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Prof. Dr. Mustafa Ç. Pınar (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Alper Şen
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ABSTRACT

PRICING AND HEDGING OF CONTINGENT CLAIMS
IN INCOMPLETE MARKETS BY MODELING LOSSES
AS CONDITIONAL VALUE AT RISK IN λ-GAIN LOSS

OPPORTUNITIES

Zeynep Aydın

M.S. in Industrial Engineering

Supervisor: Prof. Dr. Mustafa Ç. Pınar

July, 2009

We combine the principles of risk aversion and no-arbitrage pricing and pro-

pose an alternative way for pricing and hedging contingent claims in incomplete

markets. We re-consider the pricing problem under the condition that losses are

modeled by the measure of CVaR in the concept of λ gain-loss opportunities.

The proposed model enables investors to specify their preferences by putting re-

strictions on the parameter λ that stands for risk aversion. Using CVaR as a

measure of risk enables us to account for extreme losses and yield a conservative

result. The pricing problem is studied in discrete time, multi-period, stochastic

linear optimization environment with a finite probability space. We extend our

model to include the perspectives of writers and buyers of the contingent claims.

We use duality to establish a pricing interval of the contingent claims excluding

CVaR-λ gain-loss opportunities in the market. Duality results also provide a

way for passing to appropriate martingale measures and we express the pricing

interval also in terms of martingale measures. This pricing interval is shown to

be tighter than the no-arbitrage bounds. We also present a numerical study of

our work with respect to the risk aversion parameter λ and in various levels of

confidence. We compute prices of the the writers and buyers of 48 European call

and put options on the S&P500 index on September 10, 2002 using the remaining

options as market traded assets. It is possible to say that our proposed model

yields good bounds as most of the bounds we obtained are very close to the true

bid and ask values.

Keywords: stochastic programming, conditional value at risk, arbitrage, martin-

gales, duality, contingent claims .

iii



ÖZET

EKSİK PİYASALARDA KOŞULLU TALEPLERİN λ-
KAZANÇ KAYIP FIRSATLARINDA KAYIPLARIN

KOŞULLU RİSKE MARUZ DEĞER KULLANILARAK
FİYATLANDIRILMASI

Zeynep Aydın

Endüstri Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Mustafa Ç. Pınar

Temmuz, 2009

Bu tez çalışmasında, riskten kaçınma ve arbitraj fiyatlama teorisi ilkeleri bir

araya getirilerek eksik piyasalarda koşullu taleplerin değerlemesi için yeni bir

yol önerilmektedir. λ-kazanç kayıp fırsatları konseptindeki fiyatlama prob-

lemi, kayıpların koşullu riske maruz değer (CVaR) kullanılarak modellenmesi

koşulu altında tekrar değerlendirilmektedir. Önerilen model, yatırımcıların λ

parametresi üzerine kısıtlama getirerek tercihlerini belirleyebilmelerine imkan

sağlamaktadır. Risk ölçütü olarak CVaR kullanılması, oluşabilecek aşırı

kayıpların hesaba katılabilmesini sağlamakta ve daha ihtiyatlı bir sonuç vermek-

tedir. Fiyatlama problemi, kesikli zaman, çoklu periyot bir stokastik lineer op-

timizasyon ortamında çalışılmaktadır. Model, koşullu taleplerin satıcılarının ve

alıcılarının bakış açılarını da içerecek şekilde genişletilmiştir. Dualite kullanılarak,

piyasada koşullu talepler icin CVAR-λ kazanç kayıp fırsatı içermeyen bir fiyat

aralığı tespit edilmiştir. Dualite sonuçları uygun martingale ölçütlerine geçiş

imkanı sağlamış; bu sayede fiyat aralığı martingale ölçütleri cinsinden de ifade

edilmiştir. Bu fiyat aralığının arbitraj fiyatlama teorisi ile tespit edilen aralıktan

daha dar olduğu gösterilmiştir. Buna ek olarak, farklı güvenilirlik seviyeleri kul-

lanılarak, riskten kaçınma parametresine göre numerik bir çalışma yapılmıştır. 10

Eylül 2002 S&P 500 indeksinde yer alan 48 Avrupa tipi alım ve satım opsiyonu

için fiyatlar hesaplanmış; fiyatı hesaplanan opsiyon dışındaki opsiyonlar piyasa

varlıkları olarak kabul edilmiştir. Elde ettiğimiz fiyat sınırlarının gerçek alım-

satım değerlerine oldukça yakın olması, önerdiğimiz modelin iyi bir fiyat aralığı

belirlediğini göstermektedir.

Anahtar sözcükler : Stokastik programlama, koşullu riske maruz değer, arbitraj,

martingale, dualite, koşullu talepler.
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all memories she brought to my life throughout all these years. She is the one to

v



vi

make me smile in my unhappiest or angriest moments. My brother Hasan Basri

Aydın has been giving me his candidest hugs in my hopeless moments, the unique

combination when three of us come together has been the most joyful times in

my life. My mother Yeter Aydın deserves special thanks for sharing every little

joy and sorrow in my life. My final thanks are for my father Turgut Aydın who

has been providing me everything I need with great care and patience. I owe my

parents a lot for every success I have in my life and I dedicate my thesis to them.



Contents

1 Introduction 1

2 Literature Review 6

3 Preliminaries 11

3.1 Probabilistic Setting . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Arbitrage and Equivalent Martingale Measures . . . . . . . . . . . 13

3.3 Financing of Contingent Claims and Positions of the Writer and

the Buyer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.1 Position of the Writer . . . . . . . . . . . . . . . . . . . . 17

3.3.2 Position of the Buyer . . . . . . . . . . . . . . . . . . . . . 18

4 Modeling Losses as ‘CVaR’ 20

4.1 λ Gain- Loss Opportunities . . . . . . . . . . . . . . . . . . . . . 20

4.2 Losses as CVaR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4 Formulation and Constraints . . . . . . . . . . . . . . . . . . . . . 28

vii



CONTENTS viii

4.5 Exploring the effects of the parameters λ and α . . . . . . . . . . 29

4.6 Positions of the Writer and the Buyer . . . . . . . . . . . . . . . . 31

5 Duality and Martingales 33

5.1 Forming the dual problem of the model . . . . . . . . . . . . . . . 33

5.2 Establishing bounds on the prices of the buyer and the writer via

duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Experimental Study 44

6.1 Calibrated Option Bounds . . . . . . . . . . . . . . . . . . . . . . 44

6.2 Gauss-Hermite Processes . . . . . . . . . . . . . . . . . . . . . . . 49

6.3 Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7 Conclusion 65



List of Figures

2.1 Option Price Bounds as a Function of Stock Price . . . . . . . . . 8

3.1 Scenario Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 VaR, CVaR and α . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.1 Option1, alpha=0.95 . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2 Option1, alpha=0.99 . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.3 Option2,alpha=0.95 . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.4 Option2, alpha=0.99 . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.5 Option5, alpha=0.95 . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.6 Option5, alpha=0.99 . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.7 Option6, alpha=0.95 . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.8 Option6, alpha=0.99 . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.9 Option14, alpha=0.95 . . . . . . . . . . . . . . . . . . . . . . . . 60

6.10 Option14, alpha=0.99 . . . . . . . . . . . . . . . . . . . . . . . . 61

6.11 Option25, alpha=0.95 . . . . . . . . . . . . . . . . . . . . . . . . 62

ix



LIST OF FIGURES x

6.12 Option25, alpha=0.99 . . . . . . . . . . . . . . . . . . . . . . . . 63



List of Tables

6.1 Data for Call Options . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2 Data for Put Options . . . . . . . . . . . . . . . . . . . . . . . . . 48

xi



Chapter 1

Introduction

The question of pricing uncertain pay-offs has been studied extensively in financial

economics starting after Louis Bachelier’s work on option pricing in 1900. The

renowned papers of Black and Scholes and Merton in 1970s paved the way for

pricing uncertain payoffs in a complete and unconstrained market. Black-Scholes-

Merton approach replicates uncertain payoffs using existing financial instruments

and finds a unique price relative to these instruments avoiding an arbitrage op-

portunity. This price coincides with the expectation of claim’s discounted value

under the unique, risk-neutral equivalent probability measure.

The foregoing argument fails, however, unless the financial market is com-

plete and unconstrained. In the case of incomplete markets, there ceases to exist

a unique price for a contingent claim based on the absence of arbitrage oppor-

tunities. Actually, this means that on the portfolios side there is no replicating

portfolio and the hedging strategy could involve a risky position; on the payoffs

side, there is an infinite number of martingale measures and each of them provides

a different price for the contingent claim.

In incomplete markets, there are two fundamental approaches for pricing con-

tingent claims. The first one is usually known as “model based pricing” and is

based on expected utility maximization concept. This approach equates the price

of a claim to the expectation of the product of the future payoff and the marginal

1



CHAPTER 1. INTRODUCTION 2

rate of substitution of the investor. This approach yields precise pricing of the

asset due to explicit assumptions about investors preferences; however is prone

to misspecification error. Since specifying investors preferences in all states is a

challenging task, practical use of this approach is limited.

When investors’ preferences cannot be specified, a second approach called “ no

arbitrage pricing” is employed. In this approach, an interval of prices consistent

with no arbitrage is calculated rather than setting a unique price level. Absence

of a unique martingale measure leads to a pricing interval where the minimum is

called “buyer’s price” and maximum is called “writer’s price”. If the buyers are

risk averse, no one would buy a claim offered at the writer’s price and similarly

a risk-averse writer would not sell the claim at the buyer’s price.

A writer may for various reasons settle for a price less than the writer’s price.

In such a case, the writer will not be able to find a super-replicating portfolio (a

portfolio dominating claim’s future pay-offs). Therefore, the writer runs the risk

of falling short and will need to set-up his/her hedge portfolio (and equivalently

determine writer’s price) according to some optimality criteria. An analogous

problem can be defined for the buyer as well. In order to develop an optimality

criterion, Cochrane and Saa-Requejo [1] introduce “good-deal concept” which

they define as an investment with a high Sharpe ratio1.

Similarly, Bernardo and Ledoit [2] introduce the “gain-loss ratio”, which is

the expectation of an investment’s positive excess payoffs divided by expectation

of its negative excess payoffs. Building on Bernardo and Ledoit’s concept of the

gain-loss ratio, Pinar et al. [4] have recently developed the concept of “λ gain-

loss opportunities” and investigated the derivations and computations within the

framework of stochastic linear programming.

Another principle that the modern financial theory is based on is risk aversion.

It is well known that the single major source of profit is risk. The expected return

depends heavily on the level of risk of an investment. Although the idea of risk

1The Sharpe ratio or reward-to-variability ratio is a measure of the excess return (or Risk
Premium) per unit of risk in an investment. It is calculated by dividing return of asset minus
a benchmark rate by standard deviation of the return.



