)

and
Ry = {(1, {[200, 475], [520, 700]}), (2, {[120, 340]})}. (5.2)

CHAPTER 5. SCENARIO-BASED QUERYING

Rp = R V Ry is computed as follows:
1. initialize the disjunction Rp to),
2. V; (i,Ri;)-pair in Ry
2.1 if 3 (4, Rp;)-pair in Ry, then
2.1.1 compute Rp; as Ri;V Ry,
2.1.2 append (i, Rp;) to Rp
2.2 else append (i, R;;)-pair to Rp

Rp; = Ry1;V Ry; at line 2.1.1 is computed as follows:
1. initialize the disjunction Rp; to 0,

2. V; where [sj,e1] is the j"-interval in Ry
2.1 append [si;,e1] to Rp;

3. Vi where [syf,eax] is the k'-interval in Ry

3.1 append [sy,eak] to Rp,

4. remove RC’,i = Rl,i A RQ’Z' from RD,i .

Figure 5.3: The disjunction operation applied on query results.

If we apply the conjunction and disjunction algorithms in Figure 5.2 and Fig-
ure 5.3 to obtain Rc = R4y AN Ry and Rp = Ry V Rs,

Re={(1,Ri1 AN Ryq)},

Since [447,740] D [520, 700],

Riy A Ry = {[447,740]},
Hence,
Re = {(1, {[447,740]})}, and
Rp = {(1,{[50, 325], [447, 740], 200, 475]}),

(3, {[25, 285], [780,940]}), (2, {[120, 340]})}.

52

CHAPTER 5. SCENARIO-BASED QUERYING 53

5.2.2 View-based Query Processing

The results of these queries are based on the row-wise indexing of the cells in
inverted tracking, where the first cell is in the top-left corner. The most abnormal
region is determined by inspecting the high-level events (i.e., deposit, pick-up,
crossover, move-together). The cell-id that these events occur most is selected
as the most abnormal region. This might be a set of regions since the event

occurrences are counted.

The most popular path is determined by inspecting the underlying data model
for inverted tracking. The cell-ids that objects enter the scene most is selected
as the most entered region, which is the initial point for the most popular path.
The end of this path is traced among the remaining three sides of the scene. If
the most entered region is a corner cell, that tracing is carried out among the
remaining two sides. This tracing operation to find the end of the path includes
determining the cell-id that objects leave the scene most. Having determined the
start, end, and the direction of the path, the cells between the start and end cells

are traversed such that the cells visited by the objects most are selected.

The result for Query 5.8 is {(1,{5,6,10,11,12})}. The starting cell is found
to be 5 and the end cell is determined as 12. All the in-between cells (i.e.,
6,9,10,7,11,8 in traversal order) are inspected and the most popular path is
obtained. The result for Query 5.9 is {(3,{7}), (4, {14})}.

5.3 Visual Query Specification

We include a visual query-specification interface to provide a mechanism for an
intuitive way of VSQL expression. This interface is easy to use and devised in
a flexible manner, which makes it easily tailored to various domains. The event
predicate labels are manageable through XML-based configuration files; hence,

domain-specific or user-dependent event predicates can be used to express queries.

The visual query interface provides object specification, event specification,

CHAPTER 5. SCENARIO-BASED QUERYING 54

and scenario specification facilities. It also utilizes an XML-based repository to
make the specified objects available for later usage. The scenarios are expressed
as a sequence of events on a drawing panel and the order can be modified to
obtain various scenario combinations. Since a scenario is a sequence of events,
the events forming the scenario have to be specified first. The specification of

Query 5.11 through the interface is illustrated in Figure 5.4.

& Query Interface For Visual Surveillance |-_||E|r>__<|
File Query Help
Define Query Inventory
Event Object1 [objectC obectz | | Define Object
Direction Scenario Locate Object objectx =]
ohjecty
InverseQuery Start End [| [Locateinverse | objectZ
ohjectT
objectQ
Query objects =
Name From] object_ANY
ohjecth
objectB
| 3 || 3 || 3 || 5 || oD || L || L || L | scenario1 [] [oblectC -
depositiobjects, abjectB) object_test1 =
scenario2 [] Creator: ethem

Type: Person
scenario3d [] £

Color: Pick a Color

scenariod [|
Shape: Pick a Shape

scenariod [|

| Exit Save | Query ‘

Figure 5.4: The specification of Query 5.11. The event sequence corresponding to
the scenario is shown in the first row of the scenario drawing panel. The letters
in the boxes on the drawing panel (‘E’, ‘CC’, ‘DD’, ‘PP’ and ‘L) denote enter,
crossover, deposit, pickup and leave event predicates, respectively.

Query 5.11 List the segments from video one where two persons, one with a bag,
meet; then the person carrying a bag leaves the bag; the other person takes the

bag; and then both persons leave.

select segment

CHAPTER 5. SCENARIO-BASED QUERYING 55

from 1

where objectA = objdata(class=human),

objectB = objdata(class=non-human),

objectC = objdata(class=human) and
enter(objectA) enter(objectB) enter(objectC)
crossover(objectA,objectC) deposit(objectA,objectB)

pickup(objectC,objectB) leave(objectA) leave(objectC)

Having specified the events by choosing the objects acting in the event, the
scenario is defined based on these events. The scenario drawing panel can be
considered a timeline, a widely used query-specification technique for sequence-
based data to model temporal relations among events. In this panel, the events
can be reordered and timegaps between events can be adjusted, which brings

more flexibility to the scenario-based query specification.

The object specification in the visual query interface is crucial not only for
object-based queries, but also for event-based and scenario-based queries. Since
descriptive keywords are used for the low-level features of the human(s) and/or

non-human(s), the interface is devised accordingly (see Figure 5.5).

CHAPTER 5. SCENARIO-BASED QUERYING

= Query Interface For Visual Surveillance

Pick a color Define Object
Name of The Object a Owner of the Object
Pick a Color | ¥ b
a cm— : Object Type
Red @® Person) Object) Other
glreen ‘\\ Pick a color
ue = I~ [
Pick a Col
pesacon [~
White
Black .
Ora nge :‘ Pick a shape
|Pick a Shape :
e
Pick a shape

Pick a Shape ‘ v /

IPick a Shape

Box/Cube

Cone

Cylinder Picked Class Type:Person §

Sphere

9

Back

56

h

T

Figure 5.5: Object specification: (a) name; (b) name of the owner/creator; (c)
type; (d) color; (e) shape of the object; (f), (g) and (h) are the auxiliary interface

elements.

Chapter 6

Performance Experiments

We tested the retrieval performance of our scenario-based query-processing sys-
tem by evaluating the methods used in the meta-data extraction process. First,
we evaluated the performance of the algorithms used in keyframe labeling, in-
cluding the storage gain analysis for keyframe-based data modeling. Next, we
evaluated the meta-data extraction algorithms, especially the low-level feature
extraction and object-classification technique. The last set of experiments eval-
uated our semantic annotation process. Since we utilize an SQL-based querying
language and use Prolog as our inference engine, the accuracy of our system

strictly depends on the peak performance of the above three components.

