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ABSTRACT

INVESTIGATING THE ROLE OF RNA-BINDING PROTEINS (RBPS) IN
EXPLAINING DIFFERENTIAL GENE EXPRESSION IN CANCER

Lafzi, Atefeh
M.S., Bioinformatics Program

Supervisor : Assoc. Prof. Dr. Yesim Aydin Son

Co-Supervisor : Assist. Prof. Dr. Hilal Kazan

February 2016, 50 pages

Most of the studies on cancer have tried to explain the observed differential gene
expression considering only transcriptional regulation. However, post-transcriptional
regulation (PTR) has been increasingly recognized as a complex mechanism that also
controls various steps of gene expression regulation. Post-transcriptional regulation
is governed by the interactions of RNA-binding proteins (RBPs) and microRNAs
(miRNAs) with their target genes. In this thesis, having found that several RBPs are
differentially expressed in Lung squamous cell carcinoma (LUSC), we developed a
statistical model which incorporates copy number variation, DNA methylation and
the regulatory effects of transcription factors, miRNAs and RBPs to predict gene ex-
pression in cancer. Including RBP-based regulation in addition to other features sig-
nificantly increased the Spearman rank correlation between predicted and measured
expression of held-out genes. Using a feature selection procedure we identified the
candidate RBP regulators in LUSC and confirmed that many of them are also differ-
entially expressed. We also determined the targets of these RBPs and compared them
with CLIP-determined targets. Lastly, we performed Kaplan-Meier survival analy-
sis, and showed that some of our candidate RBP regulators have prognostic power in
LUSC. Our results suggest that the regulatory effects of RBPs have to be considered
to explain gene expression in cancer.

Keywords: Post-transcriptional regulation, RNA-binding proteins, microRNA, Lung
squamous cell carcinoma, linear regression
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ÖZ

RNA’YA BAĞLANAN PROTEİNLERİN KANSERDE GEN İFADE DEĞİŞİMİNE
OLAN ETKİLERİNİN İNCELENMESİ

Lafzi, Atefeh
Yüksek Lisans, Biyoenformatik Programı

Tez Yöneticisi : Doç. Dr. Yesim Aydin Son

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Hilal Kazan

Şubat 2016 , 50 sayfa

Kansere yol açan etmenleri bulmayı amaçlayan çalışmalar özellikle kanserli ve nor-
mal hücreler arasında farklı ifadesi olan genlerin regülasyonunu incelemektedir. Şu
ana kadarki çalışmaların büyük bir kısmı sadece transkripsiyonel kontrolle ilgili et-
menleri dikkate alarak bu ifade değişimlerini açıklamaya çalışmıştır. Son çalışmalar,
transkripsiyon sonrası kontrolün (TSK) de gen ifadelerini kontrol eden önemli bir
mekanizma olduğunu göstermiştir. Transkripsiyon sonrası kontrol RNA’ya bağlanan
proteinler (RBP) ve mikroRNA’ların (miRNA) hedef genlere bağlanmasıyla gerçek-
leştirilmektedir. Bu tez kapsamında, ifadesi değişen RBP’lerin sayısının en fazla ol-
duğu LUSC (akciğer sküamoz karsinomu) kanserinde, gen kopya sayılarını, DNA
metilasyonunu, transkripsiyon faktörlerin, miRNA’ların ve RBP’lerin etkilerini göz
önüne alarak tahmin eden bir istatistiksel model geliştirildi. Diğer özniteliklere ek
olarak RBPlerin kullanılması bu modelle tahmin edilen ifadelerle bilinen gen ifade-
leri arasındaki Spearman korelasyonunu önemli ölçüde arttırdı. Öznitelik seçimiyle
LUSCde önemli rol oynayan RBP’ler bulunmuş ve bu RBPlerin ifadelerinin değişim
gösterdiği tespit edilmiştir. Modelde öğrenilen parametreler incelenerek bu RBPle-
rin hedefleri bulunmuş ve CLIP-deneyiyle bulunan hedeflerle karşılaştırılmıştır. Son
olarak Kaplan-Meier analizi ile bu RBPlerin bazılarının kurtulma olasılığını tahmin
edebildiği bulunmuştur. Bu sonuçlar kanserde gen ifade değişimlerinin daha iyi anla-
şılması için RBPlerin de göz önüne alınması gerektiğini göstermektededir.

Anahtar Kelimeler: Transkripsiyon sonrası kontrol (TSK), RNA’ya bağlanan protein-
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ler (RBP), mikroRNA’lar, Akciğer kanseri, lineer regresyon
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CHAPTER 1

INTRODUCTION

Aberrant gene expression is a main feature of cancer development. Characterizing
the regulatory events that lead to gene expression changes during cancer develop-
ment is critical for cancer research. Differential gene expression in cancer can oc-
cur due to several factors including copy-number variation (CNV), DNA methylation
changes, and alterations in transcriptional and post-transcriptional regulatory mecha-
nisms. Among these factors, post-transcriptional regulation (PTR) has gained signif-
icant importance due to its emerging roles in cancer biology.

PTR is mediated by the interactions of RNA-binding proteins (RBPs) and microR-
NAs (miRNAs) with target mRNAs through short sequence and/or structure motifs.
Recent studies have found that RBPs are key regulators controlling every step of
RNA metabolism including RNA splicing, transport, localization, decay and transla-
tion. More than 850 RBPs have been identified in the human genome [8, 17]. Recent
advances in experimental methods that characterize the binding sites of RBPs have
significantly expanded our knowledge of in vivo and in vitro RBP binding prefer-
ences [38, 85]. This recent explosion of knowledge on RBP binding sites provide
opportunities to study RBP-mediated regulation in greater detail.

Several RBPs have been found to be implicated in cancer [55]. For example, overex-
pression of KHDRBS1 (Sam68) has been revealed in various cancer types including
breast, prostate, colorectal and lung cancer cells [12, 33, 62]. KHDRBS1 is found
to mediate the alternative splicing of oncogenes. ELAVL1 is another well-known
RBP that is found to be associated with tumorigenesis by regulating the stability and
translation of key growth factors and proto-oncogenes [1, 103]. Overexpression of
ELAVL1 has been observed in many cancer types [11, 13]. Recently, FXR1 is found
to regulate tumor progression in lung cancer, and is identified as a driver of the 3q
amplicon, the most frequent genomic alteration in squamous cell lung cancers [83].
eIF4E is another RBP which studies show that its overexpression increases transla-
tional initiation of specific mRNAs in cancer. A recent study by Mitzutani et al also
reveals the functional linkage between eIF4E and IGF2BP3, known as another RBP
regulator of tumorigenesis, in cancer [74]. Also some other studies indicate QKI
and SRSF1 as fundamental players in tumorigenesis [3, 112]. These and many other
examples indicate that dysregulation of the function or the expression of RBPs has
profound implications for cancer development. Although these single RBP studies
help to uncover the PTR effect on cancer, there is a need for a more comprehensive
study that takes into account transcriptional and post-trancriptional regulation as well
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as other genetic and epigenetic factors like copy number variation (CNV) and DNA
methylation to explain gene regulation in cancers.

Recently developed computational models that study gene expression in cancer have
mainly focused on transcriptional regulation and miRNA-mediated regulation. For
instance, Setty et al predicted expression changes in glioblastoma (GBM) with a
lasso-regularized regression [93] . In addition to copy number variation (CNV) and
methylation changes, they included features that correspond to transcription factor
(TF) binding sites from TRANSFAC filtered by DNA hypersensitive regions, and
miRNA binding sites obtained from scanning with 7-mer seed sequences. Their
model predicted a number of key regulators from TFs and miRNAs that are predictive
of survival rate in GBM. Jacobsen et al focused on miRNA-based regulation, ignoring
transcriptional-regulation [46]. They looked at the relation between the expression of
miRNAs and mRNAs in tumors from 11 human cancer types in TCGA, and identi-
fied a pan-cancer miRNA-mRNA network. Li et al proposed a two-stage regression
framework that combines data from TCGA and ENCODE to predict gene expression
in Acute Myeloid Leukemia (AML) [61] . Their model revealed a number of TFs and
miRNAs as candidate regulators of AML. To the best of our knowledge, there is still
no study that investigates the effects of RBP-mediated regulation in cancer.

In this study, we propose to explain gene expression in cancer with a statistical model
that incorporates RBP-based regulation in addition to CNV, DNA methylation and the
regulatory effects of transcription factors and miRNAs. As a case study, we applied
our model to Lung squamous cell carcinoma (LUSC) dataset, as we found that there
are a large number of differentially expressed RBPs in this cancer type. By com-
paring the performance of our full model with partial models that exclude one of the
feature groups (e.g. TFs, CNV etc.), we show that the added predictive value of RBPs
is higher than all the other feature groups. Following up on this result, we applied a
feature selection procedure to identify the RBPs as well as other factors that play
a key role in LUSC. Importantly, majority of our predicted candidate regulators are
previously found to be associated with lung cancer, and are differentially expressed.
Subsequently, we determined the targets of these candidate regulators, and compared
against experimentally determined targets. Lastly, we performed Kaplan-Meier sur-
vival analysis in order to reveal the prognostic power of our candidate RBP regulators
in LUSC. The results of this study suggest that future studies of gene regulation must
consider the effects of RBP-mediated regulation.

This thesis is organized into five chapters as follows:

‚ Chapter 2 provides background about cancer biology. We review several fac-
tors that are associated with cancer development: CNV, DNA methylation, TFs,
miRNAs and RBPs. Here we discuss the experimental and computational ap-
proaches to identify the binding sites of TFs, miRNAs and RBPs. This chapter
also reviews previous work about modeling ragulatory network in cancer.

‚ Chapter 3 describes the methods and datasets used in this thesis. In particular,
we explain how we mapped the genome-wide binding sites of RBPs, miRNAs
and TFs. We also describe the details of the statistical model that we developed
to predict gene expression in cancer.

‚ Chapter 4 includes our results. In particular, we show that our model can pre-
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dict gene expression in cancer accurately, and incorporation of RBPs is critical
to achieve this performance. Lastly we go through the candidate regulators that
we find with our model.

