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OZET

NEUTRIX CALCULUS’UN DISTRiIBUSYONLARIN
KOMPOZISYONU UZERINE BAZI UYGULAMALARI

Emine CAKMAKCI

Yiiksek Lisans Tezi, Matematik Anabilim Dali
Tez Danismani: Dog. Dr. Inci EGE
2016, 33 sayfa

Distribiisyonlarin  kompozisyonu, distribiisyon teorisinin gelistirildigi ilk
giinlerden itibaren iizerinde calistlan bir problemdir.  Ingiliz matematikgi
Brian Fisher, Van Der Corput’un gelistirdigi neutrix kavramini kullanarak
distribiisyonlarin neutrix kompozisyonunu tanimlamigtir. Bu calismada
baz1 distriblisyonlarin neutrix kompozisyonlariin varligint gostermek ve
kompozisyonlarini hesaplamak amaglanmaktadir.

Tez dort boliimden olugmaktadir.

Birinci ve ikinci boliimde, giris ve distribiisyon tanimini verebilmek i¢in gerekli
olan test fonksiyonlar uzay1 tanimlanmig daha sonra da distribiisyon uzay1 ve bazi
ozellikleri incelenmistir.

Calismanin {igiincii boliimiinde, neutrix ve neutrix limit kavramlart 6rnekleri ile
birlikte verilmistir.

Son boliimde ise Oncelikle neutrix kavraminin distribiisyonlarin kompozisyonunu
tanimlamada nasil kullamldigina yer verilmis daha sonra da x_*lnx_ ve x/
distribiisyonlarinin neutrix kompozisyonu ile x_*/n""x_ ve H(x) distribiisyonlarin
neutrix kompozisyonlar1 hesaplanmagtir.

Anahtar Sozciikler
Neutrix, neutrix limit, distribiisyon, neutrix kompozisyon
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ABSTRACT

SOME APPLICATIONS OF NEUTRIX CALCULUS TO COMPOSITION
OF DISTRIBUTIONS

Emine CAKMAKCI

M.Sc. Thesis, Department of Mathematics
Supervisor: Assist. Prof. Inci EGE
2016, 33 pages

The Composition of distributions is a problem studied from the earliest days of the
development of the distribution theory. British mathematician Brian Fisher defined
the neutrix composition of distributions using the concept of neutrix limit has been
developed by Van Der Corput. In this study, it is intended to show the existence
of some distribution of neutrix composition and to calculate compositions of these
distributions.

The thesis consists of four chapters.

In the first and second chapter, entry and test functions space, which is necessary
to give the definition of distribution, have been defined and after the distribution
space and its some properties have been investigated.

In the third chapter, neutrix and neutrix limit concepts have been given with
examples.

In the last chapter, how to use the concept of the neutrix on the defining of the
composition of distributions has been given and then the neutrix composition of
distributions x_*Inx_ and x, , x_*In" x_ and H (x) have been calculated.

Key Words
Neutrix, neutrix limit, distribution, composition of neutrix
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1. GIRIS

Distribiisyonlar teorisi ilk olarak Sobolev tarafindan verilmis ve daha sonra
L. Shwartz tarafindan sistematik olarak gelistirilmistir [17].  Distribiisyon
kavrami; fonksiyonel analiz, uygulamali matematik gibi matematiksel disiplinlerde
kullanilmasinin yaninda fizik ve miihendislik gibi alanlarda da kendine genis bir
yer bulmustur [5,6,10,15].

Test fonksiyonlar1 iizerinde verilen toplama, skalerle carpma islemleri keyfi
distribiisyonlara genisletilebilirken; c¢arpma, kompozisyon ya da degisken
degistirme gibi islemler sadece belirli distribiisyonlar ic¢in yapilabilmektedir.
Ornegin, 82 ya da v/8 gibi ifadelerin tanimlanmasinda distribiisyon teorisi tek
bagina yeterli degildir. Bu sebeple matematikciler yeni matematiksel yaklagimlar
geligtirmiglerdir. Bunlardan bir tanesi de B. Fisher tarafindan neutrix kavrami
kullanilarak verilen distribiisyonlarin kompozisyonu tanimidir [13].

Neutrix kavrami van Der Corput tarafindan gelistirilmistir [3]. Yakinsak olmayan
integrallerden, uygun olarak tamimlanmig 1raksak parcanin atilmasi ile elde
edilen sonlu par¢ca Hadamard sonlu toplam olarak adlandirilir [12]. Hadamard
metodu neutrix calculus’un bir uygulamasi seklinde diisiiniilebilir. Hazirlanan bu
yiiksek lisans tezinde x_* Inx_ ile x’, distribiisyonlarinin neutrix kompozisyonunun
ve x_*In"x_ ile H(x) distribisyonlarinin neutrix kompozisyonlarinin varligt

gosterilerek sonuglar1 hesaplanmaigtir.
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2. DISTRIBUSYON UZAYI

2.1. Giris

Bu boliimde test fonksiyonlar1 uzay: iizerinde tanimli distribiisyonlarin bazi temel

ozellikleri verilecektir.
2.2. Test Fonksiyonlar1 ve Distribiisyonlar

Gergel sayilar kiimesi iizerinde tanimli gercel(veya karmagsik) degerli bir ¢
fonksiyonunun destegi {x € R : ¢(x) # 0} noktalar kiimesinin kapanigidir ve
supp@ ile gosterilir. Her mertebeden tiirevlenebilen gercel degerli ve destegi
kompakt olan bir fonksiyona test fonksiyonu denir. Test fonksiyonlar1 kiimesi
tizerinde tanimlanan toplama ve skalerle carpma iglemi ile dogrusal bir uzaydir ve
D ile gosterilir.

{@n} C D test fonksiyonlarinin bir dizisi olsun. Eger her n i¢in ¢, fonksiyonlari
n’den bagimsiz olarak ayni sinirli bolge disinda sifirlaniyor ve her mertebeden
tiirevleriyle birlikte sifira diizgiin yakinsak oluyorsa {¢@,} dizisi D uzayinda sifira

yakinsaktir denir.