The evaluation of these algorithms is non-trivial and subjective. In [30], a
discussion on the performance evaluation of object-detection algorithms is given.
Among the standard measures, Receiver Operating Characteristics (ROC) anal-
ysis [18] is used to inspect the effect of a single parameter to the classifier by
plotting the true-positive-rate (TPR) and false-positive-rate (FPR) values that
are calculated while keeping all the other parameters fixed. Since the algorithms
in our keyframe labeling technique yield binary outputs, a set of points is plotted
on ROC curves. To elaborate on this, our keyframe labeling algorithm yields
exact labels instead of label percentages for keyframes. Hence, a set of points
is plotted on ROC curves for the rest of the tests. The points over the x = y

line are considered as good classification results, whereas the ones below are bad.

S7

CHAPTER 6. PERFORMANCE EXPERIMENTS 58

The best classifier is considered to be at point (0, 1), which is the farthest point
to the x = y line.

The benchmark data sets provided by PETS 2004 [1] and PETS 2006 [2] were
used as our ground truth for the performance experiments. We manually anno-
tated two sample video from PETS2004, namely leftbag and meetsplit, having 426
and 543 frames, respectively. Two sample video from PETS2006 are also anno-
tated, namely S17T1C8 and S2T3C3, having 2526 and 2763 frames, respectively.

We employed a fivefold cross-validation method for the experimental evaluation.

The major drawback of our keyframe labeling algorithm is the fact that it
might not be suitable for crowded scenes, such as video streams of PETS 2007 [3]
dataset. The ROC analysis gives poor results for this dataset and the detection
accuracy is low. The main reason is that it is very hard to identify the keyframe
with a single label in a crowded scene. Too many split/join/move events occur si-
multaneously. For such datasets, more sophisticated keyframe labeling structures
have to be designed. Another drawback is when the object size is very large (e.g.,
an object occupies nearly one fourth of the frame size or more). In such cases,
forming a grid for inverted tracking does not bring significant improvement when
compared to the typical detection techniques. However, since the scenario-based
query processing component of the framework is decoupled with the moving re-
gion extraction parts, the performance of the query processing capabilities is not
directly affected with this drawback.

6.1 Performance of Keyframe Labeling

6.1.1 Pixel-Level Analysis

The preprocessing phase of keyframe labeling includes moving region extraction
and tracking, where we adapted widely used background subtraction and mainte-
nance schemes, and the inverted tracking scheme that uses motion-history images.

Since ROC analysis requires ground truth evaluation for each parameter setting,

CHAPTER 6. PERFORMANCE EXPERIMENTS 59

1 e
~
¥ ~
08 8 0,8 /
0,8 “. o—0¢
0707 ~
. -
™ |
0,6 S
~
~ L)
¢ 3
0,4 el
~
~
0,2 -
' ~
~
~
} \ \ \ \
0 0,2 0,4 0,6 0,8 1

Figure 6.1: ROC curve/Analysis of pixel-level algorithms. The learning constant
« varies from 0.6 to 0.8 in increments of 0.05. The temporal duration constant 7
is set to 2 and 3.

we focused on two parameters: « (the learning constant, in Equations 2.3 and 2.5)
and 7 (the temporal duration of the movement, in Equation 2.6). Two sets of
experiments were carried out for this analysis. In both of the experiments, the
learning constant « varies from 0.6 to 0.8 in increments of 0.05, yielding five
points in the ROC curve. The temporal duration constant 7 is set to 2 and 3.
The extracted regions are annotated manually, and correctly detected pixels are
considered as true [30]. As shown in Figure 6.1, the optimal values for the two cru-
cial pixel-level parameters are found to be 2 for 7, and 0.7 for «, since the points
corresponding to 7 = 2 are closer to the (0, 1) point. The point corresponding to
7 =2, a = 0.7 is the farthest to the x = y line.

6.1.2 Grid Size Analysis

Figure 6.2 shows the ROC analysis results for inspecting the effect of the grid

size parameter to anomaly detection. TPR and FPR values are computed using

CHAPTER 6. PERFORMANCE EXPERIMENTS 60

the outputs of the FSA-based anomaly detection algorithms. The positive output
frames for each of the classes are annotated manually, and a similar set of negative
output frames is annotated for the analysis. For this experimental setup, the
temporal detection threshold ¢4 is set to 3 frames for PETS 2006 and 2 frames
for PETS 2004 dataset.

In Figure 6.2 (a), the only bad classification occurs when the grid size is 6 x 6.
The detection algorithm gives best results for the grid size 8 x8. In Figure 6.2 (b),
the classification for the grid sizes of 10 x 10 and 12 x 12 are among the good ones
and 10 x 10 gives better results. The main reason behind this difference among
different datasets is the variance in the pixel-level properties, such as object sizes,
average velocities, etc. We can conclude that the grid sizes for various datasets
should be determined based on the dataset characteristics. The calculation of the
appropriate grid size in terms of the pixel-level parameters is very hard. Hence,
ROC analysis can be performed, as above, to determine effective grid sizes for
the datasets.

6.1.3 Temporal Filtering Analysis

Figure 6.3 shows the ROC analysis results for inspecting the effect of the temporal
detection threshold parameter t; (see Figure 2.2) on anomaly detection. TPR
and FPR values are based on the outputs of the FSA-based anomaly detection
algorithms. The positive output frames for each class are annotated manually,
as well as a similar set of negative output frames for the analysis. For this
experimental setup, the grid size is set to 8 x 8 for PETS 2006 and 10 x 10 for
PETS 2004 dataset. In Figure 6.3 (a), t4 = 3 gives the best results, whereas
in Figure 6.3 (b), t; = 2 detects the anomalies better than the other values.
As expected, increasing the temporal detection threshold lowers the detection

accuracy significantly.

CHAPTER 6. PERFORMANCE EXPERIMENTS

0,8 *4 /
0,6 A /.
m
0,4
0,2
/
0 I I I I
0 0,2 0,4 0,6 0,8
(a)
1
0,8
/
0,6 A
/
0,4 L 4
[|
0,2
/
0 T T T T
0 0,2 0,4 0,6 0,8

(b)

L)
¢ 8
V10
A 12

e
¢ 8
vV 10
A 12

61

Figure 6.2: ROC curve analysis for the grid size parameter. (a) PETS 2006
dataset, and (b) PETS 2004 dataset.

CHAPTER 6. PERFORMANCE EXPERIMENTS 62

1
/
0,8 <@
/I
0,6 .
v *3
V5
0,4
/ Ag
0,2 A /
/
0 I I I I
0 0,2 0,4 0,6 0,8 1
(a)
1
/
0,8
/
0,6 u ">
/ ®3
V5
0,4 L 2
/ Ag
0,2 /
0 I I I I
0 0,2 0,4 0,6 0,8 1

Figure 6.3: ROC curve analysis for the temporal detection threshold parameter
tq. (a) PETS 2006 dataset, and (b) PETS 2004 dataset.

CHAPTER 6. PERFORMANCE EXPERIMENTS 63

6.1.4 Storage Gain Analysis

The keyframe-based techniques are used to reduce the storage requirements in
video processing. The storage gain can be expressed by the ratio of the number of
keyframes extracted and the total number of frames. However, a better storage
gain analysis can be performed in terms of the total number of objects, since
there might be empty frames in the input stream, which lead to unrealistic re-
sults. Hence, the following performance analysis is also performed to inspect the
required storage space in terms of the number of objects that are processed. To be
fair, the number of objects is computed after completing all of the filtering steps.
The main reason behind this comparison is that all objects have to be processed
in a typical detector to detect anomalies, whereas the sequence of labels for all
keyframes have to be processed in our approach. Figure 6.4 presents the results
of this analysis. As expected, the keyframe-based approach has a significantly

lower storage cost and input size.

