T.C.
SULEYMAN DEMIREL UNIVERSITESI
FEN BILIMLERI ENSTITUSU

YESIL YAZILIMDA ENERJI TUKETIMINI DUSURMEYE

YONELIK KOMBINATORYAL BIR ALGORITMA
GELISTIRILMESI

Ibrahim SANLIALP

Danisman
Prof. Dr. Tuncay YIGIT

I1. Danmisman
Do¢. Dr. Muhammed Maruf OZTURK

DOKTORA TEZI
BILGISAYAR MUHENDISLIGI ANABILIM DALI
ISPARTA - 2022

© 2022 [Ibrahim SANLIALP]

ICINDEKILER

ICINDEKILERocoviiicticieeeccee ettt en st
O ZE T e ettt ettt ettt ettt ettt ettt
ABSTRACT oottt ettt ettt ettt ettt et et ettt e et et ettt ettt et
TESEKKUR ...ttt ettt sttt sttt stanens
SEKILLER DIZINT ...oviiiieieieseecee ettt
(@142 (€323 521 23 0) V4 1.\ (T
SIMGELER VE KISALTMALAR DIZINT ovovoveieeee e
L. GIRIS ottt ettt ettt sttt

1.1, MOTIVASYON ...ttt bbb

1.2, BIlIMSEL KAtKI ovvveeviiiiiiii ittt e ettt s e e e e e s eeebbb s e e eeeneeens
2. KAYNAK OZETLERT .oeoeeoeeeeeeeeeee oottt ettt

3. GENEL BILGILERoeiotieeeeeeee oottt ettt e e en e enan e e
3.1, Yeniden DUZENLEIME ...oovvveeieeie et ettt e e ettt e e e e eereseetaesesesteeeeeennaneesennns

3.1.1. Yeniden diizenleme teknikIeric.ccooveeeiiiiieeiiiiiie e
3.1.1.1. Simplify Nested 100Dcccoeviiiriiiiieiese e
3.1.1.2. Inline MEtNOdcooviiiiiiiiiiiee e
3.1.1.3. Introduce explaining variableccccooiiiiniiiiieies
3.1.1.4. INHINETEMP oo
3.1.1.5. INHINE CIASS .cvvvieeiieie et
3.1.1.6. Self encapsulate fieldcccoovieiiiiii
3.1.1.7. Replace magic number with symbolic constantc..c.........
3.1.1.8. Encapsulate fieldccoeiveiiiieieeee e
3.1.1.9. Consolidate duplicate conditional fragmentsccccecenvrennene
3.1.1.10. Hide MEthOdcveiiiiiiiieceeeeie e

RIVIRE: VA1 11008\Y (5156 1.4 (< ¢ BRTTTTTURurrr TR

3.2.1. KOd SAIT SAYIST ..veviiiriiiiiiiiiiiiiiesie st
3.2.2. Operand Ve OPEratOr SAYISIeerveevereerreeriereesieessesresseesteseeseesseenens
3.2.3. FONKSIYON SAYIST uvivuviiiiiiiiiiiiiiieitieie st
3.2.4. Fonksiyon ¢agrilma SAYISIcccccoervriineiiinieiie e
3.2.5. BaBlagim SAYIST ...ccvvviiiiiiiiiiiiiiiici s
3.2.6. Kalitim agacinin derinligicccoooevoriiiiiiiieiceeecee e
3.2.7. Cevrimsel karmasikliKcccocociiiiiiiiii e
3.2.8. Mantiksal kod Satir SAYISTcccovviiiiiiiiiiiiiiicieci e
3.2.9. Fonksiyon basina diisen ifade Sayistccvvvririinicinienenene s
3.2.10. Bakim yapilabilirlik indeksicccoovviiiiiiiiiiiiie
3.3. Metin MadenCiliZloocviiiierieiiiieie e
3.3.1. Metin madenciligi alanlartccccooiiiiiiiiiiicie
3.3.1.1. Bilgi gerikazanimicccoccveiieiiiniieiieee e
3.3.1.2. Dogal dil i$1emMeccoiiiiiiiiec
3.3.1.3. Bilgl CIKArTMI eeviiiiiiicieee e
3.3.1.4. Veri madenCiliZi ..o
3.3.2. Metin madenciligi adimlartcccoooiiiiiiiie
3.3.3. Metin madenciligi ve alanlar1 kapsaminda kullanilan kavramlar ve
TEKNIKIET ..o
3.3.3.1. Metin parcalamacccevviiiiiininiiiie e
3.3.3.2. Noktalama isareti SIHIMecccccvveiveeiiiccec e
3.3.3.3. Durdurma kelimeleri ...

3.3.3.4. KOkenine dONAUITNEccvvverrrmiiiieeeiiieriiiisiieeeeseeesssinssseessesesssnnnns 45

3.3.3.5. Temel hale dONdUIrmecccoovveiiiiiniciice e 45
3.3.3.6. Ciimle bolimlendirmeccccooviiieiiiiiieieeee e 45
3.3.3.7. Diizenli Ifadelercocvoveveviveeeeeieiereeeee e 46
3.3.3.8. DIZIN YONIEMICTT ..evvvvviiiiiiiiiiiieiiie ettt 47

3.4. Kombinatoryal OptimiZasyonccccceoeiiiinininininieene e 47
341, Graf tROMIST ...vveviiiiciiiieiee e 51
3.4.2. Minimum yayilan agag¢ ve algoritmalartcccccooviiiiiiiiiinnienns 56
3.4.2.1. Boruvka al@oritmaslccccccuvrrrieeniiiiiiiies e 58
3.4.2.2. Prim al@OTitmastcccocoviiiiiiiiiiiiiciieie e 59
3.4.2.3. Kruskal algoritmastccccovvvveiiiiiniiiiiiiies e 62

3.5. Enerjinin Genel Tanimiccccooveiiiiiiiiiiiic e 64
4. GEREC Ve YONTEMcociiiieieteiecessse ettt 66
4.1. Yeniden Diizenleme Tekniklerinin S€GImiccoevvveiiiieiiniieenieniee e 66
4.2. Yazilim MetriKIerinin SECIMIuevvviiiiiieiiiieiiiie e siee s sninee s 66
4.3. Yazilim Gelistirme Ortaminin S€GIMIcccvevrrvererrieseereeieseenesseeseeneas 67
4.4. Gelistirilen Algoritma ve Matematiksel Modelcccccevevieiiiieinenne. 69
4.4.1. Geligtirilen algoritmacoccoviiiiiiieee s 69
4.4.2. Gelistirilen matematiksel modelcccooveiiiiiieii i 72

4.5. DENEYSEI VEIT SEEI ..ottt 74
4.6. Gelistirilen Otomasyon Yazilim Aractnin Genel OzelliKIefi 75
4.7. Enerji Tiiketiminin {ZIenmesiccc.cooeveviierriieiieeeee e 82
5. ARASTIRMA BULGULARIcoooiiiiiiiiiisiet s 87
6. SONUC VE ONERILERccccvviviuiteteiieieiteeetsseseses e enssas et es s sssen s 112
KAYNAKLAR ettt ettt bbbt n et nne s 114
OZGECMIS .ottt 128

OZET
Doktora Tezi

YESIL YAZILIMDA ENERJI TUKETIMINI DUSURMEYE YONELIK
KOMBINATORYAL BIR ALGORITMA GELISTIRILMESI

Ibrahim SANLIALP

Siileyman Demirel Universitesi
Fen Bilimleri Enstitiisii
Bilgisayar Miihendisligi Anabilim Dah

Damisman: Prof. Dr. Tuncay YIiGIiT

II. Damisman: Doc. Dr. Muhammed Maruf OZTURK

Kodu yeniden diizenleme, kaynak kodlarinda iyilestirmeler yapmak i¢in uygulanan,
zaman alan ve yogun caba gerektiren bir siirectir. Son yillarda yazilim miihendisligi
geligtiricileri arasinda oldukga ilgi gormiistiir. Gelistiriciler icin, secilen yeniden
diizenleme teknigine bagl olarak yazilim tarafindan tiiketilen enerjideki degisimi bilmek
onemlidir. Bu tez calismasi kod yeniden diizenleme tekniklerinin etkilesimlerinin
incelenmesi ve enerji verimliligi i¢in optimal siranin elde edilmesine yonelik
aragtirmalarin yapilmasi iizerinedir.

Calisma kapsaminda Prim tabanli 6nceliklendirme algoritmasi, matematiksel model ve
Windows tabanl grafiksel kullanic1 arayiiz (GUI) uygulamasi gelistirilmistir. Uygulama
oncelikle verilen statik kod metriklerini ¢ikartmakta ve hangi tiir yeniden diizenleme
tekniklerinin kaynak kodla uyumlu olduguna karar vermektedir. Sonrasinda gelistirilen
kompleks metrigin 6l¢iimiinii kullanan Prim tabanli 6nceliklendirme algoritmasi ile
yeniden diizenleme tekniklerinin sirasini iiretmektedir. Son olarak, algoritmanin tirettigi
oncelik siras1 uygulandiktan sonra elde edilen yeniden diizenlenmis kaynak kod ile
orijinal kod enerji tikketimi acisindan kargilastirilir.

Sonuglar, kodun karmasikligin1 ve boyutunu gosteren kriterlerin enerji tiiketimi
acisindan bir Oncelik belirleme algoritmasi tasarlamak icin yararli oldugunu
gostermektedir. Yeniden diizenleme teknikleri sirasinin esas olarak yararlanilacak
yazilim projesinin kaynak koduna bagl oldugu sonucu cikarilmigtir. Elde edilen
bulgular gelistiricilerin nesne yonelimli programlama dili ile olusturulan kodlarini
yalnizca enerji verimliligi agisindan degil, ayn1 zamanda siirdiiriilebilirlik acisindan da
gelistirmelerine yardimci olacaktir.

Anahtar Kelimeler: Yeniden diizenleme, onceliklendirme, yesil yazilim, yazilim
metrigi, enerji tilketimi, yazilim kalitesi, nesne yonelimli programlama.

2022, 129 sayfa

il

ABSTRACT
Ph.D. Thesis

DEVELOPMENT OF A COMBINATORIAL ALGORITHM TO REDUCE
ENERGY CONSUMPTION IN THE GREEN SOFTWARE

Ibrahim SANLIALP

Siilleyman Demirel University
Graduate School of Natural and Applied Sciences
Department of Computer Engineering

Supervisor: Prof. Dr. Tuncay YIGIT

Co-Supervisor: Asst. Prof. Dr. Muhammed Maruf OZTURK

Code refactoring is a time-consuming and effort-intensive process that is applied to
make improvements to source code. In recent years, it has gained more interest among
software engineering developers. For developers, it is essential to know the change in
the energy consumed by the software dependent on the chosen refactoring technique.
This thesis 1s about examining the interactions of code refactoring techniques and
conducting research on obtaining the optimal order for energy efficiency.

The scope of the study, Prim-based prioritization algorithm, mathematical model, and
Windows-based graphical user interface (GUI) application are developed. Firstly,
the application extracts the given static code metrics and decides which refactoring
techniques are compatible with the source code. Then, it produces a refactoring
sequence thanks to the Prim-based prioritization algorithm using the measurement of
the developed complex metric. Finally, refactored source code obtained after applying
the priority order produced by the algorithm is compared with the original code in terms
of energy consumption.

The results show that criteria indicating the complexity and size of the code are useful
for designing a prioritization algorithm in terms of energy consumption. It is concluded
that the order of refactoring techniques mainly depends on the source code of the
software project to be exploited. The findings will help developers improve their code
created with the object-oriented programming language, not only in terms of energy
efficiency but also in terms of sustainability.

Keywords: Refactoring, prioritization, green software, software metrics, energy
consumption, software quality, object-oriented programming.

2022, 129 pages

v

TESEKKUR

Doktora tez calismamda beni yonlendiren, karsilastiim zorluklar1 bilgi ve tecriibeleri
ile asmamda yardimci olan degerli danisman hocalarim Prof. Dr. Tuncay YIGIT ve
Dog. Dr. Muhammed Maruf OZTURK ’e tesekkiirlerimi sunarim.

Ayrica her ¢alismamda oldugu gibi bu tez calismasinda da maddi ve manevi destegiyle
hep yanimda olan sevgili esime, hayatin her asamasinda beni yalniz birakmadiklari
gibi tezimin her asamasinda da beni yalniz birakmayarak bugiinlere gelmemi saglayan
aileme sonsuz sevgi ve saygilarimi sunarim.

Ibrahim SANLIALP
ISPARTA, 2022

SEKILLER DIiZiNi

Sekil 3.1.

Sekil 3.2.
Sekil 3.3.

Sekil 3.4.
Sekil 3.5.
Sekil 3.6.

Sekil 3.7.

Sekil 3.8.
Sekil 3.9.

Sekil 3.10
Sekil 3.11
Sekil 3.12
Sekil 3.13
Sekil 3.14
Sekil 3.15
Sekil 3.16
Sekil 3.17

Sekil 3.19.
Sekil 3.18.
Sekil 3.20.
Sekil 3.21.
Sekil 3.22.
Sekil 3.23.
Sekil 3.24.
Sekil 3.25.
Sekil 3.26.
Sekil 3.27.
Sekil 3.28.
Sekil 3.29.
Sekil 3.30.
Sekil 3.31.
Sekil 3.32.
Sekil 3.33.

Sekil 4.1.
Sekil 4.2.
Sekil 4.3.
Sekil 4.4.
Sekil 4.5.

Sekil 4.6.
Sekil 4.7.
Sekil 4.8.

Orijinal kod pargasi ve simplify nested loop uygulanmis kod

PATGAST .ttt ettt b et b bbb
Orijinal kod pargasi ve inline method uygulanmis kod pargast
Orijinal kod pargas1 ve introduce explaining variable uygulanmis
KO PATGAST....vviiiiiiiiiiiie ittt
Orijinal kod pargas1 ve inline temp uygulanmis kod pargast
Orijinal kod pargasi ve inline class uygulanmis kod pargast
Orijinal kod pargas1 ve self encapsulate field uygulanmis

KO PATGAST 1.vvviiiiii ittt
Orijinal kod pargas1 ve replace magic number with symbolic
constant uygulanmis Kod parcastccocceererriienie e
Orijinal kod pargas1 ve encapsulate field uygulanmis kod pargast
Orijinal kod pargas1 ve consolidate duplicate conditional fragments
uygulanmis Kod parcastc.cveveieeriiiienienieeneee e
. Orijinal kod dizayni ve hide method uygulanmis kod dizayni
. Yazilim metrikleri ve yazilim kalite parametreleri arasindaki iliski ..
. If-then-else durumunun akis grafi.........ccocvviiiniinininniiese e
KOA BIOZU o
. Kod blogunun diiglim gOStETIMIeevveeriieiiieiieeiiesee e
. Eclipse metrics plugin ¢evrimsel karmasik hesablama yontemi
. McCabe ¢evrimsel karmasik hesaplama yontemicccocevneenen.
. Deyim igeren Kod bloguccocviiiiiiiiiiiice e
Metin madenciligi adimlari..........cccooviiiiiiei
Metin madenciligi alanlart ...
Optimizasyon problem tipleri ...
Graf ¢izgl GIZIM OIMETT ..eevvveviiiiiiiiii e
Basit graf ve belirtim gOSterimicoovvevveirieiiieiie e
Genel graf ve bigimsel gOStETIMIcccvvvviiiiiiiiiiiii e
Yonlendirilmis graf........coooooiiiiiii
Yonlendirilmemis agirlikln graf ...
Tam graf OrnekIericcooovviiiii
Bir graf, grafin bitisiklik matrisi ve komsuluk matrisiccccceeene
D1 yayilan alt graf ve D2 indiiklenmis alt graf..............cocooiiin
Bes diigiimlii agac ornekleri........ccooovvviiiiiiiiiiicee
Agirlikli graf ve minimum yayilan agact..........cccoeveiiiiieiiinieenn
Boruvka algoritmasinin temel adimlartccocoeiiiiiiiiiiicies
Prim algoritmasinin ¢alisma prensibicccooovvvveriiiiieniineene
Kruskal algoritmasinin ¢alisma prensibiccceveviiiiiiiiiiniiniennns
Tlmlesik gelistirme ortami OrnekIericooveeviieiiiiiiiie e
Tam ve agirliklt graf 0rmnegicooocvviiiiiiiiiii
Kullanict arayliz tasarimiccoooverrieiieniienie e
Alt meniilerin genel gOrinlimii.........ccoovveviiiiiiinii e
Orijinal ve yeniden diizenlenmis olanlar1 kapsayan kod

PArgast OrNEKICTTcviiiiiiiiiiiciie e
Uygulanan yeniden diizenleme tekniklerinin tespiticccccceevvuennee.
Yeniden diizenleme tekniklerinin optimal S1rast..........ccccveveiiiiiiiennn.
Calismanin kavramsal CEIrgeVESI. ..uuurviiiiiireeiiiiieeeiiiiee e sciiee e siree e

Vi

Sekil 4.9.
Sekil 5.1.
Sekil 5.2.
Sekil 5.3.
Sekil 5.4.
Sekil 5.5.
Sekil 5.6.
Sekil 5.7.
Sekil 5.8.

Sekil 5.9.

Intel Power Gadget bilesenleriocovviiviiiiieiiiienii e
Sekil 4.10. Trepn Profiler bilesenleri

Basit hesap makinesi projesi i¢in orijinal kodun ve karsilagtirma

algoritmalarinin kiimiilatif enerji tikketim sonuglartc.cceevennes

Oyun 2048 projesi i¢in orijinal kodun ve karsilastirma

algoritmalarinin kiimiilatif enerji tikketim sonuglartc.cocceveennes

Bordro yonetim sistemi projesi i¢in orijinal kodun ve karsilastirma

algoritmalarinin kiimiilatif enerji tilketim sonuglartcoccevvennes

Otel yonetim sistemi projesi i¢in orijinal kodun ve karsilastirma

algoritmalarinin kiimiilatif enerji tilketim sonuglartc.c.ccoevveineens

Hastane yonetim sistemi projesi i¢in orijinal kodun ve karsilastirma

algoritmalarinin kiimiilatif enerji tikketim sonuglart..........c.cocooevvennes

Calisan yonetim sistemi projesi i¢in orijinal kodun ve karsilagtirma

algoritmalarinin kiimiilatif enerji tilketim sonuglart..........cccocceeveennenns

Mobil-Oyun 2048 projesi i¢in orijinal kod ve karsilastirma

algoritmalarinin kiimiilatif enerji tilketim sonuglartc.coccoevvennenns

Mobil-Hesap makinesi projesi i¢in orijinal kodun ve karsilastirma

algoritmalarinin kiimiilatif enerji tilketim sonuglartc.ccoevvernenns

Orijinal kodun ve karsilastirma algoritmalarinin kiimiilatif ener;ji
tiiketim sonuglari-I (toplu kutu grafik gosterimi): P1, Basit
hesap makinesi projesi; P2, Oyun 2048 projesi; P3, Bordro
yOnetim sistemi projesi; P4, Otel yonetim sistemi projesi;

Ps, Hastane yonetim sistemi projesi; P6, Calisan yonetim

SISTEIME PIOJEST ..vvveventite sttt bbbt

Sekil 5.10. Orijinal kodun ve karsilastirma algoritmalarinin kiimiilatif enerji

tiikketim sonuglari-1I (toplu kutu grafik gosterimi): P7,

Mobil-Oyun 2048 projesi; Ps, Mobil-Hesap makinesi projesi...........

vii

CIZELGELER DiZINi

Cizelge 3.1.
Cizelge 4.1.
Cizelge 4.2.
Cizelge 4.3.
Cizelge 4.4.
Cizelge 5.1.

Cizelge 5.2.
Cizelge 5.3.
Cizelge 5.4.
Cizelge 5.5.
Cizelge 5.6.
Cizelge 5.7.

Cizelge 5.8.

Cizelge 5.9.

Cizelge 5.10.
Cizelge 5.11.
Cizelge 5.12.
Cizelge 5.13.
Cizelge 5.14.
Cizelge 5.15.
Cizelge 5.16.
Cizelge 5.17.
Cizelge 5.18.

Cizelge 5.19.

Onerilen yeniden diizenleme teknikleri listesic.ccovevvverevrvenennnn.
Secilen yeniden diizenleme teknikleri liStesicccocvviiviriiiennnnen.
Secilen metriklerin lISteSi.......uiciiiiiieeiiiiee e
Deneysel projelerin OZtcvecviverieiiiiieiieieseseee e
Komguluk matris gOStEITMI ...ccvvvvveiieiiiiiiiiiciieee e
Orijinal kod ile karsilagtirma algoritmalarinin Wilcoxon isaretli
sira testi sonuglart (Ho: p > 0:05, H1: p < 0:05) .ooviiiiiiiiiiiiie
Enerji tiiketim sonuglari. Tiim deneyler ayn1 zaman araliginda
(300 saniye) ve on kez calistirma ile gerceklestirilir...........ccoueruneee
Kruskal algoritmas ile iiretilen optimal siralarin detaylari
Boruvka algoritmasi ile iiretilen optimal siralarin detaylart
Onerilen algoritma ile iiretilen optimal siralarin detaylari
Basit hesap makinesi projesinde islem yapilan kaynak dosya ve
uygulanan yeniden diizenleme tekKniKIericccccooeniniiiinnnne
FormMain sinifinin metrik 6l¢tim sonuglart ve matematiksel
MOdel RESADI. ...oouiiiiiiiii i
Oyun 2048 projesinde islem yapilan kaynak dosya ve uygulanan
yeniden diizenleme tekniKIericcoccoeiiiiiiiiiiiniiniici e
Form1 sinifinin metrik 6l¢iim sonuglar1 ve matematiksel model
RESADL i
Bordro yonetim sistemi projesinde islem yapilan kaynak dosya
ve uygulanan yeniden diizenleme teknikleri ..o
Employee sinifinin metrik 6l¢lim sonuglar1 ve matematiksel
model hesab1.cooiiiiii
Otel yonetim sistemi projesinde islem yapilan kaynak dosya ve
uygulanan yeniden diizenleme tekniKIericccccoveveiereieinnnns
UpdateCustomer sinifinin metrik 6l¢tim sonuglari ve
matematiksel model hesab1. ...
Hastane yonetim sistemi projesinde islem yapilan kaynak dosya
ve uygulanan yeniden diizenleme tekniklericccovcenvrvninnnn.
PatientBill sinifinin metrik 6l¢iim sonuglar1 ve matematiksel
mMOodel hesSab1.cooiiiiii
Calisan yonetim sistemi projesinde islem yapilan kaynak dosya
ve uygulanan yeniden diizenleme tekniklericccooevviiernnne.
EmployeeDetails sinifinin metrik dl¢iim sonuclart ve
matematiksel model hesab1. ...
Mobil-Oyun 2048 projesinde islem yapilan kaynak dosya ve
uygulanan yeniden diizenleme tekniKIericcccooeveieiencnnnnns
Matrix sinifinin metrik 6l¢tim sonuglar1 ve matematiksel model

viii

91

95

97

99

101

Cizelge 5.20. Mobil-Hesap makinesi projesinde islem yapilan kaynak dosya
ve uygulanan yeniden diizenleme teknikleri

Cizelge 5.21. Calculator smifinin metrik 6l¢lim sonuglar1 ve matematiksel
MOdE] RESADI. ..o

105

SIMGELER VE KISALTMALAR DIZiINi

G Graf

D Altgraf

Gp Indiiklenmis altgraf

F Dongiisel olmayan altgraf
E Grafin ayrit sayis1

N Grafin diigiim sayis1

P Ayrik bagl bilesen sayis1

ex Diigiim cifti

e* Minimum agirlikli kenar

|% Gerilim (voltaj)

1 Elektrik akimi (amper)

T Zaman

Ve Kararsiz olmayan kaynak voltaji
Py Dinamik gii¢

C Kapasitans

A Aktivite faktorii

U Arama uzay1

u Diigtim agirli1

fi Amag fonksiyonu

h; Maliyet fonksiyonu

8k Dogrusal olmayan fonksiyon
Vv Programin hacmi

n Programin kelime hazinesi
w Agirlik fonksiyonu

Ag Komsguluk matrisi

Mg Bitisiklik matrisi

R Direng

J Joule

CPU Merkezi iglemci birimi
GPU Grafik iglemci birimi

SDLC Yazilim gelistirme yagsam dongiisii
LoC Kod satir sayis1

DIT Kalitim agaci derinligi

cc Cevrimsel karmagiklik
SLOC —-L Mantiksal kod satir sayis1
MI Bakim yapilabilirlik indeksi
NOM Fonksiyon sayis1

MYA Minimum yayilan agac

SI Uluslararasi birimler sistemi
SC Kaynak kod

GUI Grafiksel kullanici arayiiz
GT Grafik teknolojileri

1. GIRIS

Giiniimiizde enerji tiikketimi ve enerjiye bagimhilik tiim diinya iilkelerini ilgilendiren
giincel konulardan biridir (Tolga ve Turgut, 2018). Enerji tilketiminin giderek artmasi
sera etkisi yapan gazlarin atmosferdeki miktarinda onemli artiglar yapmaktadir. Bu
gazlarin atmosfere saliniminin artmasi sonucunda kiiresel 1sinma ve kiiresel iklim
degisiklikleri meydana gelmektedir. Atmosferde meydana gelen artiglara en biiyiik
katkiy1 yapan sera gaz1 karbondioksit gazidir ve karbondioksit merkezli toplam sera
gaz1 emisyonu hesaplanmasinda karbon ayak izi kullanilir (Civelekoglu ve Biyik,
2020). Karbon ayak izi islemlerin yasam boyunca ¢evreyi kirleticilikleri ile ilgili olup
insan faaliyetlerinin cevreye verdigi zararin birim karbondioksit veya karbon cinsinden

Olciilen miktar1 olarak tarif edilmektedir (Y1lmaz, 2014).

Diinyada artan populasyon ile birlikte iletisim ve bilgi teknolojilerinin kullanim1 da
artmaktadir. Bu tiir teknolojilerin devamlili§ini siirdiirebilmesi i¢in saglam altyapilar
kullanilmasi kaginilmazdir. Altyapi kullanimi sonucunda enerji tiiketimi biiyiik miktarda
artmakta ve bunun sonucunda diinyada her gegen giin karbon ayak izlerinin giderek
arttig1 goriillmektedir. Bu yiizden kullanilan enerji tiiketiminin azaltilmas1 gerekmektedir

(Agarwal vd., 2012).

Genel olarak diinyada enerji tiikketimi ile ilgili belirli bir farkindali@in olugsmasi, yazilim
enerji tiiketimi ile iligkili ¢alismalarin arastirmacilarin ilgisini cekmesini saglamisgtir.
Uygulayicilar tarafindan yesil yazilim miihendisligi olarak adlandirilan yaklasim
(Manotas vd., 2016), gelismekte olan bir paradigmadir ve ¢evre iizerindeki olumsuz
etkileri azaltmak i¢in yesil 6zellikli yazilimlar gelistirmeyi amag¢lamaktadir. Yazilim
miihendisliginin alt arastirma alanlarindan biri olan yesil yazilim (Shenoy ve Eeratta,
2011), enerji tikketimi konusu kapsaminda degerlendirilebilir. Bu kapsamda, kod
islevini bozmadan enerji tiikketimini diisiirmeye yonelik hem donanimsal hem de
yazilimsal ¢oziimler sunan ¢alismalar mevcuttur (Hsu ve Kremer, 2003). Donanimsal
coziimler genellikle merkezi islemci birimi (CPU) enerji tiikketim gdzlemine ve bu
tilkketim degerinin tahminine veya kullanilan ¢evre birim elemanlarinin ayarlarina
yonelik iyilestirmeleri icerir. Yazilim enerji tiikketim ¢aligmalari genellikle mobil

programlama noktasinda yogunlagmistir. Bunun temel nedeni mobil cihazlardaki sik

sarj ihtiyact olarak goriilebilir. Ancak yazilim 6l¢eklerinin biiylime hizi ve bulut
bilisimdeki gelismeler, kullanicilarin kisisel bilgisayarlardaki enerji tiiketim diizeylerini
de yiikseltmektedir. Bu yiizden yazilimsal ¢coziimler ise kod islevini bozmadan yazilim
icin izlenen yazilim gelistirme siireci, kullanilan yeniden diizenleme teknigi gibi

konularda yapilan yenilik ve gelistirmeleri gézlemlemeye dayanur.

Yazilim gelistirme siireglerinde Onerilen iyilestirmeler ile yazilim enerji tiikketimi
diistiriilmeye calisilmistir. Konuyla ilgili olarak cevik yontemlerdeki yenilikler goze
carpmaktadir. Bu yapilirken, 6zellikle CPU veya grafik islemci birimi (GPU) {izerindeki
islem yiikii azaltilmaya calisitlmigtir. lgili islemler; etkili algoritma gelistirmeyi,
coklu-is parcacig1 yapisini, veri akisi tizerindeki diizenlemeleri, kod vektorlestirmeyi ve
on bellek yapisinin etkili kullanilmasini kapsar. Bunlarin diginda yeniden diizenleme
teknikleri kullanilarak kodun islevi degistirilmeden yapilan islemler ile de enerji

tiketimi azaltilabilmektedir.

1.1. Motivasyon

Yazilim miihendisliginde yazilim maliyet biitgesinin yiizde ellisinden fazlasi bakim icin
ayrilmaktadir (Turver ve Munro, 1994; Ahn vd., 2003). Bu bakim maliyeti ¢ikan hatalar
ile ilgili olmakla birlikte yazilim 6zelliklerinin yenilenmesi ve giiclendirilmesi ile de
ilgilidir. Ozellikle mobil cihazlarda ve yiiksek diizeyli bilgisayarlarda enerji tiiketimi,
yonetilmesi ve kontrol edilmesi gereken bir unsurdur. Yazilim enerji tiiketiminin
diisiiriilmesi hem hesaplama karmasiklig: yiikiinii hafifletmekte hem de yesil yazilim
olarak adlandirilan konuda ilerlemeyi saglamaktadir. Bu noktada, yazilim enerji
tilkketimine yonelik her calisma yazilim ekonomisi kapsaminda degerlendirilebilir.
Yazilim ekonomisini daha iyi yonetmeye yardimci olan enerji tiiketimi konusu daha
cok mobil yazilimlar icin vazge¢ilmezdir. Ancak yazilim mimarileri ve gevre
birimlerindeki degisim ile artan depolama ihtiyaci, hesaplama sistemlerinin daha fazla

enerji tilketmesine neden olmaktadir.

Kod yapisina ve yazilim gelistirme modeline gore enerji tiikketim ipuclar1 belirleyen
caligmalar literatiirde mevcuttur. Ancak bu popiilariteye ragmen siirekli degisen ve

gelisen yeniden diizenleme tekniklerinin enerji tiiketimi agisindan tek tek incelendigi

calismalar da mevcuttur. Nitekim gelistiriciler acisindan secilen yeniden diizenleme
teknigine bagh olarak yazilimin tiikettigi enerjinin degisimini bilmek onemlidir (Park
vd., 2014). Dahasi, yeniden diizenleme etkinliginin uygulamalardaki farkliliga bagh
olarak tutarli olmadig tespit edilmistir (Sahin vd., 2014). Bu da deney veri seti 6l¢eginin
olabildigince genis olmas1 gerektigi sonucunu vermektedir. Bunun disinda, bir veya iki
yeniden diizenleme tekniginin kullaniminin enerji tiikketimini ne kadar azalttig1 da daha
once arastirtlmistir (Kim vd., 2018). Kim ve arkadaslari, yedi farkl1 yeniden diizenleme
teknigi ile yapilan kombinasyonlar1 gomiilii sistem kodlari iizerinde denemiglerdir.
Yeniden diizenleme tekniklerini bireysel uygulamak yerine ikili kombinasyon seklinde
calistirmak enerji titkketimini daha ¢ok diigiirmiistiir. Ancak ¢caligmanin kapsamu ii¢ farkl
kombinasyon ile simirlandirilmigtir. Ayrica iic ve daha fazla sayida kombinasyon goz
Oniine alinmamus, ikili kombinasyonlar benzerlige dayal iiretilmistir. Diger taraftan, son
zamanlarda aragtirmacilar optimum yazilim siirdiiriilebilirligini elde etmeye yardimci
olan yeniden diizenleme tekniklerinin sirasim tespit etmeye (Tarwani ve Chug, 2020;
Gupta ve Chug, 2020) ve yazilimin siirdiiriilebilirligi ile enerji tiiketimi arasindaki
iliskiyi analiz etmeye odaklanmaktadirlar (Mancebo vd., 2021a). Arastirmalar mobil
cihazlarda ve yiiksek diizeyli bilgisayarlarda enerji tiiketiminin yonetilmesi ve kontrol
edilmesi gereken bir unsur oldugunu gostermektedir. Dahasi kigisel bilgisayarin yilda
yaklagik 175 kg karbondioksit salinim olugturdugu goz oniine alindiginda kodun enerji

tilketimini azaltan yontemlere odaklanmak anlamli hale gelmektedir.

1.2. Bilimsel Katki

Tez calismas1 kapsaminda, kod yeniden diizenleme tekniklerinin acik kaynakli nesne
yonelimli programlama dilleri ile yazilmis kaynak kodlar tizerindeki enerji etkisi
arastirildi. Yazilim sistemlerinin enerji tiikketimini azaltmaya yonelik olarak en iyi
yeniden diizenleme tekniklerinin sirasini elde eden bir 6nceliklendirme algoritmasi ve
otomasyon yazilimi gelistirildi. Yazilim metrikleri ve grafik tabanli arama yaklasimi,
metrik degerler yardimiyla diigiim maliyetini hesapladiktan sonra yeniden diizenleme
strasint bulmak i¢in kullanilir. Bu sira, yazilim siirdiiriilebilirligi ve enerji agisindan en
uygun sira olarak kabul edilir. Tez ile ilgili ¢calismalar nesne yonelimli programlama
dillerine ait bulgular1 kapsayacaktir. Bunun disindaki programlama yapilar1 6rnegin

endiistriyel otomasyon yazilimlar1 ve mantiksal programlama tezin kapsami digindadir.

Tezin katkilar1 su sekilde siralanabilir: 1) Yeniden diizenleme tekniklerine dncelik
vermek icin bir kompleks metrik tasarlanmistir. 2) Yeniden diizenleme tekniklerinin
optimum sirasini elde etmek i¢in Prim tabanli bir algoritma gelistirilmigtir. 3) Bu
calisma ayrica statik kod analizini ve Onerilen yontemi iceren bir otomasyon yazilimi
sunmaktadir. 4) Bulgular, gelistiricilerin nesne yonelimli kodlarin1 yalmzca enerji
verimliligi ac¢isindan degil, aym1 zamanda siirdiiriilebilirlik acisindan da gelistirmelerine

yardimct olacaktir.

2. KAYNAK OZETLERI

Opdyke ve Johnson (1993) yaptiklar1 calismada, nesne yonelimli programlamada bir
dizi somut sinifin soyut iist sinifim1 yapmak icin yeniden diizenleme diye adlandirilan
bir tiir yap1 iyilestirme doniisiimii tizerine odaklanmiglardir. Programlari asamali
olarak yeniden yazma ve yapilarim iyilestirme teknikleriyle ilgilenmislerdir. Ayrica
nesne yonelimli dillerde yeniden diizenleme islemlerinin otomasyonunun olmamasi

dolayisiyla maliyetin yiiksek oldugunu ifade etmislerdir.

Tiwari vd. (1994) calisgmalarini kod derleme siirecinin bir mikroiglemeci iizerinde calisan
yazilimin enerji tiikketimini nasil etkileyebilecegi iizerine yapmislardir. Geleneksel
derleme tekniklerinin enerji azaltimu iizerindeki etkisini tartismiglar ve bu konuda faydali
olabilecek teknikleri gozden gegirmislerdir. Switch islemini azaltmak i¢in komutlar
tekrardan diizenleme igleminin enerji tikketimini azaltacagini ifade etmislerdir. Ayrica
en az icerik kaydedecek sekilde fonksiyon c¢agrilarini diizenleyen derleyici politikalari
kullanmak hafiza operandlarinin kullanim sayisimi diisiirecegi i¢in enerji tasarrufu
saglanabilecegini vurgulamislardir. Yazarlara gore dinamik Ram’de (sayfalama modu)
meydana gelen sayfa kayiplar1 enerji tiikketimini artirmaktadir. Bu yiizden bellek erisimi
ve tahsisi yeniden diizenlenerek sayfa isabet (page hit) oraninin yiikseltilmesi ile enerji

tasarrufunun saglanacagini belirtmiglerdir.

Moore (1996) nesne yonelimli programlarin ¢ogunun kusurlu bi¢cimde kalitim
hiyerarsileri ve kusurlu olarak ayrismis yontemler icerdigini ve bu kusurlar bakimla
artma egiliminde oldugunu ifade etmistir. Yaptig1 calismasinda, kalittm hiyerarsilerinin
ve programlardaki yontemlerin otomatik olarak yeniden yapilandirilmasi i¢in Guru diye
adlandirdig1 bir prototip aract sunmustur. Yeniden diizenleme siirecinin otomasyonuna

yonelik katkilar saglamistir.

Demeyer vd. (2000) yaptiklar1 calismada, nesne yonelimli yazilim uygulamasindaki
yeniden diizenleme tespitini tersine mithendislik cabalariyla tespit etmeye ¢alismiglardir.
Uygulamada nerede degisiklik oldugunu bulabilmek i¢in kod degisiklik metriklerini
(smf sayisi, metot sayisi, her sinif i¢in kalitim sayis1) kullanmiglar ve sezgisel tarama

ile yazilim sisteminin ilgili béliimlerine odaklanmiglardir.

Tokuda ve Batory (2001) nesne yonelimli tasarimlarin yeniden diizenleme teknikleri
ile evrimlestirilmesi konusunda calismislardir. Inceledikleri uygulamanin, yazilim
mithendisleri tarafindan manuel olarak gelistirildigini; fakat uyguladiklar1 yeniden
diizenleme teknikleri ile daha hizli ve daha ucuz bir gekilde iiretilebilecegini
gostermislerdir. Ayrica nesne yonelimli programlamalardaki ilerlemelerin yeniden

diizenleme tekniklerinin artmasini sagladigindan bahsetmislerdir.

Kataoka vd. (2002) yaptiklar1 ¢alismada, yeniden diizenlemenin siirdiiriilebilirlik
artirict etkisini 6lgmek icin nicel bir degerlendirme yontemi Onermislerdir.
Yeniden diizenlemenin etkisini de8erlendirmek i¢in birlestirici metrikler iizerine
odaklanmislardir. C++ ile yazilmis en fazla 5 yil siire siirdiirtilebilirligi oldugunu ifade
ettikleri yazilim iizerinde birlestirici diye ifade ettikleri metrikler gbz Oniine alinarak
yeniden diizenleme tekniklerini uygulamislar ve yeniden diizenlemenin yazilimin

stirdiiriilebilirligine etkisini gdzlemlemislerdir.

