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Introduction

In Mathematics, covering spaces theory is very important for topol-
ogy, as well as for differential equations, Lie groups theory and Riemann
spaces theory. Covering spaces theory is related to fundamental groups
of topological spaces. Different problems of topology are converted to al-
gebraic problems through algebraic topology. Therefore we have to learn
basics both of fundamental groups and of covering spaces.

The purpose of this Master thesis is to analyze covering spaces,
fundamental groups, and relation between them.

This thesis has 3 Chapters and 15 Sections. In the first chapter we
will consider what are homotopies and homotopic mappings.

In the second chapter, we will consider fundamental groups, liftings,
induced homomorphisms, and homotopy types.

In the third chapter, we will consider our main topic, i.e., covering

spaces and their relations with fundamental groups.



CHAPTER 1

Homotopy

In this chapter we will learn about homotopies and their properties.

1.1. Notion of Homotopy

DEerINITION 1.1.1. If for two continuous maps fo, f1 : X — Y and
there exist a continuous map F': X x I — Y such that F(z,0) = fo(x)
and F(z,1) = f1(x) for every x € X, then these two continuous maps are

called homotopic, and F' is a homotopy between fy and f;. We denote
this with f() ~ f1 .

DEFINITION 1.1.2. If Kk : A — B is a continuous mapping which

image includes only a single point, then we say k is constant mapping.

DEFINITION 1.1.3. A continuous map f : A — B that is is homo-

topic to a constant map is called null homotopic.

EXAMPLE 1. Suppose that A = B =R"™ and fo(p) = p and f1(p) =
0 for p € R™. Assume F : R" x C' — R" is defined by F(p,t) = (1 —1)p.
Then F' is a homotopy between fy and f1, f1 is constant, hence fy is null

homotopic.

ExAMPLE 2. Two constant maps or two null homotopic maps are
not always homotopic. We can explain this with the following example.

5
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Let X be connected and Y be not connected. Choose points yy and
in distinct components of Y and suppose that fo(x) = yo and fi(z) = y;
for all x € X. The maps fy and f; are constant, X x I is connected but

Y is not connected, hence fy and f; are not homotopic.

1.2. Properties of Homotopic Mappings

LEMMA 1.2.1. Let f : X — Y and g : Y — Z be continuous
mappings then the composite transformation h = gf : X — Z is con-

tinuous.

PROOF. Inverse image of each open subset of Y under f is open in X
and inverse image of each open subset Z under ¢ is open in Y. Suppose

that ¢ is an open set in Z. Then the continuity of h follows from the
equality h=*(¢) = f~H{g7(#)}. |

THEOREM 1.2.2. Ifp: AxB — A and q: Ax B — B are defined
by the formulae p(ci,c2) = ¢1 and q(c1,c2) = co where ¢y € A, co € B,

then p and q are continuous.

PROOF. Assume that ¢ is open in A. Then p~1(¢) is the set of
ordered pairs (c1, co) where ¢; € ¢ and ¢y € B. Hence, p~1(¢) = ¢ x B,

which is open in A x B. Therefore p is continuous as well as q. Il

Such p and ¢ are called projections of the product A x B onto its

factors.
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1.2.1. Composition and Restriction.

PROPOSITION 1.2.3. 1) Assume that there are p1,p2 : X — Y and
ti,to: Y — Z . If p1 >~ po and t; =~ to, then t1p1 =~ topy . 2) Assume
that p,t : X — Y and p ~t, then for any A C X, p|A ~ t|A.

1.2.2. Relative Homotopy.

DEFINITION 1.2.4. Suppose that A € K and fy : K — L, f; :
K — L are continuous mapppings. Then fy and f; are called "homo-
topic relative” to A if there is a homotopy F' between fy and f; such
that F'(q,t) is independent of t for g € Ai.e. F(q,t) = fo(q) forallq € A
and for all t € C.

It is obvious that fy(q) = f1(q) for all ¢ € A. We call this homotopy
relative, denoting with fy >~ f1(relA) and, when F' is to be referred, with
F : fo ~ fi(relA). So in this case F'(q,0) = fo(q),F(q,1) = fi(q) for
every ¢ € K and F'(qo,t) = fo(qo) = f1(qo) for each ¢o € A and for each
ted.

THEOREM 1.2.5. The relation of being homotopic relative to X is an
equivalence relation (i.e., Reflexivity, Transitivity and Symmetry rules

are valid.)
1.2.3. Homotopy Types and Homotopy Equivalence.

DEFINITION 1.2.6. Given two spaces X and Y, we say they are
homotopy equivalent, or of the same homotopy type, if there exist con-
tinuous maps f: X — Y and g : Y — X such that go f is homotopic
to the identity map idx and f o g is homotopic to ¢dy. Such f and
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g a called homotopy equivalences between X and Y. If X and Y are
homotopy equivalent then they belong to the same homotopy type, i.e.
homotopy type is the equivalence class with respect to homotopy equiv-

alence.



CHAPTER 2

The Fundamental Group

2.1. Paths and Path Connected Spaces

DEFINITION 2.1.1. Assume that @ is a topological space and I de-
notes the unit interval [0,1]. A Path in @ is a continuous mapping
f I — Q. f(0) is the initial point of path and f(1) is the terminal
point of path. We should know that path is the mapping f, not the
image f([0,1]). If = is a fixed point of @), we denote by ¢, the constant
mapping €, : [0,1] — @ given by €,(t) = x for every t € D. The path

€, 18 called "null path”.

DEFINITION 2.1.2. If for any two points x,y € A there is a path in
A from z to y then the space A is called path connected. Path connected

component of A is a maximal path connected subset of A.

2.2. Definition of Fundamental Group
2.2.1. Loops.
DEFINITION 2.2.1. A path f: I — X is said to be closed if f(0) =

f(1). If f(0) = f(1) = x then we say that f is based at x, and z is called
a basepoint of f.

Some books use the word “loop” for a closed path.

9
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DEFINITION 2.2.2. A path a with a(t) = «(0) for all ¢ € [0,¢] is

called a constant loop or a trivial loop.
2.2.2. Homotopic Paths.

