
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HEMEN HEMEN DEĞME METRİK  

MANİFOLDLARDA FARKLI KONEKSİYONLAR 

Azime ÇETİNKAYA 

Doktora Tezi 

Matematik Anabilim Dalı 

Ocak – 2016 



 

 

 

 

 

 

HEMEN HEMEN DEĞME METRİK MANİFOLDLARDA  

FARKLI KONEKSİYONLAR 

 

 

 

 

 

 

 

Azime ÇETİNKAYA 

 

 

 

 

 

 

 

Dumlupınar Üniversitesi 

Lisansüstü Eğitim Öğretim ve Sınav Yönetmeliği Uyarınca 

Fen Bilimleri Enstitüsü Matematik Anabilim Dalında 

DOKTORA TEZİ 

Olarak Hazırlanmıştır. 

 

 

 

 

 

 

 

Danışman : Prof. Dr. Ahmet YILDIZ 

 

 

 

 

Ocak - 2016 

 



iii 

 

KABUL VE ONAY SAYFASI 

AZİME ÇETİNKAYA’nın DOKTORA tezi olarak hazırladığı “ Hemen hemen değme 

metrik manifoldlarda farklı koneksiyonlar ’’ başlıklı bu çalışma, jürimizce lisansüstü 

yönetmeliğin ilgili maddeleri uyarınca değerlendirilerek kabul edilmiştir.  

                 14/01/2016 

 

 

Üye: Prof. Dr. Cengizhan MURATHAN 

 

Üye:  Prof. Dr. Erhan ATA        

                                                              

Üye:  Prof. Dr. Erdal ULUALAN 

 

Üye:  Prof. Dr. F. Nejat EKMEKÇİ   

                                                           

Danışman Üye: Prof. Dr. Ahmet YILDIZ 

 

 

 

 

Fen Bilimleri Enstitüsü Yönetim Kurulunun  ....../...../..... gün ve ............. sayılı 

kararıyla onaylanmıştır. 

 

                                                     .                          

                                                                               Fen Bilimleri Enstitüsü Müdürü 

                                                                                  Prof. Dr. Hasan GÖÇMEZ 

 

 



iv 

 

ETİK İLKE VE KURALLARA UYGUNLUK BEYANI 

  Bu tezin hazırlanmasında Akademik kurallara riayet ettiğimizi, özgün bir çalışma 

olduğunu ve yapılan tez çalışmasının bilimsel etik ilke ve kurallara uygun olduğunu, çalışma 

kapsamında teze ait olmayan veriler için kaynak gösterildiğini ve kaynaklar dizininde 

belirtildiğini, Yüksek Öğretim Kurulu tarafından kullanılmak üzere önerilen ve Dumlupınar 

Üniversitesi tarafından kullanılan İntihal Programı ile tarandığını ve benzerlik oranının %16 

çıktığını beyan ederiz. Aykırı bir durum ortaya çıktığı takdirde tüm hukuki sonuçlara razı 

olduğumuzu taahhüt ederiz. 

 

Prof. Dr. Ahmet Yıldız                Azime Çetinkaya 

İmza        İmza 



v 

 

HEMEN HEMEN DEĞME METRİK MANİFOLDLARDA FARKLI 

KONEKSİYONLAR 

Azime  Çetinkaya 

Matematik Anabilim Dalı, Doktora Tezi, 2016 

Tez Danışmanı:  Prof. Dr. Ahmet YILDIZ 

ÖZET 

Bu tez 4 bölümden oluşmaktadır. 

Birinci bölümde temel kavramlar ve üzerinde çalışacağımız değme manifoldlardan söz 

edilmiştir. 

İkinci bölümde genel anlamda yeni bir çeyrek-simetrik metrik olmayan koneksiyon 

tanımı yapılarak bu koneksiyonun bazı özel durumlara göre sınıflandırılması verilmiştir.  

Üçüncü bölüm iki kısımdan oluşmaktadır. Birinci kısımda yarı-simetrik metrik 

koneksiyonu ile verilen  n-boyutlu Kenmotsu Manifoldlar için bazı eğrilik şartları incelenmiştir. 

İkinci kısımda ise Ricci soliton ve gradyant Ricci soliton kavramlarına değinilmiştir. İlk olarak 

çeyrek-simetrik metrik olmayan koneksiyon ile verilen 3-boyutlu trans-Sasakian manifoldlar 

için Ricci soliton ve gradyant Ricci soliton kavramları incelenmiştir. Daha sonra ise aynı 

kavramlar çeyrek-simetrik metrik koneksiyon ile verilmiş 3-boyutlu normal hemen hemen 

değme manifoldlar için irdelenmiştir. 

 Son bölüm ise tezimizin orijinal kısmını oluşturmakta olup, iki kısımdan meydana 

gelmektedir. İlk kısımda özel olarak tanımlanan çeyrek-simetrik metrik olmayan koneksiyon ile 

verilen 3-boyutlu quasi-Sasakian manifoldlar için ilk önce bazı eğrilik şartları incelenmiş daha 

sonra ise soliton kavramları ele alınmıştır. Ikinci kısımda ise yine aynı koneksiyon ile verilen 3-

boyutlu f-Kenmotsu manifoldlarda soliton kavramlarına değinilmiştir.  

Anahtar Kelimeler: Çeyrek-Simetrik Metrik Koneksiyon, Çeyrek-simetrik Metrik Olmayan 

Koneksiyon, Gradyant Ricci soliton, 3-boyutlu f-Kenmotsu Manifoldlar, 3-boyutlu Normal 

Hemen Hemen Değme Manifoldlar, 3-boyutlu Quasi-Sasakian manifoldlar, 3-boyutlu Trans-

Sasakian Manifoldlar,  Ricci Soliton. 
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DIFFERENT CONNECTIONS ON ALMOST CONTACT METRIC MANIFOLDS  

                                                             Azime ÇETİNKAYA 

Mathematic Department, Ph.D. Thesis, 2016 

Thesis Supervisor:  Prof. Dr.  Ahmet YILDIZ 

SUMMARY 

This thesis consists of four chapters. 

In the first chapter, basis notions and contact manifolds which we worked on later are 

mentioned. 

In the second chapter, in general meaning a new quarter symmetric non metric 

connection is defined and  is given classification of this connection with respect to some 

specific conditions.  

Third chapter consists of two parts. In the first part,for n-dimensional Kenmotsu 

manifolds given with semi-symmetric metric connection, some curvature conditions are 

investigated. In the second part, Ricci soliton and gradient Ricci soliton notions are referred. 

Firstly, for 3-dimensional trans-Sasakian manifolds given with quarter symmetric non metric 

connection, Ricci soliton and gradient Ricci Ricci soliton notions are surveyed. Later same 

notions are studied for 3-dimensional normal almost contact metric manifolds given with 

quarter-symmetric metric connection. 

Last chapter is original part of  our thesis and consists of two parts. In the first part, 

some curvature conditions are investigated and soliton concepts are taken for 3-dimensional 

quasi-Sasakian manifolds given with  special defined quarter-symmetric non-metric connection.  

In the second part,  soliton notions are dealed for 3-dimensional f-Kenmotsu manifolds with 

same connection.        

Keywords: Quarter-Symmetric Non-Metric Connection, Quarter-Symmetric  metric 

connection, 3-dimensional quasi-Sasakian manifolds, 3-dimensional f Kenmotsu manifolds, 3-

dimensional Trans-Sasakian manifolds, 3-dimensional normal almost manifolds, Ricci soliton, 

Gradient Ricci soliton. 
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SİMGELER VE KISALTMALAR DİZİNİ 

 

 

                        

Simgeler  Açıklama 

M Manifold 

g Metrik tensör 

[,] Lie operatörü 

𝜒(𝑀) Vektör alanlarının uzayı 

∇̅ Çeyrek-simetrik/Yarı-simetrik metrik/metrik olmayan koneksiyon 

∇   Levi-Civita koneksiyon 

𝑇̅                               Torsiyon tensörü 

𝑅   Riemann eğrilik tensörü 

𝑅̅ ∇̅ koneksiyonuna göre Riemann eğrilik tensörü 

S Ricci tensörü 

𝑆̅                                 ∇̅ koneksiyonuna göre Ricci tensörü 

𝜏   Skaler eğrilik 

𝜏̅                                 ∇̅ koneksiyonuna göre skaler eğrilik 

C   Weyl eğrilik tensörü 

𝐶̅                                ∇̅ koneksiyonuna göre Weyl eğrilik tensörü 

H     Concircular eğrilik tensörü 

𝐻̅                                ∇̅ koneksiyonuna göre concircular eğrilik tensörü 

𝐶̌                              quasi konformal eğilik tensörü 

𝜑, 𝜑1, 𝜑2, 𝜑3            (1,1) tipinde anti simetrik tensör alanı 

𝜂,u                                1-form 

𝑓1                                  Diferensiyellenebilir fonksiyon 
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1.GİRİŞ 

 Bu bölümde diğer bölümlerde kullanılacak olan bazı temel tanımlar ve manifoldlar 

verilecektir. 

1.1. Temel Kavramlar 

Tanım 1.1.1.:  𝑀 bir manifold ve 𝑀 nin vektör alanlarının cümlesi 𝜒(𝑀) olmak üzere 

                                 𝛻: 𝜒(𝑀)𝑥𝜒(𝑀) ⟶ 𝜒(𝑀) 

                                    (𝑋, 𝑌) ⟶ 𝛻(𝑋, 𝑌) = 𝛻𝑋𝑌                                 

dönüşümü;  

i) 𝛻𝑋(𝑌 + 𝑍) = 𝛻𝑋𝑌 + 𝛻𝑋𝑍 

ii) 𝛻(𝑋+𝑌)𝑍 = 𝛻𝑋𝑍 + 𝛻𝑌𝑍 

iii) 𝛻𝑓𝑋𝑌 = 𝑓𝛻𝑋𝑌 

 iv) 𝛻𝑋(𝑓𝑌) = 𝑓𝛻𝑋𝑌 + (𝑋𝑓)𝑌 

 

özelliklerini sağlıyorsa ∇ ya 𝑀  üzerinde bir afin koneksiyon denir (O’ Neill, 1983). 

Tanım 1.1.2.: 𝑀, bir manifold ve 𝑀 nin vektör alanlarının cümlesi 𝜒(𝑀) olmak üzere  

𝑔: 𝜒(𝑀)𝑥𝜒(𝑀) ⟶𝐶∞(𝑀, ℝ) 

dönüşümü aşağıdaki şartları sağlıyorsa bu dönüşüme 𝑀  üzerinde Riemann metriği veya 

metrik tensör denir.    

i) 𝑔 dönüşümü 2-lineerdir. 

ii) 𝑔 dönüşümü simetriktir. 

iii) 𝑔  dönüşümü pozitif tanımlıdır. 

(∀𝑋 ∈  𝜒(𝑀) için 𝑔(𝑋, 𝑋)  ≥  0,    𝑔(𝑋, 𝑋)  = 0 ⇔ 𝑋 = 0) (Kobayashi ve Nomizu, 

1996).   

Tanım 1.1.3.: Üzerinde Riemann metriği tanımlanmış olan manifolda Riemann 

manifoldu denir (O’ Neill, 1983). 

Tanım 1.1.4.: 𝑀 bir manifold ve 𝑀 üzerindeki vektör alanlarının uzayı 𝜒(𝑀) olsun.  M  
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üzerindeki konneksiyon ∇ olmak üzere  

                                 𝑇: 𝜒(𝑀)𝑥𝜒(𝑀) ⟶ 𝜒(𝑀) 

                                   (𝑋, 𝑌) ⟶ 𝑇(𝑋, 𝑌) = 𝛻𝑋𝑌 − 𝛻𝑌𝑋 − [𝑋, 𝑌]                                 (1.1.1) 

olarak tanımlanan vektör değerli tensöre 𝑀  üzerinde tanımlı torsiyon tensörü denir (O’ Neill, 

1983). 

Tanım 1.1.5.:   𝑉  bir  𝐾   cismi üzerinde vektör uzayı ve [, ]: 𝑉𝑥𝑉 ⟶ 𝐾   dönüşümü de  

 i) 2-lineer  

 ii) Alterne (∀𝑋, 𝑌 ∈  𝑉 için [𝑋, 𝑌] = −[𝑌, 𝑋]) 

 iii) ∀𝑋, 𝑌, 𝑍 ∈  𝑉 için 

[[𝑋, 𝑌], 𝑍] + [[𝑌, 𝑍], 𝑋] + [[𝑍, 𝑋], 𝑌] = 0 

olarak verilsin. [,] dönüşümüne, 𝑉 üstünde bir Lie operatörü (Lie parantez operatörü) veya 

Lie çarpımı denir.  [𝑋, 𝑌]  vektör alanı 𝑋 yönünde 𝑌   nin  𝐿𝑋𝑌  Lie türevi olarak da adlandırılır 

(Yano ve Kon, 1984). 

Önerme 1.1.1.:  𝑀 n-boyutlu bir  𝐶∞ manifold ve M üzerindeki bir X vektör alanı 

yönündeki Lie türev için, ∀𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) ve 𝑓 , 𝐾 cismi üzerinde bir fonksiyon olmak üzere  

i)𝐿𝑋(𝑌 ⊗ 𝑍) = (𝐿𝑋𝑌) ⊗ 𝑍 + 𝑌 ⊗ (𝐿𝑋𝑍) 

ii) 𝐿𝑋𝑓 = 𝑋(𝑓) 

iii) 𝐿𝑋𝑌 = [𝑋, 𝑌] 

iv) ) 𝐿𝑋𝑔(𝑌, 𝑍) = 𝑋𝑔(𝑌, 𝑍) − 𝑔([𝑋, 𝑌], 𝑍) − 𝑔(𝑌, [𝑋, 𝑍]) 

özellikleri geçerlidir (Yano ve Kon, 1984). 

 Tanım 1.1.6.: 𝑀 bir Riemann manifoldu ve 𝑀  üzerinde afin konneksiyon  olmak 

üzere ∀𝑋, 𝑌, 𝑍 ∈  𝜒(𝑀)  için  

 

i)  𝛻𝑋𝑌 − 𝛻𝑌𝑋 = [𝑋, 𝑌] 

ii)    𝑋𝑔(𝑌, 𝑍) = 𝑔(𝛻𝑋𝑌, 𝑍) + 𝑔(𝑌, 𝛻𝑋𝑍) 



3 

 

özellikleri sağlanıyorsa 𝛻 ya Riemann koneksiyonu (Levi Civita konneksiyonu) denir (O’ 

Neill, 1983). 

Tanım 1.1.7.: 𝑀  n-boyutlu bir Riemann manifoldu ve ∇  da  𝑀 üzerinde  tanımlanan 

Levi-Civita  koneksiyonu olmak üzere ∀𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀)  için;           

2𝑔( 𝛻𝑋𝑌, 𝑍) =  𝑋𝑔(𝑌, 𝑍) +  𝑌𝑔(𝑍, 𝑋) − 𝑍𝑔(𝑋, 𝑌) − 𝑔(𝑋, [𝑌, 𝑍]) − 𝑔(𝑌, [𝑋, 𝑍]) +  𝑔(𝑍, [𝑋, 𝑌])                       

ile tanımlanan ifadeye Kozsul formülü adı verilir (O’ Neill, 1983). 

Tanım 1.1.8.: 𝑀  bir Riemann manifoldu ve 𝑀 üzerindeki vektör alanlarının uzayı χ(M)  

olsun.  𝑀  üzerindeki koneksiyon   olmak üzere  

                                                        𝑅: 𝜒(𝑀)𝑥𝜒(𝑀)𝑥𝜒(𝑀) ⟶ 𝜒(𝑀) 

dönüşümü için ∀𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀)  olmak üzere  

𝑅(𝑋, 𝑌, 𝑍) = 𝑅(𝑋, 𝑌)𝑍 

                               =  𝛻𝑋𝛻𝑌𝑍 − 𝛻𝑌𝛻𝑋𝑍 − 𝛻[𝑋,𝑌]𝑍       

                                                                       = [𝛻𝑋, 𝛻𝑌]𝑍 − 𝛻[𝑋,𝑌]𝑍                                   (1.1.2) 

biçiminde tanımlı (1,3)  tipli tensör alanına Riemann eğrilik tensörü denir (O’ Neill, 1983).                    

Önerme 1.1.2.: Bir Riemann manifoldunun 𝑅  eğriliği aşağıdaki özelliklere sahiptir. 

∀𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀)  ve 𝑓, 𝑔 ∈ 𝐶∞(𝑀, ℝ) olmak üzere 

i) 𝜒(𝑀) 𝑥𝜒(𝑀)  üzerinde bilineerdir.  Yani 

 𝑅(𝑓𝑋 + 𝑔𝑌, 𝑍) = 𝑓𝑅(𝑋, 𝑍) + 𝑔𝑅(𝑌, 𝑍) 

 𝑅(𝑋, 𝑓𝑌 + 𝑔𝑍) = 𝑓𝑅(𝑋, 𝑌) + 𝑔𝑅(𝑋, 𝑍)   

ii) 𝑅(𝑋, 𝑌): 𝜒(𝑀)  ⟶ 𝜒(𝑀)  eğrilik operatörü lineerdir (O’ Neill, 1983). 

Tanım 1.1.9.: 𝑀 bir Riemann manifoldu ve 𝑀  üzerindeki vektör alanları uzayı 

𝜒(𝑀)  olsun. ∇,  𝑀 üstünde Riemann konneksiyon olmak üzere  

   

  𝐾: 𝜒(𝑀) 𝑥𝜒(𝑀)𝑥𝜒(𝑀) 𝑥𝜒(𝑀) ⟶ 𝐶∞(𝑀, ℝ) 

                                 (𝑋, 𝑌, 𝑍, 𝑊) ⟶ 𝐾(𝑋, 𝑌, 𝑍, 𝑊) = 𝑔(𝑋, 𝑅(𝑍, 𝑊)𝑌) 
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biçiminde tanımlı 4. mertebeden kovaryant tensöre 𝑀 üzerinde Riemann-Christoffel eğrilik 

tensörü denir (O’ Neill, 1996). 

Önerme 1.1.3.: Riemann eğrilik tensörü ve Riemann-Christoffel eğrilik tensörü 

aşağıdaki özellikleri sağlar (O’ Neill, 1996). 

i) 𝐾(𝑋, 𝑌, 𝑍, 𝑊) = −𝐾(𝑌, 𝑋, 𝑍, 𝑊) = −𝐾(𝑌, 𝑋, 𝑊, 𝑍) 

ii) 𝐾(𝑋, 𝑌, 𝑍, 𝑊) = −𝐾(𝑍, 𝑊, 𝑋, 𝑌)  

iii) 𝑅(𝑋, 𝑌)𝑍 + 𝑅(𝑌, 𝑍)𝑋 + 𝑅(𝑍, 𝑋)𝑌 = 0  

iv) 𝐾(𝑋, 𝑌, 𝑍, 𝑊) + 𝐾(𝑋, 𝑍, 𝑊, 𝑌) + 𝐾(𝑋, 𝑊, 𝑌, 𝑍) = 0 

v) (𝛻𝑋𝑅)(𝑌, 𝑍)𝑊 + (𝛻𝑌𝑅)(𝑍, 𝑋)𝑊 + (𝛻𝑍𝑅)(𝑋, 𝑌)𝑊 = 0  

vi) 𝑅(𝑋, 𝑌)𝑍 = −𝑅(𝑌, 𝑋)𝑍 

Tanım 1.1.10.: 𝑀 Riemann manifoldunda Riemann eğrilik tensörü 𝑅  ve {𝑒1, 𝑒2, … , 𝑒𝑛} 

bir ortonormal baz olsun.  

𝑆: 𝜒(𝑀) 𝑥𝜒(𝑀) ⟶ 𝐶∞(𝑀, ℝ) 

                                                       (𝑋, 𝑌) ⟶ 𝑆(𝑋, 𝑌) = ∑ 𝑔(𝑅(𝑒𝑖, 𝑋)𝑌, 𝑒𝑖

𝑛

𝑖=1

) 

biçiminde tanımlı  (0,2) − tipli tensor alanına 𝑀  üzerinde Ricci tensör alanı denir.  Burada  

𝑆(𝑋, 𝑌) = 𝑆(𝑌, 𝑋) yani S simetrik bilineer formdur (Yano ve Kon, 1984).  

Tanım 1.1.11.: 𝑀 bir Riemann manifoldu olsun. 𝑇𝑝𝑀 tanjant uzayının iki boyutlu bir 

alt uzayı П olmak üzere  

𝐾(𝑉, 𝑊) =
𝑔(𝑅(𝑉, 𝑊)𝑊, 𝑋)

𝑔(𝑉, 𝑉)𝑔(𝑊, 𝑊)  −  𝑔(𝑉, 𝑊)2
 

ya П nin kesitsel eğriliği denir ve K(П) ile gösterilir (O’Neill, 1996). 

 

Tanım 1.1.12.: 𝑀, 𝑛 > 2 boyutlu bir Riemann manifoldu olsun. Her  𝑋, 𝑌 ∈ 𝜒(𝑀) için; 

𝑆(𝑋, 𝑌)  =  𝜆𝑔(𝑋, 𝑌)                                                                                  
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olacak biçimde 𝑀 üzerinde bir 𝜆 ∈ ℝ    sayısı var ise yani 𝑀 nin 𝑆 Ricci tensörü, 𝑔  metrik 

tensörünün bir katı ise 𝑀 ye bir Einstein manifoldu adı verilir (Chen, 1973). 

 𝑀  üzerinde bir vektör alanı 𝑈 olmak üzere, bir 𝐴 1-formunu   𝐴(𝑋) = 𝑔(𝑋, 𝑈) 

biçiminde tanımlayalım. Eğer M nin Ricci tensörü, ∀𝑋, 𝑌 ∈ 𝜒(𝑀) için; 

𝑆(𝑋, 𝑌) = 𝑎𝑔(𝑋, 𝑌) + 𝑏𝜂(𝑋)𝜂(𝑌),                  𝑎, 𝑏 ∈ 𝐶∞(𝑀, ℝ)                    (1.1.3) 

koşulunu sağlıyorsa 𝑀 ye bir quasi-Einstein manifold adı verilir (Chaki ve Maity, 2000). Eğer 

𝑏 = 0 ise 𝑀 manifoldu bir Einstein manifold olur. 

Tanım 1.1.13 . : 𝑀  𝑛-boyutlu bir Riemann manifoldu ve {𝑒1, 𝑒2, … , 𝑒𝑛}  lokal 

ortonormal vektör alanları olmak üzere; 

𝜏 = ∑ 𝑆(𝑒𝑖, 𝑒𝑖

𝑛

𝑖=1

)                                                                                      (1.1.4) 

fonksiyonuna 𝑀 nin skaler eğrilik fonksiyonu adı verilir (Yano ve Kon, 1984). 

Tanım 1.1.14.: 𝑀 𝑛-boyutlu bir Riemann manifoldu olsun. Eğer, 𝑀 nin kesitsel eğrilik 

fonksiyonu sabit ise 𝑀 ye sabit eğrilikli uzay denir ve 𝑀(𝑐) ile  gösterilir (O’Neill, 1983). 

 Sonuç 1.1.1.:  𝑀  𝑛-boyutlu 𝑐 =  𝑠𝑎𝑏𝑖𝑡 𝑒ğ𝑟𝑖𝑙𝑖𝑘𝑙𝑖 bir Riemann manifoldu olsun. Bu 

durumda 𝑀 nin eğrilik tensörü 𝑅 olmak üzere ∀𝑋, 𝑌, 𝑍, 𝑊 ∈ 𝜒(𝑀)  için; 

𝑅(𝑋, 𝑌, 𝑍, 𝑊)  =  𝑐{𝑔(𝑌, 𝑍)𝑔(𝑋, 𝑊) –  𝑔(𝑋, 𝑍)𝑔(𝑌, 𝑊)} 

biçimindedir (O’Neill, 1983). 

 Sonuç 1.1.2.: 𝑀 sabit eğrilikli bir uzay form olsun. Bu durumda, 𝑛 ≥ 2 olmak üzere 

eğer 

  𝑐 = 0  ise       𝑀(𝑐) = 𝐸𝑛 Öklid uzayı 

  𝑐 =
1

𝑟2  ise     𝑀(𝑐) = 𝑆𝑛(𝑟) küresi 

   𝑐 = −
1

𝑟2 ise    𝑀(𝑐) = 𝐻𝑛(𝑟) hiperbolik uzay, 

dır (O’Neill, 1983). 

Tanım 1.1.15.: M,  n-boyutlu bir Riemann manifoldu olsun. , ∀𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) için M 

nin projektif eğrilik  eğrilik tensörü 𝑃 ve koncircular eğrilik tensörü 𝐻 sırasıyla 
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𝑃(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 −
1

𝑛 − 1
[𝑆(𝑌, 𝑍)𝑋 − 𝑆(𝑋, 𝑍)𝑌]                                      (1.1.5) 

ve 

𝐻(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 −
𝜏

𝑛(𝑛 − 1)
[𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌]                                 (1.1.6) 

şeklinde tanımlanır (Yano ve Kon, 1984). 

  Tanım 1.1.16.: 𝑀 n-boyutlu bir Riemann manifoldu olsun. ∀𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀)  için 𝑀  

nin Weyl konformal eğrilik tensör alanı; 

𝐶(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 −
1

𝑛−2
[𝑆(𝑌, 𝑍)𝑋 − 𝑆(𝑋, 𝑍)𝑌 + 𝑔(𝑌, 𝑍)𝑄𝑋 − 𝑔(𝑋, 𝑍)𝑄𝑌] +

𝜏

(𝑛−1)(𝑛−2)
[𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌]                                                                                         (1.1.7) 

ile tanımlanır. Burada Q Ricci operatörüdür. Ayrıca  𝐶 nin divergensi 𝑘 olmak üzere 

𝑘(𝑋, 𝑌) = (𝛻𝑋𝑄)𝑌 − (𝛻𝑌𝑄)𝑋 −
1

2(𝑛 − 2)
[(𝛻𝑋𝑟)𝑌 − (𝛻𝑌𝑟)𝑋] 

dır (Yano ve Kon, 1984). 

Teorem 1.1.1.: 𝑀 bir Riemann manifoldu olsun. 𝑀 nin düzlemsel konformal olması 

için gerek ve yeter koşul n > 3 için 𝐶 =  0 ve n = 3 için 𝑘 =  0 olmasıdır (Yano ve Kon, 1984). 

Tanım 1.1.17.: M n-boyutlu bir Riemann manifoldu olsun. Her ,  , (𝑀) için M 

nin quasi-konformal eğrilik tensör alanı; 

𝐶̌(𝑋, 𝑌)𝑍 = 𝑎𝑅(𝑋, 𝑌)𝑍 + 𝑏[𝑆(𝑌, 𝑍)𝑋 − 𝑆(𝑋, 𝑍)𝑌 + 𝑔(𝑌, 𝑍)𝑄𝑋 − 𝑔(𝑋, 𝑍)𝑄𝑌] 

              −
𝜏

𝑛
{

𝑎

𝑛−1
+ 2𝑏} [𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌]                                                               (1.1.8)                                                                                            

ile tanımlanır. Burada Q Ricci operatörü ve 𝑎, 𝑏 sabitlerdir (Yano ve Sawaki, 1968). 

Tanım 1.1.18.: 𝐶̌ = 0 veya 𝑑𝑖𝑣 𝐶̌=0 ise M manifoldu düzlemsel  quasi-konformal  

olarak adlandırılır (Chaki ve Ghosh, 1997). 

Tanım 1.1.19.:   𝑀 manifoldu üzerinde (0, 𝑘) −tipinde (k ≥1) bir 𝑇  tensör alanı ve 

(0,2) −tipinde bir simetrik G tensör alanı verildiğinde  𝑅. 𝑇 ve 𝑄(𝐺, 𝑇) tensörleri sırası ile: 

(𝑅 . 𝑇 )(𝑋1, 𝑋2, … , 𝑋𝑘;  𝑋, 𝑌)        
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                   =  − 𝑇 (𝑅(𝑋, 𝑌)𝑋1, 𝑋2, … , 𝑋𝑘)−. . . − 𝑇 (𝑋1, 𝑋2, … , 𝑅(𝑋, 𝑌)𝑋𝑘)                             (1.1.9) 

ve 

𝑄(𝐺, 𝑇 )(𝑋1, 𝑋2, … , 𝑋𝑘;  𝑋, 𝑌) 

   = − 𝑇 ((𝑋 ∧𝐺 𝑌)𝑋1, 𝑋2, … , 𝑋𝑘)−. . . − 𝑇 (𝑋1, 𝑋2, … , (𝑋 ∧𝐺 𝑌)𝑋𝑘)                                       (1.1.10) 

biçiminde tanımlanır (Chaki, 1987). 

        

Burada (1.1.9), (1.1.10) denklemlerinde T yerine R ve G yerine g alındığında 

(𝑅 . 𝑅 )(𝑋1, 𝑋2, 𝑋3, 𝑋4;  𝑋, 𝑌) 

 =  − 𝑅 (𝑅(𝑋, 𝑌)𝑋1, 𝑋2, 𝑋3, 𝑋4)−. . . − 𝑅 (𝑋1, 𝑋2, 𝑋3, 𝑅(𝑋, 𝑌)𝑋4)                                          (1.1.11) 

 

𝑄(𝑔, 𝑅 )(𝑋1, 𝑋2, … , 𝑋𝑘;  𝑋, 𝑌)  

                  =  − 𝑅 ((𝑋 ∧𝑔 𝑌)𝑋1, 𝑋2, … , 𝑋𝑘) −. . . − 𝑅 (𝑋1, 𝑋2, … , (𝑋 ∧𝑔 𝑌)𝑋4)                  (1.1.12) 

bulunur. 

 Eğer 𝑅. 𝑅 = 0 ise 𝑀  ye yarı-simetriktir denir (Chaki ve Maity, 2000). Eğer 𝑅. 𝑆 = 0 

ise 𝑀 ye Ricci-semisimetriktir denir. Eğer  𝑅 . 𝐶 =  0  ise M ye Weyl-semisimetriktir denir 

(Chaki, 1987). 

  𝑅. 𝑅 =  0 ⇒ 𝑅. 𝑆 =  0 ve 𝑅 . 𝑅 =  0 ⇒ 𝑅 . 𝐶 =  0 gerektirmeleri sağlanır. Fakat 

tersleri her zaman doğru değildir (Chaki, 1987). 

Tanım 1.1.20.:  𝑀, 𝑛-boyutlu diferensiyellenebilir bir manifold ve 𝑀 üzerinde 

(𝑟, 𝑠) −tipinde simetrik bir tensör 𝐴 olsun. Bu durumda 1 ≤ 𝑎 < 𝑏 ≤ 𝑠  reel sayıları ve keyfi 

bir 𝑟 değeri için  

                                            𝐶𝑎𝑏: 𝜒𝑠
𝑟(M)⟶ 𝜒𝑠−2

𝑟 (M) 

(𝐶𝑎𝑏𝐴)𝑗1,𝑗2,…,𝑗𝑠−2

𝑖1,𝑖2,…,𝑖𝑟 = ∑ 𝑔𝑝𝑞

𝑝,𝑞

𝐴𝑗1,,…𝑝…….𝑞….,𝑗𝑠−2

𝑖1,𝑖2,…,𝑖𝑟  
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biçiminde tanımlanan 𝐶𝑎𝑏 operatörüne a. ve b. Bileşenlere göre 𝐴 tensörünün metrik 

kontraksiyonu adı verilir. Böylece kontraksiyon operatörü,(𝑟, 𝑠) –tipindeki tensörü (𝑟 − 1, 𝑠 − 1) 

tipinde bir tensöre dönüştürür (O Neill, 1983). 

Tanım 1.1.21.: 𝑀  n-boyutlu bir Riemann manifoldu olsun.  𝑀 nin 𝑆 Ricci tensörü    

∀𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) için  

                                      (∇𝑋𝑆)(𝜑𝑌, 𝜑𝑍) = 0,                                                         (1.1.13) 

şartını sağlıyorsa manifolda 𝜂-paralel denir (Kon,1975). 

Tanım 1.2.22.: 𝑀  n-boyutlu bir Riemann manifoldu olsun. 𝑀 üzerinde Ricci tensörü 𝑆 

olmak üzere ∀ 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) için eğer; 

             (∇𝑋𝑆)(𝑌, 𝑍) + (∇𝑌𝑆)(𝑍, 𝑋) + (∇𝑍𝑆)(𝑋, 𝑌) = 0,                                           (1.1.14)  

ise 𝑀 ye dairesel paralel Ricci tensöre sahiptir denir (Kon, 1975). 

Tanım 1.1.23.: 𝑀  n-boyutlu bir Riemann manifoldu olsun.  M nin R eğrilik tensörü 

∀𝑋, 𝑌, 𝑍, 𝑊 ∈ 𝜒(𝑀) için ;       

𝜑2(∇𝑋𝑅)(𝑌, 𝑍)𝑊 = 0,                                                     (1.1.15) 

koşulunu sağlıyorsa M ye   φ-simetriktir denir (Takahashi, 1977).    

Tanım 1.1.24.: 𝑀 n-boyutlu bir Riemann manifoldu olsun.  M nin R eğrilik tensörü 

∀𝑋, 𝑌, 𝑍, 𝑊 ∈ 𝜒(𝑀) için ;       

𝜑2(∇𝑋𝐶)(𝑌, 𝑍)𝑊 = 0,                                                       (1.1.16) 

koşulunu sağlıyorsa M ye   φ-konformal simetriktir denir.    

 Tanım 1.1.25.: 𝐶, 𝑛-boyutlu 𝑀 üzerinde Weyl conformal eğrilik tensörü olsun.  

𝐶: 𝑇𝑝𝑀𝑛𝑥𝑇𝑝𝑀𝑛𝑥𝑇𝑝𝑀𝑛 → 𝜑(𝑇𝑝𝑀𝑛)⨁𝐿{𝜉𝑝} 

olmak üzere, 

i)𝐶: 𝑇𝑝𝑀𝑛𝑥𝑇𝑝𝑀𝑛𝑥𝑇𝑝𝑀𝑛 → 𝐿{𝜉𝑝}, yani C nın 𝜑(𝑇𝑝𝑀𝑛)  üzerine görüntüsünün projeksiyonu 

sıfırdır. 

ii) 𝐶: 𝑇𝑝𝑀𝑛𝑥𝑇𝑝𝑀𝑛𝑥𝑇𝑝𝑀𝑛 → 𝜑(𝑇𝑝𝑀𝑛) yani C nın 𝐿{𝜉𝑝}  üzerine görüntüsünün projeksiyonu 

sıfırdır. 
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iii) 𝐶: 𝜑(𝑇𝑝𝑀𝑛)𝑥𝜑(𝑇𝑝𝑀𝑛)𝑥𝜑(𝑇𝑝𝑀𝑛) → 𝐿{𝜉𝑝}, yani C 𝜑(𝑇𝑝𝑀𝑛)𝑥𝜑(𝑇𝑝𝑀𝑛)𝑥𝜑(𝑇𝑝𝑀𝑛) ye 

kısıtlandığında, C nın 𝜑(𝑇𝑝𝑀𝑛) in üzerine görüntüsünün projeksiyonu sıfırdır. Bu koşul da 

𝜑2𝐶(𝜑𝑋, 𝜑𝑌)𝜑𝑍 = 0                                                         (1.1.17) 

eşitliğine denktir. Bir n > 3 boyutlu 𝑀  manifoldunu ele alalım. (1.1.17) şartını sağlarsa 

düzlemsel φ-konformal olarak adlandırılır (Zhen, 1992). 

1.2. Değme Manifoldlar 

1959 yılında Gray’in hemen hemen değme yapıyı tanımlamasıyla beraber değme 

manifoldlarla ilgili aşağıdaki tanımlar yapılmıştır: 

 𝑀,  2𝑚 + 1 boyutlu diferensiyellenebilir bir manifold olsun. 𝜑, (1,1) tipinde bir tensör 

alanı; 𝜉 ∈ 𝜒(𝑀) ve η bir 1-form olmak üzere ∀𝑋 ∈ 𝜒(𝑀) için 

𝜑2𝑋 = −𝑋 + 𝜂(𝑋)𝜉,                                                                  (1.2.1) 

𝜂(𝜉) = 1,                                                                                       (1.2.2) 

şartını sağlayan (𝜑, 𝜉, 𝜂 )   yapısına hemen hemen değme  yapı, (𝑀, 𝜑, 𝜉, 𝜂) manifolduna 

ise hemen hemen değme manifold denir. 𝜉  𝑀 nin reeb vektor alanı veya temel vektör alanı 

olarak da adlandırılır. 

 Ayrıca 𝑀 bir hemen hemen değme manifold olmak üzere (𝜑, 𝜉, 𝜂) değme yapısı ;  

∀ 𝑋 ∈ 𝜒(𝑀)  için aşağıdaki şartları sağlar (Yano ve Kon, 1984):        

𝜑𝜉 = 0,                                                                                       (1.2.3) 

𝜂(𝜑𝑋) = 0,                                                                                      (1.2.4) 

𝑟𝑎𝑛𝑘𝜑 = 𝑛 − 1,                                                                               (1.2.5) 

 𝑀 hemen hemen değme manifoldu ∀ 𝑋, 𝑌 ∈ 𝜒(𝑀) olmak üzere 

𝑔(𝜑𝑋, 𝜑𝑌) =  𝑔(𝑋, 𝑌) − 𝜂(𝑋)𝜂(𝑌)                                                         (1.2.6) 

olacak şekilde bir g metrik tensör alanı içerir (Yano ve Kon, 1984). 

 2𝑚 + 1-boyutlu bir hemen hemen değme metrik manifoldu M ile hemen hemen değme 

metrik yapısı (𝑀, 𝜑, 𝜉, 𝜂, 𝑔) verilsin.  Böylece, 

𝑔(𝑋, 𝜑𝑌) = −𝑔(𝜑𝑋, 𝑌)                                         (1.2.7) 



10 

 

dir (Yano ve Kon, 1984). Bu bize 𝜑 nin 𝑔 metriğine bağlı skew-simetrik olduğunu gösterir. 

(1.2.5) ve (1.2.6) şartlarinı sağlayan 𝑔 metrik tensor alanı ile birlikte  (𝑀, 𝜑, 𝜉, 𝜂) hemen hemen 

değme manifolduna hemen hemen değme metrik manifold denir (Yano ve Kon, 1984). 

 𝑀 bir hemen hemen değme metrik manifold olmak üzere η 1-formu, 𝑀 üzerinde her 

yerde,  

𝜂⋀(𝑑𝜂)𝑛 ≠ 0 

ise, 𝑀 ye değme manifold η yada değme bir form denir (Yano ve Kon, 1984). 

 𝑀, 2𝑚 + 1 −boyutlu değme metrik manifold olmak üzere, ∀ 𝑋, 𝑌 ∈ 𝜒(𝑀) için  

𝑔(𝑋, 𝜑𝑌) =  𝑑𝜂(𝑋, 𝑌)                                                           (1.2.8) 

olacak şekilde bir (𝜑, 𝜉, 𝜂, 𝑔) hemen hemen değme yapısı vardır(Yano ve Kon, 1984).            

  η değme formu tarafından inşaa edilen  hemen hemen değme metrik yapısı, η ya bağlı 

değme yapı olarak adlandırılır ve bu yapıyla verilmiş manifolda değme metrik manifold denir. 

Sonuçta 𝛷 = 𝑑𝜂 yapısıyla birlikte hemen hemen değme yapısı 

𝛷(𝑋, 𝑌)  =  𝑔(𝑋, 𝜑𝑌)                                                               (1.2.9) 

değme metrik manifolddur.  

 𝑀 bir hemen hemen değme metrik manifold olsun. 𝑀 × 𝑅 çarpım manifoldu 

gozönünde bulundurulduğunda, ˘𝑀 ×  𝑅 uzerinde bir vektör alanı; (𝑋, 𝑓
𝑑

𝑑𝑡
)   şeklindedir. 

(Burada 𝑋 ∈  𝜒(𝑀) ; t, R nin koordinatı ve f , 𝑀 × 𝑅 uzerinde bir fonksiyon).  𝑀 × 𝑅  nin 

tanjant uzayı uzerinde tanımlı bir lineer 𝐽 dönüşümü 

 𝐽 (𝑋, 𝑓
𝑑

𝑑𝑡
) = (𝜑𝑋 − 𝑓𝜉, 𝜂(𝑋)

𝑑

𝑑𝑡
)                                        (1.2.10)                                                                         

şeklinde tanımlanırsa 𝐽2 = −𝐼   olup 𝐽, 𝑀 × 𝑅 uzerinde bir hemen hemen kompleks yapıdır.  

J hemen hemen kompleks yapısı eğer;  

𝑁𝐽(X,Y)= 𝐽2[𝑋, 𝑌] − 𝐽[𝐽𝑋, 𝑌] − 𝐽[𝑋, 𝐽𝑌] + [𝐽𝑋, 𝐽𝑌]                                   (1.2.11)   

ile tanımlanan Nijenhius tensorü sıfıra eşitse integrallenebilirdir denir (Yano ve Kon, 1984). 

Eğer 𝑀𝑅 üzerindeki bir J hemen hemen kompleks yapısı integrallenebilir ise (𝜙, 𝜉, 𝜂) 

hemen hemen değme yapısına normaldir denir (Yano ve Kon, 1984). 
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𝑀  hemen hemen değme  manifoldu normaldir gerek ve yeter şart 

𝑁𝜑 +2dη⊗ξ =0                                                                 (1.2.12) 

olmasıdır (Yano ve Kon, 1984). 

 3- boyutlu normal hemen hemen değme metrik manifoldu  𝑀 için aşağıdaki özellikler 

sağlanır (Olszak, 1986): 

             (∇𝑋𝜑)𝑌 = 𝑔(𝜑∇𝑋𝜉, 𝑌)𝜉 − 𝜂(𝑌)𝜑∇𝑋𝜉

= 𝛼{𝑔(𝜑𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝜑𝑋} + 𝛽{𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝑋},                               (1.2.13) 

                        ∇𝑋𝜉 = 𝛼{𝑋 − 𝜂(𝑋)𝜉} − 𝛽𝜑𝑋,                                                                                 (1.2.14) 

𝑅(𝑋, 𝑌)𝜉 = {(𝑌𝛼) + (𝛼2 − 𝛽2)𝜂(𝑌)}𝜑2𝑋 − {(𝑋𝛼) + (𝛼2 − 𝛽2)𝜂(𝑋)}𝜑2𝑌 

+{(𝑌𝛽) + 2𝛼𝛽𝜂(𝑌)}𝜑𝑋 − {(𝑋𝛽) + 2𝛼𝛽𝜂(𝑋)}𝜑𝑌,                    (1.2.15)  

 

 

𝑆(𝑋, 𝑌) = [
𝜏

2
+ (𝜉𝛼) + (𝛼2 − 𝛽2)] 𝑔(𝑋, 𝑌) − [

𝜏

2
+ (𝜉𝛼) + 3(𝛼2 − 𝛽2)] 𝜂(𝑋)𝜂(𝑌) 

       −{(𝑋𝛼)𝜂(𝑌) + (𝑌𝛼)𝜂(𝑋)} − {(𝜑𝑋𝛽)𝜂(𝑌) + (𝜑𝑌𝛽)𝜂(𝑋)},                                             (1.2.16) 

(𝜉𝛽) + 2𝛼𝛽 = 0,                                                                             (1.2.17) 

𝑀, değme metrik yapısı (𝜑, 𝜉, 𝜂, 𝑔)  olan n-boyutlu bir değme metrik manifoldu olsun.  

Eğer M nin değme metrik yapısı normal ise, M Sasakian yapıya sahiptir denir.  Bazen 

Sasakian manifold normal değme metrik manifold olarak da adlandırılır (Yano ve Kon, 1984) 

  M üzerinde bir hemen hemen değme metrik yapısı (𝜑, 𝜉, 𝜂, 𝑔)  bir Sasakian yapıdır   

∀ 𝑋, 𝑌 ∈ 𝜒(𝑀)   için; 

(∇𝑋𝜑)𝑌 =   𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝑋                                                           (1.2.18) 

dir (Yano ve Kon, 1984). Buna denk olarak diyebiliriz ki değme metrik manifoldlar Sasakiandır 

ancak ve ancak Riemann eğrilik tensörü R olmak üzere; 

𝑅(𝑋, 𝑌)𝜉 = 𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌                

dir (Yano ve Kon, 1984).  
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Kenmotsu 1972 yılında  değme manifoldların önemli bir sınıfı olan  bu tür yapıları 

içeren manifoldları (Kenmotsu manifoldları) şu şekilde tanımladı (Kenmotsu, 1972): 

𝑀 2𝑚 + 1-boyutlu (𝜑, 𝜉, 𝜂, 𝑔) bir hemen hemen değme metrik yapısına sahip hemen 

hemen değme metrik manifold olsun. 

 (∇𝑋𝜑)𝑌 = 𝑔(𝜑𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝜑𝑋                                                 (1.2.19) 

şartını sağlayan  bu manifolda Kenmotsu manifold olarak adlandırılır.  

Olszak ve Rosca tarafından 1991 yılında normal lokal olarak konformal hemen hemen 

kosimplektik yapı ortaya atıldı (Olszak ve Rosca, 1991). Aslında bu yaptıkları çalışmada f-

Kenmotsu manifoldunun  geometrik bir yorumlamasını  getirerek Kenmotsu manifoldları  

genelleştirdiler.  

Ayrıca  2𝑚 + 1 − boyutlu Kenmotsu  manifoldu  𝑀 olmak üzere ∀𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) için 

aşağıdaki özellikler sağlanır: 

∇𝑋𝜉 = 𝑋 − 𝜂(𝑋)𝜉                                                               (1.2.20) 

𝑅(𝑋, 𝑌)𝜉 = 𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋                                                     (1.2.21) 

𝑆(𝑌, 𝜉) = (1 − 𝑛)𝜂(𝑌)                                                            (1.2.22) 

 2𝑚 + 1- boyutlu (𝜑, 𝜉, 𝜂, 𝑔) bir hemen hemen değme metrik yapısına sahip hemen 

hemen değme metrik manifold 𝑀  olsun. 𝑑𝑓 ∧ 𝜂 = 0 olacak şekilde  pozitif 𝑓 fonksiyonu için  

(∇𝑋𝜑)𝑌 = 𝑓[𝑔(𝜑𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝜑𝑋]                                            (1.2.23) 

şartını sağlayan  manifolda 𝑓 −Kenmotsu manifold denir. Ayrıca 𝑓 −Kenmotsu  manifoldlar 

için  

  ∀𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) olmak üzere aşağıdaki özellikler sağlanır (Olszak ve Rosca, 1991): 

∇𝑋𝜉 = 𝑓{𝑋 − 𝜂(𝑋)𝜉},                                                              (1.2.24) 

𝑅(𝑋, 𝑌)𝜉 = 𝑓2(𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋) + 𝑌(𝑓)𝜑2𝑋 − 𝑋(𝑓)𝜑2𝑌,                    (1.2.25) 

𝑆(𝑌, 𝜉) = 𝑓2(1 − 𝑛)𝜂(𝑌) + 𝑌(𝑓)(2 − 𝑛) − (𝜉𝑓)𝜂(𝑌),                          (1.2.26) 

 (1.2.23) ile tanımlı  𝑓 −Kenmotsu manifoldunda 𝑓 = 𝛼 = 𝑠𝑎𝑏𝑖𝑡 ve sıfırdan farklı ise 

verilen manifold 𝛼-Kenmotsu manifolda ,  𝑓 = 1 olması durumunda manifold Kenmotsu 
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manifolda dönüşür (Kenmotsu, 1972). 𝑀 𝑛-boyutlu 𝑓 −Kenmotsu  manifold olmak üzere 𝑓 = 0 

özel durumunda manifold kosimplektik manifold olarak adlandırılır. 

Quasi-Sasakian yapı fikri  D.E.Blair tarafından Sasakian ve kosimplektik yapıları 

birleştirmek amacıyla ortaya atıldı (Blair, 1967).  Yaptığı çalışmada Blair,  quasi-Sasakian 

manifoldların varlığını, Kahlerian manifold ile  Sasakian manifoldun Riemann çarpımının 

quasi-Sasakian manifold olduğunu göstererek kanıtladı. S. Tanno da quasi-Sasakian yapı 

üzerine  önemli çıkarımlarını ekledi (Tanno,  1971).   

 2𝑚 + 1-boyutlu hemen hemen değme metrik manifoldu 𝑀  olmak üzere,  normal ve 

temel 2-formu kapalı yani 𝑑𝜑 = 0 ise manifolda quasi-Sasakian manifold denir (Blair, 1967).     

Bu yapılan tanımlamalardan sonra, 1977 yılında S. Kanemaki hemen hemen değme 

metrik manifoldunun quasi- Sasakian olması için gerek ve yeter  koşulu aşağıdaki gibi verdi: 

2𝑚 + 1-boyutlu  hemen hemen değme metrik manifoldu 𝑀  quasi-Sasakian 

manifolddur ancak ve ancak ∇, 𝑀 üzerinde Levi-Civita koneksiyonu olmak üzere ∀ 𝑋 ∈ 𝜒(𝑀) 

için  

(∇𝑋𝜑)𝑌 =   𝜂(𝑌)𝐹𝑋 − 𝑔(𝐹𝑋, 𝑌)𝜉 

𝜑𝐹𝑋 = 𝐹𝜑𝑋 

denklemlerini sağlayacak şekilde  (1,1) tipinde 𝐹 simetrik tensör alanı vardır (Kanemaki, 1977). 

  Diğer taraftan Olszak 3-boyutlu quasi-Sasakian manifoldunda yapı fonksiyonu olarak 

𝛽 yı alarak aşağıdaki tanımlamayı verdi (Olszak, 1986): 

   𝑀 3-boyutlu hemen hemen değme metrik manifoldu 3-boyutlu quasi-Sasakian 

manifolddur ancak ve ancak M üzerinde 

(𝜉𝛽) = 0                                                                         (1.2.27) 

özelliğini sağlayan  𝛽 fonksiyonu  ∀ 𝑋 ∈ 𝜒(𝑀)  için 

∇𝑋𝜉 = −𝛽𝜑𝑋                                                                           (1.2.28) 

dır. Burada 𝛽 = 0 olursa manifold kosimplektik olur. Yukarıdaki denklem yardımıyla 

(∇𝑋𝜑)𝑌 =   𝛽(𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝑋)                                                  (1.2.29) 

dır (Olszak, 1986). 
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Ayrıca 3-boyutlu quasi-Sasakian manifoldların özellikleri birçok yazar tarafından 

çalışılmış olup  aşağıdaki eğrilik özelliklerini elde edildi ( Olszak, 1996; De, vd., 2012; De, vd., 

2008): 

 𝑅(𝑋, 𝑌)𝜉 = 𝛽2(𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌)) + (𝑌𝛽)𝜑𝑋 − (𝑋𝛽)𝜑𝑌,                        (1.2.30) 

          

𝑆(𝑌, 𝑍) = (
𝜏

2
− 𝛽2) 𝑔(𝑌, 𝑍) + (3𝛽2 −

𝜏

2
) 𝜂(𝑌)𝜂(𝑍) − 𝜂(𝑌)𝑑𝛽(𝜑𝑍) − 𝜂(𝑍)𝑑𝛽(𝜑𝑌),    (1.2.31) 

𝑄𝑌 = (
𝜏

2
− 𝛽2) 𝑌 + (3𝛽2 −

𝜏

2
) 𝜂(𝑌)𝜉 + 𝜂(𝑌)𝜑𝑔𝑟𝑎𝑑𝛽 − 𝑑𝛽(𝜑𝑌)𝜉,             (1.2.32) 

𝑆(𝑌, 𝜉) = 2𝛽2𝜂(𝑌) − 𝑑𝛽(𝜑𝑌),                                                             (1.2.33)             

 J.A. Oubina 1985 yılında değme manifoldlarda Sasakian ve Kenmotsu  yapıları 

genelleştiren trans-Sasakian yapıları tanımladı (Oubina, 1985). 

    𝑀 2𝑚 + 1-boyutlu (𝜑, 𝜉, 𝜂, 𝑔) bir hemen hemen değme metrik yapısına sahip hemen 

hemen değme metrik manifold olsun  𝛼, 𝛽 ∈ 𝐶∞(𝑀, ℝ) olmak üzere, ∀ 𝑋, 𝑌 ∈ 𝜒(𝑀) için 

(∇𝑋𝜑)𝑌 = 𝛼{𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝑋} + 𝛽{𝑔(𝜑𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝜑𝑋}                             (1.2.34) 

şartını sağlayan  manifolda trans-Sasakian manifold olarak adlandırılır. (1,0) tipindeki trans-

Sasakian manifoldlar Sasakian manifoldlara, (0,1) tipindeki trans-Sasakian manifoldlar 

Kenmotsu manifoldlara ve son olarak (0,0) tipindeki trans-Sasakian manifoldlar kosimplektik 

manifoldlara dönüşürler.  

 Ayrıca (1.2.34) ve (1.2.1) denklemleri yardımıyla ∀𝑋 ∈ 𝜒(𝑀) için 

∇𝑋𝜉 = −𝛼𝜑𝑋 + 𝛽{𝑋 − 𝜂(𝑋)𝜉}                                               (1.2.35) 

elde edilir.  

  3- boyutlu trans-sasakian manifold 𝑀 olmak üzere ∀𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) için aşağıdaki 

özellikler sağlanır (De ve Tripathi, 2003):   

𝑅(𝑋, 𝑌)𝜉 = (𝛼2 − 𝛽2)(𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌) + 2𝛼𝛽(𝜂(𝑌)𝜑𝑋 − 𝜂(𝑋)𝜑𝑌) + 𝑌(𝛽)𝜑2𝑋 

−𝑋(𝛽)𝜑2𝑌 + (𝑌𝛼)𝜑𝑋 − (𝑋𝛼)𝜑𝑌,                                               (1.2.36) 

2𝛽𝛼 + (𝜉𝛼) = 0,                                                                    (1.2.37) 

𝑆(𝑋, 𝜉) = (2(𝛼2 − 𝛽2) − (𝜉𝛽)){𝜂(𝑋)} − 𝑋𝛽 − (𝜑𝑋)𝛽,                                            (1.2.38) 
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𝑆(𝑋, 𝑌) =  [
𝜏

2
+ (𝜉𝛽) − (𝛼2 − 𝛽2)] 𝑔(𝑋, 𝑌) − [

𝜏

2
+ (𝜉𝛽) − 3(𝛼2 − 𝛽2)] 𝜂(𝑋)𝜂(𝑌) 

−{(𝑋𝛽)𝜂(𝑌) + (𝑌𝛽)𝜂(𝑋)} − {(𝜑𝑋𝛼)𝜂(𝑌) + (𝜑𝑌𝛼)𝜂(𝑋)}.                     (1.2.39) 

Tanım 1.2.1.: 𝑀 2𝑚 + 1 -boyutlu değme metrik manifold olmak üzere,  eğer  ∀𝑋, 𝑌 ∈

𝜒(𝑀) için 

𝐶(𝑋, 𝑌)𝜉 = 0                                                                            

eşitliği sağlanırsa, manifold düzlemsel 𝜉- konformal olarak adlandırılır (Zhen vd., 1997).  

Tanım 1.2.2.: 𝑀 2𝑚 + 1 −boyutlu değme metrik olmak üzere,  eğer ∀𝑋, 𝑌 ∈ 𝜒(𝑀) için 

𝐶̌(𝑋, 𝑌)𝜉 = 0                                                                          

eşitliği sağlanırsa, manifold düzlemsel ξ-quasi konformal olarak adlandırılır (Zhen vd., 1997).   

      

1.3. Ricci Soliton ve Gradyant Ricci Soliton 

 Einstein metriğinin genelleştirilmiş hali olarak da bilinen Ricci soliton kavramı  𝑛-

boyutlu  Riemann manifoldu üzerinde  aşağıdaki gibi tanımlanır: 

 Bir 𝑀  𝑛-boyutlu  Riemann manifoldu üzerinde 𝐿  lie operatörü, 𝑆 Ricci tensörü,  𝑉 𝑀 

üzerinde düzgün vektör alanı (potansiyel vektör alanı) ve 𝜆 da sabit  olmak üzere 

𝐿𝑉𝑔 + 2𝑆 + 2𝜆𝑔 = 0                                                                  (1.3.1) 

şartını sağlayan g metriğine Ricci soliton adı verilir (Hamilton, 1988). Ricci soliton 𝜆 nın 

negatif, pozitif veya sıfır olması durumunda sırasıyla  daralan (shrinking), genişleyen 

(expanding) veya değişmeyen(steady) olarak adlandırılır. Ayrıca burada 𝐿𝑉𝑔 = 0 olduğunda 

(1.3.1) denklemimiz Einstein denklemine dönüşür. 

 Ayrıca 𝑀, 𝑛 boyutlu Riemann manifoldu olmak üzere,  𝑆 Ricci tensörü ve 𝑔 de 

Riemann metriği olmak üzere 𝑉 vektör alanı – 𝑓 potansiyel fonksiyonunun gradyantı ise , 𝑔 

metriğmiz gradyant Ricci soliton olarak adlandırılır ve (1.3.1) denklemi  

∇∇𝑓 = 𝑆 + 𝜆𝑔                                                                        (1.3.2) 

 formuna dönüşür. 
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 Teorem 1.3.1.: 𝑀, β sabit olacak şekilde 3-boyutlu trans-Sasakian manifoldu olsun. 𝑀 

üzerindeki 𝑏 fonksiyonu için 𝑉 = 𝑏𝜉 olmak şartıyla, manifold Ricci soliton olma şartını 

sağlasın. Bu takdirde sabit skaler eğriliklidir (Turan vd., 2012). 

Teorem 1.3.2.: 𝑀 3-boyutlu trans-Sasakian manifoldu Ricci soliton olma şartını 

sağlıyor ise, genişleyendir (Turan vd., 2012). 

Teorem 1.3.3.: 𝑀 3-boyutlu trans-Sasakian manifoldu 𝛼, 𝛽 = 𝑠𝑏𝑡 olmak şartıyla 

gradyant Ricci soliton olma şartını sağlıyor ise, ya β-Kenmostu manifold yada Einstein 

manifolddur (Turan vd., 2012). 

Aşağıdaki çizelgede hemen hemen değme metrik manifoldlar arasındaki bağınıtılar 

verilmiştir: 

Aşağıdaki tabloda hemen hemen değme metrik manifoldlar arasındaki bağınıtılar verilmiştir: 
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Çizelge 1.1. Hemen hemen değme metrik manifoldlar arasındaki ilişkinin incelenmesi 

 

 

                                                                                                          𝑑𝛷 = 2𝑓𝜂 ∧ 𝛷, 𝑑𝜂 = 0, 

                                                                                                                               𝑁𝛷 = 0 

                                              (∇𝑋𝜑)𝑌 =   𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝑋                                                                           

                           𝑁(1) = 0                                                                          
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2. KONEKSİYONLAR 

Bu bölümde genel anlamda yeni bir koneksiyon tanımlayacak ve özel şartlarını 

inceleyeceğiz.  Öncelikle  kullanacağımız  tanımları verelim: 

Tanım  2.1.:  M,  ∇̅  lineer koneksiyonu ile verilmiş bir Riemann manifoldu olsun.  

Eğer M nin ∇̅  koneksiyonuna ait   

𝑇̅(𝑋, 𝑌) = ∇̅𝑋𝑌 − ∇̅𝑌𝑋 − [𝑋, 𝑌]     (2.1) 

biçiminde tanımlı torsiyon tensörü 𝑇̅,  ∀ 𝑋, 𝑌 ∈ 𝜒(𝑀) için;        

 𝑇̅(𝑋, 𝑌) = 𝑢(𝑌)𝑋 − 𝑢(𝑋)𝑌,                                                                   (2.2) 

şartını sağlıyor ise ∇̅ ya yarı-simetrik koneksiyon, 

                                                   𝑇̅(𝑋, 𝑌) = 𝑢(𝑌)𝜑𝑋 − 𝑢(𝑋)𝜑𝑌,                                                         (2.3) 

şartını sağlıyorsa ∇̅ ya çeyrek-simetrik koneksiyon adı verilir. Burada 𝑢 diferensiyellenebilir bir 

1- form , φ (1, 1)-tipinde bir tensör alanıdır (Friedmann ve Schouten 1924; Golab 1975).  Eğer 

M Riemann manifoldu üzerinde, g Riemann metriğine göre ∀ 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) için;  

(∇̅𝑋𝑔)(𝑌, 𝑍) ≠ 0,                                                                    (2.4) 

koşulu sağlanıyor ise (2.2) ve  (2.3) şartlarını sağlayan  ∇̅   koneksiyonu sırasıyla yarı-simetrik 

metrik olmayan  koneksiyon ve çeyrek-simetrik metrik olmayan koneksiyon olarak adlandırılır. 

Benzer şekilde  eğer M Riemann manifoldu üzerinde g Riemann  metriğine göre ∀ 𝑋, 𝑌, 𝑍 ∈

𝜒(𝑀)  için;  

(∇̅𝑋𝑔)(𝑌, 𝑍) = 0,                                                                    (2.5) 

koşulu sağlanıyor ise (2.2) ve  (2.3) şartlarını sağlayan  ∇̅   koneksiyonuna sırasıyla yarı-

simetrik metrik  koneksiyon ve çeyrek-simetrik metrik koneksiyon adı verilir.  

 Verilen tanımlamalar kullanılarak hemen hemen değme metrik manifoldlar üzerinde 

yeni bir koneksiyon tanımlayacağız: 

Teorem 2.1.: M, Levi-civita koneksiyonu 𝛻 ile verilmiş hemen hemen değme metrik 

manifold olmak üzere 𝜑1, 𝜑2, 𝜑3, 𝜑  (1,1) tipinde anti simetrik  tensör alanları,  𝜂 1-form ve  𝜉 

bir vektör alanı 
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𝑔(𝜑𝑋, 𝑌) = Φ(𝑋, 𝑌) = 𝑔(𝜑1𝑋, 𝑌) + 𝑔(𝜑2𝑋, 𝑌) + 𝑔(𝜑3𝑋, 𝑌)                                                           

= Φ1(𝑋, 𝑌) + Φ2(𝑋, 𝑌) + Φ3(𝑋, 𝑌)                                                                     (2.6) 

ve  

𝜂(𝑋) = 𝑔(𝑋, 𝜉),       𝜑𝜉 = 0 

özelliklerini sağlasın. 𝑀 üzerinde 

𝑇̅(𝑋, 𝑌) = 𝜂(𝑌)𝜑𝑋 − 𝜂(𝑋)𝜑𝑌                                                           (2.7) 

ve 

 (∇̅𝑋𝑔)(𝑌, 𝑍) = −
1

2
𝜂(𝑌)𝑔(𝜑3𝑋, 𝑍) −

1

2
𝜂(𝑍)𝑔(𝜑3𝑋, 𝑌) + 𝑓1𝑔(𝑋, 𝑌)𝜂(𝑍) + 𝑓1𝑔(𝑋, 𝑍)𝜂(𝑌) −

                         𝜂(𝑌)𝑔(𝜑2𝑋, 𝑍) − 𝜂(𝑍)𝑔(𝑌, 𝜑2𝑋) = 0                                                                       (2.8) 

şartlarını sağlayacak şekilde 

∇̅𝑋𝑌 = ∇𝑋𝑌 − 𝜂(𝑋)𝜑1𝑌 + 𝜂(𝑌)𝜑2𝑋 +
1

2
(𝜂(𝑌)𝜑3𝑋 − 𝜂(𝑋)𝜑3𝑌) − 𝑓1𝑔(𝑋, 𝑌)𝜉,        (2.9) 

ile tanımlı çeyrek-simetrik metrik olmayan bir koneksiyon vardır. Burada 𝑓1  manifold üzerinde 

diferensiyellenebilir bir fonksiyondur. 

İspat:  M manifoldu üzerinde  𝐵(𝑋, 𝑌), (1,1) tipinde tensör alanı olmak üzere 

∇̅𝑋𝑌 = ∇𝑋𝑌 + 𝐵(𝑋, 𝑌),                                                     (2.10) 

ile tanımlı ∇̅  lineer koneksiyonu verilsin.  

