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ABSTRACT

COMPUTATIONAL MODELING OF FRONTAL POLYMERIZATION

Kaya, Koray
M.S., Department of Civil Engineering
Supervisor: Assoc. Prof. Dr. Serdar Goktepe

February 2022, [T12] pages

Polymer-based composites are widely applied in high-tech areas such as aerospace,
automotive, marine, and energy industries where high performance under extreme
conditions is crucial. However, the traditional methods used to manufacture poly-
meric materials are energy-inefficient, time-consuming, complex, and costly pro-
cesses. Frontal polymerization, an alternative curing method, is based on a self-
propagating, self-sustained exothermic reaction front that transforms liquid monomers
into cured polymers where the disadvantages of traditional polymerization techniques
are minimized. Furthermore, frontal polymerization opens up new possibilities for
many new manufacturing concepts such as on-demand manufacturing, on-site, shape-
less production, 3-D printing, and resin-infusion. Despite the intensive studies on the
chemothermal aspects of frontal polymerization, the impact of the chemical shrink-
age, the sharp temperature gradients, the temperature distribution, and the front ve-
locity on the mechanical behavior of frontally produced polymers, especially on the
development of the stress accumulations, remains unexamined to a great extent. This
thesis, therefore, aims to develop novel constitutive models furnished with robust
computational tools to describe the coupled process of frontal polymerization and the

behavior of polymeric materials produced by frontal polymerization. To this end, the



thermodynamically consistent incremental framework of finite elasticity coupled with
the inherent chemothermal fields is developed. In turn, this multi-field coupling al-
lows us to calculate the accumulated stresses due to the chemically induced shrinkage
and thermal expansion. Undoubtedly, the quantitative prediction of stress accumula-
tions is of key importance to optimize the process of frontal polymerization towards

the production of mechanically stronger and tougher polymer composites.

Keywords: Frontal Polymerization, Chemo-Thermo-Mechanical Model, Computa-

tional Modeling, Stress Accumulations
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CEPHESEL POLIMERLESMENIN HESAPLAMALI MODELLENMESI

Kaya, Koray
Yiiksek Lisans, Ingaat Miihendisligi Boliimii
Tez Yoneticisi: Dog. Dr. Serdar Goktepe

Subat 2022 , sayfa

Polimer bazli kompozitler zorlu kosullar altinda yiiksek performansin ¢ok énemli ol-
dugu havacilik, otomotiv, denizcilik ve enerji endiistrileri gibi yiiksek teknolojili alan-
larinda yaygin olarak kullanilmaktadir. Ote yandan polimerik malzemeleri iiretmek
icin kullanilan geleneksel yontemler, enerji acisindan verimsiz, zaman alici, karmagik
ve maliyetli tekniklerdir. Alternatif bir kiirleme yontemi olan cephesel polimerlesme,
stvi monomerleri polimerlere doniistiiriirken geleneksel polimerlesme yontemlerinin
dezavantajlarin1 en aza indiren, reaksiyon cephesinin kendi kendine ilerleyip, kendi
kendine devam eden ekzotermik tepkimeyi temel alan bir yontemdir. Buna ek ola-
rak, cephesel polimerlesme, talebe bagl iiretim, yerinde tiretim, kalipsiz iiretim, 3B
baski ve recine infiizyonu gibi bircok yeni iiretim yontem olanaklar1 sunmaktadir.
Cephesel polimerizasyonun kemotermal yonleri iizerine yapilan yogun caligmalara
ragmen, kimyasal biiziilmenin, keskin sicaklik gradyanlarinin, sicaklik dagiliminin
ve tepkime cephesinin hizinin iiretilen polimerlerin mekanik davranig1 6zellikle de
gerilme birikimlerinin olusumu iizerine etkisi hala biiyiik 6l¢iide incelenmemistir. Bu-
radan hareketle bu tez ¢alismasi polimerlesmenin baglasik siirecini ve bu yontem ile

tiretilen polimerik malzemelerin davranisini agiklamak i¢in saglam hesaplama arac-

vii



lar1 ile donanmig yeni biinye denklemleri gelistirmeyi amaglamaktadir. Bu amagla,
polimerlesmenin dogas1 geregi var olan kemotermal reaksiyonlar ile birlestirilmis,
artimli gercevede, termodinamik olarak tutarli dogrusal olmayan elastik bir model
gelistirilmigtir. Buna karsilik, bu ¢ok alanli baglasiklik kimyasal biiziilme ve 1s11 gen-
lesme nedeniyle olusan birikmis gerilmeleri hesaplanmasina olanak saglamaktadir.
Kuskusuz, mekanik olarak daha giiclii ve daha saglam polimer kompozitlerin iireti-
mini saglayan cephesel polimerlesme islemini eniyilemek i¢in bu gerilmelerin nicel

kestirimi kilit oneme sahiptir.

Anahtar Kelimeler: Cephesel Polimerizasyon, Kemo-Termo-Mekanik Model, Hesap-

lamali Modelleme, Gerilme Birikimleri
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Objectives of Study

The frontal polymerization technique offers a cheaper, faster, and energy-efficient op-
tion for polymer-composite industries through a highly localized and self-propagating

exothermic reaction zone where monomers polymerize into macromolecules [1].

Figure 1.1: The examples of the polymer frontally cured [1]]

Polymer-based composites are widely applied materials in many industries thereby
allowing engineers to build strikingly impressive structures that were once unimagin-
able. For instance, SpaceX® has recently demonstrated the largest carbon fiber rein-
forced polymer fuel tank that has ever been manufactured for spacecraft. These mate-
rials offer new opportunities to keep the weight down while maintaining the strength
at a level adequate to resist the internal pressure. It is an extremely challenging task
to build a spaceship of this huge size. One of the challenges building such a giant
structure monolithically made up of polymer-composite through traditional methods
is that there exist no sufficiently big autoclave in the world to fit the tank spacecraft to
attain the best quality of production. Hence, frontal polymerization is a breakthrough
solution for these types of production owing to the self-sustained, self-propagating

fast front driven by the exothermic reaction of polymerization.

1



It is now well-known that the climate change and environmental problems are among
the most important challenges in the world. The main reason for these problems is
the industrial processes [1l]. For example, the curing of a small section of carbon
fiber fuselage of the Boeing 787® requires about 350 giga Joules during an eight-hour
cure cycle. Furthermore, it produces more than 80 tons of carbon dioxide. However,
these materials can be produced with less energy, less cost, and reduced environmen-
tal impact using frontal polymerization. Also, according to Sottos and co-workers
[4], the energy savings of polymer produced through frontal polymerization is up to
10 orders of magnitude as compared with the traditinal techniques of polymerization.
Moreover, the resulting polymer composites have similar mechanical properties to
those produced conventionally. Thus, these materials are practically widely applica-

ble to various industries such as aerospace, automotive, energy to mention a few.

The frontal polymerization technique is based on useful autocatalytic reaction that
rapidly transforms monomer to polymer upon a small thermal initiator [S]. Thus,
there are possible advantages of using the frontal polymerization technique over the
conventional methods of polymerization. The major ones being the speed at which
a sample can be cured, the avoidance of autoclave and charring from thermal run
away. However, there are some limitations associated with frontal polymerization.
The limited pot life of the system is one of the principal issues. In addition, only the
chemical, thermomechanical, and front propagation properties of the frontal poly-
merization technique have been studied until now. For example, Goli et al. [3]
have studied the frontal polymerization of neat resins analytically and Goldfeder and
Volpert [6] have estimated the rate of conversion of monomer and front velocity in
an adiabatic system. However, there are several missing aspects in the literature re-
garding frontal polymerization. The development of a constitutive model accounting
for chemo-thermo-mechanical coupling throughout the continuous curing process for
frontally polymerized material is probably one of the most important and challenging

aspects remained unstudied in the literature.

This thesis work, therefore, aims to develop novel constitutive models furnished with
robust computational tools to describe the process of frontal polymerization and the
behavior of polymeric materials produced by frontal polymerization. To this end, the

incremental models of finite elasticity coupled with the inherent thermal and chemical



effects for the frontally polymerized materials are proposed. To our best knowledge,
this is the first study where the coupled chemo-thermo-mechanical aspects of frontal
polymerization are accounted for an aging (phase changing: monomer to polymer)
material in the thermodynamically consistent framework and incremental setting. In
turn, this multi-field coupling allows us to predict the accumulation of stresses due
to the chemically induced shrinkage and thermal volume changes. Undoubtedly, the
quantitative prediction of these stress accumulations of key importance to optimize
the process of frontal polymerization towards the production of mechanically stronger

and tougher polymer composites.

1.2 Polymerization and Manufacturing Techniques

Before we overview the literature on the experimental and analytical studies on frontal
polymerization, it is worth summarizing the basic techniques of polymerization [7]].
There are four different main techniques of polymerization. These conventional meth-

ods are commonly used for commercial production as summarized below.

N

Bulk polymerization Solution polymerization Suspension polymerization Emulsion polymerization

® Monomer < Initiator @ Dispersant o~ Emulsifier Polymer chain

Solution with solvent Continuous phase

@ Monomer suspensiondroplets :} {ﬁ Emulsion droplets
7505

§

Figure 1.2: Polymerization technique schematic [2]

e Bulk Polymerization. It is a simple and homogeneous reaction system used

to obtain the polymer. The reaction of polymerization is initiated by heating



monomer or exposing it to a light source. When the ingredients in the solution
is further polymerized, the viscosity of the final product increases and mixing
operation becomes a very difficult process. The product obtained from this

polymerization type is called the pure polymer.

The advantages of bulk polymerization:

- It is simple technique.

- The final product is pure.

- It will be used for large casting directly.

- The distribution of molecular weight can be changed with the help of a chain

transfer agent.

The disadvantages of bulk polymerization:

- The broad molecular weight distribution in the polymer product is obtained.
- The diffusion of a growing polymer chain is limited.

- The termination gets difficult due to the less amount of collisions.

- The uncontrolled exothermic reaction due to the increase of the rate of poly-

merization and active radical accumulation lead to eruption.

Solution Polymerization. The monomer polymerizes in a suitable inert solvent
with the chain transfer agents. Unlike the solvent medium, the free radical

initiator can be suspended or dissolved for an ionic and coordination catalyst.

The advantages of the solution polymerization:

- It enables to temperature control thanks to facilitating heat transfer of poly-
merization.
- The removal of polymer from the reactor is easily done by solvent.

- It enables to easy stirring by decrasing viscosity of mixture.

The disadvantages of the solution polymerization:

-It is very challenging to obtain products with the high molecular weight.

4



-The complete solvent removal and isolation from the solution by evaporation

and precipitation is extremely difficult.

Suspension Polymerization. Unlike the bulk polymerization, suspension poly-
merization controls the enormous amount of heat release. Only water insoluble
monomers are suitable for this technique. The suspended monomer is in the
form of fine droplets in water and surface active agents. These are fixed and
prevented from combining with suitable water soluble protective colloids. Ag-
itators are employed in the aqueous phase to maintain a droplet size and dis-
persion. Heat is transferred between the droplets and water, which has huge
amount of heat capacity and low viscous property. Isolation of the materials is

easy.
The advantages of suspension polymerization:

- It is cheaper method due to involving only water.

- The change in the viscosity is minor so it is unimportant.

- Similar to solution polymerization, temperature control is easy for this tech-
nique.

- The final product can be separated and purified.

The drawbacks of suspension polymerization:

- It cannot be used for polymers whose polymerization temperature is greater
than glass transition temperature.
- Agitation sensitivity is very high.

- It is difficult to determine polymer size.

Emulsion Polymerization. The monomer is spread in an aqueous phase as fine
droplets which are then emulsified by surface active agents, protective colloids
and also by certain buffers in emulsion polymerization. The initiators should be
water soluble. The surfactants are used in order to reduce the surface tension
at interface between monomer and water and facilitate emulsification of the
monomer. When the monomer is added to system and provoked, emulsification
starts. Emulsion systems use a water soluble initiators such as persulfate or

hydrogen peroxide. It is the most widely used industrial technique.
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The advantages of emulsion polymerization:

- It creates high molecular weight polymers.
- It has very fast polymerization rate.

- The heat is easily removed from system.

The shortcomings of emulsion polymerization:

- Additional cleanup and purification may be required for polymer.

- It is difficult to remove entrenched coagulants, emulsifiers, surfactants.

1.3 Literature Review

Although frontal polymerization is an active area of research in the self-autonomous
material literature, the pioneering studies on frontal polymerization can be traced
back to 1970s. Frontal polymerization was first discovered in Russia by Chechilo
and Enikolopyan from the Institute of Chemical Physics and the Branch of the Insti-
tute of Chemical Physics of the Soviet Union Academy of Sciences in 1972, see [8]].
They have studied the frontal polymerization of poly methyl methacrylate (PMMA)
to determine the effect of initiator type than with traditional homogeneous methods
and the concentration of initiator on front velocity because the rapid motion of front
prevented sedimentation of pressure. The scientific fundamentals were researched for
the technological development of the implementation of continuous frontal polymer-
ization on the foundation basis of accumulated experience, see Davtyan et al. [9]]. The
most beneficial factor of frontal polymerization is that continuous reactors in laminar
and particularly turbulent flows are used to complete the process from the implemen-
tation point of view. After 1991, Prof. J. Pojman of Mississippi State University,
USA participated in the research and the first work was published by J.Pojman in
1991 [10]. Undoubtedly, frontal polymerization is currently a highly active area of

research for many researchers due to Pojman’s extensive efforts.

Sottos and coworkers claim that the properties of the frontal ring-opening meathesis
polymerization (FROMP) of dicyclopentadiene (DCPD) are comparable to conven-

tionally manufactured polymer, and energy savings of these materials are up to ten
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orders of magnitude, see Dean et al. [4]. On the other hand, the mechanical properties
of the rapidly manufactured robust elastomers using frontal polymerization could not
achieve the sufficient capacity for being used as commercial rubbers. However, Dean
etal. [4] have put forward a novel method, which is based on the co-polymerization of
1,5-cyclooctadiene (COD) with a norbornene derivative, to terminate crystallization
and achieve a polymer that has a wider range of thermomechanical properties. They
have worked on the FROMP of comonomer mixtures of COD and DCPD. Further-
more, the DCPD monomer with two reactive sites has enabled the formation of chem-
ical cross-links. They have used the swelling tests and dynamic mechanical analysis
(DMA) to observe that DCPD fraction increased by the degree of cross-linking in
copolymers produced by FROMP.

According to another viewpoint, the complexity of the dynamic control of frontal
polymerization causes it to be inefficiently utilized on the manufacturing side despite
of its efficiency and reduced environmental effect. Geubelle and coworkers, see Gao et
al. [11]], immersed the phase-changing poly-caprolactone particles into DCPD resin.
Thus, they clarify the control and patterning of the front propagation in a DCPD resin.
Predictive and designed patterning shows that the velocity, temperature, and propa-
gation path of the polymerization front between two different interaction regimes are
governed by the exothermic chemical reaction, the interplay between endothermic
phase transition, and heat exchange. The manufacturing methodology that is based
on frontal polymerization and characterized by the self-propagating exothermic poly-
merization provides a rapid, environmentally friendly, and energy-saving alternative
to the conventional autoclave-based curing techniques involving elevated tempera-
tures and complex pressure cycles that are both energy- and time-consuming. As
opposed to the latter, frontal polymerization has been utilized in the one-step fab-
rication of homogeneous polymeric parts where no secondary procedures such as
deposition, etching, layer-by-layer assembly, or the introduction of a second phase is
needed until now. The polymerization front controlled dynamically affects the pat-
terns and properties of the polymeric product obtained by one-step manufacturing of
parts. For instance, the mechanical, chemical, morphological, and chemical patterns
in the polymer are greatly affected by the sharp variation in the frontal temperature

spontaneously.



The other important issue regarding the manufacturing through frontal polymeriza-
tion is the propagation of polymerization front, see Goli et al. [3]. The front of
polymerization spreads in a steady-state fashion in most production cases. However,
the instabilities of front affect the qualification of the composite under different condi-
tions. Geubelle and coworkers [3] have developed a coupled thermo-chemical model
and an adaptive nonlinear finite element solver to simulate the instabilities driven
by frontal polymerization in dicyclopentadiene (DCPD) and in carbon-fiber DCPD-
matrix composites computationally. They have investigated the effect of initial tem-
perature and the carbon fiber volume fraction on the wavelength and amplitude of the
thermal instabilities with the help of one-dimensional transient computations. The ef-
fect of convective heat loss on the frontal polymerization-driven instabilities in both

neat resin and composite cases has been also emphasized in this precise study.