‚ Chapter 5 summarizes the results and discusses possible future directions of
this work.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, we briefly explain the necessary background that is required to under-
stand the overall study. We start by reviewing the genetic background of cancer and
the effect of gene regulation in tumorigenesis. We then discuss the factors that gov-
ern differential gene expression in cancer that range from copy number variation to
transcriptional and post-transcriptional regulation. We continue by introducing RNA
binding proteins (RBPs) as major regulators of post-transcriptional regulation and we
review the studies in which the effects of RBPs have been studied experimentally.
Then, we introduce recent studies that use computational models to infer candidate
regulators of gene expression in cancer. Finally we identify the missing piece in the
literature, that is, no study has taken into account the effect of RBPs together with
other regulators like transcription factors and miRNAs to explain gene expression in
cancer.

2.1 Cancer

Cancer is caused by dynamic changes in the genome [39]. These changes could be
on the genomic level involving mutations or copy number changes. They could be
also in the expression level of the genes which control the way our cells function,
especially how they grow and divide. Although some changes in the expression of
cancer-related genes arise through genome level mutations in its early stages, most
cancer-specific gene expression patterns involve genes that are not mutated, but dif-
ferentially expressed [91]. So, in addition to conventional selection of only mutated
genes as candidate cancer genes, cancer phenotypes resulting from altered gene ex-
pression should also be considered. Differential expression of genes in cancer can
be explained by DNA methylation, gene copy number changes, transcriptional and
post-transcriptional regulation. Now, we review each of these mechanisms below.

2.2 DNA copy number variation

As we mentioned above, technological advances in genome scanning, has revealed the
fact that Single Nucleotide Polymorphisms (SNPs) are not the main source of genetic
and phenotypic human variation. These technologies have uncovered unexpectedly
large extent of ’structural variation’ in the human genome. These structural variations
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include deletions and duplications, as well as insertions, inversions and transloca-
tions [30]. Although the result of genome-wide studies have identified many com-
mon SNPs associations with cancer, these studies mostly ignore the inter-individual
genetic variation provided by copy number variations (CNVs), which affect more
than 10% of human genome [94]. Consequently, recent studies appreciate the role of
CNV as risk factors for cancer and characterization of the location and extent of these
regions in genomes becomes and important issue which is now achievable by the help
of high-resolution SNP arrays.

2.3 Transcriptional regulation

Transcriptional regulation is one of the most studied part of gene regulation. Regula-
tion at this level occurs at the state where mRNA is being transcribed to transfer the
information to ribosomes, protein building machineries. The two most important pro-
cesses that control the expression of gene at this stage are: 1) Binding of transcription
factors (TFs) to promoter or enhancer regions of genes which initiates a program of
increased or decreased gene transcription, 2) Addition of methyl groups to DNA in a
gene promoter region and activating that gene, called DNA methylation.

2.3.1 Transcription Factors

Transcription factors are proteins that bind to specific regions on DNA and control
which genes are turned on or off in the genome. These factors are so essential for
regulation of genes so that through their action, various cells of the body that all
have identical DNA sequence can function differently. Transcription factors bind to
their specific motif on promoter or enhancer region of DNA, interact with each other
to form complexes, and recruit RNA polymerase II [58]. Enhancers are usually up
to 500 base pairs long and they can contain multiple binding sites for two or more
transcription factors [58]. For example when two TFs bind near each other on the
DNA strand, they can form a dimer and bend the DNA which is believed to be an
activating process. So they can perform individually or form complexes with other
TFs to regulate the expression of transcripts.

Though the identification of putative transcription factor binding sites has been one of
the most challenging problems, recent novel experimental techniques like chromatin
immunoprecipitation (ChIP), has permitted the direct genome-wide identification of
TF-DNA interactions. The length of the binding sites of TFs range from 8-10 to
16-20 nts. TFs bind to DNA in a sequence-specific manner which means that they
are able to recognize sequences that are similar but not identical, differing in a few
nucleotides from one another [106]. Currently, ENCODE [78] is a large project that
tries to systematically map regions of transcription, transcription factor association,
chromatin structure and histone modification. Also JASPAR [68] is a large database
that contains matrix-based nucleotide profiles (Position Frequency Matrices, PFMs)
that describes the binding preference of TFs in multiple species. These PFMs are
based on published experiments from diverse sources.
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2.3.2 DNA methylation

DNA methylation is one of the epigenetic factors that regulates gene expression in
transcriptional level. This is the process of conversion of cytosine bases of DNA
to 5-methylcytosine by methyltransferase enzymes. It typically occurs in CpG se-
quences throughout the entire genome while CpG islands (regions with elevated CpG
content) which are often found in gene promoters, remains unmethylated in normal
tissues [4]. Methylation of these sequences can lead to inappropriate silencing of
genes like silencing of tumor suppressors in cancer [82]. In addition, pioneer studies
in cancer cells reports that global and gene specific loss of DNA methylation is also
associated with neoplastic transformation [26, 27]. All these data show that there is a
massive disruption of DNA methylome in tumor cells compared to normal cells [56].
Therefore, early detection of hypermethylation can serve as a biomarker for cancer.

The major advance in measuring the methylation state of cytosines is Bisulfite se-
quencing which modifies sodium bisulfite of DNA to convert unmethylated cytosines
to uracil and leaving methylated cytosines unchanged [19]. After PCR amplification
and conversion of unmethylated cytosines to thymines, by mapping these bisulfite
treated DNA to the original reference genome, it is possible to determine the methy-
lation state of individual cytosines [28]. This method is used to measure DNA methy-
lation at specific loci. However, the advances in next-generation sequencing enables
to determine the methylation state of an entire genome using quantitative methods.
These methods usually work by preparing bisulfite treated libraries, and sequencing
them using sequencers like Illumina DNA methylation or Human Methylation 27/450
platforms. Most of these results are available through data portals like TCGA [6].

2.4 Post-transcriptional regulation

Post-transcriptional regulation (PTR) is the second level of control that happens af-
ter the pre-mRNA has been transcribed. Regulation at this level includes the con-
trol of splicing, localization, degradation and translation. Several recent studies sup-
port the observation that post-transcriptional control is a pervasive and complex sys-
tem. For example, 90% of mammalian genes undergo alternative splicing [102], and
60% of the variation between mRNA and protein levels can be explained by post-
transcriptional effects [37, 92]. PTR is governed by trans-acting factors that bind to
short regions of mRNAs and control their fates. Most important trans-acting factors
in PTR are microRNAs (miRNAs) and RNA-binding proteins (RBPs). Recent studies
have shown that miRNAs and RBPs can bind to a common set of mRNAs, and they
can also act in cooperative or competitive interactions.

2.4.1 MicroRNAs

MicroRNAs (miRNAs) are small ( 22 nt long) non-coding RNAs that function in
various biological pathways. miRNAs are transcribed by RNA polymerase II as pri-
microRNAs and then processed by RNase III enzyme Drosha to form pre-microRNA.
This precursor is then transported to the cytoplasm where it is processed by DICER
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to form a mature microRNA. This mature microRNA mediates gene silencing by
forming RNA-induced silencing complex, RISC. miRNAs regulate gene expression
by binding to target mRNAs containing complementary sequences. Recent studies
show that over half of the human transcripts are subject to miRNA regulation through
degradation or translation inhibition [9].

Hundreds of miRNAs have been found in the human genome. They bind to their
target sites by either complete or partial complementary base pairing on 3’UTRs of
target mRNAs. The base pairing usually happens in the region which is positioned
at 2-7 nt of miRNAs and is named as the ’seed region’. By complete complemen-
tary base paring of seed region of miRNA with 3’UTR of mRNA, the target mRNA
will be downregulated. miRNAs and mRNAs can have a many-to-many relationship.
A miRNA can bind to hundreds of mRNAs and an mRNA can contain target sites
of several miRNAs. miRNAs have shown effects in various cancer types, such as
lung, breast and prostate cancer. They also play important role in some neurological
disorders such as schizophrenia and Alzheimer’s diseases.

MiRNA targets can be identified through techniques such as qRT-PCR, western blot
and luciferase reporter assays. These methods can only be used to identify a small
number of targets of the miRNA of interest, while high throughput approaches have
been also developed to identify the genome-wide targets of a miRNA. Measuring the
changes of gene expression upon miRNA transfection or inhibition using microarray
or RNA-seq techniques are examples of high throughput techniques. Also there are
biochemical approaches to find miRNA targets involved in the immunoprecipitation
of the RISC component using an antibody against the Argonaute (AGO) protein [51].
Then, either by microarray or sequencing, precipitates are analyzed to identify the tar-
gets. Cross-linking by ultraviolet radiation technique is another alternative to identify
miRNA sites. For instance, PARCLIP has been applied in HEK293 cells to identify
miRNA target sites [38].

Currently, there are large number of databases that contain miRNA targets either iden-
tified experimentally or computationally. For example miRTarBase contains a large
number of experimentally validated miRNA-target interactions. These targets are
compiled by data-mining existing literature [43]. These miRNA-target interactions
are grouped based on the type of evidence. Namely, targets identified with reporter
assay, western blot and qPCR provide strong evidence; whereas targets identified
with approaches such as microarray, NGS-based methods, pSILAC provide weak
evidence. On the other hand, TargetScan is another widely used methods which
considers complementarity to seed region and conservation information to predict
miRNA target sites [59]. Pictar and GenMiR are among the popular methods to pre-
dict miRNA target sites. Several factors play a role on the regulatory effect of miR-
NAs. The location and secondary structure of binding sites of miRNAs are examples
of these factors which may enhance the chance of miRNAs to access their targets.
Studies show that miRNAs prefer to bind to AU-rich regions and unstructured areas
in 3’UTRs. Another factor is the number of miRNA binding sites that plays a crucial
role in the regulation of mRNAs. Transcripts that contain more binding sites have
higher probability of being regulated by the miRNA of interest. Besides, miRNAs
may involve in competitive or collaborative interactions with RBPs. Previous stud-
ies have investigated the effect of miRNAs or RBPs independently. However, recent
studies show that miRNAs and RBPs are involved in complex gene regulation mech-
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anisms.

