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Introduction

In Mathematics, covering spaces theory is very important for topol-

ogy, as well as for differential equations, Lie groups theory and Riemann

spaces theory. Covering spaces theory is related to fundamental groups

of topological spaces. Different problems of topology are converted to al-

gebraic problems through algebraic topology. Therefore we have to learn

basics both of fundamental groups and of covering spaces.

The purpose of this Master thesis is to analyze covering spaces,

fundamental groups, and relation between them.

This thesis has 3 Chapters and 15 Sections. In the first chapter we

will consider what are homotopies and homotopic mappings.

In the second chapter, we will consider fundamental groups, liftings,

induced homomorphisms, and homotopy types.

In the third chapter, we will consider our main topic, i.e., covering

spaces and their relations with fundamental groups.
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CHAPTER 1

Homotopy

In this chapter we will learn about homotopies and their properties.

1.1. Notion of Homotopy

Definition 1.1.1. If for two continuous maps f0, f1 : X −→ Y and

there exist a continuous map F : X × I −→ Y such that F (x, 0) = f0(x)

and F (x, 1) = f1(x) for every x ∈ X, then these two continuous maps are

called homotopic, and F is a homotopy between f0 and f1. We denote

this with f0 ' f1 .

Definition 1.1.2. If k : A −→ B is a continuous mapping which

image includes only a single point, then we say k is constant mapping.

Definition 1.1.3. A continuous map f : A −→ B that is is homo-

topic to a constant map is called null homotopic.

Example 1. Suppose that A = B = Rn and f0(p) = p and f1(p) =

0 for p ∈ Rn. Assume F : Rn×C −→ Rn is defined by F (p, t) = (1− t)p.

Then F is a homotopy between f0 and f1, f1 is constant, hence f0 is null

homotopic.

Example 2. Two constant maps or two null homotopic maps are

not always homotopic. We can explain this with the following example.

5
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Let X be connected and Y be not connected. Choose points y0 and y1

in distinct components of Y and suppose that f0(x) = y0 and f1(x) = y1

for all x ∈ X. The maps f0 and f1 are constant, X × I is connected but

Y is not connected, hence f0 and f1 are not homotopic.

1.2. Properties of Homotopic Mappings

Lemma 1.2.1. Let f : X −→ Y and g : Y −→ Z be continuous

mappings then the composite transformation h = gf : X −→ Z is con-

tinuous.

Proof. Inverse image of each open subset of Y under f is open in X

and inverse image of each open subset Z under g is open in Y . Suppose

that φ is an open set in Z. Then the continuity of h follows from the

equality h−1(φ) = f−1{g−1(φ)}. �

Theorem 1.2.2. If p : A×B −→ A and q : A×B −→ B are defined

by the formulae p(c1, c2) = c1 and q(c1, c2) = c2 where c1 ∈ A, c2 ∈ B,

then p and q are continuous.

Proof. Assume that φ is open in A. Then p−1(φ) is the set of

ordered pairs (c1, c2) where c1 ∈ φ and c2 ∈ B. Hence, p−1(φ) = φ×B,

which is open in A×B. Therefore p is continuous as well as q. �

Such p and q are called projections of the product A × B onto its

factors.
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1.2.1. Composition and Restriction.

Proposition 1.2.3. 1) Assume that there are p1, p2 : X −→ Y and

t1, t2 : Y −→ Z . If p1 ' p2 and t1 ' t2, then t1p1 ' t2p2 . 2) Assume

that p, t : X −→ Y and p ' t, then for any A ⊂ X, p|A ' t|A.

1.2.2. Relative Homotopy.

Definition 1.2.4. Suppose that A ⊂ K and f0 : K −→ L, f1 :

K −→ L are continuous mapppings. Then f0 and f1 are called ”homo-

topic relative” to A if there is a homotopy F between f0 and f1 such

that F (q, t) is independent of t for q ∈ A i.e. F (q, t) = f0(q) for all q ∈ A

and for all t ∈ C.

It is obvious that f0(q) = f1(q) for all q ∈ A. We call this homotopy

relative, denoting with f0 ' f1(relA) and, when F is to be referred, with

F : f0 ' f1(relA). So in this case F (q, 0) = f0(q),F (q, 1) = f1(q) for

every q ∈ K and F (q0, t) = f0(q0) = f1(q0) for each q0 ∈ A and for each

t ∈ C.

Theorem 1.2.5. The relation of being homotopic relative to X is an

equivalence relation (i.e., Reflexivity, Transitivity and Symmetry rules

are valid.)

1.2.3. Homotopy Types and Homotopy Equivalence.

Definition 1.2.6. Given two spaces X and Y , we say they are

homotopy equivalent, or of the same homotopy type, if there exist con-

tinuous maps f : X −→ Y and g : Y −→ X such that g ◦ f is homotopic

to the identity map idX and f ◦ g is homotopic to idY . Such f and
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g a called homotopy equivalences between X and Y . If X and Y are

homotopy equivalent then they belong to the same homotopy type, i.e.

homotopy type is the equivalence class with respect to homotopy equiv-

alence.



CHAPTER 2

The Fundamental Group

2.1. Paths and Path Connected Spaces

Definition 2.1.1. Assume that Q is a topological space and I de-

notes the unit interval [0, 1]. A Path in Q is a continuous mapping

f : I −→ Q. f(0) is the initial point of path and f(1) is the terminal

point of path. We should know that path is the mapping f , not the

image f([0, 1]). If x is a fixed point of Q, we denote by εx the constant

mapping εx : [0, 1] −→ Q given by εx(t) = x for every t ∈ D. The path

εx is called ”null path”.

Definition 2.1.2. If for any two points x, y ∈ A there is a path in

A from x to y then the space A is called path connected. Path connected

component of A is a maximal path connected subset of A.

2.2. Definition of Fundamental Group

2.2.1. Loops.

Definition 2.2.1. A path f : I → X is said to be closed if f(0) =

f(1). If f(0) = f(1) = x then we say that f is based at x, and x is called

a basepoint of f .

Some books use the word “loop” for a closed path.

9
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Definition 2.2.2. A path α with α(t) = α(0) for all t ∈ [0, t] is

called a constant loop or a trivial loop.

2.2.2. Homotopic Paths.

Definition 2.2.3. Two paths α, β with common endpoints (i.e.

α(0) = β(0) and α(1) = β(1)) are called equivalent or homotopic if

there exists H : I × I −→ M (continuous function) such that H(t, 0) =

α(t) t ∈ [0, 1] H(t, 1) = β(t) t ∈ [0, 1] and H(0, s) = α(0) = β(0)

s ∈ [0, 1] H(1, s) = α(1) = β(1) s ∈ [0, 1] H is giving us a family of paths

connecting α and β . We denote this α ∼ β.