The influence of the chemical and physical properties of the resin on the evolution of
frontal polymerization has also been investigated by Frulloni et al. [12]. In classical
bulk polymerization, heat is uniformly distributed during the course of an entire cur-
ing process on the whole surface of the reactive monomers. Hence, it promotes their
reaction. In frontal polymerization, however, the local increase in temperature for a
short time interval triggers the polymerization of the monomers (or reactants). The
reaction front propagates in the rest of monomers through the heat released by the
curing process where the generated heat is dissipated eventually to surroundings. The
degree of curing of a final product produced by frontal polymerization is relatively
high.While the reaction is controlled by the reactor temperature during bulk polymer-
ization, the chemical and physical properties of the reacting system (front) govern the

reaction process in frontal polymerization.

In spite of various advantages of frontal polymerization compared to bulk polymeriza-
tion, there are some drawbacks that need to be addressed, see Goldfeder and Volpert
[6]. One of the downsides is that the conversion tends to be incomplete. Thus, the
greater amounts of initiator should be used in order to overcome this issue that in
turn leads to a large number of undesirably short polymer chains. Another potential
problem is concerned with the heat loss and the extinction limit. The excessive heat

losses beyond a certain critical value may cease the propagation of the front.



It has been shown by Davtyan et al. [9] that the heat loss during frontal polymerization
could considerably affect the properties of the final polymeric material. In particu-
lar, the temperature measurements conducted using the thermo-couples installed in
the central and peripheral regions of the solidifying samples indicate uneven distribu-
tion of temperature throughout the sample. Since the polymerization is a thermally
activated process, the non-uniform distribution of temperature may result in hetero-
geneities in the properties of the product such as the molecular weight characteristics,
the residual stress level, and the monolithic structure of the resulting polymer mate-
rials. Therefore, the effect of the factors such as heat loss and the cooling of reaction
ampoules after polymerization at arbitrary rates on the properties of polymer materi-

als produced by frontal polymerization have to be taken into account carefully.

Up to this point, the studies on the chemical, thermomechanical, and front propaga-
tion characteristics of frontal polymerization have been reviewed. Since there is no
study on the mechanics of frontally polymerized polymers, we will review several
studies that are concerned with the development of phenomenological constitutive
models to simulate the thermal and cure-dependent deformations in polymer com-

posites manufactured through conventional methods.

A remarkable study in this direction has been conducted by Hofer and Lion [[13]. They
have developed a finite thermo-viscoelastic model to represent an exothermal phase
transformation from a viscous fluid to a viscoelastic solid. The deformation gradient
has been multiplicatively decomposed into the thermal, chemical, and mechanical
parts. The concept of intrinsic time [14] has been used to account for the viscous
rate-dependency. The evolution of the viscoelastic properties of the material has been
considered to be governed by the degree of curing. The model accounts for the phase

transformation through the volume fraction changes.

Since monomer behaves as a deformable viscous liquid, it is only capable of sus-
taining hydrostatic load in practice. When the curing reactions continue, polymer
chains are also connected to each other through cross-links. The viscosity of the lig-
uid resin and its molecular weight increase as time evolves. The heat generated due
to the formation of the polymer network results in a temperature increase since the

cross-linking is an exothermal reaction. This causes some initial viscosity decrease,



see Hossain et al. [15]. The temperature- and shrinkage-induced deformations may
give rise to the accumulations of stresses and strains or warping phenomena signifi-
cantly. It is claimed that the warpage due to the curing-induced residual stresses has
long been a major obstacle for reducing the cost of the manufacture of composites.
Hossain et al. [[15]] developed a phenomenological model in order to represent the cur-
ing behaviour of thermosets within the geometrically linear setting where they have

investigated the temporal evolution of shear modulus and relaxation time.

Steinman and coworkers [[16] have extended their previous study to the finite strain
regime. The main assumption of this study is that the existing chains between cross-
links are deformed when the strain is applied. When the new cross-links are created,
these are integrated to already deformed structure and they are never affected by pre-
vious deformation. This means that they meet the expectation for the incremental
formulation. However, their approach holds only for materials in the state beyond
being gel. They have been also interested in the temporal evolution of material prop-
erties simultaneously. In the follow-up work, they have taken their studies one step
further by adding the intrinstic time approach of Hofer and Lion [17] in the viscoleas-

tic model and focused on shrinkage effects [18]].

Recently, Rajagopal and coworkers [19] have proposed a thermodynamic frame-
work based on their previous work [20] of rubber within the framework of finite
viscoelasticity involving the constitutive modeling of vulcanization chemical reac-
tions. They have also used fused deposition modeling for the amorphous polymers.
They have made predictions for the residual stresses and the accompanying distor-
tion of the geometry of the printed part. They used the four ribbons of polymeric
melt stacked on top of each other by extruding through a flat nozzle to show the use-
fulness and efficacy of the constitutive model. Similarly, Sain and coworkers [21]
have also been interested in the residual stress and warpage in the glassy polymers.
They proposed a model which is thermodynamically consistent, frame-indifferent,
chemo—thermo—mechanical coupled constitutive framework for cured glassy poly-
mers. The residual stresses due to the volume shrinkage accompanied by curing
cause the cracks, interfacial delamination and warpage. It has been shown that the
careful selection of processing parameters is of vital importance in order to decrease

warpage and failure dramatically. The heat generated due to the curing can cause

10



uneven curing of the component, so a constitutive model which describes the coupled

chemo—thermo-mechanical process is essential.

N’Guyen and coworkers [22] have contributed the literature by adding two points that
are concerned with the new form of the chemical potential energy and the chemical
evolution associated to this potential. They have developed a model for the thermo-
chemo-mechanical behavior of polymer at large strains. Although material processing
and curing may involve completely different phenomena, they require a rigorous ther-
modynamical framework. They have also used the thermal, chemical, and mechanical

decomposition of the deformation gradient.

Another eye-opening study has been conducted by Saito and workers [23]. They
have obtained the degree of curing dependent macroscopic viscoelastic properties,
the macroscopic coefficients of thermal expansion (CTE), and the coefficient of cure
shrinkage (CCS) from the relaxation curves obtained by the numerical material test
(NMT) results and have also assumed that the orthotropic version of the model can
be used to simulate the macroscopic mechanical behavior of fiber-reinforced plastics
(FRP) for the resin. They have contributed to the literature by introducing a new
configuration of the rheology elements. They also formulate the macroscopic CTE
and CCS in the generalized Maxwell model for both equilibrium and non-equilibrium
parts. In other words, they have proposed a viscoelastic analysis method of two-scale
decoupling of unidirectional FRP subjected to the curing. To do so, they formulated
continuum level constitutive functions whose material parameters depend on both the

degree of curing and ambient temperature.

Yamanaka and coworkers [24] have had a different perspective with a different formu-
lation. They have developed an incremental variational formulation for the thermo-
mechanical coupled problem of curing resin. The dual dissipation potential is com-
bined with viscoelasticity for the cure state. Thanks to the incremental variational
formulation, they optimize the change of energy concerning an internal variable to
obtain the instantaneous total equilibrium states of an inelastic continuum body.They
have also discussed the existence and uniqueness of solutions and computational ef-
ficiency while strictly maintaining present formulation. They claim that this study is

the first model proposed for thermo-mechanical analysis of thermosetting polymers.
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However, finite strain and shrinkage effects have not been taken into account.

1.4 Contributions and Novelties

As outlined above, the experimental and computational studies on frontal polymer-
ization have focused only on the chemical, thermo-mechanical, and the front velocity
properties of the frontal polymerization so far. To this end, in this contribution, we
develop novel constitutive models furnished with robust computational tools to de-
scribe the process of frontal polymerization and the behavior of polymeric materials

produced by frontal polymerization. In particular,

e the incremental models of finite elasticity coupled with the inherent thermal

and chemical aspects for the frontally polymerized materials are developed,

e the coupled chemo-thermo-mechanical constitutive models are constructed in a

new thermodynamically consistent framework,

e the continuous evolution of material properties (aging) is accounted for in the

incremental setting,

e the robust computational tools furnished with stable and efficient algorithms
are developed to incorporate chemothermal, thermomechanical, and chemome-

chanical couplings,

e the developed multi-field coupled model is used to conduct numerical analysis
to predict the accumulation of stresses due to the chemically induced shrink-
age and thermal volume changes. Undoubtedly, the far-reaching goal of the
developed computational models is the optimum design of frontal polymer-
ization manufacturing technique to towards mechanically stronger and tougher
polymer products and composites that have a broad spectrum of high-tech ap-

plications.

1.5 Outline of Thesis

This thesis is organized as follows:
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In Chapter 2, the fundamental equations of the coupled boundary-value problem of
chemo-thermo-mechanics for frontal polymerization are derived using the tools of

continuum thermomechanics.

In Chapter 3, the kinematic and constitutive equations of the chemo-thermo-mechanical

model are specified.

Chapter 4 is devoted to the finite element formulation of the coupled problem. The
expressions of the residual vectors and the associated tangent matrices are derived

consistently with the employed staggered solution strategy.

The representative numerical examples addressing chemo-thermo-mechanical cou-
plings in frontal polymerization are presented in Chapter 5. In particular, these ex-
amples are designed to illustrate the effects of different types of material behavior,
various boundary conditions on the evolution of the stress accumulations during the

course of frontal polymerization.

In Chapter 6, the concluding remarks and outlook are given.

13






CHAPTER 2

THERMODYNAMICAL FRAMEWORK

In this chapter, we introduce the fundamental equations of the chemo-thermo-mechanical
coupled boundary-value problem to set the thermodynamical framework for the frontally
polymerized thermoset materials at finite strains. A similar study was done by N’Guyen
and his coworkers [22]], but in our study, we will discuss the framework for materials
produced with a different polymerization method (frontal polymerization). Thus, we
describe the principal equations of the fundamental maps, the fundamental balance
equations of solid body, and the stress measures. For more detailed description the

reader is referred to studies [25 [26} 27, 28 [29]].

2.1 The Motion, Fundamental Geometric Maps and Deformation Measures

A solid body B is composed of infinitely many material points P € B which also
indicate positions in the Eucledian space R3. The geometry of the body B in R? in
(2.1)) at time ¢ is expressed by a bijective nonlinear deformation map as shown in

Figure[2.1/and described mathematically in (2.7]).

B — B, ¢ R?
X, = 2.1)
PeBw—x, =X, (P)€ B,
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R?)

B,

Figure 2.1: The map from the material space to the Euclidean space

The motion of a body can then be considered as a group of location parameterized
by time. Thus, in a motion, the particle P occupies a sequence of places x; in space.
The position of the material points at t, X = x,,(P) € B is named as the Reference
Configuration that is generally assumed to be an undeformed state. Likewise, the
Spatial / Eulerian Configuration of the body at time ¢ is indicated by x = x,(P) €
S as shown in Figure 2.2}

B / e PX) L e \ S

Figure 2.2: The nonlinear deformation map (X)) from the referential configuration

to the spatial configuration

In this manner, the deformation map ¢,(X) can be defined between x,,(P) and
X;(P) to illustrate the motion of the body in the Euclidean space with the one-to-one

relation in (2.2).

B— S
P, = 2.2)
X = x=¢(X)

It is also possible to find the position of Euclidean point in the reference configuration
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thanks to bijectivity of deformation map. The inverse deformation map is represented
in 2.3).

. S— B
ol = (2.3)
z— X =g (z)

The differential geometry of material and spatial curves on the geometry of the body
as depicted in Figure [2.3|is described by tangent vectors. Beside, x,(©) and x,(©)
which are material and spatial curves respectively are parameterized by variable ©

€ R as shown in Figure[2.3]

Figure 2.3: The mapping between the material space and the Euclidean space

The tangent vector is a useful tool for the calculation of the stretch, and the defor-
mation gradient so the referential and spatial tangent vectors are calculated in (2.4),

respectively.

(x4 (9)) d(x:(©))
doe doe

We use the chain rule operation in the tangent vector calculation for the spatial curves,

T = €TxB and t:= €T.S (2.4)

and we found the relation in (2.5).

d(x,(9))
do

d(Xto<@))

t:
e

= Vxp,(X) (2.5)

It is obvious that the deformation gradient F' is none other than the first term in the
right hand side of (2.5)).

F=Vyp,(X) and T = dx(;;@(@) (2.6)

According to the result in @, we can write the relation between the referential and

spatial tangent vectors as shown in (2.7)).
t=FT (2.7)
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Then, the map of the referential tangent vectors to the spatial counter parts described
by the tensor called the deformation gradient (F') is expressed mathematically in
2.3).

Txlg — 7;8 ,

F(X,t) = (2.8)
T —t=FT

Each spatial tangent vector dx is identified as the tangent map of its material coun-
terpart as described in (2.9).
de = FdX (2.9)

Then, we define the Jacobi map through the conventional coordinate free definition
of the determinant of a second-order tensor of the deformation gradient. The volume
map J is restricted to positive numbers R, to ensure the function bijectivity. We use

dV and dv to describe the infinitesimal volume elements of parallelepipeds as given

in (2.10) and (2.1T)).

The volume in material space is introduced as shown in and depicted in Figure

2.4
AV = dX ;- (dX, x dX1) (2.10)

The spatial counterpart of (2.10) is described in (2.11)) and shown in Figure [2.4}
dv := dwg . (dalg X dl‘l) (211)
where dx; = FdX,; for i=123.

If we put the relation in (2.9) into (2.11), we observe that det(F) is the map of the

volume in spatial space to the material counterpart as specified in (2.12)).

dv = (Fng) . (FdXQ X FXm)
(2.12)
= det(F) ng . (Xm X dX2>

When we compare (2.12)) with (2.11]), we obtained the Jacobi mapping .J in (2.13)
which is one-to-one relation and restricted to positive real numbers to satisfy the

impenetrability of matter.

dv = JdV (2.13)
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Figure 2.4: The volume (Jacobian) map

The other transformation is area map that transformed the normals of material sur-
faces onto the normals of spatial surfaces which is depicted in Figure To make it
clear, the reference and spatial areas have to be calculated as the cross product of two

non-colinear tangent vectors as defined in (2.14).

NdA =dX, xdX, ) ndA = dxy X dzy

Figure 2.5: The illustration regarding the mapping between normal spaces

NdA = Xm X dXQ
(2.14)
nda = dx; X dxs
When we consider the relation dx; = F'dX; for i =1,2,3 in (2.9) and using the Jacobi
map (2.13), we arrive at,
dzs - nda = JdX3- NdA (2.15)
Then, we solve (2.15) for nnda for an arbitrary tangent vector d X, the co-factor of the

deformation gradient comes out as in (2.16).

nda = cof(F)NdA where cof(F):= JF T (2.16)

The tensorial quantity carrying out the map in (2.17) is F~ 7, so F~! should be

considered as the normal map transforming the reference normals IN onto the spatial
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normals 1 belonging to the respective co-tangent (normal) spaces 7y 3 and 7S as

depicted in Figure[2.6]

TxB — T;S
-T L X
FT.— Nt 2.17)

T t
F
T.S
{ -

Tangent Spaces

TS

Normal Spaces { T:B

h_Y—l 3
Lagrangian Eulerian

Figure 2.6: The map of the material normal to the spatial normal in the commutative

diagram

At this point, we have to introduce the right and left Cauchy-Green tensors. Thus, first
of all, the reference B and spatial S configurations of a body are locally furnished by
coordinate systems in the neighborhood of the reference coordinates X 4—; 3 and the
spatial coordinates x,—; 2 3 . These coordinates systems are generally non-orthogonal
but equipped with the reference G = G 4p and spatial g = g,, metrics, respectively.
The both metric tensors reduce to Kronecker’s delta (0;;) G = d4p and g = d, in

the case of Cartesian coordinate systems.

To make the geometric meaning of the right and left Cauchy-Green tensors more
transparent, it is neccessary to utilize these metric tensors as the mappings from the

tangent spaces to the normal spaces of the Lagrangian and Eulerian configurations as

defined in (2.18).

