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Fizik Mühendisliği Anabilim Dalı

Fizik Mühendisliği Programı
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(ÎPR) of the corresponding eigenstates with respect to the
interaction parameter φ for the quantum walker stepping with
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APPLICATION OF MATRIX PRODUCT STATES FOR FEW PHOTON
DYNAMICS AND QUANTUM WALKS IN REDUCED DIMENSIONS

SUMMARY

Numerical simulations of low-dimensional quantum many-body systems have been
a very active field in recent years. New techniques have enabled experimental
realization of these systems and have shed light to both theoretical and technological
developments. However, the numerical simulations of these systems have been
challenging due to the exponential growth of the Hilbert space with the system size.
In addition, quantum correlations such as entanglement play an important role in
many-body systems. Therefore approximate methods have been developed. One of
the methods to simulate such quantum systems in one-dimension is the Matrix Product
States (MPS) Formalism.

In this thesis, we concentrate on the application of MPS to quantum optical systems
and quantum walks. For this purpose, we have developed a pedagogical numerical
library which consists of functions responsible for efficient representation of the wave
function and its time evolution. We have tested the efficiency of these functions for
different parameters.

The quantum optical system we consider is a one-dimensional coupled cavity array
interacting with a two-level system. One of the techniques to simulate long time
dynamics of a quantum many-body system in a computationally manageable grid
is to impose absorbing boundary conditions. We have applied absorbing boundary
conditions in the form of an imaginary potential and determined the optimum
parameter intervals for efficient simulation. Another objective of this thesis is to
examine the photon dynamics and the decay of the two-level system from its excited
state for different interaction strengths. We have shown that in the strong interaction
regime where rotating wave approximation (RWA) is applicable the results obtained
from exact diagonalization and MPS simulations are in perfect agreement. For
higher interaction strengths we have used polaron transformation to lower the effective
interaction and applied RWA afterwards. We have discussed the differences between
the results in terms of photon numbers and the excited-state population of the two-level
system.

As part of this thesis we have studied two types of discrete-time quantum
walks. Firstly, we have considered a quantum walk with a single phase impurity
and investigated the effects of the bound states on its spatial localization and
non-Markovianity properties. In Markovian systems there is irreversible flow
of information from the system under consideration to its environment, whereas
in non-Markovian systems some of this information flows back to the system.
Our findings show that there is a strong relation between the localization and
non-Markovianity in this model. Secondly, we turned our attention to a quantum
walk coupled to a spin chain environment where there is a dynamical spin attached
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to each site. Using our MPS algorithm, we have studied the relationship between
the quasi-energy spectrum obtained from exact diagonalization of finite systems,
dynamical localization, entanglement entropy and spin dynamics of this walk. We
have observed that due to the extensive number of conserved quantities it possesses,
this model is similar to the disorder-free localization models found in literature, where
disorder is induced due to the interaction between the constituents of the system.
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MATRİS ÇARPIM DURUMLARI FORMALİZMİNİN DÜŞÜK
BOYUTLARDA AZ SAYIDAKİ FOTONLARIN DİNAMİĞİNE

VE KUANTUM YÜRÜYÜŞLERİNE UYGULANMASI

ÖZET

Düşük boyutlu, çok parçacıklı kuantum sistemlerinin hesaplamalı benzetimleri son
yıllarda son derece aktif olarak çalışılan bir alan haline gelmiştir. Bunun nedeni
geliştirilen yeni teknikler sayesinde bu sistemlerin deneysel olarak üretilmesi ile
birlikte hem teorik alanda hem de kuantum teknolojilerinde yeni gelişmelere ışık
tutmasıdır. Ancak bu sistemlerin Hilbert uzayının boyutu serbestlik derecesi
sayısı ile üstel olarak büyümektedir. Bu durum da hesaplamalı benzetimlerinin
yapılmasını zorlaştırmaktadır. Bu nedenle yaklaşık yöntemler geliştirilmiştir. Bu
yöntemler arasında bir boyutlu çok parçacıklı kuantum sistemlerinin benzetiminde
en çok kullanılanlardan biri Matris Çarpım Durumları (Matrix Product States, MPS)
Formalizmidir.

Bu tezde MPS Formalizmi kuantum optik sistemlerine ve kuantum yürüyüşlerine
uygulanmıştır. Bu amaçla numerik bir kütüphane geliştirilerek bu kapsamda yazılan
fonksiyonların farklı parametreler için doğruluğu ve verimliliği test edilmiştir. Bu
fonksiyonlar kuantum dalga fonksiyonunun bilgisayardaki temsilinin ve zaman
evriminin verimli bir şekilde benzetimini sağlamaktadır.

Kuantum optik sistemi olarak iki seviyeli bir kuantum sistemi ile etkileşen bir
boyutlu bağlı kovuk zinciri incelenmiştir. Çok parçacıklı bir kuantum sisteminin
uzun süreli dinamiğinin benzetiminin yapılması için geliştirilmiş tekniklerden biri
soğurucu sınır koşullarının kullanılmasıdır. Çalışmamızda bu sınır koşulları iki
seviyeli sistemden uzaklaştıkça üstel olarak azalan, γe−n/l formunda imajiner bir
potansiyel şeklinde uygulanmıştır. Burada γ soğurma kuvveti, l ise soğurma
uzunluğudur. Bu parametrelerin farklı değerleri için soğurma bölgesinin dışındaki
dalga fonksiyonundaki değişim incelenerek etkin bir benzetim için optimum değer
aralıkları belirlenmiştir.

Bu tezin bir diğer amacı da farklı kuvvetlerde etkileşimler için foton dinamiğinin
ve iki seviyeli sistemin uyarılmış durumundan taban durumuna bozunmasının
araştırılmasıdır. İki seviyeli sistemle kovuk arasındaki etkileşim kuvveti g’nin
kovukların dışındaki modlarla etkileşimlerin ihmal edilebilmesini sağlayacak kadar
büyük olduğu, ancak foton frekansı ω’ya göre yeterince küçük olduğu (g < 0.1ω)
rejime güçlü etkileşim rejimi denmektedir. Güçlü etkileşim rejiminde dönen dalga
yaklaşıklığını kullanarak Hamiltonyendeki uyarılma sayısını korumayan terimleri
ihmal etmek ve problemi tam köşegenleştirme yöntemiyle çözmek mümkündür.
Bu limitte tam köşegenleştirme yöntemi ile elde edilen sonuçlar MPS algoritması
ile elde edilen sonuçlarla karşılaştırıldığında her ikisinin de tam olarak örtüştüğü
gözlemlenmiştir. Daha yüksek etkileşim kuvvetleri söz konusu olduğunda dönen dalga
yaklaşıklığı geçerliliğini yitirir. Ancak orta ölçekli etkileşimlerde polaron dönüşümü
yaparak efektif ektileşim kuvvetini düşürmek ve dönüşümden sonra elde edilen
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bazda dönen dalga yaklaşıklığı kullanmak mümkündür. 0.1ω < g < 0.2ω aralığında
yaptığımız benzetimler polaron dönüşümü kullanılarak elde edilen sonuçların MPS
algoritması ile elde edilen sonuçlarla büyük ölçüde tutarlı olduğunu göstermektedir.
Daha yüksek etkileşim kuvvetleri içinse sonuçlar arasındaki farklılıklar artmaktadır.

Bu tezde araştırılan bir diğer kuantum sistemi kesikli zamanlı kuantum yürüyüşüdür.
Bu model 1993 yılında klasik rastgele yürüyüşün kuantum karşılığı olarak önerilmiştir.
Bir boyutlu klasik rastgele yürüyüşte yürüyüşçü her adımda p olasılığı ile bir
yöne, 1 − p olasılığı ile diğer yöne hareket eder. Kuantum yürüyüşünde ise
konum uzayına ek olarak yürüyüşçünün gideceği yönü belirleyen, para durumu
olarak niteleyebileceğimiz, iki boyutlu bir serbestlik derecesi bulunmaktadır. Her
adımda para atışına karşılık gelen bir operatör para uzayına etkiyerek para durumunu
süperpozisyon haline getirir. Sonrasında uygulanan başka bir operatör paranın
durumuna bağlı olarak yürüyüşçüyü sağa ya da sola kaydırır. Bu operatör koşullu bir
operatör olduğu için para ve konum uzaylarını dolaşık hale getirir. Klasik rastgele
yürüyüşün en temel özellikleri konum uzayındaki olasılıkların Poisson dağılımına
sahip olması ve yayılma hızının difüzyon şeklinde olmasıdır. Difüzyon yayılmada
varyans zamanla doğru orantılı olarak artmaktadır. Kuantum yürüyüşünde ise konum
uzayındaki dağılım başlangıç noktası etrafında düz olup zamanla sıfıra yaklaşır,
olasılığın en yüksek olduğu noktalar uçlara yakındır ve zamanla sabit hızla yayılırlar.
Bu nedenle yayılma balistiktir ve varyans zamanın karesiyle orantılı olarak artar.
Kuantum yürüyüşünün klasik rastgele yürüyüşe göre daha hızlı yayılması onu arama
algoritmaları açısından daha cazip kılmaktadır. Ancak düzensizlik bu yayılma hızını
düşürebilir. Dinamik düzensizlik kuantum girişimlerini ortadan kaldırarak klasik
rastgele yürüyüş ile aynılaşmasına ve difüzyon şeklinde yayılmaya sebep olurken
statik düzensizlik yayılmanın tamamen durmasına ve yerelleşmeye yol açabilmektedir.
Bu tezin amaçlarından biri düzensizliğin etkisini farklı yürüyüş modelleri üzerinde
incelemektir.

Bu tez kapsamında iki farklı, kesikli zamanlı kuantum yürüyüşü incelenmiştir. İlki
tek bir faz safsızlığı içeren kuantum yürüyüşüdür. Buna göre yürüyüşçü başlangıç
noktasından her geçtiğinde φ kadar bir faz almaktadır. Bu yürüyüş için konum
uzayındaki yerelleşme ile Markovyen olmama özelliği arasındaki ilişki araştırılmıştır.
Markovyen sistemlerde incelenen sistemden çevreye tersinmez şekilde bilgi akışı
bulunmaktadır. Markovyen olmayan sistemlerde ise bu bilginin bir kısmı sisteme
geri akmaktadır. Kuantum yürüyüşünde para uzayı ilgilenilenilen sistem, konum
uzayı ise çevre olarak düşünülmektedir. Bu özelliğin incelenmesi için BLP ve RHP
ölçütleri kullanılmıştır. Fazın büyüklüğüne bağlı olarak kuazi-enerji spektrumundaki
bağlı durumların sayısının ve yerelleşmesinin değiştiği ve bu niceliklerin dinamik
yerelleşme üzerinde doğrudan etkisi olduğu gözlemlenmiştir. Bağlı durumların bu
özelliklerinin ve simetrilerinin Markovyen olmama özelliği üzerinde de etkili olduğu
BLP ve RHP ölçütleri aracılığıyla gösterilmiştir. Bu bulgular bu model için yerelleşme
ve Markovyen olmama özelliği arasında güçlü bir ilişki olduğuna işaret etmektedir.

İncelenen ikinci kuantum yürüyüşü faz safsızlığı yerine yürüyüşün her noktasında
dinamik bir spin bulunan yürüyüş modelidir. Yürüyüşçü, bir noktadan geçtiğinde
bu noktadaki spin döndürülür ve spinin açısı kadar bir faz alır. Düğüm
noktalarında veya kenarlarında yerel spinler bulunan ağ yapılarındaki kuantum
yürüyüşlerine benzer şekilde bu modelde de yerel spinler para uzayına etkimemektedir.
Hamiltonyen ve seçtiğimiz başlangıç durumu öteleme açısından değişmezdir, ancak
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buna rağmen yürüyüşçü ile yerel spinler arasındaki faza bağlı etkileşimden dolayı
yerelleşme meydana gelmektedir. Bu nedenden ötürü bu model literatürde daha
önce çalışılmış, "düzensizlik bulunmayan" yerelleşme (disorder-free localization)
modellerinin kesikli-zamanlı versiyonu olarak düşünülebilir. Bu modelin yaygın
korunmuş niceliklere sahip olması evrim problemini statik düzensizlik yürüyüşüne
indirgemektedir. Seçtiğimiz başlangıç durumu bütün olası spin düzensizliği
konfigürasyonlarının süperpozisyonu olduğundan yürüyüşçünün konum uzayındaki
olasık dağılımı bütün olası spin konfigürasyonları üzerinden ortalama alarak elde
edilebilmektedir.

İncelediğimiz ikinci kuantum yürüyüşü modelinde fazın büyüklüğüne bağlı olarak
iki farklı yerelleşme rejimi gözlemlenmiştir. Faz yeterince küçük olduğunda zayıf
etkileşim altındaki üç-boyutlu Anderson yerelleşmesi ve çok-parçacık yerelleşmesi
modellerinde olduğu gibi, yerelleşmenin en fazla olduğu durumların spektrumun
band kenarlarının yakınlarında yoğun olarak bulunduğu gözlemlenmiştir. Bunun
sonucunda çalıştığımız orta-ölçekli zaman evrimi sonucunda yürüyüşçü başlangıç
noktası etrafında kısmen yerelleşmektedir. Faz büyüdükçe band aralığı daralır ve faz
yaklaşık olarak π/4 değerini aldığında band aralığı tamamen kapanır. Fazın daha
büyük değerleri için yürüyüşçünün tamamen yerelleştiği ve yerelleşme uzunluğunun
örgü aralığı ile aynı mertebede olduğu gözlemlenmiştir.

Spin dinamiğinin ve spin zincirinin farklı bölmeleri arasındaki dolanık entropisinin
hesaplanması için MPS algoritması kullanılmıştır. Elde edilen sonuçlar dolanıklık
entropisindeki zamana bağlı artışın fazın büyüklüğü ile ilişkili olduğunu göster-
mektedir. Orta ölçekli zaman aralığında yapılan benzetimlerde küçük fazlar için
yürüyüşçünün kısmi yerelleşmesinin sonucunda dolanıklığın yayılım davranışının
kenarlara doğru lineer, başlangıç noktası etrafında ise lineerden daha yavaş olmak
üzere iki fonksiyonun toplamı şeklinde olduğu görülmektedir. Faz açısı büyüdükçe
lineer yayılım daha fazla baskılanır ve lineerden daha yavaş olan yayılım baskın hale
gelir. Dolanıklık entropisinin yayılımının bu şekilde baskılanması daha önce çalışılmış
bazı düzensizlik bulunmayan yerelleşme ve çok-parçacık yerelleşmesi modelleriyle
benzerlik göstermektedir.
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1. INTRODUCTION

With the improving technologies, it has become possible to control and manipulate

quantum systems at the level of single particle. These improvements paved the way

for the development of new quantum devices and raised interest in theoretical and

experimental research in related fields, such as quantum optics, quantum information

and quantum computation. Experimental techniques developed in the last decades

allow us to explore quantum many-body systems and the new physical regimes they

exhibit [1].

One of the main challenges in the simulations of quantum many-body systems is

the exponential growth of the Hilbert space with increasing system size. Therefore,

efficient and approximate methods are needed in the treatment of these problems.

Some of the most widely used algorithms in the simulations of quantum many-body

problems are based on tensor networks [2, 3]. The efficiency of tensor networks relies

on the fact that low-energy states of one-dimensional physical systems with short-range

interactions generally have low entanglement [3, 4]. Hence, they can be applied to a

wide range of physical systems. In one-dimension, one of the most commonly used

tensor network methods is the Matrix Product States (MPS) formalism [2, 3, 5–10].

Another challenge encountered both in numerical and experimental studies is the

environmental effects. In realistic quantum setups, the interactions between the system

of interest and its surrounding environment are inevitable. These interactions destroy

some of the quantum properties, yielding decoherence of the principal system. With

the improvements in quantum technologies and increasing need of quantum setups,

the theory of open systems [11] has become of great interest. Main motivation

of these studies is to control and manipulate environmental effects in quantum

setups. The developing experimental techniques has made it possible to construct

elaborately structured environments, such as optical lattices with trapped ions or cold

atoms [12–17]. These setups have made it possible for us to observe memory effects

such as non-Markovianity and to study different types of localization. The simplest
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environment can be thought as a bosonic bath, which yields a Markovian evolution in

most cases, where there is a continuous flow of information from the principal system

to its environment. Thanks to the developing experimental techniques it has become

possible to realize more elaborate interactions with structured environments. These

setups enable us to observe memory effects such as non-Markovianity, where some

of the information flows back from the environment to the principal system. Another

possible outcome of a structured environment is the dynamical localization of the wave

function. Localization may be useful for secured storage of quantum memory [18] and

in search algorithms such as detecting impurities on a grid [19].

One of the most commonly used models describing interactions between a principal

system and its environment is the spin-boson model [11, 20, 21]. Light-matter

interactions can also be described by this model. Here, the matter is considered as

a two-level system (TLS) and the photonic modes of light are modeled as a bosonic

environment. In the experiments, photonic modes are either confined in optical

cavities [22–28] or they propogate in waveguides [29–33]. Most of the experiments

are carried out in the strong coupling regime, where the evolution is Markovian and

confined to a subspace with fixed number of excitations. Higher coupling strengths

which give rise to non-Markovianity and many-body effects have been reached, in

recent experiments [34–42]. Quantum optical systems have proven to be very useful

for observing new phases of matter and studying many-body physics [1]. They are also

promising tools for quantum information processing [43].

Quantum walks have been proposed almost three decades ago [44] as the quantum

counterpart of classical random walks and they attracted considerable attention in the

first place due to their quadratically faster spreading rates compared to those of their

classical analogues [45, 46]. The subject has gained its place in quantum computation

as a substantial field of research on both theoretical and experimental sides [45]. It

turned out that quantum walks are versatile models for quantum computation, not only

due to their role in the development of new quantum algorithms [47–54]but also for

providing a concrete framework for universality [55]. They also provide a powerful

framework for simulating physical systems [56,57], quantum state transfer [58–62] and

for examining topological quantum matter [63–67]. Quantum walks can be realized in

various experimental setups, including ultracold atoms in optical lattices [12], trapped
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ions [13,14], nuclear magnetic resonance schemes [68,69], photons in a fibre loop [70],

beam splitter arrays [71] and waveguide lattices [72].

In this thesis, we mainly concentrate on a one-dimensional tensor network family,

namely, MPS, and their applications to quantum optical systems and quantum walks.

The fundamental aspects of the MPS and the numerical library we have developed

to implement MPS algorithms are explained in Chapter 2. In Chapter 3 interaction

between light and a two-level system on a coupled cavity array is considered. We

compare MPS results to those obtained from the exact diagonalization in strong and

perturbative coupling regimes. We study the effects and optimum parameters of

absorbing boundary conditions in strong coupling regime. We study two different

quantum walk problems and analyse localization properties due to decoherence.

Chapter 4 is devoted to the relation between localization and non-Markovianity for

a quantum walk with a single phase impurity. In Chapter 5, we extend this quantum

walk model to incorporate a spin-chain environment and study the connection between

localization, entanglement and spin properties using MPS. We summarize our results

and discuss our future outlook in Chapter 6.
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2. MATRIX PRODUCT STATES

This chapter is devoted to the Matrix Product States (MPS) formalism and the

numerical library we have developed. We discuss the fundamentals of the MPS

formalism such as MPS representation of quantum states and the time-evolving block

decimation (TEBD).