Proposition 2.2.4. Homotopy of paths is an equivalence relation,

i.e.

1) α ∼ α

2) If α ∼ β then β ∼ α and

3) If α ∼ β and β ∼ γ then α ∼ γ

The equivalence class of α is denoted [α].

2.2.3. Multiplication of Paths and Fundamental Group.

Definition 2.2.5. If α, β paths in M with α(1) = β(0) then define

α ∗ β :

α ∗ β(t) =

 α(2t) 0 ≤ t ≤ 1/2

β(2t− 1) 1/2 ≤ t ≤ 1

Lemma 2.2.6. If α ∼ α‘ and β ∼ β‘ then α ∗ β ∼ α‘ ∗ β‘.

Observe that the product f ∗g is defined for any pair of closed paths

based at some point x ∈ X. We denote the set of equivalence classes of
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closed paths based at x ∈ X by π1(X,x) . This set has a product defined

by [f ] · [g] = [f ] ∗ [g] for [f ], [g] ∈ π(X,x) which is well defined by the

last lemma. The next result states that π1(X,x) is a group; we call it

the fundamental group of X with base point x.

Recall that a set G with a binary operation ∗ is a group if:

1) There is a special element e with e ∗ x = x ∗ e = x for any x

[Identity]

2) For any x, There is a x−1 with x ∗ x−1 = x−1 ∗ x = e [Inverse]

3) x ∗ (y ∗ z) = (x ∗ y) ∗ z [Associativity]

Additionally, if x ∗ y = y ∗ x for any x, y, we can say this group is

commutative group.

Theorem 2.2.7. π1(X,x) is a group.

Lemma 2.2.8. Suppose that f , g, h are three paths in X with f(1) =

g(0) and g(1) = h(0). Then (f ∗ g) ∗ h ∼ f ∗ (g ∗ h).

Proof. Note first that,

(f ∗ g)(h(t)) =


f(4t) 0 ≤ t ≤ 1/4

g(4t− 1) 1/4 ≤ t ≤ 1/2

h(2t− 1) 1/2 ≤ t ≤ 1

and

f ∗ (g ∗ h)(t) =


f(2t) 0 ≤ t ≤ 1/4

g(4t− 2) 1/2 ≤ t ≤ 3/4

h(4t− 3) 3/4 ≤ t ≤ 1

For example consider (f ∗ g) = h; when 1/4 ≤ t ≤ 1/2 we use g and

compose it with a linear function that changes the interval [1/4, 1/2] to
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[0, 1], namely t −→ 4t−1. In fact any continuous function from [1/4, 1/2]

to [0, 1] which sends 1/4 to 0 and 1/2 to 1 will do but it is usually easiest

to choose a linear function. For a given value of s we use f in the interval

[0, (s + 1)/4],g in the interval [(s + l)/4, (s + 2)/4] and h in the interval

[(s + 2)/4, 1]Using the method described above we are led to defining

F : I × I −→ X by

F (t, s) =


f((4t)/(1 + s)) 0 ≤ t ≤ (s+ 1)/4

g(4t− s− 1) (s+ 1)/4 ≤ t ≤ (s+ 2)/4

h((4t− s− 2)/(2− s)) s+ 2/4 ≤ t ≤ 1

The function F is continuous and F (t, 0) = ((f ∗ g) ∗ h)(t),F (0, s) =

f(0) = ((f ∗ g) ∗ h)(0),F (t, 1) = (f ∗ (g ∗ h))(t),F (1, s) = h(1) = ((f ∗

g) ∗ h)(1) so that F provides the required homotopy. If x ∈ X then

we have defined εx : I −→ X as the constant path, i.e. εx(t) = x.

The equivalence path of the constant path behaves as a (left or right)

identity,i.e. [εx][f ] = [f ] = [f ][εy] if f is a path that begins at x and ends

at y.

Lemma 2.2.9. If f is a path in X that begins at x and ends at y

then εx ∗ f ∼ f and f ∗ εy ∼ f .

Proof. We shall only prove that εx∗f ∼ f . The proof that f∗εy ∼ f

is quite similar. Define F : I × I −→ Xby,

F (t, s) =

 x 0 ≤ t ≤ (1− s)/2

f(2t+ s− 1)/(1 + s) (−s+ 1)/2 ≤ t ≤ 1

Then F (t, 0) = εx ∗ f ,F (t, 1) = f(t) and F is a homotopy relative to 0, 1.

Finally we would like inverses to paths (up to equivalence of paths). To
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this end recall that if f is a path then f is the path defined by f = f(1−t).

Note that f ∼ g if and only iff f ∼ g. The equivalence class of f acts as

an inverse for the equivalence class off, i.e. [f ][f ] = [εx],[f ][f ] = [εy] for

a path f beginning at x and ending at y. �

Lemma 2.2.10. Let f be a path in X that begins at x and ends at

y.Then f ∗ f ∼ εx and f ∗ f ∼ εy.

Proof. We shall only prove that f ∗ f ∼ εx.The path f ∗ f is given

by ,

f ∗ f(t) =

 f(2t) 0 ≤ t ≤ 1/2

f(2− 2t) 1/2 ≤ t ≤ 1

It represents a path in which we travel along f for the first half of our time

interval and then in the opposite direction along f for the second half.

To make sure that we get from x to y and back to x we travel at speed

2 (i.e. twice ’normal’ speed).If we now vary the speed proportionally to

(l − s) for s ∈ I then for each s we get a path that starts at x, goes to

f(2(ls)) and then returns to x. For s = 0 we get f ∗ f and for s = 1 we

get εx.Define therefore F : I × I −→ X by,

F (t, s) =

 f(2t(1− s)) 0 ≤ t ≤ 1/2

f((2− 2t)(1− s)) 1/2 ≤ t ≤ 1

F is obviously continuous and, F (t, 0) = (f ∗ f)(t),F (t, 1) = f(0) =

εx(t)F (0, s) = f(0) = (f ∗ f)(0),F (l, s) = f(O) = (f ∗ f)(1) so that

f ∗ f ∼ εx An alternative homotopy between f ∗ f and εx is given by
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G : I × I −→ X where,

G(t, s) =


f(2t) 0 ≤ t ≤ (1− s)/2

f(1− s) (1− s)/2 ≤ t ≤ (1 + s)/2

f(2− 2t) (1 + s)/2 ≤ t ≤ 1

The idea here is that the time that we spend travelling along f is pro-

portional to (l − s). Thus we go along f for the first (l − s)/2 part of

our time interval,then wait at the point f(l − s) and then finally return

along f for the last (1− s)/2 portion of our time. Thus when s = 0 this

is f ∗ f but when s = 1 we spend all our time waiting at x, i.e. εx. �

We have defined the product of two classes [p] ∈ π1(X,x0) and

[s] ∈ π1(X,x0) by [p][s] = [p∗s]. The definition of product is independent

of the choice of representatives of [f ] and [g] because, if p ∼ p1 and s ∼ s1
then p∗s ∼ p1 ∗s1 and so [p1][s1] = [p1 ∗s1] = [p∗s]. Hence, the product

[p][s] is uniquely determined by [p] and [s]. We show now that all the

group axioms are satisfied.