Kabul edelim ki  (2.10) denklemi ile tanımlı koneksiyonumuz çeyrek-simetrik olma ve 

non-metriklik şartlarını sağlasın. Bu durumda (2.7) ve (2.8) şartlarını sağlayacak şekilde  bir 

𝐵(𝑋, 𝑌) tensörünü bulmaya çalışalım. (2.9)  denklemi (2.1) de kullanılırsa 

𝑇̅(𝑋, 𝑌) = 𝐵(𝑋, 𝑌) − 𝐵(𝑌, 𝑋)                                                       (2.11) 

yazılabilir.  Ayrıca 

𝐺(𝑋, 𝑌, 𝑍) = (∇̅𝑋𝑔)(𝑌, 𝑍)                                                  (2.12) 

olmak üzere. (2.9) denklemi  (2.12) da kullanılırsa 

𝐺(𝑋, 𝑌, 𝑍) = −𝑔(𝐵(𝑋, 𝑌), 𝑍) − 𝑔(𝑌, 𝐵(𝑋, 𝑍))                                           (2.13) 
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dir. 𝐵(𝑋, 𝑌) ifadesini elde edebilmek için öncelikle (2.11) yardımıyla 𝑔(𝑇̅(𝑋, 𝑌), 𝑍),  

𝑔(𝑇̅(𝑍, 𝑋), 𝑌)  ve 𝑔(𝑇̅(𝑍, 𝑌), 𝑋)  denklemlerini bulalım: 

𝑔(𝑇̅(𝑋, 𝑌), 𝑍) = 𝑔(𝐵(𝑋, 𝑌), 𝑍) − 𝑔(𝐵(𝑌, 𝑋), 𝑍),                                  (2.14) 

𝑔(𝑇̅(𝑍, 𝑋), 𝑌) = 𝑔(𝐵(𝑍, 𝑋), 𝑌) − 𝑔(𝐵(𝑋, 𝑍), 𝑌),                                  (2.15) 

  𝑔(𝑇̅(𝑍, 𝑌), 𝑋) = 𝑔(𝐵(𝑍, 𝑌), 𝑋) − 𝑔(𝐵(𝑌, 𝑍), 𝑋)                                (2.16) 

(2.14), (2.15) ve (2.16) denklemleri taraf tarafa toplanırsa 

𝑔(𝑇̅(𝑋, 𝑌), 𝑍) + 𝑔(𝑇̅(𝑍, 𝑋), 𝑌) + 𝑔(𝑇̅(𝑍, 𝑌), 𝑋)

= 𝑔(𝐵(𝑋, 𝑌), 𝑍) − 𝑔(𝐵(𝑌, 𝑋), 𝑍) + 𝑔(𝐵(𝑍, 𝑋), 𝑌) − 𝑔(𝐵(𝑋, 𝑍), 𝑌)

+ 𝑔(𝐵(𝑍, 𝑌), 𝑋) − 𝑔(𝐵(𝑌, 𝑍), 𝑋) 

dir. Yukarıdaki denklemde (2.13) kullanılırsa 

𝑔(𝑇̅(𝑋, 𝑌), 𝑍) + 𝑔(𝑇̅(𝑍, 𝑋), 𝑌) + 𝑔(𝑇̅(𝑍, 𝑌), 𝑋)

= 𝑔(𝐵(𝑋, 𝑌), 𝑍) + 𝐺(𝑌, 𝑋, 𝑍) − 𝐺(𝑍, 𝑋, 𝑌) − 𝑔(𝐵(𝑋, 𝑍), 𝑌)

= 2𝑔(𝐵(𝑋, 𝑌), 𝑍) + 𝐺(𝑋, 𝑌, 𝑍) + 𝐺(𝑌, 𝑋, 𝑍) − 𝐺(𝑍, 𝑋, 𝑌)                             (2.17) 

olur. (2.17) de (2.9) denkleminde yerine konulursa 

𝑔(𝑇̅(𝑋, 𝑌), 𝑍) + 𝑔(𝑇̅(𝑍, 𝑋), 𝑌) + 𝑔(𝑇̅(𝑍, 𝑌), 𝑋)

= 2𝑔(𝐵(𝑋, 𝑌), 𝑍) −
1

2
𝜂(𝑌)𝑔(𝜑3𝑋, 𝑍) −

1

2
𝜂(𝑍)𝑔(𝜑3𝑋, 𝑌) + 𝑓1𝑔(𝑋, 𝑌)𝜂(𝑍)

+ 𝑓1𝑔(𝑋, 𝑍)𝜂(𝑌) − 𝜂(𝑌)𝑔(𝜑2𝑋, 𝑍) + 𝜂(𝑌)𝑔(𝜑2𝑍, 𝑋) −
1

2
𝜂(𝑋)𝑔(𝜑3𝑌, 𝑍)

−
1

2
𝜂(𝑍)𝑔(𝜑3𝑌, 𝑋) + 𝑓1𝑔(𝑌, 𝑍)𝜂(𝑋) + 𝑓1𝑔(𝑋, 𝑌)𝜂(𝑍) − 𝜂(𝑋)𝑔(𝜑2𝑌, 𝑍)

− 𝜂(𝑍)𝑔(𝑋, 𝜑2𝑌) +
1

2
𝜂(𝑋)𝑔(𝜑3𝑍, 𝑌) +

1

2
𝜂(𝑌)𝑔(𝜑3𝑋, 𝑍) − 𝑓1𝑔(𝑍, 𝑋)𝜂(𝑌)

− 𝑓1𝑔(𝑍, 𝑌)𝜂(𝑋) + 𝜂(𝑋)𝑔(𝜑2𝑍, 𝑌) + 𝜂(𝑌)𝑔(𝑋, 𝜑2𝑍)                      

olur. Burada gerekli düzenlemeler yapıldığında 

𝑔(𝑇̅(𝑋, 𝑌), 𝑍) + 𝑔(𝑇̅(𝑍, 𝑋), 𝑌) + 𝑔(𝑇̅(𝑍, 𝑌), 𝑋)

= 2𝑔(𝐵(𝑋, 𝑌), 𝑍) + 2𝑓1𝑔(𝑋, 𝑌)𝜂(𝑍) +
1

2
[𝜂(𝑋)𝑔(𝑌, 𝜑3𝑍) − 𝜂(𝑋)𝑔(𝜑3𝑌, 𝑍)

+ 𝜂(𝑌)𝑔(𝜑3𝑍, 𝑋) − 𝜂(𝑍)𝑔(𝜑3𝑌, 𝑋) − 𝜂(𝑍)𝑔(𝜑3𝑋, 𝑌) − 𝜂(𝑌)𝑔(𝜑3𝑋, 𝑍)]

− 2𝜂(𝑌)𝑔(𝜑2𝑋, 𝑍) − 2𝜂(𝑋)𝑔(𝜑2𝑌, 𝑍)                   
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bulunur ki yukarıda 𝑔(𝐵(𝑋, 𝑌), 𝑍) ifadesini çekersek, 

𝑔(𝐵(𝑋, 𝑌), 𝑍) =
1

2
[𝑔(𝑇̅(𝑋, 𝑌), 𝑍) + 𝑔(𝑇̅(𝑍, 𝑋), 𝑌) + 𝑔(𝑇̅(𝑍, 𝑌), 𝑋)] − 𝑓1𝑔(𝑋, 𝑌)𝜂(𝑍)

−
1

4
[𝜂(𝑋)𝑔(𝑌, 𝜑3𝑍) − 𝜂(𝑋)𝑔(𝜑3𝑌, 𝑍) + 𝜂(𝑌)𝑔(𝜑3𝑍, 𝑋) − 𝜂(𝑍)𝑔(𝜑3𝑌, 𝑋)

− 𝜂(𝑍)𝑔(𝜑3𝑋, 𝑌) − 𝜂(𝑌)𝑔(𝜑3𝑋, 𝑍)] + 𝜂(𝑌)𝑔(𝜑2𝑋, 𝑍) + 𝜂(𝑋)𝑔(𝜑2𝑌, 𝑍)  

𝑑𝚤𝑟.  Ayrıca son denklemde (2.7)  ifadesi kullanılarak elde edilen 

𝑔(𝑇̅(𝑋, 𝑌), 𝑍) = 𝜂(𝑌)𝑔(𝜑𝑋, 𝑍) − 𝜂(𝑋)𝑔(𝜑𝑌, 𝑍) = 𝜂(𝑌) ∑ 𝑔(𝜑𝑖𝑋, 𝑍)

3

𝑖=1

− 𝜂(𝑋) ∑ 𝑔(𝜑𝑖𝑌, 𝑍)

3

𝑖=1

, 

𝑔(𝑇̅(𝑍, 𝑋), 𝑌) = 𝜂(𝑋) ∑ 𝑔(𝜑𝑖𝑍, 𝑌)

3

𝑖=1

− 𝜂(𝑍) ∑ 𝑔(𝜑𝑖𝑌, 𝑋)

3

𝑖=1

, 

ve 

𝑔(𝑇̅(𝑍, 𝑌), 𝑋) = 𝜂(𝑌) ∑ 𝑔(𝜑𝑖𝑍, 𝑋)

3

𝑖=1

− 𝜂(𝑍) ∑ 𝑔(𝜑𝑖𝑌, 𝑋),

3

𝑖=1

 

denklemleri kullanılırsa 

𝑔(𝐵(𝑋, 𝑌), 𝑍)

=
1

2
[𝜂(𝑌) ∑ 𝑔(𝜑𝑖𝑋, 𝑍)

3

𝑖=1

− 𝜂(𝑋) ∑ 𝑔(𝜑𝑖𝑌, 𝑍) + 𝜂(𝑋) ∑ 𝑔(𝜑𝑖𝑍, 𝑌)

3

𝑖=1

3

𝑖=1

− 𝜂(𝑍) ∑ 𝑔(𝜑𝑖𝑌, 𝑋) + 𝜂(𝑌) ∑ 𝑔(𝜑𝑖𝑍, 𝑋)

3

𝑖=1

− 𝜂(𝑍) ∑ 𝑔(𝜑𝑖𝑌, 𝑋)

3

𝑖=1

3

𝑖=1

] − 𝑓1𝑔(𝑋, 𝑌)𝜂(𝑍)

−
1

4
[𝜂(𝑋)𝑔(𝑌, 𝜑3𝑍) − 𝜂(𝑋)𝑔(𝜑3𝑌, 𝑍) + 𝜂(𝑌)𝑔(𝜑3𝑍, 𝑋) − 𝜂(𝑍)𝑔(𝜑3𝑌, 𝑋) − 𝜂(𝑍)𝑔(𝜑3𝑋, 𝑌)

− 𝜂(𝑌)𝑔(𝜑3𝑋, 𝑍)] + 𝜂(𝑌)𝑔(𝜑2𝑋, 𝑍)

+ 𝜂(𝑋)𝑔(𝜑2𝑌, 𝑍),                                                                                                                             (2.18)  

halini alır. (2.18) de gerekli sadeleştirmeler yapıldığında  ∀ 𝑍 ∈ 𝜒(𝑀) için 

𝐵(𝑋, 𝑌) = −𝜂(𝑋)𝜑1𝑌 + 𝜂(𝑌)𝜑2𝑋 +
1

2
(𝜂(𝑌)𝜑3𝑋 − 𝜂(𝑋)𝜑3𝑌) − 𝑓1𝑔(𝑋, 𝑌)𝜉 
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sonucu ortaya çıkar. 

Önerme 2.1.: Bir n-boyutlu hemen hemen değme metrik manifoldu 𝑀 olsun.  𝑀 

üzerinde  Levi-Civita  koneksiyonu ∇  ya göre eğrilik tensörü R ve (2.9) ile tanımlı  çeyrek-

simetrik metrik olmayan koneksiyonu ∇̅ ya göre  eğrilik tensörü 𝑅̅   olmak üzere, 𝑅 ile 𝑅̅   

arasındaki bağıntı ∀ 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) için 

𝑅̅(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 − 𝑔(∇𝑋𝜉, 𝑌)𝜑1𝑍 − 𝜂(𝑌)(∇𝑋𝜑1)𝑍 + 𝜂(𝑌)𝑓1𝑔(𝑋, 𝜑1𝑍)𝜉

+ 𝑔(∇𝑋𝜉, 𝑍)𝜑2𝑌 + 𝜂(𝑍)(∇𝑋𝜑2)𝑌 −
1

2
𝜂(𝑋)𝜂(𝑍)𝜑3𝜑2𝑌 − 𝜂(𝑋)𝜂(𝑍)𝜑1𝜑2𝑌

− 𝜂(𝑍)𝑓1𝑔(𝑋, 𝜑2𝑌)𝜉 +
1

2
𝑔(∇𝑋𝜉, 𝑍)𝜑3𝑌 +

1

2
𝜂(𝑍)(∇𝑋𝜑3)𝑌

−
1

4
𝜂(𝑋)𝜂(𝑍)𝜑3𝜑3𝑌 −

1

2
𝜂(𝑋)𝜂(𝑍)𝜑1𝜑3𝑌 −

1

2
𝑓1𝜂(𝑍)𝑔(𝑋, 𝜑3𝑌)𝜉

−
1

2
𝑔(∇𝑋𝜉, 𝑌)𝜑3𝑍 −

1

2
𝜂(𝑌)(∇𝑋𝜑3)𝑍+

1

2
𝑓1𝜂(𝑌)𝑔(𝑋, 𝜑3𝑍)𝜉 − (𝑋𝑓1)𝑔(𝑌, 𝑍)𝜉

− 𝑓1𝑔(𝑌, 𝑍)∇𝑋𝜉 −
1

2
𝑓1𝑔(𝑌, 𝑍)𝜑3𝑋 − 𝑓1𝑔(𝑌, 𝑍)𝜑2𝑋 + 𝑓1

2𝑔(𝑌, 𝑍)𝜂(𝑋)𝜉

+ 𝑔(∇𝑌𝜉, 𝑋)𝜑1𝑍 + 𝜂(𝑋)(∇𝑌𝜑1)𝑍 − 𝜂(𝑋)𝑓1𝑔(𝑌, 𝜑1𝑍)𝜉 − 𝑔(∇𝑌𝜉, 𝑍)𝜑2𝑋

− 𝜂(𝑍)(∇𝑌𝜑2)𝑋 +
1

2
𝜂(𝑌)𝜂(𝑍)𝜑3𝜑2𝑋 + 𝜂(𝑌)𝜂(𝑍)𝜑1𝜑2𝑋

+ 𝜂(𝑍)𝑓1𝑔(𝑌, 𝜑2𝑋)𝜉 −
1

2
𝑔(∇𝑌𝜉, 𝑍)𝜑3𝑋 −

1

2
𝜂(𝑍)(∇𝑌𝜑3)𝑋

+
1

4
𝜂(𝑌)𝜂(𝑍)𝜑3𝜑3𝑋 +

1

2
𝜂(𝑌)𝜂(𝑍)𝜑1𝜑3𝑋 +

1

2
𝜂(𝑍)𝑓1𝑔(𝑌, 𝜑3𝑋)𝜉

+
1

2
𝑔(∇𝑌𝜉, 𝑋)𝜑3𝑍 +

1

2
𝜂(𝑋)(∇𝑌𝜑3)𝑍−𝜂(𝑋)

1

2
𝑓1𝑔(𝑌, 𝜑3𝑍)𝜉 + (𝑌𝑓1)𝑔(𝑋, 𝑍)

+ 𝑓1𝑔(𝑋, 𝑍)∇𝑌𝜉 +
1

2
𝑓1𝑔(𝑋, 𝑍)𝜑3𝑌 + 𝑓1𝑔(𝑋, 𝑍)𝜑2𝑌

− 𝑓1
2𝑔(𝑌, 𝑍)𝜂(𝑋)𝜉                                                                                             (2.19)      

dir.   

İspat: Çeyrek-simetrik metrik olmayan koneksiyon  ∇̅  ya göre eğrilik tensörü 𝑅̅  olmak 

üzere, ∀ 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) için ;  

𝑅̅(𝑋, 𝑌)𝑍 = ∇̅𝑋∇̅𝑌𝑍 − ∇̅𝑌∇̅𝑋𝑍 − ∇̅[𝑋,𝑌]𝑍 

olduğunu biliyoruz. Bu ifadede (2.9) denklemi kullanıldığında  

𝑅̅(𝑋, 𝑌)𝑍=∇̅𝑋 (∇𝑌𝑍 − 𝜂(𝑌)𝜑1𝑍 + 𝜂(𝑍)𝜑2𝑌 +
1

2
(𝜂(𝑍)𝜑3𝑌 − 𝜂(𝑌)𝜑3𝑍) − 𝑓1𝑔(𝑌, 𝑍)𝜉) 
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                        −∇̅𝑌 (∇𝑋𝑍 − 𝜂(𝑋)𝜑1𝑍 + 𝜂(𝑍)𝜑2𝑋 +
1

2
(𝜂(𝑍)𝜑3𝑋 − 𝜂(𝑋)𝜑3𝑍) − 𝑓1𝑔(𝑋, 𝑍)𝜉)

− (∇[𝑋,𝑌}𝑍 − 𝜂([𝑋, 𝑌])𝜑1𝑍 + 𝜂(𝑍)𝜑2[𝑋, 𝑌]

+
1

2
{𝜂(𝑍)𝜑3[𝑋, 𝑌] − 𝜂([𝑋, 𝑌[)𝜑3𝑍} − 𝑓1𝑔([𝑋, 𝑌], 𝑍)𝜉) 

olup burada  ∇̅ koneksiyonunun lineer olma özelliği kullanılarak 

𝑅̅(𝑋, 𝑌)𝑍=∇̅𝑋∇𝑌𝑍 − ∇̅𝑋𝜂(𝑌)𝜑1𝑍 + ∇̅𝑋𝜂(𝑍)𝜑2𝑌 +
1

2
∇̅𝑋𝜂(𝑍)𝜑3𝑌 −

1

2
∇̅𝑋𝜂(𝑌)𝜑3𝑍 −

∇̅𝑋𝑓1𝑔(𝑌, 𝑍)𝜉 

    −∇̅𝑌∇𝑋𝑍 + ∇̅𝑌𝜂(𝑋)𝜑1𝑍 − ∇̅𝑌𝜂(𝑍)𝜑2𝑋 −
1

2
∇̅𝑌𝜂(𝑍)𝜑3𝑋 +

1

2
∇̅𝑌𝜂(𝑋)𝜑3𝑍 + ∇̅𝑌𝑓1𝑔(𝑋, 𝑍)𝜉

− ∇[𝑋,𝑌}𝑍 + 𝜂([𝑋, 𝑌])𝜑1𝑍 − 𝜂(𝑍)𝜑2[𝑋, 𝑌]

−
1

2
{𝜂(𝑍)𝜑3[𝑋, 𝑌] − 𝜂([𝑋, 𝑌[)𝜑3𝑍} + 𝑓1𝑔([𝑋, 𝑌], 𝑍)𝜉   

elde edilir. Burada tekrar (2.9) denklemi yardımıyla yukarıdaki eşitlik  

𝑅̅(𝑋, 𝑌)𝑍=∇𝑋∇𝑌𝑍 +
1

2
𝜂(∇𝑌𝑍)𝜑3𝑋 −

1

2
𝜂(𝑋)𝜑3∇𝑌𝑍 + 𝜂(∇𝑌𝑍)𝜑2𝑋−η(X)𝜑1∇𝑌𝑍 −

𝑓1𝑔(𝑋, ∇𝑌𝑍)𝜉 − ∇𝑋𝜂(𝑌)𝜑1𝑍 −
1

2
𝜂(𝜂(𝑌)𝜑1𝑍)𝜑3𝑋 +

1

2
𝜂(𝑋)𝜂(𝑌)𝜑1𝜑3𝑍 − 𝜂(𝜂(𝑌)𝜑1𝑍)𝜑2𝑋 +

η(X)𝜂(𝑌)𝜑1𝜑1Z + 𝑓1𝑔(𝑋, 𝜂(𝑌)𝜑1𝑍)𝜉 + ∇𝑋𝜂(𝑍)𝜑2𝑌 +
1

2
𝜂(𝜂(𝑍)𝜑2𝑌)𝜑3𝑋 −

1

2
𝜂(𝑋)𝜂(𝑍)𝜑3𝜑2𝑌 − 𝜂(𝑋)𝜂(𝑍)𝜑1𝜑2𝑌 + 𝜂(𝜂(𝑍)𝜑2𝑌)𝜑2𝑋 − 𝑓1𝑔(𝑋, 𝜂(𝑍)𝜑2𝑌)𝜉 +

1

2
∇𝑋𝜂(𝑍)𝜑3𝑌 +

1

4
𝜂(𝜂(𝑍)𝜑3𝑌)𝜑3𝑋 −

1

4
𝜂(𝑋)𝜂(𝑍)𝜑3𝜑3𝑌 +

1

2
𝜂(𝜂(𝑍)𝜑3𝑌)𝜑2𝑋 −

1

2
𝜂(𝑋)𝜂(𝑍)𝜑1𝜑3𝑌 −

1

2
𝑓1𝑔(𝑋, 𝜂(𝑍)𝜑3𝑌)𝜉 −

1

2
∇𝑋𝜂(𝑌)𝜑3𝑍 −

1

4
𝜂(𝜂(𝑌)𝜑3𝑍)𝜑3𝑋 +

1

4
𝜂(𝑋)𝜂(𝑌)𝜑3𝜑3𝑍 −

1

2
𝜂(𝜂(𝑌)𝜑3𝑍)𝜑2𝑋 +

1

2
𝜂(𝑋)𝜂(𝑌)𝜑1𝜑3𝑍 +

1

2
𝑓1𝑔(𝑋, 𝜂(𝑌)𝜑3𝑍)𝜉 −

∇𝑋𝑓1𝑔(𝑌, 𝑍)𝜉 −
1

2
𝜂(𝑓1𝑔(𝑌, 𝑍)𝜉)𝜑3𝑋 +

1

2
𝜂(𝑋)𝑓1𝑔(𝑌, 𝑍)𝜑3𝜉 − 𝜂(𝑓1𝑔(𝑌, 𝑍)𝜉)𝜑2𝑋 +

𝜂(𝑋)𝑓1𝑔(𝑌, 𝑍)𝜑1𝜉 + 𝑓1
2𝑔(𝑌, 𝑍)𝜂(𝑋)𝜉 − ∇𝑌∇𝑋𝑍 −

1

2
𝜂(∇𝑋𝑍)𝜑3𝑌 +

1

2
𝜂(𝑌)𝜑3∇𝑋𝑍 −

𝜂(∇𝑋𝑍)𝜑2𝑌+η(Y)𝜑1∇𝑋𝑍 + 𝑓1𝑔(𝑌, ∇𝑋𝑍)𝜉 + ∇𝑌𝜂(𝑋)𝜑1𝑍 +
1

2
𝜂(𝜂(𝑋)𝜑1𝑍)𝜑3𝑌 −

1

2
𝜂(𝑌)𝜂(𝑋)𝜑1𝜑3𝑍 + 𝜂(𝜂(𝑋)𝜑1𝑍)𝜑2𝑌 − η(Y)𝜂(𝑋)𝜑1𝜑1Z − 𝑓1𝑔(𝑌, 𝜂(𝑋)𝜑1𝑍)𝜉 −

∇𝑌𝜂(𝑍)𝜑2𝑋 −
1

2
𝜂(𝜂(𝑍)𝜑2𝑋)𝜑3𝑌 +

1

2
𝜂(𝑌)𝜂(𝑍)𝜑3𝜑2𝑋 + 𝜂(𝑌)𝜂(𝑍)𝜑1𝜑2𝑋 −

𝜂(𝜂(𝑍)𝜑2𝑋)𝜑2𝑌 + 𝑓1𝑔(𝑌, 𝜂(𝑍)𝜑2𝑋)𝜉 −
1

2
∇𝑌𝜂(𝑍)𝜑3𝑋 −

1

4
𝜂(𝜂(𝑍)𝜑3𝑋)𝜑3𝑌 +

1

4
𝜂(𝑌)𝜂(𝑍)𝜑3𝜑3𝑋 −

1

2
𝜂(𝜂(𝑍)𝜑3𝑋)𝜑2𝑌 +

1

2
𝜂(𝑌)𝜂(𝑍)𝜑1𝜑3𝑋 +

1

2
𝑓1𝑔(𝑌, 𝜂(𝑍)𝜑3𝑋)𝜉 +
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1

2
∇𝑌𝜂(𝑋)𝜑3𝑍 +

1

4
𝜂(𝜂(𝑋)𝜑3𝑍)𝜑3𝑌 −

1

4
𝜂(𝑌)𝜂(𝑋)𝜑3𝜑3𝑍 +

1

2
𝜂(𝜂(𝑋)𝜑3𝑍)𝜑2𝑌 −

1

2
𝜂(𝑌)𝜂(𝑋)𝜑1𝜑3𝑍 −

1

2
𝑓1𝑔(𝑌, 𝜂(𝑋)𝜑3𝑍)𝜉 + ∇𝑌𝑓1𝑔(𝑋, 𝑍)𝜉 +

1

2
𝜂(𝑓1𝑔(𝑋, 𝑍)𝜉)𝜑3𝑌 −

1

2
𝜂(𝑌)𝑓1𝑔(𝑋, 𝑍)𝜑3𝜉 + 𝜂(𝑓1𝑔(𝑋, 𝑍)𝜉)𝜑2𝑌 − 𝜂(𝑌)𝑓1𝑔(𝑋, 𝑍)𝜑1𝜉 − 𝑓1

2𝑔(𝑌, 𝑍)𝜂(𝑋)𝜉 −

∇[𝑋,𝑌}𝑍 + 𝜂(∇𝑋𝑌 − ∇𝑌𝑋)𝜑1𝑍 − 𝜂(𝑍)𝜑2∇𝑋𝑌 + 𝜂(𝑍)𝜑2∇𝑌𝑋 −
1

2
{𝜂(𝑍)𝜑3∇𝑋𝑌 − 𝜂(𝑍)𝜑3∇𝑌𝑋 −

𝜂(∇𝑋𝑌 − ∇𝑌𝑋)𝜑3𝑍} + 𝑓1𝑔(∇𝑋𝑌 − ∇𝑌𝑋, 𝑍)𝜉 

halini alır. (1.2.3), (1.2.4) denklemleri ve Levi-Civita koneksiyonu özellikleri kullanıldığında 

son denklemimiz 
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𝑅̅(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 +
1

2
𝜂(∇𝑌𝑍)𝜑3𝑋 −

1

2
𝜂(𝑋)𝜑3∇𝑌𝑍 + 𝜂(∇𝑌𝑍)𝜑2𝑋−η(X)𝜑1∇𝑌𝑍

− 𝑓1𝑔(𝑋, ∇𝑌𝑍)𝜉 − 𝜂(∇𝑋𝑌)𝜑1𝑍 − 𝑔(∇𝑋𝜉, 𝑌)𝜑1𝑍 − 𝜂(𝑌)(∇𝑋𝜑1)𝑍

− 𝜂(𝑌)𝜑1∇𝑋𝑍 + 𝜂(𝑌)𝑓1𝑔(𝑋, 𝜑1𝑍)𝜉 + 𝑔(∇𝑋𝜉, 𝑍)𝜑2𝑌 + 𝜂(∇𝑋𝑍)𝜑2𝑌

+ 𝜂(𝑍)(∇𝑋𝜑2)𝑌 + 𝜂(𝑍)𝜑2∇𝑋𝑌 −
1

2
𝜂(𝑋)𝜂(𝑍)𝜑3𝜑2𝑌 − 𝜂(𝑋)𝜂(𝑍)𝜑1𝜑2𝑌

− 𝜂(𝑍)𝑓1𝑔(𝑋, 𝜑2𝑌)𝜉 +
1

2
𝜂(∇𝑋𝑍)𝜑3𝑌 +

1

2
𝑔(∇𝑋𝜉, 𝑍)𝜑3𝑌 +

1

2
𝜂(𝑍)(∇𝑋𝜑3)𝑌

+
1

2
𝜂(𝑍)𝜑3∇𝑋𝑌 −

1

4
𝜂(𝑋)𝜂(𝑍)𝜑3𝜑3𝑌

−
1

2
𝜂(𝑋)𝜂(𝑍)𝜑1𝜑3𝑌 −

1

2
𝑓1𝜂(𝑍)𝑔(𝑋, 𝜑3𝑌)𝜉 −

1

2
𝑔(∇𝑋𝜉, 𝑌)𝜑3𝑍

−
1

2
𝜂(∇𝑋𝑌)𝜑3𝑍 −

1

2
𝜂(𝑌)(∇𝑋𝜑3)𝑍 −

1

2
𝜂(𝑌)𝜑3∇𝑋𝑍+

1

2
𝑓1𝜂(𝑌)𝑔(𝑋, 𝜑3𝑍)𝜉

− (𝑋𝑓1)𝑔(𝑌, 𝑍)𝜉 − 𝑓1𝑔(∇𝑋𝑌, 𝑍)𝜉 − 𝑓1𝑔(𝑌, ∇𝑋𝑍)𝜉 − 𝑓1𝑔(𝑌, 𝑍)∇𝑋𝜉

−
1

2
𝑓1𝑔(𝑌, 𝑍)𝜑3𝑋 − 𝑓1𝑔(𝑌, 𝑍)𝜑2𝑋 + 𝑓1

2𝑔(𝑌, 𝑍)𝜂(𝑋)𝜉 −
1

2
𝜂(∇𝑋𝑍)𝜑3𝑌

+
1

2
𝜂(𝑌)𝜑3∇𝑋𝑍 − 𝜂(∇𝑋𝑍)𝜑2𝑌+η(Y)𝜑1∇𝑋𝑍 + 𝑓1𝑔(𝑌, ∇𝑋𝑍)𝜉 + 𝑔(∇𝑌𝜉, 𝑋)𝜑1𝑍

+ 𝜂(∇𝑌𝑋)𝜑1𝑍 + 𝜂(𝑋)(∇𝑌𝜑1)𝑍 + 𝜂(𝑋)𝜑1∇𝑌𝑍 − 𝜂(𝑋)𝑓1𝑔(𝑌, 𝜑1𝑍)𝜉

− 𝑔(∇𝑌𝜉, 𝑍)𝜑2𝑋 − 𝜂(∇𝑌𝑍)𝜑2𝑋 − 𝜂(𝑍)(∇𝑌𝜑2)𝑋 − 𝜂(𝑍)𝜑2∇𝑌𝑋

+
1

2
𝜂(𝑌)𝜂(𝑍)𝜑3𝜑2𝑋 + 𝜂(𝑌)𝜂(𝑍)𝜑1𝜑2𝑋 + 𝜂(𝑍)𝑓1𝑔(𝑌, 𝜑2𝑋)𝜉     

−
1

2
𝜂(∇𝑌𝑍)𝜑3𝑋 −

1

2
𝑔(∇𝑌𝜉, 𝑍)𝜑3𝑋 −

1

2
𝜂(𝑍)(∇𝑌𝜑3)𝑋 −

1

2
𝜂(𝑍)𝜑3∇𝑌𝑋

+
1

4
𝜂(𝑌)𝜂(𝑍)𝜑3𝜑3𝑋 +

1

2
𝜂(𝑌)𝜂(𝑍)𝜑1𝜑3𝑋 +

1

2
𝜂(𝑍)𝑓1𝑔(𝑌, 𝜑3𝑋)𝜉

+
1

2
𝜂(∇𝑌𝑋)𝜑3𝑍 +

1

2
𝑔(∇𝑌𝜉, 𝑋)𝜑3𝑍 +

1

2
𝜂(𝑋)(∇𝑌𝜑3)𝑍

+
1

2
𝜂(𝑋)𝜑3∇𝑌𝑍−𝜂(𝑋)

1

2
𝑓1 𝑔(𝑌, 𝜑3𝑍)𝜉 + (𝑌𝑓1)𝑔(𝑋, 𝑍)𝜉 + 𝑓1𝑔(∇𝑌𝑋, 𝑍)𝜉

+ 𝑓1𝑔(𝑋, ∇𝑌𝑍)𝜉 + 𝑓1𝑔(𝑋, 𝑍)∇𝑌𝜉 +
1

2
𝑓1𝑔(𝑋, 𝑍)𝜑3𝑌 + 𝑓1𝑔(𝑋, 𝑍)𝜑2𝑌

− 𝑓1
2𝑔(𝑌, 𝑍)𝜂(𝑋)𝜉 + 𝜂(∇𝑋𝑌 − ∇𝑌𝑋)𝜑1𝑍 − 𝜂(𝑍)𝜑2∇𝑋𝑌 + 𝜂(𝑍)𝜑2∇𝑌𝑋

−
1

2
{𝜂(𝑍)𝜑3∇𝑋𝑌 − 𝜂(𝑍)𝜑3∇𝑌𝑋 − 𝜂(∇𝑋𝑌 − ∇𝑌𝑋)𝜑3𝑍} + 𝑓1𝑔(∇𝑋𝑌

− ∇𝑌𝑋, 𝑍)𝜉 
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olarak yazılabilir. Son olarak gerekli sadeleştirmeler yapıldığında (2.19) bulunur. 

Buradan itibaren (2.9) ile tanımlı koneksiyonumuz sınıflandırılarak özel türlerini 

inceleyeğiz: 

2.1. (2.9) ile Tanımlı Koneksiyonun Sınıflandırılması 

Bu bölümde (2.9) ile tanımlı koneksiyona bağlı bazı özel koneksiyon türleri vereceğiz: 

i) (2.9) denkleminde 𝜑1 = 𝜑2 = 0  alınırsa koneksiyonumuz 

∇̅𝑋𝑌 = ∇𝑋𝑌 +
1

2
(𝜂(𝑌)𝜑𝑋 − 𝜂(𝑋)𝜑𝑌) − 𝑓1𝑔(𝑋, 𝑌)𝜉                                         (2.1.1)  

haline dönüşür.  (2.1.1) ile tanımlı bu  koneksiyonumuz (2.3) ve (2.4) ifadelerini sağladığından, 

hemen hemen değme metrik manifold üzerinde çeyrek-simetrik metrik olmayan koneksiyon 

olarak adlandırılır. İleride karışıklık yaşamamak için (2.1.1) ile verilen  bu koneksiyona 

(𝑀, 𝜑3, 𝑓1)   koneksiyonu olarak adlandıracağız. 

 Bu koneksiyona bağlı eğrilik tensörü R̅  yi bulabilmek için, (2.19) denkleminde özel 

olarak 𝜑1 = 𝜑2 = 0 alındığında 

𝑅̅(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 +
1

2
𝑔(∇𝑋𝜉, 𝑍)𝜑𝑌 +

1

2
𝜂(𝑍)(∇𝑋𝜑)𝑌

−
1

4
𝜂(𝑋)𝜂(𝑍)𝜑2𝑌−

1

2
𝑓1𝜂(𝑍)𝑔(𝑋, 𝜑𝑌)𝜉 −

1

2
𝑔(∇𝑋𝜉, 𝑌)𝜑𝑍

−
1

2
𝜂(𝑌)(∇𝑋𝜑)𝑍+

1

2
𝑓1𝜂(𝑌)𝑔(𝑋, 𝜑𝑍)𝜉 − (𝑋𝑓1)𝑔(𝑌, 𝑍)𝜉 − 𝑓1𝑔(𝑌, 𝑍)∇𝑋𝜉

−
1

2
𝑓1𝑔(𝑌, 𝑍)𝜑𝑋 + 𝑓1

2𝑔(𝑌, 𝑍)𝜂(𝑋)𝜉 −
1

2
𝑔(∇𝑌𝜉, 𝑍)𝜑𝑋 −

1

2
𝜂(𝑍)(∇𝑌𝜑)𝑋

+
1

4
𝜂(𝑌)𝜂(𝑍)𝜑2𝑋+

1

2
𝜂(𝑍)𝑓1𝑔(𝑌, 𝜑𝑋)𝜉 +

1

2
𝑔(∇𝑌𝜉, 𝑋)𝜑𝑍

+
1

2
𝜂(𝑋)(∇𝑌𝜑)𝑍−𝜂(𝑋)

1

2
𝑓1𝑔(𝑌, 𝜑𝑍)𝜉 + (𝑌𝑓1)𝑔(𝑋, 𝑍)𝜉 + 𝑓1𝑔(𝑋, 𝑍)∇𝑌𝜉

+
1

2
𝑓1𝑔(𝑋, 𝑍)𝜑𝑌

− 𝑓1
2𝑔(𝑌, 𝑍)𝜂(𝑋)𝜉                                                                                             (2.1.2) 

bulunur. 

ii) Şimdi (2.9) ile tanımlı koneksiyonumuzda    𝜑2 = 0  𝜑3 = 0 ve 𝑓1 = 0  alalım. Bu durumda  
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∇̅𝑋𝑌 = ∇𝑋𝑌 − 𝜂(𝑋)𝜑𝑌                                                             (2.1.3) 

koneksiyonu elde edilir. O halde (2.1.3) koneksiyonu  (2.3) ve (2.5) gereği  çeyrek simetrik 

metrik koneksiyon olarak adlandırılır. Bu koneksiyona bundan sonra kısaca (M, 𝜑1)  

koneksiyonu olarak adlandıracağız (Yano ve Imai, 1982). Ayrıca bu koneksiyona bağlı eğrilik 

tensörü 𝑅̅ yi vermek istersek, (2.21) denkleminde 𝜑2 = 0  𝜑3 = 0 ve 𝑓1 = 0  yazalım. 

𝑅̅(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 − 𝑔(∇𝑋𝜉, 𝑌)𝜑𝑍 − 𝜂(𝑌)(∇𝑋𝜑)𝑍 + 𝑔(∇𝑌𝜉, 𝑋)𝜑𝑍 + 𝜂(𝑋)(∇𝑌𝜑)𝑍  (2.1.4)  

olduğu kolayca görülebilir. 

iii) Özel olarak (2.9) denkleminde 𝜑1 = 0, 𝜑3 = 0  𝑣𝑒 𝑓1 = 0 alınırsa koneksiyonumuz  

∇̅𝑋𝑌 = ∇𝑋𝑌 + 𝜂(𝑌)𝜑𝑋                                                          (2.1.5) 

haline dönüşür. Bu denklem (2.3) ve (2.5)  ifadelerini sağladığından çeyrek simetrik metrik 

olmayan adı verilir (Sengupta ve Biswas, 2003). Bu koneksiyona (M, 𝜑2) koneksiyonu  olarak 

adlandıracağız. 

Ayrıca bu koneksiyona bağlı eğrilik tensörü 𝑅̅ yi bulabilmek için, (2.21) denkleminde 

 𝜑1 = 0,   , 𝜑3 = 0  𝑣𝑒 𝑓1 = 0   alındığında denklem 

𝑅̅(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 + 𝑔(∇𝑋𝜉, 𝑍)𝜑𝑌 + 𝜂(𝑍)(∇𝑋𝜑)𝑌 − 𝑔(∇𝑌𝜉, 𝑍)𝜑𝑋 − 𝜂(𝑍)(∇𝑌𝜑)𝑋   (2.1.6) 

halini alır. 

iv) Son olarak  (2.9) denkleminde 𝜑1 = 0,    𝜑2𝑋 = 𝑋 , 𝜑3 = 0  𝑣𝑒 𝑓1 = 0 alınırsa 

koneksiyonumuz 

∇̅𝑋𝑌 = ∇𝑋𝑌 + 𝜂(𝑌)𝑋                                                                 (2.1.7) 

haline dönüşür. Bu denkleme yarı-simetrik metrik olmayan koneksiyon adı verilir (Agashe 

ve Chafle, 1992). Bu koneksiyona (𝑀, 𝐼) koneksiyonu olarak adlandıracağız. Ayrıca bu 

koneksiyona bağlı eğrilik tensörü 𝑅̅ için  (2.21) denkleminde 𝜑1 = 0,   𝜑2𝑋 = 𝑋 , 𝜑3 =

0  𝑣𝑒 𝑓1 = 0 alalım. Buradan 

𝑅̅(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 + 𝑔(𝑍, ∇𝑋𝜉)𝑌 − 𝑔(𝑍, ∇𝑌𝜉)𝑋                                           (2.1.8) 

elde edilir.         

Verilen koneksiyonları tek bir çizelgede gösterelim: 
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Çizelge 2.1. (2.9) ile tanımlı çeyrek-simetrik metrik olmayan koneksiyonun özel hallerinin 

incelenmesi 

∇̅𝑋𝑌 = ∇𝑋𝑌 − 𝜂(𝑋)𝜑1𝑌 + 𝜂(𝑌)𝜑2𝑋 +
1

2
(𝜂(𝑌)𝜑3𝑋 − 𝜂(𝑋)𝜑3𝑌) − 𝑓1𝑔(𝑋, 𝑌)𝜉  

ile tanımlı çeyrek simetrik metrik olmayan koneksiyon 

(M, φ3, f1) ile 

tanımlı çeyrek simetrik 

metrik olmayan  

koneksiyon 

(M, 𝜑1) ile 

tanımlı çeyrek 

simetrik metrik 

koneksiyon 

(M, 𝜑2) ile 

tanımlı çeyrek simetrik 

metrik olmayan 

koneksiyon 

(M,I) ile 

tanımlı yarı simetrik 

metrik koneksiyon 

𝜑1 = 𝜑2 = 0  𝜑2 = 0 

𝜑3 = 0 ve 𝑓1 = 0   
𝜑1 = 0,  

𝜑3 = 0   
ve 𝑓1 = 0 

𝜑1 = 0,   𝜑2𝑋 = 𝑋 , 
 𝜑3 = 0  𝑣𝑒 𝑓1 = 0 

∇̅𝑋𝑌

= ∇𝑋𝑌 +
1

2
𝜂(𝑌)𝜑𝑋

−
1

2
𝜂(𝑋)𝜑𝑌

−  𝑓1𝑔(𝑋, 𝑌)𝜉 
 

∇̅𝑋𝑌
= ∇𝑋𝑌 − 𝜂(𝑋)𝜑𝑌 

∇̅𝑋𝑌 = ∇𝑋𝑌 + 𝜂(𝑌)𝜑𝑋 ∇̅𝑋𝑌 = ∇𝑋𝑌 + 𝜂(𝑌)𝑋  
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3. FARKLI KONEKSİYONLARLA VERİLMİŞ MANİFOLDLAR İÇİN BAZI EĞRİLİK  

    ŞARTLARI VE RİCCİ SOLİTONLAR 

Bu bölüm iki kısımdan oluşmaktadır. İlk kısmında (𝑀, 𝐼) koneksiyonu ile verilen 𝑛-

boyutlu Kenmotsu manifoldlar üzerinde bazı eğrilik şartları incelenecektir. İkinci kısımda ise 

(𝑀,𝝋𝟏)  koneksiyonu ile verilmiş 3-boyutlu trans-Sasakian manifoldlar ve  (𝑀,𝝋𝟐)  

koneksiyonu ile verilmiş 3-boyutlu normal hemen hemen değme metrik manifoldlar için Ricci 

soliton kavramı ele alınacaktır.  Ancak bunlara değinmeden önce Tanım 1.2.1 ve Tanım 1.2.2  

yardımıyla  Kenmotsu manifoldları için şu tanımlamaları verelim: 

Tanım 3.1.: 𝑀, 2𝑚 + 1 -boyutlu Kenmotsu manifold olmak üzere,  eğer  ∀𝑋, 𝑌 ∈ 𝜒(𝑀) 

için 

𝐶(𝑋, 𝑌)𝜉 = 0 ,                                                                      (3.1) 

eşitliği sağlanırsa, manifold düzlemsel 𝜉- konformal olarak adlandırılır.  

Tanım 3.2.: 𝑀 2𝑚 + 1 −boyutlu Kenmotsu  manifold olmak üzere,  eğer ∀𝑋, 𝑌 ∈

𝜒(𝑀) için 

𝐶̌(𝑋, 𝑌)𝜉 = 0,                                                                         (3.2) 

eşitliği sağlanırsa, manifold düzlemsel 𝜉-quasi konformal olarak adlandırılır. 

3.1. (𝑴, 𝑰) Koneksiyonu İle Verilen Kenmotsu Manifoldları İçin Bazı Eğrilik Şartları 

Önerme 3.1.1.: Bir 𝑛 = 2𝑚 + 1-boyutlu Kenmotsu manifoldu 𝑀 olsun. M üzerinde 

Levi-Civita koneksiyonu  ya göre eğrilik tensörü R ve (𝑀, 𝐼) yarı-simetrik metrik olmayan 

koneksiyonu ∇̅ ye göre eğrilik tensörü R̅ olmak üzere, ∀ 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) için R ile 𝑅̅  arasındaki 

bağıntı 

𝑅̅(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 − 𝑔(𝑌, 𝑍)𝑋 + 𝑔(𝑋, 𝑍)𝑌 + 2{𝜂(𝑌)𝜂(𝑍)𝑋 − 𝜂(𝑋)𝜂(𝑍)𝑌},                 (3.1.1) 

dir (Yıldız ve Çetinkaya, 2013).   

İspat: Yarı-simetrik metrik olmayan koneksiyon ∇̅  ye göre eğrilik tensörü 𝑅̅ olmak 

üzere, ∀ 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) için hemen hemen değme metrik manifoldlarda (2.1.8) denklemini 

bulmuştuk. 𝑀 bir 𝑛 −boyutlu Kenmotsu manifoldu olduğundan  (2.1.8) denkleminde (1.2.20)   

denklemi kullanılırsa 
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𝑅̅(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 + 𝑔(𝑋, 𝑍)𝑌 − 𝜂(𝑋)𝜂(𝑍)𝑌 + 𝜂(𝑌)𝜂(𝑍)𝑋 − 𝑔(𝑌, 𝑍)𝑋 + 𝜂(𝑌)𝜂(𝑍)

− 𝜂(𝑋)𝜂(𝑍)𝑌, 

elde edilir ki burada gerekli sadeleştirmeler yapıldığında 

𝑅̅(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 − 𝑔(𝑌, 𝑍)𝑋 + 𝑔(𝑋, 𝑍)𝑌 + 2{𝜂(𝑌)𝜂(𝑍)𝑋 − 𝜂(𝑋)𝜂(𝑍)𝑌}, 

dir. 

Önerme 3.1.2.: Bir 2𝑚 + 1-boyutlu Kenmotsu manifoldu 𝑀  olsun. M üzerinde  Levi-

Civita koneksiyonu  ya göre eğrilik tensörü R ve (𝑀, 𝐼) yarı-simetrik metrik olmayan 

koneksiyonu ∇̅ ye göre eğrilik tensörü 𝑅̅ olmak üzere, ∀ 𝑌, 𝑍 ∈ 𝜒(𝑀) için  

𝑅̅(𝜉, 𝑌)𝑍 = 2{−𝑔(𝑌, 𝑍)𝜉 + 𝜂(𝑌)𝜂(𝑍)𝜉},                                                (3.1.2)   

biçimindedir (Yıldız ve Çetinkaya, 2013). 

İspat: (3.1.1) denkleminde X  ξ  alındığında  

𝑅̅(𝜉, 𝑌)𝑍 = 𝑅(𝜉, 𝑌)𝑍 − 𝑔(𝑌, 𝑍)𝜉 + 𝜂(𝑍)𝑌 + 2{𝜂(𝑌)𝜂(𝑍)𝜉 − 𝜂(𝑍)𝑌}, 

elde edilir. M  bir Kenmotsu manifoldu olduğundan (1.2.21) denklemi yardımıyla yukarıdaki 

denklem 

𝑅̅(𝜉, 𝑌)𝑍 = 2{−𝑔(𝑌, 𝑍)𝜉 + 𝜂(𝑌)𝜂(𝑍)𝜉}, 

halini alır. 

Ayrıca (3.1.1) denkleminde sırasıyla ilk önce X=Y,  Y=Z ve Z=X olarak alındığında 

𝑅̅(𝑌, 𝑍)𝑋 = 𝑅(𝑌, 𝑍)𝑋 − 𝑔(𝑍, 𝑋)𝑌 + 𝑔(𝑌, 𝑋)𝑍 + 2{𝜂(𝑍)𝜂(𝑋)𝑌 − 𝜂(𝑌)𝜂(𝑋)𝑍},         (3.1.3) 

bulunur. Benzer şekilde (3.1.3)  denkleminde sırasıyla Y=Z, Z=X ve X=Y yazıldığında 

𝑅̅(𝑍, 𝑋)𝑌 = 𝑅(𝑍, 𝑋)𝑌 − 𝑔(𝑋, 𝑌)𝑍 + 𝑔(𝑍, 𝑌)𝑋 + 2{𝜂(𝑋)𝜂(𝑌)𝑍 − 𝜂(𝑍)𝜂(𝑌)𝑋},            (3.1.4) 

elde edilir. Son olarak (3.1.1),(3.1.3) ve (3.1.4) denklemleri taraf tarafa toplanırsa 

𝑅̅(𝑋, 𝑌)𝑍+𝑅̅(𝑌, 𝑍)𝑋 + 𝑅̅(𝑍, 𝑋)𝑌 = 0,                                             (3.1.5) 

sonucu ortaya çıkar. Buradan aşağıdaki sonucu verebiliriz: 

Sonuç 3.1.1.:  Bir 2𝑚 + 1-boyutlu Kenmotsu manifoldu M olsun. M  üzerinde  Levi-

Civita koneksiyonu  ya göre eğrilik tensörü R ve (𝑀, 𝐼) yarı-simetrik metrik olmayan 
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koneksiyonu ∇̅ ye göre eğrilik tensörü 𝑅̅ olmak üzere,  ∀ 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) için (3.1.5) gereği  bu 

koneksiyona bağlı I. Bianchi özdeşliği sağlanır (Yıldız ve Çetinkaya, 2013). 

Önerme 3.1.3.: Bir 𝑛 = 2𝑚 + 1-boyutlu Kenmotsu manifoldu M olsun. M  üzerinde  

Levi-Civita koneksiyonu  ya göre eğrilik tensörü R ve (𝑀, 𝐼)  yarı-simetrik metrik olmayan 

koneksiyon ∇̅ ye göre Ricci tensörü, Ricci operatörü ve skaler eğriliği sırasıyla  S̅, 𝑄̅ ve 𝜏̅ olmak 

üzere, ∀ 𝑌, 𝑍 ∈ 𝜒(𝑀) için  

S̅(Y, Z) = S(Y, Z) − (n − 1)g(Y, Z) + 2(n − 1)η(Y)η(Z),                                           (3.1.6) 

𝑄̅Y = QY − (n − 1)Y + 2(n − 1)η(Y)ξ,                                                                 (3.1.7) 

𝜏̅ = 𝜏 − (𝑛 − 1)(𝑛 − 2),                                                                                          (3.1.8) 

biçimindedir (Yıldız ve Çetinkaya, 2013).   

İspat : (3.1.1) denkleminin her iki yanı 𝑈  (𝑀) ile iç çarpımı alınırsa  

𝑔(𝑅̅(𝑋, 𝑌)𝑍, 𝑈) = 𝑔(𝑅(𝑋, 𝑌)𝑍, 𝑈) + 𝑔(𝑋, 𝑍)𝑔(𝑌, 𝑈) − 𝑔(𝑌, 𝑍)𝑔(𝑋, 𝑈)

+ 2{𝜂(𝑌)𝜂(𝑍)𝑔(𝑋, 𝑈) − 𝜂(𝑋)𝜂(𝑍)𝑔(𝑌, 𝑈)}, 

elde edilir. Buradan da 𝑋 ve 𝑈 vektör alanlarına göre kontraksiyon yapıldığında 

                      𝑆̅(𝑌, 𝑍) = 𝑆(𝑌, 𝑍) − (𝑛 − 1)𝑔(𝑌, 𝑍) + 2(𝑛 − 1)𝜂(𝑌)𝜂(𝑍),                                          

elde edilir. (3.1.6) denklemi ∀𝑍 ∈ 𝜒(𝑀) için  

𝑄̅𝑌 = 𝑄𝑌 − (𝑛 − 1)𝑌 + 2(𝑛 − 1)𝜂(𝑌)𝜉,                     

haline dönüşür. Son olarak (3.1.6) denkleminde Y ve Z vektör alanlarına göre kontraksiyon 

yapıldığında  

𝜏̅ = 𝜏 − (𝑛 − 1)𝑛 + 2(𝑛 − 1) = 𝜏 − (𝑛 − 1)(𝑛 − 2), 

bulunur. 

Önerme 3.1.4.: Bir 𝑛 = 2𝑚 + 1-boyutlu Kenmotsu manifoldu M olsun. M üzerinde  

(𝑀, 𝐼) ile tanımlı yarı-simetrik metrik olmayan koneksiyonu ∇̅ ye göre Weyl konformal eğrilik 

tensörü ve quasi-konformal eğrilik tensörü sırasıyla C̅ ve 𝐶̌̅ olmak üzere, ∀ 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) için  
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𝐶̅(𝑋, 𝑌)𝑍 = 𝐶(𝑋, 𝑌)𝑍 +
2

𝑛 − 2
{𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌 + 𝜂(𝑋)𝜂(𝑍)𝑌 − 𝜂(𝑌)𝜂(𝑍)𝑋}                   

−
2(𝑛 − 1)

(𝑛 − 2)
{𝑔(𝑌, 𝑍)𝜂(𝑋)𝜉

− 𝑔(𝑋, 𝑍)𝜂(𝑌)𝜉}                                                                                                    (3.1.9) 

ve 

𝐶̌̅(𝑋, 𝑌)𝑍

= 𝐶̌(𝑋, 𝑌)𝑍

+ {
(𝑛 − 1)(𝑛 − 2)

𝑛
(

𝑎

𝑛 − 1
+ 2𝑏) − 𝑎 − 2(𝑛 − 1)𝑏} {𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌}                 

+ 2(𝑛 − 1)𝑏{𝑔(𝑌, 𝑍)𝜂(𝑋)𝜉 − 𝑔(𝑋, 𝑍)𝜂(𝑌)𝜉} + 2{𝑎 + 2(𝑛 − 1)𝑏}(𝜂(𝑌)𝜂(𝑍)𝑋

− 𝜂(𝑋)𝜂(𝑍)𝑌),                                                                                                                                    (3.1.10) 

yazılabilir (Yıldız ve Çetinkaya, 2013).   

İspat: İlk önce (1.1.7) denklemi ile verilen  Weyl konformal eğrilik tensörünü ele 

alalım. 𝑀 üzerinde  (𝑀, 𝐼) yarı-simetrik metrik olmayan koneksiyonu ∇̅ ye göre Weyl 

conformal eğrilik tensörü  

𝐶̅(𝑋, 𝑌)𝑍 = 𝑅̅(𝑋, 𝑌)𝑍 −
1

𝑛 − 2
[𝑆̅(𝑌, 𝑍)𝑋 − 𝑆̅(𝑋, 𝑍)𝑌 + 𝑔(𝑌, 𝑍)𝑄̅𝑋 − 𝑔(𝑋, 𝑍)𝑄̅𝑌]

+
𝜏̅

(𝑛 − 1)(𝑛 − 2)
[𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌] 

şeklinde yazılabilir. Bu denklem (3.1.1), (3.1.6), (3.1.7) ve (3.1.8) denklemleri yardımıyla 

𝐶̅(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 − 𝑔(𝑌, 𝑍)𝑋 + 𝑔(𝑋, 𝑍)𝑌 + 2{𝜂(𝑌)𝜂(𝑍)𝑋 − 𝜂(𝑋)𝜂(𝑍)𝑌}

−
1

𝑛 − 2
{S(Y, Z)X − (n − 1)g(Y, Z)X + 2(n − 1)η(Y)η(Z)X − S(X, Z)Y

+ (n − 1)g(X, Z)Y − 2(n − 1)η(X)η(Z)Y + 𝑔(𝑌, 𝑍)QX − (n − 1)g(Y, Z)X

+ 2(n − 1)g(Y, Z)η(X)ξ − 𝑔(𝑋, 𝑍)QY + (n − 1)g(X, Z)Y

− 2(n − 1)g(X, Z)η(Y)ξ} +
𝜏 − (𝑛 − 1)(𝑛 − 2)

(𝑛 − 1)(𝑛 − 2)
{𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌} 

halini alır. Yukarıdaki denklemde gerekli düzenlemeler yapıldığında        
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𝐶̅(𝑋, 𝑌)𝑍 = 𝐶(𝑋, 𝑌)𝑍 +
2

𝑛 − 2
{𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌 + 𝜂(𝑋)𝜂(𝑍)𝑌 − 𝜂(𝑌)𝜂(𝑍)𝑋}                   

−
2(𝑛 − 1)

(𝑛 − 2)
{𝑔(𝑌, 𝑍)𝜂(𝑋)𝜉 − 𝑔(𝑋, 𝑍)𝜂(𝑌)𝜉} 

bulunur. Benzer şekilde (1.1.8) denklemi göz önünde bulunduruluğunda ∇̅ ye göre quasi-

konformal eğrilik tensörü 

𝐶̌̅(𝑋, 𝑌)𝑍 = 𝑎𝑅̅(𝑋, 𝑌)𝑍 + 𝑏[𝑆̅(𝑌, 𝑍)𝑋 − 𝑆̅(𝑋, 𝑍)𝑌 + 𝑔(𝑌, 𝑍)𝑄̅𝑋 − 𝑔(𝑋, 𝑍)𝑄̅𝑌] 

              −
𝜏̅

𝑛
{

𝑎

𝑛 − 1
+ 2𝑏} [𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌]                

biçimindedir. (3.1.1), (3.1.6), (3.1.7) ve (3.1.8) denklemleri kullanılarak bu denklem 

𝐶̌̅(𝑋, 𝑌)𝑍 = 𝑎{𝑅(𝑋, 𝑌)𝑍 − 𝑔(𝑌, 𝑍)𝑋 + 𝑔(𝑋, 𝑍)𝑌 + 2{𝜂(𝑌)𝜂(𝑍)𝑋 − 𝜂(𝑋)𝜂(𝑍)𝑌}}

+ 𝑏[S(Y, Z)X − (n − 1)g(Y, Z)X + 2(n − 1)η(Y)η(Z)X − S(X, Z)Y

+ (n − 1)g(X, Z)Y − 2(n − 1)η(X)η(Z)Y + 𝑔(𝑌, 𝑍)QX − (n − 1)g(Y, Z)X

+ 2(n − 1)g(Y, Z)η(X)ξ − 𝑔(𝑋, 𝑍)QY + (n − 1)g(X, Z)Y

− 2(n − 1)g(X, Z)η(Y)ξ] 

 −
𝜏 − (𝑛 − 1)(𝑛 − 2)

𝑛
{

𝑎

𝑛 − 1
+ 2𝑏} [𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌],                

olarak yazılır. Son olarak gerekli sadeleştirmeler yapıldığında (3.1.10) denklemi elde edilir. 

Teorem 3.1.1.: Bir 𝑛 = 2𝑚 + 1-boyutlu Kenmotsu manifoldu M olsun. 𝑀 üzerinde  

(𝑀, 𝐼)  yarı-simetrik metrik olmayan koneksiyonu ∇̅ ye göre Weyl konformal eğrilik tensörü C̅ 

olmak üzere, manifold bu koneksiyona bağlı düzlemsel konformal ise, Levi-Civita 

koneksiyonuna göre 𝜂-Einstein manifolddur (Yıldız ve Çetinkaya, 2013).   

İspat: Kabul edelim ki  (𝑀, 𝐼)  koneksiyonu  ile verilen  Kenmotsu manifoldu 

düzlemsel konformal olsun, yani Teorem 1.1.1 gereği 

𝐶̅(𝑋, 𝑌)𝑍 = 0, 

dır. Bu takdirde (3.1.9) denklemi bir 𝑊 ∈ 𝜒(𝑀) ile iç çarpımı alındığında 
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𝑔(𝐶(𝑋, 𝑌)𝑍, 𝑊)

+
2

𝑛 − 2
[𝑔(𝑋, 𝑍)𝑔(𝑌, 𝑊) − 𝑔(𝑌, 𝑍)𝑔(𝑋, 𝑊) + 𝑔(𝑋, 𝑊)𝜂(𝑌)𝜂(𝑍)

− 𝑔(𝑌, 𝑊)𝜂(𝑋)𝜂(𝑍)} +
2(𝑛 − 1)

𝑛 − 2
{𝑔(𝑌, 𝑍)𝜂(𝑋)𝜂(𝑊) − 𝑔(𝑋, 𝑍)𝜂(𝑌)𝜂(𝑊)}

= 0, 

yazılabilir. Burada  𝑊 = 𝜉 için son denklem 

𝜂(𝐶(𝑋, 𝑌)𝑍) = 2[𝑔(𝑌, 𝑍)𝜂(𝑋) − 𝑔(𝑋, 𝑍)𝜂(𝑌)},                          (3.1.11) 

halini alır. (3.1.11) denkleminde (1.1.7) ifadesi kullanıldığında 

𝜂(𝑅(𝑋, 𝑌)𝑍) −
1

𝑛 − 2
{𝑆(𝑌, 𝑍)𝜂(𝑋) − 𝑆(𝑋, 𝑍)𝜂(𝑌)}

+ (
𝜏

(𝑛 − 1)(𝑛 − 2)
+

(𝑛 − 1)

𝑛 − 2
− 2) [𝑔(𝑌, 𝑍)𝜂(𝑋) − 𝑔(𝑋, 𝑍)𝜂(𝑌)} = 0, 

bulunur. Bu denklemde 𝑋 = 𝜉 alınırsa 

𝜂(𝑅(𝜉, 𝑌)𝑍) −
1

𝑛 − 2
{𝑆(𝑌, 𝑍) − 𝑆(𝜉, 𝑍)𝜂(𝑌)}

+ (
𝜏

(𝑛 − 1)(𝑛 − 2)
+

(𝑛 − 1)

𝑛 − 2
− 2) [𝑔(𝑌, 𝑍) − 𝜂(𝑍)𝜂(𝑌)} = 0, 

elde edilir. Yukarıdaki denklemde (1.2.21) ve  (1.2.22) ifadeleri  kullanılırsa 

𝑆(𝑌, 𝑍) = {3 − 2(𝑛 − 1) +
𝜏

𝑛 − 1
} 𝑔(𝑌, 𝑍) + {𝑛 − 1 −

𝜏

𝑛 − 1
− 3} 𝜂(𝑍)𝜂(𝑌), 

bulunur, ki bu da manifoldun 𝜂-Einstein manifold olduğunu gösterir.  

Teorem 3.1.2.: Bir 𝑛 = 2𝑚 + 1-boyutlu Kenmotsu manifoldu M olsun. M  aynı 

zamanda  Levi-Civita koneksiyonu  ya  ve (𝑀, 𝐼)  yarı-simetrik metrik olmayan koneksiyonu 

∇̅ ye göre düzlemsel ξ-konformal şartını sağlar (Yıldız ve Çetinkaya, 2013).   

İspat: C ve C̅ , bir 𝑛 = 2𝑚 + 1-boyutlu Kenmotsu manifoldu üzerinde sırasıyla Levi-

Civita koneksiyonu  ya  ve (𝑀, 𝐼) yarı-simetrik metrik olmayan koneksiyonu ∇̅ ye göre Weyl 

konformal eğrilik tensörleri olsun. (3.1.9) denkleminde Z yerine 𝜉 konulduğunda, 

𝐶̅(𝑋, 𝑌)𝜉 = 𝐶(𝑋, 𝑌)𝜉 +
2

𝑛 − 2
{𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌 + 𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋} −

2(𝑛 − 1)

(𝑛 − 2)
{𝜂(𝑌)𝜂(𝑋)𝜉

− 𝜂(𝑋)𝜂(𝑌)𝜉}, 
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bulunur. Burada gerekli sadeleştirmeler yapılırsa 

𝐶̅(𝑋, 𝑌)𝜉 = 𝐶(𝑋, 𝑌)𝜉 = 0, 

elde edilir ki buradan (3.1) gereği manifoldumuzun hem  hem de ∇̅ koneksiyonlarına göre 

düzlemsel ξ-konformal olduğu görülür. 

Teorem 3.1.3.: Bir 𝑛 = 2𝑚 + 1-boyutlu Kenmotsu manifoldu 𝑀 olsun. M üzerinde  

(𝑀, 𝐼) yarı-simetrik metrik olmayan koneksiyonu ∇̅ ye göre quasi-konformal eğrilik tensörü 𝐶̌̅ 

olmak üzere, manifold bu koneksiyona bağlı düzlemsel quasi-konformal ise, Levi-Civita 

koneksiyonuna göre 𝜂-Einstein manifolddur (Yıldız ve Çetinkaya,2013).   

İspat: Kabul edelim ki  (𝑀, 𝐼) koneksiyonu ile verilen  bir Kenmotsu manifoldu 

düzlemsel quasi-konformal  olsun, yani Tanım 1.1.18 gereği 

𝐶̌̅(𝑋, 𝑌)𝑍 = 0, 

şartı sağlansın. 

Öncelikle  (3.1.10) denkleminin her iki tarafını bir 𝑊 ∈ 𝜒(𝑀) vektör alanı ile iç 

çarpımını alalım: 

𝑔 (𝐶̌̅(𝑋, 𝑌)𝑍, 𝑊)

= 𝑔(𝐶̌(𝑋, 𝑌)𝑍, 𝑊) + 2(𝑛 − 1)𝑏{𝑔(𝑌, 𝑍)𝜂(𝑋)𝜂(𝑊) − 𝑔(𝑋, 𝑍)𝜂(𝑌)𝜂(𝑊)}

+ 2[𝑎 + 2(𝑛 − 1)𝑏{𝑔(𝑋, 𝑊)𝜂(𝑌)𝜂(𝑍) − 𝑔(𝑌, 𝑊)𝜂(𝑋)𝜂(𝑍)}

+ {
(𝑛 − 1)(𝑛 − 2)

𝑛
(

𝑎

𝑛 − 1
+ 2𝑏) − 𝑎 − 2(𝑛 − 1)𝑏} [𝑔(𝑌, 𝑍)𝑔(𝑋, 𝑊)

− 𝑔(𝑋, 𝑍)𝑔(𝑌, 𝑊)}, 

Yukarıdaki denklemde 𝑊 = 𝜉 alındığında ve ∇̅  ye göre  düzlemsel quasi-konformal 

olma şartı  kullanıldığında 

𝜂 (𝐶̌̅(𝑋, 𝑌)𝑍) = −2(𝑛 − 1)𝑏{𝑔(𝑌, 𝑍)𝜂(𝑋) − 𝑔(𝑋, 𝑍)𝜂(𝑌)}

− {
(𝑛 − 1)(𝑛 − 2)

𝑛
(

𝑎

𝑛 − 1
+ 2𝑏) − 𝑎 − 2(𝑛 − 1)𝑏} [𝑔(𝑌, 𝑍)𝜂(𝑋)

− 𝑔(𝑋, 𝑍)𝜂(𝑌)}, 

bulunur.  Bu denklemde X yerine  𝜉 konulursa 
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𝜂(𝐶́(𝜉, 𝑌)𝑍)

= −2(𝑛 − 1)𝑏{𝑔(𝑌, 𝑍) − 𝜂(𝑋)𝜂(𝑌)}

− {
(𝑛 − 1)(𝑛 − 2)

𝑛
(

𝑎

𝑛 − 1
+ 2𝑏) − 𝑎 − 2(𝑛 − 1)𝑏} {𝑔(𝑌, 𝑍)

− 𝑔(𝑋, 𝑍)𝜂(𝑌)},                                                                                                                                  (3.1.12) 

elde edilir. (3.1.12) eşitliği (1.1.11), (1.2.28) ve (1.2.29) ifadeleri yardımıyla  

𝑏𝑆(𝑌, 𝑍) + {
(𝑛 − 1)(𝑛 − 2) − 𝜏

𝑛
(

𝑎

𝑛 − 1
+ 2𝑏) − 2𝑎 − (𝑛 − 1)𝑏} 𝑔(𝑌, 𝑍)

− {
(𝑛 − 1)(𝑛 − 2) − 𝜏

𝑛
(

𝑎

𝑛 − 1
+ 2𝑏) − 2𝑎 − 2(𝑛 − 1)𝑏} 𝜂(𝑍)𝜂(𝑌) = 0 

haline dönüşür. Son olarak yukarıdaki denklemin her iki tarafı da 𝑏 ile bölünüp 𝑆(𝑌, 𝑍)  yalnız 

bırakılırsa 

𝑆(𝑌, 𝑍) = −
1

𝑏
{

(𝑛 − 1)(𝑛 − 2) − 𝜏

𝑛
(

𝑎

𝑛 − 1
+ 2𝑏) − 2𝑎 − (𝑛 − 1)𝑏} 𝑔(𝑌, 𝑍)

+
1

𝑏
{

(𝑛 − 1)(𝑛 − 2) − 𝜏

𝑛
(

𝑎

𝑛 − 1
+ 2𝑏) − 2𝑎 − 2(𝑛 − 1)𝑏} 𝜂(𝑍)𝜂(𝑌), 

bulunur, ki bu da manifoldun ∇  koneksiyonuna göre 𝜂-Einstein manifold olduğunu gösterir. 

Teorem 3.1.4.:  Bir 𝑛 = 2𝑚 + 1 −boyutlu Kenmotsu manifoldu 𝑀 olsun. 𝑀 aynı 

zamanda  Levi-Civita koneksiyonu  ya  ve (𝑀, 𝐼) yarı-simetrik metrik olmayan koneksiyonu ∇̅ 

ye göre düzlemsel 𝜉-quasi konformaldir gerek ve yeter şart  𝑎 = 2(1 − 𝑛)𝑏  dır (Yıldız ve 

Çetinkaya, 2013).   

İspat:  M,  𝑛-boyutlu Kenmotsu manifoldu aynı zamanda  Levi-Civita koneksiyonu  

ya  ve (𝑀, 𝐼)   yarı-simetrik metrik olmayan koneksiyonu ∇̅ ye göre düzlemsel 𝜉-quasi 

konformal olsun, yani Tanım 3.2 gereği 

𝐶̌̅(𝑋, 𝑌)𝜉 = 𝐶̌(𝑋, 𝑌)𝜉 = 0,                                                          (3.1.13) 

sağlansın. (3.1.10) denkleminde 𝑍 = 𝜉  alınırsa 
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𝐶̌̅(𝑋, 𝑌)𝜉 = 𝐶̌(𝑋, 𝑌)𝜉

+ {
(𝑛 − 1)(𝑛 − 2)

𝑛
(

𝑎

𝑛 − 1
+ 2𝑏) − 𝑎 − 2(𝑛 − 1)𝑏} {𝜂(𝑌)𝑋

− 𝜂(𝑋)𝑌}                 + 2(𝑛 − 1)𝑏{𝜂(𝑌)𝜂(𝑋)𝜉 − 𝜂(𝑌)𝜂(𝑌)𝜉} + 2{𝑎

+ 2(𝑛 − 1)𝑏}(𝜂(𝑌)𝑋

− 𝜂(𝑋)𝑌),                                                                                                                   

yazılabilir. Burada (3.1.13) ifadesi gereğince ve gerekli düzenlemeler yapıldığında 

2
(𝑛 − 1)

𝑛
(𝑎 + 2(𝑛 − 1)𝑏)(𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌) = 0, 

bulunur. Böylece kolayca 𝑎 = 2(1 − 𝑛)𝑏 sağlandığı görülür. Tersi de benzer şekilde 

bulunabilir. 

