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ABSTRACT

End-to-end (e2e) speech synthesis systems have become popular with the recent

introduction of letter-to-spectrogram conversion systems, such as Tacotron, that

use encoder-decoder-based neural architectures. Even though those sequence-to-

sequence systems can produce mel-spectrograms from the letters without a text

processing frontend, they require substantial amounts of well-massaged, labelled

audio data that have high SNR and minimum amounts of artifacts. These data

requirements make it difficult to build end-to-end systems from scratch especially

for low-resource languages. Moreover, most of the e2e systems are not designed for

devices with tiny memory and cpu resources. Here, we investigate using a tradi-

tional deep neural network (DNN) for acoustic modelling together with a postfilter

that improves the speech features produced by the network. The proposed archi-

tectures were trained with the relatively noisy, multi-speaker, Wall Street Journal

(WSJ) database and tested with unseen speakers. The thin postfilter layer was

adapted with minimal data to the target speaker for testing. We investigated

several postfilter architectures and compared them with both objective and sub-

jective tests. Fully-connected and transformer-based architectures performed the

best in subjective tests. The transformer-based architecture performed the best

in objective tests. Moreover, it was faster than the other architectures both in

training and inference speeds.
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ÖZETÇE

Tacotron gibi son zamanlarda çıkan harften-spektrograma dönüşüm sistemleriyle

gizyazar-gizçözer temelli sinir ağı mimarilarini kullanan uçtan-uca (uu) ses sentezi

sistemleri popüler hale geldi. Bu diziden-diziye sistemler, metin işleyen önyüze

gerek duymadan mel-spektrogramları üretebilse de; yüklü miktarda, iyi yoğrulmuş,

yüksek sinyal-gürültü oranlı ve minimum düzeyde kusurlu etiketli ses verisine

ihtiyaç duymaktadır. Bu veri ihtiyacı bilhassa düşük kaynağa sahip diller için

uçtan-uca sistemleri inşa etmeyi zor duruma getirmektedir. Dahası, uu sistem-

lerin birçoğu düşük hafıza ve CPU kaynaklarına sahip sistemler için tasarlan-

mamıştır. Biz bu çalışmada, geleneksel derin sinir ağı tarafından üretilen konuşma

özniteliklerini iyileştiren postfiltrelerin bu sinir ağlarıyla beraber kullanımlarının

akustik modellemeye olan etkisini araştırdık. Önerilen sistemler görece gürültülü

Wall Street Journal (WSJ) verisiyle eğitilip görülmemiş konuşmacılar için test

edildi. İnce postfiltre katmanı minimum veri ile hedef konuşmacının testi için

uyarlandı. Birkaç farklı postfiltre mimarisini araştırdık ve bunları taraflı ve tarafsız

testlerle karşılaştırdık. Tam-bağlı ve transformer temelli mimariler taraflı testlerde

en iyi sonucu verdi. Transformer temelli mimari tarafsız testlerde en iyi sonucu

verdi. Ayrıca, diğer mimarilerden hem eğitimde hem de tahminde daha hızlıydı.
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CHAPTER I

INTRODUCTION

1.1 Background

End-to-end (e2e) speech synthesis paradigm revolutionized the field by enabling

natural-sounding speech synthesis without requiring linguistic features [1, 2, 3, 4,

5, 6, 7, 8, 9, 10, 11, 12]. Using the e2e neural synthesis paradigm, for the first

time, it became possible to generate speech that is indistinguishable from natural

speech.

E2e synthesis systems have two main deep learning blocks. The first block

converts the character (or sometimes phoneme) sequences into mel-spectrograms.

Tacotron1 [1] and Tacotron2 [2] are the pioneering examples. The key idea is to

use an attention mechanism to decide which character is most relevant to each

of the mel-spectrogram frames and assign weights to the character embeddings

accordingly.

Even though the Tacotron approach works well, it is slow because of its recur-

sive architecture. Transformer [13], which is a non-recursive and attentive neural

network, is proposed in [14] for mel-spectrogram generation. Fastspeech [3], which

is also transformer-based and does not attention for alignment, is designed for the

same goal. Fastspeech2 [4] removed the teacher-student distillation setting used

in Fastspeech. Unlike recursive networks in [1, 6, 7], fully convolutional neural

architecture is utilized for faster conversion of text to mel spectrogram in [8, 9].

Non-autoregressive flow-based neural models are proposed in [11, 12] for faster

generation of the mel spectrogram from the given text.

Recently several Tacotron variants have been proposed to tackle the issues

of Tacotron1 and Tacotron2 [15, 16, 17]. These issues include word-repetitions,

word-skippings, non-robust attentive duration modeling, relatively slow training
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and inference. Non-robust attentive duration modeling is addressed in [15]. To

mitigate the problem, they replaced the attention mechanism with an explicit

duration model. The duration model allows for the phoneme and sentence level

control of the durations. They presented a VAE-based approach for the semi-

supervised or unsupervised training of the durations when the duration informa-

tion is limited. The vanilla upsampling of the Tacotron is substituted with the

Gaussian upsampling in order to improve the naturalness.

A parallel Tacotron [16] architecture is suggested for the non-autoregressive

training and inference. To capture the locality of the text-to-speech better and

increase the efficiency, they compare an alternative with lightweight convolutions

[18] to the vanilla self-attention mechanism of the transformers. Similar to [3,

4, 15], an explicit duration model is incorporated into the TTS architecture. A

variational encoder is utilized to ease the one-to-many mapping problem of the

TTS, and enhance the speech quality. In order to alleviate the external aligner

requirement of [16], a supervision-free duration model is proposed in [17] using

Soft Dynamic Time Warping [19].

Furthermore, in [5], an attention-based recursive sequence-to-sequence network

is used to convert text to acoustic features. A flow-based autoregressive architec-

ture is proposed in [10]. [20] is an autoregressive neural text to speech model as

well. However, it uses shifting memory buffers with fully-connected networks for

memory efficiency.

1.2 Other Efficiency-Oriented Text-to-Speech Models

Time inefficient autoregressive models lead to increased training and inference

durations. Similar to [3, 4, 16, 17], this issue has been addressed by the use of

non-autoregressive architectures in [21, 22, 23, 24]. Like Fastspeech1, [23] also

uses a student-teacher network for learning the durations. A Fastspeech1 variant

is presented in [24]. Differently from Fastspeech1, their model extracts the du-

rations on the fly during the training enabling joint training. The architecture
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is fully-convolutional, and the synthesis is real-time on a CPU. Although archi-

tecture in [21] is similar to Fastspeech1, their proposed duration model does not

require an external aligner during training unlike [3, 4, 23]. They make use of

a mix density network for the duration extraction in the training. Another non-

autoregressive and efficient TTS model that does not require an external aligner

is [22]. A monotonic alignment approach is proposed for the alignment modeling.

Unlike the multi-phase training in [21], [22] has a joint training process. They

compared convolution-based and flow-based neural TTS models, and showed that

fully-convolutional architecture is more efficient than the flow-based counterpart

with a higher mean opinion score (MOS).

1.3 Neural Vocoders

Once the mel-spectrogram is generated given an utterance, a second block is

needed that will convert the mel-spectrogram to the audio waveform. WaveNet

[25] is the first deep learning based autoregressive method that could successfully

achieve that goal. It also paved way for substantial research in the neural vocoder

field with a particular focus on real-time synthesis. One of the first fruits of that

was WaveRNN [26] that could perform similar to WaveNet but could run real-

time on GPU. Another autoregressive algorithm that gained interest is LPCNet

[27], which uses traditional linear predictive coding (LPC) parameters of speech

to synthesize speech in real-time on a CPU with a small footprint.

A variety of fast non-autoregressive vocoders that use generative adversarial

networks (GANs) followed that. MelGAN [28], multi-band MelGAN [29], GAN-

TTS [30], Parallel Wavegan [31], EATS [32], and HiFi-GAN [33] are examples

of those fast algorithms. Similar to these non-autoregressive approaches, [34]

introduces a neural acoustic model with differentiable DSP [35] for synthesizing

controllable speech. Similar to [36, 37], a parallelizable flow-based acoustic model

is proposed in [38] without the need for autoregressive modeling for faster inference.

