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ABSTRACT

PRICING AND HEDGING OF CONTINGENT CLAIMS

IN INCOMPLETE MARKETS BY MODELING LOSSES

AS CONDITIONAL VALUE AT RISK IN A-GAIN LOSS
OPPORTUNITIES

Zeynep Aydin
M.S. in Industrial Engineering
Supervisor: Prof. Dr. Mustafa ¢. Pinar
July, 2009

We combine the principles of risk aversion and no-arbitrage pricing and pro-
pose an alternative way for pricing and hedging contingent claims in incomplete
markets. We re-consider the pricing problem under the condition that losses are
modeled by the measure of CVaR in the concept of A\ gain-loss opportunities.
The proposed model enables investors to specify their preferences by putting re-
strictions on the parameter A that stands for risk aversion. Using CVaR as a
measure of risk enables us to account for extreme losses and yield a conservative
result. The pricing problem is studied in discrete time, multi-period, stochastic
linear optimization environment with a finite probability space. We extend our
model to include the perspectives of writers and buyers of the contingent claims.
We use duality to establish a pricing interval of the contingent claims excluding
CVaR-\ gain-loss opportunities in the market. Duality results also provide a
way for passing to appropriate martingale measures and we express the pricing
interval also in terms of martingale measures. This pricing interval is shown to
be tighter than the no-arbitrage bounds. We also present a numerical study of
our work with respect to the risk aversion parameter A and in various levels of
confidence. We compute prices of the the writers and buyers of 48 European call
and put options on the S& P500 index on September 10, 2002 using the remaining
options as market traded assets. It is possible to say that our proposed model
yields good bounds as most of the bounds we obtained are very close to the true

bid and ask values.

Keywords: stochastic programming, conditional value at risk, arbitrage, martin-

gales, duality, contingent claims .
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OZET

EKSIK PIYASALARDA KOSULLU TALEPLERIN )\
KAZANC KAYIP FIRSATLARINDA KAYIPLARIN

KOSULLU RISKE MARUZ DEGER KULLANILARAK
FIYATLANDIRILMASI

Zeynep Aydin
Endiistri Miithendisligi, Yiiksek Lisans
Tez Yoneticisi: Prof. Dr. Mustafa C. Pinar
Temmuz, 2009

Bu tez caligmasinda, riskten kaginma ve arbitraj fiyatlama teorisi ilkeleri bir
araya getirilerek eksik piyasalarda kosullu taleplerin degerlemesi i¢in yeni bir
yol Onerilmektedir.  A-kazang kayip firsatlar1 konseptindeki fiyatlama prob-
lemi, kayiplarin kogullu riske maruz deger (CVaR) kullamlarak modellenmesi
kosulu altinda tekrar degerlendirilmektedir. Onerilen model, yatirimcilarin A
parametresi lizerine kisitlama getirerek tercihlerini belirleyebilmelerine imkan
saglamaktadir.  Risk olctitii olarak CVaR kullanilmasi, olusabilecek asiri
kayiplarin hesaba katilabilmesini saglamakta ve daha ihtiyath bir sonug¢ vermek-
tedir. Fiyatlama problemi, kesikli zaman, ¢oklu periyot bir stokastik lineer op-
timizasyon ortaminda caligilmaktadir. Model, kogullu taleplerin saticilarinin ve
alicilarinin bakig acilarini da icerecek sekilde genisletilmistir. Dualite kullanilarak,
pivasada kosullu talepler icin CVAR-\ kazang¢ kayip firsati icermeyen bir fiyat
araligi tespit edilmistir. Dualite sonuclari uygun martingale Olciitlerine gecis
imkan1 saglamig; bu sayede fiyat araligi martingale oOlgiitleri cinsinden de ifade
edilmistir. Bu fiyat araliginin arbitraj fiyatlama teorisi ile tespit edilen araliktan
daha dar oldugu gosterilmistir. Buna ek olarak, farkli giivenilirlik seviyeleri kul-
lanilarak, riskten kacinma parametresine gore numerik bir caligma yapilmigtir. 10
Eyliil 2002 S&P 500 indeksinde yer alan 48 Avrupa tipi alim ve satim opsiyonu
icin fiyatlar hesaplanmis; fiyat1 hesaplanan opsiyon digindaki opsiyonlar piyasa
varliklar: olarak kabul edilmigtir. Elde ettigimiz fiyat sinirlarinin gercek alim-
satim degerlerine oldukc¢a yakin olmasi, onerdigimiz modelin iyi bir fiyat aralig

belirledigini gostermektedir.

Anahtar sozcikler: Stokastik programlama, kosullu riske maruz deger, arbitraj,
martingale, dualite, kogullu talepler.
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Chapter 1

Introduction

The question of pricing uncertain pay-offs has been studied extensively in financial
economics starting after Louis Bachelier’s work on option pricing in 1900. The
renowned papers of Black and Scholes and Merton in 1970s paved the way for
pricing uncertain payoffs in a complete and unconstrained market. Black-Scholes-
Merton approach replicates uncertain payoffs using existing financial instruments
and finds a unique price relative to these instruments avoiding an arbitrage op-
portunity. This price coincides with the expectation of claim’s discounted value

under the unique, risk-neutral equivalent probability measure.

The foregoing argument fails, however, unless the financial market is com-
plete and unconstrained. In the case of incomplete markets, there ceases to exist
a unique price for a contingent claim based on the absence of arbitrage oppor-
tunities. Actually, this means that on the portfolios side there is no replicating
portfolio and the hedging strategy could involve a risky position; on the payoffs
side, there is an infinite number of martingale measures and each of them provides

a different price for the contingent claim.

In incomplete markets, there are two fundamental approaches for pricing con-
tingent claims. The first one is usually known as “model based pricing” and is
based on expected utility maximization concept. This approach equates the price

of a claim to the expectation of the product of the future payoff and the marginal
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rate of substitution of the investor. This approach yields precise pricing of the
asset due to explicit assumptions about investors preferences; however is prone
to misspecification error. Since specifying investors preferences in all states is a

challenging task, practical use of this approach is limited.

When investors’ preferences cannot be specified, a second approach called “ no
arbitrage pricing” is employed. In this approach, an interval of prices consistent
with no arbitrage is calculated rather than setting a unique price level. Absence
of a unique martingale measure leads to a pricing interval where the minimum is
called “buyer’s price” and maximum is called “writer’s price”. If the buyers are
risk averse, no one would buy a claim offered at the writer’s price and similarly

a risk-averse writer would not sell the claim at the buyer’s price.

A writer may for various reasons settle for a price less than the writer’s price.
In such a case, the writer will not be able to find a super-replicating portfolio (a
portfolio dominating claim’s future pay-offs). Therefore, the writer runs the risk
of falling short and will need to set-up his/her hedge portfolio (and equivalently
determine writer’s price) according to some optimality criteria. An analogous
problem can be defined for the buyer as well. In order to develop an optimality
criterion, Cochrane and Saa-Requejo [1] introduce “good-deal concept” which

they define as an investment with a high Sharpe ratio®.

Similarly, Bernardo and Ledoit [2] introduce the “gain-loss ratio”, which is
the expectation of an investment’s positive excess payoffs divided by expectation
of its negative excess payoffs. Building on Bernardo and Ledoit’s concept of the
gain-loss ratio, Pinar et al. [4] have recently developed the concept of “\ gain-
loss opportunities” and investigated the derivations and computations within the

framework of stochastic linear programming.

Another principle that the modern financial theory is based on is risk aversion.
It is well known that the single major source of profit is risk. The expected return

depends heavily on the level of risk of an investment. Although the idea of risk

IThe Sharpe ratio or reward-to-variability ratio is a measure of the excess return (or Risk
Premium) per unit of risk in an investment. It is calculated by dividing return of asset minus
a benchmark rate by standard deviation of the return.
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seems to be intuitively clear, it is difficult to formalize it. Different attempts have
been conducted with various degrees of success. There appears an efficient way
to formalize and quantify risk in most of the markets. However, each method is
deeply associated with its specific market and this association limits their useful-
ness in other markets. Value at Risk (VaR) has been an integrated way to deal
with different markets and different risks and to combine all factors into a single
number which is a good indicator of the overall risk level since it was introduced
by JP Morgan in 1994. It calculates maximum expected losses over a given time
period at a given tolerance level. However, VaR suffers from the following draw-
backs as Rockafellar and Uryasev [10] states: i) it under or over-estimates the
risk when losses are not normally distributed; ii) it does not give an information
on the distribution of losses exceeding VaR and iii) it does not satisfy the prop-
erties of a coherent risk measure such as sub-additivity. Conditional Value at
Risk (CVaR), also called mean excess loss, mean shortfall, or tail VaR, is closely
related to VaR. It has been developed as an extension of VaR and is superior to
VaR for being coherent and having strong mathematical characteristics such as
convexity and sub-additivity. CVaR is defined as the conditional expected loss

under the condition the loss exceeds VaR. Therefore, CVaR is equal to or greater
than VaR.

