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ABSTRACT 

A MULTI-OBJECTIVE MEMETIC ALGORITHM FOR MIXED-MODEL TWO-

SIDED DISASSEMBLY LINE BALANCING PROBLEM 

 

Serkan MUTLU 

Department of Industrial Engineering 

Eskişehir Technical University, Institute of Graduate Programs, September 2021 

Supervisor: Asst. Prof. Dr. Banu GÜNER 

Environmental impact is increasing day by day with the increasing population, 

affluence level and technological developments. Today, as a result of the increasing 

environmental impact with the increasing population, affluence level and technological 

developments, the level of Carbon Dioxide has exceeded 500 parts per million (ppm). In 

order to overcome environmental impacts such as the increased level of Carbon Dioxide, 

it is necessary to change the classical production/consumption approach. For this, Life 

Cycle Engineering (LCE) is recommended as a new approach. LCE is an approach that 

aims to minimize the environmental impact caused by the product, production or 

consumption by being involved in every step of the product life cycle. An important step 

of LCE is to design an easily disassemble, recyclable product at the design stage of 

product life cycle in order to minimize the environmental impact it will create when the 

products are at the end of their life as End-of-Life (EOL) product. Considering that the 

designed products will become EOL products after a while, the design of efficient 

disassembly systems is of critical importance in order to minimize the environmental 

impact. The Disassembly Lines that emerged in this context allow the efficient 

disassembly of the EOL products in bulk. Maximizing the efficiency of installed 

disassembly lines is critical to minimizing environmental impact. For this reason, the 

Disassembly Line Balancing (DLB) problem emerged in 1999 in order to optimize 

various performance criteria. The DLB problem has found wide coverage in the literature, 

and a lot of research has been done. However, the number of studies for the Two-Sided 

Disassembly Line Balancing (TDLB) problem, which is a line design that minimizes 

costs such as the cost of rotating on the line for disassembly of large-size products, is very 

few. In particular, the Mixed Model Two-Sided Disassembly Line Balancing (MTDLB) 

problem, in which the number of models is more than one, was introduced for the first 

time within the scope of this thesis. 
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In this thesis, the MTDLB problem has been investigated in order to minimize the 

sum of the design cost, the number of stations and sum of the selected disassembly task 

times of the disassembly line, which allows more than one similar or dissimilar products 

to be disassembled on the two-sided disassembly line. The Transformed AND/OR Graph 

(TAOG) precedence relations diagram is used for the MTDLB problem. The TAOG 

precedence relations diagram is a precedence diagram that takes into account all possible 

disassembly sequences in the event that only the physical conditions are considered due 

to the nature of the disassembly, and the functionality is not important. A Mixed Integer 

Linear Programming (MILP) based mathematical model has been developed to optimize 

the performance measures determined for the MTDLB problem. When the objective 

function of the developed mathematical model is hierarchical, it gives optimum results 

for small and medium sized cases with Gurobi solver. However, for the solution of large-

size cases, the solution time is growing considerably. Therefore, a Multi-Objective 

Memetic Algorithm (MOMA) has been proposed for the solution of the MTDLB 

problem. The proposed approach is tested on a series of test problems and the results are 

compared with the highly preferred algorithms for multi-objective optimization in the 

literature. The results obtained show that the results of the MOMA algorithm, investigated 

for the MTDLB problem, give better results than the other algorithms.   

Keywords:  Life cycle engineering, Disassembly line balancing, Two-sided layout, 

Mixed-model, Multi objective memetic algorithm.  
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ÖZET 

KARMA MODELLİ ÇİFT TARAFLI DEMONTAJ HATTI DENGELEME 

PROBLEMİ İÇİN BİR ÇOK AMAÇLI MEMETİK ALGORİTMA 

 

Serkan MUTLU 

Endüstri Mühendisliği Anabilim Dalı 

Eskişehir Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü, Eylül 2021 

Danışman: Öğr. Gör. Dr. Banu GÜNER 

Her geçen gün artan teknolojik gelişmeler, refah seviyesi ve nüfus ile birlikte 

çevresel etki artmaktadır. Nitekim günümüzde Carbon Dioxide seviyesi 500 milyonda bir 

(parts per million – ppm)’i aşmıştır. Bu durumun üstesinden gelmek için klasik 

üretim/tüketim anlayışını değiştirmek ve yeni bir yaklaşım olarak Yaşam Zinciri 

Mühendisliği’ni benimsemek gerekmektedir. YZM, ürün yaşam döngüsünün her adımına 

dahil olarak üründen, üretimden veya tüketimden kaynaklı çevresel etkiyi en aza 

indirmeyi amaçlayan bir yaklaşımdır. YZM’nin önemli bir adımı, ürünlerin ömrünü 

tamamladığında yani Ömrü Tamamlanmış ürün konumuna geldiğinde, yaratacağı 

çevresel etkiyi en aza indirmek için tasarım aşamasında kolay ayrıştırılabilir, 

dönüştürülebilir bir ürün tasarlamaktır. Tasarlanan ürünlerin bir süre sonunda Ömrü 

Tamamlanmış ürün konumuna geleceği düşünüldüğünde yine çevresel etkiyi en aza 

indirebilmek için verimli demontaj sistemlerinin tasarımı kritik önem taşımaktadır. Bu 

kapsamda ortaya çıkan Demontaj Hatları yığın halindeki Ömrü Tamamlanmış ürünlerin 

verimli bir şekilde demontajına olanak sunmaktadır. Kurulan demontaj hatlarının 

verimliliğinin makisimize edilmesi çevresel etkinin en aza indirilmesi için kritiktir. Bu 

sebeple 1999 yılında çeşitli performans kriterlerini en iyilemek amacıyla Demontaj Hattı 

Dengeleme (DHD) problemi ortaya çıkmıştır. DHD problemi literatürde geniş yer bulmuş 

çokça araştırma yapılmıştır. Fakat, büyük ebatlı ürünlerin demontajı için hat üzerinde 

döndürme maliyeti gibi maliyetleri en aza indiren hat tasarımı olan Çift Taraflı Demontaj 

Hattı Dengeleme (ÇDHD) problemi için çalışma sayısı oldukça azdır. Özellikle model 

sayısının birden fazla olduğu Karışık Modelli Çift Taraflı Demontaj Hattı Dengeleme 

(KÇDHD) problemi bu tez kapsamında ilk kez tanıtılmıştır. 

Bu tez kapsamında, birden fazla birbirine benzeyen ya da benzemeyen ürünlerin 

çift taraflı olarak tasarlanan demontaj hattı üzerinde demonte edilmesine olanak sağlayan 
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demontaj hattının tasarım maliyeti, istasyon sayısı ve seçilen demontaj görev süreleri 

toplamını en aza indirmek amacıyla KÇDHD problemi araştırılmıştır. KÇDHD problemi 

için Dönüştürülmüş VE/VEYA Grafiği (DVVG) öncelik ilişkisi kullanılmıştır. DVVG 

öncelik ilişkisi, demontajın yapısı gereği yanlızca fiziksel koşulların göz önüne alındığı 

fonksiyonelliğin önemli olmadığı durumda olası tüm söküm sıralarını dikkate alan 

öncelik diyagramıdır. KÇDHD problemi için belirlenen performans göstergelerini en 

iyileyecek bir Karışık Tam Saylı Doğrusal Programlama (KTDP) tabanlı matematiksel 

model geliştirilmiştir. Geliştirilen matematiksel modelin amaç fonkisyonu hiyerarşik 

yapıldığında Gurobi çözücüsü ile küçük ve orta boyutlu vakalar için optimum sonuç 

vermektedir. Fakat büyük boyulu vakaların çözümü için çözüm süresi oldukça 

büyümektedir. Bu yüzden KÇDHD probleminin çözümü için bir Çok Amaçlı Memetik 

Algoritma (ÇAMA) önerilmiştir. Önerilen yaklaşım bir dizi test problemi üzerinde test 

edilmiş ve sonuçlar literatürde çok amaçlı optimizasyon için oldukça tercih edilen 

algoritmalar ile karşılaştırılmıştır. Elde edilen sonuçlar, KÇDHD problemi için 

oluşturulan ÇAMA algoritması sonuçlarının diğer algoritmalara oranla daha iyi sonuçlar 

verdiğini göstermektedir. 

Anahtar Sözcükler: Çevresel etki, Demontaj hattı dengeleme, Çift taraflı yerleşim, 

Karışık model, Çok amaçlı memetik algoritma  
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1. INTRODUCTION 

Human beings are in danger due to excessive consumption today, and the increase 

in consumption day by day poses a threat to the future. If the excessive consumption of 

products and services continues at the ongoing rate, the Earth's resources will eventually 

run out, thousands of species will be threatened with extinction, and the global climate 

will change dramatically. As a result of the excessive consumption experienced today, 

atmospheric Carbon Dioxide levels are higher than the last 800,000 years. The 

atmospheric Carbon Dioxide level change over the last 800 thousand years is shown in 

Figure 1.1. For 800 thousand years, atmospheric Carbon Dioxide level has varied between 

150 parts per million (ppm) and 300 ppm, but today it has increased to 409.8 ppm due to 

the increasing consumption rate with the industrial revolution (Lindsey, 2020). 

Atmospheric Carbon Dioxide level, which is increasing day by day, continues to threaten 

life on earth and the environment. 

 

Figure 1.1. Level of Carbon Dioxide over 800000 years (Lindsey, 2020) 

To see the atmospheric level of Carbon Dioxide, the European Space Agency 

SCIAMACHY instrument used to measure sunlight on the ENVISAT (ENVIronmental 

SATellite) satellite, and the TANSO-FTS with high optical efficiency, fine spectral 

resolution and wide spectral coverage on the GOSAT (Greenhouse gases Observing 

SAtellite) satellite. It measures atmospheric Carbon Dioxide levels on Earth with the 

TANSO-CAI, a radiometer of the ultraviolet (UV), visible and SWIR spectral ranges to 

correct for FTS and cloud and aerosol interference. Figure 1.2 shows two atmospheric 
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Carbon Dioxide levels recorded in August 2002 and April 2012. Carbon Dioxide level, 

which was 370 ppm on average in 2002, reached 400 ppm levels in 2012 in line with 

factors such as developing technological developments and increasing affluence level. 

There has been an increase of 30 ppm in a period of approximately 10 years. According 

to the report published by the European Space Agency, an increase of 5ppm of 

atmospheric Carbon Dioxide occurs every year. The increase in technological 

developments, consumption rate and population day by day causes an alarming increase 

in the level of Carbon Dioxide in the world and increases the possibility of scenarios that 

may be very bad for the future. 

 

Figure 1.2. Satellite image of Carbon Dioxide level between 2002 and 2012 
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When the political/commercial decisions taken to reduce the Carbon Dioxide level 

in the atmosphere are strictly followed, it is 550 ppm in 2100, and 900 ppm if not (NCA, 

2009). In both cases, the level reached is critical. Especially if the decisions taken are not 

followed, that is, if we continue to live according to today's living conditions, our world 

will become uninhabitable in 2100. The predicted increase is as in Figure 1.3. 

 

Figure 1.3. Carbon Dioxide level scenarios (NCA, 2009) 

The Carbon Dioxide level is a result of environmental impact. Environmental 

impact increases in direct proportion with population, affluence and technology. In the 

field of sustainability this is known as the IPAT equation. The IPAT equation is as given 

by Equation 1.1. The IPAT equation was developed in 1970 as a result of a discussion 

between Barry Commoner, Paul R. Ehrlich and John Holdren (Holdren, 1993). 

𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝐼𝑚𝑝𝑎𝑐𝑡 = 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 × 𝐴𝑓𝑓𝑙𝑢𝑒𝑛𝑐𝑒 × 𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 

𝐼 = 𝑃 × 𝐴 × 𝑇 
(1.1) 

Increases in the human population in the last millennium (see. Fig. 1.4) bring along 

some environmental problems. Population growth; As a result of the increase in land use, 

habitat loss for other species, changes in vegetation as a result of increased resource use, 

the emergence of bacteria and viruses that may cause disease as a result of increased 

pollution and damage to the ecosystem lead to increased climate change and loss of 

biodiversity. 
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Figure 1.4. Population level and Population growth rate by years 

Affluence is considered by many to be insignificant for environmental impact. But 

with the increase in affluence, consumption also increases. Therefore, as the consumption 

of each person increases, the environmental impact also increases. Gross Domestic 

Product (GDP) per capita is usually used to see consumption. GDP has been growing 

steadily over the last millennium. Along with this, per capita consumption is also 

increasing at the same rate. The higher the per capita consumption, the greater the 

environmental impact. Depending on consumption, it causes great effects on the 

environment with direct or indirect resources. 

 

Figure 1.5. Affluence level of regions by years 
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With the development of technology, improvements in processes such as 

transportation, storage, production and transportation are possible. In this way, producers 

can produce more and consumers can consume more. Improvements in efficiency can 

reduce the amount of resources used, reducing the T factor in the IPAT equation, ie 

reducing environmental impact. However, since this situation will increase affluence for 

some people and businesses, it increases the environmental impact more than the resource 

advantage it provides. 

Eco-efficiency is a management strategy of producing more products/services with 

less resources. Developed eco-efficient technologies cause us to use more products and 

larger physical sizes. This shows that affluence and technology combine well. For 

example, LCD televisions with LED light, developed for the production of televisions 

that consume less energy, have increased the dimensions of televisions up to 100 inches. 

This is one of the best examples that explains the increase in environmental impact due 

to affluence and technology. 

Life Cycle Engineering (LCE) has emerged as a new engineering paradigm to 

reduce environmental impact. LCE is a product development activity within the scope of 

sustainability in the life cycle of one or more products. The aim of these activities is to 

create a sustainable production environment in order to meet the needs of both present 

and future generations. 

A product's life cycle is about everything from its design to the manufacturing 

process, aftermarket use to the end of its life. A typical product life cycle is as given in 

Figure 1.6. The process begins with the extraction of the raw materials required for the 

product from nature. The raw materials obtained are directly or semi-product into the 

structure of the product with the production stage and the product emerges. Produced 

products are packaged and set out for customers using various modes of transport (road, 

sea, rail, air or pipeline). Customers buy and use products produced in line with their 

needs. As a result of consumption, the non-functional End-of-Life (EOL) product is left 

to nature as inert. EOL products are transformed into raw materials/semi-finished 

products, and the process returns to the beginning. While the processes in the Life Cycle 

are carried out, there are some consumptions that harm the nature but are not visible in 

the process. Some of these are Carbon Dioxide emissions, water use, plant/facility use 

and energy use. LCE is an approach that aims to minimize these idle consumptions. 
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Figure 1.6. A typical product life cycle and invisible output 

In order to position LCE with sustainability and other disciplines, a framework with 

the scope of environmental concern on the y-axis and the scope of temporal concern on 

the x-axis and given in Figure 1.7 has been introduced (Hauschild et al., 2017). 

Sustainability encompasses all approaches included in the framework. Sustainable 

Development is the most inclusive approach after Sustainable, focusing on societies on 

an environmental scale and human generations on a temporal scale. Industrial Ecology, a 

discipline, is based in this graph on economy on an environmental scale and human 

generations on a temporal scale. Concepts such as Circular Economy and Industrial 

Symbiosis are also represented at this level. All of these approaches are Top-Down 

concepts that are not part of the activities of industrial organizations. Just below the 

Industrial Ecology concept is Life Cycle Management (LCM), a Bottom-Up approach 

that is part of the activities of industrial organizations. LCM is a business management 

approach used to improve the products and services of any business, namely the 

sustainability performance of the company and its associated value chains. The LCE just 

below is also a Bottom-Up approach and is located in the middle of the frame. LCE 

enables the development of products and services, taking into account the growth of 

production volume and technological changes to systematically minimize environmental 

impacts at all stages of the life cycle. In this way, when there is a problem with 

environmental sustainability, it is prevented from shifting from the life cycle stage in 
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which it is located to the other life cycle stage. This is especially critical in the product 

design process, where 80% of the environmental footprint is determined. 

 

Figure 1.7. A framework of Life Cycle Engineering (Hauschild et al., 2017) 

Thanks to the LCE tools, improvement areas in the life cycles of the products can 

be determined and as a result, environmentally sustainable products can be developed. 

Examples of commonly used LCE tools are Eco-Design, Life Cycle Assesment, and Life 

Cycle Costing. These tools enable the ability to measure the environmental impacts and 

associated costs of products to identify the highest improvement potentials to the 

product's lifecycle. For example, if the main environmental footprint for the production 

of a product is excessive energy consumption, it can be produced by designing alternative 

production processes that can produce the same product with less energy consumption. 

In this way, the environmental impact of the product is also reduced. 

After the products are designed and produced, a number of LCE tools such as Eco-

Labelling and Eco-Profilling are used. In this way, customers are encouraged to buy more 

environmentally friendly products and to consume less energy and water after purchasing 

the products. 

Products lose their functionality at the end of their life cycle and are released into 

nature as EOL products. In order to manage the life cycle in an environmentally friendly 

way, it is designed by considering the products to be EOL at the design stage. LCE 

focuses on developing products that are easy to collect, disassembly, reuse, remanufacture 
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and recycle EOL products. For reuse, reproduction and recycling, first disassembly is 

required. Therefore, disassembly is critical in this process. 

Disassembly activities can be done in a single workstation, or in a Disassembly Cell 

or a Disassembly Line consisting of more than one serial station (Güngör & Gupta, 1999a; 

Wiendahl et al., 1999). Although a single disassembly workstation or a Disassembly Cell 

is more flexible in terms of offering the possibility to sort the sub-parts resulting from 

disassembly activities according to their quality, the highest productivity rate and the 

lowest environmental impact (due to efficiency) are achieved with the Disassembly Line. 

Disassembly facility consisting of a single station and employing a single worker is 

as given in Figure 1.8 (a). In such facilities, the EOL product enters the system and a 

number of disassembly operations are performed to obtain Disassembled Semi Products. 

The Disassembly Cell facility, which is formed by the clustering of more than one 

machine along a single station and where a single worker works, is as given in Figure 1.8 

(b). In such facilities, the EOL product enters the system and a number of disassembly 

operations are performed on all machines, respectively, to obtain Disassembled Semi 

Products. The Disassembly Line facility, consisting of more than one station and one or 

more worker at each station, is as given in Figure 1.8 (c). In such facilities, the EOL 

product enters the system continuously and a set of disassembly operations is performed 

at each station, resulting in a set of Disassembled Semi Products at each station.  

 

Figure 1.8. Disassembly systems: (a) single workstation system, (b) disassembly cell system, (c) 

disassembly line system 
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Obtained Disassembled Semi Products are sent directly to reuse, to re-production 

with Product Recovery or to recycling with Product Recycle, depending on their 

suitability in terms of quality. In case of chemical damage such as burning, Disassembled 

Semi Product becomes Disposal Product directly and is released into nature. 

Disassembly Lines are used for rapid disassembly of bulk-packed EOL products. 

In order to minimize the environmental impact, as the production and use of easy-to-

disassemble products are increasing day by day, there will be a need for Disassembly 

Lines in the future more than today. In order to minimize the environmental impact during 

disassembly of these lines, the lines must be designed very efficiently. In this context, the 

Disassembly Line Balancing (DLB) problem was first defined by Güngör and Gupta in 

1999 (see. (Güngör & Gupta, 1999a)). Thanks to the solution of the DLB problem, the 

use of environmentally and materially valuable resources such as time and labor is 

minimized, while the profit obtained from selling the recycled parts to the suppliers is 

maximized and the amount of resources taken from nature is minimized. In general, the 

DLB problem is defined as the assignment of disassembly tasks to certain workstations, 

taking into account the priority relations between them, in a way that optimizes a number 

of performance indicators such as cycle time, number of workstations, level of meeting 

demands. In line with this definition, although the DLB problem seems to be similar to 

the Assembly Line Balancing (ALB) problem, there are important differences between 

the two problems, especially the priority relations, stock problems, and serious 

uncertainties in the quality and structure of the products. Although there are many 

differences between ALB and DLB, different line arrangements such as Straight, U-

Shaped, Parallel, Two-Sided, model variants such as single, mixed or multi model and so 

on in Disassembly Lines, just as in Assembly Lines. Depending on the variations, 

different balancing models can be used. 

In this study, a Mixed-Model Two-Sided Disassembly Line system, which can be 

used for the disassembly of different models of high-volume EOL products that are quite 

similar to each other, is defined using AND/OR Precedence Relations, and the Mixed-

Model Two-Sided Disassembly Line system is defined in order to minimize the sum of 

line design cost, labor usage cost and disassembly times. A Mixed-Integer Linear 

Programming (MILP) based mathematical model has been developed for the Two-Sided 

Disassembly Line Balancing (MTDLB) problem. First, the three objective functions were 
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hierarchically converted to a single objective function and the mathematical model for 

small and medium-sized cases could not be solved with LINGO and GAMS commercial 

optimization programs. However, when the mathematical model is coded in Python using 

the GUROBI solver, a solution is obtained in reasonable time. However, it has been 

analyzed that when the case size increases, the solution times increase at a high rate. For 

this reason, a Memetic Algorithm (MA) is designed to minimize the hierarchical objective 

function for solving even larger cases. Considering the results of the MA, it was found 

that the solution time was not affected even if the case size increased. At the same time, 

a Multi Objective Memetic Algorithm (MOMA) has been developed in order to obtain 

Pareto Optimum results by considering each objective function individually. Compared 

to the Non-Dominated Sorted Genetic Algorithm - II (NSGA-II) algorithm, which is 

frequently preferred in the literature, MOMA results were found to provide better results 

thanks to the Iterated Local Search it contains. So far, the MTDLB problem in the 

literature has been investigated only in this study, which is the greatest originality of this 

study. 

In the next section of this study, detailed information about disassembly activities 

is given, and information is given about disassembly problems in the literature, especially 

DLB, and various Precedence Relations, especially AND/OR Precedence Relations, 

which play a critical role in solving the DLB problem. In the third section of this study, a 

detailed literature review about DLB is presented, emphasizing the importance of multi-

objective MTDLB. In the fourth part of the study, the multi-objective MTDLB problem 

is explained in detail and a  MILP based mathematical model is developed. In the fifth 

section of this study, the MA and MOMA algorithms, which will be used for the solution 

of the multi-objective MTDLB problem, was introduced, and the adaptation of the 

MTDLB problem and the selection of the parameters used in the algorithm were made. 