CHAPTER 1. INTRODUCTION 3

seems to be intuitively clear, it is difficult to formalize it. Different attempts have

been conducted with various degrees of success. There appears an efficient way

to formalize and quantify risk in most of the markets. However, each method is

deeply associated with its specific market and this association limits their useful-

ness in other markets. Value at Risk (VaR) has been an integrated way to deal

with different markets and different risks and to combine all factors into a single

number which is a good indicator of the overall risk level since it was introduced

by JP Morgan in 1994. It calculates maximum expected losses over a given time

period at a given tolerance level. However, VaR suffers from the following draw-

backs as Rockafellar and Uryasev [10] states: i) it under or over-estimates the

risk when losses are not normally distributed; ii) it does not give an information

on the distribution of losses exceeding VaR and iii) it does not satisfy the prop-

erties of a coherent risk measure such as sub-additivity. Conditional Value at

Risk (CVaR), also called mean excess loss, mean shortfall, or tail VaR, is closely

related to VaR. It has been developed as an extension of VaR and is superior to

VaR for being coherent and having strong mathematical characteristics such as

convexity and sub-additivity. CVaR is defined as the conditional expected loss

under the condition the loss exceeds VaR. Therefore, CVaR is equal to or greater

than VaR.

In this thesis, we will combine the principles of risk aversion and no-arbitrage

pricing and propose an alternative way for pricing and hedging contingent claims.

Investors will be able to specify their preferences by putting restrictions on the

parameter λ that stands for risk aversion. Our study is mainly inspired by the

work of Pinar et al. [4] and we re-consider the pricing problem under the condition

that the losses are modeled by the measure of CVaR in the concept of λ gain-

loss opportunities. We name this criterion as a CVaR-λ gain-loss opportunity.

Using CVaR as a measure of risk will enable us to account for extreme losses and

yield a conservative result. The pricing problem will be studied in discrete time,

multi-period, stochastic linear optimization environment with a finite probability

space. We will introduce a function that minimizes CVaR and model losses by this

function. Then, we will incorporate this loss function into the stochastic program

that determines the maximum expected gains of an investor that is interested in a
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λ gain-loss opportunity. The λ gain-loss opportunity can be defined as a portfolio

that begins with a zero initial value, makes self-financing portfolio transactions

and attains a non-negative value in each future state, while in the terminal state

the probability that it yields a positive value for the difference between the gains

and λ times the losses is positive. We state the relationship between the existence

of the CVaR-λ gain-loss opportunities and martingales. Then, we determine the

pricing interval of our model excluding CVaR-λ gain-loss opportunities in the

market. This pricing interval will be tighter than the no-arbitrage bounds. This

is the main motivation of our study since our model enables us to obtain tighter

bounds on the prices. We also note that these bounds converge to the no arbitrage

bounds in the limit when the parameter λ goes to infinity in each of the specified

confidence levels.

The organization of the thesis is as follows:

The next chapter starts with the review of the literature that is related to the

problem under consideration. Our study is mainly about incorporating CVaR

measure as losses into the λ gain-loss opportunities. The concept of λ gain-loss

opportunity is in close relationship with the concepts of Sharpe Ratio, Gain-Loss

ratio and Good Deals. Therefore, important works about these concepts will

be examined in the literature review part. Then, the work of Rockefellar and

Uryasev will be examined to give an in-depth understanding of the concept of

CVaR.

In Chapter 3, the general setting and the stochastic process governing the

security prices are summarized. The concept of arbitrage is defined within the

framework of stochastic programming and the links between arbitrage and mar-

tingales are stated. Finally, the hedging and pricing problem of contingent claims

is discussed and extended to include the perspectives of writers and buyers of the

contingent claims.

Chapter 4 starts with the definition of a λ gain-loss opportunity. A stochastic

linear program to determine whether a λ gain-loss opportunity exists in the sys-

tem is given. Later, we elaborate on the concept of CVaR and our motivations

to model losses by CVaR in the model seeking a λ gain-loss opportunity. After
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the notations are listed, the formulation of the model that incorporates CVAR as

losses to the pricing problem of contingent claims is given. Finally, the model is

developed from the perspectives of the writers and the buyers of the contingent

claims.

In Chapter 5, the problem discussed in Chapter 4 is analyzed through duality.

It is shown that duality results provide the means for passing to the martingale

measures. We prove in Theorem 3 that the absence of a λ-gain loss opportunity is

equivalent to the existence of equivalent (α, λ) compatible martingale measures.

Then, the dual problems to the problems of the buyer and the writer are stated.

We use the dual problems to establish a CVaR-λ pricing interval. We also express

the pricing interval in terms of martingale measures.

In Chapter 6, we present a numerical study of our work with respect to the

risk aversion parameter λ and in various levels of confidence (α) to give a better

understanding of the model. This study enables us to compare the resulting values

to the actual market prices and interpret the data numerically. We compute prices

of the the writer and buyer of 48 European call and put options on the S&P500

index on September 10, 2002 according to the model proposed in Chapter 4 using

the remaining options as market traded assets. We illustrate a representative

sample of the graphs of these options and comment on the results. It is possible

to say that our proposed model yields good bounds as most of the bounds we

obtained are very close to the true bid and ask values. Consequently, by giving a

simple example, we show that the range of the loss aversion parameter λ decreases

compared to the λ gain-loss model.

In Chapter 7, we conclude the thesis by giving an overall summary and stating

some possible future research related to the model that we developed.



Chapter 2

Literature Review

This chapter consists of the review of the literature related to the model that we

will constitute by using the concept of Conditional Value at Risk for measuring

losses when studying with the concept of λ gain-loss opportunities.

We will begin with Bernardo and Ledoit [1] where they introduce the expected

gain to loss ratio which forms the basis of the pricing methodology that we use

throughout this thesis. Authors study the asset pricing in incomplete markets

by developing a new approach that unifies model-based pricing and pricing by

no arbitrage. Model-based pricing makes strong assumptions about a benchmark

investor’s preferences using utility maximization concept. These assumptions

enable the calculation of a specific discount factor; thus yield exact pricing im-

plications. Despite its preciseness, calculated prices are prone to misspecification

error; therefore practical use of this approach can be limited. On the other hand,

pricing by no arbitrage makes weak assumptions about only the existence of a

set of basis assets and the absence of arbitrage opportunities. Thus, when the

market is incomplete, this approach yields pricing implications that are robust

but often too imprecise to be economically interesting. The new approach de-

veloped by the authors incorporates information from both of the approaches by

making a combination of these assumptions. With this new approach, they apply

the expected gain to loss ratio and obtain a duality theorem for maximizing this

ratio. Another duality theorem is later used for establishing bounds on option

6
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prices. Gain-loss ratio, which is the ratio of the expectation of the investment’s

positive excess payoffs to the expectation of its negative excess payoffs, is intro-

duced for measuring the attractiveness of an investment opportunity. When the

expectations are taken under appropriate risk-adjusted probabilities, high gain-

loss ratio constitutes desirable investments for the benchmark investor and an

arbitrage opportunity in the limit. Applying duality in this new approach results

in connecting the high gain-loss ratio to stage-contingent discount factors with

extreme deviations from the benchmark discount factor. A finite limit L̄ is in-

troduced on the maximum gain-loss ratio so that the admissible set of discount

factors is restricted to the ones that do not exhibit extreme deviations. Assuming

that excess payoffs have a gain-loss ratio below L̄, the bounds of the price of a

non-basic asset become wider as L̄ increases and vice versa. If L̄ goes to infinity,

the admissible set converges to the no-arbitrage case. If L̄ goes to one which is its

lower bound, the admissible set shrinks to contain only the benchmark discount

factor. Therefore, L̄ can be interpreted as the trade-off between the precision of

specific benchmark pricing model and the robustness of the no-arbitrage bounds.

The choice of L̄ provides a considerable flexibility to the modeler along with the

choice of a benchmark discount factor and an appropriate set of basis assets.

Similarly, Cochrane and Saa-Requejo [2] replace the no-arbitrage conditions

by the concept of a “good deal” which is defined as an investment with a high

Sharpe ratio. The aim of authors in this paper is to develop a model for re-

stricting the range of values of risky payoffs when one may not be able to trade

continuously or in cases when there are state variables such as stochastic stock

volatility and interest rate. Suppose that we want to learn the value of a fo-

cus payoff (xc
t+1) given the prices (pt) of a set of basis payoffs or hedging assets

(xt+1), then a discount factor or marginal utility growth rate (mt+1) generates

the value (pt) of any payoff (xt+1) by p = E(mx). Therefore, if the focus payoff

can be perfectly replicated from the set of basis assets, its value can be deter-

mined. However when the replication is not perfect, more restriction on discount

factors is needed. For this purpose, authors add an upper limit bound on dis-

count factor volatility (or equivalently a restriction on Sharpe ratio) in addition
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to the classic no-arbitrage restriction; and thereby obtain useful bounds on op-

tion prices in an incomplete market setting. Hence, the lower good-deal bound

solves, C = min E(mxc) subject to the constraints p = E(mx) which enforces

that the prices of the basis assets are used to learn about the discount factor,

m ≥ 0 which is a classic characterization of marginal utility and σ(m) ≤ h/Rf

which is the main innovation explained as a similar weak restriction on marginal

utility and also a way of imposing weak predictions of economic models instead

of imposing a full structure. The paper follows with the solution of the above

model by considering different cases with different constraints binding. Firstly,

the good-deal bounds are calculated in single-period and then it is shown that a

recursive solution to the multi period problem exists such that the lower bound

today solves the one-period problem with the lower bound tomorrow as payoff.

The figure below is useful as it compares the good-deals bounds obtained by the

authors with Black-Scholes and no arbitrage bounds.
84 journal of political economy

Fig. 1.—Option price bounds as a function of stock price. Options have three
months to expiration and strike price K ! $100. The bounds assume no trading
until expiration and a discount factor volatility bound h ! 1.0 corresponding to
twice the market Sharpe ratio. The stock is lognormally distributed with parameters
calibrated to an index option.

The upper arbitrage bound states that C " S, but this 45-degree line
is too far up to fit on the vertical scale and still see anything else.
As in many practical situations, the arbitrage bounds are so wide that
they are of little use.

The upper good-deal bound is much tighter than the upper arbi-
trage bound. For example, if the stock price is $95, the entire range
of option prices between the upper bound of $2 and the upper arbi-
trage bound of $95 is ruled out. The lower good-deal bound is the
same as the lower arbitrage bound for stock prices less than about
$90 and greater than about $110. In between $90 and $110, the
good-deal bound improves on the lower arbitrage bound.

