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KONEKSiYONLAR
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Tez Damismani: Prof. Dr. Ahmet YILDIZ

OZET

Bu tez 4 boliimden olusmaktadir.

Birinci boliimde temel kavramlar ve iizerinde ¢alisacagimiz degme manifoldlardan s6z
edilmistir.

Ikinci boliimde genel anlamda yeni bir ceyrek-simetrik metrik olmayan koneksiyon
tanimu yapilarak bu koneksiyonun bazi 6zel durumlara gore siniflandirilmasi verilmistir.

Uciincii boliim iki kisimdan olusmaktadir. Birinci kisimda yari-simetrik metrik
koneksiyonu ile verilen n-boyutlu Kenmotsu Manifoldlar i¢in bazi egrilik sartlar1 incelenmistir.
Ikinci kisimda ise Ricci soliton ve gradyant Ricci soliton kavramlarina deginilmistir. ilk olarak
ceyrek-simetrik metrik olmayan koneksiyon ile verilen 3-boyutlu trans-Sasakian manifoldlar
icin Ricci soliton ve gradyant Ricci soliton kavramlari incelenmistir. Daha sonra ise ayni
kavramlar ¢eyrek-simetrik metrik koneksiyon ile verilmig 3-boyutlu normal hemen hemen
degme manifoldlar igin irdelenmistir.

Son boliim ise tezimizin orijinal kismini olusturmakta olup, iki kisimdan meydana
gelmektedir. ik kisimda 6zel olarak tammlanan ceyrek-simetrik metrik olmayan koneksiyon ile
verilen 3-boyutlu quasi-Sasakian manifoldlar i¢in ilk 6nce bazi egrilik sartlari incelenmis daha
sonra ise soliton kavramlari ele alinmustir. Ikinci kisimda ise yine ayni1 koneksiyon ile verilen 3-

boyutlu f-Kenmotsu manifoldlarda soliton kavramlarina deginilmistir.

Anahtar Kelimeler: Ceyrek-Simetrik Metrik Koneksiyon, Ceyrek-simetrik Metrik Olmayan
Koneksiyon, Gradyant Ricci soliton, 3-boyutlu f-Kenmotsu Manifoldlar, 3-boyutlu Normal
Hemen Hemen Degme Manifoldlar, 3-boyutlu Quasi-Sasakian manifoldlar, 3-boyutlu Trans-
Sasakian Manifoldlar, Ricci Soliton.
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DIFFERENT CONNECTIONS ON ALMOST CONTACT METRIC MANIFOLDS
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Mathematic Department, Ph.D. Thesis, 2016
Thesis Supervisor: Prof. Dr. Ahmet YILDIZ

SUMMARY

This thesis consists of four chapters.

In the first chapter, basis notions and contact manifolds which we worked on later are
mentioned.

In the second chapter, in general meaning a new quarter symmetric non metric
connection is defined and is given classification of this connection with respect to some
specific conditions.

Third chapter consists of two parts. In the first part,for n-dimensional Kenmotsu
manifolds given with semi-symmetric metric connection, some curvature conditions are
investigated. In the second part, Ricci soliton and gradient Ricci soliton notions are referred.
Firstly, for 3-dimensional trans-Sasakian manifolds given with quarter symmetric non metric
connection, Ricci soliton and gradient Ricci Ricci soliton notions are surveyed. Later same
notions are studied for 3-dimensional normal almost contact metric manifolds given with
guarter-symmetric metric connection.

Last chapter is original part of our thesis and consists of two parts. In the first part,
some curvature conditions are investigated and soliton concepts are taken for 3-dimensional
guasi-Sasakian manifolds given with special defined quarter-symmetric non-metric connection.
In the second part, soliton notions are dealed for 3-dimensional f-Kenmotsu manifolds with

same connection.

Keywords: Quarter-Symmetric Non-Metric  Connection, Quarter-Symmetric metric
connection, 3-dimensional quasi-Sasakian manifolds, 3-dimensional f Kenmotsu manifolds, 3-
dimensional Trans-Sasakian manifolds, 3-dimensional normal almost manifolds, Ricci soliton,
Gradient Ricci soliton.
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SIMGELER VE KISALTMALAR DiZiNi

Simgeler Aciklama

M Manifold

o} Metrik tensor

L1 Lie operatorii

x(M) Vektor alanlarinin uzay1

v Ceyrek-simetrik/Yari-simetrik metrik/metrik olmayan koneksiyon
\Y Levi-Civita koneksiyon

T Torsiyon tensorii

R Riemann egrilik tensorii

R V koneksiyonuna gore Riemann egrilik tensorii
S Ricci tensorii

S V koneksiyonuna gére Ricci tensérii

T Skaler egrilik

T V koneksiyonuna gére skaler egrilik

C Weyl egrilik tensorii

C V koneksiyonuna gore Weyl egrilik tensorii

H Concircular egrilik tensorii

H V koneksiyonuna gore concircular egrilik tensorii
¢ quasi konformal egilik tensorii

®, 01, P2, P53 (1,1) tipinde anti simetrik tensor alani

nu 1-form

fi Diferensiyellenebilir fonksiyon



1.GIRIS

Bu boliimde diger boliimlerde kullanilacak olan bazi temel tanimlar ve manifoldlar

verilecektir.
1.1. Temel Kavramlar
Tamm 1.1.1.: M bir manifold ve M nin vekt6r alanlarinin cimlesi y (M) olmak tizere
V:x(M)xx(M) — x(M)
X,Y) > VX, Y) =VyY
doniistimii;
WVx(Y+2Z)=VyY +VyZ
i) Vixe)Z = VxZ + WZ
iii) VexY = fVxY

V) Ve (fY) = fVyY + (XY

ozelliklerini sagliyorsa Vya M iizerinde bir afin koneksiyon denir (O’ Neill, 1983).
Tamm 1.1.2.: M, bir manifold ve M nin vektor alanlarinin ciimlesi y (M) olmak tizere
g: x(Mxx(M) —C*(M,R)

doniisiimii asagidaki sartlar1 sagliyorsa bu doniisime M {izerinde Riemann metrigi veya

metrik tensor denir.

i) g doniistimi 2-lineerdir.

ii) g doniistimi simetriktir.

iii) g doniistimii pozitif tanimlidir.

(VX € y(M) icin g(X,X) =20, g(X,X) =0 e X =0) (Kobayashi ve Nomizu,
1996).

Tammm 1.1.3.: Uzerinde Riemann metrigi tanimlanms olan manifolda Riemann

manifoldu denir (O’ Neill, 1983).

Tanim 1.1.4.: M bir manifold ve M iizerindeki vektor alanlarinin uzayi y(M) olsun. M



izerindeki konneksiyon V olmak {izere
T: x(M)xx(M) — x(M)
X Y) >TXY) =VY -IhX—[X,Y] (1.1.1)

olarak tanimlanan vektor degerli tensore M tizerinde tanimli torsiyon tensorii denir (O’ Neill,
1983).

Tamm 1.1.5.: V bir K cismi lizerinde vektor uzayi ve [, ]: VxV — K doniisiimii de
i) 2-lineer
ii) Alterne (VX, Y € Vi¢in [X,Y] = —[Y, X])
iiiyvX, Y,Z € Vigin
[[X,Y],Z] +[[v,Z], X] + [[Z,X],Y] =0

olarak verilsin. [,] doniisiimiine, V istiinde bir Lie operatorii (Lie parantez operatorii) veya
Lie ¢arpimi denir. [X,Y] vektor alam X yoniinde Y nin LyY Lie tiirevi olarak da adlandirilir
(Yano ve Kon, 1984).

Onerme 1.1.1.: M n-boyutlu bir €% manifold ve M iizerindeki bir X vektor alam

yoniindeki Lie tiirev i¢in, VX,Y,Z € y(M) ve f , K cismi {izerinde bir fonksiyon olmak iizere
DLx(Y ®Z) = (LxY) ®Z+Y Q (LxZ)

i) Ly f = X(f)

i) LyY = [X,Y]

V) Lxg(Y,2) = Xg(¥,2) — g(X,Y],2) — g(¥,[X,Z])

ozellikleri gegerlidir (Yano ve Kon, 1984).

Tamm 1.1.6.: M bir Riemann manifoldu ve M iizerinde afin konneksiyon V olmak
izere VX, Y,Z € y(M) igin

) Vx¥ — VX = [X,Y]

i) Xg(Y,2) =g(VxY,Z)+ g(Y,VxZ)



ozellikleri saglaniyorsa ¥V ya Riemann koneksiyonu (Levi Civita konneksiyonu) denir (O’
Neill, 1983).

Tammm 1.1.7.: M n-boyutlu bir Riemann manifoldu ve V da M iizerinde tanimlanan

Levi-Civita koneksiyonu olmak tizere VX,Y,Z € y(M) i¢in;
29(VyY,2) = Xg(Y,2) + Yg(Z,X) - Zg(X,Y) — g(X,[V,Z]) — g(Y,[X,Z]) + g(Z,[X,Y])
ile tanimlanan ifadeye Kozsul formiilii adi verilir (O’ Neill, 1983).

Tamm 1.1.8.: M bir Riemann manifoldu ve M tizerindeki vektor alanlarinin uzayi y(M)

olsun. M fiizerindeki koneksiyon V olmak iizere
R: x(M)xx(M)xx(M) — x(M)
doniisiimii i¢in VX,Y,Z € y(M) olmak tlizere
R(X,Y,Z) =R(X,Y)Z

= WWWZ — WVxZ — VixyZ

= [V, WlZ — VixZ (1.1.2)
bigiminde tanimli (1,3) tipli tensor alanina Riemann eg@rilik tensorii denir (O’ Neill, 1983).

Onerme 1.1.2.: Bir Riemann manifoldunun R egriligi asagidaki 6zelliklere sahiptir.

VX,Y,Z € (M) ve f,g € C*(M, R) olmak lizere
i) x(M) xy(M) tizerinde bilineerdir. Yani
R(fX+gY,Z)=fR(X,Z)+ gR(Y,Z)
RX,fY+gZ)=fR(X,Y)+ gR(X,Z)
i) R(X,Y): x(M) — x(M) egrilik operatorii lineerdir (O’ Neill, 1983).

Tanmmm 1.1.9.: M bir Riemann manifoldu ve M {izerindeki vektor alanlari uzayi

x(M) olsun. V, M istiinde Riemann konneksiyon olmak tizere

K: x(M) xy(M)xy(M) xy(M) — C*(M,R)

(X,Y,Z,W) — K(X,Y,Z,W) = g(X,R(Z, W)Y)



bigiminde tanimli 4. mertebeden kovaryant tensére M iizerinde Riemann-Christoffel egrilik

tensorii denir (O’ Neill, 1996).

Onerme 1.1.3.: Riemann egrilik tensorii ve Riemann-Christoffel egrilik tensorii
asagidaki ozellikleri saglar (O’ Neill, 1996).

)K(X,Y,Z,W) = —K(Y,X,Z,W) = =K (Y, X, W, Z)

i) K(X,Y,Z,W) = —K(Z,W,X,Y)

iii) R(X,Y)Z + R(Y,2)X + R(Z,X)Y = 0

V) K(X,Y,Z,W) + K(X,Z,W,Y) + K(X,W,Y,Z) = 0
V) (TxR)(Y, Z)W + (ZyR)(Z, X)W + (V,R)(X, Y)W = 0
Vi) R(X,Y)Z = —R(Y, X)Z

Tamim 1.1.10.: M Riemann manifoldunda Riemann egrilik tensorii R ve {e;, e,, ..., e,}

bir ortonormal baz olsun.

S: x(M) xx(M) — C*(M, R)

() = SV = ) gR(e, NV, e)
i=1

bigiminde tanimli (0,2) — tipli tensor alanina M {izerinde Ricci tensor alam denir. Burada

S(X,Y) = S(Y,X) yani S simetrik bilineer formdur (Yano ve Kon, 1984).

Tamim 1.1.11.: M bir Riemann manifoldu olsun. T,M tanjant uzaymin iki boyutlu bir

alt uzayi I olmak tizere

gRW, W)W, X)
gv,MHgWw,w) — g(V,w)?

KW, W) =

ya II nin kesitsel egriligi denir ve K(II) ile gosterilir (O’Neill, 1996).

Tamm 1.1.12.: M, n > 2 boyutlu bir Riemann manifoldu olsun. Her X,Y € y(M) igin;

S(X,Y) = Ag(X,Y)



olacak bi¢imde M iizerinde bir A € R sayis1 var ise yani M nin S Ricci tensorii, g metrik

tensoriiniin bir kat1 ise M ye bir Einstein manifoldu adi verilir (Chen, 1973).

M zerinde bir vektor alam1 U olmak iizere, bir A 1-formunu  A(X) = g(X,U)
biciminde tanimlayalim. Eger M nin Ricci tensorii, VX, Y € y(M) icin;

SX,Y) =agX,Y) + bn(X)n(Y), a,beCc*®M,R) (1.1.3)

kosulunu sagliyorsa M ye bir quasi-Einstein manifold adi verilir (Chaki ve Maity, 2000). Eger

b = 0 ise M manifoldu bir Einstein manifold olur.

Tanmm 1.1.13.: M n-boyutlu bir Riemann manifoldu ve {e ey, ..,e,} lokal

ortonormal vektor alanlar1 olmak iizere;

=) S(e;€) (1.1.4)
2

fonksiyonuna M nin skaler egrilik fonksiyonu adi verilir (Yano ve Kon, 1984).

Tanim 1.1.14.: M n-boyutlu bir Riemann manifoldu olsun. Eger, M nin kesitsel egrilik
fonksiyonu sabit ise M ye sabit egrilikli uzay denir ve M(c) ile gosterilir (O’Neill, 1983).

Sonu¢ 1.1.1.: M n-boyutlu ¢ = sabit egrilikli bir Riemann manifoldu olsun. Bu

durumda M nin egrilik tensorii R olmak tizere VX,Y,Z, W € y(M) i¢in;
RX,Y,ZW) = c{g(V,2)g(X,W) - g(X,Z)g(Y, W)}
bi¢imindedir (O’Neill, 1983).

Sonug¢ 1.1.2.: M sabit egrilikli bir uzay form olsun. Bu durumda, n = 2 olmak tizere

eger
c=0ise M(c) = E™ Oklid uzay:

c= ri ise  M(c) = S™(r) kiiresi

2
c= —riz ise  M(c) = H™(r) hiperbolik uzay,
dir (O’Neill, 1983).

Tamim 1.1.15.: M, n-boyutlu bir Riemann manifoldu olsun. , ¥X,Y,Z € y(M) igin M

nin projektif egrilik egrilik tensorii P ve koncircular egrilik tensorii H sirasiyla



P(X,Y)Z = R(X,Y)Z — ﬁ [S(Y,Z)X — S(X,Z)Y] (1.1.5)
Y]

HX,Y)Z = R(X,V)Z —~ [g(Y, )X — g(X,2)Y] (1.1.6)

T
(n—-1)
seklinde tanimlanir (Yano ve Kon, 1984).

Tanim 1.1.16.: M n-boyutlu bir Riemann manifoldu olsun. VX,Y,Z € y(M) igin M
nin Weyl konformal egrilik tensor alani;
C(X,Y)Z = R(X,Y)Z — ﬁ [S(Y,2)X — S(X, 2)Y + g(Y,2)0X — g(X,Z)QY] +

o 9 DX — g(X, 2)Y] (1.1.7)

ile tanimlanir. Burada Q Ricci operatériidiir. Ayrica C nin divergensi k olmak tizere

K(X,Y) = (7Q)Y = (7, Q)X ~

1
2m=2) [(Vx)Y — (Vyr)X]

dir (Yano ve Kon, 1984).

Teorem 1.1.1.: M bir Riemann manifoldu olsun. M nin diizlemsel konformal olmasi

icin gerek ve yeter kosuln>3 i¢cin C = Oven=3i¢in k = 0 olmasidir (Yano ve Kon, 1984).

Tanim 1.1.17.: M n-boyutlu bir Riemann manifoldu olsun. Her X, Y, Zey(M) i¢in M

nin quasi-konformal egrilik tensor alani;

C(X,Y)Z = aR(X,Y)Z + b[S(Y,2)X — S(X, 2)Y + g(Y,Z)QX — g(X,Z)QY]

T

{-%+2b}19(r, 2)X - g(X, 2)Y] (1.1.8)

n

ile tanimlanir. Burada Q Ricci operatorii ve a, b sabitlerdir (Yano ve Sawaki, 1968).

Tamim 1.1.18.: ¢ = 0 veya div C=0 ise M manifoldu diizlemsel quasi-konformal
olarak adlandirilir (Chaki ve Ghosh, 1997).

Tamm 1.1.19.: M manifoldu tizerinde (0, k) —tipinde (k >1) bir T tensor alan1 ve

(0,2) —tipinde bir simetrik G tensor alani verildiginde R.T ve Q(G,T) tensorleri sirasi ile:

(R .T )(XI'XZ' ...,Xk; Xl Y)



= —TRX, V)X, Xz, Xi)—..— T (X1, X5, .., R(X, V) X}) (1.1.9)
Ve
Q(G, TYX1, Xz, s Xi; X, Y)
=—T((X N VX1, Xpy o, Xi)—o. = T (X1, Xy ooy (X Ag Y)Xp) (1.1.10)

bigiminde tanimlanir (Chaki, 1987).

Burada (1.1.9), (1.1.10) denklemlerinde T yerine R ve G yerine g alindiginda
(R R )(Xl,Xz,X3,X4; X’ Y)

= —RRWX, V)X, X5, X3,X4)—...— R (X{, X5, X3, R(X,Y)X,) (1.1.11)

Q(glR )(Xl,Xz, "'JXk; X: Y)
= =R (X Ag V)X0, Xp0 o X)) == R (X1, Xy o0, (X g Y)X,) (1.1.12)
bulunur.

Eger R.R = 0ise M ye yari-simetriktir denir (Chaki ve Maity, 2000). Eger R.S = 0
ise M ye Ricci-semisimetriktir denir. Eger R.C = 0 ise M ye Weyl-semisimetriktir denir
(Chaki, 1987).

RR=0=>RS=0ve R.R=0=>R.C = 0 gerektirmeleri saglanir. Fakat
tersleri her zaman dogru degildir (Chaki, 1987).

Tammm 1.1.20.: M, n-boyutlu diferensiyellenebilir bir manifold ve M {izerinde
(r, s) —tipinde simetrik bir tensér A olsun. Bu durumda 1 < a < b < s reel sayilar1 ve keyfi

bir r degeri igin
Cap: x5 (M)—= X5-2(M)

Card) 2 ngw s

REYEE)



bi¢giminde tanimlanan C,, operatorine a. ve b. Bilesenlere gore A tensoriiniin metrik
kontraksiyonu ad: verilir. Béylece kontraksiyon operatorii, (7, s) —tipindeki tensorii (r — 1,s — 1)
tipinde bir tensore donistiiriir (O Neill, 1983).

Tanm 1.1.21.: M n-boyutlu bir Riemann manifoldu olsun. M nin S Ricci tensori
VX,Y,Z € x(M) igin

(VxS) (@Y, 9Z) =0, (1.1.13)
sartin1 sagliyorsa manifolda n-paralel denir (Kon,1975).

Tamm 1.2.22.: M n-boyutlu bir Riemann manifoldu olsun. M iizerinde Ricci tensorii S

olmak tizere V X, Y, Z € y(M) igin eger;
(VxS Y, 2) + (VS)(Z,X) + (Vz9)(X,Y) =0, (1.1.14)
ise M ye dairesel paralel Ricci tensore sahiptir denir (Kon, 1975).

Tanmm 1.1.23.: M n-boyutlu bir Riemann manifoldu olsun. M nin R egrilik tensorii
VX, Y,Z,W € y(M) igin ;

P*(VxR)(Y,Z)W =0, (1.1.15)
kosulunu sagliyorsa M ye @-simetriktir denir (Takahashi, 1977).

Tanmm 1.1.24.: M n-boyutlu bir Riemann manifoldu olsun. M nin R egrilik tensorii
vX,Y,Z,W € y(M) igin ;

P*(VxO)(Y,Z)W =0, (1.1.16)
kosulunu sagliyorsa M ye @-konformal simetriktir denir.
Tamm 1.1.25.: C, n-boyutlu M tizerinde Weyl conformal egrilik tensoérii olsun.
C: T,M"xT,M"xT,M" - ¢ (T, M™)®L{&,}
olmak tizere,

)C:T,M"xT,M"xT,M™ - L{§,}, yani C min @(T,M™) iizerine goriintiisiiniin projeksiyonu
stfirdir.
i) C: Ty,M"xT,M"xT,M"™ - @(T,M") yani C min L{$,} iizerine gdriintiisiiniin projeksiyonu

sifirdir.



iii) C: o(TyM™)x(T,M™)xp(T,M™) - L{&,}, yani C @(T,M™)xp(T,M™")xp(T,M™) ye
kisitlandiginda, C min ¢ (T, M™) in {izerine goriintiisiiniin projeksiyonu sifirdir. Bu kosul da
©2C(pX,pY)pZ =0 (1.1.17)

esitligine denktir. Bir n > 3 boyutlu M manifoldunu ele alalim. (1.1.17) sartin1 saglarsa

diizlemsel @-konformal olarak adlandirilir (Zhen, 1992).
1.2. Degme Manifoldlar

1959 yilinda Gray’in hemen hemen degme yapry1 tanimlamasiyla beraber degme

manifoldlarla ilgili asagidaki tanimlar yapilmstir:

M, 2m + 1 boyutlu diferensiyellenebilir bir manifold olsun. ¢, (1,1) tipinde bir tensor
alani; & € y(M) ve n bir 1-form olmak iizere VX € y(M) icin

0*X = —X +n(X)¢, (1.2.1)

nE =1, (1.2.2)

sartin1 saglayan (¢, &, ) yapisina hemen hemen degme yapi, (M, @, &,1) manifolduna
ise hemen hemen degme manifold denir. ¢ M nin reeb vektor alani veya temel vektor alani

olarak da adlandirilir.

Ayrica M bir hemen hemen degme manifold olmak iizere (¢,&,n) degme yapisi ;

V X € y(M) igin asagidaki sartlar1 saglar (Yano ve Kon, 1984):

p¢ =0, (1.2.3)
n(pX) =0, (1.2.4)
rankg =n —1, (1.2.5)

M hemen hemen degme manifoldu V X,Y € y(M) olmak iizere
9(pX,9Y) = g(X,¥) =n(X)n(Y) (1.2.6)
olacak sekilde bir g metrik tensor alani igerir (Yano ve Kon, 1984).

2m + 1-boyutlu bir hemen hemen degme metrik manifoldu M ile hemen hemen degme

metrik yapisi (M, @, &, 7, g) verilsin. Boylece,

gX,9Y) = —g(eX,Y) (1.2.7)
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dir (Yano ve Kon, 1984). Bu bize ¢ nin g metrigine bagli skew-simetrik oldugunu gosterir.
(1.2.5) ve (1.2.6) sartlarin1 saglayan g metrik tensor alani ile birlikte (M, ¢, &,n) hemen hemen

degme manifolduna hemen hemen degme metrik manifold denir (Yano ve Kon, 1984).

M bir hemen hemen degme metrik manifold olmak iizere n 1-formu, M {izerinde her

yerde,
nA(dn)"™ # 0
ise, M ye degme manifold n yada degme bir form denir (Yano ve Kon, 1984).
M, 2m + 1 —boyutlu degme metrik manifold olmak iizere, V X, Y € y(M) i¢in
gX, oY) = dn(X,Y) (1.2.8)
olacak sekilde bir (¢, &,71, g) hemen hemen degme yapisi vardir(Yano ve Kon, 1984).

1 degme formu tarafindan ingaa edilen hemen hemen degme metrik yapisi, ) ya bagh
degme yapi1 olarak adlandirilir ve bu yapiyla verilmis manifolda degme metrik manifold denir.

Sonugta @ = dn yapisiyla birlikte hemen hemen degme yapisi
o(X,Y) = g(X,¢Y) (1.2.9)
degme metrik manifolddur.

M bir hemen hemen degme metrik manifold olsun. M X R c¢arpim manifoldu
gozoniinde bulunduruldugunda, "M X R uzerinde bir vektor alani; (X, f %) seklindedir.

(Burada X € y(M) ; t, R nin koordinat1 ve f, M X R uzerinde bir fonksiyon). M X R nin

tanjant uzay1 uzerinde tanimli bir lineer J doniigiimii

(X% £ %) = (ox - fEN0O ) (12.10)
seklinde tammlanirsa J2 = —I olup /,M X R uzerinde bir hemen hemen kompleks yapidir.
J hemen hemen kompleks yapisi eger;
N, (XY)=J2[X, Y] = JUX, Y] = JIX,JY] + [JX,]Y] (1.2.11)
ile tanimlanan Nijenhius tensorii sifira esitse integrallenebilirdir denir (Yano ve Kon, 1984).

Eger M xR tizerindeki bir J hemen hemen kompleks yapisi integrallenebilir ise (¢, &,17)

hemen hemen degme yapisina normaldir denir (Yano ve Kon, 1984).
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M hemen hemen degme manifoldu normaldir gerek ve yeter sart
N, H2dn®& =0 (1.2.12)
olmasidir (Yano ve Kon, 1984).

3- boyutlu normal hemen hemen degme metrik manifoldu M igin asagidaki 6zellikler

saglanir (Olszak, 1986):

(Vx@)Y = g(@Vx&, Y)E —n(V)pVxé
= a{g(pX,Y)§ —n(NeX} + p{gX,Y)§ —n(¥)X}, (1.2.13)

Vx¢§ = a{X —n(X)¢} — BoX, (1.2.14)
RX,Y)¢ = {(Ya) + (a* = BI(V)}e*X — {(Xa) + (a® — B*)n(X)}p?Y

HIB) + 2apn(V)}pX —{(XB) + 2aBn(X)}eY, (1.2.15)

SCY) =[5+ () + (@ = )] g, 1) = [ + () + 3(a? = )] nCONY)

—{Xan(¥) + Ya)n(X)} — {(eXBIn(Y) + (YL)In(X)}, (1.2.16)
(€B) + 2aB =0, (1.2.17)

M, degme metrik yapisi (@, &,n,g) olan n-boyutlu bir degme metrik manifoldu olsun.
Eger M nin degme metrik yapist normal ise, M Sasakian yapiya sahiptir denir. Bazen

Sasakian manifold normal degme metrik manifold olarak da adlandirilir (Yano ve Kon, 1984)

M tizerinde bir hemen hemen degme metrik yapisi (¢, &,1, g) bir Sasakian yapidir <
VX, Y €yxy(M) igin;

(Vxp)Y = gX, V)¢ —n(¥V)X (1.2.18)

dir (Yano ve Kon, 1984). Buna denk olarak diyebiliriz ki degme metrik manifoldlar Sasakiandir

ancak ve ancak Riemann egrilik tensorii R olmak {izere;
RX,Y)§ =n(¥)X —n(X)Y

dir (Yano ve Kon, 1984).
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Kenmotsu 1972 yilinda degme manifoldlarin énemli bir sinifi olan bu tiir yapilar

iceren manifoldlar1 (Kenmotsu manifoldlari) su sekilde tanimladi (Kenmotsu, 1972):

M 2m + 1-boyutlu (¢, ¢&,n, g) bir hemen hemen degme metrik yapisina sahip hemen

hemen degme metrik manifold olsun.

(V@)Y = g(pX,Y)§ —n(Y)pX (1.2.19)
sartini saglayan bu manifolda Kenmotsu manifold olarak adlandirilir.

Olszak ve Rosca tarafindan 1991 yilinda normal lokal olarak konformal hemen hemen
kosimplektik yap1 ortaya atildi (Olszak ve Rosca, 1991). Aslinda bu yaptiklart ¢aligmada f-
Kenmotsu manifoldunun geometrik bir yorumlamasim getirerek Kenmotsu manifoldlart

genellestirdiler.

Ayrica 2m + 1 — boyutlu Kenmotsu manifoldu M olmak iizere VX,Y,Z € y(M) igin

asagidaki 6zellikler saglanir:

Vx§ =X —n(X)¢ (1.2.20)
R(X,V)E =nX)Y —n(V)X (1.2.21)
S(Y,8) =1 —n)nY) (1.2.22)

2m+ 1- boyutlu (¢,&,n,g) bir hemen hemen degme metrik yapisina sahip hemen
hemen degme metrik manifold M olsun. df An = 0 olacak sekilde pozitif f fonksiyonu i¢in

(Vx@)Y = flg(eX,Y)§ —n(Y)pX] (1.2.23)
sartim saglayan manifolda f —Kenmotsu manifold denir. Ayrica f —Kenmotsu manifoldlar
i¢cin

VvX,Y,Z € y(M) olmak tizere asagidaki 6zellikler saglanir (Olszak ve Rosca, 1991):

Vx¢ = fFAX =&} (1.2.24)
RX, V)¢ = f2(mX)Y —n(V)X) + Y (X — X(e?Y, (1.2.25)
S, =f2A-nn¥)+Y(H2-n)—EHn®), (1.2.26)

(1.2.23) ile tanimli  f —Kenmotsu manifoldunda f = a = sabit ve sifirdan farkli ise

verilen manifold a-Kenmotsu manifolda , f =1 olmasi durumunda manifold Kenmotsu
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manifolda doniisiir (Kenmotsu, 1972). M n-boyutlu f —Kenmotsu manifold olmak iizere f = 0

0zel durumunda manifold kosimplektik manifold olarak adlandirilir.

Quasi-Sasakian yapi1 fikri D.E.Blair tarafindan Sasakian ve kosimplektik yapilari
birlestirmek amaciyla ortaya atildi (Blair, 1967). Yaptigi calismada Blair, quasi-Sasakian
manifoldlarin varligini, Kahlerian manifold ile Sasakian manifoldun Riemann c¢arpiminin
quasi-Sasakian manifold oldugunu gostererek kanitladi. S. Tanno da quasi-Sasakian yapi

iizerine Onemli ¢ikarimlarini ekledi (Tanno, 1971).

2m + 1-boyutlu hemen hemen degme metrik manifoldu M olmak iizere, normal ve

temel 2-formu kapali yani d¢ = 0 ise manifolda quasi-Sasakian manifold denir (Blair, 1967).

Bu yapilan tanimlamalardan sonra, 1977 yilinda S. Kanemaki hemen hemen degme

metrik manifoldunun quasi- Sasakian olmasi i¢in gerek ve yeter kosulu asagidaki gibi verdi:

2m + 1-boyutlu hemen hemen degme metrik manifoldu M quasi-Sasakian
manifolddur ancak ve ancak V, M iizerinde Levi-Civita koneksiyonu olmak iizere V X € y(M)
i¢in
(Vx@)Y = n(Y)FX — g(FX,Y)§
@oFX = FpX
denklemlerini saglayacak sekilde (1,1) tipinde F simetrik tensor alan1 vardir (Kanemaki, 1977).

Diger taraftan Olszak 3-boyutlu quasi-Sasakian manifoldunda yap: fonksiyonu olarak

B y1 alarak asagidaki tanimlamayi1 verdi (Olszak, 1986):

M 3-boyutlu hemen hemen degme metrik manifoldu 3-boyutlu quasi-Sasakian

manifolddur ancak ve ancak M {izerinde
Ep) =0 (1.2.27)
ozelligini saglayan f fonksiyonu V X € y(M) igin
Vyé = —BpX (1.2.28)
dir. Burada f = 0 olursa manifold kosimplektik olur. Yukaridaki denklem yardimiyla
(Vxp)Y = Bg(X,Y)§ —n(¥)X) (1.2.29)

dir (Olszak, 1986).
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Ayrica 3-boyutlu quasi-Sasakian manifoldlarin 6zellikleri bir¢ok yazar tarafindan
calisilmis olup asagidaki egrilik 6zelliklerini elde edildi ( Olszak, 1996; De, vd., 2012; De, vd.,
2008):

RX,1)§ = B2mM)X —nCOY) + (YPeX — (XB)eY, (1.2.30)

S(v,2) = (5— B2) g (¥, 2) + (3% = ) n(In(2) = n(V)dB(pZ) = n(Z)dB(pY), (1.2.31)

T 2 2 T
QY = (5-82)Y + (362 =) n(V)§ + n(V)ggradp — dpeVIE,  (1232)

S(Y,§) = 2p*n(Y) — dp(eY), (1.2.33)

J.A. Oubina 1985 yilinda degme manifoldlarda Sasakian ve Kenmotsu yapilar

genellestiren trans-Sasakian yapilari tanimladi (Oubina, 1985).

M 2m + 1-boyutlu (¢, &,n, g) bir hemen hemen degme metrik yapisina sahip hemen
hemen degme metrik manifold olsun a, 8 € C* (M, R) olmak tizere, V X, Y € y(M) igin

(Vx@)Y = a{g(X, V)¢ —n(N)X} + B{g(eX, V)¢ —n(Y)pX} (1.2.34)

sartin1 saglayan manifolda trans-Sasakian manifold olarak adlandirilir. (1,0) tipindeki trans-
Sasakian manifoldlar Sasakian manifoldlara, (0,1) tipindeki trans-Sasakian manifoldlar
Kenmotsu manifoldlara ve son olarak (0,0) tipindeki trans-Sasakian manifoldlar kosimplektik

manifoldlara doniisiirler.
Ayrica (1.2.34) ve (1.2.1) denklemleri yardimiyla VX € y(M) igin
Vx¢§ = —apX + p{X —n(X)¢} (1.2.35)
elde edilir.

3- boyutlu trans-sasakian manifold M olmak tizere VX,Y,Z € y(M) igin asagidaki
ozellikler saglanir (De ve Tripathi, 2003):

R(X,Y)¢ = (a® = BHM(Y)X —n(X)Y) + 2aB(n(V)eX —n(X)eY) +Y(B)p*X
—X(B)p?Y + Ya)pX — (Xa)gY, (1.2.36)
2Ba + (¢a) =0, (1.2.37)

S, ) = (2(a® = B2 — GB))n(X)} — XB — (¢X)B, (1.2.38)
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SKY) =[5+ @B - (@ = )] (X, 1) =[5+ EB) — 3(a? = )] n(On ()

—{&XBIn(Y) + (YBIn(X)} = {(pXa)n(Y) + (¢Ya)n(X)}. (1.2.39)

Tamim 1.2.1.: M 2m + 1 -boyutlu degme metrik manifold olmak {izere, eger VX,Y €
x(M) igin

CX,Y)¢=0
esitligi saglanirsa, manifold diizlemsel £- konformal olarak adlandirilir (Zhen vd., 1997).
Tanim 1.2.2.: M 2m + 1 —boyutlu degme metrik olmak tizere, eger VX,Y € y(M) igin
CX,Y)E=0

esitligi saglanirsa, manifold diizlemsel &-quasi konformal olarak adlandirilir (Zhen vd., 1997).