Mens ve Tourwé (2004), yeniden diizenleme ile yazilimin yeniden yapilandirilmasi
alaninda mevcut arastirmalara kapsamli bir bakis sunmuslardir. Bu arastirmada, bir
dizi farkl kriterlere dayanarak (6zel teknikler, faaliyetleri desteklemek icin kullanilan
formalizmler vs.) karsilagtirilmalar yapilmis ve yeniden diizenlemenin yazilim siirecine

etkisi tartisilmigtir.

Higo vd. (2004) yaptiklar1 ¢calismada, bir kaynak dosya icerisinde, digerine dzdes
veya benzer bir kod parcacig1 olarak adlandirilan kod klonlarin1 kaldirmak icin
“Extract Method” ve “Pull Up Method” yeniden diizenleme tekniklerini de kullanan
bir yontem sunmuslardir. Caligmalar1 sonucunda uyguladiklar1 kaynak dosyada 2 adet
klonlanmig smif tespit etmigler ve uyguladiklar1 yeniden diizenleme teknikleri ile kodun

fonksiyonelligini degistirmeden klonlanmig kodlar1 indirgemislerdir.

Binkley vd. (2006) yaptiklar1 ¢alismada, nesne yonelimli programlama (OOP) ile
geligtirilen programin baglam yonelimli (aspect-oriented) programlamaya (AOP)
transferi sorununa otomatik bir yaklasim sunmuslardir. Nesne yonelimli programladan
baglam yonelimli programlamaya transfer icin AOP-Migrator isimli bir arac

kullanmislardir. 6 adet yeniden diizenleme teknigi tantmlanmis ve bu araca otomatik

olarak verilmistir. Calisma sonuclari, transferin biiyiik 6l¢iide otomatik sekilde OOP’den
AOP’ye gecmenin miimkiin oldugunu fakat yeniden diizenleme tekniklerin her zaman

dogrudan uygulanabilir olmadiklarin1 gdstermistir.

Taina ve Pohjalainen (2009) calismalarini yesil yazilimin mihenk taglarindan olan “yesil
metrikler” iizerine yapmuslardir. Iklim degisikligine kars1 savunmada yazilimlarin
onemli rol oynayacagi goriisiinii belirtmislerdir. Sera gazi salinimimi azaltmak i¢in
yazilimlarda iiretilen karbon ayak izlerini ve iglemcilerin cycle kullanimu ile tiiketilen

enerjilerini vurgulamiglardir.

Taina (2010) calismasinda, yazilim karbon ayak izlerini analiz etmek icin bir yaklagim
sunmustur. Sunulan yaklasim tipik bir yazilim yasam dongiisiinii adim adim analiz
ederek her adimin ne kadar biiyiik karbon ayak izleri tiretildigini tahmin etmektedir.
Yesil yazilim agisindan bakildiginda, yazilimin nasil gelistirilecegi, nasil dagitilacagi
ve nasil kullanilacaginin 6nemli oldugunu vurgulamistir. Yesil oldugunu iddia eden
bir yazilim saticisinin yaziliminin kiiciik bir karbon ayak izi oldugunu gostermesi

gerektigini ifade etmistir.

Silva vd. (2010) yaptiklar1 ¢alismada, “inline refactoring” yontemini Java dili ile
yazilmig gémiilii yazilim icin gelistirilmis uygulamalarin kodlarina uygulamiglardir.
Yontemin performans ve enerji tiiketimi iizerindeki etkilerini incelenmiglerdir. Address
Book, Sokoban ve Mpeg Decoder uygulamalarini kullanmiglardir. Yontemin Addres
Book ve Sokoban uygulamalarinda performansin arttigin1 ve enerji tiiketiminin
azaldigimi gozlemlemiglerdir. Fakat en karmagik analiz uygulamasi olan Mpeg Decoder
ayn1 sonuclar1 vermemistir. Clinkii uygulama ¢ok karmasik yontemler icermesinin yani
sira yontemlerin degisken havuzunda adreslenecek ¢ok sayida degiskene sahip olmasi

durumunda bir kazanca yol agmadigin ifade etmiglerdir.

Naumann vd. (2011) yaptiklar1 ¢alismada, “Yesil ve Siirdiiriilebilir Yazilim” ve “Yesil
ve Siirdiiriilebilir Yazilim Miihendisligi” terimlerinin tanimlarini 6nermisler, daha sonra
kavramsal referans model olan GreenSoft Modeli’nden ana hatlariyla bahsetmislerdir.

Bu model yazilim iiriinleri icin ekonomik, toplumsal ve ekolojik etkilerin ve tiim yasam

dongiisii boyunca iiriinden kaynaklanan insan tizerindeki etkilerinin miimkiin oldugunca

kiiciik olmasi gerektigi anlamina gelmektedir.

Shenoy ve Eeratta (2011) calismalarinda, yesil yazilim ve gelistirme siirecinde gevre
tizerindeki zararli etkileri en aza indirmek icin yazilim gelistirme asamalarinda
iyilestirmeler onermektedirler. Ayrica daha diisiik karbon emisyonlarina, gii¢, kagit
kullanimina yol acabilecek ve kuruluslarin daha cevreci ve siirdiiriilebilir yazilim
gelistirmeye dogru ilerlemesine yardimect olabilecek uygun yesil yazilim parametreleri

sunmaktadirlar.

Chen ve Wang (2012) yaptiklar1 calismada, grafiksel kullanici arayiiz test scriptleri
icerisindeki problemli boliimler diye tanimlanan kotii kokulari tespit etmisler ve bunlara
yeniden diizenleme teknikleri uygulamislardir. Calisma sonucunda kotii kokulari

gidermede yeniden diizenleme tekniklerinin yararli oldugunu gézlemlemislerdir.

Gottschalk vd. (2012) calismalarini ¢evresel kaynaklari korumanin yaninda bilgi ve
iletisim teknolojisinin kabul edilebilir bir enerji tiikketimini siirdiirmek icin mobil
cihazlarin enerji tiiketimi iizerine yapmuglardir. Mobil cihazlardaki uygulama
yazilimlarinin kaynak kodlari iizerinde tespit edilen kotii kokular1 yeniden diizenleme
teknikleri ile optimize etmigler ve bdylece uygulamanin enerji tiiketimini azaltmiglardir.
Ayrica kotii koku cesitlerinden olan “loop bug”, “dead code”, “moving too much data”,

“immortality bug” i¢in ¢6zliim Onerileri sunmuslardir.

Agarwal vd. (2012) yaptiklar1 ¢alismada, yazilimin siirdiiriilebilirlik yonlerini ele
almislardir. Ayrica Yazilim Gelistirme Yasam Dongiisii (SDLC) modelleri, yazilimin
ve gelistirme siirecinin siirdiiriilebilirligi ve daha yesil yonlerini ele almadiklarimi
veya bunlarin iizerinde durmadiklarini vurgulamiglardir. Yazilim gelistirmenin
daha yesil yonlerini de icerecek sekilde SDLC modellerinde iyilestirmeler iizerine

odaklanmuglardir.

Mahmoud ve Ahmad (2013) yaptiklar1 calismada, yazilim miihendislerinin yazilim
gelistirme siirecine yardimci olmak ve yazilimin ¢evre giivenligini saglamak icin

stirdiiriilebilir bir yazilim modeli olusturma tizerine odaklanmiglardir. Miihendislik

stirecinde her bir yazilim asamasi i¢in yesil yonergeler veya yesil siirecler onermislerdir.

Boylece yesil ve siirdiiriilebilir bir yazilima ulagsmay1 hedeflemislerdir.

Dick vd. (2013) yaptiklar1 calismada, yazilimda yesil ve siirdiiriilebilir gelistirmeleri
Scrum’a entegre ederek, genel bir siire¢ modeli sunmuglardir. Boylece Scrum
cevik gelistirme modelinde gelistirme yapilarak enerji tiiketiminin diisiiriilmesini
amaclamiglardir. Ayrica, gelistirilen model ile yazilim miihendislerinin yesil ve

stirdiiriilebilir yazilim iiriinleri gelistirmede desteklenmesi 6ngoriilmiistiir.

Gottschalk vd. (2013), calisma kapsaminda Android uygulamalar icin giic
tilkketimi konusunu ele almiglardir. Bir mobil uygulama i¢in gii¢ atig1 kosullarini
tamimlamiglar ve sonra atik kosullarini ¢c6zmek icin bir kod yeniden diizenleme teknigi
onermislerdir. Ayrica onerilen teknigin enerji verimliligini arttirmaya uygun oldugunu
belirtmislerdir. Ancak detay iyilestirme siirecini baskalarinin kullanimina yetecek kadar

aciklanmamustir.

Kwon ve Tilevich (2013), yaptiklar1 calismada, enerji tilketimini azaltmak icin mobil
uygulamalarin bakimina yonelik adaptive multi-target cloud offloading adin1 verdikleri
yeni bir yaklasim sunmuglardir. Cloud offloading, uygulamanin mobil cihazinin
pilini bosaltmadan uygulamanin enerji yogun islevselligini yiiriitmeyi miimkiin
kilan bir mobil uygulama optimizasyon teknigidir. Kaynak kodlarin1 degistirmeden
mobil uygulamalarin enerji tiikketimini islemci ve ag iletisimi (Wi-fi, 4G) agisindan

incelemislerdir. Gozlemleri sonuglarinin umut verici oldugunu bildirmislerdir.

Dinita vd. (2013) yaptiklar1 calismada, bir bulut i¢inde sanallagtirilmis sunucularin
mobilitesi araciliiyla internet / ag kullaniminin optimizasyonuna ve donanim gii¢
tiiketimini gelistirmeye odaklanmiglardir. Enerji tiikketimine yonelik farkli islemci yiik
oranlari ile testler yapmuglar ve hizin kritik olmadigir durumlarda clock hizini azaltmanin

enerji tilketimini diisiirdiigiinii tespit etmiglerdir.

Park vd. (2014) calismalarinda, mevcut yeniden diizenleme tekniklerinin verimli enerji
yazilim iiretimini destekleyip desteklemedigini arastirmay1 amaclamislardir. Mevcut

teknikler tarafindan iiretilen yeniden diizenlenmis kodlarin orijinal kodlardan daha fazla

giic tiiketebileceklerini ciinkii yeniden diizenleme siireclerindeki gii¢ tiiketimini dikkate
almadiklarin belirtmiglerdir. Bu yiizden, Martin Fowler’in 63 adet yeniden diizenleme
teknigi icin gii¢ tiiketimini hesaplamiglar ve analiz etmislerdir. Sonucta, bunlar arasinda

33 teknigin verimli enerji yeniden diizenleme teknigi oldugu tespit edilmistir.

Parsai vd. (2015) yaptiklar1 ¢alismada, yazilim test kodlarina yeniden diizenleme
teknikleri uyguladiktan sonra test kodlarinin davranislarina yonelik mutasyon testleri
uygulamiglardir. Mutasyon testleri, yazilima test oncesi hatalar yiikleyip sonrasinda
testin bu hatalarin ne kadarin1 yakaladigina yonelik bir tiir test teknigidir. Caligmalarinin,
test kodlar1 tizerinde uygun olmayan sekilde yapilan yeniden diizenleme kisimlarini da

aydinlatmaya yonelik oldugunu belirtmislerdir.

Xuan vd. (2016), yazilim test kodlarindaki dinamik analiz iglemlerinin gelistirilmesine
yonelik yeni bir yeniden diizenleme yaklasimi iizerine ¢alismiglardir. B-Refactoring
olarak adlandirdiklari, test edilebilirligini de8istirmeden test durumlarim daha kiiciik
test durumlarina bolme prensibine dayanan bu teknik ile dinamik analiz i¢in daha iyi

kontrol akis1 saglamay1 hedeflemislerdir.

Manotas vd. (2016), yazilim uygulayicilarin yazilimlarini gelistirirken gereksinimleri
belirledikleri sirada, tasarim yaptiklari sirada, test ettikleri sirada ve yazilimlarina bakim
yaptiklari sirada enerji kavrami hakkinda ne diisiindiikleri iizerine yapilan ilk deneysel
calismayr sunmuglardir. Deney Google, Microsoft, ABB ve IBM calisanlarindan
olusan 464 kisilik yazilim uygulayicilarindan olusmaktadir. Toplanan verilerden elde
ettikleri sonuglar, mevcut yesil yazilim miihendisligi arastirmasiyla bagdasmakta ve
uygulayicilarin uygulamalarinin enerji kullanimini iyilestirmelerine yardimci olacak

stratejiler ve araglar gelistirmeyi amacladiklarim1 gostermektedir.

Morales vd. (2017) yaptiklar1 ¢calismada, An Energy-Aware Refactoring Approach
for Mobile Apps isimli enerji tiikketimini kontrol ederken mobil uygulamalar i¢in
kod yeniden diizenlemeye yonelik yeni bir model (anti-desen) dogrulama yaklasimi
onermiglerdir. Modeli evrimsel ¢okamacli optimizasyon algoritmalar1 kullanarak

test etmiglerdir. Bu yaklasim, enerji tiikketimini diisiirebilecek yeniden diizenleme

10

tekniklerini 6nermektedir. Caligmalar1 sonucunda varsayilan ayarlarda mobil telefonun

batarya dmriinii % 29 artirmay1 basarmiglardir.

Barack ve Huang (2018) Greenup, Powerup ve Speedup metriklerini kullanarak bir
mobil yazilim sistemindeki kod yeniden diizenleme tekniklerinin enerji verimliligi ve
performans acisindan degerlendirmesine yonelik bir ¢alisma sunmuglardir. Fowler’in
calismalarini kullanarak ornek kodu caligtiran bir Android uygulamasi gelistirmisler
ve mobil uygulama yazilimina 21 kod yeniden diizenleme teknigini uygulamiglardir.
Akabinde, kod yeniden diizenleme teknigini on kategoriden birine siniflandirmak i¢in
sonuglara 6nerilen metrikleri uygulamiglardir. Ilk 5 kategori enerji tiiketimini diisiiren
yesil alan1 sonraki 5 ise enerji tiiketimini artiran kirmizi alani temsil etmektedir. Yesil
alanda 9 yeniden diizenleme teknigi ve kirmizi alanda 12 yeniden diizenleme teknigi
olacak sekilde siniflandirmislardir. Elde edilen sonuclar, her kod yeniden diizenleme

teknigi icin performans ve enerji verimliligi arasindaki karsilikli iligkiyi gostermektedir.

Kim vd. (2018) calismalarinda, gomiilii sistemlerden elde edilen kodlarda yedi
farkli yeniden diizenleme tekniginin ve bunlarin bazi ikili kombinasyonlarinin enerji
tiiketimindeki etkisini aragtirmislardir. % 2.4 oraninda enerji tiiketiminin diistirtilebildigi
calismanin tek programlama dilindeki kodlar ilizerinde yapildigi goriilmektedir.
Calismada vurgulanan onemli noktalardan biri yeniden diizenleme tekniklerinin farkl
kombinasyonlarinin da nasil secilmesi gerektigidir. Bunun da bir bagka arastirma

konusu olabilecegi vurgulanmusgtir.

Anwar vd. (2019) calismalarinda, Android a¢ik kaynak uygulamalarinin 6nce tiir basina
ayr1 ayr1 ve sonra permiitasyonlu bir sekilde bes kod koku tiirii yeniden diizenlemelerinin
enerji tilkketimine etkisini aragtirmisglardir. Ayrica yeniden diizenlemeler kullanmanin
yerel Android agik kaynak uygulamalarinin yiiriitme siiresi iizerindeki etkisini de
incelemiglerdir. Sonug¢ olarak "Yinelenen kod" ve "Tip Kontroli" i¢in kaydedilen
maksimum enerji azaltiminin sirasiyla % 10,8 ve % 10,5 oldugu goriilmektedir. Kod
kokusu yeniden diizenlemelerinin belirli permiitasyonlari, enerji tiiketimi etkileri secilen
Android uygulamalar arasinda biiyiik olciide farklilik gosterebileceginden dikkatli
kullanilmas1 yoniinde goriis bildirmisler ve secili Android uygulamalarinda yiiriitme

stiresinde 6nemli bir artis veya azalma gozlemlememiglerdir.

11

Connolly Bree ve Cinnéide (2020) ¢calismalarinda, temsilci ve kalittmdan olusan iki
yeniden diizenlemenin bir programin enerji tikketimi {izerindeki etkisini karsilagtirmak
i¢cin bir kavram kanit1 deneyi gerceklestirmigler. Ayni programin biri kalitimla, digeri
temsilciyle uygulanan iki versiyonu yazilmistir. Kalittmdan yararlanan program
stirlimiiniin ¢aligma siiresinde % 77 nin iizerinde bir azalma saglanmig ve giic tiikketimi,

temsilciye kiyasla % 4’iin lizerinde azalmistir.

Sehgal vd. (2020), yeniden diizenleme igleminin gii¢ kullaniminin azaltilmasinda nasil
onemli bir role sahip oldugunu arastirmiglardir. Bu ¢alisma, uygun yeniden diizenleme
tekniklerinin uygulanmasi ile pil tiikketimini azaltti§ini ortaya koymustur. Sonug olarak,
yeniden diizenleme teknigi ile kodun iyilestirilmesinin, enerji verimliligine yonelik iyi

bir adim oldugu vurgusu yapilmistir.

Mancebo vd. (2021a), yazilimin enerji tikketimi ile siirdiiriilebilirligi arasinda bir iligki
olup olmadigini test etmek i¢in ampirik bir calisma gergeklestirmiglerdir. Bu ¢alisma
bakim yapilabilirlik, kod satir1 sayis1 ve yazilimin karmasiklig: gibi farkli metrikler
aracilifiyla degerlendirilmistir. Elde edilen sonuglar, kod satir sayisinin hem islemcinin
enerji tilkketimini hem de yazilimin ¢alistirildig1 bilgisayarin toplam enerji tiiketimini

etkiledigini gostermistir.

12

3. GENEL BIiLGILER

Yeniden diizenleme kavrami, yeniden diizenleme teknikleri, yazilim metrikleri, metin
madenciligi, metin madenciligi alanlari, kavramlar1 ve teknikleri, kombinatoryal
optimizasyon, graf teorisi, minimum yayilan aga¢ ve algoritmalari, enerjinin genel
tanimi1 ve bu arastirmada kullanilan diger teknikler ve araclar ile ilgili genel bilgiler bu
boliimde aciklanmaktadir. Bahsi gecen kavram ve tekniklerin agiklanmasinin ardindan,

tez kapsamiyla ilgili diger calismalar ele alinmaktadir.

3.1. Yeniden Diizenleme

Yazilim sisteminindeki kodun dig davranigin1 degistirmeyecek sekilde i¢ yapisinda
tyilestirmelere gidilerek kodu degistirmek gerekebilir. Kodun digsal davranigini
degistirmeden siirdiiriilebilirligini, okunabilirligini artirmak ve karmagikligin diigtirmek
icin kod iizerinde yapilan degisiklik kod yeniden diizenleme olarak adlandirilmaktadir

(Fowler vd., 1999).

Kod yeniden diizenleme, mevcut olan kodun gdvdesini yeniden yapilandirarak kodun
dis davranmisimi degistirmeden i¢ yapisimi degistirmek i¢in kullanilan disiplinli bir
tekniktir. Bu teknik, her bir bilgisayar programinin kaynak kodunda islevsel olmayan
gereksinimlere uygunlugunu degistirmeden ufak degisiklikler iceren bir dizi yeniden
diizenleme yoluyla yapilandirma siirecini kapsar (Kaur ve Kaur, 2016). Kisaca, kodun
kalitesini artirmak icin yazilim sisteminin islevsel olmayan 6zelliklerini iyilestirmeye

yonelik gerceklestirilmektedir.

Martin Fowler (Fowler, 2018), yeniden diizenlemenin gelistiricilerin daha hizl
programlama yapmalarina, hatalari bulmalarina ve yazilim tasarimin iyilestirmelerine
yardimci oldugunu belirtir. Yeniden diizenleme, kaynak kodun siirdiiriilebilirligini
tyilestirmek icin gelistirilmis kod okunabilirligi ve azaltilmig karmasikligin yani sira
genisletilebilirligi iyilestirmek i¢in daha etkileyici bir i¢ dizayn elde etmeyi hedefleyen
bir tekniktir. Ayrica, yazilimin performansi veya giivenilirligi gibi diger yazilim
niteliklerini gelistirmek icin de kullanilmaktadir (Kwon vd., 2013; Park ve Hong, 2013).

Bu niteliklerin yaninda yeni bir yazilim kalite faktorii olarak degerlendirilen enerji

13

verimliligi agisindan da incelenmektedir (Park vd., 2014; Kim vd., 2018; Sehgal vd.,
2020). Yazilim miihendisleri siirdiiriilebilirligi iyilestirmek icin eski kodlarin1 yeniden
diizenlediklerinde, yeniden diizenleme, enerji tiiketimi agisindan orijinal eski koddan

daha fazla enerji tiiketen herhangi bir kod iiretebilir (Park vd., 2014).

Kod iizerinde yeniden diizenleme ile degisiklikler yapilirken dikkat edilmesi gereken
en 6nemli nokta, kodun temeldeki islevselligini etkilememesi gerektigidir. Bu yiizden,
yapilan degisiklikler tam anlamiyla kodu kolaylagtirmak icindir. Manuel yeniden
diizenleme genellikle hataya aciktir ve zaman alir (Roberts, 1999). Ornegin, bir yontemi
yeniden adlandirmak, yontemin yeni adinin heniiz kullanimda olmadiginin kontrol
edilmesini ve tiim ¢agrilarin giincellenmesini gerektirir. A¢ikca zaman alic1 olmasinin
yani sira, bu iglem ayni zamanda hataya da meyillidir ¢linkii polimorfizm, unutulmusg
bir giincellemenin dogru bir sekilde derlenmesine neden olabilir, ancak yazilimin
davranisimi yanlislikla degistirebilir. Bu, bakimcinin degistirilen islevselligi manuel
olarak bulmasin1 ve atlanan ¢agriy1 giincellemesini gerektirir. Boyle durumlarda yeniden
diizenleme genellikle gergeklestirilmez ve yazilimin yapisi, islevsel degisikliklerin bir
sonucu olarak bozulur. Fakat otomatik yeniden diizenleme araclari sayesinde bu tiir
sorunlar ortadan kaldirilabilir. Ciinkii otomatik yeniden diizenleme, on kosullarin
kullanilmasiyla miimkiin kilinmistir ve bunlarin yerine getirilmesi sonucunda, yeniden

diizenlemenin davraniglar1 koruyacagini garanti eder (Kaur ve Kaur, 2016).

3.1.1. Yeniden diizenleme teknikleri

Yazilim miihendisliginde bazi yontemler programin enerji tikketimini ve performansini
dogrudan etkileyebilir (Silva vd., 2010). Bunlardan biri de yeniden diizenleme
teknikleridir. Kaynak koda dogru sekilde uygulanan yeniden diizenleme teknikleri,
yalnizca kodun kalitesini artirmaz ayni zamanda bir uygulama tarafindan tiiketilen
enerjiyi de etkiler (Papadopoulos vd., 2018). Yeniden diizenleme teknikleri uygulanmis

kodlar orijinal kodlara gore enerji tiiketimini artirabilir (Kim vd., 2018).

Yazilim gelistiricileri, miihendisleri veya arastirmacilari, agik kaynakli yazilim
gelistirmeyi siirdiirmek i¢in daha kararli yeniden diizenleme teknikleri kullanmak

istemektedir. Yeniden diizenleme teknikleri, yazilim endiistrisindeki bir¢ok bilgisayar

14

programinda uygulanabilir. Bu programlar nesne yonelimli dillerle yazilabilir. Nesneye
yonelik programlamada kullanilabilecek bircok yeniden diizenleme teknigi vardir. Fakat
bazi yeniden diizenleme teknikleri enerji tilkketimine olumlu katki sunarken bazilari ise

enerji tilkketimini olumsuz etkilemektedir (Park vd., 2014).

Verilen bilgiler dogrultusunda, tez kapsaminda toplamda 78 adet yeniden diizenleme
teknigini incelenmis olup yazilimin enerji tikketimi ve kod performansi agisindan 6nemli
goriilen 40 adet teknik Cizelge 3.1°de verilmektedir. Calisma kapsaminda tekniklerin
birbirleri ile etkilesimleri sonucunda enerji verimliligine olumlu katki sunan yeniden
diizenleme teknigi sayis1 projelere gore degisiklik gosterebilmektedir. Bu dogrultuda,
tekniklerden 6nemli goriilenlerin bireysel olarak genel ¢calisma mantiklar asagida

detayl bir sekilde anlatilmaktadir.

3.1.1.1. Simplify nested loop

Cift dongii (ic ice dongii) genellikle iki boyutlu bir diziyi islemek i¢in kullanilir. Bununla
birlikte bu teknik, yuvalanmis dongii yapisini tek bir dongiiye doniistiiriir (Kim vd.,
2018). Dongii blogu icindeki islemler, i¢ ice dongii yapisindaki dizi 6gelerine erismek
i¢in dizin kullanan ifadelerle aciklanmais ise dizi isaret¢isi ve tek dongii kullanilarak bu
i¢ ice dongii yapisinin yerine kullanilabilir (Kim vd., 2018). Sekil 3.1°de iki farkli kod
parcas1 goriilmektedir. Sekil 3.1(a) orijinal kod parcasini temsil ederken, Sekil 3.1(b)

Simplify Nested Loop uygulanmis kod parcasin1 gostermektedir.

#define sizeM = 100; #define sizeM = 100;
#define sizeN = 100; #define sizeN = 100;
void maig() { . void main() {
int i, j; . . int 1, j;
int arrayA[sizeM][sizeN]; int arrayA[sizeM][sizeN];

int *p = &arrayA[0][0];
for(i = 0; i < sizeM; i++){

for(j = 0; j < sizeN; j++){ for(i=0; i < sizeM*sizeN; i++){
arrayA[i][j] = 100; *p++ = 100;
H }
} }
b
(a) Orijinal (b) Simplify Nested Loop

Sekil 3.1. Orijinal kod pargas1 ve simplify nested loop uygulanmis kod parcas: (Kim
vd., 2018)

15

Cizelge 3.1. Onerilen yeniden diizenleme teknikleri listesi

| Yeniden Diizenleme Teknik Ad

* Simplify Nested Loop

* Inline Method

* Replace Temp with Query

* Introduce Explaining Variable

* Split Temporary Variable

* Inline Temp

* Remove Assignment to Parameters
* Replace Method with Method Object
* Substitute Algorithm

* Hide Delegate

* Move Method

* Move Field

* Extract Class

* Inline Class

* Introduce Foreign Method

* Remove Middle Man

* Introduce Local Extension

* Self Encapsulate Field

* Replace Array with Object

* Replace Magic Number with Symbolic Constant
* Change Reference to Value

* Replace Subclass with Fields

* Encapsulate Field

* Encapsulate Collection

* Decompose Conditional

* Consolidate Conditional Expression
* Consolidate Duplicate Conditional Fragments
* Remove Control Flag

* Rename Method

* Add Parameter

* Remove Parameter

* Separate Query from Modifier

* Parameterize Method

* Replace Parameter with Explicit Methods
* Introduce Parameter Object

* Remove Setting Method

* Pull Up Method

* Pull Up Field

* Push Down Field

* Collapse Hierarchy

16

3.1.1.2. Inline method

Gereksiz yontemlerin sayisint en aza indirmek, kodu daha sade hale getirecektir
(Refactoring, 2021). Boylece kod tekrarinin 6niine gecilecek ve kodun siirdiiriilebilirligi
artacaktir. Sekil 3.2°de iki farkli kod pargasi goriilmektedir. Bu kodlar C# dilinde
yazilmis ve ayni isleve sahiptir. Sekil 3.2(a) orijinal kod parcasini temsil ederken, Sekil
3.2(b) Inline Method uygulanmis kod parcasini gostermektedir. Sekil 3.2(b)’deki kod

satir sayis1 daha azdir.

class Poliklinik class Poliklinik
{ {
flisss /...
int TalepDoktor() int TalepDoktor()
{ {
return HastaSayisiSiniri()? 2 : 1; return hastaSayisi> 5?2 : 1;
} }
bool HastaSayisiSiniri() }
;
return hastaSayisi> 5;
}
}

(a) Orijinal (b) Inline Method

Sekil 3.2. Orijinal kod parcasi ve inline method uygulanmis kod pargasi

Yukaridaki kod satirlarinda oldugu gibi yontemin gévdesi yontemin kendisinden daha

acik oldugunda bu yontemin kullanilmasi kodu daha agik hale getirmis olacaktir.

3.1.1.3. Introduce explaining variable

Karmasik ifadelerin ve kosullu ifadelerin diisiik diizeyde basitlestirilmesi yeniden
diizenleme tiplerinin 6zellikleri arasindadir (Counsell vd., 2015). Bunlardan biri olan
Introduce Explaining Variable, karmagik bir ifadeyi basitlestiren, diisiik seviyeli bir kod
tabanli yeniden diizenleme teknigidir (Counsell vd., 2015). Teknik kodun icerisinde
karmasik bir ifade tespit ederse ifadenin sonucunu veya ifadenin boliimlerini amaci
aciklayan bir adla birlikte gegici bir degiskene koyar (Fowler vd., 1999). Boylece koda

yeni degiskenlerin tanitilmasiyla karmasik ifade basitlestirilir. Sekil 3.3(a) orijinal kod

17

parcasimi temsil ederken, Sekil 3.3(b) Introduce Explaining Variable uygulanmis kod

parcasini gostermektedir.

double price() {

return _quantity * _itemPrice -
Math.max(0, quantity - 500) *
itemPrice * 0.05 +
Math.min(_quantity * _itemPrice * 0.1, 100.0);

(a) Orijinal

final double basePrice = quantity * itemPrice;
final double quantityDiscount = Math.max(0, _quantity - 500) * _itemPrice * 0.05;
final double shipping = Math.min(basePrice * 0.1, 100.0);

double price() {
return basePrice - quantityDiscount + shipping;

}

(b) Introduce Explaining Variable

Sekil 3.3. Orijinal kod pargasi1 ve introduce explaining variable uygulanmis kod pargasi
(Fowler vd., 1999)

Gegici degiskenler, yalmzca bir yontem baglaminda kullanighdir. Bir yontem,
nesnenin tamaminda ve diger nesnelerde kullanilabilir (Fowler vd., 1999). Fakat yerel
degiskenlerin Extract Method gibi tekniklerin kullanimin1 zorlagtirdig1 zamanlar yerine
bu teknigi kullanmak avantaj saglayabilir. Teknik bir kosulun her bir ciimlesini almanin
ve kosulun ne anlama geldigini iyi adlandirilmus bir gegici ile agiklamanin yararli oldugu
kosullu mantik ile degerlidir (Fowler vd., 1999). Diger taraftan bu teknigin uygulandigi
yerlerde siniflarin daha biiyiik ve daha yiiksek oranda bagli olma egiliminde oldugu

bilinmektedir (Counsell vd., 2015).

3.1.1.4. Inline temp

Kod blogu igerisinde basit bir ifadenin sonucunu atayan ve daha fazlasi olmayan gegici
bir degisken var ise bu degiskeni ifadenin kendisi ile degistirmek gerekebilir (Fowler
vd., 1999). Boyle durumlarda Inline Temp yeniden diizenleme teknigini kullanmak
gerekir. Sekil 3.4(a) orijinal kod parcasini temsil ederken, Sekil 3.4(b) Inline Temp

uygulanmis kod parcasini gostermektedir.

18

bool HediyeCek(Fiyat fiyat) bool HediyeCek(Fiyat fiyat)
{ {
double tabanFiyat = fiyat. TabanFiyat(); return fiyat. TabanFiyat()> 1000;
return tabanFiyat > 1000; }
H
(a) Orijinal (b) Inline Temp

Sekil 3.4. Orijinal kod parcasi ve inline temp uygulanmis kod parcasi

Kod blogunda tabanFiyat degiskeninin referansi “fiyat. TabanFiyat()” ifadesinin referansi
ile degistirilmistir. Gegici degiskenlerin silinmesi, gereksiz gecici degiskeni ana
belleklerden ve onbellek belleklerden alma siiresini kisaltmaktadir. Bununla birlikte,
eger degisken bir yontemin sonucuna atanmigsa, gereksiz degiskenden kurtularak

programin okunabilirligi marjinal olarak artirilabilir.

3.1.1.5. Inline class

Bir sinif bazen neredeyse hicbir islem yapmaz veya hicbir seyden sorumlu degildir.
Boyle durumlarda sinifin biitiin 6zelliklerini iligkili oldugu diger sinifa devretmek
devredilen sinifin boyutunu artiracak fakat siniflar aras1 baglantiy1 azaltacaktir (Elish
ve Alshayeb, 2011). Yeniden diizenleme tekniklerinden biri olan Inline Class, Sekil
3.5(a) orijinal kod par¢asinin diyagram halini temsil ederken, Sekil 3.5(b) Inline Class

uygulanmis hali diyagram tizerinde verilmistir.

K Posta \

Posta il ad
P 1 ilAlanKodu ilAlanKodu
5 .
iIPlaka ilPlaka
iletisimBilgi() iletisimBilgi() \ iletisimBilgi() /
(a) Orijinal (b) Inline Class

Sekil 3.5. Orijinal kod pargasi ve inline class uygulanmis kod pargasi

Posta smifinda, Il smifinda bulunan genel alanlar1 ve yontemleri olusturduktan

sonra, Posta sinifinin metotu Il sinifinin esdeger metotuna karsilik gelecek sekilde

19

diizenlenmelidir. Gerekli diizenlemeler yapildiktan sonra programin calismasi test
edilmeli ve herhangi bir hata bulunmadigindan emin olunmalidir. Move Method ve
Move Field iglemi kullanilarak metotlar ve alanlar Posta sinifina aktarilir. Bu isleme
11 smifi bos kalana kadar devam edilir. Sonunda I simifi silinir. Bu teknik ile gereksiz
sinif ortadan kaldirilarak bellekte yer acilmasina ve programin daha iyi performansta

calismasina olanak saglanir.

3.1.1.6. Self encapsulate field

Bir sinif icindeki 6zel alanlara sinif icerisinden dogrudan erisim olanagi bulunmaktadir.
Bu 6zel alanlar i¢in bir “getter” ve “setter”” olusturulmaktadir ve sadece alana erismek
icin bu yeniden diizenleme tekni8ini kullanmak gerekmektedir. Bazen bir simif
icindeki 6zel alana dogrudan erisebilmek yeterince esnek degildir. Bu teknik sayesinde
ilk sorgulama yapildiginda bir alan degeri baslatabilir veya atandiginda alanin yeni
degerlerinde belirli islemler gerceklestirilebilir. Sekil 3.6(a) orijinal kod parcasinin
diyagram halini temsil ederken, Sekil 3.6(b) Self Encapsulate Field uygulanmis halini

temsil etmektedir.

class Mesafe class Mesafe
{ {
private int kisa, uzun; private int kisa, uzun;
bool Durum(int gelen) mnt Kisa {
{ get { return kisa; }
return gelen >= kisa && gelen <= }
uzun; int Uzun {
} get { return uzun; }

} }

bool Durum(int gelen)

{
return gelen >= kisa && gelen <=
uzun;
H
(a) Orijinal (b) Self Encapsulate Field

Sekil 3.6. Orijinal kod parcas1 ve self encapsulate field uygulanmig kod pargasi

Alanlara dolayli erigsim, bir alanin erisim yontemleri (getter ve setter) araciligiyla
gerceklestirildigi zamandir. Bu yaklagim, alanlara dogrudan erisimden ¢ok daha esnektir.

Ayrica alt stmiflardaki “getter” ve “setter” yeniden tanimlanabilir. Alan degeri sadece

20

kurucuda belirtilir, boylece alanin tiim 6mrii boyunca alan degistirilemez. Fakat, alanlara
dogrudan erisim kullanildiginda esneklik azalsa da kod daha basit ve daha bakimh

goriinmektedir.

3.1.1.7. Replace magic number with symbolic constant

Sihirli say1 diye ifade edilen bir say1, kaynak kod icerisinde karsilasilan fakat acik bir
anlam ifade etmeyen sayisal verilere denmektedir. Bir problemin ¢éziimiinde bu tiir
anti-desen ¢oziimler kullanmak yazilim gelistirme, degistirme ve bakim asamalarinda
cok biiyiik sorunlara yol agabilmektedir. Ornek verecek olursak, bu sihirli say1y1
degistirmemiz gerektiginde "bul ve degistir" mantig1 ise yaramayabilir (Fowler vd.,
1999). Ciinkii aym say1 farkl yerlerde farkli amaclar i¢in kullanilabilir. Bu yiizden
bu say1y1 kullanan her kod satirini tek tek incelemek gerekir ki bu da maliyeti artiran
bir unsurdur. Boyle durumlarda Replace Magic Number with Symbolic Constant
yaklagimini kullanmak gerekmektedir. Sekil 3.7(a) orijinal kod parcasini temsil ederken,
Sekil 3.7(b) Replace Magic Number with Symbolic Constant uygulanmis kod parcasini

ifade etmektedir.

double DaireAlan(double yaricap) const double PI_Sabit = 3.14;
{ double DaireAlan(double yaricap)
return yaricap*3.14; {
) return yaricap®*P1_Sabit;
b
(a) Orijinal (b) Replace Magic Number with Symbolic Constant

Sekil 3.7. Orijinal kod parcas1 ve replace magic number with symbolic constant
uygulanmis kod parcasi

Bu teknik bir sabitin degerini degistirmek, bagka bir yerde farkli bir amag icin kullanilan
ayni say1y1 yanhiglikla degistirme riski olmadan diizenlemeyi saglar. Degistirilecek
say1y1 tiim kod tabani1 boyunca aramaktan ¢ok daha kolaydir. Ayrica sayinin bellekte
birden fazla kopyas1 olusmasinin da oniine gecilmekte ve deger karmasasi sorunu da
giderilmektedir. Boylece kodun okunabilirligi iyilestirilir ve bakim maliyeti azaltilmis

olur.