The width of the bounds is larger, about $1, at the money than
it is far in the money or out of the money. Options are hardest to
hedge at the money because the nonlinearity of the option payoff
as a function of stock price is greatest here. Therefore, the resid-
ual—option payoff less best approximate hedge—is largest in this
region. However, the width of the bounds is a much larger fraction
of the call option value for out-of-the-money options on the left-

Figure 2.1: Option Price Bounds as a Function of Stock Price
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King [3] presents a modeling approach for the hedging problem of contingent

claims in the discrete time, discrete state case as a stochastic program. Duality is

applied, leading to the arbitrage pricing theorems. The link between arbitrage and

martingales is stated as the absence of arbitrage is equivalent to the existence of a

probability measure that makes the price process a martingale. The relationship

between the boundedness and feasibility of the problem and the requirements of

the margins of the contingent claims are studied in the latter sections, stating

the conditions under which a buyer should buy a claim that is offered by the

writer. The model is then extended to analyze the effects of the differences in

risk aversions and transaction costs. Then, the pre-existing liability positions

or endowments are introduced and analyzed to see their impact on the model

and it is seen that pre-existing liability structure or endowments of the market

players are the reasons to trade in options. The probabilistic setting of [3] will

be considered throughout the thesis.

Pinar et al. [4] study the problem of pricing and hedging contingent claims

in a multi-period, linear programming setting. A concept called a λ gain-loss

opportunity that is built on the Expected Gain to Loss ratio of Bernardo and

Ledoit is introduced. Investors can seek a λ gain-loss opportunity in the market

in absence of an arbitrage opportunity where λ stands for the loss aversion. The

concept of a λ gain-loss opportunity is similar to the notion of a good-deal but the

definitions are not based on ratios. Hence, resulting optimization problems are

easier to analyze. The discrete time, discrete state stochastic programming that

is developed by King [3] is used in the paper. The stochastic linear programming

framework allows adding variables and constraints to the model and conducting

numerical analysis. Firstly, the general probabilistic setting and the relationship

between arbitrage and martingales are stated. Then, a stochastic linear program

to seek a λ gain-loss opportunity in the market is formed. The necessary condi-

tions for a λ gain-loss opportunity to exist in the market are stated. The cut-off

value of the risk-aversion parameter is searched, and it is observed that, as the

risk aversion parameter goes to infinity, the bounds of the prices not allowing

a λ gain-loss opportunity converge to the no-arbitrage bounds. On the other

hand, they converge to a unique value when the risk aversion parameter goes to



CHAPTER 2. LITERATURE REVIEW 10

the smallest value not allowing a λ gain-loss opportunity. Then, the financing

problems are taken from the buyer’s and the writer’s perspectives. The problem

is also considered under the assumption of proportional transaction costs. It is

shown that the pricing bounds obtained are tighter than the no-arbitrage pricing

bounds. The stochastic programming framework used to seek λ gain-loss oppor-

tunities forms the basis of our study in this thesis. Our main point of departure

is modeling losses by CVaR instead of expected terminal wealth positions.

The key article about the optimization of CVaR by Rockefellar and Uryasev

[5] will be summarized to give an in-depth understanding of the concept of CVaR.

The authors introduce a new approach to minimize the CVaR of a portfolio using

linear programming and non-smooth optimization techniques. It is well-known

that risk management has been a concern of financial world for a long time and

that the risk management techniques have been developing rapidly in recent years.

VaR has been a popular risk measure, however it lacks some important math-

ematical characteristics such as convexity and sub-additivity which are among

necessary characteristics of a coherent risk measure. That means the VaR of a

combined portfolio can be larger than the sum of the VaRs of its components due

to lack of sub additivity which constitutes a problem when it is required to ag-

gregate risks of individual VaR values, and bring them together to get statistical

predictability. CVaR, on the other hand, has been developed as an alternative

measure of risk and is shown to be a coherent measure with strong mathematical

characteristics. CVaR can be defined as the conditional expectation of the losses

associated with a portfolio given that the loss at a given percentile is VaR or

greater. The new approach developed by the authors that minimizes the CVaR

is closely related to minimizing the VaR of the portfolio as the definitions ensure

that portfolios with a small VaR necessarily have small CVaR. The important

feature of the new approach is the characterization of CVaR and VaR in terms of

an auxiliary function and showing that minimizing this convex and continuously

differentiable function is equivalent to minimizing CVaR. Then, applications to

portfolio optimization and hedging are presented to show the validity of the new

approach through numerical examples. We will use the discrete-time version of

this function to model losses by CVaR in the concept of λ gain-loss opportunities.



Chapter 3

Preliminaries

In this chapter, the general probability setting and the concepts of arbitrage and

martingales are introduced. The connection between the arbitrage and martin-

gales will be given through Theorem 1. Then, the financing of contingent claims,

the positions of the writer and the buyer and the no-arbitrage interval will be

discussed. We will start with the general probabilistic setting below.

3.1 Probabilistic Setting

Throughout the thesis, we will follow the general probabilistic setting of [3]. The

behavior of the stock market is approximated by assuming that all asset values

are random variables that are supported on a finite probability space (Ω,F , P )

whose atoms ω are sequences of real valued vectors (security prices and payments)

over the discrete time periods t = 0, 1, . . . , T . In addition, we assume that the

market evolves as a discrete scenario tree. In the scenario tree, the partition of

probability atoms ω ∈ Ω which are generated by matching path histories up to

time t corresponds one-to-one with nodes n ∈ Nt at level t in the tree. The root

node n = 0 corresponds to trivial partition N0 = Ω, and the leaf nodes n ∈ NT

correspond one-to-one with the probability atoms ω ∈ Ω.

11
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Figure 3.1: Scenario Tree

As represented in the figure above in the scenario tree, every node n ∈ Nt

for t = 1, . . . , T has a unique parent node denoted by a (n) ∈ Nt−1, and every

node n ∈ Nt, t = 0, 1, . . . , T − 1 has a nonempty set of child nodes denoted by

C (n) ⊂ Nt+1.

The probability distribution P is modeled by assigning positive weights pn to

each leaf node n ∈ NT . The weights pn are assigned to each leaf node n ∈ NT in

such a way that
∑

n∈NT
pn = 1. Each intermediate level node in the tree receives

a probability mass equal to the combined mass of the paths passing through it.

pn =
∑

m∈C(n)

pm ∀n ∈ Nt, t = T − 1, . . . , 0.

The ratios pm/pn, m ∈ Cn, are the conditional probabilities that the child

node m occurs given that the parent node n = a (m) has occurred.

The function X : Ω → R is a real-valued random variable if {ω : X (ω) ≤ r} ∈
F ∀r ∈ R. Let X be a real-valued random variable. X can be lifted to Nt if it

can be assigned a value on each node of Nt that is consistent with its definition

on Ω, [3]. This kind of random variable is said to be measurable with respect

to the information contained in the nodes of Nt. A stochastic process {Xt} is a
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time indexed collection of random variables such that each Xt is measurable with

respect to Nt. The expected value of Xt is uniquely defined by

EP [Xt] :=
∑
n∈Nt

pnXn.

The conditional expectation of Xt+1 on Nt

EP [Xt+1|Nt] :=
∑

m∈C(n)

pm

pn

Xm

is a random variable taking values over the nodes n ∈ Nt.

3.2 Arbitrage and Equivalent Martingale Mea-

sures

The market consists of J + 1 tradable securities indexed by j = 0, 1, . . . , J with

prices at node n given by the vector Sn =
(
S0

n, . . . , S
J
n

)
. Suppose as in [8] that one

of the securities always has strictly positive values at each node of the scenario

tree. Let security 0 be such security. This security which corresponds to the

risk-free asset in the classical valuation framework is chosen to be numéraire.

Introducing the discount factors βn = 1/S0
n we define the discounted security

prices relative to the numéraire and denote it by Zn =
(
Z0

n, . . . , Z
J
n

)
where ZJ

n =

βnS
J
n for j = 0, 1, . . . , J . Note that, Z0

n = 1 in any state n.

The amount of security j held by the investor in state n ∈ Nt is denoted by

θj
n. Therefore, the value of the portfolio discounted with respect to the numéraire

in state n is

Zn · θn :=
J∑

j=0

Zj
nθ

j
n.
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Arbitrage can be defined as a sequence of portfolio holdings that begins with

a zero initial value, makes self-financing portfolio transactions and attains a non-

negative value in each future state, while in at least one terminal state it attains

a strictly positive value with positive probability. It can be interpreted as making

something out of nothing.

The condition of self-financing portfolio transactions

Zn · θn = Zn · θa(n), n > 0

states that the funds available for investment at state n are restricted to the funds

generated by the price changes in the portfolio held at state a (n).

The following optimization problem, called a stochastic program, is used to

find an arbitrage.

max
∑

n∈NT

pnZn · θn

s.t.

Z0 · θ0 = 0

Zn ·
[
θn − θa(n)

]
= 0, ∀n ∈ Nt, t ≥ 1

Zn · θn ≥ 0, ∀n ∈ NT

A positive optimal value for this stochastic program corresponds to an arbi-

trage. The program begins with a 0 valued portfolio, makes self-financing trades

a each step, has a positive expected value at time T . Moreover, the problem

is unbounded if the opportunity of arbitrage exists. The solution that yields a

positive optimal value can be turned into an arbitrage as shown by Harrison and

Pliska [8]. On the other hand, if no arbitrage is possible, the price process is

called an arbitrage-free market price process.

A martingale is a stochastic process such that the expected value of the next

observation, given all the past observations, is equal to the last observation.
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In other words, the value of each coordinate of Zn is equal to its conditional

expectation one step ahead. The following definition is a mathematical expression

of this definition.

Definition 1 If there exists a probability measure Q = {qn}n∈Nt
such that

Zt = EQ [Zt+1|Nt] (t ≤ T − 1) (3.1)

then the vector process {Zt} is called a vector-valued martingale under Q, and Q

is called a martingale probability measure for the process.

Two martingale measures are equivalent as defined in [9] whenever their null

sets coincide. The definition below states this relationship.

Definition 2 A discrete probability measure Q = qnn∈Nt
is said to be equivalent

to a discrete probability measure P = pnn∈Nt
if qn > 0 exactly when pn > 0.

The following Theorem proved by King [3] establishes the relationship between

arbitrage and martingales which is of great importance to our study.

Theorem 1 The discrete state stochastic vector process {Zt} is an arbitrage-free

market price process if and only if there is at least one probability measure Q

equivalent to P under which {Zt} is a martingale.
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3.3 Financing of Contingent Claims and Posi-

tions of the Writer and the Buyer

Any asset or security whose value depends upon other assets is called a contingent

claim. Suppose that F is such a security, then it has payouts Fn, n > 0 depending

on the states n of the market. Currency futures and equity options are examples

of traded contingent claims. Now suppose that we would like to determine the

minimum initial investment that is needed to generate payouts Fn through self-

financing transactions using a riskless asset and the underlying security without

the risk that the terminal positions can be negative at any state. The following

stochastic program determines the minimum amount F0 required to hedge the

claim F that produces payouts Fn with no risk.

min Z0 · θ0

s.t.