1.3. Ricci Soliton ve Gradyant Ricci Soliton

Einstein metriginin genellestirilmis hali olarak da bilinen Ricci soliton kavrami n-

boyutlu Riemann manifoldu iizerinde asagidaki gibi tanimlanir:

Bir M n-boyutlu Riemann manifoldu tizerinde L lie operatorii, S Ricci tensérii, V M

tizerinde diizgiin vektor alani (potansiyel vektor alani) ve A da sabit olmak iizere
Lyg+25S+21g=0 (1.3.1)

sartim saglayan g metrigine Ricci soliton adi verilir (Hamilton, 1988). Ricci soliton A nin
negatif, pozitif veya sifir olmast durumunda sirasiyla daralan (shrinking), genisleyen
(expanding) veya degismeyen(steady) olarak adlandirilir. Ayrica burada Lyg = 0 oldugunda

(1.3.1) denklemimiz Einstein denklemine doniisiir.

Ayrica M,n boyutlu Riemann manifoldu olmak iizere, S Ricci tensorii ve g de

Riemann metrigi olmak iizere V vektor alan1 - f potansiyel fonksiyonunun gradyant: ise , g

metrigmiz gradyant Ricci soliton olarak adlandirilir ve (1.3.1) denklemi
VWf=S+A1g (1.3.2)

formuna doniisiir.
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Teorem 1.3.1.: M, B sabit olacak sekilde 3-boyutlu trans-Sasakian manifoldu olsun. M
tizerindeki b fonksiyonu icin V = b€ olmak sartiyla, manifold Ricci soliton olma sartini

saglasin. Bu takdirde sabit skaler egriliklidir (Turan vd., 2012).

Teorem 1.3.2.: M 3-boyutlu trans-Sasakian manifoldu Ricci soliton olma sartini

sagliyor ise, genisleyendir (Turan vd., 2012).

Teorem 1.3.3.: M 3-boyutlu trans-Sasakian manifoldu «, 8 = sbt olmak sartiyla
gradyant Ricci soliton olma sartini sagliyor ise, ya B-Kenmostu manifold yada Einstein
manifolddur (Turan vd., 2012).

Asagidaki ¢izelgede hemen hemen degme metrik manifoldlar arasindaki baginitilar

verilmistir:

Asagidaki tabloda hemen hemen degme metrik manifoldlar arasindaki baginitilar verilmistir:
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Cizelge 1.1. Hemen hemen degme metrik manifoldlar arasindaki iliskinin incelenmesi

Hemen hemen

degme metrik manifoldlar

do =2fnAd, dn =0,

(Vx@)Y = gX,Y)¢|—n()X

ND = ]
Sasakian f-Kenmostu
Normal hemen manifoldlar manifoldlar
hemen degme <
metrik manifoldlar
=1
Kenmotsu
Temel 2 formu kapali manifoldlar
o=0
v
Quasi-
Sasakian
manifoldlar Trans-Sasakian

manifoldlar
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2. KONEKSIYONLAR

Bu boliimde genel anlamda yeni bir koneksiyon tanimlayacak ve 0Ozel sartlarini

inceleyecegiz. Oncelikle kullanacagimiz tanimlari verelim:

Tammm 2.1.. M, V lineer koneksiyonu ile verilmis bir Riemann manifoldu olsun.

Eger M nin V koneksiyonuna ait
T(X,Y) = VyY — VX — [X,Y] (2.1)
bi¢iminde tamiml1 torsiyon tensérii T, V X, Y € y(M) igin;
T(X,Y) = u(¥)X — u(X)Y, 2.2)
sartin1 sagliyor ise V ya yari-simetrik koneksiyon,
TX,Y) =u)pX —ulX)eY, (2.3)

sartin1 sagliyorsa V ya ¢eyrek-simetrik koneksiyon adi verilir. Burada u diferensiyellenebilir bir
1- form , ¢ (1, 1)-tipinde bir tensér alanidir (Friedmann ve Schouten 1924; Golab 1975). Eger

M Riemann manifoldu iizerinde, g Riemann metrigine gore V X, Y, Z € y(M) igin;
(Vxg9)(Y,Z) # 0, (2.4)

kosulu saglaniyor ise (2.2) ve (2.3) sartlarini saglayan V koneksiyonu sirasiyla yari-simetrik
metrik olmayan koneksiyon ve ¢eyrek-simetrik metrik olmayan koneksiyon olarak adlandirilir.

Benzer sekilde eger M Riemann manifoldu lizerinde g Riemann metrigine gore V X,Y,Z €

x(M) igin;
(Vxg)(Y,Z) = 0, (2.5)

kosulu saglamiyor ise (2.2) ve (2.3) sartlarin1 saglayan V  koneksiyonuna sirasiyla yari-

simetrik metrik koneksiyon ve ¢eyrek-simetrik metrik koneksiyon adi verilir.

Verilen tanimlamalar kullanilarak hemen hemen degme metrik manifoldlar tizerinde

yeni bir koneksiyon tanimlayacagiz:

Teorem 2.1.: M, Levi-civita koneksiyonu ¥ ile verilmis hemen hemen degme metrik
manifold olmak iizere ¢4, @5, @3, ¢ (1,1) tipinde anti simetrik tensor alanlari, n 1-form ve &

bir vektor alani
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g(@X,Y) = X, Y) = g(01X,Y) + g(9:X,Y) + g(@3X,Y)
=0, (X,Y) + D,(X,Y) + P5(X,Y) (2.6)

ve
nX) =g9X.%), @§=0
ozelliklerini saglasin. M iizerinde
T(X,Y) =n(¥)eX —n(X)pY 2.7
ve
9, 2) = =51 g (93X, 2) = 5n(D)g(9:X,Y) + frgX, YIn(Z) + frg(X, Z)n(¥) —
n(g(@:X,2) —n(Z)g(Y,9,X) =0 (2.8)

sartlarini saglayacak sekilde

_ 1
ViV = V¥V —n(X)oY + n(Y)p X + E(n(Y)fst -nX)esY) — f19X,Y)E,  (2.9)

ile taniml1 ¢eyrek-simetrik metrik olmayan bir koneksiyon vardir. Burada f; manifold tizerinde

diferensiyellenebilir bir fonksiyondur.
Ispat: M manifoldu iizerinde B(X,Y), (1,1) tipinde tensor alan1 olmak iizere
VyY = V.Y + B(X,Y), (2.10)
ile tammli V lineer koneksiyonu verilsin.

Kabul edelim ki (2.10) denklemi ile tanimli koneksiyonumuz ¢eyrek-simetrik olma ve
non-metriklik sartlarin1 saglasin. Bu durumda (2.7) ve (2.8) sartlarim saglayacak sekilde bir
B(X,Y) tensoriinii bulmaya ¢alisalim. (2.9) denklemi (2.1) de kullanilirsa

T(X,Y) =B(X,Y) — B(Y,X) (2.11)
yazilabilir. Ayrica
G(X,Y,Z) = (Vxg)(Y,2) (2.12)
olmak iizere. (2.9) denklemi (2.12) da kullanilirsa

GX,Y,Z)=—-g(BX,Y),Z)—g(Y,B(X,2)) (2.13)
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dir. B(X,Y) ifadesini elde edebilmek igin oncelikle (2.11) yardmiyla g(T(X,Y),Z),
g(T(Z,X),Y) ve g(T(Z,Y),X) denklemlerini bulalim:

(2.14), (2.15) ve (2.16) denklemleri taraf tarafa toplanirsa

g(TX,Y),2) + g(T(Z,X),Y) + g(T(Z,Y),X)
+g(B(Zr Y))X) —g(B(Y,Z),X)

dir. Yukaridaki denklemde (2.13) kullanilirsa

9T X, Y),2) + g(T(Z,X),Y)+ g(T(ZY),X)
=gBWX,Y),2) +GY,X,2) — G(Z,X,Y) — g(B(X,2),Y)
=29(BIX,Y),2) + G(X,Y,2) + G(Y,X,Z) — G(Z,X,Y) (2.17)

olur. (2.17) de (2.9) denkleminde yerine konulursa

9T X, V), 2) + g(T(Z,X),Y) + g(T(Z,Y),X)
= 29(B(X,1), 2) ~ 31(V)g(02X,2) ~ 3n(D)g(gsX, V) + g (X, )n(2)
+ 19X, Z2n(Y) —n(¥)g(@2X,Z) + n(Y)g(92Z,X) - %n(X)g(ng, Z)
@95, 1) + Frg(Y, D) + g,V N(Z) ~n(X)g(paY.2)
—n(2)g(X,p.Y) + %n(X)g(qosZ. Y) + %n(Y)g(fst, Z) = f19(Z, X)n(Y)
— 19, Y)nX) + n(X)g(92Z,Y) + n(Y)g(X, 922)

olur. Burada gerekli diizenlemeler yapildiginda

gTX,Y),2) + g(T(Z X),Y) +g(T(ZY),X)

1
=29(BX,Y),2) + 2f1,9(X, Y)n(Z) + 5 [n(X)g (¥, p3Z) —n(X)g(9sY, Z)

+1n(Ng(@sZ,X) —n(Z)g(esY,X) —n(Z)g(psX,Y) —n(Y)g(psX,Z)]
= 2n(N)g(@.X,Z) — 2n(X)g(@,Y,Z)
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bulunur ki yukarida g(B(X,Y), Z) ifadesini ¢ekersek,

9g(BX,Y),Z) = %[Q(T(X. Y),Z) + g(T(Z,X),Y) + g(T(Z,Y),X)] - fig(X,V)n(Z)

1
~2 MXDg(Y,93Z2) —n(X)g(@3Y,Z) + n(Y)g(@3Z,X) —n(Z)g(esY,X)
—n(2)g(e:X,Y) —n(V)g(es:X,2)] + (V) g(9X,Z) + n(X) g (@Y, Z)

dir. Ayrica son denklemde (2.7) ifadesi kullanilarak elde edilen

3 3
9T X, Y),Z) =n(V)g(eX,Z) —n(X)g(eY,Z) =n(Y) Z 90X, Z) —n(X) Z 9(@Y,2),

i=1 i=1
3 3
gT@XN =100 Y g@iZ, ) =1@) Y gloi¥, X),
i=1 i=1

ve

3 3
gTEND =100 ) 902X =@ ) 9o, X,
i=1 i=1

denklemleri kullanilirsa
9(B(X,Y),Z)

3
1
=3 n(Y)Zlg@piX. 2)

3 3
=100 ) 9@, D) +1(X) ) g@iZ,1)
i=1 i=1

3 3 3
=0(2) ) glpV 0 +1(00 Y g@iZ,X) =0(2) ) gV, 0| - g, V(@)
i=1 i=1 i=1

1
~a (M(XDg(Y,93Z2) —nX)g(@sY,Z) + n(V)g(@3Z,X) —n(Z)g(esY,X) —n(Z)g(@3X,Y)

—n()g(p3X,2)] + n(Y)g(p2X,Z)
+n(X)g(@.Y, 2), (2.18)

halini alir. (2.18) de gerekli sadelestirmeler yapildiginda V Z € y(M) igin

1
BX,Y) = —n(X)e.Y + n(Y)p X + 5 M3 X —n(X)psY) — frg(X,Y)E
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sonucu ortaya ¢ikar.

Onerme 2.1.: Birn-boyutlu hemen hemen degme metrik manifoldu M olsun. M

tizerinde Levi-Civita koneksiyonu V ya gore egrilik tensorii R ve (2.9) ile tanimli ¢eyrek-

simetrik metrik olmayan koneksiyonu V ya goére egrilik tensérii R olmak iizere, R ile R

arasindaki bagint1 V X, Y, Z € y(M) igin

RX,Y)Z =R(X,Y)Z — g(Vx&,V)p1Z —n(V)(Vx1)Z + n(Y) f19(X, 912)&

dir.

+ 9T, 2)02Y + 1@ (Txp)Y ~5n(ND0202Y ~NOND102Y
N(DFIK, 921 + 59T, D3 +30(2) (Txp2)Y
—INCONDs03Y ~ ZnEMD105Y — 3 (D9 (K, 0218

— S ITREIpaZ ~ Zn T p) 743 Fin (g (X, pa2)E — (K9 (Y, 2)¢

1
—f19(Y,Z)Vx& — §f1g(Y' 2)p3X — f19(Y,2)p, X + f129(Y;Z)77(X)f
+ 9(Wwé, X)p1Z + n(XD)(Vy@)Z —n(X)f19(Y, 912)§ — g(VvE, 2) @ X

0D Tro)X +Z00OMD 302X + 0O MD10:X

(DI, 02008 — 5 9(TyE, D)aX ~ 50(2) Typa)X

+ %n(Y)n(Z)rpsqoaX + %U(Y)U(Z)q)l(pSX + %n(Z)flg(Y, P3X)§
+29(T4E X)paZ + 5n(X)(Ty92)Z-n(X) 5 f19(¥, 0a2)E + (Vf)g (X, 2)

1
+ f19X, Z)Vy & + Efl.g(X'Z)QD?,Y + 19X, Z)p,Y

— fi%9(Y, 2)n(X)¢ (2.19)

Ispat: Ceyrek-simetrik metrik olmayan koneksiyon V ya gore egrilik tensorii R olmak

tzere, VX,Y,Z € y(M) igin ;

R(X, Y)Z = VXVYZ - VYVXZ - V[X'y]z

oldugunu biliyoruz. Bu ifadede (2.9) denklemi kullanildiginda

R(X,Y)Z=Vx (VYZ — (@1 Z +n(D)poY +35 M(ZesY —n(Ve32) — fig(¥, Z)f)
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Ty (VaZ = n000Z 4 1(D2X + 5 (1(DpaX ~(K)22) ~ 19X, 2)¢)
~ (VoenZ = (X YD Z + 1@ X, V]
+ 5 WDsIX,Y] = 01X, YDps7) ~ fug(X,V1,2)¢)
olup burada V koneksiyonunun lineer olma &zelligi kullanilarak

R(X,Y)Z=VyVyZ —Vyn(Y)@1Z + Vyn(Z)p,Y + EVXn(Z)(p3Y - EVXU(Y)<P3Z -

valg(Yl Z)f

_ _ _ 1_ 1_ _
—VyVxZ + Vyn(X)p1Z — Vyn(Z) g, X — EVYTI(Z)€03X + EVYU(X)(%Z +Vyf19(X, Z)¢

—VixniZ +n([X, YD@1Z —n(2),[X, Y]

1
— 5@ esX, Y1 = (X, YD@3Z} + f19(1X, Y], 2)§
elde edilir. Burada tekrar (2.9) denklemi yardimiyla yukaridaki esitlik

R, VZ=V3VyZ + 50(VyZ)psX — 0 (X) @3y Z + n(VyZ) 02X (X1 Vy Z —
f9XK, Yy 2)E = Vxn(V)p1Z = 510 912)03X + 51XV @193Z — (V)91 22X +
NONWP101Z + f9X, (NP1 2)E + Vxn(Z)p2Y + 029293 X —
“NCON@)P302Y —nCONDP102Y + (D92 V02X — frg(X,n(Z)g2Y)E +
V(@3 + 11 2)@sV) @3 X — 20 X2 @303Y +51(10(Z)P3Y)p2X —
“NCONZ) 91037 — 2 frgXn(Z)P3Y)E =5 Vxn(V)psZ = (V)3 Z)p3X +
SO P393Z — 21N P32)9:X + 1NV pr93Z + F19K, (V)3 Z)E —
Vxf19(Y, 2)E = n(f19(Y, D) @3X + 51X f19(Y, 2)p3E = n(£19(Y, 2)E) @ X +
NOfIY, 1§ + 179V, 2NK)E = VyVyZ — S0 (VxZ)psY +51(V)pVxZ —
N(Vx2)@Y AN ()91VxZ + f1g (Y, Vx2)E + Vyn(X) @1 Z + 5n(1(X) 91 Z2)@3Y —
M P193Z +nXK)P12)@2Y =N @112 — g (¥, n(X)p12)E —
Vyn(Z)p2 X — %n(n(Z)q)zX)q)sY + %n(Y)n(Z)wsz + (N2 Q192X -
N2 X)p2Y + frg(Y,(Z):X)E =S Vyn(Z)p3X — (23 X)p3Y +

NON@DP303X — (D)3 X)@2Y + 0V IN(Z)9193X +3 gV, 1(Z) 3 X)E +
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Uy (X)@3Z + 100 P32)@3Y — n(NNXK)@303Z + (X3 2) @Y —

NONX) 1037 — 3 frg(V (X @32)E + Vy fr9(X, 2)E +51(f19(X, 2)E)p3Y —
N9 Dsé + (9K, DO 2Y —n(fig(X, D)ps§ — £ gV, Zn(X)§ —

VixnZ + 1(VxY = VyX)p1Z = n(Z)92VxY + n(Z)p2VyX — 2 n(Z)p3VxY —n(Z)p3Vy X —
n(VxY = VyX)@sZ} + frg(VxY — VyX, Z)¢

halini alir. (1.2.3), (1.2.4) denklemleri ve Levi-Civita koneksiyonu &zellikleri kullanildiginda
son denklemimiz
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_ 1 1
R(X,Y)Z=R(X,Y)Z + E”(VYZ)(pBX - EW(X)<P3VYZ +n(Vy2) o, X—(X)p,VyZ

— 19X, Vy2)¢ —n(VxYV)p1Z — g(Vx&, V)01 Z —n(Y)(Vxp1)Z
=M1 VxZ + n(V) 19X, 912)E + g(Vx&, Z) Y + n(VxZ)p,Y

+10(Z2)(Vxp2)Y +n(Z) VY — %n(X)n(Z)%sz — (XN Z)p192Y
D AIK, 910 +3NTx2)pa¥ + 59T, DpaY + 51D (Txpa)¥
+ %U(Z)‘%VXY - %n(X)n(Z)coafsz

- %n(X)n(Z)%qogY - %fm(Z)g(X. P3Y)E — %g(fo, Y)sZ

1 1 1 1
- EU(VXY)<P3Z - EU(Y)(VXfP's)Z - En(Y)¢3VXZ+ Efm(Y)g(X, ©32)§
- (X9, 2)¢ — f19(VxY,2)¢ — f19(Y,VxZ)E — f19(Y,Z)VxE
1 1
— 590 23X — 19 (Y, 22X + f1° g (¥, 20§ = 5n(VxZ)sY
1
+ En(YkongZ —n(Vx2) @Y (V@1 VxZ + f19(Y,VxZ)§ + g(Vy &, X) 01 Z

+ (Vv X)01Z + n(X)(Vy@1)Z + n(X)01VyvZ —n(X) f19(Y, 912)¢
—9(Ww&, 2)02X = n(Vy2) @ X —n(Z)(Vy @)X —n(Z2)p,Vy X

200D 202K +1OND 010X + 1D fY, 9208

- %n(VyZ)gos;X - %g(Vyf, Z)p3X — %n(Z)(prs)X - %n(Z)%VyX

+ %n(Y)n(Z)rpsqoaX + %U(Y)U(Z)q)l(pSX + %n(Z)flg(Y, P3X)§

+ %W(VYX)(I)BZ + %g(Vyf. X)p3Z + %n(X)(Vycoa)Z
N0 ZN ) 3 f1 90, 0206 + (V9K 2DE + g (X, 2)E

1
+ 19X, VyZ2)¢ + f19(X, Z)VyE +§f1g(X,Z)g03Y+f1g(X,Z)g02Y
— 29V, 2nX)E + n(VxY = VyX)p1Z — (2, VxY + 1(2) 9, Vy X

1
- E{TI(Z)Q%VXY (2D p3VyX —n(VxY = VyX)@3Z} + f19(VxY

- VyX,Z)¢
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olarak yazilabilir. Son olarak gerekli sadelestirmeler yapildiginda (2.19) bulunur.

Buradan itibaren (2.9) ile tanimli koneksiyonumuz siniflandirilarak 6zel tiirlerini

inceleyegiz:
2.1. (2.9) ile Tammh Koneksiyonun Simflandirilmasi
Bu boliimde (2.9) ile tanimli koneksiyona bagli bazi 6zel koneksiyon tiirleri verecegiz:

i) (2.9) denkleminde ¢; = ¢, = 0 alinirsa koneksiyonumuz

— 1
V¥ = Vx¥ + 5 ()X —n(X)eY) - 19X, Y)$ (2.1.1)

haline dontigiir. (2.1.1) ile tanimli bu koneksiyonumuz (2.3) ve (2.4) ifadelerini sagladigindan,
hemen hemen degme metrik manifold iizerinde ¢eyrek-simetrik metrik olmayan koneksiyon
olarak adlandirilir. Ileride karisiklik yasamamak icin (2.1.1) ile verilen bu koneksiyona

(M, @3, f1) koneksiyonu olarak adlandiracagiz.

Bu koneksiyona bagl egrilik tensérii R yi bulabilmek igin, (2.19) denkleminde 6zel
olarak ¢; = ¢, = 0 alindiginda

ROGIIZ = RUGYZ +35. (T3, DY + 51D (Txp)Y
—INCONDY 3 in(DgCt, @V)E ~3 (T4, V)2
N T 023 K, 9D ~ K9, 2)E ~ g, 2T
SR, 200K + 2900, DMX)E ~ 5 9T, DpX ~ 50D Ty )X
IO D9 9KE + 5 9(VyEX)pZ
N Ty 0)Z1(X) 3 Frg (Y, 02 + (V)G 2)E + g (X, Z)PyE

1
+ Eflg(Xi Z)<PY
— fi29(Y, 2m(X)¢& (2.1.2)

bulunur.

ii) Simdi (2.9) ile tanimli koneksiyonumuzda ¢, =0 @3 = 0ve f; = 0 alalim. Bu durumda
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koneksiyonu elde edilir. O halde (2.1.3) koneksiyonu (2.3) ve (2.5) geregi c¢eyrek simetrik
metrik koneksiyon olarak adlandirilir. Bu koneksiyona bundan sonra kisaca (M, ¢,)
koneksiyonu olarak adlandiracagiz (Yano ve Imai, 1982). Ayrica bu koneksiyona bagh egrilik

tensorii R yi vermek istersek, (2.21) denkleminde ¢, =0 @3 = 0ve f; = 0 yazalim.
R(X,Y)Z = R(X,Y)Z — g(Vx§,V)oZ —n(V)(Vx9)Z + g(Vy&, X)9Z + n(X)(Vy)Z (2.1.4)
oldugu kolayca goriilebilir.
iii) Ozel olarak (2.9) denkleminde ¢, = 0, @3 = 0 ve f; = 0 almirsa koneksiyonumuz

VY = VyY + n(Y)pX (2.1.5)

haline doniisiir. Bu denklem (2.3) ve (2.5) ifadelerini sagladigindan ¢eyrek simetrik metrik
olmayan adi verilir (Sengupta ve Biswas, 2003). Bu koneksiyona (M, ¢,) koneksiyonu olarak

adlandiracagiz.
Ayrica bu koneksiyona bagli egrilik tensérii R yi bulabilmek igin, (2.21) denkleminde
©1 =0, ,903 =0 ve f; =0 alindiginda denklem
R(X,Y)Z = R(X,Y)Z + g(Vx§, )oY + n(Z2)(Vx9)Y — g(Vy§, Z2)pX —n(Z)(Vyp)X (2.1.6)
halini alir.

iv) Son olarak (2.9) denkleminde ¢@; =0, @, X=X , @3 =0 ve f; = 0alinirsa

koneksiyonumuz
VyY = VY +n(Y)X (2.1.7)

haline doniisiir. Bu denkleme yari-simetrik metrik olmayan koneksiyon adi verilir (Agashe
ve Chafle, 1992). Bu koneksiyona (M,I) koneksiyonu olarak adlandiracagiz. Ayrica bu
koneksiyona bagl egrilik tensérii R igin (2.21) denkleminde ¢, =0, @, X =X, @3 =

0 ve f; = 0 alahm. Buradan
R(X,Y)Z = R(X,Y)Z + g(Z,9x)Y — g(Z,V, &)X (2.1.8)
elde edilir.

Verilen koneksiyonlari tek bir ¢izelgede gosterelim:



28

Cizelge 2.1. (2.9) ile tamimhi ¢eyrek-simetrik metrik olmayan koneksiyonun 6zel hallerinin

incelenmesi

Vx¥ = Vx¥ —=n(0)@,Y +n()@:X +5 (V93X —n(X)psY) = fg(X, V)¢

ile tanimli ¢eyrek simetrik metrik olmayan koneksiyon

(M, 5,f) ile (M, ¢q) ile M, ¢@,) ile (N ile
tanimli ¢eyrek simetrik | taniml ceyrek | tamimh geyrek simetrik | tanimli yar1 simetrik
metrik olmayan | simetrik metrik | metrik olmayan | metrik koneksiyon
koneksiyon koneksiyon koneksiyon

P1=¢2=0 ®:=0 ¢ =0, 91=0, X=X,

p3=0vef; =0 p3=0 p3=0vef, =0
ve fl =0
= V¥ —n(X)eY

1
=VyY + En(Y)(pX

1
—En(X)pr
- 19X, Y)E
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3. FARKLI KONEKSIiYONLARLA VERILMIiS MANIiFOLDLAR iCiN BAZI EGRILIiK
SARTLARI VE RiCCi SOLITONLAR

Bu boliim iki kisimdan olusmaktadir. Ik kismuinda (M, I) koneksiyonu ile verilen n-
boyutlu Kenmotsu manifoldlar iizerinde bazi egrilik sartlar1 incelenecektir. Ikinci kisimda ise
(M,p,)  koneksiyonu ile verilmis 3-boyutlu trans-Sasakian manifoldlar ve  (M,¢-)
koneksiyonu ile verilmis 3-boyutlu normal hemen hemen degme metrik manifoldlar i¢in Ricci
soliton kavrami ele almacaktir. Ancak bunlara deginmeden 6nce Tanim 1.2.1 ve Tanim 1.2.2

yardimiyla Kenmotsu manifoldlari igin su tanimlamalari verelim:
Tanim 3.1.: M, 2m + 1 -boyutlu Kenmotsu manifold olmak iizere, eger VX,Y € y(M)
i¢in
CX,Y)¢=o0, (3.1)
esitligi saglanirsa, manifold diizlemsel - konformal olarak adlandirilir.

Tamm 3.2.: M 2m + 1 —boyutlu Kenmotsu manifold olmak iizere, eger VX,Y €
x(M) igin

C(X,Y)é =0, (3.2)
esitligi saglanirsa, manifold diizlemsel £-quasi konformal olarak adlandirilir.
3.1. (M, I) Koneksiyonu Ile Verilen Kenmotsu Manifoldlar: i¢in Bazi Egrilik Sartlari

Onerme 3.1.1.: Bir n = 2m + 1-boyutlu Kenmotsu manifoldu M olsun. M iizerinde
Levi-Civita koneksiyonu V ya gore egrilik tensorii R ve (M, I) yari-simetrik metrik olmayan
koneksiyonu V ye gore egrilik tensorii R olmak iizere, V X, Y,Z € y(M) i¢in R ile R arasindaki
bagint

RX,V)Z =R(X,Y)Z — g(Y,2)X + g(X, 2)Y + 2{n(V)n(2)X — n(X)n(2)Y}, (3.1.1)
dir (Yildiz ve Cetinkaya, 2013).

Ispat: Yari-simetrik metrik olmayan koneksiyon V ye gore egrilik tensorii R olmak
tizere, VX,Y,Z € y(M) igin hemen hemen degme metrik manifoldlarda (2.1.8) denklemini
bulmustuk. M bir n —boyutlu Kenmotsu manifoldu oldugundan (2.1.8) denkleminde (1.2.20)

denklemi kullanilirsa
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RX,Y)Z =R(X,Y)Z+ g(X,2)Y —nCOn@2)Y + n(¥)n2)X — g(¥,2)X +n(¥)n(2)
—nXn2)Y,

elde edilir ki burada gerekli sadelestirmeler yapildiginda
RX,Y)Z=R(X,Y)Z —g(Y,2)X + g(X,2)Y + 2{n(¥)n(Z)X —n(X)n(2)Y},
dir.

Onerme 3.1.2.: Bir 2m + 1-boyutlu Kenmotsu manifoldu M olsun. M iizerinde Levi-
Civita koneksiyonu V ya gore egrilik tensorii R ve (M,I) yari-simetrik metrik olmayan

koneksiyonu V ye gére egrilik tensdrii R olmak iizere, VY, Z € y(M) igin
R(,Y)Z = 2{—g(Y,2)§ + n(")n(Z)¢}, (3.1.2)
bigimindedir (Y1ldiz ve Cetinkaya, 2013).
Ispat: (3.1.1) denkleminde X =¢ alindiginda
R(,Y)Z =REZ— g, 2)¢ +n2)Y + 2{n(Vn(Z2) —n(2)Y},

elde edilir. M bir Kenmotsu manifoldu oldugundan (1.2.21) denklemi yardimiyla yukaridaki
denklem

REYV)Z = 2{—g(¥,2)§ + n(¥)n(2)E},
halini alir.
Ayrica (3.1.1) denkleminde sirasiyla ilk once X=Y, Y=Z ve Z=X olarak alindiginda
RY,2)X =R, 2)X —g(Z,X)Y + g(¥,X)Z + 2{n(Z)n(X)Y —n(Y)n(X)Z}, (3.1.3)
bulunur. Benzer sekilde (3.1.3) denkleminde sirasiyla Y=2, Z=X ve X=Y yazildiginda
R(Z,X)Y =R(Z,X)Y —gX,V)Z + g(Z, V)X + 2{n(X)n(Y)Z — n(Z)n(Y)X}, (3.1.4)
elde edilir. Son olarak (3.1.1),(3.1.3) ve (3.1.4) denklemleri taraf tarafa toplanirsa
R(X,Y)Z+R(Y,Z2)X + R(Z,X)Y = 0, (3.1.5)
sonucu ortaya ¢ikar. Buradan asagidaki sonucu verebiliriz:

Sonu¢ 3.1.1.: Bir 2m + 1-boyutlu Kenmotsu manifoldu M olsun. M iizerinde Levi-

Civita koneksiyonu V ya gore egrilik tensorii R ve (M,I) yari-simetrik metrik olmayan
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koneksiyonu V ye gore egrilik tensorii R olmak lizere, V X,Y,Z € y(M) icin (3.1.5) geregi bu
koneksiyona bagli I. Bianchi 6zdesligi saglanir (Yildiz ve Cetinkaya, 2013).

Onerme 3.1.3.: Bir n = 2m + 1-boyutlu Kenmotsu manifoldu M olsun. M iizerinde
Levi-Civita koneksiyonu V ya gore egrilik tensorii R ve (M, ) yari-simetrik metrik olmayan
koneksiyon V ye gére Ricci tensorii, Ricci operatorii ve skaler egriligi sirasiyla S, Q ve T olmak

lizere, VY,Z € y(M) i¢in

S(Y,Z) =S(Y,Z) — (n— Dg(Y,Z) + 2(n — n(Y)n(2), (3.1.6)
QY=QY—(n—1)Y+2(n - 1Dn(YV)E (3.1.7)
T=1—(M—-1DMn-2), (3.1.8)

bigimindedir (Y1ldiz ve Cetinkaya, 2013).
Ispat : (3.1.1) denkleminin her iki yan1 U € y (M) ile i¢ ¢arpinu alinirsa

gRX,Y)Z,U)=g(RX,Y)Z,U)+ g(X,2)g(Y,U) —g(¥,2)g(X,U)
+2{n(Mn(2gX,U) —nX)n(2)g(Y,U)},

elde edilir. Buradan da X ve U vektor alanlarina gore kontraksiyon yapildiginda
S(,2)=S¥,2) — (n—1g,2) + 2(n — Dn(V)n(2),
elde edilir. (3.1.6) denklemi VZ € y(M) i¢in
QY =QY —(n— 1Y +2(n — Dn(V)§,

haline doniisiir. Son olarak (3.1.6) denkleminde Y ve Z vektor alanlarma gore kontraksiyon

yapildiginda
T=1—-(n—-Dn+2(n—-1D=17—(n—-1(n-2),
bulunur.

Onerme 3.1.4.: Bir n = 2m + 1-boyutlu Kenmotsu manifoldu M olsun. M iizerinde

(M, I) ile taniml1 yar1-simetrik metrik olmayan koneksiyonu V ye gére Weyl konformal egrilik

tensdrii ve quasi-konformal egrilik tensorii sirastyla C ve ¢ olmak tizere, VX,Y,Z € y(M) igin
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- 2
CX,Y)Z=CX,Y)Z +m{g(Y.Z)X —9X, 2)Y + n(On(2)Y —n(VIn(2)X}

2n—1) v (X
=gy 9. 2m00E
—9(X, Z)n(Y)§} (3.1.9)
ve
C(X,Y)Z
=CX,V)Z
+ {(n — 1)n(n —2) G i -+ 2b) —a—2(n- 1)b}{g(Y,Z)X — g(X,2)Y}

+2(n—Db{g(Y,Z)n(X)¢ — g(X,Z)n(¥Y)$} + 2{a + 2(n — Db}(m(YIn(Z)X
—nXOn2)Y), (3.1.10)

yazilabilir (Y1ildiz ve Cetinkaya, 2013).

