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ÖZET

Yedi bölümden oluşan bu tezde, alışılmış metrik uzayların bir genelleştirilmesi olan
rectangularM−metrik uzayda sabit çember kavramı ele alınarak bu uzayda sabit çemberlerin
mevcut olması ve yeganelik araştırılmıştır.

Birinci bölümde, tezin konusunun matematik literatüründeki yeri, kullanım ve geçtiği
süreçlerden bahsedilerek çalışılacak probleme giriş yapılmış ve ayrıcanın çalışmanın amacı
verilmiştir.

İkinci bölümde, ele alınan problemin tarihsel süreç boyunca değişimi ve gelişimi
hakkında mevcut literetüre kısaca değinilmiştir.

Üçüncü bölümde, çalışma içerisinde gerekli olacak temel kavramlara yer verilmiştir.

Dördüncü bölümde, rectangular M−metrik uzay kavramı örnekleriyle ele alınıp bu
uzayın analizsel ve topolojik özellikleriyle bazı sabit nokta teoremleri verilmiştir.

Beşinci bölümde, rectangularM−metrik uzaylarda sabit çemberin mevcut olması ve
yegane olması şartları tespit edilerek ifade edilmiştir.

Altıncı ve yedinci bölümlerde çalışmada tespit sonuçlar özetlenmiş ve ayrıca ele
alınan probleme dair muhtemel yapılabilecek çalışmalara dair önerilerden bahsedilmiştir.

Anahtar Kelimeler: metrik uzay, rectangularM−metrik uzaylar, sabit çember
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SUMMARY

In this thesis, which consists of seven chapters, the concept of fixed circle in
rectangular M−metric space, which is a generalization of usual metric spaces, is discussed
and the existence and uniqueness conditions of fixed circle theorems in this space are
investigated.

In the first chapter, the place of the subject of the thesis in the mathematics literature,
its usage and the processes it goes through are mentioned and the problem to be studied is
introduced and the purpose of the study is given.

In the second part, the current literature about the change and development of the
handled question in the historical process is briefly mentioned.

In the third chapter, the basic concepts, definitions and theorems that will be used in
the thesis are expressed

In the fourth chapter, the concept of rectangular M−metric space is discussed with
examples and some fixed point theorems are given with the analytical and topological
properties of this space

In the fifth chapter, existence and uniqueness conditions of fixed circle theorems in
rectangularM−metric spaces are given

In the sixth and seventh chapters, the findings and results obtained in the thesis are
summarized and suggestions for future studies are given.

Keywords: metric space, rectangularM−metric spaces, fixed circle
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1. GİRİŞ VE AMAÇ

Sabit nokta teorisi, başta matematik olmak üzere birçok bilim dalında çok sayıda
uygulaması olan büyüleyici bir konudur. Bu nedenle literatürde bulunan birçok çalışma ile
farklı yönlerde geliştirilmiş ve genişletilmiştir. Örneğin matematikde diferensiyel
denklemler, integral denklemleri, potansiyel teori, yaklaşım teorisi, oyun teorisi ve kontrol
sistemleri gibi alanlarda uygulanmasının yanı sıra tıpta tomografi, haberleşmede
interpolasyon, sinyal sentezleri, telekominikasyon, ve matematiksel ekonomi başta olmak
üzere, istatistik, mühendislik, esneklik teorisi, gibi farklı çalışma alanlarında da çeşitli
uygulamalarını görülmektedir.

Sabit nokta teorisinin temelinde
′′X herhangi bir küme (uzay), A ile B A ∩ B ̸= ∅ koşulunu sağlayan X in alt kümeleri(alt
uzayları) olmak üzere T : A → B dönüşümü ele alındığında T (x) = x olacak şekilde x ∈ A

nın varolması için gerekli koşullar nedir?′′ sorusu yatmaktadır. Soruda ifade edilen x ∈ A ya
T dönüşümünün sabit noktası adı verilirken soruya cevap veren gerekli koşulları ifade eden
hipotezlere sabit nokta teremi denir.

Genel olarak sabit nokta teorisi çalışmalar için üç ana kola ayırılarak bir
sınıflandırma yapılabilir. Bu ana kollar Brouwer’in 1912 yılındaki çalışmasındaki sabit
nokta teoremini temele oturtan Topolojik sabit nokta teori, Banach’ın 1922 yılındaki
çalışmasında ifade ettiği sabit nokta teoremini temele oturtan Metrik sabit nokta teori ve
Tarski’nin 1955 yılında yayınladığı çalışmasındaki sabit nokta teoremini merkeze alan
Ayrık sabit nokta teoridir.

Bu tez çalışmasında ana ekseninde Banach sabit nokta teoreminin bulunduğu ve ana
hatları bu teorem ile belirlenen Metrik sabit nokta teori alanında çalışılacaktır.Bu teorinin
kökenleri 19.yüzyılın ikinci yarısına kadar uzanırken özellikle diferasiyel denklemlere
yönelik çözümlerin varlığını ve tekliğini belirlemek için ardışık yaklaşımların
kullanılmasına dayanır. Dolayısıyla bu yöntem Cauchy, Liouville, Lipschitz, Peano,
Fredholm ve özellikle Picard gibi ünlü matematikçilerin isimleri ile ilişkilidir.

Bununla birlikte, temeldeki fikirleri, temel diferansiyel ve integral denklemlerin
kapsamının çok ötesinde geniş uygulamalar için uygun soyut bir çerçeveye yerleştirilen
Polonyalı matematikçi Stefan Banach’tır. Banach analizde yaygın olarak kullanılan tüm
uzayların ortak bir özelliği olan ”metrik tamlığının” temel rolünü farketti ve bunu teorinin
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merkezine yerleştirdi. Bundan sonra uzun yıllar boyunca metrik sabit nokta teorisindeki
çalışmalar Banach büzülme prensibinin çeşitli uzantıları ve onların çeşitli uygulamaları ile
sınırlı kaldı. Büzülme koşulunun değişmesi fikrine dayanan bu çalışmalara örnek olarak
Kannan, Chaterjea, Bionehini, Reich, Hardy-Rogers gibi yazarlarların isimleri ile anılan
sabit nokta teoremleri verilebilir.

Ayrıca Rhodes 1977 yılında yayımladığı çalışmasında mevcut olan büzülme
koşullarını ele alarak bu koşullar arasındaki ilişkileri incelemiş ve yeni büzülme koşulları
ortaya atmıştır. Günümüzde bu tarz çalışmalar yapılmaya devam etmektedir.

Bu alanda yapılan çalışmaların yoğunlaştığı bir diğer fikirde basitçe çalışılan metrik
uzay kavramının genelleştirilmesidir. 1906 yılında Frachet’in ortaya attığı metrik uzay
kavramı aradan geçen yüzyılı aşkın sürede çeşitli şekillerde genelleştirilmiştir. Bu
çalışmalara örnek olarak 1994 yılında Matthews’ın tanımladığı kısmi metrik uzay, 2000
yılında Branciori’nin tanımladığı Branciori (veya rectangular ) metrik uzay, 2007 de
Mustafa ve Sims’in tanımladığı G−metrik uzay, 2012 de Sedgi vd tanımladığı S−metrik
uzay, 2014 yılında Asadi vd tanımladığı M−metrik uzay, yine aynı yıl Shukla’nın
tanımladığı kısmi rectangular metrik uzay kavramları verilebilir. Günümüzde bu tarzda
çalışmalar yoğunlaşarak yapılmaya devam etmektedir. Kısa bir araştırma ile ismi burada
bahsedilmeyen başka metrik uzay genelleştirilmelerinin olduğu görülebilir.

Yukarıda ifade edilen bu alanda çalışmaların yoğunlaştığı fikirlerin dışında son
yıllarda çalışmaların görülüp sıklaşmaya başladığı bir temel problem daha vardır. Bu
problem ise sabit nokta teorisinin temelinde yer alan sorunun çözümü (çözüm kümesi) boş
küme, sonlu küme veya sayılabilir ya da sayılamaz sonsuz küme olabilir. Daha önce ifade
edilen çalışma alanlarında bu kümenin tek bir elemana sahip olduğu durumlara konsantre
olunmuştur. Ancak Nihal Özgür ve Nihal Taş’ın öncülük ettiği ve 2016 yılında yaptıkları
çalışma ile başlattıkları problem sabit nokta kümesinin birden fazla eleman içermesi
durumunda bu kümenin ne gibi geometrik özelliklerinin bulunduğunun araştırılmasıdır.
2016 yılı sonrasında başta Özgür ve Taş olmak üzere çeşitli bilim insanları tarafından bu
soruya çeşitli çözümler ve açılımlar getirilmiştir.

Bu tez çalışmasında metrik sabit nokta teorisi ana kolunda yer alacak şekilde
(alışılmış) metrik uzayın bir genellemesi olan rectangular(dikdörtgen)M−metrik uzaylarda
ele alınan bir kendi üzerine dönüşümünün sabit noktalarının kümesinin birden fazla eleman
ihtiva ettiği durumlarda bu noktaların geometrik özellikleri incelenecektir. Daha açıkça bu
sabit noktaların ne zaman ya da hangi koşullar altında bir çember üzerinde bulundukları ve
yahut da ne zaman veya hangi koşullar altında bir çemberin sabit kaldığı araştırılacaktır.
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2. LİTERATÜR ARAŞTIRMASI

Matematik analizin teorinin çalışmatekniklerinden etkilenmiştir. Öte yandan
kümelerin cebirsel özellikleri ilerlemeler kaydetmek için yetersizlik göstermeye
başladığından metrik uzaylara gerek duyulmuştur. Metrik uzay ifadesi ilk olarak 20.
yüzyılının hemen başında Maurice Fréchet tarafından tanıtılmıştır (Fréchet, 1906). Fréchet
20. yüzyılın aşlarında kaleme aldığı makalesinde uzaklık fonksiyonu kavramının tanımını
aşağıdaki şekilde yapmıştır.

Tanım 2.1 X ̸= ∅ bir küme olmak üzere d : X ×X → R fonksiyonu

1)Her x, y ∈ X için x = y ⇔ d(x, y) = 0 dır. (Özdeşlik)
2)Her x, y ∈ X için x ̸= y ise d(x, y) > 0 dır. (negatif olmama)
3)Her x, y ∈ X için d(x, y) = d(y, x) dir. (Simetri)
4)Her x, y, z ∈ X için d(x, y) ≤ d(x, z) + d(z, y) dir. ( Üçgen eşitsizliği)

şartlarını gerçekliyorsa d fonksiyonuna X üzerinde bir uzaklık fonksiyonu ve (X, d)

ifadesine de metrik uzay adı verilir.

Bu d ifadesine uzaklık fonksiyonu ismi yerine metrik ismini ilk kullananan bilim
insanı ünlü matematikçi Hausdorff olmuştur. Bu sayede klasik analiz alanı modernize
olmuştur yani klasikten moderne geçiş sağlanmıştır. Gerçekten de reel ve kompleks
uzaylarda iyi anlaşılmış olan bir çok ehemmiyetli özelliklerin bir başka uzaya aşınma
yöntemleri metrik ve metrik uzay kavramı ile elde edilir. Dahası topoloji alanında oldukça
soyut olan bazı kavramlar, metrik uzaylarda daha somut şekilde açıklanma fırsatı elde eder.
Maurice Fréchet ayrıca lineer metrik uzay ifadesini 1926 yılındaki gerçekleştirdiği bir
makalesinde tanımlamıştır (Fréchet, 1926). Daha sonra metrik uzayla ilgili sayısız
çalışmalar üretilmiş ve uygulama alanları incelenmiş olup bunun neticesinde metrik uzaylar
matematiğin en önemli konularından biri olmuştur.

1994’ te Matthews birbine eşit noktalar arasındaki uzaklığın sıfır olmasının
gerekmediği kısmi metrik uzay kavramını bilinen metrik uzayın bir genellemesi olarak
tanımlamıştır.

Matthews’in 1994 te verdiği tanım aşağıdaki gibidir.



4

Tanım 2.2 Boş olmayan bir X kümesi ve her x, y, z ∈ X için

1)d(x, x) = d(y, y) = d(x, y) ⇔ x = y

2)d(x, x) ≤ d(x, y)

3)d(x, y) = d(y, x)

4)d(x, y) ≤ d(x, z) + d(z, y)− d(z, z)

şartlarını gerçekleyen d : X × X → [0,∞) fonksiyonuna X üzerinde bir kısmi uzaklık
fonksiyonu ve (X, d) ifadesine de kısmi metrik uzay adı verilir.

Buna göre kısmi metrik uzaylarda ilginç olan özellik metrik uzay teorisinde olanına
aksine bir noktanın kendisine olan uzaklığın sıfır olmak zorunda olmamasıdır.
Kısmi metrik uzaya bir örnek olarak (X, d) bir metrik uzay ve

B(X) = {B(x, r) | B(x, r) = {y ∈ X | d(x, y) < r, x ∈ X, r > 0}}

olmak üzere her B(x1, r1),B(x2, r2) ∈ B(X) için

d∗(B(x1, r1), B(x2, r2)) = d(x1, x2) +max {r1, r2)}

biçiminde tanımlanan d∗ : B(X) × B(X) → [0,∞) ifadesi B(X) üzerinde bir kısmi
metriktir. Dolayısıyla (B(X), d∗) bir kısmi metrik uzaydır. (Tomar vd,2020)

2000 yılında Branciari yayımladığı çalışmasında (alışılmış) klasik metrik uzaydaki
üçgen eşitsizliği kavramını genişletilerek Branciari metrik uzay ya da rectangular
(dikdörtgen) metrik uzay ifadesini aşağıdaki şekilde tanımlamıştır.

Tanım 2.3 Boş olmayan birX kümesi ve her x, y ∈ X ile her u, v ∈X \ {x, y} , u ̸= v için

1)d(x, y) = 0 ⇔ x = y

2)d(x, y) = d(y, x)

3)d(x, y) ≤ d(x, u) + d(u, v) + d(x, y)

şartlarını gerçekleyen d : X × X → [0,∞) fonksiyonuna X üzerinde bir Branciari
(rectangular) metrik ve (X, d) ifadesine Branciari (rectangular) metrik uzay denir.

Daha sonra 2014 yılında Shukla, Branciari’nin çalışmasından esinlenerek kısmi
metrik ile rectangular metrik fikirlerini birleştirerek kısmi dikdörtgen metrik uzay ifadesini
aşağıdaki şekilde tanımlamıştır.
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Tanım 2.4 Boş olmayan birX kümesi ve her x, y,∈ X ile her u, v ∈X \{x, y} , u ̸= v için

4

1)d(x, x) = d(y, y) = d(x, y) ⇔ x = y

2)d(x, x) ≤ d(x, y)

3)d(x, y) = d(y, x)

4)d(x, y) ≤ d(x, u) + d(u, v) + d(v, y)− d(u, u)− d(v, v)

şartlarını gerçekleyen d : X ×X → [0,∞) fonksiyonuna X üzerinde bir kısmi rectangular
metrik ve (X, d) ifadesine kısmi rectangular metrik uzay adı verilir.

Yine aynı yıl yani 2014 yılında Asadi vd yaptıkları çalışma ile kısmi metrik uzay kavramını
genişleterek adınaM−metrik uzay dedikleri kavramı aşağıdaki gibi tanımlar.

Tanım 2.5 Boş olmayan bir X kümesi ve her x, y, z ∈ X ve için

mx,y := min
{
m(x, x),m(y, y)

}
ve Mx,y := max

{
m(x, x),mr(y, y)

}
olmak üzere

1)m(x, x) = my,y = mx,y ⇔ x = y

2)mx,y ≤ m(x, y)

3)m(x, y) = m(y, x)

4)(m(x, y)−mx,y) ≤ (m(x, z)−mx,z) + (m(z, y)−mz,y)

şartlarını gerçekleyen m : X × X → [0,∞) fonksiyonuna X üzerinde bir M−metrik ve
(X,m) ifadesine de M−metrik uzay denir.

2018 senesinde Özgür vd yaptıkları çalışmada Branciari’nin rectangular metrik uzay
kavramı ile Asadi vd’nin M−metrik uzay kavramını birleştirerek rectangular M−metrik
uzay kavramını aşağıdaki gibi tanımlamıştır.

Tanım 2.6 Boş olmayan bir X kümesi ve her x, y,∈ X her u ̸= v olacak şekildeki u, v ∈
X \ {x, y} için

mrx,y := min {mr(x, x),mr(y, y)} ve Mrx,y := max {mr(x, x),mr(y, y)}
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olmak üzere

1)mr(x, y) = mrx,y = Mrx,y ⇔ x = y

2)mrx,y ≤ mr(x, y)

3)mr(x, y) = mr(y, x)

4)(mr(x, y)−mx,y) ≤ mr(x, u)−mrx,u +mr(u, v)−mru,v +mr(v, y)−mrv,y

koşullarını sağlıyorsa mr ye X üzerinde bir rectangular M−metrik ve (X,mr) ifadesine
rectangular M−metrik uzay denir.

Buraya kadar ifade edilen kavramlarX ̸= ∅ kümesi için X×X üzerinde tanımlanan
(alışılmış) metrik kavramının yine X × X üzerindeki genellemeleridir. Ancak 1906 metrik
kavramının tanımlanmasından sonra geçen süreçte (alışılmış) metrik kavramı önceleri X ×
X × X üzerinde sonrasında X × X × ... × X üzerinde genelleştirilmiştir. Bu kavramlara
örnek olarak 2−,D−,G−,S−,A−metrik uzay kavramları verilebilir. Fakat tez çalışmasında
bu tarz genelleştirilmeler ile ilgilenilmeyeceğinden detaylandırılmayıp sadece isimlerin ifade
edilmesi ile yetinilecektir. Bu kavramlara dair daha detaylı bilgiler için Gahler, 1963, Dhaye,
1994, Mustafa vd 2007, Sedhgi vd 2012 ve Abbas vd 2015 çalışmalarına bakılabilir.