Unlike [36, 37], a student-teacher framework was not used in [38]. Aiming for faster
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inference, in [39, 40], non-autoregressive neural acoustic source-filter models are

used for creating audio waveforms. Other neural autoregressive methods include

[41, 42].

A recent diffusion probabilistic text-to-speech model, [43] enables a trade-off

between autoregressive and non-autoregressive neural vocoders. This model itera-

tively refines a Gaussian white noise with a fixed number of iterations. The number

of iterations allows for a trade-off between the sample quality and inference speed.

1.4 Single-Stage End-to-End TTS

Even though a variety of neural TTS models use the term end-to-end to demon-

strate their training procedures, the majority requires two-stage training. As

described in Section 1.1, the first stage converts text to intermediate acoustic rep-

resentations. Then, these acoustic features are used to predict the waveform. Con-

ventionally, this stage is trained separately. Recent works in the TTS field include

the direct waveform generation from the text with a single training. The work

in Fastspeech2 has both single-stage and two-stage waveform generation archi-

tectures. The single-stage version [4], Fastspeech2s, uses an adversarial WaveNet-

based network as the decoder with non-causal convolutions to convert intermediate

acoustic representations into waveform while keeping the rest of network the same

with the two-stage Fastspeech2 model. Although Fastspeech2s is fully e2e, it has

a lower MOS than the Fastspeech2.

Another non-autoregressive and fully e2e model, EATS [32], also makes use

of an adversarial decoder, GAN-TTS, to predict the waveform. Similar to single-

stage and two-stage alternatives in Fastspeech2, [22] has also two alternatives.

Similar to previous works, this fully e2e model has an adversarial non-autoregressive

decoder, MelGAN, to generate the waveform. In addition to the inference speedup,

the single-stage model has similar MOS with the two-stage alternatives unlike Fast-

speech2s. A flow-based and mel-spectrogram-free fully e2e model is proposed in

[44]. Similar to diffusion probabilistic models [43, 45], the flow architecture also
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converts the random noise into the waveform iteratively. However, the flow-based

decoder is autoregressive. Conversion of text to the intermediate representations is

implemented with a Tacotron-based encoder. Like mel-spectrogram-free [44], [45]

also does not require hand-designed intermediate representations for single-stage

text-to-speech. The model consists of a Tacotron2-based encoder and WaveGrad

[43] decoder.

Unlike the other single-stage TTS models, [46] does not require training with

short audio clips. They make use of VAE and stochastic duration predictor to

overcome the one-to-many mapping problem. Variational inference is augmented

with the normalizing flow, and the training is adversarial.

1.5 Text-to-Speech Synthesis Loss Metrics

Several loss metrics have been proposed for non-autoregressive neural text-to-

speech synthesis (NTTS) models for the high-fidelity speech. Since simple man-

hattan or euclidean loss metrics, such as mel-spectrogram or STFT distances with

the ground-truth counter-parts, cannot make up for the better inductive bias

in the AR models; more complex losses, which include multi-resolution acous-

tic representation objectives together with adversarial losses, have been devised

in [28, 29, 30, 31, 32, 33]. However, manhattan or euclidean training loss metrics,

and objective evaluation metrics such as mel-cepstral-distortion (MCD) are not

well correlated with the generated speech quality as discussed in [47]. As a result,

there is a research gap for NTTS models which requires better loss metrics which

can lead to better convergence of these models and fewer data requirements.

1.6 Semi-supervised or Unsupervised Trainings in Text-
to-Speech

1.6.1 ASR-TTS Feedback Loops

Recently, these gaps have been addressed by 2 approaches. The first approach

is utilizing the ASR-TTS feedback loop [48, 49, 50, 51, 52]. ASR-TTS feedback

loop aims to enhance ASR and TTS systems through joint training ASR and
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TTS models, and through incorporating multiple objectives with the ASR-TTS

feedback loop. Usually, these systems are trained in a semi-supervised fashion.

Paired < text, audio > data is used for the supervised training, and unpaired data

from the ASR-TTS loop is used for the unsupervised training part. This way ASR

and TTS models can be trained with less paired data, and they can get the same

levels of quality as the baseline models that are trained with more paired data.

1.6.2 Self-supervised Learning Representations

The second approach includes the incorporation of acoustic or linguistic rep-

resentations that make use of the pre-training with untranscribed speech data

[53, 47, 54, 55, 56, 57, 58]. These models are also called self-supervised learn-

ing representations (SSLR) in the literature. Like the ASR-TTS feedback loop

approach, usually, linguistic units or acoustic representations from these meth-

ods are learned in a semi-supervised fashion to improve speech synthesis or ASR.

NTTS models are conditioned with these vectors from these pre-trained models to

improve the prosody, or quality of the generated speech with less data. Unlike the

other semi-supervised NTTS systems, in [58], fully unsupervised speech synthesis

is used for synthesizing intelligible speech.

Although ASR-TTS feedback loop systems can take the ASR feedback into

account, they cannot generalize well, and the robustness of the models together

with the generated speech quality is far from being perfect [55], especially for

the multi-speaker cases. Additionally, almost all of the research focused on mono-

lingual NTTS models. Unsupervised pre-training approaches described above, can

lead to more robust NTTS, and higher quality speech [56]. However, these mod-

els are usually more oriented towards conditioning the NTTS with the extracted

linguistic units rather than replacing the conventional representations such as mel-

spectrograms. In addition, poor speech quality correlation problem arising from

manhattan or euclidean loss metrics with these representations remains. More-

over, almost all of the methods focused on mono-lingual cases like the ASR-TTS

feedback loop methods.
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More recently, a textless NLP model, GSLM [58], which utilizes self-supervised

learning representations (SSLR) is used for speech synthesis. GSLM uses CPC [59],

wav2vec 2.0 [60], HuBert [61] as SSLR models Unlike the other SSLR models,

these models are trained with huge multi-speaker datasets. This can dramatically

increase their generalization and out-of-domain capacities. Furthermore, these

SSLR models can produce robust fixed-dimensional frame-level representations

replacing the conventional representations. Nevertheless, the GSLM model is not

used for a TTS task, and the speech synthesis experiment is limited to the mono-

lingual case.
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CHAPTER II

RELATED WORK

2.1 Speaker Adaptation

2.1.1 Speaker Adaptation Background

The other heavily-investigated aspect of e2e synthesis systems is the ability to

adapt to new speakers. Comparison of model adaptation and incorporation of

i-vector [62] as speaker embeddings for speaker adaptation are conducted in [63].

Similar to i-vectors, d-vectors [64] are also shown to be effective for speaker adap-

tation [65]. In [66], speaker embeddings are combined with phoneme-level repre-

sentations for adapting to unseen speakers. Also, for fine-tuning the average voice

model, word embeddings are utilized in a recent study [67] together with phoneme

and speaker embeddings.

In addition to speaker encodings, gender and age encodings are fine-tuned with

small adaptation data without changing the multi-speaker TTS model weights

in [68]. The effect of fine-tuning the speaker embeddings together with TTS

model weights is explored in [69]. A more recent work [70] studies conditional

layer normalization together with speaker-level, utterance-level, and phoneme-

level representations in FastSpeech2-based TTS architecture. The network and

speaker embeddings are optimized for the unseen speakers. In [71], an RNN-

based speaker encoder is trained to minimize the identity and the speaker feature

losses. Then, a one-shot speaker adaptation setting is used for predicting the

acoustic features.

2.1.2 Cross-Lingual Speaker Adaptation

In [72], DNN-based SPSS is adapted for the unseen speaker using fine-tuning on

the average voice model. Cross-lingual speaker adaptation of the same speaker is

also explored for Chinese and English languages. In [73], a convolutional speaker
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encoder is trained separately using a speaker verification model to extract speaker

embeddings. Tacotron2-based architecture is employed to convert phonemes and

speaker embeddings to mel-spectrograms. Both English and Chinese datasets are

used in the training and the adaptation of the base model to a new speaker.

