
T.C.
SÜLEYMAN DEMİREL ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ

YEŞİL YAZILIMDA ENERJİ TÜKETİMİNİ DÜŞÜRMEYE
YÖNELİK KOMBİNATORYAL BİR ALGORİTMA

GELİŞTİRİLMESİ

İbrahim ŞANLIALP

Danışman
Prof. Dr. Tuncay YİĞİT

II. Danışman
Doç. Dr. Muhammed Maruf ÖZTÜRK

DOKTORA TEZİ
BİLGİSAYAR MÜHENDİSLİĞİ ANABİLİM DALI

ISPARTA - 2022

© 2022 [İbrahim ŞANLIALP]

i

İÇİNDEKİLER

Sayfa

İÇİNDEKİLER .. i

ÖZET .. ii

ABSTRACT ... iii

TEŞEKKÜR ... iv

ŞEKİLLER DİZİNİ .. v

ÇİZELGELER DİZİNİ .. ix

SİMGELER VE KISALTMALAR DİZİNİ .. x

1. GİRİŞ ... 1

1.1. Motivasyon .. 2

1.2. Bilimsel Katkı ... 3

2. KAYNAK ÖZETLERİ .. 5

3. GENEL BİLGİLER ... 13

3.1. Yeniden Düzenleme .. 13

3.1.1. Yeniden düzenleme teknikleri .. 14

3.1.1.1. Simplify nested loop .. 15

3.1.1.2. Inline method ... 17

3.1.1.3. Introduce explaining variable .. 17

3.1.1.4. Inline temp ... 18

3.1.1.5. Inline class ... 19

3.1.1.6. Self encapsulate field ... 20

3.1.1.7. Replace magic number with symbolic constant 21

3.1.1.8. Encapsulate field .. 22

3.1.1.9. Consolidate duplicate conditional fragments 23

3.1.1.10. Hide method ... 24

3.2. Yazılım Metrikleri ... 25

3.2.1. Kod satır sayısı ... 27

3.2.2. Operand ve operatör sayısı ... 27

3.2.3. Fonksiyon sayısı ... 29

3.2.4. Fonksiyon çağrılma sayısı .. 30

3.2.5. Bağlaşım sayısı ... 30

3.2.6. Kalıtım ağacının derinliği ... 31

3.2.7. Çevrimsel karmaşıklık .. 32

3.2.8. Mantıksal kod satır sayısı ... 35

3.2.9. Fonksiyon başına düşen ifade sayısı ... 37

3.2.10. Bakım yapılabilirlik indeksi ... 37

3.3. Metin Madenciliği ... 38

3.3.1. Metin madenciliği alanları .. 39

3.3.1.1. Bilgi gerikazanımı ... 39

3.3.1.2. Doğal dil işleme ... 40

3.3.1.3. Bilgi çıkarımı ... 40

3.3.1.4. Veri madenciliği .. 41

3.3.2. Metin madenciliği adımları .. 41

3.3.3. Metin madenciliği ve alanları kapsamında kullanılan kavramlar ve

teknikler .. 43

3.3.3.1. Metin parçalama .. 44

3.3.3.2. Noktalama işareti silme ... 44

3.3.3.3. Durdurma kelimeleri .. 45

ii

3.3.3.4. Kökenine döndürme ... 45

3.3.3.5. Temel hale döndürme .. 45

3.3.3.6. Cümle bölümlendirme ... 45

3.3.3.7. Düzenli İfadeler ... 46

3.3.3.8. Dizin yöntemleri .. 47

3.4. Kombinatoryal Optimizasyon ... 47

3.4.1. Graf teorisi .. 51

3.4.2. Minimum yayılan ağaç ve algoritmaları ... 56

3.4.2.1. Boruvka algoritması ... 58

3.4.2.2. Prim algoritması ... 59

3.4.2.3. Kruskal algoritması .. 62

3.5. Enerjinin Genel Tanımı ... 64

4. GEREÇ ve YÖNTEM .. 66

4.1. Yeniden Düzenleme Tekniklerinin Seçimi ... 66

4.2. Yazılım Metriklerinin Seçimi .. 66

4.3. Yazılım Geliştirme Ortamının Seçimi ... 67

4.4. Geliştirilen Algoritma ve Matematiksel Model .. 69

4.4.1. Geliştirilen algoritma .. 69

4.4.2. Geliştirilen matematiksel model ... 72

4.5. Deneysel Veri Seti ... 74

4.6. Geliştirilen Otomasyon Yazılım Aracının Genel Özellikleri 75

4.7. Enerji Tüketiminin İzlenmesi .. 82

5. ARAŞTIRMA BULGULARI .. 87

6. SONUÇ VE ÖNERİLER ... 112

KAYNAKLAR .. 114

ÖZGEÇMİŞ ... 128

ÖZET

Doktora Tezi

YEŞİL YAZILIMDA ENERJİ TÜKETİMİNİ DÜŞÜRMEYE YÖNELİK
KOMBİNATORYAL BİR ALGORİTMA GELİŞTİRİLMESİ

İbrahim ŞANLIALP

Süleyman Demirel Üniversitesi
Fen Bilimleri Enstitüsü

Bilgisayar Mühendisliği Anabilim Dalı

Danışman: Prof. Dr. Tuncay YİĞİT

II. Danışman: Doç. Dr. Muhammed Maruf ÖZTÜRK

Kodu yeniden düzenleme, kaynak kodlarında iyileştirmeler yapmak için uygulanan,
zaman alan ve yoğun çaba gerektiren bir süreçtir. Son yıllarda yazılım mühendisliği
geliştiricileri arasında oldukça ilgi görmüştür. Geliştiriciler için, seçilen yeniden
düzenleme tekniğine bağlı olarak yazılım tarafından tüketilen enerjideki değişimi bilmek
önemlidir. Bu tez çalışması kod yeniden düzenleme tekniklerinin etkileşimlerinin
incelenmesi ve enerji verimliliği için optimal sıranın elde edilmesine yönelik
araştırmaların yapılması üzerinedir.

Çalışma kapsamında Prim tabanlı önceliklendirme algoritması, matematiksel model ve
Windows tabanlı grafiksel kullanıcı arayüz (GUI) uygulaması geliştirilmiştir. Uygulama
öncelikle verilen statik kod metriklerini çıkartmakta ve hangi tür yeniden düzenleme
tekniklerinin kaynak kodla uyumlu olduğuna karar vermektedir. Sonrasında geliştirilen
kompleks metriğin ölçümünü kullanan Prim tabanlı önceliklendirme algoritması ile
yeniden düzenleme tekniklerinin sırasını üretmektedir. Son olarak, algoritmanın ürettiği
öncelik sırası uygulandıktan sonra elde edilen yeniden düzenlenmiş kaynak kod ile
orijinal kod enerji tüketimi açısından karşılaştırılır.

Sonuçlar, kodun karmaşıklığını ve boyutunu gösteren kriterlerin enerji tüketimi
açısından bir öncelik belirleme algoritması tasarlamak için yararlı olduğunu
göstermektedir. Yeniden düzenleme teknikleri sırasının esas olarak yararlanılacak
yazılım projesinin kaynak koduna bağlı olduğu sonucu çıkarılmıştır. Elde edilen
bulgular geliştiricilerin nesne yönelimli programlama dili ile oluşturulan kodlarını
yalnızca enerji verimliliği açısından değil, aynı zamanda sürdürülebilirlik açısından da
geliştirmelerine yardımcı olacaktır.

Anahtar Kelimeler: Yeniden düzenleme, önceliklendirme, yeşil yazılım, yazılım
metriği, enerji tüketimi, yazılım kalitesi, nesne yönelimli programlama.

2022, 129 sayfa

iii

ABSTRACT

Ph.D. Thesis

DEVELOPMENT OF A COMBINATORIAL ALGORITHM TO REDUCE
ENERGY CONSUMPTION IN THE GREEN SOFTWARE

İbrahim ŞANLIALP

Süleyman Demirel University
Graduate School of Natural and Applied Sciences

Department of Computer Engineering

Supervisor: Prof. Dr. Tuncay YİĞİT

Co-Supervisor: Asst. Prof. Dr. Muhammed Maruf ÖZTÜRK

Code refactoring is a time-consuming and effort-intensive process that is applied to
make improvements to source code. In recent years, it has gained more interest among
software engineering developers. For developers, it is essential to know the change in
the energy consumed by the software dependent on the chosen refactoring technique.
This thesis is about examining the interactions of code refactoring techniques and
conducting research on obtaining the optimal order for energy efficiency.

The scope of the study, Prim-based prioritization algorithm, mathematical model, and
Windows-based graphical user interface (GUI) application are developed. Firstly,
the application extracts the given static code metrics and decides which refactoring
techniques are compatible with the source code. Then, it produces a refactoring
sequence thanks to the Prim-based prioritization algorithm using the measurement of
the developed complex metric. Finally, refactored source code obtained after applying
the priority order produced by the algorithm is compared with the original code in terms
of energy consumption.

The results show that criteria indicating the complexity and size of the code are useful
for designing a prioritization algorithm in terms of energy consumption. It is concluded
that the order of refactoring techniques mainly depends on the source code of the
software project to be exploited. The findings will help developers improve their code
created with the object-oriented programming language, not only in terms of energy
efficiency but also in terms of sustainability.

Keywords: Refactoring, prioritization, green software, software metrics, energy
consumption, software quality, object-oriented programming.

2022, 129 pages

iv

TEŞEKKÜR

Doktora tez çalışmamda beni yönlendiren, karşılaştığım zorlukları bilgi ve tecrübeleri
ile aşmamda yardımcı olan değerli danışman hocalarım Prof. Dr. Tuncay YİĞİT ve
Doç. Dr. Muhammed Maruf ÖZTÜRK’e teşekkürlerimi sunarım.

Ayrıca her çalışmamda olduğu gibi bu tez çalışmasında da maddi ve manevi desteğiyle
hep yanımda olan sevgili eşime, hayatın her aşamasında beni yalnız bırakmadıkları
gibi tezimin her aşamasında da beni yalnız bırakmayarak bugünlere gelmemi sağlayan
aileme sonsuz sevgi ve saygılarımı sunarım.

İbrahim ŞANLIALP

ISPARTA, 2022

v

vi

ŞEKİLLER DİZİNİ

Sayfa

Şekil 3.1. Orijinal kod parçası ve simplify nested loop uygulanmış kod

parçası .. 15

Şekil 3.2. Orijinal kod parçası ve inline method uygulanmış kod parçası 17

Şekil 3.3. Orijinal kod parçası ve introduce explaining variable uygulanmış

kod parçası .. 18

Şekil 3.4. Orijinal kod parçası ve inline temp uygulanmış kod parçası 19

Şekil 3.5. Orijinal kod parçası ve inline class uygulanmış kod parçası 19

Şekil 3.6. Orijinal kod parçası ve self encapsulate field uygulanmış

kod parçası ... 20

Şekil 3.7. Orijinal kod parçası ve replace magic number with symbolic

constant uygulanmış kod parçası ... 21

Şekil 3.8. Orijinal kod parçası ve encapsulate field uygulanmış kod parçası 22

Şekil 3.9. Orijinal kod parçası ve consolidate duplicate conditional fragments

uygulanmış kod parçası ... 23

Şekil 3.10. Orijinal kod dizaynı ve hide method uygulanmış kod dizaynı 25

Şekil 3.11. Yazılım metrikleri ve yazılım kalite parametreleri arasındaki ilişki .. 26

Şekil 3.12. If-then-else durumunun akış grafı ... 33

Şekil 3.13. Kod bloğu .. 33

Şekil 3.14. Kod bloğunun düğüm gösterimi ... 34

Şekil 3.15. Eclipse metrics plugin çevrimsel karmaşık hesablama yöntemi 34

Şekil 3.16. McCabe çevrimsel karmaşık hesaplama yöntemi 35

Şekil 3.17. Deyim içeren kod bloğu ... 36

Sekil 3.19. Metin madenciliği adımları ... 40

Şekil 3.18. Metin madenciliği alanları ... 42

Şekil 3.20. Optimizasyon problem tipleri .. 48

Şekil 3.21. Graf çizgi çizim örneği .. 51

Şekil 3.22. Basit graf ve belirtim gösterimi .. 52

Şekil 3.23. Genel graf ve biçimsel gösterimi ... 53

Şekil 3.24. Yönlendirilmiş graf ... 53

Şekil 3.25. Yönlendirilmemiş ağırlıklı graf .. 54

Şekil 3.26. Tam graf örnekleri .. 55

Şekil 3.27. Bir graf, grafın bitişiklik matrisi ve komşuluk matrisi 55

Şekil 3.28. D1 yayılan alt graf ve D2 indüklenmiş alt graf 56

Şekil 3.29. Beş düğümlü ağaç örnekleri.. 56

Şekil 3.30. Ağırlıklı graf ve minimum yayılan ağacı .. 57

Şekil 3.31. Boruvka algoritmasının temel adımları .. 58

Şekil 3.32. Prim algoritmasının çalışma prensibi .. 61

Şekil 3.33. Kruskal algoritmasının çalışma prensibi .. 63

Şekil 4.1. Tümleşik geliştirme ortamı örnekleri ... 68

Şekil 4.2. Tam ve ağırlıklı graf örneği .. 72

Şekil 4.3. Kullanıcı arayüz tasarımı .. 76

Şekil 4.4. Alt menülerin genel görünümü ... 77

Şekil 4.5. Orijinal ve yeniden düzenlenmiş olanları kapsayan kod

parçası örnekleri ... 78

Şekil 4.6. Uygulanan yeniden düzenleme tekniklerinin tespiti 79

Şekil 4.7. Yeniden düzenleme tekniklerinin optimal sırası................................... 80

Şekil 4.8. Çalışmanın kavramsal çerçevesi. .. 81

vii

Şekil 4.9. Intel Power Gadget bileşenleri ... 83

Şekil 4.10. Trepn Profiler bileşenleri ... 84

Şekil 5.1. Basit hesap makinesi projesi için orijinal kodun ve karşılaştırma

algoritmalarının kümülatif enerji tüketim sonuçları 90

Şekil 5.2. Oyun 2048 projesi için orijinal kodun ve karşılaştırma

algoritmalarının kümülatif enerji tüketim sonuçları 92

Şekil 5.3. Bordro yönetim sistemi projesi için orijinal kodun ve karşılaştırma

algoritmalarının kümülatif enerji tüketim sonuçları 94

Şekil 5.4. Otel yönetim sistemi projesi için orijinal kodun ve karşılaştırma

algoritmalarının kümülatif enerji tüketim sonuçları 96

Şekil 5.5. Hastane yönetim sistemi projesi için orijinal kodun ve karşılaştırma

algoritmalarının kümülatif enerji tüketim sonuçları 98

Şekil 5.6. Çalışan yönetim sistemi projesi için orijinal kodun ve karşılaştırma

algoritmalarının kümülatif enerji tüketim sonuçları 100

Şekil 5.7. Mobil-Oyun 2048 projesi için orijinal kod ve karşılaştırma

algoritmalarının kümülatif enerji tüketim sonuçları 102

Şekil 5.8. Mobil-Hesap makinesi projesi için orijinal kodun ve karşılaştırma

algoritmalarının kümülatif enerji tüketim sonuçları 104

Şekil 5.9. Orijinal kodun ve karşılaştırma algoritmalarının kümülatif enerji

tüketim sonuçları-I (toplu kutu grafik gösterimi): P1, Basit

hesap makinesi projesi; P2, Oyun 2048 projesi; P3, Bordro

yönetim sistemi projesi; P4, Otel yönetim sistemi projesi;

P5, Hastane yönetim sistemi projesi; P6, Çalışan yönetim

sistemi projesi ... 106

Şekil 5.10. Orijinal kodun ve karşılaştırma algoritmalarının kümülatif enerji

tüketim sonuçları-II (toplu kutu grafik gösterimi): P7,

Mobil-Oyun 2048 projesi; P8, Mobil-Hesap makinesi projesi 107

viii

ÇİZELGELER DİZİNİ

Sayfa

Çizelge 3.1. Önerilen yeniden düzenleme teknikleri listesi 16

Çizelge 4.1. Seçilen yeniden düzenleme teknikleri listesi 66

Çizelge 4.2. Seçilen metriklerin listesi .. 67

Çizelge 4.3. Deneysel projelerin özeti ... 75

Çizelge 4.4. Komşuluk matris gösterimi .. 79

Çizelge 5.1. Orijinal kod ile karşılaştırma algoritmalarının Wilcoxon işaretli

sıra testi sonuçları (H0: p > 0:05, H1: p < 0:05) 88

Çizelge 5.2. Enerji tüketim sonuçları. Tüm deneyler aynı zaman aralığında

(300 saniye) ve on kez çalıştırma ile gerçekleştirilir 88

Çizelge 5.3. Kruskal algoritması ile üretilen optimal sıraların detayları 88

Çizelge 5.4. Boruvka algoritması ile üretilen optimal sıraların detayları 89

Çizelge 5.5. Önerilen algoritma ile üretilen optimal sıraların detayları 89

Çizelge 5.6. Basit hesap makinesi projesinde işlem yapılan kaynak dosya ve

uygulanan yeniden düzenleme teknikleri .. 89

Çizelge 5.7. FormMain sınıfının metrik ölçüm sonuçları ve matematiksel

model hesabı. ... 91

Çizelge 5.8. Oyun 2048 projesinde işlem yapılan kaynak dosya ve uygulanan

yeniden düzenleme teknikleri .. 92

Çizelge 5.9. Form1 sınıfının metrik ölçüm sonuçları ve matematiksel model

hesabı ... 93

Çizelge 5.10. Bordro yönetim sistemi projesinde işlem yapılan kaynak dosya

ve uygulanan yeniden düzenleme teknikleri 94

Çizelge 5.11. Employee sınıfının metrik ölçüm sonuçları ve matematiksel

model hesabı. ... 95

Çizelge 5.12. Otel yönetim sistemi projesinde işlem yapılan kaynak dosya ve

uygulanan yeniden düzenleme teknikleri 96

Çizelge 5.13. UpdateCustomer sınıfının metrik ölçüm sonuçları ve

matematiksel model hesabı. .. 97

Çizelge 5.14. Hastane yönetim sistemi projesinde işlem yapılan kaynak dosya

ve uygulanan yeniden düzenleme teknikleri 98

Çizelge 5.15. PatientBill sınıfının metrik ölçüm sonuçları ve matematiksel

model hesabı. ... 99

Çizelge 5.16. Çalışan yönetim sistemi projesinde işlem yapılan kaynak dosya

ve uygulanan yeniden düzenleme teknikleri 100

Çizelge 5.17. EmployeeDetails sınıfının metrik ölçüm sonuçları ve

matematiksel model hesabı. .. 101

Çizelge 5.18. Mobil-Oyun 2048 projesinde işlem yapılan kaynak dosya ve

uygulanan yeniden düzenleme teknikleri 102

Çizelge 5.19. Matrix sınıfının metrik ölçüm sonuçları ve matematiksel model

hesabı ... 103

ix

Çizelge 5.20. Mobil-Hesap makinesi projesinde işlem yapılan kaynak dosya

ve uygulanan yeniden düzenleme teknikleri 104

Çizelge 5.21. Calculator sınıfının metrik ölçüm sonuçları ve matematiksel

model hesabı. .. 105

SİMGELER VE KISALTMALAR DİZİNİ

G Graf
D Altgraf
GP İndüklenmiş altgraf
F Döngüsel olmayan altgraf
E Grafın ayrıt sayısı
N Grafın düğüm sayısı
P Ayrık bağlı bileşen sayısı
ek Düğüm çifti
e∗ Minimum ağırlıklı kenar
V Gerilim (voltaj)
I Elektrik akımı (amper)
T Zaman
Vc Kararsız olmayan kaynak voltajı
Pd Dinamik güç
C Kapasitans
A Aktivite faktörü
U Arama uzayı
u Düğüm ağırlığı
fi Amaç fonksiyonu
h j Maliyet fonksiyonu
gk Doğrusal olmayan fonksiyon
V Programın hacmi
n Programın kelime hazinesi
w Ağırlık fonksiyonu
AG Komşuluk matrisi
MG Bitişiklik matrisi
Rs Direnç
J Joule
CPU Merkezi işlemci birimi
GPU Grafik işlemci birimi
SDLC Yazılım geliştirme yaşam döngüsü
LOC Kod satır sayısı
DIT Kalıtım ağacı derinliği
CC Çevrimsel karmaşıklık
SLOC−L Mantıksal kod satır sayısı
MI Bakım yapılabilirlik indeksi
NOM Fonksiyon sayısı
MYA Minimum yayılan ağaç
SI Uluslararası birimler sistemi
SC Kaynak kod
GUI Grafiksel kullanıcı arayüz
GT Grafik teknolojileri

x

1. GİRİŞ

Günümüzde enerji tüketimi ve enerjiye bağımlılık tüm dünya ülkelerini ilgilendiren

güncel konulardan biridir (Tolga ve Turgut, 2018). Enerji tüketiminin giderek artması

sera etkisi yapan gazların atmosferdeki miktarında önemli artışlar yapmaktadır. Bu

gazların atmosfere salınımının artması sonucunda küresel ısınma ve küresel iklim

değişiklikleri meydana gelmektedir. Atmosferde meydana gelen artışlara en büyük

katkıyı yapan sera gazı karbondioksit gazıdır ve karbondioksit merkezli toplam sera

gazı emisyonu hesaplanmasında karbon ayak izi kullanılır (Civelekoğlu ve Bıyık,

2020). Karbon ayak izi işlemlerin yaşam boyunca çevreyi kirleticilikleri ile ilgili olup

insan faaliyetlerinin çevreye verdiği zararın birim karbondioksit veya karbon cinsinden

ölçülen miktarı olarak tarif edilmektedir (Yılmaz, 2014).

Dünyada artan populasyon ile birlikte iletişim ve bilgi teknolojilerinin kullanımı da

artmaktadır. Bu tür teknolojilerin devamlılığını sürdürebilmesi için sağlam altyapılar

kullanılması kaçınılmazdır. Altyapı kullanımı sonucunda enerji tüketimi büyük miktarda

artmakta ve bunun sonucunda dünyada her geçen gün karbon ayak izlerinin giderek

arttığı görülmektedir. Bu yüzden kullanılan enerji tüketiminin azaltılması gerekmektedir

(Agarwal vd., 2012).

Genel olarak dünyada enerji tüketimi ile ilgili belirli bir farkındalığın oluşması, yazılım

enerji tüketimi ile ilişkili çalışmaların araştırmacıların ilgisini çekmesini sağlamıştır.

Uygulayıcılar tarafından yeşil yazılım mühendisliği olarak adlandırılan yaklaşım

(Manotas vd., 2016), gelişmekte olan bir paradigmadır ve çevre üzerindeki olumsuz

etkileri azaltmak için yeşil özellikli yazılımlar geliştirmeyi amaçlamaktadır. Yazılım

mühendisliğinin alt araştırma alanlarından biri olan yeşil yazılım (Shenoy ve Eeratta,

2011), enerji tüketimi konusu kapsamında değerlendirilebilir. Bu kapsamda, kod

işlevini bozmadan enerji tüketimini düşürmeye yönelik hem donanımsal hem de

yazılımsal çözümler sunan çalışmalar mevcuttur (Hsu ve Kremer, 2003). Donanımsal

çözümler genellikle merkezi işlemci birimi (CPU) enerji tüketim gözlemine ve bu

tüketim değerinin tahminine veya kullanılan çevre birim elemanlarının ayarlarına

yönelik iyileştirmeleri içerir. Yazılım enerji tüketim çalışmaları genellikle mobil

programlama noktasında yoğunlaşmıştır. Bunun temel nedeni mobil cihazlardaki sık

1

şarj ihtiyacı olarak görülebilir. Ancak yazılım ölçeklerinin büyüme hızı ve bulut

bilişimdeki gelişmeler, kullanıcıların kişisel bilgisayarlardaki enerji tüketim düzeylerini

de yükseltmektedir. Bu yüzden yazılımsal çözümler ise kod işlevini bozmadan yazılım

için izlenen yazılım geliştirme süreci, kullanılan yeniden düzenleme tekniği gibi

konularda yapılan yenilik ve geliştirmeleri gözlemlemeye dayanır.

Yazılım geliştirme süreçlerinde önerilen iyileştirmeler ile yazılım enerji tüketimi

düşürülmeye çalışılmıştır. Konuyla ilgili olarak çevik yöntemlerdeki yenilikler göze

çarpmaktadır. Bu yapılırken, özellikle CPU veya grafik işlemci birimi (GPU) üzerindeki

işlem yükü azaltılmaya çalışılmıştır. İlgili işlemler; etkili algoritma geliştirmeyi,

çoklu-iş parçacığı yapısını, veri akışı üzerindeki düzenlemeleri, kod vektörleştirmeyi ve

ön bellek yapısının etkili kullanılmasını kapsar. Bunların dışında yeniden düzenleme

teknikleri kullanılarak kodun işlevi değiştirilmeden yapılan işlemler ile de enerji

tüketimi azaltılabilmektedir.

1.1. Motivasyon

Yazılım mühendisliğinde yazılım maliyet bütçesinin yüzde ellisinden fazlası bakım için

ayrılmaktadır (Turver ve Munro, 1994; Ahn vd., 2003). Bu bakım maliyeti çıkan hatalar

ile ilgili olmakla birlikte yazılım özelliklerinin yenilenmesi ve güçlendirilmesi ile de

ilgilidir. Özellikle mobil cihazlarda ve yüksek düzeyli bilgisayarlarda enerji tüketimi,

yönetilmesi ve kontrol edilmesi gereken bir unsurdur. Yazılım enerji tüketiminin

düşürülmesi hem hesaplama karmaşıklığı yükünü hafifletmekte hem de yeşil yazılım

olarak adlandırılan konuda ilerlemeyi sağlamaktadır. Bu noktada, yazılım enerji

tüketimine yönelik her çalışma yazılım ekonomisi kapsamında değerlendirilebilir.

Yazılım ekonomisini daha iyi yönetmeye yardımcı olan enerji tüketimi konusu daha

çok mobil yazılımlar için vazgeçilmezdir. Ancak yazılım mimarileri ve çevre

birimlerindeki değişim ile artan depolama ihtiyacı, hesaplama sistemlerinin daha fazla

enerji tüketmesine neden olmaktadır.

Kod yapısına ve yazılım geliştirme modeline göre enerji tüketim ipuçları belirleyen

çalışmalar literatürde mevcuttur. Ancak bu popülariteye rağmen sürekli değişen ve

gelişen yeniden düzenleme tekniklerinin enerji tüketimi açışından tek tek incelendiği

2

çalışmalar da mevcuttur. Nitekim geliştiriciler açışından seçilen yeniden düzenleme

tekniğine bağlı olarak yazılımın tükettiği enerjinin değişimini bilmek önemlidir (Park

vd., 2014). Dahası, yeniden düzenleme etkinliğinin uygulamalardaki farklılığa bağlı

olarak tutarlı olmadığı tespit edilmiştir (Sahin vd., 2014). Bu da deney veri seti ölçeğinin

olabildiğince geniş olması gerektiği sonucunu vermektedir. Bunun dışında, bir veya iki

yeniden düzenleme tekniğinin kullanımının enerji tüketimini ne kadar azalttığı da daha

önce araştırılmıştır (Kim vd., 2018). Kim ve arkadaşları, yedi farklı yeniden düzenleme

tekniği ile yapılan kombinasyonları gömülü sistem kodları üzerinde denemişlerdir.

Yeniden düzenleme tekniklerini bireysel uygulamak yerine ikili kombinasyon şeklinde

çalıştırmak enerji tüketimini daha çok düşürmüştür. Ancak çalışmanın kapsamı üç farklı

kombinasyon ile sınırlandırılmıştır. Ayrıca üç ve daha fazla sayıda kombinasyon göz

önüne alınmamış, ikili kombinasyonlar benzerliğe dayalı üretilmiştir. Diğer taraftan, son

zamanlarda araştırmacılar optimum yazılım sürdürülebilirliğini elde etmeye yardımcı

olan yeniden düzenleme tekniklerinin sırasını tespit etmeye (Tarwani ve Chug, 2020;

Gupta ve Chug, 2020) ve yazılımın sürdürülebilirliği ile enerji tüketimi arasındaki

ilişkiyi analiz etmeye odaklanmaktadırlar (Mancebo vd., 2021a). Araştırmalar mobil

cihazlarda ve yüksek düzeyli bilgisayarlarda enerji tüketiminin yönetilmesi ve kontrol

edilmesi gereken bir unsur olduğunu göstermektedir. Dahası kişisel bilgisayarın yılda

yaklaşık 175 kg karbondioksit salınım oluşturduğu göz önüne alındığında kodun enerji

tüketimini azaltan yöntemlere odaklanmak anlamlı hale gelmektedir.

1.2. Bilimsel Katkı

Tez çalışması kapsamında, kod yeniden düzenleme tekniklerinin açık kaynaklı nesne

yönelimli programlama dilleri ile yazılmış kaynak kodlar üzerindeki enerji etkisi

araştırıldı. Yazılım sistemlerinin enerji tüketimini azaltmaya yönelik olarak en iyi

yeniden düzenleme tekniklerinin sırasını elde eden bir önceliklendirme algoritması ve

otomasyon yazılımı geliştirildi. Yazılım metrikleri ve grafik tabanlı arama yaklaşımı,

metrik değerler yardımıyla düğüm maliyetini hesapladıktan sonra yeniden düzenleme

sırasını bulmak için kullanılır. Bu sıra, yazılım sürdürülebilirliği ve enerji açısından en

uygun sıra olarak kabul edilir. Tez ile ilgili çalışmalar nesne yönelimli programlama

dillerine ait bulguları kapsayacaktır. Bunun dışındaki programlama yapıları örneğin

endüstriyel otomasyon yazılımları ve mantıksal programlama tezin kapsamı dışındadır.

3

Tezin katkıları şu şekilde sıralanabilir: 1) Yeniden düzenleme tekniklerine öncelik

vermek için bir kompleks metrik tasarlanmıştır. 2) Yeniden düzenleme tekniklerinin

optimum sırasını elde etmek için Prim tabanlı bir algoritma geliştirilmiştir. 3) Bu

çalışma ayrıca statik kod analizini ve önerilen yöntemi içeren bir otomasyon yazılımı

sunmaktadır. 4) Bulgular, geliştiricilerin nesne yönelimli kodlarını yalnızca enerji

verimliliği açısından değil, aynı zamanda sürdürülebilirlik açısından da geliştirmelerine

yardımcı olacaktır.

4

2. KAYNAK ÖZETLERİ

Opdyke ve Johnson (1993) yaptıkları çalışmada, nesne yönelimli programlamada bir

dizi somut sınıfın soyut üst sınıfını yapmak için yeniden düzenleme diye adlandırılan

bir tür yapı iyileştirme dönüşümü üzerine odaklanmışlardır. Programları aşamalı

olarak yeniden yazma ve yapılarını iyileştirme teknikleriyle ilgilenmişlerdir. Ayrıca

nesne yönelimli dillerde yeniden düzenleme işlemlerinin otomasyonunun olmaması

dolayısıyla maliyetin yüksek olduğunu ifade etmişlerdir.

Tiwari vd. (1994) çalışmalarını kod derleme sürecinin bir mikroişlemci üzerinde çalışan

yazılımın enerji tüketimini nasıl etkileyebileceği üzerine yapmışlardır. Geleneksel

derleme tekniklerinin enerji azaltımı üzerindeki etkisini tartışmışlar ve bu konuda faydalı

olabilecek teknikleri gözden geçirmişlerdir. Switch işlemini azaltmak için komutları

tekrardan düzenleme işleminin enerji tüketimini azaltacağını ifade etmişlerdir. Ayrıca

en az içerik kaydedecek şekilde fonksiyon çağrılarını düzenleyen derleyici politikaları

kullanmak hafıza operandlarının kullanım sayısını düşüreceği için enerji tasarrufu

sağlanabileceğini vurgulamışlardır. Yazarlara göre dinamik Ram’de (sayfalama modu)

meydana gelen sayfa kayıpları enerji tüketimini artırmaktadır. Bu yüzden bellek erişimi

ve tahsisi yeniden düzenlenerek sayfa isabet (page hit) oranının yükseltilmesi ile enerji

tasarrufunun sağlanacağını belirtmişlerdir.

Moore (1996) nesne yönelimli programların çoğunun kusurlu biçimde kalıtım

hiyerarşileri ve kusurlu olarak ayrışmış yöntemler içerdiğini ve bu kusurlar bakımla

artma eğiliminde olduğunu ifade etmiştir. Yaptığı çalışmasında, kalıtım hiyerarşilerinin

ve programlardaki yöntemlerin otomatik olarak yeniden yapılandırılması için Guru diye

adlandırdığı bir prototip aracı sunmuştur. Yeniden düzenleme sürecinin otomasyonuna

yönelik katkılar sağlamıştır.

Demeyer vd. (2000) yaptıkları çalışmada, nesne yönelimli yazılım uygulamasındaki

yeniden düzenleme tespitini tersine mühendislik çabalarıyla tespit etmeye çalışmışlardır.

Uygulamada nerede değişiklik olduğunu bulabilmek için kod değişiklik metriklerini

(sınıf sayısı, metot sayısı, her sınıf için kalıtım sayısı) kullanmışlar ve sezgisel tarama

ile yazılım sisteminin ilgili bölümlerine odaklanmışlardır.

5

Tokuda ve Batory (2001) nesne yönelimli tasarımların yeniden düzenleme teknikleri

ile evrimleştirilmesi konusunda çalışmışlardır. İnceledikleri uygulamanın, yazılım

mühendisleri tarafından manuel olarak geliştirildiğini; fakat uyguladıkları yeniden

düzenleme teknikleri ile daha hızlı ve daha ucuz bir şekilde üretilebileceğini

göstermişlerdir. Ayrıca nesne yönelimli programlamalardaki ilerlemelerin yeniden

düzenleme tekniklerinin artmasını sağladığından bahsetmişlerdir.

Kataoka vd. (2002) yaptıkları çalışmada, yeniden düzenlemenin sürdürülebilirlik

artırıcı etkisini ölçmek için nicel bir değerlendirme yöntemi önermişlerdir.

Yeniden düzenlemenin etkisini değerlendirmek için birleştirici metrikler üzerine

odaklanmışlardır. C++ ile yazılmış en fazla 5 yıl süre sürdürülebilirliği olduğunu ifade

ettikleri yazılım üzerinde birleştirici diye ifade ettikleri metrikler göz önüne alınarak

yeniden düzenleme tekniklerini uygulamışlar ve yeniden düzenlemenin yazılımın

sürdürülebilirliğine etkisini gözlemlemişlerdir.

Mens ve Tourwé (2004), yeniden düzenleme ile yazılımın yeniden yapılandırılması

alanında mevcut araştırmalara kapsamlı bir bakış sunmuşlardır. Bu araştırmada, bir

dizi farklı kriterlere dayanarak (özel teknikler, faaliyetleri desteklemek için kullanılan

formalizmler vs.) karşılaştırılmalar yapılmış ve yeniden düzenlemenin yazılım sürecine

etkisi tartışılmıştır.

Higo vd. (2004) yaptıkları çalışmada, bir kaynak dosya içerisinde, diğerine özdeş

veya benzer bir kod parçacığı olarak adlandırılan kod klonlarını kaldırmak için

“Extract Method” ve “Pull Up Method” yeniden düzenleme tekniklerini de kullanan

bir yöntem sunmuşlardır. Çalışmaları sonucunda uyguladıkları kaynak dosyada 2 adet

klonlanmış sınıf tespit etmişler ve uyguladıkları yeniden düzenleme teknikleri ile kodun

fonksiyonelliğini değiştirmeden klonlanmış kodları indirgemişlerdir.

Binkley vd. (2006) yaptıkları çalışmada, nesne yönelimli programlama (OOP) ile

geliştirilen programın bağlam yönelimli (aspect-oriented) programlamaya (A0P)

transferi sorununa otomatik bir yaklaşım sunmuşlardır. Nesne yönelimli programladan

bağlam yönelimli programlamaya transfer için AOP-Migrator isimli bir araç

kullanmışlardır. 6 adet yeniden düzenleme tekniği tanımlanmış ve bu araca otomatik

6

olarak verilmiştir. Çalışma sonuçları, transferin büyük ölçüde otomatik şekilde OOP’den

AOP’ye geçmenin mümkün olduğunu fakat yeniden düzenleme tekniklerin her zaman

doğrudan uygulanabilir olmadıklarını göstermiştir.

Taina ve Pohjalainen (2009) çalışmalarını yeşil yazılımın mihenk taşlarından olan “yeşil

metrikler” üzerine yapmışlardır. İklim değişikliğine karşı savunmada yazılımların

önemli rol oynayacağı görüşünü belirtmişlerdir. Sera gazı salınımını azaltmak için

yazılımlarda üretilen karbon ayak izlerini ve işlemcilerin cycle kullanımı ile tüketilen

enerjilerini vurgulamışlardır.

Taina (2010) çalışmasında, yazılım karbon ayak izlerini analiz etmek için bir yaklaşım

sunmuştur. Sunulan yaklaşım tipik bir yazılım yaşam döngüsünü adım adım analiz

ederek her adımın ne kadar büyük karbon ayak izleri üretildiğini tahmin etmektedir.

Yeşil yazılım açısından bakıldığında, yazılımın nasıl geliştirileceği, nasıl dağıtılacağı

ve nasıl kullanılacağının önemli olduğunu vurgulamıştır. Yeşil olduğunu iddia eden

bir yazılım satıcısının yazılımının küçük bir karbon ayak izi olduğunu göstermesi

gerektiğini ifade etmiştir.