2.4.2 RNA-binding proteins

RBPs are another important factors in regulation of gene expression at the mRNA
level. They bind to 3’UTR end of their target mRNAs and control several steps
of RNA processing including splicing, stability, localization, and degradation [24].
RBPs bind to their targets through one or more RNA-binding domains (RBDs). Some
RBPs prefer binding to a single-stranded RNA by direct readout of the primary se-
quence, while others recognize the structure of the RNA [23, 111]. There are also
some RBPs which recognize their targets by both the sequence and the secondary
structure [50]. As it was for miRNAs, RBP-mRNA interactions can form a multi-
dimensional network such that an mRNA can be bound by several RBPs and each
RBP can have hundreds of targets. More than 800 RBPs have been identified in the
human genome. Alternation in the activity of RBPs may cause many diseases such as
neurodegenerative disorders and cancer.

In recent years, several in vitro and in vivo experimental methods have been developed
to identify binding specificities of RBPs. While in vitro studies are conducted in some
controlled environment, in vivo experiments are carried out within the cell which is
advantageous due to modeling RBP-RNA interactions in natural environment. On the
other hand, in vitro methods identify RBP binding sites in non-biological conditions
but this also enables querying non-genomic sequences such as variants of the wild-
type binding sites and testing a wide range of interesting conditions (e.g. salts, pH).

In vitro methods: One of the recently developed in vitro methods to identify binding
specificities of RBPs is RNAcompete [85]. This method identifies binding speci-
ficities of RBPs in three main steps: (i) generation of a custom-designed RNA pool
containing short sequences; (ii) a single binding reaction to identify the RNAs bound
by the tagged RBP of interest; and (iii) analysis of the microarray data to determine
binding preferences of the RBP. Recently, this method is used to characterize the
binding specificities of more than 200 RBPs from 24 diverse eukaryotes. Figure 2.1
summarizes the steps in RNAcompete method. There are other in vitro methods as
well like SELEX [25], but we will use RNAcompete for the purpose of this thesis.

RBP 

RNA pool 
Single binding 

reaction 
Identification 
of bound RNA 

Figure 2.1: Steps of RNAcompete methods are summarizes in this figure (Adopted
from RNAcompete [85])

In vivo methods: in vivo methods are carried out within the cell. RNA immunopre-
cipitation (RIP) and Cross-linking and immunoprecipitation (CLIP or HITS-CLIP)
are among the in vivo methods of identifying binding specificities of RBPs. RNA im-
munoprecipitation detects the association of an individual RBP with specific RNA.
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RIP purifies RBP-mRNA complexes from cellular extracts and identifies protein-
bound mRNAs using either a microarray (RIP-chip) or high-throughput sequencing
(RIP-seq) [54, 110]. The absence of cross-linking step in this method may cause
dissociation of RBPs from their targets [73]. CLIP method aims to eliminate the dis-
sociation of RBPs mentioned in the previous method. Figure 2.2 shows the steps in
PARCLIP and HITS-CLIP methods. CLIP approach uses an ultraviolet light (UV)
cross-linking step before immunoprecipitation. This further step causes a more strin-
gent washing procedure to reduce contaminants and eliminates interactions that occur
after cell lysis [100]. PARCLIP is a modified version of CLIP technique which uses
photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation. In
PARCLIP, cross-linked sites are enriched with a thymidine to cytidine transition [38].
This method identifies RBP binding sites by scoring T to C transitions in sequenced
cDNA. CLIP experiments identify the binding sites of a single RBP at a time while a
recently proposed method called gPARCLIP (global PARCLIP) is able to identify the
binding sites of all the RBPs in the cell [8]. However, this method is unable to detect
and identify the particular RBPs that bind to a site.

Figure 2.2: Various steps in PARCLIP and HITS-CLIP methods (Figure and descrip-
tion adopted from König et al. [57])

In silico methods: These methods try to predict the binding sites of the RBPs com-
putationally. There are tools available like MEME [7] and HOMER [40] which try
to identify the binding motifs from a set of RNA sequences that are known to be
bound by the RBP. Recently developed methods infer RNA motifs that include both
sequence and structure features [41, 53, 69] but all of these methods require a set of
bound RNA sequences so that they are based on the results of experimental methods.

Researchers also try to predict RBP-RNA interactions using features such as 3’UTR
characteristics, RBP properties, di-nucleotide content, RNA secondary structure statis-
tics. Pancaldi et. al. [81], uses this de novo method in their study and integrates more
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than 100 features to predict the target mRNAs of RBPs in yeast. RPI-seq is another
method by Muppirala et. al. [76] which uses the 4-mer composition of the RNA se-
quence and the 3-mer composition of the RBP sequence to train a statistical model.
Muppirala et. al. try machine learning algorithms such as Support Vector Machine
(SVM) and Random Forest (RF) to predict whether the RNA-RBP pair will interact
or not.

2.5 RBPs in cancer

Studies show that RBPs are master regulators of gene expression in cancer but much
remains ahead in understanding how RBPs and their regulatory network contribute
to tumor initiation and progression. Some researchers try to identify the effect of
individual RBPs in cancer experimentally but this method reveals a small number of
RBPs that may contribute directly to cancer progression.

IGF2BP protein family is an evolutionary conserved family of RBPs that also has
been reported as a useful diagnostic marker for various cancers. This family is
formed from three RBPs: IGF2BP1, IGF2BP2 and IGF2BP3. The first family mem-
ber, IGF2BP1, is known to promote tumor cell proliferation and survival in various
cancer contexts [10]. It controls the subcellular sorting of the ACTB mRNA in pri-
mary fibroblasts and neurons by binding to the cis-acting zipcode in the 3’UTR of
ACTB [89]. By doing so, it enhances neurite outgrowth and axonal guidance by
controlling the spatially restricted translation of the ACTB mRNA [45]. The sec-
ond member, IGF2BP2, has been proposed as an auto-antigen (i.e., any antigen that
stimulates autoantibodies in the organism that produced it) in hepatocellular carci-
noma [107]. Also SNPs that are identified in IGF2BP2 gene were correlated with
an elevated risk of type 2 diabetes [18]. Finally, the last member of this RBP family,
IGF2BP3, has been reported to be the mainly expressed family member in human can-
cer [31]. Studies suggest IGF2BP1 and IGF2BP3 as bona fide oncofetal proteins [79],
however, they are found to be re-expressed in several aggressive cancer types. More-
over, this protein family is highly associated with cancer metastasis and the expression
of oncogenic factors (KRAS, MYC and MDR1) [10]. A recent study by Mitzutani
et. al. also reveals the functional linkage between IGF2BP3 and eIF4E, known as an-
other RBP regulator of tumorigenesis, in cancer [74]. SRSF1 is another protein which
has been demonstrated as an oncogene, and its oncogenic activity is mediated by con-
trolling alternative splicing of the tumor suppressor BIN1 and the kinases Mnk2 and
S6K1 which induces the expression of pro-tumorigenic isoforms [52]. This protein is
a prototypical SR protein that functions as a splicing factor [3]. It also plays an im-
portant role in translation [72], mRNA export [44] and mRNA decay [108]. Studies
on this protein suggest that this RBP is frequently overexpressed in cancer [3]. It has
a role in development of mammary tumors in human [96] and it is overexpressed in
most of breast tumor panel. Another example is QKI, which is one of the conserved
STAR (Signal Transduction and Activation RNA) family proteins. STAR family pro-
teins are usually involved in various aspects of RNA metabolism like mRNA splicing,
localization and transport [29], and have been recently identified as key regulators of
alternative splicing in lung cancer [112]. Zong et. al. have shown that QKI is fre-
quently down-regulated in cancer and its down-regulation is significantly associated
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with a poorer prognosis. Their results illustrate that QKI-5 regulates the alternative
splicing of NUMB by binding to two RNA elements in its pre-mRNA, which in turn
suppresses cell proliferation and prevents the activation of the Notch signaling path-
way.

Sam68 (KHDRBS1) is another RBP found to be associated with cancer and regulates
alternative splicing of cancer-related mRNAs [12]. Sam68 is known to be overex-
pressed in breast, prostate, renal, and cervical cancer cells [15, 109] and is also fre-
quently upregulated in tumors [84]. eIF4E is another RBP which its overexpression is
highly associated with malignancy and poor prognosis [20, 35]. Studies show that its
overexpression increases translational initiation of specific mRNAs in cancer [105].
Finally, ELAVL1 (HuR) is the most prominent RBP known to be implicated in tu-
morigenesis [1]. Overexpression of HuR has been observed in lymphomas, gastric,
breast, pancreatic, prostate, oral, colon, skin, lung, ovarian, and brain cancers [11,13]
and it is known to regulate the stability and translational of transcripts involved in
cancer.

Although these single RBP studies help to uncover the PTR effect on cancer, there
is a need for a more comprehensive study that takes into account both transcriptional
and post-trancriptional regulation as well as other genetic and epigenetic factors like
copy number variation (CNV) and DNA methylation to explain gene regulation in
cancer.

2.6 Inferring candidate regulators of cancer

Unlike the simple assumption that cancer development is dictated mostly by aberrant
transcriptional events, it is now clear that post-transcriptional regulation of gene ex-
pression also controls cell proliferation, differentiation, invasion, metastasis, apopto-
sis, and angiogenesis which influence initiation and progression of cancer. The large
amount of data explaining genome wide signals of many regulatory factors in online
resources like TCGA and ENCODE gives us the opportunity to study cancer com-
prehensively by considering many factors that govern differential gene expression in
cancer both at the transcriptional and post-transcriptional level.

Recent studies have used statistical models to utilize these data in order to model
the regulatory network of cancer. Setty et al [93] model the regulatory network of
glioblastoma (GBM) using a regularized linear regression model. They use genomic
and epigenomic features like copy number variation and DNA methylation, as well
as binary TF-binding sites from TRANSFAC filtered by DNA hypersensitive regions
from the ENCODE data at transcriptional level and miRNA binding sites obtained
from scanning 7-mer seed matches on 3’UTR at post-transcriptional level. They have
applied their approach on 320 GBM samples and have identified miR-124 and miR-
132 as drivers of the proneural subtype of GBM. Another study by Jacobsen et al [46]
predicts miRNA-mRNA interactions across 11 cancer types proposing similar model,
but does not consider transcriptional regulation effect of transcription factors which
may be susceptible of overestimating the influence of the miRNAs [61]. More re-
cently Li et al [61] have developed a two-stage regression framework (RACER) which
infers sample-specific TF and miRNA activities. It obtains ENCODE TF binding data
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derived from a generic cell-line and conserved miRNA binding sites from TargetScan.
v6. and uses the estimated regulatory activities to infer miRNA/TF-gene regulatory
relationships across samples in Acute Myeloid Leukemia (AML).