Another cross-language speaker adaptation for TTS is implemented with 4

languages in [74]. An acoustic model consisting of fully-connected layers is trained

with multiple speakers and multiple languages. Language codes, d-vectors, and

linguistic features are used as features. A separate neural network consisting of

fully-connected layers is used for duration modeling in [75]. Similar to the duration

model, an average voice model with only fully-connected layers is trained. These

models are fine-tuned for speaker adaptation.

2.1.3 VAE-based Speaker Adaptation

Variational autoencoders are also used to extract speaker embeddings for speaker

adaptation [76]. In [76], a separately trained RNN-based VAE network is trained

in a multi-speaker setting to predict duration, fundamental frequency, and energy.

Mean speaker vectors from the encoder are used as speaker embeddings. Acoustic

models are pretrained separately for a male single speaker and a female single

speaker. The model that is initialized with the corresponding gender is fine-tuned

with the unseen speaker’s voice.

2.1.4 Few-shot Speaker Adaptation

Several zero-shot and few-shot speaker adaptation approaches, which utilize d-

vector or x-vector variants, have been studied for text-to-speech synthesis recently.

Zero-shot speaker adaptation techniques for speech synthesis are explored in [77,

78] by conditioning the TTS network with the speaker embeddings that are trained

for speaker verification on large amounts of data. In [79], a Tacotron2-based

architecture, which is conditioned on the speaker embeddings, is pretrained with

a multi-speaker dataset. For the adaptation of the model to a new speaker, the

pretrained TTS model and the speaker encoder model are fine-tuned with the new
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speaker data, and hyperparameters are optimized with a Bayesian approach.

A semi-supervised approach in [80] makes use of pretrained transformer-based

ASR and TTS models for the cases where text is not available for new speakers.

ASR is used to extract text from the data and then, audio and ASR-generated text

are used for adapting the TTS model. They show that this approach outperforms

the zero-shot x-vector conditioning, and comparable with adaptation where paired

data is available for the new speaker.

2.2 Neural Postfilters

Postfiltering is used for improving the output of the mel-spectrogram generating

neural networks. A variety of DNN-based postfiltering approaches have been in-

vestigated for speech synthesis. In [81], RBM-based postfiltering is used for HMM-

based speech synthesis. Conditional generative adversarial network (CGAN) [82]

with CNNs was shown to be effective for enhancing the spectral texture for speech

synthesis in [83, 84]. Other GAN-based postfiltering studies [85, 86] include the

use of cycle-consistent adversarial networks(CycleGAN) [87].

Inspired by CycleGAN, in [88], a cyclical postfiltering approach without adver-

sarial training is proposed. In [89], neural vocoder and WaveNet-based postfilter

are jointly trained by the combination of multi-scale STFT loss and negative log-

likelihood of the training data. They show that fewer parameters are needed for

the neural vocoder with the postfiltering approach.
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CHAPTER III

PROBLEM STATEMENT

Despite the success of the e2e synthesis systems, they have several problems that

still need to be solved. One of the problems is the ability to run on offline devices

with tiny memory and cpu resources, which is not possible for most of the existing

e2e systems. Moreover, even though adaptation with few shots is possible if the

speaker is in the training set (seen speaker), performance degrades significantly if

the target is an unseen speaker [77, 78, 90]. Furthermore, collecting tens of hours

of studio-quality data to train e2e systems is not easy especially for low-resource

languages. Data problem is even more challenging when developing good quality

datasets with many speakers.

Here, we step back from the end2end approach to a more classic, fast architec-

ture for generating mel-spectrograms. Not only those architectures are faster and

have smaller footprints, but also they can be trained with few hours of data that

does not have to be carefully recorded in studio with strict requirements on silence

durations as typically needed to train e2e systems. Because the speech quality de-

grades with those lightweight networks, we investigated postfiltering techniques to

improve the quality. Four different postfilter architectures were compared. The

novel transformer-based architecture was shown to be fastest and produced the

best speech quality. Moreover, the overall architecture was shown to be sub-

stantially faster with far smaller parameters compared to two of the popular e2e

systems.

Another novelty in our work is that the proposed postfilters are speaker-

adaptive and they can adapt to new speakers with only a few seconds of data.

Thus, speaker adaptation was done at the postfiltering block in addition to the
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transfer learning at the speaker-independent block in the synthesis pipeline. Be-

cause that block is a thin network, adaptation with very limited data became

possible.

The proposed system is faster and has substantially smaller footprint com-

pared to e2e systems and can run real-time on many embedded devices with

tiny resources. To complete our synthesis pipeline, generated spectrograms are

converted to waveform using the LPCNet vocoder, which was also designed for

low-resource devices.
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CHAPTER IV

PROPOSED SYSTEMS

4.1 System Overview

An overview of the proposed system is shown in Figure 1. Linguistic features

are extracted from the text and fed into the speaker-independent (SI) acoustic

model together with the i-vector of the target speaker. The acoustic features

are then generated with the maximum likelihood parameter generation (MLPG)

algorithm [91] and smooth mel-generalized cepstrum (MGC) parameters are input

to a postfilter for enhancement. Enhanced features are then converted into the

LPCNet feature set and the waveform is synthesized with the LPCNet vocoder.

Postfiltering algorithms that were investigated in this work are described below.

Speaker adaptation methods with the postfilters are described in Section 5.

4.2 Postfilters

Four different postfilters are investigated for enhancing the MGC features: fully-

connected network, LSTM network, CNN network, and transformer-based feedfor-

ward network. The number of layers and the number of nodes/layers for each net-

work were tuned independently using the objective mel-cepstral distortion (MCD)

scores.

All postfilters were designed to predict the enhanced MGC features. Even

though inputs of the postfilters differ based on their architectures, they all have

the MGC parameters as input. Cepstral coefficients are usually incorporated with

delta (differential) and double-delta (acceleration) features to add dynamic infor-

mation to the static features. Although networks, such as RNN and transformer,

which can inherently model the time independent information may not need this

extra information, dynamic features can lead to better convergence or enhance

the networks that do not have inherent time dependency. Since the conventional
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magnitude spectrum ignores the phase, another hypothesis [92] indicates that dy-

namic features can help to recover the phase information. We also incorporated

differential (Equation 1) and acceleration (Equation 2) features as follows:

∆x̂t = −0.5x̂t + 0.5x̂t−2 (1)

∆∆x̂t = (x̂t − x̂t−1)− (x̂t−1 − x̂t−2) = x̂t − 2x̂t−1 + x̂t−2 (2)

X =

[
x̂ ∆x̂ ∆∆x̂

]
(3)

where x̂ ∈ RT×Dx̂ indicates the mel-generalized-cepstral coefficients (MGC)

for all the frames in the given utterance. T and Dx̂ symbols denote the tempo-

ral and cepstral coefficient dimension sizes, respectively, and x̂t is the tth frame

of that vector. Equation 3 shows the overall cepstro-temporal feature matrix,

X ∈ RT×3Dx̂ , that contains both static and dynamic features of the given utter-

ance, and x̂ ∈ RT×Dx̂ , ∆x̂ ∈ RT×Dx̂ , ∆∆x̂ ∈ RT×Dx̂ vectors are concatenated

in the cepstral coefficient dimension. In order to smooth parameter trajectories

maximum likelihood parameter generation (MLPG) algorithm is applied using the

static and dynamic features.

In addition to the MGC parameters, the CNN, the LSTM and the fully-

connected postfilters use state (st) and phoneme-level (pt) features at each time t

to enrich the context information available to the network. Those are both 1-of-K

vectors representing the state number and the phoneme number at time t. The

size of the pt vector is Dp and the size of the st vector is Ds.

The postfilter architectures are described in more detail below.