In this thesis, we will combine the principles of risk aversion and no-arbitrage
pricing and propose an alternative way for pricing and hedging contingent claims.
Investors will be able to specify their preferences by putting restrictions on the
parameter A that stands for risk aversion. Our study is mainly inspired by the
work of Pinar et al. [4] and we re-consider the pricing problem under the condition
that the losses are modeled by the measure of CVaR in the concept of \ gain-
loss opportunities. We name this criterion as a CVaR-\ gain-loss opportunity.
Using CVaR as a measure of risk will enable us to account for extreme losses and
yield a conservative result. The pricing problem will be studied in discrete time,
multi-period, stochastic linear optimization environment with a finite probability
space. We will introduce a function that minimizes CVaR and model losses by this
function. Then, we will incorporate this loss function into the stochastic program

that determines the maximum expected gains of an investor that is interested in a
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A gain-loss opportunity. The A gain-loss opportunity can be defined as a portfolio
that begins with a zero initial value, makes self-financing portfolio transactions
and attains a non-negative value in each future state, while in the terminal state
the probability that it yields a positive value for the difference between the gains
and A times the losses is positive. We state the relationship between the existence
of the CVaR-)\ gain-loss opportunities and martingales. Then, we determine the
pricing interval of our model excluding CVaR-\ gain-loss opportunities in the
market. This pricing interval will be tighter than the no-arbitrage bounds. This
is the main motivation of our study since our model enables us to obtain tighter
bounds on the prices. We also note that these bounds converge to the no arbitrage
bounds in the limit when the parameter A\ goes to infinity in each of the specified

confidence levels.
The organization of the thesis is as follows:

The next chapter starts with the review of the literature that is related to the
problem under consideration. Our study is mainly about incorporating CVaR
measure as losses into the A\ gain-loss opportunities. The concept of A gain-loss
opportunity is in close relationship with the concepts of Sharpe Ratio, Gain-Loss
ratio and Good Deals. Therefore, important works about these concepts will
be examined in the literature review part. Then, the work of Rockefellar and
Uryasev will be examined to give an in-depth understanding of the concept of
CVaR.

In Chapter 3, the general setting and the stochastic process governing the
security prices are summarized. The concept of arbitrage is defined within the
framework of stochastic programming and the links between arbitrage and mar-
tingales are stated. Finally, the hedging and pricing problem of contingent claims
is discussed and extended to include the perspectives of writers and buyers of the

contingent claims.

Chapter 4 starts with the definition of a A gain-loss opportunity. A stochastic
linear program to determine whether a A gain-loss opportunity exists in the sys-
tem is given. Later, we elaborate on the concept of CVaR and our motivations

to model losses by CVaR in the model seeking a A gain-loss opportunity. After
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the notations are listed, the formulation of the model that incorporates CVAR as
losses to the pricing problem of contingent claims is given. Finally, the model is
developed from the perspectives of the writers and the buyers of the contingent

claims.

In Chapter 5, the problem discussed in Chapter 4 is analyzed through duality.
It is shown that duality results provide the means for passing to the martingale
measures. We prove in Theorem 3 that the absence of a A-gain loss opportunity is
equivalent to the existence of equivalent (a, A) compatible martingale measures.
Then, the dual problems to the problems of the buyer and the writer are stated.
We use the dual problems to establish a CVaR-\ pricing interval. We also express

the pricing interval in terms of martingale measures.

In Chapter 6, we present a numerical study of our work with respect to the
risk aversion parameter A and in various levels of confidence («) to give a better
understanding of the model. This study enables us to compare the resulting values
to the actual market prices and interpret the data numerically. We compute prices
of the the writer and buyer of 48 European call and put options on the S&P500
index on September 10, 2002 according to the model proposed in Chapter 4 using
the remaining options as market traded assets. We illustrate a representative
sample of the graphs of these options and comment on the results. It is possible
to say that our proposed model yields good bounds as most of the bounds we
obtained are very close to the true bid and ask values. Consequently, by giving a
simple example, we show that the range of the loss aversion parameter \ decreases

compared to the A gain-loss model.

In Chapter 7, we conclude the thesis by giving an overall summary and stating

some possible future research related to the model that we developed.



Chapter 2

Literature Review

This chapter consists of the review of the literature related to the model that we
will constitute by using the concept of Conditional Value at Risk for measuring

losses when studying with the concept of A gain-loss opportunities.

We will begin with Bernardo and Ledoit [1] where they introduce the expected
gain to loss ratio which forms the basis of the pricing methodology that we use
throughout this thesis. Authors study the asset pricing in incomplete markets
by developing a new approach that unifies model-based pricing and pricing by
no arbitrage. Model-based pricing makes strong assumptions about a benchmark
investor’s preferences using utility maximization concept. These assumptions
enable the calculation of a specific discount factor; thus yield exact pricing im-
plications. Despite its preciseness, calculated prices are prone to misspecification
error; therefore practical use of this approach can be limited. On the other hand,
pricing by no arbitrage makes weak assumptions about only the existence of a
set of basis assets and the absence of arbitrage opportunities. Thus, when the
market is incomplete, this approach yields pricing implications that are robust
but often too imprecise to be economically interesting. The new approach de-
veloped by the authors incorporates information from both of the approaches by
making a combination of these assumptions. With this new approach, they apply
the expected gain to loss ratio and obtain a duality theorem for maximizing this

ratio. Another duality theorem is later used for establishing bounds on option

6



CHAPTER 2. LITERATURE REVIEW 7

prices. Gain-loss ratio, which is the ratio of the expectation of the investment’s
positive excess payoffs to the expectation of its negative excess payoffs, is intro-
duced for measuring the attractiveness of an investment opportunity. When the
expectations are taken under appropriate risk-adjusted probabilities, high gain-
loss ratio constitutes desirable investments for the benchmark investor and an
arbitrage opportunity in the limit. Applying duality in this new approach results
in connecting the high gain-loss ratio to stage-contingent discount factors with
extreme deviations from the benchmark discount factor. A finite limit L is in-
troduced on the maximum gain-loss ratio so that the admissible set of discount
factors is restricted to the ones that do not exhibit extreme deviations. Assuming
that excess payoffs have a gain-loss ratio below L, the bounds of the price of a
non-basic asset become wider as L increases and vice versa. If L goes to infinity,
the admissible set converges to the no-arbitrage case. If L goes to one which is its
lower bound, the admissible set shrinks to contain only the benchmark discount
factor. Therefore, L can be interpreted as the trade-off between the precision of
specific benchmark pricing model and the robustness of the no-arbitrage bounds.
The choice of L provides a considerable flexibility to the modeler along with the

choice of a benchmark discount factor and an appropriate set of basis assets.

Similarly, Cochrane and Saa-Requejo [2] replace the no-arbitrage conditions
by the concept of a “good deal” which is defined as an investment with a high
Sharpe ratio. The aim of authors in this paper is to develop a model for re-
stricting the range of values of risky payoffs when one may not be able to trade
continuously or in cases when there are state variables such as stochastic stock
volatility and interest rate. Suppose that we want to learn the value of a fo-
cus payoff (z7,,) given the prices (p;) of a set of basis payoffs or hedging assets
(441), then a discount factor or marginal utility growth rate (m;y;) generates
the value (p;) of any payoff (z;11) by p = E(mx). Therefore, if the focus payoff
can be perfectly replicated from the set of basis assets, its value can be deter-
mined. However when the replication is not perfect, more restriction on discount
factors is needed. For this purpose, authors add an upper limit bound on dis-

count factor volatility (or equivalently a restriction on Sharpe ratio) in addition
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to the classic no-arbitrage restriction; and thereby obtain useful bounds on op-
tion prices in an incomplete market setting. Hence, the lower good-deal bound
solves, C' = min E(ma°) subject to the constraints p = F(ma) which enforces
that the prices of the basis assets are used to learn about the discount factor,
m > 0 which is a classic characterization of marginal utility and o(m) < h/R/
which is the main innovation explained as a similar weak restriction on marginal
utility and also a way of imposing weak predictions of economic models instead
of imposing a full structure. The paper follows with the solution of the above
model by considering different cases with different constraints binding. Firstly,
the good-deal bounds are calculated in single-period and then it is shown that a
recursive solution to the multi period problem exists such that the lower bound
today solves the one-period problem with the lower bound tomorrow as payoff.
The figure below is useful as it compares the good-deals bounds obtained by the

authors with Black-Scholes and no arbitrage bounds.

12 ¢

+—— Good—deal bound
— -~ Black—=Scholes
Arbitrage bound

Call value

L . L . ;
85 90 95 100 108 110
Stock price

Figure 2.1: Option Price Bounds as a Function of Stock Price
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King [3] presents a modeling approach for the hedging problem of contingent
claims in the discrete time, discrete state case as a stochastic program. Duality is
applied, leading to the arbitrage pricing theorems. The link between arbitrage and
martingales is stated as the absence of arbitrage is equivalent to the existence of a
probability measure that makes the price process a martingale. The relationship
between the boundedness and feasibility of the problem and the requirements of
the margins of the contingent claims are studied in the latter sections, stating
the conditions under which a buyer should buy a claim that is offered by the
writer. The model is then extended to analyze the effects of the differences in
risk aversions and transaction costs. Then, the pre-existing liability positions
or endowments are introduced and analyzed to see their impact on the model
and it is seen that pre-existing liability structure or endowments of the market
players are the reasons to trade in options. The probabilistic setting of [3] will

be considered throughout the thesis.