Ornek 2.1.
(—522)
_ ) e 2 x| <3,
X)) =
¢(x) { 0. >3
fonksiyonunu goz oniine alahm.  @(x) her mertebeden tiirevlenebilir bir
fonksiyondur ve supp@ = [—3,3] kiimesidir. ¢ fonksiyonu yardimiyla tanimlanan

@u(x) = Lo(x) (n=1,2,...) dizisi D uzay: icinde sifira yakinsar. Fakat ¢, (x) =
lo(%) (n =1,2,...) ile tammlanan {@,} dizisi biitin fonksiyonlarin disinda

stfirlandig1 ortak bir sinirli bolge bulunamayacagindan D uzayinda sifira yakinsak

degildir.
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Tanmm 2.2. [11] D test fonksiyonlar uzay: iizerinde tanimli bir f fonksiyoneli
asagidaki kosullar1 sagliyor ise f’ye distribiisyon denir.

i. Her @1, ¢» € D fonksiyonlari ve a;,a; gercel sayilar igin

(fra1Q01+ar@:) = ai(f, 1) +ax(f,¢2), (f nin dogrusallig1)

ii. D uzay: icerisinde her sifira yakinsayan {¢,} dizisi i¢in {(f, ¢,)} gergel say1

dizisi de sifira yakinsar (f’nin siirekliligi).

D uzay1 iizerinde tamimh distribiisyonlar uzay1 D’ ile gosterilir. Distribiisyona
ornek olarak keyfi yerel toplanabilir (R’nin siirli her alt aralifinda mutlak
integrallenebilir) bir fonksiyonu alabiliriz. Keyfi bir ¢ test fonksiyonu igin f

fonksiyonuna karsilik gelen distribiisyonu

(1.0) = [ Fx)px)dx @21)

ile tanimlarsak f fonksiyoneli Tanim 2.2°de verilen i ve ii kosullarini saglar. Ayrica
burada integral ¢’nin destegi lizerinden alinmaktadir ve degeri sonludur. Boylece
R tizerinde tanimli her yerel toplanabilir fonksiyon bir distribiisyon tanimlar.
(2.2.1) esitligi ile tanimlanabilen distribiisyonlara regiiler ve digerlerine de
singiiler denir.

Simdi de (2.2.1) esitligi ile ifade edilemeyen distribiisyonlarin varligini gésterelim.

¢ € D olmak iizere f distribiisyonunu

(f,0) = 0(0) (2.2.2)

ile tanimlayalim. Acik olarak f fonksiyoneli D uzay1 iizerinde lineer ve siireklidir
ancak (2.2.1) biciminde ifade edilemez. (2.2.2) esitligi ile tanimlanan fonksiyonele

Dirac-delta distribiisyonu denir ve 0(x) ile gosterilir. Yani,
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bicimindedir.

Genel olarak xo € R olmak iizere Dirac-delta distribiisyonu her ¢ € D i¢in

(6(x—x0),90(x)) = @(x0) (2.2.3)

esitligi ile tanimlidir.

Eger regiiler bir f distriblisyonu

(.00 =C [ pl)dr= [ co(x)ax

biciminde tanimli ise f distribiisyonu sabit C distribiisyonu olarak adlandirilir.

Ornegin birim fonksiyona kargilik gelen distribiisyon

(1.0) = [ p)dx
biciminde tanimlidir.
2.3. Distribiisyonlarm Baz1 Ozellikleri

Tanimindan da anlagilabilecegi gibi genel olarak verilen bir distribiisyonun bir
noktadaki degeri anlamli degildir. Ornegin bir distribiisyonun xo noktasinda
sifir oldugu sdylenemez. Ancak, xo noktasinin bir U komsulugunda sifir olmasi
tanimlanabilir.

D uzay: igerisinde supp@ C U olan her ¢ test fonksiyonu i¢in {f, @) = 0 oluyorsa
f distribiisyonu x noktasinin bir U komsulugunda sifirlantyor denir. Boylece bir
f(x) fonksiyonu xp € R noktasinin bir U komsulugunda hemen hemen heryerde
sifir ise f fonksiyonuna karsilik gelen distribiisyon da bu U komsulugunda
sifirlanir. Dirac-delta & (x — x;) singiiler fonksiyonu x # x; olan noktalarin keyfi
bir komgulugunda sifira esitlenir.

Eger bir f distriblisyonu x( noktasinin herhangi bir komsulugunda sifirlanmiyorsa
xo’a f distribiisyonunun esas noktast denir. f distribiisyonunun esas noktalarinin
olusturdugu kiime f’nin destegi olarak adlandirilir. § kiimesi, f fonksiyonelinin

destegini kapsayan bir kiimeyse bu durumda f, S icinde yogunlasmistir denir.
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Ornek 2.3. f: R — R, f(x) = x* fonksiyonu i¢in xo = O bir esas noktadr.
Aslinda, her x € R noktasi f(x) = x*> fonksiyonu igin bir esas noktadir. Boylece
Jf’nin destegi R gercel sayilar kiimesidir.

Siirekli ya da pargali siirekli bir f(x) fonksiyonuna karsilik gelen regiiler f

distribiisyonunun destegi f(x) # 0 olan noktalar kiimesinin kapanigidir.

Ornek 2.4.

o-{5: 128

ile tammli Dirac-delta fonksiyonuna karsilik gelen ve x = 0 noktasinda (2.2.3)

esitligi ile taniml1 distribiisyonun destegi xo = O tek nokta kiimesidir.

f ve g keyfi iki distribiisyon ve U C R acik bir kiime olsun. f — g farki U kiimesi
tizerinde sifirlantyor ise f ve g distribiisyonlar1 U kiimesi iizerinde cakisiktir denir.
Eger f ve g distribiisyonlar1 her noktanin keyfi bir komsulugunda cakisirsa bu
durumda her ¢ € Di¢in (f, @) = (g, ¢) bicimindedir. Yani; yerel 6zellikleri bilinen
bir distribiisyon tek olarak belirlenebilir.

f ve g keyfi iki distribiisyon ve o € R olsun. f -+ g toplami1 ve o f ¢arpimi sirasiyla

(f+&o)=(f,0)+(g0)

ve

<af,(P>:a<f,(P>:<f,a(P>

biciminde tanimlanir. Bu tanimla f + g ve o f fonksiyonelleri de birer distribiisyon
tanimlar. Boylece D’ dogrusal bir uzaydir. Ayrica f ve g regiiler ise f + g ve af
distribiisyonlar1 da regiiler olur.