Silva vd. (2010) yaptıkları çalışmada, “inline refactoring” yöntemini Java dili ile

yazılmış gömülü yazılım için geliştirilmiş uygulamaların kodlarına uygulamışlardır.

Yöntemin performans ve enerji tüketimi üzerindeki etkilerini incelenmişlerdir. Address

Book, Sokoban ve Mpeg Decoder uygulamalarını kullanmışlardır. Yöntemin Addres

Book ve Sokoban uygulamalarında performansın arttığını ve enerji tüketiminin

azaldığını gözlemlemişlerdir. Fakat en karmaşık analiz uygulaması olan Mpeg Decoder

aynı sonuçları vermemiştir. Çünkü uygulama çok karmaşık yöntemler içermesinin yanı

sıra yöntemlerin değişken havuzunda adreslenecek çok sayıda değişkene sahip olması

durumunda bir kazanca yol açmadığını ifade etmişlerdir.

Naumann vd. (2011) yaptıkları çalışmada, “Yeşil ve Sürdürülebilir Yazılım” ve “Yeşil

ve Sürdürülebilir Yazılım Mühendisliği” terimlerinin tanımlarını önermişler, daha sonra

kavramsal referans model olan GreenSoft Modeli’nden ana hatlarıyla bahsetmişlerdir.

Bu model yazılım ürünleri için ekonomik, toplumsal ve ekolojik etkilerin ve tüm yaşam

7

döngüsü boyunca üründen kaynaklanan insan üzerindeki etkilerinin mümkün olduğunca

küçük olması gerektiği anlamına gelmektedir.

Shenoy ve Eeratta (2011) çalışmalarında, yeşil yazılım ve geliştirme sürecinde çevre

üzerindeki zararlı etkileri en aza indirmek için yazılım geliştirme aşamalarında

iyileştirmeler önermektedirler. Ayrıca daha düşük karbon emisyonlarına, güç, kâğıt

kullanımına yol açabilecek ve kuruluşların daha çevreci ve sürdürülebilir yazılım

geliştirmeye doğru ilerlemesine yardımcı olabilecek uygun yeşil yazılım parametreleri

sunmaktadırlar.

Chen ve Wang (2012) yaptıkları çalışmada, grafiksel kullanıcı arayüz test scriptleri

içerisindeki problemli bölümler diye tanımlanan kötü kokuları tespit etmişler ve bunlara

yeniden düzenleme teknikleri uygulamışlardır. Çalışma sonucunda kötü kokuları

gidermede yeniden düzenleme tekniklerinin yararlı olduğunu gözlemlemişlerdir.

Gottschalk vd. (2012) çalışmalarını çevresel kaynakları korumanın yanında bilgi ve

iletişim teknolojisinin kabul edilebilir bir enerji tüketimini sürdürmek için mobil

cihazların enerji tüketimi üzerine yapmışlardır. Mobil cihazlardaki uygulama

yazılımlarının kaynak kodları üzerinde tespit edilen kötü kokuları yeniden düzenleme

teknikleri ile optimize etmişler ve böylece uygulamanın enerji tüketimini azaltmışlardır.

Ayrıca kötü koku çeşitlerinden olan “loop bug”, “dead code”, “moving too much data”,

“immortality bug” için çözüm önerileri sunmuşlardır.

Agarwal vd. (2012) yaptıkları çalışmada, yazılımın sürdürülebilirlik yönlerini ele

almışlardır. Ayrıca Yazılım Geliştirme Yaşam Döngüsü (SDLC) modelleri, yazılımın

ve geliştirme sürecinin sürdürülebilirliği ve daha yeşil yönlerini ele almadıklarını

veya bunların üzerinde durmadıklarını vurgulamışlardır. Yazılım geliştirmenin

daha yeşil yönlerini de içerecek şekilde SDLC modellerinde iyileştirmeler üzerine

odaklanmışlardır.

Mahmoud ve Ahmad (2013) yaptıkları çalışmada, yazılım mühendislerinin yazılım

geliştirme sürecine yardımcı olmak ve yazılımın çevre güvenliğini sağlamak için

sürdürülebilir bir yazılım modeli oluşturma üzerine odaklanmışlardır. Mühendislik

8

sürecinde her bir yazılım aşaması için yeşil yönergeler veya yeşil süreçler önermişlerdir.

Böylece yeşil ve sürdürülebilir bir yazılıma ulaşmayı hedeflemişlerdir.

Dick vd. (2013) yaptıkları çalışmada, yazılımda yeşil ve sürdürülebilir geliştirmeleri

Scrum’a entegre ederek, genel bir süreç modeli sunmuşlardır. Böylece Scrum

çevik geliştirme modelinde geliştirme yapılarak enerji tüketiminin düşürülmesini

amaçlamışlardır. Ayrıca, geliştirilen model ile yazılım mühendislerinin yeşil ve

sürdürülebilir yazılım ürünleri geliştirmede desteklenmesi öngörülmüştür.

Gottschalk vd. (2013), çalışma kapsamında Android uygulamaları için güç

tüketimi konusunu ele almışlardır. Bir mobil uygulama için güç atığı koşullarını

tanımlamışlar ve sonra atık koşullarını çözmek için bir kod yeniden düzenleme tekniği

önermişlerdir. Ayrıca önerilen tekniğin enerji verimliliğini arttırmaya uygun olduğunu

belirtmişlerdir. Ancak detay iyileştirme sürecini başkalarının kullanımına yetecek kadar

açıklanmamıştır.

Kwon ve Tilevich (2013), yaptıkları çalışmada, enerji tüketimini azaltmak için mobil

uygulamaların bakımına yönelik adaptive multi-target cloud offloading adını verdikleri

yeni bir yaklaşım sunmuşlardır. Cloud offloading, uygulamanın mobil cihazının

pilini boşaltmadan uygulamanın enerji yoğun işlevselliğini yürütmeyi mümkün

kılan bir mobil uygulama optimizasyon tekniğidir. Kaynak kodlarını değiştirmeden

mobil uygulamaların enerji tüketimini işlemci ve ağ iletişimi (Wi-fi, 4G) açısından

incelemişlerdir. Gözlemleri sonuçlarının umut verici olduğunu bildirmişlerdir.

Dinita vd. (2013) yaptıkları çalışmada, bir bulut içinde sanallaştırılmış sunucuların

mobilitesi aracılığıyla internet / ağ kullanımının optimizasyonuna ve donanım güç

tüketimini geliştirmeye odaklanmışlardır. Enerji tüketimine yönelik farklı işlemci yük

oranları ile testler yapmışlar ve hızın kritik olmadığı durumlarda clock hızını azaltmanın

enerji tüketimini düşürdüğünü tespit etmişlerdir.

Park vd. (2014) çalışmalarında, mevcut yeniden düzenleme tekniklerinin verimli enerji

yazılım üretimini destekleyip desteklemediğini araştırmayı amaçlamışlardır. Mevcut

teknikler tarafından üretilen yeniden düzenlenmiş kodların orijinal kodlardan daha fazla

9

güç tüketebileceklerini çünkü yeniden düzenleme süreçlerindeki güç tüketimini dikkate

almadıklarını belirtmişlerdir. Bu yüzden, Martin Fowler’ın 63 adet yeniden düzenleme

tekniği için güç tüketimini hesaplamışlar ve analiz etmişlerdir. Sonuçta, bunlar arasında

33 tekniğin verimli enerji yeniden düzenleme tekniği olduğu tespit edilmiştir.

Parsai vd. (2015) yaptıkları çalışmada, yazılım test kodlarına yeniden düzenleme

teknikleri uyguladıktan sonra test kodlarının davranışlarına yönelik mutasyon testleri

uygulamışlardır. Mutasyon testleri, yazılıma test öncesi hatalar yükleyip sonrasında

testin bu hataların ne kadarını yakaladığına yönelik bir tür test tekniğidir. Çalışmalarının,

test kodları üzerinde uygun olmayan şekilde yapılan yeniden düzenleme kısımlarını da

aydınlatmaya yönelik olduğunu belirtmişlerdir.

Xuan vd. (2016), yazılım test kodlarındaki dinamik analiz işlemlerinin geliştirilmesine

yönelik yeni bir yeniden düzenleme yaklaşımı üzerine çalışmışlardır. B-Refactoring

olarak adlandırdıkları, test edilebilirliğini değiştirmeden test durumlarını daha küçük

test durumlarına bölme prensibine dayanan bu teknik ile dinamik analiz için daha iyi

kontrol akışı sağlamayı hedeflemişlerdir.

Manotas vd. (2016), yazılım uygulayıcıların yazılımlarını geliştirirken gereksinimleri

belirledikleri sırada, tasarım yaptıkları sırada, test ettikleri sırada ve yazılımlarına bakım

yaptıkları sırada enerji kavramı hakkında ne düşündükleri üzerine yapılan ilk deneysel

çalışmayı sunmuşlardır. Deney Google, Microsoft, ABB ve IBM çalışanlarından

oluşan 464 kişilik yazılım uygulayıcılarından oluşmaktadır. Toplanan verilerden elde

ettikleri sonuçlar, mevcut yeşil yazılım mühendisliği araştırmasıyla bağdaşmakta ve

uygulayıcıların uygulamalarının enerji kullanımını iyileştirmelerine yardımcı olacak

stratejiler ve araçlar geliştirmeyi amaçladıklarını göstermektedir.

Morales vd. (2017) yaptıkları çalışmada, An Energy-Aware Refactoring Approach

for Mobile Apps isimli enerji tüketimini kontrol ederken mobil uygulamaları için

kod yeniden düzenlemeye yönelik yeni bir model (anti-desen) doğrulama yaklaşımı

önermişlerdir. Modeli evrimsel çokamaçlı optimizasyon algoritmaları kullanarak

test etmişlerdir. Bu yaklaşım, enerji tüketimini düşürebilecek yeniden düzenleme

10

tekniklerini önermektedir. Çalışmaları sonucunda varsayılan ayarlarda mobil telefonun

batarya ömrünü % 29 artırmayı başarmışlardır.

Barack ve Huang (2018) Greenup, Powerup ve Speedup metriklerini kullanarak bir

mobil yazılım sistemindeki kod yeniden düzenleme tekniklerinin enerji verimliliği ve

performans açısından değerlendirmesine yönelik bir çalışma sunmuşlardır. Fowler’ın

çalışmalarını kullanarak örnek kodu çalıştıran bir Android uygulaması geliştirmişler

ve mobil uygulama yazılımına 21 kod yeniden düzenleme tekniğini uygulamışlardır.

Akabinde, kod yeniden düzenleme tekniğini on kategoriden birine sınıflandırmak için

sonuçlara önerilen metrikleri uygulamışlardır. İlk 5 kategori enerji tüketimini düşüren

yeşil alanı sonraki 5 ise enerji tüketimini artıran kırmızı alanı temsil etmektedir. Yeşil

alanda 9 yeniden düzenleme tekniği ve kırmızı alanda 12 yeniden düzenleme tekniği

olacak şekilde sınıflandırmışlardır. Elde edilen sonuçlar, her kod yeniden düzenleme

tekniği için performans ve enerji verimliliği arasındaki karşılıklı ilişkiyi göstermektedir.

Kim vd. (2018) çalışmalarında, gömülü sistemlerden elde edilen kodlarda yedi

farklı yeniden düzenleme tekniğinin ve bunların bazı ikili kombinasyonlarının enerji

tüketimindeki etkisini araştırmışlardır. % 2.4 oranında enerji tüketiminin düşürülebildiği

çalışmanın tek programlama dilindeki kodlar üzerinde yapıldığı görülmektedir.

Çalışmada vurgulanan önemli noktalardan biri yeniden düzenleme tekniklerinin farklı

kombinasyonlarının da nasıl seçilmesi gerektiğidir. Bunun da bir başka araştırma

konusu olabileceği vurgulanmıştır.

Anwar vd. (2019) çalışmalarında, Android açık kaynak uygulamalarının önce tür başına

ayrı ayrı ve sonra permütasyonlu bir şekilde beş kod koku türü yeniden düzenlemelerinin

enerji tüketimine etkisini araştırmışlardır. Ayrıca yeniden düzenlemeler kullanmanın

yerel Android açık kaynak uygulamalarının yürütme süresi üzerindeki etkisini de

incelemişlerdir. Sonuç olarak "Yinelenen kod" ve "Tip Kontrolü" için kaydedilen

maksimum enerji azaltımının sırasıyla % 10,8 ve % 10,5 olduğu görülmektedir. Kod

kokusu yeniden düzenlemelerinin belirli permütasyonları, enerji tüketimi etkileri seçilen

Android uygulamaları arasında büyük ölçüde farklılık gösterebileceğinden dikkatli

kullanılması yönünde görüş bildirmişler ve seçili Android uygulamalarında yürütme

süresinde önemli bir artış veya azalma gözlemlememişlerdir.

11

Connolly Bree ve Cinnéide (2020) çalışmalarında, temsilci ve kalıtımdan oluşan iki

yeniden düzenlemenin bir programın enerji tüketimi üzerindeki etkisini karşılaştırmak

için bir kavram kanıtı deneyi gerçekleştirmişler. Aynı programın biri kalıtımla, diğeri

temsilciyle uygulanan iki versiyonu yazılmıştır. Kalıtımdan yararlanan program

sürümünün çalışma süresinde % 77’nin üzerinde bir azalma sağlanmış ve güç tüketimi,

temsilciye kıyasla % 4’ün üzerinde azalmıştır.

Sehgal vd. (2020), yeniden düzenleme işleminin güç kullanımının azaltılmasında nasıl

önemli bir role sahip olduğunu araştırmışlardır. Bu çalışma, uygun yeniden düzenleme

tekniklerinin uygulanması ile pil tüketimini azalttığını ortaya koymuştur. Sonuç olarak,

yeniden düzenleme tekniği ile kodun iyileştirilmesinin, enerji verimliliğine yönelik iyi

bir adım olduğu vurgusu yapılmıştır.

Mancebo vd. (2021a), yazılımın enerji tüketimi ile sürdürülebilirliği arasında bir ilişki

olup olmadığını test etmek için ampirik bir çalışma gerçekleştirmişlerdir. Bu çalışma

bakım yapılabilirlik, kod satırı sayısı ve yazılımın karmaşıklığı gibi farklı metrikler

aracılığıyla değerlendirilmiştir. Elde edilen sonuçlar, kod satır sayısının hem işlemcinin

enerji tüketimini hem de yazılımın çalıştırıldığı bilgisayarın toplam enerji tüketimini

etkilediğini göstermiştir.

12

3. GENEL BİLGİLER

Yeniden düzenleme kavramı, yeniden düzenleme teknikleri, yazılım metrikleri, metin

madenciliği, metin madenciliği alanları, kavramları ve teknikleri, kombinatoryal

optimizasyon, graf teorisi, minimum yayılan ağaç ve algoritmaları, enerjinin genel

tanımı ve bu araştırmada kullanılan diğer teknikler ve araçlar ile ilgili genel bilgiler bu

bölümde açıklanmaktadır. Bahsi geçen kavram ve tekniklerin açıklanmasının ardından,

tez kapsamıyla ilgili diğer çalışmalar ele alınmaktadır.

3.1. Yeniden Düzenleme

Yazılım sisteminindeki kodun dış davranışını değiştirmeyecek şekilde iç yapısında

iyileştirmelere gidilerek kodu değiştirmek gerekebilir. Kodun dışsal davranışını

değiştirmeden sürdürülebilirliğini, okunabilirliğini artırmak ve karmaşıklığını düşürmek

için kod üzerinde yapılan değişiklik kod yeniden düzenleme olarak adlandırılmaktadır

(Fowler vd., 1999).

Kod yeniden düzenleme, mevcut olan kodun gövdesini yeniden yapılandırarak kodun

dış davranışını değiştirmeden iç yapısını değiştirmek için kullanılan disiplinli bir

tekniktir. Bu teknik, her bir bilgisayar programının kaynak kodunda işlevsel olmayan

gereksinimlere uygunluğunu değiştirmeden ufak değişiklikler içeren bir dizi yeniden

düzenleme yoluyla yapılandırma sürecini kapsar (Kaur ve Kaur, 2016). Kısaca, kodun

kalitesini artırmak için yazılım sisteminin işlevsel olmayan özelliklerini iyileştirmeye

yönelik gerçekleştirilmektedir.

Martin Fowler (Fowler, 2018), yeniden düzenlemenin geliştiricilerin daha hızlı

programlama yapmalarına, hataları bulmalarına ve yazılım tasarımını iyileştirmelerine

yardımcı olduğunu belirtir. Yeniden düzenleme, kaynak kodun sürdürülebilirliğini

iyileştirmek için geliştirilmiş kod okunabilirliği ve azaltılmış karmaşıklığın yanı sıra

genişletilebilirliği iyileştirmek için daha etkileyici bir iç dizayn elde etmeyi hedefleyen

bir tekniktir. Ayrıca, yazılımın performansı veya güvenilirliği gibi diğer yazılım

niteliklerini geliştirmek için de kullanılmaktadır (Kwon vd., 2013; Park ve Hong, 2013).

Bu niteliklerin yanında yeni bir yazılım kalite faktörü olarak değerlendirilen enerji

13

verimliliği açısından da incelenmektedir (Park vd., 2014; Kim vd., 2018; Sehgal vd.,

2020). Yazılım mühendisleri sürdürülebilirliği iyileştirmek için eski kodlarını yeniden

düzenlediklerinde, yeniden düzenleme, enerji tüketimi açısından orijinal eski koddan

daha fazla enerji tüketen herhangi bir kod üretebilir (Park vd., 2014).

Kod üzerinde yeniden düzenleme ile değişiklikler yapılırken dikkat edilmesi gereken

en önemli nokta, kodun temeldeki işlevselliğini etkilememesi gerektiğidir. Bu yüzden,

yapılan değişiklikler tam anlamıyla kodu kolaylaştırmak içindir. Manuel yeniden

düzenleme genellikle hataya açıktır ve zaman alır (Roberts, 1999). Örneğin, bir yöntemi

yeniden adlandırmak, yöntemin yeni adının henüz kullanımda olmadığının kontrol

edilmesini ve tüm çağrıların güncellenmesini gerektirir. Açıkça zaman alıcı olmasının

yanı sıra, bu işlem aynı zamanda hataya da meyillidir çünkü polimorfizm, unutulmuş

bir güncellemenin doğru bir şekilde derlenmesine neden olabilir, ancak yazılımın

davranışını yanlışlıkla değiştirebilir. Bu, bakımcının değiştirilen işlevselliği manuel

olarak bulmasını ve atlanan çağrıyı güncellemesini gerektirir. Böyle durumlarda yeniden

düzenleme genellikle gerçekleştirilmez ve yazılımın yapısı, işlevsel değişikliklerin bir

sonucu olarak bozulur. Fakat otomatik yeniden düzenleme araçları sayesinde bu tür

sorunlar ortadan kaldırılabilir. Çünkü otomatik yeniden düzenleme, ön koşulların

kullanılmasıyla mümkün kılınmıştır ve bunların yerine getirilmesi sonucunda, yeniden

düzenlemenin davranışları koruyacağını garanti eder (Kaur ve Kaur, 2016).

3.1.1. Yeniden düzenleme teknikleri

Yazılım mühendisliğinde bazı yöntemler programın enerji tüketimini ve performansını

doğrudan etkileyebilir (Silva vd., 2010). Bunlardan biri de yeniden düzenleme

teknikleridir. Kaynak koda doğru şekilde uygulanan yeniden düzenleme teknikleri,

yalnızca kodun kalitesini artırmaz aynı zamanda bir uygulama tarafından tüketilen

enerjiyi de etkiler (Papadopoulos vd., 2018). Yeniden düzenleme teknikleri uygulanmış

kodlar orijinal kodlara göre enerji tüketimini artırabilir (Kim vd., 2018).

Yazılım geliştiricileri, mühendisleri veya araştırmacıları, açık kaynaklı yazılım

geliştirmeyi sürdürmek için daha kararlı yeniden düzenleme teknikleri kullanmak

istemektedir. Yeniden düzenleme teknikleri, yazılım endüstrisindeki birçok bilgisayar

14

programında uygulanabilir. Bu programlar nesne yönelimli dillerle yazılabilir. Nesneye

yönelik programlamada kullanılabilecek birçok yeniden düzenleme tekniği vardır. Fakat

bazı yeniden düzenleme teknikleri enerji tüketimine olumlu katkı sunarken bazıları ise

enerji tüketimini olumsuz etkilemektedir (Park vd., 2014).

Verilen bilgiler doğrultusunda, tez kapsamında toplamda 78 adet yeniden düzenleme

tekniğini incelenmiş olup yazılımın enerji tüketimi ve kod performansı açısından önemli

görülen 40 adet teknik Çizelge 3.1’de verilmektedir. Çalışma kapsamında tekniklerin

birbirleri ile etkileşimleri sonucunda enerji verimliliğine olumlu katkı sunan yeniden

düzenleme tekniği sayısı projelere göre değişiklik gösterebilmektedir. Bu doğrultuda,

tekniklerden önemli görülenlerin bireysel olarak genel çalışma mantıkları aşağıda

detaylı bir şekilde anlatılmaktadır.

3.1.1.1. Simplify nested loop

Çift döngü (iç içe döngü) genellikle iki boyutlu bir diziyi işlemek için kullanılır. Bununla

birlikte bu teknik, yuvalanmış döngü yapısını tek bir döngüye dönüştürür (Kim vd.,

2018). Döngü bloğu içindeki işlemler, iç içe döngü yapısındaki dizi öğelerine erişmek

için dizin kullanan ifadelerle açıklanmış ise dizi işaretçisi ve tek döngü kullanılarak bu

iç içe döngü yapısının yerine kullanılabilir (Kim vd., 2018). Şekil 3.1’de iki farklı kod

parçası görülmektedir. Şekil 3.1(a) orijinal kod parçasını temsil ederken, Şekil 3.1(b)

Simplify Nested Loop uygulanmış kod parçasını göstermektedir.

(a) Orijinal (b) Simplify Nested Loop

Şekil 3.1. Orijinal kod parçası ve simplify nested loop uygulanmış kod parçası (Kim
vd., 2018)

15

Çizelge 3.1. Önerilen yeniden düzenleme teknikleri listesi

Yeniden Düzenleme Teknik Adı
• Simplify Nested Loop
• Inline Method
• Replace Temp with Query
• Introduce Explaining Variable
• Split Temporary Variable
• Inline Temp
• Remove Assignment to Parameters
• Replace Method with Method Object
• Substitute Algorithm
• Hide Delegate
• Move Method
• Move Field
• Extract Class
• Inline Class
• Introduce Foreign Method
• Remove Middle Man
• Introduce Local Extension
• Self Encapsulate Field
• Replace Array with Object
• Replace Magic Number with Symbolic Constant
• Change Reference to Value
• Replace Subclass with Fields
• Encapsulate Field
• Encapsulate Collection
• Decompose Conditional
• Consolidate Conditional Expression
• Consolidate Duplicate Conditional Fragments
• Remove Control Flag
• Rename Method
• Add Parameter
• Remove Parameter
• Separate Query from Modifier
• Parameterize Method
• Replace Parameter with Explicit Methods
• Introduce Parameter Object
• Remove Setting Method
• Pull Up Method
• Pull Up Field
• Push Down Field
• Collapse Hierarchy

16

3.1.1.2. Inline method

Gereksiz yöntemlerin sayısını en aza indirmek, kodu daha sade hale getirecektir

(Refactoring, 2021). Böylece kod tekrarının önüne geçilecek ve kodun sürdürülebilirliği

artacaktır. Şekil 3.2’de iki farklı kod parçası görülmektedir. Bu kodlar C# dilinde

yazılmış ve aynı işleve sahiptir. Şekil 3.2(a) orijinal kod parçasını temsil ederken, Şekil

3.2(b) Inline Method uygulanmış kod parçasını göstermektedir. Şekil 3.2(b)’deki kod

satır sayısı daha azdır.

(a) Orijinal (b) Inline Method

Şekil 3.2. Orijinal kod parçası ve inline method uygulanmış kod parçası

Yukarıdaki kod satırlarında olduğu gibi yöntemin gövdesi yöntemin kendisinden daha

açık olduğunda bu yöntemin kullanılması kodu daha açık hale getirmiş olacaktır.

3.1.1.3. Introduce explaining variable

Karmaşık ifadelerin ve koşullu ifadelerin düşük düzeyde basitleştirilmesi yeniden

düzenleme tiplerinin özellikleri arasındadır (Counsell vd., 2015). Bunlardan biri olan

Introduce Explaining Variable, karmaşık bir ifadeyi basitleştiren, düşük seviyeli bir kod

tabanlı yeniden düzenleme tekniğidir (Counsell vd., 2015). Teknik kodun içerisinde

karmaşık bir ifade tespit ederse ifadenin sonucunu veya ifadenin bölümlerini amacı

açıklayan bir adla birlikte geçici bir değişkene koyar (Fowler vd., 1999). Böylece koda

yeni değişkenlerin tanıtılmasıyla karmaşık ifade basitleştirilir. Şekil 3.3(a) orijinal kod

17

parçasını temsil ederken, Şekil 3.3(b) Introduce Explaining Variable uygulanmış kod

parçasını göstermektedir.

(a) Orijinal

(b) Introduce Explaining Variable

Şekil 3.3. Orijinal kod parçası ve introduce explaining variable uygulanmış kod parçası
(Fowler vd., 1999)

Geçici değişkenler, yalnızca bir yöntem bağlamında kullanışlıdır. Bir yöntem,

nesnenin tamamında ve diğer nesnelerde kullanılabilir (Fowler vd., 1999). Fakat yerel

değişkenlerin Extract Method gibi tekniklerin kullanımını zorlaştırdığı zamanlar yerine

bu tekniği kullanmak avantaj sağlayabilir. Teknik bir koşulun her bir cümlesini almanın

ve koşulun ne anlama geldiğini iyi adlandırılmış bir geçici ile açıklamanın yararlı olduğu

koşullu mantık ile değerlidir (Fowler vd., 1999). Diğer taraftan bu tekniğin uygulandığı

yerlerde sınıfların daha büyük ve daha yüksek oranda bağlı olma eğiliminde olduğu

bilinmektedir (Counsell vd., 2015).

3.1.1.4. Inline temp

Kod bloğu içerisinde basit bir ifadenin sonucunu atayan ve daha fazlası olmayan geçici

bir değişken var ise bu değişkeni ifadenin kendisi ile değiştirmek gerekebilir (Fowler

vd., 1999). Böyle durumlarda Inline Temp yeniden düzenleme tekniğini kullanmak

gerekir. Şekil 3.4(a) orijinal kod parçasını temsil ederken, Şekil 3.4(b) Inline Temp

uygulanmış kod parçasını göstermektedir.

18

(a) Orijinal (b) Inline Temp

Şekil 3.4. Orijinal kod parçası ve inline temp uygulanmış kod parçası

Kod bloğunda tabanFiyat değişkeninin referansı “fiyat.TabanFiyat()” ifadesinin referansı

ile değiştirilmiştir. Geçici değişkenlerin silinmesi, gereksiz geçici değişkeni ana

belleklerden ve önbellek belleklerden alma süresini kısaltmaktadır. Bununla birlikte,

eğer değişken bir yöntemin sonucuna atanmışsa, gereksiz değişkenden kurtularak

programın okunabilirliği marjinal olarak artırılabilir.

3.1.1.5. Inline class

Bir sınıf bazen neredeyse hiçbir işlem yapmaz veya hiçbir seyden sorumlu değildir.

Böyle durumlarda sınıfın bütün özelliklerini ilişkili olduğu diğer sınıfa devretmek

devredilen sınıfın boyutunu artıracak fakat sınıflar arası bağlantıyı azaltacaktır (Elish

ve Alshayeb, 2011). Yeniden düzenleme tekniklerinden biri olan Inline Class, Şekil

3.5(a) orijinal kod parçasının diyagram halini temsil ederken, Şekil 3.5(b) Inline Class

uygulanmış hali diyagram üzerinde verilmiştir.

(a) Orijinal (b) Inline Class

Şekil 3.5. Orijinal kod parçası ve inline class uygulanmış kod parçası

Posta sınıfında, İl sınıfında bulunan genel alanları ve yöntemleri oluşturduktan

sonra, Posta sınıfının metotu İl sınıfının eşdeğer metotuna karşılık gelecek şekilde

19

düzenlenmelidir. Gerekli düzenlemeler yapıldıktan sonra programın çalışması test

edilmeli ve herhangi bir hata bulunmadığından emin olunmalıdır. Move Method ve

Move Field işlemi kullanılarak metotlar ve alanlar Posta sınıfına aktarılır. Bu işleme

İl sınıfı boş kalana kadar devam edilir. Sonunda İl sınıfı silinir. Bu teknik ile gereksiz

sınıf ortadan kaldırılarak bellekte yer açılmasına ve programın daha iyi performansta

çalışmasına olanak sağlanır.

3.1.1.6. Self encapsulate field

Bir sınıf içindeki özel alanlara sınıf içerisinden doğrudan erişim olanağı bulunmaktadır.

Bu özel alanlar için bir “getter” ve “setter” oluşturulmaktadır ve sadece alana erişmek

için bu yeniden düzenleme tekniğini kullanmak gerekmektedir. Bazen bir sınıf

içindeki özel alana doğrudan erişebilmek yeterince esnek değildir. Bu teknik sayesinde

ilk sorgulama yapıldığında bir alan değeri başlatabilir veya atandığında alanın yeni

değerlerinde belirli işlemler gerçekleştirilebilir. Şekil 3.6(a) orijinal kod parçasının

diyagram halini temsil ederken, Şekil 3.6(b) Self Encapsulate Field uygulanmış halini

temsil etmektedir.

(a) Orijinal (b) Self Encapsulate Field

Şekil 3.6. Orijinal kod parçası ve self encapsulate field uygulanmış kod parçası

Alanlara dolaylı erişim, bir alanın erişim yöntemleri (getter ve setter) aracılığıyla

gerçekleştirildiği zamandır. Bu yaklaşım, alanlara doğrudan erişimden çok daha esnektir.

Ayrıca alt sınıflardaki “getter” ve “setter” yeniden tanımlanabilir. Alan değeri sadece

20

kurucuda belirtilir, böylece alanın tüm ömrü boyunca alan değiştirilemez. Fakat, alanlara

doğrudan erişim kullanıldığında esneklik azalsa da kod daha basit ve daha bakımlı

görünmektedir.

3.1.1.7. Replace magic number with symbolic constant

Sihirli sayı diye ifade edilen bir sayı, kaynak kod içerisinde karşılaşılan fakat açık bir

anlam ifade etmeyen sayısal verilere denmektedir. Bir problemin çözümünde bu tür

anti-desen çözümler kullanmak yazılım geliştirme, değiştirme ve bakım aşamalarında

çok büyük sorunlara yol açabilmektedir. Örnek verecek olursak, bu sihirli sayıyı

değiştirmemiz gerektiğinde "bul ve değiştir" mantığı işe yaramayabilir (Fowler vd.,

1999). Çünkü aynı sayı farklı yerlerde farklı amaçlar için kullanılabilir. Bu yüzden

bu sayıyı kullanan her kod satırını tek tek incelemek gerekir ki bu da maliyeti artıran

bir unsurdur. Böyle durumlarda Replace Magic Number with Symbolic Constant

yaklaşımını kullanmak gerekmektedir. Şekil 3.7(a) orijinal kod parçasını temsil ederken,

Şekil 3.7(b) Replace Magic Number with Symbolic Constant uygulanmış kod parçasını

ifade etmektedir.

(a) Orijinal (b) Replace Magic Number with Symbolic Constant

Şekil 3.7. Orijinal kod parçası ve replace magic number with symbolic constant
uygulanmış kod parçası

Bu teknik bir sabitin değerini değiştirmek, başka bir yerde farklı bir amaç için kullanılan

aynı sayıyı yanlışlıkla değiştirme riski olmadan düzenlemeyi sağlar. Değiştirilecek

sayıyı tüm kod tabanı boyunca aramaktan çok daha kolaydır. Ayrıca sayının bellekte

birden fazla kopyası oluşmasının da önüne geçilmekte ve değer karmaşası sorunu da

giderilmektedir. Böylece kodun okunabilirliği iyileştirilir ve bakım maliyeti azaltılmış

olur.

21

3.1.1.8. Encapsulate field

Nesne yönelimli programlamanın temel taşlarından biri (Refactoring, 2021), nesne

verilerini başka sınıf veya nesnelerden gizleme özelliği olarak bilinen Kapsülleme

(Encapsulate)’dir. Private erişim belirleyici ile tanımlanan bir alan (field) başka

sınıflardan gizlenmiş olur. Aynı zamanda bu alan başka sınıflarda kullanılamaz.

Protected erişim belirleyici ile bulunduğu sınıf ve ondan türetilen diğer sınıflar

içerisinden nesne verilerine erişim sağlanmaktadır. Kapsülleme sayesinde nesnelerin

bilinçsiz kullanımının önüne geçilmiş olunur. Böyle durumlarda Encapsulate Field

yeniden düzenleme tekniğini kullanmak soruna çözüm olmaktadır. Şekil 3.8(a) orijinal

kod parçasını temsil ederken, Şekil 3.8(b) Encapsulate Field uygulanmış kod parçasını

temsil etmektedir. Orijinal kod parçasında “kenar” adında “int” tipinde “public” olarak

(a) Orijinal (b) Encapsulate Field

Şekil 3.8. Orijinal kod parçası ve encapsulate field uygulanmış kod parçası

tanımlanan özellik Şekil 3.8(b)’de “private” erişim belirteci ile kapsüllenmiştir. Fakat

bazı durumlarda private alanlara erişmek ve özellikleri kullanmak gerekebilir. Bu

durumda Property kavramı devreye girmiştir. Property kavramı ile bir alanın değerini

geri döndürmeye “get” ve değerini ayarlamaya “set” komutları ile imkan tanınır.

Kapsülleme olmamış olsaydı tüm nesneler herkese açık olacak ve nesnelerin özellikleri

kullanılabilir ve değiştirilebilir olacaktı. Bu durumda programın modülerliği ortadan

kalkacak ve bakımı karmaşık olacaktır.

22

3.1.1.9. Consolidate duplicate conditional fragments

Tekrarlı kod, kaynak kodda birbiriyle aynı veya benzer kod parçaları olarak tanımlanan

ve fonksiyonel olarak benzer işlevi yapan kod parçalarına denir ve aynı zamanda

“kod klonu” olarak da adlandırılır (Hotta vd., 2012). Tekrarlı kodun varlığının

yazılım geliştirme ve bakımı üzerinde olumsuz etkileri olduğu söylenir. Örnek olarak

hata oluşumlarını artırırlar (Hotta vd., 2012). Ayrıca tekrarlı kod yazılımın bakım

maliyetini artırır ve klonlanmış koddaki yanlış değişiklikler hatalı program davranışı

sergilenmesine sebep olur (Sudhamani ve Rangarajan, 2015). Bu tür durumlarda

hataların önüne geçmek ve bakım maliyeti gibi özellikleri iyileştirmek için Consolidate

Duplicate Conditional Fragments yeniden düzenleme tekniği kullanmak gerekir. Koşul

içeren kod blok parçalarının tümünde tekrarlı kod parçası yer alabilmektedir. Böyle

durumlarda aynı kod parçasını koşul dışına çıkartarak kod tekrarının önüne geçilmiş

olunacaktır. Şekil 3.9(a) orijinal kod parçasını temsil ederken, Şekil 3.9(b)’de

Consolidate Duplicate Conditional Fragments isimli yeniden düzenleme tekniğinin

örnek kod parçası üzerinde uygulanmış hali verilmektedir.

(a) Orijinal (b) Consolidate Duplicate Conditional
Fragments

Şekil 3.9. Orijinal kod parçası ve consolidate duplicate conditional fragments
uygulanmış kod parçası

Tekrarlı kod, koşullu dalların içindeki kodun evrilmesinin bir sonucu olarak koşullu

olanın tüm dallarında bulunur. Bu tekniği uygulamadan önce tekrarlı kod bloğu

23

tespiti yapılır ve tekrarlı kod koşullu dalların başındaysa kodu koşuldan önce bir

yere taşımak gerekir. Tekrarlı kod, dalların sonunda yürütülmekte ise koşullardan

sonra yerleştirmek gerekir. Eğer tekrarlı kod dalların içine rastgele yerleştirilmişse, ilk

önce kodu dalın başına veya sonraki kodun sonucunu değiştirip değiştirmemesine

bağlı olarak sonuna taşımayı denemek gerekmektedir. Tekrarlı kodu yerleştirme

işlemini tamamladıktan sonra tekrarlı kod bloğunu tekilleştirme işlemi ile tekniğin

uygulanması tamamlanmaktadır (Hotta vd., 2012). Şekil 3.9(a)‘da Paketle() metotu kod

parçasında yer alan koşullu ifadelerin her iki dalında da yer almaktadır. Tekrarlı kod,

dalların sonunda yürütülmekte ve koşullardan sonra yerleştirilmesi yapılarak teknik

uygulanmaktadır. Bu metotu koşul dışına almak hem kod tekrarını önleyecek hem de

koddaki kötü kokuyu giderecektir. Kodun tekrarını önlemenin yanında zamanda kodun

sürdürülebilirliğini ve bakımını kolaylaştırmak için uygulanmaktadır.

3.1.1.10. Hide method

Yeniden düzenleme işlemi bazen yöntemin görünürlüğüyle ilgili durumu değiştirmemize

sebebiyet verebilmektedir. Başka bir sınıfın bu yönteme ihtiyacı olduğu vakaları

tespit etmek kolaydır ve yöntem daha görünür hale getirilebilir (Refactoring, 2021).