(i) From definition it is obvious that [p][s] is a homotopy class of

paths at x0.

(ii) Now,([p][s])[h] = [p∗s][h] = [(p∗s)∗h] and [p]([s][h]) = [p][s∗h] =

[p ∗ (s ∗ h)].(p ∗ s) ∗ h ∼ p ∗ (s ∗ h). Thus, the operation is associative.

(iii) Let [I] be the homotopy class of the null path at x0, i.e. εx0

[p][I] = [p] = [I][p]. Thus, [I] is a identity.

(iv) [p][p] = [p ∗ p] = [I] therefore that every element has an inverse

so π1(X,x0) is a group.

�
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Definition 2.2.11. Assume that for any a0 ∈ A if π1(A, a0) is

the identity group and path connected space, we can call this space

simply connected. We usually state that π1(A, a0) is the identity group

by writing π1(A, a0) = 0

2.3. Induced Homomorphism

In this section we concerned with the effect a continuous map be-

tween topological spaces has upon fundamental groups. Suppose ϕ :

C −→ Y be a continuous map; (i) if v, t are paths in X then are paths in

Y . (ii) if v ∼ t then ϕv ∼ ϕt (iii) if v is a closed path in C based at c ∈ C

then is a closed path in Y based at p(c). Hence if [v] ∈ π(C, c) then [ϕv] is

a well-defined element of ϕ(Y, (c)). We denote ϕ∗ : π(C, c)⇒ π(Y, ϕ(c))

by ϕ∗[v] = [ϕv].

Lemma 2.3.1. ϕ∗ is a homomorphism of groups.

Proof. ϕ∗([v][t]) = ϕ∗[v ∗ t] = [ϕ(v ∗ t)] = [ϕv ∗ ϕt] = [ϕv][ϕt] =

ϕ∗[v]ϕ∗[t]. �

Definition 2.3.2. The homomorphism ϕ∗ : π1(A, a0) −→ π1(B, p(a0))

determined with ϕ∗[t] = [pt], where ϕ : A ⇒ B is continuous, is called

the induced homomorphism.

Theorem 2.3.3. If p : (A, a0) −→ (B, b0) and s : (B, b0) −→ (C, c0)

are continuous, then (s ◦ p)∗ = s∗ ◦ p∗.

If i : (A, a0) −→ (A, a0) is the identity map then i∗ is the identity

isomorphism.
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Proof. The proof is a triviality. From Definition , (s ◦ p)∗([f ]) =

[(k◦h)◦f ] (s∗◦p∗)([f ]) = k∗(h∗([f ])) = k∗([h◦f ]) = [k◦(h◦f)] Similarly,

i∗([f ]) = [i ◦ f ] = [f ] �

Corollary 1. Assume that p : (A, a0) −→ (B, b0) is a homeomor-

phism of A with B then p∗ is an isomorphism of π1(A, a0) with π1(B, b0).

Proof. Assume that s : (B, b0) −→ (A, a0) be the inverse of p.

Then, s∗ ◦ p∗ = (s ◦ p)∗ = i∗ where i is the identity map of (A, a0) and

p∗ ◦ s∗ = (p ◦ s)∗ = j∗ where j is the identity map of (B, b0). Since

i∗ and j∗ are the identity homomorphisms of the groups π1(A, a0) and

π1(B, b0), s∗ is the inverse of p∗. �

Thus the fundamental group shows a way from topology to algebra.

This has the following features; (i) For each topological space, we have

a fundamental group. (ii) For each continuous map between topologi-

cal spaces we have a induced homomorphism between groups. (iii) The

composite of continuous maps causes the composite of the induced homo-

morphisms. (iv) The identity map causes the identity homomorphism.

(v) A homeomorphism induces an isomorphism.

This gives a good example about what algebraic topology is. If the

fundamental groups of two spaces are isomorphic it does not mean that

the spaces are homeomorphic. On the other hand, if the fundamental

groups are not isomorphic then the spaces cannot be homeomorphic.

2.4. Changing a Basepoint

Theorem 2.4.1. Assume c0, c1 ∈ C. If there is a path in C from

c0 to c1 then the groups π1(C, c0) and π1(C, c1) are isomorphic.
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Proof. Let v be a path at c0 and h is a path from c0 to c1. Then

t = (h ∗ v) ∗ h is a path at c1. Let θ be a transformation between the

homotopy classes of paths at c0 and the homotopy classes of paths at c1

and showed, θ[v] = [t] θ[v] is uniquely specified by [v]. On the contrary

[v] is also uniquely specified by θ[v], because if (h ∗ v1) ∗ h ∼ (h ∗ v2) ∗ h

then v1 ∼ v2. Any path t at c1 is homotopic to h ∗ ((h ∗ t) ∗ h) ∗ h

and thus each homotopy classes of paths at c1 is of the form θ[v] for

some [v]. It shows that θ is a one-one transformation of the members

of π1(C, c0) onto the members of π1(C, c1). Assume that [v1] and [v2]

are two elements of π1(C, c0).Then, θ[v1]θ[v2] = [(h ∗ v1) ∗ h][(h ∗ v2) ∗ h]

= [h ∗ v1 ∗ h ∗ h ∗ v2 ∗ h] = [h ∗ v1 ∗ v2 ∗ h] = θ[v1 ∗ v2] = θ([v1][v2]). So θ

is an isomorphism. �

2.5. Induced Homomorphisms for Homotopic Mappings

Theorem 2.5.1. Assume that θ, ϑ : K −→ L be continuous map-

pings between topological spaces and F : θ ' ϑ is a homotopy . If

f : I −→ L is the path from θ(k0) to ϑ(k0) given by f(t) = F (k0, t) then

the homomorphisms , θ∗ : π(K, k0) −→ π(L, θ(k0)) and ϑ∗ : π(K, k0) −→

π(L, ϑ(k0)) are linked via ϑ = ufθ∗ where uf is the isomorphism from

π(L, θ(k0)) to π(L, ϑ(k0)) determined by the path f .

Proof. We have to show that if [g] ∈ π(K, k0) then [ϑg] = [f∗θg∗f ].