Ispat: ik énce (1.1.7) denklemi ile verilen Weyl konformal egrilik tensoriinii ele
alalim. M iizerinde (M,I) yari-simetrik metrik olmayan koneksiyonu V ye gore Weyl

conformal egrilik tensorii
- — 1 _ ~ —
CX,Y)Z =R(X,Y)Z — — [S,2)X = S(X,2)Y + g(¥,2)QX — g(X,Z)QY]

T
T Doz DX — g 2]

seklinde yazilabilir. Bu denklem (3.1.1), (3.1.6), (3.1.7) ve (3.1.8) denklemleri yardimiyla
C(X,Y)Z = R(X,V)Z — g(¥, D)X + g(X, 2)Y + 2V In(D)X — n(X)n(Z)Y}
1
- m{S(Y, 2)X—(n—Dg(Y,2)X + 2(n — In(Mn(DX - S(X, 2)Y

+ (M —-1)gX,2)Y - 2(n— DnX@)Y + g(¥,2)QX — (n — Dg(¥Y, 2)X
+2(n — DgY, ZnX)§ — g(X,2)QY + (n — Dg(X, 2)Y
-(n-1)(n-2)

m—Dmn—-2) {9V, 2)X — g(X,2)Y}

— 2(n — DX, 2N +

halini alir. Yukaridaki denklemde gerekli diizenlemeler yapildiginda
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CX.Y)Z=CXY)Z +£{9(Y.Z)X —9X, 2)Y + n(On(2)Y —n(VIn(2)X}

_Z(n—l)

= 2) YE2DmE = gX Z)n(¥)¢}

bulunur. Benzer sekilde (1.1.8) denklemi gz &niinde bulundurulugunda V ye gére quasi-

konformal egrilik tensorii

C(X,Y)Z = aR(X,Y)Z + b[S(Y,2)X = S(X,2)Y + g(Y,2)0X — g(X,Z)QY]

_i{L +2b} [g(V, D)X — g(X,Z)Y]
nn—-1 ' '

bigimindedir. (3.1.1), (3.1.6), (3.1.7) ve (3.1.8) denklemleri kullanilarak bu denklem

C(X,V)Z = afR(X,V)Z — g(Y, D)X + g(X, 2)Y + 2In()n(D)X — n(Xn(D)Y}
+b[S(Y, )X — (n — Dg(Y, )X + 2(n — Dn(Y)M@D)X — S(X, 2)Y
+ (= DgX,2)Y — 2(n — DnX)(2D)Y + g(¥, 2)QX — (n — Dg(Y, 2)X
+2(n - Dg(Y, ZX)§ — g(X, 2)QY + (n — 1)g(X, 2)Y
—2(n - DgX, Zn(V)¥]

T—(n—-1)n-2)
B n

a
(=5 +2b}[g (V. 2)X - g(x,2)Y],
olarak yazilir. Son olarak gerekli sadelestirmeler yapildiginda (3.1.10) denklemi elde edilir.

Teorem 3.1.1.: Bir n = 2m + 1-boyutlu Kenmotsu manifoldu M olsun. M iizerinde
(M, I) yari-simetrik metrik olmayan koneksiyonu V ye gére Weyl konformal egrilik tensérii C
olmak tizere, manifold bu koneksiyona bagli diizlemsel konformal ise, Levi-Civita

koneksiyonuna gore n-Einstein manifolddur (Yildiz ve Cetinkaya, 2013).

Ispat: Kabul edelim ki (M,I) koneksiyonu ile verilen Kenmotsu manifoldu

diizlemsel konformal olsun, yani Teorem 1.1.1 geregi
CX,Y)Z=0,

dir. Bu takdirde (3.1.9) denklemi bir W € y(M) ile i¢ ¢arpimu alindiginda
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9(C&X,Y)Z,W)

2
+ X 29, W) — g(¥, ) g(X, W) + g(X, Wn(¥)n(2)

2n—-1)
—g@,WinOn(@D+ ———

=0,

{g(Y, Z)n(X)n(W) — g(X, Z)n(Y)n(W)}

yazilabilir. Burada W = £ i¢in son denklem

n(CX,VZ) =2[g¥,Z)nX) — gX,Z2)n(¥)}, (3.1.11)

halini alir. (3.1.11) denkleminde (1.1.7) ifadesi kullanildiginda

1
nRX,V)Z) = ———AS(Y, Z)n(X) = S(X, Z)n(¥)}

‘ =D N, 2mx X, Z)n(Y)} =
+<(n_1)(n_2)+ . )[g<, ) - 9,20} = 0,

bulunur. Bu denklemde X = ¢ alinirsa

1
n(RE,Y)Z) —— 1S, 2) = S, 2n(¥)}

T n—-1)
+ <(n D=2 n=z 2> lg(¥,2) =n(Z)n(¥)} =0,

elde edilir. Yukaridaki denklemde (1.2.21) ve (1.2.22) ifadeleri kullanilirsa

T T
S(Y,7) = {3 —2(n—1)+ m}g(y, 7) + {n —1- B}U(Z)n(Y),

bulunur, ki bu da manifoldun n-Einstein manifold oldugunu gosterir.

Teorem 3.1.2.: Bir n =2m + 1-boyutlu Kenmotsu manifoldu M olsun. M ayni
zamanda Levi-Civita koneksiyonu V ya ve (M,I) yari-simetrik metrik olmayan koneksiyonu

V ye gore diizlemsel ¢-konformal sartim saglar (Yildiz ve Cetinkaya, 2013).

Ispat: C ve C, bir n = 2m + 1-boyutlu Kenmotsu manifoldu iizerinde sirasiyla Levi-
Civita koneksiyonu V ya ve (M, I) yari-simetrik metrik olmayan koneksiyonu V ye goére Weyl

konformal egrilik tensorleri olsun. (3.1.9) denkleminde Z yerine ¢ konuldugunda,

_ 2 2(n—1)
CX,Y)§=CX, V)¢ + nTz{"(Y)X —nX)Y +n(X)Y —n(NX} — —— (¥ )nX)¢

(n-2)
—n(X)n(¥)$},
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bulunur. Burada gerekli sadelestirmeler yapilirsa
CX,V)E=CX,V)E=0,

elde edilir ki buradan (3.1) geregi manifoldumuzun hem V hem de V koneksiyonlarina gore

diizlemsel &-konformal oldugu goriiliir.

Teorem 3.1.3.: Bir n = 2m + 1-boyutlu Kenmotsu manifoldu M olsun. M iizerinde

(M, I) yari-simetrik metrik olmayan koneksiyonu V ye gére quasi-konformal egrilik tensorii ¢
olmak tizere, manifold bu koneksiyona bagli diizlemsel quasi-konformal ise, Levi-Civita

koneksiyonuna goére n-Einstein manifolddur (Yildiz ve Cetinkaya,2013).

Ispat: Kabul edelim ki (M,I) koneksiyonu ile verilen bir Kenmotsu manifoldu
diizlemsel quasi-konformal olsun, yani Tanim 1.1.18 geregi
CX,Y)Z =0,
sart1 saglansin.

Oncelikle (3.1.10) denkleminin her iki tarafim bir W € y(M) vektor alami ile i¢

carpimini alalim:

g(Cenzw)

=g(CX,V)Z,W) + 2(n — Db{g(¥, nX)nW) — g(X, Z2n(¥)n(W)}
+2[a+2(n - Db{gX,Win(Y)n(Z) — g(¥,Wn(X)n(Z)}
N {(n ()

n

G - T +2b)—a =20~ l)b} [g(Y, 2)g(X, W)
—-g(X,2)g(Y, W)},

Yukaridaki denklemde W = & alindiginda ve V ye goére diizlemsel quasi-konformal

olma sart1 kullanildiginda

n (€, NZ) = =20 — Db{g(Y, DX) — g(X, 2)n(V))
B {(n - D(n-2)

n

(n f 1T Zb) —a—=2(n- 1)b} [g(Y, Z)n(X)
—gX, Z)n(M)}

bulunur. Bu denklemde X yerine & konulursa
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n(CE 1)Z)
=—=2(n—Db{gY,2) —nX)n(V)}
-1 -2
_ {(n )n(" )(n f T+ 2b) —a-2(n- 1)b}{g(Y.Z)
— g, DN}, ¢.1.12)

elde edilir. (3.1.12) esitligi (1.1.11), (1.2.28) ve (1.2.29) ifadeleri yardimiyla

m-1DMn-2)—-1
n

_{(Tl—l)(?’l—Z)—T( a

n n—1

a
bS(Y,Z) + { ( + 2b) —2a—(n- 1)b}g(Y, 7)

n—1

+ 2b) —2a-2(n— 1)b}77(Z)n(Y) —0

haline doniisiir. Son olarak yukaridaki denklemin her iki tarafi da b ile boliintip S(Y, Z) yalniz

birakilirsa

n—-1)n-2)—-1
n

1(n-1Dn-2)—17, a
+E{ n (n—l

S(Y,Z):—%{ (ni1+2b)—2a—(n—1)b}g(Y,Z)

+2b) - 2a - 2(n - 1)b}n(Z)n(Y),

bulunur, ki bu da manifoldun V koneksiyonuna gore n-Einstein manifold oldugunu gésterir.

Teorem 3.1.4.: Bir n =2m+ 1 —boyutlu Kenmotsu manifoldu M olsun. M ayni
zamanda Levi-Civita koneksiyonu V ya ve (M, ) yari-simetrik metrik olmayan koneksiyonu V
ye gore diizlemsel &-quasi konformaldir gerek ve yeter sart a = 2(1 —n)b dir (Yildiz ve
Cetinkaya, 2013).

Ispat: M, n-boyutlu Kenmotsu manifoldu ayn1 zamanda Levi-Civita koneksiyonu V
ya ve (M,I) yar-simetrik metrik olmayan koneksiyonu V ye gore diizlemsel &-quasi

konformal olsun, yani Tanim 3.2 geregi
CX,Y)E=CX,Y)E=0, (3.1.13)

saglansin. (3.1.10) denkleminde Z = & alinirsa
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C(X, V)¢ = C(X,YV)E
+{(n —1Dn—-2) a

(

- n_1+2b)—a—2(n—1)b}{n(Y)X

—nX)Y} +2(n — Db{n(Mn(X)¢ —n(n(Y)E} + 2{a
+2(n-1b}(n(V)X
—nX)Y),

yazilabilir. Burada (3.1.13) ifadesi geregince ve gerekli diizenlemeler yapildiginda

(n—1)
n

2 (@a+2(n—-DbnH)X —nX)Y) =0,

bulunur. Boylece kolayca a = 2(1 —n)b saglandign goriliir. Tersi de benzer sekilde

bulunabilir.

Teorem 3.1.5.: Bir n = 2m + 1-boyutlu Kenmotsu manifoldu M olsun. M iizerinde
(M, I) yari-simetrik metrik olmayan koneksiyonu V ye gére egrilik tensdrii R olmak iizere,
R(X,Y).R =0 sartin1 saglar ise, H"(—1) hiperbolik uzayina lokal olarak izometriktir (Y1ldiz ve
Cetinkaya, 2013).

Ispat: M n-boyutlu Kenmotsu manifoldu olsun. (R.R) =0 esitligi X,Y,Z,U, W €
x(M) igin

(RX,Y).R)(Z, )W
= R(X,Y).R(Z, )W — R(R(X,Y)Z, U)W — R(Z,R(X,Y)U)W
—R(Z,DRX, Y)W =0,

seklinde yazilir. Bu denklemde X = ¢ yazildiginda

REV).RYZ, )W
=R, Y).R(Z U)W — R(R(£,Y)Z, U)W — R(Z, R(E, Y)U)W
—R(Z,)RE V)W =0,

olur. Yukarida (3.1.2) esitligi kullanildiginda

g(¥,R(Z, )W) —=n(RZ, DW)nY) — g(¥,Z2)nR(E, VW) +n(¥In(Z)nRE, VW)
+ g, Un(RZ,HW) —n(VInUn(R(Z,HW) =0,

bulunur ki tekrardan (3.1.2) denklemi son denklemde yerine konuldugunda
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g(Y,R(Z, )W) —n(R(Z, U)W)n(Y) + 2g9(Y,Z)g(U, W) — 2g(Y, Z)n(U)n(W)
—2g(UWn(Yn(Z) —29(Y,0)g(Z, W) + 2g(Y, U)n(W)n(Z)
+29@Z, W)nU)n(y)
=0, (3.1.14)

elde edilir. Son olarak (3.1.14) denkleminde gerekli diizenlemeler yapildiginda
g¥,R(Z,U)W) = g(ZW)gU,Y) —gU,W)g(ZY), (3.1.15)

sonucuna ulagilir. (3.1.15) denklemi de bize manifoldun -1 sabit egrilikli oldugunu gosterir.

Boylece M manifoldu H™(—1) hiperbolik uzayina lokal olarak izometriktir.

Teorem 3.1.6.: n = 2m + 1-boyutlu bir Kenmotsu manifoldu M iizerinde (M, ) yari-
simetrik metrik olmayan V koneksiyonuna gére R(X,Y).R =0 sartin1 saglar ise, manifold -
Einstein manifolddur (Y1ldiz ve Cetinkaya, 2013).

Ispat : M n-boyutlu Kenmotsu manifoldu olsun. (R.R) =0 esitligi X,Y,Z,U, W €
x(M) igin

(R(X,Y).R)(Z, )W
=R(X,Y).R(Z, U)W — R(R(X,Y)Z, U)W — R(Z, R(X,Y)U)W
—R(Z,)RX, Y)W =0,

yazilabilir. Bu denklemde X = ¢ alalim. Bu durumda

REYV).REZ )W
= R(£,Y).R(Z, )W — R(R(&,Y)Z, U)W — R(Z,R(£, Y)W
—R(Z, DR V)W =0,

olur. Burada (3.1.2) denklemi kullanildiginda

REYVIR(EZ, U)W —n(R(Z, UV)W)Y — g(Y,R(Z, U)W)E + 2n(R(Z, V)W)
—RREYVZ,UW +n@REY, DW +{g(¥,2) — 2n(n(Z2)}IRE, W
—R(Z,REYVUW +n(UREZ, V)W —{g(¥,U) = 2n(V)nU)IR(E, 2HW
—REZ,DRE VW +n(WIREZ, V)Y +{g(¥, W) = 2n(YIn(W)}IR(Z, U)§
=0,

yazilabilir.(1.2.21) denklemi yardimiyla yukarida denklem
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—gY,R(Z, )W) —g(¥,2)g(U,W) + g(¥,ZnUn(W) + g(¥,U)g(Z,W)
=g, UnZ)nmWw)
-0 (3.1.16)

halini alir. (3.1.16) da U = W = e; alinirsa

Z{g(y» R(Z,e)e;) —g(Y,2)g(ei,e) + g(¥,Z)m(edn(e) + g(¥,e)g(Z, e;)

=1

—g(Y,e)n(Z)n(e)} =0,
elde edilir. Burada gerekli diizenlemeler yapildiginda
S,2) = (2 -n)g(¥,z) —n(¥V)n(Z)
bulunur ki, bu da manifoldun V koneksiyonuna gore n-Einstein manifold oldugunu gosterir.

Teorem 3.1.7.: Bir n = 2m + 1-boyutlu Kenmotsu manifoldu M olsun. M, (M,I)
yari-simetrik metrik olmayan koneksiyonu V ye gore ¢-simetrik manifold ise, manifold -
Einstein manifolddur (Y1ldiz ve Cetinkaya, 2013).

Ispat: Mn =2m+ 1-boyutlu Kenmotsu manifoldu olmak iizere V ye baglh ¢-

simetrik olarak verildiginden Tanim 1.1.23 geregi
o*((WwR (X, V)Z) =0,
sartin1 saglayacaktir. (1.2.1) yardimiyla yukaridaki denklem yerine
¢*((VwR X, N)Z) = —(Vw R X, V)Z +1((VwR) (X, V)Z)¢ = 0,
yazilabilir. Ayrica verilen koneksiyon 6zellikleri geregi
VwRYX,Y)Z =V R(X,Y)Z—R(VyX,Y)Z —R(X,VyY)Z — R(X,Y)Vy Z, (3.1.17)

olacagi asikardir. Simdi yukaridaki denklemin teker teker terimlerini (1.3.1) denklemi ve (M, I)

koneksiyonu yardimiyla bulalim.
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VwRX,Y)Z =V RX,Y)Z 4+ gV X, 2)Y + g(X, Yy 2)Y + g(X, 2)Vy Y — g(Vy, Y, 2)X
-9, VywZ)X —g(¥,2)VyX + 2g(Y, WIn(2)X — an(YIn(Z)n(W)X
+2n(VwYIN(2)X + 2gW, 2n(YV)X + 2n(Vw Z)n(V)X + 2n(Z)n(Y)Vy X
—2gW, X)n(2)Y + 4anXn@2nW)Y — 2n(Vy Z)n(X)Y — 29(W, Z)n(X)Y
= 2n(VwZn(X)Y
- 2n(Z)nX)vyY, (3.1.18)

R(VwX,Y)Z

= R(VywX,Y)Z + g(Vy X, 2)Y — g(Y, 2)Vy X + 20(Z)n(V)Vy X — 2n(Vy X)n(2)Y
+nXORW,Y)Z + gW,Z)n(X)Y — g(¥,Z)n(XOW + 2n(X)n(Zn(YI)W

= 2n(X)n(W)n(2)Y, (3.1.19)

R(X,VyY)Z

=RX, Yy V)Z + g(X, 2)Vy Y — g(Vy Y, 2)X + 20(Vy, YI)N(2D)X + 2n(Z)n(X)Vy Y
+n(MRXW)Z + g(Z, X)n(VW — gW, Z)n(Y)X + 2n(W)n(YI)n(Z)X

= 2n(XOn(@2n(¥Y)W, (3.1.20)

RX,Y)VyZ

=R, V)VyZ + g(X, Vi 2)Y — g(¥, Vi 2)X + 2n(Mn(Vyy )X + 2n(Vyy 2)n(X)Y
+n(@2)RX, VW + gW,X)n(Z)Y — gW,Y)n(Z)X + 2n(W)n(Y)n(2)X
—2nOnZmWw)y, (3.1.21)

(3.1.18)-(3.1.21) denklemleri (3.1.17) de kullanilirsa

(VwR)X,Y)Z +3g(Y,W)n(Z)X — 8n(Y)n(Z)n(W)X +3g(W,Z)n(Y)X —3g(W,X)n(Z)Y
+8n(X)n(Z)nW)Y = 3g(W, Z2)n(X)Y +n(R(X,Y)Z)W —n(X)R(W,Y)Z
—n(Y)RX,W)Z - n(Z)RX,Y)W
= n((VwR(X,Y)Z)§ + 3g(Y, WIn(Z)n(X)§ — 3g(W, X)n(Z)n(Y)§

+ (RN ZnW)E —n(X)nRW,Y)Z2)E —n(YIn(RX, W)Z)E
—n(Z)nRE,IW)E,

elde edilir. Yukaridaki denklemin her iki yanini bir U vektor alani ile i¢ carpalim. Bu durumda
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g((VwRYX,Z,U) +3g(Y,WIn(Z)g(X,U) — 8n(¥)n(Z)n(W)g(X,U)
+3gW,Z)n(YV)gX,U) —3gW,X)n(Z2)g (Y, U) + 8n(XOn(Z)n(W)g(Y,U)
=3gW,2)nX) g, U) + n(R(X,Y)Z)g(W,U) —n(X)g(R(W,Y)Z,U)
—n(gRX,W)Z,U) —n(Z)g(R(X,YIW,U)
= n((VwR)Y(X,Y)Z)n(U) + 3g (Y, W)n(Z)n(X)n(U)
—3gW, X)n(Z2)n(¥Y)nU) +n(RX,Y)Z)n(W)n(U)
—nXOnRW,Y)Z)nU) —n(¥InRX, W)Z)n(U)
—nZRE, YIW)n),

bulunur. Son denklemde X ve U ya gore kontraksiyon yapildiginda

(VwS Y, 2) + 3ng(Y,Wn(Z) — 8nmn(Y)n(Z)n(W) + 3ng(W,Z)n(Y) — 3g(W,Y)n(2)
+ 8n(Y)n(Z)n(W) —3g(W,Z)n(Y) + Z n(R(e, Y)Z)g(W,e;)
i=1

—n(RW,Y)Z) =n(Y)SW,Z) = n(Z)S(Y,W))

= D 1R e NZn(e) + 390, WIn(2) = 302 n(W)

i=1

+ D 1R (eu W In(ed) = nRW,NZ) 1) ) 1R (e, WIZ)(e)
i=1 i=1

=02 ) 1R (e IW(ey,
i=1

yazilabilir. Z = £ i¢in yukaridaki denklem

(VwS) (Y, &) + 3ng(Y, W) — 8nn(YI)n(W) + 3nn(W)n(Y) + 3n —3)g(W,Y)
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+@ = 8NN + ) 1R, NOIW, e) 1R, 1))
i=1

—n()SW, S, W)

= D 1w R) (e IEM(ED + 39 (Y, W) = 3n(V)n(W)
i=1

) 1R NONW (e —nRWV,VIE =1V > 1(R(en WHEN(e)
i=1 i=1

= > 1R, W (en,
i=1

halinir alir ki gerekli sadelestirmeler yapildiginda

n—>5 7 —5n

3
SY,w) = n()n(W),

sonucuna ulagilir. Bu da bize manifoldun V koneksiyonuna gore n-Einstein manifold

oldugunu gosterir.

Teorem 3.1.8.: Bir n = 2m + 1-boyutlu Kenmotsu manifoldu M olsun. M, (M, I) yari-
simetrik metrik olmayan V koneksiyonuna gére diizlemsel ¢-konformal ise, manifold n-Einstein
manifolddur (Yildiz ve Cetinkaya, 2013).

Ispat: (M,I) koneksiyonu ile verilen bir Kenmotsu manifoldu diizlemsel op-konformal

olsun, yani Tanim 1.1.25 geregi

9(C(pX, pY)Z, W) = 0,

saglansin. Bu durumda (3.1.9) yardimiyla

9(C(pX, pY)pZ, pW)
= g(R(@X, V) @Z, W)
1 _
- {S(@Y, 02) g(pX, W) — S(@X, 9Z)g(@Y, W)
+ S(pX, oW) g (@Y, 9Z) — S(pY, pW)g(@X, pZ)}

+ {g(oY, 0Z2) g(X, W) — g(@X, Z)g(@Y, W)} =0

T
(n-2)(n—-1)

yani,



43

IJR(@X, Y)Z, W) — g(@Y, 9Z) g(0X, W) + g(@X, 9Z)g(@Y, W)
1
=5 5(Y,02)g(pX, W) — S(¢X, 9Z)g(¢Y, pW)

+ S(pX, oW) g(@Y,pZ) — S(@Y, W) g(@X, Z)}

T 4n
+ {(n T R 2}{g(<pY, »Z)g (X, W)
— 9(pX, Z)g(@Y, W)},
yazilabilir. Son denklemde X — @X,Y — ¢Y,Z - @Z, W - oW alinirsa
gRX,Y)Z,W) + gRX,Y)E, Z2n(W) — g(R(X,Y)E,W)In(Z) + g(R(E, X)Z,W)n(Y)
—gREZWIINX) + gR(E YVZ,HnX)n(W)
—gREYEWINXN(Z) — g(eY, 0Z)g(pX, W) + g(X,Z)g(Y, W)

—9gX, )W) — g¥,Wn(X)mZ) —g(¥,2)gX, W)
+ g, Z2nXnW) + gX, W)in(Y)n(Z)

= %{S(Y, 2)gX,W)-=SX,2)glY, W)+ SX,W)g(¥,Z)

-SY\W)gX,Z) + S(Y,W)g —SX,W)g(¥,Z) — S(pX, pZ) g(pY, W)
+ S(pX, oW)g(@Y,pZ) — S(@Y, pW)g(eX, pZ)}

-1
+ ZTZ{?’{](X, Win(¥n(z) — 29X, W)g(¥,z) + 39, Z)n(X)n(W)
—3g(Y, Win()n(2) —2g(Y,W)g(X,Z) + 3g(X, Z)n(Y)n(W)}
T
+ {m}{g(x' W)g(¥,z)
—gXWin(Wn(2)g(eY, 9Z)g(@X,oW) — g(@X, 9Z)g(pY, W)}
bulunur. Burada X ve W ye gore kontraksiyon yapildiginda

n—2

S(Y,7) = {(n— DG -2m) 41+ @m-Dn—-2)+7 }g(y,Z)

n—1

+{(n—1)(—8+3n)—r—2(n—1)(n—2)—fn_
n—1

b,
yazilabilir. Manifold n-Einstein manifolddur.

Teorem 3.1.9.: Bir n = 2m + 1-boyutlu Kenmotsu manifoldu M olsun. M, (M, I)) yari-
simetrik metrik olmayan V koneksiyonuna gére ¢-konformal simetrik manifold ise, manifold
n-Einstein manifolddur.
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Ispat: M n=2m + 1-boyutlu Kenmotsu manifoldu olmak iizere V ye bagli ¢-

konformal simetrik olarak verildiginden Tanim 1.1.24 geregi

P*(VwO(X,V)Z) =0,

sartin1 saglayacaktir. (1.2.1) yardimiyla yukaridaki denklem yerine

P (VwOX,Z) = =Ty OX, VZ +1((TwO(X, Y)Z)§ =0,
yazilabilir. Ayrica
VwOXYNZ=Vy,CX,Y)Z-CVyX,Y)Z - CX,VyY)Z-C(X,V)VyZ,

olacagi asikardir. Buradan (M, I) koneksiyonu ve (3.1.9) denklemi yardimiyla

P*((VwO X, 1)Z)
=-VuCX,VNZ+CVyX,Y)Z+CX,VywY)Z+CX,Y)VyZ
+ 02 CX W +n(Vw CX,Y)Z)§ —n(C(VwX,Y)Z)§ —n(C(X, Vi Y)Z)§
—n(CX, VIVywZ)$
— 5 [ @n WX — mXnZnW)Y —29(Y, Win(2)X

+29W, X)n(2)Y —2g(W, Z)n(Y)X +29(W, Z)n(X)Y

=2gW,X)m(Z)nY)E +2gW,Y)n(Y)In(X)E}

2(1-
(n — :) (89(Y, 2n(X)nW)§ — 39X, Zn(¥VIn(W)E + 29(X, Zn(NHW

=29, ZnXOW — g(¥, ZnX)mW)E + g(X, Z)n(Y)n(W)é}

1
t— [SY, 2DnX)nW)E — (n—Dg¥, ZnX)n(W)¢
=S, ZnnW)E+ (n— DgX, 2n¥InW)E + S, WIn(X)n(Z)¢
=SX,WIn¥n(Z)§ — (mn—Dg¥,Win(X)m(Z2)é

T
+ (- DgY,WnX)n(2)¢} + m—Dm=2 [=9(Y, Z2nXOn(W)E
+ 99X, Z)n(Y)nW)E — g(¥,WIn(X)n(Z)¢ + gX, Win(¥)n(Z)¢}

+ g, Z2nXOnW)é — g(X, Zn(YI)n(W)HE + g(¥, WIn(X)n(Z)¢E
—gX, Wn(¥)n(2)é

elde edilir. Her iki tarafin1 bir U vektorii ile i¢ carpimi alindiginda ve X ve U ya bagh

kontraksiyon yapildiginda



g((pz ((VWC_‘) (ei' Y)Z' ei)

n
i=1

n n
=~ Z g(VWC(eiJ Y)Z, ei) + Z g(C(VWEi, Y)Z, el-)
i=1 i=1
n n
£ g(Cle,VuNZ,e) + ) g(Cle,VIVwZ,e)
i=1 i=1

+ 2 (DgCles NW,e) + Y 1TV Cley D)
i i=1

=1
n
=1
n
=1
2

= > n(CTweu NDn(e) = ) 1(Cles TwNZm(e
i=1
= > n(Cles V(e

L

—— [ (@nW) — 4 (¥ )n(Z)n(W) — 2ng (¥, W)n(2)

+29W,Y)n(Z) —2ngW,Z)n(Y) +2g(W,Z)n(Y) — 2n(W)n(Z)n(Y)
+2g(W,Y)n(Y)}

2(1—-n)
> B9, W) = 3n@n¥)nW) + 2g(W, Z)n(¥)

=29, Z)nW) — g(¥, Z)n(W) + n(Z)n(Y)n(W)}

1
+ S, DnW) — (n = Dg (¥, 2)nW) = SX, Z)n(¥)n(W)

+ (= DgX, Zn¥nW) + S, W)inX)n(Z) — SX, Win(¥)n(Z)
—(=Dg, WinXn2) + (n— Vg, W)nX)n(2)}
TR I D) £ n@nnWn (o)
— g, WinCOn(2) + g(X, Win(¥)n(2)} + g(¥,Z)n(W)
—9&X, DY )W) + g¥,Win(Z) —nX)n(¥)n(2),

elde edilir. Burada Z=¢ igin
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i g((p2 ((VWC_‘) (ei' Y)E' ei)
i=1
= - i g(VWC(ei, Y), ei) + i g(C(VWei; Y); ei) + i g(C(eil VWY)' ei)
i=1 i=1 i=1
+ zn: 9(C(e, V)V, ;) + zn: 9(Ce, Y)W, e;) + zn: n(VwC(e, Y)E)n(e;)
i=1 i=1 i=1
— zn: n(C(Vye;, Y)En(e;) — zn: n(C(e, Vi Y)Em(e)
i=1 i=1

DR GCRETIC)

i=1
2
- m{‘lnn(Y)n(W) —4n(n(W) = 2ng(Y, W) + 2g(W,Y)
1
= 2np(W)n(Y) + 2n(W)n(¥)} + nTz{S &, W) +2(n — Dn(V)n(W)

— (=g, W)inX)} + {=g, W) +n(¥)n(W)}

T
(n—1Dn-2)
+ g, W) —n(¥)nW),

olup, yukaridaki denklemde gerekli diizenlemeler yapildiginda

S(Y,W)=n_2[( T 2n—3

2 n—l)(n—2)+ n—2
n—2 T 4n —
2 (n—l)(n—2)+n—

6] g(v, W)

5
> = 6| nmw),

sonucuna ulagilir.
3.2. Ricci Solitonlar

M n —boyutlu Riemann manifoldu tizerinde L lie operatorii, S Ricci tensori, V, M

tizerinde diizgiin vektor alani (potansiyel vektor alani) ve A da sabit olmak iizere
Ly X, Y) +25(X,Y) +2Ag(X,Y) =0

sartin1 saglayan g metrigine Ricci soliton dendigi biliyoruz. Bu kisimda (M,p,) ¢eyrek
simetrik metrik koneksiyonu ile verilen 3-boyutlu trans-Sasakian manifoldlar ve (M,p,) ¢eyrek
simetrik metrik olmayan koneksiyonu ile verilen 3-boyutlu normal hemen hemen degme metrik

manifoldlar i¢in temel baz1 6zellikler verilecek daha sonra ise Ricci solitonlar irdelenecektir.
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3.2.1. (M,1) ceyrek simetrik metrik koneksiyonu ile verilen 3-boyutlu trans-Sasakian
Manifoldlar

Onerme 3.2.1.1.: Bir 3-boyutlu trans-Sasakian manifoldu M olsun. M iizerinde Levi-
Civita koneksiyonu V ya gore egrilik tensorii R ve (M,¢;) ceyrek-simetrik metrik koneksiyonu

V ye gore egrilik tensorii R olmak iizere, V X,Y,Z € y(M) icin R ile R arasindaki bagint1

RX,Y)Z = R(X,Y)Z + 2ag(pX,V)9Z + a{n(Y)n(Z)X —n(X)n(Z)Y}
+ B2 X — X2 eY} + a{n(X)g(Y,2)§ —n(V)g (X, Z)¢}
= BIn(Mg(pX,Z)§
—nX)g(eY,2)¢} (3.2.1.1)

dir (Yildiz ve Cetinkaya, 2012a).

Ispat: Ceyrek-simetrik metrik koneksiyon V ye gore egrilik tensorii R olmak iizere,
VX,Y,Z € x(M) i¢in hemen hemen degme metrik manifoldlarda (2.1.4) denklemini bulmustuk.
M bir 3-boyutlu trans- Sasakian manifold oldugundan (2.1.4) denkleminde (1.2.34) ve (1.2.35)

ifadeleri kullanilirsa

RX,Y)Z =R(X,Y)Z —n(M[a{g(X,2)¢ —n(Z2)X} + B{g(pX, Z]1¢ —n(Z)pX}]
+ X)) [a{g(Y,2)¢ —n(Z)Y} + B{g(eY,Z]E —n(Z)Y}]
— g, —apX + p{X —n(X)éNeZ + g(X,—apY + B{Y —n(Y)EDeZ

elde edilir. Burada gerekli sadelestirmeler yapildiginda

RX,Y)Z = R(X,Y)Z + 2ag(@X,Y)9Z + a{n(YIn(Z)X —n(XIn(Z2)Y}
+ B I(Z)pX —n(XNn(2DeY} + a{in(X)g(Y,Z2)E —n(V)g(X,Z)¢E}
= pInMg(eX,2)§ —n(X)g(eY,Z)¢}

sonucuna ulagilir.

Onerme 3.2.1.2.: Bir 3-boyutlu trans-Sasakian manifoldu M olsun. M iizerinde Levi-
Civita koneksiyonu V ya gore egrilik tensorii R ve (M,¢@4) ceyrek-simetrik metrik koneksiyonu

V ye gore egrilik tensorii R olmak iizere, V X, Y, Z € y(M) igin;

RX,Y)¢ = (a® = B> + a)(n(MX — n(X)Y) + 2aB + (VX —n(X)eY) + Ya)pX
— (Xa)pY + (YB)p*X
- (XB)p*Y (3.2.1.2)
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dir (Yildiz ve Cetinkaya, 2012a).
Ispat: ilk olarak (3.2.1.1) denkleminde Z = & alimirsa
RX,V)§ = RIX,Y)§ + 2ag(pX, V)9 + afn(¥)n(O)X — n(X)n()Y}

+ B eX —nXIn(©)eY} + a{n(X)g(Y,&E —n(Y)gX, £)E}
= B{In(Mg(eX,$)¢ —n(X)g(eY,§)E},

bulunur. M bir 3-boyutlu trans-Sasakian manifoldu oldugundan (1.2.2), (1.2.3) ve (1.2.36)
denklemleri yardimiyla yukaridaki denklem

RX,Y)E = (a® = BH((Y)X —n(X)Y) + 2af(n(YV)pX — n(X)eY) + (Ya) X — (Xa)pY
+ (YR)92X — (XB)@?Y + a{n(V)X —n(X)Y} + B{n(V)pX — n(X)pY}

halini alir. Son olarak burada gerekli diizenlemeler yapildiginda

RX,Y)¢E = (a®> - B2+ ) (nM)X —n(X)Y) + (2aB + B((V)eX —n(X)eY) + Ya)pX
— Xa)pY + (YB)p*X — (XB)p?Y

elde edilir.

