

SYSTEM DESIGN AND PROTOTYPE DEVELOPMENT OF A

 GUIDE – GUARD ROBOT

FOR THE DEPARTMENT OF MECHATRONICS ENGINEERING

LABORATORIES

A MASTER’S THESIS

in

Mechatronics Engineering

Atilim University

by

AMIR NOBAHAR SADEGHI

JULY 2015

SYSTEM DESIGN AND PROTOTYPE DEVELOPMENT OF A

 GUIDE – GUARD ROBOT

FOR THE DEPARTMENT OF MECHATRONICS ENGINEERING

LABORATORIES

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

ATILIM UNIVERSITY

BY

AMIR NOBAHAR SADEGHI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF MECHATRONICS ENGINEERING

JULY 2015

ii

Approval of the Graduate School of Natural and Applied Sciences, Atılım

University.

 Prof. Dr. K. Ibrahim AKMAN

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

 Prof. Dr. Abdülkadir ERDEN

 Head of Department

This is to certify that we have read the thesis “System Design and Prototype

Development of a Guide – Guard Robot for the Department of Mechatronics

Engineering Laboratories” submitted by “Amir Nobahar Sadeghi” and that in our

opinion it is fully adequate, in scope and quality, as a thesis for the degree of Master

of Science.

Asst. Prof. Dr. Zühal ERDEN Prof. Dr. Abdülkadir ERDEN

 Co-Supervisor Supervisor

Examining Committee Members:

 Asst. Prof. Dr. Yığıt Taşcıoğlu ------------------

 Asst. Prof. Dr. Hakan Tora ------------------

 Asst. Prof. Dr. Kutluk Bilge Arıkan ------------------

 Asst. Prof. Dr. Zühal Erden ------------------

 Prof. Dr. Abdulkadir Erden ------------------

 Date: 13.07.2015

iii

I declare and guarantee that all data, knowledge and information in this document

has been obtained, processed and presented in accordance with academic rules and

ethical conduct. Based on these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

 Amir Nobahar Sadeghi

iv

ABSTRACT

SYSTEM DESIGN AND PROTOTYPE DEVELOPMENT OF A

 GUIDE – GUARD ROBOT

FOR THE DEPARTMENT OF MECHATRONICS ENGINEERING

LABORATORIES

Nobahar Sadeghi, Amir

M.S., Mechatronics Engineering Department

Supervisor: Prof. Dr. Abdulkadir ERDEN

Co-Supervisor Asst. Prof. Dr. Zuhal ERDEN

July 2015, 146 pages

 The goal of this thesis is designing, constructing and manufacturing an

autonomous, intelligent, mobile guide - guard robot and enable it to safe navigate

through the indoor environments such as the laboratories of the department of

Mechatronics Engineering in Atilim University. Based on the main concern of the

thesis, an integrated system was designed and implemented.

To accomplish the navigation task, our presented control architecture composes of

localization, obstacle avoidance, path planning and robot control for steering the

robot from any initial pose to arbitrary asigned pose. Our navigation architecture is a

behavior-based and a mapless navigation, which the robot‟s locations are determined

by observing and extracting useful features in the environment based on the onboard

sensors.

Keywords: Guide – Guard Robot, Behavior-Based Navigation, Map-Based and

Non-Map-Based Navigation, Control Architecture.

v

ÖZ

MEKATRONIK MÜHENDİSLİĞİ BÖLÜM LABORATUVARLARI İÇİN

REHBER – BEKCI ROBOT

SYSTEM TASARIMI VE PROTOTIP GELİŞTRİLMESİ

Nobahar Sadeghi, Amir

Yüksek Lisans, Mekatronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Abdülkadir ERDEN

Ortak Tez Yöneticisi: Yrd. Doç. Dr. Zühal ERDEN

Temmuz 2015, 146 sayfa

 Bu tez çalışmasının amacı Atılım Üniversitesi Mekatronik Mühendisliği

laboratuvarlarında “Rehber-Bekçi Robot” olarak görev yapacak olan akıllı bir

hareketli robotun tasarlanması, üretilmesi ve laboratuvar ortamında dolaşmasının

sağlanmasıdır. Bu amacı gerçekleştirmek üzere tümleşik bir sistem tasarlanmıştır.

Robotun laboratuvarlarda dolaşması için geliştirilen kontrol mimarisi

konumlandırma, engelden kaçınma, yol planlaması ve verilen bir başlangıç

pozisyonundan rastgele belirlenen bir başka pozisyona gidişin yönetilmesini

sağlamaktadır. Bu çalışmada, robota yüklenmiş bir haritaya dayalı olmayan davranış-

temelli bir navigasyon algoritması kullanılmıştır. Buna göre robot, içinde bulunduğu

laboratuvar ortamının çeşitli özelliklerini, üzerindeki sensörler yardımıyla

algılayarak kendi konumunu belirlemekte ve böylece laboratuvar ortamında

dolaşmaktadır. Bu çalışma kapsamında robotun tasarımı, imalatı, sistem

entegrasyonu gerçekleştirilmiş ve laboratuvar ortamında dolaşması test edilmiştir.

Anahtar Sözcükler: Rehber-Bekçi Robot, Davranış-Temelli Navigasyon, Harita-

Temelli ve Harita-Temelli Olmayan Navigasyon, Kontrol Mimarisi

vi

To My Parents, Wife & lovely Son

for their Spiritual and Financial Supports

vii

ACKNOWLEDGMENTS

 I express sincere appreciation to my supervisor Prof. Dr. Abdülkadir Erden for his

guidance and insight throughout the research. Thanks also go to my cosupervisor

Asst. Prof. Dr. Zühal Erden. The technical and mental assistance of Meral Aday,

Handan Kara and Cahit Gürel is gratefully acknowledged. Thanks also go to

technicians in the machine shop, specially Mehmet Çakmak. To my parents, my

wife, and my lovely son, Arian, I offer sincere thanks for their continuous support

and patience during this period.

viii

TABLE OF CONTENTS

ABSTRACT .. iv

ÖZ .. v

DEDICATION .. vi

ACKNOWLEDGMENTS ... vii

TABLE OF CONTENTS .. viii

LIST OF TABLES ... xii

LIST OF FIGURES .. xiii

ABBREVIATIONS .. xix

NOMENCLATURE .. xxi

CHAPTER

1. INTRODUCTION ... 1

2. LITERATURE SURVEY .. 7

3. SYSTEM DESIGN .. 22

 3.1 System Structure .. 22

 3.1.1 Body ... 23

 3.1.1.1 Chassis Framework .. 23

 3.1.1.2 Floors, Walls, Sensors Mount .. 24

3.1.2 Wheels .. 24

3.1.3 Motors .. 27

3.1.4 IR Distance Sensors ... 28

3.1.5 Ultrasonic Distance Sensors .. 30

3.1.6 Compass .. 30

3.1.7 Micro-Controller Board ... 31

3.1.8 Motor Driver Shield ... 32

ix

3.1.9 Voltage Regulator .. 33

3.1.10 Handmade Voltage and Data Distributor Board 33

3.1.11 Navigation Computer ... 34

3.1.12 Touch-Screen Notebook .. 34

3.1.13 Battery .. 35

 3.2 Control Architecture .. 35

3.2.1 Control of Mobile Robot .. 35

3.2.2 Dynamics of Mobile Robot.. 35

3.2.3 Hard Switches vs. Blending ... 39

3.2.4 Hybrid Automata ... 40

3.2.5 Navigation using Behaviors ... 40

 3.2.5.1 Go-to-Goal Behavior ... 40

 3.2.5.2 Avoid-Obstacle Behavior ... 41

 3.2.5.3 Blending ... 43

 3.2.5.4 Wall-Fallow Behavior .. 43

 3.2.5.5 Hybrid Automata ... 44

3.2.6 Layered Architecture ... 45

4. SYSTEM IMPLEMENTATION ... 49

 4.1 Electrical Hardware Assembling.. 49

 4.1.1 Voltage Supplying ... 49

 4.1.2 Data and Power Lines Wiring .. 50

 4.2 Data Transmission .. 51

 4.2.1 IR Range Sensors ... 51

 4.2.2 Ultrasonic Range Sensors .. 54

 4.2.3 Compass .. 55

 4.2.4 Differential Wheel Drive .. 56

x

 4.2.5 Motor Quadrotor Encoders .. 57

 4.3 Microcontroller Board-MATLAB Simulik Connection 58

 4.4 Control and Model of the System .. 59

 4.5 Plant Model .. 59

 4.5.1 Data Acquisition .. 60

 4.5.2 System Identification ... 61

 4.5.3 Controller Design ... 63

 4.5.4 Real-Time Testing ... 65

 4.6 Architecture of Differential-Drive Trackers .. 67

 4.7 Odometry ... 69

 4.8 Architecture of Differential-Drive Planners... 69

 4.8.1 Go-to-Goal Behavior ... 69

 4.8.2 Avoid-Obstacles Behavior ... 70

 4.8.3 Blending and Hard Switches.. 72

 4.8.4 Fallow-Wall Behavior.. 75

 4.8.5 All Behaviors in a Single Navigation System …...………………….….77

 4.9 Motor Limitations .. 79

 4.10 Graphical User Interface .. 80

 4.10.1 Design ... 80

 4.10.2 Bridging GUI and Microcontroller ... 81

5. EXPERIMENT AND RESULTS .. 83

 5.1 Results of the Simulated System .. 83

 5.2 Results of the Actual system with No-Load .. 84

 5.3 Results of the Actual system in the Field ... 87

 5.3.1 Wheels Situ Spin Controller .. 88

 5.3.2 Straight - Move Controller .. 88

xi

6. DISCUSSION AND CONCLUSIONS.. 97

References………………………………..………………………………..……..….99

Appendices…………………………………………………………………..……..103

xii

LIST OF TABLES

Table 1: Coordinates of the Robot, Intermediary & Final Goal Points ………….…48

Table 2: Analog / Digital Connection Lines between Parts & Microcontroller

 Borads .………….………………………………………….…………..…50

Table 3: Analog / Digital Connection Lines between MMCB and DS ………….…51

Table 4: A Lookup Table for Interpolating a Distance from the Analog and Digital

 Output Voltages .………….…………………………………………....…53

Table 5: The Results of Plant Model using by Transfer Function, Nonlinear ARX

 and Hammer-Wiener type Estimators ……………………...…………..…62

Table 6: Topics of Implemented Tests with Various Conditions in the Field…....…92

xiii

LIST OF FIGURES

Figure 1: The Functions of the Guide Robot ………………………...….………….22

Figure 2: Physical Structure of the Robot ……………………………....……….….23

Figure 3: Designed & Built Chassis for the Robot ……………………..…..…...….24

Figure 4: Rear Powered Track-wheels and Front Omni-Wheels…………………....25

Figure 5: Data-Transmission Flow between the Subsystems of the Hardware…..…26

Figure 6: Components of a DC Servo Motor…………………………..……………27

Figure 7: Used DC Servo Motor and its Specifications………………….……..…...28

Figure 8: The Motor's Mount…………………………………………..……………28

Figure 9: Schematic Diagram of the IR Sensors and a Real Prototype………..……29

Figure 10: Used Ultrasonic Sensor and its Specifications …………………….……30

Figure 11: Used Compass and its Specifications ……………………………...……31

Figure 12: Arrangement of the IR, Ultrasonic Sensors Motors & Wheels …………31

Figure 13: Microcontroller Board ………………………………………..…………32

Figure 14: Motor Driver Schield ………………..…………………………..………33

Figure 15: Voltage Regulator Board ……………………………………………..…33

xiv

Figure 16: Handmade Distributor Board ………………………………...…………34

Figure 17: Touch-Screen Notebook ………………………….…………..…………34

Figure 18: The Battery……………………………………………....……………....35

Figure 19: Response by a P-Regulator………………………………………………36

Figure 20: Response by a PI-Regulator …………………………………….……....36

Figure 21: Response by a PID-Regulator ……………………………………..……37

Figure 22: Taking the Robot to Drive from two Points …………...……………..…37

Figure 23: Heading and Desired Heading …………...……………….…………..…38

Figure 24: Desired Heading in Go-to-Goal Behavior ...…………...……………..…38

Figure 25: Alternative Desired Headings in Obstacle Avoidance Behavior …….…39

Figure 26: Control Input Vector …………...………………………...…………..…40

Figure 27: Control Input Vector in Go-to-Goal Behavior …………...…………..…41

Figure 28: Control Input Vector vs Error in Go-to-Goal Behavior ……….……..…41

Figure 29: Control Input Vector in Avoid-Obstacle Behavior …………........…..…41

Figure 30: Control Input Vector vs Error in Avoid-Obstacle Behavior ……..…..…42

Figure 31: Control Input Vector of Go-to-Goal and Avoid-Obstacle Behaviors .…42

xv

Figure 32: Hybrid Automata …………………………………………………..……42

Figure 33: Control Input Vector in Blended Behavior …………....................…..…43

Figure 34: Control Input Vector in Fallow-Wall Behavior …………........……...…43

Figure 35: Wall Fallowing in two different Directions ……………...…........…..…44

Figure 36: All Behaviors in single Hybrid Automata ……………..…………..……45

Figure 37: Intermediary & Final Goal Points on the Map Platform …………..……46

Figure 38: Schematic of the Control Architecture ………………………….………47

Figure 39: Distance Measuring Characteristics of (a) 10-80 cm (b) 20-150 cm types

 of IR Range Sensors ………………………………………..…………....52

Figure 40: Timing Diagram of Trigger, Burst & Echo Pulses of Ultrasonic

 Sensor...54

Figure 41: Subsystem Model to obtain the Range from the Echo Signal ………..…55

Figure 42: The Axes of the Compass Board…………………..……………..……...56

Figure 43: MATLAB Simulink and Aruino Mega 2560…………………………....59

Figure 44: Workflow of the Data-Driven Modeling …………………...…….….….60

Figure 45: Data Acquisition Hardware Setup …………………………..……….….60

Figure 46: Time Plot of Input and Output Signals …………….………...……….…61

xvi

Figure 47: Measured and Simulated Model Output Time Signals of (a) Transfer

 Function 1 (b) Nonlinear H-W 1 Estimators, and Step Response of (c)

 First Estimator (d) Second Estimator ………………………………....…62

Figure 48: Step Responses of the Two Models in a Open-Loop System …………..64

Figure 49: Root-Locus of the Open-Loop System ……………………….......….….64

Figure 50: Close-Loop System using by Discrete PID ………………………….….64

Figure 51: Step Responses of the two Models in a Close-Loop System ………..….65

Figure 52: Root-Locus of the Close-Loop System ……………………...……....….65

Figure 53: Step Responses of the Real Motor in a Close-Loop System with (a)

 Design Phase‟s PID Parameters (b) Mentioned PID Parameters ……….66

Figure 54: Step Responses of the Real Motor in a Open-Loop System in (a)

 No-Load (b) Under-Load Conditions …………………...………….….66

Figure 55: Primary Differential-Drive Architecture ……………………….....…….67

Figure 56: Picking a New Point ……………………….……………………...…….67

Figure 57: Control Input Vector of New Point …………………………….....…….68

Figure 58: Final Differential-Drive Architecture …………………………......…….68

Figure 59: Go-to-Goal Vector ……………………………………………...…....….69

Figure 60: Avoid-Obstacles Vector ………………………………….………..…....71

xvii

Figure 61: Blended Vector ………………………………………..……….…….….73

Figure 62: Two Vectors in FW Behavior ………………………………….…....….76

Figure 63: A Screenshot of the Graphical User Interface on the Notebook ………..81

Figure 64: Data Flow in Hardware Setup from GUI to the Controllers ……..….….82

Figure 65: (a) Time Signals of Position & Heading (b) Traversed Trajectory of the

 Robot to reach the Goal Point at (100, 0) and come back to the Initial

 Point in the Simulated System …………………………………….…....84

Figure 66: (a) Time Signals of Position & Heading (b) Traversed Trajectory of the

 Robot to reach the Goal Point at (100, 0) and come back to the Initial

 Point in the Actual System ………………………………………….…..85

Figure 67: (a) Time Signals of Position (b) Heading (c) Traversed Trajectory of

 the Robot to reach the Goal Point at (469, 1261) through the

 Intermediary Way Point at (469,552) in the Actual System……..…...86

Figure 68: (a) Time Signals of Position (b) Heading (c) Traversed Trajectory of

 the Robot to reach the Goal Point at (2000, 0) in the Actual

 System…………………………………………………………....…...87

Figure 69: New Rear Powered Wheels …………………...…………..………....….88

Figure 70: New Front Omni-Wheels…………………………………….………….90

Figure 71: New Motor‟s Mount …………...…………………………….………….90

xviii

Figure 72: (a) Time Signals of Position (b) Heading (c) Traversed Trajectory of the

Robot to reach the Goal Points based on Table 6 in the Actual System …………....96

xix

LIST OF ABBREVIATIONS

AGV - Automated Guided Vehicle

UGV - Unmanned Ground Vehicle

UAV - Unmanned Aerial Vehicle

AUV - Autonomous Underwater Vehicle

IR - InfraRed

CCD - Charge Coupled Device

DC - Direct Current

PSD - Position Sensitive Detector

IRED - Infrared Emitting Diode

AHRS - Attitude and Heading Reference System

IMU - Inertial Measurement Unit

PWM - Pulse Width Modulation

PID - Proportional Integral Derivative

GTG - Go To Goal

AO - Avoid Obstacle

FW - Fallow Wall

AI - Artificial Intelligence

GUI - Graphical User Interface

xx

IRS - Infrared Sensor

US - Ultrasonic Sensor

CP - Compass

E - Encoder

M - Motor

MMCB - Master Microcontroller Board

SMCB - Slave Microcontroller Board

DS - Driver Shield

DB - Distributor Board

A - Analog

D - Digital

ADC - Analog to Digital Convertor

CPR - Count Per Revolution

TPR - Tick Per Revolution

CPS - Count Per Second

QEI - Quadrature Encoder Interface

I/O - Input/Output

FSM - Finite State Machine

IPS - Indoor Positioning System

xxi

NOMENCLATURE

F - Force

u - Control Input Vector

xu - Control Input in x Direction

yu - Control Input in y Direction

x - Posiotion of the Robot in x Direction

y - Posiotion of the Robot in y Direction

gx - Posiotion of the Goal Point in x Direction

gy - Posiotion of the Goal Point in y Direction

ox - Posiotion of the Obstacle Point in x Direction

oy - Posiotion of the Obstacle Point in y Direction

initialx - Posiotion of the Initial Point in x Direction

initialy - Posiotion of the Initial Point in y Direction

 - Heading of the Robot

d - Desired Heading

goal - Heading of the Goal Point

obst - Heading of the Obstacle Point

v - Linear Velocity of the Robot

rv - Angular Velocity of Right Motor

lv - Angular Velocity of Left Motor

xxii

 - Angular Velocity of the Robot

M - Mass of the Robot

R - Radious of the Wheels

L - Distance between the Wheels

g - Gravitational Constant

 - Torque

 - Real Numbers

GTGu - Control Input Vector in Go-to-Goal Behavior

AOu - Control Input Vector in Avoid-Obstacle Behavior

GTGAOu
 - Control Input Vector in Blended Behavior

FWu - Control Input Vector in Follow-Wall Behavior

FW
cu - Control Input Vector in Follow-Wall Behavior in Clockwise

FW
ccu - Control Input Vector in Follow-Wall Behavior in Counter-Clockwise

t - Time

rt - Rising Time

 - Time of Last Switch

tt - Trigger Pulse Width

et - Echo Pulse Width

 - Specified Distance

V - Voltage

1

CHAPTER 1

INTRODUCTION

Recently, since the quality of life is improving constantly in advanced countries,

automation techniques are requested and developed widely in many fields. Among

them, to design assistant robots for service people has become an emergent field that

the governments of various countries and research institutions invest actively

particularly. Generally speaking, assistant or service robots are mostly autonomous

robots, which does not usually emphasize the accuracy and performance of operation

in industrial robot, always focuses on giving assistance and providing a comfortable

service. These mobile robots are evolving to serve and assist people at office,

supermarket, museum, public place and so on. Whatever the context is, one of the

basic requirements of such future robots is to guide a person from one place to

another.

In general, all of the existing guide robots have two major functional modules,

namely navigation and interaction. However, how to implement these two modules

differs from one guide robot to another. Good navigation methods normally require

accurate localization and reliable obstacle avoidance. However interactive tour guide

robots need the „object approaching‟ behaviors to serve visitors instead of avoiding

them. Most of guide robots being deployed so far have no such a function.

Visual based indoor navigation can be categorized as map-based and non-map-based

navigation. In map-based navigation, the robot has a known map being built

manually before its operation, and locates itself by matching the current sensor data

with the map data. Global localization must construct a match between the

observations and the entire database. The uncertainties and the ambiguities are

2

main problems. Incremental localization algorithms use the information of initial

position and odometers, and reduce the uncertainties by matching the current

observations and expect observations. In mapless navigation, the robot has no map

being built and its locations are determined by observing and extracting useful

features in the environment based on the onboard sensors.

In recent years, much research has been paid to design and implementation of guide

robots, in order to provide them with some innovative functions, features and

appearences. Thanks to those efforts, guide robot have become more popular at

various places or other important commercial areas. In addition to attracting

attention, guide robots can guide visitors who trying to get to a certain place and

explain them so that they can acquire knowledge of there and enjoy visiting. From

the system design of view, there are two critical research issues inside these world

wide guide robots. One is concerning with how to achieve safe navigation in

dynamic, cluttered and crowded public environments, and the other is regarding how

to design effective and interesting human-robot interactions between the visitor and

the robot. Navigation in large-scale, dynamic, cluttered and crowded public

environments without collision is a very fundamental but challenging task for guide

robots. To accomplish the task, researchers have presented many complete integrated

navigation sytems, composed of mapping, localization, robot security, obstacle

avoidance, path planning and robot control for steering the guide robot from any

initial pose to arbitrary desire pose.

This section is started with description of some basic concepts like robot and

robotics, and then conducted to the concept of the guide robot, one important branch

of intelligent service robots, and finally explained the navigation problem of guide

robots, that is the main concern of the thesis.

The word „‟robot‟‟ is used to refer to a wide range of machines, the common feature

is that they are all capable of movement and can be used to perform physical tasks.