Teorem 3.1.5.: Bir 𝑛 = 2𝑚 + 1-boyutlu Kenmotsu manifoldu 𝑀 olsun. 𝑀 üzerinde  

(𝑀, 𝐼) yarı-simetrik metrik olmayan koneksiyonu ∇̅ ye göre eğrilik tensörü R̅ olmak üzere,  

𝑅̅(𝑋, 𝑌). 𝑅̅ =0 şartını sağlar ise, 𝐻𝑛(−1) hiperbolik uzayına lokal olarak izometriktir (Yıldız ve 

Çetinkaya, 2013).   

İspat:  𝑀 𝑛-boyutlu Kenmotsu manifoldu olsun. (𝑅̅. 𝑅̅) = 0  eşitliği 𝑋, 𝑌, 𝑍, 𝑈, 𝑊 ∈

𝜒(𝑀) için  

(𝑅̅(𝑋, 𝑌). 𝑅̅)(𝑍, 𝑈)𝑊

= 𝑅̅(𝑋, 𝑌). 𝑅̅(𝑍, 𝑈)𝑊 − 𝑅̅(𝑅̅(𝑋, 𝑌)𝑍, 𝑈)𝑊 − 𝑅̅(𝑍, 𝑅̅(𝑋, 𝑌)𝑈)𝑊

− 𝑅̅(𝑍, 𝑈)𝑅̅(𝑋, 𝑌)𝑊 = 0, 

şeklinde yazılır. Bu denklemde 𝑋 = 𝜉 yazıldığında 

(𝑅̅(𝜉, 𝑌). 𝑅̅)(𝑍, 𝑈)𝑊

= 𝑅̅(𝜉, 𝑌). 𝑅̅(𝑍, 𝑈)𝑊 − 𝑅̅(𝑅̅(𝜉, 𝑌)𝑍, 𝑈)𝑊 − 𝑅̅(𝑍, 𝑅̅(𝜉, 𝑌)𝑈)𝑊

− 𝑅̅(𝑍, 𝑈)𝑅̅(𝜉, 𝑌)𝑊 = 0, 

olur. Yukarıda (3.1.2) eşitliği kullanıldığında 

𝑔(𝑌, 𝑅̅(𝑍, 𝑈)𝑊) − 𝜂(𝑅̅(𝑍, 𝑈)𝑊)𝜂(𝑌) − 𝑔(𝑌, 𝑍)𝜂(𝑅̅(𝜉, 𝑈)𝑊) + 𝜂(𝑌)𝜂(𝑍)𝜂(𝑅̅(𝜉, 𝑈)𝑊)

+ 𝑔(𝑌, 𝑈)𝜂(𝑅̅(𝑍, 𝜉)𝑊) − 𝜂(𝑌)𝜂(𝑈)𝜂(𝑅̅(𝑍, 𝜉)𝑊) = 0, 

bulunur ki tekrardan (3.1.2) denklemi son denklemde yerine konulduğunda 
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𝑔(𝑌, 𝑅̅(𝑍, 𝑈)𝑊) − 𝜂(𝑅̅(𝑍, 𝑈)𝑊)𝜂(𝑌) + 2𝑔(𝑌, 𝑍)𝑔(𝑈, 𝑊) − 2𝑔(𝑌, 𝑍)𝜂(𝑈)𝜂(𝑊)

− 2𝑔(𝑈, 𝑊)𝜂(𝑌)𝜂(𝑍) − 2𝑔(𝑌, 𝑈)𝑔(𝑍, 𝑊) + 2𝑔(𝑌, 𝑈)𝜂(𝑊)𝜂(𝑍)

+ 2𝑔(𝑍, 𝑊)𝜂(𝑈)𝜂(𝑌)

= 0,                                                                                                                       (3.1.14) 

elde edilir. Son olarak  (3.1.14) denkleminde gerekli düzenlemeler yapıldığında 

𝑔(𝑌, 𝑅(𝑍, 𝑈)𝑊) = 𝑔(𝑍, 𝑊)𝑔(𝑈, 𝑌) − 𝑔(𝑈, 𝑊)𝑔(𝑍, 𝑌),                            (3.1.15)  

sonucuna ulaşılır. (3.1.15) denklemi de bize manifoldun -1 sabit eğrilikli olduğunu gösterir. 

Böylece 𝑀 manifoldu 𝐻𝑛(−1) hiperbolik uzayına lokal olarak izometriktir. 

Teorem 3.1.6.: 𝑛 = 2𝑚 + 1-boyutlu bir Kenmotsu manifoldu 𝑀 üzerinde (𝑀, 𝐼) yarı-

simetrik metrik olmayan  ∇̅ koneksiyonuna göre  𝑅̅(𝑋, 𝑌). 𝑅 =0 şartını sağlar ise, manifold 𝜂-

Einstein manifolddur (Yıldız ve Çetinkaya, 2013).   

İspat : 𝑀 𝑛-boyutlu Kenmotsu manifoldu olsun. (𝑅̅. 𝑅) = 0  eşitliği 𝑋, 𝑌, 𝑍, 𝑈, 𝑊 ∈

𝜒(𝑀) için 

(𝑅̅(𝑋, 𝑌). 𝑅)(𝑍, 𝑈)𝑊

= 𝑅̅(𝑋, 𝑌). 𝑅(𝑍, 𝑈)𝑊 − 𝑅(𝑅̅(𝑋, 𝑌)𝑍, 𝑈)𝑊 − 𝑅(𝑍, 𝑅̅(𝑋, 𝑌)𝑈)𝑊

− 𝑅(𝑍, 𝑈)𝑅̅(𝑋, 𝑌)𝑊 = 0, 

yazılabilir. Bu denklemde 𝑋 = 𝜉 alalım. Bu durumda 

(𝑅̅(𝜉, 𝑌). 𝑅)(𝑍, 𝑈)𝑊

= 𝑅̅(𝜉, 𝑌). 𝑅(𝑍, 𝑈)𝑊 − 𝑅(𝑅̅(𝜉, 𝑌)𝑍, 𝑈)𝑊 − 𝑅(𝑍, 𝑅̅(𝜉, 𝑌)𝑈)𝑊

− 𝑅(𝑍, 𝑈)𝑅̅(𝜉, 𝑌)𝑊 = 0, 

olur. Burada (3.1.2) denklemi kullanıldığında 

𝑅(𝜉, 𝑌)𝑅(𝑍, 𝑈)𝑊 − 𝜂(𝑅(𝑍, 𝑈)𝑊)𝑌 − 𝑔(𝑌, 𝑅(𝑍, 𝑈)𝑊)𝜉 + 2𝜂(𝑅(𝑍, 𝑈)𝑊)𝜉

− 𝑅(𝑅(𝜉, 𝑌)𝑍, 𝑈)𝑊 + 𝜂(𝑍)𝑅(𝑌, 𝑈)𝑊 + {𝑔(𝑌, 𝑍) − 2𝜂(𝑌)𝜂(𝑍)}𝑅(𝜉, 𝑈)𝑊

− 𝑅(𝑍, 𝑅(𝜉, 𝑌)𝑈)𝑊 + 𝜂(𝑈)𝑅(𝑍, 𝑌)𝑊 − {𝑔(𝑌, 𝑈) − 2𝜂(𝑌)𝜂(𝑈)}𝑅(𝜉, 𝑍)𝑊

− 𝑅(𝑍, 𝑈)𝑅(𝜉, 𝑌)𝑊 + 𝜂(𝑊)𝑅(𝑍, 𝑈)𝑌 + {𝑔(𝑌, 𝑊) − 2𝜂(𝑌)𝜂(𝑊)}𝑅(𝑍, 𝑈)𝜉

= 0, 

yazılabilir.(1.2.21) denklemi yardımıyla yukarıda denklem 
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−𝑔(𝑌, 𝑅(𝑍, 𝑈)𝑊) − 𝑔(𝑌, 𝑍)𝑔(𝑈, 𝑊) + 𝑔(𝑌, 𝑍)𝜂(𝑈)𝜂(𝑊) + 𝑔(𝑌, 𝑈)𝑔(𝑍, 𝑊)

− 𝑔(𝑌, 𝑈)𝜂(𝑍)𝜂(𝑊)

= 0                                                                                                                                                   (3.1.16) 

halini alır. (3.1.16) da 𝑈 = 𝑊 = 𝑒𝑖 alınırsa 

∑{𝑔(𝑌, 𝑅(𝑍, 𝑒𝑖)𝑒𝑖) − 𝑔(𝑌, 𝑍)𝑔(𝑒𝑖, 𝑒𝑖) + 𝑔(𝑌, 𝑍)𝜂(𝑒𝑖)𝜂(𝑒𝑖) + 𝑔(𝑌, 𝑒𝑖)𝑔(𝑍, 𝑒𝑖)

𝑛

𝑖=1

− 𝑔(𝑌, 𝑒𝑖)𝜂(𝑍)𝜂(𝑒𝑖)} = 0, 

elde edilir. Burada gerekli düzenlemeler yapıldığında 

𝑆(𝑌, 𝑍) = (2 − 𝑛)𝑔(𝑌, 𝑍) − 𝜂(𝑌)𝜂(𝑍) 

bulunur  ki, bu da manifoldun ∇ koneksiyonuna göre 𝜂-Einstein manifold olduğunu gösterir. 

Teorem 3.1.7.: Bir 𝑛 = 2𝑚 + 1-boyutlu Kenmotsu manifoldu 𝑀  olsun. 𝑀, (𝑀, 𝐼) 

yarı-simetrik metrik olmayan koneksiyonu  ∇̅  ye göre  φ-simetrik manifold  ise, manifold 𝜂-

Einstein manifolddur (Yıldız ve Çetinkaya, 2013).   

İspat: 𝑀 𝑛 = 2𝑚 + 1 -boyutlu  Kenmotsu manifoldu olmak üzere ∇̅ ye bağlı 𝜑-

simetrik olarak verildiğinden Tanım 1.1.23 gereği  

𝜑2((∇̅𝑊𝑅̅)(𝑋, 𝑌)𝑍) = 0, 

şartını sağlayacaktır. (1.2.1) yardımıyla yukarıdaki denklem yerine 

𝜑2((∇̅𝑊𝑅̅)(𝑋, 𝑌)𝑍) = −(∇̅𝑊𝑅̅)(𝑋, 𝑌)𝑍 + 𝜂((∇̅𝑊𝑅̅)(𝑋, 𝑌)𝑍)𝜉 = 0, 

yazılabilir. Ayrıca verilen koneksiyon özellikleri gereği  

(∇̅𝑊𝑅̅)(𝑋, 𝑌)𝑍 = ∇̅𝑊𝑅̅(𝑋, 𝑌)𝑍 − 𝑅̅(∇̅𝑊𝑋, 𝑌)𝑍 − 𝑅̅(𝑋, ∇̅𝑊𝑌)𝑍 − 𝑅̅(𝑋, 𝑌)∇̅𝑊𝑍,             (3.1.17)  

olacağı aşikardır. Şimdi yukarıdaki denklemin teker teker terimlerini  (1.3.1) denklemi ve (𝑀, 𝐼) 

koneksiyonu yardımıyla bulalım. 
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∇𝑊𝑅̅(𝑋, 𝑌)𝑍 = ∇𝑊𝑅(𝑋, 𝑌)𝑍 + 𝑔(∇𝑊𝑋, 𝑍)𝑌 + 𝑔(𝑋, ∇𝑊𝑍)𝑌 + 𝑔(𝑋, 𝑍)∇𝑊𝑌 − 𝑔(∇𝑊𝑌, 𝑍)𝑋

− 𝑔(𝑌, ∇𝑊𝑍)𝑋 − 𝑔(𝑌, 𝑍)∇𝑊𝑋 + 2𝑔(𝑌, 𝑊)𝜂(𝑍)𝑋 − 4𝜂(𝑌)𝜂(𝑍)𝜂(𝑊)𝑋

+ 2𝜂(∇𝑊𝑌)𝜂(𝑍)𝑋 + 2𝑔(𝑊, 𝑍)𝜂(𝑌)𝑋 + 2𝜂(∇𝑊𝑍)𝜂(𝑌)𝑋 + 2𝜂(𝑍)𝜂(𝑌)∇𝑊𝑋

− 2𝑔(𝑊, 𝑋)𝜂(𝑍)𝑌 + 4𝜂(𝑋)𝜂(𝑍)𝜂(𝑊)𝑌 − 2𝜂(∇𝑊𝑍)𝜂(𝑋)𝑌 − 2𝑔(𝑊, 𝑍)𝜂(𝑋)𝑌

− 2𝜂(∇𝑊𝑍)𝜂(𝑋)𝑌

− 2𝜂(𝑍)𝜂(𝑋)∇𝑊𝑌,                                                                                                (3.1.18) 

𝑅̅(∇𝑊𝑋, 𝑌)𝑍

= 𝑅(∇𝑊𝑋, 𝑌)𝑍 + 𝑔(∇𝑊𝑋, 𝑍)𝑌 − 𝑔(𝑌, 𝑍)∇𝑊𝑋 + 2𝜂(𝑍)𝜂(𝑌)∇𝑊𝑋 − 2𝜂(∇𝑊𝑋)𝜂(𝑍)𝑌

+ 𝜂(𝑋)𝑅(𝑊, 𝑌)𝑍 + 𝑔(𝑊, 𝑍)𝜂(𝑋)𝑌 − 𝑔(𝑌, 𝑍)𝜂(𝑋)𝑊 + 2𝜂(𝑋)𝜂(𝑍)𝜂(𝑌)𝑊

− 2𝜂(𝑋)𝜂(𝑊)𝜂(𝑍)𝑌,                                                                                                                         (3.1.19)  

𝑅̅(𝑋, ∇𝑊𝑌)𝑍

= 𝑅(𝑋, ∇𝑊𝑌)𝑍 + 𝑔(𝑋, 𝑍)∇𝑊𝑌 − 𝑔(∇𝑊𝑌, 𝑍)𝑋 + 2𝜂(∇𝑊𝑌)𝜂(𝑍)𝑋 + 2𝜂(𝑍)𝜂(𝑋)∇𝑊𝑌

+ 𝜂(𝑌)𝑅(𝑋, 𝑊)𝑍 + 𝑔(𝑍, 𝑋)𝜂(𝑌)𝑊 − 𝑔(𝑊, 𝑍)𝜂(𝑌)𝑋 + 2𝜂(𝑊)𝜂(𝑌)𝜂(𝑍)𝑋

− 2𝜂(𝑋)𝜂(𝑍)𝜂(𝑌)𝑊,                                                                                                                        (3.1.20) 

𝑅̅(𝑋, 𝑌)∇𝑊𝑍

= 𝑅(𝑋, 𝑌)∇𝑊𝑍 + 𝑔(𝑋, ∇𝑊𝑍)𝑌 − 𝑔(𝑌, ∇𝑊𝑍)𝑋 + 2𝜂(𝑌)𝜂(∇𝑊𝑍)𝑋 + 2𝜂(∇𝑊𝑍)𝜂(𝑋)𝑌

+ 𝜂(𝑍)𝑅(𝑋, 𝑌)𝑊 + 𝑔(𝑊, 𝑋)𝜂(𝑍)𝑌 − 𝑔(𝑊, 𝑌)𝜂(𝑍)𝑋 + 2𝜂(𝑊)𝜂(𝑌)𝜂(𝑍)𝑋

− 2𝜂(𝑋)𝜂(𝑍)𝜂(𝑊)𝑌,                                                                                                                        (3.1.21) 

(3.1.18)-(3.1.21) denklemleri (3.1.17) de kullanılırsa 

(∇𝑊𝑅)(𝑋, 𝑌)𝑍 + 3𝑔(𝑌, 𝑊)𝜂(𝑍)𝑋 − 8𝜂(𝑌)𝜂(𝑍)𝜂(𝑊)𝑋 + 3𝑔(𝑊, 𝑍)𝜂(𝑌)𝑋 − 3𝑔(𝑊, 𝑋)𝜂(𝑍)𝑌

+ 8𝜂(𝑋)𝜂(𝑍)𝜂(𝑊)𝑌 − 3𝑔(𝑊, 𝑍)𝜂(𝑋)𝑌 + 𝜂(𝑅(𝑋, 𝑌)𝑍)𝑊 − 𝜂(𝑋)𝑅(𝑊, 𝑌)𝑍

− 𝜂(𝑌)𝑅(𝑋, 𝑊)𝑍 − 𝜂(𝑍)𝑅(𝑋, 𝑌)𝑊

= 𝜂((∇𝑊𝑅)(𝑋, 𝑌)𝑍)𝜉 + 3𝑔(𝑌, 𝑊)𝜂(𝑍)𝜂(𝑋)𝜉 − 3𝑔(𝑊, 𝑋)𝜂(𝑍)𝜂(𝑌)𝜉

+ 𝜂(𝑅(𝑋, 𝑌)𝑍)𝜂(𝑊)𝜉 − 𝜂(𝑋)𝜂(𝑅(𝑊, 𝑌)𝑍)𝜉 − 𝜂(𝑌)𝜂(𝑅(𝑋, 𝑊)𝑍)𝜉

− 𝜂(𝑍)𝜂(𝑅(𝑋, 𝑌)𝑊)𝜉, 

elde edilir. Yukarıdaki denklemin her iki yanını bir 𝑈 vektör alanı ile iç çarpalım. Bu durumda 
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𝑔((∇𝑊𝑅)(𝑋, 𝑌)𝑍, 𝑈) + 3𝑔(𝑌, 𝑊)𝜂(𝑍)𝑔(𝑋, 𝑈) − 8𝜂(𝑌)𝜂(𝑍)𝜂(𝑊)𝑔(𝑋, 𝑈)

+ 3𝑔(𝑊, 𝑍)𝜂(𝑌)𝑔(𝑋, 𝑈) − 3𝑔(𝑊, 𝑋)𝜂(𝑍)𝑔(𝑌, 𝑈) + 8𝜂(𝑋)𝜂(𝑍)𝜂(𝑊)𝑔(𝑌, 𝑈)

− 3𝑔(𝑊, 𝑍)𝜂(𝑋)𝑔(𝑌, 𝑈) + 𝜂(𝑅(𝑋, 𝑌)𝑍)𝑔(𝑊, 𝑈) − 𝜂(𝑋)𝑔(𝑅(𝑊, 𝑌)𝑍, 𝑈)

− 𝜂(𝑌)𝑔(𝑅(𝑋, 𝑊)𝑍, 𝑈) − 𝜂(𝑍)𝑔(𝑅(𝑋, 𝑌)𝑊, 𝑈)

= 𝜂((∇𝑊𝑅)(𝑋, 𝑌)𝑍)𝜂(𝑈) + 3𝑔(𝑌, 𝑊)𝜂(𝑍)𝜂(𝑋)𝜂(𝑈)

− 3𝑔(𝑊, 𝑋)𝜂(𝑍)𝜂(𝑌)𝜂(𝑈) + 𝜂(𝑅(𝑋, 𝑌)𝑍)𝜂(𝑊)𝜂(𝑈)

− 𝜂(𝑋)𝜂(𝑅(𝑊, 𝑌)𝑍)𝜂(𝑈) − 𝜂(𝑌)𝜂(𝑅(𝑋, 𝑊)𝑍)𝜂(𝑈)

− 𝜂(𝑍)𝜂(𝑅(𝑋, 𝑌)𝑊)𝜂(𝑈), 

bulunur. Son  denklemde 𝑋 ve 𝑈 ya göre kontraksiyon yapıldığında 

(∇𝑊𝑆)(𝑌, 𝑍) + 3𝑛𝑔(𝑌, 𝑊)𝜂(𝑍) − 8𝑛𝜂(𝑌)𝜂(𝑍)𝜂(𝑊) + 3𝑛𝑔(𝑊, 𝑍)𝜂(𝑌) − 3𝑔(𝑊, 𝑌)𝜂(𝑍)

+ 8𝜂(𝑌)𝜂(𝑍)𝜂(𝑊) − 3𝑔(𝑊, 𝑍)𝜂(𝑌) + ∑ 𝜂(𝑅(𝑒𝑖, 𝑌)𝑍)𝑔(𝑊, 𝑒𝑖)

𝑛

𝑖=1

− 𝜂(𝑅(𝑊, 𝑌)𝑍) − 𝜂(𝑌)𝑆(𝑊, 𝑍) − 𝜂(𝑍)𝑆(𝑌, 𝑊))

= ∑ 𝜂((∇𝑊𝑅)(𝑒𝑖, 𝑌)𝑍)𝜂(𝑒𝑖)

𝑛

𝑖=1

+ 3𝑔(𝑌, 𝑊)𝜂(𝑍) − 3𝜂(𝑍)𝜂(𝑌)𝜂(𝑊)

+ ∑ 𝜂(𝑅(𝑒𝑖, 𝑌)𝑍)𝜂(𝑊)𝜂(𝑒𝑖)

𝑛

𝑖=1

− 𝜂(𝑅(𝑊, 𝑌)𝑍) − 𝜂(𝑌) ∑ 𝜂(𝑅(𝑒𝑖 , 𝑊)𝑍)𝜂(𝑒𝑖)

𝑛

𝑖=1

− 𝜂(𝑍) ∑ 𝜂(𝑅(𝑒𝑖, 𝑌)𝑊)𝜂(𝑒𝑖)

𝑛

𝑖=1

, 

yazılabilir. 𝑍 = 𝜉 için yukarıdaki denklem  

(∇𝑊𝑆)(𝑌, 𝜉) + 3𝑛𝑔(𝑌, 𝑊) − 8𝑛𝜂(𝑌)𝜂(𝑊) + 3𝑛𝜂(𝑊)𝜂(𝑌) + (3𝑛 − 3)𝑔(𝑊, 𝑌) 
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         +(8 − 8𝑛)𝜂(𝑌)𝜂(𝑊) + ∑ 𝜂(𝑅(𝑒𝑖, 𝑌)𝜉)𝑔(𝑊, 𝑒𝑖)

𝑛

𝑖=1

− 𝜂(𝑅(𝑊, 𝑌)𝜉)

− 𝜂(𝑌)𝑆(𝑊, 𝜉)𝑆(𝑌, 𝑊)

= ∑ 𝜂((∇𝑊𝑅)(𝑒𝑖, 𝑌)𝜉)𝜂(𝑒𝑖)

𝑛

𝑖=1

+ 3𝑔(𝑌, 𝑊) − 3𝜂(𝑌)𝜂(𝑊)

+ ∑ 𝜂(𝑅(𝑒𝑖, 𝑌)𝜉)𝜂(𝑊)𝜂(𝑒𝑖)

𝑛

𝑖=1

− 𝜂(𝑅(𝑊, 𝑌)𝜉) − 𝜂(𝑌) ∑ 𝜂(𝑅(𝑒𝑖 , 𝑊)𝜉)𝜂(𝑒𝑖)

𝑛

𝑖=1

− ∑ 𝜂(𝑅(𝑒𝑖, 𝑌)𝑊)𝜂(𝑒𝑖)

𝑛

𝑖=1

,  

halinir alır ki gerekli sadeleştirmeler yapıldığında 

𝑆(𝑌, 𝑊) =
3𝑛 − 5

2
𝑔(𝑌, 𝑊) +

7 − 5𝑛

2
𝜂(𝑌)𝜂(𝑊), 

sonucuna ulaşılır. Bu da bize manifoldun ∇ koneksiyonuna göre 𝜂-Einstein manifold 

olduğunu gösterir. 

Teorem 3.1.8.: Bir  𝑛 = 2𝑚 + 1-boyutlu Kenmotsu manifoldu 𝑀 olsun. 𝑀, (𝑀, 𝐼) yarı-

simetrik metrik olmayan ∇̅ koneksiyonuna göre düzlemsel 𝜑-konformal ise, manifold 𝜂-Einstein 

manifolddur (Yıldız ve Çetinkaya, 2013).  

İspat: (𝑀, 𝐼)  koneksiyonu ile verilen bir Kenmotsu manifoldu düzlemsel φ-konformal 

olsun, yani Tanım 1.1.25 gereği 

𝑔(𝐶̅(𝜑𝑋, 𝜑𝑌)𝜑𝑍, 𝜑𝑊) = 0, 

sağlansın. Bu durumda (3.1.9) yardımıyla 

𝑔(𝐶̅(𝜑𝑋, 𝜑𝑌)𝜑𝑍, 𝜑𝑊)

= 𝑔(𝑅̅(𝜑𝑋, 𝜑𝑌)𝜑𝑍, 𝜑𝑊)

−
1

𝑛 − 2
{𝑆̅(𝜑𝑌, 𝜑𝑍)𝑔(𝜑𝑋, 𝜑𝑊) − 𝑆̅(𝜑𝑋, 𝜑𝑍)𝑔(𝜑𝑌, 𝜑𝑊)

+ 𝑆̅(𝜑𝑋, 𝜑𝑊)𝑔(𝜑𝑌, 𝜑𝑍) − 𝑆̅(𝜑𝑌, 𝜑𝑊)𝑔(𝜑𝑋, 𝜑𝑍)}

+
𝜏̅

(𝑛 − 2)(𝑛 − 1)
{𝑔(𝜑𝑌, 𝜑𝑍)𝑔(𝜑𝑋, 𝜑𝑊) − 𝑔(𝜑𝑋, 𝜑𝑍)𝑔(𝜑𝑌, 𝜑𝑊)} = 0 

yani,  
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𝑔(𝑅(𝜑𝑋, 𝜑𝑌)𝜑𝑍, 𝜑𝑊) − 𝑔(𝜑𝑌, 𝜑𝑍)𝑔(𝜑𝑋, 𝜑𝑊) + 𝑔(𝜑𝑋, 𝜑𝑍)𝑔(𝜑𝑌, 𝜑𝑊)

=
1

𝑛 − 2
{𝑆(𝜑𝑌, 𝜑𝑍)𝑔(𝜑𝑋, 𝜑𝑊) − 𝑆(𝜑𝑋, 𝜑𝑍)𝑔(𝜑𝑌, 𝜑𝑊)

+ 𝑆(𝜑𝑋, 𝜑𝑊)𝑔(𝜑𝑌, 𝜑𝑍) − 𝑆(𝜑𝑌, 𝜑𝑊)𝑔(𝜑𝑋, 𝜑𝑍)}

+ {
𝜏

(𝑛 − 2)(𝑛 − 1)
+

4𝑛

𝑛 − 2
} {𝑔(𝜑𝑌, 𝜑𝑍)𝑔(𝜑𝑋, 𝜑𝑊)

− 𝑔(𝜑𝑋, 𝜑𝑍)𝑔(𝜑𝑌, 𝜑𝑊)}, 

yazılabilir. Son denklemde    𝑋 → 𝜑𝑋, 𝑌 → 𝜑𝑌, 𝑍 → 𝜑𝑍, 𝑊 → 𝜑𝑊 alınırsa 

𝑔(𝑅(𝑋, 𝑌)𝑍, 𝑊) + 𝑔(𝑅(𝑋, 𝑌)𝜉, 𝑍)𝜂(𝑊) − 𝑔(𝑅(𝑋, 𝑌)𝜉, 𝑊)𝜂(𝑍) + 𝑔(𝑅(𝜉, 𝑋)𝑍, 𝑊)𝜂(𝑌)

− 𝑔(𝑅(𝜉, 𝑋)𝜉, 𝑊)𝜂(𝑌)𝜂(𝑍) − 𝑔(𝑅(𝜉, 𝑋)𝑍, 𝜉)𝜂(𝑌)𝜂(𝑊)

− 𝑔(𝑅(𝜉, 𝑌)𝑍, 𝑊)𝜂(𝑋) + 𝑔(𝑅(𝜉, 𝑌)𝑍, 𝜉)𝜂(𝑋)𝜂(𝑊)

− 𝑔(𝑅(𝜉, 𝑌)𝜉, 𝑊)𝜂(𝑋)𝜂(𝑍) − 𝑔(𝜑𝑌, 𝜑𝑍)𝑔(𝜑𝑋, 𝜑𝑊) + 𝑔(𝑋, 𝑍)𝑔(𝑌, 𝑊)

− 𝑔(𝑋, 𝑍)𝜂(𝑌)𝜂(𝑊) − 𝑔(𝑌, 𝑊)𝜂(𝑋)𝜂(𝑍) − 𝑔(𝑌, 𝑍)𝑔(𝑋, 𝑊)

+ 𝑔(𝑌, 𝑍)𝜂(𝑋)𝜂(𝑊) + 𝑔(𝑋, 𝑊)𝜂(𝑌)𝜂(𝑍) 

                             =
1

𝑛 − 2
{𝑆(𝑌, 𝑍)𝑔(𝑋, 𝑊) − 𝑆(𝑋, 𝑍)𝑔(𝑌, 𝑊) + 𝑆(𝑋, 𝑊)𝑔(𝑌, 𝑍)

− 𝑆(𝑌, 𝑊)𝑔(𝑋, 𝑍) + 𝑆(𝑌, 𝑊)𝑔 − 𝑆(𝑋, 𝑊)𝑔(𝑌, 𝑍) − 𝑆(𝜑𝑋, 𝜑𝑍)𝑔(𝜑𝑌, 𝜑𝑊)

+ 𝑆(𝜑𝑋, 𝜑𝑊)𝑔(𝜑𝑌, 𝜑𝑍) − 𝑆(𝜑𝑌, 𝜑𝑊)𝑔(𝜑𝑋, 𝜑𝑍)}

+
𝑛 − 1

𝑛 − 2
{3𝑔(𝑋, 𝑊)𝜂(𝑌)𝜂(𝑍) − 2𝑔(𝑋, 𝑊)𝑔(𝑌, 𝑍) + 3𝑔(𝑌, 𝑍)𝜂(𝑋)𝜂(𝑊)

− 3𝑔(𝑌, 𝑊)𝜂(𝑋)𝜂(𝑍) − 2𝑔(𝑌, 𝑊)𝑔(𝑋, 𝑍) + 3𝑔(𝑋, 𝑍)𝜂(𝑌)𝜂(𝑊)}

+ {
𝜏

(𝑛 − 2)(𝑛 − 1)
}{𝑔(𝑋, 𝑊)𝑔(𝑌, 𝑍)

− 𝑔(𝑋, 𝑊)𝜂(𝑌)𝜂(𝑍)𝑔(𝜑𝑌, 𝜑𝑍)𝑔(𝜑𝑋, 𝜑𝑊) − 𝑔(𝜑𝑋, 𝜑𝑍)𝑔(𝜑𝑌, 𝜑𝑊)} 

bulunur. Burada 𝑋 ve 𝑊 ye göre kontraksiyon yapıldığında 

𝑆(𝑌, 𝑍) = {(𝑛 − 1)(5 − 2𝑛) + 𝜏 + (𝑛 − 1)(𝑛 − 2) + 𝜏̅
𝑛 − 2

𝑛 − 1
} 𝑔(𝑌, 𝑍)

+ {(𝑛 − 1)(−8 + 3𝑛) − 𝜏 − 2(𝑛 − 1)(𝑛 − 2) − 𝜏̅
𝑛 − 2

𝑛 − 1
} 𝜂(𝑌)𝜂(𝑍), 

yazılabilir. Manifold 𝜂-Einstein manifolddur.  

Teorem 3.1.9.: Bir 𝑛 = 2𝑚 + 1-boyutlu Kenmotsu manifoldu 𝑀 olsun. 𝑀, (𝑀, 𝐼) yarı-

simetrik metrik olmayan ∇̅  koneksiyonuna göre  𝜑-konformal simetrik manifold  ise, manifold 

𝜂-Einstein manifolddur. 
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İspat: 𝑀 𝑛 = 2𝑚 + 1-boyutlu  Kenmotsu manifoldu olmak üzere ∇̅ ye bağlı 𝜑-

konformal simetrik olarak verildiğinden Tanım 1.1.24 gereği  

𝜑2((∇̅𝑊𝐶̅)(𝑋, 𝑌)𝑍) = 0, 

şartını sağlayacaktır. (1.2.1) yardımıyla yukarıdaki denklem yerine 

𝜑2((∇̅𝑊𝐶̅)(𝑋, 𝑌)𝑍) = −(∇̅𝑊𝐶̅)(𝑋, 𝑌)𝑍 + 𝜂((∇̅𝑊𝐶̅)(𝑋, 𝑌)𝑍)𝜉 = 0, 

yazılabilir. Ayrıca  

(∇̅𝑊𝐶̅)(𝑋, 𝑌)𝑍 = ∇̅𝑊𝐶̅(𝑋, 𝑌)𝑍 − 𝐶̅(∇̅𝑊𝑋, 𝑌)𝑍 − 𝐶̅(𝑋, ∇̅𝑊𝑌)𝑍 − 𝐶̅(𝑋, 𝑌)∇̅𝑊𝑍, 

olacağı aşikardır. Buradan (𝑀, 𝐼) koneksiyonu ve (3.1.9) denklemi yardımıyla 

𝜑2((∇̅𝑊𝐶̅)(𝑋, 𝑌)𝑍)

= −∇𝑊𝐶(𝑋, 𝑌)𝑍 + 𝐶(∇𝑊𝑋, 𝑌)𝑍 + 𝐶(𝑋, ∇𝑊𝑌)𝑍 + 𝐶(𝑋, 𝑌)∇𝑊𝑍

+ 𝜂(𝑍)𝐶(𝑋, 𝑌)𝑊 + 𝜂(∇𝑊𝐶(𝑋, 𝑌)𝑍)𝜉 − 𝜂(𝐶(∇𝑊𝑋, 𝑌)𝑍)𝜉 − 𝜂(𝐶(𝑋, ∇𝑊𝑌)𝑍)𝜉

− 𝜂(𝐶(𝑋, 𝑌)∇𝑊𝑍)𝜉

−
2

𝑛 − 2
[4𝜂(𝑌)𝜂(𝑍)𝜂(𝑊)𝑋 − 4𝜂(𝑋)𝜂(𝑍)𝜂(𝑊)𝑌 − 2𝑔(𝑌, 𝑊)𝜂(𝑍)𝑋

+ 2𝑔(𝑊, 𝑋)𝜂(𝑍)𝑌 − 2𝑔(𝑊, 𝑍)𝜂(𝑌)𝑋 + 2𝑔(𝑊, 𝑍)𝜂(𝑋)𝑌

− 2𝑔(𝑊, 𝑋)𝜂(𝑍)𝜂(𝑌)𝜉 + 2𝑔(𝑊, 𝑌)𝜂(𝑌)𝜂(𝑋)𝜉}

+
2(1 − 𝑛)

𝑛 − 2
{3𝑔(𝑌, 𝑍)𝜂(𝑋)𝜂(𝑊)𝜉 − 3𝑔(𝑋, 𝑍)𝜂(𝑌)𝜂(𝑊)𝜉 + 2𝑔(𝑋, 𝑍)𝜂(𝑌)𝑊

− 2𝑔(𝑌, 𝑍)𝜂(𝑋)𝑊 − 𝑔(𝑌, 𝑍)𝜂(𝑋)𝜂(𝑊)𝜉 + 𝑔(𝑋, 𝑍)𝜂(𝑌)𝜂(𝑊)𝜉}

+
1

𝑛 − 2
[𝑆(𝑌, 𝑍)𝜂(𝑋)𝜂(𝑊)𝜉 − (𝑛 − 1)𝑔(𝑌, 𝑍)𝜂(𝑋)𝜂(𝑊)𝜉

− 𝑆(𝑋, 𝑍)𝜂(𝑌)𝜂(𝑊)𝜉 + (𝑛 − 1)𝑔(𝑋, 𝑍)𝜂(𝑌)𝜂(𝑊)𝜉 + 𝑆(𝑌, 𝑊)𝜂(𝑋)𝜂(𝑍)𝜉

− 𝑆(𝑋, 𝑊)𝜂(𝑌)𝜂(𝑍)𝜉 − (𝑛 − 1)𝑔(𝑌, 𝑊)𝜂(𝑋)𝜂(𝑍)𝜉

+ (𝑛 − 1)𝑔(𝑌, 𝑊)𝜂(𝑋)𝜂(𝑍)𝜉} +
𝜏

(𝑛 − 1)(𝑛 − 2)
[−𝑔(𝑌, 𝑍)𝜂(𝑋)𝜂(𝑊)𝜉

+ 𝑔(𝑋, 𝑍)𝜂(𝑌)𝜂(𝑊)𝜉 − 𝑔(𝑌, 𝑊)𝜂(𝑋)𝜂(𝑍)𝜉 + 𝑔(𝑋, 𝑊)𝜂(𝑌)𝜂(𝑍)𝜉}

+ 𝑔(𝑌, 𝑍)𝜂(𝑋)𝜂(𝑊)𝜉 − 𝑔(𝑋, 𝑍)𝜂(𝑌)𝜂(𝑊)𝜉 + 𝑔(𝑌, 𝑊)𝜂(𝑋)𝜂(𝑍)𝜉

− 𝑔(𝑋, 𝑊)𝜂(𝑌)𝜂(𝑍)𝜉 

elde edilir. Her iki tarafını bir 𝑈 vektörü ile iç çarpımı alındığında ve 𝑋 ve 𝑈 ya bağlı 

kontraksiyon yapıldığında 
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∑ 𝑔(𝜑2((∇̅𝑊𝐶̅)(𝑒𝑖 , 𝑌)𝑍, 𝑒𝑖)

𝑛

𝑖=1

= − ∑ 𝑔(∇𝑊𝐶(𝑒𝑖 , 𝑌)𝑍, 𝑒𝑖)

𝑛

𝑖=1

+ ∑ 𝑔(𝐶(∇𝑊𝑒𝑖, 𝑌)𝑍, 𝑒𝑖)

𝑛

𝑖=1

+ ∑ 𝑔(𝐶(𝑒𝑖 , ∇𝑊𝑌)𝑍, 𝑒𝑖)

𝑛

𝑖=1

+ ∑ 𝑔(𝐶(𝑒𝑖, 𝑌)∇𝑊𝑍, 𝑒𝑖)

𝑛

𝑖=1

+ ∑ 𝜂(𝑍)𝑔(𝐶(𝑒𝑖, 𝑌)𝑊, 𝑒𝑖)

𝑛

𝑖=1

+ ∑ 𝜂(∇𝑊𝐶(𝑒𝑖 , 𝑌)𝑍)𝜂(𝑒𝑖)

𝑛

𝑖=1

− ∑ 𝜂(𝐶(∇𝑊𝑒𝑖, 𝑌)𝑍)𝜂(𝑒𝑖)

𝑛

𝑖=1

− ∑ 𝜂(𝐶(𝑒𝑖, ∇𝑊𝑌)𝑍)𝜂(𝑒𝑖)

𝑛

𝑖=1

− ∑ 𝜂(𝐶(𝑒𝑖 , 𝑌)∇𝑊𝑍)𝜂(𝑒𝑖)

𝑛

𝑖=1

−
2

𝑛 − 2
[4𝑛𝜂(𝑌)𝜂(𝑍)𝜂(𝑊) − 4𝜂(𝑌)𝜂(𝑍)𝜂(𝑊) − 2𝑛𝑔(𝑌, 𝑊)𝜂(𝑍)

+ 2𝑔(𝑊, 𝑌)𝜂(𝑍) − 2𝑛𝑔(𝑊, 𝑍)𝜂(𝑌) + 2𝑔(𝑊, 𝑍)𝜂(𝑌) − 2𝜂(𝑊)𝜂(𝑍)𝜂(𝑌)

+ 2𝑔(𝑊, 𝑌)𝜂(𝑌)} 

                        +
2(1 − 𝑛)

𝑛 − 2
{3𝑔(𝑌, 𝑍)𝜂(𝑊) − 3𝜂(𝑍)𝜂(𝑌)𝜂(𝑊) + 2𝑔(𝑊, 𝑍)𝜂(𝑌)

− 2𝑔(𝑌, 𝑍)𝜂(𝑊) − 𝑔(𝑌, 𝑍)𝜂(𝑊) + 𝜂(𝑍)𝜂(𝑌)𝜂(𝑊)}

+
1

𝑛 − 2
[𝑆(𝑌, 𝑍)𝜂(𝑊) − (𝑛 − 1)𝑔(𝑌, 𝑍)𝜂(𝑊) − 𝑆(𝑋, 𝑍)𝜂(𝑌)𝜂(𝑊)

+ (𝑛 − 1)𝑔(𝑋, 𝑍)𝜂(𝑌)𝜂(𝑊) + 𝑆(𝑌, 𝑊)𝜂(𝑋)𝜂(𝑍) − 𝑆(𝑋, 𝑊)𝜂(𝑌)𝜂(𝑍)

− (𝑛 − 1)𝑔(𝑌, 𝑊)𝜂(𝑋)𝜂(𝑍) + (𝑛 − 1)𝑔(𝑌, 𝑊)𝜂(𝑋)𝜂(𝑍)}

+
𝜏

(𝑛 − 1)(𝑛 − 2)
[−𝑔(𝑌, 𝑍)𝜂(𝑊) + 𝜂(𝑍)𝜂(𝑌)𝜂(𝑊)𝜂(𝑋)

− 𝑔(𝑌, 𝑊)𝜂(𝑋)𝜂(𝑍) + 𝑔(𝑋, 𝑊)𝜂(𝑌)𝜂(𝑍)} + 𝑔(𝑌, 𝑍)𝜂(𝑊)

− 𝑔(𝑋, 𝑍)𝜂(𝑌)𝜂(𝑊) + 𝑔(𝑌, 𝑊)𝜂(𝑍) − 𝜂(𝑋)𝜂(𝑌)𝜂(𝑍), 

elde edilir. Burada  Z=ξ  için 
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∑ 𝑔(𝜑2((∇̅𝑊𝐶̅)(𝑒𝑖, 𝑌)𝜉, 𝑒𝑖)

𝑛

𝑖=1

= − ∑ 𝑔(∇𝑊𝐶(𝑒𝑖, 𝑌), 𝑒𝑖)

𝑛

𝑖=1

+ ∑ 𝑔(𝐶(∇𝑊𝑒𝑖, 𝑌), 𝑒𝑖)

𝑛

𝑖=1

+ ∑ 𝑔(𝐶(𝑒𝑖 , ∇𝑊𝑌), 𝑒𝑖)

𝑛

𝑖=1

+ ∑ 𝑔(𝐶(𝑒𝑖, 𝑌)∇𝑊𝜉, 𝑒𝑖)

𝑛

𝑖=1

+ ∑ 𝑔(𝐶(𝑒𝑖, 𝑌)𝑊, 𝑒𝑖)

𝑛

𝑖=1

+ ∑ 𝜂(∇𝑊𝐶(𝑒𝑖, 𝑌)𝜉)𝜂(𝑒𝑖)

𝑛

𝑖=1

− ∑ 𝜂(𝐶(∇𝑊𝑒𝑖, 𝑌)𝜉)𝜂(𝑒𝑖)

𝑛

𝑖=1

− ∑ 𝜂(𝐶(𝑒𝑖, ∇𝑊𝑌)𝜉)𝜂(𝑒𝑖)

𝑛

𝑖=1

− ∑ 𝜂(𝐶(𝑒𝑖, 𝑌)∇𝑊𝜉)𝜂(𝑒𝑖)

𝑛

𝑖=1

 

                            −
2

𝑛 − 2
{4𝑛𝜂(𝑌)𝜂(𝑊) − 4𝜂(𝑌)𝜂(𝑊) − 2𝑛𝑔(𝑌, 𝑊) + 2𝑔(𝑊, 𝑌)

− 2𝑛𝜂(𝑊)𝜂(𝑌) + 2𝜂(𝑊)𝜂(𝑌)} +
1

𝑛 − 2
{𝑆(𝑌, 𝜉)𝜂(𝑊) + 2(𝑛 − 1)𝜂(𝑌)𝜂(𝑊)

− (𝑛 − 1)𝑔(𝑌, 𝑊)𝜂(𝑋)} +
𝜏

(𝑛 − 1)(𝑛 − 2)
{−𝑔(𝑌, 𝑊) + 𝜂(𝑌)𝜂(𝑊)}

+ 𝑔(𝑌, 𝑊) − 𝜂(𝑌)𝜂(𝑊), 

olup, yukarıdaki denklemde gerekli düzenlemeler yapıldığında 

𝑆(𝑌, 𝑊) =
𝑛 − 2

2
[

𝜏

(𝑛 − 1)(𝑛 − 2)
+

2𝑛 − 3

𝑛 − 2
− 6] 𝑔(𝑌, 𝑊)

−
𝑛 − 2

2
[

𝜏

(𝑛 − 1)(𝑛 − 2)
+

4𝑛 − 5

𝑛 − 2
− 6] 𝜂(𝑌)𝜂(𝑊), 

sonucuna ulaşılır. 

3.2. Ricci Solitonlar 

 𝑀  𝑛 −boyutlu  Riemann manifoldu üzerinde  𝐿  lie operatörü, 𝑆 Ricci tensörü,  𝑉, 𝑀 

üzerinde düzgün vektör alanı (potansiyel vektör alanı) ve 𝜆 da sabit  olmak üzere 

(𝐿𝑉𝑔)(𝑋, 𝑌) + 2𝑆(𝑋, 𝑌) + 2𝜆𝑔(𝑋, 𝑌) = 0 

şartını sağlayan 𝑔 metriğine Ricci soliton dendiği biliyoruz. Bu kısımda  (𝑀,𝜑1)  çeyrek 

simetrik metrik koneksiyonu ile verilen 3-boyutlu trans-Sasakian manifoldlar ve (𝑀,𝜑2)  çeyrek 

simetrik metrik olmayan koneksiyonu ile verilen 3-boyutlu normal hemen hemen değme metrik 

manifoldlar  için temel bazı özellikler verilecek daha sonra ise Ricci solitonlar irdelenecektir. 
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3.2.1. (M,𝝋𝟏)  çeyrek simetrik metrik koneksiyonu ile verilen 3-boyutlu trans-Sasakian  

          Manifoldlar 

Önerme 3.2.1.1.: Bir 3-boyutlu trans-Sasakian  manifoldu  𝑀 olsun. 𝑀 üzerinde  Levi-

Civita koneksiyonu  ya göre eğrilik tensörü 𝑅 ve (𝑀,𝜑1)  çeyrek-simetrik metrik  koneksiyonu 

∇̅ ye göre eğrilik tensörü R̅ olmak üzere, ∀ 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) için 𝑅 ile R̅  arasındaki bağıntı 

𝑅̅(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 + 2𝛼𝑔(𝜑𝑋, 𝑌)𝜑𝑍 + 𝛼{𝜂(𝑌)𝜂(𝑍)𝑋 − 𝜂(𝑋)𝜂(𝑍)𝑌}

+ 𝛽{𝜂(𝑌)𝜂(𝑍)𝜑𝑋 − 𝜂(𝑋)𝜂(𝑍)𝜑𝑌} + 𝛼{𝜂(𝑋)𝑔(𝑌, 𝑍)𝜉 − 𝜂(𝑌)𝑔(𝑋, 𝑍)𝜉}

− 𝛽{𝜂(𝑌)𝑔(𝜑𝑋, 𝑍)𝜉

− 𝜂(𝑋)𝑔(𝜑𝑌, 𝑍)𝜉}                                                                                          (3.2.1.1) 

dir (Yıldız ve Çetinkaya, 2012a). 

İspat: Çeyrek-simetrik metrik  koneksiyon ∇̅ ye göre eğrilik tensörü R̅ olmak üzere, 

∀ 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) için hemen hemen değme metrik manifoldlarda (2.1.4) denklemini bulmuştuk. 

𝑀 bir 3-boyutlu trans- Sasakian  manifold olduğundan  (2.1.4) denkleminde (1.2.34) ve (1.2.35)  

ifadeleri kullanılırsa  

𝑅̅(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 − 𝜂(𝑌)[𝛼{𝑔(𝑋, 𝑍)𝜉 − 𝜂(𝑍)𝑋} + 𝛽{𝑔(𝜑𝑋, 𝑍]𝜉 − 𝜂(𝑍)𝜑𝑋}]

+ 𝜂(𝑋)[𝛼{𝑔(𝑌, 𝑍)𝜉 − 𝜂(𝑍)𝑌} + 𝛽{𝑔(𝜑𝑌, 𝑍]𝜉 − 𝜂(𝑍)𝜑𝑌}]

− 𝑔(𝑌, −𝛼𝜑𝑋 + 𝛽{𝑋 − 𝜂(𝑋)𝜉})𝜑𝑍 +  𝑔(𝑋, −𝛼𝜑𝑌 + 𝛽{𝑌 − 𝜂(𝑌)𝜉})𝜑𝑍            

elde edilir. Burada gerekli sadeleştirmeler yapıldığında 

𝑅̅(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 + 2𝛼𝑔(𝜑𝑋, 𝑌)𝜑𝑍 + 𝛼{𝜂(𝑌)𝜂(𝑍)𝑋 − 𝜂(𝑋)𝜂(𝑍)𝑌}

+ 𝛽{𝜂(𝑌)𝜂(𝑍)𝜑𝑋 − 𝜂(𝑋)𝜂(𝑍)𝜑𝑌} + 𝛼{𝜂(𝑋)𝑔(𝑌, 𝑍)𝜉 − 𝜂(𝑌)𝑔(𝑋, 𝑍)𝜉}

− 𝛽{𝜂(𝑌)𝑔(𝜑𝑋, 𝑍)𝜉 − 𝜂(𝑋)𝑔(𝜑𝑌, 𝑍)𝜉}              

sonucuna ulaşılır. 

Önerme 3.2.1.2.: Bir 3-boyutlu trans-Sasakian  manifoldu 𝑀 olsun. 𝑀 üzerinde  Levi-

Civita koneksiyonu  ya göre eğrilik tensörü 𝑅 ve (𝑀,𝜑1)  çeyrek-simetrik metrik  koneksiyonu 

∇̅ ye göre eğrilik tensörü R̅ olmak üzere, ∀ 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) için; 

𝑅̅(𝑋, 𝑌)𝜉 = (𝛼2 − 𝛽2 + 𝛼)(𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌) + (2𝛼𝛽 + 𝛽)(𝜂(𝑌)𝜑𝑋 − 𝜂(𝑋)𝜑𝑌) + (𝑌𝛼)𝜑𝑋

− (𝑋𝛼)𝜑𝑌 + (𝑌𝛽)𝜑2𝑋

− (𝑋𝛽)𝜑2𝑌                                                                                                      (3.2.1.2) 
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dır (Yıldız ve Çetinkaya, 2012a). 

İspat: İlk olarak (3.2.1.1) denkleminde 𝑍 = 𝜉  alınırsa 

𝑅̅(𝑋, 𝑌)𝜉 = 𝑅(𝑋, 𝑌)𝜉 + 2𝛼𝑔(𝜑𝑋, 𝑌)𝜑𝜉 + 𝛼{𝜂(𝑌)𝜂(𝜉)𝑋 − 𝜂(𝑋)𝜂(𝜉)𝑌}

+ 𝛽{𝜂(𝑌)𝜂(𝜉)𝜑𝑋 − 𝜂(𝑋)𝜂(𝜉)𝜑𝑌} + 𝛼{𝜂(𝑋)𝑔(𝑌, 𝜉)𝜉 − 𝜂(𝑌)𝑔(𝑋, 𝜉)𝜉}

− 𝛽{𝜂(𝑌)𝑔(𝜑𝑋, 𝜉)𝜉 − 𝜂(𝑋)𝑔(𝜑𝑌, 𝜉)𝜉},                                                  

bulunur. 𝑀 bir 3-boyutlu trans-Sasakian  manifoldu olduğundan (1.2.2), (1.2.3) ve  (1.2.36) 

denklemleri yardımıyla yukarıdaki denklem 

𝑅̅(𝑋, 𝑌)𝜉 = (𝛼2 − 𝛽2)(𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌) + 2𝛼𝛽(𝜂(𝑌)𝜑𝑋 − 𝜂(𝑋)𝜑𝑌) + (𝑌𝛼)𝜑𝑋 − (𝑋𝛼)𝜑𝑌

+ (𝑌𝛽)𝜑2𝑋 − (𝑋𝛽)𝜑2𝑌 + 𝛼{𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌} + 𝛽{𝜂(𝑌)𝜑𝑋 − 𝜂(𝑋)𝜑𝑌}  

halini alır. Son olarak burada gerekli düzenlemeler yapıldığında  

𝑅̅(𝑋, 𝑌)𝜉 = (𝛼2 − 𝛽2 + 𝛼)(𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌) + (2𝛼𝛽 + 𝛽)(𝜂(𝑌)𝜑𝑋 − 𝜂(𝑋)𝜑𝑌) + (𝑌𝛼)𝜑𝑋

− (𝑋𝛼)𝜑𝑌 + (𝑌𝛽)𝜑2𝑋 − (𝑋𝛽)𝜑2𝑌 

elde edilir.  

Önerme 3.2.1.3.:  Bir 3-boyutlu trans-Sasakian  manifoldu 𝑀  olsun. 𝑀 üzerinde  

(𝑀,𝜑1)  çeyrek-simetrik metrik  koneksiyonu ∇̅ ye göre eğrilik tensörü R̅ olmak üzere, 

∀ 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) için; 

𝑅̅(𝑋, 𝑌)𝑍 = −𝑅̅(𝑌, 𝑋)𝑍 

sağlanır (Yıldız ve Çetinkaya, 2012a). 

İspat: (3.2.1.1) denkleminde sırasıyla  𝑌 = 𝑋 ve 𝑋 = 𝑌 alınırsa 

𝑅̅(𝑌, 𝑋)𝑍 = 𝑅(𝑌, 𝑋)𝑍 + 2𝛼𝑔(𝜑𝑌, 𝑋)𝜑𝑍 + 𝛼{𝜂(𝑋)𝜂(𝑍)𝑌 − 𝜂(𝑌)𝜂(𝑍)𝑋}

+ 𝛽{𝜂(𝑋)𝜂(𝑍)𝜑𝑌 − 𝜂(𝑌)𝜂(𝑍)𝜑𝑋} + 𝛼{𝜂(𝑌)𝑔(𝑋, 𝑍)𝜉 − 𝜂(𝑋)𝑔(𝑌, 𝑍)𝜉}

− 𝛽{𝜂(𝑋)𝑔(𝜑𝑌, 𝑍)𝜉

− 𝜂(𝑌)𝑔(𝜑𝑋, 𝑍)𝜉}                                                                                            (3.2.1.3) 

elde edilir. (3.2.1.3) ile (3.2.1.1) denklemleri taraf tarafa toplandığında 
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𝑅̅(𝑋, 𝑌)𝑍 + 𝑅̅(𝑌, 𝑋)𝑍

= 𝑅(𝑋, 𝑌)𝑍 + 2𝛼𝑔(𝜑𝑋, 𝑌)𝜑𝑍 + 𝛼{𝜂(𝑌)𝜂(𝑍)𝑋 − 𝜂(𝑋)𝜂(𝑍)𝑌}

+ 𝛽{𝜂(𝑌)𝜂(𝑍)𝜑𝑋 − 𝜂(𝑋)𝜂(𝑍)𝜑𝑌} + 𝛼{𝜂(𝑋)𝑔(𝑌, 𝑍)𝜉 − 𝜂(𝑌)𝑔(𝑋, 𝑍)𝜉}

− 𝛽{𝜂(𝑌)𝑔(𝜑𝑋, 𝑍)𝜉 − 𝜂(𝑋)𝑔(𝜑𝑌, 𝑍)𝜉} + 𝑅(𝑌, 𝑋)𝑍 + 2𝛼𝑔(𝜑𝑌, 𝑋)𝜑𝑍

+ 𝛼{𝜂(𝑋)𝜂(𝑍)𝑌 − 𝜂(𝑌)𝜂(𝑍)𝑋} + 𝛽{𝜂(𝑋)𝜂(𝑍)𝜑𝑌 − 𝜂(𝑌)𝜂(𝑍)𝜑𝑋}

+ 𝛼{𝜂(𝑌)𝑔(𝑋, 𝑍)𝜉 − 𝜂(𝑋)𝑔(𝑌, 𝑍)𝜉} − 𝛽{𝜂(𝑋)𝑔(𝜑𝑌, 𝑍)𝜉 − 𝜂(𝑌)𝑔(𝜑𝑋, 𝑍)𝜉} 

yazılabilir. Burada gerekli sadeleştirmeler yapılırsa 

𝑅̅(𝑋, 𝑌)𝑍 = −𝑅̅(𝑌, 𝑋)𝑍 

bulunur.  

 Ayrıca (3.2.1.1) denkleminde sırasıyla ilk önce 𝑋 = 𝑌,  𝑌 = 𝑍 ve 𝑍 = 𝑋 olarak 

alındığında 

𝑅̅(𝑌, 𝑍)𝑋 = 𝑅(𝑌, 𝑍)𝑋 + 2𝛼𝑔(𝜑𝑌, 𝑍)𝜑𝑋 + 𝛼{𝜂(𝑍)𝜂(𝑋)𝑌 − 𝜂(𝑌)𝜂(𝑋)𝑍}

+ 𝛽{𝜂(𝑍)𝜂(𝑋)𝜑𝑌 − 𝜂(𝑌)𝜂(𝑋)𝜑𝑍} + 𝛼{𝜂(𝑌)𝑔(𝑍, 𝑋)𝜉 − 𝜂(𝑍)𝑔(𝑌, 𝑋)𝜉}

− 𝛽{𝜂(𝑍)𝑔(𝜑𝑌, 𝑋)𝜉

− 𝜂(𝑌)𝑔(𝜑𝑍, 𝑋)𝜉}                                                                                              (3.2.1.4) 

bulunur. Benzer şekilde (3.2.1.4)  denkleminde sırasıyla 𝑌 = 𝑍, 𝑍 = 𝑋 ve 𝑋 = 𝑌 yazıldığında 

𝑅̅(𝑍, 𝑋)𝑌 = 𝑅(𝑍, 𝑋)𝑌 + 2𝛼𝑔(𝜑𝑍, 𝑋)𝜑𝑌 + 𝛼{𝜂(𝑋)𝜂(𝑌)𝑍 − 𝜂(𝑍)𝜂(𝑌)𝑋}

+ 𝛽{𝜂(𝑋)𝜂(𝑌)𝜑𝑍 − 𝜂(𝑍)𝜂(𝑌)𝜑𝑋} + 𝛼{𝜂(𝑍)𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑋)𝑔(𝑍, 𝑌)𝜉}

− 𝛽{𝜂(𝑋)𝑔(𝜑𝑍, 𝑌)𝜉

− 𝜂(𝑍)𝑔(𝜑𝑋, 𝑌)𝜉}                                                                                            (3.2.1.5) 

elde edilir. Son olarak (3.2.1.1), (3.2.1.4) ve (3.2.1.5) denklemlerini taraf tarafa toplarsak 

𝑅̅(𝑋, 𝑌)𝑍+𝑅̅(𝑌, 𝑍)𝑋 + 𝑅̅(𝑍, 𝑋)𝑌 = 2𝛼[𝑔(𝜑𝑋, 𝑌)𝜑𝑍 + 𝑔(𝜑𝑌, 𝑍)𝜑𝑋 + 𝑔(𝜑𝑍, 𝑋)𝜑𝑌] +

2𝛽[𝜂(𝑍)𝑔(𝜑𝑋, 𝑌)𝜉 + 𝜂(𝑋)𝑔(𝜑𝑌, 𝑍)𝜉 − 𝜂(𝑌)𝑔(𝜑𝑋, 𝑍)𝜉                                                 (3.2.1.6) 

bulunur. Buradan aşağıdaki önermeyi verebiliriz: 

Önerme 3.2.1.4.: Bir 3- boyutlu trans-Sasakian manifoldu 𝑀 olsun. 𝑀, (𝑀,𝜑1)  çeyrek 

simetrik metrik  koneksiyonu ∇̅ ye göre eğrilik tensörü R̅ olmak üzere,  ∀ 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) için 

(3.2.1.6) gereği  bu koneksiyona bağlı I. Bianchi özdeşliğini sağlar ancak ve ancak  𝛽 =

0 𝑣𝑒 𝛼=0  dır (Yıldız ve Çetinkaya, 2012a). 
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Sonuç 3.2.1.1.: Bir 3-boyutlu trans-Sasakian manifoldu 𝑀  olsun. 𝑀, (𝑀,𝜑1)  çeyrek 

simetrik metrik  koneksiyonu ∇̅ ye göre eğrilik tensörü R̅ olmak üzere,  ∀ 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) için 

(3.2.1.6) gereği  bu koneksiyona bağlı 1. Bianchi özdeşliği sağlar ancak ve ancak  manifold 

kosimplektiktir (Yıldız ve Çetinkaya, 2012a). 

Önerme 3.2.1.5.: Bir 3-boyutlu trans-Sasakian  manifoldu  𝑀 olsun. 𝑀 üzerinde  

(𝑀,𝜑1)  çeyrek simetrik metrik   koneksiyonu ∇̅ ya  göre Ricci tensörü ve skaler eğriliği 

sırasıyla  S̅ ve 𝜏̅ olmak üzere, ∀ 𝑌, 𝑍 ∈ 𝜒(𝑀) için  

S̅(Y, Z) = S(Y, Z) − αg(Y, Z) + 3αη(Y)η(Z) + βg(φY, Z)                                            (3.2.1.7)  

ve 

𝜏̅ = 𝜏                                                                                      (3.2.1.8) 

dir (Yıldız ve Çetinkaya, 2012a) . 

İspat : (3.2.1.1) denkleminin her iki yanının 𝑈  (𝑀) ile iç çarpımı alındığında  

𝑔(𝑅̅(𝑋, 𝑌)𝑍, 𝑈) = 𝑔(𝑅(𝑋, 𝑌)𝑍, 𝑈) + 2𝛼𝑔(𝜑𝑋, 𝑌)𝑔(𝜑𝑍, 𝑈) + 𝛼𝜂(𝑌)𝜂(𝑍)𝑔(𝑋, 𝑈)

− 𝛼𝜂(𝑋)𝜂(𝑍)𝑔(𝑌, 𝑈) + 𝛽{𝜂(𝑌)𝜂(𝑍)𝑔(𝜑𝑋, 𝑈) − 𝜂(𝑋)𝜂(𝑍)𝑔(𝜑𝑌, 𝑈)}

+ 𝛼{𝜂(𝑋)𝑔(𝑌, 𝑍)𝜂(𝑈) − 𝜂(𝑌)𝑔(𝑋, 𝑍)𝜂(𝑈)} − 𝛽𝜂(𝑌)𝑔(𝜑𝑋, 𝑍)𝜂(𝑈)

+ 𝛽𝜂(𝑋)𝑔(𝜑𝑌, 𝑍)𝜂(𝑈)   

yazılabilir. Buradan da 𝑋 ve 𝑈 vektör alanlarına göre kontraksiyon yapıldığında 

                      S̅(Y, Z)

= S(Y, Z) − αg(Y, Z) + 3αη(Y)η(Z)

+ βg(φY, Z)                                                         

elde edilir. Son denklemde de Y ve Z vektör alanlarına göre kontraksiyon yapıldığında  

𝜏̅ = 𝜏 

bulunur. 

Önerme 3.2.2.6.:  Bir 3- boyutlu trans-Sasakian  manifoldu 𝑀 olsun. 𝑀 üzerinde  

(𝑀,𝜑1)  çeyrek simetrik metrik   koneksiyonu ∇̅ ye  göre Ricci tensörü  S̅ olmak üzere, ∀ 𝑌 ∈

𝜒(𝑀) için  

S̅(Y, ξ) = {2(𝛼2 − 𝛽2 + α) − (ξβ)}η(Y) − (Yβ) − (φYβ)                                     (3.2.1.9)   
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ve 

S̅(ξ, ξ) = 2(𝛼2 − 𝛽2 + α − (ξβ))                                                (3.2.1.10) 

dır (Yıldız ve Çetinkaya, 2012a). 

İspat:  (3.2.1.7) ifadesinde 𝑍 = 𝜉 alınırsa  

S̅(Y, ξ) = S(Y, ξ) − αg(Y, ξ) + 3αη(Y)η(ξ) + βg(φY, ξ)                                                         

bulunur. Yukarıda (1.2.2),  (1.2.3) ve (1.2.38) denklemleri kullanıldığında 

S̅(Y, ξ) = [2(𝛼2 − 𝛽2) − (ξβ)]η(Y) − (Yβ) − (φYβ) − αη(Y)

+ 3αη(Y)                                                  

elde edilir. Burada gerekli düzenlemeler yapıldığında (3.2.1.9) elde edileceği açıktır. 

Ayrıca (3.2.1.9) denkleminde 𝑌 = 𝜉 alınırsa 

S̅(ξ, ξ) = {2(𝛼2 − 𝛽2 + α) − (ξβ)} − (ξβ) = 2(𝛼2 − 𝛽2 + α − (ξβ))  

olur. 

Teorem 3.2.1.1.: Bir 3-boyutlu trans-Sasakian manifoldu 𝑀  olsun. 𝑀, (𝑀,𝜑1) çeyrek 

simetrik metrik  koneksiyonu  ∇̅ ye  göre Ricci tensörü simetriktir ancak ve ancak manifold 𝛼-

Sasakian(quasi-Sasakian)dır (Yıldız ve Çetinkaya, 2012a). 

İspat: Kabul edelim ki 3-boyutlu bir 𝑀 trans-Sasakian  manifoldu üzerinde (𝑀,𝜑1) 

çeyrek simetrik metrik koneksiyonu    ∇̅  ya  göre Ricci tensörü simetrik olsun,  yani ∀ 𝑍, 𝑌 ∈

𝜒(𝑀) için 

𝑆̅(𝑌, 𝑍) = 𝑆̅(𝑍, 𝑌) 

sağlansın. Öncelikle  𝑆̅(𝑍, 𝑌) ifadesini bulabilmek için (3.2.1.7) denkleminde 𝑌 yerine 𝑍, 𝑍 

yerine 𝑌 yazalım. Bu durumda  

𝑆̅(𝑍, 𝑌) = 𝑆(𝑍, 𝑌) − 𝛼𝑔(𝑍, 𝑌) + 3𝛼𝜂(𝑍)𝜂(𝑌) + 𝛽𝑔(𝜑𝑍, 𝑌)                              (3.2.1.11) 

ifadesi elde edilir.(3.2.1.9) ve (3.2.1.11) denklemleri  𝑆̅(𝑌, 𝑍) = 𝑆̅(𝑍, 𝑌) gereği 

𝑆(𝑌, 𝑍) − 𝛼𝑔(𝑌, 𝑍) + 3𝛼𝜂(𝑌)𝜂(𝑍) + 𝛽𝑔(𝜑𝑌, 𝑍)

= 𝑆(𝑍, 𝑌) − 𝛼𝑔(𝑍, 𝑌) + 3𝛼𝜂(𝑍)𝜂(𝑌) + 𝛽𝑔(𝜑𝑍, 𝑌) 

halini alır. Burada gerekli sadeleştirmeler yapıldığında 
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𝛽𝑔(𝜑𝑌, 𝑍) = 𝛽𝑔(𝜑𝑍, 𝑌) 

yada 

2𝛽𝑔(𝜑𝑌, 𝑍) = 0 

bulunur. Buradan da 𝛽 = 0  olduğu açıktır. 