In the sixth section of this study, the effectiveness of the MA and MOMA algorithms is 

compared with the other well-known algorithms used as reference in the light of some 

data from the literature and some data produced within the scope of the study. In the 

seventh section of this study, the results were explained, the necessity of the study was 

emphasized once again, and a few suggestions were made for future studies. 
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2. DISASSEMBLY LINE BALANCING 

One area of focus of the LCE approach, which emerged with the aim of minimizing 

the damage to nature, is to design the product so that it is easy to collect, disassemble, 

reuse, re-manufacture and recycle when the designed products lose their functionality, 

that is, when they become EOL products. In this way, it is aimed to obtain a sustainable 

environment and production environment by minimizing the amount of resources taken 

from nature and waste given to nature. In particular, it is of great importance to bring back 

the sub-assembly parts of electronic devices and large-sized products (refrigerators, 

automobiles, airplanes, etc.) that contain many sub-assembly parts into production, with 

the necessary processes, in terms of protecting the environment and creating a sustainable 

production environment. The ever-increasing demand for EOL products and 

disassembled products necessitates efficient installation and management of disassembly 

systems in order to protect the environment by disassembling EOL products, to meet the 

demand for disassembled parts, and to have a flexible system. In this context, the 

Disassembly Line system has been introduced for the rapid and systematic disassembly 

of EOL products, which increase in quantity every day, and the Disassembly Line 

Balancing (DLB) problem for assigning disassembly tasks to this system in a way that 

optimizes certain performance criteria. Küçükkoç defines the DLB problem in 2019 as 

“assigning disassembly tasks of any product or product group to workstations in a way 

that optimizes one or more performance indicator” (see. (Kucukkoc et al., 2019)). 

Performance indicators for DLB problems are divided into Type-1 (minimization of the 

number of workstations) and Type-2 (minimization of cycle time). However, there are 

various performance indicators, including the smoothness index, which takes into account 

the smoothness between workstations, and the earliest possible exit of hazardous 

materials (Özceylan et al., 2019). 

Güngör and Gupta first described the DLB problem in 1999 (Güngör & Gupta, 

1999a). In 2001, a Shortest Route formulation was proposed to solve the DLB problem. 

Since the DLB problem was shown to be NP-hard by McGovern and Gupta in 2007 (see. 

(McGovern & Gupta, 2007b)), interest in heuristic and metaheuristic studies has 

increased. Indeed, in the same year, the same authors proposed a Genetic Algorithm (GA) 

for solving the DLB problem (McGovern & Gupta, 2007a). Today, although the solution 

methods of DLB problems are heuristic and metaheuristic methods, Linear/Nonlinear 

Programming (LP/NLP) using exact methods (see. (He et al., 2020; Li et al., 2020)) or 
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solvers such as CPLEX/LINGO/GUROBI (see. (Edis et al., 2019; Mete et al., 2019)) 

methods are also available. However, LP/NLP solvers are insufficient for solving large-

scale problems and it requires large computation time to find the optimal solution and 

prove it to be the optimum solution. 

A wide variety of precedence relationships are defined for the DLB problem. When 

the DLB problem first appeared, geometric removal constraints were determined. 

Although this is a correct approach, it becomes impossible to calculate when the problem 

size increases. Traditional precedence relations, which are frequently used in Assembly 

Line Balancing (ALB) problems, are used in some DLB problem studies with strict 

disassembly sequence. Although this is a relatively correct usage, it is more correct to use 

flexible relations instead of rigid ones, as functionality is not taken into account in 

disassembly unlike assembly. Although disassembly is flexible compared to assembly 

because it includes relations such as AND Predecessor, OR Predecessor, Complex 

AND/OR Predecessor, OR Successor, it can sometimes be very complex (Güngör & 

Gupta, 2002; Koc et al., 2009). This precedence relation, called AND/OR Graph (AOG), 

is a more valid approach to solving the DLB problem since it takes into account all 

possible disassembly sequences. However, just like in the geometric precedence relation, 

the calculation becomes impossible when the problem size increases in the AOG 

precedence relation. For this, Transformed AOG (TAOG) precedence relation consisting 

of normal nodes and artificial nodes was defined (see. (Koc et al., 2009)). In the literature, 

the use of TAOG precedence relation is discussed in two types, with and without OR 

Successor relation. In diagrams without OR Successors, “In order for any task to be 

performed, all previous AND Predecessors must have been built and at least one of all 

previous OR Predecessors must have been made.” condition is sought. In the diagrams in 

the OR Successor, “After any task is done, one of the OR Successors must be done (no 

more or less).” condition is sought. 

Although assembly and disassembly seem to be quite similar in terms of general 

features, the operational and technical differences between them are discussed as given 

in Table 2.1 by Gupta and Güngör in 2001 (see. (Gupta & Güngör, 2001)). 
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Table 2.1. Main differences between assembly and disassembly lines (Gupta & Güngör, 2001) 

Line Considerations Assembly Lines Disassembly Lines 

Demand Dependent Dependent 

Demand Sources Single Multiple 

Demand Entity End Product Invidual Parts / 

Subassemblies 

Precedence Relations Yes Yes 

Complexity related to precedence 

relationship 

High (Physical and functional 

precedence constraints) 

Moderate (mostly 

physical constraints) 

Uncertainty related to quality of parts Low High 

Uncertainty related to quantity of parts Low High 

Uncertainty related to workstations and 

the material handling system 

Low to Moderate High 

Reliability of the workstations and the 

material handling system 

High Low 

Multiple products Yes Yes 

Flow process Convergent Divergent 

Line flexibility Low to moderate High 

Layout alternatives Multiple Multiple 

Complexity of performance measures Moderate High 

Known performance measures Numerous Numerous 

Disappearing Work-pieces Phenomena 

(DWP) 

N/A Yes 

Exploding Work-pieces Phenomena 

(EWP) 

N/A Yes 

Required line robustness Moderate High 

Complexity of “between workstations 

inventory” handling 

Moderate High 

Known techniques for line optimization Numerous Numerous 

Problem complexity NP-hard NP-hard 

 

Looking at the main differences between assembly line and disassembly line in 

Table 2.1: 

 It is seen that they are opposite to each other in terms of demand and demand 

source, 

 Disassembly line is higher than assembly line in terms of uncertainty, line 

flexibility and material flow are the opposite of each other,  
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 It is seen that they are similar to each other in terms of line layout, 

 Generally similar to each other as performance indicators,  

 Generally similar to each other in terms of inventory problems and solution 

approaches.  

Disappearing Work-pieces Phenomena (DWP) and Exploding Work-pieces 

Phenomena (EWP), which are on the disassembly line but not on the assembly line, are 

defined as follows: 

 DWP, “A task that fails during disassembly prevents the disassembly of all 

other parts remaining on the workpiece. In other words, the workpiece is 

lost. Stations after the workpiece failing station remain hungry.” explained 

as. In order to overcome this situation, the failures to be experienced on the 

workpiece are minimized by completing the trainings for the workers/robots 

who perform the disassembly operations. 

 EWP, “A workpiece moves as two or more workpieces after it is 

disassembled. In the disassembly line, each piece acts as a separate work 

piece.” explained as. In order to overcome this situation, the disassembly 

sequences are well adjusted to prevent movement as two separate parts on 

the material handling system.  

Within the scope of this thesis, the DLB problem was classified in accordance with 

the diagram given in Figure 2.1 and the necessary information was collected by scanning 

the literature in this direction. It is possible to collect DLB problems in four main classes: 

problem characteristic, type of parameters used, measured performance indicators and 

methods/methods used for solution. 

 

Figure 2.1. Main classification scheme of DLB problem 
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2.1. Problem Characteristics 

They are the characteristics that reveal the basic structure of the DLB problem. It 

basically resembles the characteristics used for the ALB problem. Basically, the design 

of the line, the number and shape of the model entering the line, the type of worker 

(human or robot) used on the line, the priority relations used for disassembly, and the 

disassembly level (partial disassembly or complete disassembly) that arises specific to 

the DLB problem are collected in five main classes. The classification scheme is as given 

in Figure 2.2. 

 

Figure 2.2. Problem characteristics scheme of DLB problem 

2.1.1. Line layout types for DLB problem 

 Just like in the ALB problem, the design of the line must be determined in the DLB 

problem. Straight layout, U-Shape layout, two-sided layout and parallel layout used in 

ALB problems are also used in DLB problems. Line design is a strategic decision and is 

decided by the decision makers during line installation. Therefore, if there is an installed 

line, it is very difficult to change the layout of this line; sometimes it is not even possible. 

For this, it is a very critical decision to decide the line design based on the products to be 

assembled/disassembled. The DLB problem has been investigated using very different 

line layouts in the literature (see. (Özceylan et al., 2019)). The line layout type’s scheme 

generally applicable to the DLB problem is as given in Figure 2.3. 
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Figure 2.3. Line layout types scheme for DLB problem 

Straight layout for DLB problem 

 Since it is easy to install and follow, the most preferred line layout type in the 

literature and practice is straight layout (Özceylan et al., 2019). It consists of workstations 

lined up in a straight line and a material handling system between stations. Products 

entering the line for disassembly are removed by visiting all stations respectively. The 

sub-assembly parts disassembled from the product are transported to the warehouses by 

means of the material handling system or collected at the stations for public 

transportation. As an example, the disassembly line using a straight layout for a 

disassembly consisting of 8 operations is as given in Figure 2.4. Here, four consecutive 

stations/workforce perform their disassembly tasks in sequence. After each disassembly 

operation, a sub-assembly part is removed from the main part and transported to the 

warehouse by the material handling system it belongs to. 

 

Figure 2.4. A typical straight layout disassembly line 

U-Shaped layout for DLB problem 

U-shaped layout is the most preferred layout type after straight layout as it provides 

space and efficiency advantage compared to straight layout (Agrawal & Tiwari, 2008; 

Avikal, Jain, et al., 2013; Li, Kucukkoc, & Zhang, 2019; Özceylan et al., 2019). The line 

is designed in a U shape. In this way, a single operator/robot can work synchronously at 

two different stations at the same time. The total working time of the synchronized 
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operator/robots is the cycle time. Therefore, the duration of the stations where the operator 

works can be designed to be lower than the cycle time. Since this situation does not reduce 

the efficiency, higher efficiency or less operator usage can be achieved compared to the 

straight layout. The products entering the line for disassembly are disassemled by visiting 

all the stations in the front, and then they return to the stations at the back, where 

disassembly operations are carried out. Therefore, the places where the product enters the 

line and where the last disassembling is done are very close to each other. The sub-

assembly parts disassembled from the product are transported to the warehouses by means 

of the material handling system or collected at the stations for public transportation. As 

an example, the disassembly line using the U-Shaped layout for a disassembly consisting 

of 10 operations is as given in Figure 2.5. Here, the second operator works synchronously 

at both stations 2 and 5. This operator spends 7 seconds for station 2 and 3 seconds for 

station 5 on a line with a cycle time of 10 seconds (walking time between stations is 

accepted as 0). After each disassembly operation, a sub-assembly part is removed from 

the main part and transported to the warehouse by the material handling system it belongs 

to.  

 

Figure 2.5. A typical U-Shaped layout disassembly line 

Two-Sided layout for DLB problem 
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Two-Sided Disassembly Lines are generally designed specifically for disassembly 

of large volume products (automobile, truck, and refrigerator). It is advantageous when it 

is costly to rotate the product on the line or to change the position of the worker on the 

line. The increase in technological developments and affluence level day by day leads to 

the emergence of large products in size and volume. Among the most important examples 

of this is the increase in phone sizes and television sizes day by day. Studies for two-sided 

layout in the literature have intensified in the last two or three years (see. (Kucukkoc, 

2020; Liang et al., 2021; Wang et al., 2019b)). The line consists of a material handling 

system that runs right through the middle and stations located on the right and left of this 

system. Stations that are positioned opposite each other to the right and left are called 

mated stations. The short length of the line depends on the number of stations opened. In 

some cases (considering the priority relations), it happens that while transactions are 

made on one station on the right or on the left, simultaneous transactions cannot be made 

on the other side. This is a factor that increases the length of the line. Again, considering 

the priority relations, it is possible to wait for a transaction to be completed on the other 

side so that the operation can be performed at the station deployed on the right or left side. 

Therefore, disassembly lines using two-sided layout should be planned well. As an 

example, the disassembly line using a two-sided layout for a disassembly consisting of 

12 operations is as given in Figure 2.6. Here, the third station was opened only on the 

right, and the necessary precedence relations could not be provided for the opening of the 

station on the left. After each disassembly operation is done at the stations on the right 

and left, a sub-assembly part is removed from the main part and transported to the 

warehouse from the right or left side by the material handling system it belongs to. For 

the same example, when looking at Station 2 on the right, it is seen that the processing 

time is 5 seconds, half of the cycle time. The reason for this is that the station is located 

on the opposite side of some of its predecessors. Until these missions are completed, the 

mission in the station cannot be dismounted. Figure 2.7 explains this situation. Figure 2.7 

(a) shows an example priority diagram up to task 7 and Figure 2.7 (b) shows the task 

schedule for the first two stations. As can be seen here, even if there is free time for the 

disassembling of task 5, the opposite side is waiting for the disassembly of task 4 to be 

completed. Similarly, for the disassembling of the task number 7 on the right, the 

disassembling of the task number 5 on the opposite side is expected. When the two-sided 
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layout is used, not only the priority relations within the station, but also the priority 

relations between the reciprocal stations are taken into account. 

 

Figure 2.6. A typical Two-Sided layout disassembly line 

 

Figure 2.7. Workstation schedule for Figure 2.6: (a) precedence diagram, (b) schedule of balanced 

disassembly line 
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Parallel layout for DLB problem 

Generally, more than one parallel line is used by businesses that want to increase 

their production/disassembling volume. In this case, the lines can be thought of as 

independent from each other, as well as in interaction with each other, that is, as a parallel 

layout. Considered independently of each other, each line will display straight layout 

features. However, considering that they are in interaction with each other, efficiency 

gains can be achieved since the operators will be used synchronized on both lines. Since 

disassembly was not a very common area in the early days, parallel layout was not 

preferred much. However, the increasing number of EOL products has intensified the 

research of DLB problems for parallel layout (see. (Fang et al., 2019; Hezer & Kara, 

2015)). In the Production/Disassembly area, the lines are placed in parallel (each line 

shows straight features) and serial operators/robots are placed on the lines or the 

operator/robot working synchronized on both lines is placed between the lines. As an 

example, the disassembly line using a parallel layout consisting of nine operations on a 

total of two separate lines is as given in Figure 2.8. Although both lines work separately 

here, the fifth Operator works synchronously on both lines. On a line with a cycle time of 

10 seconds, this operator spends 4 seconds on line 1 and 6 seconds on line 2 (movement 

time between stations is accepted as 0). After each disassembly operation, a sub-assembly 

part is removed from the main part and transported to the warehouse by the material 

handling system it belongs to. 

 

Figure 2.8. A typical Parallel layout disassembly line 
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Hybrid layout for DLB problem 

Each line layout used for assembly/disassembly lines has its own advantages. In 

some assembly/disassembly works, the line layout is designed as a mixture of more than 

one layout. As an example, Küçükkoç and Zhang designed a parallel u-shaped layout for 

assembly in 2015 (see. (Kucukkoc & Zhang, 2015)). This layout is as given in Figure 2.9. 

In this way, labor savings and increased productivity have been achieved in cases where 

the production volume is high. 

 

Figure 2.9. Schematic representation of the parallel U-shaped assembly line system: (a) zoning of the 

work area and (b) allocation of the workstations (Kucukkoc & Zhang, 2015).  
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2.1.2. Model type for DLB problem 

Just like in the ALB problem, the input types of the products (model type) entering 

the line must be determined in the DLB problem. Single model, mixed model and multi 

model used in ALB problems are also used in DLB problems. Since assembly lines are 

generally designed to assemble and sell one type or similar type of products to customers, 

the format in which the mixed model is converted into a single model is generally used 

by combining the precedence relations of single model or products that are quite similar 

to each other. However, EOL products entering the disassembly lines are quite different 

from each other, even if they are quite similar to each other since the parameters such as 

place/time etc. are different. At the same time, since the line to be created for the 

disassembly of a single type of product is much higher than the cost of the line to be 

created for the assembly of a single type of product, even if single model is preferred in 

theory, mixed or multi model lines are established in practice. In general, the model type’s 

scheme applicable to the DLB problem is as given in Figure 2.10. 

 

Figure 2.10. Model types scheme for DLB problem 

Single model for DLB problem 

Single Model is the most preferred model type, which is not seen in real life 

disassembly systems, but offers ease of calculation in theory (see. (Özceylan et al., 

2019)). The uniformity of the EOL product type entering the line and the tool/equipment 

and workforce expertise on the line are only for one type of product. Its type is as given 

in Figure 2.11. 

Model Types for 
DLB Problem

Single Model Multi Model Mixed Model
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Figure 2.11. A typical single model disassembly line 

Multi model for DLB problem 

Multi-model is another type of model encountered in real-life disassembly systems. 

It is generally preferred in multi-model lines in terms of ease of tracking and calculation. 

It is sufficient for the operators to have relatively less competence compared to the mixed 

model. It is generally used when a setup time is required during model migrations. For 

example, if there is a dyed process, it will take time to switch from red to blue. In such a 

case, the products are disassembled in batches and the setup time is shared by the amount 

of product in the batch. It is the least researched model type in the literature for the DLB 

problem (see. (Özceylan et al., 2019)). A multi model disassembly line consisting of two 

models is as given in Figure 2.12. 

 

Figure 2.12. A typical multi model disassembly line 

Mixed model for DLB problem 

Mixed-model is the type of model often encountered in real-life disassembly 

systems. In the case of mixed models encountered in assembly lines, since the products 

are generally similar to each other, the precedence relation is converted into a single 

model format and a solution is sought. However, since a wide variety of products come 

to the disassembly lines, the tools/equipment specific to the incoming products must be 

deployed at the stations and the disassembly operations specific to the incoming product 
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must be assigned to the stations. Compared to the single model situation, it is expected 

that the operators at the stations will have more competencies. While the operator is 

disassembling the A model on the line, the next product B may be the other product C 

model. In this case, trainings are given so that the operator does not react too quickly and 

cause the line to stop. Generally, there are relatively few studies in the literature compared 

to the single model, as the modeling and solution difficulties are higher than the single 

model (see. (Fang et al., 2019, 2020; Xia et al., 2019)). A mixed model disassembly line 

consisting of three models is as given in Figure 2.12. 

 

Figure 2.13. A typical mixed model disassembly line 

2.1.3. Worker type for DLB problem 

In the stations located on the disassembly line, a human can work as well as a robot. 

Since robots are faster and have a lower error rate than humans, they are frequently 

preferred in assembly lines today. However, the high uncertainty in the disassembly lines 

creates a question mark for the use of robots instead of humans. Although disassembly 

lines consisting of robots are not very common in real life, the increase in the reaction 

capabilities of robots in the face of errors is a sign that the use of robots in real life 

disassembly lines will increase. In fact, studies have been started for the use of robots in 

disassembly lines (see. (Fang et al., 2019; Ming et al., 2019)). In some lines, human and 

robot interactive work is also available (Liu et al., 2019). In general, the worker type 

scheme applicable to the DLB problem is as given in Figure 2.3. 

 

Figure 2.14. Worker types scheme for DLB problem 

Worker Types 
for DLB Problem

Human Robot
Human-Robot 
Collaboration
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2.1.4. Precedence relation type for DLB problem 

Precedence Diagrams should be used to provide physical constraints for DLB 

problem, similar to the Precedence Diagrams used to provide physical and functional 

constraints in ALB problem that are frequently studied in the literature. However, 

although a stricter Precedence Diagram occurs because both physical and functional 

constraints are taken into consideration in ALB problems, flexible Precedence Diagrams 

emerge because the functionality is not important in DLB problems. ALB problemlerinde 

fiziksel ve fonksiyonel kısıtların her ikisi de göz önüne alındığından dolayı daha katı bir 

Precedence Diagram oluşmasına ragmen, DLB problemlerinde fonksiyonellik göz önüne 

alınmadığı için daha esnek Precedence Diagram ortaya çıkmaktadır. Fakat, öncelik 

ilişkilerinin esnetilebilir oluşu bir çok olası disassembly sequence oluşmasına, dolayısıyla 

da çözümün zorlaşmasına yol açmaktadır. 

Generally, four types of Precedence Diagrams are used in DLB problem in the 

literature. These Precedence Diagram types: 

1. Geometrically based Precedence Diagram, first used for DLB problem by 

Güngör and Gupta in 1999 (Güngör & Gupta, 1999b). 

2. Traditional based Precedence Diagram defined by Salveson in 1955 

(Kriengkorakot & Pianthong, 1955). 

3. AND/OR Graph (AOG) based Precedence Diagram defined by Homem de 

Mello and Sanderson in 1990 (L.S. Homem de Mello & Sanderson, 1990; 

Luiz S. Homem de Mello & Sanderson, 1991a, 1991b). 

4. Transformed AND/OR Graph (TAOG) based Precedence Diagram 

defined by Koç et al. in 2009 (Koc et al., 2009). 

Geometrically based precedence relation 

Geometrically precedence relation is the precedence relation method used when the 

DLB problem first appeared. The disassembly direction of the sub-assemblies on the main 

part is indicated as +x, -x, +y, -y, +z, -z in three axes. In this direction, a solution is sought. 

The Geometrically based precedence relation table revealed for a product recommended 

by Güngör and Gupta in 1999 is as seen in Figure 2.15. The reading of the R matrix is as 

follows. All tasks of each sub-assembly must be completed on a column-by-column basis. 

Considering product number 1 in this direction, it is sufficient to disassemble product 
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number 6 in any way. Looking at the product number 2, no disassembling rule is valid, 

that is, the product can be disassembled. Looking at the product number 3, the product 

number 7 must be disassembled in any way. When looking at product number 4, product 

number 1 should be removed in the -x direction, product number 2 in the y direction, 

product number 3 in the +x direction, product number 5 in the -y direction, product 

number 6 and 7 in any direction. There is no disassembly requirement for products 5, 6 

and 7, that is, these products can be disassembled. 

 

Figure 2.15. Geometrically based precedence relation example: (a) sample product, (b) precedence 

matrix (Güngör & Gupta, 1999b) 

Traditional precedence relation 

Salveson first defined the Traditional Precedence Diagram, which is often used in 

ALB problems, in 1955. All the tasks to be done in this Precedence Diagram and the 

priorities of the tasks are determined. Without all predecessor tasks of a task, that task 

cannot be done. Erel et al. (2005), a Task based Precedence Diagram used in the ALB 

problem is as given in Figure 2.16. In this diagram, task 7 must be completed in order to 

perform task 9, and similarly, tasks 3, 4 and 5 must be completed in order to perform task 

number 7. 

 

Figure 2.16. A typical traditional precedence relation for assembly line balancing problem 
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Similar to the Traditional Precedence Diagram used in ALB problems, the 

Traditional Precedence Diagram can also be used in DLB problems. Typical Traditional 

Precedence Diagram used in the DLB problem is as given in Figure 2.17 (Wang et al., 

2019a). In this way, disassembly tasks numbered 12 and 13 must be completed in order 

to carry out the disassembly task number 9, and similarly task number 15 must be 

completed for task number 12, and task number 16 must be completed in order to perform 

task number 13. The Traditional Precedence Diagram used in DLB problems is an 

inverted formation of the TPD used in ALB problems. 