Fakat yöntemin çok görünür olduğunu söylemek biraz daha zordur. Zengin bir

arayüz oluştururken yöntemleri alıp gizlemek daha fazla davranış sağlayan ve oldukça

yaygın bir durumdur (Fowler, 2018). Get ve set yöntemlerini gizleme yalnızca veri

kapsüllemesinin ötesine çok az davranış katan bir sınıfla başlanıldığında ek davranışlar

geliştirilmesine olanak sağlar. Yeni davranışlar sınıfa dahil edildiğinde, get ve set

yöntemleri artık gerekli olmamaktadır ve gizlenebilir. Get ve set yöntemlerini özel

yaptıktan sonra değişkenlere doğrudan erişim uygulanırsa yöntemleri kaldırmak gerekir.

Hide Method uygulamak için öncelikle özel yapılabilecek metotları bulmak gerekir. Bu

tür metotlar diğer sınıflar tarafından kullanılmaz veya yalnızca kendi sınıf hiyerarşisinde

kullanılmaktadır (Refactoring, 2021). Bulunan her bir metodu mümkün olduğu kadar

özel yapmak gerekmektedir. Şekil 3.10(a) orijinal metotun gösterimini temsil ederken,

Şekil 3.10(b) Hide Method isimli yeniden düzenleme tekniğinin metotu özelleştirmesini

temsil etmektedir. Şekil 3.10(a)’da yer alan kirala() metotu public bir yöntem iken

3.10(b)’de verilen hali özelleştirilmekte ve diğer sınıflar tarafından direk ulaşılamaz

hale gelmektedir. Sınıfa yeni özellikler eklendikçe atıl duruma düşen public get ve

24

Araba

+Kirala()

(a) Orijinal

Araba

-Kirala()

(b) Hide Method

Şekil 3.10. Orijinal kod dizaynı ve hide method uygulanmış kod dizaynı

set yöntemleri için bu metodlar uygulanabilmektedir. Hatta bu tür metotlar boşa

çıkabilmekte ve bunun sonucunda metotların kullanımı sonlandırılabilmektedir. Böylece

hafızadaki fazla yük (load) durumu ortadan kalkmış olur.

3.2. Yazılım Metrikleri

Yazılım metrikleri, yazılım geliştirme sürecini ve yazılım ürünlerinin kalitesini kontrol

etmek için nicel bir yol sağlar (Li ve Henry, 1993) ve yazılımın belirli yönlerini

ölçer. Çünkü yazılım metriklerinin sınıflandırılması yazılım kalitesi, yazılım geliştirme,

yazılım standartları ve ölçümü konuları ile ayrılmaz bir bütün haline gelmiştir. Ayrıca,

yazılım metriklerini kategoriye ayırmak zorlaşmıştır. Yazılım metrikleri genellikle

iki kategoriye ayrılabilir: yazılım ürünü ölçümleri ve yazılım süreci ölçümleri (Li ve

Henry, 1993). Yazılım ürünü ölçümleri, kaynak kodu veya tasarım belgeleri gibi yazılım

ürünlerini ölçer. Yazılım süreci ölçümleri, tasarım ve kodlama aşamalarındaki geliştirme

faaliyetlerine tahsis edilen iş gücü sayısı gibi yazılım geliştirme sürecini ve bakımını

ölçer (Li ve Henry, 1993). Bu iki kategoriye ek olarak Kan tarafından geliştirilen

yazılım proje ölçümleri başlığı diğer bir kategori olarak karşımıza çıkmaktadır (Kan,

2003). Bu kategori, yazılım projesinin özelliklerini ve yürütülmesini tanımlayan yazılım

metrik sınıfıdır.

Günümüzde nesne yönelimli metrikler sektörde çok önemli bir rol oynamaktadır ve bir

araştırma aracı olarak kullanılmaktadır (Padhy vd., 2018). Nesne yönelimli metriklerin

kullanımı, kaynak kodda yazılım görselleştirmesiyle birlikte yeniden düzenlenmeye

ihtiyaç duyan yerleri tespit etmek için çok uygundur (Kaur ve Singh, 2016). Geleneksel

fonksiyonel ayrıştırma ve veri analizi tasarım yaklaşımı için metrikler tasarım yapısını

25

veya veri yapısını bağımsız olarak ölçerken; nesne yönelimli metrikler işlev ve

verilerin birleştirilmesine bütünleşik bir nesne olarak odaklanmaktadır (Chidamber

ve Kemerer, 1994). Bir metriğin faydasının yazılım kalitesinin nicel bir ölçüsü olarak

değerlendirilmesi bir yazılım kalitesi niteliğinin ölçülmesine dayandırılmaktadır. Ancak

seçilen metrikler çok çeşitli modellerde kullanışlıdır (Rosenberg ve Hyatt, 1997). Bu

nedenle, nesne yönelimli metrik kriterleri aşağıdaki nitelikleri değerlendirmek için

kullanılmaktadır:

• Anlaşılırlık

• Karmaşıklık

• Sürdürülebilirlik

• Testedilebilirlik

• Verimlilik

• Yeniden kullanılırlık

Nesne yönelimli metrikler, yazılım kalite nitelikleri ile ilişki halinde olmazsa yazılım

kalitesine etkisinden söz etmek doğru olmaz. Bu ikili arasında etkileşimin olması

yazılımın sürdürülebilirliğine katkı sağlamaktadır. Nesne yönelimli metriklerin ölçümü

sayesinde metrik parametreleri ve yazılım kalite parametreleri arasındaki bağlaşım

ilişkisini görmek mümkündür (Arora vd., 2011). Şekil 3.11 bu ilişkiyi temsil etmektedir.

M
et

rik
 P

ar
am

et
re

le
ri

NESNE YÖNELİMLİ
METRİKLER

Bağımlılık

Uyumluluk

Kapsülleme

Kalıtım

Büyüklük

Yeniden Kullanılırlık

Performans

Genişletilebilirlik

Sürdürülebilirllik

Karmaşıklık

Yazılım
 K

alite Param
etreleri

Şekil 3.11. Yazılım metrikleri ve yazılım kalite parametreleri arasındaki ilişki (Arora
vd., 2011)

Araştırmacılar, veri organizasyonunu veri tabanından incelemek için metrikleri iyi

tanımlanmış bir pozitif yöntem olarak kullanırlar (Padhy vd., 2018). Çeşitli yazılım

metrikleri önerilmiş ve çalışılmıştır: Halstead’in yazılım metrikleri (Halstead, 1977),

26

McCabe’nin çevrimsel karmaşıklık metriği (McCabe, 1976), Chidamber ve Kemerer’in

CK metrikleri (Chidamber ve Kemerer, 1994), Metrics for Object Oriented Design

(MOOD) metrikleri (Abreu ve Carapuça, 1994), Quality Model for Object Oriented

Design (QMOOD) metrikleri (Bansiya ve Davis, 2002), Lorenz ve Kidd’in metrikleri

(Lorenz ve Kidd, 1994). Genel olarak, dahili nitelikler yazılım metrikleri aracılığıyla

yakalanır ve üst düzey özellikler bu metrikler için geçerli değerler cinsinden ifade edilir

(Mahouachi vd., 2013). Kod metrikleri, yeniden düzenleme işleminin kod kalitesi

üzerindeki etkisini değerlendirmek için dahili önlemler olarak seçilmiştir (Kumar,

2017).

3.2.1. Kod satır sayısı

Kod satır sayısı (LOC) metriği geleneksel metrik grubunda olup uzun süredir kullanılan

metriklerden biridir. Yazılımın büyüklüğü hakkında ipuçları vermektedir. LOC bir

prosedürü veya fonksiyonu ölçmek için kullanılır. Tüm prosedürlerin ve fonksiyonların

toplam LOC’u bir programın boyutunu ölçmek için de kullanılır. Ayrıca sınıfın boyutunu

ölçmek için iyi yöntemler arasındadır. Genel olarak, projenin kaynak dosyalarındaki

kod boyutunu ölçmek için kod satır sayısı kullanılır (Alpernas vd., 2020).

Yaklaşık yarım asırdan beri yaygın olarak kullanılan LOC metriği kaynak kod satırı

üzerinde çalışmaktadır (Jones, 1994; Fenton ve Neil, 2000), ancak farklı programlama

dilleri söz konusu olduğunda görevi gerçekleştirecek kod satırı, dile göre değişiklik

göstermektedir. Çünkü farklı dillerin farklı yapıları vardır. Bu yüzden farklı

programlama dilleri ile yazılmış modülleri karşılaştırmak zordur. Fakat hesaplamasının

kolay olması, kodun hata sayısı tespitinde ve modüllerin büyüklüğü hakkında bilgi

vermesinin yanısıra kodda kullanılan yöntem, sınıf gibi özelliklerin eşik değerleri

hakkında bilgi vermesiyle kodun sürdürülebilirliğine katkı sağlamaktadır.

3.2.2. Operand ve operatör sayısı

Bir bilgisayar programı, operatör veya operand olarak sınıflandırılabilecek bir

dizgecik (token) koleksiyonunu içeren bir algoritmanın uygulamasıdır (Halstead, 1977).

Başka bir deyişle, bir program bir dizi operatör ve onların ilgili bölümleri olarak

27

düşünülebilir. Halstead’in metrikleri, bu dizgeciklerin sayımlarının fonksiyonlarına

odaklanmaktadır. Dizgecikleri sayarak ve hangilerinin operatör, hangilerinin operand

olduğunu belirleyerek aşağıdaki temel ölçümler alınabilmektedir (Halstead, 1977):

• n1= Farklı operatörlerin sayısı

• n2= Farklı operandların sayısı

• N1= Toplam operatör sayısı

• N2= Toplam operand sayısı

Bunlara ek olarak Halstead şunları da tanımlamaktadır:

• n1*= Potansiyel operatör sayısı

• n2*= Potansiyel operand sayısı

Halstead, bir modül ve program için mümkün olan minimum operatör ve operand sayısı

olarak n1* ve n2* olarak ifade etmektedir. Bu minimum sayı, gerekli işlemlerin mevcut

olacağı programlama dilinin içinde yer alacaktır (Halstead, 1977). Örnek olarak C

veya C# dilinde, main() fonksiyonunu herhangi bir programın içermesi gerekmektedir.

Muhtemelen bir fonksiyon veya prosedür olarak n1* = 2, çünkü herhangi bir fonksiyon

veya prosedür için en az 2 operatör olmak zorundadır:

• fonksiyonun adı için 1

• bir atama veya gruplama sembolü olarak işlev görmesi için 1

n2 * : Fonksiyona veya prosedüre geçirilmesi gereken, tekrarlama olmadan parametre

sayısını ifade etmektedir (Menzies vd., 2002).

Halstead bütün bu metrik koleksiyonunu (n1, n2, N1, N2, n1*, n2*) “Software Science”

olarak tanımlamakta ve bunları yazılım programının büyüklüğünü yansıtan uzunluk

28

(lenght), kelime hazinesi (vocabulary) ve hacim (volume) karakterlerini hesaplamada

kullanmaktadır (Halstead, 1977).

N = N1 +N2 (3.1)

n = n1 +n2 (3.2)

V = N ∗ log2n (3.3)

Burada N programın uzunluğunu, n programın kelime hazinesini, V programın

hacmini temsil etmektedir. Halstead bunlara ek olarak programın seviyesi, zorluğu

gibi programın karakteristik özelliklerini de hesaplamak için metrik koleksiyonunu

kullanmıştır. Halstead’ın metrikleri temelde 2 özelliğe dayanmaktadır: operatör sayısı

ve operand sayısı. Fakat operatörler ve operandlar ayrımının nasıl yapılacağı konusunda

tam bir görüş yoktur. Bu nedenle farklı sayma stratejileri aynı program veya algoritma

için farklı sayıda operatör ve operand üretecektir. Bu iki özellik, programın kaynak

kodunda veya eşdeğer algoritmada operatör ve operand sayısını sayarak kolayca

matematiksel bir yapıya eşlenebilir (Al Qutaish ve Abran, 2005).

3.2.3. Fonksiyon sayısı

Fonksiyon sayısı (NOM) metriği sınıfta tanımlı fonksiyon sayısının toplamını ölçer

(Demeyer vd., 2000; Lorenz ve Kidd, 1994). Kodun fonksiyon sayısı sayesinde kodun

geliştirilmesine ve bakımına ne kadar zaman harcanacağı hakkında bilgi edinilebilir.

Örnek olarak fonksiyon sayısı çok olan taban sınıflar çocuk düğümlerde daha çok

iz bırakmaktadırlar (Ural vd., 2008). Çünkü tanımlanan tüm fonksiyonlar türetilen

sınıflarda da mevcut olacaktır. Sınıf sayısı çok olan kodların tekrar kullanılabilirliği

düşük olacaktır (Ural vd., 2008; Demeyer vd., 2000). Sınıftaki kodun fonksiyon sayısı

sınıfın karmaşıklığının göstergesi haline gelmektedir. Fonksiyon sayısı metriği kodun

hem sürdürülebilirliği hem de karmaşıklığı için önemli bir değere sahiptir.

29

3.2.4. Fonksiyon çağrılma sayısı

Fonksiyonları değer ile çağırma prensibinde, çağıran program ya da fonksiyondaki

değişkenler ile çağrılan fonksiyonda bu değerlere karşılık gelen parametreler için

bellekte farklı yerler ayrılmaktadır. Referans ile çağırma tekniğinde ise çağıran

programdan argüman olarak bir değer yerine bu değere karşılık gelen bellekteki

adres yollanır ve böylece veri transferi değerler yerine adresler ile gerçekleştirilir.

Referans ile fonksiyon parametre çağrıları değer ile yapılan çağrılardan daha karmaşıktır.

Herhangi bir tek fonksiyondan çağrılan herhangi bir işleve olan uzun mesafe çağrılan

fonksiyon sayısı arttıkça artacaktır (Ryder ve Thompson, 2005). Bunun nedeni çağrılan

fonksiyonların hepsinin bellekte aynı konumda olmamasıdır. Fonksiyon çağrılma

sayısı metriği de bir fonksiyonun çağrılarının sayısıyla ilgili ölçümleri hesaplamak

için kullanılmaktadır (Gray vd., 2011). Bir sınıfın fonksiyon çağrılma sayısı fazla

olması sınıfın karmaşıklığının da yüksek olduğunu göstermektedir (Misra vd., 2011).

Bunun sonucunda işlemci açısından işlemin yürütme bağlamını kaydetmek ve geri

yüklemek, iş parçacığı planlamak ve konumun kaydedilmesi gibi işlemler yüzünden

daha fazla kaynak tüketimi gerçekleşecektir. Fonksiyon çağrılma sayısı metrik ölçümü

sayesinde yazılımın karmaşıklığı, bakımı ve sürdürülebilirliği hakkında bilgiler elde

edilebilmektedir.

3.2.5. Bağlaşım sayısı

Sınıfın bağımlı olduğu sınıf sayısı nesne yönelimli programlamada nesne sınıfları

arasındaki bağlaşım sayısı olarak ifade edilmektedir. Bağlaşım, iki nesnenin birbirine

bağımlılığının bir ölçüsüdür (Dubey ve Rana, 2011). Bağlaşım sayısı metriği ise bir

sınıf içinde tanımlı metotların ya da niteliklerin (attribute) diğer sınıfta kullanılmasının

yanı sıra sınıflar arasında kalıtım ilişkisi yok ise iki sınıf arasında bağımlılık olduğunun

tespitinde kullanılmaktadır (Ural vd., 2008). Kaliteli yazılımdan bahsettiğimiz zaman

sınıflar arasındaki aşırı bağımlılığın olmaması gerekmektedir. Aşırı bağımlılık modüler

yazılım tasarımına uygun değildir ve yazılımın tekrar kullanılabilirliğini azaltır. Bir

sınıf ne kadar bağımsızsa başka uygulamalarda o kadar kolaylıkla yeniden kullanılabilir.

Bağımlılıktaki artış, değişime duyarlılığı da artıracağından, yazılımın bakım maliyeti

artar ve bakımı daha zor hale gelir. Bağımlılık aynı zamanda tasarımın farklı parçalarının

30

ne kadar karmaşık test edileceği hakkında fikir verir (Ural vd., 2008). Bu metrik

sınıfın yeniden kullanılabilirliği, karmaşıklığı, test maliyeti, bakımı ve sürdürülebilirliği

hakkında bilgi verir.

3.2.6. Kalıtım ağacının derinliği

Nesne yönelimli sistemlerin önemli özelliklerinden biri kalıtımdır. Kalıtım, bir sınıfın

başka bir sınıfın özelliklerini edinme kabiliyetidir (Chhikara vd., 2011). Kalıtımın

temelindeki amaç, kodu tekrar tekrar yazmak yerine aynı kodu kullanarak tekrarlardan

kaçmaktır. Bir davranış bir süper sınıfta tanımlandıktan sonra, bu davranışı otomatik

olarak tüm alt sınıflar miras alır. Bu sayede yöntem yazma gibi bir davranış tanımlanır

ve tüm alt sınıflar tarafından kullanılır. Aynı şekilde bir alan tanımı süper sınıfta

tanımlandıktan sonra aynı alan tanımı tüm alt sınıflar tarafından miras alınır. Sonuçta

bir sınıf ve çocukları ortak özellikleri paylaşmış olurlar (Chhikara vd., 2011). Bu

mekanizma sınıf hiyerarşisi tasarımını destekler (Chidamber ve Kemerer, 1991).

Kalıtım ağacı derinliği (DIT) metriği, doksanlı yılların başlarında Chidamber ve

Kemerer tarafından önerilen ve nesne yönelimli metrikler listesinde (Chidamber ve

Kemerer, 1994) yer alan ölçümlerden biridir. DIT, sınıfın içinde bulunduğu kalıtım

hiyerarşisindeki pozisyon sayısını ölçmektedir (Chidamber ve Kemerer, 1991). Miras

hiyerarşisi içindeki bir sınıfın derinliği üst sınıfların sayısıyla ölçülen sınıf düğümünden

ağacın köküne kadar olan maksimum uzunluktur. Herhangi bir sınıftan türememiş

sınıflar için metrik değeri 0 olarak ölçülür. Kalıtım ağacında bir sınıf ne kadar düşükse,

kalıtım nedeniyle bu sınıf üst sınıf özelliklerine erişebilir (Li ve Henry, 1993). Alt

sınıf üst sınıfta tanımlanan yöntemleri kullanmadan üst sınıftan devralınan özelliklere

erişirse üst sınıfın kapsüllenmesi ihlal edilmiş olur (Li ve Henry, 1993).

DIT metrik ölçümü ne kadar büyük ise sınıfı korumanın o kadar zor olduğunu

söylenebilir. Ayrıca bir sınıf hiyerarşide ne kadar derinse devralma olasılığı fazla

olan yöntemlerin sayısı bir o kadar fazla olur (Chidamber ve Kemerer, 1994) ve bu da

davranışını tahmin etmeyi daha karmaşık hale getirir (Makkar vd., 2012). Fakat miras

kullanımının, gerekli yazılım bakım maliyetini ve test yükünü azalttığı bilinmektedir

((Chidamber ve Kemerer, 1994; Fenton, 1994). Aynı zamanda miras yoluyla

31

kodun tekrar kullanılması ile kod tekrarı oluşmaması sonucunda daha sürdürülebilir,

anlaşılabilir ve güvenilir bir yazılım üretildiği bilinmektedir (Chidamber ve Kemerer,

1994).

3.2.7. Çevrimsel karmaşıklık

Çevrimsel karmaşıklık (CC), program karmaşıklığını kontrol etmek ve yönetmek için

kullanılabilecek bir graf tabanlı karmaşıklık ölçüsüdür (McCabe, 1976). CC, graf teorisi

üzerine kurulmuştur. Bu metrik, bir programdaki doğrusal bağımsız yolların sayısına

dayanır ve temel yol testi metodolojisindeki test durumlarının sayısını belirlemek için

kullanılabilir (Watson vd., 1996). CC, bir programdaki işlevlere, modüllere, yöntemlere

veya sınıflara göre hesaplanabilir. Temel olarak kontrol akış grafını kullanarak

ilgili programın karmaşıklığını ölçmeye çalışır. Graf üzerinde yer alan düğümler,

program kodunda bulunan if, switch, while, for, goto gibi mantıksal ifadelere göre

oluşturulmaktadır ve bu düğümler ayrıtlar ile birbirine bağlanır. Örneğin bir metodun

içerisinde yer alan if-else gibi karar yapılarının sayısı olarak ifade edilebilir. Çoklu

modüllerden oluşan yazılımda problemlerin gözükme sıklığı daha fazladır. Bundan

dolayı çoklu modüllerde genel olarak karmaşıklık hesabı Denklem 3.4’e (McCabe,

1976) göre hesaplanmaktadır:

V (G) = E−N +2∗P (3.4)

Denklem 3.4’de E grafın ayrıt sayısını (edge), N grafın düğüm sayısını (node), P

ayrık bağlı bileşen (modül) sayısını (başlangıç 1 olarak kabul edilir), V çevrimsel

sayıyı, G grafın fonksiyonu olan karmaşıklığı temsil etmektedir. Bu denklemde

yazılım kodunun ne derece hata eğilimli olduğunu belirleyen karmaşıklık değeri

hesaplanmaktadır. Hataya meyilli olan kodlar düşük güvenirliğe ve yüksek riske sahip

olma eğilimindedirler.

CC, graf tabanlı bir kontrol akışı (control flow graph) kullanmaktadır. Bunu graf

üzerinde bulunan ayrıtlar ve düğümlerin sayısı üzerinden gerçekleştirmektedir. Bu

yüzden bir modülün karmaşıklık hesabını yapmak için öncelikle Şekil 3.12’deki gibi

akış grafı çizilir. Program modülünün akış grafiğini oluşturmak için, modül if, while,

32

Şekil 3.12. If-then-else durumunun akış grafı

for, switch, goto gibi akışı etkileyen ifadelerle sınırlandırılmış alt bloklara bölünür

ve bu bloklar grafın düğümlerini meydana getirir (Ikerionwu, 2010). Düğümler

ayrıtlar ile birbirlerine bağlanır. Program kodundaki her bir dallanma ayrıtların

yönünü göstermektedir. Çizilen graf üzerindeki düğüm ve ayrıt sayıları Denklem

3.4 kullanılarak kodun karmaşıklık hesabı yapılabilmektedir. Şekil 3.13’te fonksiyona

parametre olarak gelen iki sayının verilen aralıkta olup olmadığını kontrol eden kod

bloğu verilmektedir.

Şekil 3.13. Kod bloğu

Verilen Java kod bloğunun Eclipse Metrics Plugin yazılım ölçüm aracı ile elde edilen

değer 2 olarak karşımıza çıkarken GMetric aracıyla 4 olarak karşımıza çıkmaktadır.

Yazılım ölçüm uygulamaları genellikle aynı kod için farklı karmaşıklık ölçüm değerleri

çıkarmaktadır. Bunun nedeni, bir kontrol akış grafında koşuldaki birleşimleri ayrı dallar

olarak sayarken, bir başka yazılım ölçüm aracında ise bu koşulun birleşimlerini tek

bir dal olarak saymasıdır. Eclipse Metrics Plugin yazılım ölçüm aracı için Java kod

33

bloğunun düğümlerinin gösterimi Şekil 3.14‘te verilmektedir. Akış grafı ve çevrimsel

karmaşıklık hesabı ise Şekil 3.15’te gösterilmektedir.

int test(int x, int y)
 {
 if (x> 32 && y < 20 && x+y <50)
 {
 return x+y;
 }
 return 0;

 }

N1

N2

N3

N4

N5

Şekil 3.14. Kod bloğunun düğüm gösterimi

Kod bloğunda toplamda 5 adet ayrıt ve 5 adet düğüm bulunmaktadır. Tek modül

üzerindeki kod bloğunun çevrimsel karmaşık değeri 2 çıkmaktadır.

Şekil 3.15. Eclipse metrics plugin çevrimsel karmaşık hesablama yöntemi

Daha gelişmiş bir ölçüm McCabe tarafından sunulmuş olan McCabe çevrimsel

karmaşıklık (McCabe, 1976) ölçüsüdür. McCabe bir kontrol akış grafında koşuldaki

birleşimleri ayrı dallar olarak saymayı tavsiye etmektedir. McCabe, karmaşıklığın

maksimum modül boyutunun niceliksel bir gösterimini sağlamak için kullanılabileceğini

ileri sürmektedir. Çok sayıda gerçek programlama projesinden veri toplayarak,

çevrimsel karmaşıklığın = 10 değerinin bir üst sınır olarak göründüğünü keşfetmiştir.

Modülün çevrimsel karmaşıklık boyutu bu sayıyı aştığında, bir modülü yeterince test

34

etmek son derece zorlaşmış olur (Ikerionwu, 2010).

Şekil 3.16. McCabe çevrimsel karmaşık hesaplama yöntemi

Verilen Java kod bloğu için McCabe’nin akış grafı ve çevrimsel karmaşıklık hesabı

Şekil 3.16’da gösterilmektedir. McCabe’nin çevrimsel karmaşıklık hesabına göre

9 adet ayrıt ve 7 adet düğüm bulunmaktadır. Tek modül üzerindeki kod bloğunun

çevrimsel karmaşıklık değeri 4 çıkmaktadır. Elde edilen sonuçlardan da anlaşılacağı

gibi farklı yazılım ölçüm uygulamalarının aynı kod üzerindeki çevrimsel karmaşıklık

değeri kullandıkları yöntemlerden dolayı farklı çıktığı görülmektedir.

3.2.8. Mantıksal kod satır sayısı

Kaynak deyimi çalışma zamanında bir eylem gerçekleştiren veya derleyicileri derleme

zamanında yönlendiren bir kod bloğu olarak kabul edilir (Nguyen vd., 2007). Deyimler

üç tipte sınıflandırılır: yürütülebilir, bildirim ve derleyici yönergesi. Yürütülebilir

deyimler sonunda çalışma zamanı eylemlerine neden olmak için makine koduna

çevrilirken bildirim ve derleyici yönergesi ifadeleri derleyicinin eylemlerini etkiler

35

(Nguyen vd., 2007). Örneğin CodeCount™ (CodeCount™, 2020) her derleyici

yönergesini mantıksal bir kod satır sayısı (SLOC-L) olarak sayarken LocMetrics

(LocMetrics, 2019), her derleyici yönergesini mantıksal bir SLOC olarak saymaz.

Carnegie Mellon üniversitesinde yer alan Yazılım Mühendisliği Enstitüsü (Software

Engineering Institute-SEI) çerçevesinde bildirimler, derleyici direktifleri, yorumlar ve

boş satırlar yürütülebilir tipler haricindeki (nonexecutable) kaynak deyim tipi olarak

değerlendirilmektedir (Park, 1992).

Şekil 3.17. Deyim içeren kod bloğu (Bill, 2015)

Fiziksel kod satırları net bir başlangıç ve bitiş noktasına sahip olması sayesinde kolayca

sayılabilmektedir. Fiziksel kod satır sayısı (SLOC-L), program kaynak kodundaki

boşluksuz ve yorumsuz satırların toplamını ifade etmektedir. Diğer taraftan, tüm

kaynak kod satırlarını saymak yazılımın odak noktası olan mantıksal ifadeleri temsil

etmemektedir. Bu yüzden, mantıksal SLOC saymak alternatif bir çözüm olarak

karşımıza çıkmaktadır ve COCOMO II maliyet tahmin modeli için standart olarak

mantıksal SLOC önerilir (Nguyen vd., 2007). Mantıksal SLOC sayma, sayılan

deyimlerin fiziksel biçiminden bağımsız olarak gerçekleştirilir. Diğer bir ifadeyle,

36

bir satırda birden çok mantıksal ifadenin bulunabileceği veya bir mantıksal ifadenin

birden çok satıra yayılabileceği anlamına gelmektedir. C ve benzeri programlama

dilinde ifadeyi sonlandıran noktalı virgül karakterlerinin sayısıdır.

3.2.9. Fonksiyon başına düşen ifade sayısı

Kaynak kod düzeyinde “atomik” ve nispeten bağımsız bir birim gibi ele alınan deyim,

bir programcının belirli bir zamanda gerçekleştirdiği en küçük iş artışı olarak kabul

edilir. Deyimler program komutlarıdır. Herhangi bir programın gerçekleştirdiği

eylemler deyimlerle temsil edilmektedir. C# kodu anahtar kelimeler, ifadeler ve

operatörlerden oluşan deyimlerden oluşur (Bill, 2015). Sınıftaki kodun fonksiyon sayısı

sınıfın karmaşıklığının göstergesi iken fonksiyon başına düşen ifade sayısı (Grechanik

vd., 2010) fonksiyonun ne kadar büyük olduğunun göstergesidir. Elde edilen veriler

yazılımın boyutu ve bakımı hakkında yorumlar yapılmasına yardımcı olabilmektedir.

3.2.10. Bakım yapılabilirlik indeksi

Bakım yapılabilirlik indeksi (MI), kaynak kodun ne kadar sürdürülebilir olduğunu

(desteklenmesini ve değiştirilmesini) ölçen bir yazılım ölçüsüdür (Najm, 2014). Bakım

yapılabilirlik indeksi formülü kod satır sayısı, çevrimsel karmaşıklık ve Halstead hacmi

(HV) birleşiminden oluşmaktadır (Najm, 2014). Formüle geçmeden önce kaynak

koddan aşağıdaki metrikleri ölçmemiz gerekir:

• HV = Halstead hacmi

• CC = Çevrimsel karmaşıklık

• LOC = Kod satır sayısı

Elde edilen ölçümlerden sonra MI değeri Denklem 3.5’te verilen formül aracılıyla

hesaplanmaktadır (Coleman vd., 1994):

MI = 171−5.2∗ ln(HV)−0.23∗ (CC)−16.2∗ ln(LOC) (3.5)

37

Microsoft Visual Studio tarafından kullanılan türev (versiyon 2008’den beri) Denklem

3.6 ile hesaplanır (Kexugit, 2021):

MI = MAX(0,(171−5.2∗ ln(HV)−0.23∗ (CC)−16.2∗ ln(LOC)∗100/171) (3.6)

Negatif sayıların azalan kullanışlılığı ve metriği olabildiğince güvenilir tutma arzusunun

bir sonucu olarak, 0 veya daha az indeksin tamamını 0 olarak ele almaya ve ardından

171 veya daha az aralığı 0 ile 100 arasında temel almaya karar verilmiştir (Kexugit,

2021). Bunun üzerine, eşik değerler belirlenmiş ve bu 0-100 aralığı 80-20 ayrılmış,

böylece gürültü seviyesi düşük tutulmuş ve sadece şüpheli olan işaretli kod alınmıştır:

• 0-9 = Kırmızı

• 10-19 = Sarı

• 20-100 = Yeşil

Eğer indeks kırmızıyı gösterirse, kodla ilgili bir sorun olduğunu belirtmekte ve kodun

sürdürülebilirlik açısından beklenen seviyede olmadığına işaret etmektedir.

Coleman’a göre, 85’in üzerindeki bir MI değeri yazılımın yüksek düzeyde sürdürülebilir

olduğunu gösterir. 85 ile 65 arasındaki bir değer orta düzeyde bir sürdürülebilirliği

gösterir ve 65’in altındaki bir değer sistemin bakımının zor olduğunu ve sürdürülebilirlik

düzeyinin düşük olduğunu gösterir (Coleman vd., 1994). Kaydırılmış ölçek (0 ila 100)

türevi kullanan Microsoft Visual Studio 2010 geliştirme ortamı da dahil olmak üzere

çeşitli otomatik yazılım metrik araçlarında bu metrik kullanılır (Najm, 2014).

3.3. Metin Madenciliği

Veri madenciliği (Berry ve Linoff, 2004), eldeki verilerden değerli olanı ya da önceden

bilinmeyen ve veriler içerisinde gizli olarak kalan aynı zamanda potansiyel olarak

kullanışlı olan bilginin çıkarılması yaklaşımıdır (İlhan vd., 2008). Veri madenciliği

ile yüzeysel benzerliği olan (Witten, 2004) metin madenciliği ise özel amaçlar için

metinden bazı bilgiler çıkarmak adına, metnin analiz edilmesi işlemidir (Visa, 2001).

38

Örnek olarak metinlerden konu çıkarılması (concept/entity extraction), metinlerin

sınıflandırılması, bölütlenmesi (clustering), duygusal analiz (sentimental analysis),

metin özetleme (document summarization), sınıf taneciklerinin üretilmesi (production

of granular taxonomy), varlık ilişki modellemesi (entity relationship modelling) gibi

çalışmalar verilebilir (Seker, 2015b). Metin madenciliği, “metnin hesaplamalı analizi”

için bir yöntemdir (King, 2015). Metin madenciliği araştırmacılar tarafından kelime

frekanslarını saymak, kelime kullanım modellerini bulmak, n-gramları belirlemek (eş

anlamlı kelimelerin), büyük ölçekli kalıpları ve eğilimleri incelemek ve konu başlıklarını

keşfetmek için kullanır (Vijayarani vd., 2015). Metin madenciliği yoluyla metin dizileri

(corpora) analizi metinler hakkında yeni bir fikir verebilir ve metin incelemesinden elde

edilen veriler ek metin analizi için kullanılabilir.

3.3.1. Metin madenciliği alanları

Metin kalıplarını ve madencilik süreçlerini analiz etmek için uygulanan farklı metin

madenciliği alanları ve teknikleri vardır: bilgi gerikazanımı (anahtar kelime arama /

sorgulama ve indeksleme), doğal dil işleme (yazım düzeltme, temel hale döndürme

(lemmatizasyon), gramer ayrıştırma ve kelime anlamı belirsizleştirme), bilgi çıkarma

(ilişki çıkarma / link analizi) ve veri madenciliği (sınıflandırma, kümeleme, regrasyon)

(Gupta vd., 2009; Dang ve Ahmad, 2014; Vijayarani vd., 2015). Şekil 3.18’de metin

madenciliği genel alanları gösterilmektedir.

3.3.1.1. Bilgi gerikazanımı

Bilgi gerikazanımı, kullanıcı tarafından elde edilmek istenen genellikle bilgisayarlarda

büyük dokümanlarda depolanan belirli bilgileri çıkarma yapılandırılmamış nitelikte

metin materyalini bulma işlemidir (Manning vd., 2010). Belirli bir kelime veya cümle

grubuna göre ilgili ve ilişkili kalıpları çıkarmayı sağlar. Diğer bir ifadeyle ilgilenilen

metin koleksiyonu ile ilgili ön bilginin toplandığı aşamadır. Doküman alımının uzantısı

olarak kabul edilir. Böylece doküman alımını, kullanıcı tarafından ortaya konan

sorguya odaklanan bir metin özetleme aşaması veya tekniklerin kullanıldığı bir bilgi

çıkarımı aşaması izleyebilir. Bilgi gerikazanım sistemleri, belirli bir sorunla ilgili

39

 Bilgi
Çıkarımı

Bilgi
Gerikazanımı

Doğal
Dil

İşlemeVeri
Madenciliği

Metin
Madenciliği

Bilgi
Gerikazanımı

Doğal
 Dil
İşleme

Metin
Madenciliği

Bilgi
Çıkarımı

Veri
Madenciliği

Şekil 3.18. Metin madenciliği alanları

doküman kümesini daraltmaya yardımcı olur (Kumar ve Bhatia, 2013). En bilinen bilgi

gerikazanım sistemleri, Google ve benzeri arama motorlarıdır. İlgili belgeleri Web’deki

bir cümleye göre çıkarmak için bilgi gerikazanım sistemini daha sık kullanırlar. Bu

arama motorları, eğilimleri takip etmek ve daha önemli sonuçlar elde etmek için sorgu

tabanlı algoritmalar kullanır (Talib vd., 2016). Bilgi gerikazanım sistemleri, analiz için

belge sayısını azaltarak analizi önemli ölçüde hızlandırabilir (Sumathy ve Chidambaram,

2013).

3.3.1.2. Doğal dil işleme

Doğal dil işleme, insan dilinin incelendiği bir çalışma alanı olup yapay zeka alanındaki

en eski ve en zorlu problemlerden biridir. Bu teknik sayesinde bilgisayarlar, insanların

yaptığı gibi doğal dilleri anlayabilir. Metin madenciliğinin bütün aşamalarında

kullanılmamakla birlikte metinden bazı anlamsal bilgilerin elde edilmesinde ve özellik

çıkarımı sırasında sıklıkla başvurulan yöntemdir. Ayrıca sisteme bilgi çıkarma

aşamasında girdi oluşturmaya yardımcı olmaktadır (Kumar ve Bhatia, 2013).

3.3.1.3. Bilgi çıkarımı

Bilgi çıkarımı, yapılandırılmış veya yarı yapılandırılmış makine tarafından okunabilen

büyük miktarda metinden anlamlı bilgiler çıkaran bir tekniktir (Talib vd., 2016). Bilgi

çıkarım sistemleri dokümandaki belirli nitelikleri ve varlıkları çıkarmak ve ilişkilerini

40

kurmak için kullanılır (Dang ve Ahmad, 2015). Çıkarılan külliyat (corpus) daha ileri

işlemler için veritabanında saklanır. Külliyat kelimesi ile kastedilen, çok sayıdaki

metnin düzenli ve yapısal olarak bir arada bulunması durumudur (Seker, 2008). Daha

ilgili sonuçlara ulaşmak için bilgi çıkarma işlemini uygularken ilgili alanla alakalı

ayrıntılı ve eksiksiz bilgi gerekir (Steinberger, 2012).