4.2.1 Fully-connected Network

For the fully-connected network, aiming for enriched input which is text-aware,

we concatenated cepstral coefficients with the phoneme and state information as
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Figure 1: Overview of the proposed text-to-speech system.

shown in Equation 4, where the vector Ĉt ∈ RDX+Dp+Ds is the enriched feature

vector at the time t.

Ĉt =

[
Xt pt st

]
(4)

Also, FC networks cannot model time dependencies inherently. Although dy-

namic features are provided, it can be difficult for a FC network to learn of the

context information. Therefore, to further enhance the convergence of the low

data training, we include previous and next frame’s feature vectors to the current

frame as follows:

Ct =

[
Ĉt−1 Ĉt Ĉt+1

]
(5)

where Ĉt ∈ R3(DX+Dp+Ds) is the resulting input feature vector. This postfilter,

shown in Figure 2b, is a shallow feedforward model that consists of fully-connected

layers. The number of parameters is 21k.
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4.2.2 LSTM Postfilter

In a similar manner, the enriched feature matrix, Ĉ ∈ RDX+Dp+Ds , is used as input

to the recurrent network for the given utterance. The recurrent network consists

of an LSTM layer and a fully-connected layer as shown in Figure 2c. Due to the

recurrent nature of the network, the input features are fed to network sequentially,

one frame at a time. The output is Dx̂-dimensional enhanced cepstral features like

the FC postfilter. The number of parameters for the LSTM network is 39k.

(a)

(b)

(c)

Figure 2: (a) CNN-based postfilter’s input, output, and hidden layers are shown
with the corresponding output channel dimensions. The kernel size is set to 3. (b)
Fully-connected postfilter’s input, output, and hidden layers are shown with the
corresponding hidden layer unit sizes. (c) LSTM-based postfilter’s input, output,
and hidden layer are shown with the corresponding hidden layer unit size.

4.2.3 CNN Postfilter

A convolutional network that consists of 1-dimensional convolution blocks is used

for the CNN postfilter to generate the enhanced cepstral features from the enriched

feature matrix, Ĉ ∈ RDX+Dp+Ds , similar to the FC and LSTM-based postfilters.

For the CNN postfilter, shown in Figure 2a, ReLU is used as the activation func-

tion; and kernel size of 3, and stride of 1 are used as the parameters of the 1D
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convolutions. The number of parameters for the CNN postfilter is 159k.

Figure 3: Transformer-based feedforward (T-FNN) postfilter.

4.2.4 Transformer-Based FFN (T-FNN) Postfilter

The architecture of the transformer-based [13] feedforward network (T-FNN) is

shown in Figure 3. Only MGC features are the input of the network; i.e., state-

or phoneme-level information were not used.

Unlike the other postfilters, the input to the system is the cepstro-temporal

feature matrix, X ∈ RT×DX . Similar to the CNN-based postfilter, the whole

utterance is represented as a single feature matrix in the transformer network.

We chose only MGC features for T-FNN postfilter based on our empirical findings

since we observed that using state- or phoneme-level information did not affect

the postfilter performance. We leave theoretical investigation of the alternative

options to future work.
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The number of the transformer block is 2 for the transformer-based postfilter

as shown in Figure 3. The number of attention heads, h, is 2. MGC inputs are

followed by a fully-connected layer. Then, positional encoding is used in order to

utilize position information. Layer normalization is used for the normalization of

the network. The number of parameters for the T-FNN postfilter is 38k.
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CHAPTER V

ADAPTATION

As a first step in the adaptation process, the SI model is adapted to the target

speaker. To that end, the i-vector that is extracted from the target speaker is

used as an input to the SI network. Moreover, transfer learning was used to adapt

the LSTM and output layers of the network to the target speaker. Because we

consider the case where minimal data is available for adaptation, learning rates

for the other layers were set to zero to avoid overfitting as shown in Figure 4.

Figure 4: Adaptation of the speaker-independent system model. The first three
fully-connected layers are fixed during speaker adaptation. Thus, only the LSTM
layer and the fully-connected output layers are adapted.

Even though some gain was possible through adapting the base SI model to

the target speakers, quality and similarity of the synthesized audio were still sub-

stantially lower than what is possible with the end-to-end systems. Thus, we

investigated adaptation of the postfilters to the target speakers to further boost
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the speaker similarity and quality of the synthesized speech. Speaker adaptation

algorithms for the postfilters are described below.

The postfilter architectures proposed here are relatively low-complexity filters

that can be trained with small amounts of data. We investigated three strategies

to improve the effectiveness of the speaker-adapted postfilters. Those strategies

are explained below.

5.1 Cluster-based Initialization

In a multispeaker dataset, there can be speakers with similar speech style, prosody,

and fundemental frequency. Those parallel speech features of the speakers can be

utilized. Therefore, instead of initializating the network with random weights

and biases, we inherit a cluster-based initialization approach. Since the amount

training data is scarce, a guided initialization can be critical in terms of faster

convergence. With this motivation, the postfilters are pretrained with the similar

speaker clusters using the training set. For the target speaker, the pretrained

postfilter that is closest to that speaker’s cluster is used as the starting point of

the training.

Since i-vectors can encode the speaker characteristics, the training speakers

were split into 5 clusters by the k-means clustering algorithm using those vectors.

Euclidean similarity metric was used during clustering using i-vectors. Hence, the

i-vector of target speaker is compared with the all cluster means. The most similar

cluster is chosen for the initialization before the adaptation training. Cluster

mean vectors were computed averaging the i-vectors of the training speakers in

the clusters.

5.2 Adversarial Training

Adversarial training has been incorporated into many speech synthesis applica-

tions as described in Section 1.3, Section 1.4, Section 2.2. The waveform gener-

ation stage of the text-to-speech especially requires high fidelity synthesis. This

requirements have been met with auxiliary losses and adversarial training in the
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recent state-of-the-art neural vocoders. Adversarial single-stage text-to-speech

and postfilters are also good examples of the GAN applications.

The GAN network that was used here is shown in Fig 5. GANs consist of

two seperate networks: a generator (G) and a discrimininator (D). Without the

adversarial training, i.e. D network is not available, , the training loss of the

postfilter G is defined as follows:

LG(Xnat, Xgen) =
1

T

T∑
t=0

(Xnat
t −Xgen

t )2 (6)

where Xnat ∈ RT×D is the natural and Xgen ∈ RT×D is the generated feature

vector for the time step t.

In the adversarial approach, a discriminator network is used at the output

of the generator. The discriminator decides whether the generated features are

synthetic (fake) or natural (real). Thus, the discriminator enforces the generator

to not only reduce the MSE loss but also generate features that are as close as

possible to natural features.

The D network uses the binary cross entropy loss:

LD(ô, o) = − 1

T

T∑
t=0

C=2∑
i=1

oitlog(ôit) (7)

where ôt ∈ [0, 1] is the prediction and ot ∈ {0, 1} is the target for the time

step t. ot is 0 if the feature vector is synthetic and yt is 1 if the feature vector is

natural.

The discriminator loss is propagated to the generator network and the loss

used in the generator network is

L = LG(Xnat, Xgen) + λ(G,D)LD(ô, o) (8)

λ(G,D) =
ELG

ELD

(9)

where L indicates the total loss, and λ indicates the adaptive coefficient, which

is updated in every epoch, of the D loss. ELG
and ELD

are the expected values of
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LG and LD, respectively. Therefore, the loss function tries to make the synthetic

feature vectors harder to discriminate from natural ones while trying to minimize

the generator’s mean square error loss.

Since the adversarial training is very unstable, G or D losses can overwhelm

each other. The collapse of either loss can dramatically affect the convergence of

training. Therefore, an adaptive coefficient, λ(G,D), is introduced for stabilization

and normalization of the LD.

Figure 5: Postfiltering process with adversarial training. The PF model benefits
from both the MSE loss and the adversarial loss.