DEFINITION 2.2.3. Two paths «, § with common endpoints (i.e.
a(0) = B(0) and «a(l) = B(1)) are called equivalent or homotopic if
there exists H : I x I — M (continuous function) such that H(¢,0) =
a(t) t € [0,1] H(t,1) = B(t) t € [0,1] and H(0,s) = «(0) = B(0)
se€[0,1] H(1,s) = (1) = B(1) s € [0,1] H is giving us a family of paths

connecting o and 5 . We denote this a ~ £.

PROPOSITION 2.2.4. Homotopy of paths is an equivalence relation,
1.€.

1) a~a«

2) If a ~ 3 then 5 ~ « and

3) If a ~ B and B ~ v then o ~ ~y

The equivalence class of « is denoted [a].
2.2.3. Multiplication of Paths and Fundamental Group.

DEFINITION 2.2.5. If o, B paths in M with a(1) = £(0) then define

ax* 3
a(2t) 0<t<1/2

ax [(t) =
p2t—1) 1/2<t<1

LEMMA 2.2.6. Ifa~a and B~ thenaxB ~a x3.

Observe that the product f*g is defined for any pair of closed paths

based at some point z € X. We denote the set of equivalence classes of
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closed paths based at x € X by m (X, x) . This set has a product defined
by [f] - [g] = [f] * [g] for [f],|g] € m(X,x) which is well defined by the
last lemma. The next result states that m (X, x) is a group; we call it
the fundamental group of X with base point .

Recall that a set G with a binary operation * is a group if:

1) There is a special element e with e x z = x xe = x for any =
[Identity]

2) For any z, There is a 27! with z x 27! = 27! x 2 = e [Inverse]

3) xx (yx2z) = (xr=xy)=* 2z [Associativity]

Additionally, if z x y = y *x x for any z,y, we can say this group is

commutative group.
THEOREM 2.2.7. m (X, ) is a group.

LEMMA 2.2.8. Suppose that f, g, h are three paths in X with f(1) =
9(0) and g(1) = h(0). Then (fxg)*xh ~ fx(g*h).

PrOOF. Note first that,

F(4t) 0<t<1/4
(fxg)(h(t) =4 g(dt—1) 1/4<t<1/2
| n2t—1) 1/2<t<1

and
[ f20)  o<t<is
frlgxh)(t) =14 g4t—2) 1/2<t<3/4
| h(4t-3) 3/4<t<1

For example consider (f * g) = h; when 1/4 <t < 1/2 we use g and

compose it with a linear function that changes the interval [1/4,1/2] to
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0, 1], namely ¢ — 4t —1. In fact any continuous function from [1/4,1/2]
to [0, 1] which sends 1/4 to 0 and 1/2 to 1 will do but it is usually easiest
to choose a linear function. For a given value of s we use f in the interval
0, (s +1)/4],g in the interval [(s +1)/4, (s + 2)/4] and h in the interval
[(s + 2)/4,1]Using the method described above we are led to defining
F:IxI— X by

(

F((4t)/(1 + 5)) 0<t<(s+1)/4
F(t,s) =4 g(4t —s—1) (s+1)/4<t<(s+2)/4
h((4t—s—2)/(2—35)) s+2/4<t<1

\

The function F' is continuous and F'(t,0) = ((f * g) * h)(¢),F(0,s) =
F(0) = ((f # 9) = WO)F (1) = (F # (g = W)(E),F(1,5) = h(1) = ((f »
g) * h)(1) so that F provides the required homotopy. If x € X then
we have defined €, : I — X as the constant path, ie. €,(t) = z.
The equivalence path of the constant path behaves as a (left or right)
identity,i.e. [e;][f] = [f] = [f]ley] if f is a path that begins at  and ends

at y.

LEMMA 2.2.9. If f is a path in X that begins at x and ends at y
then ex x f ~ f and f x €, ~ f.

PRrROOF. We shall only prove that e, *f ~ f. The proof that fxe, ~ f
is quite similar. Define F': I x I — Xby,

Ft,s)=4 ° (()Stg(l—s)/z

ft+s—1)/(1+s)
Then F(t,0) =€, % f,F(t,1) = f(t) and F is a homotopy relative to 0, 1.

Finally we would like inverses to paths (up to equivalence of paths). To
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this end recall that if f is a path then f is the path defined by f = f(1—t).
Note that f ~ g if and only iff f ~ g. The equivalence class of f acts as
an inverse for the equivalence class off, i.e. [f][f] = le.],[f][f] = [e,] for

a path f beginning at z and ending at y. ]

LEMMA 2.2.10. Let f be a path in X that begins at x and ends at
y. Then f* f ~ ey and?*fwey.

PROOF. We shall only prove that f * f ~ €,.The path f = f is given
by,

F(2t) 0<t<1/2
f2—2t) 1/2<t<1

fft)=

It represents a path in which we travel along f for the first half of our time
interval and then in the opposite direction along f for the second half.
To make sure that we get from x to y and back to x we travel at speed
2 (i.e. twice 'normal’ speed).If we now vary the speed proportionally to
(I — s) for s € I then for each s we get a path that starts at x, goes to
f(2(1s)) and then returns to x. For s = 0 we get f * f and for s = 1 we
get €,.Define therefore F': I x [ — X by,

F2t(1 — ) 0<t<1/2

F(t,s) =
f(2=2t)(1—-5)) 1/2<t<1

F is obviously continuous and, F(t,0) = (f * f)(t),F(t,1) = f(0) =
ex(t)F(0,5) = f(0) = (f = f)(0),F'(l,s) = f(O) = (f = f)(1) so that

f* f ~ €, An alternative homotopy between f * f and €, is given by
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G : I x I — X where,

f(2t) 0<t<(1-13s)/2
G(t,s)=4q f(1—5) (1-8)/2<t<(1+98)/2
f2-2t) (1+s)/2<t<1

The idea here is that the time that we spend travelling along f is pro-
portional to (I — s). Thus we go along f for the first (I — s)/2 part of
our time interval,then wait at the point f(I — s) and then finally return
along f for the last (1 — s)/2 portion of our time. Thus when s = 0 this

is f % f but when s = 1 we spend all our time waiting at z, i.e. e,. O

We have defined the product of two classes [p] € m (X, z9) and
[s] € m1(X, x0) by [p][s] = [p*s]. The definition of product is independent
of the choice of representatives of [f] and [g] because, if p ~ p; and s ~ s;
then pxs ~ py*s; and so [p1][s1] = [p1*s1] = [p*s|. Hence, the product
[p][s] is uniquely determined by [p] and [s]. We show now that all the
group axioms are satisfied.