Pinar et al. [4] study the problem of pricing and hedging contingent claims
in a multi-period, linear programming setting. A concept called a A gain-loss
opportunity that is built on the Expected Gain to Loss ratio of Bernardo and
Ledoit is introduced. Investors can seek a A gain-loss opportunity in the market
in absence of an arbitrage opportunity where A stands for the loss aversion. The
concept of a A gain-loss opportunity is similar to the notion of a good-deal but the
definitions are not based on ratios. Hence, resulting optimization problems are
easier to analyze. The discrete time, discrete state stochastic programming that
is developed by King [3] is used in the paper. The stochastic linear programming
framework allows adding variables and constraints to the model and conducting
numerical analysis. Firstly, the general probabilistic setting and the relationship
between arbitrage and martingales are stated. Then, a stochastic linear program
to seek a A\ gain-loss opportunity in the market is formed. The necessary condi-
tions for a A gain-loss opportunity to exist in the market are stated. The cut-off
value of the risk-aversion parameter is searched, and it is observed that, as the
risk aversion parameter goes to infinity, the bounds of the prices not allowing
a A gain-loss opportunity converge to the no-arbitrage bounds. On the other

hand, they converge to a unique value when the risk aversion parameter goes to
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the smallest value not allowing a A gain-loss opportunity. Then, the financing
problems are taken from the buyer’s and the writer’s perspectives. The problem
is also considered under the assumption of proportional transaction costs. It is
shown that the pricing bounds obtained are tighter than the no-arbitrage pricing
bounds. The stochastic programming framework used to seek A gain-loss oppor-
tunities forms the basis of our study in this thesis. Our main point of departure

is modeling losses by CVaR instead of expected terminal wealth positions.

The key article about the optimization of CVaR by Rockefellar and Uryasev
[5] will be summarized to give an in-depth understanding of the concept of CVaR.
The authors introduce a new approach to minimize the CVaR of a portfolio using
linear programming and non-smooth optimization techniques. It is well-known
that risk management has been a concern of financial world for a long time and
that the risk management techniques have been developing rapidly in recent years.
VaR has been a popular risk measure, however it lacks some important math-
ematical characteristics such as convexity and sub-additivity which are among
necessary characteristics of a coherent risk measure. That means the VaR of a
combined portfolio can be larger than the sum of the VaRs of its components due
to lack of sub additivity which constitutes a problem when it is required to ag-
gregate risks of individual VaR values, and bring them together to get statistical
predictability. CVaR, on the other hand, has been developed as an alternative
measure of risk and is shown to be a coherent measure with strong mathematical
characteristics. CVaR can be defined as the conditional expectation of the losses
associated with a portfolio given that the loss at a given percentile is VaR or
greater. The new approach developed by the authors that minimizes the CVaR
is closely related to minimizing the VaR of the portfolio as the definitions ensure
that portfolios with a small VaR necessarily have small CVaR. The important
feature of the new approach is the characterization of CVaR and VaR in terms of
an auxiliary function and showing that minimizing this convex and continuously
differentiable function is equivalent to minimizing CVaR. Then, applications to
portfolio optimization and hedging are presented to show the validity of the new
approach through numerical examples. We will use the discrete-time version of

this function to model losses by CVaR in the concept of A gain-loss opportunities.



Chapter 3

Preliminaries

In this chapter, the general probability setting and the concepts of arbitrage and
martingales are introduced. The connection between the arbitrage and martin-
gales will be given through Theorem 1. Then, the financing of contingent claims,
the positions of the writer and the buyer and the no-arbitrage interval will be

discussed. We will start with the general probabilistic setting below.

3.1 Probabilistic Setting

Throughout the thesis, we will follow the general probabilistic setting of [3]. The
behavior of the stock market is approximated by assuming that all asset values
are random variables that are supported on a finite probability space (€2, F, P)
whose atoms w are sequences of real valued vectors (security prices and payments)
over the discrete time periods t = 0,1,...,7T. In addition, we assume that the
market evolves as a discrete scenario tree. In the scenario tree, the partition of
probability atoms w € {2 which are generated by matching path histories up to
time t corresponds one-to-one with nodes n € N; at level ¢ in the tree. The root
node n = 0 corresponds to trivial partition Ny = €2, and the leaf nodes n € Np

correspond one-to-one with the probability atoms w € ().

11
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L C(n)

Period: t-1 t+1

Figure 3.1: Scenario Tree

As represented in the figure above in the scenario tree, every node n € N;
for t = 1,...,T has a unique parent node denoted by a(n) € N;_1, and every
noden € Ny, t =0,1,...,T — 1 has a nonempty set of child nodes denoted by
C(n) C Ny

The probability distribution P is modeled by assigning positive weights p,, to
each leaf node n € Np. The weights p,, are assigned to each leaf node n € Ny in
such a way that ) _ ~y Pn = 1. Each intermediate level node in the tree receives

a probability mass equal to the combined mass of the paths passing through it.

Pu= Y Pm Yn€N, t=T-1,..,0.

meC(n)

The ratios p,,/pn, m € C,, are the conditional probabilities that the child

node m occurs given that the parent node n = a (m) has occurred.

The function X : Q — R is a real-valued random variable if {w : X (w) <r} €
F Vr € R. Let X be a real-valued random variable. X can be lifted to N, if it
can be assigned a value on each node of V; that is consistent with its definition
on €, [3]. This kind of random variable is said to be measurable with respect

to the information contained in the nodes of N;. A stochastic process {X;} is a
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time indexed collection of random variables such that each X, is measurable with

respect to N;. The expected value of X; is uniquely defined by

EP[X)] =) pnX,.

neNt

The conditional expectation of X;,; on N,

EP (X1 |Ny] = P

meC(n) © "

is a random variable taking values over the nodes n € N;.

3.2 Arbitrage and Equivalent Martingale Mea-

sures

The market consists of J + 1 tradable securities indexed by j = 0,1,...,J with
prices at node n given by the vector S, = (S9,...,S;/). Suppose as in [8] that one
of the securities always has strictly positive values at each node of the scenario
tree. Let security 0 be such security. This security which corresponds to the
risk-free asset in the classical valuation framework is chosen to be numéraire.
Introducing the discount factors 3, = 1/SY we define the discounted security
prices relative to the numéraire and denote it by Z, = (Z9,...,Z;]) where Z; =
B,S? for j =0,1,...,J. Note that, Z9 = 1 in any state n.

The amount of security j held by the investor in state n € N; is denoted by
7. Therefore, the value of the portfolio discounted with respect to the numéraire

in state n is
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Arbitrage can be defined as a sequence of portfolio holdings that begins with
a zero initial value, makes self-financing portfolio transactions and attains a non-
negative value in each future state, while in at least one terminal state it attains
a strictly positive value with positive probability. It can be interpreted as making

something out of nothing.

The condition of self-financing portfolio transactions

states that the funds available for investment at state n are restricted to the funds

generated by the price changes in the portfolio held at state a (n).

The following optimization problem, called a stochastic program, is used to

find an arbitrage.

max Z Pnn + On

neNp

s.t.
Zy-0o=0
Zy |00 — bamy)) =0, Vne Nyt >1
Zp-0,>0, Vné€ Np

A positive optimal value for this stochastic program corresponds to an arbi-
trage. The program begins with a 0 valued portfolio, makes self-financing trades
a each step, has a positive expected value at time T. Moreover, the problem
is unbounded if the opportunity of arbitrage exists. The solution that yields a
positive optimal value can be turned into an arbitrage as shown by Harrison and
Pliska [8]. On the other hand, if no arbitrage is possible, the price process is

called an arbitrage-free market price process.

A martingale is a stochastic process such that the expected value of the next

observation, given all the past observations, is equal to the last observation.
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In other words, the value of each coordinate of Z,, is equal to its conditional
expectation one step ahead. The following definition is a mathematical expression
of this definition.

Definition 1 If there exists a probability measure Q = {qn},cy, such that

Zy=E9[Z,1IN] (t<T-1) (3.1)

then the vector process {Z;} is called a vector-valued martingale under @Q, and Q

1s called a martingale probability measure for the process.

Two martingale measures are equivalent as defined in [9] whenever their null

sets coincide. The definition below states this relationship.

Definition 2 A discrete probability measure QQ = qn,ep, s said to be equivalent

to a discrete probability measure P = pp,cy, if ¢, > 0 exactly when p, > 0.

The following Theorem proved by King [3] establishes the relationship between

arbitrage and martingales which is of great importance to our study.

Theorem 1 The discrete state stochastic vector process {Z;} is an arbitrage-free
market price process if and only if there is at least one probability measure ()

equivalent to P under which {Z;} is a martingale.
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3.3 Financing of Contingent Claims and Posi-

tions of the Writer and the Buyer

Any asset or security whose value depends upon other assets is called a contingent
claim. Suppose that F'is such a security, then it has payouts F,,, n > 0 depending
on the states n of the market. Currency futures and equity options are examples
of traded contingent claims. Now suppose that we would like to determine the
minimum initial investment that is needed to generate payouts F;, through self-
financing transactions using a riskless asset and the underlying security without
the risk that the terminal positions can be negative at any state. The following
stochastic program determines the minimum amount F required to hedge the

claim F' that produces payouts F,, with no risk.

min Zj - 6,
s.t.
Ly - [Hn — Ha(n)] =—0,F, Vné&eN,t>1
Zy -0, >0 Vn € Np
(3.2)

The dual of this problem equals to the maximum expected value of the dis-

counted payouts over all martingale measures which is,

T
> BiF
t=1

max E9
QEM

Then, we can write the proposition below which is proved by King [3].

Proposition 1 Let F,, be a contingent claim on an arbitrage-free market price

process {Z;}. The claim is attainable if and only if its price Fy satisfies

BoFo > max E¢ (3.3)

T
> BF,
t=1
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where M ={Q : Z, = E9[Z 1 |[N] (t <T —1)}.

3.3.1 Position of the Writer

This section will discuss the position of the writer of the contingent claim. The
writer of the claim receives F{y from the buyer of the claim at state n = 0 and
pays F), in each state n > 0 in the future. In the meantime, the writer invests
this money to generate a profit to maximize expected value at the end of the
horizon while hedging the claim. The problem of the writer can be modeled as

the stochastic program

neNrp
s.t.
ZO . 90 = ﬁOFO
Zy - 0n = Ouin)] = —BuF,  VYn € Nyt >1
Zn -0, >0 Vn € Nr.