Zn ·
[
θn − θa(n)

]
= −βnFn ∀n ∈ Nt, t ≥ 1

Zn ·Θn ≥ 0 ∀n ∈ NT

(3.2)

The dual of this problem equals to the maximum expected value of the dis-

counted payouts over all martingale measures which is,

max
Q∈M

EQ

[
T∑

t=1

βtFt

]
.

Then, we can write the proposition below which is proved by King [3].

Proposition 1 Let Fn be a contingent claim on an arbitrage-free market price

process {Zt}. The claim is attainable if and only if its price F0 satisfies

β0F0 ≥ max
Q∈M

EQ

[
T∑

t=1

βtFt

]
(3.3)
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where M =
{
Q : Zt = EQ [Zt+1 |Nt] (t ≤ T − 1)} .

3.3.1 Position of the Writer

This section will discuss the position of the writer of the contingent claim. The

writer of the claim receives F0 from the buyer of the claim at state n = 0 and

pays Fn in each state n > 0 in the future. In the meantime, the writer invests

this money to generate a profit to maximize expected value at the end of the

horizon while hedging the claim. The problem of the writer can be modeled as

the stochastic program

max
∑

n∈NT

pnZn · θn

s.t.

Z0 · θ0 = β0F0

Zn ·
[
θn − θa(n)

]
= −βnFn ∀n ∈ Nt, t ≥ 1

Zn · θn ≥ 0 ∀n ∈ NT .

The necessary and the sufficient condition needed for the writer’s problem to

have an optimal solution and the condition on the price F0 charged by the writer

are derived in the following theorem proved by King [3].

Theorem 2 The writer’s problem has an optimum if and only if

1. The collection of equivalent martingale probability measures on the market

price process {Zt} is nonempty, and

2. The price F0 charged by the writer to generate payouts Fn satisfies

β0F0 ≥ max
Q∈M

EQ

[
T∑

t=1

βtFt

]
. (3.4)
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Furthermore, this price is invariant under the changes of the original probability

measure P .

Therefore, the writer’s minimum acceptable price to sell the claim is

Fwriter
0 = β−1

0 max
Q∈M

EQ

[
T∑

t=1

βtFt

]
. (3.5)

3.3.2 Position of the Buyer

This section analyzes the position of the buyer of the contingent claim. The buyer

of the claim pays F0 to the writer at state n = 0 and receives payments Fn in

each state n > 0 in the future. Like the writer, the buyer wishes to maximize

expected value at the end of the horizon by trading. The problem of the buyer

can be modeled as the following stochastic program

max
∑

n∈NT

pnZn · θn

s.t.

Z0 · θ0 = −β0F0

Zn ·
[
θn − θa(n)

]
= βnFn ∀n ∈ Nt, t ≥ 1

Zn · θn ≥ 0 ∀n ∈ NT .

The results derived for the writer’s problem are independent of the sign of

F . Therefore, the buyer’s acceptable price to buy the claim can be computed by

reversing the signs in the equation derived in the writer’s problem. Hence, the

buyer’s acceptable price F0 satisfies

β0F0 ≤ min
Q∈M

EQ

[
T∑

t=1

βtFt

]
. (3.6)
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Therefore, the buyer’s maximum acceptable price to buy the claim is

F buyer
0 = β−1

0 min
Q∈M

EQ

[
T∑

t=1

βtFt

]
. (3.7)

In the previous section, we have stated that the writer’s minimum offering

price was

Fwriter
0 = β−1

0 max
Q∈M

EQ

[
T∑

t=1

βtFt

]
.

Then we have, F buyer
0 ≤ Fwriter

0 and the interval [F buyer
0 , Fwriter

0 ] is called the

no-arbitrage interval.



Chapter 4

Modeling Losses as ‘CVaR’

In this part of the thesis, we introduce our model which develops the concept

of λ gain-loss opportunities using CVaR when measuring losses. In our study,

we assume that the scenario tree of the financial market evolves as described in

Chapter 3. Before moving on to formulation of the model, we shall elaborate on

the concepts of λ gain-loss opportunities and CVaR.

4.1 λ Gain- Loss Opportunities

Firstly, a λ gain-loss opportunity occurs when it is possible to form a portfolio

such that the difference between the gains and λ times the losses is positive with a

positive probability at the terminal state where we start with a zero valued initial

portfolio. When an arbitrage opportunity does not exist in the market, this kind

of criteria enable investors to determine the attractiveness of an investment. As

we have stated earlier, gain-loss ratio of Bernardo and Ledoit [2] and good-deals

of Cochrane and Saa-Requejo[1] are other examples of such a criterion. We can

formulate this as follows:

Let Zn · θn = x+
n −x−n for n ∈ NT where x+

n and x−n are non-negative numbers.

This means that the final portfolio value at terminal state n can be written as

20
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the difference of two non-negative numbers. Suppose that there exists a set of

vectors θn, ∀n ∈ N such that:

Z0 · θ0 = 0

Zn ·
[
θn − θa(n)

]
= 0, ∀n ∈ Nt, t ≥ 1

EP
[
X+

]
− λEP

[
X−]

> 0,

Where λ > 1 and X+ = x+
n n∈NT

, X− = x−n n∈NT
.

Such portfolio holdings are said to allow a “λ gain-loss opportunity at level

λ”. Formulating the problem as a linear program provides us computational ease

as well as the benefit of the ability of adding extra constraints to the model when

needed. Therefore, we can capture the problem of an investor seeking a λ gain-

loss opportunity even if an arbitrage opportunity does not exist in the stochastic

linear program below:

max
∑

n∈NT

pnx
+
n − λ

∑
n∈NT

pnx
−
n (4.1)

s.t. (4.2)

Z0 · θ0 = 0 (4.3)

Zn ·
[
θn − θa(n)

]
= 0, ∀n ∈ Nt, t ≥ 1 (4.4)

Zn · θn − x+
n + x−n = 0, ∀n ∈ NT (4.5)

x+
n ≥ 0, ∀n ∈ NT (4.6)

x−n ≥ 0, ∀n ∈ NT (4.7)

(4.8)

The solution is said to allow a λ gain-loss opportunity at level λ if there is an

optimal solution to the above problem with a positive optimal value. Conversely,

the discrete state stochastic vector process {Zt} does not admit a λ gain-loss
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opportunity at level λ if the value of the stochastic program is zero. Moreover,

Pinar et al. [4] proves that if the market price process does not admit a λ gain-

loss opportunity at level λ, then there exists an equivalent measure that makes

the price process a martingale.

4.2 Losses as CVaR

In our model, the risk component of the objective function is modeled by the

CVaR measure instead of the expected value of negative terminal wealth posi-

tions. The main motivation to express the risk component of our model using

CVaR instead of the expected value of negative terminal wealth positions is that

CVaR is a conservative measure of risk with strong mathematical characteris-

tics. Moreover, unlike VaR, CVaR accounts for potential losses beyond itself and

measures extreme risk. VaR can be defined as the maximum tolerable loss that

could occur with a given probability within a given period of time, i.e, losses

larger than VaR occur with probability not exceeding α, where α is the specified

confidence level. A mathematical definition for VaR can be given as follows, let

HC(c) = Pr(C ≤ c) be the cdf of the random variable c and α ∈ (0, 1). Then,

the VaR can be defined as:

H−1
C (1− α) = inf {t : Pr(C ≤ t) ≥ 1− α} = inf {t : Pr(C > t) ≤ α} .

Although, VaR has been a popular risk measure, it lacks some important math-

ematical characteristics such as convexity and sub-additivity which are among

necessary characteristics of a coherent risk measure. For instance, due to lack of

sub additivity, VaR of the combination of two portfolios may be greater than sum

of their individual VaRs or non-convexity may cause some computational diffi-

culties. The problem underlying the VaR models is that risk assessed is limited,

since the tail end of the distribution of loss is not typically assessed and VaR is

criticized for not considering losses beyond itself. CVaR, on the other hand, has

been developed as an alternative measure of risk and is shown to be a coherent

measure with strong mathematical characteristics. CVaR can be defined as the

conditional expectation of the losses associated with a portfolio given that the
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loss at a given percentile is VaR or greater.

Minimization of the CVaR of the portfolios can be modeled by linear program-

ming as shown by Rockafellar and Ursayev [5]. The new approach developed by

the authors to minimize the CVaR is closely related to minimizing the VaR of

the portfolio as the definitions ensure that portfolios with a small VaR necessarily

have small CVaR. The function fα(X−, γ) developed by Rockafellar and Uryasev

[5] will be used to model the negative terminal wealth positions in developing the

concept of λ gain-loss opportunities in our model, which is defined as:

fα(X−, γ) := γ + (1/1− α)
∑

n∈NT

pn max(0, x−n − γ).

Now, we will discuss the development of this function according to [5]. Let

f(x, y) be the loss associated with the decision vector x, that is chosen from a

set X ∈ Rn and the random vector y ∈ Rm. We can interpret the vector x

to represent a portfolio where X represents the set of available portfolios. The

vector y stands for uncertainties in the market that could have an affect on the

loss. For each x the loss f(x, y) is a random variable having a distribution in R

determined by the distribution of y. For simplicity, the underlying probability

distribution of y is assumed to have a density, denoted by p(y).

The probability of f(x, y) not exceeding a threshold γ is given by:

Ψ(x, γ) =

∫
f(x,y)≤γ

p(y)dy.

As a function of γ for fixed x, Ψ is the cumulative distribution function for the

loss associated with x which is of fundamental importance when determining

VaR and CVaR. Here, again for simplicity we can make one more assumption

that Ψ(x, γ) is everywhere continuous with respect to γ.

Let γα(x) and φα(x) represent α-VaR and α-CVaR respectively for the loss

random variable associated with x and a specified probability level α ∈ (0, 1).

Then,
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γα(x) = min {γ ∈ R : Ψ(x, γ) ≥ α}

and

φα(x) = (1− α)−1

∫
f(x,y)≥γα(x)

f(x, y)p(y)dy.

The logic behind these formulations is as follows: The first formula gives us

the left endpoint of the nonempty interval consisting of the γ values satisfying

Ψ(x, γ) = α , as Ψ(x, γ) is continuous and nondecreasing with respect to γ. In

the second formula the probability that f(x, y) ≥ γα(x) is equal to 1− α. Hence

φα(x) gives us the conditional expectation of the loss associated with x relative

to the loss being γα(x) or greater.

The next step to get to the function that we use is the definition of the function

Fα on X ×R which is a characterization of φα(x) and γα(x).

Fα(x, γ) = γ + (1− α)−1

∫
y∈Rm

[f(x, y)− γ]+ p(y)dy,

where [t]+ = t, when t > 0 and [t]+ = 0, when t ≤ 0. The following theorems are

proved by Rockafellar and Uryasev [5]:

Theorem 3 As a function of α, Fα(x, γ) is convex and continuously differen-

tiable. The α-CVaR of the loss associated with any x ∈ X can be determined

from the formula

φα(x) = min
γ∈R

Fα(x, γ).