Onerme 3.2.1.3.: Bir 3-boyutlu trans-Sasakian manifoldu M olsun. M iizerinde
(M,p,) ¢eyrek-simetrik metrik koneksiyonu V ye gore egrilik tensérii R olmak iizere,
VXY, Z€y(M)igin;

R(X,Y)Z =—-R(Y,X)Z
saglanir (Y1ldiz ve Cetinkaya, 2012a).
Ispat: (3.2.1.1) denkleminde sirasiyla Y = X ve X = Y alinirsa

R(Y,X)Z = R(Y,X)Z + 2ag (oY, X)9Z + a{n(XI)n(2)Y —n(¥)n(Z)X}
+ B{nCONZ) oY —n(YIn(Z) X} + a{n(Y)g(X,2)§ —n(X)g (Y, Z)¢}
= pIn(X)g(eY,2)§
—n(V)g(pX,2)¢} (3.2.1.3)

elde edilir. (3.2.1.3) ile (3.2.1.1) denklemleri taraf tarafa toplandiginda
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R(X,Y)Z +R(Y,X)Z
=RX,Y)Z + 2ag(pX,V)pZ + a{n(YI)n(Z)X —n(XOn(2)Y}
+ B2 X —nXn(Z)eY} + a{in(X)g (Y, 2)§ —n(V)g (X, Z)§}
= BIn(Mg(pX, 2)§ —nX)g(pY,Z)E} + R(Y, X)Z + 2ag (@Y, X)pZ
+ a{nOn2)Y —n(YIn(2)X} + fIn(Xn(2)eY —n(¥In(Z)pX}
+a{n(V)g(X,2)§ —n(X)g(¥,2)§} — p{n(XDg(eY,2)§ —n(¥Y)g(pX,Z)§}

yazilabilir. Burada gerekli sadelestirmeler yapilirsa
R(X,Y)Z =—-R(Y,X)Z
bulunur.

Ayrica (3.2.1.1) denkleminde sirasiyla ilk once X =Y, Y =27 ve Z =X olarak

alindiginda

R(Y,2)X = R(Y,2)X + 2ag(pY, Z)pX + a{n(Z)n(X)Y —n(VIn(X)Z}
+ BnZImX) Y —n(YInX)eZ} + a{n(Y)g(Z, X)§ —n(Z)g(Y, X)¢}
— B{n(2)g(eY,X)§
—n(V)g(pZ, X)¢} (3.2.1.4)

bulunur. Benzer sekilde (3.2.1.4) denkleminde sirasiylaY = Z,Z = X ve X =Y yazildiginda

R(Z,X)Y = R(Z, X)Y + 2ag(pZ,X)pY + ain(X)n(Y)Z — n(Z)n(Y)X}
+ BnXn(VoZ —n(Zn(Y)eX} + a{n(Z)g(X,Y)§ —n(X)g(Z,Y)E}
= B{n(Xg(pZ,Y)§
—n(2)g(pX,Y)¢E} (3.2.1.5)

elde edilir. Son olarak (3.2.1.1), (3.2.1.4) ve (3.2.1.5) denklemlerini taraf tarafa toplarsak
R(X,Y)Z+R(Y,2)X + R(Z, X)Y = 2a[g(¢X,Y)oZ + g(o¥, Z)pX + g(9Z, X)pY] +
2BM(Z)g(eX,Y)§ + n(X)g (@Y, Z)§ —n(Y)g(eX,Z)§ (3.2.1.6)

bulunur. Buradan asagidaki 6nermeyi verebiliriz:

Onerme 3.2.1.4.: Bir 3- boyutlu trans-Sasakian manifoldu M olsun. M, (M,p,) ceyrek
simetrik metrik koneksiyonu V ye gore egrilik tensorii R olmak iizere, V X,Y,Z € y(M) igin
(3.2.1.6) geregi bu koneksiyona bagl I. Bianchi 6zdesligini saglar ancak ve ancak g =
0 ve =0 dir (Yildiz ve Cetinkaya, 2012a).
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Sonu¢ 3.2.1.1.: Bir 3-boyutlu trans-Sasakian manifoldu M olsun. M, (M,p,) ¢eyrek
simetrik metrik koneksiyonu V ye gére egrilik tensorii R olmak iizere, V X,Y,Z € y(M) icin
(3.2.1.6) geregi bu koneksiyona bagli 1. Bianchi 6zdesligi saglar ancak ve ancak manifold
kosimplektiktir (Y1ldiz ve Cetinkaya, 2012a).

Onerme 3.2.1.5.: Bir 3-boyutlu trans-Sasakian manifoldu M olsun. M iizerinde
(M,p;) ceyrek simetrik metrik  koneksiyonu V ya gére Ricci tensorii ve skaler egriligi

sirastyla S ve T olmak iizere, VY, Z € y(M) icin
S(Y,Z) = S(Y,Z) — ag(¥,Z) + 3an(Y)n(Z) + Bg(®Y,Z) (3.2.1.7)

ve

Ll
Il
)

(3.2.1.8)
dir (Yildiz ve Cetinkaya, 2012a) .

Ispat : (3.2.1.1) denkleminin her iki yaninin U € y (M) ile i¢ ¢arpim alindiginda

gRX,Z,U) = gRX,Y)Z,U) + 2ag(pX,Y)g(9Z,U) + an(¥In(Z) g (X, V)
—an(X)n(2)g(Y,U) + B{n(YIn(2) g(eX,U) —n(XIn(Z)g(eY,U)}
+ a{n(X)g(¥, Z2)nU) —n(¥V)gX, Z)nU)} — pn(¥)g(eX, Z)n(U)
+ Bn(X)g (Y, Z)n(U)

yazilabilir. Buradan da X ve U vektor alanlarina gore kontraksiyon yapildiginda

S(Y,7)
=S(Y,Z) — ag(Y,Z) + 3an(Y)n(Z)
+ Bg(eY, Z2)

elde edilir. Son denklemde de Y ve Z vektor alanlarina gore kontraksiyon yapildiginda
T=1
bulunur.

Onerme 3.2.2.6.: Bir 3- boyutlu trans-Sasakian manifoldu M olsun. M iizerinde
(M,p,) ceyrek simetrik metrik koneksiyonu V ye gére Ricci tensérii S olmak iizere, VY €
x(M) i¢in

S(Y,8) = {2(a® = % + o) — ERI(Y) — (YB) — (¢YB) (3.2.1.9)



51

ve
S8 =2(a? = B+ a—(8B)) (3.2.1.10)
dir (Yildiz ve Cetinkaya, 2012a).
Ispat: (3.2.1.7) ifadesinde Z = & alinirsa

S(Y,®) =S(Y, %) — ag(Y,§) + 3an(Y)n(®) + Bg(¢Y,?)

bulunur. Yukarida (1.2.2), (1.2.3) ve (1.2.38) denklemleri kullanildiginda

S(Y,8) = [2(a® = B) — ER)IN(Y) — (YB) — (@YB) — an(Y)
+ 3an(Y)

elde edilir. Burada gerekli diizenlemeler yapildiginda (3.2.1.9) elde edilecegi aciktir.
Ayrica (3.2.1.9) denkleminde Y = & alinirsa

S8 ={2(a?— 2+ ) — (BB} — (&B) = 2(a® — B + a — (§B))
olur.

Teorem 3.2.1.1.: Bir 3-boyutlu trans-Sasakian manifoldu M olsun. M, (M,p,) ceyrek
simetrik metrik koneksiyonu V ye gore Ricci tensérii simetriktir ancak ve ancak manifold a-

Sasakian(quasi-Sasakian)dir (Y1ldiz ve Cetinkaya, 2012a).

Ispat: Kabul edelim ki 3-boyutlu bir M trans-Sasakian manifoldu iizerinde (M,¢,)
ceyrek simetrik metrik koneksiyonu V ya gore Ricci tensorii simetrik olsun, yani V Z,Y €

x(M) igin
S\, 2)=5(2,Y)

saglansin. Oncelikle S(Z,Y) ifadesini bulabilmek igin (3.2.1.7) denkleminde Y yerine Z,Z

yerine Y yazalim. Bu durumda
S(Z,Y)=S5(Z,Y)—ag(Z,Y) + 3an(Z)n(Y) + Bg(@Z,Y) (3.2.1.11)
ifadesi elde edilir.(3.2.1.9) ve (3.2.1.11) denklemleri S(Y,Z) = S(Z,Y) geregi

SY,2)—ag(Y,Z) +3an(Y)n(Z) + Bg(¢Y,Z)
=5(Z,Y) —ag(Z,Y) + 3an(Z)n(Y) + g(¢Z,Y)

halini alir. Burada gerekli sadelestirmeler yapildiginda
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Bg(eY,Z) = Bg(eZ,Y)
yada
2pg(pY,Z) =0
bulunur. Buradanda f = 0 oldugu agiktir.

Tersine 3-boyutlu bir M trans-Sasakian  manifoldu i¢in g =0 olsun. (3.2.1.7)

denkleminde f = 0 alinirsa
S(Y,2)=S(Y,Z) —ag(¥,Z) +3an(¥)n(Z)

elde edilir. Yukaridaki denklemde S Ricci tensorii ve g Riemann metriginin simetrik olma

ozelliklerinden yararlanilarak
S(Y,Z) =S(Z,Y) —ag(Z,Y) + 3an(Z)n(Y) = S(Z,Y)
sonucu ortaya ¢ikar. Boylece ispat tamamlanir.

Teorem 3.2.1.2.: M, a,B sabit olacak sekilde 3- boyutlu trans -Sasakian manifoldu
olsun. M iizerinde (M,¢p,) ceyrek simetrik metrik koneksiyonu V olmak iizere, b fonksiyonu
icin V = b¢ olmak sartiyla, manifold verilen koneksiyona bagli Ricci soliton olma sartini

sagliyor ise V. koneksiyonuna bagl n-Einstein manifolddur (Yildiz ve Cetinkaya, 2012a).

Ispat: o, sabit olacak sekilde 3-boyutlu trans -Sasakian manifoldu M olsun. M
tizerinde (M,¢,) ¢eyrek simetrik metrik koneksiyonu V olmak iizere, b fonksiyonu i¢in V = bé
olmak sartiyla, verilen koneksiyona bagli Ricci soliton olma sartini saglasin. O halde (1.3.1) ile

verilen,
(%ng +S+19)X,Y)=0
denklemi,
Lyg)X,Y) +25(X,Y) +219(X,Y) =0 (3.2.1.12)
haline doniisiir. (3.2.1.12) de Lie tiirevi 6zellikleri kullanilirsa
9g(VxV,Y) + g(VyV,V) + 25(X,Y) + 22g(X,Y) = 0
elde edilir. Burada V = b¢ alinirsa ve (2.1.3) denklemi geregi

g(Vxb&,Y) —n(X)g(pb&,Y) + g(Vybé, X) —n(Y)g (@b, X) + 2S(X,Y) + 2Ag(X,Y) = 0
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yani
Xb)n(Y) + bg(Vx&, Y) + (YDIn(X) + bg(Vy€,X) + 25(X,Y) + 229(X,Y) =0 (3.2.1.13)
bulunur. (3.2.1.13) de (1.2.35) denklemi kullanilirsa

Xb)n(Y) — bag(pX,Y) + bBg(X,Y) — bpn(X)n(Y) + (Yb)n(X) — bag(eY,X)
+bBg(Y,X) — bBn(YIn(X) + 25(X,Y) + 2Ag(X,Y) =0

sekline doniisiir. Bu denklemi diizenlersek
Xb)n(Y) + (Yb)n(X) + (2bB + 20)g(Y,X) — 2bn(Y)n(X) + 25(X,Y) =0  (3.2.1.14)

elde edilir. (3.2.1.14) de her Y gordiigiimiiz yere ¢ yazilip ve (3.2.1.9) denklemini

kullandigimizda
(Xb) + Eb)n(X) + 2(a? — B2+ a) + 2)n(X) =0 (3.2.1.15)
bulunur. Yukaridaki denklemde bu defa her X gordiigiimiiz yere ¢ alalim:
2(6b) + (4(a®> = B?) + 21+ 4a) =0 (3.2.1.16)
yani
(éb) = —(2a? — 2% + 1 + 2a) (3.2.1.17
sonucu ortaya ¢ikar. Bu denklemi (3.2.1.15) de kullanip gerekli diizenlemeler yapilirsa
(db) = —(2a? — 2%+ 1+ 2a)n (3.2.1.18)
elde edilir. (3.2.1.18) denkleminin her iki yanina d operatdrii uygulanirsa
Qa? -2p%?+ A+ 2a)dn =0
bulunur. Burada dn # 0 olacagindan
a?—-2p%+21+4+2a)=0 (3.2.1.19)
olur. Bu ifade (3.2.1.18 denkleminde yazilirsa b sabit olur. Boylece (3.2.1.13) denklemi geregi
SX,Y) =bpn(Y)n(X) — (b + D g(Y,X) (3.2.1.20)
elde edilir ki bu da bize manifoldun 7 ya bagh n-Einstein oldugunu gosterir.

Ayrica elde edilen (3.2.1.20) denkleminde X ve Y vektor alanlarina gore kontraksiyon

yapilirsa
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T=bB -3 +21)=-31-2bp
denklemi ortaya ¢ikar. Boylece yukaridaki denklem geregi asagidaki sonucu verebiliriz:

Sonu¢ 3.2.1.2.: M , o,f sabit olacak sekilde 3- boyutlu trans -Sasakian manifoldu
olsun. M iizerinde (M,¢p,) ceyrek simetrik metrik koneksiyonu V olmak iizere, b fonksiyonu
icin V = b¢ olmak sartryla, manifold verilen koneksiyona bagli Ricci soliton 6zelligini

sagliyor ise
i)T + 2bB < 0 igin genisleyen (expanding),
i) T+ 2bfB = 0 igin degismeyen (steady),

iii) T+ 2bf > 0 i¢in daralan (shrinking),

olur (Yildiz ve Cetinkaya, 2012a).

Teorem 3.2.1.3.: M, a,8 sabit olmak lizere 3-boyutlu trans-Sasakian manifoldu
olsun. M tuzerindeki (M,p,) koneksiyonuna goére (1.3.2) ile tanimli gradyant Ricci soliton

ozelligini saglasin. Bu takdirde

i) a,f =0 veya a =—1 ve =0 dir. Dolayisiyla manifold kosimplektik veya verilen

koneksiyona bagli n-Einstein manifold olur.
il) (M,p,) koneksiyonuna gore sabit egriliklidir.
iii) A = 0, dolayisiyla metrigimiz degismeyendir (Yildiz ve Cetinkaya, 2012a).

Ispat: (M,p;) c¢eyrek simetrik metrik koneksiyonu ile verilen 3-boyutlu trans-Sasakian

manifoldu tizerinde
VVf=S+21g (3.2.1.21)

ile tanimli gradyant Ricci solitonu gézoniine alalim. D, g metriginin gradyant operatorii olmak
tizere (3.2.1.21) denklemi

V,Df = QY + AY (3.2.1.22)

veya
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g(VyDf,X) = g(QY,X) + Ag(Y, X) (3.2.1.23)
olarak yazlabilir. (3.2.1.22) denkleminden yararlamlarak R(X,Y)Df ifadesini bulalim:
E(X, Y)Df = vaYDf - vlvaDf - V[X,y]Df

= Vy(QY + 1Y) =V, (QX + 1X) — (Q[X, Y]
+ A[X,Y])

Burada (M,¢;) koneksiyonu yardimiyla yukaridaki denklem

RX,Y)Df = VxQY —n(X)@QY + VxAY — In(X)pY — VyQX —n(Y)pQX — VyAX
+ (V)X — QVyY + QVy X — AVyY
+ AVy X (3.2.1.24)

halini alir. A degerinin sabit oldugu gozoniinde bulundurulup (3.2.1.24) denkleminin her iki

tarafinin bir U vektor alani ile i¢ ¢arpimui alindiginda

9g(R(X,Y)Df,U)
= g(VxQY,U) —n(X)g(pQY,U) + Ag(VxY,U) — An(X)g (@Y, U)
— g(VyQX,U) —n(V)g(pQX,U) — Ag(VyX,U) + An(Y) g (¢X, V)
— g(QVxY,U) + g(QVyX,U) — Ag(VxY,U)
+ Ag(Vy X, U) (3.2.1.25)

bulunur. Son denklemde gerekli sadelestirmeler yapilip X = U = ¢ kullamildiginda

g(R(E Y)Df, &)
= g(V:QY,$) — g(QY,$) — m(X)g(9Y,§) — g(VyQ§,U)
—n(M)g(pQ¢, &) + an(¥)g(@s,§) — g(QVeY,$)
+ g(QVyé, 8) (3.2.1.26)

elde edilir. a3 sabit olmak tizere (3.2.1.26) da (1.2.35) ve (1.2.38) denklemleri yerine yazilirsa
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9(RE VD, £)
= 9 (VelG - (@ = B1)E) — g <V§ {(E - 3(a? - 52)) n(Y)E} , f) - 9(Ve{av},¢)
+ g(VeBan(nE),§) + g (VelBoV,§) — 9(Vr(2(a? = B2 + )}, )

(5 @ = wen ) o (5-300* -9 )atwine ) alaver.e)
—9(3an(Ver)$,§) — g(BeVeY.§) +g ((g — (@ - ,6’2)>Vy€, f)

-9 ((g - 3(a? - m) N, f) — 9(@Vy§,§) + gBan(TyE, )

+9(BeVy$,$) (3.2.1.27)

bulunur. Burada sadelestirmeler yapilip Levi-Civita koneksiyonu 06zellikleri kullanilirsa

yukaridaki denklem
g(R(E Y)Df,§) =0 (3.2.1.28)
halini alir. Burada ayrica (3.2.1.1) ve (1.2.36) denklemleri geregi g(R(&,Y)Df,€) ifadesi
gR(E Y)Df,§) = —Bg(eY,Df) + (a? — B2 + ){g(¥,Df) —n(¥)n(Df)} =0 (3.2.1.29)
olarak yazilabilir.(3.2.1.29) da Y yerine @Y alinirsa
Blg(Y,Df) —=n(¥)n(Df)} + (a® — % + a)g(pY,Df) = 0 (3.2.1.30)

bulunur. (3.2.1.29) ve (3.2.1.30) denklemleri arasinda gerekli sadelestirmeler yapilip

diizenlendiginde
{(@® = B +a)? + B*Hg (Y, Df) —n(¥In(Df)} =0 (3.2.1.31)
olur, Burada ii¢ durum s6z konusudur:
Durumi) (a®? — B2+ a)> + B2 =0:

(a? — B%+ a)?+ B2 = 0olsun. Bu durum ancak a,=0 veya o=-1 ve P=0 olursa
gergeklenir. Dolayisiyla manifold kosimplektik veya verilen koneksiyona bagli n-Einstein

manifold bulunur.

Durum ii) g(Y,Df) —n(Y)n(Df) = 0:

g(¥,Df) —n(¥Y)n(Df) = 0 ifadesi her Y vektor alani i¢in
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Df = (§f)E (3.2.1.32)

haline dontsiir. (3.2.1.32) ifadesi (3.2.1.23) de yerine yazilirsa

g(Vr (€E).X) = g(QY,X) + Ag (¥, X)
elde edilir. Yukaridaki denklem (2.1.3), (3.2.1.7) ve (1.2.39) denklemleri yardimiyla
X(GHINW) + EHBLg, X) —n(Xn(V)} - ag(pY, X)}

=gQY,X) —ag(¥,X) + 3an(Y)n(X) + Bg(eY,X)
+29(Y, X) (3.2.1.33)

olarak yazilabilir. Burada (1.2.39) denklemi kullanilip gerekli diizenlemeler yapildiginda

X(EP) + EHBLI, X) = (XY} — ag(pY, X))
T T
= |5 - @~ BD)|g(x. ) — [5 - 3(@? = BA)|nm(¥) — ag(¥, %)

+ 3am(Y)n(X) + BgleY, X)
+A9(Y,X) (3.2.1.34)

bulunur. (3.2.1.34) de Y = ¢ alinirsa

X(EN) = {2(a® — B + 2a + n(X) (3.2.1.35)
sonucu ortaya ¢ikar. (3.2.1.35) denkleminde X yerine Y, Y yerine X yazalim:
Y((EN)NX) + ENPBLXK,Y) —n(¥InX)} — ag(eX,Y)}

= g(QX,Y) —ag(X,Y) + 3an(X)n(Y) + Bg(eX,Y)
+9(X,Y) (3.2.1.36)

(3.2.1.34) ile (3.2.1.36) denklemleri taraf tarafa toplanirsa
YO + EHPBLgXY) —n(nX)} — ag(eX, V)} + X(E))n(Y)
+ EHBLg, X) —n(Xn(¥V)} — ag(eY,X)}

= gQY,X) —ag(¥,X) + 3an(Y)n(X) + Bg(eY,X) + 1g(Y, X) + g(QX,Y)
—ag(X,Y) + 3an(Xn(Y) + Bg(@X,Y) + 1g(X,Y)

yani
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Y(ENINX) + EN{BLgX,Y) —n(nCOY + X(EN)n)

+ EN{BLY,. X) —n(XOn()}}
=gQY,X) —2ag(Y,X) + 6an(Y)n(X) + 24g(Y,X) + g(QX,Y)

bulunur. Bu denklem (3.2.1.35) denklemi geregi

2{2(a® = B?) + 2a + An(Xn(Y) + 2N {BLgX, Y) = n(¥InCOY} + 2Bg (@Y, X)

haline doniisiir. Buradan
VyDf = (2(a? — B2) + 2a + A — EHBME + (ENBY + BoY  (3.2.1.37)
yazilabilir. (3.2.1.36) yardimiyla R(X,Y)Df ifadesini tekrardan hesaplayalim:

R(X,Y)Df = VxVyDf — V,VxDf — VixyDf

=Vx[{2(a® = BH) 4+ 2a + A= EHHBIMYE + EBY + oY | —
Vy[{2(a? = B2 + 2a + A — EHBIMX)E + EF)BX + BoX] — [{2(a®? — B*) + 2a + A —
CEOHBMUX, YDE + EHBIX, Y] + Bo[X, Y]]

= {2(a% = B*) +2a + 1 = ENBYM(VxY)E + g (¥, Vx&)E +n(Y)Vxé]
— XENBNY)E + XENBY + EFIBVxY + B(Vx@)Y + BoVyY
— ENHBX) Y — Bn(X)p®Y
—{2(a® = BB + 2a + 2 = E)BIM(VyX)E + g(X, VyE)E + n(X)Vyé]
+Y(ENPNX)E — ENBVYX —Y(ELIBX — B(Vy@)X — BoVyX
+ ENn(Y)eX
—[(2(a® = ) + 2a + A = ENBIMUAX, YIE + (ENBIX, Y] + BolX Y]],

Son denklemde sadelestirmeler yapilip elde edilen denklemin her iyi yanmun ¢ ile i¢

carpimi alindiginda

9(R(X,Y)Df,§) ={2(a® = p*) + 2a + 2 — G)BYg(Y,Vx) — XEF)Bn(Y) +
XEHB) +Bg((Vx@)Y,§) — {2(a? — B?) + 2a + A — §)BYIg (X, Vyd) +
Y(Ef)Bn(X) — YE)Bn(X) —
Ba((Vy@)X,$) (3.2.1.38)

bulunur. (1.2.34) ve (1.2.35) denklemleri (3.2.1.36) da yerine yazilirsa
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9(R(X,Y)Df, &) = {2(a® = B*) + 2a + A — Ef)BY—ag(Y,pX) + Bg(¥,X) —
Bn(InX)] + Blag(X,Y) — an(YI)n(X) + Bg(@X,Y)] — {2(a® — B*) + 2a + A —
GHBYH—agX, oY) + Bg(Y,X) — pn(YIn(X)] — Blag(X,Y) — an(YIn(X) +
Bg(eY,X)] (3.2.1.39)

elde edilir. Yukarida (3.2.1.36) ve (3.2.1.1) denklemleri gbzoniinde bulunduruldugunda
[282 — 2af2(a® — B?) + 2a + A — (§/)B}g(#X,Y) =0,
sonucu ortaya ¢ikar. Burada g (Y, ¢X) sifir olamayacagindan
2B% = 2a{2(a? — B2+ 2a+ 21— (Ef)B} =0, (3.2.1.40)

olma durumu kalir. Burada «, f nin sabit olmast g6z 6niinde bulunduruldugunda A degerinin

sabit olabilmesi i¢in (¢§f) = sabit = ¢ olmas1 gerekir. Bu da (3.2.1.31) geregi
Df =c§ (3.2.1.41)
demektir. Dolayisiyla (3.2.1.23) denklemi (3.2.1.41) yardimiyla
S, X) =-2g(,X) + g(Vyc&, X) = —Ag(Y, X) — cag(eY,X) + cBg(Y,X) — cfn(YIn(X)
olarak yazilabilir. Burada X ve Y vektor alanlarina gore kontraksiyon yapilirsa
T=-31+2fc
elde edilir. Sonugta manifold (M,e,) koneksiyonuna gore sabit egriliklidir.
Durumiiii) (@®? = 2+ a)> + 2 =0ve g(Y,Df) —n(¥)n(Df) =0:

(a? — B2+ a)? + B2 = 0 esitligi geregi a,f=0 veya o=-1 ve =0 oldugunu biliyoruz.
g¥,Df) —n(¥Y)n(Df) = 0 durumunda da (3.2.1.40) olabilecegini gordiik. Bu denklemde ilk

once a,=0 koydugumuzda esitlik saglanir. « = —1 ve § = 0 degerleri i¢in
A=0
elde edilir ki bu da metrigin degismeyen(steady) oldugunu gosterir. Boylece ispat tamamlanir.
3.2.2. (M,@-) ceyrek simetrik metrik olmayan koneksiyonu ile verilmis 3-boyutlu normal
hemen hemen degme metrik manifoldlar

Onerme 3.2.2.1.: Bir 3- boyutlu normal hemen hemen degme metrik manifoldu M

olsun. M iizerinde Levi-Civita koneksiyonu V ya gore egrilik tensorii R ve (M,p,) ¢eyrek-
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simetrik metrik olmayan koneksiyonu V ye gore egrilik tensérii R olmak iizere, V X,Y,Z €

x(M) igin R ile R arasindaki baginti

RX,V)Z =R(X,Y)Z — ag(Y,Z2)pX + ag(X,Z)eY — B{n(YIn(Z)X —n(X)n(2)Y}

+ Bg(@Y, Z2)pX — Bg(pX, Z)pY
+2an(Z)g(pX,Y)é (3.2.2.1)

dir (Yildiz ve Cetinkaya, 2012b).

Ispat: Ceyrek-simetrik metrik olmayan koneksiyon V ye gére egrilik tensérii R olmak
tizere, VX,Y,Z € y(M) icin hemen hemen degme metrik manifoldlarda (2.1.6) denklemini
bulmustuk. M bir 3-boyutlu normal hemen hemen degme metrik manifold oldugundan (2.1.6)
denkleminde (1.2.13) ve (1.2.14) denklemleri kullanilirsa

RX,Y)Z = R(X,Y)Z + ag(X,Z)pY — an(X)n(Z)pY — Bg(@X,Z)pY
+ an(@)g(eX,Y)§ —n(Zn(V)eX] + BIn(Z)g(X,Y)$ —n(Z)n(Y)X]
—ag(Y,Z)pX + an(X)n(Z)pY + Bg(eY,Z)pX
—a[n(2)g(eY, X)§ —n(ZnX)eY] - BIn(Z)g(X,Y)§ —n(Z)n(X)Y],

elde edilir ki burada gerekli sadelestirmeler yapildiginda

R(X,Y)Z =R(X,Y)Z — ag(Y,2)pX + ag(X,Z)pY — B{n(YIn(Z)X —n(X)n(Z)Y}
+ Bg(@Y,Z)pX — Bg(pX,Z)eY + 2an(Z)g(@X,Y)S,

sonucuna ulagilir.

Onerme 3.2.2.2.: Bir 3-boyutlu normal hemen hemen degme metrik manifoldu M
olsun. M tizerinde Levi-Civita koneksiyonu V ya gore egrilik tensorii R ve (M,p,) ¢eyrek-
simetrik metrik olmayan koneksiyonu V ye gére egrilik tensérii R olmak iizere, V X,Y,Z €
x(M) igin;

RX,Y)¢ = {(Ya) + (¢® = B*)(V)}p*X — {(Xa) + (a® — B*)n(X)}p?Y
+{(YB) + 2apn(Y) — an(V)}pX — {(XB) + 2afn(X) — an(X)}pY
— B{n(Mn(2)X —n(X)n(2)Y}
+ 2ag(pX,Y)E, (3.2.2.2)

dir (Yildiz ve Cetinkaya, 2012Db).

Ispat: ilk olarak (3.2.2.1) denkleminde Z = & alimirsa
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R(X,Y)é
=RX,Y)¢ —an(V)pX + an(X)pY — p{n(YI)n(Z)X —n(X)n(2)Y}
+ 2ag(pX,Y)E (3.2.2.3)

bulunur. M bir 3-boyutlu normal hemen hemen degme metrik manifoldu oldugundan (1.2.15)

denklemi yardimiyla yukaridaki denklem

RIX,Y)¢ ={(Ya) + (a® = BIN(Y)}p*X — {(Xa) + (a® — B*)n(X)}p?Y + {(YB)
+ 2afn()}eX — {(XB) + 2apn(X)}pY — an(Y)@X + an(X)pY
=B I@DX —n(Xn(Z)Y} + 2ag(eX,Y)E

halini alir. Son olarak burada gerekli diizenlemeler yapildiginda
RX,Y)§ = {(Ya) + (a® — B*)n(V)}e*X — {(Xa) + (¢ — f)n(X)}e?Y + {(YB)

+ 2apn(Y) — an(Y)}oX — {(XB) + 2apn(X) — an(X)}pY
= BIn(Y@DX —n(Xn(2)Y} + 2ag(9X,Y)E

elde edilir.

Onerme 3.2.2.3.: Bir 3-boyutlu normal hemen hemen degme metrik manifoldu M
olsun. M iizerinde (M,p,) ¢eyrek-simetrik metrik olmayan koneksiyonu V ye gore egrilik

tensorii R olmak iizere, V X, Y, Z € y(M) icin;
R(X,Y)Z = —R(Y,X)Z
saglanir (Yildiz ve Cetinkaya, 2012b).
Ispat: (3.2.2.1) denkleminde sirasiyla Y = X ve X = Y alinirsa

R(Y,X)Z =R(Y,X)Z —ag(X,Z)eY + ag(Y,Z)pX — B{n(X)n(2)Y —n(YI)n(Z)X}

+B9(@0X, Z2)pY — Bg(Y,Z)pX
+ 2an(Z)g (@Y, X)¢& (3.2.2.4)

elde edilir.(3.2.2.4) ile (3.2.2.1) denklemleri taraf tarafa toplandiginda

R(X,Y)Z + R(Y,X)Z
=RX,Y)Z —ag(¥,2)pX + ag(X,Z)pY — B{n(YIn(Z)X —n(X)n(Z)Y}
+Bg(@Y,Z)pX — Bg(9X, Z2)pY + 2an(Z)g(@X,Y)§ + R(Y,X)Z
—ag(X,2)eY + ag(¥Y,Z)pX — p{n(XIn(2)Y —n(YIn(Z)X}
+ Bg(0X,Z)pY — Bg(@Y, Z)pX + 2an(Z)g (oY, X)§
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yazilabilir. Burada gerekli sadelestirmeler yapilirsa
R(X,Y)Z = —-R(Y,X)Z
bulunur.

Ayrica (3.2.2.1) denkleminde sirasiyla ilk 6nce X =Y, Y =2Z ve Z =X olarak

alindiginda

R(Y,Z)X =R(Y,2)X — ag(Z,X)pY + ag(¥,X)pZ — B{n(Z)n(X)Y —n(YIn(X)Z}
+ Bg(0Z, X)oY — Bg(@Y, X)pZ
+ 2an(X) g (@Y, Z)¢E (3.2.2.5)

bulunur. Benzer sekilde (3.2.2.5) denkleminde sirasiylaY = Z,Z = X ve X =Y yazildiginda

R(Z,X)Y =R(Z,X)Y —ag(X,Y)oZ + ag(Z, V)X — B{n(On(Y)Z —n(@)n(Y)X}
+ Bg(pX,Y)oZ — Bg(@Z,Y)pX
+ 2an(Y)g(pZ, X)& (3.2.2.6)

elde edilir. Son olarak (3.2.2.1), (3.2.2.5) ve (3.2.2.6) denklemlerini taraf tarafa toplarsak

RX,Y)Z+R(Y,Z)X + R(Z, X)Y =
2B9(pY, Z)pX — 2Bg(0X,Z)pY + 2an(Z2) g(0X,Y)E — 2Bg(9Y, X)pZ +
2an(X) g (@Y, Z)§ + 2an(Y)g(9Z, X)§ (3.2.2.7)

bulunur. Buradan asagidaki 6nermeyi verebiliriz:

Onerme 3.2.2.4.: Bir 3-boyutlu normal hemen hemen degme metrik manifoldu M
olsun. M, (M,p,) ceyrek simetrik metrik olmayan koneksiyonu V ye gore egrilik tensérii R
olmak tizere, VX,Y,Z € y(M) igin (3.2.2.7) geregi bu koneksiyona bagli 1. Bianchi
Ozdesligini saglar ancak ve ancak f = 0,a=0 dir (Y1ldiz ve Cetinkaya, 2012b).

Sonug¢ 3.2.2.1.: Bir 3-boyutlu trans-Sasakian manifoldu M olsun. M, (M,p,) ¢eyrek
simetrik metrik olmayan koneksiyonu V ye gére egrilik tensérii R olmak iizere, V X,Y,Z €
x(M) igin (3.2.2.7) geregi bu koneksiyona bagl 1. Bianchi 6zdesligini saglar ancak ve ancak
manifold kosimplektiktir (Y1ldiz ve Cetinkaya, 2012).

Onerme 3.2.2.5.: Bir 3-boyutlu normal hemen hemen degme metrik manifoldu M
olsun. M, (M,p,) ¢eyrek-simetrik metrik olmayan koneksiyonu V ye gére Ricci tensorii ve

skaler egriligi sirastyla S ve 7 olmak iizere, V'Y, Z € y(M) igin
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S(Y,Z) = S(Y,Z) + Bg(Y,Z) — 3Bn(Y)n(Z) + ag(eY,Z) (3.2.2.8)
QY = QY + BY — 3Bn(Y)E + apY (3.2.2.9)
T=1 (3.2.2.10)

bigimindedir (Y1ldiz ve Cetinkaya, 2012b).
Ispat : (3.2.2.1) denkleminin her iki yaninin U € y (M) ile i¢ ¢arpimi alindiginda

gRX,Y)Z,U) = gR(X,Y)Z,U) —ag(¥,Z)g(eX,U) + ag(X,Z)g(eY,U)
— B I(Z)g(X,U) —n(Xn(Z)g(Y, )} + Bg(eY,Z) g(eX,U)
— Bg(pX,Z)g(pY,U) + 2an(2) g(¢X,Y)n(U)

yazilabilir. Buradan da X ve U vektor alanlarina gore kontraksiyon yapildiginda
S(Y,Z) =S(Y,2) + ag(eY,2) — p{in(M(2)3 - n(V (D)} + plg (Y, Z) —n(¥In(2)}
elde edilir. Son denklem her Z vektor alani i¢in
QY = QY + BY — 3Bn(Y)E + apY
haline doniisiir.