The word robot was first introduced by a Czech dramatist, Karel Capek in his 1921

play “Rossum's Universal Robots” [1]. He was referring to a perfect and tireless

worker performing manual labor jobs for human beings. Then famous science fiction

3

writer Isaac Asimov coined the word „‟robotics‟‟ as the science of the study of robots

in his science fiction stories about robots in 1940s [2]. In Webster's New World

Dictionary, robotics is defined as “the science or technology of robots, their design,

manufacture, application, use etc” [3].

In order to fulfill the desired tasks independently and automatically by a robot,

autonomous robots have been raised. Autonomous robots are robots which can

perform desired tasks in unstructured environments without continuous human

guidance. Before the autonomous robots were invented, there were only ordinary

robots. Those robots were all depending on human control. Besides, those robots also

did not have any self avoiding systems toward obstacles as their avoiding systems

were totally controlled by human. But due to the lack of technologies at that time, the

circuits of those autonomous robots were complexes directly increased the cost of the

robot. Those autonomous robots were invented to replace human in doing hazardous

works such as denoting bomb and exploring unknown places. Lately, autonomous

robots were also utilized as guides to blind man.

Autonomous robots increasingly have the potential to interact with people in daily

life. It is believed that, based on this ability, they will play an essential role in human

society in the not-so-distant future. Intelligent service robots for guiding, public

building service, personal entertainment, military service and etc. have been

developed and the limit of applications are widely spreading.

From 1990 onwards the intelligent service robots were focused on development of

navigation system including map building, obstacle avoidance and so on. Because

performance of navigation system has been improved based on improvement of

sensors and also algorithms, nowadays development of indoor guide robot has been

focused on integration with navigation and other high intelligent system as voice

communication, face recognition, etc.

A mobile robot is an autonomous robot that is capable of movement in any given

environment. Mobile robots have the capability to move around in their environment

and are not fixed to one physical location.

http://en.wikipedia.org/wiki/Automatic_machine

4

An automated or automatic guided vehicle (AGV) is a mobile robot that follows

markers or wires in the floor, or uses vision or lasers. They are most often used in

industrial applications to move materials around a manufacturing facility or a

warehouse. Application of the automatic guided vehicle has broadened during the

late 20th century.

Mobile robots are a major focus of current research and almost every major

university has one or more labs that focus on mobile robot research. Mobile robots

are also found in industry, military and security environments. Domestic robots are

consumer products, including entertainment robots and those that perform certain

household tasks such as vacuuming or gardening.

Mobile robots may be classified by:

1. The environment in which they travel:

 Land or home robots are usually referred to as Unmanned Ground

Vehicles (UGVs). They are most commonly wheeled or tracked, but also

include legged robots with two or more legs (Humanoid, or resembling

animals or insects).

 Aerial robots are usually referred to as Unmanned Aerial Vehicles (UAVs).

 Underwater robots are usually called autonomous underwater

vehicles (AUVs).

 Polar robots, designed to navigate icy, crevasse filled environments.

2. The device they use to move, mainly:

 Legged robot : human-like legs or animal-like legs.

 Wheeled robot.

 Tracks

In the following the problem of robot navigation is introduced comprehensively.

Moving from one place to another is an obvious task for humans. One decides how

to move in a split second. For a robot such an elementary and basic task is a major

http://en.wikipedia.org/wiki/Robot
http://en.wikipedia.org/wiki/Military_robot
http://en.wikipedia.org/wiki/Domestic_robot
http://en.wikipedia.org/wiki/Entertainment_robot
http://en.wikipedia.org/wiki/Robotic_vacuum_cleaner
http://en.wikipedia.org/wiki/Unmanned_Ground_Vehicles
http://en.wikipedia.org/wiki/Unmanned_Ground_Vehicles
http://en.wikipedia.org/wiki/Legged_robot
http://en.wikipedia.org/wiki/Humanoid_robot
http://en.wikipedia.org/wiki/Unmanned_Aerial_Vehicles
http://en.wikipedia.org/wiki/Autonomous_Underwater_Vehicle
http://en.wikipedia.org/wiki/Autonomous_Underwater_Vehicle
http://en.wikipedia.org/wiki/Crevasse
http://en.wikipedia.org/wiki/Legged_robot
http://en.wikipedia.org/wiki/Human_leg
http://en.wikipedia.org/wiki/Leg
http://en.wikipedia.org/wiki/Wheel

5

challenge. In autonomous robotics motion planning is one of the most significant

challenges. There is a fundamental need to specify a task in a high-level language

that is automatically translated into low-level descriptions of how the robot should

move. The typical problem is to find a motion for a robot, whether it is a vacuum

cleaning robot, a robotic arm, a flying object, or a guide robot from a starting

position to a goal position whilst safely avoiding any obstacles in its way.

For any mobile device, the ability to navigate in its environment is important.

Avoiding dangerous situations such as collisions and unsafe conditions (temperature,

radiation, exposure to weather, etc.) comes first, but if the robot has a purpose that

relates to specific places in the robot environment, it must find those places. Robot

navigation means the robot's ability to determine its own position in its frame of

reference and then to plan a path towards some goal location. In order to navigate in

its environment, the robot or any other mobility device requires representation, i.e. a

map of the environment and the ability to interpret that representation[4].

Navigation can be defined as the combination of the three fundamental competences:

1. Self-localization

2. Path planning

3. Map-building and map interpretation

Robot localization denotes the robot's ability to establish its own position and

orientation within the frame of reference. Path planning is effectively an extension of

localization, in that it requires determination of the robot's current position and a

position of a goal location, both within the same frame of reference or

coordinates. Map building can be in the shape of a metric map or any notation

describing locations in the robot frame of reference.

Vision-Based Navigation uses optical sensors include IR proximity sensors, laser-

based range finder and photometric cameras using CCD arrays to extract the visual

features required to the localization in the surrounding environment. However, there

are a range of techniques for navigation and localization using vision information,

the main components of each technique are:

http://en.wikipedia.org/wiki/Operating_temperature
http://en.wikipedia.org/wiki/Frame_of_reference
http://en.wikipedia.org/wiki/Frame_of_reference
http://en.wikipedia.org/wiki/Path_planning
http://en.wikipedia.org/wiki/Robot_localization
http://en.wikipedia.org/wiki/Frame_of_reference
http://en.wikipedia.org/wiki/Path_planning
http://en.wikipedia.org/w/index.php?title=Map_building&action=edit&redlink=1
http://en.wikipedia.org/wiki/Rangefinder
http://en.wikipedia.org/wiki/Charge-coupled_device

6

 Representations of the environment.

 Sensing models.

 Localization algorithms.

In order to give an overview of vision-based navigation and its techniques, these

techniques have been classified under indoor navigation and outdoor navigation.

The easiest way of making a robot go to a goal location is simply to guide it to this

location. This guidance can be done in different ways: burying an inductive loop or

magnets in the floor, painting lines on the floor, or by placing beacons, markers, bar

codes etc. in the environment. There are a very wider variety of indoor navigation

systems [5].

An autonomously guided robot knows at least some information about where it is

and how to reach various goals and or waypoints along the way. "Localization" or

knowledge of its current location is calculated by one or more means, using sensors

such as motor encoders, vision, lasers and global positioning systems. Positioning

systems often use triangulation, relative position to determine the location and

orientation of the platform, from which it can plan a path to its next waypoint or

goal. It can gather sensor readings that are time- and location-stamped, so that a

hospital, for instance, can know exactly when and where radiation levels exceeded

permissible levels. Such robots are often part of the wireless enterprise network,

interfaced with other sensing and control systems in the building.

With the introduction of these concepts, now we can have a better percipience of the

goal of this thesis: design, construct and manufacture of an autonomous, intelligent,

mobile, guide robot and enable it to navigate through the environments such as

indoor shopping malls, airports and etc. The test and operation scenario will be

implemented in the corridors of laboratories of Mechatronics Engineering

Department in Atilim University as the work space of our robot.

http://en.wikipedia.org/wiki/Mobile_robot_navigation#Vision-Based_Navigation
http://en.wikipedia.org/wiki/Mobile_robot_navigation#Indoor_Navigation
http://en.wikipedia.org/wiki/Mobile_robot_navigation#Outdoor_Navigation

7

CHAPTER 2

LITERATURE SURVEY

Mobile autonomous guide robots are gradually leaving the laboratories and entering

the real world with extensive application fields at the current state of technology.

Nowadays, one of the requirements in robotics is to develop partner robots for

assisting people in a living or working environment. Such robots that can guide

people to destinations while communicating appropriately with them have been

extensively researched. Over the last decade, various types of autonomous guide

robots have been introduced and their effectiveness assessed.

Mobile autonomous guide robots intended for large-scale environments pose a

unique trans-disciplinary research. They require the integration of sensing, acting,

planning and communicating within a single system.

The autonomous guide robot task can be decoupled in two main separate issues:

navigation and interaction.

 Navigation: A limited number of researchers have demonstrated

autonomous navigation in shopping malls, exhibitions or museums.

There have been many related and successful guide robots that

autonomously navigate with obstacle sensing capability in the indoor

or outdoor environment. [9, 11-13, 16, 18-19, 21-35]

 Interaction: An important aspect of the guide robot is its interactive

component. Human-robot interfaces are of great importance for robots

that are to interact with ordinary people. Human-centered and social

interactive robotics is a comparatively young field in mobile robotic

8

research. However some experiences where untrained people and

robots meet each other are available. [9-10, 12-15, 17, 20, 24, 28, 37]

A number of survived literatures have been addressed the issue of design

methodology and system architecture in autonomous robots. Archila, John Faber,

and Marcelo Becker has presented design and mathematical models of an AGV as

part of FMS (flexible manufacturing systems) [6]. Their literature proposes a

mechatronics design methodology to the areas of mechanics, electronic and control

using CAD and CAE tools. It is applicable to general mobile robots. The article starts

with the kinematics and dynamics models, continues with the mechanical, electronic

and control system development, and finally the assembly of robot and test results

are shown. System architecture for intelligent building guide robot has presented in

the other article [7]. This paper introduce a building guide robot, which has software

components, including voice communication, face recognition, navigation, touch pad

based GUI, database and hardware components including cameras, range sensors,

micro-processors and power supplying system. For effective control, MS (Master

Slave) method is employed for hardware system and PSMR (PIRO Service Mobile

Robot) is used for all software components. To integrate complex hardware systems,

it is necessary that well defined hardware architecture which is Master Slave

architecture, including architecture of control modules and Sensors/Interfaces. To

control resources effectively each software component is needed to be controlled

creation, execution, deletion and pause. For this reason PSMR (PIRO Service Mobile

Robot) based on PBCM (Port Based Component Model) is applied. Building a fully

autonomous tour guide robot is another issue which some members of the BlueBotics

SA and Autonomous System Lab, EPFL in Lausanne have presented in their article

[8]. This paper presents the effort that has been undertaken in designing and building

both hardware and software for a fully autonomous navigating vehicle for a tour

guide application. The goal of the project is to maximize the autonomy and

interactivity of the mobile platform while ensuring high robustness, reliability and

performance. The robot task is decoupled to two separate issues: navigation and

interaction, and then each issue are presented. Sasai, Takuya, et al. has developed a

guide robot interacting with the user using information projection [9]. In their basic

9

system, the robot can detect multiple persons around it and choose one as a user. This

is realized using an Omni directional camera and a laser range finder. The robot also

has a projector with a pan-tile mechanism. It can project information anywhere in the

environment and guide a person. The user can input commands by simple gestures

using the foot on the dialog box projected on the floor. After destination decision, the

robot guides him/her by its motion and information projected onto the

floor/wall/ceiling. Design methodologies are considered in order to develop voice-

enabled interfaces for tour-guide robots to be deployed at the Robotics Exposition of

the Swiss National Exhibition [10]. Human-robot voice communication presents new

challenges for design of fully autonomous mobile robots, in that interactivity must be

robot-initiated in conservation and within a dynamic adverse environment. The

authors have approached these general problems for a voice enabled interface,

tailored to limited computational resources of one on-board processor, when

integrating smart speech signal acquisition, automatic speech recognition and

synthesis, as well as dialogue system into the multi-modal, multi-sensor interface for

the guide robot. They also focus on particular issues that need to be addressed in

voice-based interaction when planning specific tasks and research experiments.

Design methodology is addressed in a literature and applied on a security and patrol

robot system [11]. The paper describes how to construct a security and patrol robot

system based on modular and object oriented approach. Designing an autonomous

robot requires the integration of many sensors and actuators on a physical base to

give the robot the capacity to interact with their environment and fulfill their tasks.

Even if sensors and actuators do impose limits on robot performance and autonomy,

another critical factor is on-board processing capability required for controlling the

robot. On-board processing imposes important influences on the electrical and

structural requirements of the robot. The robots shape plays an important role in

maintaining the public security. Theoretically, many shapes allow the robot to

perform the tasks, but an appropriate shape is convenient to installing of the sensors

and reducing the complexity of the whole control system. The authors have applied a

novel controller running on real time windows operation system to the robot design.

The robot equipped with stereovision and friendly man-robot interface can finish

tasks such as navigation and maintaining the public security.

10

Development of the robots for various applications is the other major issue, which

some literatures have presented. Eleven researchers from Carnegie Mellon and Bonn

universities presented an interactive tour-guide robot, which was successfully

exhibited in a Smithsonian museum [12]. During its two weeks of operation, the

robot interacted with thousands of people, traveling more than 44 km distance, at

speeds of up to 163 cm/sec. By us of this robot, the approach specifically addresses

issues such as safe navigation in unmodified and dynamic environments, and short-

term human-robot interaction. It uses learning pervasively at all levels of the

software architecture. Simmons, Reid, et al. has presented Xavier, an autonomous

indoor building guide robot which has been running an experiment in web-based

interaction [13]. The robot, can accept commands to travel to different offices in the

building, broadcasting camera images as it travels. Their article describes the

autonomous robot system, the web-based interfaces, and how they communicate with

the robot. It highlights lessons learned during this experiment in web-based robotics

and includes recommendations for putting future mobile robots on the web. To

explore possible robot tasks in daily life, a guide robot is developed for a shopping

mall and conducted a field trial by Japanese researchers in ATR Intelligent Robotics

and Communication Laboratory [14]. The robot was designed to interact naturally

with customers and to affectively provide shopping information. It was also designed

to repeatedly interact with people to build a rapport; since a shopping mall is a place

people repeatedly visit, it provides the chance to explicitly design a robot for

multiple interactions. For this capability, RFID tags have been used for person

identification. The robot is semi-autonomous, partially controlled by a human

operator, to cope with the difficulty of speech recognition in a real environment and

to handle unexpected situation. A project namely NEEL, an intelligent shopping

guide, and its portal were envisaged to provide the authors with crucial insights into

the commercialization of service robots [15]. They describe their system and propose

an approach to develop an interactive conversational agent which can serve shopping

needs of the visitors in a shopping mall. Some key objectives were set forth in their

project; justify how a rich social interaction with a robot can increase retailer sales

and also ensure buyer satisfaction, to find out how can a real intelligent agent

enhance social networking for an intelligent virtual agent, collect data from field

11

trials to improve the recommendation engine the project web. In another study a

complete image processing and analysis system is developed for a special purpose

mobile robot [16]. The aim of this mobile robot is to recognize the open doors and

move through the open door with narrow clearance. The output of image processing

is used as input data file to a NN based pattern recognition software. Further process

is to interpret the door status by using some knowledge based algorithms. If the door

is open, next process determines position of the mobile robot with respect to the open

door. This paper includes related image processing algorithms for image analysis

stages. Shieh, Ming-Yuan, et al. propose design concepts of a vision-based shopping

assistant robot which can serve people in a mall [17]. By using such robots, a mall

could not only save human resources effectively but also improve the quality of

information service. In general a mall always provides three kinds of customer

services as guiding, communication and accompanying. In their paper, a fuzzy

collision-free guiding controller and a fuzzy following controller are proposed for

guiding and accompanying services respectively. For collision-free controls, a named

„warning area‟ will be preplanned in the image plane to check whether there are

objectives and /or obstacles in front of the robot. Besides, the eigenblock of

objectives could be determined by using color image processing methods. The color

recognition and size filter are used to search for proper objective image blocks and

their relative locations. Based on a fuzzy following controller, the robot will

accomplish the mobility of following the specified customer. The development of a

new outdoor tour guide robot, on the campus of National Taiwan University is

presented by Chiang, Kuo-Hung, et al [18]. In order to fulfill reliability and safety of

outdoor navigation, data acquired via several sensing technologies, such as

differential global positioning system (DGPS), dead reckoning, and digital compass

are fused by the way of the well known extended Kalman filtering (EKF) technique.

Furthermore, a shortest path planning and obstacle avoidance algorithm is also

implemented. For the latter, it is deployed twelve ultrasonic sensors around the body

to detect the nearby object within three meters. Once the robot encounters an

unexpected obstacle, the proposed hierarchical navigation strategy will drive the

robot to avoid collision. The author has endeavored to construct an outdoor robot

which can autonomously guide visitors around the campus and provide introduction

12

of the visited sites. Encouraging people to listen to a guide robot is an interesting

issue which is presented by some members of ATR Intelligent Robotics and

Communication Laboratory [19]. Tour guidance is a common task of social robots.

Such a robot must be able to encourage the participation of people who are not

directly interacting with it. The author is particularly interested in encouraging

people to overhear its interaction with others, since it has often been observed that

even people who hesitate to interact with a robot are willing to observe its activity.

To encourage such participation as bystanders, they developed a robot that walks

backwards based on observations of human tour guides. They developed system uses

a robust human tracking system that enables a robot to guide people by walking

forward/backward and allows them to scrutinize people‟s behavior after the

experiment. Another literature presents a framework for a mobile robot guide, which

provides the human with the flexibility to decide upon the way he wants to be guided

[20]. For a robot to behave socially, it should not expect that the human will always

follow the exact trajectory of the robot or will always maintain a fixed distance with

robot or always support the guiding. In this paper the authors present a framework of

monitoring and adapting to the human commitment on the joint task, and carrying

out appropriate and goal oriented re-engagement attempts, if required, from the view

point of guiding. NCCU Security Warrior is the name of an intelligent security robot

which has been developed by National Chung Cheng University [21]. The robot

consists of six systems including vision, motion, robot arms, power estimation,

remote supervise and sensory systems. The vision system is used to carry out human

detection and tracking. The motion system is built by using embedded systems and

used to achieve motion planning in real time. In order to avoid the robot shout down

suddenly, the power estimation system has been employed. For the robot, the sensory

system is one of the important parts. With the fire detection sensor, the security robot

can detect fire alarm in the environment. Path planning is accomplished by using the

multi-sensor fusion. Body sensors can detect intruders. Combining the sensory and

remote supervising systems, the owner can get notice whether there are any

situations occurred through the PDA and GSM module. Design of a remote control

based hybrid-structure robot for home security applications is described by Kuo, C.

H., et al. researchers from Chang Gung University in Taiwan [22]. It is presented a

13

hybrid-structure robot with humanoid and vehicle types to perform home security

tasks. To achieve home security issues, the smoke and temperature detection sensors

are mounted on the robot. At the same time, the CCD camera is mounted on the head

to capture the guarded videos and to assist remote manipulations. The proposed

hybrid-structure robot behaves vehicle type in most of operation time to perform

stable and fast movements and to reduce energy consumptions. When the robot

enters humpy grounds or crosses small doorsills, the robot structure is changed as

humanoid type to pass the non-flat grounds. The development of a Multi-Sensor

based intelligent security robot is designed and implemented in the above mentioned

university [23]. The author describes in the paper, an intelligent multi-sensor based

security robot that can detect abnormal and hazardous situation and notify. The

function of security robot contains six parts, including software development system,

obstacle avoidance and motion planning system, image system, sensor system,

remote supervisory system. They use touch panel to display system state, and design

a general user interface (GUI) on the robot. It can moves by X axis and rotates by Z

axis, and guards the security robot easily to connect using sensor based method. It

can detect fire event and intruder, and transmit the massage of the detection result to

the cellular phone using GSM, or to client computer through internet. Finally from

point view of application, the above mentioned article [8], has presented tour guide

application of a fully autonomous navigating vehicle.

The issue of navigation system in autonomous robots has been presented by some

other literatures. Autonomous navigation of an indoor tour guide robot is described

in an article presented by Chinese Electrical Technology Research and Development

and Association [24]. This paper develops methodologies and techniques for

autonomous navigation of a tour guide robot with a human robot interaction system.

The designed navigation system includes global localization, dynamic path planning,

local goal-seeking, safe obstacle avoidance, behavior fusion, and autonomous robot

control. The RFID module for global pose initialization is presented based on the

RSSI measurements, the proposed calibration method and least square method. With

the gross fusion the RFID data and laser scanning measurements utilizing an

extended Kalman filter (EKF). The global path is generated by dynamic

14

programming method. The Petri-net model is employed to construct the event-driven

logic control sequence from the present states of the robot and assigned tour

missions. Mizobuchi, Yoshinobu, et al, present trajectory planning method of guide

robots for achieving the guidance [25]. In their paper, firstly, the advanced guidance

knowledge is formulated using production rules based on linguistic variables.

Secondly, the trajectory planning of guide robot is implemented by the quantified

knowledge and Distance-Type Fuzzy Reasoning method. The Distance-Type Fuzzy

Reasoning method is a fuzzy reasoning method by considering the distance value

between two fuzzy sets, and is effective even when the common set between an

antecedent and a fact is an empty set. Smooth and efficient obstacle avoidance for a

tour guide robot is the subject of an interesting literature [26]. The paper presents an

implementation of path planning and obstacle avoidance for an autonomous tour

guide robot. In view of the authors a tour guide robot faces certain requirements. The

collision risk must be low and the eventual effects of a collision must be harmless.