Both synthetic and natural features are available to the discriminator at each

iteration. Thus, it can use either one of the following two BCE loss functions:

LDG
= LD(ôgen,0) (10)

LDnat = LD(ônat,1) (11)

where 0 and 1 vectors denote the fake, from G, and real vectors, respectively.

The real, LDnat and fake, LDG
mini-batch losses are subsequently backpro-

pogated to the generator for the network weight update. Also, we observed that
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adversarial training did not improve SI models. Therefore, we confined the use of

adversarial trainings only to the speaker-dependent models.

5.3 Synthetic-to-synthetic feature mapping

Postfiltering of speech features with minimal data is a difficult regression problem

partly because even though the synthetic features are smoothly-varying, the target

natural speech features are highly variant, inconsistent, and noisy. Thus, even

when synthetic segments from two different speech utterances are very similar,

corresponding time-aligned speech segments can be very different as shown in

Figure 6. That will force the network to learn on some average target vector if it

does not rapidly get trapped on a random local optimum during training.

Figure 6: Spectrograms of time-aligned synthetic speech segments (first column)
and natural (second column) are compared for segments that are thirteen frames
long. Even though synthetic spectrograms are very similar, target natural spec-
trograms vary significantly. Distance between the target spectrograms are reduced
after interpolation as shown in the last column. Time in y-axes are in terms of
number of frames.

In addition to the noise and variations in the natural speech features, outliers

can also be present in natural speech. That will further cause significant bias

during learning since they will introduce high loss. Given the minimal training

data used for adaptation, those outliers can have a significant impact on the

network weights.

Our approach to those problems is to morph the natural features so that more

consistent output vectors can be presented to the learning algorithm given similar
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input vectors. In that case, the DNN system is expected to learn a more effective

regression function that can both fit better to the adaption data and generalize

better on the test data.

Each natural speech feature i at time t is transformed with

fi,tar(t) = αfi,nat(t) + (1− α)fi,syn(t). (12)

where fi,nat(t) is the natural feature, fi,syn(t) is the synthetic feature, and fi,tar(t)

is the target feature after interpolation. Interpolation factor α is tuned experi-

mentally.

The effect of the interpolation algorithm is shown in Figure 6. The target

spectrograms for very similar input spectrograms get closer to each other after

interpolation.

26



CHAPTER VI

EXPERIMENTS

6.1 Experimental Setup

All experiments were implemented with the relatively noisy Wall Street Journal

(WSJ) speech dataset. A total of 156 speakers were available to be used in the

experiments. 135 of them were used for the training and 21 speakers were used

for the testing. Adaptation was performed with 5, 10, and 15 seconds of data.

The conventional World vocoder features were used with a 16 kHz sampling

rate and 5 miliseconds of frame rate. Those include MGC, BAP, LF0, and VUV

features with 25, 25, 1, 1 dimensions; respectively. For MGC, BAP, and LF0

features; differential and acceleration features were also extracted. Dynamic fea-

tures were not computed for the binary VUV features. A 5-state HMM model was

used and state-level alignment of the data was done using the HMM/DNN-based

Speech Synthesis System (HTS) tool [93].

The speaker-independent (SI) acoustic model is a RNN network with 3 FC

layers and 1 LSTM layer on top along with a FC projection layer. The hidden

layer dimensions are 512, 512, 512, 256, and 154, respectively. The SI model

is trained with 5 hours of data from 135 male speakers where each speaker had

50 utterances each of which had a duration of 4-5 seconds. Optimizations were

conducted using the Adam optimizer [94]. The number of training epochs was

tuned as 50. Mini-batch size was set to 4. The experiments were performed on a

single machine with one Nvidia GTX 1080 GPU, and one Intel® Core™ i7-9700

CPU @ 3.00GHz × 8 CPU.

Prior to training, the text features were normalized to the range of [0, 1] by min-

max normalization, whereas the acoustic features were normalized by subtracting

the mean and dividing by the standard deviation.
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Both subjective and objective tests were performed to assess the speaker adap-

tation performance of the proposed systems. Objective tests were done using the

mel-cepstral distortion (MCD) measure. Subjective listening tests were done us-

ing AB and ABX tests 1. AB test was used to compare speech quality of two

systems A and B. ABX test was used to compare the speaker similarity of system

A and system B compared to the original sample X. T-test was used to assess the

statistical significance of differences between the systems. 15 listeners took the

tests. All listeners assessed 1 utterance from each of the 21 target speakers for

each adaptation test condition.

6.2 Adaptation of the Base SI Model

Before training the postfilter, the base SI model was adapted to the target speak-

ers. Transfer learning was used and only the final LSTM layer and the fully-

connected output layer parameters were updated. Moreover, i-vectors [62] aug-

mented with the text features were used as input to the DNN to further adapt the

model to the target speakers.

6.3 LPCNet Training Setup

LPCNet vocoder was used to synthesize speech. The LPCNet architecture in [27]

was used with slightly different hyperparameters than the original settings in order

to convert postfiltered and enhanced acoustic features to speech waveform. GRUA

layer dimension in Figure 7 is changed to 640. Batch size was set to 64 and the

number of epochs were set to 20. Adam optimizer [94] was used with a constant

learning rate of 0.001.

We have found that DC shift and background noise were present in some of

the speech files degraded the training performance of the LPCNet vocoder. Thus,

the audio files were preprocessed as follows. Speech waveform for each utterance,

s, is amplitude-normalized by scaling it with 0.9/max(abs(s)). To suppress the

1Synthesized samples can be found at https://erayee.github.io/adaptive-embedded-
tts/index.html
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Figure 7: Architecture of the LPCNet neural vocoder. Bark-Scale cepstral coef-
ficients and 2 pitch parameters are used as the acoustic features. ”Frame Level”
and ”Sample Level” represent the processing level of the features. In the frame
level, inputs are processed for each frame. In the sample level, inputs are processed
for each sample. In the sample level, the outputs of the frame level network are
repeated for the corresponding samples.

background noise, spectral subtraction was used. Silences at the start and end

were removed from the speech samples.

For training the LPCNet vocoder, the preprocessed natural speech was used

as the target. 18 Bark-Scale [95] cepstral coefficients, and 2 pitch parameters

extracted from the natural speech were used as input. Approximately 4.5 hours

of WSJ speech data was used for the training. At the inference time, enhanced

acoustic features from the output of the postfilter were converted to Bark-scale

cepstral coefficients and pitch parameters.

6.4 Stability of Adversarial Training

The convergence of the adversarial training algorithm relies heavily on how the

generator and discriminator networks are initialized. Because limited training
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data was used here to train the postfilters, stability issues of adversarial training

became even more important. In fact, we have found that randomly initializing

postfilters for adversarial training did not result in a good performance.

To improve the adversarial training algorithm, we followed a three-step process.

In the first step, the generator was first trained with the cluster of speakers that

is closest to the target speaker, i.e. a cluster-based initialization was used. Then,

the parameters of the generator network were fixed and the discriminator network

was trained with the same speakers. Finally, when both networks were well-

initialized, in the third step, adversarial training was used to adapt both generator

and discriminator using adaptation data from the target speaker.

Table 1: Mel cepstral
distortion (MCD)
scores of the SI
postfilters with CI
and without CI are
shown.

Postfilter MCD
SI-Baseline 5.19
FC 5.89
RNN 5.16
CNN 5.45
T-FNN 5.13
FC+CI 5.60
RNN+CI 5.23
CNN+CI 5.47
T-FNN+CI 5.03

We have found that the algorithm outlined above worked better than using the

same three-step approach with only the target speaker’s data. Thus, adversarial

training was always used with cluster-based initialization in our experiments.
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CHAPTER VII

RESULTS AND DISCUSSION

7.1 Performance of the Speaker-Independent Postfilters

Objective tests: Mel-cepstral distortion scores of all SI postfilters are shown in

Table 1, and adaptation to target speakers was not applied. When cluster-based

initialization (CI) was not used, T-FNN postfilter outperformed the other three

postfilters. T-FNN and FC postfilters decreased the distortion while CNN and

FC postfilters increased the mel-cepstral distortion. RNN and T-FNN postfilters

performed closed to each other.