Son olarak (3.2.2.8) denkleminde Y ve Z vektor alanlarina goére kontraksiyon

yapildiginda

Ll
Il
)

bulunur.

Onerme 3.2.2.6.: Bir 3-boyutlu normal hemen hemen degme metrik manifoldu M
olsun. M iizerinde (M,p,) ceyrek-simetrik metrik olmayan koneksiyonu V ye gére Ricci

tensorii S olmak iizere, VY € y(M) icin
S(Y,8) = —[28 + §a) + 2(a® — BA)In(Y) — (Ya) — (pY) (3.2.2.11)
dir (Yildiz ve Cetinkaya, 2012b).
ispat: (3.2.2.8) ifadesinde Z = ¢ alinirsa
S(Y,8) = S(Y, %) + Bg(Y,8) — 3pn(Y)n(®) + ag(eY,?)

bulunur. Yukarida (1.2.17) , (1.2.2) ve (1.2.4) denklemleri kullanildiginda
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50,9 = [+ (o) + (@ = )] 1N - [+ G +3(a? = )] n(1)
—{(Ya) + Ea)n(¥)} — (¢¥YB) — 2pn(Y)
elde edilir. Burada gerekli diizenlemeler yapildiginda (3.2.2.11) elde edilecegi agiktir.

Teorem 3.2.2.1.: Bir 3-boyutlu normal hemen hemen degme metrik manifoldu M
olsun. M, (M,p,) ceyrek simetrik metrik olmayan koneksiyonu V ye gore Ricci tensorii

simetriktir ancak ve ancak manifold -Sasakiandir (Y1ldiz ve Cetinkaya, 2012b).

Ispat: Kabul edelim ki n-boyutlu bir M 3-boyutlu normal hemen hemen degme metrik
manifoldu iizerinde (M,¢,) ceyrek simetrik metrik olmayan koneksiyonu V ye gore Ricci

tensorii simetrik olsun, yani vV Z,Y € y(M) i¢in
S(Y,z)=S(2,Y)

saglansin. Oncelikle S(Z,Y) ifadesini bulabilmek icin (3.2.2.8) denkleminde Y yerine Z,Z

yerine Y yazalim. Bu durumda

S(Z,Y) =S(Z,Y) + Bg(Z,Y) — 3Bn(Z)n(Y) + ag(¢ZY) (3.2.2.12)

ifadesi elde edilir.(3.2.2.8) ve (3.2.2.11) denklemleri S(Y,Z) = S(Z,Y) geregi

SY,Z)+Bg(Y,Z) = 3Bn(Y)n(Z) + ag(eY,Z)
=S(Z,Y)+Bg(Z,Y)—=3nZ)n(Y) + ag(pZ,Y)

halini alir. Burada gerekli sadelestirmeler yapildiginda
ag(pY,Z) = ag(pZ,Y)
yada
2ag(pY,Z) =0
bulunur. Buradan da « = 0 oldugu agiktir.

Tersine 3-boyutlu bir M normal hemen hemen degme metrik manifoldu i¢in a = 0

olsun. (3.2.2.8) denkleminde a = 0 alimirsa

S(Y,Z) = S(Y,Z) + Bg(Y,Z) — 3Bn(Y)n(2)

elde edilir. Yukaridaki denklemde S Ricci tensorii ve g Riemann metriginin simetrik olma

ozelliklerinden yararlanilarak
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S(Y,Z) = S(Z,Y) + Bg(Z,Y) — 3pn(Z)n(Y) = S(Z,Y)
sonucu ortaya ¢ikar. Boylece ispat tamamlanir.

Teorem 3.2.2.2.: M, a,B sabit olmak sartiyla 3- boyutlu normal hemen hemen degme
metrik manifoldu olsun. M iizerinde (M,p,) ¢eyrek simetrik metrik olmayan koneksiyonu V
olmak iizere, b fonksiyonu icin V = b€ olmak sartiyla, manifold verilen koneksiyona bagli
Ricci soliton olma &zelligini sagliyor ise manifold V koneksiyonuna bagli n-Einstein

manifolddur (Yildiz ve Cetinkaya, 2012Db).

Ispat: M , a ve f§ sabit olmak sartiyla 3- boyutlu normal hemen hemen degme metrik
manifoldu olsun. M iizerinde (M,p,) c¢eyrek simetrik metrik olmayan koneksiyonu V olmak
tizere, b fonksiyonu icin V = b¢ olmak sartiyla, manifold verilen koneksiyona bagli Ricci

soliton olma sartin1 saglasin. O halde (1.3.1) ile verilen,
1_ _
GLvg+S+249)X.¥) =0,

denklemi,

(Lyg)(X,Y) +25(X,Y) +21g(X,Y) =0 (3.2.2.13)
haline doniisiir. (3.2.2.13) de Lie tiirevi 6zellikleri kullanilirsa

g(VxV,Y) + g(VyV,V) + 25(X,Y) + 22g(X,Y) = 0

elde edilir. Burada V = b¢ alinip (2.1.3) denklemi kullanildiginda
g(Vxb&,Y) + bg(X,Y) + g(Vyb&, X) + bg(eY,X) + 25(X,Y) + 2Ag(X,Y) =0
yani
Xb)n(Y) + bg(Vx&,Y) + (YDIn(X) + bg(Vy &, X) + 25(X,Y) + 2Ag(X,Y) =0  (3.2.2.14)
bulunur. (3.2.2.14) ifadesi (1.2.14) denklemi yardimiyla

Xb)n(Y) + bag(X,Y) — ban(X)n(Y) — Bbg(eX,Y) + (Yb)n(X) + bag(¥,X)
— ban(Y)n(X) — Bbg(eY,X) + 25(X,Y) + 2Ag(X,Y)
-0 (3.2.2.15)

sekline doniigiir. (3.2.2.15) de Y=¢ almir ve burada (3.2.2.11) ve (1.2.17) denklemleri
kullanildiginda



66

(Xb) + (Eb)n(X) — 2[2B + 2(a® — BH)In(X) + 2An(X) =0 (3.2.2.16)
olur. Son denklemde bu defa her X gordiigiimiiz yere ¢ alinirsa
2(6b) +2(—2(a?—BH+1-28) =0 (3.2.2.17)
yani
(b)) = 2a? —2B%2 -1+ 2p) (3.2.1.18)
sonucu ortaya ¢ikar. Bu denklemi (3.2.1.16) de  kullanilip gerekli diizenlemeler yapilirsa
(db) = 2a? —2B% -1+ 2B)n (3.2.1.19)
elde edilir. (3.2.1.19) denkleminin her iki yanina d uygulanirsa
Qa? —=2p%?—21+2B)dn =0
bulunur. Burada dn # 0 olacagindan
Qa2 —-2p%2—-21+42B8)=0 (3.2.1.20)
olur. Bu ifade (3.2.1.19) de kullanirsa b sabit olur. Boylece (3.2.1.15) denklemi geregi
S(X,Y) = ban(Y)n(X) — (ba + D)g(¥,X), (3.2.1.21)
elde edilir ki bu da bize manifoldun ¥ ya bagl n-Einstein oldugunu gosterir.

Son olarak elde edilen (3.2.1.21) denkleminde X ve Y vektor alanlarina gore

kontraksiyon yapilirsa
T=ba—3(ba+ 1) =—-31—2ba,
denklemi ortaya ¢ikar. Boylece yukaridaki denklem geregi asagidaki sonucu verebiliriz:

Sonu¢ 3.2.2.2.: M , o, sabit olacak sekilde 3- boyutlu normal hemen hemen degme
metrik manifoldu olsun. M iizerinde (M,¢p,) ¢eyrek simetrik metrik olmayan koneksiyonu V
olmak iizere, b fonksiyonu icin V = b¢ olmak sartiyla, manifold verilen koneksiyona bagh

Ricci soliton olma sartin1 sagliyor ise
i) T+ 2ba < 0 i¢in genisleyen (expanding),
ii) T+ 2ba = 0 i¢in degismeyen (steady),

iii) T + 2ba > 0 igin daralan (shrinking),
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dir (Yildiz ve Cetinkaya, 2012).

Teorem 3.2.2.3.: M, a,f sabit olmak tlizere 3-boyutlu normal hemen hemen degme
metrik manifoldu olsun. M tzerindeki (M,p,) koneksiyonuna gore (1.3.2) ile tanimli

gradyant Ricci soliton 6zelligini saglasin. Bu durumda
i) @, B = 0 dolayisiyla manifold kosimplektikdir.
i) (M,p,) koneksiyonuna gore sabit egriliklidir.

Ispat: (M,p,) ceyrek simetrik metrik olmayan koneksiyonu ile verilen 3-boyutlu

normal hemen hemen degme metrik manifoldu tizerinde
VVf=S+21g (3.2.2.22)

ile taniml1 gradyant Ricci solitonu gozoniine alalim. D g metriginin gradyant operatdrii olmak

tizere (3.2.2.22) denklemi
VyDf = QY + Y (3.2.2.23)
veya
g(VyDf,X) = g(QY, X) + Ag(Y,X) (3.2.2.24)
olarak yazilabilir. (3.2.2.23) esitliginden yararlanilarak R(X,Y)Df ifadesi
R(X,Y)Df = VxVyDf —VyVxDf — Vixy|Df

= Vx(QY +AY) — ¥y (QX + 2X) — (Q[X, Y]
+ A[X,Y])

halini alir. Burada (M,¢,) koneksiyonu geregi yukaridaki denklem

R(X,Y)Df = V4xQY + n(QY) X + VxAY + An(Y)epX — Vy, QX —n(QX)epY — VyAX
— I(X)@Y — QVyY + QVy X — AVyY
+ AVy X (3.2.2.25)

halini alir. A degerinin sabit oldugu gozoniinde bulundurulup (3.2.2.25) denkleminin her iki

tarafini bir U vektor alani ile i¢ carpimi alindiginda

g(RX,Y)Df,U)
= g(VxQY,U) + n(@Y)g(pX,U) + (V) g(eX,U) — g(VyQX,U)
- n(QX)g(eY,U) — in(X)g(pY,U) — g(QVxY,U) + g(QVyX,U)
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bulunur. Son denklemde X =Y = ¢ kullanildiginda

g(R(&,Y)Df,$)
= g(V:QY,€) +n(QYV)g (9, &) + (V) g(é, &) — g(VyQE, €)
—n(Q@8)g(eY, &) — (&) g(eY,§) — g(QV:Y,§)
+g(QVy¢,$) (3.2.2.26)

elde edilir. a,f sabit olmak iizere (3.2.2.26) denkleminde (3.2.2.8) ve (1.2.17) denklemleri

yerine yazilirsa
9REVIDF,D)
= 9 (VelG + (@ = f)V}€) - g (vf {(g +3(a? - 32)) n(Y)f} : 5) +9(VelBY3,8)
— 9(Ve 3811}, €) + 9 (Velaw?},§) — g (T (2(a? - B + B)EL,E)

-9 <<% + (a2 - BZ)> VEY) ‘f) + 9g <<% + 3((12 - ﬁ2)> U(ny)f; ‘f) - g(ﬁVfY, f)
+9(381(VeY),§) — g(apVel.§) + g <<§ + (e - ,32)) Vv, f)

-9 ((g +3(a? - B2)> T, f) + 9(BYE,§) — g3 (TrE,©)
+ 9(apVyé,§) (3.2.2.27)
bulunur. Koneksiyon ozellikleri geregi yukaridaki denklem
gR(EY)Df,§) =0 (3.2.2.28)
halini alir. Burada ayrica (3.2.2.1) ve (1.2.15) denklemleri geregi g(R(&, Y)Df, §) ifadesi
9(R(E,VIDf,) = 2aBg(eY,Df) — (a* = BO{g(Y,Df) = (D} =0  (32.2.29)
olarak yazilabilir. (3.2.2.29) de Y yerine @Y alimirsa
—2ap{g(Y,Df) —n(¥)n(Df)} — (a® — f*)g(pY,Df) =0 (3.2.2.30)

bulunur. (3.2.2.29) ve (3.2.2.30) denklemleri arasinda gerekli sadelestirmeler yapilip

diizenlendiginde

{(a? = B*)* + 4a?B*Hg(Y,Df) —n(¥)n(Df)} = 0 (3.2.2.31)

olur, Burada iki durum s6z konusudur:
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Durumi) {(a?—pB?)?+4a?p?}=0:

(a? — B?)% + 4a??=0 olsun. Bu durum ancak a,=0 olursa gergeklenir. Dolayisiyla

manifold kosimplektik veya verilen koneksiyona bagli n-Einstein manifold bulunur.
Durumii) g(Y,Df) —n(Y)n(Df) =0:
g, Df) —n(¥Y)n(Df) = 0 ifadesi her Y vektor alani i¢in
Df = (§f)¢, (3.2.2.32)
haline dondsiir. (3.2.2.32) ifadesi (3.2.2.23) de yerine yazilirsa
gy ((ENE).X) = g(QY. X) + Ag(¥. X)

elde edilir. Yukaridaki denklem (2.1.5), (3.2.2.8 ) ve (1.2.14) denklemleri yardimiyla

X(ENIMW) + ENH{alg(Y, X) —nX)n(V)} — BgleY, XD} + ()oY, X)
= g(QY,X) + Bg(Y,X) = 3n(Y)NX) + ag(eY,X)
+ 29(Y,X) (3.2.2.33)

olarak yazilabilir. Burada (1.2.17) denklemi kullanilip gerekli diizenlemeler yapildiginda
X(EOMW) + EH{afg Y, X) —nXn¥)} - BgleY, XD} + €NegleY,X)
=[5+ @ = 9] g0tV =[5+ 3G = B3] GO + Bg(¥,X)

= 3BN(YNX) + ag(eY, X)
+2g9(Y,X), (3.2.2.34)

bulunur. (3.2.2.34) de Y = & alinirsa
X(¢N) = —2(a® = f*) + 28 — B (X) (3.2.2.35)

sonucu ortaya ¢ikar. (3.2.2.34) denkleminde X yerine Y, Y yerine X yazalim:

Y(ENINX) + EN{algX,Y) —n(VnCO} — Bg(eX, Y} + (E)g(9X,Y)
= g(QX,Y) + Bg(X,Y) = 3BnXON(Y) + ag(eX,Y)
+2g(X,Y) (3.2.2.36)

(3.2.2.34) ile (3.2.2.36) denklemleri taraf tarafa toplanirsa
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Y((EN)NX) + EN{alg(X,Y) —n(¥InX)} = Bg(@X,V)} + (EN)g(@X,Y) + X((E))n(Y)
+ EH{alg(Y, X) —nXn(V)} — BgleY, XD} + (§f)e(9Y,X)
=gQY,X) + Bg(Y,X) = 3Bn(Y)In(X) + ag(eY,X) + 2g(Y,X) + g(QX,Y)
+BgX,Y) — 3BX)n(Y) + ag(eX,Y) + 1g(X,Y)

yani
Y(ENM@) +26N{alg X, Y) = n(nCOY + X(ENH)nY)
=2g(QY,X) +2g(¥,X) — 6pn(Y)n(X) + 229(X,Y)
bulunur. Bu denklem (3.2.2.23) ve (3.2.2.35) denklemleri geregi
—{2(a® = %) + 28 = B (¥) + CNH{algX, ¥) = n(nCOY} + ag (oY, X)
= g(VyDf, X)

haline doniisiir. Buradan

VyDf = —{2(a? = %) + 2B — A+ EfH)am(Y)é + (Ef)aY + apY  (3.2.2.37)
yazilabilir.

(3.2.2.37) yardimiyla R(X,Y)Df ifadesini tekrardan hesaplayalim:
E(X, Y)Df = VXVYDf - vaXDf - V[X'y]Df

= Vx[—{2(a® = B*) + 2B — 2+ ENan(¥)é + (Ef)aY + apY | —
Vy[—{2(a® = BH) + 2B — 2+ EHan(X)é + EfaX + apX |- [—{2(a®* —B*) + 2 —
A+ CEHan(X,YDE + ENHalX, Y] + ap[X, Y]]

=—{2(a® = ) + 2B — A + )} M(VxY)E + g(¥, Vx§)E + n(Y)VxE]
+X(EF)an(¥)§ + X(Ef)aY + Ef)aVxY + a(Vx@)Y + apVxY
—{2(a® = B?) + 2B — A + EH)an(M)eX + (EfHan(V)eX
+{2(a? = B*) + 28 — 1+ ENHa}n(VyX)§ + g(X, VyE)E + n(X)Vy¢]
—YEan(X)§ — Ef)aVyX —Y(Ef)aX — a(Vy@)X — apVyX
+{2(a® = B?) + 2B — A + EfH)ain(X) oY — (¢f)an(X)eY
—[—{2(a? = B*) + 28 — 2+ ENHam(X,YDE + EH)alX, Y] + ae[X, Y]]

Son denklemde sadelestirmeler yapilip elde edilen denklemin her iyi yanimn € ile i¢

carpim alindiginda
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9(R(X,Y)Df, &) = —{2(a® = ) + 2B — A + E)a}g(Y,Vx&) + X(Ef)an(Y) +
XENan(¥) + ((Vx@)Y, &) + {2(a? = B + 28 — 1+ E)atg (X, Vy&) — Y(EHan(X) —
Y(ENan(X) — ag((Vy@)X,§) (32.2.38)

bulunur. (1.2.1.13), (1.2.14) ve (3.2.2.35) denklemleri (3.2.2.38) da yerine yazilirsa

g(RX,Y)Df, &) = —{2(a® — B?) + 2B — A + (§f)a}[ag(Y,X) — an(Y)n(X) —
Bg(Y,9X)] — 2a{2(a® = B?) + 28 — Ln(XIn(¥) + alag(pX,Y) + fg(X,Y) —
Bnn()] + {2(a® = B*) + 28 — A+ ¢Ef)a}lag(X,¥) — an(V)n(X) — Bg(X, pY)] +
2{2(a® = B*) + 28 — Bm(Van(X) — alag(eY,X) + fg(X,Y) —
Bn(Vn(X)] (3.2.2.39)

Yukarida (3.2.2.31) ve (3.2.2.1) denklemleri gozoniinde bulunduruldugunda
2aG)g(Y, oX) = 2p{2(a® — B?) + 2B — 2 + (§f)a}g (Y, 9X) + 2a°g(9X,Y)
yani
[28{2(a? = B?) + 28 — A+ (§f)a} — 2a(§f) + 2a*]g(Y, pX) = 0,
sonucu ortaya ¢ikar. Burada g(Y, ¢X) sifir olamayacagindan
[28{2(a® — B*) + 28 — A + (§f)a} — 2a(¢f) + 2a%] = 0,

olma durumu kalir. Burada @, 8 nin sabit olmas1 goz 6niinde bulunduruldugunda A degerinin

sabit olabilmesi i¢in (¢§f) = sabit = ¢ olmas1 gerekir. Bu da (3.2.2.32) geregi

Df =c& (3.2.2.40)
demektir. Dolayisiyla (3.2.2.23) denklemi (3.2.2.40) yardimiyla
SW,X) = -9V, X) + g(Vycd, X) = —Ag (Y, X) — cBg (@Y, X) + cag(¥,X) — can(¥In(X)
olarak yazilabilir. Burada X ve Y vektor alanlarina gore kontraksiyon yapilirsa

T=—-31+ 2ac

elde edilir. Sonugta manifold (M,9,) koneksiyonuna gore sabit egriliklidir.
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3. boliimiin 6zeti asagidaki gizelgelerde verilmistir.

Cizelge 3.1. 3-boyutlu trans- Sasakian manifoldlar ile 3-boyutlu normal hemen hemen degme

metrik manifoldlarda iizerinde koneksiyonlara gore Ricci soliton kavrami

(M) ceyrek-simetrik  metrik
koneksiyonu ile verilmis 3-boyutlu trans-
Sasakian manifoldu i¢in

(M,,) ceyrek-simetrik  metrik
olmayan koneksiyonu ile verilmis 3- boyutlu
normal hemen hemen degme metrik
manifoldu icin

R(X,Y)Z = —R(Y,X)Z saglanr.

R(X,Y)Z = —R(Y,X)Z saglan.

koneksiyona bagli 1. Bianchi 6zdesligi

koneksiyona bagli 1. Bianchi 6zdesligi

Sasakiandir.

saglanir ancak ve  ancak manifold | saglanir ancak ve ancak manifold
kosimplektiktir. kosimplektiktir.
S(Y,2) =5(Z,Y) < manifold a- S(Y,2) =5(Z,Y) < manifold B-

Sasakiandir.

verilen koneksiyona bagli Ricci soliton
olma  ozelligi  saglamyor ise  (M,p,)
koneksiyonuna bagli n-Einstein manifolddur.

verilen koneksiyona bagli Ricci soliton
olma  Ozelligi  saglaniyor ise  (M,p3)
koneksiyonuna bagli n-Einstein manifolddur.

verilen koneksiyona bagli  gradyant
Ricci soliton 6zelligi saglaniyor ise

i) manifold kosimplektik veya verilen
koneksiyona bagli n-Einstein manifold olur.

ii) (M,p;) koneksiyonuna gore sabit
egriliklidir.

iii)yA=0,
degismeyendir.

dolayisiyla ~ metrigimiz

verilen koneksiyona bagli  gradyant
Ricci soliton 6zelligi saglaniyor ise

i) manifold kosimplektiktir.

i) (M,p,) koneksiyonuna gore sabit
egriliklidir.
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Cizelge 3.2. (M, ) koneksiyonu ile verilen n-boyutlu Kenmotsu manifoldlar i¢in baz1 egrilik

sartlar1

(M, I) koneksiyonu ile verilen n-boyutlu Kenmotsu manifoldlar igin

R(X,Y)Z+R(Y,Z)X + R(Z,X)Y = 0 dur.
((M, I) koneksiyonuna gore 1. Bianchi 6zdesligi saglanir.)

CX,Y)Z=0=>
((M, I) ya gore diizlemsel konformal)

Levi-Civita koneksiyonuna gore n-
Einstein manifolddur.

C(X,Y)¢ = C(X,Y)& = 0 saglanur.

(Vya ve (M,I) ya gore diizlemsel &-konformaldir.)

R(X,Y).R=0=> H™(—1) hiperbolik uzayma lokal
olarak izometriktir.
R(X,Y).R =0> Levi-Civita koneksiyonuna gore n-

Einstein manifolddur.

P*(VwRX,Y)Z) =0 =
((M, I) ya gore @-simetrik manifold )

Levi-Civita koneksiyonuna gore n-
Einstein manifold olur.

g(C(pX, @Y)pZ, W) = 0 =
(M, 1) koneksiyonuna
diizlemsel @-konformal)

gore

Levi-Civita koneksiyonuna gore n-
Einstein manifold olur.

P (M OX, V)Z)=0=
( (M,I) koneksiyonuna goére o-
konformal simetrik manifold)

Levi-Civita koneksiyonuna gore n-
Einstein manifolddur.

CX,NE=CXY)E=0
(Vya ve (M,I) ya gore diizlemsel é-
quasi konformal)

a=2(1—-n)b di.
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4. CEYREK SIMETRIK METRIK OLMAYAN (M,¢@3, f1) KONEKSIYONUYLA
VERILEN MANIiFOLDLAR

Bu boliimde (M, 5, f;) koneksiyonuyla verilen 3-boyutlu quasi-Sasakian manifodlar ve

n-boyutlu f- Kenmotsu manifoldlar incelenecektir.
4.1. (M,@3, f1) Ceyrek-Simetrik Metrik Olmayan Koneksiyonu ile Verilen 3-Boyutlu
Quasi-Sasakian Manifoldlar

Onerme 4.1.1.: Bir 3-boyutlu quasi-Sasakian manifoldu M olsun. M iizerinde Levi-
Civita koneksiyonu V ya gore egrilik tensorii R ve (M,@3, f1) ceyrek-simetrik metrik olmayan

koneksiyonu V ye gore egrilik tensorii R olmak iizere, V X,Y,Z € y(M) i¢in R ile R arasindaki

bagimtt

RX,Y)Z

= ROLNZ — UGN, 208 + (V90 D8 + (12 +5) a0, 2m(0E — 90, D8]
+ (78 1) 190v, 220 — 9%, D29¥1 + 290, 110 + g (0¥, D)0 — g0, D)V

1 1
+2 (XN (2)Y —n(Vn(2)X] + fin(2)g(eX,Y)E — Efm(X)g(qoZ, Y)¢
1
+5fm(Y)g(<oZ.X) (4.1.1)
dir .

Ispat : (M3, f;) koneksiyonu V ye gore egrilik tensorii R olmak iizere, V X,Y,Z €
x(M) igin hemen hemen degme metrik manifoldlarda (2.1.2) denklemini bulmustuk. M 3-
boyutlu quasi-Sasakian manifold oldugundan (2.1.2) denkleminde (1.2.28) ve (1.2.29) ifadeleri

kullanilirsa
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RX,Y)Z =R(X,Y)Z - (Xf)g(,Z2)¢ + (Y f)g(X,Z)¢
+ 22 [9(Y, 2n(X)é — g(X, (V&) + B9 (Y, 2)pX — £, (X, Z) X

1
+5 (29X, Y)$ = fn(Zn(¥)X — fn(¥)g(X, 2)§ + Bn(Z)n(V)X

+ Bn(X)g(Y,2)§ — PnX(D)Y + Bn(X)g(Y, 2)§ — fn(Xn(2)Y
= Bn@g(Y, X)§ + Bn(ZnX)Y + Bg(eX,Y)pZ — Bg(eY,X)pZ
+ Bg(@Y,Z)pX — Bg(pX,Z) Y + 2fin(2)g(eX,Y)¢ — fin(X)g(@Z,Y)E

+ (902, X)E ~ Frg(¥, 200X + 190X, 2)p + 50X
M @)x]

elde edilir. Burada gerekli diizenlemeler yapildiginda

ROYIZ = ROGNZ = (RF)g(Y, 206 + (V)9 (X, )€

+ (7 +5) To 0 2me0g - g0t 2mg]
+ (78~ 190r, 220 — 9%, D20¥1 + £ 29(0x, 1107 + g 0¥, Dy
— 9(@X,Z)pY] + % XN (2)Y —n(n(2)X] + fin(2) g(9X,Y)$
—%fm(X)g(goZ, Y)$ + %fm(Y)g(wZ,X)s‘

sonucu ortaya ¢ikar.

Onerme 4.1.2.: Bir 3-boyutlu quasi-Sasakian manifoldu M olsun. M iizerinde Levi-
Civita koneksiyonu V ya gore egrilik tensorii R ve (M,¢3, f1) ¢eyrek-simetrik metrik olmayan

koneksiyonu V ye gore egrilik tensoérii R olmak iizere, V X,Y,Z € y(M) igin;
RX, V)¢ = -(XP)oY + (YB)pX — (Xf)n(Y)§ + (Y f)n(X)§
1
+ (A=) mex —ne00¥1+ (3 - 82) oy —nx)
+ f19(pX,Y)¢ (4.1.2)

ve
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R(X,6)Z
= ~B)ox ~ g X, 9D)gradp 1 g(ox, 208 + (18~ D)n@rox - xpomre

B

1
+ <(€f1) — B =i - E)goa 258 + (52 = ) n@x

B 1
+(5+A2+7)n0ON@E (413)
dir.

Ispat: Tk olarak (4.1.1) denkleminde Z = & alinirsa

RQIE = ROGVE — CRIME + (Y n0E + (18~ D) rox —n@ey]

1
+ 2 Y —n(NX] + f1g(@X, V)E,

bulunur. M bir 3-boyutlu quasi-Sasakian manifoldu oldugundan (1.2.30) denklemi yardimiyla
yukaridaki denklem

RX,E = B2m(M)X —n(OY)) + (YB)pX — (XB)eY — (X fIn(¥)E + (Y f)n(X)§
1
+ (78 =) 0K ~nCOY] + 3 1Y ~ 0K+ fug(oX Vg
halini alir. Son olarak burada gerekli diizenlemeler yapildiginda

RX, V)¢ =-(XP)oY + (YB)pX — (Xfi)n(¥)§ + (Y fn(X)§

1
+ (8- rpx —n@e¥1+ (3 - 82) Y — 1))

+ f19(pX, Y)§,

elde edilir. Benzer sekilde (1.2.3) denklemi yardimiyla (4.1.1) denklemi Y = ¢ igin
RO, )7 = RDZ — KM@ + ERIINDE + (£ +5) n@mg - gx, 28
+ (flﬁ - ﬁ)n(Z)qu - [n(Xn(Z2)§ —n(2)X]
2 4

1

olarak yazilabilir. (1.2.30) denklemi (4.1.4) esitliginde kullanildiginda, ifademiz
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RX,OZ = p*(2)X — g(X,2)§) — g(X, pZ)gradp — (ZB)pX — (Xf1)n(2)¢
+ 9,8+ (72 + B) m@mens - g6, 281+ (78 - 1) n(2rx
+2MCON@DE ~ DX+ 5 f19(0Z,XE,

halini alir ki buradan (4.1.3) denklemi elde edilir.

Onerme 4.1.3. : M bir 3-boyutlu quasi-Sasakian manifoldu olsun. M iizerinde
(M3, f1) ceyrek-simetrik metrik olmayan koneksiyonu V ye gore egrilik tensérii R olmak
tizere, VX, Y,Z € y(M) igin;

R(X,Y)Z = —R(Y,X)Z
dir.
Ispat: (4.1.1) denkleminde sirasiyla ¥ = X ve X = Y alinirsa

R(,X0Z = ROLI0Z = (Vg 206 + (XA)g(r, 206 + (F7 + §) &, 20§
~ g, 2+ (18~ 1o, DY — (v, D0y + 5290, 1002
+ (oK, D)p¥ — 9oV, 39K} + (I INDX = 10OV}
+ D g (V. € ~ 5 iz, X)g
+2 (9L )E @.15)

elde edilir. (4.1.4) ile (4.1.5) denklemleri taraf tarafa toplandiginda
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RX,V)Z +R(Y,X)Z
=RX,Y)Z+R(Y,X)Z - (Xf)g(¥,2)¢ + (Y f1)g(X,Z2)¢ — (Yf1)g(X,Z)E

+ (Xg(r, 28 + (77 +5) 1900, 2m0E — 9K, 2m)E

+ g, IMU0E ~ 900, DmWE + (1~ 2) taCx. DY — 907, 299K

+9(Y, 2)pX —g(X,Z)pY} + g{Zg(wY, X)pZ + g(pX,Z)pY — g(@Y,Z)pX
1
+29(pX,Y)pZ + g(@Y,Z)pX — g(pX,Z)pY} + Z{Zg(pr,X)in
+ g(pX, 2)pY — g(@Y,Z)pX + 2g(0X,Y)0Z + g(@Y, Z)pX
1
= 9(pX, 2)pY} + fin(Z) g(@Y, X)§ — Efm(Y)g(pr,X)f

+2 (X902, V)& ~ 3 fin(X)g(0Z, V)E + 5 fin(V)g oz, X)§
+ fin(Z)g(@X,Y)§
yazilabilir. Burada gerekli sadelestirmeler yapilirsa
R(X,Y)Z = —-R(Y,X)Z
bulunur.

Ayrica (4.1.1) denkleminde sirasiyla ilk 6nce X =Y, Y =Z ve Z =X olarak

alindiginda

R(Y, D)X

= ROL2)X ~ (V918 + 90,08 + (12 +5) 92 om0z — 9 (v, Xm@)8)
+ (flﬁ - %) {9(Z, X)pY —g(Y, X)pZ} + g{Zg(goY. 2)pX + g(9Z, X)pY — g(9Y, X)pZ}

+ %{n(Y)n(X)Z —n(@nXY} + fin(X)g(pY, Z)¢ - %fm(Y)g(sz. Z)§

+ %fm(Z)g(qu, Y)§ (4.1.6)

bulunur. Benzer sekilde (4.1.6) denkleminde sirastylaY = Z, Z = X ve X =Y yazildiginda
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RZX)Y = RZXY ~ ZR)gK,E + g 1% + (£ +5) o, rimpe
9@ Ym0 + (78 ~2) ta 10z — 92, 0x) +E 2o, 100Y
+ 9K V97~ 9(ZVgK} + DMK ~ nCON(NIZ)
+ 1902, X)E ~ 7 fin@g (oY, X)E
+2 (X9 (oY, 2)¢ @.1.7)
elde edilir. Son olarak (4.1.1), (4.1.6) ve (4.1.7) denklemlerini taraf tarafa toplarsak
R NZ+R(Y, DX + RZ,X)Y =L (4g9(pX, V)0Z + 4g(pY, 20X

+49(pZ, X)pY} + 2fin(Z)g(pX,Y)E (4.1.8)

bulunur. Bdylece asagidaki 6nermeyi verebiliriz:

Onerme 4.1.4.: Bir 3- boyutlu quasi -Sasakian manifoldu M olsun. M, (M,ps, f1)
ceyrek simetrik metrik olmayan koneksiyonu V ye gore egrilik tensdrii R olmak iizere,
VX,Y,Z € y(M) igin (4.1.8) geregi bu koneksiyona bagli 1. Bianchi 6zdesligi saglanir ancak
veancak f =0, f; = 0dir.

Sonug 4.1.1.: Bir 3- boyutlu quasi -Sasakian manifoldu M olsun. M, (M,¢3, f1) ceyrek
simetrik metrik olmayan koneksiyonu V ye gére egrilik tensorii R olmak iizere, VX,Y,Z €
x(M) igin (4.1.8) geregi bu koneksiyona bagh I. Bianchi 6zdesligi saglanir ancak ve ancak

fi = 0 ve manifold kosimplektiktir.

Onerme 4.1.5.: Bir 3-boyutlu quasi-Sasakian manifoldu M olsun. M, (M,qs, f;)
ceyrek simetrik metrik olmayan koneksiyonu V ye gore Ricci tensorii, Ricei operatorii ve skaler

egriligi sirasiyla S, Q ve T olmak iizere, VY, Z € y(M) igin
_ 1
50,2) = S0, 2) + VAN + 168 = Vg (¥, 92) - [5+ 12| n00m@)
+HA® - e, 2), (4.1.9)

— 1
QY = QY + (Vf)§ = fi(B = Do = |5+ 2|00 + [A7 - ALY, (4110
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Ll

=2 (7 - ) - @1
1 1 2 ) 1.
dir.