3.3.1.4. Veri madenciliği

Veri madenciliği, verilerden otomatik olarak istatistiksel kuralları ve kalıpları

keşfetmeye çalışır. Metin madenciliğindeki çeşitli araçları kullanarak metinleri anlamlı

veriler haline getirme, metinlerden elde edilen verileri madenleme tekniğidir. Amaç,

anlamı ortaya çıkaran ve araştırmacıların başka türlü keşfetmesi zor olabilecek yeni

bilgileri keşfetmelerini sağlayan bilgi parçaları arasındaki ilişkileri bulmaktır ve bu bilgi

parçalarını daha ileri analizler için anlaşılabilir bir yapıya dönüştürmektir (Sumathy ve

Chidambaram, 2013). Öyleyse, metin madenciliği araştırmayı hızlandıran, yeni sorular

sormamızı veya eskileri test etmemizi sağlayan bir araçtır.

3.3.2. Metin madenciliği adımları

Metin madenciliği metnin “sayısallaştırılması” süreci olarak özetlenebilir. Bu bilgiler

ışığında metin madenciliğinin genel çalışma sürecinin mantıksal şeması Şekil 3.19’da

verilmiştir.

Metin madenciliği, bilgiyi verimli bir şekilde madenlemek için gerçekleştirilecek bir

dizi adımları içermektedir. Şekil 3.19’da detaylı olarak verildiği gibi metin madenciliği

genellikle girdi metninin yapılandırılması (bazı türetilmiş dilsel özelliklerin eklenmesi,

metin önişleme aşaması, ardından bir külliyata eklenmesiyle birlikte ayrıştırılması),

yapılandırılmış veri içinde birtakım işlemlerin yapılması (özellik çıkarımı, boyut

indirgeme, sınıflandırma, kümeleme vs.), analiz ve yorumlama adımlarını içermektedir.

İşlenecek verilerin belirli bir formatta olmaması metin madenciliği açısından verilerin

analiz edilmesini zorlaştırmaktadır. Bu yüzden metin madenciliği alanında ön işleme

aşaması, veri temizleme ve veriyi uygun formata getirme işlemi gerçekleştirilmektedir

41

Külliyat

Dokuman Getirme ve
Önişleme

Özellik Çıkarımı

Yapılandırılmış
 Veri Analizi

 Terim/Doküman
Matrisi

Veri Madenciliği
Kümeleme,

Sınıflandırma,
Regrasyon

Doküman İndeksi

Dönüşüm

Metin Kaynağı

Boyut İndirgeme

Şekil 3.19. Metin madenciliği adımları

(Feldman vd., 2007). Bu aşamada kullanılan bazı teknikler Metin Temizleme (Cleanup),

Metin Parçalama (Tokenization) ve Cümlenin Öğelerini Etiketleme (Part-of-speech

Tagging) teknikleridir.

Metin Temizleme; gereksiz veya istenmeyen bilgileri kaldırma anlamına gelir. Örnek

olarak reklamları web sayfalarından kaldırma, ikili formattan dönüştürülen metni

normalleştirme, tablolarla, şekillerle ve formüllerle uğraşmak gibi gereksiz veya

istenmeyen bilgilerin kaldırılması anlamına gelir (Kumar ve Bhatia, 2013).

Metin Parçalama; belirli bir metinde kullanılan tüm kelimeleri elde etmek için bir

parçalama (tokenization) işlemi gereklidir. Bir metin belgesi tüm noktalama işaretlerini

kaldırarak sekmeleri, satır sonu karakterlerini ve diğer metin olmayan karakterleri

42

(non-text) boşlukla değiştirerek bir sözcük akışına bölünür (Hotho vd., 2005). Temiz ve

uygun formata gelen metne külliyatı oluşturan dökumanlarda dizgeciklere (token)

ayırma işlemi uygulanır. Daha sonra bütün dökumanlarda yer alan kelimelerin

birleştirilmesi ile ilgili koleksiyonun “sözlüğü” nü (dictionary) elde edilir (Hotho vd.,

2005).

Cümlenin Öğelerini Etiketleme; her dizgecik için kelime sınıfı ataması anlamına

gelmektedir. Giriş olarak, dizgecikleştirilmiş belirli bir metin verilir. Etiketleyiciler,

bilinmeyen kelimelerle ve belirsiz kelime etiketi eşlemeleriyle baş etmek zorundadır.

3.3.3. Metin madenciliği ve alanları kapsamında kullanılan kavramlar ve

teknikler

Gelişen teknoloji ve kullanılan altyapılar sayesinde iletişim ve bilgi teknolojilerinin

kullanımı da artmaktadır. Bu tür teknolojilerin devamlılığını sürdürebilmesi için sağlam

altyapılar kullanılması kaçınılmazdır. Internet alyapısının gelişen teknolojiye ayak

uydurması gerekmektedir. Bu altyapıların kullanımı da günden güne artmaktadır.

Artan yapısal olmayan metin içerikli verilerden yapısal ve anlamlı veriler elde etmek

için metin madenciliği kullanılmaktadır. Çünkü elde edilecek veriler üzerinde veri

madenciliği teknikleri uygulayabilmek için öncelikle yapısal olmayan metinlerin

işlenmesi gerekmektedir. Bu bağlamda tez kapsamındaki bu çalışmada kullanılan

kavramlar ve yöntemler sırasıyla verilmektedir:

• Metin parçalama (Tokenization)

• Noktalama işareti silme (Punctuation)

• Durdurma kelimeleri (Stop Words)

• Kökenine döndürme (Stemming)

• Temel hale döndürme (Lemmatization)

• Cümle bölümlendirme (Sentence Segmentation)

• Düzenli ifadeler (Regular Expression)

43

• Dizin yöntemleri

X Düzeltme (Trim)

X Dizin bulma (Indexof)

X Altdizin bulma (Substring)

X Son dizin bulma (LastIndexOf)

Metin madenciliğinde genellikle girdi metninin yapılandırılması sırasında kullanılan

metin içerikli dokümanların hazırlanması aşaması olan metin önişleme en kritik

aşamalardandır. Bu aşamada metin içerikli dizgelerin dizgeciklere (token) parçalanması,

gereksiz sık kullanılan kelimelerin (stop words) ayıklanması ve kelime köklerinin

bulunması (stemming) en sık kullanılan ön işleme tekniklerindendir.

3.3.3.1. Metin parçalama

Nesne yönelimli programlama dilleri ile oluşturulan uygulamalarda genellikle uygulama

içerisinde metinsel değerlerin tutulduğu veri tiplerinden biri karakter dizgeleridir.

Dizgeler, programlama diline ait ve o dilde tanımlı olan sembollerin bir içerik akışında

farklı sıra ve sayılarda sıralanması sonucu elde edilen metinlerdir. Metin parçalama ise

metinsel bir içerik akışını kelimelere, terimlere, simgelere veya sembol adı verilen diğer

bazı anlamlı öğelere ayırma işlemidir. Bu işlem sayesinde dizge içerisinden bir parça

çıkarılarak verinin bir parçası elde edilir. Parçalara ayrılmış bu dizgelere ise alt dizge

(substring) denilmektedir.

3.3.3.2. Noktalama işareti silme

Metinler gibi dizgeler içerisinde kullanılan noktalama işaretlerinin (! . , ; - ?) silinmesi

string ifadeler üzerinde işlem yapacak modeller ile doğru sonuçlar elde edilmesine

olanak sağlamaktadır. Bu tür nokalama işaretlerinin metin içerisinden kaldırılmasına

olanak sağlayan teknik, noktalama işareti silme olarak adlandırılmaktadır.

44

3.3.3.3. Durdurma kelimeleri

Filtreleme yöntemleri ile dokümanlardaki sözcükler diğer bir ifadeyle sözlükteki

kelimeler filtrelenebilir. Bu yöntemlerden en yaygın olarak kullanılan filtreleme yöntemi

"durdurma kelimeleri filtreleme yöntemi"dir. Durdurma kelimesi filtreleme yöntemi,

bağlaçlar, edatlar gibi içerik bilgisi olmayan veya içeriğe katkısı olmayan kelimeleri

kaldırmaktır (Hotho vd., 2005). Frekansa dayalı girdi dokümanlarında sıralanacak

kelimeler arasından “durdurma kelimeleri” filtreleme yöntemi ile sıralamadan

çıkartılacak terimler tanımlanmaktadır. Bu yöntem sayesinde sözlükte (bütün

dokümanlarda) ayırt edici etkisi olmayan ve istatistiksel olarak etkin bir faydası olmayan

kelimeler çıkartılmaktadır (Hotho vd., 2005).

3.3.3.4. Kökenine döndürme

Kelimeleri basit, yalın haline getiren ya da çeviren metin madenciliği tekniğine

"kökenine döndürme" denilmektedir. Türkçeden örnek vermek gerekirse çoğul eklerin

kelimeden atılması veya çekim eki almış fiilin çekim ekinden ayrılarak fiilin kökünün

elde edilmesidir.

3.3.3.5. Temel hale döndürme

Metin içerisinde geçen aynı kelimeden türemiş kelimeleri ayırt ederek tek bir kelimeye

indirgenmesi yöntemidir. Temel hale döndürme işlemi kelimelerin cümle içerisindeki

görevlerini hatta konumlarını tespit etmesi açısından hataya açık ve zor bir işlem olarak

değerlendirilmektedir. Ayrıca bu işlem dilden dile faklılık göstermektedir (Tunalı,

2011).

3.3.3.6. Cümle bölümlendirme

Doğal dil işleme tekniklerinin çoğu cümle sınırları ile sınırlanan kelime belirteçlerinin

dizilerine uygulanır ve bu nedenle metnin de cümlelere bölünmesini gerektirir. Metnin

cümlelere bölünmesi çoğu durumda basit bir meseledir. Nokta, ünlem işareti veya

soru işareti genellikle bir cümle sınırına işaret eder. Bununla birlikte, bir noktanın

ondalık bir noktayı gösterdiği veya kısaltmanın bir parçası olduğu ve dolayısıyla bir

45

cümle kesintisine işaret etmediği durumlar vardır. Cümlelerin bölümlere ayrılması

farklı dillerde beklenmeyen bazı zorluklar ortaya çıkarabilir. Bu yüzden sorunu çözmek

için basit düzenli ifadelerden daha fazla kapsamlı sisteme kadar çeşitli yöntemler

kullanılmaktadır (Mikheev, 2003). Diğer taraftan metnin cümlelere bölünmesi

birçok metin işleme uygulaması geliştirmek için önemlidir. Bu işlemler için cümle

bölümlendirme tekniği kullanılmaktadır. Teknik kullanılırken cümlenin sonunu işaret

edebilecek noktalama işaretlerinin tespiti cümlenin doğru analizi için önemli yer

tutmaktadır.

3.3.3.7. Düzenli İfadeler

Metin madenciliğinde metin içerisinde özel bilgiler yer alabilmektedir. Bu tür bilgilere

örnek vermek gerekirse kişisel numaralar, e-posta adresleri, kimlik numaraları gibi

bilgiler verilebilir. Bu tür durumlarda genellikle düzenli ifadeler veya içerik bağımsız

gramerler tanımlanarak metin üzerinde çalıştırılır (Seker, 2015b). Düzenli ifadeler,

karakter dizilerinin (strings) kümelerini tanımlamak için kullanılan bir gösterimdir.

Belirli bir dizi düzenli ifade tarafından tanımlanan kümedeyken, düzenli ifadenin dizi

ile eşleştiği bilinmektedir. Örnek olarak sayılarla eşleşen düzenli ifade gösterimine

Denklem 3.7’de yer verilmektedir (Mikheev, 2003):

[0−9][0−9]?[0−9]?(?[0−9][0−9][0−9])∗ ([.][0−9]+) (3.7)

En basit düzenli ifade tek bir değişmez karakterdir. Özel meta karakterleri hariç *+?()|,

karakterleri kendileri ile eşleşir. Düzenli ifadeyi bir meta karakteriyle eşleştirmek için

ters eğik çizgiyle kaçış : \+ değişmez bir artı karakteriyle eşleşir.

Yeni bir düzenli ifade oluşturmak için iki normal ifade değiştirilebilir veya

birleştirilebilir: m1 s ve m2 t ile eşleşirse, m1 | m2 s veya t ile eşleşir ve m1m2

st ile eşleşir.

Meta karakterleri *, + ve ? tekrarlayan işleçler: e1 * eşleşir. Her biri m1 ile eşleşen sıfır

veya daha fazla dizilerin dizisi; m1 + bir veya daha fazla eşleşir; m1? sıfır veya bir ile

eşleşir (Cox, 2007).

46

3.3.3.8. Dizin yöntemleri

Düzeltme (Trim) : Karakter dizisi (string) içerisinde geçerli tüm öndeki ve sondaki

boşluk karakterlerini kaldırmaya yarayan yöntemdir. Bir boşluk olmayan karakterle

karşılaştığında her baştaki ve sondaki kesme işlemini durdurur. Örneğin geçerli bir

dize "abc xyz" ise Trim yöntemi "abc xyz" döndürür. Beyaz boşluk (whitespace)

karakterlerini dizesindeki kelimeler arasından kaldırmak için "Düzenli İfadeler" yöntemi

kullanılır (Microsoft, 2022).

Dizin Bulma (IndexOf) : Belirtilen unicode karakterin veya dizenin karakter dizisinde

ilk geçtiği sıfır tabanlı dizini bildiren yöntemdir. Belirtilen karakter veya dize

bulunmadığında yöntem -1 döndürür. Bu yöntem aşırı yükleme şeklinde kullanıma

sahiptir (Microsoft, 2022).

Altdizin Bulma (Substring) : Bir karakter dizisinden belirtilen karakter konumunda

başlayan ve dizinin sonunda biten bir alt dizin bulma yöntemidir. Başlangıç karakteri

konumu bir sıfır tabanlıdır. Aşırı yükleme ile kullanımları mevcuttur. Örnek olarak

Substring(Int32, Int32) yöntemi, belirtilen karakter konumunda başlar ve belirtilen

uzunluğa kadar bir alt dizin alır. Bu yöntem geçerli örneğin değerini değiştirmez, bunun

yerine başlangıcı yeni bir dize olan karakter dizisi döndürür (Microsoft, 2022).

Son Dizin Bulma (LastIndexOf) : Belirtilen Unicode karakter veya geçerli karakter

dizini içinde belirtilen bir dizenin son oluşum dizin konumunu tespit eden yöntemdir.

Aşırı yükleme şeklinde kullanımları mevcuttur. Örnek olarak public int LastIndexOf

(string value, int startIndex, StringComparison comparisonType) yönteminde arama,

belirtilen karakter konumunda başlar ve dizenin başına doğru geriye gider. Belirtilen

dize için arama yaparken gerçekleştirilecek karşılaştırma türünü bir parametre belirtir

(Microsoft, 2022).

3.4. Kombinatoryal Optimizasyon

Optimizasyon havayolu planlamadan finasmana, internet yönlendirmeden mühendislik

tasarımanına kadar her yerdedir ve bu nedenle geniş bir uygulama yelpazesi ile önemli

47

bir kavram haline gelmektedir (Koziel ve Yang, 2011). Hemen hemen tüm mühendislik

ve endüstri uygulamalarında maliyet ve enerji tüketimini en aza indirgemek veya

performansı, verimliliği ve karı en üst düzeye çıkarmak için sürekli bir şeyler optimize

edilmeye çalışılmaktadır. Gerçek hayatta zaman, para ve kaynaklar daima sınırlı

olduğu için optimizasyonun pratikte önemi daha fazladır. Herhangi bir türde mevcut

kaynakların en uygun şekilde kullanılması bilimsel düşüncede bir kavram değişikliğini

gerektirir. Bunun sebebi, gerçek dünyadaki uygulamaların çoğunun sistemin davranış

şeklini etkileyecek çok daha karmaşık faktörlere ve parametrelere sahip olmasıdır

(Koziel ve Yang, 2011).

Gelişen teknoloji ile az maliyet ve enerji tüketimi ile performans ve verimlilik

artırılabilmekte fakat aynı zamanda yeni problemler ortaya çıkabilmektedir.

Yeni problemlerin ortaya çıkması karar mekanizmasının işini zorlaştırmaktadır.

Çünkü, bilinen çözüm teknikleri, problemlerin yeni halleri için yeterince çözüme

ulaştıramamaktadır. Çözülmesi gereken problemler ya da karar verilmesi gereken yeni

haller ne olursa olsun amaç daima en iyi sonucu elde etmek olmalıdır. Bu bilgiler

ışığında optimizasyon, elde olan kaynakları en verimli şekilde kullanarak verilen amaç

veya amaçlar için en iyi çözümü elde etmeyi gerçekleştirme sürecidir.

OPTİMİZASYON

RASSAL
(SKOLASTİK)

BELİRLİ
(DETERMİNİSTİK)

TEK AMAÇLI

ÇOK AMAÇLI

SÜREKLİ

AYRIK
(KOMBİNATORYAL)

SINIRLI
SINIRSIZ

Şekil 3.20. Optimizasyon problem tipleri

Optimizasyon problemleri genel olarak ifade edildiklerinde kolay ancak çözülmesi

zor olarak tanımlanan problemlerdir. Şekil 3.20, optimizasyon problem tiplerini

göstermektedir. Tipleri probleme bağlı olarak değişen optimizasyon problemlerinin

ortak yönü, objektif fonksiyon adı verilen minimize veya maksimize edilecek olan bir

fonksiyon ile kısıtlamalar kümesi olarak adlandırılan sonlu sayıda eşitsizlik veya eşitlik

sisteminden meydana gelmektedir. Optimizasyon problemleri birçok yolla formüle

48

edilebilmektedir. Genel olarak yaygın formülasyon, problemi doğrusal olmayan bir

optimizasyon yöntemi olarak yazmaktır (Yang, 2013):

min fi(u),(i = 1,2,3, . . .Z), (3.8)

k.s. h j(u) = 0,(j = 1,2,3, . . .K), (3.9)

gk(u)≤ 0,(k = 1,2,3, . . .L) (3.10)

Yukaridaki optimizasyon probleminde fi, h j ve gk doğrusal olmayan fonksiyonlardır.

Karar değişken vektörü u = (u1,u2,u3,un) n boyutlu uzayda sürekli değişkenlerden

veya tamsayılı değişkenlerden oluşabilmektedir. Amaç fonksiyonu ya da maliyet

fonksiyonunu fi temsil etmekte ve Z > 1 olduğu durumlarda, optimizasyon çok amaçlı

ya da çok kriterli olmaktadır (Yang, 2013).

Karar değişken vektörü u = (u1,u2,u3,un) ve gk(u) ≤ 0, k = (1,2,3,L) kısıt

sistemini ele aldığımızda, gk(u) = 0 denklemini sağlayan u’ların kümesi, tasarım

uzayında bir çok boyutlu yüzey oluşturmaktadır. Bu kısıt yüzey, tasarım uzayını,

gk(u) < 0 ve gk(u) > 0 olmak üzere iki bölgeye ayırır. gk(u) < 0 olan bölgedeki

noktalar “kabul edilebilir”, gk(u) > 0 olan bölgedekiler ise uygun olmayan şeklinde

tespit yapılabilmektedir. Ayrıca fi(u) fonksiyonunun minimum noktası u∗ olarak kabul

edersek, aynı nokta fonksiyonunun negatifi − fi(u) ile ifade edilebilmekte ve problemin

maksimum noktasıdır. fi, h j ve gk’nın bazı doğrusal olduğu durumlarda, problem

doğrusal olarak isimlendirilir. Bazı karar değişkenleri sadece ayrık değerler (integer gibi)

aldığında, diğer değişkenler sürekli olsa dahi, büyük ölçekli optimizasyon problemleri

için genelde zor olan karışık tipte olmasıdır (Yang, 2013).

Kombinatoryal optimizasyon, kombinatorik doğrusal (linear) programlama tekniklerini

ve ayrık yapılar üzerindeki optimizasyon problemlerini çözmek için algoritmalar

teorisini birleştiren bir uygulamalı matematik dalıdır (Papadimitriou ve Steiglitz, 1998).

Kombinatoryal terimi, karar değişkenlerinin kesikli olduğunu ifade etmektedir. Diğer

bir deyişle, problem çözümünün tamsayıların ya da diğer kesikli nesnelerin bir kümesi

veya bir sırası olduğu anlamına gelir. Bu tür problemler için optimum çözümlerin

bulunması kombinatoryal optimizasyon olarak sınıflandırılmaktadır. Kombinatoryal

49

optimizasyon problemi U , f , c üçlüsü şeklinde tarif edersek, U arama uzayını, f

maksimize edilmesi veya minimuma indirilmesi gereken amaç fonksiyonunu ve c

uygulanabilir çözümler elde etmek için yerine getirilmesi gereken bir dizi kısıtlamaları

ifade etmektedir (Neumann ve Witt, 2010). Amaç, maksimizasyon veya minimizasyon

problemi durumunda U∗ ile bütün kısıtlamaları karşılayan en yüksek amaç değere sahip

bir çözüm bulmaktır (Neumann ve Witt, 2010).

Gezgin satıcı problemi ve grafik renklendirme problemi kombinatoryal problemlerin

örnekleri arasındadır. Bu problemler, belirli kısıtlamaları yerine getirerek bir

kombinasyon, bir permutasyon veya bir alt küme gibi bir kombinatoryal nesne bulmayı

hedefleyen problem türleridir. Hedeflenen bu kombinasyonel nesnenin aynı zamanda bir

minimum veya maksimum maliyet gibi ek özelliklere sahip olması gerekebilmektedir.

Genel olarak kombinatoryal problemler hem teorik hem de pratik olarak hesaplamada en

zorlayıcı problemler arasındadır. Zorluğunu açıklayan birden fazla gerçeklik mevcuttur.

Bunlardan biri, kombinatoryal nesnelerin sayısının normal olarak problemin boyutu

ile hızlı bir şekilde büyümesi ve orta derecedeki durumlarda dahi tahmin edilemez

boyutlara ulaşabilmesidir. Diğeri ise bu tür problemlerin büyük çoğunluğunu makul bir

sürede çözmek için bilinen bir algoritmanın çoğu bilgisayar bilimcisi tarafından mevcut

olmadığına inanılmasıdır. Fakat bazı kombinatoryal problemler etkili algoritmalar ile

çözülebilir. Bunlardan biri en kısa yol bulma problemleridir (Levitin, 2011).

Kombinatoryal optimizasyon problemlerinden en tipik ve bilinen problemlerinden

biri minimum yayılım ağaç problemidir (Graham ve Hell, 1985). Kombinatoryal

optimizasyonun temel taşı olarak da görülmektedir. Problem hem pratik hem de teorik

uygulamalarda önemlidir (Nešetřil vd., 2001). Minimum yayılım ağaç probleminin

önemi ve popülaritesi çeşitli gerçeklerden kaynaklanmaktadır. Çözüm yöntemleri basit

olsa da modern kombinatoriklerin fikirlerini üretmekte ve bilgisayar algoritmalarının

tasarımında merkezi bir rol oynamaktadır (Graham ve Hell, 1985). Ayrıca büyük graflar

için çözülmesini pratik hale getiren etkin bir çözüm sunmaktadır (Graham ve Hell,

1985).

50

3.4.1. Graf teorisi

Gerçek dünyadaki nesnelerin durumu, bir dizi noktadan oluşan ve bu noktaların belirli

çiftlerini birleştiren çizgilerle birlikte bir diyagram aracılığıyla uygun bir şekilde

tanımlanabilir. Bu tür durumların matematiksel bir soyutlaması, bir grafik kavramını

ortaya çıkarır (Bondy vd., 1976). Graf teorisi, çizgileri inceleyen ve nesneler arasındaki

ilişkileri modelleyen bir kuramdır. Temel anlamda bir problem kenarlar (edges) ve

düğümler (vertices) ile modellenmektedir ve modellenen problemin bir graf şeklinde

gösterim ilkesine dayanmaktadır (Seker, 2015a). Matematikten kimyaya bilgisayar

bilimlerinden sosyal bilimlere kadar birçok farklı alanda kullanılmaktadır. Teorinin

evrensel anlamda kullanılan sembolleri netlik kazanmamış olsa da bu alanda çalışan

araştırmacıların (Bondy vd., 1976; Biggs vd., 1986; Gross ve Yellen, 2005; Chen, 2012)

kullandıkları sembollerin çalışmacılar tarafından kabul gördüğünü söyleyebiliriz.

Tanım 3.1. G grafı, G = (V,E) ile temsil edilir ve boş olmayan iki sonlu küme V

ve E’den oluşan matematiksel yapıdır (Biggs vd., 1986). Grafta, V ’nin elemanlarına

düğümler (vertices) denir ve V = (v1,v2,vn) düğümler kümesi ile gösterilir. E’nin

elemanlarına kenarlar (edges) denir ve E = (e1,e2,em) kenarlar kümesi ile gösterilir

(Gross ve Yellen, 2005).

v1 v2

v3

v4

v5

e1

e2

e4

e7

e8
e5

e3

e6

Şekil 3.21. Graf çizgi çizim örneği

G = (V,E) ile temsil edilen Şekil 3.21’ deki graf 5 adet düğüm ve 8 adet kenardan

oluşmaktadır. Grafın düğümleri ve kenarları: V = (v1,v2,v5) ve E = (e1,e2,e8).

Örnek graftaki v1 ve v2 düğümleri arasındaki bağlantıyı sağlayan kenar e1 veya (v1,v2)

ile temsil edilir.

51

Tanım 3.2. Her kenar kendisine bağlı bir veya birden fazla düğüme sahiptir. Bunlara

"başlangıç ve bitiş düğümleri" denir (Gross ve Yellen, 2005). Örnek graftaki v1 ve v2

düğümleri e1 kenarının başlangıç veya bitiş düğümlerini temsil etmektedir.

Tanım 3.3. Bir vx düğümü bir vy düğümüne ez kenar ile bağlı ise bu iki düğüm bitişik

ve komşudur (West vd., 2001). Örnek graftaki v2 ve v3 düğümler hem komşu hem de

bitişiktir.

Tanım 3.4. Bir kenarın başlangıç ve bitiş düğümü aynı düğüm olduğu durumlara

"döngü" adı verilir (Bondy vd., 1976). Örnek graftaki e7 kenarı döngüdür.

Tanım 3.5. Başlangıç ve bitiş düğümü aynı düğüm olan diğer bir ifadeyle aynı uç

noktalara sahip iki veya daha fazla kenara "çoklu kenar" denir (Gross ve Yellen, 2005).

Örnek grafta {e6, e7} çoklu bir kenar setini oluşturmaktadır.

Tanım 3.6. Çoklu kenar veya döngü içermeyen graflara "basit graf" denir (Gross ve

Yellen, 2003). Basit grafın biçimsel gösterimi her düğüm için komşu düğümlerin

listesini içeren komşuluk listesi ile temsil edilir (Gross ve Yellen, 2005). Şekil 3.22

örnek basit graf ve biçimsel gösterimini vermektedir.

x : y

x

y

z

v

v

y : x v z

z : y v

v : x y z

Şekil 3.22. Basit graf ve belirtim gösterimi

Tanım 3.7. Çoklu kenar veya döngü içeren graflara "genel graf" denir (Gross ve Yellen,

2003). Genel grafın biçimsel gösterimi kenar listesi, düğüm listesi ve uçnoktaları içeren

bitişiklik tablosundan oluşmaktadır (Gross ve Yellen, 2005). Şekil 3.23 örnek genel

graf ve biçimsel gösterimini vermektedir.

52

v1 v2

v3

v4

v5

e1

e2

e4

e7

e8
e5

e3

e6

V={v1,v2,v3,v4,v5}

E={e1,e2,e3,e4,e5,e6,e7,e8}

kenar
uçnokta

e1 e2 e3 e4 e5 e6 e7 e8
v1
v2 v5

v2
v3

v3
v4

v2
v4

v4 v4
v5

v5
v5

v5
v3

Şekil 3.23. Genel graf ve biçimsel gösterimi

Tanım 3.8. G = (V,E) grafı V = (v1,v2,vn) düğümler kümesi ile farklı düğümlerin

sıralı ikili listelerinden ez = { vx vy} oluşan E = (e1,e2,em) kenarlar kümesine

yanısıra baş düğüm yönü : ez→ vx , kuyruk düğüm yönü: ez→ vy gibi özelliklerine

sahip ise bu tür graflara "yönlendirilmiş graf" denir (Gross ve Yellen, 2005). Şekil 3.24

örnek genel graf ve biçimsel gösterimini vermektedir.

v1 v2

v3

v4

v5

e1

e2

e4

e7

e8

e3

e6

e5

Şekil 3.24. Yönlendirilmiş graf

Tanım 3.9. Yönlendirilmiş ve yönlendirilmemiş kenarların birlikte kullanıldığı graflara

"kısmi yönlendirilmiş graf" denir (Gross ve Yellen, 2003). Kısmi yönlendirilmiş grafın

veya yönlendirilmiş grafın işaretlerinin kaldırılması ile temel graf elde edilir (Gross ve

Yellen, 2003). Elde edilen graf aynı zamanda yönlendirilmemiş bir graftır.

Tanım 3.10. Çoklu kenar içeren fakat döngü içermeyen graflara "çoklu graf" (multigraf),

kenarlar kümesi ile düğümler kümesinde hiç eleman yok ise bu tür graflara da boş graf

denir (Gross ve Yellen, 2005).

53

Tanım 3.11. Bir grafta kenarların değerleri eşit değil ve her biri farklı bir değere

sahipse bu tür graflara "ağırlıklı yada maliyetli graf" denir. Ağırlıklı bir graf G = (V,w)

ile temsil edilirse, burada V düğüm kümesine ve w her düğüm çiftine (vxvy) gerçek bir

negatif olmayan değer w(vx,vy) veren bir ağırlık fonksiyonuna karşılık gelmektedir

(vx ∈ V,vy ∈ V ve vx 6= vy) (Umeyama, 1988). Şekil 3.25’te yönlendirilmemiş bir

ağırlıklı graf verilmiştir.

v1 v2

v3 v4

4
6 9

8

2

5

Şekil 3.25. Yönlendirilmemiş ağırlıklı graf

Tanım 3.12. G = (V,E) bir graf V = (v0,v1,vn) düğümler kümesinden ve E =

(e1,e2,em) kenarlar kümesinden oluşmaktadır. Grafta vk−1 ile vk gibi herhangi iki

düğüm arasında bulunan ve k = 1,2, ..n için ek’i temsil eden bir kenarın v1 düğümünden

vn düğümüne varıncaya kadar izlediği W = (v0,e1,v1....vn−1,en,vn) düğüm ve kenar

dizisine "yürüyüş" denir (Gross ve Yellen, 2003).

Tanım 3.13. Tekrar eden kenarı ve iç düğümü bulunmayan yürüyüş tipine "yol" (Gross

ve Yellen, 2003), hiç kenarı olmayan ve sadece tek düğüm içeren yola ise "patika" denir

(Gross ve Yellen, 2003).

Tanım 3.14. m düğümlü bir G grafında her bir çift farklı düğüm arasında en az bir yol

varsa "bağlı graf", her düğümün bitişik düğümü ile arasında bir kenar varsa "tam graf"

denir (Harary, 2015). Şekil 3.26’da tam graf örnekleri verilmektedir.

Tanım 3.15. Düğümleri v1,v2,vv şeklinde sıralanmış basit bir G grafının AG ile

temsil edilen ve v x v matrise karşılık gelen matrisine "komşuluk matrisi" denir ve şu

özelliklere sahiptir (Gross ve Yellen, 2003):

54

G1 G2 G3 G4

Şekil 3.26. Tam graf örnekleri

AG(a,b) =
{

1 eğer va ve vb komşu ise

0 değilse

Tanım 3.16. Düğümleri v1,v2,vv ve kenarları e1,e2,ee olan bir G grafın v x e

matrisine "bitişiklik matrisi" denir. G’nin bitişiklik matrisi MG =[mi j] matrisidir, burada

[mi j], vi ve e j’nin bitişiklik sayısıdır (0,1,2) (Bondy vd., 1976).

v1 v2

v3 v4
G

e5

e2

e4

e6
e3e7

e1

v1
v2
v3
v4

e1 e2 e3 e4 e5 e6 e7

1

0
1

1
1 1

0
0
0

0

1 1
1

1 1

1
1 2

0
0

0

0
0

0
0 0

0
0

MG

v1
v2
v3
v4

v1 v2 v3 v4

1
1

0
0

0 1
1
1

1 12
0

0
2
1
1

AG

Şekil 3.27. Bir graf, grafın bitişiklik matrisi ve komşuluk matrisi
(Bondy vd., 1976)

Tanım 3.17. VD ⊂VG ve ED ⊂ EG olan bir D grafına "G grafının alt grafı" denir (Gross

ve Yellen, 2003). Burada D grafı G grafının alt grafı ise G grafının kenar ve düğümleri

D grafının kenar ve düğümlerini kapsamaktadır. Aynı zamanda G grafı D grafının süper

grafı olur. Genelde G grafının bir alt grafiğine "izomorfik"; herhangi bir grafiğe de

"G’nin bir alt grafiği" denilmektedir (Gross ve Yellen, 2003). Eğer VD =VG ise D grafı

G grafının yayılan (spanning) alt grafı olmaktadır. G grafında, GP olarak gösterilen bir

dizi P = (p1, p2,pn) düğümler kümesine sahipse ve uç noktaları P ’de olan G’nin

her kenarını içeriyorsa buna indüklenmiş alt graf denilmektedir. Şekil 3.28’de örnek bir

G grafının D1 yayılan alt grafı ve D2 indüklenmiş alt grafı örneklerini verilmiştir.

55

z

yv

wG D1 D2

z

yv

w

z

y

w

Şekil 3.28. D1 yayılan alt graf ve D2 indüklenmiş alt graf
(Gross ve Yellen, 2003)

Tanım 3.18. Ağaç (tree) birbirine bağlı (connected) döngüsel olmayan (acyclic) bir

graftır (Bondy vd., 1976). G grafının bir yayılan ağacı (spanning tree), bir ağaç

olan G’nin yayılan alt grafıdır (Bondy vd., 1976). Yayılan ağaç bütün düğümleri

kapsar ve döngü oluşturmaz. Bir ağaç olan G’nin kenar sayısı e = v− 1 şeklinde

bulunur (Bondy vd., 1976). Şekil 3.29’da beş düğümlü bazı ağaç örnekleri gösterilmiştir.

Şekil 3.29. Beş düğümlü ağaç örnekleri

3.4.2. Minimum yayılan ağaç ve algoritmaları

Minimum yayılan ağaç (MYA) (Boruvka, 1926; Kruskal, 1956; Prim, 1957), ağırlıklı

bağlantılı bir grafiğin minimum ağırlıklı kapsayan ağacını bulmayı amaçlar (Graham

ve Hell, 1985). Ağırlıklı bağlantılı graftaki tüm düğümleri döngüler oluşturmadan

bağlayan ve tüm olası yayılma ağaçlarının minimum toplam ağırlığına sahip olan

orijinal ağırlıklı grafın bir alt grafıdır (Tewarie vd., 2015). MYA aynı zamanda

iyi bilinen bir optimizasyon problemidir (Chen ve Chang, 2001; Dey ve Pal, 2013;

Dey vd., 2015) ve kombinatoryal optimizasyonun temel taşı olarak görülmektedir

(Graham ve Hell, 1985; Nešetřil vd., 2001). Her iki araştırmacı Boruvka’ya (1926)

minimum yayılan ağaç probleminin öncüsü olarak atıfta bulunmasına rağmen problemin

kaynağı olarak Kruskal (1956) ve Prim’in (1957) çalışmasına ve ilk etkili çözümlerine

başvurmak yazarlar arasında standart bir uygulama haline gelmiştir (Graham ve Hell,

56

1985). MYA uygulamasındaki belirsizlik, kenar ağırlıklarının tam olarak bulunmasını

zorlaştırmaktadır. Fakat binlerce düğüme sahip büyük graflar için verimli bir çözüm

olduğu kabul edilmektedir (Graham ve Hell, 1985). Şekil 3.30 verilen graf bağlantılı,

yönlendirilmemiş ve ağırlıklı bir graftır.

v7

v5

v6

v2

v1

v3

v4

32

14

3

20

24

18 13

4

7

5

26

16

Şekil 3.30. Ağırlıklı graf ve minimum yayılan ağacı

Ağırlıklı grafı G = (V,E) temsil etmekte olup V = (v1,v2,vn) düğümler kümesi

ve E = (e1,e2,em) kenarlar kümesinden oluşmaktadır. Kenarların ağırlıkları w(ek)

fonksiyonu ile gösterilirse ek her düğüm çiftine (vxvy) karsılık gelmektedir. Ağırlıklı

graf G’nin minimun yayılım ağacı olan A’yı bulmak ve Denklem 3.11’de (Erickson,

2019) verilen fonksiyonu en aza indirmek için çeşitli algoritmalar kullanılır.

w(A) = ∑
ek∈A

w(ek) (3.11)

Minimum yayılma ağacı probleminin çok sayıda algoritmik çözümleri (Dijkstra, 1960;

Loberman ve Weinberger, 1957; Gabow vd., 1986; Karger vd., 1995) mevcut olmasına

rağmen üç algoritma, tarihi gelişimde problemin çözümü için merkezi rol oynamaktadır

(Graham ve Hell, 1985): Boruvka (Boruvka, 1926); Kruskal, (Kruskal, 1956) ; Prim

(Prim, 1957) .

57

3.4.2.1. Boruvka algoritması

Genel minimum yayılma ağacı algoritması, bir ara yayılan orman olarak adlandırılan G

giriş grafiğinin döngüsel olmayan bir F alt grafiğini içerir. F , G’nin minimum kapsayan

ağacının bir alt grafiğidir ve F’nin her bileşeni, köşelerinin minimum yayılan bir ağacıdır.