Tensor networks have become very popular in the simulations of low-dimensional

quantum many-body systems. One of the reasons of this popularity is their efficiency

in terms of computational and memory resources. Simulation of quantum many-body

systems is challenging due to the fact that the Hilbert space grows exponentially

with the system size. However, physically relevant states that are accessible via a

realistic evolution constitute only a small portion of the Hilbert space. For a given

initial state, majority of the states are not reachable within a reasonable evolution

time [2, 3]. Another factor restricting the size of the effective Hilbert space for

many physical systems is the locality of interactions. When the interactions between

different components of a system are local, the entanglement entropy of the low-energy

eigenstates of gapped Hamiltonians obey the area-law [2–4, 10]. This means that the

entanglement entropy does not scale with the system size, but scales with the size of

the boundary between two partitions. The number of states having this property are

very limited compared to the immense size of the Hilbert space and tensor network

algorithms target these states with low entanglement. Hence, these algorithms have

proven to be efficient methods to simulate low-energy quantum states of many-body

systems obeying the area-law. Another advantage of the tensor network representation

is its structure. A tensor network can be thought as a network of quantum correlations,

therefore it makes some of the intrinsic features of a state, such as the structure of the

entanglement between its constituents, directly accessible [3]. Tensor networks also

feature a diagrammatic representation.

In this thesis we focus on MPS [2, 3, 5–10], which is a family of one-dimensional

tensor networks. We have developed a numerical library in Python to implement our
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MPS algorithms. The library includes codes to obtain the MPS representation for any

given state both in general and in canonical forms. The latter are more efficient for

certain computational tasks. It also includes functions to compute expectation values

of operators and to apply the TEBD method. The library can be accessed online [73].

2.1 Singular Value Decomposition and Entanglement Entropy

In MPS representation, the quantum state is represented with a one-dimensional array

of tensors, where each tensor is associated with local degrees of freedom. The tensors

are obtained using singular value decomposition (SVD) [74].

Let us first consider SVD of a system into two components A and B and let |Ψ〉 be a

pure state of the composite system AB,

|ΨAB〉= ∑
i, j

ψi j |iA〉 | jB〉 , (2.1)

where |iA〉 and | jB〉 are orthonormal bases for A and B, respectively. Using SVD, the

coefficient matrix ψ can be decomposed into three matrices, such that ψ =USV †, and

the state can be rewritten as

|ΨAB〉= ∑
i, j

χ

∑
α=1

UiαΛααV ∗α j |iA〉 | jB〉 , (2.2)

Here, U has orthonormal columns (the left singular vectors) and V † has orthonormal

rows (the right singular vectors). Λ is a diagonal matrix which assumes the singular

values of ψ , σα = Λαα , as its diagonal elements, preferably in descending order. The

number of non-zero singular values, χ , for a given partition is called the Schmidt rank.

The squares of the singular values are the eigenvalues of the reduced density matrix,

ρ , of either subsystem, i.e. the partition to the left or right of a given bond. Therefore,

the von Neuman entropy, S(ρA) =−Tr [ρ logρ], becomes

S =−
χ

∑
α=1

[
σ

2
α logσ

2
α

]
. (2.3)

Note that the eigenvalues σα satisfy the normalization condition ∑α σ2
α = 1.
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2.2 MPS Representation

The above procedure can be repeated successively for systems with multiple

components. Let us now consider a one-dimensional system with L sites, each having

d degrees of freedom associated with them. The quantum state of such a system can

be written as

|Ψ〉=
d

∑
i1,...,iL

ψi1,...,iL |i1, . . . , iL〉 . (2.4)

To obtain an MPS representation of the state, the first step is to isolate either the

leftmost or rightmost block, i.e. combining the tensor S with U or V , respectively,

and to apply SVD to this new block. This procedure is repeated until the block size is

reduced to a single site. The resulting MPS is in the form

|Ψ(n)canonical〉 =
d

∑
i1...iL

∑
α1...αL−1

(2.5)

U i1
α1U

i2
α1α2 . . . Un−1

αn−2αn−1
Ain

αn−1αn

(
V †
)in+1

αnαn+1
...
(

V †
)iL−1

αL−2αL−1

(
V †
)iL

αL−1
|i1 . . . iL〉

(See Fig. 2.1 for a schematic representation of an MPS in general form). Here, U

and V † matrices are left and right orthonormal, respectively, and the state is said to be

canonical with respect to site n. The physical indices are in = 1, . . . ,d and the virtual

indices are αn = 1, . . . ,Dn, where d is called the physical dimension, and Dn are called

bond dimensions. We restrict ourselves to open-boundary conditions. Therefore, the

first and last tensors have only single bond index.

The efficiency of the MPS formalism can be seen by comparing sizes of the original

Hilbert space and the effective space MPS lives in. The dimension of the Hilbert space

of the original state is dim(H) = dL. On the other hand, the Hilbert space of the matrix

product state has the dimension of
L−1
∑

n=0
dDnDn+1, where D0 and DL are set to one. If

there exists an upper limit, Dmax, for the bond dimensions, dim(HMPS)≤ dLD2
max.

Note that the MPS representation in Eq. (2.6) is not unique, in the sense that the state

could be made canonical with respect to any site. This freedom provides an efficient

way of manipulating the MPS state and computing the expectation values [10]. For

example, on-site expectation values can be calculated using the canonical form pivoted
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Figure 2.1 : Tensor network representation of a quantum state |Ψ〉 in Eq. 2.4, in
general form.

on that site as the tensors to the left and right of the site reduce to identities when

contracted.

2.3 Truncation Process

The size of the effective Hilbert space of an MPS is limited by the maximum of

Schmidt rank, χmax (see Eq. (2.2)), over all possible partitionings. For a maximally

entangled state, χmax grows exponentially with the system size. On the other hand, for

a generic many-body pure-state generated by a unitary evolution and local interactions,

χmax increases polynomially with system size [75]. The size of the effective Hilbert

space can be reduced further by truncating the singular values.

Truncation can be done in two ways; by assigning a maximum bond dimension Dmax or

a truncation tolerance, δ . In the former case, maximum number of non-zero singular

values kept at each truncation is limited to Dmax and only when χ ≤ Dmax, all the

singular values are kept. In the latter case, maximum number of singular values are

eliminated ensuring that sum of the squares of the eliminated singular values do not

exceed δ and adjusting Dmax accordingly. In our algorithm, we use the truncation

tolerance for the truncation of the singular values. In this section, we show the

computational error due to the truncation procedure, for two randomly generated MPS.
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Let us rewrite Eq.(2.2) in a more compact form which is called Schmidt decomposition,

|Ψ〉=
χ

∑
α=1

σα |Aα〉 |Bα〉 , (2.6)

where |Aα〉 ≡Uiα |iA〉, |Bα〉 ≡V ∗
α j | jB〉 and σα ≡ Λαα .

The Schmidt rank is restricted by the dimensions of the components A and B, so that

χ = min(dA,dB). For example, if the system is a chain of N spin 1/2 particles and it is

split in half, then χ = 2N/2.

Truncation aims to reduce the number of singular values so that D≤ χ , After applying

truncation procedure, T , between the two components, the state becomes

T |Ψ〉=
D

∑
α=1

σα |Aα〉 |Bα〉 . (2.7)

We quantify the computational error by the 2-norm distance between the original

and the truncated state, which is obtained by summing the squares of the eliminated

singular values as

ε2−norm ≡
1
C
|| |Ψ〉−T |Ψ〉 ||2 = 1

C

χ

∑
r=D+1

σ
2
r ≡ εσ . (2.8)

Here, C is the 2-norm of the original state which can be obtained by summing the

squares of all the singular values, so that || |Ψ〉 ||2 =∑
χ

r=1 σ2
r =C. For a given tolerance,

δ , singular values with r > D are eliminated such that the condition εσ < δ is satisfied.

For a system of multiple components, as in Eq. (2.4), the truncation procedure is

carried out for each bond successively. In this case, an exact value for the total error

cannot be computed theoretically. However, the triangle inequality provides an upper

bond for the error.

Let Tn denote truncation on the nth bond. After applying the above truncation process

to each bond successively, the total error is upper-bounded as

|| |Ψ〉−TN−1TN−2 . . .T1 |Ψ〉 || ≤ || |Ψ〉−T1 |Ψ〉 ||+ ||T1 |Ψ〉−T2T1 |Ψ〉 ||+

· · ·+ ||TN−2 . . .T1 |Ψ〉−TN−1TN−2 . . .T1 |Ψ〉 ||. (2.9)

Each term on the right-hand side of this equation can be computed from Eq. (2.8).

We test Eqs. (2.8) and (2.9) for two randomly generated quantum states. For

each system, we first generate a random MPS representation, normalized to unity
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Figure 2.2 : Dependence of the truncation error, ε , on the truncation tolerance, δ , for
an initial MPS of two sites, with dimensions d = 20 and D = 100 (a) and an initial
MPS of 10 sites, with dimensions d = 2 and D = 10 (b). The blue marks show the

2-norm error computed using Eq. (2.10). The red marks represent the RHSs of
Eqs. (2.8) (a) and (2.9) (b).

with relatively large bond dimensions and compare it with the resulting MPS after

truncation. For comparison, we compute the numerical error, using the overlap

between the original state and the truncated state, as

ε2−norm =

∣∣∣∣1− 〈Ψ|T |Ψ〉C

∣∣∣∣ (2.10)

which is equivalent to the 2-norm distance between the two states given in Eq.(2.8). We

compute how this value changes as a function of the truncation tolerance and compare

it to its predicted value obtained from the RHS of Eq. (2.8).
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The first system is a two-site system where there is a physical dimension d = 20

associated with each site. We consider an initial MPS with bond dimension D = 100.

Since truncation is carried out on a single bond, the numerical error is determined by

the RHS of Eq. (2.8). Fig. 2.2 (a) shows this equality holds for any truncation tolerance

we used in our computation. We made the same comparison for a system of L = 10

sites with dimensions d = 2 and Dmax = 10 (see Fig. 2.2 (b)). In this example truncation

is carried out for each bond successively. Here, we observe that the numerical error

in 2-norm is always upper bounded by the value obtained from eliminated singular

values, as expected. For both systems, the errors increase with truncation tolerance, in

general. For an infinite-size system, this increase is linear, whereas for finite systems,

discrete nature of singular values yields a ladder-like increase as both examples show.

2.4 Time-Evolving Block Decimation

2.4.1 Suzuki-Trotter decomposition

In our algorithm, we use Time-Evolving Block Decimation [76] to evolve the

MPS states. This method makes use of Suzuki-Trotter decomposition [77, 78]

to approximate the time evolution operator Ŵ for a nearest-neighbor interaction

Hamiltonian. These are the Hamiltonians that can be written in the form,

Ĥ =
L−1

∑
j=1

ĥ j, j+1, (2.11)

with pairwise operators ĥ j, j+1 acting on two neighboring sites. Each of these operators

can consist of both on-site and bond operators. As a simple example consider a

tight-binding model with on-site energies, ω j and hopping terms, t j, j+1. Each of the

operators in the above sum can be written as

ĥ j, j+1 =
(

ω j

2
â†

j â j

)
+
(

ω j+1

2
â†

j+1â j+1

)
+
(

t j, j+1â†
j â j+1 +h.c.

)
, (2.12)

where a and a† are annihilation and creation operators, respectively. Since each one

of the on-site operators, except the first and the last, appear twice in the summation in

Eq. (2.11), they are divided by two. On the other hand, the first and the last on-site

operators appear only once, in ĥ1,2 and ĥL−1,L, respectively. Therefore, we need to

add two on-site terms ĥ1 =
(

ω1
2 â†

1â1

)
and ĥN =

(
ωN
2 â†

N âN

)
, to the corresponding

summands, so that ĥ1,2→ ĥ1,2 + ĥ1, and ĥN−1,N → ĥN−1,N + ĥN .
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If we group the pairwise operators for even and odd bonds j as

Ĥeven = ∑
j even

ĥ j, j+1 (2.13)

Ĥodd = ∑
j odd

ĥ j, j+1 (2.14)

so that Ĥ = Ĥeven + Ĥodd, the operators ĥ j, j+1 within each group commute with each

other. Therefore, Ĥeven and Ĥodd can be exponentiated individually as

e−i∆tĤeven (odd) = e−i∆t ∑ j even (odd) ĥ j, j+1 = ∏
j even (odd)

e−i∆tĥ j, j+1 . (2.15)

Since Ĥeven (odd) commutes with the commutator [Ĥeven, Ĥodd], the evolution operator

can be obtained using the Baker-Campbell-Hausdorff formula

Ŵ exact(∆t) = e−i∆tĤ = e−i∆tĤevene−i∆tĤodde−i∆t2/2[Ĥeven,Ĥodd]. (2.16)

The last term can be approximated as

e−i∆t2/2[Ĥeven,Ĥodd] ≈ 1̂− i∆t2/2
[
Ĥeven, Ĥodd

]
. (2.17)

If we approximate the evolution operator as

Ŵ TEBD(∆t) = e−i∆tĤevene−i∆tĤodd, (2.18)

the error per time step between the exact and the approximate evolution operators is of

second order in ∆t

Ŵ exact(∆t) = Ŵ TEBD(∆t)+O(∆t2). (2.19)

An evolution for a longer time interval T , is divided into T/∆t number of smaller

intervals and the operator Ŵ TEBD(∆t) is applied at each time step. The accumulated

error becomes T
∆t O(∆t2) = O(∆t). Hence, this approximation is called first-order

TEBD. Higher order approximations can be used to reduce the error. For instance,

the second-order TEBD is obtained by symmetrizing the decomposition in Eq. (2.18)

as

Ŵ TEBD2(∆t) = e−i∆t/2Ĥevene−i∆tĤodde−i∆t/2Ĥeven , (2.20)

which has an error per time step of third order in ∆t

Ŵ exact(∆t) = Ŵ TEBD2(∆t)+O(∆t3). (2.21)
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Ŵj , j + 1

A j A j +1

= B j , j + 1 = Uj S V †
j +1

Figure 2.3 : Contraction of two neighboring MPS tensors, A j and A j+1, with the
two-site evolution operator Ŵj, j+1.

2.4.2 Contraction of tensors and orthonormalization

During the time evolution, each term Ŵj, j+1 = e−i∆tĥ j, j+1 in Eq. (2.15) is applied

individually on a pair of neighboring sites A j and A j+1. This is done by contracting the

three tensors as shown in Fig. 2.3. The resulting tensor (B in the figure) is a two-site

tensor. It is split back into two tensors by applying SVD as B = USV † (See Sec. 2.1)

and combining S with either U or V . The former (latter) leaves the rightmost (leftmost)

tensor in right (left) orthonormal form. The remaining tensor is brought to the same

form by another SVD.

During this procedure, truncation of the singular values is carried out as explained in

Sec. 2.3, to restrict the increase in the bond dimension.

2.4.3 Time evolution algorithm

The steps of our time evolution algorithm, starting from an initial MPS, are as follows:

1. Obtain two-site evolution tensors, Ŵj, j+1 = e−iĥi,i+1∆t in Eq. (2.15) and group them

as Ŵ even
j, j+1 and Ŵ odd

j, j+1, for j even or odd, respectively.

2. Bring the initial MPS into canonical form with respect to a site, which we call

ncenter. This site should be one of the neighboring sites which the first two-site

evolution tensor will act on in the following step. Since we choose to apply Ŵ1,2

first, we bring the MPS in canonical form with respect to site ncenter = 1.

3. Sweep from left to right by successively applying Ŵ odd
j, j+1 to the tensors, A j and A j+1

simultaneously and split the resulting tensor into two left-orthonormal tensors as

explained in Sec. 2.4.2. Note that each time a tensor is brought to left-orthonormal

form, ncenter moves to the right by one site until the rightmost site is reached.
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4. Similar to step (3), sweep from right to left by successively applying Ŵ even
j, j+1 to the

corresponding MPS tensors, followed by right orthonormalization. At the end of

the sweep ncenter becomes one again due to the orthonormalization processes.

5. Repeat steps (3) and (4) successively at each time step.

2.5 Computational Error

10 4 10 3 10 2

t

10 8

10 7

10 6

10 5
1st order
2nd order

Figure 2.4 : 2-norm error (see Eq. (2.22)) as a function of time step interval, ∆t,
obtained from the MPS algorithm using the first order (blue dots) and second order
(red dots) Suzuki-Trotter decompositions. Continuous lines are linear fits in log-log
scale with slopes 1.08 and 2.00 for the 1st and 2nd order expansions, respectively.

In this section, we consider how the computational error changes with increasing

time-step interval for the tight-binding model with random nearest-neighbor

interactions, t j, j+1, and random site-based frequencies, ω j (see Eq. (2.12)).

We consider an initial MPS having 10 sites with the dimensions d = 2 and D = 10. We

choose a value close to the machine precision for the truncation tolerance, δ = 10−16.

The state is evolved for a total time interval of T = 0.1. We compute the 2-norm error

between the evolved MPS state, |ΨMPS〉, and the final state, |Ψexact〉, exactly evolved

using the vectorial form of the initial state and matrix form of the Hamiltonian as

ε = || |Ψexact〉− |ΨMPS〉 ||2. (2.22)

The results are shown in Fig. 2.4. As seen from Eq. (2.19), the error in the first order

Suzuki-Trotter decomposition after a single time step is on the order of (∆t)2. After
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T/∆t time steps, the accumulated error is on the order of ∆t. Whereas for second

order decomposition, the accumulated error after the same number of steps scales as

(∆t)2. Our simulations yield results consistent with these predictions. As the time step

interval increases, the error in 2-norm increases as t1.08 for the 1st order decomposition,

and as t2.00 for the 2nd order decomposition.
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3. ATOM - PHOTON INTERACTIONS ON COUPLED CAVITY ARRAYS

The interaction between light and matter has been an important field of research both

for its applications in quantum technologies and for its potential of shedding new light

on fundamental physics problems at the quantum level. Until recently, the interaction

strengths reached in experiments were limited to weak and strong coupling regimes,

where the coupling between light and matter is relatively small compared to their bare

energies. Due to the advances in the control and manipulation of quantum systems,

ultra-strong coupling (USC) regime has been reached. Most of the experiments with

USC have been performed in the perturbative regime where the coupling strength is

less than one fifth of the photon frequency [34–40]. The non-perturbative USC regime

has been reached recently using superconducting qubits coupled to a transmission line

[41] and to a microwave resonator [42]. Another important achievement has been

the emulation of Dicke physics, which involves cooperative interaction of multiple

qubits with a photonic field, at room temperature [79]. These experiments in the USC

regime have presented novel phenomena, such as the existence of both atomic and

photonic excitations in the ground state and their entangled nature, chaotic regimes,

Bloch-Siegert shift in the resonance frequency [80], asymmetric Fano resonance and

inelastic Raman processes [81].