(i) From definition it is obvious that [p|[s] is a homotopy class of
paths at zg.

(ii) Now,([p][s])[1] = [p=s][h] = [(p*s)xh] and [p]([s][h]) = [p][s*h] =
[p*x(sxh)].(pxs)xh~px(sx*h). Thus, the operation is associative.

(iii) Let [I] be the homotopy class of the null path at zg, i.e. €,
[pI[1] = [p] = [{][p]. Thus, [I] is a identity.

0

(iv) [p][p] = [p * p] = [I] therefore that every element has an inverse
so 71 (X, xg) is a group.

L]
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DEFINITION 2.2.11. Assume that for any ag € A if m1(A4,a9) is
the identity group and path connected space, we can call this space
simply connected. We usually state that (A, ag) is the identity group
by writing 71 (A, ag) =0

2.3. Induced Homomorphism

In this section we concerned with the effect a continuous map be-
tween topological spaces has upon fundamental groups. Suppose ¢ :
C' — Y be a continuous map; (i) if v, ¢t are paths in X then are paths in
Y . (ii) if v ~ ¢ then pv ~ @t (iii) if v is a closed path in C based at ¢ € C
then is a closed path in Y based at p(c). Hence if [v] € w(C, ¢) then [pv] is
a well-defined element of ¢(Y, (¢)). We denote ¢, : 7(C,c) = 7(Y, ¢(c))

by @u[v] = [pv].

LEMMA 2.3.1. ¢, s a homomorphism of groups.

PROOF. @.([v][t]) = p«lv*t] = [p(v +1)] = [pv* ¢t] = [pv]|pt] =
P V] P [t]. O

DEFINITION 2.3.2. The homomorphism ¢, : 71 (A4, aq) — 71 (B, p(ap))
determined with . [t] = [pt], where ¢ : A = B is continuous, is called

the induced homomorphism.

THEOREM 2.3.3. Ifp: (A,a9) — (B,bg) and s : (B,by) — (C, o)
are continuous, then (Sop), = Ss O py.
Ifi: (A ap) — (A, ap) is the identity map then i, is the identity

1somorphism.
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PROOF. The proof is a triviality. From Definition , (s o p).([f]) =
[(koh)o f] (sxops)([f]) = (R ([f])) = R (ho f]) = [ko(Ro f)] Similarly,
(1) = lio f] = [f] O

COROLLARY 1. Assume that p: (A,a9) — (B, bg) is a homeomor-

phism of A with B then p. is an isomorphism of w1 (A, ag) with w1 (B, by).

PROOF. Assume that s : (B,by) — (A, ap) be the inverse of p.
Then, s, o p, = (s0p)yx = i, where i is the identity map of (A, ag) and
Px © S = (pos)x, = j« where j is the identity map of (B,by). Since
i« and j, are the identity homomorphisms of the groups m1(A4,ap) and

m1(B,bg), s« is the inverse of p.. O

Thus the fundamental group shows a way from topology to algebra.
This has the following features; (i) For each topological space, we have
a fundamental group. (ii) For each continuous map between topologi-
cal spaces we have a induced homomorphism between groups. (iii) The
composite of continuous maps causes the composite of the induced homo-
morphisms. (iv) The identity map causes the identity homomorphism.
(v) A homeomorphism induces an isomorphism.

This gives a good example about what algebraic topology is. If the
fundamental groups of two spaces are isomorphic it does not mean that
the spaces are homeomorphic. On the other hand, if the fundamental

groups are not isomorphic then the spaces cannot be homeomorphic.

2.4. Changing a Basepoint

THEOREM 2.4.1. Assume cg,c1 € C. If there is a path in C from

co to cq then the groups m (C,co) and 71 (C,c1) are isomorphic.
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PROOF. Let v be a path at ¢ and h is a path from ¢y to ¢;. Then
t = (hxv) * h is a path at ¢;. Let @ be a transformation between the
homotopy classes of paths at ¢y and the homotopy classes of paths at c;
and showed, 0[v] = [t] O[v] is uniquely specified by [v]. On the contrary
[v] is also uniquely specified by 8[v], because if (h* v1) * h ~ (h*v2) * h
then v; ~ vy. Any path t at ¢; is homotopic to h * ((h % t) * h) * h
and thus each homotopy classes of paths at ¢; is of the form 6[v] for
some [v]. It shows that 6 is a one-one transformation of the members

of m1(C, o) onto the members of 71(C,c1). Assume that [v1] and [vs]

are two elements of 7 (C, co).Then, 0[v1]0[ve] = [(h * v1) * h][(h * v2) * A]
= [hxvy xh*xh*xvy*h] = [h*vy *vg x h] = O0vy xva] = O([v1][v2]). So
is an isomorphism. ]

2.5. Induced Homomorphisms for Homotopic Mappings

THEOREM 2.5.1. Assume that 0,9 : K — L be continuous map-
pings between topological spaces and F : 0 ~ 9 is a homotopy . If
f I — L is the path from 0(kg) to ¥(ko) given by f(t) = F(ko,t) then
the homomorphisms , 0, : w(K, ko) — w(L,0(kg)) and 9, : (K, ko) —
(L, 9(ko)) are linked via O = upb, where uy is the isomorphism from

(L, 0(ko)) to m(L,V(ko)) determined by the path f .