When there is no adaptation, the cluster-based initialization of the postfilters

did not enhance the performance of the CNN postfilter considerably and slightly

degraded the RNN postfilter. However, the performance of the FC and T-FNN

postfilters significantly improved with the cluster-based initialization method. The

effect was most clear in the FC postfilter because it has significantly fewer pa-

rameters than the other postfilters and has no recursion, which enables better

adaptation performance with small amounts of data. FC-based postfilter still

performed worse than the other postfilters with and without cluster-based ini-

tialzation method.

Comparison of variances was done using the scatter diagrams of the second

and third coefficients as shown in Figure 8. RNN postfilter generated features

that have larger variances compared to the other cases. The T-FNN postfilter

could not generate as long tails as the two other postfilters when adaptation was

not used.

Spectrograms for a speech sample are compared to assess the effect of postfil-

ter. A comparison of RNN, CNN, and T-FNN postfilters are shown in Figure 9.
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Figure 8: Scattered MGC values for the second and the third MGC coefficients
of several speaker independent postfilter predictions for an utterance in the test
set are compared with the natural speech and SI Baseline model prediction. Note
that; since we reserve the MGC-1 for log-energy feature, mel-cepstral features start
from MGC-2. The top two figures belong to the natural speech and SI Baseline
model, respectively. The following three figures belong to speaker independent
postfilters of RNN, CNN, and T-FNN models, respectively. From the top to the
bottom, variances along MGC-2 dimension are 1.28×10−4, 0.28×10−4, 0.31×10−4,
0.33× 10−4, and 0.40× 10−4, respectively. From the top to the bottom, variances
along MGC-3 dimension are 3.43 × 10−4, 0.95 × 10−4, 0.70 × 10−4, 0.77 × 10−4,
and 0.12× 10−4, respectively.

Formant trajectories were resolved better with the RNN and CNN postfilters com-

pared to the T-FNN postfilter. CNN postfilter filtered a significant part of the
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spectrogram and only retained the high-energy sections. T-FNN postfilter was

more successful at recovering the higher frequency harmonics.

Figure 9: Mel spectrograms of several speaker independent postfilter predictions
for an utterance in the test set are compared with the natural speech and SI
Baseline model prediction. The top two mel spectrograms belong to the natural
speech and SI Baseline model, respectively. The following three mel spectrograms
belong to speaker independent postfilters of RNN, CNN, and T-FNN models,
respectively.

Subjective tests: Because the base network that generates acoustic features

creates overly smooth trajectories, the variance of the synthetic features is typically
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lower than the natural features. Thus, the postfilters are expected to increase the

variance and get it closer to the natural feature sequences.

We performed AB and ABX tests for comparison of postfilters and results are

presented below. In listening tests, improvements in formant trajectories and vari-

ance of features translated into crisper, higher quality synthesized speech with the

RNN and CNN postfilters. They both improved the speech quality in the listening

tests as shown in Figure 10. Moreover, even though speaker adaptation was not

performed, speaker similarity was also found to improve with those two postfil-

ters thanks to the quality improvements. Speech quality and speaker similarity

obtained with the CNN and RNN postfilters were not found to be significantly

different as shown in Figure 11.

T-FNN postfilter could not improve the quality or speaker similarity com-

pared to the baseline system as shown in Figure 12. Moreover, a comparison of

the T-FNN postfilter with the best alternative RNN postfilter was done and RNN

postfilter was found to perform better than the RNN postfilter as shown in Fig-

ure 12. Even though MCD scores with the T-FNN postfilter were large on average,

because it could not improve formant trajectories or increase feature variances, it

could not improve the speech quality.

Table 2: Using 5, 10, and 15 seconds of adap-
tation data, Mel cepstral distortion scores are
shown for the speaker-adapted postfilters.

Postfilter 5 sec 10 sec 15 sec
FC 5.74 5.68 5.65
FC+CI 5.45 5.35 5.31
FC+CI+ADV 5.40 5.16 5.11
RNN 5.15 5.14 5.15
RNN+CI 5.21 5.20 5.20
RNN+CI+ADV 5.35 5.15 5.07
CNN 5.45 5.31 5.27
CNN+CI 5.45 5.29 5.25
CNN+CI+ADV 7.24 7.01 6.99
T-FNN 5.41 5.20 5.07
T-FNN+CI 5.18 5.10 5.05
T-FNN+CI+ADV 5.13 5.14 5.01

34



(a) B: RNN SI postfilter. p-val=0.01 (b) B: RNN SI postfilter. p-val=0.03

(c) B: CNN SI postfilter. p-val=0.01. (d) B: CNN SI postfilter. p-val=0.01.

(e) B: T-FNN SI postfilter. p-val=0.5 (f) B: T-FNN SI postfilter. p-val=0.8

Figure 10: A: SI-base (common for all the subfigures), N: Neutral (common nota-
tion for all AB and ABX test figures). The figures in the left column are AB tests,
while the figures in the right column are ABX tests. In the AB tests, Neutral
indicates that A and B are not distinguishable in terms of the sample quality. In
the ABX tests, Neutral indicates that A and B are not seperable in terms of their
similarity to X. x-axes indicate the number of preffered test samples (common for
all AB and ABX test figures). p-val symbolizes the significance (p-values) of the
corresponding tests.

(a) AB test. p-val=0.55

(b) ABX test. p-val=0.91

Figure 11: A: RNN SI postfilter, B: CNN SI postfilter.

7.2 Performance of the Speaker-Adapted Postfilters

Both objective and subjective tests were used to assess the performance of the

proposed algorithms. Results are presented and discussed below.

Objective tests: MCD scores of all postfilters with adaptation are shown
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(a) AB test. p-val=0.002

(b) ABX test. p-val=0.006

Figure 12: A: RNN SI postfilter, B: T-FNN SI postfilter.

in Table 2. Objective scores of the FC, CNN, and T-FNN postfilters improved

with increasing amounts of adaptation data for all configurations. RNN postfilter

could not adapt even when 15 seconds of adaptation data was used because of

the recursions in its structure. Its MCD score decreased only when adversarial

training was used with 15 seconds of adaptation data.

The CNN postfilter could not adapt with 5 seconds of data, but, as opposed

to the RNN postfilter, its adaptation performance improved when more data was

available. Interestingly, adversarial training had a detrimental effect on the CNN

postfilter as opposed to other postfilters.

Cluster-based initialization significantly improved the adaptation capability of

the T-FNN and FC postfilters, slightly degraded the performance of the RNN

postfilter, and did not affect the CNN postfilter. Since both RNN and RNN+CI

system performances remain almost constant for all adaptation data sizes, we

concluded that the RNN postfilter cannot adapt with limited data regardless of

the initialization method.

Adversarial training enhanced the performance of the FC and T-FNN postfil-

ters as shown in Table 2. However, it significantly degraded the CNN postfilter

performance. Similarly, performance of the RNN-based postfilter degraded with

adversarial training except for the 15sec case.

Similar to the speaker-independent case, a scatter plot analysis was performed
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Figure 13: Scattered values of the second and the third MGC coefficients for the
adapted postfilter predictions. From the top to the bottom, the figures belong to
cluster-based initialized adversarial postfilters of RNN, FC, and T-FNN models,
respectively. The postfilters are adapted with 3 utterances. From the top to
the bottom, variances along MGC-2 dimension are 0.26× 10−4, 0.29× 10−4, and
0.69 × 10−4, respectively. From the top to the bottom, variances along MGC-3
dimension are 1.08× 10−4, 1.10× 10−4, and 2.14× 10−4, respectively.

to gain further insight into the performance results. Scatter plots of the second and

third MGC features were compared for the FC, RNN, and T-FNN postfilters with

and without adaptation using 15 seconds of data in Figure 13. Variances of the

features are higher for the FC postfilter compared to the RNN postfilter. Moreover,

they increase further the T-FNN postfilters. Variance improvements with those

two postfilters are partly responsible for the the speech quality improvements in

the listening tests.

