A MULTI-OBJECTIVE MEMETIC ALGORITHM FOR MIXED-MODEL
TWO-SIDED DISASSEMBLY LINE BALANCING PROBLEM

Serkan MUTLU

Master's Thesis
Department of Industrial Engineering

Supervisor: Asst. Prof. Dr. Banu GUNER

Eskisehir
Eskisehir Technical University
Institute of Graduate Programs

September 2021

ABSTRACT

A MULTI-OBJECTIVE MEMETIC ALGORITHM FOR MIXED-MODEL TWO-
SIDED DISASSEMBLY LINE BALANCING PROBLEM

Serkan MUTLU
Department of Industrial Engineering
Eskisehir Technical University, Institute of Graduate Programs, September 2021
Supervisor: Asst. Prof. Dr. Banu GUNER

Environmental impact is increasing day by day with the increasing population,
affluence level and technological developments. Today, as a result of the increasing
environmental impact with the increasing population, affluence level and technological
developments, the level of Carbon Dioxide has exceeded 500 parts per million (ppm). In
order to overcome environmental impacts such as the increased level of Carbon Dioxide,
it is necessary to change the classical production/consumption approach. For this, Life
Cycle Engineering (LCE) is recommended as a new approach. LCE is an approach that
aims to minimize the environmental impact caused by the product, production or
consumption by being involved in every step of the product life cycle. An important step
of LCE is to design an easily disassemble, recyclable product at the design stage of
product life cycle in order to minimize the environmental impact it will create when the
products are at the end of their life as End-of-Life (EOL) product. Considering that the
designed products will become EOL products after a while, the design of efficient
disassembly systems is of critical importance in order to minimize the environmental
impact. The Disassembly Lines that emerged in this context allow the efficient
disassembly of the EOL products in bulk. Maximizing the efficiency of installed
disassembly lines is critical to minimizing environmental impact. For this reason, the
Disassembly Line Balancing (DLB) problem emerged in 1999 in order to optimize
various performance criteria. The DLB problem has found wide coverage in the literature,
and a lot of research has been done. However, the number of studies for the Two-Sided
Disassembly Line Balancing (TDLB) problem, which is a line design that minimizes
costs such as the cost of rotating on the line for disassembly of large-size products, is very
few. In particular, the Mixed Model Two-Sided Disassembly Line Balancing (MTDLB)
problem, in which the number of models is more than one, was introduced for the first

time within the scope of this thesis.

In this thesis, the MTDLB problem has been investigated in order to minimize the
sum of the design cost, the number of stations and sum of the selected disassembly task
times of the disassembly line, which allows more than one similar or dissimilar products
to be disassembled on the two-sided disassembly line. The Transformed AND/OR Graph
(TAOG) precedence relations diagram is used for the MTDLB problem. The TAOG
precedence relations diagram is a precedence diagram that takes into account all possible
disassembly sequences in the event that only the physical conditions are considered due
to the nature of the disassembly, and the functionality is not important. A Mixed Integer
Linear Programming (MILP) based mathematical model has been developed to optimize
the performance measures determined for the MTDLB problem. When the objective
function of the developed mathematical model is hierarchical, it gives optimum results
for small and medium sized cases with Gurobi solver. However, for the solution of large-
size cases, the solution time is growing considerably. Therefore, a Multi-Objective
Memetic Algorithm (MOMA) has been proposed for the solution of the MTDLB
problem. The proposed approach is tested on a series of test problems and the results are
compared with the highly preferred algorithms for multi-objective optimization in the
literature. The results obtained show that the results of the MOMA algorithm, investigated
for the MTDLB problem, give better results than the other algorithms.

Keywords: Life cycle engineering, Disassembly line balancing, Two-sided layout,

Mixed-model, Multi objective memetic algorithm.

OZET

KARMA MODELLI CiFT TARAFLI DEMONTAJ HATTI DENGELEME
PROBLEMI ICIN BiR COK AMACLI MEMETIK ALGORITMA

Serkan MUTLU
Endiistri Miihendisligi Anabilim Dali
Eskisehir Teknik Universitesi, Lisansiistii Egitim Enstitiisii, Eyliil 2021
Danisman: Ogr. Gér. Dr. Banu GUNER

Her gecen giin artan teknolojik gelismeler, refah seviyesi ve niifus ile birlikte
cevresel etki artmaktadir. Nitekim gliniimiizde Carbon Dioxide seviyesi 500 milyonda bir
(parts per million — ppm)’i asmistir. Bu durumun {istesinden gelmek igin klasik
tretim/tiikketim anlayisin1 degistirmek ve yeni bir yaklasim olarak Yasam Zinciri
Miihendisligi’ni benimsemek gerekmektedir. YZM, iiriin yasam dongiisiiniin her adimina
dahil olarak iirlinden, iliretimden veya tiiketimden kaynakli cevresel etkiyi en aza
indirmeyi amaglayan bir yaklasimdir. YZM’nin 6nemli bir adimi, iiriinlerin dmriini
tamamladiginda yani Omrii Tamamlanmis {iriin konumuna geldiginde, yaratacag
cevresel etkiyi en aza indirmek i¢in tasarim asamasinda kolay ayristirilabilir,
doniistiiriilebilir bir {iriin tasarlamaktir. Tasarlanan iiriinlerin bir siire sonunda Omrii
Tamamlanmis iriin konumuna gelecegi diistiniildiigiinde yine ¢evresel etkiyi en aza
indirebilmek i¢in verimli demontaj sistemlerinin tasarimi kritik 6nem tasimaktadir. Bu
kapsamda ortaya ¢ikan Demontaj Hatlar1 y1gin halindeki Omrii Tamamlanmus {iriinlerin
verimli bir sekilde demontajina olanak sunmaktadir. Kurulan demontaj hatlarinimn
verimliliginin makisimize edilmesi ¢evresel etkinin en aza indirilmesi i¢in kritiktir. Bu
sebeple 1999 yilinda ¢esitli performans kriterlerini en 1yilemek amaciyla Demontaj Hatti
Dengeleme (DHD) problemi ortaya ¢ikmigtir. DHD problemi literatiirde genis yer bulmus
cokca arastirma yapilmustir. Fakat, biiyiik ebatl {irlinlerin demontaj1 i¢in hat iizerinde
dondiirme maliyeti gibi maliyetleri en aza indiren hat tasarimi olan Cift Tarafli Demontaj
Hatt1 Dengeleme (CDHD) problemi igin ¢alisma sayis1 oldukca azdir. Ozellikle model
sayisinin birden fazla oldugu Karisik Modelli Cift Tarafli Demontaj Hatt1 Dengeleme
(KCDHD) problemi bu tez kapsaminda ilk kez tanitilmistir.

Bu tez kapsaminda, birden fazla birbirine benzeyen ya da benzemeyen iiriinlerin

cift tarafli olarak tasarlanan demontaj hatt1 {izerinde demonte edilmesine olanak saglayan

demontaj hattinin tasarim maliyeti, istasyon sayisi ve secilen demontaj gorev siireleri
toplamini en aza indirmek amactyla KCDHD problemi arastirilmistir. KCDHD problemi
icin Doniistiiriilmiis VE/VEYA Grafigi (DVVG) oncelik iliskisi kullanilmistir. DVVG
oncelik iligkisi, demontajin yapisi geregi yanlizca fiziksel kosullarin g6z oniine alindigi
fonksiyonelligin 6nemli olmadigi durumda olasi tiim sokiim siralarmi dikkate alan
oncelik diyagramidir. KCDHD problemi i¢in belirlenen performans gostergelerini en
tyileyecek bir Karisik Tam Sayli Dogrusal Programlama (KTDP) tabanli matematiksel
model gelistirilmistir. Gelistirilen matematiksel modelin amag¢ fonkisyonu hiyerarsik
yapildiginda Gurobi ¢oziiciisii ile kiiclik ve orta boyutlu vakalar i¢in optimum sonug
vermektedir. Fakat biiyilk boyulu vakalarin ¢oziimii ig¢in ¢Oziim siiresi oldukca
biiylimektedir. Bu ylizden KCDHD probleminin ¢6ziimii igin bir Cok Amagh Memetik
Algoritma (CAMA) 6nerilmistir. Onerilen yaklasim bir dizi test problemi iizerinde test
edilmis ve sonuglar literatiirde ¢ok amacli optimizasyon i¢in oldukca tercih edilen
algoritmalar ile karsilagtirilmistir. Elde edilen sonuglar, KCDHD problemi igin
olusturulan CAMA algoritmas1 sonuclarinin diger algoritmalara oranla daha iyi sonuglar

verdigini géstermektedir.

Anahtar Sozciikler: Cevresel etki, Demontaj hatt1 dengeleme, Cift tarafli yerlesim,

Karisik model, Cok amacl memetik algoritma

Vi

ACKNOWLEDGEMENTS

Yiiksek lisans siirecinde bana desteklerini bir an olsun esirgemeyene sayin hocam
Dr. Banu Giiner’e sonsuz tesekkiir ederim. Bu tezi her animda yanimda olan annem Fatma

Mutlu’ya, babam Saffet Mutlu’ya ve abim Yusuf Mutlu’ya armagan ediyorum.

“Hayatta en hakiki miirsit ilimdir.” Mustafa Kemal Atatiirk

I would like to thank my professor, Dr Banu Giiner, for his unwavering support
during my master's degree. | dedicate this thesis to my mother Fatma Mutlu, my father
Saffet Mutlu and my brother Yusuf Mutlu, who are always with me.

"Our true mentor in life is science." Mustafa Kemal Atatiirk

Serkan MUTLU

vii

06/09/2021

STATEMENT OF COMPLIANCE WITH ETHICAL PRINCIPLES AND RULES

I hereby truthfully declare that this thesis is an original work prepared by me; that
I have behaved in accordance with the scientific ethical principles and rules throughout
the stages of preparation, data collection, analysis and presentation of my work; that |
have cited the sources of all the data and information that could be obtained within the
scope of this study, and included these sources in the references section; and that this
study has been scanned for plagiarism with “scientific plagiarism detection program”
used by Eskisehir Technical University, and that “it does not have any plagiarism”
whatsoever. | also declare that, if a case contrary to my declaration is detected in my work
at any time, | hereby express my consent to all the ethical and legal consequences that are

involved.

Serkan MUTLU

viii

CONTENTS

Page
HEADER PAGE ..ot bbbttt bbbt I
FINAL APPROVAL FOR THESIS......coiiiiiiieieesieee s ii
ABSTRACT .ottt bbbt iii
OZET ... b bbbt bbbt ettt bbb nre s \/
ACKNOWLEDGEMENTS ..ottt bbbt VII
STATEMENT OF COMPLIANCE WITH ETHICAL PRINCIPLES AND
RULES ..ot e bt e et e e s e e sa et et et e stenrenneane e VIII
CONTENTS Lt bbbttt bbb s be st e beeneeneeneas IX
LIST OF TABLES ..ottt st XII
LIST OF FIGURES ..ottt sttt Xiii
GLOSSARY OF SYMBOLS AND ABBREVIATIONS........ccccoevirreiriinieirinnnns Xvii
1. INTRODUCTION ..ottt st bbb 1
2. DISASSEMBLY LINE BALANCING.......cociiiiiitseiieiseeie e 11
2.1. Problem CharaCteriStiCSccuiiiiiiieiese e 15
2.1.1. Line layout types for DLB problem.........ccccooiiiiiiiiiece, 15
2.1.2. Model type for DLB problem ..o 22
2.1.3. Worker type for DLB problemccccoooiiiiiiici e 24
2.1.4. Precedence relation type for DLB problem ..., 25
2.1.5. Disassembly Level for DLB problem.........ccccooeiiiiiiinninineeee, 38
2.2, Parameter TYPES ..uvviiiiiie ittt nae et anneas 38
2.3. ODJECLIVE FUNCLIONS ...c.viiiiiiccie e 39
2.4, SOIULION METNOAS.oiiee e nreas 41
3. LITERATURE REVIEWooiiiii ettt 45
4. MIXED-MODEL TWO-SIDED DISASSEMBLY LINE BALANCING
PROBLEM ...ttt bbbt ne e 61

4.1. Transformed AND/OR Graph (TAOG) based Precedence Diagram for

MTDLB ProbBIEM ..o e s 64
4.2. Assumptions for MTDLB Problemcccccciieiiieieecece e 66
4.3. Mixed-Integer Linear Programming (MILP) based Mathematical
Model for MTDLB ProbIEmMcoooiiiiiieee e s 66
4.3.1. Objective Functions of MTDLB Problem...........cccocoiiiiinniiiicn, 68
4.3.2. Constraints of MTDLB Problem ... 69
4.4. An lllustrative Example for MTDLB Problemcccccoveviiiiiiciicic e, 72
4.4.1. DeSCription Of DALa.........ccccvoiiiriiiieieie i 72
4.4.2. Solution of Hlustrative EXample ... 76

5. SOLUTION APPROACH - MULTI-OBJECTIVE MEMETIC

ALGORITHM (MOMA) ..ottt ettt sttt et ane e aene e 79
5.1. Genetic AlGOrithm (GA)ooiiiiiieee e 79
5.1.1. Selection OPerator iN GA ..o 81
5.1.2. Crossover Operator iN GA ... 84
5.1.3. Mutation Operator iN GA ..o 88
5.2. Local Search AIgOrithmsccoiiii s 91
5.3. Memetic AIGOrithm (MA) ... 98
5.4. Multi Objective Metaheuristic Algorithms and Non-Dominated
Sorting Genetic Algorithm — I (NSGA-T) ..o 100
5.4.1. Multi-objective Optimization Problem (MOP)ccccccoveiieiciiiene, 100
5.4.2. Non-dominated Sorted Genetic Algorithm — Il (NSGA-II) for
IMIOPS .ot e et e e e e e ar e e e raeeanae e 101
5.4.2.1. Fast Non-Dominated Sort approach............cccoevevviveiievi s, 102
5.4.2.2. Crowding-Distance ASSIgNMENt.........c.ccceveeiieiieie e, 103
5.4.2.3. MAIN LOOP ..vitiiiiiieiieieeee ettt 105
5.5. Multi Objective Memetic Algorithm (MOMA) ..o 107
5.6. Encoding/Decoding Algorithms for MTDLB Problem.............ccccoocooieii. 108
5.6.1. Chromosome Structure PRase..........cccovviiiiiiiininseee e 109
5.6.2. Choose Disassembly Sequence Phase ..o 110
5.6.3. Assign Disassembly Line PRase..........ccoooivviiiiiiiiiinenesees 110
5.6.4. Main Representation Phase...........cccovveiiiiiii i 111

6. NUMERICAL EXAMPLES AND EXPERIMENTAL RESULTS............c....... 113

5.1, GENEIALE CASES ... eeeeeeeeee ettt ettt e e et e e e e ettt e e e e e e eeereen e eeeeeeeeeennnns 113
6.2. ReSUILS FOr GENETATEA CaSESccoeeeeeeeeeee et e e e e 117
6.3. Compare with Literature WOrkKs.........cccooveviiiieiieie e 122
B.4. CASE STUAY ...ovieeiiiiieiieeie ettt enes 123
7. CONCLUSION AND DISCUSSIONS ...ttt 125
REFERENGCES. ..o oot e e e e e e e et e e e e e e e e e, 127
APPENDIX - 01. LINGO CODE OF TAOG BASED DLB PROBLEM 157
APPENDIX - 02. GUROBI CODE OF MTDLB PROBLEMcoovveieiiiiiiiii, 159

APPENDIX — 03A. MAIN PYTHON CODE OF MOMA FOR MTDLB
PROBLEM ...t 163

APPENDIX - 02. GUROBI CODE OF MTDLB PROBLEMccccooviiiiiiennne, 170

APPENDIX - 03B. INPUTS PYTHON CODE OF MOMA FOR MTDLB
PROBLEM ..ottt nb et nne s 174

APPENDIX - 03C. INITIAL SOLUTIONS PYTHON CODE OF MOMA
FOR MTDLB PROBLEMoooiiiiiiii 195

APPENDIX - 03D. OTHER ALGORITHMS PYTHON CODE OF MOMA
FOR MTDLB PROBLEMooiiiiiiiii e 196

APPENDIX - 03E. CALCULATIONS PYTHON CODE OF MOMA FOR
MTDLB PROBLEM........oiiiii e 200

APPENDIX - 03F. GENETIC OPERATORS PYTHON CODE OF MOMA
FOR MTDLB PROBLEM ..ottt 203

APPENDIX - 03G. LOCAL SEARCH ALGORITHM PYTHON CODE OF
MOMA FOR MTDLB PROBLEM........ccoiiiiiiiii 205

CURRICULUM VITAE

Xi

Table 2.1.

Table 2.2.

Table 2.3.
Table 3.1.
Table 3.2.
Table 4.1.

Table 4.2.
Table 4.3.

Table 4.4.

Table6.1.

Table 6.2.
Table 6.3.

LIST OF TABLES

Page
Main differences between assembly and disassembly lines (Gupta &
GUNZOT, 2001) oo 13
Disassembly tasks and processing times of Figure 2.24 for illustrative
TAOG EXAMPIE ...t ens 37
Optimal disassembly line assignment for illustrative TAOG example......... 38
All DLB studies in HEEraturec.oooveeeiienenie e 45
Classification of TDLB studies in literaturecccceveveveieenenie s 60
The side information and processing times of the Flashlight EOL
00T [S TOSPRRS 74

The side information and processing times of the Radio EOL product........ 75

Disassembly line assignments and solution information of the

Flashlight EOL ProduCt............cccoeieiieiiiiie s 76
Disassembly line assignments and solution information of the Radio

EOL PrOUUCT.......oeiieeieieese e 77
Statistical information of generated CaSeS..........ccoovrerereriniienineeeeene, 116

Comparative results of MA, GA and Gurobi (Obj Func — Sol Time). 117
Comparative results with TDLB studies in literature (Number of Mated
Station (Number of Total Station) — Sol Time); bold is optimum........... 123

xii

LIST OF FIGURES

Page

Figure 1.1. Level of Carbon Dioxide over 800000 years (Lindsey, 2020)...................... 1
Figure 1.2. Satellite image of Carbon Dioxide level between 2002 and 2012 2
Figure 1.3. Carbon Dioxide level scenarios (NCA, 2009)........cccccvrierieninienneenieseenienn, 3
Figure 1.4. Population level and Population growth rate by yearsc.cccoovvviiiniene. 4
Figure 1.5. Affluence level of regions by years..........cccccvevviieiicic e 4
Figure 1.6. A typical product life cycle and invisible output............ccccoevviieiicicieeen, 6
Figure 1.7. A framework of Life Cycle Engineering (Hauschild et al., 2017) 7
Figure 1.8. Disassembly systems: (a) single workstation system, (b) disassembly

cell system, (c) disassembly 1iNe SYStEM..........cccevviieerieiiiciieie e 8
Figure 2.1. Main classification scheme of DLB problem..........cccccoocviveiveveiicveenene 14
Figure 2.2. Problem characteristics scheme of DLB problem............c..ccocoviniiiinnnnn 15
Figure 2.3. Line layout types scheme for DLB problemcccccoeiiniiiiininiiciene, 16
Figure 2.4. A typical straight layout disassembly line...........ccccoeiviiiiieiiciicee 16
Figure 2.5. A typical U-Shaped layout disassembly line...........c.ccoeveieiiviieiiciece 17
Figure 2.6. A typical Two-Sided layout disassembly line...........cccoocoviiiiiniiininienn, 19
Figure 2.7. Workstation schedule for Figure 2.6: (a) precedence diagram, (b)

schedule of balanced disassembly line ..., 19
Figure 2.8. A typical Parallel layout disassembly line...........cccccovveveiieiicie e 20
Figure 2.9. Schematic representation of the parallel U-shaped assembly line

system: (a) zoning of the work area and (b) allocation of the

workstations (Kucukkoc & Zhang, 2015).........ccceoviiienenineneseeeseeees 21
Figure 2.10. Model types scheme for DLB problemcccccoveiieveiieii e 22
Figure 2.11. A typical single model disassembly linecccccooeiviviiieiiiie e 23
Figure 2.12. A typical multi model disassembly [inecccooeiiiiiiiiee, 23
Figure 2.13. A typical mixed model disassembly liNe.........cccccooeiiiiiiniiiiiiiicee, 24
Figure 2.14. Worker types scheme for DLB problemcccooiiiiiiiiiciiececee, 24
Figure 2.15. Geometrically based precedence relation example: (a) sample

product, (b) precedence matrix (Gilingdr & Gupta, 1999b)ccccevvveernnnne 26
Figure 2.16. A typical traditional precedence relation for assembly line balancing

0170] 0] 110 1 ISR UPROUPPRS 26

Xiii

Figure 2.17. A typical traditional precedence relation for disassembly line

balancing Problem ..o
Figure 2.18. A simple product (L.S. Homem de Mello & Sanderson, 1990)................
Figure 2.19. Possible assembly sequences of simple product which given by

Figure 2.18 (L.S. Homem de Mello & Sanderson, 1990).........ccccccevvrvenens
Figure 2.20. AND/OR Graph of simple product which given by Figure 2.18 (L.S.

Homem de Mello & Sanderson, 1990)cccoveiieveiieneere e
Figure 2.21. A possible assembly sequence for AND/OR Graph of simple product

Which given DY FIQUIE 2.18oovoiiiecieese e
Figure 2.22. A possible assembly sequence for AND/OR Graph of simple product

which given by FIigure 2.18cccooiiiiiieiece e
Figure 2.23. AND Predecessor relationccovvevveiieie e
Figure 2.24. OR Predecessor relationccccveveiiniiiiiisieieee e
Figure 2.25. Complex AND/OR Predecessor relation.............cccccoevenenininencnnniennnn,
Figure 2.26. OR SUCCESSOF FEIAtIONccveiviiiicieie e
Figure 2.27. AND Within OR Telationccccoiieiiiiiiiieie e
Figure 2.28. OR within AND relationccccooiiiiiiiiiiiiec e,
Figure 2.29. A typical Transformed AND/OR Graph (TAOG) based precedence

AIAGIAM L
Figure 2.30. Optimal disassembly sequence for illustrative TAOG example
Figure 2.31. Parameter types scheme of DLB problem............ccccooveveiieiiiie v,
Figure 2.32. Objective function types scheme of DLB problemccocovvviiinnen.
Figure 2.33. Mostly used objective functions of DLB problemc.ccocovvviiinnnnn.
Figure 2.34. Solution methods scheme of DLB problem ...
Figure 3.1. DLB studies by years (indexed in web-of-science and scopus)
Figure 3.2. Line layout types piechart for DLB studies in literaturec.ccccveveneee.
Figure 3.3. Model types piechart for DLB studies in literaturec.ccocevvrvrnnnennn,
Figure 3.4. Disassembly level piechart for DLB studies in literature..............cccovvnee.
Figure 3.5. Objective function type piechart for DLB studies in literature....................
Figure 3.6. Worker type piechart for DLB studies in literature..............ccocoovvviininnnnn,
Figure 3.7. TDLB studies by years (indexed in web-of-science and scopus)................

Figure 4.1. Representation of mixed-model two-sided disassembly line.....................

Xiv

Figure 4.2.

Used TAOG based precedence diagram for Mixed-Model Two-Sided
Disassembly Line Balancing (MTDLB) problem: (a) a sample product
(flashlight), (b) AND/OR graph of flashlight, (c) Transformed
AND/OR graph of flashlight, (d) TAOG of flashlight for MTDLB

PrOBIBM L. 65
Figure 4.3. TAOG for EOL Flashlight productccocooiiiiiiiiiieee, 72
Figure 4.4. TAOG for EOL Radio Product..........cccccveieiieiieiesie e 73
Figure 4.5. Optimal disassembly sequence of flashlight EOL product for

illustrative MTDLB problem example..........ccoccooeiiiiiininiiiniceceees 76
Figure 4.6. Optimal disassembly sequence of radio EOL product for illustrative

MTDLB problem eXample...........cccovveiiiiiiieiese e 76
Figure 4.7. Optimal disassembly line for illustrative MTDLB problem example......... 77
Figure 5.1. Flowchart of Genetic Algorithm (GA) (Albadr et al., 2020)cc........ 81
Figure 5.2. Representation of Roulette Wheel Selection method in GAccoeeee.. 82
Figure 5.3. Representation of Stochastic Universal Sampling (SUS) Selection

METNOT TN GA ...ttt nes 83
Figure 5.4. Representation of Tournament Selection method in GAcccceovvieneee. 83
Figure 5.5. Representation of Rank Selection method in GA.........ccocoii e, 84
Figure 5.6. A typically One/Single POint CroSSOVET...........ccuouiieienenene e, 85
Figure 5.7. A typically Multi POINt CrOSSOVETc.coveiieiieieiiecie e 86
Figure 5.8. A typically Uniform CroSSOVENcccccveieiieieiieiic vt 86
Figure 5.9. Alpha parameter problem in Whole Arithmetic Recombination

CIOSSOVET ...ttt sttt b ettt sbe e nbe et e e nbe e nneeenes 87
Figure 5.10. A typically Whole Arithmetic Recombination Crossover...............c.c....... 87
Figure 5.11. A typically Davis’ Order Crossover (OX1).....cccocurerererenenenenieeniennn, 88
Figure 5.12. A typically Bit Flip MUtationcccccooiiiiiiiiiic e, 89
Figure 5.13. A typically Random Resetting Mutation.............ccccceoerenenininencseeieen, 89
Figure 5.14. A typically SWAP MULatioNncccceevieiiiiieiie e 90
Figure 5.15. A typically Scramble MUtationcccccoveiieiiiiic e 90
Figure 5.16. A typically INVersion MUatioNcccooeiiiinininiee e, 90

Figure 5.17. A neigbourhood solution with 3-opt algorithm for Travelling

Salesman Problem 91

XV

Figure 5.18. A neigbourhood solution with SWAP operator for Travelling

Salesman ProbIem..........oiiiiee s 92
Figure 5.19. Flowchart of Memetic algorithm............ccccoveiiiieiiciie e 99
Figure 5.20. A typical pareto front (Mahesh et al., 2016)ccccccevveveiiieiieereciennn, 101
Figure 5.21. Representation of crowding-distance computationc.ccoceevevenne. 104
Figure 5.22. Procedure of NSGA-I1 algorithm ... 106
Figure 5.23. Flowchart of MOMA ..o 108
Figure 5.24. Chromosome structure of proposed MOMAcccoiveieiiieseece e, 109
Figure 5.25. Main representation of MTDLB problem for MOMA..............coovivenene. 112
Figure 6.1. TAOG precedence diagram for flashlight (Paksoy et al., 2013) 113
Figure 6.2. TAOG precedence diagram for radio (Paksoy et al., 2013) 114
Figure 6.3. TAOG precedence diagram for toy car (Cil et al., 2020)........cc.coevvrverenne 115
Figure 6.4. TAOG precedence diagram for ball point pen ... 115
Figure 6.5. Pareto Frontiers of MOMA for generated cases 1-6cc.ccocvvvvvrvennn 118
Figure 6.6. Pareto Frontiers of MOMA for generated cases 7-11c.cccccevvevveivennen. 119
Figure 6.7. Pareto Frontiers of NSGA-II for generated cases 1-6c.ccccevevveriennen. 120
Figure 6.8. Pareto Frontiers of NSGA-I1 for generated cases 7-11c.ccocvvevvvennne. 121
Figure 6.9. Precedence diagram for 2P25 (Kucukkoc, 2020).........ccccoveririnieinenennenn 122
Figure 6.10. Case study result (Case #11)cccccevereriiinenireeeeee e 124

XVi

ALB
Algo-ADL
Algo-CDS
AOG
DLB
DWP
EOL
EWP
ILP

LCE
LCM

LP

MA
MILP
MOMA
MSDLB
MTALB
MTDLB
NLP
NP-Hard
NSGA-II
SSDLB
STDLB
TAOG
TDBL
TPD

GLOSSARY OF SYMBOLS AND ABBREVIATIONS

Assembly Line Balancing

Algorithm of Assign Disassembly Line

Algorithm of Choose Disassembly Sequence
AND/OR Graph

Disassembly Line Balancing

Disappearing Work-pieces Phenomena

End-of-Life

Exploding Work-pieces Phenomena

Integer Linear Programming

Life Cycle Engineering

Life Cycle Management

Linear Programming

Memetic Algorithm

Mixed Integer Linear Programming
Multi-Objective Memetic Algorithm

Mixed-Model Straight Disassembly Line Balancing
Mixed-Model Two-Sided Assembly Line Balancing

Mixed-Model Two-Sided Disassembly Line Balancing

Non Linear Programming

Non Polynomial Solution Time

Non-Dominated Sorting Genetic Algorithm — 11
Single-Model Straight Disassembly Line Balancing

Single-Model Two-Sided Disassembly Line Balancing

Transformed AND/OR Graph
Two-Sided Disassembly Line Balancing
Traditional Precedence Diagram

XVii

1. INTRODUCTION

Human beings are in danger due to excessive consumption today, and the increase
in consumption day by day poses a threat to the future. If the excessive consumption of
products and services continues at the ongoing rate, the Earth's resources will eventually
run out, thousands of species will be threatened with extinction, and the global climate
will change dramatically. As a result of the excessive consumption experienced today,
atmospheric Carbon Dioxide levels are higher than the last 800,000 years. The
atmospheric Carbon Dioxide level change over the last 800 thousand years is shown in
Figure 1.1. For 800 thousand years, atmospheric Carbon Dioxide level has varied between
150 parts per million (ppm) and 300 ppm, but today it has increased to 409.8 ppm due to
the increasing consumption rate with the industrial revolution (Lindsey, 2020).
Atmospheric Carbon Dioxide level, which is increasing day by day, continues to threaten
life on earth and the environment.

CARBON DIOXIDE OVER 800,000 YEARS

450
400

350

300

250 Hrm‘ k:

carbon dioxide (ppm)

200

ice age
150 (glacial)

100
800,000 600,000 400,000 200,000 0

years before present

Figure 1.1. Level of Carbon Dioxide over 800000 years (Lindsey, 2020)

To see the atmospheric level of Carbon Dioxide, the European Space Agency
SCIAMACHY instrument used to measure sunlight on the ENVISAT (ENVIronmental
SATellite) satellite, and the TANSO-FTS with high optical efficiency, fine spectral
resolution and wide spectral coverage on the GOSAT (Greenhouse gases Observing
SAtellite) satellite. It measures atmospheric Carbon Dioxide levels on Earth with the
TANSO-CAI, a radiometer of the ultraviolet (UV), visible and SWIR spectral ranges to
correct for FTS and cloud and aerosol interference. Figure 1.2 shows two atmospheric

1

Carbon Dioxide levels recorded in August 2002 and April 2012. Carbon Dioxide level,
which was 370 ppm on average in 2002, reached 400 ppm levels in 2012 in line with
factors such as developing technological developments and increasing affluence level.
There has been an increase of 30 ppm in a period of approximately 10 years. According
to the report published by the European Space Agency, an increase of Sppm of
atmospheric Carbon Dioxide occurs every year. The increase in technological
developments, consumption rate and population day by day causes an alarming increase
in the level of Carbon Dioxide in the world and increases the possibility of scenarios that

may be very bad for the future.

Carbon Dioxide SCIAMACHY/ENVISAT+TANSO/GOSAT 2002 08

.~

e XCO, [ppm]

373 376 380 383

387 390 394 397 401
|-> SCIAMACHY only
400 Smoothed
385 f
370 . A

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
www.esa-ghg-cci.org

Carbon Dioxide SCIAMACHY/ENVISAT+TA!

ey

NSO/GOSAT 201204

- XCO, [ppm]

373 376 380 363 387 390 394 g7 401
L [I .-
|-> SCIAMACHY only |- SCIA+GOSAT I-> BOAT
400 Smoothed : i : —
285 : copn0daINg

370

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 20$mz2 2013
www.esa-ghg-cci.org

Figure 1.2. Satellite image of Carbon Dioxide level between 2002 and 2012

2

When the political/commercial decisions taken to reduce the Carbon Dioxide level
in the atmosphere are strictly followed, it is 550 ppm in 2100, and 900 ppm if not (NCA,
2009). In both cases, the level reached is critical. Especially if the decisions taken are not
followed, that is, if we continue to live according to today's living conditions, our world

will become uninhabitable in 2100. The predicted increase is as in Figure 1.3.

2100 Higher Emissions Scenario — 900

2100 Lower Emissions Scenario & |

2008 Observed@ [~ 400

|
143
[]
=
(wdd) uonenuasuos) apixoi UogeD)

[
)
o
(=]

| L | L | L | L | L | 1 | L | L I 0
-800,000 -700,000 -600,000 -500,000 -400,000 -300,000 -200,000 -100,000 &'2E'DB

Year

Figure 1.3. Carbon Dioxide level scenarios (NCA, 2009)

The Carbon Dioxide level is a result of environmental impact. Environmental
impact increases in direct proportion with population, affluence and technology. In the
field of sustainability this is known as the IPAT equation. The IPAT equation is as given
by Equation 1.1. The IPAT equation was developed in 1970 as a result of a discussion
between Barry Commoner, Paul R. Ehrlich and John Holdren (Holdren, 1993).

Environmental Impact = Population X Af fluence X Technology

I =PXAXT

(1.1)

Increases in the human population in the last millennium (see. Fig. 1.4) bring along
some environmental problems. Population growth; As a result of the increase in land use,
habitat loss for other species, changes in vegetation as a result of increased resource use,
the emergence of bacteria and viruses that may cause disease as a result of increased
pollution and damage to the ecosystem lead to increased climate change and loss of

biodiversity.

20

—— Population level B
N — - = Population growth rate ~ g
° 2
c [
o _|
s < - f £
3 H
3 o 5
2 K]
= L2 2
o © - -— c
= ®
K| c
] S
2 B
a < %
2 -3 8
5 o
2 o)
H
H
o J L

T 1
1700 1800 1800 2000 2100

Year

Figure 1.4. Population level and Population growth rate by years

Affluence is considered by many to be insignificant for environmental impact. But
with the increase in affluence, consumption also increases. Therefore, as the consumption
of each person increases, the environmental impact also increases. Gross Domestic
Product (GDP) per capita is usually used to see consumption. GDP has been growing
steadily over the last millennium. Along with this, per capita consumption is also
increasing at the same rate. The higher the per capita consumption, the greater the
environmental impact. Depending on consumption, it causes great effects on the

environment with direct or indirect resources.

35,000
30,000 W. Offshoots
e Japan
25,000
130years === \W. Europe
20,000 ~— E. Europe
e Ex USSR
15,000 - =~ Latin America
= China
10,000 -
India
5,000 Africa
0+
o
o
0
(]

Figure 1.5. Affluence level of regions by years

With the development of technology, improvements in processes such as
transportation, storage, production and transportation are possible. In this way, producers
can produce more and consumers can consume more. Improvements in efficiency can
reduce the amount of resources used, reducing the T factor in the IPAT equation, ie
reducing environmental impact. However, since this situation will increase affluence for
some people and businesses, it increases the environmental impact more than the resource

advantage it provides.

Eco-efficiency is a management strategy of producing more products/services with
less resources. Developed eco-efficient technologies cause us to use more products and
larger physical sizes. This shows that affluence and technology combine well. For
example, LCD televisions with LED light, developed for the production of televisions
that consume less energy, have increased the dimensions of televisions up to 100 inches.
This is one of the best examples that explains the increase in environmental impact due

to affluence and technology.

Life Cycle Engineering (LCE) has emerged as a new engineering paradigm to
reduce environmental impact. LCE is a product development activity within the scope of
sustainability in the life cycle of one or more products. The aim of these activities is to
create a sustainable production environment in order to meet the needs of both present

and future generations.

A product's life cycle is about everything from its design to the manufacturing
process, aftermarket use to the end of its life. A typical product life cycle is as given in
Figure 1.6. The process begins with the extraction of the raw materials required for the
product from nature. The raw materials obtained are directly or semi-product into the
structure of the product with the production stage and the product emerges. Produced
products are packaged and set out for customers using various modes of transport (road,
sea, rail, air or pipeline). Customers buy and use products produced in line with their
needs. As a result of consumption, the non-functional End-of-Life (EOL) product is left
to nature as inert. EOL products are transformed into raw materials/semi-finished
products, and the process returns to the beginning. While the processes in the Life Cycle
are carried out, there are some consumptions that harm the nature but are not visible in
the process. Some of these are Carbon Dioxide emissions, water use, plant/facility use

and energy use. LCE is an approach that aims to minimize these idle consumptions.

5

Resource extraction “a » @ Climate change
andrefining

Water use

-

||

End oflife Manufacturing

~” » Em Land use
, :
S ;

E.'
* Energy use

Use Packaging and distribution

| TP

Figure 1.6. A typical product life cycle and invisible output

In order to position LCE with sustainability and other disciplines, a framework with
the scope of environmental concern on the y-axis and the scope of temporal concern on
the x-axis and given in Figure 1.7 has been introduced (Hauschild et al., 2017).
Sustainability encompasses all approaches included in the framework. Sustainable
Development is the most inclusive approach after Sustainable, focusing on societies on
an environmental scale and human generations on a temporal scale. Industrial Ecology, a
discipline, is based in this graph on economy on an environmental scale and human
generations on a temporal scale. Concepts such as Circular Economy and Industrial
Symbiosis are also represented at this level. All of these approaches are Top-Down
concepts that are not part of the activities of industrial organizations. Just below the
Industrial Ecology concept is Life Cycle Management (LCM), a Bottom-Up approach
that is part of the activities of industrial organizations. LCM is a business management
approach used to improve the products and services of any business, namely the
sustainability performance of the company and its associated value chains. The LCE just
below is also a Bottom-Up approach and is located in the middle of the frame. LCE
enables the development of products and services, taking into account the growth of
production volume and technological changes to systematically minimize environmental
impacts at all stages of the life cycle. In this way, when there is a problem with

environmental sustainability, it is prevented from shifting from the life cycle stage in

which it is located to the other life cycle stage. This is especially critical in the product

design process, where 80% of the environmental footprint is determined.

Suppen Srstom I Sustainability—
MPACT
Sodiefies Sustainable Development -
PopuLaTiON
Economies Industrial Ecology -
£ AFFLUENCE
§ X
,'g One Company Life Cycle Management -
3
E X Products Life Cycle Engineering -
£ one | TECHNOLOGY
u:.l Product ~ -
H T - Manufacturing = .
o . -
@ T -
i & Raw e e e « Top-Down
E - Materials B After Sales-/
z 3 Extraction Methods and Tools to support Service
2 B8 Life Cycle Engineering Engineering
e a
£y Bottomup
E » 1
" Reuse, TS,
== Remanufacturing, T
- Recycling, Disposal T

by Single Product Life Cycle 1 ' -
' Mulli Product Life Cycle : Civilization Span

Scope of Temporal Concern

Figure 1.7. A framework of Life Cycle Engineering (Hauschild et al., 2017)

Thanks to the LCE tools, improvement areas in the life cycles of the products can
be determined and as a result, environmentally sustainable products can be developed.
Examples of commonly used LCE tools are Eco-Design, Life Cycle Assesment, and Life
Cycle Costing. These tools enable the ability to measure the environmental impacts and
associated costs of products to identify the highest improvement potentials to the
product's lifecycle. For example, if the main environmental footprint for the production
of a product is excessive energy consumption, it can be produced by designing alternative
production processes that can produce the same product with less energy consumption.

In this way, the environmental impact of the product is also reduced.

After the products are designed and produced, a number of LCE tools such as Eco-
Labelling and Eco-Profilling are used. In this way, customers are encouraged to buy more
environmentally friendly products and to consume less energy and water after purchasing

the products.

Products lose their functionality at the end of their life cycle and are released into
nature as EOL products. In order to manage the life cycle in an environmentally friendly
way, it is designed by considering the products to be EOL at the design stage. LCE

focuses on developing products that are easy to collect, disassembly, reuse, remanufacture

and recycle EOL products. For reuse, reproduction and recycling, first disassembly is
required. Therefore, disassembly is critical in this process.

Disassembly activities can be done in a single workstation, or in a Disassembly Cell
or a Disassembly Line consisting of more than one serial station (Giingor & Gupta, 1999a;
Wiendahl et al., 1999). Although a single disassembly workstation or a Disassembly Cell
is more flexible in terms of offering the possibility to sort the sub-parts resulting from
disassembly activities according to their quality, the highest productivity rate and the

lowest environmental impact (due to efficiency) are achieved with the Disassembly Line.

Disassembly facility consisting of a single station and employing a single worker is
as given in Figure 1.8 (a). In such facilities, the EOL product enters the system and a
number of disassembly operations are performed to obtain Disassembled Semi Products.
The Disassembly Cell facility, which is formed by the clustering of more than one
machine along a single station and where a single worker works, is as given in Figure 1.8
(b). In such facilities, the EOL product enters the system and a number of disassembly
operations are performed on all machines, respectively, to obtain Disassembled Semi
Products. The Disassembly Line facility, consisting of more than one station and one or
more worker at each station, is as given in Figure 1.8 (c). In such facilities, the EOL
product enters the system continuously and a set of disassembly operations is performed

at each station, resulting in a set of Disassembled Semi Products at each station.

(a)

| End-of-Life (EOL) 4
Product

Work-Station

V)
©)

- -socs,
 End-of-Life (EOL) }-I Material Handling System
. Product !

WorkStation |
1

W W W

WorkStation
2

WorkStation
3

Figure 1.8. Disassembly systems: (a) single workstation system, (b) disassembly cell system, (c)
disassembly line system

Obtained Disassembled Semi Products are sent directly to reuse, to re-production
with Product Recovery or to recycling with Product Recycle, depending on their
suitability in terms of quality. In case of chemical damage such as burning, Disassembled

Semi Product becomes Disposal Product directly and is released into nature.

Disassembly Lines are used for rapid disassembly of bulk-packed EOL products.
In order to minimize the environmental impact, as the production and use of easy-to-
disassemble products are increasing day by day, there will be a need for Disassembly
Lines in the future more than today. In order to minimize the environmental impact during
disassembly of these lines, the lines must be designed very efficiently. In this context, the
Disassembly Line Balancing (DLB) problem was first defined by Giing6ér and Gupta in
1999 (see. (Giingdr & Gupta, 1999a)). Thanks to the solution of the DLB problem, the
use of environmentally and materially valuable resources such as time and labor is
minimized, while the profit obtained from selling the recycled parts to the suppliers is
maximized and the amount of resources taken from nature is minimized. In general, the
DLB problem is defined as the assignment of disassembly tasks to certain workstations,
taking into account the priority relations between them, in a way that optimizes a number
of performance indicators such as cycle time, number of workstations, level of meeting
demands. In line with this definition, although the DLB problem seems to be similar to
the Assembly Line Balancing (ALB) problem, there are important differences between
the two problems, especially the priority relations, stock problems, and serious
uncertainties in the quality and structure of the products. Although there are many
differences between ALB and DLB, different line arrangements such as Straight, U-
Shaped, Parallel, Two-Sided, model variants such as single, mixed or multi model and so
on in Disassembly Lines, just as in Assembly Lines. Depending on the variations,
different balancing models can be used.

In this study, a Mixed-Model Two-Sided Disassembly Line system, which can be
used for the disassembly of different models of high-volume EOL products that are quite
similar to each other, is defined using AND/OR Precedence Relations, and the Mixed-
Model Two-Sided Disassembly Line system is defined in order to minimize the sum of
line design cost, labor usage cost and disassembly times. A Mixed-Integer Linear
Programming (MILP) based mathematical model has been developed for the Two-Sided
Disassembly Line Balancing (MTDLB) problem. First, the three objective functions were

hierarchically converted to a single objective function and the mathematical model for
small and medium-sized cases could not be solved with LINGO and GAMS commercial
optimization programs. However, when the mathematical model is coded in Python using
the GUROBI solver, a solution is obtained in reasonable time. However, it has been
analyzed that when the case size increases, the solution times increase at a high rate. For
this reason, a Memetic Algorithm (MA) is designed to minimize the hierarchical objective
function for solving even larger cases. Considering the results of the MA, it was found
that the solution time was not affected even if the case size increased. At the same time,
a Multi Objective Memetic Algorithm (MOMA) has been developed in order to obtain
Pareto Optimum results by considering each objective function individually. Compared
to the Non-Dominated Sorted Genetic Algorithm - Il (NSGA-II) algorithm, which is
frequently preferred in the literature, MOMA results were found to provide better results
thanks to the Iterated Local Search it contains. So far, the MTDLB problem in the
literature has been investigated only in this study, which is the greatest originality of this

study.