Tersine 3-boyutlu bir 𝑀 trans-Sasakian  manifoldu için 𝛽 = 0 olsun. (3.2.1.7) 

denkleminde  𝛽 = 0   alınırsa 

𝑆̅(𝑌, 𝑍) = 𝑆(𝑌, 𝑍) − 𝛼𝑔(𝑌, 𝑍) + 3𝛼𝜂(𝑌)𝜂(𝑍)       

elde edilir. Yukarıdaki denklemde 𝑆 Ricci tensörü ve 𝑔 Riemann metriğinin simetrik olma 

özelliklerinden yararlanılarak 

S̅(Y, Z) = 𝑆(𝑍, 𝑌) − 𝛼𝑔(𝑍, 𝑌) + 3𝛼𝜂(𝑍)𝜂(𝑌) = S̅(Z, Y) 

sonucu ortaya çıkar. Böylece ispat tamamlanır.  

Teorem 3.2.1.2.: 𝑀 , α,𝛽 sabit  olacak şekilde 3- boyutlu trans -Sasakian manifoldu 

olsun. 𝑀 üzerinde (𝑀,𝜑1) çeyrek simetrik metrik  koneksiyonu ∇̅ olmak üzere,  𝑏 fonksiyonu 

için 𝑉 = 𝑏𝜉 olmak şartıyla,  manifold verilen koneksiyona bağlı  Ricci soliton olma şartını 

sağlıyor ise ∇̅   koneksiyonuna bağlı 𝜂-Einstein manifolddur (Yıldız ve Çetinkaya, 2012a).  

İspat:  α,𝛽 sabit  olacak şekilde 3-boyutlu trans -Sasakian manifoldu 𝑀 olsun. 𝑀 

üzerinde (𝑀,𝜑1) çeyrek simetrik metrik  koneksiyonu ∇̅ olmak üzere,  𝑏 fonksiyonu için 𝑉 = 𝑏𝜉 

olmak şartıyla, verilen koneksiyona bağlı  Ricci soliton olma şartını sağlasın. O halde (1.3.1) ile 

verilen, 

(
1

2
𝐿̅𝑉𝑔 + 𝑆̅ + 𝜆𝑔)(𝑋, 𝑌) = 0                                    

denklemi, 

(𝐿̅𝑉𝑔)(𝑋, 𝑌) + 2𝑆̅(𝑋, 𝑌) + 2𝜆𝑔(𝑋, 𝑌) = 0                                            (3.2.1.12) 

haline dönüşür. (3.2.1.12) de Lie türevi özellikleri kullanılırsa 

𝑔(∇̅𝑋𝑉, 𝑌) + 𝑔(∇̅𝑌𝑉, 𝑉) + 2𝑆̅(𝑋, 𝑌) + 2𝜆𝑔(𝑋, 𝑌) = 0                                             

elde edilir. Burada 𝑉 = 𝑏𝜉  alınırsa ve (2.1.3) denklemi gereği 

𝑔(∇𝑋𝑏𝜉, 𝑌) − 𝜂(𝑋)𝑔(𝜑𝑏𝜉, 𝑌) + 𝑔(∇𝑌𝑏𝜉, 𝑋) − 𝜂(𝑌)𝑔(𝜑𝑏𝜉, 𝑋) + 2𝑆̅(𝑋, 𝑌) + 2𝜆𝑔(𝑋, 𝑌) = 0  
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yani 

(𝑋𝑏)𝜂(𝑌) + 𝑏𝑔(∇𝑋𝜉, 𝑌) + (𝑌𝑏)𝜂(𝑋) + 𝑏𝑔(∇𝑌𝜉, 𝑋) + 2𝑆̅(𝑋, 𝑌) + 2𝜆𝑔(𝑋, 𝑌) = 0      (3.2.1.13) 

bulunur. (3.2.1.13) de (1.2.35) denklemi kullanılırsa 

(𝑋𝑏)𝜂(𝑌) − 𝑏𝛼𝑔(𝜑𝑋, 𝑌) + 𝑏𝛽𝑔(𝑋, 𝑌) − 𝑏𝛽𝜂(𝑋)𝜂(𝑌) + (𝑌𝑏)𝜂(𝑋) − 𝑏𝛼𝑔(𝜑𝑌, 𝑋)

+ 𝑏𝛽𝑔(𝑌, 𝑋) − 𝑏𝛽𝜂(𝑌)𝜂(𝑋) + 2𝑆̅(𝑋, 𝑌) + 2𝜆𝑔(𝑋, 𝑌) = 0       

şekline dönüşür.  Bu denklemi düzenlersek 

(𝑋𝑏)𝜂(𝑌) + (𝑌𝑏)𝜂(𝑋) + (2𝑏𝛽 + 2𝜆)𝑔(𝑌, 𝑋) − 2𝑏𝛽𝜂(𝑌)𝜂(𝑋) + 2𝑆̅(𝑋, 𝑌) = 0        (3.2.1.14)  

elde edilir. (3.2.1.14) de her 𝑌 gördüğümüz yere 𝜉 yazılıp ve   (3.2.1.9) denklemini 

kullandığımızda 

(𝑋𝑏) + (𝜉𝑏)𝜂(𝑋) + (2(𝛼2 − 𝛽2 + 𝛼) + 2𝜆)𝜂(𝑋) = 0                        (3.2.1.15) 

bulunur. Yukarıdaki denklemde bu defa her 𝑋 gördüğümüz yere 𝜉 alalım: 

2(𝜉𝑏) + (4(𝛼2 − 𝛽2) + 2𝜆 + 4𝛼) = 0                                     (3.2.1.16) 

yani 

(𝜉𝑏) = −(2𝛼2 − 2𝛽2 + 𝜆 + 2𝛼)                                                 (3.2.1.17 

sonucu ortaya çıkar. Bu denklemi (3.2.1.15) de kullanıp gerekli düzenlemeler yapılırsa 

(𝑑𝑏) = −(2𝛼2 − 2𝛽2 + 𝜆 + 2𝛼)𝜂                                                   (3.2.1.18) 

elde edilir. (3.2.1.18) denkleminin her iki yanına 𝑑 operatörü uygulanırsa  

(2𝛼2 − 2𝛽2 + 𝜆 + 2𝛼)𝑑𝜂 = 0 

bulunur. Burada 𝑑𝜂 ≠ 0 olacağından 

(2𝛼2 − 2𝛽2 + 𝜆 + 2𝛼) = 0                                                 (3.2.1.19) 

olur. Bu ifade (3.2.1.18 denkleminde yazılırsa 𝑏 sabit olur. Böylece (3.2.1.13) denklemi gereği 

𝑆̅(𝑋, 𝑌) = 𝑏𝛽𝜂(𝑌)𝜂(𝑋) − (𝑏𝛽 + 𝜆)𝑔(𝑌, 𝑋)                              (3.2.1.20) 

elde edilir ki bu da  bize  manifoldun 𝛻̅ ya bağlı 𝜂-Einstein olduğunu gösterir. 

 Ayrıca elde edilen  (3.2.1.20) denkleminde 𝑋 𝑣𝑒 𝑌 vektör alanlarına göre kontraksiyon 

yapılırsa 
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𝜏̅ = 𝑏𝛽 − 3(𝑏𝛽 + 𝜆) = −3𝜆 − 2𝑏𝛽 

denklemi ortaya çıkar. Böylece yukarıdaki denklem gereği aşağıdaki sonucu verebiliriz: 

Sonuç 3.2.1.2.: 𝑀 , α,𝛽 sabit  olacak şekilde 3- boyutlu trans -Sasakian manifoldu 

olsun. 𝑀 üzerinde (𝑀,𝜑1) çeyrek simetrik metrik  koneksiyonu ∇̅ olmak üzere,  𝑏 fonksiyonu 

için 𝑉 = 𝑏𝜉 olmak şartıyla, manifold verilen koneksiyona bağlı  Ricci soliton özelliğini  

sağlıyor ise  

i)𝜏̅ + 2𝑏𝛽 < 0 için genişleyen (expanding), 

ii) 𝜏̅ + 2𝑏𝛽 = 0 için değişmeyen (steady), 

iii) 𝜏̅ + 2𝑏𝛽 > 0 için daralan (shrinking), 

 

 

olur (Yıldız ve Çetinkaya, 2012a). 

  Teorem 3.2.1.3.:  𝑀, 𝛼,𝛽 sabit olmak üzere 3–boyutlu trans-Sasakian manifoldu  

olsun. 𝑀 üzerindeki (𝑀,𝜑1)  koneksiyonuna göre (1.3.2) ile tanımlı gradyant  Ricci soliton 

özelliğini sağlasın. Bu takdirde 

i) 𝛼, 𝛽 = 0 veya 𝛼 = −1 ve 𝛽 = 0  dır. Dolayısıyla manifold kosimplektik veya verilen 

koneksiyona bağlı 𝜂-Einstein manifold olur. 

ii) (𝑀,𝜑1)  koneksiyonuna göre sabit eğriliklidir. 

iii) 𝜆 = 0, dolayısıyla metriğimiz değişmeyendir (Yıldız ve Çetinkaya, 2012a). 

İspat:  (𝑀,𝜑1)  çeyrek simetrik metrik koneksiyonu ile verilen 3-boyutlu trans-Sasakian 

manifoldu üzerinde 

𝛻̅∇𝑓 = 𝑆̅ + 𝜆𝑔                                                                 (3.2.1.21)  

ile tanımlı gradyant Ricci solitonu gözönüne alalım. 𝐷, 𝑔 metriğinin gradyant operatörü olmak 

üzere (3.2.1.21) denklemi 

∇̅𝑌𝐷𝑓 = 𝑄̅𝑌 + 𝜆𝑌                                                              (3.2.1.22) 

veya  
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𝑔(∇̅𝑌𝐷𝑓, 𝑋) = 𝑔(𝑄̅𝑌, 𝑋) + 𝜆𝑔(𝑌, 𝑋)                                         (3.2.1.23) 

olarak yazılabilir. (3.2.1.22) denkleminden yararlanılarak 𝑅̅(𝑋, 𝑌)𝐷𝑓 ifadesini bulalım: 

𝑅̅(𝑋, 𝑌)𝐷𝑓 = ∇̅𝑋∇̅𝑌𝐷𝑓 − ∇̅𝑌∇̅𝑋𝐷𝑓 − ∇̅[𝑋,𝑌]𝐷𝑓 

                    = ∇̅𝑋(𝑄̅𝑌 + 𝜆𝑌) − ∇̅𝑌(𝑄̅𝑋 + 𝜆𝑋) − ( 𝑄̅[𝑋, 𝑌]

+ 𝜆[𝑋, 𝑌])                                                              

Burada (𝑀,𝜑1)  koneksiyonu yardımıyla yukarıdaki denklem 

𝑅̅(𝑋, 𝑌)𝐷𝑓 = ∇𝑋𝑄̅𝑌 − 𝜂(𝑋)𝜑𝑄̅𝑌 + ∇𝑋𝜆𝑌 − 𝜆𝜂(𝑋)𝜑𝑌 − ∇𝑌𝑄̅𝑋 − 𝜂(𝑌)𝜑𝑄̅𝑋 − ∇𝑌𝜆𝑋

+ 𝜆𝜂(𝑌)𝜑𝑋 − 𝑄̅∇𝑋𝑌 + 𝑄̅∇𝑌𝑋 − 𝜆∇𝑋𝑌

+ 𝜆∇𝑌𝑋                                                                                                              (3.2.1.24) 

halini alır. 𝜆 değerinin sabit olduğu gözönünde bulundurulup (3.2.1.24) denkleminin her iki 

tarafının bir 𝑈 vektör alanı ile iç çarpımı alındığında 

𝑔(𝑅̅(𝑋, 𝑌)𝐷𝑓, 𝑈)

= 𝑔(∇𝑋𝑄̅𝑌, 𝑈) − 𝜂(𝑋)𝑔(𝜑𝑄̅𝑌, 𝑈) + 𝜆𝑔(∇𝑋𝑌, 𝑈) − 𝜆𝜂(𝑋)𝑔(𝜑𝑌, 𝑈)

− 𝑔(∇𝑌𝑄̅𝑋, 𝑈) − 𝜂(𝑌)𝑔(𝜑𝑄̅𝑋, 𝑈) − 𝜆𝑔(∇𝑌𝑋, 𝑈) + 𝜆𝜂(𝑌)𝑔(𝜑𝑋, 𝑈)

− 𝑔(𝑄̅∇𝑋𝑌, 𝑈) + 𝑔(𝑄̅∇𝑌𝑋, 𝑈) − 𝜆𝑔(∇𝑋𝑌, 𝑈)

+ 𝜆𝑔(∇𝑌𝑋, 𝑈)                                                                                                   (3.2.1.25) 

bulunur. Son denklemde gerekli sadeleştirmeler yapılıp  𝑋 = 𝑈 = 𝜉  kullanıldığında 

𝑔(𝑅̅(𝜉, 𝑌)𝐷𝑓, 𝜉)

= 𝑔(∇𝜉𝑄̅𝑌, 𝜉) − 𝑔(𝜑𝑄̅𝑌, 𝜉) − 𝜆𝜂(𝑋)𝑔(𝜑𝑌, 𝜉) − 𝑔(∇𝑌𝑄̅𝜉, 𝑈)

− 𝜂(𝑌)𝑔(𝜑𝑄̅𝜉, 𝜉) + 𝜆𝜂(𝑌)𝑔(𝜑𝜉, 𝜉) − 𝑔(𝑄̅∇𝜉𝑌, 𝜉)

+ 𝑔(𝑄̅∇𝑌𝜉, 𝜉)                                                                                                (3.2.1.26) 

elde edilir. 𝛼,𝛽 sabit olmak üzere (3.2.1.26) da (1.2.35) ve (1.2.38) denklemleri yerine yazılırsa 
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𝑔(𝑅̅(𝜉, 𝑌)𝐷𝑓, 𝜉)

= 𝑔 (∇𝜉{(
𝜏

2
− (𝛼2 − 𝛽2))𝑌}, 𝜉) − 𝑔 (∇𝜉 {(

𝜏

2
− 3(𝛼2 − 𝛽2)) 𝜂(𝑌)𝜉} , 𝜉) − 𝑔(∇𝜉{𝛼𝑌}, 𝜉)

+ 𝑔(∇𝜉{3𝛼𝜂(𝑌)𝜉}, 𝜉) + 𝑔(∇𝜉{𝛽𝜑𝑌}, 𝜉) − 𝑔(∇𝑌{2(𝛼2 − 𝛽2 + 𝛼)𝜉}, 𝜉)

− 𝑔 ((
𝜏

2
− (𝛼2 − 𝛽2)) ∇𝜉𝑌, 𝜉) + 𝑔 ((

𝜏

2
− 3(𝛼2 − 𝛽2)) 𝜂(∇𝜉𝑌)𝜉, 𝜉) + 𝑔(𝛼∇𝜉𝑌, 𝜉)

− 𝑔(3𝛼𝜂(∇𝜉𝑌)𝜉, 𝜉) − 𝑔(𝛽𝜑∇𝜉𝑌, 𝜉) + 𝑔 ((
𝜏

2
− (𝛼2 − 𝛽2)) ∇𝑌𝜉, 𝜉)

− 𝑔 ((
𝜏

2
− 3(𝛼2 − 𝛽2)) 𝜂(∇𝑌𝜉)𝜉, 𝜉) − 𝑔(𝛼∇𝑌𝜉, 𝜉) + 𝑔(3𝛼𝜂(∇𝑌𝜉)𝜉, 𝜉)

+ 𝑔(𝛽𝜑∇𝑌𝜉, 𝜉)                                                                                                                                 (3.2.1.27) 

bulunur. Burada sadeleştirmeler yapılıp Levi-Civita koneksiyonu özellikleri kullanılırsa 

yukarıdaki denklem  

𝑔(𝑅̅(𝜉, 𝑌)𝐷𝑓, 𝜉) = 0                                                               (3.2.1.28) 

halini alır.  Burada ayrıca (3.2.1.1) ve (1.2.36) denklemleri gereği 𝑔(𝑅̅(𝜉, 𝑌)𝐷𝑓, 𝜉) ifadesi 

𝑔(𝑅̅(𝜉, 𝑌)𝐷𝑓, 𝜉) = −𝛽𝑔(𝜑𝑌, 𝐷𝑓) + (𝛼2 − 𝛽2 + 𝛼){𝑔(𝑌, 𝐷𝑓) − 𝜂(𝑌)𝜂(𝐷𝑓)} = 0      (3.2.1.29) 

olarak yazılabilir.(3.2.1.29) da 𝑌 yerine 𝜑𝑌 alınırsa 

𝛽{𝑔(𝑌, 𝐷𝑓) − 𝜂(𝑌)𝜂(𝐷𝑓)} + (𝛼2 − 𝛽2 + 𝛼)𝑔(𝜑𝑌, 𝐷𝑓) = 0                            (3.2.1.30)  

bulunur. (3.2.1.29) ve (3.2.1.30) denklemleri arasında gerekli sadeleştirmeler yapılıp 

düzenlendiğinde 

{(𝛼2 − 𝛽2 + 𝛼)2 + 𝛽2}{𝑔(𝑌, 𝐷𝑓) − 𝜂(𝑌)𝜂(𝐷𝑓)} = 0                                     (3.2.1.31) 

olur, Burada üç durum söz konusudur: 

Durum i) (𝛼2 − 𝛽2 + 𝛼)2 + 𝛽2 = 0: 

(𝛼2 − 𝛽2 + 𝛼)2 + 𝛽2 = 0 olsun. Bu durum ancak 𝛼,𝛽=0 veya α=-1 ve β=0 olursa 

gerçeklenir. Dolayısıyla manifold kosimplektik veya verilen koneksiyona bağlı 𝜂-Einstein 

manifold bulunur. 

Durum ii) 𝑔(𝑌, 𝐷𝑓) − 𝜂(𝑌)𝜂(𝐷𝑓) = 0: 

𝑔(𝑌, 𝐷𝑓) − 𝜂(𝑌)𝜂(𝐷𝑓) = 0 ifadesi her 𝑌 vektör alanı için 
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𝐷𝑓 = (𝜉𝑓)𝜉                                                                    (3.2.1.32) 

haline dönüşür. (3.2.1.32) ifadesi (3.2.1.23) de yerine yazılırsa  

𝑔(∇̅𝑌((𝜉𝑓)𝜉), 𝑋) = 𝑔(𝑄̅𝑌, 𝑋) + 𝜆𝑔(𝑌, 𝑋) 

elde edilir. Yukarıdaki denklem (2.1.3), (3.2.1.7) ve (1.2.39) denklemleri yardımıyla 

𝑋((𝜉𝑓))𝜂(𝑌) + (𝜉𝑓){𝛽{𝑔(𝑌, 𝑋) − 𝜂(𝑋)𝜂(𝑌)} − 𝛼𝑔(𝜑𝑌, 𝑋)}

= 𝑔(𝑄𝑌, 𝑋) − 𝛼𝑔(𝑌, 𝑋) + 3αη(Y)η(X) + βg(φY, X)

+ 𝜆𝑔(𝑌, 𝑋)                                                                                                        (3.2.1.33) 

olarak yazılabilir. Burada  (1.2.39)  denklemi kullanılıp gerekli düzenlemeler yapıldığında 

𝑋((𝜉𝑓))𝜂(𝑌) + (𝜉𝑓){𝛽{𝑔(𝑌, 𝑋) − 𝜂(𝑋)𝜂(𝑌)} − 𝛼𝑔(𝜑𝑌, 𝑋)}

= [
𝜏

2
− (𝛼2 − 𝛽2)] 𝑔(𝑋, 𝑌) − [

𝜏

2
− 3(𝛼2 − 𝛽2)] 𝜂(𝑋)𝜂(𝑌) − 𝛼𝑔(𝑌, 𝑋)

+ 3αη(Y)η(X) + βg(φY, X)

+ 𝜆𝑔(𝑌, 𝑋)                                                                                                         (3.2.1.34) 

bulunur. (3.2.1.34) de 𝑌 = 𝜉 alınırsa 

𝑋((𝜉𝑓)) = {2(𝛼2 − 𝛽2) + 2𝛼 + 𝜆}𝜂(𝑋)                                            (3.2.1.35) 

sonucu ortaya çıkar. (3.2.1.35) denkleminde 𝑋 yerine 𝑌, 𝑌 yerine 𝑋 yazalım: 

𝑌((𝜉𝑓))𝜂(𝑋) + (𝜉𝑓){𝛽{𝑔(𝑋, 𝑌) − 𝜂(𝑌)𝜂(𝑋)} − 𝛼𝑔(𝜑𝑋, 𝑌)}

= 𝑔(𝑄𝑋, 𝑌) − 𝛼𝑔(𝑋, 𝑌) + 3𝛼η(X)η(Y) + βg(φX, Y)

+ 𝜆𝑔(𝑋, 𝑌)                                                                                                       (3.2.1.36) 

(3.2.1.34) ile (3.2.1.36) denklemleri taraf tarafa toplanırsa 

𝑌((𝜉𝑓))𝜂(𝑋) + (𝜉𝑓){𝛽{𝑔(𝑋, 𝑌) − 𝜂(𝑌)𝜂(𝑋)} − 𝛼𝑔(𝜑𝑋, 𝑌)} + 𝑋((𝜉𝑓))𝜂(𝑌)

+ (𝜉𝑓){𝛽{𝑔(𝑌, 𝑋) − 𝜂(𝑋)𝜂(𝑌)} − 𝛼𝑔(𝜑𝑌, 𝑋)}

= 𝑔(𝑄𝑌, 𝑋) − 𝛼𝑔(𝑌, 𝑋) + 3𝛼η(Y)η(X) + βg(φY, X) + 𝜆𝑔(𝑌, 𝑋)  + 𝑔(𝑄𝑋, 𝑌)

− 𝛼𝑔(𝑋, 𝑌) + 3𝛼η(X)η(Y) + βg(φX, Y) + 𝜆𝑔(𝑋, 𝑌) 

yani  
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𝑌((𝜉𝑓))𝜂(𝑋) + (𝜉𝑓){𝛽{𝑔(𝑋, 𝑌) − 𝜂(𝑌)𝜂(𝑋)}} + 𝑋((𝜉𝑓))𝜂(𝑌)

+ (𝜉𝑓){𝛽{𝑔(𝑌, 𝑋) − 𝜂(𝑋)𝜂(𝑌)}}

= 𝑔(𝑄𝑌, 𝑋) − 2𝛼𝑔(𝑌, 𝑋) + 6𝛼η(Y)η(X) + 2𝜆𝑔(𝑌, 𝑋)  + 𝑔(𝑄𝑋, 𝑌) 

bulunur. Bu denklem (3.2.1.35) denklemi gereği 

2{2(𝛼2 − 𝛽2) + 2𝛼 + 𝜆}𝜂(𝑋)𝜂(𝑌) + 2(𝜉𝑓){𝛽{𝑔(𝑋, 𝑌) − 𝜂(𝑌)𝜂(𝑋)}} + 2𝛽𝑔(𝜑𝑌, 𝑋)

= 2𝑔(∇̅𝑌𝐷𝑓, 𝑋) 

haline dönüşür. Buradan  

∇̅𝑌𝐷𝑓 = {2(𝛼2 − 𝛽2) + 2𝛼 + 𝜆 − (𝜉𝑓)𝛽}𝜂(𝑌)𝜉 + (𝜉𝑓)𝛽𝑌 + 𝛽φ𝑌     (3.2.1.37) 

yazılabilir. (3.2.1.36) yardımıyla 𝑅̅(𝑋, 𝑌)𝐷𝑓 ifadesini tekrardan hesaplayalım: 

     𝑅̅(𝑋, 𝑌)𝐷𝑓 = ∇̅𝑋∇̅𝑌𝐷𝑓 − ∇̅𝑌∇̅𝑋𝐷𝑓 − ∇̅[𝑋,𝑌]𝐷𝑓 

                      = ∇̅𝑋[{2(𝛼2 − 𝛽2) + 2𝛼 + 𝜆 − (𝜉𝑓)𝛽}𝜂(𝑌)𝜉 + (𝜉𝑓)𝛽𝑌 + 𝛽φ𝑌 ] −

∇̅𝑌[{2(𝛼2 − 𝛽2) +  2𝛼 + 𝜆 − (𝜉𝑓)𝛽}𝜂(𝑋)𝜉 + (𝜉𝑓)𝛽𝑋 + 𝛽φ𝑋] − [{2(𝛼2 − 𝛽2) + 2𝛼 + 𝜆 −

  (𝜉𝑓)𝛽}𝜂([𝑋, 𝑌])𝜉 + (𝜉𝑓)𝛽[𝑋, 𝑌] + 𝛽φ[X, 𝑌]] 

                          = {2(𝛼2 − 𝛽2) + 2𝛼 + 𝜆 − (𝜉𝑓)𝛽}[𝜂(∇𝑋𝑌)𝜉 + 𝑔(𝑌, ∇𝑋𝜉)𝜉 + 𝜂(𝑌)∇𝑋𝜉]

− 𝑋(𝜉𝑓)𝛽𝜂(𝑌)𝜉 + 𝑋(𝜉𝑓)𝛽𝑌 + (𝜉𝑓)𝛽∇𝑋𝑌 + 𝛽(∇𝑋φ)𝑌 + 𝛽φ∇𝑋𝑌

− (𝜉𝑓)𝛽𝜂(𝑋)φY − β𝜂(𝑋)𝜑2Y

− {2(𝛼2 − 𝛽2) + 2𝛼 + 𝜆 − (𝜉𝑓)𝛽}[𝜂(∇𝑌𝑋)𝜉 + 𝑔(𝑋, ∇𝑌𝜉)𝜉 + 𝜂(𝑋)∇𝑌𝜉]

+ 𝑌(𝜉𝑓)𝛽𝜂(𝑋)𝜉 − (𝜉𝑓)𝛽∇𝑌𝑋 − 𝑌(𝜉𝑓)𝛽𝑋 − 𝛽(∇𝑌φ)𝑋 − 𝛽φ∇𝑌𝑋

+ (𝜉𝑓)𝛽𝜂(𝑌)φX

− [{2(𝛼2 − 𝛽2) + 2𝛼 + 𝜆 − (𝜉𝑓)𝛽}𝜂([𝑋, 𝑌])𝜉 + (𝜉𝑓)𝛽[𝑋, 𝑌] + 𝛽φ[X, 𝑌]]. 

 Son denklemde sadeleştirmeler yapılıp elde edilen denklemin  her iyi yanının 𝜉 ile iç 

çarpımı alındığında 

g(𝑅̅(𝑋, 𝑌)𝐷𝑓, 𝜉) = {2(𝛼2 − 𝛽2) + 2𝛼 + 𝜆 − (𝜉𝑓)𝛽}𝑔(𝑌, ∇𝑋𝜉) − 𝑋(𝜉𝑓)𝛽𝜂(𝑌) +

𝑋(𝜉𝑓)𝛽𝜂(𝑌)  + 𝛽𝑔((∇𝑋φ)𝑌, 𝜉) − {2(𝛼2 − 𝛽2) + 2𝛼 + 𝜆 − (𝜉𝑓)𝛽}𝑔(𝑋, ∇𝑌𝜉) +

𝑌(𝜉𝑓)𝛽𝜂(𝑋) −  𝑌(𝜉𝑓)𝛽𝜂(𝑋) −

𝛽𝑔((∇𝑌φ)𝑋, 𝜉)                                                                                                                               (3.2.1.38) 

bulunur. (1.2.34) ve (1.2.35) denklemleri (3.2.1.36) da yerine yazılırsa 
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g(𝑅̅(𝑋, 𝑌)𝐷𝑓, 𝜉) = {2(𝛼2 − 𝛽2) + 2𝛼 + 𝜆 − (𝜉𝑓)𝛽}[−𝛼𝑔(𝑌, 𝜑𝑋) + 𝛽𝑔(𝑌, 𝑋) −

𝛽𝜂(𝑌)𝜂(𝑋)] + 𝛽[𝛼𝑔(𝑋, 𝑌) − 𝛼𝜂(𝑌)𝜂(𝑋) + 𝛽𝑔(𝜑𝑋, 𝑌)] − {2(𝛼2 − 𝛽2) + 2𝛼 + 𝜆 −

   (𝜉𝑓)𝛽}[−𝛼𝑔(𝑋, 𝜑𝑌) + 𝛽𝑔(𝑌, 𝑋) − 𝛽𝜂(𝑌)𝜂(𝑋)] − 𝛽[𝛼𝑔(𝑋, 𝑌) − 𝛼𝜂(𝑌)𝜂(𝑋) +

 𝛽𝑔(𝜑𝑌, 𝑋)]                                                                                                                                     (3.2.1.39) 

elde edilir. Yukarıda (3.2.1.36) ve (3.2.1.1) denklemleri gözönünde bulundurulduğunda 

[2𝛽2 − 2𝛼{2(𝛼2 − 𝛽2) + 2𝛼 + 𝜆 − (𝜉𝑓)𝛽}]𝑔(𝜑𝑋, 𝑌) = 0, 

sonucu ortaya çıkar. Burada 𝑔(𝑌, 𝜑𝑋) sıfır olamayacağından 

2𝛽2 − 2𝛼{2(𝛼2 − 𝛽2) + 2𝛼 + 𝜆 − (𝜉𝑓)𝛽} = 0,                        (3.2.1.40) 

olma durumu kalır.  Burada 𝛼, 𝛽 nın sabit olması göz önünde bulundurulduğunda 𝜆 değerinin 

sabit olabilmesi için (𝜉𝑓) = 𝑠𝑎𝑏𝑖𝑡 = 𝑐  olması gerekir. Bu da (3.2.1.31) gereği    

𝐷𝑓 = 𝑐𝜉                                                             (3.2.1.41) 

demektir. Dolayısıyla   (3.2.1.23) denklemi (3.2.1.41) yardımıyla  

𝑆̅(𝑌, 𝑋) = −𝜆𝑔(𝑌, 𝑋) + 𝑔(∇̅𝑌𝑐𝜉, 𝑋) = −𝜆𝑔(𝑌, 𝑋) − 𝑐𝛼𝑔(𝜑𝑌, 𝑋) + 𝑐𝛽𝑔(𝑌, 𝑋) − 𝑐𝛽𝜂(𝑌)𝜂(𝑋) 

olarak yazılabilir. Burada 𝑋 ve 𝑌 vektör alanlarına göre kontraksiyon yapılırsa 

𝜏̅ = −3𝜆 + 2𝛽𝑐 

elde edilir. Sonuçta manifold (𝑀,𝜑1)  koneksiyonuna göre sabit eğriliklidir. 

Durum iii) (𝛼2 − 𝛽2 + 𝛼)2 + 𝛽2 = 0 𝑣𝑒   𝑔(𝑌, 𝐷𝑓) − 𝜂(𝑌)𝜂(𝐷𝑓) = 0 : 

(𝛼2 − 𝛽2 + 𝛼)2 + 𝛽2 = 0 eşitliği gereği 𝛼,𝛽=0 veya α=-1 ve β=0 olduğunu biliyoruz. 

𝑔(𝑌, 𝐷𝑓) − 𝜂(𝑌)𝜂(𝐷𝑓) = 0  durumunda da (3.2.1.40) olabileceğini gördük. Bu denklemde ilk 

önce 𝛼,𝛽=0 koyduğumuzda eşitlik sağlanır. 𝛼 = −1 ve 𝛽 = 0 değerleri için 

𝜆 = 0 

elde edilir ki bu da metriğin değişmeyen(steady) olduğunu gösterir. Böylece ispat tamamlanır. 

3.2.2. (𝑴,𝝋𝟐) çeyrek simetrik metrik olmayan koneksiyonu ile verilmiş   3-boyutlu normal    

           hemen hemen değme metrik manifoldlar 

Önerme 3.2.2.1.: Bir 3- boyutlu normal hemen hemen değme metrik manifoldu 𝑀  

olsun. 𝑀 üzerinde  Levi-Civita koneksiyonu  ya göre eğrilik tensörü 𝑅 ve (𝑀,𝜑2)  çeyrek-
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simetrik metrik olmayan koneksiyonu ∇̅ ye göre eğrilik tensörü R̅ olmak üzere, ∀ 𝑋, 𝑌, 𝑍 ∈

𝜒(𝑀) için 𝑅 ile R̅  arasındaki bağıntı 

𝑅̅(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 − 𝛼𝑔(𝑌, 𝑍)𝜑𝑋 + 𝛼𝑔(𝑋, 𝑍)𝜑𝑌 − 𝛽{𝜂(𝑌)𝜂(𝑍)𝑋 − 𝜂(𝑋)𝜂(𝑍)𝑌}

+ 𝛽𝑔(𝜑𝑌, 𝑍)𝜑𝑋 − 𝛽𝑔(𝜑𝑋, 𝑍)𝜑𝑌

+ 2𝛼𝜂(𝑍)𝑔(𝜑𝑋, 𝑌)𝜉                                                                                         (3.2.2.1) 

dir (Yıldız ve Çetinkaya, 2012b). 

İspat: Çeyrek-simetrik metrik olmayan koneksiyon ∇̅ ye göre eğrilik tensörü R̅ olmak 

üzere, ∀ 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) için hemen hemen değme metrik manifoldlarda (2.1.6) denklemini 

bulmuştuk. 𝑀 bir 3-boyutlu normal hemen hemen değme metrik manifold olduğundan  (2.1.6) 

denkleminde (1.2.13) ve (1.2.14) denklemleri kullanılırsa  

𝑅̅(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 + 𝛼𝑔(𝑋, 𝑍)𝜑𝑌 − 𝛼𝜂(𝑋)𝜂(𝑍)𝜑𝑌 − 𝛽𝑔(𝜑𝑋, 𝑍)𝜑𝑌

+ 𝛼[𝜂(𝑍)𝑔(𝜑𝑋, 𝑌)𝜉 − 𝜂(𝑍)𝜂(𝑌)𝜑𝑋] + 𝛽[𝜂(𝑍)𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑍)𝜂(𝑌)𝑋]

− 𝛼𝑔(𝑌, 𝑍)𝜑𝑋 + 𝛼𝜂(𝑋)𝜂(𝑍)𝜑𝑌 + 𝛽𝑔(𝜑𝑌, 𝑍)𝜑𝑋

− 𝛼[𝜂(𝑍)𝑔(𝜑𝑌, 𝑋)𝜉 − 𝜂(𝑍)𝜂(𝑋)𝜑𝑌] − 𝛽[𝜂(𝑍)𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑍)𝜂(𝑋)𝑌],  

elde edilir ki burada gerekli sadeleştirmeler yapıldığında 

𝑅̅(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 − 𝛼𝑔(𝑌, 𝑍)𝜑𝑋 + 𝛼𝑔(𝑋, 𝑍)𝜑𝑌 − 𝛽{𝜂(𝑌)𝜂(𝑍)𝑋 − 𝜂(𝑋)𝜂(𝑍)𝑌}

+ 𝛽𝑔(𝜑𝑌, 𝑍)𝜑𝑋 − 𝛽𝑔(𝜑𝑋, 𝑍)𝜑𝑌 + 2𝛼𝜂(𝑍)𝑔(𝜑𝑋, 𝑌)𝜉,           

sonucuna ulaşılır. 

Önerme 3.2.2.2.: Bir 3-boyutlu normal hemen hemen değme metrik manifoldu 𝑀  

olsun. 𝑀 üzerinde  Levi-Civita koneksiyonu  ya göre eğrilik tensörü 𝑅 ve (𝑀,𝜑2)  çeyrek-

simetrik metrik olmayan koneksiyonu ∇̅ ye göre eğrilik tensörü R̅ olmak üzere, ∀ 𝑋, 𝑌, 𝑍 ∈

𝜒(𝑀) için; 

𝑅̅(𝑋, 𝑌)𝜉 = {(𝑌𝛼) + (𝛼2 − 𝛽2)𝜂(𝑌)}𝜑2𝑋 − {(𝑋𝛼) + (𝛼2 − 𝛽2)𝜂(𝑋)}𝜑2𝑌

+ {(𝑌𝛽) + 2𝛼𝛽𝜂(𝑌) − 𝛼𝜂(𝑌)}𝜑𝑋 − {(𝑋𝛽) + 2𝛼𝛽𝜂(𝑋) − 𝛼𝜂(𝑋)}𝜑𝑌

− 𝛽{𝜂(𝑌)𝜂(𝑍)𝑋 − 𝜂(𝑋)𝜂(𝑍)𝑌}

+ 2𝛼𝑔(𝜑𝑋, 𝑌)𝜉,                                                                                              (3.2.2.2) 

dır (Yıldız ve Çetinkaya, 2012b). 

İspat: İlk olarak (3.2.2.1) denkleminde 𝑍 = 𝜉  alınırsa 



61 

 

𝑅̅(𝑋, 𝑌)𝜉

= 𝑅(𝑋, 𝑌)𝜉 − 𝛼𝜂(𝑌)𝜑𝑋 + 𝛼𝜂(𝑋)𝜑𝑌 − 𝛽{𝜂(𝑌)𝜂(𝑍)𝑋 − 𝜂(𝑋)𝜂(𝑍)𝑌}

+ 2𝛼𝑔(𝜑𝑋, 𝑌)𝜉                                                                                                                                      (3.2.2.3) 

bulunur. 𝑀 bir 3-boyutlu normal hemen hemen değme metrik  manifoldu olduğundan (1.2.15) 

denklemi yardımıyla yukarıdaki denklem 

𝑅̅(𝑋, 𝑌)𝜉 = {(𝑌𝛼) + (𝛼2 − 𝛽2)𝜂(𝑌)}𝜑2𝑋 − {(𝑋𝛼) + (𝛼2 − 𝛽2)𝜂(𝑋)}𝜑2𝑌 + {(𝑌𝛽)

+ 2𝛼𝛽𝜂(𝑌)}𝜑𝑋 − {(𝑋𝛽) + 2𝛼𝛽𝜂(𝑋)}𝜑𝑌 − 𝛼𝜂(𝑌)𝜑𝑋 + 𝛼𝜂(𝑋)𝜑𝑌

− 𝛽{𝜂(𝑌)𝜂(𝑍)𝑋 − 𝜂(𝑋)𝜂(𝑍)𝑌} + 2𝛼𝑔(𝜑𝑋, 𝑌)𝜉  

halini alır. Son olarak burada gerekli düzenlemeler yapıldığında  

𝑅̅(𝑋, 𝑌)𝜉 = {(𝑌𝛼) + (𝛼2 − 𝛽2)𝜂(𝑌)}𝜑2𝑋 − {(𝑋𝛼) + (𝛼2 − 𝛽2)𝜂(𝑋)}𝜑2𝑌 + {(𝑌𝛽)

+ 2𝛼𝛽𝜂(𝑌) − 𝛼𝜂(𝑌)}𝜑𝑋 − {(𝑋𝛽) + 2𝛼𝛽𝜂(𝑋) − 𝛼𝜂(𝑋)}𝜑𝑌

− 𝛽{𝜂(𝑌)𝜂(𝑍)𝑋 − 𝜂(𝑋)𝜂(𝑍)𝑌} + 2𝛼𝑔(𝜑𝑋, 𝑌)𝜉  

elde edilir.  

Önerme 3.2.2.3.: Bir 3-boyutlu normal hemen hemen değme metrik  manifoldu 𝑀 

olsun. 𝑀 üzerinde  (𝑀,𝜑2)  çeyrek-simetrik metrik  olmayan koneksiyonu ∇̅ ye göre eğrilik 

tensörü R̅ olmak üzere, ∀ 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) için; 

𝑅̅(𝑋, 𝑌)𝑍 = −𝑅̅(𝑌, 𝑋)𝑍 

sağlanır (Yıldız ve Çetinkaya, 2012b). 

İspat: (3.2.2.1) denkleminde sırasıyla  𝑌 = 𝑋 ve 𝑋 = 𝑌 alınırsa 

𝑅̅(𝑌, 𝑋)𝑍 = 𝑅(𝑌, 𝑋)𝑍 − 𝛼𝑔(𝑋, 𝑍)𝜑𝑌 + 𝛼𝑔(𝑌, 𝑍)𝜑𝑋 − 𝛽{𝜂(𝑋)𝜂(𝑍)𝑌 − 𝜂(𝑌)𝜂(𝑍)𝑋}

+ 𝛽𝑔(𝜑𝑋, 𝑍)𝜑𝑌 − 𝛽𝑔(𝜑𝑌, 𝑍)𝜑𝑋

+ 2𝛼𝜂(𝑍)𝑔(𝜑𝑌, 𝑋)𝜉                                                                                         (3.2.2.4) 

elde edilir.(3.2.2.4) ile (3.2.2.1) denklemleri taraf tarafa toplandığında 

𝑅̅(𝑋, 𝑌)𝑍 + 𝑅̅(𝑌, 𝑋)𝑍

= 𝑅(𝑋, 𝑌)𝑍 − 𝛼𝑔(𝑌, 𝑍)𝜑𝑋 + 𝛼𝑔(𝑋, 𝑍)𝜑𝑌 − 𝛽{𝜂(𝑌)𝜂(𝑍)𝑋 − 𝜂(𝑋)𝜂(𝑍)𝑌}

+ 𝛽𝑔(𝜑𝑌, 𝑍)𝜑𝑋 − 𝛽𝑔(𝜑𝑋, 𝑍)𝜑𝑌 + 2𝛼𝜂(𝑍)𝑔(𝜑𝑋, 𝑌)𝜉 + 𝑅(𝑌, 𝑋)𝑍

− 𝛼𝑔(𝑋, 𝑍)𝜑𝑌 + 𝛼𝑔(𝑌, 𝑍)𝜑𝑋 − 𝛽{𝜂(𝑋)𝜂(𝑍)𝑌 − 𝜂(𝑌)𝜂(𝑍)𝑋}

+ 𝛽𝑔(𝜑𝑋, 𝑍)𝜑𝑌 − 𝛽𝑔(𝜑𝑌, 𝑍)𝜑𝑋 + 2𝛼𝜂(𝑍)𝑔(𝜑𝑌, 𝑋)𝜉 
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yazılabilir. Burada gerekli sadeleştirmeler yapılırsa 

𝑅̅(𝑋, 𝑌)𝑍 = −𝑅̅(𝑌, 𝑋)𝑍 

bulunur.  

Ayrıca (3.2.2.1) denkleminde sırasıyla ilk önce 𝑋 = 𝑌,  𝑌 = 𝑍 ve 𝑍 = 𝑋 olarak 

alındığında 

𝑅̅(𝑌, 𝑍)𝑋 = 𝑅(𝑌, 𝑍)𝑋 − 𝛼𝑔(𝑍, 𝑋)𝜑𝑌 + 𝛼𝑔(𝑌, 𝑋)𝜑𝑍 − 𝛽{𝜂(𝑍)𝜂(𝑋)𝑌 − 𝜂(𝑌)𝜂(𝑋)𝑍}

+ 𝛽𝑔(𝜑𝑍, 𝑋)𝜑𝑌 − 𝛽𝑔(𝜑𝑌, 𝑋)𝜑𝑍

+ 2𝛼𝜂(𝑋)𝑔(𝜑𝑌, 𝑍)𝜉                                                                                         (3.2.2.5) 

bulunur. Benzer şekilde (3.2.2.5)  denkleminde sırasıyla 𝑌 = 𝑍, 𝑍 = 𝑋 ve 𝑋 = 𝑌 yazıldığında 

𝑅̅(𝑍, 𝑋)𝑌 = 𝑅(𝑍, 𝑋)𝑌 − 𝛼𝑔(𝑋, 𝑌)𝜑𝑍 + 𝛼𝑔(𝑍, 𝑌)𝜑𝑋 − 𝛽{𝜂(𝑋)𝜂(𝑌)𝑍 − 𝜂(𝑍)𝜂(𝑌)𝑋}

+ 𝛽𝑔(𝜑𝑋, 𝑌)𝜑𝑍 − 𝛽𝑔(𝜑𝑍, 𝑌)𝜑𝑋

+ 2𝛼𝜂(𝑌)𝑔(𝜑𝑍, 𝑋)𝜉                                                                                         (3.2.2.6) 

elde edilir. Son olarak (3.2.2.1), (3.2.2.5) ve (3.2.2.6) denklemlerini taraf tarafa toplarsak 

𝑅̅(𝑋, 𝑌)𝑍+𝑅̅(𝑌, 𝑍)𝑋 + 𝑅̅(𝑍, 𝑋)𝑌 =

2𝛽𝑔(𝜑𝑌, 𝑍)𝜑𝑋 − 2𝛽𝑔(𝜑𝑋, 𝑍)𝜑𝑌 + 2𝛼𝜂(𝑍)𝑔(𝜑𝑋, 𝑌)𝜉 − 2𝛽𝑔(𝜑𝑌, 𝑋)𝜑𝑍 +

2𝛼𝜂(𝑋)𝑔(𝜑𝑌, 𝑍)𝜉 + 2𝛼𝜂(𝑌)𝑔(𝜑𝑍, 𝑋)𝜉                                                                                      (3.2.2.7)                                                      

bulunur. Buradan aşağıdaki önermeyi verebiliriz: 

Önerme 3.2.2.4.: Bir 3-boyutlu normal hemen hemen değme metrik manifoldu 𝑀 

olsun. 𝑀, (𝑀,𝜑2)  çeyrek simetrik metrik olmayan koneksiyonu ∇̅ ye göre eğrilik tensörü R̅ 

olmak üzere,  ∀ 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) için (3.2.2.7) gereği  bu koneksiyona bağlı 1. Bianchi 

özdeşliğini sağlar ancak ve ancak  𝛽 = 0, 𝛼=0  dır (Yıldız ve Çetinkaya, 2012b). 

Sonuç 3.2.2.1.: Bir 3-boyutlu trans-Sasakian manifoldu 𝑀 olsun. 𝑀, (𝑀,𝜑2)  çeyrek 

simetrik metrik olmayan koneksiyonu ∇̅ ye göre eğrilik tensörü R̅ olmak üzere,  ∀ 𝑋, 𝑌, 𝑍 ∈

𝜒(𝑀) için (3.2.2.7) gereği  bu koneksiyona bağlı I. Bianchi özdeşliğini sağlar ancak ve ancak  

manifold kosimplektiktir (Yıldız ve Çetinkaya, 2012). 

Önerme 3.2.2.5.: Bir 3-boyutlu normal hemen hemen değme metrik manifoldu 𝑀 

olsun. 𝑀, (𝑀,𝜑2)   çeyrek-simetrik metrik olmayan  koneksiyonu ∇̅ ye  göre Ricci tensörü ve 

skaler eğriliği sırasıyla  S̅ ve 𝜏̅ olmak üzere, ∀ 𝑌, 𝑍 ∈ 𝜒(𝑀) için  
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S̅(Y, Z) = S(Y, Z) + βg(Y, Z) − 3βη(Y)η(Z) + αg(φY, Z)                                         (3.2.2.8)   

𝑄̅Y = QY + βY − 3βη(Y)ξ + αφY                                         (3.2.2.9)   

𝜏̅ = 𝜏                                                                                      (3.2.2.10) 

biçimindedir (Yıldız ve Çetinkaya, 2012b). 

İspat : (3.2.2.1) denkleminin her iki yanının 𝑈  (𝑀) ile iç çarpımı alındığında  

𝑔(𝑅̅(𝑋, 𝑌)𝑍, 𝑈) = 𝑔(𝑅(𝑋, 𝑌)𝑍, 𝑈) − 𝛼𝑔(𝑌, 𝑍)𝑔(𝜑𝑋, 𝑈) + 𝛼𝑔(𝑋, 𝑍)𝑔(𝜑𝑌, 𝑈)

− 𝛽{𝜂(𝑌)𝜂(𝑍)𝑔(𝑋, 𝑈) − 𝜂(𝑋)𝜂(𝑍)𝑔(𝑌, 𝑈)} + 𝛽𝑔(𝜑𝑌, 𝑍)𝑔(𝜑𝑋, 𝑈)

− 𝛽𝑔(𝜑𝑋, 𝑍)𝑔(𝜑𝑌, 𝑈) + 2𝛼𝜂(𝑍)𝑔(𝜑𝑋, 𝑌)𝜂(𝑈)   

yazılabilir. Buradan da 𝑋 ve 𝑈 vektör alanlarına göre kontraksiyon yapıldığında 

S̅(Y, Z) = S(Y, Z) + 𝛼𝑔(𝜑𝑌, 𝑍) − 𝛽{𝜂(𝑌)𝜂(𝑍)3 − 𝜂(𝑌)𝜂(𝑍)} + 𝛽{𝑔(𝑌, 𝑍) − 𝜂(𝑌)𝜂(𝑍)} 

elde edilir. Son denklem her Z vektör alanı için  

𝑄̅Y = QY + βY − 3βη(Y)ξ + αφY 

haline dönüşür. 

 Son olarak (3.2.2.8) denkleminde 𝑌 ve 𝑍 vektör alanlarına göre kontraksiyon 

yapıldığında  

𝜏̅ = 𝜏 

bulunur. 

Önerme 3.2.2.6.: Bir 3-boyutlu normal hemen hemen değme metrik  manifoldu 𝑀  

olsun. 𝑀 üzerinde  (𝑀,𝜑2)  çeyrek-simetrik metrik olmayan koneksiyonu ∇̅ ye  göre Ricci 

tensörü  S̅ olmak üzere, ∀ 𝑌 ∈ 𝜒(𝑀) için  

S̅(Y, ξ) = −[2𝛽 + (𝜉𝛼) + 2(𝛼2 − 𝛽2)]𝜂(𝑌) − (𝑌𝛼) − (𝜑𝑌𝛽)                    (3.2.2.11) 

dır (Yıldız ve Çetinkaya, 2012b). 

İspat:  (3.2.2.8) ifadesinde 𝑍 = 𝜉 alınırsa  

S̅(Y, ξ) = S(Y, ξ) + βg(Y, ξ) − 3βη(Y)η(ξ) + αg(φY, ξ)    

bulunur. Yukarıda (1.2.17) , (1.2.2) ve (1.2.4) denklemleri kullanıldığında 
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S̅(Y, ξ) = [
𝜏

2
+ (𝜉𝛼) + (𝛼2 − 𝛽2)] 𝜂(𝑌) − [

𝜏

2
+ (𝜉𝛼) + 3(𝛼2 − 𝛽2)] 𝜂(𝑌)

− {(𝑌𝛼) + (𝜉𝛼)𝜂(𝑌)} − (𝜑𝑌𝛽) − 2βη(Y) 

elde edilir. Burada gerekli düzenlemeler yapıldığında (3.2.2.11) elde edileceği açıktır. 

Teorem 3.2.2.1.: Bir 3-boyutlu normal hemen hemen değme metrik manifoldu 𝑀  

olsun. 𝑀, (𝑀,𝜑2) çeyrek simetrik metrik olmayan  koneksiyonu  ∇̅ ye  göre Ricci tensörü 

simetriktir ancak ve ancak manifold β-Sasakiandır (Yıldız ve Çetinkaya, 2012b). 

İspat: Kabul edelim ki 𝑛-boyutlu bir 𝑀 3-boyutlu normal hemen hemen değme metrik 

manifoldu üzerinde (𝑀,𝜑2) çeyrek simetrik metrik olmayan koneksiyonu    ∇̅  ye  göre Ricci 

tensörü simetrik olsun,  yani ∀ 𝑍, 𝑌 ∈ 𝜒(𝑀) için 

𝑆̅(𝑌, 𝑍) = 𝑆̅(𝑍, 𝑌) 

sağlansın. Öncelikle  𝑆̅(𝑍, 𝑌) ifadesini bulabilmek için (3.2.2.8) denkleminde 𝑌 yerine 𝑍, 𝑍 

yerine 𝑌 yazalım. Bu durumda  

S̅(Z, Y) = S(Z, Y) + βg(Z, Y) − 3βη(Z)η(Y) + αg(φZ, Y)                                          (3.2.2.12) 

ifadesi elde edilir.(3.2.2.8) ve (3.2.2.11) denklemleri  𝑆̅(𝑌, 𝑍) = 𝑆̅(𝑍, 𝑌) gereği 

𝑆(𝑌, 𝑍) + 𝛽𝑔(𝑌, 𝑍) − 3𝛽𝜂(𝑌)𝜂(𝑍) + 𝛼𝑔(𝜑𝑌, 𝑍)

= 𝑆(𝑍, 𝑌) + 𝛽𝑔(𝑍, 𝑌) − 3𝛽𝜂(𝑍)𝜂(𝑌) + 𝛼𝑔(𝜑𝑍, 𝑌) 

halini alır. Burada gerekli sadeleştirmeler yapıldığında 

𝛼𝑔(𝜑𝑌, 𝑍) = 𝛼𝑔(𝜑𝑍, 𝑌) 

yada 

2𝛼𝑔(𝜑𝑌, 𝑍) = 0 

bulunur. Buradan da 𝛼 = 0  olduğu açıktır. 

Tersine 3-boyutlu bir 𝑀 normal hemen hemen değme metrik  manifoldu için 𝛼 = 0   

olsun. (3.2.2.8) denkleminde  𝛼 = 0  alınırsa 

S̅(Y, Z) = S(Y, Z) + βg(Y, Z) − 3βη(Y)η(Z)                                        

elde edilir. Yukarıdaki denklemde 𝑆 Ricci tensörü ve 𝑔 Riemann metriğinin simetrik olma 

özelliklerinden yararlanılarak 



65 

 

S̅(Y, Z) = S(Z, Y) + βg(Z, Y) − 3βη(Z)η(Y) = S̅(Z, Y) 

sonucu ortaya çıkar. Böylece ispat tamamlanır.  

Teorem 3.2.2.2.:  𝑀 , 𝛼,β sabit olmak şartıyla 3- boyutlu normal hemen hemen değme 

metrik manifoldu olsun. 𝑀 üzerinde (𝑀,𝜑2)  çeyrek simetrik metrik olmayan koneksiyonu ∇̅ 

olmak üzere, 𝑏 fonksiyonu için 𝑉 = 𝑏𝜉 olmak şartıyla, manifold verilen koneksiyona bağlı  

Ricci soliton olma özelliğini sağlıyor ise manifold ∇̅ koneksiyonuna bağlı 𝜂-Einstein 

manifolddur (Yıldız ve Çetinkaya, 2012b).  

İspat:  𝑀 , 𝛼 ve 𝛽 sabit olmak şartıyla 3- boyutlu normal hemen hemen değme metrik 

manifoldu olsun. 𝑀 üzerinde (𝑀,𝜑2)  çeyrek simetrik metrik olmayan koneksiyonu ∇̅ olmak 

üzere,  b fonksiyonu için 𝑉 = 𝑏𝜉 olmak şartıyla, manifold verilen koneksiyona bağlı Ricci 

soliton olma şartını sağlasın. O halde (1.3.1) ile verilen, 

(
1

2
𝐿̅𝑉𝑔 + 𝑆̅ + 𝜆𝑔)(𝑋, 𝑌) = 0,                   

denklemi, 

(𝐿̅𝑉𝑔)(𝑋, 𝑌) + 2𝑆̅(𝑋, 𝑌) + 2𝜆𝑔(𝑋, 𝑌) = 0                                            (3.2.2.13) 

haline dönüşür. (3.2.2.13) de Lie türevi özellikleri kullanılırsa 

𝑔(∇̅𝑋𝑉, 𝑌) + 𝑔(∇̅𝑌𝑉, 𝑉) + 2𝑆̅(𝑋, 𝑌) + 2𝜆𝑔(𝑋, 𝑌) = 0                                             

elde edilir. Burada 𝑉 = 𝑏𝜉  alınıp  (2.1.3) denklemi kullanıldığında 

𝑔(∇𝑋𝑏𝜉, 𝑌) + 𝑏𝑔(𝜑𝑋, 𝑌) + 𝑔(∇𝑌𝑏𝜉, 𝑋) + 𝑏𝑔(𝜑𝑌, 𝑋) + 2𝑆̅(𝑋, 𝑌) + 2𝜆𝑔(𝑋, 𝑌) = 0                  

yani 

(𝑋𝑏)𝜂(𝑌) + 𝑏𝑔(∇𝑋𝜉, 𝑌) + (𝑌𝑏)𝜂(𝑋) + 𝑏𝑔(∇𝑌𝜉, 𝑋) + 2𝑆̅(𝑋, 𝑌) + 2𝜆𝑔(𝑋, 𝑌) = 0       (3.2.2.14) 

bulunur. (3.2.2.14) ifadesi (1.2.14) denklemi yardımıyla 

(𝑋𝑏)𝜂(𝑌) + 𝑏𝛼𝑔(𝑋, 𝑌) − 𝑏𝛼𝜂(𝑋)𝜂(𝑌) − 𝛽𝑏𝑔(𝜑𝑋, 𝑌) + (𝑌𝑏)𝜂(𝑋) + 𝑏𝛼𝑔(𝑌, 𝑋)

− 𝑏𝛼𝜂(𝑌)𝜂(𝑋) − 𝛽𝑏𝑔(𝜑𝑌, 𝑋) + 2𝑆̅(𝑋, 𝑌) + 2𝜆𝑔(𝑋, 𝑌)

= 0                                                                                                                        (3.2.2.15) 

şekline dönüşür. (3.2.2.15) de 𝑌=𝜉 alınır ve burada  (3.2.2.11) ve (1.2.17) denklemleri 

kullanıldığında 
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(𝑋𝑏) + (𝜉𝑏)𝜂(𝑋) − 2[2𝛽 + 2(𝛼2 − 𝛽2)]𝜂(𝑋) + 2𝜆𝜂(𝑋) = 0                 (3.2.2.16) 

olur.  Son denklemde bu defa her 𝑋 gördüğümüz yere 𝜉 alınırsa 

2(𝜉𝑏) + 2(−2(𝛼2 − 𝛽2) + 𝜆 − 2𝛽) = 0                                     (3.2.2.17) 

yani 

(𝜉𝑏) = (2𝛼2 − 2𝛽2 − 𝜆 + 2𝛽)                                                 (3.2.1.18) 

sonucu ortaya çıkar. Bu denklemi (3.2.1.16) de    kullanılıp gerekli düzenlemeler yapılırsa 

(𝑑𝑏) = (2𝛼2 − 2𝛽2 − 𝜆 + 2𝛽)𝜂                                                   (3.2.1.19) 

elde edilir. (3.2.1.19) denkleminin her iki yanına 𝑑 uygulanırsa  

(2𝛼2 − 2𝛽2 − 𝜆 + 2𝛽)𝑑𝜂 = 0 

bulunur. Burada 𝑑𝜂 ≠ 0 olacağından 

(2𝛼2 − 2𝛽2 − 𝜆 + 2𝛽) = 0                                                 (3.2.1.20) 

olur. Bu ifade (3.2.1.19) de kullanırsa 𝑏 sabit olur. Böylece (3.2.1.15) denklemi gereği  

𝑆̅(𝑋, 𝑌) = 𝑏𝛼𝜂(𝑌)𝜂(𝑋) − (𝑏𝛼 + 𝜆)𝑔(𝑌, 𝑋),                              (3.2.1.21) 

elde edilir ki bu da  bize  manifoldun 𝛻̅ ya bağlı 𝜂-Einstein olduğunu gösterir. 

 Son olarak elde edilen  (3.2.1.21) denkleminde 𝑋 ve 𝑌 vektör alanlarına göre 

kontraksiyon yapılırsa 

𝜏̅ = 𝑏𝛼 − 3(𝑏𝛼 + 𝜆) = −3𝜆 − 2𝑏𝛼, 

denklemi ortaya çıkar. Böylece yukarıdaki denklem gereği aşağıdaki sonucu verebiliriz: 

Sonuç 3.2.2.2.: 𝑀 , α,𝛽 sabit  olacak şekilde 3- boyutlu normal hemen hemen değme 

metrik manifoldu olsun. 𝑀 üzerinde (𝑀,𝜑2) çeyrek simetrik metrik olmayan  koneksiyonu ∇̅ 

olmak üzere,  𝑏 fonksiyonu için 𝑉 = 𝑏𝜉 olmak şartıyla, manifold verilen koneksiyona bağlı  

Ricci soliton olma şartını sağlıyor ise  

i) 𝜏̅ + 2𝑏𝛼 < 0 için genişleyen (expanding), 

ii) 𝜏̅ + 2𝑏𝛼 = 0 için değişmeyen (steady), 

iii) 𝜏̅ + 2𝑏𝛼 > 0 için daralan (shrinking), 
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dır (Yıldız ve Çetinkaya, 2012). 

Teorem 3.2.2.3.:  𝑀, 𝛼,𝛽 sabit olmak üzere 3–boyutlu normal hemen hemen değme 

metrik manifoldu  olsun. 𝑀 üzerindeki (𝑀,𝜑2)  koneksiyonuna göre (1.3.2) ile tanımlı 

gradyant  Ricci soliton özelliğini sağlasın.  Bu durumda 

i) 𝛼, 𝛽 = 0 dolayısıyla manifold kosimplektikdir. 

ii) (𝑀,𝜑2)  koneksiyonuna göre sabit eğriliklidir. 

İspat:  (𝑀,𝜑2)  çeyrek simetrik metrik olmayan koneksiyonu ile verilen 3-boyutlu 

normal hemen hemen değme metrik manifoldu üzerinde 

𝛻̅∇𝑓 = 𝑆̅ + 𝜆𝑔                                                     (3.2.2.22)  

ile tanımlı gradyant Ricci solitonu gözönüne alalım. 𝐷 g metriğinin gradyant operatörü olmak 

üzere (3.2.2.22) denklemi 

∇̅𝑌𝐷𝑓 = 𝑄̅𝑌 + 𝜆𝑌                                                              (3.2.2.23) 

veya  

𝑔(∇̅𝑌𝐷𝑓, 𝑋) = 𝑔(𝑄̅𝑌, 𝑋) + 𝜆𝑔(𝑌, 𝑋)                                                              (3.2.2.24) 

olarak yazılabilir. (3.2.2.23) eşitliğinden yararlanılarak 𝑅̅(𝑋, 𝑌)𝐷𝑓 ifadesi 

𝑅̅(𝑋, 𝑌)𝐷𝑓 = ∇̅𝑋∇̅𝑌𝐷𝑓 − ∇̅𝑌∇̅𝑋𝐷𝑓 − ∇̅[𝑋,𝑌]𝐷𝑓 

                    = ∇̅𝑋(𝑄̅𝑌 + 𝜆𝑌) − ∇̅𝑌(𝑄̅𝑋 + 𝜆𝑋) − ( 𝑄̅[𝑋, 𝑌]

+ 𝜆[𝑋, 𝑌])                                                              

halini alır. Burada (𝑀,𝜑2)  koneksiyonu gereği yukarıdaki denklem 

𝑅̅(𝑋, 𝑌)𝐷𝑓 = ∇𝑋𝑄̅𝑌 + 𝜂(𝑄̅𝑌)𝜑𝑋 + ∇𝑋𝜆𝑌 + 𝜆𝜂(𝑌)𝜑𝑋 − ∇𝑌𝑄̅𝑋 − 𝜂(𝑄̅𝑋)𝜑𝑌 − ∇𝑌𝜆𝑋

− 𝜆𝜂(𝑋)𝜑𝑌 − 𝑄̅∇𝑋𝑌 + 𝑄̅∇𝑌𝑋 − 𝜆∇𝑋𝑌

+ 𝜆∇𝑌𝑋                                                                                                              (3.2.2.25) 

halini alır. 𝜆 değerinin sabit olduğu gözönünde bulundurulup (3.2.2.25) denkleminin her iki 

tarafını bir 𝑈 vektör alanı ile iç çarpımı alındığında 

𝑔(𝑅̅(𝑋, 𝑌)𝐷𝑓, 𝑈)

= 𝑔(∇𝑋𝑄̅𝑌, 𝑈) + 𝜂(𝑄̅𝑌)𝑔(𝜑𝑋, 𝑈) + 𝜆𝜂(𝑌)𝑔(𝜑𝑋, 𝑈) − 𝑔(∇𝑌𝑄̅𝑋, 𝑈)

− 𝜂(𝑄̅𝑋)𝑔(𝜑𝑌, 𝑈) − 𝜆𝜂(𝑋)𝑔(𝜑𝑌, 𝑈) − 𝑔(𝑄̅∇𝑋𝑌, 𝑈) + 𝑔(𝑄̅∇𝑌𝑋, 𝑈) 
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bulunur. Son denklemde 𝑋 = 𝑌 = 𝜉  kullanıldığında 

𝑔(𝑅̅(𝜉, 𝑌)𝐷𝑓, 𝜉)

= 𝑔(∇𝜉𝑄̅𝑌, 𝜉) + 𝜂(𝑄̅𝑌)𝑔(𝜑𝜉, 𝜉) + 𝜆𝜂(𝑌)𝑔(𝜑𝜉, 𝜉) − 𝑔(∇𝑌𝑄̅𝜉, 𝜉)

− 𝜂(𝑄̅𝜉)𝑔(𝜑𝑌, 𝜉) − 𝜆𝜂(𝜉)𝑔(𝜑𝑌, 𝜉) − 𝑔(𝑄̅∇𝜉𝑌, 𝜉)

+ 𝑔(𝑄̅∇𝑌𝜉, 𝜉)                                                                                                (3.2.2.26)  

elde edilir. 𝛼,𝛽 sabit olmak üzere (3.2.2.26) denkleminde (3.2.2.8) ve (1.2.17) denklemleri 

yerine yazılırsa 

𝑔(𝑅̅(𝜉, 𝑌)𝐷𝑓, 𝜉)

= 𝑔 (∇𝜉{(
𝜏

2
+ (𝛼2 − 𝛽2))𝑌}, 𝜉) − 𝑔 (∇𝜉 {(

𝜏

2
+ 3(𝛼2 − 𝛽2)) 𝜂(𝑌)𝜉} , 𝜉) + 𝑔(∇𝜉{𝛽𝑌}, 𝜉)

− 𝑔(∇𝜉{3𝛽𝜂(𝑌)𝜉}, 𝜉) + 𝑔(∇𝜉{𝛼𝜑𝑌}, 𝜉) − 𝑔(∇𝑌{2(𝛼2 − 𝛽2 + 𝛽)𝜉}, 𝜉)

− 𝑔 ((
𝜏

2
+ (𝛼2 − 𝛽2)) ∇𝜉𝑌, 𝜉) + 𝑔 ((

𝜏

2
+ 3(𝛼2 − 𝛽2)) 𝜂(∇𝜉𝑌)𝜉, 𝜉) − 𝑔(𝛽∇𝜉𝑌, 𝜉)

+ 𝑔(3𝛽𝜂(∇𝜉𝑌)𝜉, 𝜉) − 𝑔(𝛼𝜑∇𝜉𝑌, 𝜉) + 𝑔 ((
𝜏

2
+ (𝛼2 − 𝛽2)) ∇𝑌𝜉, 𝜉)

− 𝑔 ((
𝜏

2
+ 3(𝛼2 − 𝛽2)) 𝜂(∇𝑌𝜉)𝜉, 𝜉) + 𝑔(𝛽∇𝑌𝜉, 𝜉) − 𝑔(3𝛽𝜂(∇𝑌𝜉)𝜉, 𝜉)

+ 𝑔(𝛼𝜑∇𝑌𝜉, 𝜉)                                                                                                                          (3.2.2.27) 

bulunur. Koneksiyon özellikleri gereği yukarıdaki denklem  

𝑔(𝑅̅(𝜉, 𝑌)𝐷𝑓, 𝜉) = 0                                                   (3.2.2.28)  

halini alır.  Burada ayrıca (3.2.2.1) ve (1.2.15) denklemleri gereği 𝑔(𝑅̅(𝜉, 𝑌)𝐷𝑓, 𝜉) ifadesi 

𝑔(𝑅̅(𝜉, 𝑌)𝐷𝑓, 𝜉) = 2𝛼𝛽𝑔(𝜑𝑌, 𝐷𝑓) − (𝛼2 − 𝛽2){𝑔(𝑌, 𝐷𝑓) − 𝜂(𝑌)𝜂(𝐷𝑓)} = 0      (3.2.2.29) 

olarak yazılabilir. (3.2.2.29) de 𝑌 yerine 𝜑𝑌 alınırsa 

−2𝛼𝛽{𝑔(𝑌, 𝐷𝑓) − 𝜂(𝑌)𝜂(𝐷𝑓)} − (𝛼2 − 𝛽2)𝑔(𝜑𝑌, 𝐷𝑓) = 0                            (3.2.2.30) 

bulunur. (3.2.2.29) ve (3.2.2.30) denklemleri arasında gerekli sadeleştirmeler yapılıp 

düzenlendiğinde 

{(𝛼2 − 𝛽2)2 + 4𝛼2𝛽2}{𝑔(𝑌, 𝐷𝑓) − 𝜂(𝑌)𝜂(𝐷𝑓)} = 0                                     (3.2.2.31) 

olur, Burada iki durum söz konusudur: 
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Durum i)     {(𝛼2 − 𝛽2)2 + 4𝛼2𝛽2} = 0 : 

(𝛼2 − 𝛽2)2 + 4𝛼2𝛽2=0 olsun. Bu durum ancak 𝛼,𝛽=0 olursa gerçeklenir. Dolayısıyla 

manifold kosimplektik veya verilen koneksiyona bağlı 𝜂-Einstein manifold bulunur.  