The necessary and the sufficient condition needed for the writer’s problem to
have an optimal solution and the condition on the price Fy charged by the writer

are derived in the following theorem proved by King [3].

Theorem 2 The writer’s problem has an optimum if and only if

1. The collection of equivalent martingale probability measures on the market

price process {Z;} is nonempty, and

2. The price Fy charged by the writer to generate payouts F,, satisfies

F, > max E¢
BoFo > max

T
> BF,
t=1
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Furthermore, this price is invariant under the changes of the original probability

measure P.

Therefore, the writer’s minimum acceptable price to sell the claim is

F(;umter — 50—1 max EQ

ma (3.5)

T
> B
t=1

3.3.2 Position of the Buyer

This section analyzes the position of the buyer of the contingent claim. The buyer
of the claim pays F{ to the writer at state n = 0 and receives payments £, in
each state n > 0 in the future. Like the writer, the buyer wishes to maximize
expected value at the end of the horizon by trading. The problem of the buyer

can be modeled as the following stochastic program

neNr
s.t.
Zo - 00 = —0o ko
Ly [Qn — Qa(n)] = B, F, Vn € Ny, t > 1
Lp0,>0 Vn € Nr.

The results derived for the writer’s problem are independent of the sign of
F'. Therefore, the buyer’s acceptable price to buy the claim can be computed by
reversing the signs in the equation derived in the writer’s problem. Hence, the

buyer’s acceptable price F| satisfies

BoFo < gélj\f}[ E (3.6)

T
> BF
t=1
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Therefore, the buyer’s maximum acceptable price to buy the claim is

Frwer — gt min B9

in (3.7)

T
> BE
t=1

In the previous section, we have stated that the writer’s minimum offering

price was

Féuriter _ 50—1 IQHEE}\)A( EQ

T
> BF
t=1

Then we have, F'"V" < Fwriter and the interval [F"Y“", Friter] is called the

no-arbitrage interval.



Chapter 4

Modeling Losses as ‘CVaR’

In this part of the thesis, we introduce our model which develops the concept
of A gain-loss opportunities using CVaR when measuring losses. In our study,
we assume that the scenario tree of the financial market evolves as described in
Chapter 3. Before moving on to formulation of the model, we shall elaborate on

the concepts of A gain-loss opportunities and CVaR.

4.1 ) Gain- Loss Opportunities

Firstly, a A gain-loss opportunity occurs when it is possible to form a portfolio
such that the difference between the gains and A times the losses is positive with a
positive probability at the terminal state where we start with a zero valued initial
portfolio. When an arbitrage opportunity does not exist in the market, this kind
of criteria enable investors to determine the attractiveness of an investment. As
we have stated earlier, gain-loss ratio of Bernardo and Ledoit [2] and good-deals
of Cochrane and Saa-Requejo[1] are other examples of such a criterion. We can

formulate this as follows:

Let Z,-0,, = x} —x; for n € Ny where z} and z;, are non-negative numbers.

n_

This means that the final portfolio value at terminal state n can be written as

20
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the difference of two non-negative numbers. Suppose that there exists a set of
vectors 6, Vn € N such that:

Zo -ty —
Zy + [0n = Oy =0, VneN,t>1
EY [ XF] = AEY [X7] >0,

Where A > 1 and X+ =z

nneNp’

X ==z

nneENp*

Such portfolio holdings are said to allow a “A gain-loss opportunity at level
A”. Formulating the problem as a linear program provides us computational ease
as well as the benefit of the ability of adding extra constraints to the model when
needed. Therefore, we can capture the problem of an investor seeking a A gain-
loss opportunity even if an arbitrage opportunity does not exist in the stochastic

linear program below:

max Z PaTh — A Z DPny, (4.1)

neNy neNy
s.t. (4.2)
Zy - by = (4.3)
Zy - [0 — Oun)) =0, VneN,t>1 (4.4)
Zy 0, — b+, =0, Vn€ Ny (4.5)
x) >0, Vné€Nr (4.6)
x, >0, VnéeNp (4.7)
(4.8)

The solution is said to allow a A gain-loss opportunity at level X if there is an
optimal solution to the above problem with a positive optimal value. Conversely,

the discrete state stochastic vector process {Z;} does not admit a A gain-loss
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opportunity at level A if the value of the stochastic program is zero. Moreover,
Pinar et al. [4] proves that if the market price process does not admit a A gain-
loss opportunity at level A\, then there exists an equivalent measure that makes

the price process a martingale.

4.2 Losses as CVaR

In our model, the risk component of the objective function is modeled by the
CVaR measure instead of the expected value of negative terminal wealth posi-
tions. The main motivation to express the risk component of our model using
CVaR instead of the expected value of negative terminal wealth positions is that
CVaR is a conservative measure of risk with strong mathematical characteris-
tics. Moreover, unlike VaR, CVaR accounts for potential losses beyond itself and
measures extreme risk. VaR can be defined as the maximum tolerable loss that
could occur with a given probability within a given period of time, i.e, losses
larger than VaR occur with probability not exceeding «, where « is the specified
confidence level. A mathematical definition for VaR can be given as follows, let
He(c) = Pr(C < ¢) be the cdf of the random variable ¢ and o € (0,1). Then,
the VaR can be defined as:

H'(1—a)=inf{t: Pr(C <t)>1-a}=inf{t: Pr(C >t)<a}.

Although, VaR has been a popular risk measure, it lacks some important math-
ematical characteristics such as convexity and sub-additivity which are among
necessary characteristics of a coherent risk measure. For instance, due to lack of
sub additivity, VaR of the combination of two portfolios may be greater than sum
of their individual VaRs or non-convexity may cause some computational diffi-
culties. The problem underlying the VaR models is that risk assessed is limited,
since the tail end of the distribution of loss is not typically assessed and VaR is
criticized for not considering losses beyond itself. CVaR, on the other hand, has
been developed as an alternative measure of risk and is shown to be a coherent
measure with strong mathematical characteristics. CVaR can be defined as the

conditional expectation of the losses associated with a portfolio given that the
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loss at a given percentile is VaR or greater.

Minimization of the CVaR of the portfolios can be modeled by linear program-
ming as shown by Rockafellar and Ursayev [5]. The new approach developed by
the authors to minimize the CVaR is closely related to minimizing the VaR of
the portfolio as the definitions ensure that portfolios with a small VaR necessarily
have small CVaR. The function f,(X~, ) developed by Rockafellar and Uryasev
[5] will be used to model the negative terminal wealth positions in developing the

concept of A gain-loss opportunities in our model, which is defined as:

fo(X7,7) =7+ (1/1 —a) Z pnmax(0, z,, — 7).

neNp

Now, we will discuss the development of this function according to [5]. Let
f(z,y) be the loss associated with the decision vector z, that is chosen from a
set X € R"™ and the random vector y € R™. We can interpret the vector z
to represent a portfolio where X represents the set of available portfolios. The
vector y stands for uncertainties in the market that could have an affect on the
loss. For each z the loss f(z,y) is a random variable having a distribution in R
determined by the distribution of y. For simplicity, the underlying probability
distribution of y is assumed to have a density, denoted by p(y).

The probability of f(x,y) not exceeding a threshold ~ is given by:

U(z,v) = / p(y)dy.
flzy)<y

As a function of v for fixed x, ¥ is the cumulative distribution function for the
loss associated with = which is of fundamental importance when determining
VaR and CVaR. Here, again for simplicity we can make one more assumption

that W(z, ) is everywhere continuous with respect to +.

Let 7,(z) and ¢,(x) represent a-VaR and a-CVaR respectively for the loss
random variable associated with = and a specified probability level a € (0,1).
Then,
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Yo(z) =min{y € R: ¥(z,7v) > a}

and

fal) = (1—a) ™! /f L Ty

The logic behind these formulations is as follows: The first formula gives us
the left endpoint of the nonempty interval consisting of the ~ values satisfying
U(z,y) = a, as ¥(x,7) is continuous and nondecreasing with respect to . In
the second formula the probability that f(z,y) > v.(x) is equal to 1 — . Hence
¢a(z) gives us the conditional expectation of the loss associated with x relative

to the loss being 7, (x) or greater.

The next step to get to the function that we use is the definition of the function
F, on X x R which is a characterization of ¢,(z) and 7y, ().
Fulw) =y+ (=) [ (50 =" plo)dy
yeR™
where [t]T = ¢, when ¢t > 0 and [t]T = 0, when ¢ < 0. The following theorems are
proved by Rockafellar and Uryasev [5]:

Theorem 3 As a function of «, F,(z,7) is convexr and continuously differen-
tiable. The a-CVaR of the loss associated with any x € X can be determined
from the formula
@ = mi Fa V).
da(x) = min Fy(z,7)
Theorem 4 Minimizing the a-CVaR of the loss associated with x over all x € X

is equivalent to minimizing F,(x,v) over all (z,7v) € X X R in the sense that

min ¢, (r) = min  F,(x,7).
x€1X¢ ( ) (x,'y)e(lXXR) ( 7>
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Shapiro et al. [6] explain the idea behind the development of this function in

a similar way with a similar notation. Suppose that we want to satisfy
VaR[C,] <0
at a specified confidence level a. Since VaR was already defined as
VaR,lc] =inf{t: Pr(C <t)>1-a}.
we can rewrite the constraint we want to satisfy as
Pr(Cy >0) = E[l9,5)(Cy)] <

where the function 1((.) is the indicator function such that 1¢ o) (c) = 0 if
c<0and Lo (c) =1if c>0.