21

3.1.1.8. Encapsulate field

Nesne yonelimli programlamanin temel taslarindan biri (Refactoring, 2021), nesne
verilerini bagka sinif veya nesnelerden gizleme 6zelligi olarak bilinen Kapsiilleme
(Encapsulate)’dir. Private erisim belirleyici ile tanimlanan bir alan (field) bagka
siniflardan gizlenmis olur. Ayni zamanda bu alan bagka simiflarda kullanilamaz.
Protected erisim belirleyici ile bulundugu sinif ve ondan tiiretilen diger siniflar
icerisinden nesne verilerine erisim saglanmaktadir. Kapsiilleme sayesinde nesnelerin
bilingsiz kullaniminin 6niine ge¢ilmis olunur. Boyle durumlarda Encapsulate Field
yeniden diizenleme teknigini kullanmak soruna ¢6ziim olmaktadir. Sekil 3.8(a) orijinal
kod pargasini temsil ederken, Sekil 3.8(b) Encapsulate Field uygulanmis kod parcasin

temsil etmektedir. Orijinal kod parcasinda “kenar” adinda “int” tipinde “public” olarak

class Kare class Kare
({

public int kenar; private int kenar;

public int Kenar

} {

get {return kenar;}

set {kenar = gelenDeger};

}
}

(a) Orijinal (b) Encapsulate Field

Sekil 3.8. Orijinal kod parcasi ve encapsulate field uygulanmis kod parcasi

tanimlanan ozellik Sekil 3.8(b)’de “private” erisim belirteci ile kapsiillenmistir. Fakat
bazi durumlarda private alanlara erismek ve ozellikleri kullanmak gerekebilir. Bu
durumda Property kavrami devreye girmistir. Property kavramu ile bir alanin degerini
geri dondiirmeye “get” ve degerini ayarlamaya “set” komutlar1 ile imkan taninir.
Kapsiilleme olmamis olsaydi tiim nesneler herkese acik olacak ve nesnelerin 6zellikleri
kullanilabilir ve degistirilebilir olacakti. Bu durumda programin modiilerligi ortadan

kalkacak ve bakimi karmasik olacaktir.

22

3.1.1.9. Consolidate duplicate conditional fragments

Tekrarli kod, kaynak kodda birbiriyle ayni veya benzer kod pargalari olarak tanimlanan
ve fonksiyonel olarak benzer islevi yapan kod pargalarina denir ve ayni zamanda
“kod klonu” olarak da adlandirihir (Hotta vd., 2012). Tekrarli kodun varliginin
yazilim gelistirme ve bakimi iizerinde olumsuz etkileri oldugu sdylenir. Ornek olarak
hata olusumlarini artirirlar (Hotta vd., 2012). Ayrica tekrarli kod yazilimin bakim
maliyetini artirir ve klonlanmis koddaki yanlis degisiklikler hatali program davranisi
sergilenmesine sebep olur (Sudhamani ve Rangarajan, 2015). Bu tiir durumlarda
hatalarin oniine gegmek ve bakim maliyeti gibi 6zellikleri iyilestirmek i¢in Consolidate
Duplicate Conditional Fragments yeniden diizenleme teknigi kullanmak gerekir. Kogsul
iceren kod blok parcgalarinin tiimiinde tekrarli kod pargasi yer alabilmektedir. Boyle
durumlarda ayni kod pargasinmi kosul disina ¢ikartarak kod tekrarinin oniine gecilmis
olunacaktir. Sekil 3.9(a) orijinal kod parcasin1 temsil ederken, Sekil 3.9(b)’de
Consolidate Duplicate Conditional Fragments isimli yeniden diizenleme tekniginin

ornek kod pargasi lizerinde uygulanmig hali verilmektedir.

if (SiparisOnay1()) if (SiparisOnay1())
{ {
toplam = fiyat * 0.95; toplam = fiyat * 0.95;
Paketle(); }
} else
else {
{ toplam = fiyat * 0.98;
total = fiyat * 0.98; }
Paketle(); Paketle();
b
(a) Orijinal (b) Consolidate Duplicate Conditional
Fragments

Sekil 3.9. Orijinal kod parcast ve consolidate duplicate conditional fragments
uygulanmis kod pargasi

Tekrarli kod, kosullu dallarin i¢indeki kodun evrilmesinin bir sonucu olarak kosullu

olanin tiim dallarinda bulunur. Bu teknigi uygulamadan once tekrarli kod blogu

23

tespiti yapilir ve tekrarli kod kosullu dallarin basindaysa kodu kosuldan 6nce bir
yere tasimak gerekir. Tekrarli kod, dallarin sonunda yiiriitilmekte ise kosullardan
sonra yerlestirmek gerekir. Eger tekrarli kod dallarin i¢ine rastgele yerlestirilmigse, ilk
once kodu dalin basina veya sonraki kodun sonucunu degistirip degistirmemesine
bagli olarak sonuna tasimayi denemek gerekmektedir. Tekrarli kodu yerlestirme
islemini tamamladiktan sonra tekrarli kod blogunu tekillestirme islemi ile teknigin
uygulanmasi tamamlanmaktadir (Hotta vd., 2012). Sekil 3.9(a)‘da Paketle() metotu kod
parcasinda yer alan kosullu ifadelerin her iki dalinda da yer almaktadir. Tekrarli kod,
dallarin sonunda yiiriitiilmekte ve kosullardan sonra yerlestirilmesi yapilarak teknik
uygulanmaktadir. Bu metotu kosul disina almak hem kod tekrarin1 6nleyecek hem de
koddaki kotii kokuyu giderecektir. Kodun tekrarini dnlemenin yaninda zamanda kodun

stirdiiriilebilirligini ve bakimini kolaylastirmak icin uygulanmaktadir.

3.1.1.10. Hide method

Yeniden diizenleme islemi bazen yontemin goriiniirliigiiyle ilgili durumu degistirmemize
sebebiyet verebilmektedir. Bagka bir sinifin bu yonteme ihtiyaci oldugu vakalari
tespit etmek kolaydir ve yontem daha goriiniir hale getirilebilir (Refactoring, 2021).
Fakat yontemin ¢ok goriiniir oldugunu sdylemek biraz daha zordur. Zengin bir
arayiiz olustururken yontemleri alip gizlemek daha fazla davranig saglayan ve oldukca
yaygin bir durumdur (Fowler, 2018). Get ve set yontemlerini gizleme yalnizca veri
kapsiillemesinin 6tesine ¢ok az davranis katan bir sinifla baglanildiginda ek davraniglar
gelistirilmesine olanak saglar. Yeni davraniglar sinifa dahil edildiginde, get ve set
yontemleri artik gerekli olmamaktadir ve gizlenebilir. Get ve set yontemlerini 6zel
yaptiktan sonra degiskenlere dogrudan erisim uygulanirsa yontemleri kaldirmak gerekir.
Hide Method uygulamak i¢in dncelikle 6zel yapilabilecek metotlart bulmak gerekir. Bu
tiir metotlar diger siniflar tarafindan kullanilmaz veya yalnizca kendi sinif hiyerarsisinde
kullanilmaktadir (Refactoring, 2021). Bulunan her bir metodu miimkiin oldugu kadar
0zel yapmak gerekmektedir. Sekil 3.10(a) orijinal metotun gosterimini temsil ederken,
Sekil 3.10(b) Hide Method isimli yeniden diizenleme tekniginin metotu dzellestirmesini
temsil etmektedir. Sekil 3.10(a)’da yer alan kirala() metotu public bir yontem iken
3.10(b)’de verilen hali 6zellestirilmekte ve diger siniflar tarafindan direk ulagilamaz

hale gelmektedir. Sinifa yeni ozellikler eklendik¢e atil duruma diisen public get ve

24

(Araba \ (Araba \

+Kirala() -Kirala()
/ \

(a) Orijinal (b) Hide Method

Sekil 3.10. Orijinal kod dizayn1 ve hide method uygulanmis kod dizayni

set yontemleri icin bu metodlar uygulanabilmektedir. Hatta bu tiir metotlar bosa
cikabilmekte ve bunun sonucunda metotlarin kullanimi sonlandirilabilmektedir. Boylece

hafizadaki fazla yiik (load) durumu ortadan kalkmis olur.

3.2. Yazilim Metrikleri

Yazilim metrikleri, yazilim gelistirme siirecini ve yazilim iiriinlerinin kalitesini kontrol
etmek icin nicel bir yol saglar (Li ve Henry, 1993) ve yazilimin belirli yonlerini
Olcer. Ciinkii yazilim metriklerinin siniflandirilmasi yazilim kalitesi, yazilim gelistirme,
yazilim standartlar1 ve 6l¢iimii konulari ile ayrilmaz bir biitiin haline gelmistir. Ayrica,
yazilim metriklerini kategoriye ayirmak zorlagsmigstir. Yazilim metrikleri genellikle
iki kategoriye ayrilabilir: yazilim iirlinii 6l¢iimleri ve yazilim siireci dl¢timleri (Li ve
Henry, 1993). Yazilim iiriinti 6l¢timleri, kaynak kodu veya tasarim belgeleri gibi yazilim
iriinlerini 6lcer. Yazilim siireci 6l¢timleri, tasarim ve kodlama agsamalarindaki gelistirme
faaliyetlerine tahsis edilen ig giicii say1s1 gibi yazilim gelistirme siirecini ve bakimin
Olcer (Li ve Henry, 1993). Bu iki kategoriye ek olarak Kan tarafindan gelistirilen
yazilim proje dlctimleri baslig1 diger bir kategori olarak karsimiza ¢ikmaktadir (Kan,
2003). Bu kategori, yazilim projesinin dzelliklerini ve yiiriitiilmesini tanimlayan yazilim

metrik sinifidir.

Giinimiizde nesne yonelimli metrikler sektorde ¢ok onemli bir rol oynamaktadir ve bir
arastirma araci olarak kullanilmaktadir (Padhy vd., 2018). Nesne yonelimli metriklerin
kullanimi, kaynak kodda yazilim gorsellestirmesiyle birlikte yeniden diizenlenmeye
ihtiya¢ duyan yerleri tespit etmek icin ¢cok uygundur (Kaur ve Singh, 2016). Geleneksel

fonksiyonel ayristirma ve veri analizi tasarim yaklasimi i¢in metrikler tasarim yapisini

25

veya veri yapisint bagimsiz olarak olgerken; nesne yonelimli metrikler islev ve
verilerin birlestirilmesine biitiinlesik bir nesne olarak odaklanmaktadir (Chidamber
ve Kemerer, 1994). Bir metrigin faydasinin yazilim kalitesinin nicel bir 6l¢iisii olarak
degerlendirilmesi bir yazilim kalitesi niteliginin 6l¢iilmesine dayandirilmaktadir. Ancak
secilen metrikler ¢ok c¢esitli modellerde kullanighidir (Rosenberg ve Hyatt, 1997). Bu
nedenle, nesne yonelimli metrik kriterleri asagidaki nitelikleri degerlendirmek icin

kullanilmaktadir:

* Anlagilirlik

» Karmagiklik

Surdiiriilebilirlik

Testedilebilirlik
e Verimlilik

¢ Yeniden kullanilirlik

Nesne yonelimli metrikler, yazilim kalite nitelikleri ile iligki halinde olmazsa yazilim
kalitesine etkisinden s6z etmek dogru olmaz. Bu ikili arasinda etkilesimin olmasi
yazilimin siirdiiriilebilirligine katki saglamaktadir. Nesne yonelimli metriklerin l¢timii
sayesinde metrik parametreleri ve yazilim kalite parametreleri arasindaki baglasim

iligkisini gdrmek miimkiindiir (Arora vd., 2011). Sekil 3.11 bu iligkiyi temsil etmektedir.

/[\

eniden Kullanilirh §
5 5
E . :
2 NESNE YONELIMLI £
£ METRIKLER Genisletilebilirli 2
~ I
i) -
E Strdiirilebilirlli 5
= S

Biiyiikli Karmasiklik)

Sekil 3.11. Yazilim metrikleri ve yazilim kalite parametreleri arasindaki iliski (Arora
vd., 2011)

Arastirmacilar, veri organizasyonunu veri tabanindan incelemek i¢in metrikleri iyi
tanimlanmis bir pozitif yontem olarak kullanirlar (Padhy vd., 2018). Cesitli yazilim

metrikleri 6nerilmis ve calisilmigtir: Halstead’in yazilim metrikleri (Halstead, 1977),

26

McCabe’nin ¢evrimsel karmagiklik metrigi (McCabe, 1976), Chidamber ve Kemerer’in
CK metrikleri (Chidamber ve Kemerer, 1994), Metrics for Object Oriented Design
(MOQOD) metrikleri (Abreu ve Carapuca, 1994), Quality Model for Object Oriented
Design (QMOOD) metrikleri (Bansiya ve Davis, 2002), Lorenz ve Kidd’in metrikleri
(Lorenz ve Kidd, 1994). Genel olarak, dahili nitelikler yazilim metrikleri araciligiyla
yakalanir ve iist diizey Ozellikler bu metrikler i¢in gegerli degerler cinsinden ifade edilir
(Mahouachi vd., 2013). Kod metrikleri, yeniden diizenleme isleminin kod kalitesi
tizerindeki etkisini degerlendirmek icin dahili 6nlemler olarak se¢ilmistir (Kumar,

2017).

3.2.1. Kod satir sayisi

Kod satir sayis1 (LOC) metrigi geleneksel metrik grubunda olup uzun siiredir kullanilan
metriklerden biridir. Yazilimin biiyiikliigii hakkinda ipuglar1 vermektedir. LOC bir
prosediirii veya fonksiyonu 6l¢gmek icin kullanilir. Tiim prosediirlerin ve fonksiyonlarin
toplam LOC’u bir programin boyutunu 6l¢gmek icin de kullanilir. Ayrica sinifin boyutunu
O0lgmek i¢in 1yi yontemler arasindadir. Genel olarak, projenin kaynak dosyalarindaki

kod boyutunu 8l¢gmek i¢in kod satir sayis1 kullanilir (Alpernas vd., 2020).

Yaklagik yarim asirdan beri yaygin olarak kullanilan LOC metrigi kaynak kod satiri
tizerinde ¢alismaktadir (Jones, 1994; Fenton ve Neil, 2000), ancak farkli programlama
dilleri s6z konusu oldugunda gorevi gerceklestirecek kod satiri, dile gore degisiklik
gostermektedir. Clinkii farkli dillerin farkli yapilari vardir. Bu yiizden farkh
programlama dilleri ile yazilmis modiilleri karsilastirmak zordur. Fakat hesaplamasinin
kolay olmasi, kodun hata sayisi1 tespitinde ve modiillerin biiyiikliigii hakkinda bilgi
vermesinin yanisira kodda kullanilan yontem, smif gibi 6zelliklerin esik degerleri

hakkinda bilgi vermesiyle kodun siirdiiriilebilirligine katki saglamaktadir.

3.2.2. Operand ve operator sayisi

Bir bilgisayar programi, operatdr veya operand olarak siniflandirilabilecek bir
dizgecik (token) koleksiyonunu iceren bir algoritmanin uygulamasidir (Halstead, 1977).

Bagka bir deyisle, bir program bir dizi operatér ve onlarin ilgili boliimleri olarak

27

diisiiniilebilir. Halstead’in metrikleri, bu dizgeciklerin sayimlarinin fonksiyonlarina
odaklanmaktadir. Dizgecikleri sayarak ve hangilerinin operator, hangilerinin operand

oldugunu belirleyerek asagidaki temel ol¢ciimler alinabilmektedir (Halstead, 1977):

* nl= Farkli operatorlerin sayisi
* n2= Farkli operandlarin sayis1
* N1= Toplam operatdr sayisi

* N2= Toplam operand sayis1

Bunlara ek olarak Halstead sunlar1 da tanimlamaktadir:

* nl*= Potansiyel operator sayisi

* n2*= Potansiyel operand say1s1

Halstead, bir modiil ve program i¢in miimkiin olan minimum operator ve operand sayisi
olarak n1* ve n2* olarak ifade etmektedir. Bu minimum say1, gerekli islemlerin mevcut
olacag1 programlama dilinin icinde yer alacaktir (Halstead, 1977). Ornek olarak C
veya C# dilinde, main() fonksiyonunu herhangi bir programin icermesi gerekmektedir.
Muhtemelen bir fonksiyon veya prosediir olarak n1* = 2, ciinkii herhangi bir fonksiyon

veya prosediir i¢in en az 2 operator olmak zorundadir:

* fonksiyonun adi i¢in 1

* bir atama veya gruplama sembolil olarak iglev gdormesi icin 1

n2 * : Fonksiyona veya prosediire gecirilmesi gereken, tekrarlama olmadan parametre

sayisini ifade etmektedir (Menzies vd., 2002).

Halstead biitiin bu metrik koleksiyonunu (nl1, n2, N1, N2, n1*, n2*) “Software Science”

olarak tanimlamakta ve bunlar1 yazilim programinin biiyiikliiiinii yansitan uzunluk

28

(lenght), kelime hazinesi (vocabulary) ve hacim (volume) karakterlerini hesaplamada

kullanmaktadir (Halstead, 1977).

N=N{+N, 3.1
n=n+np (3.2)
V =Nxlogyn 3.3)

Burada N programin uzunlugunu, n programin kelime hazinesini, V programin
hacmini temsil etmektedir. Halstead bunlara ek olarak programin seviyesi, zorlugu
gibi programin karakteristik 6zelliklerini de hesaplamak icin metrik koleksiyonunu
kullanmistir. Halstead’1n metrikleri temelde 2 6zellige dayanmaktadir: operator sayisi
ve operand sayis1. Fakat operatorler ve operandlar ayriminin nasil yapilacagi konusunda
tam bir goriis yoktur. Bu nedenle farkli sayma stratejileri ayn1 program veya algoritma
icin farkli sayida operator ve operand iiretecektir. Bu iki 6zellik, programin kaynak
kodunda veya esdeger algoritmada operatdor ve operand sayisini sayarak kolayca

matematiksel bir yapiya eslenebilir (Al Qutaish ve Abran, 2005).

3.2.3. Fonksiyon sayisi

Fonksiyon sayis1 (NOM) metrigi sinifta tanimli fonksiyon sayisinin toplamini dlger
(Demeyer vd., 2000; Lorenz ve Kidd, 1994). Kodun fonksiyon sayis1 sayesinde kodun
gelistirilmesine ve bakimina ne kadar zaman harcanacagi hakkinda bilgi edinilebilir.
Ornek olarak fonksiyon sayisi ¢ok olan taban smiflar ¢ocuk diigiimlerde daha ¢ok
iz birakmaktadirlar (Ural vd., 2008). Ciinkii tanimlanan tiim fonksiyonlar tiiretilen
siniflarda da mevcut olacaktir. Sinif sayisi cok olan kodlarin tekrar kullanilabilirligi
diisiik olacaktir (Ural vd., 2008; Demeyer vd., 2000). Siniftaki kodun fonksiyon sayisi
sinifin karmagikliginin gostergesi haline gelmektedir. Fonksiyon sayis1 metrigi kodun

hem siirdiiriilebilirligi hem de karmagikli81 icin 6nemli bir degere sahiptir.

29

3.2.4. Fonksiyon ¢agrilma sayisi

Fonksiyonlar1 deger ile cagirma prensibinde, ¢cagiran program ya da fonksiyondaki
degiskenler ile cagrilan fonksiyonda bu degerlere karsilik gelen parametreler icin
bellekte farkli yerler ayrilmaktadir. Referans ile ¢agirma tekniginde ise cagiran
programdan argiiman olarak bir deger yerine bu degere karsilik gelen bellekteki
adres yollanir ve boylece veri transferi degerler yerine adresler ile gerceklestirilir.
Referans ile fonksiyon parametre cagrilari deger ile yapilan cagrilardan daha karmagiktir.
Herhangi bir tek fonksiyondan ¢agrilan herhangi bir isleve olan uzun mesafe ¢agrilan
fonksiyon sayisi arttik¢a artacaktir (Ryder ve Thompson, 2005). Bunun nedeni ¢agrilan
fonksiyonlarin hepsinin bellekte ayni konumda olmamasidir. Fonksiyon ¢agrilma
sayis1 metrigi de bir fonksiyonun ¢agrilarinin sayisiyla ilgili 6l¢iimleri hesaplamak
icin kullanilmaktadir (Gray vd., 2011). Bir smifin fonksiyon cagrilma sayisi fazla
olmasi sinifin karmagikliginin da yiiksek oldugunu gostermektedir (Misra vd., 2011).
Bunun sonucunda iglemci agisindan islemin yiiriitme baglamin kaydetmek ve geri
yiiklemek, is parcacig1 planlamak ve konumun kaydedilmesi gibi islemler yiiziinden
daha fazla kaynak tiiketimi gerceklesecektir. Fonksiyon cagrilma sayist metrik ol¢timii
sayesinde yazilimin karmasikligi, bakimi ve siirdiiriilebilirligi hakkinda bilgiler elde

edilebilmektedir.

3.2.5. Baglasim sayisi

Sinifin bagimli oldugu sinif sayisi nesne yonelimli programlamada nesne siniflar
arasindaki baglasim sayisi olarak ifade edilmektedir. Baglasim, iki nesnenin birbirine
bagimliliginin bir dl¢iisiidiir (Dubey ve Rana, 2011). Baglagim sayis1 metrigi ise bir
siif i¢inde tanimli metotlarin ya da niteliklerin (attribute) diger sinifta kullanilmasinin
yant sira siniflar arasinda kalitim iligkisi yok ise iki sinif arasinda bagimlilik oldugunun
tespitinde kullanilmaktadir (Ural vd., 2008). Kaliteli yazilimdan bahsettigimiz zaman
siiflar arasindaki asirt bagimliligin olmamasi gerekmektedir. Asir1 bagimlilik modiiler
yazilim tasarimina uygun degildir ve yazilimin tekrar kullanilabilirligini azaltir. Bir
siif ne kadar bagimsizsa bagka uygulamalarda o kadar kolaylikla yeniden kullanilabilir.
Bagimliliktaki artig, degisime duyarlilig1 da artiracagindan, yazilimin bakim maliyeti

artar ve bakimi daha zor hale gelir. Bagimlilik ayn1 zamanda tasarimin farkli parcalarinin

30

ne kadar karmagik test edilecegi hakkinda fikir verir (Ural vd., 2008). Bu metrik
siifin yeniden kullanilabilirligi, karmagiklig1, test maliyeti, bakimi ve siirdiiriilebilirligi

hakkinda bilgi verir.

3.2.6. Kalitim agacimin derinligi

Nesne yonelimli sistemlerin 6nemli 6zelliklerinden biri kalitimdir. Kalitim, bir sinifin
bagka bir sinifin 6zelliklerini edinme kabiliyetidir (Chhikara vd., 2011). Kalitimin
temelindeki amag, kodu tekrar tekrar yazmak yerine ayn1 kodu kullanarak tekrarlardan
kagmaktir. Bir davranig bir siiper sinifta tanimlandiktan sonra, bu davranisi otomatik
olarak tiim alt siniflar miras alir. Bu sayede yontem yazma gibi bir davranig tanimlanir
ve tiim alt simiflar tarafindan kullanilir. Ayni sekilde bir alan tanimu siiper sinifta
tanimlandiktan sonra ayni1 alan tanimu tiim alt siniflar tarafindan miras alinir. Sonucta
bir simif ve ¢ocuklart ortak ozellikleri paylasmis olurlar (Chhikara vd., 2011). Bu

mekanizma siif hiyerarsisi tasarimini destekler (Chidamber ve Kemerer, 1991).

Kaliim agaci derinligi (DIT) metrigi, doksanli yillarin baslarinda Chidamber ve
Kemerer tarafindan onerilen ve nesne yonelimli metrikler listesinde (Chidamber ve
Kemerer, 1994) yer alan dlctimlerden biridir. DIT, simifin i¢inde bulundugu kalitim
hiyerarsisindeki pozisyon sayisini 6lgmektedir (Chidamber ve Kemerer, 1991). Miras
hiyerarsisi icindeki bir sinifin derinligi tist siniflarin sayisiyla dlgiilen sinif diigiimiinden
agacin kokiine kadar olan maksimum uzunluktur. Herhangi bir siniftan tiirememis
smiflar icin metrik degeri O olarak ol¢iiliir. Kalitim agacinda bir sinif ne kadar diisiikse,
kalittm nedeniyle bu sinif iist simif 6zelliklerine erisebilir (Li ve Henry, 1993). Alt
siif iist sinifta tanimlanan yontemleri kullanmadan iist siniftan devralinan 6zelliklere

erigirse uist sinifin kapsiillenmesi ihlal edilmis olur (Li ve Henry, 1993).

DIT metrik ol¢iimii ne kadar biiyiik ise sinifi korumanin o kadar zor oldugunu
sOylenebilir. Ayrica bir sinif hiyerarside ne kadar derinse devralma olasilif1 fazla
olan yontemlerin sayis1 bir o kadar fazla olur (Chidamber ve Kemerer, 1994) ve bu da
davranigini tahmin etmeyi daha karmagik hale getirir (Makkar vd., 2012). Fakat miras
kullaniminin, gerekli yazilim bakim maliyetini ve test yiikiinii azalttig1 bilinmektedir

((Chidamber ve Kemerer, 1994; Fenton, 1994). Aym zamanda miras yoluyla

31

kodun tekrar kullanilmasi ile kod tekrar1 olusmamasi sonucunda daha siirdiiriilebilir,
anlagilabilir ve giivenilir bir yazilim iiretildigi bilinmektedir (Chidamber ve Kemerer,

1994).

3.2.7. Cevrimsel karmagikhik

Cevrimsel karmagiklik (CC), program karmasikligini kontrol etmek ve yonetmek icin
kullanilabilecek bir graf tabanl karmasiklik 6l¢iisiidiir (McCabe, 1976). CC, graf teorisi
tizerine kurulmustur. Bu metrik, bir programdaki dogrusal bagimsiz yollarin sayisina
dayanir ve temel yol testi metodolojisindeki test durumlarinin sayisimi belirlemek icin
kullanilabilir (Watson vd., 1996). CC, bir programdaki islevlere, modiillere, yontemlere
veya siniflara gore hesaplanabilir. Temel olarak kontrol akis grafim1 kullanarak
ilgili programin karmagikligin1 6lgmeye calisir. Graf iizerinde yer alan diigiimler,
program kodunda bulunan if, switch, while, for, goto gibi mantiksal ifadelere gore
olusturulmaktadir ve bu diigiimler ayritlar ile birbirine baglamir. Ornegin bir metodun
icerisinde yer alan if-else gibi karar yapilarinin sayis1 olarak ifade edilebilir. Coklu
modiillerden olusan yazilimda problemlerin géziikme sikli§1 daha fazladir. Bundan
dolay1 coklu modiillerde genel olarak karmagiklik hesabi Denklem 3.4’e (McCabe,
1976) gore hesaplanmaktadir:

V(G)=E—N+2xP (3.4)

Denklem 3.4°de E grafin ayrit sayisimi (edge), N grafin diigiim sayisim1 (node), P
ayrik bagh bilesen (modiil) sayisim (baslangi¢c 1 olarak kabul edilir), V cevrimsel
saylyl, G grafin fonksiyonu olan karmasikligi temsil etmektedir. Bu denklemde
yazilim kodunun ne derece hata egilimli oldugunu belirleyen karmagsiklik degeri
hesaplanmaktadir. Hataya meyilli olan kodlar diisiik giivenirlige ve yiiksek riske sahip

olma egilimindedirler.

CC, graf tabanl bir kontrol akis1 (control flow graph) kullanmaktadir. Bunu graf
tizerinde bulunan ayritlar ve diigtimlerin sayis1 izerinden gerceklestirmektedir. Bu
yilizden bir modiiliin karmasiklik hesabin1 yapmak icin oncelikle Sekil 3.12°deki gibi

akis grafi ¢izilir. Program modiiliiniin akig grafigini olusturmak i¢in, modiil if, while,

32

Sekil 3.12. If-then-else durumunun akis grafi

for, switch, goto gibi akisi etkileyen ifadelerle sinirlandirilmig alt bloklara boliiniir
ve bu bloklar grafin diigiimlerini meydana getirir (Ikerionwu, 2010). Diigiimler
ayritlar ile birbirlerine baglamir. Program kodundaki her bir dallanma ayritlarin
yoniinli gostermektedir. Cizilen graf iizerindeki diigiim ve ayrit sayilari Denklem
3.4 kullanilarak kodun karmagiklik hesabi yapilabilmektedir. Sekil 3.13’te fonksiyona

parametre olarak gelen iki sayimin verilen aralikta olup olmadigini1 kontrol eden kod

blogu verilmektedir.

int test(int x, int y)

{
if (x>32 && y<20 && x+y<50)
{

return x+y;

}

return O;

Sekil 3.13. Kod blogu

Verilen Java kod blogunun Eclipse Metrics Plugin yazilim 6l¢iim araci ile elde edilen
deger 2 olarak karsimiza ¢ikarken GMetric araciyla 4 olarak karsimiza ¢ikmaktadir.
Yazilim ol¢iim uygulamalar1 genellikle ayn1 kod i¢in farkli karmagiklik 6l¢tim degerleri
cikarmaktadir. Bunun nedeni, bir kontrol akis grafinda kosuldaki birlesimleri ayr1 dallar
olarak sayarken, bir bagka yazilim 6l¢iim aracinda ise bu kosulun birlesimlerini tek

bir dal olarak saymasidir. Eclipse Metrics Plugin yazilim 6l¢iim araci i¢in Java kod

33

blogunun diigiimlerinin gosterimi Sekil 3.14‘te verilmektedir. Akis grafi ve cevrimsel

karmagiklik hesabi ise Sekil 3.15’te gosterilmektedir.

int test(int x, int y) } _________ > @
{
if (x> 32 &8 y < 20 && x+y <50) -+ > ()
{
return x+y; } > @
}

return O; } ----- >
R

Sekil 3.14. Kod blogunun diigiim gosterimi

Kod blogunda toplamda 5 adet ayrit ve 5 adet diigiim bulunmaktadir. Tek modiil

tizerindeki kod blogunun ¢evrimsel karmagik degeri 2 ¢ikmaktadir.

Akis Grafi CC Hesab1
[_’N_1 ‘
E=5
l N=5
() P=I
/ \ V(G) = E— N+ 2*P
|..N_3\.' *N; =33+ 2
— -5
(N5)

Sekil 3.15. Eclipse metrics plugin ¢evrimsel karmagik hesablama yontemi

Daha gelismis bir dl¢ciim McCabe tarafindan sunulmus olan McCabe cevrimsel
karmagiklik (McCabe, 1976) olciisiidiir. McCabe bir kontrol akis grafinda kosuldaki
birlesimleri ayn dallar olarak saymayi tavsiye etmektedir. McCabe, karmagikligin
maksimum modiil boyutunun niceliksel bir gdsterimini saglamak i¢in kullanilabilecegini
ileri siirmektedir. Cok sayida gercek programlama projesinden veri toplayarak,
cevrimsel karmagikligin = 10 degerinin bir iist sinir olarak goriindiigiinii kesfetmistir.

Modiiliin cevrimsel karmasiklik boyutu bu sayiyr astifinda, bir modiilii yeterince test

34

etmek son derece zorlasmis olur (Ikerionwu, 2010).

Akis Grafi CC Hesab1

(n1)

T

() =0

l N=7

3 durum ozelligi A '1:_N3_:1’— P=1
l V(G) =E-N+2*P
- (:'-.Nt!.. —_— =0-74 %]

" ”

e

(N6)<—

L »(n7)

Sekil 3.16. McCabe cevrimsel karmagik hesaplama yontemi

Verilen Java kod blogu icin McCabe’nin akis grafi ve ¢evrimsel karmagiklik hesabi
Sekil 3.16°da gosterilmektedir. McCabe’nin ¢evrimsel karmasiklik hesabina gore
9 adet aynit ve 7 adet diigiim bulunmaktadir. Tek modiil tizerindeki kod blogunun
cevrimsel karmasiklik degeri 4 ¢cikmaktadir. Elde edilen sonuclardan da anlagilacagi
gibi farkli yazilim 6l¢tim uygulamalarinin aynm kod iizerindeki cevrimsel karmagiklik

degeri kullandiklar1 yontemlerden dolay1 farkli ¢iktigr goriilmektedir.

3.2.8. Mantiksal kod satir sayisi

Kaynak deyimi calisma zamaninda bir eylem gerceklestiren veya derleyicileri derleme
zamaninda yonlendiren bir kod blogu olarak kabul edilir (Nguyen vd., 2007). Deyimler
tic tipte siniflandirilir: yiiriitiilebilir, bildirim ve derleyici yonergesi. Yliriitiilebilir
deyimler sonunda calisma zamani eylemlerine neden olmak i¢in makine koduna

cevrilirken bildirim ve derleyici yonergesi ifadeleri derleyicinin eylemlerini etkiler

35

(Nguyen vd., 2007). Ornegin CodeCount™ (CodeCount™, 2020) her derleyici
yonergesini mantiksal bir kod satir sayis1 (SLOC-L) olarak sayarken LocMetrics
(LocMetrics, 2019), her derleyici yonergesini mantiksal bir SLOC olarak saymaz.
Carnegie Mellon iiniversitesinde yer alan Yazilim Miihendisligi Enstitiisii (Software
Engineering Institute-SEI) ¢ercevesinde bildirimler, derleyici direktifleri, yorumlar ve
bos satirlar yiiriitiilebilir tipler haricindeki (nonexecutable) kaynak deyim tipi olarak

degerlendirilmektedir (Park, 1992).

static void Main()

{
// Bildirim deyimi.
int counter;

// Atama deyimi.
counter = 1;

int[] radii = { 15, 32, 18, 74, 9 }; // Bir dizi bildirme ve
baslatma.
const double pi = 3.14159; // Bir sabit bildirme ve baslatma.

// Birden c¢ok deyim iceren foreach deyim blogu.
foreach (int radius in radii)

1

// Baslatici bildirim deyimi

double circumference = pi * (2 * radius);

// ifade deyimi (fonksiyon ¢agirma).

System.Console.Writeline("Radius of circle #{@} is { 1%}.
Circumference = { 2:N2}",
counter, radius, circumference);

// ifade deyimi (postfix increment).
countert+;
} // foreach deyim blogunun sonu
} // Main fonksiyon gbvdesinin sonu.

Sekil 3.17. Deyim iceren kod blogu (Bill, 2015)

Fiziksel kod satirlar1 net bir baglangic ve bitis noktasina sahip olmasi sayesinde kolayca
sayilabilmektedir. Fiziksel kod satir sayis1 (SLOC-L), program kaynak kodundaki
bosluksuz ve yorumsuz satirlarin toplamini ifade etmektedir. Diger taraftan, tiim
kaynak kod satirlarini saymak yazilimin odak noktasi olan mantiksal ifadeleri temsil
etmemektedir. Bu yiizden, mantiksal SLOC saymak alternatif bir ¢oziim olarak
karsimiza ¢cikmaktadir ve COCOMO II maliyet tahmin modeli i¢in standart olarak
mantiksal SLOC onerilir (Nguyen vd., 2007). Mantiksal SLOC sayma, sayilan

deyimlerin fiziksel biciminden bagimsiz olarak gerceklestirilir. Diger bir ifadeyle,

36

bir satirda birden ¢ok mantiksal ifadenin bulunabilecegi veya bir mantiksal ifadenin
birden ¢ok satira yayilabilecegi anlamina gelmektedir. C ve benzeri programlama

dilinde ifadeyi sonlandiran noktali virgiil karakterlerinin sayisidir.

3.2.9. Fonksiyon basina diisen ifade sayisi

Kaynak kod diizeyinde “atomik™ ve nispeten bagimsiz bir birim gibi ele alinan deyim,
bir programcinin belirli bir zamanda gerceklestirdigi en kiigiik is artig1 olarak kabul
edilir. Deyimler program komutlaridir. Herhangi bir programin gerceklestirdigi
eylemler deyimlerle temsil edilmektedir. C# kodu anahtar kelimeler, ifadeler ve
operatorlerden olusan deyimlerden olusur (Bill, 2015). Smiftaki kodun fonksiyon sayisi
siifin karmagikliginin gostergesi iken fonksiyon bagina diisen ifade sayis1 (Grechanik
vd., 2010) fonksiyonun ne kadar biiyiik oldugunun gostergesidir. Elde edilen veriler

yazilimin boyutu ve bakimi hakkinda yorumlar yapilmasina yardimci olabilmektedir.

3.2.10. Bakim yapilabilirlik indeksi

Bakim yapilabilirlik indeksi (MI), kaynak kodun ne kadar siirdiiriilebilir oldugunu
(desteklenmesini ve degistirilmesini) dlgen bir yazilim ol¢iisiidiir (Najm, 2014). Bakim
yapilabilirlik indeksi formiilii kod satir say1si, cevrimsel karmagiklik ve Halstead hacmi
(HV) birlesiminden olusmaktadir (Najm, 2014). Formiile gegmeden 6nce kaynak

koddan asagidaki metrikleri l¢gmemiz gerekir:

e HV = Halstead hacmi
e CC = Cevrimsel karmasiklik

e LOC = Kod satir sayisi

Elde edilen ol¢iimlerden sonra MI degeri Denklem 3.5’te verilen formiil araciliyla

hesaplanmaktadir (Coleman vd., 1994):

MI =171 —5.2%In(HV) —0.23 % (CC) — 16.2 x In(LOC) (3.5)

37

Microsoft Visual Studio tarafindan kullanilan tiirev (versiyon 2008’den beri) Denklem

3.6 ile hesaplanir (Kexugit, 2021):

MI = MAX (0, (171 — 5.2 % In(HV) — 0.23 % (CC) — 16.2 x In(LOC) x 100/171) (3.6)

Negatif sayilarin azalan kullaniglili§1 ve metrigi olabildigince giivenilir tutma arzusunun
bir sonucu olarak, 0 veya daha az indeksin tamamini O olarak ele almaya ve ardindan
171 veya daha az aralig1 O ile 100 arasinda temel almaya karar verilmistir (Kexugit,
2021). Bunun iizerine, esik degerler belirlenmis ve bu 0-100 aralig1 80-20 ayrilmus,

boylece giiriiltii seviyesi diisiik tutulmus ve sadece siipheli olan isaretli kod alinmistir:

e 0-9 = Kirmizi
e 10-19 = San

e 20-100 = Yesil

Eger indeks kirmiziy1 gosterirse, kodla ilgili bir sorun oldugunu belirtmekte ve kodun

stirdiiriilebilirlik acisindan beklenen seviyede olmadigina isaret etmektedir.

Coleman’a gore, 85’in iizerindeki bir MI degeri yazilimin yiiksek diizeyde siirdiiriilebilir
oldugunu gosterir. 85 ile 65 arasindaki bir deger orta diizeyde bir siirdiiriilebilirligi
gosterir ve 65’1n altindaki bir deger sistemin bakiminin zor oldugunu ve siirdiiriilebilirlik
diizeyinin diisiik oldugunu gosterir (Coleman vd., 1994). Kaydirilmis 6lgek (0 ila 100)
tiirevi kullanan Microsoft Visual Studio 2010 gelistirme ortam1 da dahil olmak iizere

cesitli otomatik yazilim metrik araglarinda bu metrik kullanilir (Najm, 2014).

3.3. Metin Madenciligi

Veri madenciligi (Berry ve Linoff, 2004), eldeki verilerden degerli olan1 ya da dnceden
bilinmeyen ve veriler icerisinde gizli olarak kalan ayni1 zamanda potansiyel olarak
kullanigh olan bilginin ¢ikarilmasi yaklasimdir (Ilhan vd., 2008). Veri madenciligi
ile yiizeysel benzerligi olan (Witten, 2004) metin madenciligi ise 0zel amaclar icin

metinden bazi bilgiler ¢ikarmak adina, metnin analiz edilmesi islemidir (Visa, 2001).