Metrik uzayların genelleştirilmesine yönelik araştırmalar devam ederken 2017
yılında Nihal Özgür ve Nihal Taş standart sabit nokta teoremlerini düzenleyerek klasik
metrik uzaylarda ve S−metrik uzaylarda sabit çember kavramını ortaya attılar ve aynı
zamanda sabit çemberlerin mevcut olma ve yeganelik koşullarını araştırmışlardır.

Metrik uzayın genelleştirilmesi üzerine çalışmalar sürerken Banach’ın 1922 yılında
ortaya koyduğu büzülme koşulunun genelleştirilmesi üzerine de çalışmalar yapılıyordu.
Bunlara örnek olarak Meir-Keeler’ ın 1969, Ćirić’in 1974 , Ekeland’ ın 1974 , Caristi’ nin
1976 yılında ve Rhodes’in 1977 yılında yaptıkları çalışmalar verilebilir. Elbette bu tarz
çalışmalar günümüzde de metrik uzaylarda ve metrik uzayların genelleştirilmişlerinde de
hızla devam etmektedir.

Bununla birlikte metrik uzaylarda ele alınan kendi üzerinde dönüşümünün tek bir
sabit noktası olmak zorunda değildir. Dahası dönüşüm birden fazla sabit noktaya olabilir.
Bu noktada ele alınan sabit noktaların ne gibi geometrik özellikleri olduğu akıllara gelmiş
olup Özgür ve Taş’ ın 2016 yılında başlattıkları çalışmalar ile sabit noktaların geometrik
özellikleri incelenmeye başlanmıştır. Böylece ilk olarak sabit noktaların ne zaman bir
çember oluşturacağı sorusu ile sabit çember kavramı ortaya çıkmıştır ve kısa zamanda
birçok sonuç bulunmuştur. Sonralarda çalışmalar çeşitlenerek ve sabit disk, sabit elips, sabit
hiperbol, sabit Cassini ovali, sabit Apollonius çemberi gibi çeşitli kavramlara ulaşılmıştır
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bu konularda çalışmalar (alışılmış) metrik uzay ve metrik uzayın genelleştirilmesinde hızla
devam etmektedir. Bunlar ile ilgili detaylı bilgiler için Özgür ve Taş ’ ın 2016, 2017, 2018,
2019, 2021 ve Erçınar’ın 2020 çalışmalarına ve onların referanslarına bakılabilir.
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3. TEMEL KAVRAMLAR

Bu bölümde tez çalışmasında ele alınarak rectangular M−metrik uzaylarda ele
alınacak olan sabit çember konusunda verilecek kavram ve teoremleri anlaşılır kılmak adına
bu kavram ve teoremlerin (alışılmış) metrik uzaydaki halleri literatürden özetlenerek
verilecektir.

3.1 METRİK UZAYLARDA BAZI SABİT ÇEMBER
TEOREMLERİ

Bu kısımda klasik metrik uzaylarda sabit çember teorisine dair kavram, tanım ve
teoremler Özgür ve Taş, 2017 makalesinden özetlenerek verilmiştir. Burada verilen
teoremlerin ispatlarına Özgür ve Taş’ ın, 2017 çalışmasından ulaşılabilir. Bu kısımda
verilmiş olan örnekler ilgili çalışmada yer alan örneklerden faklı olup farklı örnekler için
ilgili çalışmaya bakılabilir.

Bir kendi üzerine dönüşümün sabit noktalarının sayısı birden çok olduğunda bu
noktaların ne zaman veya hangi koşullar altında bir çember teşkil edecekleri sorusu ile sabit
çember teorisi ile ilgili çalışmalar başlamıştır. Bu bağlamda ilk olarak çember ve sabit
çember tanımları verildikten sonra sabit çemberlerin varlık koşulları ile ilgili teoremler
verilecektir.

Tanım 3.1 (X, d) bir (alışılmış) metrik uzay, x0, X de bir nokta ve r pozitif bir reel sayı
olsun. Buna göre

Cx0,r = {x ∈ X | d(x, x0) = r}

kümesine merkezi x0 noktası ve yarıçapı r olan çember denir. (Özgür ve Taş, 2017)

Tanım 3.2 (X, d) herhangi bir (klasik) metrik uzay,Cx0,r ilgili uzaydamerkezi x0 ve yarıçapı
r olan bir çember olsun. Ayrıca T , uzayın kendi üzerine bir dönüşümü olmak üzere her x ∈
Cx0,r için Tx = x ise Cx0,r çemberine T dönüşümünün bir sabit çemberi denir. (Özgür ve
Taş, 2017)
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Bu bölümünün bundan sonraki kısmında verilecek olan teorem 3.7 -3.10 da alışılmış
metrik uzayda bir T uzayın kendi üzerine bir dönüşümü için sabit çemberlerin mevcudiyetini
garanti eden şartlar ifade edilmiştir.

Teorem 3.1 (X, d) bir klasik metrik uzay ve Cx0,r klasik metrik uzayda merkezi x0 ve
yarıçapı r olan çember olsun. Üstelik ϕ : X → [0, ∞) ifadesi her x ∈ X için ϕx = d(x, x0)

olacak şeklinde tanımlansın. O halde, T : X → X dönüşümü her x ∈ Cx0,r için,

(Cd
11)d(x, Tx) ≤ ϕ(x)− ϕ(Tx)

(Cd
12)d(Tx, x0) ≥ r

şartlarını gerçekliyorsa Cx0,r çemberi T dönüşümünün sabit çemberidir.(Özgür ve Taş,
2017)

Bu noktada teorem 3.7 deki (Cd
11) koşulu x noktasının T dönüşümü altındaki

görüntüsü olan Tx noktasının Cx0,r çemberinin içinde veya üzerinde olması gerektiğini
yani Tx noktasının Cx0,r çemberinin içinde olmayacağını ifade eder. Benzer şeklide (Cd

12)

koşulu da Tx noktasının Cx0,r çemberinin dışında veya üzerinde olması gerektiğini yani Tx
noktasının Cx0,r çemberinin içinde olmayacağını ifade eder. Doğal olarak iki koşul aynı
anda geçerli olduğunda tek durum Tx noktasının çemberin üzerinde olmasıdır.

Bu noktada (Cd
11) ve (Cd

12) koşullarının geometrik yorumları aşağıda yer alan Şekil
3.1, Şekil 3.2 ve Şekil 3.3 de verilmektedir.

Şekil 3.1 (Cd
11) koşulunun geometrik yorumu
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Şekil 3.2 (Cd
12) koşulunun geometrik yorumu

Şekil 3.3 (Cd
11) ∩ (Cd

12) koşulunun geometrik yorumu

Örnek 3.1 X = R ve d,R üzerinde standart metrik olmak üzere (R, d) metrik uzayı ele
alınsın. Ayrıca (R, d) metrik uzayında C0,1 çemberi ve her x ∈ R için Tx = x3 dönüşümü
göz önüne alınsın. Buna göre açıkça

C0,1 = {x ∈ R | d(x, 0) = 1} = {x ∈ R | |x− 0| = 1} = {−1, 1}

dir. Üstelik her x ∈ C0,1 için (Cd
11) koşulu

x = −1 için |−1− (−1)3| ≤ 1− |−1− 0| ⇒ 0 ≤ 0

x = 1 için |1− (1)3| ≤ 1− |1− 0| ⇒ 0 ≤ 0
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olup sağlanır. Benzer şekilde her x ∈ C0,1 için (Cd
12) koşulu

x = −1 için |(1)3 − 0| ≥ 1 ⇒ 1 ≥ 1

x = 1 için |1− 0| ≥ 1 ⇒ 1 ≥ 1

olup sağlanır. O halde C0,1 çemberi T dönüşümünün bir sabit çemberidir.

Örnek 3.2 Bir önceki örnek 3.1 de alınan metrik uzay ve çember yeniden ele alınsın.
Ayrıca T : X → X dönüşümü her x ∈ R için Tx = 1

4
x3 olacak şekilde tanımlansın. Buna

göre her x ∈ C0,1 için (Cd
11) koşulu

x = −1 için
∣∣−1− 1

4
(−1)3

∣∣ ≤ 1−
∣∣1
4
(−1)3 − 0

∣∣ ⇒ 3
4
≤ 3

4

x = 1 için
∣∣−1− 1

4
(1)3

∣∣ ≤ 1−
∣∣1
4
(1)3 − 0

∣∣ ⇒ 3
4
≤ 3

4

olup sağlanıyor iken açıkça (Cd
12) koşulu

x = −1 için
∣∣1
4
(−1)3 − 0

∣∣ ≥ 1 ⇒ 3
4
≤ 3

4

x = 1 için
∣∣−1− 1

4
(1)3

∣∣ ≤ 1−
∣∣1
4
(1)3 − 0

∣∣ ⇒ 1
4
≥ 1

olduğundan sağlanamaz. Dolayısıyla C0,1 çemberi T dönüşümünün bir sabit çemberi
değildir

Örnek 3.3 Örnekte alınan metrik uzay ve çember ele alınsın. Ayrıca T : X → X

dönüşümü her x ∈ R için Tx = x3 − 2 olacak şekilde tanımlansın. Buna göre her x ∈ C0,1

için (Cd
11) koşulu apaçık bir şekilde

x = −1 için |−1− (−1)3 + 2| ≤ 1− |(−1)3 − 2| ⇒ 2 ≤ −2

x = 1 için |1− (1)3 + 2| ≤ 1− |13 − 2| ⇒ 2 ≤ 0

olup sağlanamaz iken (Cd
12) koşulu

x = −1 için |(−1)3 − 2− 0| ≥ 1 ⇒ 3 ≥ 1

x = 1 için |13 − 2− 0| ≥ 1 ⇒ 1 ≥ 1

olacağından sağlanır. Dolayısıyla C0,1 çemberi T dönüşümünün bir sabit çemberi değildir.
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Teorem 3.2 (X, d) bir klasik metrik uzay ve Cx0,r klasik metrik uzayda merkezi x0 ve
yarıçapı r olan çember olsun. Ayrıca ϕ : X → [0, ∞) ifadesi her x ∈ X için ϕx = d(x, x0)

olacak şekilde tanımlansın. O halde, T : X → X dönüşümü her x ∈ Cx0,r için,

(Cd
21)d(x, Tx) ≤ ϕ(x) + ϕ(Tx)− 2r

(Cd
22) d(Tx, x0) ≤ r

şartlarını gerçekliyorsa Cx0,r çemberi T dönüşümünün sabit çemberidir.(Özgür ve Taş,
2017)

Bu noktada teorem 3.8 deki (Cd
21) koşulu x noktasının T dönüşümü altındaki

görüntüsü olan Tx noktasının Cx0,r çemberinin içinde veya üzerinde olması gerektiğini
yani Tx noktasının Cx0,r çemberinin içinde olmayacağını ifade eder. Benzer şeklide (Cd

12)

koşulu da Tx noktasının Cx0,r çemberinin dışında veya üzerinde olması gerektiğini yani Tx
noktasının Cx0,r çemberinin içinde olmayacağını ifade eder. Doğal olarak iki koşul aynı
anda geçerli olduğunda tek durum Tx noktasının çemberin üzerinde olmasıdır.

Bu noktada (Cd
21) ve (Cd

22) koşullarının geometrik yorumları aşağıda yer alan Şekil
3.4, Şekil 3.4 ve Şekil 3.6 de verilmektedir.

Şekil 3.4 (Cd
21) koşulunun geometrik yorumu
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Şekil 3.5 (Cd
22) koşulunun geometrik yorumu

Şekil 3.6 (Cd
21) ∩ (Cd

22) koşulunun geometrik yorumu

Örnek 3.4 X = R ve d,R üzerinde standart metrik olmak üzere (R, d) metrik uzayı ele
alınsın. Ayrıca (R, d) metrik uzayında C2,1 çemberi ve her x ∈ R için Tx = 2x3 dönüşümü
göz önüne alınsın. O halde

C2,1 = {x ∈ R | d(x, 1) = 2} = {x ∈ R | |x− 1| = 2} = {−1, 3}

dir. Üstelik her x ∈ C1,2 için (Cd
21) koşulu

x = −1 için |−1 + 2| ≤ 1 + 4− 2 ⇒ 1 ≤ 3
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x = 3 için |3− 54| ≤ 3 + 52− 2 ⇒ 51 ≤ 51

olup sağlanır. Benzer şekilde her x ∈ C2,1 için (Cd
22) koşulu

x = −1 için |2 + 2| ≤ 1 ⇒ 4 ≤ 1

x = 3 için |2− 54| ≤ 1 ⇒ 52 ≤ 1

olup sağlanmaz. O halde C2,1 çemberi T dönüşümünün bir sabit çemberi değildir.

Örnek 3.5 X = R ve d,R üzerinde standart metrik olmak üzere (R, d) metrik uzayı ele
alınsın. Ayrıca (R, d) metrik uzayında C2,1 çemberi ve her x ∈ R için Tx = − ln |x| + 5

2

dönüşümü göz önüne alınsın. O halde

C2,1 = {x ∈ R | d(x, 1) = 2} = {x ∈ R | |x− 1| = 2} = {−1, 3}

dir. Üstelik her x ∈ C1,2 için (Cd
21) koşulu

x = −1 için |−1− 2, 5| ≤ 1 + 2, 5− 2 ⇒ 3, 5 ≤ −1, 5

x = 3 için |3− (1, 4013)| ≤ 3 + 1, 4013− 2 ⇒ 1, 5987 ≤ −0, 4013

olup sağlanmaz. Benzer şekilde her x ∈ C2,1 için (Cd
22) koşulu

x = −1 için |2, 5− 2− 0| ≤ 1 ⇒ 0, 5 ≤ 1

x = 3 için |1, 4013− 2− 0| ≤ 1 ⇒ 0, 598 ≤ 1

olup sağlanır. O halde C2,1 çemberi T dönüşümünün bir sabit çemberi değildir.

Örnek 3.6 X = R ve d,R üzerinde standart metrik olmak üzere (R, d) metrik uzayı ele
alınsın. Ayrıca (R, d) metrik uzayında C0,2 çemberi ve her x ∈ R için Tx = x3+|x|−2

4

dönüşümü göz önüne alınsın. O halde

C2,1 = {x ∈ R | d(x, 0) = 2} = {x ∈ R | |x− 0| = 2} = {−2, 2}

dir. Üstelik her x ∈ C0,2 için (Cd
21) koşulu

x = −2 için |−2− (−2)| ≤ |−2− 0|+ |−2− 0| − 4 ⇒ 0 ≤ 0

x = 2 için |2− 2| ≤ |2− 0|+ |2− 0| − 4 ⇒ 0 ≤ 0

olup sağlanır. Benzer şekilde her x ∈ C0,2 için (Cd
22) koşulu
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x = −2 için |−2− 0| ≤ 2 ⇒ 2 ≤ 2

x = 2 için |2− 0| ≤ 2 ⇒ 2 ≤ 2

olup sağlanır. O halde C0,2 çemberi T dönüşümünün bir sabit çemberidir.

Teorem 3.3 (X, d) bir alışılmış metrik uzay ve Cx0,r alışılmış metrik uzayda x0 merkezli r
yarıçaplı çember olsun. Üstelik ϕ : X → [0, ∞) fonksiyonu her x ∈ X için ϕx = d(x, x0)

olacak şekilde tanımlansın. Bu taktirde, T : X → X dönüşümü her x ∈ Cx0,r ve bazı
h ∈ [0, 1) için

(Cd
31)d(x, Tx) ≤ ϕ(x)− ϕ(Tx)

(Cd
32) hd(x, Tx) + d(Tx, x0) ≥ r

koşullarını sağlıyorsa Cx0,r çemberi T dönüşümünün bir sabit çemberidir.(Özgür ve Taş,
2017)

Bu noktada teorem 3.9 daki (Cd
31) koşulu x noktasının T dönüşümü altındaki

görüntüsü olan Tx noktasının Cx0,r çemberinin içinde veya üzerinde olması gerektiğini
yani Tx noktasının Cx0,r çemberinin içinde olmayacağını ifade eder. Benzer şeklide (Cd

32)

koşulu da Tx noktasının Cx0,r çemberinin dışında veya üzerinde olması gerektiğini yani Tx
noktasının Cx0,r çemberinin içinde olmayacağını ifade eder. Doğal olarak iki koşul aynı
anda geçerli olduğunda tek durum Tx noktasının çemberin üzerinde olmasıdır.

Bu noktada (Cd
31) ve (Cd

32) koşullarının geometrik yorumları aşağıda yer alan Şekil
3.7, Şekil 3.8 ve Şekil 3.9 de verilmektedir.
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Şekil 3.7 (Cd
31) koşulunun geometrik yorumu

Şekil 3.8 (Cd
32) koşulunun geometrik yorumu
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Şekil 3.9 (Cd
31) ∩ (Cd

32) koşulunun geometrik yorumu

Örnek 3.7 X = R ve d,R üzerinde standart metrik olmak üzere (R, d) metrik uzayı ele
alınsın. Ayrıca (R, d) metrik uzayında C0,2 çemberi ve her x ∈ R için Tx = πx + 20

dönüşümü göz önüne alınsın. h ∈ [0, 1) olmak üzere

C0,2 = {x ∈ R | d(x, 0) = 2} = {x ∈ R | |x− 0| = 2} = {−2, 2}

dir. Üstelik her x ∈ C0,2 için (Cd
31) koşulu

x = −2 için |−2 + 2π + 20| ≤ 2− |−2π + 20| ⇒ 22− 2π ≤ −18− 2π

x = 2 için |2− 2π − 20| ≤ 2− |2π + 20| ⇒ 18 + 2π ≤ −18− 2π

olup sağlanmaz. Benzer şekilde her x ∈ C0,2 için (Cd
32) koşulu

x = −2 için h |22− 2π|+ |20− 2π| ≥ 2 ⇒ h(22− 2π) + 20− 2π ≥ 2

x = 2 için h |18 + 2π|+ |20 + 2π| ≥ 2 ⇒ h(18 + 2π) + 20 + 2π ≥ 2

olup sağlanır. O halde C0,2 çemberi T dönüşümünün bir sabit çemberi değildir.