Genel olarak iki distribiisyonun ¢arpimi tanimli olmamasina karsin bir distribiisyon
ile keyfi mertebeden tiirevlenebilir bir fonksiyonun ¢arpimi tanimlanabilir. Oyleyse
simdi, verilen bir f distribisyonunun sonsuz mertebeden tiirevlenebilen bir a(x)

fonksiyonu ile carpimim tanimlayalim. Ise oncelikle sunu belirterek baslayalim:
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Sonsuz mertebeden tiirevlenebilen bir a(x) fonksiyonu ve D uzay: igerisindeki bir
¢ (x) fonksiyonunun ¢arpimi olan y(x) = a(x)@(x) fonksiyonu yine D uzayindadir.
Ayrica ¢, (x) fonksiyonlar dizisi D uzay: iginde sifira yakinsak ise a(x)@,(x) dizisi

de yine D i¢inde sifira yakinsar. Buradan af carpimi her ¢ € D icin

(af, @) = (f.a9)

esitligi ile tanimlanir. af fonksiyoneli dogrusaldir. Ayrica af siirekli bir

fonksiyoneldir. Ciinkii eger ¢,(x) — 0 ise a(x)@,(x) — 0 ve boylece

(af,@,) = (f,ap,) — 0

elde edilir. Ayrica,

(af.0)=(f.a9) = [ f)lax)o(oldx
= [lats@p)dx

oldugundan yerel toplanabilir bir f(x) fonksiyonuna karsiik gelen f
distribisyonunun sonsuz mertebeden tiirevlenebilir bir a(x) fonksiyonu ile

carpimi, f(x)’in a(x) ile carpimina karsilik gelen distribiisyon olur.

f, xo noktasim1 bulundurmayan her kapali aralikta yerel toplanabilir bir fonksiyon

olmak iizere genel olarak
[ r@pax 234

integrali 1raksaktir. Ancak ¢ test fonksiyonu xp’1n bir komsulugunda sifirlanirsa
(2.3.4) integrali yakinsak olur. Bu sonucu kullanarak yeni bir fonksiyonel insa
edebilir miyiz sorusuna cevap verelim. Ayrica, elde edilen bu fonksiyonel bir
distribiisyon tanimlasin ve xo noktasinin bir komgulugunda sifirlanan her ¢ € D

icin (2.3.4) integrali ile aynmt degerde olsun. Bu tipteki fonksiyoneller f(x)’in
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regiilerizasyonu (diizenlemesi) ya da (2.3.4) waksak integralin regiilerizasyonu
olarak adlandirilir.

Ornegin f(x) = % fonksiyonu i¢in regiilerizasyon a,b>0 degerleri icin

(f, ) = l_a(’)ix) (”( =90, +/ o) (2.3.5)

biciminde verilebilir.

Regiilerizasyon farkli bir yolla da tamimlanabilir:  f(x) fonksiyonunun
regiilerizasyonu, siirekli dogrusal bir fonksiyoneldir ve bu fonksiyonel xy noktasi
hari¢ her yerde f(x) ile cakisiktir. Gergekten, xo’in bir komgulugunda sifirlanan
her ¢ € D test fonksiyonu i¢in (2.3.4) esitligi ile verilebilen bir f fonksiyoneli
varsa; bu durumda f, x; # xo olan tiim noktalarda f(x) ile cakigiktir. Ayrica, xo
noktasi hari¢ f(x) ile cakisan f fonksiyoneli i¢in (2.3.4) integral degeri, ¢ € D
fonksiyonunun xp noktasinin bir komsulugunda sifirlanmasi kosuluyla korunur.
Boylece f fonksiyoneli f(x) fonksiyonunun bir regiilerizasyonu olur.

Simdi de, wraksak integrallerin diizenlenmesi ile ilgili genel bir yontem olarak
asagidaki onermeyi verelim. Kolaylik agisindan, 6nermede xp noktasi olarak xo =0

alinacaktir.

Onerme 2.5. f (x)x™ yerel toplanabilir olacak sekilde pozitif bir m > 0 tamsayisi
varsa (2.3.4) wraksak integrali

o= [ 1w {ow-[o0)+o0us O OO gl

m!
(2.3.6)

biciminde diizenlenebilir.

Ispat. H(1 —x) fonksiyonu
H(l—x)_{ (1)’ x>1

, x<l1
esitligi ile tanimli olmak iizere x = 0 noktas1 disinda her yerde yerel toplanabilir

bir fonksiyon olan f(x)’in regiilerizasyonunun

/f (0(0)+9'(0)c+ W—l—...—i—W]H(l—x)}dx

2! m!
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esitligi ile verilebilecegini gosterelim.
(2.3.6) integrali her ¢ € D test fonksiyonu i¢in yakinsaktir ve siirekli dogrusal bir
fonksiyonel tanimlar. Ayrica ¢ fonksiyonu xo = 0 noktasinin bir komgulugunda

sifirlantyorsa (2.3.6) integrali yakinsak

(.9) = [ rx)p)dx
integrali bi¢imini alir. Bu durumda f fonksiyoneli, f(x) fonksiyonu ile x = 0
noktast diginda her yerde cakisir. Boylece f(x) fonksiyonuna kargilik gelen
distribiisyon (2.3.6) esitligi ile verilebilir. a

2.4. Distribiisyonlarin Tiirevi

Klasik analizde fonksiyonlarin her zaman tiirevlenebilir olmadigini biliyoruz.
Ancak bu durumun tersine, bir distriblisyonun tiirevinin her zaman ve her
mertebeden var oldugunu ve yine bir distribiisyon tanimladigini gosterecegiz.

Distribiisyonun tiirevinin tanimini verebilmek i¢in Oncelikle birinci mertebeden

siirekli tiireve sahip bir f(x) fonksiyonu yardimiyla elde edilen

(9= [ F s
esitlifini goz oOniine alalim. Burada ¢ test fonksiyonu oldugunda [a,b] kapali

aralig1 disinda sifira esitlendigi hatirlanarak kismi integrasyon kurali uygulanirsa
(19) = F@OWIT [ fx)e/(x)dx
= <f ) _(P,>
esitligi elde edilir.
Simdi bu esitlik yardimiyla bir distribiisyonun tiirevi tanimini verelim.

f, D iizerinde taniml siirekli dogrusal bir fonksiyonel olsun.
(8.0)=(f,—¢) (2.4.7)

esitligi ile tamimh g fonksiyoneline f distribiisyonunun tiirevi denir ve f’ ile

gosterilir.



Gosterimimize uygun olarak f’ fonksiyonelini

| r@ewdi=- [ fweax

biciminde de ifade edebiliriz.
(2.4.7) esitligi ile verilen g fonksiyonelinin bir distribiisyon tanimladigi
gosterilebilir. Boylece her distribiisyon bir tiireve sahiptir. Genel olarak; verilen

bir f distribiisyonunun n. tiirevi her ¢ € D i¢in

(FP @), o) = (=1)"(f(x), " (x))

esitligi ile tanimlanir.