One of the main challenges in the simulations of quantum optics problems is the

exponential growth of the Hilbert space with increasing system size. Therefore,

approximate methods are necessary in the treatment of these problems. In the weak

and the strong coupling regimes, the rotating wave approximation (RWA) limits the

solutions to the excitation number invariant subspaces and the problem can be solved

analytically [11, 82, 83]. In the perturbative regime, RWA can be applied after an

optimized polaron transform [84, 85]. However, beyond the perturbative regime, these

approximations break down and numerical methods such as tensor network algorithms

are needed.
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Another challenge is the study of long-time dynamics of unbounded quantum systems

on a numerical grid. To make the grid small enough for efficient simulation, it

is necessary to impose artificial boundary conditions. When the problem admits

propagating wave solutions, the reflection from the boundaries can disrupt the

dynamics in the interior region. Absorbing boundary conditions (ABC) are used to

minimize such reflections. These boundary conditions need to fulfill the requirements

such as being well-posed so that they are unique and stable, the numerical solution

should be bounded and all the incident waves should be destructed to prevent any

reflection [86]. Here, the form and the parameters such as those of an imaginary

potential to do simulations should be chosen carefully. This potential should not

affect the evolution outside of the absorbing region. One of the drawbacks is the loss

of quantum correlations. For example, in a many-body system, when a particle is

absorbed through a non-Hermitian process, the norm of the wave function decreases

and the loss of information is irreversible [87]. Another drawback is that the waves

which have wavelengths longer than the absorbing region are reflected from the

boundary [88].

In this chapter, we investigate the interactions between a quantum emitter and a

one-dimensional coupled cavity array (CCA). We study the photon dynamics in the

strong coupling and perturbative USC regimes. We analyze the effects of the ABC and

show the optimum intervals for the related parameters. Finally, we compare the results

obtained by exact diagonalization to those obtained using the TEBD algorithm.

3.1 Spin-Boson Model in the Strong Coupling Regime

The spin-boson model describes a two-level system (TLS) interacting with a

bosonic environment. It is the simplest dissipative model describing many different

phenomena such as energy transfer [89, 90] and decoherence [91] in quantum optical

systems, tunneling in condensed media [20, 92], charge transfer [93], quantum phase

transitions [94, 95], electronic transport in biological complexes [96] and quantum

simulators [97]. Depending on the application, TLS can be modeled by any

pseudo-spin 1
2 system, such as a quantum dot or a superconducting qubit, where only

two energy levels are coupled to the bosonic environment.
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The Hamiltonian of a spin-boson model can be written as

Ĥ =
∆

2
σ

z +∑
k j

H̄k ja
†
ka j +σ

x
∑
k

(
gka†

k +H.c.
)
, (3.1)

where we set h̄ = 1. Here, σ x and σ z are the Pauli operators acting on the TLS and ∆ is

the excitation energy of the TLS. a†
k and ak are the creation and annihilation operators

of the bosonic mode k, respectively.

H̄k j are matrix elements of a bi-linear Hamiltonian which describes a simple model

for the bosonic environment. The bosonic environment we consider is an optical

CCA. Here, the spatial profiles of the cavity modes overlap yielding photon hopping

between adjacent cavities [1, 98, 99]. Therefore, the array can be modeled by the

tight-binding Hamiltonian. In the case of a one-dimensional homogeneous CCA, this

Hamiltonian becomes ∑n
(
ωa†

nan + J(a†
nan+1 +H.c.)

)
. Here ω is the energy of the

photonic excitations and J is the hopping parameter between adjacent cavities.

The last term describes the interaction between the TLS and the photonic modes, in

accordance with the quantum Rabi model [100,101]. Here gk is the interaction strength

between the TLS and the kth mode. Normally, the interactions between photons and

atoms are very weak and last for a very short duration. Therefore, the interactions are

enhanced by trapping atoms in nanophotonic structures in the laboratory. Depending

on the relative strength of these interactions, different methods are used to solve

Eq. (3.1).

3.1.1 Rotating wave approximation

We first consider the strong coupling regime, where interaction strengths, gk, are much

higher than the decoherence rate [1], although, they are still too small compared

to the bare energies of the photons and the TLS. Most of the techniques for

manipulating interactions at a single photon level are developed for this regime [102,

103] and they have paved the way for optical transistors [104–106], single-photon

routers [107], one-photon lasers [108], qubit-mediated entanglement [109] and

efficient photo-detectors [110].

In the strong coupling regime, rotating wave approximation (RWA) is used for solving

Eq. (3.1). [11, 82, 83]. Within this approximation the counter rotating terms which do

not conserve the excitation number such as σ+a†
k and σ−ak are neglected. When the
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RWA is applied, the interaction between the TLS and a single cavity mode is described

by the Jaynes-Cummings model [111], and the interaction term in Eq. 3.1 reduces to

g
(

σ−a†
N +σ+aN

)
.

In this section, we consider a TLS interacting with the cavity mode at the last site, N,

in the strong coupling regime where g ≤ 0.1ω . Here, the spin-boson Hamiltonian in

Eq. 3.1 takes the form

ĤRWA =
∆

2
σ

z +∑
n

(
ωa†

nan + J(a†
nan+1 +H.c.)

)
+
(

gσ
−a†

N +H.c.
)
. (3.2)

For small coupling the ground state of this Hamiltonian is the vacuum state where

there are no bosons and the TLS is not excited. In the single-excitation subspace,

the operator C = 1
2σ z +∑n a†

nan is a constant equal to 1
2 (ground state has C = −1

2 so

that the difference between the states is 1). Therefore we can shift the energy by ω

2 ,

i.e. subtract from the above Hamiltonian ωC, and rewrite it in the single-excitation

subspace as

ĤRWA =
δ

2
σ

z +∑
n

J
(

a†
nan+1 +H.c.

)
+
(

gσ
−a†

N +H.c.
)

(3.3)

where δ = ∆−ω is called the detuning.

3.1.2 Absorbing boundary conditions

ABC can be applied in the form of an imaginary potential [112],

iΓ = i∑
n

γna†
nan (3.4)

so that the effective Hamiltonian becomes

Ĥeff = Ĥ− iΓ. (3.5)

Here, γn approaches zero at the exterior of the absorbing region. The length and

strength of the absorbing region should be chosen carefully, so that within the

absorbing region all the incident waves are absorbed and outside of this region the

imaginary potential does not have any effect on the evolution via the Hermitian part of

the effective Hamiltonian.
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3.1.3 Exact diagonalization

In CCAs, the size of the Hilbert space grows exponentially with the system size.

However, when there are conserved quantities, the Hamiltonian can be blocked

diagonalized in an appropriate basis. An exact diagonalization method can be used

to solve such a system. The Hamiltonian in Eq. (3.3) is block diagonal in the basis

with fixed number of excitations. Therefore, the states with different number of

excitations do not mix during the time evolution. If the evolution is restricted to

the single-excitation subspace, the wave function at any time can be written as a

superposition with coefficients cn and d so that

|Ψ〉= ∑
n

cna†
n|g〉⊗ |vac〉+dσ

+|g〉⊗ |vac〉. (3.6)

In the Heisenberg picture, the time dependent creation, annihilation and Pauli operators

satisfy
da(†)n

dt
= i[Ĥ,a(†)n ],

dσ±

dt
= i[Ĥ,σ±]. (3.7)

For the Hamiltonian in Eq. (3.3), these equations become linear in a(†)n and σ±.

Therefore they can be written in matrix form

d~A
dt

=−iM~A, (3.8)

where the vector is ~A = (a1, . . . ,aN ,σ
−). The solution is

~A = e−iMt~A(t = 0). (3.9)

The ABC given in Eq. (3.4) acts on the position space as a damping factor, so that

~A = e−iMt−Γt~A(t = 0). (3.10)

Here,

M =



ω J 0
J ω J

J ω
. . .

. . . . . . J
J ω g

0 g ∆


(3.11)
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and

Γ =



γ1 0 0
0 γ2 0

0 γ3
. . .

. . . . . . 0
0 γN 0

0 0 0


(3.12)

are sparse matrices. Therefore, numerical simulations can be performed efficiently.

3.1.4 Results

In this section, we study photon dynamics in the strong coupling regime, where RWA

is valid, and restrict our attention to the time evolution in the single-excitation subspace

(see Eq. (3.3)).

The CCA is described by the tight-binding model which is diagonal in momentum

basis. Therefore, the free-photon dispersion relation, shown in the top panel of Fig. 3.1,

is

Ek = ω +2J cos(ka), (3.13)

where a is the lattice spacing. Since we omit ω in Eq. (3.3), we set it to zero for

our simulations in the strong coupling regime. Around the middle of the band, where

k =±π/(2a), the dispersion is approximately linear (dashed red lines in the top panel

of Fig. 3.1). In contrast, the dispersion is parabolic near the band edges. Similarly, the

density of states is nearly constant around the middle of the band, whereas it diverges

near the band edges [113].

Now we consider coupling between a TLS system and the free-photon environment.

Here, we consider a semi-infinite chain where the TLS is coupled to the cavity at the

edge. Due to the coupling, the TLS decays from its excited state into the photonic

environment. We simulate this phenomenon using a time evolution starting from an

initial state, where the TLS is in its excited state and photons are in the vacuum state,

so that

|Ψ0〉= |e〉⊗ |vac〉. (3.14)

The middle and bottom panels of Fig. 3.1, show the decay of the excited state’s

population of the TLS, Pe. In the linear dispersion regime, where δ = 0 and the TLS

is in resonance with the cavities (middle panel), Pe decays exponentially with time and
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Figure 3.1 : The dispersion relation (see Eq. (3.13)) is shown by blue continuous
curve and the linear fits at ka =±π/2 are shown by red dashed lines (top panel). The

population of the excited state of the TLS, Pe, as a function of time for different
coupling strengths g at the detuning δ = 0 (middle panel). Here, the dots represent
the numerical results and the continuous lines represent the exponential fits. Pe as a

function of time for different δ at g = 0.4 (bottom panel).
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the decay rate grows as g2 [114–117]. Perfectly exponential decay of Pe in this time

scale shows that for a long enough chain, where there are no reflected waves affecting

the TLS, dynamics is purely Markovian.

The band structure of the bosonic environment affects the spontaneous emission of the

TLS as well. We can observe this effect by changing the detuning. The bottom panel

of Fig. 3.1 shows the decay of Pe for different detunings at coupling g = 0.4. The

exponential decay of Pe occurs when the detuning, δ , lies within the band. The decay

gets slower as δ approaches to the band edges due to the decreasing group velocity of

the photons as seen by the blue (δ = 0) and red curves (δ = −1). When the detuning

is far away from the band edge as seen by the green curve (δ = −3), most of the

excitation remains in the TLS. At the band edges, as seen by the black curve (δ =−2),

fractional decay occurs, where excitations decay partially into the bosonic environment

and remain partially in the TLS [113].

3.1.4.1 Reflecting boundary conditions

In this section we present our results for reflecting boundary conditions considering a

lattice of 1000 sites where the TLS is coupled to the last cavity. The initial state is the

same as before (see Eq. (3.14)). We first turn our attention to the case in which δ = 0,

so that the TLS is in resonance with the cavity. To examine the photon dynamics, we

compute the expectation value of the photon number for each site, 〈a†
nan〉 as a function

of time.

As the TLS decays, it transfers its energy to the photonic field. When the detuning is

zero, the emitted photons move with the frequency ω and a constant group velocity.

Since the TLS decays more slowly as the coupling strength gets smaller, for small

coupling strengths where RWA is valid, the lattice length should be long enough to

observe the whole time evolution. Otherwise the unphysical reflections will affect the

results.

In Fig. 3.2, we show the time evolution of the photon number expectations at g = 0.04.

For the parameters we have chosen, a lattice of 1000 sites is not sufficient to observe

the whole evolution. At around t = 500 (in the units of J−1) the photons reach the left

boundary, get reflected and they reach the initial site before the TLS completely decays
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Figure 3.2 : The expectation value of the photon number for each site as a function of
time, for g = 0.04, δ = 0, and a lattice of 1000 sites without an absorbing boundary

condition.

to its ground state. As a result, the dynamics throughout the lattice is highly disrupted

due to the reflected waves.

3.1.4.2 Absorbing boundary conditions

Next, we consider ABC in the form of Eq. (3.4), where γn is an exponentially decaying

function of position, γn = γe−n/l . Here γ and l correspond to absorption strength

and absorption length, respectively. We aim to find the optimum parameters, so that

distortion due to ABC in the interior region is minimum. For this reason, we consider

two CCAs with lengths 1000 and 2000 sites, the former having ABC on the left

boundary. Both of the arrays are coupled to a TLS at the rightmost site as before.

We let the two systems evolve starting from the same initial state, which is given in

Eq. (3.14), and compare the final states at t = 1500. We compute the error due to

the distortion based on the difference between the expectation values of the photon

numbers of the last 500 sites, ∆N = ∑
1000
n=500

∣∣∣〈a†
nan〉Ψ−〈a†

n+1000an+1000〉Ψ̃
∣∣∣, where Ψ

and Ψ̃ correspond to the final states of the time evolutions on the lattices of 1000 and

2000 sites, respectively. We divide this difference by the loss due to the absorption,
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L= 1−∑
1000
n=1 〈a†

nan〉Ψ, to obtain distortion error per an absorbed photon, so that

ε =
∆N
L

=
∑

1000
n=500

∣∣∣〈a†
nan〉Ψ−〈a†

n+1000an+1000〉Ψ̃
∣∣∣

1−∑
1000
n=1 〈a

†
nan〉Ψ

. (3.15)
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Figure 3.3 : Error due to distortion, ε , (see Eq.3.15) as functions of the absorption
strength, γ , and the absorption length, l, at δ = 0 (a). ε as a function of γ when l = 4

(b) and as a function of l when γ = 4 (c), for different values of δ .

In Fig. 3.3 (a), we examine how the distortion error, ε , changes with the absorption

strength γ and the absorption length l for the linear dispersion regime (δ = 0) and for

an evolution time of t = 1500. The other parameters and the initial state are the same

as in Sec. 3.1.4.1. In the region where γ < 3 and l < 20, ε is inversely proportional

to γ × l. When γ & 3, ε is not affected very much by γ , therefore the error mostly

depends on l. For sufficiently high values of γ , ε becomes minimum when 15 < l <

20. ε becomes larger when absorption length gets smaller, since only the waves with

wavelengths considerably smaller than the absorbing region are absorbed [88]. The

increase in ε when l exceeds 20 is due to the limited size of the array. Increasing l

further causes absorption of the photons in the interior region. For instance, let us

consider the absorption on the middle site, n = 500, when l = 40. This site is about

12× l sites away from the boundary, therefore the magnitude of the imaginary potential

drops to one millionth of γ . This yields an error more than 10−7.
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Figure 3.4 : The expectation value of the photon number for each site as a function of
time, for g = 0.04, δ = 0, and a lattice of 1000 sites with an absorbing boundary

having parameters γ = 4 and l = 10.

Next, we study the relationship between ε and the detuning, δ , for different values of

γ and l. Fig. 3.3 (b) shows ε as a function of γ for l = 4. Change in the detuning

does not affect the overall behavior of ε , that is as γ is increased ε decreases first, and

converges to a constant value. The constant value where the error settles down for

large γ increases as δ increases from 0. This shows that as the photons slow down

more distortion occurs, for γ & 2.

Fig. 3.3 (c) reveals a similar relationship between the distortion error and the detuning

with respect to the change in l. ε increases with increasing detuning for nearly all

values of l. This may be due to the varying wavelengths of the photons near the band

edges. As we mentioned before, the waves with wavelengths comparable to l are

reflected [88] and as the detuning increases, more waves are reflected.

We next show the time evolution for ABC with parameters, i.e. γ = 4 and l = 10.

We consider the same initial state and evolution parameters as in Fig. 3.2 and show

the evolution of the photon dynamics in Fig. 3.4. As shown in the figure, for δ = 0,
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photons are fully absorbed, and in the interior region there are no reflecting waves

disrupting the dynamics.

3.1.4.3 Simulations with Suzuki-Trotter decomposition

Finally, we consider the simulation of this model using Suzuki-Trotter decomposition

and analyze the computational error (see Sec. 2.4.1). To eliminate the effect of

the truncation, the evolution is restricted to the single-particle subspace, where the

maximum value of the bond dimension is 2. We use the exact diagonalization method

as before, with two major differences. Instead of exponentiating the full Hamiltonian,

we first split it into Ĥeven = ∑ j even ĥ j, j+1 and Ĥodd = ∑ j odd ĥ j, j+1 as in Eqs. 2.13

and 2.14, respectively. Secondly, we divide the evolution time, t, into small time

intervals, δ t and exponentiate Ĥeven and Ĥodd separately as in Eqs. 2.18 and 2.20,

for the first and second order Suzuki-Trotter decomposition, respectively. At each time

step, we follow the same procedure as in Sec. 3.1.3, for each exponential factor in

Eqs. 2.18 or 2.20, and apply them to the single-particle wave function consecutively.

As explained in Sec. 2.4, Suzuki-Trotter decomposition yields computational error

depending on ∆t, due to the non-commuting terms in the Hamiltonian. Here, we test

TEBD in strong coupling regime with absorbing boundary conditions and determine

the optimum time interval, ∆t, for the MPS algorithm.

Here, we consider the effective Hamiltonian in Eq. 3.5, where Heff = H− iΓ with H

being the HRWA in Eq. (3.3). The time evolution is on a lattice of 100 sites for a total

time of t = 100. The other parameters are the same as the system shown in Fig. 3.4. We

compute the 2-norm error, ε = || |Ψexact〉− |ΨMPS〉 ||2, given in Eq. (2.22). As shown

in Fig. 3.5, increase of the error with the time step interval is similar to our previous

results (see Fig. 2.4) obeying a power law, ε ∼ ∆ta, where the power a is 0.94 and 2.00

for first and second order expansions, respectively. Fig. 3.5 also shows that ∆t can be

increased up to 0.01 without causing significant order.

3.2 Spin-Boson Model in the Perturbative Coupling Regime

We now turn our attention to the USC regime. Although RWA is not valid in this

regime, when g is small enough, as in the intermediate coupling regime, the problem

can be solved by applying RWA after an optimized polaron transformation [84,85,118].
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Figure 3.5 : The computational error as a function of time step interval in the first and
second order Suzuki-Trotter decomposition, for a lattice of 1000 sites with an

absorbing boundary having parameters γ = 4 and l = 10. The dots represent the
numerical results and the continuous lines represent the fitting functions, ε ∼ ∆ta,
with the powers a = 0.94 and a = 2.00 for the first and second order expansions,

respectively.

In the transformed basis, the coupling strength between the TLS and the cavity is

renormalized to a smaller value. Therefore, we can apply RWA in this new basis.

3.2.1 Polaron Transformation

The method we describe here is inspired by the polaron concept [119] which

was developed to explain how conduction electrons or holes move in a polar

semiconductor or ionic crystal. As these particles move they induce polarization in

the surrounding area creating a virtual phonon field. As a result, the particles get

"dressed" by the phonon field, forming quasiparticles called polarons. The strong

entanglement between the particles and the phonons makes the problem hard to solve

in this basis. However, with an appropriate transformation, i.e. Lee-Low-Pines

transformation [120], the reference frame is changed to the frame co-moving with

the particle and the phononic part of the wavefunction can be factored out [121].

A similar approach can be used for the intermediate coupling strengths of the

spin-boson model. In this regime, the counter rotating terms in the Hamiltonian in

Eq. (3.1) become significant. Therefore, the ground state is no longer the vacuum

but a dressed state comprised of the TLS and the photon cloud bound to it [81].