6.2 Performance of Histogram-Based Approach

The histogram-based approach (HBA) is used to encode the shape and color
content of the objects. The content-based retrieval performance of HBA is shown
through a set of experiments in [38, 39]. In addition to its usage in content-
based retrieval, object-level meta-data extraction and object classification are
performed based on HBA in the scenario-based querying framework. Due to the
nature of the video surveillance domain, shape feature is more descriptive than

color.

We compare the effectiveness of the shape histogram in HBA is compared with
the Generic Fourier Descriptors (GFD), which is derived by applying a modified
polar Fourier transform on the shape of an object [51, 52]. In the experiments,
5 radial frequencies and 12 angular frequencies are selected to obtain 60 GFD
features. The radial and angular frequencies are similar to our distance and

angle histograms, respectively. The following datasets are used:

CHAPTER 6. PERFORMANCE EXPERIMENTS 64

3000

2500
~
7}
O
£ 2000
g H Keyframe
-5 Count
% 1900 2 Objects
N
Py Processed
N N Original
EQ 1000 Frame Count
S
o
c
- 500

146
39 —
O 1

pets2004 pets2006

Figure 6.4: The storage gain and the reduce in the input size for detection for
PETS 2004 and PETS 2006 datasets. The keyframe count that is extracted by
our technique significantly reduces not only the input size for anomaly detection
but also the storage space for after-the-fact analysis.

e MPEG-7 region shape database (CE-2) is used to test the robustness of
the methods including perspective transformation, scaling, and rotation
invariance. The dataset contains 3621 shapes, 651 of which are organized
into 31 categories. Fach category consists of 21 similar shapes generated by
rotating, scaling, and perspectively transforming the shapes. This dataset

is also used in [52, 51] to test the retrieval effectiveness of the GFDs.

e In [40], 216 shapes are selected from MPEG-7 set. The shape database can

be grouped into 18 categories, each of which has 12 similar shapes.

The shapes are extracted automatically from images, since the images are

binary. The retrieval is also performed automatically since the categorization (i.e.,

CHAPTER 6. PERFORMANCE EXPERIMENTS 65

relevance) is known in advance. The experiment is performed for randomly picked
100 query objects and the results are averaged. Figure 6.5 presents the retrieval
effectiveness results of this experiment. The retrieval analysis is performed for
the first 20 retrievals and the weights are 0.0, 0.5, and 0.5 for color, distance, and
angle histograms, respectively in order to be fair since GFD operates on the shape
content only. The results in Figure 6.5 (a) demonstrate that the performance of
GFD is generally better than HBA. The main reason behind this is the fact that
the dataset in Figure 6.5 (a) has perspectively transformed objects. However in
Figure 6.5 (b), the performance of HBA is better for most of the recall levels

where there are not too many perspectively transformed objects.

6.3 Performance of Object Classification

The object-classification algorithm that we used takes region data as the input
and yields classification values as percentages. The maximum of these values is
chosen as the class value for the input region. Hence, our classification algorithm

outputs three classes: human, non-human, and object-group.

In this evaluation, we computed two types of classification accuracies: Stan-
dard Classification Accuracy (SCA) and Frame-based Classification Accuracy
(FCA). The former is the percentage of correctly-classified objects for each class
type, and the latter is the frame-weighted percentage of classification accuracy
for each object classified correctly. To elaborate on these definitions, Equa-

tions 6.1 and 6.2 are given for the human class type as follows:

Let CCy denote the set of correctly classified humans, and |C'Cy| denote its
cardinality. The SCA for the human class type is formulated as:

|CClh|
|H|

SCAp = (6.1)

where H is the set of objects of human class type.

CHAPTER 6. PERFORMANCE EXPERIMENTS 66

Interpolated Precision-Recall

1.200

1.000 \-
§ 0.800
@
8 —e—HBA
& 0.600 -
o —a— GFD
=
g
2 0.400
<

0.200 -

0.000 T T T T T T T i

0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000
Recall Levels
(a)
Interpolated Precision-Recall
1.200

1.000 L

o
o]
Q
o
L
*
//>

//
L

Average Precision

—&—HBA
L_j L \x —&—GFD

-
./1

0.200 > * = L L

0.000 T T T T T T T T T T
0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000
Recall Levels

(b)

Interpolated Precision-Recall

1.200

1.000 L

o
0
=]
=)

—o— HBA

o
=Y
=}
S

—&— GFD

Average Precision

=}
»
1=}
S

S

=
~.——

0.000
0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000

Recall Levels

(c)

Figure 6.5: Retrieval effectiveness results, (a) with the dataset used in [52, 51],
(b) with the dataset used in [40], and (c) with the two datasets mixed.

CHAPTER 6. PERFORMANCE EXPERIMENTS 67

Let Fiy denote the set of frames where at least 1 human is present, and FCCy
denote the set of frames where at least 1 human is classified correctly. The FCA

for the human class type is formulated as:

_ |FCCy]

(6.2)

PETS 2004 [1] and PETS 2006 [2] benchmark datasets are used in this anal-
ysis. We selected frame samples corresponding to 918 human, 94 non-human,
and 133 object-group in PETS 2004 dataset; and 1674 human, 313 non-human,
and 492 object-group in PETS 2006 dataset. A fivefold cross validation method
is employed, where the 20% of the samples are used each time for testing. Fig-
ure 6.6 presents the results of the object-classification analysis. Since the number
of frames (i.e., keyframes) that an object is classified correctly was taken into
consideration, the frame-based accuracy analysis gives better results. The lowest
accuracy improvement in the frame-based analysis is for the human class type;
many people enter and leave the scene, and in most cases, they are classified
correctly. Frame-based classification accuracies for the other two object classes

improved significantly when compared to standard accuracies.

Object Classification Accuracy Analysis
1,200
0,9710,973

& 1,000 0,927
8 0,846 @ standard
3 0793 classification
© 0,800 -
< 0,667 accuracy
c 4
2 0,600 | frame-based
_S 0.400 1 classification
’é ' accuracy
S 0,200 +—
O

0,000

human non-human obj-group
Class Label

Figure 6.6: Object classification accuracy analysis.

CHAPTER 6. PERFORMANCE EXPERIMENTS 68

6.4 Performance of Semantic Annotation

To evaluate the performance of our semantic annotation process, the detection of
each manually annotated event type is inspected. Since both scenario-based and
inverse queries are processed by our inference engine, the retrieval accuracy can
be evaluated by the performance of the event-detection mechanism. To be more
realistic, the percentage of the frames in which the events are correctly identified
is used to judge the accuracy of the event annotation instead of just counting the
correctly identified event types. This analysis is similar to the frame-weighted

classification accuracy above and the results are presented in Figure 6.7.

Semantic Annotation Accuracy
1,20
1,00 1,00
1,00 0.98
0,86

0,80
o 0.63 0,67
g)
5 0,60
o
(5}
<

0,40 -

0,20 -

0,00 - T T T T T

enter/leave stop/stop-and-go move (8 directions) approach/depart deposit/pickup crossover/move-
together
Event Type

Figure 6.7: Semantic annotation accuracy analysis.