Smooth motion is important, as visitors anticipate movement when they follow the

guide. The obstacle avoidance control loop should be fast in order to not only run in

real-time, but also leave enough processing resources to other modules such as

localization, sensor acquisition, web server and motor control. Enabling mobile

robots to navigate through crowded environments such as indoor shopping malls,

airports, or downtown sidewalks is the goal of another research [27]. This approach

uses inverse reinforcement learning (IRL) to learn human-like navigation behavior

based on example paths. Since robots have only limited sensing, the author extends

existing IRL methods to the case of partially observable environments. Shen, Jiali,

and Huosheng Hu presents an approach to visual navigation of a museum guide

robot, which can detect visitors nearby and interact with them via voice and touching

screen [28]. The software architecture of the robot is presented to show how this

complex system is organized. Furthermore, a fast and robust multi-sensor based

navigation is explained. Implementation of a tour guide robot via shape recognition

and path planning is the subject of a paper presented by some Taiwanese academic

researchers [29]. A tour guide robot with image system is implemented in their

paper. The principal aim is the application of a shape recognition method so that the

robot can move autonomously. In addition, to abandon the conventional rail-type

15

tracking control, they intend a fixed path planning to let the robot move

autonomously along the desired path. Gorry, Benjamin, et al. describes a new

computer vision algorithm that has been developed to track moving objects as part of

a long-term study into the design of semi-autonomous vehicles [30]. The basic of the

work is the mean shift object-tracking algorithm, for a moving target, it is usual to

define a rectangular target window in an initial frame, and then process the data

within that window to separate the tracked object from the background by the mean

shift segmentation algorithm. Rather than use the standard, Epanechnikov kernel,

they have used a kernel weighted by the Chamfer distance transform to improve the

accuracy of target representation and localization, minimizing the distance between

the two distributions in RGB color space using the Bhattacharya coefficient. Moving

obstacle avoidance of a mobile robot using a single camera is the issue of a research

by Kim, Jeongdae, and Yongtae Do, from Daegu University in south Korea [31].

Their paper presents some preliminary results of the detection of moving obstacles

by the use of a single camera attached to a mobile robot. When a camera moves,

simple moving object detection techniques for a stationary camera, such as

background subtraction or image differencing, cannot be employed. They thus detect

objects that move near the robot by block-based motion estimation. In the method an

image is firstly divided into small blocks, and then the motion of each block is

searched by comparing two consecutive images. If the motion between matching

blocks is significantly large, the block in the current image is classified as belonging

to moving objects. Another literature presents recognition of moving objects by

image processing and its applications to a guide robot [32]. As the guide robot

estimates the direction of the movement of approaching objects and emits a warning

about its own movement, the user and the guide robot can safely pass by moving

objects such as pedestrians. This paper improved the safety of the guide robot and

proposed a method of recognizing moving objects by image processing. They have

presented a recognition algorithm for both moving objects and safe-zone to moving.

Japanese researchers from Saitama University present the tracking visitors with

sensor poles for robot‟s museum tour [33]. It is proposed in their article a robot

system which can take visitors on guided tours. The robot consists of simple devices

such as multiple laser range finder attached to a pole. By just placing the sensor

16

poles, they could track the location and orientation of the robot and visitors at the

same time. Then they conducted experiments to confirm the effectiveness and

accuracy of the system. In a resembling paper, a simple Personal Identification (SPI)

method using Dress Color Information (DCI) as a kind of image processing for a

guide robot is proposed [34]. The DCI is a small number of color information that is

only calculated at narrow areas around a user‟s joint positions obtained via KINECT

on a mobile robot. The SPI method includes not only the person‟s skeletal

information but also the DCI. This method can identify the specific user in real time.

As a result if the mobile robot loses the user temporarily when there are many people

present, it can find the user properly and promptly. Visual navigation of museum

guide robot is another topic in this issue using by image processing [35]. The paper

presents a novel approach to visual based navigation of a robot which can detect

visitors nearby and interact with them via voice and a touching screen. The software

architecture of the robot is presented to show how this complex system is organized.

Furthermore, a fast and robust multi-sensor based navigation is explained. Elnagar,

Ashraf, and Leena Lulu from department of computer science, university of Sharjah

employs a visual tool for computer supported learning: as the robot motion planning

example [36]. They introduce an effective computer aided learning visual tool

(CALVT) to teach graph-based applications. In the robot motion planning, CALVT

enables users to setup the working environment by creating obstacles and a robot of

different shapes, specifying starting and goal positions, and setting other path or

environment parameters from a user-friendly interface. Localization problem using

geometric features from a 360° laser range finder and monocular vision system is

described in another paper [37]. It‟s practicability under conditions of continuous

localization during motion in real time is investigated in large-scale experiments. The

features are infinite horizontal lines for the laser and vertical lines for the camera.

They are extracted using physically well-grounded models for all sensors and passed

to a Kalman filter for fusion and position estimation. Positioning accuracy close to

sub-centimeter has been achieved with an environment model requiring 30 byte/m
2
.

Already with a moderate number of matched features, the vision information was

found to further increase this precision, particularly in the orientation.

17

All of the intelligent service robots which their specifications have been extracted

from the above literatures are listed below. Capability and specification of each one

is described briefly. In appendix 1 all of these service robots have been summurized

as a table and presented in a short description, showed a picture of them and where

have been used.

MINERVA [12] is an interactive tour-guide robot, which was successfully exhibited

in a Smithsonian museum. During its two weeks of operation, the robot interacted

with thousands of people, traversing more than 44 km at speeds of up to 163 cm/sec.

XAVIER [13] has the identity of a building guide robot which can accept commands

to travel to different offices in the building, broadcasting camera images as it travels.

A number of intelligent service robots have been developed to guide a building for

visitors. The robot named PHOPE [7] is made for guidance at indoor environment.

All software components including face recognition, voice communication,

navigation, touch-pad based GUI, database and TTS systems are integrated into one

guide system based on PIRO Service Mobile Robot (PSMR). And hardware

components including sensors, actuators, micro-processors and power-supply system

are also integrated into the robot. ROBOX [26] has the role of an interactive moving

machine which can operate in human environments and interact by seeing humans,

talking to and looking at them, showing icons and asking them to answer its

questions. RHINO [28] is another autonomous, interactive tour-guide robot. It is

deployed for a period of six days in a densely populated museum. The empirical

results demonstrate reliable operation in public environments. The robot successfully

raised the museum's attendance. In addition, thousands of people all over the world

controlled the robot through the Web. PYGMALION [37] is a fully autonomous self-

contained robot which has the capability of localization using geometric features

from a 360° laser range finder and a monocular vision system. A test bed for the

localization system was an annual computer tradeshow in Lausanne, Switzerland,

where during 4 days visitors could give high-level navigation commands to the robot

via a web interface. SAGE [8] has the role of a guide robot that has been installed at

the Carnegie Museum of Natural History as a full-time autonomous member of the

staff. Its goal is to provide educational content to museum visitors in order to

18

augment their museum experience. Sage's topological navigation system is based on

color vision and odometric information. The robot has also the ability to conduct

automatic long-term parameter adjustment. MASTIFF-I [11] was constructed as part

of a project to build inexpensive, autonomous robot for public security and patrol

building, which operated under dynamic and unknown environment. A mobile robot

platform ready for the real world! NTU-I [18] is an outdoor tour guide robot, which

is constructed to provide autonomous guiding services on the campus of National

Taiwan University. It has twelve ultrasonic sensors around the body to detect the

nearby object within three meters. Once the robot encounters an unexpected obstacle,

the proposed hierarchical navigation strategy will drive the robot to avoid collision.

SECURITY WARRIOR [21] is an intelligent security robot. The robot has developed

by National Chung Cheng University (NCCU). It consists of six systems including

vision, motion, robot arms, power estimation, remote supervise and sensory systems.

The vision system is used to carry out human detection and tracking. The motion

system is built by using embedded systems and used to achieve motion planning in

real time. The robot arms are the useful devices for the robot. Equipped with the

arms, the robot can perform more tasks such as gesture expression or grasp functions.

In order to avoid the robot shutdown suddenly, the power estimation system has been

employed. For the robot, the sensory system is one of the important parts. With the

fire detection sensor, the security robot can detect fire alarm in the environment. Path

planning is accomplished by using the multi-sensor fusion. Body sensors can detect

intruders. Combining the sensory and remote supervising systems, the owner can get

notice whether there are any situations occurred. ROBOVI [18] is an autonomous

robot which is able to form relationships with children and that children might learn

from robots as they learn from other children. Using wireless identification tags and

sensors, these robots identified and interacted with children who came near them.

The robots gestured and spoke English with the children, using a vocabulary of about

300 sentences for speaking and 50 words for recognition. The robot has been also

developed for a shopping mall and conducted a field trial with it. The robot was

designed to interact naturally with customers and to affectively provide shopping

information. ATLAS [28] has the role of a museum guide robot. The visual navigation

system of this robot can detect visitors nearby and interact with them via voice and a

19

touching screen. PIONEER 3-AT [19] is a small four-wheel, four motor skid-steer

robot ideal for all-terrain operation or laboratory experimentation. Pioneer research

robots are the world‟s most popular intelligent mobile robots for education and

research. MODROB-C & MODROB-D [16] robots are technology demonstrative

mobile robots. The aim of these robots is to recognize open doors and move through

the open door with narrow clearance. TT-JOY [9] has the identity of a mobile guide

robot, which can detect multiple persons around it and choose the closest one as a

user. This is realized using an Omni-directional camera and a laser range finder. The

robot also has a projector with a pan-tile mechanism. It can project information

anywhere in the environment and guide a person. The user can input commands by

simple gestures using the foot on the dialog box projected onto the floor. After

destination decision, the robot guides him/her by its motion and information

projected onto the floor/wall/ceiling. The displayed information is changed

corresponding to his/her position. VBSAR [17] is a vision-based shopping assistant

mobile robot which can serve people in a mall. By using such robots, a mall could

not only save human resources effectively but also improve the quality of

information service. In general, a mall always provides three kinds of customer

services as guiding, communication and accompanying. Finally NEEL [15] is an

intelligent shopping guide robot. The project Myneel was envisaged to provide with

crucial insights into the commercialization of service robots. It has an interactive

conversational agent which can serve shopping needs of the visitors in a shopping

mall.

The service robotics market is expected to reach $19.41 Billion by 2020 at a CAGR

of 21.5% from 2014 to 2020 around the world [38]. According to another statistics

published by the United Nations Economic Commission for Europe (UNECE) [39],

there are over 20,000 professional service robots in use today valued at an estimated

$2.4 billion. If personal entertainment robots and domestic robots like vacuum

cleaners are included, this number is well over $3.5 billion. These economical

statistics affirm the importance of our prospect, if we can actualize our research and

be hopefully a portion of this market. Below we have looked up a couple of service

robots in the market.

20

Panasonic's HOSPI automatic medication delivery robot has already made it into

hospitals in Japan and other countries where it is used to sort and transport

medications to nurse stations [40]. The HOSPI-Rimo employs the same self guiding

technology and high-definition visual communications technology found in HOSPI,

but is tasked with serving as an intermediary to provide communication between

people who are bedridden or have limited mobility to communicate and others, such

as an attending doctor somewhere else in the hospital or far flung friends and family,

as if they were interacting face to face. SCITOS A5 is a versatile mobile service-

guide robot, which pleasantly communicates with people via speech or a touch

screen at any location [41]. Driving and approaching people autonomously, it

certainly works well implemented at the “Points-of-Sale”, an exhibition booth or

inside an office building. SCITOS G6 Transporter, a mobile transporter that is able to

fully autonomously carry out flexible intra-logistic tasks [41]. It is perfect for fast

food restaurants and cafeterias. The transporter is able to detect when it is full of

trays with dirty dishes and then fully autonomously brings these dishes into the

kitchen in order to be cleaned. The advantage this robot brings is the fact that they

need to be. Employees no longer have to constantly check how full the tray racks are

and can then focus more on the preparation of food and serving customers. This

robot can be built to fit any situation and environment. Due to its navigation software

there are no environmental changes as well as external sensors or markers necessary.

With a small built sensor the robot is able to operate kitchen doors and eliminate the

need for employee help. SCITOS G5 is a professional platform, combining the

advantages of an industrial robot with the flexibility of research robot [41]. The robot

combines the advantages of industrial robots, such as robustness and longevity, with

the mobility and flexibility of a research robot, which are necessary for the

development of mobile and interactive robotic applications. The drive system is able

to move the 60 kg platform at speed of up to 1.4 m/s and handles payloads of up to

50 kg without any difficulties. The standard SCITOS G5 houses a ring of 24

ultrasonic range finders to obtain an image of the robot‟s environment. Additionally,

it includes a closed bumper as a security system. Further sensors can be added

optionally, such as laser-range-finder or cameras. SCITOS G5 has two upgraded

version, SCITOS G5 Monitoring and SCITOS G5 Manipulator. SCITOS G5

21

Monitoring, an autonomous mobile service robot, can help us to measure the

environmental parameters in industrial plants[40]. The second robot is SCITOS G5

attached with a robotic arm [41]. It is perfect for precise transportation needs. With

the robotic arm the robot is able to transport fragile objects to specific locations with

an astonishing accuracy of 2-3 cm. And finally SCITOS G3 is a highly interactive

home-care robot system for the support of persons in home environments, nursing

homes, or hospitals [41].

As mentioned in the previous chapter, the main goal of this thesis is designing and

manufacturing of an autonomous robot namely as Guide – Guard robot and then

enabling it to safe navigate in our indoor environment.

By surviving all of above literatures, and studying the various control architectures,

we decided to accomplish the navigation task, using by a non-map behavior-based

architecture. After designing and manufacturing of the physical structure and then

implementing of the architecture on it, the advantages and disadvantages of such an

architecture will be studied aginst map-based navigation system.

22

CHAPTER 3

SYSTEM DESIGN

System design of the guide – guard robot first requires classification of all functions

which the robot should perform. Such a classification has been represented in Figure

1. The main purpose of this thesis as described in chapter 1, has been classified as

navigation in this diagram. In order to perform the navigation task, an integrated

system is designed. The system design is described comprehensively in this section.

Figure 1: The Functions of the Guide Robot

3.1 System Structure

The physical structure of our guide robot is shown in Figure 2. The designed mobile

platform is composed of a body (chassis framework, floors and walls), a differential

23

driving mechanism with two driving and two free-rotating wheels, two DC servo

motors, twelve IR proximity sensors, four ultrasonic range sensor, a compass, a

navigation computer, two microcontroller boards, a motor driver shield and a voltage

regulator. All of these are descripted below in two main groups; Mechanical

Hardware and Electronic Hardware.

 Mechanical Hardware

3.1.1 Body

Generally the body of the robot is in a proportional form with the task work of it,

preferably in the form of human body. Human body form is more appropriate in

guide robots because its design is for functional purposes, such as interacting with

human tools and environments, for experimental purposes, or for other purposes. The

designed body for our purpose is consisting of two frameworks; chassis and floors -

walls.

Figure 2: Physical Structure of the Robot

3.1.1.1 Chassis Framework

This structural subsystem of the robot is responsible for physical support. It holds

everything in place, and is, in effect, the durable “skeleton” of the robot to which all

the other subsystems are attached. The structure and motion subsystems are very

tightly integrated to form the chassis of the robot. The chassis is probably the largest

24

part of the robot, so we should make sure it is made of a light weight rigid material

such as iron, steel or aluminum. Figure 3 shows our designed and built chassis for the

purpose. First the needed parts for the chassis were designed in SOLIDWORKS

environment and then assembled as shown in the figure 3. Appendix 2 shows the

drawing of the chassis and four main components of it. It is worth mentioning that

the primary prototype of the chasis had been designed and manufactured in our

department some years ago [42].

Figure 3: Designed & Built Chassis for the Robot

3.1.1.2 Floors, Walls and Sensors Mount

We decided to cover the chassis by walls and separate it to five floors. Each one of

these floors will be allocated to the electronic hardware of the main functions of the

robot. In order to be light, the material of the walls, floors and sensor mounts were

chosen to be Plexy-Glass. This material is transparent and this cause we feel more to

stand against a demonstration model. Similar to the design of the chassis, all of these

floors, walls and sensor mounts were designed in SOLIDWORKS and then cut using

by the Laser-cutter in our department and then assembled on the chassis. Appendix 3

shows the drawings of these parts.

3.1.2 Wheels

Wheeled robots are robots that navigate around the ground using motorized wheels

to propel them. This design is simpler than using treads or legs and by using wheels

they are easier to design, build, and program for movement in flat, not-so-rugged

http://www.societyofrobots.com/materials_aluminum.shtml

25

terrain. They are also better controlled than other types of robots. Disadvantages of

wheeled robots are that they cannot navigate well over obstacles, such as rocky

terrain, sharp declines, or areas with low friction. Wheeled robots are most popular

among the consumer market; their differential steering provides low cost and

simplicity. Robots can have any number of wheels, but three wheels are sufficient for

static and dynamic balance. Additional wheels can add to balance; however,

additional mechanisms will be required to keep all the wheels in the ground, when

the terrain is not flat.

Most wheeled robots use differential steering, which uses separately driven wheels

for movement. They can change direction by rotating each wheel at a different speed.

There may be additional wheels that are not driven by a motor these extra wheels

help keep it balanced.

Our design is based on a four-wheeled robot, two powered, and two free rotating. For

free rotating ones we preferred to use Omni-wheels. Figure 4 shows our used 100

mm Track-wheels in the rear and Omni-wheels in the front of the robot.

Figure 4: Rear Powered Track-Wheels & Front Omni-Wheels

An Omni-wheel is like many smaller wheels making up a large one, the smaller ones

have axis perpendicular to the axis of the core wheel. This allows the wheels to move

in two directions, and the ability to move holonomically, which means, it can

instantaneously move in any direction. Omni-wheeled robots can move in at any

angle in any direction, without rotating beforehand. The disadvantages of using

Omni-wheels is that they have poor efficiency due to not all the wheels rotating in

the direction of movement, which also causes loss from friction.

26

 Electronic Hardware

The electronic hardware of the robot consists of two DC servo motor, two encoders,

twelve IR proximity sensors, four ultrasonic range sensor, a compass, two

microcontroller boards (Master and Slave), one motor driver shield, one voltage

regulator, one navigation computer, and one 15 inch touch screen notebook. Figure 5

shows each subsystem block diagram of the overall electronic system structure and

data transmission flow between the subsystems.

Figure 5: Data-Transmission Flow between the Subsystems of the Hardware

Navigation

Computer

Left

DC Servo

Motor

 Touch Screen

Notebook

Ultrasonic

Sensors

Slave

Micro Controller Board

Master

Micro Controller Board

Motor Driver

Shield

Compass

Infrared

Sensors

Right Encoder

Right

DC Servo

Motor

Left Encoder

27

3.1.3 Motors

Among all kinds of DC motors, a servo kind was preferred to use in the robot,

because of some effective specifications. Servo motors are standard DC or brushless

motors with an encoder feedback loop. The computer reads the position of the motor

and controls the power applied to the motor. Servo motors are faster moving point to

point and are better at accelerating very heavy loads. It‟s optimized for smooth

precise slower speed moment. That means more poles (brushes), more commutator

segments, skewed rotor often internal mounting for an encoder, and just generally

designed around a lower speed high torque use. The servo can also be wound

differently, with different gauge wires to improve thermal properties. Unlike a motor

a servo is expected to handle full load at zero speed, a motor will normally over heat

in the same application. Figure 6 shows a prototype DC servo motor with integrated

encoder and it‟s including parts.

In order to select a proper motor and calculate the needed torque, which should beget

by each motor, the below procedure was followed:

1. The motion profile was determined and maximum velocity required to make

the desired move was calculated.

2. The mechanical drive mechanism was selected and then the load torque was

calculated.

3. The required motor torque for our application was determined.

4. The proper motor and driver based on their speed-torque characteristics was

selected.

Figure 6: Components of a DC Servo Motor

It is worth mentioning, that the total weight of the loads (robot‟s weight), which our

two motors should be able to carry, was estimated around 20 kg. Appendix 4 shows

28

the weight of all parts of the robot and the total. Since the visitors should be able to

follow the robot easily and based on the human‟s normal walking speed (1.2 m/s) our

needed motor‟s rpm and torque were computed as follow;

229
05.02

602.1

rpm

2/1.2

2.060

05.0280
sma

cmkgmN
motors

RaM
.7.10.05.1

2

05.01.220

2

Our selected motor is an integrated encoder, powerful brushed DC servo motor

with metal gearbox intended for operation at 12 V manufactured by Pololu Robotics

& Electronics [43]. Figure 7 shows this motor and its important specifications.

 Gear Ratio: 131:1

 Stall Torque: 18 Kg.cm

 No-Load Speed: 80 rpm

 Stall Current: 5A (@12V)

Figure 7: Used DC Servo Motor and its Specifications

In order to assemble these motors on the chassis of the robot, a proper mount was

designed and built. This mount which connected to the bracket, helps to firm and

strong linkage of the motors to the chassis. Figure 8 shows the built mount.

Figure 8: The Motor’s Mount

3.1.4 IR Distance Sensors

An infrared sensor is a device (usually with supporting circuitry) that can detect

infrared light (which is below the optical spectrum) for use to purpose. Most of the

remote controls for TVs and other entertainment equipment use infrared energy as

29

the transmission medium to carry information between the control and the equipment

to be operated. Infrared sensors also have important scientific, military, security and

rescue applications since they can „‟see‟‟ the „‟radiant heat energy‟‟ which is infrared

radiation. This electromagnetic energy is in the wavelengths from 750 nm, which is

the lower end of the optical spectrum, to well over 10,000 nm, deep in the infrared.

The heart of the system is a photo detector or photo sensor. It does its task based on

black body radiation, which is the emission of energy based on the temperature of the

object. As the radiant energy is a direct function of temperature, even the slightest

difference in temperature results in the radiation of a slightly different wavelength of

infrared light. Figure 9 shows the schematic diagram of the IR sensors and a real

prototype.

Figure 9: Schematic Diagram of the IR Sensors and a Real Prototype

This general purpose proximity IR sensor is used in our system for collision

detection or obstacle detection. Our two types selected IR sensors are distance

measuring sensor unit, composed of an integrated combination of PSD (position

sensitive detector), IRED (infrared emitting diode) and signal processing circuit

manufactured by Sharp Company [44]. The long distance finder (20-150 cm) were

selected to assembly on the front of the robot and short ones (10-80 cm) on the sides

of the robot. Other important specifications of these two-type sensors are:

 Distance measuring range: 10-80 cm and 20-150 cm

 Consumption current : Typ. 30 mA

 Package size : 29.5×13×13.5 mm

 Supply voltage : 4.5 to 5.5 V

30

3.1.5 Ultrasonic Distance Sensors

Ultrasonic sensors work on a principle similar to radar or sonar, which evaluate

attributes of a target by interpreting the echoes from radio or sound waves

respectively. Active ultrasonic sensors generate high frequency sound waves and

evaluate the echo which is received back by the sensor, measuring the time interval

between sending the signal and receiving the echo to determine the distance to an

object. Our used ultrasonic ranging module HC - SR04 provides 2cm - 400cm non-

contact measurement function, the ranging accuracy can reach to 3mm [45]. The

modules includes ultrasonic transmitters, receiver and control circuit. Figure 10

shows this sensor and its important specifications.