G:TxB— TxB
(2.18)
g:1,§ —1T,S
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The right and left Cauchy-Green tensors are introduced as shown in (2.19):

C:=¢'(g) =F"gF with Cap= F,aguFip 2.19)
b=, (GY) =FG'F" with by = FouGiLFs '

The pull-back operation is defined as C := ¢*(g) and is represented in the commu-

tative diagram in Figure 2.7}

T t
‘—’F |
T.S
[

C=y¢'(g)=F'gF g

\_w—l -
Lagrangian Eulerian

Tangent Spaces

Figure 2.7: The right Cauchy-green tensor and pull-back operation diagram

The push-forward operation is described by b~ ' := ¢, (G) and is demonstrated com-

mutative diagram as shown in Figure 2.8}

T

Tangent Spaces { T B

Normal Spaces { T: B‘

M_Y—.‘ M—Y.—‘
Lagrangian Eulerian

Figure 2.8: The inverse left Cauchy-Green tensor and push-forward operation dia-

gram
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Cauchy’s Theorem : The theorem states that o (x, t) is a unique second-order tensor

to satisfy (2.20).
t(x,t,n) =o(x,t)n with t, = oun, (2.20)

where o is the Cauchy stress tensor which is a symmetric spatial tensor field. The

relation in (2.20) is the transformation between the traction vector ¢ and o. The

prompt result of (2.20) is
t(x,t,n) = —t(x,t,—n) (2.21)

The relation in (2.21)) is none other than the Newton’s third law of action and reaction.
The Cauchy stress can be shown as a mapping of the normal vector n € 7*S onto

the tangent vector t € 7*S as described in (2.22)).

TaS = TS
o(xz,t) = ; (2.22)
n—t=on

2.2 Balance Equations

2.2.1 Balance of Mass

In a closed system, we assume that mass cannot be produced or destroyed: similarly,
N’Guyen and coworkers [22]] assumed that neither mass creation nor destruction of
mass is accepted. Thus, the mass M of a body is a conserved quantity.

Bp S,

Figure 2.9: The cut out parts B, C B and S, C S in Lagrangian and Eulerian

configuration, respectively

We define the mass of cut out S, € S in (2.23). The both cut out parts are depicted in
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Figure[2.9
Ms, = / plx,t)dv = / dm >0 (2.23)

P

where p(x, t) is the spatial mass density (continuous scalar field).

Since the mass is conserved:

d d d
%(Msp) =0— a(dm) = %(pdv) =0 (2.24)

The balance of mass requires that the mass of the cut out B, is the same as that of S,,.

In other words, it is obvious that M, is equal to Mp,.

where

Mg, = / po(X, 1) dV > 0 (2.25)
B,

P

Therefore, we have

/p(w,t)dv:/ po(X,t)dV (2.26)
S, B

D

Then, we obtain in (2.27) which is valid for any cut out part of 5, by subtracting
the mass in the Eulerian configuration from the Lagrangian counterpart and using a

jacobian map of the volume elements dv = JdV'.

/ (Jp—po)dV =0 (2.27)
B,

The identity in (2.27) is valid for any section of B,, we arrive the transformation
locally with Jacobi map J in (2.28)).

Since the reference mass density should not be changed with respect to time in closed

systems, so we generalize in (2.24) as shown in (2.29):

) ) =
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Then, we put (2.29) into (2.24), and the relation in (2.30) is obtained.

dMs, d

d
_d _ 2 — 2.30
Tl AL /B TV =0 (2.30)

Due to time dependency of the domain of integration, we use the time derivation

through integrand of the Lagrangian integral. Then, we find

dM, d .
A T 5

We arrived the relation in (2.32) as the integral identity of (2.31)) holds for any B,.
[pJ + Jp] =0 (2.32)

The result in (2.32) is valid for any B,,. The time derivative of Jacobian can be derived

as in (2.33).
J=0pJ: F=cof(F):F

= JFT.F=J1:(FF™")

l (2.33)
= Jtr(l) = JVg(v) : 1
= Jdiv(v)
Then, we insert (2.33)) into (2.32]), and we arrive
p+ pdiv(v) =0 (2.34)

2.2.2 Balance of Linear Momentum

We have two types of forces which are the body forces (mass specific ) y(x, t) due to
the action of other bodies at a distance and the surface forces (traction vectors) ¢ due
to the action at a vicinity. The balance of linear momentum states that the time rate
of change of linear momentum Ly, of B, € B is equal to the sum of the these forces

Fp,- We arrange this phenomena for the referential and spatial space as shown in

Figure

The linear momentum can be described mathematically in (2.35).

Ls, = / vdm = pv dv (2.35)
Sp Sp
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Figure 2.10: Surface and body forces acting on cut out parts B, and S,

The forces acting on body mentioned above are given in (2.36)).

Fs, = / tda +/ v dm (2.36)
oSy Sp
—_— Y
traction forces body forces

To make it clearer, the change of linear momentum with per unit time is equal to total
forces which are mass-specific body forces and traction forces which is described in

(2.37) as mathematically.

d
— — 2.37
If we put (2.35) and (2.36)) into (2.37), we arrive at
d
— [ pvdV = / py dv + / tda (2.38)
dt Js, Sy 05,

Then, we focus on the left hand side of (2.39), and take a time derivative.

d d
— dv = o d —(pd 2.39
pn Spp'v v /Sp'vp U+/3pvdt(p v) ( )

Due to the balance of mass, the last term in the right hand side of the equality in (2.39)

should be zero.

d

/dS E(pdv) =0 (2.40)

The other side of the equality in (2.38)) can be derived as follows by using Cauchy
stress theorem as explained in (2.22):

/ tda:/ o"nda:/ div(e) dv (2.41)
as, as, Sy

As aresult, we can find the most famous conservation of linear momentum expression

in (2.42).
/ pi)dV:/ p’ydv~|—/ div(e) dv (2.42)
Sp S S

P D
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For the local form of the balance of linear momentum in the Eulerian setting is given
in (2.43):
pa = py + div(o) (2.43)

where a is the acceleration.

2.2.3 Balance of Angular Momentum

The conservation of the angular momentum is defined by equating the rate of moment
of momentum to the net moment formed by total forces acting on body. The angular
momentum of S, is described as
Ds, := / xr X vdn= x X vpdv (2.44)
Sp Sp
The resultant moment generated by forces acting on S, is derived in

Ms, == /
S

pa:xq/dv:/ x X tda (2.45)
» aSp

Ds, and M, are considered with respect to the fixed origin in the space so this
notation is used in (2.44)), (2.45)). The balance of angular momentum equation can be
described as shown in ([2.46):

d
5(Ds) = Ms, 240)

The meaning of the mathematical expression in (2.46) is the time change of the angu-

lar momentum Dg, of S, € § is identical to the sum of the moment M5 generated

by the forces acting on S, as in (2.47).

d

— wxpvdv:/wqu/dv—l—/ x X tda

dt Js, S, S, (2.47)
~ v ~—_——

T2 T1

The last term (T1) on the right hand side of the equality in can be written as

follows:

Cauchy’s theorem
/ x X tda = / €ijk Tty da = / €ijkT 0K da
oSy oS oSy

P

Gauss Theorem a(eijkxj Ukl) / axj aakl
/sp Ay ° sp(6 g, T ) dv (2:48)
= / (€ijk01) dv —|—/ x x div(e) dv
Sp Sp
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The other term (T2) on the left hand side of the equality in can be derived as

follow:

d d

— | xxpvdv= [ vxpvdv+ | vXxpadv+ [ vxpv—(pdv)

dt Sp Sp Sp Sp dt

N s N - 7
0 0 dieto @) (2.49)
= / (x X pa)dv
S

We end up with

/ (x X pa)dv = / x X pydv —i—/ €ijk0kj AV +/ x xdiv(e)dv  (2.50)
Sp Sp Sp S

D

If we rearrange the relation in (2.50), we arrive at

/ (x X (pa — py — div(e)) dv = / €ijkOk; AU
Sp e Sp
0

due to the balance of linear momentum

(2.51)

Due to the balance of linear momentum equation in (2.43), we obtain equality in

(2.52):
/ €ijkOkj dv=20 (252)

D

If we localize the integral domain S, to a point, we find the expression in (2.53).
€ijkOkj = 0 (253)
To make the equation in (2.53) more transparent, the relations are expressed as

t =1+ €123032 + €132023 = 033 — 023 = 0
1 = 2> €31013 + €213031 = 013 — 031 = 0 (2.54)
1 =3 > €312021 + €312012 = 021 — 012 =0

According to the results in (2.54)), the Cauchy stress tensor is symmetric. Thus, this

implies the symmetry of the second Piola Kirchhoff stress tensor S and the Kirchhoff
stress tensor 7 as described in (2.53).

o=0c", §=8" r=+7 (2.55)
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2.2.4 Balance of Energy (The First Law of Thermodynamics)

The energy equation is a result of the energy balance postulate of the first law of
thermodynamics. The rate of change of kinetic energy (K) and internal potential
energy (€) of spatial cut out body is equal to the summation of thermal (Q) and

mechanical power (P) as expressed in (2.56).
d
S(K+E=P+Q (2.56)

The external traction forces and the body forces act on the body S, and the rate of

this action is called the external mechanical power as shown in (2.57).

sz/ t-vda+/ py - vdv (2.57)
S, S

P

On the other hand, the outward heat flux acts on the boundary of the body S, and
the internal heat source per unit volume 7 acts on the cut out body. The sum of these

actions is the thermal power (Q) defined as in (2.58).

Q:—/ q-nda+/ pr dv (2.58)
8S, S

P

The kinetic energy is described in (2.59).

IC:/ 1pv-valv (2.59)
S 2

P

Similarly, the internal potential energy is also defined as (2.60).

5:/ pe dv (2.60)
S

P

where e is the mass-specific internal energy density.

We take some derivation and arrange the mechanical power expression as shown in
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Pewt:/ t‘vda—l—/ Y -vdv
05, s

P

= / (Uijnj)vi da + / PYiU; dv
oSy Sp

:/ —a(aijvi) dv+/ PYiv; dv
Sp (915]- Sp

[ 0oy Ov; (2.61)
_/ o +%)vzdv+/8pawa dv

:/ pvzvzdv—l—/ O'ijlijdv
Sp S

P

:/ piz-vdv+/ o:ldv
Sp S

P

When we use the I = d+w by using the rate of deformation and spin tensors concept,

we rearrange the result in (2.61)) to obtain
d 1
Powt = = — —pv-vdv+ o :ddv (2.62)

Moreover, we deal with the thermal power part in (2.58):

Q:_/ qmida—i—/ pr dv
05, S,

Iq; /
= — dv+ | prdv 2.63
/S'p 81’1 S ( )

.y p

div(q) dv—l—/ pr dv

SP
If we insert (2.62), (2.63), (2.59) and (2.60) into (2.56), we get

d 1 d 1
— | (zpv.v+ pe)dv=— —pv-vdv—i—/ o:ddv
dt Js, s,

2 it Js 2
Y (2.64)
+ / (pr —div(q)) dv
Sp
When we rearrange the (2.64), we arrive at
/ (pé +div(q) —o :d—pr)dv=0 (2.65)
Sp

In addition to (2.63)), the local form of the balance of energy in the Eulerian setting is
given in (2.66) by localizing the result in (2.65)):

pe+div(q) —o :d—pr=0 (2.66)
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2.2.5 Balance of Entropy (The Second Law of Thermodynamics)

The first law of thermodynamics specifies the conservation of energy but it does not
determine the direction of a process restriction. There is a preferred direction of the
process. For instance, the preferred direction of the heat flow between two systems at
different temperatures is always from the warmer to cooler one, when thermal phe-
nomena are considered. It will be expressed as an inequality stating that the internal
entropy production rate is always non-negative and is positive for an irreversible pro-

CeESSs.

S = ﬂdv_/ " 1 (2.67)
s, 0 ass, 0

where 6 is absolute temperature and r is the internal heat supply per unit mass.

The rate of entropy change is given by

. d
= — d 2.68
H 7 /Sp/m v (2.68)

The second law can be regenerated as form in (2.69):

d r q-n
— dv > —dv — = d 2.69
7 Sppn 'v_/sppe v /as,, g de (2.69)

We can rewrite the above inequality as in (2.70) alternatively.

d .
r::/ oy dv ::—/ pndv—/ pfdwr/ L™ g0>0 (2.70)
Sy dt Js, s, 0 os, 0

where [ is the total rate of entropy production, and -y is the mass specific spatial rate

of entropy production.

We transform the second law inequality equation above into a totaly volume integral.

q-n qin; 0 g
——da :/ da :/ =)dv
/B‘Sp 9 S, 6 Sp aﬂ:z(e )

1 1
= —div(q dv—/ —q - V0dv
[ gtv@a— [ 5

P

If we put (2.71) into (2.70), we obtain the rearranged the relation as shown in (2.72)).

i 1
/pvdv:/ pndv — ﬂle—/ dw(q)dv—/ —q - Vgbdv >0
Sp S s, 0 s, 0 s, 0

' (2.72)
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Then, the local form known Clausius-Duhem inequality (CDI) equation is given in

(2.73)

) rdiv(g) 1
- =~ — —q - V0> 2.73
Py =P =Py + 7 92q V 0 (2.73)

We introduce the dissipation equation per unit deformed volume as (2.74):

1
pD:pGPy:a:d—pé—i—pﬁf}—@q-vmezo (CDI) (2.74)
We decompose the Clausius-Duhem Inequality (CDI) equation into two parts namely,

the local Clausius-Planck Inequality (CPI) and the conductive Fourier Inequality (FI)
as shown in (2.73]).

PDioe =0 :d — pé + phn >0 (CPI)
1 (2.75)

PDeon, = —p? V0 >0 (FI)

The first inequality in (2.75) is in local terms and responsible for internal dissipation,

on the other hand, the latter in (2.75]) is responsible for dissipation due to conduction.

2.3 Theory of Frontal Polymerization and Polymerized Material Behavior

In this subsection, we consider the chemical, thermal and mechanical coupling phe-
nomena in order to demonstrate the behavior of frontally cured polymers. A coupled
problem of frontal polymerization thermo-mechanics is formulated in terms of three
primary field variables, specifically the deformation map ¢, the temperature ¢ and the

degree of curing a.

Therefore, a chemo-thermo-mechanical state of a material point X at time ¢ is defined
as

State(X, 1) := {p(X,1),0(X, 1), (X, 1)} (2.76)

The basic set of equations required to solve the initial-boundary value problem (IBVP)
of chemo-thermo-mechanics are the balance of linear momentum, the conservation of
energy, and the chemical evolution equation for the degree of curing. Therefore, we

introduce the differential equations that govern the evolution of the state variables.

In what follows, we consider a certain spatial body S closed by the boundary 0S as

shown in Figure The following linear momentum equation recalled from (2.43))
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in order to represent the quasi-static stress equilibrium:
div(e) + B=0 (2.77)
where B is equal to p~y.

It governs the evolution of the deformation field (X, ¢) along with the Dirichlet and

Neumann boundary conditions.

In the thermo-chemo-mechanics problem, we also utilize the Helmholtz free energy

to characterize the thermodynamic state as described in (2.78)).

=e—0n (2.78)
The first law of thermodynmamics states the power equilibrium as described in (2.79)).

peé+div(q) —o :d—pr=0 (2.79)

In other words, the equality in describes the rate of energy balance in terms
of the volume-specific internal energy e, the internal stress power o : d, and the
externally supplied thermal power comprised of the outward heat flux vector g and

the given volume-specific external heat source pr.

However, the first law does not place any restriction on the direction of a process. The
preferred direction of the heat flow due to the thermal heating defined at beginning of
the problem in between two systems is always from the warmer to cooler one. Thus,
we need the preferred direction in order to simulate correct behavior of material na-
ture. This limitation will be expressed below mathematically as an inequality stating
that the internal entropy production rate is always non-negative and is positive for an

irreversible process.