38

Ornek olarak metinlerden konu ¢ikarilmasi (concept/entity extraction), metinlerin
siniflandirilmasi, boliitlenmesi (clustering), duygusal analiz (sentimental analysis),
metin 6zetleme (document summarization), sinif taneciklerinin iiretilmesi (production
of granular taxonomy), varlik iliski modellemesi (entity relationship modelling) gibi
caligmalar verilebilir (Seker, 2015b). Metin madenciligi, “metnin hesaplamali analizi”
icin bir yontemdir (King, 2015). Metin madenciligi arastirmacilar tarafindan kelime
frekanslarim1 saymak, kelime kullanim modellerini bulmak, n-gramlar1 belirlemek (es
anlamli kelimelerin), biiyiik 6lgekli kaliplar1 ve egilimleri incelemek ve konu bagliklarini
kesfetmek i¢in kullanir (Vijayarani vd., 2015). Metin madenciligi yoluyla metin dizileri

(corpora) analizi metinler hakkinda yeni bir fikir verebilir ve metin incelemesinden elde

edilen veriler ek metin analizi i¢in kullanilabilir.

3.3.1. Metin madenciligi alanlar:

Metin kaliplarim1 ve madencilik siireglerini analiz etmek i¢in uygulanan farkli metin
madenciligi alanlar1 ve teknikleri vardir: bilgi gerikazanimi (anahtar kelime arama /
sorgulama ve indeksleme), dogal dil isleme (yazim diizeltme, temel hale dondiirme
(lemmatizasyon), gramer ayristirma ve kelime anlamu belirsizlestirme), bilgi ¢ikarma
(iliski ¢ikarma / link analizi) ve veri madenciligi (siniflandirma, kiimeleme, regrasyon)
(Gupta vd., 2009; Dang ve Ahmad, 2014; Vijayarani vd., 2015). Sekil 3.18’de metin

madenciligi genel alanlar1 gosterilmektedir.

3.3.1.1. Bilgi gerikazanimi

Bilgi gerikazanimi, kullanici tarafindan elde edilmek istenen genellikle bilgisayarlarda
bilyiik dokiimanlarda depolanan belirli bilgileri ¢cikarma yapilandirilmamis nitelikte
metin materyalini bulma iglemidir (Manning vd., 2010). Belirli bir kelime veya ciimle
grubuna gore ilgili ve iligkili kaliplar ¢ikarmayi saglar. Diger bir ifadeyle ilgilenilen
metin koleksiyonu ile ilgili 6n bilginin toplandig1 asamadir. Dokiiman aliminin uzantisi
olarak kabul edilir. Boylece dokiiman alimini, kullanici tarafindan ortaya konan
sorguya odaklanan bir metin 6zetleme asamasi veya tekniklerin kullanildig: bir bilgi

cikarimi asamasi izleyebilir. Bilgi gerikazanim sistemleri, belirli bir sorunla ilgili

39

. Bilgi
Bl'g! Gerikazanimi
Gerikazanimi

Dogal
Dil
isleme
Bilgi

Dogal
Cikarimi Dil
Veri Isleme

i Madenciligi
Veri

Madenciligi

Metin
Madenciligi

Bilgi
Cikarimi

Sekil 3.18. Metin madenciligi alanlar

dokiiman kiimesini daraltmaya yardimci olur (Kumar ve Bhatia, 2013). En bilinen bilgi
gerikazanim sistemleri, Google ve benzeri arama motorlaridir. Tlgili belgeleri Web’deki
bir climleye gore ¢ikarmak icin bilgi gerikazanim sistemini daha sik kullanirlar. Bu
arama motorlari, egilimleri takip etmek ve daha 6nemli sonuclar elde etmek i¢in sorgu
tabanli algoritmalar kullanir (Talib vd., 2016). Bilgi gerikazanim sistemleri, analiz i¢in
belge sayisini azaltarak analizi 6nemli 6l¢iide hizlandirabilir (Sumathy ve Chidambaram,

2013).

3.3.1.2. Dogal dil isleme

Dogal dil isleme, insan dilinin incelendigi bir ¢alisma alani olup yapay zeka alanindaki
en eski ve en zorlu problemlerden biridir. Bu teknik sayesinde bilgisayarlar, insanlarin
yaptig1 gibi dogal dilleri anlayabilir. Metin madenciliginin biitiin asamalarinda
kullanilmamakla birlikte metinden bazi anlamsal bilgilerin elde edilmesinde ve 6zellik
cikarimi sirasinda siklikla bagvurulan yontemdir. Ayrica sisteme bilgi cikarma

agsamasinda girdi olusturmaya yardimei olmaktadir (Kumar ve Bhatia, 2013).

3.3.1.3. Bilgi cikarim

Bilgi ¢ikarimi, yapilandirilmis veya yart yapilandirilmig makine tarafindan okunabilen
biiyiik miktarda metinden anlamli bilgiler ¢ikaran bir tekniktir (Talib vd., 2016). Bilgi

cikarim sistemleri dokiimandaki belirli nitelikleri ve varliklar1 ¢ikarmak ve iligkilerini

40

kurmak i¢in kullanilir (Dang ve Ahmad, 2015). Cikarilan kiilliyat (corpus) daha ileri
islemler i¢in veritabaninda saklanir. Kiilliyat kelimesi ile kastedilen, ¢cok sayidaki
metnin diizenli ve yapisal olarak bir arada bulunmas1 durumudur (Seker, 2008). Daha
ilgili sonuclara ulagmak i¢in bilgi ¢ikarma iglemini uygularken ilgili alanla alakal

ayrintili ve eksiksiz bilgi gerekir (Steinberger, 2012).

3.3.1.4. Veri madenciligi

Veri madenciligi, verilerden otomatik olarak istatistiksel kurallart ve kaliplar
kesfetmeye caligir. Metin madenciligindeki gesitli araglar1 kullanarak metinleri anlaml
veriler haline getirme, metinlerden elde edilen verileri madenleme teknigidir. Amag,
anlami ortaya ¢ikaran ve arastirmacilarin bagka tiirlii kesfetmesi zor olabilecek yeni
bilgileri kesfetmelerini saglayan bilgi parcalar1 arasindaki iligkileri bulmaktir ve bu bilgi
parcalarini1 daha ileri analizler i¢in anlasilabilir bir yapiya doniistiirmektir (Sumathy ve
Chidambaram, 2013). Oyleyse, metin madenciligi arastirmayi hizlandiran, yeni sorular

sormamiz1 veya eskileri test etmemizi saglayan bir aractir.
3.3.2. Metin madenciligi adimlari

Metin madenciligi metnin “sayisallastirilmasi” siireci olarak 6zetlenebilir. Bu bilgiler
1s1g¢inda metin madenciliginin genel ¢aligma siirecinin mantiksal semas Sekil 3.19°da

verilmistir.

Metin madenciligi, bilgiyi verimli bir sekilde madenlemek icin gerceklestirilecek bir
dizi adimlar1 icermektedir. Sekil 3.19°da detayli olarak verildigi gibi metin madenciligi
genellikle girdi metninin yapilandirilmasi (baz1 tiiretilmis dilsel 6zelliklerin eklenmesi,
metin Onisleme agsamasi, ardindan bir kiilliyata eklenmesiyle birlikte ayristirilmasi),
yapilandirilmis veri icinde birtakim islemlerin yapilmasi (6zellik ¢ikarimi, boyut

indirgeme, siniflandirma, kiimeleme vs.), analiz ve yorumlama adimlarini icermektedir.

Islenecek verilerin belirli bir formatta olmamasi metin madenciligi acisindan verilerin
analiz edilmesini zorlagtirmaktadir. Bu ylizden metin madenciligi alaninda 6n isleme

asamasl, veri temizleme ve veriyi uygun formata getirme islemi gerceklestirilmektedir

41

Metin Kaynagi

\4

Dokuman Getirme ve
Onisleme

Dokiiman indeksi Killiyat

’ Ozellik Cikarimi ‘

l

Terim/Dokiiman |~~~
Matrisi N

l Boyut Indirgeme

‘ Veri Madenciligi

Kimeleme,
Siniflandirma,

Regrasyon

Y

Yapilandiriimig
Veri Analizi

Sekil 3.19. Metin madenciligi adimlari

(Feldman vd., 2007). Bu asamada kullanilan bazi teknikler Metin Temizleme (Cleanup),
Metin Parcalama (Tokenization) ve Ciimlenin Ogelerini Etiketleme (Part-of-speech

Tagging) teknikleridir.

Metin Temizleme; gereksiz veya istenmeyen bilgileri kaldirma anlamina gelir. Ornek
olarak reklamlar1 web sayfalarindan kaldirma, ikili formattan doniistiiriilen metni
normallestirme, tablolarla, sekillerle ve formiillerle ugrasmak gibi gereksiz veya

istenmeyen bilgilerin kaldirilmasi anlamina gelir (Kumar ve Bhatia, 2013).

Metin Parc¢alama; belirli bir metinde kullanilan tiim kelimeleri elde etmek i¢in bir
parcalama (tokenization) islemi gereklidir. Bir metin belgesi tiim noktalama isaretlerini

kaldirarak sekmeleri, satir sonu karakterlerini ve diger metin olmayan karakterleri

42

(non-text) boslukla degistirerek bir sozciik akisina boliiniir (Hotho vd., 2005). Temiz ve
uygun formata gelen metne kiilliyat1 olusturan dokumanlarda dizgeciklere (token)
ayirma islemi uygulanir. Daha sonra biitiin dokumanlarda yer alan kelimelerin
birlestirilmesi ile ilgili koleksiyonun “soézIigii” nii (dictionary) elde edilir (Hotho vd.,

2005).

Ciimlenin Ogelerini Etiketleme; her dizgecik icin kelime sinifi atamasi anlamina
gelmektedir. Giris olarak, dizgeciklestirilmig belirli bir metin verilir. Etiketleyiciler,

bilinmeyen kelimelerle ve belirsiz kelime etiketi eslemeleriyle bas etmek zorundadir.

3.3.3. Metin madenciligi ve alanlar1 kapsaminda kullanilan kavramlar ve

teknikler

Gelisen teknoloji ve kullanilan altyapilar sayesinde iletisim ve bilgi teknolojilerinin
kullanimi1 da artmaktadir. Bu tiir teknolojilerin devamliligini siirdiirebilmesi i¢in saglam
altyapilar kullanilmas1 ka¢inilmazdir. Internet alyapisinin gelisen teknolojiye ayak
uydurmasi gerekmektedir. Bu altyapilarin kullanimi da giinden giine artmaktadir.
Artan yapisal olmayan metin icerikli verilerden yapisal ve anlamli veriler elde etmek
icin metin madenciligi kullanilmaktadir. Ciinkii elde edilecek veriler iizerinde veri
madenciligi teknikleri uygulayabilmek icin oncelikle yapisal olmayan metinlerin
islenmesi gerekmektedir. Bu baglamda tez kapsamindaki bu calismada kullanilan

kavramlar ve yontemler sirasiyla verilmektedir:

e Metin parcalama (Tokenization)

e Noktalama isareti silme (Punctuation)

e Durdurma kelimeleri (Stop Words)

e Kokenine dondiirme (Stemming)

e Temel hale dondiirme (Lemmatization)

e Ciimle boliimlendirme (Sentence Segmentation)

e Diizenli ifadeler (Regular Expression)

43

e Dizin yontemleri

v' Diizeltme (Trim)
v Dizin bulma (Indexof)
v’ Altdizin bulma (Substring)

v" Son dizin bulma (LastIndexOf)

Metin madenciliginde genellikle girdi metninin yapilandirilmasi sirasinda kullanilan
metin icerikli dokiimanlarin hazirlanmasi asamasi olan metin Onisleme en kritik
asamalardandir. Bu asgamada metin icerikli dizgelerin dizgeciklere (token) parcalanmasi,
gereksiz sik kullanilan kelimelerin (stop words) ayiklanmasi ve kelime koklerinin

bulunmasi (stemming) en sik kullanilan 6n isleme tekniklerindendir.

3.3.3.1. Metin parcalama

Nesne yonelimli programlama dilleri ile olusturulan uygulamalarda genellikle uygulama
icerisinde metinsel degerlerin tutuldugu veri tiplerinden biri karakter dizgeleridir.
Dizgeler, programlama diline ait ve o dilde tanimli olan sembollerin bir igerik akisinda
farkli sira ve sayilarda siralanmasi sonucu elde edilen metinlerdir. Metin pargcalama ise
metinsel bir icerik akisini kelimelere, terimlere, simgelere veya sembol ad1 verilen diger
bazi anlaml1 68elere ayirma islemidir. Bu islem sayesinde dizge icerisinden bir parca
cikarilarak verinin bir parcasi elde edilir. Parcalara ayrilmis bu dizgelere ise alt dizge

(substring) denilmektedir.

3.3.3.2. Noktalama isareti silme

Metinler gibi dizgeler icerisinde kullanilan noktalama isaretlerinin (! . , ; - 7) silinmesi
string ifadeler tizerinde islem yapacak modeller ile dogru sonuglar elde edilmesine
olanak saglamaktadir. Bu tiir nokalama isaretlerinin metin icerisinden kaldirilmasina

olanak saglayan teknik, noktalama isareti silme olarak adlandirilmaktadir.

44

3.3.3.3. Durdurma kelimeleri

Filtreleme yoOntemleri ile dokiimanlardaki sozciikler diger bir ifadeyle sozliikteki
kelimeler filtrelenebilir. Bu yontemlerden en yaygin olarak kullanilan filtreleme yontemi
"durdurma kelimeleri filtreleme yontemi"dir. Durdurma kelimesi filtreleme yontemi,
baglaclar, edatlar gibi igerik bilgisi olmayan veya igerige katkisi olmayan kelimeleri
kaldirmaktir (Hotho vd., 2005). Frekansa dayali girdi dokiimanlarinda siralanacak
kelimeler arasindan “durdurma kelimeleri” filtreleme yontemi ile siralamadan
cikartilacak terimler tanimlanmaktadir. Bu yontem sayesinde sozliikte (biitiin
dokiimanlarda) ay1rt edici etkisi olmayan ve istatistiksel olarak etkin bir faydasi olmayan

kelimeler ¢ikartilmaktadir (Hotho vd., 2005).

3.3.3.4. Kokenine dondiirme

Kelimeleri basit, yalin haline getiren ya da ceviren metin madenciligi teknigine
"kokenine dondiirme" denilmektedir. Tiirkceden 6rnek vermek gerekirse ¢ogul eklerin
kelimeden atilmas1 veya ¢ekim eki almis fiilin ¢ekim ekinden ayrilarak fiilin kokiiniin

elde edilmesidir.

3.3.3.5. Temel hale dondiirme

Metin icerisinde gecen ayn1 kelimeden tiiremis kelimeleri ayirt ederek tek bir kelimeye
indirgenmesi yontemidir. Temel hale dondiirme islemi kelimelerin ciimle i¢erisindeki
gorevlerini hatta konumlarini tespit etmesi agisindan hataya acik ve zor bir iglem olarak
degerlendirilmektedir. Ayrica bu islem dilden dile faklilik gostermektedir (Tunali,
2011).

3.3.3.6. Ciimle boliimlendirme

Dogal dil isleme tekniklerinin ¢cogu ciimle sinirlari ile sinirlanan kelime belirteclerinin
dizilerine uygulanir ve bu nedenle metnin de climlelere boliinmesini gerektirir. Metnin
ciimlelere boliinmesi cogu durumda basit bir meseledir. Nokta, tinlem isareti veya
soru igareti genellikle bir climle sinirina isaret eder. Bununla birlikte, bir noktanin

ondalik bir noktay1 gosterdigi veya kisaltmanin bir pargasi oldugu ve dolayisiyla bir

45

climle kesintisine isaret etmedigi durumlar vardir. Ciimlelerin boliimlere ayrilmasi
farkl dillerde beklenmeyen bazi zorluklar ortaya ¢ikarabilir. Bu yiizden sorunu ¢6zmek
icin basit diizenli ifadelerden daha fazla kapsamli sisteme kadar cesitli yontemler
kullanilmaktadir (Mikheev, 2003). Diger taraftan metnin ciimlelere boliinmesi
bircok metin isleme uygulamasi gelistirmek i¢in onemlidir. Bu iglemler icin ciimle
boliimlendirme teknigi kullanilmaktadir. Teknik kullanilirken ciimlenin sonunu isaret
edebilecek noktalama isaretlerinin tespiti ciimlenin dogru analizi i¢in 6nemli yer

tutmaktadir.
3.3.3.7. Diizenli ifadeler

Metin madenciliginde metin icerisinde 0zel bilgiler yer alabilmektedir. Bu tiir bilgilere
ornek vermek gerekirse kigisel numaralar, e-posta adresleri, kimlik numaralar1 gibi
bilgiler verilebilir. Bu tiir durumlarda genellikle diizenli ifadeler veya igerik bagimsiz
gramerler tamimlanarak metin iizerinde ¢alistirilir (Seker, 2015b). Diizenli ifadeler,
karakter dizilerinin (strings) kiimelerini tanimlamak i¢in kullanilan bir gosterimdir.
Belirli bir dizi diizenli ifade tarafindan tanimlanan kiimedeyken, diizenli ifadenin dizi
ile eslestigi bilinmektedir. Ornek olarak sayilarla eslesen diizenli ifade gosterimine

Denklem 3.7°de yer verilmektedir (Mikheev, 2003):

[0—9][0—9]?[0 — 9]2(2[0 — 9][0 — 9][0 — 9]) * ([.][0 — 9]+) 3.7)

En basit diizenli ifade tek bir degismez karakterdir. Ozel meta karakterleri hari¢ *+?()|,
karakterleri kendileri ile eslesir. Diizenli ifadeyi bir meta karakteriyle eslestirmek i¢in

ters egik cizgiyle kacis : \+ degismez bir art1 karakteriyle eslesir.

Yeni bir diizenli ifade olusturmak icin iki normal ifade degistirilebilir veya
birlestirilebilir: ml s ve m2 t ile eslesirse, ml | m2 s veya t ile eglesir ve m1m?2

st ile eslesir.

Meta karakterleri *, + ve ? tekrarlayan islecler: el * eslesir. Her biri m1 ile eslesen sifir
veya daha fazla dizilerin dizisi; m1 + bir veya daha fazla eglesir; m1? sifir veya bir ile

eslesir (Cox, 2007).

46

3.3.3.8. Dizin yontemleri

Diizeltme (Trim) : Karakter dizisi (string) icerisinde gecerli tiim 6ndeki ve sondaki
bosluk karakterlerini kaldirmaya yarayan yontemdir. Bir bosluk olmayan karakterle
karsilastiginda her bastaki ve sondaki kesme islemini durdurur. Ornegin gecerli bir
dize "abc xyz" ise Trim yOntemi "abc xyz" dondiiriir. Beyaz bogluk (whitespace)
karakterlerini dizesindeki kelimeler arasindan kaldirmak igin "Diizenli Ifadeler" yontemi

kullanilir (Microsoft, 2022).

Dizin Bulma (IndexOf) : Belirtilen unicode karakterin veya dizenin karakter dizisinde
ilk gectigi sifir tabanli dizini bildiren yontemdir. Belirtilen karakter veya dize
bulunmadiginda yontem -1 dondiiriir. Bu yontem agir1 yiikleme seklinde kullanima

sahiptir (Microsoft, 2022).

Altdizin Bulma (Substring) : Bir karakter dizisinden belirtilen karakter konumunda
baslayan ve dizinin sonunda biten bir alt dizin bulma yontemidir. Baslangi¢ karakteri
konumu bir sifir tabanhdir. Asir1 yiikleme ile kullanimlart mevcuttur. Ornek olarak
Substring(Int32, Int32) yontemi, belirtilen karakter konumunda baglar ve belirtilen
uzunluga kadar bir alt dizin alir. Bu yontem gecerli 6rnegin degerini degistirmez, bunun

yerine baglangici yeni bir dize olan karakter dizisi dondiiriir (Microsoft, 2022).

Son Dizin Bulma (LastIndexOf) : Belirtilen Unicode karakter veya gecerli karakter
dizini i¢inde belirtilen bir dizenin son olusum dizin konumunu tespit eden yontemdir.
Asin1 yiikleme seklinde kullanimlar1 mevcuttur. Ornek olarak public int LastindexOf
(string value, int startIndex, StringComparison comparisonType) yonteminde arama,
belirtilen karakter konumunda baglar ve dizenin basina dogru geriye gider. Belirtilen

dize icin arama yaparken gerceklestirilecek karsilastirma tiiriinii bir parametre belirtir

(Microsoft, 2022).

3.4. Kombinatoryal Optimizasyon

Optimizasyon havayolu planlamadan finasmana, internet yonlendirmeden miihendislik

tasarimanina kadar her yerdedir ve bu nedenle genis bir uygulama yelpazesi ile onemli

47

bir kavram haline gelmektedir (Koziel ve Yang, 2011). Hemen hemen tiim miihendislik
ve endiistri uygulamalarinda maliyet ve enerji tiiketimini en aza indirgemek veya
performansi, verimliligi ve kari en iist diizeye cikarmak i¢in siirekli bir seyler optimize
edilmeye calisilmaktadir. Gergek hayatta zaman, para ve kaynaklar daima sinirl
oldugu i¢in optimizasyonun pratikte onemi daha fazladir. Herhangi bir tiirde mevcut
kaynaklarin en uygun sekilde kullanilmasi bilimsel diisiincede bir kavram degisikligini
gerektirir. Bunun sebebi, gercek diinyadaki uygulamalarin cogunun sistemin davranis
seklini etkileyecek ¢ok daha karmagik faktorlere ve parametrelere sahip olmasidir

(Koziel ve Yang, 2011).

Gelisen teknoloji ile az maliyet ve enerji tiikketimi ile performans ve verimlilik
artirilabilmekte fakat ayni zamanda yeni problemler ortaya cikabilmektedir.
Yeni problemlerin ortaya c¢ikmasi karar mekanizmasinin isini zorlastirmaktadir.
Ciinkii, bilinen ¢oziim teknikleri, problemlerin yeni halleri icin yeterince ¢oziime
ulastiramamaktadir. Coziilmesi gereken problemler ya da karar verilmesi gereken yeni
haller ne olursa olsun amag¢ daima en iyi sonucu elde etmek olmalidir. Bu bilgiler
1s1g¢1nda optimizasyon, elde olan kaynaklar1 en verimli sekilde kullanarak verilen amag

veya amaglar i¢in en iyi ¢6ziimii elde etmeyi gerceklestirme siirecidir.

[OPTIMIZASYON]

RASSAL
(SKOLASTIK) SINIRSIZ

BELIRLI
(DETERMINISTIK)

SINIRLI
TEK AMAGLI
AYRIK
COK AMAGLI (KOMBINATORYAL)

Sekil 3.20. Optimizasyon problem tipleri

SUREKLI

Optimizasyon problemleri genel olarak ifade edildiklerinde kolay ancak ¢oziilmesi
zor olarak tanimlanan problemlerdir. Sekil 3.20, optimizasyon problem tiplerini
gostermektedir. Tipleri probleme baglh olarak de8isen optimizasyon problemlerinin
ortak yonii, objektif fonksiyon ad1 verilen minimize veya maksimize edilecek olan bir
fonksiyon ile kisitlamalar kiimesi olarak adlandirilan sonlu sayida esitsizlik veya esitlik

sisteminden meydana gelmektedir. Optimizasyon problemleri bir¢cok yolla formiile

48

edilebilmektedir. Genel olarak yaygin formiilasyon, problemi dogrusal olmayan bir

optimizasyon yontemi olarak yazmaktir (Yang, 2013):

min fi(u),(i=1,2,3,...2), (3.8)
k.s. hj(u)=0,(j=1,2,3,...K), (3.9)
g(u) <0,(k=1,2,3,...L) (3.10)

Yukaridaki optimizasyon probleminde f;, h; ve g dogrusal olmayan fonksiyonlardur.
Karar degisken vektorii u = (uy,us,us3,. .. .u,) n boyutlu uzayda siirekli degiskenlerden
veya tamsayili degiskenlerden olusabilmektedir. Amag¢ fonksiyonu ya da maliyet
fonksiyonunu f; temsil etmekte ve Z > 1 oldugu durumlarda, optimizasyon ¢ok amaclh

ya da ¢ok kriterli olmaktadir (Yang, 2013).

Karar degigken vektorii u = (uy,up,us,. .. .u,) ve gp(u) <0, k= (1,2,3,....L) kisit
sistemini ele aldigimizda, g;(#) = 0 denklemini saglayan u’larin kiimesi, tasarim
uzayinda bir ¢ok boyutlu yiizey olusturmaktadir. Bu kisit yiizey, tasarim uzayini,
gr(u) < 0 ve gr(u) > 0 olmak tizere iki bolgeye ayirir. gi(u) < 0 olan bolgedeki
noktalar “kabul edilebilir”, g;(u) > 0 olan bolgedekiler ise uygun olmayan seklinde
tespit yapilabilmektedir. Ayrica f;(u) fonksiyonunun minimum noktasi u* olarak kabul
edersek, ayni nokta fonksiyonunun negatifi — f;(u) ile ifade edilebilmekte ve problemin
maksimum noktasidir. f;, h; ve g;'min bazi dogrusal oldugu durumlarda, problem
dogrusal olarak isimlendirilir. Bazi karar degiskenleri sadece ayrik degerler (integer gibi)
aldiginda, diger degiskenler siirekli olsa dahi, biiyiik 6l¢gekli optimizasyon problemleri

icin genelde zor olan karigik tipte olmasidir (Yang, 2013).

Kombinatoryal optimizasyon, kombinatorik dogrusal (linear) programlama tekniklerini
ve ayrik yapilar tizerindeki optimizasyon problemlerini ¢6zmek i¢in algoritmalar
teorisini birlestiren bir uygulamali matematik dalidir (Papadimitriou ve Steiglitz, 1998).
Kombinatoryal terimi, karar degiskenlerinin kesikli oldugunu ifade etmektedir. Diger
bir deyisle, problem ¢oziimiiniin tamsayilarin ya da diger kesikli nesnelerin bir kiimesi
veya bir sirast oldugu anlamina gelir. Bu tiir problemler i¢in optimum ¢6ziimlerin

bulunmasi1 kombinatoryal optimizasyon olarak siniflandirilmaktadir. Kombinatoryal

49

optimizasyon problemi U, f, c ui¢liisii seklinde tarif edersek, U arama uzayini, f
maksimize edilmesi veya minimuma indirilmesi gereken amac fonksiyonunu ve ¢
uygulanabilir ¢oziimler elde etmek i¢in yerine getirilmesi gereken bir dizi kisitlamalari
ifade etmektedir (Neumann ve Witt, 2010). Amag, maksimizasyon veya minimizasyon
problemi durumunda U* ile biitiin kisitlamalar kargilayan en yiiksek amag degere sahip

bir ¢coziim bulmaktir (Neumann ve Witt, 2010).

Gezgin satic1 problemi ve grafik renklendirme problemi kombinatoryal problemlerin
ornekleri arasindadir. Bu problemler, belirli kisitlamalar1 yerine getirerek bir
kombinasyon, bir permutasyon veya bir alt kiime gibi bir kombinatoryal nesne bulmay1
hedefleyen problem tiirleridir. Hedeflenen bu kombinasyonel nesnenin ayn1 zamanda bir
minimum veya maksimum maliyet gibi ek 6zelliklere sahip olmas1 gerekebilmektedir.
Genel olarak kombinatoryal problemler hem teorik hem de pratik olarak hesaplamada en
zorlayici problemler arasindadir. Zorlugunu aciklayan birden fazla gerceklik mevcuttur.
Bunlardan biri, kombinatoryal nesnelerin sayisinin normal olarak problemin boyutu
ile hizli bir sekilde biiyiimesi ve orta derecedeki durumlarda dahi tahmin edilemez
boyutlara ulasabilmesidir. Digeri ise bu tiir problemlerin biiyiik ¢cogunlugunu makul bir
sirede ¢6zmek i¢in bilinen bir algoritmanin cogu bilgisayar bilimcisi tarafindan mevcut
olmadigina inanilmasidir. Fakat bazi kombinatoryal problemler etkili algoritmalar ile

coziilebilir. Bunlardan biri en kisa yol bulma problemleridir (Levitin, 2011).

Kombinatoryal optimizasyon problemlerinden en tipik ve bilinen problemlerinden
biri minimum yayilim agac problemidir (Graham ve Hell, 1985). Kombinatoryal
optimizasyonun temel tas1 olarak da goriilmektedir. Problem hem pratik hem de teorik
uygulamalarda 6nemlidir (NesSetfil vd., 2001). Minimum yayilim aga¢ probleminin
Oonemi ve popiilaritesi ¢esitli gerceklerden kaynaklanmaktadir. Coziim yontemleri basit
olsa da modern kombinatoriklerin fikirlerini iiretmekte ve bilgisayar algoritmalarinin
tasariminda merkezi bir rol oynamaktadir (Graham ve Hell, 1985). Ayrica biiyiik graflar
i¢in ¢oziilmesini pratik hale getiren etkin bir ¢oziim sunmaktadir (Graham ve Hell,

1985).

50

3.4.1. Graf teorisi

Gercek diinyadaki nesnelerin durumu, bir dizi noktadan olusan ve bu noktalarin belirli
ciftlerini birlestiren cizgilerle birlikte bir diyagram aracilifiyla uygun bir sekilde
tanimlanabilir. Bu tiir durumlarin matematiksel bir soyutlamasi, bir grafik kavramini
ortaya cikarir (Bondy vd., 1976). Graf teorisi, ¢izgileri inceleyen ve nesneler arasindaki
iligkileri modelleyen bir kuramdir. Temel anlamda bir problem kenarlar (edges) ve
diigimler (vertices) ile modellenmektedir ve modellenen problemin bir graf seklinde
gosterim ilkesine dayanmaktadir (Seker, 2015a). Matematikten kimyaya bilgisayar
bilimlerinden sosyal bilimlere kadar bircok farkli alanda kullanilmaktadir. Teorinin
evrensel anlamda kullanilan sembolleri netlik kazanmamig olsa da bu alanda calisan
arastirmacilarin (Bondy vd., 1976; Biggs vd., 1986; Gross ve Yellen, 2005; Chen, 2012)

kullandiklar1 sembollerin ¢calismacilar tarafindan kabul gordiigiinii soyleyebiliriz.

Tanmm 3.1. G grafi, G = (V,E) ile temsil edilir ve bog olmayan iki sonlu kiime V
ve E’den olusan matematiksel yapidir (Biggs vd., 1986). Grafta, V’nin elemanlarina
diigiimler (vertices) denir ve V = (v, va,....v,) diigiimler kiimesi ile gosterilir. E’nin
elemanlarina kenarlar (edges) denir ve E = (e}, e,e;;) kenarlar kiimesi ile gosterilir

(Gross ve Yellen, 2005).

Sekil 3.21. Graf cizgi ¢izim 6rnegi

G = (V,E) ile temsil edilen Sekil 3.21° deki graf 5 adet diigiim ve 8 adet kenardan
olugsmaktadir. Grafin diigiimleri ve kenarlari: V = (vy,vy,....vs) ve E = (ey,ea,. .. .e3).
Ornek graftaki v; ve v, diigiimleri arasindaki baglantiy1 saglayan kenar e; veya (vi,V2)

ile temsil edilir.

51

Tamim 3.2. Her kenar kendisine bagl bir veya birden fazla diigiime sahiptir. Bunlara
"baslangic ve bitis diigiimleri" denir (Gross ve Yellen, 2005). Ornek graftaki v; ve v,

digtimleri ey kenarinin baglangi¢ veya bitis diigiimlerini temsil etmektedir.

Tamm 3.3. Bir v, diigiimii bir v, dii§iimiine e, kenar ile bagl ise bu iki diigiim bitigik
ve komgudur (West vd., 2001). Ornek graftaki v, ve v3 diigiimler hem komsu hem de
bitisiktir.

Tamim 3.4. Bir kenarin baslangic ve bitis diigiimii ayn1 diigiim oldugu durumlara

"dongii" ad1 verilir (Bondy vd., 1976). Ornek graftaki e; kenar1 dongiidiir.

Tamim 3.5. Baglangi¢ ve bitis diigiimii aym diigiim olan diger bir ifadeyle ayni ug
noktalara sahip iki veya daha fazla kenara "¢oklu kenar" denir (Gross ve Yellen, 2005).

Ornek grafta {eg, e7} coklu bir kenar setini olusturmaktadir.

Tamim 3.6. Coklu kenar veya dongii icermeyen graflara "basit graf" denir (Gross ve
Yellen, 2003). Basit grafin bigimsel gosterimi her diigiim icin komsu diigiimlerin
listesini iceren komsuluk listesi ile temsil edilir (Gross ve Yellen, 2005). Sekil 3.22

ornek basit graf ve bicimsel gosterimini vermektedir.

X <K X K<
<
N

Sekil 3.22. Basit graf ve belirtim gosterimi

Tamim 3.7. Coklu kenar veya dongii iceren graflara "genel graf" denir (Gross ve Yellen,
2003). Genel grafin bigimsel gosterimi kenar listesi, diigiim listesi ve u¢noktalari iceren
bitisiklik tablosundan olugsmaktadir (Gross ve Yellen, 2005). Sekil 3.23 6rnek genel

graf ve bigcimsel gosterimini vermektedir.

52

V={v4,Vo,V3,Vy,Vs}

E={e;,€5,€364,€56€66€7,68

kenar | €1 € €3 €4 €5 € €7 €3
ucnokta| vy Vo V3 Vo V4 V4 Vs Vs

Vo V3 V4 V4 Vg5 V5 V5 V3

Sekil 3.23. Genel graf ve bigimsel gosterimi

Tamm 3.8. G = (V,E) grafiV = (vq,va,....v,) digiimler kiimesi ile farkli diigiimlerin
siral1 ikili listelerinden e; = { v, v,} olusan E = (ej,es,....e,) kenarlar kiimesine
yanisira bag diiglim yonii : e; — v, , kuyruk diigiim yonii: e, — v, gibi 6zelliklerine
sahip ise bu tiir graflara "yonlendirilmis graf" denir (Gross ve Yellen, 2005). Sekil 3.24

ornek genel graf ve bi¢cimsel gosterimini vermektedir.

ez

Sekil 3.24. Yonlendirilmis graf

Tanim 3.9. Yonlendirilmis ve yonlendirilmemis kenarlarin birlikte kullanildig: graflara
"kismi yonlendirilmis graf" denir (Gross ve Yellen, 2003). Kismi yonlendirilmis grafin
veya yonlendirilmis grafin igaretlerinin kaldirilmasi ile temel graf elde edilir (Gross ve

Yellen, 2003). Elde edilen graf ayn1 zamanda yonlendirilmemis bir graftir.

Tanim 3.10. Coklu kenar iceren fakat dongii icermeyen graflara "¢oklu graf” (multigraf),
kenarlar kiimesi ile diigiimler kiimesinde hi¢ eleman yok ise bu tiir graflara da bog graf

denir (Gross ve Yellen, 2005).

53

Tanimm 3.11. Bir grafta kenarlarin degerleri esit degil ve her biri farkli bir degere
sahipse bu tiir graflara "agirlikli yada maliyetli graf” denir. Agirlikli bir graf G = (V,w)
ile temsil edilirse, burada V diigiim kiimesine ve w her diigiim ¢iftine (v,vy) gergek bir
negatif olmayan deger w(v,,vy) veren bir agirlik fonksiyonuna karsilik gelmektedir
(vy € V,vy €V ve vy # vy) (Umeyama, 1988). Sekil 3.25’te yonlendirilmemis bir

agirlikli graf verilmistir.

Sekil 3.25. Yonlendirilmemis agirlikli graf

Tanm 3.12. G = (V,E) bir graf V = (vg,vy,....v,) digimler kiimesinden ve E =
(e1,e2,....ey) kenarlar kiimesinden olugsmaktadir. Grafta v, ile v gibi herhangi iki
diigiim arasinda bulunan ve k = 1,2, ..n i¢in ¢;’i temsil eden bir kenarin v; dii§iimiinden
v, diigtimiine varincaya kadar izledigi W = (v, e1,vy....vy—1,€pn,v,) digiim ve kenar

dizisine "yliriiylis" denir (Gross ve Yellen, 2003).

Tanim 3.13. Tekrar eden kenar1 ve i¢ diiglimii bulunmayan yiiriiyiis tipine "yol" (Gross
ve Yellen, 2003), hi¢ kenar1 olmayan ve sadece tek diigiim iceren yola ise "patika" denir

(Gross ve Yellen, 2003).

Tamm 3.14. m digiimlii bir G grafinda her bir ¢ift farkli diigiim arasinda en az bir yol
varsa "bagli graf", her diiglimiin bitisik diiglimii ile arasinda bir kenar varsa "tam graf"

denir (Harary, 2015). Sekil 3.26’da tam graf 6rnekleri verilmektedir.

Tanim 3.15. Diigiimleri vy, vs,....v, seklinde siralanmis basit bir G grafinin Ag ile
temsil edilen ve v X v matrise karsilik gelen matrisine "komsuluk matrisi" denir ve su

ozelliklere sahiptir (Gross ve Yellen, 2003):

54

Gy Gy Gs Gy
Sekil 3.26. Tam graf ornekleri

1 eger v, ve v, komsu ise
AG(a,b):{ ger v, ve v, koms

0 degilse
Tanim 3.16. Diigiimleri vy,v,,....v, ve kenarlar1 e, e,e, olan bir G grafin v x e
matrisine "bitisiklik matrisi" denir. G’nin bitisiklik matrisi Mg =[m; ;] matrisidir, burada

[m;;], vi ve e;’nin bitisiklik say1sidir (0,1,2) (Bondy vd., 1976).

€1 € e3 €4 €e; eg ey Vi Vo V3 V4

Vi 110 0 1 0 1 V4 0 2 1 1

V2 111 0 000 V2 2 01 0

V3 0 01 1 0 0 1 V3 110 1

\Z 0 00 1 1 20 \Z1 1.0 1 1
Mg Ag

Sekil 3.27. Bir graf, grafin bitigiklik matrisi ve komsuluk matrisi
(Bondy vd., 1976)

Tamm 3.17. Vp C Vi ve Ep C Eg olan bir D grafina "G grafinin alt grafi" denir (Gross
ve Yellen, 2003). Burada D grafi G grafinin alt grafi ise G grafinin kenar ve diigtimleri
D grafinin kenar ve diigiimlerini kapsamaktadir. Ayni zamanda G grafi D grafinin siiper
grafi olur. Genelde G grafinin bir alt grafigine "izomorfik"; herhangi bir grafige de
"G’nin bir alt grafigi" denilmektedir (Gross ve Yellen, 2003). Eger Vp = V5 ise D grafi
G grafinin yayilan (spanning) alt grafi olmaktadir. G grafinda, Gp olarak gosterilen bir
dizi P = (p1,p2,....pn) diigumler kiimesine sahipse ve ug noktalar1 P ’de olan G’nin
her kenarini igeriyorsa buna indiiklenmis alt graf denilmektedir. Sekil 3.28’de 6rnek bir

G grafinin D yayilan alt grafi ve D, indiiklenmis alt grafi drneklerini verilmistir.