PROOF. We have to show that if [g] € 7(K, ko) then [Jg] = [f*0gx* f].
In another words we should show that the paths (f * g) x f and ¥g are
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equivalent. Observe that,
f(l—4t) 0<t<1/4

(f*Pg) = ) =< Yg(dt—1) 1/4<t<1/2
ft—1) 1/2<t<1

which we will show as

(

Fzo,1—4t) 0<t<1/4
(F*9g9) = /))t) =1 Fg(4t—1),0) 1/4<t<1/2
| Flo,2t—1)  1/2<t<1

The map P is clearly continuous with P(¢,0) = ((f x6g* f)(t) P(t,1) =
((ex x¥y) xex)(t) P(0,1) = F(xzo,1) = ¥(zo) P(1,s) = F(x0,1) = ¥(x0)
Hence , (f*0g) x f ~ (ex *9,)*€x ~ ¥, which shows that us0, =9, O

2.6. Homotopy Equivalence and Fundamental Groups

THEOREM 2.6.1. Assume that K and L be topological spaces such
that there exist continuous mappings f : K — L and g : L — K
satisfying g(lo) = ko where lg = f(ko) and ko is some point of K. If gf
is homotopic (rel ko) to the identity Ik and fg is homotopic (rel ly) to
the identity Iy, then f* : m (K, ko) — m(L,lp) and g* : 1 (L,ly) —

m1(K, ko) are mutually inverse group isomorphisms.

PROOF. We see that f,g,gf and fg induce the homomorphisms f* :
(K, ko) — m1(L,lo) g% : m1(L,lg) — w1 (K, ko) (gf)" : m1(K, ko) —
m1(K, ko) and (fg)* : m1(L,lo) — m1(L,lp) respectively . Assume that
a be a path at ky in K, then since gf (ko) = g(lo) = ko, (9f), o is also
a path at kg . But gf is homotopic to I and thus (gf) « is homotopic
to . This means that (¢gf)* is the identity transformation of 71 (K, ko) .
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Likewise (fg)* is the identity transformation of m; (Y, yo) onto itself. But,
(9f)" =g*f* and (fg)* = f*g*. Hence ¢g*f* and f*gx are the identity
transformations of 71 (K, ko) and m(L,ly) respectively. Conceive the
path (gf)a : C — K . This is the same like path g(fa) : C — K.
Thus, if f*[a] = [5] then g * [8] = g * f % [a] and because g* f* is the
identity, we have [a] = g*[5] . So, if f*[a1] = f*[as] then [51] = [B2] and
this shows that [a1] = [@2], i.e. f* is a one-one transformation.Similarly
we will learn that ¢g* is a one-one transformation. Further every element
of m(L,lp) is of the form f*[y] where [vy] is an element of 71 (K, ko).
Hence f* is a one-one homomorphism, i.e. an isomorphism between
71 (K, ko) and 71 (L, ly) . Similarly g* is an isomorphism of 71 (L, ly) onto

7T1(K,]{10). L]

This proof is instructive but in fact preservation of the points kg
and [y with ¢gf and fg respectively is not necessary for f, and g, being

isomorphisms.

THEOREM 2.6.2. Suppose that A and B are of the same homo-
topy type and 0 : A — B are a homotopy equivalence. Then, 6* :

m1(A,a) — 71 (B,0(a)) is an isomorphism for any a € A .

PROOF. Since ¢ is a homotopy equivalence, there exists a continuous
mapping @ : B — A such that ¢y : B — B is homotopic to I, and
Yo : A — A is homotopic to I,. From this, ¢¢(¢p¢)* = I* Since ¢+ and
I* are isomorphisms, (¢)* = ¢*1* is an isomorphism. Therefore, ¥* is
an epimorphism and ¢* is a monomorphism. In the same way, ¢*¢* is
an isomorphism and this shows that ¢* is an epimorphism and * is a

monomorphism. [
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2.7. Fundamental Group of a Circle is Infinite Cyclic
Denote S! the unit circle in the Euclidean plane R?:
St ={(x,y) e R?: 2?4 ¢* =1}

(We can do this on C too). Let f: I — S! be the closed path that runs
around the circle exactly once, defined by f(t) = (cos(2nt),sin(27t),
0 <t <1, and denote the equivalence class of f by the symbol a.
Then each element of 71 (S!) is of the form o™ for a unique n € Z, by

the following theorem.

THEOREM 2.7.1. (Poincaré) The fundamental group of the circle is

isomorphic to the group (Z,+).



CHAPTER &

Covering Spaces

Covering Spaces are important in topology, differential geometry,
Lie groups theory, Riemann surfaces theory etc. In this chapter we will
learn about covering Spaces structures and properties. A lot of topolog-
ical questions about covering spaces reduce to algebraic questions about

the respective fundamental groups.

3.1. Notion of Covering and Some Examples

Let A and A be topological spaces and p : A — A a continuous
function. If for an open subset U C A the preimage p~1(U) is the disjoint
union of open subsets of A each of which is mapped homeomorphically
onto U by p, we say U is evenly covered by p. If each point a € A has
an open neighbourhood evenly covered by p, the function p : A Ais
said to be a covering map, p : A A, A is called a covering space and
A is a base space.

In other words, p: A — A is a covering if

e p is onto
e for all @ € A there is an open neighbourhood U of a such that
p~ ' (U) = UjesU;

21
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for some collection Uj;;j € J of subsets of X satisfying U; N U # 0 if
jNk and with p | U; : U; — U being a homeomorphism for each j € J.

Consider some examples of covering spaces.

EXAMPLE 3. Verify that the mapping p : R — S, p(t) = 2™
is a covering. 1) p is onto and continuous transformation. 2) For each
point z € S, the set u = S\ {—2} is open, and p~!(u) = p~1(St\
{—2}) =R\ p1(—2). If —z € St is of the form —z = €™ ¢, € [0,1],
then p~1(—z) is the set of all £ € R such that p(t) = —z = e*™0 j.e.,
e2mit = 2mito s 27(t=t0) = 1 hence t = to + n,n € Z. This implies
p~ ' =R\ {to+n;n € Z} = U, cz(to +n,to +n+1), and each restriction

P lto+n.to+n+1) : (fo +1n,to +n+1) = ST\ {—z} is a homeomorphism.