All of the studies described above ignore the effect of RBPs in gene regulation. In this
study, we fill this gap by proposing a regression model which incorporates copy num-
ber variation, DNA Methylation and the regulatory effects of transcription factors,
miRNAs and RBPs to predict gene expression in cancer.
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CHAPTER 3

MATERIALS AND METHODS

3.1 Data integration and preprocessing

We used The Cancer Genome Atlas (TCGA) as our main source of data. TCGA is a
project started in 2006 that aims to utilize advanced genomic technologies, to gener-
ate comprehensive and multi-dimensional maps of the key genomic changes in major
types and subtypes of cancer. This project has finalized tissue collection with matched
tumor and normal tissues from 11,000 patients, allowing for the comprehensive char-
acterization of 33 cancer types and subtypes, including 10 rare cancer types. This
project has been split into two parts, I) Genome characterization center (GCCs) which
performs the sequencing, II) Genome data analysis center (GDACs) which performs
the bioinformatic analysis and tries to process data obtained from first part. TCGA is
sequencing whole genome of tumors including at least 6000 genes and microRNAs.
It provides various genomic data like gene expression profiles, copy number variation
profiles, DNA methylation profiles, microRNA profiles, SNP genotypes and exon
sequences for at least 1200 genes for each cancer type.

TCGA have sequenced whole genome of tumors including at least 6000 genes and
microRNA. It provides various genomic data like gene expression profiles, copy num-
ber variation profiles, DNA methylation profiles, microRNA profiles , SNP genotypes
and exon sequences for at least 1200 genes for each cancer type.

On the other hand, organizations like Broad Institute aim to facilitate the extrac-
tion of these data by developing applications and quantitative algorithms. Firehose
Broad GDAC tries to systematically analyse data produced by TCGA and provides
more than 55 terabytes of analysis-ready TCGA data and also executes thousands of
pipelines per month. These analyses include identifiying genomic regions that are
significantly gained or lost across a set of tumors, calculating correlations between
DNA methylation and gene expression profiles, inferring putative direct gene targets
of miRNAs based on miRseq and mRNAseq expression profiles across multiple sam-
ples and etc. UCSC Cancer Genomics Browser is another web-based application
that integrates datasets from TCGA and other related data sources and provides easy
access and analysis of these data to researchers in order to discover and share their
research observations.
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3.1.1 mRNA and miRNA expression

All mRNA and miRNA expression data were obtained from TCGA data portal [6].
We downloaded RNASeq V2 (level 3) gene expression data and used normalized
read counts. Also we filtered mRNAs that are not expressed across most samples
in RNA-seq data sets, by removing those having less than 4 reads in more that 70
percent of samples. To allow log transformation, we added 1 to all read counts across
all samples. The RNA-seq mRNA expression values were log2 transformed for all
subsequent analysis. For miRNA expression we combined level 3 Illumina HighSeq
(387 samples) and Illlumina GA (136 samples) data and we processed the miRNA
expression data similar to RNA-seq data.

3.1.2 Copy number variation and DNA methylation

SNP6 Copy number level 4 data processed by GISTIC2 algorithm [71] were obtained
from Firehose 1. Firehose employs the GISTIC2 algorithm to generate copy number
estimates for the genes mapped in the genome. This algorithm has been upgraded to
a number of analytical improvements to the standard copy number analysis workflow.
These developments increase the sensitivity and specificity with which driver genes
may be localized and enable data-driven estimation of the background rates of somatic
copy number alterations (SCNA) and how these rates vary with features of the SCNA,
such as length or amplitude.

For DNA methylation, we also obtained the data from Firehose 2. We used the re-
sults of correlation analysis between mRNA expression and DNA methylation with
methylation probes mapped to gene promoters. Then we selected for each gene, data
corresponding to the methylation probe showing strongest negative correlation (Pear-
son correlation coefficient) of methylation beta-value and mRNA expression across
all samples in each cancer type.

3.1.3 RBPs and TFs expression

To determine the RBPs and TFs that are expressed in each cancer type, we down-
loaded the cancer tissue atlas from Human Proteome Atlas [5]. This data contains a
multitude of human cancer types representing the 20 most common forms of cancer,
including breast-, colon-, prostate-, lung-, urothelial-, skin-, endometrial- and cervical
cancer. Altogether 216 different cancer samples are used to generate protein expres-
sion profiles for all proteins using immunohistochemistry. For each cancer type, 12
samples are available. RBPs and TFs that show expression in at least one of the 12
samples were considered as expressed in that cancer type.

1 Firehose analyses__2014_10_17
2 Firehose analyses__2014_10_17
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3.1.4 Clinical data

UCSC Cancer Genomics Browser provides easy to manipulate formats of data avail-
able in TCGA. Recently, users are able to download clinical and genomic columns of
interest for analysis. The file formats provided by UCSC Cancer Genomic Browser
are more easily recognizable by most spreadsheets and advanced analysis tools such
as R [34]. We downloaded the clinical data for patients in order to perform survival
analysis for the RBPs that we found as candidate regulators.

3.2 Motif prediction of regulatory elements

3.2.1 Transcription factors

In order to map transcription factors (TFs) on mRNAs, we downloaded promoter
regions of mRNAs from UCSC genome browser with a 200 fllank on each side. Po-
sition frequency matrices of human transcription factors are obtained from JASPAR
database (JASPAR CORE 2016) [67]. This database contains a non-redundant and
curated set of experimentally defined TF binding site profiles in eukaryotes which are
derived from published collections.

We then used individual motif scanning tool FIMO (Find Individual Motif Occur-
rences) from MEME-SUITE [36] to scan the binding sites of these transcription fac-
tors on promoter regions of mRNAs. FIMO is a software tool for scanning DNA or
protein sequences with a set of given motifs in the format of position specific scor-
ing matrices. This program computes a log-likelihood ratio score for each match in
a given sequence and uses established dynamic programming method to convert this
score to a p-value. It then applies false discovery rate analysis to estimate a q-value
for each match in the given sequence. We select matches with p-values< 1e-4.

In order to strengthen the support of TF binding sites that we identified with FIMO,
we intersected these sites with DNaseI hypersensitive sites (DHSs) for A549 cells.
DHSs are the regions where chromatin has lost its condensed structure, where DNA
gets more accessible in that region for binding of proteins like TFs. This data is
obtained from The ENCODE Project Consortium (2004), the project that aims to map
all of DHSs in the human genome to catalog human regulatory DNA. Using massive
sequencing techniques, they obtained DHSs of every cellular type.

3.2.2 microRNAs

The proportion of the isoforms of a 3’UTR is specific to a tissue or cell line [98]. This
proportion can affect 3’UTR length related features such as the number of binding
sites of an RBP or miRNA on 3’UTR. To avoid these complications we used 3’UTR
annotations curated by Agarwal et al [2], where they compiled 3’UTR isoform quan-
tifications previously measured for HeLa cells [77] using poly(A)-position profiling
by sequencing (3P-seq) [47]. Agarwal et al selected the genes for whichě 90% of the
3P-seq tags corresponded to a single 3’UTR isoform. They downloaded the 3’UTR
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sequences from Gencode version 19 (hg19), and extended the end of the 3’UTRs with
information from 3P-seq annotations.

We then downloaded conserved human miRNA targets from TargetScan 7.0 (Agarwal
et al) and mapped those targets on 3’UTRs. TargetScan predicts these miRNA targets
by searching for 8mer, 7mer and 6mer sites that match the seed region of the miRNA.
These predictions are then ranked based on the predicted efficacy of targeting cal-
culated as the cumulative weighted context++ scores of the sites [2]. For human,
TargetScan considers matches to human 3’UTR and their orthologs, as defined by
UCSC whole-genome alignmnets. TargetScan 7.0 has improved in comparison with
previous releases of TargetScan. This new version predicts targeting efficacy more
accurately and uses 3’UTR profiles that indicate the fraction of mRNA containing
each site as described above, and also uses updated miRNA families.

3.2.3 RBP binding sites

To map the binding sites of RBPs, we downloaded 103 position frequency matrices
(PFMs) that correspond to 85 human RBPs from the RNAcompete paper [85]. These
PFMs (which are of length seven or eight) are generated from the alignment of top
10 7-mers determined using all data (i.e. both setA and setB of RNAcompete pool).
Rather than using these top 10 7-mers directly, we generated the top 10 nmers from
the PFMs. In this way, we were able to scan for motifs that are longer than seven.
An example is the FXR1 RBP for which the PFM inferred by RNAcompete is of
length eight. By using the top 10 8-mers in our motif search, we can represent the
binding preferences to all eight positions of this PFM. In addition to RNAcompete
motifs, we downloaded the motifs (consensus motifs and the top 10 nmer when a
PFM is available) for the following well-known RBPs from RBPDB database [21]:
HNRNPAB, PUM1, PUM2, ELAVL2, KHSRP, ZFP36, AUF1 and CUGBP.

We downloaded human 3’UTRs from TargetScan and determined the genome-wide
binding sites of each RBP by finding matches to its top 10 n-mers or consensus mo-
tifs on human 3’UTR sequences. We downloaded CLIP-seq data for a list of RBPs
(HuR, FMR1, FUS, FXR1, FXR2, hnRNPC, IGF2BP1-3, LIN28A, PTBP1, PUM2,
QKI, SRSF1, TIA1) from starBase database [60]. starBase is a database that has de-
veloped to decipher protein-RNA and miRNA-RNA interactions from 108 CLIP-seq
(HITS-CLIP, PAR-CLIP, iCLIP, CLASH) datasets. In addition to these RBP specific
CLIP datasets, we downloaded gPARCLIP-determined peaks [8]. gPARCLIP dataset
contains genome-wide protein-occupied regions bound by any RBP in HEK293 cells.
However, the identity of a particular RBP that binds to a region is unknown.

We first intersected the peaks identified with CLIP or gPARCLIP with human 3’UTRs.
To correct for the background binding bias in CLIP-based techniques as identified by
Friedersdorf et al. [32], we excluded parts of peaks that overlap with regions that
correspond to background binding. Finally we created a RBP feature matrix which
contains number of confident (CLIP or gPARCLIP supported) binding sites of each
RBP on each mRNA.