Mel spectrograms of the RNN, FC, and T-FNN postfilters for a single test

utterance are shown in Figure 14. FC and T-FNN postfilters are particularly

better at resolving the harmonics at higher frequencies. Moreover, they both

have better formant resolution than the RNN postfilter. Even though the T-FNN

postfilter had the best formant resolution, it did not outperform the FC postfilter
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in listening tests.

Figure 14: Mel spectrograms of several adapted postfilter predictions for an ut-
terance in the test set. From top to bottom, the mel spectrograms are from
cluster-based initialized adversarially trained postfilters of RNN, FC, and T-FNN
models, respectively. The postfilters are adapted with 3 utterances.

Subjective tests: In the objective test results, adaptation was not successful

in the case of CNN for all methods and all adaptation data sizes. The CNN

postfilter is learning to map large spectral textures and attempting to cluster-

adapt it with only a few shots of data had a detrimental effect because of the

large number of parameters that need to be adapted.

To confirm our findings with the objective test results, we also conducted

listening tests with the CNN postfilter. The speaker-independent CNN postfilter

is compared with the adapted CNN postfilter for the 15-second case, as this was

when adaptation was most successful. Even for that case, adapted CNN postfilter

was significantly outperformed by the SI CNN postfilter as shown in Figure 15.

In objective tests, the CI method was not effective for the case of RNN. How-

ever, both CI and adversarial training were effective for the FC postfilter. In
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(a) AB test. p-val=0.01

(b) ABX test. p-val=0.01

Figure 15: A: CNN SI postfilter, B: Adapted CNN SI postfilter. Adapted CNN
SI postfilter is adapted with 15 seconds of data.

subjective tests, we first compared the performance of RNN and FC+CI+ADV

postfilters. Adversarial training was used for RNN only for the 3-utterance case

because that was the only case where it improved the performance. The AB qual-

ity and the ABX speaker similarity tests for FC+CI+ADV and RNN postfilters

are shown in Figure 16. FC+CI+ADV postfilter significantly outperformed the

RNN-based postfilter at all data sizes for both ABX and AB tests.

(a) AB test. 5 sec adaptation. p-val=0.09 (b) ABX test. 5 sec adaptation. p-val=0.01

(c) AB test. 10 sec adaptation. p-val=0.01(d) ABX test. 10 sec adaptation. p-
val=0.01

(e) AB test. 15 sec adaptation. p-val=0.01(f) ABX test. 15 sec adaptation. p-val=0.03

Figure 16: A: RNN postfilter, B: FC cluster-based GAN postfilter. Note that
RNN postfilter is trained adversarially.

Based on the results discussed above, we concluded that in a speaker-adaptive
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(a) AB test. 5 sec adaptation. p-val=0.23 (b) ABX test. 5 sec adaptation. p-val=1

(c) AB test. 10 sec adaptation. p-val=0.88 (d) ABX test. 10 sec adaptation. p-val=1

(e) AB test. 15 sec adaptation. p-val=0.2 (f) ABX test. 15 sec adaptation. p-val=0.3

Figure 17: A: T-FNN cluster-based GAN postfilter with interpolation, B: FC
cluster-based GAN postfilter with interpolation.

postfilter setting with a few seconds of adaptation data, the FC postfilter together

with CI and adversarial training significantly outperforms the CNN and RNN

postfilters. Moreover, the adaptation of CNN postfilter is not feasible with limited

data.

Next, the FC postfilter was compared with the T-FNN postfilter, which per-

formed the best in objective tests. Results are shown in Figure 17. In listening

tests, there was no significant difference between the two systems in terms of

speech quality or speaker similarity.

Adaptation of the SI acoustic model using transfer learning together with i-

vectors as input to the network is commonly used for adaptation of DNNs using

limited data. That approach is also compared with the performance of the FC

postfilter and results are shown in Figure 18. Proposed FC postfilter significantly

outperformed the commonly used adaptation technique for the 15-second case both

at speaker similarity and speech quality. Because transfer learning was found to

be ineffective for the 5sec and 10sec cases, those results are not shown in Figure 18.
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(a) AB test. p-val=0.01

(b) ABX test. p-val=0.01

Figure 18: A: Transfer Learning, B: FC cluster-based GAN postfilter. 15 seconds
(3-utterance) of adaptation.

7.3 Comparison of Training and Inference Speed

Training and inference speeds of the proposed filters were measured and results are

shown in Table 3. The T-FNN postfilter clearly outperformed the other postfilters

both in training and inference speeds. The recursive RNN postfilter was slower

than the CNN and FC postfilters.

Both T-FNN and CNN postfilters batch process the input matrix while the

FC and RNN postfilters process the input feature vectors one at a time. Thus,

non-autoregressive architectures of T-FNN and CNN postfilters make them faster

compared to the RNN and FC postfilters. However, the T-FNN postfilter was

faster than the CNN postfilter because it has a significantly fewer number of pa-

rameters which affects the number of operations needed to postfilter the synthetic

acoustic features as discussed in Section 4.2

Memory footprint and speed are compared in Table for the proposed mel-

spectrogram generator versus the popular Tacotron 2 and Fastspeech 2 architec-

tures in Table 4. About 14x improvement is obtained in memory size, which is

critical in edge devices. Similarly, the system is 3x faster than the Fastspeech 2

algorithm.
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Table 3: Comparison of training and inference speeds of the best
performing speaker-adapted postfilters of each neural network type.
Speed of n kHz in traning means that network can train the acoustic
features corresponding to n x 1000 audio samples per second. Speed
of n kHz in prediction means that postfilter network can produce en-
hanced MGC features corresponding to n x 1000 samples per second
on a single Nvidia GTX 1080 GPU.

Postfilter Training Speed (kHz) Inference Speed (kHz)
T-FNN+CI+ADV 11.5 2157
FC+CI+ADV 3.11 1070
RNN+CI+ADV 2.14 723
CNN+CI 7.3 1280

Table 4: Comparison of model size and speed with the current
state-of-the-art TTS systems. As a postfilter, cluster-based ini-
tialized adversarial T-FNN architecture, which has 38k train-
able parameters, is used for our TTS model. Real-time-factor
(RTF) is calculated for generating one second of audio.

Model Parameter Size (M) Inference Time (RTF)
Tacotron 2 28 0.106
FastSpeech 2 27 0.018
Proposed 2 0.006

7.4 Performance of the Interpolation Algorithm

Comparison of the first MGC feature extracted from a natural speech sample and

its synthesized versions using FC postfilter with GAN, and FC postfilter with

GAN and interpolation methods is shown in Figure 6. A synthetic sample was

generated from the same speaker’s model with 15 seconds of adaptation data.

Table 5: Mel cepstral distortion (MCD) scores of the
speaker-adapted FC postfilter with and without Interpola-
tion using 5, 10, and 15 seconds of adaptation data.

Postfilter 5 sec 10 sec 15 sec
FC+CI+ADV 5.40 5.16 5.11
FC+CI+ADV+Interpolation 5.20 5.03 4.98
T-FNN+CI+ADV 5.13 5.14 5.01
T-FNN+CI+ADV+Interpolation 5.03 5.00 4.95

After interpolation, the variance of the MGC feature significantly improved.

Moreover, the overall synthetic feature trajectory got closer to the natural trajec-

tory when interpolation was used. Those results are also reflected in the objective
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scores presented in Table 5.

Even though the MCD scores significantly improved, speaker similarity or qual-

ity did not improve in the listening tests when the interpolation algorithm was

used.
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CHAPTER VIII

CONCLUSION

End-to-end systems perform well for letter-to-spectrogram mapping when large

amounts of studio-quality labelled audio is available. Thus, the challenge of creat-

ing a state-of-the-art TTS system has shifted to having access to such high-quality

data, which is not always easy/inexpensive to obtain especially for low-resources

languages and multi-speaker datasets. Moreover, e2e systems are typically not

suitable for devices with limited memory and cpu resources. Thus, investigating

the more traditional DNN-based acoustic models as an alternative, less data-

hungry approach is still an active area of research.