Ispat : (4.1.1.) denkleminin her iki yaninin W vektor alan ile i¢ carpimi alindiginda

gRX,Z,W)

RX,VZ,W) = Xf)g¥,Z)nW) + (Y f1)g(X,Z)n(W)

72+ 5) Lo (v, 2mComw) — gt 2 mw)

fi
2

Q

+

+

/N N

fiB =2 ) 90, Dg(@X, W) = (X, g (¥, W)]

+ 5 [29(pX, V) g(0Z, W) + g(@Y,Z)g(pX, W) — g(@X,Z) g (@Y, W)]

+

Bl R N

(MXOn(2)gY, W) —n(¥In(2)gX, W)] + fin(Z) g(eX,YI)n(W)
1 1
- Efm(X)g(pr, Y)n(Ww) + Efm(Y)g(pr. Xn(W)

yazilabilir. Buradan da X ve W vektor alanlarina gore kontraksiyon yapildiginda

5(,2) = 5, 2) ~ G902 + Vn@ + (72 + ) [9(v, 2) ~ n(¥m@)
f B 1
- (fl.B - 3) 9(eY,2) =S [29(¢Y, 0Z) — g(¢Y, Z)] + (V) (Z)
1
—nWn(2)3] -5 f19(eZ,Y)

elde edilir. Yukarida gerekli diizenlemeler yapildiginda

_ 1
500,2) = S(,2) + (VN + Fi(8 = Vg (V.02 = |5+ £ n0m(@)
+ [f12 - (ff1)]g(Y'Z)

denklemi elde edilir. Bu da bize (4.1.9) ifadesini verir. Ayrica (4.1.9) denklemi VZ € y(M) i¢in

— 1
QY = QY+ (V)¢ = (B = DY = |5 + £ n(1¢
+[A% = GRlY

dir.
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Son olarak (4.1.9) denkleminde Y ve Z vektor alanlarina gore kontraksiyon

yapildiginda

1
- _ 2 _ _ =
t=1+2(fi" - ¢RH) -3
dir.
Onerme 4.1.6: Bir 3- boyutlu quasi Sasakian manifoldu M olsun. M, (M@, f;) ¢eyrek
simetrik metrik olmayan koneksiyonu V ye gore Ricci tensorii S olmak iizere, VY € y(M) icin
_ 1
S00,8) = (V) = (@YB) + [287 = 5 = )| () (41.12)

dir.

Ispat: (4.1.9) denklemi Z = £ i¢in

_ 1 5 5
S8 =5, + W) =[5+ A2 1) + [A7 = )

halini alir. Son denklemde (1.2.25) kullanilirsa

_ 1
S0, = (V) = (@YB) + 287 = 5= G| nrm@)
sonucu elde edilir.

Teorem 4.1.1: Bir 3- boyutlu quasi -Sasakian manifoldu M olsun. M, (M3, f1) ¢eyrek
simetrik metrik olmayan koneksiyonu V ye gore Ricci tensorii simetriktir ancak ve ancak f;
sabit ve g =1 dir.

Ispat: Kabul edelim ki 3-boyutlu bir M quasi-Sasakian manifoldu iizerinde V

(M,¢p3, f1) koneksiyonuna gore Ricci tensorii simetrik olsun, yani V Z,Y € y(M) igin
S, 2)=5(Z,Y)
saglansin. Oncelikle S(Z,Y) ifadesini bulabilmek igin (4.1.9) denkleminde Y yerine Z, Z yerine
Y yazalim. Bu durumda
_ 1
S@ 1) = S@Y) + @) + (B - VgZon) +|=53= K210 @)

+[fi?
- ]9, 2) (4.1.13)
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ifadesi elde edilir.(4.1.9) ve (4.1.13) denklemleri S(Y,Z) = S(Z,Y) geregi

S0, 2) + (0RO + Fi(8 = D92 + [~ = 2| nrm() + A2 - €09 (r. 2

= S(ZY) + M) + Fi8 = DgZp¥) + [~5 = 2] nrm(@)
+[A* -G, 2)

halini alir. Burada gerekli sadelestirmeler yapildiginda

Yfn(2) + 1B = D9, 0Z) = Zfn(Y) + (B -~ 1)g(Z, oY)
yada
(Y1O0@) = ZfIn(r) + 2,8 = Dg (Y, 92) = 0
bulunur. Buradan da f, = sbt ve § =1 oldugu aciktir.

Tersine 3-boyutlu bir M quasi-Sasakian manifoldu i¢in f; = sht ve f§ =1  olsun.
(4.1.9) denklemi

f1 = sbt ve B =1 igin

- 1
50.2) = 5,2 = 5+ 17| nrm@ + 29 ,2)

haline doniisiir. Yukaridaki denklemde S Ricci tensorii ve g Riemann metriginin simetrik olma

Ozelliklerinden yararlanilarak

~ 1 —
3(V,2) = S@Y) - 5+ A2|n@n ) + £29@ V) = 32.V)

sonucu ortaya ¢ikar. Boylece ispat tamamlanir.

Onerme 4.1.7.: Bir 3-boyutlu quasi-Sasakian manifoldu M olsun. M iizerinde
(M3, f1) ceyrek simetrik metrik olmayan koneksiyonu V ye gore projektif egrilik tensdrii ve

koncircular egrilik tensdrii sirasiyla P ve H olmak iizere, V X, Y, Z € y(M) igin
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PO YIZ = PULYZ — (KR9W, 28 + (90,208 + (£ +5) Lo v, 2m0g

9, 2m0E + (18~ 1) ta0r, 230x — 9%, Do) + L 200K, V)02
+9(0Y, )X — g(9X, 2)gY} + i (X2 —n(V)n(2)X}
+ n(Dg (X, V)E ~ 5 fn(0gWZ, V)E + 7 fin(Vg(0Z, X)E
M@K ~ KRMEDY ~ 5 (B~ Da (Y, p2)X
~ /1B~ Dg (X, 92)Y}
- %{[flz - Glatr. DX
- [A°
- EM)]gX, 2)Y} (4.1.14)
ve
HX, Y)Z

= HX,Z ~ (90,208 + (Vg 20 + (7 +5) a0, 2m(0E - 9%, 218}
+ (flb’ - %) {9V, 2)pX — g(X,Z)pY} + g{Zg(qJX, VoZ + g(oY, 2)pX — g(9X,Z)pY}

1 1
+ Z{n(X)n(Z)Y —n(Mn2)X} + fin(2)g(pX,Y)E — Efln(X)g(pr. Y)¢§
1

2(A% - Gf) 2, 1%

1
+§f1n(Y)g(<pZ,X)f - c

- 9X,2)Y} (4.1.15)

dir.

Ispat: ilk once (1.1.5) denklemi ile verilen projektif egrilik tensoriinii ele alalim.

(M,@s, f1) ceyrek simetrik metrik olmayan koneksiyonu V ye gore projektif egrilik tensdrii igin
- _ 1 _
P(X,Y)Z =R(X,Y)Z — — [SY,2)X — S(X,Z)Y]

yazilabilir. Bu denklem (4.1.1) ve (4.1.9) denklemleri yardimiyla
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PO YIZ = ROYZ — (90,2 + (V90,208 + (£ +5) (o v, 2m(00g
9, 2m0E + (18~ 1) ta0r, 230x — 9%, Do) + L 200K, V)02
+ (oY, 2)pX — 9K, D)V} + 7 (MY =1V N(X)
+ n(Dg (X, V)E ~ 5 fn(0gWZ, V)E + 5 fin(Vg(0Z, X)E
~SSWDX+ CRIMDX + (8~ D9 92X =[5+ 2 nrm@x
+[f2 = €90, DX = SKDY = K@Y - (B~ Dg(X, 7)Y
+ (54 1) n0on@Y ~ (17 - €) sx, 2)1)

halini alir. Yukaridaki denklemde gerekli diizenlemeler yapildiginda (4.1.14) denklemi elde
edilir.
Benzer sekilde (1.1.6) denklemi géz &niinde bulundurulugunda V ye gére koncircular

egrilik tensorii

HX,Y)Z =R(X,Y)Z —

T
DX - g, 2)Y]

bicimindedir. Bu denklemde (4.1.1) ve (4.1.10) denklemleri kullanilarak

A(,VZ = RONZ ~ KFD9(Y, 26 + (Vg 206 + (A7 +5) tov, 2meg
~ 9, 2m08 + (18~ 1) t90r, 230x — g%, D391 + £ (200K, V)02
+9(0Y, 2)pX — g(pX, 2)pY} + %{TI(X)TI(Z)Y —n(n(Z)X}
+fin(2)g(eX,Y)§ ~ %fm(X)g(pr, )¢+ %fm(Y)g(wZ. X)¢

Crr2(AT-GR) -7
6

{9V, 2)X — g(X,2)Y}
bulunur ki, buradan (4.1.15) denkleminde ulagilir.

Buradan itibaren islemlerin kolayligi i¢in f; = f kabul edecegiz.
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Teorem 4.1.2: 3-boyutlu bir quasi-Sasakian manifoldu M olsun. M fizerindeki Levi-
Civita koneksiyonu V ve (M,@3,f;) ¢eyrek simetrik metrik olmayan koneksiyonu V igin -

paralel olma sart1 denk ise

i) B = 0, yani ya manifold kosimplektik yada manifold V koneksiyonuna gére n-Einstein

olmasidir.
ii) B= sabit dolayisiyla manifold V ya gore n-Einsteindir.

Ispat: M 3-boyutlu quasi-Sasakian manifoldunu ele alalim. (M,¢3, f;) koneksiyonuna

gore Ricci tensorii S olmak iizere koneksiyon dzellikleri geregi

(VxS) (@Y, 9Z) = VyS(@Y,pZ) — S(VxY, 9Z) — S(¢Y,VxpZ)

yazilabilir. Burada (2.2.1) denklemi yardimiyla

_ _ _ 1 _ _
(VxS) (@Y, pZ) = VyS(@Y,9Z) — S(Vx@Y,pZ) + En(X)S(qle, ©Z) + PgX, pY)S(&, 9Z)
_ 1 _ _
= S(Y, VxpZ) + 5108 (9Y, ©*Z) + Bg(X, 9Z)S(9Y, &)
elde edilir. Yukaridaki denklemde (4.1.9) kullanilirsa

(VxS) (@Y, 9Z) = VxS(@Y, pZ) + Vx[(B — B g(@Y,2)] + Vx[B*g(Y,Z) — B*n(Y)n(Z)]
— S(VxY,0Z) — B2g(VxpY,9Z) — (B — B*)g(¢Vx9Y, Z)
+BgX, 9Y)(ZB) + Bg(X, Z) (Y B) + Bg(X, 9Z)(YB) — S(pY, VxZ)
— (pYBIN(Vx9Z) — B g(pY,VxpZ)
— (B = B g(p?Y,VxpZ), (4.1.16)

bulunur. Burada V koneksiyonunun 6zellikleri yardimiyla (4.1.16) denklemi

(VxS) (@Y, 9Z) = (VxS) (@Y, 0Z) + [(XB) — 2B8(XP)]g (@Y, Z)
+ (B = BH{g((Vx@)Y, Z) + g(pVxY, Z) + g(@Y,VxZ)}
+2B(XRP)lg(Y,Z) —n(¥)n(2)]
+B*g(VxY,Z) + g(Y,VxZ) — n(VxY)n(Z) —n(YIn(VxZ) — g(¥, Vx$n(Z)
—n(g(Z,Vx)} — B2g(Vxp)Y, 0Z) — B*g(@VxY, ¢Z)
— (B = B g((Vx9)Y, Z) + g(pVxY,Z) = n(VxYIn(Z)} + Bg(X, oY) (ZB)
+Bg(X, 0Z) (9YB) + Bg(X, pZ) (Y B) — (Y BIn((Vx)Z)
— B%g(oY, (Vxp)Z) — B?g(@Y, 9VxZ) — (B — f*)g(9?Y, (Vxp)Z)
— (B =B g(pY,Vx2),
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haline doniisiir. Burada (1.2.28) ve (1.2.29) denklemleri kullanilip gerekli diizenlemeler
yapildiginda

(VxS) (@Y, 9Z) = (VxS) (oY, 0Z) + [(XB) — 28(XB)]g (Y, Z)
+2BXBg(Y,Z) — (VD] + B3 g (Y, oX)n(Z) + n(V)g(Z, 9X)}
+ B3 (g (X, 02)} — (B — BBLgX, YIn(Z2) —n(V)g(X,Z)}
+BgX, oY) (ZB) + Bg(X, pZ) (pYB) + Bg(X, 9Z)(YB)
= BeYP){g(X, Z) —n(Y)(2)} + B*n(Z)g(9Y, X)
+ BB~ B MZ){—g(,X)
+ ()00}, (4.1.17)

bulunur. M iizerindeki V ve V koneksiyonlar: i¢in n-paralel olma sarti denk oldugundan

yukaridaki denklem

[(XB) — 2B(XP)]g(pY,Z) + 2B(XP)g(Y,Z) —n(Y)n(Z)]
+ B39 (Y, 0X)n(Z) + (Vg (Z, 0X)} + B> (Vg (X, 9Z)}
— (B = BHBLgX, Y)N(Z) —n(Ng(X, 2)} + Bg(X, oY) (ZB)
+BgX, 9Z)(9YB) + Bg(X, 9Z)(YB) — B(eYB)g(X,Z) —n(YIn(Z)}
+B8°0(2)g(@Y, X) + BB — B*I(Z){—g (¥, X) + n(Y)n(X)} = 0,

halini alir. Son olarak Y ve Z ye bagli kontraksiyon yapildiginda
4B(XB) — Bg(pXB) + B(XB) — Bg(pXB) — B(pXB) =0,
yani,
5B(XB) — 3B(pXB) =0,
yazilabilir. Burada iki durum s6z konusudur:
Durum i) g = 0:

Kabul edelim ki g =0 olsun. Bu durumda 3-boyutlu quasi-Sasakian manifoldu

kosimplektik olur. Ayrica (1.2.33) ve (4.1.9) denklemlerinde = 0 alinirsa,

_ 1 T T 1
5(1,2) = S(¥,2) = 5@ = 391, 2) = (5 + ) n (V@)
elde edilir. Bu da manifoldun V koneksiyonuna gore n —Einstein oldugunu gosterir.

Durum ii) 5(XB) —3(pXB) =0:
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5(XpB) — 3(pXpB) = 0 oldugunu gozoninde bulundurursak, bu denklem VX € y(M)
i¢in
S5gradf + 3pgradf =0 (4.1.18)
haline donisiir. (4.1.18) denkleminin her iki tarafina ¢ uygulayalim:
S5pgradf3 — 3gradf =0 (4.1.19)
(4.1.18) ve (4.1.19) denklemleri arasinda gerekli sadelestirmeler yapildiginda
34gradff =0

elde edilir. Yani (= sabit dolayisiyla (1.2.33) denklemi geregi manifold V ya gore

1 —Einsteindir.

Teorem 4.1.3.: 3-boyutlu bir quasi-Sasakian manifoldu M olsun. M
iizerindeki (M,q3, f;) ceyrek simetrik olmayan koneksiyonu V ye gore Ricci tensorii S olmak

tizere manifold bu koneksiyona gére n-paralel ise T sabit olmak sartiyla
i) f = 0, yani ya manifold kosimplektik yada manifold V koneksiyonuna gore n —Einsteindur.
il) = sabit dolayisiyla manifold V ya gore n —Einstein manifolddur.

Ispat: 1k once islem kolayligi icin (VyS)(@Y,@Z) ifadesini bulalim. Levi-Civita

koneksiyonunun 6zellikleri geregi

(VxS)(@Y, 9Z) = VxS(Y, 0Z) — S(VxpY,pZ) — S(Y,VxpZ)
yazilabilir. Burada (1.2.33) denklemi yardimiyla

(VxS) (@Y, 9Z) = Vyx {(% - BZ) 9(¢Y, <pZ)} - (% - ,82) {9(VxoY,0Z) + g(oY, VxpZ)}

+n(Vx9Z) (9*YB) + n(VxpY)(9>ZPB)

elde edilir. Yukaridaki denklem koneksiyon 6zellikleri geregi



(0
(VxS @Y, 92) = (2= 268)) (oY, 92)

+ (5= ) 9. 2) + g(Y, V3 2) = n(VxIn(2) = n(VIn(Vx2)
—9(¥,YM(Z2) —=n(V)g(Z,Vx$)}

- (% — B2){g((Vx )Y, 9Z) + g(9VxY, 92) + g (Y, (Vx9)Z)

+ (oY, oVx2)} + n((Vxp)Z) (9*YB) + n((Vxp)Y) (9*ZB),

seklinde yazilabilir. Burada (1.2.28) ve (1.2.29) denklemleri kullanildiginda

(*x0
(V)oY 02) = (52 - 28(8)) 9, 02)

n (% _ 32)3{9(1/, eX)n(Z) +n(V)g(Z, pX)}

+ (% — %) Bn(")g (X, 9Z) + n(Z)g(pY, X)}

—B{g(X,Z) —n(X)n(2)}YPB)
—nXn(YV)}ZB), (4.1.20)

bulunur. (4.1.20) denklemi (4.1.17) da yerine konuldugunda

- - (X7)
TxS)(@Y,02) = (52~ 2608)) 9o, ¢2)

+ (% — B?) Blg (Y, X)n(Z) + n(Y)g(Z, X)}

+ (% — B?) Bn("g (X, 9Z) + n(Z)g(pY, X)}

— B9 (X, 2) —nXn(2)}YB) — flgX,Y) —nCOn(Y)}ZP)
+[(XB) = 2B(XB)]g (@Y, Z) + 2B(XB)g(Y,Z) — n(YIn(Z)]

+ B3 {g(Y, X)n(Z) + (Vg (Z, 0X)} + B> (Vg (X, Z)}

— (B = BHBLgX, Y)n(Z) —n(Mg(X,Z2)} + Bg(X, oY) (ZB)

+B9(X, 9Z)(9YB) + Bg(X, Z)(YB) — (oY P)g(X,Z) —n(Y)n(Z)}
+B8°0(2)g(@Y,X) + BB — B*I(Z){—g(¥,X) + n(¥)n(X)},
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bulunur. Manifold (M,p5, f;) koneksiyonuna goére n-paralel oldugundan tanim geregi

yukaridaki denklem
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(X7) T )
(52— 2800) 9 (0¥, 02) + (5 - B7) BLla (Y. 0XOn(2) + n(N)g 2, 9X))

+ (% — B?) Bn(")g (X, 9Z) + n(Z)g(pY, X)}

= p{l9X,Z2) —nXOn2)}YB) — flg(X,Y) —nCOn(Y)}(ZB)

+ [(XB) — 2B(XB)]1g(pY,Z) + 2B(XP)[g (Y, Z) —n(¥In(Z)]

+ B39 (Y, 0X)n(Z) + (Vg (Z, 0X)} + B> (Vg (X, Z)}

— (B = BHBLgX, Y)N(Z) —n(V)g(X,Z)} + Bg(X, pY)(ZB)

+B9X, 9Z)(pYB) + Bg(X, 9Z)(YB) — B(eYB){g(X,Z) —n(YIn(Z)}
+B3*0(2)g(@Y,X) + BB = B*IN(Z){—g (¥, X) + n(Y)n(X)} = 0,

haline doniisiir. Son olarak Y ve Z ye bagl kontraksiyon yapildiginda

(52 - 2608)) 2~ BCxB) ~ BXB) + 4B(XB) ~ Ba(0XB) + BCXB) ~ B3 (9 XB)
— B(pXB) =0,
yani,
(X1) = B(XB) — 3B(eXB) = 0,
elde edilir. T sabit oldugu kabul edildiginden son denklem yerine
BXB) +3B(pXB) = 0,
yazilabilir. Burada iki durum mevcuttur:
Durumi) g = 0:
B = 0ig¢in Teorem 4.1.2. i) durumu sartlar1 saglanir. Yani manifold kosimplektiktir.
Durum ii) (XB) + 3(XB) = 0:
(XB) + 3(pXB) = 0 ifadesi saglansin. Bu denklem VX € y(M) i¢in
gradf — 3¢@gradfi =0 (4.1.21)
haline doniisiir.(4.1.21) denkleminin her iki yanina ¢ uygulayalim.
@gradf + 3gradff =0 (4.1.22)
(4.1.21) ve (4.1.22) denklemleri arasinda gerekli sadelestirmeler yapildiginda

10gradp =0
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elde edilir. Bu durumda f= sabit dolayisiyla manifold V ya gore n —Einsteindur.

Teorem 4.1.4.: 3-boyutlu bir quasi-Sasakian manifoldu M olsun. 8 sabit olmak sartiyla
M iizerinde (M,qs, f;) ceyrek simetrik metrik olmayan koneksiyonu V ye gére dairesel paralel

Ricci tensore sahip ise

i) B = 0, yani ya manifold kosimplektik yada manifold V koneksiyonuna gore n —Einsteindur,
ip== % e karsilik gelir.

Ispat: M 3-boyutlu quasi-Sasakian manifoldu (M,¢3, f;) koneksiyonuna bagl olarak

dairesel paralel Ricci tensore sahip olsun, yani
TV, 2) + THEX) + THEY) = 0,
saglansin. Yukarda Y = Z = € alalim.
T + (TS ED + (TS0 = 0,
Burada (2.2.1) kullamilirsa
Vi S(E,6) — S(Uxt, ) — 5 S(oX,€) + B(X)S(E,§) — S(E, V) — 3.5, 0X) + Fn(0S(E, ©)
+VeS(EX) = S(Ve, X) + BS(E,X) — S(&,VeX) + %5‘(5, »X)

- . - 1_ _
+Bn(X)S(E,6) + VS §) = S(VeX, §) +55(0X,8) + fn(0)SE,§)

—S(X, V&) +BS(X,6) =0
yazilabilir. Son denklem, £ nin sabit olmasini géz dniinde bulundurursak, (4.1.9) yardimiyla
1
66 (262 =5) 100 = 0,
haline doniisiir. Burada n(X) = 0 olamayacagindan ancak
1
68 (232 - E) -0

olabilir. Sonug olarak f ya sifir ya —% yada % sabit degerlerine karsilik olur. £ nin sifir olmasi

manifoldun kosimplektik ayrica V koneksiyonuna bagl n-Einstein olmasim gerektirir. Boylece

ispat tamamlanmus olur.
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Teorem 4.1.5.: 3-boyutlu bir quasi-Sasakian manifoldu M olsun. M iizerinde
(M,ps, f1) geyrek simetrik metrik olmayan koneksiyonu V ye gore Riemann egrilik tensorii R
ve Ricci tensorii S olmak iizere (R(X,£)S)(Y,Z) = 0 ise M manifoldu V ya bagh n-Einstein

manifolddur.
Ispat: Kabul edelim ki
RX,OHY,Z)=0 (4.1.23)
saglansin. Ayrica VY, X,Z € y(M) olmak iizere (R(X, £)S)(Y, Z)
RE, OHHF,2) = =SRX,§)Y,Z) — S(Y,R(X,$)Z)
olarak da yazilabilir. Bu durumda (4.1.23) denklemi
—SRX,&)Y,Z) - S(Y,R(X,6)Z) =0

yada

S(R(X, &)Y, Z)+S(Y,R(X,6)2) =0, (4.1.24)

olur. (4.1.24) de (4.1.3) denklemi kullanilirsa

(YIS (ox, 2) ~ 9t 9)S(gradp, 2) - 90X, 15, 2) + {82 ~ Bl nn)Sepx, 2

_ , B _ , 1 _

- WS - {22 + S g s 2 + o2 - onsee
1 _ _ _

+{62 + £+ n0onn56.2) — @05, 0% 98,025, graap)

L gox,050,0 + [p2 - Eln@3, 01 - xpm@3r,0)

_ 1 _
Ao 50,0 + {52 - Jn @50 + 52+

- {2[32 +
1 _
+Z}n(X)n(Z)S(Y,E) =0,

elde edilir. Yukaridaki denklem (4.1.9) yardimiyla
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~(B@XBINE) + 1D XB) + BB — Dg(9X, 07) +359(0X, 7))

— g, oVl grad 12 n(2) +3 (ZB) + BB — D(@Z))}

B

p ) 1 :
= S9N N=0ZB) + 26 = (@} + (87 = 5 ) n X BIn(2)

+ (DX + BB — Dg(@X, 0Z) +3 g(X, 20} = XEMIN(~(0ZB)
1 1
+ 282~ @) - 262 + ] 90t (- (0zp) + 287 ~ )
1
+ (B2 = 3 ) 1B — (92BN — (@XBIE)
1
B = Pg(@X,2) + 290X 2) + (267 = 5 = ) (@ (0}
2 ‘8 1 2 1
+ (B2 +5 4 2) 00N {—(0ZB) + (262 = @)} - EHOMWIXB)
— BB~ DX, oY) + 599X, )}~ g X, 0D (YB) = BB — D9V}

1
- gg@oX, {(YB) — (pYB) + (2B* - 2N}

+(52 - L) 1@ WX - BB~ DX, 01) + 3 g(oX, 1)}

1

— KM@ ~ (VB + 267~ n() — (282 +5) g0 2347
1 1

— @VB) + 2B = D} + (87 = ) DM — XBIn(Y)

T 1
— VB + B = Bg(@¥,X) +2g(t,Y) + (267 =5 = ) () (0)
+ (82454 2 meon@s) - (Y8 + 287 - nny = 0

o Tg)ndn ¢ N =

halini alir. Burada X ve Z ye gore kontraksiyon yapilirsa
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: p ,_ B
~28(8 = DR =5 (@Y — BB — DIE) + 5 (¥F) + 265 — 1) (82 = 5 ) n()
1 1
— (262 +5) -ty + @87~ n + (82— ) BS
1
(262 -5-3p+(p2+5 i 3) @82 =) — (1) 1 gradp 12
~ BB~ DB ~ 3 ¥~ (262 +5) 31008) ~ (oY) + 282
om0} + (82 =) (B) ~ (oY) +3n(1) + (262 — 5~ ) n(r)
(82454 ) m ~ vp) + @87~y = 0
elde edilir. Son denklemde gerekli diizenlemeler yapilirsa

(5~ 3) @~ 26867 + 2628~ ) (5~ 5) ~1l gradg 12}n(r) + 452 - L} vp)

{6B2 + 3ﬁ} (pYB) =0,

olur. Yukaridaki denklem her Y vektor alani i¢in

(52 - %) (c— 25 - 862 + 2675 - 1) ( - %) ~1 gradp 17} + {~ap7 - ’23} gradp

—168%+3 ﬁ} pgradf
=0, (4.1.25)
haline doniisiir ki, (4.1.23) denkleminin her iki tarafina ¢ uygulanirsa
{~4p? - L pgradp + {652 + 35} gradp = 0 (4.1.26)
bulunur. (4.1.25) ile (4.1.26) arasinda gerekli sadelestirmeler yapildiginda
f(ap2 -2 + (62 + 352} graap

= —{(5~7) -~ 28— 8% + 26%(8 — ) (B — 5 ) ~1 graap 12} {~4p*

yani,
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{(p2-3) @~ 26 - 867 + 2628 — 1) (B - 3) 1l gradp 17} {-45? - 5}

{(—432 - %)2 + (632 + 3%)2}

elde edilir. Son denklem (1.2.23) de yerine yazilirsa manifoldun V ya bagl n-Einstein oldugunu

Xp) = — nX)

gosterir.

Teorem 4.1.5.: 3-boyutlu bir quasi-Sasakian manifoldu M olsun. M iizerinde
(M,ps, f1) ceyrek simetrik metrik olmayan koneksiyonu V ya gére koncircular egrilik tensorii
H ve Ricci tensorii S olmak iizere (H(X, £)S)(Y,Z) = 0 ise M manifoldu V ya bagli n-Einstein

manifolddur.
Ispat: Kabul edelim ki
HX,HY,Z2) =0 (4.1.27)
saglansin. Burada VY, X,Z € y(M) igin
HX, S, 2) = =S(HX,§)Y,Z) — S(Y,H(X,§)Z)
yazilabilir. Bu takdirde
—S(HX,8)Y,Z) —S(Y,H(X,6)Z) =0

yada

SHX, &Y, 2) +S(Y,H(X,8)Z) =0 (4.1.28)

olur. (4.1.28) de (4.1.14) ifadesi kullanilirsa

(YIS (o, 2) ~ gt, o)S(gradp, 2) ~ g, 15, 2) + (5 - £) (1)Sepx, 2
@S, 00}~ KBMMNISE D) — (282 +5—7) (90 15 2

+ gD, O} + (82— 5 - £) NS, 2) + @S, X))

+ (52 +543) mEONMISE 2) + nXMDS T, £} = 2BV, 9X)

—9(X,2)S(Y, gradp) — §Q(¢X, DS¥,§) — XpM@DS(Y, ) =0,

elde edilir. Yukaridaki denklemi (4.1.9) geregi
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~(B@XBINE) + 1D XB) + BB — Dg(9X, 07) +359(0X, 7))

— g, oVl grad 12 n(2) +3 (ZB) + BB — D(@Z))}

B

p ) 1 :
= S9N N=0ZB) + 26 = (@} + (87 = 5 ) n X BIn(2)

+ (DX + BB — Dg(@X, 0Z) +3 g(X, 20} = XEMIN(~(0ZB)

g T

1 1
+ @B = @)~ (267 +5 — ) g N~ (02ZB) + 26> = (@)

o

+ (B2 = 3= ) BN - WZBINX) — (PXAIE)

+ 6L~ g(oX,2) + 7900, 2) + (282 — 5~ ) @)}
g o4, 29 ) 273 nz)n

2 ‘8 1 2 1
+ (B2 +5 4 2) 00N {—(0ZB) + (262 = @)} - EHOMWIXB)

— BB~ Dg(@X, 0¥) +5 90X, )} — g X, 0D (V) — BB — DY)}
1

=L 9. DR ~ (VB + @87 ~ ) + (82~ D)t k)

~ BB~ Dg(@X, o¥) +3 g(pX, 1)}

B

) i
~XBNDTE) — (@YB) + (2% = In(N)} — (262 +5 = 2 ) X DY) = (@Y B)

+ 287~ ) + (82 = 3 = ) n@DEBIMCD — (XA
2 4 6

T 1 =
— @YBINCO + B = Mgl X) +5 g, V) + (267 = 5 = ) n(V)nC0)

1

+ (82 45+ D neon@(B) - (oY) + 282~ ) = 0
> 7)1 ¢ SN} =

elde edilir. Burada X ve Z ye gore kontraksiyon yapilirsa
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r p ,_F
~28(8 = DR =5 (@Y — BB — DIE) + 5 (¥F) + 265 — 1) (82 = 5 ) n()

B T 1 1 T T
— (287 + 5= 2) (=(ovm) + @8> = (N} + (87 - 3 = ) nN3 5

1 1 1
(267 =53+ (62 g +7) @87 = () = (V) 1| gradp I
T B T
~ BB~ DOB) — 3 (oY)} — (262 +5 = 2) () - (w¥B) + 262

T

1
)(B) = @YB) + () + (267 = 5 =) n(¥)

T

1 1
=M+ (p2 -5 -2

1 1
+ (52 + g + Z) () = (pYB) + (2% = (N} = 0

elde edilir. Son denklemde gerekli diizenlemeler yapilirsa

(55— 0)r—2626 - D5~ 5) ~1l gradg 12}n(e) + 682 + 22~ D vp)
+ 3{232 +§—£}(¢Yﬂ) =0

olur. Yukaridaki denklem her Y vektor alani i¢in
1 T 1 3 T
(512 D)e-26 - (o -2) varaap e a4 -

p T

-3 {ZEZ +5 - E} pgradf =0 (4.1.29)

olur ki, (4.1.29) de her iki tarafa ¢ uygulanirsa
3 7 _
{~6p?+2L - pgradp +3{2p> +£ - gradp = 0 (4.1.30)

bulunur. (4.1.30) ile (4.1.29) arasinda gerekli sadelestirmeler yapildiginda

(T R

= —{(ﬂz - % - g)r —2B*(B-1) (ﬁ - %) —Il gradp ||2}{—6ﬁ2 +%

-

yani,
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(-3 D203 voraa ) o+ - )

{(—432 - %)2 + (632 + 3%)2}

elde edilir. (1.2.33) denklemi geregi manifoldun V ya bagli n-Einstein oldugu goriiliir.