RBP and miRNA sites using AIR score: Alternatively, we also tried incorporating
alternative polyadenylation (APA) in mapping binding sites of RBPs and miRNAs.
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To this end, we downloaded 3P-seq tag info from TargetScan 7.0, and used a metric
called Affected Isoform Ratios (AIRs) that indicates for each RBP/ miRNA binding
site the fraction of mRNA transcripts containing that site [77]. We then used the
average AIR score of each RBP / miRNA along each mRNA to create another feature
matrix. So, rather than counting simply the number of RBP/ miRNA sites on an
mRNA, we averaged the AIR values of each site.

3.3 Differentially expression of RBPs in cancer

In order to find RBPs that are differentially expressed in various cancer types, we used
datasets of those cancer types having sufficient paired (tumor and its corresponding
normal) samples (>15 pairs). According to this criteria, we selected the following
13 cancer types: BLCA, BRCA, COAD, HNSC, KICH, KIRC, KIRP, LIHC, LUAD,
LUSC, PRAD, THCA and UCEC (3.1)

In order to calculate log fold-change (logFC) (tumor/normal) of genes in each cancer,
we used edgeR method from Bioconductor package. This method is used for differ-
ential expression analyses of read counts arising from RNA-Seq, SAGE or similar
technologies [86]. edgeR uses empirical Bayes method that permits the estimation
of gene-specific biological variation, even for experiments with minimal levels of
biological replication. The package implements both exact statistical methods for
multi-group experiments [87, 88] and generalized linear models (GLMs) which are
suitable for multi-factor experiments of any complexity [64, 70].

Table 3.1: This table lists the abbreviations and full names of the analyzed cancer
types together with the corresponding number of total and paired samples downloaded
from TCGA database.

Cancer
type

Description All samples Paired
samples

BLCA Bladder urothelial carcinoma 408 19
BRCA Breast invasive carcinoma 1095 113
COAD Colon adenocarcinoma 459 41
HNSC Head and neck squamous cell carcinoma 521 43
KICH Kidney chromophobe 66 25
KIRC Kidney renal clear cell carcinoma 533 72
KIRP Kidney renal papillary cell carcinoma 290 32
LIHC Liver hepatocellular carcinoma 371 50
LUAD Lung adenocarcinoma 516 58
LUSC Lung squamous cell carcinoma 501 51
PRAD Prostate adenocarcinoma 497 52
THCA Thyroid carcinoma 505 59
UCEC Uterine corpus endometrial carcinoma 545 23

Using edgeR, we performed pairwise comparison of matched tumor and normal sam-
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ples to calculate the logFC of genes within each cancer type. In particular, we deter-
mined differential expression using the generalized linear model likelihood ratio test
(using glmFit and glmLRT functions). We defined differentially expressed RBPs as
those genes with FDR cutoff ă 0.05 and |logFC| ą 0.5. We clustered the logFCs
of profiles of RBPs across the cancers using heatmap.2 function in R (hierarchical
clustering performed with Euclidean distance and complete linkage). Differentially
expressed miRNAs are found using edgeR similarly.

3.4 Regression analysis

Our goal was to computationally model the regulatory network of gene expression
in cancer to identify the predominant regulators. Our dependent variable is the ex-
pression of the gene, and our independent variables are the factors that affect gene
expression. So we developed a Generalized Linear Model which incorporates copy
number variation, DNA Methylation and the regulatory effects of transcription fac-
tors, miRNAs and RBPs to predict gene expression in cancer and estimate sample
specific TF, miRNA and RBP activities (Figure 3.1).

In order to avoid over-fitting of the model due to the large number of features we
included a LASSO penalty term [99]. The LASSO constraint enforces most of the
regression coefficients to be zero to reduces the number of features included in the
model, leading to higher prediction accuracy and more interpretable results. By this
way we remained only with small number of expressed TFs, miRNAs and RBPs that
best explains the global changes in expression.

yg “ w0`wCCg`wMMg`
ÿ

TF

wTFN
TF
g `

ÿ

miR

wmiRN
miR
g `
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RBP

wRBPN
RBP
g (3.1)

where:

‚ yg is the expression of gene g,

‚ Cg is the CNV of gene g,

‚ Mg is the gene’s methylation level

‚ NTF
g is the counts of binding sites of TFs gene g

‚ NmiR
g is the counts of binding sites of miRNAs gene g

‚ NRBP
g is the counts of binding sites of RBPs for gene g

This regression was performed in R using glmnet with α “ 1 except that the best λ
was chosen using cross-validation function cv.glmnet.
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Figure 3.1: DNA methylation, copy number variation and regulatory effects of tran-
scription factors, miRNAs and RBPs are input to a lasso regularized regression model
to predict gene expression in LUSC.

3.5 Feature selection analysis

In order to determine candidate regulators in LUSC, we performed a feature selection
procedure specifically developed for lasso-regularized regression models. We down-
loaded the Selective Inference package from R and used the fixedLassoInf function
to calculate selective p-values for a given lambda (i.e. regularization constant) value.
Here, we used the lambda that is selected with cv.glmnet function. We repeated this
procedure for each sample independently, and calculated, for each feature, the number
of times a significant p-value (p-val ă 0.05) is obtained.

3.6 Identification of target gene sets of candidate regulators

We summed the changes in prediction error of each gene across the samples when
a regulator is removed. To estimate the significance of the error changes, we re-
peated this calculation with shuffled feature matrices 2000 times [93]. The shuffling
was done for each column independently. We calculated an empirical p-value (for a
gene-regulator pair) by comparing the error change obtained from the original feature
matrix with the distribution of error changes that are obtained from shuffled feature
matrices. The target gene set of a regulator is defined as the genes with FDR-corrected
p-value ă“ 5e ´ 4. We compared the predicted target genes of RBPs against CLIP-
based targets. To evaluate the predicted targets of miRNAs, we downloaded exper-
imentally verified targets from MirTarBase database [43]. We grouped the exper-
imentally verified targets based on the type of evidence. Namely, targets identified
with reporter assay, western blot and qPCR provide strong evidence; whereas targets
identified with approaches such as microarray, NGS-based methods, pSILAC provide
less strong or weak evidence.
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3.7 Random Forest

We also tried to model the regulatory network of gene expression in cancer using
the popular ensemble learning method, random forest. Random forest is a collection
of decision trees. In contrast to single decision trees which are likely to suffer from
high bias based on how they are tuned, random forest outputs mean prediction of the
individual trees which corrects for overfitting the training set [14].

For this purpose, we used the R package "RandomForest". Although higher number
of trees gives more accurate predictions, it also significantly increases the computa-
tional cost. A study by Oshiro et al investigates whether there is an optimal number
of trees within a random forest, i.e., a threshold after which increasing the number
of trees would bring no significant performance gain. They suggest a range between
64 and 128 trees in a forest [80]. Taking this into account, in order to decide for the
best number of trees, we looked at the out of bag error rate (MSE in regression) of
the model in range of 1 to 150 trees and we chose the number of trees where the error
does not change significantly (Figure 3.2). The other parameter that can be tuned is
the number of variables randomly sampled as candidates at each split, mtry. We used
the RandomForest package’s function tuneRF to decide for the best mtry. This func-
tion starts with the default value of mtry (number of total features/3) and searches
for the optimal value (with respect to Out-of-Bag error estimate) of mtry for random
forest. Finally by selecting 100 as number of trees and 64 as mrty, we ran the model
sample by sample for each of 362 samples.

Figure 3.2: This figure shows the out of bag error rate (MSE in regression) of the
model in range of 1 to 150 trees.

Then we calculated the correlation between predicted and observed gene expression
and compared these correlations with correlations we obtained from regression. Also,
we looked for candidate regulators of each sample using the function importance.
This function extracts the feature importance measures as produced by randomForest
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method. We selected the top 10 most important features as candidate regulators for
that sample. We then chose those sample specific candidates that are found in more
than 50 percent of all samples as LUSC candidate regulators.

3.8 Kaplan-Meier survival analysis

We performed Kaplan-Meier survival analysis using the candidate regulators we ob-
tained from previous step. We downloaded clinical data from UCSC cancer genomics
browser (which is based on TCGA) and we used R Bioconductor’s survival package
and Survfit function. We investigated the associations of patient survival time with
parameter values that represent the activities of regulators and with corresponding
mRNA expression profiles of the regulators.

The optimal cut-off level for expression or parameter value was chosen by the "Max-
imally selected rank statistics", MaxStat package in R. This package is commonly
used in medical statistics to determine a simple cut-point of predictors between two
groups pf observations.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Differentially expressed RBPs in cancer

Cancer is commonly characterized by the differential expression of several master
regulators. In particular, aberrant expression of RBPs have been found to be asso-
ciated with cancer initiation and progression [105]. To investigate the expression
changes of RBPs in cancer systematically, we downloaded matched tumor-normal
samples for 13 cancer types (see 3.1 for a summary of these datasets). We used edgeR
to identify differentially expressed genes across the matched samples for each cancer.
Fig. 4.1 shows the log fold changes (LFCs) of RBPs that are differentially expressed
in at least one of these cancer types (LFC ą 0.5 or LFC ă ´0.5, FDR-corrected
p-value ă 0.05). We observed that a number of well-known RBPs (e.g. PTBP1,
KHSRP, ELAVL1, PABPC1, PABPC3, HNRNPAB) display increased expression in
majority of cancer types. Among these RBPs, ELAVL1 has been previously found
to have elevated levels of expression in cancer [55]. On the other hand, RBPs such
as CPEB4 and A2B1 show decreased expression across the majority of cancer types.
Interestingly, FXR1 is found to be overexpressed most in LUSC compared to the
other cancer types. Indeed, a recent study revealed FXR1 as a driver for non-small
cell lung cancer (NSCLC), and showed that increased FXR1 promotes tumor progres-
sion, and is associated with poor survival [83]. Lastly, we observed that IGF2BP2
and IGF2BP3 display strong up- or down-regulation of expression among the dif-
ferent cancer types. In particular, both IGF2BP2 and IGF2BP3 are overexpressed
significantly in LUSC. IGF2BP proteins are known to be expressed mainly in the
embryo; however, they have been found to be re-expressed in several cancer types
including lung cancer [10].