In the next section of this study, detailed information about disassembly activities
is given, and information is given about disassembly problems in the literature, especially
DLB, and various Precedence Relations, especially AND/OR Precedence Relations,
which play a critical role in solving the DLB problem. In the third section of this study, a
detailed literature review about DLB is presented, emphasizing the importance of multi-
objective MTDLB. In the fourth part of the study, the multi-objective MTDLB problem
is explained in detail and a MILP based mathematical model is developed. In the fifth
section of this study, the MA and MOMA algorithms, which will be used for the solution
of the multi-objective MTDLB problem, was introduced, and the adaptation of the
MTDLB problem and the selection of the parameters used in the algorithm were made.
In the sixth section of this study, the effectiveness of the MA and MOMA algorithms is
compared with the other well-known algorithms used as reference in the light of some
data from the literature and some data produced within the scope of the study. In the
seventh section of this study, the results were explained, the necessity of the study was

emphasized once again, and a few suggestions were made for future studies.

10

2. DISASSEMBLY LINE BALANCING

One area of focus of the LCE approach, which emerged with the aim of minimizing
the damage to nature, is to design the product so that it is easy to collect, disassemble,
reuse, re-manufacture and recycle when the designed products lose their functionality,
that is, when they become EOL products. In this way, it is aimed to obtain a sustainable
environment and production environment by minimizing the amount of resources taken
from nature and waste given to nature. In particular, it is of great importance to bring back
the sub-assembly parts of electronic devices and large-sized products (refrigerators,
automobiles, airplanes, etc.) that contain many sub-assembly parts into production, with
the necessary processes, in terms of protecting the environment and creating a sustainable
production environment. The ever-increasing demand for EOL products and
disassembled products necessitates efficient installation and management of disassembly
systems in order to protect the environment by disassembling EOL products, to meet the
demand for disassembled parts, and to have a flexible system. In this context, the
Disassembly Line system has been introduced for the rapid and systematic disassembly
of EOL products, which increase in quantity every day, and the Disassembly Line
Balancing (DLB) problem for assigning disassembly tasks to this system in a way that
optimizes certain performance criteria. Kiigiikko¢ defines the DLB problem in 2019 as
“assigning disassembly tasks of any product or product group to workstations in a way
that optimizes one or more performance indicator” (see. (Kucukkoc et al., 2019)).
Performance indicators for DLB problems are divided into Type-1 (minimization of the
number of workstations) and Type-2 (minimization of cycle time). However, there are
various performance indicators, including the smoothness index, which takes into account
the smoothness between workstations, and the earliest possible exit of hazardous

materials (Ozceylan et al., 2019).

Giingoér and Gupta first described the DLB problem in 1999 (Giingér & Gupta,
1999a). In 2001, a Shortest Route formulation was proposed to solve the DLB problem.
Since the DLB problem was shown to be NP-hard by McGovern and Gupta in 2007 (see.
(McGovern & Gupta, 2007b)), interest in heuristic and metaheuristic studies has
increased. Indeed, in the same year, the same authors proposed a Genetic Algorithm (GA)
for solving the DLB problem (McGovern & Gupta, 2007a). Today, although the solution
methods of DLB problems are heuristic and metaheuristic methods, Linear/Nonlinear
Programming (LP/NLP) using exact methods (see. (He et al., 2020; Li et al., 2020)) or

11

solvers such as CPLEX/LINGO/GUROBI (see. (Edis et al., 2019; Mete et al., 2019))
methods are also available. However, LP/NLP solvers are insufficient for solving large-
scale problems and it requires large computation time to find the optimal solution and

prove it to be the optimum solution.

A wide variety of precedence relationships are defined for the DLB problem. When
the DLB problem first appeared, geometric removal constraints were determined.
Although this is a correct approach, it becomes impossible to calculate when the problem
size increases. Traditional precedence relations, which are frequently used in Assembly
Line Balancing (ALB) problems, are used in some DLB problem studies with strict
disassembly sequence. Although this is a relatively correct usage, it is more correct to use
flexible relations instead of rigid ones, as functionality is not taken into account in
disassembly unlike assembly. Although disassembly is flexible compared to assembly
because it includes relations such as AND Predecessor, OR Predecessor, Complex
AND/OR Predecessor, OR Successor, it can sometimes be very complex (Giingér &
Gupta, 2002; Koc et al., 2009). This precedence relation, called AND/OR Graph (AOG),
is a more valid approach to solving the DLB problem since it takes into account all
possible disassembly sequences. However, just like in the geometric precedence relation,
the calculation becomes impossible when the problem size increases in the AOG
precedence relation. For this, Transformed AOG (TAOG) precedence relation consisting
of normal nodes and artificial nodes was defined (see. (Koc et al., 2009)). In the literature,
the use of TAOG precedence relation is discussed in two types, with and without OR
Successor relation. In diagrams without OR Successors, “In order for any task to be
performed, all previous AND Predecessors must have been built and at least one of all
previous OR Predecessors must have been made.” condition is sought. In the diagrams in
the OR Successor, “After any task is done, one of the OR Successors must be done (no

more or less).” condition is sought.

Although assembly and disassembly seem to be quite similar in terms of general
features, the operational and technical differences between them are discussed as given
in Table 2.1 by Gupta and Giingér in 2001 (see. (Gupta & Gilingor, 2001)).

12

Table 2.1. Main differences between assembly and disassembly lines (Gupta & Giingér, 2001)

Line Considerations

Assembly Lines

Disassembly Lines

Demand
Demand Sources
Demand Entity

Precedence Relations

Complexity related to precedence
relationship

Uncertainty related to quality of parts
Uncertainty related to quantity of parts
Uncertainty related to workstations and
the material handling system
Reliability of the workstations and the
material handling system

Multiple products

Flow process

Line flexibility

Layout alternatives

Complexity of performance measures
Known performance measures
Disappearing Work-pieces Phenomena
(DWP)

Exploding Work-pieces Phenomena
(EWP)

Required line robustness

Complexity of “between workstations
inventory” handling

Known techniques for line optimization

Problem complexity

Dependent
Single
End Product

Yes

High (Physical and functional
precedence constraints)

Low

Low

Low to Moderate

High

Yes

Convergent

Low to moderate
Multiple
Moderate
Numerous

N/A

N/A

Moderate

Moderate

Numerous
NP-hard

Dependent
Multiple
Invidual Parts /
Subassemblies
Yes

Moderate (mostly
physical constraints)
High

High

High

Low

Yes
Divergent
High
Multiple
High
Numerous
Yes

Yes

High
High

Numerous
NP-hard

Looking at the main differences between assembly line and disassembly line in

Table 2.1:

e Itisseen that they are opposite to each other in terms of demand and demand

source,

e Disassembly line is higher than assembly line in terms of uncertainty, line

flexibility and material flow are the opposite of each other,

13

It is seen that they are similar to each other in terms of line layout,
Generally similar to each other as performance indicators,
Generally similar to each other in terms of inventory problems and solution

approaches.

Disappearing Work-pieces Phenomena (DWP) and Exploding Work-pieces

Phenomena (EWP), which are on the disassembly line but not on the assembly line, are

defined as follows:

DWP, “A task that fails during disassembly prevents the disassembly of all
other parts remaining on the workpiece. In other words, the workpiece is
lost. Stations after the workpiece failing station remain hungry.” explained
as. In order to overcome this situation, the failures to be experienced on the
workpiece are minimized by completing the trainings for the workers/robots
who perform the disassembly operations.

EWP, “A workpiece moves as two or more workpieces after it is
disassembled. In the disassembly line, each piece acts as a separate work
piece.” explained as. In order to overcome this situation, the disassembly
sequences are well adjusted to prevent movement as two separate parts on

the material handling system.

Within the scope of this thesis, the DLB problem was classified in accordance with

the diagram given in Figure 2.1 and the necessary information was collected by scanning

the literature in this direction. It is possible to collect DLB problems in four main classes:

problem characteristic, type of parameters used, measured performance indicators and

methods/methods used for solution.

Disassembly
Line Balancing
(DLB) problem

[

[| |

Problem Objective Solution
Characteristics

Parameter Type Functions Methods

Figure 2.1. Main classification scheme of DLB problem

14

2.1. Problem Characteristics

They are the characteristics that reveal the basic structure of the DLB problem. It
basically resembles the characteristics used for the ALB problem. Basically, the design
of the line, the number and shape of the model entering the line, the type of worker
(human or robot) used on the line, the priority relations used for disassembly, and the
disassembly level (partial disassembly or complete disassembly) that arises specific to

the DLB problem are collected in five main classes. The classification scheme is as given

in Figure 2.2.
— Line Layout Type
ks)
g
@ — Model Type
==
L2
E
5 B Worker Type
05
GE) A| || Precedence
%‘ Relation Type
a | | Disassembly
Level

Figure 2.2. Problem characteristics scheme of DLB problem

2.1.1. Line layout types for DLB problem

Just like in the ALB problem, the design of the line must be determined in the DLB
problem. Straight layout, U-Shape layout, two-sided layout and parallel layout used in
ALB problems are also used in DLB problems. Line design is a strategic decision and is
decided by the decision makers during line installation. Therefore, if there is an installed
line, it is very difficult to change the layout of this line; sometimes it is not even possible.
For this, it is a very critical decision to decide the line design based on the products to be
assembled/disassembled. The DLB problem has been investigated using very different
line layouts in the literature (see. (Ozceylan et al., 2019)). The line layout type’s scheme

generally applicable to the DLB problem is as given in Figure 2.3.

15

Line Layout
Types for DLB
Problem
|
I 1 1 I]

. Hybrid Layout
Straight Layout U-Shape Layout Two-Sided Parallel Layout (eg. Parallel U-

Layout
Shaped Layout)

Figure 2.3. Line layout types scheme for DLB problem

Straight layout for DLB problem

Since it is easy to install and follow, the most preferred line layout type in the
literature and practice is straight layout (Ozceylan et al., 2019). It consists of workstations
lined up in a straight line and a material handling system between stations. Products
entering the line for disassembly are removed by visiting all stations respectively. The
sub-assembly parts disassembled from the product are transported to the warehouses by
means of the material handling system or collected at the stations for public
transportation. As an example, the disassembly line using a straight layout for a
disassembly consisting of 8 operations is as given in Figure 2.4. Here, four consecutive
stations/workforce perform their disassembly tasks in sequence. After each disassembly
operation, a sub-assembly part is removed from the main part and transported to the

warehouse by the material handling system it belongs to.

T T T T TIT T T
— o o™ < mn O D~ e 0]
Workstation 1 Workstation 2 Workstation 3 Workstation 4
- T1-T2 - T3 Ed T4-T5-T6 — T7-T8
(2)-(8) sec (9) sec (3)-(5)-(2) sec (5)-(5) sec

\e/ \g/ \g/ \g/

Figure 2.4. A typical straight layout disassembly line

U-Shaped layout for DLB problem

U-shaped layout is the most preferred layout type after straight layout as it provides
space and efficiency advantage compared to straight layout (Agrawal & Tiwari, 2008;
Avikal, Jain, et al., 2013; Li, Kucukkoc, & Zhang, 2019; Ozceylan et al., 2019). The line
is designed in a U shape. In this way, a single operator/robot can work synchronously at

two different stations at the same time. The total working time of the synchronized

16

operator/robots is the cycle time. Therefore, the duration of the stations where the operator
works can be designed to be lower than the cycle time. Since this situation does not reduce
the efficiency, higher efficiency or less operator usage can be achieved compared to the
straight layout. The products entering the line for disassembly are disassemled by visiting
all the stations in the front, and then they return to the stations at the back, where
disassembly operations are carried out. Therefore, the places where the product enters the
line and where the last disassembling is done are very close to each other. The sub-
assembly parts disassembled from the product are transported to the warehouses by means
of the material handling system or collected at the stations for public transportation. As
an example, the disassembly line using the U-Shaped layout for a disassembly consisting
of 10 operations is as given in Figure 2.5. Here, the second operator works synchronously
at both stations 2 and 5. This operator spends 7 seconds for station 2 and 3 seconds for
station 5 on a line with a cycle time of 10 seconds (walking time between stations is
accepted as 0). After each disassembly operation, a sub-assembly part is removed from

the main part and transported to the warehouse by the material handling system it belongs

to.
T T T T T
— (9] o < [Kp]
Workstation 1 Workstation 2 Workstation 3
- T1-T2 — T3 — T4-T5
(4)-(6) sec (7) sec (3)-(6) sec

\4/ \4/
N N

o\

Workstation 6 Workstation 5 Workstation 4
T9-T10 «— T8 «— T6-T7
(5)-(5) sec (3) sec (6)-(3) sec

—_
o O co ~ (@)
l l l l l

Figure 2.5. A typical U-Shaped layout disassembly line

Two-Sided layout for DLB problem

17

Two-Sided Disassembly Lines are generally designed specifically for disassembly
of large volume products (automobile, truck, and refrigerator). It is advantageous when it
is costly to rotate the product on the line or to change the position of the worker on the
line. The increase in technological developments and affluence level day by day leads to
the emergence of large products in size and volume. Among the most important examples
of this is the increase in phone sizes and television sizes day by day. Studies for two-sided
layout in the literature have intensified in the last two or three years (see. (Kucukkoc,
2020; Liang et al., 2021; Wang et al., 2019b)). The line consists of a material handling
system that runs right through the middle and stations located on the right and left of this
system. Stations that are positioned opposite each other to the right and left are called
mated stations. The short length of the line depends on the number of stations opened. In
some cases (considering the priority relations), it happens that while transactions are
made on one station on the right or on the left, simultaneous transactions cannot be made
on the other side. This is a factor that increases the length of the line. Again, considering
the priority relations, it is possible to wait for a transaction to be completed on the other
side so that the operation can be performed at the station deployed on the right or left side.
Therefore, disassembly lines using two-sided layout should be planned well. As an
example, the disassembly line using a two-sided layout for a disassembly consisting of
12 operations is as given in Figure 2.6. Here, the third station was opened only on the
right, and the necessary precedence relations could not be provided for the opening of the
station on the left. After each disassembly operation is done at the stations on the right
and left, a sub-assembly part is removed from the main part and transported to the
warehouse from the right or left side by the material handling system it belongs to. For
the same example, when looking at Station 2 on the right, it is seen that the processing
time is 5 seconds, half of the cycle time. The reason for this is that the station is located
on the opposite side of some of its predecessors. Until these missions are completed, the
mission in the station cannot be dismounted. Figure 2.7 explains this situation. Figure 2.7
(@) shows an example priority diagram up to task 7 and Figure 2.7 (b) shows the task
schedule for the first two stations. As can be seen here, even if there is free time for the
disassembling of task 5, the opposite side is waiting for the disassembly of task 4 to be
completed. Similarly, for the disassembling of the task number 7 on the right, the

disassembling of the task number 5 on the opposite side is expected. When the two-sided

18

layout is used, not only the priority relations within the station, but also the priority

relations between the reciprocal stations are taken into account.

~— (9]

o

Ep] \e]

o

10 —»

o

WS 1-1 WS 2-1 WS 4-1
Left Side T1, T2 T5, T6 T10
(4)-(6) sec (3)-(5) sec (9) sec
WS 1-2 WS 2-2 WS 3-2 WS 4-2
Right Side T3 T4, T7 T8, T9 T1L. T12
(7) sec (4)-(1) sec (4)-(6) sec (9)-(1) sec

\4/

&/

&/

&/

— =
w S ~ (o] Ne} = [\

Figure 2.6. A typical Two-Sided layout disassembly line

Left —12

Left - 13

Right - 23

(a) An example precedence diagram.

Mated Work-Station1 -1 Mated Work-Station2 — 1

T1 T2 T6 T5

I 1
Material Handling System — I |
I 1

Mated Work-Station 1 -2 Mated Wn‘n'k-Stdtwu 2 :2

N7 T L

(b) An example solution of line balancing.

Figure 2.7. Workstation schedule for Figure 2.6: (a) precedence diagram, (b) schedule of balanced
disassembly line

19

Parallel layout for DLB problem

Generally, more than one parallel line is used by businesses that want to increase
their production/disassembling volume. In this case, the lines can be thought of as
independent from each other, as well as in interaction with each other, that is, as a parallel
layout. Considered independently of each other, each line will display straight layout
features. However, considering that they are in interaction with each other, efficiency
gains can be achieved since the operators will be used synchronized on both lines. Since
disassembly was not a very common area in the early days, parallel layout was not
preferred much. However, the increasing number of EOL products has intensified the
2019; Hezer & Kara,

2015)). In the Production/Disassembly area, the lines are placed in parallel (each line

research of DLB problems for parallel layout (see. (Fang et al.,

shows straight features) and serial operators/robots are placed on the lines or the
operator/robot working synchronized on both lines is placed between the lines. As an
example, the disassembly line using a parallel layout consisting of nine operations on a
total of two separate lines is as given in Figure 2.8. Although both lines work separately
here, the fifth Operator works synchronously on both lines. On a line with a cycle time of
10 seconds, this operator spends 4 seconds on line 1 and 6 seconds on line 2 (movement
time between stations is accepted as 0). After each disassembly operation, a sub-assembly
part is removed from the main part and transported to the warehouse by the material

handling system it belongs to.

ClEgpticimt

WS 1-1

WS 1-2

Line 1 - T1, T2 — T5, T6 - -
(4)-(6) sec (3)-(5) sec (4) sec
\g/7 \Q/
® o ~
[)
N N T
v w
WS"I WS 2-2 “57
Linez [o S| Y S BN

(9) sec

(6)-(4) sec

\\Sl 3

B

(6) sec

BIHRE

Figure 2.8. A typical Parallel layout disassembly line

20

Hybrid layout for DL B problem

Each line layout used for assembly/disassembly lines has its own advantages. In
some assembly/disassembly works, the line layout is designed as a mixture of more than
one layout. As an example, Kiigiikko¢ and Zhang designed a parallel u-shaped layout for
assembly in 2015 (see. (Kucukkoc & Zhang, 2015)). This layout is as given in Figure 2.9.

In this way, labor savings and increased productivity have been achieved in cases where

the production volume is high.

a

Multi-line!

station
\

Crossover:
station :

Multi-line)
station

Figure 2.9. Schematic representation of the parallel U-shaped assembly line system: (a) zoning of the
work area and (b) allocation of the workstations (Kucukkoc & Zhang, 2015).

——————— - - - — - ———————

Zone-1-9» :

Zone-2-9 |

I
Zone-3-9 |

(

!
Zone-4-» 1

- — ————— ——— -

- - - [———— P ——— PN

21

2.1.2. Model type for DLB problem

Just like in the ALB problem, the input types of the products (model type) entering
the line must be determined in the DLB problem. Single model, mixed model and multi
model used in ALB problems are also used in DLB problems. Since assembly lines are
generally designed to assemble and sell one type or similar type of products to customers,
the format in which the mixed model is converted into a single model is generally used
by combining the precedence relations of single model or products that are quite similar
to each other. However, EOL products entering the disassembly lines are quite different
from each other, even if they are quite similar to each other since the parameters such as
place/time etc. are different. At the same time, since the line to be created for the
disassembly of a single type of product is much higher than the cost of the line to be
created for the assembly of a single type of product, even if single model is preferred in
theory, mixed or multi model lines are established in practice. In general, the model type’s

scheme applicable to the DLB problem is as given in Figure 2.10.

Model Types for
DLB Problem

| |

Single Model Multi Model Mixed Model

Figure 2.10. Model types scheme for DLB problem

Single model for DLB problem

Single Model is the most preferred model type, which is not seen in real life
disassembly systems, but offers ease of calculation in theory (see. (Ozceylan et al.,
2019)). The uniformity of the EOL product type entering the line and the tool/equipment
and workforce expertise on the line are only for one type of product. Its type is as given

in Figure 2.11.

22

Disassembly Line

Work Stations

Figure 2.11. A typical single model disassembly line

Multi model for DLB problem

Multi-model is another type of model encountered in real-life disassembly systems.
It is generally preferred in multi-model lines in terms of ease of tracking and calculation.
It is sufficient for the operators to have relatively less competence compared to the mixed
model. It is generally used when a setup time is required during model migrations. For
example, if there is a dyed process, it will take time to switch from red to blue. In such a
case, the products are disassembled in batches and the setup time is shared by the amount
of product in the batch. It is the least researched model type in the literature for the DLB
problem (see. (Ozceylan et al., 2019)). A multi model disassembly line consisting of two

models is as given in Figure 2.12.

Setup Time

Lot size A Lot size B

A A

[I \
A A A Disassembly Line

Work Stations

Figure 2.12. A typical multi model disassembly line

Mixed model for DLB problem

Mixed-model is the type of model often encountered in real-life disassembly
systems. In the case of mixed models encountered in assembly lines, since the products
are generally similar to each other, the precedence relation is converted into a single
model format and a solution is sought. However, since a wide variety of products come
to the disassembly lines, the tools/equipment specific to the incoming products must be
deployed at the stations and the disassembly operations specific to the incoming product

23

must be assigned to the stations. Compared to the single model situation, it is expected
that the operators at the stations will have more competencies. While the operator is
disassembling the A model on the line, the next product B may be the other product C
model. In this case, trainings are given so that the operator does not react too quickly and
cause the line to stop. Generally, there are relatively few studies in the literature compared
to the single model, as the modeling and solution difficulties are higher than the single
model (see. (Fang et al., 2019, 2020; Xia et al., 2019)). A mixed model disassembly line

consisting of three models is as given in Figure 2.12.

A o Disassembly Line

Work Stations

Figure 2.13. A typical mixed model disassembly line

2.1.3. Worker type for DLB problem

In the stations located on the disassembly line, a human can work as well as a robot.
Since robots are faster and have a lower error rate than humans, they are frequently
preferred in assembly lines today. However, the high uncertainty in the disassembly lines
creates a question mark for the use of robots instead of humans. Although disassembly
lines consisting of robots are not very common in real life, the increase in the reaction
capabilities of robots in the face of errors is a sign that the use of robots in real life
disassembly lines will increase. In fact, studies have been started for the use of robots in
disassembly lines (see. (Fang et al., 2019; Ming et al., 2019)). In some lines, human and
robot interactive work is also available (Liu et al., 2019). In general, the worker type

scheme applicable to the DLB problem is as given in Figure 2.3.

Worker Types
for DLB Problem

| |

Human-Robot

Human Robot Collaboration

Figure 2.14. Worker types scheme for DLB problem

24

2.1.4. Precedence relation type for DLB problem

Precedence Diagrams should be used to provide physical constraints for DLB
problem, similar to the Precedence Diagrams used to provide physical and functional
constraints in ALB problem that are frequently studied in the literature. However,
although a stricter Precedence Diagram occurs because both physical and functional
constraints are taken into consideration in ALB problems, flexible Precedence Diagrams
emerge because the functionality is not important in DLB problems. ALB problemlerinde
fiziksel ve fonksiyonel kisitlarin her ikisi de goz oniine alindigindan dolay1 daha kat1 bir
Precedence Diagram olugsmasina ragmen, DLB problemlerinde fonksiyonellik géz 6niine
alinmadig1 icin daha esnek Precedence Diagram ortaya ¢ikmaktadir. Fakat, oncelik
iligkilerinin esnetilebilir olusu bir cok olas1 disassembly sequence olusmasina, dolayisiyla

da ¢6zilimiin zorlasmasina yol agmaktadir.

Generally, four types of Precedence Diagrams are used in DLB problem in the

literature. These Precedence Diagram types:

1. Geometrically based Precedence Diagram, first used for DLB problem by
Giingor and Gupta in 1999 (Glingor & Gupta, 1999b).

2. Traditional based Precedence Diagram defined by Salveson in 1955
(Kriengkorakot & Pianthong, 1955).

3. AND/OR Graph (AOG) based Precedence Diagram defined by Homem de
Mello and Sanderson in 1990 (L.S. Homem de Mello & Sanderson, 1990;
Luiz S. Homem de Mello & Sanderson, 1991a, 1991b).

4. Transformed AND/OR Graph (TAOG) based Precedence Diagram
defined by Kog et al. in 2009 (Koc et al., 2009).

Geometrically based precedence relation

Geometrically precedence relation is the precedence relation method used when the
DLB problem first appeared. The disassembly direction of the sub-assemblies on the main
part is indicated as +Xx, -X, +Y, -y, +z, -z in three axes. In this direction, a solution is sought.
The Geometrically based precedence relation table revealed for a product recommended
by Giingor and Gupta in 1999 is as seen in Figure 2.15. The reading of the R matrix is as
follows. All tasks of each sub-assembly must be completed on a column-by-column basis.

Considering product number 1 in this direction, it is sufficient to disassemble product

25

number 6 in any way. Looking at the product number 2, no disassembling rule is valid,
that is, the product can be disassembled. Looking at the product number 3, the product
number 7 must be disassembled in any way. When looking at product number 4, product
number 1 should be removed in the -x direction, product number 2 in the y direction,
product number 3 in the +x direction, product number 5 in the -y direction, product
number 6 and 7 in any direction. There is no disassembly requirement for products 5, 6

and 7, that is, these products can be disassembled.

n 12 3 4 5 6 7
_ 1 o 0 0 -x 0 0 0
i i 200 0 0 y 0 0 0
3 /0 0 0 x 0 0 0
R=4 10 0o 0o o 0o o o
: 4 3 L 510 0 0 -y 0 0 0
X 6 10 0 1 0 0 0
700 0 1 1 0 0 0
a. Sample Product b. R of the Product

Figure 2.15. Geometrically based precedence relation example: (a) sample product, (b) precedence
matrix (Giingér & Gupta, 1999b)

Traditional precedence relation

Salveson first defined the Traditional Precedence Diagram, which is often used in
ALB problems, in 1955. All the tasks to be done in this Precedence Diagram and the
priorities of the tasks are determined. Without all predecessor tasks of a task, that task
cannot be done. Erel et al. (2005), a Task based Precedence Diagram used in the ALB
problem is as given in Figure 2.16. In this diagram, task 7 must be completed in order to
perform task 9, and similarly, tasks 3, 4 and 5 must be completed in order to perform task

number 7.

0*0))

Figure 2.16. A typical traditional precedence relation for assembly line balancing problem

26

Similar to the Traditional Precedence Diagram used in ALB problems, the
Traditional Precedence Diagram can also be used in DLB problems. Typical Traditional
Precedence Diagram used in the DLB problem is as given in Figure 2.17 (Wang et al.,
2019a). In this way, disassembly tasks numbered 12 and 13 must be completed in order
to carry out the disassembly task number 9, and similarly task number 15 must be
completed for task number 12, and task number 16 must be completed in order to perform
task number 13. The Traditional Precedence Diagram used in DLB problems is an

inverted formation of the TPD used in ALB problems.

Figure 2.17. A typical traditional precedence relation for disassembly line balancing problem

AND/OR Graph (AOG) based precedence relation

The AND/OR Graph (AOG) precedence diagram ensures that all possible
assembly/disassembly sequences are taken into account when the best
assembly/disassembly sequence is not known, taking into account the necessary physical
and functional constraints. That is, a typical AOG is a graph showing all possible ways a
product can be disassembled down to all the components it is composed of. Nodes in this
graph correspond to subassembly product and arcs correspond to assembly/disassembly
operations. In DLB problems, it becomes difficult to choose among all possible
disassembly sequences when functionality is secondary and only physical constraints are
considered. For this, AOG precedence diagram is frequently used especially in DLB
problems. The AOG precedence diagram was originally designed by De Mello and
Sanderson (1990) to consider all possible assembly sequences. In order to better
understand the AOG precedence diagram, the example created by De Mello and
Sanderson (1990) is explained. Considering the physical and functional constraints on a
simple product, which consists of four separate parts named cap, stick, receptacle and

handle, given in Figure 2.18 and defined by Homem de Mello and Sanderson, it is known

27

Cap

z
.

Stick

A Simple Product

Receptacle

Handle

Figure 2.18. A simple product (L.S. Homem de Mello & Sanderson, 1990)

that all possible assembly sequences are as in Figure 2.19 (L.S. Homem de Mello &
Sanderson, 1990).

| SEQUENCE1 | SEQUENCE2 | SEQUENCE3 | SEQUENCE4 SEQUENCES |
i A B B C D |
Screw Receptacle Insert Stick into Insert Stick into Screw Reeceptacle Place Stick on Cap
: and Cap Receptacle Receptacle and Handle ;
| B A c B A
' Insert Stick into Screw Receptacle Screw Reeceptacle Insert Stick into Screw Receptacle
| Receptacle and Cap and Handle Receptacle and Cap :
c C A A C i
: Screw Reeceptacle Screw Reeceptacle Screw Receptacle Screw Receptacle Screw Reeceptacle
' and Handle and Handle and Cap and Cap and Handle ;
. SEQUENCE 6 SEQUENCE 7 SEQUENCE 8 SEQUENCE 9 SEQUENCE 10 '
| D C E E A |
i Place Stick on Cap Screw Reeceptacle Place Stick on Place Stick on Screw Receptacle .
; and Handle Handle Handle and Cap ;
i : a
; c D C A E i
! Screw Reeceptacle Place Stick on Cap Screw Reeceptacle Screw Receptacle Place Stick on !
: and Handle and Handle and Cap Handle :
| A A A C C i
: Screw Receptacle Screw Receptacle Screw Receptacle Screw Reeceptacle Screw Reeceptacle :
; and Cap and Cap and Cap and Handle and Handle :

Figure 2.19. Possible assembly sequences of simple product which given by Figure 2.18 (L.S. Homem de
Mello & Sanderson, 1990)

28

In this way, an AOG precedence diagram given in Figure 2.20 is defined because it
is difficult to follow all possible assembly sequences and is not suitable for the

programming format.

L

/ 1]
lII

0 1) b= g

V)

0 i

Figure 2.20. AND/OR Graph of simple product which given by Figure 2.18 (L.S. Homem de Mello &
Sanderson, 1990)

With the AOG precedence diagram, for a sample product shown in Figure 2.18, all
assembly sequences shown in Figure 2.20 can be accessed. The assembly sequence of
“Screw Receptacle and Handle — Inset Stick into Receptacle — Screw Receptacle and Cap”
described as Sequence 4 in Figure 2.19, the steps to be reached from the AOG precedence
diagram given in Figure 2.21. The assembly sequence of “Place Stick on Handle — Screw
Receptacle and Handle — Screw Receptacle and Cap” is shown in Figure 2.22.

29

a

Figure 2.21. A possible assembly sequence for AND/OR Graph of simple product which given by Figure
2.18

Figure 2.22. A possible assembly sequence for AND/OR Graph of simple product which given by Figure
2.18

The AOG precedence diagram is also adapted for DLB problems, as there are
multiple disassembly sequences in DLB problems where functional constraints are
unimportant and only physical constraints are taken into account. However, some
flexibility, such as the lack of functionality in disassembly unlike assembly, has led to the
differentiation of the AOG precedence diagram created. Moore (2001) and Altekin (2008)

address these differences with the priority relations put forward. In this context, the

30

priority relations in the AOG precedence diagram used for solving DLB problems are
listed as follows (Kalaycilar, 2012):

e AND Predecessor

e OR Predecessor

e Complex AND/OR Predecessor
e OR Successors

e AND within OR

e OR within AND

AND Predecessor

It is generally the most used relationship type for the AOG precedence diagram.
In this relationship type, each of the AND Predecessor tasks of any task must be
performed. Moore (2001) first described it for DLB problems. The AND Predecessor
relationship is as shown in Figure 2.23. In this kind of relationship, it is emphasized that

both tasks 2 and 3 must be done in order for task number 1 to be performed.
Figure 2.23. AND Predecessor relation

OR Predecessor

Another most commonly used relationship type for the AOG precedence diagram
is the “OR Predecessor” relationship. For a task with this relationship, at least one of the
tasks connected with this relationship must be performed before it. Moore (2001) first
described it for DLB problems. A typical “OR Predecessor” relationship is as described
in Figure 2.24. Here, at least one of the tasks numbered 2 or 3 must be completed in order

for task number 1 to be completed.

31

Figure 2.24. OR Predecessor relation

Complex AND/OR Predecessor

Another type of relationship used for the AOG precedence diagram is the “Complex
AND/OR Predecessor” relationship. For a task with this relationship, all AND-bound
tasks must be performed before it, and at least one of all OR-bound tasks must be
performed. Moore (2001) first described it for DLB problems. A typical “Complex
AND/OR Predecessor” relationship is as described in Figure 2.25. Here, in order to

complete the task number 1, task number 2 and at least one of the tasks 3 and 4 must be

O,

O
®

Figure 2.25. Complex AND/OR Predecessor relation

completed.

OR Successor

The most commonly used relationship type in the disassembly sequence selection
for DLB problem solving is the "OR Successor" relationship. A task with this relationship
can only do one of the tasks connected to it with this relationship after itself. Moore (2001)
first described it. A typical “OR Successor” relationship is as described in Figure 2.26.

Here, after task 1 is done, only one of tasks 2 or 3 will be able to be done.

32

A
oY
RO,

\\

Figure 2.26. OR Successor relation

AND within OR

Another type of relationship used for the AOG precedence diagram is the “AND
within OR” relationship. In this relationship, after two or more tasks connected with AND
predecessor are completed, only one task connected with OR Successor can be completed.
A typical AND within OR relationship is as described in Figure 2.27. Here, after

completing the task 1 and 2, only one (at least and at most) of the tasks 3 and 4 be

completed.
/// \\
OO
Figure 2.27. AND within OR relation
OR within AND

Another type of relationship used for the AOG precedence diagram is the “OR
within AND” relationship. In this relationship, after one of two or more tasks connected
with OR predecessor is completed, two or more tasks connected with AND Predecessor
can be completed. A typical “OR within AND” relationship is as described in Figure 2.28.

Here, after completing one of the tasks 1 and 2, the tasks 3 and 4 can be completed.

®\\\\ e /@
//,
! }O .
“

Figure 2.28. OR within AND relation

33

Transformed AND/OR Graph (TAOG) based precedence relation

Although AOG provides access to all possible disassembly sequences, it is not
suitable for mathematical models due to computational difficulties. Therefore, another
method, Transformed AND/OR Graph (TAOG) based Precedence Diagram, which is
very similar to AOG, was developed using normal node (task) and artificial node. The
TAOG based Precedence Diagram for the DLB problem was first published in 2009 by
Kog et al. As a typical usage, TAOG is based on selecting only one normal node after
each artificial node and selecting all artificial nodes that go after each normal node.
Therefore, there is an OR Successor relationship between artificial nodes and normal
nodes, and an AND Successor relationship between normal nodes and artificial nodes.
However, in some studies, an AND Successor relationship is observed between the

artificial node and the normal node (Bentaha et al., 2013).

A typical TAOG based Precedence Diagram with an OR Successor relationship
between an artificial node and a normal node and an AND Successor relationship between
a normal node and an artificial node is given in Figure 2.29. There are 23 normal nodes
(disassembly task) and 13 artificial nodes in total here. Starting from the artificial node
Ay, the process continues until only one normal node is selected from each OR Successor
relationship, and there are no normal and artificial nodes to be selected. The normal nodes

selected at the end are used as the priority relationship.

Figure 2.29. A typical Transformed AND/OR Graph (TAOG) based precedence diagram
34

The first Integer Linear Programming (ILP) mathematical model developed by Kog
et al in 2009, which reached the optimum result using the TAOG based Precedence
Diagram method for the Single-Model Straight DLB (SSDLB) problem. Thanks to this
model, the best line balancing is achieved by considering all possible disassembly
sequences. This model also forms the basis for the Mixed-Model Two-Sided DLB
(MTDLB) problem mathematical model developed within the scope of the thesis.

Indices and Sets:

k €{0,..,h} Index of artificial nodes in AOG.

iefl,..,1} Index of normal nodes (tasks) in AOG.
jef{l,...]} Index of stations.

P(k,i) Immediate predecessor set of k, i, respectively.
S(k, i) Immediate successor set of k, i, respectively.

Scalars and Parameters:

C Cycle time of disassembly line.
t; Task time of normal node (task) i.

Decision and Auxiliary Variables:

x;; € {0,1} If normal node i is assigned to station j, 1, otherwise 0
fi € {0,1} If station j is opened, 1, otherwise O
z; € {0,1} If normal nodel (task) i is performed, 1, otherwise 0

Objective Function:

M
objective = Min Zj X fj (2.1)

j=1

The objective function defined by Equation 2.1 aims to minimize the number of
opened workstations. The j index is multiplied by the work because it is desired to open
the workstations in order. In this way, stations will start to open starting from the smallest

index.

35

Constraints:

zp=1 vk € {0} (2.2)
i€S(k,i)
2= z Zi vk €{1,..,h} (2.3)
ieS(k,i) ieP(k,i)
M
> =z vie{l, ..o} (2.4)
j=1
v
z zxij = z Xiv vk € {1,..,h},Vv € {1, .., M} (2.5)
iep(k,i) j=1 i€S(k,i)
1
injxti =Cxf vj €{1,.., M) 2.6)
i=1
x;j € {0,1} vie{l,..,I}L,Vje{l, .., M} (2.7)
z; € {0,1} vie{l,..,1} (2.8)
fi € {0,1} vje{l,.., M} (2.9)

The constraints given by Equation 2.2 and 2.3 are the constraints that allow only
one of the OR Successors to be selected to ensure that only one disassembly sequence is
selected from the TAOG. With Equation 2.2, when the artificial node in the TAOG is
equal to zero, that is, in the initial state, only one OR Successor is selected, the first step
is taken to determine the disassembly sequences. With Equation 2.3, it explains that if
one of the predecessors of artificial nodes is selected in TAOG, one of the OR successors
should also be selected. Thus, line balancing is achieved by choosing the best disassembly
sequence in accordance with the objective function. The constraint given by Equation 2.4
defines that if a task is selected, that task must be assigned to an absolute station. This is
the updated format of the constraint of each task assigned to a station in ALB problems,
using TAOG. The constraint given in Equation 2.5 defines the assignment according to
the priority relationship between the two selected tasks. The predecessor of any task must
be assigned to the same or previous station. It is the updated format of the priority
constraint in ALB problems using TAOG. The constraint given by Equation 2.6 explains
that the sum of the durations of the tasks assigned to any station cannot exceed the cycle

time if the station is opened. It is similar to the cycle time constraint found in ALB

36

problems. The constraints given by Equation 2.7 — 2.9 determine the data type of decision

variables and auxiliary variables.

An Hlustrative Example:

The mathematical model of the DLB problem using TAOG, which was defined by
Koc et al in 2009 and explained above, has been used by many researchers in the literature
or transformed into different formats. This mathematical model is critical in terms of
reaching the optimum result by considering all possible disassembly sequences.
Therefore, this mathematical model forms the basis of the MTDLB problem developed
within the scope of this thesis. In order to better understand the working logic of this
mathematical model, an example do Koc et al create designed using the TAOG (given in

Figure 2.29) in 2009, the task periods given in Table 2.2 and the cycle time being 10.

The SSDLB mathematical model created by Koc et al in 2009 was coded with
LINGO 9.0 and given with Appendix-01. The resulting best disassembly sequence is as
given by Figure 2.30 and Table 2.3 gives the best DLB solution.

Table 2.2. Disassembly tasks and processing times of Figure 2.24 for illustrative TAOG example

Task i i Task i (continued)
13
14
15
16
17
10 18
19
20
21
22

23

~
~

W N U1 O Ww| &~

© 00 N O o B~ W N P

[EY
o
W 00 N OO O O O W W w o

[N
[N

~N o o o~ b

[y
N

37

’.\ /@O /@.

N@-O—@
Figure 2.30. Optimal disassembly sequence for illustrative TAOG example

Table 2.3. Optimal disassembly line assignment for illustrative TAOG example

Stations Assigned Tasks
1 3

2 10, 15

3 19, 23

4 22

2.1.5. Disassembly Level for DLB problem

DLB problems are divided into disassembly levels as complete and partial.
Complete disassembly is the type in which all parts of the product are disassembled and
all tasks in the precedence relation diagram are performed in sequence. Partial
disassembly, on the other hand, is the type in which only certain parts of the product are

disassembled, adhering to the precedence relation for profit.

2.2. Parameter Types

The types of parameters used in defining and solving the DLB problem are similar
to the parameter types used in the ALB problem. It is collected in four main classes in
total: Deterministic, where all parameters are considered to be completely known,
Stochastic, which is considered to fit a certain statistical distribution, and Fuzzy, which
is accepted to be valid at certain intervals, that is, has a membership function. The

classification scheme is as given in Figure 2.31.

38

Parameter Types
of DLB problem

Deterministic Stochastic Fuzzy

Figure 2.31. Parameter types scheme of DLB problem

The main differences between the ALB problem and the DLB problem are given in
Table 2.1. Here, it is seen that the uncertainty is higher in the DLB problem compared to
the ALB problem. The degree of damage to the incoming products and possible errors
that may occur during disassembling increase the uncertainty for the DLB problem. For
this reason, the use of stochastic parameters for the DLB problem in the literature (see.
(Bentaha et al., 2013; Ming et al., 2019; Tuncel et al., 2014)) moreover, the use of fuzzy
parameters (see. (Kalayci et al., 2015; Seidi & Saghari, 2016; Zhang et al., 2017)) are
quite common. However, the number of DLB problem studies in which the parameters
are deterministic under certain assumptions in terms of modeling and computational
convenience is the highest (Ozceylan et al., 2019). In addition to all these, there are studies
in the literature where some parameters are deterministic, some parameters are stochastic,

and some parameters are fuzzy.

2.3. Objective Functions

The selection of the performance indicator to be optimized plays a critical role as
well as the definition of the DLB problem. There are a wide variety of performance
indicators used in DLB problem research in the literature. In some studies, more than one
conflicting performance indicator can be used instead of one performance indicator. Such
studies are called multi-objective. Classification according to objective function type is

as given in Figure 2.32.

39

Objective
Function Types
of DLB problem

[

Single Objective Multi Objective

Figure 2.32. Objective function types scheme of DLB problem

Some objective functions that are widely used in the literature are as given in Figure
2.33.

MOSﬂy Number of Workstations / Idle Time / Efficiency
Used Cycle Time

Ob] ed.:lve Profit / Revenue / Demand

Functions

of DLB Balance / Smoothness

problem Hazardous Parts

Direction

Inventory Level

Space Allocation

Disassembly Cost / Disposal Cost

Total Disassembly Operations Time

Total Failing Task Cost

Shipping Cost

Figure 2.33. Mostly used objective functions of DLB problem

Some of the frequently used objective functions for the DLB problem are given
below. For all other objective functions, literature research studies can be looked at (see.
(Ozceylan et al., 2019)).

Number of Workstations

40

The most used objective function in the DLB literature is Number of Workstation.
The goal is to perform certain disassembly tasks on the fewest number of workstations.
Although it is modeled in different formats according to the way the problem is handled,

when W refers to the number of workstations, it is usually modeled as in Equation 2.10.

Minimize f; =W (2.10)
Smoothness

Another objective function most used in the DLB literature is the Smoothness
Index. The aim is to reduce the idle time of the workstations as much as possible and to

establish a balance between the workstations.

Bir DL sisteminde, Cycle Time (CT) ve her bir j € {1,..., W} is istasyonun
calisma siiresi (WT]) bilindiginde, her bir j € {1, ..., W} is istasyonu i¢in Idle Time (1 Tj)
Equation 2.11’deki gibi hesaplanir. Bu ayn1 zamanda istasyon sayisinin en kiigiiklenmesi

ile ayn1 anlami tagimaktadir.

In a DL system, given the Cycle Time (CT) and the uptime (WT;) of each j €
{1, ..., W} workstation, the Idle Time (IT;) for each j € {1, ..., W} workstation is known.
IT; is calculated as in Equation 2.11. This also has the same meaning as minimizing the

number of stations.

IT; = CT — WT; vje{l,.., W} (2.11)

In a DL system, the sum of the Idle Time(IT;) squares of each j € {1, ..., W}
workstation must be minimized in order to ensure smoothness between workstations, that
is, for the DL system to be Smooth. The modeling generally used in DLB studies aiming

to minimize the Smoothness Index is as given in Equation 2.12.

w w
Minimize f, = Z IT? = Z(CT —wr,)’ (2.12)
=1 =1

2.4. Solution Methods
Due to its nature, the DLB problem is included in the NP-Hard class. In other words,

when the size of the case to be solved increases, the solution becomes impossible after a

41

certain case size, since the problem solution space increases exponentially. When an
example of the NP-Hard class is given through the Traveling Salesman Problem (TSP),
the number of alternative tours for the 5-city TSP is 5 factorial, ie 120 alternatives, while
the number of alternative tours for the 10-city TSP is 10 factorial, ie 3628800, and for the
20-city TSP, 2432902008176640000 alternative tours. Therefore, even if the distance
calculation for each round takes 1 millisecond for a TSP problem with 20 cities, distance
calculations can be made for all alternative solutions in 77146816.5962 years. In this and
similar cases, heuristic/metaheuristic algorithms that give very close results are applied,
although it is not known for sure that the optimum solution is. Sometimes, different
transformations are made for the problem and a solution is sought with exact methods.
Therefore, there is no limit to the solutions for the defined DLB problem. Within the
scope of this study, the literature was scanned and the solution approaches for the DLB

problem were classified as given in Figure 2.5.