55

] o=,

Sekil 3.28. D; yayilan alt graf ve D; indiiklenmis alt graf
(Gross ve Yellen, 2003)

Tamim 3.18. Agac (tree) birbirine bagh (connected) dongiisel olmayan (acyclic) bir
graftir (Bondy vd., 1976). G grafinin bir yayilan agaci1 (spanning tree), bir agag
olan G’nin yayilan alt grafidir (Bondy vd., 1976). Yayilan agac biitiin diigtimleri
kapsar ve dongii olusturmaz. Bir aga¢ olan G’nin kenar sayisi e = v — 1 seklinde

bulunur (Bondy vd., 1976). Sekil 3.29°da bes diigiimlii baz1 aga¢ drnekleri gosterilmistir.

AAX AL

Sekil 3.29. Bes diigiimlii aga¢ ornekleri
3.4.2. Minimum yayilan agac¢ ve algoritmalari

Minimum yayilan aga¢ (MYA) (Boruvka, 1926; Kruskal, 1956; Prim, 1957), agirlikli
baglantili bir grafigin minimum agirlikli kapsayan agacini bulmayi amaglar (Graham
ve Hell, 1985). Agirlikli baglantili graftaki tiim diigiimleri dongiiler olusturmadan
baglayan ve tiim olasi yayilma agaclarinin minimum toplam agirligina sahip olan
orijinal agirlikli grafin bir alt grafidir (Tewarie vd., 2015). MYA aym zamanda
iyi bilinen bir optimizasyon problemidir (Chen ve Chang, 2001; Dey ve Pal, 2013;
Dey vd., 2015) ve kombinatoryal optimizasyonun temel tasi olarak goriilmektedir
(Graham ve Hell, 1985; Nesetril vd., 2001). Her iki aragtirmaci Boruvka’ya (1926)
minimum yayilan agac probleminin dnciisii olarak atifta bulunmasina ragmen problemin
kaynag1 olarak Kruskal (1956) ve Prim’in (1957) ¢alismasina ve ilk etkili ¢oziimlerine

bagvurmak yazarlar arasinda standart bir uygulama haline gelmistir (Graham ve Hell,

56

1985). MYA uygulamasindaki belirsizlik, kenar agirliklarinin tam olarak bulunmasini
zorlagtirmaktadir. Fakat binlerce diigiime sahip biiyiik graflar icin verimli bir ¢6ziim
oldugu kabul edilmektedir (Graham ve Hell, 1985). Sekil 3.30 verilen graf baglantils,

yonlendirilmemis ve agirlikli bir graftir.

Sekil 3.30. Agirlikli graf ve minimum yayilan agaci

Agirhikh grafi G = (V,E) temsil etmekte olup V = (v, va,....v,) diigimler kiimesi
ve E = (ey,ey,....e;y) kenarlar kiimesinden olugsmaktadir. Kenarlarin agirliklart w(ey)
fonksiyonu ile gosterilirse ¢ her diigiim ¢iftine (v,vy) karsilik gelmektedir. Agirlikli
graf G’nin minimun yayilim agaci olan A’y1 bulmak ve Denklem 3.11°de (Erickson,

2019) verilen fonksiyonu en aza indirmek icin ¢esitli algoritmalar kullanilir.

w(A) =Y wier) (3.11)

er€A

Minimum yayilma agaci probleminin ¢ok sayida algoritmik ¢oziimleri (Dijkstra, 1960;
Loberman ve Weinberger, 1957; Gabow vd., 1986; Karger vd., 1995) mevcut olmasina
ragmen ii¢ algoritma, tarihi gelisimde problemin ¢oziimii icin merkezi rol oynamaktadir
(Graham ve Hell, 1985): Boruvka (Boruvka, 1926); Kruskal, (Kruskal, 1956) ; Prim
(Prim, 1957) .

57

3.4.2.1. Boruvka algoritmasi

Genel minimum yayilma agaci algoritmast, bir ara yayilan orman olarak adlandirilan G
girig grafiginin dongiisel olmayan bir F alt grafigini icerir. ', G’nin minimum kapsayan
agacinin bir alt grafigidir ve F’nin her bileseni, kdselerinin minimum yayilan bir agacidir.
Baslangicta F', m adet tek diigiimlii agagtan olusur. Genel algoritma, agaclari aralarina
belirli kenarlar ekleyerek birlestirir. Algoritma durdugunda, F', minimum kapsayan
agac olmasi gereken tek bir m adet diigiimlii agactan olusur. Gelisen ormana hangi
kenarlarin eklenmesinin belirlenmesi 6nem arz etmektedir; ¢iinkii her kenar minimum

yayilan agacta degildir (Erickson, 2019).

1926°da Boruvka (Boruvka, 1926) tarafindan kesfedilen algoritma ise en eski ve en basit
minimum yayilan aga¢ algoritmasidir. Boruvka’nin Bati Moravia’daki tiim sehirleri
birbirine baglayan asgari maliyetle elektrik sebekesini tasarlamak i¢in olusturdugu
matematiksel formul minimum yayilan agac algoritmasinin temelini olusturmustur
(Durnova, 2006). Algoritma 1960’larin basinda bilgisayar bilimcisi olan Sollin
tarafindan yeniden kesfedildi ve buna paralel olarak hesaplama literatiiriinde genellikle
bu algoritmaya "Sollin’in algoritmasi" denilmektedir (Chung ve Condon, 1996;

Erickson, 2019) . Boruvka algoritmanin temel adimlar1 Sekil 3.31°de gosterilmektedir.

Sekil 3.31. Boruvka algoritmasinin temel adimlar1

58

Verilen agirlikli grafta tek tek diiglimler arasindaki mesafeler karsilikli olarak
farklidir. Bu ayn1 zamanda agirlikli baglantili bir grafigin minimum yayilma agacinin
benzersizligi icin gerekli ve yeterli bir kosuldur (Durnova, 2006). Algoritma genel
minimum yayilma agaci algoritmasinda oldugu gibi bir ara yayilan ormani olan F’ye G
grafindaki her bir diigiim (yayilan) bir agaci temsil edecek sekilde eklenerek baslatilir.
Her agac iizerinde baglantili olan kenarlardan en az agirlikli kenar1 seger. Bu sekilde
her biri aynm1 kenar1 segen iki aga¢ kiime olarak adlandirilacak olan bagli aga¢ kiimesini
olusturur. Agac kiimeleri dongii olmayacak sekilde olusturulmalidir. Her aga¢ kendi
kiimesi igerisinde olmayan fakat kendisi ile baglantili olan kenarlardan en az agirlikl
kenar1 secerek dongii olusmayacak sekilde birlestirir. Eger F' ormaninda aga¢ kiimesi
sayisi tek ise islem sonlandirilir. Degilse islem aga¢ kiimesi tek olana kadar devam
eder. Algoritma asagidaki adimlardan olusan yinelemeler sonucunda yayilan bir agag

olusturur:

Admm 1 : Baglantili, agirlikli ve yonsiiz graf giris olarak verilir.

Admm 2 : Her diigiim, iizerinde en az agirlikli kenar1 seger. Her diigiim agaci temsil
etmekte ve baglantili olan kenarlardan en az agirlikli olan kenar1 segmelidir.
Her biri ayn1 kenar1 secen iki aga¢ kiime olarak adlandirilacak olan bagh agag

kiimesi olusturulur.

Adim 3 : Her aga¢ kendi kiimesi icerisinde olmayan fakat kendisi ile baglantili olan
kenarlardan en az agirlikli kenar secer ve dongii olusturulmayacak sekilde

birlestirir.

Adim 4 : Yayilan ormanda aga¢ kiime sayis1 eger tek ise minimum yayilan agag elde

edilir ve islem sonlandirilir. Degilse Adim 2’ ye gidilir.

3.4.2.2. Prim algoritmasi

Algoritma, 1930’da matematik¢i Vojtech Jarnik (Jarnik, 1930) tarafindan icat edildi
ve daha sonra ayr1 ayri1 1957°de bilgisayar bilimcisi Robert C. Prim (Prim, 1957)
tarafindan ve 1959’da Dijkstra (Dijkstra vd., 1959) tarafindan yeniden kegsfedildi .

Prim’in algoritmasi, baglantili bir agirlikli yonsiiz grafik i¢cin minimum bir yayilma

59

AW N -

agaci bulan aggozlii bir algoritmadir (Srivastava ve Tyagi, 2013; Marpaung, 2020).
Acggozlii yaklagimda, her adimda problemin kiiciik ¢oziimleri elde edilerek en uygun
cOziime ulasilmaya calisilir. Algoritmaya uyarlandiginda, agactaki tiim kenarlarin
toplam agirliginin en aza indirildigi her dii§timii iceren bir agac olusturan kenarlarin
bir alt kiimesinin bulundugu anlamina gelir (Srivastava ve Tyagi, 2013) ve bir dizi

genigleyen alt aga¢ boyunca minimum yayilan bir agac olusturulur (Levitin, 2011).

Prim algoritmasi, bir dizi genisleyen alt aga¢ boyunca adim adim minimum yayilma
agaci olusturur (Levitin, 2011). Boyle bir dizideki ilk alt aga¢, G grafiginin diiglimlerinin
V kiimesinden rastgele secilen tek bir diigiimden olusur. Her yinelemede algoritma,
acgozlii bir sekilde mevcut agaci agactaki bir diigiime en kiiciik agirliktaki bir
kenarla bagh olan ve agacta olmayan bir diigiime baglayarak genisletir (Levitin,
2011). Baglanan diigiim agaca bitisik ve ¢evrimi olmayan kenara sahip olmalidir
(Srivastava ve Tyagi, 2013; Ramadhan vd., 2018; Marpaung, 2020). Algoritma bir
agaci yinelemelerinin her birinde tam olarak bir diigiim kadar genislettiginden bu tiir
yinelemelerin toplam sayis1 n — 1°dir; burada n, grafikteki diigiim sayisidir. Algoritma
tarafindan olusturulan agac, aga¢ genigletmeleri icin kullanilan kenarlar kiimesi olarak
elde edilir (Levitin, 2011). Prim algoritmasinin temel adimlari ile minimum yayilan agac
yapisinin elde edilmesi Sekil 3.32°de verilmekte olup Algoritma 1°de (Levitin, 2011)

s0zde kodu sunulmugtur. Algoritma adimlarindaki G, agirlikli grafigi temsil ederken, V

Algorithm 1: Prim algoritmasi
Giris: G = (V,E) , Agirlikli baglantili yonlendirilmemis bir grafik
Cikis: E;, Minimum yayilan G agacini olusturan kenarlar kiimesi

Vi <o > agac diigtimleri kiimesi herhangi bir diiiim ile baglatilabilir
E o
fori<— 1t |V|—1do
v €Vt ve u € V—Vt olmak kosuluyla biitiin kenarlar (v,u) arasindan minimum
agirlikli kenari e* = (v*,u*) bul
Vi <V, Uu*
E, <+ E Ue*
return E;

ve E diigiim ve kenarlar1 gosterir. Iki diigiim arasinda direk bir baglant1 yoksa sonsuz
oo jgareti ile gosterilir. Aksi durumda baglanti agirlig: verilir. Yontemdeki u diiglim

agirhigina atif yapar. Her diigiim i¢in tiim baglantilar arasindan en kiiciik agirliga sahip

60

Baslangig digimi o
- '

Sekil 3.32. Prim algoritmasinin ¢caligma prensibi

kenar secilerek ilerlenir. Secilen tiim kenarlar birlestirildiginde yeni bir grafik olusur.
¢* her hesaplamadaki en uygun kenar secimidir. Bu se¢imler birlestirilerek nihai grafik
olusturulur. Bu grafik E; ile dondiiriiliir. Prim algoritmasi agagidaki adimlardan olusan

yinelemeler sonucunda yayilan bir aga¢ olusturur:

Adim 1 : Baglantili, agirlikli ve yonlendirilmemis graf giris olarak verilir.
Admm 2 : Minimum yayilan agac (E;) bos olarak atanir.

Admm 3 : Rastgele bir diigiim belirlenir ve minimum agirli§a sahip ilgili kenar se¢ilir.

61

QS U A W oW

Adim 4 : Minimum agirliga sahip kenarlar1 (v,u) ve E,’ye komsu olanlar1 secin, ancak

(v,u) E;’de bir dongii olusturmayacak sekilde (v,u) ’yi E; ’ye ekleyin.

Admm 5 : Adim 4, n — 2 kez tekrar edilir ve sonu¢ olarak minimum yayilan grafik E;

doner.

3.4.2.3. Kruskal algoritmasi

Algoritma Amerikan Matematik Dernegi’nin bildirileri dergisinde 1956’da yaymlanmig
ve Joseph Kruskal (Kruskal, 1956) tarafindan yazilmigtir. Temel fikri, bir seferde
n — 1 kenar se¢mek ve sonra a¢cgozliiliik teknigini kullanmak olup secilen sete katilacak
kenarin dongii olusturamayan minimum maliyetli kenar olmasidir (Li vd., 2017). Ciinkii
secilen kenar dongii olusturursa bir yayilan aga¢ olusturulamaz. Bu algoritma, k
adimlarina boliinmiistiir; burada k, agacin toplam kenar sayisidir ve bir seferde bu k
kenarlarinin maliyet artirma sirasina gore yalnizca bir kenar1 degerlendirilir. Bir kenar
secilir ve onceki secilen kenarlara eklendiginde dongii ortaya cikarsa o kenar terk edilir.
Aksi takdirde koleksiyon i¢in secim yapilir (Li vd., 2017). Kruskal algoritmasi her

kenar1 agirligina gore dikkate alir ve minimum yayilan agag¢ bu koleksiyonda genisler.

Algorithm 2: Kruskal algoritmasi

Giris: G = (V,E) , Agirlikl baglantili yonlendirilmemis bir grafik
Cikis: E;, Minimum yayilan G agacini olusturan kenarlar kiimesi
E sirala, kenar maliyetinin artan sirasina gore w(e;,) < --- < w(ej)

E; < J; yolU zunlugu < 0 > agacin kenarlar kiimesini bos ata ve boyutunu sifir ata
k<0 > islenmis kenar sayisini sifir ata
while yolU zunlugu < |V| —1 do
k< k+1
if E; U (e;,) Dongiisiiz ise then
L E; < E(e;)) ; yolUzunlugu < yolU zunlugu + 1

return E;

G = (V,E) n adet digiime sahip bir baglantil grafi, F = (V,y) kenar1 olmayan
baglantisiz bir grafi temsil etmektedir. G ’deki biitiin kenarlar agirliklara gore kiigiikten
biiyiige dogru siralanir. G grafigindeki her diigiim, bir agaci veya baglantili bir bileseni
temsil etmektedir. En kiiciik agirlikli kenardan baglanir ve F’ye eklenir. Fakat eklenecek
kenar dongii olusturuyorsa kenardan vazgecilir ve kalan kenarlardan minimum maliyetli

kenar isleme alinir (Li vd., 2017). Bu durum tiim diigiimler ayn1 agacta yer alana

62

Kenar Maliyetlerinin
Kiigikten Bilyige Siral Listesi

v ———w | —>
s O——©
3 @%
« ———)

0000000
|

F

Sekil 3.33. Kruskal algoritmasinin ¢aligma prensibi

kadar devam eder ve diigiimler adim adim birlestirilir (Kruskal, 1956). F icinn—1
kenarlar secilmistir, bu yiizden G ’nin n — 1 kenarlarina sahip agaci yayilan minimum
maliyetlidir (Li vd., 2017). Kruskal algoritmasinin temel adimlar1 ile minimum yayilan
agac yapisinin elde edilmesi Sekil 3.33’te verilmekte olup Algoritma 2’de (Levitin,
2011) sozde kodu sunulmustur. Kruskal algoritmasi asagidaki adimlardan olusan

yinelemeler sonucunda yayilan bir aga¢ olusturur:

Admm 1 : Baglantili, agirlikli ve yonlendirilmemis graf giris olarak verilir.
Adm 2 : Tum kenarlar1 E agirliklarina gore artan sirayla w(e;,) <--- < w(e,-‘ o siralanir.

Adim 3 : Minimum yayilan agacin kenarlar kiimesi (E;) bos kiime ve yol uzunlugunu

sifir olarak atanir.
Admm 4 : En kiigiik kenar1 ¢;, segilir.

Adim 5 : Simdiye kadar olusturulmus yayilan agacla bir dongii olusturup olusturmadigi

kontrol edilir. Dongii olusturmuyor ise bu kenar da E; ’ye dahil edilir.

63

Adim 6 : Adim 5, (V — 1) kez tekrar edilir ve sonug olarak minimum yayilan graf E;

doner.

3.5. Enerjinin Genel Tanimi

Programlarin verimliligi genellikle biiyiikliik, h1z ve enerji tiikketimi yolu ile dl¢iiliir
(Bessa vd., 2019). Fakat gelistirilen yazilim programlarinin karmasiklig1, biiyiikliigti
ve donanimdaki ilerlemelerle ortaya konulan cok farkli yapilar, bilgisayarlarda
performansin degerlendirmesini zorlagtirmanin yanisira bilgisayarlarin verimli enerji
tikketimini etkilemektedir. Enerji tasarrufu, cevresel etki ve artan maliyetler nedeniyle
cok Oonemli bir konudur. Ayrica kullanicilarin yiiksek tiiketim ve asir1 talepten
kaynaklanan enerji ihtiyaclarini karsilamak i¢in yesil 6zellikli yazilimlar gelistirilmeli

ve boylece cevre iizerindeki olumsuz etkileri azaltilmalidir.

Bilgisayar programlan yiiriitiildiigiinde enerji tiiketirler. Enerji Uluslararasi Birimler
Sisteminde (SI) enerji birimi olan Joule (J) cinsinden ol¢iiliir (Newell ve Tiesinga, 2019).
Bir periyot boyunca harcanan elektrik giicii bu calisma icin enerjiyi agiklamaktadir.
Denklem 3.12 (Newell ve Tiesinga, 2019), herhangi bir elektrikli cihaz tarafindan

tilketilen anlik giicii verir:

P=VxI (SIunits : Watt,Volt, Amper) (3.12)

V, Volt cinsinden elektrik potansiyelini ve /, bir direncten gegen elektrik akimini temsil
eder. Enerji giic ve zamanin ¢arpimina esittir. Formiiller sirasiyla Denklem 3.13 ve

Denklem 3.14’te verilmektedir:

E=PxT (STunits : Joule,Watt, saniye) (3.13)

E=VxIxT (SIunits : Joule,Volt, Amper, saniye) (3.14)

64

Denklem 3.15 (Newell ve Tiesinga, 2019), elektrikli cihazlarda daha genel bir enerji

tuketimi tanimidir.

t1 t1 t1 t1
E— / Vel(t)di = Ve / I1(t)di =Ve / Vs(1)/Rsdi = Ve/Rs / Vs(t)dt (3.15)
12 12 12 12

Bu tanima gore; T = t1-t2 tiikketimi 6lgmek icin kullanilan integraldir ve Vc kararsiz
olmayan kaynak voltajin1 temsil eder. Rs bir diren¢ degeridir. I degerini elde etmek
icin, Ohm Yasast (I = Vs / Rs) kullanilir, Bu yasa, direngteki V’leri dlcerek I degeri i¢in
Rs direncini kullanir. Bu islemler, yiiriitiildiiklerinde bilgisayar programlari i¢in enerji

tikketimini veya giic tiikketimini tahminlemeye yardimci olurlar.

Joule cinsinden Ol¢iilen enerji, bir zaman aralifinda tiiketilen toplam giictiir. Giig,
yani enerjinin tiikketilme hizi, statik ve dinamik giiciin toplamidir. Kacak giic olarak da
bilinen statik giic, devre aktivitesi olmadiginda tiiketilen giictiir. Dinamik gii¢, devredeki
kapasitans yiikiiniin sarj edilmesi ve desarj edilmesinden kaynaklanan devre tarafindan
tiiketilen giictiir (Hennessy ve Patterson, 2011). Yillardir egemen gii¢ kategorisi dinamik

gii¢ olmustur ve Denklem 3.16 ile hesaplanir (Kaxiras ve Martonosi, 2008):
Pi=C*V*xAxf (3.16)

Burada P; dinamik gii¢, C kapasitans, V voltaj, A, aktif olan devrenin yiizdesini temsil
eden aktivite faktorii ve f saat frekansidir. Bir uygulamanin yiiriitiilmesi sirasinda
bir sistemin gii¢ tiiketimi, bilesenlerin kendi gii¢ tiikketimine ve bilesenlerin nasil

kullanildigina gore belirlenir (Garcia-Martin vd., 2019).

65

4. GEREC ve YONTEM
4.1. Yeniden Diizenleme Tekniklerinin Secimi

Yeniden diizenleme teknikleri genellikle kodlama tiirtine bagh olarak proje kaynaklarina
uygulanir. Bu siirecin temel amaci okunabilirlik, performans ve bakim dahil olmak
lizere yazilimin bazi ozelliklerini iyilestirmektir. Bazi entegre gelistirme ortamlari,
uygulayicilarin bu 6zellikleri kontrol etmesini saglar. Dahasi, gelistiricilerin isteklerine
bagli olarak bazi karmasik araglar tasarlanir. Verilen bilgiler 1s181nda enerji tiikketimi
acisindan 6nemli goriilen yedi yeniden diizenleme teknigi tez calismasi kapsaminda

secilmigtir. Ayrintilar Cizelge 4.1°de verilmistir.

Cizelge 4.1. Secilen yeniden diizenleme teknikleri listesi

’ Gosterim Aciklama
Ry Encapsulate Field
R> Simplify Nested Loop
R3 Inline Temp
R4 Introduce Explaining Variable
Rs Replace Magic Number with Symbolic Constant
Rg Consolidate Duplicate Conditional Fragments
R7 Hide Method

4.2. Yazihm Metriklerinin Secimi

Fowler bircok farkl: tiirden yeniden diizenleme teknikleri sunarken (Fowler vd., 1999),
bunlarin biiyiik sistemlere uygulanacaginda ortaya ¢ikan temel sorunlardan biri hangi
yeniden diizenleme tekniklerinin nereye uygulanacagi sorusu olmustur (Simon vd.,
2001). Yeniden diizenleme tekniklerinin insan sezgisine ve koku gibi 6znel algilara
dayandigina dair Fowler’in ifadeleri bu soruyu daha da zorlastirmaktaydi. Hatta
yeniden diizenlemenin otomatik yapilamayacagi izlenimini vermekteydi. Fowler
acikca metriklere atif yaparak insan sezgisini hi¢cbir metrigin bilgilendirmediginden

bahsetmekteydi (Fowler vd., 1999). Fakat gelistiriciler metriklerin yeniden diizenleme

66

uygulamasina yardimci olabileceklerini ¢alismalarinda gostermektedirler (Simon vd.,
2001, Mens and Tourwé, 2004, Bodhuin vd., 2007, Alshayeb, 2009, Cinnéide vd.,
2012, Bavota vd., 2015, Hegedts vd., 2018). Geleneksel ve nesne yonelimli metrikler,
yazilimin siirdiiriilebilirligi (Coleman vd., 1994; Najm, 2014; Hegedds vd., 2018) ve
enerji verimliligi ¢calismalarinda (Cruz ve Abreu, 2017; Keong vd., 2015; Bangash vd.,
2017; Ergasheva vd., 2020; Mancebo vd., 2021a) tercih edilmektedir. Tez ¢alismasi
kapsaminda, geleneksel ve nesne yonelimli metrikler yeniden diizenleme islemlerinin
yazilim siirdiiriilebilirligi ve enerji verimliligi tizerindeki etkilerini degerlendirmek
icin dahili metrikler olarak secilmistir. Secilen metriklerin ayrintilar1 Cizelge 4.2°de

verilmistir.

Cizelge 4.2. Secilen metriklerin listesi

’ Gosterim Aciklama ‘
M, Kod Satir Sayisi
M, Mantiksal Kod Satir Sayisi
M; Cevrimsel Karmagiklik (McCabe)
My Operand ve Operator sayisi
M; Baglagim Sayis1
M Bakim Yapilabilirlik Indeksi
M, Kalittm Agacinin Derinligi
Mg Fonksiyon Bagina Diigen Ifade sayis1
My Fonksiyon Cagrilma Sayis1
Mo Fonksiyon Sayisi

4.3. Yazilim Gelistirme Ortaminin Secimi

Tiimlesik gelistirme ortami kodlama, test etme, hata ayiklama gibi 6zellikleri ile
bilgisayar programcilarina yazilim gelistirebilme imkan1 veren ve yazilim gelistirme
siirecini verimli bir sekilde kullanilmasini saglamak i¢in cesitli araclart icerisinde
barindiran yazilim paketleridir (Zeil, 2017). Tiimlesik gelistirme ortamlarinda

bulunmasi gerekli temel basglica 6zellikler asagida verilmektedir:

e Tiimlesik bir derleyici, yorumlayici ve hata ayiklayici,

67

Gorsel kod yazim editortl,

Kod dosyalarinin hiyerarsik gosterimi

Editor tarafindan yakalanan, yorumlanan ve yiiriitiilen hata mesajlar

Yazilimin derlenmesi, baglanmasi, calistirilip yiiriitiilmesi

Otomatik yeniden diizenleme destegi.

Tiimlesik gelistirme ortamlar1 yukarida bahsedilen 6zelliklerin yaninda bir¢cok yoniiyle
(kod tamamlama araglari, grafik tasartmi vs.) yazilim gelistirme ic¢in kullanilabilen
zengin bir programdir. En bilinen tiimlesik gelistirme ortamlari: NetBeans, Eclipse,
KDevelop, Dev-C++, Microsoft Visual Studio, Android Studio, XCode, Code::Blocks
(Zeil, 2017).

Uheseansce () o4
Visual Studio

- Android |

= eC|IpSG @ ? Studio ﬁ

Sekil 4.1. Tiimlesik gelistirme ortami 6rnekleri

Microsoft Visual Studio (Microsoft, 2021), Microsoft yazilim sirketi tarafindan
gelistirilen bir tiimlesik gelistirme ortamudir. Igerisinde Visual Basic, Visual C#, C++
gibi farkli nesne yonelimli programlama dillerinin tiimlesik gelistirme ortamlarim
ve Ozellestirilmis Kkiitiiphaneleri barindirmaktadir. Gelismis kullanict arabirimi
tasarimi iizerinden yazilim olusturma, kodlama, test, hata ayiklama, kod kalitesini
ve performansim1 ¢oziimleme olanagi sunulmaktadir. Tez kapsaminda gelistirilen
algoritmanin nesne yonelimli programlama dilleri ile yazilmis kodlar ile uyumlu
olmasi, yeniden diizenleme tekniklerinin etkilesimlerinin tespiti, gelistirilen otomasyon
yazilimin kalitesinin korunabilmesi ve yeniden kullanilabilirligi artirmak i¢cin Microsoft
Visual Studio tez calismasinda kullanilmak {izere tercih edilmistir. Ayrica tez ile ilgili
calismalar nesne yonelimli programlama dillerine ait bulgular1 kapsamaktadir. Bunun
disindaki programlama yapilari 6rnegin endiistriyel otomasyon yazilimlari ve mantiksal

programlama tezin kapsami disindadir.

68

4.4. Gelistirilen Algoritma ve Matematiksel Model

Tez caligmasi kapsaminda gelistirilen algoritmanin yazilim enerji tiiketimini
diisiirebilmek i¢in uygun yeniden diizenleme tekniklerinin sirasinin olusturulmasi
oncelikli amac olarak planlanmstir. Gelistirilen algoritma 6zelinde problemin uygun
bir baglangi¢ ¢oziimiine uygulanir. Uygulama sonucunda baglangi¢ sonucundan daha
iyi bir sonug elde edilmektedir. Bu yeni sonug¢ baglangi¢ noktasi kabul edilerek yeni
bir ¢oziim elde edilmesine gegilir. Bu ylizden gelistirilecek algoritmanin uygulanabilir
bir yontem olabilmesi i¢in yeniden diizenleme tekniklerinin iyi analiz edilip uygun
bir amag¢ fonksiyonu haline getirilmesi gerekmektedir. Diger taraftan, bir yeniden
diizenleme sirasinin iiretildigi bir grafikte bir diiglimiin maliyetine karar vermek i¢in
matematiksel model gelistirilmesi planlanmigtir. Gelistirilen matematiksel model
yazilim siirdiirtilebilirligi ile yazilim metrikleri zitlik ilkesi (Candela vd., 2016; Tarwani
ve Chug, 2016) dogrultusunda kompleks metrik hesabindan olugsmaktadir. Bu bilgiler

1s181nda gelistirilen algoritma ve matematiksel model sirastyla anlatilmaktadir.

4.4.1. Gelistirilen algoritma

Calisma baglaminda, yeniden diizenleme islemini kaynak kodlara uygulamak
icin kullanilacak en uygun siray1 bulan Prim tabanl bir algoritma Onerilmektedir.
Onerilen algoritma, ii¢ ana boliimden olusmaktadir: 1) Projelere uygulanabilecek
yeniden diizenleme tekniklerinin tespiti, 2) Prim tabanli algoritmanin ¢alistirildig:
grafigi olusturan diigtimler i¢in maliyetlerin hesaplanmasi, 3) Yeniden diizenleme
tekniklerinin sirasimin iiretilmesi. Onerilen algoritmanin adimlar1 Algoritma 3’te
verilmistir. Algoritma 3, nesne yonelimli programlamadan olusan proje siniflarina ait
SC kaynak kodlarin girdi olarak alinmasiyla baglar. Enerji tiikketimi ile ilgili olarak en
uygun yeniden diizenleme tekniklerinin sirasinin ¢iktisint R4, temsil etmektedir.
Simiflarin yeniden diizenleme teknikleriyle uyumlulugu 1. ile 12. satirlar arasindaki alt
yordamlarda hesaplanmistir. Projenin her bir sinifi, »’nin sinif sayisini temsil ettigi
SC; ile gosterilir. R; SC; i¢in uygulanabilir teknik ise, L log dosyasina bir yeniden
diizenleme teknigi R; eklenir. Log, yeniden diizenleme tekniklerinin hareketlerin kayit
altina alinmasi icin kullanilir. Satir 10-14’de verilen i¢ i¢e dongiiler, her sinifa ayri ayri

yeniden diizenleme tekniklerini uygular ve yeniden diizenlenen siniflar1 kaydeder. Daha

69

sonra yeniden diizenlenen siiflar i¢in diigtimlerin maliyetleri, ¢calisma baglaminda
tasarlanan matematiksel bir model aracilifiyla hesaplanir. R, smiflara uygulanan
bir yeniden diizenleme teknigini belirtirken, SR;; projenin yeniden diizenlenmis bir
sinifidir. Diigtimlerin maliyetleri Denklem 4.1 ile hesaplanir. Diigiimlerin grafigi, her
bir diigimiin bir R’yi temsil ettigi ve E’nin iki komsu diigiimiin ortalama maliyetini
temsil ettigi gbzoniine alinarak olusturulmaktadir. Ry, grafikte bir kose seti olusturan
yeniden diizenleme tekniklerinin listesini gosterir. Rastgele baglatma ry aracilifiyla
gerceklestirilir. Ry ve rg Satir 15°te temsil edilir. o, yeniden diizenleme teknikleri
listesine eklenecek yeni adaydir. Eg,, sirali kenar kiimesini temsil eder. Yinelemeli
hesaplama 18-22. satirlar ile siirdiiriiliir. Islem, tiim kenarlar ve diigiimler ziyaret
edilene kadar devam eder. Eg,, yeniden diizenleme teknikleriyle iki kat artirilirsa,
benzersiz bir Ej,, elde etmek i¢in budanir. Son olarak, yeniden diizenleme tekniklerinin

son sirasini iceren R, 4., Satir 24’te dondiiriiliir.

70

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Algorithm 3: Gelistirilen onceliklendirme algoritmasi

Giris: SC , Kaynak kod
Cikis: R, 4.y , Optimal sira
i < say(SC)
Jj<7
while i > 0 do
while j > 0 do
L; < uygula(R;)
J—ij—1

i+—i—1

k < say(L)
i < say(SC)
while i > 0 do
while k£ > 0 do
SC; < uygula(Ry)
SR <— maliyetHesapla(SC;)

i+—i—1

Ry 19

Egeq < O

k < say(L)

while k£ > 0 do

e = (r*,0") > MinimumMaliyetliKenarBul(r,0)
k< k—1

R, +— R,Uo*

Eseq < EseqUe*

Rorder < tekrarlariBuda(r, Eseq)

return R, .,

71

4.4.2. Gelistirilen matematiksel model

Tanim 4.1. (Yeniden diizenlemenin graf gosterimi). Bir yeniden diizenleme listesi G =
(V,E) ile temsil edilebilir. G grafi, bog olmayan iki sonlu kiime V ve E ’den olusan bir
matematiksel yapidir (Biggs vd., 1986). Grafta, V’nin elemanlarina diigiimler (vertices)
denir ve V = (v, v2,....v,) digiimler kiimesi ile gosterilir. E’nin elemanlarina kenarlar
(edges) denir ve E = (ey,en,....ey) kenarlar kiimesi ile gosterilir (Gross ve Yellen,
2005). Burada V, yeniden diizenleme tekniklerini iceren bir diigtimler kiimesi; E,
diigiimler arasindaki baglantilar iceren bir kenar kiimesidir. n kenar sayisi olsun; 7
(n—1)/2 kenar sayisina sahip tamamen baglantili bir graf olusturmak hedeflenmektedir.
Her yeniden diizenleme tekniginin, biiyiikliigii kaynak kod analizine bagh olan bir w

agirlig1 vardir. w, bir diigiim ¢iftinin (r,0) iki maliyetinin ortalamasi alinarak hesaplanr.

Yukaridaki tanim, Sekil 4.2°de gosterildigi gibi tam agirlikli bir graf olusturur.

Sekil 4.2. Tam ve agirlikli graf 6rnegi

Tammm 4.2. (Yolun olusturulmasi). Diigtimlerden biri secilerek V’nin rastgele
baglatilmasi tamamlanir. Kenar listesi e*, diigiimlerin adim adim kapsamli bir
degerlendirmelerinden alinan kenarlarla doldurulur. Sonug olarak, bir son kenar listesi

e* elde edilir.

Oneri 4.3. (Yolun yiiriitiilmesi). Bir G verildiginde, diigiimlerin her maliyeti bir
karmagiklik formiilii ile temsil edilebilir. Diigiimlerin maliyetinin belirlenmesinin,

G izerinde giivenilir bir yol ortaya cikarmak i¢in ¢ok onemli olduguna dikkat

72

edilmelidir. G’nin tiim diigiimlerini kapsayan yol inga edilir, boylece maliyetlerin
her bir degerlendirmesinde bunlardan bazilar1 budanir. Nihai kenar listesi e*, kenar
sayisindan daha kisa olmalidir ((e*)<(n*(n-1)/2). Rastgele ¢*’nin, sirali bir ¢*’ye kiyasla

daha yiiksek enerji tikketimine yol actig1 ¢calismada 6ne siiriiliir.

Yazilim metrikleri yazilim gelistirme siirecini ve yazilim iiriinlerinin kalitesini kontrol
etmek i¢in nicel bir yol saglar (Li ve Henry, 1993) ve yazilimin karmagiklik, biiyiikliik,
kalittm gibi belirli yonlerini 6lger. Genel olarak, yazilimin dahili nitelikleri yazilim
metrikleri araciligiyla yakalanir ve iist diizey Ozellikleri bu metrikler i¢in gecerli
degerler cinsinden ifade edilir (Mahouachi vd., 2013). Yazilim metrik cesitlerinden
biri olan nesne yonelimli metriklerin kullanimi kaynak kodunda 6zellikle yazilim
gorsellestirmesiyle birlikte yeniden yapilanmaya ihtiya¢c duyan yerleri tespit etmek
icin ¢ok uygundur (Kaur ve Singh, 2016). Bu nedenle, kod karmasiklig1 ve boyutu
hesaplayabilen metrikler ana kriter olarak secilir. Bu ¢alismada geleneksel ve nesne
yonelimli metrikler, yeniden diizenleme isleminin kod kalitesi lizerindeki etkisini

degerlendirmek i¢in dahili metrikler olarak se¢ilmistir.

Diger taraftan yazilim siirdiiriilebilirligi ile yazilim metrikleri arasinda genelde ters
iligki oldugu bilinmektedir (Tarwani ve Chug, 2016). Nesne yonelimli programlamada
ise yapisiklik (cohesion) ve baglasim (coupling) metrikleri yazilimin siirdiiriilebilirligi
acisindan iki zit hedeftir. Yiiksek kaliteli moduler yazilimlar elde etmek i¢in yapisiklik
maksimizasyonu ve baglasim minimizasyonu 6nemlidir; fakat bu metriklerin yazilim
kalitesini degerlendirmede tek baslarina yeterli olmay1ip yazilimin boyutu, karmasiklig
gibi faktorler ile birlikte ele alinmasi gerekmektedir (Candela vd., 2016). Denklem
4.1°de verilen hesaplama, bir yeniden diizenleme sirasinin iiretildigi bir grafikte bir

diigiimiin maliyetine karar vermek i¢in tasarlanmigtir.

(Ma +Mb +Mc + (Md *Me)>

W. =
c Mg

.1

W, bir diigiimiin maliyetini belirtir. M,, McCabe’nin ¢evrimsel karmagiklik degeridir
ve bir diigiimiin maliyeti ile dogru orantilidir. Mj, kod satir sayilarimi temsil eder. M,
kaliitm agacinin derinligi ve M, fonksiyon sayisidir. M, fonksiyon ¢agrilma sayisi,

diigiim maliyetini maksimum seviyede tutmak amaciyla My ile ¢arpilirak payin ikinci

73

boliimiinii olugturmaktadir. Bakim yapilabilirlik indeksi olan M, ise dii§iim maliyetini

azaltmak icin kullanilir ve payday1 olusturur.