Since these dressed states contain the major part of the TLS-photon interaction, the

effective coupling between the TLS and the dressed state is reduced. Hence, if the
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Hamiltonian is transformed to the basis of these dressed states, the problem can be

solved perturbatively in the intermediate coupling regime [118].

The transformation operator is

Up = exp

[
σ

x
∑
k

fk(ak−a†
k)

]
≡ exp

[
σ

x(B−B†)
]

(3.16)

with the collective mode

B = ∑
k

fkak. (3.17)

Here, fk are real coefficients. This transformation operator is similar to the

displacement operator, U = exp
[
∑k fk(ak−a†

k)
]
, [122], except that it has a spin

dependence. The effect of the operator Up is to displace the bosonic modes in the

positive or negative direction depending on the spin state creating a coherent state of

photons. With this approach the photons at each cavity can be treated as a mean field.

With the correct choice of fk, the collective mode B becomes the bosonic field dressing

the TLS, similar to the phonons in condensed matter systems. Hence, the optimum

values of the coefficients fk are determined variationally.

The operators transform as

U†
pσ

zUp = σ
zU2

p = e−2∑k f 2
k σ

ze−2σ xB†
e2σ xB, (3.18)

U†
pakUp = ak− fkσ

x, (3.19)

and the transformed Hamiltonian becomes

Ĥp =U†
pĤUp =

∆̃

2
σ

ze−2σ xB†
e2σ xB +∑

k j
H̄k ja

†
ka j +σ

x
∑
k

Gk(ak +a†
k)+Ep. (3.20)

where

∆̃ = ∆exp
(
−2~f †~f

)
. (3.21)

and

Gk = gk−∑
j

H̄k j f j (3.22)

are the renormalized transition frequency of the TLS and the coupling strength,

respectively. The constant term in the transformed Hamiltonian is

Ep = ∑
k

(
∑

j
H̄k j f j fk−2gk fk

)
. (3.23)
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It has been shown that the ground state of the Hamiltonian in Eq. (3.20) is close to

vacuum, for intermediate coupling strengths [123–125]. Therefore, the ground state

energy can be approximated as Ep− ∆̃

2 , and its minimization with respect to f yields

the self consistency relation

~f =
1

H̄ + ∆̃
~g. (3.24)

Combining the above equation with Eq. (3.22) yields the reduced coupling strength

Gk = ∆̃ fk. (3.25)

The Hamiltonian in Eq. (3.20) has terms projecting to the multi-excitation subspaces.

These terms can be eliminated by expanding the exponentials in Taylor series and

keeping the first two terms as follows

e−2σ xB†
e2σ xB ' 1+2σ

x(B−B†)−4B†B. (3.26)

Using σ zσ x = iσ y and replacing Eqs. (3.25) and (3.17) in the transformed Hamiltonian,

Hp, yields

ĤpolRWA =
∆̃

2
σ

z−2∆̃σ
zB†B+∑

k j
H̄k ja

†
ka j + ∆̃[(σ x + iσ y)B+(σ x− iσ y)B†] (3.27)

or equivalently

ĤpolRWA =
∆̃

2
σ

z(1−4B†B)+∑
k j

H̄k ja
†
ka j +2∆̃[σ+B+σ

−B†], (3.28)

where we omit the constant term Ep. Note that this Hamiltonian conserves the total

number of excitations in the transformed Hilbert space. So keeping the first two

terms in the Taylor expansions in Eq. (3.26) is equivalent to applying rotating wave

approximation to the Hamiltonian in Eq.(3.20) and keeping the terms projecting to the

single-excitation subspace.

3.2.2 Results

In this section, we compare the results of time evolution via RWA, polaron

transformation and MPS algorithm, for arbitrary coupling strengths. As discussed in

Sec. 3.1, the Hamiltonian of a 1-D CCA coupled to a TLS with an arbitrary coupling

strength can be written as

Ĥ =
∆

2
σ

z +gσ
x(a0 +a†

0)+ω ∑
n

a†
nan + J ∑

n
(a†

nan+1 +H.c.), (3.29)
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where we set ∆ = ω = 1 and J = 0.5.

We consider an array of length N = 120 sites and an evolution time of t = 96 (in

units of ω−1). The initial state is the same as before (see Eq. (3.14)). We evolve the

state using RWA with and without polaron transformation and compare the final states

with the ones obtained from the MPS algorithm. Note that in the simulations using

polaron-transformed Hamiltonian, we transform the initial state as |Ψ0〉→U†|Ψ0〉 and

project it to the single-particle subspace, as well. This projection causes a decrease in

the 2-norm of the state, therefore we normalize the final state after the evolution.

We also transform the operators, σ z and a†
nan to obtain the excited-state population of

the TLS and the site-based photon numbers, respectively. After the transformation we

project them onto the single-excitation subspace as

U†
pσ

zUp ' e−2∑k f 2
k

[
σ

z +σ
+B−σ

−B†−4σ
zB†B

]
(3.30)

and

U†
pa†

nanUp ' (a†
nan + | fn|2)−σ

+ fnan−σ
− fna†

n. (3.31)

In the MPS representation, each cavity and the TLS is represented by a tensor and

the product of these tensors constitutes the wave function as explained in Sec. 2.2.

The tensor corresponding to the TLS has a physical dimension, d = 2 due to the two

states of the TLS. For the other MPS tensors, the d is the upper limit of the number

of photons found in the corresponding cavity. For example, in the single-excitation

subspace since each cavity has two possible states, which are the vacuum and one

photon states, d = 2. However, when the coupling strength g is increased beyond the

strong coupling regime where RWA is valid, multiple photon states contribute to the

evolution. In our simulations, we increased g up to 0.4 and set d = 7 for efficient

representation of the evolved states. We choose the time-step interval as ∆t = 0.005

and the truncation tolerance as δtrunc = e−12. The details of the algorithm are discussed

in Ch. 2.

The site-based photon numbers, P(n), and the decay of the excited-state population of

the TLS, Pe, for three different coupling strengths are shown in Fig. 3.6. When the

coupling is small, the results obtained from MPS and RWA (without applying polaron

transformation) are in complete agreement (blue and black curves, respectively, in

Fig. 3.6 (a) and (b). As the coupling strength gets higher, the MPS simulations yield
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Figure 3.6 : The site-based photon numbers (left panel) at T = 96 and the decay of
the excited state population (right panel) for g = 0.05ω (top row), g = 0.2ω (middle

row) and g = 0.4ω (bottom row).
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higher photon numbers near the TLS, whereas the photon numbers obtained from RWA

with and without the polaron transform are approximately the same for all coupling

strengths (See Fig. 3.6 left panel). The difference in MPS results may be due to the

photon cloud bound to the TLS as observed in dressed states. Although the polaron

transformation aims to capture the same effect, our results do not reflect this due to

our numerical method. We have eliminated the terms projecting to multi-excitation

subspace to limit the size of the effective Hilbert space. A computation taking into

account states with higher number of excitations may yield more consistent results

with the ones obtained from MPS simulations.

For g= 0.2ω , Pe obtained from the MPS and the evolution with polaron transformation

are in good agreement (See Fig. 3.6 (d)). They both yield slower decay compared to

the exponential decay resulting from RWA without the polaron transformation. In

the latter case, the excitation of the TLS is completely transferred to the photons

and Pe converges to zero. However, Pe obtained from both the MPS and evolution

with the polaron transformation converge to the same non-zero value. For higher

coupling strengths, the MPS result deviates from the result obtained using polaron

transformation in the long-time limit, converging to a higher value (See Fig. 3.6 (f)).

Figure 3.7 : Number of photonic (a) and qubit (b) excitations as a function of g, for
different times t. The dashed curves represent MPS results, whereas continuous

curves represent results obtained using polaron transform.

Fig. 3.7 shows the number of excitations as a function of g at different time steps.

Here, the dashed curves represent MPS results, whereas continuous curves represent

results obtained using RWA with polaron transformation. Initial values for the polaron

transformation results (blue continuous curves) indicate the effects of the polaron

transformation only. For the photonic excitations (Fig. 3.7 (a)), the initial number

of excitations are approximately zero for all the coupling strengths as expected. As the

34



time evolution proceeds the two results deviate from each other for g > 0.2ω and the

deviation becomes more significant for larger times. In contrast, the initial difference

in Pe resulting from the two methods (Fig. 3.7 (b)) becomes significant for coupling

strengths g > 0.2ω . However, the results approach to each other in time and coincide

at t = 12 (see dashed and continuous curves in Fig. 3.7 (b)).

3.3 Summary

In this chapter, we studied few photon dynamics in a 1-D CCA and compared our

results obtained by different methods.

One of our main objectives is to implement an efficient absorbing boundary condition

to simulate long-time dynamics. Studying an unbounded quantum system on a

numerical grid in the long-time limit is computationally challenging due to the limited

memory of computers. One of the methods to make the grid small enough for efficient

simulation is to implement absorbing boundary conditions. We have introduced a

simple ABC in the form of an imaginary potential with two parameters, namely

absorption strength and absorption length. We have studied the optimum intervals

for these parameters which cause minimum distortion in the interior region of a CCA

in the strong coupling regime. Our simulations have shown that in the linear dispersion

regime, the distortion error decreases as the product of absorption strength and

absorption length increases, for small absorption parameters. However, for sufficiently

large absorption strengths, the distortion error due to the absorption depends mostly

on the absorption length. This shows that in this parameter regime, the main cause of

distortion is the reflection of the waves with wavelengths comparable to or longer than

the absorption length [88]. Similarly, the distortion error increases with the detuning,

in general, due to the varying wavelengths of the photons near the band edges.

Another objective of this chapter is applying the Matrix Product States Formalism

to a 1-D CCA. For this reason, we first calibrated the time step interval, ∆t, and

tested the Suzuki-Trotter decomposition for the spin-boson model in the strong

coupling regime and under ABC. We have analyzed the computational error due to

∆t by evolving the same initial state using exact diagonalization with and without

Suzuki-Trotter decomposition and comparing the 2-norm difference between the final

states for different values of ∆t. We have found that the scaling between ∆t and
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the computational error is similar to the the tight-binding model with random nearest

neighbor interactions that we have shown in the last chapter (See Fig. 2.4). Namely,

the error increases linearly with ∆t for the first order Suzuki-Trotter decomposition and

quadratically for the second order.

Finally, we have applied our MPS algorithm to this model in different coupling regimes

and compared our results obtained from RWA with and without polaron transform. We

focused our attention on the decay of the TLS from its excited state, Pe(t), and the

resulting site-based photon numbers, P(n). For small enough coupling strengths where

RWA is applicable, g < 0.1ω , P(n) obtained from three different methods are in good

agreement and Pe(t) decays exponentially with the same rate for all three methods.

For the intermediate coupling strengths, 0.1 < g/ω < 0.2, Pe(t) obtained from both

the MPS algorithm and RWA with polaron transformation decays slower compared

to the results obtained from RWA without polaron transformation, and it converges

to a non-zero value. P(n) obtained from all three methods is the same in general,

except the MPS algorithm yields higher photon numbers in the vicinity of the TLS.

This is consistent with the assumption that in the intermediate coupling strengths a

polaron-like dressed state composed of the TLS and the surrounding photonic cloud

is formed. Although RWA approximation with the polaron transformation yields the

same Pe(t) as the MPS algorithm, it fails to capture the effect of the dressed state on

P(n). This may be due to the elimination of the terms projecting to multiple-excitation

subspaces in Eq. (3.20). Keeping more terms after the polaron transformation may

improve the results. As g is increased further, the behaviors of P(n) and Pe(t) do not

change for the simulations using RWA with and without polaron transformation in

general. In contrast, MPS results deviate more from the RWA results in the sense that

the photonic cloud around the TLS expands over a broader region and Pe(t) converges

to a higher value.
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4. QUANTUM WALK WITH A SINGLE PHASE IMPURITY1

In this chapter, we analyze non-Markovianity for the discrete-time quantum walk

along a line with a single impurity at the origin. In particular, we examine the

relationship between non-Markovianity and emerging bound states depending on the

impurity’s phase angle. In Sec. 4.1, we briefly discuss the motivation behind studying

open quantum systems and the emerging interest in revealing the connection between

localization and non-Marvoianity. We review the quasi-energy spectrum and sublattice

symmetry of the discrete-time quantum walk in Sec. 4.2. We then move on to

the quantum walk with a single phase impurity. We find the bound states by a

transfer matrix approach and examine their properties in Sec. 4.3. In Sec. 4.4, we

compare the localization of the bound states and the dynamical localization resulting

from the time evolution. We point out the differences between the outcomes of

the two non-Markovianity measures, which are based on state distinguishability and

system-ancilla entanglement, in relation with the emergence of bound states in Sec. 4.5.

We present a discussion of our results and conclude in Sec. 4.6.

4.1 Introduction

The theory of open quantum systems provides the necessary means to study

and characterize the dynamics of quantum systems that are interacting with their

surrounding environments [11]. It is well known that although closed systems evolve

in time unitarily, dynamics of open quantum systems is no longer unitary due to the

coupling to their environments. Such an interaction between the principal open system

and the environment typically results in decoherence of the principal system, resulting

in the loss of characteristic quantum properties such as coherent phase relations. From

the standpoint of dynamical memory effects, time evolution of open quantum systems

can be classified as exhibiting Markovian (memoryless) or non-Markovian behaviour.

1This chapter is based on the paper Danacı, B., Karpat, G., Yalçınkaya, İ. and Subaşı, A. (2019).
Non-Markovianity and bound states in quantum walks with a phase impurity, Journal of Physics A:
Mathematical and Theoretical, 52(22), 225302.
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As a consequence of the increasing experimental control over quantum systems and the

development of reservoir engineering techniques in recent years, the study of quantum

non-Markovianity has become a significant line of research [126, 127]. Various

methods have been introduced for quantifying and characterizing the non-Markovian

behaviour in the dynamics of open quantum systems. Among others, the approaches

based on the information dynamics between the open system and its environment

have become prominent [128–132]. The motivation behind these approaches is when

information flows from the environment back to the system throughout the dynamics,

the future states of the open system might depend on its earlier states.

The connection between localization and non-Markovianity has been studied in

different settings, such as atomic impurities embedded in a disordered coupled cavity

array [133], in a quasi periodic Fermi lattice [134] and in a Bose Hubbard lattice [135].

These studies show that non-Markovian memory effects emerge as excitations localize

in the vicinity of the impurity. In quantum walks, non-Markovian effects can be

analyzed without considering an extra external environment. Similar to the coin throw

in classical random walks, an internal degree of freedom, so-called "coin", determines

the direction of the quantum walk. Non-Markovianity can be studied focusing on the

coin space reduced dynamics where the spatial degree of freedom is traced out [136].

In that case, the position space itself is treated as the environment of the coin space.

Even though this reduced dynamics is known to be non-Markovian for the standard

quantum walk, the presence of decoherence in the form of broken links wipes out the

non-Markovian behaviour and gives rise to a Markovian process. On the other hand,

it has also been shown that the non-Markovian behaviour can be enhanced when the

walker is subjected to some specific static or dynamic disorder [137].

Despite their superiority over random walks in spreading rates [45, 46] leading to

faster computational algorithms [47], quantum walks have also attracted considerable

attention in terms of their non-diffusibility features in the presence of disorder such

as quantum-to-classical transition [138], dynamical localization [139, 140], and the

emergence of bound states [141, 142]. While rolling back to the classical behavior

is attributed to wiping out coherence in the system due to dynamical disorder, it

is the static disorder that leads to dynamical localization in quantum walks. The

former disorder scheme manifests itself as a time-dependent evolution operator,
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whereas the latter resembles a random potential for the quantum walker described

by a unitary operator [143–149]. Since these disorder models break either the

temporal or the spatial symmetries, any emergent non-diffusibility in quantum walks is

typically associated with a lack of some symmetry in the dynamics [150–154]. Other

examples of non-diffusibility have been observed in quantum walks coupled to spin

environments [155, 156]. In this chapter, we consider a quantum walk with a static

phase impurity [141, 142] and study its localization and non-Markovianity properties.

4.2 Discrete-time Quantum Walk

Analogous to the classical random walk, the discrete-time quantum walk depicts the

unitary evolution of a particle on a lattice where the direction of the movement is

determined by an internal degree of freedom, namely, the coin [44]. At each time step,

an operator Ĉ acting solely on the coin state is followed by a coin-state-conditioned

translation operator T̂ acting on the total coin-position Hilbert space Hc ⊗ Hp.

Although Ĉ can be chosen from SU(2), without loss of generality, one may constrain

the coin operator to be a rotation around the x-axis [157], so that

Ĉ = exp
(
−iθ X̂

)
⊗ ÎN . (4.1)

Here, X̂ is the Pauli-X operator acting on the coin space and ÎN is the identity operator

acting on the the N-dimensional position space. We will fix the coin angle to be

θ = π/4 throughout the thesis. The conditional translation operator shifts the position

of the walker one site to its right or left depending on the coin state as given by

T̂ = ∑
c,n
|c〉〈c|⊗ |n+(−1)c〉〈n|, (4.2)

where c ∈ {0,1} refer to the eigenstates of the Pauli-Z operator Ẑ spanning the coin

space and n ∈ Z labels the N position states. Thus, the evolution operator describing a

single time step is written as Ŵ = T̂Ĉ. After t steps, the final state becomes

|Ψt〉= Ŵ t |Ψ0〉= ∑
c,n

ac,n(t)|c,n〉, (4.3)

where |Ψ0〉 is an arbitrary initial state at t = 0 and ac,n(t) are the probability amplitudes

corresponding to coin state |c〉 and position state |n〉. Consequently, the probability of

finding the quantum walker at position n and step t is calculated by Pn(t)=∑c |ac,n(t)|2.

39



4.2.1 Quasi-energy spectrum

The walk can also be considered as a stroboscopic simulation of a quantum evolution

generated by an effective Hamiltonian Ĥθ such that Ŵθ ≡ exp(−iĤθ ), where we

assume that the time required for taking one step and h̄ are both set to unity [63,64]. It

is well-known that the spectrum of this Hamiltonian has a band structure with a period

of 2π , which arises from the discrete time-translation symmetry of the walk, i.e., the

Hamiltonian is in fact a representative of a recurring single-step evolution.

The energy eigenvalues E here are called quasi-energies, similar to the

quasi-momentum k showing up due to discrete spatial translation symmetry of

Ŵθ in the standard quantum walk by a unit lattice spacing. The standard walk

Hamiltonian becomes diagonal in this quasi-momentum basis via the transformation

|c,k〉 = 1√
2π

∑n e−ikn|c,n〉 with k ∈ [−π,π] and one obtains the dispersion relation

cosE(k) =±cosθ cosk, where k is in units of h̄ over the lattice spacing.