 

Figure 2.17. A typical traditional precedence relation for disassembly line balancing problem 

AND/OR Graph (AOG) based precedence relation 

The AND/OR Graph (AOG) precedence diagram ensures that all possible 

assembly/disassembly sequences are taken into account when the best 

assembly/disassembly sequence is not known, taking into account the necessary physical 

and functional constraints. That is, a typical AOG is a graph showing all possible ways a 

product can be disassembled down to all the components it is composed of. Nodes in this 

graph correspond to subassembly product and arcs correspond to assembly/disassembly 

operations. In DLB problems, it becomes difficult to choose among all possible 

disassembly sequences when functionality is secondary and only physical constraints are 

considered. For this, AOG precedence diagram is frequently used especially in DLB 

problems. The AOG precedence diagram was originally designed by De Mello and 

Sanderson (1990) to consider all possible assembly sequences. In order to better 

understand the AOG precedence diagram, the example created by De Mello and 

Sanderson (1990) is explained. Considering the physical and functional constraints on a 

simple product, which consists of four separate parts named cap, stick, receptacle and 

handle, given in Figure 2.18 and defined by Homem de Mello and Sanderson, it is known 
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that all possible assembly sequences are as in Figure 2.19 (L.S. Homem de Mello & 

Sanderson, 1990). 

 

Figure 2.18. A simple product (L.S. Homem de Mello & Sanderson, 1990) 

 

Figure 2.19. Possible assembly sequences of simple product which given by Figure 2.18 (L.S. Homem de 

Mello & Sanderson, 1990) 
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In this way, an AOG precedence diagram given in Figure 2.20 is defined because it 

is difficult to follow all possible assembly sequences and is not suitable for the 

programming format. 

 

Figure 2.20. AND/OR Graph of simple product which given by Figure 2.18 (L.S. Homem de Mello & 

Sanderson, 1990) 

With the AOG precedence diagram, for a sample product shown in Figure 2.18, all 

assembly sequences shown in Figure 2.20 can be accessed. The assembly sequence of 

“Screw Receptacle and Handle – Inset Stick into Receptacle – Screw Receptacle and Cap” 

described as Sequence 4 in Figure 2.19, the steps to be reached from the AOG precedence 

diagram given in Figure 2.21. The assembly sequence of “Place Stick on Handle – Screw 

Receptacle and Handle – Screw Receptacle and Cap” is shown in Figure 2.22. 
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Figure 2.21. A possible assembly sequence for AND/OR Graph of simple product which given by Figure 

2.18 

 

Figure 2.22. A possible assembly sequence for AND/OR Graph of simple product which given by Figure 

2.18 

The AOG precedence diagram is also adapted for DLB problems, as there are 

multiple disassembly sequences in DLB problems where functional constraints are 

unimportant and only physical constraints are taken into account. However, some 

flexibility, such as the lack of functionality in disassembly unlike assembly, has led to the 

differentiation of the AOG precedence diagram created. Moore (2001) and Altekin (2008) 

address these differences with the priority relations put forward. In this context, the 
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priority relations in the AOG precedence diagram used for solving DLB problems are 

listed as follows (Kalaycılar, 2012): 

 AND Predecessor  

 OR Predecessor 

 Complex AND/OR Predecessor 

 OR Successors 

 AND within OR 

 OR within AND 

AND Predecessor 

It is generally the most used relationship type for the AOG precedence diagram. 

In this relationship type, each of the AND Predecessor tasks of any task must be 

performed. Moore (2001) first described it for DLB problems. The AND Predecessor 

relationship is as shown in Figure 2.23. In this kind of relationship, it is emphasized that 

both tasks 2 and 3 must be done in order for task number 1 to be performed. 

 

Figure 2.23. AND Predecessor relation 

OR Predecessor 

Another most commonly used relationship type for the AOG precedence diagram 

is the “OR Predecessor” relationship. For a task with this relationship, at least one of the 

tasks connected with this relationship must be performed before it. Moore (2001) first 

described it for DLB problems. A typical “OR Predecessor” relationship is as described 

in Figure 2.24. Here, at least one of the tasks numbered 2 or 3 must be completed in order 

for task number 1 to be completed. 
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Figure 2.24. OR Predecessor relation 

Complex AND/OR Predecessor 

Another type of relationship used for the AOG precedence diagram is the “Complex 

AND/OR Predecessor” relationship. For a task with this relationship, all AND-bound 

tasks must be performed before it, and at least one of all OR-bound tasks must be 

performed. Moore (2001) first described it for DLB problems. A typical “Complex 

AND/OR Predecessor” relationship is as described in Figure 2.25. Here, in order to 

complete the task number 1, task number 2 and at least one of the tasks 3 and 4 must be 

completed. 

 

Figure 2.25. Complex AND/OR Predecessor relation 

OR Successor 

The most commonly used relationship type in the disassembly sequence selection 

for DLB problem solving is the "OR Successor" relationship. A task with this relationship 

can only do one of the tasks connected to it with this relationship after itself. Moore (2001) 

first described it. A typical “OR Successor” relationship is as described in Figure 2.26. 

Here, after task 1 is done, only one of tasks 2 or 3 will be able to be done. 
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Figure 2.26. OR Successor relation 

AND within OR 

Another type of relationship used for the AOG precedence diagram is the “AND 

within OR” relationship. In this relationship, after two or more tasks connected with AND 

predecessor are completed, only one task connected with OR Successor can be completed. 

A typical AND within OR relationship is as described in Figure 2.27. Here, after 

completing the task 1 and 2, only one (at least and at most) of the tasks 3 and 4 be 

completed. 

 

Figure 2.27. AND within OR relation 

OR within AND 

Another type of relationship used for the AOG precedence diagram is the “OR 

within AND” relationship. In this relationship, after one of two or more tasks connected 

with OR predecessor is completed, two or more tasks connected with AND Predecessor 

can be completed. A typical “OR within AND” relationship is as described in Figure 2.28. 

Here, after completing one of the tasks 1 and 2, the tasks 3 and 4 can be completed. 

 

Figure 2.28. OR within AND relation 
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Transformed AND/OR Graph (TAOG) based precedence relation 

Although AOG provides access to all possible disassembly sequences, it is not 

suitable for mathematical models due to computational difficulties. Therefore, another 

method, Transformed AND/OR Graph (TAOG) based Precedence Diagram, which is 

very similar to AOG, was developed using normal node (task) and artificial node. The 

TAOG based Precedence Diagram for the DLB problem was first published in 2009 by 

Koç et al. As a typical usage, TAOG is based on selecting only one normal node after 

each artificial node and selecting all artificial nodes that go after each normal node. 

Therefore, there is an OR Successor relationship between artificial nodes and normal 

nodes, and an AND Successor relationship between normal nodes and artificial nodes. 

However, in some studies, an AND Successor relationship is observed between the 

artificial node and the normal node (Bentaha et al., 2013). 

A typical TAOG based Precedence Diagram with an OR Successor relationship 

between an artificial node and a normal node and an AND Successor relationship between 

a normal node and an artificial node is given in Figure 2.29. There are 23 normal nodes 

(disassembly task) and 13 artificial nodes in total here. Starting from the artificial node 

𝐴0, the process continues until only one normal node is selected from each OR Successor 

relationship, and there are no normal and artificial nodes to be selected. The normal nodes 

selected at the end are used as the priority relationship. 

 

Figure 2.29. A typical Transformed AND/OR Graph (TAOG) based precedence diagram 
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The first Integer Linear Programming (ILP) mathematical model developed by Koç 

et al in 2009, which reached the optimum result using the TAOG based Precedence 

Diagram method for the Single-Model Straight DLB (SSDLB) problem. Thanks to this 

model, the best line balancing is achieved by considering all possible disassembly 

sequences. This model also forms the basis for the Mixed-Model Two-Sided DLB 

(MTDLB) problem mathematical model developed within the scope of the thesis. 

Indices and Sets: 

𝑘 ∈ {0, … , ℎ}  Index of artificial nodes in AOG. 

𝑖 ∈ {1, … , 𝐼}  Index of normal nodes (tasks) in AOG. 

𝑗 ∈ {1, … , 𝐽}  Index of stations. 

𝑃(𝑘, 𝑖)   Immediate predecessor set of 𝑘,  𝑖, respectively. 

 𝑆(𝑘, 𝑖)   Immediate successor set of 𝑘,  𝑖, respectively. 

Scalars and Parameters: 

 𝐶   Cycle time of disassembly line. 

 𝑡𝑖   Task time of normal node (task) 𝑖. 

Decision and Auxiliary Variables: 

 𝑥𝑖𝑗 ∈ {0,1}  If normal node 𝑖 is assigned to station 𝑗, 1, otherwise 0 

𝑓𝑗 ∈ {0,1}  If station 𝑗 is opened, 1, otherwise 0 

𝑧𝑖 ∈ {0,1}  If normal nodel (task) 𝑖 is performed, 1, otherwise 0 

Objective Function: 

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑴𝒊𝒏 ∑ 𝑗 × 𝑓𝑗

𝑀

𝑗=1

 (2.1) 

The objective function defined by Equation 2.1 aims to minimize the number of 

opened workstations. The 𝑗 index is multiplied by the work because it is desired to open 

the workstations in order. In this way, stations will start to open starting from the smallest 

index. 
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Constraints: 

∑ 𝑧𝑖

𝑖∈𝑆(𝑘,𝑖)

= 1 ∀𝑘 ∈ {0} (2.2) 

∑ 𝑧𝑖

𝑖∈𝑆(𝑘,𝑖)

= ∑ 𝑧𝑖

𝑖∈𝑃(𝑘,𝑖)

 ∀𝑘 ∈ {1, … , ℎ} (2.3) 

∑ 𝑥𝑖𝑗

𝑀

𝑗=1

= 𝑧𝑖 ∀𝑖 ∈ {1, … , 𝐼} (2.4) 

∑ ∑ 𝑥𝑖𝑗

𝑣

𝑗=1𝑖∈𝑃(𝑘,𝑖)

= ∑ 𝑥𝑖𝑣

𝑖∈𝑆(𝑘,𝑖)

 ∀𝑘 ∈ {1, … , ℎ}, ∀𝑣 ∈ {1, … , 𝑀} (2.5) 

∑ 𝑥𝑖𝑗 × 𝑡𝑖

𝐼

𝑖=1

= 𝐶 × 𝑓𝑗 ∀𝑗 ∈ {1, … , 𝑀} (2.6) 

𝑥𝑖𝑗 ∈ {0,1} ∀𝑖 ∈ {1, … , 𝐼}, ∀𝑗 ∈ {1, … , 𝑀} (2.7) 

𝑧𝑖 ∈ {0,1} ∀𝑖 ∈ {1, … , 𝐼} (2.8) 

𝑓𝑗 ∈ {0,1} ∀𝑗 ∈ {1, … , 𝑀} (2.9) 

 

The constraints given by Equation 2.2 and 2.3 are the constraints that allow only 

one of the OR Successors to be selected to ensure that only one disassembly sequence is 

selected from the TAOG. With Equation 2.2, when the artificial node in the TAOG is 

equal to zero, that is, in the initial state, only one OR Successor is selected, the first step 

is taken to determine the disassembly sequences. With Equation 2.3, it explains that if 

one of the predecessors of artificial nodes is selected in TAOG, one of the OR successors 

should also be selected. Thus, line balancing is achieved by choosing the best disassembly 

sequence in accordance with the objective function. The constraint given by Equation 2.4 

defines that if a task is selected, that task must be assigned to an absolute station. This is 

the updated format of the constraint of each task assigned to a station in ALB problems, 

using TAOG. The constraint given in Equation 2.5 defines the assignment according to 

the priority relationship between the two selected tasks. The predecessor of any task must 

be assigned to the same or previous station. It is the updated format of the priority 

constraint in ALB problems using TAOG. The constraint given by Equation 2.6 explains 

that the sum of the durations of the tasks assigned to any station cannot exceed the cycle 

time if the station is opened. It is similar to the cycle time constraint found in ALB 
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problems. The constraints given by Equation 2.7 – 2.9 determine the data type of decision 

variables and auxiliary variables. 

An Illustrative Example: 

The mathematical model of the DLB problem using TAOG, which was defined by 

Koc et al in 2009 and explained above, has been used by many researchers in the literature 

or transformed into different formats. This mathematical model is critical in terms of 

reaching the optimum result by considering all possible disassembly sequences. 

Therefore, this mathematical model forms the basis of the MTDLB problem developed 

within the scope of this thesis. In order to better understand the working logic of this 

mathematical model, an example do Koc et al create designed using the TAOG (given in 

Figure 2.29) in 2009, the task periods given in Table 2.2 and the cycle time being 10. 

The SSDLB mathematical model created by Koc et al in 2009 was coded with 

LINGO 9.0 and given with Appendix-01. The resulting best disassembly sequence is as 

given by Figure 2.30 and Table 2.3 gives the best DLB solution. 

Table 2.2. Disassembly tasks and processing times of Figure 2.24 for illustrative TAOG example 

Task 𝒊 𝒕𝒊 Task 𝒊 (continued) 𝒕𝒊 

1 3 13 8 

2 9 14 3 

3 5 15 3 

4 7 16 8 

5 3 17 8 

6 10 18 6 

7 4 19 6 

8 4 20 6 

9 5 21 7 

10 6 22 8 

11 6 23 3 

12 7   
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Figure 2.30. Optimal disassembly sequence for illustrative TAOG example 

 

Table 2.3. Optimal disassembly line assignment for illustrative TAOG example 

Stations Assigned Tasks 

1 3 

2 10, 15 

3 19, 23 

4 22 

 

2.1.5. Disassembly Level  for DLB problem 

DLB problems are divided into disassembly levels as complete and partial. 

Complete disassembly is the type in which all parts of the product are disassembled and 

all tasks in the precedence relation diagram are performed in sequence. Partial 

disassembly, on the other hand, is the type in which only certain parts of the product are 

disassembled, adhering to the precedence relation for profit. 

2.2. Parameter Types 

The types of parameters used in defining and solving the DLB problem are similar 

to the parameter types used in the ALB problem. It is collected in four main classes in 

total: Deterministic, where all parameters are considered to be completely known, 

Stochastic, which is considered to fit a certain statistical distribution, and Fuzzy, which 

is accepted to be valid at certain intervals, that is, has a membership function. The 

classification scheme is as given in Figure 2.31. 
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Figure 2.31. Parameter types scheme of DLB problem 

The main differences between the ALB problem and the DLB problem are given in 

Table 2.1. Here, it is seen that the uncertainty is higher in the DLB problem compared to 

the ALB problem. The degree of damage to the incoming products and possible errors 

that may occur during disassembling increase the uncertainty for the DLB problem. For 

this reason, the use of stochastic parameters for the DLB problem in the literature (see. 

(Bentaha et al., 2013; Ming et al., 2019; Tuncel et al., 2014)) moreover, the use of fuzzy 

parameters (see. (Kalayci et al., 2015; Seidi & Saghari, 2016; Zhang et al., 2017)) are 

quite common. However, the number of DLB problem studies in which the parameters 

are deterministic under certain assumptions in terms of modeling and computational 

convenience is the highest (Özceylan et al., 2019). In addition to all these, there are studies 

in the literature where some parameters are deterministic, some parameters are stochastic, 

and some parameters are fuzzy. 

2.3. Objective Functions 

The selection of the performance indicator to be optimized plays a critical role as 

well as the definition of the DLB problem. There are a wide variety of performance 

indicators used in DLB problem research in the literature. In some studies, more than one 

conflicting performance indicator can be used instead of one performance indicator. Such 

studies are called multi-objective. Classification according to objective function type is 

as given in Figure 2.32. 

Parameter Types 
of DLB problem

Deterministic Stochastic Fuzzy
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Figure 2.32. Objective function types scheme of DLB problem 

Some objective functions that are widely used in the literature are as given in Figure 

2.33. 

 

Figure 2.33. Mostly used objective functions of DLB problem 

Some of the frequently used objective functions for the DLB problem are given 

below. For all other objective functions, literature research studies can be looked at (see. 

(Özceylan et al., 2019)). 

Number of Workstations 

Objective 
Function Types 
of DLB problem

Single Objective Multi Objective

Mostly 
Used 
Objective 
Functions 
of DLB 
problem
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The most used objective function in the DLB literature is Number of Workstation. 

The goal is to perform certain disassembly tasks on the fewest number of workstations. 

Although it is modeled in different formats according to the way the problem is handled, 

when 𝑊 refers to the number of workstations, it is usually modeled as in Equation 2.10. 

𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆 𝑓1 = 𝑊 (2.10) 

Smoothness 

Another objective function most used in the DLB literature is the Smoothness 

Index. The aim is to reduce the idle time of the workstations as much as possible and to 

establish a balance between the workstations. 

Bir DL sisteminde, Cycle Time (𝐶𝑇) ve her bir 𝑗 ∈ {1, … , 𝑊} iş istasyonun 

çalışma süresi (𝑊𝑇𝑗) bilindiğinde, her bir 𝑗 ∈ {1, … , 𝑊} iş istasyonu için Idle Time (𝐼𝑇𝑗) 

Equation 2.11’deki gibi hesaplanır. Bu aynı zamanda istasyon sayısının en küçüklenmesi 

ile aynı anlamı taşımaktadır. 

In a DL system, given the Cycle Time (𝐶𝑇) and the uptime (𝑊𝑇𝑗) of each 𝑗 ∈

{1, … , 𝑊} workstation, the Idle Time (𝐼𝑇𝑗) for each 𝑗 ∈ {1, … , 𝑊} workstation is known. 

𝐼𝑇𝑗 is calculated as in Equation 2.11. This also has the same meaning as minimizing the 

number of stations. 

𝐼𝑇𝑗 = 𝐶𝑇 − 𝑊𝑇𝑗 ∀𝑗 ∈ {1, … , 𝑊} (2.11) 

 

In a DL system, the sum of the Idle Time(𝐼𝑇𝑗) squares of each 𝑗 ∈ {1, … , 𝑊} 

workstation must be minimized in order to ensure smoothness between workstations, that 

is, for the DL system to be Smooth. The modeling generally used in DLB studies aiming 

to minimize the Smoothness Index is as given in Equation 2.12. 

𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆 𝑓2 = ∑ 𝐼𝑇𝑗
2

𝑊

𝑗=1

= ∑(𝐶𝑇 − 𝑊𝑇𝑗)
2

𝑊

𝑗=1

 (2.12) 

 

2.4. Solution Methods 

Due to its nature, the DLB problem is included in the NP-Hard class. In other words, 

when the size of the case to be solved increases, the solution becomes impossible after a 
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certain case size, since the problem solution space increases exponentially. When an 

example of the NP-Hard class is given through the Traveling Salesman Problem (TSP), 

the number of alternative tours for the 5-city TSP is 5 factorial, ie 120 alternatives, while 

the number of alternative tours for the 10-city TSP is 10 factorial, ie 3628800, and for the 

20-city TSP, 2432902008176640000 alternative tours. Therefore, even if the distance 

calculation for each round takes 1 millisecond for a TSP problem with 20 cities, distance 

calculations can be made for all alternative solutions in 77146816.5962 years. In this and 

similar cases, heuristic/metaheuristic algorithms that give very close results are applied, 

although it is not known for sure that the optimum solution is. Sometimes, different 

transformations are made for the problem and a solution is sought with exact methods. 

Therefore, there is no limit to the solutions for the defined DLB problem. Within the 

scope of this study, the literature was scanned and the solution approaches for the DLB 

problem were classified as given in Figure 2.5. 

 

Figure 2.34. Solution methods scheme of DLB problem 

Integer Linear Programming (ILP) / Mixed Integer Linear Programming (MILP) / 

Non Linear Programming (NLP) based mathematical programming approaches are based 
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on solving the mathematical model developed for the problem using commercial software 

or coding the Branch-and-Bound algorithm. Since this approach guarantees the optimum 

solution, the method should be tried first. 

Exact methods are based on solving the problem with certain algorithms by relaxing 

or remodeling under certain assumptions in cases where a solution cannot be obtained 

with ILP/MILP/NLP based mathematical programming approaches. A typical example is 

searching for a solution with the Branch-and-Cut algorithm, which is the relaxed version 

of the Branch-and-Bound algorithm. 

Heuristic algorithms are preferred in cases where solutions cannot be obtained with 

ILP/MILP/NLP based mathematical programming approaches or for problems that 

cannot be mathematically modeled. These methods, which are based on a specific 

procedure, give the solution reached as the best solution when the stopping criterion ends. 

It can be developed according to a predefined procedure or according to the problem 

structure. 

Metaheuritic algorithms are frequently encountered solution methods in cases 

where solutions cannot be obtained with ILP/MILP/NLP based mathematical 

programming approaches. These algorithms allow optimization based on certain systems 

found in nature. For example, the Genetic Algorithm (GA) has emerged based on the 

theory of evolution found in nature. GA is a method of changing the coded solutions with 

Selection, Crossover and Mutation in each generation, resulting in new generations, and 

thus reaching the optimum solution in a short time by intelligently scanning the solution 

space. This and similar (Tabu Search algorithm, Particle Swarm Optimization algorithm, 

Artificial Bee Colony algorithm etc.) 

Generally, when the parameters are stochastic, simulation method is used to solve 

the DLB problem. Simulation is the repetitive testing of a system by modeling it in a 

computer environment. In this way, statistical information can be provided to the decision 

maker by finding average results because of stochastic parameters. Another method used 

to solve the DLB problem is Multi Criteria Decision Making (MCDM) methods. With 

this method, possible scenarios are designed for the solution of the problem and it is based 

on the selection of the best scenario by considering multiple criteria. In some multi-

objective studies, it is also used in the form of choosing the most appropriate scenario by 
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evaluating the undecided solution scenarios by multi-criteria.In addition to all these 

methods, some matheuristic methods have been used. This method is a hybrid of the exact 

method and metaheuristic approaches. The problem is relaxed and the optimum solution 

is sought, and the solution result is given as an input to the metaheuristic algorithm, where 

the rest of the problem is searched. The output found in the metaheuristic result is given 

as an input to the exact method and the process continues like this. Although there are not 

many matheuristic approaches for the DLB problem in the literature, the effectiveness of 

matheuristic approaches will be a good tool to be used for solving the DLB problem in 

the future. 
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3. LITERATURE REVIEW 

Güngör and Gupta first described the DLB problem in 1999 (Güngör & Gupta, 

1999b). McGovern and Gupta proved interest in the DLB problem has increased after it 

in 2007 that the DLB problem belongs to the NP-Hard class (McGovern & Gupta, 2007b). 

Today, the DLB problem is investigated and solved in a wide variety of ways. In this 

section, a detailed literature search has been made considering the DLB problem 

classification given in Section 2. 

The literature for the DLB problem was searched using Web of Science and Scopus 

databases. The search was carried out with "disassembly line balancing" in any part of 

the study in the literature. In this context, 147 studies, the oldest of which were published 

in 2001 and the latest in 2022, were found in the Web of Science database, and 217 studies 

were found in the Scopus database, the oldest of which was published in 2001 and the 

newest in 2022. The status of these studies being included in the databases, in turn, is as 

given in Table 3.1. 