The difficulty with this constraint is that the step function is non-convex
and discontinuous at zero. Therefore, a convex approximation of the expected
value can be constructed as follows: Let ¢ R — R be a nonnegative valued,

nondecreasing, convex function such that
¢(c) > Le0)(c)Ve € R.
Since 1(0,00)(tc) = L(0,00)(¢),Vt > 0 and ¢ € R, we have
p(te) = 1(o,00)(C)-

Therefore, the inequality infiso E[p(tC)] > E[l(0,00)(C)] holds. We can then

approximate the constraint
VaR[C,] <0
as

inf E[p(tC,)] < a.

t>0

It is obvious that the approximation is better if the function ¢(.) is smaller.

Therefore, the best choice of ¢(.) would be to take the piecewise linear function:

¢(c) :=[1 + ec] for some € > 0.
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But, the constraint

inf E[p(tCy)] < a

t>0

is invariant to the scale changes and hence the best choice of the function becomes
p(c) =[1+d-.
With this function, the initial constraint becomes,
inf(tE[t —a) <
inf(tE[t + Cly —a) <0,
or dividing both sides of the inequality by a we get,

inf(a 'E[C+t 1, -t <0.

t>0

Replacing t with —t~! we obtain,
inf “E[C - <0.
%r<10(t +a EC—t4)<0
The quantity,

CVaR,(c) :=inf(t + a 'E[C —t]})

teR

is called the conditional value (or average value) at risk of C at level @ which in

turn corresponds to our function.

We will introduce auxiliary variables u,, in order to incorporate the function

faX7 ) =7+ (1/1=0a) 3 pumax(0,z; — 7).

neNp

into our model.

The notation that will be used throughout the thesis are summarized in the

following section.
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4.3 Notation

Decision Variables
67 : The amount of security j held by the investor in state n € N;
x} . Gains of the investor in the final portfolio value at terminal state n

x, . Losses of the investor in the final portfolio value at terminal state n

uy, : Auxiliary variables introduced for the function max(0,z, — ) Vn € Np
v : The threshold value that the loss function does not exceed, namely value at

risk.

Parameters
A: Loss Aversion parameter
a: Parameter specifying the level of confidence
pn: Probability weights assigned to each leaf node n

Zn: The vector of security prices at node n
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4.4 Formulation and Constraints

With above specifications, the mathematical formulation of the model that we

refer to as (P1) can be formulated as follows:

max Z pnx: - >‘<7 + ﬁ Z pnun>

neNy neNt

s.t.

Zo 0 =0 (4.1)
Zy - [0 — O] =0, Vn € Nyt >1 (4.2)
Zn O — b+, =0, Vn € Nr (4.3)
ay >0, Vn € N (4.4)
x, >0, Vn € Np (4.5)
U, >0, Vn € Nr (4.6)
Uy > T — 7, Vn € Np (4.7)
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Here, constraint (4.1) guarantees that the funds available at initial state is
zero. Constraint (4.2), known as the condition of self-financing portfolio trans-
actions, states that the funds available for investment at state n are restricted
to the funds generated by the price changes in the portfolio held at state a (n).
Constraint (4.3) states that the final portfolio value at terminal state n can be
expressed in terms of the non-negative variables x; and z;. Constraints (4.4)
and (4.5) are the non-negativity constraints of the variables. Constraint (4.6) and
(4.7) assure that the auxiliary variables u, are equal to zero, when z; — v < 0

and to x,, —~, when z,, —~v > 0.

The solution to P1 gives rise to a CVaR-\ gain-loss opportunity at level ‘\’
and confidence level ‘e’ whenever there exists an optimal solution to the above
stochastic problem with a positive optimal value. In fact, the problem is un-
bounded if a A gain-loss opportunity exists. Because when the problem is solvable,
by fundamental theorem of linear programming, it always has a basic optimal so-
lution such that x;7, 2z, can not both be positive. Therefore, the discrete state
stochastic vector process {Z;} does not admit a CVaR-\ gain-loss opportunity at

level A\ and confidence level « if the value of the stochastic program is zero.

4.5 Exploring the effects of the parameters )\

and o

Firstly, we will start with the effect of the parameter A on the objective function.
A can be interpreted as the loss aversion parameter as the gains of the investor
at the terminal state will be A times the losses. Investors can decide on the level
of loss that they are willing to undertake by specifying the parameter A. As A
increases, the investor chooses less-risky positions, whereas when A decreases the
risk that the investor undertakes increases. When we think of the case that A
tends to infinity in the limit, we observe that we obtain the no-arbitrage problem
of King defined in Chapter 3. In this case, the investor chooses near arbitrage
positions. On the other hand, in the case that A is 1, the gains and the losses of

the individual will be equally shared.
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Secondly, we will discuss the effect of the parameter a which is the confidence
level. As we have stated above, it is useful to notice that the optimal value of

the variable 7 corresponds to the VaR at the specified confidence level o and the

1

expression v + 1= D, cn, Pn max(0, 2, — ) corresponds to the CVaR at level a.
The figure below is useful to illustrate the relationship between VaR, CVaR and

Q.

>

[3)

c -

[H]

]

g | Maximum
- VaR loss
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Probability

l-a «~—

Figure 4.1: VaR, CVaR and «

Now, let us suppose that « is zero. This implies that v is zero because the
value at risk at level & = 0 is zero. When we insert a = 0 and v = 0 to our
objective function, we obtain the problem of a A gain-loss opportunity that was
given in section 4.1. This is expected because the effect of CVaR also decreases
as the effect of o decreases. CVaR is defined as expected loss in the worst ¢% of
the cases where ¢ = (1 — a) x 100. When we set o = 0, we cover 100% of the
cases and CVaR equals the expected value of losses. This results in measuring
losses by expected values of negative terminal wealth positions instead of CVaR
in our model. On the contrary, let us suppose that « is increased to 1, this means
that (1 —«) is zero. Then, VaR becomes the maximum loss. As CVaR will be the
average of a single point in this special case, we will have CVaR equals maximum

loss as well. We also observe that VaR and CVaR are increasing functions of a.
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This is reasonable since we expect to incur more losses as the confidence level
increases. This relationship will be reflected in our A values in the following way:
The maximum value of the parameter A\ allowing a CVaR-A-gain loss opportunity
decreases as the value of « increases. This follows from the fact that increasing
a values imply higher level of expected loss as explained above; thereby leads to

a smaller gain-loss opportunity.

4.6 Positions of the Writer and the Buyer

Now, we will extend our model by considering the perspectives of potential writers
and buyers. First, consider the position of the writer of the contingent claim F
who has received Fj in return for a promise to pay F,, in the future, depending
on the states of the market. The writer would seek an answer to the following
question: What is the minimum initial investment to replicate the pay-outs F,
using securities available in the market so that the positive expected wealth at
the terminal state would be greater than A times the expected negative terminal
wealth? Therefore, the writer would be interested in the solution of the following

stochastic linear programming problem:

min Z - 0
s.t.

Zy [On = Oa(r)]

_ﬁnan vnENtatzl

Zp -0, —x} +x, =0 Vn € Nr
+ _ _
Z = Ay +1/1 —« Z D) >0
TLENT TLGNT
z) > 0, Vn € Nr,
1’7: > 0, Vn € NT,
Up, Z 07 vn S NT7

Uy, > T, =, Vn € Nr
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On the other hand, when we consider the point of view of a buyer, it is rea-
sonable that a buyer who pays Fy in return for a promise of payments F,, in each
state n > 0 would be interested in the answer of the following question: What is
the maximum price that I should pay for the claim such that the expected posi-
tive terminal wealth positions do not fall short of A times the expected negative
terminal wealth positions? Then, the problem of the buyer could be expressed as

below:

s.t.

Zy [0 — Oun)) = B3, F),, Vn € Nyt >1
Zn o 0n —xf + 1, =0 Vn € Nr
nGZNT Pty = A(y + 1% HEZNT Patta) =0

x) >0, Vn € Nr,

x, >0, Vn € Nr,

U, >0, Vn € Nr,

Uy, >z, —7, Vn € Np

In this chapter, we have introduced our model with the formulations and
explanations. Then, we extended the model to include the problems of writer
and the buyer. In the next chapter, we will obtain the duals to the problems
that we have stated. We will construct equivalent martingale measures similar to
defined on Chapter 3 and obtain a price interval for prices of buyers and writers

of contingent claims not allowing a CVaR-A-gain loss opportunity in the system.



Chapter 5

Duality and Martingales

This chapter analyzes the problem discussed in Chapter 4 through an equivalent
problem called the dual. We establish the connection between CVaR-A gain-
loss opportunities and martingales which is similar to the connection between

arbitrage and martingales as discussed in Chapter 3.

5.1 Forming the dual problem of the model

We first examine the financial constraints in the dual corresponding to the decision
variables 0,, forn € N;, t =0,..., T,z forn € Ny, z;, for n € Ny, v for n € Ny
and u,, for n € Np. The first step in calculating the dual is to assign dual variables
to each constraint in the model. We assign y,, as dual variables for all nodes of
the financial constraints (4.1) and (4.2), w, for constraint (4.3) ¥n € N, and k,

for the last constraint which is constraint (4.7), Vn € Nrp.

Firstly, the dual constraint corresponding to the decision variable 6,,, for n €
Ny, t=0,...,T—11is

YnZn =Y  YmZm nEN,t=0,...T—1. (5.1)

mece(n)

33
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Next, the dual constraint corresponding to the decision variables 8,, for n € Np
is
(Yn +wp) Z, =0 n € Nr,

and since the first component Z° = 1 for all states n we have

Yn+w, =0 ne Np=y,=—w,né& Np.