When we take a time derivative of the Helmholtz free energy function, and rearrange
them, we obtain

e =W+ 0n+0n (2.80)

We put (2.80) into (2.79), and can be expressed as in (2.81).

pbi = o : d — p¥ — pln — div(q) + pr (2.81)

~~ ~~
leoc Q
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where, pDy,. is the local dissipation, and () accounts for the local thermal power. We
can also rewrite the Clausius-Planck Inequality by inserting (2.80) into first relation

in (2.75) in Eulerian setting.
PDipe =0 1 d — ,0\11 — ,0977 >0 in S (2.82)
The Lagrangian counterpart is
00D = S %C’ —po¥ —pop >0 in B (2.83)

The right Cauchy-Green tensor in (2.84) is introduced to use in the functional form
of the free energy function. The functional form of the free energy function can be

written as

U =V(C,0,0) with C=F'F (2.84)
Then, we can rewrite the expression in (2.83) with help of functional form of the free
energy function in (2.84) as shown in (2.83).
1. .
pODloc — {S — 2p080\11] 3 EC —= po[?’] + 89\11]9 — poaa\ljéé 2 0 (285)

At this point, we use the Coleman’s exploitaiton method [30] to satisfy the thermody-

namical consistency. Thus, it implies the particular form of the constitutive equations

described in (2.36).

S = 2p080\11
(2.86)
n = —89\11
Therefore, the local dissipation reduces to the expression in (2.87).
poDiet = —pe0a v > 0 (2.87)

We define the chemical driving force by using the relation in (2.87), and we obtain

poDiet = Apce >0 where A, = —pp0,¥(C, 0, ) (2.88)

loc

We can describe the chemical part as the main dissipative mechanism for the frontal
polymerization which is highly exothermic. .4, and « are energy conjugate variables
since the chemical driving force (A, ) is the partial derivative with respect to degree
of curing («) as shown in (2.88). Due to the minor coupling with deformation, the
chemical driving force (A,) can be considered to be a function of temperature (¢) and

the degree of curing () as expressed in (2.89).
Ao = An(0, @) (2.89)
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Thanks to this observation and thermally activated polymerization process, we pos-

tulate general form of the evolution equation for the degree of curing () in (2.90).

& = f(0,a) (2.90)

where f is defined as an Arhenius and Prout-Tompkins type equation dependent on 6

and «. It is explained in more detail in Chapter 3]

It is obvious that & is always positive, so the thermodynamical consistency depends
on A,. In other words, when the A,, is positive, the thermodynamical consistency is

satisfied.

2.3.1 Transient Heat Conduction Equation

The energy equation is a result of the energy balance postulate of the first law of
thermodynamics. Loeffel and Anand [31] develops the energy balance equations with
inertial effects but they neglect the kinetic energy. The same methodology are used

in our study, and the conservation of energy equation in (2.79) recalled as shown in
2.91).
pe+div(qg) —o :d — pr (2.91)

where r is the heat source per unit mass.

We used the Piola transformation to transform the flux action on a spatial surface onto

their material counterpart as described in (2.92).

Q-NdA:=q - ndo  with Q=.JgF " (2.92)

JF-TNdA

We can write the identity in (2.93)) by using (2.92).
J div(q) = DIV(Q) (2.93)

Therefore, we multiply (2.91)) with Jacobi map (.J) and rearrange some terms accord-
ing to derivations in (2.92)) and (2.93) to extend the conservation of energy equation

into the Lagrangian setting as expressed in (2.94).
1.
poé = S : 5C + por, ~ DIV(Q) (2.94)
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If we insert (2.80) which is time derivative of into (2.91)), and then express the
relation as in (2.95).

1. . .
ponf =S : §C + pory — DIV(Q) — po¥ — pont) (2.95)

We rearrange the (2.95), and we arrive

‘ 1. . :
pont = S : §C — poV — ponb + pory — DIV(Q)/

’ (2.96)
Q

~~
pODloc

Then, we can obtain the time derivative of entropy in (2.97)) by using functional free
energy relation in (2.86).

7= —0,9(C, 0, )

82\11 . 82‘1/ 82\11 1. (297)
= — 0 — v — 2 =
002"~ 9ad0" ~ “9C00 2
The specific heat capacity is derived as shown in (2.98).
0*U
If we can simplify (2.96), we obtain
poct = poDioe + o2y Ui + pofdzeV : C + Q (2.99)
We group the terms in (2.99)), and they are named as shown in (2.100).
. 1.
9 = a — ea a ) 98 S:.-C
PoC S.A hAo)de  + bS5 + & (2.100)

~
hemical heati V H
chemical heating  #c thermoelastic heating €

To make the meaning of more clear, we focus on the terms in in depth.
During the polymerization, exothermic energy is released. This energy is measured
with the help of differential scanning calorimetry experiment. We assume that there
is a linear relationship between degree of curing and main dissipation mechanism.

Thus, we continue by considering that this released energy is equal to A, — 09, A,.

The second term on the right hand side in (2.100) (00yS' : %C’) is the thermoelastic

heating and is negligible compared to other terms. We can reexpress the relation in
(2.100) as in 2.10T):
poch = M. + He (2.101)
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After finalizing all derivations regarding the balance laws, we have three differential

equations to evaluate. These differential equations are tabulated in Table [2.1]

Table 2.1: The summary of primary field, governing equation and initial-boundary

conditions
Field Problem Equation # BC’s/IC’s
@(X,t) Mechanical div(e)+B=0 (2.77 p=¢@ on 05,

on=t on 0S;

0(X,t)  Thermal pocd = H.+H. (2.101 0=0 on 0By

a(X,t)  Chemical &= f(a,0) 2900 op(X)=a(X,t=0) in B
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CHAPTER 3

CONSTITUTIVE EQUATIONS

The governing differential equations of the chemo-thermo-mechanical problem of
frontal polymerization, given in Table (2.1)), are coupled through the constitutive
equations for the stress tensor o in (2.77), the chemical equation in (2.90), and the
transient heat conduction equation in (2.101). Moreover, we need to define the chemi-
cal driving force A, and the heat flux vector q in in the theoretical foundation

for curing of polymer. Thus, we aim to develop the constitutive models in this section.

3.1 Curing and Growth in Rigidity and Strength

The polymerization process should be modeled in order to make precise predic-
tion in the mechanical properties, defect and shape etc. of the final product by us-
ing chemo-thermo-mechanical tools. Therefore, chemo-thermo-mechanical coupled
models have been studied and proposed previously in literature such as [17,22]]. Thus,
we also need to advance the computational model for the initiation and propagation
of a polymerization front in polymer, so we developed the chemo-thermo-mechanical
model based on the coupled system of differential equation studied by Sottos and
coworkes [3l]. Furthermore, the classical Prout-Tompkins autocatalytic model de-
pended on the degree of curing (6, t) and the temperature 6(¢) [3] is used for the
chemical heating in (3.1).

The evolution of the degree of curing is described as in (3.1])).

Jda
Fr f(a,0) (3.1)

The degree of curing o characterizing the chemical state is an essential field variable
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representing the growth of rigidity and strength of frontally polymerized material.
This body is shown as a closed system that mass exchange with outside of the system
is not permissible, and the degree of curing is considered as a thermodynamical inter-
nal state variable whose thermally activated evolution is governed by an Arrhenius-

type equation.

The modeling of the curing evolution is essential for an accomplished manufacturing
process which satisfies the conversion of the liquid monomer to robust polymer in
both mechanical and thermal settings. Thus, we can focus on more transparent the
degree of curing evolution equation in (3.2).

1
1+ exp[Cla — a)]

£(0,8) = Aexp(——2)(1 — a)'a™

70 (3.2)

where 6 is the absolute temperature. A and E are the pre-exponential factor and
the activation energy, respectively. C and «, are constant parameters capturing the
diffusion at higher temperature. Moreover, n, m are parameters denoting the order of

the reactions.

Sottos and coworkers [3] deal with the optimization of the nonlinear fitting for the
cure rate evolution obtained from the Differential Scanning Calorimetry experiment

to specify the cure kinetic parameters which are A, £, n, m, C and a.

We deal with the the ordinary differential equation (ODE) problem of the degree
of curing evolution with the help of the experiment result obtained by Sottos and
coworkers [[1]. The evolution of the degree of curing depends on temperature and
polymerization degree at a quadrature point. Hence, it is solved as an internal variable
by discretizing governing equation in time. In turn, we apply the Backward Euler time
integration scheme to the governing ordinary differential equation in (3.2). Then, we

linearize the equation and apply the iterative Newton-Raphson method.

a=aq, +Ata with &= f(0,«)
a=a, +Atf(0, )

(3.3)

Given the temperature, we form the residual of the curing evolution equation in (3.4).

r(a,0) = a—a, — Atf(0, a) (3.4)
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Then, we linearize the residual term in (3.5)).

Lin(r(a, 0))|a=a =T + a(a — @)

where 3.5)
or

%|9,a

r=r(a,fd) and a:=

Consequently, we try to solve the linearized equation by iterating for « in (3.6).

a=a-—a 7(a,b) (3.6)

There is a missing term in the transient heat conduction equation in (2.101)), and we
obtain this term by using consistency condition. Hence, we also derive the derivative

of the curing evolution equation residual (r) with respect to temperature ¢ as shown

in (3.7).

df(o"e)_@’ +ﬁ‘ L
o 00" 9a '’ 90
—~ (3.7)
da  __, Or
%__ '%Lx

We used the staggered solution scheme to decrease the computation time. In the stag-
gered solution scheme, we used the nodal temperature values at the previous time step
in order to obtain the chemical heating part. Recall the chemical evolution equation in
(3-2) to explain the staggered solution approach application with our chemo-thermal
problem.

1
1+ exp[C(a — a,)]

£ (1 —a)"a™

fla,0,) = Aexp(—Re

(3.8)

where 6, is the nodal temperature values at the previous time step.

The evolution of the degree of curing depends on temperature and polymerization rate
at a quadrature point as seen in (3.8). The temperature value in (3.8) is taken from
previous thermal solution step. Then, the derivative of degree of curing with respect

to temperature in (3.7)) is removed from the thermal heating source part.

The curing induced polymer strength is modeled through the reaction conversion ex-
pressions that evaluate the mechanical properties in terms of degree of curing. We

consider the following relation for the evolution of mechanical properties with the
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curing progress in (3.9):

o, — 0.04
A=Ay — (A — Ay) tanh(22 =20
an
=iy = (g — ) exp(—)
f (3.9)
(079
ag = agr — (gy — ag;) exp( T )
—Ty
679
éczzqu“(qu“fd)eXp(‘TfT>
—Ty

where Ay is the Lamé constant of polymer. A; is the Lamé constant of monomer. 5
is the ground shear modulus of polymer. y; is the ground shear modulus of monomer.
apy 1s the thermal expansion coefficient of polymer. «g; is the thermal expansion
coefficient of monomer. ¢ is the chemical shrinkage coefficient of polymer. & is

the chemical shrinkage coefficient of monomer. 77 is a constant in switch function.

Hereby, the evolution of the mechanical and thermal properties are enhanced when

the degree of curing completed, or the polymer is fully cured.

3.2 Thermal Conductivity and Chemical Heating

In this subsection, we introduce the constitutive relation for the thermal conductivity
and chemical heating part of the polymerization process which is essential to simulate
the initiation and propagation of a polymerization front. We solve the coupled system

of partial differential equations depended on degree of curing o and temperature 6

[31].

First of all, recall the relation in (2.10T]), and we derive the evolution and conduction

relations for thermal part

poc = H, + H. (3.10)

where . indicates the chemical heating due to the curing process, and H. indicates

the sum up of the internal heat source and heat flux.
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Figure 3.1: The simulation of the carbon fiber reinforced composite frontally cured

The initiation, propagation, and chemical heating, as shown in numerical simulation
in Figure are modeled through the differential equation in (3.11)). Therefore, the
differential equation in (3.T1) is a basic relation for modeling of the frontal polymer-

ization.

poct = And + pory — DIV(Q) (3.11)

The relation in (3.T1) is responsible for the local energy storage for changing tem-
perature. Also, the first term in the right hand side of denotes the chemical
heating. It is specific for the polymerization type, so this term denotes the reaction
enthalpy obtained by the experiments and parameter fitting studies conducted by the
Sottos and coworkers [1]. To make it clearer, we encapsulate Sottos and coworkers’
experiments and their findings briefly. First of all, Sottos, Geubelle and coworkers
[1] carry out the Differential Scanning Calorimetry (DSC) experiments to determine
the enthalphy of reaction by integrating the heat flow over the exothermic reaction.
Thus, the enthalpy of reaction depends on heat but our relation in the right hand side
of (2.101) seems to depend on only the degree of curing o. However, the degree of
curing « intrinsically depends on temperature which is described in (3.2). The final
term is related to thermal conduction and internal heat source. Thanks to Fourier’s

Law, we derive the inequality in (3.12):
—Q%Q-VXQEO where Q = —KVx0 (3.12)
If we put more apparent flux term into (3.12)), we obtain
%x . (Vx0® V) >0 (3.13)
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According to the relation in (3.13)), the heat flux is proportional to the change of the
temperature with respect to space and heat is conducted from hot part to cold part of
the body for the conductivity tensor (K) positive definite. We use the isotropic con-
duction in our study, but it is possible to extend the directional conduction according

to composite manufacturing.

3.3 Chemo-Thermo-Mechanic Elasticity

In this subsection, we develop the Neo-Hooken elasticity model for the stress and

consistent tangent moduli derivation.

S A a2

t

x

S C S c” T g
TsS
Fe-T ‘ FO-T T ‘
e
— —
Lagrangian Eulerian

Figure 3.2: Schematic representation of the commutative diagram

Moreover, the deformation gradient is assumed to be decomposed into product of
mechanical, thermal and chemical parts which was firstly studied by Hofer and Lion

[17] as shown in (3.14) and depicted in the commutative diagram in Figure [3.2]
F=F"F'F° where F’=J)"1F =J/1 (3.14)

We use the volumetric and isochoric split terms in our finite strain derivation. The

commutative diagram of the multiplicative decomposition is depicted in Figure [3.3]

Then, the mechanical deformation gradient is expressed as (3.15).

F" = FFelpo-! (3.15)
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Figure 3.3: Commutative diagram of the isochoric-volumetric split approach

According to the decomposition of the deformation gradient in (3.13)), we obtain the
right Cauchy-Green tensor for mechanical part as expressed in (3.16)
C™ =¢C with &= J, P23 (3.16)

The free energy function is formulated as in (3.I7) to provide the consistent stress

response derivation.
U(C,0,a) :=V"(C,0,a)+ ¥ 0) + ¥ (a,0) (3.17)

We are interested in only mechanical free energy function in this section and we split
the free energy function into the two parts such as volumetric and isocohoric free

energy functions as shown in (3.18)).
U™(C,0,a) = U(Jy) + V™I
where J2 =det(C™), I" =tr(C™)

(3.18)

where U(J) and ¥(Z™) are the volumetric free energy function and the isochoric free

energy function, respectively.

Moreover, the mechanical part of F' split into volumetric and isochoric part. Owing

to multiplicative split, an intermediate configuration 7x 3 and 7 3 are introduced as

expressed in (3.19)
Fm=JY3F™  F" = JSE™
C".=F"F"=J}PCc" (3.19)
" =tr(C™)
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We conduct the necessary derivation in Lagrange setting for the Lagrangian stress
and tangent moduli. Then, we applied the push-forward operation to obtain Eulerian

counterpart for the finite element formulation.

The isochoric part of the mechanical right Cauchy-Green tensor shown in the first
relation in (3.20) is differentiated with respect to the mechanical right Cauchy-Green

tensor in the second relation in (3.20) and we obtained the deviatoric projection.

c"=J*C,,

- —2 T
demC™ = J2PT — ?J,;—2/3—1>Cm ® 707,3 (3.20)

1
— Jr;2/3[]l . ng ® Cm—l}

We derive the volumetric stress response in (3.21) in the following part of the this
chapter by using derivation in (3.20).

Volumetric Response:

We calculate the stress term directly using the free energy function. Thus, we take a
derivative of the free energy function with respect to right Cauchy-Green tensor C"™

as described in (3.21) for the volumetric stress response.

8™ = 20emWU(J) = W (J)200m Jim

O

o= P(Jpn) I C"

vol —

(3.21)

where P(J,,,) is totally equal to U (J,,).

The consistent tangent moduli are calculated by evaluating the material parameters to
stimulate the curing process of polymer. Then, the moduli are calculated as described
in (3.22).
o= 20¢,,S™
= [P'(Jn) + P(J)]C" ' @ JC™ = 2P(J ) Sl gm—r (3.22)
= I[P (Jn) + P(J)]C™ @ C™ 7 — 2P(J) Sl gm

We derived the incremental stress equation as shown in (3.23) after completing the

evolution of the tangent moduli.