We will study the non-Markovian behaviour from the point of view of the coin

sub-system, which will be considered as an open system with the position space

interacting with it as the environment [136]. Therefore, the time evolution of the coin

density matrix will be investigated. Since the stationary states of the standard quantum

walk are product states of the form |Ek〉 = |χk〉⊗ |k〉, the reduced pure coin density

matrix can be written as ρcoin
k = |χk〉〈χk|= (I2 +~rk ·σ)/2, where [64]

~rk =
1

sinE(k)
(cosk sinθ ,−sink sinθ ,−sink cosθ). (4.4)

4.2.2 Sublattice symmetry

Two quasi-energy bands associated with the coin states are symmetric about E = 0

and the band gap closes for θ = 0 or π . Any pair of eigenstates with a quasi-energy

difference of π can be associated with one another via the sublattice operator

Ŝ = Î2⊗∑
n
(−1)n|n〉〈n|, (4.5)

which is both unitary and Hermitian, i.e., Ŝ2 = Î2N [158]. Thus, for each eigenstate |E〉

of Ĥθ with quasi-energy E in a given band, there exists another eigenstate Ŝ|E〉 with

quasi-energy E + π in the other band, which can actually be deduced directly using
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(4.5),

ŜŴθ Ŝ =−Ŵθ ⇒ ŜĤθ Ŝ = Ĥθ +π. (4.6)

The sublattice operator has two degenerate eigenvalues ±1 such that eigenstates

corresponding +1 (−1) parity, which we will denote by |Se〉 (|So〉), occupy only even

(odd) labelled sites in the position space. These eigenstates can also be written in terms

of the symmetric (for +1) and anti-symmetric (for −1) superpositions of |E〉 and Ŝ|E〉

such that

|Se,o〉= |E〉± Ŝ|E〉. (4.7)

Note that the step operator Ŵθ transforms |Se〉 to |So〉, or vice versa, up to an overall

phase of e−iE. Therefore, if one initializes the walk with either of |Ψ0〉 = |Se,o〉, the

total state will oscillate from one to the other forever, i.e., step operator moves the

state back and forth between two sublattices. It is worth mentioning here that this

periodic oscillation with a period of 2 will play an important role in our discussion of

non-Markovianity.

4.3 Quantum Walk with a Phase Impurity

We consider a modified version of the standard quantum walk such that whenever

the walker passes through the origin n=0, it acquires a phase of eiφ as illustrated in

Fig. 4.1. This effect can be introduced to the step operator by rewriting it as Ŵ ′
θ
=

T̂Ĉθ P̂≡ e−iĤ′
θ to include the phase operator

P̂ = Î2⊗∑
n

eiφn|n〉〈n|, (4.8)

where φn = φδn,0 and δn,m denotes the Kronecker delta function. This model was

studied by Wojcik et al. and the bound eigenstates of the double step operator Ŵ ′2
θ

are

obtained [141]. We will provide an alternative solution for the stationary bound states

in this model for the single step operator Ŵ ′
θ

using a transfer matrix approach [159].

We note that a double step operator would be useless in our case since it restricts the

evolution to one of the sublattices, and hence, no oscillation takes place between |Se,o〉

and |So,e〉 contrary to the discussion we will have, where these oscillations lie at the

center of non-Markovian behaviour.

The phase operator P̂ breaks the translation invariance of the step operator Ŵ ′
θ

in the

considered model. However, we can still employ the reflection symmetry which is
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Figure 4.1 : Schematic representation of a bound state and its probability distribution
over the position space. The walker acquires a phase eiφ due to the impurity at the
origin. As given in (4.11), the coefficients (αn,βn−1) are related to each other by
transfer matrices T and T (φ) for n 6= 0 and n = 0, respectively. The localization
length l is determined from eigenvalue λ of the transfer matrix T . Blue arrows

represents the coin state in the phase space and their lengths are drawn proportional to
Pn.

introduced by the reflection operator

R̂ = σx⊗∑
n
|−n〉〈n|, (4.9)

in finding the stationary states of Ĥ ′
θ

as follows. Similar to the sublattice operator, R̂

also has the property R̂2 = Î2N and it possesses two degenerate eigenvalues ±1. Also,

by considering the commutation relations that [R̂, Ĥ ′
θ
] = 0 = [R̂, Ŝ], eigenstates of Ĥ ′

θ

can be labelled by a definite ± parity, i.e. R̂|E±〉 = ±|E±〉, and application of Ŝ does

not change this parity and it yields the eigenstates with quasi-energies E±+π since

the condition (4.6) is still valid for Ŵ ′
θ

. These energy eigenstates can be written in the

component form

|E±〉= ∑
n

α
±
n |↑,n〉+β

±
n |↓,n〉, (4.10)

where the coefficients obey the constraint α
±
−n = ±β±n as a direct consequence of the

reflection symmetry. Thus, |E±〉 can be constructed by knowing only half of their

components. Also, by using Ŵ ′
θ
|E±〉 = exp(−iE±)|E±〉, one can obtain the recursion

relations between these coefficients and rearrange them in the following way(
α
±
n+1

β±n

)
= T (φn)

(
α±n

β
±
n−1

)
. (4.11)
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(a)

(c)

(b)

Figure 4.2 : (a) Energy band diagram of the walk (θ = π/4) as a function of the
phase parameter φ , where φ = 0 corresponds to the standard quantum walk. The
analytic result given in (4.16) is drawn for reflection symmetric (blue dashed) and

anti-symmetric (red dot-dashed) bound state quasi-energy values, where the
numerical values (black dots) are omitted since they exactly coincide with the analytic

result. (b) Inverse localization length of reflection symmetric (blue dashed) and
anti-symmetric (red dot-dashed) energy eigenstates and their sum as the effective

inverse localization length (solid black) as a function of φ , which is used as a measure
of localization. (c) Reduced coin density matrix parameter rx for reflection symmetric

(blue dashed) and anti-symmetric (red dot-dashed) bound states as a function of φ

gives average value about which oscillations in the reduced density matrix take place.

Here, the matrix T (φn) is called the transfer matrix for site n and it connects the

adjacent coefficients in (4.10) (See Fig. 4.1), which is given in general as

T (φn) =

(
ei(E±+φn) secθ −i tanθ

i tanθ e−i(E±+φn) secθ

)
, (4.12)

with the inverse T−1(φn) = σxT (φn)σx . Reflection symmetry implies T (φ−n) =

σxT−1(φn)σx = T (φn) and thus φn = φ−n. Since φn = φδn,0 in our model, we set

T (φn = 0) = T for n 6= 0. Now, the problem of finding the stationary states is boiled

down to determine a suitable pair (α±1 ,β±0 )T in (4.10) satisfying the reflection property.

We can look for stationary states whose coefficients as simultaneous eigenvectors of

the transfer matrices must satisfy

T (φ)σx

(
α
±
1

β
±
0

)
=±

(
α
±
1

β
±
0

)
and T

(
α±n

β
±
n−1

)
=λ

(
α±n

β
±
n−1

)
(4.13)
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such that (
α
±
n+1

β±n

)
= λ

n
(

α
±
1

β
±
0

)
, n≥ 1. (4.14)

In the infinite chain limit, vanishing boundary conditions impose that |λ |< 1 for bound

states and matching the two forms(
α
±
1

β
±
0

)
= C(E±)

(
sinθ

sin(E±)− i
√

sin2
θ − sin2(E±)

)
,(

α
±
1

β
±
0

)
= C(E±)sinθ

(
ei(E±+φ)

±e±iθ

)
(4.15)

gives the quasi-energy

E± = cot−1
(
±1− sin(θ ∓φ)sinθ

sinθ cos(θ ∓φ)

)
, (4.16)

provided that

sin(E±+φ ∓θ) =±
√

sin2
θ − sin2 E±

sinθ
. (4.17)

The normalization constant is given by |C(E±)|2 =
(
1−λ (E±)2)/2 with the transfer

matrix eigenvalue

λ±=λ (E±)=
1

cosθ

(
cos(E±)−

√
sin2

θ−sin2(E±)
)
. (4.18)

It is seen that |λ±| ≤ 1 provided that |sinE±| ≤ |sinθ |. When a solution with

definite parity and an eigenvalue −θ < E± < θ exists, then there is a sublattice

symmetric solution, which has λ± → −λ± and
(

α
±
1

β
±
0

)
→ Ŝ

(
α
±
1

β
±
0

)
, with the same

parity and shifted eigenvalue −θ + π < E± < θ + π . The combinations of the

sublattice symmetric pairs of reflection symmetric states, for example, give
∣∣S+e,o〉=

|E+〉± |E++π〉 which are supported on even/odd sites. Similar combinations
∣∣S−e,o〉

exist for reflection anti-symmetric bound states.

The reflection symmetric bound states exist only in the interval φ ∈ (0,2π − 2θ) and

the reflection anti-symmetric bound states exist for φ ∈ (2θ ,2π). The quasi-energies

are shown with blue dashed and red dot-dashed lines in the quasi-energy diagram as a

function of φ in Fig. 4.2(a) for θ = π/4, which corresponds to balanced walks. The

numerical solution is performed for a large lattice with periodic boundary conditions

and the results are indistinguishable on this scale from the quasi-energies of the bound

states determined from the eigenvalues of the transfer matrix.
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We would like to quantify the localization in our model as a function of the impurity

phase φ . For this purpose one of the quantities we calculate is an effective inverse

localization length `−1
eff which is the sum of the inverse localization lengths over all

energy eigenstates. Since the localization length diverges for an extended state in the

infinite chain limit, extended states’ contribution to `−1
eff also vanishes in that limit and

we are left with only the inverse localization lengths of the bound states given by the

eigenvalues of the transfer matrix, i.e. `−1 = lnλ . Therefore, the sum of `−1 over all

stationary states is determined by the number of bound states and their localization

lengths. The total `−1
eff (solid black curve) is plotted in Fig. 4.2(b) as a function of

φ , where the individual contributions of symmetric (blue dashed) and anti-symmetric

(red dot-dashed) bound states are also shown. The localization length of a bound state

is minimum when its quasienergy is at the center of the band gap (see (4.18)), so that

the reflection symmetric and anti-symmetric bound states become maximally localized

when φ = 3π/4 and φ = 5π/4, respectively. The total `−1
eff is symmetric about φ = π

where it attains its maximum value. Although it monotonically decreases towards both

sides of φ = π , kinks in `−1
eff occur at φ = π/2 (φ = 3π/2) at the (dis)appearance of

new bound states as φ increases from 0 to 2π .

Unlike the homogeneous quantum walk, in the presence of phase impurity the energy

eigenstates become entangled in the composite coin-position space in this model and

ρcoin becomes a mixed state. Furthermore, the y- and z-components of the density

matrix vector~r become zero for all energy eigenstates (see (4.4) for the standard walk).

Here, we note the x-components of the reflection symmetric and anti-symmetric bound

states

rx,± =±1
2

[
2λ± cos

(
E±+φ ∓ π

4

)
+
(
1−λ

2
±
)]

. (4.19)

As φ changes, rx changes from +1 to −1 for both the symmetric and anti-symmetric

bound states over the regions of their existence as shown in Fig. 4.2(c). (Since

the action of the unitary sublattice operator on the coin space is trivial, sublattice

symmetric bound state give the same ρcoin.) At φ ∼ 0.6π and φ ∼ 1.4π , the difference

in rx,± becomes zero, which means the two coin states become indistinguishable for

bound states of either parity.
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4.4 Dynamical Localization

We commence this section by presenting our results for time evolving states in

balanced quantum walks (θ = π/4) making connection to the stationary bound states

obtained in the previous section. In general, the dynamical properties resulting from

the evolution of the quantum walk depend on the initial state. We consider initial states

such as |Ψ0〉 = |ψc〉⊗ |0〉 which are localized at the origin, for examining the effects

due to the existence of bound states around the origin. Here, |ψc〉 is the initial coin state

and the reflection symmetry of |Ψ0〉 is defined by the symmetry of |ψc〉 under rotation

by π about the x-direction. For our purposes, we choose to concentrate on the reflection

symmetric and anti-symmetric initial states whose coin subsystems are the eigenstates

of σx, i.e., the initial states |ΨS〉= 1√
2
[|↑〉+ |↓〉]⊗|0〉 and |ΨA〉 = 1√

2
[|↑〉−|↓〉]⊗|0〉,

respectively. Time evolution starting from these states yields symmetric probability

distributions about the origin independent of the presence of a phase impurity. For

example, in case of |Ψ0〉 ≡ |ΨA〉, Fig. 4.3(a) shows the probability distribution

in position Pn(t) at t = 300 for all φ values. The significance of the reflection

anti-symmetric bound state for a given φ becomes clear when we compare the degree

of localization and the overlap of the initial state with the corresponding bound states

|E−〉. For an arbitrary initial coin state |ψc〉 = cos γ

2 |↑〉+ eiη sin γ

2 |↓〉, this overlap is

given by

Fbound
γ,η ∑

E∈{Ebound}
|〈E|Ψt〉|2

(2−λ 2
+−λ 2

−)− (λ 2
+−λ 2

−)sinγ cosη

2
(4.20)

For our selection of initial coins, (4.20) simplifies to Fbound
±π/2,0 = 1−λ 2

±. The localization

region apparent in Fig. 4.3(a), when φ ∈ (π/2,2π), is directly related with Fbound
−π/2,0

shown in Fig. 4.3(b). The walker is most localized when the overlap becomes

maximum at φ = 5π/4. Similarly, in the interval φ ∈ (0,π/2) the overlap with the

bound subspace is zero and the probability distribution has a dip around the initial

site. Four representative probability distributions for different φ values are shown in

detail in Fig. 4.3(c). For the standard quantum walk φ = 0, the probability distribution

is uniform in the middle region and there are two peaks near the edges which move

in opposite directions with constant speed. For any φ , the resulting probability

distribution spreads balistically in the position space, i.e., it’s variance is proportional
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(a)

(c)

(b)

Figure 4.3 : (a) The probability distribution Pn(t) of the walk after 300 steps for the
reflection anti-symmetric initial state |ΨA〉 as a function of the impurity phase angle

φ . (b-c) Depending on the overlap Fbound
−π/2,0 between |ΨA〉 and bound states, the

probability distribution can have a peak or a dip at the starting site of the walker.

to t2. However, the proportionality constants may vary depending on the amount of

localization, and hence, on φ .

The average probability distribution of the walk 〈Pn(t)〉 is obtained by averaging Pn(t)

over all possible initial coin states. However, we observe that we get exactly the same

result by only taking into account any pair of orthogonal coin states. This is due to the

fact that the average probability distribution resulting from two walks starting with any

two orthogonal coin states at the origin is equal to the one resulting from the evolution

of a completely mixed coin state. (The resulting distribution is symmetric since the

completely mixed coin state at the origin is reflection invariant.) Also, for the long-time

limit, the bound states stay in the vicinity of the origin, whereas the extended states get

spread over the infinite position space yielding probabilities going to zero. Based on

these facts, we can obtain an analytic expression to estimate the long-time behaviour

of 〈Pn(t)〉 by projecting the evolved state onto the bound subspace and averaging the

47



num
eric

analy
tic

PR

Figure 4.4 : The numerical results for the participation ratio (PR) and the average
probability at the origin 〈P0〉 with respect to φ after 150 steps. The analytical

prediction for PR (black dots) is also provided.

corresponding probabilities over two orthogonal initial states, such that

〈P0〉 =
1
2
[
(1−λ

2
+)

2 +(1−λ
2
−)

2] and (4.21)

〈Pn〉 =
1
4
[λ

2|n|−2
+ (1+λ

2
+)(1−λ

2
+)

2
λ

2|n|−2
− (1+λ

2
−)(1−λ

2
−)

2], (4.22)

where n 6= 0 and non-zero probabilities appear for even (odd) sites only after even

(odd) number of steps. To quantify the localization, we utilize the participation ratio

of the averaged probability distribution, which is given by

PR = ∑
n
〈Pn(t)〉2 . (4.23)

For a uniform probability distribution over N sites, PR yields its minimum value

∼ N−1. At the other extreme of localization at one site, PR takes its maximum value

of one. In Fig. 4.4, the numeric results for the PR (green solid curve) and 〈P0〉 (orange

dashed curve) for 150 steps are represented. Both of them is calculated by using the

average probability distribution 〈Pn(t)〉 which is averaged over a pair of orthogonal

initial coin states as we mentioned before. We also provide the analytic prediction

of PR (black dots) for the long-time behaviour using Eq. (4.22) and Eq. (4.23) which

slightly differs from its numerical simulation, whereas we omitted that of 〈P0〉 for

clarity since it exactly fits to the numerical data. First of all, both curves exhibit

similar behaviour with respect to φ and 〈P0〉 pointing out that localization occurs

around the impurity site. They get maximized at φ = π and vanish at the standard

quantum walk limit φ = 0,2π . The kinks at φ = π/2,3π/2 are due to bound states

appearing or disappearing in this model as discussed previously. This behaviour
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matches exactly that of the effective localization length determined by the bound states

in Fig. 4.2(b), which consequently shows that the localization properties of the walk

in the long-time limit is determined by the number and character of the stationary

bound states. The slight difference between the numerical and analytical results of

PR stems from the finite number of time steps in the numerical simulation and the

fact that contribution from the extended states is completely excluded in the analytical

expression. As a consequence of this, the numerical data stays above the analytical

prediction. For example, as we approach the standard walk case, the wavefunction for

a finite-step walk stays relatively “localized” in comparison to that of the long-time

case which spreads infinitely over the position space without any localization. Hence,

the numerical prediction will become zero in the standard walk in this limit as well.

The very good agreement between the numerical and analytical results in Fig. 4.4

implies that the effect of the extended states on the PR is negligible even after 150

steps.

4.5 Non-Markovianity

We now turn our attention to the non-Markovian behaviour of the dynamics of the

coin for the quantum walk with a phase impurity. As mentioned before, we are

interested in the effects of localized bound states and their symmetry on the degree

of non-Markovianity of the reduced coin evolution. In order to quantify the amount

of memory effects in the open system dynamics from different perspectives, we will

comparatively study two well-established measures of quantum non-Markovianity that

are based on the information flow dynamics between the coin and the spatial degrees

of freedom.

Let us first briefly discuss how to characterize the non-Markovian nature of an

open system evolution and identify the existence of possible memory effects in the

dynamics. Assume that we have a quantum map Λ(t,0), i.e., a completely positive

trace preserving (CPTP) map describing the evolution of the open quantum system.

The property of divisibility implies that divisible maps satisfy the decomposition rule

Λ(t,0) = Λ(t,s)Λ(s,0), where Λ(t,s) is a CPTP map for all s ≤ t. Markovian or

so-called memoryless dynamical maps are recognized as the ones that satisfy this

decomposition rule. On the other hand, when the divisibility rule is violated, i.e.,
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when Λ(t,s) is not a CPTP map or when it does not even exist, then the dynamical

map Λ is said to be non-divisible and the evolution it describes non-Markovian. The

concept of divisibility can also be discussed in the context of discrete dynamics, such

as quantum walk, where t,s ∈ N [160].

4.5.1 Breuer-Laine-Piilo (BLP) measure

The first non-Markovianity measure that we utilize in our work is known

as Breuer-Laine-Piilo (BLP) measure [132] which is based on the idea of

distinguishability of two open system states under a given dynamical evolution. In this

approach, the changes in the distinguishability between two arbitrary initial states of

the open system during the dynamics are interpreted as the information flow between

the open system and its environment. In particular, if distinguishability between the

initial states decreases monotonically in time throughout the evolution, the dynamics

is said to be Markovian, since in this case information flows from the open system

to its environment in a monotonic fashion. However, if distinguishability temporarily

increases during the dynamics, then this is understood as a back-flow of information

from the environment to the open system giving rise to non-Markovian memory effects.