PETS 2004 [1] and PETS 2006 [2] benchmark datasets are used in this anal-
ysis. We annotated 600 enter/leave, 120 stop/stop-and-go, 3600 move, 2400 ap-
proach/depart, 120 deposit/pick-up, and 240 crossover/move-together frame sam-
ples corresponding to the events from the datasets. A fivefold cross validation
method is employed, and the results are shown in Figure 6.7, where similar event

types are grouped together to simplify the analysis. The accuracy is very high

CHAPTER 6. PERFORMANCE EXPERIMENTS 69

for enter/leave, move, and approach/depart events because they can be detected
directly using the extracted regions. Since we incorporate the number of frames
in which an event is identified into the accuracy, multi-object event types have
lower accuracies than the other event types. This is simply because regions de-
tected as object-groups cannot be split into single objects in the frames they are

detected.

The query processor regards what is extracted as meta-data, since we utilized
Prolog as the inference engine in the querying process. However, based on the
meta-data extraction accuracies, there could be events that cannot be retrieved
since they are not extracted as meta-data (see Figure 6.7). It can be concluded
that the performance of scenario-based querying and retrieval depends on the

performance of the semantic annotation process.

Our meta-data extraction scheme supports a wide range of event predicates
and provides external predicate definition in terms of the existing predicates.
This capability is provided not only to increase the expressive power of the query
language but also to make the querying mechanism tailorable for specific video
surveillance applications. Undoubtedly, there can be events that cannot be rep-
resented using our event predicates. We believe that we cover an adequate set
of events that can be considered as abnormal situations in most of the video

surveillance applications.

Chapter 7

Related Studies

There exist quite a number of approaches in the literature dealing with monitoring
and anomalous behavior detection. Many techniques are proposed for dynamic
scene segmentation [11, 27, 19, 28, 31, 22, 4, 48, 34, 44] as the pre-processing
phase of anomaly detection. One of the primary tasks in monitoring is the ab-
normal action detection [16, 49, 50, 53, 20, 15, 12, 42] caused by moving objects
in the scene. The video surveillance data has both spatial and temporal charac-
teristics and the anomalies are caused by motion or insertion of foreign object(s)
to the scene [23]. Each data point has a few continuous attributes, such as color,
lightness, texture, and the anomalies to be detected are either anomalous points
or regions in the scene [9]. Online anomaly detection techniques, as well as offline
processing support [32], are required and one of the key challenges is the large

input size.

We provide a brief description of the existing video-surveillance systems in
this chapter. We also compare our system to the others in terms of offline query-

processing capabilities, especially regarding the semantic content.

70

CHAPTER 7. RELATED STUDIES 71

7.1 Video Surveillance Systems

Stringa and Regazzoni ([46, 45, 33]) propose a real-time surveillance system em-
ploying semantic video-shot detection and indexing. In that system, lost objects
are detected with the help of temporal rank-order filtering. The interesting video
shots are detected by a hybrid approach based on low-level (color) and semantic
features. Retrieving all the clips related to an alarm is the basic way of querying
the system. The authors also comment on more-complex query types, including
color and/or shape properties to some extent. We extract object-based low-level
features and provide a scenario-based querying scheme for complex querying, also

including color and shape descriptors of the objects.

Video Surveillance and Monitoring (VSAM) system proposed by Collins et al.
is one of the complete prototypes for object detection, tracking and classifica-
tion [11]. The hybrid algorithm developed in that work is based on adaptive
background subtraction by three-frame differencing. The background mainte-
nance scheme is based on a classification of pixels (either moving or non-moving)
performed by a simple threshold test. A model is provided on temporal layers
for pixels and pixel regions in order to better detect stop-and-go movements.
The background maintenance scheme we employ is similar to that of VSAM’s;

however, we also use the extracted background for object tracking.

IBM’s MILS (MIddleware for Large Scale Surveillance) [21] system provides a
complete solution for video surveillance, including data-management services that
can be used for building large-scale systems. MILS also provides query services for
surveillance data, including time, object size, object class, object motion, context-
based object content similarity queries, and any combination of these. The system
employs relevance feedback and data-mining facilities to increase its effectiveness.
The main difference between our querying mechanism and that of MILS’ is that
ours provides opportunities for defining specialized queries in a more expressive

manner.

Rivlin et al. [34] propose a real-time system for moving object detection,

CHAPTER 7. RELATED STUDIES 72

tracking, and classification where the video stream originates from a static cam-
era. Effective background initialization and background adaptation techniques
are employed for better change detection. The target detection phase also ben-
efits from a color table representing object data. The detected moving objects
are classified as human, animal, and vehicle with the help of an expressive set of
feature vectors. The authors initiate their feature-vector selection process with a
wide set of object-appearance and temporal features. A reduced set, which leads
to the best classification accuracy in their experiments, is used for classification.
The authors also present a classification approach that combines appearance and

motion-based features to increase the accuracy [5].

Haritaoglu et al. [22] propose a model for real-time analysis of people’s activi-
ties. Their model uses a stationary camera and background subtraction to detect
the regions corresponding to a specific person(s). Their system, called W4, uses
shape information to locate people and their body parts (head, hands, feet, and
torso). The system operates by monocular gray-scale video data, and no color
cues are used. Creating models of people’s appearances helps track interactions
(e.g., occlusions) and simultaneous activities. The system uses a statistical back-
ground model holding a bimodal distribution of intensity at each pixel to locate
people. The system is capable of detecting a single person, multiple persons and

multiple-person groups, in various postures.

Lyons et al. [29] developed a system called Video Content Analyzer (VCA),
the main components of which are background subtraction, object tracking, event
reasoning, graphical user interface, indexing, and retrieving. They adapt a non-
parametric background-subtraction approach based on [17]. VCA differentiates
between people and objects and the main events it recognizes are entering scene,
leaving scene, splitting, merging, and depositing/picking-up. Users are able to
retrieve video sequences based on event queries whose categories are similar to
those we use. However, we also provide object-based querying that can be refined

by low-level and/or directional descriptors.

Brodsky et al. [7] describe a system for indoor visual surveillance, specifi-

cally for use in retail stores and homes. They assume a stationary camera and

CHAPTER 7. RELATED STUDIES 73

use background subtraction. A list of events that the object participates in is
stored for each object, simply, entering, leaving, merging, and splitting. Both of
these techniques operate at the pixel-level and region-level, whereas we provide
techniques to transform the input stream into an event sequence representation,

which is easier to process and has lower storage costs.

Kim and Hwang present an object-based video abstraction model, where a
moving-edge detection scheme is used for video frames [25, 26]. A semantic
shot-detection scheme is employed to select object-based key-frames. When a
change occurs in the number of moving regions, the current frame is declared as
a keyframe, indicating that an important event has occurred. This scheme also
facilitates the detection of important events. If the number of moving objects
remains the same in the next frame, a shape-based change detector is applied to
the remaining frames. The use of keyframes in this approach is very similar to our
keyframe detection scheme; however, we utilize the keyframe detection scheme
with inverted tracking data model and extend it further by assigning descriptive

labels to the keyframes.

Shet et al. [41] present a visual surveillance system, VidMAP, that combines
real-time video-processing algorithms with logic programming to represent and
recognize activities. The authors used Prolog for the high-level rules that corre-
spond to their supported query set. Entry violation, theft, and possess are ex-
amples of rules they use to answer specific queries. Our query-expression scheme
is based on VSQL, which is more intuitive and flexible than Prolog. We provide
low-level feature descriptions and directional predicates as well as temporal infor-
mation about events to enrich the query set. Our query-processing system also
supports inverse querying and view-based querying, and hence provides a wider

range of query types.