Başlangıçta F , m adet tek düğümlü ağaçtan oluşur. Genel algoritma, ağaçları aralarına

belirli kenarlar ekleyerek birleştirir. Algoritma durduğunda, F , minimum kapsayan

ağaç olması gereken tek bir m adet düğümlü ağaçtan oluşur. Gelişen ormana hangi

kenarların eklenmesinin belirlenmesi önem arz etmektedir; çünkü her kenar minimum

yayılan ağaçta değildir (Erickson, 2019).

1926’da Boruvka (Boruvka, 1926) tarafından keşfedilen algoritma ise en eski ve en basit

minimum yayılan ağaç algoritmasıdır. Boruvka’nın Batı Moravia’daki tüm şehirleri

birbirine bağlayan asgari maliyetle elektrik şebekesini tasarlamak için oluşturduğu

matematiksel formul minimum yayılan ağaç algoritmasının temelini oluşturmuştur

(Durnová, 2006). Algoritma 1960’ların başında bilgisayar bilimcisi olan Sollin

tarafından yeniden keşfedildi ve buna paralel olarak hesaplama literatüründe genellikle

bu algoritmaya "Sollin’in algoritması" denilmektedir (Chung ve Condon, 1996;

Erickson, 2019) . Boruvka algoritmanın temel adımları Şekil 3.31’de gösterilmektedir.

v7

v5

v6

v2

v1

v3

v4

32

14

3

20

24

18 13

4

7

5

26

16

v7

v5

v6

v2

v1

v3

v4

32

14

3

20

24

18 13

4

7

5

26

1 2

v7

v5

v6

v2

v1

v3

v4

32

14

3

20

24

18 13

4

7

5

26

16

3
v7

v5

v6

v2

v1

v3

v4

32

14

3

20

24

18 13

4

7

5

26

16

4

16

Şekil 3.31. Boruvka algoritmasının temel adımları

58

Verilen ağırlıklı grafta tek tek düğümler arasındaki mesafeler karşılıklı olarak

farklıdır. Bu aynı zamanda ağırlıklı bağlantılı bir grafiğin minimum yayılma ağacının

benzersizliği için gerekli ve yeterli bir koşuldur (Durnová, 2006). Algoritma genel

minimum yayılma ağacı algoritmasında olduğu gibi bir ara yayılan ormanı olan F’ye G

grafındaki her bir düğüm (yayılan) bir ağacı temsil edecek şekilde eklenerek başlatılır.

Her ağaç üzerinde bağlantılı olan kenarlardan en az ağırlıklı kenarı seçer. Bu şekilde

her biri aynı kenarı seçen iki ağaç küme olarak adlandırılacak olan bağlı ağaç kümesini

oluşturur. Ağaç kümeleri döngü olmayacak şekilde oluşturulmalıdır. Her ağaç kendi

kümesi içerisinde olmayan fakat kendisi ile bağlantılı olan kenarlardan en az ağırlıklı

kenarı seçerek döngü oluşmayacak şekilde birleştirir. Eğer F ormanında ağaç kümesi

sayısı tek ise işlem sonlandırılır. Değilse işlem ağaç kümesi tek olana kadar devam

eder. Algoritma aşağıdaki adımlardan oluşan yinelemeler sonucunda yayılan bir ağaç

oluşturur:

Adım 1 : Bağlantılı, ağırlıklı ve yönsüz graf giriş olarak verilir.

Adım 2 : Her düğüm, üzerinde en az ağırlıklı kenarı seçer. Her düğüm ağacı temsil

etmekte ve bağlantılı olan kenarlardan en az ağırlıklı olan kenarı seçmelidir.

Her biri aynı kenarı seçen iki ağaç küme olarak adlandırılacak olan bağlı ağaç

kümesi oluşturulur.

Adım 3 : Her ağaç kendi kümesi içerisinde olmayan fakat kendisi ile bağlantılı olan

kenarlardan en az ağırlıklı kenarı seçer ve döngü oluşturulmayacak şekilde

birleştirir.

Adım 4 : Yayılan ormanda ağaç küme sayısı eğer tek ise minimum yayılan ağaç elde

edilir ve işlem sonlandırılır. Değilse Adım 2’ ye gidilir.

3.4.2.2. Prim algoritması

Algoritma, 1930’da matematikçi Vojtèch Jarnik (Jarník, 1930) tarafından icat edildi

ve daha sonra ayrı ayrı 1957’de bilgisayar bilimcisi Robert C. Prim (Prim, 1957)

tarafından ve 1959’da Dijkstra (Dijkstra vd., 1959) tarafından yeniden keşfedildi .

Prim’in algoritması, bağlantılı bir ağırlıklı yönsüz grafik için minimum bir yayılma

59

ağacı bulan açgözlü bir algoritmadır (Srivastava ve Tyagi, 2013; Marpaung, 2020).

Açgözlü yaklaşımda, her adımda problemin küçük çözümleri elde edilerek en uygun

çözüme ulaşılmaya çalışılır. Algoritmaya uyarlandığında, ağaçtaki tüm kenarların

toplam ağırlığının en aza indirildiği her düğümü içeren bir ağaç oluşturan kenarların

bir alt kümesinin bulunduğu anlamına gelir (Srivastava ve Tyagi, 2013) ve bir dizi

genişleyen alt ağaç boyunca minimum yayılan bir ağaç oluşturulur (Levitin, 2011).

Prim algoritması, bir dizi genişleyen alt ağaç boyunca adım adım minimum yayılma

ağacı oluşturur (Levitin, 2011). Böyle bir dizideki ilk alt ağaç, G grafiğinin düğümlerinin

V kümesinden rastgele seçilen tek bir düğümden oluşur. Her yinelemede algoritma,

açgözlü bir şekilde mevcut ağacı ağaçtaki bir düğüme en küçük ağırlıktaki bir

kenarla bağlı olan ve ağaçta olmayan bir düğüme bağlayarak genişletir (Levitin,

2011). Bağlanan düğüm ağaca bitişik ve çevrimi olmayan kenara sahip olmalıdır

(Srivastava ve Tyagi, 2013; Ramadhan vd., 2018; Marpaung, 2020). Algoritma bir

ağacı yinelemelerinin her birinde tam olarak bir düğüm kadar genişlettiğinden bu tür

yinelemelerin toplam sayısı n−1’dir; burada n, grafikteki düğüm sayısıdır. Algoritma

tarafından oluşturulan ağaç, ağaç genişletmeleri için kullanılan kenarlar kümesi olarak

elde edilir (Levitin, 2011). Prim algoritmasının temel adımları ile minimum yayılan ağaç

yapısının elde edilmesi Şekil 3.32’de verilmekte olup Algoritma 1’de (Levitin, 2011)

sözde kodu sunulmuştur. Algoritma adımlarındaki G, ağırlıklı grafiği temsil ederken, V

Algorithm 1: Prim algoritması
Giriş: G = (V,E) , Ağırlıklı bağlantılı yönlendirilmemiş bir grafik
Çıkış: Et , Minimum yayılan G ağacını oluşturan kenarlar kümesi

1 Vt ← v0 . ağaç düğümleri kümesi herhangi bir düğüm ile başlatılabilir
2 Et ←∅
3 for i← 1 to |V |−1 do
4 v ∈Vt ve u ∈V −Vt olmak koşuluyla bütün kenarlar (v,u) arasından minimum

ağırlıklı kenarı e∗ = (v∗,u∗) bul
5 Vt ←Vt ∪u∗

6 Et ← Et ∪ e∗

7 return Et

ve E düğüm ve kenarları gösterir. İki düğüm arasında direk bir bağlantı yoksa sonsuz

∞ işareti ile gösterilir. Aksi durumda bağlantı ağırlığı verilir. Yöntemdeki u düğüm

ağırlığına atıf yapar. Her düğüm için tüm bağlantılar arasından en küçük ağırlığa sahip

60

v7

v5

v6

v2

v1

v3

v4

32

14

3

20

24

18 13

4

7

5

26

16

v7

v5

v6

v2

v1

v3

v4

32

14

3

20

24

18 13

4

7

5

26

1 2

v7

v5

v6

v2

v1

v3

v4

32

14

3

20

24

18 13

4

7

5

26

16

3
v7

v5

v6

v2

v1

v3

v4

32

14

3

20

24

18 13

4

7

5

26

16

4

Başlangıç düğümü

16

v7

v5

v6

v2

v1

v3

v4

32

14

3

20

24

18 13

4

7

5

26

16

5

v7

v5

v6

v2

v1

v3

v4

32

14

3

20

24

18 13

4

7

5

26

16

6

v7

v5

v6

v2

v1

v3

v4

32

14

3

20

24

18 13

4

7

5

26

16

7

Şekil 3.32. Prim algoritmasının çalışma prensibi

kenar seçilerek ilerlenir. Seçilen tüm kenarlar birleştirildiğinde yeni bir grafik oluşur.

e∗ her hesaplamadaki en uygun kenar seçimidir. Bu seçimler birleştirilerek nihai grafik

oluşturulur. Bu grafik Et ile döndürülür. Prim algoritması aşağıdaki adımlardan oluşan

yinelemeler sonucunda yayılan bir ağaç oluşturur:

Adım 1 : Bağlantılı, ağırlıklı ve yönlendirilmemiş graf giriş olarak verilir.

Adım 2 : Minimum yayılan ağaç (Et) boş olarak atanır.

Adım 3 : Rastgele bir düğüm belirlenir ve minimum ağırlığa sahip ilgili kenar seçilir.

61

Adım 4 : Minimum ağırlığa sahip kenarları (v,u) ve Et’ye komşu olanları seçin, ancak

(v,u) Et’de bir döngü oluşturmayacak şekilde (v,u) ’yi Et ’ye ekleyin.

Adım 5 : Adım 4, n−2 kez tekrar edilir ve sonuç olarak minimum yayılan grafik Et

döner.

3.4.2.3. Kruskal algoritması

Algoritma Amerikan Matematik Derneği’nin bildirileri dergisinde 1956’da yayınlanmış

ve Joseph Kruskal (Kruskal, 1956) tarafından yazılmıştır. Temel fikri, bir seferde

n−1 kenar seçmek ve sonra açgözlülük tekniğini kullanmak olup seçilen sete katılacak

kenarın döngü oluşturamayan minimum maliyetli kenar olmasıdır (Li vd., 2017). Çünkü

seçilen kenar döngü oluşturursa bir yayılan ağaç oluşturulamaz. Bu algoritma, k

adımlarına bölünmüştür; burada k, ağacın toplam kenar sayısıdır ve bir seferde bu k

kenarlarının maliyet artırma sırasına göre yalnızca bir kenarı değerlendirilir. Bir kenar

seçilir ve önceki seçilen kenarlara eklendiğinde döngü ortaya çıkarsa o kenar terk edilir.

Aksi takdirde koleksiyon için seçim yapılır (Li vd., 2017). Kruskal algoritması her

kenarı ağırlığına göre dikkate alır ve minimum yayılan ağaç bu koleksiyonda genişler.

Algorithm 2: Kruskal algoritması
Giriş: G = (V,E) , Ağırlıklı bağlantılı yönlendirilmemiş bir grafik
Çıkış: Et , Minimum yayılan G ağacını oluşturan kenarlar kümesi

1 E sırala, kenar maliyetinin artan sırasına göre w(ei1)≤ · · · ≤ w(ei|E|)

2 Et ←∅; yolUzunluğu← 0 . ağacın kenarlar kümesini boş ata ve boyutunu sıfır ata
3 k← 0 . işlenmiş kenar sayısını sıfır ata
4 while yolUzunluğu < |V |−1 do
5 k← k+1
6 if Et ∪ (eik) Döngüsüz ise then
7 Et ← Et(eik)) ; yolUzunluğu← yolUzunluğu+1

8 return Et

G = (V,E) n adet düğüme sahip bir bağlantılı grafı, F = (V,ψ) kenarı olmayan

bağlantısız bir grafı temsil etmektedir. G ’deki bütün kenarlar ağırlıklara göre küçükten

büyüğe doğru sıralanır. G grafiğindeki her düğüm, bir ağacı veya bağlantılı bir bileşeni

temsil etmektedir. En küçük ağırlıklı kenardan başlanır ve F’ye eklenir. Fakat eklenecek

kenar döngü oluşturuyorsa kenardan vazgeçilir ve kalan kenarlardan minimum maliyetli

kenar işleme alınır (Li vd., 2017). Bu durum tüm düğümler aynı ağaçta yer alana

62

v7

v5

v6

v2

v1

v3

v4

32

14

3

20

24

18 13

4

7

5

26

16

v7

v5

v6

v2

v1

v3

v4

32

14

3

20

24

18 13

4

7

5

26

1 2

16v1
3

v3
4

v6
5

v3

v5

v7

v3 v7
7

v1 v2

32

v1 v7

14

v3 v6

16

v2 v4

18

v2 v3

20

v2 v5

24

v5 v6

v4 v5

26

13

1 :

2 :

3 :

4 :

5 :

6 :

7 :

8 :

9 :

10 :

11 :

12 :

v7

v5

v6

v2

v1

v3

v4

32

14

3

20

24

18 13

4

7

5

16

3

v7

v5

v6

v2

v1

v3

v4

32

14

3

20

24

18 13

4

7

5

16

4

v7

v5

v6

v2

v1

v3

v4

32

14

3

20

24

18 13

4

7

5

16

v7

v5

v6

v2

v1

v3

v4

32

14

3

20

24

18 13

4

7

5

26

5 6

16

v7

v5

v6

v2

v1

v3

v4

32

14

3

20

24

18 13

4

7

5

16

7
v7

v5

v6

v2

v1

v3

v4

32

14

3

20

24

18 13

4

7

5

16

8

26

26
26

26

26

v7

v5

v6

v2

v1

v3

v4

32

14

3

20

24

18 13

4

7

5

16

v7

v5

v6

v2

v1

v3

v4

32

14

3

20

24

18 13

4

7

5

26

9

10

16

v7

v5

v6

v2

v1

v3

v4

32

14

3

20

24

18 13

4

7

5

16

11
v7

v5

v6

v2

v1

v3

v4

32

14

3

20

24

18 13

4

7

5

16

12

26 26

26

Kenar Maliyetlerinin
Küçükten Büyüğe Sıralı Listesi

:
:

Ağaca Eklenen Kenar

Döngü Oluşturan Kenar

Şekil 3.33. Kruskal algoritmasının çalışma prensibi

kadar devam eder ve düğümler adım adım birleştirilir (Kruskal, 1956). F için n− 1

kenarları seçilmiştir, bu yüzden G ’nin n−1 kenarlarına sahip ağacı yayılan minimum

maliyetlidir (Li vd., 2017). Kruskal algoritmasının temel adımları ile minimum yayılan

ağaç yapısının elde edilmesi Şekil 3.33’te verilmekte olup Algoritma 2’de (Levitin,

2011) sözde kodu sunulmuştur. Kruskal algoritması aşağıdaki adımlardan oluşan

yinelemeler sonucunda yayılan bir ağaç oluşturur:

Adım 1 : Bağlantılı, ağırlıklı ve yönlendirilmemiş graf giriş olarak verilir.

Adım 2 : Tüm kenarları E ağırlıklarına göre artan sırayla w(ei1)≤ ··· ≤w(ei|E| sıralanır.

Adım 3 : Minimum yayılan ağacın kenarlar kümesi (Et) boş küme ve yol uzunluğunu

sıfır olarak atanır.

Adım 4 : En küçük kenarı eik seçilir.

Adım 5 : Şimdiye kadar oluşturulmuş yayılan ağaçla bir döngü oluşturup oluşturmadığı

kontrol edilir. Döngü oluşturmuyor ise bu kenar da Et ’ye dahil edilir.

63

Adım 6 : Adım 5, (V −1) kez tekrar edilir ve sonuç olarak minimum yayılan graf Et

döner.

3.5. Enerjinin Genel Tanımı

Programların verimliliği genellikle büyüklük, hız ve enerji tüketimi yolu ile ölçülür

(Bessa vd., 2019). Fakat geliştirilen yazılım programlarının karmaşıklığı, büyüklüğü

ve donanımdaki ilerlemelerle ortaya konulan çok farklı yapılar, bilgisayarlarda

performansın değerlendirmesini zorlaştırmanın yanısıra bilgisayarların verimli enerji

tüketimini etkilemektedir. Enerji tasarrufu, çevresel etki ve artan maliyetler nedeniyle

çok önemli bir konudur. Ayrıca kullanıcıların yüksek tüketim ve aşırı talepten

kaynaklanan enerji ihtiyaçlarını karşılamak için yeşil özellikli yazılımlar geliştirilmeli

ve böylece çevre üzerindeki olumsuz etkileri azaltılmalıdır.

Bilgisayar programları yürütüldüğünde enerji tüketirler. Enerji Uluslararası Birimler

Sisteminde (SI) enerji birimi olan Joule (J) cinsinden ölçülür (Newell ve Tiesinga, 2019).

Bir periyot boyunca harcanan elektrik gücü bu çalışma için enerjiyi açıklamaktadır.

Denklem 3.12 (Newell ve Tiesinga, 2019), herhangi bir elektrikli cihaz tarafından

tüketilen anlık gücü verir:

P =V ∗ I (SIunits : Watt,Volt,Amper) (3.12)

V, Volt cinsinden elektrik potansiyelini ve I, bir dirençten geçen elektrik akımını temsil

eder. Enerji güç ve zamanın çarpımına eşittir. Formüller sırasıyla Denklem 3.13 ve

Denklem 3.14’te verilmektedir:

E = P∗T (SIunits : Joule,Watt,saniye) (3.13)

E =V ∗ I ∗T (SIunits : Joule,Volt,Amper,saniye) (3.14)

64

Denklem 3.15 (Newell ve Tiesinga, 2019), elektrikli cihazlarda daha genel bir enerji

tüketimi tanımıdır.

E =
∫ t1

t2
V cI(t)dt =V c

∫ t1

t2
I(t)dt =V c

∫ t1

t2
V s(t)/Rsdt =V c/Rs

∫ t1

t2
V s(t)dt (3.15)

Bu tanıma göre; T = t1-t2 tüketimi ölçmek için kullanılan integraldir ve Vc kararsız

olmayan kaynak voltajını temsil eder. Rs bir direnç değeridir. I değerini elde etmek

için, Ohm Yasası (I = Vs / Rs) kullanılır, Bu yasa, dirençteki V’leri ölçerek I değeri için

Rs direncini kullanır. Bu işlemler, yürütüldüklerinde bilgisayar programları için enerji

tüketimini veya güç tüketimini tahminlemeye yardımcı olurlar.

Joule cinsinden ölçülen enerji, bir zaman aralığında tüketilen toplam güçtür. Güç,

yani enerjinin tüketilme hızı, statik ve dinamik gücün toplamıdır. Kaçak güç olarak da

bilinen statik güç, devre aktivitesi olmadığında tüketilen güçtür. Dinamik güç, devredeki

kapasitans yükünün şarj edilmesi ve deşarj edilmesinden kaynaklanan devre tarafından

tüketilen güçtür (Hennessy ve Patterson, 2011). Yıllardır egemen güç kategorisi dinamik

güç olmuştur ve Denklem 3.16 ile hesaplanır (Kaxiras ve Martonosi, 2008):

Pd =C ∗V 2 ∗A∗ f (3.16)

Burada Pd dinamik güç, C kapasitans, V voltaj, A, aktif olan devrenin yüzdesini temsil

eden aktivite faktörü ve f saat frekansıdır. Bir uygulamanın yürütülmesi sırasında

bir sistemin güç tüketimi, bileşenlerin kendi güç tüketimine ve bileşenlerin nasıl

kullanıldığına göre belirlenir (García-Martín vd., 2019).

65

4. GEREÇ ve YÖNTEM

4.1. Yeniden Düzenleme Tekniklerinin Seçimi

Yeniden düzenleme teknikleri genellikle kodlama türüne bağlı olarak proje kaynaklarına

uygulanır. Bu sürecin temel amacı okunabilirlik, performans ve bakım dahil olmak

üzere yazılımın bazı özelliklerini iyileştirmektir. Bazı entegre geliştirme ortamları,

uygulayıcıların bu özellikleri kontrol etmesini sağlar. Dahası, geliştiricilerin isteklerine

bağlı olarak bazı karmaşık araçlar tasarlanır. Verilen bilgiler ışığında enerji tüketimi

açısından önemli görülen yedi yeniden düzenleme tekniği tez çalışması kapsamında

seçilmiştir. Ayrıntılar Çizelge 4.1’de verilmiştir.

Çizelge 4.1. Seçilen yeniden düzenleme teknikleri listesi

Gösterim Açıklama

R1 Encapsulate Field

R2 Simplify Nested Loop

R3 Inline Temp

R4 Introduce Explaining Variable

R5 Replace Magic Number with Symbolic Constant

R6 Consolidate Duplicate Conditional Fragments

R7 Hide Method

4.2. Yazılım Metriklerinin Seçimi

Fowler birçok farklı türden yeniden düzenleme teknikleri sunarken (Fowler vd., 1999),

bunların büyük sistemlere uygulanacağında ortaya çıkan temel sorunlardan biri hangi

yeniden düzenleme tekniklerinin nereye uygulanacağı sorusu olmuştur (Simon vd.,

2001). Yeniden düzenleme tekniklerinin insan sezgisine ve koku gibi öznel algılara

dayandığına dair Fowler’ın ifadeleri bu soruyu daha da zorlaştırmaktaydı. Hatta

yeniden düzenlemenin otomatik yapılamayacağı izlenimini vermekteydi. Fowler

açıkça metriklere atıf yaparak insan sezgisini hiçbir metriğin bilgilendirmediğinden

bahsetmekteydi (Fowler vd., 1999). Fakat geliştiriciler metriklerin yeniden düzenleme

66

uygulamasına yardımcı olabileceklerini çalışmalarında göstermektedirler (Simon vd.,

2001, Mens and Tourwé, 2004, Bodhuin vd., 2007, Alshayeb, 2009, Cinnéide vd.,

2012, Bavota vd., 2015, Hegedűs vd., 2018). Geleneksel ve nesne yönelimli metrikler,

yazılımın sürdürülebilirliği (Coleman vd., 1994; Najm, 2014; Hegedűs vd., 2018) ve

enerji verimliliği çalışmalarında (Cruz ve Abreu, 2017; Keong vd., 2015; Bangash vd.,

2017; Ergasheva vd., 2020; Mancebo vd., 2021a) tercih edilmektedir. Tez çalışması

kapsamında, geleneksel ve nesne yönelimli metrikler yeniden düzenleme işlemlerinin

yazılım sürdürülebilirliği ve enerji verimliliği üzerindeki etkilerini değerlendirmek

için dahili metrikler olarak seçilmiştir. Seçilen metriklerin ayrıntıları Çizelge 4.2’de

verilmiştir.

Çizelge 4.2. Seçilen metriklerin listesi

Gösterim Açıklama

M1 Kod Satır Sayısı

M2 Mantıksal Kod Satır Sayısı

M3 Çevrimsel Karmaşıklık (McCabe)

M4 Operand ve Operatör sayısı

M5 Bağlaşım Sayısı

M6 Bakım Yapılabilirlik İndeksi

M7 Kalıtım Ağacının Derinliği

M8 Fonksiyon Başına Düşen İfade sayısı

M9 Fonksiyon Çağrılma Sayısı

M10 Fonksiyon Sayısı

4.3. Yazılım Geliştirme Ortamının Seçimi

Tümleşik geliştirme ortamı kodlama, test etme, hata ayıklama gibi özellikleri ile

bilgisayar programcılarına yazılım geliştirebilme imkanı veren ve yazılım geliştirme

sürecini verimli bir şekilde kullanılmasını sağlamak için çeşitli araçları içerisinde

barındıran yazılım paketleridir (Zeil, 2017). Tümleşik geliştirme ortamlarında

bulunması gerekli temel başlıca özellikler aşağıda verilmektedir:

• Tümleşik bir derleyici, yorumlayıcı ve hata ayıklayıcı,

67

• Görsel kod yazım editörü,

• Kod dosyalarının hiyerarşik gösterimi

• Editör tarafından yakalanan, yorumlanan ve yürütülen hata mesajları

• Yazılımın derlenmesi, bağlanması, çalıştırılıp yürütülmesi

• Otomatik yeniden düzenleme desteği.

Tümleşik geliştirme ortamları yukarıda bahsedilen özelliklerin yanında birçok yönüyle

(kod tamamlama araçları, grafik tasarımı vs.) yazılım geliştirme için kullanılabilen

zengin bir programdır. En bilinen tümleşik geliştirme ortamları: NetBeans, Eclipse,

KDevelop, Dev-C++, Microsoft Visual Studio, Android Studio, XCode, Code::Blocks

(Zeil, 2017).

Şekil 4.1. Tümleşik geliştirme ortamı örnekleri

Microsoft Visual Studio (Microsoft, 2021), Microsoft yazılım şirketi tarafından

geliştirilen bir tümleşik geliştirme ortamıdır. İçerisinde Visual Basic, Visual C#, C++

gibi farklı nesne yönelimli programlama dillerinin tümleşik geliştirme ortamlarını

ve özelleştirilmiş kütüphaneleri barındırmaktadır. Gelişmiş kullanıcı arabirimi

tasarımı üzerinden yazılım oluşturma, kodlama, test, hata ayıklama, kod kalitesini

ve performansını çözümleme olanağı sunulmaktadır. Tez kapsamında geliştirilen

algoritmanın nesne yönelimli programlama dilleri ile yazılmış kodlar ile uyumlu

olması, yeniden düzenleme tekniklerinin etkileşimlerinin tespiti, geliştirilen otomasyon

yazılımın kalitesinin korunabilmesi ve yeniden kullanılabilirliği artırmak için Microsoft

Visual Studio tez çalışmasında kullanılmak üzere tercih edilmiştir. Ayrıca tez ile ilgili

çalışmalar nesne yönelimli programlama dillerine ait bulguları kapsamaktadır. Bunun

dışındaki programlama yapıları örneğin endüstriyel otomasyon yazılımları ve mantıksal

programlama tezin kapsamı dışındadır.

68

4.4. Geliştirilen Algoritma ve Matematiksel Model

Tez çalışması kapsamında geliştirilen algoritmanın yazılım enerji tüketimini

düşürebilmek için uygun yeniden düzenleme tekniklerinin sırasının oluşturulması

öncelikli amaç olarak planlanmıştır. Geliştirilen algoritma özelinde problemin uygun

bir başlangıç çözümüne uygulanır. Uygulama sonucunda başlangıç sonucundan daha

iyi bir sonuç elde edilmektedir. Bu yeni sonuç başlangıç noktası kabul edilerek yeni

bir çözüm elde edilmesine geçilir. Bu yüzden geliştirilecek algoritmanın uygulanabilir

bir yöntem olabilmesi için yeniden düzenleme tekniklerinin iyi analiz edilip uygun

bir amaç fonksiyonu haline getirilmesi gerekmektedir. Diğer taraftan, bir yeniden

düzenleme sırasının üretildiği bir grafikte bir düğümün maliyetine karar vermek için

matematiksel model geliştirilmesi planlanmıştır. Geliştirilen matematiksel model

yazılım sürdürülebilirliği ile yazılım metrikleri zıtlık ilkesi (Candela vd., 2016; Tarwani

ve Chug, 2016) doğrultusunda kompleks metrik hesabından oluşmaktadır. Bu bilgiler

ışığında geliştirilen algoritma ve matematiksel model sırasıyla anlatılmaktadır.

4.4.1. Geliştirilen algoritma

Çalışma bağlamında, yeniden düzenleme işlemini kaynak kodlara uygulamak

için kullanılacak en uygun sırayı bulan Prim tabanlı bir algoritma önerilmektedir.

Önerilen algoritma, üç ana bölümden oluşmaktadır: 1) Projelere uygulanabilecek

yeniden düzenleme tekniklerinin tespiti, 2) Prim tabanlı algoritmanın çalıştırıldığı

grafiği oluşturan düğümler için maliyetlerin hesaplanması, 3) Yeniden düzenleme

tekniklerinin sırasının üretilmesi. Önerilen algoritmanın adımları Algoritma 3’te

verilmiştir. Algoritma 3, nesne yönelimli programlamadan oluşan proje sınıflarına ait

SC kaynak kodların girdi olarak alınmasıyla başlar. Enerji tüketimi ile ilgili olarak en

uygun yeniden düzenleme tekniklerinin sırasının çıktısını Rorder temsil etmektedir.

Sınıfların yeniden düzenleme teknikleriyle uyumluluğu 1. ile 12. satırlar arasındaki alt

yordamlarda hesaplanmıştır. Projenin her bir sınıfı, n’nin sınıf sayısını temsil ettiği

SCi ile gösterilir. Ri SCi için uygulanabilir teknik ise, L log dosyasına bir yeniden

düzenleme tekniği Ri eklenir. Log, yeniden düzenleme tekniklerinin hareketlerin kayıt

altına alınması için kullanılır. Satır 10-14’de verilen iç içe döngüler, her sınıfa ayrı ayrı

yeniden düzenleme tekniklerini uygular ve yeniden düzenlenen sınıfları kaydeder. Daha

69

sonra yeniden düzenlenen sınıflar için düğümlerin maliyetleri, çalışma bağlamında

tasarlanan matematiksel bir model aracılığıyla hesaplanır. R, sınıflara uygulanan

bir yeniden düzenleme tekniğini belirtirken, SRik projenin yeniden düzenlenmiş bir

sınıfıdır. Düğümlerin maliyetleri Denklem 4.1 ile hesaplanır. Düğümlerin grafiği, her

bir düğümün bir R’yi temsil ettiği ve E’nin iki komşu düğümün ortalama maliyetini

temsil ettiği gözönüne alınarak oluşturulmaktadır. Rs, grafikte bir köşe seti oluşturan

yeniden düzenleme tekniklerinin listesini gösterir. Rastgele başlatma r0 aracılığıyla

gerçekleştirilir. Rs ve r0 Satır 15’te temsil edilir. o, yeniden düzenleme teknikleri

listesine eklenecek yeni adaydır. Eseq, sıralı kenar kümesini temsil eder. Yinelemeli

hesaplama 18-22. satırlar ile sürdürülür. İşlem, tüm kenarlar ve düğümler ziyaret

edilene kadar devam eder. Eseq, yeniden düzenleme teknikleriyle iki kat artırılırsa,

benzersiz bir Eseq elde etmek için budanır. Son olarak, yeniden düzenleme tekniklerinin

son sırasını içeren Rorder, Satır 24’te döndürülür.

70

Algorithm 3: Geliştirilen önceliklendirme algoritması
Giriş: SC , Kaynak kod

Çıkış: Rorder , Optimal sıra

11 i← say(SC)

22 j← 7

33 while i > 0 do

44 while j > 0 do

55 Li← uygula(R j)

66 j← j−1

77 i← i−1

88 k← say(L)

99 i← say(SC)

1010 while i > 0 do

1111 while k > 0 do

1212 SCi← uygula(Rk)

1313 SRik← maliyetHesapla(SCi)

1414 i← i−1

1515 Rs← r0

1616 Eseq←∅

1717 k← say(L)

1818 while k > 0 do

1919 e∗ = (r∗,o∗) . MinimumMaliyetliKenarBul(r,o)

2020 k← k−1

2121 Rs← RsUo∗

2222 Eseq← EseqUe∗

2323 Rorder← tekrarlarıBuda(r,Eseq)

2424 return Rorder

71

4.4.2. Geliştirilen matematiksel model

Tanım 4.1. (Yeniden düzenlemenin graf gösterimi). Bir yeniden düzenleme listesi G =

(V,E) ile temsil edilebilir. G grafı, boş olmayan iki sonlu küme V ve E ’den oluşan bir

matematiksel yapıdır (Biggs vd., 1986). Grafta, V ’nin elemanlarına düğümler (vertices)

denir ve V = (v1,v2,vn) düğümler kümesi ile gösterilir. E’nin elemanlarına kenarlar

(edges) denir ve E = (e1,e2,em) kenarlar kümesi ile gösterilir (Gross ve Yellen,

2005). Burada V , yeniden düzenleme tekniklerini içeren bir düğümler kümesi; E,

düğümler arasındaki bağlantıları içeren bir kenar kümesidir. n kenar sayısı olsun; n∗

(n−1)/2 kenar sayısına sahip tamamen bağlantılı bir graf oluşturmak hedeflenmektedir.

Her yeniden düzenleme tekniğinin, büyüklüğü kaynak kod analizine bağlı olan bir w

ağırlığı vardır. w, bir düğüm çiftinin (r,o) iki maliyetinin ortalaması alınarak hesaplanır.

Yukarıdaki tanım, Şekil 4.2’de gösterildiği gibi tam ağırlıklı bir graf oluşturur.

v7

v5

v6

v2

v1

v3 v4

1

7 6

5

2

3

4

8

9

10
11

12

13

14

15

16

17

18

19

20

21

Şekil 4.2. Tam ve ağırlıklı graf örneği

Tanım 4.2. (Yolun oluşturulması). Düğümlerden biri seçilerek V ’nin rastgele

başlatılması tamamlanır. Kenar listesi e∗, düğümlerin adım adım kapsamlı bir

değerlendirmelerinden alınan kenarlarla doldurulur. Sonuç olarak, bir son kenar listesi

e∗ elde edilir.

Öneri 4.3. (Yolun yürütülmesi). Bir G verildiğinde, düğümlerin her maliyeti bir

karmaşıklık formülü ile temsil edilebilir. Düğümlerin maliyetinin belirlenmesinin,

G üzerinde güvenilir bir yol ortaya çıkarmak için çok önemli olduğuna dikkat

72

edilmelidir. G’nin tüm düğümlerini kapsayan yol inşa edilir, böylece maliyetlerin

her bir değerlendirmesinde bunlardan bazıları budanır. Nihai kenar listesi e∗, kenar

sayısından daha kısa olmalıdır ((e∗)<(n*(n-1)/2). Rastgele e∗’nin, sıralı bir e∗’ye kıyasla

daha yüksek enerji tüketimine yol açtığı çalışmada öne sürülür.

Yazılım metrikleri yazılım geliştirme sürecini ve yazılım ürünlerinin kalitesini kontrol

etmek için nicel bir yol sağlar (Li ve Henry, 1993) ve yazılımın karmaşıklık, büyüklük,

kalıtım gibi belirli yönlerini ölçer. Genel olarak, yazılımın dahili nitelikleri yazılım

metrikleri aracılığıyla yakalanır ve üst düzey özellikleri bu metrikler için geçerli

değerler cinsinden ifade edilir (Mahouachi vd., 2013). Yazılım metrik çeşitlerinden

biri olan nesne yönelimli metriklerin kullanımı kaynak kodunda özellikle yazılım

görselleştirmesiyle birlikte yeniden yapılanmaya ihtiyaç duyan yerleri tespit etmek

için çok uygundur (Kaur ve Singh, 2016). Bu nedenle, kod karmaşıklığı ve boyutu

hesaplayabilen metrikler ana kriter olarak seçilir. Bu çalışmada geleneksel ve nesne

yönelimli metrikler, yeniden düzenleme işleminin kod kalitesi üzerindeki etkisini

değerlendirmek için dahili metrikler olarak seçilmiştir.

Diğer taraftan yazılım sürdürülebilirliği ile yazılım metrikleri arasında genelde ters

ilişki olduğu bilinmektedir (Tarwani ve Chug, 2016). Nesne yönelimli programlamada

ise yapışıklık (cohesion) ve bağlaşım (coupling) metrikleri yazılımın sürdürülebilirliği

açışından iki zıt hedeftir. Yüksek kaliteli moduler yazılımlar elde etmek için yapışıklık

maksimizasyonu ve bağlaşım minimizasyonu önemlidir; fakat bu metriklerin yazılım

kalitesini değerlendirmede tek başlarına yeterli olmayıp yazılımın boyutu, karmaşıklığı

gibi faktörler ile birlikte ele alınması gerekmektedir (Candela vd., 2016). Denklem

4.1’de verilen hesaplama, bir yeniden düzenleme sırasının üretildiği bir grafikte bir

düğümün maliyetine karar vermek için tasarlanmıştır.

Wc =
(Ma +Mb +Mc +(Md ∗Me))

Mg
(4.1)

Wc, bir düğümün maliyetini belirtir. Ma, McCabe’nin çevrimsel karmaşıklık değeridir

ve bir düğümün maliyeti ile doğru orantılıdır. Mb, kod satır sayılarını temsil eder. Mc,

kalıtım ağacının derinliği ve Md fonksiyon sayısıdır. Me fonksiyon çağrılma sayısı,

düğüm maliyetini maksimum seviyede tutmak amacıyla Md ile çarpılırak payın ikinci

73

bölümünü oluşturmaktadır. Bakım yapılabilirlik indeksi olan Mg ise düğüm maliyetini

azaltmak için kullanılır ve paydayı oluşturur.

4.5. Deneysel Veri Seti

Sunulan algoritma ve yöntem için geliştirilen aracımızın nesne yönelimli kaynak kodlara

ihtiyacının olmasının yanında yasal kısıtlamalar göz önüne alınarak seçilen projeler açık

kaynak kodlu projeler olacak şekilde sınırlandırılmıştır. Böylece istenen değişikliklere

izin veren ve nesne ilişkilerini içeren kodlar, analiz edilmek için veri setine dahil

edilmiştir. Taşınabilir cihazlardaki oyunlar enerji yoğun uygulamalar olduğu için

(Zotos vd., 2005) birkaç yıldır var olan ve aktif bir kullanıcı topluluğuna sahip oyun

tabanlı yerleşik uygulamalar veri seti seçiminde önemli bir kriter olarak belirlenmiştir.