Theorem 4 Minimizing the α-CVaR of the loss associated with x over all x ∈ X

is equivalent to minimizing Fα(x, γ) over all (x, γ) ∈ X ×R in the sense that

min
x∈X

φα(x) = min
(x,γ)∈(X×R)

Fα(x, γ).



CHAPTER 4. MODELING LOSSES AS ‘CVAR’ 25

Shapiro et al. [6] explain the idea behind the development of this function in

a similar way with a similar notation. Suppose that we want to satisfy

V aR[Cx] ≤ 0

at a specified confidence level α. Since VaR was already defined as

V aRα[c] = inf {t : Pr(C ≤ t) ≥ 1− α} .

we can rewrite the constraint we want to satisfy as

Pr(Cx > 0) = E[1(0,∞)(Cx)] ≤ α

where the function 1(0,∞)(.) is the indicator function such that 1(0,∞)(c) = 0 if

c ≤ 0 and 1(0,∞)(c) = 1 if c > 0.

The difficulty with this constraint is that the step function is non-convex

and discontinuous at zero. Therefore, a convex approximation of the expected

value can be constructed as follows: Let ϕ R → R be a nonnegative valued,

nondecreasing, convex function such that

ϕ(c) ≥ 1(0,∞)(c)∀c ∈ R.

Since 1(0,∞)(tc) = 1(0,∞)(c),∀t > 0 and c ∈ R, we have

ϕ(tc) ≥ 1(0,∞)(c).

Therefore, the inequality inft>0 E[ϕ(tC)] ≥ E[1(0,∞)(C)] holds. We can then

approximate the constraint

V aR[Cx] ≤ 0

as

inf
t>0

E[ϕ(tCx)] ≤ α.

It is obvious that the approximation is better if the function ϕ(.) is smaller.

Therefore, the best choice of ϕ(.) would be to take the piecewise linear function:

ϕ(c) := [1 + εc]+ for some ε > 0.



CHAPTER 4. MODELING LOSSES AS ‘CVAR’ 26

But, the constraint

inf
t>0

E[ϕ(tCx)] ≤ α

is invariant to the scale changes and hence the best choice of the function becomes

ϕ(c) = [1 + c]+.

With this function, the initial constraint becomes,

inf
t>0

(tE[t−1 + C]+ − α) ≤ 0,

or dividing both sides of the inequality by α we get,

inf
t>0

(α−1E[C + t−1]+ − t−1) ≤ 0.

Replacing t with −t−1 we obtain,

inf
t<0

(t + α−1E[C − t]+) ≤ 0.

The quantity,

CV aRα(c) := inf
t∈R

(t + α−1E[C − t]+)

is called the conditional value (or average value) at risk of C at level α which in

turn corresponds to our function.

We will introduce auxiliary variables un in order to incorporate the function

fα(X−, γ) = γ + (1/1− α)
∑

n∈NT

pn max(0, x−n − γ).

into our model.

The notation that will be used throughout the thesis are summarized in the

following section.
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4.3 Notation

Decision Variables

θj
n : The amount of security j held by the investor in state n ∈ Nt

x+
n : Gains of the investor in the final portfolio value at terminal state n

x−n : Losses of the investor in the final portfolio value at terminal state n

un : Auxiliary variables introduced for the function max(0, x−n − γ) ∀n ∈ NT

γ : The threshold value that the loss function does not exceed, namely value at

risk.

Parameters

λ: Loss Aversion parameter

α: Parameter specifying the level of confidence

pn: Probability weights assigned to each leaf node n

Zn: The vector of security prices at node n
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4.4 Formulation and Constraints

With above specifications, the mathematical formulation of the model that we

refer to as (P1) can be formulated as follows:

max
∑

n∈NT

pnx
+
n − λ(γ +

1

1− α

∑
n∈NT

pnun)

s.t.

Z0 · θ0 = 0 (4.1)

Zn ·
[
θn − θa(n)

]
= 0, ∀n ∈ Nt, t ≥ 1 (4.2)

Zn · θn − x+
n + x−n = 0, ∀n ∈ NT (4.3)

x+
n ≥ 0, ∀n ∈ NT (4.4)

x−n ≥ 0, ∀n ∈ NT (4.5)

un ≥ 0, ∀n ∈ NT (4.6)

un ≥ x−n − γ, ∀n ∈ NT (4.7)
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Here, constraint (4.1) guarantees that the funds available at initial state is

zero. Constraint (4.2), known as the condition of self-financing portfolio trans-

actions, states that the funds available for investment at state n are restricted

to the funds generated by the price changes in the portfolio held at state a (n).

Constraint (4.3) states that the final portfolio value at terminal state n can be

expressed in terms of the non-negative variables x+
n and x−n . Constraints (4.4)

and (4.5) are the non-negativity constraints of the variables. Constraint (4.6) and

(4.7) assure that the auxiliary variables un are equal to zero, when x−n − γ ≤ 0

and to x−n − γ, when x−n − γ > 0.

The solution to P1 gives rise to a CVaR-λ gain-loss opportunity at level ‘λ’

and confidence level ‘α’ whenever there exists an optimal solution to the above

stochastic problem with a positive optimal value. In fact, the problem is un-

bounded if a λ gain-loss opportunity exists. Because when the problem is solvable,

by fundamental theorem of linear programming, it always has a basic optimal so-

lution such that x+
n , x−n can not both be positive. Therefore, the discrete state

stochastic vector process {Zt} does not admit a CVaR-λ gain-loss opportunity at

level λ and confidence level α if the value of the stochastic program is zero.

4.5 Exploring the effects of the parameters λ

and α

Firstly, we will start with the effect of the parameter λ on the objective function.

λ can be interpreted as the loss aversion parameter as the gains of the investor

at the terminal state will be λ times the losses. Investors can decide on the level

of loss that they are willing to undertake by specifying the parameter λ. As λ

increases, the investor chooses less-risky positions, whereas when λ decreases the

risk that the investor undertakes increases. When we think of the case that λ

tends to infinity in the limit, we observe that we obtain the no-arbitrage problem

of King defined in Chapter 3. In this case, the investor chooses near arbitrage

positions. On the other hand, in the case that λ is 1, the gains and the losses of

the individual will be equally shared.
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Secondly, we will discuss the effect of the parameter α which is the confidence

level. As we have stated above, it is useful to notice that the optimal value of

the variable γ corresponds to the VaR at the specified confidence level α and the

expression γ + 1
1−α

∑
n∈NT

pn max(0, x−n − γ) corresponds to the CVaR at level α.

The figure below is useful to illustrate the relationship between VaR, CVaR and

α.

VaR, CVaR, CVaR+  and CVaR-
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Figure 4.1: VaR, CVaR and α

Now, let us suppose that α is zero. This implies that γ is zero because the

value at risk at level α = 0 is zero. When we insert α = 0 and γ = 0 to our

objective function, we obtain the problem of a λ gain-loss opportunity that was

given in section 4.1. This is expected because the effect of CVaR also decreases

as the effect of α decreases. CVaR is defined as expected loss in the worst q% of

the cases where q = (1 − α) × 100. When we set α = 0, we cover 100% of the

cases and CVaR equals the expected value of losses. This results in measuring

losses by expected values of negative terminal wealth positions instead of CVaR

in our model. On the contrary, let us suppose that α is increased to 1, this means

that (1−α) is zero. Then, VaR becomes the maximum loss. As CVaR will be the

average of a single point in this special case, we will have CVaR equals maximum

loss as well. We also observe that VaR and CVaR are increasing functions of α.
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This is reasonable since we expect to incur more losses as the confidence level

increases. This relationship will be reflected in our λ values in the following way:

The maximum value of the parameter λ allowing a CVaR-λ-gain loss opportunity

decreases as the value of α increases. This follows from the fact that increasing

α values imply higher level of expected loss as explained above; thereby leads to

a smaller gain-loss opportunity.

4.6 Positions of the Writer and the Buyer

Now, we will extend our model by considering the perspectives of potential writers

and buyers. First, consider the position of the writer of the contingent claim F

who has received F0 in return for a promise to pay Fn in the future, depending

on the states of the market. The writer would seek an answer to the following

question: What is the minimum initial investment to replicate the pay-outs Fn

using securities available in the market so that the positive expected wealth at

the terminal state would be greater than λ times the expected negative terminal

wealth? Therefore, the writer would be interested in the solution of the following

stochastic linear programming problem:

min Z0 · θ0

s.t.

Zn ·
[
θn − θa(n)

]
= −βnFn, ∀n ∈ Nt, t ≥ 1

Zn · θn − x+
n + x−n = 0 ∀n ∈ NT∑

n∈NT

pnx
+
n − λ(γ + 1/1− α

∑
n∈NT

pnun) ≥ 0

x+
n ≥ 0, ∀n ∈ NT ,

x−n ≥ 0, ∀n ∈ NT ,

un ≥ 0, ∀n ∈ NT ,

un ≥ x−n − γ, ∀n ∈ NT
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On the other hand, when we consider the point of view of a buyer, it is rea-

sonable that a buyer who pays F0 in return for a promise of payments Fn in each

state n > 0 would be interested in the answer of the following question: What is

the maximum price that I should pay for the claim such that the expected posi-

tive terminal wealth positions do not fall short of λ times the expected negative

terminal wealth positions? Then, the problem of the buyer could be expressed as

below:

max−Z0 · θ0

s.t.

Zn ·
[
θn − θa(n)

]
= βnFn, ∀n ∈ Nt, t ≥ 1

Zn · θn − x+
n + x−n = 0 ∀n ∈ NT∑

n∈NT

pnx
+
n − λ(γ +

1

1− α

∑
n∈NT

pnun) ≥ 0

x+
n ≥ 0, ∀n ∈ NT ,

x−n ≥ 0, ∀n ∈ NT ,

un ≥ 0, ∀n ∈ NT ,

un ≥ x−n − γ, ∀n ∈ NT

In this chapter, we have introduced our model with the formulations and

explanations. Then, we extended the model to include the problems of writer

and the buyer. In the next chapter, we will obtain the duals to the problems

that we have stated. We will construct equivalent martingale measures similar to

defined on Chapter 3 and obtain a price interval for prices of buyers and writers

of contingent claims not allowing a CVaR-λ-gain loss opportunity in the system.



Chapter 5

Duality and Martingales

This chapter analyzes the problem discussed in Chapter 4 through an equivalent

problem called the dual. We establish the connection between CVaR-λ gain-

loss opportunities and martingales which is similar to the connection between

arbitrage and martingales as discussed in Chapter 3.

5.1 Forming the dual problem of the model

We first examine the financial constraints in the dual corresponding to the decision

variables θn for n ∈ Nt, t = 0, . . . , T , x+
n for n ∈ NT , x−n for n ∈ NT , γ for n ∈ NT

and un for n ∈ NT . The first step in calculating the dual is to assign dual variables

to each constraint in the model. We assign yn as dual variables for all nodes of

the financial constraints (4.1) and (4.2), wn for constraint (4.3) ∀n ∈ Nt and kn

for the last constraint which is constraint (4.7), ∀n ∈ NT .