EXAMPLE 4. Let W be a discrete space. We show that if x : QQ %
W — (@ is the projection to the first component,then x is a covering
map.

Let b € B and Uy, a neighbourhood of b . Then 71 (U) = Uy, x W .
Since W' is dicrete, Uy x W = Uycw Uy x{y}. Since x|y, x 1,3 Us x{y} — Up

is a homeomorphism, p is a covering map .

EXAMPLE 5. P, : 81 — 81, n € N and p,(2) = 2" is a covering
space?

pn(z) is onto and continuous transformation. z € S, p~1(u) =
p (ST \{=2}) = ST\ p7(—2) p7i(=2) = {x € Sip(z) = a" = —2}
For this we can take help from : z =| z | (cos(a) + isin(a)) ¥/]z |
Wo, .o Wyt Wi = /] 2 |(cos(2mk + a)/n) + isin(27k + a)/n) , k
0,1,..,n—1a"=—-2#0p 1 (—2)={Wo,.... Wp_1} = St \ p71(-2)
P (SY\ (=2)) = VoV
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EXAMPLE 6. X = R2 M = S'xS' p: R2 — M p(x,y) = (€27, 2W)
is a covering space?

p is onto and continuous transformation. (a,b) € St x Sl, u=S!x
S\ (a,0) p~H(u) = p~' ST x ST\ (a,b) = p~ (8" x 1) \p~'(a,b) = R*\
p~H(a,b) p~H(a,b) = {(z,y); p(z, y) = (a,b) = (€770, €m0, (™%, €27W)} =

(627rwcg,e27rzy0) — 6271'2:10 — e27rz:co and e27rzy — e27myo e27rz(:v—xo) — 1 and

627”:(y_y0) =1
3.2. Properties of Coverings

THEOREM 3.2.1. Any covering map p : A= Ais open.

PROOF. Let W C A is open . We will learn p(W) is open in A. Let
x € p(W) and There is an evenly covered open neighbourhood U of .
Admit that Z € p~'(z) "W and U; in A such that # € U;. We analized
that p(U;NV) is an open subset of U . Now U is open in A and therefore
p(U; N W) is open in A. Because, z € p(U; N W) C p(W) and p(W) is
open in A. ]

THEOREM 3.2.2. If p: A — A is a covering map then A has the
quotient topology with respect to p.

PROOF. Since p is a continuous open map, it come after that a subset

C of A is open if and only if p—1(C) is open. O]

PROPOSITION 3.2.3. Let z : A — B be a covering map. (a) If B is
Hausdorff, then A is Hausdorff. (b) If B is compact and x~1(b) is finite
for each b € B, then A is compact.

PROOF. Solution a) : Let a; and as be distinct points in A . If

x(a1) = x(az) = b, then let Uy be a neighbourhood of b where 27 1(U,) =
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L.V.. Since each V_. is homeomorphic to U, under x, a; and a2 must be
involved in different V.’s, so a; and as can be separated by open sets. If
x(a1) =: by is explicit from x(as) =: bs . Then there are neighbourhoods
Uy and Us of by and by such that U NUs; = (. Since x is a covering map,
there are neighbourhoods V7 and V5 of b; and by such that V7 and V5 are
evenly covered by x. Let O; := V;NU,; which is a neighborhood of b; such
that O1N Oy = () and O; is evenly covered by z so that x=1(0;) = N, A,
. If A., is the open set including a;, then since O1NO2 =0, A;, NA., =0
.So a1 and as can be separated by open sets.

Solution b) : First of all we demonstrate that for any open set
O C A including a fiber 71(b), there is a small neighbourhood , W}, of b
in B such that p~1(W},) C O. The proof of this statement is optional and
you can use it to show the main statement. Let U, be an equally covered
neighbourhood of b, so that 7=*(Uy) = V., ...V, (27 1(D) is finite) . Let
W,, = 2(0NV,,) . Let W, := N™,W,, then z='(W,) = UW,, where
W., cONV, c 0. Soxz~*(W,;) C O. Since z is a covering map, z
is an open map.Assume that {U.} covers A.For each b, we have a finite
subcovers {Up 1, ..., Upn, } C {Uc} of z71(b). Let W, be a neighbourhood
of b in B such that, z=(W}) C V, := U2, Us,. Since {W,|b € B} covers
B and B is compact, we have a finite subcover {W}, ; k = 1;...;m}. Since
{z=1(Wy,), k = 1,...,m} covers A, {V;, .,k = 1,...,m} covers A. Hence,
{Ubs v, +ib, = 1,.ccynpy, k= 1,...,m} is a required finite subcovering of

{U.}, that covers A. O
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DEFINITION 3.2.4. A mapping f: X — Y then f is called a local
homeomorphism if each point z € X has an open neighbourhood which

is mapped homeomorphically by f onto an open subset of Y.
Note : Obviously a local homeomorphism is an open map.
THEOREM 3.2.5. A covering map is a local homeomorphism.

PROOF. Let p: A — X be a covering map and ¢ € A . Let U
be an open neighbourhood of p(i) which is evenly covered by p . From
definition , p~!(B) = UjccU; with B; N By = ¢ and each B; is mapped
homeomorphically onto B by p . Assume that B is open set among { B, }
which includes i.B is an open neighbourhood of 7 with the property that
p|f3 is a homeomorphism of B onto B . It shows us that p is a local
homeomorphism . After all a local homeomorphism does not need to be

a covering map like example which we showed. [

EXAMPLE 7. Assume that a; : (0,3) — A! be the limitation of the
map a : R — A defined by a(t) = €™ over open interval (0, 3) . Since
a is a covering map, it is a local homeomorphism and hence its limitation
a; to the open set (0,3) is a local homeomorphism. a; is a surjection
too but since the complex number 1 € A! has no neighbourhood evenly

covered by ai, aj is not a covering map.

3.3. Liftings

DEFINITION 3.3.1. Let p: X — X be a covering map. A continu-

ous mapping f:Y — X is called a lifting of f:Y — X if pf = f.