ILP/MILP/NLP based
— Mathematical Modelling
Approachs
M
— — Exact Methods
A
(-
®)
o] E — Heuristic Algorithms
S o
L —
+ O M
VO
—
% Q. I Meta-Heuristic Algorithms
)
=
=
) — Simulation Methods
N
|| Multi Criteria Decision
Making Methods

Figure 2.34. Solution methods scheme of DLB problem

Integer Linear Programming (ILP) / Mixed Integer Linear Programming (MILP) /
Non Linear Programming (NLP) based mathematical programming approaches are based

42

on solving the mathematical model developed for the problem using commercial software
or coding the Branch-and-Bound algorithm. Since this approach guarantees the optimum

solution, the method should be tried first.

Exact methods are based on solving the problem with certain algorithms by relaxing
or remodeling under certain assumptions in cases where a solution cannot be obtained
with ILP/MILP/NLP based mathematical programming approaches. A typical example is
searching for a solution with the Branch-and-Cut algorithm, which is the relaxed version

of the Branch-and-Bound algorithm.

Heuristic algorithms are preferred in cases where solutions cannot be obtained with
ILP/MILP/NLP based mathematical programming approaches or for problems that
cannot be mathematically modeled. These methods, which are based on a specific
procedure, give the solution reached as the best solution when the stopping criterion ends.
It can be developed according to a predefined procedure or according to the problem

structure.

Metaheuritic algorithms are frequently encountered solution methods in cases
where solutions cannot be obtained with ILP/MILP/NLP based mathematical
programming approaches. These algorithms allow optimization based on certain systems
found in nature. For example, the Genetic Algorithm (GA) has emerged based on the
theory of evolution found in nature. GA is a method of changing the coded solutions with
Selection, Crossover and Mutation in each generation, resulting in new generations, and
thus reaching the optimum solution in a short time by intelligently scanning the solution
space. This and similar (Tabu Search algorithm, Particle Swarm Optimization algorithm,
Artificial Bee Colony algorithm etc.)

Generally, when the parameters are stochastic, simulation method is used to solve
the DLB problem. Simulation is the repetitive testing of a system by modeling it in a
computer environment. In this way, statistical information can be provided to the decision
maker by finding average results because of stochastic parameters. Another method used
to solve the DLB problem is Multi Criteria Decision Making (MCDM) methods. With
this method, possible scenarios are designed for the solution of the problem and it is based
on the selection of the best scenario by considering multiple criteria. In some multi-

objective studies, it is also used in the form of choosing the most appropriate scenario by

43

evaluating the undecided solution scenarios by multi-criteria.In addition to all these
methods, some matheuristic methods have been used. This method is a hybrid of the exact
method and metaheuristic approaches. The problem is relaxed and the optimum solution
is sought, and the solution result is given as an input to the metaheuristic algorithm, where
the rest of the problem is searched. The output found in the metaheuristic result is given
as an input to the exact method and the process continues like this. Although there are not
many matheuristic approaches for the DLB problem in the literature, the effectiveness of
matheuristic approaches will be a good tool to be used for solving the DLB problem in

the future.

44

3. LITERATURE REVIEW

Glingdr and Gupta first described the DLB problem in 1999 (Giingoér & Gupta,
1999b). McGovern and Gupta proved interest in the DLB problem has increased after it
in 2007 that the DLB problem belongs to the NP-Hard class (McGovern & Gupta, 2007b).
Today, the DLB problem is investigated and solved in a wide variety of ways. In this
section, a detailed literature search has been made considering the DLB problem

classification given in Section 2.

The literature for the DLB problem was searched using Web of Science and Scopus
databases. The search was carried out with "disassembly line balancing” in any part of
the study in the literature. In this context, 147 studies, the oldest of which were published
in 2001 and the latest in 2022, were found in the Web of Science database, and 217 studies
were found in the Scopus database, the oldest of which was published in 2001 and the
newest in 2022. The status of these studies being included in the databases, in turn, is as

given in Table 3.1.

Table 3.1. All DLB studies in literature

Year Cite Conference Journal Web of Scopus
Proceedings Article Science

2001 (Gling6ér et al, V4 v V4
2001)
(Gupta & Giingor, V4 v v
2001)
(Tang et al., 2001) V4 v v
(Giingdr & Gupta, v v N4
2001)

2003 (McGovern & v v v
Gupta, 2003)

2004 (McGovern & v v v
Gupta, 2004b)
(Altekin et al., V4 v v
2004)
(McGovern & 4 v
Gupta, 2004a)
(Kizilkaya & V4 v v

Gupta, 2004)

45

2005

2006

2007

2008

2009

(McGovern &
Gupta, 2004c)
(Duta et al., 2005)

(McGovern &
Gupta, 2005a)
(Kizilkaya &
Gupta, 2005)
(Lambert & Gupta,
2005a)

(Lambert & Gupta,
2005b)
(McGovern &
Gupta, 2005b)
(Prakash & Tiwari,
2005)

(Turowski et al.,
2005)

(Johar & Gupta,
2006)

(McGovern &
Gupta, 2006a)
(McGovern &
Gupta, 2006b)
(McGovern &
Gupta, 2006¢)
(Lambert, 2007)

(McGovern &
Gupta, 2007a)
(McGovern &
Gupta, 2007b)
(McGovern &
Gupta, 2007c¢)
(Agrawal & Tiwari,
2008)

(Altekin et al.,
2008)

(Duta et al., 2008)

(Ding et al., 2009)

v

46

2010
2011

2013

2014

(Koc et al., 2009)
(Ding et al., 2010)

(Kalayci & Gupta,
2011)
(Aydemir-Karadag
& Turkbey, 2013)
(Bentaha et al.,
2013a)

(Bentaha et al.,
2013b)

(Bentaha et al.,
2013c)

(Bentaha et al.,
2013d)

(Bentaha et al.,
2013e)

(Kalayci & Gupta,
2013a)

(Kalayci & Gupta,
2013b)

(Kalayci & Gupta,
2013c)

(Kalayci & Gupta,
2013d)

(Kalayci & Gupta,
2013e)

(B. Y. Liu et al.,
2013)

(Ozceylan &
Paksay, 2013)
(Paksoy et al.,
2013)

(Avikal, Jain, &
Mishra, 2014)
(Avikal, Jain,
Yadav, et al., 2014)
(Avikal, Mishra, et
al., 2014)

47

2015

(Bentaha et al.,
2014a)

(Bentaha et al.,
2014b)

(Bentaha et al.,
2014c)

(Bentaha et al.,
2014d)

(Habibi et al.,
2014)

(lgarashi, Yamada,
& Inoue, 2014)
(lgarashi, Yamada,
Itsubo, et al., 2014)
(Kalayci & Gupta,
2014)
(Mincaetal., 2014)

(Ozceylan &
Paksoy, 2014a)
(Ozceylan &

Paksoy, 2014b)
(Ozceylan et al.,
2014)

(Tuncel et al,
2014)

(X. Zhu et al,
2014)

(Bentaha et al.,
2015)

(Hezer & Kara,
2015)

(Kalayci, Hancilar,
etal., 2015)
(Kalayci, Polat, et
al., 2015)
(McGovern &
Gupta, 2015)
(Stileyman Mete et
al., 2015)

48

2016

2017

(Riggs et al., 2015)
(Altekin, 2016)

(Avikal et al.,
2016)
(Avikal, 2016)

(Duta et al., 2016)

(Filipescu et al.,
2016)

(Hao & Hasan,
2016)

(lgarashi et al.,
2016)

(Kalaycilar et al.,
2016)

(Kalayci et al.,
2016)

(Sileyman Mete,
Cil, Agpak, et al.,
2016)

(Sileyman Mete,
Cil, Ozceylan, et
al., 2016)

(Seidi & Saghari,
2016)

(Z. Zhang et al.,
2016)

(Altekin, 2017)

(llgin et al., 2017)

(Jia Liu & Wang,
2017)
(Jia & Shuwei,
2017)
(Kannan et al.,
2017)
(L. Lietal., 2017)

(Siileyman Mete et
al., 2017)
(Qiang et al., 2018)

49

2018

(Renetal., 2017)

(K. Wang, Zhang,
Mao, et al., 2017)
(K. Wang, Zhang,
Zhu, et al., 2017)
(S. Xiao et al,
2017)

(Z. Zhang et al.,
2017)

(Zou et al., 2017)

(Battaia et al.,
2018)
(Bentaha et al.,
2018)
(Y. Gao et al,
2018)
(Jia Liu & Wang,
2018)
(Jiayi Liu et al.,
2018)
(Kazancoglu &
Ozturkoglu, 2018)
(L. Zhuetal., 2018)

(L. Li, Zhang,
Guan, et al., 2018)
(L. Li, Zhang, Zhu,
etal., 2018)

(Liuke et al., 2018)

(Siileyman Mete et
al., 2018)
(Ning et al., 2018)

(Pistolesi et al.,
2018)
(Qiang et al., 2018)

(Ren et al., 2018)
(Xia et al., 2018)

(Z. Zhang, Cai, et
al., 2018)

50

‘RN

S R RN

2019

(Z. Zhang, Wang,
Li, etal., 2018)

(Z. Zhang, Wang,
Zhu, et al., 2018)
(Zheng et al., 2018)

(Zou, Zhang, Cai,
etal., 2018)

(Zou, Zhang, Li, et
al., 2018)

(B. Liu, Xu, Liu, et
al., 2019)

(Cai, Zhang,
Zhang, et al., 2019)
(Cai, Zhang, Zou,
etal., 2019)

(Cao et al., 2019)

(Deniz & Ozcelik,
2019)
(Edis et al., 2019)

(Fang, Liu, et al.,
2019)

(Fang, Wei, et al.,
2019)

(llgin, 2019)

(J. Li, Chen, &
Chu, 2019)

(J. Li, Chen, Zhu, et
al., 2019)

(K. Wang, Li, &
Gao, 2019a)

(K. Wang, Li, &
Gao, 2019b)

(K. Wang, Li, Gao,
etal., 2019)

(M. Liu, Liu, &
Chu, 2019)

(M. Liu, Liu, Liu,
etal., 2019)

51

2020

(Ming et al., 2019) N4

(Ozceylan et al.,

2019)

(Q. Liu, Li, Fang, et v
al., 2019)

(Ren et al., 2019) J

(S. Wang et al,

2019)

(X. Li, Laili, N4
Zhang, et al., 2019)

(Yang et al., 2019)

(Z. Li, Kucukkoc,
& Zhang, 2019)
(Zeng et al., 2019) N4

(Z. Zhang et al.,

2019)

(R. Zhou et al., N4
2019)

(Budak, 2020)

(C. Xu et al., 2020) N4

(Cevikcan et al.,

2020)

(Q. Chen et al., v
2020)

(Cil et al., 2020)

(Diri Kenger et al.,
2020)
(Fang & Xu, 2020)

(Fang, Ming, et al.,

2020)

(Fang, Xu, et al.,

2020)

(Fang, Zhang, et v
al., 2020)

(He et al., 2020)

(Jiayi Liu et al.,

2020)

52

(K. Wang, Gao, et

al., 2020)

(K. Wang, Li, etal.,

2020)

(K. Z. Gao et al.,

2020)

(Kaya et al., 2020) N4

(Kazancoglu &
Ozkan-Ozen, 2020)
(Kucukkoc et al.,
2019)

(Kucukkoc, 2020)

(L. Zhu, Zhang, &
Guan, 2020)

(L. Zhu, Zhang,
Wang, et al., 2020)
(Laili et al., 2020)

(Luo et al., 2020) J

(M. Liu et al,

2020)

(Meng & Zhang,

2020)

(Gui Bin Qin et al., N4
2020)

(Ren et al., 2020)

(T. Y. Wang et al., N4
2020)
(Wu et al., 2020) v

(Xia et al., 2020)
(Y. Xu et al., 2020) v

(Ying Zhang et al.,

2020)

(Y. Zhou et al.,

2020)

(Yuan et al., 2020) v

(Z. Lietal., 2020)

(Z.W. Zhang et al., v
2020)

53

<

RN

2021

(Zeng et al., 2020)
(CIL, 2021)

(Dalle Mura et al.,
2021)

(Diri Kenger et al.,
2021)

(Edis, 2021)
(Goksoy Kalaycilar
etal., 2021)
(GuiBin Qin et al.,
2021)

(He, Chu, Dolgui,
etal., 2021)

(He, Chu, Zheng, et
al., 2021)

(Hu et al., 2021)

(J. C. Chen et al.,
2021)
(J. Liang et al.,
2021)
(Jiang et al., 2021)

(K. Wang, Li, Gao,
Li, etal., 2021b)
(K. Wang, Li, Gao,
& Li, 2021a)

(K. Wang, Li, Gao,
& Li, 2021b)

(K. Wang, Li, Gao,
Li, et al., 2021a)
(Kanagaraj et al.,
2021)

(L. Zhang et al.,
2021)

(M. Liu et al,
2021)

(Mei & Fang,
2021)

54

(Mutlu & Giiner, V4 V4

2021)
(P. Liang et al., v v
2021)
(Q. Xiao et al, v v v
2021)
(Suleyman Mete & V4 v
Serin, 2021)
(X. Liuetal., 2021) v v v
(Xie et al., 2021) v v
(Y. Wang et al., v v
2021)
(Y1lmaz & Yazicl, v v v
2021)
(Yinetal., 2021) v v v
(Yolmeh & Saif, V4 v V4
2021)
(Yu Zhang et al., V4 v V4
2021)
. Li & v v v
Janardhanan, 2021)

2022 (Yinetal., 2022) N4 v

When we look at the DLB studies scanned in Web of Science and Scopus, it is seen
that a record has been broken with 37 studies in 2020 and 32 studies have been published
as of 2021, which we are currently in. When we look at the distribution of DLB studies
based on years given in Figure 3.1, it can be deduced that DLB studies are given

importance today.

55

DLB Studies by Years (Indexed in Web-of-Sciece and
Scopus)
40
35
30

25

20

1

| 11l

5 0

‘a0l eme.__ i ;

2001 2003 2004 2005 2006 2007 2008 2009 2010 2011 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

S »

H Conference Proceedings ® Journal Article

Figure 3.1. DLB studies by years (indexed in web-of-science and scopus)

91% of the DLB studies in the literature, that is, the majority of them, have the
straight-line format. 4% of the DLB studies in the literature have U-shaped line, 3% two-
sided line and 2% parallel line format. This statistic is visualized in Figure 3.2.

Two Sided Parallel

U-Shaped _3% 2%
4%

Straight
91%

Figure 3.2. Line layout types piechart for DLB studies in literature

94% of the DLB studies in the literature, that is, the majority of them, have the
single-model format. 0% of the DLB studies in the literature have multi-model line, 6%
mixed-model format. This statistic is visualized in Figure 3.3.

56

Mixed Mdialti Model; 0%

Single Model;
94%

Figure 3.3. Model types piechart for DLB studies in literature

83% of the DLB studies in the literature, that is, the majority of them, have the
completely disassembly format. 17% of the DLB studies in the literature have partially
disassemblys format. This statistic is visualized in Figure 3.4.

Partially

Disassemble;
17%

Completly
Disassemble;
83%

Figure 3.4. Disassembly level piechart for DLB studies in literature

61% of the DLB studies in the literature, that is, the majority of them, have the
single objective format. 39% of the DLB studies in the literature have multi objective
format. This statistic is visualized in Figure 3.5.

57

Multi Objective;
39%

Single
Objective; 61%

Figure 3.5. Objective function type piechart for DLB studies in literature
88% of the DLB studies in the literature, that is, the majority of them, have the

human worker format. 11% of the DLB studies in the literature have robotic workers, 1%
human-robot collabroation format. This statistic is visualized in Figure 3.6.

Human Robot
Collaboration;

Robotic; 11%

Human; 88%

Figure 3.6. Worker type piechart for DLB studies in literature

There are only 7 studies in the literature for the TDLB problem. When we look at
the distribution of TDLB studies based on years given in Figure 3.7, it can be deduced
that DLB studies are given importance today.

58

TDLB Studies by Years (Indexed in Web-of-Sciece and
Scopus)

4,5
4
3,5
3
2,5
2
1,5

1
0,5 I

0
2001 2003 2004 2005 2006 2007 2008 2009 2010 2011 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

u Conference Proceedings Journal Article

Figure 3.7. TDLB studies by years (indexed in web-of-science and scopus)

For the TDLB problem, the studies in the literature were examined in detail and
each study was classified as given in Table 3.2. Looking at this table, it is seen that the
MTDLB problem was handled for the first time in the study published within the scope
of this study and this is the only study that used TAOG for the TDLB problem. It

adequately explains the importance and originality of this work.

59

Table 3.2. Classification of TDLB studies in literature

Study Model Disassembly Precedence Objective Solution
Type Level Diagram Type Function Method
Type
(Zou, Zhang, Li, et Single Completely Traditional Multi Pareto Bat
al., 2018) Obijective Algorithm
(K. Wang, Li, Gao, Single Partially Traditional Multi Discrete
etal., 2019) Obijective Flower
Pollination
Algorithm
(Kucukkoc, 2020) Single Completely AOG Single 2 - Genetic
Objective Algorithm
Mutlu & Giiner, Mixed Completely TAOG Multi Memetic
2021) Objective Algorithm
(Scalar)
(Yu Zhang et al., Single Completely Traditional Single Improved
2021) Objective Whale
Optimization
Algorithm
(J. Liang et al, Single Completely Traditional Multi Simulated
2021) Objective Annealing
Algorithm
(Xie et al., 2021) Single Completely Traditional Multi NSGA-II
Obijective

60

4. MIXED-MODEL TWO-SIDED DISASSEMBLY LINE BALANCING
PROBLEM

In line with the ever-increasing technological developments and affluence, the size
of the products is also increasing, as CRT televisions turn into LCD / LED televisions. At
the same time, thanks to the increasing technological developments, the use of airplanes
weighing more than 285 tons in air transportation, ships with a weight of more than 600
thousand tons in sea transportation, and trucks that offer a transportation volume of up to
100 cubic meters on the road have become widespread. According to the published
statistical data, approximately 3 million trucks are produced worldwide in 2019, and
approximately 79 million refrigerators are produced only in China in 2019 (Statista,
2020a, 2020b). Considering that the average life of the products is 10-15 years and the
maximum life is 25-30 years on average, when large-size products complete their life and
become idle, that is, when they become EOL products, a high amount of resources will
be idle and cause a high amount of pollution for nature. The recycling of these products
is of great importance both financially and environmentally, and its importance is

increasing day by day.

The Two-Sided Assembly Line system has been developed in order to save time
and cost for high-volume production of large-sized products and to prevent unnecessary
movements such as rotation movements, and its applications in the literature (see. (Kim
et al., 2009; Ozcan & Toklu, 2009; Roshani et al., 2012; Tapkan et al., 2012)) provides
very efficient production. Similarly, Two-Sided Disassembly Line systems are needed
for disassembly of same/similar products and it is thought that there will be more
requirements in the future. Indeed, a MILP mathematical model for the Single-Model
Two-Sided Disassembly Line Balancing (STDLB) problem, in which only a strict
disassembly sequence is taken into account using the Traditional Precedece Diagram and
investigated as partial disassembly, has been developed by Wang et al. It was developed
by Wang et al in 2019 (Wang et al., 2019b). After this study, 7 more studies dealing with
the TDLB problem were presented to the literature. When we look at the studies in the
literature for the TDLB problem, TAOG precedence diagram and mixed-model formation
were used only in the study that emerged within the scope of this thesis (Mutlu & Giiner,
2021). There is great clarity in the literature for MTDLB problems using the TAOG
precedence diagram, since the TAOG precedence diagram takes into account all possible

disassembly sequences and it is necessary to disassemble more than one model on the

61

same line for real-life disassembly. Within the scope of this thesis, the MTDLB problem,
which takes into account all possible disassembly sequences and allows disassembly of
more than one product in the same disassembly line, has been investigated and a MILP
mathematical model has been developed to define the problem. The considered
disassembly line is as shown in Figure 4.1. In this disassembly system, the EOL A product
with 12 disassembly processes and the EOL B product with 11 disassembly processes are
disassembled on the same disassembly line working in two-sided synchrony and sent to
the required warehouses. For example, on this figure, since the premise of the B,
operation on the right side for the EOL A product is the B, operation on the left side,
although the B; operation on the right was finished, the process could not be started
directly and the B; operation on the left was expected to be completed. Although these
and similar restrictions cause idle times in stations, this system provides more efficient
results than straight or U-shape lines as it completely removes the right-left rotations
caused by large-sized products and provides faster disassembly by reducing the cycle
time. provides the formation. In this way, the environmental impact for disassembly of

large-sized products is minimized as much as possible.

62

i

Mated Station 1-L

LLE

Mated Station 3-L

AR

Mated Station 4-L

Left Side Al B [B W A B, | By |
EOL 7
Product B [By [By K
A /
12 D.T.
5T Material Handling System
Product N
B Mated Station 1-R Mated Station 2-R Mated Station 3-R Mated Station 4-R
11 D.T. . .
Right Side A B 4 B | Al B [B | Al By [By |
B Y B; |
v
Q
o | [
SIS a = 2] |2 S g |2
DEFINITIONS
o Idle time

E Disassembly Task (D.T.)
H Disassembled Product

Transfer Line to
Warehouse

Figure 4.1. Representation of mixed-model two-sided disassembly line

63

In this context, a MILP mathematical model has been defined in order to optimize

the line design cost, disassembly process times and line stability for the MTDLB problem

defined only by us in the literature. While using the mathematical model, 3 main sources

were used. These resources are:

1.

ILP mathematical model by Koc et al in 2009, using the TAOG precedence
diagram, which reaches the optimum result for the Single-Model Straight
Disassembly Line Balancing (SSDLB) problem by considering all possible
disassembly sequences.

MILP mathematical model created for the Mixed-Model Two-Sided
Assembly Line Balancing (MTALB) problem defined by Ozcan & Toklu in
2009.

MILP mathematical model created by Paksoy et al in 2013 for the Mixed-
Model Straight Disassembly Line Balancing (MSDLB) problem, using the

AOG precedence diagram, in which all possible sequences are considered.

In this section, respectively;

1.
2.

The TAOG precedence diagram used for the MTDLB problem is defined.
The general scheme for the problem was presented by making the necessary
assumptions for the MTDLB problem.

Using the TAOG precedence diagram and assumptions defined for the
MTDLB problem, the MILP mathematical model was developed by adding
mandatory constraints and additional constraints in order to optimize the
line design cost, disassembly process times and line stability.

An illustrative example was created for the MTDLB problem and the
defined MILP mathematical model was solved by arranging the objective

functions as a single objective function in a hierarchical order.

4.1. Transformed AND/OR Graph (TAOG) based Precedence Diagram for MTDLB

Problem

As mentioned in Sections 2 and 3, there are various precedence diagrams in the

literature for the DLB problem. However, the insignificance of functionality for

disassembly creates a flexible precedence diagram for assembly lines. AND/OR Graph

based precedence diagram reflects real life more as it provides access to all possible

64

disassembly sequences. However, it has not been widely used in the literature, as it is
difficult in terms of programming/modelling. For this reason, in 2009 Kog et al. suggested
the Transformed AND/OR Graph (TAOG) based precedence diagram, which is easy for
programming/modelling. Actually, the DLB problem, which reaches the optimum result
in a very short time by considering all possible disassembly sequences, has shown its
competence with the emergence of mathematical models. However, there is no
mathematical model of the TDLB problem used in the TAOG precedence diagram in the
literature. Therefore, within the scope of this study, the TAOG precedence diagram
defined by Kog et al., 2009 was developed for the TDLB problem is given in Figure 4.2
for the Flashlight product as an example application.

Head housing (H)
a i Main housing (M) c

ICover (C) r
V\
b
Glass (G| * Spring (S)
Bulb (B) Battery (A)

(CGBHMSA)

Figure 4.2. Used TAOG based precedence diagram for Mixed-Model Two-Sided Disassembly Line
Balancing (MTDLB) problem: (a) a sample product (flashlight), (b) AND/OR graph of flashlight, (c)
Transformed AND/OR graph of flashlight, (d) TAOG of flashlight for MTDLB problem

In the TAOG diagram for the TDLB problem given in Figure 4.2, the sub-assembly
parts of the Flashlight product are given with a, AOG with b, TAOG with ¢ and TAOG
for the TDLB problem developed within the scope of this study. White nodes represent
normal nodes (disassembly tasks), blue nodes represent artificial nodes. The only
difference between the developed TAOG precedence diagram and the traditional TAOG
precedence diagram is that it has a side that can be made for each of the normal nodes.

Starting from the artificial node A,, only one of the normal nodes of each artificial node

65

connected with the OR Successor relationship is selected and continued. The precedence

diagram is obtained when there is no other normal node to be selected.

4.2. Assumptions for MTDLB Problem
Some assumptions or definitions have been made for the MTDLB problem

investigated in this thesis. These assumptions/descriptions in order:

e The disassembly line has two-sided layout.

e More than one different product can be disassembled in the disassembly
line.

e Each product has more than one disassembly sequence alternative and the
mathematical model decides the best disassembly sequence.

e Each job in the selected disassembly sequence must be assigned straight or
reverse to a station.

e There is a difference in processing times between jobs assigned to the same
station.

e If the predecessor jobs are assigned to reciprocal stations, the predecessor
job cannot be started before the predecessor job is finished.

e Each job has two types of assignability, straight or reverse, and jobs must
be assigned to the appropriate station for the type to which they can be
assigned.

e The completion times of the jobs assigned to the station for each model

cannot exceed the cycle time.

4.3. Mixed-Integer Linear Programming (MILP) based Mathematical Model for
MTDLDB Problem

A Mixed-Integer Linear Programming (MILP) based mathematical model has been
developed for the MTDLB problem investigated in this thesis. First, the notation is
specified for the developed mathematical model, and then the objective functions and

constraints are specified.
Scalars:

nA = max{n4,,} Number of total artificial nodes
nN = max{nN,,} Number of total normal nodes (tasks)

nJ Number of available work-stations

66

nsS
nM

Indices and Sets:

k €{1,..,nA}

i€{1,..,nN}

je{l, .., nj}

s€{l,..,nS}

PRE(m, k, 1)

suc(m,k,i)

6(m,i,s)
Parameters:

ni,

nN,,

Cm

tim

Number of sides

Number of models

Set of artificial nodes.

Set of normal nodes (tasks).

Set of mated-stations.

Set of station sides.

Set of immediate normal node i predecessors of artificial
nodes k for each model m.

Set of immediate normal node i successors of artificial
nodes k for each model m.

Set of station-sides s where normal node i can be made for

each model m.

Number of artificial nodes for each model m.
Number of normal nodes for each modelm.
Cycle time for each model m.

Processing time of each normal task i for each model m.

Decision and Auxiliary Variables:

Fj

Gj

ijs

xmijs

If mated-station j is opened from both side, 1, otherwise, 0.
If mated-station j is opened from only one side, 1,

otherwise, 0.

If station j is opened from station-side s, 1, otherwise, 0.

If task h is made before task i, 1, otherwise, 0.

If station-side s of station j for model m is opened, 1,

otherwise, 0.

If station j is opened from station-side s, 1, otherwise, 0.

67

4.3.1. Objective Functions of MTDLB Problem
As mentioned in Section 2 and Section 3, a wide variety of objective functions can
be used for the DLB problem. In this thesis, three objective functions, which are
considered the most necessary for two-sided lines, are used. These objective functions
are, respectively, minimizing the cost of line design (muting stations as much as possible
for two-sided lines), minimizing the total processing time since TAOG precedence
relations are used (minimizing the processing time will also minimize the resources used,
such as electricity) and achieving line balance. The objective functions defined for the
MTDLB problem are given in Equation 4.1 — 4.3, respectively.
nJ
objective; = Mian X (F] + Gj) (4.1)
j=1
Equation 4.1 expresses the minimization of the design cost of the resulting
disassembly line. In two-sided lines, it is desirable to open the stations as mutually as
possible. In this way, the line is made as short as possible and space is saved. For example,
while eight stations occupy a minimum of eight units in a straight disassembly line, a

minimum of four units in a double-sided disassembly line.

The second objective function for the MTDLB problem is to minimize the number

of opened stations. This objective function is as given in Equation 4.2.

nJ ns

objective, = Minz Z Ujs (4.2)

j=1s=1

Equation 4.2 expresses the minimization of the number of opened stations in the
disassembly line. While it is desired that the opened stations are mutual in the first
objective function, it is aimed to minimize the number of opened stations. For example,
if there are seven stations and eight stations as two-sided disassembly line alternatives
that take up four units of space, the line with seven stations is preferred. However, while
there are seven stations in the two-sided disassembly line, which takes up five units of
space, there can be eight stations in the two-sided disassembly line that takes up four units
of space. Which alternative is better in this case depends on the decision maker.
Therefore, the second objective function of the MTDLB problem is to minimize the

number of opened stations.

68

The third objective function for the MTDLB problem is to minimize the sum of the
processing times of the selected disassembly operations. This objective function is as

given in Equation 4.3.

nM NN

objective; = Min Z Z tmi X Zmi (4.3)

m=1 i=1

Equation 4.3 refers to the minimization of the sum of the disassembly operations
times selected from the TAOG precedence relations of each model. The insignificance of
functionality for disassembly leads to stretching of the priority relations, which in turn
causes the tasks and task sequences to change. Although the number of studies in which
a single disassembly sequence is used, just like in assembly lines, is quite high in the
literature, it does not reflect the truth. TAOG, used in this study and developed by Kog et
al in 2009, provides a systematic display of all disassembly sequences in one place using
artificial and normal nodes. The aim is to minimize the processing times of the

disassembly tasks in the selected disassembly sequence.

4.3.2. Constraints of MTDLB Problem

The constraints constituting the general lines of the MTDLB problem investigated
within the scope of this thesis are as given in Equation 4.4 — 4.22. These constraints are
indispensable constraints and in the absence of one of them, the problem ceases to be an
MTDLB problem.

Zmi =1 vm € {1, ...,nM}, Vk € {0} (4.4)

iesUC(m,k)
_ vm € {1, ..,nM},Vk €

Zmi = Zmi (4.5)
iesuc(mk) i€PRE(m,k) {1,...,n4,,}
il vm € {1, ..,nM},Vi € (46)

Xmijs = Zmi :

T=1 seo(m,i) {1, ., N, }

J
Fmivs vm € {1,...,nM},Vj €
iEPRE(m,k) v=1 s€0(m,i) P ! (4_7)
{1,...,nJ},Vk € {1, ...,n4,,;}
=

ieESUC(m,k) sef(m,i)

xmijs

69

tfmi <CX Zmi

tfmi = tmi X Zmi

tfmi - tfmh +BM

X (2 — z xmijs
sed(m,i)

- Z xmhjs>2tmi

sef(m,h)

tfmi - tfmh + BM
X (3 — Xmijs — Xmhjs

— 8hi) =t

tfmh - tfmi + BM
X (2 — Xmijs — Xmhjs

+ 8pi) 2 tinn

Xmijs — nNm X Ymjs
ief(m,s) N isnNy,

<0

nM
Zymjs—nMXUjS <0
m=1

ns
s=1

F,G; € {0,1}
U;s € {0,1}
&;n € {0,1}

Zmi € {O, 1}

tfmi =0

vm € {1,...,nM},Vi €
{1,...,nN,,}
vm € {1, .., nM},Vi €
{1,...,nN,,}

vm € {1,..,nM},Vj €
{1,..,nJ},Vk €
{1,...,n4,,},Vi €

SUC(m, k), Yh € PRE(m, k)

vm € {1, ..,nM},Vj €
{1,..,nJ},vs € {1, ...,nS},Vi €
{1,..,nN,,},vh € {i >
h|1,..,nNy,}

vm € {1, ..,nM},Vj €
{1,..,nJ},vs € {1, ...,nS},Vi €
{1,...,nN,,},Vh € {i >
h|1,..,nN,}

vm € {1,..,nM},Vj €
{1,..,nJ},Vs € {1, ...,nS}

vje{l,..,nJ},Vs €{1,..,nS}

vje{1,.. 1}

vjie{l,..,nJ}
vje{l,..,nJ},Vs €{1,..,nS}
Vi,h € {1,...,nN,,}

vm € {1, ..,nM},Vi €
{1,..,nN,}

vm € {1, ..,nM},Vi €
{1,...,nN,,}

70

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)
(4.17)
(4.18)

(4.19)

(4.20)

vm € {1, .., nM},Vj €

Vs € 10,13 (1,..,n},¥s € {1, ...,nS) (4.21)
vm € {1, .., nM},Vi €

Xmijs € {0,1} {1,..,nN,,,},Vj €{1,..,nJ},Vvs € (4.22)
{1,...,nS}

Equations 4.4 — 4.22 are the main constraints describing the MTDLB problem
discussed in this thesis. Equations 4.4 — 4.6 ensures that a single disassembly sequence is
selected for each model over the TAOG it belongs to, and that each selected normal node,
that is, disassembly tasks, is assigned to a station on the side where it can be done.
Equation 4.4 ensures that for each model, one of the normal nodes of the first artificial
node (k = 0) on the TAOG it belongs to, which has a Successor relationship, is selected.
Equation 4.5 ensures that for each model, except for the first artificial node on the TAOG
it belongs to, if any of the normal nodes of the other artificial nodes (k > 0) with a
Precedence relationship is selected, one of the normal nodes of the same artificial node
with a Successor relationship is selected. Equation 4.6 ensures that if any normal node
(disassembly task) is selected on the TAOG it belongs to for each model, that task is
definitely assigned to a station on the side where it can be done. Equation 4.7 provides
precedence relationships for each model. Artificial nodes on TAOG provide priority
relations. For each model, except for the first artificial node on the TAOG it belongs to,
the normal nodes of the other artificial nodes with a Precedence relationship are assigned
to the same station before the normal nodes with the Successor relationship. Equation 4.8
ensures that the end times of the normal nodes selected for each model are less than or
equal to the cycle time. Equation 4.9 ensures that the expiry times of the normal nodes
selected for each model are greater than or equal to the transaction time. Equation 4.10
ensures that if two tasks with a predecessor relationship are assigned to the same station
on the same side or mutually, the difference in finish times between the predecessor task
and the other task is equal to the processing time of the other task. For each model, except
for the first artificial node on the TAOG it belongs to, if each normal node of the other
artificial nodes with a Precedence relationship and each normal node with a Successor
relationship are assigned to the same station on the same side or reciprocally, the ending
time of the normal node with the Successor relationship is calculated. Ensures that the
finish time of the normal node with the Precedence relationship is as high as or more than

the execution time of the normal node with the Successor relationship. In Equations 4.11

71

—4.12, the difference in finish times between tasks assigned to the same station is adjusted
according to which job has been done before. That is, only one task can be performed on
the station at a time in its zone. Equations 4.13 — 4.15 are the necessary constraints for
calculating objective functions. Equation 4.13, for each model, if there is a task processed
on any mated station, information is if that mated station is opened on the transacted side.
In Equation 4.14, if each mated station is opened on any side for any model, information
is if that mated station is opened on that side. In Equation 4.15, for each mated station, if
the number of stations opened on each side is two, it is mutually opened, if it is one, it is
unilaterally opened. Equations 4.16 — 4.22 are the constraints by which the type of

decision variables are determined.

4.4. An lllustrative Example for MTDLB Problem

An illustrative example was designed and solved by Paksoy et al by using Flashlight
and Radio EOL products released by TAOG precedence relations in 2013 in order to test
the accuracy of the model and to better understand the MTDLB problem, which was
defined within the scope of this thesis and whose MILP-based mathematical model was

developed.

4.4.1. Description of Data

The Flashlight EOL product has 10 disassembly tasks and the radio EOL product
has 30 disassembly tasks. TAOG consisting of 10 normal nodes (disassembly task) and 8
artificial nodes of the Flashlight product is given in Figure 4.3 and TAOG consisting of

30 normal nodes (disassembly task) and 20 artificial nodes of the Radio EOL product is

given in Figure 4.4.

Figure 4.3. TAOG for EOL Flashlight product

72

Oy

Y
1%

GIV

Figure 4.4. TAOG for EOL Radio product

73

The processing times of the Flashlight EOL product are given in Table 4.1 in
seconds as defined by Paksoy et al (2013). Also in this table are given the randomly
generated possible sides for each disassembly task. Similarly, the processing times of the
Radio EOL product are given in Table 4.2, as defined by Paksoy et al (2013), in seconds,
and randomly generated sides for each disassembly task. Cycle times for both models are
assumed 40 seconds.

Table 4.1. The side information and processing times of the Flashlight EOL product

Tasks Side (1 - Left, 2 - Right) Processing Time (second)
3
28
12
34
2 13
21
6
18
25
2 10

© 0 N o U~ W N R
P P NN P PR RPN R
)

[y
o

Since commercial solvers such as GAMS, LINGO, Gurobi, which are available in
the market, cannot give the solutions of multi-objective mathematical models, the
objectives of the MTDLB problem defined in this thesis have been converted to
hierarchical form as given in Equation 4.23. Here & denotes a very small number. In this
way, a degree of importance was given to each objective function and the multi-objective

mathematical model was transformed into a single-objective mathematical model.

objective;, = Min(objective, + € X objective, + €% X objectives)

nj nj ns
objective;,, = Min Zj X (Fj + G;) + & % ZZ Ujs + &
j=1 j=1s=1 (4.23)
nM NNm
X Z Z tmi X Zmi
m=1 i=1

Equation 4.23 is the hierarchical objective function for the MTDLB problem. First,

it is aimed to minimize the design cost of the disassembly line. Secondly, it is aimed to

74

minimize the number of opened stations in the disassembly line. Finally, it is aimed to
minimize the sum of the disassembly operations times selected from the TAOG

precedence relations of each model.

Table 4.2. The side information and processing times of the Radio EOL product

Tasks Side (1 - Left, 2 - Right) Processing Time (second)
1 2 11
2 1 20
3 1 20
4 1,2 14
5 2 19
6 2 1
7 2 7
8 1 6
9 1 6
10 1,2 7
11 1,2 19
12 1,2 11
13 1,2 18
14 1 13
15 1 5
16 1,2 11
17 2

18 2 4
19 1,2 6
20 1 8
21 2 18
22 1 15
23 1 15
24 2 6
25 2 10
26 1,2 20
27 1 13
28 1 1
29 1,2 4
30 1,2

75

4.4.2. Solution of Illustrative Example

The MILP-based mathematical model created for the MTDLB problem was solved
using Gurobi solver on an Intel i7 2.00 GHz processor with 8 GB ram computer. Python
codes for Gurobi are given in Appendix 2. The optimum solution was reached in 1.33
seconds. As a result of the solution, four stations were opened. While one mated station
was opened mutually, two mated stations were opened unilaterally. Total disassembly
line length was obtained as three units. Normal nodes (disassembly tasks) selected over

TAOG for both models are given in Figure 4.5 and Figure 4.6.

O—0—0

Figure 4.5. Optimal disassembly sequence of flashlight EOL product for illustrative MTDLB problem
example

Figure 4.6. Optimal disassembly sequence of radio EOL product for illustrative MTDLB problem
example

Detailed solution of MTDLB problem for Illustrative example is given in Table 4.3
for Flashlight EOL product and Table 4.4 for Radio EOL product. At the same time, the
resulting disassembly line is shown in Figure 4.7.

Table 4.3. Disassembly line assignments and solution information of the Flashlight EOL product

Task Station Side Processing Time Starting Time Ending Time
1 1 1 30 0 30
3 2 2 12 25 37
6 3 1 21 0 21
7 3 1 6 21 27
9 2 2 25 0 25
10 3 1 10 27 37

76

Table 4.4. Disassembly line assignments and solution information of the Radio EOL product

Task Station Side Processing Time Starting Time Ending Time
1 1 2 11 0 11

3 1 1 20 11 31

4 2 2 14 0 14

5 2 2 19 14 33

6 2 2 1 33 34

9 3 1 6 9 15

17 2 2 6 34 40

29 3 1 4 4

30 3 1 5 4 9

Mated Station 1-L Mated Station 3-L
Left Side A A [(Boy BBt
B Bloh B
/
—> Material Handling System
EOL
Product — -
B - Mated Station 1-R Mated Station 2-R
e Right Side \ A (B [B1H
B (B, B2 B [Bi [Bsp BliRirn
Wz Idle time

Disassembly Task (D.T.)
Disassembled Product

Iransfer Line to
Warehouse

Figure 4.7. Optimal disassembly line for illustrative MTDLB problem example

For the Flashlight EOL product, three stations in three mated stations are used. Total
disassembly time is 104 seconds. Therefore, the line efficiency for the Flashlight EOL
product is 86.67%. For the Radio EOL product, four stations, which are in three mated
stations, are used. Total disassembly time is 86 seconds. Therefore, the line efficiency for
the Flashlight EOL product is 53.75%. Considering that equal amount of product comes
from both EOL products, the efficiency of the line becomes 70.21%. However, since the
efficiency of the line depends on the processing times and the number of stations opened,

and one of the objectives of the MTDLB problem is to minimize the processing times,

77

the low efficiency remains inexpressive based on this problem. In order to minimize the
environmental impact, the process times spent for disassembly should be minimized

rather than the efficient operation of the line.

The illustrative example that was resolved was for two small-volume industrial
products. However, since the defined MTDLB problem takes into account large volume,
multi-model products, when the number of models and product content increases, it will
not be possible to reach the optimum result with commercial software due to the NP-hard
nature of the problem. At the same time, although the MTDLB problem described is
multi-objective, since commercial software does not have a multi-objective solver, the
objectives were converted into a single objective format and optimum results were
sought. However, the desired situation is to find the best results for each objective and
show the results in the region called Pareto Frontier to the decision maker. The best
solution among them is left to the decision maker. For this reason, a Multi-Objective
Memetic Algorithm has been defined to solve the MTDLB problem described in the other

section.

78

5. SOLUTION APPROACH - MULTI-OBJECTIVE MEMETIC ALGORITHM
(MOMA)

For the MTDLB problem defined in this thesis, when large-volume multi-model
products are considered, it is not possible to reach the optimum result with commercial
software. At the same time, the multi-objective nature of the problem limits the
consideration of each objective function individually. Commercial software only obtains
solutions for one objective. For all these reasons, a Multi-Objective Memetic Algorithm
(MOMA) has been defined to solve the MTDLB problem described in this section.

Memetic Algorithm (MA) is an advanced version of Genetic Algorithm (GA). GA
is a metaheuristic algorithm that takes into account the evolutionary process in nature. It
basically consists of Selection, Crossover and Mutation processes. Thanks to all these
processes, populations similar to the old population but constantly improving themselves
by taking the good characteristics of the old population are obtained. MA is the addition
of Local Search algorithms to GA. Local Search is based on iterative improvement of an
existing solution using a specific methodology. By adding any Local Search algorithm to
the GA, an MA is obtained. In this section:

1. Genetic Algorithm defined,

2. Local Search algorithms defined,

3. Memetic Algorithm defined,

4. Multi-objective structure and Non-Dominated Sorted Genetic Algorithm —

Il (NSGA-II) algorithm are defined in metaheuristic algorithms,

Multi-Objective Memetic Algorithm (MOMA) algorithm defined,

6. The representation is defined for the solution of the MTDLB problem with
MOMA.

o

5.1. Genetic Algorithm (GA)

GA is an artificial intelligence-based optimization algorithm used to obtain near-
optimal results thanks to biologically inspired operators such as Selection, Crossover and
Mutation, taking into account the evolutionary process in nature. Alan Turing first
discovered it in 1950 (Whitley, 1994). Each solution/individual has a feature that can
change and/or mutate. Although these solutions are usually represented by zero and one
(binary coding), different encoding types (permutation, integer coding) are also available

79

in the literature. GA enables solutions/individuals within a given population to evolve for
the better.

GA usually starts with an initial solution/population that is randomly generated or
generated according to a specific procedure. Each iteration in the GA is called a
generation. In each generation, the fitness value (objective function) is calculated for each
solution/individual in the population. Among the individuals in the current population,
solutions/individuals with a better fitness value are selected to create the new generation.
Selected solutions/individuals are crossed among themselves according to certain
procedures and new solutions/individuals are obtained. Usually, when the maximum
number of generations is achieved, the algorithm is terminated and the best

solution/solutions obtained so far are shown to the user.

In order to implement GA, the representation of solutions/individuals (binary,
permutation, integer etc. coding) and a fitness function are required. By standard, the
representation of each solution/individual is a bit string of one and zero. However, the
most appropriate display type is determined according to the nature of the problem. For
example, the notation for the Traveling Salesman Problem (TSP), which is frequently
encountered in the literature, is permutation coding. Permutation coding is preferred
because each city is visited only once and the main important thing is to reveal the order
in which the cities are visited. In this way, fitness function calculations can be made very
easily over the representations of the population. It can also be used by combining all

display formats according to the structure of the problem.