Boylece verilen bir f distribiisyonunun her mertebeden tiirevi vardir.

Ornek 2.6. Heaviside fonksiyonu

I, x>0
H(x):{ 0, x<0

esitligi ile tanimlidir ve yerel integrallenebilirdir. Heaviside fonksiyonuna kargsilik

gelen distribiisyonu H ile tanimlayalim ve tiirevini bulalim. Her ¢ € D i¢in,

(H(x).9(x) = —(HE),¢'(x))
= — | ¢dr=p0)
— (5(0),0(x))

oldugundan H’(x) = J(x) bigimindedir.

Genel olarak d(x) distribiisyonunun n. tiirevi,

H @), 0() = (8" (x),0())

ile tanimlanir.
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Ornek 2.7.

= X, x>0
710 x<0

esitligi ile tanimh le_ fonksiyonuna kargilik gelen distribiisyon

—r—1<A < —r(reZz) degerleri i¢in Gel’fand ve Shilov tarafindan

who) = [ o -1 ¥ gl (0)]dx (248)

esitligi ile tanimlanmigtir [11].

A>—-r—1ved#—1,-2,...,—r degerleri igin (2.4.8) esitligi

oo7°(p dx = 17L(p —@(0)—x¢'(0 v 0 10)|d
/0 X (X) X /Ox |: (X) ( ) X ( ) ..... (r 1)' ( ):| X
') Y r qu71(0>
+/1 X (P(x)dx+kz:1—(k DA+ (2.4.9)

biciminde de ifade edilebilir. Ayrica (2.4.9) esitligini

/wahp(x)dx - /lel[<p<x)—<p(o>— ..... —(r_l)!(p”l(o)}dx

oo X r_
+ [ ow-00)- ... b 0
=10
AR ()
(r—D!A+r)
seklinde yazarsak bu integralin A = —r degeri i¢in 1raksak oldugu goriiliir. Esitligin

sag tarafindaki iraksak kisim ihmal edildiginde kalan integral yakinsak olur.
Boylece Gel’fand ve Shilov A = —r degeri icin x}" fonksiyonuna karsilik gelen
dstribiisyonu

xrfl

o) = /0 o) - 0(0) .. —(r_l)!wr_l(O)H(l—x)]dx (2.4.10)
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biciminde tanimlamiglardir. Ancak burada x}" distribiisyonunun X

+
distribiisyonunun A = —r noktasindaki degeri olmadigin1 6zellikle vurgulamamiz
gerekir. Ornegin x* (A # —1,-2,...) distribiisyonu igin

) P
= Axy (24.11)

esitligi saglanir. Fakat, r = 1,2, ... olmak iizere x," distribiisyonu igin (2.4.11)
esitligi gecerli degildir.
Ciinkii her ¢ € D i¢in;

(Lrot) = 9 W)
4 /wa—r[w'(x)—d(m— ..... (rxill)!w(O)Ha—x)}dx
_ /0 e (000~ ¢'(0) . (rx:_ll)!(p’(O)}dx
_ /1 mx_r[(p/(x)—(p/(O) ..... (rx:;!wr-l(oﬂdx
yazilir ve kismi integral alinirsa
(Lol = - / T [p0) - 9(0) o~ S0 OH(1 )] dn
N w(’:!(o)

bulunur.

Bu sonuctan yola ¢ikilarak

esitligi elde edilir [11].

xﬁ fonksiyonunun Ay noktas1 komsulugunda Taylor serisi a¢ilimina bakildiginda
kargimiza

d“‘x’l
dAs

A 1.8 _
Xy In*xy =
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esitligi ile taniml distribiisyon ¢ikar. A > —1 ve s = 1,2, ... de8erleri i¢in bu yerel
integrallenebilir bir fonksiyondur.

—r—1<A<-r, s=1,2,...degerlerii¢in @ € D olmak iizere

oo r=2 (i) (r—1)
A 1.8 _ A 1,8 ¢ (0) () (0) r—1
K In'xp, @) = /0 x* 1n x{(p(x)—;) TR )i H(1—x)x"""|dx

(=1)*ste1(0)

L P T

Bu esitligin en sonundaki ifade A = —r degeri icin 1raksadig1 agiktir.
Gelfand ve Shilov bu 1raksak parcayr yok sayarak geriye kalan integralle

F (x4, —r)In’x; distribiisyonunu tanimlamiglardir. Yani ¢ € D igin

oo r=2 (i)
Flrniwx o) = [ oww[ew-Y C O

(r=1)
. ¢ (0) H(l _x)xrfl

(r—1)!

| S
QU
=

esitligi ile tanimlanmagtir.
x;"In’x; fonksiyonuna karsilik gelen distribiisyona alternatif Ozg¢ag ve Fisher
tarafindan asagidaki gibi tanimlanmustir [1].

Oncelikle x; ' In*x, distribiisyonu

d
a(lnsﬂn) = (s+ 1)x; ' In*x;

esitligi ile tanimlanmgtir. Genel olarak x " In*x . distribisyonunun r,s = 1,2, ...
degerleri i¢in

X Inxy = F(xy, —r)In’x; + ﬂ%(r— 18UV (x)

(r—1)!
esitligi ile tanimlanmigtir. Burada

|0, r=0
llfs(i’) - SZ;:I V’sfil(i)7 r>1

ve Wo(r) = Yi_ i~ ! dir.
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3. NEUTRIX VE NEUTRIX LiIMIT

3.1. Tammmlar ve Ornekler

Bu béliimde iizerinde calisacagimiz bazi 6zel distribiisyonlarin kompozisyonunu
tanimlayabilmemiz i¢in gerekli olan neutrix ve neutrix limitin tanimlar1 yapilacak
ve ornekler verilecektir. Neutrix kavrami [3]’de verilmistir. Hadamard sonlu
parcanin elde edilmesinde kullanilan yontem, Neutrix Calculus’un bir uygulamasi

olarak diisiiniilebilir.

Tamim 3.1. [3] N’ # 0 bir kiime ve N” toplamsal degismeli bir grup olsun.

f:N' — N” bigimindeki fonksiyonlarin olusturdugu toplamsal degismeli grubu N
ile gosterelim. Eger N icindeki tek sabit fonksiyon sifir fonksiyonu ise, N kiimesine
neutrix denir ve N icerisindeki fonksiyonlar da ihmal edilebilir fonksiyonlar olarak
adlandirilir.