Genel olarak, veri aktarımı enerji tüketiminin ana kısmını oluşturur (Sun vd., 2017;

Lyu vd., 2019). Bu bilgi doğrultusunda yapılandırılmış sorgu dili içeren projelerin

seçimi diğer önemli bir kriter olarak belirlenmiştir. Bir diğer kriter ise, tekniklerin

bir kaynak kod içinde birkaç farklı bölüme uygulanması halinde enerji tüketimini

azaltmak mümkün olduğundan uygulamaların en az üç yeniden düzenleme tekniği ile

uyumlu olması durumudur (Kim vd., 2018). Çok büyük projelerde (web tabanlı, bulut

tabanlı) geliştirilen aracın yazılım güvenilirliği (Triwijoyo vd., 2017) düşük olduğundan

öncelikli bir yeniden düzenleme listesi vermenin pratik olmamasıyla sonuçlanmaktadır.

Bu yüzden deneysel veri setleri proje boyutu açısından sınırlandırılmış ve düz kodlar

analiz edilmeye çalışılmıştır. Tez, nesne yönelimli programlama için Java ve C#

uygulamalarına odaklanmakta ve bu dillerin bulgularını kapsamaktadır. Bu iki dil

yazılımın sürdürülebilirliği için analiz edilen araçlarla uyumlu olduklarından (Ardito

vd., 2020) ve enerji verimliliği çalışmalarında tercih edildiğinden (Mancebo vd., 2021b;

Pereira vd., 2021) sıklıkla kullanılırlar. Ayrıca benzer sözdizimine sahiptirler ve bu

iki dilde yazılan ortak amaçlara sahip uygulamalar, sınıf kapsülleme, polimorfizm ve

yeniden kullanılabilirlik açısından benzer özellikler gösterir (Ogala ve Ojie, 2020).

Fakat enerji verimliliği açısından uygulamalarda benzerlik gösterip göstermediklerinin

tespiti için kapsamlı analizler gerekmektedir.

Seçilen projeler sekiz adet açık kaynaklı C# ve Java programlama dili ile oluşturulmuş

yazılım projeleridir. Seçilen tüm çalışmalar çeşitli perspektiflerden analiz edilmiş ve

74

çalışmalar arasında herhangi bir ilişki tespit edilmemiştir. Projelerin içsel davranışları

minimum üç yeniden düzenleme tekniği içerecek şekilde düzenlenmiş ve çalışma

kapsamında düzenlenen bu kodlar orijinal kod olarak ele alınmıştır. Sınıf başına

hesaplama işlemlerinin yapıldığı projelerin detayları hakkında bilgiler Çizelge 4.3’te

verilmektedir.

Çizelge 4.3. Deneysel projelerin özeti

Ad Dosya
Sayısı

LOC SLOC-P SLOC-L CC

Bordro Yönetim Sistemi Projesi a 17 9176 7833 5105 789
Otel Yönetim Sistemi Projesia 20 6210 5090 3471 472
Basit Hesap Makinesi Projesib 6 674 490 351 15
Hastane Yönetim Sistemi Projesic 16 2147 1611 1276 55
Çalışan Yönetim Sistemi Projesic 24 2892 2205 1743 50
Oyun 2048 Projesic 6 1466 1145 808 141
Mobil-Hesap Makinesi Projesid 10 637 419 317 46
Mobil-Oyun 2048 Projesie 17 1204 938 698 132

LOC: Kod satır sayısı, SLOC-P: Fiziksel kod satır sayısı, SLOC-L: Mantıksal kod satır sayısı, CC:
Çevrimsel karmaşıklık (McCabe)

a Web Sayfası : https://www.kashipara.com/project/projectcsharp.php
b Web Sayfası : https://github.com/Charpur98/Simple-Calculator
c Web Sayfası : https://code-projects.org/c/languages/project/c-sharp-projects/
d Web Sayfası :https://github.com/RushanB/Calculator
e Web Sayfası :https://github.com/roxrook/2048-android

Bordro Yönetim Sistemi, Otel Yönetim Sistemi, Hastane Yönetim Sistemi, Çalışan

Yönetim Sistemi, Basit Hesap Makinesi ve Oyun 2048 projeleri C# programlama dili

ile oluşturulmuş masaüstü uygulamalarıdır. Mobil-Hesap Makinesi ve Mobil-Oyun

2048 projeleri Java programlama dili ile oluşturulmuş Android uygulamalarıdır.

4.6. Geliştirilen Otomasyon Yazılım Aracının Genel Özellikleri

Tez kapsamında geliştirilen algoritmanın uygulanması için Windows tabanlı grafiksel

kullanıcı arayüze sahip otomasyon yazılım aracı geliştirildi. Bu aracın temel özellikleri,

nesne yönelimli bir programlama dili olan C# ile geliştirilen bir uygulamanın

enerji tüketimini iyileştirmek için yeniden düzenleme dizileri elde etmenin yanında

yazılım geliştiricilere yazılım kalitesi ve enerji tüketimi açısından destek vermektir.

Geliştirilen araç, Encapsulate Field, Simplify Nested Loop, Inline Temp, Introduce

Explaining Variable, Replace Magic Number with Symbolic Constant, Consolidate

75

Duplicate Conditional Fragments ve Hide Method yeniden düzenleme tekniklerini

enerji tüketimini düşürmeye yönelik olumsuz etkileri olacağı düşünülen kodlara

uygulayabilmekte, nesne yönelimli metrikler ve geleneksel metrikler yardımıyla kod

ölçümlerini yapabilmekte, enerji tüketimini optimum seviyeye indirmeye yarayacak

yeniden düzenleme tekniklerin sırasını üretebilmekte ve masaüstü kullanıcıları için

enerji tüketim ölçümü gerçekleştirip görsel olarak kullanıcılara sunabilmektedir.

Çalışma kapsamının geri kalanında geliştirilen araç olarak anılacaktır. Önerilen

algoritmanın nesne yönelimli programlama dillerinde yazılan kodlarla uyumlu olmasını

sağlamak, yeniden düzenleme tekniklerinin etkileşimlerini tespit etmek, geliştirilen

yazılımın kalitesini korumak ve artırmak amacı ile geliştirilen araç için Microsoft Visual

Studio geliştirme ortamı tercih edilir. Yazılım, nesne yönelimli bir programlama dili

olan C# ile kodlanmıştır. Kullanıcı arayüz tasarımı Şekil 4.3’te verilmiştir.

5

3

64 7

2

1

8

Şekil 4.3. Kullanıcı arayüz tasarımı

Kullanıcı açılış ekran arayüzü 8 bileşenden oluşmaktadır. Şekil 4.3’te 1 numaralı

alan içerisinde alt menüler içeren menu item kontrolleri mevcuttur. 2 numaralı alan

Gözat butonunu, 3, 4, 5 numaralı alanlar listview kontrollerini, 6 ve 7 numaralı

alanlar richTextBox kontrollerini ve 8 numaralı alanlar ise Kaydet, Temizle ve Excel

buton kontrollerini işaret etmektedir. Arayüz bileşenlerinin fonksiyonları sırasıyla

anlatılmaktadır.

76

Numara 1 olarak adlandırılan alan 5 ana bileşen içermektedir: Yeniden Düzenleme

Teknikleri, Yazılım Metrikleri, Optimal Sıra Tespiti, Enerji Tüketimini Tahminleme and

Yeniden Düzenleme Hakkında. Bu bileşenlerin alt menüleri Şekil 4.4’te verilmektedir.

 Yeniden Düzenleme Teknikleri Yazılım Metrikleri Optimal Sıra Tespiti Enerji Tüketimini Tahminleme

Yazılım Metrikleri

M1: Kod Satır Sayısı
M2: Mantıksal Kod Satır Sayısı
M3: Çevrimsel Karmaşıklık

M5: Bağlaşım Sayısı
M4: Operand ve Operatör Sayısı

M6: Bakım Yapılabilirlik İndeksi
M7: Kalıtım Ağacının Derinliği
M8: Fonksiyon Başına Düşen

	 İfade Sayısı
M9: Fonksiyon Çağrılma Sayısı

M10: Fonksiyon sayısı

 Yeniden Düzenleme Teknikleri

R1: Encapsulate Field

R2: Simplify Nested Loop

R3: Inline Temp
R4: Introduce Explaining Variable
R5: Replace Magic Number with

Symbolic Constant
R6: Consolidate Duplicate Conditional

Fragments
R7: Hide Method

 Yeniden Düzenleme Hakkında

Uygulanan Yeniden Düzenleme Tekniklerini
Bulma

Yeniden Düzenleme Tekniklerinin Optimal
Sırasını Bulma

Intel Power Gadget Aç ve Çalıştır

Enerji Tüketim Verisi Al

Intel Power Gadget Kapat

Optimal Sıra Tespiti Enerji Tüketimini Tahminleme

Yeniden düzenleme
hakkında bilgi

verilmesi

Şekil 4.4. Alt menülerin genel görünümü

Yeniden Düzenleme Teknikleri isimli menuItem nesnesinin aktif olabilmesi için Gözat

(2 numaralı) buton kontrolünün C# veya Java programlama dilleri ile oluşturulmuş ".cs"

veya ".java" uzantılı dosyalardan veri alması gerekmektedir. Dosyalardan elde edilen

veriler kaynak kodları temsil eder. Seçilen kaynak kodların listview kontrollerinde,

boyutları, özellikleri (3 numaralı) ve yol uzantıları (4 numaralı) listelenirken veri

görselleştirme tablosuna da aktarımı yapılır. Kullanıcı, 4 numaralı Tüm Dosya/Klasör

Yolu adlı listView denetiminden düzenlemek istediği orijinal kodun uzantısını seçmelidir.

Nesne yönelimli bir programlama dili olan C# veya Java ile oluşturulan kaynak kodlar

orijinal Kod (numara 6) richTextBox kontrolüne yüklenir. RichTextBox denetimi, bir

denetim kümesi içindeki metnin bir bölümünü biçimlendirmek için kullanabileceğiniz

özelliklere sahip olmasının yanısıra dosyaları kaydetmek ve açmak için işlevler sağlayan

yöntemleri de içerir. Daha sonra Şekil 4.4’te verilen Yeniden Düzenleme Teknikleri

adlı alt menuItem kontrol menüsünden kaynak koda uygulanacak yeniden düzenleme

tekniği seçilip uygulandıktan sonra elde edilen orijinal ve yeniden düzenlenen kodlar

Şekil 4.5’te gösterildiği gibi 6 ve 7 numaralı richTextBox kontrollerinde kullanıcıya

sunulmaktadır. Yeniden düzenleme tekniklerinin uygulanması sırasında Microsoft Kod

Analiz kütüphanesinin yanısıra metin parçalama, noktalama işareti silme, durdurma

kelimeleri, temel hale döndürme, cümle bölümlendirme, kökenine döndürme, dizin

(trim, indexof, split, substring) teknikleri ve düzenli ifadelerden yararlanılmıştır.

Ayrıca yer değiştirme (replace) ve dosya yazma yöntemleri ile bulunan kod bloğu

yeni özelliklere sahip kod bloğu ile değiştirilmektedir. Sınıflara uygulanan yeniden

77

düzenleme tekniklerinin log kayıtlarında tutulması için Kaydet butonunun click

eventinin aktif olması gerekmektedir. Kaydedilen ve yeniden düzenlenen kodların

değişen metrik değerlerinin bireysel hesaplaması Şekil 4.4’te verilen metrik menüsü

yardımıyla yapılmaktadır. Excel butonu yardımıyla excel dosyasına ölçüm sonuçları

kaydedilmektedir. Elde edilen ölçüm sonuçları graf tabanlı arama yaklaşımındaki her bir

düğümü temsil eden yeniden düzenlenen kodlar için elde edilecek düğüm maliyetinde

kullanılmaktadır. Düğüm maliyet hesaplaması geliştirilen matematiksel modeldeki

Şekil 4.5. Orijinal ve yeniden düzenlenmiş olanları kapsayan kod parçası örnekleri

kompleks metrik hesaplaması ile elde edilmektedir. Ayrıca, elde edilen nihai kompleks

metrik ölçüm değerleri ve uygulanan yeniden düzenleme listesi kullanılarak her sınıfa

ait komşuluk matrisi oluşturulmaktadır. Geliştirilen araç sayesinde R GUI script (R,

2021) olarak bu matrisler üretilmekte ve en optimal sırayı bulmak için Prim tabanlı

algoritma ile birlikte kullanılmaktadır. Oluşturulan bir sınıfa ait komşuluk matris örneği

Çizelge 4.4’te verilmektedir.

Optimal Sıra Tespit menü öğesi iki alt ana menü öğesi içermektedir: Uygulanan

Yeniden Düzenleme Teknikleri Bulma, Yeniden Düzenleme Tekniklerinin Optimal

Sırasını Bulma. Log kullanarak uygulanan kod yeniden düzenleme tekniğini bulma

menu bileşeninin click eventi aktif hale geldiğinde Şekil 4.6’da verilen form tasarımı

kullanıcıya sunulmaktadır. Bu alt menü her sınıfa ait log dosyalarını kullanarak o

sınıflara uygulanan yeniden düzenleme teknikleri listesini üretmekte ve kullanıcılara

yansıtmaktadır. 9 numaralı open log data butonu yardımıyla sınıfa uygulanan yeniden

78

Çizelge 4.4. Komşuluk matris gösterimi

- R7 R2 R3 R4 R5 R6 R1
R7 - 23.35 23.38 23.41 23.14 23.24 23.22
R2 23.35 - 23.34 23.36 23.09 23.20 23.17
R3 23.38 23.34 - 23.40 23.13 23.23 23.20
R4 23.41 23.36 23.40 - 23.15 23.26 23.23
R5 23.14 23.09 23.13 23.15 - 22.99 22.97
R6 23.24 23.20 23.23 23.26 22.99 - 23.07
R1 23.22 23.17 23.20 23.23 22.97 23.07 -

düzenleme teknikleri listesi o sınıfın log kayıtlarından 11 numaralı richtextbox

kontrolüne aktarılmaktadır. 10 numaralı Uygulanan Yeniden Düzenleme Teknikleri

buton nesnesi yardımıyla uygulanan yeniden düzenleme teknikleri 12 numaralı listBox

kontrolüne aktarılmakta ve aynı zamanda mesaj olarak kullanıcı bilgilendirilmektedir.

Uygulanan yeniden düzenleme teknikleri kullanıcıya aktarılan formda temsili kısa

isimlendirme şeklinde gösterilmektedir. Graf düğüm ve kenar bilgilerinden elde

10

12

9

11

Şekil 4.6. Uygulanan yeniden düzenleme tekniklerinin tespiti

edilen komşuluk matris değerleri kaydedilen R GUI script dosyalarında tutulmaktadır.

R GUI kullanılarak uygun yeniden düzenleme teknikleri sırasını elde etmek için

geliştirilen yazılımın ekran görüntüsü Şekil 4.7’de verilmektedir. İlk olarak R GUI

Script dosyalarının yolları, kullanıcı arayüzünde 13 numaralı olarak verilen Open R Path

79

16

18

17

15
19

14

13

20

Şekil 4.7. Yeniden düzenleme tekniklerinin optimal sırası

isimli buton yardımıyla 14 numaralı listView kontrolüne yüklenmektedir. Kullanıcının

seçtiği yoldaki script dosyası 15 numaralı R Script Çalıştır isimli buton nesne yardımı ile

Prim tabalı algoritmada yürütülmekte ve elde edilen sonuçlar 16 numaralı richTextBox

kontrolü içerisine yüklenmektedir. Ardından, 17 numaralı Optimal Sıra isimli buton

kontrolü yardımıyla en uygun yeniden düzenleme sırası elde edilmektedir. Elde edilen

sıra 18 numaralı listbox kontrolüne aktarılmakta aynı zamanda mesaj olarak kullanıcıyı

bilgilendirmektedir. Bu sıranın elde edilmesinde kullanılan grafın grafiksel gösterimi

ise 19 numaralı Graf Çiz isimli buton kontrolü vasıtasıyla 20 numaralı Graf isimli

pictureBox kontrolüne yüklenir. Geliştirilen otomasyon yazılım aracının replikasyon

paketi https://github.com/isanlialp/ReplicationPackage linkinde mevcuttur.

80

Ö
ne

ril
en

 M

od
el

C
 #

 U
yg

ul
am

as
ı

Ye
ni

de
n

D
üz

en
le

m
e

Te
kn

ik
 L

is
te

si

U
yg

ul
an

ab
ilir

Ye
ni

de
n

D
üz

en
le

m
e

Te
kn

ik
 L

is
te

si
Te

sp
iti

Lo
g

D
os

ya
sı

Ve
ri

D
ep

ol
am

a

Sı
ra

lı

Ye

ni
de

n
D

üz
en

le
m

e

Te

kn
ik

le
rin

i
U

yg
ul

am
a

In
te

l P
ow

er
 G

ad
ge

t
In

te
l P

ow
er

 G
ad

ge
t

Ka
rş

ıla
şt

ırm
a

>

So
nu

ç

Enerji Tüketimi Tahminleme

Ka
yn

ak
 K

od
la

r

Ye
ni

de
n

D
üz

en
le

m
e

Te
kn

iğ
i U

yg
ul

an
m

ış
 K

od
Ye

ni
de

n
D

üz
en

le
m

e
Te

kn
iğ

i
U

yg
ul

an
m

ış
 K

od
la

r

Ka
yn

ak
 K

od
la

r
Ç

ok
lu

 Y
en

id
en

 D
üz

en
le

m
e

Te
kn

iğ
i U

yg
ul

an
m

ış
 K

od
la

r

Tr
ep

n
Pr

of
ile

r
Tr

ep
n

Pr
of

ile
r

D
üş

ük
 E

ne
rji

 T
ük

et
im

i

Yü
ks

ek
 E

ne
rji

 T
ük

et
im

i

Eş
za

m
an

lı
İş

le
m

Ar
dı

şı
k

İş
le

m

Pr
og

ra
m

 A
kı

şı
nı

n
Fa

rk
lı

Bö
lü

m
le

ri

H
er

 Y
en

id
en

D
üz

en
le

m
e

Te
kn

iğ
i

U
yg

ul
an

m
ış

 K
od

 İç
in

M
et

rik
 H

es
ap

la
m

a

Ye
ni

de
n

D
üz

en
le

m
e

Te
kn

ik
le

rin
in

Sı
ra

sı

Enerji Tüketimi Tahminleme

Ve
ri

D
ep

ol
am

a

Şe
ki

l4
.8

.Ç
al

ış
m

an
ın

ka
vr

am
sa

lç
er

çe
ve

si
.

81

4.7. Enerji Tüketiminin İzlenmesi

Bilgisayar programları, kullanıldığında çok sayıda kaynağa ihtiyaç duyar. Sabit disk,

grafik kartı, depolama aygıtı, bellek ve CPU ana kaynaklar olarak kabul edilebilir.

Bilgisayar programlarının her bir işleminin yürütülmesi sırasında, işlem başına disk

okuma / yazma ya da CPU hesaplaması gibi bazı işlemler enerji tüketir. Bir kullanıcı

işlemcinin enerji kullanımını tahmin etmek isterse, enerji kullanımını izlemek için özel

araçlar vardır:

• Jouletrack

• XEEMU

• Jalen

• Jolinar

• pTop

• EnergyChecker

• PowerApi

• PHOENIX

• Petra

• Powerscope

• GreenAdvisor

• Monsoon

• Intel RAPL

• Joulemeter

• Trepn Profiler

• Intel Power Gadget

Bazı özel araçlar, kullanıcının herhangi bir donanım enstrümantasyonu gerektirmeden

enerji tüketimini tahmin etmesini sağlar. Geliştiricilerin belirli işlemleri

82

gerçekleştirirken uygulamaların enerji tüketimi davranışından haberdar olmaları çok

önemlidir. Bu tür özel araçlar olmadan, geliştiricilerin program kodunu enerji verimliliği

için optimize etmeleri zordur (Hoque vd., 2015). Çalışma kapsamında, C# ve Java

programlama dilinde yazılmış kaynak kodlar için enerji tüketimi tahmin edilmektedir.

Diğer nesne yönelimli programlama dilleri bu çalışmanın kapsamında değildir. Sekiz

açık kaynak kodlu proje ölçüme tabi tutulmuştur. Enerji tüketimini tahmin etmek için,

nesneye yönelik kod tabanlı tahmini destekleyen Intel Power Gadget (Intel, 2020) ve

Trepn Profiler (Qualcomm, 2018) yazılım güç tahminleme araçları kullanılmaktadır.

Şekil 4.9’da Intel Power Gadget aracını oluşturan bileşenler ve özellikleri verilmektedir.

Intel Power Gadget aracı, tahminleme sonucunda bir log dosyası üretir. Araç paket güç

Şekil 4.9. Intel Power Gadget bileşenleri

limiti, geçen süre (elapsed time), işlemci frekansı, grafik teknolojileri (GT) frekansı,

işlemci sıcaklığı, ortalama ve işlemcinin kümülatif gücünü içerir. GT, Intel tarafından

merkezi işlem birimiyle aynı pakette veya kalıpta üretilen bir dizi tümleşik grafik

işlemcisinin toplu adıdır. İşlemci enerji tüketimini tahmin etmek için, araç Denklem 4.2

(Intel, 2020)’de sunulan formülü kullanılır:

Tet = IA+GT (varsa)+Det (4.2)

83

Tet işlemcinin toplam enerji tüketimi, IA enerji işlemci çekirdekleri enerjisi olarak

ölçülmektedir. GT enerji ise grafik işlemci birimi enerjisi olarak ölçülmektedir fakat

bu değer masaüstü bilgisayarlarda ve sunucular için bazı işlemcilerde yoktur. Det

bilgisayarın diğer parçalarının enerji tüketimini temsil eder ve araç bunu ölçmez. Şekil

(a) (b)

Şekil 4.10. Trepn Profiler bileşenleri

4.10’da Trepn Profiler aracını oluşturan bileşenler ve özellikleri verilmektedir. Trepn

Profiler, Qualcomm topluluğu tarafından geliştirilmiştir ve Snapdragon yonga seti

tabanlı Android cihazlara sahip cihazlarda çalışır (Qualcomm, 2018). Uygulama

CPU, GPU, Wi-Fi, uyandırma kilitleri, bellek, dijital güvenlikli (SD) kart güç

tüketimini ve tüm cihazın çalışma zamanı enerji tüketimini ölçebilir (Hoque vd.,

2015). Güç okumalarını, algılama dirençlerinden okumaları toplayan ve bireysel

donanım bileşenleri için akıma dönüştüren güç yönetimi entegre devresinden (PMIC)

ve bataryadan güç dağıtımını kontrol eden entegre güç yönetimi IC’ye sahip özel pil

yakıt göstergesi çipi yazılımından alır (Qualcomm, 2018). Trepn her 100 ms’den

sonra bilgileri örnekler ve farklı bilgi görselleştirme modları ile sunar. Trepn Profiler

ayrıca ön planda farklı grafik ve çizelgelerin bir görünümünü sağlar, böylece uygulama

geliştiriciler uygulamaların performansını çalışma zamanında CPU kullanımı ve enerji

84

tüketimi ile ilişkilendirebilir. Çevrimdışı analiz için gerçek zamanlı ham veri aktarımına

izin verir (Hoque vd., 2015). Profil oluşturma verilerini daha sonra analiz etmek

üzere kaydetmek için gelişmiş mod seçilir. Profil oluşturma aralığı 100 milisaniye

olarak ayarlanır ve güç istatistikleri için veri noktaları sekmesinden pil gücü seçilir.

Uygulamanın profil oluşturma işlemi daha sonra başlatılır. Belirli bir süre sonra

profil oluşturma oturumu sonlandırılır ve sonuçlar bir csv dosyası olarak kaydedilir.

Güç istatistikleri mikrowatt cinsinden ölçülür ve ölçüm için profil oluşturma süresi

milisaniye cinsindendir. Enerji birimi, Trepn Profiler’dan elde edilen değerler Denklem

4.3 (Chan-Jong-Chu vd., 2020) hesaplanarak dönüştürülür:

Ener ji(J) = (
P

106)W × (
T

103)s (4.3)

Denklem 4.3’te J joule, P güç, W watt, s saniye ve T profil süresi olarak temsil

edilmektedir. W gücü ölçmek için kullanılırken, J işi gerçekleştirmek için gereken

kümülatif watt-saniyeyi ölçmek için kullanılır. Testlerin tümü aynı uzunlukta olduğunda,

ortalama watt (ortalama güç) yaygın olarak (Hindle, 2015; Aggarwal vd., 2014)

kullanılır. Çalışmada ortalama watt kullanılmıştır. Bir test sırasında joule cinsinden

tüketilen enerji, ortalama wattların saniyelerle çarpılmasıyla hesaplanır.

Çalışma kapsamında projelerin enerji tüketim sonuçlarının elde edilmesi için hem

dizüstü bilgisayar hem de cep telefonu kullanılmaktadır. Intel Power Gadget, dizüstü

bilgisayarın değerlerini kaydetmek için kullanılır. Trepn Profiler, Android tabanlı Java

projelerinin cep telefonunda enerji ayak izini kaydetmek için seçilmiştir. Kullanılan

dizüstü bilgisayarın özellikleri: Intel Core i7-8750H, temel frekans işlemci 2.20 Ghz,

6 çekirdek, önbellek 9MB, 8 GB bellek ve 256 GB disk. Kullanılan cep telefonu

özellikleri: 8 çekirdekli 2.0 GHz Cortex-A53 işlemcili, 4 GB ram ve 32 GB disk içeren

Samsung Galaxy C7. Dizüstü bilgisayar için ölçüm hiçbir uygulama yürütülmediğinde

(boş durumunda) ve uçak modunda yapılır. Wi-Fi ve Bluetooth gibi harici iletişim

sağlayan bazı cihazlar çevrimdışı olarak ayarlanmış şekilde bataryadan güç tüketimi

esnasında ölçümler gerçekleştirilir. Dizüstü bilgisayarda deneyler, Windows 10 Pro

ile çevrimdışı olarak gerçekleştirilir. Tüm deneyler çevrimdışı yapıldığından ağ gücü

hesaba katılmaz. Ayrıca tüm deneyler aynı zaman aralığında (5 dakika) (Palomba

vd., 2019) programın en yoğun kısmını test etmek için gereken süre dikkate alınarak

85

gerçekleştirilir ve kontrolsüz davranışın etkisini azaltmak için on kez tekrarlanır. Ayrıca,

eş zamanlı yürütmede deneyi gerçekleştirmek için gereken minimum sayıda uygulamaya

(işletim sistemi çekirdek hizmetleri, enerji ölçüm aracı, ölçülen uygulama vb.) izin

verilir. Güvenilir bir değerlendirme yapabilmek için aynı konfigürasyon cep telefonunda

da uygulanır. Cep telefonu için deney, tüm profil oluşturma süresi boyunca uyanık

kilit ile mümkün olan maksimum periyot ile gerçekleştirilir. Mobil işlemcinizin uyanık

kalması doğru ortalama güç okumaları sağlamaktadır. Uygulamanın güç profilleri csv

dosyaları olarak kaydedilir ve bunlar daha sonra tüketilen enerjiyi hesaplamak için

çevrimdışı olarak işlenir. Cep telefonu ile ilgili çalışmalar manuel olarak yapılmaktadır.

Ayrıca, programları yürütmek için bazı girdi verilerinin gerekli olması halinde, orijinal

kod ve yeniden düzenlenmiş kod için aynı girdi verileri kullanılmıştır.

86

5. ARAŞTIRMA BULGULARI

Projelere ait toplam 116 adet kaynak dosya incelenmiştir. Enerji tüketimi ve kodun

sürdürülebilirliği açısından önemli görülen ve bu doğrultuda kodlaması yapılan

yeniden düzenleme teknikleri incelenen yazılım projelerindeki kodlara uygulanmaktadır.

Geliştirilen otomasyon yazılım sayesinde elde edilen proje kodlarına yeniden düzenleme

teknikleri bireysel olarak uygulanmaktadır. Sonrasında metrik ölçüm değerleri elde

edilmekte ve bu değerler geliştirilen yöntem için giriş değerlerini oluşturmaktadır.

Daha sonra hesaplamalardan elde edilen çıkış değerleri Prim tabanlı önceliklendirme

algoritmasına giriş değerleri olarak verilmekte ve sonucunda üç veya daha fazla yeniden

düzenleme tekniklerinin sırası elde edilmektedir.

Orijinal ve değiştirilen kaynak kodları için sekiz projenin kümülatif enerji tüketimi

değişikliklerinin toplu halde kutu grafik gösterimleri sırasıyla Şekil 5.9 ve 5.10’da

sunulmaktadır. Sonuçların kümülatif olarak ve J cinsinden verildiğini belirtmek gerekir.

Boruvka ve Kruskal algoritmaları yürütülürken deney, Denklem 4.1’de verilen düğüm

ağırlığı formülünden yararlanılacak şekilde tasarlanmıştır. Orijinal kodların enerji

tüketim ortalamaları, Otel Yönetim Sistemi projesi haricinde değiştirilen kodlardan

daha yüksektir. Bu sonuç, türüne bakılmaksızın yeniden düzenleme işleminin enerji

tüketimi açısından proje kaynak kodlarını önemli ölçüde iyileştirdiğini göstermektedir.

Önerilen algoritma, Hastane Yönetim Sistemi projesi ve Bordro Yönetim Sistemi

projesi dışında en düşük enerji tüketim ortalama değerini elde etmiştir. Bu, yazılım

kalitesinin belirli bir yönünü iyileştirmek için grafik tabanlı bir algoritmanın gerekli

olması durumunda, Prim tabanlı algoritmaların yazılım enerji verimliliği açısından daha

fazla tercih edilebilir olduğu varsayımını destekler.

Projelere ait orijinal kodun enerji tüketimi sonuçlarının dağılımını üç karşılaştırma

algoritması ile değerlendirmek için veri dağılımı konusunda önyargı oluşturmayan

Wilcoxon işaretli sıra testi (Woolson, 2007) seçilmiştir. Test önemli düzey olan

0.05 düzeyinde çalıştırılmıştır. H0 hipotezi, orijinal kodun enerji tüketim sonuçları

dağılımının karşılaştırma algoritmaları ile aynı olduğunu belirtir. H1 hipotezi ise

karşılaştırma algoritmaları ile arasında önemli bir farkın olduğu anlamına gelir. Çizelge

5.1 ve 5.2’de verilen test sonuçlarına göre, üç karşılaştırma algoritması için dağılımın

87

farklı olduğu görülmektedir. Bu nedenle, test hedefleri arasındaki önemli farkın tam

Çizelge 5.1. Orijinal kod ile karşılaştırma algoritmalarının Wilcoxon işaretli sıra testi
sonuçları (H0 : p > 0.05, H1 : p < 0.05)

Önerilen algoritma Kruskal Boruvka
Orijinal Kod a (p değeri) 0.012 0.048 0.010
a Projelere ait orijinal kodların enerji tüketim sonuçları dağılımı

tersi olan H0’ın reddedilmesidir. Karşılaştırma algoritmalarından elde edilen sıralar

Çizelge 5.3, 5.4, 5.5’te verilmektedir. "X" etiketi kaynak kod üzerinde tespit edilen

yeniden düzenleme tekniğinin uygunluğunu belirtirken, "-" etiketine sahip yeniden

düzenleme teknikleri elenmiştir. Uygulanabilen yeniden düzenleme teknikleri, enerji

tüketim sonuçlarını farklılaştıran sıralar oluşturmak için özellikle uygundur.

Çizelge 5.2. Enerji tüketim sonuçları. Tüm deneyler aynı zaman aralığında (300 saniye)
ve on kez çalıştırma ile gerçekleştirilir

Aritmetik Ortalamalar (Enerji Tüketim (J))
Ad Orijinal

Kod
Değerleri

Önerilen
Algoritma
Değerleri

Kruskal
Algoritma
Değerleri

Boruvka
Algoritma
Değerleri

Basit Hesap Makinesi Projesi 1365.23 1346.79 1351.04 1357.37
Oyun 2048 Projesi 1466.45 1399.83 1407.48 1446.65
Bordro Yönetim Sistemi Projesi 2003.20 1830.01 1644.26 1782.18
Otel Yönetim Sistemi Projesi 1455.45 1425.30 1494.04 1450.55
Hastane Yönetim Sistemi Projesi 1868.24 1798.90 1711.59 1680.50
Çalışan Yönetim Sistemi Projesi 1978.60 1724.02 1754.58 1789.80
Mobil-Oyun 2048 Projesi 117.73 98.11 108.08 99.53
Mobil-Hesap Makinesi Projesi 191.20 171.89 182.76 188.75

Çizelge 5.3. Kruskal algoritması ile üretilen optimal sıraların detayları

Ad R1 R2 R3 R4 R5 R6 R7 Sıra
Basit Hesap Makinesi Projesi - - X X X X X R3,R6,R7,R4,R5
Oyun 2048 Projesi X X - X X X X R2,R6,R5,R4,R7,R1
Bordro Yönetim Sistemi Projesi X - X - X X X R3,R6,R5,R7,R1
Otel Yönetim Sistemi Projesi - - X X X X - R4,R6,R5,R3
Hastane Yönetim Sistemi Projesi X X X X X X X R2,R6,R3,R7,R4,R5,R1
Çalışan Yönetim Sistemi Projesi - - X X - X X R3,R6,R7,R4
Mobil-Oyun 2048 Projesi - X - X X - X R4,R5,R7,R2
Mobil-Hesap Makinesi Projesi - X X - X - X R3,R5,R2,R7

Her proje için en iyi tahminleme sonuçlarına sahip kaynak dosyanın

optimal sırasının elde edilmesinde kullanılan bulgular sırayla anlatılmaktadır.

Bulguların elde edilmesinde kullanılan projelere ait enerji ölçüm sonuçları

88

Çizelge 5.4. Boruvka algoritması ile üretilen optimal sıraların detayları

Ad R1 R2 R3 R4 R5 R6 R7 Sıra
Basit Hesap Makinesi Projesi - - X X X X X R3,R6,R4,R5,R7
Oyun 2048 Projesi X X - X X X X R1,R6,R2,R4,R5,R7
Bordro Yönetim Sistemi Projesi X - X - X X X R1,R6,R3,R5,R7
Otel Yönetim Sistemi Projesi - - X X X X - R3,R6,R4,R5
Hastane Yönetim Sistemi Projesi X X X X X X X R1,R6,R2,R3,R4,R5,R7
Çalışan Yönetim Sistemi Projesi - - X X - X X R3,R6,R4,R7
Mobil-Oyun 2048 Projesi - X - X X - X R2,R4,R5,R7
Mobil-Hesap Makinesi Projesi - X X - X - X R2,R5,R3,R7

Çizelge 5.5. Önerilen algoritma ile üretilen optimal sıraların detayları

Ad R1 R2 R3 R4 R5 R6 R7 Sıra
Basit Hesap Makinesi Projesi - - X X X X X R4,R6,R3,R7,R5
Oyun 2048 Projesi X X - X X X X R6,R2,R5,R4,R7,R1
Bordro Yönetim Sistemi Projesi X - X - X X X R7,R6,R3,R5,R1
Otel Yönetim Sistemi Projesi - - X X X X - R5,R6,R4,R3
Hastane Yönetim Sistemi Projesi X X X X X X X R2,R6,R7,R3,R4,R5,R1
Çalışan Yönetim Sistemi Projesi - - X X - X X R7,R3,R6,R4
Mobil-Oyun 2048 Projesi - X - X X - X R5,R4,R7,R2
Mobil-Hesap Makinesi Projesi - X X - X - X R5,R3,R2,R7

https://github.com/isanlialp/ThesisResults linkinde mevcuttur. Ayrıca projelerin

yazılım sürdürülebilirliğinin değerlendirilmesinde geliştirilen matematiksel modeldeki

kompleks metrik hesabından elde edilen bulgular sürdürülebilirlik değeri olarak analiz

edilir.

Basit Hesap Makinesi projesinin FormMain sınıfına ait orijinal kodlar üzerinde işlem

gören kaynak dosyası ve dosyalara uygulanan yeniden düzenleme teknikleri Çizelge

5.6’da verilmektedir.

Çizelge 5.6. Basit hesap makinesi projesinde işlem yapılan kaynak dosya ve uygulanan
yeniden düzenleme teknikleri

Kaynak dosya ismi R1 R2 R3 R4 R5 R6 R7
FormMain.cs - - X X X X X

Basit Hesap Makinesi projesinde işlem yapılan FormMain dosyasına uygulanan yeniden

düzenleme tekniklerinin metrik ölçüm sonuçları yardımıyla enerji tüketimine olumlu

katkı yapabilecek en uygun yeniden düzenleme tekniklerinin kombinasyonunun sırası

tespit edilebilmektedir. FormMain sınıfına ait nesne yönelimli kodlar üzerinde bireysel

89

olarak uygulanan yeniden düzenleme tekniklerinden ve önerilen algoritma ile üretilen

yeniden düzenleme tekniklerine ait optimal sıranın uygulanmasından elde edilen

bulguların detayları Çizelge 5.7’de verilmektedir. Önerilen algoritmadan elde edilen

sırayı Rsıra temsil etmektedir. Masaüstü uygulaması olan Basit Hesap Makinesi

projesine ait orijinal ve yeniden düzenlenen kodların enerji tüketim sonuçları Şekil

5.1’de verilmektedir. Diğer projeler için işlem yapılan kaynak dosyası, kaynak dosyadan

elde edilen enerji tüketim sonuçları ve metrik ölçüm sonuçları sırasıyla verilmektedir.