 Working Voltage & Current: DC 5 V, 15 mA

 Working Frequency: 40 Hz

 Working Range: 2 – 400 cm

 Measuring Angle: 15 degree

Figure 10: Used Ultrasonic Sensor and its Specifications

3.1.6 Compass

A compass is an instrument used for navigation and orientation that shows direction

relative to the geographic cardinal directions. The nine independent rotation,

acceleration, and magnetic readings provide all the data needed to make an attitude

and heading reference system (AHRS). What we need in our system, is just a

reference to have an accurate measurement of the robot‟s heading. The Pololu

MinIMU-9 v3, which we prefered to use in our system, is an inertial measurement

unit (IMU) that packs an L3GD20H 3-axis gyro and an LSM303D 3-axis

accelerometer and 3-axis magnetometer onto a tiny 0.8″ × 0.5″ board [46]. Figure 11

shows this sensor and its important specifications.

 Output format (I²C):

- Gyro: one 16-bit reading per axis

http://en.wikipedia.org/wiki/Radar
http://en.wikipedia.org/wiki/Sonar
http://en.wikipedia.org/wiki/Navigational_instrument
http://en.wikipedia.org/wiki/Cardinal_direction

31

- Accelerometer: one 16-bit reading per axis

- Magnetometer: one 16-bit reading per axis

 Operating voltage: 2.5 V to 5.5 V

 Supply current: 6 mA

Figure 11: Used Compass and its Specifications

Figure 12 demonstrate the arangement of above mentioned, IR and ultrasonic

sensors, motors and wheels around the body of the robot.

Figure 12: Arrangement of the IR, Ultrasonic Sensors, Motors & Wheels

3.1.7 Micro-Controller Board

A microcontroller is a small computer on a single integrated circuit containing a

processor core, memory, and programmable input/output peripherals.

Microcontrollers are designed for embedded applications in automatically controlled

http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Input/output

32

products and devices, such as automobile engine control systems, implantable

medical devices, remote controls, office machines, power tools, toys, robots and

other embedded systems. By reducing the size and cost compared to a design that

uses a separate microprocessor, memory, and input/output devices, microcontrollers

make it economical to digitally control even more devices and processes.

Arduino Mega 2560 which is a microcontroller board based on the ATmega2560

manufactured by Arduino [47] is preferred in this work. It has 54 digital input/output

pins (of which 15 can be used as PWM outputs), 16 analog inputs, each of which

provide 10 bits of resolution (i.e. 1024 different values), 4 UARTs (hardware serial

ports), a 16 MHz crystal oscillator, a USB connection, a power jack, an ICSP header,

and a reset button. It contains everything needed to support the microcontroller;

simply connect it to a computer with a USB cable or power it with an AC-to-DC

adapter or battery to get started. Figure 13 shows this microcontroller board, which

we used two of them as master and slave boards.

Figure 13: Microcontroller Board

3.1.8 Motor Driver Shield

This shield manufactured by Pololu Robotics & Electronics, makes it easy to control

two high-power DC motors with our Arduino microcontroller board [48]. Its dual

robust VNH5019 motor drivers operate from 5.5 to 24 V and can deliver a continuous

12 A (30 A peak) per motor, or a continuous 24 A (60 A peak) to a single motor

connected to both channels. These great drivers also offer current-sense feedback and

accept ultrasonic PWM frequencies for quieter operation. The Arduino pin mappings

can all be customized if the defaults are not convenient, and the motor driver control

http://en.wikipedia.org/wiki/Embedded_system

33

lines are broken out along the left side of the shield for general-purpose use without

an Arduino. Figure 14 shows this driver shield.

Figure 14: Motor Driver Schield

3.1.9 Voltage Regulator

We have to use a voltage regulator to provide a buffer, eliminating the loading effect.

The voltage follower makes it so the voltage at one point is precisely equal to the

voltage at another point, regardless of what the resistance, capacitance or inductances

are. The compact switching step-down voltage regulator, manufactured by Pololu

Robotics & Electronics, takes an input voltage between 4.5 V and 42 V and

efficiently reduces it to a lower, user-adjustable voltage [49]. It has an output voltage

range of 4 V to 25 V and a maximum output current of 600 mA. Figure 15 shows this

regulator.

Figure 15: Voltage Regulator Board

3.1.10 Handmade Voltage and Data Distributor Board

In order to supply the voltages of twelve IR sensors, four ultrasonic sensors and two

encoders we need +5v which is available by the regulator. On the other hand, the

motors are supplied by a voltage source of +12v, which can be supplied directly from

the battery. With the aim of supplying these mentioned elements and data

transmission between them, regularly and neatly, we designed and made an

electronic supply distributor board and mounted the regulator on it. Figure 16 shows

our handmade board.

34

Figure 16: Handmade Distributor Board

3.1.11 Navigation Computer

Embedded computers deliver with the help of their processor, enabling hobbyists,

students and innovators to bring a project to development fast. Designed with

community inputs in mind, this open hardware design brings the previous

generations' laptop-like performance and expandability to the next level, while

adhering to hand-held power levels.

In our robot, an embedded computer will be allocated to the navigation system as

well as the interaction system. For the time being, the embedded computer‟s task is

assigned to the existing microcontroller board and a 15" Touch-Screen Notebook.

3.1.12 Touch-Screen Notebook

As mentioned above, it was decided to taking advantages of the processor of a

Notebook to fulfill the embedded computer‟s task. It will also use from the

Notebook‟s screen for importing the input‟s commands and displaying some

information as the outputs. The main technical specifications of this Notebook are,

15" Display, Intel CPU Z2760 1.80 GHz Processor, 2 GB RAM, 32 bit Operating

System x86 based processor, Microsoft Windows 8 version 2012.

Figure 17: Touch-Screen Notebook

35

3.1.13 Battery

Based on the needed supplying voltages and loading current of the motors, IR

sensors and electronic boards, it‟s decided to use a battery with the voltage, 11.1v

and power, 3050mAh. Figure 18 shows the used battery.

Figure 18: The Battery

3.2 Control Architecture

In order to design control architecture for our system, we should and ought to peruse

a critical issue: how we can control a mobile robot.

3.2.1 Control of a Mobile Robot

The main question is: how we should make mobile robots move in effective, safe,

predictable, and collaborative ways using modern control theory? The basic control

theory determines how we should pick the control signal? And the important

objectives in this process are; stability, tracking, robustness, disturbance rejection,

and optimality.

3.2.2 Dynamics of the Mobile Robot

In order to make a mobile drive at a desired reference speed (r), if we take our state

as the velocity (X) of the robot, and the input as the motor voltage (u), based on

Newton‟s second law, we will have the equation 1, in which c is the electro-

mechanical transmission coefficient and m is the weight of the robot;

u
m

c
XXmcuF (1)

36

0 1 2 3 4 5 6 7 8 9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time[s]

Ve
loc

ity
[m

/s]

Step Response

Input

Output

Now, assume that we want to measure the velocity (Xy). With taking a simple P-

regulator, we will reach the equation (2), which means exactly tracking! Figure 19

shows the response of the system to a simple step input.

 rXXrk
m

c
Xkeu 0

(2)

Figure 19: Response by a P-Regulator

With taking a PI-Regulator, it will result the response given in Figure 20.

0 1 2 3 4 5 6 7 8 9

0.2

0.4

0.6

0.8

1

1.2

1.4

Time[s]

Ve
loc

ity
[m

/s]

Step Response

Input

Output

Figure 20: Response by a PI-Regulator

And a PID-Regulator will cause to have the response shown in Figure 21.

37

0 1 2 3 4 5 6 7 8 9

0.2

0.4

0.6

0.8

1

1.2

1.4

Time[s]

Ve
loc

ity
[m

/s]

Step Response

Input

Output

Figure 21: Response by a PID-Regulator

Appendix 5 represents a simple model to simulate the step responses of the system as

mentioned above.

By the aim of driving a mobile robot around, as shown in Figure 22, the main

problem will be taking it to drive from point A to point B?

The controller must be able to respond to dynamic and unknown environmental

conditions. So instead of building one complicated controller, it‟s better to divide and

conquer the whole control task, and consider wellknown behaviors such as: Go-to-

Goal, Avoid-Obstacles, Follow-Wall, and Track-Target.

 ?

Figure 22: Taking the Robot to Drive from two Points

A

B

C
o
n

tro
ller

S
en

so
rs

Robot Model

38

Switching among controllers in response to the environmental changes is simpler

than have a complicated controller. This is Behavior-Based Robotics [50][51].

To build a behavior, assume we have a differential-drive, wheeled mobile robot

driving at a constant speed, and therefore we have the equations (3).

sin

cos

0

0

y

x

 (3)

d

Figure 23: Heading and Desired Heading

If we want to drive in a desired heading, how should be calculated? We have a

reference, a model, a control input, and a tracking error as equations (4).

dr

, de , (4)

And by using a PID, we will have: ekdekekePID D

t

IP

0

 (5)

In Go-to-Goal behavior, as it is clear from the following figure, the desired heading

will be as the equation (6).

xx

yy

g

g

d arctan (6)

gg yx ,

 yx ,

Figure 24: Desired Heading in Go-to-Goal Behavior

We can use the same idea in the Obstacle-Avoidance Behavior. Equations 7, 8, 9 and

10 present some alternatives to this behavior.

R

G

39

 2

 OO yx , 3

 4

 yx ,

 1

Figure 25: Alternative Desired Headings in Obstacle Avoidance Behavior

 obst1 „Pure Avoidance‟ (7)

2

2

 obst

 (8)

 goal 3 „Pure Go-to-Goal‟ (9)

Unlike there is no obvious “correct” choice between the above hard behaviors, but it

seems, a combined behavior (blended) be more logical.

goalobstF ,4 „Blended‟ (10)

3.2.3 Hard Switches vs. Blending

Given two different behaviors, they can be combined in two options:

- Hard Switches

- Blended Behaviors

Each of these options has its own pros and cons. The pro of hard switches is

performance guarantees and con of it is bumpy ride. Against the pro of blended

behaviors is smooth ride and con of it is no guarantees.

G

R

 O

40

3.2.4 Hybrid Automata

We need to be able to describe system that contains both the continuous dynamics

and discrete switch logic. Hybrid Automata means, finite discrete logic on

continuous dynamics. In this issue, there are some important punch lines.

- By combining stable modes, the resulting hybrid system may be unstable!

- By combining unstable modes, the resulting hybrid system may be stable!

- Design stable modes but be aware that this is a risk one may face!

As it is mentioned, stable subsystems do not guarantee a stable hybrid system. In

other words, it is possible to destabilize stable subsystems by an unfortunate series of

switches.

3.2.5 Navigation using Behaviors

For the purpose of planning, let‟s start simply. If we write our dynamic equation as

(11), and take the controllability matrix on it as equation (12), we find out, our

system is completely controllable.

 uxx

10

01

00

00
 (11) ux , 2x

 20 IABBrank (12)

Figure 26: Control Input Vector

The two bread-and-butter behaviors are go-to-goal and avoid-obstacle.

 3.2.5.1 Go-to-Goal Behavior

This behavior drives the robot towards the goal.

The error function and control inputs will be as the equation (13).

R

41

gx

 xxe g , KexeKeu 0 (13)

 x

Figure 27: Control Input Vector in Go-to-Goal Behavior

The system is asymptotically stable. That means if: 0k (0Keig), 0e

But a linear controller means the robot goes faster the further away the goal is. The

solution in practice is making the gain K a function of e like equations (14).

 eeKe

u

e

e

K

e

2

0 1

 (14)

e

Figure 28: Control Input Vector vs. Error in Go-to-Goal Behavior

3.2.5.2 Avoid-Obstacle Behavior

This behavior means, don‟t slam into things. In order to get the direction, let‟s just

flip the sign in the go-to-goal behavior as shown in equation (15).

xxe o
 (15) ox

KeeKeu

x

Figure 29: Control Input Vector in Avoid-Obstacle Behavior

R

G

R

 O

42

 Now the system is unstable. That means the robot drives off to infinity. And also we

care less the closer we get. The solution is making K dependent on e like equation

(16).

u

2

1

e

c

e
K (16)

e

Figure 30: Control Input Vector vs. Error in Avoid-Obstacle Behaviors

Now we are ready to switch between behaviors, as shown in figure 32. The Hybrid

Automata switches between two behaviors as presented in equations (17).

 oAOAO xxKu (17)

 xxKu gGTGGTG

ux

 AOu
 GTGu

Figure 31: Control Input Vectors of Go-to-Goal and Avoid-Obstacle Behaviors

Figure 32: Hybrid Automata

G

R

 O

43

 ox

3.2.5.3 Blending

The blending Function 1,0od

can be defined as the equation (18).

 AOoGTGo ududx 1
 (18)

 Figure 33: Control Input Vector in Blended Behavior

3.2.5.4 Wall Following Behavior

We really need at least one more behavior to be able to deal with these obstacle

worlds. A really useful behavior is one that makes the robot follow the boundary of

an obstacle/wall.

The follow-wall behavior should maintain a constant distance to the obstacle/wall it

is if following as displayed in equation (19).

 AOu

 (19)

 FWu

Figure 34: Control Input Vector in Fallow-Wall Behavior

But we can really move in two different directions along a wall as shown equations

(20) and (21).

 AOAOFW uRuu

201

10

44

 ox

 FW
ccu AOu

 FW
cu

Figure 35: Wall Following in two different Directions

 (20)

 (21)

But now which direction should we choose? Although there is no obvious answer to

that but let the goal-to-goal direction determines. Equation (22) describes this

situation.

FW
cc

FW
cc

GTG

FW
c

FW
c

GTG

uuu

uuu

0,

0,

 (22)

We should stop the wall-following behavior, when enough progress has been made

and we have a “clear” shot to the goal! These conditions are presented in below

equations.

 switchlast of time

ouuclearshot

xxxxprogress

GTGAO

gg

,:

:
 (23)

3.2.5.5 Hybrid Automata

Now if we put all behaviors together in a plan, named Hybrid Automata, we will

achieve a single plan as shown in figure 36.

 AOAOFW
c uuRu

01

10

2

 AOAOFW
cc uuRu

01

10

2

45

Figure 36: All Behaviors in single Hybrid Automata

3.2.6 Layered architecture

We have a problem: even with a simple robot model, the navigation architecture

becomes rather involved. The layered architecture makes the navigation problem

easier by separating it into a planning phase and tracking phase [52].

Standard navigation systems are typically decoupled along three different levels of

abstraction:

Strategic Level: Where to go (high-level, long-term)?

Operational Level: Where to go (low-level, short-term)?

Tactical level: How to go there?

Or slightly less militaristic:

High-Level Planning: Where should the (intermediary) goal points be?

Low-Level Planning: Which “direction” to move in-between goal points?

Execution: How make the robot move in those directions?

There are many Artificial Intelligence (AI) methods (e.g., Dijkstra Algorithm [53],

Dynamic Programming [54], PRT [55], etc) for doing high-level planning. Based on

 u=0 Start

46

the platform of the laboratories of our department, which is shown in appendix 6, all

of the intermediary goal points and final goal points in the space work of the robot

were extracted. Figure 37 shows these points on the map, followed by the

coordinates of each one which is shown in Table 1.

Figure 37: Intermediary & Final Goal Points on the Map Platform

We already know to do low-level planning. By assuming ux , the output is a

desired direction (and magnitude) of travel. The execution-level will be described in

the next section, comprehensively and practically.

Now we are ready to design control architecture to cover our requirements. The

control architecture is responsible to implement two main functions to move and

sense. These functions will be implemented by MATLAB software on the navigation

computer.

1. Transform the outputs of our controllers to the control inputs of the robot

2. Keep track of where the robot is located

47

In order to do these functions, the robot has to have data transmission between two

motors, twelve IR sensors, four ultrasonic sensors, two encoders and a compass

through a supervisor, as shown in Figure 38. The inputs will be entered by selecting

and touching the Push-Bottoms on the screen of the notebook and some useful

information as the outputs will be displayed on it at the goal points. These graphical

interfaces will be provided by the help of the MATLAB GUI (Graphical User

Interface), which will be completely described in the next chapter.

 Inputs

 IR & Ultra Sensors, Encoders, Compass v, w

 Wheels Velocity

Figure 38: Schematic of the Control Architecture

 Supervisor

 Execute

 Controllers

 Execute

 Simulator

 Robot

48

Table 1: Coordinates of the Robot, Intermediary & Final Goal Points

 Points X Y Laboratory

Goal

G1 3028 -300 Mechatronics Engineering Sponsored Research

G2 2718 -300 FESTO Pneumatic Systems

G3 2230 -300 Undergraduate Mechatronics Engineering Education

G4 2310 1108 Technical Support Office / Projects Office

G5 2310 1828 Embedded Systems / Mechatronic Systems

G6 2310 2010 Space & Satellite System Design / Robots Town

G7 2310 2508 Robo Zoo

G8 1280 1112 Sensor, Actuator & Intelligent Systems

G9 1280 1298 Robots Student Society

G10 1280 1698 Design Methodology & Behavior Based Robotics

G11 1280 1877 Cognittive Robotics / Bio-Mimetic Bio-Inspired Design

G12 1280 2280 Empty

G13 1280 2465 Robot Vision

G14 1280 2645 Technical Support Office

G15 354 1372 Mechanical Measurements Machine Elements & CAD

G16 354 965 Mechatronic Prototype Manufacturing

G17 354 1781 Mechatronics Manufacturing

G18 444 1982 Empty

Intermediary

I1 845 -450 Right Corridor

I2 404 655 Hall A

I3 1360 830 Hall B

I4 2360 830 Hall C

Robot R 0 0 Initial Point

49

CHAPTER 4

SYSTEM IMPLEMENTATION

The system design was described comprehensively in the last chapter. The system

structure, including of the mechanical and electronic hardware, and the software

architecture were designed based on our needs. The chapter was closed by the

assembling of the mechanical parts. The system implementation is getting started by

the electronic hardware assembling, voltage supplying, data lines wiring, and

continued by the data transmission methods from IR sensors, ultrasonic sensors,

compass, and encoders to the microcontroller, and control data from there to the

motors.

 4.1 Electronic Hardware Assembling

As it mentioned in the last chapter, in order to transmit data and supply the voltages

of twelve IR sensors, four ultrasonic sensors, two encoders, and also our

microcontroller board and motor driver shield, an electronic distribution board was

designed. Our regulator board was mounted on it, and the voltage-supply and data

lines were wired between IR and ultrasonic sensors and motors, and the

microcontroller board through it. Appendix 7 shows various shots of the assembling

and wiring steps.

 4.1.1 Voltage Supplying

Our twelve IR sensors, four ultrasonic sensors, compass, two encoders and

microcontroller boards are supplied by a voltage source of +5v, which is available by

the regulator mounted on the distributor board. On the other hand, the motors are

supplied by a voltage source of +12v, which can be supplied by the driver shield.

This shield can be supplied by a +12v source, directly from the battery.

50

 4.1.2 Data and Power Lines Wiring

Table 2: Analog/Digital Connection Lines between Parts & Microcontroller Borads

Part No. Pin
Power Line

Data Line
+ -

IRS

1 - DB(+) DB(-) A2-MMCB

2 - DB(+) DB(-) A3-MMCB

3 - DB(+) DB(-) A4-MMCB

4 - DB(+) DB(-) A5-MMCB

5 - DB(+) DB(-) A6-MMCB

6 - DB(+) DB(-) A7-MMCB

7 - DB(+) DB(-) A8-MMCB

8 - DB(+) DB(-) A9-MMCB

9 - DB(+) DB(-) A10-MMCB

10 - DB(+) DB(-) A11-MMCB

11 - DB(+) DB(-) A12-MMCB

12 - DB(+) DB(-) A13-MMCB

US

1
T

DB(+) DB(-)
D13-SMCB

E D12-SMCB

2
T

DB(+) DB(-)
D7-SMCB

E D6-SMCB

3
T

DB(+) DB(-)
D9-SMCB

E D8-SMCB

4
T

DB(+) DB(-)
D11-SMCB

E D10-SMCB

M
1 - M1A-DS M1B-DS -

2 - M2A-DS M2B-DS -

CP -
SDA

5V-SMCB GND-SMCB
SDA-SMCB

SCL SCL-SMCB

E

1
A DB(+) DB(-) TX1-MMCB

B DB(+) DB(-) RX1-MMCB

2
A DB(+) DB(-) SDA-MMCB

B DB(+) DB(-) SCL-MMCB

SMCB -

TX0

USB GND-MMCB

RX0-MMCB

TX2 RX2-MMCB

TX3 RX3-MMCB

DS - - Battery(+) Battery(-) -

51

The data and power transmission between IR Sensors (IRS), Ultrasonic Sensors (US

(T; trigger, E; echo)), Compass (CP), Encoders (E (pin A, pin B)), Motors (M),

Microcontroller Boards (Master; MMCB, Slave; SMCB) and Driver Shield (DS) is

done regularly through our handmade Distributor Board (DB). The above Table 2

demonstrates these analog and digital connection lines between the whole of

hardware. Table 3 shows digital connection lines between MMCB and DS.

Table 3: Analog/Digital Connection Lines between MMCB and DS

Part Pin DS

MMCB

D2 M1INA

D4 M1INB

D6 M1EN/DIAG

D7 M2INA

D8 M2INB

D9 M1PWM

D10 M2PWM

D12 M2EN/DIAG

A0 M1CS

A1 M2CS

 4.2 Data Transmission

The robot is equipped with twelve infrared range sensors, of which eight are located

in the front and four are located on its sides. Four ultrasonic sensors are located on

sides of the robot. It has a two-wheel differential drive system (two wheels, two

motors) with a wheel encoder for each wheel and one compass. Data transmission,

from sensors and encoders to the microcontroller, and control data from there to the

motors, are decrypting comprehensively here. The related flowchart was

demonstated in Figure 5 of chapter 3.