The distinguishability of two systems can be quantified through trace distance between

their density matrices ρ1 and ρ2 as

D(ρ1,ρ2)=
1
2
||ρ1−ρ2||1=

1
2

Tr
[
(ρ1−ρ2)

†(ρ1−ρ2)
]1/2

(4.24)

which acquires its maximum value of one, when the states ρ1 and ρ2 are orthogonal.

At this point, we should stress that since CPTP maps are contractions for the

trace distance, BLP measure vanishes for divisible maps, resulting in a memoryless

evolution. However, we also emphasize that it is possible for trace distance

to monotonically decrease for certain non-divisible maps as well. Therefore, as

is well known in the recent literature, even though widely used as a measure

for non-Markovianity on its own, BLP measure is actually a witness for the

non-divisibility of quantum dynamical maps. The BLP measure can be expressed in

discrete time as [160]

N = max
ρ1,2

∑
t,∆D>0

∆Dt = ∑
t

∆DtΘ(∆Dt), (4.25)
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(b)

(c)

(a)

Figure 4.5 : Oscillations in the reduced coin density matrices starting from |ΨS〉 in
(a) and from |ΨA〉 in (b) as a function of time for representative values of the phase

parameter φ . The trace distance of these coin states D(ρS,ρA) = |rx,A− rx,S| is shown
in (c) and the oscillating behaviour gives rise to non-zero BLP measure.

where Θ(x) denotes the Heaviside step function,

∆Dt = D(ρ1,t ,ρ2,t)−D(ρ1,t−1,ρ2,t−1). (4.26)

and the maximization is carried out over all possible initial state pairs. It has been

shown that the pair which maximizes the sum in Eq. (4.25) is a pair of orthogonal of

states [161]. In our analysis, we study the reduced system dynamics of a pair of such

initial states, namely,
∣∣ψS,A

〉
introduced before, with opposite reflection symmetry,

which will be later on revealed as the optimal initial state pair optimizing the BLP

measure.

The time evolution of ρcoin
S,A is particularly easy to visualize because the parametrization

ρcoin
t = (I +~rt ·~σ)/2 has only one non-zero component, i.e. rx,t , throughout the time
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evolution which is shown in Fig. 4.5 for representative values of the phase φ . For φ = 0,

which gives the standart quantum walk, both rS
x,t (black dotted line in Fig. 4.5(a)) and

rA
x,t =−rS

x,t (black dotted line in Fig. 4.5(b)) undergo damped oscillations with a period

of four steps as the steady-state is reached. Since the oscillations are out of phase for

these orthogonal initial states, the trace distance between such states also oscillates

in time with decreasing amplitude (black dotted line in Fig. 4.5(c)). Therefore, even

though there is a back-flow of information from the environment to the open system

in the standard walk, the damping in oscillations shows that information flow between

the two subsystems reduces and eventually vanishes in time [136]. For non-zero values

of φ , oscillations in the initial state component rA(S)
x,t arise depending on the overlap

with the bound states. When φ = π/4, the oscillations in rA
x,t die out very quickly,

whereas oscillations with period two between sublattice symmetric pair of localized

states survive for rS
x,t as shown by the blue dot-dashed line in Fig. 4.5(a)-(b). For

φ = π/2, similar oscillations exist, except they die out more slowly for rA
x,t which

has a finite overlap with the emerging reflection anti-symmetric bound state whereas

oscillations continue with higher amplitudes for rS
x,t since the reflection symmetric

bound-state becomes more localized for this value of φ . At φ = π where bound states

of both parities exist, oscillations in rx,t occur with higher amplitudes for both of the

initial states in comparison with the other shown phase values.

Having obtained the time dependence of ρcoin
S,A , we calculate the trace distance

D(ρS,ρA) = |rS,x− rA,x|, and display our findings in Fig. 4.5(c), as a function of φ . In

contrast to the standard quantum walk where the trace distance oscillations die out in

time, we find that they survive for non-zero φ , as at least one of rS,A
x,t keeps oscillating

in time. However, we should keep in mind that the value of the trace distance also

depends on the mean values rS,A
x,t about which oscillations take place. For example,

when φ = π/2 we get oscillations in D(ρ1,ρ2) with smaller amplitudes than in rS
x,t ,

which will be of importance in our later discussions.

As the persistent oscillations in trace distance play a crucial role for the evaluation

of the BLP measure in our model, the oscillation means rS,A
x,t and the oscillation

amplitudes are plotted in Fig. 4.6(a). Comparison with Fig. 4.2(c) reveals that, as

the overlap between one of the the initial states and the bound states increases, rS,A
x,t

converges to the rx of the corresponding bound state and oscillations appear. For
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(c)

(b)

t even
t odd

Figure 4.6 : (a) Long-time limit time average of the reduced coin density matrix
parameter rx for reflection symmetric (|ΨS〉) and anti-symmetric (|ΨA〉) initial states

as a function of φ . (Time average is taken over 100 steps between t = 400 and
t = 500.) Instantaneous values at even and odd time steps are shown by square and

triangle markers, respectively. (b) Trace distance oscillation amplitudes between
initial states |ΨS〉 and |ΨA〉 at different times show that they quickly converge to their

long-time limit values for all φ . (c) BLP measure N (4.25) at three different times.
The maximization is performed over all the initial coin states for quantum walks

starting at the impurity site. The linear increase in time reflects trace distance
oscillations with constant amplitude. (See (b).)

the interval φ ∈ (π/2,3π/2), rS,A
x,t becomes the same as rx in the long time limit.

The difference in rS,A
x,t approaches to zero at φ ∼ 0.6π and φ ∼ 1.4π , yielding very

small values for the trace distance together with the fact that essentially one of rS,A
x,t

oscillates about their common mean. For other values of φ , the trace distance is mainly

determined by the oscillations in rS,A
x,t . Since the period of the oscillations is two time

steps due to the sublattice symmetry, the changes in trace distance can be obtained by

subtracting the value at even time step from the neighbouring odd time step which is

plotted in Fig. 4.6 (b) at three different times. These plots clearly demonstrate that

the trace distance oscillations quickly converge to their long time limit. As the bound
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states get more localized for certain φ values and also the overlap of the initial states

with them increases, so do the amplitude of the oscillations in the trace distance.

To evaluate the BLP measure, we maximize the sum of the positive increases in trace

distance over all possible orthogonal pairs of initial states starting at the impurity

site which is shown in Fig. 4.6(c) as a function of φ for three increasing values of

time. The result reveals that the pair
∣∣ψS,A

〉
that we used for the preceeding analysis

actually maximizes the sum in the BLP measure in the long-time limit. In contrast to

the standard walk, the initial states maximizing BLP measure are equal superposition

of symmetric and anti-symmetric states and these states do not change under other

decoherence mechanisms [136]. Near φ = 0,π/2,3π/2,2π , where bound states are

weakly localized, we find that other orthogonal pairs actually maximize the BLP

measure. However these regions get smaller as we consider longer time evolutions.

The sudden drop in BLP at φ = π/2,3π/2 is related to the fact that oscillations take

place about similar mean values. More importantly, we establish that the BLP measure

of non-Markovianity increases with the emergence of bound states and reaches its

maximum value at φ = π when the number and localization of bound states assumes

their maximum, as demonstrated by the effective localization length in Fig. 4.2(b).

The relation of non-Markovianity and localization is also apparent comparing the BLP

curve with the average PR shown in Fig. 4.4, which is maximum at φ = π .

4.5.2 Rivas-Huelga-Plenio (RHP) measure

Next, we consider Rivas-Huelga-Plenio (RHP) [131] measure of non-Markovianity,

which is based on the dynamics of entanglement between the system of interest and

an ancillary system. The ancillary system A is assumed to have no dynamics of its

own and is completely isolated so that any initial entanglement between the system

and the ancilla can be affected by the open system dynamics only. In fact, similar to

the BLP measure, this measure is also a witness for the violation of the divisibility.

Considering the fact that no entanglement measure E can increase under local CPTP

maps, it is rather straightforward to observe that

E[(Λ(t,0)⊗ I)ρcoin,A]≤ E[(Λ(s,0)⊗ I)ρcoin,A] (4.27)

for all times 0 ≤ s ≤ t. Hence, any increase in the entanglement between the open

system and its ancillary can be understood as a signature of non-Markovian memory
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effects in the time evolution. In other words, while the entanglement contained

in ρcoin,A decreases monotonically for all Markovian processes, non-Markovian

behaviour in the dynamics can be captured through the temporary increase of

entanglement. In the same spirit of the BLP measure, one can then measure the degree

of non-Markovianity using the following quantity:

I(E) = max
ρCA

∑
t,∆ECA>0

∆ECA,t (4.28)

where ECA denotes the entanglement between the coin and a two level ancillary

system. For any entanglement measure ECA, the RHP measure is found by maximizing

I(E) over all initial reduced density matrices ρCA of the composite coin-ancilla

system. In order to calculate this measure, we start the evolution from composite

initial state |Φ+〉|0〉 = 1√
2
(| ←〉C| ↓〉A + | →〉C| ↑〉A)|0〉 and use concurrence [162]

as the entanglement measure. It has been shown that when concurrence is used as

entanglement measure, the optimum initial state maximizing the RHP measure is a

Bell state, for a single qubit interacting with an environment [163].

Fig. 4.7(a) shows the variation of the concurrence in time which is calculated from the

reduced coin-ancilla state after tracing out the spatial degrees of the walker during the

evolution. For the standard quantum walk, the entanglement oscillations with period

of four steps are damped and slowly die out with time. Therefore, the RHP measure

accumulates a finite amount of non-Markovianity in the long time limit which is similar

to the behaviour of the BLP measure for the standard walk. On the other hand, in

contrast to the BLP measure, the nature of bound states emerging with non-zero phase

φ plays a key role for the coin-ancilla entanglement. In the presence of reflection

symmetric or anti-symmetric bound states only, the concurrence dies out very quickly.

This is due to the fact that the symmetric and anti-symmetric states couple to different

environmental degrees of freedom. For example, with only symmetric bound states

present, the symmetric part of the coin-position state remains mostly localized in the

vicinity of the impurity site whereas the anti-symmetric part moves away from the

origin. Hence, the coin-ancilla entanglement is quickly destroyed upon tracing out

the environmental degrees of position, as the coin-ancilla state becomes an incoherent

mixture. An example of this situation is displayed in Fig. 4.7(a) for φ = π/3. It is only

when both reflection symmetric and anti-symmetric stationary states exist that some

entanglement can survive which shows non-decaying oscillations. These oscillations
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(b)

(a)

Figure 4.7 : (a) Concurrence between the coin and the ancilla qubit as a function of
time for representative values of the phase parameter φ . When bound states with both
positive and negative reflection parity exist, the concurrence shows oscillations. (See
text for the involved frequencies.) (b) Concurrence based RHP measure as a function

of φ at three different time steps showing linear increase with time for
φ ∈ (π/2,3π/2). RHP has a vanishing value when well-formed bound states of only

positive or negative reflection parity exist.

are due to the finite dimension of the bound state subspace and the frequencies of

concurrence oscillations can easily be obtained from the quasi-energy differences.

Such a case is displayed in Fig. 4.7(a) for φ = π with two dominant periods. One

period is of two steps due to the sublattice symmetric bound states with quasi-energy

difference π and another one is approximately ten steps due to the quasi-energy

difference of ∆E ≈ 0.205π between reflection symmetric and anti-symmetric states.

The latter dependence again shows the importance of bound states of both parities for

the RHP measure. The energy difference ∆E does not change much as φ changes in the

domain of four bound states unless one group of bound states is very weakly bound.

(See Fig. 4.2)

Using the time evolution of the coin-ancilla entanglement as shown in Fig. 4.7(a),

we evaluate the RHP measure for all values of the impurity phase φ . The results are
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plotted in Fig. 4.7(b) for three increasing values of the final time. The amount of

non-Markovianity measured by the RHP measure drastically depends on whether the

reflection symmetric and anti-symmetric bound states are both supported for a given

φ or not. In the interval φ ∈ (0,π/2) where only the symmetric bound states exist,

the concurrence vanishes quickly in time since the coin-ancilla Bell state can only be

supported if both symmetric and anti-symmetric bound states exist. Therefore, the

coupling of the symmetric and anti-symmetric coin states to different environmental

degrees of freedom completely destroys the Bell state of the coin-ancilla system and

results in a vanishing value for the RHP measure. A similar situation occurs in the

interval φ ∈ (3π/2,2π) where only reflection anti-symmetric bound states exist and

coin-ancilla entanglement is destroyed. In the interval φ ∈ (π/2,3π/2) where bound

states of both symmetries exist, the coin-ancilla entanglement is more robust and the

RHP measure captures the non-Markovianity increasing linearly with t in the long

time limit due to non-decaying oscillations in the coin-ancilla entanglement. In this

φ interval, the RHP displays the same behaviour as seen for the BLP measure in

Fig. 4.6(c).

4.6 Conclusion

We have provided a comprehensive and systematic analysis of non-Markovianity in

a quantum walk model with a phase impurity in relation with the phenomenon of

localization. At the heart of analysis lies the manifestation of bound states emerging

due to the existence of the phase impurity at the starting site of the walker. We have

first presented a technique to analytically obtain the bound states of the model making

use of the transfer matrix method. These bound states emerge in one or two sublattice

symmetric pairs possessing definite reflection symmetry. With this knowledge at hand,

we have explored the localization properties of the walker in the position space. To this

end, we have adopted two initial state independent quantities to measure the degree of

localization, namely, the effective localization length for all eigenstates and an average

participation ratio after time evolution over all initial states starting at the impurity

site. Our analysis clearly demonstrates that the degree of localization of the walker is

directly determined by the properties of the bound states.
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More importantly, our main contribution in this work is the unveiling of an intrinsic

relation between the emergence of bound states and the degree of non-Markovianity

of the dynamics of the walker. In order to study non-Markovian behaviour in the

time evolution of the walker, after tracing out the spatial degrees of freedom, we have

utilized two distinct measures of quantum non-Markovianity, i.e., the BLP and the

RHP measures based on the dynamics of trace distance and entanglement, respectively.

These measures help us to understand the information flow between the principal coin

system and the position system forming the environment from different perspectives.

We show that, in the case of the existence of spatial decoherence in the form of a

phase impurity, the BLP measure is optimized by the eigenstates of the coin operator

for almost all values of the phase φ . Note that when one has decoherence in terms

of broken links instead, the degree of decoherence does not change the optimal state

maximizing the BLP measure [136]. Our investigation also proves that phase impurity

amplifies the degree of non-Markovianity quantified by the BLP measure. The

underlying reason behind this behaviour is the oscillations in the state of the coin which

essentially takes place between the sublattice symmetric bound state components with

a period of two steps. Then, in general, increasing overlap between the initial and

the bound states implies a greater degree of non-Markovianity. However, also note

that when the time average of the reduced coin states corresponding to two orthogonal

initial states are close to each other, the BLP measure drops abruptly.

Next, we employed the RHP measure to analyze the degree of non-Markovianity in the

dynamics of the walker. When the coin state is maximally entangled with an ancillary

system initially, the amount of entanglement is known to oscillate in time for the

standard walk. However, our examination demonstrates that, in case of the existence of

a phase impurity, if the bound subspace supports only one type of reflection symmetric

state, the coin-ancilla entanglement vanishes after a few time steps and the RHP

measure becomes very small compared to the standard walk case. On the other

hand, when both reflection symmetric and anti-symmetric bound states are present,

the entanglement oscillations are persistent in time, leading to high values of RHP

measure. Thus, while the RHP measure is generally in good agreement with the BLP

measure when both even and odd parity bound states exist, the RHP measure fails to

reliably detect the non-Markovian behaviour when only symmetric or anti-symmetric
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bound states are present. Most importantly, as can be clearly seen from both measures,

maximum non-Markovianity is reached where our localization measures determined

by the bound states become also maximum. Relationship between non-Markovianity

and localization have been discussed in random static disorder models [133, 137]

where non-Markovianity increases with disorder. We observe more nuanced behaviour

between bound states and non-Markovianity as discussed above.

We would like to indicate that the experimental realization of the model we presented

here is quite feasible with today’s technology. The time-multiplexing quantum walk

employs laser light pulses going successively around a fiber loop where the position

space is effectively encoded in the time domain from the point of view of the detectors

[70]. The main advantage of this setup is it’s scalability and it’s long coherence times,

i.e., it only requires a fixed number of optical elements to realize the quantum walk

for relatively large number of steps. The recent developments in the setup allow

deterministic out-coupling of the light pulses from any site by utilizing electro-optic

modulators [164]. It is also possible to introduce arbitrary phases specific to any site by

programming of the electro-optic modulators accordingly, which actually would allow

the realization of the model we provided here [154, 165].

In the next chapter, we extend this quantum walk model to incorporate dynamical spin

impurities coupled to the walker at each site. We analyze effects of these impurities on

the localization and entanglement properties, as well as the effects of the walker on the

spin dynamics.
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5. QUANTUM WALK COUPLED TO A SPIN CHAIN1

In this chapter, we consider localization properties of a quantum walk coupled to a

spin chain. In Sec. 5.1, we discuss different types of localization encountered in

quantum systems and introduce a disorder-free quantum walk model. Sec. 5.2 and

Sec. 5.3 are devoted to the exploration of our model in the context of disorder-free

localization. We discuss the implications of the extensive number of local symmetries.

We introduce the quantities we use to measure localization and entanglement in Sec.

5.4. In Sec. 5.5, we provide the quasi-energy spectrum as a function of the interaction

parameter. We study the localization properties of the walker and related dynamics of

the local spins in Sec. 5.6. We demonstrate the logarithmic growth of entanglement in

time that arises due to an effective interaction between the spins induced by the walker.

The equilibration of entanglement entropy for small system sizes and details of the

matrix-product-state (MPS) calculations are also discussed in Sec. 5.7. We show the

effects of a symmetry-breaking field in Sec. 5.8. In Sec. 5.9, we conclude by making

connections to similarly behaving systems and possible extensions.

5.1 Introduction

By yielding insights into fundamental questions on thermalization of closed quantum

systems, disorder and localization have earned themselves a central place in quantum

physics. The corner stone of these topics is the phenomenon of Anderson

localization [166], which in one-dimension produces localization of all single particle

eigenstates for arbitrarily weak disorder. Due to these localized eigenstates, particles

can not move through the system and thermalization is prevented. The absence of

transport and thermalization has been found to be robust to interactions [167–171].

This many-body localization (MBL), which occurs at finite temperature in the presence

of sufficiently strong disorder and interactions, is closely related to the subject of

1This chapter is based on the paper Danacı, B., Yalçınkaya, I., Çakmak, B., Karpat, G., Kelly, S.
P., and Subaşı, A. L. (2021). Disorder-free localization in quantum walks. Physical Review A, 103(2),
022416.
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ergodicity-breaking due to the impossibility of thermalization for MBL systems. In

fact, the presence of a MBL phase serves as an example of the violation of the

eigenstate thermalization hypothesis [172]. Disentangled quantum liquids provide

another example of non-thermalizing localization where a light species can localize

with low entropy due to the coupling to a system of heavy particles [173, 174]. On the

other hand, the manifestation of disorder-free localization (DFL) in quantum systems

has been demonstrated more recently, where the system generates its own effective

disorder dynamically in the absence of any external randomness [175]. Another

example of DFL has been observed in a translationally invariant Ising-Kondo Lattice

model, where Anderson localization occurs due to the conserved moments [176].