Table 3.1. All DLB studies in literature 

Year Cite Conference 

Proceedings 

Journal 

Article 

Web of 

Science 

Scopus 

2001 (Güngör et al., 

2001) 

✓  ✓ ✓ 

(Gupta & Güngör, 

2001) 

✓  ✓ ✓ 

(Tang et al., 2001) ✓  ✓ ✓ 

(Güngör & Gupta, 

2001) 

 ✓ ✓ ✓ 

2003 (McGovern & 

Gupta, 2003) 

✓  ✓ ✓ 

2004 (McGovern & 

Gupta, 2004b) 

✓  ✓ ✓ 

(Altekin et al., 

2004) 

✓  ✓ ✓ 

(McGovern & 

Gupta, 2004a) 

✓   ✓ 

(Kizilkaya & 

Gupta, 2004) 

✓  ✓ ✓ 
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(McGovern & 

Gupta, 2004c) 

✓  ✓ ✓ 

2005 (Duta et al., 2005) ✓   ✓ 

(McGovern & 

Gupta, 2005a) 

 ✓  ✓ 

(Kizilkaya & 

Gupta, 2005) 

✓   ✓ 

(Lambert & Gupta, 

2005a) 

✓   ✓ 

(Lambert & Gupta, 

2005b) 

✓   ✓ 

(McGovern & 

Gupta, 2005b) 

✓   ✓ 

(Prakash & Tiwari, 

2005) 

✓  ✓ ✓ 

(Turowski et al., 

2005) 

✓  ✓ ✓ 

2006 (Johar & Gupta, 

2006) 

✓  ✓ ✓ 

(McGovern & 

Gupta, 2006a) 

✓  ✓ ✓ 

(McGovern & 

Gupta, 2006b) 

 ✓ ✓ ✓ 

(McGovern & 

Gupta, 2006c) 

 ✓ ✓ ✓ 

2007 (Lambert, 2007) ✓   ✓ 

(McGovern & 

Gupta, 2007a) 

✓   ✓ 

(McGovern & 

Gupta, 2007b) 

 ✓ ✓ ✓ 

(McGovern & 

Gupta, 2007c) 

 ✓ ✓ ✓ 

2008 (Agrawal & Tiwari, 

2008) 

 ✓ ✓ ✓ 

(Altekin et al., 

2008) 

 ✓ ✓ ✓ 

(Duta et al., 2008) ✓   ✓ 

2009 (Ding et al., 2009)  ✓  ✓ 
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(Koc et al., 2009)  ✓ ✓ ✓ 

2010 (Ding et al., 2010)  ✓ ✓ ✓ 

2011 (Kalayci & Gupta, 

2011) 

✓   ✓ 

2013 (Aydemir-Karadag 

& Turkbey, 2013) 

 ✓ ✓ ✓ 

(Bentaha et al., 

2013a) 

✓   ✓ 

(Bentaha et al., 

2013b) 

✓   ✓ 

(Bentaha et al., 

2013c) 

✓   ✓ 

(Bentaha et al., 

2013d) 

✓  ✓ ✓ 

(Bentaha et al., 

2013e) 

✓  ✓ ✓ 

(Kalayci & Gupta, 

2013a) 

 ✓ ✓ ✓ 

(Kalayci & Gupta, 

2013b) 

✓   ✓ 

(Kalayci & Gupta, 

2013c) 

 ✓  ✓ 

(Kalayci & Gupta, 

2013d) 

 ✓ ✓ ✓ 

(Kalayci & Gupta, 

2013e) 

 ✓ ✓ ✓ 

(B. Y. Liu et al., 

2013) 

✓   ✓ 

(Özceylan & 

Paksoy, 2013) 

 ✓ ✓ ✓ 

(Paksoy et al., 

2013) 

 ✓ ✓ ✓ 

2014 (Avikal, Jain, & 

Mishra, 2014) 

 ✓ ✓ ✓ 

(Avikal, Jain, 

Yadav, et al., 2014) 

✓  ✓ ✓ 

(Avikal, Mishra, et 

al., 2014) 

 ✓ ✓ ✓ 
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(Bentaha et al., 

2014a) 

✓  ✓ ✓ 

(Bentaha et al., 

2014b) 

✓   ✓ 

(Bentaha et al., 

2014c) 

✓  ✓ ✓ 

(Bentaha et al., 

2014d) 

 ✓ ✓ ✓ 

(Habibi et al., 

2014) 

✓  ✓ ✓ 

(Igarashi, Yamada, 

& Inoue, 2014) 

 ✓  ✓ 

(Igarashi, Yamada, 

Itsubo, et al., 2014) 

 ✓  ✓ 

(Kalayci & Gupta, 

2014) 

 ✓ ✓ ✓ 

(Minca et al., 2014)  ✓ ✓ ✓ 

(Özceylan & 

Paksoy, 2014a) 

 ✓ ✓ ✓ 

(Özceylan & 

Paksoy, 2014b) 

 ✓ ✓ ✓ 

(Özceylan et al., 

2014) 

 ✓ ✓ ✓ 

(Tuncel et al., 

2014) 

 ✓ ✓ ✓ 

(X. Zhu et al., 

2014) 

 ✓  ✓ 

2015 (Bentaha et al., 

2015) 

 ✓ ✓ ✓ 

(Hezer & Kara, 

2015) 

 ✓ ✓ ✓ 

(Kalayci, Hancilar, 

et al., 2015) 

 ✓ ✓ ✓ 

(Kalayci, Polat, et 

al., 2015) 

 ✓ ✓ ✓ 

(McGovern & 

Gupta, 2015) 

 ✓ ✓ ✓ 

(Süleyman Mete et 

al., 2015) 

✓   ✓ 
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(Riggs et al., 2015)  ✓ ✓ ✓ 

2016 (Altekin, 2016) ✓  ✓ ✓ 

(Avikal et al., 

2016) 

 ✓  ✓ 

(Avikal, 2016)  ✓  ✓ 

(Duta et al., 2016) ✓  ✓ ✓ 

(Filipescu et al., 

2016) 

✓  ✓ ✓ 

(Hao & Hasan, 

2016) 

 ✓  ✓ 

(Igarashi et al., 

2016) 

 ✓ ✓ ✓ 

(Kalaycılar et al., 

2016) 

 ✓ ✓ ✓ 

(Kalayci et al., 

2016) 

 ✓ ✓ ✓ 

(Süleyman Mete, 

Çil, Ağpak, et al., 

2016) 

 ✓ ✓ ✓ 

(Süleyman Mete, 

Çil, Özceylan, et 

al., 2016) 

✓  ✓ ✓ 

(Seidi & Saghari, 

2016) 

 ✓ ✓ ✓ 

(Z. Zhang et al., 

2016) 

 ✓  ✓ 

2017 (Altekin, 2017)  ✓ ✓ ✓ 

(Ilgin et al., 2017)  ✓ ✓ ✓ 

(Jia Liu & Wang, 

2017) 

 ✓ ✓ ✓ 

(Jia & Shuwei, 

2017) 

✓  ✓ ✓ 

(Kannan et al., 

2017) 

 ✓ ✓ ✓ 

(L. Li et al., 2017)  ✓  ✓ 

(Süleyman Mete et 

al., 2017) 

✓   ✓ 

(Qiang et al., 2018) ✓  ✓  
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(Ren et al., 2017)  ✓ ✓ ✓ 

(K. Wang, Zhang, 

Mao, et al., 2017) 

 ✓  ✓ 

(K. Wang, Zhang, 

Zhu, et al., 2017) 

 ✓  ✓ 

(S. Xiao et al., 

2017) 

 ✓ ✓ ✓ 

(Z. Zhang et al., 

2017) 

 ✓ ✓ ✓ 

(Zou et al., 2017)  ✓  ✓ 

2018 (Battaïa et al., 

2018) 

 ✓ ✓ ✓ 

(Bentaha et al., 

2018) 

 ✓ ✓ ✓ 

(Y. Gao et al., 

2018) 

 ✓ ✓ ✓ 

(Jia Liu & Wang, 

2018) 

 ✓  ✓ 

(Jiayi Liu et al., 

2018) 

 ✓ ✓ ✓ 

(Kazancoglu & 

Ozturkoglu, 2018) 

 ✓ ✓ ✓ 

(L. Zhu et al., 2018)  ✓ ✓ ✓ 

(L. Li, Zhang, 

Guan, et al., 2018) 

 ✓  ✓ 

(L. Li, Zhang, Zhu, 

et al., 2018) 

 ✓  ✓ 

(Liuke et al., 2018)  ✓  ✓ 

(Süleyman Mete et 

al., 2018) 

 ✓ ✓ ✓ 

(Ning et al., 2018)  ✓  ✓ 

(Pistolesi et al., 

2018) 

 ✓ ✓ ✓ 

(Qiang et al., 2018) ✓   ✓ 

(Ren et al., 2018)  ✓ ✓ ✓ 

(Xia et al., 2018)  ✓  ✓ 

(Z. Zhang, Cai, et 

al., 2018) 

 ✓  ✓ 
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(Z. Zhang, Wang, 

Li, et al., 2018) 

 ✓  ✓ 

(Z. Zhang, Wang, 

Zhu, et al., 2018) 

 ✓  ✓ 

(Zheng et al., 2018)  ✓ ✓ ✓ 

(Zou, Zhang, Cai, 

et al., 2018) 

 ✓  ✓ 

(Zou, Zhang, Li, et 

al., 2018) 

 ✓  ✓ 

2019 (B. Liu, Xu, Liu, et 

al., 2019) 

✓  ✓ ✓ 

(Cai, Zhang, 

Zhang, et al., 2019) 

 ✓  ✓ 

(Cai, Zhang, Zou, 

et al., 2019) 

 ✓  ✓ 

(Cao et al., 2019)  ✓ ✓ ✓ 

(Deniz & Ozcelik, 

2019) 

 ✓ ✓ ✓ 

(Edis et al., 2019)  ✓ ✓ ✓ 

(Fang, Liu, et al., 

2019) 

 ✓ ✓ ✓ 

(Fang, Wei, et al., 

2019) 

✓  ✓ ✓ 

(Ilgin, 2019)  ✓ ✓ ✓ 

(J. Li, Chen, & 

Chu, 2019) 

✓  ✓ ✓ 

(J. Li, Chen, Zhu, et 

al., 2019) 

 ✓ ✓ ✓ 

(K. Wang, Li, & 

Gao, 2019a) 

 ✓ ✓ ✓ 

(K. Wang, Li, & 

Gao, 2019b) 

 ✓ ✓ ✓ 

(K. Wang, Li, Gao, 

et al., 2019) 

 ✓ ✓ ✓ 

(M. Liu, Liu, & 

Chu, 2019) 

✓  ✓ ✓ 

(M. Liu, Liu, Liu, 

et al., 2019) 

✓  ✓ ✓ 



 

52 

 

(Ming et al., 2019) ✓  ✓ ✓ 

(Özceylan et al., 

2019) 

 ✓ ✓ ✓ 

(Q. Liu, Li, Fang, et 

al., 2019) 

✓  ✓ ✓ 

(Ren et al., 2019) ✓  ✓ ✓ 

(S. Wang et al., 

2019) 

 ✓ ✓ ✓ 

(X. Li, Laili, 

Zhang, et al., 2019) 

✓   ✓ 

(Yang et al., 2019)  ✓ ✓ ✓ 

(Z. Li, Kucukkoc, 

& Zhang, 2019) 

 ✓ ✓ ✓ 

(Zeng et al., 2019) ✓   ✓ 

(Z. Zhang et al., 

2019) 

 ✓  ✓ 

(R. Zhou et al., 

2019) 

✓  ✓ ✓ 

2020 (Budak, 2020)  ✓ ✓ ✓ 

(C. Xu et al., 2020) ✓  ✓ ✓ 

(Cevikcan et al., 

2020) 

 ✓ ✓ ✓ 

(Q. Chen et al., 

2020) 

✓   ✓ 

(Çil et al., 2020)  ✓ ✓ ✓ 

(Diri Kenger et al., 

2020) 

 ✓ ✓ ✓ 

(Fang & Xu, 2020)  ✓  ✓ 

(Fang, Ming, et al., 

2020) 

 ✓ ✓ ✓ 

(Fang, Xu, et al., 

2020) 

 ✓ ✓ ✓ 

(Fang, Zhang, et 

al., 2020) 

✓   ✓ 

(He et al., 2020)  ✓ ✓ ✓ 

(Jiayi Liu et al., 

2020) 

 ✓ ✓ ✓ 
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(K. Wang, Gao, et 

al., 2020) 

 ✓ ✓ ✓ 

(K. Wang, Li, et al., 

2020) 

 ✓ ✓ ✓ 

(K. Z. Gao et al., 

2020) 

 ✓ ✓ ✓ 

(Kaya et al., 2020) ✓  ✓ ✓ 

(Kazancoglu & 

Ozkan-Ozen, 2020) 

 ✓ ✓ ✓ 

(Kucukkoc et al., 

2019) 

 ✓ ✓ ✓ 

(Kucukkoc, 2020)  ✓ ✓ ✓ 

(L. Zhu, Zhang, & 

Guan, 2020) 

 ✓ ✓ ✓ 

(L. Zhu, Zhang, 

Wang, et al., 2020) 

 ✓ ✓ ✓ 

(Laili et al., 2020)  ✓ ✓ ✓ 

(Luo et al., 2020) ✓   ✓ 

(M. Liu et al., 

2020) 

 ✓ ✓ ✓ 

(Meng & Zhang, 

2020) 

 ✓ ✓ ✓ 

(Gui Bin Qin et al., 

2020) 

✓  ✓ ✓ 

(Ren et al., 2020)  ✓ ✓ ✓ 

(T. Y. Wang et al., 

2020) 

✓  ✓ ✓ 

(Wu et al., 2020) ✓  ✓ ✓ 

(Xia et al., 2020)  ✓ ✓ ✓ 

(Y. Xu et al., 2020) ✓   ✓ 

(Ying Zhang et al., 

2020) 

 ✓  ✓ 

(Y. Zhou et al., 

2020) 

 ✓ ✓ ✓ 

(Yuan et al., 2020) ✓  ✓ ✓ 

(Z. Li et al., 2020)  ✓ ✓ ✓ 

(Z. W. Zhang et al., 

2020) 

✓  ✓ ✓ 
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(Zeng et al., 2020)  ✓  ✓ 

2021 (ÇİL, 2021)  ✓ ✓ ✓ 

(Dalle Mura et al., 

2021) 

 ✓ ✓ ✓ 

(Diri Kenger et al., 

2021) 

 ✓ ✓ ✓ 

(Edis, 2021)  ✓ ✓ ✓ 

(Goksoy Kalaycilar 

et al., 2021) 

 ✓ ✓ ✓ 

(GuiBin Qin et al., 

2021) 

✓   ✓ 

(He, Chu, Dolgui, 

et al., 2021) 

 ✓ ✓ ✓ 

(He, Chu, Zheng, et 

al., 2021) 

 ✓ ✓ ✓ 

(Hu et al., 2021)  ✓ ✓ ✓ 

(J. C. Chen et al., 

2021) 

 ✓ ✓ ✓ 

(J. Liang et al., 

2021) 

 ✓ ✓ ✓ 

(Jiang et al., 2021)  ✓  ✓ 

(K. Wang, Li, Gao, 

Li, et al., 2021b) 

 ✓  ✓ 

(K. Wang, Li, Gao, 

& Li, 2021a) 

 ✓  ✓ 

(K. Wang, Li, Gao, 

& Li, 2021b) 

 ✓  ✓ 

(K. Wang, Li, Gao, 

Li, et al., 2021a) 

 ✓ ✓ ✓ 

(Kanagaraj et al., 

2021) 

 ✓ ✓  

(L. Zhang et al., 

2021) 

 ✓ ✓ ✓ 

(M. Liu et al., 

2021) 

 ✓ ✓ ✓ 

(Mei & Fang, 

2021) 

✓   ✓ 
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(Mutlu & Güner, 

2021) 

✓   ✓ 

(P. Liang et al., 

2021) 

 ✓ ✓  

(Q. Xiao et al., 

2021) 

 ✓ ✓ ✓ 

(Suleyman Mete & 

Serin, 2021) 

✓   ✓ 

(X. Liu et al., 2021)  ✓ ✓ ✓ 

(Xie et al., 2021)  ✓  ✓ 

(Y. Wang et al., 

2021) 

 ✓  ✓ 

(Yılmaz & Yazıcı, 

2021) 

 ✓ ✓ ✓ 

(Yin et al., 2021)  ✓ ✓ ✓ 

(Yolmeh & Saif, 

2021) 

 ✓ ✓ ✓ 

(Yu Zhang et al., 

2021) 

 ✓ ✓ ✓ 

(Z. Li & 

Janardhanan, 2021) 

 ✓ ✓ ✓ 

2022 (Yin et al., 2022)  ✓  ✓ 

 

When we look at the DLB studies scanned in Web of Science and Scopus, it is seen 

that a record has been broken with 37 studies in 2020 and 32 studies have been published 

as of 2021, which we are currently in. When we look at the distribution of DLB studies 

based on years given in Figure 3.1, it can be deduced that DLB studies are given 

importance today. 
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Figure 3.1. DLB studies by years (indexed in web-of-science and scopus) 

91% of the DLB studies in the literature, that is, the majority of them, have the 

straight-line format. 4% of the DLB studies in the literature have U-shaped line, 3% two-

sided line and 2% parallel line format. This statistic is visualized in Figure 3.2. 

 

Figure 3.2. Line layout types piechart for DLB studies in literature 

94% of the DLB studies in the literature, that is, the majority of them, have the 

single-model format. 0% of the DLB studies in the literature have multi-model line, 6% 

mixed-model format. This statistic is visualized in Figure 3.3. 
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Figure 3.3. Model types piechart for DLB studies in literature 

83% of the DLB studies in the literature, that is, the majority of them, have the 

completely disassembly format. 17% of the DLB studies in the literature have partially 

disassemblys format. This statistic is visualized in Figure 3.4. 

 

Figure 3.4. Disassembly level piechart for DLB studies in literature 

61% of the DLB studies in the literature, that is, the majority of them, have the 

single objective format. 39% of the DLB studies in the literature have multi objective 

format. This statistic is visualized in Figure 3.5. 
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Figure 3.5. Objective function type piechart for DLB studies in literature 

88% of the DLB studies in the literature, that is, the majority of them, have the 

human worker format. 11% of the DLB studies in the literature have robotic workers, 1% 

human-robot collabroation format. This statistic is visualized in Figure 3.6. 

 

Figure 3.6. Worker type piechart for DLB studies in literature 

There are only 7 studies in the literature for the TDLB problem. When we look at 

the distribution of TDLB studies based on years given in Figure 3.7, it can be deduced 

that DLB studies are given importance today. 
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Figure 3.7. TDLB studies by years (indexed in web-of-science and scopus) 

For the TDLB problem, the studies in the literature were examined in detail and 

each study was classified as given in Table 3.2. Looking at this table, it is seen that the 

MTDLB problem was handled for the first time in the study published within the scope 

of this study and this is the only study that used TAOG for the TDLB problem. It 

adequately explains the importance and originality of this work. 

 

 

 

 

 

 

 

 

 

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

2001 2003 2004 2005 2006 2007 2008 2009 2010 2011 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

TDLB Studies by Years (Indexed in Web-of-Sciece and 
Scopus)

Conference Proceedings Journal Article



 

60 

 

Table 3.2. Classification of TDLB studies in literature 

Study Model 

Type 

Disassembly 

Level 

Precedence 

Diagram Type 

Objective 

Function 

Type 

Solution 

Method 

(Zou, Zhang, Li, et 

al., 2018) 

Single Completely Traditional Multi 

Objective 

Pareto Bat 

Algorithm 

(K. Wang, Li, Gao, 

et al., 2019) 

Single Partially Traditional Multi 

Objective 

Discrete 

Flower 

Pollination 

Algorithm 

(Kucukkoc, 2020) Single Completely AOG Single 

Objective 

2 - Genetic 

Algorithm 

(Mutlu & Güner, 

2021) 

Mixed Completely TAOG Multi 

Objective 

(Scalar) 

Memetic 

Algorithm 

(Yu Zhang et al., 

2021) 

Single Completely Traditional Single 

Objective 

Improved 

Whale 

Optimization 

Algorithm 

(J. Liang et al., 

2021) 

Single Completely Traditional Multi 

Objective 

Simulated 

Annealing 

Algorithm 

(Xie et al., 2021) Single Completely Traditional Multi 

Objective 

NSGA-II 
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4. MIXED-MODEL TWO-SIDED DISASSEMBLY LINE BALANCING 

PROBLEM 

In line with the ever-increasing technological developments and affluence, the size 

of the products is also increasing, as CRT televisions turn into LCD / LED televisions. At 

the same time, thanks to the increasing technological developments, the use of airplanes 

weighing more than 285 tons in air transportation, ships with a weight of more than 600 

thousand tons in sea transportation, and trucks that offer a transportation volume of up to 

100 cubic meters on the road have become widespread. According to the published 

statistical data, approximately 3 million trucks are produced worldwide in 2019, and 

approximately 79 million refrigerators are produced only in China in 2019 (Statista, 

2020a, 2020b). Considering that the average life of the products is 10-15 years and the 

maximum life is 25-30 years on average, when large-size products complete their life and 

become idle, that is, when they become EOL products, a high amount of resources will 

be idle and cause a high amount of pollution for nature. The recycling of these products 

is of great importance both financially and environmentally, and its importance is 

increasing day by day. 