 4.2.1 IR Range Sensors

The orientation (relative to the body of the robot, as shown in figure 10 in section

3.1.4) of IR sensors 1 through 12 is 90⁰, 90⁰, 45⁰, 0⁰, 0⁰,0⁰, 0⁰, 0⁰, 0⁰, -45⁰, -90⁰,

52

-90⁰, respectively. Our IR range sensors are effective in the range of 10-80 cm and

20-150 cm only. However, the IR sensors return raw values in the range of

[0.4, 2.75] and [0.4, 3.25] volt, instead of the measured distances, Figure 39 (a) and

(b) demonstrate the function that maps these sensors values to distances.

To complicate matters slightly, the Arduino Mega 2560 digitizes the analog output

voltage using a voltage divider and a 12-bit analog-to-digital converter (ADC). Table

4 is a look-up table to demonstrate the relationship between the ADC output, the

analog voltage from the IR proximity sensor, and the approximate distance that

corresponds to this voltage for the both front and side ones.

 (a) (b)

Figure 39: Distance Measuring Characteristics of (a) 10-80 cm (b) 20-150 cm types

of IR Range Sensors

As it may be elicited from this table, the conversion from ADC output to analog

output voltage is simply;

5

10242 loglog

10

Ana

s

Ana

ADC

V

V

V
V

 (24)

Converting from the the analog output voltage to a distance is a little bit more

complicated, because a) the relationships between analog output voltage and distance

is not linear, and b) the look-up table provides a coarse sample of points on the curve

in Figure 39. MATLAB has a polyfit function to fit a curve to the values in the look-

53

up table and a polyval function to interpolate a point on that fitted curve. The

combination of these two functions can be use to approximate a distance based on

the analog output voltage.

Table 4: A Lookup Table for Interpolating a Distance from the Analog and Digital

Output Voltages

Distance (cm)
Front Sensors Side Sensors

Voltage (V) ADC Out Voltage (V) ADC Out

10 2.40 480 --- ---

20 1.32 276 2.50 515

30 0.92 192 1.95 392

40 0.71 152 1.50 300

50 0.58 132 1.20 242

60 0.52 105 1.02 202

70 0.45 88 0.85 185

80 0.42 80 0.75 170

90 --- --- 0.65 152

100 --- --- 0.58 135

110 --- --- 0.54 120

120 --- --- 0.50 110

130 --- --- 0.48 100

140 --- --- 0.46 91

150 --- --- 0.42 87

It is important to note that the IR proximity sensor on the actual robot will be

influenced by ambient lighting and other sources of interference. For example, under

different ambient lighting conditions, the same analog output voltage may

correspond to different distances of an object from the IR proximity sensor. This

effect of ambient lighting (and other sources of noise) is not modelled in our

Simulink model, but will be apparent on the actual hardware.

54

 4.2.2 Ultrasonic Range Sensors

The orientation (relative to the body of the robot, as shown in figure 10 in section

3.1.4) of ultrasonic sensors 1 through 4 is 90⁰, 90⁰, -90⁰, -90⁰, respectively. Our

ultrasonic range sensors are effective in the range of 2 - 400 cm only with the

resulution of 3 mm.

As shown in timing diagram (Figure 40), it only needs to supply a short 10 s pulse

to the trigger input to start the ranging, and then the module will send out an 8 cycle

burst of ultrasound at 40 kHz and raise its echo. The echo is a distance object that is

pulse width and the range in proportion.We can calculate the range through the time

interval between sending trigger signal and receiving echo signal. On the other hand,

in order to prevent trigger signal to the echo signal, it is better to use over 60 ms

measurement cycle. The speed of ultrasonic is 343 m/s. To measure a distance from

1 meter, it‟s need round about 6 ms (actually there are two meters, one meter to the

destination and one meter back). So we need a special time for one measurement

cycle and we are not able to make as many measurements per second as we want.

Figure 40: Timing Diagramof Trigger, Burst & Echo Pulses of Ultrasonic Sensor

55

Now in order to calculate the range, we should measure the time interval between

sending trigger signal and receiving echo signal (tet) or it‟s equivalent (et). The

needed range in milimeters will be calculated simply as;
82.5

etrange , when et is in

microseconds. We can calculate the range as a subsystem in our Simulink model,

which has been illustrated in Figure 41. The received echo signal triggers the Digital

Clock on both falling and rising edges.

Figure 41: Subsystem Model to obtain the Range from the Echo Signal

As it mentioned above, our trigger signal has a pulse width of 10 microseconds.

There is no problem alone, but this pulse width causes a major difficulty in the whole

of the model. The fundamental sample time of the model drops out from 10

miliseconds to 10 microsecondes, and it means the model freezes indeed. Both

trigger and echo signals should be applied and measured as our solution, by the codes

which are uploded on the slave microcontroller board (SMCB). Part 2 of appendix 8

includes this code. As it is shown in table 2, the needed data is transfetred from TX2

on SCMB to RX2 on MMCB.

 4.2.3 Compass

The LSM303D, ultra compact high performance e-Compass, 3D accelerometer and

3D magnetometer module, of the MinIMU-9 board has an I²C interface which

accesses nine independent rotation, acceleration, and magnetic measurements that

can be used to calculate the sensor‟s absolute orientation. As shown in Figure 42, the

respective axes of the two chips are aligned on the board to facilitate these sensor

fusion calculations.

56

Figure 42: The Axes of the Compass Board

Waht do we need to use in the robot as heading, is just the orienation along the z

axis. Part 3 of appendix 8 includes a program which uses readings from the

accelerometer and magnetometer to calculate a tilt-compensated compass heading in

degrees relative to a default vector. As it is shown in Table 2 of this chapter, the

proper data is transfered from TX3 on SMCB to RX3 on MMCB. In order to calibrate

the heading, it has been used another program as illusterated in appendix 9. This

program gives us the minimum and maximum of the readings from each

magnetometer axis, which have been later enterd in the related part.

 4.2.4 Differential Wheel Drive

Since the robot has a differential wheel drive (i.e., is not a unicyle), it has to be

controlled by specifying the angular velocities of the right and left wheel ,

instead of the linear and angular velocities of a unicycle (,ω) . These velocities are

computed by a transformation from (,ω) to . Recall that the dynamics of the

unicycle are defined as;

)sin(

)cos(

vy

vx

 (25)

The dynamics of the differential drive are defined as;

)(

)sin()(
2

)cos()(
2

lr

lr

lr

vv
L

R

vv
R

y

vv
R

x

 (26)

where R is the radius of the wheels and L is the distance between the wheels.

57

It is important to note that if the robot is controlled or move at maximum linear

velocity, it is not possible to achieve any angular velocity, because the angular

velocity of the wheel will have been maximized. Therefore, there exists a tradeoff

between the linear and angular velocity of the Robot; the faster the robot should

turn, the slower it has to move forward.

 4.2.5 Motor Quadrature Encoders

Each of the motors is integrated with a quadrature encoder that increments or

decrements a tick counter depending on whether it is moving forward or backwards,

respectively. The encoders may be used to infer the relative pose of the robot. This

inference is called Odometry. The relevant information needed for odometry is the

radius of the wheel (5 cm), the distance between the wheels (47 cm), and the number

of count per revolution (CPR) of the wheel, which is calculated using by the

encoders tick per revolution (TPR=16).

840025.1311644 GearRatioTPRCPR (27)

As it has been written in the motor‟s document by the producer, it‟s no-load speed is

80 rpm. But actually, the motor speeds up to 86 rpm under load! So the number of

count per second (CPS) will be;

12040
60

86
8400

sec60

rpm
CPRCPS (28)

In order to handling the encoder input, initially it was used the standard DigitalRead

block of Arduino in Simulink environment. Everything worked fine when the motors

turned manually, the interrupts kicked in and the counters were correctly

incremented / decremented. However, when the motors powered up the Arduino

block froze. The main problem is this; The quadrature encoders are too fast for

Arduino. In other words, the amount of CPS is too big to be counted by DigitalRead

block.

Others suffered from the same experience [56]. One suggested solution is the use of

dedicated quadrature decoder chips well known as Quadrature Encoder Interface

58

(QEI) like the LS7266R1. More information about its usage in a robot project can be

found in the thesis Design of a Wireless Control System for a Laboratory Planetary

Rover [57]. Another student, named Sertaç Emre Kara, in our university has solved

this problem using by a high performance signal controller, dsPIC 30F4011, and

presented it in his thesis [58]. Actually this microchip has a QEI module, which

provides the interface to incremental encoders for obtaining mechanical position

data. If we solved our problem using by this microchip, we had to use two of them.

Fortunately no dedicated microchip hardware is necessary, at least in such cases. It

turns out that the Arduino function digitalRead comes with a lot of overhead and is

correspondingly slow. We could solve this problem and avoid the use of digitalRead

block, by directly reading from Atmel (the Microprocessor of the Arduino Mega

2560) ports rather than going through the Arduino library.

Two encoders were connected to the External Interrupts pins on the Arduino Mega

2560. These pins can be configured to trigger an interrupt on a low value, a rising or

falling edge, or a change in value. The allowed pins are 2, 3, 18, 19, 20 and 21 on the

board. A MATLAB Function Block attaches at initialization time, the interrupt service

routines, written in C code as illustrated in appendix 10, to the two pins to which the

encoder is connected. After that, when the encoder rotates the interrupts service

routines update the encoder position. The encoder position is then set as output of the

block every time (sample time) the block is executed.

 4.3 Microcontroller Board– MATLAB Simulink Connection

In order to facilitate the design, test, and verify our system that combines hardware

components and software algorithms, it was preferred to connect MATLAB Simulink

with the microprocessor Arduino Mega 2560 (Figure 43). MATLAB Simulink

supports data-driven control design and provides an environment for: Data

Acquisition, System Identification, Control Design and Real-time Testing.

http://www.usdigital.com/search/LS7266R1
http://sub-zero.mit.edu/ewilhelm/thesis/Thesis.PDF
http://sub-zero.mit.edu/ewilhelm/thesis/Thesis.PDF

59

Figure 43: MATLAB Simulink and Aruino Mega 2560

The Simulink built-in support for the Arduino platform includes:

• Library of Simulink blocks that connect to Arduino I/O, such as digital input

and output, analog input and output, serial receive and transmit, and servo

read and write.

• Interactive parameter tuning and signal monitoring of applications running

on the Arduino Mega 2560.

•

 4.4 Control and Model of the System

As it mentioned in section 4.2.2 of this chapter, the robot has to be controlled by

specifying the angular velocities of the right and left motor . However in

practice, we can not get the expected results as it is calculated theoritically. For this

purpose, we have to employ the controllers to minimize between the practical and

theoriticall results. In our case, by using a PID controller, we intend to make the

actual motor speed match the desired motor speed.

PID algorithm calculates, necessary speed changes to get the desired speed. This is

done by creating a cycle where the motor speed is continously being checked against

the desired speed. The speed power level is always set based on what is needed to

achieve the correct results. In order to start the speed control tasks, we ought first to

model our motors.

 4.5 Plant Model

Generally we have two approaches to modeling our plant; first-principle modeling

which requires knowledge of math and dynamic of the DC motors and physical

60

structure, and data-driven modeling which is based on the input-output data

measurement [59]. The dynamics of a DC servo motor consists of the dynamics of

mechanical and electrical parts. In addition, although it is feasible to compute some

needed parameters like electromotive force constant (
bK) or motor torque constant

(
tK), but measuring of some other parameters like moment of inertia of the rotor

(J) and or motor viscous friction constant (b), is a time-consuming process and out

of the sketch of this thesis. So we decided to apply the data driven modeling, because

the first principle can practically get challenging. The workflow of data driven

modeling for our plant is presented in Figure 44.

Figure 44: Workflow of the Data-Driven Modeling

 4.5.1 Data Acquisition

To acquire data from the plant, it should setup a hardware as shown in Figure 45.

Then the executable Simulink model is run on target hardware. But in oreder to

validate the measured data, and close up the model and real plant, we prefer to

measure the outputs when the motors are under load. With this work, in addition to

modeling of morors, we have modeled the whole system.

 Host Computer Arduino Mega 2560 Plant

Voltage Request Voltage

Angle Angle

Figure 45: Data Acquisition Hardware Setup

61

0 500 1000 1500 2000 2500 3000
-2000

0

2000

4000

y
1

Input and output signals

0 500 1000 1500 2000 2500 3000
-200

-100

0

100

200

Time

u
1

As it is shown in Figure 46, the input signal , is set as the desired speed and the

position (angle in degree) of the motor is measured as the output. All of these data is

saved in the workspace as the time domain signals and used to system identification.

Figure 46: Time Plot of Input and Output Signals

 4.5.2 System Identification

Using by the system identification toolbox in MATLAB Simulink environment, we

tried to construct mathematical model of dynamic system from the above mentioned

measured input-output data. We used time-domain input-output data to identify

discrete-time transfer function and non-linear models. Table 5 demonstrates five

transfer function models, four Nonlinear ARX type models and two Nonlinear

Hammerstein-Wiener type models, which have been estimated.

Considering, fit to estimation data, the Transfer function1 and Nonlinear H-W1

models were chosen in order to design a proper controller. The Transfer Function1

has a discrete function form as;

)01973.0(8431.0)01973.0(843.1

)003287.0(02638.0
1

2

zzInput

Output
nctionTransferFu (29)

This transfer function can be easily implemented to control purposes using by a

discrete type transfer function in Simulink environment. With the same goal, the

second nonlinear Hammerstein-Wiener type model can be employed by an IDNLHV

model block, which simulate Hammerstein-Wiener model for time-domain input and

output data in Simulink software. Figure 47 demonstrate measured and simulated

model output time signals, and step response of these two estimators.

62

Table 5: The Results of Plant Model using by Transfer Function, Nonlinear ARX and

Hammer-Wiener type Estimators

 (a) (b)

 (c) (d)

Figure 47: Measured and Simulated Model Output Time Signals of (a) Transfer

Function1 (b) Nonlinear H-W1 Estimators, and Step Response of (c) First Estimator

(d) Second Estimator

Model Number of Poles Number of Zeros
Fit to Estimation

Data

Transfer Function 1 2 1 76.31%

Transfer Function 2 2 2 76.4%

Transfer Function 3 3 1 76.38%

Transfer Function 4 3 2 76.39%

Transfer Function 5 3 3 76.4%

Number of Input

Terms

Number of Output

Terms

Fit to Estimation

Data

Nonlinear ARX 1 2 2 32%

Nonlinear ARX 2 4 2 72%

Nonlinear ARX 3 3 3 13%

Number of Input

Units

Number of Output

Units

Fit to Estimation

Data

Nonlinear H-W 1 10 10 97.37%

Nonlinear H-W 2 12 12 96.59%

0 500 1000 1500 2000 2500 3000
-1000

-500

0

500

1000

1500

2000

2500

3000

3500

4000

Time

Measured and simulated model output
Step Response

Time (seconds)

A
m

pl
itu

de

0 0.5 1 1.5 2 2.5 3

x 10
4

-100

0

100

200

300

400

500

600
From: u1 To: y1

Step Response

Time (seconds)

A
m

p
lit

u
d
e

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

100

200

300

400

500

600
From: u1 To: y1

0 500 1000 1500 2000 2500 3000
-1000

-500

0

500

1000

1500

2000

2500

3000

3500

4000

Time

Measured and simulated model output

63

 4.5.3 Controller Design

With employing the two above mentioned models, we start to design a proper

velocity PID controller. The aim in using the PID controller is to make the actual

motor speed match the desired motor speed. This controller is more feasible, when it

is compared with other controllers. To design a discrete PID control, there are some

critical points, which we ought to consider them carefully [60]. The most critical

point is the choice of the sampling period. Since the nature consists of analog signals,

most plant transfer function are modeled in continous time. In order to implement a

discrete PID controller, the designer should take samples from the continous time

error signal. However, these samples should be taken frequently enough in order not

to miss system dynamics.

The TransferFunction 1 as it has been calculated in equation (29), can be written in

this format;

 007.18362.0

02638.0
1

zz
nctionTransferFu (30)

The rise time for the output will approximately be;

sec78.4
8362.0

4

min

4

ationantPoleLocDo
tr

 (31)

Our sampling period should be much less than this rising time. 0.1 sec, is a

reasonable sampling time, which is picked up.

First without any controller, the step responses of the models are obtained as

demonstrated in Figure 48. The Root-Locus of the open-loop system using by the

first model, is illustrated in Figure 49.

64

Figure 48: Step Responses of the Two Models in a Open-Loop System

Figure 49: Root-Locus of the Open-Loop System

Then a closed-loop system is constituted using by a discrete PID as illustrated in

Figure 50. The tuning of PID was worked out automatically in the block. Just, in

order to improve the shape of response, some tuning was manually done in response

time and transient behavor parameters. The final tuned response was caught by this

values; P = 73.7, I = 112.9 , D = - 0.8

Figure 50: Close-Loop System using by Discrete PID

0 2 4 6 8 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t(sec)

V
e
lo

c
it
y
(r

a
d
/s

e
c
)

Step Response of the Open-Loop System with NonLinear H-W 1

Input

Output

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

t(sec)

V
e
lo

c
it
y
(r

a
d
/s

e
c
)

Step Response of the Open-Loop System with TransferFunction 1

Input

Output

-1.5 -1 -0.5 0 0.5 1 1.5
-5

-4

-3

-2

-1

0

1

2

3

4

5
Root Locus

Real Axis

Im
ag

in
ar

y
A

xi
s

65

The step responses of the two models are obtained as demonstrated in Figure 51, and

the Root-Locus of the close-loop system, is illustrated in Figure 52.

Figure 51: Step Responses of the two Models in a Close-Loop System

Figure 52: Root-Locus of the Close-Loop System

Despite of the first model, the second model does not behave as well as the first one.

The reason is the unstability of the close-loop system, employing with Hammerstein-

Wiener model. As it clearly be seen from the above figure, the pole at -1 goes to

infinity, which is the reason of instability.To solve it, pole placement should be done.

In real plant, the addition of pole can be done by adding a proper capacitor at the end

of the PID controller.

 4.5.4 Real-Time Testing

Now that‟s turn to test the close-loop system in real-time. Using by the same

hardware setup, which was employed to data acquisition described in section 4.5.1,

the real-time testing on the real motor was done. In the first case, the test was done

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t(sec)

V
e
lo

c
it
y
(r

a
d
/s

e
c
)

Step Response of the Close-Loop System with TransferFunction 1

Input

Output

0 1 2 3 4 5 6 7 8 9 10
-0.5

0

0.5

1

t(sec)

V
e
lo

c
it
y
(r

a
d
/s

e
c
)

Step Response of the Close-Loop System with TransferFunction 1

Input

Output

-1.5 -1 -0.5 0 0.5 1 1.5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Root Locus

Real Axis

Im
a
g
in

a
ry

 A
x
is

Step Response of the Close-Loop System with NonLinear H-W 1 Step Response of the Close-Loop System with TransferFunction 1

66

employing by the same PID, which was tuned in the design phase. Figure 53 (a)

demonstrates the step response in this case. Then it is tried to catch better response

shape, which was lead to a response as illustrated in Figure 53 (b). The value of PID

parameters in this case was; P=1.7, I=0.5, D=0.005.

Figure 53: Step Responses of the Real Motor in a Close-Loop System with (a) Design

Phase’s PID Parameters (b) Mentioned PID Parameters

Then we got the step response of the open-loop system with the real motor in two

conditions; no-load and under-load. As they can clearly be seen from Figure 54, our

open-loop system behaves well as required. We will employ an open-loop system to

velocity control of the motors, and let them to be controlled by a strong position

controller.

Figure 54: Step Responses of the Real Motor in a Open-Loop System in

(a) No-Load (b) Under-Load Conditions

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t(sec)

V
el

oc
ity

(r
ad

/s
ec

)

Step Response of the Close-Loop System with Real Motor

Input

Output

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

t(sec)

V
e
lo

c
it
y
(r

a
d
/s

e
c
)

Step Response of the Close-Loop Systemthe in Real Motor

Input

Output

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t(sec)

V
el

oc
ity

(r
ad

/s
ec

)

Step Response of the Open-Loop System with Real Motor

Input

Output

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t(sec)

V
e
lo

c
it
y
(r

a
d
/s

e
c
)

Step Response of the Open-Loop System with Real Motor under Load

Input

Output

67

 4.6 Architecture of Differential-Drive Trackers

In order to design a tracker for our differential-drive robot, recall the single plan,

described in section 3.2.5.5 of chapter 3. Let the output from the planner be u. This

reference trajectory is applied to the tracker and the angular velocities of the right

and left motor are achieved from it.

 Intermediary Waypoints

y

x

u

u
u ux (32)

yx uu , lr ,

Figure 55: Primary Differential-Drive Architectur

x

y

d
u

u
a tan

R

L
r

2

2

 dPID
R

L
l

2

2

22

yx uu (33)

Now what if we ignored the orientation and picked a different point yx ~,~ , on the

robot as the point we care about?

 Dynamics of old point

sin

cos

y

x

 (34)

 Position of new point

sin~
cos~

lyy

lxx
 (35)

 Figure 56: Picking a New Point

 PLANNER TRACKER

68

 Dynamics of new point

cossin~
sincos~

ly

lx

 (36)

Now let‟s assume that we can control the new point directly;

 xux ~ , yuy ~

Figure 57: Control Input Vector of New Point

y

x

u

u

l

cossin

sincos

 (37)

So the differential-drive architecture will be:

 Intermediary

 Waypoints

 yx uu , ,

Figure 58: Final Differential-Drive Architecture

y

x

u

u
R

l

10

01
 (38)

y

x

u

u
R

l

10

01

 PLANNER TRACKER

69

 4.7 Odometry

The odometry for the robot is implemented such that as the robot moves around, its

pose,),,(yx is estimated based on how far each of the wheels have turned. The

general idea behind odometry is to use wheel encoders to measure the distance the

wheels have turned over a small period of time, and use this information to

approximate the change in pose of the robot.

The pose of the robot is composed of its position),(yx and its orientation , on a

two- dimensional plane. The currently estimated pose is stored in a variable, which

bundles x, y and . If rD and
lD is the distance which right and left wheels have

been turned;

L

DD

DD
yy

DD
xx

lr

initial

lr

initial

lr

initial

sin
2

cos
2

 (39)

 4.8 Architecture of Differential-Drive Planners

 Now it is time to handle the differential-drive planner more practical. As it is clear in

Figure 43, the intermediary waypoints enter to the single plan (Hybrid Automata),

consisting of all behaviors, as inputs and the reference trajectory are produced as

outputs (u).