Boylece f € N ve her x € N’ igin f(x) = c(sabit) ise ¢ = 0 olmalidur.

Ornek 3.2. N’ tanim kiimesi [0, 1] = {x: 0 < x < 1} kapali arahig1 ve N kiimesi, N’
iizerinde taniml1 acosx + bx* bigimindeki fonksiyonlarin olusturdugu kiime olsun.

O halde N bir neutrixtir. Gergekten;

acosx+bx*=c ise a=b=c=0
elde edilir.
Ornek 3.3. Tanim kiimesi N’ = (0,1) acik araligi, deger kiimesi N” = R
olmak iizere f(¢) = ae~'/?> +b(Inlne~")? +o(¢) (a,b € R) bigiminde tanimlanan
fonksiyonlarin N kiimesini g6z oniine alalim. (o(€) fonksiyonlari limg_,go(€) =0

seklindedir). Bu durumda N bir neutrixtir. Gergekten, Ve € N’ icin ag~ /2 +

b(Inlne~")? +o(e) =cisea=b=c=0olur

Tamm 3.4. [3] N/, X topolojik uzayinin bir alt uzay1 ve b noktasi da N’ uzayina

ait olmayan bir limit noktasi olsun. N = {f : N’ — N” | lim,_,;, f(x) = cise c =0}
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kiimesi ile toplamsal degismeli N grubu tanimlansin. f N’ iizerinde tamimli reel
(veya komplex) degerli bir fonksiyon olsun. Eger f(x) —c € N olacak sekilde bir
¢ sabiti bulunabiliyorsa, bu durumda c sabitine f(x) fonksiyonunun neutrix limiti
denir ve
N-limf(x) =c¢
x—b

ile gosterilir.

Not 3.5. Tanim 3.4’de verilen N kiimesi bir neutrix tamimlar. Ciinkii f € N ve her
x € N i¢in f(x) = ¢ ise bu durumda x — b iken f(x) = ¢ ve bdylece ¢ = 0 elde

edilir.

Not 3.6. Eger neutrix limit varsa tektir. Gergekten, N bir neutrix ve ¢ ve ¢, sayilari
f fonksiyonunun N neutrixine gore iki neutrix limiti ise neutrix limit tanimindan
N—-limf(x) =c;, N-limf(x)=c
x—b x—b

ve N toplamsal degismeli bir grup oldugundan

(f)=c1) =(f(¥) mcr) =ca—c1 €N

elde edilir. N kiimesi neutrix oldugundan igindeki tek sabit fonksiyon sifir
fonksiyonu olacagindan

¢y —c1 =0 yani c¢; = ¢ bulunur.

Neutrix limit ile ilgili onemli sorulardan birisi de normal anlamda tanimlanan limit
ile neutrix limit arasinda bir iligkinin var olup olmadigina yoneliktir. Bu soruya

asagidaki ornek yardimiyla cevap verilebilir.

Ornek 3.7. N neutrixi lim,_.;, f(x) = 0 kosulunu saglayan fonksiyonlardan olugan
bir kiime olsun.
Bu durumda N bir neutrixdir ve x — b igin f(x) fonksiyonunun normal limiti c ise

neutrix limiti de vardir ve degeri ¢ sayisidir.
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Ornek 3.8. N neutrixi Ornek 3.3’deki gibi olsun.
fle) =21+ e2+4+5(Inlne')?

fonksiyonu icin

fle)=2€eN
olacagindan
N-limf(e)=2
e—0
olur.

Ornek 3.9. Tanim kiimesi N’ = (0, %) agik araligi, deger kiimesi N” = R olan
g, ole) (A<0, r=1.2,.)

biciminde ve € — 0 icin o(e¢) — 0 olan fonksiyonlarin sonlu dogrusal
toplamlarindan olugan N neutrixini gozoniine alalim.

Beta fonksiyonu (A, u), A,u > 0 degerleri i¢in

Bl = [ A1 ar

seklinde tanimhdir [1]. A > —r, u > —s, A #0,—1,...,—r+1, u#
0,—1,...,—s+ 1 degerleri igin Gel’fand ve Shilov (A, u) fonksiyonunu

3 r=1(_1)i .
e A R o e

v DTy
l;, AT (1 — i) (A +1i)
1

1 s—he 1) .
+ /é(l—z)ul[tll_i_o (i!rl()lr_();))(l—t)’}dt

oy
+ ;)2“+ii!l“(7t—i)(u+i)}dt
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esitligi ile tanimlamislardir [11].

SimdiA >-r, u>-s, A#0,—1,...,—r+1, pu=#0,—1,...—s+1 degerleri
icin B(A, 1) fonksiyonunu neutrix limit yardimiyla tanimlayalim.

/slgtll(lt)#ldtZ/:f’ll[(lt)“lrzj (F(L)TZ()‘;) }

i=0

T Z i'(A +]l))11:((“) i) =t

Jr[lg(l—t)“1 [t’H - Z (Z,F();LF( ))(l—t) }dr

2 =0
v (=DTA)
g ST v

(zfufi _ 8““)

olarak yazilir ve neutrix limite gegilirse (A, i) fonksiyonu
1-¢
B(?L,u):N—lim/ A1 — )R gy 3.1.1)
e—=0 Je

esitligi ile tammlanir [7].

Genel olarak (A, 1) Beta fonksiyonunun tanimi tim A ve u gergel degerleri igin
(3.1.1) esitligi ile tanimlanabilir.

Simdi, neutrix calculus’un distribiisyonlara uygulamasi ile ilgili bir 6rnek verelim.

Ornek 3.10. N neutrixi, tanim kiimesi N’ = (0,%) olmak iizere 6rnek 3.9’da
verilen ihmal edilebilir fonksiyonlardan olugsan kiime olarak alinsin. O zaman,

A # —1,-2,... degerleri ve her ¢ € D i¢cin

(ot @) = N—lim oO)c)L(p(x)a’x

e—0 Je

bicimindedir [8]. Gergekten; A > —n— 1, A # —1,—2, ..., —n degerleri igin

) xnfl
[ = [ 00— 00 ~x9'0) .- 0 (0)]as
+ / x)dx + Z —k 1)7501@ (1—e*h)

yazilir ve esitligin her iki tarafinin neutrix limiti alinirsa istenen elde edilir.
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4. DISTRIBUSYONLARIN NEUTRIX KOMPOZiSYONU

4.1. Tanmimlar ve Gosterimler

Kompozisyon tamimini vermeden Once, bir distribiisyona yakinsayan keyfi
mertebeden tiirevlenebilen fonksiyonlarin regiiler bir dizisini olusturacagiz. Bunun
icin ilk olarak; distribiisyon anlaminda Dirac-delta & (x) fonksiyonuna yakinsayan
regiiler fonksiyonlarin bir dizisini kullanacagiz. Bdyle dizileri olusturmanin
pek c¢ok yolu vardir. Bu tezde, Temple tarafindan gelistirilen &-dizisinden
yararlanilacaktir.

p(x) fonksiyonu her mertebeden tiirevi olan ve asagidaki 6zellikleri saglayan bir

fonksiyon olsun.