Firstly, the dual constraint corresponding to the decision variable θn, for n ∈
Nt, t = 0, . . . , T − 1 is

ynZn =
∑

m∈c(n)

ymZm n ∈ Nt, t = 0, . . . , T − 1. (5.1)

33
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Next, the dual constraint corresponding to the decision variables θn for n ∈ NT

is

(yn + wn) Zn = 0 n ∈ NT ,

and since the first component Z0
n = 1 for all states n we have

yn + wn = 0 n ∈ NT ⇒ yn = −wnn ∈ NT .

Another dual constraint corresponding to the variable x+
n is

−wn ≥ pn ⇒ yn ≥ pn n ∈ NT .

The dual constraint corresponding to the variable x−n is that

wn ≥ kn ⇒ yn ≤ −kn n ∈ NT .

The dual constraint corresponding to the variable γ is that∑
n∈Nt

kn = −λ

The dual constraint corresponding to the last set of variables un is

kn ≥ −(λ/1− α)pn

Finally, combining the above constraints, one has the following constraint in

the dual.

pn ≤ yn ≤ −kn ≤ (λ/1− α)pn,∀n ∈ NT .
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Furthermore, we can impose the condition that

y0 = λ

The reason behind this condition is as follows: Suppose that we have another

problem P’ with a corresponding dual problem D’. Problem P’ is the same prob-

lem as P except that the variables x+
n are now free, which means that we have the

additional constraint wn ≤ kn, ∀n ∈ NT in D’. This means that D is a relaxation

to D’. The constraints wn ≤ kn, ∀n ∈ NT and wn ≥ kn, ∀n ∈ NT in D’ together

imply that wn = kn, ∀n ∈ NT . Now, let us suppose that there is a solution [yn

wn kn]T to D such that wn > kn, ∀n ∈ NT . We will try to form a corresponding

alternative solution of the form wn = kn, ∀n ∈ NT for every possible solution of

the form wn > kn, ∀n ∈ NT . The equality of the variables wn = kn, ∀n ∈ NT will

imply that
∑

n∈Nt
wn = −λ and hence

∑
n∈Nt

yn = λ. We know together from

constraint (5.1) and from Z0
n = 1 that yn =

∑
m∈s(n) ym,∀n ∈ Nt, t = 0, . . . , T−1.

This means that the sum of yn over all states n ∈ Nt in each time period t sums

to y0. Therefore,
∑

n∈Nt
yn = λ will imply that y0 = λ.

To get to the case when wn = kn,∀n ∈ NT , we can either increase kn or de-

crease wn. Firstly, let us try to increase kn, we should check if the constraints

including kn can still be satisfied. Checking the constraints alone would be suffi-

cient as the objective function is 0. But, this is not possible because the constraint∑
n∈Nt

kn = −λ would be violated as we can not increase λ accordingly.

Therefore,we need to decrease wn. Now, we should check if the constraints

containing wn can still be satisfied. From yn = −wn, ∀n ∈ NT we see that we

need to increase yn with an increment of (wn − kn); this equality can still be

satisfied as the upper bound for yn is −kn which we do not exceed in this case

and the constraint (5.1) can be satisfied by increasing yn’s in the final period.

This shows that we can form an alternative solution of the form wn = kn,∀n ∈
NT for every possible solution of the form wn > kn,∀n ∈ NT and that y0 = λ and

wn = kn,∀n ∈ NT is always feasible to D. But, we also know that D is a feasibility

problem and hence this feasible solution will in fact be the optimal solution.
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For the signs of the dual variables we have,

yn ≥ 0, wn ≤ 0, kn ≤ 0.

The non-negativity of the variables yn follows from the non-negativity of pn

which implies the negativity of wn since yn = −wn and the negativity of the

last set of the variables kn follows from the inequality that wn ≥ kn. To obtain

the objective function of the dual program we leave the parameters of the model

at the right hand side and multiply them by respective dual variables. Hence,

the objective function of the dual problem will be zero as the right hand side

of the constraints in the primal problem is zero. Moreover, we can get rid of

the variables wn and kn since yn = −wn, ∀n ∈ NT and wn = kn, ∀n ∈ NT as

explained above. Therefore, the dual problem becomes a feasibility problem in

the variables yn ≥ 0, ∀n.

Eventually, the dual program that we refer to as (D1) is formulated as follows.

min 0

s.t.

y0 = λ (5.4)

ynZn =
∑

m∈c(n)

ymZm, ∀n ∈ Nt, t = 0, . . . , T − 1. (5.5)

pn ≤ yn ≤
λ

1− α
pn, ∀n ∈ NT . (5.6)

yn ≥ 0, ∀n ∈ Nt, t = 0, . . . , T − 1. (5.7)

The basic theorem of linear programming states that problem (P1) has an

optimal solution if and only if the dual (D1) does too, and both optimal values are

equal. Furthermore, it follows again from the theory of linear programming that

problem (P1) has an optimal solution if and only if it is feasible and bounded.

Moreover, (P1) is bounded if and only if there exists yn satisfying the above
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feasibility problem. We will connect this dual feasibility to appropriate martingale

measures.

Definition 3 Given λ > 1 and α ∈ [0, 1] and a discrete probability measure

Q = {qn}n∈Nt
is said to be (α, λ)-compatible to a discrete probability measure

P = {pn}n∈Nt
if it is equivalent to P (as defined in Chapter 3) and satisfies

(1/λ) max
n∈NT

pn/qn ≤ 1 ≤ 1

1− α
min
n∈NT

pn/qn.

In Chapter 3, we have stated Theorem 1 that provides a way to interpret the ab-

sence of an arbitrage opportunity in terms of martingales. Similarly, we will prove

Theorem 5 below which is essential as it relates CVaR-λ gain-loss opportunities

to martingales.

Theorem 5 The discrete state stochastic vector process Zt does not admit a

CVaR-λ gain-loss opportunity at a fixed level λ and confidence level α if and

only if there is at least one probability measure Q− (α, λ) compatible to P under

which Zt is a martingale.

Proof : Let us start with proving the necessity part first. Consider D1, for passing

to the martingales, we define the process qn = yn/λ for each n ∈ NT . This defines

a probability measure Q over the leaf nodes n ∈ NT . We can rewrite D1 as the

feasibility of the following system with the newly defined weights:

q0 = 1 (5.8)

qnZn =
∑

m∈c(n)

qmZm, ∀n ∈ Nt, t = 0, . . . , T − 1. (5.9)

(1/λ)pn ≤ qn ≤
1

1− α
pn, ∀n ∈ NT . (5.10)

qn ≥ 0, ∀n ∈ Nt, t = 0, . . . , T − 1. (5.11)

The inequality (5.10) can be rearranged to be in the following form:

(1/λ) max
n∈NT

pn/qn ≤ 1 ≤ 1

1− α
min
n∈NT

pn/qn.
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Therefore, we constructed an equivalent measure Q− (α, λ) compatible to P by

Definition 3 under which Zt is a martingale. This proves the necessity part.

To prove the reverse direction, suppose that Q is a (α, λ) compatible measure

for the price process Zt. Then, we must have;

q0 = 1 (5.8)

qnZn =
∑

m∈c(n)

qmZm, ∀n ∈ Nt, t = 0, . . . , T − 1. (5.9)

(1/λ)pn ≤ qn ≤
1

1− α
pn, ∀n ∈ NT . (5.10)

qn ≥ 0, ∀n ∈ Nt, t = 0, . . . , T − 1. (5.11)

and

(1/λ) max
n∈NT

pn/qn ≤ 1 ≤ 1

1− α
min
n∈NT

pn/qn

If the above inequality is obtained as an equality, the right or left hand side of

the inequality can be set as y0 and yn = qny0. Otherwise, we can choose a factor

y0 in the interval
[
(1/λ) maxn∈NT

pn/qn, (
1

1−α
minn∈NT

pn/qn

]
and set yn = qny0 ,

∀n. These values satisfy D1. Since the dual is feasible, the primal is feasible and

bounded from the theory of linear programming and the system does not admit

a CVaR-λ gain-loss opportunity. This concludes the proof of Theorem 3. �

We observe that Theorem 1 in Chapter 3 and Theorem 2 of [4] relating λ-

gain-loss opportunities to martingales are special cases of Theorem 5 for values

of α = 0, λ = ∞ and for α = 0 respectively.
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5.2 Establishing bounds on the prices of the

buyer and the writer via duality

In this section, we will construct the dual programs to the writer’s and buyer’s

hedging problems in a similar way. We will pass to the martingale measures from

these duality results. It is known that when we are pricing the assets, we adjust

the calculated expected values for the risk involved by an appropriate discount

factor. But, under the assumption that there is no CVaR-λ gain-loss opportunity

in the market, constructing the equivalent martingale measures provides us an

alternative way to do this calculation. Instead of first taking the expectation and

then adjusting for risk, we can first adjust the probabilities of future outcomes

such that they incorporate the effects of risk, and then take the expectation under

these different probabilities. Eventually, these adjusted probabilities are called

risk-neutral probabilities and they constitute the risk-neutral measure. There-

fore,we will establish the price interval of the buyer and the writer both in terms

of the dual problems and martingale measures.

Definition 4 A contingent claim F with price F0 is said to be (α, λ)-attainable

if there exist vectors θn, ∀n ∈ N satisfying:

Z0θ0 ≤ β0F0

Zn(θn − θan) = −βnFn,∀n ∈ Nt, t ≥ 1

EP [X+]− λfα(X−, γ) = 0

Proposition 2 At a fixed level λ > 1 and α ∈ (0, 1), assume that the discrete

price process Zt does not allow a CVaR λ-gain loss opportunity. Then, the mini-

mum initial investment W0 required to hedge the claim such that the gains at the

terminal state are at least λ times the losses is;

W0 =
1

β0λ
max

y∈Y (α,λ)

∑
n>0

ynβnFn.
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where Y (α, λ) denotes the feasible set of D1 defined in Chapter 4.

Proof : We start by forming the dual to the writer’s problem. This time, attach-

ing the multipliers vn, wn and V we have;

max
∑
n>0

vnβnFn

s.t.

vnZn =
∑

m∈c(n)

vmZm, ∀n ∈ Nt, t = 0, . . . , T − 1.

V pn ≤ vn ≤ V
λ

1− α
pn, ∀n ∈ NT .

vn ≥ 0, ∀n ∈ Nt, t = 0, . . . , T − 1.

V ≥ 0

Observing that V can not be 0 as this would lead to infeasibility of the variable

yn, we insert V = 1/y0 and vn = yn/y0 to obtain

max
y∈Y (α,λ)

(1/y0)
∑
n>0

ynβnFn

s.t.

y0 = λ

ynZn =
∑

m∈c(n)

ymZm, ∀n ∈ Nt, t = 0, . . . , T − 1.

pn ≤ yn ≤
λ

1− α
pn, ∀n ∈ NT .