Durum ii) 𝑔(𝑌, 𝐷𝑓) − 𝜂(𝑌)𝜂(𝐷𝑓) = 0 : 

𝑔(𝑌, 𝐷𝑓) − 𝜂(𝑌)𝜂(𝐷𝑓) = 0 ifadesi her Y vektör alanı için 

𝐷𝑓 = (𝜉𝑓)𝜉,                                                                    (3.2.2.32) 

haline dönüşür. (3.2.2.32) ifadesi (3.2.2.23) de yerine yazılırsa 

𝑔(∇̅𝑌((𝜉𝑓)𝜉), 𝑋) = 𝑔(𝑄̅𝑌, 𝑋) + 𝜆𝑔(𝑌, 𝑋) 

elde edilir. Yukarıdaki denklem (2.1.5), (3.2.2.8 ) ve (1.2.14)  denklemleri yardımıyla 

𝑋((𝜉𝑓))𝜂(𝑌) + (𝜉𝑓){𝛼{𝑔(𝑌, 𝑋) − 𝜂(𝑋)𝜂(𝑌)} − 𝛽𝑔(𝜑𝑌, 𝑋)} + (𝜉𝑓)g(φY, X)

= 𝑔(𝑄𝑌, 𝑋) + 𝛽𝑔(𝑌, 𝑋) − 3βη(Y)η(X) + αg(φY, X)

+ 𝜆𝑔(𝑌, 𝑋)                                                                                                        (3.2.2.33) 

olarak yazılabilir. Burada  (1.2.17)  denklemi kullanılıp gerekli düzenlemeler yapıldığında 

𝑋((𝜉𝑓))𝜂(𝑌) + (𝜉𝑓){𝛼{𝑔(𝑌, 𝑋) − 𝜂(𝑋)𝜂(𝑌)} − 𝛽𝑔(𝜑𝑌, 𝑋)} + (𝜉𝑓)g(φY, X)

= [
𝜏

2
+ (𝛼2 − 𝛽2)] 𝑔(𝑋, 𝑌) − [

𝜏

2
+ 3(𝛼2 − 𝛽2)] 𝜂(𝑋)𝜂(𝑌) + 𝛽𝑔(𝑌, 𝑋)

− 3βη(Y)η(X) + αg(φY, X)

+ 𝜆𝑔(𝑌, 𝑋),                                                                                                       (3.2.2.34) 

bulunur. (3.2.2.34) de 𝑌 = 𝜉 alınırsa 

𝑋((𝜉𝑓)) = −{2(𝛼2 − 𝛽2) + 2𝛽 − 𝜆}𝜂(𝑋)                                            (3.2.2.35) 

sonucu ortaya çıkar. (3.2.2.34) denkleminde 𝑋 yerine 𝑌, 𝑌 yerine 𝑋 yazalım: 

𝑌((𝜉𝑓))𝜂(𝑋) + (𝜉𝑓){𝛼{𝑔(𝑋, 𝑌) − 𝜂(𝑌)𝜂(𝑋)} − 𝛽𝑔(𝜑𝑋, 𝑌)} + (𝜉𝑓)g(φX, Y)

= 𝑔(𝑄𝑋, 𝑌) + 𝛽𝑔(𝑋, 𝑌) − 3βη(X)η(Y) + αg(φX, Y)

+ 𝜆𝑔(𝑋, 𝑌)                   (3.2.2.36) 

(3.2.2.34) ile (3.2.2.36) denklemleri taraf tarafa toplanırsa 
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𝑌((𝜉𝑓))𝜂(𝑋) + (𝜉𝑓){𝛼{𝑔(𝑋, 𝑌) − 𝜂(𝑌)𝜂(𝑋)} − 𝛽𝑔(𝜑𝑋, 𝑌)} + (𝜉𝑓)g(φX, Y) + 𝑋((𝜉𝑓))𝜂(𝑌)

+ (𝜉𝑓){𝛼{𝑔(𝑌, 𝑋) − 𝜂(𝑋)𝜂(𝑌)} − 𝛽𝑔(𝜑𝑌, 𝑋)} + (𝜉𝑓)g(φY, X)

= 𝑔(𝑄𝑌, 𝑋) + 𝛽𝑔(𝑌, 𝑋) − 3βη(Y)η(X) + αg(φY, X) + 𝜆𝑔(𝑌, 𝑋)  + 𝑔(𝑄𝑋, 𝑌)

+ 𝛽𝑔(𝑋, 𝑌) − 3βη(X)η(Y) + αg(φX, Y) + 𝜆𝑔(𝑋, 𝑌) 

yani  

𝑌((𝜉𝑓))𝜂(𝑋) + 2(𝜉𝑓){𝛼{𝑔(𝑋, 𝑌) − 𝜂(𝑌)𝜂(𝑋)}} + 𝑋((𝜉𝑓))𝜂(𝑌)

= 2𝑔(𝑄𝑌, 𝑋) + 2𝛽𝑔(𝑌, 𝑋) − 6βη(Y)η(X) + 2𝜆𝑔(𝑋, 𝑌) 

bulunur. Bu denklem (3.2.2.23) ve (3.2.2.35) denklemleri gereği 

−{2(𝛼2 − 𝛽2) + 2𝛽 − 𝜆}𝜂(𝑋)𝜂(𝑌) + (𝜉𝑓){𝛼{𝑔(𝑋, 𝑌) − 𝜂(𝑌)𝜂(𝑋)}} + 𝛼𝑔(φ𝑌, 𝑋)

= 𝑔(∇̅𝑌𝐷𝑓, 𝑋) 

haline dönüşür. Buradan  

∇̅𝑌𝐷𝑓 = −{2(𝛼2 − 𝛽2) + 2𝛽 − 𝜆 + (𝜉𝑓)𝛼}𝜂(𝑌)𝜉 + (𝜉𝑓)𝛼𝑌 + 𝛼φ𝑌        (3.2.2.37) 

yazılabilir. 

 (3.2.2.37) yardımıyla 𝑅̅(𝑋, 𝑌)𝐷𝑓 ifadesini tekrardan hesaplayalım: 

𝑅̅(𝑋, 𝑌)𝐷𝑓 = ∇̅𝑋∇̅𝑌𝐷𝑓 − ∇̅𝑌∇̅𝑋𝐷𝑓 − ∇̅[𝑋,𝑌]𝐷𝑓 

                  = ∇̅𝑋[−{2(𝛼2 − 𝛽2) + 2𝛽 − 𝜆 + (𝜉𝑓)𝛼}𝜂(𝑌)𝜉 + (𝜉𝑓)𝛼𝑌 + 𝛼φ𝑌 ] −

∇̅𝑌[−{2(𝛼2 − 𝛽2) +  2𝛽 − 𝜆 + (𝜉𝑓)𝛼}𝜂(𝑋)𝜉 + (𝜉𝑓)𝛼𝑋 + 𝛼φ𝑋  ] − [−{2(𝛼2 − 𝛽2) + 2𝛽 −

𝜆 +                          (𝜉𝑓)𝛼}𝜂([𝑋, 𝑌])𝜉 + (𝜉𝑓)𝛼[𝑋, 𝑌] + 𝛼φ[X, 𝑌]] 

                          = −{2(𝛼2 − 𝛽2) + 2𝛽 − 𝜆 + (𝜉𝑓)𝛼}[𝜂(∇𝑋𝑌)𝜉 + 𝑔(𝑌, ∇𝑋𝜉)𝜉 + 𝜂(𝑌)∇𝑋𝜉]

+ 𝑋(𝜉𝑓)𝛼𝜂(𝑌)𝜉 + 𝑋(𝜉𝑓)𝛼𝑌 + (𝜉𝑓)𝛼∇𝑋𝑌 + 𝛼(∇𝑋φ)𝑌 + 𝛼φ∇𝑋𝑌

− {2(𝛼2 − 𝛽2) + 2𝛽 − 𝜆 + (𝜉𝑓)𝛼}𝜂(𝑌)φX + (𝜉𝑓)𝛼𝜂(𝑌)φX

+ {2(𝛼2 − 𝛽2) + 2𝛽 − 𝜆 + (𝜉𝑓)𝛼}[𝜂(∇𝑌𝑋)𝜉 + 𝑔(𝑋, ∇𝑌𝜉)𝜉 + 𝜂(𝑋)∇𝑌𝜉]

− 𝑌(𝜉𝑓)𝛼𝜂(𝑋)𝜉 − (𝜉𝑓)𝛼∇𝑌𝑋 − 𝑌(𝜉𝑓)𝛼𝑋 − 𝛼(∇𝑌φ)𝑋 − 𝛼φ∇𝑌𝑋

+ {2(𝛼2 − 𝛽2) + 2𝛽 − 𝜆 + (𝜉𝑓)𝛼}𝜂(𝑋)φY − (𝜉𝑓)𝛼𝜂(𝑋)φY

− [−{2(𝛼2 − 𝛽2) + 2𝛽 − 𝜆 + (𝜉𝑓)𝛼}𝜂([𝑋, 𝑌])𝜉 + (𝜉𝑓)𝛼[𝑋, 𝑌] + 𝛼φ[X, 𝑌]] 

 Son denklemde sadeleştirmeler yapılıp elde edilen denklemin  her iyi yanının 𝜉 ile iç 

çarpımı alındığında 
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g(𝑅̅(𝑋, 𝑌)𝐷𝑓, 𝜉) = −{2(𝛼2 − 𝛽2) + 2𝛽 − 𝜆 + (𝜉𝑓)𝛼}𝑔(𝑌, ∇𝑋𝜉) + 𝑋(𝜉𝑓)𝛼𝜂(𝑌) +

𝑋(𝜉𝑓)𝛼𝜂(𝑌) + ((∇𝑋φ)𝑌, 𝜉) + {2(𝛼2 − 𝛽2) + 2𝛽 − 𝜆 + (𝜉𝑓)𝛼}𝑔(𝑋, ∇𝑌𝜉) − 𝑌(𝜉𝑓)𝛼𝜂(𝑋) −

  𝑌(𝜉𝑓)𝛼𝜂(𝑋) − 𝛼𝑔((∇𝑌φ)𝑋, 𝜉)                                                                                                 (3.2.2.38) 

bulunur. (1.2.1.13), (1.2.14) ve (3.2.2.35)  denklemleri (3.2.2.38) da yerine yazılırsa 

g(𝑅̅(𝑋, 𝑌)𝐷𝑓, 𝜉) = −{2(𝛼2 − 𝛽2) + 2𝛽 − 𝜆 + (𝜉𝑓)𝛼}[𝛼𝑔(𝑌, 𝑋) − 𝛼𝜂(𝑌)𝜂(𝑋) −

𝛽𝑔(𝑌, 𝜑𝑋)] −  2𝛼{2(𝛼2 − 𝛽2) + 2𝛽 − 𝜆}𝜂(𝑋)𝜂(𝑌) + 𝛼[𝛼𝑔(𝜑𝑋, 𝑌) + 𝛽𝑔(𝑋, 𝑌) −

𝛽𝜂(𝑌)𝜂(𝑋)] + {2(𝛼2 − 𝛽2) + 2𝛽 − 𝜆 + (𝜉𝑓)𝛼}[𝛼𝑔(𝑋, 𝑌) − 𝛼𝜂(𝑌)𝜂(𝑋) − 𝛽𝑔(𝑋, 𝜑𝑌)] +

 2{2(𝛼2 − 𝛽2) + 2𝛽 − 𝜆}𝜂(𝑌)𝛼𝜂(𝑋) − 𝛼[𝛼𝑔(𝜑𝑌, 𝑋) + 𝛽𝑔(𝑋, 𝑌) −

 𝛽𝜂(𝑌)𝜂(𝑋)]                                                                                                                                     (3.2.2.39) 

Yukarıda (3.2.2.31) ve (3.2.2.1) denklemleri gözönünde bulundurulduğunda 

2𝛼(𝜉𝑓)𝑔(𝑌, 𝜑𝑋) = 2𝛽{2(𝛼2 − 𝛽2) + 2𝛽 − 𝜆 + (𝜉𝑓)𝛼}𝑔(𝑌, 𝜑𝑋) + 2𝛼2𝑔(𝜑𝑋, 𝑌) 

yani 

[2𝛽{2(𝛼2 − 𝛽2) + 2𝛽 − 𝜆 + (𝜉𝑓)𝛼} − 2𝛼(𝜉𝑓) + 2𝛼2]𝑔(𝑌, 𝜑𝑋) = 0, 

sonucu ortaya çıkar. Burada 𝑔(𝑌, 𝜑𝑋) sıfır olamayacağından 

[2𝛽{2(𝛼2 − 𝛽2) + 2𝛽 − 𝜆 + (𝜉𝑓)𝛼} − 2𝛼(𝜉𝑓) + 2𝛼2] = 0, 

olma durumu kalır. Burada 𝛼, 𝛽 nın sabit olması göz önünde bulundurulduğunda 𝜆 değerinin 

sabit olabilmesi için (𝜉𝑓) = 𝑠𝑎𝑏𝑖𝑡 = 𝑐  olması gerekir. Bu da (3.2.2.32) gereği 

𝐷𝑓 = 𝑐𝜉                                                                    (3.2.2.40) 

demektir. Dolayısıyla   (3.2.2.23) denklemi (3.2.2.40) yardımıyla  

𝑆̅(𝑌, 𝑋) = −𝜆𝑔(𝑌, 𝑋) + 𝑔(∇̅𝑌𝑐𝜉, 𝑋) = −𝜆𝑔(𝑌, 𝑋) − 𝑐𝛽𝑔(𝜑𝑌, 𝑋) + 𝑐𝛼𝑔(𝑌, 𝑋) − 𝑐𝛼𝜂(𝑌)𝜂(𝑋) 

olarak yazılabilir. Burada 𝑋 ve 𝑌 vektör alanlarına göre kontraksiyon yapılırsa 

𝜏̅ = −3𝜆 + 2𝛼𝑐 

elde edilir. Sonuçta manifold (𝑀,𝜑2)  koneksiyonuna göre sabit eğriliklidir. 
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3. bölümün özeti aşağıdaki çizelgelerde verilmiştir. 

Çizelge 3.1. 3-boyutlu trans- Sasakian manifoldlar ile 3-boyutlu normal hemen hemen değme 

metrik manifoldlarda üzerinde koneksiyonlara göre Ricci soliton kavramı 

 

 

 

 

 

 

 

 

 

(M,𝝋𝟏)  çeyrek-simetrik metrik  

koneksiyonu ile verilmiş 3-boyutlu trans-

Sasakian manifoldu için 

(𝑴,𝝋𝟐)  çeyrek-simetrik metrik 

olmayan koneksiyonu ile verilmiş 3- boyutlu 

normal hemen hemen değme metrik 

manifoldu için 

𝑅̅(𝑋, 𝑌)𝑍 = −𝑅̅(𝑌, 𝑋)𝑍  sağlanır. 𝑅̅(𝑋, 𝑌)𝑍 = −𝑅̅(𝑌, 𝑋)𝑍  sağlanır. 

koneksiyona bağlı 1. Bianchi özdeşliği 

sağlanır ancak ve ancak  manifold 

kosimplektiktir. 

koneksiyona bağlı 1. Bianchi özdeşliği 

sağlanır ancak ve ancak  manifold 

kosimplektiktir. 

𝑆̅(𝑌, 𝑍) = 𝑆̅(𝑍, 𝑌) ⇔ manifold  𝛼-

Sasakiandır. 

𝑆̅(𝑌, 𝑍) = 𝑆̅(𝑍, 𝑌) ⇔ manifold β-

Sasakiandır. 

verilen koneksiyona bağlı  Ricci soliton 

olma özelliği sağlanıyor ise (M,𝜑1) 

koneksiyonuna bağlı 𝜂-Einstein manifolddur. 

verilen koneksiyona bağlı  Ricci soliton 

olma özelliği sağlanıyor ise (M,𝜑2) 

koneksiyonuna bağlı 𝜂-Einstein manifolddur. 

verilen koneksiyona bağlı  gradyant 

Ricci soliton özelliği sağlanıyor ise 

𝑖) manifold kosimplektik veya verilen 

koneksiyona bağlı 𝜂-Einstein manifold olur. 

ii) (𝑀,𝜑1)  koneksiyonuna göre sabit 

eğriliklidir. 

𝑖𝑖𝑖) 𝜆 = 0, dolayısıyla metriğimiz 

değişmeyendir. 

 

verilen koneksiyona bağlı  gradyant 

Ricci soliton özelliği sağlanıyor ise 

𝑖) manifold kosimplektiktir. 

 ii) (𝑀,𝜑2)  koneksiyonuna göre sabit 

eğriliklidir. 
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Çizelge 3.2. (𝑀, 𝐼) koneksiyonu ile verilen n-boyutlu Kenmotsu manifoldlar için bazı eğrilik 

şartları 

(𝑀, 𝐼) koneksiyonu ile verilen n-boyutlu Kenmotsu manifoldlar için 

𝑅̅(𝑋, 𝑌)𝑍+𝑅̅(𝑌, 𝑍)𝑋 + 𝑅̅(𝑍, 𝑋)𝑌 = 0 dır. 

              ((𝑀, 𝐼) koneksiyonuna göre I. Bianchi özdeşliği sağlanır.) 

𝐶̅(𝑋, 𝑌)𝑍 = 0 ⇒ 

((𝑀, 𝐼) ya göre düzlemsel konformal) 

Levi-Civita koneksiyonuna göre 𝜂-

Einstein manifolddur. 

𝐶̅(𝑋, 𝑌)𝜉 = 𝐶(𝑋, 𝑌)𝜉 = 0 sağlanır. 

( ya  ve (𝑀, 𝐼) ya göre düzlemsel ξ-konformaldir.) 

𝑅̅(𝑋, 𝑌). 𝑅̅ =0 ⇒ 𝐻𝑛(−1) hiperbolik uzayına lokal 

olarak izometriktir. 

𝑅̅(𝑋, 𝑌). 𝑅 =0⇒ Levi-Civita koneksiyonuna göre 𝜂-

Einstein manifolddur. 

𝜑2((∇̅𝑊𝑅̅)(𝑋, 𝑌)𝑍) = 0 ⇒ 

((𝑀, 𝐼) ya göre  φ-simetrik manifold ) 

Levi-Civita koneksiyonuna göre 𝜂-

Einstein manifold olur. 

𝑔(𝐶̅(𝜑𝑋, 𝜑𝑌)𝜑𝑍, 𝜑𝑊) = 0 ⇒ 

((𝑀, 𝐼) koneksiyonuna göre 

düzlemsel φ-konformal) 

Levi-Civita koneksiyonuna göre 𝜂-

Einstein manifold olur. 

𝜑2((∇̅𝑊𝐶̅)(𝑋, 𝑌)𝑍) = 0 ⇒ 

( (𝑀, 𝐼)  koneksiyonuna göre φ-

konformal simetrik manifold) 

Levi-Civita koneksiyonuna göre 𝜂-

Einstein manifolddur. 

𝐶̌̅(𝑋, 𝑌)𝜉 = 𝐶̌(𝑋, 𝑌)𝜉 = 0 ⇔ 

( ya  ve (𝑀, 𝐼) ya göre düzlemsel 𝜉-

quasi konformal) 

𝑎 = 2(1 − 𝑛)𝑏  dır. 
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4. ÇEYREK SİMETRİK METRİK OLMAYAN (𝑴,𝝋𝟑, 𝒇𝟏) KONEKSİYONUYLA  

     VERİLEN MANİFOLDLAR 

Bu bölümde (𝑀,𝜑3, 𝑓1) koneksiyonuyla verilen 3-boyutlu quasi-Sasakian manifodlar ve 

𝑛-boyutlu 𝑓- Kenmotsu manifoldlar incelenecektir. 

4.1. (𝑴,𝝋𝟑, 𝒇𝟏)  Çeyrek-Simetrik Metrik Olmayan Koneksiyonu İle Verilen 3-Boyutlu    

        Quasi-Sasakian Manifoldlar 

Önerme 4.1.1.: Bir 3-boyutlu quasi-Sasakian  manifoldu 𝑀 olsun. 𝑀 üzerinde  Levi-

Civita koneksiyonu  ya göre eğrilik tensörü 𝑅 ve (𝑀,𝜑3, 𝑓1)  çeyrek-simetrik metrik olmayan 

koneksiyonu ∇̅ ye göre eğrilik tensörü R̅ olmak üzere, ∀ 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) için 𝑅 ile R̅  arasındaki 

bağıntı 

𝑅̅(𝑋, 𝑌)𝑍

= 𝑅(𝑋, 𝑌)𝑍 − (𝑋𝑓1)𝑔(𝑌, 𝑍)𝜉 + (𝑌𝑓1)𝑔(𝑋, 𝑍)𝜉 + (𝑓1
2 +

𝛽

2
) [𝑔(𝑌, 𝑍)𝜂(𝑋)𝜉 − 𝑔(𝑋, 𝑍)𝜂(𝑌)𝜉]

+ (𝑓1𝛽 −
𝑓1

2
) [𝑔(𝑌, 𝑍)𝜑𝑋 − 𝑔(𝑋, 𝑍)𝜑𝑌] +

𝛽

2
[2𝑔(𝜑𝑋, 𝑌)𝜑𝑍 + 𝑔(𝜑𝑌, 𝑍)𝜑𝑋 − 𝑔(𝜑𝑋, 𝑍)𝜑𝑌]

+
1

4
[𝜂(𝑋)𝜂(𝑍)𝑌 − 𝜂(𝑌)𝜂(𝑍)𝑋] + 𝑓1𝜂(𝑍)𝑔(𝜑𝑋, 𝑌)𝜉 −

1

2
𝑓1𝜂(𝑋)𝑔(𝜑𝑍, 𝑌)𝜉

+
1

2
𝑓1𝜂(𝑌)𝑔(𝜑𝑍, 𝑋)                                                                                                                            (4.1.1) 

dir .   

İspat : (𝑀,𝜑3, 𝑓1)  koneksiyonu ∇̅ ye göre eğrilik tensörü R̅ olmak üzere, ∀ 𝑋, 𝑌, 𝑍 ∈

𝜒(𝑀) için hemen hemen değme metrik manifoldlarda (2.1.2) denklemini bulmuştuk. 𝑀  3-

boyutlu quasi-Sasakian  manifold olduğundan  (2.1.2) denkleminde (1.2.28) ve (1.2.29) ifadeleri 

kullanılırsa 
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𝑅̅(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 − (𝑋𝑓1)𝑔(𝑌, 𝑍)𝜉 + (𝑌𝑓1)𝑔(𝑋, 𝑍)𝜉

+ 𝑓1
2[𝑔(𝑌, 𝑍)𝜂(𝑋)𝜉 − 𝑔(𝑋, 𝑍)𝜂(𝑌)𝜉] + 𝑓1𝛽𝑔(𝑌, 𝑍)𝜑𝑋 − 𝑓1𝛽𝑔(𝑋, 𝑍)𝜑𝑋

+
1

2
[𝛽𝜂(𝑍)𝑔(𝑋, 𝑌)𝜉 − 𝛽𝜂(𝑍)𝜂(𝑌)𝑋 − 𝛽𝜂(𝑌)g(X, Z)ξ + βη(Z)η(Y)X

+ β 𝜂(𝑋)g(Y, Z)ξ − βη(X)η(Z)Y + βη(X)g(Y, Z)ξ − βη(X)η(Z)Y

− βη(Z)g(Y, X)ξ + βη(Z)η(X)Y + 𝛽𝑔(𝜑𝑋, 𝑌)𝜑𝑍 − 𝛽𝑔(𝜑𝑌, 𝑋)𝜑𝑍

+ 𝛽𝑔(𝜑𝑌, 𝑍)𝜑𝑋 − 𝛽𝑔(𝜑𝑋, 𝑍)𝜑𝑌 + 2𝑓1𝜂(𝑍)𝑔(𝜑𝑋, 𝑌)𝜉 − 𝑓1𝜂(𝑋)𝑔(𝜑𝑍, 𝑌)𝜉

+ 𝑓1𝜂(𝑌)𝑔(𝜑𝑍, 𝑋)𝜉 − 𝑓1𝑔(𝑌, 𝑍)𝜑𝑋 + 𝑓1𝑔(𝑋, 𝑍)𝜑𝑌 +
1

2
𝜂(𝑋)𝜂(𝑍)𝑌

−
1

2
𝜂(𝑌)𝜂(𝑍)𝑋] 

elde edilir.  Burada gerekli düzenlemeler yapıldığında 

𝑅̅(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 − (𝑋𝑓1)𝑔(𝑌, 𝑍)𝜉 + (𝑌𝑓1)𝑔(𝑋, 𝑍)𝜉

+ (𝑓1
2 +

𝛽

2
) [𝑔(𝑌, 𝑍)𝜂(𝑋)𝜉 − 𝑔(𝑋, 𝑍)𝜂(𝑌)𝜉]

+ (𝑓1𝛽 −
𝑓1

2
) [𝑔(𝑌, 𝑍)𝜑𝑋 − 𝑔(𝑋, 𝑍)𝜑𝑌] +

𝛽

2
[2𝑔(𝜑𝑋, 𝑌)𝜑𝑍 + 𝑔(𝜑𝑌, 𝑍)𝜑𝑋

− 𝑔(𝜑𝑋, 𝑍)𝜑𝑌] +
1

4
[𝜂(𝑋)𝜂(𝑍)𝑌 − 𝜂(𝑌)𝜂(𝑍)𝑋] + 𝑓1𝜂(𝑍)𝑔(𝜑𝑋, 𝑌)𝜉

−
1

2
𝑓1𝜂(𝑋)𝑔(𝜑𝑍, 𝑌)𝜉 +

1

2
𝑓1𝜂(𝑌)𝑔(𝜑𝑍, 𝑋)𝜉 

sonucu ortaya çıkar. 

Önerme 4.1.2.: Bir 3-boyutlu quasi-Sasakian  manifoldu 𝑀 olsun. 𝑀 üzerinde  Levi-

Civita koneksiyonu  ya göre eğrilik tensörü 𝑅 ve (𝑀,𝜑3, 𝑓1)  çeyrek-simetrik metrik olmayan 

koneksiyonu ∇̅ ye göre eğrilik tensörü R̅ olmak üzere, ∀ 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) için; 

𝑅̅(𝑋, 𝑌)𝜉 = −(𝑋𝛽)𝜑𝑌 + (𝑌𝛽)𝜑𝑋 − (𝑋𝑓1)𝜂(𝑌)𝜉 + (𝑌𝑓1)𝜂(𝑋)𝜉

+ (𝑓1𝛽 −
𝑓1

2
) [𝜂(𝑌)𝜑𝑋 − 𝜂(𝑋)𝜑𝑌] + (

1

4
− 𝛽2) [𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋]

+ 𝑓1𝑔(𝜑𝑋, 𝑌)𝜉                                                                                          (4.1.2) 

ve 
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𝑅̅(𝑋, 𝜉)𝑍

= −(𝑍𝛽)𝜑𝑋 − 𝑔(𝑋, 𝜑𝑍)𝑔𝑟𝑎𝑑𝛽 −
𝑓1

2
𝑔(𝜑𝑋, 𝑍)𝜉 + (𝑓1𝛽 −

𝑓1

2
) 𝜂(𝑍)𝜑𝑋 − (𝑋𝑓1)𝜂(𝑍)𝜉 

+ ((𝜉𝑓1) − 𝛽2 − 𝑓1
2 −

𝛽

2
) 𝑔(𝑋, 𝑍)𝜉 + (𝛽2 −

1

4
) 𝜂(𝑍)𝑋

+ (
𝛽

2
+ 𝑓1

2 +
1

4
) 𝜂(𝑋)𝜂(𝑍)𝜉                                                                                                             (4.1.3)  

dır. 

İspat: İlk olarak (4.1.1) denkleminde 𝑍 = 𝜉  alınırsa 

𝑅̅(𝑋, 𝑌)𝜉 = 𝑅(𝑋, 𝑌)𝜉 − (𝑋𝑓1)𝜂(𝑌)𝜉 + (𝑌𝑓1)𝜂(𝑋)𝜉 + (𝑓1𝛽 −
𝑓1

2
) [𝜂(𝑌)𝜑𝑋 − 𝜂(𝑋)𝜑𝑌]

+
1

4
[𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋] + 𝑓1𝑔(𝜑𝑋, 𝑌)𝜉, 

bulunur. 𝑀 bir 3-boyutlu quasi-Sasakian  manifoldu olduğundan (1.2.30) denklemi yardımıyla 

yukarıdaki denklem 

𝑅̅(𝑋, 𝑌)𝜉 = 𝛽2(𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌)) + (𝑌𝛽)𝜑𝑋 − (𝑋𝛽)𝜑𝑌 − (𝑋𝑓1)𝜂(𝑌)𝜉 + (𝑌𝑓1)𝜂(𝑋)𝜉

+ (𝑓1𝛽 −
𝑓1

2
) [𝜂(𝑌)𝜑𝑋 − 𝜂(𝑋)𝜑𝑌] +

1

4
[𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋] + 𝑓1𝑔(𝜑𝑋, 𝑌)𝜉 

halini alır.  Son olarak burada gerekli düzenlemeler yapıldığında  

𝑅̅(𝑋, 𝑌)𝜉 = −(𝑋𝛽)𝜑𝑌 + (𝑌𝛽)𝜑𝑋 − (𝑋𝑓1)𝜂(𝑌)𝜉 + (𝑌𝑓1)𝜂(𝑋)𝜉

+ (𝑓1𝛽 −
𝑓1

2
) [𝜂(𝑌)𝜑𝑋 − 𝜂(𝑋)𝜑𝑌] + (

1

4
− 𝛽2) [𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋]

+ 𝑓1𝑔(𝜑𝑋, 𝑌)𝜉, 

elde edilir. Benzer şekilde (1.2.3) denklemi yardımıyla (4.1.1) denklemi 𝑌 = 𝜉   için 

𝑅̅(𝑋, 𝜉)𝑍 = 𝑅(𝑋, 𝜉)𝑍 − (𝑋𝑓1)𝜂(𝑍)𝜉 + (𝜉𝑓1)𝑔(𝑋, 𝑍)𝜉 + (𝑓1
2 +

𝛽

2
) [𝜂(𝑍)𝜂(𝑋)𝜉 − 𝑔(𝑋, 𝑍)𝜉] 

               + (𝑓1𝛽 −
𝑓1

2
) 𝜂(𝑍)𝜑𝑋 +

1

4
[𝜂(𝑋)𝜂(𝑍)𝜉 − 𝜂(𝑍)𝑋]

+
1

2
𝑓1𝑔(𝜑𝑍, 𝑋)𝜉,                                                                                                (4.1.4) 

olarak yazılabilir. (1.2.30) denklemi (4.1.4) eşitliğinde kullanıldığında, ifademiz 
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𝑅̅(𝑋, 𝜉)𝑍 = 𝛽2(𝜂(𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝜉) − 𝑔(𝑋, 𝜑𝑍)𝑔𝑟𝑎𝑑𝛽 − (𝑍𝛽)𝜑𝑋 − (𝑋𝑓1)𝜂(𝑍)𝜉

+ (𝜉𝑓1)𝑔(𝑋, 𝑍)𝜉 + (𝑓1
2 +

𝛽

2
) [𝜂(𝑍)𝜂(𝑋)𝜉 − 𝑔(𝑋, 𝑍)𝜉] + (𝑓1𝛽 −

𝑓1

2
) 𝜂(𝑍)𝜑𝑋

+
1

4
[𝜂(𝑋)𝜂(𝑍)𝜉 − 𝜂(𝑍)𝑋] +

1

2
𝑓1𝑔(𝜑𝑍, 𝑋)𝜉, 

halini alır ki buradan (4.1.3) denklemi elde edilir. 

Önerme 4.1.3. : 𝑀 bir 3-boyutlu quasi-Sasakian  manifoldu olsun. 𝑀 üzerinde  

(𝑀,𝜑3, 𝑓1)  çeyrek-simetrik metrik olmayan koneksiyonu ∇̅ ye göre eğrilik tensörü R̅ olmak 

üzere, ∀ 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) için; 

𝑅̅(𝑋, 𝑌)𝑍 = −𝑅̅(𝑌, 𝑋)𝑍 

dır. 

İspat: (4.1.1) denkleminde sırasıyla  𝑌 = 𝑋 ve 𝑋 = 𝑌 alınırsa 

𝑅̅(𝑌, 𝑋)𝑍 = 𝑅(𝑌, 𝑋)𝑍 − (𝑌𝑓1)𝑔(𝑋, 𝑍)𝜉 + (𝑋𝑓1)𝑔(𝑌, 𝑍)𝜉 + (𝑓1
2 +

𝛽

2
) {𝑔(𝑋, 𝑍)𝜂(𝑋)𝜉

− 𝑔(𝑌, 𝑍)𝜂(𝑌)𝜉} + (𝑓1𝛽 −
𝑓1

2
) {𝑔(𝑋, 𝑍)𝜑𝑌 − 𝑔(𝑌, 𝑍)𝜑𝑋} +

𝛽

2
{2𝑔(𝜑𝑌, 𝑋)𝜑𝑍

+ 𝑔(𝜑𝑋, 𝑍)𝜑𝑌 − 𝑔(𝜑𝑌, 𝑍)𝜑𝑋} +
1

4
{𝜂(𝑌)𝜂(𝑍)𝑋 − 𝜂(𝑋)𝜂(𝑍)𝑌}

+ 𝑓1𝜂(𝑍)𝑔(𝜑𝑌, 𝑋)𝜉 −
1

2
𝑓1𝜂(𝑌)𝑔(𝜑𝑍, 𝑋)𝜉

+
1

2
𝑓1𝜂(𝑋)𝑔(𝜑𝑍, 𝑌)𝜉                                                                                         (4.1.5) 

elde edilir. (4.1.4) ile (4.1.5) denklemleri taraf tarafa toplandığında 
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𝑅̅(𝑋, 𝑌)𝑍 + 𝑅̅(𝑌, 𝑋)𝑍

= 𝑅(𝑋, 𝑌)𝑍 + 𝑅(𝑌, 𝑋)𝑍 − (𝑋𝑓1)𝑔(𝑌, 𝑍)𝜉 + (𝑌𝑓1)𝑔(𝑋, 𝑍)𝜉 − (𝑌𝑓1)𝑔(𝑋, 𝑍)𝜉

+ (𝑋𝑓1)𝑔(𝑌, 𝑍)𝜉 + (𝑓1
2 +

𝛽

2
) {𝑔(𝑌, 𝑍)𝜂(𝑋)𝜉 − 𝑔(𝑋, 𝑍)𝜂(𝑌)𝜉

+ 𝑔(𝑋, 𝑍)𝜂(𝑋)𝜉 − 𝑔(𝑌, 𝑍)𝜂(𝑌)𝜉} + (𝑓1𝛽 −
𝑓1

2
) {𝑔(𝑋, 𝑍)𝜑𝑌 − 𝑔(𝑌, 𝑍)𝜑𝑋

+ 𝑔(𝑌, 𝑍)𝜑𝑋 − 𝑔(𝑋, 𝑍)𝜑𝑌} +
𝛽

2
{2𝑔(𝜑𝑌, 𝑋)𝜑𝑍 + 𝑔(𝜑𝑋, 𝑍)𝜑𝑌 − 𝑔(𝜑𝑌, 𝑍)𝜑𝑋

+ 2𝑔(𝜑𝑋, 𝑌)𝜑𝑍 + 𝑔(𝜑𝑌, 𝑍)𝜑𝑋 − 𝑔(𝜑𝑋, 𝑍)𝜑𝑌} +
1

4
{2𝑔(𝜑𝑌, 𝑋)𝜑𝑍

+ 𝑔(𝜑𝑋, 𝑍)𝜑𝑌 − 𝑔(𝜑𝑌, 𝑍)𝜑𝑋 + 2𝑔(𝜑𝑋, 𝑌)𝜑𝑍 + 𝑔(𝜑𝑌, 𝑍)𝜑𝑋

− 𝑔(𝜑𝑋, 𝑍)𝜑𝑌} + 𝑓1𝜂(𝑍)𝑔(𝜑𝑌, 𝑋)𝜉 −
1

2
𝑓1𝜂(𝑌)𝑔(𝜑𝑍, 𝑋)𝜉

+
1

2
𝑓1𝜂(𝑋)𝑔(𝜑𝑍, 𝑌)𝜉 −

1

2
𝑓1𝜂(𝑋)𝑔(𝜑𝑍, 𝑌)𝜉 +

1

2
𝑓1𝜂(𝑌)𝑔(𝜑𝑍, 𝑋)𝜉

+ 𝑓1𝜂(𝑍)𝑔(𝜑𝑋, 𝑌)𝜉 

yazılabilir. Burada gerekli sadeleştirmeler yapılırsa 

𝑅̅(𝑋, 𝑌)𝑍 = −𝑅̅(𝑌, 𝑋)𝑍 

bulunur.  

 Ayrıca (4.1.1) denkleminde sırasıyla ilk önce 𝑋 = 𝑌,  𝑌 = 𝑍 ve 𝑍 = 𝑋 olarak 

alındığında 

𝑅̅(𝑌, 𝑍)𝑋

= 𝑅(𝑌, 𝑍)𝑋 − (𝑌𝑓1)𝑔(𝑍, 𝑋)𝜉 + (𝑍𝑓1)𝑔(𝑌, 𝑋)𝜉 + (𝑓1
2 +

𝛽

2
) {𝑔(𝑍, 𝑋)𝜂(𝑌)𝜉 − 𝑔(𝑌, 𝑋)𝜂(𝑍)𝜉}

+ (𝑓1𝛽 −
𝑓1

2
) {𝑔(𝑍, 𝑋)𝜑𝑌 − 𝑔(𝑌, 𝑋)𝜑𝑍} +

𝛽

2
{2𝑔(𝜑𝑌, 𝑍)𝜑𝑋 + 𝑔(𝜑𝑍, 𝑋)𝜑𝑌 − 𝑔(𝜑𝑌, 𝑋)𝜑𝑍}

+
1

4
{𝜂(𝑌)𝜂(𝑋)𝑍 − 𝜂(𝑍)𝜂(𝑋)𝑌} + 𝑓1𝜂(𝑋)𝑔(𝜑𝑌, 𝑍)𝜉 −

1

2
𝑓1𝜂(𝑌)𝑔(𝜑𝑋, 𝑍)𝜉

+
1

2
𝑓1𝜂(𝑍)𝑔(𝜑𝑋, 𝑌)𝜉                                                                                                                      (4.1.6) 

bulunur. Benzer şekilde (4.1.6)  denkleminde sırasıyla 𝑌 = 𝑍, 𝑍 = 𝑋 ve 𝑋 = 𝑌 yazıldığında 
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𝑅̅(𝑍, 𝑋)𝑌 = 𝑅(𝑍, 𝑋)𝑌 − (𝑍𝑓1)𝑔(𝑋, 𝑌)𝜉 + (𝑋𝑓1)𝑔(𝑍, 𝑌)𝜉 + (𝑓1
2 +

𝛽

2
) {𝑔(𝑋, 𝑌)𝜂(𝑍)𝜉

− 𝑔(𝑍, 𝑌)𝜂(𝑋)𝜉} + (𝑓1𝛽 −
𝑓1

2
) {𝑔(𝑋, 𝑌)𝜑𝑍 − 𝑔(𝑍, 𝑌)𝜑𝑋} +

𝛽

2
{2𝑔(𝜑𝑍, 𝑋)𝜑𝑌

+ 𝑔(𝜑𝑋, 𝑌)𝜑𝑍 − 𝑔(𝜑𝑍, 𝑌)𝜑𝑋} +
1

4
{𝜂(𝑍)𝜂(𝑌)𝑋 − 𝜂(𝑋)𝜂(𝑌)𝑍}

+ 𝑓1𝜂(𝑌)𝑔(𝜑𝑍, 𝑋)𝜉 −
1

2
𝑓1𝜂(𝑍)𝑔(𝜑𝑌, 𝑋)𝜉

+
1

2
𝑓1𝜂(𝑋)𝑔(𝜑𝑌, 𝑍)𝜉                                                                                             (4.1.7) 

elde edilir. Son olarak (4.1.1), (4.1.6) ve (4.1.7) denklemlerini taraf tarafa toplarsak 

𝑅̅(𝑋, 𝑌)𝑍+𝑅̅(𝑌, 𝑍)𝑋 + 𝑅̅(𝑍, 𝑋)𝑌 =
𝛽

2
{4𝑔(𝜑𝑋, 𝑌)𝜑𝑍 + 4𝑔(𝜑𝑌, 𝑍)𝜑𝑋 

+4𝑔(𝜑𝑍, 𝑋)𝜑𝑌} + 2𝑓1𝜂(𝑍)𝑔(𝜑𝑋, 𝑌)𝜉                                                      (4.1.8) 

bulunur. Böylece aşağıdaki önermeyi verebiliriz: 

Önerme 4.1.4.: Bir 3- boyutlu quasi -Sasakian manifoldu 𝑀 olsun.  𝑀, (𝑀,𝜑3, 𝑓1)  

çeyrek simetrik metrik olmayan koneksiyonu ∇̅ ye göre eğrilik tensörü R̅ olmak üzere,  

∀ 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) için (4.1.8) gereği  bu koneksiyona bağlı 1. Bianchi özdeşliği sağlanır ancak 

ve ancak  𝛽 = 0, 𝑓1 = 0 dır. 

Sonuç 4.1.1.: Bir 3- boyutlu quasi -Sasakian manifoldu 𝑀  olsun. 𝑀, (𝑀,𝜑3, 𝑓1)  çeyrek 

simetrik metrik olmayan koneksiyonu ∇̅ ye göre eğrilik tensörü R̅ olmak üzere,  ∀ 𝑋, 𝑌, 𝑍 ∈

𝜒(𝑀) için (4.1.8) gereği  bu koneksiyona bağlı I. Bianchi özdeşliği sağlanır ancak ve ancak  

𝑓1 = 0  ve manifold kosimplektiktir. 

Önerme 4.1.5.:  Bir 3-boyutlu quasi-Sasakian manifoldu 𝑀 olsun. 𝑀,  (𝑀,𝜑3, 𝑓1) 

çeyrek simetrik metrik olmayan koneksiyonu ∇̅ ye  göre Ricci tensörü, Ricci operatörü ve skaler 

eğriliği sırasıyla  S̅, 𝑄̅ ve 𝜏̅ olmak üzere, ∀ 𝑌, 𝑍 ∈ 𝜒(𝑀) için  

𝑆̅(𝑌, 𝑍) = 𝑆(𝑌, 𝑍) + (𝑌𝑓1)𝜂(𝑍) + 𝑓1(𝛽 − 1)𝑔(𝑌, 𝜑𝑍) − [
1

2
+ 𝑓1

2] 𝜂(𝑌)𝜂(𝑍) 

                               +[𝑓1
2 − (𝜉𝑓1)]𝑔(𝑌, 𝑍),                                                                     (4.1.9) 

𝑄̅Y = QY + (𝑌𝑓1)𝜉 − 𝑓1(𝛽 − 1)𝜑𝑌 − [
1

2
+ 𝑓1

2] 𝜂(𝑌)𝜉 + [𝑓1
2 − (𝜉𝑓1)]𝑌,                         (4.1.10) 
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𝜏̅ = 𝜏 + 2 (𝑓1
2 − (𝜉𝑓1)) −

1

2
,                                                (4.1.11) 

dir.   

 İspat : (4.1.1.) denkleminin her iki yanının 𝑊 vektör alanı ile iç çarpımı alındığında  

𝑔(𝑅̅(𝑋, 𝑌)𝑍, 𝑊)

= 𝑔(𝑅(𝑋, 𝑌)𝑍, 𝑊) − (𝑋𝑓1)𝑔(𝑌, 𝑍)𝜂(𝑊) + (𝑌𝑓1)𝑔(𝑋, 𝑍)𝜂(𝑊)

+ (𝑓1
2 +

𝛽

2
) [𝑔(𝑌, 𝑍)𝜂(𝑋)𝜂(𝑊) − 𝑔(𝑋, 𝑍)𝜂(𝑌)𝜂(𝑊)]

+ (𝑓1𝛽 −
𝑓1

2
) [𝑔(𝑌, 𝑍)𝑔(𝜑𝑋, 𝑊) − 𝑔(𝑋, 𝑍)𝑔(𝜑𝑌, 𝑊)]

+
𝛽

2
[2𝑔(𝜑𝑋, 𝑌)𝑔(𝜑𝑍, 𝑊) + 𝑔(𝜑𝑌, 𝑍)𝑔(𝜑𝑋, 𝑊) − 𝑔(𝜑𝑋, 𝑍)𝑔(𝜑𝑌, 𝑊)]

+
1

4
[𝜂(𝑋)𝜂(𝑍)𝑔(𝑌, 𝑊) − 𝜂(𝑌)𝜂(𝑍)𝑔(𝑋, 𝑊)] + 𝑓1𝜂(𝑍)𝑔(𝜑𝑋, 𝑌)𝜂(𝑊)

−
1

2
𝑓1𝜂(𝑋)𝑔(𝜑𝑍, 𝑌)𝜂(𝑊) +

1

2
𝑓1𝜂(𝑌)𝑔(𝜑𝑍, 𝑋)𝜂(𝑊) 

yazılabilir.  Buradan da 𝑋 ve 𝑊 vektör alanlarına göre kontraksiyon yapıldığında  

𝑆̅(𝑌, 𝑍) = 𝑆(𝑌, 𝑍) − (𝜉𝑓1)𝑔(𝑌, 𝑍) + (𝑌𝑓1)𝜂(𝑍) + (𝑓1
2 +

𝛽

2
) [𝑔(𝑌, 𝑍) − 𝜂(𝑌)𝜂(𝑍)]

− (𝑓1𝛽 −
𝑓1

2
) 𝑔(𝜑𝑌, 𝑍) −

𝛽

2
[2𝑔(𝜑𝑌, 𝜑𝑍) − 𝑔(𝜑𝑌, 𝜑𝑍)] +

1

4
[𝜂(𝑌)𝜂(𝑍)

− 𝜂(𝑌)𝜂(𝑍)3] −
1

2
𝑓1𝑔(𝜑𝑍, 𝑌) 

elde edilir. Yukarıda  gerekli düzenlemeler yapıldığında 

𝑆̅(𝑌, 𝑍) = 𝑆(𝑌, 𝑍) + (𝑌𝑓1)𝜂(𝑍) + 𝑓1(𝛽 − 1)𝑔(𝑌, 𝜑𝑍) − [
1

2
+ 𝑓1

2] 𝜂(𝑌)𝜂(𝑍)

+ [𝑓1
2 − (𝜉𝑓1)]𝑔(𝑌, 𝑍)    

denklemi elde edilir. Bu da bize (4.1.9) ifadesini verir. Ayrıca (4.1.9) denklemi ∀𝑍 ∈ 𝜒(𝑀) için  

𝑄̅Y = QY + (𝑌𝑓1)𝜉 − 𝑓1(𝛽 − 1)𝜑𝑌 − [
1

2
+ 𝑓1

2] 𝜂(𝑌)𝜉

+ [𝑓1
2 − (𝜉𝑓1)]𝑌                                             

dır. 
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 Son olarak  (4.1.9) denkleminde  𝑌 ve 𝑍 vektör alanlarına göre kontraksiyon 

yapıldığında  

𝜏̅ = 𝜏 + 2 (𝑓1
2 − (𝜉𝑓1)) −

1

2
   

dır. 

Önerme 4.1.6: Bir 3- boyutlu quasi Sasakian manifoldu 𝑀 olsun. 𝑀, (𝑀,𝜑3, 𝑓1) çeyrek 

simetrik metrik olmayan koneksiyonu ∇̅ ye  göre Ricci tensörü  S̅ olmak üzere, ∀ 𝑌 ∈ 𝜒(𝑀) için  

𝑆̅(𝑌, 𝜉) = (𝑌𝑓1) − (𝜑𝑌𝛽) + [2𝛽2 −
1

2
− (𝜉𝑓1)] 𝜂(𝑌)                                      (4.1.12) 

dır. 

İspat: (4.1.9) denklemi 𝑍 = 𝜉 için  

𝑆̅(𝑌, 𝜉) = 𝑆(𝑌, 𝜉) + (𝑌𝑓1) − [
1

2
+ 𝑓1

2] 𝜂(𝑌) + [𝑓1
2 − (𝜉𝑓1)]𝜂(𝑌)                                           

halini alır. Son denklemde (1.2.25) kullanılırsa 

𝑆̅(𝑌, 𝜉) = (𝑌𝑓1) − (𝜑𝑌𝛽) + [2𝛽2 −
1

2
− (𝜉𝑓1)] 𝜂(𝑌)𝜂(𝑍)                             

sonucu elde edilir. 

Teorem 4.1.1: Bir 3- boyutlu quasi -Sasakian manifoldu 𝑀 olsun.  𝑀, (𝑀,𝜑3, 𝑓1) çeyrek 

simetrik metrik olmayan koneksiyonu ∇̅ ye  göre Ricci tensörü simetriktir ancak ve ancak 𝑓1  

sabit ve 𝛽 =1 dir. 

İspat: Kabul edelim ki 3-boyutlu bir 𝑀 quasi-Sasakian  manifoldu üzerinde  ∇̅  

(𝑀,𝜑3, 𝑓1)  koneksiyonuna göre Ricci tensörü simetrik olsun,  yani ∀ 𝑍, 𝑌 ∈ 𝜒(𝑀) için 

𝑆̅(𝑌, 𝑍) = 𝑆̅(𝑍, 𝑌) 

sağlansın. Öncelikle  𝑆̅(𝑍, 𝑌) ifadesini bulabilmek için (4.1.9) denkleminde 𝑌 yerine 𝑍, 𝑍 yerine 

𝑌 yazalım. Bu durumda  

𝑆̅(𝑍, 𝑌) = 𝑆(𝑍, 𝑌) + (𝑍𝑓1)𝜂(𝑌) + 𝑓1(𝛽 − 1)𝑔(𝑍, 𝜑𝑌) + [−
1

2
− 𝑓1

2] 𝜂(𝑌)𝜂(𝑍)

+ [𝑓1
2

− (𝜉𝑓1)]𝑔(𝑌, 𝑍)                                                                                                   (4.1.13) 
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ifadesi elde edilir.(4.1.9) ve (4.1.13) denklemleri 𝑆̅(𝑌, 𝑍) = 𝑆̅(𝑍, 𝑌) gereği 

𝑆(𝑌, 𝑍) + (𝑌𝑓1)𝜂(𝑍) + 𝑓1(𝛽 − 1)𝑔(𝑌, 𝜑𝑍) + [−
1

2
− 𝑓1

2] 𝜂(𝑌)𝜂(𝑍) + [𝑓1
2 − (𝜉𝑓1)]𝑔(𝑌, 𝑍)

= 𝑆(𝑍, 𝑌) + (𝑍𝑓1)𝜂(𝑌) + 𝑓1(𝛽 − 1)𝑔(𝑍, 𝜑𝑌) + [−
1

2
− 𝑓1

2] 𝜂(𝑌)𝜂(𝑍)

+ [𝑓1
2 − (𝜉𝑓1)]𝑔(𝑌, 𝑍) 

halini alır. Burada gerekli sadeleştirmeler yapıldığında 

(𝑌𝑓1)𝜂(𝑍) + 𝑓1(𝛽 − 1)𝑔(𝑌, 𝜑𝑍) = (𝑍𝑓1)𝜂(𝑌) + 𝑓1(𝛽 − 1)𝑔(𝑍, 𝜑𝑌) 

yada 

(𝑌𝑓1)𝜂(𝑍) − (𝑍𝑓1)𝜂(𝑌) + 2𝑓1(𝛽 − 1)𝑔(𝑌, 𝜑𝑍) = 0 

bulunur. Buradan da 𝑓1 = 𝑠𝑏𝑡 ve 𝛽 =1 olduğu açıktır.  

 Tersine 3-boyutlu bir M quasi-Sasakian  manifoldu için 𝑓1 = 𝑠𝑏𝑡 ve 𝛽 =1   olsun. 

(4.1.9) denklemi   

𝑓1 = 𝑠𝑏𝑡 ve 𝛽 =1 için 

𝑆̅(𝑌, 𝑍) = 𝑆(𝑌, 𝑍) − [
1

2
+ 𝑓1

2] 𝜂(𝑌)𝜂(𝑍) + 𝑓1
2𝑔(𝑌, 𝑍)                                         

haline dönüşür. Yukarıdaki denklemde 𝑆 Ricci tensörü ve 𝑔 Riemann metriğinin simetrik olma 

özelliklerinden yararlanılarak 

S̅(Y, Z) = S(Z, Y) − [
1

2
+ 𝑓1

2] 𝜂(𝑍)𝜂(𝑌) + 𝑓1
2𝑔(𝑍, 𝑌) = S̅(Z, Y) 

sonucu ortaya çıkar. Böylece ispat tamamlanır.  

Önerme 4.1.7.: Bir 3-boyutlu quasi-Sasakian manifoldu 𝑀 olsun. 𝑀 üzerinde  

(𝑀,𝜑3, 𝑓1)  çeyrek simetrik metrik olmayan koneksiyonu ∇̅ ye göre projektif eğrilik tensörü ve 

koncircular eğrilik tensörü sırasıyla 𝑃̅ ve 𝐻̅ olmak üzere, ∀ 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) için 
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𝑃̅(𝑋, 𝑌)𝑍 = 𝑃(𝑋, 𝑌)𝑍 − (𝑋𝑓1)𝑔(𝑌, 𝑍)𝜉 + (𝑌𝑓1)𝑔(𝑋, 𝑍)𝜉 + (𝑓1
2 +

𝛽

2
) {𝑔(𝑌, 𝑍)𝜂(𝑋)𝜉

− 𝑔(𝑋, 𝑍)𝜂(𝑌)𝜉} + (𝑓1𝛽 −
𝑓1

2
) {𝑔(𝑌, 𝑍)𝜑𝑋 − 𝑔(𝑋, 𝑍)𝜑𝑌} +

𝛽

2
{2𝑔(𝜑𝑋, 𝑌)𝜑𝑍

+ 𝑔(𝜑𝑌, 𝑍)𝜑𝑋 − 𝑔(𝜑𝑋, 𝑍)𝜑𝑌} + 𝑓1
2{𝜂(𝑋)𝜂(𝑍)𝑌 − 𝜂(𝑌)𝜂(𝑍)𝑋}

+ 𝑓1𝜂(𝑍)𝑔(𝜑𝑋, 𝑌)𝜉 −
1

2
𝑓1𝜂(𝑋)𝑔(𝜑𝑍, 𝑌)𝜉 +

1

2
𝑓1𝜂(𝑌)𝑔(𝜑𝑍, 𝑋)𝜉

−
1

2
{(𝑌𝑓1)𝜂(𝑍)𝑋 − (𝑋𝑓1)𝜂(𝑍)𝑌} −

1

2
{𝑓1(𝛽 − 1)𝑔(𝑌, 𝜑𝑍)𝑋

− 𝑓1(𝛽 − 1)𝑔(𝑋, 𝜑𝑍)𝑌}

−
1

2
{[𝑓1

2 − (𝜉𝑓1)]𝑔(𝑌, 𝑍)𝑋

− [𝑓1
2

− (𝜉𝑓1)]𝑔(𝑋, 𝑍)𝑌}                                                                                             (4.1.14) 

ve  

𝐻̅(𝑋, 𝑌)𝑍

= 𝐻(𝑋, 𝑌)𝑍 − (𝑋𝑓1)𝑔(𝑌, 𝑍)𝜉 + (𝑌𝑓1)𝑔(𝑋, 𝑍)𝜉 + (𝑓1
2 +

𝛽

2
) {𝑔(𝑌, 𝑍)𝜂(𝑋)𝜉 − 𝑔(𝑋, 𝑍)𝜂(𝑌)𝜉}

+ (𝑓1𝛽 −
𝑓1

2
) {𝑔(𝑌, 𝑍)𝜑𝑋 − 𝑔(𝑋, 𝑍)𝜑𝑌} +

𝛽

2
{2𝑔(𝜑𝑋, 𝑌)𝜑𝑍 + 𝑔(𝜑𝑌, 𝑍)𝜑𝑋 − 𝑔(𝜑𝑋, 𝑍)𝜑𝑌}

+
1

4
{𝜂(𝑋)𝜂(𝑍)𝑌 − 𝜂(𝑌)𝜂(𝑍)𝑋} + 𝑓1𝜂(𝑍)𝑔(𝜑𝑋, 𝑌)𝜉 −

1

2
𝑓1𝜂(𝑋)𝑔(𝜑𝑍, 𝑌)𝜉

+
1

2
𝑓1𝜂(𝑌)𝑔(𝜑𝑍, 𝑋)𝜉 −

2 (𝑓1
2 − (𝜉𝑓1)) −

1
2

6
{𝑔(𝑌, 𝑍)𝑋

− 𝑔(𝑋, 𝑍)𝑌}                                                                                                                                      (4.1.15) 

dır. 

İspat: İlk önce (1.1.5) denklemi ile verilen projektif eğrilik tensörünü ele alalım. 

(𝑀,𝜑3, 𝑓1) çeyrek simetrik metrik olmayan koneksiyonu ∇̅ ye göre projektif eğrilik tensörü için 

𝑃̅(𝑋, 𝑌)𝑍 = 𝑅̅(𝑋, 𝑌)𝑍 −
1

𝑛 − 1
[𝑆̅(𝑌, 𝑍)𝑋 − 𝑆̅(𝑋, 𝑍)𝑌]     

yazılabilir. Bu denklem (4.1.1) ve (4.1.9) denklemleri yardımıyla 
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𝑃̅(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 − (𝑋𝑓1)𝑔(𝑌, 𝑍)𝜉 + (𝑌𝑓1)𝑔(𝑋, 𝑍)𝜉 + (𝑓1
2 +

𝛽

2
) {𝑔(𝑌, 𝑍)𝜂(𝑋)𝜉

− 𝑔(𝑋, 𝑍)𝜂(𝑌)𝜉} + (𝑓1𝛽 −
𝑓1

2
) {𝑔(𝑌, 𝑍)𝜑𝑋 − 𝑔(𝑋, 𝑍)𝜑𝑌} +

𝛽

2
{2𝑔(𝜑𝑋, 𝑌)𝜑𝑍

+ 𝑔(𝜑𝑌, 𝑍)𝜑𝑋 − 𝑔(𝜑𝑋, 𝑍)𝜑𝑌} +
1

4
{𝜂(𝑋)𝜂(𝑍)𝑌 − 𝜂(𝑌)𝜂(𝑍)𝑋}

+ 𝑓1𝜂(𝑍)𝑔(𝜑𝑋, 𝑌)𝜉 −
1

2
𝑓1𝜂(𝑋)𝑔(𝜑𝑍, 𝑌)𝜉 +

1

2
𝑓1𝜂(𝑌)𝑔(𝜑𝑍, 𝑋)𝜉

−
1

2
{𝑆(𝑌, 𝑍)𝑋 + (𝑌𝑓1)𝜂(𝑍)𝑋 + 𝑓1(𝛽 − 1)𝑔(𝑌, 𝜑𝑍)𝑋 − [

1

2
+ 𝑓1

2] 𝜂(𝑌)𝜂(𝑍)𝑋

+ [𝑓1
2 − (𝜉𝑓1)]𝑔(𝑌, 𝑍)𝑋 − 𝑆(𝑋, 𝑍)𝑌 − (𝑋𝑓1)𝜂(𝑍)𝑌 − 𝑓1(𝛽 − 1)𝑔(𝑋, 𝜑𝑍)𝑌

+ (
1

2
+ 𝑓1

2) 𝜂(𝑋)𝜂(𝑍)𝑌 − (𝑓1
2 − (𝜉𝑓1)) 𝑔(𝑋, 𝑍)𝑌} 

halini alır. Yukarıdaki denklemde gerekli düzenlemeler yapıldığında   (4.1.14) denklemi elde 

edilir.   

Benzer şekilde (1.1.6) denklemi göz önünde bulunduruluğunda ∇̅ ye göre koncircular 

eğrilik tensörü 

𝐻̅(𝑋, 𝑌)𝑍 = 𝑅̅(𝑋, 𝑌)𝑍 −
𝜏̅

𝑛(𝑛 − 1)
[𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌] 

biçimindedir. Bu denklemde  (4.1.1) ve (4.1.10) denklemleri kullanılarak 

𝐻̅(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 − (𝑋𝑓1)𝑔(𝑌, 𝑍)𝜉 + (𝑌𝑓1)𝑔(𝑋, 𝑍)𝜉 + (𝑓1
2 +

𝛽

2
) {𝑔(𝑌, 𝑍)𝜂(𝑋)𝜉

− 𝑔(𝑋, 𝑍)𝜂(𝑌)𝜉} + (𝑓1𝛽 −
𝑓1

2
) {𝑔(𝑌, 𝑍)𝜑𝑋 − 𝑔(𝑋, 𝑍)𝜑𝑌} +

𝛽

2
{2𝑔(𝜑𝑋, 𝑌)𝜑𝑍

+ 𝑔(𝜑𝑌, 𝑍)𝜑𝑋 − 𝑔(𝜑𝑋, 𝑍)𝜑𝑌} +
1

4
{𝜂(𝑋)𝜂(𝑍)𝑌 − 𝜂(𝑌)𝜂(𝑍)𝑋}

+ 𝑓1𝜂(𝑍)𝑔(𝜑𝑋, 𝑌)𝜉 −
1

2
𝑓1𝜂(𝑋)𝑔(𝜑𝑍, 𝑌)𝜉 +

1

2
𝑓1𝜂(𝑌)𝑔(𝜑𝑍, 𝑋)𝜉

−
𝜏 + 2 (𝑓1

2 − (𝜉𝑓1)) −
1
2

6
{𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌} 

bulunur ki, buradan (4.1.15) denkleminde ulaşılır. 

 Buradan itibaren işlemlerin kolaylığı için 𝑓1 = 𝛽 kabul edeceğiz. 
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Teorem 4.1.2: 3-boyutlu bir quasi-Sasakian manifoldu 𝑀 olsun. 𝑀 üzerindeki Levi-

Civita koneksiyonu   ∇  ve (𝑀,𝜑3, 𝑓1)  çeyrek simetrik metrik olmayan koneksiyonu ∇̅ için 𝜂-

paralel olma şartı denk ise 

i) 𝛽 = 0, yani ya manifold kosimplektik yada manifold ∇̅ koneksiyonuna göre 𝜂-Einstein 

olmasıdır. 

ii) 𝛽= sabit dolayısıyla manifold ∇ ya göre 𝜂-Einsteindır. 