COVERING SPACES 26

3.3.1. Uniqueness.

LEMMA 3.3.2. Letp: A— Aisa covering map and h, k : C — T
are two lifts of f : C —> T . Assume that C' connected and there is

yo € C such that h(yo) = k(yo) . Then h = k.

PROOF. Let C is a set determined by C; = {y € C;h(y) = k(y)}.
C: is non-empty because yo € C7. We will show that C is open and
closed. If y € C, There is an open neighbourhood V' of f(y) which is
evenly covered by p and therefore , p~ (V) = U,;c;V;,V; NV; = 9 for
j # i and for each j,p|V; : V; — V is a homeomorphism. If y € C; then
h(y) = k(y) € V +k for some k and we prove that ' = h=1(V;,)Nk~1(V})
is an open neighbourhood of y and is a subset of C;. For this, Assume
that x € F then h(z) and k(x) € Vi and also ph(x) = pk(z). Because
p|Vk is a homeomorphism, now we know that h(x) = k(x). From here
we can see each point of (7 is an interior point of C'; and C is open. If
y ¢ Cy then h(y) € Vi, and k(y) € V; for some k and [ such that k # [.
Finally, h=1(V}) N k~1(V}) is an open neighbourhood of y. Hence C is

also closed. Since C' is connected, C = C; and so h = k. ]

3.3.2. Path Lifting.

PROPOSITION 3.3.3. Let f € X and starting at a and any lift a of

a i.e. p(@) = a. There is only one lift of f to a path f € X starting a @,
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i.e., a unique path f : I = X such that f(0) = a.

X
e
p
I — X

f

PrROOF. We start with a path f in X and construct a lift as required.
Idea: p is only locally a homeomorphism on the B,s display the
covering space so we edge our way along, staying in one B, at a time,

We use 1 ) the definition of covering space, and 2 ) compactness of I
4;&’”
er.v“'*_'

every cover has a finite subcover.
Step 1 : From definition of covering space we have a cover B, of
X such that for all a, p~1(B,,) is a disjoint union of open sets in X ,each
of which maps homeomorphically to B, under p. Now f : [ — X is
continuous so f~!(B,) is an open cover of I . Hence for all of t € I,
there is some o with ¢t € f~1(U,) and there is an open ball oA, (t) C
f~Y(B,).This gives a cover of I, so by compactness of I there is a finite
subcover , [ag, bg), (a1,b1), (az,b2), ..., (@m, by] Where ag = 0, b,, = 1 and
without loss of generality ag < a1 < by < a2 < b1 < ... <b,, Put , t; =
(a; +b;-1)/2V1 <i<m Sowe have , 0 =tg < t1 < ... <ty <tpmy1 =1
such that for each i, f[t;,t;11] C B;, say, where B; € B,.
Step 2 : We lift the path f on each of these subintervals one
at a time. Conceive the first patch [0,¢;] with f[0,¢1]By. We have
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f(0) = z and fix f(0) = 2 . Now Z € p~1(Up) so has to lie in one
homeomorphic copy of Uy and called with Uy . Now We can define f
on [0,%1] by [0,t1]7U0F(~]0 C X As in the beginning mentioned, We
will go on to use our process for next each patch [t1,ts], [t2, 3], - -y [tm, 1]-
This constructs a lift f of f .

Step 3 : In the end, we have to check that this lift is unique,
by at heart the same argument. Suppose we have lifts f , fo T — X, so
pf =pf = f, and f(0) = f/(0) = . As above, we choose a partition
0=ty <t; <..<tme1 =1 such that for each i, f[t;,t;11] C some B;
. Now we edge our way along : f is continuous and [0, ¢1] is connected,
so f [O~, t1] is connected in X so f[0,t1] lies in one homeomorphic copy
of Upy,We can say for it By . Also f'[0,¢,] have to lie in the same copy
as f(0) = f(0). But p gives a bijection By — By and we also know
pf = pf’ so we should have f = f' on [0,t;]. We can go on to our
process and patch all the way along . [

3.3.3. Homotopy Lifting.

PROPOSITION 3.3.4. Let o : I x A — X is a homotopy which

stating at m: A — X and any lift T of 7 i.e.
X
e
p
% X
¢

There is a unique lift of o to a homotopy & starting at gz~5 i.e. G UNIQUE

A

homotopy I x A —% X such that a0,y = ® and the following diagram
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commutes:

3.3.4. Lifting Correspondence.

PROPOSITION 3.3.5. Let’s take a lift T of x and ¢1(X,2) — p~1(x)
and ) —> (1). and furthermore
1) if X is path-connected then this map is surjective,

2) z'fX' 18 stmply connected then this map is also injective .
3.3.5. Sheets.

DEFINITION 3.3.6. If X is path-connected then the cardinality of

p~1(x) is constant. This is called the number of sheets of the cover.
3.3.6. Important consequence.

DEFINITION 3.3.7. The group m1 (Y, ) is included as a subgroup of
m1(Y,y) by the homomorphism 71 (Y, §) = 71(Y,y) under 7 (p) function

i.e. m(p) is injective.
3.3.7. Morphisms of Covering Spaces.

DEFINITION 3.3.8. A morphism from a based covering (X, &) —
(X,z) by p; function to a based covering (X5, %) — (X, ) by ps
function is a continuous function f : (X1,%1) — (Xa, &) satisfying

p1 = fp2.
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Based covering spaces over (X;xg) form a category. The definition
of morphism determines the notion of isomorphism: two based covering
spaces (X1,#1) — (X, z) by p1 and(Xs,Z2) — (X, ) by po are iso-
morphic iff there are covering maps f : X 1 — 5(2 and g : X'Q — X 1 SO
that gf = idg and fg = idg .Notice that isomorphic covering spaces

are homeomorphic topological spaces.

3.3.8. Deck transformations.

DEFINITION 3.3.9. An isomorphism of covering spaces X — X is

called a deck transformation .
These form a group G(X).

DEFINITION 3.3.10. A covering space X — X is normal if for each
z € X and each pair of lifts T,T € p~'(z), there is a deck transformation

taking = to T .