After the representation and fitness value calculation for the GA is completed, the
GA is started with an initial population and the solution is iteratively improved with the

Selection, Crossover and Mutation operators. A typical GA is given in Figure 5.1.

80

[nitial population

i

L 4

Calculate the fitness value

¥

Selection

v

Crossovel

v

Ntation

'

_-"--’---- -\-\-\-\-\-\"'\-\. ~
) . . -y
— “Ts termination criteria N

— atisfied? —
S - -
— -

-

\'I_":‘u

—

"

S

Figure 5.1. Flowchart of Genetic Algorithm (GA) (Albadr et al., 2020)
5.1.1. Selection Operator in GA
In order to obtain new generations, two individuals are selected from the individuals
in the current generation, and then crossover and mutation are applied. Selection of
individuals in the current generation plays a critical role so that new individuals can

develop the best solution.

There are a wide variety of selection strategies developed for specific objectives for

the new generations in the literature.
The most used selection strategies are as follows:

e Roulette Wheel Selection

e Stochastic Universal Sampling (SUS)
e Tournament Selection

e Rank Selection

e Random Selection

Roulette Wheel Selection

81

Individuals in the current generation get a share from the circular wheel according
to their fitness values. The sum of the shares of individuals in the current generation is
100% as the whole of the circular wheel, or 360 degrees. The wheel is randomly rotated
and the individual corresponding to the fixed point of the wheel is selected for crossover.
The first individual selected for the second individual to be crossed is removed from the
wheel and the vacant share is distributed to all individuals in proportion to their shares.
The wheel is rotated randomly again and the individual corresponding to the fixed point
of the wheel is selected for the second individual of the crossover. This is repeated for
half the number of individuals in the generation (two parents are selected for two
offspring in each iteration).

In Roulette Wheel Selection calculations, when in and in' represent individuals in
the current generation, nIN represents the total number of individuals, p;,, represents the
selection probability for each individual (the area it occupies on the wheel), and f;,
represents the fitness value for each individual, Equation 5.1 is used in the first individual

selection. 5.2 is used for second individual selection.

Pin = nmfl—n Vvin € {1, ...,nIN} for maximization problems
in'=1 fin'
1 (5.1)
Pin = % Vin € {1, ...,nIN} for minimization problems
in’=1an,
Pin .
Din = SniN Vvin € {1, ...,nIN} (5.2)

in'=1n in' #slctd_inv Pin’

A typical example for Roulette Wheel Selection is given in Figure 5.2.

Select Point

Maximization Problem

Fitness Value
Invidual 1 5
Invidual 2 10
Invidual 3 18
Invidual 4 7

Figure 5.2. Representation of Roulette Wheel Selection method in GA

82

Stochastic Universal Sampling (SUS) Selection

Stochastic Universal Sampling (SUS) Selection is the same as Roulette Wheel
Selection. The only difference between the two is that while Roulette Wheel Selection
has a single select point, Stochastic Universal Sampling (SUS) Selection has two select
points. This results in a higher selection of individuals with low probability. The
Stochastic Universal Sampling (SUS) Selection for a typical maximization problem is

given in Figure 5.3.

Select Point 1

Invidual 4

Maximization Problem

Fitness Value

Invidual 1 5
Invidual 2 10
Invidual 3 18
Invidual 4 7

Select Point 2

Figure 5.3. Representation of Stochastic Universal Sampling (SUS) Selection method in GA

Tournament Selection

Tournament Selection or K-Way Tournament Selection is the selection of k
individuals from the population and choosing the best of the selected individuals as
parents. The individual selected for the second parent is removed from the list and the
process is repeated. Tournament Selection is very common in the literature as it can be
applied for all kinds of fitness values. The Tournament Selection for a typical

maximization problem is given in Figure 5.4.

Fitness Select Play a Game
value Random 3 with Fitness

0.85 Invidual 1 Invidual Value
058 | Invidual 2 Invidual 2

1.38 Invidual 3

Invidual 4

Invidual 5

38 Invidual 5

Invidual 5

Invidual 6

Invidual 7

Invidual 8

Figure 5.4. Representation of Tournament Selection method in GA

83

Rank Selection

Rank Selection is generally used when individuals in the population have very close
fitness values. Individuals in the population are ranked according to their fitness values.
The ranked individuals have the probability of being selected according to their rank. It
Is the same as Roulette Wheel Selection. However, all individuals have a share according
to their rank instead of a share according to their fitness value. Therefore, no matter how
much the fitness value value is above the others, the selection rate is constant. The Rank

Selection for a typical maximization problem is given in Figure 5.5.

Select Point

\4

~
Invidual 1
10%
Invidual 4
20%

Maximization Problem

Fitness Value
Invidual1 5
Invidual 2 10
Invidual 3 18
Invidual 4 7

ank Probability
%10
%30 Invidual 2
%od 30%
%20

W= N e

Invidual 3
40%
~

Figure 5.5. Representation of Rank Selection method in GA

Random Selection

Random Selection is the random selection of parents from the population. It is
generally not preferred because good individuals are deleted from the population after a

period.

5.1.2. Crossover Operator in GA
Obtaining new offspring individuals by crossing the individuals in the population
among themselves can be defined as "crossover". In this way, the population is diversified

and different points in the solution space are searched.

There are many different crossover strategies in the literature. The choice of this
strategy, which differs from the problem and coding style being addressed, is critical for

an accurate scan of the solution space.

84

The most commonly used crossover strategies are as follows:

e One/Single Point Crossover

e Multi Point Crossover

e Uniform Crossover

e Whole Arithmatic Recombination Crossover
e Davis’ Order Crossover (OX1)

One/Single Point Crossover

Two individuals selected for crossover are obtained by cutting from a
predetermined crossover point or from a randomly determined crossover point in each
crossover operation and adding them to each other to obtain two new individuals.
Typically One/Single Point Crossover as given in Figure 5.6.

Parent 1 ‘0|0|1‘0|1 1‘1|0‘0‘1|
Parent 2 ‘1|1|1‘0|10‘0|0‘1‘1|
Crossover
Point

Offspringl‘0|0|1‘0|1‘0‘0|0‘1‘1|

OffspringZ‘1|1|1‘0|1‘1‘1|0‘0‘1|

Figure 5.6. A typically One/Single Point Crossover

Multi Point Crossover

Two individuals selected for crossover are two or more predetermined crossover
points, or two new individuals are obtained by cutting them from randomly determined
crossover points in each crossover operation and adding them to each other. Typically a

Two Point Crossover is as given in Figure 5.7.

85

Parent 1 ‘0‘0‘10‘1‘1‘1 0|0‘1|

Parent 2 ‘1‘1‘10‘1‘0‘0 0|1‘1|
Crossover Crossover
Point 1 Point 2

Offspringl‘0‘0‘1|0‘1‘0‘0‘0|0‘1|

OffspringZ‘1‘1‘1|0‘1‘1‘1‘0|1‘1|

Figure 5.7. A typically Multi Point Crossover

Uniform Crossover

It is to obtain two new individuals by taking each nucleotide of the two individuals
selected for crossover from the first or second individual in line with the randomly
determined number and giving the remaining nucleotide to the other individual. Typically

a Uniform Crossover is as given in Figure 5.8.

Parent 1 ‘0‘0‘1|0‘1|1‘1‘0|0‘1|

Parent 2 ‘1‘1‘1|0‘1|0‘0‘0|1‘1|

Offspring1‘0‘1‘1|0‘1|0‘0‘0|1‘1|

Offspringz‘1‘0‘1|0‘1|1‘1‘0|0‘1|

Figure 5.8. A typically Uniform Crossover

Whole Arithmetic Recombination Crossover

Whole Arithmetic Recombination Crossover is generally used for continuous
number coding. The chromosomes of the two individuals selected for crossover are
formed by Equation 5.3. That is, the newly formed individuals are the arithmetic mean of

the parent individuals depending on the parameter a, which takes a value between 0 and

86

1. A typical Whole Arithmetic Recombination Crossover for the a = 0.5 case is as given
in Figure 5.2.
Offspring; =axx+(1—a) Xy (5.3)
Offspring, =axy+(1—a)Xx
The a parameter used in Whole Arithmetic Recombination Crossover varies
between 0 and 1. If this parameter is selected as 0 or 1, the new individuals formed are
the same as the parent individuals, and if it is selected as 0.5 in the middle, the two newly
formed individuals are the same. This situation is shown visually in Figure 5.9. In the

case of choosing this crossover type, the selection of parameter a plays a critical role.

same as the new offsprings same as the
L —
old population are the same old population
a=0.0 < » a=1.0
a=0.5

Figure 5.9. Alpha parameter problem in Whole Arithmetic Recombination Crossover

Typically a Whole Arithmetic Recombination is as given in Figure 5.10.

Parent 1 04 |08 | 19 |07 |20] 12|06 05]|09] 13
Parent 2 07 | 14 |12 02| 14 |07 |06 | 10| 13| 11
a=04

Offspringl 06 | 12 | 1.5 | 04 | 22 |09 | 06 | 08 [11 | 12

Offsptingz 05|10 | 16 |05 |12 1006 07| 11|12

Figure 5.10. A typically Whole Arithmetic Recombination Crossover

Davis’ Order Crossover (OX1)

The OX1 crossover method is generally preferred for permutation coding. The

working algorithm is as follows:

87

1. Randomly generate two crossover points on the parent chromosomes and
copy the parental segment between the two crossover points to the new
offspring.

2. Fill in the remaining blanks for the first offspring created from the second
parent, in order not to be in the first offspring.

3. Repeat step two for the second offspring.

A typical example for the OX1 crossover method is as given in Figure 5.11.

Parent 1 ‘1‘2‘3 4‘5|6‘7 8|9‘10|
Parent 2 ‘7‘1‘2 5‘10|8‘3 6|9‘4|
Crossover Crossover
Point 1 Point 2
l
orspngt [T | <]+ [+ [7] []|
Offspringz‘ ‘ ‘ |5‘10|8‘3‘ | ‘ |

Offspring 1 ‘1‘2‘10|4‘5|

(=)}
—
)
[#%)
)

OffspringZ‘1‘2‘4|5‘10|8‘3‘6|7‘9|

Figure 5.11. A typically Davis’ Order Crossover (OX1)

5.1.3. Mutation Operator in GA

Making a small random change in the chromosomes of individuals in order to
provide diversity in the population and obtain new solutions can be defined as "mutation”.
The mutation is carried out within a certain rate. If this ratio is too small, the solutions
will gather around the local optimum after a while, on the contrary, if it is too high, the
algorithm will turn into a random search and it will be difficult to find local optimum
points and global optimum points. Therefore, finding a very good mutation rate will both
ensure that all local optimum points are found and escape from these local optimum

points.

88

In the literature, there are various strategies related to mutation, just like crossover
strategies. Although these strategies are used singularly in most studies, many studies

combine multiple strategies.
The most commonly used mutation strategies are as follows:

e Bit Flip Mutation

e Random Resetting Mutation
e Swap Mutation

e Scramble Mutation

e Inversion Mutation

Bit Flip Mutation

It is the most used method in solutions that are usually coded with the Binary
Coding method. This method is based on the conversion of one or more randomly selected
nucleotides from the chromosome to their opposite. A typical Bit Flip Mutation is as

given in Figure 5.12.

A Sample Chromosome Mutated Chromosome

Lriofoiririolt o friolriiiiioin]

Selected Nucleotide Mutated Nucleotide

Figure 5.12. A typically Bit Flip Mutation

Random Resetting Mutation

It is the converted format for Integer Coding of the Bit Flip Mutation method, which
is frequently used for the Binary Coding method. This method is based on assigning a
random value from a set of allowed values to one or more randomly selected nucleotides

from the chromosome. A typical Bit Flip Mutation is as given in Figure 5.13.

Feasible Values = {1, 2,3,4}

A Sample Chromosome Mutated Chromosome

a4l li2iataiainl o Taiiisiaiaioing

Selected Nucleotide Mutated Nucleotide

Figure 5.13. A typically Random Resetting Mutation

89

SWAP Mutation

It is the most common mutation strategy in the literature, which can be used for any
coding method. Usually used for Permutation Coding, this strategy is based on swapping

two randomly selected nucleotides. A typical Swap Mutation is as given in Figure 5.14.

A Sample Chromosome Mutated Chromosome

’___V___V___V___V___ TTTV T T TN

,____ __3__) 6__ __2__ L ____7__
Selected Nucleotides '/

Figure 5.14. A typically SWAP Mutation

Scramble Mutation

Scramble Mutation is another mutation strategy that can be used for any coding
method such as the Swap Mutation strategy. Usually used for Permutation Coding, this
strategy is based on randomly shuffling a randomly selected nucleotide subset. A typical

Scramble Mutation is as given in Figure 5.15.

A Sample Chromosome Mutated Chromosome

’———v-—— R el e oo Tw Ty

,____ __3__) 6__ __2__ R ____7__
Selected Nucleotides '/

Figure 5.15. A typically Scramble Mutation

Inversion Mutation

Inversion Mutation is another mutation strategy that can be used for any coding
method such as Swap Mutation and Scramble Mutation strategies. Usually used for
Permutation Coding, this strategy is based on inversion of a randomly selected subset of

nucleotides. A typical Inversion Mutation is as given in Figure 5.16.

A Sample Chromosome Mutated Chromosome
C 4137 671 271 1 V5 770 41 301 51 17271 6101 70
, 31612 7 C—> (4131511127617

Selected Nucleotides '/

Figure 5.16. A typically Inversion Mutation

90

5.2. Local Search Algorithms

A Local Search algorithm is an optimization algorithm that starts with a solution
and searches for the best solution by iteratively moving to a neighboring solution,
adhering to a certain procedure. Local Search algorithms can only be applied when a
neighborhood is defined. In this neighborhood graph theory, while the arcs between the
nodes can be removed and connected to other nodes, it can be the candidate solution,
while in the Traveling Salesman Problem (TSP), which is coded with permutation coding;
two nucleotides can be changed with SWAP. The SWAP applied for TSP and the arc
change applied for Graph Theory are actually the same, but there are structural
differences. An example neighborhood with Graph Theory for the TSP problem is shown
in Figure 5.17 (this is also known as three-opt algorithm), an example neighborhood for
permuation coding is shown in Figure 5.18 (this is also known as SWAP). It is seen that
the neighborhood shown in Figure 5.17 and the neighborhood shown in Figure 5.18 are
the same.

Travelling Salesman Problem with Graph Theor

Current Solution Neighbour Solution

O Node =— Arc —— Cutting Arcs

Figure 5.17. A neigbourhood solution with 3-opt algorithm for Travelling Salesman Problem

91

Travelling Salesman Problem with Permutation Coding

Current Solution Im 4| 6| 3

Neighbour Solution | 1 [2 | 5 | 4 | 6| 3

Nucleotid . Changed Nucleotid

Figure 5.18. A neighourhood solution with SWAP operator for Travelling Salesman Problem

In Graph Theory, each solution has more than one neighbor solution when
considering which arcs will be cut, which nucleotides will be replaced or changed in
solutions with permutation or any encoding. In a 10-city TSP problem using permuation
coding, approximately 55 neighbors are obtained with SWAP. The decision of which
neighborhood to move to in the next iteration is made based on the current solution,
neighboring solutions and the procedure used. It is stuck at the local optimum point when
there are no optimizer neighbors left for the solution. The local optimum problem can be
solved by switching to a completely different solution, using iterative

algorithms/procedures such as Iterated Local Search (ILS).

Termination of local search may be due to an iteration limit, not optimizing the best
solution in a given iteration. Local search algorithms are typically approximate or
incomplete algorithms, as the algorithm may terminate even before the solution found is
global optimum. Because the global optimum solution may be too far from the current

solution neighbors.
Local search algorithms that are frequently preferred in the literature:

¢ Hill Climbing Algorithm

e k-Opt Algorithm

e Simulated Annealing (SA) Algorithm

e Tabu Search (TS) Algorithm

e Variable Neighbourhood Search (VNS) Algorithm
e Guided Local Search (GLS) Algorithm

92

Hill Climbing Algorithm

Hill Climbing algorithm is a local search algorithm used for solving mathematical
optimization problems. It is called Hill Climbing because it is based on searching for the
highest points for a maximization problem on a two-dimensional graph. It is based on the
principle of looking at the neighborhoods of the current solution, and when a better
neighborhood is found, moving to that point and searching for the neighborhoods of that
point. The Hill Climbing Algorithm pseudocode for a maximization problem is as given
by Algorithm 5.1.

Algorithm 5.1. Pseudocode of Hill Climbing Algorithm for a Maximization Problem
1: i« initial solution
2: while f(s) < f(i) Vs € Neighbours(i) do

3: s « ANeighbours(i)
4 if f(s) > f(i) do

5: i<s

6 end if

7. end while

k-Opt Algorithm

The k-Opt algorithm is a local search algorithm generally used for solving
mathematical optimization problems using Graph Theory. The general usage in the
literature is for solving the TSP problem. k is the number of arcs to be cut from the Graph
created for problem solving. Neighboring solutions are obtained by connecting the cut
arcs to each other in a different way. A typical two-opt algorithm, when n represents the

total number of arcs, is as given by Algorithm 5.2.

Algorithm 5.2. Pseudocode of two-opt Algorithm for a Minimization Problem
1: define initial solution with Graph Theory
2: for(i=1:n—-2);(j=i+2:n)do
3: d1 « total lenght of 2 arc
: d2 « total lenght of 2 arc when swaped

4

5 if d1 > d2do
6: swap arcs
7 end if

8: end while

93

Simulated Annealing (SA) Algorithm

A local search algorithm is often used for combinatorial optimization problems.
The algorithm takes its name from annealing, a technique in metallurgical science where
materials are heated and then controlled cooled to increase the size of crystals and reduce
defects. Kirkpatrick et al. used to solve the TSP problem first introduced the Simulated
Annealing (SA) algorithm in 1983 (Kirkpatrick et al., 1983). With the concept of slow
cooling applied in the SA algorithm, as the solution space is explored, the rate of
acceptance of bad solutions decreases. At the beginning of the algorithm, bad solutions
are also accepted and it is desired to search for the global optimum point, but when the
number of iterations increases and the temperature decreases, the aim is to search for the
local optimum point instead of the global optimum. SA algorithm for a minimization
problem s current solution, s’ neighbour solution, T, initial temperature, T current
temperature, T final temperature, f(s) and f(s") fitness value for candidate solutions, k
temperature coefficient, 4 is the difference in fitness value between the current and
neighboring solution and a is the temperature reduction coefficient as given by Algorithm
5.3.

Algorithm 5.3. Pseudocode of Simulated Annealing Algorithm for a Minimization
Problem
1: s « initial solution

2: T<T,
3: whileT < T do
4: forit = 1:nIT do
5: s' « Neighbour(s)
6: if f(s') <f(s)do
7 s« s’
8: else
9 Aef(s")—=f(s)
10: r « random(0; 1)
. -A
L ifr < exp(kx—T) do
12: s« s’
13: end if
14: end if
15: end for
16: T—aXxT

17: end while

94

Tabu Search (TS) Algorithm

Tabu Search (TS) algorithm is a local search algorithm used for solving
mathematical optimization problems. It was first proposed by Fred W. Glover in 1986
(Glover, 1986) and developed in 1989 (Glover, 1989). As with other local search
algorithms, the TS algorithm checks its neighbors to find a better result. If there is no
improvement, that is, if it is stuck at the local optimum, the algorithm loosens the ground
rule and starts to accept worse solutions. In addition, certain penalties (taboos) are applied
to prevent visiting previously visited points. If a neighboring solution has been visited
before in a short time, it is included in the Tabu List. This improves search performance.
The TS algorithm for a minimization problem is as given by Algorithm 5.4 when s is the
current solution, s’ is the neighboring solution, f(s) and f(s') is the fitness value for the

candidate solutions, and nT is the maximum number of Tabu List elements.

Algorithm 5.4. Pseudocode of Tabu Search Algorithm for a Minimization Problem
1: s « initial solution
2: TabulList « @
3: forit=1:niT do

4: s' « Neighbour(s)

5: if (s' € Tabu List) n (f(s") < f(s) do

6: se s’

7. end if

8: Tabu List « Tabu List U s’

9: if n(Tabu List) > nT do
10: Tabu List « Tabu List — Tabu List (1)
11: end if
12: end for

Iterated Local Search (ILS) Algorithm

Iterated Local Search (ILS) is a local search algorithm often used for combinatorial
optimizations problem solving. The typical feature of local search algorithms is that they
are stuck at the local optimum point. A local search is performed, starting from different
initial solutions, with a change made in the ILS algorithm each time. This is called
“Iterated” local search and the information produced in previous local search stages is not

used. Typically in the ILS algorithm:

1. The local optimum point is searched for the current solution (other local

search algorithms can be used).

95

2. With Perturbation (Mutation), the existing solution is disrupted and a
different point is obtained.

3. Step 1 is repeated.

The ILS algorithm for a minimization problem is as given by Algorithm 5.5 when
s is the current solution, s’ is the neighboring solution, f(s) and f(s') is the fitness value

for the candidate solutions, and nIT is the maximum number of iterations.

Algorithm 5.5. Pseudocode of Iterated Local Search (ILS) Algorithm for a
Minimization Problem
1: s « initial solution
2. s « Local Search (s)
3: forit =1:nIT do
s' « Mutation(s)
s' « Local Search (s")
if f(s') < f(s) do
ses'
end if
end for

© 0N O Oy

Variable Neighbourhood Search (VNS) Algorithm

The Variable Neighborhood Search (VNS) algorithm is a local search algorithm
that is generally used to solve combinatorial optimization problems. Mladenovic and
Hansen first proposed it in 1997 (Mladenovi¢ & Hansen, 1997). It uses multiple
neighborhood structures instead of using a single neighborhood structure as in other local
search algorithms. Local search is performed with this randomly selected neighborhood
structure in each iteration. The VNS algorithm for a minimization problem is as given by
Algorithm 5.6 when s is the current solution, s’ is the neighboring solution, f(s) and
f(s") is the fitness value for the candidate solutions, and nIT is the maximum number of

iterations.

96

Algorithm 5.6. Pseudocode of Variable Neighbourhood Search (VNS) Algorithm for
a Minimization Problem

1: s « initial solution
2: N Vite{l,..,nIT}
« set of neighbourhood structures for all iterations
3: forit =1:nIT do
4: s’ « Shaking(s, N;;)
5: s" « Local Search (s")
6: if f(s") < f(s)do
7: s« s
8: end if
9: end for

Guided Local Search (GLS) Algorithm

Guided Local Search (GLS) algorithm is a local search algorithm used for solving
mathematical optimization problems. Penalties are created during the search in the GLS
algorithm. It is similar to the TS algorithm due to its structure. However, while the
solutions with penalties in the TS algorithm are the same, the penalties in the GLS
algorithm are stuck at the local optimum point. The objective function is changed when
the GLS is fitted at a local optimum point. The algorithm then uses an augmented
objective function to extract the search from the local optimum point. The basic logic of
GLS is to change the objective function according to the predetermined features. The
GLS algorithm for a minimization problem is as given by Algorithm 5.7 when s is the
current solution, s’ is the neighboring solution, p; is the penalty value for each feature,

nF is the maximum number of features, and nIT is the maximum number of iterations.

Algorithm 5.7. Pseudocode of Guided Local Search Algorithm for a Minimization
Problem

s « initial solution
p; <0 Vie{l,.. nF}

h<—g+A><Zpl-><Ii
forit = 1:nIT do
s' « LocalSearch(s, h)

[EEN

. ’ c
util; « I;(s") X T +l

Vi € {1, ...,nF}

i
pi < p; +1 Vi€ {u; ismaximum | 1,...,nF}
s« s’

end for

97

5.3. Memetic Algorithm (MA)

Memetic Algorithm (MA) is an extension of GA. A local search technique is used
in addition to GA to reduce the possibility of early convergence (Cotta et al., 2018). MA
represents one of the areas of research that has grown quite recently, as it has achieved
quite good results by combining discrete individual learning and composite population

learning in solving optimization problems.

Pablo Moscato introduced MA in 1989, influenced by Darwin's principles of natural
evolution and Dawkins' concept of memes (P. Moscato & Cotta Porras, 2003). The MA
Is a GA combined with an individual learning procedure for which local improvements
are made. In other words, it is a Hybrid Genetic Algorithm. Darwinian evolution on the
one hand, Dawkinsian memes and local searches on the other, allow the use of two types
of metaheuristic/heuristic algorithms together. In this way, a good balance is established
between generality and problem specificity.

MAs are also searched in the literature with names such as Hybrid Evolutionary
Algorithm, Baldwinian Evoluationary Algorithm, Lamarckian Evolutionary Algorithm,
Cultural Algorithm and Genetic Local Search. Many different examples have been
reported in various optimization problems that converge more efficiently and with higher

quality than traditional evolutionary algorithms (Pablo Moscato & Mathieson, 2019).

An MA flowchart in general terms is as given in Figure 5.19.

98

Create initial
population

!

Evaluate Fitness
Value

Max no of
Iterations?

NO

Display Results

SELECTION

!

CROSSOVER

!

MUTATION

!

LOCAL
SEARCH

| |

Figure 5.19. Flowchart of Memetic algorithm

The frequency and intensity of individual learning in MA provides greater chances
of convergence with the local optimum, but computational difficulties limit the amount
of evolution. Therefore, these two parameters should be finely tuned to maximize search
performance and minimize computational cost. When individual learning is applied to
some of the individuals in the population, it is necessary to make a good decision on

which individuals to apply individual learning in order to maximize the benefit of MA.

How often to implement individual learning is still a researched issue in the
literature. In some studies, it has been revealed that the effect of individual learning on
each individual in each evolutionary stage/iteration, while in some studies it is thought
that it is necessary to apply individual learning to each individual at each evolutionary
stage. Within the scope of this thesis, it was decided to implement individual learning for

each individual in the entire evolution stage/iteration.

Another problem is how long individual learning will take. That is, how long will
be the maximum time allowed for the development of the individual solution taken into

99

individual learning. Within the scope of this thesis, 25% of the maximum number of

generations/iterations is allocated.

Another unsolved problem that often makes MAs diversify is which self-learning
method or meme to use. At this stage, one of the Local Search algorithms given in Section
5.2 or another local search algorithm in the literature is used. Within the scope of this

thesis, MA was designed for several methods and the results were compared.

5.4. Multi Objective Metaheuristic Algorithms and Non-Dominated Sorting Genetic
Algorithm — 11 (NSGA-11)

In this section, the basis of multi-objective metaheuristic algorithms and Non-
Dominated Sorting Genetic Algorithm — II (NSGA-II), which is the most used multi-

objective optimization heuristic algorithm in the literature, are explained.

5.4.1. Multi-objective Optimization Problem (MOP)

In general, a Multi-Objective Optimization Problem (MOP) occurs when x =
[x1, %5, ..., x,]T represents a vector of decision variables, vector g represents m inequality
constraints, vector h represents p equality constraints, and vector f represents k objective

functions, as given by Equation 5.4 —5.6.

f@ =[G, (0, ... (O] (5.4)

Subject to;
gi(x) <0 vie{l,..,m} (5.5)
hi(x) =0 vie{l,..,p} (5.6)

In an optimization problem with several objective functions, the concept of
optimum is different. Because in MOPs, good compromises or balances are tried to be
found between the objective functions instead of a single solution as in the global
optimum. Francis Ysidro Edgeworth proposed the most widely used optimum concept in
1881. Vifredo Pareto generalized this concept in 1896. This concept is generally referred
to as Pareto Optimum or Edgeworth-Pareto Optimum in the literature. Considering any
minimization problem, in order for the x* € F decision variable vector reached as a result

of the solution to be Pareto Optimum, for all other X € F decision variables vector, for

100

each objective function i € {1,...,k}, f;(x*) < f;(x) and any objective function j €
{1,...,k} the conditions f;(x*) < f;(x) must be satisfied. By this definition, it is
understood that the Pareto Optimum solution is not a single solution and consists of a
series of solutions called the Pareto Optimum Set. Non-dominant solutions are shown as
Pareto Front in the graph of objective functions. For a typical two-objective optimization
problem, the Pareto Front is as shown in Figure 5.20. Here, the x-axis represents the first
objective function, the y-axis represents the second objective function, the green dots
represent the non-dominated solutions, and the blue dots represent the dominated

solutions.

A Non-dominated particle

O o
O Dominated particle
Fz {x} O
O O
Pareto Front
)
F1 {x)

Figure 5.20. A typical pareto front (Mahesh et al., 2016)

In the literature, there are various mathematical programming-based approaches for
solving multi-objective optimization problems. However, these methods are generally not
used much, especially since they are very sensitive to the shape of the Pareto Front (when
the Pareto Front is concave, etc.). On the other hand, metaheuristic methods are generally
preferred for solving MOPs because they are less sensitive to the shape of the Pareto Front
(works even when the Pareto Front is concave or discontinuous, etc.). It is possible to
reach a few elements of Pareto Front in a single study with population-based

metaheuristic approaches.

5.4.2. Non-dominated Sorted Genetic Algorithm — 11 (NSGA-I1) for MOPs
Deb, Pratab and Agarwal proposed the NSGA-II algorithm in 2002. It is the most

preferred algorithm for solving MOPs in the literature (Deb et al., 2002). In general, two

101

calculations are made in addition to the classical GA. With the Fast Non-Dominated Sort
approach, the non-dominated frontier is found quickly, and with the Crowding-Distance

Assignment, solutions are chosen.

5.4.2.1. Fast Non-Dominated Sort approach

In a simple approach, whether each solution in the population is dominant can be
compared with all other solutions to determine the first non-dominant front. At this stage,
all individuals in the first non-dominant front are found. For the next non-dominant front,
individuals in the first front are temporarily removed from the population and the process
to determine the first front is repeated. Considering that there is only one solution on each
front, this will require a great deal of processing power. For this, a fast method is
discussed in the NSGA-II algorithm. In this method, first two parameters are calculated

for each individual:

e Domination count, which represents the number of solutions dominated

e Domination set that contains the solutions it dominates

For the first non-dominated front, the domination count counts as zero. Afterwards,
if there are other frontier individuals in the domination set for each individual, the
domination count of the individual is reduced by one. If any domination count is zero at
this time, it is placed in a separate list. These members belong to other non-dominated
front. This process continues until all fronts are determined. In general terms, the Fast
Non-Dominated Sort Algorithm pseudocode is as given with Algorithm 5.8. Here, p and
q represent each individual, P the set of individuals, n,, domination count, S, domination
set, F; each front, p,.,,, the rank of each individual, that is, on which front they are

located, and {(domination.

102

Algorithm 5.8. Pseudocode of Fast Non-Dominated Sort Algorithm
1: forp e Pdo

2: S, <@
3: n, <0
4: forqg € Pdo
5: if p(qdo
6: Sp < S, U{q}
7: elseif g (p do
8: n,<n,+1
9: end if
10: end for
11: if n, =0do
12: Prank < 1
13: F, « F, U {p}
14: end if
15: i1
16: while F; # ¢ do
17: Q<0
18: forp € F; do
19: forq € S, do
20: ng<ng—1
21: ifn, =0do
22: Qrank <1+ 1
23: Q < Quiq}
24 end if
25: end for
26: end for
27: il<i+1
28: Fi — Q
29: end while
30: end for

5.4.2.2. Crowding-Distance Assignment

The expectation from the algorithms is to maintain a good solution spread as well
as converge to the Pareto-Optimal set. In the classical NSGA algorithm, sustainable
diversity is provided in the population depending on a sharing parameter determined by
the user. However, this brings with it a great computational cost in maintaining the
propagation of the solutions depending on the value chosen and since each individual has

to be compared with other individuals in the population.

Two difficulties were overcome with a non-user-defined approach in the NSGA-II
algorithm. For this, the Density Estimation metric was used. This metric is the mean

distance of the point on either side of that point along each target to estimate the density

103

of solutions located around a particular solution in the population. This is represented by
a cuboid, where the nearest neighbors represent the vertices. The general representation
of the approach is as given in Figure 5.21. Here, for individual i, the nearest neighbors
i —1andi+ 1 represent the corners of the cuboid. Dashed lines indicate the edges of the

cuboid, and the Density Estimation metric is the average of the cuboid's edge lengths.

£ 0
¢ o
@
@
, Cuboid
-] = - - - -~ '; O
I 1. |
L - - - = - -9 l
i+1 d
fl

Figure 5.21. Representation of crowding-distance computation

Crowding-Distance Compuation requires the population to be ordered by each
objective function value. For each objective function, the individuals with the smallest
and largest values are assigned an infinite distance value. All remaining intermediate
individuals are assigned a distance equal to the absolute value of the difference of
functions of two adjacent individuals. This calculation is done for all objective functions.
The overall Crowding-Distance value is the sum of the calculated Crowding-Distance
values for each objective function. Crowding-Distance Assignment Algorithm
pseudocode is as given with Algorithm 5.9. Here I is the solution of each individual, m
is each objective function, n0 is the number of objective functions, and £*%*, 1" js the

maximum and minimum values for each objective function.

104

Algorithm 5.9. Pseudocode of Crowding-Distance Assignment Algorithm
1. 1« |If
2: Idistance(i) «0 Vie {1, ey l}
3: form € n0O do

4 I « sort(I,m)
o Idistance(l);ldistance (l) « @
6: forie{2, ..,1—1}do

] o Ui+1).m-I1(i—-1).m)
7 Laistance (©) < lgistance (V) + (fmax — min)

m m

8 end for
9. end for

After assigning a crowding-distance metric to all individuals in the population, the
crowding value between both solutions can be compared. An individual with a smaller
value of this distance metric can be interpreted as being more crowded than other

individuals.

5.4.2.3. Main Loop

Initially, a population of parents is created randomly or using a specific algorithm.
The generated population is sorted by non-domination. From this step, each individual's
fitness value is equal to their rank (1 - best, 2 - next best, etc.). To develop the solution,
the offspring population is created by using the Selection, Crossover and Mutation
operators in GA. The offspring and parent population are combined. The combined
population is sorted by non-domination. Elitism is achieved at this point, as the previous
and newly formed populations are involved. All non-domination fronteirs are determined
in turn. After this stage, individuals in non-domination frontiers are selected for the parent
population, respectively. If all individuals in the non-domination frontier are selected, if
the parent population does not exceed the limit, all individuals are taken and passed to the
other non-domination frontier. However, if all individuals in the non-domination frontier
are selected, if the parent population limit is exceeded, the Crowding-Distance
Assignment algorithm is activated for all individuals in that frontier. In this way, the best
of the remaining individuals is tried to be selected. A typical representation of the NSGA-
Il algorithm is as shown in Figure 5.22. Here, P represents the parent population, Q
represents the offspring population, Rt = P U Q the combination of all populations, and

F represents the Pareto Frontier.

105

Non-dominanted Crowding

. distance
sorting sorting
- |
p - |
F
Q
—Rejected
Rt

Figure 5.22. Procedure of NSGA-II algorithm

The pseudocode of the NSGA-I1 algorithm is as given by Algorithm 5.10. Where t
Is each iteration or generation, P, is the parent population in each generation t, Q; is the
offspring population in each t generation, R, is the total population in each t generation,
and F; represents the each i Pareto Frontier. The MakeNewPopulation operation refers
to the standard Selection - Crossover - Mutation operations in GA. |P;| is the size of the

parent population in generation t, |F;| refers to the size of the each i Pareto Frontier.

Algorithm 5.10. Pseudocode of Non-dominated Sorted Genetic Algorithm — 1l

(NSGA-II)
1) t<0
2: P, < InitialPopulation
3: Q¢ <0
4: whilet < nT do
5; R, « P,UQ,
6: F « FastNonDominatedSort(R;)
7 Py <@
8 i1
9: while |P;.,| + |F;| < N do
10: CrowdingDistanceAssignment (F;)
11: Py <« Pig UF
12: i<i+1
13: end while
14: Sort(F;, (n)
15: Pryy < Peyq UF[1: (N — |Pryq D]
16: Qt4+1 < MakeNewPopulation(P;, 1)
17: t<t+1

18: end while

106

5.5. Multi Objective Memetic Algorithm (MOMA)

Multi Objective Memetic Algorithm (MOMA) developed within the scope of this
study, Memetic Algorithm (MA) general flow given with Section 5.3, Iterated Local
Search (ILS) Algorithm local search given with Section 5.2.5 and Non-Dominated Sorted
Genetic Algorithm — Il (NSGA-II) given with Section 5.4 is a combination of multi-
objective structure. The developed algorithm performs both global and local searches for
multi-objective optimization and searches the solution space more efficiently and more
intelligently than other multi-objective optimization algorithms. The developed MOMA
pseudocode is as given with Algorithm 5.11. All abbreviations here are the same as those
defined for the Pseudocode of the NSGA-I11 algorithm.

Algorithm 5.11. Pseudocode of Multi Objective Memetic Algorithm (MOMA)
1: t<0

2: P, < InitialPopulation
3 Qr <0
4: whilet < nT do
5: R, <« P U Q,
6: F <« FastNonDominatedSort(R;)
7 Py <0
8: i1
9: while |P;.,| + |F;| < N do
10: CrowdingDistanceAssignment (F;)
11: Pryq < Py UF
12: i<i+1
13: end while
14: Sort(F;, ()
15: Pryy < Peyq U F[1: (N — |Peyq)]
16: Qi1 < Selection(P;,q,rank; 1)
17: th1 < Crossover(Q{yq)
18: 11 < Mutation(Q{,
19: Qt41 < IteratedLocalSearch(Q{,,)
20: tet+1

21: end while

The developed MOMA flowchart is as given in Figure 5.23.

107

(Start)

Create initial
parent population

!

Evaluate Fitness
Values

!

Evaluate
Invidual’s Rank

and Generate

Pareto Frontiers

Select Parent
Population Using
Crowding-
Dist'cmce

Max no of

Display Results

Iterations?

End

SELECTION I

I |

CROSSOVER I

I Make Offspring |
| Population Using |
I Selected Parent

I Population
MUTATION [P |

I |
ITERATED |
L LOCAL SEARCH

Population =
Parent Population

+ Offspirng
Population

|]

Figure 5.23. Flowchart of MOMA
5.6. Encoding/Decoding Algorithms for MTDLB Problem
In order to solve the MTDLB problem, which was defined in this thesis and whose
MILP-based mathematical model was developed, with the MOMA developed within the

scope of this thesis, the fitness values of the MTDLB problem should be calculated for

108

each individual in the population in the algorithm in each iteration/generation. For this,
firstly, the chromosome structure of each individual was determined, then the
disassembly sequence was determined for each model through the TAOG precedence
diagram, which is the first stage of the problem, and then the selected tasks were
determined by a procedure that allows very few stations to be opened on the disassembly
line, again considering the TAOG precedence diagram has been appointed.

5.6.1. Chromosome Structure Phase

Each individual in the MOMA algorithm used to solve the MTDLB problem has
the chromosome structure given in Figure 5.24. Chromosome consists of three parts. The
first part is used for the selection of OR Successors on TAOG, which is encoded with
binary coding. The second part is used to choose which side the selected tasks will be
performed on. Here, if there is more than one feasible side for the task, it is done on the
left side if the number it belongs to on the code is zero, and on the right if it is one. If
there is only one, viable party for the task, a direct assignment is made to the party to
which it belongs. The last part expresses the order of assignment of the selected tasks to
the disassembly line and is coded with permuation coding. In this part, a list of tasks that
can be assigned to the station is created, taking into account the TAOG precedence
diagram for the tasks selected with the first part and assigned to the parties with the second
part. If the list of tasks that can be assigned to the station is more than one, a task is
selected by considering the priorities in the last section and assigned to the most suitable
location. Afterwards, the process is repeated by updating the list of tasks that can be

assigned, taking into account the TAOG precedence diagram and the assigned tasks.

Model #01 Model #nM
= A
8 R 1§ Rl
Chromosome —> 0100101 -—--—- 1110010 001001 8769143025 mecmmmemmemeee-
1st OR hth OR N
Sid PRI
Successor Successor Sel ! ; Priority of
Choose Choose election Assignment to the
i Station
0-1 binary 0-1 binary 0-1 binary
el @7 (2mns) 0-nN,, permutation
mns: max "
B selected number of . R *0)
normal nodes R3 ot A EosL
that can be w @ w@

/ A R E->R
0.33 - 0,66 s / R
- - 5] selected ‘@ r; @6

Figure 5.24. Chromosome structure of proposed MOMA

109

5.6.2. Choose Disassembly Sequence Phase

The first step in solving the MTDLB problem is to select the tasks for disassembly
on the TAOG precedence diagram. Considering the chromosome structure given in
Section 5.6.1, Choose Disassembly Sequence (Algo-CDS) is as given with Algorithm
5.12.

Algorithm 12.Choose Disassembly Sequence (Algo-CDS)

/* The algorithm must be repeated for each p invidual. */
Data: nM.nA,SUC, PRE, dec_sol,, ; /* Algo-CDS inputs */
Result: sc ; /* Algo-CDS output */
begin
/* Start of Algo-CDS || Repeat for each m model. */
for m «+ 1tonM do
/* Set initial values for each model m. */
5Cp — 0 : /* Selected normal nodes */
cA + [Ao] ; /* Encountered artificial nodes */
cOR +1; /* Encountered OR Successor relations */
/* Continues until no artificial node is encountered
*/

while cA # () do

/* Assign assignable normal nodes for each
encountered articial node. */

for k € cA do

/* If there is OR Successor relation in the
encountered artificial node k, select normal
node using SUC .k, decsol,, and cOR,
otherwise select directly with SUC 1. */

if s(SUC) > Land SUC,,,; ¢ sc,, then

8C — 8Cy + {SUC

cOR + cOR+1
else if s (SUC) = land SUC i1 ¢ sc, then

| SCpy, €= SCyp + {SUC'mk'l};

m.’:;(ccii(s(SUG.m;c) xdec_s0lpm(coR))) }

end

/* Add the artificial nodes k in PRE,, to the cA,
considering the normal nodes added to sc, list
in the last iteratiom. */

/* If a normal node in SUC,, of artificial nodes
k in c¢A is selected in s¢,,, remove the
artifical node k from cA list. */

Update cA with sc,,;

end

end

return sc
end

5.6.3. Assign Disassembly Line Phase
The second step for solving the MTDLB problem is to assign the selected

disassembly tasks to the appropriate stations on the disassembly line. Considering the

110

chromosome structure given in Section 5.6.1 and Algo-CDS given with Algorithm 1, the
Assign Disassembly Line (Algo-ADL) is as given with Algorithm 5.13.

Algorithm 13.Assign Disassembly Line (Algo-ADL)

/* The algorithm must be repeated for each p invidual. */
Data: nM,nA, nJ,nS,nORSuc, SUC, PRE, soly, sc,0,t,C ;
/* Algo-ADL inputs */

Result: X, U tf ; /* Algo—ADL output */
begin
Xom(iesen)js < [0] 5 /* (0,1) assign of tasks to stations */
Ujs +[0] ; /* (0,1) opening stations */
tfmticsen) < (0] 5 /% > ty(icse,) finishing time of tasks */
task_pre,task theta + Algo-SPT ; /* Set selected tasks’
precedence and theta lists */
/* Start of Algo-ADL || Repeat for each m model. */
for m + 1tonM do
j0; /* Initial value of station number is 0 */

assignable < ();
for i € scy, if task_pre,,; =) then Append i in assignable;
assigned + ;
while [selected,,| # |assigned| do
if |assignable] = 1 then
T+ 03
7, X, U, tf, assignable, assigned + Algo-AR
else if |assignable| > 2 then
r+ 0 for | + 1 to |assignable| do

if index (assignablef,soﬂpm(HORSucmH)) <

index (assz’gnable.” Solpm(noRSucm+2)) then
I re1

end
end
3, X, U, tf, assignable, assigned +— Algo-AR
for i € s¢,, do
if i ¢ assigned Ni ¢ assignable then

for i € task_pre,,; do
if i ¢ assigned then

| Break

else if i is last element in task_pre
| Append i in assignable
end

end
end
end

end
return X, U, tf
end

then

me

5.6.4. Main Representation Phase
Considering the MTDLB problem representation phases detailed in Section 5.6, an
individual follows the flowchart given in Figure 5.25 to calculate the required fitness

values.

111

Chromosome TAOG for each
Part-1 model

Algo-CDS

Choosed
Disassembly
Sequences

~ £

Chromosome Appropriate
Part-2 Task Sides

4

Assigned Task
Sides

Choosed
Disassembly
Tasks and Side

~ £

Chromosome TAOG for each
Part-3 model

Designed
Disassembly
Line

N L

Figure 5.25. Main representation of MTDLB problem for MOMA

112

6. NUMERICAL EXAMPLES AND EXPERIMENTAL RESULTS

The MTDLB problem given in Section 4 is solved using MOMA given in Section
5 using some generated cases, literature works data, and the performance of the algorithm
is tested. The MOMA algorithm developed for the solution of the MTDLB problem was
coded using the Python programming language and given with Appendix-3.