(Xp) = nX)

Teorem 4.1.7.: Bir 3-boyutlu quasi-Sasakian manifoldu M olsun. M iizerinde
(M,ps, f1) ¢eyrek simetrik metrik olmayan koneksiyonu V ye gore projektif egrilik tensorii P
ve Ricci tensérii S olmak iizere (P(X,£)S)(Y,Z) = 0 saglanir ise manifold V ya bagh n-

Einstein olur.
Ispat: VY, X,Z € y(M) igin
P&, HN(Y,2) = =S(P(X,§)Y,Z) — S(Y,P(X,§)Z)
yazilabilir. Burada (P(X, §)S)(Y, Z) = 0 olarak kabul edildiginden yukaridaki ifade
S(PX, Y, Z2) +S(Y,P(X,6)Z) =0 (4.1.31)

halini alir. (4.1.31 de (4.1.14) ifadesi kullanilirsa

2
~(BIS (o, 2) — g (K, p¥)S(gradp,2) - £ gpx NSED) + (52~ 5) N)SCpx. )

- 1 - 1 _
+0(DS, X0} =5 XBINWISE2) +5 ($YPSKX, )

1 _ 1 _
~ S @XDNIS(ED) ~ 5 (YBIMNSE 2) — 252+ 5
- DYANSED) + 9K DS, §) = nCONWNSE2)
= nCON@S, ) - ZRS, 9X) - g(X, 92)S(Y, gradp)

2 _ 1 _ 1 _
- %g(qu, Z)S(Y, &) — 3 XpI(Z)S(Y,$) + 3 (pZB)S(Y,X)

1 _ 1 - 1 -
— 5 @XBIN@SY,§) =5 XBMDS(,§) = 3 (9ZBNCOSY, ) = 0

elde edilir. Yukaridaki denklemde (4.1.9) kullanilirsa
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~OYD{@XBIN@) + (D) XB) + BB — Dg(@X, 0Z) +3 99X, 7))
— 9, V)1l gradp 12 n(2) +3 (ZB) + BB — D(@Z)}

B> 1 B
— 5 9(@X, N{=(pZB) + (2% - IN@)}+ (/)’2 - E)n(Y){(prﬁ)n(Z)

1
+1DEB) + BB — Dg(9X, 07) +3 g(X, 1)} =5 KON~ Zp)

1 1 1
+ 282 = (D) - 5 @XBINWN{-(9ZB) + 262 - HN2)

B T

1 1
— S @YBIMCO(—(ZB) + @57 = (D} — (267 + 5 — 7) V(= (02p)

1 1
+(2p° - IN@}+5 (Y EUEBINZ) = (9Zpn(X) — (9XBIn(Z)

1
+B(L = Pg(@X,2) + 59X, 2) + (267 =5 = 2 ) n(Zn (0}

2

B T 1
+ (262 45 = ) 100N - 0ZB) + (267 = In(D)} ~ EOMWIKE)
— BB~ Dg(@X, 0¥) +3 90X, )} — g X, 0Dz (VB) — BB — DY)}
~ S 9@, DUB) — @VB) + 26> = D} + (87 = 5 ) 1@ (XB)

1
— BB = Dg(PX, ) +39(pX, 1)} =5 XEMD{YB) = (oY) + (262
1 1 1

=N} =5 @XPMDIYB) — (PYB) + (262 = (V)

1 1
=5 @ZBCO{(YB) — (pYB) + (28* = 5)n(V)}

. BT , 1 1
~ [267 +5 - 2| 9t DB = (0¥ + @287 = YN} + 5 2B
— (@XBIN) = (YBINCO) + B(L = Bg(9¥, X) +59(X,Y)

1

+ (282 5~ ) n(mEO) + @62 + 5~ Dmeon@ ) - (orp)
1

+ (267~ ) =0

halini alir. Burada X ve Z ye gore kontraksiyon yapilirsa
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~26(8 = D(YB) — 5 (VB) + BB — DIVE) +5 (VB) +28(8 — 1) (67 - —)n(Y)

_Z (232 - _) (pYB) + [232 + g - —] (pYB) + ﬁ—z (Yg) 2 (wYﬁ)

1
+ (262 =5~ 2)3 @YD) ~ 00(¥) Il gradp I+ B — D(¥P)

~2[2p7 +5 b_ s - @vp + (257 - _) 10} + 5 (v + (/iz

B vay =
—D¥R) =0
elde edilir. Son denklemde gerekli diizenlemeler yapilirsa
1
(2(262~3) (262 + 5 +7) + 2625 ~ 1) (8~ 3) 1 gradp 12}nv)
3
+{oap =L +fapr +35 —orm = 0

olur. Yukaridaki denklem her Y vektor alani i¢in

{~2(2p2-2) (282 + £+ ) + 2578 - 1) (B —3) -1l gradp 17}
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+ {—BBZ - % + %}gradﬁ - {8[32 + 3§ — %} pgradf =0

(4.1.32)
olur ki, (4.1.30) da her iki tarafa ¢ uygulanirsa
34 g1
{ 3p2 -+ }(pgradﬁ +{8ﬁ2 BE—E}gradﬁ =0 (4.1.33)

bulunur. (4.1.32) ve (4.1.33) arasinda gerekli sadelestirmeler yapildiginda

e

R R

Il gradp ||2}{—3ﬁ2 - % + 5}5

1})2}97616113

yani,
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XB)
_{—2 (2[32 _%) (2[32 +§+%> +2B82(B - 1) (ﬁ —%) —|l gradB "2}{_332 _%_'_%}

] ({_332 _¥+%})2 + ({8/32 + 3%-%})2 n(X)

elde edilir. Sonugta manifold V ya bagli n-Einstein manifolddur.

Teorem 4.1.8.: M bir 3-boyutlu quasi-Sasakian manifoldu olsun. M {izerinde
(M3, f1) ceyrek simetrik metrik olmayan koneksiyonu V ye gére Riemann egrilik tensorii R
ve projektif egrilik tensorii P olmak iizere (P(X,&)R)(Y,V)W = 0 ise M manifoldu V ya baglh

n-Einstein manifolddur.
Ispat: Kabul edelim ki verilen manifold igin
PX,OR)(Y, VYW =0 (4.1.34)
saglansin. Burada VY, X,V,W € y(M) igin

P&, ORE, VW
=P(X,&)R(Y, V)W — R(P(X,§)Y,VIW — R(Y,P(X,E)V)W
— R(Y,MPX, W

yazilabilir. Yukaridaki denklem (4.1.34) yardimiyla

PX, )R, V)W — R(P(X, &)Y, V)W — R(Y,P(X,)V)W — R(Y,V)P(X,E )W =0 (4.1.35)
olur. (4.1.35) denkleminde V = W = ¢ alalm:

P(X,ORY,E — R(P(X, Y, )¢ — RV, P(X,HEE —RY,HPX,HE =0 (4.1.36)

bulunur. (4.1.36) da (4.1.14) kullanilirsa
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2
R, EEB)0X — g(X, 0B, D) gradp — 9, R(Y, 00)%
+(82 - B) R, 0 0% ~ n(MR(ox, 02 ~ R, 0X)¢ — R(Y, O)9X)
1 — 1 _ 1 —
— S PR, O +5 @RI, X =5 (XBMR(Y, D)

5 WRO.OEMCOE (262 + 5~ T) (g RO, ODOE
2 RS ISPT 2~ 4) T
—NRW.OONE - gENREOE + THRWX, O
_ 2 _ 1 _
+ g(X, pNIR(gradp, )¢ + 59X, VRGO +7 XOMWNRE, %
1 — 1 _ 1 _
~ SWYRRCLOE +5 @XBMWIRE O +5 (GYBMCOR(E O

1 _ 1 _ 1 _ 1 _
+5 DR, E +5 @XDR(Y,EE +5 KPR, OE +5 (0XPR, O
=0
haline doniisiir. Yukaridaki denklemin her iki tarafimi bir U € y(M) vektord ile i¢ garpalim:

2
—(R,¢R)g(pX,U) — g(X, pR(Y,&)&)g(gradB,U) — %g(pr,ﬁ(Y. HEON)

+(52 - 5) R0, 009x 1) - g Rigx. OEV)
— — 1 —
~ 9RO, 9X)E,U) ~ g(R(Y, X, U)} = 5 KEINRCY, W)
1 _ 1 —
+5 @R(Y, M GX, U) — - (X (R(Y, §)En(U)

1 _ , B T —
— 2 @R, DEBMCONW) - (287 +5 = 2) (9K RY, OONW)

— (R, OOMX)W) — g(X,Y)gR(E, E U+ (YR g(R(pX,§)E,U)
2
+9X, oY) g(R(gradp,§)E,U) + %g(wX, Y)g(R(&,€)¢,U)

1 _ 1 _
+ E(XB)H(Y)g(R(f, §E,U) — E(soYﬁ)g(R(X, &EU)
1 _ 1 _
+ E(quﬁ)n(Y)g(R(f, EU) + E(wYﬁ)n(X)g(R(f, §EU)
1 _ 1 _ 1 _
+3 XBgRY,&)E,U) + 7 (pXB)g(R(Y,E)EU) + 7 (XB)g(R(Y,§)E,U)

1 —



102

elde edilir. Son denklemde R(£,6)§ =0 oldugu gozoniinde bulundurulup X ve Z ye gore

kontraksiyon yapilirsa
_ 3 - 1 —
—g(gradp, oR(Y,§)$) + 5 (pR(Y, $)$F) — 5 (PR, $)SF) + (YB)g(R(9X, $)8, U)

3 3
— — 1 —
+ g(Rlgradp, )¢, o) — (82 =5 )ner) Z 9(R(pen . e) =5 (V) Z 9(R(e; )8, ¢)

~(p*- —)Zg(R(Y vedt,ed + g(R(Y, )¢, gradp) + g(WR(Y, )%, gradp)

( _g)zg@(y, Epeie)
i=1

= (4.1.37)
elde edilir. (4.1.37) denkleminde gerekli sadelestirmeler yapilip, (4.1.3) kullanilirsa
wpf-2(p2 L)+ (52 -5) apy + (52— 3) ormr + (52~ 5) corp)
+(o2=3) o~ (2= D) 0y + (82 - ) o) —5 (282 -3 (o)
(- 20m - wpy + 2 (52 ~£)nery ~2 (2 - E)nen} = 0
yani,
(~262+ 2 -2) vy + (262 -5 - 3) ovp)
=—2(p-3)(8-3) B +2(p~3) (8 +3) ¥B) =0
olur. Buradan ya
g-t=0 (4.1.38)
yani, § = % dir. Manifold bu sabit i¢in V ya gore n-Einsteindir. Yada
(8-5)m = (8+3) orm =0 (4.1.39)

saglanir. (4.1.39) denklemi her Y vektor alani igin
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([3 - %) gradf + (ﬁ + %) pgradff =0 (4.1.40)

halini alir. (4.1.38) denkleminin her iki tarafina ¢ uygulanirsa

(ﬁ - %) pgradf — (ﬁ + %) gradf =0 (4.1.41)

olur. (4.1.38) ile (4.1.39) denklemleri arasinda gerekli islemler sonucu

1\? 1\?
[(p=3) +(p+3) lgradp =0
olur ki, 8 nin sabit olduguna karsilik getirir. Béylece manifold V ya bagli n-Einsteindir.

Teorem 4.1.9.: M bir 3-boyutlu quasi-Sasakian manifoldu olsun. M iizerinde
(M3, f1) ceyrek simetrik metrik olmayan koneksiyonu V ye gore projektif egrilik tensorii P
ve koncircular egrilik tensorii H olmak iizere (P(X,&)H)(Y,V)W = 0 sart1 saglanir ancak ve

ancak M manifoldu V ya bagli n-Einstein manifolddur.
Ispat: Kabul edelim ki M manifoldu igin
(P, OHH)(Y, V)W =0 (4.1.42)
saglansin. Boylece VY, X,V,W € y(M) igin (4.1.40) yardimiyla
PX, A, V)W — HPX, )Y, V)W — HY,P(X, V)W — A, V)PX,O)W =0 (4.1.43)
dir. (4.1.43) denkleminde V =W = ¢ alirsak
P(X,OHY, ¢ —HPX,§)Y, )¢ —HY,P(X,6)§)E —HY, HPX,§)E =0

bulunur. Yukaridaki denklemde (4.1.4) kullanilip gerekli diizenlemeler yapildiginda
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2
(Y, )X ~ 908, @AY, ) gradp - g(oX, AV,
+(62 =) @, 00 0x ~ (N Ax, 08 - A, 90 ~ AV, Do)
1 — 1 1 —
S BN, D0 + 3 A, DB — 3 (XD, DO

5 W OEMEE ~ (26 +5 - 2 (g ACr, )¢
> @ ’ n 2 4 g4, )
=N, OONIE - g VAE O +nMCOAE )

2
+(YDAWX, O + (X, V) A(gradf, )¢ + 290X, VA, O

1 — 1 — 1 —

+5 XBMWAE OE =5 (@YORX,OF +5 @XBMNAE )§
1 — 1 — 1 —

+5 @YAMOOAE OF =5 (@YORX,E) +5 XDAY, )¢
1 — 1 — 1 —

+5 @XBAW, O +5 XD, O +5 @XDAX,§E =0,

elde edilir. Son denklemin her iki tarafinin bir U vektor alani ile i¢ ¢arpimini alalim.

2
(Y, g0, U) ~ g (X, oAV, g (gradp, U) ~ -9 (X, A, O MW)

+ (82 = B) v, 09 0%, 1) ~n ()9 0K, E)2,1)
_ — 1 —
— gAY, @28, U) — g, E)p¥, U)} — 2 KB, )
1 1 — 1
+2 QACY, EBX — 3 (XM, DOE ~ 3 (@FY, EBMAMW)

~ (262 + 8- D) tox, A, D0 mW) — (A, HOMEOMW)

—9gX,VgHEOEU) +n(VInX)gHE OE U+ (YR g(H (X, €)E,U)
2
+9(X, oY) g(H(gradp,§)E,U) + %g(sz, Y)g(H(,§)E,U)

1 — 1 —
+3XBMWNGAE EU) =5 (Y BYg (A, ), V)
1 — 1 —
+3(@XBMWNGAE EU) +5 (Y BINN)gAE OE, V)
1 — 1 — 1 —
5 QYBIIHRK, L) +5 XRGAX,OE,U) + 5 (9XBgHY, O U)

1 — 1 —
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Son denklemde X ve Z ye gore kontraksiyon uygulanip gerekli diizenleme yapilirsa

3
_ 3 1 _ _
—g(gradf, pH(Y,&)E) + 3 (pH(Y,§)EB) — E(coH Y, 8)ép) + (Yp) Z g(H(pe;, )¢, e;)
i=1

2
+ g(Agradp, OF,0¥) + 2 g(0F (€, 1)

3 3
_ 1 o
(8 -Eynen Zl 9 (ge, £)5,e) 5 (0VF) Z g(Fi(e, e
AN 1
-(p2-3) Z UV, pedg,e) +5 g, ), gradp)

3
1 _
+ Eg(pr(Y, §)¢, gradp) — (BZ - [2—))) Z gHY, ey, e;)

1 _ 1 _
+ Eg(H(Y, §)¢, gradp) + Eg(pr(Y, §)¢, gradp)

=0 (4.1.44)

elde edilir. (4.1.44) de (4.1.14) kullanilirsa

o2} (Yo (- S-Doommr2(s-2) -Yr

_g [(Y,b’) + (YB) + 2(YB) — (YB) +2 (3 "o [zi) ”(Y)]

B

-(-3)
(52 -E) vy + (B2 -2 m (52 - L) )
(-3

+(p2=3-2) (v =

yani,

(—4ﬁ2 + ? - % - g) Yp) + (2/32 _B_1 3—) (pYPB) = (4.1.45)

olur. (4.1.45) denklemi her Y vektor alani igin

(—4[32 + % - % - 2_) gradf — (Zﬁz ————— g) pgradf = (4.1.46)

halini alir. (4.1.46) denkleminin her iki tarafina ¢ uygulanirsa

56 1 7

(—4ﬂ2 to g E) pgradf + (232 -=— % - g) gradp = (4.1.47)
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olur. (4.1.46) ile (4.1.47) denklemleri arasinda gerekli sadelestirmeler yapilirsa

2 58 1 T\? , B 1 7\? _
(a4 232 o= o -
olur ki, B nin sabit olduguna karsilik getirir. Boylece manifold V ya bagli n-Einsteindir.

Teorem 4.1.10.: M bir 3-boyutlu quasi-Sasakian manifoldu olsun. M iizerinde
(M3, f1) ceyrek simetrik metrik olmayan koneksiyonu V ya gére Riemann egrilik tensorii R
ve koncircular egrilik tensorii H olmak iizere (R(X,&)H)(Y,V)W = 0 sart1 saglanir ise M

manifoldu V ya bagli n-Einstein manifolddur.
Ispat: Kabul edelim ki verilen M manifold igin
RX, MY, VW =0 (4.1.48)
sart1 saglansin. Ayrica VY, X,V,W € y(M) igin

RE,OHM(Y, V)W
=R, OHY,VIW — HR(X, &)Y, V)W — HY,RX, V)W
— H({Y,V)R(X, )W

yazilabilir. Burada (4.1.46) yardimiyla

RX, OHY, VW — HRX, &)Y, V)W — H(Y,R(X,)V)W — H(Y,V)R(X, &)W
=0 (4.1.49)

dir. (4.1.49) denkleminde Y = W = ¢ alinirsa

bulunur. Yukaridaki denklem (4.1.4) denklemi geregince
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~EEVIEBIX ~ (X, 0B VD grads — 5 gox, AE VIO

+ (82 D) @, VErox — nW) A, 0108 — B (E V)X — H(pX,1)E)

— 1 — — —
— B VIOE + (87 = 3) (UEVIOX = X VIE +nC0HEV)E
= DA XE = HE VX +nCOAE V)

1 — — —
+ (82454 2) G VIONOE ~ nWINEOAE OF) + KRRV

+ VB, @1 + 9K, 9V, grad)é + 5 9o, VA D)8

B

+ OMNWIAEOE + (262 +5) (9 MAE.E — g, HE VD

+XBHE,VIE=0

haline doniisiir. Son denklemin her iki tarafini bir U vektord ile i¢ carpimi alinip X ve U ye gore

kontraksiyon yapilirsa

B
2

— 1 —
)o@ AEIO + (52 + 5+ ) nEEVD

—g(gradp, HE,V)$) — (232 + :

3
+ B Y g(HE, peds, e
i=1
‘8 3 3
= (2 =5) O gpen Iz e + ) gUH(EVIpes e
i=1 i=1
3
£10) ) g(AE peds, e} + 2 VIE)
i=1
1 3 3
= (87 =3) O g et e + ) gfiler Vg, e
i=1 i=1

3
+ Z gHE Ve, e) —5n(HE V)Y + g(H(E, gradB)é, V) =0
i=1

elde edilir. Yukandaki gerekli diizenlemeler yapilip, (4.1.14) kullanilirsa

(352 _ ? + 9 WB) + (—32 . %) (VB) =0, (4.1.50)

olur. (4.1.50) denklemi her V vektor alani igin
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(3[32 — % + g) gradf — (—ﬁz +p - %) pgradp = 0, (4.1.51)

bulunur. (4.1.51) denkleminin her iki tarafina ¢ uygulanirsa

(3‘32_ﬁ+£_

) d+(—2+ —1) dg =0 4.1.52
> 3<pgraﬁ B+p 4graﬁ— (4.1.52)

olur. (4.1.51) ile (4.1.52) denklemleri arasinda gerekli sadelestirmeler yapilirsa

38 , 7\2 1\2
(382 -2 +3) +(-p>+p-3) 1gradf =0
olur ki, B nin sabit olduguna karsilik getirir. Boylece manifold V ya bagli n-Einsteindir.

Teorem 4.1.11.: Bir 3-boyutlu quasi-Sasakian manifoldu M olsun. M iizerinde
(M3, f1) ceyrek simetrik metrik olmayan koneksiyonu V ye gore concricular egrilik tensdrii H
olmak iizere (H(X,&)H)(Y,V)W = 0 sart1 saglamir ise M manifoldu V ya bagli n-Einstein

manifolddur.
Ispat: Kabul edelim ki verilen manifold igin
HX, O, V)W =0 (4.1.53)
saglansm. Burada VY, X, W,V € y(M) igin

(HX, HH)(Y, V)W
=HX,OHY, VW — HHX, )Y, V)W — H(Y,HX, ) V)W
—HY,VHX, W

yazilabilir. Burada (4.1.53) geregi

HX,OHY, VW — HHX, &Y, V)W — H(Y,HX, ) V)W — H(Y,V)H(X, &)W
=0 (4.1.54)

olur. (4.1.54) denkleminde V. =W = ¢ alalim.

Yukaridaki denklem (4.1.4) yardimiyla
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—(HY, OEP)pX — g(X, pH(Y,§)E)gradp — §9(<PXJ7(Y, HE - XPIHT,§)E)

+ ([32 - g) mHY, DX —n(VH(@X, )¢ — H(Y, pX)§ — H(Y, )X}

1 7 — — —
+ (B2 =5 = 2) AW, DOX = AKX, O + 2COAY, )¢

— 11 - —
20,0+ [+ + 2] 0, 06mE0E + YpCX, O
_ g T _
+ (X, @ (gradp, )¢ — (267 + 5 — =) g, HE, D¢
+ 200 (Y, )¢ = 0

haline doniisiir. Yukaridaki denklemin her iki tarafini bir U vektorii ile i¢ ¢arpimi alinirsa

—(HY,8)¢éR)g(pX,U) — g(X, pH(Y,&)E) g(gradB,U) — §9(¢X,17(Y, M)

— @AY, HOmW) + (8 - 5) B v, ©090x,0)

—n(NgH@X, $)EU) — g(HY, X)§,U) — g(HY, )X, U)}
+ (82 = 5~ ) O, OO (X, U) = (Mg (X, O, U)

+ 21009 (A, D8 V) ~ 2V, OX, 1))

+[82 + 24 2] 06mEOnW) + VB9 EK, V)

+ 9, o9 (A gradp, OF,U) ~ (262 + 5~ 7) g%, A, HOMW)
+ 20R)g (Y, §)5,U) = 0

elde edilir. X ve U ye gore kontraksiyon uygulanip gerekli diizenleme yapilirsa
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~g(gradp, o, 000 ~ 262 + ] 96, A 1)) + (3 (5 1)+2(32—%—%)+ﬁ2
sx+b 3Ty (2L DA, 00 + |52 + S+ Zndc e

+(p) i 9((ge, ©)5,e) — (5 - E)ig(ﬁm pe)te)

g ——)n(Y)Zg(H(q)e D¢, + 2, E)

g~ l—é)gnmg(ﬁ(ei,s‘)& ed - (62 -7 —g);g(ﬁm s, e

4
L, 1 e _
B -5 )Z gAY, ey e) + g((gradp, )5, oY)

oy
oy
oy
- (52-5) Y a0 oo =0

elde edilir. Yukaridaki denklemde (4.1.14) kullanilirsa

(8-~ (8~ 3- D) ormr + (52 -5) vpy + (82—~ 2) Co¥®)

- op st -1-agv2 (g - D) orpy +2 (g - - 1) )
~2(p2-5) rp)
(13- D){3(8 ~ - )0~ (B~ - ) n ) + (o¥B) - (V)
+(82 =5~ ) (1)~ 30)) ~ (@YB) + (0¥B) ~ (V)
~ (262 + 5= D)nry + (52— 3)nry + (2 + 3+ 5)nen)]
(=) {-2(2 - E)nery +20m - vmy + 2 (82 E)ncrr + )
+ (B} =0

yani,

([32 B 41 et )(q)Yﬁ) + ( 3% + %) (YB) =0, (4.1.55)
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dir. (4.1.55) denklemi her Y vektor alani i¢in

_ (ﬁz —p+ 2_ + %) ogradp + (—3/32 + %) gradg =0 (4.1.56)

olur. (4.1.56) denkleminin her iki tarafina ¢ uygulanirsa

(ﬁz - B+ g + %) gradp + (—332 + %) pgradf =0 (4.1.57)

elde edilir. (4.1.57) ile (4.1.56) denklemleri arasinda gerekli sadelestirmeler yapilirsa

(a4 2 (= P o

olur ki, # min sabit olduguna karsilik getirir. Boylece manifold V ya bagli n-Einstein manifold

olur.

Teorem 4.1.12.: M bir 3-boyutlu quasi-Sasakian manifoldu olsun. M iizerinde
(M,ps, f1) ceyrek simetrik metrik olmayan koneksiyonu V ye gore Riemann egrilik tensorii R

olmak iizere (R(X,&)R)(Y,V)W = 0 ise M manifoldu V ya bagli n-Einstein manifolddur.
Ispat: Kabul edelim ki verilen manifold igin
RX, R, VYW =0 (4.1.58)
saglansin. Burada VY, X,V,W € y(M) igin

R&, OR(,VIW
= R(X, R, V)W — R(R(X, §)Y,VIW — R(Y,R(X, )V)W
— R, VR, )W

yazilabilir. (4.1.58) yardimiyla
R(X,ORY, VW —RRX, &Y, VW — R(Y,RX, VW — R(Y,V)RX, )W =0 (4.1.59)
olur. (4.1.59) denkleminde V = W = ¢ alinirsa

R(X, OR(Y, )¢ — R(R(X,§Y, )¢ — R(Y,R(X, $)§E — R(Y,HR(X,§)§ =0

bulunur. Yukaridaki denklemde (4.1.4) kullanilirsa
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~(RW,E)EB)0X — g8, oR(Y, D) gradB — 5 g (X, By, 08¢

+ (82~ B) R0, 000X ~nR(X, O ~ RY, 0206 — RV, E)pX)

B

~ KBMRE, D — (282 +5) (9K, DDE - g NREF)

1 _ _ — —
+ (B2 = 1) R, DOX = nNRA, ¢ +nCOR, O - R(Y, ¢
— ROLOX +n(ORW, D)

1 — — —
+ (82 454 ) R, DOM0E ~nOMEORE O + VHRGWX,

+g(X, oV R(gradp, ) +5 9 (oX, REOF + KONRE, O
+2XPR(Y, 8 = 0

haline doniisiir. Yukaridaki denklemin her iki tarafim1 bir U vektdr alani ile i¢ carpim

uygulanirsa

~R,DE9WX, U) ~ 9K, 9RO g(gradp, U) 5 g oX, RV, HOM(W)

+ (52~ D) R, 009 (0%, 1) - g R(X, HE V)
~ 9B, X)) - gRE,OpX, 1)} ~ LB, HOW)

~ (262 +£) o R v, £6mW) - 96, g Rz, 02,07

1 — —
+ (B2 = ) R, HDIX, V) = (g R, V)

+n(XgRY,$)E U)}

1 _ —
+ (82424 2) 0@, DOMONW) Mg R D2, V)

4
+ (YR g(R(@X, $)E, V) + g(X, 9Y)g(R(gradB, §)E,U)
+2 g, gRE 02,U) + KB RE 2, V)
+ 200 g Y, EEU) = 0

bulunur. X ve U ye gore kontraksiyon uygulanip biraz diizenleme yapilirsa
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~g(gradf, ok (.0 - 262 +£] g Rev, 000 + 3 (52 - ) + 2 (52— 3) + 52+

3
— I - —
Ay, 00 + [+ 5+ 2] n@E D + ;) 9(Rige, 0% )
i=1
3

- (ﬁz - g) {Z gR(Y, pe)s, e;)

3 3
£ ) gR(gen,OEe)+ ) gREY, e, e} + 2R, E6)

i=1 i=1

1 3 3

-(62-7) {Z 109 (Ren )¢, e + Z 9(R(Y, &%, €0
3
+ z g(E(Y' €)ei' ei)} + g(ﬁ(gradﬁ, f)fﬁ (PY) =0
i=1

elde edilir. Yukaridaki denklem, (4.1.4) yardimiyla

1 5
(BZ +B+ Z) (QYB) + (3ﬁ2 + 7/} - 2) (Yg)=0 (4.1.60)
olur. (4.1.60) denklemi her Y vektor alani igin
—(,82+ﬂ+%)(pgrad,8+<3,82+¥—2)gradﬁ =0 (4.1.61)

bulunur. (4.1.61) denkleminin her iki tarafina ¢ uygulanirsa

(,82 + 6+ %) gradf + (3,82 + % — 2) pgradf =0 (4.1.62)

elde edilir. (4.1.61) ile (4.1.62) denklemleri arasinda gerekli sadelestirmeler yapilirsa
56 2 1\2
(32 + L -2) + (g +p+3) 1gradp = 0
bulunur, buda B nin sabit olduguna karsilik getirir. Béylece manifold V ya bagh n-Einstein

manifold olur.

Teorem 4.1.13.: M manifoldu B sabit olacak sekilde 3- boyutlu bir quasi -Sasakian
manifoldu olsun. M iizerinde (M,q3, f;) ceyrek simetrik metrik olmayan koneksiyonu V olmak
iizere, b fonksiyonu i¢in V = b¢ olmak sartiyla, M manifoldu verilen koneksiyona bagli Ricci

soliton dzelligini sagliyor ise manifold ¥ koneksiyonuna bagl n-Einstein manifolddur.
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Ispat: M manifoldu, 8 sabit olacak sekilde 3- boyutlu quasi-Sasakian manifoldu olsun.
M iizerinde (M,ps,f;) ceyrek simetrik metrik olmayan koneksiyonu V olmak iizere,
b fonksiyonu i¢in V = b¢ olmak sartiyla, manifold verilen koneksiyona bagl Ricci soliton

olma sartini saglasin. O halde (1.3.1) ile verilen,
1._ _
GLvg+S+24g9)X,¥) =0,

denklemi,
(Lyg)(X,Y) +25(X,Y) +21g(X,Y) =0 (4.1.63)
haline doniisiir. (4.1.63) te Lie tiirevi ozellikleri kullanilirsa
g(VxV,Y) + g(VyV,V) + 25(X,Y) + 22g(X,Y) =0

elde edilir. Burada V = b¢ alinirsa ve (2.1.3) denklemi yardimiyla

9TxbE¥) ~ 3n(X)g(pbE, 1) + 5 bg(pX, ¥) = bEn(XIN(Y) + g(Tyb&.X)
~ 310G (gbE,X) +3bg(e¥. X) ~ bn(XIm(Y) + 25X, ) + 229X, ¥)
-0
yani
(Xb)n(Y) + bg(Vx&,Y) + (Y)n(X) + bg(Vy§, X) — 2bAn(X)n(Y) + 25(X,Y)
+229(X,Y) = 0 (4.1.64)
bulunur. (4.1.64) ifadesinde (1.2.28) denklemi kullanilirsa

Xb)n(Y) — bBg(@X,Y) + (YhI)n(X) — bBg(eY,X) — 2bBn(X)n(Y) + 25(X,Y)
+22g(X,Y)
= O’

dir. Bu denklemi diizenlersek
(Xb)n(Y) + (Yb)n(X) — 2bpn(X)n(Y) + 25(X,Y) + 2Ag(X,Y) =0, (4.1.65)

elde edilir. (4.1.65) de Y=¢ yazip ve (3.2.2.9) denklemini kullandigimizda

(Xb) + (ED)n(X) — 2bBn(X) + 2 (232 _ %) n(X) + 22n(X) = 0, (4.1.66)
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elde edilir. (4.1.66) denkleminde bu defa X=¢ alalim.
1
2(éb) + 2 (232 — E) +21—-2bB =0, (4.1.67)
yani
1
(§b) = —A+ bB — 2B +2 (4.1.68)

sonucu ortaya ¢ikar. Bu denklemi (4.1.68) de kullanilip gerekli diizenlemeler yapilirsa

1
(db) = (—/1 + bR —28% + E) 7 (4.1.69)
elde edilir. (4.1.69) denkleminin her iki yanina d uygulanirsa
(=1 + b — 282 +)dn = 0,
bulunur. Burada dn = 0 olamayacagindan ancak
1
(—/1+b/3—2/32+§) =0,
olmak zorundadir. Bu ifade (4.1.67) de kullanirsa b sabit olur. Boylece (4.1.63) denklemi geregi
SX,Y) = bpn(Y)n(X) — Ag(Y,X), (4.1.70)
elde edilir ki bu da bize manifoldun 7 ye bagh n-Einstein oldugunu gosterir.

Ayrica elde edilen (4.1.70) denkleminde X ve Y vektor alanlarmma gore

kontraksiyon yapilirsa
T=>bf —34,
denklemi ortaya ¢ikar. Boylece yukaridaki denklem geregi asagidaki sonucu verebiliriz:

Sonug 4.1.2.: M manifoldu S sabit olacak sekilde 3- boyutlu quasi-Sasakian manifoldu
olsun. M iizerinde (M,@3, f1) ¢eyrek simetrik metrik olmayan koneksiyonu V olmak iizere, b
fonksiyonu icin V = b€ olmak sartiyla, manifold verilen koneksiyona bagh Ricci soliton

olma sartini sagliyor ise
1) T — bf < 0 i¢in genisleyen (expanding),

ii)) T — bf = 0 i¢in degismeyen(steady),
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iii) T — bf > 0 i¢in daralan (shrinking),
dir .

Teorem 4.1.14.: (M,q3,f;) koneksiyonu ile verilmis 3-boyutlu quasi Sasakian
manifoldu S sabit olmak tizere (1.3.2) ile taniml1 gradyant Ricci soliton 6zelligini saglasin. Bu
takdirde manifold

i) kosimplektiktir yada (M,¢5, f;) koneksiyonuna gore n-Einstein dir.
il) (M,p3, f1) koneksiyonuna gore sabit egriliklidir.
Ispat: 3-boyutlu quasi-Sasakian manifoldu iizerinde
VVf=S+21g (4.1.71)

ile taniml1 gradyant Ricci soliton esitligini ele alalim. g metriginin gradyant operatérii D olmak

tizere (4.1.71) denklemi

VyDf = QY + AY (4.1.72)
dir. (4.1.72) esitligi yardimiyla R(X,Y)Df ifadesi
R(X,Y)Df = VxVyDf —VyVyDf —VixyDf

= Vx(QY +AY) — V¢ (QX + 2X) — (QIX,Y]
+A[X, YD)

bigiminde yazilabilir. Burada (M,¢@5, f;) koneksiyonunu kullanirsak son denklem
_ _ 1 1 _ _ 1
RX,Y)Df = VxQY +-n(QY)eX — Zn(X)eQY — fg(X,QY)S + VxAY + 5 n(¥Y)pX
1 — 1 _ 1 _
— 5 MX)eY = fAgX,Y)§ — Vy QX —on(QX)eY +on(V)eQX

_ 1 1 _
+ Bg(Y,QX)¢ — VyAX — Eln(X)pr + Eln(Y)pr + BAg(X,Y)E — QVxY

+ QVyX — AVyY
+ AVy X (4.1.73)

halini alir. (4.1.73) denkleminin her iki tarafinin bir U vektor alani ile i¢ ¢arpimi alindiginda
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g(R(X,Y)Df,U)
=g(VxQY,U) + %n(@Y)g(coX. U) - %n(X)g(wéY, U) - Bg(X,Q¥)n(U)
+g(VxAY,U) + %An(Y)g(coX, U) - %ln(X)g(pr. U) - g(VyQX,U)
= %n(@X)g(qlY. U) + %n(Y)g(W?X, U) +Bg(¥,QX)nU) — g(VyAX,U)

1 1 _ _
- Eln(X)g(q)Y, U) + Eln(Y)g(q)X, U) —g(QVxY,U) + g(QVyX,U)
— Ag(VxY,U) + Ag(VyX, U)

bulunur. Son denklemde X =Y = ¢ kullanildiginda

g(R(&,Y)Df,$)
= g(VeQY, &) — Bg(€,QY) + g(VeAY, &) — g(VyQE, &) + Bg (Y, Q8)

+9(QVy¢, &) (4.1.74)

elde edilir. S sabit olmak iizere (4.1.72) de (4.1.10) ve (1.2.32) denklemleri yerine yazilirsa

9(RE,VIDS,§)
= 9 (v (5-57)v.6) + 9 (V¢ (362 - 5) 1E.€) = BB - Dg(Vs07.¢)
~(5+82) 9 (Tenz.) + (v, 0)
- Bg(e.0n) ~ (34 82)n0n) + 2000} - 262994,
+(5+82) 9960 + BT,
+ 890,00 ~ (34 82)n(n) + 2000} = (5 - 2) 9(7:7.8)
:

— (382 =5)n(veY) +%n(\7;¥) +(5-57) gy +

(3p°

- 2975, (4.1.75)

bulunur. Koneksiyon 6zellikleri geregi yukaridaki denklem
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g(R(E,Y)Df,$)
_GD
T2

1
- 29(1(7:1)8.§) = BB = Dg(Vz)¥.€) - (5 +52) g (n(Te¥)&.©)

00,0+ (5-52) 9(0r.8) - S g0r,0) + a2

+57g(7ev,6) - (5 - 57) a(Vev.€) - (387 = 2) n(vsY)

1
+51(VeY)

halini alir. Burada (1.2.29) denklemi kullanilip gerekli sadelestirmeler yapilirsa

gR(E&,Y)Df, &) =0 (4.1.76)

sonucu ortaya cikar. Ayrica (4.1.3) ve (4.1.74) denklemleri geregi g(R(&,Y)Df, &) ifadesi

9REVDLE =5 9(o7,0p) + (262 +5) (9, DN) —nm@NY =0 @17
olarak yazilabilir.(4.1.77) de Y yerine Y alinirsa

B B

2 ov.0p)+Enomen + (262 +5

E) g(eY,Df) =0 (4.1.78)

bulunur. (4.1.77) ve (4.1.78) denklemleri arasinda gerekli sadelestirmeler yapilip

diizenlendiginde

2 2
(262 +5) +t00.0p ~nerm@py = 0 @179)

olur, burada iki durum mevcuttur.