Örnek 3.8 X = R ve d,R üzerinde standart metrik olmak üzere (R, d) metrik uzayı ele
alınsın. Ayrıca (R, d) metrik uzayında C0,1 çemberi ve her x ∈ R için Tx = 2x3−1

3

dönüşümü göz önüne alınsın. h ∈ [0, 1) olmak üzere

C0,1 = {x ∈ R | d(x, 0) = 1} = {x ∈ R | |x− 0| = 1} = {−1, 1}

dir. Üstelik her x ∈ C0,1 için (Cd
31) koşulu
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x = −1 için
∣∣∣−1− 2(−1)3−1

3

∣∣∣ ≤ 1−
∣∣∣2(−1)3−1

3
− 0

∣∣∣ ⇒ 0 ≤ 0

x = 1 için
∣∣∣1− 2(1)3−1

3

∣∣∣ ≤ 1−
∣∣∣2(1)3−1

3
− 0

∣∣∣ ⇒ 2
3
≤ 2

3

olup sağlanır. Benzer şekilde her x ∈ C0,1 için (Cd
32) koşulu

x = −1 için h
∣∣∣−1− 2(−1)3−1

3

∣∣∣+ ∣∣∣2(−1)3−1
3

∣∣∣ ≥ 1 ⇒ 1 ≥ 1

x = 1 için h
∣∣∣1− 2(1)3−1

3

∣∣∣+ ∣∣∣2(1)3−1
3

− 0
∣∣∣ ≥ 1 ⇒ 2h

3
+ 1

3
≥ 1

olup sağlanmaz. O halde C0,1 çemberi T dönüşümünün bir sabit çemberi değildir.

Örnek 3.9 X = R ve d,R üzerinde standart metrik olmak üzere (R, d) metrik uzayı ele
alınsın. Ayrıca (R, d) metrik uzayında C0,2 çemberi ve her x ∈ R için Tx = x3 dönüşümü
göz önüne alınsın. Buna göre açıkça

C0,2 = {x ∈ R | d(x, 0) = 2} = {x ∈ R | |x− 0| = 2} = {−2, 2}

dir. Üstelik her x ∈ C0,2 için (Cd
31) koşulu

x = −2 için |−2− (−1)3| ≤ 1− |−2− 0| ⇒ 0 ≤ 0

x = 2 için |2− (1)3| ≤ 1− |2− 0| ⇒ 0 ≤ 0

olup sağlanır. Benzer şekilde her x ∈ C0,2 için (Cd
32) koşulu

x = −2 için h |−2− (1)|+ |(−2)3 − 0| ≥ 3h+ 8 ⇒ 3h+ 8 ≥ 2

x = 2 için h |2− (1)|+ |(2)3 − 0| ≥ h+ 8 ⇒ h+ 8 ≥ 2

olup sağlanır. O halde C0,2 çemberi T dönüşümünün bir sabit çemberidir.

Teorem 3.4 (X, d) bir klasik metrik uzay ve Cx0,r klasik metrik uzayda merkezi x0,
yarıçapı r çember olsun. Ayıca ϕ : X → [0, ∞) fonksiyonu her x ∈ X için ϕx = d(x, x0)

olacak şekilde tanımlansın. Bu taktirde, T : X → X dönüşümü her x ∈ Cx0,r için,

(Cd
41)d(x, Tx) ≤ ϕ(x) + ϕ(Tx)− 2r

(Cd
42) d(x, Tx) + d(Tx, x0) ≤ r

şartlarını gerçekleştiriyorsa Cx0,r çemberi T dönüşümünün sabit çemberidir.(Özgür ve Taş,
2017)
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Örnek 3.10 X = R ve d,R üzerinde standart metrik olmak üzere (R, d) metrik uzayı ele
alınsın. Ayrıca (R, d) metrik uzayında C0,1 çemberi ve her x ∈ R için Tx = x2 dönüşümü
göz önüne alınsın.h ∈ [0, 1) olmak üzere

C0,1 = {x ∈ R | d(x, 0) = 1} = {x ∈ R | |x− 0| = 1} = {−1, 1}

dir. Üstelik her x ∈ C0,1 için (Cd
41) koşulu

x = −1 için |−1− (−1)2| ≤ 1 + |1− 0| − 2 ⇒ 0 ≤ 0

x = 1 için |1− (1)2| ≤ 1 + |1− 0| − 2 ⇒ 0 ≤ 0

olup sağlanır. Benzer şekilde her x ∈ C0,1 için (Cd
42) koşulu

x = −1 için |1− (−1)2)|+ |1− 0| ≤ 1 ⇒ 1 ≤ 1

x = 1 için |1− (1)2|+ |1− 0| ≤ 1 ⇒ 1 ≤ 1

olup sağlanır. O halde C0,2 çemberi T dönüşümünün bir sabit çemberidir.

Örnek 3.11 X = R ve d,R üzerinde standart metrik olmak üzere (R, d) metrik uzayı ele
alınsın. Ayrıca (R, d) metrik uzayında C0,1 çemberi ve her x ∈ R için T : X → X

dönüşümü her x ∈ R için Tx = 1
2
x3 olacak şekilde tanımlansın. Buna göre her x ∈ C0,1

için (Cd
41) koşulu

x = −1 için
∣∣−1− 1

2
(−1)3

∣∣ ≤ 1 +
∣∣1
2
(−1)3 − 0

∣∣− 2 ⇒ 1
2
≤ −1

2

x = 1 için
∣∣1− 1

2
(1)3

∣∣ ≤ 1 +
∣∣1
2
(1)3 − 0

∣∣− 2 ⇒ 1
2
≤ −1

2

olup sağlanmıyor iken açıkça (Cd
42) koşulu

x = −1 için
∣∣−1− 1

2
(−1)3

∣∣+ ∣∣1
2
(−1)3 − 0

∣∣ ≤ 1 ⇒ 1 ≤ 1

x = 1 için
∣∣1− 1

2
(1)3

∣∣+ ∣∣0− 1
2
(1)3

∣∣ ≤ 1 ⇒ 1 ≤ 1

olduğundan sağlanır. Dolayısıyla C0,1 çemberi T dönüşümünün bir sabit çemberi değildir

Örnek 3.12 X = R ve d,R üzerinde standart metrik olmak üzere (R, d) metrik uzayı ele
alınsın. Ayrıca (R, d) metrik uzayında C2,1 çemberi ve her x ∈ R için Tx = x3 olacak
şekilde tanımlansın. Buna göre her x ∈ C2,1 için (Cd

41) koşulu

x = −1 için |−1− (−1)3| ≤ 1 + |1 + 1| − 2 ⇒ 0 ≤ 1
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x = 3 için |3− (3)3| ≤ 1 + | (3)3 − 2| − 2 ⇒ 24 ≤ 24

olup sağlanır. Ve açıkça (Cd
42) koşulu

x = −1 için |1− (−1)3)|+ |−1− 2| ≤ 1 ⇒ 5 ≤ 1

x = 3 için |1− (3)3)|+ |33 − 2| ≤ 1 ⇒ 51 ≤ 1

olduğundan sağlanmaz. Dolayısıyla C2,1 çemberi T dönüşümünün bir sabit çemberi
değildir

Bu noktada teorem 3.10 daki (Cd
41) koşulu x noktasının T dönüşümü altındaki

görüntüsü olan Tx noktasının Cx0,r çemberinin içinde veya üzerinde olması gerektiğini
yani Tx noktasının Cx0,r çemberinin içinde olmayacağını ifade eder. Benzer şeklide (Cd

42)

koşulu da Tx noktasının Cx0,r çemberinin dışında veya üzerinde olması gerektiğini yani Tx
noktasının Cx0,r çemberinin içinde olmayacağını ifade eder. Doğal olarak iki koşul aynı
anda geçerli olduğunda tek durum Tx noktasının çemberin üzerinde olmasıdır.

X boştan farklı bir küme olmak üzere X kümesi üzerinde birim dönüşüm Ix göz
önüne alınırsa dönüşüm teorem ile verilen koşulları apaçık olarak sağlar. Ancak birim
dönüşüm tüm uzayı sabit bıraktığından çemberlerinde sabit bırakması çok anlamlı
olmayacaktır. Bu nedenle aşağıdaki hipotez sabit çembere sahip bir dönüşümünün hangi
koşullarda birim dönüşüm ile çakışacağını ifade etmektedir.

Teorem 3.5 (X, d) bir alışılmış metrik uzay ve Cx0,r alışılmış metrik uzayda x0 merkezli r
yarıçaplı çember olsun. Üstelik ϕ : X → [0, ∞) fonksiyonu her x ∈ X için ϕx = d(x, x0)

olacak şekilde tanımlansın. Bu taktirde, T : X → X dönüşümü her x ∈ X ve bazı h > 1

için

d(x, Tx) ≤ ϕ(x)− ϕ(Tx)

h

koşulunu sağlıyorsa T = Ix dir veCx0,r çemberi T dönüşümünün bir sabit çemberidir.(Özgür
ve Taş, 2017)

3.2 METRİK UZAYLARDA BAZI TEKLİK
TEOREMLERİ

Bu bölümün başından bu noktaya kadar olan kısımda (alışılmış) merik uzayda x0

merkezli r yarıçaplı çemberin nokta nokta sabit kalmasını sağlayan T dönüşümünün
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koşulları incelenmiştir. Ayrıca Cx0,r çemberinin nokta nokta sabit bırakan dönüşümün hangi
koşullar altında birim dönüşüm olacağı verilmiştir. Aşağıdaki önermeler alışılmış metrik
uzayda birden fazla çemberi invaryant bırakan dönüşümlerin mevcut olduğunu ifade
etmektedir.

Önerme 3.1 (X, d) bir alışılmış metrik uzay ise Cx0,r0 ve Cx1,r1 bu metrik uzayda herhangi
iki çember olsun. O haldeCx0,r0 veCx1,r1 çemberlerinin ikisini de nokta nokta sabit bırakacak
şekilde (X, d) metrik uzayında en az bir T : X → X dönüşümü vardır. (Özgür ve Taş, 2017)

Önerme 3.2 (X, d) bir alışılmış metrik uzay ise Cx1,r1,..., Cxn,rn bu metrik uzayda
herhangi n tane çember olsun. O halde Cx1,r1,..., Cxn,rn çemberinin her birini nokta nokta
sabit bırakacak şekilde en az bir tane T : X → X dönüşümü vardır.

Bu önermelerden sonra önemli bir problem gündeme gelir. Bu problem ise ”bir
(X, d) bir metrik uzayında T : X → X dönüşümünün hangi koşullar altında bir tek sabit
çembere sahip olur ?” şeklindedir. Bu halde aşağıda ifade edilen üç teorem bu soruya yanıt
vermektedir.

Teorem 3.6 (X, d) bir alışılmış metrik uzay, Cx0,r bu metrik uzayda bir çember ve T : X →
X dönüşümü (Cd

11), (Cd
12) koşullarını sağlasın. Bu durumda x ∈ Cx0,r, y ∈ Cx0,r, y ∈

X \ Cx0,r ve bazı h ∈ [0, 1) için T dönüşümü d(Tx, Ty) ≤ hd(x, y) koşulunu sağlıyorsa
Cx0,r çemberi T dönüşümünün biricik sabit çemberidir.

Teorem 3.7 (X, d) bir alışılmış metrik uzay, Cx0,r bu metrik uzayda bir çember ve T : X →
X dönüşümü (Cd

21), (Cd
22) koşullarını sağlasın. Bu durumda x ∈ Cx0,r, y ∈ X \ Cx0,r ve

bazı h ∈ [0, 1) için T dönüşümü d(Tx, Ty) ≤ hd(x, y) koşulunu sağlıyorsa Cx0,r çemberi T
dönüşümünün biricik sabit çemberidir.

Teorem 3.8 (X, d) bir alışılmış metrik uzay, Cx0,r bu metrik uzayda bir çember ve T : X →
X dönüşümü (Cd

31), (Cd
32) koşullarını sağlasın. Bu durumda x ∈ Cx0,r, y ∈ X \Cx0,r için T

dönüşümü (C3)∗∗max {d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} koşulunu sağlıyorsa
Cx0,r çemberi T dönüşümünün biricik sabit çemberidir.
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3.3 SABİT ÇEMBER TEORİNİN SÜREKSİZ
AKTİVASYON FONKSİYONLARINA BİR
UYGULAMASI

Bu kısımda sabit çember teorinin bir uygulamasından bahsedilecektir. Bazı özel
metrik uzaylarda sabit noktalara ait dönüşümler sinir ağlarında aktivasyon fonksiyonu
olarak kullanılırlar. Örneğin a, b, c, d ∈ C ve ad − bc ̸= 0 olmak üzere T (z) = az+b

cz+d

biçminde tanımlanan T : C → C dönüşümlerine Möbius dönüşümü denir ve Möbius
dönüşümleri aktivasyon fonksiyonu olarak kullanılırlar. Möbius dönüşümünün en çok iki
sabit noktası olup Mandic 2000 yılındaki çalışmasında bir aktivasyon fonksiyonunun sabit
noktalarının varlığını altta yatan Möbius dönüşümü tarafından garanti edildiğini
gözlemledi. 2011 yılında yaptıkları çalışmada Özdemir vd. bir kompleks değerde sinir ağı
için bir çemberi sabit bırakan aktivasyon fonksiyonlarının yeni tipini tanıttılar. Aktivasyon
fonksiyonlarının bu tiplerinin kullanılması kompleks değerli Hopfield sinir ağlarının sabit
noktalarının varlığını garanti etmek için ışık tutar. Dolayısıyla reel değerli ve kompleks
değerli sinir ağlarında süreksiz aktivasyon fonksiyonlarının bazı uygulamaları vardır.

Öncelikle Bisht ve Pant, 2017 çalışmasında yer alan bir süreksizlik teoremi
hatırlatılsın.

Teorem 3.9 : (X, d) bir tam metrik uzay ve her x, y ∈ X için

M(x, y) = max
{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
olsun. Ayrıca T : X → X dönüşümü için T 2sürekli ve
(i)ϕ : R+ → R+, her t > 0 için ϕ(t) < t olacak şekilde dönüşümü olmak üzere d(Tx, Ty) ≤
ϕ(M(x, y)) dir.
(ii)Verilen bir ε > 0 için ε < (M(x, y) < ε+ δ için d(Tx, Ty) ≤ ε olacak şekilde δ(ε) > 0

vardır.
koşulları sağlansın. Bu takdirde T dönüşümü bir tek z sabit noktasına sahiptir ve her x ∈ X

için (T nx) → z dir.Üstelik T dönüşümünün z sabit noktasında süreksiz olması için gerek ve
yeter şart limx−→z M(x, z) ̸= 0 olmasıdır. (Bisht vd, 2017)

Önerme 3.3 (X, d) bir alışılmış metrik uzay, T : X → X dönüşüm ve Cx0,r, T nin bir sabit
çemberi olsun. Buna göre T dönüşümünün herhangi bir x ∈ Cx0,r noktasında süreksiz olması
için gerek ve yeter koşul limz−→x M(x, z) ̸= 0 olmasıdır. (Özgür ve Taş, 2017)
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Yukarıdaki önerme bir metrik uzayda sabit çembere sahip bir dönüşümün çember
üzerindeki bir noktada süreksiz olasının koşulunu ifade etmektedir.

pi, ri, qi,vi, li,1, li,2,ci,1 ve ci,2 ifadeleri i = 1, 2, ..., n için
−∞ < pi < ri < qi < +∞
li,1 > 0 li,2 < 0

ui = li,1 pi + ci,1 = li,2qi + ci,2,

vi > Tiri,

koşullarını sağlayan sabitler olmak üzere

Tix =


ui; −∞ < x < pi ise

li,1 + ci,1; pi ≤ x ≤ ri ise
li,2 + ci,2; ri < x ≤ qi ise

vi; qi < x+∞ ise

şeklinde tanımlanan süreksiz aktivasyon fonksiyonlarının genel bir sınıfı Nie vd., 2014
çalışmasında tanımlandı. O halde bu sınıfa ait bir fonksiyon olarak

Tx =


4; −∞ < x < −2 ise

x+ 6; pi ≤ x ≤ ri ise
−x+ 8; 1 < x ≤ 4 ise

9; 4 < x+∞ ise

olacak şekilde tanımlı olan fonksiyonu ele alınsın. Buna göre x0 = 13
2
merkezli ve r = 5

2

yarıçaplı C 13
2
, 5
2

= {4, 9} çemberi açıkça T nin bir sabit çemberidir. Açıkça yukarıdaki
önerme gereğince, T dönüşümü herhangi bir x ∈ C 13

2
, 5
2

noktasında
süreksizdir.⇔ lim

x−→z
M(x, z) ̸= 0 dır. T dönüşümü için kolaylıkla x = 9 noktasında sürekli

ve x = 4 noktasında süreksiz olduğu görülebilir. (Özgür ve Taş, 2017)
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Şekil 3.10 Örnek Aktivasyon fonksiyonunun grafiği
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4. RECTANGULARM- METRİK UZAYLAR

Bu bölümde Özgür vd. 2018 yayınladıkları çalışmasında tanımladıkları
rectangular(dikdörtgen) M−metrik uzayların tanımı, örnekleri, temel özellikleri, analizsel
kavramlar, topolojik özellikleri ve bazı sabit nokta teoremleri ile ilgili çalışmadan
özetlenerek verilecektir.