The Two-Sided Assembly Line system has been developed in order to save time 

and cost for high-volume production of large-sized products and to prevent unnecessary 

movements such as rotation movements, and its applications in the literature (see. (Kim 

et al., 2009; Özcan & Toklu, 2009; Roshani et al., 2012; Tapkan et al., 2012)) provides 

very efficient production. Similarly, Two-Sided Disassembly Line systems are needed 

for disassembly of same/similar products and it is thought that there will be more 

requirements in the future. Indeed, a MILP mathematical model for the Single-Model 

Two-Sided Disassembly Line Balancing (STDLB) problem, in which only a strict 

disassembly sequence is taken into account using the Traditional Precedece Diagram and 

investigated as partial disassembly, has been developed by Wang et al. It was developed 

by Wang et al in 2019 (Wang et al., 2019b). After this study, 7 more studies dealing with 

the TDLB problem were presented to the literature. When we look at the studies in the 

literature for the TDLB problem, TAOG precedence diagram and mixed-model formation 

were used only in the study that emerged within the scope of this thesis (Mutlu & Güner, 

2021). There is great clarity in the literature for MTDLB problems using the TAOG 

precedence diagram, since the TAOG precedence diagram takes into account all possible 

disassembly sequences and it is necessary to disassemble more than one model on the 
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same line for real-life disassembly. Within the scope of this thesis, the MTDLB problem, 

which takes into account all possible disassembly sequences and allows disassembly of 

more than one product in the same disassembly line, has been investigated and a MILP 

mathematical model has been developed to define the problem. The considered 

disassembly line is as shown in Figure 4.1. In this disassembly system, the EOL A product 

with 12 disassembly processes and the EOL B product with 11 disassembly processes are 

disassembled on the same disassembly line working in two-sided synchrony and sent to 

the required warehouses. For example, on this figure, since the premise of the 𝐵4 

operation on the right side for the EOL A product is the 𝐵1  operation on the left side, 

although the 𝐵3 operation on the right was finished, the process could not be started 

directly and the 𝐵1  operation on the left was expected to be completed. Although these 

and similar restrictions cause idle times in stations, this system provides more efficient 

results than straight or U-shape lines as it completely removes the right-left rotations 

caused by large-sized products and provides faster disassembly by reducing the cycle 

time. provides the formation. In this way, the environmental impact for disassembly of 

large-sized products is minimized as much as possible. 
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Figure 4.1. Representation of mixed-model two-sided disassembly line 
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In this context, a MILP mathematical model has been defined in order to optimize 

the line design cost, disassembly process times and line stability for the MTDLB problem 

defined only by us in the literature. While using the mathematical model, 3 main sources 

were used. These resources are: 

1. ILP mathematical model by Koc et al in 2009, using the TAOG precedence 

diagram, which reaches the optimum result for the Single-Model Straight 

Disassembly Line Balancing (SSDLB) problem by considering all possible 

disassembly sequences. 

2. MILP mathematical model created for the Mixed-Model Two-Sided 

Assembly Line Balancing (MTALB) problem defined by Özcan & Toklu in 

2009. 

3. MILP mathematical model created by Paksoy et al in 2013 for the Mixed-

Model Straight Disassembly Line Balancing (MSDLB) problem, using the 

AOG precedence diagram, in which all possible sequences are considered. 

In this section, respectively; 

1. The TAOG precedence diagram used for the MTDLB problem is defined. 

2. The general scheme for the problem was presented by making the necessary 

assumptions for the MTDLB problem. 

3. Using the TAOG precedence diagram and assumptions defined for the 

MTDLB problem, the MILP mathematical model was developed by adding 

mandatory constraints and additional constraints in order to optimize the 

line design cost, disassembly process times and line stability. 

4. An illustrative example was created for the MTDLB problem and the 

defined MILP mathematical model was solved by arranging the objective 

functions as a single objective function in a hierarchical order. 

4.1. Transformed AND/OR Graph (TAOG) based Precedence Diagram for MTDLB 

Problem 

As mentioned in Sections 2 and 3, there are various precedence diagrams in the 

literature for the DLB problem. However, the insignificance of functionality for 

disassembly creates a flexible precedence diagram for assembly lines. AND/OR Graph 

based precedence diagram reflects real life more as it provides access to all possible 
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disassembly sequences. However, it has not been widely used in the literature, as it is 

difficult in terms of programming/modelling. For this reason, in 2009 Koç et al. suggested 

the Transformed AND/OR Graph (TAOG) based precedence diagram, which is easy for 

programming/modelling. Actually, the DLB problem, which reaches the optimum result 

in a very short time by considering all possible disassembly sequences, has shown its 

competence with the emergence of mathematical models. However, there is no 

mathematical model of the TDLB problem used in the TAOG precedence diagram in the 

literature. Therefore, within the scope of this study, the TAOG precedence diagram 

defined by Koç et al., 2009 was developed for the TDLB problem is given in Figure 4.2 

for the Flashlight product as an example application. 

 

Figure 4.2. Used TAOG based precedence diagram for Mixed-Model Two-Sided Disassembly Line 

Balancing (MTDLB) problem: (a) a sample product (flashlight), (b) AND/OR graph of flashlight, (c) 

Transformed AND/OR graph of flashlight, (d) TAOG of flashlight for MTDLB problem 

In the TAOG diagram for the TDLB problem given in Figure 4.2, the sub-assembly 

parts of the Flashlight product are given with a, AOG with b, TAOG with c and TAOG 

for the TDLB problem developed within the scope of this study. White nodes represent 

normal nodes (disassembly tasks), blue nodes represent artificial nodes. The only 

difference between the developed TAOG precedence diagram and the traditional TAOG 

precedence diagram is that it has a side that can be made for each of the normal nodes. 

Starting from the artificial node 𝐴0, only one of the normal nodes of each artificial node 
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connected with the OR Successor relationship is selected and continued. The precedence 

diagram is obtained when there is no other normal node to be selected. 

4.2. Assumptions for MTDLB Problem 

Some assumptions or definitions have been made for the MTDLB problem 

investigated in this thesis. These assumptions/descriptions in order: 

 The disassembly line has two-sided layout. 

 More than one different product can be disassembled in the disassembly 

line. 

 Each product has more than one disassembly sequence alternative and the 

mathematical model decides the best disassembly sequence. 

 Each job in the selected disassembly sequence must be assigned straight or 

reverse to a station. 

 There is a difference in processing times between jobs assigned to the same 

station. 

 If the predecessor jobs are assigned to reciprocal stations, the predecessor 

job cannot be started before the predecessor job is finished. 

 Each job has two types of assignability, straight or reverse, and jobs must 

be assigned to the appropriate station for the type to which they can be 

assigned. 

 The completion times of the jobs assigned to the station for each model 

cannot exceed the cycle time. 

4.3. Mixed-Integer Linear Programming (MILP) based Mathematical Model for 

MTDLB Problem 

A Mixed-Integer Linear Programming (MILP) based mathematical model has been 

developed for the MTDLB problem investigated in this thesis. First, the notation is 

specified for the developed mathematical model, and then the objective functions and 

constraints are specified. 

Scalars: 

𝑛𝐴 = max{𝑛𝐴𝑚} Number of total artificial nodes 

𝑛𝑁 = max{𝑛𝑁𝑚} Number of total normal nodes (tasks) 

𝑛𝐽   Number of available work-stations 
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𝑛𝑆   Number of sides 

𝑛𝑀   Number of models 

Indices and Sets: 

𝑘 ∈ {1, … , 𝑛𝐴} Set of artificial nodes. 

𝑖 ∈ {1, … , 𝑛𝑁}  Set of normal nodes (tasks). 

𝑗 ∈ {1, … , 𝑛𝐽}  Set of mated-stations. 

𝑠 ∈ {1, … , 𝑛𝑆}  Set of station sides. 

𝑃𝑅𝐸(𝑚, 𝑘, 𝑖) Set of immediate normal node 𝑖 predecessors of artificial 

nodes 𝑘 for each model 𝑚. 

𝑆𝑈𝐶(𝑚, 𝑘, 𝑖) Set of immediate normal node 𝑖 successors of artificial 

nodes 𝑘 for each model 𝑚. 

𝜃(𝑚, 𝑖, 𝑠) Set of station-sides 𝑠 where normal node 𝑖 can be made for 

each model 𝑚. 

Parameters: 

𝑛𝐴𝑚   Number of artificial nodes for each model 𝑚. 

𝑛𝑁𝑚   Number of normal nodes for each model𝑚. 

𝐶𝑚   Cycle time for each model . 

𝑡𝑖𝑚   Processing time of each normal task 𝑖 for each model 𝑚. 

Decision and Auxiliary Variables: 

𝐹𝑗 If mated-station 𝑗 is opened from both side, 1, otherwise, 0. 

𝐺𝑗 If mated-station 𝑗 is opened from only one side, 1, 

otherwise, 0. 

𝑈𝑗𝑠 If station 𝑗 is opened from station-side 𝑠, 1, otherwise, 0. 

𝛿ℎ𝑖 If task ℎ is made before task 𝑖, 1, otherwise, 0. 

𝛾𝑚𝑗𝑠 If station-side 𝑠 of station 𝑗 for model 𝑚 is opened, 1, 

otherwise, 0. 

𝑥𝑚𝑖𝑗𝑠 If station 𝑗 is opened from station-side 𝑠, 1, otherwise, 0. 
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4.3.1. Objective Functions of MTDLB Problem 

As mentioned in Section 2 and Section 3, a wide variety of objective functions can 

be used for the DLB problem. In this thesis, three objective functions, which are 

considered the most necessary for two-sided lines, are used. These objective functions 

are, respectively, minimizing the cost of line design (muting stations as much as possible 

for two-sided lines), minimizing the total processing time since TAOG precedence 

relations are used (minimizing the processing time will also minimize the resources used, 

such as electricity) and achieving line balance. The objective functions defined for the 

MTDLB problem are given in Equation 4.1 – 4.3, respectively. 

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒1 = 𝑴𝒊𝒏 ∑ 𝑗 × (𝐹𝑗 + 𝐺𝑗)

𝑛𝐽

𝑗=1

 (4.1) 

Equation 4.1 expresses the minimization of the design cost of the resulting 

disassembly line. In two-sided lines, it is desirable to open the stations as mutually as 

possible. In this way, the line is made as short as possible and space is saved. For example, 

while eight stations occupy a minimum of eight units in a straight disassembly line, a 

minimum of four units in a double-sided disassembly line. 

The second objective function for the MTDLB problem is to minimize the number 

of opened stations. This objective function is as given in Equation 4.2. 

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒2 = 𝑴𝒊𝒏 ∑ ∑ 𝑈𝑗𝑠

𝑛𝑆

𝑠=1

𝑛𝐽

𝑗=1

 (4.2) 

Equation 4.2 expresses the minimization of the number of opened stations in the 

disassembly line. While it is desired that the opened stations are mutual in the first 

objective function, it is aimed to minimize the number of opened stations. For example, 

if there are seven stations and eight stations as two-sided disassembly line alternatives 

that take up four units of space, the line with seven stations is preferred. However, while 

there are seven stations in the two-sided disassembly line, which takes up five units of 

space, there can be eight stations in the two-sided disassembly line that takes up four units 

of space. Which alternative is better in this case depends on the decision maker. 

Therefore, the second objective function of the MTDLB problem is to minimize the 

number of opened stations. 
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The third objective function for the MTDLB problem is to minimize the sum of the 

processing times of the selected disassembly operations. This objective function is as 

given in Equation 4.3. 

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒3 = 𝑴𝒊𝒏 ∑ ∑ 𝑡𝑚𝑖 × 𝑧𝑚𝑖

𝑛𝑁𝑚

𝑖=1

𝑛𝑀

𝑚=1

 (4.3) 

Equation 4.3 refers to the minimization of the sum of the disassembly operations 

times selected from the TAOG precedence relations of each model. The insignificance of 

functionality for disassembly leads to stretching of the priority relations, which in turn 

causes the tasks and task sequences to change. Although the number of studies in which 

a single disassembly sequence is used, just like in assembly lines, is quite high in the 

literature, it does not reflect the truth. TAOG, used in this study and developed by Koç et 

al in 2009, provides a systematic display of all disassembly sequences in one place using 

artificial and normal nodes. The aim is to minimize the processing times of the 

disassembly tasks in the selected disassembly sequence. 

4.3.2. Constraints of MTDLB Problem 

The constraints constituting the general lines of the MTDLB problem investigated 

within the scope of this thesis are as given in Equation 4.4 – 4.22. These constraints are 

indispensable constraints and in the absence of one of them, the problem ceases to be an 

MTDLB problem. 

∑ 𝑧𝑚𝑖

𝑖∈𝑆𝑈𝐶(𝑚,𝑘)

= 1 ∀𝑚 ∈ {1, … , 𝑛𝑀}, ∀𝑘 ∈ {0}  (4.4) 

∑ 𝑧𝑚𝑖

𝑖∈𝑆𝑈𝐶(𝑚,𝑘)

= ∑ 𝑧𝑚𝑖

𝑖∈𝑃𝑅𝐸(𝑚,𝑘)

 
∀𝑚 ∈ {1, … , 𝑛𝑀}, ∀𝑘 ∈

{1, … , 𝑛𝐴𝑚}  
(4.5) 

∑ ∑ 𝑥𝑚𝑖𝑗𝑠

𝑠∈𝜃(𝑚,𝑖)

𝑛𝐽

𝑗=1

= 𝑧𝑚𝑖  
∀𝑚 ∈ {1, … , 𝑛𝑀}, ∀𝑖 ∈

{1, … , 𝑛𝑁𝑚}  
(4.6) 

∑ ∑ ∑ 𝑥𝑚𝑖𝑣𝑠

𝑠∈𝜃(𝑚,𝑖)

𝑗

𝑣=1𝑖∈𝑃𝑅𝐸(𝑚,𝑘)

≥ ∑ ∑ 𝑥𝑚𝑖𝑗𝑠

𝑠∈𝜃(𝑚,𝑖)𝑖∈𝑆𝑈𝐶(𝑚,𝑘)

 

∀𝑚 ∈ {1, … , 𝑛𝑀}, ∀𝑗 ∈

{1, … , 𝑛𝐽}, ∀𝑘 ∈ {1, … , 𝑛𝐴𝑚}  
(4.7) 
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𝑡𝑓𝑚𝑖 ≤ 𝐶 × 𝑧𝑚𝑖 
∀𝑚 ∈ {1, … , 𝑛𝑀}, ∀𝑖 ∈

{1, … , 𝑛𝑁𝑚}  
(4.8) 

𝑡𝑓𝑚𝑖 ≥ 𝑡𝑚𝑖 × 𝑧𝑚𝑖  
∀𝑚 ∈ {1, … , 𝑛𝑀}, ∀𝑖 ∈

{1, … , 𝑛𝑁𝑚}  
(4.9) 

𝑡𝑓𝑚𝑖 − 𝑡𝑓𝑚ℎ + 𝐵𝑀

× (2 − ∑ 𝑥𝑚𝑖𝑗𝑠

𝑠∈𝜃(𝑚,𝑖)

− ∑ 𝑥𝑚ℎ𝑗𝑠

𝑠∈𝜃(𝑚,ℎ)

) ≥ 𝑡𝑚𝑖  

∀𝑚 ∈ {1, … , 𝑛𝑀}, ∀𝑗 ∈

{1, … , 𝑛𝐽}, ∀𝑘 ∈

{1, … , 𝑛𝐴𝑚}, ∀𝑖 ∈

𝑆𝑈𝐶(𝑚, 𝑘), ∀ℎ ∈ 𝑃𝑅𝐸(𝑚, 𝑘)  

(4.10) 

𝑡𝑓𝑚𝑖 − 𝑡𝑓𝑚ℎ + 𝐵𝑀

× (3 − 𝑥𝑚𝑖𝑗𝑠 − 𝑥𝑚ℎ𝑗𝑠

− 𝛿ℎ𝑖) ≥ 𝑡𝑚𝑖 

∀𝑚 ∈ {1, … , 𝑛𝑀}, ∀𝑗 ∈

{1, … , 𝑛𝐽}, ∀𝑠 ∈ {1, … , 𝑛𝑆}, ∀𝑖 ∈

{1, … , 𝑛𝑁𝑚}, ∀ℎ ∈ {𝑖 >

ℎ | 1, … , 𝑛𝑁𝑚}  

(4.11) 

𝑡𝑓𝑚ℎ − 𝑡𝑓𝑚𝑖 + 𝐵𝑀

× (2 − 𝑥𝑚𝑖𝑗𝑠 − 𝑥𝑚ℎ𝑗𝑠

+ 𝛿ℎ𝑖) ≥ 𝑡𝑚ℎ 

∀𝑚 ∈ {1, … , 𝑛𝑀}, ∀𝑗 ∈

{1, … , 𝑛𝐽}, ∀𝑠 ∈ {1, … , 𝑛𝑆}, ∀𝑖 ∈

{1, … , 𝑛𝑁𝑚}, ∀ℎ ∈ {𝑖 >

ℎ | 1, … , 𝑛𝑁𝑚}  

(4.12) 

∑ 𝑥𝑚𝑖𝑗𝑠

𝑖∈𝜃(𝑚,𝑠) ∩ 𝑖≤𝑛𝑁𝑚

− 𝑛𝑁𝑚 × 𝛾𝑚𝑗𝑠

≤ 0 

∀𝑚 ∈ {1, … , 𝑛𝑀}, ∀𝑗 ∈

{1, … , 𝑛𝐽}, ∀𝑠 ∈ {1, … , 𝑛𝑆}  
(4.13) 

∑ 𝛾𝑚𝑗𝑠

𝑛𝑀

𝑚=1

− 𝑛𝑀 × 𝑈𝑗𝑠 ≤ 0 ∀𝑗 ∈ {1, … , 𝑛𝐽}, ∀𝑠 ∈ {1, … , 𝑛𝑆}  (4.14) 

∑ 𝑈𝑗𝑠

𝑛𝑆

𝑠=1

− 2 × 𝐹𝑗 − 𝐺𝑗 = 0 ∀𝑗 ∈ {1, … , 𝑛𝐽}  (4.15) 

𝐹𝑗 , 𝐺𝑗 ∈ {0,1} ∀𝑗 ∈ {1, … , 𝑛𝐽}  (4.16) 

𝑈𝑗𝑠 ∈ {0,1} ∀𝑗 ∈ {1, … , 𝑛𝐽}, ∀𝑠 ∈ {1, … , 𝑛𝑆}  (4.17) 

𝛿𝑖ℎ ∈ {0,1} ∀𝑖, ℎ ∈ {1, … , 𝑛𝑁𝑚} (4.18) 

𝑧𝑚𝑖 ∈ {0,1} 
∀𝑚 ∈ {1, … , 𝑛𝑀}, ∀𝑖 ∈

{1, … , 𝑛𝑁𝑚}  
(4.19) 

𝑡𝑓𝑚𝑖 ≥ 0 
∀𝑚 ∈ {1, … , 𝑛𝑀}, ∀𝑖 ∈

{1, … , 𝑛𝑁𝑚}  
(4.20) 
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𝛾𝑚𝑗𝑠 ∈ {0,1} 
∀𝑚 ∈ {1, … , 𝑛𝑀}, ∀𝑗 ∈

{1, … , 𝑛𝐽}, ∀𝑠 ∈ {1, … , 𝑛𝑆}  
(4.21) 

𝑥𝑚𝑖𝑗𝑠 ∈ {0,1} 

∀𝑚 ∈ {1, … , 𝑛𝑀}, ∀𝑖 ∈

{1, … , 𝑛𝑁𝑚}, ∀𝑗 ∈ {1, … , 𝑛𝐽}, ∀𝑠 ∈

{1, … , 𝑛𝑆}  

(4.22) 

Equations 4.4 – 4.22 are the main constraints describing the MTDLB problem 

discussed in this thesis. Equations 4.4 – 4.6 ensures that a single disassembly sequence is 

selected for each model over the TAOG it belongs to, and that each selected normal node, 

that is, disassembly tasks, is assigned to a station on the side where it can be done. 

Equation 4.4 ensures that for each model, one of the normal nodes of the first artificial 

node (𝑘 = 0) on the TAOG it belongs to, which has a Successor relationship, is selected. 

Equation 4.5 ensures that for each model, except for the first artificial node on the TAOG 

it belongs to, if any of the normal nodes of the other artificial nodes (𝑘 > 0) with a 

Precedence relationship is selected, one of the normal nodes of the same artificial node 

with a Successor relationship is selected. Equation 4.6 ensures that if any normal node 

(disassembly task) is selected on the TAOG it belongs to for each model, that task is 

definitely assigned to a station on the side where it can be done. Equation 4.7 provides 

precedence relationships for each model. Artificial nodes on TAOG provide priority 

relations. For each model, except for the first artificial node on the TAOG it belongs to, 

the normal nodes of the other artificial nodes with a Precedence relationship are assigned 

to the same station before the normal nodes with the Successor relationship. Equation 4.8 

ensures that the end times of the normal nodes selected for each model are less than or 

equal to the cycle time. Equation 4.9 ensures that the expiry times of the normal nodes 

selected for each model are greater than or equal to the transaction time. Equation 4.10 

ensures that if two tasks with a predecessor relationship are assigned to the same station 

on the same side or mutually, the difference in finish times between the predecessor task 

and the other task is equal to the processing time of the other task. For each model, except 

for the first artificial node on the TAOG it belongs to, if each normal node of the other 

artificial nodes with a Precedence relationship and each normal node with a Successor 

relationship are assigned to the same station on the same side or reciprocally, the ending 

time of the normal node with the Successor relationship is calculated. Ensures that the 

finish time of the normal node with the Precedence relationship is as high as or more than 

the execution time of the normal node with the Successor relationship. In Equations 4.11 
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– 4.12, the difference in finish times between tasks assigned to the same station is adjusted 

according to which job has been done before. That is, only one task can be performed on 

the station at a time in its zone. Equations 4.13 – 4.15 are the necessary constraints for 

calculating objective functions. Equation 4.13, for each model, if there is a task processed 

on any mated station, information is if that mated station is opened on the transacted side. 

In Equation 4.14, if each mated station is opened on any side for any model, information 

is if that mated station is opened on that side. In Equation 4.15, for each mated station, if 

the number of stations opened on each side is two, it is mutually opened, if it is one, it is 

unilaterally opened. Equations 4.16 – 4.22 are the constraints by which the type of 

decision variables are determined. 

4.4. An Illustrative Example for MTDLB Problem 

An illustrative example was designed and solved by Paksoy et al by using Flashlight 

and Radio EOL products released by TAOG precedence relations in 2013 in order to test 

the accuracy of the model and to better understand the MTDLB problem, which was 

defined within the scope of this thesis and whose MILP-based mathematical model was 

developed.  

4.4.1. Description of Data 

The Flashlight EOL product has 10 disassembly tasks and the radio EOL product 

has 30 disassembly tasks. TAOG consisting of 10 normal nodes (disassembly task) and 8 

artificial nodes of the Flashlight product is given in Figure 4.3 and TAOG consisting of 

30 normal nodes (disassembly task) and 20 artificial nodes of the Radio EOL product is 

given in Figure 4.4. 

 

Figure 4.3. TAOG for EOL Flashlight product 
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Figure 4.4. TAOG for EOL Radio product 
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The processing times of the Flashlight EOL product are given in Table 4.1 in 

seconds as defined by Paksoy et al (2013). Also in this table are given the randomly 

generated possible sides for each disassembly task. Similarly, the processing times of the 

Radio EOL product are given in Table 4.2, as defined by Paksoy et al (2013), in seconds, 

and randomly generated sides for each disassembly task. Cycle times for both models are 

assumed 40 seconds. 

Table 4.1. The side information and processing times of the Flashlight EOL product 

# Tasks Side (1 – Left, 2 - Right) Processing Time (second) 

1 1 3 

2 2 28 

3 1 12 

4 1 34 

5 1, 2 13 

6 1, 2 21 

7 2 6 

8 2 18 

9 1 25 

10 1, 2 10 

 

Since commercial solvers such as GAMS, LINGO, Gurobi, which are available in 

the market, cannot give the solutions of multi-objective mathematical models, the 

objectives of the MTDLB problem defined in this thesis have been converted to 

hierarchical form as given in Equation 4.23. Here 𝜀 denotes a very small number. In this 

way, a degree of importance was given to each objective function and the multi-objective 

mathematical model was transformed into a single-objective mathematical model. 