Here we study carefully, how the reference trajectory is computed in each behavior.

 4.8.1 Go-to-Goal Behavior (GTG)

Figure 59: Go-to-Goal Vector

70

The strategy for this behavior that is used is as follows;

1. Calculate the heading (angle), g , to the goal location),(gg yx , Let u be the

vector from the robot located at),(yx to the goal located at),(gg yx , then g is the

angle u makes with the x-axis (positive g is in the counterclockwise direction).

The vector u can be expressed in terms of its x-component, xu , and its y-component

yu . Use these two components and the atan2 function to compute the angle to the

goal, g .

2. Calculate the error e between g and the current heading of the robot, . Make

sure to use atan2 and or other functions to keep the error between , .

3. Calculate the proportional, integral, and derivative terms for the PID regulator that

steers the robot to the goal. Now, we need to tune our PID gains to get a fast settle

time (matches g within 10% in three seconds or less) and there should be little

overshoot (maximum should not increase beyond 10% of the reference value

g).

4. Ensure that the robot steers with an angular velocity , even if the combination

of and exceeds the maximum angular velocity of the robots motors. This issue

will be comperhensively descript in section 4.9.

Since our PID controllers focus more on steering than on controlling the linear

velocity, we want to prioritize over in situations, where we cannot satisfy

with the motors. In fact, we will simply reduce until we have sufficient headroom

to achieve with the robot.

 4.8.2 Avoid-Obstacles Behavior (AO)

To implement this behavior, the IR sensors allow us to measure the distance to

obstacles in the environment, but we need to compute the points in the world to

which these distances correspond.

Strategy for obstacle avoidance that we will use is as follows;

71

1. Transform the IR distances to points in the world.

2. Compute a vector to each point from the robot;
1221 ,...,, uuu .

3. Weigh each vector according to their importance,
12122211 ,...,, uuu . For

example, the front sensors are typically more important, for obstacle avoidance

while moving forward.

4. Sum the weighted vectors to form a single vector,

 12122211 uuuuAO

5. Use this vector to compute a heading and steer the robot to this angle.

Figure 60: Avoid-Obstacles Vector

This strategy will steer the robot in a direction with the most free space (i.e. it is a

direction away from obstacles). For this strategy to work, we will need to implement

three crucial parts of the strategy for the obstacle avoidance behavior;

- Transform the IR distance measured by each sensor to a point in the reference

frame of the robot.

 A point ip that is measured to be id meters away buy sensor i can be written

 as the vector

0

i

i

d
v in the reference frame of sensor i . We first need to

 transform this point to be in the reference frame of the robot. To do this

 transformation, we need to use the pose (location and orientation) of the

 sensor in the reference frame of the robot,),,(
iii sss yx . The transformation is

72

 defined as

1
),,(

i

sssi

v
yxRv

iii
 , where R is known as the transformation

 matrix that applies a tranlation by),(yx and a rotation by ;

100

cossin

sincos

),,(y

x

R yx

 (40)

- Transform the point in the robots reference frame to the worlds reference

frame. A second transformation is needed to determine where a point ip is

located in the world that is measured by sensor i . We need to use the pose of

the robot,),,(yx to transform the robot from the robot‟s reference frame to

the world‟s reference frame. This transformation is defined as:

ii vyxRv),,((41)

- Use the set of transformed points to compute a vector that points away from

the obstacle. The robot will steer in the direction of this vector and

successfully avoid the obstacle.

 4.8.3 Blending and Hard Switches (AO-GTG)

Now we are ready to test two arbitration mechanisms: Blending and Hard Switches.

This arbitration between the two controllers will allow the robot to drive to a goal,

while no colliding with any obstacles on the way.

1. Implement a simple control for the linear velocity , as a function of the angular

velociy . So far, we have implemented controllers that either steer the robot

towards a goal location., or steer the robot away from an obstacle. In both cases, we

have set the linear velocity, v, to a constant value. While this approach works, it

certainly leave plenty of room for improvement. Now we want to improve the

performance of both the go-to-goal and avoid-obstacles behavior by dynamically

adjusting the linear velocity based on the angular velocity of the robot.

As it mentioned in section 4.2.4, with a differential drive robot, we cannot, for

example, drive the robot at the maximum linear and angular velocities. Each motor

73

has a maximum and minimum angular velocity; therefore, there must be a trade-off

between linear and angular velocities: linear velocity has to decrease in some cases

for angular velocity to increase, and vice versa.

However, one could improve the above strategy by letting the linear velocity be a

function of the angular velocity and the distance to the goal (or distance to the

nearest obstacle). For example, the linear velocity in the go-to-goal controller could

be scaled by and the distance to the goal, such that the robot slows down as it

reaches the goal.

2. Combine the go-to-goal and avoid-obstacle controllers into a single controller that

blends the two behaviors (Blending). But, one important piece is missing. GTGu is a

vector pointing to the goal from the robot, and AOu is a vector pointing from the

robot to a point in space away from obstacles. These two vectors need to be

combined (blended) in some way into the vector GTGu , which should be a vector that

points the robot both away from obstacles and towards the goal.

The combination of the two vectors into GTGAOu should result in the robot driving to

a goal without colliding with any obstacles in the way. To do this, weigh each vector

according to their importance, and then linearly combine the two vectors into a single

vector, GTGAOu . For example;

75.0

AOGTGGTGAO uuu)1((42)

Figure 61: Blended Vector

74

As you see, the GTG behavior is stronger than the AO behavior, but that may not be

the best strategy. needs to be carefully tuned (or a different weighted linear

combination needs to be designed) to get the best balance between GTG and AO. To

make life easier, we consider using the normalzed versions of AOu and GTGu .

3. Implement the switching logic that switches between the GTG controller and the

AO controller, such that the robot avoids any nearby obstacles and drives to the goal

when clear of any obstacles. In other words, instead of executing both AO and GTG

simultaneously, we can only execute one controller at a time, but switch between the

two controllers whenever a certain condition is satisfied.

In order to switch between different controllers (or states), we can define a set of

events. These events can be checked to see if they are true or false. The idea is to

start of in some state (wich runs a certain controller), check if a particular event has

occured, and if so, switch to a new controller.

The tools that we should will need to implement the switching logic;

- Four events can be checked, where name is the name of the state:

 ʻat-obstacleʼ checks to see if any of front sensors detect an obstacle at a

distance less than obstacled .

 ʻat-goalʼ checks to see if the robot is within stopd of the goal location.

 ʻunsafeʼ checks to see if any of the front sensors detect an obstacle at a

distance less than unsafed .

 ʻEunsafeʼ checks to see if any of the front and side sensors detect an obstacle

at a distance less than Eunsafed .

- A function switches between the states/controllers. There currently are four

possible values that name can be:

 ʻgo-to-goalʼ for the GTG controller.

 ʻavoid-obstaclesʼ for the AO controller.

 ʻao-and-gtgʼ for the blending (AO-GTG) controller.

75

Implement the logic for switching to AO, when at-obstacle is true, switching to GTG

when obstacle-cleared is true, and switching to stop when at-goal is true.

4. Improve the switching arbitration by using the blended controller as an

intermediary between the GTG and AO controller.

The blending controllers advantage is that it (hopefully) smoothly blends GTG and

AO together. However, when there are no obstacle around, it is better to purely use

GTG, and when the robot gets dangerously close, it is better to only use AO. The

switching logic performs better in those kinds of situations, but jitters between GTG

and AO when close to a goal. A solution is to squeeze the blending controller in

between the GTG and AO controller.

Implement the logic for switching to AO-GTG, when at-obstacle is true, switching to

GTG when obstacle-cleared is true, switching to AO when unsafe is true, and

switching to stop when at-goal and or Eunsafe is true.

 4.8.4 Fallow-Wall Behavior (FW)

The strategy for this behavior, which will aid the robot in navigating around

obstacles, is as follows;

1. Compute a vector, FWtu that estimates a section of the obstacle (wall) next to the

robot using the robot‟s right or left IR sensors. In Figure 62, this vector, FWtu is

illustrated in red.

Suppose we want to follow an obstacle to the left of the robot, then we would use the

left set of IR sensors (1-4). If we are following the wall, then at all times there should

be at least one sensor that can detect the obstacle. So, we need to pick a second

sensor and use the points corresponding to the measurements from these two sensors

to form a line that estimates a section of the obstacle. In the Figure 62, sensors 2 and

3 are used to roughly approximate the edge of the obstacle. But what about corners?

Corners are trickier, because typically only a single sensor will be able to detect the

wall. The estimate is off as one can see in the Figure, but as long as the robot isn‟t

following the wall too closely, it will be ok.

76

 1 2 3

 4

 1d

 2d 3d

4d

Figure 62: Two vectors in FW Behavior

An example strategy for estimating a section of the wall, is to pick the two sensors

(form IR sensors 1-3) with the smallest measured distance. Suppose sensors 2 and 3

returned the smallest values, then let 22 dp and 33 dp . A vector that estimates a

section of the obstacle is 23 ppuFWt . It is important that the sensor with smaller

distance (in the example, sensor 3) is assigned to 3p , and the sensor with the larger

distance (in the example, sensor 2) is assigned to 2p , because we want that the

vector points in the direction that the robot should travel. The figures correspond to

the above example strategy, but we may want to experiment with different strategies

for computing FWtu . A better estimate would make wall following safer and

smoother, when the robot navigates around the corners of obstacles.

2. Compute a vector, FWpu that points from the robot to the closest point on FWtu .

This vector, FWpu is visualized as yellow line in the Figure 62 and can be computed

using a little bit of linear algebra;

FWt

FWt
FWt

u

u
u ,

y

x
u p , 2pua

FWtFWtpapaFWp uuuuuuu))(()((43)

A small technicality is that we are computing FWpu as the vector pointing from the

robot, to the closest point on FWtu , as if FWtu were infinitely long.

77

3. Combine the two vectors FWtu and FWpu , such that it can be used as a heading

vector for a PID controller that will follow the wall to the right (or left) at some

distance FWd . FWtu will ensure that the robot drives in a direction that is parallel to an

edge on the obstacle, while FWpu needs to be used to maintain a distance FWd from the

obstacle. One way to achieve this is;

FWp

FWp

FWFWpFWp
u

u
duu (44)

where FWpu is now a vector points towards the obstacle when the distance to the

obstacle, FWdd is near zero when the robot is FWd away from the obstacle, and

points away from the obstacle when FWdd .

All that is left, is to linearly combine FWtu and FWpu into a singel vector FWu that can

be used with the PID controller to steer the robot along the obstacle at the distance

FWd .

FWpFWFWpFWtFWFW uduudu (45)

 4.8.5 All Behaviors in a Single Navigation System

Now we are ready to combine the GTG, AO, and FW controllers into a full

navigation system for the robot, which is done using by State Flow Toolbox in

MATLAB. The robot will be able to navigate around a cluttered, complex

environment without colliding with any obstacles and reaching the goal location

successfully.

1. Implement the progress-made event, that will determine whether the robot is

making any progress towards the goal.

By default, the robot is set up to switch between AO and GTG to navigate the

environment. However, notice that the robot cannot escape the larger obstacle as it

tries to reach the goal located.

78

The robot needs a better strategy for navigation. This strategy needs to realize that

the robot is not making any forward progress and switch to FW to navigate out of the

obstacle.

This event has been occured till the following condition is true;

progress

g

g
d

yy

xx
 (46)

Where gives a little bit of slack, and progressd is the closest the robot has progressed

towards the goal.

2. Implement the sliding-left and sliding-right events, that will serve as a criterion for

whether the robot should continue to FW or switch back to the GTG behavior.

While the lack of progress-made will trigger the navigation system into a FW

behavior, we need to check whether the robot should stay in the FW behavior, or

switch back GTG. We can check whether we need to be in the sliding mode (FW) by

testing if 01 and 02 ,where;

 FWAOGTG uuu

2

1

 (47)

3. Implement the finite state machine that will navigate the robot to the goal located

at),(gg yx without colliding with any of the obstacles in the environment.

Now, we are ready to implement a Finite State Machine (FSM) that solves the full

navigation problem. A FSM is nothing but a set of if/elseif/else statements that first

check which state (or behavior) the robot is in, then based on whether an event

(condition) is satisfied, the FSM switches to another state or stays in the same state.

The finite state machines, named here as Supervisor, switches between controllers

and handles their inputs and outputs. Some of the logic that should be part of the

Supervisor is;

- If at-obstacle is not true, then switch to state GTG.

- If at-obstacle is true, then switch to state AO-GTG.

- If at-goal and or Eunsafe is true, then switch to Stop.

79

- If unsafe is true, then switch to state AO.

- If in state AO-GTG and at-obstacle is true, and progress-made is not true,

then check whether the robot needs to slide-left or slide-right. If so set

progress-point, and switch to state FW.

- If in state FW, check whether progress-made is true and the robot does not

need to sliding-left or sliding-right. If so, switch to state AO-GTG, otherwise

keep FW.

 4.9 Motor Limitations

Similar to all DC motors, our used motors have two critical limitations. The first

limitation is that the motors have a maximum angular velocity, maxvel , and the

seconde limitation is that they stall at low speeds, maxvel .

Suppose that we pick a linear velocity that requires the motors to spin at 90%

power. Then, we want to change from 0 to some value that requires 20% more

power from the right motor, and 20% less power from the left motor. This is not an

issue for the left motor, but the right motor cannot turn at a capacity greater than

100%. The results is that the robot cannot turn with the specified by our

controller.

On the other hand, it is also true that the motors have a minimum speed before the

robot starts moving. If not enough power is applied to the motors, the angular

velocity of the motors remains at 0. Once enough power is applied, the motors spin at

a speed minvel . We measured the motor's maximum and minimum forward angular

velocity on the under-load real motor; sec/7.0min radvel , sec/9max radvel .

Small),(v may not be achievable on the robot, so we have to scale up v to make

 possible. Similarily, if),(v are both large, we have to scale down v to make

possible.

It is maybe interesting how one deals with physical limitations on a mobile robot,

like ours. This particular approach has an interesting consequence, which is that if

0v then rv and lv are both positive (and vise versa, if 0v). Therefore, we often

80

have to increase or decrease v significantly to ensure even if it were better to

make small adjustments to both v and . Our programming assignments to consider

all of these limitations was coded in a MATLAB function, as illustrated in appendix

11. As with most of the components in these programming assignments, there are

alternative designs with their own advantages and disadvantages.

 4.10 Graphical User Interface

Graphical user interfaces (also known as GUIs) provide point-and-click control of

software applications, eliminating the need to learn a language or type commands in

order to run the application. A user interface is a graphical display in one or more

windows containing controls, called components, that enable a user to perform

interactive tasks. The user does not have to create a script or type commands at the

command line to accomplish the tasks. Unlike coding programs to accomplish tasks,

the user does not need to understand the details of how the tasks are performed.

Typically, GUIs wait for a user to manipulate a control, and then respond to each

user action in turn.

 4.10.1 Design

Based on our needs, and by the help of Guide in MATLAB, a graphical user interface

was designed and created. Figure 63 shows a screenshot of our graphical user

interface on the Notebook and the pertinent Matlab code has been illustrated in

appendix 12.

As it may be cleared from the figure, we have an initial point, four intermediary and

twenty two final goal points, which have been introduced in brown, blue and yellow

Push-Bottons respectively. The user select the intended location by pushing the

related bottom as listed in the displayed menu. By pushing it the selected location is

displayed on the top of the menu. Then press the Connect & GO bottoms

respectively. At the end the STOP bottom should be pressed.

81

Figure 63: A Screenshot of the Graphical User Interface on the Notebook

 4.10.2 Bridging GUI and Microcontroller

In order to data transfer from GUI to the microcontroller and run there, the robot‟s

controllers (as illustrated in Figure 38, chapter 3), a serial communication is needed.

First we had ideated; this communication is simply done by USB connection between

notebook and microcontroller. In other words, the data is serially transmitted by GUI

and a receiver catchs the data. The Arduino’s Serial Receive block gets one byte of

data per sample period from the receive buffer of the specified serial port. But this

idea does not really work!

Others may suffered from the same experience [61] [62]. Actually the Serial block

does not work with Simulink Coder. It works just during simulation phase but after

compiling to the execution file it doesn't perform it‟s task. One suggested solution is,

use of a byte pack block before the Arduino Serial Block. But in order to overcome

this problem, we prefered to use our slave microcontroller board (SMCB).

As illustrated in Figure 64, the SMCB has perched between the Notebook and the

master microcontroller board (MMCB). It receives data by serial USB from GUI and

transmits it again serially to the MMCB. The pertinent code uploaded on SMCB, has

been illustrated in part 1 of appendix 8. Now the Serial Receive block in MMCB is

82

capable to catch the serial data. This hardware connection is between the serial port 0

of SMCB (TX0) and MMCB (RX0).

 Host Computer

 SMCB MMCB

USB TX0 RX0

Figure 64: Data Flow in Hardware Setup from GUI to the Controllers

At the end of this chapter, it is worth mentioning that all of mentioned controllers,

supervisor, planner, tracker, events and the other functions, are uploaded by Simulink

coder on the MMCB. Appendix 13 illustrates all of these subsystems as a part of full

navigation system.

83

CHAPTER 5

EXPERIMENTS AND RESULTS

Three cycles of experiment were performed to test and validate the designed and

implemented navigation system. First cycle of experiment was performed on the

simulated system. The second cycle was implemented on the actual system but not

under load, and the third cycle of experiments were conducted in the field on the

actual robot.

The analysis for the efficiency of the controllers, especially the GTG controller, is

done preliminary based on the results of the first cycle of experiments. The

efficiency of the GTG, AO and AO-GTG controllers are analyzed in the second cycle

of experiments. Then the third cycle of experiments were conducted for dozens of

times to complete and improve the efficiency of the GTG, AO, AO-GTG and FW

controllers. Mechanical behavior of the components and performance of whole of the

system were checked out in this cycle. The results of the experiments are presented

and discussed in the following pages.

 5.1 Results of the Simulated System

A Simulink model was formed using by the plant model, achieved in the section 4.5

of chapter 4. Appendix 14 illustrates this simulated model.

In this cycle we checked a GTG behavior, which drives the robot to a goal location

and stops. Figure 65 shows the time signals of heading and position of the robot

when it tries to reach the goal location at;)0,100(),(gg yx . Picking proper gains in

the PID controller leads to have such a graph, with a reasonable settle time and little

overshoot and undershoot. The traversed trajectory of the robot, when it moves to the

84

0 1 2 3 4 5 6 7 8 9
-20

0

20

40

60

80

100

120

t(sec)

X
(c

m
),

Y
(c

m
),

P
hi

(r
ad

)

Position & Heading of the Robot

X

Y

Phi

0 20 40 60 80 100
-30

-25

-20

-15

-10

-5

0

5

10

15

20

X(cm)

Y(
cm

)

Traversed Trajectory of the Robot

goal point and tries to come back to the initial point, is illustrated in the second

graph.

(a)

(b)

Figure 65: (a) Time Signals of Position & Heading (b) Traversed Trajectory of the

Robot to reach the Goal Point at (100,0) and come back to the Initial Point in the

Simulated System

 5.2 Results of the Actual System with No-Load

In this cycle we repeated the above test on the actual robot. Performance of the actual

navigation system, as illustrated in appendix 13, including of all it‟s subsystems, was

tested. This test implemented in no-load condition, in other words the powered

wheels were not on the ground. Samely a GTG behavior was checked and then AO

and AO-GTG behaviors were tested. It is worth mentioning that the heading of the

robot is computed through the odometry in this cycle. Figure 66 shows the time

signals of heading and position of the robot in this case. Picking the same gains in the

PID controller leads to have a better situation. We had roughly the same settle time

but very little overshoot and undershoot. The traversed trajectory of the robot, as it is

displayed in the second graph, was more accurate and pleasant.

85

0 1 2 3 4 5 6
-20

0

20

40

60

80

100

120

t(sec)

X
(c

m
),

Y
(c

m
),

P
hi

(r
ad

)

Position & Heading of the Robot

X

Y

Phi

0 20 40 60 80 100
-30

-20

-10

0

10

20

X(cm)

Y
(c

m
)

Traversed Trajectory of the Robot

(a)

 (b)

Figure 66: (a) Time Signals of Position & Heading (b) Traversed Trajectory of the

Robot to reach the Goal Point at (100,0) and come back to the Initial Point in the

Actual System

In the second test, we adopted another goal point, but this time there is an

intermediary way point. The robot tries to reach the goal location (Mechatronics

Prototype Manufacturing Lab.) at;)965,354(),(gg yx through the way point

(Entrance of Hall A) at;)655,404(),(ıi yx . Figure 67 shows the time signals of

heading and position of the robot in two seperated graphs, which is followed by the

traversed trajectory of the robot in third graph. Whole of the navigation system fulfill

its duty efficiently.

86

 (a) (b)

(c)

Figure 67: (a) Time Signals of Position (b) Heading (c) Traversed Trajectory of the

Robot to reach the Goal Point at (469,1261) through the Intermediary Way Point at

(469,552) in the Actual System

As the third test of this cycle, our goal point is at;)0,2000(),(gg yx , but there is an

obstacle on the way. The performance of the AO and AO-GTG controllers are

checked in this test. Figure 68 shows the time signals of heading and position of the

robot and the traversed trajectory of the robot. Again the navigation system fulfill

its duty efficiently.

0 1 2 3 4 5 6
0

100

200

300

400

500

600

700

800

900

1000

t(sec)

X
(c

m
),

Y
(c

m
)

Position of the Robot

X

Y

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t(sec)

P
h
i(
ra

d
)

Heading of the Robot

Phi

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

X(cm)

Y
(c

m
))

Traversed Trajectory of the Robot

87

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-500

0

500

1000

1500

2000

2500

t(sec)

X
(c

m
),

Y
(c

m
)

Position of the Robot

X

Y

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

t(sec)

P
h
i(
ra

d
)

Heading of the Robot

Phi

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-500

-400

-300

-200

-100

0

100

200

300

400

500

X(cm)

Y
(c

m
))

Traversed Trajectory of the Robot

(a) (b)

(c)

Figure 68: (a) Time Signals of Position (b) Heading (c) Traversed Trajectory of the

Robot to reach the Goal Point at (2000,0) in the Actual System

 5.3 Results of the Actual System in the Field

Eventually it was time to harvesting whatever we had planted! The actual robot

should perform what it was designed and manufactured for. After a couple of tests in

the field, we found out, the electronic hardwares including sensors, encoders, motors,

microcontroller and driver boards act and react properly to the behavior controllers.