Another dual constraint corresponding to the variable ;' is

_wnzpniynzpn nENT-

The dual constraint corresponding to the variable z,, is that

The dual constraint corresponding to the variable « is that

an:—)\

neNt

The dual constraint corresponding to the last set of variables u,, is

kn > _()‘/1 - a)pn

Finally, combining the above constraints, one has the following constraint in
the dual.

Pn S Yn S _kn S (/\/1 - a)pn7vn S NT-
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Furthermore, we can impose the condition that

Yo = A

The reason behind this condition is as follows: Suppose that we have another
problem P’ with a corresponding dual problem D’. Problem P’ is the same prob-
lem as P except that the variables =} are now free, which means that we have the
additional constraint w, < k,,, Vn € Ny in D’. This means that D is a relaxation
to D’. The constraints w, < k,, Vn € Ny and w,, > k,, Vn € Np in D’ together
imply that w, = k,, Yn € Nr. Now, let us suppose that there is a solution [y,
W, k:n]T to D such that w, > k,, Vn € Npy. We will try to form a corresponding
alternative solution of the form w, = k,, Vn € N for every possible solution of
the form w,, > k,, Vn € Np. The equality of the variables w,, = k,, Yn € Np will
imply that ) .y wn, = —X and hence ) _\ vy, = A. We know together from
constraint (5.1) and from Z° = 1 that y,, = D mes(n) Ym: VN € Nyt =0,..., T —1.
This means that the sum of y, over all states n € N, in each time period ¢ sums

to yo. Therefore, Y\ yn = A will imply that yo = A.

To get to the case when w,, = k,,,Vn € N, we can either increase k, or de-
crease w,. Firstly, let us try to increase k,, we should check if the constraints
including k,, can still be satisfied. Checking the constraints alone would be suffi-
cient as the objective function is 0. But, this is not possible because the constraint

Y one N, kn = —A would be violated as we can not increase A accordingly.

Therefore,we need to decrease w,. Now, we should check if the constraints
containing w,, can still be satisfied. From y, = —w,, Vn € Nr we see that we
need to increase y, with an increment of (w, — k,); this equality can still be
satisfied as the upper bound for y, is —k, which we do not exceed in this case

and the constraint (5.1) can be satisfied by increasing y,,’s in the final period.

This shows that we can form an alternative solution of the form w, = k,,,Vn €
N7 for every possible solution of the form w,, > k,,,Vn € Np and that y, = X and
w, = k,,Yn € Nr is always feasible to D. But, we also know that D is a feasibility

problem and hence this feasible solution will in fact be the optimal solution.
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For the signs of the dual variables we have,

The non-negativity of the variables vy, follows from the non-negativity of p,
which implies the negativity of w, since y, = —w, and the negativity of the
last set of the variables £, follows from the inequality that w, > k,. To obtain
the objective function of the dual program we leave the parameters of the model
at the right hand side and multiply them by respective dual variables. Hence,
the objective function of the dual problem will be zero as the right hand side
of the constraints in the primal problem is zero. Moreover, we can get rid of
the variables w, and k, since y, = —w,, VYn € Np and w, = k,, Vn € Np as
explained above. Therefore, the dual problem becomes a feasibility problem in

the variables y,, > 0, Vn.

Eventually, the dual program that we refer to as (D1) is formulated as follows.

min 0
s.t.
Yo = A 5.4
UnZn =" YmZm, Vne N, t=0,... T—1. (5.5)
méec(n)
A
DPn S Yn S —— DPn, \V/TL € NT- (56)
11—«
Yn > 0, Vn € Ny,t =0,...,T —1. (5.7)

The basic theorem of linear programming states that problem (P1) has an
optimal solution if and only if the dual (D1) does too, and both optimal values are
equal. Furthermore, it follows again from the theory of linear programming that
problem (P1) has an optimal solution if and only if it is feasible and bounded.

Moreover, (P1) is bounded if and only if there exists y, satisfying the above
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feasibility problem. We will connect this dual feasibility to appropriate martingale

measures.

Definition 3 Given A > 1 and o € [0,1] and a discrete probability measure
Q = {n}nen, 18 said to be (a, N)-compatible to a discrete probability measure
P = A{pn},cn, if it is equivalent to P (as defined in Chapter 3) and satisfies

min p,/qp.

1/ L, <1<
(/)gel%p [@n < < 7o, min

In Chapter 3, we have stated Theorem 1 that provides a way to interpret the ab-
sence of an arbitrage opportunity in terms of martingales. Similarly, we will prove
Theorem 5 below which is essential as it relates CVaR-\ gain-loss opportunities

to martingales.

Theorem 5 The discrete state stochastic vector process Z; does mot admit a
CVaR-\ gain-loss opportunity at a fived level A and confidence level o if and
only if there is at least one probability measure Q) — («, \) compatible to P under

which Z; is a martingale.

Proof: Let us start with proving the necessity part first. Consider D1, for passing
to the martingales, we define the process ¢, = y,,/A for each n € Np. This defines
a probability measure () over the leaf nodes n € Np. We can rewrite D1 as the

feasibility of the following system with the newly defined weights:

Q=1 (5.8)
(nZn = Z GmLm, Vn € Nyt =0,...,T —1. (59)
méec(n)
1
—
0 > 0, Vne Nyt=0,...,T—1. (5.11)

The inequality (5.10) can be rearranged to be in the following form:

<1< i .
(1/2) max p/gn < 1 < 3—— min po/q
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Therefore, we constructed an equivalent measure ¢ — («, A) compatible to P by

Definition 3 under which Z; is a martingale. This proves the necessity part.

To prove the reverse direction, suppose that @) is a (a, \) compatible measure

for the price process Z;. Then, we must have;

qo =1 5.8
WZn =Y GmZm, VneN,t=0,...,T—1. (5.9)
mee(n)

1
(1/N)pn < qn < TP Vn € Nyp. (5.10)

—«
Gn > 0, Vn € Nyt =0,...,T — 1. (5.11)

and
<1< i
(1/2) max pn/ga <1< 3—— min pu/gn

If the above inequality is obtained as an equality, the right or left hand side of
the inequality can be set as yo and vy, = ¢,y0. Otherwise, we can choose a factor
Yo in the interval [(1/)\) MaX,e Ny P/ dn,s (ﬁ miny,e N, pn/qn} and set ¥, = ¢n%0 ,
Vn. These values satisfy D1. Since the dual is feasible, the primal is feasible and
bounded from the theory of linear programming and the system does not admit

a CVaR-\ gain-loss opportunity. This concludes the proof of Theorem 3. [

We observe that Theorem 1 in Chapter 3 and Theorem 2 of [4] relating A-
gain-loss opportunities to martingales are special cases of Theorem 5 for values

of @« =0, A\ = 0o and for a = 0 respectively.
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5.2 Establishing bounds on the prices of the

buyer and the writer via duality

In this section, we will construct the dual programs to the writer’s and buyer’s
hedging problems in a similar way. We will pass to the martingale measures from
these duality results. It is known that when we are pricing the assets, we adjust
the calculated expected values for the risk involved by an appropriate discount
factor. But, under the assumption that there is no CVaR-\ gain-loss opportunity
in the market, constructing the equivalent martingale measures provides us an
alternative way to do this calculation. Instead of first taking the expectation and
then adjusting for risk, we can first adjust the probabilities of future outcomes
such that they incorporate the effects of risk, and then take the expectation under
these different probabilities. Eventually, these adjusted probabilities are called
risk-neutral probabilities and they constitute the risk-neutral measure. There-
fore,we will establish the price interval of the buyer and the writer both in terms

of the dual problems and martingale measures.

Definition 4 A contingent claim F with price Fy is said to be (o, \)-attainable

if there exist vectors 6, Vn € N satisfying:

Zoby < BoFo
Zn(0, —0,,) = —FnF,,Vn € Nyt > 1
EP (Xt = Mo(X~,7) =0

Proposition 2 At a fized level A > 1 and o € (0,1), assume that the discrete
price process Zy does not allow a CVaR \-gain loss opportunity. Then, the mini-
mum initial investment Wy required to hedge the claim such that the gains at the

terminal state are at least A times the losses is;
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where Y (a, \) denotes the feasible set of D1 defined in Chapter 4.

Proof: We start by forming the dual to the writer’s problem. This time, attach-

ing the multipliers v, w, and V' we have;

mavanﬁnFn
n>0
s.t.
ULy = Z UL, Vnée N, t=0,...,T—1.
mee(n)
A
Vo, <v, <V——p,, Vn € Np.
11—«
v, > 0, Vne N,t=0,...,T —1.
V>0

Observing that V' can not be 0 as this would lead to infeasibility of the variable
Yn, we insert V = 1/yy and v, = y,/yo to obtain

max (1/y0) Z ynﬁnFn

yeY (a,\) =0
s.t.
Yo = A
UnZn = YmZm, VneN,t=0,..., T —1.

méc(n)

A
Pn < Yn < ——Dn, Vn € Np.
1—«

We note that the feasible set of this problem is the same with the feasible set
of D1, namely Y (\). Furthermore, under the assumption that the system does
not admit a CVaR A gain loss opportunity we can say that there exist a feasible

solution to D1, but this means that there is a feasible solution to the above
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problem. Since the dual of the writer problem is feasible, the writer’s problem is

solvable by linear programming duality.[]
Therefore, we can furthermore impose the following;:
Corollary 1 At a fized level X > 1 and o € (0, 1), assume that the discrete price

process Z; does not allow a \-gain loss opportunity. Then, the contingent claim
is (v, \) attainable if and only if ;

5OFO> T nax Zynﬁn n-

yeY (a,\)

The minimum acceptable price for the writer of the contingent claim becomes:

eriter _

60 5, e Zynﬁn -

Moreover, we can pass to martingale measures through this dual problem.