In this work, we proposed and comparatively experimented with FC-, RNN-

, CNN-, and T-FNN-based postfilter architectures to enhance the output of a

traditional speaker-adaptive DNN-based acoustic model. The proposed postfilters

were adapted to the unseen target speakers with only a few utterances.

Even though RNN and CNN postfilters outperformed the FC postfilter when

adaptation was not used, FC postfilter outperformed them when it is adapted

in an adversarial manner. CNN and RNN postfilters have significantly larger

number of parameters to adapt than the FC postfilter. Moreover, recursions in

the RNN postfilter make adaptation more challenging. Those two factors play

a major role in the superior adaptation performance of the FC postfilter. The

novel T-FNN system with multi-head attention did not perform well in speaker-

independent tests. However, it performed as well as the best performing FC

postfilter in speaker-adapted settings. Moreover, its training and inference speeds

were also significantly faster than the other postfilters.

The interpolation algorithm significantly improved the synthesized feature tra-

jectories as measured with MCD but that did not result in audible quality or
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similarity improvements.

Cluster-based initialization of the network parameters improved the perfor-

mance of the FC and T-FNN postfilters. However, it did not significantly affect

the RNN and CNN postfilters. Adversarial training substantially degraded the

performance of the CNN postfilter at all data sizes. It also slightly degraded the

performance of the RNN postfilter except with 15 seconds of adaption data where

it was helpful. Still, adversarial training significantly improved the FC postfilter

with increasing adaptation data sizes and the T-FNN postfilter with decreasing

data sizes.
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CHAPTER IX

APPENDIX

Pseudocode of the custom transformer block for the T-FNN postfilter:

import torch

import torch.nn as nn

class TransformerModelCustom(nn.Module):

def __init__(self,

ntokens_in,

ntoken,

ninp,

nhead,

nhid,

nlayers,

dropout=0.5):

super().__init__()

from torch.nn import TransformerEncoder, TransformerEncoderLayer

self.src_mask, self.pos_enc = None, PosEnc(ninp, 0.05)

enc_layers = TransformerEncoderLayer(ninp, nhead, nhid, dropout)

self.transformer_enc = TransformerEncoder(enc_layers, nlayers)

self.enc = nn.Linear(ntokens_in, ninp)

self.dec = nn.Linear(ninp, ntoken)

self.norm = nn.LayerNorm(ninp)
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self.drop = nn.Dropout(0.05)

self.is_mask = False

self.ninp = ninp

init_weights()

def forward(self,

src):

src = src.transpose(0, 1)

if self.is_mask:

if self.src_mask is None or self.src_mask.size(0) != len(src):

device = src.device

mask = generate_square_subsequent_mask(len(src)).to(device)

self.src_mask = mask

src = self.norm(self.enc(src)) * torch.sqrt(torch.tensor(self.ninp,

dtype=torch.float))

src = self.pos_enc(src)

output = self.transformer_enc(src, self.src_mask)

output = self.dec(output)

return output

Pseudocode of the discriminator:

def train_disc(model,

netD,

is_sil=False):

netD.train()

total_disc_real_pred = 0.0

total_disc_fake_pred = 0.0
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for ind in range(updates_per_epoch):

train_x, train_y, non_sil_indices, _ = train_generator_gan.__next__()

train_x = train_x.unsqueeze(dim=0).to(device)

train_y = train_y.unsqueeze(dim=0).to(device)

netD.zero_grad()

b_size = len(train_y.clone().squeeze())

label = torch.full( (b_size, 1), real_label,

dtype=torch.float, device=device )

# Forward pass

output = netD(train_y.clone()[:, non_sil_indices, :].squeeze())

# loss real

errD_real = criterion_gan(output, label[non_sil_indices, :])

# gradients

errD_real.backward()

torch.nn.utils.clip_grad_norm_(netD.parameters(), 0.8)

D_x = output.mean().item()

## Train

if is_sil:

fake = model(train_x.clone()[:, non_sil_indices, :]).transpose(0,

1).squeeze()

else:

fake = model(train_x.clone()).transpose(0, 1).squeeze()
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label.fill_(fake_label)

if is_sil:

output = netD(fake.detach())

else:

output = netD(fake.detach()[non_sil_indices, :])

# Calculate loss

errD_fake = criterion_gan(output, label[non_sil_indices, :])

# gradients

errD_fake.backward()

torch.nn.utils.clip_grad_norm_(netD.parameters(), 0.8)

D_G_z1 = output.mean().item()

errD = errD_real + errD_fake

optimizerD.step()

total_disc_real_pred += D_x

total_disc_fake_pred += D_G_z1

del errD_real, errD_fake

return total_disc_real_pred, total_disc_fake_pred

Pseudocode of the generator:

def train_gen(model,

netD,

avg_w,

is_sil=False):

model.train()
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netD.train()

total_loss = 0.0

total_loss_adv = 0.0

total_loss_com = 0.0

for ind in range(updates_per_epoch):

train_x, train_y, non_sil_indices, _ = train_generator.__next__()

train_x = train_x.unsqueeze(dim=0).to(device)

train_y = train_y.unsqueeze(dim=0).to(device)

netD.train()

netD.zero_grad()

b_size = len(train_y.clone().squeeze())

label = torch.full( (b_size, 1), real_label,

dtype=torch.float, device=device )

output = netD(train_y.clone()[:, non_sil_indices, :].squeeze())

# Calculate loss

errD_real = criterion_gan(output, label[non_sil_indices, :])

# gradients

errD_real.backward()

torch.nn.utils.clip_grad_norm_(netD.parameters(), 0.8)

D_x = output.mean().item()

if is_sil:
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fake = model(train_x.clone()[:, non_sil_indices, :]).transpose(0,

1).squeeze()

else:

fake = model(train_x.clone()).transpose(0, 1).squeeze()

label.fill_(fake_label)

if is_sil:

output = netD(fake.detach())

else:

output = netD(fake.detach()[non_sil_indices, :]

)

# Calculate loss

errD_fake = criterion_gan(output, label[non_sil_indices, :])

# gradients

errD_fake.backward()

torch.nn.utils.clip_grad_norm_(netD.parameters(), 0.8)

D_G_z1 = output.mean().item()

errD = errD_real + errD_fake

optimizerD.step()

optimizer.zero_grad()

netD.eval()

label.fill_(real_label)

if is_sil:

output = netD(fake)
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else:

output = netD(fake[non_sil_indices, :])

# Calculate loss

errG = criterion_gan(output, label[non_sil_indices, :])

errG = avg_w*errG

D_G_z2 = output.mean().item()

if is_sil:

output = model(train_x[:, non_sil_indices, :])

else:

output = model(train_x)

if is_sil:

loss = criterion(output.transpose(0, 1),

train_y[:,non_sil_indices, :])

else:

loss = criterion(output.transpose(0, 1)[:,non_sil_indices, :],

train_y[:,non_sil_indices, :])

com_loss = loss + errG

com_loss.backward()

torch.nn.utils.clip_grad_norm_(model.parameters(), 0.8)

optimizer.step()

total_loss += loss.item()

total_loss_adv += errG.item()
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total_loss_com += com_loss.item()

del loss, errG, errD_real, errD_fake

return total_loss_com, total_loss, total_loss_adv
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[7] A. Gibiansky, S. Ö. Arik, G. F. Diamos, J. Miller, K. Peng, W. Ping,
J. Raiman, and Y. Zhou, “Deep voice 2: Multi-speaker neural text-to-
speech,” in Advances in Neural Inf. Process. Syst., pp. 2962–2970, 2017.

[8] W. Ping, K. Peng, A. Gibiansky, S. Ö. Arik, A. Kannan, S. Narang,
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