ExAMPLE 8. Conceive the universal covering of the Klein bottle and
then explaining to all of R? It is easy to see that the deck transformation
group is Z x Z where (m1,n1)(ma,n2) = (my + (=1)™ 'ma,n1 + ns).
Since R? is simply connected,this group should be isomorphic to the
fundamental group, which denoted to be {a,blabab™! = 1} If We want
show that these groups are isomorphic directly to confirm this.We can
write: 6 : Z x Z = Z x 7 is generated by 6(a) = (1,0) and 6(b) =
(0,1).It follows that, 6(a™) = (m,0) 6(b" = (0,n) O(a™,b™) = (m,n)
0(abab™1) = (0,0) So we know that 6 is a surjection and that the normal
subgroup generated by abab~! is in the kernel. We can see that this is the

entire kernel by considering the induced map, 6 : {a,blabab~! = 1} —
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7 x 7. From the relation of ab = ba~! allows one to write any element of
the group {a,blabab™! = 1} as a™b™ and the map from these elements

to Z x 7. is injective, 6 is an isomorphism .

Proposition : If A is a covering space on space B; then: 1.1)
The quotient map p : B — B/A is a normal covering space. 1.2) A
is the group of deck transformations if B is path connected. 1.3) A is
isomorphic to m (B/A)/p.m1(B) of B is path connected and locally path

connected.

PrROOF. Given an open set U, the quotient will denote the disjoint
sets g(U). By the quotient topology, p limits a homeomorphism from
g(U) to its image p(U) for each g € A, and hence p is a covering space.
Each element of A acts like deck transformation and openly one can get
from any element in the fiber to any other (to get from g(z¢) to ¢'(z¢),
simply use the element ¢’g~!). Absolutely A is a subgroup of the deck
transformation group. If B is path connected, then deck transformations
are uniquely determined so G has to be the whole deck transformation

group. [

3.3.9. Path Homotopy.

DEFINITION 3.3.11. a, 8 :I=X paths of some end points . a—,3 if
F : I x I — X such that;

constant path : ep(s) = p for all s

reverse path : a(s)a(l — s)
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concatenation:

a(2s) s €[0,1/2]
B(2s—1) se(1/2,1]

(axp)(s) =

PROPOSITION 3.3.12. If 8a" 3, 0a~0 and B(1) = 0(0) then f *
9&”61 %0 also Ba~ B

PRrROOF. Fixa € X . Let w(X,a) :="loops at a , i.e paths §: [ —X
such that (0) = (1) = a”. Then, ¢, € w(X,a) , 8,0 € w(X,a) —

B,Bx0€w(X,a) O

EXAMPLE 9. Let f,g : A — B be a path from xy to xz; and let
h : B — Y be a continuous map. 1 ) Show that if F: f —, g is a

path homotopy, then ho F' : ho f —, h o gis a path homotopy . 2 )
Show that if f(1) = ¢(0) then ho (fxg) =(ho f)*(hog) .

Solution: ho F : A x [0,1] — Y is a continuous map . Since
hoF(c,0) = hof(c) hoF(c,1) = g(c), hoF(0,t) = h(xp) and hoF(1,t) =
h(x1), h o F is a path homotopy from ho f to hog.

ho f(2¢)&c € [0,1/2]
hog(2c— 1)&e € [1/2,1]

(hof)x(hog) =

If c€0,1/2], ho(f*g)(c) =h(f=*g)(c)=h(f(2c)) and if ¢ € [1/2,1],
ho(f=*g)(c)=h(f=*g)(c) = h(g(2¢c — 1)) . Therefore ho (f xg) =
(ho f)x(hog) .

ExAMPLE 10. Let a,b : X — Y be continuous maps and assume
a(xrg) = yo and b(xg) = yo . Show if there is a homotopy A : X X
[0,1] = Y from a to b such that A(xg;t) = yo for all ¢ € [0,1], then
asx = by m (X, 20) = m (Y, 90) -
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Solution : Let [f] € m (X, z0).We have to show that [a o f] =
[bo f] € m(Y,y0). Define A: I x[0,1] =Y by A(s,t) = A(f(s),t).It is a

composition of maps Ao (f,id[p,)) so it is continuous. Now we can check,

A(s,0) = F(f(s),0) = a(f(s), A(s, 1)) = F(f(s), 1) = b(f(s)) homotopy
conditions, A(0,t) = F(f(0),t) = F(zo,t) = yo, A(1,t) = A(f(1),t) =
A(zg,t) = yo path-homotopy conditions. Thus A is a path-homotopy
from ao ftobo f .

3.4. Classification of covering spaces

DEFINITION 3.4.1. A space X is called locally path-connected if for
any point x € X and any open set U containing x,there is a path-

connected open set V' C U also containing .

DEFINITION 3.4.2. A space X is called semi-locally simply-connected
if for any point x € X there is an open set U containing x in which every

loop is nullhomotopic.

Remark. If A is path connected and locally path connected, then A
is a stmply connected covering space if and only if A is semilocally simply

connected.

PROPOSITION 3.4.3. Assume that B is a path connected, locally path
connected and semilocally simply connected then there exists bijection
between the set of basepoint preserving isomorphism classes of path con-
nected covering spaces. p: (B,Tg) — (B, xg) and the set of subgroups of
7 (B, xg) attained by correlating the subgroup , p.(m1(B,Tg)) to the cov-

ering space (B, @) . This gives a bijection between isomorphism classes
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of path connected covering spaces p : B — B and conjugacy classes of

subgroups of m (B, Tq) .
3.4.1. Universal covering space.

DEFINITION 3.4.4. If X is path connected, locally path connected,
and semilocally simply connected, then X has a simply connected cov-

ering space called the universal covering space .
3.4.2. Connected covering spaces of S'.

DEFINITION 3.4.5. We knew the connected covering spaces of S?
for each z € N S — S! and under s, function (1,0) — (1,20) and
R — S! under s function § — (1,0) 71 (S') = Z so we need to take
one connected covering space for each subgroup of Z , i.e. for each nZ
for x € N including 0 . Now, if we conceive the covering space, under
sy function S' — S' and Imm s, is nZ C Z . In the end, under s,
R — S we get giving the subgroup : This gives all subgroups of Z

therefore we should find all connected covering spaces of S! .
3.4.3. Connected covering spaces of RP2.