İspat: 𝑀 3-boyutlu  quasi-Sasakian  manifoldunu ele alalım. (𝑀,𝜑3, 𝑓1)  koneksiyonuna 

göre Ricci tensörü 𝑆̅ olmak üzere koneksiyon özellikleri  gereği  

(∇̅𝑋𝑆̅)(𝜑𝑌, 𝜑𝑍) = ∇̅𝑋𝑆̅(𝜑𝑌, 𝜑𝑍) − 𝑆̅(∇̅𝑋𝜑𝑌, 𝜑𝑍) − 𝑆̅(𝜑𝑌, ∇̅𝑋𝜑𝑍) 

yazılabilir. Burada (2.2.1) denklemi yardımıyla 

(∇̅𝑋𝑆̅)(𝜑𝑌, 𝜑𝑍) = ∇𝑋𝑆̅(𝜑𝑌, 𝜑𝑍) − 𝑆̅(∇𝑋𝜑𝑌, 𝜑𝑍) +
1

2
𝜂(𝑋)𝑆̅(𝜑2𝑌, 𝜑𝑍) + 𝛽𝑔(𝑋, 𝜑𝑌)𝑆̅(𝜉, 𝜑𝑍)

− 𝑆̅(𝜑𝑌, ∇𝑋𝜑𝑍) +
1

2
𝜂(𝑋)𝑆̅(𝜑𝑌, 𝜑2𝑍) + 𝛽𝑔(𝑋, 𝜑𝑍)𝑆̅(𝜑𝑌, 𝜉) 

elde edilir. Yukarıdaki denklemde (4.1.9) kullanılırsa 

(∇̅𝑋𝑆̅)(𝜑𝑌, 𝜑𝑍) = ∇𝑋𝑆(𝜑𝑌, 𝜑𝑍) + ∇𝑋[(𝛽 − 𝛽2)𝑔(𝜑𝑌, 𝑍)] + ∇𝑋[𝛽2𝑔(𝑌, 𝑍) − 𝛽2𝜂(𝑌)𝜂(𝑍)]

− 𝑆(∇𝑋𝜑𝑌, 𝜑𝑍) − 𝛽2𝑔(∇𝑋𝜑𝑌, 𝜑𝑍) − (𝛽 − 𝛽2)𝑔(𝜑∇𝑋𝜑𝑌, 𝜑𝑍)

+ 𝛽𝑔(𝑋, 𝜑𝑌)(𝑍𝛽) + 𝛽𝑔(𝑋, 𝜑𝑍)(𝜑𝑌𝛽) + 𝛽𝑔(𝑋, 𝜑𝑍)(𝑌𝛽) − 𝑆(𝜑𝑌, ∇𝑋𝜑𝑍)

− (𝜑𝑌𝛽)𝜂(∇𝑋𝜑𝑍) − 𝛽2𝑔(𝜑𝑌, ∇𝑋𝜑𝑍)

− (𝛽 − 𝛽2)𝑔(𝜑2𝑌, ∇𝑋𝜑𝑍),                                                                              (4.1.16) 

bulunur. Burada ∇ koneksiyonunun  özellikleri yardımıyla (4.1.16) denklemi  

(∇̅𝑋𝑆̅)(𝜑𝑌, 𝜑𝑍) = (∇𝑋𝑆)(𝜑𝑌, 𝜑𝑍) + [(𝑋𝛽) − 2𝛽(𝑋𝛽)]𝑔(𝜑𝑌, 𝑍)

+ (𝛽 − 𝛽2){𝑔((∇𝑋𝜑)𝑌, 𝑍) + 𝑔(𝜑∇𝑋𝑌, 𝑍) + 𝑔(𝜑𝑌, ∇𝑋𝑍)}

+ 2𝛽(𝑋𝛽)[𝑔(𝑌, 𝑍) − 𝜂(𝑌)𝜂(𝑍)]

+ 𝛽2{𝑔(∇𝑋𝑌, 𝑍) + 𝑔(𝑌, ∇𝑋𝑍) − 𝜂(∇𝑋𝑌)𝜂(𝑍) − 𝜂(𝑌)𝜂(∇𝑋𝑍) − 𝑔(𝑌, ∇𝑋𝜉)𝜂(𝑍)

− 𝜂(𝑌)𝑔(𝑍, ∇𝑋𝜉)} − 𝛽2𝑔((∇𝑋𝜑)𝑌, 𝜑𝑍) − 𝛽2𝑔(φ∇𝑋𝑌, 𝜑𝑍)

− (𝛽 − 𝛽2){𝑔((∇𝑋𝜑)𝑌, 𝑍) + 𝑔(𝜑∇𝑋𝑌, 𝑍) − 𝜂(∇𝑋𝑌)𝜂(𝑍)} + 𝛽𝑔(𝑋, 𝜑𝑌)(𝑍𝛽)

+ 𝛽𝑔(𝑋, 𝜑𝑍)(𝜑𝑌𝛽) + 𝛽𝑔(𝑋, 𝜑𝑍)(𝑌𝛽) − (𝜑𝑌𝛽)𝜂((∇𝑋𝜑)𝑍)

− 𝛽2𝑔(𝜑𝑌, (∇𝑋𝜑)𝑍) − 𝛽2𝑔(𝜑𝑌, 𝜑∇𝑋𝑍) − (𝛽 − 𝛽2)𝑔(𝜑2𝑌, (∇𝑋𝜑)𝑍)

− (𝛽 − 𝛽2)𝑔(𝜑𝑌, ∇𝑋𝑍), 
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haline dönüşür. Burada (1.2.28) ve (1.2.29) denklemleri kullanılıp gerekli düzenlemeler 

yapıldığında 

(∇̅𝑋𝑆̅)(𝜑𝑌, 𝜑𝑍) = (∇𝑋𝑆)(𝜑𝑌, 𝜑𝑍) + [(𝑋𝛽) − 2𝛽(𝑋𝛽)]𝑔(𝜑𝑌, 𝑍)

+ 2𝛽(𝑋𝛽)[𝑔(𝑌, 𝑍) − 𝜂(𝑌)𝜂(𝑍)] + 𝛽3{𝑔(𝑌, 𝜑𝑋)𝜂(𝑍) + 𝜂(𝑌)𝑔(𝑍, 𝜑𝑋)}

+ 𝛽3{𝜂(𝑌)𝑔(𝑋, 𝜑𝑍)} − (𝛽 − 𝛽2)𝛽{𝑔(𝑋, 𝑌)𝜂(𝑍) − 𝜂(𝑌)𝑔(𝑋, 𝑍)}

+ 𝛽𝑔(𝑋, 𝜑𝑌)(𝑍𝛽) + 𝛽𝑔(𝑋, 𝜑𝑍)(𝜑𝑌𝛽) + 𝛽𝑔(𝑋, 𝜑𝑍)(𝑌𝛽)

− 𝛽(𝜑𝑌𝛽){𝑔(𝑋, 𝑍) − 𝜂(𝑌)𝜂(𝑍)} + 𝛽3𝜂(𝑍)𝑔(𝜑𝑌, 𝑋)

+ 𝛽(𝛽 − 𝛽2)𝜂(𝑍){−𝑔(𝑌, 𝑋)

+ 𝜂(𝑌)𝜂(𝑋)},                                                                                                      (4.1.17) 

bulunur. 𝑀 üzerindeki  ∇̅  ve ∇ koneksiyonları için 𝜂-paralel olma şartı denk olduğundan 

yukarıdaki denklem 

[(𝑋𝛽) − 2𝛽(𝑋𝛽)]𝑔(𝜑𝑌, 𝑍) + 2𝛽(𝑋𝛽)[𝑔(𝑌, 𝑍) − 𝜂(𝑌)𝜂(𝑍)]

+ 𝛽3{𝑔(𝑌, 𝜑𝑋)𝜂(𝑍) + 𝜂(𝑌)𝑔(𝑍, 𝜑𝑋)} + 𝛽3{𝜂(𝑌)𝑔(𝑋, 𝜑𝑍)}

− (𝛽 − 𝛽2)𝛽{𝑔(𝑋, 𝑌)𝜂(𝑍) − 𝜂(𝑌)𝑔(𝑋, 𝑍)} + 𝛽𝑔(𝑋, 𝜑𝑌)(𝑍𝛽)

+ 𝛽𝑔(𝑋, 𝜑𝑍)(𝜑𝑌𝛽) + 𝛽𝑔(𝑋, 𝜑𝑍)(𝑌𝛽) − 𝛽(𝜑𝑌𝛽){𝑔(𝑋, 𝑍) − 𝜂(𝑌)𝜂(𝑍)}

+ 𝛽3𝜂(𝑍)𝑔(𝜑𝑌, 𝑋) + 𝛽(𝛽 − 𝛽2)𝜂(𝑍){−𝑔(𝑌, 𝑋) + 𝜂(𝑌)𝜂(𝑋)} = 0, 

halini alır. Son olarak 𝑌 ve 𝑍 ye bağlı kontraksiyon yapıldığında 

4𝛽(𝑋𝛽) − 𝛽𝑔(𝜑𝑋𝛽) + 𝛽(𝑋𝛽) − 𝛽𝑔(𝜑𝑋𝛽) − 𝛽(𝜑𝑋𝛽) = 0, 

yani, 

5𝛽(𝑋𝛽) − 3𝛽(𝜑𝑋𝛽) = 0, 

yazılabilir. Burada iki durum söz konusudur: 

Durum 𝑖) 𝛽 = 0: 

Kabul edelim ki 𝛽 = 0 olsun. Bu durumda 3-boyutlu quasi-Sasakian manifoldu 

kosimplektik olur. Ayrıca (1.2.33) ve (4.1.9) denklemlerinde 𝛽 = 0 alınırsa, 

𝑆̅(𝑌, 𝑍) = 𝑆(𝑌, 𝑍) −
1

2
𝜂(𝑌)𝜂(𝑍) =

𝜏

2
𝑔(𝑌, 𝑍) − (

𝜏

2
+

1

2
) 𝜂(𝑌)𝜂(𝑍) 

elde edilir.  Bu da manifoldun ∇̅ koneksiyonuna göre 𝜂 −Einstein olduğunu gösterir. 

Durum 𝑖𝑖)    5(𝑋𝛽) − 3(𝜑𝑋𝛽) = 0 : 
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5(𝑋𝛽) − 3(𝜑𝑋𝛽) = 0 olduğunu gözönünde bulundurursak,  bu denklem  ∀ 𝑋 ∈ 𝜒(𝑀) 

için  

5𝑔𝑟𝑎𝑑𝛽 + 3𝜑𝑔𝑟𝑎𝑑𝛽 = 0                                                     (4.1.18) 

haline dönüşür. (4.1.18) denkleminin her iki tarafına φ uygulayalım: 

5𝜑𝑔𝑟𝑎𝑑𝛽 − 3𝑔𝑟𝑎𝑑𝛽 = 0                                                      (4.1.19) 

(4.1.18) ve (4.1.19) denklemleri arasında gerekli sadeleştirmeler yapıldığında 

34𝑔𝑟𝑎𝑑𝛽 = 0 

elde edilir. Yani 𝛽= sabit dolayısıyla (1.2.33) denklemi gereği manifold ∇ ya göre 

𝜂 −Einsteindır. 

Teorem 4.1.3.: 3-boyutlu bir quasi-Sasakian manifoldu 𝑀 olsun. 𝑀 

üzerindeki (𝑀,𝜑3, 𝑓1) çeyrek simetrik olmayan koneksiyonu   ∇̅  ye göre Ricci tensörü 𝑆̅ olmak 

üzere manifold bu koneksiyona göre  𝜂-paralel ise 𝜏 sabit olmak şartıyla 

i) 𝛽 = 0, yani ya manifold kosimplektik yada manifold ∇̅ koneksiyonuna göre 𝜂 −Einsteindır. 

ii) 𝛽= sabit dolayısıyla manifold ∇ ya göre 𝜂 −Einstein manifolddur. 

İspat: İlk önce işlem kolaylığı için (∇𝑋𝑆)(𝜑𝑌, 𝜑𝑍) ifadesini bulalım. Levi-civita 

koneksiyonunun özellikleri gereği 

(∇𝑋𝑆)(𝜑𝑌, 𝜑𝑍) = ∇𝑋𝑆(𝜑𝑌, 𝜑𝑍) − 𝑆(∇𝑋𝜑𝑌, 𝜑𝑍) − 𝑆(𝜑𝑌, ∇𝑋𝜑𝑍) 

yazılabilir. Burada (1.2.33) denklemi yardımıyla 

(∇𝑋𝑆)(𝜑𝑌, 𝜑𝑍) = ∇𝑋 {(
𝜏

2
− 𝛽2) 𝑔(𝜑𝑌, 𝜑𝑍)} − (

𝜏

2
− 𝛽2) {𝑔(∇𝑋𝜑𝑌, 𝜑𝑍) + 𝑔(𝜑𝑌, ∇𝑋𝜑𝑍)}

+ 𝜂(∇𝑋𝜑𝑍)(𝜑2𝑌𝛽) + 𝜂(∇𝑋𝜑𝑌)(𝜑2𝑍𝛽) 

elde edilir. Yukarıdaki denklem koneksiyon özellikleri gereği 
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(∇𝑋𝑆)(𝜑𝑌, 𝜑𝑍) = (
(𝑋𝜏)

2
− 2𝛽(𝑋𝛽)) 𝑔(𝜑𝑌, 𝜑𝑍)

+ (
𝜏

2
− 𝛽2) {𝑔(∇𝑋𝑌, 𝑍) + 𝑔(𝑌, ∇𝑋𝑍) − 𝜂(∇𝑋𝑌)𝜂(𝑍) − 𝜂(𝑌)𝜂(∇𝑋𝑍)

− 𝑔(𝑌, ∇𝑋𝜉)𝜂(𝑍) − 𝜂(𝑌)𝑔(𝑍, ∇𝑋𝜉)}

− (
𝜏

2
− 𝛽2) {𝑔((∇𝑋𝜑)𝑌, 𝜑𝑍) + 𝑔(𝜑∇𝑋𝑌, 𝜑𝑍) + 𝑔(𝜑𝑌, (∇𝑋𝜑)𝑍)

+ 𝑔(𝜑𝑌, 𝜑∇𝑋𝑍)} + 𝜂((∇𝑋𝜑)𝑍)(𝜑2𝑌𝛽) + 𝜂((∇𝑋𝜑)𝑌)(𝜑2𝑍𝛽), 

şeklinde yazılabilir. Burada (1.2.28) ve (1.2.29) denklemleri kullanıldığında  

(∇𝑋𝑆)(𝜑𝑌, 𝜑𝑍) = (
(𝑋𝜏)

2
− 2𝛽(𝑋𝛽)) 𝑔(𝜑𝑌, 𝜑𝑍)

+ (
𝜏

2
− 𝛽2) 𝛽{𝑔(𝑌, 𝜑𝑋)𝜂(𝑍) + 𝜂(𝑌)𝑔(𝑍, 𝜑𝑋)}

+ (
𝜏

2
− 𝛽2) 𝛽{𝜂(𝑌)𝑔(𝑋, 𝜑𝑍) + 𝜂(𝑍)𝑔(𝜑𝑌, 𝑋)}

− 𝛽{𝑔(𝑋, 𝑍) − 𝜂(𝑋)𝜂(𝑍)}(𝑌𝛽)

− 𝛽{𝑔(𝑋, 𝑌)

− 𝜂(𝑋)𝜂(𝑌)}(𝑍𝛽),                                                                                  (4.1.20) 

bulunur. (4.1.20) denklemi (4.1.17) da yerine konulduğunda 

(∇̅𝑋𝑆̅)(𝜑𝑌, 𝜑𝑍) = (
(𝑋𝜏)

2
− 2𝛽(𝑋𝛽)) 𝑔(𝜑𝑌, 𝜑𝑍)

+ (
𝜏

2
− 𝛽2) 𝛽{𝑔(𝑌, 𝜑𝑋)𝜂(𝑍) + 𝜂(𝑌)𝑔(𝑍, 𝜑𝑋)}

+ (
𝜏

2
− 𝛽2) 𝛽{𝜂(𝑌)𝑔(𝑋, 𝜑𝑍) + 𝜂(𝑍)𝑔(𝜑𝑌, 𝑋)}

− 𝛽{𝑔(𝑋, 𝑍) − 𝜂(𝑋)𝜂(𝑍)}(𝑌𝛽) − 𝛽{𝑔(𝑋, 𝑌) − 𝜂(𝑋)𝜂(𝑌)}(𝑍𝛽)

+ [(𝑋𝛽) − 2𝛽(𝑋𝛽)]𝑔(𝜑𝑌, 𝑍) + 2𝛽(𝑋𝛽)[𝑔(𝑌, 𝑍) − 𝜂(𝑌)𝜂(𝑍)]

+ 𝛽3{𝑔(𝑌, 𝜑𝑋)𝜂(𝑍) + 𝜂(𝑌)𝑔(𝑍, 𝜑𝑋)} + 𝛽3{𝜂(𝑌)𝑔(𝑋, 𝜑𝑍)}

− (𝛽 − 𝛽2)𝛽{𝑔(𝑋, 𝑌)𝜂(𝑍) − 𝜂(𝑌)𝑔(𝑋, 𝑍)} + 𝛽𝑔(𝑋, 𝜑𝑌)(𝑍𝛽)

+ 𝛽𝑔(𝑋, 𝜑𝑍)(𝜑𝑌𝛽) + 𝛽𝑔(𝑋, 𝜑𝑍)(𝑌𝛽) − 𝛽(𝜑𝑌𝛽){𝑔(𝑋, 𝑍) − 𝜂(𝑌)𝜂(𝑍)}

+ 𝛽3𝜂(𝑍)𝑔(𝜑𝑌, 𝑋) + 𝛽(𝛽 − 𝛽2)𝜂(𝑍){−𝑔(𝑌, 𝑋) + 𝜂(𝑌)𝜂(𝑋)}, 

bulunur. Manifold  (𝑀,𝜑3, 𝑓1) koneksiyonuna göre 𝜂-paralel olduğundan tanım gereği 

yukarıdaki denklem 
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(
(𝑋𝜏)

2
− 2𝛽(𝑋𝛽)) 𝑔(𝜑𝑌, 𝜑𝑍) + (

𝜏

2
− 𝛽2) 𝛽{𝑔(𝑌, 𝜑𝑋)𝜂(𝑍) + 𝜂(𝑌)𝑔(𝑍, 𝜑𝑋)}

+ (
𝜏

2
− 𝛽2) 𝛽{𝜂(𝑌)𝑔(𝑋, 𝜑𝑍) + 𝜂(𝑍)𝑔(𝜑𝑌, 𝑋)}

− 𝛽{𝑔(𝑋, 𝑍) − 𝜂(𝑋)𝜂(𝑍)}(𝑌𝛽) − 𝛽{𝑔(𝑋, 𝑌) − 𝜂(𝑋)𝜂(𝑌)}(𝑍𝛽)

+ [(𝑋𝛽) − 2𝛽(𝑋𝛽)]𝑔(𝜑𝑌, 𝑍) + 2𝛽(𝑋𝛽)[𝑔(𝑌, 𝑍) − 𝜂(𝑌)𝜂(𝑍)]

+ 𝛽3{𝑔(𝑌, 𝜑𝑋)𝜂(𝑍) + 𝜂(𝑌)𝑔(𝑍, 𝜑𝑋)} + 𝛽3{𝜂(𝑌)𝑔(𝑋, 𝜑𝑍)}

− (𝛽 − 𝛽2)𝛽{𝑔(𝑋, 𝑌)𝜂(𝑍) − 𝜂(𝑌)𝑔(𝑋, 𝑍)} + 𝛽𝑔(𝑋, 𝜑𝑌)(𝑍𝛽)

+ 𝛽𝑔(𝑋, 𝜑𝑍)(𝜑𝑌𝛽) + 𝛽𝑔(𝑋, 𝜑𝑍)(𝑌𝛽) − 𝛽(𝜑𝑌𝛽){𝑔(𝑋, 𝑍) − 𝜂(𝑌)𝜂(𝑍)}

+ 𝛽3𝜂(𝑍)𝑔(𝜑𝑌, 𝑋) + 𝛽(𝛽 − 𝛽2)𝜂(𝑍){−𝑔(𝑌, 𝑋) + 𝜂(𝑌)𝜂(𝑋)} = 0, 

haline dönüşür. Son olarak 𝑌 ve 𝑍 ye bağlı kontraksiyon yapıldığında 

(
(𝑋𝜏)

2
− 2𝛽(𝑋𝛽)) 2 − 𝛽(𝑋𝛽) − 𝛽(𝑋𝛽) + 4𝛽(𝑋𝛽) − 𝛽𝑔(𝜑𝑋𝛽) + 𝛽(𝑋𝛽) − 𝛽𝑔(𝜑𝑋𝛽)

− 𝛽(𝜑𝑋𝛽) = 0, 

yani, 

(𝑋𝜏) − 𝛽(𝑋𝛽) − 3𝛽(𝜑𝑋𝛽) = 0, 

elde edilir. 𝜏 sabit olduğu kabul edildiğinden son denklem yerine 

𝛽(𝑋𝛽) + 3𝛽(𝜑𝑋𝛽) = 0, 

yazılabilir. Burada iki durum mevcuttur: 

Durum i) 𝛽 = 0: 

𝛽 = 0 için Teorem 4.1.2. i) durumu şartları sağlanır. Yani manifold  kosimplektiktir. 

Durum ii) (𝑋𝛽) + 3(𝜑𝑋𝛽) = 0: 

(𝑋𝛽) + 3(𝜑𝑋𝛽) = 0 ifadesi sağlansın. Bu denklem ∀𝑋 ∈ 𝜒(𝑀) için  

𝑔𝑟𝑎𝑑𝛽 − 3𝜑𝑔𝑟𝑎𝑑𝛽 = 0                                                    (4.1.21) 

haline dönüşür.(4.1.21) denkleminin her iki yanına 𝜑 uygulayalım. 

𝜑𝑔𝑟𝑎𝑑𝛽 + 3𝑔𝑟𝑎𝑑𝛽 = 0                                                    (4.1.22) 

(4.1.21) ve (4.1.22) denklemleri arasında gerekli sadeleştirmeler yapıldığında 

10𝑔𝑟𝑎𝑑𝛽 = 0 
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elde edilir. Bu durumda 𝛽= sabit dolayısıyla manifold ∇ ya göre 𝜂 −Einsteindır. 

Teorem 4.1.4.: 3-boyutlu bir quasi-Sasakian manifoldu 𝑀 olsun. 𝛽  sabit olmak şartıyla  

𝑀 üzerinde  (𝑀,𝜑3, 𝑓1)  çeyrek simetrik metrik olmayan koneksiyonu ∇̅ ye göre dairesel paralel 

Ricci tensöre  sahip ise 

i) 𝛽 = 0, yani ya manifold kosimplektik yada manifold ∇̅ koneksiyonuna göre 𝜂 −Einsteindır, 

ii) 𝛽 = ±
1

2
 e karşılık gelir. 

İspat: 𝑀 3-boyutlu quasi-Sasakian manifoldu (𝑀,𝜑3, 𝑓1)  koneksiyonuna bağlı olarak 

dairesel  paralel Ricci tensöre  sahip olsun, yani 

(∇̅𝑋𝑆̅)(𝑌, 𝑍) + (∇̅𝑌𝑆̅)(𝑍, 𝑋) + (∇̅𝑍𝑆̅)(𝑋, 𝑌) = 0, 

sağlansın. Yukarıda 𝑌 = 𝑍 = 𝜉 alalım.  

(∇̅𝑋𝑆̅)(𝜉, 𝜉) + (∇̅𝜉𝑆̅)(𝜉, 𝑋) + (∇̅𝜉𝑆̅)(𝑋, 𝜉) = 0, 

Burada (2.2.1) kullanılırsa 

∇𝑋𝑆̅(𝜉, 𝜉) − 𝑆̅(∇𝑋𝜉, 𝜉) −
1

2
𝑆̅(𝜑𝑋, 𝜉) + 𝛽𝜂(𝑋)𝑆̅(𝜉, 𝜉) − 𝑆̅(𝜉, ∇𝑋𝜉) −

1

2
𝑆̅(𝜉, 𝜑𝑋) + 𝛽𝜂(𝑋)𝑆̅(𝜉, 𝜉)

+ ∇𝜉𝑆̅(𝜉, 𝑋) − 𝑆̅(∇𝜉𝜉, 𝑋) + 𝛽𝑆̅(𝜉, 𝑋) − 𝑆̅(𝜉, ∇𝜉𝑋) +
1

2
𝑆̅(𝜉, 𝜑𝑋)

+ 𝛽𝜂(𝑋)𝑆̅(𝜉, 𝜉) + ∇𝜉𝑆̅(𝑋, 𝜉) − 𝑆̅(∇𝜉𝑋, 𝜉) +
1

2
𝑆̅(𝜑𝑋, 𝜉) + 𝛽𝜂(𝑋)𝑆̅(𝜉, 𝜉)

− 𝑆̅(𝑋, ∇𝜉𝜉) + 𝛽𝑆̅(𝑋, 𝜉) = 0 

yazılabilir. Son denklem, 𝛽 nın sabit olmasını göz önünde bulundurursak,  (4.1.9) yardımıyla 

6𝛽 (2𝛽2 −
1

2
) 𝜂(𝑋) = 0, 

haline dönüşür. Burada 𝜂(𝑋) = 0 olamayacağından ancak 

6𝛽 (2𝛽2 −
1

2
) = 0 

olabilir. Sonuç olarak 𝛽 ya sıfır ya −
1

2
 yada 

1

2
 sabit değerlerine karşılık olur. 𝛽 nın sıfır olması 

manifoldun kosimplektik ayrıca ∇̅ koneksiyonuna bağlı 𝜂-Einstein olmasını gerektirir. Böylece 

ispat tamamlanmış olur. 
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Teorem 4.1.5.: 3-boyutlu bir quasi-Sasakian manifoldu 𝑀 olsun. 𝑀 üzerinde  

(𝑀,𝜑3, 𝑓1)  çeyrek simetrik metrik olmayan koneksiyonu ∇̅ ye göre Riemann eğrilik tensörü  𝑅̅ 

ve Ricci tensörü 𝑆̅ olmak üzere (R̅(𝑋, 𝜉)𝑆̅)(𝑌, 𝑍) = 0   ise M manifoldu ∇  ya bağlı  𝜂-Einstein 

manifolddur. 

İspat: Kabul edelim ki  

(R̅(𝑋, 𝜉)𝑆̅)(𝑌, 𝑍) = 0                                                         (4.1.23) 

sağlansın. Ayrıca  ∀ 𝑌, 𝑋, 𝑍 ∈ 𝜒(𝑀) olmak üzere (R̅(𝑋, 𝜉)𝑆̅)(𝑌, 𝑍)  

(R̅(𝑋, 𝜉)𝑆̅)(𝑌, 𝑍) = −𝑆̅(R̅(𝑋, 𝜉)𝑌, 𝑍) − 𝑆̅(𝑌, R̅(𝑋, 𝜉)𝑍) 

olarak da yazılabilir. Bu durumda (4.1.23) denklemi 

−𝑆̅(R̅(𝑋, 𝜉)𝑌, 𝑍) − 𝑆̅(𝑌, R̅(𝑋, 𝜉)𝑍) = 0 

yada  

𝑆̅(R̅(𝑋, 𝜉)𝑌, 𝑍) + 𝑆̅(𝑌, R̅(𝑋, 𝜉)𝑍) = 0,                                             (4.1.24) 

olur. (4.1.24) de (4.1.3) denklemi  kullanılırsa 

−(𝑌𝛽)𝑆̅(𝜑𝑋, 𝑍) − 𝑔(𝑋, 𝜑𝑌)𝑆̅(𝑔𝑟𝑎𝑑𝛽, 𝑍) −
𝛽

2
𝑔(𝜑𝑋, 𝑌)𝑆̅(𝜉, 𝑍) + {𝛽2 −

𝛽

2
} 𝜂(𝑌)𝑆̅(𝜑𝑋, 𝑍)

− (𝑋𝛽)𝜂(𝑌)𝑆̅(𝜉, 𝑍) − {2𝛽2 +
𝛽2

2
} 𝑔(𝑋, 𝑌)𝑆̅(𝜉, 𝑍) + {𝛽2 −

1

4
} 𝜂(𝑌)𝑆̅(𝑋, 𝑍)

+ {𝛽2 +
𝛽

2
+

1

4
} 𝜂(𝑋)𝜂(𝑌)𝑆̅(𝜉, 𝑍) − (𝑍𝛽)𝑆̅(𝑌, 𝜑𝑋) − 𝑔(𝑋, 𝜑𝑍)𝑆̅(𝑌, 𝑔𝑟𝑎𝑑𝛽)

−
𝛽

2
𝑔(𝜑𝑋, 𝑍)𝑆̅(𝑌, 𝜉) + {𝛽2 −

𝛽

2
} 𝜂(𝑍)𝑆̅(𝑌, 𝜑𝑋) − (𝑋𝛽)𝜂(𝑍)𝑆̅(𝑌, 𝜉)

− {2𝛽2 +
𝛽

2
} 𝑔(𝑋, 𝑍)𝑆̅(𝑌, 𝜉) + {𝛽2 −

1

4
} 𝜂(𝑍)𝑆̅(𝑌, 𝑋) + {𝛽2 +

𝛽

2

+
1

4
}𝜂(𝑋)𝜂(𝑍)𝑆̅(𝑌, 𝜉) = 0, 

elde edilir. Yukarıdaki denklem (4.1.9) yardımıyla 
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−(𝑌𝛽){(𝜑𝑋𝛽)𝜂(𝑍) + 𝜂(𝑍)(𝑋𝛽) + 𝛽(𝛽 − 1)𝑔(𝜑𝑋, 𝜑𝑍) +
𝜏

2
𝑔(𝜑𝑋, 𝑍)}

− 𝑔(𝑋, 𝜑𝑌){∥ 𝑔𝑟𝑎𝑑𝛽 ∥2 𝜂(𝑍) +
𝜏

2
(𝑍𝛽) + 𝛽(𝛽 − 1)(𝜑𝑍𝛽)}

−
𝛽

2
𝑔(𝜑𝑋, 𝑌){−(𝜑𝑍𝛽) + (2𝛽2 −

1

2
)𝜂(𝑍)} + (𝛽2 −

𝛽

2
) 𝜂(𝑌){(𝜑𝑋𝛽)𝜂(𝑍)

+ 𝜂(𝑍)(𝑋𝛽) + 𝛽(𝛽 − 1)𝑔(𝜑𝑋, 𝜑𝑍) +
𝜏

2
𝑔(𝜑𝑋, 𝑍)} − (𝑋𝛽)𝜂(𝑌){−(𝜑𝑍𝛽)

+ (2𝛽2 −
1

2
)𝜂(𝑍)} − [2𝛽2 +

𝛽

2
] 𝑔(𝑋, 𝑌){−(𝜑𝑍𝛽) + (2𝛽2 −

1

2
)𝜂(𝑍)}

+ (𝛽2 −
1

4
) 𝜂(𝑌){(𝑋𝛽)𝜂(𝑍) − (𝜑𝑍𝛽)𝜂(𝑋) − (𝜑𝑋𝛽)𝜂(𝑍)

+ 𝛽(1 − 𝛽)𝑔(𝜑𝑋, 𝑍) +
𝜏

2
𝑔(𝑋, 𝑍) + (2𝛽2 −

1

2
−

𝜏

2
) 𝜂(𝑍)𝜂(𝑋)}

+ (𝛽2 +
𝛽

2
+

1

4
) 𝜂(𝑋)𝜂(𝑌){−(𝜑𝑍𝛽) + (2𝛽2 −

1

2
)𝜂(𝑍)} − (𝑍𝛽){𝜂(𝑌)(𝑋𝛽)

− 𝛽(𝛽 − 1)𝑔(𝜑𝑋, 𝜑𝑌) +
𝜏

2
𝑔(𝜑𝑋, 𝑌)} − 𝑔(𝑋, 𝜑𝑍){

𝜏

2
(𝑌𝛽) − 𝛽(𝛽 − 1)(𝜑𝑌𝛽)}

−
𝛽

2
𝑔(𝜑𝑋, 𝑍){(𝑌𝛽) − (𝜑𝑌𝛽) + (2𝛽2 −

1

2
)𝜂(𝑌)} 

                              + (𝛽2 −
𝛽

2
) 𝜂(𝑍){𝜂(𝑌)(𝑋𝛽) − 𝛽(𝛽 − 1)𝑔(𝜑𝑋, 𝜑𝑌) +

𝜏

2
𝑔(𝜑𝑋, 𝑌)}

− (𝑋𝛽)𝜂(𝑍){(𝑌𝛽) − (𝜑𝑌𝛽) + (2𝛽2 −
1

2
)𝜂(𝑌)} − (2𝛽2 +

𝛽

2
) 𝑔(𝑋, 𝑍){(𝑌𝛽)

− (𝜑𝑌𝛽) + (2𝛽2 −
1

2
)𝜂(𝑌)} + (𝛽2 −

1

4
) 𝜂(𝑍){(𝑌𝛽)𝜂(𝑋) − (𝜑𝑋𝛽)𝜂(𝑌)

− (𝜑𝑌𝛽)𝜂(𝑋) + 𝛽(1 − 𝛽)𝑔(𝜑𝑌, 𝑋) +
𝜏

2
𝑔(𝑋, 𝑌) + (2𝛽2 −

1

2
−

𝜏

2
) 𝜂(𝑌)𝜂(𝑋)}

+ (𝛽2 +
𝛽

2
+

1

4
) 𝜂(𝑋)𝜂(𝑍){(𝑌𝛽) − (𝜑𝑌𝛽) + (2𝛽2 −

1

2
)𝜂(𝑌)} = 0 

halini alır. Burada 𝑋 ve 𝑍 ye göre kontraksiyon yapılırsa  
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−2𝛽(𝛽 − 1)(𝑌𝛽) −
𝜏

2
(𝜑𝑌𝛽) − 𝛽(𝛽 − 1)(𝑌𝛽) +

𝛽

2
(𝑌𝛽) + 2𝛽(𝛽 − 1) (𝛽2 −

𝛽

2
) 𝜂(𝑌)

− (2𝛽2 +
𝛽

2
) {−(𝜑𝑌𝛽) + (2𝛽2 −

1

2
)𝜂(𝑌)} + (𝛽2 −

1

4
) 𝜂(𝑌){3

𝜏

2

+ (2𝛽2 −
1

2
−

𝜏

2
)} + (𝛽2 +

𝛽

2
+

1

4
) (2𝛽2 −

1

2
)𝜂(𝑌) − {𝜂(𝑌) ∥ 𝑔𝑟𝑎𝑑𝛽 ∥2

− 𝛽(𝛽 − 1)(𝑌𝛽) −
𝜏

2
(𝜑𝑌𝛽)} − (2𝛽2 +

𝛽

2
) 3{(𝑌𝛽) − (𝜑𝑌𝛽) + (2𝛽2

−
1

2
)𝜂(𝑌)} + (𝛽2 −

1

4
) {(𝑌𝛽) − (𝜑𝑌𝛽) +

𝜏

2
𝜂(𝑌) + (2𝛽2 −

1

2
−

𝜏

2
) 𝜂(𝑌)}

+ (𝛽2 +
𝛽

2
+

1

4
) {(𝑌𝛽) − (𝜑𝑌𝛽) + (2𝛽2 −

1

2
)𝜂(𝑌)} = 0 

elde edilir. Son denklemde gerekli düzenlemeler yapılırsa 

{(𝛽2 −
1

4
) (𝜏 − 2𝛽 − 8𝛽2) + 2𝛽2(𝛽 − 1) (𝛽 −

1

2
) −∥ 𝑔𝑟𝑎𝑑𝛽 ∥2} 𝜂(𝑌) + {−4𝛽2 −

𝛽

2
} (𝑌𝛽)

+ {6𝛽2 + 3
𝛽

2
} (𝜑𝑌𝛽) = 0, 

olur. Yukarıdaki denklem her 𝑌 vektör alanı için 

{(𝛽2 −
1

4
) (𝜏 − 2𝛽 − 8𝛽2) + 2𝛽2(𝛽 − 1) (𝛽 −

1

2
) −∥ 𝑔𝑟𝑎𝑑𝛽 ∥2} 𝜉 + {−4𝛽2 −

𝛽

2
} 𝑔𝑟𝑎𝑑𝛽

− {6𝛽2 + 3
𝛽

2
} 𝜑𝑔𝑟𝑎𝑑𝛽

= 0,                                                                                                                         (4.1.25) 

haline dönüşür ki, (4.1.23) denkleminin her iki tarafına φ uygulanırsa  

 {−4𝛽2 −
𝛽

2
} 𝜑𝑔𝑟𝑎𝑑𝛽 + {6𝛽2 + 3

𝛽

2
} 𝑔𝑟𝑎𝑑𝛽 = 0                                       (4.1.26) 

bulunur. (4.1.25) ile (4.1.26) arasında gerekli sadeleştirmeler yapıldığında  

{(−4𝛽2 −
𝛽

2
)2 + (6𝛽2 + 3

𝛽

2
)2} 𝑔𝑟𝑎𝑑𝛽

= − {(𝛽2 −
1

4
) (𝜏 − 2𝛽 − 8𝛽2) + 2𝛽2(𝛽 − 1) (𝛽 −

1

2
) −∥ 𝑔𝑟𝑎𝑑𝛽 ∥2} {−4𝛽2

−
𝛽

2
} 𝜉 

yani, 
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(𝑋𝛽) = −
{(𝛽2 −

1
4

) (𝜏 − 2𝛽 − 8𝛽2) + 2𝛽2(𝛽 − 1) (𝛽 −
1
2

) −∥ 𝑔𝑟𝑎𝑑𝛽 ∥2} {−4𝛽2 −
𝛽
2}

{(−4𝛽2 −
𝛽
2

)
2

+ (6𝛽2 + 3
𝛽
2

)
2

}

𝜂(𝑋) 

elde edilir. Son denklem (1.2.23) de yerine yazılırsa manifoldun ∇ ya bağlı 𝜂-Einstein olduğunu 

gösterir. 

Teorem 4.1.5.: 3-boyutlu bir quasi-Sasakian manifoldu 𝑀 olsun.  𝑀 üzerinde  

(𝑀,𝜑3, 𝑓1)  çeyrek simetrik metrik olmayan koneksiyonu ∇̅ ya göre koncircular eğrilik tensörü  

𝐻̅ ve Ricci tensörü 𝑆̅ olmak üzere (H̅(𝑋, 𝜉)𝑆̅)(𝑌, 𝑍) = 0 ise 𝑀 manifoldu ∇  ya bağlı  𝜂-Einstein 

manifolddur. 

İspat: Kabul edelim ki 

(H̅(𝑋, 𝜉)𝑆̅)(𝑌, 𝑍) = 0                                                         (4.1.27) 

sağlansın. Burada  ∀ 𝑌, 𝑋, 𝑍 ∈ 𝜒(𝑀) için 

(H̅(𝑋, 𝜉)𝑆̅(𝑌, 𝑍) = −𝑆̅(H̅(𝑋, 𝜉)𝑌, 𝑍) − 𝑆̅(𝑌, H̅(𝑋, 𝜉)𝑍) 

yazılabilir. Bu takdirde  

−𝑆̅(H̅(𝑋, 𝜉)𝑌, 𝑍) − 𝑆̅(𝑌, H̅(𝑋, 𝜉)𝑍) = 0 

yada  

𝑆̅(H̅(𝑋, 𝜉)𝑌, 𝑍) + 𝑆̅(𝑌, H̅(𝑋, 𝜉)𝑍) = 0                                             (4.1.28) 

olur. (4.1.28) de (4.1.14) ifadesi kullanılırsa 

−(𝑌𝛽)𝑆̅(𝜑𝑋, 𝑍) − 𝑔(𝑋, 𝜑𝑌)𝑆̅(𝑔𝑟𝑎𝑑𝛽, 𝑍) −
𝛽

2
𝑔(𝜑𝑋, 𝑌)𝑆̅(𝜉, 𝑍) + (𝛽2 −

𝛽

2
) {𝜂(𝑌)𝑆̅(𝜑𝑋, 𝑍)

+ 𝜂(𝑍)𝑆̅(𝑌, 𝜑𝑋)} − (𝑋𝛽)𝜂(𝑌)𝑆̅(𝜉, 𝑍) − (2𝛽2 +
𝛽

2
−

𝜏̅

6
) {𝑔(𝑋, 𝑌)𝑆̅(𝜉, 𝑍)

+ 𝑔(𝑋, 𝑍)𝑆̅(𝑌, 𝜉)} + (𝛽2 −
1

4
−

𝜏̅

6
) {𝜂(𝑌)𝑆̅(𝑋, 𝑍) + 𝜂(𝑍)𝑆̅(𝑌, 𝑋)}

+ (𝛽2 +
𝛽

2
+

1

4
) [𝜂(𝑋)𝜂(𝑌)𝑆̅(𝜉, 𝑍) + 𝜂(𝑋)𝜂(𝑍)𝑆̅(𝑌, 𝜉)} − (𝑍𝛽)𝑆̅(𝑌, 𝜑𝑋)

− 𝑔(𝑋, 𝜑𝑍)𝑆̅(𝑌, 𝑔𝑟𝑎𝑑𝛽) −
𝛽

2
𝑔(𝜑𝑋, 𝑍)𝑆̅(𝑌, 𝜉) − (𝑋𝛽)𝜂(𝑍)𝑆̅(𝑌, 𝜉) = 0, 

elde edilir. Yukarıdaki denklemi (4.1.9) gereği 
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−(𝑌𝛽){(𝜑𝑋𝛽)𝜂(𝑍) + 𝜂(𝑍)(𝑋𝛽) + 𝛽(𝛽 − 1)𝑔(𝜑𝑋, 𝜑𝑍) +
𝜏

2
𝑔(𝜑𝑋, 𝑍)}

− 𝑔(𝑋, 𝜑𝑌){∥ 𝑔𝑟𝑎𝑑𝛽 ∥2 𝜂(𝑍) +
𝜏

2
(𝑍𝛽) + 𝛽(𝛽 − 1)(𝜑𝑍𝛽)}

−
𝛽

2
𝑔(𝜑𝑋, 𝑌){−(𝜑𝑍𝛽) + (2𝛽2 −

1

2
)𝜂(𝑍)} + (𝛽2 −

𝛽

2
) 𝜂(𝑌){(𝜑𝑋𝛽)𝜂(𝑍)

+ 𝜂(𝑍)(𝑋𝛽) + 𝛽(𝛽 − 1)𝑔(𝜑𝑋, 𝜑𝑍) +
𝜏

2
𝑔(𝜑𝑋, 𝑍)} − (𝑋𝛽)𝜂(𝑌){−(𝜑𝑍𝛽)

+ (2𝛽2 −
1

2
)𝜂(𝑍)} − (2𝛽2 +

𝛽

2
−

𝜏̅

6
) 𝑔(𝑋, 𝑌){−(𝜑𝑍𝛽) + (2𝛽2 −

1

2
)𝜂(𝑍)}

+ (𝛽2 −
1

4
−

𝜏̅

6
) 𝜂(𝑌){(𝑋𝛽)𝜂(𝑍) − (𝜑𝑍𝛽)𝜂(𝑋) − (𝜑𝑋𝛽)𝜂(𝑍)

+ 𝛽(1 − 𝛽)𝑔(𝜑𝑋, 𝑍) +
𝜏

2
𝑔(𝑋, 𝑍) + (2𝛽2 −

1

2
−

𝜏

2
) 𝜂(𝑍)𝜂(𝑋)}

+ (𝛽2 +
𝛽

2
+

1

4
) 𝜂(𝑋)𝜂(𝑌){−(𝜑𝑍𝛽) + (2𝛽2 −

1

2
)𝜂(𝑍)} − (𝑍𝛽){𝜂(𝑌)(𝑋𝛽)

− 𝛽(𝛽 − 1)𝑔(𝜑𝑋, 𝜑𝑌) +
𝜏

2
𝑔(𝜑𝑋, 𝑌)} − 𝑔(𝑋, 𝜑𝑍){

𝜏

2
(𝑌𝛽) − 𝛽(𝛽 − 1)(𝜑𝑌𝛽)}

−
𝛽

2
𝑔(𝜑𝑋, 𝑍){(𝑌𝛽) − (𝜑𝑌𝛽) + (2𝛽2 −

1

2
)𝜂(𝑌)} + (𝛽2 −

𝛽

2
) 𝜂(𝑍){𝜂(𝑌)(𝑋𝛽)

− 𝛽(𝛽 − 1)𝑔(𝜑𝑋, 𝜑𝑌) +
𝜏

2
𝑔(𝜑𝑋, 𝑌)} 

−(𝑋𝛽)𝜂(𝑍){(𝑌𝛽) − (𝜑𝑌𝛽) + (2𝛽2 −
1

2
)𝜂(𝑌)} − (2𝛽2 +

𝛽

2
−

𝜏̅

6
) 𝑔(𝑋, 𝑍){(𝑌𝛽) − (𝜑𝑌𝛽)

+ (2𝛽2 −
1

2
)𝜂(𝑌)} + (𝛽2 −

1

4
−

𝜏̅

6
) 𝜂(𝑍){(𝑌𝛽)𝜂(𝑋) − (𝜑𝑋𝛽)𝜂(𝑌)

− (𝜑𝑌𝛽)𝜂(𝑋) + 𝛽(1 − 𝛽)𝑔(𝜑𝑌, 𝑋) +
𝜏

2
𝑔(𝑋, 𝑌) + (2𝛽2 −

1

2
−

𝜏

2
) 𝜂(𝑌)𝜂(𝑋)}

+ (𝛽2 +
𝛽

2
+

1

4
) 𝜂(𝑋)𝜂(𝑍){(𝑌𝛽) − (𝜑𝑌𝛽) + (2𝛽2 −

1

2
)𝜂(𝑌)} = 0 

elde edilir. Burada 𝑋 ve 𝑍 ye göre kontraksiyon yapılırsa  
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−2𝛽(𝛽 − 1)(𝑌𝛽) −
𝜏

2
(𝜑𝑌𝛽) − 𝛽(𝛽 − 1)(𝑌𝛽) +

𝛽

2
(𝑌𝛽) + 2𝛽(𝛽 − 1) (𝛽2 −

𝛽

2
) 𝜂(𝑌)

− (2𝛽2 +
𝛽

2
−

𝜏̅

6
) {−(𝜑𝑌𝛽) + (2𝛽2 −

1

2
)𝜂(𝑌)} + (𝛽2 −

1

4
−

𝜏̅

6
) 𝜂(𝑌){3

𝜏

2

+ (2𝛽2 −
1

2
−

𝜏

2
)} + (𝛽2 +

𝛽

2
+

1

4
) (2𝛽2 −

1

2
)𝜂(𝑌) − {𝜂(𝑌) ∥ 𝑔𝑟𝑎𝑑𝛽 ∥2

− 𝛽(𝛽 − 1)(𝑌𝛽) −
𝜏

2
(𝜑𝑌𝛽)} − (2𝛽2 +

𝛽

2
−

𝜏̅

6
) 3{(𝑌𝛽) − (𝜑𝑌𝛽) + (2𝛽2

−
1

2
)𝜂(𝑌)} + (𝛽2 −

1

4
−

𝜏̅

6
) {(𝑌𝛽) − (𝜑𝑌𝛽) +

𝜏

2
𝜂(𝑌) + (2𝛽2 −

1

2
−

𝜏

2
) 𝜂(𝑌)}

+ (𝛽2 +
𝛽

2
+

1

4
) {(𝑌𝛽) − (𝜑𝑌𝛽) + (2𝛽2 −

1

2
)𝜂(𝑌)} = 0 

elde edilir. Son denklemde gerekli düzenlemeler yapılırsa 

{(𝛽2 −
1

4
−

𝜏̅

6
) 𝜏 − 2𝛽2(𝛽 − 1) (𝛽 −

1

2
) −∥ 𝑔𝑟𝑎𝑑𝛽 ∥2} 𝜂(𝑌) + {−6𝛽2 +

3𝛽

2
−

𝜏̅

6
} (𝑌𝛽)

+ 3 {2𝛽2 +
𝛽

2
−

𝜏̅

6
} (𝜑𝑌𝛽) = 0 

olur. Yukarıdaki denklem her 𝑌 vektör alanı için 

{(𝛽2 −
1

4
−

𝜏̅

6
) 𝜏 − 2𝛽2(𝛽 − 1) (𝛽 −

1

2
) −∥ 𝑔𝑟𝑎𝑑𝛽 ∥2} 𝜉 + {−6𝛽2 +

3𝛽

2
−

𝜏̅

6
} 𝑔𝑟𝑎𝑑𝛽 

−3 {2𝛽2 +
𝛽

2
−

𝜏̅

6
} 𝜑𝑔𝑟𝑎𝑑𝛽 = 0                                                                             (4.1.29) 

olur ki, (4.1.29) de her iki tarafa φ uygulanırsa 

 {−6𝛽2 +
3𝛽

2
−

𝜏̅

6
} 𝜑𝑔𝑟𝑎𝑑𝛽 + 3 {2𝛽2 +

𝛽

2
−

𝜏̅

6
} 𝑔𝑟𝑎𝑑𝛽 = 0                               (4.1.30) 

bulunur. (4.1.30) ile (4.1.29)  arasında  gerekli sadeleştirmeler yapıldığında  

{({−6𝛽2 +
3𝛽

2
−

𝜏̅

6
})2 + (3 {2𝛽2 +

𝛽

2
−

𝜏̅

6
})2} 𝑔𝑟𝑎𝑑𝛽

= − {(𝛽2 −
1

4
−

𝜏̅

6
) 𝜏 − 2𝛽2(𝛽 − 1) (𝛽 −

1

2
) −∥ 𝑔𝑟𝑎𝑑𝛽 ∥2} {−6𝛽2 +

3𝛽

2

−
𝜏̅

6
} 𝜉 

yani, 
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(𝑋𝛽) =
− {(𝛽2 −

1
4

−
𝜏̅
6

) 𝜏 − 2𝛽2(𝛽 − 1) (𝛽 −
1
2

) −∥ 𝑔𝑟𝑎𝑑𝛽 ∥2} {−6𝛽2 +
3𝛽
2

−
𝜏̅
6}

{(−4𝛽2 −
𝛽
2

)
2

+ (6𝛽2 + 3
𝛽
2

)
2

}

𝜂(𝑋) 

elde edilir. (1.2.33) denklemi gereği manifoldun ∇ ya bağlı 𝜂-Einstein olduğu görülür. 

Teorem 4.1.7.:  Bir 3-boyutlu quasi-Sasakian manifoldu 𝑀 olsun. 𝑀 üzerinde 

(𝑀,𝜑3, 𝑓1)  çeyrek simetrik metrik olmayan koneksiyonu ∇̅ ye göre projektif eğrilik tensörü  𝑃̅ 

ve Ricci tensörü 𝑆̅ olmak üzere  (P̅(𝑋, 𝜉)𝑆̅)(𝑌, 𝑍) = 0 sağlanır ise manifold ∇ ya bağlı 𝜂-

Einstein olur. 

İspat:  ∀ 𝑌, 𝑋, 𝑍 ∈ 𝜒(𝑀) için 

(P̅(𝑋, 𝜉)𝑆̅)(𝑌, 𝑍) = −𝑆̅(𝑃̅(𝑋, 𝜉)𝑌, 𝑍) − 𝑆̅(𝑌, P̅(𝑋, 𝜉)𝑍) 

yazılabilir. Burada (P̅(𝑋, 𝜉)𝑆̅)(𝑌, 𝑍) = 0 olarak kabul edildiğinden yukarıdaki ifade 

𝑆̅(P̅(𝑋, 𝜉)𝑌, 𝑍) + 𝑆̅(𝑌, P̅(𝑋, 𝜉)𝑍) = 0                                             (4.1.31) 

halini alır. (4.1.31 de (4.1.14) ifadesi kullanılırsa 

−(𝑌𝛽)𝑆̅(𝜑𝑋, 𝑍) − 𝑔(𝑋, 𝜑𝑌)𝑆̅(𝑔𝑟𝑎𝑑𝛽, 𝑍) −
𝛽2

2
𝑔(𝜑𝑋, 𝑌)𝑆̅(𝜉, 𝑍) + (𝛽2 −

𝛽

2
) {𝜂(𝑌)𝑆̅(𝜑𝑋, 𝑍)

+ 𝜂(𝑍)𝑆̅(𝑌, 𝜑𝑋)} −
1

2
(𝑋𝛽)𝜂(𝑌)𝑆̅(𝜉, 𝑍) +

1

2
(𝜑𝑌𝛽)𝑆̅(𝑋, 𝑍)

−
1

2
(𝜑𝑋𝛽)𝜂(𝑌)𝑆̅(𝜉, 𝑍) −

1

2
(𝜑𝑌𝛽)𝜂(𝑋)𝑆̅(𝜉, 𝑍) − (2𝛽2 +

𝛽

2

−
𝜏

4
){𝑔(𝑋, 𝑌)𝑆̅(𝜉, 𝑍) + 𝑔(𝑋, 𝑍)𝑆̅(𝑌, 𝜉) − 𝜂(𝑋)𝜂(𝑌)𝑆̅(𝜉, 𝑍)

− 𝜂(𝑋)𝜂(𝑍)𝑆̅(𝑌, 𝜉)} − (𝑍𝛽)𝑆̅(𝑌, 𝜑𝑋) − 𝑔(𝑋, 𝜑𝑍)𝑆̅(𝑌, 𝑔𝑟𝑎𝑑𝛽)

−
𝛽2

2
𝑔(𝜑𝑋, 𝑍)𝑆̅(𝑌, 𝜉) −

1

2
(𝑋𝛽)𝜂(𝑍)𝑆̅(𝑌, 𝜉) +

1

2
(𝜑𝑍𝛽)𝑆̅(𝑌, 𝑋)

−
1

2
(𝜑𝑋𝛽)𝜂(𝑍)𝑆̅(𝑌, 𝜉) −

1

2
(𝑋𝛽)𝜂(𝑍)𝑆̅(𝑌, 𝜉) −

1

2
(𝜑𝑍𝛽)𝜂(𝑋)𝑆̅(𝑌, 𝜉) = 0 

elde edilir. Yukarıdaki denklemde (4.1.9) kullanılırsa 
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−(𝑌𝛽){(𝜑𝑋𝛽)𝜂(𝑍) + 𝜂(𝑍)(𝑋𝛽) + 𝛽(𝛽 − 1)𝑔(𝜑𝑋, 𝜑𝑍) +
𝜏

2
𝑔(𝜑𝑋, 𝑍)}

− 𝑔(𝑋, 𝜑𝑌){∥ 𝑔𝑟𝑎𝑑𝛽 ∥2 𝜂(𝑍) +
𝜏

2
(𝑍𝛽) + 𝛽(𝛽 − 1)(𝜑𝑍𝛽)}

−
𝛽2

2
𝑔(𝜑𝑋, 𝑌){−(𝜑𝑍𝛽) + (2𝛽2 −

1

2
)𝜂(𝑍)} + (𝛽2 −

𝛽

2
) 𝜂(𝑌){(𝜑𝑋𝛽)𝜂(𝑍)

+ 𝜂(𝑍)(𝑋𝛽) + 𝛽(𝛽 − 1)𝑔(𝜑𝑋, 𝜑𝑍) +
𝜏

2
𝑔(𝜑𝑋, 𝑍)} −

1

2
(𝑋𝛽)𝜂(𝑌){−(𝜑𝑍𝛽)

+ (2𝛽2 −
1

2
)𝜂(𝑍)} −

1

2
(𝜑𝑋𝛽)𝜂(𝑌){−(𝜑𝑍𝛽) + (2𝛽2 −

1

2
)𝜂(𝑍)}

−
1

2
(𝜑𝑌𝛽)𝜂(𝑋){−(𝜑𝑍𝛽) + (2𝛽2 −

1

2
)𝜂(𝑍)} − (2𝛽2 +

𝛽

2
−

𝜏

4
) (𝑋, 𝑌){−(𝜑𝑍𝛽)

+ (2𝛽2 −
1

2
)𝜂(𝑍)} +

1

2
(𝜑𝑌𝛽){(𝑋𝛽)𝜂(𝑍) − (𝜑𝑍𝛽)𝜂(𝑋) − (𝜑𝑋𝛽)𝜂(𝑍)

+ 𝛽(1 − 𝛽)𝑔(𝜑𝑋, 𝑍) +
𝜏

2
𝑔(𝑋, 𝑍) + (2𝛽2 −

1

2
−

𝜏

2
) 𝜂(𝑍)𝜂(𝑋)}

+ (2𝛽2 +
𝛽

2
−

𝜏

4
) 𝜂(𝑋)𝜂(𝑌){−(𝜑𝑍𝛽) + (2𝛽2 −

1

2
)𝜂(𝑍)} − (𝑍𝛽){𝜂(𝑌)(𝑋𝛽)

− 𝛽(𝛽 − 1)𝑔(𝜑𝑋, 𝜑𝑌) +
𝜏

2
𝑔(𝜑𝑋, 𝑌)} − 𝑔(𝑋, 𝜑𝑍){

𝜏

2
(𝑌𝛽) − 𝛽(𝛽 − 1)(𝜑𝑌𝛽)}

−
𝛽2

2
𝑔(𝜑𝑋, 𝑍){(𝑌𝛽) − (𝜑𝑌𝛽) + (2𝛽2 −

1

2
)𝜂(𝑌)} + (𝛽2 −

𝛽

2
) 𝜂(𝑍){𝜂(𝑌)(𝑋𝛽)

− 𝛽(𝛽 − 1)𝑔(𝜑𝑋, 𝜑𝑌) +
𝜏

2
𝑔(𝜑𝑋, 𝑌)} −

1

2
(𝑋𝛽)𝜂(𝑍){(𝑌𝛽) − (𝜑𝑌𝛽) + (2𝛽2

−
1

2
)𝜂(𝑌)} −

1

2
(𝜑𝑋𝛽)𝜂(𝑍){(𝑌𝛽) − (𝜑𝑌𝛽) + (2𝛽2 −

1

2
)𝜂(𝑌)}

−
1

2
(𝜑𝑍𝛽)𝜂(𝑋){(𝑌𝛽) − (𝜑𝑌𝛽) + (2𝛽2 −

1

2
)𝜂(𝑌)} 

             − [2𝛽2 +
𝛽

2
−

𝜏

4
] 𝑔(𝑋, 𝑍){(𝑌𝛽) − (𝜑𝑌𝛽) + (2𝛽2 −

1

2
)𝜂(𝑌)} +

1

2
(𝜑𝑍𝛽){(𝑌𝛽)𝜂(𝑋)

− (𝜑𝑋𝛽)𝜂(𝑌) − (𝜑𝑌𝛽)𝜂(𝑋) + 𝛽(1 − 𝛽)𝑔(𝜑𝑌, 𝑋) +
𝜏

2
𝑔(𝑋, 𝑌)

+ (2𝛽2 −
1

2
−

𝜏

2
) 𝜂(𝑌)𝜂(𝑋)} + (2𝛽2 +

𝛽

2
−

𝜏

4
)𝜂(𝑋)𝜂(𝑍){(𝑌𝛽) − (𝜑𝑌𝛽)

+ (2𝛽2 −
1

2
)𝜂(𝑌)} = 0 

halini alır. Burada 𝑋 ve 𝑍 ye göre kontraksiyon yapılırsa  
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−2𝛽(𝛽 − 1)(𝑌𝛽) −
𝜏

2
(𝜑𝑌𝛽) + 𝛽(𝛽 − 1)(𝑌𝛽) +

𝛽

2
(𝑌𝛽) + 2𝛽(𝛽 − 1) (𝛽2 −

𝛽

2
) 𝜂(𝑌)

−
1

2
(2𝛽2 −

1

2
) (𝜑𝑌𝛽) + [2𝛽2 +

𝛽

2
−

𝜏

4
] (𝜑𝑌𝛽) +

𝛽2

2
(𝑌𝛽) +

3𝜏

4
(𝜑𝑌𝛽)

+ (2𝛽2 −
1

2
−

𝜏

2
)

3

2
(𝜑𝑌𝛽) − {𝜂(𝑌) ∥ 𝑔𝑟𝑎𝑑𝛽 ∥2+ 𝛽(𝛽 − 1)(𝑌𝛽)

− 2 [2𝛽2 +
𝛽

2
−

𝜏

4
] {(𝑌𝛽) − (𝜑𝑌𝛽) + (2𝛽2 −

1

2
) 𝜂(𝑌)} +

𝜏

4
(𝜑𝑌𝛽) + (

𝛽2

2

−
𝛽

2
)(𝑌𝛽) = 0 

elde edilir. Son denklemde gerekli düzenlemeler yapılırsa 

{−2 (2𝛽2 −
1

2
) (2𝛽2 +

𝛽

2
+

𝜏

4
) + 2𝛽2(𝛽 − 1) (𝛽 −

1

2
) −∥ 𝑔𝑟𝑎𝑑𝛽 ∥2} 𝜂(𝑌)

+ {−3𝛽2 −
3𝛽

2
+

𝜏

2
} (𝑌𝛽) + {8𝛽2 + 3

𝛽

2
−

1

2
} (𝜑𝑌𝛽) = 0 

olur. Yukarıdaki denklem her 𝑌 vektör alanı için 

{−2 (2𝛽2 −
1

2
) (2𝛽2 +

𝛽

2
+

𝜏

4
) + 2𝛽2(𝛽 − 1) (𝛽 −

1

2
) −∥ 𝑔𝑟𝑎𝑑𝛽 ∥2} 𝜉    

+ {−3𝛽2 −
3𝛽

2
+

𝜏

2
} 𝑔𝑟𝑎𝑑𝛽 − {8𝛽2 + 3

𝛽

2
−

1

2
} 𝜑𝑔𝑟𝑎𝑑𝛽 = 0                                        

(4.1.32) 

olur ki, (4.1.30) da her iki tarafa 𝜑  uygulanırsa 

{−3𝛽2 −
3𝛽

2
+

𝜏

2
} 𝜑𝑔𝑟𝑎𝑑𝛽 + {8𝛽2 + 3

𝛽

2
−

1

2
} 𝑔𝑟𝑎𝑑𝛽 = 0                      (4.1.33) 

bulunur. (4.1.32) ve (4.1.33)  arasında gerekli sadeleştirmeler yapıldığında  

{({−3𝛽2 −
3𝛽

2
+

𝜏

2
})2 + ({8𝛽2 + 3

𝛽

2
−

1

2
})2} 𝑔𝑟𝑎𝑑𝛽

= − {−2 (2𝛽2 −
1

2
) (2𝛽2 +

𝛽

2
+

𝜏

4
) + 2𝛽2(𝛽 − 1) (𝛽 −

1

2
)

−∥ 𝑔𝑟𝑎𝑑𝛽 ∥2} {−3𝛽2 −
3𝛽

2
+

𝜏

2
} 𝜉 

yani, 
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(𝑋𝛽)

=
− {−2 (2𝛽2 −

1
2) (2𝛽2 +

𝛽
2 +

𝜏
4) + 2𝛽2(𝛽 − 1) (𝛽 −

1
2) −∥ 𝑔𝑟𝑎𝑑𝛽 ∥2} {−3𝛽2 −

3𝛽
2 +

𝜏
2}

({−3𝛽2 −
3𝛽
2 +

𝜏
2})2 + ({8𝛽2 + 3

𝛽
2 −

1
2})2

𝜂(𝑋) 

elde edilir. Sonuçta manifold ∇ ya bağlı 𝜂-Einstein manifolddur. 

Teorem 4.1.8.: 𝑀 bir 3-boyutlu quasi-Sasakian manifoldu olsun. 𝑀 üzerinde  

(𝑀,𝜑3, 𝑓1)  çeyrek simetrik metrik olmayan koneksiyonu ∇̅ ye göre Riemann eğrilik tensörü  𝑅̅ 

ve projektif eğrilik tensörü 𝑃̅ olmak üzere  (P̅(𝑋, 𝜉)𝑅̅)(𝑌, 𝑉)𝑊 = 0 ise 𝑀 manifoldu ∇  ya bağlı  

𝜂-Einstein manifolddur. 

İspat: Kabul edelim ki  verilen manifold için  

(P̅(𝑋, 𝜉)𝑅̅)(𝑌, 𝑉)𝑊 = 0                                                        (4.1.34) 

sağlansın. Burada  ∀ 𝑌, 𝑋, 𝑉, 𝑊 ∈ 𝜒(𝑀) için 

(P̅(𝑋, 𝜉)𝑅̅)(𝑌, 𝑉)𝑊

= P̅(𝑋, 𝜉)𝑅̅(𝑌, 𝑉)𝑊 − 𝑅̅(P̅(𝑋, 𝜉)𝑌, 𝑉)𝑊 − 𝑅̅(𝑌, P̅(𝑋, 𝜉)𝑉)𝑊

− 𝑅̅(𝑌, 𝑉)P̅(𝑋, 𝜉)𝑊 

yazılabilir. Yukarıdaki denklem (4.1.34) yardımıyla 

P̅(𝑋, 𝜉)𝑅̅(𝑌, 𝑉)𝑊 − 𝑅̅(P̅(𝑋, 𝜉)𝑌, 𝑉)𝑊 − 𝑅̅(𝑌, P̅(𝑋, 𝜉)𝑉)𝑊 − 𝑅̅(𝑌, 𝑉)P̅(𝑋, 𝜉)𝑊 = 0     (4.1.35) 

olur.   (4.1.35) denkleminde 𝑉 = 𝑊 = 𝜉 alalım: 

P̅(𝑋, 𝜉)𝑅̅(𝑌, 𝜉)𝜉 − 𝑅̅(P̅(𝑋, 𝜉)𝑌, 𝜉)𝜉 − 𝑅̅(𝑌, P̅(𝑋, 𝜉)𝜉)𝜉 − 𝑅̅(𝑌, 𝜉)P̅(𝑋, 𝜉)𝜉 = 0          (4.1.36) 

bulunur. (4.1.36) da  (4.1.14) kullanılırsa 
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−(𝑅̅(𝑌, 𝜉)𝜉𝛽)𝜑𝑋 − 𝑔(𝑋, 𝜑𝑅̅(𝑌, 𝜉)𝜉)𝑔𝑟𝑎𝑑𝛽 −
𝛽2

2
𝑔(𝜑𝑋, 𝑅̅(𝑌, 𝜉)𝜉)𝜉

+ (𝛽2 −
𝛽

2
) {𝜂(𝑅̅(𝑌, 𝜉)𝜉)𝜑𝑋 − 𝜂(𝑌)𝑅̅(𝜑𝑋, 𝜉)𝜉 − 𝑅̅(𝑌, 𝜑𝑋)𝜉 − 𝑅̅(𝑌, 𝜉)𝜑𝑋}

−
1

2
(𝑋𝛽)𝜂(𝑅̅(𝑌, 𝜉)𝜉)𝜉 +

1

2
(𝜑𝑅̅(𝑌, 𝜉)𝜉𝛽)𝑋 −

1

2
(𝜑𝑋𝛽)𝜂(𝑅̅(𝑌, 𝜉)𝜉)𝜉

−
1

2
(𝜑𝑅̅(𝑌, 𝜉)𝜉𝛽)𝜂(𝑋)𝜉 − (2𝛽2 +

𝛽

2
−

𝜏

4
) {𝑔(𝑋, 𝑅̅(𝑌, 𝜉)𝜉)𝜉

− 𝜂(𝑅̅(𝑌, 𝜉)𝜉)𝜂(𝑋)𝜉 − 𝑔(𝑋, 𝑌)𝑅̅(𝜉, 𝜉)𝜉} + (𝑌𝛽)𝑅̅(𝜑𝑋, 𝜉)𝜉

+ 𝑔(𝑋, 𝜑𝑌)𝑅̅(𝑔𝑟𝑎𝑑𝛽, 𝜉)𝜉 +
𝛽2

2
𝑔(𝜑𝑋, 𝑌)𝑅̅(𝜉, 𝜉)𝜉 +

1

2
(𝑋𝛽)𝜂(𝑌)𝑅̅(𝜉, 𝜉)𝜉

−
1

2
(𝜑𝑌𝛽)𝑅̅(𝑋, 𝜉)𝜉 +

1

2
(𝜑𝑋𝛽)𝜂(𝑌)𝑅̅(𝜉, 𝜉)𝜉 +

1

2
(𝜑𝑌𝛽)𝜂(𝑋)𝑅̅(𝜉, 𝜉)𝜉

+
1

2
(𝑋𝛽)𝑅̅(𝑌, 𝜉)𝜉 +

1

2
(𝜑𝑋𝛽)𝑅̅(𝑌, 𝜉)𝜉 +

1

2
(𝑋𝛽)𝑅̅(𝑌, 𝜉)𝜉 +

1

2
(𝜑𝑋𝛽)𝑅̅(𝑌, 𝜉)𝜉

= 0 

haline dönüşür. Yukarıdaki denklemin her iki tarafını bir 𝑈 ∈ 𝜒(𝑀) vektörü ile iç çarpalım:  

−(𝑅̅(𝑌, 𝜉)𝜉𝛽)𝑔(𝜑𝑋, 𝑈) − 𝑔(𝑋, 𝜑𝑅̅(𝑌, 𝜉)𝜉)𝑔(𝑔𝑟𝑎𝑑𝛽, 𝑈) −
𝛽2

2
𝑔(𝜑𝑋, 𝑅̅(𝑌, 𝜉)𝜉)𝜂(𝑈)

+ (𝛽2 −
𝛽

2
) {𝜂(𝑅̅(𝑌, 𝜉)𝜉)𝑔(𝜑𝑋, 𝑈) − 𝜂(𝑌)𝑔(𝑅̅(𝜑𝑋, 𝜉)𝜉, 𝑈)

− 𝑔(𝑅̅(𝑌, 𝜑𝑋)𝜉, 𝑈) − 𝑔(𝑅̅(𝑌, 𝜉)𝜑𝑋, 𝑈)} −
1

2
(𝑋𝛽)𝜂(𝑅̅(𝑌, 𝜉)𝜉)𝜂(𝑈)

+
1

2
(𝜑𝑅̅(𝑌, 𝜉)𝜉𝛽)𝑔(𝑋, 𝑈) −

1

2
(𝜑𝑋𝛽)𝜂(𝑅̅(𝑌, 𝜉)𝜉)𝜂(𝑈)

−
1

2
(𝜑𝑅̅(𝑌, 𝜉)𝜉𝛽)𝜂(𝑋)𝜂(𝑈) − (2𝛽2 +

𝛽

2
−

𝜏

4
) {𝑔(𝑋, 𝑅̅(𝑌, 𝜉)𝜉)𝜂(𝑈)

− 𝜂(𝑅̅(𝑌, 𝜉)𝜉)𝜂(𝑋)𝜂(𝑈) − 𝑔(𝑋, 𝑌)𝑔(𝑅̅(𝜉, 𝜉)𝜉, 𝑈)} + (𝑌𝛽)𝑔(𝑅̅(𝜑𝑋, 𝜉)𝜉, 𝑈)

+ 𝑔(𝑋, 𝜑𝑌)𝑔(𝑅̅(𝑔𝑟𝑎𝑑𝛽, 𝜉)𝜉, 𝑈) +
𝛽2

2
𝑔(𝜑𝑋, 𝑌)𝑔(𝑅̅(𝜉, 𝜉)𝜉, 𝑈)

+
1

2
(𝑋𝛽)𝜂(𝑌)𝑔(𝑅̅(𝜉, 𝜉)𝜉, 𝑈) −

1

2
(𝜑𝑌𝛽)𝑔(𝑅̅(𝑋, 𝜉)𝜉, 𝑈)

+
1

2
(𝜑𝑋𝛽)𝜂(𝑌)𝑔(𝑅̅(𝜉, 𝜉)𝜉, 𝑈) +

1

2
(𝜑𝑌𝛽)𝜂(𝑋)𝑔(𝑅̅(𝜉, 𝜉)𝜉, 𝑈)

+
1

2
(𝑋𝛽)𝑔(𝑅̅(𝑌, 𝜉)𝜉, 𝑈) +

1

2
(𝜑𝑋𝛽)𝑔(𝑅̅(𝑌, 𝜉)𝜉, 𝑈) +

1

2
(𝑋𝛽)𝑔(𝑅̅(𝑌, 𝜉)𝜉, 𝑈)

+
1

2
(𝜑𝑋𝛽)𝑔(𝑅̅(𝑌, 𝜉)𝜉, 𝑈) = 0 
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elde edilir. Son denklemde 𝑅̅(𝜉, 𝜉)𝜉 = 0   olduğu gözönünde bulundurulup 𝑋 ve 𝑍 ye göre 

kontraksiyon yapılırsa 

−𝑔(𝑔𝑟𝑎𝑑𝛽, 𝜑𝑅̅(𝑌, 𝜉)𝜉) +
3

2
(𝜑𝑅̅(𝑌, 𝜉)𝜉𝛽) −

1

2
(𝜑𝑅̅(𝑌, 𝜉)𝜉𝛽) + (𝑌𝛽)𝑔(𝑅̅(𝜑𝑋, 𝜉)𝜉, 𝑈)

+ 𝑔(𝑅̅(𝑔𝑟𝑎𝑑𝛽, 𝜉)𝜉, 𝜑𝑌) − (𝛽2 −
𝛽

2
) 𝜂(𝑌) ∑ 𝑔(𝑅̅(𝜑𝑒𝑖, 𝜉)𝜉, 𝑒𝑖)

3

𝑖=1

−
1

2
(𝜑𝑌𝛽) ∑ 𝑔(𝑅̅(𝑒𝑖, 𝜉)𝜉, 𝑒𝑖)

3

𝑖=1

− (𝛽2 −
𝛽

2
) ∑ 𝑔(𝑅̅(𝑌, 𝜑𝑒𝑖)𝜉, 𝑒𝑖)

3

𝑖=1

+ 𝑔(𝑅̅(𝑌, 𝜉)𝜉, 𝑔𝑟𝑎𝑑𝛽) + 𝑔(𝜑𝑅̅(𝑌, 𝜉)𝜉, 𝑔𝑟𝑎𝑑𝛽)

− (𝛽2 −
𝛽

2
) ∑ 𝑔(𝑅̅(𝑌, 𝜉)𝜑𝑒𝑖, 𝑒𝑖)

3

𝑖=1

= 0                                                                                                                                                         (4.1.37) 

elde edilir. (4.1.37) denkleminde gerekli sadeleştirmeler yapılıp, (4.1.3) kullanılırsa  

(𝑌𝛽) {−2 (𝛽2 −
𝛽

2
)} + (𝛽2 −

𝛽

2
) (𝑌𝛽) + (𝛽2 −

1

4
) (𝜑𝑌𝛽) + (𝛽2 −

𝛽

2
) (𝜑𝑌𝛽)

+ (𝛽2 −
1

4
) (𝑌𝛽) − (𝛽2 −

𝛽

2
) (𝑌𝛽) + (𝛽2 −

1

4
) (𝜑𝑌𝛽) −

1

2
(2𝛽2 −

1

2
) (𝜑𝑌𝛽)

− (𝛽2 −
𝛽

2
) {2(𝑌𝛽) − (𝑌𝛽) + 2 (𝛽2 −

𝛽

2
) 𝜂(𝑌) − 2 (𝛽2 −

𝛽

2
) 𝜂(𝑌)} = 0 

yani, 

(−2𝛽2 +
3𝛽

2
−

1

4
) (𝑌𝛽) + (2𝛽2 −

𝛽

2
−

1

4
) (𝜑𝑌𝛽)

= −2 (𝛽 −
1

2
) (𝛽 −

1

2
) (𝑌𝛽) + 2 (𝛽 −

1

2
) (𝛽 +

1

4
) (𝜑𝑌𝛽) = 0 

olur. Buradan ya  

𝛽 −
1

2
= 0                                                                     (4.1.38) 

yani, 𝛽 =
1

2
 dır. Manifold bu sabit için  ∇ ya göre 𝜂-Einsteindır. Yada  

(𝛽 −
1

2
) (𝑌𝛽) − (𝛽 +

1

4
) (𝜑𝑌𝛽) = 0                                                    (4.1.39) 

sağlanır. (4.1.39) denklemi her 𝑌 vektör alanı için 
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(𝛽 −
1

2
) 𝑔𝑟𝑎𝑑𝛽 + (𝛽 +

1

4
) 𝜑𝑔𝑟𝑎𝑑𝛽 = 0                                                    (4.1.40) 

halini alır. (4.1.38) denkleminin her iki tarafına 𝜑 uygulanırsa 

(𝛽 −
1

2
) 𝜑𝑔𝑟𝑎𝑑𝛽 − (𝛽 +

1

4
) 𝑔𝑟𝑎𝑑𝛽 = 0                                                    (4.1.41) 

olur. (4.1.38) ile (4.1.39) denklemleri arasında gerekli işlemler sonucu 

[(𝛽 −
1

2
)

2
+ (𝛽 +

1

4
)

2
]𝑔𝑟𝑎𝑑𝛽 = 0 

olur ki, 𝛽 nın sabit olduğuna karşılık getirir. Böylece manifold  ∇ ya bağlı 𝜂-Einsteindır. 