Özgür vd. 2018 yılındaki çalışmalarında Branciari’nin tanımladığı M−metrik uzay
kavramından esinlenilerek rectangular M−metrik uzay kavramını aşağıdaki gibi
tanımlamıştır.

Tanım 4.1 X boş olmayan bir küme olsun.mb : X
2 → [0,∞) foksiyonu her x, y,∈ X her

u = v olacak şekilde u, v,∈ X� {x, y} ve

mrx,y := min {mr(x, x),mr(y, y)} ve Mrx,y := max {mr(x, x),mr(y, y)}

için,

1)x = y ⇔ mrx,y = Mrx,y = mr(x, y)

2)mrx,y ≤ mr(x, y)

3)mr(x, y) = mr(y, x)

4)
(
mr(x, y)−mrx,y

)
≤ mr(x, u)−mrx,u +mr(u, v)−mru,v +mr(v, y)−mrv,y

koşullarını sağlıyorsa mr fonksiyonuna X üzerinde bir rectangular M−metrik ve (X,mr)

ikilisine rectangular M− metrik uzay denir. (Özgür vd, 2018)
M−metrik uzay ve rectangular M− metrik uzay kavramlarını incelendiğinde açıkça her
M−metrik uzayın bir dikdörtgen M− metrik uzay olduğu ifade edilebilir.
(X,mr) bir rectangular M− metrik uzay olsun. Bu takdirde (X,mr) rectangular M−
metrik uzayın aşağıdaki özelliklere sahip olduğu kolaylıkla gösterilebilir.

1)x, y ∈ X için mrx,y +Mrx,y = mr(x, x) +mr(y, y)

2)x, y ∈ X için 0 ≤ Mrx,y −mrx,y = |mr(x, x) +mr(y, y)|
3)Mrx,y −mrx,y ≤ Mrx,u −mrx,u +Mru,v −mru,v −Mrv,y −mrv,y

Şimdi bazı rectangular M− metrik uzay örnekleri verilecektir.
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Örnek 4.1 C kompleks sayılar kümesi ve 0 ≤ θ < 2π olmak üzere sabit θ değeri için Xθ =

{z ∈ C | arg(z) = θ} ∪ {0} olsun. mr : Xθ × Xθ → [0,∞) fonksiyonu her x, y ∈ xθ için
mr(x, y) = |x|+|y|

2
olarak tanımlansın. Bu takdirde (Xθ,mr) bir rectangular M− metrik

uzayıdır. (Özgür vd, 2018)

Bu örnek geometrik olarak incelenirse Xθ kümesi kompleks düzlemde orijin uç
noktalı, reel eksenle θ radyanlık açı yapan ışındır. Buna göre bu ışın üzerinde tanımlanan
mr rectangular M− metriğinin üzerindeki iki nokta arasındaki uzaklığı onların orta
noktasının orijine olan uzaklığı olarak ifade etmektedir. Aşağıdaki Şekil 4.1 bunu
göstermektedir.

Şekil 4.1 Xθ kümesinin geometrik gösterimi

Aşağıdaki önerme bir rectangular metrikden bir rectangular M− metrik üretme
yöntemini ifade etmektedir. Dolayısıyla bu yöntem ile her rectangular metrikten bir
rectangular M− metrik türetilir.

Önerme 4.1 (X, d) bir rectangular metrik uzay, ξ : [0,∞) → [α,∞) bire bir ve
azalmayan fonksiyonu ξ(0) = α olmak üzere her x, y, z ∈ [0,∞) için

ξ(x+ y + z) ≤ ξ(x) + ξ(y) + ξ(z)− 2α

koşulunu sağlasın. Bu taktirde her x, y ∈ X için mr : X × X → [0,∞) fonksiyonu bir
rectangular M− metriktir. (Özgür vd. 2018)
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Örnek 4.2 (X, d) bir rectangular metrik uzay ve ξ : [0,∞) → [α,∞) fonksiyonu ξ(0) = α

olmak üzere her t ∈ [0,∞) için ξ(t) = mt+ n olacak şekilde tanımlansın O halde yukarıda
önerme 4.1 gereğince

mr(x, y) = md(x, y) + n

şeklinde tanımlananmr : X×X → [0,∞) fonksiyonu bir rectangularM−metriktir. (Özgür
vd. 2018)

Yukarıdaki önerme 4.1 ve örnek 4.2 bir rectangular metrik yardımı ile bir
rectangular M− metrik oluşturulabileceğini ifade ediyordu. Bu durum tersinin yani bir
rectangular M− metrik’ten faydalanarak bir rectangular metriğin üretilebileceğini
aşağıdaki iki örnek göstermektedir.

Örnek 4.3 (X,mr) bir rectangular M− metrik uzay olsun ve mw
r : X × X → [0,∞)

fonksiyonu her x, y ∈ X için

mw
r (x, y) = mr(x, y)− 2mrx,y +Mrx,y

olacak şekilde tanımlansın. Bu takdirde mw
r fonksiyonu bir rectangular metrik ve (X,mw

r )

ikilisi bir rectangular metrik uzaydır. (Özgür vd., 2018)

Örnek 4.4 (X,mr) bir rectangular M− metrik uzay olsun ve mw
r : X × X → [0,∞)

fonksiyonu her x, y ∈ X için ms
r(x, y) = 0 ise x = y olacak şekilde

ms
r(x, y) = mr(x, y)−mrx,y

şeklinde tanımlansın Bu durumda ms
r bir rectangular metrik ve (X,ms

r) ikilisi bir
rectangular metrik uzaydır.(Özgür vd. 2018)

Aşağıdaki önerme bir rectangular kısmi metrik ile rectangularM−metrik arasındaki
ilişkiyi açıklamaktadır.

Önerme 4.2 Her kısmi rectangular metrik, bir rectangularM− metriktir. (Özgür vd. 2018)
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Bu önerme dolayısıyla rectangular M− metrik uzay, kısmi rectangular metrik uzayı
kapsamaktadır. Benzer durum M− metrik uzaylar için de geçerlidir. Bu noktada
yukarıdaki önermedeki ifadenin tersi doğru değildir. Yani her rectangular M− metrik bir
kısmi rectangular metrik değildir. Aşağıdaki örnek bu durumu açıkça göstermektedir.

Örnek 4.5 X = {1, 2, 3, 4} olsun. mr : X ×X → [0,∞) fonksiyonu her x, y ∈ X için

mr(1, 1) = mr(2, 2) = mr(3, 3) = 1,mr(4, 4) = 8

mr(1, 2) = mr(2, 1) = 4,mr(1, 3) = mr(3, 1) = 4

mr(1, 4) = mr(4, 1) = 4,mr(2, 3) = mr(3, 2) = 5

mr(2, 4) = mr(4, 2) = 6,mr(3, 4) = mr(4, 3) = 7

olacak şekilde tanımlansın. Bu takdirde mr bir rectangular M− metriktir. Ancak mr bir
kısmi rectangular M− metrik değildir. Çünkü x = 4, y = 3 olmak üzere
mr(4, 4) = 8 ≤ mr(4, 3) = 7 olup kısmi rectangular M− metrik uzayın ikinci aksiyomu
sağlanmamaktadır. (Özgür vd. 2018)

Hermetrik uzay bir rectangular metrik uzaydır ve her rectangular metrik uzay kendine
uzaklığı sıfır olan bir kısmi rectangular metrik uzaydır. Ayrıca her metrik uzay bir kısmi
metrik uzay ve her kısmi metrik uzay bir M− metrik uzaydır. O halde bu ifadeler bir şema
ile verilirse aşağıdaki Şekil 4.2 verilen yapıya ulaşır

Şekil 4.2 Genelleştirilmiş metrik uzayları ilişkileri

Tanım 4.2 (X,mr) bir rectangular M− metrik uzay ve (xn), X de bir dizi olsun. Bu
takdirde
(i) Verilen her ε > 0 değerine karşılık n ≥ n0 koşulunu sağlayan her n ∈ N için
mr(xn, x) − mrxn,x < ε olacak şekilde n0 ∈ N varsa (xn) dizisi x ∈ X noktasına mr
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yakınsıyor denir ve (xn)
mr−→x ile gösterilir.

Farklı bir şekilde ifade edilirse :
(X,mr) rectangular M−metrik uzayında (xn) dizisinin x ∈ X noktasına mr− yakınsak
olması için gerek ve yeter koşul lim

n→∞
(mr(xn, x)−mrxn,x

) = 0 olmasıdır.

(ii) (X,mr) bir rectangular M− metrik uzayda (xn) dizisinin mr−Cauchy dizisi olması
için gerek ve yeter koşul lim

n,m→∞
(mr(xn, xm) − mrxn,xm

) ve lim
n,m→∞

(Mrxn,xm
− mrxn,xm

)

limitlerinin mevcut ve sonlu olmasıdır.

(iii) Her (xn) mr−Cauchy dizisi lim
n→∞

(mr(xn, x) − mrxn,x
) = 0 ve

lim
n→∞

(Mr(xn, x) − mrxn,x
) = 0 olacak şekilde bir x ∈ X noktasına yakınsak ise (X,mr)

rectangular M− metrik uzaya tamdır denir. (Özgür vd. 2018)

Yardımcı Teorem 4.1 (X,mr) bir rectangular M− metrik uzay ve (xn) ile (yn) bu uzayda
sırasıyla x ve y noktalarına mr−yakınsak iki dizi olsun. Bu takdirde

lim
n→∞

(mr(xn, yn)−mrxn,yn
) = mr(x, y)−mrxy

olur. (Özgür vd. 2018)

Sonuç 4.1 (X,mr) bir rectangularM−metrik uzay ve (xn),x ∈ X noktasınamr−yakınsak
bir dizi olsun. Bu takdirde her y ∈ X için

lim
n→∞

(mr(xn, y)−mrxn,y) = mr(x, y)−mrx,y

dir. (Özgür vd. 2018)

Yardımcı Teorem 4.2 (X,mr) bir rectangular M− metrik uzay ve (xn) ile (yn) bu uzayda
sırasıyla x ve y noktalarına mr−yakınsak iki dizi olsun. Bu takdirde mr(x, y) = mrxy olur.
Dahası mr(x, x) = mr(y, y) ise x = y dir. (Özgür vd. 2018)

Yardımcı Teorem 4.3 (X,mr) bir rectangularM− metrik uzay ve (xn) bu uzayda her n ∈
N, mr(xn+1, xn) ≤ rmr(xn, xn−1) olacak şekilde r ∈ [0, 1) değeri var olan bir dizi olsun.
Bu takdirde aşağıdaki ifadeler doğrudur.

(i) lim
n→∞

mr(xn, xn−1) = 0 dır.
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(ii) lim
n→∞

mr(xn, xn) = 0 dır.
(iii) lim

n,m→∞
mrxn,xm

= 0 dır.

(iv) (xn), bir mr−Cauchy dizisidir. (Özgür vd. 2018)

Yardımcı Teorem 4.4 (X,mr) bir rectangular M− metrik uzay olsun. Bu takdirde
aşağıdaki ifadeler doğrudur.

(i) (xn) dizisinin (X,mr) bir rectangular M− metrik uzayında bir mr−Cauchy dizisi
olması için gerek ve yeter koşul (X,mr) rectangular metrik uzayında bir Cauchy dizisi
olmasıdır.

(ii) (X,mr) rectangular M− metrik uzayının tam olması için gerek ve yeter koşul (X,mw
r )

rectangular metrik uzayının tam olmasıdır. (Özgür vd. 2018)

Yukarıdaki yardımcı teoremdeki ifadelerdeki (X,mw
r ) rectangular metrik uzay

kavramı (X,ms
r) rectangular metrik uzay kavramı ile yer değiştirirse ifadeler doğru olur.

Tanım 4.3 (X,mr) bir rectangular M− metrik uzay, x ∈ X ve ε > 0 olsun. Buna göre

B(x, ε) =
{
y ∈ x | mr(x, y)−mrx,y < ε

}
ifadesine x merkezli, ε yarıçaplı açık yuvar ve

B [x, ε] =
{
y ∈ x | mr(x, y)−mrx,y ≤ ε

}
ifadesine x merkezli, ε yarıçaplı kapalı yuvar denir. (Özgür vd. 2018)

Dikkat edilirsemr(x, x)−mrx,x = mr(x, x)−mr(x, x) = 0 < ε olduğundan dolayı
her ε > 0 için açıkça x ∈ B(x, ε) dur.

Yardımcı Teorem 4.5 (X,mr) bir rectangularM−metrik uzay olsun. Bu uzaydaki tüm açık
yuvarların kolleksiyonu olan

Bmr = {B(x, ε) | x ∈ X, ε > 0}

ifadesi (X,mr) rectangular M− metrik uzayının bir tabanını oluşturur. (Özgür vd. 2018)
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Tanım 4.4 (X,mr) bir rectangular M− metrik uzay ve Jmr , B(x, ε) açık yuvarları
tarafından üretilen topoloji olsun. Bu takdirde (X, Jmr) bir rectangular M− metrik uzay
olsun. Her farklı x, y ∈ X nokta çifti için x noktasını içerip y noktasını içermeyen veya y

noktasını içerip x noktasını içermeyen bir açık yuvar varsa (X, Jmr) ye bir T0−uzayı adı
verilir. (Özgür vd. 2018)

Teorem 4.1 Bir rectangular M− metrik uzayı bir T0−uzayıdır. (Özgür vd. 2018)

Şimdi rectangular M− metrik uzayında bazı sabit nokta teoremleri ifade edilecektir.
Ancak öncesinde bu sabit nokta teoremlerinde kullanılacak bir yardımcı teorem verilecektir.

Yardımcı Teorem 4.6 (X,mr) bir rectangular M− metrik uzay ve T : X → X bir
dönüşüm olsun. Ayrıca (xn) dizisi bu uzayda xn+1 = Txn olacak şekilde tanımlı ve her
x, y ∈ X için mr(Tx, Ty) ≤ kmr(x, y) koşulunu sağlayacak şekilde k ∈ [0, 1) var olsun.
Buna göre (xn) dizisi u yamr−yakınsak ise (Txn) dizisi Tu yamr−yakınsaktır. (Özgür vd.
2018)

Aşağıda ifade edilecek sabit nokta teoremleri alışılmış metrik uzaylarda iyi bilinen
Banach büzülme prensibi, Kannan sabit nokta teoremleri ve Chaterjea sabit nokta teoreminin
rectangular M− metrik uzay versiyonlarıdır.

Teorem 4.2 (X,mr) bir tam rectangular M− metrik uzay ve T : X → X bir dönüşüm
olsun. Buna göre her x, y ∈ X için

mr(Tx, Ty) ≤ kmr(x, y)

olacak şekilde 0 < k < 1 değeri varsa T dönüşümümr(u, u) = 0 olmak üzere bir tek u ∈ X

sabit noktasına sahiptir. (Özgür vd. 2018)

Teorem 4.3 (X,mr) bir tam rectangular M− metrik uzay ve T : X → X bir dönüşüm
olsun. Buna göre her x, y ∈ X için

mr(Tx, Ty) ≤ kmax {mr(x, y),mr(x, Tx),mr(y, Ty)}

koşulunu sağlayacak şekilde 0 < k < 1 değeri varsa T dönüşümü mr(u, u) = 0 olacak
şekilde bir tek u ∈ X sabit noktasına sahiptir.
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Teorem 4.4 (X,mr) bir tam rectangular M− metrik uzay ve T : X → X bir dönüşüm
olsun. Buna göre her x, y ∈ X için

mr(Tx, Ty) ≤ k [mr(x, Tx) +mr(y, Ty)]

koşulunu sağlayacak şekilde 0 ≤ k < 1
2
değeri varsa T dönüşümü mr(u, u) = 0 olacak

şekilde bir tek u ∈ X sabit noktasına sahiptir.

Teorem 4.5 (X,mr) bir tam rectangular M− metrik uzay ve T : X → X bir dönüşüm
olsun. Bu takdirde her x, y ∈ X için

mr(Tx, Ty) ≤ k [mr(x, Tx) +mr(y, Ty)]

koşulunu sağlayacak şekilde 0 ≤ k <
√
3−1
2

değeri varsa T dönüşümü mr(u, u) = 0 olacak
şekilde bir tek u ∈ X sabit noktasına sahiptir.



33

5. RECTANGULARM-METRİK UZAYLARDA SABİT
ÇEMBER TEOREMLERİ

Bu kısımda bir rectangular M− metrik uzayda ele alınan bir kendi üzerine
dönüşümünün yine bu uzayda ele alınan bir çemberi ne zaman veya hangi koşullar altında
nokta-nokta sabit bırakacağı araştırılmıştır

Bu amaçla ilk olarak rectangularM−metrik uzayda çember kavramı ve sabit çember
kavramları tanımlanacaktır.