In another words we should show that the paths (f ∗ θg) ∗ f and ϑg are
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equivalent. Observe that,

((f ∗ ϑg) ∗ f))t) =


f(1− 4t) 0 ≤ t ≤ 1/4

ϑg(4t− 1) 1/4 ≤ t ≤ 1/2

f(2t− 1) 1/2 ≤ t ≤ 1

which we will show as

((f ∗ ϑg) ∗ f))t) =


F (x0, 1− 4t) 0 ≤ t ≤ 1/4

F (g(4t− 1), 0) 1/4 ≤ t ≤ 1/2

F (x0, 2t− 1) 1/2 ≤ t ≤ 1

The map P is clearly continuous with P (t, 0) = ((f ∗ θg ∗ f)(t) P (t, 1) =

((εX ∗ϑg) ∗ εX)(t) P (0, 1) = F (x0, 1) = ϑ(x0) P (1, s) = F (x0, 1) = ϑ(x0)

Hence , (f ∗θg)∗f ∼ (εK ∗ϑg)∗εK ∼ ϑg which shows that ufθ∗ = ϑ∗ �

2.6. Homotopy Equivalence and Fundamental Groups

Theorem 2.6.1. Assume that K and L be topological spaces such

that there exist continuous mappings f : K −→ L and g : L −→ K

satisfying g(l0) = k0 where l0 = f(k0) and k0 is some point of K. If gf

is homotopic (rel k0) to the identity IK and fg is homotopic (rel l0) to

the identity IL, then f∗ : π1(K, k0) −→ π1(L, l0) and g∗ : π1(L, l0) −→

π1(K, k0) are mutually inverse group isomorphisms.

Proof. We see that f, g, gf and fg induce the homomorphisms f∗ :

π1(K, k0) −→ π1(L, l0) g∗ : π1(L, l0) −→ π1(K, k0) (gf)∗ : π1(K, k0) −→

π1(K, k0) and (fg)∗ : π1(L, l0) −→ π1(L, l0) respectively . Assume that

α be a path at k0 in K, then since gf(k0) = g(l0) = k0, (gf), α is also

a path at k0 . But gf is homotopic to Ik and thus (gf) α is homotopic

to α. This means that (gf)∗ is the identity transformation of π1(K, k0) .
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Likewise (fg)∗ is the identity transformation of π1(Y, y0) onto itself. But,

(gf)∗ = g∗f∗ and (fg)∗ = f∗g∗. Hence g∗f∗ and f∗g∗ are the identity

transformations of π1(K, k0) and π1(L, l0) respectively. Conceive the

path (gf)α : C −→ K . This is the same like path g(fα) : C −→ K.

Thus, if f∗[α] = [β] then g ∗ [β] = g ∗ f ∗ [a] and because g∗f∗ is the

identity, we have [α] = g∗ [β] . So, if f∗[α1] = f∗[α2] then [β1] = [β2] and

this shows that [α1] = [α2], i.e. f∗ is a one-one transformation.Similarly

we will learn that g∗ is a one-one transformation. Further every element

of π1(L, l0) is of the form f∗[γ] where [γ] is an element of π1(K, k0).

Hence f∗ is a one-one homomorphism, i.e. an isomorphism between

π1(K, k0) and π1(L, l0) . Similarly g∗ is an isomorphism of π1(L, l0) onto

π1(K, k0). �

This proof is instructive but in fact preservation of the points k0

and l0 with gf and fg respectively is not necessary for f∗ and g∗ being

isomorphisms.

Theorem 2.6.2. Suppose that A and B are of the same homo-

topy type and θ : A −→ B are a homotopy equivalence. Then, θ∗ :

π1(A, a) −→ π1(B, θ(a)) is an isomorphism for any a ∈ A .

Proof. Since φ is a homotopy equivalence, there exists a continuous

mapping ψ : B → A such that φψ : B → B is homotopic to Ib and

ψφ : A → A is homotopic to Ia. From this, φf (ψφ)∗ = I∗ Since φf and

I∗ are isomorphisms, (ψφ)∗ = φ∗ψ∗ is an isomorphism. Therefore, ψ∗ is

an epimorphism and φ∗ is a monomorphism. In the same way, φ∗ψ∗ is

an isomorphism and this shows that φ∗ is an epimorphism and ψ∗ is a

monomorphism. �
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2.7. Fundamental Group of a Circle is Infinite Cyclic

Denote S1 the unit circle in the Euclidean plane R2:

S1 = {(x, y) ∈ R2 : x2 + y2 = 1}

(We can do this on C too). Let f : I −→ S1 be the closed path that runs

around the circle exactly once, defined by f(t) = (cos(2πt), sin(2πt),

0 ≤ t ≤ 1, and denote the equivalence class of f by the symbol α.

Then each element of π1(S1) is of the form αn for a unique n ∈ Z, by

the following theorem.

Theorem 2.7.1. (Poincaré) The fundamental group of the circle is

isomorphic to the group (Z,+).



CHAPTER 3

Covering Spaces

Covering Spaces are important in topology, differential geometry,

Lie groups theory, Riemann surfaces theory etc. In this chapter we will

learn about covering Spaces structures and properties. A lot of topolog-

ical questions about covering spaces reduce to algebraic questions about

the respective fundamental groups.

3.1. Notion of Covering and Some Examples

Let Ã and A be topological spaces and p : Ã → A a continuous

function. If for an open subset U ⊂ A the preimage p−1(U) is the disjoint

union of open subsets of Ã each of which is mapped homeomorphically

onto U by p, we say U is evenly covered by p. If each point a ∈ A has

an open neighbourhood evenly covered by p, the function p : Ã → A is

said to be a covering map, p : Ã → A, Ã is called a covering space and

A is a base space.

In other words, p : Ã→ A is a covering if

• p is onto

• for all a ∈ A there is an open neighbourhood U of a such that

p−1(U) = ∪j∈JUj
21
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for some collection Uj ; j ∈ J of subsets of X̃ satisfying Ui ∩ Uj 6= ∅ if

j ∩ k and with p | Uj : Uj −→ U being a homeomorphism for each j ∈ J .

Consider some examples of covering spaces.

Example 3. Verify that the mapping p : R −→ S1, p(t) = e2πit

is a covering. 1) p is onto and continuous transformation. 2) For each

point z ∈ S1, the set u = S1 \ {−z} is open, and p−1(u) = p−1(S1 \

{−z}) = R \ p−1(−z). If −z ∈ S1 is of the form −z = e2πit0 , t0 ∈ [0, 1],

then p−1(−z) is the set of all t ∈ R such that p(t) = −z = e2πit0 , i.e.,

e2πit = e2πit0 ⇐⇒ e2π(t−t0) = 1, hence t = t0 + n, n ∈ Z. This implies

p−1 = R\{t0 +n;n ∈ Z} =
⋃
n∈Z(t0 +n, t0 +n+ 1), and each restriction

p |(t0+n,t0+n+1) : (t0 + n, t0 + n+ 1)→ S1 \ {−z} is a homeomorphism.