In this section, the cases that were created were introduced, then the solutions were

made on the created cases, and the solution results were given.

6.1. Generate Cases

Within the scope of this thesis, 11 cases with 2, 3 and 4 models were created by
using Flashlight, Radio, Toy Car and Ball Point Pen products, for which the TAOG
precedence diagram was previously created in the literature.

TAOG precedence diagram of Flashlight product is as given in Figure 6.1, TAOG
precedence diagram of Radio product is given in Figure 6.2, TAOG precedence diagram
of Toy Car product is given in Figure 6.3 and TAOG precedence diagram of Ball Point

Pen product is given in Figure 6.4.

13
A

Figure 6.1. TAOG precedence diagram for flashlight (Paksoy et al., 2013)

113

Figure 6.2. TAOG precedence diagram for radio (Paksoy et al., 2013)

114

2020)

i

Figure 6.3. TAOG precedence diagram for toy car (Cil et al

Figure 6.4. TAOG precedence diagram for ball point pen

115

Information such as party information, transaction time’s information, etc. for all
products are included in the Python code given with Appendix-3B. Statistical information

for the 11 cases created is as given in Table 6.1.

Table 6.1. Statistical information of generated cases

Case Name Products Z nM Z nd Z nN

#01 Flashlight 30 40
Radio

#02 Flashlight 2 53 107
Toy Car

#03 Flashlight 2 22 30
Ball Point Pen

#04 Radio 2 65 127
Toy Car

#05 Radio 2 34 50
Ball Point Pen

#06 Toy Car 2 57 117
Ball Point Pen

#07 Flashlight 3 74 137
Radio
Toy Car

#08 Flashlight 3 43 60
Radio
Ball Point Pen

#09 Flashlight 3 66 127
Toy Car
Ball Point Pen

#10 Radio 3 78 147
Toy Car
Ball Point Pen

#11 Flashlight 4 87 157
Radio
Toy Car
Ball Point Pen

N

116

6.2. Results for Generated Cases

The MTDLB problem was solved in two ways for the created cases. Firstly, when
the objective function is hierarchical, the results of the Memetic Algorithm (MA) are
compared with the Genetic Algorithm (GA), which is frequently used in the literature,
and the Gurobi solver, which gives optimum results. Secondly, the problem is solved with
Multi Objective Memetic Algorithm (MOMA\) by preserving its multi-objective structure
and its results are compared with the NSGA-II algorithm, which is frequently used in the

literature.

Each algorithm is coded in Python environment and given with Appendix 3. Caseler
has been solved on a computer with Intel i7 2.00 GHz processor and 8 GB RAM.

In case the purpose is hierarchical, the solution results are as given in Table 6.2.
Looking at the results, it is seen that MA gives better results than GA for each case, and

even reaches the optimum result directly for some cases.

Table 6.2. Comparative results of MA, GA and Gurobi (Obj Func — Sol Time).

Case Memetic Algorithm (Genetic Genetic Algorithm Gurobi Solver
Name Algorithm + Iterated Local (Optimum Result)
Search)

#01 3.007190—13 3.007190—10 3.007190—01
#02 3.011274—15 3.011285—11 3.011274—10
#03 3.009240—14 3.010243—09 3.009240—01
#04 3.013278—14 3.014266—15 3.012250—43
#05 3.011228—12 3.012234—12 3.010229—01
#06 3.012310—15 3.013294—14 3.012310—25
#07 3.012442—16 3.013344—13 3.012360—11
#08 3.011328—13 3.012336—12 3.010329—02
#09 3.012413—16 3.013492—15 3.012413—10
#10 3.012413—17 3.013374—16 3.012399—15
#11 3.012678—18 3.012793—17 3.012499—28

The results of the MOMA algorithm, which was developed by preserving the multi-

objective structure of the problem, are given in Figure 6.5 for Casel — Case6 and Figure

6.6 for Case7 — Casell.

117

Pareto Frontier for Case-1 Pareto Frontier for Case-2

190
185 250

180

N
I
a

al Processing Time for All Models

al Processing Time for All Models

®
2
0,

T

@

38
Lo, 39
19t o Dis:f 45
Se:;,b/y lin 4.2

e

Pareto Frontier for Case-3 Pareto Frontier for Case-4

239

g Time for All Models

Pareto Frontier for Case-6

Pareto Frontier for Case-5

al Processing Time for All Models

i

Figure 6.5. Pareto Frontiers of MOMA for generated cases 1-6

118

w
[=3
o

al Processing Time for All Models

al Processing Time for All Models

%

)

Pareto Frontier for Case-7 Pareto Frontier for Case-8

355
350
345
340
335
330
325
320

al Processing Time for All Models

al Processing Time for All Models

:.
%,
i

S,

S
8.2

7S

Pareto Frontier for Case-10

Pareto Frontier for Case-9

»
b=
15
al Processing Time for All Models
al Processing Time for All Models

%,
i

Pareto Frontier for Case-11

al Processing Time for All Models

T

Figure 6.6. Pareto Frontiers of MOMA for generated cases 7-11
For comparison purposes, NSGA-II algorithm results are given in Figure 6.7 for

Casel — Case6 and Figure 6.8 for Case7 — Casell.

119

Pareto Frontier for Case-1 Pareto Frontier for Case-2

195
190
185

180

al Processing Time for All Models

o
OO
ot

Pareto Frontier for Case-3 Pareto Frontier for Case-4

al Processing Time for All Models

A

Pareto Frontier for Case-5 Pareto Frontier for Case-6

~N
w
by

al Processing Time for All Models

%

4.01;_%13-%

Leng[h o7

139145

Dije.. z.ol 0,

ISasseMbi(z:E?OIGO 8 &
he ()

Figure 6.7. Pareto Frontiers of NSGA-11 for generated cases 1-6

120

N
v
&

al Processing Time for All Models

i

w
(=3
o

al Processing Time for All Models

al Processing Time for All Models

é

)

Pareto Frontier for Case-8

Pareto Frontier for Case-7

al Processing Time for All Models

al Processing Time for All Models
w
o
N

&
0,
ot

Pareto Frontier for Case-10

Pareto Frontier for Case-9

400

al Processing Time for All Models

al Processing Time for All Models

%
P

Pareto Frontier for Case-11

500

490
485

@
]
o
(=]
=
<
=
2
v
495 £
=
o
g
z
a
b
g
L
&
s

®
S

)

S

Figure 6.8. Pareto Frontiers of NSGA-II for generated cases 7-11
Looking at the Pareto Frontier graphs, it is seen that the NSGA-II algorithm
generally produces 1 Pareto Optimum point for the solution of MTDLB problem cases,
and in some cases, the Pareto Optimum solution found by MOMA dominates the Pareto
Optimum solution found in the NSGA-II algorithm. It is seen that the MOMA algorithm
reveals multiple Pareto Optimum points for each case and offers more options to the

decision maker. Therefore, it can be said that the MOMA algorithm is better than the

NSGA-II algorithm for solving the multi-objective MTDLB problem.

121

6.3. Compare with Literature Works

In order to see the situation of the study against other studies in the literature, the
methods developed by considering the Kucukkoc, 2020 study, which is the closest study
and which deals with the TDLB problem, were compared. However, since the AOG
precedence diagram in Kucukkoc's 2020 study was handled differently than the diagram
used in this thesis (like the precedence diagram of the 2P25 example given in Figure 6.8),
the mathematical model was revised on Algo-CDS and Algo-ADL, and the studies were
carried out accordingly way compared. In this context, Equation 6.1 instead of Equation

4.5, and Equation 6.2 instead of Equation 4.7.

2P25
(L, 10) (E,2) (R.2) (E.2)

Figure 6.9. Precedence diagram for 2P25 (Kucukkoc, 2020)

BM X z Zmi 2 Z Zmi vm € {1F "'inM}, Vk € (6l1)

iesUC(m,k) i€PRE(m,k) {1,...,n4,,}
vm € {1,..,nM},Vj €
J
{1,..,nJ},Vk €
z z Xmivs = Z Xmi' js) (6.2)
v=1s€e0(m,i) sef(m,i) {1' '"'nAm}f Vi e

PRE(m, k),Vi' € SUC(m, k)

Since the (Kucukkoc, 2020) study was developed for a single purpose (hnumber of
stations opened and number of mated-stations opened), the MA algorithm developed
within the scope of this thesis was evaluated in this direction. The Gurobi solution and
the MA solution for the MTDLB mathematical model developed within the scope of this
thesis were tested against the CPLEX solution and GA developed in the Kii¢iikkog 2020

122

study, and the results given in Table 6.3 were obtained. Considering the solution results,
the Gurobi solution of the MTDLB mathematical model created within the scope of this
thesis found better results than Kiigiikkog's study (the optimum result was achieved), and
the MA developed within the scope of this thesis gave very good results compared to the
GA developed by Kiiglikkog, even optimum for some cases. Appears to have achieved
the result.

Table 6.3. Comparative results with TDLB studies in literature (Number of Mated Station (Number of Total

Station) — Sol Time); bold is optimum.

Case ¢ Gurobi MA Kiiciikkog¢ 2020 [10]
(GA+1ILS) CPLEX 2-GA

2P8 36 5(6)—=<0.1 5(6)—=<0.1 5(6)—<1 5(6)—=<0.01
38 44)—<0.2 4(4)—=<0.1 4(4)—<I 4(4)—<0.01
40 4(4)—=<0.1 4(4)—=<0.1 4(4)—<I1 4(4)—=<0.01
38 4(4)—=<0.2 4(4)—<0.1 4(4)—<1 4(4)—=<0.01

2P10 36 4(5)—<0.2 4(5)—=<0.1 4(5)—<I1 4(5)—<0.01
42 3(5)—=<0.5 3(5)—=0.1 3(5)—=<1 3(5)—=<0.01
44 3(5)—=<0.5 3(5)—=0.1 3(5)—=<I 3(5)—=0.01
48 2(4)—<0.5 2(4)—<0.1 2(4)—<1 2(4)—=<0.01

2P25 18 5(9)—2.49 5(9)—1 5(9)—110 6(10)—<0.1
24 4(7)—4.19 4(7)—2 4(7)—1800 4(7)—<0.1
28 3(6)—7.85 3(6)—1 3(6)—32 3(6)—<0.1

2P47-A 98 4(8)—1800 5(8)—7 5(9)—1800 5(8)—<I
104 4(7)—209 4(8)—12 4(8)—1800 4(8)—<I
107 4(7)—150 4(8)—8 4(8)—1800 4(8)—<I1
113 4(7)—1800 4(7)—11 47)—1800 4(7)—<I

6.4. Case Study

Case #11, one of the cases created for a better understanding of the MTDLB
problem solutions, was solved with MOMA and a possible Disassembly Line is given in
Figure 6.10. Here, Task Station Assign Plan is shown above and Schedule of Disassembly
Line below, respectively. In total, four models were assigned to six stations and all
stations were opened to each other. Total line length was found to be three. In the
Schedule of Disassembly Line section, the parts painted in blue represent the duties, the
parts painted in yellow represent the lines that cannot be opened for that model, and the

parts painted in red represent the idle time of the line.

123

Task-Station Assign Plan of Disassembly._Li #11

Lo
-~ T11, T13

| >

LEFT SIDE

RIGHT SIDE

LEFT SIDE

RIGHT SIDE

LEFT SIDE

RIGHT SIDE

LEFT SIDE

RIGHT SIDE

Mated Work- Mated Work- Mated Work-
Station 01 Station 02 Station 03

Figure 6.10. Case study result (Case #11)

124

7. CONCLUSION AND DISCUSSIONS

The fact that the increase in the level of Carbon Dioxide, which is visualized using
technologies such as satellites, is at the peak of the last 800,000 years has revealed the
necessity of radically changing our understanding of production. Contrary to popular
belief, increasing population, welfare and technological developments increase the
environmental impact even more. In order to minimize the environmental impact, it is
necessary to use the resources efficiently and to minimize the wastes released into the
nature. With the Life Cycle Engineering (LCE) methodology that emerged in this context,
it is ensured that the environmental impact is minimized by directly intervening in all the
Life Cycle stages of the product. One of these stages is the stage where the use of the
product ends, that is, the product becomes End-of-Life (EOL). At this stage, the product
is usually either completely released into the nature or recycled and the whole product is
offered for use again. Product reuse is critical to minimizing environmental impact. At
this point, with the LCE methodology, the product is designed as an easily disassembled
product while it is still in the design phase. However, the design of the product alone is
not enough, it is necessary to establish systems to disassemble these products and to
minimize the environmental impact caused by the system by effectively managing them.
In this context, the need for research on the Disassembly Line, which emerged for the
disassembly of bulk EOL products, and the Disassemly Line Balancing (DLB) problem,
which allows them to be designed and managed effectively, is increasing day by day.
There are very few studies in the literature especially for the Two-Sided Disassembly
Line Balancing (TDLB) problem, which can be used for disassembly of large volume
products. Especially the Mixed-Model Two-Sided Disassembly Line Balancing
(MTDLB) problem, which allows mixed model disassembly on these lines, was presented

for the first time within the scope of this thesis.

In this study, a Mixed-Integer Linear Programming (MILP) based mathematical
model has been developed for the MTDLB problem and a Multi Objective Memetic
Algorithm (MOMA) has been developed to solve this model with high-dimensional cases.
The developed mathematical model was tested with the Gurobi solver and the cases
created by coding the MOMA and MA algorithms with Python and the literature
comparison. It was found that all the methods developed within the scope of the study

gave much better results compared to the GA and NSGA-II algorithms, which are

125

frequently used in the literature, and as a result of the literature comparison, optimum
results were achieved that other studies could not reach.

In future studies, the developed MOMA algorithm will be made more efficient, it

will be investigated how it gives results with different local search algorithms.

126

REFERENCES

Agrawal, S., & Tiwari, M. K. (2008). A collaborative ant colony algorithm to stochastic
mixed-model U-shaped disassembly line balancing and sequencing problem.
International Journal of Production Research, 46(6), 1405-1429.
https://doi.org/10.1080/00207540600943985

Albadr, M. A., Tiun, S., Ayob, M., & Al-Dhief, F. (2020). Genetic algorithm based on
natural selection theory for optimization problems. Symmetry.
https://doi.org/10.3390/sym12111758

Altekin, F. T. (2016). A Piecewise Linear Model for Stochastic Disassembly Line
Balancing. IFAC-PapersOnLine. https://doi.org/10.1016/j.ifacol.2016.07.895

Altekin, F. T. (2017). A comparison of piecewise linear programming formulations for
stochastic disassembly line balancing. International Journal of Production
Research, 55(24), 7412-7434.
https://doi.org/10.1080/00207543.2017.1351639

Altekin, F. T., Kandiller, L., & Ozdemirel, N. E. (2004). Disassembly line balancing
with limited supply and subassembly availability. In S. M. Gupta (Ed.),
Environmentally ~ Conscious Manufacturing Il (pp. 59-70).
https://doi.org/10.1117/12.516073

Altekin, F. T., Kandiller, L., & Ozdemirel, N. E. (2008). Profit-oriented disassembly-
line balancing. International Journal of Production Research, 46(10), 2675—
2693. https://doi.org/10.1080/00207540601137207

Avikal, S. (2016). A heuristic based on AHP and TOPSIS for disassembly line
balancing. Advances in Intelligent Systems and Computing.
https://doi.org/10.1007/978-981-10-0448-3_69

Avikal, S., Jain, R., & Mishra, P. K. (2014). A Kano model, AHP and M-TOPSIS
method-based technique for disassembly line balancing under fuzzy
environment. Applied Soft Computing, 25, 519-529.
https://doi.org/10.1016/j.asoc.2014.08.002

Avikal, S., Jain, R., Yadav, H. C., & Mishra, P. K. (2014). A New Heuristic for

Disassembly Line Balancing Problems with AND/O"R Precedence Relations.

127

Proceedings of the Second International Conference on Soft Computing, 519—
525.

Avikal, S., Mishra, P. K., & Jain, R. (2014). A Fuzzy AHP and PROMETHEE method-
based heuristic for disassembly line balancing problems. International Journal
of Production Research, 52(5), 1306-1317.
https://doi.org/10.1080/00207543.2013.831999

Avikal, S., Sharma, S., Kalra, J. S., Varma, D., & Rohit Pandey. (2016). A Fuzzy AHP
Approach for Calculating the Weights of Disassembly Line Balancing Criteria.
In Advances in Intelligent Systems and Computing (Vol. 436, pp. 723-727).
https://doi.org/10.1007/978-981-10-0448-3_60

Aydemir-Karadag, A., & Turkbey, O. (2013). Multi-objective optimization of
stochastic disassembly line balancing with station paralleling. Computers and
Industrial Engineering, 65(3), 413-425.
https://doi.org/10.1016/j.cie.2013.03.014

Battaia, O., Dolgui, A., Heragu, S. S., Meerkov, S. M., & Tiwari, M. K. (2018). Design
for manufacturing and assembly/disassembly: joint design of products and
production systems. In International Journal of Production Research.
https://doi.org/10.1080/00207543.2018.1549795

Bentaha, M. L., Battaia, O., & Dolgui, A. (2013). Chance Constrained Programming
Model for Stochastic Profit-Oriented Disassembly Line Balancing in the
Presence of Hazardous Parts. IFIP Advances in Information and
Communication Technology, 414, 103-110. https://doi.org/10.1007/978-3-
642-41266-0_13

Bentaha, M. L., Battaia, O., & Dolgui, A. (2013a). A cone programming approach for
stochastic Disassembly Line Balancing in the presence of hazardous parts. 22nd
International Conference on Production Research, ICPR 2013.

Bentaha, M. L., Battaia, O., & Dolgui, A. (2013b). L-shaped Algorithm for Stochastic
Disassembly Line Balancing Problem. IFAC Proceedings Volumes, 46(9), 407—
411. https://doi.org/10.3182/20130619-3-RU-3018.00500

Bentaha, M. L., Battaia, O., & Dolgui, A. (2013c). A decomposition method for

stochastic partial disassembly line balancing with profit maximization. 2013

128

IEEE International Conference on Automation Science and Engineering
(CASE), 404-4009. https://doi.org/10.1109/CoASE.2013.6654016

Bentaha, M. L., Battaia, O., & Dolgui, A. (2013d). A Stochastic Formulation of the
Disassembly Line Balancing Problem. IFIP Advances in Information and
Communication Technology, 397(PART 1), 397-404.
https://doi.org/10.1007/978-3-642-40352-1_50

Bentaha, M. L., Battaia, O., & Dolgui, A. (2013e). Chance Constrained Programming
Model for Stochastic Profit—Oriented Disassembly Line Balancing in the
Presence of Hazardous Parts. IFIP Advances in Information and
Communication Technology, 414, 103-110. https://doi.org/10.1007/978-3-642-
41266-0_13

Bentaha, M. L., Battaia, O., & Dolgui, A. (2014a). Disassembly Line Balancing and
Sequencing under Uncertainty. Procedia CIRP, 15, 239-244.
https://doi.org/10.1016/j.procir.2014.06.016

Bentaha, M. L., Battaia, O., & Dolgui, A. (2014b). Disassembly Line Balancing
Problem with Fixed Number of Workstations under Uncertainty. IFAC
Proceedings Volumes, 47(3), 3522—-3526. https://doi.org/10.3182/20140824-6-
ZA-1003.02788

Bentaha, M. L., Battaia, O., & Dolgui, A. (2014c). Lagrangian Relaxation for
Stochastic Disassembly Line Balancing Problem. Procedia CIRP, 17, 56-60.
https://doi.org/10.1016/j.procir.2014.02.049

Bentaha, M. L., Battaia, O., & Dolgui, A. (2014d). A sample average approximation
method for disassembly line balancing problem under uncertainty. Computers
& Operations Research, 51, 111-122.
https://doi.org/10.1016/j.cor.2014.05.006

Bentaha, M. L., Battaia, O., & Dolgui, A. (2015). An exact solution approach for
disassembly line balancing problem under uncertainty of the task processing
times. International Journal of Production Research, 53(6), 1807-1818.
https://doi.org/10.1080/00207543.2014.961212

Bentaha, M. L., Dolgui, A., Battaia, O., Riggs, R. J., & Hu, J. (2018). Profit-oriented

partial disassembly line design: dealing with hazardous parts and task

129

processing times uncertainty. International Journal of Production Research,
56(24), 7220-7242. https://doi.org/10.1080/00207543.2017.1418987

Budak, A. (2020). Sustainable reverse logistics optimization with triple bottom line
approach: An integration of disassembly line balancing. Journal of Cleaner
Production. https://doi.org/10.1016/j.jclepro.2020.122475

Cai, N., Zhang, Z., Zhang, Y., & Zhu, L. (2019). Modeling and Improved SFLA for
Disassembly Line Balancing under Resource Constraints. Zhongguo Jixie
Gongcheng/China Mechanical Engineering.
https://doi.org/10.3969/j.issn.1004-132X.2019.17.011

Cai, N., Zhang, Z., Zou, B., & Li, L. (2019). Multi-objective disassembly line balancing
optimization and analytic hierarchy process decision-making considering
energy consumption. Jisuanji Jicheng Zhizao Xitong/Computer Integrated
Manufacturing Systems, CIMS. https://doi.org/10.13196/j.cims.2019.01.012

Cao, J., Xia, X., Wang, L., Zhang, Z., & Liu, X. (2019). A Novel Multi-Efficiency
Optimization Method for Disassembly Line Balancing Problem. Sustainability,
11(24), 6969. https://doi.org/10.3390/su11246969

Cevikcan, E., Aslan, D., & Yeni, F. B. (2020). Disassembly line design with multi-
manned workstations: a novel heuristic optimisation approach. International
Journal of Production Research, 58(3), 649-670.
https://doi.org/10.1080/00207543.2019.1587190

Chen, J. C,, Chen, Y. Y., Chen, T. L, & Yang, Y. C. (2021). An adaptive genetic
algorithm-based and AND/OR graph approach for the disassembly line
balancing problem. Engineering Optimization.
https://doi.org/10.1080/0305215X.2021.1957468

Chen, Q., Yao, B., & Pham, D. T. (2020). Sequence-dependent robotic disassembly
line balancing problem considering disassembly path. ASME 2020 15th
International Manufacturing Science and Engineering Conference, MSEC
2020. https://doi.org/10.1115/MSEC2020-8268

Cotta, C., Mathieson, L., & Moscato, P. (2018). Memetic algorithms. In Handbook of
Heuristics. https://doi.org/10.1007/978-3-319-07124-4 29

130

CiL, Z. A. (2021). An exact solution method for multi-manned disassembly line design
with AND/OR precedence relations. Applied Mathematical Modelling.
https://doi.org/10.1016/j.apm.2021.07.013

Cil, Z. A., Mete, S., & Serin, F. (2020). Robotic disassembly line balancing problem:
A mathematical model and ant colony optimization approach. Applied
Mathematical Modelling. https://doi.org/10.1016/j.apm.2020.05.006

Dalle Mura, M., Pistolesi, F., Dini, G., & Lazzerini, B. (2021). End-of-life product
disassembly with priority-based extraction of dangerous parts. Journal of
Intelligent Manufacturing. https://doi.org/10.1007/s10845-020-01592-z

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist
multiobjective genetic algorithm: NSGA-Il. IEEE Transactions on
Evolutionary Computation. https://doi.org/10.1109/4235.996017

Deniz, N., & Ozcelik, F. (2019). An extended review on disassembly line balancing
with bibliometric & social network and future study realization analysis. In
Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2019.03.188

Ding, L. P., Feng, Y., Tan, J.-R., & Gao, Y. (2010). A new multi-objective ant colony
algorithm for solving the disassembly line balancing problem. The
International Journal of Advanced Manufacturing Technology, 48(5-8), 761—
771. https://doi.org/10.1007/s00170-009-2303-5

Ding, L. P., Tan, J. R., Feng, Y. X., & Gao, Y. C. (2009). Multiobjective optimization
for disassembly line balancing based on Pareto ant colony algorithm. Computer
Integrated Manufacturing Systems, 15(7).

Diri Kenger, Z., Kog, C., & Ozceylan, E. (2020). Integrated disassembly line balancing
and routing problem. International Journal of Production Research.
https://doi.org/10.1080/00207543.2020.1740346

Diri Kenger, Z., Kog, C., & Ozceylan, E. (2021). Integrated disassembly line balancing
and routing problem with mobile additive manufacturing. International Journal
of Production Economics. https://doi.org/10.1016/j.ijpe.2021.108088

Duta, L., Caciula, I., & Patic, P. C. (2016). Column generation approach for
disassembly line balancing. IFAC-PapersOnLine, 49(12), 916-920.
https://doi.org/10.1016/j.ifacol.2016.07.892

131

Duta, L., Filip, F. G., & Caciula, 1. (2008). Real Time Balancing of Complex
Disassembly Lines. IFAC Proceedings Volumes, 41(2), 913-918.
https://doi.org/10.3182/20080706-5-KR-1001.00156

Duta, L., Filip, F. G., & Henrioud, J. M. (2005). APPLYING EQUAL PILES
APPROACH TO DISASSEMBLY LINE BALANCING PROBLEM. IFAC
Proceedings Volumes, 38(1), 152-157. https://doi.org/10.3182/20050703-6-
CZ-1902.01450

Edis, E. B. (2021). Constraint programming approaches to disassembly line balancing
problem with sequencing decisions. Computers and Operations Research.
https://doi.org/10.1016/j.cor.2020.105111

Edis, E. B., llgin, M. A., & Edis, R. S. (2019). Disassembly line balancing with
sequencing decisions: A mixed integer linear programming model and
extensions. Journal of Cleaner Production, 238, 117826.
https://doi.org/10.1016/j.jclepro.2019.117826

Fang, Y., & Xu, H. (2020). Constraint Handling Methods for Resource-Constrained
Robotic Disassembly Line Balancing Problem. Journal of Physics: Conference
Series. https://doi.org/10.1088/1742-6596/1576/1/012039

Fang, Y., Liu, Q., Li, M., Laili, Y., & Pham, D. T. (2019). Evolutionary many-objective
optimization for mixed-model disassembly line balancing with multi-robotic
workstations. European Journal of Operational Research, 276(1), 160-174.
https://doi.org/10.1016/j.ejor.2018.12.035

Fang, Y., Ming, H., Li, M., Liu, Q., & Pham, D. T. (2020). Multi-objective evolutionary
simulated annealing optimisation for mixed-model multi-robotic disassembly
line balancing with interval processing time. International Journal of
Production Research, 58(3), 846-862.
https://doi.org/10.1080/00207543.2019.1602290

Fang, Y., Ming, H., Li, M., Liu, Q., & Pham, D. T. (2020). Multi-objective evolutionary
simulated annealing optimisation for mixed-model multi-robotic disassembly
line balancing with interval processing time. International Journal of Production
Research. https://doi.org/10.1080/00207543.2019.1602290

Fang, Y., Wei, H., Liu, Q., Li, Y., Zhou, Z., & Pham, D. T. (2019). Minimizing Energy
Consumption and Line Length of Mixed-Model Multi-Robotic Disassembly
Line Systems Using Multi-Objective Evolutionary Optimization. ASME 2019

132

14th International Manufacturing Science and Engineering Conference, 1.
https://doi.org/10.1115/MSEC2019-2773

Fang, Y., Xu, H., Liu, Q., & Pham, D. T. (2020). Evolutionary optimization using
epsilon method for resource-constrained multi-robotic disassembly line
balancing. Journal of Manufacturing Systems.
https://doi.org/10.1016/j.jmsy.2020.06.006

Fang, Y., Zhang, H., Liu, Q., Zhou, Z., Yao, B., & Pham, D. T. (2020). Interval multi-
objective evolutionary optimization for disassembly line balancing with
uncertain task time. ASME 2020 15th International Manufacturing Science and
Engineering Conference, MSEC 2020. https://doi.org/10.1115/MSEC2020-
8265

Filipescu, A., Filipescu, A., Voda, A., & Minca, E. (2016). Hybrid modeling, balancing
and control of a mechatronics line served by two mobile robots. 2016 20th
International Conference on System Theory, Control and Computing, ICSTCC
2016 - Joint Conference of SINTES 20, SACCS 16, SIMSIS 20 - Proceedings.
https://doi.org/10.1109/ICSTCC.2016.7790671

Gao, K. Z., He, Z. M., Huang, Y., Duan, P. Y., & Suganthan, P. N. (2020). A survey
on meta-heuristics for solving disassembly line balancing, planning and
scheduling problems in remanufacturing. Swarm and Evolutionary
Computation. https://doi.org/10.1016/j.swev0.2020.100719

Gao, Y., Wang, Q., Feng, Y., Zheng, H., Zheng, B., & Tan, J. (2018). An Energy-
Saving Optimization Method of Dynamic Scheduling for Disassembly Line.
Energies, 11(5), 1261. https://doi.org/10.3390/en11051261

Glover, F. (1986). Future paths for integer programming and links to artificial
intelligence. Computers and Operations Research.
https://doi.org/10.1016/0305-0548(86)90048-1

Glover, F. (1989). Tabu Search—Part I. ORSA Journal on Computing.
https://doi.org/10.1287/ijoc.1.3.190

Goksoy Kalaycilar, E., Batun, S., & Azizoglu, M. (2021). A stochastic programming
approach for the disassembly line balancing with hazardous task failures.
International Journal of Production Research.
https://doi.org/10.1080/00207543.2021.1916119

133

Gupta, S. M., & Giingor, A. (2001). Product recovery using a disassembly line:
challenges and solution. Proceedings of the 2001 IEEE International
Symposium on Electronics and the Environment. 2001 IEEE ISEE (Cat.
No0.01CH37190), 36-40. https://doi.org/10.1109/ISEE.2001.924499

Glingor, A., & Gupta, S. M. (1999a). Disassembly line balancing. Proceedings of the
1999 Annual Meeting of the Northeast Decision Sciences Institute, 193—195.

Gilingor, A., & Gupta, S. M. (1999b). Disassembly Line Balancing. Proceedings of the
1999 Annual Meeting of the Northeast Decision Sciences Institute, 193—-195.

Glingor, A., & Gupta, S. M. (2001). A solution approach to the disassembly line
balancing problem in the presence of task failures. International Journal of
Production Research, 39(7), 1427-1467.
https://doi.org/10.1080/00207540110052157

Glingor, A., & Gupta, S. M. (2002). Disassembly line in product recovery. International
Journal of Production Research, 40(11), 2569-2589.
https://doi.org/10.1080/00207540210135622

Glingdr, A., Gupta, S. M., Pochampally, K., & Kamarthi, S. V. (2001). Complications
in disassembly line balancing. Proceedings of SPIE International Conference
on Environmentally Concious Manufacturing, 4193, 289-298.

Habibi, M. K. K., Battaia, O., Cung, V.-D., & Dolgui, A. (2014). Integrated
Procurement-Disassembly Problem. In IFIP Advances in Information and
Communication Technology (Vol. 439, Issue PART 2, pp. 482-490).
https://doi.org/10.1007/978-3-662-44736-9_59

Hao, Y. K., & Hasan, S. (2016). The improvement of line efficiency on disassembly
line balancing problem: An HRRCD’s heuristic rule. ARPN Journal of
Engineering and Applied Sciences, 11(10), 6428-6433.

Hauschild, M. Z., Herrmann, C., & Kara, S. (2017). An Integrated Framework for Life
Cycle Engineering. Procedia CIRP, 61, 2-9.
https://doi.org/10.1016/j.procir.2016.11.257

He, J.,, Chu, F., Dolgui, A., Zheng, F., & Liu, M. (2021). Integrated stochastic
disassembly line balancing and planning problem with machine specificity.
International Journal of Production Research.
https://doi.org/10.1080/00207543.2020.1868600

134

He, J., Chu, F., Zheng, F., & Liu, M. (2021). A green-oriented bi-objective disassembly
line balancing problem with stochastic task processing times. Annals of
Operations Research. https://doi.org/10.1007/s10479-020-03558-z

He, J., Chu, F., Zheng, F., Liu, M., & Chu, C. (2020). A multi-objective distribution-
free model and method for stochastic disassembly line balancing problem.
International Journal of Production Research, 58(18), 5721-5737.
https://doi.org/10.1080/00207543.2019.1656841

Hezer, S., & Kara, Y. (2015). A network-based shortest route model for parallel
disassembly line balancing problem. International Journal of Production
Research, 53(6), 1849-1865. https://doi.org/10.1080/00207543.2014.965348

Holdren, J. P. (1993). A Brief History of “IPAT” (IMPACT = POPULATION X
AFFLUENCE X TECHNOLOGY). In Population and Sustainability (Vol. 2,
Issue 2).

Homem de Mello, L.S., & Sanderson, A. C. (1990). AND/OR graph representation of
assembly plans. IEEE Transactions on Robotics and Automation, 6(2), 188—
199. https://doi.org/10.1109/70.54734

Homem de Mello, Luiz S., & Sanderson, A. C. (1991a). A Correct and Complete
Algorithm for the Generation of Mechanical Assembly Sequences. IEEE
Transactions on Robotics and Automation. https://doi.org/10.1109/70.75905

Homem de Mello, Luiz S., & Sanderson, A. C. (1991b). Representations of Mechanical
Assembly Sequences. IEEE Transactions on Robotics and Automation.
https://doi.org/10.1109/70.75904

Hu, P., Chu, F.,, Fang, Y., & Wu, P. (2021). Novel distribution-free model and method
for stochastic disassembly line balancing with limited distributional
information. Journal of Combinatorial Optimization.
https://doi.org/10.1007/s10878-020-00678-x

Igarashi, K., Yamada, T., & Inoue, M. (2014). 2-Stage Optimal Design and Analysis
for Disassembly System with Environmental and Economic Parts Selection
Using the Recyclability Evaluation Method. Industrial Engineering and
Management Systems, 13(1), 52-66.
https://doi.org/10.7232/iems.2014.13.1.052

135

Igarashi, K., Yamada, T., Gupta, S. M., Inoue, M., & Itsubo, N. (2016). Disassembly
system modeling and design with parts selection for cost, recycling and CO2
saving rates using multi criteria optimization. Journal of Manufacturing
Systems, 38, 151-164. https://doi.org/10.1016/j.jmsy.2015.11.002

Igarashi, K., Yamada, T., Itsubo, N., & Inoue, M. (2014). Optimal disassembly system
design with environmental and economic parts selection for CO2 saving rate
and recycling cost. International Journal of Supply Chain Management, 3(3),
159-171.

llgin, M. A. (2019). A DEMATEL-Based Disassembly Line Balancing Heuristic.
Journal of Manufacturing Science and Engineering, 141(2).
https://doi.org/10.1115/1.4041925

Iigin, M. A., Ake¢ay, H., & Araz, C. (2017). Disassembly line balancing using linear
physical programming. International Journal of Production Research, 55(20),
6108-6119. https://doi.org/10.1080/00207543.2017.1324225

Jia, L., & Shuwei, W. (2017). A proposed multi-objective optimization model for
sequence-dependent disassembly line balancing problem. 2017 3rd
International Conference on Information Management (ICIM), 421-425.
https://doi.org/10.1109/INFOMAN.2017.7950420

Jiang, J., Zhang, Z., Xie, M., & Cai, N. (2021). Improved wolf pack algorithm for multi-
objective disassembly line balancing problem under space constraints. Jisuanji
Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS.
https://doi.org/10.13196/j.cims.2021.06.004

Johar, B. O., & Gupta, S. M. (2006). Balancing inventory generated from a disassembly
line: mathematical approach. In S. M. Gupta (Ed.), Environmentally Conscious
Manufacturing VI (Vol. 6385, p. 638502). https://doi.org/10.1117/12.686072

Kalaycilar, E. G., Azizoglu, M., & Yeralan, S. (2016). A disassembly line balancing
problem with fixed number of workstations. European Journal of Operational
Research, 249(2), 592-604. https://doi.org/10.1016/j.ejor.2015.09.004

Kalayci, C. B., & Gupta, S. M. (2011). Tabu search for disassembly line balancing with
multiple objectives. 41st International Conference on Computers and Industrial
Engineering 2011, 160-165.

136

Kalayci, C. B., & Gupta, S. M. (2013a). Balancing a sequencedependent disassembly
line using simulated annealing algorithm. In Applications of Management
Science (Vol. 16, pp. 81-103). Springer Netherlands.
https://doi.org/10.1108/S0276-8976(2013)0000016008

Kalayci, C. B., & Gupta, S. M. (2013b). Simulated Annealing Algorithm for Solving
Sequence-Dependent Disassembly Line Balancing Problem. IFAC Proceedings
Volumes, 46(9), 93-98. https://doi.org/10.3182/20130619-3-RU-3018.00064

Kalayci, C. B., & Gupta, S. M. (2013c). Ant colony optimization for sequence-
dependent disassembly line balancing problem. Journal of Manufacturing
Technology Management, 24(3), 413-4217.
https://doi.org/10.1108/17410381311318909

Kalayci, C. B., & Gupta, S. M. (2013d). A particle swarm optimization algorithm with
neighborhood-based mutation for sequence-dependent disassembly line
balancing problem. The International Journal of Advanced Manufacturing
Technology, 69(1-4), 197-209. https://doi.org/10.1007/s00170-013-4990-1

Kalayci, C. B., & Gupta, S. M. (2013e). Artificial bee colony algorithm for solving
sequence-dependent disassembly line balancing problem. Expert Systems with
Applications, 40(18), 7231-7241. https://doi.org/10.1016/j.eswa.2013.06.067

Kalayci, C. B., & Gupta, S. M. (2014). A tabu search algorithm for balancing a
sequence-dependent disassembly line. Production Planning & Control, 25(2),
149-160. https://doi.org/10.1080/09537287.2013.782949

Kalayci, C. B., Hancilar, A., Glingor, A., & Gupta, S. M. (2015). Multi-objective fuzzy
disassembly line balancing using a hybrid discrete artificial bee colony
algorithm. Journal of Manufacturing Systems, 37, 672-682.
https://doi.org/10.1016/j.jmsy.2014.11.015

Kalayci, C. B., Polat, O., & Gupta, S. M. (2015). A variable neighbourhood search
algorithm for disassembly lines. Journal of Manufacturing Technology
Management, 26(2), 182—-194. https://doi.org/10.1108/JMTM-11-2013-0168

Kalayci, C. B., Polat, O., & Gupta, S. M. (2016). A hybrid genetic algorithm for
sequence-dependent disassembly line balancing problem. Annals of Operations
Research, 242(2), 321-354. https://doi.org/10.1007/s10479-014-1641-3

137

Kanagaraj, G., Naresh, R., & Yu, V. F. (2021). ENUMERATIVE SEARCH
ALGORITHM FOR ROBOTIC DISASSEMBLY LINE BALANCING
PROBLEM. International Journal of Robotics and Automation, 36(1).
https://doi.org/10.2316/J.2021.206-0427

Kannan, D., Garg, K., Jha, P. C., & Diabat, A. (2017). Integrating disassembly line
balancing in the planning of a reverse logistics network from the perspective of
a third party provider. Annals of Operations Research, 253(1), 353-376.
https://doi.org/10.1007/s10479-016-2272-7

Kaya, U., Koruca, H. 1., & Chehbi-Gamoura, S. (2020). Development of a Flexible
Software for Disassembly Line Balancing with Heuristic Algorithms. In
Lecture Notes on Data Engineering and Communications Technologies.
https://doi.org/10.1007/978-3-030-36178-5_90

Kazancoglu, Y., & Ozkan-Ozen, Y. D. (2020). Sustainable disassembly line balancing
model based on triple bottom line. International Journal of Production
Research, 58(14), 4246-4266.
https://doi.org/10.1080/00207543.2019.1651456

Kazancoglu, Y., & Ozturkoglu, Y. (2018). Integrated framework of disassembly line
balancing with Green and business objectives using a mixed MCDM. Journal
of Cleaner Production, 191, 179-191.
https://doi.org/10.1016/j.jclepro.2018.04.189

Kim, Y. K., Song, W. S., & Kim, J. H. (2009). A mathematical model and a genetic
algorithm for two-sided assembly line balancing. Computers and Operations
Research. https://doi.org/10.1016/j.cor.2007.11.003

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated
annealing. Science. https://doi.org/10.1126/science.220.4598.671

Kizilkaya, E. A.,, & Gupta, S. M. (2004). Modeling Operational Behavior of a
Disassembly Line. In S. M. Gupta (Ed.), Proceedings of the SPIE International
Conference on Environmentally Conscious Manufacturing IV (pp. 79-93).
https://doi.org/10.1117/12.580419

Kizilkaya, E. A., & Gupta, S. M. (2005). Impact of different disassembly line balancing
algorithms on the performance of dynamic kanban system for disassembly line.
In S. M. Gupta (Ed.), Environmentally Conscious Manufacturing V (Vol. 5997,
pp. 59970D-59970D — 8). https://doi.org/10.1117/12.631371

138

Koc, A., Sabuncuoglu, 1., & Erel, E. (2009). Two exact formulations for disassembly
line balancing problems with task precedence diagram construction using an
AND/OR graph. IE Transactions, 41(10), 866-881.
https://doi.org/10.1080/07408170802510390

Kriengkorakot, N., & Pianthong, N. (1955). The assembly line balancing problem:
Review Problem. Journal of Industrial Engineering, 6(3), 18-25.
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle: The+Assem
bly+Line+Balancing+Problem+:#0%5Cnhttp://scholar.google.com/scholar?hl
=en&btnG=Search&q=intitle: The+assembly+line+balancing+problem%?231

Kucukkoc, 1. (2020). Balancing of two-sided disassembly lines: Problem definition,
MILP model and genetic algorithm approach. Computers & Operations
Research, 124, 105064. https://doi.org/10.1016/j.cor.2020.105064

Kucukkoc, 1., & Zhang, D. Z. (2015). Balancing of parallel U-shaped assembly lines.
Computers and Operations Research, 64, 233-244.
https://doi.org/10.1016/j.cor.2015.05.014

Kucukkoc, 1., Li, Z., & Li, Y. (2019). Type-E disassembly line balancing problem with
multi-manned workstations. Optimization and Engineering.
https://doi.org/10.1007/s11081-019-09465-y

Laili, Y., Li, Y., Fang, Y., Pham, D. T., & Zhang, L. (2020). Model review and
algorithm comparison on multi-objective disassembly line balancing. In
Journal of Manufacturing Systems. https://doi.org/10.1016/j.jmsy.2020.07.015

Lambert, A. J. D. (2007). A HEURISTIC FOR ASSEMBLY AND DISASSEMBLY
LINE BALANCING. IFAC Proceedings Volumes, 40(2), 69-74.
https://doi.org/10.3182/20070523-3-ES-4907.00013

Lambert, A. J. D., & Gupta, S. M. (2005a). A heuristic solution for the disassembly
line balancing problem incorporating sequence dependent costs. In S. M. Gupta
(Ed.), Environmentally Conscious Manufacturing V (Vol. 5997, pp. 59970A-
59970A — 8). https://doi.org/10.1117/12.637368

Lambert, A. J. D., & Gupta, S. M. (2005b). Determining optimum and suboptimum
disassembly sequences with an application to a cell phone. (ISATP 2005). The
6th IEEE International Symposium on Assembly and Task Planning: From
Nano to Macro Assembly and Manufacturing, 2005., 2005, 260-265.
https://doi.org/10.1109/ISATP.2005.1511483

139

Li, J., Chen, X., & Chu, C. (2019). The disassembly line design problem. Proceedings
of the 2019 International Conference on Industrial Engineering and Systems
Management, IESM 2019. https://doi.org/10.1109/IESM45758.2019.8948107

Li, J., Chen, X., Zhu, Z., Yang, C., & Chu, C. (2019). A branch, bound, and remember
algorithm for the simple disassembly line balancing problem. Computers and
Operations Research, 105, 47-57. https://doi.org/10.1016/j.cor.2019.01.003

Li, L., Zhang, Z., Guan, C., & Jia, L. (2018). Multi-objective Optimization for Partial
Disassembly Line Balancing with Goal- driven Discrete Cuckoo Search.
Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design
and Computer Graphics. https://doi.org/10.3724/SP.J.1089.2018.16439

Li, L., Zhang, Z., Hu, Y., & Zou, B. (2017). Optimization of Disassembly Line
Balancing Problems with Setup Times Based on Multi-objective Algorithm and
Dynamic Simulation. Zhongguo Jixie Gongcheng/China Mechanical
Engineering. https://doi.org/10.3969/j.issn.1004-132X.2017.17.016

Li, L., Zhang, Z., Zhu, L., & Zou, B. (2018). Modeling and Optimizing for Multi-
objective Partial Disassembly Line Balancing Problem. Jixie Gongcheng
Xuebao/Journal of Mechanical Engineering.
https://doi.org/10.3901/JME.2018.03.125

Li, X,, Laili, Y., Zhang, L., & Ren, L. (2019). Modeling for component relations in
robotic disassmebly. 31st European Modeling and Simulation Symposium,
EMSS 2019. https://doi.org/10.46354/i3m.2019.emss.036

Li, Z., & Janardhanan, M. N. (2021). Modelling and solving profit-oriented U-shaped
partial disassembly line balancing problem. Expert Systems with Applications.
https://doi.org/10.1016/j.eswa.2021.115431

Li, Z., Cil, Z. A., Mete, S., & Kucukkoc, I. (2020). A fast branch, bound and remember
algorithm for disassembly line balancing problem. International Journal of
Production Research, 58(11), 3220-3234.
https://doi.org/10.1080/00207543.2019.1630774

Li, Z., Kucukkoc, I., & Zhang, Z. (2019). Iterated local search method and
mathematical model for sequence-dependent U-shaped disassembly line
balancing problem. Computers & Industrial Engineering, 137, 106056.
https://doi.org/10.1016/j.cie.2019.106056

140

Liang, J., Guo, S., Du, B., Li, Y., Guo, J., Yang, Z., & Pang, S. (2021). Minimizing
energy consumption in multi-objective two-sided disassembly line balancing
problem with complex execution constraints using dual-individual simulated
annealing algorithm. Journal of Cleaner Production, 284, 125418.
https://doi.org/10.1016/j.jclepro.2020.125418

Liang, P., Fu, Y., Gao, K., & Sun, H. (2021). An enhanced group teaching optimization
algorithm for multi-product disassembly line balancing problems. Complex &
Intelligent Systems. https://doi.org/10.1007/s40747-021-00478-8

Lindsey, R. (2020). Climate Change: Atmospheric Carbon Dioxide. NOAA
Climate.Gov.