Tanım 5.1 (X,mr) bir ractengular M− metrik uzay, x0 ∈ X ve r > 0 olsun. Buna göre

Cmr
x0,r

=
{
x ∈ X | mr(x, x0)−mrx,x0

= r
}

ifadesine rectangular M− metrik uzayda x0 merkezli, r yarıçaplı çember denir. (Özgür vd.
2018)

Tanım 5.2 (X,mr) bir rectangular M− metrik uzay, Cmr
x0,r

bu uzayda bir çember ve T :

X → X bir dönüşüm olsun. Her x ∈ Cmr
x0,r

için Tx = x ise Cmr
x0,r

çemberine T dönüşümünün
sabit çemberi denir. (Özgür vd. 2018)

Yukarıda ifade edilen bir rectangular M− metrik uzayda çember ve sabit çember
tanımları ile aşağıda ifade edilecek olan sabit çemberinin varlığına dair koşullar veren
teorem Özgür vd. 2018 yılındaki çalışmasından alıntılanmıştır. Özgür vd. 2018 yılındaki
çalışmalarında rectangular M− metrik uzay için sabit çember problemini ortaya
atmışlardır. Çözüme dair sadece aşağıda verilecek olan varlık teoremini vermişlerdir.

Tezin bu bölümünde bu problem ele alınacak olup ilk teorem hariç bölümün geri kalan
teorem, önerme, sonuç ve örnekleri ilk kez de bu tez çalışmasında verilmekte olup orijinaldir.

Teorem 5.1 (X,mr) bir rectangularM− metrik uzay ve Cmr
x0,r

bu uzayda bir çember olsun.
Ayrıca φ : X → [0,∞) fonksiyonu her x ∈ X için
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φ(x) = mr(x, x0)−mrx,x0

şeklinde tanımlansın. Bu takdirde T : X → X dönüşümü, her x ∈ Cmr
x0,r

için

(Cmr
1 1) mr(x, Tx)−mrx,Tx

≤ φ(x)− φ(Tx)

(Cmr
1 2) mr(Tx, x0)−mrTx,x0

≥ r

(Cmr
1 3) mrx,Tx

= Mrx,Tx

koşullarını sağlıyorsa Cmr
x0,r

çemberi T dönüşümün bir sabit çemberidir. (Özgür vd. 2018)

İspat (X,mr) bir rectangular M− metrik uzay, Cmr
x0,r

bu uzayda x0 merkezli r yarıçaplı
bir çember ve φ : X → [0,∞) fonksiyonu her x ∈ X için φ(x) = mr(x, x0) − mrx,x0

şeklinde tanımlı olsun. Ayrıca T : X → X dönüşüm olsun. Buna göre herhangi bir
x ∈ Cmr

x0,r
için mr(x, x0) − mrx,x0

= r dir. Bu noktada (Cmr
1 1) koşulundan başlayarak,

rectangular M− metrik aksiyomlarından 2. aksiyom ve (Cmr
1 2) koşulu yardımıyla

mr(x, Tx)−mrx,Tx
≤ φ(x)− φ(Tx)

= (mr(x, x0)−mrx,x0
)− (mr(Tx, x0)−mrTx,x0

= r − (mr(Tx, x0)−mrTx,x0
)

olup mr(Tx, x0) − mrTx,x0
≤ r elde edilir. Ancak (Cmr

1 2) koşulu gereğince
mr(Tx, x0) − mrTx,x0

≥ r olduğundan açıkça mr(Tx, x0) − mrTx,x0
= r bulunur. Yani

Tx ∈ Cmr
x0,r

dir. O halde

mr(Tx, x0)−mrTx,x0
≤ (mr(x, x0)−mrx,x0

)− (mr(Tx, x0)−mrTx,x0
) = r − r = 0

olduğundan ve mr(x, Tx) ≥ mrx,Tx
olduğundan dolayı mr(x, Tx) − mrx,Tx

= 0 olup
mr(x, Tx) = mrx,Tx

bulunur. Ayrıca (Cmr
1 3) koşulundan dolayı mrx,Tx

= Mrx,Tx
ve

rectangular M− metriğin 1. aksiyomundan dolayı apaçık olarak

mr(x, Tx) = mrx,Tx
= Mrx,Tx

⇔ x = Tx

elde edilir. Bundan dolayı da Cmr
x0,r

, T dönüşümün bir sabit çemberidir.

Örnek 5.1 4. bölümde rectangular M−metrik uzay için ele alınan ilk örnek olan örnek 4.1
deki (Xθ,mr) rectangular M−metrik uzayı θ = π

2
olmak koşulu ile ele alınsın. Yani
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Xπ
2
=

{
z ∈ C | arg(z) = π

2

}
∪ {0} ve mr : Xπ

2
×Xπ

2
→ [0,∞) fonksiyonu her x, y ∈ Xπ

2

için mr(x, y) =
|x|+|y|

2
şeklinde tanımlı olsun. Buna göre bu uzayda Cmr

2i,1 çemberi ve

Tz =

{
0 |z|
−16
z

|z|

dönüşümü göz önüne alınsın. O halde çemberin ve mr rectangular M− metriğin tanımı
kullanılarak hesaplama ile Cmr

2i,1 = {0, 4i} olduğu görülür. Bu takdirde kolaylıkla her
x ∈ Cmr

2i,1 için (Cmr
1 1) (Cmr

1 2) (Cmr
1 3) koşulları sağlandığı görülür. Dolayısıyla Cmr

2i,1

çemberi, T dönüşümünün bir sabit çemberidir.

Örnek 5.2 Bir önceki örnekle ele alınan rectangular M− metrik uzay ve bu uzaydaki Cmr
2i,1

çemberi ele alınsın. Ayrıca T : C → C dönüşümü Tz = z + 8i olarak alınsın. Buna göre
her x ∈ Cmr

2i,1 = {0, 4i} için (Cmr
1 1) koşulu

x = 0 için |0|+|8i|
2

−min
{

|0|+|0|
2

, |8i|+|8i|
2

}
≤ ϕ(0)− ϕ(T0) ⇒ 4 ≤ −2

x = 4i için |4i|+|2i|
2

−min
{

|4i|+|4i|
2

, |2i|+|2i|
2

}
≤ ϕ(4i)− ϕ(T4i) ⇒ 4 ≤ −4

olup sağlanamaz iken (Cmr
1 2) koşulu açık bir şekilde

x = 0 için ϕ(T0) ≥ 1 ⇒ 3 ≥ 1

x = 4i için ϕ(T4i) ≥ 1 ⇒ 5 ≥ 1

olduğundan sağlanır. Bu örnek için açıkça (Cmr
1 3) koşuluda sağlanmaz. Doğal olarak Cmr

2i,1

çemberi, T dönüşümü altında invaryant değildir.

Örnek 5.3 Önceki iki örnekte ele alınan rectangular M− metrik uzay ve çemberi yine ele
alınsın. Ayrıca T : C → C dönüşümü Tz = 1

2
z olsun. Buna göre her x ∈ Cmr

2i,1 = {0, 4i}
için (Cmr

1 1) koşulu

x = 0 için |0|+|8i|
2

−min
{

|0|+|0|
2

, |0|+|0|
2

}
≤ ϕ(0)− ϕ(T0) ⇒ 0 ≤ 1− 1 ⇒ 0 ≤ 0

x = 4i için |4i|+|2i|
2

−min
{

|2i|+|2i|
2

, |4i|+|4i|
2

}
≤ ϕ(4i)− ϕ(T4i) ⇒ 3− 2 ≤ 1− 0 ⇒ 1 ≤

olup sağlanıyor iken (Cmr
1 2) koşulu

x = 0 için |0|+|2i|
2

−min
{

|0|+|0|
2

, |2i|+|2i|
2

}
≥ 1 ⇒ 1 ≥ 1

x = 4i için |2i|+|2i|
2

−min
{

|2i|+|2i|
2

, |2i|+|2i|
2

}
≥ 1 ⇒ 0 ≥ 1
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olduğundan sağlanamaz. Doğal olarak Cmr
2i,1 çemberi, T dönüşümü altında invaryant

değildir.

Teorem 5.2 (X,mr) bir rectangularM− metrik uzay ve Cmr
x0,r

bu uzayda bir çember olsun.
Ayrıca φ : x → [0,∞) fonksiyonu her x ∈ X için

φ(x) = mr(x, x0)−mrx,x0

şeklinde tanımlansın. Bu takdirde T : X → X dönüşümü, her x ∈ Cmr
x0,r

için

(Cmr
2 1) mr(x, Tx)−mrx,Tx

≤ φ(x) + φ(Tx)− 2r

(Cmr
2 2) mr(Tx, x0)−mrTx,x0

≤ r

(Cmr
2 3) mrx,Tx

= Mrx,Tx

koşullarını sağlıyorsa Cmr
x0,r

çemberi T dönüşümü altında invaryanttır.

İspat (X,mr) bir rectangular M− metrik uzay, Cmr
x0,r

bu uzayda x0 merkezli r yarıçaplı
bir çember ve φ : x → [0,∞) fonksiyonu her x ∈ X için φ(x) = mr(x, x0) − mrx,x0

şeklinde tanımlı ve T : X → X teoremin hipotezindeki koşulları sağlayan bir dönüşüm
olsun. Buna göre herhangi bir x ∈ Cmr

x0,r
için mr(x, x0) − mrx,x0

= r dir. Bu aşamada
(Cmr

2 1) koşulundan başlayarak, rectangular M− metrik aksiyomlarını kullanırsak

mr(x, Tx)−mrx,Tx
≤ φ(x) + φ(Tx)− 2r

= (mr(x, x0)−mrx,x0
) + (mr(Tx, x0)−mrTx,x0

)− 2r

= (mr(Tx, x0)−mrTx,x0
)− r

elde edileceğinden dolayı mr(Tx, x0) − mrTx,x0
≥ r bulunur. Fakat (Cmr

2 2) koşulu
gereğince mr(Tx, x0) − mrTx,x0

≤ r olduğundan açıkça mr(Tx, x0) − mrTx,x0
= r

bulunur. Yani Tx ∈ Cmr
x0,r

dir. O halde

mr(Tx, x0)−mrTx,x0
≤ (mr(x, x0)−mrx,x0

)− (mr(Tx, x0)−mrTx,x0
) = r − r = 0

bulunacağından mr(x, Tx) ≥ mrx,Tx
olduğundan dolayı mr(x, Tx) − mrx,Tx

= 0 olup
mr(x, Tx) = mrx,Tx

bulunur. Bunun yanı sıra (Cmr
2 3) koşulundan dolayı mrx,Tx

= Mrx,Tx

ve rectangular M− metriğinilk aksiyomundan dolayı aşikar olarak

mr(x, Tx) = mrx,Tx
= Mrx,Tx

⇔ x = Tx
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sonucuna ulaşılır. Bu nedenle de Cmr
x0,r

, T dönüşümün bir sabit çemberidir.

Örnek 5.4 4. bölümde verilen örnek 4.1 deki (Xθ,mr) rectangularM−metrik uzayı θ = 3π
2

olmak şartıyla alınsın. Buna göre açıkçaX 3π
2
=

{
z ∈ C | arg(z) = 3π

2

}
∪{0} vemr : Xπ

2
×

Xπ
2
→ [0,∞) fonksiyonu her x, y ∈ X 3π

2
için mr(x, y) = |x|+|y|

2
biçiminde tanımlı olsun.

Buna göre bu uzayda Cmr
−4i,1çemberi ve

Tz =

{
z, |z| < 8
−64
z
, |z| ≥ 8

dönüşümünü göz önüne alalım. Bu takdirde çember ve mr rectangular M−metriğin tanımı
kullanılarak hesaplamayla Cmr

−4i,1 = {0,−8i} bulunur. Buna göre kolayca her x ∈ Cmr
−4i,1

için (Cmr
2 1) (Cmr

2 2) (Cmr
2 3) koşulları sağlandığı görülür. Dolayısıyla Cmr

−4i,1 çemberi, T
dönüşümünün bir sabit çemberidir. Ayrıca T dönüşümünün tek sabit çemberi Cmr

−4i,1

değildir. Biraz dikkatli bakılınca Cmr

−i, 1
2

, Cmr
−2i,1, C

mr

−3i, 3
2

çemberlerininde T nin sabit çemberi
olduğu görülür. Elbetteki bu tüm çemberlerin T dönüşümü altında invaryant olduğu
anlamına gelmez. Örneğin Cmr

−6i,2 çemberi T dönüşümü altında invaryant kalmaz.

Örnek 5.5 Bir önceki örnekle ele alınan rectangular M−metrik uzay ve çember ele
alınsın. Ayrıca dönüşüm Tz = 5

4
z olarak verilsin. Buna göre her x ∈ Cmr

−4i,2 = {0,−8i}
için (Cmr

2 1) koşulu

x = 0 için 0− 0 ≤ 2 + 2− 4 ⇒ 0 ≤ 0

x = 8i için 9− 8 ≤ 2 + 7− 4− 4 ⇒ 1 ≤ 1

olup sağlanıyor iken basitçe (Cmr
2 2) koşulu

x = 0 için 2− 0 ≤ 2 ⇒ 2 ≤ 2

x = 8i için 7− 4 ≤ 2 ⇒ 3 ≤ 2

olacağından sağlanmaz. Bu nedenle Cmr
−4i,1 çemberi, T dönüşümü altında invaryant

değildir.

Örnek 5.6 Önceki iki örnekte ele alınan rectangularM−metrik uzay ve çember ele alınsın.
Ayrıca dönüşüm Tz = 1

2
z olsun. Buna göre her x ∈ Cmr

−4i,2 = {0,−8i} için (Cmr
2 1) koşulu

x = 0 için 0− 0 ≤ 2 + 2− 4 ⇒ 0 ≤ 0
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x = 8i için 6− 4 ≤ 2 + 4− 4− 4 ⇒ 2 ≤ −2

olup sağlanamaz iken (Cmr
2 2) koşulu

x = 0 için 2− 0 ≤ 2 ⇒ 2 ≤ 2

x = 8i için 4− 4 ≤ 2 ⇒ 0 ≤ 2

olduğundan sağlanır. Bu sebeple de Cmr
−4i,1 çemberi, T dönüşümü altında invaryant

değildir.

Teorem 5.3 (X,mr) bir rectangularM− metrik uzay ve Cmr
x0,r

bu uzayda bir çember olsun.
Ayrıca φ : x → [0,∞) fonksiyonu her x ∈ X için

φ(x) = mr(x, x0)−mrx,x0

şeklinde tanımlansın. Bu takdirde T : X → X dönüşümü, her x ∈ Cmr
x0,r

ve bazı h ∈ [0, 1)

için

(Cmr
3 1) mr(x, Tx)−mrx,Tx

≤ φ(x)− φ(Tx)

(Cmr
3 2) h

[
mr(x, Tx)−mrx,Tx

]
+ φ(x) ≥ r

(Cmr
3 3) mrx,Tx

= Mrx,Tx

koşullarını sağlıyorsa Cmr
x0,r

çemberi T dönüşümün bir sabit çemberidir.

İspat (X,mr) bir rectangularM− metrik uzay, Cmr
x0,r

bu uzayda x0 merkezli r yarıçaplı bir
çember ve φ : x → [0,∞) fonksiyonu her x ∈ X için φ(x) = mr(x, x0) −mrx,x0

şeklinde
tanımlı ve T : X → X teoremin hipotezindeki koşulları sağlayan bir dönüşüm olsun. Buna
göre herhangi bir x ∈ Cmr

x0,r
içinmr(x, x0)−mrx,x0

= r dir. Bu aşamada (Cmr
3 1) koşulundan

başlayarak, (Cmr
3 2) koşulu yardımıyla

mr(x, Tx)−mrx,Tx
≤ φ(x)− φ(Tx)

= (mr(x, x0)−mrx,x0
)− φ(Tx)

= r − φ(Tx)

≤
(
h
[
mr(x, Tx)−mrx,Tx

]
+ φ(Tx)

)
− φ(Tx)

= h
[
mr(x, Tx)−mrx,Tx

]
bulunur. (1 − h)

[
mr(x, Tx)−mrx,Tx

]
≤ 0 elde edilir. Bu noktada hipotez gereğince

h ∈ [0, 1) olduğundan mr(x, Tx) − mrx,Tx
= 0 olur. Bunun yanı sıra (Cmr

2 3) koşulundan
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dolayı mrx,Tx
= Mrx,Tx

ve rectangular M− metriğin ilk aksiyomundan dolayı
mrx,Tx

= Mrx,Tx
ve rectangular M− metriğin ilk. aksiyomundan dolayı

mr(x, Tx) = mrx,Tx
= Mrx,Tx

⇔ x = Tx

sonucuna ulaşılır. Böylelikle Cmr
x0,r

, T dönüşümün bir sabit çemberidir.

Örnek 5.7 4. bölümde verilen örnek 4.1 deki (xθ,mr) rectangular M−metrik uzay θ = π

olmak şartıyla ele alınsın. YaniXπ = {z ∈ C | arg(z) = π}∪{0} vemr : Xπ×Xπ → [0,∞)

fonksiyonu her x, y ∈ Xπ için mr(x, y) = |x|+|y|
2

biçiminde tanımlıdır. Bu uzayda (Cmr
−3,1)

çemberi ve

Tz =

{
z, |z| ≤ 4 ise
−25
z
, |z| > 4 ise

dönüşümü göz önüne alınsın. Buna göre çember gerekli hesaplamalar yapılarak
Cmr

−3,1 = {−1,−5} olarak bulunur. Bu noktada (Cmr
3 1), (Cmr

3 2), (Cmr
3 3) koşullarının

sağlandığı görülür. Böylelikle Cmr
−3,1 çemberi, T dönüşümünün bir sabit çemberidir. Ancak

T dönüşümünün tek sabit çemberinin Cmr
−3,1 olmadığı, Cmr

−2,1, C
mr

−1, 1
2

, Cmr

− 5
2
, 3
4

çemberlerinin de
T nin sabit çemberi olduğunun görülmesi ile anlaşılır. Ancak tüm çemberler T altında
invaryant değildir. Örneğin Cmr

−9,2 ve C
mr

−4, 3
2

çemberleri T nin sabit çemberi değildir.