M p() =0, [ >1,

(ii) p (x) > 0,

(i) p (x) = p ().

(iv) [, p(x)dx = 1.

Bu durumda n = 1,2, ... degerleri i¢in ,(x) = np(nx) ile tanimh {5,} dizisi her

mertebeden tiirevlenebilen ve Dirac-delta fonksiyonuna yakinsayan bir dizidir.

Not 4.1. Yukarida verilen p(x) fonksiyonuna 6rnek olarak;
1 2\—1
k! :/ e =) dx
-1

olmak tizere

p(x) = { ke 207,y <1

0, x| >1

fonksiyonu verilebilir.

(a,b) aralig1 iizerinde tanimli her mertebeden tiirevli ve kompakt destegi (a,b)
icerisinde olan fonksiyonlar uzayim D(a,b) ile ve D(a,b) uzay iizerinde tanimli

distribiisyon uzayini1 D' (a, b) ile gosterelim.
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Keyfi bir f distribiisyonu i¢in { f,,} dizisini

) = (F*8)(x)

biciminde tanimlayalim. Boylece {f,} her mertebeden tiirevlenebilir
fonksiyonlarin bir dizisidir ve f distribiisyonuna yakinsar.

Neutrix kompozisyonun taniminda kullanilacak olan N neutrixi, tanim kiimesi
N' = Z*(pozitif tamsayilar kiimesi), deger kiimesi N’ = R ve ihmal edilebilir
fonksiyonlar1

AIn"'n, In'n, (A>0, r=1.2,..)

ile n — oo igin sifira yakinsayan fonksiyonlarin sonlu dogrusal toplamlarindan

olusan kiimedir.

Tamim 4.2. [2] F, D’ uzayi igerisinde bir distribiisyon, f yerel toplanabilir bir
fonksiyon ve n = 1,2, ... i¢in {F,(x)} dizisi F,(x) = (F * &,)(x) biciminde tanimlt
olsun. Her ¢ € D(a,b) i¢in

N—lim [ F,(f(x))@(x)dx = (h(x), p(x))

n—oo —oo

ise, (a,b) acik aralig1 tizerinde F (f(x)) kompozisyonu vardir ve h distribiisyonuna

egittir denir.

Tamim 4.3. [13,14] F ve f fonksiyonlari D’ uzayinda iki distribiisyon ve m,n =
1,2,... degerleri i¢in Fy,(x) = (F % 8,)(x) ve fiu(x) = (f * 8y)(x) ile tanimli olsun.
Eger her ¢ € D(a,b) igin

N—tim [N~ lim iFn( Fn()(x)dx] = (h(x), 9()

n—soo m—soo ) _

ise, (a,b) acik aralig1 iizerinde F (f(x)) kompozisyonu vardir ve h distribiisyonuna

egittir denir.
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Not 4.4. Her siirli yerel toplanabilir f fonksiyonu i¢cin Tanim 4.3 Tanim 4.2 nin

bir genellemesidir.

Teorem 4.5. [16] s =1,2,... degerleri icin [H(x)|~* distribiisyonu vardir ve
[H(x)]™* = H(x) @.1.1)

bicimindedir.

Teorem 4.6. [16] s =1,2,... degerleri icin [H(x)|_°* ve [H(x)||* distribiisyonlar

vardir ve

[H(x)|=*=0 (4.1.2)

[H(x)]) 7" = H(x) (4.1.3)

seklinde tamumbidr.

x~* ve x~'Inx_ distribiisyonlar1 s = 1,2, ... degerleri icin

 (Inx_)® 1
= ((snil))' ve x 'lnx_ = —E(lnzx,)’ (4.1.4)

esitlikleri ile tanimlidir [10]. Ayrica x;° ve x;l Inx, distribiisyonlar1 s = 1,2, ...
degerleri i¢cin

(~1)" (Inx.)"
(s—1)!

esitlikleri ile verilmigtir [10].

1
X = ve@%u:dwuy (4.1.5)

Burada x_* ve x° distribiisyonlarinin Gelfand ve Shilov [11] tarafindan verilen
tanimlar ile aym olmadigma dikkat edilmelidir. x~"'Inx_ ve x;" “nx,
distribiisyonlar1 r = 1,2, ... de8erleri i¢in siras1 ile

2 (x T Inx )

r

x T nx. = (4.1.6)
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ve

X = ()

r

oy = (4.1.7)

esitlikleri ile verilmistir [6]. (4.1.6) ve (4.1.7) esitliklerinde tiimevarim yapilirsa

(11'12 xf)('drl)
2r!
(=1) (I, )+
2r!

el = ¢ - (4.1.8)

My = @@+ (4.1.9)

esitlikleri elde edilir [9]. Burada goriilen ¢ (r) fonksiyonu

roo.—1
. ile 3 r:1,27...,
¢(r)_{ 0, r=0

seklinde tanimlidur.
4.2. x_’Inx_ ve x_ Distribiisyonlarinin Neutrix Kompozisyonu

Teorem 4.7. [4] r,s = 1,2,... degerleri icin (x', )_* distribiisyonu vardir ve

:/ Intp(t)dt
0

olmak iizere

_(_1)”+sc(p) (rs—1)
I (4.2.10)

bicimindedir.

Simdi x_*Inx_ ve x_ distribiisyonlarinin kompozisyonuna ge¢gmeden 6nce bu
kompozisyonlarin varligini géstermek icin yararlanacagimiz ve ispatlari kolaylikla

yapilabilecek olan bazi lemmalar verelim.