But two unpleasant physical problem come to pass; first, the powered wheels turn

situ at start time and second, the robot dose not move straight. The first problem stirs

up all calculations which cancludes to reach a wrong final position and the second

one drive the robot lopsided which cancludes similarly to have a big final error at

goal points. With the aim of overcoming these unpleasant problems and drive the

robot correctly in desired path, we designed and implemented two controllers;

Wheels Situ Spin Controller and Straight-Move controller.

88

 5.3.1 Wheels Situ Spin Controller

A situ spin occurs when the force delivered to the wheel tread exceeds that of

available tread-to-surface friction and one or both wheels lose traction. This problem

occurs in our robot, when it starts to move. In a moment, the speed power of the

motors increases or decreases from zero to a specified amount and causes this

undesirable problem. To solve simply this problem, the power speed of the motors

should change smoothly. In other words, they should have ramp shape instead of

step.

We employ the speed of the motors to compare up with the speeds, which have been

arised by the controllers. According to this comparision, the Wheels Situ Spin

controller performs its task. The pertinent Matlab Function has been illustrated in

appendix 15.

On the other hand, type of the powered wheels were changed to the other type which

is shown in Figure 69. This wheels are made from anti-slip material which helps to

have less slip.

Figure 69: New Rear Powered Wheels

 5.3.2 Straight - Move Controller

The crooked-drive may arise from various physical problems. In a vehicle using

independent wheel control, applying the same power to each wheel generally does

not result in the vehicle moving straight. This is caused by mechanical and surface

differences experienced by each of the wheels. Basically, both sides of our robot are

different. Our motors have a slightly different length of wire winding, our gearboxes

have different amounts of friction, our wheels are slightly different diameters and

have different amounts of friction with the ground, one wheel might encounter more

dust than the other one... etc.

89

To reduce deviation in the robot heading, a better approach is to use a closed-loop,

which adjusts the power applied to two motors based on the difference in their rates

of rotation. A PID controller minimizes the difference between the measured and the

desired value of a chosen system variable by adjusting the system control inputs. A

key point is that, this controller ought not to apply on the robot when it is turning.

In our Straight - Move Controller, a PID controller uses the difference between two

motors speed to calculate the angular speed difference that should be applied to the

robot controller. We named this controller, Motor’s Speed Controller, which will be

a portion of our Straight - Move Controller. By the help of this controller, we could

make sure the two wheels are going at the same speed, which overcomes the

differences in the system up to the point they meet the wheels, but the wheels might

still be slightly different diameters, and or;

- The gravity centre is not in the middle! ie maybe one of the robot‟s parts is placed

more on a side than on the other. etc.

- The contact point of the dragging on the rear wheels is not on the middle! If the

piece of the case that touches the ground is on one side, it can affect direction

greatly.

- The robot is not symmetrical! ie maybe it's longer, wider or heavier on the one side.

- Both of pairs rear and front wheels or one of them are not parallel with eacother or

with the robot‟s side.

Because of all above mentioned problems, there may still be little deviation. So we

tried to optimize the above mechanical problems insofar as it was possible.

First the type of front wheels was changed to the other type of omni-wheels, which is

shown in Figure 70. The main reason of this change was that the old types were not

rotate as freely as we expected.

90

Figure 70: New Front Omni-Wheels

The motor‟s mount shown in Figure 8 at chapter 3, which were assembled on each

motor separately, seem not to be parallel with eachother and with the side of the

robot. They were tuned to be paralel but after a couple of robot‟s movement, their

parallelism was suspicious! We decided to construct and assemble the motors on

another mount seamlessly. This mount shown in Figure 71, keeps the rear wheels in

parallel with eachother and with the side of the robot at any time.

Figure 71: New Motor’s Mount

It was also tried to perch the gravity centre in the middle. But we can do nothing to

optimize the other difficulties. What could we do to the wheel‟s diameter and or the

contact point of the dragging!

To optimize the situation and detect any other crooked drive, as a first solution, we

employed four ultrasonic sensors and try to eliminate the effects of the problems and

keep the robot move straight. Two sensors on both sides measure the distance from

the robot to the parallel wall and then the controller calculates the heading of the

robot. We named this controller, Ultrasonic Sensor Controller which is a portion of

our Straight - Move Controller. Same to the Motor’s Speed controller, this controller

ought to apply on the robot when it is not turning. The output of the Straight-Move

controller, WD, is used to improve the robot angular speed.

91

But what if there is no wall where the robot would move in parallel with it! The safe

and sustainable solution is having the heading of the robot completely independent.

To perform this task, we employ the Compass. In other words, the data achieved by

the Compass is used as the heading of the robot instead of the data achieved by the

odometry. Applying the compass has another benefit for us. Although we applyed a

controller to overcome wheels situ spin, but if there is even this difficulty, the

heading of the robot will not be calculated wrong.

After designing and adding the Wheels Situ Spin and Straight - Move Controller to

the controller architecture of the navigation system, and also using of the achieved

data from Compass as the heading, we continued to test the robot in the field as the

third cycle of experiments.

The tests were performed in various condoitions for various goal points with and

without intermediary way points. Table 6 illustrates the topics and conditions of

these implemented tests. Figurae 72 (1-8) show the time signals of heading and

position of the robot and the traversed trajectory of the robot for each test . Again

the navigation system fulfill its duty efficiently.

During the tests it is turned out that the final location of the robot changes slightly in

each of them. In other words, the robot stops at goal point with a small difference

compared to the last one. In order to final tuning of the robot‟s location, there are

some solutions. The easiest way is simply to guide the robot to this location. This

final guidance can be done in different ways: placing beacons, markers, bar codes,

painting lines, burying an inductive loop or magnets, or by etc. in the environment.

Performing one of these solutions will be simply implemented by the vision system

in the People-Interaction phase. Another way which is more sustainable and accurate,

is the using of the Indoor Positioning Systems (IPS) [63]. In these systems the exact

position of a mobile device is determined using by radio waves, magnetic fields,

acoustic signals, or other sensory information.

92

Table 6: Topics of Implemented Tests with Various Conditions in the Field

Test

No.
Goal Point

Intermediary

Way Point

Fixed

Obstacle

Movable

Obstacle
Wall

 1

Entrance of Hall A - - - -

2

 Entrance of Hall A
- X - -

3

 Entrance of Hall A
- - X -

4

Mechatronics Prototype

Manufacturing Lab.

Entrance of

Hall A - - X

5

Entrance of Hall B - X X X

6

Robots Student Society

Lab.

Entrance of

Hall B X - X

7

Right Corridor - - - -

8

Undergaraduate Mech.

Eng. Education Lab.

Right

Corridor X - X

93

 1 (a) 1 (b)

1 (c)

 2 (a) 2 (b)

2 (c)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

100

200

300

400

500

600

700

t(sec)

X
(c

m
),

Y
(c

m
)

Position of the Robot

X

Y

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t(sec)

P
h
i(
ra

d
)

Heading of the Robot

Phi

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

X(cm)

Y
(c

m
))

Traversed Trajectory of the Robot

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

100

200

300

400

500

600

700

t(sec)

X
(c

m
),

Y
(c

m
)

Position of the Robot

X

Y

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

t(sec)

P
h
i(
ra

d
)

Heading of the Robot

Phi

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

X(cm)

Y
(c

m
))

Traversed Trajectory of the Robot

94

 3 (a) 3(b)

 3 (c)

 4 (a) 4 (b)

 4 (c)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

100

200

300

400

500

600

700

t(sec)

X
(c

m
),

Y
(c

m
)

Position of the Robot

X

Y

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t(sec)

P
h
i(
ra

d
)

Heading of the Robot

Phi

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

X(cm)

Y
(c

m
))

Traversed Trajectory of the Robot

0 1 2 3 4 5 6 7
0

100

200

300

400

500

600

700

800

900

1000

t(sec)

X
(c

m
),

Y
(c

m
)

Position of the Robot

X

Y

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

t(sec)

P
h
i(
ra

d
)

Heading of the Robot

Phi

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

X(cm)

Y
(c

m
))

Traversed Trajectory of the Robot

95

0 1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

1400

t(sec)

X
(c

m
),

Y
(c

m
)

Position of the Robot

X

Y

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t(sec)

P
h
i(
ra

d
)

Heading of the Robot

Phi

 5 (a) 5 (b)

5 (c)

 6 (a) 6 (b)

 6 (c)

0 1 2 3 4 5 6 7 8 9
0

200

400

600

800

1000

1200

1400

t(sec)

X
(c

m
),

Y
(c

m
)

Position of the Robot

X

Y

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t(sec)

P
h
i(
ra

d
)

Heading of the Robot

Phi

0 200 400 600 800 1000 1200 1400
0

100

200

300

400

500

600

700

800

900

X(cm)

Y
(c

m
))

Traversed Trajectory of the Robot

0 200 400 600 800 1000 1200 1400
0

200

400

600

800

1000

1200

1400

X(cm)

Y
(c

m
))

Traversed Trajectory of the Robot

96

 7 (a) 7 (b)

7 (c)

 8 (a) 8 (b)

8 (c)

Figure 72: (a) Time Signals of Position (b) Heading (c) Traversed Trajectory of the

Robot to reach the Goal Points based on Table 6 in the Actual System

0 1 2 3 4 5 6
-500

0

500

1000

t(sec)

X
(c

m
),

Y
(c

m
)

Position of the Robot

X

Y

0 1 2 3 4 5 6
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

t(sec)

P
h
i(
ra

d
)

Heading of the Robot

Phi

0 100 200 300 400 500 600 700 800 900 1000
-1000

-900

-800

-700

-600

-500

-400

-300

-200

-100

0

X(cm)

Y
(c

m
))

Traversed Trajectory of the Robot

0 2 4 6 8 10 12
-500

0

500

1000

1500

2000

2500

t(sec)

X
(c

m
),

Y
(c

m
)

Position of the Robot

X

Y

0 2 4 6 8 10 12
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

t(sec)

P
hi

(r
ad

)

Heading of the Robot

Phi

0 500 1000 1500 2000 2500
-1000

-900

-800

-700

-600

-500

-400

-300

-200

-100

0

X(cm)

Y
(c

m
))

Traversed Trajectory of the Robot

97

CHAPTER 6

DISCUSSION AND CONCLUSION

This study is focused on the navigation of a mobile robot based on the behaviors

architecture. After designing, constructing and implementing of an integrated system,

the performance of the robot to safe navigate through the indoor environments are

studied. The research also aimed to identify the pros and cons of the behavior- based

maples against map-based navigation.

In the presented behavior-based control architecture which composes of localization,

obstacle avoidance, path planning and robot control for steering, the onboard sensors

are the main role to localize the robot. Such a vision-based navigation has some

advantages respect to the map-based navigation.

The main pro is no need for any map to navigate. The robot is able to steer to any

arbitrary desire pose in a maples unknown environment. In other words, it is able to

establish easy navigation in places without pricey infrastructure or pre-made maps.

In addition, it has some other advantages. One of which is, it‟s higher efficiency and

quickness faced with moving obstacles. Despite these benefits, maples navigation

also has certain drawbacks. For instance, the control architecture is more

complicated. Moreover, while the map-based navigation requires less hardware, it is

relatively expensive.

To test and validate the navigation system, some cycles of experiment were

performed. The analysis for the efficiency of the behavior-based controllers is done

based on the results of these experiments. Meanwhile the mechanical behavior of the

components and performance of whole of the system were checked out during these

tests.

98

Based from the results of the experiments, it is figured out that the major difficulty to

have a flawless navigation, originates from physical problems. The stuff of the

powered wheels, the gravity centre of the robot, the contact point of the dragging on

the wheels, the robot symmetry, and the parallel wheels, are some of the critical

points which we ought to pay more attention in designing and manufacturing steps.

Then, besides our presented perfect controller architecture, we can have a flawless

navigation system.

In the future developments, the capabilities of the robot will upgrade, so that it will

be able to guide visitors who trying to get to a certain place and explain them so that

they can acquire knowledge of there and enjoy visiting. To realize such a task, in

addition to a safe navigation in dynamic, cluttered and crowded public environments,

the system ought to have an effective and interesting human-robot interactions.

99

REFERENCES

[1] Capek, Karel, et al. "Rossum's universal robots." Prague, CZ (1920).

[2] http://en.wikipedia.org/wiki/Robot_series_Asimov.27s_robots_on_screen,

Visited Date; 20.01.2014

[3] http://websters.yourdictionary.com, Visited Date; 20.01.2014

[4] http://en.wikipedia.org/, Visited Date; 20.01.2014

[5] Fezari, Mohamed, S. Lemboub, and M. S. Boumaza. "VR-Stamp with DSP-

TM320C6711 for hand-free voice-driven monitoring robots navigation."

International Conference on Information Technology and e-Services

(ICITeS), IEEE, 2012.

[6] Archila, John Faber, and Marcelo Becker. "Mathematical models and design

of an AGV (Automated Guided Vehicle)." 8th IEEE Conference on Industrial

Electronics and Applications (ICIEA), 2013.

[7] Oh, SeungSub, et al. "A system architecture for intelligent building guide

robot PHOPE." 4th International Conference on Autonomous Robots and

Agents, ICARA, IEEE, 2009.

[8] Tomatis, N., et al. "Building a fully autonomous tour guide robot: Where

academic research meets industry." Proc. Int. Symp. on Robotics. 2002.

[9] Sasai, Takuya, et al. "Development of a guide robot interacting with the user

using information projection—Basic system." IEEE International Conference

on Mechatronics and Automation (ICMA), 2011.

[10] Prodanov, Plamen J., et al. "Voice enabled interface for interactive tour-guide

robots." IEEE/RSJ International Conference on Intelligent Robots and

Systems, Vol. 2. IEEE, 2002.

[11] Dehuai, Zeng, Xie Cunxi, and Li Xuemei. "Design and Implementation of a

security and patrol robot system." IEEE Mechatronics and Automation,

International Conference, Vol. 4, 2005.

[12] Thrun, Sebastian, et al. "MINERVA: A second-generation museum tour-guide

robot." IEEE International Conference on Robotics and Automation

Proceedings, Vol. 3, 1999.

[13] Simmons, Reid, et al. "Lessons learned from Xavier." Robotics &

Automation Magazine, IEEE 7.2 (2000): 33-39.

[14] Kanda, Takayuki, et al. "An affective guide robot in a shopping mall."

Proceedings of the 4th ACM/IEEE International Conference on Human

Robot Interaction, 2009.

[15] J Datta, Chandan, and Ritukar Vijay. "Neel: an intelligent shopping guide-

using web data for rich interactions." Proceedings of the 5th ACM/IEEE

International Conference on Human-Robot Interaction, Press, 2010.

[16] Cokal, Erhan, and Abdulkadir Erden. "Development of an image processing

system for a special purpose mobile robot navigation." IEEE Fourth Annual

Conference on Mechatronics and Machine Vision in Practice, 1997.

100

[17] Shieh, Ming-Yuan, et al. "Design and Implementation of a Vision-Based

Shopping Assistant Robot." IEEE International Conference on Systems, Man

and Cybernetics, SMC'06. Vol. 6, 2006.

[18] Chiang, Kuo-Hung, et al. "Multisensor-based outdoor tour guide robot

NTUI." SICE Annual Conference, IEEE, 2008.

[19] I Shiomi, Masahiro, et al. "A larger audience, please!: encouraging people to

listen to a guide robot." Proceedings of the 5th ACM/IEEE International

Conference on Human-Robot Interaction. IEEE Press, 2010.

[20] Pandey, Amit Kumar, and Rachid Alami. "A step towards a sociable robot

guide which monitors and adapts to the person's activities." IEEE

International Conference on Advanced Robotics, ICAR, 2009.

[21] Luo, R. C., et al. "NCCU security warrior: an intelligent security robot

system." IEEE 33rd Annual Conference of the Industrial Electronics Society,

IECON, 2007.

[22] Kuo, C. H., et al. "Remote control based hybrid-structure robot design for

home security applications." International Conference on Intelligent Robots

and Systems, IEEE/RSJ, 2006.

[23] Elnagar, Ashraf, and Leena Lulu. "A visual tool for computer supported

learning: The robot motion planning example." Computers & Education 49.2

(2007): 269-283.

[24] Tsai, Ching-Chih, et al. "Autonomous navigation of an indoor tour guide

robot." Workshop on Advanced robotics and Its Social Impacts, ARSO IEEE,

2008.

[25] Mizobuchi, Yoshinobu, et al. "Trajectory planning method of guide robots

for a achieving the guidance." IEEE International Conference on Robotics

and Biomimetics (ROBIO). 2005

[26] Philippsen, Roland, and Roland Siegwart. "Smooth and efficient obstacle

avoidance for a tour guide robot." ICRA. 2003.

[27] Henry, Peter, et al. "Learning to navigate through crowded environments."

IEEE International Conference on Robotics and Automation (ICRA), 2010.

[28] Shen, Jiali, and Huosheng Hu. "Visual navigation of a museum guide robot."

The Sixth World Congress on Intelligent Control and Automation, WCICA,

Vol. 2. IEEE, 2006.

[29] Wang, Chun-Chieh, Kuo-Lan Su, and Chih-Teng Shen. "Implementation of

Tour Guide Robot via Shape Recognition and Path Planning." Fourth

International Conference on Innovative Computing, Information and Control

(ICICIC), IEEE, 2009.

[30] Gorry, Benjamin, et al. "Using Mean-Shift Tracking Algorithms for Real-

Time Tracking of Moving Images on an Autonomous Vehicle Testbed

Platform." International Journal of Computer Science & Engineering 1.3

(2007).

[31] Kim, Jeongdae, and Yongtae Do. "Moving obstacle avoidance of a mobile

robot using a single camera." Procedia Engineering 41 (2012): 911-916.

[32] Moriwaki, Katsumi. "Recognition of moving objects by image processing and

its applications to a guide robot." IEEE/SICE International Symposium on

System Integration (SII), IEEE, 2011.

101

[33] Oyama, Takaya, et al. "Tracking visitors with sensor poles for robot's

museum guide tour." The 6th International Conference on Human System

Interaction (HSI), IEEE, 2013.

[34] Sugiyama, Seiji, Kouhei Baba, and Tsuneo Yoshikawa. "Guide robot with

personal identification method using dress color information via KINECT."

IEEE International Conference on Robotics and Biomimetics (ROBIO),

2012.

[35] Shen, Jiali, and Huosheng Hu. "Visual navigation of a museum guide robot."

The Sixth World Congress on Intelligent Control and Automation, WCICA,

Vol. 2. IEEE, 2006

[36] Luo, R. C., T. Y. Hsu, and K. L. Su. "The development of a multisensor based

intelligent security robot: Chung Cheng# 1." IEEE International Conference

on Mechatronics, ICM'05, 2005.

[37] Arras, Kai O., et al. "Multisensor on-the-fly localization: Precision and

reliability for applications." Robotics and Autonomous Systems 34.2 (2001):

131-143.

[38] http://marketsandmarkets.com/ServiceRobotics, Visited Date; 10.02.2015

[39] http://wtec.org/robotics/report/05-Industrial.pdf, Download Date;10.02.2015

[40] http://news.panasonic.com/press/news/official.data, Visited Date; 10.02.2015

[41] http:// metralabs.com, Visited Date; 10.02.2015

[42] G. Çelik, E.Erdem, K.Kok, D. Oksay, C. Sevimli, Z. Erden. " Mekatronik

Mühendisliği Bölümü Laboratuvarları İçin Bekçi/Rehber Robot Tasarımı."

 3. Mekatronik Mühendisliği Öğrenci Kongresi (MeMÖK2012) Bildiri Kitabı,

Sayfa 47-56, 8 Haziran 2012, Atılım Üniversitesi, Ankara..

[43] http://www.pololu.com/product/1107, Visited Date; 01.05.2015

[44] http://www.sharpsma.com/webfm_send/1487, Downloaded Date; 01.05.2015

[45] http://www.micropik.com/PDF/HCSR04.pdf , Downloaded Date; 01.05.2015

[46] https://www.pololu.com/product/2468, Visited Date; 01.05.2015

[47] http://arduino.cc/en/Main/arduinoBoardMega2560B, Visited Date;01.05.2015

[48] http://www.pololu.com/product/2502, Visited Date; 01.05.2015

[49] http://www.pololu.com/product/2104, Visited Date; 20.01.2015

[50] Arkin, Ronald C. "Behavior-based robotics." MIT press, 1998.

[51] http://gritslab.gatech.edu, Visited Date; 01.05.2015

[52] Simmons, Reid, et al. "A layered architecture for coordination of mobile

robots." Multi-robot systems: from swarms to intelligent automata. Springer

Netherlands, 2002. 103-112.

[53] Yan, Melissa. "Dijkstra‟s Algorithm." http://www-math.mit.edu

[54] Bertsekas, Dimitri P., and Dimitri P. Bertsekas. Dynamic programming and

optimal control. Vol. 1. No. 2. Belmont, MA: Athena Scientific, 1995.

[55] https://www.advancedtransit.net/files/Muller1_Presentation,

 Visited Date; 05.03.2014

[56] http://forum.arduino.cc/index.php/topic, missing counting encoder,

 Visited Date; 15.11.2014

[57] Wilhelm, Eric Jamesson. "Design of a wireless control system for a

laboratory planetary rover". Diss. Massachusetts Institute of Technology,

1999

[58] Kara, Sertac Emre. " Control of two wheel self stabilizing mobile robot with a

simple arm ". Mechatronics Engineering, Atilim University, October 2014.

http://www.wtec.org/robotics/report/05-Industrial.pdf
http://www.metralabs.com/
http://www.pololu.com/product/1107
http://www.sharpsma.com/webfm_send/1487
http://www.micropik.com/PDF/HCSR04.pdf
http://arduino.cc/en/Main/arduinoBoardMega2560B
http://forum.arduino.cc/index.php/topic

102

[59] http://www.mathworks.com/company/newsletters/articles/data-sets-for-

motor- control-with-arduino.html,Visited Date; 20.12.2014

[60] S.Temel, S.Yagli, S.Goren. "Discrete time control systems recitation".