Example 4. Let W be a discrete space. We show that if x : Q ×

W −→ Q is the projection to the first component,then x is a covering

map.

Let b ∈ B and Ub a neighbourhood of b . Then x−1(Ub) = Ub×W .

SinceW is dicrete, Ub×W = ty∈WUb×{y}. Since x|Ub×{y}Ub×{y} → Ub

is a homeomorphism, p is a covering map .

Example 5. Pn : S1 → S1, n ∈ N and pn(z) = zn is a covering

space?

pn(z) is onto and continuous transformation. z ∈ S1, p−1(u) =

p−1(S1 \ {−z}) = S1 \ p−1(−z) p−1(−z) = {x ∈ S1; p(x) = xn = −z}

For this we can take help from : z =| z | (cos(α) + i sin(α)) n
√
| z | =

W0, ...,Wn−1 Wk = n
√
| z |(cos(2πk + α)/n) + i sin(2πk + α)/n) , k =

0, 1, ..., n− 1 xn = −z 6= 0 p−1n (−z) = {W0, ...,Wn−1} = S1 \ p−1(−z) =

p−1n (S1) \ (−z)) = V0...Vn−1
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Example 6. X̃ = R2,M = S1×S1 p : R2 →M ,p(x, y) = (e2πix, e2πiy)

is a covering space?

p is onto and continuous transformation. (a, b) ∈ S1×S1, u = S1×

S1 \ (a, b) p−1(u) = p−1 S1×S1 \ (a, b) = p−1(S1×S1)\p−1(a, b) = R2 \

p−1(a, b) p−1(a, b) = {(x, y); p(x, y) = (a, b) = (e2πix0 , e2πiy0), (e2πix, e2πiy)} =

(e2πix0 , e2πiy0) = e2πix = e2πix0 and e2πiy = e2πiy0 e2πi(x−x0) = 1 and

e2πi(y−y0) = 1

3.2. Properties of Coverings

Theorem 3.2.1. Any covering map p : Ã⇒ A is open.

Proof. Let W ⊂ Ã is open . We will learn p(W ) is open in A. Let

x ∈ p(W ) and There is an evenly covered open neighbourhood U of x.

Admit that x̃ ∈ p−1(x) ∩W and Uj in Ã such that x̃ ∈ Uj . We analized

that p(Uj∩V ) is an open subset of U . Now U is open in A and therefore

p(Uj ∩W ) is open in A. Because, x ∈ p(Uj ∩W ) ⊂ p(W ) and p(W ) is

open in A. �

Theorem 3.2.2. If p : Ã −→ A is a covering map then A has the

quotient topology with respect to p.

Proof. Since p is a continuous open map, it come after that a subset

C of A is open if and only if p−1(C) is open. �

Proposition 3.2.3. Let x : A −→ B be a covering map. (a) If B is

Hausdorff, then A is Hausdorff. (b) If B is compact and x−1(b) is finite

for each b ∈ B, then A is compact.

Proof. Solution a) : Let a1 and a2 be distinct points in A . If

x(a1) = x(a2) = b, then let Ub be a neighbourhood of b where x−1(Ub) =
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tcVc. Since each Vc is homeomorphic to Ub under x, a1 and a2 must be

involved in different Vc’s, so a1 and a2 can be separated by open sets. If

x(a1) =: b1 is explicit from x(a2) =: b2 . Then there are neighbourhoods

U1 and U2 of b1 and b2 such that U1∩U2 = ∅ . Since x is a covering map,

there are neighbourhoods V1 and V2 of b1 and b2 such that V1 and V2 are

evenly covered by x. Let Oi := Vi∩Ui which is a neighborhood of bi such

that O1∩O2 = ∅ and Oi is evenly covered by x so that x−1(Oi) = uciAci
. If Aci is the open set including ai, then since O1∩O2 = ∅, Ac1∩Ac2 = ∅

.So a1 and a2 can be separated by open sets.

Solution b) : First of all we demonstrate that for any open set

O ⊂ A including a fiber x−1(b), there is a small neighbourhood , Wb of b

in B such that p−1(Wb) ⊂ O. The proof of this statement is optional and

you can use it to show the main statement. Let Ub be an equally covered

neighbourhood of b, so that π−1(Ub) = Vci t ...Vcm (x−1(b) is finite) . Let

Wci := x(O ∩ Vci) . Let Wb := ∩mi=1Wci then x−1(Wb) = tW̃ci where

W̃ci ⊂ O ∩ Vci ⊂ O. So x−1(Wb) ⊂ O. Since x is a covering map, x

is an open map.Assume that {Uc} covers A.For each b, we have a finite

subcovers {Ub,1, ..., Ub,nb
} ⊂ {Uc} of x−1(b). Let Wb be a neighbourhood

of b in B such that, x−1(Wb) ⊂ Vb := ∪nb
i=1Ubi . Since {Wb|b ∈ B} covers

B and B is compact, we have a finite subcover {Wbk ; k = 1; ...;m}. Since

{x−1(Wbk), k = 1, ...,m} covers A, {Vbk , k = 1, ...,m} covers A. Hence,

{Ubk,ibk , ibk = 1, ..., nbk , k = 1, ...,m} is a required finite subcovering of

{Uc}, that covers A. �
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Definition 3.2.4. A mapping f : X −→ Y then f is called a local

homeomorphism if each point x ∈ X has an open neighbourhood which

is mapped homeomorphically by f onto an open subset of Y .

Note : Obviously a local homeomorphism is an open map.

Theorem 3.2.5. A covering map is a local homeomorphism.

Proof. Let p : A −→ X be a covering map and i ∈ A . Let U

be an open neighbourhood of p(̃i) which is evenly covered by p . From

definition , p−1(B) = ∪j∈CUj with Bj ∩Bk = φ and each Bj is mapped

homeomorphically onto B by p . Assume that B̃ is open set among {Bj}

which includes ĩ.B̃ is an open neighbourhood of ĩ with the property that

p|B̃ is a homeomorphism of B̃ onto B . It shows us that p is a local

homeomorphism . After all a local homeomorphism does not need to be

a covering map like example which we showed. �

Example 7. Assume that a1 : (0, 3) −→ A1 be the limitation of the

map a : R −→ A1 defined by a(t) = e2πit over open interval (0, 3) . Since

a is a covering map, it is a local homeomorphism and hence its limitation

a1 to the open set (0, 3) is a local homeomorphism. a1 is a surjection

too but since the complex number 1 ∈ A1 has no neighbourhood evenly

covered by a1, a1 is not a covering map.

3.3. Liftings

Definition 3.3.1. Let p : X̃ −→ X be a covering map. A continu-

ous mapping f̃ : Y → X̃ is called a lifting of f : Y → X if pf̃ = f .
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3.3.1. Uniqueness.