Örnek 5.8 Bir önceki örnekte ele alınan rectangular M−metrik uzay ve çember ele
alınsın. Ayrıca dönüşüm Tz = 3

4
(z − 1) olsun. Bu halde her x ∈ Cmr

−3,1 = {−1,−5} için
(Cmr

3 1) koşulu

x = −1 için 5
4
− 1 ≤ 1− (9

4
− 3

2
) ⇒ 1

4
≤ 1

4

x = −5 için 19
4
− 9

2
≤ 1− (15

4
− 3) ⇒ 1

4
≤ 1

4

olup sağlanıyor iken apaçık olarak (Cmr
3 2) koşulu h ∈ [0, 1) olmak üzere

x = −1 için h.1
4
+ 3

4
≥ 1

x = −5 için h.1
4
+ 3

4
≥ 1

olacağından sağlanmaz. Böylelikle Cmr
−3,1 çemberi T dönüşümü altında invaryant değildir.

Örnek 5.9 Bundan önceki iki örnekte kullanılan rectangular M−metrik uzay ve çember
yeniden ele alınsın. Ayrıca dönüşüm Tz = 5z olarak verilsin. Bu takdirde her
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x ∈ Cmr
−3,1 {−1,−5}için (Cmr

3 1) koşulu

x = −1 için 3− 1 ≤ 1− (4− 3) ⇒ 2 ≤ 0

x = −5 için 15− 5 ≤ 1− (14− 3) ⇒ 10 ≤ −10

olacağından sağlanmaz iken (Cmr
3 2) koşulu açık bir şekilde h ∈ [0, 1) olmak üzere

x = −1 için h.2 + 1 ≥ 1

x = −5 için h.10 + 11 ≥ 1

olup sağlanır. Dolayısıyla Cmr
−3,1 çemberi T dönüşümü altında invaryant değildir.

Teorem 5.4 (X,mr) bir rectangular M−metrik uzay ve Cmr
x0,r

bu uzayda bir çember olsun.
Ayrıca φ : X → [0,∞) fonksiyonu her x ∈ X için

φ(x) = mr(x, x0)−mrx,x0

şeklinde tanımlansın. Bu takdirde T : X → X dönüşümü her x ∈ Cmr
x0,r

için

(Cmr
4 1) mr(x, Tx)−mrx,Tx

≤ φ(x) + φ(Tx)− 2r

(Cmr
4 2) mr(x, Tx)−mrx,Tx

+ φ(Tx) ≤ r

(Cmr
4 3) mrx,Tx

= Mrx,Tx

koşullarını sağlıyorsa Cmr
x0,r

çemberi T dönüşümünün sabit çemberidir.

İspat (X,mr) bir rectangularM−metrik uzay, Cmr
x0,r

bu uzayda x0 merkezli, r yarıçaplı bir
çember ve φ : X → [0,∞) fonksiyonu her x ∈ X için φ(x) = mr(x, x0) −mrx,x0

şeklinde
tanımlı ve T : X → X teoremin hipotezindeki koşulları sağlayan bir dönüşüm olsun. Buna
göre herhangi bir x ∈ Cmr

x0,r
içinmr(x, x0)−mrx,x0

= r dir. Bu noktada (Cmr
4 1) koşulundan

başlayarak ve (Cmr
4 2) yardımıyla

mr(x, Tx)−mrx,Tx
≤ φ(x) + φ(Tx)− 2r

= mr(x, x0)−mrx,x0
+ φ(Tx)− 2r

= r + φ(Tx)− 2r

= φ(Tx)− r

≤ φ(Tx)−
[
mr(x, Tx)−mrx,Tx

+ φ(Tx)
]

= −
[
mr(x, Tx)−mrx,Tx

]
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bulunur. Bu aşamada düzenleme ile 2
[
mr(x, Tx)−mrx,Tx

]
≤ 0 elde edilir. Ayrıca

rectangular M−metriğin 2. aksiyomu gereğince mr(x, Tx) ≥ mrx,Tx
olacağından[

mr(x, Tx)−mrx,Tx

]
≥ 0 olmalıdır. O halde açıkça mr(x, Tx) −mrx,Tx

= 0 olur. Üstelik
(Cmr

4 3) koşulundan dolayı mrx,Tx
= Mrx,Tx

olup rectangular M−metriğin ilk aksiyomu
gereğince

mr(x, Tx) = mrx,Tx
= Mrx,Tx

⇐⇒ x = Tx

sonucu elde edilir. Bunun neticesi olarak Cmr
x0,r

, T dönüşümü altında invaryanttır.

Örnek 5.10 4. bölümde verilen örnek 4.1 deki (Xθ,mr) rectangularM−metrik uzay θ = π
4

olmak şartıyla ele alınsın. Yani Xπ
4
=

{
z ∈ C | arg(z) = π

4

}
∪ {0} ve mr : Xπ

4
× Xπ

4
→

[0,∞) fonksiyonu her x, y ∈ Xπ
4
için mr(x, y) = |x|+|y|

2
biçiminde tanımlıdır. Bu uzayda

Cmr
3+3i,1 çemberi ve

Tz =

{
z |z| < 10 ise

3z |z| ≥ 10 ise

dönüşümü göz önüne alınsın. Buna göre çember gerekli hesaplamalar yapılarak
Cmr

3+3i,1 =
{
(3−

√
2) + (3−

√
2)i, (3 +

√
2) + (3 +

√
2)i

}
olarak bulunur. Bu moktada

kolayca her x ∈ Cmr
3+3i,1 için (Cmr

4 1), (Cmr
4 2), (Cmr

4 3) koşullarının sağlandığı görülür. Bu
sebeple Cmr

3+3i,1 çemberi T dönüşümünün sabit çemberidir. Ancak T dönüşümünün tek sabit
çemberinin Cmr

3+3i,1 olmadığı, Cmr
2+2i,1, C

mr

4+4i, 1
2

, Cmr
3+3i,2 çemberlerinde T nin sabit çemberi

olduğunun görülmesi ile anlaşılır. Elbetteki tüm çemberler T altında invaryant değildir.
Örneğin Cmr

6+6i,3 ve C
mr
5+5i,5 çemberleri T nin sabit çemberi değildir.

Örnek 5.11 Bir önceki örnekte ele alınan rectangular M−metrik uzay ve çember ele
alınsın. Ayrıca dönüşüm Tz = 3z∣∣∣∣−z ∣∣∣∣ olsun. Bu halde her

x ∈ Cmr
3+3i,1 =

{
(3−

√
2) + (3−

√
2)i, (3 +

√
2) + (3 +

√
2)i

}
için (Cmr

4 1) koşulu

x = (3−
√
2) + (3−

√
2)i için 6

√
2+38
28

− 66−36
√
2

14
≤ 1 + 78

√
2−66
28

− 2 ⇒ 78
√
2−96
28

≤ 78
√
2−94
28

x = (3+
√
2)+ (3+

√
2)i için 94+78

√
2

28
− (3

√
2+ 2) ≤ 1+ 66−6

√
2

28
− 2 ⇒ 38−6

√
2

28
≤ 38−6

√
2

28

olup sağlanıyor iken açık bir şekilde (Cmr
4 1) koşulu

x = (3−
√
2) + (3−

√
2)i için 78

√
2−96
28

+ 78
√
2−66
28

≤ 1 ⇒ 156
√
2−162
28

≤ 1

x = (3 +
√
2) + (3 +

√
2)i için 38−6

√
2

28
+ 66−6

√
2

28
≤ 1 ⇒ 104−12

√
2

28
≤ 1

olacağından sağlanmaz. Bu nedenle Cmr
3+3i,1 çemberi, T dönüşümü altında invaryant

değildir.
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Örnek 5.12 Bundan önceki iki örnekte kullanılan rectangular M−metrik uzay ve çember
yeniden ele alınsın. Ayrıca dönüşüm Tz = |z+x0|

2
z
|z| olarak verilsin. Bu takdirde her

x ∈ Cmr
3+3i,1 =

{
(3−

√
2) + (3−

√
2)i, (3 +

√
2) + (3 +

√
2)i

}
için (Cmr

4 1) koşulu

x = (3−
√
2) + (3−

√
2)i için 6

√
2−3
2

− (3
√
2− 2)

≤ 1 + 6
√
2−1
2

− (3
√
2− 1)− 2 ⇒ 1

2
≤ −1

2

x = (3 +
√
2) + (3 +

√
2)i için 6

√
2+3
2

− (3
√
2 + 1) ≤ 1 + 6

√
2+1
2

− 3
√
2− 2 ⇒ 1

2
≤ −1

2

olacağından sağlanmaz iken (Cmr
4 2) koşulu apaçık olarak

x = (3−
√
2) + (3−

√
2)i için 6

√
2−3
2

− (3
√
2− 2) + 6

√
2−1
2

− (3
√
2− 1) ≤ 1 ⇒ 1 ≤ 1

x = (3 +
√
2) + (3 +

√
2)i için 6

√
2+3
2

− (3
√
2 + 1) + 6

√
2+1
2

− 3
√
2 ≤ 1 ⇒ 1 ≤ 1

olup sağlanır. Bundan dolayı Cmr
3+3i,1 çemberi, T dönüşümü altında invaryant değildir.

Teorem 5.5 (X,mr) bir rectangular M−metrik uzay ve Cmr
x0,r

bu uzayda bir çember olsun.
φr : R+ ∪ {0} → R dönüşümü her u ∈ R+ ∪ {0} için

φr(u) =

{
u− r, u > 0 ise

0, u = 0 ise

olarak tanımlansın. Bu takdirde T : X → X dönüşümü her x, y ∈ Cmr
x0,r

için

(Cmr
5 1) mr(Tx, x0)−mrTx,x0

= r

(Cmr
5 2) x ̸= y olmak üzere mr(Tx, Ty)−mrTx,Ty

> r

(Cmr
5 3) mr(Tx, Ty)−mrTx,Ty

≤ mr(x, y)−mrx,y − φr(mr(x, Tx)−mrx,Tx
)

(Cmr
5 4) mrx,Tx

= Mrx,Tx

koşullarını sağlıyorsa Cmr
x0,r

çemberi T dönüşümünün bir sabit çemberidir.

İspat (X,mr) bir rectangularM−metrik uzay, Cmr
x0,r

bu uzayda x0 merkezli, r yarıçaplı bir
çember ve φr : [0,∞) → R fonksiyonu her u ∈ [0,∞) için

φr(u) =

{
u− r, u > 0 ise

0, u = 0 ise

şeklinde tanımlı ayrıca T : X → X teoremin hipotezindeki koşulları sağlayan bir dönüşüm
olsun. Buna göre x ∈ Cmr

x0,r
keyfi bir nokta olmak üzere (Cmr

5 1) koşulu gereğince Tx ∈
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Cmr
x0,r

olmalıdır. Şimdi x noktasının T nin bir sabit noktası olduğu ispatlanmalıdır. Bu amaç
için x ̸= Tx olduğu varsayılsın. İlk olarak (Cmr

5 2) koşulunda x = x ve y = Tx alınarak
mr(Tx, T

2x)−mrTx,T2x
> r elde edilir. Ayrıca (Cmr

5 3) koşulu gereğince

mr(Tx, T
2x)−mrTx,T2x

≤ mr(x, Tx)−mrx,Tx
− φr(mr(x, Tx)−mrx,Tx

)

= mr(x, Tx)−mrx,Tx
− (mr(x, Tx)−mrx,Tx

− r

= r

elde edilir. Ancak açıkça mr(Tx, T
2x) − mrTx,T2x

> r ve mr(Tx, T
2x) − mrTx,T2x

≤ r

olduğundan çelişki elde edilir. Dolayısıyla varsayım hatalıdır. Yani Tx = x olmalıdır. Bu
takdirde Cmr

x0,r
çemberi T dönüşümü altında invaryanttır.

Örnek 5.13 4. bölümde verilen örnek 4.1 deki (Xθ,mr) rectangularM−metrik uzayı θ = π
2

olmak şartıyla ele alınsın. Buna göreXπ
2
=

{
z ∈ C | arg(z) = π

2

}
∪{0} vemr : Xπ

2
×Xπ

2
→

[0,∞) fonksiyonu her x, y ∈ Xπ
2
için mr(x, y) = |x|+|y|

2
şeklinde tanımlıdır. Bu uzayda

Cmr
3i,1 çember ve Tz = 1

(
|z|+3

2
−min{|z|,3})2

.z dönüşümü göz önüne alınsın. Buna göre çember
için gerekli hesaplamalar yapılarak Cmr

3i,1 = {i, 5i} olarak bulunur. Bu noktada kolayca her
x ∈ Cmr

3i,1 için (Cmr
5 1), (Cmr

5 2), (Cmr
5 3), (Cmr

5 4) koşullarını sağladığı görülür. Bu nedenle
Cmr

3i,1 çemberi, T dönüşümü altında invaryanttır.

Örnek 5.14 Bir önceki örnekte ele alınan rectangular M−metrik uzay ve çember ele
alınsın. Ayrıca dönüşüm Tz = 5

|z|2 z olsun. Bu durumda her x ∈ Cmr
3i,1 = {i, 5i} için (Cmr

5 1)

koşulu

x = i için 5+3
2

− 3 = 1 ve x = 5i için 1+3
2

− 1 = 1

olup sağlanır. (Cmr
5 2) koşulu her x, y ∈ Cmr

3i,1 ve x ̸= y için

5+1
2

− 1 = 2 > 1

olduğundan sağlanır. (Cmr
5 3) koşulu her x, y ∈ Cmr

3i,1 için

5+1
2

− 1 ≤ 1+5
2

− 1− φr(2) ⇒ 2 ≤ 2− (2− 1) ⇒ 2 ≤ 1

olup sağlanmaz iken (Cmr
5 4) koşulunda

min {1, 5} = max {1, 5} ⇒ 1 = 5

olduğundan sağlanmaz. Bu sebeple Cmr
3i,1 çemberi, T dönüşümü altında invaryant değildir.
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Teorem 5.6 (X,mr) bir rectangular M−metrik uzay ve Cmr
x0,r

bu uzayda bir çember olsun.
Ayrıca θr : R → R dönüşümü her u ∈ R ve r ≥ 0 için

θr(u) =

{
r, u = r ise

u+ r, u ̸= r ise

olarak tanımlansın. Bu takdirde T : X → X dönüşümü

(Cmr
6 1) Her x ∈ X ve bazı L ∈ [−∞, 0) için

mr(Tx, x0)−mrTx,x0
≤ θr(mr(x, x0)−mrx,x0

) + L(mr(x, Tx)−mrx,Tx
)

(Cmr
6 2) x ∈ Cmr

3i,1 içinmr(Tx, x0)−mrTx,x0
≥ r

(Cmr
6 3) Her x ̸= y olacak şekilde x, y ∈ Cmr

x0,r
için

mr(Tx, Ty)−mTx,Ty ≥ 2r

(Cmr
6 4) Her x ̸= y olacak şekilde x, y ∈ Cmr

x0,r
için

mr(Tx, Ty)−mTx,Ty < r +mr(y, Tx)−mry,Tx

(Cmr
6 5) Her x ∈ Cmr

x0,r
içinmrx,Tx

= Mrx,Tx

koşullarını sağlıyorsa Cmr
x0,r

çemberi T dönüşümünün bir sabit çemberidir.

İspat (X,mr) bir rectangularM−metrik uzay, Cmr
x0,r

bu uzayda x0 merkezli, r yarıçaplı bir
çember ve θr : R → R dönüşümü her u ∈ R ve r ≥ 0 için

θr(u) =

{
r, u = r ise

u+ r, u ̸= r ise

şeklinde tanımlı ve ayrıca T : X → X teoremin hipotezindeki koşulları sağlayan bir
dönüşüm olsun. Buna göre x ∈ Cmr

x0,r
keyfi bir nokta olmak üzere (Cmr

6 1) ve (Cmr
6 2)

koşulları gereğince

mr(Tx, x0)−mrTx,x0
≤ θr(mr(x, x0)−mrx,x0

) + L(mr(x, Tx)−mrx,Tx
)

= r + L(mr(x, Tx)−mrx,Tx
)

ve

mr(Tx, x0)−mrTx,x0
≥ r
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olacağından açıkça

r ≤ mr(Tx, x0)−mrTx,x0
≤ r + L(mr(x, Tx)−mrx,Tx

)

elde edilir. Şimdi L ∈ (−∞, 0] için durum L = 0 ve L ∈ (−∞, 0) olmak üzere iki hale
ayrılacaktır.

1.Hal: L = 0 olsun. Bu takdirde üstteki son eşitsizlik gereğince aşikar olarak
mr(Tx, x0) − mrTx,x0

= r bulunur. Yani Tx ∈ Cmr
x0,r

olur. Bu takdirde
mr(Tx, x0)−mrTx,x0

= 0 veyamr(Tx, x0)−mrTx,x0
̸= 0 olur. Bu aşamada x ∈ Cmr

x0,r
için

mr(Tx, x0) −mrTx,x0
̸= 0 olduğu varsayılsın. O halde x ̸= Tx olduğundan (Cmr

6 3) koşulu
gereğince x = x ve y = Tx alarak mr(Tx, T

2x) − mrTx,T2x
≥ 2r bulunur. Ayrıca (Cmr

6 4)

koşulu koşulu kullanılarak,

mr(Tx, T
2x)−mrTx,T2x

< r +mr(Tx, Tx)−mrTx,Tx

olacacağından (Cmr
6 5) koşulu gereğince de açık bir şekilde

mr(Tx, T
2x)−mrTx,T2x

< r

elde edilir. Fakat bu ifade mr(Tx, T
2x) − mrTx,T2x

≥ 2r olması ile çelişir. Dolayısıyla
mr(x, Tx) − mrx,Tx

= 0 olmalıdır ve böylelikle (Cmr
6 5) koşulu ve rectangular M−metrik

uzayın ilk aksiyomu gereğince x = Tx dir.