In this chapter we study DFL in a quantum walk model. For the particular quantum

walk we consider a discrete-time walker coupled to on-site spin-half systems on

a one-dimensional lattice such that the presence of the walker on a specific site

coherently rotates the corresponding spin. Our examination of the considered system

involves two parts. First, we consider the walker and investigate its spreading dynamics

as it interacts with the spins. For weak coupling the probability distribution is only

partially localized around the origin and still has ballistic tails spreading out linearly

in time. As the coupling gets stronger, the walker becomes completely localized with

no ballistic tails in the time evolution. This dynamical localization appears without

breaking any translational or temporal symmetries.

In this sense, our model provides a simple manifestation of interaction-induced

(disorder-free) localization [175]. We then turn our attention to the spin system and

study its relaxation and entanglement dynamics. Similar to MBL, the local integrals of

motion on the spin chain decohere and entangle due to emergent interactions between

them. When the walker is localized, the emergent interaction decays exponentially

and leads to sublinear growth in entanglement mimicking the effect in MBL systems.

Interestingly, for our simulations at intermediate time scales, entanglement growth

remains slow also in the seemingly delocalized regime due to the suppression of the

ballistic tails and the low coupling.
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5.2 Quantum Walk Interacting with On-site Local Spins

The discrete-time quantum walk was discussed in Sec. 4.2. In this chapter, we turn

our attention to a quantum walker interacting with a chain of N spins which are

permanently localized at the lattice sites and not directly coupled with each other.

We denote the state of a single spin at site n by |sn〉 where sn will be either {0,1}

or {+,−} referring to the eigenstates of Ẑ or X̂ , respectively. The total Hilbert space

is Hc ⊗ Hp ⊗ Hs, and has size 2×N× 2N which scales exponentially in N. The

spins’ subspaceHs is spanned by {|s〉} ≡ {|s1s2 . . .sN〉} where s can have 2N possible

values corresponding to different spin configurations. We will employ the notation sZ

and sX to refer to eigenbasis of Ẑ and X̂ , respectively. The walker interacts with the

spins such that its presence on any site n induces a rotation on the corresponding spin

state |sn〉 by an angle φ at each step, as shown in Fig. 5.1. Without loss of generality,

we will consider rotations around the x-axis throughout the paper. The site dependent

interaction operator in the whole Hilbert space of the system can accordingly be written

as

M̂ = ∑
n

Î2⊗|n〉〈n|⊗ exp
(
−iφ X̂n

)
. (5.1)

where φ is the rotation angle and the operator

X̂n = Î⊗(n−1)
2 ⊗ X̂⊗ Î⊗(N−n)

2 (5.2)

acts on the spin at the nth site. Thus, we introduce the single step operator to involve

walker-spin interaction as ŴM = T̂ĈM̂ where both T̂ and Ĉ are now naturally extended

with Î2N for consistency. Like the coin-state dependent translation operator entangling

the coin and position degrees of freedom [177, 178], the position-state dependent spin

interaction operator entangles the walker and spins as well. Therefore, the total state

of the system at time t,

|Ψt〉= ∑
c,n,s

ac,n,s(t)|c,n,s〉 , (5.3)

is a superposition of both coin, position and spin state degrees of freedom.

In general, even after starting with a product state at t = 0, it is impossible to factorize

any degree of freedom completely at later times. It is worthy to note that the model

we consider here is simpler in terms of its construction compared to the other similar
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Figure 5.1 : Schematic representation of the first 3 steps of the quantum walk model
employed in this chapter. The quantum walker (blue-dark balls) interacts with the

spin chain (gray-light balls) in each step such that the spin rotates by an angle φ when
the walker is on that site and has no dynamics otherwise. The starting point of the

walk is indicated by 0 and a balanced walk is depicted.

models since we consider a one-dimensional position space and the spins have no

direct action on the walker [179–181]. The relationship we introduce with Eq. (5.1)

is analogous to that of the coin and position degrees of freedom in the conventional

quantum walk. Here, we apply a rotation to the local spins depending on the walker’s

position. Unlike spin-spin interactions such as spin exchange, this interaction does not

depend on the coin degree of freedom.

5.3 Disorder Free Localization

In the quantum walk ŴM, the local spins have N conserved quantities as can be seen

by noting that the step operator

ŴM = ∑
c,n
|c〉〈c|e−iθ X̂ ⊗|n+(−1)c〉〈n|⊗ e−iφ X̂n (5.4)
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is invariant under spin flips, i.e., [X̂n,ŴM] = 0 for all n, where we extend X̂n→ Î2N⊗ X̂n,

yielding N conserved quantities in total. These extensive number of conserved local

quantities in the model act as hidden disorder and the quantum walker evolving with

ŴM localizes dynamically similar to other DFL mechanisms [175]. This is clearly seen

when looking at the simultaneous eigenstates of both X̂n and ŴM which are formed

within the subspace spanned by {|c,n,sX〉}with sX fixed. This basis block diagonalizes

ŴM such that each 2N×2N block is labeled by one of 2N possible spin configurations

sX, which can be written as

〈s′X|ŴM|sX〉=

{
ŴsX , if sX = s′X
0, otherwise

. (5.5)

The quantum walk ŴM can therefore be viewed as a superposition of walkers evolving

in a set of disordered landscapes under ŴsX = T̂ĈD̂sX with the disorder operator D̂sX ≡

∑n Î2⊗|n〉〈n|eiφsn and sn are the elements of the set sX
2. Therefore, for a single spin

configuration sX, the state of the quantum walk at time t can be written in terms of the

eigenstates of ŴsX such as

|Ψt〉=
2N

∑
m

am,sX(t)|ψm,sX〉⊗ |sX〉, (5.6)

where |ψm,sX〉 is the mth eigenstate with amplitude am,sX(t). For example, the two

completely X̂-polarized spin configurations, where all sn are either + or −, yield

the standard quantum walk with all of its eigenstates |ψm,sX〉 extended [44]. On the

other hand, the existence of a single spin-flip disorder leads some localized eigenstates

|ψm,sX〉 around this impurity [141, 142]. In general, when the distribution of sn are

disordered, the eigenstates can become localized [166]. For the dynamics to be

localized, the delocalized eigenstates should not effectively contribute to the dynamics,

which depends on the choice of the initial state.

We now elaborate on the calculation of the localization dynamics and its connection

with the initial state. We consider local spin initial states that are polarized in Ẑ, e.g.

sZ = (00 . . .0), which is an equal weight superposition of all |sX〉 eigenstates. Thus, the

2Even though the diagonalization problem of ŴM can be broken down to those of ŴsX , the number
of the small size problems grows exponentially with the system size (∼ 2N) in general. We note that
the one-dimensional geometry together with local couplings allows simulations of large system sizes by
employing an MPS ansatz where we represent the Hilbert space with a six dimensional local basis. (See
Sec. 5.7 for details.)

65



evolution occurs independently in all spin sectors {sX} so that

|Ψt〉= Ŵ t
M|Ψ0〉=

1
2N/2 ∑

sX

{
Ŵ t

sX
|ψ0〉⊗ |sX〉

}
. (5.7)

Noting that the projection operator P̂n = I2⊗ |n〉〈n| ⊗ I2N does not mix the different

spin states, the probability distribution is equivalently given by a disorder average of

the disordered walker ŴsX as

Pn(t) =
1

2N ∑
c,sX

∣∣〈c,n|W t
sX
|ψ0〉

∣∣2 . (5.8)

The probability Pn(t) becomes an average over the binary distribution of local phases

e±iφ . Hence, if walks under ŴsX are localized on average, the dynamics will be too. We

obtain the probability distribution of the quantum walker by employing a numerically

exact MPS ansatz which evaluates Eq. (5.6) by truncating the state for a given precision

in all spin configurations (see Sec. 5.7 for details). Performing the averaging in

Eq.(5.8) for the walker through the total quantum evolution is technically equivalent

to the proposition by Paredes et al. [182]. In that context simulating a quantum system

with classical random variables is accomplished by exploiting quantum parallelism

using an auxiliary quantum system. The auxiliary system which corresponds to the

local spins in our model does not have self-dynamics.

Having shown that the computational complexity of numerically calculating Pn(t)

for the unitary ŴM can be reduced to that of ŴsX , we also obtain the walker’s

probability distribution by random sampling via Eq. (5.8). Statistically, the finite

number of random spin configuration samples are most likely to be chosen among the

vicinity of zero total X-polarization. The agreement between our sampling and MPS

results confirms that those configurations are the ones that contribute to the dynamics

significantly as we present in Sec. 5.6.

Having reduced the problem to that of a disordered walker, we emphasize that

quantum walks are known to exhibit Anderson localization in the presence of

position-dependent static disorder (time-independent), which has been demonstrated

analytically [139, 140, 183], numerically [184, 185], and experimentally [154, 186].

We show that when φ is sufficiently large, similar to one-dimensional Hamiltonian

models with disorder the probability distribution around the origin stays exponentially

localized showing the striking signature of Anderson localization [166]. For finite
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system sizes, the transition between spreading and localized regimes has also been

shown [154]. Finally, we note that the parameter φ in the unitary evolution related

to disorder in our model yields dynamical localization, but should not be directly

associated with the random potential of Hamiltonian models.

5.4 Figures of Merit

To quantify the localization of the quantum walker, we will employ two measures

derived from the probability distribution of the quantum walker, namely, the variance

σ
2
t = ∑

n
n2Pn(t) (5.9)

and the normalized Inverse Participation Ratio

ÎPR =

(
N

N

∑
n=1

P2
n

)−1

. (5.10)

The variance of the probability distribution is a well-known measure for classifying

the spreading rate of the quantum walker. While a ballistic spread as in the standard

quantum walk case gives a quadratic growth in the variance
(
σ2

t ∼ t2), a classical

random walk is diffusive with a variance that increases linearly
(
σ2

t ∼ t
)

with respect

to the step number. Apart from these, a localized probability distribution yields either

a constant or a fluctuating variance which has no overall increase in time.

Similar to the participation ratio described in Sec. 4.4 (see Eq. (4.23)), the inverse

participation ratio, estimates the average number of sites where the quantum walker is

spread over uniformly. We employ the inverse participation ratio which is normalized

over the size of the lattice N as given in Eq. 5.10. Therefore, ÎPR→ 1 if the walker is

spread over the position space uniformly and ÎPR→ 0 if the walker is localized over a

single site, as N→ ∞.

After we discuss the localization properties of the quantum walker, we will turn our

attention to the spin chain itself and examine the entanglement entropy between its

bipartite subdivisions for investigating further properties of DFL. Let A and B represent

subsystems forming the two halves of the total system. 3 The reduced density matrix of

3In addition to the local spins found in each partition, we split the position and coin degrees of
freedom of the walker to encompass the sites corresponding to partitions A and B, separately. Therefore,
we also consider a vacuum state representing the absence of the walker at the given partition (please also
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system A is obtained by tracing over system B as ρA(t) = trB |Ψt〉〈Ψt | where |Ψt〉 is the

total state of (A+B) given in Eq. (5.6). Since |Ψt〉 is a pure state by assumption, we can

employ the von Neumann entropy S(ρA) =− tr [ρA logρA] to measure the entanglement

between system A and B. Calculation of the von Neumann entropy as a function

of t and walker-spin interaction parameter φ is a difficult problem to handle due to

large Hilbert space in question. Nevertheless, MPS ansatz provides an easier way of

calculation as we discuss in Sec. 5.7.

5.5 Energy Spectrum

We start by discussing the quasi-energy spectrum of the step operator ŴM (the

eigenvalues of Ĥeff) as a function of φ as shown in Fig. 5.2 for a system size of N = 18.

The surface plot has quasi-energy E on the vertical axis and each eigenstate is colored

with its IPR value. At φ = 0 the system has a 218-fold degenerate disorder free quantum

walk spectrum consisting of two bands. The bands are separated by two band gaps with

width 2θ = π/2 and all states are delocalized for the quantum walker indicated by the

light color map. As the coupling is turned on, localized states indicated by darker

colors appear first at the edges of the two bands whereas delocalized states are mostly

in the middle of the bands. At φ = π/4 band gaps are closed and almost all eigenstates

are localized for φ > π/4. One cannot directly identify a mobility edge due to the

fact that quasi-energies from different spin sectors get also shifted depending on the φ

value. For example, the sn =− and + (for all n) spin sectors always have delocalized

states, however their quasi-energies are shifted by ±φ with respect to the standard

walk spectrum causing the band gap to close at φ = θ = π/4. These shifts explain

delocalized states (indicated by light colors) in the spectrum seen for φ > π/4 and

are also the cause of the upward and downward moving branches for localized states.

Fig. 5.2 therefore visualizes the single-particle localization as it appears in combination

from the different spin sectors sX. As discussed in Sec. 5.3, the localized eigenstates are

responsible for the emergent localization which is presented in the following section.

see the local bases for the MPS representation in the Sec. 5.7). The Hilbert space of a partition consists
of the tensor product of all the spin states in that partition and all the states of the walker in that partition
including its vacuum state. For N = NA +NB, the number of degrees of freedom in partition A is given
by (2NA +1)2NA . If the walker state is also traced out, then the spin partition has 2NA states.
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Figure 5.2 : Quasi-energy E spectrum and the inverse participation ratio (ÎPR) of the
corresponding eigenstates with respect to the interaction parameter φ for the quantum
walker stepping with ŴM. For a given E, the inverse participation values are averaged

over degenerate cases and normalized by the number of spins N = 18. After the
rotation angle φ = π/4, the band gaps close and the quasi-energy eigenstates

become localized.

5.6 Localization, Entanglement and Decoherence

In this section, we consider the dynamical properties of the quantum walker which is

initially localized at n= 0. The initial spin state is chosen to be a product of Ẑ-polarized

local spins |sZ〉 such that

|Ψ0〉= |χ0〉⊗ |n = 0〉⊗ |0〉⊗N (5.11)

with the coin state |χ0〉 = 2−1/2 (|0〉+ |1〉) yielding a symmetric distribution around

the origin as mentioned in Sec. 4.4. The initial spin state |sZ〉 ≡ |0〉⊗N is translationally

invariant. This choice does not restrict the applicability of our results for any |sZ〉 as

discussed in Sec. 5.3.

Here we present the results calculated with the random sampling method mentioned

in Sec. 5.3. We find that an average over a few thousand samples are in perfect

agreement with MPS calculation results, which we performed up to t = 100. With

4000 sX samples, the quantum walker’s probability distribution in position space after

t = 400 time steps is shown in Fig. 5.3(a) for increasing values of the interaction
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IPR

(a) (b)

(c) (d)

Figure 5.3 : Probability distribution of the walk in the position space after 400 steps
(a) and its variance in position space as a function of step number (b), for the initial

state |Ψ0〉. Inverse participation ratio (IPR) (c) and variance (d) are shown as a
function of the spin rotation angle φ , at different time steps. IPR is normalized by the

lattice size N = 801. The walker is exponentially localized for φ > π/4.

parameter φ . The disorder free standard quantum walk (φ = 0) displays ballistic

peaks and the variance of the probability distribution increases as σ2 ∼ t2 which

gives a slope of two on the log-log plot shown in Fig. 5.3(b). As the coupling to

the spins is turned on (φ 6= 0), the quantum walker remains partially localized near the

n = 0 with less pronounced side peaks. Note that the interference effects leading to

oscillations in the probability of the standard walk are wiped out for φ > 0 as seen in

Fig. 5.3(a). This is due to decoherence effects induced by the spin environment. For

φ = π/8, the spread of the ballistic tails decreases as can be seen from the reduced

slope of σ2. Furthermore, at the critical value φ = π/4, the tails become completely

suppressed and σ2 displays a near diffusive (σ2 ∼ t) behavior. The shaded triangle

in Fig. 5.3(b) highlights the range between the ballistic spreading and the diffusive

limit with its upper and lower edges, respectively. The walker remains exponentially

localized for φ > π/4 with a localization length of λ ∼ 1.6 which we calculate by

fitting exp(−2|n|/λ ) to the probability distribution Pn. Note that the localization length
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is on the order of the lattice spacing. In this regime, the spread of the quantum walker

is sub-diffusive and the variance approaches a constant value as t increases.

The change in the probability distribution as a function of φ shows the crossover from

ballistic spreading to a complete localization in our disorder free model. Fig. 5.3(c)

and Fig. 5.3(d) show the inverse participation ratio and the variance as a function of

φ for different step numbers, respectively. These plots indicate that regardless of how

many steps were taken, spreading of quantum walker is small and it remains constant

for φ > π/4. The gradual decrease in IPR and σ2 as φ goes from 0 to π/4 results from

the suppression of the side peaks and their decreasing spreading rate, respectively.

The step operator ŴM creates entanglement between the position, coin, and spin

degrees of freedom which can be quantified by the von Neumann entropy of

subsystems as we mentioned in Sec. 5.4. We calculate this entanglement entropy S

of one parition by spatially dividing the degrees of freedom in half. This can easily be

accessed via the singular values in the MPS simulations (see Sec. 5.7) and is plotted

as a function of time in Fig. 5.4(a) for different values of the coupling φ . Even though

the growth is slower for partially localized cases (φ < π/4), the entanglement shows

sublinear growth starting with the second decade of the time evolution for all non-zero

values of φ . (For the standard quantum walk at φ = 0 the entanglement saturates at

log2 2 = 1 (horizontal blue line) with the initial state spreading equally into the left and

rights half of the system.) The sublinear growth happens faster with increasing φ as

seen in Fig. 5.4(b) for three different times and S does not change significantly after

φ ≥ π/4 once the system is completely localized. We emphasize that the behavior of S

can be observed in other localized systems such as MBL and DFL. Here, the sublinear

growth is also related to the walker’s Hilbert space being small and the generation of

entanglement in the spin chain has to occur via interactions with the small Hilbert space

of the walker. The long-time behavior of S is therefore similar for all φ even when the

walker is partially localized for φ < π/4. We present a more detailed analysis of the

entanglement spread on the lattice as a function of time in Sec. 5.7.

Finally, we consider the spin sub-system results for which MPS calculations are again

required. The X̂n expectation values of local spins remain zero throughout the evolution

as they constitute the conserved quantities in the model. The y-polarization also

vanishes for the initial state |ψ0〉 since the spins are polarized in z-direction. During
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Figure 5.4 : Entanglement entropy between two halves of the chain as a function of
time (a) and as a function of the angle φ at different time steps (b). Spin expectations

along z- (c) and y-axes (d).

the evolution, the spin expectation values decohere because of the interaction with the

walker. Therefore, the spatial localization in 〈Ẑn〉 appears with a similar structure to

that of the walker and is shown in Fig. 5.4(c) at t = 100. The expectation values 〈Ŷn〉

in Fig. 5.4(d) similarly show the spreading of the side peaks for φ = π/8 and the spin

textures remain localized for φ ≥ π/4. We note that differently from the localization of

the walker’s probability distribution, the spin textures show a dependence on the initial

coin state |χ0〉. An imbalance in the weights of |sn =±〉 states changes the symmetric

〈Ẑn〉 distribution and the phase difference effects the 〈Ŷn〉 distribution.
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5.7 Matrix Product States Representation of Quantum Walk

As explained in chapter 2, the general form of a matrix product state can be written

as [10]

|Ψ〉= ∑
q

Tr [Aq1 . . .AqN ] |q〉 (5.12)

where qn are the local degrees of freedom and |q〉 ≡ |q1, . . . ,qN〉 form a basis for the

Hilbert space.