Below is the martingale representation of the problem:

max E°
QeQ(A

Z BiF,

where Q(A) is the set of ¢,,’s satisfying:

= Z QmZm

mec(0)

QnZn: Z qu'nf“ vnENt,tzl,,T—l

mee(n)
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Now, we construct the dual to the buyer’s problem in a similar way:

min 1/y0 Zynﬂn n

yeY (a,\)

n>0
s.t.
Yo = A
Zym " Vn € Ny, t =0 1T —1
mes(n)
pngyn_ P, VHENT
n > 0 Vn e Nt =0,...,T—1

And the maximum acceptable price for the buyer is:

buyer § :
FO = min ynﬁn n-

ﬁo)\ yeY (a,\)

Passing to martingale measures, we can equivalently pose the problem of the

buyer as:

mln E°
QeQ(X

Z BiFy

Now, we can state the price bounds of the writer and buyer in the following

equivalent forms:

[ 7o, Zynﬁn s ﬁ 3, e Z;ynﬁnFn

or equivalently,

LByt max E°
QER(A

Z BiF, Z@Ft

. mln E°
[ﬁ QeQ(A

It is worth reminding that unless the two values are equal, no trading occurs.
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Recall that the no-arbitrage bounds of [3] stated in Chapter 3 was:

-1 Q
, max B
& QEM

T T
> BE > BE
t=1 t=1

-1 . Q
min F
[ﬁo QeM

Therefore, by noting that Q(\) is included in M for fixed A and « we say
that the price interval that we obtained is tighter than the no-arbitrage interval
defined on Chapter 3.

In this chapter, we have stated the dual problems to our model and to the
problems of writer and buyer. We have shown that the existence of a («, \)
compatible probability measure () that makes the price process a martingale
ensures that the price process does not allow a CVaR-\ gain-loss opportunity and
vice versa. We used the dual problems of the writer’s and the buyer’s problems
for establishing the CVaR-~\ bounds. We presented these bounds also in terms of
equivalent martingale measures and showed that these bounds are tighter than
the no-arbitrage bounds. Next chapter will present a numerical study of our

work.



Chapter 6

Experimental Study

In the preceding two chapters, we incorporated CVaR measure into the concept
of A-gain-loss opportunities and stated our model for pricing contingent claims.
We then stated the dual problems to our model that allowed us to obtain price
intervals for the buyer and the writer. In this chapter, we will present a numerical
analysis of the model with respect to the risk aversion parameter A and in various
levels of confidence («) to give a better understanding of the previous chapters

in a discrete market model.

6.1 Calibrated Option Bounds

The model of the writer and the buyer that we defined in section 4.6 will be
modified in this chapter when we are conducting the experimental analysis. Let
the index set k = 1, ..., K denote available contingent claims, and H*, k =1,..., K
be contingent claims with bid and ask prices CF < C* and pay-offs H*. The
basic modification in the model is to allow the writer and the buyer to apply buy
and hold strategies on these available options. This modification results in the

following problem:

44
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minZo-90+C'a-f+—Cb-§_
s.t.
Zy |0 — ()]

Zy 0 —xf + 1,

TZGNT ’I’ZGNT

= n'[€+_£*]_ﬂnFn>
—0

>0

>0

Y

>0

9

>0,
zx;_f%
>0

> 0.

45

Vn € Nt,t 2 1,
‘v’nENT,

Vn € Nr,
Vn € Ny,
Vn € Nr,
Vn € Nr,

where & and £ are the amounts bought and shorted of H k at time t = 0.
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Similarly, the hedging strategy of the buyer when there are other options

available for trading becomes:

maX—ZQ'Qo—Ca'€++Cb'f_

s.t.

Zy - [0 = Oy =Gy &4 — & ]+ BuFn, Yne N, t>1,
Zp -0, —xf + =0 Vn € Ny,
neZ];T Pat — ANy + ﬁ neZ];T Pntn) >0

x) >0, Vn € Nrp,

x, >0, Vn € Nr,

Uy, >0, Vn € Nr,

Uy, >z, —, Vn € Nr,

§+ > 0,

£~ >0

We will use the bid and ask closing prices of 48 European call and put options
on the S&P500 index on September 10, 2002 [7]. We will present a numerical
approach for computing bounds for price bounds of an option not allowing a A
gain-loss opportunity when some other options are available for trading. Numer-
ical tests on S&P500 index show the accuracy of our proposed method. Table
1 below displays the bid and ask closing prices of these 48 European call and
put options and the columns named ‘STR’ and ‘MAT’ represent the strike prices
and maturities of the options respectively. The first 21 options are call options
whereas the remaining 27 options are put options. We will compute CVaR bounds
for each of the 48 options for various values of A at two most common different
confidence levels with a = 0.95 and o = 0.99 by using the remaining 47 options
as market-traded claims. This means that for each option and for each value of A
at each confidence level, we will solve problems of the buyer and the writer sepa-
rately using the remaining 47 options. The resulting values will then be compared

with the actual market prices that are given below in Table 1
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Table 6.1: Data for Call Options

Option STR MAT C, C(C,
1 890 17 315 33.5
2 900 17 244 264
3 905 17 212 232
4 910 17 18.5 20.1
5 915 17 158 174
6 925 17 112 126
7 935 17 76 8.6
8 950 17 3.8 4.6
9 955 17 3 3.7
10 975 17 095 1.45
11 980 17 0.65 1.15
12 900 37  42.3 44.3
13 925 37 282 29.6
14 950 37 175 19
15 875 100 77.1 79.1
16 900 100 61.6 63.6
17 950 100 35.8 37.8
18 975 100 26 28
19 995 100 19.9 21.5
20 1025 100 12.6 14.2
21 1100 100 34 3.8

47
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Table 6.2: Data for Put Options

Option STR MAT C, C(C,
22 750 17 04 0.6
23 790 17 1 1.3
24 800 17 1.3 1.65
25 825 17 2.5 2.85
20 830 17 26 3.1
27 840 17 3.4 3.8
28 850 17 3.9 4.7
29 860 17 5.0 9.8
30 875 17 72 7.8
31 885 17 94 104
32 750 37 5.9 5.9
33 775 37 6.9 7.7
34 800 37 9.3 10
35 850 37 16.7 8.3
36 875 37 23 24.3
37 900 37 31 33
38 925 37 41.8 43.8
39 975 37 73 75
40 995 37 889 90.9
41 650 100 5.7 6.7
42 700 100 9.2 10.2
43 750 100 14.7 15.8
44 775 100 17.6 19.2
45 800 100 21.7 23.7
46 850 100 33.3 35.3
47 875 100 40.9 42.9
48 900 100  50.3 52.3

48
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Generating the scenario trees and establishing a relationship between them
is the main issue when conducting the experimental analysis. We have written
a GAMS program that produces scenario trees according to the preferences of
the user and incorporates it into the optimization model. We solve the primal
problems in our analysis as they are more natural from the view of hedging
and easier to set up. We will solve a three period model and we choose the
branching structure as (50, 10, 10). This means that v; = 50, v = 10 and
vs = 10 which means that there are 5,000 scenarios. We insert the Gauss-
Hermite table as an input and produce a tree with given periods and the given
branching structure. We will use S = (1, S') as the dynamically traded securities
where S! is the S&P500 index. The structure of the periods is chosen according
to the maturity of the options. This means that we allow the period changes
to occur on days 0,17,37 and 100 when the trading occurs. The scenario tree
is built by approximating S! by the Gauss-Hermite process. We assign Gauss-
Hermite quadrature values to each node for probability and volatility calculations.
Therefore, we will give a more detailed information on the process of Gauss-

Hermite in the following section.

6.2 Gauss-Hermite Processes

This section will summarize the Gauss-Hermite processes as in [7]. Suppose that
we have an asset whose price S; follows a continuous geometric Brownian motion
with daily drift d and volatility o. For ¢t = 1, ..., T the logarithm of the price Sy,
& = In S, satisfies

&G =& +di e

where e; are normally distributed with zero mean and standard deviation o;, and

dt = ltd7

Ut:\/EO'
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Here, [; is the length of period t in days. Given the parameters in the above
equation and the initial value &, we generate a scenario tree by using the Gauss-
Hermite quadrature and obtain a sample (¢! )ir—1 of size vy of e; with the associ-
ated probabilities (7}!);"_; C (0, 00). This enables us to approximate the possible

values of the logarithmic index at time t = 1:

i1 i
1 _§0+d1+61721_17”'7v1

U2

Similarly, we then generate a sample (€5)72, of ey in the second period and the

possible values of the logarithmic index at time t = 2 are,
il’iQ == il + dl -+ 6%2, 7;1 == 1, ...y U1, ig == 1, ..y U,

We obtain a scenario tree whose nodes N, at time ¢ are labeled by (i, ...,;) for
t =2, ..., T Defining,

N =NU..UNy,

Oé(Zl, ) (ila ...,Z'tfl),
C(iryosit) = (i1, s teg1) € Nrgaliggr € 1,0, 041,
S, =exp(&,),¥n € N,

pliy, ..., i) = Ttk

This brings us to the probabilistic setting defined in Chapter 3. Such discrete
processes are called Gauss-Hermite processes [8], which converge weakly to the
discrete time geometric Brownian motion [9], as the number of branches increases.
The probabilities in the Gauss- Hermite processes do not depend on the param-
eters p,o or the step length [;. For Gauss-Hermite processes, the discretized
one-step conditional probabilities of the logarithmic index match a maximum

number of moments of the normal distribution.
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6.3 Plots

In this section, we will present the plots that we draw with respect to the risk
aversion parameter A and in various levels of confidence () according to the
results of the stochastic program that we described in Chapter 4. The relationship
between various A values and the prices are shown on each plot. The bid-price, ask
price, the price of the writer and buyer are all displayed in figures in order to make
an easier comparison between the actual and predicted values. The figures for
a = 0.95 and a = 0.99 are presented respectively for each option. It is observed
that for each of the options the bounds we obtained are very close to the true
values. In most cases, either one or both of the values fall between the true values.
In general, better bounds are obtained when there are many benchmark options
having strike prices similar to the strike price of the option that we price. This
is expected since the bounds are obtained by hedging the cash-flows of the given
option using market-traded options. Therefore, better hedges can be obtained
when the remaining options are similar to the option that is being hedged. Since
including all 96 graphs of the 48 options in here would be too much to look into
we have selected a sample of the options representing relatively different patterns.