We note that the feasible set of this problem is the same with the feasible set

of D1, namely Y (λ). Furthermore, under the assumption that the system does

not admit a CVaR λ gain loss opportunity we can say that there exist a feasible

solution to D1, but this means that there is a feasible solution to the above
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problem. Since the dual of the writer problem is feasible, the writer’s problem is

solvable by linear programming duality.�

Therefore, we can furthermore impose the following:

Corollary 1 At a fixed level λ > 1 and α ∈ (0, 1), assume that the discrete price

process Zt does not allow a λ-gain loss opportunity. Then, the contingent claim

is (α, λ) attainable if and only if ;

β0F0 ≥
1

λ
max

y∈Y (α,λ)

∑
n>0

ynβnFn.

The minimum acceptable price for the writer of the contingent claim becomes:

Fwriter
0 =

1

β0λ
max

y∈Y (α,λ)

∑
n>0

ynβnFn.

Moreover, we can pass to martingale measures through this dual problem.

Below is the martingale representation of the problem:

max
Q∈Q(λ)

EQ

[
T∑

t=1

βtFt

]
.

where Q(λ) is the set of qn’s satisfying:

Z0 =
∑

m∈c(0)

qmZm

qnZn =
∑

m∈c(n)

qmZm, ∀n ∈ Nt, t = 1, . . . , T − 1.

pn/λ ≤ qn ≤ pn/(1− α), ∀n ∈ NT .
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Now, we construct the dual to the buyer’s problem in a similar way:

min
y∈Y (α,λ)

(1/y0)
∑
n>0

ynβnFn

s.t.

y0 = λ

ynZn =
∑

m∈s(n)

ymZm, ∀n ∈ Nt, t = 0, . . . , T − 1.

pn ≤ yn ≤
λ

1− α
pn, ∀n ∈ NT .

yn ≥ 0, ∀n ∈ Nt, t = 0, . . . , T − 1.

And the maximum acceptable price for the buyer is:

F buyer
0 =

1

β0λ
min

y∈Y (α,λ)

∑
n>0

ynβnFn.

Passing to martingale measures, we can equivalently pose the problem of the

buyer as:

min
Q∈Q(λ)

EQ

[
T∑

t=1

βtFt

]
.

Now, we can state the price bounds of the writer and buyer in the following

equivalent forms:[
1

β0λ
min

y∈Y (α,λ)

∑
n>0

ynβnFn,
1

β0λ
max

y∈Y (α,λ)

∑
n>0

ynβnFn

]

or equivalently,[
β−1

0 min
Q∈Q(λ)

EQ

[
T∑

t=1

βtFt

]
, β−1

0 max
Q∈Q(λ)

EQ

[
T∑

t=1

βtFt

]]

It is worth reminding that unless the two values are equal, no trading occurs.
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Recall that the no-arbitrage bounds of [3] stated in Chapter 3 was:

[
β−1

0 min
Q∈M

EQ

[
T∑

t=1

βtFt

]
, β−1

0 max
Q∈M

EQ

[
T∑

t=1

βtFt

]]

Therefore, by noting that Q(λ) is included in M for fixed λ and α we say

that the price interval that we obtained is tighter than the no-arbitrage interval

defined on Chapter 3.

In this chapter, we have stated the dual problems to our model and to the

problems of writer and buyer. We have shown that the existence of a (α, λ)

compatible probability measure Q that makes the price process a martingale

ensures that the price process does not allow a CVaR-λ gain-loss opportunity and

vice versa. We used the dual problems of the writer’s and the buyer’s problems

for establishing the CVaR-λ bounds. We presented these bounds also in terms of

equivalent martingale measures and showed that these bounds are tighter than

the no-arbitrage bounds. Next chapter will present a numerical study of our

work.



Chapter 6

Experimental Study

In the preceding two chapters, we incorporated CVaR measure into the concept

of λ-gain-loss opportunities and stated our model for pricing contingent claims.

We then stated the dual problems to our model that allowed us to obtain price

intervals for the buyer and the writer. In this chapter, we will present a numerical

analysis of the model with respect to the risk aversion parameter λ and in various

levels of confidence (α) to give a better understanding of the previous chapters

in a discrete market model.

6.1 Calibrated Option Bounds

The model of the writer and the buyer that we defined in section 4.6 will be

modified in this chapter when we are conducting the experimental analysis. Let

the index set k = 1, ..., K denote available contingent claims, and Hk, k = 1, ..., K

be contingent claims with bid and ask prices Ck
b ≤ Ck

a and pay-offs Hk
n. The

basic modification in the model is to allow the writer and the buyer to apply buy

and hold strategies on these available options. This modification results in the

following problem:

44
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min Z0 · θ0 + Ca · ξ+ − Cb · ξ−
s.t.

Zn ·
[
θn − θa(n)

]
= Gn · [ξ+ − ξ−]− βnFn, ∀n ∈ Nt, t ≥ 1,

Zn · θn − x+
n + x−n = 0 ∀n ∈ NT ,∑

n∈NT

pnx
+
n − λ(γ +

1

1− α

∑
n∈NT

pnun) ≥ 0

x+
n ≥ 0, ∀n ∈ NT ,

x−n ≥ 0, ∀n ∈ NT ,

un ≥ 0, ∀n ∈ NT ,

un ≥ x−n − γ, ∀n ∈ NT ,

ξ+ ≥ 0,

ξ− ≥ 0.

where ξi
+ and ξi

+ are the amounts bought and shorted of Hk at time t = 0.
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Similarly, the hedging strategy of the buyer when there are other options

available for trading becomes:

max−Z0 · θ0 − Ca · ξ+ + Cb · ξ−
s.t.

Zn ·
[
θn − θa(n)

]
= Gn · [ξ+ − ξ−] + βnFn, ∀n ∈ Nt, t ≥ 1,

Zn · θn − x+
n + x−n = 0 ∀n ∈ NT ,∑

n∈NT

pnx
+
n − λ(γ +

1

1− α

∑
n∈NT

pnun) ≥ 0

x+
n ≥ 0, ∀n ∈ NT ,

x−n ≥ 0, ∀n ∈ NT ,

un ≥ 0, ∀n ∈ NT ,

un ≥ x−n − γ, ∀n ∈ NT ,

ξ+ ≥ 0,

ξ− ≥ 0.

We will use the bid and ask closing prices of 48 European call and put options

on the S&P500 index on September 10, 2002 [7]. We will present a numerical

approach for computing bounds for price bounds of an option not allowing a λ

gain-loss opportunity when some other options are available for trading. Numer-

ical tests on S&P500 index show the accuracy of our proposed method. Table

1 below displays the bid and ask closing prices of these 48 European call and

put options and the columns named ‘STR’ and ‘MAT’ represent the strike prices

and maturities of the options respectively. The first 21 options are call options

whereas the remaining 27 options are put options. We will compute CVaR bounds

for each of the 48 options for various values of λ at two most common different

confidence levels with α = 0.95 and α = 0.99 by using the remaining 47 options

as market-traded claims. This means that for each option and for each value of λ

at each confidence level, we will solve problems of the buyer and the writer sepa-

rately using the remaining 47 options. The resulting values will then be compared

with the actual market prices that are given below in Table 1
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Table 6.1: Data for Call Options

Option STR MAT Cb Ca

1 890 17 31.5 33.5
2 900 17 24.4 26.4
3 905 17 21.2 23.2
4 910 17 18.5 20.1
5 915 17 15.8 17.4
6 925 17 11.2 12.6
7 935 17 7.6 8.6
8 950 17 3.8 4.6
9 955 17 3 3.7
10 975 17 0.95 1.45
11 980 17 0.65 1.15
12 900 37 42.3 44.3
13 925 37 28.2 29.6
14 950 37 17.5 19
15 875 100 77.1 79.1
16 900 100 61.6 63.6
17 950 100 35.8 37.8
18 975 100 26 28
19 995 100 19.9 21.5
20 1025 100 12.6 14.2
21 1100 100 3.4 3.8
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Table 6.2: Data for Put Options

Option STR MAT Cb Ca

22 750 17 0.4 0.6
23 790 17 1 1.3
24 800 17 1.3 1.65
25 825 17 2.5 2.85
26 830 17 2.6 3.1
27 840 17 3.4 3.8
28 850 17 3.9 4.7
29 860 17 5.5 5.8
30 875 17 7.2 7.8
31 885 17 9.4 10.4
32 750 37 5.5 5.9
33 775 37 6.9 7.7
34 800 37 9.3 10
35 850 37 16.7 8.3
36 875 37 23 24.3
37 900 37 31 33
38 925 37 41.8 43.8
39 975 37 73 75
40 995 37 88.9 90.9
41 650 100 5.7 6.7
42 700 100 9.2 10.2
43 750 100 14.7 15.8
44 775 100 17.6 19.2
45 800 100 21.7 23.7
46 850 100 33.3 35.3
47 875 100 40.9 42.9
48 900 100 50.3 52.3
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Generating the scenario trees and establishing a relationship between them

is the main issue when conducting the experimental analysis. We have written

a GAMS program that produces scenario trees according to the preferences of

the user and incorporates it into the optimization model. We solve the primal

problems in our analysis as they are more natural from the view of hedging

and easier to set up. We will solve a three period model and we choose the

branching structure as (50, 10, 10). This means that v1 = 50, v2 = 10 and

v3 = 10 which means that there are 5, 000 scenarios. We insert the Gauss-

Hermite table as an input and produce a tree with given periods and the given

branching structure. We will use S = (1, S1) as the dynamically traded securities

where S1 is the S&P500 index. The structure of the periods is chosen according

to the maturity of the options. This means that we allow the period changes

to occur on days 0, 17, 37 and 100 when the trading occurs. The scenario tree

is built by approximating S1 by the Gauss-Hermite process. We assign Gauss-

Hermite quadrature values to each node for probability and volatility calculations.

Therefore, we will give a more detailed information on the process of Gauss-

Hermite in the following section.

6.2 Gauss-Hermite Processes

This section will summarize the Gauss-Hermite processes as in [7]. Suppose that

we have an asset whose price St follows a continuous geometric Brownian motion

with daily drift d and volatility σ. For t = 1, ..., T the logarithm of the price St,

ξt = ln St satisfies

ξt = ξt−1 + dt + et

where et are normally distributed with zero mean and standard deviation σt, and

dt = ltd,

σt =
√

ltσ
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Here, lt is the length of period t in days. Given the parameters in the above

equation and the initial value ξ0, we generate a scenario tree by using the Gauss-

Hermite quadrature and obtain a sample (ei1
1 )v1

i1=1 of size v1 of e1 with the associ-

ated probabilities (πi1
1 )v1

i1=1 ⊂ (0,∞). This enables us to approximate the possible

values of the logarithmic index at time t = 1:

ξi1
1 = ξ0 + d1 + ei1

1 , i1 = 1, ..., v1.