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑖𝑒 = 𝑴𝒊𝒏(𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒1 + 𝜀 × 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒2 + 𝜀2 × 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒3) 

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑖𝑒 = 𝑴𝒊𝒏 (∑ 𝑗 × (𝐹𝑗 + 𝐺𝑗)

𝑛𝐽

𝑗=1

+ 𝜀 × ∑ ∑ 𝑈𝑗𝑠

𝑛𝑆

𝑠=1

𝑛𝐽

𝑗=1

+ 𝜀2

× ∑ ∑ 𝑡𝑚𝑖 × 𝑧𝑚𝑖

𝑛𝑁𝑚

𝑖=1

𝑛𝑀

𝑚=1

) 

(4.23) 

Equation 4.23 is the hierarchical objective function for the MTDLB problem. First, 

it is aimed to minimize the design cost of the disassembly line. Secondly, it is aimed to 
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minimize the number of opened stations in the disassembly line. Finally, it is aimed to 

minimize the sum of the disassembly operations times selected from the TAOG 

precedence relations of each model. 

Table 4.2. The side information and processing times of the Radio EOL product 

# Tasks Side (1 – Left, 2 - Right) Processing Time (second) 

1 2 11 

2 1 20 

3 1 20 

4 1, 2 14 

5 2 19 

6 2 1 

7 2 7 

8 1 6 

9 1 6 

10 1, 2 7 

11 1, 2 19 

12 1, 2 11 

13 1, 2 18 

14 1 13 

15 1 5 

16 1,2 11 

17 2 6 

18 2 4 

19 1, 2 6 

20 1 8 

21 2 18 

22 1 15 

23 1 15 

24 2 6 

25 2 10 

26 1, 2 20 

27 1 13 

28 1 1 

29 1, 2 4 

30 1, 2 5 
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4.4.2. Solution of Illustrative Example 

The MILP-based mathematical model created for the MTDLB problem was solved 

using Gurobi solver on an Intel i7 2.00 GHz processor with 8 GB ram computer. Python 

codes for Gurobi are given in Appendix 2. The optimum solution was reached in 1.33 

seconds. As a result of the solution, four stations were opened. While one mated station 

was opened mutually, two mated stations were opened unilaterally. Total disassembly 

line length was obtained as three units. Normal nodes (disassembly tasks) selected over 

TAOG for both models are given in Figure 4.5 and Figure 4.6. 

 

Figure 4.5. Optimal disassembly sequence of flashlight EOL product for illustrative MTDLB problem 

example 

 

Figure 4.6. Optimal disassembly sequence of radio EOL product for illustrative MTDLB problem 

example 

Detailed solution of MTDLB problem for Illustrative example is given in Table 4.3 

for Flashlight EOL product and Table 4.4 for Radio EOL product. At the same time, the 

resulting disassembly line is shown in Figure 4.7.  

Table 4.3. Disassembly line assignments and solution information of the Flashlight EOL product 

# Task Station Side Processing Time Starting Time Ending Time 

1 1 1 30 0 30 

3 2 2 12 25 37 

6 3 1 21 0 21 

7 3 1 6 21 27 

9 2 2 25 0 25 

10 3 1 10 27 37 
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Table 4.4. Disassembly line assignments and solution information of the Radio EOL product 

# Task Station Side Processing Time Starting Time Ending Time 

1 1 2 11 0 11 

3 1 1 20 11 31 

4 2 2 14 0 14 

5 2 2 19 14 33 

6 2 2 1 33 34 

9 3 1 6 9 15 

17 2 2 6 34 40 

29 3 1 4 0 4 

30 3 1 5 4 9 

 

 

Figure 4.7. Optimal disassembly line for illustrative MTDLB problem example 

For the Flashlight EOL product, three stations in three mated stations are used. Total 

disassembly time is 104 seconds. Therefore, the line efficiency for the Flashlight EOL 

product is 86.67%. For the Radio EOL product, four stations, which are in three mated 

stations, are used. Total disassembly time is 86 seconds. Therefore, the line efficiency for 

the Flashlight EOL product is 53.75%. Considering that equal amount of product comes 

from both EOL products, the efficiency of the line becomes 70.21%. However, since the 

efficiency of the line depends on the processing times and the number of stations opened, 

and one of the objectives of the MTDLB problem is to minimize the processing times, 
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the low efficiency remains inexpressive based on this problem. In order to minimize the 

environmental impact, the process times spent for disassembly should be minimized 

rather than the efficient operation of the line.  

The illustrative example that was resolved was for two small-volume industrial 

products. However, since the defined MTDLB problem takes into account large volume, 

multi-model products, when the number of models and product content increases, it will 

not be possible to reach the optimum result with commercial software due to the NP-hard 

nature of the problem. At the same time, although the MTDLB problem described is 

multi-objective, since commercial software does not have a multi-objective solver, the 

objectives were converted into a single objective format and optimum results were 

sought. However, the desired situation is to find the best results for each objective and 

show the results in the region called Pareto Frontier to the decision maker. The best 

solution among them is left to the decision maker. For this reason, a Multi-Objective 

Memetic Algorithm has been defined to solve the MTDLB problem described in the other 

section. 
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5. SOLUTION APPROACH – MULTI-OBJECTIVE MEMETIC ALGORITHM 

(MOMA) 

For the MTDLB problem defined in this thesis, when large-volume multi-model 

products are considered, it is not possible to reach the optimum result with commercial 

software. At the same time, the multi-objective nature of the problem limits the 

consideration of each objective function individually. Commercial software only obtains 

solutions for one objective. For all these reasons, a Multi-Objective Memetic Algorithm 

(MOMA) has been defined to solve the MTDLB problem described in this section. 

Memetic Algorithm (MA) is an advanced version of Genetic Algorithm (GA). GA 

is a metaheuristic algorithm that takes into account the evolutionary process in nature. It 

basically consists of Selection, Crossover and Mutation processes. Thanks to all these 

processes, populations similar to the old population but constantly improving themselves 

by taking the good characteristics of the old population are obtained. MA is the addition 

of Local Search algorithms to GA. Local Search is based on iterative improvement of an 

existing solution using a specific methodology. By adding any Local Search algorithm to 

the GA, an MA is obtained. In this section: 

1. Genetic Algorithm defined, 

2. Local Search algorithms defined, 

3. Memetic Algorithm defined, 

4. Multi-objective structure and Non-Dominated Sorted Genetic Algorithm – 

II (NSGA-II) algorithm are defined in metaheuristic algorithms, 

5. Multi-Objective Memetic Algorithm (MOMA) algorithm defined, 

6. The representation is defined for the solution of the MTDLB problem with 

MOMA. 

5.1. Genetic Algorithm (GA) 

GA is an artificial intelligence-based optimization algorithm used to obtain near-

optimal results thanks to biologically inspired operators such as Selection, Crossover and 

Mutation, taking into account the evolutionary process in nature. Alan Turing first 

discovered it in 1950 (Whitley, 1994). Each solution/individual has a feature that can 

change and/or mutate. Although these solutions are usually represented by zero and one 

(binary coding), different encoding types (permutation, integer coding) are also available 
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in the literature. GA enables solutions/individuals within a given population to evolve for 

the better.  

GA usually starts with an initial solution/population that is randomly generated or 

generated according to a specific procedure. Each iteration in the GA is called a 

generation. In each generation, the fitness value (objective function) is calculated for each 

solution/individual in the population. Among the individuals in the current population, 

solutions/individuals with a better fitness value are selected to create the new generation. 

Selected solutions/individuals are crossed among themselves according to certain 

procedures and new solutions/individuals are obtained. Usually, when the maximum 

number of generations is achieved, the algorithm is terminated and the best 

solution/solutions obtained so far are shown to the user. 

In order to implement GA, the representation of solutions/individuals (binary, 

permutation, integer etc. coding) and a fitness function are required. By standard, the 

representation of each solution/individual is a bit string of one and zero. However, the 

most appropriate display type is determined according to the nature of the problem. For 

example, the notation for the Traveling Salesman Problem (TSP), which is frequently 

encountered in the literature, is permutation coding. Permutation coding is preferred 

because each city is visited only once and the main important thing is to reveal the order 

in which the cities are visited. In this way, fitness function calculations can be made very 

easily over the representations of the population. It can also be used by combining all 

display formats according to the structure of the problem. 

After the representation and fitness value calculation for the GA is completed, the 

GA is started with an initial population and the solution is iteratively improved with the 

Selection, Crossover and Mutation operators. A typical GA is given in Figure 5.1. 
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Figure 5.1. Flowchart of Genetic Algorithm (GA) (Albadr et al., 2020) 

5.1.1. Selection Operator in GA 

In order to obtain new generations, two individuals are selected from the individuals 

in the current generation, and then crossover and mutation are applied. Selection of 

individuals in the current generation plays a critical role so that new individuals can 

develop the best solution. 

There are a wide variety of selection strategies developed for specific objectives for 

the new generations in the literature. 

The most used selection strategies are as follows: 

 Roulette Wheel Selection 

 Stochastic Universal Sampling (SUS) 

 Tournament Selection 

 Rank Selection 

 Random Selection 

Roulette Wheel Selection 
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Individuals in the current generation get a share from the circular wheel according 

to their fitness values. The sum of the shares of individuals in the current generation is 

100% as the whole of the circular wheel, or 360 degrees. The wheel is randomly rotated 

and the individual corresponding to the fixed point of the wheel is selected for crossover. 

The first individual selected for the second individual to be crossed is removed from the 

wheel and the vacant share is distributed to all individuals in proportion to their shares. 

The wheel is rotated randomly again and the individual corresponding to the fixed point 

of the wheel is selected for the second individual of the crossover. This is repeated for 

half the number of individuals in the generation (two parents are selected for two 

offspring in each iteration). 

In Roulette Wheel Selection calculations, when 𝑖𝑛 and 𝑖𝑛′ represent individuals in 

the current generation, 𝑛𝐼𝑁 represents the total number of individuals, 𝑝𝑖𝑛 represents the 

selection probability for each individual (the area it occupies on the wheel), and 𝑓𝑖𝑛 

represents the fitness value for each individual, Equation 5.1 is used in the first individual 

selection. 5.2 is used for second individual selection. 

𝑝𝑖𝑛 =
𝑓𝑖𝑛

∑ 𝑓𝑖𝑛′
𝑛𝐼𝑁
𝑖𝑛′=1

      ∀𝑖𝑛 ∈ {1, … , 𝑛𝐼𝑁} 𝑓𝑜𝑟 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠 

𝑝𝑖𝑛 =

1
𝑓𝑖𝑛

∑
1

𝑓𝑖𝑛′

𝑛𝐼𝑁
𝑖𝑛′=1

      ∀𝑖𝑛 ∈ {1, … , 𝑛𝐼𝑁} 𝑓𝑜𝑟 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠 

(5.1) 

𝑝𝑖𝑛 =
𝑝𝑖𝑛

∑ 𝑝𝑖𝑛′
𝑛𝐼𝑁
𝑖𝑛′=1 ∩ 𝑖𝑛′≠𝑠𝑙𝑐𝑡𝑑_𝑖𝑛𝑣

      ∀𝑖𝑛 ∈ {1, … , 𝑛𝐼𝑁} (5.2) 

A typical example for Roulette Wheel Selection is given in Figure 5.2. 

 

Figure 5.2. Representation of Roulette Wheel Selection method in GA 
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Stochastic Universal Sampling (SUS) Selection 

Stochastic Universal Sampling (SUS) Selection is the same as Roulette Wheel 

Selection. The only difference between the two is that while Roulette Wheel Selection 

has a single select point, Stochastic Universal Sampling (SUS) Selection has two select 

points. This results in a higher selection of individuals with low probability. The 

Stochastic Universal Sampling (SUS) Selection for a typical maximization problem is 

given in Figure 5.3. 

 

Figure 5.3. Representation of Stochastic Universal Sampling (SUS) Selection method in GA 

Tournament Selection 

Tournament Selection or K-Way Tournament Selection is the selection of k 

individuals from the population and choosing the best of the selected individuals as 

parents. The individual selected for the second parent is removed from the list and the 

process is repeated. Tournament Selection is very common in the literature as it can be 

applied for all kinds of fitness values. The Tournament Selection for a typical 

maximization problem is given in Figure 5.4. 

 

Figure 5.4. Representation of Tournament Selection method in GA 
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Rank Selection 

Rank Selection is generally used when individuals in the population have very close 

fitness values. Individuals in the population are ranked according to their fitness values. 

The ranked individuals have the probability of being selected according to their rank. It 

is the same as Roulette Wheel Selection. However, all individuals have a share according 

to their rank instead of a share according to their fitness value. Therefore, no matter how 

much the fitness value value is above the others, the selection rate is constant. The Rank 

Selection for a typical maximization problem is given in Figure 5.5. 

 

Figure 5.5. Representation of Rank Selection method in GA 

Random Selection 

Random Selection is the random selection of parents from the population. It is 

generally not preferred because good individuals are deleted from the population after a 

period. 

5.1.2. Crossover Operator in GA 

Obtaining new offspring individuals by crossing the individuals in the population 

among themselves can be defined as "crossover". In this way, the population is diversified 

and different points in the solution space are searched. 

There are many different crossover strategies in the literature. The choice of this 

strategy, which differs from the problem and coding style being addressed, is critical for 

an accurate scan of the solution space. 
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The most commonly used crossover strategies are as follows: 

 One/Single Point Crossover 

 Multi Point Crossover 

 Uniform Crossover 

 Whole Arithmatic Recombination Crossover 

 Davis’ Order Crossover (OX1) 

One/Single Point Crossover 

Two individuals selected for crossover are obtained by cutting from a 

predetermined crossover point or from a randomly determined crossover point in each 

crossover operation and adding them to each other to obtain two new individuals. 

Typically One/Single Point Crossover as given in Figure 5.6. 

 

Figure 5.6. A typically One/Single Point Crossover 

Multi Point Crossover 

Two individuals selected for crossover are two or more predetermined crossover 

points, or two new individuals are obtained by cutting them from randomly determined 

crossover points in each crossover operation and adding them to each other. Typically a 

Two Point Crossover is as given in Figure 5.7. 
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Figure 5.7. A typically Multi Point Crossover 

Uniform Crossover 

It is to obtain two new individuals by taking each nucleotide of the two individuals 

selected for crossover from the first or second individual in line with the randomly 

determined number and giving the remaining nucleotide to the other individual. Typically 

a Uniform Crossover is as given in Figure 5.8. 

 

Figure 5.8. A typically Uniform Crossover 

Whole Arithmetic Recombination Crossover 

Whole Arithmetic Recombination Crossover is generally used for continuous 

number coding. The chromosomes of the two individuals selected for crossover are 

formed by Equation 5.3. That is, the newly formed individuals are the arithmetic mean of 

the parent individuals depending on the parameter 𝑎, which takes a value between 0 and 
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1. A typical Whole Arithmetic Recombination Crossover for the 𝑎 = 0.5 case is as given 

in Figure 5.2. 

𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔1 = 𝑎 × 𝑥 + (1 − 𝑎) × 𝑦 

𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔2 = 𝑎 × 𝑦 + (1 − 𝑎) × 𝑥 
(5.3) 

The 𝑎 parameter used in Whole Arithmetic Recombination Crossover varies 

between 0 and 1. If this parameter is selected as 0 or 1, the new individuals formed are 

the same as the parent individuals, and if it is selected as 0.5 in the middle, the two newly 

formed individuals are the same. This situation is shown visually in Figure 5.9. In the 

case of choosing this crossover type, the selection of parameter a plays a critical role. 

 

Figure 5.9. Alpha parameter problem in Whole Arithmetic Recombination Crossover 

Typically a Whole Arithmetic Recombination is as given in Figure 5.10. 

 

Figure 5.10. A typically Whole Arithmetic Recombination Crossover 

Davis’ Order Crossover (OX1) 

The OX1 crossover method is generally preferred for permutation coding. The 

working algorithm is as follows: 
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1. Randomly generate two crossover points on the parent chromosomes and 

copy the parental segment between the two crossover points to the new 

offspring. 

2. Fill in the remaining blanks for the first offspring created from the second 

parent, in order not to be in the first offspring. 

3. Repeat step two for the second offspring. 

A typical example for the OX1 crossover method is as given in Figure 5.11. 

 

Figure 5.11. A typically Davis’ Order Crossover (OX1) 

5.1.3. Mutation Operator in GA 

Making a small random change in the chromosomes of individuals in order to 

provide diversity in the population and obtain new solutions can be defined as "mutation". 

The mutation is carried out within a certain rate. If this ratio is too small, the solutions 

will gather around the local optimum after a while, on the contrary, if it is too high, the 

algorithm will turn into a random search and it will be difficult to find local optimum 

points and global optimum points. Therefore, finding a very good mutation rate will both 

ensure that all local optimum points are found and escape from these local optimum 

points. 
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In the literature, there are various strategies related to mutation, just like crossover 

strategies. Although these strategies are used singularly in most studies, many studies 

combine multiple strategies. 

The most commonly used mutation strategies are as follows: 

 Bit Flip Mutation 

 Random Resetting Mutation 

 Swap Mutation 

 Scramble Mutation 

 Inversion Mutation 

Bit Flip Mutation 

It is the most used method in solutions that are usually coded with the Binary 

Coding method. This method is based on the conversion of one or more randomly selected 

nucleotides from the chromosome to their opposite. A typical Bit Flip Mutation is as 

given in Figure 5.12. 

 

Figure 5.12. A typically Bit Flip Mutation 

Random Resetting Mutation 

It is the converted format for Integer Coding of the Bit Flip Mutation method, which 

is frequently used for the Binary Coding method. This method is based on assigning a 

random value from a set of allowed values to one or more randomly selected nucleotides 

from the chromosome. A typical Bit Flip Mutation is as given in Figure 5.13. 

 

Figure 5.13. A typically Random Resetting Mutation 
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SWAP Mutation 

It is the most common mutation strategy in the literature, which can be used for any 

coding method. Usually used for Permutation Coding, this strategy is based on swapping 

two randomly selected nucleotides. A typical Swap Mutation is as given in Figure 5.14. 

 

Figure 5.14. A typically SWAP Mutation 

Scramble Mutation 

Scramble Mutation is another mutation strategy that can be used for any coding 

method such as the Swap Mutation strategy. Usually used for Permutation Coding, this 

strategy is based on randomly shuffling a randomly selected nucleotide subset. A typical 

Scramble Mutation is as given in Figure 5.15. 

 

Figure 5.15. A typically Scramble Mutation 

Inversion Mutation 

Inversion Mutation is another mutation strategy that can be used for any coding 

method such as Swap Mutation and Scramble Mutation strategies. Usually used for 

Permutation Coding, this strategy is based on inversion of a randomly selected subset of 

nucleotides. A typical Inversion Mutation is as given in Figure 5.16. 

 

Figure 5.16. A typically Inversion Mutation 
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5.2. Local Search Algorithms 

A Local Search algorithm is an optimization algorithm that starts with a solution 

and searches for the best solution by iteratively moving to a neighboring solution, 

adhering to a certain procedure. Local Search algorithms can only be applied when a 

neighborhood is defined. In this neighborhood graph theory, while the arcs between the 

nodes can be removed and connected to other nodes, it can be the candidate solution, 

while in the Traveling Salesman Problem (TSP), which is coded with permutation coding; 

two nucleotides can be changed with SWAP. The SWAP applied for TSP and the arc 

change applied for Graph Theory are actually the same, but there are structural 

differences. An example neighborhood with Graph Theory for the TSP problem is shown 

in Figure 5.17 (this is also known as three-opt algorithm), an example neighborhood for 

permuation coding is shown in Figure 5.18 (this is also known as SWAP). It is seen that 

the neighborhood shown in Figure 5.17 and the neighborhood shown in Figure 5.18 are 

the same. 

 

Figure 5.17. A neigbourhood solution with 3-opt algorithm for Travelling Salesman Problem 
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Figure 5.18. A neigbourhood solution with SWAP operator for Travelling Salesman Problem 

In Graph Theory, each solution has more than one neighbor solution when 

considering which arcs will be cut, which nucleotides will be replaced or changed in 

solutions with permutation or any encoding. In a 10-city TSP problem using permuation 

coding, approximately 55 neighbors are obtained with SWAP. The decision of which 

neighborhood to move to in the next iteration is made based on the current solution, 

neighboring solutions and the procedure used. It is stuck at the local optimum point when 

there are no optimizer neighbors left for the solution. The local optimum problem can be 

solved by switching to a completely different solution, using iterative 

algorithms/procedures such as Iterated Local Search (ILS). 

Termination of local search may be due to an iteration limit, not optimizing the best 

solution in a given iteration. Local search algorithms are typically approximate or 

incomplete algorithms, as the algorithm may terminate even before the solution found is 

global optimum. Because the global optimum solution may be too far from the current 

solution neighbors. 

Local search algorithms that are frequently preferred in the literature: 

 Hill Climbing Algorithm 

 k-Opt Algorithm 

 Simulated Annealing (SA) Algorithm 

 Tabu Search (TS) Algorithm 

 Variable Neighbourhood Search (VNS) Algorithm 

 Guided Local Search (GLS) Algorithm 
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Hill Climbing Algorithm 

Hill Climbing algorithm is a local search algorithm used for solving mathematical 

optimization problems. It is called Hill Climbing because it is based on searching for the 

highest points for a maximization problem on a two-dimensional graph. It is based on the 

principle of looking at the neighborhoods of the current solution, and when a better 

neighborhood is found, moving to that point and searching for the neighborhoods of that 

point. The Hill Climbing Algorithm pseudocode for a maximization problem is as given 

by Algorithm 5.1. 

Algorithm 5.1. Pseudocode of Hill Climbing Algorithm for a Maximization Problem 

1: 𝑖 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

2: 𝐰𝐡𝐢𝐥𝐞 𝑓(𝑠) ≤ 𝑓(𝑖)   ∀𝑠 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠(𝑖) 𝐝𝐨 

3: 𝑠 ← ∃𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠(𝑖) 

4: 𝐢𝐟 𝑓(𝑠) > 𝑓(𝑖) 𝐝𝐨 

5: 𝑖 ← 𝑠 

6: 𝐞𝐧𝐝 𝐢𝐟 

7: 𝐞𝐧𝐝 𝐰𝐡𝐢𝐥𝐞 

 

k-Opt Algorithm 

The k-Opt algorithm is a local search algorithm generally used for solving 

mathematical optimization problems using Graph Theory. The general usage in the 

literature is for solving the TSP problem. 𝑘 is the number of arcs to be cut from the Graph 

created for problem solving. Neighboring solutions are obtained by connecting the cut 

arcs to each other in a different way. A typical two-opt algorithm, when n represents the 

total number of arcs, is as given by Algorithm 5.2. 