We will start with Option 1.
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52
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Figure 6.1: Optionl, alpha=0.95
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Option 1 alpha=0.99
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Figure 6.2: Optionl, alpha=0.99

Figures 6.1 and 6.2 show the relationship between various A values and the
price of the first option. It is observed that the same values for the prices of writer
and buyer are obtained for different values of A in different confidence levels. We
see that the limiting value of the loss-aversion parameter is 80 at o = 0.95 and
16 at o = 0.99 which is the same for all options. This means that the minimum
value of A not allowing a CVaR-gain-loss opportunity in the system is 80 at
a=0.95 and 16 at a = 0.99. This is expected because increasing the confidence
level would decrease the supremum of the A values allowing a CVaR-\-gain-loss
opportunity. It can be seen from the figure that the price of the buyer starts
with the value of 31.348 for the limiting value of A = 80 and converges to the
value of 30.97 for A = 500. For the price of the writer, these values are 31.637 and
32.987 respectively. These values are obtained for the limiting values of A = 16 at
a=0.99 and A = 80 at a = 0.95. We also observe that when A tends to oo, the

bounds obtained from our model converge to no-arbitrage bounds as expected.
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Since the peak is slower for bigger values of A and the convergence of the curve
can be noticed, the biggest value of A that we include in the figures will be 200
for « = 0.95 and 80 for a = 0.95. We see for Option 1 that the price of the writer
is within the bounds of the true price interval and converges to the actual price
of the writer. The price of the buyer however starts with a very close value to
the actual price of the buyer in the limiting case of A and converges to a lower

value as A\ is increased gradually.

Option 2 alpha=0.95
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Figure 6.3: Option2,alpha=0.95
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Option 2 alpha=0.99
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Figure 6.4: Option2, alpha=0.99

Figures 6.3 and 6.4 show the values we obtained for Option 2 along with the
true bid-ask prices. Option 2 is an example of the options where both of the
predicted values fall within the bounds of true prices. Here, whereas the price of
the buyer is constant at the value 24.67, the price of the writer starts with the
value of 24.95 for the limiting value of A = 80 and converges to the value of 26
for A = 500 at o = 0.95. Same prices are obtained both for the writer and the
buyer for A = 16 and A = 80 at a = 0.99 respectively. Unlike Option 1, we see
that the CVaR-\ bounds are contained in the interval [cy, ¢,].
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Figure 6.5: Option5, alpha=0.95
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Option 5 alpha=0.99
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Figure 6.6: Option5, alpha=0.99

The next option we include is Option 5 that is shown in figures 6.5 and 6.6.
Starting with the value of 16.105 for the buyer and 17.383 for the writer the
values converge to 16.076.786 and 17.509 respectively. Option 5 is an example
where only the price of the buyer is within the interval of true prices. Here, the
price of the buyer was within the limits in the limiting case of A. However, as A
increases, the price of the writer also increases, slightly passing the actual price

of the writer.
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Figure 6.7: Option6, alpha=0.95
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Option 6 alpha=0.99
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Figures 6.7 and 6.8 show the values we obtained for option 6. For all of
the options, the increase and decrease of the predicted values are most apparent
within the range of A € [80,100] for o = 0.95 and A € [16, 20] for e = 0.99. For
the remaining A\ values, the prices are almost convergent to the final predicted
values. Option 6 is an example for options with both of the predicted values are
out of the interval of the actual prices. It is observed that the bounds we obtain

using the our model are remarkably tighter than the no-arbitrage bounds.
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Figure 6.9: Optionl4, alpha=0.95
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Figure 6.10: Optionl4, alpha=0.99

We continue with Option 14 that is shown in figures 6.9 and 6.10. Starting
with the value of 14.86 for the buyer and 18.46 for the writer the values converge
to 13.83 and 18.97 respectively. We observe in Option 14 that the price of the
writer is within the interval formed by the actual prices and converges to the
actual price of the writer as A increases. The price of the buyer, on the other

hand, is below the price of the buyer.
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Figures 6.11 and 6.12 show the values we obtained for Option 25 along with
the true bid-ask prices. Option 25 is an interesting example of the options where
the price of the writer converges exactly to the actual price of the writer for values
of A > 120 for a = 0.95 and of A\ > 30 for a = 0.99 Here, the price of the buyer
is closest to the actual value for the limiting cases of A = 80 for a = 0.95 and
A =16 for a =0.99 .

Another important thing to note is that, the values of the parameter A allow-
ing no CVaR-\-gain loss opportunity in the system have significantly decreased
compared to the model capturing A-gain-loss opportunities. Although we observe
this while pricing these options, we now present a simple single model example

to clearly illustrate this relationship:

Example : Consider a single-period numerical example for simplicity. Let

us assume that the market consists of a riskless asset with zero growth rate, and
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of a stock and that the riskless asset has price equal to 1 throughout. The stock
price evolves according a trinomial tree as follows. At time ¢ = 0, the stock
price is 10. Hence Zy = (1 10)”. At time ¢ = 1, the stock price can take the
values 20,15 and 7.5 with equal probability. Hence, Z;= (1 20)7; Z, = (1 15)7
and Z3 = (1 7.5)7. We can construct an equivalent martingale measure with
¢1 = ¢ = 1/8 and g3 = 3/4, therefore the system is arbitrage-free. Solving the
problems P1 and D1, we see that the limiting value of A not allowing a CVaR-\
gain-loss opportunity in the market is 2.67 which is smaller than the limiting
value of A = 6 allowing no A gain- loss opportunity in the system. This example
shows that the limiting value of the loss aversion parameter can be decreased in

our model compared to the A gain-loss model.

In this chapter, we have computed prices of the the writer and buyer of 48
European call and put options on the S&P500 index on September 10, 2002
according to the model proposed in Chapter 4 using the remaining options as
market traded assets. We have illustrated a representative sample of the graphs
of these options and commented on the results. It is possible to say that our
proposed model yields good bounds as most of the bounds we obtained are very

close to the true bid and ask values.



Chapter 7

Conclusion

In this thesis, we study the pricing problem of contingent claims by incorporating
CVaR measure as losses to the concept of A gain-loss opportunities in a discrete
time, multi-period, stochastic linear optimization environment with a finite prob-
ability space. This enables us to combine the principles of risk aversion and
no-arbitrage pricing. Investors can decide on the risk level that they are willing
to take by putting restrictions on the parameter A without having to deal with
complex utility functions. Although VaR has been a popular measure in recent
years for its ability to measure aggregate risk, it suffers from not being a coherent
risk measure. CVaR, on the other hand, has been proposed as an alternative
risk measure to VaR which is a coherent measure. Using CVaR instead with nice
mathematical properties as a measure of risk enables us to account for extreme
losses and yield a conservative result. We introduce a function that is proved to
minimize CVaR by Rockefellar and Uryasev [5] and incorporate this function to
represent losses into the model seeking for a A gain-loss opportunity. We state
the relationship between the existence of the CVaR-\ gain-loss opportunities and
the martingales via Theorem 5. Then, the model is extended to include the per-
spectives of the writers and the buyers of the contingent claims. Then, the dual
problems to the problems of the buyer and the writer are stated. By doing so, we
were able to determine the pricing interval of the model not including CVaR-\

gain-loss opportunities in the market. Analyzing the problem through duality
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also provided us the means for passing to martingale measures. We express the
pricing interval both in terms of duality and in terms of martingale measures.
This pricing interval is shown to be tighter than the no-arbitrage interval in
width theoretically in Chapter 5. We also note that these bounds converge to the
no arbitrage bounds in the limit when the parameter A goes to infinity in each
of the specified confidence levels. Moreover, the values of the parameter A allow-
ing no CVaR-\-gain loss opportunity in the system have significantly decreased
compared to the model seeking A-gain-loss opportunities. Therefore, the main
contrubition of the thesis is to obtain tighter bounds on the prices of the contin-
gent claim taking into account the investors preferences without complex utility
functions. Moreover, modeling losses by CVaR provided us to obtain systems
not allowing CVaR-\ gain-loss opportunities with smaller values of A compared
to the A gain-loss opportunities. We also present a numerical study of our work.
We compute prices of the the writers and the buyers of 48 European call and
put options on the S& P500 index on September 10, 2002 according to the model
proposed in Chapter 4 using the remaining options as market traded assets. This
study enables us to compare the resulting values to the actual market prices and
interpret the data numerically. Based on our results, it is possible to say that our
proposed model yields good bounds as most of the bounds we obtained are very

close to the true bid and ask values.
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