DEFINITION 3.4.6. Assume that RP? by S? by identifying antipodal
points : S? —! RP? x —! [2] = {x, —x} We will see w1 (RP?) = Zy Z
has no non-trivial subgroups therefore this is the only connected covering

space of RP? .



COVERING SPACES 35
3.4.4. Connected covering spaces of S2.

DEFINITION 3.4.7. 71(S2) = 0, which has no non-trivial subgroups
hence the unique connected covering space of S5 is the unimportant one

SQ —! Sz .
3.4.5. Connected covering spaces of RP? x RP2.

DEFINITION 3.4.8. Let m; conserves products therefore, m(RP? x
RP?) = 71 (RP?) x 71 (RP?) = Zy X Zo which has subgroups ,
1) 0 and Zs X Zy and
2) subgroups of order 2 : < (0,1) >,< (1,0) >, < (1,1) >

And our covering space , S? x S? — RP? x RP? and (o, 3) —
([a], [B]) and 71 (S?% x S§%) = 71(S5?) x 71(S?) =2 0 Hence this corresponds

to the trivial subgroup.

And also, RP? x §? — RP? x RP? and ([o],8) — ([a],[8])
and S? x RP? — RP? x RP? (o, [f]) — ([a],[8]) corresponding to
< (1,0) > and < (0,1) > . In the end,we look for the covering space
corresponding to < (1,1) >. It can help at this point to think of RP? x S2
as a quotient of S? x S? by the relation , (, 8) ~ (—a, 3) and similarly
S? x RP? is a quotient of S2 x S? by the relation , (a, 8) ~ (—a, 8) and
in a similar way S? x RP? is a quotient of S? x S? | (a, 8) ~ (a, —8) And
Now we can see what the last covering space should be X = (52 x §2)/ ~
where ~ is the equivalence relation defined by , (o, 8) ~ (—a,—f) .
This is not same with , RP? x RP? & §2/ ~ x§%/ ~22 (§%2 x §?)/ ~
with the equivalence relation , (a, 3) ~ (+a,+8) Our covering map is,
X — RP? x RP? and [(a, 8)] — ([a],[B]) and this covering space

corresponds to < (1,1) >.
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3.5. Covering Space Constructions

3.5.1. Universal covering spaces.

DEFINITION 3.5.1. Let start with (A,a) and we will make a new
space with points of A together with the path . We can put a topology
on , {[v]|v} is a path in A starting at a . For instance, on S; if we turn
the circle once we will not think about come “back where we started”

because path is notvhomotopic to the constant path at a .
3.5.2. Non-universal covering spaces.

DEFINITION 3.5.2. Let‘s take a covering space, (B,b) —? (B, b)
this corresponds to the subgroup of m(B,b) of "those loops that are
still loops upstairs”. Every Loop upstairs maps to a loop downstairs but
some loops downstairs lift to paths upstairs that are not loops. We make
non-universal covering spaces by quotienting the universal covering space

just to make those loops we want still to be loops in B.
3.5.3. Wedge Sums.

DEFINITION 3.5.3. Given based spaces (@, q) and(C, ¢) their wedge
sum is defined by steady @ and C' at the basepoint (Q,q) V (C,c) =

(QUC)/q~c.

For example,

S1v St is the familiar
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Stv S§2is e.

Here we have an informal formula to make the universal covering
space of (Q,q) V (P,p) .
Make the universal covers Q of Q and C of C .
Find all the preimages of the basepoint ¢ in Q, and steady on a copy of
C at each one .
Find all the preimages of the basepoint ¢ in each copy of C, and steady
on a copy of Q at each one .

[terate ...

Negative Examples: Let () be the space given by glueing two
copies of R at the origin.

We have SV St but this is not a covering space. From neighbour-
hoods of the basepoint, It is easy to see This is not a covering space,
This shows commonly to make a universal cover of @) V C' we can‘t just
stick Q to C, but we have to stick a copy of C to every preimage of the
basepoint in Q, and then repeat for C' and then iterate. This is not
a covering space. [0,1) — S and t — (cos2rt, sin2wt). This has
the property of the cardinality of p~!(g) is constant, but this is not a

covering space; From neighbourhoods of the point (1,0) It is easy to see.
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3.6. Fundamental Group of the Covering Space

THEOREM 3.6.1. Assume thatp: A —s A be a covering map, where
A is path connected . Let , ag,a1 € A . Then there is a path f in A from
p(ao) to p(ay) such that ¢sp* w1 (A, a0) = p* w1 (A, a1) (Here ¢5 is the

isomorphism determined and p* is the induced homomorphism .)

PROOF. Assume that ¢ is a path in X from & to #; and we know
from fundamental groups ; Assume that X is a path connected space then
for any x,y € X, m1(X, x) and 71 (X, y) are isomorphic. An isomorphism
¢4 from , $1(X, %o) to ¢1(X, %) Hence , ¢g7r1(f(, To) = m (X, %) We use
the induced homomorphism p* and have , p*¢,m; (X, &) = p*mi (X, 1)
We have that , p*¢, = ¢pgp* Thus if we write f = pg then f is a path
in X from p(Zg) to p(Z1). So We proved the theorem. O



Conclusions

In the end of the thesis we have learnt about what are covering
spaces and fundamental groups and what is the relation between them. In
the first chapter we analyzed what is notion of homotopy of mappings. It
helped us to understand next chapters. In second chapter we considered
fundamental groups of topological spaces, their properties and related
topics, in particular, path structures, loops, induced homomorphisms
and relations between them. This gave us a base to pass to covering
spaces. In the third chapter, we analyzed covering space structure and
we gave examples to understand it better. After we checked uniqueness of
path liftings and homotopy liftings to understand covering spaces more
deeply. Finally we have shown relation between fundamental groups
and covering spaces. We believe this thesis shows base knowledge of

fundamental groups and covering spaces.
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