4.2 Predicting gene expression in LUSC

The amount of gene expression in different cellular conditions is due to copy number
variations (CNV), DNA methylation and activities of distinct regulators in transcrip-
tional and post-transcriptional level. The combined effect of these elements and tran-
scription factors at transcriptional level and microRNAs at post-transcriptional level
in cancer have been studied previously in different ways [46, 61, 93]. The goal of our
study is to dissect the effect of RBPs on top of the other factors that govern mRNA
abundance in cancer. To this aim we developed a Lasso-regularized regression model
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Figure 4.1: This heatmap shows the log fold expression changes of RBPs across
matched tumor-normal samples (calculated with edgeR [86]). Rows are the RBPs
that are differentially expressed in at least one cancer type. Columns correspond to
different cancer types. Rows are clustered with hierarchical clustering.

which incorporates copy number variation, DNA Methylation and the regulatory ef-
fects of transcription factors, miRNAs and RBPs to predict gene expression. The RBP
features here is defines as their Number of binding sites on each gene.

Having found that many RBPs are differentially expressed in LUSC, we set out to
investigate the regulatory effects of RBPs in this cancer type in more detail, 4.2.
Also we were able to collect different dataset (CNV, methylation, mRNA and miRNA
expression) with high number of samples for this cancer type.
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Figure 4.2: RBPs that are differentially expressed in LUSC

4.3 Performance evaluation

To evaluate the performance of the model, we fit a regression model for each sample
separately, and performed 10-fold CV. For each CV run, we calculated the Spearman
rank correlation between predicted and observed expression of genes in the held-
out set. We then averaged these correlation values across the CV folds, and then
across the samples. When we used all the features described above, we obtained a
Spearman rank correlation of 0.39. To determine the predictive value of features,
we compared the full model with partial models that exclude one of the regulatory
classes. Fig. 4.3 shows how average Spearman rank correlation changes when one
type of regulatory class (i.e., CNV, DM, TFs, miRNAs and RBPs) is removed from
the model. This comparison revealed that RBPs show the greatest added predictive
value (14% reduction when omitted) followed by TFs (10% reduction). miRNAs (5%
reduction), DNA methylation (5% reduction) and CNV (3% reduction) contribute
relatively less to the predictive performance (4.1). The strong association between
TFs and gene expression have been previously observed several times, whereas the
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remarkably high effect of RBP-mediated regulation in explaining gene expression in
cancer is a novel result.
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Figure 4.3: This box plot displays the Spearman rank correlation between the pre-
dicted and the actual held-out genes in 10-fold cross- validation (CV) averaged across
all the samples. The full model that uses all features was compared with the partial
models that lack one of the regulator groups: CNV (copy number variation), DM
(DNA methylation), TFs, miRNAs, RBPs.

Table 4.1: Comparison of models using glmnet: This table displays the Spearman
correlation coefficient of the full model and the five partial models where one feature
group is removed. P-values indicate the significance of the difference between models
(Wilcoxon sign-rank test).

Spearman correlation p-value (compared to Full model)

Full 0.38 N/A
CNV excluded 0.37 8.15e-61
Methylation excluded 0.36 5.12e-61
TFs excluded 0.35 4.45e-61
miRNAs excluded 0.36 4.45e-61
RBPs excluded 0.33 4.45e-61
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We also tested whether different methods to define RBP binding sites change the
predictive performance. We used the methods below to create our RBP feature matrix:

‚ All sites by scanning 3’UTR sequences with top 10 kmers without intersecting
with CLIP or gPARCLIP-determined peaks

‚ CLIP supported or gPAR-CLIP supported sites by scanning 3’UTR sequences
with top 10 kmers

‚ All sites by scanning 3’UTR sequences with PFMs obtained from RNAcompete
using FIMO from MEME Suite

‚ All sites calculated by 3P-seq AIR scores (see section 3.2.3 from Materials and
Methods)

Table 4.2 shows the correlations obtained using each of these methods. When we
compiled the features of RBPs and miRNAs by taking alternative polyadenylation
(APA) into account (Materials and Methods) we obtained a Spearman correlation of
0.34. This surprising result might be due to the fact that APA has been measured in
other cell types than lung cells. Also, more complex models might need to be devel-
oped to incorporate the measurements of abundance of alternative 3’UTR isoforms to
the definition of binding sites. We also tried counting the RBPs sites without inter-
secting with CLIP or gPARCLIP-determined peaks. This decreased the performance
slightly (Spearman correlation: 0.37) indicating that CLIP or gPARCLIP-determined
binding sites are likely to be more functional.

Table 4.2: This table shows that using RBP sites that are CLIP or gPARCLIP sup-
ported, gives us more accurate predictions

Definition of RBP sites Spearman correlation

All top 10 kmer sites 0.37
Confident top 10 kmer sites 0.39
FIMO scanned sites 0.34
Average AIR scores 0.34

We also fit a random forest model to confirm the predictive value of RBPs. We used
the same features as in the regression model and learned a random forest model for
each sample independently. As before, we calculated the Spearman correlation be-
tween predicted and observed expression of genes in the held-out set. We then aver-
aged these values across all the samples. As we can see in table 4.3, random forest
gives very similar results to the regression model. Importantly, we also confirm with
random forest that RBPs increase the performance significantly.

4.3.1 Candidate regulators of LUSC

Having found that regulatory factors can explain a significant portion of gene ex-
pression in LUSC, we used a feature selection procedure to determine the predomi-
nant regulators. Although Lasso selects important features by penalizing unimportant
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Table 4.3: Comparison of model using ransom forest: This table displays the Spear-
man correlation coefficient of the full model and the five partial models where one
feature group is removed. P-values indicate the significance of the difference between
models (Wilcoxon sign-rank test).

Spearman correlation p-value (compared to Full model)

Full 0.40 N/A
CNV excluded 0.39 1.50e-58
Methylation excluded 0.38 4.45e-61
TFs excluded 0.37 4.45e-61
miRNAs excluded 0.39 1.45e-49
RBPs excluded 0.35 4.45e-61

ones, the average number of features having nonzero coefficient across all samples in
our model was 178 which was quiet high. Another common approach to test the im-
portance of an additional feature between two nested linear models is to compare the
change in error to a chi-square distribution or F-distribution. However, this approach
becomes invalid when the additional feature is chosen adaptively as in lasso regular-
ized regression [63]. Despite this fact, F-test has been previously used for lasso [61].
Here, we improve over previous studies by applying a significance test (i.e., covari-
ance test) that accounts for adaptivity [97]. We applied the covariance test for each
sample independently, and counted the number of times a significant p-value (p-value
ă 0.05) is obtained for each feature. When we sorted the features based on this, DNA
methylation is ranked the first as it was selected as a significant predictor in 44% of
all samples. Copy-number variation is ranked fourth (%37 of all samples). Table 4.4
shows this ranking for all the regulatory factors that are selected in more than 20%
(i.e., 70 samples) of the samples. In addition to the name and type of the regulator,
the log fold change and the associated FDR-corrected p-value are also displayed if the
regulator is found to be differentially expressed. This table reveals that many of the
candidate regulators are indeed differentially expressed between cancer and normal
samples.

We see that RBPs are ranked on top of this list. For instance, SFPQ, which is selected
as a significant regulator in the largest number of samples, has been recently found
to interact with a long non-coding RNA called MALAT1 (metastasis-associated lung
adenocarcinoma transcript 1) [49]. MALAT1 is overexpressed in several human can-
cers including non-small cell lung cancer, and has been identified as a critical regula-
tor of metastasis in lung cancer cells [48, 49]. ELAVL1, which ranks third in our list
of candidate regulators, has key functions in mRNA stability and translation. In fact,
cytoplasmic ELAVL1 expression has been previously found to be associated with
high tumor grade and poor survival rate in non-small cell lung carcinoma [104]. In-
deed, we found that ELAVL1 is upregulated in LUSC (LFC=0.52). YY1 (Ying Yang
1) is the top ranking regulator among the TFs (LFC = 0.76). YY1 is highly expressed
in various cancer types, and its depletion inhibited tumor formation of breast cancer
cells [16, 101]. We found that miR-1 is the top ranking miRNA regulator. A recent
study revealed that miR-1 was significantly reduced in lung squamous cell carcinoma,
and its restoration significantly reduced cancer cell progression [66]. The second
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ranking miRNA, miR-218, is significantly down regulated in lung squamous cell car-
cinoma and has been identified as candidate tumor suppressor [22]. The LFCs that
are calculated with our differential expression analysis are in agreement with these
studies (LFCs -3.44 and -2.07 for miR-1 and miR-218 respectively). Lastly, though
located on the lower part of the list, FXR1 is one of the identified candidate regula-
tors. A previous study has identified FXR1 as a key regulator of tumor progression
and found that its overexpression is critical for nonsmall cell lung cancer (NSCLC)
cell growth [83]. Similarly, we found that FXR1 is significantly upregulated in LUSC
(LFC is 1.42). Altogether, the high correspondence between our predicted candidate
regulators and previous literature indicates that our model is accurate in inferring the
key regulators of LUSC.

Table 4.4: Candidate regulators of LUSC using glmnet feature selection

Regulator Type Selection % logFC p.value

DNA methylation - 44 - -
SFPQ RBP 38 0.7 2.06e-12
LIN28A RBP 38 - -
Copy Number Variation - 37 - -
ELAVL1 RBP 32 0.52 2.10e-12
CPEB4 RBP 31 -1.37 1.21e-26
miR-1 miRNA 31 -3.44 2.13e-36
miR-218 miRNA 30 -2.07 5.93e-29
YY1 TF 30 0.76 6.56e-25
ZC3H14 RBP 29 -0.21 1.5e-2
PABPN1 RBP 29 0.4 8.27e-7
HNRNPC RBP 29 0.57 8.18e-11
REST TF 25 0.32 1.1e-2
ETV6 TF 25 0.45 3e-2
miR-142 miRNA 25 0.44 2.8e-2
PCBP2 RBP 25 0.32 7e-2
HNRNPH2 RBP 24 -0.18 4.9e-2
GCM2 TF 24 - -
miR-145 miRNA 23 -1.43 1.46E-20
PUM2 RBP 23 0.4 5.10e-7
miR-29 miRNA 22 - -
miR-15 miRNA 22 -0.70 1.39e-13
MAFF TF 21 -1.1 4.16e-11
miR-140 miRNA 21 -1.01 5.02e-16
miR-381 miRNA 21 -0.49 3.6e-2
RBM6 RBP 21 -0.52 7.48e-11

As we did in previous section, we also found candidate regulators using random for-
est. For each sample, we ranked the importance value of regulators calculated with
the importance method of randomForest R package. Then, we averaged the ranks of
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each regulator over all samples and sorted the regulators based on their average ranks.
Top 60 candidate features obtained from random forest model is in Table 4.5. We in-
tersected these regulators with the candidate regulators we got from glmnet feature
selection procedure. We found that the following 9 RBPs are common: ELAVL1,
LIN28A, CPEB4, SFPQ, ZC3H14, HNRNPC, PABPN1, PCBP2, PUM2.