In [10], a view-based multiple objects tracking system is proposed including
human action recognition scheme. The basic aim in that work is to recognize
human actions in an interactive virtual environment even the actions are not ab-
normal. The blob tracking phase that they have developed assigns labels to each

blob based on their previous motion and current motion. The labels that they

CHAPTER 7. RELATED STUDIES 74

use are continue, merge, split, appear, and disappear, and they hold an inference
graph to track multiple objects simultaneously. The labeling mechanism of their
scheme and our approach is similar; however, we assign labels to the frames as a
global representation of the event occurred at the frame. Moreover, we apply a

keyframe-based technique to narrow the storage and processing requirements.

7.2 Comparison of Our System to Related Work

A comparison of our work to the related studies is presented to elaborate on
our querying capabilities. The query effectiveness relies on the effectiveness of
the meta-data extraction process. The background maintenance scheme we em-
ploy is similar to that of VSAM’s [11] with an improvement that the extracted
background is also used for object tracking. We employ a similar strategy of
moving-object counting mentioned in [25] extended with a keyframe detection

scheme, to provide an effective storage for predicates.

The event predicates extracted in our data model are generic in the video-
surveillance domain and generally supported by existing systems (e.g.,[29, 45, 7]).
Object-based querying is also implemented in most of the existing systems
(e.g.,[25, 21]) to some extent. The query types based on color is argued in
some systems (e.g., [46, 45, 33]), however, the existing query models are not rich
enough to support low-level feature information about the objects. We extract
object-based low-level features and provide a scenario-based querying scheme
for complex querying, also including color and shape descriptors of the objects
(e.g., Queries 5.4 and 5.5).

Our query model provides scenario-based querying, which, based on low-level
feature descriptors and directional predicates, allows temporal ordering of the
event predicates as well as of object information. An inverse-querying scheme
is also provided to help the offline inspection process. In addition, view-based
querying is available, which augments the query expressiveness of our model.

Hence, one of the main difference between our querying mechanism and that of

CHAPTER 7. RELATED STUDIES 7

MILS’ [21] is that ours provides opportunities for defining specialized queries in

a more expressive manner (e.g., Queries 5.6-5.10).

Our query-expression scheme is based on VSQL, which is a more intuitive
way of expressing logical predicates than Prolog. In VidMAP [41], the authors
provide high-level rules for a couple of query types. On the other hand, we pro-
vide low-level feature descriptions and directional predicates as well as temporal
information about events to enrich our query set. Our query-processing system
also supports inverse querying and view-based querying, and hence provides a
wider range of query types. Compared to the existing systems, the scenario-
based query-processing technique we propose provides support for a wide range

of query types and semantically enriches after-the-fact analysis.

Chapter 8

Conclusion

We propose a keyframe labeling technique, which simply assigns labels to the
keyframes extracted based on a keyframe detection algorithm. The keyframe
detection technique we use relies on an inverted tracking scheme, which is a view-
based representation of the video by an inverted index. A keyframe is detected
if a change occurs in the Motion Appearance Mask of the frame when compared
to that of the previous frame. The keyframes are categorized into four simple
types based on the appearances of the identified moving regions. As a result of
the keyframe labeling process, the input stream is represented as a temporally-
ordered sequence of keyframes. Since an anomaly can be considered as a sub-
sequence of the keyframe labels, the anomaly detection is carried out on this
sequence; hence, the complexity of the anomaly detection task is reduced. The
keyframe labeling technique reduces the large input size for on-the-fly processing,

and thus, reduces the storage requirements for after-the-fact analysis.

We also provide finite state automata-based mechanisms to detect a typical
set of anomalous situations. We devise three separate finite state automata to rec-
ognize sequences corresponding to a typical set of anomalies, the inputs of which
are the sequence of keyframe labels that we assign to the extracted keyframes.
The performance experiments based on the benchmark datasets of PETS 2004
and PETS 2006 show that the finite state automata-based approach provides ef-

fective on-the-fly anomaly detection scheme together with the keyframe labeling

76

CHAPTER 8. CONCLUSION 77

technique, since a reasonable detection performance is achieved. In its current
form, the technique is not very suitable for very crowded scenes, which requires
more sophisticated keyframe labeling structures and more powerful label assign-
ment schemes. Further research will focus on extending the capabilities of the

keyframe labeling algorithm to overcome this drawback.

One of the major contributions of this thesis is scenario-based querying, which
provides a mechanism for effective offline inspection. A scenario-based query is
specified as a sequence of event-based subqueries that can be enriched with object-
based low-level features and directional predicates. With the help of the inverted
tracking technique we propose, the framework provides support for view-based
query handling by using a fixed view-based representation of the content. Sup-
port for inverse querying, which is a specialized tool for after-the-fact activity
analysis, is also provided. We developed Video Surveillance Query Language,
which is specialized for scenario-based querying purposes, to express the sup-
ported query types. We devised a rule-based query-processing module to provide
not only an efficient processing mechanism for scenario-based querying, but also
a flexible medium for external predicate definition, which allows the query model
to be tailored to various domains. We also developed a visual query-specification

interface to enhance the process.

The performance of our scenario-based querying framework was evaluated
through a set of experiments. Since the performance of the overall querying
scheme strictly depends on the meta-data extraction process, we also carried out
experiments on these pixel-level and region-level methods. It is shown through
these experiments that the querying support of our framework has a high expres-

sive power in offline inspection.

To further increase the capabilities and the expressive power of our query-
processing framework, we are planning to implement the negation operator for
scenario-based query results and for variables in the query-specification process.
Moreover, in the query-specification interface, we are planning to include a nat-
ural language parser that can learn domain-specific keywords a priori. This will

simplify the query-specification process and improve the semantic quality.

Bibliography

1]

[5]

7]

PETS 2004. Seventh IEEE International Workshop on Performance
Evaluation of Tracking and Surveillance (PETS 2004) Benchmark Data
http://www-prima.inrialpes.fr/PETS04/caviar_data.html, May 2004.

PETS 2006. Ninth IEEE International Workshop on Performance Eval-
uation of Tracking and Surveillance (PETS 2006) Benchmark Data
http://www.cvg.rdg.ac.uk/PETS2006/data.html, June 2006.

PETS 2007. Tenth TEEE International Workshop on Performance Evalua-
tion of Tracking and Surveillance (PETS 2007) http://www.pets2007 .net,
October 2007.

A. Bobick and J. Davis. The recognition of human movement using tempo-
ral templates. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 23(3):257-267, 2001.

Y. Bogomolov, G. Dror, S. Lapchev, E. Rivlin, and M. Rudzsky. Classifica-
tion of moving targets based on motion and appearance. In Proceedings of
the British Machine Vision Conference, volume 2, pages 429-438, 2003.

N. Boujemaa and C. Vertan. Integrated color texture signature for image
retrieval. In Proceedings of International Conference on Image and Signal

Processing, pages 404-411, Agadir, Morocco, 2001.

T. Brodsky, R. Cohen, E. Cohen-Solal, S. Gutta, D. Lyons, V. Philomin,
and M. Trajkovic. Visual surveillance in retail stores and in the home. In
Proceedings of the Video-Based Surveillance Systems: Computer Vision and
Distributed Processing, pages 51-65. Kluwer Academic Pub., 2001.

78

BIBLIOGRAPHY 79

8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

P. Buser and M. Imbert. Vision. MIT Press, Cambridge, Massachusetts,
1992.

V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey.
ACM Computing Surveys, 41(3):15:1-15:58, July 2009.