Liu, B. Y., Chen, W. Da, & Huang, S. (2013). Research on disassembly line balancing
problem in the presence of uncertain cycle time. International Asia Conference
on Industrial Engineering and Management Innovation: Core Areas of
Industrial ~ Engineering, IEMI 2012 - Proceedings, 497-507.
https://doi.org/10.1007/978-3-642-38445-5-51

Liu, B., Xu, W., Liu, J., Yao, B., Zhou, Z., & Pham, D. T. (2019). Human-Robot
Collaboration for Disassembly Line Balancing Problem in Remanufacturing.
ASME 2019 14th International Manufacturing Science and Engineering
Conference, MSEC 2019, 1. https://doi.org/10.1115/MSEC2019-2919

Liu, Jia, & Wang, S. (2017). Balancing Disassembly Line in Product Recovery to
Promote the Coordinated Development of Economy and Environment.
Sustainability, 9(2), 309. https://doi.org/10.3390/su9020309

Liu, Jia, & Wang, S. W. (2018). A hybrid artificial bee colony algorithm for solving
sequence-dependent disassembly line balancing problem. Kongzhi Yu
Juece/Control and Decision. https://doi.org/10.13195/j.kzyjc.2017.0003

Liu, Jiayi, Zhou, Z., Pham, D. T., Xu, W., Ji, C., & Liu, Q. (2020). Collaborative
optimization of robotic disassembly sequence planning and robotic disassembly
line balancing problem using improved discrete Bees algorithm in
remanufacturing+. Robotics and Computer-Integrated Manufacturing, 61,

101829. https://doi.org/10.1016/j.rcim.2019.101829

141

Liu, Jiayi, Zhou, Z., Pham, D. T., Xu, W., Yan, J., Liu, A., Ji, C., & Liu, Q. (2018). An
improved multi-objective discrete bees algorithm for robotic disassembly line
balancing problem in remanufacturing. The International Journal of Advanced
Manufacturing Technology, 97(9-12), 3937-3962.
https://doi.org/10.1007/s00170-018-2183-7

Liu, M., Liu, R., & Chu, F. (2019). Distribution-free and Risk-averse Disassembly Line
Balancing Problem. Proceedings of the 2019 International Conference on
Industrial Engineering and Systems Management, [ESM 2019.
https://doi.org/10.1109/IESM45758.2019.8948079

Liu, M., Liu, X,, Chu, F., Zheng, F., & Chu, C. (2020). Robust disassembly line
balancing with ambiguous task processing times. International Journal of
Production Research, 58(19), 5806-5835.
https://doi.org/10.1080/00207543.2019.1659520

Liu, M., Liu, X., Chu, F., Zheng, F., & Chu, C. (2021). An exact method for
disassembly line balancing problem with limited distributional information.
International Journal of Production Research.
https://doi.org/10.1080/00207543.2019.1704092

Liu, M., Liu, Z., Liu, X., & Chu, F. (2019). Entropy-based bi-objective disassembly
line balancing problem. Proceedings of the 2019 International Conference on
Industrial Engineering and Systems Management, [ESM 20109.
https://doi.org/10.1109/IESM45758.2019.8948166

Liu, Q., Li, Y., Fang, Y., Laili, Y., Lou, P., & Pham, D. T. (2019). Many-objective
best-order-sort genetic algorithm for mixed-model multi-robotic disassembly
line balancing. Procedia CIRP, 83, 14-21.
https://doi.org/10.1016/j.procir.2019.04.076

Liu, X., Chu, F., Zheng, F., Chu, C., & Liu, M. (2021). Distributionally robust and risk-
averse optimisation for the stochastic multi-product disassembly line balancing
problem with workforce assignment. International Journal of Production
Research. https://doi.org/10.1080/00207543.2021.1881648

Liuke, U., Zegiang, Z., Binsen, Z., & Ning, C. (2018). Optimization of Multi-objective
Disassembly Line Balancing Problem Using Immune Mechanism Cooperative
Genetic Algorithm. Information and Control.
https://doi.org/10.13976/j.cnki.xk.2018.7217

142

Luo, W., Zhou, M. C., Guo, X. W., Wei, H., Qi, L., & Zhao, Z. (2020). Improved
Artificial Bee Colony Algorithm for Solving a Single-Objective Sequence-
dependent Disassembly Line Balancing Problem. 2020 IEEE International
Conference on Networking, Sensing and Control, ICNSC 2020.
https://doi.org/10.1109/ICNSC48988.2020.9238075

Mahesh, K., Nallagownden, P., & Elamvazuthi, 1. (2016). Advanced Pareto front non-
dominated sorting multi-objective particle swarm optimization for optimal
placement and sizing of distributed generation. Energies.
https://doi.org/10.3390/en9120982

McGovern, S. M., & Gupta, S. M. (2003). Greedy algorithm for disassembly line
scheduling. SMC’03 Conference Proceedings. 2003 IEEE International
Conference on Systems, Man and Cybernetics. Conference Theme - System
Security and Assurance (Cat. No0.03CH37483), 2, 1737-1744.
https://doi.org/10.1109/ICSMC.2003.1244663

McGovern, S. M., & Gupta, S. M. (2004a). Demanufacturing strategy based upon
metaheuristics. IIE Annual Conference and Exhibition 2004.

McGovern, S. M., & Gupta, S. M. (2004b). 2-opt heuristic for the disassembly line
balancing problem. In S. M. Gupta (Ed.), Environmentally Conscious
Manufacturing 111 (Vol. 5262, pp. 71-84). https://doi.org/10.1117/12.516155

McGovern, S. M., & Gupta, S. M. (2004c). Combinatorial optimization methods for
disassembly line balancing. In S. M. Gupta (Ed.), Environmentally Conscious
Manufacturing IV (pp. 53-66). https://doi.org/10.1117/12.570493

McGovern, S. M., & Gupta, S. M. (2005a). Local search heuristics and greedy
algorithm for balancing a disassembly line. International Journal of Operations
and Quantitative Management, 11(2), 91-114.

McGovern, S. M., & Gupta, S. M. (2005b). Uninformed and probabilistic distributed
agent combinatorial searches for the unary NP-complete disassembly line
balancing problem. In S. M. Gupta (Ed.), Environmentally Conscious
Manufacturing vV (Vol. 5997, pp. 59970B-59970B - 12).
https://doi.org/10.1117/12.629121

McGovern, S. M., & Gupta, S. M. (2006a). Computational complexity of a reverse
manufacturing line. Environmentally Conscious Manufacturing VI.
https://doi.org/10.1117/12.686371

143

McGovern, S. M., & Gupta, S. M. (2006b). Deterministic hybrid and stochastic
combinatorial optimization treatments of an electronic product disassembly
line. Applications of Management Science, 12, 175-197.
https://doi.org/10.1016/S0276-8976(06)12013-1

McGovern, S. M., & Gupta, S. M. (2006c). Ant colony optimization for disassembly
sequencing with multiple objectives. The International Journal of Advanced
Manufacturing Technology, 30(5-6), 481-496. https://doi.org/10.1007/s00170-
005-0037-6

McGovern, S. M., & Gupta, S. M. (2007a). A balancing method and genetic algorithm
for disassembly line balancing. European Journal of Operational Research,
179(3), 692-708. https://doi.org/10.1016/j.ejor.2005.03.055

McGovern, S. M., & Gupta, S. M. (2007a). BENCHMARK DATA SET FOR
EVALUATION OF LINE BALANCING ALGORITHMS. IFAC Proceedings
Volumes, 40(2), 48-53. https://doi.org/10.3182/20070523-3-ES-4907.00009

McGovern, S. M., & Gupta, S. M. (2007b). A balancing method and genetic algorithm
for disassembly line balancing. European Journal of Operational Research,
179(3), 692-708. https://doi.org/10.1016/j.ejor.2005.03.055

McGovern, S. M., & Gupta, S. M. (2007b). Combinatorial optimization analysis of the
unary NP-complete disassembly line balancing problem. International Journal
of Production Research, 45(18-19), 4485-4511.
https://doi.org/10.1080/00207540701476281

McGovern, S. M., & Gupta, S. M. (2007c). Combinatorial optimization analysis of the
unary NP-complete disassembly line balancing problem. International Journal
of Production Research, 45(18-19), 4485-4511.
https://doi.org/10.1080/00207540701476281

McGovern, S. M., & Gupta, S. M. (2015). Unified assembly- and disassembly-line
model formulae. Journal of Manufacturing Technology Management, 26(2),
195-212. https://doi.org/10.1108/JIMTM-11-2013-0169

Mei, K., & Fang, Y. (2021). Multi-robotic disassembly line balancing using deep
reinforment learning. Proceedings of the ASME 2021 16th International
Manufacturing Science and Engineering Conference, MSEC 2021.
https://doi.org/10.1115/MSEC2021-63522

144

Meng, W., & Zhang, X. (2020). Optimization of remanufacturing disassembly line
balance considering multiple failures and material hazards. Sustainability
(Switzerland). https://doi.org/10.3390/SU12187318

Mete, S., Cil, Z. A., Celik, E., & Ozceylan, E. (2019). Supply-driven rebalancing of
disassembly lines: A novel mathematical model approach. Journal of Cleaner
Production, 213, 1157-1164. https://doi.org/10.1016/j.jclepro.2018.12.265

Mete, Suleyman, & Serin, F. (2021). A Reinforcement Learning Approach for
Disassembly Line Balancing Problem. 2021 International Conference on
Information Technology, ICIT 2021 - Proceedings.
https://doi.org/10.1109/IC1T52682.2021.9491689

Mete, Siileyman, Cil, Z. A., & Ozceylan, E. (2017). A heuristic approach for joint
design of assembly and disassembly line balancing problem. 2017 8th
International Conference on Information Technology (ICIT), 418-423.
https://doi.org/10.1109/ICITECH.2017.8080036

Mete, Siileyman, Cil, Z. A., Agpak, K., Ozceylan, E., & Dolgui, A. (2016). A solution
approach based on beam search algorithm for disassembly line balancing
problem. Journal of Manufacturing Systems, 41, 188-200.
https://doi.org/10.1016/j.jmsy.2016.09.002

Mete, Siileyman, Cil, Z. A., Ozceylan, E., & Agpak, K. (2015). A beam search
approach to the disassembly line balancing problem. Proceedings - CIE 45:
2015 International Conference on Computers and Industrial Engineering.

Mete, Siileyman, Cil, Z. A., Ozceylan, E., & Agpak, K. (2016). Resource Constrained
Disassembly Line Balancing Problem. IFAC-PapersOnLine, 49(12), 921-925.
https://doi.org/10.1016/j.ifacol.2016.07.893

Mete, Siileyman, Cil, Z. A., Ozceylan, E., Agpak, K., & Battaia, O. (2018). An
optimisation support for the design of hybrid production lines including
assembly and disassembly tasks. International Journal of Production Research,
56(24), 7375-7389. https://doi.org/10.1080/00207543.2018.1428774

Minca, E., Filipescu, A., & Voda, A. (2014). Modelling and control of an
assembly/disassembly mechatronics line served by mobile robot with
manipulator. Control Engineering Practice.
https://doi.org/10.1016/j.conengprac.2014.06.005

145

Ming, H., Liu, Q., & Pham, D. T. (2019). Multi-Robotic Disassembly Line Balancing
with Uncertain Processing Time. Procedia CIRP, 83, 71-76.
https://doi.org/10.1016/j.procir.2019.02.140

Mladenovié¢, N., & Hansen, P. (1997). Variable neighborhood search. Computers &
Operations Research, 24(11), 1097-1100. https://doi.org/10.1016/S0305-
0548(97)00031-2

Moscato, P., & Cotta Porras, C. (2003). An Introduction to Memetic Algorithms.
INTELIGENCIA ARTIFICIAL. https://doi.org/10.4114/ia.v7i19.721

Moscato, Pablo, & Mathieson, L. (2019). Memetic Algorithms for Business Analytics
and Data Science: A Brief Survey. In Business and Consumer Analytics: New
Ideas. https://doi.org/10.1007/978-3-030-06222-4 13

Mutlu, S., & Giiner, B. (2021). A memetic algorithm for mixed-model two-sided
disassembly line balancing problem. Procedia CIRP, 98, 67-72.
https://doi.org/10.1016/j.procir.2021.01.007

NCA. (2009). 800,000 Year record of CO2 Concentration. Global Climate Change
Impacts in the United States 2009 Reports.
https://nca2009.globalchange.gov/800000-year-record-co2-
concentration/index.html

Ning, C., Zeqgiang, Z., Lixia, Z.,, & Lin, J. (2018). Improved Fruit-fly Fuzzy
Optimization Algorithm for Multi-constrained Disassembly-line Balancing
Problem Considering Energy Consumption. Information and Control.
https://doi.org/10.13976/j.cnki.xk.2018.7390

Ozcan, U., & Toklu, B. (2009). Balancing of mixed-model two-sided assembly lines.
Computers & Industrial Engineering, 57(2), 217-2217.
https://doi.org/10.1016/j.cie.2008.11.012

Ozceylan, E., & Paksoy, T. (2013). Reverse supply chain optimisation with
disassembly line balancing. International Journal of Production Research,
51(20), 5985-6001. https://doi.org/10.1080/00207543.2013.784405

Ozceylan, E., & Paksoy, T. (2014a). Fuzzy mathematical programming approaches for
reverse supply chain optimization with disassembly line balancing problem.
Journal of Intelligent & Fuzzy Systems, 26(4), 1969-1985.
https://doi.org/10.3233/1FS-130875

146

Ozceylan, E., & Paksoy, T. (2014b). Interactive fuzzy programming approaches to the
strategic and tactical planning of a closed-loop supply chain under uncertainty.
International Journal of Production Research.
https://doi.org/10.1080/00207543.2013.865852

Ozceylan, E., Kalayci, C. B., Giingér, A., & Gupta, S. M. (2019). Disassembly line
balancing problem: a review of the state of the art and future directions.
International Journal of Production Research, 57(15-16), 4805-4827.
https://doi.org/10.1080/00207543.2018.1428775

Ozceylan, E., Paksoy, T., & Bektas, T. (2014). Modeling and optimizing the integrated
problem of closed-loop supply chain network design and disassembly line
balancing. Transportation Research Part E: Logistics and Transportation
Review, 61, 142-164. https://doi.org/10.1016/j.tre.2013.11.001

Paksoy, T., Giingér, A., Ozceylan, E., & Hancilar, A. (2013). Mixed model disassembly
line balancing problem with fuzzy goals. International Journal of Production
Research, 51(20), 6082-6096. https://doi.org/10.1080/00207543.2013.795251

Pistolesi, F., Lazzerini, B., Mura, M. D., & Dini, G. (2018). EMOGA: A Hybrid
Genetic Algorithm With Extremal Optimization Core for Multiobjective
Disassembly Line Balancing. IEEE Transactions on Industrial Informatics,
14(3), 1089-1098. https://doi.org/10.1109/T11.2017.2778223

Prakash, & Tiwari, M. K. (2005). Solving a Dissassembly Line Balancing Problem
With Task Failure Using a Psycho-Clonal Algorithm. Volume 4b: Design for
Manufacturing and the Life Cycle Conference, 2005, 393-399.
https://doi.org/10.1115/DETC2005-84999

Qiang, Y., Lin, Y., & Tian, G. (2018). A novel MCDM-based approach for disassembly
line balancing problem. 2017 International Conference on Advanced
Mechatronic Systems (ICAMechS), 2017-Decem, 151-156.
https://doi.org/10.1109/ICAMechS.2017.8316567

Qin, Gui Bin, Guo, X. W., Zhou, M. C., Liu, S. X., & Qi, L. (2020). Multi-Objective
Discrete Migratory Bird Optimizer for Stochastic Disassembly Line Balancing
Problem. IEEE Transactions on Systems, Man, and Cybernetics: Systems.
https://doi.org/10.1109/SMC42975.2020.9283371

147

Qin, GuiBin, Guo, X., Liu, S., Qi, L., Zhao, J., Zhao, Z., & Tang, Y. (2021). Multi-
objective Discrete Migrating Birds Optimizer Solving Multiple-product Partial
U-shaped Disassembly Line Balancing Problem.
https://doi.org/10.1109/med51440.2021.9480304

Ren, Y., Meng, L., Zhang, C., Lu, Q., & Tian, G. (2019). Multi-criterion decision
making for disassembly line balancing problem. Procedia CIRP, 80, 542-547.
https://doi.org/10.1016/j.procir.2019.01.008

Ren, Y., Yu, D., Zhang, C., Tian, G., Meng, L., & Zhou, X. (2017). An improved
gravitational search algorithm for profit-oriented partial disassembly line
balancing problem. International Journal of Production Research, 55(24),
7302-7316. https://doi.org/10.1080/00207543.2017.1341066

Ren, Y., Zhang, C., Zhao, F., Tian, G., Lin, W., Meng, L., & Li, H. (2018). Disassembly
line balancing problem using interdependent weights-based multi-criteria
decision making and 2-Optimal algorithm. Journal of Cleaner Production, 174,
1475-1486. https://doi.org/10.1016/j.jclepro.2017.10.308

Ren, Y., Zhang, C., Zhao, F., Triebe, M. J., & Meng, L. (2020). An MCDM-Based
Multiobjective General Variable Neighborhood Search Approach for
Disassembly Line Balancing Problem. IEEE Transactions on Systems, Man,
and Cybernetics: Systems, 1-14. https://doi.org/10.1109/TSMC.2018.2862827

Riggs, R. J., Battaia, O., & Hu, S. J. (2015). Disassembly line balancing under high
variety of end of life states using a joint precedence graph approach. Journal of
Manufacturing Systems, 37, 638-648.
https://doi.org/10.1016/j.jmsy.2014.11.002

Roshani, A., Fattahi, P., Roshani, A., Salehi, M., & Roshani, A. (2012). Cost-oriented
two-sided assembly line balancing problem: A simulated annealing approach.
International ~ Journal of Computer Integrated Manufacturing.
https://doi.org/10.1080/0951192X.2012.664786

Seidi, M., & Saghari, S. (2016). The Balancing of Disassembly Line of Automobile
Engine Using Genetic Algorithm (GA) in Fuzzy Environment. Industrial
Engineering and Management Systems, 15(4), 364-373.
https://doi.org/10.7232/iems.2016.15.4.364

Statista. (2020a). Heavy truck production worldwide from 2011 to 2019, by region.

148

Statista. (2020b). Industrial production volume of household refrigerators in China
from 2009 to 2019. https://www.statista.com/statistics/408899/china-
household-refrigerator-production/

Tang, Y., Zhou, M.-C., & Caudill, R. J. (2001). A systematic approach to disassembly
line design. Proceedings of the 2001 IEEE International Symposium on
Electronics and the Environment. 2001 IEEE ISEE (Cat. No.01CH37190), 173—
178. https://doi.org/10.1109/ISEE.2001.924522

Tapkan, P., Ozbakir, L., & Baykasoglu, A. (2012). Modeling and solving constrained
two-sided assembly line balancing problem via bee algorithms. Applied Soft
Computing Journal. https://doi.org/10.1016/j.asoc.2012.06.003

Tuncel, E., Zeid, A., & Kamarthi, S. (2014). Solving large scale disassembly line
balancing problem with uncertainty using reinforcement learning. Journal of
Intelligent Manufacturing, 25(4), 647-659. https://doi.org/10.1007/s10845-
012-0711-0

Turowski, M., Morgan, M., & Ying Tang. (2005). Disassembly Line Design with
Uncertainty. 2005 IEEE International Conference on Systems, Man and
Cybernetics, 1, 954-959. https://doi.org/10.1109/ICSMC.2005.1571269

Wang, K., Gao, L., & Li, X. (2020). A multi-objective algorithm for U-shaped
disassembly line balancing with partial destructive mode. Neural Computing
and Applications. https://doi.org/10.1007/s00521-020-04721-0

Wang, K., Li, X., & Gao, L. (2019a). Modeling and optimization of multi-objective
partial disassembly line balancing problem considering hazard and profit.
Journal of Cleaner Production, 211, 115-133.
https://doi.org/10.1016/j.jclepro.2018.11.114

Wang, K., Li, X., & Gao, L. (2019b). A multi-objective discrete flower pollination
algorithm for stochastic two-sided partial disassembly line balancing problem.
Computers & Industrial Engineering, 130, 634-649.
https://doi.org/10.1016/j.cie.2019.03.017

Wang, K., Li, X., Gao, L., & Garg, A. (2019). Partial disassembly line balancing for
energy consumption and profit under uncertainty. Robotics and Computer-
Integrated Manufacturing, 59, 235-251.
https://doi.org/10.1016/j.rcim.2019.04.014

149

Wang,

Wang,

Wang,

Wang,

Wang,

Wang,

Wang,

K., Li, X, Gao, L., & Li, P. (2020). Energy consumption and profit-oriented
disassembly line balancing for waste electrical and electronic equipment.
Journal of Cleaner Production, 265, 121829.
https://doi.org/10.1016/j.jclepro.2020.121829

K., Li, X., Gao, L., & Li, P. (2021a). Modeling and Balancing for Disassembly
Lines Considering Workers With Different Efficiencies. IEEE Transactions on
Cybernetics. https://doi.org/10.1109/TCYB.2021.3070122

K., Li, X., Gao, L., & Li, P. (2021b). Modeling and Balancing for Green
Disassembly Line Using Associated Parts Precedence Graph and Multi-
objective Genetic Simulated Annealing. International Journal of Precision
Engineering and Manufacturing - Green Technology.
https://doi.org/10.1007/s40684-020-00259-7

K., Li, X., Gao, L., Li, P., & Gupta, S. M. (2021a). A genetic simulated
annealing algorithm for parallel partial disassembly line balancing problem.
Applied Soft Computing. https://doi.org/10.1016/j.as0c.2021.107404

K., Li, X., Gao, L., Li, P., & Sutherland, J. W. (2021b). A Discrete Atrtificial
Bee Colony Algorithm for Multiobjective Disassembly Line Balancing of End-
of-Life Products. IEEE Transactions on Cybernetics.
https://doi.org/10.1109/TCYB.2020.3042896

K., Zhang, Z., Mao, L., & Li, L. (2017). Pareto artificial fish swarm algorithm
for multi-objective disassembly line balancing problems. Zhongguo Jixie
Gongcheng/China Mechanical Engineering.
https://doi.org/10.3969/j.issn.1004-132X.2017.02.010

K., Zhang, Z., Zhu, L., & Zou, B. (2017). Pareto genetic simulated annealing
algorithm for multi-objective disassembly line balancing problem. Jisuanji
Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS.
https://doi.org/10.13196/j.cims.2017.06.013

Wang, S., Guo, X., & Liu, J. (2019). An efficient hybrid artificial bee colony algorithm

for disassembly line balancing problem with sequence-dependent part removal
times. Engineering Optimization, 51(11), 1920-1937.
https://doi.org/10.1080/0305215X.2018.1564918

150

Wang, T. Y., Guo, X. W., Liu, S. X, Qi, L., & Zhao, Z. Y. (2020). A Stochastic
Sequence-dependent Multi-objective Disassembly Line Balancing Model
Subject to Task Failure and Resource Constraint via Multi-objective Cuckoo
Search. IEEE Transactions on Systems, Man, and Cybernetics: Systems.
https://doi.org/10.1109/SMC42975.2020.9283012

Wang, Y., Xie, Y., Ren, Y., & Zhang, C. (2021). A MCDM-based meta-heuristic
approach for U-shaped disassembly line balancing problem. Journal of Physics:
Conference Series. https://doi.org/10.1088/1742-6596/1828/1/012159

Whitley, D. (1994). A genetic algorithm tutorial. Statistics and Computing.
https://doi.org/10.1007/BF00175354

Wiendahl, H.-P., Seliger, G., Perlewitz, H., & Biirkner, S. (1999). A general approach
to disassembly planning and control. Production Planning & Control, 10(8),
718-726. https://doi.org/10.1080/095372899232542

Wu, K., Guo, X. W., Zhou, M. C,, Liu, S. X., & Qi, L. (2020). Multi-objective Discrete
Brainstorming Optimizer for Stochastic Disassembly Line Balancing Problem
Subject to Disassembly Failure. IEEE Transactions on Systems, Man, and
Cybernetics: Systems. https://doi.org/10.1109/SMC42975.2020.9282908

Xia, X., Liu, W., Zhang, Z., & Wang, L. (2020). Partial disassembly line balancing
problem analysis based on sequence-dependent stochastic mixed-flow. Journal
of Computing and Information Science in Engineering.
https://doi.org/10.1115/1.4046993

Xia, X., Liu, W., Zhang, Z., Wang, L., Cao, J., & Liu, X. (2019). A Balancing Method
of Mixed-model Disassembly Line in Random Working Environment.
Sustainability, 11(8), 2304. https://doi.org/10.3390/su11082304

Xia, X., Zhou, M., Wang, L., & Cao, J. (2018). Remanufacturing disassembly service
line and balancing optimization method. Jisuanji Jicheng Zhizao
Xitong/Computer Integrated Manufacturing Systems, CIMS.
https://doi.org/10.13196/j.cims.2018.10.011

Xiao, Q., Guo, X., & Li, D. (2021). Partial disassembly line balancing under
uncertainty: robust optimisation models and an improved migrating birds
optimisation algorithm. International Journal of Production Research.
https://doi.org/10.1080/00207543.2020.1744765

151

Xiao, S., Wang, Y., Yu, H., & Nie, S. (2017). An Entropy-Based Adaptive Hybrid
Particle Swarm Optimization for Disassembly Line Balancing Problems.
Entropy, 19(11), 596. https://doi.org/10.3390/e19110596

Xie, M., Zhang, Z., & Jiang, J. (2021). Modeling and optimization of two-sided
disassembly line balance problem considering station constraint and energy
consumption. Jisuanji Jicheng Zhizao Xitong/Computer Integrated
Manufacturing Systems, CIMS. https://doi.org/10.13196/j.cims.2021.03.005

Xu, C., Wei, H., Guo, X. W., Liu, S. X,, Qi, L., & Zhao, Z. Y. (2020). Human-Robot
Collaboration Multi-objective Disassembly Line Balancing Subject to Task
Failure via Multi-objective Artificial Bee Colony Algorithm. [FAC-
PapersOnLine. https://doi.org/10.1016/j.ifacol.2021.04.076

Xu, Y., Yao, B., & Pham, D. T. (2020). Research on intelligent optimization algorithm
for multi-objective disassembly line balancing problem. ASME 2020 15th
International Manufacturing Science and Engineering Conference, MSEC
2020. https://doi.org/10.1115/MSEC2020-8269

Yang, Y., Yuan, G., Zhuang, Q., & Tian, G. (2019). Multi-objective low-carbon
disassembly line balancing for agricultural machinery using MDFOA and fuzzy
AHP. Journal of Cleaner Production, 233, 1465-1474.
https://doi.org/10.1016/j.jclepro.2019.06.035

Yilmaz, O. F., & Yazici, B. (2021). Tactical level strategies for multi-objective
disassembly line balancing problem with multi-manned stations: an
optimization model and solution approaches. Annals of Operations Research.
https://doi.org/10.1007/s10479-020-03902-3

Yin, T., Zhang, Z., & Jiang, J. (2021). A Pareto-discrete hummingbird algorithm for
partial sequence-dependent disassembly line balancing problem considering
tool requirements. Journal of Manufacturing Systems.
https://doi.org/10.1016/j.jmsy.2021.07.005

Yin, T., Zhang, Z., Zhang, Y., Wu, T., & Liang, W. (2022). Mixed-integer
programming model and hybrid driving algorithm for multi-product partial
disassembly line balancing problem with multi-robot workstations. Robotics
and Computer-Integrated Manufacturing, 73, 102251.
https://doi.org/10.1016/j.rcim.2021.102251

152

Yolmeh, A., & Saif, U. (2021). Closed-loop supply chain network design integrated
with assembly and disassembly line balancing under uncertainty: an enhanced
decomposition approach. International Journal of Production Research.
https://doi.org/10.1080/00207543.2020.1736723

Yuan, G., Yang, Y., & Pham, D. T. (2020). Multiobjective Ecological Strategy
Optimization for Two-Stage Disassembly Line Balancing with Constrained-
Resource. IEEE Access. https://doi.org/10.1109/ACCESS.2020.2994065

Zeng, Y., Zhang, Z., & Zhu, L. (2019). Modeling and optimization of partial destructive
disassembly line balancing problem considering profit and energy
consumption. Conference Proceedings of the 7th International Symposium on
Project Management, ISPM 2019.

Zeng, Y., Zhang, Z., Zhang, Y., Liu, S., & Li, Y. (2020). Pareto flower pollination
algorithm for multi-objective bucket brigade mixed-model disassembly line
balancing problem. Jisuanji Jicheng Zhizao Xitong/Computer Integrated
Manufacturing Systems, CIMS. https://doi.org/10.13196/j.cims.2020.03.018

Zhang, L., Zhao, X., Ke, Q., Dong, W., & Zhong, Y. (2021). Disassembly Line
Balancing Optimization Method for High Efficiency and Low Carbon
Emission. International Journal of Precision Engineering and Manufacturing
- Green Technology. https://doi.org/10.1007/s40684-019-00140-2

Zhang, Ying, Zhang, Z., Zeng, Y., & Cai, N. (2020). Improved wind driven
optimization algorithm for multi-objective disassembly line balancing problem
concerning human factors. Jisuanji Jicheng Zhizao Xitong/Computer
Integrated Manufacturing Systems, CIMS.
https://doi.org/10.13196/j.cims.2020.05.003

Zhang, Yu, Zhang, Z., Guan, C., & Xu, P. (2021). Improved whale optimisation
algorithm for two-sided disassembly line balancing problems considering part
characteristic indexes. International Journal of Production Research, 1-19.
https://doi.org/10.1080/00207543.2021.1897178

Zhang, Z. W., Guo, X. W., Zhou, M. C., Liu, S. X., & Qi, L. (2020). Multi-objective
Discrete Grey Wolf Optimizer for Solving Stochastic Multi-objective
Disassembly Sequencing and Line Balancing Problem. IEEE Transactions on
Systems, Man, and Cybernetics: Systems.
https://doi.org/10.1109/SMC42975.2020.9283184

153

Zhang, Z., Cai, N., Zeng, Y., Li, L., & Zou, B. (2018). Review of Modeling Theory
and Solution Method for Disassembly Line Balancing Problems for
Remanufacturing. Zhongguo Jixie Gongcheng/China Mechanical Engineering.
https://doi.org/10.3969/j.issn.1004-132X.2018.21.017

Zhang, Z., Hu, Y., & Chen, C. (2016). Improved Artificial Bee Colony Algorithm for
Disassembly Line Balancing Problem. Xinan Jiaotong Daxue Xuebao/Journal
of Southwest Jiaotong University. https://doi.org/10.3969/j.issn.0258-
2724.2016.05.013

Zhang, Z., Li, L., Cai, N., & Jia, L. (2019). Local neighborhood genetic algorithm for
stochastic disassembly line balancing problem. Jisuanji Jicheng Zhizao
Xitong/Computer Integrated Manufacturing Systems, CIMS.
https://doi.org/10.13196/j.cims.2019.03.008

Zhang, Z., Wang, K., Li, L., & Mao, L. (2018). Multi-objective optimization for U-
shaped disassembly line balancing problem with stochastic operation times.
Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems,
CIMS. https://doi.org/10.13196/j.cims.2018.01.009

Zhang, Z., Wang, K., Zhu, L., & Cheng, W. (2018). Pareto Hybrid Ant Colony and
Genetic Algorithm for Multi-Objective U-Shaped Disassembly Line Balancing
Problem. Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong
University. https://doi.org/10.3969/j.issn.0258-2724.2018.03.026

Zhang, Z., Wang, K., Zhu, L., & Wang, Y. (2017). A Pareto improved artificial fish
swarm algorithm for solving a multi-objective fuzzy disassembly line balancing
problem. Expert Systems with Applications, 86, 165-176.
https://doi.org/10.1016/j.eswa.2017.05.053

Zheng, F., He, J., Chu, F., & Liu, M. (2018). A new distribution-free model for
disassembly line balancing problem with stochastic task processing times.
International Journal of Production Research, 56(24), 7341-7353.
https://doi.org/10.1080/00207543.2018.1430909

Zhou, R., Guo, X,, Fu, Y., & Qi, L. (2019). Solving sequence-dependent disassembly
line balancing problem with improved cuckoo search algorithm. Conference
Proceedings - IEEE International Conference on Systems, Man and
Cybernetics. https://doi.org/10.1109/SMC.2019.8914273

154

Zhou, Y., Guo, X., & Li, D. (2020). A dynamic programming approach to a multi-
objective disassembly line balancing problem. Annals of Operations Research.
https://doi.org/10.1007/s10479-020-03797-0

Zhu, L., Zhang, Z., & Guan, C. (2020). Multi-objective partial parallel disassembly line
balancing problem using hybrid group neighbourhood search algorithm.
Journal of Manufacturing Systems. https://doi.org/10.1016/j.jmsy.2020.06.013

Zhu, L., Zhang, Z., & Wang, Y. (2018). A Pareto firefly algorithm for multi-objective
disassembly line balancing problems with hazard evaluation. International
Journal of Production Research, 56(24), 7354-7374.
https://doi.org/10.1080/00207543.2018.1471238

Zhu, L., Zhang, Z., Wang, Y., & Cai, N. (2020). On the end-of-life state oriented multi-
objective disassembly line balancing problem. Journal of Intelligent
Manufacturing, 31(6), 1403-1428. https://doi.org/10.1007/s10845-019-01519-
3

Zhu, X., Zhang, Z., Zhu, X., & Hu, J. (2014). An ant colony optimization algorithm for
multi-objective disassembly line balancing problem. China Mechanical
Engineering, 8, 1075-1079. https://doi.org/10.3969/j.issn.1004-
132X.2014.08.016

Zou, B., Zhang, Z., Cai, N., & Zhu, L. (2018). Cat swarm simulated annealing
algorithm for disassembly line balancing problem under tool constraints.
Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems,
CIMS. https://doi.org/10.13196/j.cims.2018.09.009

Zou, B., Zhang, Z., Li, L., & Cali, N. (2018). Modeling and Optimization for Two-sided
Disassembly Line Balancing Problems. Zhongguo Jixie Gongcheng/China
Mechanical Engineering. https://doi.org/10.3969/j.issn.1004-
132X.2018.09.013

Zou, B., Zhang, Z., Li, L., & Zhu, L. (2017). Multi-objective disassembly line
balancing problem based on pareto improved cat swarm optimization
algorithm. Information and Control.
https://doi.org/10.13976/j.cnki.xk.2017.0503

155

APPENDIX - 01. LINGO Code of TAOG Based DLB Problem

!Ali Koc , Ihsan Sabuncuoglu & Erdal Erel (2009) Two exact formulations for disassembly
line balancing problems with task precedence diagram construction using an AND/OR graph,
IIE Transactions, 41:10, 866-881, DOI: 10.1080/07408170802510390;

!Data is generated to me, but precedence diagram taken from article;

MODEL:
SETS:

ISET OF ARTIFICIAL NODES;
ARTIFICIAL/1..14/;

!SET OF NORMAL NODES;
NORMAL/1..23/:D, Z;

!SET OF STATIONS;
STATIONS/1..5/:F;

! PRECESSORS SET;
P (ARTIFICIAL, NORMAL)/2 1, 3 2, 43, 54, 56, 65, 6
9 13, 10 9, 10 15, 11 16, 12 16, 13 15, 13 17, 13 18,

! SUCCESSOR SET;
S(ARTIFICIAL, NORMAL)/1 1, 12, 13, 24, 25, 36, 3
7 14, 7 15, 8 16, 8 17, 9 18, 10 19, 11 20, 12 21, 13

AUXSET1 (NORMAL, STATIONS) :X;

ENDSETS

DATA:

!TASK TIME OF NORMAL NODES;

D = 3 9 5 7 3 10 4
3 3 8 8 6 6 6 T

!CYCLE TIME;

T = 10;

ENDDATA

!IF TAKS I IS ASSIGNED TO STATION J, 1, OTHERWISE, O0;
@FOR (AUXSET1 (I, J): @BIN(X(I,J)));

!TF TASK I IS PERFORM;

@FOR (NORMAL (I): @BIN(Z(I))):
!IF STATION J IS OPENEDED, 1, OTHERWISE, O0;
@FOR (STATIONS (J) : @BIN(F(J)));
!OBJECTIVE FUNCTION

MINIMIZE TO OPENED STATIONS;
MIN = @SUM(STATIONS (J): J*F(J)):

!CONSTRAINT ONE AND CONSTRAINT TWO

ONE OF THE OR SUCCESSORS IS SELECTED;

@FOR (ARTIFICIAL(K) | K#EQ#1 : @SUM(S(K2, I) | K2#EQ#K
@FOR (ARTIFICIAL(K) | K#NE#1 : @SUM(S (K2, I) | K2#EQ#K
zZ(I)));

!CONSTRAINT THREE
SELECTED TASKS IS ASSIGNED TO ONE OF STATIONS;
@FOR (NORMAL (I) : @SUM(STATIONS(J): X(I,J)) = Z(I));

!CONSTRAINT FOUR
PRECEDENCE RELATIONS;

8,
14

7!
22

S

77, 710, 8 11, 8 12, 8 14, 9 9,
13, 14 17, 14 19/;
48 49, 410, 511, 6 12, 6 13,
. 14 237;
) 6 6 7 8
3;
Z2(1)) =1);
Z(I)) = @SUM(P(K2, I) | K2#EQ#K

@FOR (ARTIFICIAL(K) | K#NE#1 : Q@FOR(STATIONS(V): @SUM(P(K2, I)
| JH#LE#V : X(I,J))) >= @SUM(S(K2, I) | K2#EQ#K : X(I,V)))):

157

K2#EQ#K

@SUM (STATIONS (J)

!CONSTRAINT FIVE
TOTAL WORKLOAD OF A STATION TO BE LESS THAN CYCLE TIME, IF THAT STATION IS OPENED;
Q@FOR (STATIONS (J): @SUM(NORMAL(I): X(I,J)*D(I)) <= T*F(J));

158

APPENDIX - 02. GUROBI Code of MTDLB Problem

C:\Users\yusuf\Desktop\28CIRPLCL-master\gurobi_opt\main.py

#RRR R KRR R K Rk KRR KRR KoK K

AUTHORS: Serkan MUTLU, Banu GUNER.

Department of Industrial Engineering, Eskisehir Technical University, Eskisehir, Turkey.
dokkkokkkokkkokkkkkRkkR kR kK

Mixed-Model Two-Sided Disassembly Line Balancing (MTDLB) problem optimization codes @
Gby GUROBI.