4.5. Deneysel Veri Seti

Sunulan algoritma ve yontem i¢in gelistirilen aractmizin nesne yonelimli kaynak kodlara
ithtiyacinin olmasinin yaninda yasal kisitlamalar goz oniine alinarak secilen projeler acik
kaynak kodlu projeler olacak sekilde sinirlandirilmistir. Boylece istenen degisikliklere
izin veren ve nesne iligkilerini iceren kodlar, analiz edilmek icin veri setine dahil
edilmistir. Tasmabilir cihazlardaki oyunlar enerji yogun uygulamalar oldugu icin
(Zotos vd., 2005) birkag yildir var olan ve aktif bir kullanic1 topluluguna sahip oyun
tabanl yerlesik uygulamalar veri seti seciminde onemli bir kriter olarak belirlenmistir.
Genel olarak, veri aktarimi enerji tiiketiminin ana kismini olusturur (Sun vd., 2017;
Lyu vd., 2019). Bu bilgi dogrultusunda yapilandirilmis sorgu dili i¢ceren projelerin
secimi diger 6nemli bir kriter olarak belirlenmistir. Bir diger kriter ise, tekniklerin
bir kaynak kod icinde birka¢ farkli bolime uygulanmasi halinde enerji tiikketimini
azaltmak miimkiin oldugundan uygulamalarin en az ii¢ yeniden diizenleme teknigi ile
uyumlu olmast durumudur (Kim vd., 2018). Cok biiyiik projelerde (web tabanli, bulut
tabanli) gelistirilen aracin yazilim giivenilirligi (Triwijoyo vd., 2017) diisiik oldugundan
oncelikli bir yeniden diizenleme listesi vermenin pratik olmamasiyla sonuglanmaktadir.
Bu yilizden deneysel veri setleri proje boyutu agisindan sinirlandirilmis ve diiz kodlar
analiz edilmeye calisiimistir. Tez, nesne yonelimli programlama i¢in Java ve C#
uygulamalarina odaklanmakta ve bu dillerin bulgularin1 kapsamaktadir. Bu iki dil
yazilimin siirdiiriilebilirligi i¢in analiz edilen araglarla uyumlu olduklarindan (Ardito
vd., 2020) ve enerji verimliligi calismalarinda tercih edildiginden (Mancebo vd., 2021b;
Pereira vd., 2021) siklikla kullanilirlar. Ayrica benzer s6zdizimine sahiptirler ve bu
iki dilde yazilan ortak amaclara sahip uygulamalar, sinif kapsiilleme, polimorfizm ve
yeniden kullanilabilirlik acisindan benzer 6zellikler gosterir (Ogala ve Ojie, 2020).
Fakat enerji verimliligi acisindan uygulamalarda benzerlik gosterip gostermediklerinin

tespiti i¢in kapsamli analizler gerekmektedir.

Secilen projeler sekiz adet agik kaynakli C# ve Java programlama dili ile olusturulmusg

yazilim projeleridir. Secilen tiim calismalar ¢esitli perspektiflerden analiz edilmis ve

74

caligmalar arasinda herhangi bir iligki tespit edilmemistir. Projelerin i¢sel davranislar
minimum {i¢ yeniden diizenleme teknigi icerecek sekilde diizenlenmis ve calisma
kapsaminda diizenlenen bu kodlar orijinal kod olarak ele alinmistir. Sinif basina

hesaplama islemlerinin yapildig1 projelerin detaylar1 hakkinda bilgiler Cizelge 4.3’te

verilmektedir.
Cizelge 4.3. Deneysel projelerin dzeti
Ad Dosya LOC SLOC-P SLOC-L CC
Sayisi
Bordro Yonetim Sistemi Projesi * 17 9176 7833 5105 789
Otel Yonetim Sistemi Projesi® 20 6210 5090 3471 472
Basit Hesap Makinesi Projesi® 6 674 490 351 15
Hastane Yonetim Sistemi Projesi® 16 2147 1611 1276 55
Calisan Yonetim Sistemi Projesi® 24 2892 2205 1743 50
Oyun 2048 Projesi® 6 1466 1145 808 141
Mobil-Hesap Makinesi Projesi¢ 10 637 419 317 46
Mobil-Oyun 2048 Projesi® 17 1204 938 698 132

LOC: Kod satir sayisi, SLOC-P: Fiziksel kod satir sayisi, SLOC-L: Mantiksal kod satir sayisi, CC:
Cevrimsel karmagiklik (McCabe)
& Web Sayfasi : https://www.kashipara.com/project/projectcsharp.php
Web Sayfasi : https://github.com/Charpur98/Simple-Calculator
Web Sayfas: : https://code-projects.org/c/languages/project/c-sharp-projects/
Web Sayfast :https://github.com/RushanB/Calculator
Web Sayfasi :https://github.com/roxrook/2048-android

o

o o o

Bordro Yonetim Sistemi, Otel Yonetim Sistemi, Hastane Yonetim Sistemi, Calisan
Yonetim Sistemi, Basit Hesap Makinesi ve Oyun 2048 projeleri C# programlama dili
ile olusturulmus masaiistii uygulamalaridir. Mobil-Hesap Makinesi ve Mobil-Oyun

2048 projeleri Java programlama dili ile olusturulmus Android uygulamalaridir.

4.6. Gelistirilen Otomasyon Yazilim Aracinin Genel Ozellikleri

Tez kapsaminda gelistirilen algoritmanin uygulanmasi i¢cin Windows tabanl grafiksel
kullanic1 arayiize sahip otomasyon yazilim araci gelistirildi. Bu aracin temel 6zellikleri,
nesne yonelimli bir programlama dili olan C# ile gelistirilen bir uygulamanin
enerji tiikketimini iyilestirmek icin yeniden diizenleme dizileri elde etmenin yaninda
yazilim gelistiricilere yazilim kalitesi ve enerji tiiketimi agisindan destek vermektir.
Geligtirilen arag, Encapsulate Field, Simplify Nested Loop, Inline Temp, Introduce

Explaining Variable, Replace Magic Number with Symbolic Constant, Consolidate

75

Duplicate Conditional Fragments ve Hide Method yeniden diizenleme tekniklerini
enerji tiiketimini diigsiirmeye yonelik olumsuz etkileri olacagi diisiiniilen kodlara
uygulayabilmekte, nesne yonelimli metrikler ve geleneksel metrikler yardimiyla kod
Olctimlerini yapabilmekte, enerji tiikketimini optimum seviyeye indirmeye yarayacak
yeniden diizenleme tekniklerin sirasini iiretebilmekte ve masaiistii kullanicilar i¢in
enerji tiikketim Olctimii gerceklestirip gorsel olarak kullanicilara sunabilmektedir.
Calisma kapsaminin geri kalaninda gelistirilen arac¢ olarak amilacaktir. Onerilen
algoritmanin nesne yonelimli programlama dillerinde yazilan kodlarla uyumlu olmasini
saglamak, yeniden diizenleme tekniklerinin etkilesimlerini tespit etmek, gelistirilen
yazilimin kalitesini korumak ve artirmak amaci ile gelistirilen arag icin Microsoft Visual
Studio gelistirme ortamu tercih edilir. Yazilim, nesne yonelimli bir programlama dili

olan C# ile kodlanmigtir. Kullanici arayiiz tasarimi Sekil 4.3’te verilmistir.

® Otomasyon Yazimi ~ o x

| Yeniden Duizenleme Teknikleri * Yazilim Metrikleri Optimal Sira Tespiti @ Enerji Tuketimini Tahminleme Yeniden Duzenleme Hakkmd4 —
Yeniden Duzenleme

e | <2
Gozat Orijinal Kod Yeniden Diizenlenen Kod

Tim Dosya / Klasér Yolu

Kod Ayirma Islemi

8)

T | Temizle | K2Ydet

Excel

Sekil 4.3. Kullanici arayiiz tasarimi

Kullanic1 acilis ekran arayiizii 8 bilesenden olugsmaktadir. Sekil 4.3’te 1 numaral
alan igerisinde alt meniiler iceren menu item kontrolleri mevcuttur. 2 numarali alan
Gozat butonunu, 3, 4, 5 numarali alanlar listview kontrollerini, 6 ve 7 numarali
alanlar richTextBox kontrollerini ve 8 numarali alanlar ise Kaydet, Temizle ve Excel
buton kontrollerini isaret etmektedir. Arayiiz bilesenlerinin fonksiyonlar1 sirasiyla

anlatilmaktadir.

76

Numara 1 olarak adlandirilan alan 5 ana bilesen icermektedir: Yeniden Diizenleme
Teknikleri, Yazilim Metrikleri, Optimal Sira Tespiti, Enerji Tiiketimini Tahminleme and

Yeniden Diizenleme Hakkinda. Bu bilesenlerin alt meniileri Sekil 4.4°te verilmektedir.

‘azilim Metrikleri
Yeniden Diizenleme Teknikleri : 1: Kod Satir Sayisi
2: Mantiksal Kod Satir Sayisi
i M3: Gevrimsel Karmasikitk
M4: Operand ve Operator Sayisi
|1 MS5: Baglagim Sayisi :

! M6: Bakim Yapilabiliriik Indeksi e T e o
@ Enerji Tiiketimini Tahminleme |

! R1: Encapsulate Field

! R2: Simplify Nested Loop

! R3: Inline Temp

! Rd: Introduce Explaining Variable

RS: Replace Magic Number with £ W7: Kalitm Agacinin Derinigi | EEE]Optimal Sira Tespit
Symbolic Constant ' -

R6: Consolidate Duplicate Conditional | | M8: Fonksiyon Basina Digen i Uygulanan Yeniden Diizenleme Tekniklerini ! Intel Power Gadget Ag ve Calistir Y'/ o dizent
Fragments i Ifade Sayisi i Bulma ' Enerji Tiketim Verisi Al /Yeniden dzenleme:,

|| M9: Fonksiyon Cagnima Sayist i} Yeniden Diizenleme Tekniklerinin Optimal | ! | i hakkinda bilgi }

| 1 M10: Fonksiyon sayisi i Sirasini Bulma i Intel Power Gadget Kapat H . verimesi

x x x r 1

L . - N
Yeniden Diizenleme Teknikleri |.|.ml"'!._:" Yazilim Metrikleri Optimal Sira Tespiti ! Enerji Tiiketimini Tahminleme Yeniden Diizenleme Hakkinda

R7: Hide Method

Sekil 4.4. Alt meniilerin genel goriiniimii

Yeniden Diizenleme Teknikleri isimli menultem nesnesinin aktif olabilmesi i¢in Gozat
(2 numarali) buton kontroliiniin C# veya Java programlama dilleri ile olusturulmus ".cs"
veya ".java" uzantili dosyalardan veri almasi1 gerekmektedir. Dosyalardan elde edilen
veriler kaynak kodlar1 temsil eder. Secilen kaynak kodlarin listview kontrollerinde,
boyutlari, 6zellikleri (3 numarali) ve yol uzantilar1 (4 numarali) listelenirken veri
gorsellestirme tablosuna da aktarimi yapilir. Kullanici, 4 numarali Tiim Dosya/Klasor
Yolu adli listView denetiminden diizenlemek istedigi orijinal kodun uzantisin1 segmelidir.
Nesne yonelimli bir programlama dili olan C# veya Java ile olusturulan kaynak kodlar
orijinal Kod (numara 6) richTextBox kontroliine yiiklenir. RichTextBox denetimi, bir
denetim kiimesi i¢indeki metnin bir boliimiinii bicimlendirmek i¢in kullanabileceginiz
ozelliklere sahip olmasinin yanisira dosyalari1 kaydetmek ve agmak i¢in iglevler saglayan
yontemleri de igerir. Daha sonra Sekil 4.4’te verilen Yeniden Diizenleme Teknikleri
adli alt menultem kontrol meniisiinden kaynak koda uygulanacak yeniden diizenleme
teknigi secilip uygulandiktan sonra elde edilen orijinal ve yeniden diizenlenen kodlar
Sekil 4.5’te gosterildigi gibi 6 ve 7 numarali richTextBox kontrollerinde kullaniciya
sunulmaktadir. Yeniden diizenleme tekniklerinin uygulanmasi sirasinda Microsoft Kod
Analiz kiitiiphanesinin yanisira metin par¢alama, noktalama isareti silme, durdurma
kelimeleri, temel hale dondiirme, ciimle boliimlendirme, kdkenine dondiirme, dizin
(trim, indexof, split, substring) teknikleri ve diizenli ifadelerden yararlanilmistir.
Ayrica yer degistirme (replace) ve dosya yazma yontemleri ile bulunan kod blogu

yeni Ozelliklere sahip kod blogu ile degistirilmektedir. Siniflara uygulanan yeniden

77

diizenleme tekniklerinin log kayitlarinda tutulmasi icin Kaydet butonunun click
eventinin aktif olmas1 gerekmektedir. Kaydedilen ve yeniden diizenlenen kodlarin
degisen metrik degerlerinin bireysel hesaplamasi Sekil 4.4’te verilen metrik meniisii
yardimiyla yapilmaktadir. Excel butonu yardimiyla excel dosyasina dl¢iim sonuglari
kaydedilmektedir. Elde edilen 6l¢iim sonuglar: graf tabanli arama yaklagimindaki her bir
diigtimii temsil eden yeniden diizenlenen kodlar i¢in elde edilecek diigiim maliyetinde

kullanilmaktadir. Diigiim maliyet hesaplamasi gelistirilen matematiksel modeldeki

© Otomasyon Yaziim - o x

Yeniden Dizenleme Teknikleri =+ Yaziim Metrikleri Optimal Sira Tespiti & Enerji Tuketimini Tahminleme Yeniden Dizenleme Hakkinda

Yeniden Dizenleme

Gozat
File/Folder Name Type Size
AddEmployee.cs File 3862
AddEmployee.Designer.cs File 28318
CalculateTotalWage.cs File 926
DisplayChart.cs File 2922

DisplayChart.Designer.cs File 8081

Tim Dosya / Klasér Yolu
jementSystem1\DisplayChart.cs

iementSystem1\DisplayChart.Designer.cs
lementSystem 1\EmployeeDetails.cs

jementSystem1\EmployeeDetails.Designer.cs
jementSystem1\Employees.cs
jementSystem1\GeneratePayRoll.cs

jementSystem1\GeneratePayRoll.Designer.cs

Kod Ayirma iglemi
field += csvRowf(i]; //consolidate duplicate condit
field += csvRow[i]; //consolidate duplicate condit
field += csvRowli];

Orijinal Kod

Yeniden Diizenlenen Kod

field += quoteChar;
else if (csvRow]i] == quoteChar)
inQuotes = false;
else
if (csvRow[i - 1] == quoteChar)
field =";
llconsolidate
duplicate conditional fragments

else

¢
SRS / consolidate

duplicate conditional fragments

}
}

else
if (csvRow[i] == quoteChar)

inQuotes = true;

if (csvRow([i] == sepChar)

field += quoteChar;
else if (csvRow[i] == quoteChar)
{ inQuotes = false;
else

if (csvRow([i - 1] == quoteChar)

field ="";
llconsolidate duplicate conditional
fragments
}
else
Ilconsolidate duplicate conditional
fragments

Yield += csvRow[i];

else
if (csvRow[i] == quoteChar)

inQuotes = true;

}
if (csvRow[i] == sepChar)

Kaydet
Excel

Temizle

Sekil 4.5. Orijinal ve yeniden diizenlenmis olanlar1 kapsayan kod parcasi ornekleri

kompleks metrik hesaplamasi ile elde edilmektedir. Ayrica, elde edilen nihai kompleks
metrik 6l¢ciim degerleri ve uygulanan yeniden diizenleme listesi kullanilarak her sinifa
ait komsuluk matrisi olusturulmaktadir. Gelistirilen ara¢ sayesinde R GUI script (R,
2021) olarak bu matrisler tiretilmekte ve en optimal siray1 bulmak i¢in Prim tabanlh
algoritma ile birlikte kullanilmaktadir. Olusturulan bir sinifa ait komsuluk matris 6rnegi

Cizelge 4.4°te verilmektedir.

Optimal Sira Tespit menii 68esi iki alt ana menii 68esi icermektedir: Uygulanan
Yeniden Diizenleme Teknikleri Bulma, Yeniden Diizenleme Tekniklerinin Optimal
Sirasin1 Bulma. Log kullanarak uygulanan kod yeniden diizenleme teknigini bulma
menu bileseninin click eventi aktif hale geldiginde Sekil 4.6’da verilen form tasarimi
kullaniciya sunulmaktadir. Bu alt menii her sinifa ait log dosyalarimi kullanarak o
siniflara uygulanan yeniden diizenleme teknikleri listesini iiretmekte ve kullanicilara

yansitmaktadir. 9 numarali open log data butonu yardimiyla sinifa uygulanan yeniden

78

Cizelge 4.4. Komguluk matris gosterimi

- R7 R2 R3 R4 RS R6 R1
R7 - 23.35 | 23.38 | 23.41 | 23.14 | 23.24 | 23.22
R2 | 23.35 - 23.34 | 23.36 | 23.09 | 23.20 | 23.17
R3 | 23.38 | 23.34 - 23.40 | 23.13 | 23.23 | 23.20
R4 | 23.41 | 23.36 | 23.40 - 23.15 | 23.26 | 23.23
RS | 23.14 | 23.09 | 23.13 | 23.15 - 22.99 | 22.97
R6 | 23.24 | 23.20 | 23.23 | 23.26 | 22.99 - 23.07
R1 | 23.22 | 23.17 | 23.20 | 23.23 | 22.97 | 23.07 -

diizenleme teknikleri listesi o sinifin log kayitlarindan 11 numarali richtextbox
kontroliine aktarilmaktadir. 10 numarali Uygulanan Yeniden Diizenleme Teknikleri
buton nesnesi yardimiyla uygulanan yeniden diizenleme teknikleri 12 numarali listBox
kontroliine aktarilmakta ve ayn1 zamanda mesaj olarak kullanici bilgilendirilmektedir.
Uygulanan yeniden diizenleme teknikleri kullaniciya aktarilan formda temsili kisa

isimlendirme seklinde gosterilmektedir. Graf diigiim ve kenar bilgilerinden elde

85 Uygulanan Yeniden Dizenleme Tekniklerini Bulma — O »

9

Log Verisi Getir «

1/13/2021 1:06:23 AM
R1: Encapsulate Field

1/13/2021 1:19:26 AM
RE: Consclidate Duplicate Conditional Fragments

10

!

1/13/2021 1:07:07 AM.
R2: Simplify Nested Loop

1/13/2021 1:09:21 AM R1
R7: Hide Method R2
R3
R4
1/13/2021 1:16:59 AM RS
R3: Inline Temp RE
R7
171372021 1:07:50 AM
R5: Replace Magic Number with Symbolic Constant
Uygulanan Yeniden Duzenleme Teknikleri
1/13/2021 1:27:18 AM.
R4: Introduce Explaining Variable
o R1RZ R3 R4 RS RE RT

Kaydet

Sekil 4.6. Uygulanan yeniden diizenleme tekniklerinin tespiti

edilen komsuluk matris degerleri kaydedilen R GUI script dosyalarinda tutulmaktadir.
R GUI kullanilarak uygun yeniden diizenleme teknikleri sirasini elde etmek icin
gelistirilen yazilimin ekran goriintiisii Sekil 4.7°de verilmektedir. 11k olarak R GUI

Script dosyalarinin yollari, kullanici arayiiziinde 13 numarali olarak verilen Open R Path

79

61 Veniden Diizenleme Tekniklerinin Optimal Sirasini Bulma - o x
13 15 ~_

— — ~

R DOSYA YOLU GETIR R SCRIPT CALISTIR GRAF iz

jsers\sarto ot ot R -
jsers\sarto ot R Minimum Cost Spanning Tree
jgers\aanto pt R Aigorthm: Prm

Bouk Stages: 61Time: 0

R 1 ept2_weight

2218 16
7 297

R
IR
 Boruvka R
yrol s
| Prog

8

y
Boruvkz
uskal. R

jsers\sarto
jsers\sarto
jgers\aanto

ot
1
kal R 5
posedAl 5
5
5
5

-BouvkaR
Kruskal R

EEE

Total = 138.47

jsers\sarto
jsers\sarto

R «
jsers\sarto R OPTIMAL SIRA

jgers\aanto il B

\

e

Boruvka.R

jsers\sarto OptimalSirf
jsers\sarto /
jgers\aanto JoyeeDisplay B v

R

e 2323

C:Asers sarto\ D pt R ‘

Huskal.R
ProposedAlgort
kaR

2341

BONKnNNNNANANAnAAGOAGH00060000NNNNNRRRNNAN

Sekil 4.7. Yeniden diizenleme tekniklerinin optimal sirasi

isimli buton yardimiyla 14 numarali listView kontroliine yiiklenmektedir. Kullanicinin
sectigi yoldaki script dosyast 15 numarali R Script Calistir isimli buton nesne yardimu ile
Prim tabal1 algoritmada yiiriitiilmekte ve elde edilen sonuglar 16 numarali richTextBox
kontrolii igerisine yiiklenmektedir. Ardindan, 17 numarali Optimal Sira isimli buton
kontrolii yardimiyla en uygun yeniden diizenleme sirasi elde edilmektedir. Elde edilen
sira 18 numarali listbox kontroliine aktarilmakta ayn1 zamanda mesaj olarak kullaniciy:
bilgilendirmektedir. Bu siranin elde edilmesinde kullanilan grafin grafiksel gosterimi
ise 19 numarali Graf Ciz isimli buton kontrolii vasitasiyla 20 numarali Graf isimli
pictureBox kontroliine yiiklenir. Gelistirilen otomasyon yazilim aracinin replikasyon

paketi https://github.com/isanlialp/ReplicationPackage linkinde mevcuttur.

80

I8

"1S9A25193 TesweiAey uruewsie)) ‘g4 S

N

uajwniog Ippe uiuisy weiboid _.IIIIJ. Snuos
wal$| yidiply € 9
wel$| ljuewezsy <€ = =
iwnaynL Heuz desinA @
\\\|||||||||||||||| |||||||||||||||ll/
wneynL beuz yNSng Omm 7 e ooy
I 2
I = =
] m J9|yoid udai) Ja|yoid udai] = |
1 < ewunse|isie)| 3 1
A Lol [O
3 oD\
i & 1e6peo Jemod oyl ~ 106peo Jemod fe| 3 |
Dy B -
- B
12 ER
1 ul é % 1
| I
ewejodaq “ < 56 16 “
oA | 1ejpoyy SiwuenbAn 1B1uYaL |
1 1BIPOX Yeulex ewenbAn BaWa|USZN(USPIUBA N0 |
| [VIREINTONETN |
—_—) owajuazng I
_— USPIUBA _
\ Iesg P
~ N e e ————— - i
O ————————— — \‘IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
\ / 4 1seAsoq 607
Iselg 1 - 1 “
uluuspiudaL ! L A e e e
swauezng A.—l_ ; us|uauUQ <~T \
UspIUsA 1 (“ 1 N ® dsa|
h A H 1 NS [sersmouser
1 | 1 1 S [swejuezng
1 Je|poy| SiwuenbAn | ewejodag “ poy SiwuenBAn 1Biuiel 7 USpIUBA
“ 16luye) swsajuazng cwu_cw>“ WA 1 BWEIdBSoN PN awia|uazn(UspIusA k\ JijiqeuenbAn
1 .“. ui5) poy $iwueinBAn
1 <« 1~ | 1BiwieL swejuezng
1 \ USPIUBA JoH
\ N

N —————————————————————————————

s

——————

L
T O
A

IsewenbAnN # O
1e|poy] Yeukey]

1S9)SIT SfiuNaL
awWa|UaZN(g USPIUSA

4.7. Enerji Tiiketiminin Izlenmesi

Bilgisayar programlari, kullanildiginda ¢ok sayida kaynaga ihtiya¢ duyar. Sabit disk,
grafik karti, depolama aygiti, bellek ve CPU ana kaynaklar olarak kabul edilebilir.
Bilgisayar programlarinin her bir isleminin yiiriitiilmesi sirasinda, islem basina disk
okuma / yazma ya da CPU hesaplamasi gibi bazi iglemler enerji tiikketir. Bir kullanici
islemcinin enerji kullantmini tahmin etmek isterse, enerji kullanimini izlemek i¢in 6zel

araclar vardir:

Jouletrack

e XEEMU

e Jalen

e Jolinar

e pTop

e EnergyChecker
e PowerApi

e PHOENIX

e Petra

e Powerscope
e GreenAdvisor
e Monsoon

e Intel RAPL

e Joulemeter

e Trepn Profiler

e Intel Power Gadget

Baz1 6zel araclar, kullanicinin herhangi bir donanim enstriimantasyonu gerektirmeden

enerji tiiketimini tahmin etmesini saglar. Gelistiricilerin belirli islemleri

82

gergeklestirirken uygulamalarin enerji tikketimi davranisindan haberdar olmalar1 ¢ok
onemlidir. Bu tiir 6zel araglar olmadan, gelistiricilerin program kodunu enerji verimliligi
icin optimize etmeleri zordur (Hoque vd., 2015). Calisma kapsaminda, C# ve Java
programlama dilinde yazilmis kaynak kodlar icin enerji tiiketimi tahmin edilmektedir.
Diger nesne yonelimli programlama dilleri bu caligmanin kapsaminda degildir. Sekiz
acik kaynak kodlu proje 6l¢iime tabi tutulmustur. Enerji tiiketimini tahmin etmek igin,
nesneye yonelik kod tabanli tahmini destekleyen Intel Power Gadget (Intel, 2020) ve
Trepn Profiler (Qualcomm, 2018) yazilim gii¢ tahminleme araclar1 kullanilmaktadir.
Sekil 4.9°da Intel Power Gadget aracini olusturan bilesenler ve 6zellikleri verilmektedir.
Intel Power Gadget araci, tahminleme sonucunda bir log dosyast iiretir. Arac paket gii¢

inteD | start L
Anhk Paket > Package Pwr0 0993\"
Giig Tiiketimi rLimit): 150w

18

Y | A
0

Package Frq0: 2.30GHz Dereceli CPU
4.0 CEEEEEEERE] || frekans1
| | Iy
0.0 P
CPU
Kullanim i
100 e T
|
L ot
Anlik Grafik 0 BN Lo ol
islemci > GT Frg0: 0.90GHz
Frekansi 0.9
Anhk Grafik 0.0 COY T TT
islemci > GPU Util%: 39.58%
Kullanim 100 T3
Anhik Paket o T 1TV
icin Uretilen »| Package Temp0: 55C Maksimum Paket
Sicaklik 105 <+ i¢in Uretilecek
B Sicakhk
Nssisniass :
t 11
Anlik DRAM

- DRAM Pwr: 1,50W

Giig Titketimi
5

= e
:

Sekil 4.9. Intel Power Gadget bilesenleri

limiti, gegen siire (elapsed time), islemci frekansi, grafik teknolojileri (GT) frekansi,
islemci sicaklig1, ortalama ve islemcinin kiimiilatif giiciinii icerir. GT, Intel tarafindan
merkezi islem birimiyle aymi pakette veya kalipta iiretilen bir dizi tiimlesik grafik
islemcisinin toplu adidir. Islemci enerji tiiketimini tahmin etmek icin, ara¢ Denklem 4.2

(Intel, 2020)’de sunulan formiilii kullanilir:

T,y = IA+ GT (varsa) + Dy, 4.2)

83

T,; islemcinin toplam enerji tiiketimi, /A enerji islemci ¢ekirdekleri enerjisi olarak
Olciilmektedir. GT enerji ise grafik islemci birimi enerjisi olarak ol¢iilmektedir fakat
bu deger masaiistii bilgisayarlarda ve sunucular i¢in bazi islemcilerde yoktur. D,

bilgisayarin diger parcalarinin enerji tiikketimini temsil eder ve ara¢ bunu 6lgmez. Sekil

@ F A%56@11:17] @ T .4 %51&11:30
Trepn Profiler AN < Network Activity :
CPU Frequency Overlay Battery Power*
Display the speed of the first four 1323
cores as an overlay. 1157
T 992
)) £ g2
Mobile Data Detective R
@ Identify which apps use the most & 49
cellular and WiFi data. 330
165
0
. Performance Graph 0 15 Time [s] 45 60
\\ //// Monitor the frequencies and load of
the CPU and GPU. Bluetooth State
Disabling
CPU Usage Monitor
Rank apps based on the percentage of On
CPU they use.
Enabling
CPU Load Overlay
@ Display the load of the first four cores Off
as an overlay. 0 15 Time [s] 45 60
o Mobile Data State
AN Network Activity Snd/Rev
\&=/ View network-related states and Receive
activity.
Send
(a) b)

Sekil 4.10. Trepn Profiler bilesenleri

4.10’da Trepn Profiler aracini olusturan bilesenler ve 6zellikleri verilmektedir. Trepn
Profiler, Qualcomm toplulugu tarafindan gelistirilmistir ve Snapdragon yonga seti
tabanli Android cihazlara sahip cihazlarda ¢alisir (Qualcomm, 2018). Uygulama
CPU, GPU, Wi-Fi, uyandirma Kkilitleri, bellek, dijital giivenlikli (SD) kart gii¢
tilketimini ve tiim cihazin ¢alisma zamam enerji tiiketimini ol¢ebilir (Hoque vd.,
2015). Gii¢ okumalarini, algilama direnclerinden okumalar1 toplayan ve bireysel
donanim bilegenleri i¢in akima doniistiiren gii¢ yonetimi entegre devresinden (PMIC)
ve bataryadan gii¢ dagitimin1 kontrol eden entegre gii¢ yonetimi IC’ye sahip 6zel pil
yakit gostergesi ¢ipi yazilimindan alir (Qualcomm, 2018). Trepn her 100 ms’den
sonra bilgileri 6rnekler ve farkl bilgi gorsellestirme modlari ile sunar. Trepn Profiler
ayrica on planda farkl grafik ve ¢izelgelerin bir goriiniimiinii saglar, boylece uygulama

geligtiriciler uygulamalarin performansini ¢alisma zamaninda CPU kullanimi1 ve enerji

84

tiiketimi ile iligkilendirebilir. Cevrimdis1 analiz i¢in gergek zamanli ham veri aktarimina
izin verir (Hoque vd., 2015). Profil olusturma verilerini daha sonra analiz etmek
tizere kaydetmek i¢in gelismis mod secilir. Profil olusturma araligi 100 milisaniye
olarak ayarlanir ve gii¢ istatistikleri icin veri noktalar1 sekmesinden pil giicii secilir.
Uygulamanin profil olusturma islemi daha sonra baglatilir. Belirli bir siire sonra
profil olusturma oturumu sonlandirilir ve sonuglar bir csv dosyasi olarak kaydedilir.
Giic istatistikleri mikrowatt cinsinden Olg¢iiliir ve 6l¢iim i¢in profil olusturma siiresi
milisaniye cinsindendir. Enerji birimi, Trepn Profiler’dan elde edilen degerler Denklem
4.3 (Chan-Jong-Chu vd., 2020) hesaplanarak doniistiiriiliir:

Enerji(]) = (<o)W x (055 (43)
Denklem 4.3’te J joule, P giic, W watt, s saniye ve T profil siiresi olarak temsil
edilmektedir. W giicii 6l¢mek icin kullanilirken, J isi gerceklestirmek icin gereken
kiimiilatif watt-saniyeyi 6l¢mek i¢in kullanilir. Testlerin tiimii ayn1 uzunlukta oldugunda,
ortalama watt (ortalama gii¢) yaygin olarak (Hindle, 2015; Aggarwal vd., 2014)
kullanilir. Calismada ortalama watt kullanilmigtir. Bir test sirasinda joule cinsinden

tilkketilen enerji, ortalama wattlarin saniyelerle ¢arpilmasiyla hesaplanir.

Calisma kapsaminda projelerin enerji tiilketim sonuclarinin elde edilmesi icin hem
diziistii bilgisayar hem de cep telefonu kullanilmaktadir. Intel Power Gadget, diziistii
bilgisayarin degerlerini kaydetmek icin kullanilir. Trepn Profiler, Android tabanli Java
projelerinin cep telefonunda enerji ayak izini kaydetmek icin secilmistir. Kullanilan
diziistii bilgisayarin 6zellikleri: Intel Core 17-8750H, temel frekans islemci 2.20 Ghz,
6 cekirdek, onbellek 9MB, 8 GB bellek ve 256 GB disk. Kullanilan cep telefonu
ozellikleri: 8 cekirdekli 2.0 GHz Cortex-AS53 islemcili, 4 GB ram ve 32 GB disk iceren
Samsung Galaxy C7. Diziistii bilgisayar i¢in 6l¢iim hi¢cbir uygulama yiiriitiilmediginde
(bos durumunda) ve ugak modunda yapilir. Wi-Fi ve Bluetooth gibi harici iletisim
saglayan bazi cihazlar ¢cevrimdisi olarak ayarlanmis sekilde bataryadan giic tiikketimi
esnasinda Olciimler gerceklestirilir. Diziistii bilgisayarda deneyler, Windows 10 Pro
ile cevrimdis1 olarak gerceklestirilir. Tiim deneyler ¢cevrimdigst yapildi§indan ag giicii
hesaba katilmaz. Ayrica tiim deneyler ayni zaman araliginda (5 dakika) (Palomba

vd., 2019) programin en yogun kismini test etmek i¢in gereken siire dikkate alinarak

85

gerceklestirilir ve kontrolsiiz davranigin etkisini azaltmak i¢in on kez tekrarlanir. Ayrica,
es zamanl ylirlitmede deneyi gerceklestirmek i¢in gereken minimum sayida uygulamaya
(isletim sistemi ¢ekirdek hizmetleri, enerji 6l¢iim araci, Ol¢iilen uygulama vb.) izin
verilir. Giivenilir bir degerlendirme yapabilmek i¢in ayn1 konfigiirasyon cep telefonunda
da uygulanir. Cep telefonu i¢in deney, tiim profil olusturma siiresi boyunca uyanik
kilit ile miimkiin olan maksimum periyot ile gerceklestirilir. Mobil islemcinizin uyanik
kalmas1 dogru ortalama giic okumalar1 saglamaktadir. Uygulamanin gii¢ profilleri csv
dosyalar1 olarak kaydedilir ve bunlar daha sonra tiiketilen enerjiyi hesaplamak i¢in
cevrimdisi olarak iglenir. Cep telefonu ile ilgili calismalar manuel olarak yapilmaktadir.
Ayrica, programlar yiiriitmek i¢in baz1 girdi verilerinin gerekli olmasi halinde, orijinal

kod ve yeniden diizenlenmis kod i¢in ayni girdi verileri kullanilmustir.

86

S. ARASTIRMA BULGULARI

Projelere ait toplam 116 adet kaynak dosya incelenmigtir. Enerji tiikketimi ve kodun
stirdiiriilebilirligi acisindan 6nemli goriilen ve bu dogrultuda kodlamas: yapilan
yeniden diizenleme teknikleri incelenen yazilim projelerindeki kodlara uygulanmaktadir.
Gelistirilen otomasyon yazilim sayesinde elde edilen proje kodlarina yeniden diizenleme
teknikleri bireysel olarak uygulanmaktadir. Sonrasinda metrik olciim degerleri elde
edilmekte ve bu degerler gelistirilen yontem igin giris degerlerini olusturmaktadir.
Daha sonra hesaplamalardan elde edilen cikis degerleri Prim tabanli onceliklendirme
algoritmasina giris degerleri olarak verilmekte ve sonucunda ii¢ veya daha fazla yeniden

diizenleme tekniklerinin sirasi elde edilmektedir.

Orijjinal ve degistirilen kaynak kodlar i¢in sekiz projenin kiimiilatif enerji tiiketimi
degisikliklerinin toplu halde kutu grafik gosterimleri sirasiyla Sekil 5.9 ve 5.10’da
sunulmaktadir. Sonuglarin kiimiilatif olarak ve J cinsinden verildigini belirtmek gerekir.
Boruvka ve Kruskal algoritmalan yiiriitiiliirken deney, Denklem 4.1°de verilen diigiim
agirhig1 formiililnden yararlanilacak sekilde tasarlanmistir. Orijinal kodlarin enerji
tilketim ortalamalar1, Otel Yonetim Sistemi projesi haricinde degistirilen kodlardan
daha yiiksektir. Bu sonug, tiiriine bakilmaksizin yeniden diizenleme igleminin enerji
titketimi agisindan proje kaynak kodlarini1 6nemli dlciide iyilestirdigini gostermektedir.
Onerilen algoritma, Hastane Yonetim Sistemi projesi ve Bordro Yonetim Sistemi
projesi disinda en diisiik enerji tiilketim ortalama degerini elde etmistir. Bu, yazilim
kalitesinin belirli bir yoniinii iyilestirmek i¢in grafik tabanl bir algoritmanin gerekli
olmasi durumunda, Prim tabanli algoritmalarin yazilim enerji verimliligi a¢isindan daha

fazla tercih edilebilir oldugu varsayimini destekler.

Projelere ait orijinal kodun enerji tiikketimi sonuclarinin dagilimin ii¢ karsilastirma
algoritmasi ile degerlendirmek icin veri dagilimi konusunda Onyargi olusturmayan
Wilcoxon isaretli sira testi (Woolson, 2007) secilmistir. Test énemli diizey olan
0.05 diizeyinde calistinlmistir. Hy hipotezi, orijinal kodun enerji tiikketim sonuglari
dagiliminin karsilastirma algoritmalar: ile ayni oldugunu belirtir. H; hipotezi ise
karsilagtirma algoritmalart ile arasinda 6nemli bir farkin oldugu anlamina gelir. Cizelge

5.1 ve 5.2°de verilen test sonuglarina gore, ii¢c karsilagstirma algoritmasi i¢in dagilimin

87

farkli oldugu goriilmektedir. Bu nedenle, test hedefleri arasindaki 6nemli farkin tam

Cizelge 5.1. Orijinal kod ile karsilagtirma algoritmalarinin Wilcoxon isaretli sira testi
sonuglart (Hy : p > 0.05, Hy : p < 0.05)

Onerilen algoritma Kruskal Boruvka
Orijinal Kod “ (p degeri) 0.012 0.048 0.010

4 Projelere ait orijinal kodlarin enerji tiiketim sonuclart dagilini

tersi olan Hp’1n reddedilmesidir. Kargilastirma algoritmalarindan elde edilen siralar
Cizelge 5.3, 5.4, 5.5’te verilmektedir. "X" etiketi kaynak kod iizerinde tespit edilen
yeniden diizenleme tekniginin uygunlugunu belirtirken, "-" etiketine sahip yeniden
diizenleme teknikleri elenmistir. Uygulanabilen yeniden diizenleme teknikleri, enerji

tikketim sonuclarini farklilagtiran siralar olusturmak icin dzellikle uygundur.

Cizelge 5.2. Enerji tiikketim sonuglar1. Tiim deneyler ayn1 zaman araliginda (300 saniye)
ve on kez calistirma ile gerceklestirilir

Aritmetik Ortalamalar (Enerji Tiiketim (J))
Ad Orjjinal Onerilen | Kruskal Boruvka
Kod Algoritma |Algoritma |Algoritma
Degerleri |Degerleri |Degerleri |Degerleri
Basit Hesap Makinesi Projesi 1365.23 1346.79 1351.04 1357.37
Oyun 2048 Projesi 1466.45 1399.83 1407.48 1446.65
Bordro Yonetim Sistemi Projesi |2003.20 1830.01 1644.26 1782.18
Otel Yonetim Sistemi Projesi 1455.45 1425.30 1494.04 1450.55
Hastane Yonetim Sistemi Projesi | 1868.24 1798.90 1711.59 1680.50
Calisan Yonetim Sistemi Projesi | 1978.60 1724.02 1754.58 1789.80
Mobil-Oyun 2048 Projesi 117.73 98.11 108.08 99.53
Mobil-Hesap Makinesi Projesi | 191.20 171.89 182.76 188.75

Cizelge 5.3. Kruskal algoritmasi ile iiretilen optimal siralarin detaylari

Ad R1 R2 R3 R4 R5 R6 R7 Sira

Basit Hesap Makinesi Projesi - - XX XXX R3,R¢,R7,R4,R5
Oyun 2048 Projesi XX - XX X X| RyRgRs5,R4,R7,R;
Bordro Yonetim Sistemi Projesi | X - X - X X X R3,R¢,R5,R7,R;
Otel Yonetim Sistemi Projesi - - XXX X - R4,R¢,R5,R3
Hastane Yonetim Sistemi Projesi | X X X X X X X | Ry,R¢,R3,R7,R4,R5, R
Calisan Yonetim Sistemi Projesi | - - X X - X X R3,R¢,R7,R4
Mobil-Oyun 2048 Projesi - X - XX - X R4,R5,R7,R>
Mobil-Hesap Makinesi Projesi - XX - X - X R3,R5,Ry, Ry

Her proje icin en 1iyi tahminleme sonuclarina sahip kaynak dosyanin
optimal sirasinin elde edilmesinde kullanilan bulgular sirayla anlatilmaktadir.