ASY o 1AC”"

vol vol * 2

vol — vol vol

(3.23)
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However, the stress relation in (3.23)) is responsible for only mechanical part, so we
extend it to total stress term. We derive the relation between total stress and mechani-
cal stress as shown in (3.24)). It is none other than the multiplication mechanical stress
tensor with constant term devoted for thermal and chemical effects.

Svor =80y 1 0cC™ = 87, £(a, 0)1 = £S7, (3.24)

vol * vol

Then, we take the derivative of mechanical stress term with respect to right Cauchy-
Green tensor, and we arrive the updated consistent tangent moduli as expressed in
(3.25).

Cor = 2008, = 20cm (ST,€) : 0cC™ = £*C™, (3.25)
Bazant [32], Lackner and Mang [33]] claim that the new elements of the concrete
formed by new bonds within the micro-structure already formed which are initially
in the load-free state can participate in carrying the load. The same analogy is also
studied by Hofer and Lion [[17]. Thus, based on the knowledge from the above studies
[32.[17], we think that the new polymers formed do not directly participate in carrying
the load since it will create an inconsistency with the second law of thermodynamics.

Thus, we decided to use the incremental formula summarized in (3.26)).

The incremental part for the volumetric response is :

AST o %ACm

vol = ool + vol

S'Uol = ’SS;’;nol

Coo = 52617;”01
Isochoric Response:
We proceed with the derivation similar to the volumetric response. The only dif-
ference is that this part is responsible for the isochoric stress evolution. Thus, we

take the derivative of isochoric free energy function with respect to mechanical right

Cauchy-Green tensor as described in (3.27)).

S = 20em¥(1™) (3.27)



If we rewrite relation in (3.28)), we end up with

180

1
ST =25 231 [[— —C™ ® ™

| 3 (3.28)
=25 J 231 — 3 tr(C™)C™

where 51" := O ¥ = &

Thus, we consider s7" as a constant in the subsequent derivation. Then, we need
to update the consistent tangent moduli, so we take a derivative of isochoric stress

response with respect to mechanical right Cauchy-Green tensor as in (3.28).

1 2
O =20cm8T = 4571 — = tr(C™)C™ Y ® __J£1:2/3—1)J_mcm,1
i 3 2 (3.29)
1 1 .
== 4STJT;2/3[_§Cm—1 Q1+ § tr(Cm>]Icm—l]

When we rewrite the expressions in (3.29), we arrive at

4 1
Cr = —smJ- B3 r(c™ et @ ™!
3 3 (3.30)
—(1®C™!' +C™ 1) 4 tr(C™)Igm-1]
Then, we derive the total isochoric stress response as expressed in (3.3T).

1
Siso = 25712 J 21— SC @Ol
1
= 26T 231 — gztr(C’")C”H] (3.31)

_ s y23 %tr(C’)C_l]

We summarize the derivation regarding the stress and tangent moduli for isochoric
part as described in (3.32]).

Siso = Qﬁcm\pgg : Gch

Siso = fsgo

(3.32)
Ty = 40507 — 5Sssy = DomEST : e C™
(Diso = 520;20

where £(a, 0) = 0cC™
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The incremental parts for the isochoric response are summarized in (3.33):

AST =Co :%ACm

180 180 150

mo_ (8™ 1+ AS™
SZSO (SZSO) + SZSO (3.33)

Siso = gsm

180

(Diso - fijm

150

We have finalized all necessary derivation for incremental formulation, at this point

we derive the incremental part by combining volumetric and isochoric stress parts as
shown in (3.34):
AS™ =C™: %AC’m
S"=(8"), +AS™
S =£8™
C = eom

(3.34)

For the specific consistent mechanical tangent moduli of curing polymer:

= =21, (o) + M) 1
( (), .

2
a) )

A o) + M) ),

- @Jm — (ula) + @)Jml]cm—l ®C™ ) (3.35)

2 1
Cioo = g#(aﬂn_f/g[g tr(C™)c" o C

—1eC™ ! +C™ ' @ 1)+ tr(C™)gm1]

We derive the stress and tangent moduli in Eulerian setting by using push-forward op-
eration to satisfy the consistency with finite element formulation explained in Chapter
7]

Recalling that the Kirchhoff stress tensor 7 is the push forward of the second Piola-
Kirchhoff stress tensor in ll by using the relation 7 = ¢, (S) = FSF7 as
depicted in Figure [3.4]
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S=F'vF 7T
F—T
TxB
N
&—V—I M—v—l
Lagrangian Eulerian

Figure 3.4: Geometric interpretation of the Lagrangian and Eulerian stress tensors on

the commutative diagram

The push forward operation is applied on the volumetric stress response:

-

Tovol = QO*(Svol) - FSUOlFT
)

= (MY i) + M) 0 (3.36)
=M ) + 200

The push forward operation is applied on the isochoric stress response:

Tiso = CP*(S’iSO) = FSisoFT

= F( @J;W:’)u - %tr(C)C_l])FT (3.37)
= )2 5 r(b)g ™

Starting from the definition of the material tangent moduli C, given in (3.33) and
incorporating the push forward operation, we obtain the relation between the Eule-

rian and Lagrangian moduli as shown in (3.38)), (3.39) by separating volumetric and
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isochoric, respectively. For volumetric tangent moduli:

Cool = 28g"-vol

A A A
= a2 oy + Ay e 2D
2 2 2 338
M@)oy 4 -1 (3.38)
= (o) + =) lgT ©g
A« Aa), .
—oM ey + 2 o,
For isochoric tangent moduli:
Ciso = 28g"_iso
2 1
= ()1 ()™ @ g7 (3.39)

~-1®g'+g ' ®1)+tr(g)L,]
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Table 3.1: Algorithmic Box: Elastic Response for the Chemo-Thermo-Mechanical
Coupled Problem

e Given database: History variables C,, 0,,, o, S}." and the current deformation

gradient F',,; and temperature 6,,

e Compute Jacobian

Jo and J, — &(a,0) = J, 2 g2 %°

e Compute Right Cauchy-Green Tensor
C=F'FandC™ =¢C

C;Ll and (Hcr—nl)ABCD = %(anglcggl 4 Czll;l + Cglcjl)

e Compute material parameters with curing
A=Ay —(Af—Ny) tanh(%__—%m)
po= iy = (py = i) exp(=3)
ag = agr — (agr — ;) exp(_o‘—;f)

50 = Scf - <€cf — fcz) eXp(_aT )

n
f

e Compute moduli

C" = JnP'(J) + P(Jn)]C™ @ C™ 1 — 2P(J) Jlgm—

vol —
Qm = gsTJTZZ/g[% tr(cm)cm—l ® Cm—l . (1 ® Cm—l + Cm—l ® 1) +

S0

tr(Cm)]Icm—l]

e Compute increment

(Acm)n-l—l = (Cm)n-H - (Cm)n

AS™, =Ty LAC™
ASE, =T s tacm

e Compute stress and modulus
AS™ =C": %AC’m
S"=(S"),+AS™
S =&8™
C = o

e Update the history and push forward the stress and moduli.
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CHAPTER 4

DISCRETIZATION AND FINITE ELEMENT IMPLEMENTATION OF
COUPLED PROBLEM

In this section, we work on the weak forms of the governing differential equations
with the help of their strong forms are tabulated in Table We used the finite
element and finite difference methods to discretize the body in space and time for
the respective cases. The set of nonlinear equations that arise from discretization is

solved by using the iterative Newton technique for the nodal degrees of freedom.

4.1 3-D Finite Element Formulation at Large Strain in Eulerian Setting

The balance of linear momentum equation and the transient heat conduction equation
are solved numerically in this part of the thesis. The strong forms of the govern-
ing differential equations are multiplied with the corresponding square integrable test
functions (6 and §6) as shown in , to derive the weak form of the equa-
tion set. The essential boundary conditions ¢ = @ on 9B, and 6§ = § on 913 are
satisifed by selecting the appropriate test functions. We set the weak forms of the
coupled differential equations by using the Galerkin finite element method. All con-
structed equation sets are integrated over the body and are formed as in ({.1)) for the

mechanical, thermal problems, respectively.
Ge(0p;p,0) = Go(op;p,0)  — G&(0p;,0) =0
G0(507 P; 0) = Glent(697 ¥, 9) o ngt(597 6) =0
The strong form of the balance of linear momentum equation multiplied by test func-

tion is given in (4.2).

4.1

/—&p[JdiV(JlT)—l—B] dV in B 4.2)
B
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Then, we derive the Galerkin functional as in (4.3).
G (6¢; . 0) = / 5¢[Jdiv(§) +B]dV in B
B
= — / div(dpo) dv + / Ve :odv— / dp-BdV  (4.3)
S S B

= —/ 6go(an)da+/vm(5cp : a'dv—/égo-BdV
a8 S B
The relation in (#.3)) can be reexpressed as shown in (4.4).
G?(dp; p,0) = — 5go-TdA+/Vw5<p:~rdV—/5cp-BdV (4.4)
9B, B B
The Galerkin equation sets in (4.1]) has been derived with help of (4.4)).
G (0p;p,0) = / Vadp : TdV
B

(4.5)

GE(0p;p,0) = §<p~TdA+/5cp~BdV
0B, B

Similarly, the strong form of the conservation of the energy equation in (2.101) is

multiplied by the corresponding test function as expressed in (4.6).
/ 60(poct — He — He)dV in B (4.6)
B

The Galerkin function is expressed as (4.7]) for the chemo-thermal part.

GY(60: @, 0) = / 00(poc — He — H.) dV 4.7)
B
The Galerkin functional for thermal part can also be writen explicitly as in {.8)).
G (60;p,0) = / 00(poch + J div(J1q) —H. — pory) dV 4.8)
B —_—— :

T1

where ¢ := Jq and J div(q) = DIV(Q) as we know from (2.93).
We focus on the last term named as T1 in the right hand side of (4.8).

/B 60J div(J1q) dV = /S 50 div(J'q) dv 4.9)
We apply the integration by parts to the relation in and obtain,

/ 60 div(J'q) dv = / (div(60J1q) — V60T 'q) dv
s s ) (4.10)
— 60h9dA—/V60~(jdV
0By, B
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Then, we put the relation in (4.10) into (&.8).

G9(80; p,0) = / 60(poch — H. — pory) — V0 - qdV
5 4.11)

+ §0hy dA
0By,

For GY(50; 0, «) gets form :

GY (66; p,0) = / 80pocl — V500 - g dV

; ) (4.12)

GA00:0) = [ 8003+ por)dv — [ o0y
B 0

Bh
The relations in (4.5 and (4.12]) obtained by Galerkin method are nonlinear functions
of the field variables due to the gradient operators and non-linear constitutive models.
Thus, we linearize these equation sets with respect to field variables to utilize the
Newton-type iteration schemes within the implicit finite element framework.
LinGIP((&Pa P, 0)'@,5 ::GQO((SLP’ Coa 0_) +AG<P(5QO: @7 9_7 A‘pa Ae) =0

i ) (4.13)
LinG?(50,¢,0)[;  :=G%(30,2.0) +AG?(60,,0; Ap,A0) =0

The incremental terms obtained by the Gateaux derivative are expressed in the de-

composed form in (#.T4).

AG? = AG? — AGY,
4.14)
AG' = AGY, —AGY,

Then, we define the incremental terms of the linearized Galerkin functional responsi-

ble for the mechanical part in (4.5]) as shown in (.15]).

AGE (80, A, . 0) = / A(Vo (b)) - TdV + / Vo(d@) : ATdV  (4.15)
B B
The incremental term (V. (0¢p)) is derived as in (4.16).

A(Va(0)) = A(Vx0pF ™) = V,dpA(F )

(4.16)
= Vxbp(—F 'AFF™) = -V, 0pV,Ap
where V,Ap := AFF !,
The incremental stress term is derived as in (4.17)).
AT = La,T + Vo (A@)T + T(VLAP) + CPPAH win

|
= C: 5Lapg + Va(Ap)T + 7(VoAp) + CPAG

53



where ¢ =20,7, C* =0,7, 1La,g=sym(gV.(Ayp))
Insertion of (4.16)-(4.17) into (4.18) yields the form:
AGH(6p.0.0) = [ ~Val00)a(0p) s 7 dV
+ [ Valb)lC: Valdg) + Valdg)r + 7LAG) aV

_ / Va(0p) : C: (gVa(Ap)) dV

(4.18)

~
Material Part

—l—/BVm(&p) : (Ve(Ap)T)dV

J/

Geometric Part

+ / Va(6p) : (CPPAG) dV

The external incremental term AGZ, is zero since neither the body force B nor the

traction force acting on domain is deformation-dependent.

Then, we derive the incremental terms of the linearized Galerkin functional for the

thermal part in (#.13)) as shown in (#.19).

A
AG? (50,0) = / (56,000Kz — A(V00) - q — V400 - Aq (4.19)
B

Similar to (4.16)), the linearization of the V,(66) leads to
A(Vg0) = =V 5(00)V(Ap) (4.20)

Then, we derive the incremental thermal flux terms in (4.19) based on the definiton

of the spatial thermal flux.
AG = Lr,q+ Va(Ap) -G+ K -V, (A0) (4.21)

where L, is the Lie derivative of the potential heat flux.

- 1
Lapd =C": 5Lagg =C": (gVa(Ap)) (4.22)

We define the second-order conduction tensor which is also dependent on deformation

and third-order mixed moduli as expressed in (.23)).
K = —0v,q, C% .= 20,4q (4.23)
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Then, we put (4.20) and (4.21) into (#.19) and we obtain,

A
AG;, (36, p,0) = / 59P00—9 + V. (80) - K - V4 (A§)
B At (4.24)

+ V4(80) - C* . (gV(Ap))dV

Unlike the mechanical external Galerkin function increment G&,, the incremental ex-
ternal term in the linearized thermal Galerkin function depends on the field variables

with external heat source term and chemical heating term. Then, we obtain
AGY (60;0) = /3 S0(AH,. + A(pory)) dV (4.25)
with the increment of the chemical and thermal heating,
AH. = 0gH.AO and A(pory) =0 (4.26)

To this end, we discretize our domain B into element subdomain B” in element level
as shown in (4.27). Then, we applied the interpolation and and respective weight
functions through the element domain with the discrete nodal values and shape func-

tions.

o= EN'G

)

ot = :1NZ'T5
Sl = é:lzviadf
Agl = SN'Ad;
50 = 33 N5 4.27)
Vol = é)lédf ® VN
VoAl = é:lAdf ® Vy N
Vad0l = S OTEV,N'
VoA = B ATV, N

We derived the residual and consistent tangent expressions to conduct the Newton-
type iterative algorithm as described in (4.28)) and (#.29) in the staggered solution

scheme. Thus, we omit the coupled terms before proceeding with the residual and
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tangent expressions.

Nel

Ry = A{ / VoN'TdV — | N'Bav - | NTaA}
e=1 % JBn Bl 0B§ (4.28)
Tl Ab . , '
R?}:A{ N]poc—dV—/ VaN7.qdV — N](fe‘i‘Hc)dV}
e=1 \ Jpp At Bl Bl

Similarly, we construct the tangent matrices coming from the linearization of the
residual vectors in (4.29).

Nel . .
Kt = A { VoNi - C#% . VN dv}
e=1 oB;
Nel . .
Kif 0 = A { [ VN (V) av}

e=1

Nel . afl . - POC
00 _ N NI AV — / NP N g (4.29)
= AL [ VeN' g Vel dV = | NNV
9 0 0
— [ NUOH)N dv}
B

In the staggered solution scheme approach, the values of the temperature values are
taken from the previous time step for the solution of the displacement field as depicted

in Figure[d.1] Then, the solution algorithm is conducted one by one.

dn an—l—l an+2
> o 0

® >
: First First
Second Second
’ ") "D
Tn Tn+1 Tn+2
tn tn—i—l tn+2

Figure 4.1: The illustration of the staggered solution methodology

56



Therefore, the coupled terms are set to zero as shown in (.30).
K=0, K*=0 (4.30)

Then, after constructed residual and consistent tangent moduli, we solve linear alge-

bra problem by using the Newton-Raphson iteration scheme.