Lemma4.8. [4]r=0,1,2,... degerleri icin

(l)/ Vipt) dv-{ . Osi<r “2.11)

=)l i=r

L) + (~1)rie(p) (4.2.12)

1
(ii) / Vinvp " (v)dv =
0 2



Lemma4.9. [4]r=0,1,2,... degerleri icin

/01 v In?vp " (V)dv = (—1)"r1[1 (r) + 26 (r)e(p) + 1 (p)]

Burada c1(p) ve ¢1(r) fonksiyonlar: sirastyla

1
:/ In?tp(t)dt
0
0, r=0,1,
hlr) = { Y- II?JF r=2,3,..
Lemma 4.10. [4]r=0,1,2,... degerleri icin
1 1
(i)/o vrln(l—v)dv:—q)(rrjl )

(i)/olvrlnz(l —V)dv = W

(4.2.15) esitliginde gecen ¢ (r) fonksiyonu

(i)

1 i

™

P (r) =

1

tammidrr.
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(4.2.13)

(4.2.14)

(4.2.15)

Ik olarak Teorem 4.6’min bir genellemesi olan ve [4]’de ispatlanan asagidaki

teoremi verelim.

Teorem 4.11. [4] x_*Inx_ ve H(x) distribiisyonlarinin kompozisyonu ile x.* Inx,

ve H (x) distribiisyonlarinin kompozisyonu s = 1,2, ... degerleri i¢cin vardir ve

[H(x)]—*In[H(x)]- =0

[H(x)]5" In[H (x)]+ = ¢ (s — 1)H (x)

esitlikleri ile tammldir.

(4.2.16)

(4.2.17)
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Ispat. H(x) ve x*Inx_ distribiisyonlar (4.1.8) denkleminde yerine yazilirsa

n2[H ()] )6
U%MTMH@]=¢@—WH@EKA151JQ

esitligi elde edilir  (4.1.2) esitliginden [H(x)]—* = 0 oldugundan simdi
(In?[H (x)]- ) kompozisyonunu hesaplayalim.

(In2[Hx)])S = 2 [H @)= * 8 (x)

oldugundan

1
" In?(1-1)-8 (0)dr, x>0,
IZIHZ[H(X)]_*&ES)(X) il f—; n”( ) (t)dt, x>

1
Jorn2 18 (1)dt, x<0

0, x>0,
= 1
IR In?8." (t)dt, x<0
elde edilir. nt = v doniisiimii ile kismi integrasyon yapilir ve esitligin her iki

tarafinin neutrix limiti alinirsa

1
N—lim/ = N—lim [ "In2¢8\" (r)dr

n—soo n—eo  Jo
!

= N—limns/ (Inv —TInn)>p*(v)dv =0
n—soo 0

esitligi elde edilir.
Boylece her ¢(x) € D(a,b) i¢in

N-lim{Z,9) = N-—lim([[H (x)]="In[H (x)] -], ¢(x))

n—soo n—soo

= /ab o(x) /Ol(lnv—lnn)zps(v)dvdx =0

oldugundan (4.2.16) esitligi elde edilir.
Simdi  (4.1.9) esitliginden yararlanarak (In?[H(x)],)®) kompozisyonunu

inceleyelim.

1
[ (108 (1)dt, x>0,

In?[H (x)]4)®) % 8, (x) = "
(0 H @) ) 10 2188 (¢)dt, x<0



nt = v doniisiimil yapilarak kismi integrasyon alinirsa

%lnz(l—t)Sn(x)(t)dt = ns/l (i .Vi.>2p(s)(v)

1
-1 ilm

1
_ i i+1
Zl+l /—1v

1
n

esitligi elde edilir.
i+ 1> s degerleri i¢in
1
lim [ In%(1—1)8\" (1)dr =0

n—oo J_ 1
n

ve

i+ 1 < s degerleri i¢in (4.2.11) esitligi kullanilarak

1

N-lim [ " 1n2(1—1)8" (t)dt =0
n—yoo —=

bulunur.
Son olarak i+ 1 = s degeri icin (4.2.11) esitliginden
1
"2 (1 -8 (1)dt = 2(—1)*(s— D)1d(s — 1)

1
n

olur. Benzer sekilde / integralinin neutrix limiti alinarak

0
N—lim [ 1n?¢8(r)dt =0

n—yoo —

S =

esitligi elde edilir.
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dv

P (v)dv

(4.2.18)

(4.2.19)

(4.2.20)

4.2.21)

a < 0 < b olmak iizere @(x), D(a,b) uzaymnda keyfi bir test fonksiyonu olsun. Bu

durumda
N=lim{In?[H(x)])) 8,(0).9(x) = N—lim [ /
n—soo n—soo _1

o Netim [ o)
n—oo Jo _%

In? t5 t)dtdx

" (1-1)8 (t)drdx
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olur.
(4.1.9) esitliginden

(=1)* " (In*[H (x)]-))
2(s—1)!

yazilirsa (4.1.3) ile (4.2.18)-(4.2.21) esitlikleri kullanilarak (4.2.17) esitligi elde

[H(x)])In[H(x)]+ = ¢(s— 1)[H(x)]*+

edilir. O
x*Inx_ distribiisyonunu Fy(x) ile gosterelim. Ispatin1 verdigimiz son teoremde
r = 0 degeri igin Fy(x',) kompozisyonunu hesapladik. $imdi ise bu kompozisyonu

r=1,2,... degerleri i¢cin hesaplayacagiz.

Teorem 4.12. [4] Fy(x.) distribiisyonu r,s = 1,2,... degerleri igin

I Vs
F(x}) = W[ZC(PW(S— 1)+ ¢1(s)
+02(s) +e1(p) — 9%(5)) 8V (x) (4.2.22)

esitligi ile tamumlidir.

Ispat.  ¢(x), D(a,b) uzayinda keyfi bir test fonksiyonu olmak iizere Fy(x',) =
(x".) " In(x”, ) — yazarak N—lim, . ([Fs(x".)]s, @(x)) (4.1.8) esitliginde x yerine x’,
yazarak neurix limitine bakalim.