Bulgularin elde edilmesinde kullanilan projelere ait enerji Ol¢iim sonuglart

88

Cizelge 5.4. Boruvka algoritmasi ile iiretilen optimal siralarin detaylari

Ad R1 R2 R3 R4 R5 R6 R7 Stra

Basit Hesap Makinesi Projesi - - XX XXX R3,Rg,R4,R5,R7
Oyun 2048 Projesi X X - XX X X| Ri,Rs,R»,R4,R5,R7
Bordro Yonetim Sistemi Projesi | X - X - X X X R{,R¢,R3,R5,R7
Otel Yonetim Sistemi Projesi - - XXX X - R3,R¢,R4,R5
Hastane Yonetim Sistemi Projesi | X X X X X X X | R;,R¢,R2,R3,R4,R5,R7
Calisan Yonetim Sistemi Projesi | - - X X - X X R3,Re,R4,R7
Mobil-Oyun 2048 Projesi - X - XX - X Ry,R4,R5,Ry
Mobil-Hesap Makinesi Projesi - XX - X - X Ry,R5,R3,Ry

Cizelge 5.5. Onerilen algoritma ile iiretilen optimal siralarin detaylari

Ad R1 R2 R3 R4 R5 R6 R7 Sira

Basit Hesap Makinesi Projesi - - XX XXX R4,R¢,R3,R7,R5
Oyun 2048 Projesi X X - XX X X| RgRy,Rs5,R4,R7,R;
Bordro Yonetim Sistemi Projesi | X - X - X X X R7,R¢,R3,R5, R
Otel Yonetim Sistemi Projesi - - XXX X - Rs5,R¢,R4,R3
Hastane Yonetim Sistemi Projesi | X X X X X X X | Ry,R¢g,R7,R3,R4,R5, R
Calisan Yonetim Sistemi Projesi | - - X X - X X R7,R3,R¢,Ry
Mobil-Oyun 2048 Projesi - X - XX - X R5,R4,R7,R>
Mobil-Hesap Makinesi Projesi - XX - X - X R5,R3,R),Ry

https://github.com/isanlialp/ThesisResults linkinde mevcuttur. Ayrica projelerin
yazilim siirdiiriilebilirliginin degerlendirilmesinde gelistirilen matematiksel modeldeki
kompleks metrik hesabindan elde edilen bulgular siirdiiriilebilirlik degeri olarak analiz

edilir.

Basit Hesap Makinesi projesinin FormMain sinifina ait orijinal kodlar tizerinde islem
goren kaynak dosyasi ve dosyalara uygulanan yeniden diizenleme teknikleri Cizelge

5.6’da verilmektedir.

Cizelge 5.6. Basit hesap makinesi projesinde igslem yapilan kaynak dosya ve uygulanan
yeniden diizenleme teknikleri

Kaynak dosya ismi R R R3 Ry R5 R6 Ry
FormMain.cs - - X X X X X

Basit Hesap Makinesi projesinde islem yapilan FormMain dosyasina uygulanan yeniden
diizenleme tekniklerinin metrik 6l¢iim sonuglar yardimiyla enerji tiikketimine olumlu
katki yapabilecek en uygun yeniden diizenleme tekniklerinin kombinasyonunun sirasi

tespit edilebilmektedir. FormMain sinifina ait nesne yonelimli kodlar iizerinde bireysel

89

olarak uygulanan yeniden diizenleme tekniklerinden ve Onerilen algoritma ile iiretilen

yeniden diizenleme tekniklerine ait optimal siranin uygulanmasindan elde edilen

bulgularin detaylar1 Cizelge 5.7°de verilmektedir. Onerilen algoritmadan elde edilen

siraylt Ry, temsil etmektedir.

Masaiistii uygulamast olan Basit Hesap Makinesi

projesine ait orijinal ve yeniden diizenlenen kodlarin enerji tiikketim sonuglar1 Sekil

5.1°de verilmektedir. Diger projeler icin islem yapilan kaynak dosyasi, kaynak dosyadan

elde edilen enerji tikketim sonuclar1 ve metrik 6l¢lim sonuglar1 sirastyla verilmektedir.

1600

1500

1400

1300+

Enerji Tiiketimi (J)

T

o ===

1200

1

i

T
FormMain.cs

Veri Seti

3 Orijinal Kod Degerleri

3 Onerilen Algoritma Degerleri
[Kruskal Algoritma Degerleri

@@ Boruvka Algoritma Degerleri

Sekil 5.1. Basit hesap makinesi projesi icin orijinal kodun ve Kkarsilagtirma
algoritmalarmin kiimiilatif enerji tiiketim sonuglari

90

I6

(454 8 S 88°¢ I 6S 104 SL 01 Ly 98 My

0r'e 8 S LTS I 8¢ 104 8L 01 67 88 Ly

9T 8 1% S I 8§ 14 8L 01 Ly 88 N

Iv'C 8 ¢ LTS I 8§ 1£4 18 01 67 68 2

Iv'C 8 S (2N I 8¢ 104 L8 01 67 68 vy

9¢C 8 S LY I 6S 104 SL 01 Sy 88)

Iv'c 8 ¢ €8y I 8¢ 104 8L 01 61 68 [purl 140

1qesoH 0l a7 7 L W SW 0 W W W
[OPOIA [9SIBWAIRIA] pa—— LI, QWIS[UAZN(] USPIUL

"IQBSAY [OPOW [ISYNBWIIBW JA LIB[SNUOS WNI[Q YIIIOW UTULIUIS UIRAWIO /"G 93[oZ1)

Oyun 2048 projesinin Forml smnifina ait orijinal kodlar iizerinde islem goren

kaynak dosyasi ve dosyaya uygulanan yeniden diizenleme teknikleri Cizelge 5.8’de

verilmektedir. Projeye ait orijinal ve yeniden diizenlenen kodlarin enerji tiikketim

sonuglar1 Sekil 5.2°de verilmektedir. Form1 sinifina ait nesne yonelimli kodlar izerinde

yeniden diizenleme tekniklerinin uygulanmasiyla elde edilen bulgularin detaylari ise

Cizelge 5.9°da verilmektedir.

Cizelge 5.8. Oyun 2048 projesinde islem yapilan kaynak dosya ve uygulanan yeniden

diizenleme teknikleri

Kaynak dosya ismi

R;

Rs Re¢ R

Form1.cs

X X X X

1600

s
£ o
@ I —_—
= 14004 (]]
- —
=)
)
i =
wi
1200 T
Form1.cs
Veri Seti

3 Orijinal Kod Degerleri

&= Onerilen Algoritma Degerleri
3 Kruskal Algoritma Degerleri

@@ Boruvka Algoritma Degerleri

Sekil 5.2. Oyun 2048 projesi i¢in orijinal kodun ve karsilagtirma algoritmalarinin

kiimiilatif enerji tiikketim sonuglari

92

€6

vLTY LT Ty 1021 I 0S 6€ €e81 el 8Tt 0L8 ISy
00°¢t 9T w 96'CI I 6¥ 6€ 6€81 o¢l 8Th 8.8 Ly
LTTY 9T 8% 86Tl I 6¥ 6¢ 6081 9¢I 81¥ 898 2
6T 9T Ty 65Tl I 6V 6€ 6781 o¢l 8Tt VL8 2
v6'Ch 9T w €l I 6V 6€ 81 o¢l 6Tl LS 2
9LTH 9T w 88°CI I 6V 6€ 0€81 vel 9T 898 2
LSt LT 974 11°¢1 I 6¥ 6¢ T8l LET cey 88 b}
00°¢t 9T w 96°C1 I 6V 6€ 6€81 o¢l 8Th 8L8 [purl 140
1qesoH Olpy on s n W W YW W w "W

[PPOIA [oSY eI LIQ[TUYQ], QWATUAZN(] USPTUX

REIR LR A

"IQBSQY [OPOW [9SYNBWIIBW JA LIB[SNUOS WNI[Q YLIIOW UIUGIUIS [WIO "¢°S 93[9Z1)

Bordro Yonetim Sistemi projesinin Employee sinifina ait orijinal kodlar iizerinde islem
goren kaynak dosyasi ve dosyaya uygulanan yeniden diizenleme teknikleri Cizelge
5.10°da verilmektedir. Projeye ait orijinal ve yeniden diizenlenen kodlarin enerji
tilketim sonuglar1 Sekil 5.3’te verilmektedir. Employee sinifina ait nesne yonelimli
kodlar iizerinde yeniden diizenleme tekniklerinin uygulanmasiyla elde edilen bulgularin

detaylar1 ise Cizelge 5.11°de verilmektedir.

Cizelge 5.10. Bordro yoOnetim sistemi projesinde islem yapilan kaynak dosya ve
uygulanan yeniden diizenleme teknikleri

Kaynak dosyaismi | Ry R, R3 Ry Rs Rg Ry
Employee.cs X - X - X X X

2400
O Orijinal Kod Degerleri

s 2200+ I —_ &= Onerilen Algoritma Degerleri
‘E 2000 3 Kruskal Algoritma Degerleri
% @@ Boruvka Algoritma Degerleri
:E 1800]
’g- 1600
I-ﬁ 1400

1200

Employee.cs

Veri Seti

Sekil 5.3. Bordro yoOnetim sistemi projesi i¢in orijinal kodun ve karsilagtirma
algoritmalarinin kiimiilatif enerji tiiketim sonuglari

94

€6

001 6 8¢ 6°€l I 4% 4% 699 01 861 €9¢ ISy

6111 8 ot 8¢°LI I Ty 4% L9 01 191 S9C Ly

vLEl 8 8¢ STLI I Ty 4% GL9 01 861 9T 'l

ARA| 8 ov 8¢'LI I Ty 4% 8L9 01 91 9T 2

487! 8 ot STLI I % 4% TLY 01 091 T9¢ €

8811 6 ov 'yl I 9% 4% 8.9 11 <91 89¢ Ry

6111 8 ov 8€E'LI I Ty 4% SL9 01 191 ¢9¢ jpuil11Q
1qesoy Olpy w s tw W ‘W 2 W w W

[OPOIA [oSTIIeWIRIA LIQ[TUYQ], QWATUAZN(] USPTUX
TP

"IQBSAY [OPOW [ISYNBWIIRW A LIR[SnUos wnd[0 ymow urugrurs Lojdwyg “11°¢ 93[9z1)

Otel Yonetim Sistemi projesinin UpdateCustomer sinifina ait orijinal kodlar iizerinde
islem goren kaynak dosyasi ve dosyaya uygulanan yeniden diizenleme teknikleri Cizelge
5.12°de verilmektedir. Projeye ait orijinal ve yeniden diizenlenen kodlarin enerji tiikketim
sonuglart Sekil 5.4’te verilmektedir. UpdateCustomer sinifina ait nesne yonelimli
kodlar iizerinde yeniden diizenleme tekniklerinin uygulanmasiyla elde edilen bulgularin

detaylar1 ise Cizelge 5.13’te verilmektedir.

Cizelge 5.12. Otel yonetim sistemi projesinde islem yapilan kaynak dosya ve uygulanan
yeniden diizenleme teknikleri

Kaynak dosya ismi Ry R R3 Ry Rs Rg Ry
UpdateCustomer.cs | - - X X X X -

1800

3 Orijinal Kod Degerleri
3 Onerilen Algoritma Degerleri
1600 3 Kruskal Algoritma Degerleri

I @3 Boruvka AgO itma Dege leri

1400

Enerji Tiiketimi (J)

1200

T
UpdateCustomer.cs

Veri Seti

Sekil 5.4. Otel yoOnetim sistemi projesi i¢in orijinal kodun ve Kkarsilagtirma
algoritmalarinin kiimiilatif enerji tiiketim sonuglari

96

L6

96'8 I 44 96'8 I 9 0¢ ove 6 0] 091 ISy

LT6 11 44 £9°6 I Sv 0¢ ove 6 L6 S91 N

9¢'6 11 €C SL'6 I S 0¢ €ve 6 66 8S1 2

0€6 11 €C SL'8 I 9t 0¢ 0ve 6 101 S91 vy

8¢°6 1 €T €9°6 I P 0¢ LET 6 L6 681 &

966 Il €T SL'6 I 9% 0¢ ove 6 86 L91 [purl 140

1qesoy Oty W S w W ‘N W W w W
[SPOIA [oSYIIeWRIA - LIQ[TUYQ], QWATUAZN(USPTUIX

"IqBSAY [OPOW [ASYNBWRIBW A LIR[SNUOS WNS[Q JLIdW Uruyiurs owojisn)jepdn "¢1°¢ 9319710

Hastane Yonetim Sistemi projesinin PatientBill sinifina ait orijinal kodlar iizerinde

islem goren kaynak dosyasi ve dosyaya uygulanan yeniden diizenleme teknikleri

Cizelge 5.14’te verilmektedir. Projeye ait orijinal ve yeniden diizenlenen kodlarin enerji

tilketim sonuglart Sekil 5.5’te verilmektedir. PatientBill sinifina ait nesne yonelimli

kodlar iizerinde yeniden diizenleme tekniklerinin uygulanmasiyla elde edilen bulgularin

detaylar1 ise Cizelge 5.15’te verilmektedir.

Cizelge 5.14. Hastane yOnetim sistemi projesinde islem yapilan kaynak dosya ve

2200

Enerji Tiiketimi (J)

1400

uygulanan yeniden diizenleme teknikleri

Kaynak dosya ismi R R R3 Ry R5 R6 Ry

PatientBill.cs X X X X X X X

2000+

3 Orijinal Kod Degerleri
3 Onerilen Algoritma Degerleri

O Kruskal Algoritma Degerleri

1800+

@B Boruvka Algoritma Degerleri
lj—_l —_

1600

- T == ===

PatientBill.cs

Veri Seti

Sekil 5.5. Hastane yonetim sistemi projesi icin orijinal kodun ve karsilagtirma
algoritmalarinin kiimiilatif enerji tiiketim sonuglari

98

66

€r'e6 LT L1 9G¥ I S 1€ SOt LT (1] S61 IS
TT6 91 81 €rs I 149 I¢ LY LT 901 61 Ly
¢9'8 91 91 90°G I 1% 1€ LLY L1 So1 €61 N
vT'6 91 81 €rs I 149 1€ LLY L1 LOT €61 Y
vT'6 91 81 61°S I 149 1€ LLY LT LOT €61 2
TT6 91 81 90°S I 149 I¢ 1LY LT S01 61 Y
006 91 81 90°G I 99 1€ 6S¥ 91 So1 061 Y
6£°01 LT 0T L9Y I 1% I€ LLY 81 11 20T Iy
€€'6 91 81 8¢S I 149 I¢ vLY LT 901 861 [purl 140

1qesoH Ol nw s w n W W W w W

[PPOIA [eSIIIeWAIRIA g— LIQ[TUYQ], QWA[UAZN(] USPTUX

"IQeSaY [OpPOW [ISYIIBUWIAIBW 9A LIR[SNUOS WNS[Q YW UIULIUIS [[Igiuaned "G 'S 93[ozZ1))

Caligan Yonetim Sistemi projesinin EmployeeDetails sinifina ait orijinal kodlar tizerinde
islem goren kaynak dosyasi ve dosyaya uygulanan yeniden diizenleme teknikleri Cizelge
5.16°da verilmektedir. Projeye ait orijinal ve yeniden diizenlenen kodlarin enerji tiikketim
sonuglar1 Sekil 5.6’da verilmektedir. EmployeeDetails sinifina ait nesne yonelimli
kodlar iizerinde yeniden diizenleme tekniklerinin uygulanmasiyla elde edilen bulgularin

detaylar1 ise Cizelge 5.17°de verilmektedir.

Cizelge 5.16. Calisan yonetim sistemi projesinde islem yapilan kaynak dosya ve
uygulanan yeniden diizenleme teknikleri

Kaynak dosya ismi R R R3 Ry R5 R6 Ry
EmployeeDetails.cs | - - X X - X X

2200

3 Orijinal Kod Degerleri
2000 3 Onerilen Algoritma Degerleri
1 ; 3 Kruskal Algoritma Degerleri

@@ Boruvka Algoritma Degerleri
1800+ %

1600

Enerji Tiiketimi (J)

1400

T
EmployeeDetails.cs

Veri Seti

Sekil 5.6. Calisan yonetim sistemi projesi i¢in orijinal kodun ve karsilagtirma
algoritmalarinin kiimiilatif enerji tiiketim sonuglari

100

101

08'SI LT 9T 65’8 L 6¥ 14 78S SI 4! 01¢ IS
9091 LT 9T S9'8 L 6V S 88S SI 9TI €Te Ly
091 L1 9T 65’8 L 6V s 8¢ Sl 4! Tee 2
8091 L1 9T IL'8 L 6¥ S 16 S1 LTI 1743 £
7091 LT 9T 65’8 L 6V 14 8¢ S1 4! 43 R
9091 L1 9T $9'8 L 6V ¢S 88¢ Sl 9CI €Te [puil11Q
1qesoH Ol w S tw n W 2 W w n
[OPOIA [oSIIewIdBIA .- LIQ[YIUNQ], SWS[UIZN(J USPIUIX

"IqBSAY [OPOW [9SYIIBWAIBW A LIB[SNUOS WNI[Q YLNAW uruyurs sjrelgqaaiordwy £ 1°¢ 93[9z1)

Mobil-Oyun 2048 projesinin Matrix sinifina ait orijinal kodlar iizerinde islem goren
kaynak dosyas1 ve dosyaya uygulanan yeniden diizenleme teknikleri Cizelge 5.18’de
verilmektedir. Projeye ait orijinal ve yeniden diizenlenen kodlarin enerji tiikketim
sonuglar1 Sekil 5.7°de verilmektedir. Matrix sinifina ait nesne yonelimli kodlar tizerinde
yeniden diizenleme tekniklerinin uygulanmasiyla elde edilen bulgularin detaylari ise

Cizelge 5.19°da verilmektedir.

Cizelge 5.18. Mobil-Oyun 2048 projesinde islem yapilan kaynak dosya ve uygulanan
yeniden diizenleme teknikleri

Kaynak dosya ismi R R R3 Ry R5 R6 Ry
Matrix.java - X - X X - X

220

[Orijinal Kod Degerleri
3 Onerilen Algoritma Degerleri

200 % ? O Kruskal Algoritma Degerleri
@3 Boruvka Algoritma Degerleri

180+ % %

160

140

Enerji Tiketimi (J)

T
Matrix.java

Veri Seti

Sekil 5.7. Mobil-Oyun 2048 projesi icin orijinal kod ve kargilastirma algoritmalarinin
kiimiilatif enerji tiiketim sonuglari

102

301

SL'8 €T e TT6 I €T LYT 11 696 L8 (0144 S6¢ IS

¥6'8 €T e 60'6 I LOP1 I1 8L6 88 L¥T 66€ Ly

€6'8 €T e 60’6 I L9V 11 8L6 88 L¥T 86¢ ')

888 €T ce 206 I 9S'SP1 I SL6 L8 e 00¥ £

S6'8 €C e 86'8 I 0Pl I 696 88 S¥C S6¢ 2’

76'8 €T e TT6 I LOtY1 I1 8L6 88 LYT 66€ [puil11Q

1qesoH Ol w S tw n W 2 W w n
[OPOIA [oS eI LIQ[YIUNQ], SWS[UIZN(J USPIUIX
TOPLDOIN

‘1QeSY [OpPOW [oSYNIBUIAIBW A LIR[INUOS WNS[Q YLIJOW UIUGIUIS XINBIA "6]°S 93[0Z1))

Mobil-Hesap Makinesi projesinin Calculator sinifina ait orijinal kodlar {izerinde islem

goren kaynak dosyasi ve dosyaya uygulanan yeniden diizenleme teknikleri Cizelge

5.20°de verilmektedir. Projeye ait orijinal ve yeniden diizenlenen kodlarin enerji

tilketim sonuclar1 Sekil 5.8’de verilmektedir. Calculator sinifina ait nesne yonelimli

kodlar iizerinde yeniden diizenleme tekniklerinin uygulanmasiyla elde edilen bulgularin

detaylar1 ise Cizelge 5.21°de verilmektedir.

Cizelge 5.20. Mobil-Hesap makinesi projesinde islem yapilan kaynak dosya ve
uygulanan yeniden diizenleme teknikleri

Kaynak dosya ismi Ry R R3 Ry Rs Rg Ry
Calculator.java - X X - X - X
140
[Orijinal Kod Degerleri
5 1204 -1 3 Onerilen Algoritma Degerleri
‘E O Kruskal Algoritma Degerleri
s — @3 Boruvka Algoritma Degerleri
S w| I = ===
$ g0 —4
I}
60

T
Calculator.java

Veri Seti

Sekil 5.8. Mobil-Hesap makinesi projesi i¢in orijinal kodun ve karsilagtirma
algoritmalarinin kiimiilatif enerji tiiketim sonuglari

104

SOI

LS8 € 61 9% I Cl'L91 S ILT 6¢ Y0l 99¢ MY
¢9'8 € 6% 197 I €991 S 081 014 901 ILC Ly
19°8 €C 61 (4% I 76991 S €81 014 801 0LC o
€98 € 61 LSV I 991 S VLI 014 €0l 89¢ 24
79'8 € 61 ey I €9°¢91 S 891 6¢ [44! v9¢ 24
¢9'8 € 61 19'v I €991 S 081 014 901 ILC [purl 140
1qesoH Ol w S tw W W W W W '
[OPOIA [OSYNBWAIBIA LIQ[YIUNQ], QWIA[UAZN(] USPIUX
TP

"IQeSY [OPOW [ASYIIBWIEUW A LIR[SNUOS WNS[Q YW UTULIUIS JOJB[NO[RD) "[7'S 93[97Z1))

901

1salo1d Twaysts wnouA uesies) 9y
‘1safoxd rwaysts wmouQA aueisey ‘Y7 ‘1sefoxd rwalsis wnauQA [910 ‘¥ ‘1sefoid ruaysts wnauA oipioq ‘¢ ‘1seloid g4z unkQ ¢ ‘r1saloxd
1sounyew desay Jiseq ‘I :(Twiraso3 yyeis niny njdoy) [-urednuos wnoym 1l1ous Jjnemuny urunrefewnoge ewumnseidiey oA unpoy eutluQ “¢'c (oS

19S HAA
9d Sd rd ed Zd id
— : e — 00Z1L
: TRN-1-F Y mim_mﬂ F00VL m
: :85%8: a%%e: 5
: : : : : F009L =
¢ Py : : : =
: % : : 008l
usabaq ewuobly exaniog @) : : : : : o
WapeBeq ewiloBly [exsniy m : : 000z 3
uspebeq ewylobly usjusuQ 3 L 00zz <
uapabaq poy [eulbuo 3 : : : : :

oove

LOT

1s9loxd 1sounyewr desoH-11qoIN ‘84 ‘1sofoxd
8407 UNAO-TIQON ‘Ld :(Tuut1)so3 yyels mny n[doy) [[-Lre[dnuos wnaym 1oud juenuwny urunrereunuogde euunseisiey oA unpoy eutlig) "01°¢ oS

1}og M9A
8d d
-08 m
=8 :
=hd=N
: 0z T
: c:
: x
apeba ewjlob|y exaniog : 0oL o
laeBaq ewyobly [exysniy 3 : % 3.
epeBag ewiuob|y usjiueu) 3 | . - m =
uspieBaq poy [eulllo 3 00z

Onerilen algoritma Cizelge 5.2°de verilen ortalama degerlere gore projelerin toplam
enerji tiiketimini % 6.23 azaltabilmistir. Basit Hesap Makinesi projesi i¢in yontemimizin
alt ceyregi, orijinal kodun sonucundan daha diisiik bir deger elde etmistir. Bu projede,
Onerilen algoritma uygulandiktan sonra elde edilen optimum yeniden diizenleme
sirasi R4, R, R3,R7,R5, Cizelge 5.7°de gosterildigi gibi matematiksel model hesabina
gore siirdiiriilebilirlik degerinde % 3.73 iyilesme saglamistir. Mobil-Hesap Makinesi
projesinin enerji tiiketim araliklar1 Sekil 5.8’de gosterildigi gibi farkl biiytiklik
sirasina gore degisir. Bu proje i¢in yontemimizin alt ¢eyregi orijinal kodlara ve
diger kargilastirma algoritmalarina gore daha diisiik enerji tilkketim degeri elde etmistir.
Bu projede, onerilen algoritma uygulandiktan sonra elde edilen optimum yeniden
diizenleme siras1 Rs,R3, Ry, R7, Cizelge 5.21°de gosterildigi gibi matematiksel model
hesabina gore siirdiiriilebilirlik degerinde % 0.92 iyilesme saglamistir. Gelistirilen
yontemin kii¢ciik boyutlu uygulamalar olan hesap makineleri projeleri i¢in veri

hacimlerini azaltarak enerji tiikketimine katki sagladig1 goriilmiistiir.

Sekil 5.2°de gosterildigi gibi Oyun 2048 projesi enerji tiiketim araliklar1 birkag
biiyiikliik sirasina gore degisir. Yontemimiz diger karsilastirma algoritmalarr ve
orijinal kodlara gore enerji tilkketim sonuglarinda iistiinliik gostermektedir. Bu projede,
Onerilen algoritma uygulandiktan sonra elde edilen optimum yeniden diizenleme sirasi
Rg,R2,R5,R4,R7, R, Cizelge 5.9°da gosterildigi gibi matematiksel model hesabina gore
siirdiirtilebilirlik degerinde % 0.6 iyilesme saglamistir. Diger taraftan, Sekil 5.7°de
verilen sonuglara gore Mobil-Oyun 2048 projesinde de yontemimiz diger karsilastirma
algoritmalarindan ve orijinal kodlardan daha diisiik bir enerji tiikketim degeri elde etmistir.
Onerilen algoritma uygulandiktan sonra elde edilen optimum yeniden diizenleme sirasi
Rs,R4,R7,Ry, Cizelge 5.19°da gosterildigi gibi matematiksel model hesabina gore

stirdiirtilebilirlik degerinde % 2.12 iyilesme saglamigtir.

Genel olarak veri aktarimi enerji tiiketiminin ana kismini olusturur (Lyu vd., 2019; Sun
vd., 2017). Bordro Yonetim Sistemi projesinin enerji tiikketim degerleri tiim Ol¢iimlerde
genis bir yelpazeye yayilmistir. Ciinkii proje yogun bir veri aktarim iglemi icermektedir.
Ornegin bu projede cok sayida SQL sorgusu mevcuttur. Fakat tekniklerin farkli siralarda
uygulanmasi, bu proje icin tiim algoritmalarin sonuglarinda pozitif enerji tiikketimi

saglamustir. Onerilen algoritmadan elde edilen optimal sira R7,R¢, R3, Rs, R, Cizelge

108

5.11°de gosterildigi gibi matematiksel model hesabina gore siirdiiriilebilirlik degerinde
% 1.34 iyilesme saglamistir. Calisan YOnetim Sistemi projesi test siirecinde de yogun
bir veri aktarimi oldugu gézlemlenmistir. Gelistirilen yontem uygulandiktan sonra elde
edilen optimum yeniden diizenleme sirast R7,R3, Rg, R4, Cizelge 5.17°de gosterildigi
gibi matematiksel model hesabina gore siirdiiriilebilirlik degerinde % 1.62 iyilesme
saglamistir. Tekniklerin farkli siralarda uygulanmasi, bu proje i¢in de tiim algoritmalarin
sonuglarinda pozitif enerji tiiketimi saglamistir. Ciinkii R3 ve R nin Onceliklendirilmesi
sonucunda degiskenlerin bellekte daha az yer ayrilmasina izin verilmis ve bunlarin
onbellekten alma siireleri kisalmistir. Sonug olarak, komut yiiriitme sirasindaki dongii

sayis1 azalmasi ile enerji tilkketimi azalmustir.

Sekil 5.5°te verilen sonuglar incelendiginde, Hastane Yonetim Sistemi projesinin
orijinal kodlar1 karsilastirma algoritmalarindan yiiksek enerji tiiketimine sahiptir.
Onerilen algoritma uygulandiktan sonra elde edilen optimum yeniden diizenleme
sirast Ry, Rg,R7,R3,R4,R5, R, Cizelge 5.15’te gosterildigi gibi matematiksel model
hesabina gore siirdiiriilebilirlik degerinde % 2.14 iyilesme saglamistir. Fakat Boruvka
algoritmas1 uygulandiktan sonra elde edilen optimum yeniden diizenleme sirasi
R1,Rs,R>,R3,R4,R5, Ry, daha az enerji tiiketmistir. Onerilen algoritma proje kodlarinin
stirdiiriilebilirligini gelistirmesine yardimci olmus; fakat tekniklerin optimal sirasinin

enerji maliyetini istenilen seviyede diisiirmedigi goriilmiistiir.

Otel Yonetim Sistemi projesinin Sekil 5.4’te verilen sonuclari incelendiginde,
yontemimizin alt ¢eyregi, orijinal kodun enerji tiikketim sonucundan daha diisiiktiir.
Yontemimizin ¢eyrekler arasi araliklart diger karsilastirma algoritmalarina gore daha
kii¢iik oldugu igin yontemimiz daha tutarli sonuglar elde etmistir. Onerilen algoritma
uygulandiktan sonra elde edilen optimum yeniden diizenleme sirast Rs,Rg,R4,R3,
Cizelge 5.13’te gosterildigi gibi matematiksel model hesabina gore siirdiiriilebilirlik
degerinde % 6.27 iyilesme saglamistir. Sorgu isleminde ¢agrilan kod bloklarinda yapilan
R3, R4, Rs, Rg tekniklerinin Onceliklendirilmesi ile karmasik ifadelerin bellekte birden
fazla kopyasi olugsmasinin da oniine gecilmekte ve deger karmasasi sorunu ortadan
giderilmektedir. Boylece kodun siirdiiriilebilirligi 6nemli derecede iyilestirilmis ve

enerji maliyeti azaltilmigtir.

109

Kullanilan yeniden diizenleme tekniklerine ait bulgularin analizi sonucunda yazilim

kalitesi acisindan degerlendirilmesi asagida sirayla verilmektedir.

R, yazilim bakim siirecini kolaylastiran yeniden diizenleme tekniklerinden biridir. Bu
yeniden diizenleme tekniginin temel amaci, bir degiskenin erigim izinlerini ayarlamaktir.
Get ve set iglevleri, belirli bir alan se¢ilerek yapilandirilir. Bu yeniden diizenleme,
sinif icindeki bir 6znitelik icin getter ve setter olusturur. Oznitelik private yapilir
ve icerdi8i sinifin digindaki herhangi bir manipiilasyondan korunur. Bu genellikle
bir sinifin dahili alanlarinin kapsiillenmesine izin veren iyi bir tasarim uygulamasi
olsa da, get ve set kullanilmasi, ek islev cagrilarin1 temsil ettikleri icin projelerde
kulllanilan diger tekniklerle etkilesiminde daha az performans gostermesine neden
oldugu sonucuna varilmistir. Herhangi bir performans endisesi varsa kapsiilleme

olumsuz bir etki olusturabilir.

R; ile i ice dongii yapilar tek dongiilii yapilar haline doniistiiriilebilmektedir. Iterasyon
sayisindaki artig fazla hesaplamaya ve hafizada fazla yer ayrilmasina sebep olmaktadir.
Tek dongii yapist iterasyon sayisini azaltmaktadir. Boylece enerji tilkketimini azaltmaya
yonelik olumlu etki gostermistir. R3 ile gecici degiskenin silinmesi, gereksiz gegici
degiskeni onbelleklerden ve ana belleklerden alma siiresini kisaltmaktadir. Bu durum

optimal siranin uygulanmasinda enerji verimliligi acisindan olumlu katkilar saglamistir.

Ry’tin uygulandigi yerlerde siniflarin baglh olma egilimlerinde degisiklik gdzlenmemistir.
Fakat sonuglar, diisiik seviyeli kod yeniden diizenlemelerinin incelenmesinin sistemlere
iliskin i¢goriileri nasil ortaya ¢ikarabilecegini gostermektedir. Veri tasinmasi gereken
islemlerde nesnenin biitiin verisi kopyalanmaz. Se¢ilen ifadenin tiim tekrarlari, yeni
olusturulan degisken ile bir referans kullanilarak degistirilebilir veya yalnizca secilen
ifade degistirilebilir. Boylece islemcideki fazla yiik ortadan kaldirilir. Sonug olarak
enerji tasarrufu saglanir. Rs kullanimi bellekte iki yinelenen yontem yerine bir adet
yontem i¢in yer ayrilmasina olanak saglar. Tek yontem kullanimi fetch-decode-execute

dongiisiinii azaltmakta olup enerji tiikketimini azaltti§1 sonucuna varilmistir.

Sihirli sayilar genellikle kaynak kod icerisinde belirgin olmayan 6zel degerler iceren

sayilar1 icermektedirler. Bu sayilar kod icerisinde birden fazla yerde farkli amaclar

110

icin kullanildig1 zaman kodun bakiminda, degistirilmesinde zorluklar yasanmakta
ve okunabilirligini ters yonde etkileyebilmektedirler. Rg kullanimi ile bu durumlar
ortadan kaldirilmig ve bu teknigin kullanildigi projelerin kaynak kodlar1 okunabilirlik
nitelidi a¢isindan biiyiik gelismeler kaydedildigi goriilmiistiir. Ayn1 zamanda projelerin
kaynak kodlarinda sayinin bellekte birden fazla kopyasi olugsmasinin dniine gecilmis
fakat kaynak kodlarin bakim yapilabilirlik indeksi tizerinde olumlu katki saglamadigi
goriilmiistiir. Diger taraftan tekniklerle beraber kullanildiginda enerji verimliligi

acisindan olumlu gelisme gosterdigi tespit edilmisgtir.

Bazen sinifin igcerdigi yontemi gizlemek zengin bir arayiiz olusturmamizi saglar
ve siniflara daha fazla davranis katar. Ek davranislarin gelistirilmesi yolu ile
bazen degiskenlere erisiminler dogrudan saglanabilmekte ve siniftaki ek yontemlerin
kaldirilmas1 olanagi ortaya ¢ikabilmektedir. Boylece hafizadaki fazla yiik durumunu
ortadan kalkmig olur. Bunun sonucunda enerji tasarrufu saglanir. R; kullanimi iceren
projelerde bireysel kullanimin projelerin enerji verimliligi acisindan olumlu yonde katki
sagladig1 soylenemez. Fakat tekniklerin optimum sirasinin uygulanmasinda ve diger
tekniklerle etkilesime girmesi sonucunda yazilim kalitesi ve siirdiiriilebilirligine olumlu

katki saglamis ayn1 zamanda enerji verimliligine pozitif yonlii etki yaptig1 goriilmiistiir.

111

6. SONUC VE ONERILER

Yesil yazilim, enerji sizintilarina neden olan faktorlerin tanimlanmasini ve bunlarla
basa ¢ikmak icin pratik ¢coziimler getirmeyi hedefleyen yazilim miihendisligi daldir.
Gelistirilen yazilimsal ¢oziimler, kod islevini bozmadan yazilim i¢in izlenen yazilim
gelistirme siireci, kullanilan yeniden diizenleme teknigi gibi konularda yapilan yenilik
ve gelistirmeleri gozlemlemeye dayanir. Farkli 6zelliklerdeki yazilimlar i¢in farkli kalite
hedefleri ve ¢oziimleri on plana ¢ikmaktadir. Enerji sizintilarini yeniden diizenleme
teknikleri ile iyilestirmek ¢oziimlerden biridir. Fakat enerji sizintilarini iyilestirmek i¢in
yeniden diizenleme yapmak zorlu bir siirectir. Clinkii yeniden diizenlemeler programin
tasarim alaninda gerceklesirken programin derlenmis siiriimii belirli bir donanim
yapilandirmasinda calistirildiginda enerji tiiketimi tespit edilebilmektedir. Diger bir
coziim ise yeniden diizenleme siirecini otomatiklestirmektir. Enerji tiiketimini azaltmak
i¢in yazilimin yeniden diizenlenmesini otomatiklestirmeye calismak bazi sorular1 da
beraberinde giindeme getirmektedir. "Kag yeniden diizenleme yapilmali?" veya "nereye
uygulanmalidir?" gibi sorularin cevaplar1 onem arz etmektedir. Cevaplarin 6nemsiz
olmasi diisiiniilemez. Hatta baz1 yeniden diizenleme uygulamalar1 net olabilir; fakat
pratikte yazilim miihendisleri tarafindan yazilim gelistirilirken veya bakim yapilirken
yeniden diizenlemenin nerede durdurulacagina dair bir ¢izgi ¢izilmelidir. Ciinkii her
yeniden diizenleme tekniginin enerji verimliligine etkisi tiimlesik gelistirme ortamlarina
ait yeniden diizenleme otomatik desteginde gosterilmez. Ayrica enerji israfina yol agcan
kodlar ¢alisma zamaninda herhangi bir hata olusturmasa da kaynak kodun bakimini
zorlagtirmaktadir. Bu nedenle kodun dissal davraniginda hi¢bir degisiklik olmayacak

sekilde i¢ yapisimi degistirmek i¢in yeniden diizenleme teknikleri tercih edilmektedir.

Tez kapsaminda yazilimin enerji verimliligini ve siirdiiriilebilirlik degerini 1yilestiren
optimum yeniden diizenleme teknikleri sirasi tespit edildi. Yeniden diizenleme
teknikleri optimum sirasini elde etmek i¢in Prim tabanli bir algoritma gelistirildi.
Ayrica enerji israfi olarak kabul edilebilecek ham kaynak kodlar tizerinde yeniden
diizenleme tekniklerini gerceklestirmek i¢in bir C# masaiistii uygulamasi tasarlandi.
Gelistirilen uygulama ile yeniden diizenleme kullanilarak enerji israfina yol acan

kodlarin diizenlenmesi yazilimi daha siirdiiriilebilir, daha okunakli ve enerji tiikketimi

112

acisindan daha verimli hale getirdigi tespit edildi. Sonuclardaki degerlerin hesaplanmasi

nesneye yonelik ol¢iilere dayanmaktadir.