J. Choi, Y. Cho, K. Cho, S. Bae, and H.S. Yang. A view-based multiple
objects tracking and human recognition for interactive virtual environments.
The International Journal of Virtual Reality, 7(3):71-76, 2008.

R.T. Collins, A.J. Lipton, T. Kanade, H. Fujiyoshi, D. Duggins, Y. Tsin,
D. Tolliver, N. Enomoto, O. Hasegawa, P. Burt, and L. Wixson. A system
for video surveillance and monitoring. Technical Report CMU-RI-TR-00-12,
Carnegie Mellon University, The Robotics Institute, 2000.

C. Diehl and J. Hampshire. Real-time object classification and novelty de-
tection for collaborative video surveillance. In Proceedings of IEEE Inter-
national Joint Conference on Neural Networks, pages 2620-2625, Honolulu,
HI, 2002.

M.E. Donderler, O.Ulusoy, and U. Giidiikbay. Rule-based spatio-temporal
query processing for video databases. The VLDB Journal, 13(3):86-103,
2004.

M.E. Dénderler, E. Saykol, U. Arslan, O. Ulusoy, and U. Giidiikbay. Bil-
Video: Design and implementation of a video database management system.
Multimedia Tools and Applications, 27(1):79-104, 2005.

T. Duong, H. Bui, D. Phung, and S. Venkatesh. Activity recognition and
abnormality detection with the switching hidden semi-markov model. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 838-845, 2005.

D. Duque, H. Santos, and P. Cortez. The OBSERVER: An intelligent and
automated video surveillance system. In A. Campilho and M. Kamel, editors,
Lecture Notes in Computer Science (LNCS) Volume 4141, Proceedings of
International Conference on Image Analysis and Recognition (ICIAR), pages
898-909. Springer-Verlag, 2006.

BIBLIOGRAPHY 80

[17]

[18]

[19]

[20]

[21]

22]

23]

[24]

[25]

A. Elgammal, D. Harwood, and L. Davis. Non-parametric model for back-
ground subtraction. In Proceedings of the International Conference on Com-
puter Vision and Pattern Recognition, Workshop on Motion, Ft. Collins,
CO, 1999.

T. Fawcett. An introduction to ROC analysis. Pattern Recognition Letters,
27:861-874, 2006.

D. Gutchess, M. Trajkovic, E. Cohen-Solal, D. Lyons, and A.K. Jain. A back-
ground model initialization algorithm for video surveillance. In Proceedings
of the International Conference on Computer Vision, pages 733-740, Van-

couver, Canada, 2001.

R. Hamid, A. Johnson, S. Batta, A. Bobick, C. Isbell, and G. Coleman.
Detection and explanation of anomalous activities: representing activities as
bags of event n-grams. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1031-1038, 2005.

A. Hampapur, L. Brown, J. Connell, A. Ekin, N. Haas, M. Lu, H. Merkl,
S. Pankanti, A. Senior, C.-F. Shu, and Y.L. Tian. Smart video surveillance:

Exploring the concept of multiscale spatiotemporal tracking. IEEE Signal
Processing Magazine, 22(2):38-51, March 2005.

I. Haritaoglu, D. Harwood, and L. Davis. W4: Real-time surveillance of
people and their activities. IEFEE Transactions on Pattern Analysis and
Machine Intelligence, 22(8):809-830, 2000.

W. Hu, T. Tan, L. Wang, and S. Maybank. A survey on visual surveillance
of object motion and behaviors. IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews, 34(3):334-352, 2004.

A.K. Jain and A. Vailaya. Image retrieval using color and shape. Pattern
Recognition, 29(8):1233-1244, 1996.

C. Kim and J.N. Hwang. Fast and automatic video object segmentation and
tracking for content-based applications. IEFE Transactions on Circuits and
Systems for Video Technology, 12(2):122-129, 2002.

BIBLIOGRAPHY 81

[26]

[27]

28]

[29]

[30]

[31]

32]

33]

C. Kim and J.N. Hwang. Object-based video abstraction for video surveil-
lance systems. IEEE Transactions on Circuits and Systems for Video Tech-
nology, 12(12):1128-1138, 2002.

K. Kim, T. Chalidabhongse, D. Harwood, and L. Davis. Real-time fore-
ground /background segmentation using codebook model. Real-time Imaging,
11(3):172-185, 2005.

L. Li, W. Huang, I.Y.H. Gu, and Q. Tian. Foreground object detection
from videos containing complex background. In Proceedings of the ACM

international conference on Multimedia, pages 2—-10, Berkeley, CA, USA,
2003. ACM Press.

D.M. Lyons, T. Brodsky, E. Cohen-Solal, and A. Elgammal. Video content
analysis for surveillance applications. In Proceedings of the Philips Digital
Video Technologies Workshop, 2000.

J.C. Nascimento and J.S. Marques. Performance evaluation of object detec-

tion algorithms for video surveillance. IEEE Transactions on Multimedia,
8(4):761-774, 2006.

G. Paschos and F.P.Valavanis. A color texture based visual monitoring sys-
tem for automated surveillance. IEFE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews, 29(2):298-307, 1999.

C.S. Regazzoni, V. Ramesh, and G.L. Foresti. Scanning the issue/technology:
Special issue on video communications, processing, and understanding third
generation surveillance systems. Proceedings of the IEEE, 89(10):1355-1367,
2001.

C.S. Regazzoni, C. Sacchi, and E. Stringa. Remote detection of abandoned
objects in unattended railway stations by using a DS/CDMA video surveil-
lance system. In C.S. Regazzoni, G. Fabri, and G. Vernezza, editors, Pro-
ceedings of the Advanced Video-Based Surveillance System, pages 165-178.
Boston, MA: Kluwer, 1998.

BIBLIOGRAPHY 82

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

E. Rivlin, M. Rudzsky, U. Bogomolov R. Goldenberg, and S. Lepchev. A
real-time system for classification of moving objects. In Proceedings of the
International Conference on Pattern Recognition, volume 3, pages 688691,
2002.

E. Saykol, U. Giidiikbay, and O. Ulusoy. A keyframe labeling technique for

anomaly detection in video surveillance. submitted journal paper.

E. Saykol, U. Giidiikbay, and O. Ulusoy. Scenario-based query processing
for video-surveillance archives. Engineering Applications of Artificial Intel-

ligence. accepted in August 2009.

E. Saykol, U. Giidiikbay, and O. Ulusoy. A database model for querying vi-
sual surveillance by integrating semantic and low-level features. In K.S. Can-
dan and A. Celentano, editors, Lecture Notes in Computer Science (LNCS)
Volume 4457, Proceedings of 11th International Workshop on Multimedia
Information Systems (MIS’05)), pages 163-176, Sorrento, Italy, 2005.

E. Saykol, U. Giidiikbay, and 0. Ulusoy. A histogram-based approach for
object-based query-by-shape-and-color in image and video databases. Image
and Vision Computing, 23(13):1170-1180, 2005.

E. Saykol, A.K. Sinop, U. Giidiikbay, O. Ulusoy, and E. Cetin. Content-
based retrieval of historical Ottoman documents stored as textual images.
IEEE Transactions on Image Processing, 13(3):314-325, 2004.

T.B. Sebastian, P.N. Klein, and B.B. Kimia. Recognition of shapes by edit-
ing shock graphs. In Proceedings of the IEEE International Conference on
Computer Vision (ICCV), pages 755-762, Vancouver, Canada, July 2001.