E
n

er
ji

T
ü

ke
ti

m
i(

J)

FormMain.cs
1200

1300

1400

1500

1600
Orijinal Kod Değerleri

Önerilen Algoritma Değerleri
Kruskal Algoritma Değerleri
Boruvka Algoritma Değerleri

Veri Seti

Şekil 5.1. Basit hesap makinesi projesi için orijinal kodun ve karşılaştırma
algoritmalarının kümülatif enerji tüketim sonuçları

90

Ç
iz

el
ge

5.
7.

Fo
rm

M
ai

n
sı

nı
fın

ın
m

et
ri

k
öl

çü
m

so
nu

çl
ar

ıv
e

m
at

em
at

ik
se

lm
od

el
he

sa
bı

.

Y
en

id
en

D
üz

en
le

m
e

Te
kn

ik
le

ri
M

et
ri

kl
er

M
at

em
at

ik
se

lM
od

el
M

1
M

2
M

3
M

4
M

5
M

6
M

7
M

8
M

9
M

10
H

es
ab

ı

O
ri

jin
al

89
49

10
78

24
58

1
4.

83
5

8
2.

41

R
3

88
45

10
75

24
59

1
4.

67
5

8
2.

36

R
4

89
49

10
87

24
58

1
5.

33
5

8
2.

41

R
5

89
49

10
81

24
58

1
5.

17
5

8
2.

41

R
6

88
47

10
78

24
58

1
5

4
8

2.
26

R
7

88
49

10
78

24
58

1
5.

17
5

8
2.

40

R
sı

ra
86

47
10

75
24

59
1

3.
88

5
8

2.
32

91

Oyun 2048 projesinin Form1 sınıfına ait orijinal kodlar üzerinde işlem gören

kaynak dosyası ve dosyaya uygulanan yeniden düzenleme teknikleri Çizelge 5.8’de

verilmektedir. Projeye ait orijinal ve yeniden düzenlenen kodların enerji tüketim

sonuçları Şekil 5.2’de verilmektedir. Form1 sınıfına ait nesne yönelimli kodlar üzerinde

yeniden düzenleme tekniklerinin uygulanmasıyla elde edilen bulguların detayları ise

Çizelge 5.9’da verilmektedir.

Çizelge 5.8. Oyun 2048 projesinde işlem yapılan kaynak dosya ve uygulanan yeniden
düzenleme teknikleri

Kaynak dosya ismi R1 R2 R3 R4 R5 R6 R7
Form1.cs X X - X X X X

E
n

er
ji

T
ü

ke
ti

m
i(

J)

Form1.cs
1200

1400

1600
Orijinal Kod Değerleri

Önerilen Algoritma Değerleri
Kruskal Algoritma Değerleri
Boruvka Algoritma Değerleri

Veri Seti

Şekil 5.2. Oyun 2048 projesi için orijinal kodun ve karşılaştırma algoritmalarının
kümülatif enerji tüketim sonuçları

92

Ç
iz

el
ge

5.
9.

Fo
rm

1
sı

nı
fın

ın
m

et
ri

k
öl

çü
m

so
nu

çl
ar

ıv
e

m
at

em
at

ik
se

lm
od

el
he

sa
bı

.

Y
en

id
en

D
üz

en
le

m
e

Te
kn

ik
le

ri
M

et
ri

kl
er

M
at

em
at

ik
se

lM
od

el
M

1
M

2
M

3
M

4
M

5
M

6
M

7
M

8
M

9
M

10
H

es
ab

ı

O
ri

jin
al

87
8

42
8

13
6

18
39

39
49

1
12

.9
6

42
26

43
.0

0

R
1

88
5

43
3

13
7

18
42

39
49

1
12

.1
1

43
27

44
.5

7

R
2

86
8

42
6

13
4

18
30

39
49

1
12

.8
8

42
26

42
.7

6

R
4

87
5

42
9

13
6

18
42

39
49

1
13

42
26

42
.9

4

R
5

87
4

42
8

13
6

18
49

39
49

1
12

.5
9

42
26

42
.9

2

R
6

86
8

41
8

13
6

18
09

39
49

1
12

.5
8

41
26

42
.2

7

R
7

87
8

42
8

13
6

18
39

39
49

1
12

.9
6

42
26

43
.0

0

R
sı

ra
87

0
42

8
13

2
18

33
39

50
1

12
.0

1
42

27
42

.7
4

93

Bordro Yönetim Sistemi projesinin Employee sınıfına ait orijinal kodlar üzerinde işlem

gören kaynak dosyası ve dosyaya uygulanan yeniden düzenleme teknikleri Çizelge

5.10’da verilmektedir. Projeye ait orijinal ve yeniden düzenlenen kodların enerji

tüketim sonuçları Şekil 5.3’te verilmektedir. Employee sınıfına ait nesne yönelimli

kodlar üzerinde yeniden düzenleme tekniklerinin uygulanmasıyla elde edilen bulguların

detayları ise Çizelge 5.11’de verilmektedir.

Çizelge 5.10. Bordro yönetim sistemi projesinde işlem yapılan kaynak dosya ve
uygulanan yeniden düzenleme teknikleri

Kaynak dosya ismi R1 R2 R3 R4 R5 R6 R7
Employee.cs X - X - X X X

E
n

er
ji

T
ü

ke
ti

m
i(

J)

Employee.cs
1200

1400

1600

1800

2000

2200

2400
Orijinal Kod Değerleri

Önerilen Algoritma Değerleri
Kruskal Algoritma Değerleri
Boruvka Algoritma Değerleri

Veri Seti

Şekil 5.3. Bordro yönetim sistemi projesi için orijinal kodun ve karşılaştırma
algoritmalarının kümülatif enerji tüketim sonuçları

94

Ç
iz

el
ge

5.
11

.E
m

pl
oy

ee
sı

nı
fın

ın
m

et
ri

k
öl

çü
m

so
nu

çl
ar

ıv
e

m
at

em
at

ik
se

lm
od

el
he

sa
bı

.

Y
en

id
en

D
üz

en
le

m
e

Te
kn

ik
le

ri
M

et
ri

kl
er

M
at

em
at

ik
se

lM
od

el
M

1
M

2
M

3
M

4
M

5
M

6
M

7
M

8
M

9
M

10
H

es
ab

ı

O
ri

jin
al

26
5

16
1

10
67

5
44

42
1

17
.3

8
40

8
14

.1
9

R
1

26
8

16
5

11
67

8
44

43
1

14
.1

40
9

14
.8

8

R
3

26
2

16
0

10
67

2
44

42
1

17
.2

5
40

8
14

.1
2

R
5

26
4

16
2

10
67

8
44

42
1

17
.3

8
40

8
14

.1
7

R
6

26
2

15
8

10
67

5
44

42
1

17
.2

5
38

8
13

.7
4

R
7

26
5

16
1

10
67

5
44

42
1

17
.3

8
40

8
14

.1
9

R
sı

ra
26

3
15

8
10

66
9

44
44

1
13

.9
38

9
14

.0
0

95

Otel Yönetim Sistemi projesinin UpdateCustomer sınıfına ait orijinal kodlar üzerinde

işlem gören kaynak dosyası ve dosyaya uygulanan yeniden düzenleme teknikleri Çizelge

5.12’de verilmektedir. Projeye ait orijinal ve yeniden düzenlenen kodların enerji tüketim

sonuçları Şekil 5.4’te verilmektedir. UpdateCustomer sınıfına ait nesne yönelimli

kodlar üzerinde yeniden düzenleme tekniklerinin uygulanmasıyla elde edilen bulguların

detayları ise Çizelge 5.13’te verilmektedir.

Çizelge 5.12. Otel yönetim sistemi projesinde işlem yapılan kaynak dosya ve uygulanan
yeniden düzenleme teknikleri

Kaynak dosya ismi R1 R2 R3 R4 R5 R6 R7
UpdateCustomer.cs - - X X X X -

E
n

er
ji

T
ü

ke
ti

m
i(

J)

UpdateCustomer.cs
1200

1400

1600

1800
Orijinal Kod Değerleri

Önerilen Algoritma Değerleri
Kruskal Algoritma Değerleri
Boruvka Algoritma Değerleri

Veri Seti

Şekil 5.4. Otel yönetim sistemi projesi için orijinal kodun ve karşılaştırma
algoritmalarının kümülatif enerji tüketim sonuçları

96

Ç
iz

el
ge

5.
13

.U
pd

at
eC

us
to

m
er

sı
nı

fın
ın

m
et

ri
k

öl
çü

m
so

nu
çl

ar
ıv

e
m

at
em

at
ik

se
lm

od
el

he
sa

bı
.

Y
en

id
en

D
üz

en
le

m
e

Te
kn

ik
le

ri
M

et
ri

kl
er

M
at

em
at

ik
se

lM
od

el
M

1
M

2
M

3
M

4
M

5
M

6
M

7
M

8
M

9
M

10
H

es
ab

ı

O
ri

jin
al

16
7

98
9

24
0

30
45

1
9.

75
23

11
9.

56

R
3

15
9

97
9

23
7

30
45

1
9.

63
23

11
9.

38

R
4

16
5

10
1

9
24

0
30

46
1

8.
75

23
11

9.
30

R
5

15
8

99
9

24
3

30
45

1
9.

75
23

11
9.

36

R
6

16
5

97
9

24
0

30
45

1
9.

63
22

11
9.

27

R
sı

ra
16

0
10

2
9

24
0

30
46

1
8.

56
22

11
8.

96

97

Hastane Yönetim Sistemi projesinin PatientBill sınıfına ait orijinal kodlar üzerinde

işlem gören kaynak dosyası ve dosyaya uygulanan yeniden düzenleme teknikleri

Çizelge 5.14’te verilmektedir. Projeye ait orijinal ve yeniden düzenlenen kodların enerji

tüketim sonuçları Şekil 5.5’te verilmektedir. PatientBill sınıfına ait nesne yönelimli

kodlar üzerinde yeniden düzenleme tekniklerinin uygulanmasıyla elde edilen bulguların

detayları ise Çizelge 5.15’te verilmektedir.

Çizelge 5.14. Hastane yönetim sistemi projesinde işlem yapılan kaynak dosya ve
uygulanan yeniden düzenleme teknikleri

Kaynak dosya ismi R1 R2 R3 R4 R5 R6 R7
PatientBill.cs X X X X X X X

E
n

er
ji

T
ü

ke
ti

m
i(

J)

PatientBill.cs
1400

1600

1800

2000

2200
Orijinal Kod Değerleri

Önerilen Algoritma Değerleri
Kruskal Algoritma Değerleri
Boruvka Algoritma Değerleri

Veri Seti

Şekil 5.5. Hastane yönetim sistemi projesi için orijinal kodun ve karşılaştırma
algoritmalarının kümülatif enerji tüketim sonuçları

98

Ç
iz

el
ge

5.
15

.P
at

ie
nt

B
ill

sı
nı

fın
ın

m
et

ri
k

öl
çü

m
so

nu
çl

ar
ıv

e
m

at
em

at
ik

se
lm

od
el

he
sa

bı
.

Y
en

id
en

D
üz

en
le

m
e

Te
kn

ik
le

ri
M

et
ri

kl
er

M
at

em
at

ik
se

lM
od

el
M

1
M

2
M

3
M

4
M

5
M

6
M

7
M

8
M

9
M

10
H

es
ab

ı

O
ri

jin
al

19
8

10
6

17
47

4
31

54
1

5.
38

18
16

9.
33

R
1

20
2

11
1

18
47

7
31

54
1

4.
67

20
17

10
.3

9

R
2

19
0

10
5

16
45

9
31

55
1

5.
06

18
16

9.
00

R
3

19
2

10
5

17
47

1
31

54
1

5.
06

18
16

9.
22

R
4

19
3

10
7

17
47

7
31

54
1

5.
19

18
16

9.
24

R
5

19
3

10
7

17
47

7
31

54
1

5.
13

18
16

9.
24

R
6

19
3

10
5

17
47

7
31

54
1

5.
06

16
16

8.
65

R
7

19
2

10
6

17
47

2
31

54
1

5.
13

18
16

9.
22

R
sı

ra
19

5
11

0
17

46
5

31
55

1
4.

56
17

17
9.

13

99

Çalışan Yönetim Sistemi projesinin EmployeeDetails sınıfına ait orijinal kodlar üzerinde

işlem gören kaynak dosyası ve dosyaya uygulanan yeniden düzenleme teknikleri Çizelge

5.16’da verilmektedir. Projeye ait orijinal ve yeniden düzenlenen kodların enerji tüketim

sonuçları Şekil 5.6’da verilmektedir. EmployeeDetails sınıfına ait nesne yönelimli

kodlar üzerinde yeniden düzenleme tekniklerinin uygulanmasıyla elde edilen bulguların

detayları ise Çizelge 5.17’de verilmektedir.

Çizelge 5.16. Çalışan yönetim sistemi projesinde işlem yapılan kaynak dosya ve
uygulanan yeniden düzenleme teknikleri

Kaynak dosya ismi R1 R2 R3 R4 R5 R6 R7
EmployeeDetails.cs - - X X - X X

E
n

er
ji

T
ü

ke
ti

m
i(

J)

EmployeeDetails.cs
1400

1600

1800

2000

2200
Orijinal Kod Değerleri

Önerilen Algoritma Değerleri
Kruskal Algoritma Değerleri
Boruvka Algoritma Değerleri

Veri Seti

Şekil 5.6. Çalışan yönetim sistemi projesi için orijinal kodun ve karşılaştırma
algoritmalarının kümülatif enerji tüketim sonuçları

100

Ç
iz

el
ge

5.
17

.E
m

pl
oy

ee
D

et
ai

ls
sı

nı
fın

ın
m

et
ri

k
öl

çü
m

so
nu

çl
ar

ıv
e

m
at

em
at

ik
se

lm
od

el
he

sa
bı

.

Y
en

id
en

D
üz

en
le

m
e

Te
kn

ik
le

ri
M

et
ri

kl
er

M
at

em
at

ik
se

lM
od

el
M

1
M

2
M

3
M

4
M

5
M

6
M

7
M

8
M

9
M

10
H

es
ab

ı

O
ri

jin
al

32
3

12
6

15
58

8
55

49
7

8.
65

26
17

16
.0

6

R
3

32
2

12
5

15
58

5
54

49
7

8.
59

26
17

16
.0

4

R
4

32
4

12
7

15
59

1
55

49
7

8.
71

26
17

16
.0

8

R
6

32
2

12
5

15
58

2
55

49
7

8.
59

26
17

16
.0

4

R
7

32
3

12
6

15
58

8
55

49
7

8.
65

26
17

16
.0

6

R
sı

ra
31

0
12

5
15

58
2

54
49

7
8.

59
26

17
15

.8
0

10
1

Mobil-Oyun 2048 projesinin Matrix sınıfına ait orijinal kodlar üzerinde işlem gören

kaynak dosyası ve dosyaya uygulanan yeniden düzenleme teknikleri Çizelge 5.18’de

verilmektedir. Projeye ait orijinal ve yeniden düzenlenen kodların enerji tüketim

sonuçları Şekil 5.7’de verilmektedir. Matrix sınıfına ait nesne yönelimli kodlar üzerinde

yeniden düzenleme tekniklerinin uygulanmasıyla elde edilen bulguların detayları ise

Çizelge 5.19’da verilmektedir.

Çizelge 5.18. Mobil-Oyun 2048 projesinde işlem yapılan kaynak dosya ve uygulanan
yeniden düzenleme teknikleri

Kaynak dosya ismi R1 R2 R3 R4 R5 R6 R7
Matrix.java - X - X X - X

E
n

er
ji

T
ü

ke
ti

m
i(

J)

Matrix.java
140

160

180

200

220
Orijinal Kod Değerleri

Veri Seti

Önerilen Algoritma Değerleri
Kruskal Algoritma Değerleri
Boruvka Algoritma Değerleri

Şekil 5.7. Mobil-Oyun 2048 projesi için orijinal kod ve karşılaştırma algoritmalarının
kümülatif enerji tüketim sonuçları

102

Ç
iz

el
ge

5.
19

.M
at

ri
x

sı
nı

fın
ın

m
et

ri
k

öl
çü

m
so

nu
çl

ar
ıv

e
m

at
em

at
ik

se
lm

od
el

he
sa

bı
.

Y
en

id
en

D
üz

en
le

m
e

Te
kn

ik
le

ri
M

et
ri

kl
er

M
at

em
at

ik
se

lM
od

el
M

1
M

2
M

3
M

4
M

5
M

6
M

7
M

8
M

9
M

10
H

es
ab

ı

O
ri

jin
al

39
9

24
7

88
97

8
11

14
4.

67
1

9.
22

35
23

8.
94

R
2

39
5

24
5

88
96

9
11

14
4.

03
1

8.
98

35
23

8.
95

R
4

40
0

24
2

87
97

5
11

14
5.

56
1

9.
02

35
23

8.
88

R
5

39
8

24
7

88
97

8
11

14
4.

67
1

9.
09

35
23

8.
93

R
7

39
9

24
7

88
97

8
11

14
4.

67
1

9.
09

35
23

8.
94

R
sı

ra
39

5
24

0
87

96
9

11
14

7.
23

1
9.

22
35

23
8.

75

10
3

Mobil-Hesap Makinesi projesinin Calculator sınıfına ait orijinal kodlar üzerinde işlem

gören kaynak dosyası ve dosyaya uygulanan yeniden düzenleme teknikleri Çizelge

5.20’de verilmektedir. Projeye ait orijinal ve yeniden düzenlenen kodların enerji

tüketim sonuçları Şekil 5.8’de verilmektedir. Calculator sınıfına ait nesne yönelimli

kodlar üzerinde yeniden düzenleme tekniklerinin uygulanmasıyla elde edilen bulguların

detayları ise Çizelge 5.21’de verilmektedir.

Çizelge 5.20. Mobil-Hesap makinesi projesinde işlem yapılan kaynak dosya ve
uygulanan yeniden düzenleme teknikleri

Kaynak dosya ismi R1 R2 R3 R4 R5 R6 R7
Calculator.java - X X - X - X

E
n

er
ji

T
ü

ke
ti

m
i(

J)

Calculator.java
60

80

100

120

140
Orijinal Kod Değerleri

Veri Seti

Önerilen Algoritma Değerleri
Kruskal Algoritma Değerleri
Boruvka Algoritma Değerleri

Şekil 5.8. Mobil-Hesap makinesi projesi için orijinal kodun ve karşılaştırma
algoritmalarının kümülatif enerji tüketim sonuçları

104

Ç
iz

el
ge

5.
21

.C
al

cu
la

to
rs

ın
ıfı

nı
n

m
et

ri
k

öl
çü

m
so

nu
çl

ar
ıv

e
m

at
em

at
ik

se
lm

od
el

he
sa

bı
.

Y
en

id
en

D
üz

en
le

m
e

Te
kn

ik
le

ri
M

et
ri

kl
er

M
at

em
at

ik
se

lM
od

el
M

1
M

2
M

3
M

4
M

5
M

6
M

7
M

8
M

9
M

10
H

es
ab

ı

O
ri

jin
al

27
1

10
6

40
18

0
5

16
6.

31
1

4.
61

49
23

8.
65

R
2

26
4

10
2

39
16

8
5

16
5.

65
1

4.
35

49
23

8.
64

R
3

26
8

10
3

40
17

4
5

16
6.

42
1

4.
57

49
23

8.
63

R
5

27
0

10
8

40
18

3
5

16
6.

94
1

4.
52

49
23

8.
61

R
7

27
1

10
6

40
18

0
5

16
6.

31
1

4.
61

49
23

8.
65

R
sı

ra
26

6
10

4
39

17
1

5
16

7.
12

1
4.

61
49

23
8.

57

10
5

EnerjiTüketimi(J)

P
1

P
2

P
3

P
4

P
5

P
6

12
00

14
00

16
00

18
00

20
00

22
00

24
00

O
rig

in
al

 K
od

 D
eğ

er
le

ri

Ö
ne

ril
en

 A
lg

or
itm

a
D

eğ
er

le
ri

K
ru

sk
al

 A
lg

or
itm

a
D

eğ
er

le
ri

B
or

uv
ka

 A
lg

or
itm

a
D

eğ
er

le
ri

V
er

i S
et

i

Şe
ki

l5
.9

.O
rij

in
al

ko
du

n
ve

ka
rş

ıla
şt

ırm
a

al
go

rit
m

al
ar

ın
ın

kü
m

ül
at

if
en

er
ji

tü
ke

tim
so

nu
çl

ar
ı-I

(to
pl

u
ku

tu
gr

afi
k

gö
st

er
im

i):
P 1

,B
as

it
he

sa
p

m
ak

in
es

i
pr

oj
es

i;
P 2

,O
yu

n
20

48
pr

oj
es

i;
P 3

,B
or

dr
o

yö
ne

tim
si

st
em

ip
ro

je
si

;P
4,

O
te

ly
ön

et
im

si
st

em
ip

ro
je

si
;P

5,
H

as
ta

ne
yö

ne
tim

si
st

em
ip

ro
je

si
;

P 6
,Ç

al
ış

an
yö

ne
tim

si
st

em
ip

ro
je

si

10
6

EnerjiTüketimi(J)

P
7

P
8

8012
0

16
0

20
0

O
rij

in
al

 K
od

 D
eğ

er
le

ri

V
er

i S
et

i

Ö
ne

ril
en

 A
lg

or
itm

a
D

eğ
er

le
ri

K
ru

sk
al

 A
lg

or
itm

a
D

eğ
er

le
ri

B
or

uv
ka

 A
lg

or
itm

a
D

eğ
er

le
ri

Şe
ki

l5
.1

0.
O

rij
in

al
ko

du
n

ve
ka

rş
ıla

şt
ırm

a
al

go
rit

m
al

ar
ın

ın
kü

m
ül

at
if

en
er

ji
tü

ke
tim

so
nu

çl
ar

ı-I
I(

to
pl

u
ku

tu
gr

afi
k

gö
st

er
im

i):
P 7

,M
ob

il-
O

yu
n

20
48

pr
oj

es
i;

P 8
,M

ob
il-

H
es

ap
m

ak
in

es
ip

ro
je

si

10
7

Önerilen algoritma Çizelge 5.2’de verilen ortalama değerlere göre projelerin toplam

enerji tüketimini % 6.23 azaltabilmiştir. Basit Hesap Makinesi projesi için yöntemimizin

alt çeyreği, orijinal kodun sonucundan daha düşük bir değer elde etmiştir. Bu projede,

önerilen algoritma uygulandıktan sonra elde edilen optimum yeniden düzenleme

sırası R4,R6,R3,R7,R5, Çizelge 5.7’de gösterildiği gibi matematiksel model hesabına

göre sürdürülebilirlik değerinde % 3.73 iyileşme sağlamıştır. Mobil-Hesap Makinesi

projesinin enerji tüketim aralıkları Şekil 5.8’de gösterildiği gibi farklı büyüklük

sırasına göre değişir. Bu proje için yöntemimizin alt çeyreği orijinal kodlara ve

diğer karşılaştırma algoritmalarına göre daha düşük enerji tüketim değeri elde etmiştir.

Bu projede, önerilen algoritma uygulandıktan sonra elde edilen optimum yeniden

düzenleme sırası R5,R3,R2,R7, Çizelge 5.21’de gösterildiği gibi matematiksel model

hesabına göre sürdürülebilirlik değerinde % 0.92 iyileşme sağlamıştır. Geliştirilen

yöntemin küçük boyutlu uygulamalar olan hesap makineleri projeleri için veri

hacimlerini azaltarak enerji tüketimine katkı sağladığı görülmüştür.

Şekil 5.2’de gösterildiği gibi Oyun 2048 projesi enerji tüketim aralıkları birkaç

büyüklük sırasına göre değişir. Yöntemimiz diğer karşılaştırma algoritmaları ve

orijinal kodlara göre enerji tüketim sonuçlarında üstünlük göstermektedir. Bu projede,

önerilen algoritma uygulandıktan sonra elde edilen optimum yeniden düzenleme sırası

R6,R2,R5,R4,R7,R1, Çizelge 5.9’da gösterildiği gibi matematiksel model hesabına göre

sürdürülebilirlik değerinde % 0.6 iyileşme sağlamıştır. Diğer taraftan, Şekil 5.7’de

verilen sonuçlara göre Mobil-Oyun 2048 projesinde de yöntemimiz diğer karşılaştırma

algoritmalarından ve orijinal kodlardan daha düşük bir enerji tüketim değeri elde etmiştir.

Önerilen algoritma uygulandıktan sonra elde edilen optimum yeniden düzenleme sırası

R5,R4,R7,R2, Çizelge 5.19’da gösterildiği gibi matematiksel model hesabına göre

sürdürülebilirlik değerinde % 2.12 iyileşme sağlamıştır.

Genel olarak veri aktarımı enerji tüketiminin ana kısmını oluşturur (Lyu vd., 2019; Sun

vd., 2017). Bordro Yönetim Sistemi projesinin enerji tüketim değerleri tüm ölçümlerde

geniş bir yelpazeye yayılmıştır. Çünkü proje yoğun bir veri aktarım işlemi içermektedir.

Örneğin bu projede çok sayıda SQL sorgusu mevcuttur. Fakat tekniklerin farklı sıralarda

uygulanması, bu proje için tüm algoritmaların sonuçlarında pozitif enerji tüketimi

sağlamıştır. Önerilen algoritmadan elde edilen optimal sıra R7,R6,R3,R5,R1, Çizelge

108

5.11’de gösterildiği gibi matematiksel model hesabına göre sürdürülebilirlik değerinde

% 1.34 iyileşme sağlamıştır. Çalışan Yönetim Sistemi projesi test sürecinde de yoğun

bir veri aktarımı olduğu gözlemlenmiştir. Geliştirilen yöntem uygulandıktan sonra elde

edilen optimum yeniden düzenleme sırası R7,R3,R6,R4, Çizelge 5.17’de gösterildiği

gibi matematiksel model hesabına göre sürdürülebilirlik değerinde % 1.62 iyileşme

sağlamıştır. Tekniklerin farklı sıralarda uygulanması, bu proje için de tüm algoritmaların

sonuçlarında pozitif enerji tüketimi sağlamıştır. Çünkü R3 ve R6’nın önceliklendirilmesi

sonucunda değişkenlerin bellekte daha az yer ayrılmasına izin verilmiş ve bunların

önbellekten alma süreleri kısalmıştır. Sonuç olarak, komut yürütme sırasındaki döngü

sayısı azalması ile enerji tüketimi azalmıştır.

Şekil 5.5’te verilen sonuçlar incelendiğinde, Hastane Yönetim Sistemi projesinin

orijinal kodları karşılaştırma algoritmalarından yüksek enerji tüketimine sahiptir.

Önerilen algoritma uygulandıktan sonra elde edilen optimum yeniden düzenleme

sırası R2,R6,R7,R3,R4,R5,R1, Çizelge 5.15’te gösterildiği gibi matematiksel model

hesabına göre sürdürülebilirlik değerinde % 2.14 iyileşme sağlamıştır. Fakat Boruvka

algoritması uygulandıktan sonra elde edilen optimum yeniden düzenleme sırası

R1,R6,R2,R3,R4,R5,R7, daha az enerji tüketmiştir. Önerilen algoritma proje kodlarının

sürdürülebilirliğini geliştirmesine yardımcı olmuş; fakat tekniklerin optimal sırasının

enerji maliyetini istenilen seviyede düşürmediği görülmüştür.

Otel Yönetim Sistemi projesinin Şekil 5.4’te verilen sonuçları incelendiğinde,

yöntemimizin alt çeyreği, orijinal kodun enerji tüketim sonucundan daha düşüktür.

Yöntemimizin çeyrekler arası aralıkları diğer karşılaştırma algoritmalarına göre daha

küçük olduğu için yöntemimiz daha tutarlı sonuçlar elde etmiştir. Önerilen algoritma

uygulandıktan sonra elde edilen optimum yeniden düzenleme sırası R5,R6,R4,R3,

Çizelge 5.13’te gösterildiği gibi matematiksel model hesabına göre sürdürülebilirlik

değerinde % 6.27 iyileşme sağlamıştır. Sorgu işleminde çağrılan kod bloklarında yapılan

R3, R4, R5, R6 tekniklerinin önceliklendirilmesi ile karmaşık ifadelerin bellekte birden

fazla kopyası oluşmasının da önüne geçilmekte ve değer karmaşası sorunu ortadan

giderilmektedir. Böylece kodun sürdürülebilirliği önemli derecede iyileştirilmiş ve

enerji maliyeti azaltılmıştır.

109

Kullanılan yeniden düzenleme tekniklerine ait bulguların analizi sonucunda yazılım

kalitesi açısından değerlendirilmesi aşağıda sırayla verilmektedir.

R1, yazılım bakım sürecini kolaylaştıran yeniden düzenleme tekniklerinden biridir. Bu

yeniden düzenleme tekniğinin temel amacı, bir değişkenin erişim izinlerini ayarlamaktır.

Get ve set işlevleri, belirli bir alan seçilerek yapılandırılır. Bu yeniden düzenleme,

sınıf içindeki bir öznitelik için getter ve setter oluşturur. Öznitelik private yapılır

ve içerdiği sınıfın dışındaki herhangi bir manipülasyondan korunur. Bu genellikle

bir sınıfın dahili alanlarının kapsüllenmesine izin veren iyi bir tasarım uygulaması

olsa da, get ve set kullanılması, ek işlev çağrılarını temsil ettikleri için projelerde

kulllanılan diğer tekniklerle etkileşiminde daha az performans göstermesine neden

olduğu sonucuna varılmıştır. Herhangi bir performans endişesi varsa kapsülleme

olumsuz bir etki oluşturabilir.

R2 ile iç içe döngü yapıları tek döngülü yapılar haline dönüştürülebilmektedir. İterasyon

sayısındaki artış fazla hesaplamaya ve hafızada fazla yer ayrılmasına sebep olmaktadır.

Tek döngü yapısı iterasyon sayısını azaltmaktadır. Böylece enerji tüketimini azaltmaya

yönelik olumlu etki göstermiştir. R3 ile geçici değişkenin silinmesi, gereksiz geçici

değişkeni önbelleklerden ve ana belleklerden alma süresini kısaltmaktadır. Bu durum

optimal sıranın uygulanmasında enerji verimliliği açısından olumlu katkılar sağlamıştır.

R4’ün uygulandığı yerlerde sınıfların bağlı olma eğilimlerinde değişiklik gözlenmemiştir.

Fakat sonuçlar, düşük seviyeli kod yeniden düzenlemelerinin incelenmesinin sistemlere

ilişkin içgörüleri nasıl ortaya çıkarabileceğini göstermektedir. Veri taşınması gereken

işlemlerde nesnenin bütün verisi kopyalanmaz. Seçilen ifadenin tüm tekrarları, yeni

oluşturulan değişken ile bir referans kullanılarak değiştirilebilir veya yalnızca seçilen

ifade değiştirilebilir. Böylece işlemcideki fazla yük ortadan kaldırılır. Sonuç olarak

enerji tasarrufu sağlanır. R5 kullanımı bellekte iki yinelenen yöntem yerine bir adet

yöntem için yer ayrılmasına olanak sağlar. Tek yöntem kullanımı fetch-decode-execute

döngüsünü azaltmakta olup enerji tüketimini azalttığı sonucuna varılmıştır.

Sihirli sayılar genellikle kaynak kod içerisinde belirgin olmayan özel değerler içeren

sayıları içermektedirler. Bu sayılar kod içerisinde birden fazla yerde farklı amaçlar

110

için kullanıldığı zaman kodun bakımında, değiştirilmesinde zorluklar yaşanmakta

ve okunabilirliğini ters yönde etkileyebilmektedirler. R6 kullanımı ile bu durumlar

ortadan kaldırılmış ve bu tekniğin kullanıldığı projelerin kaynak kodları okunabilirlik

niteliği açısından büyük gelişmeler kaydedildiği görülmüştür. Aynı zamanda projelerin

kaynak kodlarında sayının bellekte birden fazla kopyası oluşmasının önüne geçilmiş

fakat kaynak kodların bakım yapılabilirlik indeksi üzerinde olumlu katkı sağlamadığı

görülmüştür. Diğer taraftan tekniklerle beraber kullanıldığında enerji verimliliği

açısından olumlu gelişme gösterdiği tespit edilmiştir.

Bazen sınıfın içerdiği yöntemi gizlemek zengin bir arayüz oluşturmamızı sağlar

ve sınıflara daha fazla davranış katar. Ek davranışların geliştirilmesi yolu ile

bazen değişkenlere erişiminler doğrudan sağlanabilmekte ve sınıftaki ek yöntemlerin

kaldırılması olanağı ortaya çıkabilmektedir. Böylece hafızadaki fazla yük durumunu

ortadan kalkmış olur. Bunun sonucunda enerji tasarrufu sağlanır. R7 kullanımı içeren

projelerde bireysel kullanımın projelerin enerji verimliliği açısından olumlu yönde katkı

sağladığı söylenemez. Fakat tekniklerin optimum sırasının uygulanmasında ve diğer

tekniklerle etkileşime girmesi sonucunda yazılım kalitesi ve sürdürülebilirliğine olumlu

katkı sağlamış aynı zamanda enerji verimliliğine pozitif yönlü etki yaptığı görülmüştür.

111

6. SONUÇ VE ÖNERİLER

Yeşil yazılım, enerji sızıntılarına neden olan faktörlerin tanımlanmasını ve bunlarla

başa çıkmak için pratik çözümler getirmeyi hedefleyen yazılım mühendisliği dalıdır.

Geliştirilen yazılımsal çözümler, kod işlevini bozmadan yazılım için izlenen yazılım

geliştirme süreci, kullanılan yeniden düzenleme tekniği gibi konularda yapılan yenilik

ve geliştirmeleri gözlemlemeye dayanır. Farklı özelliklerdeki yazılımlar için farklı kalite

hedefleri ve çözümleri ön plana çıkmaktadır. Enerji sızıntılarını yeniden düzenleme

teknikleri ile iyileştirmek çözümlerden biridir. Fakat enerji sızıntılarını iyileştirmek için

yeniden düzenleme yapmak zorlu bir süreçtir. Çünkü yeniden düzenlemeler programın

tasarım alanında gerçekleşirken programın derlenmiş sürümü belirli bir donanım

yapılandırmasında çalıştırıldığında enerji tüketimi tespit edilebilmektedir. Diğer bir

çözüm ise yeniden düzenleme sürecini otomatikleştirmektir. Enerji tüketimini azaltmak

için yazılımın yeniden düzenlenmesini otomatikleştirmeye çalışmak bazı soruları da

beraberinde gündeme getirmektedir. "Kaç yeniden düzenleme yapılmalı?" veya "nereye

uygulanmalıdır?" gibi soruların cevapları önem arz etmektedir. Cevapların önemsiz

olması düşünülemez. Hatta bazı yeniden düzenleme uygulamaları net olabilir; fakat

pratikte yazılım mühendisleri tarafından yazılım geliştirilirken veya bakım yapılırken

yeniden düzenlemenin nerede durdurulacağına dair bir çizgi çizilmelidir. Çünkü her

yeniden düzenleme tekniğinin enerji verimliliğine etkisi tümleşik geliştirme ortamlarına

ait yeniden düzenleme otomatik desteğinde gösterilmez. Ayrıca enerji israfına yol açan

kodlar çalışma zamanında herhangi bir hata oluşturmasa da kaynak kodun bakımını

zorlaştırmaktadır. Bu nedenle kodun dışsal davranışında hiçbir değişiklik olmayacak

şekilde iç yapısını değiştirmek için yeniden düzenleme teknikleri tercih edilmektedir.

Tez kapsamında yazılımın enerji verimliliğini ve sürdürülebilirlik değerini iyileştiren

optimum yeniden düzenleme teknikleri sırası tespit edildi. Yeniden düzenleme

teknikleri optimum sırasını elde etmek için Prim tabanlı bir algoritma geliştirildi.

Ayrıca enerji israfı olarak kabul edilebilecek ham kaynak kodları üzerinde yeniden

düzenleme tekniklerini gerçekleştirmek için bir C# masaüstü uygulaması tasarlandı.

Geliştirilen uygulama ile yeniden düzenleme kullanılarak enerji israfına yol açan

kodların düzenlenmesi yazılımı daha sürdürülebilir, daha okunaklı ve enerji tüketimi

112

açısından daha verimli hale getirdiği tespit edildi. Sonuçlardaki değerlerin hesaplanması

nesneye yönelik ölçülere dayanmaktadır.

Sonuçlar kodun karmaşıklığını ve boyutunu gösteren kriterlerin enerji tüketimi açısından

bir önceliklendirme algoritması tasarlamak için faydalı olduğunu göstermektedir. Diğer

bir gösterge ise yeniden düzenleme teknikleri sırasının esas olarak yararlanılacak

kaynak koda bağlı olduğuna dair bazı işaretlerin varlığıdır. Bunlardan biri, bağlaşım

sayısı yazılım metriğinin genelde projelerde aynı kalma eğiliminde iken geliştirilen

matematiksel model yardımıyla elde edilen sıranın yazılım kalitesi ve sürdürülebilirlik

değerinin yanında enerji verimliliğini üst düzeye çıkardığının tespitidir. Projelerdeki

kaynak kodların içerdikleri karmaşıklık, yapışıklık gibi yazılım özellikleri ise kaynak

kodlara göre farklılık göstermiş ve kaynak kodların detaylı incelenmesi ile optimum

sıralar elde edilebilmiştir. Bu yüzden yazılımda kullanılan kaynak kodlara göre

optimum sıralamalar değişiklik gösterebilmektedir. Bu kodların özelliklerinin iyi analiz

edilmesi ile yazılımı daha sürdürülebilir ve enerji tüketimi açısından daha verimli hale

getirebilmek mümkündür.