D=D-K*".R*
Tt g (4.31)
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CHAPTER 5

NUMERICAL EXAMPLES

In this chapter, we illustrate representative numerical examples regarding the chem-
ical, thermal and mechanical properties of frontally polymerized material under dif-
ferent chemical and thermal conditions. We start to verify our approach by perform-
ing spatial and temporal convergence analyses in Section 5.1. Then, the planar and
non-planar examples are illustrated under different chemo-thermal conditions. Poj-
man and coworkers [11] have examined composite systems created using metal strips
which are benchmark examples in the literature. In these studies, they examine how
the front speed changes with the system size and the effects of a metal strip on front
velocity, shape and width. However, the studies in the literature are not limited to
the effect of a metal strip, carbon fibers are also used in the experimental analysis.
Thus, we investigate the polymerization front, rate and behavior of the chemical and
thermal coupled problems with carbon fiber and without carbon fiber. In addition,
numerical examples similar to Sottos and coworkers’s paper [1, 3] are conducted for

the optimum amount of carbon fiber.

We exemplify the thermodynamic model we have developed with the problem in
Geubelle’s studies [3] and validate our model with spatial and temporal convergence
studies. Then, we study four different examples which are planar front examples, non-
planar front examples, planar examples with two sides heating and chemo-thermo-

mechanical examples.

The main aim of the example in Section 5.2.1 is description of the planar front prop-
agation, chemical heating and the degree of polymerization. We present the result of

the temperature and the degree of curing profile and also 2D model view.
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The example in Section 5.2.2 is about the evolution of the fiber reinforced composite
where we examine how the front and polymerization change with different amounts
of fiber. We show that there should be an optimum fiber ratio for polymerization by

examining our results as in Geubelle and coworkers’ study [3]].

The example in Section 5.2.3 is the planar frontal polymerization with the heating
on two opposite sides. The main motivation for this study is to investigate how the
polymerization and frontal characteristics would change in this case and how much

the polymerization time would decrease.

The examples in Section 5.3 are devoted to chemo-thermo-mechanical boundary-
value problems. We propose a new, incremental finite elasticity coupled with the
chemo-thermal fields and material properties evolution with the degree of curing for
the first time so it is the main section of our thesis. We observe how the mechanical
and thermal properties of the frontally polymerized material change by examining our
results. Moreover, we examine evolution of the stress accumluations that may lead to
a strength loss in the final product. We also investigate the expansion and contraction

of the material frontally polymerized.

For the model problem, we apply the thermal heating on a certain side of the do-
main during the trigger period. During heating, the other sides of the domain are
insulated, i.e. in the flux-free state. Once the heating is completed, the heated side
is also insulated. We use computational models based on the results obtained from
the convergence studies described in Section 5.1. Moreover, the chemo-thermal cou-
pled problem is solved with help of the staggered scheme approach. To make it
clear, the temperature values calculated in the previous step are used to the chem-
ical heating part in solution of the chemo-thermal coupled problem. The solution
time of the problem is significantly reduced thanks to this technique. For the chemo-
thermo-mechanical model problem, we also use identical thermal and chemical con-
ditions with the chemo-thermal problem. Besides using the staggered approach in
the chemo-thermal part, we also use the same approach in the solution of the chemo-
thermal-mechanical problem. In this approach, we use the temperature nodal values
from the previous time step in the solution of the mechanical problem. Thus, we can

increase the computational efficiency within acceptable tolerance limits.
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5.1 Convergence Analysis

In this section, we examine the effect of the spatial and temporal discretization we
have used in our model on the convergence of solution. Thus, we have conducted
the spatial and temporal discretization convergence analysis to determine the opti-
mum values by using FEAP® v8.5 FEM solver [34]. For the chemo-thermal model
problem, we choose a square domain with the dimensions 7.5 mm X 7.5 mm as in

Geubelle and coworkers’ study [3] and as shown in Figure[S.1]

b
L

Figure 5.1: The domain size for the 2D model problem. a = 7.5 mm, b = 7.5 mm

We summarize the initial and boundary conditions of the chemo-thermal problem in

GI).

0(x,y,0) =293 K,
a(z,y,0) = 0.05,
0(0,y,t) =453 K  for 0 <t <ty

V| oy =0 for ¢ > ti.yg, (5.1)
V(204 =0 for ¢t>0,

V(7540 =0 for ¢t>0,

V(750 =0 for t>0.

We also tabulate the material properties that we use in the following examples in

Table
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Table 5.1: The summary of the chemo-thermal material properties used in simulations

Material Parameters  Unit Definition Value
K [% Thermal conductivity 9.30 x 10°
Carbon Fiber ) [%] Density 18.00 x 102
C, [kg%K] Specific heat 75.36 x 10!
K ol Thermal conductivity 2.20 x 1072
PSU Foam p [X2] Density 32.50 x 10°
C, Ed Specific heat 14.53 x 102

K ol Thermal conductivity 1.50 x 107!
p [Xe] Density 98.00 x 10
C, [kg%K] Specific heat 16.00 x 102
A [£] Pre-exponential factor 8.22 x 10"
Monomer E %] Activation energy 11.07 x 101
(DPCD) H, [é] Total enthalpy of reaction  35.00 x 10!
n [-] Orders of reaction 1.72 x 10°
m [-] Orders of reaction 7.70 x 1071
C [-] Diffusion constant 14.48 x 10°
Q. [-] Diffusion constant 4.10 x 1071
R [mOJl.K Universal gas constant ~ 83.14 x 107!

5.1.1 Spatial Discretization Convergence Analysis

The sharp gradient in the temperature profile with the advancing front complicates
the solution of the problem and requires a minimum mesh size in moving front of
the polymerization. Moreover, the size of meshes affects the approximation quality
and precision of the finite element approach. Also, we used the time-discretization
adaptivity tool of FEAP® in the spatial convergence analysis so the maximum time

step of At = 1072 s and minimum time step of At =107 s.
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We discretize our model domain into 50, 100, 230, and 300 4-node quadrilateral
elements in each direction. In other words, we have specified four different element
sizes, h = 0.15 mm, A = 0.075 mm, h = 0.033 mm, and ~ = 0.025 mm. In turn, we

have examined their convergence status by using these mesh sizes.

(a) (b)
(c) (d)

Figure 5.2: The spatial convergence analyzes of the 2D model domain. a) h = 0.15

0 [K]
+500

1793

mm, b) A =0.075 mm, ¢) h=0.033mm, d) h=0.025 mm at¢t=3.5s

The temperature results of the analyses for the mesh sizes of 4 = 0.15 mm, ~ = 0.075

mm, 4 = 0.033 mm and / = 0.025 mm are presented in Figure

550

h=0.15 mm —
500 | h=0.075 mm

h =0.033 mm
450 h=0025mm -

400

350

Temperature [K]

300

250
0.0 1.0 2.0 3.0 4.0 2.0 6.0 7.0 8.0

Position [mm)]

Figure 5.3: The spatial convergence analyses of the 2D model domain
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In these examples, heating is applied from the left side of the domain up to 453 K
as shown in Figure [5.9]during ¢, = 1 5. Afterwards, the heat source is removed and
this side is isolated. We observe that for the coarser mesh sizes front move slower
and diverge from the general convergence trend. We also present our results for the
analyzes of four different mesh sizes which are A~ = 0.15 mm, & = 0.075 mm, h =

0.033 mm and h = 0.025 mm graphically in Figure

We observe that the spatial discretization converges when the element size is de-
creased. Thus, we get closer by fitting the position between x = 2.2 mm and z = 3

mm in Figure[5.3]to examine the results better. The result is presented in Figure [5.4}

502.0 h=0.15mm _
' = 0.075 mm
v 502.2 h = 0.033 mm
o 501.8 h=0025mm -
S
g 501.6
é 501.4
S 5012
501.0 ‘
'..\
500.8 O

22 23 24 25 26 27 28 29 3.0
Position [mm)]
Figure 5.4: Close up view for position fitting between x = 2.2 mm and x = 3 mm,

(Arrow direction shows convergent behavior)

It can be seen that the results are close to each other in the direction indicated by
the arrow in Figure @ Thus, the direction of the arrow denotes better convergence

performance of the corresponding mesh size.

According to the results presented in Figure[5.4] we observe that the convergence per-
formance improves as the mesh size gets smaller. The reducing the size after a certain
point does not have much effect on the precision of the solution, but it increases the
cost of the computation and reduces the efficiency. Thus, we have performed the spa-
tial convergence analysis to choose an optimal size. Especially, there is no significant

convergence performance difference between mesh sizes h = 0.033 mm and / = 0.025
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mm as seen from the graph in Figure However, we know that the / = 0.033 mm
mesh size deviates from the reference solution (solution corresponding to h = 0.025
mm), but we observe that the results are within the acceptable error tolerance limits.
As a result, we use the value of h = 0.033 mm as the mesh size in the following 2D

analyses.

Especially in the composite study in the non-planar examples discussed in detail in
Section 5.2.2, we find that the front shape is affected by the mesh size a lot. We
realize that the numerical results deviated from the experimental studies. Moreover,
we observe stair-like patterns in the front shape in coarser meshes as shown in Figure
[5.5] This phenomenon shows the another importance of the spatial discretization

convergence analysis.

0 [K]
+500

793

(a) (b)
Figure 5.5: The mesh size analysis of the 2D model domain. a) 4 = 0.15 mm, b) h =
0.033 mm at ¢t =0.5s.

5.1.2 Temporal Convergence Analysis

Similar to the spatial convergence analysis, the temporal convergence also affects the
computation performance of our thermodynamical model. We conduct the temporal
convergence analysis for the four different time steps of At =4 x 1073 s, At =103
s, At =5x107* s, At = 10~* s to calibrate the time step required to overcome this

sharp gradient and stiff problem.

We have used the adaptive time-step module of FEAP® to increase the computation
speed. In the time adaptive module, we used the the maximum time step of At ., =
4x107%s, Atpax = 1073 s, Atpax = 5 X 107%'s, At e = 1074 s, respectively and
minimum time step is taken as At = 107° s. In turn, the finite element analyses are

conducted for different time steps. We present the results of the analyses in Figure
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As it can be seen from the contour plots in Figure[5.6] the larger time increments result

in a polymerization front that moves faster and diverges from the general convergence

Figure 5.6: The temporal discretization convergence performance for a) At = 4x

B, b)At=10"3s,¢) At=5x10"*s,d) At=10"*satt=3.5s,

trend.

0 [K]
1500

l293

We observe that temporal discretization converges when the time step is decreased.
Thus, we get closer by fitting the position between x = 3.7 mm and = = 4.4 mm in

Figure[5.7)to examine the results better as shown in Figure [5.8 It can be seen that

550 . .
At=4x10"3%s
500 At=10"3s
—_ B At=5x10"4s
=) 450 At=10"%s _
Z
= 400
2
g 350
=
300
250

00 10 20 30 40 50 60 7.0 80

Position [mm]

Figure 5.7: The temporal discretization convergence performance for a) At = 4x

B, b)At=10"3s,c) At=5x10"*s,d) At=10"*satt=3.5s,
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the results are close to each other in the direction indicated by the arrow in Figure[5.§]
Therefore, the direction of the arrow represents a better convergence performance for

the corresponding time steps.

510 At=4x10"3s
505 At=10"3s
—_ At=5x10"%s
= 500 At=10"%s _
2
= 495
g
g 490
=485
480

3.7 38 39 40 41 42 43 44

Position [mm)]
Figure 5.8: The temporal discretization convergence performance for a) At = 4x
1073 s, b) At =103 s, ¢c) At =5 x 107%s,d) At =10"* s at t = 3.5 s, (Arrow

direction shows convergent behavior)

The results of the temporal convergence analysis indicate that At = 1073 s is a
reasonable time step as shown the results in Figure [5.8] Thus, we used time step of

At = 1073 s in the subsequent simulations.

5.2 Chemo-Thermal Numerical Examples

In this section, the chemo-thermal analyses are conducted to examine the character-
istics of the front, polymerization and temperature variation. We investigate three
examples, namely the planar front, the non-planar front, and the planar front heating
on two opposite sides. We use the material properties in Table [5.1]in the following

examples:
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5.2.1 Planar Front

In this example, the problem is very stiff and highly nonlinear due to the sharp gra-
dients of temperature and the degree of curing in the vicinity of the front. We apply
the thermal heating on the left side of the domain for ¢ = ¢,,;,, = 1 s as depicted in
Figure[5.9] Then, we investigate the chemical and thermal evolution in the material.
The domain size is 7.5 mm x 7.5 mm and we used 4-node quadrilateral elements of

size h = 0.033 mm. The time increment At = 1073 s is used in the simulation.

n=20

q

qg-n=0

witidddiis

q-n=
t < ttrig t > ttrig

Figure 5.9: Boundary condition for the 2D model problem

We summarize the initial and boundary conditions in (5.2)).

0(x,y,0) =293 K,

a(z,y,0) = 0.05,
0(0,y,t) =453 K for 0 <t <ty
V0 (040 =0 for t >ty (5.2)
V(204 =0 for >0,

V(754 =0 for t>0,

V| (2754 =0 for t>0.

We present the temperature distribution in Figure [5.10] at different times of frontal

polymerization.
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0 [K]
ll .I L,
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Figure 5.10: The temperature distribution at,a) t=1s,b)t=2s,c)t=3s,d)t=4s

The comparison between our numerical simulations and the results of the experiment

conducted by Sottos and coworkers [3]], indicates that we have obtained qualitatively

similar results as shown in Figure [5.T1]

Solid | Liquid
(a) (b)

Figure 5.11: The comparison between the experimental result [3] and numerical result

We present the temperature and the degree of curing curves corresponding to the sim-

ulations given in Figure [5.10]in Figure [5.12] According to our analyses, we observe

that temperature variation is between about 500 K and 293 K.
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Figure 5.12: The temperature variation with respect to position

The degree of curing variation with respect to position is presented in Figure[5.13] As

seen in Figure [5.12and Figure[5.13] the temperature and the degree of curing have a

similar propagation trend with respect to position.
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Position [mm]

Figure 5.13: The evolution of the degree of curing with respect to position

5.2.2 Non-Planar Front in Composites

In this example, we investigate the behavior of the fiber reinforced polymer composite

which is frontally polymerized. Similar to planar front examples, the problem is also
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very stiff and highly nonlinear due to the sharp gradient temperature and the degree
of curing in the vicinity of the front. The thermal conduction property of the fiber is
greater than that of the monomer, so the fiber is used in the frontal polymerization
process to increase the propagation of the polymerization front. Therefore, we inves-
tigate the effect of carbon fiber and the amount of carbon fiber on the shape and speed
of the front for the frontal polymerization process quantitatively.

qg-n=>0

REEEEEREN

0 = Oprig gn=0gqg-n=0

e
ad

g n=>0
tSttrig

t> ttrig

Figure 5.14: Boundary condition for the 2D model problem

We applied the thermal heating on the left side of the domain for ¢t < ¢, = 1
s as depicted in Figure The polymerization is initiated when the heat source
contact with monomer and it does not contact with the fiber. Then, we investigate the
chemical and thermal evolution in the material. The domain size is 7.5 mm x 7.5
mm and we use 4-node quadrilateral elements of mesh size of & = 0.033 mm. The
time increment At = 1072 s is used in the simulation. We consider the four different
amounts of fiber which are 0.25 mm x 7.5 mm, 0.50mm x 7.5 mm, 0.75 mm x 7.5

mm and 1.0 mm X 7.5 mm in our simulations.

Table 5.2: The summary of the thickness variation in composite samples

Simulation a b c d f
1 7.50 mm | 7.50 mm | 1.00 mm | 6.25 mm | 0.25 mm
2 7.50 mm | 7.50 mm | 1.00 mm | 6.00 mm | 0.50 mm
3 7.50 mm | 7.50 mm | 1.00 mm | 5.75 mm | 0.75 mm
4 7.50 mm | 7.50 mm | 1.00 mm | 5.50 mm | 1.00 mm
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We tabulate the dimensions of the components in Table where a and b denotes



for domain size, ¢, d and f represents thickness of the glass, monomer, and fiber,

respectively and as depicted in Figure [5.15]

a Monomer d

Figure 5.15: Dimension of the 2-D geometry forthe composite model problem

We summarize the initial and boundary conditions in (5.3).