Lemma 3.3.2. Let p : Ã −→ A is a covering map and h, k : C −→ T̃

are two lifts of f : C −→ T . Assume that C connected and there is

y0 ∈ C such that h(y0) = k(y0) . Then h = k.

Proof. Let C1 is a set determined by C1 = {y ∈ C;h(y) = k(y)}.

C1 is non-empty because y0 ∈ C1. We will show that C1 is open and

closed. If y ∈ C, There is an open neighbourhood V of f(y) which is

evenly covered by p and therefore , p−1(V ) = ∪j∈JVj , Vj ∩ Vi = ϑ for

j 6= i and for each j, p|Vj : Vj −→ V is a homeomorphism. If y ∈ C1 then

h(y) = k(y) ∈ V +k for some k and we prove that F = h−1(Vk)∩k−1(Vk)

is an open neighbourhood of y and is a subset of C1. For this, Assume

that x ∈ F then h(x) and k(x) ∈ Vk and also ph(x) = pk(x). Because

p|Vk is a homeomorphism, now we know that h(x) = k(x). From here

we can see each point of C1 is an interior point of C1 and C1 is open. If

y /∈ C1 then h(y) ∈ Vk and k(y) ∈ Vl for some k and l such that k 6= l.

Finally, h−1(Vk) ∩ k−1(Vl) is an open neighbourhood of y. Hence C1 is

also closed. Since C is connected, C = C1 and so h = k. �

3.3.2. Path Lifting.

Proposition 3.3.3. Let f ∈ X and starting at a and any lift ã of

a i.e. p(ã) = a. There is only one lift of f to a path f̃ ∈ X̃ starting a ã,
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i.e., a unique path f : I ⇒ X̃ such that f(0) = ã.

X̃

p

��
I

f̃
??

f

// X

Proof. We start with a path f in X and construct a lift as required.

Idea: p is only locally a homeomorphism on the Bαs display the

covering space so we edge our way along, staying in one Bα at a time,

We use 1 ) the definition of covering space, and 2 ) compactness of I

every cover has a finite subcover.

Step 1 : From definition of covering space we have a cover Bα of

X such that for all α, p−1(Bα) is a disjoint union of open sets in X̃,each

of which maps homeomorphically to Bα under p. Now f : I −→ X is

continuous so f−1(Bα) is an open cover of I . Hence for all of t ∈ I,

there is some α with t ∈ f−1(Uα) and there is an open ball ◦Ar(t) ⊆

f−1(Bα).This gives a cover of I, so by compactness of I there is a finite

subcover , [a0, b0), (a1, b1), (a2, b2), ..., (am, bm] where a0 = 0, bm = 1 and

without loss of generality a0 < a1 < b0 < a2 < b1 < ... < bm Put , ti =

(ai + bi−1)/2∀1 ≤ i ≤ m So we have , 0 = t0 < t1 < ... < tm < tm+1 = 1

such that for each i, f [ti, ti+1] ⊂ Bi, say, where Bi ∈ Bα.

Step 2 : We lift the path f on each of these subintervals one

at a time. Conceive the first patch [0, t1] with f [0, t1]B0. We have



COVERING SPACES 28

f(0) = x and fix f̃(0) = x̃ . Now x̃ ∈ p−1(U0) so has to lie in one

homeomorphic copy of U0 and called with Ũ0 . Now We can define f̃

on [0, t1] by [0, t1]
−→
f U0

−−→
p−1Ũ0 ⊂ X̃ As in the beginning mentioned, We

will go on to use our process for next each patch [t1, t2], [t2, t3], ..., [tm, 1].

This constructs a lift f̃ of f .

Step 3 : In the end, we have to check that this lift is unique,

by at heart the same argument. Suppose we have lifts f̃ , f̃0 : I → X̃, so

pf̃ = pf̃ ′ = f , and f̃(0) = f̃ ′(0) = x̃. As above, we choose a partition

0 = t0 < t1 < ... < tm+1 = 1 such that for each i, f [ti, ti+1] ⊂ some Bi

. Now we edge our way along : f̃ is continuous and [0, t1] is connected,

so ˜f [0, t1] is connected in X̃ so f̃ [0, t1] lies in one homeomorphic copy

of U0,We can say for it B̃0 . Also f̃ ′[0, t1] have to lie in the same copy

as f̃(0) = f̃ ′(0). But p gives a bijection B̃0 → B0 and we also know

pf̃ = pf̃ ′ so we should have f̃ = f̃ ′ on [0, t1]. We can go on to our

process and patch all the way along . �

3.3.3. Homotopy Lifting.

Proposition 3.3.4. Let α : I × A −→ X is a homotopy which

stating at π : A −→ X and any lift π̃ of π i.e.

X̃

p

��
A

φ̃
??

φ

// X

There is a unique lift of α to a homotopy α̃ starting at φ̃ i.e. a unique

homotopy I × A −→ã X̃ such that ã(0,) = Φ̃ and the following diagram
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commutes:

X̃

p

��
I ×A

ã

<<

a
// X

3.3.4. Lifting Correspondence.

Proposition 3.3.5. Let’s take a lift x̃ of x and φ1(X,x) −→ p−1(x)

and ψ̃ −→ (1). and furthermore ,

1) if X̃ is path-connected then this map is surjective,

2) if X̃ is simply connected then this map is also injective .

3.3.5. Sheets.

Definition 3.3.6. If X is path-connected then the cardinality of

p−1(x) is constant. This is called the number of sheets of the cover.

3.3.6. Important consequence.

Definition 3.3.7. The group π1(Ỹ , ỹ) is included as a subgroup of

π1(Y, y) by the homomorphism π1(Ỹ , ỹ)⇒ π1(Y, y) under π1(p) function

i.e. π1(p) is injective.

3.3.7. Morphisms of Covering Spaces.

Definition 3.3.8. A morphism from a based covering (X̃1, x̃1) −→

(X,x) by p1 function to a based covering (X̃2, x̃2) −→ (X,x) by p2

function is a continuous function f : (X̃1, x̃1) −→ (X̃2, x̃2) satisfying

p1 = fp2.
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Based covering spaces over (X;x0) form a category. The definition

of morphism determines the notion of isomorphism: two based covering

spaces (X̃1, x̃1) −→ (X,x) by p1 and(X̃2, x̃2) −→ (X,x) by p2 are iso-

morphic iff there are covering maps f : X̃1 −→ X̃2 and g : X̃2 −→ X̃1 so

that gf = idX̃1
and fg = idX̃2

.Notice that isomorphic covering spaces

are homeomorphic topological spaces.

3.3.8. Deck transformations.

Definition 3.3.9. An isomorphism of covering spaces X −→ X is

called a deck transformation .

These form a group G(X).