Sonuglar kodun karmagikligini ve boyutunu gosteren kriterlerin enerji tiiketimi agisindan
bir onceliklendirme algoritmasi tasarlamak i¢in faydali oldugunu gostermektedir. Diger
bir gosterge ise yeniden diizenleme teknikleri sirasinin esas olarak yararlanilacak
kaynak koda bagli olduguna dair bazi isaretlerin varligidir. Bunlardan biri, baglasim
say1s1 yazilim metriginin genelde projelerde ayni kalma egiliminde iken gelistirilen
matematiksel model yardimiyla elde edilen siranin yazilim kalitesi ve siirdiiriilebilirlik
degerinin yaninda enerji verimliligini iist diizeye ¢ikardiginin tespitidir. Projelerdeki
kaynak kodlarin icerdikleri karmasiklik, yapisiklik gibi yazilim 6zellikleri ise kaynak
kodlara gore farklilik gdstermis ve kaynak kodlarin detayli incelenmesi ile optimum
siralar elde edilebilmistir. Bu yiizden yazilimda kullanilan kaynak kodlara gore
optimum siralamalar degisiklik gosterebilmektedir. Bu kodlarin 6zelliklerinin iyi analiz
edilmesi ile yazilimi daha siirdiiriilebilir ve enerji tiiketimi agisindan daha verimli hale

getirebilmek miimkiindiir.

Bu tez calismasinin bazi kisitlar1 vardir: Bunlardan birincisi, 6nerilen algoritman
belirli yeniden diizenleme teknikleri i¢in ¢aligir. ikincisi, siniflarin en kritik projelerden
secilmesi 6nemli bir zaman sinirlamasi olusturmaktadir. Ugiinciisii, tezin kapsaminin iki
tiir programlama diliyle sinirlt olmasidir. Son olarak, yeniden diizenleme tekniklerinden
biri olan Simplify Nested Loop’un uyumlulugu, gelistirilen aracla belirlenebilir; ancak,
teknigin tespiti sonucunda kod statik kod analizine ve manuel kod incelemesine tabi
tutulur. Ciinkii i¢ ice dongii yapisinin tek bir dongiiye uygunlugu statik kod analizi
ve manuel kod incelemesi ile miimkiindiir. Manuel ile yeniden diizenleme genellikle
hataya aciktir ve zaman alir (Roberts, 1999). Bu, gelistirilen arac i¢in bir kisitlama

olusturur.

Sonug¢ olarak, bu tezin yeniden diizenleme ve enerji verimliligi onceliklendirmesi
hakkinda ampirik bilginin yapis1 acisindan yazilim miihendisligi camiasina 6nemli
bir katki sagladigina inaniyoruz; ancak, sonug¢larimizin bizimki disinda belirli bir

ortam i¢in genellenebilecegini varsayamayiz. Daha genis bir yazilim sistemlerinde

113

daha fazla dogrulama arzu edilir ve gelistirilen aracin diger dillerde kullanishligimnin

genellestirilmesine yardimci olmak icin daha fazla arastirma gerekir.

Calismanin kapsami, yeniden diizenleme tekniklerinin kullanim sirasi ile kaynak
kodun yiiriitme zamani azaltilacak sekilde enerji verimliliginin gelistirilmesine yonelik
yaklagimlara uyarlanabilir. Kaynak koduna sirali yeniden diizenleme tekniklerinin
uygulanmasinin yazilim giivenligi i¢in faydali olup olmadigini arastirmak yesil yazilim
acisindan yeni ¢oziimler getirebilir. Ge¢cmis veriler kaydedilirse enerji titkketimini tahmin
eden modeller, yeniden diizenleme tekniklerinin birlestirilmesinde yardimci olabilir.
Bunlara ek olarak kapsam, diger programlama dilleri ile olusturulmus yazilimlar icin

sezgisel yontemler gibi farkli yaklagimlar ile genisletilebilir.

114

KAYNAKLAR

Abreu, F.B., Carapuga, R., 1994. Candidate metrics for object-oriented software within
a taxonomy framework. Journal of Systems and Software, 26(1), 87-96.

Agarwal, S., Nath, A., Chowdhury, D., 2012. Sustainable approaches and good practices
in green software engineering. International Journal of Research and Reviews
in Computer Science, 3(1), 1425.

Aggarwal, K., Zhang, C., Campbell, J.C., Hindle, A., Stroulia, E., 2014. The power
of system call traces: predicting the software energy consumption impact of
changes. CASCON. (pp. 219-233).

Ahn, Y., Suh, J., Kim, S., Kim, H., 2003. The software maintenance project effort
estimation model based on function points. Journal of Software maintenance
and evolution: Research and practice, 15(2), 71-85.

Al Qutaish, R.E., Abran, A., 2005. An analysis of the design and definitions of
Halstead’s metrics. 15th Int. Workshop on Software Measurement (IWSM’2005).
Shaker-Verlag. (pp. 337-352).

Alpernas, K., Feldman, Y.M., Peleg, H., 2020. The wonderful wizard of LoC: paying
attention to the man behind the curtain of lines-of-code metrics. Proceedings
of the 2020 ACM SIGPLAN International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software. (pp. 146-156).

Anwar, H., Pfahl, D., Srirama, S.N., 2019. Evaluating the impact of code smell
refactoring on the energy consumption of Android applications. 2019 45th

Euromicro Conference on Software Engineering and Advanced Applications
(SEAA). IEEE, (pp. 82-86).

Ardito, L., Coppola, R., Barbato, L., Verga, D., 2020. A tool-based perspective on
software code maintainability metrics: a systematic literature review. Scientific
Programming.

Arora, D., Khanna, P., Tripathi, A., Sharma, S., Shukla, S., 2011. Software quality
estimation through object oriented design metrics. Int. J. Computer Science and
Network Security, 11(4), 100-104.

Bangash, A.A., Sahar, H., Beg, M.O., 2017. A methodology for relating software
structure with energy consumption. 2017 IEEE 17th International Working
Conference on Source Code Analysis and Manipulation (SCAM). IEEE, (pp.
111-120).

Bansiya, J., Davis, C.G., 2002. A hierarchical model for object-oriented design quality
assessment. IEEE Transactions on software engineering, 28(1), 4—17.

Barack, O., Huang, L., 2018. Effectiveness of Code Refactoring Techniques for
Energy Consumption in a Mobile Environment. Proceedings of the International

115

Conference on Software Engineering Research and Practice (SERP). The
Steering Committee of The World Congress in Computer Science, Computer
Engineering and Applied Computing, (pp. 165-171).

Berry, M.J., Linoff, G.S., 2004. Data mining techniques: for marketing, sales, and
customer relationship management. John Wiley & Sons.

Bessa, T., Gull, C., Quintao, P., Frank, M., Nacif, J., Pereira, FM.Q., 2019. JetsonLEAP:
A framework to measure power on a heterogeneous system-on-a-chip device.
Science of Computer Programming, 173, 21-36.

Biggs, N., Lloyd, E.K., Wilson, R.J., 1986. Graph Theory. Oxford University Press.

Bill, W., 2015. Statements - C Programming Guide | Microsoft Docs. https:
//docs.microsoft.com/en-us/dotnet/csharp/programming-guide/
statements-expressions-operators/statements. Erisim Tarihi:

01.02.2021.

Binkley, D., Ceccato, M., Harman, M., Ricca, F., Tonella, P., 2006. Tool-supported
refactoring of existing object-oriented code into aspects. IEEE Transactions on
Software Engineering, 32(9), 698-717.

Bondy, J.A., Murty, U.S.R., vd., 1976. Graph theory with applications. Macmillan
London.

Boruvka, O., 1926. O jistém problému minimalnim.

Candela, 1., Bavota, G., Russo, B., Oliveto, R., 2016. Using cohesion and coupling
for software remodularization: Is it enough? ACM Transactions on Software
Engineering and Methodology (TOSEM), 25(3), 1-28.

Chan-Jong-Chu, K., Islam, T., Exposito, M.M., Sheombar, S., Valladares, C., Philippot,
O., Grua, E.M., Malavolta, I., 2020. Investigating the correlation between
performance scores and energy consumption of mobile web apps. Proceedings
of the Evaluation and Assessment in Software Engineering. (pp. 190-199).

Chen, S.M., Chang, T.H., 2001. Finding multiple possible critical paths using
fuzzy PERT. IEEE Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics), 31(6), 930-937.

Chen, W.K., 2012. Applied graph theory. Elsevier.

Chen, W.K., Wang, J.C., 2012. Bad smells and refactoring methods for gui test
scripts. 2012 13th ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Computing. IEEE,
(pp- 289-294).

Chhikara, A., Chhillar, R., Khatri, S., 2011. Evaluating the impact of different types
of inheritance on the object oriented software metrics. International Journal of
Enterprise Computing and Business Systems, 1(2), 1-7.

116

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements

Chidamber, S.R., Kemerer, C.F., 1991. Towards a metrics suite for object oriented
design. Conference proceedings on Object-oriented programming systems,
languages, and applications. (pp. 197-211).

Chidamber, S.R., Kemerer, C.E., 1994. A metrics suite for object oriented design. IEEE
Transactions on software engineering, 20(6), 476-493.

Chung, S., Condon, A., 1996. Parallel implementation of Bouvka’s minimum spanning
tree algorithm. Proceedings of International Conference on Parallel Processing.
IEEE, (pp. 302-308).

Civelekoglu, G., Biyik, Y., 2020. Isparta ilinde karayolu kaynakli karbon ayak izinin
hesaplanmasi. Bilge International Journal of Science and Technology Research,
4(2), 78-817.

CodeCount™, 2020. USC’s Center for Systems and Software Engineering. http:
//csse.usc.edu. Erigsim Tarihi: 02.01.2021.

Coleman, D., Ash, D., Lowther, B., Oman, P., 1994. Using metrics to evaluate software
system maintainability. Computer, 27(8), 44—49.

Connolly Bree, D., Cinnéide, M.O., 2020. Inheritance versus Delegation: which is more
energy efficient? Proceedings of the [IEEE/ACM 42nd International Conference
on Software Engineering Workshops. (pp. 323-329).

Counsell, S., Liu, X., Swift, S., Buckley, J., English, M., Herold, S., Eldh, S., Ermedahl,
A., 2015. An exploration of the’introduce explaining variable’refactoring.
Scientific Workshop Proceedings of the XP2015. (pp. 1-5).

Cox, R., 2007. Regular expression matching can be simple and fast (but is slow in java,
perl, php, python, ruby,...). URL: http://swtch. com/rsc/regexp/regexpl. html.

Cruz, L., Abreu, R., 2017. Performance-based guidelines for energy efficient mobile
applications. 2017 IEEE/ACM 4th International Conference on Mobile Software
Engineering and Systems (MOBILESoft). IEEE, (pp. 46-57).

Dang, S., Ahmad, P.H., 2014. Text mining: Techniques and its application. International
Journal of Engineering & Technology Innovations, 1(4), 22-25.

Dang, S., Ahmad, P.H., 2015. A review of text mining techniques associated with
various application areas. International Journal of Science and Research (IJSR),
4(2), 2461-2466.

Demeyer, S., Ducasse, S., Nierstrasz, O., 2000. Finding refactorings via change metrics.
ACM SIGPLAN Notices, 35(10), 166—-177.

Dey, A., Pal, A., 2013. Fuzzy graph coloring technique to classify the accidental zone
of a traffic control. Annals of Pure and Applied Mathematics, 3(2), 169-178.

117

http://csse.usc.edu
http://csse.usc.edu

Dey, A., Pradhan, R., Pal, A., Pal, T., 2015. The fuzzy robust graph coloring problem.
Proceedings of the 3rd International Conference on Frontiers of Intelligent
Computing: theory and applications (FICTA) 2014. Springer, (pp. 805-813).

Dick, M., Drangmeister, J., Kern, E., Naumann, S., 2013. Green software engineering
with agile methods. 2013 2nd international workshop on green and sustainable
software (GREENS). IEEE, (pp. 78-85).

Dijkstra, E., 1960. Some theorems on spanning subtrees of a graph. Indag. math, 22(2),
196-199.

Dijkstra, E'W., vd., 1959. A note on two problems in connexion with graphs.
Numerische mathematik, 1(1), 269-271.

Dinita, R.I., Wilson, G., Winckles, A., Cirstea, M., Jones, A., 2013. Hardware loads and
power consumption in cloud computing environments. 2013 IEEE International
Conference on Industrial Technology (ICIT). IEEE, (pp. 1291-1296).

Dubey, S.K., Rana, A., 2011. Assessment of maintainability metrics for object-oriented
software system. ACM SIGSOFT Software Engineering Notes, 36(5), 1-7.

Durnova, H., 2006. Borvka, Otakar: About Otakar Borvka.

Elish, K.O., Alshayeb, M., 2011. A classification of refactoring methods based on
software quality attributes. Arabian Journal for Science and Engineering, 36(7),
1253-1267.

Ergasheva, S., Khomyakov, 1., Kruglov, A., Succil, G., 2020. Metrics of energy
consumption in software systems: a systematic literature review. [OP
Conference Series: Earth and Environmental Science. IOP Publishing, Volume
431, (s. 012051).

Erickson, J., 2019. Minimum spanning trees. https://jeffe.cs.illinois.edu/
teaching/algorithms/. Erisim Tarihi: 09.03.2021.

Feldman, R., Sanger, J., vd., 2007. The text mining handbook: advanced approaches in
analyzing unstructured data. Cambridge university press.

Fenton, N., 1994. Software measurement: A necessary scientific basis. IEEE
Transactions on software engineering, 20(3), 199-206.

Fenton, N.E., Neil, M., 2000. Software metrics: roadmap. Proceedings of the
Conference on the Future of Software Engineering. (pp. 357-370).

Fowler, M., 2018. Refactoring: improving the design of existing code. Addison-Wesley
Professional.

Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D., 1999. Refactoring: improving
the design of existing code, ser. Addison Wesley object technology series.,
Addison-Wesley.

118

https://jeffe.cs.illinois.edu/teaching/algorithms/
https://jeffe.cs.illinois.edu/teaching/algorithms/

Gabow, H.N., Galil, Z., Spencer, T., Tarjan, R.E., 1986. Efficient algorithms for finding
minimum spanning trees in undirected and directed graphs. Combinatorica,
6(2), 109-122.

Garcia-Martin, E., Rodrigues, C.F,, Riley, G., Grahn, H., 2019. Estimation of energy
consumption in machine learning. Journal of Parallel and Distributed Computing,
134, 75-88.

Gottschalk, M., Jelschen, J., Winter, A., 2013. Energy-efficient code by refactoring.
Softwaretechnik-Trends, 33(2).

Gottschalk, M., Josefiok, M., Jelschen, J., Winter, A., 2012. Removing energy code
smells with reengineering services. Informatik.

Graham, R.L., Hell, P., 1985. On the history of the minimum spanning tree problem.
Annals of the History of Computing, 7(1), 43-57.

Gray, D., Bowes, D., Davey, N., Sun, Y., Christianson, B., 2011. The misuse of the
NASA metrics data program data sets for automated software defect prediction.
15th Annual Conference on Evaluation & Assessment in Software Engineering
(EASE 2011). IET, (pp. 96-103).

Grechanik, M., McMillan, C., DeFerrari, L., Comi, M., Crespi, S., Poshyvanyk, D., Fu,
C., Xie, Q., Ghezzi, C., 2010. An empirical investigation into a large-scale Java
open source code repository. Proceedings of the 2010 ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement. (pp. 1-10).

Gross, J.L., Yellen, J., 2003. Handbook of graph theory. CRC press.
Gross, J.L., Yellen, J., 2005. Graph theory and its applications. CRC press.

Gupta, S., Chug, A., 2020. Software maintainability prediction using an enhanced
random forest algorithm. Journal of Discrete Mathematical Sciences and
Cryptography, 23(2), 441-449.

Gupta, V., Lehal, G.S., vd., 2009. A survey of text mining techniques and applications.
Journal of emerging technologies in web intelligence, 1(1), 60-76.

Halstead, M.H., 1977. Elements of software engineering. Elsevier, 7(127).
Harary, F., 2015. A seminar on graph theory. Courier Dover Publications.

Hegedds, P., Kéadar, 1., Ferenc, R., Gyiméthy, T., 2018. Empirical evaluation of software
maintainability based on a manually validated refactoring dataset. Information
and Software Technology, 95, 313-327.

Hennessy, J.L., Patterson, D.A., 2011. Computer architecture: a quantitative approach.
Elsevier.

119

Higo, Y., Kamiya, T., Kusumoto, S., Inoue, K., 2004. Refactoring support based on
code clone analysis. International Conference on Product Focused Software
Process Improvement. Springer, (pp. 220-233).

Hindle, A., 2015. Green mining: a methodology of relating software change and
configuration to power consumption. Empirical Software Engineering, 20(2),
374-400.

Hoque, M.A., Siekkinen, M., Khan, K.N., Xiao, Y., Tarkoma, S., 2015. Modeling,
profiling, and debugging the energy consumption of mobile devices. ACM
Computing Surveys (CSUR), 48(3), 1-40.

Hotho, A., Niirnberger, A., Paal3, G., 2005. A brief survey of text mining. Ldv Forum.
Citeseer, Volume 20, (pp. 19-62).

Hotta, K., Sasaki, Y., Sano, Y., Higo, Y., Kusumoto, S., 2012. An empirical study on
the impact of duplicate code. Advances in Software Engineering, 2012.

Hsu, C.H., Kremer, U., 2003. The design, implementation, and evaluation of a compiler
algorithm for CPU energy reduction. Proceedings of the ACM SIGPLAN 2003
conference on Programming language design and implementation. (pp. 38—48).

Ikerionwu, C., 2010. Cyclomatic Complexity As a Software Metric. International
Journal of Academic Research, 2(3).

Ihan, S., Duru, N., Karagoz, S., Sagir, M., 2008. Metin madenciligi ile soru cevaplama
sistemi. Elektronik ve Bilgisayar Miihendisligi Sempozyumu (ELECO), Bursa,
26, 30.

Intel, 2020. Intel® Power Gadget. https://software.intel.com/content/www/

us/en/develop/articles/intel-power-gadget.html. Erisim Tarihi:
18.03.2021.

Jarnik, V., 1930. O jistém problému minimalnim.(Z dopisu panu O. Borvkovi).
Jones, C., 1994. Software metrics: good, bad and missing. Computer, 27(9), 98—100.

Kan, S.H., 2003. Metrics and models in software quality engineering. Addison-Wesley
Professional.

Karger, D.R., Klein, P.N., Tarjan, R.E., 1995. A randomized linear-time algorithm to
find minimum spanning trees. Journal of the ACM (JACM), 42(2), 321-328.

Kataoka, Y., Imai, T., Andou, H., Fukaya, T., 2002. A quantitative evaluation of
maintainability enhancement by refactoring. International Conference on
Software Maintenance, 2002. Proceedings. IEEE, (pp. 576-585).

Kaur, A., Kaur, M., 2016. Analysis of code refactoring impact on software quality.
MATEC Web of Conferences. EDP Sciences, (pp. 02-012).

120

https://software.intel.com/content/www/us/en/develop/articles/intel-power-gadget.html
https://software.intel.com/content/www/us/en/develop/articles/intel-power-gadget.html

Kaur, J., Singh, S., 2016. Neural network based refactoring area identification in
software system with object oriented metrics. Indian Journal of Science and
Technology, 9(10), 1-8.

Kaxiras, S., Martonosi, M., 2008. Computer architecture techniques for
power-efficiency. Synthesis Lectures on Computer Architecture, 3(1), 1-207.

Keong, C.K., Wei, K.T., Ghani, A.A.A., Sharif, K.Y., 2015. Toward using software
metrics as indicator to measure power consumption of mobile application: A
case study. 2015 9th Malaysian Software Engineering Conference (MySEC).
IEEE, (pp. 172-177).

Kexugit, 2021. Maintainability Index Range and Meaning. https:
//docs.microsoft.com/tr-tr/archive/blogs/codeanalysis/
maintainability-index-range-and-meaning. Erigsim Tarihi: 17.01.2021.

Kim, D., Hong, J.E., Yoon, L., Lee, S.H., 2018. Code refactoring techniques for reducing
energy consumption in embedded computing environment. Cluster computing,
21(1), 1079-1095.

King, R.S., 2015. Cluster analysis and data mining: An introduction. Stylus Publishing,
LLC.

Koziel, S., Yang, X.S., 2011. Computational optimization, methods and algorithms.
Springer.

Kruskal, J.B., 1956. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical society, 7(1),
48-50.

Kumar, L., Bhatia, PK., 2013. Text mining: concepts, process and applications. Journal
of Global Research in Computer Science, 4(3), 36-39.

Kumar, R.P, 2017. Internal and External Measures of Code Quality Impact on
Refactoring. SSRG Int. J. Civ. Eng.-ICCREST’ 17, 70-72.

Kwon, Y., Lee, Z., Park, Y., 2013. Performance-based refactoring: identifying &
extracting move-method region. Journal of KIISE: Software and Applications,
40(10), 567-574.

Kwon, Y.W., Tilevich, E., 2013. Reducing the energy consumption of mobile
applications behind the scenes. 2013 IEEE International Conference on Software
Maintenance. IEEE, (pp. 170-179).

Levitin, A., 2011. Introduction To Design And Analysis Of Algorithms, 3/E. Pearson.

Li, H., Xia, Q., Wang, Y., vd., 2017. Research and improvement of kruskal algorithm.
Journal of Computer and Communications, 5(12), 63.

121

https://docs.microsoft.com/tr-tr/archive/blogs/codeanalysis/maintainability-index-range-and-meaning
https://docs.microsoft.com/tr-tr/archive/blogs/codeanalysis/maintainability-index-range-and-meaning
https://docs.microsoft.com/tr-tr/archive/blogs/codeanalysis/maintainability-index-range-and-meaning

Li, W., Henry, S., 1993. Object-oriented metrics that predict maintainability. Journal of
systems and software, 23(2), 111-122.

Loberman, H., Weinberger, A., 1957. Formal procedures for connecting terminals with
a minimum total wire length. Journal of the ACM (JACM), 4(4), 428-437.

LocMetrics, 2019. LocMetrics Tool. https://www.cheonghyun.com/blog/120.
Erisim Tarihi: 01.02.2021.

Lorenz, M., Kidd, J., 1994. Object-oriented software metrics: a practical guide.
Prentice-Hall, Inc.

Lyu, Y., Alotaibi, A., Halfond, W.G., 2019. Quantifying the performance impact of
SQL antipatterns on mobile applications. 2019 IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE, (pp. 53-64).

Mahmoud, S.S., Ahmad, I., 2013. A green model for sustainable software engineering.
International Journal of Software Engineering and Its Applications, 7(4), 55-74.

Mahouachi, R., Kessentini, M., Cinnéide, M.O., 2013. Search-based refactoring
detection using software metrics variation. International Symposium on Search
Based Software Engineering. Springer, (pp. 126—140).

Makkar, G., Chhabra, J.K., Challa, R.K., 2012. Object oriented inheritance
metric-reusability perspective. 2012 International Conference on Computing,
Electronics and Electrical Technologies (ICCEET). IEEE, (pp. 852—-859).

Mancebo, J., Calero, C., Garcia, F., 2021a. Does maintainability relate to the energy
consumption of software? A case study. Software Quality Journal, 29(1),
101-127.

Mancebo, J., Garcia, F., Calero, C., 2021b. A process for analysing the energy efficiency
of software. Information and Software Technology, 134, 106560.

Manning, C., Raghavan, P., Schiitze, H., 2010. Introduction to information retrieval.
Natural Language Engineering, 16(1), 100-103.

Manotas, 1., Bird, C., Zhang, R., Shepherd, D., Jaspan, C., Sadowski, C., Pollock,
L., Clause, J., 2016. An empirical study of practitioners’ perspectives on
green software engineering. 2016 IEEE/ACM 38th International Conference on
Software Engineering (ICSE). IEEE, (pp. 237-248).

Marpaung, F., 2020. Comparative of prim’s and boruvka’s algorithm to solve minimum
spanning tree problems. Journal of Physics: Conference Series. IOP Publishing,
(pp- 012-043).

McCabe, T.J., 1976. A complexity measure. IEEE Transactions on software Engineering,
(4), 308-320.

122

https://www.cheonghyun.com/blog/120

Mens, T., Tourwé, T., 2004. A survey of software refactoring. IEEE Transactions on
software engineering, 30(2), 126—139.

Menzies, T., Di Stefano, J.S., Chapman, M., McGill, K., 2002. Metrics that matter.
27th Annual NASA Goddard/IEEE Software Engineering Workshop, 2002.
Proceedings. IEEE, (pp. 51-57).

Microsoft, 2021. Visual Studio IDE, Kod Diizenleyicisi, Azure DevOps ve App Center.
https://visualstudio.microsoft.com/tr/. Erigsim Tarihi: 11.02.2021.

Microsoft, 2022. Dizin yontemleri. https://docs.microsoft.com/en-us/dotnet/
api/system.string.clone?view=net-6.0. Erisim Tarihi: 02.02.2022.

Mikheev, A., 2003. Text segmentation. The Oxford handbook of computational
linguistics. Oxford University Press, (pp. 201-218).

Misra, S., Akman, 1., Koyuncu, M., 2011. An inheritance complexity metric for
object-oriented code: A cognitive approach. Sadhana, 36(3), 317-337.

Moore, 1., 1996. Automatic inheritance hierarchy restructuring and method refactoring.
ACM SIGPLAN Notices, 31(10), 235-250.

Morales, R., Saborido, R., Khomh, F., Chicano, F., Antoniol, G., 2017. Earmo: an
energy-aware refactoring approach for mobile apps. IEEE Transactions on
Software Engineering, 44(12), 1176-1206.

Najm, N., 2014. Measuring Maintainability Index of a Software Depending on Line of
Code Only. 16, 64—69.

Naumann, S., Dick, M., Kern, E., Johann, T., 2011. The greensoft model: A reference
model for green and sustainable software and its engineering. Sustainable
Computing: Informatics and Systems, 1(4), 294-304.

Nesettil, J., Milkov4, E., Nesetrilova, H., 2001. Otakar Borvka on minimum spanning
tree problem Translation of both the 1926 papers, comments, history. Discrete
mathematics, 233(1-3), 3-36.

Neumann, F., Witt, C., 2010. Combinatorial optimization and computational complexity.
Bioinspired computation in combinatorial optimization, Springer. (pp. 9-19).

Newell, D.B., Tiesinga, E., 2019. The international system of units (SI). NIST Special
Publication, 330, 1-138.

Nguyen, V., Deeds-Rubin, S., Tan, T., Boehm, B., 2007. A SLOC counting standard.
Cocomo ii forum. Citeseer, (pp. 1-16).

Ogala, J.O., Ojie, D.V., 2020. Comparative analysis of c, c++, c# and java programming
languages. GSJ, 8(5).

123

https://visualstudio.microsoft.com/tr/
https://docs.microsoft.com/en-us/dotnet/api/system.string.clone?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.string.clone?view=net-6.0

Opdyke, W.E., Johnson, R.E., 1993. Creating abstract superclasses by refactoring.
Proceedings of the 1993 ACM conference on Computer science. (pp. 66—73).

Padhy, N., Satapathy, S., Singh, R., 2018. State-of-the-art object-oriented metrics and
its reusability: a decade review. Smart Computing and Informatics, 431-441.

Palomba, F., Di Nucci, D., Panichella, A., Zaidman, A., De Lucia, A., 2019. On
the impact of code smells on the energy consumption of mobile applications.
Information and Software Technology, 105, 43-55.

Papadimitriou, C.H., Steiglitz, K., 1998. Combinatorial optimization: algorithms and
complexity. Courier Corporation.

Papadopoulos, L., Marantos, C., Digkas, G., Ampatzoglou, A., Chatzigeorgiou, A.,
Soudris, D., 2018. Interrelations between software quality metrics, performance
and energy consumption in embedded applications. Proceedings of the 21st
International Workshop on software and compilers for embedded systems. (pp.
62-65).

Park, J.J., Hong, J.E., 2013. An Approach to improve software safety by Code
refactoring. Proc. of Korea Computer Congress. (pp. 532-534).

Park, J.J., Hong, J.E., Lee, S.H., 2014. Investigation for Software Power Consumption
of Code Refactoring Techniques. SEKE. (pp. 717-722).

Park, R.E., 1992. Software size measurement: A framework for counting source
statements. Technical report, Carnegie-Mellon Univ Pittsburgh PA Software
Engineering Inst.

Parsai, A., Murgia, A., Soetens, Q.D., Demeyer, S., 2015. Mutation testing as a safety
net for test code refactoring. Scientific Workshop Proceedings of the XP2015.

(pp- 1-7).

Pereira, R., Couto, M., Ribeiro, F., Rua, R., Cunha, J., Fernandes, J.P., Saraiva, J., 2021.
Ranking programming languages by energy efficiency. Science of Computer
Programming, 205, 102609.

Prim, R.C., 1957. Shortest connection networks and some generalizations. The Bell
System Technical Journal, 36(6), 1389-1401.

Qualcomm, 2018. Trepn Power Profiler. https://developer.qualcomm.com/
forums/software/trepn-power-profiler. Erigim Tarihi: 18.03.2021.

R, 2021. R for Windows. https://cran.r-project.org/bin/windows/. Erigsim
Tarihi: 18.02.2021.

Ramadhan, Z., Siahaan, A.P.U., Mesran, M., 2018. Prim and Floyd-Warshall
Comparative Algorithms in Shortest Path Problem. Proceedings of the Joint
Workshop KO2PI and The 1st International Conference on Advance & Scientific
Innovation. (pp. 47-58).

124

https://developer.qualcomm.com/forums/software/trepn-power-profiler
https://developer.qualcomm.com/forums/software/trepn-power-profiler
https://cran.r-project.org/bin/windows/

Refactoring, 2021. Hello, world! https://refactoring.guru/. Erisim Tarihi:
02.03.2021.

Roberts, D.B., 1999. Practical analysis for refactoring. University of Illinois at
Urbana-Champaign.

Rosenberg, L.H., Hyatt, L.E., 1997. Software quality metrics for object-oriented
environments. Crosstalk journal, 10(4), 1-6.

Ryder, C., Thompson, S.J., 2005. Software metrics: measuring Haskell. Trends in
Functional Programming. (pp. 31-46).

Sahin, C., Pollock, L., Clause, J., 2014. How do code refactorings affect energy usage?
Proceedings of the 8th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement. (pp. 1-10).

Sehgal, R., Mehrotra, D., Nagpal, R., Sharma, R., 2020. Green software: Refactoring
approach. Journal of King Saud University-Computer and Information Sciences.

Seker, S.E., 2008. Kiilliyat (corpus). https://bilgisayarkavramlari.com/2008/
03/25/kulliyat-corpus/. Erisim Tarihi: 16.01.2022.

Seker, S.E., 2015a. Cizge teorisi (graph theory). YBS ansiklopedi, 2(2), 17-29.
Seker, S.E., 2015b. Metin Madenciligi (Text Mining). YBS ansiklopedi, 2(3), 30-32.

Shenoy, S.S., Eeratta, R., 2011. Green software development model: An approach
towards sustainable software development. 2011 Annual IEEE India Conference.
IEEE, (pp. 1-0).

Silva, W.G., Brisolara, L., Corréa, U.B., Carro, L., 2010. Evaluation of the impact
of code refactoring on embedded software efficiency. Proceedings of the 1st
Workshop de Sistemas Embarcados. (pp. 145-150).

Srivastava, K., Tyagi, R., 2013. Shortest Path Algorithm For Satellite Network.

International Journal of Innovative Research and Development (ISSN
2278-0211), 2(5).

Sudhamani, M., Rangarajan, L., 2015. Structural similarity detection using structure of
control statements. Procedia computer science, 46, 892—-899.

Sumathy, K., Chidambaram, M., 2013. Text mining: concepts, applications, tools and
issues-an overview. International Journal of Computer Applications, 80(4).

Sun, Y., Wang, Y., Yang, H., 2017. Energy-efficient SQL query exploiting RRAM-based
process-in-memory structure. 2017 IEEE 6th Non-Volatile Memory Systems
and Applications Symposium (NVMSA). IEEE, (pp. 1-6).

Taina, J., 2010. How green is your software? International Conference of Software
Business. Springer, (pp. 151-162).

125

https://refactoring.guru/
https://bilgisayarkavramlari.com/2008/03/25/kulliyat-corpus/
https://bilgisayarkavramlari.com/2008/03/25/kulliyat-corpus/

Taina, J., Pohjalainen, P., 2009. In search for green metrics. Workshop on Software
Research and Climate Change. Orlando, FL.

Tarwani, S., Chug, A., 2016. Sequencing of refactoring techniques by Greedy
algorithm for maximizing maintainability. 2016 International Conference on
Advances in Computing, Communications and Informatics (ICACCI). IEEE,
(pp- 1397-1403).

Tarwani, S., Chug, A., 2020. Assessment of optimum refactoring sequence to improve
the software quality of object-oriented software. Journal of Information and
Optimization Sciences, 41(6), 1433—-1442.

Tewarie, P., van Dellen, E., Hillebrand, A., Stam, C.J., 2015. The minimum spanning
tree: an unbiased method for brain network analysis. Neuroimage, 104,
177-188.

Tiwari, V., Malik, S., Wolfe, A., 1994. Compilation techniques for low energy: An
overview. Proceedings of 1994 IEEE Symposium on Low Power Electronics.
IEEE, (pp. 38-39).

Tokuda, L., Batory, D., 2001. Evolving object-oriented designs with refactorings.
Automated Software Engineering, 8(1), 89-120.

Tolga, A.C., Turgut, Z.K., 2018. Siirdiiriilebilir ve Yenilenebilir Enerji Santrallerinin
Bulanik TODIM Y 6ntemiyle Degerlendirilmesi. Alphanumeric Journal, 6(1),
49-68.

Triwijoyo, B.K., Gaol, EL., Soewito, B., Warnars, H.LL.H.S., 2017. Software reliability
measurement base on failure intensity. 2017 3rd International Conference on
Science in Information Technology (ICSITech). IEEE, (pp. 176-181).

Tunali, V., 2011. Metin madenciligi i¢in iyilestirilmis bir kiimeleme yapisinin tasarimi
ve uygulamasi. Ph.D. thesis, Marmara Universitesi, 103s, Istanbul.

Turver, R.J., Munro, M., 1994. An early impact analysis technique for software
maintenance. Journal of Software Maintenance: Research and Practice, 6(1),
35-52.

Umeyama, S., 1988. An eigendecomposition approach to weighted graph matching
problems. IEEE transactions on pattern analysis and machine intelligence, 10(5),
695-703.

Ural, E., Umut, T., Feza, B., 2008. Nesneye Dayal1 Yazilim Metrikleri ve Yazilim
Kalitesi. Yazilim Kalitesi ve Yazilim Gelistirme Araclart Sempozyumu.

Vijayarani, S., Ilamathi, M.J., Nithya, M., vd., 2015. Preprocessing techniques
for text mining-an overview. International Journal of Computer Science &
Communication Networks, 5(1), 7-16.

126

Visa, A., 2001. Technology of text mining. International Workshop on Machine
Learning and Data Mining in Pattern Recognition. Springer, (pp. 1-11).

Watson, A.H., Wallace, D.R., McCabe, T.J., 1996. Structured testing: A testing
methodology using the cyclomatic complexity metric.

West, D.B., vd., 2001. Introduction to graph theory, Volume 2. Prentice hall Upper
Saddle River.

Witten, [.H., 2004. Text Mining.

Woolson, R., 2007. Wilcoxon signed-rank test. Wiley encyclopedia of clinical trials,
1-3.

Xuan, J., Cornu, B., Martinez, M., Baudry, B., Seinturier, L., Monperrus, M., 2016.
B-Refactoring: Automatic test code refactoring to improve dynamic analysis.
Information and Software Technology, 76, 65-80.

Yilmaz, F., 2014. Enerji Verimliligi ve Karbon Ayak izi.

Zeil, S.J., 2017. Integrated Development Environments. https://www.cs.odu.edu/
~zeil/cs350/f17/Public/IDEs/index.html. Erisim Tarihi: 08.03.2021.

Zotos, K., Litke, A., Chatzigeorgiou, A., Nikolaidis, S., Stephanides, G., 2005. Energy
complexity of software in embedded systems. arXiv preprint nlin/0505007.

127

https://www.cs.odu.edu/~zeil/cs350/f17/Public/IDEs/index.html
https://www.cs.odu.edu/~zeil/cs350/f17/Public/IDEs/index.html

	İÇİNDEKİLER
	ÖZET
	ABSTRACT
	TEŞEKKÜR
	ŞEKİLLER DİZİNİ
	ÇİZELGELER DİZİNİ
	SİMGELER VE KISALTMALAR DİZİNİ
	GİRİŞ
	Motivasyon
	Bilimsel Katkı

	KAYNAK ÖZETLERİ
	GENEL BİLGİLER
	Yeniden Düzenleme
	Yeniden düzenleme teknikleri
	Simplify nested loop
	Inline method
	Introduce explaining variable
	Inline temp
	Inline class
	Self encapsulate field
	Replace magic number with symbolic constant
	Encapsulate field
	Consolidate duplicate conditional fragments
	Hide method

	Yazılım Metrikleri
	Kod satır sayısı
	Operand ve operatör sayısı
	Fonksiyon sayısı
	Fonksiyon çağrılma sayısı
	Bağlaşım sayısı
	Kalıtım ağacının derinliği
	Çevrimsel karmaşıklık
	Mantıksal kod satır sayısı
	Fonksiyon başına düşen ifade sayısı
	Bakım yapılabilirlik indeksi

	Metin Madenciliği
	Metin madenciliği alanları
	Bilgi gerikazanımı
	Doğal dil işleme
	Bilgi çıkarımı
	Veri madenciliği

	Metin madenciliği adımları
	Metin madenciliği ve alanları kapsamında kullanılan kavramlar ve teknikler
	Metin parçalama
	Noktalama işareti silme
	Durdurma kelimeleri
	Kökenine döndürme
	Temel hale döndürme
	Cümle bölümlendirme
	Düzenli İfadeler
	Dizin yöntemleri

	Kombinatoryal Optimizasyon
	Graf teorisi
	Minimum yayılan ağaç ve algoritmaları
	Boruvka algoritması
	Prim algoritması
	Kruskal algoritması

	Enerjinin Genel Tanımı

	GEREÇ ve YÖNTEM
	Yeniden Düzenleme Tekniklerinin Seçimi
	Yazılım Metriklerinin Seçimi
	Yazılım Geliştirme Ortamının Seçimi
	Geliştirilen Algoritma ve Matematiksel Model
	Geliştirilen algoritma
	Geliştirilen matematiksel model

	Deneysel Veri Seti
	Geliştirilen Otomasyon Yazılım Aracının Genel Özellikleri
	Enerji Tüketiminin İzlenmesi

	ARAŞTIRMA BULGULARI
	SONUÇ VE ÖNERİLER
	KAYNAKLAR
	ÖZGEÇMİŞ