Teorem 4.1.9.:  𝑀 bir 3-boyutlu quasi-Sasakian manifoldu olsun. 𝑀 üzerinde  

(𝑀,𝜑3, 𝑓1)  çeyrek simetrik metrik olmayan koneksiyonu ∇̅ ye göre projektif eğrilik tensörü  𝑃̅ 

ve koncircular eğrilik tensörü 𝐻̅ olmak üzere (P̅(𝑋, 𝜉)𝐻̅)(𝑌, 𝑉)𝑊 = 0 şartı sağlanır ancak ve 

ancak 𝑀 manifoldu ∇  ya bağlı  𝜂-Einstein manifolddur. 

İspat: Kabul edelim ki  𝑀 manifoldu için  

(P̅(𝑋, 𝜉)𝐻̅)(𝑌, 𝑉)𝑊 = 0                                                        (4.1.42) 

sağlansın. Böylece  ∀ 𝑌, 𝑋, 𝑉, 𝑊 ∈ 𝜒(𝑀) için  (4.1.40) yardımıyla 

P̅(𝑋, 𝜉)𝐻̅(𝑌, 𝑉)𝑊 − 𝐻̅(P̅(𝑋, 𝜉)𝑌, 𝑉)𝑊 − 𝐻̅(𝑌, P̅(𝑋, 𝜉)𝑉)𝑊 − 𝐻̅(𝑌, 𝑉)P̅(𝑋, 𝜉)𝑊 = 0     (4.1.43) 

dır.  (4.1.43) denkleminde 𝑉 = 𝑊 = 𝜉 alırsak 

P̅(𝑋, 𝜉)𝐻̅(𝑌, 𝜉)𝜉 − 𝐻̅(P̅(𝑋, 𝜉)𝑌, 𝜉)𝜉 − 𝐻̅(𝑌, P̅(𝑋, 𝜉)𝜉)𝜉 − 𝐻̅(𝑌, 𝜉)P̅(𝑋, 𝜉)𝜉 = 0      

bulunur. Yukarıdaki denklemde (4.1.4) kullanılıp gerekli düzenlemeler yapıldığında 
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−(𝐻̅(𝑌, 𝜉)𝜉𝛽)𝜑𝑋 − 𝑔(𝑋, 𝜑𝐻̅(𝑌, 𝜉)𝜉)𝑔𝑟𝑎𝑑𝛽 −
𝛽2

2
𝑔(𝜑𝑋, 𝐻̅(𝑌, 𝜉)𝜉)𝜉

+ (𝛽2 −
𝛽

2
) {𝜂(𝐻̅(𝑌, 𝜉)𝜉)𝜑𝑋 − 𝜂(𝑌)𝐻̅(𝜑𝑋, 𝜉)𝜉 − 𝐻̅(𝑌, 𝜑𝑋)𝜉 − 𝐻̅(𝑌, 𝜉)𝜑𝑋}

−
1

2
(𝑋𝛽)𝜂(𝐻̅(𝑌, 𝜉)𝜉)𝜉 +

1

2
(𝜑𝐻̅(𝑌, 𝜉)𝜉𝛽)𝑋 −

1

2
(𝜑𝑋𝛽)𝜂(𝐻̅(𝑌, 𝜉)𝜉)𝜉

−
1

2
(𝜑𝐻̅(𝑌, 𝜉)𝜉𝛽)𝜂(𝑋)𝜉 − (2𝛽2 +

𝛽

2
−

𝜏

4
) {𝑔(𝑋, 𝐻̅(𝑌, 𝜉)𝜉)𝜉

− 𝜂(𝐻̅(𝑌, 𝜉)𝜉)𝜂(𝑋)𝜉 − 𝑔(𝑋, 𝑌)𝐻̅(𝜉, 𝜉)𝜉 + 𝜂(𝑌)𝜂(𝑋)𝐻̅(𝜉, 𝜉)𝜉}

+ (𝑌𝛽)𝐻̅(𝜑𝑋, 𝜉)𝜉 + 𝑔(𝑋, 𝜑𝑌)𝐻̅(𝑔𝑟𝑎𝑑𝛽, 𝜉)𝜉 +
𝛽2

2
𝑔(𝜑𝑋, 𝑌)𝐻̅(𝜉, 𝜉)𝜉

+
1

2
(𝑋𝛽)𝜂(𝑌)𝐻̅(𝜉, 𝜉)𝜉 −

1

2
(𝜑𝑌𝛽)𝐻̅(𝑋, 𝜉)𝜉 +

1

2
(𝜑𝑋𝛽)𝜂(𝑌)𝐻̅(𝜉, 𝜉)𝜉

+
1

2
(𝜑𝑌𝛽)𝜂(𝑋)𝐻̅(𝜉, 𝜉)𝜉 −

1

2
(𝜑𝑌𝛽)𝐻̅(𝑋, 𝜉) +

1

2
(𝑋𝛽)𝐻̅(𝑌, 𝜉)𝜉

+
1

2
(𝜑𝑋𝛽)𝐻̅(𝑌, 𝜉)𝜉 +

1

2
(𝑋𝛽)𝐻̅(𝑌, 𝜉)𝜉 +

1

2
(𝜑𝑋𝛽)𝐻̅(𝑌, 𝜉)𝜉 = 0, 

elde edilir. Son denklemin her iki tarafının bir 𝑈 vektör alanı ile iç çarpımını alalım. 

−(𝐻̅(𝑌, 𝜉)𝜉𝛽)𝑔(𝜑𝑋, 𝑈) − 𝑔(𝑋, 𝜑𝐻̅(𝑌, 𝜉)𝜉)𝑔(𝑔𝑟𝑎𝑑𝛽, 𝑈) −
𝛽2

2
𝑔(𝜑𝑋, 𝐻̅(𝑌, 𝜉)𝜉)𝜂(𝑈)

+ (𝛽2 −
𝛽

2
) {𝜂(𝐻̅(𝑌, 𝜉)𝜉)𝑔(𝜑𝑋, 𝑈) − 𝜂(𝑌)𝑔(𝐻̅(𝜑𝑋, 𝜉)𝜉, 𝑈)

− 𝑔(𝐻̅(𝑌, 𝜑𝑋)𝜉, 𝑈) − 𝑔(𝐻̅(𝑌, 𝜉)𝜑𝑋, 𝑈)} −
1

2
(𝑋𝛽)𝜂(𝐻̅(𝑌, 𝜉)𝜉)𝜉

+
1

2
(𝜑𝐻̅(𝑌, 𝜉)𝜉𝛽)𝑋 −

1

2
(𝜑𝑋𝛽)𝜂(𝐻̅(𝑌, 𝜉)𝜉)𝜉 −

1

2
(𝜑𝐻̅(𝑌, 𝜉)𝜉𝛽)𝜂(𝑋)𝜂(𝑈)

− (2𝛽2 +
𝛽

2
−

𝜏

4
) {𝑔(𝑋, 𝐻̅(𝑌, 𝜉)𝜉)𝜂(𝑈) − 𝜂(𝐻̅(𝑌, 𝜉)𝜉)𝜂(𝑋)𝜂(𝑈)

− 𝑔(𝑋, 𝑌)𝑔(𝐻̅(𝜉, 𝜉)𝜉, 𝑈) + 𝜂(𝑌)𝜂(𝑋)𝑔(𝐻̅(𝜉, 𝜉)𝜉, 𝑈)} + (𝑌𝛽)𝑔(𝐻̅(𝜑𝑋, 𝜉)𝜉, 𝑈)

+ 𝑔(𝑋, 𝜑𝑌)𝑔(𝐻̅(𝑔𝑟𝑎𝑑𝛽, 𝜉)𝜉, 𝑈) +
𝛽2

2
𝑔(𝜑𝑋, 𝑌)𝑔(𝐻̅(𝜉, 𝜉)𝜉, 𝑈)

+
1

2
(𝑋𝛽)𝜂(𝑌)𝑔(𝐻̅(𝜉, 𝜉)𝜉, 𝑈) −

1

2
(𝜑𝑌𝛽)𝑔(𝐻̅(𝑋, 𝜉)𝜉, 𝑈)

+
1

2
(𝜑𝑋𝛽)𝜂(𝑌)𝑔(𝐻̅(𝜉, 𝜉)𝜉, 𝑈) +

1

2
(𝜑𝑌𝛽)𝜂(𝑋)𝑔(𝐻̅(𝜉, 𝜉)𝜉, 𝑈)

−
1

2
(𝜑𝑌𝛽)𝑔(𝐻̅(𝑋, 𝜉)𝜉, 𝑈) +

1

2
(𝑋𝛽)𝑔(𝐻̅(𝑌, 𝜉)𝜉, 𝑈) +

1

2
(𝜑𝑋𝛽)𝑔(𝐻̅(𝑌, 𝜉)𝜉, 𝑈)

+
1

2
(𝑋𝛽)𝑔(𝐻̅(𝑌, 𝜉)𝜉, 𝑈) +

1

2
(𝜑𝑋𝛽)𝑔(𝐻̅(𝑌, 𝜉)𝜉, 𝑈) = 0, 
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Son denklemde 𝑋 ve 𝑍 ye göre kontraksiyon uygulanıp  gerekli düzenleme yapılırsa 

−𝑔(𝑔𝑟𝑎𝑑𝛽, 𝜑𝐻̅(𝑌, 𝜉)𝜉) +
3

2
(𝜑𝐻̅(𝑌, 𝜉)𝜉𝛽) −

1

2
(𝜑𝐻̅(𝑌, 𝜉)𝜉𝛽) + (𝑌𝛽) ∑ 𝑔(𝐻̅(𝜑𝑒𝑖 , 𝜉)𝜉, 𝑒𝑖)

3

𝑖=1

+ 𝑔(𝐻̅(𝑔𝑟𝑎𝑑𝛽, 𝜉)𝜉, 𝜑𝑌) +
𝛽2

2
𝑔(𝜑𝐻̅(𝜉, 𝜉)𝜉, 𝑌)

− (𝛽2 −
𝛽

2
) 𝜂(𝑌) ∑ 𝑔(𝐻̅(𝜑𝑒𝑖, 𝜉)𝜉, 𝑒𝑖)

3

𝑖=1

−
1

2
(𝜑𝑌𝛽) ∑ 𝑔(𝐻̅(𝑒𝑖, 𝜉)𝜉, 𝑒𝑖)

3

𝑖=1

− (𝛽2 −
𝛽

2
) ∑ 𝑔(𝐻̅(𝑌, 𝜑𝑒𝑖)𝜉, 𝑒𝑖)

3

𝑖=1

+
1

2
𝑔(𝐻̅(𝑌, 𝜉)𝜉, 𝑔𝑟𝑎𝑑𝛽)

+
1

2
𝑔(𝜑𝐻̅(𝑌, 𝜉)𝜉, 𝑔𝑟𝑎𝑑𝛽) − (𝛽2 −

𝛽

2
) ∑ 𝑔(𝐻̅(𝑌, 𝜉)𝜑𝑒𝑖, 𝑒𝑖)

3

𝑖=1

+
1

2
𝑔(𝐻̅(𝑌, 𝜉)𝜉, 𝑔𝑟𝑎𝑑𝛽) +

1

2
𝑔(𝜑𝐻̅(𝑌, 𝜉)𝜉, 𝑔𝑟𝑎𝑑𝛽)  

= 0                                                                                                                          (4.1.44) 

elde edilir. (4.1.44) de  (4.1.14) kullanılırsa  

(𝑌𝛽) {−2 (𝛽2 −
𝛽

2
)} + (𝛽2 −

𝛽

2
) (𝑌𝛽) + (𝛽2 −

1

4
−

𝜏̅

6
) (𝜑𝑌𝛽) + 2 (𝛽2 −

𝛽

2
) (𝛽2 −

𝛽

2
) 𝜂(𝑌)

− (𝛽2 −
𝛽

2
) [(𝑌𝛽) + (𝑌𝛽) + 2(𝑌𝛽) − (𝑌𝛽) + 2 (𝛽2 −

𝛽

2
) 𝜂(𝑌)]

+ (𝛽2 −
𝛽

2
) (𝜑𝑌𝛽) + (𝛽2 −

1

4
−

𝜏̅

6
) (𝑌𝛽) − (𝛽2 −

𝛽

2
) (𝑌𝛽)

+ (𝛽2 −
1

4
−

𝜏̅

6
) (𝜑𝑌𝛽) = 0 

yani, 

(−4𝛽2 +
5𝛽

2
−

1

4
−

𝜏̅

6
) (𝑌𝛽) + (2𝛽2 −

𝛽

2
−

1

4
−

𝜏̅

6
) (𝜑𝑌𝛽) = 0                             (4.1.45) 

olur.  (4.1.45) denklemi her 𝑌 vektör alanı için 

(−4𝛽2 +
5𝛽

2
−

1

4
−

𝜏̅

6
) 𝑔𝑟𝑎𝑑𝛽 − (2𝛽2 −

𝛽

2
−

1

4
−

𝜏̅

6
)  𝜑𝑔𝑟𝑎𝑑𝛽 = 0               (4.1.46) 

halini alır. (4.1.46) denkleminin her iki tarafına φ uygulanırsa 

(−4𝛽2 +
5𝛽

2
−

1

4
−

𝜏̅

6
) 𝜑𝑔𝑟𝑎𝑑𝛽 + (2𝛽2 −

𝛽

2
−

1

4
−

𝜏̅

6
)  𝑔𝑟𝑎𝑑𝛽 = 0                            (4.1.47) 
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olur. (4.1.46) ile (4.1.47) denklemleri arasında gerekli sadeleştirmeler yapılırsa 

[(−4𝛽2 +
5𝛽

2
−

1

4
−

𝜏̅

6
)

2
+ (2𝛽2 −

𝛽

2
−

1

4
−

𝜏̅

6
)

2
]𝑔𝑟𝑎𝑑𝛽 = 0 

olur ki, 𝛽 nın sabit olduğuna karşılık getirir. Böylece manifold  ∇ ya bağlı 𝜂-Einsteindır. 

Teorem 4.1.10.: 𝑀 bir 3-boyutlu quasi-Sasakian manifoldu olsun. 𝑀 üzerinde  

(𝑀,𝜑3, 𝑓1)  çeyrek simetrik metrik olmayan koneksiyonu ∇̅ ya göre Riemann eğrilik tensörü  𝑅̅ 

ve koncircular eğrilik tensörü 𝐻̅ olmak üzere (R̅(𝑋, 𝜉)𝐻̅)(𝑌, 𝑉)𝑊 = 0 şartı sağlanır ise M 

manifoldu ∇  ya bağlı  𝜂-Einstein manifolddur. 

İspat: Kabul edelim ki  verilen  𝑀 manifold için  

(R̅(𝑋, 𝜉)𝐻̅)(𝑌, 𝑉)𝑊 = 0                                                        (4.1.48) 

şartı sağlansın. Ayrıca  ∀ 𝑌, 𝑋, 𝑉, 𝑊 ∈ 𝜒(𝑀) için 

(R̅(𝑋, 𝜉)𝐻̅)(𝑌, 𝑉)𝑊

= R̅(𝑋, 𝜉)𝐻̅(𝑌, 𝑉)𝑊 − 𝐻̅(R̅(𝑋, 𝜉)𝑌, 𝑉)𝑊 − 𝐻̅(𝑌, R̅(𝑋, 𝜉)𝑉)𝑊

− 𝐻̅(𝑌, 𝑉)R̅(𝑋, 𝜉)𝑊 

yazılabilir. Burada (4.1.46) yardımıyla 

R̅(𝑋, 𝜉)𝐻̅(𝑌, 𝑉)𝑊 − 𝐻̅(R̅(𝑋, 𝜉)𝑌, 𝑉)𝑊 − 𝐻̅(𝑌, R̅(𝑋, 𝜉)𝑉)𝑊 − 𝐻̅(𝑌, 𝑉)R̅(𝑋, 𝜉)𝑊

= 0                                                                                                                           (4.1.49) 

dır.  (4.1.49) denkleminde 𝑌 = 𝑊 = 𝜉 alınırsa 

R̅(𝑋, 𝜉)𝐻̅(𝜉, 𝑉)𝜉 − 𝐻̅(R̅(𝑋, 𝜉)𝜉, 𝑉)𝜉 − 𝐻̅(𝜉, R̅(𝑋, 𝜉)𝑉)𝜉 − 𝐻̅(𝜉, 𝑉)R̅(𝑋, 𝜉)𝜉 = 0      

bulunur. Yukarıdaki denklem (4.1.4) denklemi gereğince 
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−(𝐻̅(𝜉, 𝑉)𝜉𝛽)𝜑𝑋 − 𝑔(𝑋, 𝜑𝐻̅(𝜉, 𝑉)𝜉)𝑔𝑟𝑎𝑑𝛽 −
𝛽

2
𝑔(𝜑𝑋, 𝐻̅(𝜉, 𝑉)𝜉)𝜉

+ (𝛽2 −
𝛽

2
) {𝜂(𝐻̅(𝜉, 𝑉)𝜉)𝜑𝑋 − 𝜂(𝑉)𝐻̅(𝜉, 𝜑𝑋)𝜉 − 𝐻̅(𝜉, 𝑉)𝜑𝑋 − 𝐻̅(𝜑𝑋, 𝑉)𝜉}

− (𝑋𝛽)𝜂(𝐻̅(𝜉, 𝑉)𝜉)𝜉 + (𝛽2 −
1

4
) {𝜂(𝐻̅(𝜉, 𝑉)𝜉)𝑋 − 𝐻̅(𝑋, 𝑉)𝜉 + 𝜂(𝑋)𝐻̅(𝜉, 𝑉)𝜉

− 𝜂(𝑉)𝐻̅(𝜉, 𝑋)𝜉 − 𝐻̅(𝜉, 𝑉)𝑋 + 𝜂(𝑋)𝐻̅(𝜉, 𝑉)𝜉}

+ (𝛽2 +
𝛽

2
+

1

4
) {𝜂(𝐻̅(𝜉, 𝑉)𝜉)𝜂(𝑋)𝜉 − 𝜂(𝑉)𝜂(𝑋)𝐻̅(𝜉, 𝜉)𝜉} + (𝑋𝛽)𝐻̅(𝜉, 𝑉)𝜉

+ (𝑉𝛽)𝐻̅(𝜉, 𝜑𝑋)𝜉 + 𝑔(𝑋, 𝜑𝑉)𝐻̅(𝜉, 𝑔𝑟𝑎𝑑𝛽)𝜉 +
𝛽

2
𝑔(𝜑𝑋, 𝑉)𝐻̅(𝜉, 𝜉)𝜉

+ (𝑋𝛽)𝜂(𝑉)𝐻̅(𝜉, 𝜉)𝜉 + (2𝛽2 +
𝛽

2
) {𝑔(𝑋, 𝑉)𝐻̅(𝜉, 𝜉)𝜉 − 𝑔(𝑋, 𝐻̅(𝜉, 𝑉)𝜉)𝜉}

+ (𝑋𝛽)𝐻̅(𝜉, 𝑉)𝜉 = 0 

haline dönüşür. Son denklemin her iki tarafını bir 𝑈 vektörü ile iç çarpımı alınıp 𝑋 ve 𝑈 ye göre 

kontraksiyon yapılırsa  

−𝑔(𝑔𝑟𝑎𝑑𝛽, 𝜑𝐻̅(𝜉, 𝑉)𝜉) − (2𝛽2 +
𝛽

2
) 𝑔(𝜉, 𝐻̅(𝜉, 𝑉)𝜉) + (𝛽2 +

𝛽

2
+

1

4
) 𝜂(𝐻̅(𝜉, 𝑉)𝜉)

+ (𝑉𝛽) ∑ 𝑔(𝐻̅(𝜉, 𝜑𝑒𝑖)𝜉, 𝑒𝑖)

3

𝑖=1

− (𝛽2 −
𝛽

2
) {∑ 𝑔(𝐻̅(𝜑𝑒𝑖 , 𝑉)𝜉, 𝑒𝑖) + ∑ 𝑔(𝐻̅(𝜉, 𝑉)𝜑𝑒𝑖 , 𝑒𝑖)

3

𝑖=1

3

𝑖=1

+ 𝜂(𝑉) ∑ 𝑔(𝐻̅(𝜉, 𝜑𝑒𝑖)𝜉, 𝑒𝑖)

3

𝑖=1

} + 2(𝐻̅(𝜉, 𝑉)𝜉𝛽)

− (𝛽2 −
1

4
) {∑ 𝜂(𝑉)𝑔(𝐻̅(𝜉, 𝑒𝑖)𝜉, 𝑒𝑖)

3

𝑖=1

+ ∑ 𝑔(𝐻̅(𝑒𝑖, 𝑉)𝜉, 𝑒𝑖)

3

𝑖=1

+ ∑ 𝑔(𝐻̅(𝜉, 𝑉)𝑒𝑖, 𝑒𝑖)

3

𝑖=1

− 5𝜂(𝐻̅(𝜉, 𝑉)𝜉)} + 𝑔(𝐻̅(𝜉, 𝑔𝑟𝑎𝑑𝛽)𝜉, 𝜑𝑉) = 0 

elde edilir. Yukarıdaki gerekli düzenlemeler yapılıp, (4.1.14) kullanılırsa  

(3𝛽2 −
3𝛽

2
+

𝜏̅

3
) (𝑉𝛽) + (−𝛽2 + 𝛽 −

1

4
) (𝜑𝑉𝛽) = 0,                             (4.1.50) 

olur.  (4.1.50) denklemi her 𝑉 vektör alanı için 
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(3𝛽2 −
3𝛽

2
+

𝜏̅

3
) 𝑔𝑟𝑎𝑑𝛽 − (−𝛽2 + 𝛽 −

1

4
) 𝜑𝑔𝑟𝑎𝑑𝛽 = 0,                         (4.1.51) 

bulunur. (4.1.51) denkleminin her iki tarafına φ uygulanırsa 

(3𝛽2 −
3𝛽

2
+

𝜏̅

3
) 𝜑𝑔𝑟𝑎𝑑𝛽 + (−𝛽2 + 𝛽 −

1

4
) 𝑔𝑟𝑎𝑑𝛽 = 0                        (4.1.52) 

olur. (4.1.51) ile (4.1.52) denklemleri arasında gerekli sadeleştirmeler yapılırsa 

[(3𝛽2 −
3𝛽

2
+

𝜏̅

3
)

2
+ (−𝛽2 + 𝛽 −

1

4
)

2
]𝑔𝑟𝑎𝑑𝛽 = 0 

olur ki, 𝛽 nın sabit olduğuna karşılık getirir. Böylece manifold  ∇ ya bağlı 𝜂-Einsteindır. 

Teorem 4.1.11.:  Bir 3-boyutlu quasi-Sasakian manifoldu 𝑀 olsun. 𝑀 üzerinde  

(𝑀,𝜑3, 𝑓1)  çeyrek simetrik metrik olmayan koneksiyonu ∇̅ ye göre concricular eğrilik tensörü 𝐻̅  

olmak üzere (H̅(𝑋, 𝜉)𝐻̅)(𝑌, 𝑉)𝑊 = 0 şartı sağlanır ise M manifoldu ∇  ya bağlı  𝜂-Einstein 

manifolddur. 

İspat: Kabul edelim ki  verilen manifold için  

(H̅(𝑋, 𝜉)𝐻̅)(𝑌, 𝑉)𝑊 = 0                                                        (4.1.53) 

sağlansın. Burada  ∀ 𝑌, 𝑋, 𝑊, 𝑉 ∈ 𝜒(𝑀) için 

(H̅(𝑋, 𝜉)𝐻̅)(𝑌, 𝑉)𝑊

= H̅(𝑋, 𝜉)𝐻̅(𝑌, 𝑉)𝑊 − 𝐻̅(H̅(𝑋, 𝜉)𝑌, 𝑉)𝑊 − 𝐻̅(𝑌, H̅(𝑋, 𝜉)𝑉)𝑊

− 𝐻̅(𝑌, 𝑉)H̅(𝑋, 𝜉)𝑊 

yazılabilir. Burada (4.1.53) gereği 

H̅(𝑋, 𝜉)𝐻̅(𝑌, 𝑉)𝑊 − 𝐻̅(H̅(𝑋, 𝜉)𝑌, 𝑉)𝑊 − 𝐻̅(𝑌, H̅(𝑋, 𝜉)𝑉)𝑊 − 𝐻̅(𝑌, 𝑉)H̅(𝑋, 𝜉)𝑊

= 0                                                                                                                         (4.1.54) 

olur.   (4.1.54) denkleminde 𝑉 = 𝑊 = 𝜉 alalım. 

H̅(𝑋, 𝜉)𝐻̅(𝑌, 𝜉)𝜉 − 𝐻̅(H̅(𝑋, 𝜉)𝑌, 𝜉)𝜉 − 𝐻̅(𝑌, H̅(𝑋, 𝜉)𝜉)𝜉 − 𝐻̅(𝑌, 𝜉)H̅(𝑋, 𝜉)𝜉 = 0.      

Yukarıdaki denklem (4.1.4) yardımıyla 
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−(𝐻̅(𝑌, 𝜉)𝜉𝛽)𝜑𝑋 − 𝑔(𝑋, 𝜑𝐻̅(𝑌, 𝜉)𝜉)𝑔𝑟𝑎𝑑𝛽 −
𝛽

2
𝑔(𝜑𝑋, 𝐻̅(𝑌, 𝜉)𝜉)𝜉 − (𝑋𝛽)𝜂(𝐻̅(𝑌, 𝜉)𝜉)𝜉

+ (𝛽2 −
𝛽

2
) {𝜂(𝐻̅(𝑌, 𝜉)𝜉)𝜑𝑋 − 𝜂(𝑌)𝐻̅(𝜑𝑋, 𝜉)𝜉 − 𝐻̅(𝑌, 𝜑𝑋)𝜉 − 𝐻̅(𝑌, 𝜉)𝜑𝑋}

+ (𝛽2 −
1

4
−

𝜏̅

6
) {𝜂(𝐻̅(𝑌, 𝜉)𝜉)𝑋 − 𝜂(𝑌)𝐻̅(𝑋, 𝜉)𝜉 + 2𝜂(𝑋)𝐻̅(𝑌, 𝜉)𝜉

− 2𝐻̅(𝑌, 𝜉)𝑋} + [𝛽2 +
𝛽

2
+

1

4
] 𝜂(𝐻̅(𝑌, 𝜉)𝜉)𝜂(𝑋)𝜉 + (𝑌𝛽)𝐻̅(𝜑𝑋, 𝜉)𝜉

+ 𝑔(𝑋, 𝜑𝑌)𝐻̅(𝑔𝑟𝑎𝑑𝛽, 𝜉)𝜉 − (2𝛽2 +
𝛽

2
−

𝜏̅

6
) 𝑔(𝑋, 𝐻̅(𝑌, 𝜉)𝜉)𝜉

+ 2(𝑋𝛽)𝐻̅(𝑌, 𝜉)𝜉 = 0 

haline dönüşür. Yukarıdaki denklemin her iki tarafını bir 𝑈 vektörü ile iç çarpımı alınırsa 

−(𝐻̅(𝑌, 𝜉)𝜉𝛽)𝑔(𝜑𝑋, 𝑈) − 𝑔(𝑋, 𝜑𝐻̅(𝑌, 𝜉)𝜉)𝑔(𝑔𝑟𝑎𝑑𝛽, 𝑈) −
𝛽

2
𝑔(𝜑𝑋, 𝐻̅(𝑌, 𝜉)𝜉)𝜂(𝑈)

− (𝑋𝛽)𝜂(𝐻̅(𝑌, 𝜉)𝜉)𝜂(𝑈) + (𝛽2 −
𝛽

2
) {𝜂(𝐻̅(𝑌, 𝜉)𝜉)𝑔(𝜑𝑋, 𝑈)

− 𝜂(𝑌)𝑔(𝐻̅(𝜑𝑋, 𝜉)𝜉, 𝑈) − 𝑔(𝐻̅(𝑌, 𝜑𝑋)𝜉, 𝑈) − 𝑔(𝐻̅(𝑌, 𝜉)𝜑𝑋, 𝑈)}

+ (𝛽2 −
1

4
−

𝜏̅

6
) {𝜂(𝐻̅(𝑌, 𝜉)𝜉)𝑔(𝑋, 𝑈) − 𝜂(𝑌)𝑔(𝐻̅(𝑋, 𝜉)𝜉, 𝑈)

+ 2𝜂(𝑋)𝑔(𝐻̅(𝑌, 𝜉)𝜉, 𝑈) − 2𝑔(𝐻̅(𝑌, 𝜉)𝑋, 𝑈)}

+ [𝛽2 +
𝛽

2
+

1

4
] 𝜂(𝐻̅(𝑌, 𝜉)𝜉)𝜂(𝑋)𝜂(𝑈) + (𝑌𝛽)𝑔(𝐻̅(𝜑𝑋, 𝜉)𝜉, 𝑈)

+ 𝑔(𝑋, 𝜑𝑌)𝑔(𝐻̅(𝑔𝑟𝑎𝑑𝛽, 𝜉)𝜉, 𝑈) − (2𝛽2 +
𝛽

2
−

𝜏̅

6
) 𝑔(𝑋, 𝐻̅(𝑌, 𝜉)𝜉)𝜂(𝑈)

+ 2(𝑋𝛽)𝑔(𝐻̅(𝑌, 𝜉)𝜉, 𝑈) = 0 

elde edilir. 𝑋 ve 𝑈 ye göre kontraksiyon uygulanıp gerekli düzenleme yapılırsa 
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−𝑔(𝑔𝑟𝑎𝑑𝛽, 𝜑𝐻̅(𝑌, 𝜉)𝜉) − [2𝛽2 +
𝛽

2
] 𝑔(𝜉, 𝐻̅(𝜉, 𝑉)𝜉) + {3 (𝛽2 −

1

4
) + 2 (𝛽2 −

1

4
−

𝜏̅

6
) + 𝛽2

+
1

4
+

𝛽

2
− 3

𝜏̅

6
+ (−2𝛽2 −

𝛽

2
+

𝜏̅

6
)}𝜂(𝐻̅(𝑌, 𝜉)𝜉) + [𝛽2 +

𝛽

2
+

1

4
] 𝜂(𝐻̅(𝜉, 𝑉)𝜉)

+ (𝑌𝛽) ∑ 𝑔(𝐻̅(𝜑𝑒𝑖, 𝜉)𝜉, 𝑒𝑖)

3

𝑖=1

− (𝛽2 −
𝛽

2
) ∑ 𝑔(𝐻̅(𝑌, 𝜑𝑒𝑖)𝜉, 𝑒𝑖)

3

𝑖=1

− (𝛽2 −
𝛽

2
) 𝜂(𝑌) ∑ 𝑔(𝐻̅(𝜑𝑒𝑖, 𝜉)𝜉, 𝑒𝑖)

3

𝑖=1

+ 2(𝐻̅(𝑌, 𝜉)𝜉𝛽)

− (𝛽2 −
1

4
−

𝜏̅

6
) ∑ 𝜂(𝑌)𝑔(𝐻̅(𝑒𝑖, 𝜉)𝜉, 𝑒𝑖)

3

𝑖=1

− (𝛽2 −
1

4
−

𝜏̅

6
) ∑ 𝑔(𝐻̅(𝑌, 𝑒𝑖)𝜉, 𝑒𝑖)

3

𝑖=1

− (𝛽2 −
1

4
−

𝜏̅

6
) ∑ 𝑔(𝐻̅(𝑌, 𝜉)𝑒𝑖, 𝑒𝑖)

3

𝑖=1

+ 𝑔(𝐻̅(𝑔𝑟𝑎𝑑𝛽, 𝜉)𝜉, 𝜑𝑌)

− (𝛽2 −
𝛽

2
) ∑ 𝑔(𝐻̅(𝑌, 𝜉)𝜑𝑒𝑖 , 𝑒𝑖) = 0

3

𝑖=1

 

elde edilir. Yukarıdaki denklemde  (4.1.14) kullanılırsa  

(𝛽2 −
𝛽

2
) (𝑌𝛽) − (𝛽2 −

1

4
−

𝜏̅

6
) (𝜑𝑌𝛽) + (𝛽2 −

𝛽

2
) (𝑌𝛽) + (𝛽2 −

1

4
−

𝜏̅

6
) (𝜑𝑌𝛽)

− (𝑌𝛽) {4𝛽2 − 1 − 4
𝜏̅

6
} + 2 (𝛽2 −

𝛽

2
) (𝜑𝑌𝛽) + 2 (𝛽2 −

1

4
−

𝜏̅

6
) (𝑌𝛽)

− 2 (𝛽2 −
𝛽

2
) (𝑌𝛽)

− (𝛽2 −
1

4
−

𝜏̅

6
) {3 (𝛽2 −

1

4
−

𝜏̅

6
) 𝜂(𝑌) − (𝛽2 −

1

4
−

𝜏̅

6
) 𝜂(𝑌) + (𝜑𝑌𝛽) − (𝑌𝛽)

+ (𝛽2 −
1

4
−

𝜏̅

6
) (𝜂(𝑌) − 3𝜂(𝑌)) − (𝜑𝑌𝛽) + (𝜑𝑌𝛽) − (𝑌𝛽)

− (2𝛽2 +
𝛽

2
−

𝜏̅

6
) 𝜂(𝑌) + (𝛽2 −

1

4
) 𝜂(𝑌) + (𝛽2 +

1

4
+

𝛽

2
) 𝜂(𝑌)}

− (𝛽2 −
𝛽

2
) {−2 (𝛽2 −

𝛽

2
) 𝜂(𝑌) + 2(𝑌𝛽) − (𝑌𝛽) + 2 (𝛽2 −

𝛽

2
) 𝜂(𝑌) + (𝑌𝛽)

+ (𝑌𝛽)} = 0 

yani, 

(𝛽2 − 𝛽 +
𝜏̅

6
+

1

4
) (𝜑𝑌𝛽) + (−3𝛽2 +

3𝛽

2
) (𝑌𝛽) = 0,                          ( 4.1.55)    
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dır.  (4.1.55) denklemi her 𝑌 vektör alanı için 

− (𝛽2 − 𝛽 +
𝜏̅

6
+

1

4
) 𝜑𝑔𝑟𝑎𝑑𝛽 + (−3𝛽2 +

3𝛽

2
) 𝑔𝑟𝑎𝑑𝛽 = 0                              ( 4.1.56) 

olur. (4.1.56) denkleminin her iki tarafına φ uygulanırsa 

(𝛽2 − 𝛽 +
𝜏̅

6
+

1

4
) 𝑔𝑟𝑎𝑑𝛽 + (−3𝛽2 +

3𝛽

2
) 𝜑𝑔𝑟𝑎𝑑𝛽 = 0                     ( 4.1.57) 

 elde edilir. (4.1.57) ile (4.1.56) denklemleri arasında gerekli sadeleştirmeler yapılırsa 

[(−3𝛽2 +
3𝛽

2
)

2
+ (𝛽2 − 𝛽 +

𝜏̅

6
+

1

4
)

2
]𝑔𝑟𝑎𝑑𝛽 = 0 

olur ki, 𝛽 nın sabit olduğuna karşılık getirir. Böylece manifold  ∇ ya bağlı 𝜂-Einstein manifold 

olur. 

Teorem 4.1.12.: 𝑀 bir 3-boyutlu quasi-Sasakian manifoldu olsun. 𝑀 üzerinde  

(𝑀,𝜑3, 𝑓1)  çeyrek simetrik metrik olmayan koneksiyonu ∇̅ ye göre Riemann eğrilik tensörü  𝑅̅ 

olmak üzere (R̅(𝑋, 𝜉)𝑅̅)(𝑌, 𝑉)𝑊 = 0 ise M manifoldu ∇  ya bağlı  𝜂-Einstein manifolddur. 

İspat: Kabul edelim ki  verilen manifold için  

(R̅(𝑋, 𝜉)𝑅̅)(𝑌, 𝑉)𝑊 = 0                                                        (4.1.58) 

sağlansın. Burada  ∀ 𝑌, 𝑋, 𝑉, 𝑊 ∈ 𝜒(𝑀) için 

(R̅(𝑋, 𝜉)𝑅̅)(𝑌, 𝑉)𝑊

= R̅(𝑋, 𝜉)𝑅̅(𝑌, 𝑉)𝑊 − 𝑅̅(R̅(𝑋, 𝜉)𝑌, 𝑉)𝑊 − 𝑅̅(𝑌, R̅(𝑋, 𝜉)𝑉)𝑊

− 𝑅̅(𝑌, 𝑉)R̅(𝑋, 𝜉)𝑊 

yazılabilir. (4.1.58) yardımıyla 

R̅(𝑋, 𝜉)𝑅̅(𝑌, 𝑉)𝑊 − 𝑅̅(R̅(𝑋, 𝜉)𝑌, 𝑉)𝑊 − 𝑅̅(𝑌, R̅(𝑋, 𝜉)𝑉)𝑊 − 𝑅̅(𝑌, 𝑉)R̅(𝑋, 𝜉)𝑊 = 0     (4.1.59) 

olur. (4.1.59) denkleminde 𝑉 = 𝑊 = 𝜉 alınırsa 

R̅(𝑋, 𝜉)𝑅̅(𝑌, 𝜉)𝜉 − 𝑅̅(R̅(𝑋, 𝜉)𝑌, 𝜉)𝜉 − 𝑅̅(𝑌, R̅(𝑋, 𝜉)𝜉)𝜉 − 𝑅̅(𝑌, 𝜉)R̅(𝑋, 𝜉)𝜉 = 0      

bulunur. Yukarıdaki denklemde (4.1.4)  kullanılırsa 
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−(𝑅̅(𝑌, 𝜉)𝜉𝛽)𝜑𝑋 − 𝑔(𝑋, 𝜑𝑅̅(𝑌, 𝜉)𝜉)𝑔𝑟𝑎𝑑𝛽 −
𝛽

2
𝑔(𝜑𝑋, 𝑅̅(𝑌, 𝜉)𝜉)𝜉

+ (𝛽2 −
𝛽

2
) {𝜂(𝑅̅(𝑌, 𝜉)𝜉)𝜑𝑋 − 𝜂(𝑌)𝑅̅(𝜑𝑋, 𝜉)𝜉 − 𝑅̅(𝑌, 𝜑𝑋)𝜉 − 𝑅̅(𝑌, 𝜉)𝜑𝑋}

− (𝑋𝛽)𝜂(𝑅̅(𝑌, 𝜉)𝜉)𝜉 − (2𝛽2 +
𝛽

2
) {𝑔(𝑋, 𝑅̅(𝑌, 𝜉)𝜉)𝜉 − 𝑔(𝑋, 𝑌)𝑅̅(𝜉, 𝜉)𝜉}

+ (𝛽2 −
1

4
) {𝜂(𝑅̅(𝑌, 𝜉)𝜉)𝑋 − 𝜂(𝑌)𝑅̅(𝑋, 𝜉)𝜉 + 𝜂(𝑋)𝑅̅(𝑌, 𝜉)𝜉 − 𝑅̅(𝑌, 𝑋)𝜉

− 𝑅̅(𝑌, 𝜉)𝑋 + 𝜂(𝑋)𝑅̅(𝑌, 𝜉)𝜉}

+ (𝛽2 +
𝛽

2
+

1

4
) {𝜂(𝑅̅(𝑌, 𝜉)𝜉)𝜂(𝑋)𝜉 − 𝜂(𝑌)𝜂(𝑋)𝑅̅(𝜉, 𝜉)𝜉} + (𝑌𝛽)𝑅̅(𝜑𝑋, 𝜉)𝜉

+ 𝑔(𝑋, 𝜑𝑌)𝑅̅(𝑔𝑟𝑎𝑑𝛽, 𝜉)𝜉 +
𝛽

2
𝑔(𝜑𝑋, 𝑌)𝑅̅(𝜉, 𝜉)𝜉 + (𝑋𝛽)𝜂(𝑌)𝑅̅(𝜉, 𝜉)𝜉

+ 2(𝑋𝛽)𝑅̅(𝑌, 𝜉)𝜉 = 0 

haline dönüşür. Yukarıdaki denklemin her iki tarafını bir 𝑈 vektör alanı ile iç çarpım 

uygulanırsa 

−(𝑅̅(𝑌, 𝜉)𝜉𝛽)𝑔(𝜑𝑋, 𝑈) − 𝑔(𝑋, 𝜑𝑅̅(𝑌, 𝜉)𝜉)𝑔(𝑔𝑟𝑎𝑑𝛽, 𝑈) −
𝛽

2
𝑔(𝜑𝑋, 𝑅̅(𝑌, 𝜉)𝜉)𝜂(𝑈)

+ (𝛽2 −
𝛽

2
) {𝜂(𝑅̅(𝑌, 𝜉)𝜉)𝑔(𝜑𝑋, 𝑈) − 𝜂(𝑌)𝑔(𝑅̅(𝜑𝑋, 𝜉)𝜉, 𝑈)

− 𝑔(𝑅̅(𝑌, 𝜑𝑋)𝜉, 𝑈) − 𝑔(𝑅̅(𝑌, 𝜉)𝜑𝑋, 𝑈)} − (𝑋𝛽)𝜂(𝑅̅(𝑌, 𝜉)𝜉)𝜂(𝑈)

− (2𝛽2 +
𝛽

2
) {𝑔(𝑋, 𝑅̅(𝑌, 𝜉)𝜉)𝜂(𝑈) − 𝑔(𝑋, 𝑌)𝑔(𝑅̅(𝜉, 𝜉)𝜉, 𝑈)}

+ (𝛽2 −
1

4
) {𝜂(𝑅̅(𝑌, 𝜉)𝜉)𝑔(𝑋, 𝑈) − 𝜂(𝑌)𝑔(𝑅̅(𝑋, 𝜉)𝜉, 𝑈)

+ 𝜂(𝑋)𝑔(𝑅̅(𝑌, 𝜉)𝜉, 𝑈) − 𝑔(𝑅̅(𝑌, 𝑋)𝜉, 𝑈) − 𝑔(𝑅̅(𝑌, 𝜉)𝑋, 𝑈)

+ 𝜂(𝑋)𝑔(𝑅̅(𝑌, 𝜉)𝜉, 𝑈)}

+ (𝛽2 +
𝛽

2
+

1

4
) {𝜂(𝑅̅(𝑌, 𝜉)𝜉)𝜂(𝑋)𝜂(𝑈) − 𝜂(𝑌)𝜂(𝑋)𝑔(𝑅̅(𝜉, 𝜉)𝜉, 𝑈)}

+ (𝑌𝛽)𝑔(𝑅̅(𝜑𝑋, 𝜉)𝜉, 𝑈) + 𝑔(𝑋, 𝜑𝑌)𝑔(𝑅̅(𝑔𝑟𝑎𝑑𝛽, 𝜉)𝜉, 𝑈)

+
𝛽

2
𝑔(𝜑𝑋, 𝑌)𝑔(𝑅̅(𝜉, 𝜉)𝜉, 𝑈) + (𝑋𝛽)𝜂(𝑌)𝑔(𝑅̅(𝜉, 𝜉)𝜉, 𝑈)

+ 2(𝑋𝛽)𝑔(𝑅̅(𝑌, 𝜉)𝜉, 𝑈) = 0 

bulunur. 𝑋 ve 𝑈 ye göre kontraksiyon uygulanıp biraz düzenleme yapılırsa 
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−𝑔(𝑔𝑟𝑎𝑑𝛽, 𝜑𝑅̅(𝑌, 𝜉)𝜉) − [2𝛽2 +
𝛽

2
] 𝑔(𝜉, 𝑅̅(𝑌, 𝜉)𝜉) + {3 (𝛽2 −

1

4
) + 2 (𝛽2 −

1

4
) + 𝛽2 +

1

4

+
𝛽

2
}𝜂(𝐻̅(𝑌, 𝜉)𝜉) + [𝛽2 +

𝛽

2
+

1

4
] 𝜂(𝐻̅(𝜉, 𝑉)𝜉) + (𝑌𝛽) ∑ 𝑔(𝑅̅(𝜑𝑒𝑖, 𝜉)𝜉, 𝑒𝑖)

3

𝑖=1

− (𝛽2 −
𝛽

2
) {∑ 𝑔(𝑅̅(𝑌, 𝜑𝑒𝑖)𝜉, 𝑒𝑖)

3

𝑖=1

+ 𝜂(𝑌) ∑ 𝑔(𝑅̅(𝜑𝑒𝑖, 𝜉)𝜉, 𝑒𝑖) + ∑ 𝑔(𝑅̅(𝑌, 𝜉)𝜑𝑒𝑖, 𝑒𝑖)

3

𝑖=1

3

𝑖=1

} + 2(𝑅̅(𝑌, 𝜉)𝜉𝛽)

− (𝛽2 −
1

4
) {∑ 𝜂(𝑌)𝑔(𝑅̅(𝑒𝑖, 𝜉)𝜉, 𝑒𝑖)

3

𝑖=1

+ ∑ 𝑔(𝑅̅(𝑌, 𝑒𝑖)𝜉, 𝑒𝑖)

3

𝑖=1

+ ∑ 𝑔(𝑅̅(𝑌, 𝜉)𝑒𝑖, 𝑒𝑖)}

3

𝑖=1

+ 𝑔(𝑅̅(𝑔𝑟𝑎𝑑𝛽, 𝜉)𝜉, 𝜑𝑌) = 0 

elde edilir. Yukarıdaki denklem, (4.1.4) yardımıyla  

(𝛽2 + 𝛽 +
1

4
) (𝜑𝑌𝛽) + (3𝛽2 +

5𝛽

2
− 2) (𝑌𝛽) = 0                        (4.1.60)  

olur.  (4.1.60) denklemi her 𝑌 vektör alanı için 

− (𝛽2 + 𝛽 +
1

4
) 𝜑𝑔𝑟𝑎𝑑𝛽 + (3𝛽2 +

5𝛽

2
− 2) 𝑔𝑟𝑎𝑑𝛽 = 0                     (4.1.61)  

bulunur. (4.1.61) denkleminin her iki tarafına φ uygulanırsa 

(𝛽2 + 𝛽 +
1

4
) 𝑔𝑟𝑎𝑑𝛽 + (3𝛽2 +

5𝛽

2
− 2) 𝜑𝑔𝑟𝑎𝑑𝛽 = 0                                    (4.1.62)  

 elde edilir. (4.1.61) ile (4.1.62) denklemleri arasında gerekli sadeleştirmeler yapılırsa 

[(3𝛽2 +
5𝛽

2
− 2)

2
+ (𝛽2 + 𝛽 +

1

4
)

2
]𝑔𝑟𝑎𝑑𝛽 = 0 

bulunur, buda 𝛽 nın sabit olduğuna karşılık getirir. Böylece manifold  ∇ ya bağlı 𝜂-Einstein 

manifold olur. 

Teorem 4.1.13.: 𝑀 manifoldu 𝛽 sabit olacak şekilde 3- boyutlu bir quasi -Sasakian 

manifoldu olsun. 𝑀 üzerinde (𝑀,𝜑3, 𝑓1)  çeyrek simetrik metrik olmayan koneksiyonu ∇̅ olmak 

üzere,  𝑏 fonksiyonu için 𝑉 = 𝑏𝜉 olmak şartıyla, 𝑀 manifoldu verilen koneksiyona bağlı  Ricci 

soliton özelliğini sağlıyor ise manifold  𝛻̅  koneksiyonuna bağlı 𝜂-Einstein manifolddur.  
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İspat:  𝑀 manifoldu, 𝛽 sabit olacak şekilde 3- boyutlu quasi-Sasakian manifoldu olsun. 

𝑀 üzerinde (𝑀,𝜑3, 𝑓1)  çeyrek simetrik metrik olmayan koneksiyonu ∇̅ olmak üzere,  

𝑏 fonksiyonu için 𝑉 = 𝑏𝜉 olmak şartıyla, manifold verilen koneksiyona bağlı  Ricci soliton 

olma şartını sağlasın. O halde (1.3.1) ile verilen, 

(
1

2
𝐿̅𝑉𝑔 + 𝑆̅ + 𝜆𝑔)(𝑋, 𝑌) = 0, 

denklemi, 

(𝐿̅𝑉𝑔)(𝑋, 𝑌) + 2𝑆̅(𝑋, 𝑌) + 2𝜆𝑔(𝑋, 𝑌) = 0                                            (4.1.63) 

haline dönüşür. (4.1.63) te Lie türevi özellikleri kullanılırsa 

𝑔(∇̅𝑋𝑉, 𝑌) + 𝑔(∇̅𝑌𝑉, 𝑉) + 2𝑆̅(𝑋, 𝑌) + 2𝜆𝑔(𝑋, 𝑌) = 0                                             

elde edilir. Burada 𝑉 = 𝑏𝜉  alınırsa ve (2.1.3) denklemi yardımıyla 

𝑔(∇𝑋𝑏𝜉, 𝑌) −
1

2
𝜂(𝑋)𝑔(𝜑𝑏𝜉, 𝑌) +

1

2
𝑏𝑔(𝜑𝑋, 𝑌) − 𝑏𝛽𝜂(𝑋)𝜂(𝑌) + 𝑔(∇𝑌𝑏𝜉, 𝑋)

−
1

2
𝜂(𝑌)𝑔(𝜑𝑏𝜉, 𝑋) +

1

2
𝑏𝑔(𝜑𝑌, 𝑋) − 𝑏𝛽𝜂(𝑋)𝜂(𝑌) + 2𝑆̅(𝑋, 𝑌) + 2𝜆𝑔(𝑋, 𝑌)

= 0                  

yani 

(𝑋𝑏)𝜂(𝑌) + 𝑏𝑔(∇𝑋𝜉, 𝑌) + (𝑌𝑏)𝜂(𝑋) + 𝑏𝑔(∇𝑌𝜉, 𝑋) − 2𝑏𝛽𝜂(𝑋)𝜂(𝑌) + 2𝑆̅(𝑋, 𝑌) 

+2𝜆𝑔(𝑋, 𝑌) = 0                                                                                   (4.1.64)   

bulunur. (4.1.64) ifadesinde (1.2.28) denklemi kullanılırsa 

(𝑋𝑏)𝜂(𝑌) − 𝑏𝛽𝑔(𝜑𝑋, 𝑌) + (𝑌𝑏)𝜂(𝑋) − 𝑏𝛽𝑔(𝜑𝑌, 𝑋) − 2𝑏𝛽𝜂(𝑋)𝜂(𝑌) + 2𝑆̅(𝑋, 𝑌)

+ 2𝜆𝑔(𝑋, 𝑌)

= 0,                                                                                                                            

dır.  Bu denklemi düzenlersek 

(𝑋𝑏)𝜂(𝑌) + (𝑌𝑏)𝜂(𝑋) − 2𝑏𝛽𝜂(𝑋)𝜂(𝑌) + 2𝑆̅(𝑋, 𝑌) + 2𝜆𝑔(𝑋, 𝑌) = 0,           (4.1.65)  

elde edilir. (4.1.65) de  𝑌=𝜉 yazıp ve  (3.2.2.9) denklemini kullandığımızda 

(𝑋𝑏) + (𝜉𝑏)𝜂(𝑋) − 2𝑏𝛽𝜂(𝑋) + 2 (2𝛽2 −
1

2
) 𝜂(𝑋) + 2𝜆𝜂(𝑋) = 0,                       (4.1.66) 
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elde edilir.  (4.1.66)  denkleminde bu defa  𝑋=𝜉 alalım. 

2(𝜉𝑏) + 2 (2𝛽2 −
1

2
) + 2𝜆 − 2𝑏𝛽 = 0,                                     (4.1.67) 

yani 

(𝜉𝑏) = −𝜆 + 𝑏𝛽 − 2𝛽2 +
1

2
,                                                 (4.1.68) 

sonucu ortaya çıkar. Bu denklemi (4.1.68) de  kullanılıp gerekli düzenlemeler yapılırsa 

(𝑑𝑏) = (−𝜆 + 𝑏𝛽 − 2𝛽2 +
1

2
) 𝜂,                                                   (4.1.69) 

elde edilir. (4.1.69) denkleminin her iki yanına 𝑑 uygulanırsa  

(−𝜆 + 𝑏𝛽 − 2𝛽2 +
1

2
)𝑑𝜂 = 0, 

bulunur. Burada 𝑑𝜂 = 0 olamayacağından ancak 

 (−𝜆 + 𝑏𝛽 − 2𝛽2 +
1

2
) = 0,   

olmak zorundadır. Bu ifade (4.1.67) de kullanırsa 𝑏 sabit olur. Böylece (4.1.63) denklemi gereği 

𝑆̅(𝑋, 𝑌) = 𝑏𝛽𝜂(𝑌)𝜂(𝑋) − 𝜆𝑔(𝑌, 𝑋),                                         (4.1.70) 

elde edilir ki bu da  bize  manifoldun 𝛻̅ ye bağlı 𝜂-Einstein olduğunu gösterir. 

       Ayrıca elde edilen  (4.1.70) denkleminde 𝑋 ve 𝑌 vektör alanlarına göre 

kontraksiyon yapılırsa 

𝜏̅ = 𝑏𝛽 − 3𝜆, 

denklemi ortaya çıkar. Böylece yukarıdaki denklem gereği aşağıdaki sonucu verebiliriz: 

Sonuç 4.1.2.: 𝑀 manifoldu 𝛽 sabit  olacak şekilde 3- boyutlu quasi-Sasakian manifoldu 

olsun. 𝑀 üzerinde (𝑀,𝜑3, 𝑓1)  çeyrek simetrik metrik olmayan  koneksiyonu ∇̅ olmak üzere,  𝑏 

fonksiyonu için 𝑉 = 𝑏𝜉 olmak şartıyla, manifold verilen koneksiyona bağlı  Ricci soliton 

olma şartını sağlıyor ise 

i) 𝜏̅ − 𝑏𝛽 < 0 için genişleyen (expanding), 

ii) 𝜏̅ − 𝑏𝛽 = 0 için değişmeyen(steady), 
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iii) 𝜏̅ − 𝑏𝛽 > 0 için daralan (shrinking), 

dır . 

Teorem 4.1.14.:  (𝑀,𝜑3, 𝑓1)  koneksiyonu ile verilmiş 3-boyutlu quasi Sasakian 

manifoldu 𝛽 sabit olmak üzere (1.3.2) ile tanımlı gradyant  Ricci soliton özelliğini sağlasın. Bu 

takdirde  manifold 

i) kosimplektiktir yada (M,𝜑3, 𝑓1)  koneksiyonuna göre 𝜂-Einstein dır. 

ii) (𝑀,𝜑3, 𝑓1)  koneksiyonuna göre sabit eğriliklidir. 

İspat:  3-boyutlu quasi-Sasakian manifoldu üzerinde 

𝛻̅∇𝑓 = 𝑆̅ + 𝜆𝑔                                                    (4.1.71)   

ile tanımlı gradyant Ricci soliton eşitliğini ele alalım. 𝑔 metriğinin gradyant operatörü 𝐷  olmak 

üzere (4.1.71) denklemi 

∇̅𝑌𝐷𝑓 = 𝑄̅𝑌 + 𝜆𝑌                                                              (4.1.72) 

dır. (4.1.72) eşitliği yardımıyla 𝑅̅(𝑋, 𝑌)𝐷𝑓 ifadesi 

𝑅̅(𝑋, 𝑌)𝐷𝑓 = ∇̅𝑋∇̅𝑌𝐷𝑓 − ∇̅𝑌∇̅𝑋𝐷𝑓 − ∇̅[𝑋,𝑌]𝐷𝑓 

                    = ∇̅𝑋(𝑄̅𝑌 + 𝜆𝑌) − ∇̅𝑌(𝑄̅𝑋 + 𝜆𝑋) − ( 𝑄̅[𝑋, 𝑌]

+ 𝜆[𝑋, 𝑌])                                                              

biçiminde yazılabilir. Burada (𝑀,𝜑3, 𝑓1)  koneksiyonunu kullanırsak son denklem 

𝑅̅(𝑋, 𝑌)𝐷𝑓 = ∇𝑋𝑄̅𝑌 +
1

2
𝜂(𝑄̅𝑌)𝜑𝑋 −

1

2
𝜂(𝑋)𝜑𝑄̅𝑌 − 𝛽𝑔(𝑋, 𝑄̅𝑌)𝜉 + ∇𝑋𝜆𝑌 +

1

2
𝜆𝜂(𝑌)𝜑𝑋

−
1

2
𝜆𝜂(𝑋)𝜑𝑌 − 𝛽𝜆𝑔(𝑋, 𝑌)𝜉 − ∇𝑌𝑄̅𝑋 −

1

2
𝜂(𝑄̅𝑋)𝜑𝑌 +

1

2
𝜂(𝑌)𝜑𝑄̅𝑋

+ 𝛽𝑔(𝑌, 𝑄̅𝑋)𝜉 − ∇𝑌𝜆𝑋 −
1

2
𝜆𝜂(𝑋)𝜑𝑌 +

1

2
𝜆𝜂(𝑌)𝜑𝑋 + 𝛽𝜆𝑔(𝑋, 𝑌)𝜉 − 𝑄̅∇𝑋𝑌

+ 𝑄̅∇𝑌𝑋 − 𝜆∇𝑋𝑌

+ 𝜆∇𝑌𝑋                                                                                                                  (4.1.73) 

halini alır. (4.1.73) denkleminin her iki tarafının bir 𝑈 vektör alanı ile iç çarpımı alındığında 
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𝑔(𝑅̅(𝑋, 𝑌)𝐷𝑓, 𝑈)

= 𝑔(∇𝑋𝑄̅𝑌, 𝑈) +
1

2
𝜂(𝑄̅𝑌)𝑔(𝜑𝑋, 𝑈) −

1

2
𝜂(𝑋)𝑔(𝜑𝑄̅𝑌, 𝑈) − 𝛽𝑔(𝑋, 𝑄̅𝑌)𝜂(𝑈)

+ 𝑔(∇𝑋𝜆𝑌, 𝑈) +
1

2
𝜆𝜂(𝑌)𝑔(𝜑𝑋, 𝑈) −

1

2
𝜆𝜂(𝑋)𝑔(𝜑𝑌, 𝑈) − 𝑔(∇𝑌𝑄̅𝑋, 𝑈)

−
1

2
𝜂(𝑄̅𝑋)𝑔(𝜑𝑌, 𝑈) +

1

2
𝜂(𝑌)𝑔(𝜑𝑄̅𝑋, 𝑈) + 𝛽𝑔(𝑌, 𝑄̅𝑋)𝜂(𝑈) − 𝑔(∇𝑌𝜆𝑋, 𝑈)

−
1

2
𝜆𝜂(𝑋)𝑔(𝜑𝑌, 𝑈) +

1

2
𝜆𝜂(𝑌)𝑔(𝜑𝑋, 𝑈) − 𝑔(𝑄̅∇𝑋𝑌, 𝑈) + 𝑔(𝑄̅∇𝑌𝑋, 𝑈)

− 𝜆𝑔(∇𝑋𝑌, 𝑈) + 𝜆𝑔(∇𝑌𝑋, 𝑈)   

bulunur. Son denklemde 𝑋 = 𝑌 = 𝜉  kullanıldığında 

𝑔(𝑅̅(𝜉, 𝑌)𝐷𝑓, 𝜉)

= 𝑔(∇𝜉𝑄̅𝑌, 𝜉) − 𝛽𝑔(𝜉, 𝑄̅𝑌) + 𝑔(∇𝜉𝜆𝑌, 𝜉) − 𝑔(∇𝑌𝑄̅𝜉, 𝜉) + 𝛽𝑔(𝑌, 𝑄̅𝜉)

− 𝑔(𝑄̅∇𝜉𝑌, 𝜉) 

+𝑔(𝑄̅∇𝑌𝜉, 𝜉)                                                                                                      (4.1.74) 

elde edilir. 𝛽 sabit olmak üzere (4.1.72) de (4.1.10) ve (1.2.32) denklemleri yerine yazılırsa 

𝑔(𝑅̅(𝜉, 𝑌)𝐷𝑓, 𝜉)

= 𝑔 (∇𝜉 (
𝜏

2
− 𝛽2) 𝑌, 𝜉) + 𝑔 (∇𝜉 (3𝛽2 −

𝜏

2
) 𝜂(𝑌)𝜉, 𝜉) − 𝛽(𝛽 − 1)𝑔(∇𝜉𝜑𝑌, 𝜉)

− (
1

2
+ 𝛽2) 𝑔(∇𝜉𝜂(𝑌)𝜉, 𝜉) + 𝛽2𝑔(∇𝜉𝑌, 𝜉)

− 𝛽 {𝑔(𝜉, 𝑄𝑌) − (
1

2
+ 𝛽2) 𝜂(𝑌) + 𝛽2𝜂(𝑌)} − 2𝛽2𝑔(∇𝑌𝜉, 𝜉)

+ (
1

2
+ 𝛽2) 𝑔(∇𝑌𝜉, 𝜉) + 𝛽2𝑔(∇𝑌𝜉, 𝜉)

+ 𝛽 {𝑔(𝑌, 𝑄𝜉) − (
1

2
+ 𝛽2) 𝜂(𝑌) + 𝛽2𝜂(𝑌)} − (

𝜏

2
− 𝛽2) 𝑔(∇𝜉𝑌, 𝜉)

− (3𝛽2 −
𝜏

2
) 𝜂(∇𝜉𝑌) +

1

2
𝜂(∇𝜉𝑌) + (

𝜏

2
− 𝛽2) 𝑔(∇𝑌𝜉, 𝜉) + 

                                      (3𝛽2

−
𝜏

2
)𝑔(∇𝑌𝜉, 𝜉)                                                                                               (4.1.75) 

bulunur. Koneksiyon özellikleri gereği yukarıdaki denklem  
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𝑔(𝑅̅(𝜉, 𝑌)𝐷𝑓, 𝜉)

=
(𝜉𝜏)

2
𝑔(𝑌, 𝜉) + (

𝜏

2
− 𝛽2) 𝑔(∇𝜉𝑌, 𝜉) −

(𝜉𝜏)

2
𝑔(𝑌, 𝜉) + (3𝛽2

−
𝜏

2
)𝑔(𝜂(∇𝜉𝑌)𝜉, 𝜉) − 𝛽(𝛽 − 1)𝑔((∇𝜉𝜑)𝑌, 𝜉) − (

1

2
+ 𝛽2) 𝑔(𝜂(∇𝜉𝑌)𝜉, 𝜉)

+ 𝛽2𝑔(∇𝜉𝑌, 𝜉) − (
𝜏

2
− 𝛽2) 𝑔(∇𝜉𝑌, 𝜉) − (3𝛽2 −

𝜏

2
) 𝜂(∇𝜉𝑌)

+
1

2
𝜂(∇𝜉𝑌)                                                                                               

 

halini alır. Burada (1.2.29) denklemi kullanılıp gerekli sadeleştirmeler yapılırsa 

𝑔(𝑅̅(𝜉, 𝑌)𝐷𝑓, 𝜉) = 0                                                                     (4.1.76) 

sonucu ortaya çıkar. Ayrıca (4.1.3) ve (4.1.74) denklemleri gereği 𝑔(𝑅̅(𝜉, 𝑌)𝐷𝑓, 𝜉) ifadesi 

𝑔(𝑅̅(𝜉, 𝑌)𝐷𝑓, 𝜉) =
𝛽

2
𝑔(𝜑𝑌, 𝐷𝑓) + (2𝛽2 +

𝛽

2
) {𝑔(𝑌, 𝐷𝑓) − 𝜂(𝑌)𝜂(𝐷𝑓)} = 0      (4.1.77) 

olarak yazılabilir.(4.1.77) de 𝑌 yerine 𝜑𝑌 alınırsa 

𝛽

2
𝑔(−𝑌, 𝐷𝑓) +

𝛽

2
𝜂(𝑌)𝜂(𝐷𝑓) + (2𝛽2 +

𝛽

2
) 𝑔(𝜑𝑌, 𝐷𝑓) = 0                         (4.1.78) 

bulunur. (4.1.77) ve (4.1.78) denklemleri arasında gerekli sadeleştirmeler yapılıp 

düzenlendiğinde 

{(2𝛽2 +
𝛽

2
)

2

+
𝛽2

4
}{𝑔(𝑌, 𝐷𝑓) − 𝜂(𝑌)𝜂(𝐷𝑓)} = 0                                 (4.1.79) 

olur, burada iki durum mevcuttur.  