Algorithm 5.2. Pseudocode of two-opt Algorithm for a Minimization Problem 

1: 𝑑𝑒𝑓𝑖𝑛𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝐺𝑟𝑎𝑝ℎ 𝑇ℎ𝑒𝑜𝑟𝑦 

2: 𝐟𝐨𝐫 (𝑖 = 1: 𝑛 − 2); (𝑗 = 𝑖 + 2: 𝑛) 𝐝𝐨 

3: 𝑑1 ← 𝑡𝑜𝑡𝑎𝑙 𝑙𝑒𝑛𝑔ℎ𝑡 𝑜𝑓 2 𝑎𝑟𝑐 

4: 𝑑2 ← 𝑡𝑜𝑡𝑎𝑙 𝑙𝑒𝑛𝑔ℎ𝑡 𝑜𝑓 2 𝑎𝑟𝑐 𝑤ℎ𝑒𝑛 𝑠𝑤𝑎𝑝𝑒𝑑 

5: 𝐢𝐟 𝑑1 > 𝑑2 𝐝𝐨 

6: 𝑠𝑤𝑎𝑝 𝑎𝑟𝑐𝑠 

7: 𝐞𝐧𝐝 𝐢𝐟 

8: 𝐞𝐧𝐝 𝐰𝐡𝐢𝐥𝐞 
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Simulated Annealing (SA) Algorithm 

A local search algorithm is often used for combinatorial optimization problems. 

The algorithm takes its name from annealing, a technique in metallurgical science where 

materials are heated and then controlled cooled to increase the size of crystals and reduce 

defects. Kirkpatrick et al. used to solve the TSP problem first introduced the Simulated 

Annealing (SA) algorithm in 1983 (Kirkpatrick et al., 1983). With the concept of slow 

cooling applied in the SA algorithm, as the solution space is explored, the rate of 

acceptance of bad solutions decreases. At the beginning of the algorithm, bad solutions 

are also accepted and it is desired to search for the global optimum point, but when the 

number of iterations increases and the temperature decreases, the aim is to search for the 

local optimum point instead of the global optimum. SA algorithm for a minimization 

problem 𝑠 current solution, 𝑠′ neighbour solution, 𝑇0 initial temperature, 𝑇 current 

temperature, 𝑇𝑓 final temperature, 𝑓(𝑠) and 𝑓(𝑠′) fitness value for candidate solutions, 𝑘 

temperature coefficient, 𝛥 is the difference in fitness value between the current and 

neighboring solution and 𝑎 is the temperature reduction coefficient as given by Algorithm 

5.3. 

Algorithm 5.3. Pseudocode of Simulated Annealing Algorithm for a Minimization 

Problem 

1: 𝑠 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

2: 𝑇 ← 𝑇0 

3: 𝐰𝐡𝐢𝐥𝐞 𝑇 < 𝑇𝑓  𝐝𝐨 

4: 𝐟𝐨𝐫 𝑖𝑡 = 1: 𝑛𝐼𝑇 𝐝𝐨 

5: 𝑠′ ← 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟(𝑠) 

6: 𝐢𝐟 𝑓(𝑠′) < 𝑓(𝑠) 𝐝𝐨 

7: 𝑠 ← 𝑠′ 

8: 𝐞𝐥𝐬𝐞 

9: 𝛥 ← 𝑓(𝑠′) − 𝑓(𝑠) 

10: 𝑟 ← 𝑟𝑎𝑛𝑑𝑜𝑚(0; 1) 

11: 
𝐢𝐟 𝑟 < exp(

−𝛥
𝑘×𝑇

) 𝐝𝐨 

12: 𝑠 ← 𝑠′ 

13: 𝐞𝐧𝐝 𝐢𝐟 

14: 𝐞𝐧𝐝 𝐢𝐟 

15: 𝐞𝐧𝐝 𝐟𝐨𝐫 

16: 𝑇 ← 𝑎 × 𝑇 

17: 𝐞𝐧𝐝 𝐰𝐡𝐢𝐥𝐞 
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Tabu Search (TS) Algorithm 

Tabu Search (TS) algorithm is a local search algorithm used for solving 

mathematical optimization problems. It was first proposed by Fred W. Glover in 1986 

(Glover, 1986) and developed in 1989 (Glover, 1989). As with other local search 

algorithms, the TS algorithm checks its neighbors to find a better result. If there is no 

improvement, that is, if it is stuck at the local optimum, the algorithm loosens the ground 

rule and starts to accept worse solutions. In addition, certain penalties (taboos) are applied 

to prevent visiting previously visited points. If a neighboring solution has been visited 

before in a short time, it is included in the Tabu List. This improves search performance. 

The TS algorithm for a minimization problem is as given by Algorithm 5.4 when 𝑠 is the 

current solution, 𝑠′ is the neighboring solution, 𝑓(𝑠) and 𝑓(𝑠′) is the fitness value for the 

candidate solutions, and 𝑛𝑇 is the maximum number of Tabu List elements. 

Algorithm 5.4. Pseudocode of Tabu Search Algorithm for a Minimization Problem 

1: 𝑠 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

2: 𝑇𝑎𝑏𝑢 𝐿𝑖𝑠𝑡 ← ∅ 

3: 𝐟𝐨𝐫 𝑖𝑡 = 1: 𝑛𝐼𝑇 𝐝𝐨 

4: 𝑠′ ← 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟(𝑠) 

5: 𝐢𝐟 (𝑠′ ∉ 𝑇𝑎𝑏𝑢 𝐿𝑖𝑠𝑡)  ∩  (𝑓(𝑠′) < 𝑓(𝑠) 𝐝𝐨 

6: 𝑠 ← 𝑠′ 

7: 𝐞𝐧𝐝 𝐢𝐟 

8: 𝑇𝑎𝑏𝑢 𝐿𝑖𝑠𝑡 ← 𝑇𝑎𝑏𝑢 𝐿𝑖𝑠𝑡 ∪ 𝑠′ 

9: 𝐢𝐟 𝑛(𝑇𝑎𝑏𝑢 𝐿𝑖𝑠𝑡) > 𝑛𝑇 𝐝𝐨 

10: 𝑇𝑎𝑏𝑢 𝐿𝑖𝑠𝑡 ← 𝑇𝑎𝑏𝑢 𝐿𝑖𝑠𝑡 − 𝑇𝑎𝑏𝑢 𝐿𝑖𝑠𝑡 (1) 

11: 𝐞𝐧𝐝 𝐢𝐟 

12: 𝐞𝐧𝐝 𝐟𝐨𝐫 

 

Iterated Local Search (ILS) Algorithm 

Iterated Local Search (ILS) is a local search algorithm often used for combinatorial 

optimizations problem solving. The typical feature of local search algorithms is that they 

are stuck at the local optimum point. A local search is performed, starting from different 

initial solutions, with a change made in the ILS algorithm each time. This is called 

“Iterated” local search and the information produced in previous local search stages is not 

used. Typically in the ILS algorithm: 

1. The local optimum point is searched for the current solution (other local 

search algorithms can be used). 
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2. With Perturbation (Mutation), the existing solution is disrupted and a 

different point is obtained. 

3. Step 1 is repeated. 

The ILS algorithm for a minimization problem is as given by Algorithm 5.5 when 

𝑠 is the current solution, 𝑠′ is the neighboring solution, 𝑓(𝑠) and 𝑓(𝑠′) is the fitness value 

for the candidate solutions, and 𝑛𝐼𝑇 is the maximum number of iterations. 

Algorithm 5.5. Pseudocode of Iterated Local Search (ILS) Algorithm for a 

Minimization Problem 

1: 𝑠 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

2: 𝑠 ← 𝐿𝑜𝑐𝑎𝑙 𝑆𝑒𝑎𝑟𝑐ℎ (𝑠) 

3: 𝐟𝐨𝐫 𝑖𝑡 = 1: 𝑛𝐼𝑇 𝐝𝐨 

4: 𝑠′ ← 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑠) 

5: 𝑠′ ← 𝐿𝑜𝑐𝑎𝑙 𝑆𝑒𝑎𝑟𝑐ℎ (𝑠′) 

6: 𝐢𝐟 𝑓(𝑠′) < 𝑓(𝑠) 𝐝𝐨 

7: 𝑠 ← 𝑠′ 

8: 𝐞𝐧𝐝 𝐢𝐟 

9: 𝐞𝐧𝐝 𝐟𝐨𝐫 

 

Variable Neighbourhood Search (VNS) Algorithm 

The Variable Neighborhood Search (VNS) algorithm is a local search algorithm 

that is generally used to solve combinatorial optimization problems. Mladenovic and 

Hansen first proposed it in 1997 (Mladenović & Hansen, 1997). It uses multiple 

neighborhood structures instead of using a single neighborhood structure as in other local 

search algorithms. Local search is performed with this randomly selected neighborhood 

structure in each iteration. The VNS algorithm for a minimization problem is as given by 

Algorithm 5.6 when 𝑠 is the current solution, 𝑠′ is the neighboring solution, 𝑓(𝑠) and 

𝑓(𝑠′) is the fitness value for the candidate solutions, and 𝑛𝐼𝑇 is the maximum number of 

iterations. 
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Algorithm 5.6. Pseudocode of Variable Neighbourhood Search (VNS) Algorithm for 

a Minimization Problem 

1: 𝑠 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

2: 𝑁𝑖𝑡   ∀𝑖𝑡 ∈ {1, … , 𝑛𝐼𝑇}
← 𝑠𝑒𝑡 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

3: 𝐟𝐨𝐫 𝑖𝑡 = 1: 𝑛𝐼𝑇 𝐝𝐨 

4: 𝑠′ ← 𝑆ℎ𝑎𝑘𝑖𝑛𝑔(𝑠, 𝑁𝑖𝑡) 

5: 𝑠′′ ← 𝐿𝑜𝑐𝑎𝑙 𝑆𝑒𝑎𝑟𝑐ℎ (𝑠′) 

6: 𝐢𝐟 𝑓(𝑠′′) < 𝑓(𝑠) 𝐝𝐨 

7: 𝑠 ← 𝑠′′ 

8: 𝐞𝐧𝐝 𝐢𝐟 

9: 𝐞𝐧𝐝 𝐟𝐨𝐫 

 

Guided Local Search (GLS) Algorithm 

Guided Local Search (GLS) algorithm is a local search algorithm used for solving 

mathematical optimization problems. Penalties are created during the search in the GLS 

algorithm. It is similar to the TS algorithm due to its structure. However, while the 

solutions with penalties in the TS algorithm are the same, the penalties in the GLS 

algorithm are stuck at the local optimum point. The objective function is changed when 

the GLS is fitted at a local optimum point. The algorithm then uses an augmented 

objective function to extract the search from the local optimum point. The basic logic of 

GLS is to change the objective function according to the predetermined features. The 

GLS algorithm for a minimization problem is as given by Algorithm 5.7 when 𝑠 is the 

current solution, 𝑠′ is the neighboring solution, 𝑝𝑖 is the penalty value for each feature, 

𝑛𝐹 is the maximum number of features, and 𝑛𝐼𝑇 is the maximum number of iterations. 

Algorithm 5.7. Pseudocode of Guided Local Search Algorithm for a Minimization 

Problem 

1: 𝑠 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

2: 𝑝𝑖 ← 0   ∀𝑖 ∈ {1, … , 𝑛𝐹} 

3: ℎ ← 𝑔 + 𝜆 × ∑ 𝑝𝑖 × 𝐼𝑖 

4: 𝐟𝐨𝐫 𝑖𝑡 = 1: 𝑛𝐼𝑇 𝐝𝐨 

5: 𝑠′ ← 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝑠, ℎ) 

6: 𝑢𝑡𝑖𝑙𝑖 ← 𝐼𝑖(𝑠′) ×
𝑐𝑖

1 + 𝑝𝑖
   ∀𝑖 ∈ {1, … , 𝑛𝐹} 

7: 𝑝𝑖 ← 𝑝𝑖 + 1   ∀𝑖 ∈ {𝑢𝑖  𝑖𝑠 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 | 1, … , 𝑛𝐹} 

8: 𝑠 ← 𝑠′ 

9: 𝐞𝐧𝐝 𝐟𝐨𝐫 
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5.3. Memetic Algorithm (MA) 

Memetic Algorithm (MA) is an extension of GA. A local search technique is used 

in addition to GA to reduce the possibility of early convergence (Cotta et al., 2018). MA 

represents one of the areas of research that has grown quite recently, as it has achieved 

quite good results by combining discrete individual learning and composite population 

learning in solving optimization problems. 

Pablo Moscato introduced MA in 1989, influenced by Darwin's principles of natural 

evolution and Dawkins' concept of memes (P. Moscato & Cotta Porras, 2003). The MA 

is a GA combined with an individual learning procedure for which local improvements 

are made. In other words, it is a Hybrid Genetic Algorithm. Darwinian evolution on the 

one hand, Dawkinsian memes and local searches on the other, allow the use of two types 

of metaheuristic/heuristic algorithms together. In this way, a good balance is established 

between generality and problem specificity. 

MAs are also searched in the literature with names such as Hybrid Evolutionary 

Algorithm, Baldwinian Evoluationary Algorithm, Lamarckian Evolutionary Algorithm, 

Cultural Algorithm and Genetic Local Search. Many different examples have been 

reported in various optimization problems that converge more efficiently and with higher 

quality than traditional evolutionary algorithms (Pablo Moscato & Mathieson, 2019). 

An MA flowchart in general terms is as given in Figure 5.19. 
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Figure 5.19. Flowchart of Memetic algorithm 

The frequency and intensity of individual learning in MA provides greater chances 

of convergence with the local optimum, but computational difficulties limit the amount 

of evolution. Therefore, these two parameters should be finely tuned to maximize search 

performance and minimize computational cost. When individual learning is applied to 

some of the individuals in the population, it is necessary to make a good decision on 

which individuals to apply individual learning in order to maximize the benefit of MA. 

How often to implement individual learning is still a researched issue in the 

literature. In some studies, it has been revealed that the effect of individual learning on 

each individual in each evolutionary stage/iteration, while in some studies it is thought 

that it is necessary to apply individual learning to each individual at each evolutionary 

stage. Within the scope of this thesis, it was decided to implement individual learning for 

each individual in the entire evolution stage/iteration. 

Another problem is how long individual learning will take. That is, how long will 

be the maximum time allowed for the development of the individual solution taken into 
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individual learning. Within the scope of this thesis, 25% of the maximum number of 

generations/iterations is allocated. 

Another unsolved problem that often makes MAs diversify is which self-learning 

method or meme to use. At this stage, one of the Local Search algorithms given in Section 

5.2 or another local search algorithm in the literature is used. Within the scope of this 

thesis, MA was designed for several methods and the results were compared. 

 

5.4. Multi Objective Metaheuristic Algorithms and Non-Dominated Sorting Genetic 

Algorithm – II (NSGA-II) 

In this section, the basis of multi-objective metaheuristic algorithms and Non-

Dominated Sorting Genetic Algorithm – II (NSGA-II), which is the most used multi-

objective optimization heuristic algorithm in the literature, are explained. 

5.4.1. Multi-objective Optimization Problem (MOP) 

In general, a Multi-Objective Optimization Problem (MOP) occurs when 𝑥̅ =

[𝑥1, 𝑥2, … , 𝑥𝑛]𝑇 represents a vector of decision variables, vector g represents m inequality 

constraints, vector ℎ represents 𝑝 equality constraints, and vector 𝑓 represents 𝑘 objective 

functions, as given by Equation 5.4 – 5.6. 

𝑓(𝑥̅) = [𝑓1(𝑥̅), 𝑓2(𝑥̅), … , 𝑓𝑘(𝑥̅)]𝑇 (5.4) 

Subject to;  

𝑔𝑖(𝑥̅) ≤ 0 ∀𝑖 ∈ {1, … , 𝑚}  (5.5) 

ℎ𝑖(𝑥̅) = 0 ∀𝑖 ∈ {1, … , 𝑝}  (5.6) 

 

In an optimization problem with several objective functions, the concept of 

optimum is different. Because in MOPs, good compromises or balances are tried to be 

found between the objective functions instead of a single solution as in the global 

optimum. Francis Ysidro Edgeworth proposed the most widely used optimum concept in 

1881. Vifredo Pareto generalized this concept in 1896. This concept is generally referred 

to as Pareto Optimum or Edgeworth-Pareto Optimum in the literature. Considering any 

minimization problem, in order for the 𝑥̅∗ ∈ 𝐹 decision variable vector reached as a result 

of the solution to be Pareto Optimum, for all other 𝑥̅ ∈ 𝐹 decision variables vector, for 
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each objective function 𝑖 ∈ {1, … , 𝑘}, 𝑓𝑖(𝑥̅∗) ≤ 𝑓𝑖(𝑥̅) and any objective function 𝑗 ∈

{1, … , 𝑘} the conditions 𝑓𝑖(𝑥̅∗) < 𝑓𝑖(𝑥̅) must be satisfied. By this definition, it is 

understood that the Pareto Optimum solution is not a single solution and consists of a 

series of solutions called the Pareto Optimum Set. Non-dominant solutions are shown as 

Pareto Front in the graph of objective functions. For a typical two-objective optimization 

problem, the Pareto Front is as shown in Figure 5.20. Here, the x-axis represents the first 

objective function, the y-axis represents the second objective function, the green dots 

represent the non-dominated solutions, and the blue dots represent the dominated 

solutions. 

 

Figure 5.20. A typical pareto front (Mahesh et al., 2016) 

In the literature, there are various mathematical programming-based approaches for 

solving multi-objective optimization problems. However, these methods are generally not 

used much, especially since they are very sensitive to the shape of the Pareto Front (when 

the Pareto Front is concave, etc.). On the other hand, metaheuristic methods are generally 

preferred for solving MOPs because they are less sensitive to the shape of the Pareto Front 

(works even when the Pareto Front is concave or discontinuous, etc.). It is possible to 

reach a few elements of Pareto Front in a single study with population-based 

metaheuristic approaches. 

 

5.4.2. Non-dominated Sorted Genetic Algorithm – II (NSGA-II) for MOPs 

Deb, Pratab and Agarwal proposed the NSGA-II algorithm in 2002. It is the most 

preferred algorithm for solving MOPs in the literature (Deb et al., 2002). In general, two 
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calculations are made in addition to the classical GA. With the Fast Non-Dominated Sort 

approach, the non-dominated frontier is found quickly, and with the Crowding-Distance 

Assignment, solutions are chosen. 

5.4.2.1. Fast Non-Dominated Sort approach 

In a simple approach, whether each solution in the population is dominant can be 

compared with all other solutions to determine the first non-dominant front. At this stage, 

all individuals in the first non-dominant front are found. For the next non-dominant front, 

individuals in the first front are temporarily removed from the population and the process 

to determine the first front is repeated. Considering that there is only one solution on each 

front, this will require a great deal of processing power. For this, a fast method is 

discussed in the NSGA-II algorithm. In this method, first two parameters are calculated 

for each individual: 

 Domination count, which represents the number of solutions dominated 

 Domination set that contains the solutions it dominates 

For the first non-dominated front, the domination count counts as zero. Afterwards, 

if there are other frontier individuals in the domination set for each individual, the 

domination count of the individual is reduced by one. If any domination count is zero at 

this time, it is placed in a separate list. These members belong to other non-dominated 

front. This process continues until all fronts are determined. In general terms, the Fast 

Non-Dominated Sort Algorithm pseudocode is as given with Algorithm 5.8. Here, p and 

𝑞 represent each individual, 𝑃 the set of individuals, 𝑛𝑝 domination count, 𝑆𝑝 domination 

set, 𝐹𝑖 each front, 𝑝𝑟𝑎𝑛𝑘 the rank of each individual, that is, on which front they are 

located, and ⟨ domination. 
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Algorithm 5.8. Pseudocode of Fast Non-Dominated Sort Algorithm 

1: 𝐟𝐨𝐫 𝑝 ∈ 𝑃 𝐝𝐨 

2: 𝑆𝑝 ← ∅ 

3: 𝑛𝑝 ← 0 

4: 𝐟𝐨𝐫 𝑞 ∈ 𝑃 𝐝𝐨 

5: 𝐢𝐟 𝑝 ⟨ 𝑞 𝐝𝐨 

6: 𝑆𝑝 ← 𝑆𝑝 ∪ {𝑞} 

7: 𝐞𝐥𝐬𝐞𝐢𝐟 𝑞 ⟨ 𝑝 𝐝𝐨 

8: 𝑛𝑝 ← 𝑛𝑝 + 1 

9: 𝐞𝐧𝐝 𝐢𝐟 

10: 𝐞𝐧𝐝 𝐟𝐨𝐫 

11: 𝐢𝐟 𝑛𝑝 = 0 𝐝𝐨 

12: 𝑝𝑟𝑎𝑛𝑘 ← 1 

13: 𝐹1 ← 𝐹1 ∪ {𝑝} 

14: 𝐞𝐧𝐝 𝐢𝐟 

15: 𝑖 ← 1 

16: 𝐰𝐡𝐢𝐥𝐞 𝐹𝑖 ≠ ∅ 𝐝𝐨 

17: 𝑄 ← ∅ 

18: 𝐟𝐨𝐫 𝑝 ∈ 𝐹𝑖 𝐝𝐨 

19: 𝐟𝐨𝐫 𝑞 ∈ 𝑆𝑝 𝐝𝐨 

20: 𝑛𝑞 ← 𝑛𝑞 − 1 

21: 𝐢𝐟 𝑛𝑞 = 0 𝐝𝐨 

22: 𝑞𝑟𝑎𝑛𝑘 ← 𝑖 + 1 

23: 𝑄 ← 𝑄 ∪ {𝑞} 

24: 𝐞𝐧𝐝 𝐢𝐟 

25: 𝐞𝐧𝐝 𝐟𝐨𝐫 

26: 𝐞𝐧𝐝 𝐟𝐨𝐫 

27: 𝑖 ← 𝑖 + 1 

28: 𝐹𝑖 ← 𝑄 

29: 𝐞𝐧𝐝 𝐰𝐡𝐢𝐥𝐞 

30: 𝐞𝐧𝐝 𝐟𝐨𝐫 

 

5.4.2.2. Crowding-Distance Assignment 

The expectation from the algorithms is to maintain a good solution spread as well 

as converge to the Pareto-Optimal set. In the classical NSGA algorithm, sustainable 

diversity is provided in the population depending on a sharing parameter determined by 

the user. However, this brings with it a great computational cost in maintaining the 

propagation of the solutions depending on the value chosen and since each individual has 

to be compared with other individuals in the population. 

Two difficulties were overcome with a non-user-defined approach in the NSGA-II 

algorithm. For this, the Density Estimation metric was used. This metric is the mean 

distance of the point on either side of that point along each target to estimate the density 
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of solutions located around a particular solution in the population. This is represented by 

a cuboid, where the nearest neighbors represent the vertices. The general representation 

of the approach is as given in Figure 5.21. Here, for individual 𝑖, the nearest neighbors 

𝑖 − 1 and 𝑖 + 1 represent the corners of the cuboid. Dashed lines indicate the edges of the 

cuboid, and the Density Estimation metric is the average of the cuboid's edge lengths. 