Durum 1) {(2[32 + g)z + Tz} =0:

2 2
{(2,82 + g) + BT} = 0 olsun. Bu durum ancak 8 = 0 olursa gergeklenir. Dolayisiyla

M manifold kosimplektik veya verilen koneksiyona bagli n-Einstein manifold bulunur.
Durumii) g(Y,Df) —n(Y)n(Df) = 0:
g(¥,Df) —n(¥Y)n(Df) = 0 ifadesi her Y vektor alani i¢in

Df = (§f)¢ (4.1.80)
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haline dondsiir. (4.1.80) ifadesi (4.1.72) de yerine yazilirsa

Vy((€E) = QY + aY (4.1.81)

elde edilir. (4.1.81) denkleminin her iki yanin1 bir X vektor alani ile i¢ garpalim. Bu durumda

9@ ((EDE).X) = g(QY.X) + Ag(r, X) (4.182)
dir. Yukanidaki denklemde (1.2.28), (4.1.9) kullamilirsa
X(ENC) = BENIWY, X) + 5 ENg(0Y, ) ~ BEPTIMCD)
= 9Q¥. X) + (B ~ Vg, 9X) =[5+ 2| n0rm(x) + B29(7, 1)
+29(Y, X) (4.1.83)

olarak yazilabilir. Burada (1.2.32) denklemi kullanilip gerekli diizenlemeler yapildiginda

X(EHM) = BENg(wY, X) + % ) g(eY, X) = BE MY In(X)
= (5-£2) 9,30 + (367 =) n VMO + BB~ Dg(Y, 9X)
- E + 32] nMnX) + B?g(Y,X) + 1g(¥, X) (4.1.84)

bulunur. (4.1.84) da Y = ¢ alinirsa

X(€0) ~ BEMX) = (267~ 5+ 2) 0 (4185
sonucu ortaya cikar. (4.1.85) denkleminde X yerine Y, Y yerine X yazalim:
V(M) ~ BENG(X, V) +5 ENa@X,Y) ~ FEAMONC)

= 9(@X.V) + BB ~ Dg(X,91) =[5+ 82| n0m(x) + B29r, )

+2g9(Y, X) (4.1.86)

(4.1.84) ile (4.1.86) denklemleri taraf tarafa toplarsak
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1
V(G = BENG@X,Y) +35ENgleX,¥) = BEHMON®) + X(Ef))n(¥)
1
—BENIQY. X) + 5 (EN)g(eY, X) — B Y In(X)
1
= 9(QY,X) + B(B — Dg(¥,9X) = |5+ B2 n0m(X) + F2g(¥, 1)

1
+ 2901, X) + g(QX,Y) + BB — DX, @1) |3+ B2 n (1 (0)

+ B2%g(Y,X) + Ag(Y, X)
yani
Y(EN)nCO) —2BENHMXNY) + X((EO)nY)

= 29Q¥, %) — 2[5+ B2 n(rm () + 28294, ) + 2297, )
elde edilir. Bu denklem (4.1.72) denklemi geregi
2{(267 ~ 5+ 2)}nCONC) = B8 ~ D9 (Y. 9X) = 29(T,DF, )
dir. Buradan
VyDf =2 {(2[32 - % + A)}U(Y)f + BB — Doy (4.1.87)

yazilabilir. (4.1.87) yardimiyla R(X,Y)Df ifadesini tekrardan hesaplayalim.

R(X,Y)Df = VxVyDf — VyVyDf — VixyDf

=V [2(287 =2+ 2) ()¢ + BB — Doy | - Vy[2(257 -2 +
/’l)n(X)E

1
+B(8 ~ 1)pX] - [2 (267 = 5 +2) (X, YDE + 56 - DolX, Y]]
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1
= 2(287 = 5+ A) NIV + 9OV, V€ +n(V)Vx€] + B(B = DT @)Y
+ B(B — DoV Y+(2ﬁ2—l+l> )pX -2 (2 2—1+/1) YnX)
PVx 5t AINWeX — 25267 — 5+ 4 n(¥)n(X)§
1
=5 BB = 1Y — BB — DX, ¢¥)§
1
= 2(267 = 5+ 2) 1@ + 90Ty OE +nCOTyE] = BB — DTy @)X
DTy X — (262 — £ + 2) (@Y + 28 (262 — = + 1) nCOM(Y
— BB = D@VyX — (262 =5+ 2)n(0wY + 28 (262 =5 + 2) nCON(VE
1
+5 BB = DnMe*X + BB = Dg(Y, 9X)§
1
~ [2(267 =5+ ) 1@y V008 + BB - Do @Y ~ 7,30 |

Son denklemde sadelestirmeler yapilip elde edilen denklemin her iyi yanim € ile i¢

carpimi alindiginda

o(RX, Y)Df,§) =2(282 =5 +2) g(¥,Vx&) + B(B — 1)g((Vx@)Y,§) — B2(B -
DgX, ¢Y)

1
— 2(262 =5+ 1) g0 Ty = BB — Dg((Fr @)X, ) + F2(B — De(tpX)  (4.189)
bulunur. (1.2.28), (1.2.29) denklemleri (4.1.86) da yerine yazilirsa
o(R(X, )DF, &) = =45 (2% =5+ 2) g (¥, 0X) — 267 (8 — 1)g(X, @Y)

Yukarida (4.1.1) denklemi g6zoniinde bulunduruldugunda

(~48 (267~ 5 + 1) + 2628 - DIg(X,¥) = By (oK, Y)
yani
B(—6B +2—41—2B — (§f)Ng(@X,Y) =0
sonucu ortaya ¢ikar. Burada g(Y, ¢X) sifir olamayacagindan
B(—6%+2— 41— 28 — (§)) = 0
olma durumu kalir. Burada iki durum s6z konusudur:

Durum i) g = 0:
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Bu durumda manifold kosimplektik manifolddur.
Durumii) =682 +2 —41—-28 — (§f) =0

Burada B nin sabit olmasi gbz 6niinde bulunduruldugunda A degerinin sabit olabilmesi

icin (¢f) = sabit = ¢ olmasi gerekir. Bu da (4.1.75) geregi
Df =c¢ (4.1.89)
demektir. Dolayisiyla (4.1.72) denklemi (4.1.89) yardimiyla
S, X) =—-29(Y,X) + g(Vyc§, X)
= —Ag(¥, %)~ cBg(pY,X) +cg(p¥,X) — Ben(Yn(x)
olarak yazilabilir. Burada X ve Y vektor alanlarina gore kontraksiyon yapilirsa
T=-31-[c

elde edilir. Sonugta manifold (M,¢5, f;) koneksiyonuna gore sabit egriliklidir.

4.2. (M,@3, f1) Ceyrek-Simetrik Metrik Olmayan Koneksiyonu ile Verilen n-Boyutlu
f —Kenmotsu Manifoldlar

Onerme 4.2.1.: Birn = 2m + 1-boyutlu f-Kenmotsu manifoldu M olsun. M iizerinde
Levi-Civita koneksiyonu V ya gore egrilik tensorii R ve (M,p3, f;) ¢eyrek-simetrik metrik
olmayan koneksiyonu V ye gore egrilik tensorii R olmak iizere, V X,Y,Z € y(M) icin R ile R

arasindaki baginti

R(X,Y)Z =R(X,Y)Z — (Xfg(Y,2)§ + (Y f)g(X, 2)¢ + fi(f1 + Hg (¥, Z)n(X)§ -
gX, Z2mY)El+ frflg(X, 2)Y — g(Y, Z)X] + % [9(X, 2)pY — g (Y, Z)pX —
n(Ng(pX, 2)§ +n(X)g(e¥, 2)¢1 + 5 XIN@Y = n(¥In(Z2)X] +

~FInMn@eX = nXOn@eY} + (f + fONZ)g (Y, 9X)E (4.2.1)
dir .

ispat : Ceyrek-simetrik metrik olmayan koneksiyon V ye gore Riemann egrilik tensorii

R olmak iizere, V X, Y, Z € y(M) i¢in hemen hemen degme metrik manifoldlarda (2.1.2)
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denklemini bulmustuk. M bir n-boyutlu f — Kenmotsu manifold oldugundan bu denklemde
(1.2.23) ve (1.2.24) ifadeleri kullanilirsa

RX,Y)Z =R(X,Y)Z — (Xf)g(,Z2)¢ + (Y f)g(X,Z)¢
+ 22 [9(Y, 2n(X)é — g(X, 2n(VE) + B9 (Y, Z2)pX — £, 89 (X, Z)pX
1
+3 [Bn(Z)g(X,Y)¢ — Bn(Z)n(N)X — pn(Y)g(X, 2)E + Pn(Zn(NX

+ Bn(X)g(Y,2)§ — fnX(D)Y + Bn(X)g(Y, 2)§ — fn(Xn(2)Y
= Bn@g(Y, X)§ + Bn(ZnX)Y + Bg(eX,Y)pZ — Bg(eY,X)pZ
+ Bg(@Y,Z)pX — Bg(pX,Z)Y + 2fin(2) g(@X,Y)¢ — fin(X)g(@Z,Y)E

1
+An(V)g(9Z,X)¢ — frg(Y, 2)pX + frg(X, D)oY + 0 (Xn(2)Y
1
- Z1MNN@)X],
dir. Burada gerekli sadelestirmeler (4.2.1) denkleminin elde edilecegi aciktir.

Onerme 4.2.2.: M bir n=2m+ 1 —boyutlu f-Kenmotsu manifoldu olsun. M
tizerinde Levi-Civita koneksiyonu V ya gore egrilik tensorii R ve (M,@5, f1) ceyrek-simetrik
metrik olmayan koneksiyonu V ye gore egrilik tensorii R olmak iizere, V X, Y, Z € y (M) i¢in;

ROCNIE = (F2+5+ AF) XY =X} = (VOX + XY — ((XF) +

E)MWE+ (V) + YAINCOE + Lm0y —n(V)ex} +
(f + f)g(Y, pX)§ (4.2.2)

dir.
Ispat: ilk olarak (4.2.1) denkleminde Z = & alinirsa

f+h
2

RX, V)¢ =R, )§ — (Xfn(V)E + (Yfn(X)E + frf (nCOY —n(¥)X} + {n(X)pY

1 1
-n(VeX}+ Z{n(X)Y -n()X} + Ef{n(Y)pr - n(X)eY}
+(f + g, pX),

bulunur. M bir n-boyutlu f -Kenmotsu manifoldu oldugundan (1.2.25) denklemi yardimiyla
yukaridaki denklem
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RX,VE = 2 ICOY —n(MX] = YHX + XY — X T + Y HnX)E
— Xfn(E + Y fnXE + fif XY —n(¥V)X]

1
L2 gy —nen + (Y —n(nx]
1
+2 QX ~ 1Y) + (f + )9, 0K,

halini alir. Son olarak burada gerekli diizenlemeler yapildiginda

R(X, V)¢ = (fz + % + f1f> XY —n(MX] = YHOX + XY — [(Xf) + XfD)In(¥)E
+[(Yf) + Y fD)In(X)E + % MX) Y —n(MeX] + (f + f1)g(¥, pX)§,

sonucu ortaya ¢ikar.

Onerme 4.2.3.: M bir n = 2m + 1-boyutlu f-Kenmotsu manifoldu olsun. M iizerinde
(M,p3, f1) ceyrek-simetrik metrik olmayan koneksiyonu V ye gére egrilik tensérii R olmak

izere, VX,Y,Z € y(M) igin;
R(X,Y)Z = —R(Y,X)Z
saglanir.

Ispat: (4.2.1) denkleminde Y = X ve X = Y almirsa

R(Y,X)Z =R(Y,X)Z — (Yf)g(X,2)E + (Xf)g(V. 2)E + fi(fy + g(X, Zn(¥V)E —
g, Xl + fiflg(Y, 2)X — g(X, Z2)Y] + % 9(Y, 2)pX — g(X, Z)pY —
n(X)g (@Y, )& +n()g(eX, 2)E] + 1 n(NNZDX —n(Xn(Z)Y} +
XM@Y —n(IM@eX} +{f + filn(Z2)g (X, 9¥)é (4.2.3)
elde edilir. (4.2.1) ile (4.2.3) denklemleri taraf tarafa toplandiginda
RX,Y)Z+R(Y,X)Z = R(X,Y)Z + R(Y,X)Z — (Xf)g(¥,Z)¢ + (Y f)g (X, 2)¢ +
filh + Plar, 200§ — g, 2nE + fif[g (X, 2)Y — g (v, 2)X] + L [g(x, 2) v —
9, 2)pX = (V) g(eX, 2)§ +n(X)g(p¥, 2)§] + 5 n(ON(2)Y —n(Vn(2)X] +

%f{n(Y)n(Z)q)X —nXnDeY} + (f + fn@2)g(¥, 9X)¢ — (Yf1)g(X, Z)¢ +
X9, 2)§ + fi(fi + NlgX, Zn(¥)§ — g(¥, OS] + fiflg(Y, 2)X — g(X, 2)Y] +
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% [9(¥, 2)pX — g(X, 2)pY —n(X)g(pY, 2)§ +n(V)g(9X, 2)E] + 5 [n(VIN(Z)X —
nCONZ)Y] +5 FnXn@)pY — (@)X} + (f + fLn(@)g X, p¥)E
yazilabilir. Burada sadelestirmeler yapilirsa

R(X,Y)Z = —R(Y,X)Z
bulunur.

Ayrica (4.2.1) denkleminde sirasiyla ilk once X =Y, Y = Z ve Z = X olarak

alindiginda

R(Y,2)X = R(Y, 2)X — (Y£)g(Z,X)§ + (Zf)g (Y, X)E + fi(fy + P2, XV )E -

90, Xm@2)éE) + fif 190, X)Z — g2, X)¥] + EL [g (v, X)pZ — g(Z, X) Y -

n(2)g(pY, X)E + n(Ng(@Z, X1 + 3 MINCOZ = n(ZnK)Y] + 35 FZmX) Y —
nINOPZY + (f + f)1(X)g(Z, oY )é (4.24)

bulunur. Benzer sekilde (4.2.4) denkleminde sirastylaY = Z, Z = X ve X =Y yazildiginda

R(Z X)Y = R(Z X)Y — (Zf)g(X, V)E + (Xf)g(Z YV)E + fi(fy + Hg(X, VIn(2)§ -

9@V IX)E] + fif19@ X - gX,V)Z] + L [g(Z, )X — g (X, V)oZ -
N(X)g(@Z,Y)E +n(Z)g(eX, )]+ M@NI)X = n(XINWZ] + 35 FnXn )z —
n@n)eX} + (f + fin(VgX, 9Z)§ (4.25)

elde edilir. Son olarak (4.2.1), (4.2.4) ve (4.2.5) denklemlerini taraf tarafa toplarsak

RX,Y)Z+R(Y,Z)X + R(Z,X)Y = 2(f + fin(Z)g(Y, pX)& + 2(f + fin(X)g(Z, pY)¢ +
2(f + fim(V)g(X, pZ)¢ (4.2.6)

bulunur. Bdylece asagidaki sonucu verebiliriz:

Sonu¢ 4.2.1.. M bir n=2m+ 1 —boyutlu f -Kenmotsu manifoldu olsun. M
manifoldunun (M,¢s, f1) ceyrek simetrik metrik olmayan koneksiyonu V ye gore egrilik
tensorii R olmak iizere, V X,Y,Z € y(M) igin (4.2.6) geregi bu koneksiyona bagli 1. Bianchi

0zdesligi saglanir ancak ve ancak f; + f = 0 dir.

Onerme 4.2.4.: M bir n=2m+ 1 —boyutlu f-Kenmotsu manifoldu olsun. M,
(M,ps, f1) ¢eyrek simetrik metrik olmayan koneksiyonu V ye gdre Ricci tensérii, Ricci

operatdrii ve skaler egriligi sirastyla S, Q ve T olmak iizere, V Y, Z € y(M) igin
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S(Y,2) =
S, Z2)+ Y fom(Z) + (fi + Hg(eY,Z) — [fl(fl +)+ % (n— 1)] n(n(z) +
AU+ )+ A -nfif = EflgY,2), (4.2.7)

QY = QY+ (Y/)E + (fu + NoY = [f(fy + 1) +5 (= D|n()E + [y + ) +
A-nfif = G, (4.28)
t=1+m-D{A+H -G —-Af—3} (42.9)
dir.
ispat : (4.1.1) denkleminin her iki yaninin W vektér alani ile i¢ ¢arpimi alindiginda

gRX,NZW) =gRX,NZ,W) - Xf)g¥,2nW) + Y f)gX, Zn(W) +
i+ Hlg¥, 2nXnW) — g(X, Z)n(¥)n(W)] +
fiflg(x, 2)g(v, W) — g (v, 2)g (X, W)] + EL [g(X, ) g (9¥, W) — g (¥, 2) g (X, W) —
(g (@X, W) +nX)g(eY, nW)] + 5 MON@Dg (¥, W) = n(¥In(Z)g (X, W)] +

1
(2 g(eX, W) —nOn(Z2)g(eY, W)} + (f + fin(2)g (Y, eX)n(W)
yazilabilir. Buradan da X ve W vektor alanlarina gore kontraksiyon yapildiginda

S,2) =5(v,2) = Ef)g(V.2) + Y fn(@) + fr(fi + Nlg(¥,2) —n(¥In(2)] +
fiflg(Y,2) —ng(Y,Z)] + % [9(eY,2) + g (oY, 2)] + 7 [n(VIN(Z) = n(VI(Z)n]

elde edilir. Yukarida gerekli diizenlemeler yapildiginda

_ 1
S0,2) = 50,2 + Y FIN@) + (i + Dg(. 2) = [+ )+ 7. = D| (@)
+A(i+ )+ A -nfif - EfDlgY,2)

denklemi elde edilir. (4.2.7) denklemi VZ € y(M) i¢in

_ 1
QY =QY+ (Yf)¢+ (f1 + oY — {f1(f1 +1)+ Z(n - 1)}’7(”5 +{ithi+H+1
—n)fif — Cf)}Y

haline doniisiir.

(4.2.7) denkleminde Y ve Z vektoér alanlarina gore kontraksiyon yapildiginda
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1
T=t4 G - (A H N+ (= D] F G +H + A= mAf - G

bulunur. Yukaridaki denklemde gerekli diizenlemeler yapildiginda

1
T=t+Mm-D{fi(i+f)—Ef) —f1f_Z}
dir.

Onerme 4.2.5.: M bir n = 2m + 1-boyutlu f-Kenmotsu manifoldu olsun. M,
(M3, f1) ceyrek simetrik metrik olmayan koneksiyonu V ye gore Ricci tensdrii S olmak
tizere, VY € y(M) igin

S, =2-mH+f)

+HrPA-m-EH -3 -D+A-fF - RN,
(4.2.10)

Ispat: (4.2.7) denklemi Z = £ igin

- 1
S0, =50, + VR = |h+ N +70—D|nm
+AG+H+ A -nfaf - )

halini alir. Son denklemde (1.2.33) kullanilirsa

S0,6 = @ =m0+ {F21 = 1)~ EOIMM + ) = [+ + 5 = D0 )
A+ D+ =Af - RO
= @-mN+ )
HE=m = )~ 3 (=1 + (A= wff = E)m)

sonucu elde edilir.

Teorem 4.2.1.: M bir n=2m+ 1-boyutlu f —Kenmotsu manifoldu olsun. M,
(M,@3, f1) ceyrek simetrik metrik olmayan koneksiyonu V ye gére Ricci tensdrii simetriktir

ancak ve ancak —f = f; = sht dir.
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Ispat: Kabul edelim ki bir n-boyutlu f-Kenmotsu manifoldu iizerinde (M,qs, f1)

ceyrek simetrik metrik olmayan koneksiyonu V ye gére gére Ricci tensorii simetrik olsun yani

VZ,Y € xy(M) igin
S, 2) =8(,Y),
saglansm. Oncelikle S(Z,Y) ifadesini bulabilmek igin (4.2.7) denkleminde Y yerine Z, Z yerine

Y yazalim. Bu durumda

§2,Y) = S@Y) + @MW) + (f + HI@ZY) = [fi(fy + ) + 30 = D] n@m() +
[+ P+ A= Af - ERIgEY) (4.211)

ifadesi elde edilir. (4.2.7) ve (4.2.11) denklemleri S(Y, Z2) = S(Z,Y) geregi

1
SW2)+ V@ + (fi + Pg@¥.2) = [l + ) +7 (1= D] 0@

+UAR+ O+ A -mff -l 2)
=S YY)+ Zfn() + (i + g(eZ,Y)

~[AG+ P+ 3@ = D]nmm)

+AG+H+A-mff - E)]9EY)
halini alir. Burada gerekli sadelestirmeler yapildiginda

Y2 + (fi + NgleY, 2) = Zfin) + (fi + /)g(eZ,Y)
yada
Yfn(Z) — Zfon¥) +2(f1 + HgleY,Z2) =0

bulunur. Buradan da —f = f; = sbt oldugu agiktir. Tersi de kolayca gosterilebilir.
Bundan sonraki teoremlerde karigiklik yasamamak ve islem kolayligi i¢in f = f; alacagiz.

Teorem 4.2.2.: M, f; sabit olacak sekilde 3-boyutlu f;-Kenmotsu manifoldu olsun. M
tizerindeki (M,qps,f;) ceyrek simetrik metrik olmayan koneksiyonu V olmak iizere, b
fonksiyonu i¢in V = b olmak sartiyla, manifold Ricci soliton olma sartini saglasin. Bu takdirde

V koneksiyonuna bagli n-Einsteindir.

Ispat: M , f; sabit olacak sekilde 3- boyutlu f,=f Kenmotsu manifoldu olsun. M

lizerindeki (M,@s,f;) ceyrek simetrik metrik olmayan koneksiyonu V olmak iizere, b
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fonksiyonu i¢in V = b olmak sartiyla, manifold verilen koneksiyona bagli Ricci soliton olma

sartin1 saglasm. O halde (1.3.1) ile verilen,
GLyg+S+i9)(X,¥) =0, (4.2.12)
denklemi,
(Lyg)(X,Y) +25(X,Y) +21g(X,Y) =0
haline doniisiir. (4.2.12) de Lie tiirevi ozellikleri kullanilirsa
g(VxV,Y) + g(VyV,V) + 25(X,Y) + 249 (X,Y) = 0,

elde edilir. Burada V = b¢ alinirsa ve (2.1.3) denklemi yardimiyla

9(TxbE¥) = 50(X)g(PbE¥) + 5 bg(pX, V) = Fibm(Om(Y) + g(FybE, )
~ 310G (pbE, X) +3bg (@Y. X) ~ fibn(Xm(Y) + 25X, 1) + 229(K, V)
“o,
yani
(XDYN(Y) + bg(Tad, V) + (YBINCH) + bg(VyE, X) — 2fubnCON(Y) + 25(X, V)
+229(X,Y) = 0 (4.2.13)
dir. (4.2.13) ifadesinde (1.2.24) denklemi kullanilirsa
Xb)n(Y) + 2f1bg(X,Y) + (Yb)n(X) — 4f;bn(X)n(Y) + 25(X,Y) + 24g(X,Y)
=0 (4.2.14)

sekline dondsiir. (4.2.14) denkleminde her Y gordiigiimiiz yere ¢ yazilip ve burada (3.2.2.9)

denklemini kullandigimizda
(EDINX) + (Xb) — 2fbn(X) +2 (=47 —3) n(X) + 2An(X) = 0 (4.2.15)
bulunur. (4.2.15) denkleminde bu defa X = & alinirsa

2(¢b) = 2f1b + 2 (—4f,> —3) + 21 =0
(4.2.16)

yani
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(D) = —A+ fib +4f +3
(4.2.17)

sonucu ortaya ¢ikar. Bu denklem (4.2.15) de kullanilip gerekli diizenlemeler yapilirsa
(db) = (—A+ fib + 4£% + )1
(4.2.18)

elde edilir. (4.2.18) denkleminin her iki yanina d uygulanirsa
, 1
(=1 + fib + 4f; +E)dr] =0
bulunur. Burada dn # 0 olacagindan
, 1
(=1 + fib + 4f; +§) =0
olur. Bu ifade (4.2.18) de kullanirsa b sabit olur. Boylece (4.2.14) denklemi
geregi
SX,Y) = 2fibn(Y)n(X) — (A + f1b)g (¥, X) (4.2.19)
elde edilir ki bu da bize manifoldun ¥ ye bagl n-Einstein oldugunu gosterir.

Ayrica elde edilen (4.2.19) denkleminde X ve Y vektor alanlarina gore kontraksiyon

yapilirsa
T=-bf; —31
denklemi ortaya ¢ikar. Boylece yukaridaki denklem geregi asagidaki sonucu verebiliriz:

Sonu¢ 4.2.2.: M, f; sabit olacak sekilde 3- boyutlu f; — Kenmotsu manifoldu olsun. M
iizerinde (M,@3,f;) ceyrek simetrik metrik olmayan koneksiyonu V olmak iizere, b
fonksiyonu i¢in V = b¢ olmak sartiyla, manifold verilen koneksiyona bagli Ricci soliton

ozellligi sartim sagliyor ise

i) T4 bf; < 0i¢in genisleyen (expanding),
i) T+ bf; = 0 i¢in degismeyen(steady),
iii)T + bf; > 0 i¢in daralan (shrinking),

olur.
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Teorem 4.2.3.: (M,q5, f;) koneksiyonu ile verilmis n-boyutlu f;-Kenmotsu manifoldu
f1 sabit olmak tizere (1.3.2) ile tanimli gradyant Ricci soliton &zelligini saglasin. Bu takdirde

manifold kosimplektiktir.
Ispat: 3-boyutlu f;-Kenmotsu manifoldu iizerinde

VVf =S+ g,
(4.2.20)

ile taniml1 gradyant Ricci solitonu, g metriginin gradyant operatdrii D olmak iizere

VyDf = QY + Y,
(4.2.21)

olarak yazilabilir. (4.2.21) esitliginden yararlanilarak R(X,Y)Df ifadesini bulalim:
E(X, Y)Df = vaYDf - vyvfo - V[X,y]Df

=V4x(QY + A7) =V, (QX + 1X)

Burada (M,¢5, f;) koneksiyonu geregi yukaridaki denklem

R(X,Y)Df = VxQY +3n(@V)pX = n(N)@QY — Lg(X, QV)E + VxAY +52n(Y)gX —
XK@Y — fLAGIX,YE = QX — =n(QX)pY +5n(Y)pQX +

f19(Y,QX)¢ — VyAX =2 an(X)@Y + ()X + fLAg(X,Y)E — QVxY +
QVyX — AV,Y +
AVy X (4.2.22)

halini alir. (4.2.22) denkleminin her iki tarafin1 bir U vektor alani ile i¢ carpimi alindiginda
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9(R(X, VYD)
= 4(TQY, U) + 5n(@N)9(9X,U) ~ 5n()g(9QY,U) ~ ug(x, Q¥)n(U)
+ 9T Y, U) + 2 (g (9K, U) 5 )9 (@Y, U) ~ Frdg (X, Vn(V)
~ 9BQX, U) ~ 50(@X)g (oY, U) + 5n(V)g(9QX,U) + fug(Y, QX)n(U)
— 9V AX, U) 5 InCOg (Y, U) + 5 (V)g(9X,U) + Fidg (K, VIn(V)
~ 9(@94Y,U) + g(QVyX,U) ~ Ag(VaY,U) + Ag (WX, ),

bulunur. Son denklemde X = U = ¢ kullanildiginda

g(QVy¢,8), (4.2.23)
elde edilir. f; sabit olmak tizere (4.2.23) de (4.2.7) denklemi yerine yazilirsa
g(R(, Y)Df,$)
= 9 (VeG+ A7.€) = g (Ve (347 +3) 1NE.€) + 2f19 (Ve 0V €)

+212) g(venE.€) - fu [ 00 — (54 2% nn)]

+412) 98,0 + o v, 00 — (5 + 217 )n 1)}

a3+t (ot

+
~

|
N N /N /N

—= NS NS N R N e

—+

12) 906, = (317 +5) 9% &) + 2119(0WE, )

+
~

- (3+20%)se
bulunur. Koneksiyon 6zellikleri kullanilarak yukaridaki denklem

g(R(,Y)Df,§)

= (% +£%) 9(Vev,€) + (Z—T)n(Y) - (3f7+ %) n(VeY) - (Z—T)n(Y)

- (L 2)atoer)~ (e £) 001, (52 + Do)

+ G + 2f12)n(V§Y)
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halini alir. Burada gerekli sadelestirmeler yapilirsa
gR(&,Y)Df,§) =0 (4.2.24)
sonucu ortaya cikar. Ayrica (4.2.1) ve (4.2.24) denklemleri geregi g(R(&,Y)Df, &) ifadesi
gR(E,Y)Df,§) = f1g(eY,Df) =0 (4.2.25)
olarak yazilabilir.(4.2.25) de g(@Y, Df) sifir olamayacagindan
fi=0

olur. Bu da manifoldu kosimplektik yapar. Boylece ispat tamamlanir.
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Cizelge 4.1. (M, 5, f1) ceyrek simetrik metrik olmayan koneksiyonu ile verilmis 3- boyutlu

quasi -Sasakian manifoldlar i¢in baz1 egrilik sartlar

(M,p3, f1) ceyrek simetrik metrik olmayan koneksiyonu ile verilmis 3- boyutlu quasi -
Sasakian manifoldlar igin ( f; = f igin)

V ve (M,¢s, f;) koneksiyonu i¢in
n-paralel olma sart1 denk ise

[(VxS) (oY, 0Z) =
(VxS) (oY, 92)]

i) f = 0, yani ya manifold kosimplektik
yada manifold V koneksiyonuna gére n-Einstein
olmasidir.

ii) 5= sabit dolayisiyla manifold V ya gore
n-Einsteindir.

(M,¢p3, f1) koneksiyonu igin -
paralel ise

[(Vx$)(9Y,9Z) = 0]

i) B = 0, yani ya manifold kosimplektik
yada manifold (M,¢3, f;) koneksiyonuna gore
1 —Einstein olmasidir.

ii) f= sabit dolayisiyla manifold V ya gore
n —Einstein manifolddur.

B sabit olmak sartiyla M
iizerindeki (M,qp3, f;) ¢eyrek simetrik
metrik olmayan koneksiyonuna gore
dairesel paralel Ricci tensore sahiptire

i) £ = 0, yani ya manifold kosimplektik
yada manifold (M,¢p3, f;) koneksiyonuna gore
11 —Einstein olmasidir,

)= i% e kargilik gelir.

RX, OHY,2) = 0>

V ya gore n —Einstein manifolddur.

(Hx, £)5)(Y,2) = 0=

V ya gore n —Einstein manifolddur.

(Px,6)5)(Y,2) = 0>

V ya gore n —Einstein manifolddur.

PX,OHRDY,VIW = 0=

V ya gore n —Einstein manifolddur.

PX,OHHY W =0

V ya gore n —Einstein manifolddur.

R, DY, VW = 0>

V ya gore n —Einstein manifolddur.

(HX, M (Y, VW = 0=

V ya gore n —Einstein manifolddur.

R, HR)T, VW = 0>

V ya gore n —Einstein manifolddur.
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Cizelge 4.2. Verilen koneksiyon gore 3- boyutlu quasi -Sasakian manifoldlar ve 3- boyutlu f -

Sasakian manifoldlar i¢in Soliton Kavrami

(M,p3, f1) c¢eyrek simetrik metrik olmayan
koneksiyonu ile verilmis 3- boyutlu quasi -
Sasakian manifoldlar i¢in

(M,@5, f1) ¢eyrek simetrik metrik
olmayan koneksiyonu ile verilmis
3- boyutlu f -Sasakian manifoldlar
i¢in

R(X,Y)Z = —R(Y, X)Z saglanr.

R(X,Y)Z = —-R(Y,X)Z
saglanir.

1. Bianchi 6zdesligi saglanir ancak ve ancak
f1 = 0 ve manifold kosimplektiktir.

1. Bianchi 6zdesligi saglanir ancak
veancak f; + f = 0dur.

verilen koneksiyona gore Ricci tensorii simetriktir
ancak ve ancak f; = sbt ve § = 1dir.

verilen koneksiyona gore Ricci
tensori simetriktir ancak ve ancak

b fonksiyon olmak tizere V = b¢ olmak sartiyla,
manifold Ricci soliton olma sartini saglar ise,
(M,¢p3, B) koneksiyonuna bagli n-Einstein
manifolddur.

b fonksiyonu i¢in V = b¢ olmak
sartiyla, manifold Ricci soliton
olma sartin1 saglar ise, (M,@5, f)
koneksiyonuna bagli n-Einstein
manifolddur.

f1 = B sabit olmak iizere gradyant Ricci soliton
0zelligini sagliyor ise manifold

i) kosimplektiktir yada (M, ¢, f;) koneksiyonuna
gore n-Einstein dir.

ii) (M,p3, f1) koneksiyonuna gore sabit
egriliklidir.

f1 sabit olmak tizere gradyant
Ricci soliton 6zelligini sagliyor ise
manifold kosimplektiktir.
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