In contrast to the conventional MPS algorithms where a given Hamiltonian is

exponentiated to obtain the evolution operator, the unitary evolution operator is defined

in the discrete-time quantum walk. Therefore, we do not need a Suzuki-Trotter

expansion for numerical MPS simulations. The implementation below is numerically

exact for the precision determined by the truncation tolerance.

For a single spinless particle moving on a lattice, a straightforward MPS representation

is to associate a basis composed of two states for each lattice site. These states

correspond to the vacuum and particle (being present on the site) states. (Note that this

is not the most efficient representation because the MPS ansatz spans a 2N dimensional

physical Hilbert space including the no particle vacuum state as well as many-particle

states with a maximum of one particle per site.) For a quantum walk, the local basis

can be extended to include the coin degrees of freedom such that

|qn = 0〉 ↔ |vacuum,n〉,

|qn = 1〉 ↔ |c = 0,n〉, (5.13)

|qn = 2〉 ↔ |c = 1,n〉

forming a three-dimensional basis and |c,n〉 are walker states defined in Sec. 4.2.

The unitary walk operator Ŵ consists of the successive application of the coin Ĉ

and shift T̂ operators. With the above identification of the local basis, Ĉ can be

implemented as

I1⊕ exp(−iθX)↔ Ĉ (5.14)

where the matrix representation on the left is contracted with the physical index qn of

the local tensors at each site n.
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The conditional shift operator T̂ can be broken into the left T̂L =

∑n |c = 1,n〉〈c = 1,n+1| and the right T̂R = ∑n |c = 0,n+1〉〈c = 0,n| shift operators,

which can be implemented by the two-site application of the following matrices

1 0 0
0 0 0
0 0 1


n

⊗

1 0 0
0 1 0
0 0 1


n+1

+

0 1 0
0 0 0
0 0 0


n

⊗

0 0 0
1 0 0
0 0 0


n+1

↔ T̂R (5.15)

1 0 0
0 1 0
0 0 1


n−1

⊗

1 0 0
0 1 0
0 0 0


n

+

0 0 0
0 0 0
1 0 0


n−1

⊗

0 0 1
0 0 0
0 0 0


n

↔ T̂L (5.16)

which are contracted with physical indices of sites n and n + 1. Since T̂L and T̂R

act on different coin states, they commute with each other. Therefore, the order of

their application does not matter. However, for both of them, the even- and odd-bond

hopping terms do not commute with each other. To avoid commutation errors, when

sweeping over consecutive lattice bonds from left to right, T̂L can be applied. Similarly,

when the sweep direction is switched T̂R can be applied from right to left. 4

The local spins can be included by extending the local basis as a direct product with

that of the local spin |sn〉 giving a 3× 2 = 6 dimensional local Hilbert space. (For a

single walker, the bond arrangement is such that non-zero amplitudes only appear for

states with qn = 0 for all n except one.) Finally, the matrix-product-operator for the

interaction M̂ can be implemented with the following matrix

[11⊕02]⊗ I2 +[01⊕ I2]⊗ exp(−iφX)↔ M̂, (5.17)

which is again to be applied at every site n to the tensor Aqnsn
bn−1,bn

with bond indices bn−1

and bn to the left and right, respectively. In fact, the combination ĈM̂ can be performed

together. Each step of the time evolution ŴM = T̂ĈM̂ is composed of consecutive

application of the on-site coin and interaction operators and a single sweep of the right

and left translation operators.

To compute the spin expectations, we extend the Pauli operators to include the coin

space. For instance, Pauli X operator, X̂ , is replaced with

[I1⊕ I2]⊗X↔ X̂n, (5.18)
4Note that in Suzuki-Trotter expansion, the error due to the non-commuting terms in the Hamiltonian

scales as a power of the time-step, where the power is determined by the order of expansion (See
Sec. 2.4). Therefore, time-step should be small to reduce the error, which increases simulation time in
general. Here, the size of the time-step does not have an effect on the error.
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Sn

Figure 5.5 : Entanglement entropy between bi-partite partitions of the chain at the
nth site, Sn, as a function of time.

If the state is in canonical form with respect to site n, then computing the expectation

〈X̂n〉 reduces to the contraction of the above operator with the local tensor and its

Hermitian conjugate, i.e.,

〈X̂n〉= ∑
qnsn,q′ns′n,
bn,bn−1

(
Aq′ns′n

bn−1,bn

)∗
[[I1⊕ I2]⊗X]q′ns′n,qnsn

Aqnsn
bn−1,bn

. (5.19)

We perform a numerically exact time evolution employing the above ansatz up to t =

100 time steps. In our simulations, we choose the truncation tolerance as δ = 10−15.

The maximum bond dimension at the end of the simulations becomes D ∼ 900 for

the bond in the middle of the chain where the quantum walker starts at t = 0. As

seen from Eq. (2.3), bond dimension and entanglement entropy are directly related. In

Fig. 5.5, we show how the von Neuman entropy between partitions separated at the nth

site, Sn, changes along the chain as a function of time. Since the local spins do not

interact directly, the spread of the entanglement entropy is mediated by the walker. For

φ < π/4, ballistic spread of the walker causes spread of the entanglement with constant

speed as well, whereas partial localization of the walker yields a slower entanglement

spread near the origin. As the interaction strength φ increases further, ballistic spread
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Figure 5.6 : (a) The logarithmic, A, and the linear, B, contributions to the growth of
the entanglement entropy, S (see Eq.(5.20)). (b) Entanglement entropy between

bi-partite partitions of the chain at the nth site, Sn, as a function of the angle φ (b) after
100 time steps.

of the entanglement is suppressed and the entanglement entropy grows sub-linearly in

time. For a quantitative analysis, we tested a fitting function for time dependence of

S(t) to be a combination of logarithmic and linear functions of time, so that

S(t) = A log t +Bt. (5.20)

In Fig. 5.6 (a), we show how the coefficients A and B change with the interaction

strength, φ . The contribution of the logarithmic growth, A, increases with φ , whereas

the linear contribution, B, decreases. Therefore, as the walker gets more localized,

the sub-linear growth of the entanglement prevails. In Fig. 5.6 (b), we show how Sn

varies with φ for different partitionings of the spin chain at t = 100. The result for

the partitioning at the origin (site n = 0) is shown in Fig. 5.4(b), as well. When the

chain is split in the middle, Sn monotonically increases with increasing φ . For n 6= 0,

Sn depends on the localization of the quantum walker. Near the origin, Sn is generally

higher in the regime where the walker is partially localized, whereas it converges to its

minimum value when the walker is exponentially localized.

We also note that for finite system calculations the entanglement entropy saturates at

values that scale with the size of the system which implies a volume law for the model.

The saturation of S(t) is shown in Fig. 5.7(a) for different values of φ and a system

with N = 15. For this system size, the saturation takes t ∼ 102−103 depending on the

localization of the walker. The strongly localized (φ > π/4) systems saturate faster
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Figure 5.7 : (a) Entanglement entropy as a function of time for a lattice with N = 15
for different values of φ . (Partitioning of the system is done in half, i.e. 7+8 = 15,

and only spins on the left are traced out for these calculations.) For φ > π/4, S grows
as ∼ log t in the second decade of the evolution before the systems eventually

thermalize. (b) Entanglement entropy per site S/N as a function of system size N
after thermalization at t = 105 approaches a constant indicating a volume law.

than partially localized (φ < π/4) ones but the saturation value is determined by the

system size. The scaling of the long-time value of S with N is shown in Fig. 5.7(b)

where the entropy per sites converges to a constant value.

5.8 Effect of a Symmetry Breaking Field

Disorder-free localization is strongly related to the extensive number of conserved

quantities [175]. In this section, we observe the effect of a symmetry breaking field,

which we take as a uniform field along the z-direction. We apply a field operator

F = ∏
n

e−iφ ′Ẑn (5.21)

at every time step and consider an evolution of 40 steps from the same initial state as

in the main text. We concentrate on two interaction angles. At φ = π/8 (Fig. 5.8

upper panel), localization is partial and the tails at the two ends persist. When a

small field such as φ ′ = π/100 is present, the localization around the initial state

decreases substantially, but the tails are not affected too much (Fig. 5.8a). As we

increase φ ′ further, the distribution becomes more uniform around the initial site and

it drops around the tails, as well. Due to the diminishing of the localization with the

uniform field, for the first 30 time steps variance is higher compared to the φ ′ = 0 case

and it is approximately the same for both field angles. However, for φ ′ = 2π/100,
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Figure 5.8 : Effect of the symmetry breaking field in Eq. (5.21) for the interaction
angles φ = π/8 (upper panel) and φ = 3π/8 (lower panel). (a) and (d) show the

probability distribution. Time behavior of the variance in position space is shown in
(b) and (e). Time behavior of the entanglement entropy is shown in (c) and (f).

the probabilities around the tails also drop yielding a slower spread and, therefore,

a lower variance (Fig. 5.8b) which is similar to a diffusive behavior. We now look

at an angle for which the walker is completely localized (Fig. 5.8 lower panel). At

φ = π/8, the effect of the symmetry breaking field on the localization is lessened

compared to the previous example. Though localization is diminished, it still persists

for both field angles (Fig. 5.8d). As the field strength increases, time behavior of the

variance becomes similar to classical diffusion, where variance increases linearly in

time (Fig. 5.8e). For both interaction angles, the symmetry breaking field does not

change the sublinear growth of the entanglement entropy (Fig. 5.8(c) and (f)).

5.9 Discussion and Conclusion

We have studied disorder-free localization of a quantum walker coupled to local spins

on a one-dimensional lattice. Similar to models of quantum walks on graphs coupled

to spins living on nodes [179] or links [181], the local spins in our model live on

lattice sites and do not act on the coin. The Hamiltonian and the initial spin state

we have chosen are translationally invariant, yet localization occurs merely due to the

interactions between the walker and the local spins. Therefore, our model exhibits
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a discrete-time version of the DFL introduced recently [175] in a periodically driven

system. One of the advantages of our model is the presence of the extensive number

of conserved moments which provides a computationally easier method to analyze the

spread of the walk. Due to the conserved quantities, the evolution problem reduces

to that of a disordered walk. Since we chose the initial state to be a superposition of

all possible spin disorder configurations, the spatial probability of the walker can be

obtained through an ensemble averaging over all possible spin configurations.

We have observed two regimes of localization depending on the strength of the

interaction between the walker and the local spins. For weak coupling, similar

to the mobility edges found in three-dimensional Anderson localization [187] and

many-body localized systems under weak disorder [169], the localized states are

concentrated near the band edges of the spectrum. As a result, the walker gets partially

localized around the origin and the ballistic tails are suppressed. The oscillations in

the probability distribution become smooth due to the decoherence effects with the

spin environment. As the interaction strength increases, the band gap gets smaller

and the eigenstates become more localized. As the coupling increases, the band gap

closes and the ballistic tails disappear with the walker being completely localized.

The localization length is reduced down to the order of the lattice spacing and does

not vary appreciably as a function of the interaction strength above the critical value.

General wisdom is that one-dimensional systems exhibit Anderson localization under

continuous-time evolution for arbitrarily small disorder. Exceptional cases usually

possess correlated disorder or long-range interactions. The emergent disorder in

our model is uncorrelated disorder. The motion of the quantum walker and the

interaction between the walker and the local spins are short ranged. Therefore, with

our intermediate time and corresponding system size simulations we cannot rule out

the possibility of finite size effects. On the other hand, in contrast to the Hamiltonian

models, the discrete-time dynamics here is given by a unitary step operator. There are

also suggested models of many-body localization where stroboscopic dynamics such

as driving by an external light may cause delocalization [188–191].

We think that the apparent transition around φ = π/4 in our model can also be related

to the natural length scale in the model which is the lattice spacing. A possible

explanation of the results for φ < π/4 could be that the Anderson localization length
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is larger or comparable to our system size, thus the finite size effect mentioned above

would be relevant. For φ > π/4, the conclusion is that the Anderson localization length

becomes comparable to the lattice spacing. Therefore, the change of the localization

length with φ could be the reason behind the different behaviour. This is in agreement

with the sharp features in the quasi-energy spectrum in the sense that for φ > π/4 there

is no band gap and we find localized states for almost all quasi-energy values.

We have tested robustness of the quantum walker’s localization by applying uniform

field to the local spins. When the field is along x-direction, the spatial probability

distribution is not affected, since the local integrals of motion are conserved. However,

when we add a symmetry breaking field, i.e. along z-direction, the results resemble

those of a classical random walk (see Sec. 5.8). The persistence of localization and the

sublinear growth of entanglement entropy is likely to be related to the phenomenon of

prethermalization explored in integrable models [192–196].

We have introduced a straightforward implementation of the MPS ansatz on the

lattice which is essential to study the spin dynamics and the entanglement entropy

of different subdivisions of the spin chain. The discrete-time unitary evolution can be

implemented without any formal approximations. Our results show that the growth of

the entanglement entropy depends on the interaction strength. In the intermediate time

scale of our simulations, we observed that for small interaction strengths, the partial

localization of the walker yields linear spread of the entanglement towards edges

combined with sublinear spread around the origin. As the interaction gets stronger,

linear spread is suppressed while the sublinear spread prevails and causes the growth

rate of the entanglement to increase. For strong coupling no ballitic spread is observed

and the growth rate saturates when the localization length becomes comparable to the

lattice spacing. The sublinear suppression of the entanglement growth is similar to

some of the DFL and MBL systems previously studied in the literature.

Our work connects quantum walk models as examples of periodically driven systems to

the recent studies on disorder-free localizationand related areas. The use of MPS and

tensor network states in general can lead to further investigations of quantum walks

interacting with local degrees of freedom. A natural extension of our study would be

to consider a quantum walk on a higher dimensionsional spin environment where a

transition to classical random walk and a diffusive spread is expected. Furthermore,
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the fate of localization in two and three dimensional spin environments can be studied.

It would also be interesting to analyze the connection between localization and

non-Markovianity in similar models.

Our sampling results are experimentally feasible with current experimental technology.

The electro-optical modulators (EOMs) presented in the time-multiplexing quantum

walk scheme make it possible to introduce position-dependent random phases for the

walker [70, 154, 164, 165, 197]. EOMs affect the light pulses (walker) going through a

fiber loop in the time domain representing the position space. Therefore, appropriate

programming for EOMs may allow the realization of any binary disordered landscape

presented in our model, and the localization results could be obtained by averaging

over different realizations.
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6. CONCLUSION

In the scope of this thesis, we have developed a numerical library employing MPS

formalism to study one-dimensioal coupled cavity arrays and quantum walks with

impurities. We have shown that our MPS library is applicable to both systems. We

have also studied different aspects of these systems such as bound state formation,

dynamical localization, entanglement growth and non-Markovianity.

We have simulated photon dynamics in a coupled cavity array interacting with a

TLS in different coupling regimes. In the strong coupling regime where RWA is

applicable, the problem can be solved using exact diagonalization. In this regime,

the results we obtained from MPS simulations were in complete agreement with the

exact diagonalization results, exhibiting the very well-known exponential decay of the

TLS from its excited state and the unbounded expansion of all the emitted photons.

As the coupling strength increases RWA breaks down due to the photon cloud bounded

to the TLS. For the intermediate coupling strengths, which can be called "perturbative

coupling regime", RWA coupling regime is still applicable after a basis transformation

called polaron transformation is applied to the Hamiltonian. In this new basis the TLS

and the photonic modes in its vicinity are in an entangled state which captures most of

the interaction between the TLS and the photons in the perturbative regime. We have

shown that both the MPS simulations and RWA with polaron transformation yield the

same decay of the TLS which has a slower rate compared to the results obtained from

RWA without polaron transformation and converges to the same non-zero value. The

slow decay rate is due to the decrease in the effective coupling in the polaron basis.

The non-zero value of the excited states population in the long time limit is the sign

of the photon cloud permanently bounded to the TLS. On the other hand, when we

examined the photon profiles after the time evolution, we observed that the photon

numbers in the vicinity of the TLS are non-zero only for the results obtained from the

MPS, whereas the photon profiles obtained from RWA with and without the polaron

transform are exactly the same. This shows that the restrictions imposed by the RWA,
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i.e. elimination of the terms which project to the multiple excitation subspaces in

the Hamiltonian, causes the polaron transformation fail to capture the effect of the

bound state in the photon profile. As the coupling strength is increased beyond the

perturbative regime, the difference of the MPS results become more prominent. The

photon numbers near the TLS become higher on a broader area and the excited state’s

population converges to a slightly higher value compared to the results obtained from

RWA with polaron transformation.

Discrete-time quantum walks with different impurity models have been widely studied

in the literature [145, 147, 148, 198]. In this thesis we have studied two types of

impurity models. Firstly, we considered a discrete-time quantum walk with a phase

impurity. We mainly focused on the relationship between the bound states, dynamical

localization and non-Markovianity effects in this model. The bound states of this

walk have been obtained previously [141]. We have proposed an alternative method

employing transfer matrices. We have compared the bound state and dynamical

localization studying two quantities which are independent of the initial state; the

effective localization length averaged over all eigenstates and an average participation

ratio resulting from the time evolution for all initial state starting from the impurity site.

Both quantities increase as the phase increases and the amount of increase changes

abruptly when the number bound states jumps from two to four. This shows that the

localization and number of bound states determine the dynamical localization of the

evolved system.

In order to study non-Markovianity in this model, we have used the BLP and RHP

measures. These quantities aim to measure the information flowing back to a system

from its environment. Our analysis showed that the properties of the bound states,

play an important role in non-Markovianity. When both reflection symmetric and

anti-symmetric bound state pairs are present both measures increase with the phase

and become maximum when the effective localization length of the eigenstates is

maximum. Despite this similarity, when there is only one pair of bound states, the

non-Markovianity measures yield completely different results. In this case, the BLP

measure increases with the increasing phsae, until it abruptly drops when new bound

state pair emerges. On the other hand, the RHP measure becomes very small, when

there is only one type of bound state symmetry.
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The second quantum walk model we have studied is a quantum walk coupled to a

spin chain. We have analyzed localization of a quantum walker on a disorder-free spin

chain. Although both the Hamiltonian and the initial spin state are translationally

invariant, the interaction between the walker and local spins yields to dynamical

localization of the walker. We have used two different methods to study the spatial

probability distribution. The extensive number of conserved quantities made it possible

to take an ensamble average over a random sampling of spin configurations. We also

used an MPS algorithm for comparison and found that both methods yield the same

results. We have observed two regimes of localization depending on the interaction

strength. Below a critical interaction value, the energy spectrum is gapped and only

some of the eigenstates are localized. Therefore, the walker gets partially localized

in our intermediate time simulations. On the other hand, the band gap closes above

the critical value and the walker becomes exponentially localized. The MPS algorithm

also enabled us to study dynamics of the spin chain and the entanglement entropy.

Similar to the MBL systems and other DFL models, the entanglement entropy grows

sublinearly in time.
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