2.Hal: L ∈ (−∞, 0) olsun.mr(x, Tx)−mrx,Tx
̸= 0 ise

r ≤ mr(Tx, x0)−mrTx,x0
≤ r + L(mr(x, Tx)−mrx,Tx

)

eşitsizliği ile çelişir. Böyleliklemr(x, Tx)−mrx,Tx
= 0 olak zorundadır. Bu nedenle (Cmr

6 5)

koşulu ve rectangular M−metrik uzayın ilk aksiyomu gereğince x = Tx elde edilir. Yani
Cmr

x0,r
çemberi T dönüşümü altında invaryanttır. Diğer bir değişle T dönüşümünün bir sabit

noktalarının kümesi Cmr
x0,r

çemberini içerir.

Örnek 5.15 4. bölümde verilen örnek 4.1 deki (Xθ,mr) rectangular M−metrik uzayı
θ = π olmak şartıyla ele alınsın. Buna göre Xπ = {z ∈ C | arg(z) = π} ∪ {0} ve
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mr : Xπ × Xπ → [0,∞) fonksiyonu her x, y ∈ Xπ için mr(x, y) = |x|+|y|
2

şeklinde
tanımlıdır. Bu uzayda Cmr

−4,1 çemberi ve Tz = 1

(
|z|+4

2
−min{|z|,4})2

.z dönüşümü göz önüne
alınsın. Buna göre Cmr

−4,1 = {−2,−6} olarak bulunur. O halde kolaylıkla her x ∈ Cmr
−4,1 için

(Cmr
6 1), (Cmr

6 2), (Cmr
6 3), (Cmr

6 4) (Cmr
6 5) koşullarını sağladığı görülür. Dolayısıyla Cmr

−4,1

çemberi, T dönüşümü altında invaryanttır.

Örnek 5.16 Bir önceki örnekte ele alınan rectangular M−metrik uzay ve çember ele
alınsın. Ayrıca dönüşüm Tz = 12

|z|2 z olsun. Bu durumda her x ∈ Cmr
−4,1 = {−2,−6} için

(Cmr
6 1) koşulu

x = −2 için 6+4
2

− 4 ≤ θr(1) + L(2+6
2

− 2) ⇒ 1 ≤ 1 + L2

x = −6 için 2+4
2

− 2 ≤ θr(1) + L(2+6
2

− 2) ⇒ 1 ≤ 1 + L2

olup L = 0 için sağlanır. (Cmr
6 2) koşulu

x = −2 için 6+4
2

− 4 = 1 ≥ 1 ve x = −6 için 2+4
2

− 2 = 1 ≥ 1

olduğundan sağlanır. (Cmr
6 3) koşulu her x, y ∈ Cmr

−4,1 ve x ̸= y için

6+2
2

− 2 = 2 ≥ 2

olup sağlanır iken (Cmr
6 4) koşulu

6+2
2

− 2 < 1 + 6+6
2

− 6 ⇒ 2 < 1

olup sağlanmaz (Cmr
6 5) koşulunda

min {2, 6} = max {2, 6} ⇒ 2 = 6

olduğundan sağlanmaz. Bu sebeple Cmr
−4,1 çemberi, T dönüşümü altında invaryant değildir.

Teorem 5.7 (X,mr) bir rectangular M−metrik uzay ve Cmr
x0,r

bu uzayda bir çember olsun.
Ayrıca θr : R → R dönüşümü her u ∈ R ve r ≥ 0 için

θr(u) =

{
r, u = r ise

u+ r, u ̸= r ise

olarak tanımlansın. Bu takdirde T : X → X dönüşümü
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(Cmr
7 1) Her x ∈ X ve bazı L ∈ (−∞, 0] için

2
[
mr(x, x0)−mrx,x0

]
−
[
mr(Tx, x0)−mrTx,x0

]
≤ θr(mr(x, x0)−mrx,x0

)+L(mr(x, Tx)−mrx,Tx
)

(Cmr
7 2) x ∈ Cmr

x0,r
için mr(Tx, x0)−mrTx,x0

≤ r

(Cmr
7 3) Her x ̸= y olacak şekilde x, y ∈ Cmr

x0,r
için

mr(Tx, Ty)−mTx,Ty ≥ 2r

(Cmr
7 4) Her x ̸= y olacak şekilde x, y ∈ Cmr

x0,r
için

mr(Tx, Ty)−mTx,Ty < r +mr(y, Tx)−mry,Tx

(Cmr
7 5) Her x ∈ Cmr

x0,r
için mrx,Tx

= Mrx,Tx

koşullarını sağlıyorsa Cmr
x0,r

çemberi T dönüşümünün bir sabit çemberidir.

İspat (X,mr) bir rectangularM−metrik uzay, Cmr
x0,r

bu uzayda x0 merkezli, r yarıçaplı bir
çember ve θr : R → R dönüşümü her u ∈ R ve r ≥ 0 için

θr(u) =

{
r, u = r ise

u+ r u ̸= r ise

şeklinde tanımlı ve ayrıca T : X → X teoremin hipotezindeki koşulları sağlayan bir
dönüşüm olsun. Buna göre x ∈ Cmr

x0,r
keyfi bir nokta olmak üzere (Cmr

7 1) ve (Cmr
7 2)

koşulları gereğince

2
[
mr(x, x0)−mrx,x0

]
−

[
mr(Tx, x0)−mrTx,x0

]
≤ θr(mr(x, x0)−mrx,x0

) + L(mr(x, Tx)−mrx,Tx
)

⇒ 2r −
[
mr(Tx, x0)−mrTx,x0

]
≤ r + L(mr(x, Tx)−mrx,Tx

)

ve

r ≤
[
mr(Tx, x0)−mrTx,x0

]
+ L(mr(x, Tx)−mrx,Tx

)

≤ r + L
[
(mr(x, Tx)−mrx,Tx

)
]

elde edilir. Şimdi L ∈ (−∞, 0] için durum L = 0 ve L ∈ (−∞, 0) olmak üzere iki hale
ayrılacaktır.
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1.Hal: L = 0 olsun. Bu takdirde üstteki son eşitsizlik gereğince açıkça
mr(Tx, x0) − mrTx,x0

= r bulunur. Yani Tx ∈ Cmr
x0,r

olur. Bu takdirde
mr(x, Tx) − mrx,Tx

= 0 veya mr(x, Tx) − mrx,Tx
̸= 0 olur. Bu aşamada x ∈ Cmr

x0,r
için

mr(x, Tx) − mrx,Tx
̸= 0 olduğu varsayılsın. O halde x ̸= Tx olduğundan (Cmr

7 3) koşulu
gereğince x = x ve y = Tx alarak mr(Tx, T

2x) − mrTx,T2x
≥ 2r bulunur. Ayrıca (Cmr

7 4)

koşulu koşulu kullanılarak,

mr(Tx, T
2x)−mrTx,T2x

< r +mr(Tx, Tx)−mrTx,Tx

olacağından (Cmr
7 5) koşulu gereğince de apaçık olarak

mr(Tx, T
2x)−mrTx,T2x

< r

elde edilir. Fakat bu ifade mr(Tx, T
2x) − mrTx,T2x

≥ 2r olması ile çelişir. Dolayısıyla
mr(x, Tx) − mrx,Tx

= 0 olmalıdır ve böylelikle (Cmr
7 5) koşulu ve rectangular M−metrik

uzayın ilk aksiyomu gereğince x = Tx dir.

2.Hal: L ∈ (−∞, 0) olsun.mr(x, Tx)−mrx,Tx
̸= 0 ise

r ≤
[
mr(Tx, x0)−mrTx,x0

]
+ L

[
mr(x, Tx)−mrx,Tx

]
≤ r + L(mr(x, Tx)−mrx,Tx

)

eşitsizliği ile çelişir. Böylelikle mr(x, Tx) − mrx,Tx
= 0 olmak zorundadır. Bu nedenle

(Cmr
7 5) koşulu ve rectangular M−metrik uzayın ilk aksiyomu gereğince x = Tx elde

edilir. Bu takdirde her x ∈ Cd
x0,r

için x = Tx elde edilir. Yani Cmr
x0,r

çemberi T dönüşümü
altında invaryanttır. Diğer bir değişle T dönüşümünün bir sabit noktalarının kümesi Cmr

x0,r

çemberini içerir.

Örnek 5.17 4. bölümde verilen örnek 4.1 deki (Xθ,mr) rectangular M−metrik uzayı
θ = 3π

2
olmak şartıyla ele alınsın. Buna göre Xπ =

{
z ∈ C | arg(z) = 3π

2

}
∪ {0} ve

mr : X 3π
2
× X 3π

2
→ [0,∞) fonksiyonu her x, y ∈ X 3π

2
için mr(x, y) = |x|+|y|

2
şeklinde

tanımlıdır. Bu uzayda Cmr
−5i,2 çemberi ve Tz = 4

(
|z|+5

2
−min{|z|,5})2

.z dönüşümü göz önüne
alınsın. Buna göre Cmr

−5i,2 = {−i,−9i} olarak bulunur. O halde kolaylıkla her x ∈ Cmr
−5i,2

için (Cmr
7 1), (Cmr

7 2), (Cmr
7 3), (Cmr

7 4) (Cmr
7 5) koşullarını sağladığı görülür. Dolayısıyla

Cmr
−5,2 çemberi, T dönüşümü altında invaryanttır.

Örnek 5.18 Bir önceki örnekte ele alınan rectangular M−metrik uzay ve çember ele
alınsın. Ayrıca dönüşüm Tz = 9

|z|2 z olsun. Bu durumda her x ∈ Cmr
−5i,2 = {−i,−9i} için
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(Cmr
7 1) koşulu

x = −i için 2
[
1+5
2

− 1
]
− 2

[
9+5
2

− 5
]
≤ θr(2) + L

[
1+9
2

− 1
]
⇒ 2 ≤ +L4

x = −9i için 2
[
9+5
2

− 5
]
− 2

[
1+5
2

− 1
]
≤ θr(2) + L

[
1+9
2

− 1
]
⇒ 2 ≤ +L4

olup L = 0 için sağlanır. (Cmr
7 2) koşulu

x = −i için 9+5
2

− 5 = 2 ≤ 2

x = −9i için 1+5
2

− 5 = 2 ≤ 2

olduğundan sağlanır. (Cmr
7 3) koşulu her x, y ∈ Cmr

−5i,2 ve x ̸= y için

9+1
2

− 1 = 4 ≥ 4

olup sağlanır iken (Cmr
7 4) koşulu

9+1
2

− 1 < 2 + 9+9
2

− 9 ⇒ 4 < 2

olduğundan sağlanmaz (Cmr
7 5) koşuluda

min {1, 9} = max {1, 9} ⇒ 1 = 9

olduğundan sağlanmaz.

Bu sebeple Cmr
−5i,2 çemberi, T dönüşümü altında invaryant değildir.

X boştan farklı bir küme olmak üzere her x ∈ X için Ix(x) = x olacak şekilde
tanımlı dönüşüme x üzerinde birim dönüşüm denir. Açıkça birim dönüşüm uzaydaki bütün
noktaları sabit bırakan dönüşümdür. Üstelik Teorem 5.1-5.4 teoremlerindeki koşullar birim
dönüşüm tarafından sağlanır. Doğal olarak teoremin hipotezinde verilen çemberler I altında
invaryanttır. Fakat birim dönüşümler tüm noktaları bıraktığı için bu sonuç çok anlamlı
değildir. Bu nedenle birim olmayan dönüşümleri belirlemek önemli olacaktır. Aşağıdaki
teorem ele alınan dönüşümünün hangi koşullar alında birim dönüşüm olacağını ifade
etmektedir.

Teorem 5.8 (X,mr) bir rectangular M−metrik uzay, Cmr
x0,r

bu uzayda x0 merkezli, r
yarıçaplı çember olsun. Ayrıca φ : X → [0,∞) fonksiyonu her x ∈ X için
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φ(x) = mr(x, x0)−mrx,x0
şeklinde tanımlansın. Bu takdirde T : X → X dönüşümü x ̸= y

olacak şekilde her x, y ∈ X ve bazı h > 1 için
mr(x, Tx) − mrx,Tx

+ mr(y, Ty) − mry,Ty
≤ φ(x)−φ(Tx)+φ(y)−φ(y)−2[mr(Tx,Ty)−mrTx,Ty ]

h
ve

mrx,Tx
= Mrx,Tx

koşullarını sağlıyorsa T , X üzerinde birim dönüşümüdür. Dolasıyla Cmr
x0,r

,

T dönüşümünün bir sabit çemberidir. Üstelik ifadenin tersi de doğrudur.

İspat (X,mr) bir rectangular M−metrik uzay, Cmr
x0,r

bu uzayda x0 merkezli, r yarıçaplı
bir çember ve φ : x → [0,∞) dönüşümü her x ∈ X için φ(x) = mr(x, x0) − mrx,x0

şeklinde tanımlı ve T : X → X teoreminin hipotezindeki koşulları sağlayan bir dönüşüm
olsun. x, y ∈ X, x ̸= y, x ̸= Tx ve y ̸= Ty olsun. Bu takdirde teoremin hipotezindeki
eşitsizlik ve rectangular M−metriğin 4. aksiyomu kullanılarak

h
[
mr(x, Tx)−mrx,Tx

+mr(y, Ty)−mry,Ty

]
≤ φ(x)− φ(Tx) + φ(y)− φ(Ty)

−2
[
mr(Tx, Ty)−mrTx,Ty

]
= mr(x, x0)−mrx,x0

−mr(Tx, x0)

+mrTx,x0
+mr(y, x0)−mry,x0

−mr(Ty, x0)−mrTy,x0

−2
[
mr(Tx, Ty)−mrTx,Ty

]
≤ mr(x, Tx)−mrx,Tx

+mr(Tx, Ty)

−mrTx,Ty
+mr(Ty, x0)

−mrTy,x0
−mr(Tx, y0)−mrTx,x0

+mr(y, Ty)−mry,Ty
+mr(Ty, Tx)

−mrTy,Tx
+mr(x, x0)−mrx,x0

−mr(Ty, x0)−mrTy,x0

−2
[
mr(Tx, Ty)−mrTx,Ty

]
= mr(x, Tx)−mrx,Tx

+mr(y, Ty)−mry,Ty

elde edilir. Bu ulaşılan noktadan düzenleme ile

(h− 1)
[
mr(x, Tx)−mrx,Tx

+mr(y, Ty)−mry,Ty

]
≤ 0

sonucuna ulaşır. Şimdi h > 1 olduğundan ve rectangular M−metriğin 2.aksiyomu
gereğince
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mr(x, Tx)−mrx,Tx
+mr(y, Ty)−mry,Ty

= 0

⇒ mr(x, Tx)−mrx,Tx
= 0

= 0 ve mr(y, Ty)−mry,Ty
= 0

olur. Ayrıca teoremin hipotezi gereğince mru,Tu
= Mru,Tu

olup rectangular M−metriğin
1.aksiyomundan dolayı x = Tx ve y = Ty sonucuna ulaşılır. Bu nedenle T = IX dir ve
sonuç olarak Cmr

x0,r
çemberi Tnin sabit çemberidir.Tersine T = IX ise IX birim dönüşümü

hipotezdeki koşulu açıkça sağlar.

Teorem 5.9 (X,mr) bir rectangular M−metrik uzay, Cmr
x0,r

bu uzayda bir çember olsun.
Ayrıca Cmr

x0,r
, T : X → X dönüşümünün sabit çemberi olsun. Bu takdirde T : X → X

dönüşümünün her x ∈ X için ve bazı α ∈ (0, 1) için

mr(x, Tx)−mrx,Tx
≤ α

[
max

{
mr(x, Tx)−mrx,Tx

,mr(x0, Tx)−mrx0,Tx

}
− (mr(x0, Tx)−mrx0,Tx

)
]

ve mrx,Tx
= Mrx,Tx

koşullarını sağlaması için gerek ve yeter koşul T = Ix olmasıdır.

İspat (X,mr) bir rectangular M−metrik uzay ve T : X → X dönüşümü Cmr
x0,r

sabit
çemberine sahip olsun x ̸= Tx olacak şekilde x ∈ X olsun. Teoremin hipotezindeki
eşitsizlikte yer alan maksimum ifadesi gereğince iki durum söz konusudur.

1.Durum:
mr(x, Tx)−mrx,Tx

≥ mr(x0, Tx)−mrx0,Tx

olsun. Bu takdirde ifade

mr(x, Tx)−mrx,Tx
≤ α

[
mr(x, Tx)−mrx,Tx

− (mr(x0, Tx)−mrx0,Tx
)
]

≤ α(mr(x, Tx)−mrx,Tx
)

olup α ∈ (0, 1) olduğundan dolayı mr(x, Tx) −mrx,Tx
= 0 bulunur Bu ise x ̸= Tx olması

ile çelişir.