Table 4.5: Candidate regulators of LUSC using Random Forest importance method

Regulator Importance Regulator Importance

Met 1 SNRNP70 30.58
CNV 2.04 RBM6 30.89
ELAVL1 2.96 G3BP2 31.49
PTBP1 4.95 SNRPA 33.81
CPEB4 5.09 E2F4 34.38
ZC3H14 6.4 SP4 36.66
HNRNPC 6.6 RBMS1 37.23
RALY 8.71 SP1 38.13
PCBP2 9.44 ZNF638 38.15
LIN28A 10.57 FMR1 38.28
PABPC4 11.48 RBM4 38.56
SART3 12.58 RBM28 40.92
PABPC1 12.58 SP2 41.44
HNRNPL 13.77 DAZAP1 41.61
KHDRBS1 14.11 HNRNPA1 43.94
HNRNPH2 14.8 HNRNPA2B1 43.94
RBM5 14.94 ELK4 46.06
SRSF9 15.35 FXR2 46.62
PABPN1 17.1 SRSF2 47.02
ESRP2 19.07 TARDBP 49.31
IGF2BP2 20.07 NRF1 49.6
IGF2BP3 21.33 RBM45 50.91
PUM2 21.36 KLF5 51.16
YBX1 23.65 REST 52.31
HNRNPK 23.73 KLF14 52.86
SFPQ 24.42 SP3 53.73
CNOT4 26.32 ZIC4 55.02
PCBP1 27.04 KHDRBS3 55.72
MATR3 29.8 EGR1 56.48
MSI1 30.41 FXR1 56.64
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4.3.2 Target analysis of candidate regulators

The input feature matrix that we compiled by counting the number of binding sites
of each regulator in each gene provides a noisy approximation of functional targets
of regulators. To identify the targets of the regulators from our model robustly, we
identified the genes for which the squared prediction error increases when a regulator
is removed. We determined the significance of an increase in error by comparing it
against a distribution of error changes that are obtained when the feature matrix is
randomized (see section 3.6 from Materials and Methods).

We evaluated our predicted target gene sets by comparing against experimentally ver-
ified interactions, when available. For RBPs, our validation set consists of the genes
that are identified by CLIP experiment. As such, we could evaluate the target sets
of RBPs with CLIP data: LIN28A, ELAVL1, HNRNPC, PUM2 and IGF2BP2. We
evaluated the target predictions for our top ranking miRNAs miR-1 and miR-218, by
compiling experimentally verified targets (either with strong evidence or weak evi-
dence) from MirTarBase database. Fig.4.4 shows the number of genes that are shared
between the set of our predicted targets and the set of experimentally verified tar-
gets, for RBPs and miRNAs. We see a high overlap between the two sets for RBPs.
In particular, almost 30% of the predicted target genes for ELAVL1 are also CLIP
targets. The intersection is much smaller for miRNAs. A similar result has been pre-
viously obtained when miRNA target prediction methods were compared based on
the number of validated targets in miRTarBase [61].

Next, we utilized a previously published ELAVL1 knockdown dataset that includes
genome-wide measurements of transcripts upon ELAVL1 depletion in HEK293 cells
[75]. In Fig. 4.5 we plotted the cumulative distribution of transcripts in two groups:

‚ Predicted target gene set

‚ CLIP-based target gene set

This analysis revealed that transcripts in predicted target gene set are more destabi-
lized upon ELAVL1 knockdown. We observed that transcripts in the first group are
significantly more destabilized upon ELAVL1 depletion than transcripts in second
group. As ELAVL1 is known to stabilize its targets, these results show that ELAVL1
targets predicted by our model show greater effect than targets having CLIP-based
ELAVL1 sites. This result indicates the accuracy of our model in identifying the
functional targets of ELAVL1.

4.3.3 Survival results

Next, we assessed whether the candidate regulators that we identified with our sta-
tistical model are predictive of survival time in LUSC. We performed Kaplan-Meier
survival analysis (see section 3.7 from Materials and Methods) for the top ranking
RBP regulators shown in Table4.4. Using clinical data from TCGA, we looked at the
associations of patient survival time with parameter values that represent the activities
of regulators and with corresponding mRNA expression profiles of the regulators.
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Figure 4.4: A. Predicted target gene sets of RBPs are intersected with targets de-
termined with CLIP method. B. Predicted targets of miRNAs are intersected with
experimentally verified (with either weak or strong evidence) miRNA targets down-
loaded from miRTarBase.

We found that the top ranking candidate regulators, ELAVL1 and SFPQ, are predic-
tive of survival rate when we stratified the patients based on expression level (Fig.4.6a
and Fig.4.7a ). We confirmed the same finding when we grouped patients based on
parameter values learned with our model (Fig.4.6b and Fig.4.7b). For SFPQ, stratifi-
cation based on parameter values gives a much significant difference.

For both RBPs (ELAVL1 and SFPQ), patients with high expression levels or high
parameter values showed a trend toward better survival indicating that the activities
of these RBPs are positively correlated with survival rate. We repeated the same
analysis for miR-1 and miR-218, and found that miR-1 but not miR-218 activity is
associated with survival rate. Both the expression levels and the fitted parameter
values indicate that low miR-1 activity (i.e., low expression or high model model
parameters) is correlated with survival (Fig.4.8a and b ).
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Figure 4.5: The distribution of LFCs of predicted targets is compared with the dis-
tribution of LFCs of CLIP-based targets. Predicted targets display increased desta-
bilization which indicates that they are likely to be functional ELAVL1 targets. The
difference is significant according to Mann Whitney U test (p-value = 0.0012).
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Figure 4.6: Expression and activity of ELAVL1 are predictive of survival rate in
LUSC. a. Patients with high ELAVL1 expression show a significantly higher median
survival time. b. Stratification based on model parameters for ELAVL1 confirms the
same finding as in a.
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Figure 4.7: Expression and activity of SFPQ are predictive of survival rate in LUSC.
a. Patients with high SFPQ expression show a significantly higher median survival
time. b. Stratification based on model parameters for SFPQ confirms the same finding
as in a.
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Figure 4.8: Expression and activity of miR-1 are predictive of survival rate in LUSC.
Patients with low miR-1 activity (i.e., low expression (a) or high model model param-
eters(b)) show a significantly higher median survival time.
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CHAPTER 5

CONCLUSION AND FUTURE DIRECTIONS

5.1 Conclusion

In this study, we investigated the mechanisms that account for gene expression regula-
tion in LUSC. We initially assessed the alterations in expression of genes that encode
for RBPs across a number of cancer types. To our knowledge, this is the first time
differentially expressed RBPs are searched using a method that accounts for matched
samples across several cancer types (i.e. edgeR). The results of this analysis revealed
that several RBPs are differentially expressed with district profiles of up- or down-
regulation across the cancers. Having found that the number of differentially ex-
pressed RBPs is largest in LUSC, we developed a lasso-regularized regression model
to predict gene expression in LUSC by incorporating several features including the
regulation mediated by RBPs. We were able to accurately predict the expression of
genes in held-out sets by incorporating a comprehensive set of regulatory elements
that are bound by TFs, miRNAs and RBPs, as well as genetic and epigenetic alter-
ations as features in our statistical model. Importantly, compared to other regulatory
classes, exclusion of RBPs results in the largest decrease in predictive performance
revealing the influence of RBP-mediated regulation. This is one of the key novel ob-
servations of the current study that indicates the importance of RBPs in regulation
gene expression in LUSC.

Next, we identified key regulators of LUSC by calculating the significance of each
feature using a recently proposed statistical test that accounts for the adaptive nature
of fitting lasso models. Inference of statistically significant features in adaptive mod-
els is an active research area in statistics, and we believe that our study will be instru-
mental in dissemination of this recent result to bioinformatics community. We found
that the majority of the top ranking candidate regulators are differentially expressed
in LUSC, and have been previously identified to be associated with lung cancer. We
have also identified additional regulators such as LIN28A and CPEBP4 that were not
previously studied in the context of lung cancer. Also, the fact that many of the candi-
date regulators are RBPs agrees with our previous result on the added predictive value
of RBPs. In fact, two RBPs, ELAVL1 and SFPQ have been found to be associated
with survival rate in LUSC patients.

Apart from the results on RBP regulation, our study is also amongst the first to in-
corporate the recently released JASPAR and TargetScan databases in predicting TF
and miRNA binding sites, respectively. Identification of TF and miRNA target sites
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can become more accurate with the availability of ChiP-Seq and CLIP-seq datasets in
lung cells. Similarly, CLIP experiments have been performed for a small number of
RBPs, and increase in the number of such experiments would improve the definition
of RBP target sets.

Lung cancer is one of the most difficult cancers to treat. Recently developed molec-
ular therapies can be targeted to adenocarcinoma of the lung [65]. Such a treatment
has not been proposed for squamous cell carcinoma yet. Therefore, identification of
novel therapeutic agents is vital for this cancer type. Here, we applied our novel sta-
tistical model to infer gene regulatory mechanisms in LUSC, and identified a number
of candidate regulators including RBPs. Further studies of these candidate regulators
will provide insights into the molecular mechanisms of cancer development in LUSC.

5.2 Future directions

In our model, we made a simplifying assumption that TFs, RBPs and miRNAs can
bind to mRNA independently. However, multiple TFs can bind to the same promoter
in a competitive or collaborative fashion. Similarly, recent studies show that RBPs
and miRNAs can act in competition or collaboration with each other [42]. Increased
knowledge on these interactions will be instrumental in developing more accurate
models of regulatory networks in the future.

In this study we limited our model to LUSC. One future step is to apply our model
to other cancer types to identify the candidate regulators. In this way, we can also
compare the candidate regulators across different cancer types.