R ok R o R oK R R oK R ok ok o

import gurobipy as grb
import time
import inputs

nA = { ("ml"): 9, ("m2"): 21 }

nN = { ("m1"): 1@, ("m2"): 3@ }

MODELS = ["m1", "m2"]

STATIONS = [(8), (1), (2), (3)]

SIDES = {(1), (2)}

MONO = {(m,i) for m in MODELS for i in range(l, nN[m]+1)}

MONONO = {(m,i,i2) for m in MODELS for i in range(l, nN[m]+1) for i2 in range(l, 3
GnN[m]+1) if i2 < i}

PRE = { ("m1", 1): [1], ("m1", 2): [2], ("m1", 3): [2, 3], ("m1", 4): [3, 4], ("ml", @
55): [5], ("m1", 6): [1, 4, 8], ("ml", 7): [9], ("m2", 1): [1], ("m2", 2): [2, 3], @
G("m2", 3): [3, 18], ("m2", 4): [2], ("m2", 5): [2], ("m2", 6): [11], ("m2", 7): [14], @
5("m2", 8): [19], ("m2", 9): [18, 28], ("m2", 1@): [13], ("m2", 11): [4, 12], ("m2", @
512): [15, 211, ("m2", 13): [23, 24, 25], ("m2", 14): [5], ("m2", 15): [16, 26], ("m2", @
516): [6, 221, ("m2", 17): [17, 27, 28], ("m2", 18): [7], ("m2", 19): [8, 29] }

suc = { ("m1", @): [1, 2], ("m1", 1): [3], ("m1", 2): [4, 5], ("m1", 3): [7], ("ml", @
54): [6], ("m1", 5): [8], ("m1", 6): [9], ("m1", 7): [1e], ("m2", @): [1, 2], ("m2", @
51): [31, ("m2", 2): [3e], ("m2", 3): [4], ("m2", 4): [10], ("m2", 5): [11], ("m2", 6): &
G[12, 13, 141, ("m2", 7): [19, 28], ("m2", 8): [25, 26], ("m2", 9): [24], ("m2", 1@): 3
5[18, 21], ("m2", 11): [5, 15], ("m2", 12): [22, 23], ("m2", 13): [27], ("m2", 14): [6, @
516], ("m2", 15): [28], ("m2", 16): [7, 17], ("m2", 17): [29], ("m2", 18): [8], ("m2", @
519): [9] }

THETA = { ("m1", 1): [1], ("m1", 2): [2], ("m1", 3): [2], ("m1", 4): [1, 2], ("m1", 5): @
6[2], ("m1", &): [1], ("ml", 7): [1, 2], ("m1", 8): [1, 2], ("m1", 9): [2], ("ml", 10): @
6[1, 2], ("m2", 1): [2], ("m2", 2): [1], ("m2", 3): [1], ("m2", 4): [1, 2], ("m2", 5): @
5[2], ("m2", 6): [2], ("m2", 7): [2], ("m2", 8): [1], ("m2", 9): [1], ("m2", 18): [1, @
52], ("m2", 11): [1, 2], ("m2", 12): [1, 2], ("m2", 13): [1, 2], ("m2", 14): [1], @
G("m2", 15): [1], ("m2", 16): [1, 2], ("m2", 17): [2], ("m2", 18): [2], ("m2", 19): [1, @
521, ("m2", 20): [11, ("m2", 21): [2], ("m2", 22): [1], ("m2", 23): [1], ("m2", 24): @
5[2], ("m2", 25): [2], ("m2", 26): [1, 2], ("m2", 27): [1], ("m2", 28): [1], ("m2", @

Page 1, last modified 20 Aug 2021 15:26:11

159

C:\Users\yusuf\Desktop\28CIRPLCL-master\gurobi_opt\main.py

529): [1, 2], ("m2", 3@): [1, 2] }

C =40

t = { ("m1",1): 3@, ("m1",2): 28, ("m1",3): 12, ("m1",4): 34, ("m1",5): 13, ("m1",6): @
521, ("mi",7): 6, ("m1",8): 18, ("m1",9): 25, ("ml",10): 10, ("m2",1): 11, ("m2",2): @
520, ("m2",3): 20, ("m2",4): 14, ("m2",5): 19, ("m2",6): 1, ("m2",7): 7, ("m2",8): 6, @
G("m2",9): 6, ("m2",10): 7, ("m2",11): 19, ("m2",12): 11, ("m2",13): 18, ("m2",14): 13, 3
5("m2",15): 5, ("m2",16): 11, ("m2",17): 6, ("m2",18): 4, ("m2",19): 6, ("m2",20): 8, @
G("m2",21): 18, ("m2",22): 15, ("m2",23): 15, ("m2",24): 6, ("m2",25): 10, ("m2",26): @
520, ("m2",27): 13, ("m2",28): 1, ("m2",29): 4, ("m2",30): 5 }

H#EPSILON: a very small number
#BIG_M: a very big number
EPSILON = ©.001

BIG M = 99999

timel = time.time()
opt_model = grb.Model(name="MILP Model")

,,,,,,,,,,,,,,,,,,,,,,,,,

Variables -- MTDLB Variables

- S

F = opt_model.addVars(STATIONS, vtype=grb.GRB.BINARY)

G = opt_model.addVars(STATIONS, vtype=grb.GRB.BINARY)

U = opt_model.addVars(STATIONS, SIDES, vtype=grb.GRB.BINARY)
Z = opt_model.addVars(MONO, vtype=grb.GRB.BINARY)

GAMMA = opt_model.addVars(MODELS, STATIONS, SIDES, vtype=grb.GRB.BINARY)
X = opt_model.addvars(MONO, STATIONS, SIDES, vtype=grb.GRB.BINARY)
DELTA = opt_model.addVars(MONONO, vtype=grb.GRB.BINARY)

TF = opt_model.addvars(MONO, 1lb=@)

Equation (4.23)

objective = (grb.quicksum(F[j] + G[j] for j in STATIONS)
+ EPSILON*grb.quicksum(j*U[j,s] for j in STATIONS for s in SIDES)
+ EPSILON*EPSILON*grb.quicksum(t[m,i]*Z[m,i] for (m,i) in MONO))

Equation (4.4)

Page 2, last modified 20 Aug 20621 15:26:11

160

C:\Users\yusuf\Desktop\28CIRPLCL-master\gurobi_opt\main.py
opt_model.addConstrs(grb.quicksum(Z[m,i] for i in SUC[m,@]) == 1 for m in MODELS)

Equation (4.5)

opt_model.addConstrs(grb.quicksum(Z[m,i] for i in SUC[m,k]) == grb.quicksum(Z[m,i] for 3
Gi in PRE[m,k]) for m in MODELS for k in range(1, nA[m]) if ((m,k) in SUC) and ((m,k) @
Gin PRE))

Equation (4.6)
opt_model.addConstrs(grb.quicksum(grb.quicksum(X[m,i,j,s] for s in THETA[m,i]) for j in 3
GSTATIONS) == Z[m,i] for (m,i) in MONO)

Equation (4.7)

opt_model.addConstrs(grb.quicksum(X[m,i,v,s] for i in PRE[m,k] for s in THETA[m,i] for 2
Gv in range(1, j+1)) >= grb.quicksum(X[m,i,j,s] for i in SUC[m,k] for s in THETA[m,i]) @
Gfor m in MODELS for k in range(1l, nA[m]) for j in STATIONS if (((m,k) in PRE) and @
5((m,k) in SUC)))

Equation (4.8)
opt_model.addConstrs(TF[m,i] <= C*Z[m,i] for (m,i) in MONO)

Equation (4.9)
opt_model.addConstrs(TF[m,i] »>= t[m,i]*Z[m,i] for (m,i) in MONO)

Equation (4.19)

opt_model.addConstrs(TF[m,i] - TF[m,h] + BIG_M*(2 - grb.quicksum(X[m,i,j,s] for s in 3
GTHETA[m,1]) - grb.quicksum(X[m,h,j,s] for s in THETA[m,h])) >= t[m,i] for m in MODELS 2
Gfor j in STATIONS for k in range(1, nA[m]) if (((m,k) in SUC) and ((m,k) in PRE)) for @
Gi in SuC[m,k] for h in PRE[m,k])

Equation (4.11)
opt_model.addConstrs(TF[m,i] - TF[m,h] + BIG_M*(3 - X[m,i,j,s] - X[m,h,j,s] - @
GDELTA[m,i,h]) »>= t[m,i] for (m,i,h) in MONONO for j in STATIONS for s in SIDES)

Equation (4.12)
opt_model.addConstrs(TF[m,h] - TF[m,i] + BIG_M*(2 - X[m,i,j,s] - X[m,h,j,s] + @
GDELTA[m,i,h]) >= t[m,h] for (m,i,h) in MONONO for j in STATIONS for s in SIDES)

Equation (4.13)
opt_model.addConstrs(grb.quicksum(X[m,i,j,s] for i in range(1, nN[m]+1) if s in 2
GTHETA[m,i]) - nN[m]*GAMMA[m,j,s] <= @ for m in MODELS for j in STATIONS for s in SIDES)

Equation (4.14)

opt_model.addConstrs(grb.quicksum(GAMMA[m,j,s] for m in MODELS) - len(MODELS)*U[j,s] <= 3@
GO for j in STATIONS for s in SIDES)

Equation (4.15)

opt_model.addConstrs(grb.quicksum(U[j,s] for s in SIDES) - 2*F[j] - G[j] == © for j in 3
GSTATIONS)

Page 3, last modified 20 Aug 2021 15:26:11

161

C:\Users\yusuf\Desktop\28CIRPLCL-master\gurobi_opt\main.py

opt_model.ModelSense = grb.GRB.MINIMIZE
opt_model.setObjective(objective)
opt_model.update()

opt_model.optimize()

print(opt_model)

print("\nSolution Results\n")
print("Time = ", time.time() - timel, "second")
print("Total number of stations opened from both sides\t\t:\t", sum([F[j].X for j in @
GSTATIONS]))
print("Total number of stations opened from only one side\t:\t", sum([G[j].X for j in @
GSTATIONS]))
print("Total number of stations opened\t\t\t\t:\t", sum([U[j,s].X for j in STATIONS for @
Gs in SIDES]))
for m in MODELS:

print("#### MODEL-",m," #i###")

print("(m, i)\t\t (j,s)\t\t Processing Time\t Starting Time\t Ending Time")

for i in range(1, nN[m]+1):

if TF[m,i].X != 0.0:

if i < 10:
print((m,i), " :\t", [(j,s) for j in STATIONS for s in SIDES if X[m,i,j,s].X ==
5 1.00], "\t", t[m,i], "\t\t\t", TF[m,i].X - t[m,i], “\t\t", TF[m,i].X)
else:
print((m,i), ":\t", [(j,s) for j in STATIONS for s in SIDES if X[m,i,j,s].X ==
G 1.00], "\t", t[m,i], "\t\t\t", TF[m,i].X - t[m,i], "\t\t", TF[m,i].X)

Page 4, last modified 20 Aug 2021 15:26:11

162

APPENDIX - 03A. Main Python Code of MOMA for MTDLB Problem

C:\Users\yusuf\Desktop\masaiistii\Dosyalar\Projeler\28th CIRP Conference on Life Cycle
Engineering\main.py

RO R OR SK K K F SK K o K o

AUTHORS: Serkan MUTLU, Banu GUNER.

Department of Industrial Engineering, Eskisehir Technical University, Eskisehir, Turkey.
Rk kR koK ok R R oK sk oK

Mixed-Model Two-Sided Disassembly Line Balancing (MTDLB) problem Memetic Algorithm @
Gcodes.

KRRk ok ok ok Kok ok ok ok ok K

28th CIRP Life Cycle Engineering Conference - Jaipur, India.
#ORRR KRRk KRRk Kk Kk Kk K

-- standart python libraries
import numpy as np

import random as rnd

import time

import matplotlib.pyplot as plt

-- extra functions

import gurobi_opt.inputs as inputs
import initial

import algorithms

import calculation

import genetic_operators

import local

Inputs

#PRE(m, k, i): immediate normal node i predecessors of artificial node k for each @
Gmodel m

#SUC(m, k, i): immediate normal node i successors of artificial node k for each 3@
Gmodel m

#THETA(m, i, s): station-sides s where normal node i can be made for each model m
#C(m): cycle time for each model m

#t(m,i): processing time of each normal task i for each model m

print("MODELS\nModel-@1\tFlashlight\nModel-82\tRadio\nModel-83\tToy Car\nModel-@4\tBall ¢
GPoint Pen\nModel-@5\t2P8\nModel-86\t2P10\nModel-87\t2P25\nModel-@8\t2P48-A\n")

nA, nN, MODELS, STATIONS, SIDES, MONO, MONONO, PRE, SUC, THETA, C, t = @
Ginputs.MTDLBInput(int(input("If model-81 is disassemble in line -- 1; otherwise -- 8 = @
6")), int(input("If model-@2 is disassemble in line -- 1; otherwise -- @ = ")), @

Page 1, last modified @1 Sep 2021 23:50:57

163

C:\Users\yusuf\Desktop\masaiistii\Dosyalar\Projeler\28th CIRP Conference on Life Cycle
Engineering\main.py

Gint(input("If model-@3 is disassemble in line -- 1; otherwise -- @ = ")), @
Gint(input("If model-@4 is disassemble in line -- 1; otherwise -- @ = ")), @
Gint(input("If model-@5 is disassemble in line -- 1; otherwise -- @ = ")), @
Gint(input("If model-@6 is disassemble in line -- 1; otherwise -- @ = ")), @
Gint(input("If model-87 is disassemble in line -- 1; otherwise -- @ = ")), @
Gint(input("If model-88 is disassemble in line -- 1; otherwise -- 8 = ")))

#maximum number of OR Successor relations for each model m

nORSuc = {
("m1"): 2,
("m2"): 7,
("m3"): 9,
("ma"): 4,
"ms"): @,
("me"): o,
("m7"): @,
("m8"): ©

}

maxselnode = {
("m1"): 7,
("m2"): 15,
("m3"): 15,
("ma"): 9,
("ms"): 8,
("me"): 10,
("m7"): 25,
("m8"): 48

}

EPSILON = ©.001

-- start of calculating time
11 = time.time()

-- set decision variables

sol = [1list() for _ in range(nP)]
dec_sol = [list() for _ in range(nP)]
selected = [1ist() for _ in range(nP)]
X = [list() for _ in range(nP)]

Page 2, last modified @1 Sep 2021 23:50:57

164

C:\Users\yusuf\Desktop\masaiistii\Dosyalar\Projeler\28th CIRP Conference on Life Cycle
Engineering\main.py

DLBcost = [@ for _ in range(nP)]
DLBcost2 = [@ for _ in range(nP)]
DLBcost3 = [@ for _ in range(nP)]
tf = [list() for _ in range(nP)]
U = [list() for _ in range(nP)]

F = [list() for _ in range(nP)]
G = [list() for _ in range(nP)]
bestcost = 9999

TIM = []
BEST = []
-- generate initial solution randomly.

for p in range(nP):
sol[p], dec_sol[p] = initial.randoninit(MODELS, nN, nORSuc, maxselnode)

-- Algo-CDS
for p in range(nP):
selected[p] = algorithms.AlgoCDS(MODELS, nA, SUC, PRE, dec_sol[p])

-- Algo-ADL
for p in range(nP):

X[pl, tf[pl, U[p] = algorithms.AlgoADL(sol[p], selected[p], nA, nORSuc, MODELS, @
G STATIONS, SIDES, SUC, PRE, THETA, t, C)

for p in range(nP):
F[pl, G[p]l, DLBcost[p], DLBcost2[p], DLBcost3[p] = calculation.cost(U[p]l, @
5 selected[p], MODELS, STATIONS, EPSILON, t)

ParetoF, degree = calculation.FastNonDominatedSort(nP, DLBcost, DLBcost2, DLBcost3)
BestCostl = []

BestCost2 = []

BestCost3 = []

BestCostl, BestCost2, BestCost3 = calculation.costupdate(BestCostl, BestCost2, @
GBestCost3, DLBcost, DLBcost2, DLBcost3, ParetoF)

print(BestCostl, BestCost2, BestCost3)

maxiter = 160
maxils_iter = 2

for it in range(maxiter):

-- selection with roulette wheel method
selection_pp = genetic_operators.roulette_wheel(nP, degree)

-- crossover
sol, dec_sol = genetic_operators.crossover(nP, nN, MODELS, nORSuc, maxselnode, sol, d
G selection_pp)

Page 3, last modified @1 Sep 2021 23:50:57

165

C:\Users\yusuf\Desktop\masaiistii\Dosyalar\Projeler\28th CIRP Conference on Life Cycle
Engineering\main.py

-- Algo-CDS
for p in range(nP):
selected[p] = algorithms.AlgoCDS(MODELS, nA, SUC, PRE, dec_sol[p])

-- Algo-ADL
for p in range(nP):
X[pl, tf[p]l, U[p] = algorithms.AlgoADL(sol[p], selected[p], nA, nORSuc, MODELS, ¢
G STATIONS, SIDES, SUC, PRE, THETA, t, C)

for p in range(nP):
F[pl, G[p], DLBcost[p], DLBcost2[p], DLBcost3[p] = calculation.cost(U[p], @
G selected[p], MODELS, STATIONS, EPSILON, t)

ParetoF, degree = calculation.FastNonDominatedSort(nP, DLBcost, DLBcost2, DLBcost3)
BestCostl, BestCost2, BestCost3 = calculation.costupdate(BestCostl, BestCost2, @
G BestCost3, DLBcost, DLBcost2, DLBcost3, ParetoF)

for mup in range(nP):
for m in range(len(MODELS)):
for i in range(nORSuc[MODELS[m]]+1):
if i == nORSuc[MODELS[m]]:
rand_point = rnd.randint(@, maxselnode[MODELS[m]]-1)
if sol[mup][m][i][rand_point] == @:
sol[mup][m][i][rand_point] = 1
else:
sol[mup][m][i][rand_point] = @
else:
rand_point = rnd.randint(@, 6)
if sol[mup][m][i][rand_point] == @:
sol[mup][m][i][rand_point] = 1
else:
sol[mup][m][i][rand_point] = @
while True:
pointl = rnd.randint(@, nN[MODELS[m]]-1)
point2 = rnd.randint(@, nN[MODELS[m]]-1)
if pointl != point2:
break
sol[mup][m][nORSuc[MODELS[m]]+1][pointl], @
sol[mup][m][nORSuc[MODELS[m]]+1][point2] = @
sol[mup][m][nORSuc[MODELS[m]]+1][point2], @
sol[mup][m][nORSuc[MODELS[m]]+1][point1]
dec_sol[mup] = [[sum([(2**(6-p))*sol[mup][m][n][p] for p in range(7)])/128 @
[y for n in range(nORSuc[MODELS[m]])] for m in range(len(MODELS))]

1A

for p in range(nP):
F[p]l, G[p], DLBcost[p], DLBcost2[p], DLBcost3[p] = calculation.cost(U[p], ¢
5 selected[p], MODELS, STATIONS, EPSILON, t)

Page 4, last modified @1 Sep 2021 23:50:57

166

C:\Users\yusuf\Desktop\masaiistii\Dosyalar\Projeler\28th CIRP Conference on Life Cycle
Engineering\main.py

ParetoF, degree = calculation.FastNonDominatedSort(nP, DLBcost, DLBcost2, DLBcost3)
BestCostl, BestCost2, BestCost3 = calculation.costupdate(BestCostl, BestCost2, 3
5 BestCost3, DLBcost, DLBcost2, DLBcost3, ParetoF)

print(BestCostl)
print(BestCost2)
print(BestCost3)

fig = plt.figure()

ax = fig.add_subplot(projection="3d")
#ax.scatter([funcl(dsol[p]) for p in range(10@)], [func2(dsol[p]) for p in range(l@@)], ¢
G[func3(dsol[p]) for p in range(10@)])
ax.scatter(BestCostl, BestCost2, BestCost3)
ax.plot(BestCostl, BestCost2, BestCost3)
ax.set_xlabel("Length of Disassembly Line")
ax.set_ylabel("Opened Number of Station™)
ax.set_zlabel("Total Processing Time for All Models™)
plt.title("Pareto Frontier for Case-2")

plt.show()

Page 5, last modified @1 Sep 2021 23:50:57

167

'Ali Koc ,

Ihsan Sabuncuoglu & Erdal Erel

(2009)

Two exact formulations for disassembly

line balancing problems with task precedence diagram construction using an AND/OR graph,

IIE Transactions, 41:10,
!Data is generated to me,
MODEL:

SETS:

!SET OF ARTIFICIAL NODES;
ARTIFICIAL/1..14/;

!SET OF NORMAL NODES;
NORMAL/1..23/:D, Z;

!SET OF STATIONS;
STATIONS/1..5/:F;

! PRECESSORS SET;

866-881,

DOI: 10.1080/07408170802510390;

but precedence diagram taken from article;

P (ARTIFICIAL, NORMAL)/2 1, 32, 43, 54, 56, 65, 68, 77, 710, 8 11, 8 12, 8 14, 9 9,
9 13, 10 9, 10 15, 11 16, 12 16, 13 15, 13 17, 13 18, 14 13, 14 17, 14 19/;
! SUCCESSOR SET;
S(ARTIFICIAL, NORMAL)/1 1, 12, 13, 24, 25, 36, 37, 48 49, 410, 511, 6 12, 6 13,
7 14, 7 15, 8 16, 8 17, 9 18, 10 19, I1 20, 12 21, 13 22, 14 23/;
AUXSET1 (NORMAL, STATIONS) :X;
ENDSETS
DATA:
!TASK TIME OF NORMAL NODES;
D = 3 9 5 7 3 10 4 4 5 6 6 7 8
3 3 8 8 6 6 6 7 8 33
{CYCLE TIME;
T = 10;
ENDDATA
'IF TAKS I IS ASSIGNED TO STATION J, 1, OTHERWISE, O0;
@FOR (AUXSET1 (I, J): @BIN(X(I,J))):
!IF TASK I IS PERFORM;
@FOR (NORMAL (I): @BIN(Z(I))):
!TF STATION J IS OPENEDED, 1, OTHERWISE, 0;
@FOR (STATIONS (J) : @BIN(F(J)));
!OBJECTIVE FUNCTION
MINIMIZE TO OPENED STATIONS;
MIN = @SUM(STATIONS(J): J*F(J));
!CONSTRAINT ONE AND CONSTRAINT TWO
ONE OF THE OR SUCCESSORS IS SELECTED;
@FOR (ARTIFICIAL(K) | K#EQ#1 : @SUM(S(K2, I) | K2#EQ#K : Z(I)) = 1);
@FOR (ARTIFICIAL(K) | K#NE#1 : @SUM(S(K2, I) | K2#EQ#K : Z(I)) = Q@SUM(P(K2, I) | K2#EQ#K :
Z(1)));
!CONSTRAINT THREE
SELECTED TASKS IS ASSIGNED TO ONE OF STATIONS;
Q@FOR (NORMAL (I) : @SUM(STATIONS(J): X(I,J)) = Z(I));
!CONSTRAINT FOUR
PRECEDENCE RELATIONS;
@FOR (ARTIFICIAL(K) | K#NE#1 : Q@FOR(STATIONS(V): @SUM(P (K2, I) | K2#EQ#K : Q@SUM(STATIONS (J)
| JHLE#V : X(I,J))) >= @SUM(S(K2, I) | K2#EQ#K : X(I,V))));

168

!CONSTRAINT FIVE
TOTAL WORKLOAD OF A STATION TO BE LESS THAN CYCLE TIME, IF THAT STATION IS OPENED;
Q@FOR (STATIONS (J): @SUM(NORMAL(I): X(I,J)*D(I)) <= T*F(J));

169

APPENDIX - 02. GUROBI Code of MTDLB Problem

C:\Users\yusuf\Desktop\28CIRPLCL-master\gurobi_opt\main.py

#RRR R KRR R K Rk KRR KRR KoK K

AUTHORS: Serkan MUTLU, Banu GUNER.

Department of Industrial Engineering, Eskisehir Technical University, Eskisehir, Turkey.
dokkkokkkokkkokkkkkRkkR kR kK

Mixed-Model Two-Sided Disassembly Line Balancing (MTDLB) problem optimization codes @
Gby GUROBI.

R ok R o R oK R R oK R ok ok o

import gurobipy as grb
import time
import inputs

nA = { ("ml"): 9, ("m2"): 21 }

nN = { ("m1"): 1@, ("m2"): 3@ }

MODELS = ["m1", "m2"]

STATIONS = [(8), (1), (2), (3)]

SIDES = {(1), (2)}

MONO = {(m,i) for m in MODELS for i in range(l, nN[m]+1)}

MONONO = {(m,i,i2) for m in MODELS for i in range(l, nN[m]+1) for i2 in range(l, 3
GnN[m]+1) if i2 < i}

PRE = { ("m1", 1): [1], ("m1", 2): [2], ("m1", 3): [2, 3], ("m1", 4): [3, 4], ("ml", @
55): [5], ("m1", 6): [1, 4, 8], ("ml", 7): [9], ("m2", 1): [1], ("m2", 2): [2, 3], @
G("m2", 3): [3, 18], ("m2", 4): [2], ("m2", 5): [2], ("m2", 6): [11], ("m2", 7): [14], @
5("m2", 8): [19], ("m2", 9): [18, 28], ("m2", 1@): [13], ("m2", 11): [4, 12], ("m2", @
512): [15, 211, ("m2", 13): [23, 24, 25], ("m2", 14): [5], ("m2", 15): [16, 26], ("m2", @
516): [6, 221, ("m2", 17): [17, 27, 28], ("m2", 18): [7], ("m2", 19): [8, 29] }

suc = { ("m1", @): [1, 2], ("m1", 1): [3], ("m1", 2): [4, 5], ("m1", 3): [7], ("ml", @
54): [6], ("m1", 5): [8], ("m1", 6): [9], ("m1", 7): [1e], ("m2", @): [1, 2], ("m2", @
51): [31, ("m2", 2): [3e], ("m2", 3): [4], ("m2", 4): [10], ("m2", 5): [11], ("m2", 6): &
G[12, 13, 141, ("m2", 7): [19, 28], ("m2", 8): [25, 26], ("m2", 9): [24], ("m2", 1@): 3
5[18, 21], ("m2", 11): [5, 15], ("m2", 12): [22, 23], ("m2", 13): [27], ("m2", 14): [6, @
516], ("m2", 15): [28], ("m2", 16): [7, 17], ("m2", 17): [29], ("m2", 18): [8], ("m2", @
519): [9] }

THETA = { ("m1", 1): [1], ("m1", 2): [2], ("m1", 3): [2], ("m1", 4): [1, 2], ("m1", 5): @
6[2], ("m1", &): [1], ("ml", 7): [1, 2], ("m1", 8): [1, 2], ("m1", 9): [2], ("ml", 10): @
6[1, 2], ("m2", 1): [2], ("m2", 2): [1], ("m2", 3): [1], ("m2", 4): [1, 2], ("m2", 5): @
5[2], ("m2", 6): [2], ("m2", 7): [2], ("m2", 8): [1], ("m2", 9): [1], ("m2", 18): [1, @
52], ("m2", 11): [1, 2], ("m2", 12): [1, 2], ("m2", 13): [1, 2], ("m2", 14): [1], @
G("m2", 15): [1], ("m2", 16): [1, 2], ("m2", 17): [2], ("m2", 18): [2], ("m2", 19): [1, @
521, ("m2", 20): [11, ("m2", 21): [2], ("m2", 22): [1], ("m2", 23): [1], ("m2", 24): @
5[2], ("m2", 25): [2], ("m2", 26): [1, 2], ("m2", 27): [1], ("m2", 28): [1], ("m2", @

Page 1, last modified 20 Aug 2021 15:26:11

170

C:\Users\yusuf\Desktop\28CIRPLCL-master\gurobi_opt\main.py

529): [1, 2], ("m2", 3@): [1, 2] }

C =40

t = { ("m1",1): 3@, ("m1",2): 28, ("m1",3): 12, ("m1",4): 34, ("m1",5): 13, ("m1",6): @
521, ("mi",7): 6, ("m1",8): 18, ("m1",9): 25, ("ml",10): 10, ("m2",1): 11, ("m2",2): @
520, ("m2",3): 20, ("m2",4): 14, ("m2",5): 19, ("m2",6): 1, ("m2",7): 7, ("m2",8): 6, @
G("m2",9): 6, ("m2",10): 7, ("m2",11): 19, ("m2",12): 11, ("m2",13): 18, ("m2",14): 13, 3
5("m2",15): 5, ("m2",16): 11, ("m2",17): 6, ("m2",18): 4, ("m2",19): 6, ("m2",20): 8, @
G("m2",21): 18, ("m2",22): 15, ("m2",23): 15, ("m2",24): 6, ("m2",25): 10, ("m2",26): @
520, ("m2",27): 13, ("m2",28): 1, ("m2",29): 4, ("m2",30): 5 }

H#EPSILON: a very small number
#BIG_M: a very big number
EPSILON = ©.001

BIG M = 99999

timel = time.time()
opt_model = grb.Model(name="MILP Model")

,,,,,,,,,,,,,,,,,,,,,,,,,

Variables -- MTDLB Variables

- S

F = opt_model.addVars(STATIONS, vtype=grb.GRB.BINARY)

G = opt_model.addVars(STATIONS, vtype=grb.GRB.BINARY)

U = opt_model.addVars(STATIONS, SIDES, vtype=grb.GRB.BINARY)
Z = opt_model.addVars(MONO, vtype=grb.GRB.BINARY)

GAMMA = opt_model.addVars(MODELS, STATIONS, SIDES, vtype=grb.GRB.BINARY)
X = opt_model.addvars(MONO, STATIONS, SIDES, vtype=grb.GRB.BINARY)
DELTA = opt_model.addVars(MONONO, vtype=grb.GRB.BINARY)

TF = opt_model.addvars(MONO, 1lb=@)

Equation (4.23)

objective = (grb.quicksum(F[j] + G[j] for j in STATIONS)
+ EPSILON*grb.quicksum(j*U[j,s] for j in STATIONS for s in SIDES)
+ EPSILON*EPSILON*grb.quicksum(t[m,i]*Z[m,i] for (m,i) in MONO))

Equation (4.4)

Page 2, last modified 20 Aug 20621 15:26:11

171

C:\Users\yusuf\Desktop\28CIRPLCL-master\gurobi_opt\main.py
opt_model.addConstrs(grb.quicksum(Z[m,i] for i in SUC[m,@]) == 1 for m in MODELS)

Equation (4.5)

opt_model.addConstrs(grb.quicksum(Z[m,i] for i in SUC[m,k]) == grb.quicksum(Z[m,i] for 3
Gi in PRE[m,k]) for m in MODELS for k in range(1, nA[m]) if ((m,k) in SUC) and ((m,k) @
Gin PRE))

Equation (4.6)
opt_model.addConstrs(grb.quicksum(grb.quicksum(X[m,i,j,s] for s in THETA[m,i]) for j in 3
GSTATIONS) == Z[m,i] for (m,i) in MONO)

Equation (4.7)

opt_model.addConstrs(grb.quicksum(X[m,i,v,s] for i in PRE[m,k] for s in THETA[m,i] for 2
Gv in range(1, j+1)) >= grb.quicksum(X[m,i,j,s] for i in SUC[m,k] for s in THETA[m,i]) @
Gfor m in MODELS for k in range(1l, nA[m]) for j in STATIONS if (((m,k) in PRE) and @
5((m,k) in SUC)))

Equation (4.8)
opt_model.addConstrs(TF[m,i] <= C*Z[m,i] for (m,i) in MONO)

Equation (4.9)
opt_model.addConstrs(TF[m,i] »>= t[m,i]*Z[m,i] for (m,i) in MONO)

Equation (4.19)

opt_model.addConstrs(TF[m,i] - TF[m,h] + BIG_M*(2 - grb.quicksum(X[m,i,j,s] for s in 3
GTHETA[m,1]) - grb.quicksum(X[m,h,j,s] for s in THETA[m,h])) >= t[m,i] for m in MODELS 2
Gfor j in STATIONS for k in range(1, nA[m]) if (((m,k) in SUC) and ((m,k) in PRE)) for @
Gi in SuC[m,k] for h in PRE[m,k])

Equation (4.11)
opt_model.addConstrs(TF[m,i] - TF[m,h] + BIG_M*(3 - X[m,i,j,s] - X[m,h,j,s] - @
GDELTA[m,i,h]) »>= t[m,i] for (m,i,h) in MONONO for j in STATIONS for s in SIDES)

Equation (4.12)
opt_model.addConstrs(TF[m,h] - TF[m,i] + BIG_M*(2 - X[m,i,j,s] - X[m,h,j,s] + @
GDELTA[m,i,h]) >= t[m,h] for (m,i,h) in MONONO for j in STATIONS for s in SIDES)

Equation (4.13)
opt_model.addConstrs(grb.quicksum(X[m,i,j,s] for i in range(1, nN[m]+1) if s in 2
GTHETA[m,i]) - nN[m]*GAMMA[m,j,s] <= @ for m in MODELS for j in STATIONS for s in SIDES)

Equation (4.14)

opt_model.addConstrs(grb.quicksum(GAMMA[m,j,s] for m in MODELS) - len(MODELS)*U[j,s] <= 3@
GO for j in STATIONS for s in SIDES)

Equation (4.15)

opt_model.addConstrs(grb.quicksum(U[j,s] for s in SIDES) - 2*F[j] - G[j] == © for j in 3
GSTATIONS)

Page 3, last modified 20 Aug 2021 15:26:11

172

C:\Users\yusuf\Desktop\28CIRPLCL-master\gurobi_opt\main.py

opt_model.ModelSense = grb.GRB.MINIMIZE
opt_model.setObjective(objective)
opt_model.update()

opt_model.optimize()

print(opt_model)

print("\nSolution Results\n")
print("Time = ", time.time() - timel, "second")
print("Total number of stations opened from both sides\t\t:\t", sum([F[j].X for j in @
GSTATIONS]))
print("Total number of stations opened from only one side\t:\t", sum([G[j].X for j in @
GSTATIONS]))
print("Total number of stations opened\t\t\t\t:\t", sum([U[j,s].X for j in STATIONS for @
Gs in SIDES]))
for m in MODELS:

print("#### MODEL-",m," #i###")

print("(m, i)\t\t (j,s)\t\t Processing Time\t Starting Time\t Ending Time")

for i in range(1, nN[m]+1):

if TF[m,i].X != 0.0:

if i < 10:
print((m,i), " :\t", [(j,s) for j in STATIONS for s in SIDES if X[m,i,j,s].X ==
5 1.00], "\t", t[m,i], "\t\t\t", TF[m,i].X - t[m,i], “\t\t", TF[m,i].X)
else:
print((m,i), ":\t", [(j,s) for j in STATIONS for s in SIDES if X[m,i,j,s].X ==
G 1.00], "\t", t[m,i], "\t\t\t", TF[m,i].X - t[m,i], "\t\t", TF[m,i].X)

Page 4, last modified 20 Aug 2021 15:26:11

173

APPENDIX - 03B. Inputs Python Code of MOMA for MTDLB Problem

C:\Users\yusuf\Desktop\masaiistii\Dosyalar\Projeler\28th CIRP Conference on Life Cycle
Engineering\gurobi_opt\inputs.py

def MTDLBInput(modl, mod2, mod3, mod4, mod5, mod6, mod7, mod8):

nA_all = {
("m1"): 8,
"m2"): 20,
"m3"): 44,
"m4"): 14,
"m5"): 8,
"m6"): 1@,
"m7"): 25,
"m8"): 47

e tata et

}

nN_all = {
("m1"): 18,
("m2"): 3@,
("m3"): 97,
("ma"): 20,
("m5"): 8,
("m6"): 10,
("m7"): 25,
("m8"): 47

}

PRE_all = {
("m1", @): [1,

("m1", 1): [1],
("m1", 2): [2],
("m1", 3): [2, 3],
("m1", 4): [3, 4],
("m1", 5): [5],
("m1", 6): [1, 4, 8],
("m1", 7): [9],
("m2", @): [1,

("m2", 1): [1],
("m2", 2): [2, 3],
("m2", 3): [3, 1e],
("m2", 4): [2],
("m2", 5): [2],
("m2", 6): [11],
("m2", 7): [14],
("m2", 8): [19],
("m2", 9): [18, 20],
("m2", 10@): [13],
("m2", 11): [4, 12],
("m2", 12): [15, 21],
("m2", 13): [23, 24, 25],
("m2", 14): [5],
("m2", 15): [16, 26],
("m2", 16): [6, 22],

Page 1, last modified @1 Sep 2021 21:11:04

174

C:\Users\yusuf\Desktop\masaiistii\Dosyalar\Projeler\28th CIRP Conference on Life Cycle
Engineering\gurobi_opt\inputs.py

"m2", 17): [17, 27, 28],
"m2", 18): [7],
"m2", 19): [8, 29],
“m3"’ e): []’

("m3", 1): [1],
(nt..J 2): [Z]J
("m3", 3): [3],
("m3", 4): [4, 7],
("m3", 5): [5],
("m3", 6): [6],
("m3", 7): [8],
("m3", 8): [9, 12],
("m3", 9): [1e, 16],
("m3", 18): [11, 28],
("m3", 11): [13, 23],
("m3", 12): [14, 17],
("m3", 13): [15, 21],

~ o~~~

("m3", 14): [18],

("m3", 15): [19, 22],
("m3", 16): [1, 7, 231,
("m3", 17): [24, 32],
("m3", 18): [25, 27, 35],

("m3", 19): [26, 30, 39],
("m3", 20): [28, 42],
("m3", 21): [29, 31, 451,
("m3", 22): [33, 361,
("m3", 23): [34, 4e],
("m3", 24): [37, 431,
("m3", 25): [38, 41, 46],
("m3", 26): [44, 47],
("m3", 27): [49],

("m3", 28): [56, 52, 61],
("m3", 29): [51, 55, 64],
("m3", 30): [53, 57, 66],
("m3", 31): [54, 56, 59, 69],

("m3", 32): [58, 6@, 721,
("m3", 33): [62, 671,
("m3", 34): [63, 65, 701,
("m3", 35): [68, 71, 731,
("m3", 36): [48],

("m3", 37): [75, 76, 831,
("m3", 38): [76, 77, 851,
("m3", 39): [79, 81, 82, 87],
("m3", 40): [84, 86, 881,
("m3", 41): [89],

("m3", 42): [74, 901,

("m3", 43): [48, 74],

("ma", e): [1,

Page 2, last modified @1 Sep 2021 21:11:04

175

C:\Users\yusuf\Desktop\masaiistii\Dosyalar\Projeler\28th CIRP Conference on Life Cycle
Engineering\gurobi_opt\inputs.py

(s 1 [1],
("mav, 2): [2],

(» 3): [4, 5],
("ma”, 4): [1, 5],

(» 5): [3],

(» 6): [3, 6],

(s>) [7],
("ma", 8): [9],
("ma”, 9): [8, 12],
("ma", 10): [8, 13],
("ma", 11): [9, 14, 16],
("ma", 12): [14, 15],
("ma", 13): [18],
("ms", 1): [1],
("m5", 2): [1],
("ms", 3): [1],

("ms", 4): [2, 3],
("ms", 5): [5, 6],
("m5", 6): [8],
("ms", 7): [5, 71,
("m6", @): [1,
("me", 1): [1,
("me", 2): [1,

("me", 3): [1,

("me", 4): [1,

("me", 5): [1,

("me", 6): [5, 6],

("m&", 7): [4, 71,

("me", 8): [1, &, 9, 10],
("me", 9): [1, 8, 9, 18],
("'m7", e): [1,

("m7", 1): [1,
("m77, 2): [1,
("m7", 3): [1,
("m7", 4): [4, 5],
("m7", 5): [1e],
("m7", 6): [11],
("m7", 7): [2],
("m7", 8): [2],
("m7", 9): [2],
('Im?IIJ 19): [1’ 2],
("m7", 11): [3],

("m7", 12): [6, 7, 8, 9],
("m7", 13): [6, 7, 8, 9],
("m7", 14): [6, 7, 8, 9],
("m7", 15): [6, 7, 8, 9],
("m7", 16): [15],

('m7", 17): [12, 14],

Page 3, last modified @1 Sep 2021 21:11:04

176

C:\Users\yusuf\Desktop\masaiistii\Dosyalar\Projeler\28th CIRP Conference on Life Cycle
Engineering\gurobi_opt\inputs.py

("m7", 18): [13, 14, 16, 18],
("m7", 19): [17],
("m7", 20): [17],
("m7", 21): [21],
("m7", 22): [21],

("m7", 23): [16, 22],
("m7", 24): [19, 23],
("mg", @): [1,

("mg", 1): [1],
("mg", 2): [2],
("mg", 3): [2],
("mg", 4): [1,

("mg", 5): [5],

("mg", 6): [1,
('mg", 7): [1,
("mg", 8): [8],
("mg", 9): [8],
("m8", 10): [9, 10],
("m8", 11): [1e0],
("mg", 12): [],
("m8", 13): [13],
("m8”, 14): [],
("m8", 15): [15],

("m8", 16): [16],
("'ms", 17): [17],
("mg", 18): [14],
("m8", 19): [18],
("m8", 20): [20],
("m8", 21): [18],
("m8", 22): [22],
("mg", 23): [22],
("m8", 24): [23, 24],
("m8", 25): [19],
("m8", 26): [26],
("m8", 27): [27],
("m8", 28): [28],
("m8", 29): [29],
("m8", 30): [30],
("m8", 31): [1, 5, 9, 18],
("m8", 32): [32],
("ms", 33): [32],
("m8", 34): [33],
("m8", 35): [34, 35],
("m8", 36): [36],
("m8", 37): [371,
("m8", 38): [38],
("m8", 39): [39],
("m8", 48): [48],

Page 4, last modified @1 Sep 2621 21:11:04

177

C:\Users\yusuf\Desktop\masaiistii\Dosyalar\Projeler\28th CIRP Conference on Life Cycle
Engineering\gurobi_opt\inputs.py

"m8", 41): [41],
"m8", 42): [36],
"mg", 43): [43],
"mg", 44): [44],
"m8", 45): [45],
("m8", 46): [18]

A~~~ o~

}

SuC_all = {
("m1", @): [1, 2],
("m1", 1): [3],
("m1", 2): [4, 5],
("m1", 3): [7],
("m1", 4): [6],
("m1", 5): [8],
("m1", 6): [9],
("m1", 7): [1e],

("m2", @): [1, 2],
("m2", 1): [3],

("m2", 2): [30],

("m2", 3): [4],

("m2", 4): [10],

("m2", 5): [11],

("m2", 6): [12, 13, 14],

("m2", 7): [19, 20],
("m2", 8): [25, 26],
("m2", 9): [24],

("m2", 10): [18, 211,
("m2", 11): [5, 151,
("m2", 12): [22, 23],
("m2", 13): [27],

("m2", 14): [6, 16],
("m2", 15): [28],

("m2", 16): [7, 17],
("m2", 17): [29],

("m2", 18): [8],

("m2", 19): [9],

("m3", @): [1, 2],

("m3", 1): [3, 4, 5, 6],
("m3", 2): [7, 8],

("m3", 3): [9, 10, 11],
("m3", 4): [12, 13, 14, 15],
("m3", 5): [16, 17, 18, 19],
("m3", 6): [20, 21, 22],
("m3", 7): [23],

("m3", 8): [24, 25, 26],
("m3", 9): [27, 28, 29],
("m3", 10): [30, 31],
("m3", 11): [32, 33, 34],

Page 5, last modified @1 Sep 2021 21:11:04

178

C:\Users\yusuf\Desktop\masaiistii\Dosyalar\Projeler\28th CIRP Conference on
Engineering\gurobi_opt\inputs.py

"m3",
"m3",
"m3",
"m3",
"m3",
(nt..J
("m3",
("m3"1
("m3",
("m3",
("n3",
("m3",
("n3,
("m3",
("m3",
("m3",
("m3",
("m3",
('m3",
("m3",

L

3

A~~~ o~

("m3"

("m3"

("m3",
(nt..J
("m3",
("m3"1
("m3",
("m3",
("m3",
("m3",
("n3,
("m3",
("ma”,
("ma”,
("na,
("ma”,
("na,
("ma”,
("na,
("ma”,
("m4"1
("ma,
(nm4"]
("ma,
("na",
("ma,
(ns",
(ms",

12):
13):
14):
15):
16):
17):
18):
19):
20):
21):
22):
23):
24):
25):
26):
27):
28):
29):
30):
31):
32):
33):
34):
35):
36):
37):
38):
39):
40):
41):
42):
43):
0):

1):

2):

3):

4):

5):

6):

7):

[35,
[39,
[42,
[45.'
[48,
[Sel
[52,
[55,
[57,
[59,
[61,
[64,
[66,
[69,
[72,
[741,
[75, 761,
[771,
[76, 791,
[8e, 81],
[82],
[83, 84],
[85, 86],
[87, 88],
[89, 90],
[o1],
[921,
931,
[94],
[951,
[96],
[971,

[1, 2],

[3, 4],

[51,

[el,

[71 8] 9].'