Definition 3.3.10. A covering space X −→ X is normal if for each

x ∈ X and each pair of lifts x, x
′
∈ p−1(x), there is a deck transformation

taking x to x
′

.

Example 8. Conceive the universal covering of the Klein bottle and

then explaining to all of R2 It is easy to see that the deck transformation

group is Z × Z where (m1, n1)(m2, n2) = (m1 + (−1)n
−1

m2, n1 + n2).

Since R2 is simply connected,this group should be isomorphic to the

fundamental group, which denoted to be {a, b|abab−1 = 1} If We want

show that these groups are isomorphic directly to confirm this.We can

write: θ : Z ∗ Z ⇒ Z × Z is generated by θ(a) = (1, 0) and θ(b) =

(0, 1).It follows that, θ(am) = (m, 0) θ(bn = (0, n) θ(am, bn) = (m,n)

θ(abab−1) = (0, 0) So we know that θ is a surjection and that the normal

subgroup generated by abab−1 is in the kernel. We can see that this is the

entire kernel by considering the induced map, θ : {a, b|abab−1 = 1} −→



COVERING SPACES 31

Z×Z From the relation of ab = ba−1 allows one to write any element of

the group {a, b|abab−1 = 1} as ambn and the map from these elements

to Z× Z is injective, θ is an isomorphism .

Proposition : If A is a covering space on space B; then: 1.1)

The quotient map p : B −→ B/A is a normal covering space. 1.2) A

is the group of deck transformations if B is path connected. 1.3) A is

isomorphic to π1(B/A)/p∗π1(B) of B is path connected and locally path

connected.

Proof. Given an open set U , the quotient will denote the disjoint

sets g(U). By the quotient topology, p limits a homeomorphism from

g(U) to its image p(U) for each g ∈ A, and hence p is a covering space.

Each element of A acts like deck transformation and openly one can get

from any element in the fiber to any other (to get from g(x0) to g′(x0),

simply use the element g′g−1). Absolutely A is a subgroup of the deck

transformation group. If B is path connected, then deck transformations

are uniquely determined so G has to be the whole deck transformation

group. �

3.3.9. Path Homotopy.

Definition 3.3.11. α, β :I⇒X paths of some end points . α−̃pβ if

F : I × I −→ X such that;

constant path : εp(s) = p for all s

reverse path : a(s)a(1− s)
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concatenation:

(α ∗ β)(s) =

 α(2s) s ∈ [0, 1/2]

β(2s− 1) s ∈ [1/2, 1]


Proposition 3.3.12. If βã

∼
β
′
, θa∼θ

′
and β(1) = θ(0) then β ∗

θa∼β
′ ∗ θ′ also βa∼β

′

Proof. Fix a ∈ X . Let ω(X, a) :=”loops at a , i.e paths β : I −→X

such that β(0) = β(1) = a”. Then, εa ∈ ω(X, a) , β, θ ∈ ω(X, a) −→

β, β ∗ θ ∈ ω(X, a) �

Example 9. Let f, g : A −→ B be a path from x0 to x1 and let

h : B −→ Y be a continuous map. 1 ) Show that if F : f −→p g is a

path homotopy, then h ◦ F : h ◦ f −→p h ◦ gis a path homotopy . 2 )

Show that if f(1) = g(0) then h ◦ (f ∗ g) = (h ◦ f) ∗ (h ◦ g) .

Solution: h ◦ F : A × [0, 1] −→ Y is a continuous map . Since

h◦F (c, 0) = h◦f(c) h◦F (c, 1) = g(c), h◦F (0, t) = h(x0) and h◦F (1, t) =

h(x1), h ◦ F is a path homotopy from h ◦ f to h ◦ g.

(h ◦ f) ∗ (h ◦ g) =

 h ◦ f(2c)&c ∈ [0, 1/2]

h ◦ g(2c− 1)&c ∈ [1/2, 1]

If c ∈ [0, 1/2], h ◦ (f ∗ g)(c) = h(f ∗ g)(c) = h(f(2c)) and if c ∈ [1/2, 1],

h ◦ (f ∗ g)(c) = h(f ∗ g)(c) = h(g(2c − 1)) . Therefore h ◦ (f ∗ g) =

(h ◦ f) ∗ (h ◦ g) .

Example 10. Let a, b : X −→ Y be continuous maps and assume

a(x0) = y0 and b(x0) = y0 . Show if there is a homotopy A : X ×

[0, 1] ⇒ Y from a to b such that A(x0; t) = y0 for all t ∈ [0, 1], then

a∗ = b∗ : π1(X,x0)⇒ π1(Y, y0) .
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Solution : Let [f ] ∈ π1(X,x0).We have to show that [a ◦ f ] =

[b◦f ] ∈ π1(Y, y0). Define Ã : I× [0, 1]⇒ Y by Ã(s, t) = A(f(s), t).It is a

composition of maps A◦(f, id[0;1]) so it is continuous. Now we can check,

Ã(s, 0) = F (f(s), 0) = a(f(s), Ã(s, 1)) = F (f(s), 1) = b(f(s)) homotopy

conditions, Ã(0, t) = F (f(0), t) = F (x0, t) = y0, Ã(1, t) = A(f(1), t) =

A(x0, t) = y0 path-homotopy conditions. Thus Ã is a path-homotopy

from a ◦ f to b ◦ f .

3.4. Classification of covering spaces

Definition 3.4.1. A space X is called locally path-connected if for

any point x ∈ X and any open set U containing x,there is a path-

connected open set V ⊂ U also containing x.

Definition 3.4.2. A space X is called semi-locally simply-connected

if for any point x ∈ X there is an open set U containing x in which every

loop is nullhomotopic.

Remark. If A is path connected and locally path connected, then A

is a simply connected covering space if and only if A is semilocally simply

connected.

Proposition 3.4.3. Assume that B is a path connected, locally path

connected and semilocally simply connected then there exists bijection

between the set of basepoint preserving isomorphism classes of path con-

nected covering spaces. p : (B, x0) −→ (B, x0) and the set of subgroups of

π1(B, x0) attained by correlating the subgroup , p∗(π1(B, x0)) to the cov-

ering space (B, x0) . This gives a bijection between isomorphism classes
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of path connected covering spaces p : B −→ B and conjugacy classes of

subgroups of π1(B, x0) .

3.4.1. Universal covering space.

Definition 3.4.4. If X is path connected, locally path connected,

and semilocally simply connected, then X has a simply connected cov-

ering space called the universal covering space .