Bu tez çalışmasının bazı kısıtları vardır: Bunlardan birincisi, önerilen algoritman

belirli yeniden düzenleme teknikleri için çalışır. İkincisi, sınıfların en kritik projelerden

seçilmesi önemli bir zaman sınırlaması oluşturmaktadır. Üçüncüsü, tezin kapsamının iki

tür programlama diliyle sınırlı olmasıdır. Son olarak, yeniden düzenleme tekniklerinden

biri olan Simplify Nested Loop’un uyumluluğu, geliştirilen araçla belirlenebilir; ancak,

tekniğin tespiti sonucunda kod statik kod analizine ve manuel kod incelemesine tabi

tutulur. Çünkü iç içe döngü yapısının tek bir döngüye uygunluğu statik kod analizi

ve manuel kod incelemesi ile mümkündür. Manuel ile yeniden düzenleme genellikle

hataya açıktır ve zaman alır (Roberts, 1999). Bu, geliştirilen araç için bir kısıtlama

oluşturur.

Sonuç olarak, bu tezin yeniden düzenleme ve enerji verimliliği önceliklendirmesi

hakkında ampirik bilginin yapısı açısından yazılım mühendisliği camiasına önemli

bir katkı sağladığına inanıyoruz; ancak, sonuçlarımızın bizimki dışında belirli bir

ortam için genellenebileceğini varsayamayız. Daha geniş bir yazılım sistemlerinde

113

daha fazla doğrulama arzu edilir ve geliştirilen aracın diğer dillerde kullanışlılığının

genelleştirilmesine yardımcı olmak için daha fazla araştırma gerekir.

Çalışmanın kapsamı, yeniden düzenleme tekniklerinin kullanım sırası ile kaynak

kodun yürütme zamanı azaltılacak şekilde enerji verimliliğinin geliştirilmesine yönelik

yaklaşımlara uyarlanabilir. Kaynak koduna sıralı yeniden düzenleme tekniklerinin

uygulanmasının yazılım güvenliği için faydalı olup olmadığını araştırmak yeşil yazılım

açışından yeni çözümler getirebilir. Geçmiş veriler kaydedilirse enerji tüketimini tahmin

eden modeller, yeniden düzenleme tekniklerinin birleştirilmesinde yardımcı olabilir.

Bunlara ek olarak kapsam, diğer programlama dilleri ile oluşturulmuş yazılımlar için

sezgisel yöntemler gibi farklı yaklaşımlar ile genişletilebilir.

114

KAYNAKLAR

Abreu, F.B., Carapuça, R., 1994. Candidate metrics for object-oriented software within
a taxonomy framework. Journal of Systems and Software, 26(1), 87–96.

Agarwal, S., Nath, A., Chowdhury, D., 2012. Sustainable approaches and good practices
in green software engineering. International Journal of Research and Reviews
in Computer Science, 3(1), 1425.

Aggarwal, K., Zhang, C., Campbell, J.C., Hindle, A., Stroulia, E., 2014. The power
of system call traces: predicting the software energy consumption impact of
changes. CASCON. (pp. 219–233).

Ahn, Y., Suh, J., Kim, S., Kim, H., 2003. The software maintenance project effort
estimation model based on function points. Journal of Software maintenance
and evolution: Research and practice, 15(2), 71–85.

Al Qutaish, R.E., Abran, A., 2005. An analysis of the design and definitions of
Halstead’s metrics. 15th Int. Workshop on Software Measurement (IWSM’2005).
Shaker-Verlag. (pp. 337–352).

Alpernas, K., Feldman, Y.M., Peleg, H., 2020. The wonderful wizard of LoC: paying
attention to the man behind the curtain of lines-of-code metrics. Proceedings
of the 2020 ACM SIGPLAN International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software. (pp. 146–156).

Anwar, H., Pfahl, D., Srirama, S.N., 2019. Evaluating the impact of code smell
refactoring on the energy consumption of Android applications. 2019 45th
Euromicro Conference on Software Engineering and Advanced Applications
(SEAA). IEEE, (pp. 82–86).

Ardito, L., Coppola, R., Barbato, L., Verga, D., 2020. A tool-based perspective on
software code maintainability metrics: a systematic literature review. Scientific
Programming.

Arora, D., Khanna, P., Tripathi, A., Sharma, S., Shukla, S., 2011. Software quality
estimation through object oriented design metrics. Int. J. Computer Science and
Network Security, 11(4), 100–104.

Bangash, A.A., Sahar, H., Beg, M.O., 2017. A methodology for relating software
structure with energy consumption. 2017 IEEE 17th International Working
Conference on Source Code Analysis and Manipulation (SCAM). IEEE, (pp.
111–120).

Bansiya, J., Davis, C.G., 2002. A hierarchical model for object-oriented design quality
assessment. IEEE Transactions on software engineering, 28(1), 4–17.

Barack, O., Huang, L., 2018. Effectiveness of Code Refactoring Techniques for
Energy Consumption in a Mobile Environment. Proceedings of the International

115

Conference on Software Engineering Research and Practice (SERP). The
Steering Committee of The World Congress in Computer Science, Computer
Engineering and Applied Computing, (pp. 165–171).

Berry, M.J., Linoff, G.S., 2004. Data mining techniques: for marketing, sales, and
customer relationship management. John Wiley & Sons.

Bessa, T., Gull, C., Quintão, P., Frank, M., Nacif, J., Pereira, F.M.Q., 2019. JetsonLEAP:
A framework to measure power on a heterogeneous system-on-a-chip device.
Science of Computer Programming, 173, 21–36.

Biggs, N., Lloyd, E.K., Wilson, R.J., 1986. Graph Theory. Oxford University Press.

Bill, W., 2015. Statements - C Programming Guide | Microsoft Docs. https:
//docs.microsoft.com/en-us/dotnet/csharp/programming-guide/
statements-expressions-operators/statements. Erişim Tarihi:
01.02.2021.

Binkley, D., Ceccato, M., Harman, M., Ricca, F., Tonella, P., 2006. Tool-supported
refactoring of existing object-oriented code into aspects. IEEE Transactions on
Software Engineering, 32(9), 698–717.

Bondy, J.A., Murty, U.S.R., vd., 1976. Graph theory with applications. Macmillan
London.

Boruvka, O., 1926. O jistém problému minimálním.

Candela, I., Bavota, G., Russo, B., Oliveto, R., 2016. Using cohesion and coupling
for software remodularization: Is it enough? ACM Transactions on Software
Engineering and Methodology (TOSEM), 25(3), 1–28.

Chan-Jong-Chu, K., Islam, T., Exposito, M.M., Sheombar, S., Valladares, C., Philippot,
O., Grua, E.M., Malavolta, I., 2020. Investigating the correlation between
performance scores and energy consumption of mobile web apps. Proceedings
of the Evaluation and Assessment in Software Engineering. (pp. 190–199).

Chen, S.M., Chang, T.H., 2001. Finding multiple possible critical paths using
fuzzy PERT. IEEE Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics), 31(6), 930–937.

Chen, W.K., 2012. Applied graph theory. Elsevier.

Chen, W.K., Wang, J.C., 2012. Bad smells and refactoring methods for gui test
scripts. 2012 13th ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Computing. IEEE,
(pp. 289–294).

Chhikara, A., Chhillar, R., Khatri, S., 2011. Evaluating the impact of different types
of inheritance on the object oriented software metrics. International Journal of
Enterprise Computing and Business Systems, 1(2), 1–7.

116

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/statements

Chidamber, S.R., Kemerer, C.F., 1991. Towards a metrics suite for object oriented
design. Conference proceedings on Object-oriented programming systems,
languages, and applications. (pp. 197–211).

Chidamber, S.R., Kemerer, C.F., 1994. A metrics suite for object oriented design. IEEE
Transactions on software engineering, 20(6), 476–493.

Chung, S., Condon, A., 1996. Parallel implementation of Bouvka’s minimum spanning
tree algorithm. Proceedings of International Conference on Parallel Processing.
IEEE, (pp. 302–308).

Civelekoğlu, G., Bıyık, Y., 2020. Isparta ilinde karayolu kaynaklı karbon ayak izinin
hesaplanması. Bilge International Journal of Science and Technology Research,
4(2), 78–87.

CodeCount™, 2020. USC’s Center for Systems and Software Engineering. http:
//csse.usc.edu. Erişim Tarihi: 02.01.2021.

Coleman, D., Ash, D., Lowther, B., Oman, P., 1994. Using metrics to evaluate software
system maintainability. Computer, 27(8), 44–49.

Connolly Bree, D., Cinnéide, M.Ó., 2020. Inheritance versus Delegation: which is more
energy efficient? Proceedings of the IEEE/ACM 42nd International Conference
on Software Engineering Workshops. (pp. 323–329).

Counsell, S., Liu, X., Swift, S., Buckley, J., English, M., Herold, S., Eldh, S., Ermedahl,
A., 2015. An exploration of the’introduce explaining variable’refactoring.
Scientific Workshop Proceedings of the XP2015. (pp. 1–5).

Cox, R., 2007. Regular expression matching can be simple and fast (but is slow in java,
perl, php, python, ruby,...). URL: http://swtch. com/rsc/regexp/regexp1. html.

Cruz, L., Abreu, R., 2017. Performance-based guidelines for energy efficient mobile
applications. 2017 IEEE/ACM 4th International Conference on Mobile Software
Engineering and Systems (MOBILESoft). IEEE, (pp. 46–57).

Dang, S., Ahmad, P.H., 2014. Text mining: Techniques and its application. International
Journal of Engineering & Technology Innovations, 1(4), 22–25.

Dang, S., Ahmad, P.H., 2015. A review of text mining techniques associated with
various application areas. International Journal of Science and Research (IJSR),
4(2), 2461–2466.

Demeyer, S., Ducasse, S., Nierstrasz, O., 2000. Finding refactorings via change metrics.
ACM SIGPLAN Notices, 35(10), 166–177.

Dey, A., Pal, A., 2013. Fuzzy graph coloring technique to classify the accidental zone
of a traffic control. Annals of Pure and Applied Mathematics, 3(2), 169–178.

117

http://csse.usc.edu
http://csse.usc.edu

Dey, A., Pradhan, R., Pal, A., Pal, T., 2015. The fuzzy robust graph coloring problem.
Proceedings of the 3rd International Conference on Frontiers of Intelligent
Computing: theory and applications (FICTA) 2014. Springer, (pp. 805–813).

Dick, M., Drangmeister, J., Kern, E., Naumann, S., 2013. Green software engineering
with agile methods. 2013 2nd international workshop on green and sustainable
software (GREENS). IEEE, (pp. 78–85).

Dijkstra, E., 1960. Some theorems on spanning subtrees of a graph. Indag. math, 22(2),
196–199.

Dijkstra, E.W., vd., 1959. A note on two problems in connexion with graphs.
Numerische mathematik, 1(1), 269–271.

Dinita, R.I., Wilson, G., Winckles, A., Cirstea, M., Jones, A., 2013. Hardware loads and
power consumption in cloud computing environments. 2013 IEEE International
Conference on Industrial Technology (ICIT). IEEE, (pp. 1291–1296).

Dubey, S.K., Rana, A., 2011. Assessment of maintainability metrics for object-oriented
software system. ACM SIGSOFT Software Engineering Notes, 36(5), 1–7.

Durnová, H., 2006. Borvka, Otakar: About Otakar Borvka.

Elish, K.O., Alshayeb, M., 2011. A classification of refactoring methods based on
software quality attributes. Arabian Journal for Science and Engineering, 36(7),
1253–1267.

Ergasheva, S., Khomyakov, I., Kruglov, A., Succil, G., 2020. Metrics of energy
consumption in software systems: a systematic literature review. IOP
Conference Series: Earth and Environmental Science. IOP Publishing, Volume
431, (s. 012051).

Erickson, J., 2019. Minimum spanning trees. https://jeffe.cs.illinois.edu/
teaching/algorithms/. Erişim Tarihi: 09.03.2021.

Feldman, R., Sanger, J., vd., 2007. The text mining handbook: advanced approaches in
analyzing unstructured data. Cambridge university press.

Fenton, N., 1994. Software measurement: A necessary scientific basis. IEEE
Transactions on software engineering, 20(3), 199–206.

Fenton, N.E., Neil, M., 2000. Software metrics: roadmap. Proceedings of the
Conference on the Future of Software Engineering. (pp. 357–370).

Fowler, M., 2018. Refactoring: improving the design of existing code. Addison-Wesley
Professional.

Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D., 1999. Refactoring: improving
the design of existing code, ser. Addison Wesley object technology series.,
Addison-Wesley.

118

https://jeffe.cs.illinois.edu/teaching/algorithms/
https://jeffe.cs.illinois.edu/teaching/algorithms/

Gabow, H.N., Galil, Z., Spencer, T., Tarjan, R.E., 1986. Efficient algorithms for finding
minimum spanning trees in undirected and directed graphs. Combinatorica,
6(2), 109–122.

García-Martín, E., Rodrigues, C.F., Riley, G., Grahn, H., 2019. Estimation of energy
consumption in machine learning. Journal of Parallel and Distributed Computing,
134, 75–88.

Gottschalk, M., Jelschen, J., Winter, A., 2013. Energy-efficient code by refactoring.
Softwaretechnik-Trends, 33(2).

Gottschalk, M., Josefiok, M., Jelschen, J., Winter, A., 2012. Removing energy code
smells with reengineering services. Informatik.

Graham, R.L., Hell, P., 1985. On the history of the minimum spanning tree problem.
Annals of the History of Computing, 7(1), 43–57.

Gray, D., Bowes, D., Davey, N., Sun, Y., Christianson, B., 2011. The misuse of the
NASA metrics data program data sets for automated software defect prediction.
15th Annual Conference on Evaluation & Assessment in Software Engineering
(EASE 2011). IET, (pp. 96–103).

Grechanik, M., McMillan, C., DeFerrari, L., Comi, M., Crespi, S., Poshyvanyk, D., Fu,
C., Xie, Q., Ghezzi, C., 2010. An empirical investigation into a large-scale Java
open source code repository. Proceedings of the 2010 ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement. (pp. 1–10).

Gross, J.L., Yellen, J., 2003. Handbook of graph theory. CRC press.

Gross, J.L., Yellen, J., 2005. Graph theory and its applications. CRC press.

Gupta, S., Chug, A., 2020. Software maintainability prediction using an enhanced
random forest algorithm. Journal of Discrete Mathematical Sciences and
Cryptography, 23(2), 441–449.

Gupta, V., Lehal, G.S., vd., 2009. A survey of text mining techniques and applications.
Journal of emerging technologies in web intelligence, 1(1), 60–76.

Halstead, M.H., 1977. Elements of software engineering. Elsevier, 7(127).

Harary, F., 2015. A seminar on graph theory. Courier Dover Publications.

Hegedűs, P., Kádár, I., Ferenc, R., Gyimóthy, T., 2018. Empirical evaluation of software
maintainability based on a manually validated refactoring dataset. Information
and Software Technology, 95, 313–327.

Hennessy, J.L., Patterson, D.A., 2011. Computer architecture: a quantitative approach.
Elsevier.

119

Higo, Y., Kamiya, T., Kusumoto, S., Inoue, K., 2004. Refactoring support based on
code clone analysis. International Conference on Product Focused Software
Process Improvement. Springer, (pp. 220–233).

Hindle, A., 2015. Green mining: a methodology of relating software change and
configuration to power consumption. Empirical Software Engineering, 20(2),
374–409.

Hoque, M.A., Siekkinen, M., Khan, K.N., Xiao, Y., Tarkoma, S., 2015. Modeling,
profiling, and debugging the energy consumption of mobile devices. ACM
Computing Surveys (CSUR), 48(3), 1–40.

Hotho, A., Nürnberger, A., Paaß, G., 2005. A brief survey of text mining. Ldv Forum.
Citeseer, Volume 20, (pp. 19–62).

Hotta, K., Sasaki, Y., Sano, Y., Higo, Y., Kusumoto, S., 2012. An empirical study on
the impact of duplicate code. Advances in Software Engineering, 2012.

Hsu, C.H., Kremer, U., 2003. The design, implementation, and evaluation of a compiler
algorithm for CPU energy reduction. Proceedings of the ACM SIGPLAN 2003
conference on Programming language design and implementation. (pp. 38–48).

Ikerionwu, C., 2010. Cyclomatic Complexity As a Software Metric. International
Journal of Academic Research, 2(3).

İlhan, S., Duru, N., Karagöz, Ş., Sağır, M., 2008. Metin madenciliği ile soru cevaplama
sistemi. Elektronik ve Bilgisayar Mühendisliği Sempozyumu (ELECO), Bursa,
26, 30.

Intel, 2020. Intel® Power Gadget. https://software.intel.com/content/www/
us/en/develop/articles/intel-power-gadget.html. Erişim Tarihi:
18.03.2021.

Jarník, V., 1930. O jistém problému minimálním.(Z dopisu panu O. Borvkovi).

Jones, C., 1994. Software metrics: good, bad and missing. Computer, 27(9), 98–100.

Kan, S.H., 2003. Metrics and models in software quality engineering. Addison-Wesley
Professional.

Karger, D.R., Klein, P.N., Tarjan, R.E., 1995. A randomized linear-time algorithm to
find minimum spanning trees. Journal of the ACM (JACM), 42(2), 321–328.

Kataoka, Y., Imai, T., Andou, H., Fukaya, T., 2002. A quantitative evaluation of
maintainability enhancement by refactoring. International Conference on
Software Maintenance, 2002. Proceedings. IEEE, (pp. 576–585).

Kaur, A., Kaur, M., 2016. Analysis of code refactoring impact on software quality.
MATEC Web of Conferences. EDP Sciences, (pp. 02–012).

120

https://software.intel.com/content/www/us/en/develop/articles/intel-power-gadget.html
https://software.intel.com/content/www/us/en/develop/articles/intel-power-gadget.html

Kaur, J., Singh, S., 2016. Neural network based refactoring area identification in
software system with object oriented metrics. Indian Journal of Science and
Technology, 9(10), 1–8.

Kaxiras, S., Martonosi, M., 2008. Computer architecture techniques for
power-efficiency. Synthesis Lectures on Computer Architecture, 3(1), 1–207.

Keong, C.K., Wei, K.T., Ghani, A.A.A., Sharif, K.Y., 2015. Toward using software
metrics as indicator to measure power consumption of mobile application: A
case study. 2015 9th Malaysian Software Engineering Conference (MySEC).
IEEE, (pp. 172–177).

Kexugit, 2021. Maintainability Index Range and Meaning. https:
//docs.microsoft.com/tr-tr/archive/blogs/codeanalysis/
maintainability-index-range-and-meaning. Erişim Tarihi: 17.01.2021.

Kim, D., Hong, J.E., Yoon, I., Lee, S.H., 2018. Code refactoring techniques for reducing
energy consumption in embedded computing environment. Cluster computing,
21(1), 1079–1095.

King, R.S., 2015. Cluster analysis and data mining: An introduction. Stylus Publishing,
LLC.

Koziel, S., Yang, X.S., 2011. Computational optimization, methods and algorithms.
Springer.

Kruskal, J.B., 1956. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical society, 7(1),
48–50.

Kumar, L., Bhatia, P.K., 2013. Text mining: concepts, process and applications. Journal
of Global Research in Computer Science, 4(3), 36–39.

Kumar, R.P., 2017. Internal and External Measures of Code Quality Impact on
Refactoring. SSRG Int. J. Civ. Eng.–ICCREST’17, 70–72.

Kwon, Y., Lee, Z., Park, Y., 2013. Performance-based refactoring: identifying &
extracting move-method region. Journal of KIISE: Software and Applications,
40(10), 567–574.

Kwon, Y.W., Tilevich, E., 2013. Reducing the energy consumption of mobile
applications behind the scenes. 2013 IEEE International Conference on Software
Maintenance. IEEE, (pp. 170–179).

Levitin, A., 2011. Introduction To Design And Analysis Of Algorithms, 3/E. Pearson.

Li, H., Xia, Q., Wang, Y., vd., 2017. Research and improvement of kruskal algorithm.
Journal of Computer and Communications, 5(12), 63.

121

https://docs.microsoft.com/tr-tr/archive/blogs/codeanalysis/maintainability-index-range-and-meaning
https://docs.microsoft.com/tr-tr/archive/blogs/codeanalysis/maintainability-index-range-and-meaning
https://docs.microsoft.com/tr-tr/archive/blogs/codeanalysis/maintainability-index-range-and-meaning

Li, W., Henry, S., 1993. Object-oriented metrics that predict maintainability. Journal of
systems and software, 23(2), 111–122.

Loberman, H., Weinberger, A., 1957. Formal procedures for connecting terminals with
a minimum total wire length. Journal of the ACM (JACM), 4(4), 428–437.

LocMetrics, 2019. LocMetrics Tool. https://www.cheonghyun.com/blog/120.
Erişim Tarihi: 01.02.2021.

Lorenz, M., Kidd, J., 1994. Object-oriented software metrics: a practical guide.
Prentice-Hall, Inc.

Lyu, Y., Alotaibi, A., Halfond, W.G., 2019. Quantifying the performance impact of
SQL antipatterns on mobile applications. 2019 IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE, (pp. 53–64).

Mahmoud, S.S., Ahmad, I., 2013. A green model for sustainable software engineering.
International Journal of Software Engineering and Its Applications, 7(4), 55–74.

Mahouachi, R., Kessentini, M., Cinnéide, M.Ó., 2013. Search-based refactoring
detection using software metrics variation. International Symposium on Search
Based Software Engineering. Springer, (pp. 126–140).

Makkar, G., Chhabra, J.K., Challa, R.K., 2012. Object oriented inheritance
metric-reusability perspective. 2012 International Conference on Computing,
Electronics and Electrical Technologies (ICCEET). IEEE, (pp. 852–859).

Mancebo, J., Calero, C., García, F., 2021a. Does maintainability relate to the energy
consumption of software? A case study. Software Quality Journal, 29(1),
101–127.

Mancebo, J., García, F., Calero, C., 2021b. A process for analysing the energy efficiency
of software. Information and Software Technology, 134, 106560.

Manning, C., Raghavan, P., Schütze, H., 2010. Introduction to information retrieval.
Natural Language Engineering, 16(1), 100–103.

Manotas, I., Bird, C., Zhang, R., Shepherd, D., Jaspan, C., Sadowski, C., Pollock,
L., Clause, J., 2016. An empirical study of practitioners’ perspectives on
green software engineering. 2016 IEEE/ACM 38th International Conference on
Software Engineering (ICSE). IEEE, (pp. 237–248).

Marpaung, F., 2020. Comparative of prim’s and boruvka’s algorithm to solve minimum
spanning tree problems. Journal of Physics: Conference Series. IOP Publishing,
(pp. 012–043).

McCabe, T.J., 1976. A complexity measure. IEEE Transactions on software Engineering,
(4), 308–320.

122

https://www.cheonghyun.com/blog/120

Mens, T., Tourwé, T., 2004. A survey of software refactoring. IEEE Transactions on
software engineering, 30(2), 126–139.

Menzies, T., Di Stefano, J.S., Chapman, M., McGill, K., 2002. Metrics that matter.
27th Annual NASA Goddard/IEEE Software Engineering Workshop, 2002.
Proceedings. IEEE, (pp. 51–57).

Microsoft, 2021. Visual Studio IDE, Kod Düzenleyicisi, Azure DevOps ve App Center.
https://visualstudio.microsoft.com/tr/. Erişim Tarihi: 11.02.2021.

Microsoft, 2022. Dizin yöntemleri. https://docs.microsoft.com/en-us/dotnet/
api/system.string.clone?view=net-6.0. Erişim Tarihi: 02.02.2022.

Mikheev, A., 2003. Text segmentation. The Oxford handbook of computational
linguistics. Oxford University Press, (pp. 201–218).

Misra, S., Akman, I., Koyuncu, M., 2011. An inheritance complexity metric for
object-oriented code: A cognitive approach. Sadhana, 36(3), 317–337.

Moore, I., 1996. Automatic inheritance hierarchy restructuring and method refactoring.
ACM SIGPLAN Notices, 31(10), 235–250.

Morales, R., Saborido, R., Khomh, F., Chicano, F., Antoniol, G., 2017. Earmo: an
energy-aware refactoring approach for mobile apps. IEEE Transactions on
Software Engineering, 44(12), 1176–1206.

Najm, N., 2014. Measuring Maintainability Index of a Software Depending on Line of
Code Only. 16, 64–69.

Naumann, S., Dick, M., Kern, E., Johann, T., 2011. The greensoft model: A reference
model for green and sustainable software and its engineering. Sustainable
Computing: Informatics and Systems, 1(4), 294–304.

Nešetřil, J., Milková, E., Nešetřilová, H., 2001. Otakar Borvka on minimum spanning
tree problem Translation of both the 1926 papers, comments, history. Discrete
mathematics, 233(1-3), 3–36.

Neumann, F., Witt, C., 2010. Combinatorial optimization and computational complexity.
Bioinspired computation in combinatorial optimization, Springer. (pp. 9–19).

Newell, D.B., Tiesinga, E., 2019. The international system of units (SI). NIST Special
Publication, 330, 1–138.

Nguyen, V., Deeds-Rubin, S., Tan, T., Boehm, B., 2007. A SLOC counting standard.
Cocomo ii forum. Citeseer, (pp. 1–16).

Ogala, J.O., Ojie, D.V., 2020. Comparative analysis of c, c++, c# and java programming
languages. GSJ, 8(5).

123

https://visualstudio.microsoft.com/tr/
https://docs.microsoft.com/en-us/dotnet/api/system.string.clone?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.string.clone?view=net-6.0

Opdyke, W.F., Johnson, R.E., 1993. Creating abstract superclasses by refactoring.
Proceedings of the 1993 ACM conference on Computer science. (pp. 66–73).

Padhy, N., Satapathy, S., Singh, R., 2018. State-of-the-art object-oriented metrics and
its reusability: a decade review. Smart Computing and Informatics, 431–441.

Palomba, F., Di Nucci, D., Panichella, A., Zaidman, A., De Lucia, A., 2019. On
the impact of code smells on the energy consumption of mobile applications.
Information and Software Technology, 105, 43–55.

Papadimitriou, C.H., Steiglitz, K., 1998. Combinatorial optimization: algorithms and
complexity. Courier Corporation.

Papadopoulos, L., Marantos, C., Digkas, G., Ampatzoglou, A., Chatzigeorgiou, A.,
Soudris, D., 2018. Interrelations between software quality metrics, performance
and energy consumption in embedded applications. Proceedings of the 21st
International Workshop on software and compilers for embedded systems. (pp.
62–65).

Park, J.J., Hong, J.E., 2013. An Approach to improve software safety by Code
refactoring. Proc. of Korea Computer Congress. (pp. 532–534).

Park, J.J., Hong, J.E., Lee, S.H., 2014. Investigation for Software Power Consumption
of Code Refactoring Techniques. SEKE. (pp. 717–722).

Park, R.E., 1992. Software size measurement: A framework for counting source
statements. Technical report, Carnegie-Mellon Univ Pittsburgh PA Software
Engineering Inst.

Parsai, A., Murgia, A., Soetens, Q.D., Demeyer, S., 2015. Mutation testing as a safety
net for test code refactoring. Scientific Workshop Proceedings of the XP2015.
(pp. 1–7).

Pereira, R., Couto, M., Ribeiro, F., Rua, R., Cunha, J., Fernandes, J.P., Saraiva, J., 2021.
Ranking programming languages by energy efficiency. Science of Computer
Programming, 205, 102609.

Prim, R.C., 1957. Shortest connection networks and some generalizations. The Bell
System Technical Journal, 36(6), 1389–1401.

Qualcomm, 2018. Trepn Power Profiler. https://developer.qualcomm.com/
forums/software/trepn-power-profiler. Erişim Tarihi: 18.03.2021.

R, 2021. R for Windows. https://cran.r-project.org/bin/windows/. Erişim
Tarihi: 18.02.2021.

Ramadhan, Z., Siahaan, A.P.U., Mesran, M., 2018. Prim and Floyd-Warshall
Comparative Algorithms in Shortest Path Problem. Proceedings of the Joint
Workshop KO2PI and The 1st International Conference on Advance & Scientific
Innovation. (pp. 47–58).

124

https://developer.qualcomm.com/forums/software/trepn-power-profiler
https://developer.qualcomm.com/forums/software/trepn-power-profiler
https://cran.r-project.org/bin/windows/

Refactoring, 2021. Hello, world! https://refactoring.guru/. Erişim Tarihi:
02.03.2021.

Roberts, D.B., 1999. Practical analysis for refactoring. University of Illinois at
Urbana-Champaign.

Rosenberg, L.H., Hyatt, L.E., 1997. Software quality metrics for object-oriented
environments. Crosstalk journal, 10(4), 1–6.

Ryder, C., Thompson, S.J., 2005. Software metrics: measuring Haskell. Trends in
Functional Programming. (pp. 31–46).

Sahin, C., Pollock, L., Clause, J., 2014. How do code refactorings affect energy usage?
Proceedings of the 8th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement. (pp. 1–10).

Sehgal, R., Mehrotra, D., Nagpal, R., Sharma, R., 2020. Green software: Refactoring
approach. Journal of King Saud University-Computer and Information Sciences.

Seker, S.E., 2008. Külliyat (corpus). https://bilgisayarkavramlari.com/2008/
03/25/kulliyat-corpus/. Erişim Tarihi: 16.01.2022.

Seker, S.E., 2015a. Çizge teorisi (graph theory). YBS ansiklopedi, 2(2), 17–29.

Seker, S.E., 2015b. Metin Madenciliği (Text Mining). YBS ansiklopedi, 2(3), 30–32.

Shenoy, S.S., Eeratta, R., 2011. Green software development model: An approach
towards sustainable software development. 2011 Annual IEEE India Conference.
IEEE, (pp. 1–6).

Silva, W.G., Brisolara, L., Corrêa, U.B., Carro, L., 2010. Evaluation of the impact
of code refactoring on embedded software efficiency. Proceedings of the 1st
Workshop de Sistemas Embarcados. (pp. 145–150).

Srivastava, K., Tyagi, R., 2013. Shortest Path Algorithm For Satellite Network.
International Journal of Innovative Research and Development (ISSN
2278–0211), 2(5).

Sudhamani, M., Rangarajan, L., 2015. Structural similarity detection using structure of
control statements. Procedia computer science, 46, 892–899.

Sumathy, K., Chidambaram, M., 2013. Text mining: concepts, applications, tools and
issues-an overview. International Journal of Computer Applications, 80(4).

Sun, Y., Wang, Y., Yang, H., 2017. Energy-efficient SQL query exploiting RRAM-based
process-in-memory structure. 2017 IEEE 6th Non-Volatile Memory Systems
and Applications Symposium (NVMSA). IEEE, (pp. 1–6).

Taina, J., 2010. How green is your software? International Conference of Software
Business. Springer, (pp. 151–162).

125

https://refactoring.guru/
https://bilgisayarkavramlari.com/2008/03/25/kulliyat-corpus/
https://bilgisayarkavramlari.com/2008/03/25/kulliyat-corpus/

Taina, J., Pohjalainen, P., 2009. In search for green metrics. Workshop on Software
Research and Climate Change. Orlando, FL.

Tarwani, S., Chug, A., 2016. Sequencing of refactoring techniques by Greedy
algorithm for maximizing maintainability. 2016 International Conference on
Advances in Computing, Communications and Informatics (ICACCI). IEEE,
(pp. 1397–1403).

Tarwani, S., Chug, A., 2020. Assessment of optimum refactoring sequence to improve
the software quality of object-oriented software. Journal of Information and
Optimization Sciences, 41(6), 1433–1442.

Tewarie, P., van Dellen, E., Hillebrand, A., Stam, C.J., 2015. The minimum spanning
tree: an unbiased method for brain network analysis. Neuroimage, 104,
177–188.

Tiwari, V., Malik, S., Wolfe, A., 1994. Compilation techniques for low energy: An
overview. Proceedings of 1994 IEEE Symposium on Low Power Electronics.
IEEE, (pp. 38–39).

Tokuda, L., Batory, D., 2001. Evolving object-oriented designs with refactorings.
Automated Software Engineering, 8(1), 89–120.

Tolga, A.Ç., Turgut, Z.K., 2018. Sürdürülebilir ve Yenilenebilir Enerji Santrallerinin
Bulanık TODIM Yöntemiyle Değerlendirilmesi. Alphanumeric Journal, 6(1),
49–68.

Triwijoyo, B.K., Gaol, F.L., Soewito, B., Warnars, H.L.H.S., 2017. Software reliability
measurement base on failure intensity. 2017 3rd International Conference on
Science in Information Technology (ICSITech). IEEE, (pp. 176–181).

Tunalı, V., 2011. Metin madenciliği için iyileştirilmiş bir kümeleme yapısının tasarımı
ve uygulaması. Ph.D. thesis, Marmara Üniversitesi, 103s, İstanbul.

Turver, R.J., Munro, M., 1994. An early impact analysis technique for software
maintenance. Journal of Software Maintenance: Research and Practice, 6(1),
35–52.

Umeyama, S., 1988. An eigendecomposition approach to weighted graph matching
problems. IEEE transactions on pattern analysis and machine intelligence, 10(5),
695–703.

Ural, E., Umut, T., Feza, B., 2008. Nesneye Dayalı Yazılım Metrikleri ve Yazılım
Kalitesi. Yazılım Kalitesi ve Yazılım Geliştirme Araçları Sempozyumu.

Vijayarani, S., Ilamathi, M.J., Nithya, M., vd., 2015. Preprocessing techniques
for text mining-an overview. International Journal of Computer Science &
Communication Networks, 5(1), 7–16.

126

Visa, A., 2001. Technology of text mining. International Workshop on Machine
Learning and Data Mining in Pattern Recognition. Springer, (pp. 1–11).

Watson, A.H., Wallace, D.R., McCabe, T.J., 1996. Structured testing: A testing
methodology using the cyclomatic complexity metric.

West, D.B., vd., 2001. Introduction to graph theory, Volume 2. Prentice hall Upper
Saddle River.

Witten, I.H., 2004. Text Mining.

Woolson, R., 2007. Wilcoxon signed-rank test. Wiley encyclopedia of clinical trials,
1–3.

Xuan, J., Cornu, B., Martinez, M., Baudry, B., Seinturier, L., Monperrus, M., 2016.
B-Refactoring: Automatic test code refactoring to improve dynamic analysis.
Information and Software Technology, 76, 65–80.

Yılmaz, F., 2014. Enerji Verimliliği ve Karbon Ayak İzi.

Zeil, S.J., 2017. Integrated Development Environments. https://www.cs.odu.edu/
~zeil/cs350/f17/Public/IDEs/index.html. Erişim Tarihi: 08.03.2021.

Zotos, K., Litke, A., Chatzigeorgiou, A., Nikolaidis, S., Stephanides, G., 2005. Energy
complexity of software in embedded systems. arXiv preprint nlin/0505007.

127

https://www.cs.odu.edu/~zeil/cs350/f17/Public/IDEs/index.html
https://www.cs.odu.edu/~zeil/cs350/f17/Public/IDEs/index.html

	İÇİNDEKİLER
	ÖZET
	ABSTRACT
	TEŞEKKÜR
	ŞEKİLLER DİZİNİ
	ÇİZELGELER DİZİNİ
	SİMGELER VE KISALTMALAR DİZİNİ
	GİRİŞ
	Motivasyon
	Bilimsel Katkı

	KAYNAK ÖZETLERİ
	GENEL BİLGİLER
	Yeniden Düzenleme
	Yeniden düzenleme teknikleri
	Simplify nested loop
	Inline method
	Introduce explaining variable
	Inline temp
	Inline class
	Self encapsulate field
	Replace magic number with symbolic constant
	Encapsulate field
	Consolidate duplicate conditional fragments
	Hide method

	Yazılım Metrikleri
	Kod satır sayısı
	Operand ve operatör sayısı
	Fonksiyon sayısı
	Fonksiyon çağrılma sayısı
	Bağlaşım sayısı
	Kalıtım ağacının derinliği
	Çevrimsel karmaşıklık
	Mantıksal kod satır sayısı
	Fonksiyon başına düşen ifade sayısı
	Bakım yapılabilirlik indeksi

	Metin Madenciliği
	Metin madenciliği alanları
	Bilgi gerikazanımı
	Doğal dil işleme
	Bilgi çıkarımı
	Veri madenciliği

	Metin madenciliği adımları
	Metin madenciliği ve alanları kapsamında kullanılan kavramlar ve teknikler
	Metin parçalama
	Noktalama işareti silme
	Durdurma kelimeleri
	Kökenine döndürme
	Temel hale döndürme
	Cümle bölümlendirme
	Düzenli İfadeler
	Dizin yöntemleri

	Kombinatoryal Optimizasyon
	Graf teorisi
	Minimum yayılan ağaç ve algoritmaları
	Boruvka algoritması
	Prim algoritması
	Kruskal algoritması

	Enerjinin Genel Tanımı

	GEREÇ ve YÖNTEM
	Yeniden Düzenleme Tekniklerinin Seçimi
	Yazılım Metriklerinin Seçimi
	Yazılım Geliştirme Ortamının Seçimi
	Geliştirilen Algoritma ve Matematiksel Model
	Geliştirilen algoritma
	Geliştirilen matematiksel model

	Deneysel Veri Seti
	Geliştirilen Otomasyon Yazılım Aracının Genel Özellikleri
	Enerji Tüketiminin İzlenmesi

	ARAŞTIRMA BULGULARI
	SONUÇ VE ÖNERİLER
	KAYNAKLAR
	ÖZGEÇMİŞ