O(z,y,0) =293 K,
a(x,y,0) = 0.05,
0(0,y,t) =453 K for 0<t <ty where y=][f f+d],
Vo =0 for &>ty (5.3)
V| (zon =0 for t>0,
V(7540 =0 for t>0,
V| (750 =0 for ¢>0.

The contour plots in Figure [5.16] show the temperature distribution according to the
fiber ratio which increase from top to bottom. The contour plots are placed from
left to right according to the progression of time. It can be seen that the temperature
diffusion accelerates in proportion to the fiber ratio. The distinct change from flat to

the conical front shape is observed at ¢ = 4 s in Figure [5.16] This is consistent with

the experiment results in [[1]].
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f=025mm

f=0.50 mm

f=0.75 mm

0 [K]

f=1.00 mm ;500

1293
Figure 5.16: Temperature variation in the composite with distinct fiber fractions and

at different times

When we compare our numerical simulations with the experiment conducted by Sot-
tos and coworkers [3l], we observed that we have obtained qualitatively compatible
results as shown in Figure Because of the symmetry, we have modeled only

half of the experimental sample in our analysis.

0 [K]
7500
Solid / Liquid

(a) (b)

Figure 5.17: The comparison between the experimental result [3] and numerical result

|

293

We have extracted sections from 0.25 mm above the fiber for the temperature and the

degree of curing simulation in Figures and
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Figure 5.18: Temperature variation in the composite at ¢t = 1 s, where f represents

the fiber thickness.

According to result in Figure[5.18] we observe that the temperature diffusion is faster

in resin that has a higher fiber ratio at t = 1 s compared with the other composites.
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0.6
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Degree of curing

Figure 5.19: The evolution of the degree of curing at ¢ = 1 s, where f represents the

fiber thickness.

Similarly, it can be seen that the curing propagation is also higher in the resin that has

a higher fiber ratio at ¢ = 1 s as shown in Figure[5.19] .
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Figure 5.20: Temperature variation in the composite at t = 2 s, where f represents

the fiber thickness.

We also obtain similar results for temperature distribution and polymerization evo-
lution at ¢ = 2 s as shown in Figure [5.20 However, the temperature diffusion in
the composite that has low fiber content almost captures the temperature profile in

composite that has the highest fiber ratio.

1.0
0.9
0.8
0.7
0.6
0.5
0.4
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0.1
0.0 ' d
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f=025mm------
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f=075mm -
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Degree of curing

Figure 5.21: The evolution of the degree of curing at t = 2 s, where f represents the

fiber thickness.

We also observe similar behavior for the degree of curing att = 2 s as shown in Figure
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[5.21] The front propagation speed of the composite with the lowest fiber reaches the
speed of the composite with the highest fiber ratio.
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Figure 5.22: Temperature variation in the composite at ¢ = 3 s, where f represents

the fiber thickness.

Surprisingly, after ¢ = 3 s, the temperature diffusion with the lowest fiber content
composite moves faster than the with the highest fiber content one as shown in Figure

.22}
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Figure 5.23: The evolution of degree of curing at ¢ = 3 s, where f represents the fiber

thickness.
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In Figure[5.23] the curing propagation of the composite that has the lowest fiber also

moves faster than with the one with the greatest fiber content.
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Figure 5.24: Temperature variation in the composite at ¢ = 4 s, where f represents

the fiber thickness.

After the ¢ = 4 s, it becomes clear that the temperature distribution in the compos-

ite with low fiber is moving faster than in the composite with high fiber content as

depicted in Figure[5.24]
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Figure 5.25: The evolution of degree of curing at t = 4 s, where f represents the fiber

thickness.
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We observe that the degree of curing has also a similar trend as temperature. The

curing propagation comparisons in terms of carbon fiber are presented in Figure[5.23]

The reason for the behavior of the material depicted in Figure[5.25]is that the thermal
diffusion rate increased at an optimum rate of fiber activates the chemical reaction
and prevents the direct diffusion. Then, the polymerization reaction release heat, and
more heat is transferred to the next monomer thanks to the fiber. It can prove the
increase in thermal diffusion. Also, if we had excluded the heat source from our
simulations suddenly, we would have obtained similar results because the chemical
reaction is the main governing mechanism for this problem. Thus, it will be a very
critical study to find the optimum fiber ratio that will provide the conduction to prop-

agate polymerization properly.

As explained above, we have kept the domain size fixed in our simulations to compare
the results of analyses consistently. In other words, as we increased the amount of
fiber, we decreased the same amount of monomer. Therefore, we could not observe
that the propagation of the polymerization moves faster in the composite that has a
lower amount of fiber. We think that if the amount of monomer were fixed and only

the amount of fiber changed, this difference could be observed more clearly.

Sottos and coworkers [3] notice a similar observation regarding the relation between
temperature and curing propagation with fiber ration in the composite. Moreover,
Sottos and coworkers claim that if the amount of fiber is increased, the analytical
and modeling results diverge from each other due to the increasing thermal diffusion
with higher fiber fractions. Therefore, this situation leads to an optimization problem
between carbon fiber amount and polymerization. Also, Sottos and coworkers [3]
state that the maximum temperature reached by the chemical reaction decreased with

increasing carbon ratio. We also obtain the same result qualitatively as depicted in
Figure[5.24]

As a result of our analysis, we observe that

- the sample with a fiber content of 0.25 mm thickness achieved optimum polymer-
ization, compared to the others,

- temperature variations and the degree of polymerization evolution have the same
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propagation trend,

- maximum reaction temperature is obtained in the polymer composite has the lowest

fiber content.

5.2.3 Planar Front Propagation for Two Opposite Side Heating

In this example, we investigate the behavior of frontally polymerized material which
is subjected to two opposite-side heating as shown in Figure The behavior of
this problem is slightly different from the previous examples. Thus, we investigate
the chemical and thermal evolution in the material. The domain size is 7.5 mm X 7.5
mm and we used the 4-node quadrilateral elements of size h = 0.033 mm. The time

increment At = 10~* s is used in the simulation.
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Figure 5.26: Boundary condition for the 2D model problem

We summarize the initial and boundary conditions in (5.4).

0(z,y,0)
a(z,y,0) =
0(0,y,t) =453 K for 0 <t <ty
6(7.5,y,t) =453 K for 0 <t <ty (5.4)
VO oy =0 for ¢ >ty
V| (z04 =0 for t>0,
VO 75y =0 for >y,

V@‘(Ij.g)’t) =0 for t>0.

We present the simulations of the two-side heating in Figure
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Figure 5.27: Temperature variation ata)t = 1.0s,b)t =2.0s,¢c)t =2.5s

In this example, since we apply identical heating from both sides, the polymerization
is completed in a half of the time of the one-sided heating. We take the section from
the middle of the material and the thermal variation and chemical evolution of these

sections are presented in Figure [5.28and [5.29)
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Figure 5.28: Temperature variation in composite at a) ¢ = 1.0 s, b) ¢ = 2.0 s, ¢)

t=25s

As can be seen from Figure in [5.28] it has been observed that there is a temperature
overshoot at the points where the temperatures converge. If the polymerization is
allowed to continue in this way, severe degradation may be observed in this merging

fronts of temperature as explained in [[1].
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Figure 5.29: Degree of curing evolution with respect to position at a) ¢t = 1.0 s, b)

t=20s,¢c)t=25s

5.3 Chemo-Thermo-Mechanical Examples

In this section, we represent the behavior of the polymer and reinforced composite
which are frontally polymerized. The problem is also very stiff and highly nonlinear
due to the sharp temperature gradient and the degree of curing in the vicinity of the
front for thermal and chemical part. Due to the formation of high expansion and

chemical shrinkage, the mechanical part is also highly stiff.

We apply the thermal heating on the left side of the domain. Then, we investigate the
chemical, thermal and mechanical evolution in the material. The domain size is 3.0
mm X 3.0 mm and we use the 4-node quadrilateral elements of size 2 = 0.033 mm.
The time increment of At = 10~ s is used in the simulation. The material parameters

which are used in the simulations are tabulated in Table [5.3]

Note that we also summarize material properties which we used in the following

examples in Table[5.3}
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Table 5.3: The summary of the material chemical, thermal and mechanical properties

used in simulations

Material  Parameters  Unit Definition Value

A [MPa] Lamé constant 30.36 x 10*

[MPa] Shear modulus 15.65 x 10*

Fiber Qy [%] Thermal expansion coefficient ~ 4.10 x 1077

K ] Thermal conductivity 9.30 x 10°

P [%] Density 18.00 x 102

C, [1<g+1<] Specific heat 75.36 x 10!

A [MPa] Lamé constant 12.60 x 10°

[MPa] Shear modulus 6.15 x 10°

PSU Foam Qg [%] Thermal expansion coefficient ~ 5.00 x 107°
K [ Thermal conductivity 2.20 x 1072

P [ Density 32.50 x 10°

C, [ax] Specific heat 14.53 x 107

A [MPa] Lamé constant 6.21 x 10°

[MPa] Shear modulus 6.9 x 107!

Monomer ag [£]  Thermal expansion coefficient ~ 79.00 x 10~°
(DPCD) & [%]  Chemical shrinkage coefficient —6.00 x 1072
K [% Thermal conductivity 1.50 x 107!

p [Xe] Density 98.00 x 10

Cy [x] Specific heat 16.00 x 102

A [%] Pre-exponential factor 8.22 x 10

E [K] Activation energy 11.07 x 10*

A [1] Pre-exponential factor 8.22 x 10

82



H, [é] Total enthalpy of reaction 35.00 x 10!

Monomer n (1 Orders of reaction 1.72 x 10°
(DPCD) m [] Orders of reaction 7.70 x 107!
C [ Diffusion constant 14.48 x 10°

a, ] Diffusion constant 4.10 x 1071

R [mOJLK universal gas constant 83.14 x 101

A [MPa] Lamé constant 6.21 x 103

[MPa] Shear modulus 6.90 x 102
Polymer «y [g]  Thermal expansion coefficient 79.00 x 10~*
(DPCD) &, [%]  Chemical shrinkage coefficient —6.00 x 1073
o[ Thermal conductivity 15.00 x 102

p o [E] Density 98.00 x 10

Colpdlz x) Specific heat 16.00 x 102

The mechanical material properties are adopted from [1]] for mono-poly/mer. The
chemical shrinkage coefficient and thermal expansion coefficient of mono-poly/mer
are adopted from [35], [36], respectively. Besides, the thermal and mechanical prop-

erties of fiber and polyisocyanurate foam are borrowed from [37] and [38]], respec-

tively.
n — 0.04
A= Af - (Af - Al) tanh(u)
—Ty
O
o=y = (g = pi) exp(—r)
! (5.5)
Qp
Qg = Qgf — (aef - aai) exp( T )
—Lf
Qp
gc = gcf - (gcf - gcz) eXp(_T)
—Lf

The curing-induced growth of polymer in rigidity is modeled through the reaction
conversion expressions that evaluate the mechanical properties in terms of the degree
of curing as explained in Chapter[3] This behavior is modeled by the switch functions
as shown in (5.5).

We present the evolution of the material properties in Figures [5.30} [5.31] [5.32] and
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The Lamé constant (A) of polymer is 6.21 x 10®> MPa. On the other hand, the
Lamé constant (A) of monomer is 6.21 x 10° MPa as depicted in Figure

3
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Figure 5.30: The evolution of the Lamé constant with respect to the degree of curing

In Figure [5.31] the evolution of the shear modulus evolution is presented. The shear
modulus of polymer is 6.9 x 10> MPa and the shear modulus of monomer is 6.9 x 10!
MPa.
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Figure 5.31: The evolution of the shear modulus with respect to the degree of curing

The thermal expansion coefficient is evaluated with the degree of curing as shown in
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Figure The thermal expansion coefficient of polymer is 7.96 x 10~ 1/K and the
thermal expansion coefficient of monomer is 7.96 x 10~¢ 1/K. We observe that the
thermal expansion coefficient has a decreasing trend in the reasoning to the degree of

curing.
=5
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Figure 5.32: The evolution of the thermal expansion coefficient with respect to the

degree of curing

The chemical shrinkage coefficient of polymer is —6x 1073 and —6x 10~ is obtained

for monomer as shown in Figure[5.33]
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Figure 5.33: The evolution of the chemical shrinkage coefficient with respect to the

degree of curing
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Similar to the thermal expansion coefficient, the chemical shrinkage coefficient also

has a decreasing trend with respect to curing.

5.3.1 2D Planar Front

In this example, we investigate the mechanical behavior of frontally polymerized ma-
terial which is subjected to heating from right side of the domain as shown in Figure
[5.34 The domain size is 3.0 mm x 3.0 mm and we used 4-node quadrilateral ele-
ments size of » = 0.033 mm. Time increment is used At = 10~* s in the simulation.
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Figure 5.34: Boundary conditions for chemo-thermo-mechanical problem

The initial and boundary conditions for thermal problem are described in (5.6).

0(x,y,0) =293 K,

a(z,y,0) = 0.05,

0(0,y,t) =453 K for 0 <t <ty

VO|oyyy =0 for t>ty,, (5.6)
V| (zoy =0 for t>0,

VO|isyy =0 for t>0,

V|23 =0 for t>0,

86



The boundary conditions for mechanical problem are described in (5.7).

um|(3,0,t) =0,
Uy|(3,0,t) =0,
Ug|(3,34) = 0, (5.7)
Uy|(3,3,t) =0,

uy|(0,3,t) = 0.

The temperature distribution in this example, which has a similar trend to that of
the chemo-thermal simulation, presented in Figure [5.35] since we assumed that the

mechanical part has a little effect on the thermal and chemical part.

(a) (b)
(c) (d)

Figure 5.35: Thermal variation of chemo-thermo-mechanical coupled problem, a)

t=0.5s8b)t=10s,¢c)t=15s,d)t=2.0s

0 [K]
1500

293

We have also described how the temperature distribution propagate in the z-axis di-

rection in Figure[5.36
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Figure 5.36: The variation of temperature variation with respect to position and time

Similarly, the polymerization propagation shows the same characteristic with chemo-

thermal problem as shown in Figure [5.37]
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Figure 5.37: The evolution of the degree of curing with respect to position and time

In Figure [5.38] it is observed that there is expansion in the places where initially

the heat is applied. However, it is apparent that shrinkage starts at the edges with

the effect of polymerization and this propagates with the polymerization front. An

asymmetric behavior has occurred due to the mechanical boundary conditions.
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Figure 5.38: Displacement simulation u; for material frontally polymerized at a)

t=0.5s,b)t=10s,¢c)t=15s,d)t=2.0s

Similarly, we observe a downward deformation at the upper edge and an upward
deformation at the lower edge due to the boundary conditions as shown in Figure

[5.39] On the right edge, we observe an outward expansion of the sample.

2
L.
1
w2 [mm]
7 3.1x1073
2 1
L I-14x103

Figure 5.39: Displacement simulation uy for material frontally polymerized at a)

t=05s,b)t=10s,c)t=15s,d)t=20s

From the stress point of view, the stress is appeared in the region of the front of

polymerization and moving along with as shown in Figure
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Figure 5.40: o4; simulation for material frontally polymerized at a) ¢ = 0.5 s, b)

t=10s,¢c)t=15s,d)t=2.0s

Although these stresses do not accumulate in the inner regions due to the boundary
conditions, it is observed that they remain at a significant amount in the side regions.
This causes a loss of strength at the edges of the material because stress accumulations
may act as imperfection, so it is a very crucial problem as these regions are in direct

contact with the outside.

Figure 5.41: 095 simulation for material frontally polymerized at a) ¢ = 0.5 s, b)

t=1.0s,¢c)t=15s,d)t=2.0s

If we look at the stress view in 095 direction, we observe that they accumulate on the
right and left boundaries due to the boundary conditions as seen in Figure 5.41] A

large amount of stress accumulation is observed on the sides of the domain.
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Figure 5.42: o015 simulation for material frontally polymerized at a) ¢ = 0.5 s, b)

t=1.0s,¢c)t=15s,d)t=2.0s

In terms of shear stress, we obtain compatible results with the stress axial stress. Ac-
cording to these results, it is observed that the material tries to rotate counterclockwise
direction in accordance with the boundary conditions. Thus, shear stress accumula-

tions are observed in Figure[5.42]

According to the results obtained, the deformations and stresses that will occur during
the manufacturing of the polymer are described computationally. These strains can
also be determined experimentally using methods such as the digital image correlation
(DIO).