3.4.2. Connected covering spaces of S1.

Definition 3.4.5. We knew the connected covering spaces of S1

for each x ∈ N S1 −→ S1 and under sx function (1, θ) −→ (1, xθ) and

R −→ S1 under s function θ −→ (1, θ) π1(S1) = Z so we need to take

one connected covering space for each subgroup of Z , i.e. for each nZ

for x ∈ N including 0 . Now, if we conceive the covering space, under

sx function S1 −→ S1 and Imπ1sx is nZ ⊂ Z . In the end, under s,

R −→ S1 we get giving the subgroup : This gives all subgroups of Z

therefore we should find all connected covering spaces of S1 .

3.4.3. Connected covering spaces of RP 2.

Definition 3.4.6. Assume that RP 2 by S2 by identifying antipodal

points : S2 −→1 RP 2 x −→1 [x] = {x,−x}We will see π1(RP 2) = Z2 Z2

has no non-trivial subgroups therefore this is the only connected covering

space of RP 2 .
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3.4.4. Connected covering spaces of S2.

Definition 3.4.7. π1(S2) = 0, which has no non-trivial subgroups

hence the unique connected covering space of S2 is the unimportant one

S2 −→1 S2 .

3.4.5. Connected covering spaces of RP 2 × RP 2.

Definition 3.4.8. Let π1 conserves products therefore, π(RP 2 ×

RP 2) ∼= π1(RP 2)× π1(RP 2) ∼= Z2 × Z2 which has subgroups ,

1) 0 and Z2 × Z2 and ,

2) subgroups of order 2 : < (0, 1) >,< (1, 0) >,< (1, 1) >

And our covering space , S2 × S2 −→ RP 2 × RP 2 and (α, β) −→

([α], [β]) and π1(S2×S2) ∼= π1(S2)× π1(S2) ∼= 0 Hence this corresponds

to the trivial subgroup.

And also, RP 2 × S2 −→ RP 2 × RP 2 and ([α], β) −→ ([α], [β])

and S2 × RP 2 −→ RP 2 × RP 2 (α, [β]) −→ ([α], [β]) corresponding to

< (1, 0) > and < (0, 1) > . In the end,we look for the covering space

corresponding to < (1, 1) >. It can help at this point to think of RP 2×S2

as a quotient of S2 × S2 by the relation , (α, β) ∼ (−α, β) and similarly

S2 ×RP 2 is a quotient of S2 × S2 by the relation , (α, β) ∼ (−α, β) and

in a similar way S2×RP 2 is a quotient of S2×S2 , (α, β) ∼ (α,−β) And

Now we can see what the last covering space should be X = (S2×S2)/ ∼

where ∼ is the equivalence relation defined by , (α, β) ∼ (−α,−β) .

This is not same with , RP 2 × RP 2 ∼= S2/ ∼ ×S2/ ∼∼= (S2 × S2)/ ∼

with the equivalence relation , (α, β) ∼ (±α,±β) Our covering map is,

X −→ RP 2 × RP 2 and [(α, β)] −→ ([α], [β]) and this covering space

corresponds to < (1, 1) >.
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3.5. Covering Space Constructions

3.5.1. Universal covering spaces.

Definition 3.5.1. Let start with (A, a) and we will make a new

space with points of A together with the path . We can put a topology

on , {[γ]|γ} is a path in A starting at a . For instance, on S1 if we turn

the circle once we will not think about come “back where we started”

because path is notvhomotopic to the constant path at a .

3.5.2. Non-universal covering spaces.

Definition 3.5.2. Let‘s take a covering space, (B̃, b̃) −→p (B, b)

this corresponds to the subgroup of π1(B, b) of ”those loops that are

still loops upstairs”. Every Loop upstairs maps to a loop downstairs but

some loops downstairs lift to paths upstairs that are not loops. We make

non-universal covering spaces by quotienting the universal covering space

just to make those loops we want still to be loops in B̃.

3.5.3. Wedge Sums.

Definition 3.5.3. Given based spaces (Q, q) and(C, c) their wedge

sum is defined by steady Q and C at the basepoint (Q, q) ∨ (C, c) =

(Q t C)/q ∼ c.

For example,

S1 ∨ S1 is the familiar
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S1 ∨ S2 is

Here we have an informal formula to make the universal covering

space of (Q, q) ∨ (P, p) .

Make the universal covers Q̃ of Q and C̃ of C .

Find all the preimages of the basepoint q in Q̃, and steady on a copy of

C̃ at each one .

Find all the preimages of the basepoint c in each copy of C̃, and steady

on a copy of Q̃ at each one .

Iterate ...

Negative Examples: Let Q be the space given by glueing two

copies of R at the origin.

We have S1 ∨ S1 but this is not a covering space. From neighbour-

hoods of the basepoint, It is easy to see This is not a covering space,

This shows commonly to make a universal cover of Q ∨ C we can‘t just

stick Q̃ to C̃, but we have to stick a copy of C̃ to every preimage of the

basepoint in Q̃, and then repeat for C̃ and then iterate. This is not

a covering space. [0, 1) −→ S1 and t −→ (cos2πt, sin2πt). This has

the property of the cardinality of p−1(q) is constant, but this is not a

covering space; From neighbourhoods of the point (1, 0) It is easy to see.
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3.6. Fundamental Group of the Covering Space

Theorem 3.6.1. Assume that p : Ã −→ A be a covering map, where

A is path connected . Let , ã0, ã1 ∈ A . Then there is a path f in A from

p(ã0) to p(ã1) such that φfp ∗ π1(Ã, ã0) = p ∗ π1(Ã, ã1) (Here φf is the

isomorphism determined and p∗ is the induced homomorphism .)

Proof. Assume that g is a path in X̃ from x̃0 to x̃1 and we know

from fundamental groups ; Assume that X is a path connected space then

for any x, y ∈ X, π1(X,x) and π1(X, y) are isomorphic. An isomorphism

φg from , φ1(X̃, x̃0) to φ1(X̃, x̃1) Hence , φgπ1(X̃, x̃0) = π1(X̃, x̃1) We use

the induced homomorphism p∗ and have , p∗φgπ1(X̃, x̃0) = p∗π1(X̃, x̃1)

We have that , p∗φg = φpgp
∗ Thus if we write f = pg then f is a path

in X from p(x̃0) to p(x̃1). So We proved the theorem. �



Conclusions

In the end of the thesis we have learnt about what are covering

spaces and fundamental groups and what is the relation between them. In

the first chapter we analyzed what is notion of homotopy of mappings. It

helped us to understand next chapters. In second chapter we considered

fundamental groups of topological spaces, their properties and related

topics, in particular, path structures, loops, induced homomorphisms

and relations between them. This gave us a base to pass to covering

spaces. In the third chapter, we analyzed covering space structure and

we gave examples to understand it better. After we checked uniqueness of

path liftings and homotopy liftings to understand covering spaces more

deeply. Finally we have shown relation between fundamental groups

and covering spaces. We believe this thesis shows base knowledge of

fundamental groups and covering spaces.
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