[1e],

[11],

[12, 14],
8): [13, 15],

9): [16],

10): [17],
11): [18],
12): [19],
13): [20],

e): [1],

1): [5],

36,
40,
43,
46,
491,
51],
53,
561,
58],
6],
62,
651,
67,
70,
731,

37, 38],
417,
44],
471,

54],

63],

68],
711,

Page 6, last modified @1 Sep 2021 21:11:04

179

Life Cycle

C:\Users\yusuf\Desktop\masaiistii\Dosyalar\Projeler\28th CIRP Conference on Life Cycle
Engineering\gurobi_opt\inputs.py

("ms", 2): [3],
("m5", 3): [2],
("ms”, 4): [6],
("ms"] 5): [8].'
("ms", 6): [7],
("ms", 7): [4],
("me", @): [1],
("me", 1): [4],
("me", 2): [5],
("me", 3): [6],
("me", 4): [9],
("me", 5): [1e],
("me", 6): [7],
("me", 7): [8],
("me", 8): [2],
("me", 9): [31,
("m7", 8): [5],
("m7", 1): [4],
("m7*, 2): [2],
("m7", 3): [1],
("m7", 4): [10],
("m7", 5): [11],
("m7", 6): [12],
("m7", 7): [8],
("m7", 8): [7],
("m7", 9): [6],
("m7", 10): [3],
("m7", 11): [9],
("m7", 12): [16],
("m7", 13): [15],
("m7", 14): [14],
("m7", 15): [13],
("m7", 16): [18],
("m7", 17): [17],
("m7", 18): [19],
("m7", 19): [21],
("m7", 20): [20],
("m7", 21): [22],
("m7", 22): [25],
("m7", 23): [23],
("m7", 24): [24],
("mg", @): [1],
("me", 1): [2],
("mg", 2): [3],
("m8", 3): [4],
("mg", 4): [5],
("m8", 5): [6],
("m8", 6): [7],

Page 7, last modified @1 Sep 2021 21:11:04

180

C:\Users\yusuf\Desktop\masaiistii\Dosyalar\Projeler\28th CIRP Conference on Life Cycle
Engineering\gurobi_opt\inputs.py

("mg", 7): [8],

("m8", 8): [9],

("mg", 9): [10],
("m8", 1@): [11],
("m8", 11): [12],
("m8", 12): [13],
("ms", 13): [14],
("m8", 14): [15],
("m8", 15): [16],
("m8", 16): [171,
("m8", 17): [18],
("m8", 18): [19],
("mg", 19): [20],
("m8", 28): [21],
("mg", 21): [22],
("m8", 22): [23],
("m8", 23): [24],
("m8", 24): [25],
("m8", 25): [26],
("m8", 26): [27],
("m8", 27): [28],
("m8", 28): [29],
("ms", 29): [30],
("ms", 3@): [31],
("m8", 31): [32],
("m8", 32): [33],
("m8", 33): [34],
("m8", 34): [35],
("m8", 35): [36],
("m8", 36): [37],
("m8", 37): [38],
("m8", 38): [39],
("m8", 39): [40],
("m8", 48): [41],
("m8", 41): [42],
("m8", 42): [43],
("m8", 43): [44],
("mg", 44): [45],
("m8", 45): [46],

("m8", 46): [47]
}
THETA_all = {

("m1", 1): [1],
"mi*, 2): [2],

("m1",

("m1", 3): [2],
("m1”, 4): [1, 2],
("m1”, 5): [2],
("'m1", 6): [1],

Page 8, last modified @1 Sep 2021 21:11:04

181

C:\Users\yusuf\Desktop\masaiistii\Dosyalar\Projeler\28th CIRP Conference on Life Cycle
Engineering\gurobi_opt\inputs.py

("m1", 7): [1, 2],
("m1", 8): [1, 2],
("m1", 9): [2],
("ml"] 16): [1-' 2],
("m2", 1)z [2],
("m2", 2): [1],
("m2", 3): [1],
("m2", 4): [1, 2],
("m2", 5): [2],
("m2", 6): [2],
("m2", 7): [2],
("m2", 8): [1],
("m2", 9): [1],
("m2", 10): [1, 2],
("m2", 11): [1, 2],
("m2", 12): [1, 2],
("m2", 13): [1, 2],
("m2", 14): [1],
("m2", 15): [1],
("m2", 16): [1, 2],
("m2", 17): [2]1,
("m2", 18): [2],
("m2", 19): [1, 2],
("m2", 20): [1],
("m2", 21): [2],
("m2", 22): [1],
("m2", 23): [1],
("m2", 24): [2],
("m2", 25): [2],
("m2", 26): [1, 2],
("m2", 27): [1],
("m2", 28): [1]1,
("m2", 29): [1, 2],
("m2", 30): [1, 2],
("m3", 1): [1],
("m3", 2): [1],
("m3", 3): [1, 2],
("m3", 4): [1, 2],
("m3", 5): [1, 2],
("m3", 6): [1],
("m3", 7): [1, 2],
("m3", 8): [2],
("m3", 9): [1, 2],
("m3", 10): [2],
("m3", 11): [1],
("m3", 12): [1, 2],
("m3", 13): [1],
("m3", 14): [1],

Page 9, last modified @1 Sep 2021 21:11:04

182

C:\Users\yusuf\Desktop\masaiistii\Dosyalar\Projeler\28th CIRP Conference on Life Cycle
Engineering\gurobi_opt\inputs.py

("m3", 15): [2],
("'m3", 16): [1, 2],
("m3", 17): [2],
("m3", 18): [2],
("m37, 19): [1, 2],

("m3", 20): [1, 2],
("m3", 21): [1, 2],
("m3", 22): [1],
("m3", 23): [2],
("m3", 24): [2],
("m3", 25): [2],
("m3", 26): [1]1,
("m3", 27): [2],
("m3", 28): [1, 2],
("m3", 29): [2],
("m3", 30): [1, 2],

("m3", 31): [1],
("m3", 32): [1, 2],
("m3", 33): [1],
("m3", 34): [1],
("'m3", 35): [1, 2],
("m3", 36): [1, 2],
("m3", 37): [2],

("m3", 38): [2],
("m3", 39): [2],
("m3", 4@): [1, 2],
("m3", 41): [1],
("m3", 42): [2],
("m3", 43): [1],
("m3", 44): [2],
("m3", 45): [2],
("m3", 46): [2],
("m3", 47): [1],
("m3", 48): [1, 2],

("'m3", 49): [1, 2],
("m3", se): [2],
("'m3", s1): [1, 2],
("m3", 52): [1],
("m3", 53): [2],
("m3", 54): [1],
("m3", 55): [111
("m3", 56): [2],

("m3", 57): [1, 2],
("m3", 58): [1, 2],
("m3", 59): [1],
("m3”, 6@): [1, 2],
("m3”, 61): [2],
("m3", 62): [1],

Page 10, last modified @1 Sep 2021 21:11:04

183

C:\Users\yusuf\Desktop\masaiistii\Dosyalar\Projeler\28th CIRP Conference on Life Cycle
Engineering\gurobi_opt\inputs.py

"3
"3
"3
3"
"3
"3
"m3"
T
"m3"
B
"m3
B
B
B
B
B
-
e
3
e
P
3"

s 63): [2],
» 65): [11,
» 67): [1],
» 68): [2],
» 69): [11,
» 70): [21,
» 71): [1],
» 72): [1, 2],
» 73): [2],
5 74): [11,
s 75): [2],
» 76): [1, 2],
s 78): [2],
s 79): (1, 2],
» 80): [11,
» 82): [21,
» 83): [1, 2],
s 84): [1, 2],
"m3", 85): [1, 2],
"m3", 86): [2],
"m3", 87): [1, 2],
"m3", 88): [1, 2],
"m3", 89): [1],
"m3", 98): [21,
"m3", 91): [2],
"m3", 92): [1, 2],
"m3", 93): [2],
"m3", 94): [1],
"m3", 95): [1, 2],
"m3", 96): [2],
"m3", 97): [1],
"ma”, 1): [1],
"ma, 2): [1, 2],
"ma", 3): [2],
"mar, 4): [Z]J
"ma", 5): [1],
‘ma", 6): [1, 2],
‘ma", 7): [1, 2],
nm4"] 8): [1’ 2]-‘
"ma", 9): [2],
"m4", 1@): [2],
"m4", 11): [1, 2],
"m4", 12): [1],
"ma", 13): [1],

N et alealalalalaloialalalalalaialaialaialiaiataliatialialialialaialiataleialaialalelele e e el

Page 11, last modified @1 Sep 2021 21:11:04

184

C:\Users\yusuf\Desktop\masaiistii\Dosyalar\Projeler\28th CIRP Conference on Life Cycle
Engineering\gurobi_opt\inputs.py

ma", 14): [1, 2],

("ma",

("ma", 15): [1],
("ma", 16): [1],
("m4"1 17): [2].'
("ma", 18): [2],
("ma", 19): [1, 2],
("ma", 20): [1, 2],
("ms", 1): [1, 2],

("m5", 2): [2],
("ms", 3): [2],
("m5", 4): [1, 2],
("ms", s): [1],
("ms", 6): [1, 2],
("ms", 7): [1],
("ms", 8): [1, 2],
("me", 1): [1, 2],

("me", 2): [1, 2],
("me", 3): [1, 2],
("m6", 4): [2],
("me", 5): [1],
("m6", 6): [1, 2],
("me", 7): [1, 2],
("me", 8): [1],

("me", 9): [2],
("me", 10): [1, 2],
("m7", 1): [2],
("m7", 2): [1, 2],
("m7", 3): [1, 2],
("m7", 4): [1, 2],
("m7", 5): [1],
("m7", 6): [1, 2],
("m7", 7): [1, 2],
("m7", 8): [1],
("m7", 9): [2],

('n7°, 10): [1, 21,
("m7", 11): [2],

(n77, 12): [1, 21,
("m7", 13): [1, 2],
(7%, 14): [1, 2],
("m7", 15): [2],

('m7", 16): [1, 21,
("m7", 17): [1, 21,

("m7", 18): [1, 2],
("m7", 19): [1, 2],
("m7", 20): [2],
("m7", 21): [1],
("m7v, 22): [1, 2],
("m7", 23): [1, 2],

Page 12, last modified @1 Sep 2021 21:11:04

185

C:\Users\yusuf\Desktop\masaiistii\Dosyalar\Projeler\28th CIRP Conference on Life Cycle
Engineering\gurobi_opt\inputs.py

"m7", 24): [1, 2],

(s

("m7", 25): [1],
("mg”, 1): [1, 2],
("mB"J 2): [l].'
("m8”, 3): [1, 2],

("m8", 4): [2],
("mg", 5): [1],
("mg", 6): [2],
("mg", 7): [1, 2],
("mg", 8): [1, 2],
("mg", 9): [1, 2],
("mg", 10): [1, 2],
("mg", 11): [1],
("mg", 12): [1, 2],
("m", 13): [1],
("mg", 14): [1, 2],

(mg", 15): [1, 2],
("mg", 16): [2],
("'m8", 17): [1, 21,
("mg", 18): [1],
("'m8", 19): [1, 2],
("mg”, 20): [2],
('me", 21): [1, 21,

("mg", 22): [1, 2],
("mg", 23): [2],
("mg", 24): [1, 2],
("mg", 25): [1],
("mg", 26): [1, 2],
("mg", 27): [2],
("mg", 28): [1, 2],
("mg", 29): [1, 2],
("mg", 30): [2],
("mg", 31): [1],
("mg", 32): [1, 2],

("m8”, 33): [2],

("mg", 34): [1, 2],
("m8", 35): [1, 2],
("mg", 36): [1, 2],
('ms", 37): [1],

("mg", 38): [1, 2],
("m8", 39): [1, 2],
("mg", 40): [1, 21,

("mg", 41): [2],
("mg", 42): [1, 2],
("mg", 43): [2],
("mg", 44): [1, 2],
("mg", 45): [1, 2],
("mg", 46): [1, 2],

Page 13, last modified @1 Sep 2021 21:11:04

186

C:\Users\yusuf\Desktop\masaiistii\Dosyalar\Projeler\28th CIRP Conference on Life Cycle
Engineering\gurobi_opt\inputs.py

("m8", 47): [1, 2]
}
t_all = {
("m1",1): 30,
("m1",2): 28,
("m1",3): 12,
("m1",4): 34,
("m1",5): 13,
("mi",6): 21,
("m1",7): 6,
("mi",8): 18,
("m1",9): 25,
("m1i",10): 10,
("m2",1): 11,
("m2",2): 20,
("m2",3): 28,
("m2",4): 14,
("m2",5): 19,
"m2",6): 1,
"m2",7): 7,
"m2",8): 6,
"m2",9): 6,
("m2",18): 7,
("m2",11): 19,
("m2",12): 11,
("m2",13): 18,
("m2",14): 13,
("m2",15): 5,
("m2",16): 11,
"m2",17): 6,
("m2",18): 4,
("m2",19): 6,
("m2",20): 8,
("m2",21): 18,
("m2",22): 15,
("m2",23): 15,
"m2",24): 6,
"m2",25): 10,
"m2",26): 20,
"m2",27): 13,
("m2",28): 1,
("m2",29): 4,
("m2",38): 5,
("m3",1): 37,
("m3",2): 3,
("m3",3): 5,
("m3",4): 3,
("m3",5): 18,

~ e~~~

—~ e~~~

Page 14, last modified @1 Sep 2021 21:11:04

187

C:\Users\yusuf\Desktop\masaiistii\Dosyalar\Projeler\28th CIRP Conference on Life Cycle
Engineering\gurobi_opt\inputs.py

"m3",6): 6,
"m3",7): 37,
"m3",8): 2,
"m3",9): 3,
("m3",10): 18,
("m3",11): &,
("m3",12): 5,
("m3",13): 2,
("m3",14): 18,
("m3",15): 6,
("m3",16): 5,
("m3",17): 3,
("m3",18): 19,
("m3",19): 6,
("m3",208): 5,
("m3",21): 3,
("m3",22): 1o,
("m3",23): 37,
"m3",24): 2,
"m3",25): 10,
"m3",26): 6,
"m3",27): 3,
("m3",28): 19,
("m3",29): 6,
("m3",30): 3,
("m3",31): 10,
("m3",32): 5,
("m3",33): 18,
("m3",34): 6,
("m3",35): 5,
("m3",36): 2,
("m3",37): 19,
("m3",38): 6,
("m3",39): 5,
("m3",48): 2,
("m3",41): 1e,
"m3",42): 5,
"m3",43): 3,
"m3",44): 6,
"m3",45): 5,
("m3",46): 3,
("m3",47): 19,
("m3",48): 11,
("m3",49): 34,
("m3",50): 10,
("m3",51): 6,
("m3",52): 2,
("m3",53): 19,

~ o~~~

~ e~~~

~ e~~~

Page 15, last modified @1 Sep 2021 21:11:04

188

C:\Users\yusuf\Desktop\masaiistii\Dosyalar\Projeler\28th CIRP Conference on Life Cycle
Engineering\gurobi_opt\inputs.py

"m3",54): 6,
"m3",55): 2,
"m3",56): 10,
"m3",57): 3,
("m3",58): 6,
("m3",59): 3,
("m3",60): 19,
("m3",61): 5,
("m3",62): 19,
("m3",63): 6,
("m3",64): 5,
("m3",65): 10,
("m3",66): 5,
("m3",67): 2,
("m3",68): 6,
("m3",69): 5,
("m3",7@): 2,
("m3",71): 19,
"m3",72): 5,
"m3",73): 3,
"m3",74): 11,
"m3",75): 19,
("m3",76): 6,
("m3",77): 1e,
("m3",78): 2,
("m3",79): 6,
("m3",80): 2,
("m3",81): 19,
("m3",82): 3,
("m3",83): 5,
("m3",84): 6,
("m3",85): 5,
("m3",86): 19,
("m3",87): 5,
("m3",88): 2,
("m3",89): 29,
"m3",90): 34,
"m3",91): 6,
"m3",92): 19,
"m3",93): 2,
("m3",94): 5,
("m3",95): 34,
("m3",96): 29,
("m3",97): 14,
"ma", 1): 5,
("ma", 2): 28,
("ma", 3): 32,
"m4", 4): 7,

~ e~~~

~ e~~~

—~ e~~~

Page 16, last modified @1 Sep 2021 21:11:04

189

C:\Users\yusuf\Desktop\masaiistii\Dosyalar\Projeler\28th CIRP Conference on Life Cycle
Engineering\gurobi_opt\inputs.py

("ma", 5): 19,
("ma", 6): 11,
("ma", 7): 38,
("ma", 8): 29,
("ma", 9): 16,
("ma", 1@): 17,
("ma", 11): 33,
("ma", 12): 16,
("ma", 13): 6,
("ma", 14): 1@,
("ma", 15): 32,
("ma", 16): 18,
("ma", 17): 16,
("ma", 18): 32,
("ma", 19): 35,
("ma", 28): 17,
("m5", 1): 14,
("ms", 2): 10,

("m5", 3): 12,
("ms", 4): 18,
("m5", 5): 23,
("m5", 6): 16,
("ms", 7): 20,
("m5", 8): 36,
("me", 1): 14,

("m6", 2): 18,
("m6", 3): 12,
("m6", 4): 17,
("m6", 5): 23,
("m6", 6): 14,
("me", 7): 19,
("me", 8): 36,
("me", 9): 14,
("me", 18): 10,
("m7", 1): 3,
("m7", 2): 2,
"m7", 3): 3,
4): 18,
5): 10,
"m7", 6): 15,
("m7", 7): 15,
("m7", 8): 15,
"m7", 9): 15,
("m7", 10): 2,
"m7", 11): 2,
("m7", 12): 2,
("m7", 13): 2,
("m7", 14): 2,

o~~~
3
~

3
~
L

Page 17, last modified @1 Sep 2021 21:11:04

190

C:\Users\yusuf\Desktop\masaiistii\Dosyalar\Projeler\28th CIRP Conference on Life Cycle
Engineering\gurobi_opt\inputs.py

"m7", 15): 2,
"m7", 16): 2,
"m7", 17): 2,
"m7", 18): 3,
("m7", 19): 18,
("m7", 20): 5,
("'m7", 21): 1,
("m7", 22): 5,
("m7", 23): 15,
("m7", 24): 2,
("m7", 25): 2,
("m8", 1): 14,
("mg", 2): 28,
("m8", 3): 3,
("mg", 4): 2,
("m8", 5): 3,
("m8", 6): 4,

~ o~~~

("m8", 7): 8,
("m8", 8): 12,
("m8", 9): 4,
("m8", 10): 28,
("m8", 11): 3,

("ms", 12): 4,
("m8", 13): 6,
("m8", 14): 1,
("m8", 15): 20,
("m8", 16): 5,
("m8", 17): 28,
("m8", 18): 4,
("m8", 19): 3,
("mg", 20): 12,
("m8", 21): 3,
("m8", 22): 3,
("m8", 23): 28,
("m8", 24): 28,

("m8", 25): 12,
("m8", 26): 76,
("m8", 27): 6,
("m8", 28): 28,
("m8", 29): 3,

("m8", 30): 6,
("m8", 31): 3,
("m8", 32): 98,
("m8", 33): 14,
("m8", 34): 2,
("m8", 35): 6,
("m8", 36): 7,
("m8", 37): 60,

Page 18, last modified @1 Sep 2021 21:11:04

191

C:\Users\yusuf\Desktop\masaiistii\Dosyalar\Projeler\28th CIRP Conference on Life Cycle
Engineering\gurobi_opt\inputs.py

"m8", 38): 6,
"m8", 39): 60,
"mg", 40): 8,
"m8", 41): 12,
("ms", 42): 3,
("mg", 43): 12,
("ms", 44): 3,
("m8", 45): 28,
("m8", 46): 2,
("m8", 47): 3

~ e~~~

MODELS = []

if modl == 1:
MODELS.append("m1")
nA["m1"] = nA_all["m1"]
NN["m1"] = nN_all["m1"]
for k in range(@, nA["m1"]):
if ("m1", k) in Suc_all:
SUC[("m1", k)] = SuC_all[("m1", k)]
if ("m1", k) in PRE_all:
PRE[("m1", k)] = PRE_all[("m1", k)]
for i in range(1, nN["m1"] + 1):
THETA[("m1", i)] = THETA_all[("m1", i)]
t[("m1", i)] = t_all[("m1", i)]
if nl < 5:
nJ =5
if mod2 == 1:
MODELS.append("m2")
nA["m2"] = nA_all["m2"]
nN["m2"] = nN_all["m2"]
for k in range(@, nA["m2"]):
if ("m2", k) in SUC_all:
SUC[("m2", k)] = suC_all[("m2", k)]
if ("m2", k) in PRE_all:
PRE[("m2", k)] = PRE_all[("m2", k)]
for i in range(l, nN["m2"] + 1):
THETA[("m2", i)] = THETA_all[("m2", i)]
t[("m2", i)] = t_all[("m2", i)]

Page 19, last modified @1 Sep 2021 21:11:04

192

C:\Users\yusuf\Desktop\masaiistii\Dosyalar\Projeler\28th CIRP Conference on Life Cycle
Engineering\gurobi_opt\inputs.py

if nl < 8:
nl =8
if mod3 == 1:
MODELS.append(“m3")
nA["m3"] = nA_all["m3"]
nN["m3"] = nN_all["m3"]
for k in range(@, nA["m3"]):
if ("m3", k) in SucC_all:
SUC[("m3", k)] = sucC_all[("m3", k)]
if ("m3", k) in PRE_all:
PRE[("m3", k)] = PRE_all[("m3", k)]
for i in range(1, nN["m3"] + 1):
THETA[("m3", i)] = THETA_all[("m3", i)]
t[("m3", i)] = t_all[("m3", i)]
if nl < 8:
n) =8
if mod4 == 1:
MODELS.append("m4")
nA["m4"] = nA_all["m4"]
nN["m4"] = nN_all["m4"]
for k in range(@, nA["m4"]):
if ("m4", k) in SUC_all:
SUC[("ma", k)] = SuC_all[("m4", k)]
if ("m4", k) in PRE_all:
PRE[("m4", k)] = PRE_all[("m4", k)]
for i in range(1, nN["m4"] + 1):
THETA[("m4", i)] = THETA_all[("m4", i)]
t[("ma", i)] = t_all[("ma", 1)]
if nJ < 9:
nl] =9
if mod5 == 1:
MODELS.append("m5")
nA["m5"] = nA_all["m5"]
nN["m5"] = nN_all["m5"]
for k in range(@, nA["m5"]):
if ("ms", k) in SuC_all:
SUC[("m5", k)] = SuC_all[("m5", k)]
if ("m5", k) in PRE_all:
PRE[("m5", k)] = PRE_all[("m5", k)]
for i in range(1, nN["m5"] + 1):
THETA[("m5", 1)] = THETA_all[("m5", i)]
t[("m5", i)] = t_all[("m5", i)]
if nd < 5
nl] =5
if mod6 == 1:
MODELS.append("m&")
nA["m6"] = nA_all["m6"]
nN["m6"] = nN_all["m6"]

Page 20, last modified 01 Sep 2021 21:11:04

193

C:\Users\yusuf\Desktop\masaiistii\Dosyalar\Projeler\28th CIRP Conference on Life Cycle
Engineering\gurobi_opt\inputs.py

for k in range(@, nA["m&"]):
if ("me", k) in SUC_all:
SUC[("m6", k)] = SuC_all[("me", k)]
if ("me", k) in PRE_all:
PRE[("m6", k)] = PRE_all[("m6", k)]
for i in range(1, nN["m6"] + 1):
THETA[("m6", i)] = THETA_all[("m6", i)]
t[("m6", i)] = t_all[("m6", i)]
if nJ < 5:
nl =5
if mod7 == 1:
MODELS.append("m7")
nA["m7"] = nA_all["m7"]
nN["m7"] = nN_all["m7"]
for k in range(@, nA["m7"]):
if ("m7", k) in suc_all:
SUC[("m7", k)] = SuC_all[("m7", k)]
if ("m7", k) in PRE_all:
PRE[("m7", k)] = PRE_all[("m7", k)]
for i in range(1, nN["m7"] + 1):
THETA[("m7", i)] = THETA_all[("m7", i)]
t[("m7", i)] = t_all[("m7", i)]
if nl < 6:
nl =6
if mod8 == 1:
MODELS.append("m8")
nA["m8"] = nA_all["m8"]
nN["m8"] = nN_all["m8"]
for k in range(@, nA["m8"]):
if ("m8", k) in Suc_all:
SUC[("m8", k)] = SUC_all[("m8", k)]
if ("m8", k) in PRE_all:
PRE[("m8", k)] = PRE_all[("m8", k)]
for i in range(1, nN["m8"] + 1):
THETA[("m8", i)] = THETA_all[("m8", i)]
t[("m8", i)] = t_all[("m8", i)]
if nJ < 6:
nJ =6
STATIONS = {(j) for j in range(nl)}
SIDES = {(1), (2)}
MONO = {(m,i) for m in MODELS for i in range(1l, nN[m]+1)}
MONONO = {(m,i,i2) for m in MODELS for i in range(l, nN[m]+1) for i2 in range(l, 2
G nN[m]+1) if i2 < i}

return nA, nN, MODELS, STATIONS, SIDES, MONO, MONONO, PRE, SUC, THETA, C, t

Page 21, last modified 01 Sep 2021 21:11:04

194

APPENDIX - 03C. Initial Solutions Python Code of MOMA for MTDLB Problem

C:\Users\yusuf\Desktop\masaiistii\Dosyalar\Projeler\28th CIRP Conference on Life Cycle
Engineering\initial.py

import random as rnd
import numpy as np

def randoninit(MODELS, nN, nORSuc, maxselnode):
sol = [[[rnd.randint(©,1) for _ in range(7)] for _ in range(nORSuc[MODELS[m]])] for 2
G m in range(len(MODELS))]
for m in range(len(MODELS)):
sol[m].append([rnd.randint(8,1) for _ in range(maxselnode[MODELS[m]]1)]1)
sol[m].append(list(np.random.permutation(nN[MODELS[m]])))
dec_sol = [[sum([(2**(6-p))*sol[m][n][p] for p in range(7)])/128 for n in 3
G range(nORSuc[MODELS[m]])] for m in range(len(MODELS))]
return sol, dec_sol

Page 1, last modified 19 Sep 2020 ©5:14:180

195

APPENDIX - 03D. Other Algorithms Python Code of MOMA for MTDLB Problem

C:\Users\yusuf\Desktop\masaiistii\Dosyalar\Projeler\28th CIRP Conference on Life Cycle
Engineering\algorithms.py

import math

def AlgoCDS(MODELS, nA, suc, pre, dec_sol):
selected = [list() for _ in range(len(MODELS))]
for m in range(len(MODELS)):
Set Initial Values
cA = [k for k in range(nA[MODELS[m]]) if pre[MODELS[m],k] == []]
count_ORsuc = ©
while cA != []:
for k in cA:
if (len(suc[MODELS[m], k]) > 1):
for i in range(len(suc[MODELS[m], k])):
if suc[MODELS[m], k][i] in selected[m]:
break
elif i == len(suc[MODELS[m], k]) - 1:
selected[m].append(suc[MODELS[m], @

G k][math.ceil((len(suc[MODELS[m], @
G k1))*(dec_sol[m][count_ORsuc]))-1])
count_ORsuc += 1
break
elif (len(suc[MODELS[m], k]) == 1) and (suc[MODELS[m], k][@] not in 3
G selected[m]):

selected[m].append(suc[MODELS[m], k][@])
Update cA
cA = [k for k in range(nA[MODELS[m]]) for i in range(len(selected[m])) if 2
G (MODELS[m], k) in pre if selected[m][i] in pre[MODELS[m], k]]
removed = list()
for k in cA:
for i in suc[MODELS[m], k]:
if i in selected[m]:
removed.append (k)
break
for r in removed:
cA.pop(cA.index(r))
return selected

def AlgoADL(sol, selected, nA, nORSuc, MODELS, STATIONS, SIDES, SUC, PRE, THETA, t, C):
X = [[[[@ for _ in range(len(SIDES))] for _ in range(len(STATIONS))] for _ in @
G range(len(selected[m]))] for m in range(len(MODELS))]
U = [[@ for _ in range(len(SIDES))] for _ in range(len(STATIONS))]
tf = [[@ for _ in range(len(selected[m]))] for m in range(len(MODELS))]
task_pre, task_theta = setpretheta(MODELS, selected, nA, PRE, SUC, THETA, sol, nORSuc)
for m in range(len(MODELS)):
j=2o0
assignable_task = [i for i in selected[m] if task_pre[m][selected[m].index(i)] @
5 == [1]
assigned_task = list()
while len(assigned_task) != len(selected[m]):

Page 1, last modified 27 Nov 2020 11:03:12

196

C:\Users\yusuf\Desktop\masaiistii\Dosyalar\Projeler\28th CIRP Conference on Life Cycle
Engineering\algorithms.py

if len(assignable_task) == 1:
r=0
j, X, tf, assigned_task, assignable_task, U = assign_rule(m, r, j, @
G MODELS, C, U, selected, assignable_task, assigned_task, t, task_pre, @
G task_theta, X, tf)
elif len(assignable_task) >= 2:
r=0

for o in range(1, len(assignable_task)):
if sol[m][nORSuc[MODELS[m]]+1].index(assignable_task[o0]-1) < @

G sol[m][nORSuc[MODELS[m]]+1].index(assignable_task[r]-1):
r=o
j, X, tf, assigned_task, assignable_task, U = assign_rule(m, r, j, @
G MODELS, C, U, selected, assignable_task, assigned_task, t, task_pre, @
G task_theta, X, tf)

for i in selected[m]:
if (i not in assigned_task) and (i not in assignable_task):
for i2 in task_pre[m][selected[m].index(i)]:
if i2 not in assigned_task:

break
elif i2 ==
G task_pre[m][selected[m].index(i)][len(task_pre[m][selected[m].ind@
G ex(i)]) - 1]:

assignable_task.append(i)
return X, tf, U

def assign_rule(m, r, j, MODELS, C, U, selected, assignable_task, assigned_task, t, @
Gtask_pre, task_theta, X, tf):
if assigned_task == []:
assigned_task.append(assignable_task[r])

é
G X[m][selected[m].index(assignable_task[r])][j][task_theta[m][selected[m].index(as@
[y signable_task[r])][@]-1] = 1
tf[m][selected[m].index(assignable_task[r])] = t[MODELS[m], assignable_task[r]]
U[j][task_theta[m][selected[m].index(assignable_task[r])][0]-1] = 1
assignable_task.pop(r)
else:
ftime = 0
for i in range(len(task_pre[m][selected[m].index(assignable_task[r])])):
if 2
(X[m][selected[m].index(task_pre[m][selected[m].index(assignable_task[r])][i]@
)1[31[e] == 1) or 2
(X[m][selected[m].index(task_pre[m][selected[m].index(assignable_task[r])][i]3d
VIGIM1] == 1):
ftime = max(ftime, 3
tf[m][selected[m].index(task_pre[m][selected[m].index(assignable_task[r])3d
11D
if i == len(task_pre[m][selected[m].index(assignable_task[r])]) - 1:
if ftime + t[MODELS[m], assignable_task[r]] > C:

L2222

1 ¥

Page 2, last modified 27 Nov 2020 11:03:12

197

C:\Users\yusuf\Desktop\masaiistii\Dosyalar\Projeler\28th CIRP Conference on Life Cycle
Engineering\algorithms.py

j+=1
assigned_task.append(assignable_task[r])
<
[y X[m][selected[m].index(assignable_task[r])][j][task_theta[m][selectedd
5 [m].index(assignable_task[r])][©]-1] = 1
tf[m][selected[m].index(assignable_task[r])] = t[MODELS[m], 2@
5 assignable_task[r]]

U[j][task_theta[m][selected[m].index(assignable_task[r])][@]-1] = 1
assignable_task.pop(r)

break
else:
aux = 1
for tim in range(ftime, &
5 C-tf[m][selected[m].index(assignable_task[r])]):
aux = 1
for i2 in assigned_task:
if 2
5 X[m][selected[m].index(i2)][j][task_theta[m][selected[m].indea
[y x(assignable_task[r])][@]-1] == 1:
if (tf[m][selected[m].index(i2)] - t[MODELS[m], i2] <= @
[y tim) and (tf[m][selected[m].index(i2)] > tim):
aux = @
break
if (aux == 1) and (i2 == assigned_task[len(assigned_task)-1]) 2
[y and (tim + t[MODELS[m], assignable_task[r]] <= C):
assigned_task.append(assignable_task[r])
Pl
G X[m][selected[m].index(assignable_task[r])][j][task_theta[m][2
Y selected[m].index(assignable_task[r])][0]-1] = 1
tf[m][selected[m].index(assignable_task[r])] = tim + 3@
[y t[MODELS[m], assignable_task[r]]
|
[y U[j][task_theta[m][selected[m].index(assignable_task[r])][0]-2
[y 1] =1
assignable_task.pop(r)
break
elif (aux == 1) and (i2 == assigned_task[len(assigned task)-1]):
j+=1
d
5 assigned_task.append(assignable_task[r]) d
G
d
G X[m][selected[m].index(assignable_task[r])]1[j][task_theta[m][2
[y selected[m].index(assignable_task[r])][0]-1] = 1
tf[m][selected[m].index(assignable_task[r])] = t[MODELS[m], @
5 assignable_task[r]]
P
G U[j][task_theta[m][selected[m].index(assignable_task[r])]1[@]-2

Page 3, last modified 27 Nov 2020 11:03:12

198

C:\Users\yusuf\Desktop\masaiistii\Dosyalar\Projeler\28th CIRP Conference on Life Cycle
Engineering\algorithms.py

[y 1] =1
assignable_task.pop(r)
break
if aux ==
j+=1
assigned_task.append(assignable_task[r])
é
G X[m][selected[m].index(assignable_task[r])][j][task_theta[m][seled
5 cted[m].index(assignable_task[r])][@]-1] = 1
tf[m][selected[m].index(assignable_task[r])] = t[MODELS[m], @
Y assignable_task[r]]
U[jl[task_theta[m][selected[m].index(assignable_task[r])][0]-1] @
[y =1
assignable_task.pop(r)
break
return j, X, tf, assigned_task, assignable_task, U

def setpretheta(MODELS, selected, nA, PRE, SUC, THETA, sol, nORSuc):
task_pre = [[1list() for _ in range(len(selected[m]))] for m in range(len(MODELS))]
task_theta = [[list() for _ in range(len(selected[m]))] for m in range(len(MODELS))]
for m in range(len(MODELS)):
for i in selected[m]:
for k in range(nA[MODELS[m]]):
if ((MODELS[m],k) in PRE) and (((MODELS[m],k) in SUC)):
if (i in SUC[MODELS[m],k]):
for i2 in PRE[MODELS[m],k]:
if i2 in selected[m]:
task_pre[m][selected[m].index(i)].append(i2)
if len(THETA[MODELS[m], i]) == 1:
task_theta[m][selected[m].index(i)].append(THETA[MODELS[m], i][@])

else:
d
[y task_theta[m][selected[m].index(i)].append(sol[m][nORSuc[MODELS[m]]][seled
[y cted[m].index(i)] + 1)

return task_pre, task_theta

Page 4, last modified 27 Nov 2020 11:03:12

199

APPENDIX — 03E. Calculations Python Code of MOMA for MTDLB Problem

C:\Users\yusuf\Desktop\masaiistii\Dosyalar\Projeler\28th CIRP Conference on Life Cycle
Engineering\calculation.py

import time

def cost(U, selected, MODELS, STATIONS, EPSILON, t):

DLBcost = @
DLBcost2 = @
DLBcost3 = ©

F = [@ for _ in STATIONS]
G = [0 for _ in STATIONS]
for j in STATIONS:
if (U[jl[e] == 1) and (U[3I[1] == 1):
FI31 = 1
DLBcost += 1
DLBcost += (j+1)*2*EPSILON
DLBcost2 += 2
elif (U[jl[e] == 1) or (U[j][1] == 1):
G[i] =1
DLBcost += 1
DLBcost += (j+1)*EPSILON
DLBcost2 += 2
for m in range(len(MODELS)):
for i in selected[m]:
DLBcost3 += t[MODELS[m], i]
return F, G, DLBcost, DLBcost2, DLBcost3

def costupdate(BestCostl, BestCost2, BestCost3, DLBcost, DLBcost2, DLBcost3, ParetoF):
if len(BestCostl) == @:
for i in ParetoF[@]:
BestCostl.append(DLBcost[i])
BestCost2.append(DLBcost2[i])
BestCost3.append(DLBcost3[i])

else:
BestCostll = []
BestCost21l = []
BestCost31l = []

for p in ParetoF[@]:
BestCostl.append(DLBcost[p])
BestCost2.append(DLBcost2[p])
BestCost3.append(DLBcost3[p])

F, degree = FastNonDominatedSort(len(BestCostl), BestCostl, BestCost2, BestCost3)

for p in F[@]:
BestCostll.append(BestCost1[p])
BestCost21.append(BestCost2[p])
BestCost31.append(BestCost3[p])

BestCostl = BestCostll

BestCost2 = BestCost2l

BestCost3 = BestCost31

while True:
again = @

Page 1, last modified @1 Sep 2021 22:57:28

200

C:\Users\yusuf\Desktop\masaiistii\Dosyalar\Projeler\28th CIRP Conference on Life Cycle

Engineering\calculation.py

for pl in range(len(BestCostl)):
for p2 in range(len(BestCostl)):

if p1 != p2:
if (BestCostl[pl] == BestCost1[p2]) and (BestCost2[pl] ==
G BestCost2[p2]) and (BestCost3[pl] == BestCost3[p2]):
BestCostl.pop(p1)
BestCost2.pop(pl)
BestCost3.pop(pl)
again = 1
break
if again ==
break
if again ==
break

return BestCostl, BestCost2, BestCost3

def FastNonDominatedSort(NoP, costl, cost2, cost3):
S = [[]1 for _ in range(NoP)]
n = [0 for _ in range(NoP)]
degree = [0 for _ in range(NoP)]
F=[[1]

for p in range(NoP):

E2R 22

1 ¥

for q in range(NoP):

if ((costl[p] < costl[q]) and (cost2[p] <= cost2[q]) and (cost3[p] <= @
cost3[q])) or ((costl[p] <= costl[q]) and (cost2[p] < cost2[q]) and @
(cost3[p] <= cost3[q])) or ((costl[p] <= costl[q]) and (cost2[p] <= @
cost2[q]) and (cost3[p] < cost3[q])):

S[p].append(q)
elif ((costl[q] < costl[p]) and (cost2[q] <= cost2[p]) and (cost3[q] <= @
cost3[p])) or ((costl[q] <= costl[p]) and (cost2[q] < cost2[p]) and @
(cost3[q] <= cost3[p])) or ((costl[q] <= costl[p]) and (cost2[q] <= @
cost2[p]) and (cost3[q] < cost3[p])):

n[p] += 1

if n[p] == @:
degree[p] = 1
F[@].append(p)

oo
while F[i] != []:

Q=11
for p in F[i]:
for g in S[p]:
n[q] -=
if n[q] == o:
degree[q] =i + 1

Page 2, last modified ©1 Sep 2021 22:57:28

201

C:\Users\yusuf\Desktop\masaiistii\Dosyalar\Projeler\28th CIRP Conference on Life Cycle
Engineering\calculation.py

Q.append(q)
i+=1

F.append(Q)
return F, degree

Page 3, last modified @1 Sep 2021 22:57:28

202

APPENDIX - 03F. Genetic Operators Python Code of MOMA for MTDLB Problem

C:\Users\yusuf\Desktop\masaiistii\Dosyalar\Projeler\28th CIRP Conference on Life Cycle
Engineering\genetic_operators.py

import random as rnd
def roulette_wheel(nP, DLBcost):

selection_points = [@ for _ in range(nP)]
for p in range(nP):

if p == 0:
selection_points[p] = round((1/DLBcost[p])/(sum([1/DLBcost[p2] for p2 in @
5 range(nP)1)), 5)
else:
selection_points[p] = round(selection_points[p-1] + @
Y (1/DLBcost[p])/(sum([1/DLBcost[p2] for p2 in range(nP)])), 5)

selection_pp = [[@, ©] for _ in range(nP)]
for nep in range(nP):
while selection_pp[nep][@] == selection_pp[nep][1]:
rnd_numl = round{rnd.uniform(@,1), 5)
rnd_num2 = round(rnd.uniform(@,1), 5)
for p in range(nP):
if rnd_numl <= selection_points[p]:
selection_pp[nep][@] = p
break
for p in range(nP):
if rnd_num2 <= selection_points[p]:
selection_pp[nep][1] = p
break
return selection_pp

def crossover(nP, nN, MODELS, nORSuc, maxselnode, sol, selection_pp):

new_sol = [[[] for m in range(len(MODELS))] for p in range(nP)]

-- two point

for nep in range(nP):

for m in range(len(MODELS)):
for nop in range(nORSuc[MODELS[m]]):

new_sol[nep][m].append(sol[selection_pp[nep][©]]1[m][nop][@:2] + @
sol[selection_pp[nep][1]]1[m][nop][2:5] + 2@
sol[selection_pp[nep][@]]1[m][nop][5:7])

1 ¥

d
new_sol[nep][m].append(sol[selection_pp[nep][@]][m][nORSuc[MODELS[m]]][@:int(2
round((maxselnode[MODELS[m]])/4, @))] + @
sol[selection_pp[nep][1]]1[m][nORSuc[MODELS[m]]][int(round(maxselnode[MODELS[m2
11/4, ©)):int(round(3*maxselnode[MODELS[m]]/4, ©))] + @
sol[selection_pp[nep][@]]1[m][nNORSuc[MODELS[m]]][int(round(3*maxselnode[MODELSY
[m]1/4, @)):int(round(maxselnode[MODELS[m]], ©))1)

L2002 B2 B I]

-- 0X'1

appending = []

appl = @

app2 5]

for _ in range(®, int(round((nN[MODELS[m]])/4, @))):

Page 1, last modified 19 Sep 2020 15:55:56

203

C:\Users\yusuf\Desktop\masaiistii\Dosyalar\Projeler\28th CIRP Conference on Life Cycle
Engineering\genetic_operators.py

while True:
if sol[selection_pp[nep][@]][m][nORSuc[MODELS[m]]+1][appl] not in 2
5 sol[selection_pp[nep][1]]1[m][nORSuc[MODELS[m]]+1][int(round(nN[MODELSE
G [m]1/4, ©)):int(round(3*nN[MODELS[m]]/4, ©))+1]:
2

G appending.append(sol[selection_pp[nep][@]]1[m][nORSuc[MODELS[m]]+13
5 1[app1])
appl += 1
break
else:
appl += 1
for f in range(int(round((nN[MODELS[m]])/4, @)), @
[y int(round(3*(nN[MODELS[m]]1)/4, ©))):
appending.append(sol[selection_pp[nep][1]]1[m][nORSuc[MODELS[m]]+1]1[F])
for _ in range(@, int(round((nN[MODELS[m]])/4, @))):
while True:
if sol[selection_pp[nep][@]][m][nORSuc[MODELS[m]]+1][app2] not in 2
G appending:
d
5 appending.append(sol[selection_pp[nep][©]]1[m][nORSuc[MODELS[m]]+13
5 1lapp2])
app2 += 1
break
else:
app2 += 1
new_sol[nep][m].append(appending)
sol = []
sol = new_sol
dec_sol = [[] for nep in range(nP)]
for nep in range(nP):
dec_sol[nep] = [[sum([(2**(6-p))*sol[nep][m][n][p] for p in range(7)]1)/128 for &
[y n in range(nORSuc[MODELS[m]])] for m in range(len(MODELS))]
return sol, dec_sol

Page 2, last modified 19 Sep 2020 15:55:56

204

APPENDIX - 03G. Local Search Algorithm Python Code of MOMA for MTDLB
Problem

C:\Users\yusuf\Desktop\masalistii\Dosyalar\Projeler\28th CIRP Conference on Life Cycle
Engineering\local.py

import random as rnd

import algorithms
import calculation

def ils(tl, nP, maxils_iter, sol, dec_sol, MODELS, nORSuc, nN, nA, STATIONS, SIDES, @
GSUC, PRE, THETA, t, C, selected, X, U, F, G, DLBcost, tf, bestcost, EPSILON):
for mup in range(nP):
for ils_iter in range(maxils_iter):
ils_sol = sol[mup]
for m in range(len(MODELS)):
for i in range(nORSuc[MODELS[m]]+1):
if i == nORSuc[MODELS[m]]:
rand_point = rnd.randint(®, nORSuc[MODELS[m]])
if ils_sol[m][i][rand_point] == @:
ils_sol[m][i][rand_point] = 1
else:
ils_sol[m][i][rand_point] = 1
else:
rand_point = rnd.randint(9, 6)
if ils_sol[m][i][rand_point] == @:
ils_sol[m][i][rand_point] = 1
else:
ils_sol[m][i][rand_point] = 1
while True:
pointl = rnd.randint(@, nN[MODELS[m]]-1)
point2 = rnd.randint(©, nN[MODELS[m]]-1)
if pointl != point2:
break
ils_sol[m][nORSuc[MODELS[m]]+1][point1], @
ils_sol[m][nORSuc[MODELS[m]]+1][point2] = @
ils_sol[m][nORSuc[MODELS[m]]+1][point2], @
ils_sol[m][nORSuc[MODELS[m]]+1][point1]
dec_ils_sol = [[sum([(2**(6-p))*ils_sol[m][n][p] for p in range(7)])/128 3
G for n in range(nORSuc[MODELS[m]])] for m in range(len(MODELS))]
select_ils = algorithms.AlgoCDS(MODELS, nA, SUC, PRE, dec_ils_sol)
X_ils, tf_ils, U_ils = algorithms.AlgoADL(ils_sol, select_ils, nA, nORSuc, 3

L2221

5 MODELS, STATIONS, SIDES, SUC, PRE, THETA, t, C)
F_ils, G_ils, DLBcost_ils = calculation.cost(U_ils, select_ils, MODELS, 3@
G STATIONS, EPSILON, t)

if DLBcost_ils < DLBcost[mup]:
DLBcost[mup] = DLBcost_ils
sol[mup] = ils_sol
dec_sol[mup] = dec_ils_sol
selected[mup] = select_ils
X[mup] = X_ils
tf[mup] = tf_ils
U[mup] = U_ils

Page 1, last modified 19 Sep 2020 16:55:58

205

C:\Users\yusuf\Desktop\masaiistii\Dosyalar\Projeler\28th CIRP Conference on Life Cycle
Engineering\local.py

F[mup] = F_ils
G[mup] = G_ils
bestcost = calculation.costupdate(bestcost, DLBcost_ils, t1, MODELS, 3@
G STATIONS, SIDES, select_ils, X_ils, tf_ils, t)
return DLBcost, sol, dec_sol, selected, X, tf, U, F, G, bestcost

Page 2, last modified 19 Sep 2020 16:55:58

206

ORCID ID:

CURRICULUM VITAE

I am Serkan Mutlu. | specialize in Operations Research, Life Cycle Engineering

and Supply Chain Management. Brief information about myself:

Education:

Master 2018 — 2021 Eskisehir Technical University, Department of
Industrial Engineering

Bachelor 2014 — 2018 Dokuz Eylil University, Department of Industrial
Engineering

Publication:

Mutlu, S., & Giiner, B. (2021). A memetic algorithm for mixed-model two-
sided disassembly line balancing problem. Procedia CIRP, 98, 67-72.
https://doi.org/10.1016/j.procir.2021.01.007

Mutlu, S., Unal, H., & Giiner, B. (2021). Paralel Istasyonlan Dikkate Alan
Montaj Hatti Dengeleme Problemi i¢in Bir Dogrusal Tamsayili
Programlama Modeli Ve Bir isletmede Uygulama. Yonetim Arastirmalar: |
Miihendislik Uygulamalart Sempozyumu 2021 (YONAR/MU 2021) Bildiri
Ozetleri Kitabi, 14-15.

Mutlu, S., & Giiner, B. (2021). Siirekli Kisitsiz Optimizasyon
Problemlerinde Parcacik Siirii Optimizasyonu Algoritmasi Parametrelerinin
Tam Faktoriyel Deney Tasarimi ile Belirlenmesi. Yonetim Arastirmalari /
Miihendislik Uygulamalar: Sempozyumu 2021 (YONAR/MU’2021) Bildiri
Ozetleri Kitabi, 123-124.

Mutlu, S., Bilgen, B., & Ghallali, M. (2019). Comparison of particle swarm
optimization and teaching-learning based optimization algorithms for
dynamic berth allocation problem with port structure constraints.
Proceedings of the International Conference on Data Science, Machine
Learning and Statistics (DMS-2019), 224-227.

207

Achievements

e 2019 Competition “Simulation Arena” 1st Place in Turkey

e 2018 High Honour of Dokuz Eyliil University Faculty of Engineering

e 2018 Ist Degree Graduation in Dokuz Eyliil University Department of
Industrial Engineering

e 2018 Competition “Industrial Engineering Undergraduate Project
Competition” 1st Place in Eagean/Turkey

e 2018 Competition “Industrial Engineering Undergraduate Project
Competition” 1st Place in Dokuz Eyliil University

e 2017 Competition “Hugo BOSS Hack the Boss vol 2.0” 1st Place

208