V. Shet, D. Harwood, and L. Davis. Vidmap: Video monitoring of activ-
ity with prolog. In Proceedings of the IEEE International Conference on
Advanced Video and Signal based Surveillance, pages 224-229, 2005.

S. Singh and M. Markou. An approach to novelty detection applied to the
classification of image regions. IEEE Transactions on Knowledge and Data
Engineering, 16(4):396-407, 2004.

BIBLIOGRAPHY 83

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

J.R. Smith and S.F. Chang. Tools and techniques for color image retrieval.
In I.LK. Sethi and R.C. Jain, editors, Proceedings of Storage and Retrieval for
Image and Video Databases IV, ISE&ST/SPIFE, volume 2670, pages 426-437,
1996.

L. Di Stefano, S. Mattoccia, and M. Mola. A change-detection algorithm
based on structure and colour. In Proceedings of the IEEE Conference on
Advanced Video and Signal Based Surveillance (AVSS’03), pages 252-259,
2003.

E. Stringa and C.S. Regazzoni. Content-based retrieval and real time detec-
tion from video sequences acquired by surveillance systems. In Proceedings
of the International Conference on Image Processing (ICIP), pages 138-142,
1998.

E. Stringa and C.S. Regazzoni. Real-time video-shot detection for scene
surveillance applications. IEEE Transactions on Image Processing, 9(1):69—
79, 2000.

M.J. Swain and D.H. Ballard. Color indexing. International Journal of
Computer Vision, 7(1):11-32, 1991.

D. Thirde, M. Borg, V. Valentin, L. Barthelemy, J. Aguilera, G. Fernan-
dez, J. Ferryman, F. Bremond, M. Thonnat, and M. Kampel. People and
vehicle tracking for visual surveillance. In Proceedings of the Sixth IEEE

International Workshop on Visual Surveillance, pages 169-176, 2006.

T. Xiang and S. Gong. Beyond tracking: modelling activity and under-
standing behaviour. International Journal of Computer Vision, 67(1):21-51,
2006.

T. Xiang and S. Gong. Incremental and adaptive abnormal behaviour de-

tection. Computer Vision and Image Understanding, 111:59-73, 2008.

D.S. Zhang and G. Lu. Enhanced generic fourier descriptors for object-
based image retrieval. In Proceedings of the IEEFE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), pages 3668-3671,
Orlando, Florida, USA, May 2002.

BIBLIOGRAPHY 84

[52] D.S. Zhang and G. Lu. Shape based image retrieval using generic fourier de-
scriptors. Signal Processing: Image Communication, 17(10):825-848, 2002.

[53] H. Zhong, J. Shi, and M. Visontai. Detecting unusual activity in video.

In IEEE Conference on Computer Vision and Pattern Recognition, pages
819-826, 2004.

Appendix A

Grammar for Scenario-Based

Querying

The grammar specification for the Video Surveillance Querying Language (VSQL)

and the rules for query processing are presented. A snapshot of a sample fact-

base is given to illustrate how the meta-data is obtained and used in the query

processing framework.

A.1 VSQL Grammar Specification

/* main query string */

<query> := select <target> from

<target> := segments | /*
frames | /*
events | /*
objects | /*
most-popular-path |

<range> [where <query-condition>]

retrieve video sequences/intervals */
retrieve frames for event queries */
inverse querying w.r.t. events */

inverse querying w.r.t. objects */

most-abnormal-region | /* view-based queries */

<objectlist>

/* retrieve object(s) */

85

APPENDIX A. GRAMMAR FOR SCENARIO-BASED QUERYING 86

<objectlist> := [<objectlist> ¢,’] <objlabel>

<range> := all | <videolist>

<videolist> := [<videolist> ¢,’] <vid>

<query-condition> := [<object-assignment-list> and] <scenario> |

<inverse-condition>

<object-assignment-list> := [<object-assignment-list> ¢,’]

<object-assignment>

<objectassignment> := <objlabel> <objoperator> <objcondition>
<scenario> := [<scenario> [<timegap>]] <event-condition>
<event-condition> := <single-object-event-condition> |

<multi-object-event-condition>

<inverse-condition> := inverse ‘(’ <intvalue> ¢

,’ <intvalue> ‘)’
/* event query conditions */
<single-object-event-condition> := <single-object-event-label> ‘(’

<objlabel>)’

<single-object-event-label> := enter | leave | stop |

stop-and-go | move-<direction>

<multi-object-event-condition> := <multi-object-event-label> (’

<multi-object-condition> ‘)’

<multi-object-event-label> := crossover | move-together |
deposit | pickup |
approach | depart

APPENDIX A. GRAMMAR FOR SCENARIO-BASED QUERYING 87

<multi-object-condition> := <objlabel> ‘,’ <objlabel> [‘,’ <direction>]

<direction> := west | east | north | south | northeast |

southeast | northwest | southwest

/* object conditions */

<objcondition> := objdata ‘(’ <objdesclist>)’
<objdesclist> := [<objdesclist> ‘,’] <objdesc>
<objdesc> := <classdesc> | <colordesc> | <shapedesc>

<classdesc> := class ‘=’ <classvalue>

<colordesc> := color ‘=’ <colorlabel>

<shapedesc> := shape ‘=’ <shapelabel>

<colorlabel> := red | green | blue | yellow | white |
black | orange | violet

<shapelabel> := box | cone | cylinder | sphere

<classvalue> := human | non-human | object-group

/* primitive types */
<intvalue> := (1-9) (0-9)*

<vid> := <intvalue>

<timegap> := <intvalue>
<objlabel> := (a-z)(A-Za-z0-9)*

<objoperator> := ‘=’ | ‘1=

APPENDIX A. GRAMMAR FOR SCENARIO-BASED QUERYING

A.2 Rules for Query Processing

This section presents the Prolog rule set for processing VSQL queries.

/* single object predicates */

p_enter (K,SQID,X,C1,R1,51,L) :- setof([K,X,F],
(enter(K,X,F,_),
object_info(X,X,C1,R1,S1,F,_),
assert(result(SQID,K,X,none,F))), L).

p_leave(K,SQID,X,C1,R1,51,L) :- setof([K,X,F],
(leave(K,X,F,_),
object_info(X,X,C1,R1,81,F,),
assert(result(SQID,K,X,none,F))),
L).

p_stop(X,sSQID,X,C1,R1,S1,L) :- setof([K,X,F],
(stop(X,X,F,_),
object_info(X,X,C1,R1,S1,F,_),
assert(result(SQID,K,X,none,F))),
L).

p_stop_and_go(X,SQID,X,C1,R1,81,L) :- setof([K,X,F],
(stop_and_go(X,X,F,_),
object_info(X,X,C1,R1,S1,F,_),
assert(result(SQID,K,X,none,F))),
L).

p_move_west (X,SQID,X,C1,R1,51,L) :- setof ([K,X,F],
(move_west(K,X,F,_),
object_info(X,X,C1,R1,S1,F,_),
assert(result(SQID,K,X,none,F))),
L).

p_move_east (X,SQID,X,C1,R1,51,L) :- setof ([K,X,F],
(move_east(K,X,F,_),
object_info(X,X,C1,R1,S1,F,_),
assert(result(SQID,K,X,none,F))),
L).