Similarly, we then generate a sample (ei
2)

v2
i=1 of e2 in the second period and the

possible values of the logarithmic index at time t = 2 are,

ξi1,i2
1 = ξi1

1 + d1 + ei2
2 , i1 = 1, ..., v1, i2 = 1, ..., v2.

We obtain a scenario tree whose nodes Nt at time t are labeled by (i1, ..., it) for

t = 2, ..., T Defining,

N = N1 ∪ ... ∪NT ,

α(i1, ..., it) = (i1, ..., it−1),

C(i1, ..., it) = (i1, ..., it+1) ∈ NT+1|it+1 ∈ 1, ..., vt+1,

Sn = exp(ξn),∀n ∈ N,

p(i1, ..., it) = πi1
1 ...πit

t .

This brings us to the probabilistic setting defined in Chapter 3. Such discrete

processes are called Gauss-Hermite processes [8], which converge weakly to the

discrete time geometric Brownian motion [9], as the number of branches increases.

The probabilities in the Gauss- Hermite processes do not depend on the param-

eters µ, σ or the step length lt. For Gauss-Hermite processes, the discretized

one-step conditional probabilities of the logarithmic index match a maximum

number of moments of the normal distribution.
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6.3 Plots

In this section, we will present the plots that we draw with respect to the risk

aversion parameter λ and in various levels of confidence (α) according to the

results of the stochastic program that we described in Chapter 4. The relationship

between various λ values and the prices are shown on each plot. The bid-price, ask

price, the price of the writer and buyer are all displayed in figures in order to make

an easier comparison between the actual and predicted values. The figures for

α = 0.95 and α = 0.99 are presented respectively for each option. It is observed

that for each of the options the bounds we obtained are very close to the true

values. In most cases, either one or both of the values fall between the true values.

In general, better bounds are obtained when there are many benchmark options

having strike prices similar to the strike price of the option that we price. This

is expected since the bounds are obtained by hedging the cash-flows of the given

option using market-traded options. Therefore, better hedges can be obtained

when the remaining options are similar to the option that is being hedged. Since

including all 96 graphs of the 48 options in here would be too much to look into

we have selected a sample of the options representing relatively different patterns.

We will start with Option 1.
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Figure 6.1: Option1, alpha=0.95
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Figure 6.2: Option1, alpha=0.99

Figures 6.1 and 6.2 show the relationship between various λ values and the

price of the first option. It is observed that the same values for the prices of writer

and buyer are obtained for different values of λ in different confidence levels. We

see that the limiting value of the loss-aversion parameter is 80 at α = 0.95 and

16 at α = 0.99 which is the same for all options. This means that the minimum

value of λ not allowing a CVaR-gain-loss opportunity in the system is 80 at

α = 0.95 and 16 at α = 0.99. This is expected because increasing the confidence

level would decrease the supremum of the λ values allowing a CVaR-λ-gain-loss

opportunity. It can be seen from the figure that the price of the buyer starts

with the value of 31.348 for the limiting value of λ = 80 and converges to the

value of 30.97 for λ = 500. For the price of the writer, these values are 31.637 and

32.987 respectively. These values are obtained for the limiting values of λ = 16 at

α = 0.99 and λ = 80 at α = 0.95. We also observe that when λ tends to ∞, the

bounds obtained from our model converge to no-arbitrage bounds as expected.
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Since the peak is slower for bigger values of λ and the convergence of the curve

can be noticed, the biggest value of λ that we include in the figures will be 200

for α = 0.95 and 80 for α = 0.95. We see for Option 1 that the price of the writer

is within the bounds of the true price interval and converges to the actual price

of the writer. The price of the buyer however starts with a very close value to

the actual price of the buyer in the limiting case of λ and converges to a lower

value as λ is increased gradually.

Figure 6.3: Option2,alpha=0.95
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Figure 6.4: Option2, alpha=0.99

Figures 6.3 and 6.4 show the values we obtained for Option 2 along with the

true bid-ask prices. Option 2 is an example of the options where both of the

predicted values fall within the bounds of true prices. Here, whereas the price of

the buyer is constant at the value 24.67, the price of the writer starts with the

value of 24.95 for the limiting value of λ = 80 and converges to the value of 26

for λ = 500 at α = 0.95. Same prices are obtained both for the writer and the

buyer for λ = 16 and λ = 80 at α = 0.99 respectively. Unlike Option 1, we see

that the CVaR-λ bounds are contained in the interval [cb, ca].
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Figure 6.5: Option5, alpha=0.95
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Figure 6.6: Option5, alpha=0.99

The next option we include is Option 5 that is shown in figures 6.5 and 6.6.

Starting with the value of 16.105 for the buyer and 17.383 for the writer the

values converge to 16.076.786 and 17.509 respectively. Option 5 is an example

where only the price of the buyer is within the interval of true prices. Here, the

price of the buyer was within the limits in the limiting case of λ. However, as λ

increases, the price of the writer also increases, slightly passing the actual price

of the writer.
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Figure 6.7: Option6, alpha=0.95
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Figure 6.8: Option6, alpha=0.99

Figures 6.7 and 6.8 show the values we obtained for option 6. For all of

the options, the increase and decrease of the predicted values are most apparent

within the range of λ ∈ [80, 100] for α = 0.95 and λ ∈ [16, 20] for α = 0.99. For

the remaining λ values, the prices are almost convergent to the final predicted

values. Option 6 is an example for options with both of the predicted values are

out of the interval of the actual prices. It is observed that the bounds we obtain

using the our model are remarkably tighter than the no-arbitrage bounds.
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Figure 6.9: Option14, alpha=0.95
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Figure 6.10: Option14, alpha=0.99

We continue with Option 14 that is shown in figures 6.9 and 6.10. Starting

with the value of 14.86 for the buyer and 18.46 for the writer the values converge

to 13.83 and 18.97 respectively. We observe in Option 14 that the price of the

writer is within the interval formed by the actual prices and converges to the

actual price of the writer as λ increases. The price of the buyer, on the other

hand, is below the price of the buyer.
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Figure 6.11: Option25, alpha=0.95
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Figure 6.12: Option25, alpha=0.99

Figures 6.11 and 6.12 show the values we obtained for Option 25 along with

the true bid-ask prices. Option 25 is an interesting example of the options where

the price of the writer converges exactly to the actual price of the writer for values

of λ ≥ 120 for α = 0.95 and of λ ≥ 30 for α = 0.99 Here, the price of the buyer

is closest to the actual value for the limiting cases of λ = 80 for α = 0.95 and

λ = 16 for α = 0.99 .

Another important thing to note is that, the values of the parameter λ allow-

ing no CVaR-λ-gain loss opportunity in the system have significantly decreased

compared to the model capturing λ-gain-loss opportunities. Although we observe

this while pricing these options, we now present a simple single model example

to clearly illustrate this relationship:

Example : Consider a single-period numerical example for simplicity. Let

us assume that the market consists of a riskless asset with zero growth rate, and
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of a stock and that the riskless asset has price equal to 1 throughout. The stock

price evolves according a trinomial tree as follows. At time t = 0, the stock

price is 10. Hence Z0 = (1 10)T . At time t = 1, the stock price can take the

values 20, 15 and 7.5 with equal probability. Hence, Z1= (1 20)T ; Z2 = (1 15)T

and Z3 = (1 7.5)T . We can construct an equivalent martingale measure with

q1 = q2 = 1/8 and q3 = 3/4, therefore the system is arbitrage-free. Solving the

problems P1 and D1, we see that the limiting value of λ not allowing a CVaR-λ

gain-loss opportunity in the market is 2.67 which is smaller than the limiting

value of λ = 6 allowing no λ gain- loss opportunity in the system. This example

shows that the limiting value of the loss aversion parameter can be decreased in

our model compared to the λ gain-loss model.

In this chapter, we have computed prices of the the writer and buyer of 48

European call and put options on the S&P500 index on September 10, 2002

according to the model proposed in Chapter 4 using the remaining options as

market traded assets. We have illustrated a representative sample of the graphs

of these options and commented on the results. It is possible to say that our

proposed model yields good bounds as most of the bounds we obtained are very

close to the true bid and ask values.
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Conclusion

In this thesis, we study the pricing problem of contingent claims by incorporating

CVaR measure as losses to the concept of λ gain-loss opportunities in a discrete

time, multi-period, stochastic linear optimization environment with a finite prob-

ability space. This enables us to combine the principles of risk aversion and

no-arbitrage pricing. Investors can decide on the risk level that they are willing

to take by putting restrictions on the parameter λ without having to deal with

complex utility functions. Although VaR has been a popular measure in recent

years for its ability to measure aggregate risk, it suffers from not being a coherent

risk measure. CVaR, on the other hand, has been proposed as an alternative

risk measure to VaR which is a coherent measure. Using CVaR instead with nice

mathematical properties as a measure of risk enables us to account for extreme

losses and yield a conservative result. We introduce a function that is proved to

minimize CVaR by Rockefellar and Uryasev [5] and incorporate this function to

represent losses into the model seeking for a λ gain-loss opportunity. We state

the relationship between the existence of the CVaR-λ gain-loss opportunities and

the martingales via Theorem 5. Then, the model is extended to include the per-

spectives of the writers and the buyers of the contingent claims. Then, the dual

problems to the problems of the buyer and the writer are stated. By doing so, we

were able to determine the pricing interval of the model not including CVaR-λ

gain-loss opportunities in the market. Analyzing the problem through duality

65
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also provided us the means for passing to martingale measures. We express the

pricing interval both in terms of duality and in terms of martingale measures.

This pricing interval is shown to be tighter than the no-arbitrage interval in

width theoretically in Chapter 5. We also note that these bounds converge to the

no arbitrage bounds in the limit when the parameter λ goes to infinity in each

of the specified confidence levels. Moreover, the values of the parameter λ allow-

ing no CVaR-λ-gain loss opportunity in the system have significantly decreased

compared to the model seeking λ-gain-loss opportunities. Therefore, the main

contrubition of the thesis is to obtain tighter bounds on the prices of the contin-

gent claim taking into account the investors preferences without complex utility

functions. Moreover, modeling losses by CVaR provided us to obtain systems

not allowing CVaR-λ gain-loss opportunities with smaller values of λ compared

to the λ gain-loss opportunities. We also present a numerical study of our work.

We compute prices of the the writers and the buyers of 48 European call and

put options on the S&P500 index on September 10, 2002 according to the model

proposed in Chapter 4 using the remaining options as market traded assets. This

study enables us to compare the resulting values to the actual market prices and

interpret the data numerically. Based on our results, it is possible to say that our

proposed model yields good bounds as most of the bounds we obtained are very

close to the true bid and ask values.
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