The serious accumulation of stresses is observed according to the results of analy-
ses, although the magnitude of stress that will affect the strength of the material is
relatively small concerning the strength of the final product. These stresses may dif-
fer according to manufacturing conditions and material properties used in composite

structures, and they may cause serious strength losses.

5.3.2 2D Non-Planar Front

In this example, we investigate the mechanical behavior of a frontally polymerized
fiber-reinforced composite material which is subjected to heating from left side of
the domain as shown in Figure [5.43] The domain size is 3.0 mm x 3.0 mm and we

used 4-node quadrilateral elements of size A = 0.033 mm. The time increment is used
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At = 107* s in the simulation. Moreover, the thicknesses of the fiber and glass are

0.5 mm and 0.75 mm, respectively.

The initial and boundary conditions for the thermal problem are shown in Figure [5.43]
(a) and described in (5.8).

0(z,y,0) =293 K,

a(z,y,0) = 0.05,

6(0,y,t) =453 K for 0 <t <ty;, where y=][0.52.25],

V| (oya) =0 for >ty (5.8)

V(g0 =0 for t>0,

V| =0 for t>0,

V|3 =0 for t>0.

Also, the boundary conditions for the mechanical part are depicted in Figure [5.43| (b)
and defined as in (5.9)
ux’(w,O,t) = 07
U | z,0,t) — 07
4 (5.9)

uz|(x,3,t) — 07

uy|(m,3,t) =0

g n=20 qg-n=0
I I ij”%”%{”
(a) 0 =04 gn=0 q-n=07] n=>0
"
qg-n=0 qg-n=20
t S ttm‘g t>ttm'g
&VVVVV% I%VVVVV%
(b)
'

Figure 5.43: Boundary conditions for the chemo-thermo-mechanical coupled 2D

problem a)thermal boundary conditions, b) for mechanical boundary conditions.
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The temperature distribution in this example, which has a similar trend to that of
the chemo-thermal simulation of the fiber reinforced composite example in Section
5.2.1, is presented in Figure [5.44] since we assumed that the mechanical part has no
effect on the thermal and chemical parts. We can observe the polymerization front

characteristic changing from flat to conical shape.

&
=

0 [K]
7500

l293

(

Figure 5.44: Temperature propagation of chemo-thermo-mechanical coupled prob-

c) (d)

lem for composite sample ata) t =0.2s,b)t=0.6s,¢c)t=1.0s,d)t=1.4s.

We have extracted sections from 0.25 mm above the fiber in the materials we used in

the simulations above for the temperature and the degree of curing curves presented

in Figures and

It is observed that the temperature diffusion was much faster in the composite struc-

ture compared to the planar front sample discussed in Section 5.3.1.
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Figure 5.45: Temperature distribution with respect to position and time

Similarly, the polymerization propagation shows the same characteristic as temper-
ature as shown in Figure [5.46] Also, we can observe that the polymerization prop-
agation in a composite structure is faster than the planar front sample discussed in
Section 5.3.1. The use of fiber is important for manufacturing, since this will both

accelerate the polymerization and allow the next monomer to react without diffusing

the heat released from the previous reaction.
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Degree of Curing

Figure 5.46: Degree of curing evaluation with respect to position and time

94



Figure 5.47: Displacement u; simulation for material frontally polymerized at a) ¢ =

02s,b)t=0.6s,¢c)t=1.0s,d)t=14s.

In the deformation part, we observe that high amount of shrinkage occurs in regions
for the junction of the fiber and the monomer due to polymerization. On the other
hand, it is observed that serious expansion is formed in the region between PSU foam

and monomer as well due to the shrinkage of the monomer.

uz[mm]
; 33%x107°
T
I—41x10-3

Figure 5.48: Displacement simulation uy for material frontally polymerized at a) ¢ =

02s,b)t=0.6s,¢c)t=1.0s,d)t=14s.

In the y — y direction, an upward deformation occurred between the monomer and
the fiber as shown in Figure[5.48] The fiber tries to stretch with temperature increase
whereas polymer shrinks due to the polymerization. The monomer expands due to
temperature, but when we compare the expansion and contraction values, it is seen

that the contraction dominates.



o011 [MPa]
J174

1
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Figure 5.49: 04, simulation for material frontally polymerized at a) ¢ = 0.2 s, b)

t=06s,¢c)t=10s,d)t=14s

In Figure[5.49] huge stress jump occurs between the fiber and the monomer in the z-z

direction.

o22 [MPa]
1255

L1427

Figure 5.50: 099 simulation for material frontally polymerized at a) ¢ = 0.2 s, b)

t=06s¢c)t=10s,d)t=1.4s

Similar to the displacement results, while the fiber expands with temperature, the
monomer shrinks with polymerization and both materials apply the restriction to each
other. Thus, it is observed that compressive stresses (011) occur in the fiber and tensile
stresses (o11) in the monomer. Moreover, it is important to note that it reaches a

relatively large value on Figure[5.49as about 9 MPa at the corners.
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Figure 5.51: o5 simulation for material frontally polymerized at a) ¢t = 0.2 s, b)

t=0.6s¢c)t=10s,d)t=1.4s

In y-y direction, we can observe that stresses occur between the monomer and the

fiber. There are also stresses around the polymerization front.

Shear stress accumulation is observed in the supports as shown in Figure[5.51] It has

been detected that there are small shear stresses around the front in the inner regions.

According to the results of the analyses, the deformations and stresses that will occur
during the manufacturing of the fiber reinforced composite are examined computa-
tionally. We observe the serious stress accumulations in the composite material, al-
though the magnitude of stress that will affect the strength of the material is relatively
small concerning the strength of the final product similar to planar front example.
However, we observe the stresses between the fiber and the monomer, and it may
cause a severe loss of the strength in the final product. Therefore, this interface will

have a significant effect on the strength of the composite product.

5.3.3 3D Planar Front Examples

In this example, we investigate the behavior of frontally polmerized matieral which
is subjected to heating from left side of the domain as shown in Figure [5.52] Then,
we investigate the chemical, thermal and mechanical evolution in the material. The
domain size is 3.0 mm x 3.0 mm x 1.0 mm and we used the mesh size of A = 0.033

mm. Time increment At = 10~* s is used in the simulation.
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Figure 5.52: Boundary conditions for the 3D chemo-thermo-mechanical coupled

problem.

The boundary conditions for mechanical problem are described in (5.10).

Uz (0,0,2,) = 0,
Uy (0,0,26) = 0,
Ug|(0,3,26) = 0, (5.10)
Uyl (0,3,20) = 0,

Uyl (03,2t) = 0.

The initial and boundary conditions for thermal problem are described in (5.1T).

0(z,y,2,0) =293 K,
a(x,y, z,0) = 0.05,
0(0,y,2,t) =453 K for 0 <t <t
V0|00 =0 for &>ty
V|(z0,:0 =0 for ¢>0, (5.11)
VO|@3y:0 =0 for ¢>0,
V| (z3:0 =0 for t>0,
V| (zyon =0 for t>0,
VO (gyiny =0 for t>0,

We have also compression-only springs through the bottom part of the domain in

order to observe the upward displacements properly.

The temperature distribution of this problem, has a similar trend to that of previous

planar front simulations, presented in Figure[5.53]
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Figure 5.53: Temperature propagation of chemo-thermo-mechanical 3D coupled

problemata)t=0.2s,b)t=0.6s,c)t=1.0s,d)t=14s.

We have also depicted the temperature distribution propagation in thr x-axis direction

in Figure [5.54] The section is taken through the midpoint of the domain.
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Figure 5.54: Temperature propagation of chemo-thermo-mechanical 3D coupled

problemata)t=0.2s,b)t=0.6s,c)t=1.0s,d)t=14s.

Similarly, the polymerization propagation shows the similar graphical characteristic

with the temperature profile as shown in Figure [5.55]
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Figure 5.55: The polymerization propagation of chemo-thermo-mechanical 3D cou-

pled problem ata)t=0.2s,b)t=0.6s,c)t=1.0s,d)t=1.4s.

In Figure [5.56] we observe that the top of the domain displaces the reverse direction
of 1-1 due to shrinkage and boundary conditions. On the other hand, it is observed
that the inside and bottom of the domain move the the direction of 1-1. Moreover, the

shrinkage deformations also progress with the propagation of the polymerization.

3

A

1 2

u1 [mm]
1 5.72 x 1074

A

1 2 1
l-4.4x10-3

(a) (b)
(c) (d)
Figure 5.56: Displacement «; simulation for material frontally polymerized at a) ¢ =

02s8,b)t=0.6s,¢c)t=1.0s,d)t=14s.

In 2-2 direction, the inward displacements around the boundary are observed due to

the shrinkage and boundary conditions as shown in Figure
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Figure 5.57: Displacement simulation uy for material frontally polymerized at a) ¢ =

02s,b)t=0.6s,¢)t=1.0s,d)t=14s.

Also, it is observed that the material is trying to move upwards direction. On the other
hand, the left edge of the domain moves to downward direction due to the boundary

conditions as shown in Figure[5.58]

ug [mm]
;71x107%

|
I-11x10-3

(d)
Figure 5.58: Displacement simulation u3 for material frontally polymerized at a) ¢ =

02s,b)t=0.6s,¢c)t=1.0s,d)t=14s.

In the stress point of view, stresses are accumulated more on the left and right side of
the domain due to the boundary conditions. Moreover, we observe the stress accumu-

lations in the inner side of the domain as shown in Figure [5.59)
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Figure 5.59: o4, simulation for material frontally polymerized at a) ¢t = 0.2 s, b)

t=06s¢c)t=10s,d)t=14s

In the 2-2 direction, we also observe the stress accumulations on the left and right side
of the domain but the stress values are not as much as high in the 1-1 direction. The

stress accumulations are dependent on the boundary conditions as shown in Figure

5.60
3
A
12
() (b)
3
A
12
(c) (d)
Figure 5.60: o9 simulation for material frontally polymerized at a) ¢ = 0.2 s, b)

t=06s,¢c)t=10s,d)t=14s
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In the 3-3 direction, the stress accumulations are observed the regions similar to the
1-1 and 2-2 directions as shown in Figure [5.61] They are also dependent on the

boundary conditions.
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Figure 5.61: o33 simulation for material frontally polymerized at a) ¢ = 0.2 s, b)
t=0.6s¢c)t=10s,d)t=1.4s

Based on the results of analyses, we have also shear stress accumulations which are

represented in Figure [5.62] [5.63] [5.64

For o5 accumulations:

3
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1 2 I
(a) (b)
3 - o012 [MPa]
7 1.53
1/L‘2 1
I-153
(c)

(d)
Figure 5.62: o1, simulation for material frontally polymerized at a) ¢ = 0.2 s, b)

t=0.6s¢c)t=10s,d)t=1.4s

For 093 accumulations:
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Figure 5.63: 0,3 simulation for material frontally polymerized at a) ¢ = 0.2 s, b)

t=0.6s,¢c)t=10s,d)t=1.4s
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Figure 5.64: o043 simulation for material frontally polymerized at a) ¢t = 0.2 s, b)

t=06s,¢c)t=10s,d)t=14s

According to the results of the analysis, we observe that the stress accumulations
on the left and right sides of the domain due to the boundary conditions. These
stress accumulations act as imperfections, so they lead to strength loss. The material
produced by frontal polymerization is used in the high-performance required area.
Therefore, they make the importance of the prediction of these stress accumulation

c€ven more pronounced.
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CHAPTER 6

CONCLUDING REMARKS

6.1 Summary and Conclusions

In this thesis, the thermodynamical constitutive framework and computational model
have been developed for the frontally polymerized materials. Frontal polymerization
is an alternative curing method based on a self-propagating, self-sustained exothermic
reaction front that transforms liquid monomers into cured polymers. Recently, it has
been at the forefront of studies on the literature regarding self-autonomous materials.
Therefore, many researchers have worked on the thermal and chemical aspects of this
emerging curing method. However, until now, to our best knowledge nobody has
conducted a study on the thermomechanical aspects of frontal polymerization in the
literature. Thus, there is a gap in the scientific literature regarding this issue. In this
thesis, a computational model has been developed for the chemo-thermal, and then
the chemo-thermo-mechanical coupled problem with the motivation of being the first

work to account for the thermo-mechanical coupling.

In Chapter[I] we have overviewed for milestone studies regarding the chemical, ther-
mal, and mechanical aspects of polymerization in the literature. We have examined
the thermodynamical settings of each study and paid attention to their mechanical
approach during the polymerization process. Then, we have reviewed the papers in-
vestigating the chemical and thermal states of frontal polymerization, and we notice
that Sottos, Geubelle, and coworkers have recently done remarkable studies in this

field. Thus, we have developed our model based on their studies [3]].

The thermodynamical framework for frontal polymerization technique has been de-

veloped by satisfying thermodynamical restrictions in Chapter 2] We have introduced
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the governing differential equations for the solution of the chemo-thermo-mechanical
problem of frontal polymerization. Then, we have worked on the theory of frontal

polymerization technique and polymerized material behavior.

We have developed an incremental constitutive modeling approach to the chemo-
thermo-mechanical coupling for material whose properties evolve through curing in
Chapter 3] We have worked on the ordinary differential equation regarding the chem-
ical evolution of curing with the help of the Newton-Raphson method. The contri-
bution of the term that arises from the chemical heating part into the thermal tangent
term is removed by using a staggered solution approach. Thanks to this method, the
capability of algorithm and computational efficiency are increased. Then, we have
developed the incremental elastic model to predict the stress accumulations that accu-
mulates and evolves due to the chemical shrinkage and thermal expansion. Moreover,
the thermoelastic model also allows the material properties to evolve with curing, and
this satisfies the thermodynamical consistency mentioned in the study conducted by
Hofer and Lion [13]]. The whole derivation is arranged in the Lagrangean setting and
then they are transformed to Eulerian counterparts by push forward operation for the

finite element discretization.

In Chapter[d] the finite element method has been developed for the solution of the cou-
pled governing differential equations. Since the staggered solution method has been
used, the coupled terms were eliminated and the chemo-thermo-mechanical coupled
problem was solved as two independent problems at a time step. During this solution,
the temperature values have been taken from the previous time step, and the chemical
shrinkage and thermal expansion values have been calculated using this value. Then,

the corresponding stress terms have been obtained.

We have considered representative numerical examples for the chemo-thermal and
chemo-thermo-mechanical aspects of frontal polymerization in Chapter [5] First we
have performed spatial and temporal convergence studies to show the accuracy of our
model, and as a result of these studies, we have obtained the optimum size of mesh
and time step. Then, we have worked on chemo-thermal numerical examples. These
examples are concerned with the case of a planar front, a non-planar front for a com-

posite structure, and a planar front with two-side heating. We have examined that
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the chemical and thermal properties of frontal polymerization with these examples.
We have concluded that there must be an optimum fiber ratio for the polymerization
to be effective for composite structures through our studies. Then, we have calcu-
lated and simulated the stress accumulations in the material using our chemo-thermo-
mechanical model analyses and the obtained results have revealed that a significant
amount of accumulated stresses may lead to a strength loss in the final product poly-
merized with this method. Furthermore, it has been found that the nature and latent
of the stress accumulations depends on both mechanical and thermal boundary con-
ditions. Another important factor has strong effect on the stress accumulations in the
internal constraints that are introduced by the composite structure of polymers and

the uneven distribution of the degree of polymerization in the product.

6.2 Challenges

The nature of the problem requires a small mesh size and a small time step around the
sharp gradient in temperature and the degree of curing front. This situation increased
the computational cost of the solution to this problem. In addition, since there was no
study in the literature in which both incremental and decomposed deformation gradi-
ents, it was a challenging task how to calculate stress. Also, the limited experiments
on this field related to stress-strain made it difficult to evaluate the importance of the

problem in practice.

The shrinkage of the material due to polymerization after being exposed to very high

temperatures caused stability and convergence problems in the solution method.

6.3 Future Studies

The thermodynamical framework that we have developed allows for an incremen-
tal elastic material analysis. In future studies, this can be extended to viscoelastic
and viscoplastic material models. Moreover, one can work on optimization studies
for the ideal polymerization process with different fiber types and ratios and heating

protocols. In addition, a model can be developed that considers the evolution mate-

107



rial properties with respect to the glass transition temperature. These are the studies

planned to be conducted in the future.
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