Durum i) {(2𝛽2 +
𝛽

2
)

2
+

𝛽2

4
} = 0: 

{(2𝛽2 +
𝛽

2
)

2
+

𝛽2

4
} = 0 olsun. Bu durum ancak 𝛽 = 0  olursa gerçeklenir. Dolayısıyla 

𝑀  manifold kosimplektik veya verilen koneksiyona bağlı 𝜂-Einstein manifold bulunur. 

Durum ii) 𝑔(𝑌, 𝐷𝑓) − 𝜂(𝑌)𝜂(𝐷𝑓) = 0: 

𝑔(𝑌, 𝐷𝑓) − 𝜂(𝑌)𝜂(𝐷𝑓) = 0 ifadesi her 𝑌 vektör alanı için 

𝐷𝑓 = (𝜉𝑓)𝜉                                                                    (4.1.80) 
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haline dönüşür. (4.1.80) ifadesi (4.1.72) de yerine yazılırsa 

∇̅𝑌((𝜉𝑓)𝜉) = 𝑄̅𝑌 + 𝜆𝑌                                                  (4.1.81) 

elde edilir. (4.1.81) denkleminin her iki yanını bir X vektör alanı ile iç çarpalım. Bu durumda 

𝑔(∇̅𝑌((𝜉𝑓)𝜉), 𝑋) = 𝑔(𝑄̅𝑌, 𝑋) + 𝜆𝑔(𝑌, 𝑋)                                                  (4.1.82) 

dır. Yukarıdaki denklemde (1.2.28), (4.1.9) kullanılırsa 

𝑋((𝜉𝑓))𝜂(𝑌) − 𝛽(𝜉𝑓)𝑔(𝜑𝑌, 𝑋) +
1

2
(𝜉𝑓)𝑔(𝜑𝑌, 𝑋) − 𝛽(𝜉𝑓)𝜂(𝑌)𝜂(𝑋)

= 𝑔(𝑄𝑌, 𝑋) + 𝛽(𝛽 − 1)𝑔(𝑌, 𝜑𝑋) − [
1

2
+ 𝛽2] 𝜂(𝑌)𝜂(𝑋) + 𝛽2𝑔(𝑌, 𝑋) 

                +𝜆𝑔(𝑌, 𝑋)                                                                                      (4.1.83) 

olarak yazılabilir. Burada  (1.2.32)  denklemi kullanılıp gerekli düzenlemeler yapıldığında 

𝑋((𝜉𝑓))𝜂(𝑌) − 𝛽(𝜉𝑓)𝑔(𝜑𝑌, 𝑋) +
1

2
(𝜉𝑓)𝑔(𝜑𝑌, 𝑋) − 𝛽(𝜉𝑓)𝜂(𝑌)𝜂(𝑋)

= (
𝜏

2
− 𝛽2) 𝑔(𝑌, 𝑋) + (3𝛽2 −

𝜏

2
) 𝜂(𝑌)𝜂(𝑋) + 𝛽(𝛽 − 1)𝑔(𝑌, 𝜑𝑋) 

− [
1

2
+ 𝛽2] 𝜂(𝑌)𝜂(𝑋) + 𝛽2𝑔(𝑌, 𝑋) + 𝜆𝑔(𝑌, 𝑋)                    (4.1.84) 

bulunur. (4.1.84) da 𝑌 = 𝜉 alınırsa 

𝑋((𝜉𝑓)) − 𝛽(𝜉𝑓)𝜂(𝑋) = (2𝛽2 −
1

2
+ 𝜆) 𝜂(𝑋)                               (4.1.85) 

sonucu ortaya çıkar. (4.1.85) denkleminde 𝑋 yerine 𝑌, 𝑌 yerine 𝑋 yazalım: 

𝑌((𝜉𝑓))𝜂(𝑋) − 𝛽(𝜉𝑓)𝑔(𝜑𝑋, 𝑌) +
1

2
(𝜉𝑓)𝑔(𝜑𝑋, 𝑌) − 𝛽(𝜉𝑓)𝜂(𝑋)𝜂(𝑌)

= 𝑔(𝑄𝑋, 𝑌) + 𝛽(𝛽 − 1)𝑔(𝑋, 𝜑𝑌) − [
1

2
+ 𝛽2] 𝜂(𝑌)𝜂(𝑋) + 𝛽2𝑔(𝑌, 𝑋) 

+𝜆𝑔(𝑌, 𝑋)                                                                                                                (4.1.86) 

(4.1.84) ile (4.1.86) denklemleri taraf tarafa toplarsak 
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𝑌((𝜉𝑓))𝜂(𝑋) − 𝛽(𝜉𝑓)𝑔(𝜑𝑋, 𝑌) +
1

2
(𝜉𝑓)𝑔(𝜑𝑋, 𝑌) − 𝛽(𝜉𝑓)𝜂(𝑋)𝜂(𝑌) + 𝑋((𝜉𝑓))𝜂(𝑌)

− 𝛽(𝜉𝑓)𝑔(𝜑𝑌, 𝑋) +
1

2
(𝜉𝑓)𝑔(𝜑𝑌, 𝑋) − 𝛽(𝜉𝑓)𝜂(𝑌)𝜂(𝑋)

= 𝑔(𝑄𝑌, 𝑋) + 𝛽(𝛽 − 1)𝑔(𝑌, 𝜑𝑋) − [
1

2
+ 𝛽2] 𝜂(𝑌)𝜂(𝑋) + 𝛽2𝑔(𝑌, 𝑋)

+ 𝜆𝑔(𝑌, 𝑋) + 𝑔(𝑄𝑋, 𝑌) + 𝛽(𝛽 − 1)𝑔(𝑋, 𝜑𝑌) − [
1

2
+ 𝛽2] 𝜂(𝑌)𝜂(𝑋)

+ 𝛽2𝑔(𝑌, 𝑋) + 𝜆𝑔(𝑌, 𝑋) 

yani  

𝑌((𝜉𝑓))𝜂(𝑋) − 2𝛽(𝜉𝑓)𝜂(𝑋)𝜂(𝑌) + 𝑋((𝜉𝑓))𝜂(𝑌)

= 2𝑔(𝑄𝑌, 𝑋) − 2 [
1

2
+ 𝛽2] 𝜂(𝑌)𝜂(𝑋) + 2𝛽2𝑔(𝑌, 𝑋) + 2𝜆𝑔(𝑌, 𝑋) 

elde edilir. Bu denklem (4.1.72) denklemi gereği 

2 {(2𝛽2 −
1

2
+ 𝜆)} 𝜂(𝑋)𝜂(𝑌) − 𝛽(𝛽 − 1)𝑔(𝑌, 𝜑𝑋) = 2𝑔(∇̅𝑌𝐷𝑓, 𝑋) 

dır. Buradan  

∇̅𝑌𝐷𝑓 = 2 {(2𝛽2 −
1

2
+ 𝜆)} 𝜂(𝑌)𝜉 + 𝛽(𝛽 − 1)𝜑𝑌                                  (4.1.87) 

yazılabilir. (4.1.87) yardımıyla 𝑅̅(𝑋, 𝑌)𝐷𝑓 ifadesini tekrardan hesaplayalım. 

𝑅̅(𝑋, 𝑌)𝐷𝑓 = ∇̅𝑋∇̅𝑌𝐷𝑓 − ∇̅𝑌∇̅𝑋𝐷𝑓 − ∇̅[𝑋,𝑌]𝐷𝑓 

                      = ∇̅𝑋 [2 (2𝛽2 −
1

2
+ 𝜆) 𝜂(𝑌)𝜉 + 𝛽(𝛽 − 1)𝜑𝑌 ] − ∇̅𝑌[2 (2𝛽2 −

1

2
+

𝜆) 𝜂(𝑋)𝜉 

+𝛽(𝛽 −   1)𝜑𝑋] − [2 (2𝛽2 −
1

2
+ 𝜆) 𝜂([𝑋, 𝑌])𝜉 + 𝛽(𝛽 − 1)𝜑[𝑋, 𝑌]]              
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                          = 2 (2𝛽2 −
1

2
+ 𝜆) [𝜂(∇𝑋𝑌)𝜉 + 𝑔(𝑌, ∇𝑋𝜉)𝜉 + 𝜂(𝑌)∇𝑋𝜉] + 𝛽(𝛽 − 1)(∇𝑋φ)𝑌

+ 𝛽(𝛽 − 1)φ∇𝑋𝑌 + (2𝛽2 −
1

2
+ 𝜆) η(Y)φX − 2𝛽 (2𝛽2 −

1

2
+ 𝜆) η(Y)η(X)ξ

−
1

2
𝛽(𝛽 − 1)η(X)𝜑2Y − 𝛽2(𝛽 − 1)g(X, φY)ξ

− 2 (2𝛽2 −
1

2
+ 𝜆) [𝜂(∇𝑌𝑋)𝜉 + 𝑔(𝑋, ∇𝑌𝜉)𝜉 + 𝜂(𝑋)∇𝑌𝜉] − 𝛽(𝛽 − 1)(∇𝑌φ)𝑋

− 𝛽(𝛽 − 1)φ∇𝑌𝑋 − (2𝛽2 −
1

2
+ 𝜆) η(X)φY + 2𝛽 (2𝛽2 −

1

2
+ 𝜆) η(X)η(Y)ξ

+
1

2
𝛽(𝛽 − 1)η(Y)𝜑2X + 𝛽2(𝛽 − 1)g(Y, φX)ξ

− [2 (2𝛽2 −
1

2
+ 𝜆) 𝜂(∇𝑋𝑌 − ∇𝑌𝑋)𝜉 + 𝛽(𝛽 − 1)𝜑(∇𝑋𝑌 − ∇𝑌𝑋) ] 

 Son denklemde sadeleştirmeler yapılıp elde edilen denklemin  her iyi yanını 𝜉 ile iç 

çarpımı alındığında 

g(𝑅̅(𝑋, 𝑌)𝐷𝑓, 𝜉)  = 2 (2𝛽2 −
1

2
+ 𝜆) 𝑔(𝑌, ∇𝑋𝜉) + 𝛽(𝛽 − 1)𝑔((∇𝑋φ)𝑌, 𝜉) − 𝛽2(𝛽 −

1)g(X, φY) 

−  2 (2𝛽2 −
1

2
+ 𝜆) 𝑔(𝑋, ∇𝑌𝜉) − 𝛽(𝛽 − 1)𝑔((∇𝑌φ)𝑋, 𝜉) + 𝛽2(𝛽 − 1)g(Y, φX)      (4.1.88) 

bulunur. (1.2.28), (1.2.29) denklemleri (4.1.86) da yerine yazılırsa 

g(𝑅̅(𝑋, 𝑌)𝐷𝑓, 𝜉) = −4𝛽 (2𝛽2 −
1

2
+ 𝜆) 𝑔(𝑌, 𝜑𝑋) − 2𝛽2(𝛽 − 1)g(X, φY) 

Yukarıda (4.1.1) denklemi gözönünde bulundurulduğunda 

[−4𝛽 (2𝛽2 −
1

2
+ 𝜆) + 2𝛽2(𝛽 − 1)]𝑔(𝜑𝑋, 𝑌) = (𝜉𝑓)𝛽𝑔(𝜑𝑋, 𝑌) 

yani 

𝛽(−6𝛽2 + 2 − 4𝜆 − 2𝛽 − (𝜉𝑓))𝑔(𝜑𝑋, 𝑌) = 0 

sonucu ortaya çıkar. Burada 𝑔(𝑌, 𝜑𝑋) sıfır olamayacağından 

𝛽(−6𝛽2 + 2 − 4𝜆 − 2𝛽 − (𝜉𝑓)) = 0 

olma durumu kalır.  Burada iki durum söz konusudur: 

Durum i) 𝛽 = 0: 



122 

 

Bu durumda manifold kosimplektik manifolddur. 

Durum ii) −6𝛽2 + 2 − 4𝜆 − 2𝛽 − (𝜉𝑓) = 0 : 

Burada β nın sabit olması göz önünde bulundurulduğunda 𝜆 değerinin sabit olabilmesi 

için (𝜉𝑓) = 𝑠𝑎𝑏𝑖𝑡 = 𝑐  olması gerekir. Bu da (4.1.75) gereği 

𝐷𝑓 = 𝑐𝜉                                                                                    (4.1.89) 

demektir. Dolayısıyla   (4.1.72) denklemi (4.1.89) yardımıyla  

𝑆̅(𝑌, 𝑋) = −𝜆𝑔(𝑌, 𝑋) + 𝑔(∇̅𝑌𝑐𝜉, 𝑋)

= −𝜆𝑔(𝑌, 𝑋) − 𝑐𝛽𝑔(𝜑𝑌, 𝑋) +
1

2
𝑐𝑔(𝜑𝑌, 𝑋) − 𝛽𝑐𝜂(𝑌)𝜂(𝑋) 

olarak yazılabilir. Burada X ve Y vektör alanlarına göre kontraksiyon yapılırsa 

𝜏̅ = −3𝜆 − 𝛽𝑐 

elde edilir. Sonuçta manifold (M,𝜑3, 𝑓1)  koneksiyonuna göre sabit eğriliklidir. 

 

4.2. (𝑴,𝝋𝟑, 𝒇𝟏)  Çeyrek-Simetrik Metrik Olmayan Koneksiyonu İle Verilen  𝒏-Boyutlu 

       𝒇 −Kenmotsu Manifoldlar 

Önerme 4.2.1.:  Bir 𝑛 = 2𝑚 + 1-boyutlu 𝑓-Kenmotsu  manifoldu 𝑀 olsun. 𝑀 üzerinde  

Levi-Civita koneksiyonu  ya göre eğrilik tensörü 𝑅 ve (𝑀,𝜑3, 𝑓1)  çeyrek-simetrik metrik 

olmayan koneksiyonu ∇̅ ye göre eğrilik tensörü R̅ olmak üzere, ∀ 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) için 𝑅 ile R̅  

arasındaki bağıntı 

𝑅̅(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 − (𝑋𝑓1)𝑔(𝑌, 𝑍)𝜉 + (𝑌𝑓1)𝑔(𝑋, 𝑍)𝜉 + 𝑓1(𝑓1 + 𝑓)[𝑔(𝑌, 𝑍)𝜂(𝑋)𝜉 −

                        𝑔(𝑋, 𝑍)𝜂(𝑌)𝜉] + 𝑓1𝑓[𝑔(𝑋, 𝑍)𝑌 − 𝑔(𝑌, 𝑍)𝑋] +
𝑓+𝑓1

2
[𝑔(𝑋, 𝑍)𝜑𝑌 − 𝑔(𝑌, 𝑍)𝜑𝑋 −

          𝜂(𝑌)𝑔(𝜑𝑋, 𝑍)𝜉 + 𝜂(𝑋)𝑔(𝜑𝑌, 𝑍)𝜉] +
1

4
[𝜂(𝑋)𝜂(𝑍)𝑌 − 𝜂(𝑌)𝜂(𝑍)𝑋] +

                             
1

2
𝑓{𝜂(𝑌)𝜂(𝑍)𝜑𝑋 − 𝜂(𝑋)𝜂(𝑍)𝜑𝑌} + (𝑓 + 𝑓1)𝜂(𝑍)𝑔(𝑌, 𝜑𝑋)𝜉                 (4.2.1) 

dir .   

İspat : Çeyrek-simetrik metrik olmayan koneksiyon ∇̅ ye göre Riemann eğrilik tensörü 

R̅ olmak üzere, ∀ 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) için hemen hemen değme metrik manifoldlarda  (2.1.2) 
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denklemini bulmuştuk. 𝑀 bir 𝑛-boyutlu 𝑓 − Kenmotsu  manifold olduğundan  bu denklemde 

(1.2.23) ve (1.2.24) ifadeleri kullanılırsa 

𝑅̅(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 − (𝑋𝑓1)𝑔(𝑌, 𝑍)𝜉 + (𝑌𝑓1)𝑔(𝑋, 𝑍)𝜉

+ 𝑓1
2[𝑔(𝑌, 𝑍)𝜂(𝑋)𝜉 − 𝑔(𝑋, 𝑍)𝜂(𝑌)𝜉] + 𝑓1𝛽𝑔(𝑌, 𝑍)𝜑𝑋 − 𝑓1𝛽𝑔(𝑋, 𝑍)𝜑𝑋

+
1

2
[𝛽𝜂(𝑍)𝑔(𝑋, 𝑌)𝜉 − 𝛽𝜂(𝑍)𝜂(𝑌)𝑋 − 𝛽𝜂(𝑌)g(X, Z)ξ + βη(Z)η(Y)X

+ β 𝜂(𝑋)g(Y, Z)ξ − βη(X)η(Z)Y + βη(X)g(Y, Z)ξ − βη(X)η(Z)Y

− βη(Z)g(Y, X)ξ + βη(Z)η(X)Y + 𝛽𝑔(𝜑𝑋, 𝑌)𝜑𝑍 − 𝛽𝑔(𝜑𝑌, 𝑋)𝜑𝑍

+ 𝛽𝑔(𝜑𝑌, 𝑍)𝜑𝑋 − 𝛽𝑔(𝜑𝑋, 𝑍)𝜑𝑌 + 2𝑓1𝜂(𝑍)𝑔(𝜑𝑋, 𝑌)𝜉 − 𝑓1𝜂(𝑋)𝑔(𝜑𝑍, 𝑌)𝜉

+ 𝑓1𝜂(𝑌)𝑔(𝜑𝑍, 𝑋)𝜉 − 𝑓1𝑔(𝑌, 𝑍)𝜑𝑋 + 𝑓1𝑔(𝑋, 𝑍)𝜑𝑌 +
1

2
𝜂(𝑋)𝜂(𝑍)𝑌

−
1

2
𝜂(𝑌)𝜂(𝑍)𝑋], 

dır. Burada gerekli sadeleştirmeler (4.2.1) denkleminin elde edileceği açıktır. 

Önerme 4.2.2.: 𝑀 bir 𝑛 = 2𝑚 + 1 −boyutlu 𝑓 -Kenmotsu  manifoldu olsun. 𝑀 

üzerinde  Levi-Civita koneksiyonu  ya göre eğrilik tensörü 𝑅 ve (𝑀,𝜑3, 𝑓1)  çeyrek-simetrik 

metrik olmayan koneksiyonu ∇̅ ye göre eğrilik tensörü R̅ olmak üzere, ∀ 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) için; 

𝑅̅(𝑋, 𝑌)𝜉 = (𝑓2 +
1

4
+ 𝑓1𝑓) {𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋} − (𝑌𝑓)𝑋 + (𝑋𝑓)𝑌 − ((𝑋𝑓) +

   (𝑋𝑓1))𝜂(𝑌)𝜉 + ((𝑌𝑓) + (𝑌𝑓1))𝜂(𝑋)𝜉 +
𝑓1

2
{𝜂(𝑋)𝜑𝑌 − 𝜂(𝑌)𝜑𝑋} +

   (𝑓 + 𝑓1)𝑔(𝑌, 𝜑𝑋)𝜉                                                                                                                (4.2.2)                                       

dır. 

İspat: İlk olarak (4.2.1) denkleminde 𝑍 = 𝜉  alınırsa 

𝑅̅(𝑋, 𝑌)𝜉 = 𝑅(𝑋, 𝑌)𝜉 − (𝑋𝑓1)𝜂(𝑌)𝜉 + (𝑌𝑓1)𝜂(𝑋)𝜉 + 𝑓1𝑓{𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋} +
𝑓 + 𝑓1

2
{𝜂(𝑋)𝜑𝑌

− 𝜂(𝑌)𝜑𝑋} +
1

4
{𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋} +

1

2
𝑓{𝜂(𝑌)𝜑𝑋 − 𝜂(𝑋)𝜑𝑌}

+ (𝑓 + 𝑓1)𝑔(𝑌, 𝜑𝑋)𝜉, 

bulunur. 𝑀 bir 𝑛-boyutlu 𝑓 -Kenmotsu  manifoldu olduğundan (1.2.25) denklemi yardımıyla 

yukarıdaki denklem 
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𝑅̅(𝑋, 𝑌)𝜉 = 𝑓2[𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋] − (𝑌𝑓)𝑋 + (𝑋𝑓)𝑌 − (𝑋𝑓)𝜂(𝑌)𝜉 + (𝑌𝑓)𝜂(𝑋)𝜉

− (𝑋𝑓1)𝜂(𝑌)𝜉 + (𝑌𝑓1)𝜂(𝑋)𝜉 + 𝑓1𝑓[𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋]

+
𝑓 + 𝑓1

2
[𝜂(𝑋)𝜑𝑌 − 𝜂(𝑌)𝜑𝑋] +

1

4
[𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋]

+
1

2
𝑓{𝜂(𝑌)𝜑𝑋 − 𝜂(𝑋)𝜑𝑌} + (𝑓 + 𝑓1)𝑔(𝑌, 𝜑𝑋)𝜉, 

halini alır. Son olarak burada gerekli düzenlemeler yapıldığında  

𝑅̅(𝑋, 𝑌)𝜉 = (𝑓2 +
1

4
+ 𝑓1𝑓) [𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋] − (𝑌𝑓)𝑋 + (𝑋𝑓)𝑌 − [(𝑋𝑓) + (𝑋𝑓1)]𝜂(𝑌)𝜉

+ [(𝑌𝑓) + (𝑌𝑓1)]𝜂(𝑋)𝜉 +
𝑓1

2
[𝜂(𝑋)𝜑𝑌 − 𝜂(𝑌)𝜑𝑋] + (𝑓 + 𝑓1)𝑔(𝑌, 𝜑𝑋)𝜉, 

sonucu ortaya çıkar. 

Önerme 4.2.3.: 𝑀 bir 𝑛 = 2𝑚 + 1-boyutlu 𝑓-Kenmotsu  manifoldu olsun. 𝑀 üzerinde  

(𝑀,𝜑3, 𝑓1)  çeyrek-simetrik metrik olmayan koneksiyonu ∇̅ ye göre eğrilik tensörü R̅ olmak 

üzere, ∀ 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) için; 

𝑅̅(𝑋, 𝑌)𝑍 = −𝑅̅(𝑌, 𝑋)𝑍 

sağlanır. 

İspat: (4.2.1) denkleminde 𝑌 = 𝑋 ve 𝑋 = 𝑌 alınırsa 

𝑅̅(𝑌, 𝑋)𝑍 = 𝑅(𝑌, 𝑋)𝑍 − (𝑌𝑓1)𝑔(𝑋, 𝑍)𝜉 + (𝑋𝑓1)𝑔(𝑌, 𝑍)𝜉 + 𝑓1(𝑓1 + 𝑓)[𝑔(𝑋, 𝑍)𝜂(𝑌)𝜉 −

                       𝑔(𝑌, 𝑍)𝜂(𝑋)𝜉] + 𝑓1𝑓[𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌] +
𝑓+𝑓1

2
[𝑔(𝑌, 𝑍)𝜑𝑋 − 𝑔(𝑋, 𝑍)𝜑𝑌 −

                        𝜂(𝑋)𝑔(𝜑𝑌, 𝑍)𝜉 + 𝜂(𝑌)𝑔(𝜑𝑋, 𝑍)𝜉] +
1

4
{𝜂(𝑌)𝜂(𝑍)𝑋 − 𝜂(𝑋)𝜂(𝑍)𝑌} +

                         
1

2
𝑓{𝜂(𝑋)𝜂(𝑍)𝜑𝑌 − 𝜂(𝑌)𝜂(𝑍)𝜑𝑋} + {𝑓 + 𝑓1}𝜂(𝑍)𝑔(𝑋, 𝜑𝑌)𝜉                    (4.2.3)                                  

elde edilir. (4.2.1) ile (4.2.3) denklemleri taraf tarafa toplandığında 

𝑅̅(𝑋, 𝑌)𝑍 + 𝑅̅(𝑌, 𝑋)𝑍 = 𝑅(𝑋, 𝑌)𝑍 + 𝑅(𝑌, 𝑋)𝑍 − (𝑋𝑓1)𝑔(𝑌, 𝑍)𝜉 + (𝑌𝑓1)𝑔(𝑋, 𝑍)𝜉 +

𝑓1(𝑓1 + 𝑓)[𝑔(𝑌, 𝑍)𝜂(𝑋)𝜉 − 𝑔(𝑋, 𝑍)𝜂(𝑌)𝜉] + 𝑓1𝑓[𝑔(𝑋, 𝑍)𝑌 − 𝑔(𝑌, 𝑍)𝑋] +
𝑓+𝑓1

2
[𝑔(𝑋, 𝑍)𝜑𝑌 −

𝑔(𝑌, 𝑍)𝜑𝑋 − 𝜂(𝑌)𝑔(𝜑𝑋, 𝑍)𝜉 + 𝜂(𝑋)𝑔(𝜑𝑌, 𝑍)𝜉] +
1

4
[𝜂(𝑋)𝜂(𝑍)𝑌 − 𝜂(𝑌)𝜂(𝑍)𝑋] +

1

2
𝑓{𝜂(𝑌)𝜂(𝑍)𝜑𝑋 − 𝜂(𝑋)𝜂(𝑍)𝜑𝑌} + (𝑓 + 𝑓1)𝜂(𝑍)𝑔(𝑌, 𝜑𝑋)𝜉 − (𝑌𝑓1)𝑔(𝑋, 𝑍)𝜉 +

(𝑋𝑓1)𝑔(𝑌, 𝑍)𝜉 + 𝑓1(𝑓1 + 𝑓)[𝑔(𝑋, 𝑍)𝜂(𝑌)𝜉 − 𝑔(𝑌, 𝑍)𝜂(𝑋)𝜉] + 𝑓1𝑓[𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌] +
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𝑓+𝑓1

2
[𝑔(𝑌, 𝑍)𝜑𝑋 − 𝑔(𝑋, 𝑍)𝜑𝑌 − 𝜂(𝑋)𝑔(𝜑𝑌, 𝑍)𝜉 + 𝜂(𝑌)𝑔(𝜑𝑋, 𝑍)𝜉] +

1

4
[𝜂(𝑌)𝜂(𝑍)𝑋 −

𝜂(𝑋)𝜂(𝑍)𝑌] +
1

2
𝑓{𝜂(𝑋)𝜂(𝑍)𝜑𝑌 − 𝜂(𝑌)𝜂(𝑍)𝜑𝑋} + (𝑓 + 𝑓1)𝜂(𝑍)𝑔(𝑋, 𝜑𝑌)𝜉      

yazılabilir. Burada  sadeleştirmeler yapılırsa 

𝑅̅(𝑋, 𝑌)𝑍 = −𝑅̅(𝑌, 𝑋)𝑍 

bulunur.  

 Ayrıca (4.2.1) denkleminde sırasıyla ilk önce 𝑋 = 𝑌,  𝑌 = 𝑍 ve 𝑍 = 𝑋 olarak 

alındığında 

𝑅̅(𝑌, 𝑍)𝑋 = 𝑅(𝑌, 𝑍)𝑋 − (𝑌𝑓1)𝑔(𝑍, 𝑋)𝜉 + (𝑍𝑓1)𝑔(𝑌, 𝑋)𝜉 + 𝑓1(𝑓1 + 𝑓)[𝑔(𝑍, 𝑋)𝜂(𝑌)𝜉 −

𝑔(𝑌, 𝑋)𝜂(𝑍)𝜉] + 𝑓1𝑓[𝑔(𝑌, 𝑋)𝑍 − 𝑔(𝑍, 𝑋)𝑌] +
𝑓+𝑓1

2
[𝑔(𝑌, 𝑋)𝜑𝑍 − 𝑔(𝑍, 𝑋)𝜑𝑌 −

𝜂(𝑍)𝑔(𝜑𝑌, 𝑋)𝜉 + 𝜂(𝑌)𝑔(𝜑𝑍, 𝑋)𝜉] +
1

4
[𝜂(𝑌)𝜂(𝑋)𝑍 − 𝜂(𝑍)𝜂(𝑋)𝑌] +

1

2
𝑓{𝜂(𝑍)𝜂(𝑋)𝜑𝑌 −

𝜂(𝑌)𝜂(𝑋)𝜑𝑍} + (𝑓 + 𝑓1)𝜂(𝑋)𝑔(𝑍, 𝜑𝑌)𝜉                                                                           (4.2.4) 

bulunur. Benzer şekilde (4.2.4)  denkleminde sırasıyla 𝑌 = 𝑍, 𝑍 = 𝑋 ve 𝑋 = 𝑌 yazıldığında 

𝑅̅(𝑍, 𝑋)𝑌 = 𝑅(𝑍, 𝑋)𝑌 − (𝑍𝑓1)𝑔(𝑋, 𝑌)𝜉 + (𝑋𝑓1)𝑔(𝑍, 𝑌)𝜉 + 𝑓1(𝑓1 + 𝑓)[𝑔(𝑋, 𝑌)𝜂(𝑍)𝜉 −

𝑔(𝑍, 𝑌)𝜂(𝑋)𝜉] + 𝑓1𝑓[𝑔(𝑍, 𝑌)𝑋 − 𝑔(𝑋, 𝑌)𝑍] +
𝑓+𝑓1

2
[𝑔(𝑍, 𝑌)𝜑𝑋 − 𝑔(𝑋, 𝑌)𝜑𝑍 −

𝜂(𝑋)𝑔(𝜑𝑍, 𝑌)𝜉 + 𝜂(𝑍)𝑔(𝜑𝑋, 𝑌)𝜉] +
1

4
[𝜂(𝑍)𝜂(𝑌)𝑋 − 𝜂(𝑋)𝜂(𝑌)𝑍] +

1

2
𝑓{𝜂(𝑋)𝜂(𝑌)𝜑𝑍 −

𝜂(𝑍)𝜂(𝑌)𝜑𝑋} + (𝑓 + 𝑓1)𝜂(𝑌)𝑔(𝑋, 𝜑𝑍)𝜉                                                                             (4.2.5) 

elde edilir. Son olarak (4.2.1), (4.2.4) ve (4.2.5) denklemlerini taraf tarafa toplarsak 

𝑅̅(𝑋, 𝑌)𝑍+𝑅̅(𝑌, 𝑍)𝑋 + 𝑅̅(𝑍, 𝑋)𝑌 = 2(𝑓 + 𝑓1)𝜂(𝑍)𝑔(𝑌, 𝜑𝑋)𝜉 + 2(𝑓 + 𝑓1)𝜂(𝑋)𝑔(𝑍, 𝜑𝑌)𝜉 +

2(𝑓 + 𝑓1)𝜂(𝑌)𝑔(𝑋, 𝜑𝑍)𝜉                       (4.2.6) 

bulunur. Böylece aşağıdaki sonucu verebiliriz: 

Sonuç 4.2.1.: 𝑀 bir 𝑛 = 2𝑚 + 1 −boyutlu 𝑓 -Kenmotsu manifoldu olsun. 𝑀 

manifoldunun (𝑀,𝜑3, 𝑓1)  çeyrek simetrik metrik olmayan koneksiyonu  ∇̅ ye göre eğrilik 

tensörü R̅ olmak üzere,  ∀ 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) için (4.2.6) gereği  bu koneksiyona bağlı 1. Bianchi 

özdeşliği sağlanır ancak ve ancak  𝑓1 + 𝑓 = 0 dır. 

Önerme 4.2.4.: 𝑀 bir 𝑛 = 2𝑚 + 1 −boyutlu 𝑓 -Kenmotsu manifoldu olsun. 𝑀,  

(𝑀,𝜑3, 𝑓1)  çeyrek simetrik metrik olmayan koneksiyonu ∇̅ ye  göre Ricci tensörü, Ricci 

operatörü ve skaler eğriliği sırasıyla  S̅, 𝑄̅ ve 𝜏̅ olmak üzere, ∀ 𝑌, 𝑍 ∈ 𝜒(𝑀) için  
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      𝑆̅(𝑌, 𝑍) =

𝑆(𝑌, 𝑍) + (𝑌𝑓1)𝜂(𝑍) + (𝑓1 + 𝑓)𝑔(𝜑𝑌, 𝑍) − [𝑓1(𝑓1 + 𝑓) +
1

4
(𝑛 − 1)] 𝜂(𝑌)𝜂(𝑍) +

                     [𝑓1(𝑓1 + 𝑓) + (1 − 𝑛)𝑓1𝑓 − (𝜉𝑓1)]𝑔(𝑌, 𝑍),                                                        (4.2.7) 

𝑄̅Y = QY + (𝑌𝑓1)𝜉 + (𝑓1 + 𝑓)𝜑𝑌 − [𝑓1(𝑓1 + 𝑓) +
1

4
(𝑛 − 1)] 𝜂(𝑌)𝜉 + [𝑓1(𝑓1 + 𝑓) +

(1 − 𝑛)𝑓1𝑓 −   (𝜉𝑓1)]𝑌,                                                                                                            (4.2.8) 

𝜏̅ = 𝜏 + (𝑛 − 1) {𝑓1(𝑓1 + 𝑓) − (𝜉𝑓1) − 𝑓1𝑓 −
1

4
},                                                         (4.2.9) 

dir.   

 İspat : (4.1.1) denkleminin her iki yanının 𝑊 vektör alanı ile iç çarpımı alındığında  

𝑔(𝑅̅(𝑋, 𝑌)𝑍, 𝑊) = 𝑔(𝑅(𝑋, 𝑌)𝑍, 𝑊) − (𝑋𝑓1)𝑔(𝑌, 𝑍)𝜂(𝑊) + (𝑌𝑓1)𝑔(𝑋, 𝑍)𝜂(𝑊) +

𝑓1(𝑓1 + 𝑓)[𝑔(𝑌, 𝑍)𝜂(𝑋)𝜂(𝑊) − 𝑔(𝑋, 𝑍)𝜂(𝑌)𝜂(𝑊)] +

𝑓1𝑓[𝑔(𝑋, 𝑍)𝑔(𝑌, 𝑊) − 𝑔(𝑌, 𝑍)𝑔(𝑋, 𝑊)] +
𝑓+𝑓1

2
[𝑔(𝑋, 𝑍)𝑔(𝜑𝑌, 𝑊) − 𝑔(𝑌, 𝑍)𝑔(𝜑𝑋, 𝑊) −

𝜂(𝑌)𝑔(𝜑𝑋, 𝑍)𝜂(𝑊) + 𝜂(𝑋)𝑔(𝜑𝑌, 𝑍)𝜂(𝑊)] +
1

4
[𝜂(𝑋)𝜂(𝑍)𝑔(𝑌, 𝑊) − 𝜂(𝑌)𝜂(𝑍)𝑔(𝑋, 𝑊)] +

1

2
𝑓{𝜂(𝑌)𝜂(𝑍)𝑔(𝜑𝑋, 𝑊) − 𝜂(𝑋)𝜂(𝑍)𝑔(𝜑𝑌, 𝑊)} + (𝑓 + 𝑓1)𝜂(𝑍)𝑔(𝑌, 𝜑𝑋)𝜂(𝑊)  

yazılabilir.  Buradan da 𝑋 ve 𝑊 vektör alanlarına göre kontraksiyon yapıldığında  

𝑆̅(𝑌, 𝑍) = 𝑆(𝑌, 𝑍) − (𝜉𝑓1)𝑔(𝑌, 𝑍) + (𝑌𝑓1)𝜂(𝑍) + 𝑓1(𝑓1 + 𝑓)[𝑔(𝑌, 𝑍) − 𝜂(𝑌)𝜂(𝑍)] +

𝑓1𝑓[𝑔(𝑌, 𝑍) − 𝑛𝑔(𝑌, 𝑍)] +
𝑓+𝑓1

2
[𝑔(𝜑𝑌, 𝑍) + 𝑔(𝜑𝑌, 𝑍)] +

1

4
[𝜂(𝑌)𝜂(𝑍) − 𝜂(𝑌)𝜂(𝑍)𝑛]     

elde edilir. Yukarıda  gerekli düzenlemeler yapıldığında 

𝑆̅(𝑌, 𝑍) = 𝑆(𝑌, 𝑍) + (𝑌𝑓1)𝜂(𝑍) + (𝑓1 + 𝑓)𝑔(𝜑𝑌, 𝑍) − [𝑓1(𝑓1 + 𝑓) +
1

4
(𝑛 − 1)] 𝜂(𝑌)𝜂(𝑍)

+ [𝑓1(𝑓1 + 𝑓) + (1 − 𝑛)𝑓1𝑓 − (𝜉𝑓1)]𝑔(𝑌, 𝑍)    

  denklemi elde edilir. (4.2.7) denklemi ∀𝑍 ∈ 𝜒(𝑀) için  

𝑄̅Y = QY + (𝑌𝑓1)𝜉 + (𝑓1 + 𝑓)𝜑𝑌 − {𝑓1(𝑓1 + 𝑓) +
1

4
(𝑛 − 1)} 𝜂(𝑌)𝜉 + {𝑓1(𝑓1 + 𝑓) + (1

− 𝑛)𝑓1𝑓 − (𝜉𝑓1)}𝑌                                             

haline dönüşür. 

 (4.2.7) denkleminde  𝑌 ve 𝑍 vektör alanlarına göre kontraksiyon yapıldığında  
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𝜏̅ = 𝜏 + (𝜉𝑓1) − [𝑓1(𝑓1 + 𝑓) +
1

4
(𝑛 − 1)] + [𝑓1(𝑓1 + 𝑓) + (1 − 𝑛)𝑓1𝑓 − (𝜉𝑓1)]𝑛  

bulunur. Yukarıdaki denklemde gerekli düzenlemeler yapıldığında 

𝜏̅ = 𝜏 + (𝑛 − 1){𝑓1(𝑓1 + 𝑓) − (𝜉𝑓1) − 𝑓1𝑓 −
1

4
} 

dır. 

Önerme 4.2.5.: 𝑀 bir 𝑛 = 2𝑚 + 1-boyutlu 𝑓-Kenmotsu manifoldu olsun. 𝑀,  

(𝑀,𝜑3, 𝑓1)    çeyrek simetrik metrik olmayan koneksiyonu ∇̅ ye  göre Ricci tensörü  S̅ olmak 

üzere, ∀ 𝑌 ∈ 𝜒(𝑀) için  

               𝑆̅(𝑌, 𝜉) = (2 − 𝑛)(𝑌𝑓) + (𝑌𝑓1) 

                              + {𝑓2(1 − 𝑛) − (𝜉𝑓) −
1

4
(𝑛 − 1) + (1 − 𝑛)𝑓1𝑓 − (𝜉𝑓1)} 𝜂(𝑌),                       

(4.2.10) 

İspat: (4.2.7) denklemi 𝑍 = 𝜉 için  

𝑆̅(𝑌, 𝜉) = 𝑆(𝑌, 𝜉) + (𝑌𝑓1) − [𝑓1(𝑓1 + 𝑓) +
1

4
(𝑛 − 1)] 𝜂(𝑌)

+ [𝑓1(𝑓1 + 𝑓) + (1 − 𝑛)𝑓1𝑓 − (𝜉𝑓1)]𝜂(𝑌) 

halini alır. Son denklemde (1.2.33) kullanılırsa 

𝑆̅(𝑌, 𝜉) = (2 − 𝑛)(𝑌𝑓) + {𝑓2(1 − 𝑛) − (𝜉𝑓)}𝜂(𝑌) + (𝑌𝑓1) − [𝑓1(𝑓1 + 𝑓) +
1

4
(𝑛 − 1)] 𝜂(𝑌)

+ [𝑓1(𝑓1 + 𝑓) + (1 − 𝑛)𝑓1𝑓 − (𝜉𝑓1)]𝜂(𝑌) 

                  = (2 − 𝑛)(𝑌𝑓) + (𝑌𝑓1)

+ {𝑓2(1 − 𝑛) − (𝜉𝑓) −
1

4
(𝑛 − 1) + (1 − 𝑛)𝑓1𝑓 − (𝜉𝑓1)} 𝜂(𝑌) 

sonucu elde edilir. 

Teorem 4.2.1.: 𝑀 bir 𝑛 = 2𝑚 + 1-boyutlu 𝑓 −Kenmotsu  manifoldu olsun. 𝑀, 

(𝑀,𝜑3, 𝑓1) çeyrek simetrik metrik olmayan koneksiyonu ∇̅ ye göre Ricci tensörü simetriktir 

ancak ve ancak −𝑓 = 𝑓1 = 𝑠𝑏𝑡 dir. 
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İspat: Kabul edelim ki bir 𝑛-boyutlu 𝑓 -Kenmotsu  manifoldu üzerinde (𝑀,𝜑3, 𝑓1)  

 çeyrek simetrik metrik olmayan koneksiyonu ∇̅ ye göre göre Ricci tensörü simetrik olsun yani 

∀ 𝑍, 𝑌 ∈ 𝜒(𝑀) için 

𝑆̅(𝑌, 𝑍) = 𝑆̅(𝑍, 𝑌), 

 sağlansın. Öncelikle  𝑆̅(𝑍, 𝑌) ifadesini bulabilmek için (4.2.7) denkleminde 𝑌 yerine 𝑍, 𝑍 yerine 

𝑌 yazalım. Bu durumda  

𝑆̅(𝑍, 𝑌) = 𝑆(𝑍, 𝑌) + (𝑍𝑓1)𝜂(𝑌) + (𝑓1 + 𝑓)𝑔(𝜑𝑍, 𝑌) − [𝑓1(𝑓1 + 𝑓) +
1

4
(𝑛 − 1)] 𝜂(𝑍)𝜂(𝑌) +

                    [𝑓1(𝑓1 + 𝑓) + (1 − 𝑛)𝑓1𝑓 − (𝜉𝑓1)]𝑔(𝑍, 𝑌)                                                           (4.2.11) 

ifadesi elde edilir. (4.2.7) ve (4.2.11) denklemleri 𝑆̅(𝑌, 𝑍) = 𝑆̅(𝑍, 𝑌) gereği 

𝑆(𝑌, 𝑍) + (𝑌𝑓1)𝜂(𝑍) + (𝑓1 + 𝑓)𝑔(𝜑𝑌, 𝑍) − [𝑓1(𝑓1 + 𝑓) +
1

4
(𝑛 − 1)] 𝜂(𝑌)𝜂(𝑍)

+ [𝑓1(𝑓1 + 𝑓) + (1 − 𝑛)𝑓1𝑓 − (𝜉𝑓1)]𝑔(𝑌, 𝑍)

= 𝑆(𝑍, 𝑌) + (𝑍𝑓1)𝜂(𝑌) + (𝑓1 + 𝑓)𝑔(𝜑𝑍, 𝑌)

− [𝑓1(𝑓1 + 𝑓) +
1

4
(𝑛 − 1)] 𝜂(𝑍)𝜂(𝑌)

+ [𝑓1(𝑓1 + 𝑓) + (1 − 𝑛)𝑓1𝑓 − (𝜉𝑓1)]𝑔(𝑍, 𝑌)    

halini alır. Burada gerekli sadeleştirmeler yapıldığında 

(𝑌𝑓1)𝜂(𝑍) + (𝑓1 + 𝑓)𝑔(𝜑𝑌, 𝑍) = (𝑍𝑓1)𝜂(𝑌) + (𝑓1 + 𝑓)𝑔(𝜑𝑍, 𝑌) 

yada 

(𝑌𝑓1)𝜂(𝑍) − (𝑍𝑓1)𝜂(𝑌) + 2(𝑓1 + 𝑓)𝑔(𝜑𝑌, 𝑍) = 0 

bulunur. Buradan da −𝑓 = 𝑓1 = 𝑠𝑏𝑡 olduğu açıktır. Tersi de kolayca gösterilebilir. 

Bundan sonraki teoremlerde karışıklık yaşamamak ve işlem kolaylığı için 𝑓 = 𝑓1 alacağız. 

Teorem 4.2.2.: 𝑀, 𝑓1 sabit olacak şekilde 3-boyutlu 𝑓1-Kenmotsu manifoldu olsun. 𝑀 

üzerindeki (𝑀,𝜑3, 𝑓1)  çeyrek simetrik metrik olmayan koneksiyonu ∇̅ olmak üzere,  𝑏 

fonksiyonu için 𝑉 = 𝑏𝜉 olmak şartıyla, manifold Ricci soliton olma şartını sağlasın. Bu takdirde 

∇̅ koneksiyonuna bağlı η-Einsteindır. 

İspat:  𝑀 , 𝑓1 sabit olacak şekilde  3- boyutlu 𝑓1=𝑓  Kenmotsu manifoldu olsun. 𝑀 

üzerindeki (𝑀,𝜑3, 𝑓1)  çeyrek simetrik metrik olmayan koneksiyonu ∇̅ olmak üzere,  𝑏  
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fonksiyonu için 𝑉 = 𝑏𝜉 olmak şartıyla, manifold verilen koneksiyona bağlı  Ricci soliton olma 

şartını sağlasın. O halde (1.3.1) ile verilen, 

(
1

2
𝐿̅𝑉𝑔 + 𝑆̅ + 𝜆𝑔)(𝑋, 𝑌) = 0,                                                           (4.2.12) 

denklemi, 

(𝐿̅𝑉𝑔)(𝑋, 𝑌) + 2𝑆̅(𝑋, 𝑌) + 2𝜆𝑔(𝑋, 𝑌) = 0                                                         

haline dönüşür. (4.2.12) de Lie türevi özellikleri kullanılırsa 

𝑔(∇̅𝑋𝑉, 𝑌) + 𝑔(∇̅𝑌𝑉, 𝑉) + 2𝑆̅(𝑋, 𝑌) + 2𝜆𝑔(𝑋, 𝑌) = 0,                                             

elde edilir. Burada 𝑉 = 𝑏𝜉  alınırsa ve (2.1.3) denklemi yardımıyla 

𝑔(∇𝑋𝑏𝜉, 𝑌) −
1

2
𝜂(𝑋)𝑔(𝜑𝑏𝜉, 𝑌) +

1

2
𝑏𝑔(𝜑𝑋, 𝑌) − 𝑓1𝑏𝜂(𝑋)𝜂(𝑌) + 𝑔(∇𝑌𝑏𝜉, 𝑋)

−
1

2
𝜂(𝑌)𝑔(𝜑𝑏𝜉, 𝑋) +

1

2
𝑏𝑔(𝜑𝑌, 𝑋) − 𝑓1𝑏𝜂(𝑋)𝜂(𝑌) + 2𝑆̅(𝑋, 𝑌) + 2𝜆𝑔(𝑋, 𝑌)

= 0,                  

yani 

               (𝑋𝑏)𝜂(𝑌) + 𝑏𝑔(∇𝑋𝜉, 𝑌) + (𝑌𝑏)𝜂(𝑋) + 𝑏𝑔(∇𝑌𝜉, 𝑋) − 2𝑓1𝑏𝜂(𝑋)𝜂(𝑌) + 2𝑆̅(𝑋, 𝑌) 

                 +2𝜆𝑔(𝑋, 𝑌) = 0                                                                                                              (4.2.13) 

dır. (4.2.13) ifadesinde (1.2.24) denklemi kullanılırsa 

(𝑋𝑏)𝜂(𝑌) + 2𝑓1𝑏𝑔(𝑋, 𝑌) + (𝑌𝑏)𝜂(𝑋) − 4𝑓1𝑏𝜂(𝑋)𝜂(𝑌) + 2𝑆̅(𝑋, 𝑌) + 2𝜆𝑔(𝑋, 𝑌)       

                                                      = 0                                                          (4.2.14) 

şekline dönüşür. (4.2.14) denkleminde her 𝑌 gördüğümüz yere 𝜉 yazılıp ve burada  (3.2.2.9) 

denklemini kullandığımızda 

  (𝜉𝑏)𝜂(𝑋) + (𝑋𝑏) − 2𝑓1𝑏𝜂(𝑋) + 2 (−4𝑓1
2 −

1

2
) 𝜂(𝑋) + 2𝜆𝜂(𝑋) = 0                            (4.2.15) 

bulunur. (4.2.15)  denkleminde bu defa 𝑋 = 𝜉 alınırsa 

                             2(𝜉𝑏) − 2𝑓1𝑏 + 2 (−4𝑓1
2 −

1

2
) + 2𝜆 = 0                                                             

(4.2.16) 

yani 
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                                             (𝜉𝑏) = −𝜆 + 𝑓1𝑏 + 4𝑓1
2 +

1

2
                                                                

(4.2.17) 

sonucu ortaya çıkar. Bu denklem (4.2.15)  de  kullanılıp gerekli düzenlemeler yapılırsa 

                                            (𝑑𝑏) = (−𝜆 + 𝑓1𝑏 + 4𝑓1
2 +

1

2
)𝜂                                                      

(4.2.18) 

elde edilir. (4.2.18) denkleminin her iki yanına d uygulanırsa  

(−𝜆 + 𝑓1𝑏 + 4𝑓1
2 +

1

2
)𝑑𝜂 = 0 

bulunur. Burada 𝑑𝜂 ≠ 0 olacağından 

(−𝜆 + 𝑓1𝑏 + 4𝑓1
2 +

1

2
) = 0                                                                

olur. Bu ifade (4.2.18) de kullanırsa 𝑏 sabit olur. Böylece (4.2.14) denklemi 

gereği                                  

                                                 𝑆̅(𝑋, 𝑌) = 2𝑓1𝑏𝜂(𝑌)𝜂(𝑋) − (𝜆 + 𝑓1𝑏)𝑔(𝑌, 𝑋)                        (4.2.19) 

elde edilir ki bu da  bize  manifoldun 𝛻̅ ye bağlı 𝜂-Einstein olduğunu gösterir. 

       Ayrıca elde edilen  (4.2.19) denkleminde 𝑋 ve 𝑌 vektör alanlarına göre kontraksiyon 

yapılırsa 

𝜏̅ = −𝑏𝑓1 − 3𝜆 

denklemi ortaya çıkar. Böylece yukarıdaki denklem gereği aşağıdaki sonucu verebiliriz: 

Sonuç 4.2.2.: 𝑀, 𝑓1 sabit  olacak şekilde 3- boyutlu 𝑓1 − Kenmotsu manifoldu olsun. 𝑀 

üzerinde (𝑀,𝜑3, 𝑓1)  çeyrek simetrik metrik olmayan  koneksiyonu ∇̅ olmak üzere,  𝑏 

fonksiyonu için 𝑉 = 𝑏𝜉 olmak şartıyla, manifold verilen koneksiyona bağlı  Ricci soliton 

özellliği şartını sağlıyor ise  

i)  𝜏̅ + 𝑏𝑓1 < 0 için genişleyen (expanding), 

ii) 𝜏̅ + 𝑏𝑓1 = 0 için değişmeyen(steady), 

iii)𝜏̅ + 𝑏𝑓1 > 0 için daralan (shrinking), 

olur . 
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Teorem 4.2.3.:  (𝑀,𝜑3, 𝑓1)  koneksiyonu ile verilmiş 𝑛-boyutlu 𝑓1-Kenmotsu manifoldu 

𝑓1 sabit olmak üzere (1.3.2) ile tanımlı gradyant Ricci soliton özelliğini sağlasın. Bu takdirde  

manifold kosimplektiktir. 

İspat:  3-boyutlu 𝑓1-Kenmotsu  manifoldu üzerinde 

                                          𝛻̅∇𝑓 = 𝑆̅ + 𝜆𝑔,                                                                                            

(4.2.20) 

ile tanımlı gradyant Ricci solitonu,  𝑔 metriğinin gradyant operatörü 𝐷  olmak üzere  

                                                           ∇̅𝑌𝐷𝑓 = 𝑄̅𝑌 + 𝜆𝑌,                                                                       

(4.2.21) 

olarak yazılabilir. (4.2.21) eşitliğinden yararlanılarak 𝑅̅(𝑋, 𝑌)𝐷𝑓 ifadesini bulalım: 

                  𝑅̅(𝑋, 𝑌)𝐷𝑓 = ∇̅𝑋∇̅𝑌𝐷𝑓 − ∇̅𝑌∇̅𝑋𝐷𝑓 − ∇̅[𝑋,𝑌]𝐷𝑓 

                    = ∇̅𝑋(𝑄̅𝑌 + 𝜆𝑌) − ∇̅𝑌(𝑄̅𝑋 + 𝜆𝑋)

− ( 𝑄̅[𝑋, 𝑌] + 𝜆[𝑋, 𝑌]),                                                              

Burada (𝑀,𝜑3, 𝑓1)  koneksiyonu gereği yukarıdaki denklem 

𝑅̅(𝑋, 𝑌)𝐷𝑓 = ∇𝑋𝑄̅𝑌 +
1

2
𝜂(𝑄̅𝑌)𝜑𝑋 −

1

2
𝜂(𝑋)𝜑𝑄̅𝑌 − 𝑓1𝑔(𝑋, 𝑄̅𝑌)𝜉 + ∇𝑋𝜆𝑌 +

1

2
𝜆𝜂(𝑌)𝜑𝑋 −

                          
1

2
𝜆𝜂(𝑋)𝜑𝑌 − 𝑓1𝜆𝑔(𝑋, 𝑌)𝜉 − ∇𝑌𝑄̅𝑋 −

1

2
𝜂(𝑄̅𝑋)𝜑𝑌 +

1

2
𝜂(𝑌)𝜑𝑄̅𝑋 +

𝑓1𝑔(𝑌, 𝑄̅𝑋)𝜉 −                            ∇𝑌𝜆𝑋 −
1

2
𝜆𝜂(𝑋)𝜑𝑌 +

1

2
𝜆𝜂(𝑌)𝜑𝑋 + 𝑓1𝜆𝑔(𝑋, 𝑌)𝜉 − 𝑄̅∇𝑋𝑌 +

𝑄̅∇𝑌𝑋 − 𝜆∇𝑋𝑌 +

                          𝜆∇𝑌𝑋                                                                                                                           (4.2.22) 

halini alır. (4.2.22) denkleminin her iki tarafını bir 𝑈 vektör alanı ile iç çarpımı alındığında 
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𝑔(𝑅̅(𝑋, 𝑌)𝐷𝑓, 𝑈)

= 𝑔(∇𝑋𝑄̅𝑌, 𝑈) +
1

2
𝜂(𝑄̅𝑌)𝑔(𝜑𝑋, 𝑈) −

1

2
𝜂(𝑋)𝑔(𝜑𝑄̅𝑌, 𝑈) − 𝑓1𝑔(𝑋, 𝑄̅𝑌)𝜂(𝑈)

+ 𝑔(∇𝑋𝜆𝑌, 𝑈) +
1

2
𝜆𝜂(𝑌)𝑔(𝜑𝑋, 𝑈) −

1

2
𝜆𝜂(𝑋)𝑔(𝜑𝑌, 𝑈) − 𝑓1𝜆𝑔(𝑋, 𝑌)𝜂(𝑈)

− 𝑔(∇𝑌𝑄̅𝑋, 𝑈) −
1

2
𝜂(𝑄̅𝑋)𝑔(𝜑𝑌, 𝑈) +

1

2
𝜂(𝑌)𝑔(𝜑𝑄̅𝑋, 𝑈) + 𝑓1𝑔(𝑌, 𝑄̅𝑋)𝜂(𝑈)

− 𝑔(∇𝑌𝜆𝑋, 𝑈) −
1

2
𝜆𝜂(𝑋)𝑔(𝜑𝑌, 𝑈) +

1

2
𝜆𝜂(𝑌)𝑔(𝜑𝑋, 𝑈) + 𝑓1𝜆𝑔(𝑋, 𝑌)𝜂(𝑈)

− 𝑔(𝑄̅∇𝑋𝑌, 𝑈) + 𝑔(𝑄̅∇𝑌𝑋, 𝑈) − 𝜆𝑔(∇𝑋𝑌, 𝑈) + 𝜆𝑔(∇𝑌𝑋, 𝑈),   

bulunur. Son denklemde 𝑋 = 𝑈 = 𝜉  kullanıldığında 

𝑔(𝑅̅(𝜉, 𝑌)𝐷𝑓, 𝜉) = 𝑔(∇𝜉𝑄̅𝑌, 𝜉) − 𝑓1𝑔(𝜉, 𝑄̅𝑌) − 𝑔(∇𝑌𝑄̅𝜉, 𝜉) + 𝑓1𝑔(𝑌, 𝑄̅𝜉) − 𝑔(𝑄̅∇𝜉𝑌, 𝜉) +

                                     𝑔(𝑄̅∇𝑌𝜉, 𝜉),                                                                                                     (4.2.23) 

elde edilir.  𝑓1 sabit olmak üzere (4.2.23) de (4.2.7) denklemi yerine yazılırsa 

𝑔(𝑅̅(𝜉, 𝑌)𝐷𝑓, 𝜉)

= 𝑔 (∇𝜉(
𝜏

2
+ 𝑓1

2)𝑌, 𝜉) − 𝑔 (∇𝜉 (3𝑓1
2 +

𝜏

2
) 𝜂(𝑌)𝜉, 𝜉) + 2𝑓1𝑔(∇𝜉𝜑𝑌, 𝜉)

− (
1

2
+ 2𝑓1

2) 𝑔(∇𝜉𝜂(𝑌)𝜉, 𝜉) − 𝑓1 {𝑔(𝜉, 𝑄𝑌) − (
1

2
+ 2𝑓1

2) 𝜂(𝑌)}

− (
1

2
+ 4𝑓1

2) 𝑔(∇𝑌𝜉, 𝜉) + 𝑓1 {𝑔(𝑌, 𝑄𝜉) − (
1

2
+ 2𝑓1

2) 𝜂(𝑌)}

− (
𝜏

2
+ 𝑓1

2) 𝑔(∇𝜉𝑌, 𝜉) + (3𝑓1
2 +

𝜏

2
) 𝜂(∇𝜉𝑌) + (

1

2
+ 2𝑓1

2) 𝜂(∇𝜉𝑌)

+ (
𝜏

2
+ 𝑓1

2) 𝑔(∇𝑌𝜉, 𝜉) − (3𝑓1
2 +

𝜏

2
) 𝑔(∇𝑌𝜉, 𝜉) + 2𝑓1𝑔(𝜑∇𝑌𝜉, 𝜉)

− (
1

2
+ 2𝑓1

2) 𝑔(∇𝑌𝜉, 𝜉) 

bulunur.  Koneksiyon özellikleri kullanılarak yukarıdaki denklem 

𝑔(𝑅̅(𝜉, 𝑌)𝐷𝑓, 𝜉)

= (
𝜏

2
+ 𝑓1

2) 𝑔(∇𝜉𝑌, 𝜉) +
(𝜉𝜏)

2
𝜂(𝑌) − (3𝑓1

2 +
𝜏

2
) 𝜂(∇𝜉𝑌) −

(𝜉𝜏)

2
𝜂(𝑌)

− (
1

2
+ 2𝑓1

2) 𝜂(∇𝜉𝑌) − (
𝜏

2
+ 𝑓1

2) 𝑔(∇𝜉𝑌, 𝜉) + (3𝑓1
2 +

𝜏

2
) 𝜂(∇𝜉𝑌)

+ (
1

2
+ 2𝑓1

2) 𝜂(∇𝜉𝑌)                                                                                                
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halini alır. Burada gerekli sadeleştirmeler yapılırsa 

                                                              𝑔(𝑅̅(𝜉, 𝑌)𝐷𝑓, 𝜉) = 0                                        (4.2.24) 

sonucu ortaya çıkar. Ayrıca (4.2.1) ve (4.2.24) denklemleri gereği 𝑔(𝑅̅(𝜉, 𝑌)𝐷𝑓, 𝜉) ifadesi 

                                                𝑔(𝑅̅(𝜉, 𝑌)𝐷𝑓, 𝜉) = 𝑓1𝑔(𝜑𝑌, 𝐷𝑓) = 0                                         (4.2.25) 

olarak yazılabilir.(4.2.25) de 𝑔(𝜑𝑌, 𝐷𝑓) sıfır olamayacağından 

𝑓1 = 0 

olur.  Bu da manifoldu kosimplektik yapar. Böylece ispat tamamlanır. 
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Çizelge 4.1. (𝑀,𝜑3, 𝑓1)  çeyrek simetrik metrik olmayan koneksiyonu ile verilmiş 3- boyutlu 

quasi -Sasakian manifoldlar için bazı eğrilik şartlar 

 

 

 

 

 

 

 

 

(𝑀,𝜑3, 𝑓1)  çeyrek simetrik metrik olmayan koneksiyonu ile verilmiş 3- boyutlu quasi -

Sasakian manifoldlar için ( 𝑓1 = 𝛽 için) 

∇ ve (𝑀,𝜑3, 𝑓1)  koneksiyonu için 

𝜂-paralel olma şartı denk ise 

[(∇̅𝑋𝑆̅)(𝜑𝑌, 𝜑𝑍) =
(∇𝑋𝑆)(𝜑𝑌, 𝜑𝑍)] 

𝑖) 𝛽 = 0, yani ya manifold kosimplektik 

yada manifold ∇̅ koneksiyonuna göre 𝜂-Einstein 

olmasıdır. 

ii) 𝛽= sabit dolayısıyla manifold ∇ ya göre 

𝜂-Einsteindır. 

(𝑀,𝜑3, 𝑓1)  koneksiyonu için 𝜂-

paralel ise  

[(∇̅𝑋𝑆̅)(𝜑𝑌, 𝜑𝑍) = 0] 

𝑖) 𝛽 = 0, yani ya manifold kosimplektik 

yada manifold (𝑀,𝜑3, 𝑓1)  koneksiyonuna göre 

𝜂 −Einstein olmasıdır. 

ii) 𝛽= sabit dolayısıyla manifold ∇ ya göre 

𝜂 −Einstein manifolddur. 

 

𝛽  sabit olmak şartıyla  M 

üzerindeki  (𝑀,𝜑3, 𝑓1)    çeyrek simetrik 

metrik olmayan koneksiyonuna göre 

dairesel paralel Ricci tensöre  sahiptir⇔ 

 yani ya manifold kosimplektik 

yada manifold (𝑀,𝜑3, 𝑓1)    koneksiyonuna göre 

Einstein olmasıdır, 

 e karşılık gelir. 

 

⇒ ∇ ya göre 𝜂 −Einstein manifolddur. 

⇒ ∇ ya göre 𝜂 −Einstein manifolddur. 

⇒ ∇ ya göre 𝜂 −Einstein manifolddur. 

⇒ ∇ ya göre 𝜂 −Einstein manifolddur. 

⇒ ∇ ya göre 𝜂 −Einstein manifolddur. 

⇒ ∇ ya göre 𝜂 −Einstein manifolddur. 

(H̅(𝑋, 𝜉)𝐻)(𝑌, 𝑉)𝑊 = 0⇒ ∇ ya göre 𝜂 −Einstein manifolddur. 

⇒ ∇ ya göre 𝜂 −Einstein manifolddur. 
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Çizelge 4.2. Verilen koneksiyon göre 3- boyutlu quasi -Sasakian manifoldlar ve 3- boyutlu 𝑓 -

Sasakian manifoldlar için Soliton Kavramı 

(𝑀,𝜑3, 𝑓1)  çeyrek simetrik metrik olmayan 

koneksiyonu ile verilmiş 3- boyutlu quasi -

Sasakian manifoldlar için  

(𝑀,𝜑3, 𝑓1)  çeyrek simetrik metrik 

olmayan koneksiyonu ile verilmiş 

3- boyutlu 𝑓 -Sasakian manifoldlar 

için  

𝑅̅(𝑋, 𝑌)𝑍 = −𝑅̅(𝑌, 𝑋)𝑍 sağlanır. 𝑅̅(𝑋, 𝑌)𝑍 = −𝑅̅(𝑌, 𝑋)𝑍 
sağlanır. 

1. Bianchi özdeşliği sağlanır ancak ve ancak  

𝑓1 = 0 ve manifold kosimplektiktir. 

1. Bianchi özdeşliği sağlanır ancak 

ve ancak  𝑓1 + 𝑓 = 0 dır. 

verilen koneksiyona göre Ricci tensörü simetriktir 

ancak ve ancak 𝑓1 = 𝑠𝑏𝑡 ve 𝛽 = 1 dir. 

verilen koneksiyona göre Ricci 

tensörü simetriktir ancak ve ancak 

−𝑓 = 𝑓1 = 𝑠𝑏𝑡 dir. 

𝑏 fonksiyon olmak üzere 𝑉 = 𝑏𝜉 olmak şartıyla, 

manifold Ricci soliton olma şartını sağlar ise, 

(𝑀,𝜑3, 𝛽)  koneksiyonuna bağlı η-Einstein 

manifolddur. 
 

 𝑏 fonksiyonu için 𝑉 = 𝑏𝜉 olmak 

şartıyla, manifold Ricci soliton 

olma şartını sağlar ise, (𝑀,𝜑3, 𝑓)  

koneksiyonuna bağlı η-Einstein 

manifolddur. 
 

𝑓1 = 𝛽 sabit olmak üzere gradyant Ricci soliton 

özelliğini sağlıyor ise manifold  

𝑖) kosimplektiktir yada (M,𝜑3, 𝑓1)  koneksiyonuna 

göre 𝜂-Einstein dır. 

ii) (𝑀,𝜑3, 𝑓1)  koneksiyonuna göre sabit 

eğriliklidir. 
 

𝑓1 sabit olmak üzere gradyant 

Ricci soliton özelliğini sağlıyor ise 

manifold kosimplektiktir. 
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