20 )
()= In() - = d(s—1)(x,) =" — (12((s+)1))' (4.2.23)

esitligi elde edilir. r,s = 1,2, ... degerleri i¢in
1

(In2(})_) 6% (x) = _ﬁ (Y, —1)_8%) (r)dr

1
n

[0 (=)W ()dr, 0<x<n+,
= fO% 28\ (¢)dt, x <0,
0, x>nr
olacagindan Taylor teoremi kullanilarak 0 < € < 1, a < 0 < b ve supp@ C (a,b)

olmak iizere

rs—1 i X"

X ' rs
o)=Y 500+ 0" (ex)
i=0 *°

r!



elde edilir. Simdi

0 ru
N—lim / / In? 18 (1)@ (x)dtdx
n—oo a JO
1

n-r L
+N—lim / / 1n2(1 =8 (1) (x)didx
0 x"

n—yoo

=N-lim/; + N—lim/,

n—soo n—soo

neutrix limit degerlerini hesaplayalim. / integrali i¢in

o 1 1 0
_ / /0 10218 (1) @ (x)dtdx = ( /0 n26) ()dr) / (x)dx)

yazarsak neutrix’in tanimindan

N-lim/; =0

n—eo

elde edilir.
Simdi de I, integrali i¢in nf = v ve x" = ut doniisiimii yapilirsa

1
rs—l nor

)= 8\ ()dtdx

i=0
b [
(rs)! Jo

— Z s (i+1)/ /P 1+1

i=0

Sl

1
/ "In?(r — xr)s,?) (1) (ex)x" dtdx

\\—

1
% 1 - -1 2 (i+1)/r71d d 4 n- / l+l
/O[n(v uv) —Inn)“u udv )1 pl
1
x/ [In(v — uv) — Inn?ul* /1) (g(uy /n) /") dudv
0

esitligi elde edilir.

25

(4.2.24)

(4.2.25)

i=0,1,...,rs — 2 degerleri igin verilen integralin neutrix limit degeri hesaplanirsa

N—lim/ / In?(r —x")8\) ()dtdx = 0

n—soo
ve

i = rs degeri i¢in

/ o /|ln (t—x S)(t)]dtdx:o(n—%)

(4.2.26)
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olacagindan

1

lim / In?(t —x") 8" (t)dtdx = 0 4.2.27)

n—oo

elde edilir.
i =rs— 1 degerii¢in

/ P 1/ In2(t — x") 8" (¢)drdx
1

:/lp(s)(v)v / [In(v — uv) —Inn)*u* ' dudv

rJo

1 1
:7/ pl /m L dudv
rJo
2 1
—flnn/ pl /ln u* L dudv

I
1 ”/ Pl ‘dv/ W du =y +Jr + Js

~l—

olur. Ayrica

1
rJi 7/ Pt v)»'In vdv/ ' du
0

+2/ p@(v)y lnvdv/ In(1 —u)u*du

+/p de/ In*( ' du
0

olacagindan 4.8 —4.10 lemmalar1 kullanilarak

rJi = (=1)'(s = )![91(s) +2¢(s)c(p) +c1(p)]
(=1 s = 1)19(5)[9(5) +2¢(p)] + (—1)°(s— 1)!9a(s)
= (=1)(s = 1)![g1 (s) +c1(p) — 9> (s) + ¢2(s)]

esitligi elde edilir. Diger taraftan, J, ve J3 integrallerinin neutrix limitlerinin

N-limJ, = N-limJ; =0

n—yoo n—soo
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oldugu kolaylikla goriilebilir. Bu durumda
1

N—1lim( / 2 — 088 (t)dr, p(x)

n—soo

:\'—

rs—1 n %
N 1 Z (P / x'In?( ()()dtdx
,% 1
+N—1im ? / / 2 (t —x") 8. (¢)drdx
n—yoo
_ (—1)S(S—1)

sy 9V O)91(9) + 0a(5) +ea(p) ()]

elde edilir. Buradan

P, L <—11> < / I, —1) -8 (1)dt, 9 (x)

ONLLEL GRRLE 0] 05-1)g)

olur. Boylece (4.2.10) ve (4.2.23) esitlikleri kulanilarak

Fs(xr ) _ (_1)s+rs[¢1( )zr((i)i()l_;cl( ) (PZ(S)] 5('1?71)()6)

+o(s—1)

_ rs-‘rsc
ST

(4.2.22) esitligi elde edilmis olur. O

(4.2.22) esitliginde x yerine —x yazarak asagidaki sonucu elde ederiz.

Sonug 4.13. [4] r,s = 1,2,... degerleri icin Fy(x") distribiisyonu

_1)\s—1
R = o L elp)os = 1)+ 016) (42.28)

+a(s) +c1(p) — ¢7()]8 " (x)

ile verilir.
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4.3. x_*In" x_ ve H(x) Distribiisyonlarinin Neutrix Kompozisyonu

Teorem 4.14. [4] s,m = 1,2,... degerleri i¢in x_*In"x_ ve H(x)

distribiisyonlarinin kompozisyonu vardir ve
(H(x))_*In"(H(x))- =0 (4.3.29)

esitligi ile ifade edilir.
fspat. F,(x) =x*In"x_ ve Gyn(x)=(In""'x_)( olmak iizere G, (x)

fonksiyonu
I .
Gsm (x) = Z Cs,m.,ix:s In'x_
i=0

esitligi ile yazilabilir. Bu esitlikde i < m — s ise c¢y,,; = 0 seklindedir.

D(a,b) uzayinda alinan keyfi bir ¢ fonksiyonu i¢in

N—Im(Gypmn(H(x)), 9(x))

n—oo
neutrix limitini hesaplayalim.

Gym(x) = (IN" 1 x_)09) esitligi kullamlarak

n

Gymn(x) = (I x )9 x8,(x) = [ ™ (x—1)_8\) (1)ar

_1
olur. Bu durumda
1
[ ™ (1 =) 8Y ()dt, x>0,
Gsmn(H(x)) = —j o
Jo ™8,V (1)t x<0

0, x>0,
= 1
Jowm 89 (1)dr, x <0

esitliginde

1 1
/ lnm+1t5,$s>(t)dt = n"'/ In"*! <v>p(v)dv
0 0 n
1

= n“‘/ [Inv —Inn)" ' p(v)dv
0
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oldugundan neutrix limit yardimiyla

n—oo n—oo

0o b
N—1im(Gyma(H(x)),0(x)) = N—lim [ @(x) / 188 (1)dr
a 0

= 0
elde edilir. Boylece Gy, (H (x)) kompozisyonu vardir ve
Gym(H(x)) =0 (4.3.30)

olarak elde edilir.

i=0,1,2,...m—1ves=1,2,... degerleri i¢in F; ;(H(x)) = 0 olsun. m = 1 degeri
icin (4.1.2) esitliginden F; ;(H(x)) = 0 esitligi dogrudur.

O halde

m—1
Gs,m (H(x)) = ;) Cs,m,iFs,i(H(x)) + Cs,m,mFs,m (H(x))

yazabilecegimizden ve ¢, 7 0 oldugundan (4.3.30) esitligini ve kabuliimiizii
kullanarak F; ,,(H (x)) = 0 elde ederiz. Boylece (4.3.29) esitligi elde edilir. Bu ise

teoremin ispatini bitirir. a
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