Furthermore, RNA secondary structure, which is an important factor for target recog-
nition of some RBPs has been ignored in the current study. RNA secondary struc-
ture can be considered in the identification of RBP binding sites as more RBPs have
characterized secondary structure preferences. Also, recent advances in experimental
techniques to query secondary structure in vivo [90, 95] promise to generate a more
accurate set of mRNA secondary structures compared to the computational prediction
methods.

Currently, the knowledge of binding preferences of factors on mRNAs are limited and
there are limited number of experimentally validated binding sites for TFs, RBPs and
miRNAs. As more experiments are performed to find binding sites of these regulatory
factors, our features will become more accurate.

Also, there are limited datasets that measure genome-wide effect of factors upon their
depletion or transfection. We used ELAVL1 knockdown dataset to investigate the
accuracy of our model in identifying the functional targets of ELAVL1 since it is a
well characterized RBP which its effect on mRNA expression is known. But as the
effect of many other factors on mRNA expression is not very well known, we cannot
reason based on them. In the future, we can repeat our analyses using knockdown or
transfection dataset of other RBPs.

Finally, we fit regression models to each sample independently. A possible future
direction is to use group-Lasso model with all the samples to identify subtypes of
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cancer.
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A. Beyer, and J. Bähler. Predicting the fission yeast protein interaction net-
work. G3, 2(4):453–467, 2012.

47



[82] T. Phillips. The Role of Methylation in Gene Expression. Nature Education,
1(1):116, 2008.

[83] J. Qian, M. Hassanein, M. D. Hoeksema, B. K. Harris, Y. Zou, H. Chen, P. Lu,
R. Eisenberg, J. Wang, A. Espinosa, X. Ji, F. T. Harris, S. M. Rahman, and
P. P. Massion. The RNA binding protein FXR1 is a new driver in the 3q26-29
amplicon and predicts poor prognosis in human cancers. Proc Natl Acad Sci
U S A, 106(3):3469–74, 2012.

[84] P. Rajan, L. Gaughan, and C. Dalgliesh. Regulation of gene expression by
the RNA-binding protein Sam68 in cancer. Biochemical Society Transactions,
36(3):505–507, 2008.

[85] D. Ray, H. Kazan, K. B. Cook, M. T. Weirauch, H. S. Najafabadi, X. Li,
S. Gueroussov, M. Albu, H. Zheng, and et al. A compendium of RNA-binding
motifs for decoding gene regulation. Nature, 499:172–177, 2013.

[86] M. Robinson, D. McCarthy, and G. Smyth. edgeR: a Bioconductor package
for differential expression analysis of digital gene expression data. Bioinfor-
matics, 26:139–140, 2010.

[87] M. D. Robinson and G. K. Smyth. Moderated statistical tests for assessing
differences in tag abundance. Bioinformatics, 23:2881–87, 2007.

[88] M. D. Robinson and G. K. Smyth. Small-sample estimation of negative bi-
nomial dispersion, with applications to SAGE data. Biostatistics, 9:321–332,
2008.

[89] A. F. Ross, Y. Oleynikov, E. H. Kislauskis, K. L. Taneja, and R. H. Singer.
Characterization of a beta-actin mRNA zipcode-binding protein. Moll Cell
Biol, 17:2158–65, 1997.

[90] S. Rouskin, M. Zubradt, S. Washietl, M. Kellis, and J. S. Weissman. Genome-
wide probing of RNA structure reveals active unfolding of mRNA structures
in vivo. Nature, 505:701–705, 2014.

[91] R. Sager. Expression genetics in cancer: shifting the focus from DNA to RNA.
Proc Natl Acad Sci USA. (PNAS), 94:952–955, 1997.

[92] B. Schwanhäusser, D. Busse, N. Li, G. Dittmar, J. Schuchhardt, J. Wolf,
W. Chen, and M. Selbach. Global quantification of mammalian gene expres-
sion control. Nature, 473(7347):337–342, 2011.

[93] M. Setty, K. Helmy, A. A. Khan, J. Silber, A. Arvey, F. Neezen, P. Agius, J. T.
Huse, E. C. Holland, and C. S. Leslie. Inferring transcriptional and microrna-
mediated regulatory programs in glioblastoma. Molecular systems biology,
8(1):605, 2012.

48



[94] A. Shlien and D. Malkin. Copy number variation and cancer. Genome Med,
1(6):62, 2009.

[95] R. C. Spitale, R. A. Flynn, Q. C. Zhang, P. Crisalli, B. Lee, J. Jung, H. Y.
Kuchelmeister, P. J. Batista, E. A. Torre, E. T. Kool, and H. Y. Chang. Struc-
tural imprints in vivo decode rna regulatory mechanisms. Nature, 519:486–
490, 2015.

[96] E. Stickeler, F. Kittrell, D. Medina, and S. M. Berget. Stage-specific changes in
SR splicing factors and alternative splicing in mammary tumorigenesis. Onco-
gene, 18:3574–82, 1999.

[97] J. Taylor and R. Tibshirani. Statistical learning and selective inference. PNAS,
112(25):7629–7634, 2015.

[98] B. Tian, J. Hu, H. Zhang, and C. S. Lutz. A large-scale analysis of mRNA
polyadenylation of human and mouse genes. Nucleic Acids Res., 33:201–212,
2005.

[99] R. Tibshirani. Regression shrinkage and selection via the lasso. J R Stat Soc
Series, 58:267–228, 1996.

[100] J. Ule, K. Jensen, A. Mele, and R. B. Darnell. CLIP:A method for identifying
protein-RNA interaction sites in living cells. Methods, 37:376–386, 2005.

[101] M. Wan, W. Huang, T. Kute, L. Miller, Q. Zhang, H. Hatcher, J. Wang, D. Sto-
vall, G. Russell, P. Cao, Z. Deng, W. Wang, Q. Zhang, M. Lei, S. Torti, S. A.
Akman, and G. Sui. Yin yang 1 plays an essential role in breast cancer and
negatively regulates p27. Am J Pathol, 180(5):2120–2133, 2012.

[102] E. T. Wang, R. Sandberg, S. Luo, I. Khrebtukova, L. Zhang, C. Mayr, S. F.
Kingsmore, G. P. Schroth, and C. B. Burge. Alternative isoform regulation in
human tissue transcriptomes. Nature, 456(7221):470–476, 2008.

[103] J. Wang, Y. Guo, H. Chu, Y. Guan, J. Bi, and B. Wang. Multiple functions of
the RNA-binding protein HuR in cancer progression, treatment responses and
prognosis. Int J Mol Sci, 14(5):10015–41, 2013.

[104] J. Wang, B. Wang, J. Bi, and C. Zhang. Cytoplasmic hur expression correlates
with angiogenesis, lymphangiogenesis, and poor outcome in lung cancer. Med
Oncol, 28:S577–S585, 2011.

[105] L. Wurth. Versatility of RNA-Binding Proteins in Cancer. Comparative and
Functional Genomics, Article ID 178525:11, 2012.

[106] F. Zambelli, G. Pesole, and G. Pavesi. Motif discovery and transcription factor
binding sites before and after the next-generation sequencing era. Briefings in
Bioinformatics, 1:1–13, 2012.

49



[107] J. Y. Zhang, E. K. Chan, X. X. Peng, and E. M. Tan. A novel cytoplasmic
protein with RNA-binding motifs is an autoantigen in human hepatocellular
carcinoma. J Exp Med, 189:1101–1110, 1999.

[108] Z. Zhang and A. R. Krainer. Involvement of SR proteins in mRNA surveil-
lance. Mol. Cell, 16:597–607, 2004.

[109] Z. Zhang, J. Li, H. Zheng, C. Yu, J. Chen, Z. Liu, M. Li, M. Zeng, F. Zhou, and
L. Song. Expression and cytoplasmic localization of sam68 is a significant and
independent prognostic marker for renal cell carcinoma. Cancer Epidemiology
Biomarkers & Prevention, 18 (10):2685–2693, 2009.

[110] J. Zhao, T. K. Ohsumi, J. T. Kung, Y. Ogawa, D. J. Grau, K. Sarma, J. J.
Song, R. E. Kingston, M. Borowsky, and J. T. Lee. Genome-wide iden-
tification of polycomb-associated RNAs by RIP-seq. Mol cell, 40(6):939–
953, 12 2010. [PubMed:21172659] [PubMed Central:PMC3021903]
[doi:10.1016/j.molcel.2010.12.011].

[111] D. Zhu, C. R. Stumpf, J. M. Krahn, M. Wickens, and T. M. Hall. A 5’ cytosine
binding pocket in Puf3p specifies regulation of mitochondrial mRNAs. Proc
Natl Acad Sci USA, 106(48):20192–20197, 2009.

[112] F. Y. Zong, X. Fu, W. J. Wei, Y. G. Luo, M. Heiner, L. J. Cao, Z. Fang, R. Fang,
D. Lu, H. Ji, and J. Hui. The RNA-Binding Protein QKI Suppresses Cancer-
Associated Aberrant Splicing. PLoS Genet., 10(4):e1004289, 2014.

50

http://www.ncbi.nlm.nih.gov/pubmed/21172659
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3021903
http://dx.doi.org/10.1016/j.molcel.2010.12.011

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	LITERATURE REVIEW
	Cancer
	DNA copy number variation
	Transcriptional regulation
	Transcription Factors
	DNA methylation

	Post-transcriptional regulation
	MicroRNAs
	RNA-binding proteins

	RBPs in cancer
	Inferring candidate regulators of cancer

	MATERIALS AND METHODS
	Data integration and preprocessing
	mRNA and miRNA expression
	Copy number variation and DNA methylation
	RBPs and TFs expression
	Clinical data

	Motif prediction of regulatory elements
	Transcription factors
	microRNAs
	RBP binding sites

	Differentially expression of RBPs in cancer
	Regression analysis
	Feature selection analysis
	Identification of target gene sets of candidate regulators
	Random Forest
	Kaplan-Meier survival analysis

	RESULTS AND DISCUSSION
	Differentially expressed RBPs in cancer
	Predicting gene expression in LUSC
	Performance evaluation
	Candidate regulators of LUSC
	Target analysis of candidate regulators
	Survival results


	CONCLUSION AND FUTURE DIRECTIONS
	Conclusion
	Future directions

	REFERENCES
	Blank Page
	Blank Page