 

Figure 5.21. Representation of crowding-distance computation 

Crowding-Distance Compuation requires the population to be ordered by each 

objective function value. For each objective function, the individuals with the smallest 

and largest values are assigned an infinite distance value. All remaining intermediate 

individuals are assigned a distance equal to the absolute value of the difference of 

functions of two adjacent individuals. This calculation is done for all objective functions. 

The overall Crowding-Distance value is the sum of the calculated Crowding-Distance 

values for each objective function. Crowding-Distance Assignment Algorithm 

pseudocode is as given with Algorithm 5.9. Here 𝐼 is the solution of each individual, m 

is each objective function, 𝑛𝑂 is the number of objective functions, and 𝑓𝑚
𝑚𝑎𝑥 , 𝑓𝑚

𝑚𝑖𝑛 is the 

maximum and minimum values for each objective function. 
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Algorithm 5.9. Pseudocode of Crowding-Distance Assignment Algorithm 

1: 𝑙 ← |𝐼| 
2: 𝐼𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖) ← 0   ∀𝑖 ∈ {1, … , 𝑙} 

3: 𝐟𝐨𝐫 𝑚 ∈ 𝑛𝑂 𝐝𝐨 

4: 𝐼 ← 𝑠𝑜𝑟𝑡(𝐼, 𝑚) 

5: 𝐼𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(1), 𝐼𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑙) ← ∞ 

6: 𝐟𝐨𝐫 𝑖 ∈ {2, … , 𝑙 − 1} 𝐝𝐨 

7: 𝐼𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖) ← 𝐼𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖) +
(𝐼(𝑖 + 1). 𝑚 − 𝐼(𝑖 − 1). 𝑚)

(𝑓𝑚
𝑚𝑎𝑥 − 𝑓𝑚

𝑚𝑖𝑛)
 

8: 𝐞𝐧𝐝 𝐟𝐨𝐫 

9: 𝐞𝐧𝐝 𝐟𝐨𝐫 

 

After assigning a crowding-distance metric to all individuals in the population, the 

crowding value between both solutions can be compared. An individual with a smaller 

value of this distance metric can be interpreted as being more crowded than other 

individuals. 

5.4.2.3. Main Loop 

Initially, a population of parents is created randomly or using a specific algorithm. 

The generated population is sorted by non-domination. From this step, each individual's 

fitness value is equal to their rank (1 - best, 2 - next best, etc.). To develop the solution, 

the offspring population is created by using the Selection, Crossover and Mutation 

operators in GA. The offspring and parent population are combined. The combined 

population is sorted by non-domination. Elitism is achieved at this point, as the previous 

and newly formed populations are involved. All non-domination fronteirs are determined 

in turn. After this stage, individuals in non-domination frontiers are selected for the parent 

population, respectively. If all individuals in the non-domination frontier are selected, if 

the parent population does not exceed the limit, all individuals are taken and passed to the 

other non-domination frontier. However, if all individuals in the non-domination frontier 

are selected, if the parent population limit is exceeded, the Crowding-Distance 

Assignment algorithm is activated for all individuals in that frontier. In this way, the best 

of the remaining individuals is tried to be selected. A typical representation of the NSGA-

II algorithm is as shown in Figure 5.22. Here, 𝑃 represents the parent population, 𝑄 

represents the offspring population, 𝑅𝑡 = 𝑃 ∪ 𝑄 the combination of all populations, and 

𝐹 represents the Pareto Frontier.  
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Figure 5.22. Procedure of NSGA-II algorithm 

The pseudocode of the NSGA-II algorithm is as given by Algorithm 5.10. Where 𝑡 

is each iteration or generation, 𝑃𝑡 is the parent population in each generation 𝑡, 𝑄𝑡 is the 

offspring population in each 𝑡 generation, 𝑅𝑡 is the total population in each 𝑡 generation, 

and 𝐹𝑖 represents the each 𝑖 Pareto Frontier. The 𝑀𝑎𝑘𝑒𝑁𝑒𝑤𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 operation refers 

to the standard Selection - Crossover - Mutation operations in GA. |𝑃𝑡| is the size of the 

parent population in generation 𝑡, |𝐹𝑖| refers to the size of the each 𝑖 Pareto Frontier. 

Algorithm 5.10. Pseudocode of Non-dominated Sorted Genetic Algorithm – II 

(NSGA-II) 

1: 𝑡 ← 0 

2: 𝑃𝑡  ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

3: 𝑄𝑡  ← ∅ 

4: 𝐰𝐡𝐢𝐥𝐞 𝑡 ≤ 𝑛𝑇 𝐝𝐨 

5: 𝑅𝑡 ← 𝑃𝑡 ∪ 𝑄𝑡 

6: 𝐹 ← 𝐹𝑎𝑠𝑡𝑁𝑜𝑛𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑𝑆𝑜𝑟𝑡(𝑅𝑡) 

7: 𝑃𝑡+1 ← ∅ 

8: 𝑖 ← 1 

9: 𝐰𝐡𝐢𝐥𝐞 |𝑃𝑡+1| +  |𝐹𝑖| ≤ 𝑁 𝐝𝐨 

10: 𝐶𝑟𝑜𝑤𝑑𝑖𝑛𝑔𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡(𝐹𝑖) 

11: 𝑃𝑡+1 ← 𝑃𝑡+1 ∪ 𝐹𝑖 

12: 𝑖 ← 𝑖 + 1 

13: 𝐞𝐧𝐝 𝐰𝐡𝐢𝐥𝐞 

14: 𝑆𝑜𝑟𝑡(𝐹𝑖, ⟨𝑛) 

15: 𝑃𝑡+1 ← 𝑃𝑡+1 ∪ 𝐹𝑖[1: (𝑁 − |𝑃𝑡+1|)] 
16: 𝑄𝑡+1 ← 𝑀𝑎𝑘𝑒𝑁𝑒𝑤𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑃𝑡+1) 

17: 𝑡 ← 𝑡 + 1 

18: 𝐞𝐧𝐝 𝐰𝐡𝐢𝐥𝐞 
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5.5. Multi Objective Memetic Algorithm (MOMA) 

Multi Objective Memetic Algorithm (MOMA) developed within the scope of this 

study, Memetic Algorithm (MA) general flow given with Section 5.3, Iterated Local 

Search (ILS) Algorithm local search given with Section 5.2.5 and Non-Dominated Sorted 

Genetic Algorithm – II (NSGA-II) given with Section 5.4 is a combination of multi-

objective structure. The developed algorithm performs both global and local searches for 

multi-objective optimization and searches the solution space more efficiently and more 

intelligently than other multi-objective optimization algorithms. The developed MOMA 

pseudocode is as given with Algorithm 5.11. All abbreviations here are the same as those 

defined for the Pseudocode of the NSGA-II algorithm. 

Algorithm 5.11. Pseudocode of Multi Objective Memetic Algorithm (MOMA) 

1: 𝑡 ← 0 

2: 𝑃𝑡  ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

3: 𝑄𝑡  ← ∅ 

4: 𝐰𝐡𝐢𝐥𝐞 𝑡 ≤ 𝑛𝑇 𝐝𝐨 

5: 𝑅𝑡 ← 𝑃𝑡 ∪ 𝑄𝑡 

6: 𝐹 ← 𝐹𝑎𝑠𝑡𝑁𝑜𝑛𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑𝑆𝑜𝑟𝑡(𝑅𝑡) 

7: 𝑃𝑡+1 ← ∅ 

8: 𝑖 ← 1 

9: 𝐰𝐡𝐢𝐥𝐞 |𝑃𝑡+1| +  |𝐹𝑖| ≤ 𝑁 𝐝𝐨 

10: 𝐶𝑟𝑜𝑤𝑑𝑖𝑛𝑔𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡(𝐹𝑖) 

11: 𝑃𝑡+1 ← 𝑃𝑡+1 ∪ 𝐹𝑖 

12: 𝑖 ← 𝑖 + 1 

13: 𝐞𝐧𝐝 𝐰𝐡𝐢𝐥𝐞 

14: 𝑆𝑜𝑟𝑡(𝐹𝑖, ⟨𝑛) 

15: 𝑃𝑡+1 ← 𝑃𝑡+1 ∪ 𝐹𝑖[1: (𝑁 − |𝑃𝑡+1|)] 
16: 𝑄𝑡+1

′ ← 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑃𝑡+1, 𝑟𝑎𝑛𝑘𝑡+1) 

17: 𝑄𝑡+1
′′ ← 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑄𝑡+1

′ ) 

18: 𝑄𝑡+1
′′′ ← 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑄𝑡+1

′′ ) 

19: 𝑄𝑡+1 ← 𝐼𝑡𝑒𝑟𝑎𝑡𝑒𝑑𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝑄𝑡+1
′′ ) 

20: 𝑡 ← 𝑡 + 1 

21: 𝐞𝐧𝐝 𝐰𝐡𝐢𝐥𝐞 

 

 The developed MOMA flowchart is as given in Figure 5.23. 
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Figure 5.23. Flowchart of MOMA 

5.6. Encoding/Decoding Algorithms for MTDLB Problem 

In order to solve the MTDLB problem, which was defined in this thesis and whose 

MILP-based mathematical model was developed, with the MOMA developed within the 

scope of this thesis, the fitness values of the MTDLB problem should be calculated for 
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each individual in the population in the algorithm in each iteration/generation. For this, 

firstly, the chromosome structure of each individual was determined, then the 

disassembly sequence was determined for each model through the TAOG precedence 

diagram, which is the first stage of the problem, and then the selected tasks were 

determined by a procedure that allows very few stations to be opened on the disassembly 

line, again considering the TAOG precedence diagram has been appointed. 

5.6.1. Chromosome Structure Phase 

Each individual in the MOMA algorithm used to solve the MTDLB problem has 

the chromosome structure given in Figure 5.24. Chromosome consists of three parts. The 

first part is used for the selection of OR Successors on TAOG, which is encoded with 

binary coding. The second part is used to choose which side the selected tasks will be 

performed on. Here, if there is more than one feasible side for the task, it is done on the 

left side if the number it belongs to on the code is zero, and on the right if it is one. If 

there is only one, viable party for the task, a direct assignment is made to the party to 

which it belongs. The last part expresses the order of assignment of the selected tasks to 

the disassembly line and is coded with permuation coding. In this part, a list of tasks that 

can be assigned to the station is created, taking into account the TAOG precedence 

diagram for the tasks selected with the first part and assigned to the parties with the second 

part. If the list of tasks that can be assigned to the station is more than one, a task is 

selected by considering the priorities in the last section and assigned to the most suitable 

location. Afterwards, the process is repeated by updating the list of tasks that can be 

assigned, taking into account the TAOG precedence diagram and the assigned tasks. 

 

Figure 5.24. Chromosome structure of proposed MOMA 
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5.6.2. Choose Disassembly Sequence Phase 

The first step in solving the MTDLB problem is to select the tasks for disassembly 

on the TAOG precedence diagram. Considering the chromosome structure given in 

Section 5.6.1, Choose Disassembly Sequence (Algo-CDS) is as given with Algorithm 

5.12. 

 

5.6.3. Assign Disassembly Line Phase 

The second step for solving the MTDLB problem is to assign the selected 

disassembly tasks to the appropriate stations on the disassembly line. Considering the 
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chromosome structure given in Section 5.6.1 and Algo-CDS given with Algorithm 1, the 

Assign Disassembly Line (Algo-ADL) is as given with Algorithm 5.13. 

 

5.6.4. Main Representation Phase 

Considering the MTDLB problem representation phases detailed in Section 5.6, an 

individual follows the flowchart given in Figure 5.25 to calculate the required fitness 

values. 
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Figure 5.25. Main representation of MTDLB problem for MOMA  
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6. NUMERICAL EXAMPLES AND EXPERIMENTAL RESULTS 

The MTDLB problem given in Section 4 is solved using MOMA given in Section 

5 using some generated cases, literature works data, and the performance of the algorithm 

is tested. The MOMA algorithm developed for the solution of the MTDLB problem was 

coded using the Python programming language and given with Appendix-3. 

In this section, the cases that were created were introduced, then the solutions were 

made on the created cases, and the solution results were given.  

6.1. Generate Cases 

Within the scope of this thesis, 11 cases with 2, 3 and 4 models were created by 

using Flashlight, Radio, Toy Car and Ball Point Pen products, for which the TAOG 

precedence diagram was previously created in the literature. 

TAOG precedence diagram of Flashlight product is as given in Figure 6.1, TAOG 

precedence diagram of Radio product is given in Figure 6.2, TAOG precedence diagram 

of Toy Car product is given in Figure 6.3 and TAOG precedence diagram of Ball Point 

Pen product is given in Figure 6.4. 

 

Figure 6.1. TAOG precedence diagram for flashlight (Paksoy et al., 2013) 
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Figure 6.2. TAOG precedence diagram for radio (Paksoy et al., 2013) 
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Figure 6.3. TAOG precedence diagram for toy car (Çil et al., 2020) 

 

Figure 6.4. TAOG precedence diagram for ball point pen 
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Information such as party information, transaction time’s information, etc. for all 

products are included in the Python code given with Appendix-3B. Statistical information 

for the 11 cases created is as given in Table 6.1. 

Table 6.1. Statistical information of generated cases 

Case Name Products ∑ 𝒏𝑴 ∑ 𝒏𝑨 ∑ 𝒏𝑵 

#01 Flashlight 

Radio 

2 30 40 

#02 Flashlight 

Toy Car 

2 53 107 

#03 Flashlight 

Ball Point Pen 

2 22 30 

#04 Radio 

Toy Car 

2 65 127 

#05 Radio 

Ball Point Pen 

2 34 50 

#06 Toy Car 

Ball Point Pen 

2 57 117 

#07 Flashlight 

Radio 

Toy Car 

3 74 137 

#08 Flashlight 

Radio 

Ball Point Pen 

3 43 60 

#09 Flashlight 

Toy Car 

Ball Point Pen 

3 66 127 

#10 Radio 

Toy Car 

Ball Point Pen 

3 78 147 

#11 Flashlight 

Radio 

Toy Car 

Ball Point Pen 

4 87 157 
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6.2. Results for Generated Cases 

The MTDLB problem was solved in two ways for the created cases. Firstly, when 

the objective function is hierarchical, the results of the Memetic Algorithm (MA) are 

compared with the Genetic Algorithm (GA), which is frequently used in the literature, 

and the Gurobi solver, which gives optimum results. Secondly, the problem is solved with 

Multi Objective Memetic Algorithm (MOMA) by preserving its multi-objective structure 

and its results are compared with the NSGA-II algorithm, which is frequently used in the 

literature. 

Each algorithm is coded in Python environment and given with Appendix 3. Caseler 

has been solved on a computer with Intel i7 2.00 GHz processor and 8 GB RAM. 

  In case the purpose is hierarchical, the solution results are as given in Table 6.2. 

Looking at the results, it is seen that MA gives better results than GA for each case, and 

even reaches the optimum result directly for some cases. 

Table 6.2. Comparative results of MA, GA and Gurobi (Obj Func — Sol Time). 

Case 

Name 

Memetic Algorithm (Genetic 

Algorithm + Iterated Local 

Search) 

Genetic Algorithm Gurobi Solver 

(Optimum Result) 

#01 3.007190—13 3.007190—10 3.007190—01 

#02 3.011274—15 3.011285—11 3.011274—10 

#03 3.009240—14 3.010243—09 3.009240—01 

#04 3.013278—14 3.014266—15 3.012250—43 

#05 3.011228—12 3.012234—12 3.010229—01 

#06 3.012310—15 3.013294—14 3.012310—25 

#07 3.012442—16 3.013344—13 3.012360—11 

#08 3.011328—13 3.012336—12 3.010329—02 

#09 3.012413—16 3.013492—15 3.012413—10 

#10 3.012413—17 3.013374—16 3.012399—15 

#11 3.012678—18 3.012793—17 3.012499—28 

  

The results of the MOMA algorithm, which was developed by preserving the multi-

objective structure of the problem, are given in Figure 6.5 for Case1 – Case6 and Figure 

6.6 for Case7 – Case11. 
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Figure 6.5. Pareto Frontiers of MOMA for generated cases 1-6 
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Figure 6.6. Pareto Frontiers of MOMA for generated cases 7-11 

For comparison purposes, NSGA-II algorithm results are given in Figure 6.7 for 

Case1 – Case6 and Figure 6.8 for Case7 – Case11. 
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Figure 6.7. Pareto Frontiers of NSGA-II for generated cases 1-6 
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Figure 6.8. Pareto Frontiers of NSGA-II for generated cases 7-11 

Looking at the Pareto Frontier graphs, it is seen that the NSGA-II algorithm 

generally produces 1 Pareto Optimum point for the solution of MTDLB problem cases, 

and in some cases, the Pareto Optimum solution found by MOMA dominates the Pareto 

Optimum solution found in the NSGA-II algorithm. It is seen that the MOMA algorithm 

reveals multiple Pareto Optimum points for each case and offers more options to the 

decision maker. Therefore, it can be said that the MOMA algorithm is better than the 

NSGA-II algorithm for solving the multi-objective MTDLB problem. 
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6.3. Compare with Literature Works 

In order to see the situation of the study against other studies in the literature, the 

methods developed by considering the Kucukkoc, 2020 study, which is the closest study 

and which deals with the TDLB problem, were compared. However, since the AOG 

precedence diagram in Kucukkoc's 2020 study was handled differently than the diagram 

used in this thesis (like the precedence diagram of the 2P25 example given in Figure 6.8), 

the mathematical model was revised on Algo-CDS and Algo-ADL, and the studies were 

carried out accordingly way compared. In this context, Equation 6.1 instead of Equation 

4.5, and Equation 6.2 instead of Equation 4.7. 

 

Figure 6.9. Precedence diagram for 2P25 (Kucukkoc, 2020) 

 

𝐵𝑀 × ∑ 𝑧𝑚𝑖 ≥

𝑖∈𝑆𝑈𝐶(𝑚,𝑘)

∑ 𝑧𝑚𝑖

𝑖∈𝑃𝑅𝐸(𝑚,𝑘)

 
∀𝑚 ∈ {1, … , 𝑛𝑀}, ∀𝑘 ∈

{1, … , 𝑛𝐴𝑚}  
(6.1) 

∑ ∑ 𝑥𝑚𝑖𝑣𝑠

𝑠∈𝜃(𝑚,𝑖)

𝑗

𝑣=1

≥ ∑ 𝑥𝑚𝑖′𝑗𝑠

𝑠∈𝜃(𝑚,𝑖)

 

∀𝑚 ∈ {1, … , 𝑛𝑀}, ∀𝑗 ∈

{1, … , 𝑛𝐽}, ∀𝑘 ∈

{1, … , 𝑛𝐴𝑚}, ∀𝑖 ∈

𝑃𝑅𝐸(𝑚, 𝑘), ∀𝑖′ ∈ 𝑆𝑈𝐶(𝑚, 𝑘)  

(6.2) 

 

Since the (Kucukkoc, 2020) study was developed for a single purpose (number of 

stations opened and number of mated-stations opened), the MA algorithm developed 

within the scope of this thesis was evaluated in this direction. The Gurobi solution and 

the MA solution for the MTDLB mathematical model developed within the scope of this 

thesis were tested against the CPLEX solution and GA developed in the Küçükkoç 2020 
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study, and the results given in Table 6.3 were obtained. Considering the solution results, 

the Gurobi solution of the MTDLB mathematical model created within the scope of this 

thesis found better results than Küçükkoç's study (the optimum result was achieved), and 

the MA developed within the scope of this thesis gave very good results compared to the 

GA developed by Küçükkoç, even optimum for some cases. Appears to have achieved 

the result. 

Table 6.3. Comparative results with TDLB studies in literature (Number of Mated Station (Number of Total 

Station) — Sol Time); bold is optimum. 

 

6.4. Case Study 

Case #11, one of the cases created for a better understanding of the MTDLB 

problem solutions, was solved with MOMA and a possible Disassembly Line is given in 

Figure 6.10. Here, Task Station Assign Plan is shown above and Schedule of Disassembly 

Line below, respectively. In total, four models were assigned to six stations and all 

stations were opened to each other. Total line length was found to be three. In the 

Schedule of Disassembly Line section, the parts painted in blue represent the duties, the 

parts painted in yellow represent the lines that cannot be opened for that model, and the 

parts painted in red represent the idle time of the line. 
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Figure 6.10. Case study result (Case #11) 
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7. CONCLUSION AND DISCUSSIONS 

The fact that the increase in the level of Carbon Dioxide, which is visualized using 

technologies such as satellites, is at the peak of the last 800,000 years has revealed the 

necessity of radically changing our understanding of production. Contrary to popular 

belief, increasing population, welfare and technological developments increase the 

environmental impact even more. In order to minimize the environmental impact, it is 

necessary to use the resources efficiently and to minimize the wastes released into the 

nature. With the Life Cycle Engineering (LCE) methodology that emerged in this context, 

it is ensured that the environmental impact is minimized by directly intervening in all the 

Life Cycle stages of the product. One of these stages is the stage where the use of the 

product ends, that is, the product becomes End-of-Life (EOL). At this stage, the product 

is usually either completely released into the nature or recycled and the whole product is 

offered for use again. Product reuse is critical to minimizing environmental impact. At 

this point, with the LCE methodology, the product is designed as an easily disassembled 

product while it is still in the design phase. However, the design of the product alone is 

not enough, it is necessary to establish systems to disassemble these products and to 

minimize the environmental impact caused by the system by effectively managing them. 

In this context, the need for research on the Disassembly Line, which emerged for the 

disassembly of bulk EOL products, and the Disassemly Line Balancing (DLB) problem, 

which allows them to be designed and managed effectively, is increasing day by day. 

There are very few studies in the literature especially for the Two-Sided Disassembly 

Line Balancing (TDLB) problem, which can be used for disassembly of large volume 

products. Especially the Mixed-Model Two-Sided Disassembly Line Balancing 

(MTDLB) problem, which allows mixed model disassembly on these lines, was presented 

for the first time within the scope of this thesis. 

In this study, a Mixed-Integer Linear Programming (MILP) based mathematical 

model has been developed for the MTDLB problem and a Multi Objective Memetic 

Algorithm (MOMA) has been developed to solve this model with high-dimensional cases. 

The developed mathematical model was tested with the Gurobi solver and the cases 

created by coding the MOMA and MA algorithms with Python and the literature 

comparison. It was found that all the methods developed within the scope of the study 

gave much better results compared to the GA and NSGA-II algorithms, which are 
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frequently used in the literature, and as a result of the literature comparison, optimum 

results were achieved that other studies could not reach. 

In future studies, the developed MOMA algorithm will be made more efficient, it 

will be investigated how it gives results with different local search algorithms. 
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