2.Durum:
mr(x, Tx)−mrx,Tx

≤ mr(x0, Tx)−mrx0,Tx
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olsun. Bu göre ifade

mr(x, Tx)−mrx,Tx
≤ α

[
(mr(x0, Tx)−mrx0,Tx

− (mr(x, Tx)−mrx,Tx))
]
= 0

olur. Bundan dolayı her x ∈ X için Tx = x olur ki bu ise T = Ix olmasını gerektirir. Tersine
Ix birim dönüşümü teoremin hipotezindeki koşulu apaçık bir şekilde sağlar.
Aşağıdaki önermeler bir ractangular M−metrik uzayda bu uzayının kendi dönüşümünün
birden fazla sabit çemberinin varolabileceğine göstermektedir.

Önerme 5.1 (X,mr) bir rectangular M−metrik uzay ve Cmr
x1,r1

ile Cmr
x2,r2

bu uzayda iki
çember olsun. Bu takdirde Cmr

x1,r1
ile Cmr

x2,r2
çemberlerini sabit bırakacak şekilde bir

T : X → X dönüşümü vardır

İspat (X,mr) bir rectangular M−metrik uzay ve Cmr
x1,r1

ve Cmr
x2,r2

bu uzayda sırasıyla x1

merkezli, r1 yarıçaplı ve x2 merkezli, r2 yarıçaplı çemberler olsun Ayrıca
mr(P, x1)−mrP,x1

̸= r1 vemr(P, x2)−mrP,xi
̸= r2 olacak şekilde bir nokta P ∈ X olmak

üzere her x ∈ X için T : X → X dönüşümü

Tx =

{
x, x ∈ Cx1i,r1 ∪ Cx2i,r2 ise

P, diğer durumlarda

şeklinde tanımlansın. Bunların yanı sıra φ1, φ2 : X → [0,∞) dönüşümleri her x ∈ X için
φ1(x) = mr(x, x1)−mr1 ve φ2(x) = mr(x, x2)−mrx,x2

olacak şekilde tanımlı olsun. Bu takdirde T dönüşümü,φ1 veφ2 dönüşümleri ile birlikteCmr
x1,r1

ileCmr
x2,r2

çemberleri i = 1, 2, 3, 4, 5 ve de j = 1, 2, 3, 4, 5, 6, 7 olmak üzere (Cmr
j,i ) koşullarını

sağlar. Bu nedenle Teorem 5.j gereğince açıkcaCmr
x1,r1

ileCmr
x2,r2

çemberiT dönüşümünün sabit
çemberleridir. Üstelik dikkat edilirse Cmr

x1,r1
ile Cmr

x2,r2
çemberinin konumları ve büyüklükleri

üzerinde herhangi bir kısıtlama yoktur.

Önerme 5.2 (X,mr) bir rectangular M−metrik uzay ve Cmr
x1,r1

, ..., Cmr
x2,r2

bu uzayda
herhangi n çember olsun. Bu takdirde Cmr

x1,r1
, ..., Cmr

x2,r2
çemberlerini sabit bırakacak şekilde

bir T : X → X dönüşümü vardır

İspat (X,mr) bir rectangularM−metrik uzay olmak üzere Cmr
x1,r1

, ..., Cmr
x2,r2

bu uzayda i =
1, ..., n için xi merkezli, ri yarıçaplı çemberler olsun. Ayrıca i = 1, 2, ..., n için mr(P, xi)−
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mrP,xi
̸= ri olacak şekilde bir nokta P ∈ X olmak üzere her x ∈ X için T : X → X

dönüşümü

Tx =

 x, x ∈
n
∪
i=1

Cmr
xi,ri

ise

P, diğer durumlarda

biçiminde tanımlansın. Bunların yanı sıra i = 1, 2, ..., n için φ(x) : X → [0.∞)

dönüşümleri her x ∈ X için φi(x) = mr(x, xi) −mrx,xi olacak şekilde tanımlanmış olsun.
Bu takdirde T dönüşümü i = 1, ..., n olmak üzere φi dönüşümleri ile birlikte Cmr

xi,ri

çemberleri için k ∈ {1, 2, 3, 4, 5} ve de j ∈ {1, 2, 3, 4, 5, 6, 7} olmak üzere (Cmr
j k)

koşullarını sağlar. Böylelikle Theorem 5.1 gereğince aşikar olarak Cmr
x1,r1

, ..., Cmr
xn,rn

çemberleri T dönüşümünün sabit çemberleridir. Ayrıca dikkat edileceği üzere i = 1, ..., n

için Cmr
xi,ri

çemberlerinin konumları ve büyüklükleri üzerinde herhangi bir kısıtlama yoktur.

Buraya kadar olan kısımda teorem 5.1-5.7 ile rectangular M−metrik uzayda bir
kendi üzerine dönüşümün hangi koşullar altında sabit çemberinin varolacağı verildi.
Kısaca sabit çemberin varlık koşulları verildi. Önerme 5.1 ve Önerme 5.2 ile de varlık
koşullarını sağlayan bir dönüşümün birden fazla sabit çemberinin olabileceği görülmüş
oldu. O halde an itibarı ile bir rectangular M−metrik uzayda bir kendi üzerine dönüşümün
ne zaman bir tek sabit çemberinin olacağı sorusu önem kazanmış olur. Bu bağlamda
aşağıdaki teoremler bu soruya yanıt vermektedir. Yani kısacası bir rectangular M−metrik
uzayda sabit çemberin teklik koşulları verilecektir.

Teorem 5.10 (X,mr) bir rectangular M−metrik uzay, Cmr
x0,r

bu uzayda bir çember olsun.
Ayrıca Cmr

x0,r
, T : X → X dönüşümünün sabit çemberi olsun. Bu takdirde T : X → X

dönüşümü i = 1, 2, ..., 7 , j = 1, 2, ..., 5 olmak üzere (Cmr
i j) koşullarını sağlasın. Bu

takdirde her x ∈ Cmr
x0,r

, y ∈ X \ Cmr
x0,r

ve bazı h ∈ (0, 1) için T dönüşümü

mr(Tx, Ty)−mrTx,Ty
≤ h

[
mr(x, y)−mrx,y

]
büzülme koşulunu ve mrx,y = Mrx,y koşulunu sağlıyorsa Cmr

x0,r
çemberi T dönüşümünün bir

tek sabit çemberidir.

İspat (X,mr) bir rectangular M−metrik uzay Cmr
x0,r

bu uzayda sırasıyla x0 merkezli, r
yarıçaplı bir çember ve T : X → X bir dönüşüm olsun. Üstelik T dönüşümü her x ∈ Cmr

x0,r

ve y ∈ X \ Cmr
x0,r

noktaları için h ∈ (0, 1) olmak üzere

mr(Tx, Ty)−mrTx,Ty
≤ h

[
mr(x, y)−mrx,y

]
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büzülme koşulunu sağlasın. Bunun yanı sıra Cmr
x0,r

ve Cmr
xx
0 ,r

x çemberlerinin T dönüşümünün
iki farklı sabit çemberi olduğu varsayılsın. u ̸= v olmak üzere u ∈ Cmr

x0,r
ve v ∈ Cmr

xx
0 ,r

x

noktaları ele alınsın. Bu takdirde T dönüşümünün gerçeklediği büzülme koşulu gereğince

mr(u, v)−mru,v = mr(
−
Tu, Tv)−mrTu,Tv

≤ h
[
mr(u, v)−mru,v

]
olur. Buradan da düzenleme ile (1−h)

[
mr(u, v)−mru,v

]
≤ 0 sonucuna ulaşılır. Ancak her

h ∈ (0, 1) olduğundan mr(u, v) = mru,v ve mru,v = Mru,v olup dolayısıyla u = v olmalıdır.
Bu ise bir çelişkidir. O halde varsayım hatalı olup bu nedenleCmr

x0,r
çemberi, T dönüşümünün

tek sabit çemberidir.

Teorem 5.11 (X,mr) bir rectangular M−metrik uzay, Cmr
x0,r

bu uzayda bir çember ve
T : X → X dönüşümü i = 1, 2, ..., 7 , j = 1, 2, ..., 5 olmak üzere (Cmr

i j) koşullarını
sağlasın. Bu takdirde her x ∈ Cmr

x0,r
, y ∈ X \ Cmr

x0,r
ve bazı h ∈ (0, 1) için T dönüşümü

mr(Tx, Ty)−mrTx,Ty
≤ hmax

{
mr(x, y)−mrx,y ,mr(x, Tx)−mrx,Tx

,mr(y, Ty)−mry,Ty

}
büzülme ve mrx,y = Mrx,y koşulunu sağlıyorsa Cmr

x0,r
, T dönüşümünün bir tek sabit

çemberidir.

İspat Teorem 5.12 nin ispatında olduğu gibi Cmr
x0,r

ve Cmr
x0∗ ,r∗

çemberlerinin T

dönüşümünün iki farklı sabit çemberi olduğu varsayılsın. O halde u ̸= v olacak şekilde
u ∈ Cmr

x0,r
ve v ∈ Cmr

x0∗ ,r∗
olmak üzere T nin sağladığı büzülme koşulu gereğince

mr(u, v)−mru,v = mr(Tu, Tv)−mrTu,Tv
≤ h

[
mr(u, Tu)−mru,Tu+

mr(v, Tv)−mrv,Tv

]
= h

[
mr(u, Tu)−mru,Tu+

mr(v, Tv)−mrv,Tv

]
= 0

olur. Dolayısıyla mr(u, v) − mru,v dir. Ayrıca mrx,y = Mrx,y olduğundan dolayı u = v

sonucun ulaşır. Fakat bu bir çelişki olup varsayım hatalıdır. Böylelikle Cmr
x0,r

çemberi, T
dönüşümünün bir tek sabit çemberidir.

Teorem 5.12 (X,mr) bir rectangularM−metrik uzay,Cmr
x0,r

bu uzayda bir çember,T : X →
X dönüşümü i ∈ {1, 2, ..., 7} , j ∈ {1, 2, ..., 5} olmak üzere (Cmr

i j) koşullarını sağlasın. Bu
takdirde her x ∈ Cmr

x0,r
, y ∈ X \ Cmr

x0,r
ve bazı h ∈

[
0,

√
3−1
2

)
için T dönüşümü

mr(Tx, Ty)−mrTx,Ty
≤ h

[
mr(x, Ty)−mrx,Ty

+mr(y, Tx)−mry,Tx

]
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büzülme koşulunu vemrx,y = Mrx,y koşulunu sağlıyorsa Cmr
x0,r

, T dönüşümünün bir tek sabit
çemberidir.

İspat Teorem 5.10 un ispatına benzer şekilde Cmr
x0,r

ve Cmr
x0∗ ,r∗

çemberleri, T dönüşümünün
iki farklı sabit çemberi olduğu varsayılsın. Bu durumda u ̸= v olacak şekilde u ∈ Cmr

x0,r
ve

v ∈ Cmr
x0∗ ,r∗

noktaları için T nin gerçeklediği büzülme koşulu gereğince

mr(u, v)−mru,v = mr(Tu, Tv)−mrTu,Tv
≤ h

[
mr(u, Tv)−mru,Tv+

mr(v, Tu)−mrv,Tu

]
= h

[
mr(u, Tv)−mru,Tv+

mr(v, Tu)−mrv,Tu

]
= 2h

[
mr(u, v)−mru,v

]
bulunur. Buradan düzenleme ile (1−2h)

[
mr(u, v)−mru,v

]
≤ 0 sonucuna ulaşır. Ancak h ∈[

0,
√
3−1
2

)
olduğundan 2h < 1 olup mr(u, v)−mru,v dir. Ayrıca mrx,y = Mrx,y olduğundan

dolayı u = v elde edilir. Fakat bu bir çelişki olup varsayım hatalıdır. BöylelikleCmr
x0,r

çemberi,
T dönüşümünün bir tek sabit çemberidir.
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6. BULGULAR VE TARTIŞMA

Bu tezde alışımış metrik uzayın bir genelleştirilmesi olan rectangular M− metrik
uzayda metrik sabit nokta teori alanında(kolunda) çalışılmıştır. Rectangular M− metrik
uzay kavramı alışılmış metrik uzayın bir genelleştirilmesi olan M− metrik uzay ile
alışılmış metirk uzayın bir başka genelleştirilmesi olan rectangular metrik uzay
kavramlarını birleştirir. Dolayısıyla rectangular M− metrik uzay, alışılmış metrik uzay,
kısmi metrik uzay, M− metrik uzay, rectangular metrik uzay, kısmi rectangular metrik
uzay kavramlarının bir genellemesidir. Klasik sabit nokta teoremi çalışmalarında genel
olarak bir uzay üzerinde ele alınarak kendi üzerine dönüşümün hangi koşullar altında sabit
noktasının var ve tek olduğu sorusuna odaklanılır. Ancak bir dönüşümün sabit noktalarının
kümesi boş küme veya sayılabilir ya da sayılamaz çoklukta eleman içerebilir.

Sabit nokta kümesinin birden çok eleman ihtiva ettiği durumlarda bu noktaların
geometrik özelliklerinin araştırılması önemli ve güzel bir problemdir. Özgür ve Taş’ın 2016
yılındaki çalışmaları ile birleşince önemi artmıştır.

Bu tez çalışmasında Özgür vd. 2018 yılındaki çalışmaları ile literatüre kattıkları
rectangular M− metrik uzay kavramı ve yine bu çalışmalarda tanıttıkları rectangular M−
metrik uzayda çember ve sabit çember tanımlarından hareket ile bu uzayda bir üzerine
dönüşümün sabit çemberleri konusu ele alınmıştır. Bu bağlamda bir rectangularM− metrik
uzayda bir kendi üzerine dönüşümün sabit çemberinin hangi koşullar altında varolacağı
problemlemi yani sabit çemberin varlık koşulları araştırılmış ve bu soruya tespit edilen
birçok varlık koşulu ile yanıt verilmiştir.

Sabit çemberin varlık koşulları verildikten sonra bu koşulları sağlayan dönüşümlerin
ne zaman birim dönüşüm olacağı sorusu yanıtlanmıştır. Sonrasında rectangular M− metrik
uzayda kendi üzerine dönüşümün n ∈ N olmak üzere n adet sabit çembere sahip olabileceği
gösterilmiştir. Son olarak da bir dönüşümün hangi koşullar altında bir tek sabit çemberi
olacağının yanıtı için çeşitli teoremler verilmiştir. Kısacası rectangular M− metrik uzayda
sabit çemberin teklik koşulları verilmiştir.

Bu bağlamda en son genelleştirilmiş metrik uzaylardan biri olan rectangular M−
metrik uzaylarda sabit noktaların geometrik özelliklerin incelenmesine dair bir yol
açılmıştır. Ayrıca genelleştirilmiş metrik uzaylarda sabit noktaların geometrik özelliklerine
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dair yeni sonuçlar bulunmuş olup bu bulgular ile literatürün bu yönüne katkıda
bulunulmuştur.
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7. SONUÇ VE ÖNERİLER

Bu tez çalışmasında alışılmış metrik uzayın en son genellemelerinden biri olan
rectangular M− metrik uzaylar ele alınmış olup bu uzayda bir kendi üzerine dönüşümün
sabit noktalarının kümesinin geometrik özellikleri sabit çember özelinde araştırılmıştır.
Temel olarak rectangular metrik uzay ile M− metrik uzay kavramlarının birleştirilmesi
fikrine dayanan ve 2018 yılında Özgür vd. tarafından literatüre katılan uzayda yine yazarlar
tarafından verilen çember ve sabit çember kavramları ele alınmıştır.

İlk olarak bir rectangular M− metrik uzayda bir kendi üzerine dönüşümün sabit
çembere sahip olma koşulları yedi ayrı teorem ile ifade edilmiştir. Bu teoremlerin dört
tanesi üçer koşul, biri dört koşul, iki tanesi de beşer koşul içermektedir.

Sonrasında ifade edilen bu yedi teoremdeki koşulları sağlayan herhangi bir
dönüşümün ne zaman birim dönüşüm olacağı sorusuna iki teorem ile yanıt verilmiştir. Bir
başka deyişle sabit çembere sahip olan bir dönüşüm hangi koşul altında birim dönüşüm
olmayacağı yanıtlanmış oldu.

Daha sonra bir rectangular metrik uzayda birden fazla hatta n ∈ |n| olmak üzere n
adet sabit çembere sahip olan dönüşümlerin var olduğu gösterildi. Bu sonuçla birlikte
gündeme gelen bir başka önemli problem rectangular M− metrik uzayda bir dönüşümün
sabit çemberlerinin tek olması koşullarının ne olduğuna dair ayrı teoremle yanıt verilmiştir.
Özetlenirse rectangular M− metrik uzayda bir kendi üzerine dönüşümün sabit çembere
sahip olmasına dair varlık ve teklik koşulları belirlenmiştir. Bu sayede metrik sabit nokta
teoresi alanında genelleştirilmiş metrik uzayların sabit noktalarının geometrik özelliklerinin
incelenmesi çalışmalarına katkıda bulunulmuş ve literatüre yeni varlık ve teklik koşulları
eklenmiştir.

Bundan sonraki çalışmalar için bir rectangular M− metrik uzayda diğer bazı temel
eğrileri; örneğin elips, hiperbol, Cassini ovali, Apollonius çemberi parabolu gibi eğrileri baz
alarak bu eğrilerin sabit kalması için varlık ve teklik koşulları araştırılabilir. Yine bu uzayda
bu tezde ele alınan sabit çember konusuna burda yer almayan koşullar ve sonuçlar
araştırılabilir. Bunların dışında bu tezde alınan veya yukarıda ifade edilen diğer eğrilerin
sabit olması için varlık ve teklik koşulları rectangular M− metrik uzaydan farklı bir başka
genelleştirilmiş metrik uzayda ele alınabilir. Bu noktada ifade edilen kavramların
uygulamasına yönelik uygulama alanı araştırılması yapılabilir.
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