88

APPENDIX A. GRAMMAR FOR SCENARIO-BASED QUERYING 89

p_move_north(K,SQID,X,C1,R1,S1,L) :- setof ([K,X,F],
(move_north(K,X,F,_),
object_info(X,X,C1,R1,S1,F,_),
assert(result(SQID,K,X,none,F))),
L).

p_move_south(K,SQID,X,C1,R1,S1,L) :- setof ([K,X,F],
(move_south(K,X,F,_),
object_info(X,X,C1,R1,S1,F,_),
assert(result(SQID,K,X,none,F))),
L).

p_move_neast(K,SQID,X,C1,R1,S1,L) :- setof ([K,X,F],
(move_neast (K,X,F,_),
object_info(X,X,C1,R1,S1,F,_),
assert(result(SQID,K,X,none,F))),
L).

p_move_seast(K,SQID,X,C1,R1,S1,L) :- setof ([K,X,F],
(move_seast (K,X,F,_),
object_info(X,X,C1,R1,S1,F,_),
assert(result(SQID,K,X,none,F))),
L).

p_move_nwest (K,SQID,X,C1,R1,S1,L) :- setof ([K,X,F],
(move_nwest (K,X,F,_),
object_info(X,X,C1,R1,S1,F,_),
assert(result(SQID,K,X,none,F))),
L).

p_move_swest (K,SQID,X,C1,R1,S1,L) :- setof ([K,X,F],
(move_swest (K,X,F,_),
object_info(X,X,C1,R1,S1,F,_),
assert(result(SQID,K,X,none,F))),
L).

/* multi-object predicates */

p_crossover(K,sQID,X,C1,R1,81,Y,_,_,_,D,L) :- setof([K,X,Y,F],
(crossover(X,X,Y,D,F,_),

APPENDIX A. GRAMMAR FOR SCENARIO-BASED QUERYING 90

object_info(X,X,C1,R1,S1,F,_),
assert(result(SQID,K,X,Y,F))),
L).
p_move_together(K,SQID,X,C1,R1,581,Y,_,_,_,D,L) :- setof([K,X,Y,F],
(move_together(K,X,Y,D,F,_),
object_info(X,X,C1,R1,S1,F,_),
assert(result(SQID,K,X,Y,F))),
L).
p_deposit(X,sQID,X,C1,R1,S81,Y,_,_,_,D,L) :- setof([X,X,Y,F],
(deposit(K,X,Y,D,F,_),
object_info(X,X,C1,R1,S1,F,_),
assert(result(SQID,K,X,Y,F))),
L).
p_pickup(K,SQID,X,C1,R1,81,Y,_,_,_,D,L) :- setof([X,X,Y,F],
(pickup(X,X,Y,D,F,),
object_info(X,X,C1,R1,S1,F,_),
assert(result(SQID,K,X,Y,F))),
L).

/* object info retrieve */

get_obj_info(V,0,C,R,S,L) :- setof([F],
object_info(V,0,C,R,S,F,_),
L).

/* event info retrieve */

get_evt_info_single(V,E,C1,R1,51,L) :- setof([F],
(event_info(V,E,F,_),
object_info(V,_,C1,R1,51,F,_)),
L).

get_evt_info_multi(Vv,E,C1,R1,S1,C2,R2,52,L) :- setof([F],
(event_info(V,E,F,_),
object_info(V,_,C1,R1,81,F,),

APPENDIX A. GRAMMAR FOR SCENARIO-BASED QUERYING 91

object_info(V,_,C2,R2,52,F,_)),
L).

/* inverse query */

get_inverse_evt(V,FL,FU,L) :- setof([E],
(event_info(V,E,F,_), F=<FU, FL=<F),
L).

get_inverse_obj(V,FL,FU,L) :- setof([0],
(object_info(v,0,_,_,_,F,_), F=<FU, FL=<F),
L).

/* view-based query */

/* E can be used to query the most abnormal region of an event */
get_ab_grids(V,E,L) :- setof([G],

event_info(V,E,_,G),

L).

/* scenario-based result */

get_scenario(1,V,01,02,L) :- setof([V,01,02,F],
result(0,V,01,02,F),
L).

get_scenario(2,V,01,02,03,04,L) :- setof([[V,01,02,F1],[V,03,04,F2]],
(result(0,V,01,02,F1), result(1,V,03,04,F2),
F1=<F2),
L).

get_scenario(3,V,01,02,03,04,05,06,L) :-
setof([[V,01,02,F1]1,[V,03,04,F2],[V,05,06,F31],
(result(0,V,01,02,F1), result(1,V,03,04,F2),
result(2,V,05,06,F3),
F1=<F2, F2=<F3),
L).

APPENDIX A. GRAMMAR FOR SCENARIO-BASED QUERYING 92

get_scenario(4,V,01,02,03,04,05,06,07,08,L) :-
setof ([[V,01,02,F1]1,[V,03,04,F2],[V,05,06,F3],
[v,07,08,F41],
(result(0,V,01,02,F1), result(1,V,03,04,F2),
result(2,V,05,06,F3), result(3,V,07,08,F4),
F1=<F2, F2=<F3, F3=<F4),
L.
get_scenario(5,v,01,02,03,04,05,06,07,08,09,010,L) :-
setof ([[V,01,02,F1]1,[V,03,04,F2],[V,05,06,F3],
[v,07,08,F4],[V,09,010,F5]],
(result(0,v,01,02,F1), result(1,v,03,04,F2),
result(2,V,05,06,F3), result(3,V,07,08,F4),
result(4,v,09,010,F5),
F1=<F2, F2=<F3, F3=<F4, F4=<F5),
L.

APPENDIX A. GRAMMAR FOR SCENARIO-BASED QUERYING 93

A.3 Sample Facts-base Snapshot

A snapshot of the facts-base for a sample video is given to clarify the understand-
ing of the object information and corresponding event information. This section
shows the extraction of a deposit event such that an object enters the scene, then
a split occurs and one object, classified as human, continues its motion, whereas

the other object stops.

/* general facts */

1 grid_size(1,16).

/* object information facts */

object-info(1, obj001, human, blue, box, 12, 5).
object-info(1, obj001, human, blue, box, 13, 6).
object-info(1, obj001, human, blue, box, 14, 6).
object-info(1, obj001, human, blue, box, 15, 7).
object-info(1, obj001, human, blue, box, 16, 8).
object_info(1, obj001, human, blue, box, 17, 8).
object_info(1l, obj002, non_human, white, box, 14, 6).

© 0 N O O b W N

object_info(1, obj002, non_human, white, box, 15, 6).

-
o

object_info(1, obj002, non_human, white, box, 16, 6).

[
[y

object_info(1, obj002, non_human, white, box, 17, 6).

/* event information facts */
12 event-info(1l, enter, 12, 5).
13 event-info (1, enter, 14, 6).
14 event-info(1, deposit, 15, 7).
15 event-info(1, stop, 16, 6).
16 event-info (1, leave, 17, 8).

/* scenario-based meta-data */
17 enter (1, objo01, 12, 5).
18 move-east(1l, obj001, 13, 6).
19 enter (1, obj002, 14, 6).

APPENDIX A. GRAMMAR FOR SCENARIO-BASED QUERYING 94

20 move-east(1l, obj001, 15, 7).

21 deposit(1, obj001, obj002, west, 15, 6).
22 move-east(1l, obj001, 16, 8).

23 stop(1, obj002, 16, 6).

24 leave(1l, obj0o01, 17, 8).