Electrical and Electronics Engineering, Middle East Technical University.

[61] http://www.mathworks.com/matlabcentral/answers/116783,

 Visited Date; 05.02.2015

[62] http://stackoverflow.com/questions/21883900, Visited Date; 05.02.2015

[63] http://en.wikipedia.org/wiki/Indoor_positioning_system,

 Visited Date; 26.06.2015

http://www.mathworks.com/matlabcentral/answers/116783

103

Appendix 1: Table of Service Robots

 Name of the

Robot
Description Place Picture

1 MINERVA

Museum

Tour Guide

Robot

Smithsonian's

National

Museum

of American

History,

 USA

2 XAVIER

Building

Guide

Robot

Carnegie Mellon

University,

USA

3
PHOPE

Building

Guide

Robot

South Korea

4
ROBOX

Interact

with Human

Robot

Switzerland

5
RHINO

Autonomous,

Interactive

Tour Guide

Robot

Germany

6
PYGMALION

Fully

Autonomous

Self-Contained

Robot

Switzerland

104

7 SAGE
Guide

Robot

Carnegie

Museum

of Natural

History,

USA

8
MASTIFF-I

Securıty

& Patrol

Robot

China

9 NTU-I

Tour

Guide

Robot

National Taiwan

University,

Taiwan

10 SECURITY

WARRIOR

Intelligent

Security

Robot

Taiwan

11
ROBOVI

Autonomous,

Interactive

Tour Guide

Robot

Japan

12
ATLAS

Museum

Guide

Robot

United Kingdom

13
PIONEER3-AT

Small Prepared

Robot
General

105

14 MODROB-C &

D

Technology

Demonstrative

Mobile

Robots

METU,

Turkey

15 TT-JOY

Mobile

Guide

Robot

Japan

16
VBSAR

Shopping

Assistant

Mobile

Robot

Taiwan

17 NEEL

Shopping

Guide

Robot

University of

Auckland,

New Zealand

18
HOSPI

Autonomous

Medication

Delivery

Robot

MetraLabs,

Germany

19 SCITOS A5

Service

Guide

Robot

MetraLabs,

Germany

20 SCITOS G6

Transporter

Autonomous

Transporter

Robot

MetraLabs,

Germany

106

21 SCITOS G5

Professional

Platform

Robot

MetraLabs,

Germany

22 SCITOS G5

Monitoring

Autonomous

Service

Robot

MetraLabs,

Germany

23 SCITOS G5

Manipulator

Autonomous

Service

Robot

MetraLabs,

Germany

24 SCITOS G3

Interactive

Home-Care

Robot

MetraLabs,

Germany

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

Appendix 4: Weights of the Parts and

the Computations of needed Torque and RPM

Unit Hardware Qty.
Weight (grams)

Unit Total

Cognitive Single Board Computer 1

Motion Mechanism

Microcontroller Board 2 50 100

Chassis 1 5000 5000

Wheels 4 200 800

Servo DC Motor 2 350 700

IR Sensor 12 20 240

Compass 1 20 20

Ultrasonic Distance Sensor 4 20 80

Battery 1 200 200

Vision System

Digital Webcam 1

Laser Scanner 1

Embedded Computer 1

Audition System
Microphone 1

Embedded Computer 1

Environmental

Sensors

IR 1

Gas / Smoke 1

Temperature 1

LCD Touch Screen 1 200 200

Wires and Others 1 600 600

Body 1 10000 10000

 Total 17940

124

Appendix 5: Simulink Model of the Robot’s Dynamics

00

10
A

mc
B

0

 10C

 0D

c: electro-mechanical transmission coefficient

m: weight of the robot

125

Appendix 6: Platform of the Laboratories of our Department

126

Appendix 7: Various Shots of the Assembling and Wiring Steps.

127

128

129

Appendix 8

// This program is uploaded on SMCB to handle Data from

// GUI, Ultrasonicsensors and the Compass and then send

// them to MMCB in 3 parts.

#include <Wire.h>

#include <LSM303.h>

int trigPin1 = 6; //Trigger Signal of Sensor 1

int echoPin1 = 7; //Echo Signal of Sensor 1

int trigPin2 = 8; //Trigger Signal of Sensor 2

int echoPin2 = 9; //Echo Signal of Sensor 2

int trigPin3 = 10; //Trigger Signal of Sensor 3

int echoPin3 = 11; //Echo Signal of Sensor 3

int trigPin4 = 12; //Trigger Signal of Sensor 4

int echoPin4 = 13; //Echo Signal of Sensor 4

long duration1, duration2, duration3, duration4;

float mm1, mm2, mm3, mm4, m1, m2, m3, m4, Wd1, Wd2, Wd;

int P;

LSM303 compass;

void setup() {

 Serial.begin (9600);

 Serial2.begin (9600);

 Serial3.begin(9600);

 pinMode(trigPin1, OUTPUT);

 pinMode(echoPin1, INPUT);

 pinMode(trigPin2, OUTPUT);

 pinMode(echoPin2, INPUT);

 pinMode(trigPin3, OUTPUT);

 pinMode(echoPin3, INPUT);

 pinMode(trigPin4, OUTPUT);

 pinMode(echoPin4, INPUT);

 Wire.begin();

 compass.init();

 compass.enableDefault();

 compass.m_min = (LSM303::vector<int16_t>){-987, -1321, -2294};

 compass.m_max = (LSM303::vector<int16_t>){+2166, +1879, -1981};

// the compass.m_min & compass.m_max data is achieved by the

//Calibration program

}

void loop()

{

// Part 1: Receive Data from GUI and send it to MMCB

if(Serial.available()>0)

{

 P=Serial.read();

 if (P==1||P==2||P==3||P==4||P==5||P== 6||

 P==7||P==8||P==9||P==11||P==12||P==13

 ||P==14||P==15||P==16||P==17||P==18||

130

 P==19||P==20||P==21||P==22||P==23||

 P==24||P==25||P==26||P==27||P == 28)

 {

Serial.write(P);

 }

}

// Part 2: Handling the Ultrasonicsensors and send the

// computed data to MMCB

digitalWrite(trigPin1, LOW);

delayMicroseconds(5);

digitalWrite(trigPin1, HIGH);

delayMicroseconds(10);

digitalWrite(trigPin1, LOW);

pinMode(echoPin1, INPUT);

duration1 = pulseIn(echoPin1, HIGH);

mm1 = duration1 / 5.82;

if (mm1<3000) m1=mm1;

else m1=0;

digitalWrite(trigPin2, LOW);

delayMicroseconds(5);

digitalWrite(trigPin2, HIGH);

delayMicroseconds(10);

digitalWrite(trigPin2, LOW);

pinMode(echoPin2, INPUT);

duration2 = pulseIn(echoPin2, HIGH);

mm2 = duration2 / 5.82;

if (mm2<3000) m2=mm2;

else m2=0;

digitalWrite(trigPin3, LOW);

delayMicroseconds(5);

digitalWrite(trigPin3, HIGH);

delayMicroseconds(10);

digitalWrite(trigPin3, LOW);

pinMode(echoPin3, INPUT);

duration3 = pulseIn(echoPin3, HIGH);

mm3 = duration3 / 5.82;

if (mm3<3000) m3=mm3;

else m3=0;

digitalWrite(trigPin4, LOW);

delayMicroseconds(5);

digitalWrite(trigPin4, HIGH);

delayMicroseconds(10);

digitalWrite(trigPin4, LOW);

pinMode(echoPin4, INPUT);

duration4 = pulseIn(echoPin4, HIGH);

mm4 = duration4 / 5.82;

if (mm4<3000) m4=mm4;

else m4=0;

Wd1=(asin((m1-m2)/445));

Wd2=(asin((m3-m4)/445));

if (mm2<mm3)

 Wd=Wd1;

131

else

 Wd=Wd2;

int Wdd=Wd*180/3.1416;

Serial2.write(Wdd);

// Part 3: Handling the Compass and send the needed data to MMCB

 compass.read();

 int heading = compass.heading();

 Serial3.write(270-heading);

 delay(100);

}

132

Appendix 9

// This calibration program gives the compass.m_min & compass.m_max

// data to use in the Compass program. After running, change the

// heading of the Robot from minimum to maximum manually.

#include <Wire.h>

#include <LSM303.h>

LSM303 compass;

LSM303::vector<int16_t> running_min = {32767, 32767, 32767},

running_max = {-32768, -32768, -32768};

char report[80];

void setup() {

 Serial.begin(9600);

 Wire.begin();

 compass.init();

 compass.enableDefault();

}

void loop() {

 compass.read();

 running_min.x = min(running_min.x, compass.m.x);

 running_min.y = min(running_min.y, compass.m.y);

 running_min.z = min(running_min.z, compass.m.z);

 running_max.x = max(running_max.x, compass.m.x);

 running_max.y = max(running_max.y, compass.m.y);

 running_max.z = max(running_max.z, compass.m.z);

 snprintf(report, sizeof(report), "min: {%+6d, %+6d, %+6d} max:

{%+6d, %+6d, %+6d}",

 running_min.x, running_min.y, running_min.z,

 running_max.x, running_max.y, running_max.z);

 Serial.println(report);

 delay(100);

}

133

Appendix 10

/* These interrupt service routines, written in C code, update */

/* the position of our two encoders at each sample time.

include <Arduino.h>

typedef struct { int pinA; int pinB; double pos; int del;} Encoder;
volatile Encoder Enc[3] = {{0,0,0,0}, {0,0,0,0}, {0,0,0,0}};

/* auxiliary function to handle encoder attachment */
int getIntNum(int pin) {
/* returns the interrupt number for a given interrupt pin */
 switch(pin) {
 case 21:
 return 2;
 case 20:
 return 3;
 case 19:
 return 4;
 case 18:
 return 5;
 default:
 return -1;
 }
}

/* auxiliary debouncing function */
void debounce(int del) {
 for (int k=0;k<del;k++) {
 /* can't use delay in the ISR so need to waste some time
 perfoming operations */
 k = k +0.0 +0.0 -0.0 +3.0 -3.0;
 }
}

/* Interrupt Service Routine: change on pin A for Encoder 1 */
void irsPinAEn1(){

 /* read pin B right away */
 int drB = digitalRead(Enc[1].pinB);

 /* possibly wait before reading pin A, then read it */
 debounce(Enc[1].del);
 int drA = digitalRead(Enc[1].pinA);

 /* this updates the counter */
 if (drA == HIGH) {

 if (drB == LOW) { /* check pin B */
 Enc[1].pos++; /* going clockwise: increment */
 } else {
 Enc[1].pos--; /* going counterclockwise: decrement */
 }

134

 } else { /* must be high to low on A */

 if (drB == HIGH) { /* check pin B */
 Enc[1].pos++; /* going clockwise: increment */
 } else {
 Enc[1].pos--; /* going counterclockwise: decrement */
 }

 } /* end counter update */

} /* end ISR pin A Encoder 1 */

/* Interrupt Service Routine: change on pin B for Encoder 1 */
void isrPinBEn1(){

 /* read pin A right away */
 int drA = digitalRead(Enc[1].pinA);

 /* possibly wait before reading pin B, then read it */
 debounce(Enc[1].del);
 int drB = digitalRead(Enc[1].pinB);

 /* this updates the counter */
 if (drB == HIGH) {

 if (drA == HIGH) { /* check pin A */
 Enc[1].pos++; /* going clockwise: increment */
 } else {
 Enc[1].pos--; /* going counterclockwise: decrement */
 }

 } else { /* must be high to low on B */

 if (drA == LOW) { /* check pin A */
 Enc[1].pos++; /* going clockwise: increment */
 } else {
 Enc[1].pos--; /* going counterclockwise: decrement */
 }

 } /* end counter update */

} /* end ISR pin B Encoder 1 */

/* Interrupt Service Routine: change on pin A for Encoder 2 */
void irsPinAEn2(){

 /* read pin B right away */
 int drB = digitalRead(Enc[2].pinB);

 /* possibly wait before reading pin A, then read it */
 debounce(Enc[2].del);
 int drA = digitalRead(Enc[2].pinA);

 /* this updates the counter */

135

 if (drA == HIGH) {

 if (drB == LOW) { /* check pin B */
 Enc[2].pos++; /* going clockwise: increment */
 } else {
 Enc[2].pos--; /* going counterclockwise: decrement */
 }

 } else { /* must be high to low on A */

 if (drB == HIGH) { /* check pin B */
 Enc[2].pos++; /* going clockwise: increment */
 } else {
 Enc[2].pos--; /* going counterclockwise: decrement */
 }

 } /* end counter update */

} /* end ISR pin A Encoder 2 */

/* Interrupt Service Routine: change on pin B for Encoder 2 */
void isrPinBEn2(){

 /* read pin A right away */
 int drA = digitalRead(Enc[2].pinA);

 /* possibly wait before reading pin B, then read it */
 debounce(Enc[2].del);
 int drB = digitalRead(Enc[2].pinB);

 /* this updates the counter */
 if (drB == HIGH) {
 if (drA == HIGH) { /* check pin A */
 Enc[2].pos++; /* going clockwise: increment */
 } else {
 Enc[2].pos--; /* going counterclockwise: decrement */
 }

 } else { /* must be high to low on B */

 if (drA == LOW) { /* check pin A */
 Enc[2].pos++; /* going clockwise: increment */
 } else {
 Enc[2].pos--; /* going counterclockwise: decrement */
 }

 } /* end counter update */

} /* end ISR pin B Encoder 2 */

void enc_init(int enc, int pinA, int pinB) {

 /* enc is the encoder number and it can be 1 or 2 */
 /* store pinA and pinB in global encoder structure Enc */
 /* they will be needed later by the interrupt routine */
 /* that will not be able to access s-function parameters */

136

 Enc[enc].pinA=pinA; /* set pin A */
 Enc[enc].pinB=pinB; /* set pin B */

 /* set encoder pins as inputs */
 pinMode(Enc[enc].pinA, INPUT);
 pinMode(Enc[enc].pinB, INPUT);

 /* attach interrupts */
 switch(enc) {

 case 1:
 attachInterrupt(getIntNum(Enc[1].pinA), irsPinAEn1,

CHANGE);
 attachInterrupt(getIntNum(Enc[1].pinB), isrPinBEn1,

CHANGE);
 break;
 case 2:
 attachInterrupt(getIntNum(Enc[2].pinA), irsPinAEn2,

CHANGE);
 attachInterrupt(getIntNum(Enc[2].pinB), isrPinBEn2,

CHANGE);
 break;
 }
}

int enc_output(int enc) {
 return ((double)Enc[enc].pos);
}

137

Appendix 11

% This function ensures that w (Robot’s Angular Velocity) is

% respected as best as possible by scaling v (Robot’s Linear

% Velocity.

function [v,w]= fcn(vi,wi)

vel_max=9; % A motor's maximum forward angular velocity

(rad/sec)
vel_min=0.7; % A motor's minimum forward angular velocity

(rad/sec)

R=5; % Radious of the wheels
L=47; % Distance between the wheels

if abs(vi)>0
 % Limit v,w to be possible in the range
 %[vel_min,vel_max], avoid stalling or exceeding motor

limits

 v_lim=max(min(abs(vi),(R/2)*(2*vel_max)),(R/2)*(2*vel_min));
 w_lim=max(min(abs(wi),(R/L)*(vel_max-vel_min)),0);

 % Compute the desired curvature of the robot's motion

 v_rd=(2*v_lim+L*w_lim)/(2*R);
 v_ld=(2*v_lim-L*w_lim)/(2*R);

 % Find the max and min v_rd & v_ld

 v_rl_max= max(v_rd,v_ld);
 v_rl_min= min(v_rd,v_ld);

 % Shift v_r & v_l if they exceed max/min level

 if v_rl_max>vel_max
 v_r=v_rd-(v_rl_max-vel_max);
 v_l=v_ld-(v_rl_max-vel_max);

 elseif v_rl_min<vel_min
 v_r=v_rd+(vel_min-v_rl_min);
 v_l=v_ld+(vel_min-v_rl_min);
 else
 v_r=v_rd;
 v_l=v_ld;
 end

 % Fix signs (Always either both positive or negative)

 v_sh=(R/2)*(v_r+v_l);
 w_sh=(R/L)*(v_r-v_l);
 v=sign(vi)*v_sh;
 w=sign(wi)*w_sh;

138

else
 % Robot is stationary, so we can either not rotate,
 % or rotate with some minimum/maximum angular

 % velocity

 w_min=(R/L)*2*vel_min;
 w_max=(R/L)*2*vel_max;

 if abs(wi)>w_min
 w=sign(wi)*max(min(abs(wi),w_max),w_min);
 v=0;
 else
 w=0;
 v=0;
 end
end

139

Appendix 12

% This function creates our designed GUI and allocates a number to

% each point. Then send the selected point serially to the MMCB.

function varargout = GUI(varargin)

% Last Modified by GUIDE v2.5 26-Mar-2015 12:55:24

% Begin initialization code

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @GUI7_OpeningFcn, ...

 'gui_OutputFcn', @GUI7_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code

% --- Executes just before GUI is made visible.

function GUI_OpeningFcn(hObject, eventdata, handles, varargin)

% Choose default command line output for GUI

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% --- Outputs from this function are returned to the command line.

function varargout = GUI_OutputFcn(hObject, eventdata, handles)

% Get default command line output from handles structure

varargout{1} = handles.output;

function SelectYourLocation_Callback(hObject, eventdata, handles)

function SelectYourLocation_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

140

% --- Executes on button press in InitialPoint.

function InitialPoint_Callback(hObject, eventdata, handles)

global P

P=1;

set(handles.SelectYourLocation,'String',num2str('Your Selected

Location: Initial Point'));

% --- Executes on button press in HallA.

function HallA_Callback(hObject, eventdata, handles)

global P

P=2;

set(handles.SelectYourLocation,'String',num2str('Your Selected

Location: Entrance of Hall A'));

% --- Executes on button press in MechatronicsPrototype.

function MechatronicsPrototype_Callback(hObject, eventdata, handles)

global P

P=3;

set(handles.SelectYourLocation,'String',num2str('Your Selected

Location: Mechatronics Prototype Manufacturing Laboratory in Hall

A'));

% --- Executes on button press in AEmpty.

function AEmpty_Callback(hObject, eventdata, handles)

global P

P=4;

set(handles.SelectYourLocation,'String',num2str('Your Selected

Location: Empty in Hall A'));

% --- Executes on button press in MechanicalMeasurements.

function MechanicalMeasurements_Callback(hObject, eventdata,

handles)

global P

P=5;

set(handles.SelectYourLocation,'String',num2str('Your Selected

Location: Mechanical Measurements, Machine Elements and CAD

Laboratory in Hall A'));

% --- Executes on button press in MechatronicsManufacturing.

function MechatronicsManufacturing_Callback(hObject, eventdata,

handles)

global P

P=6;

set(handles.SelectYourLocation,'String',num2str('Your Selected

Location: Mechatronics Manufacturing Laboratory in Hall A'));

% --- Executes on button press in HallB.

function HallB_Callback(hObject, eventdata, handles)

global P

P=7;

set(handles.SelectYourLocation,'String',num2str('Your Selected

Location: Entrance of Hall B'));

% --- Executes on button press in RobotsStudent.

function RobotsStudent_Callback(hObject, eventdata, handles)

global P

P=8;

141

set(handles.SelectYourLocation,'String',num2str('Your Selected

Location: Robots Student Society Laboratory in Hall B'));

% --- Executes on button press in CognitiveRobotics.

function CognitiveRobotics_Callback(hObject, eventdata, handles)

global P

P=9;

set(handles.SelectYourLocation,'String',num2str('Your Selected

Location: Cognitive Robotics Laboratory in Hall B'));

% --- Executes on button press in BEmpty.

function BEmpty_Callback(hObject, eventdata, handles)

global P

P=11;

set(handles.SelectYourLocation,'String',num2str('Your Selected

Location: Empty in Hall B'));

% --- Executes on button press in SensorActuator.

function SensorActuator_Callback(hObject, eventdata, handles)

global P

P=12;

set(handles.SelectYourLocation,'String',num2str('Your Selected

Location: Sensor, Actuator and Intelligent Systems Laboratory in

Hall B'));

% --- Executes on button press in DesignMethodology.

function DesignMethodology_Callback(hObject, eventdata, handles)

global P

P=13;

set(handles.SelectYourLocation,'String',num2str('Your Selected

Location: Design Methodology and Behavior Based Robotics Laboratory

in Hall B'));

% --- Executes on button press in BioMimetic.

function BioMimetic_Callback(hObject, eventdata, handles)

global P

P=14;

set(handles.SelectYourLocation,'String',num2str('Your Selected

Location: Bio-Mimetic / Bio-Inspired Engineering Design Laboratory

in Hall B'));

% --- Executes on button press in RobotVision.

function RobotVision_Callback(hObject, eventdata, handles)

global P

P=15;

set(handles.SelectYourLocation,'String',num2str('Your Selected

Location: Robot Vision Laboratory in Hall B'));

% --- Executes on button press in TechnicalSupportB.

function TechnicalSupportB_Callback(hObject, eventdata, handles)

global P

P=16;

set(handles.SelectYourLocation,'String',num2str('Your Selected

Location: Technical Support Office in Hall B'));

% --- Executes on button press in HallC.

function HallC_Callback(hObject, eventdata, handles)

global P

142

P=17;

set(handles.SelectYourLocation,'String',num2str('Your Selected

Location: Entrance of Hall C'));

% --- Executes on button press in TechnicalSupportC.

function TechnicalSupportC_Callback(hObject, eventdata, handles)

global P

P=18;

set(handles.SelectYourLocation,'String',num2str('Your Selected

Location: Technical Support Office in Hall C'));

% --- Executes on button press in EmbeddedSystems.

function EmbeddedSystems_Callback(hObject, eventdata, handles)

global P

P=19;

set(handles.SelectYourLocation,'String',num2str('Your Selected

Location: Embedded Systems Laboratory in Hall C'));

% --- Executes on button press in SpaseSatellite.

function SpaseSatellite_Callback(hObject, eventdata, handles)

global P

P=20;

set(handles.SelectYourLocation,'String',num2str('Your Selected

Location: Space and satellite System Design Laboratory in Hall C'));

% --- Executes on button press in RoboZoo.

function RoboZoo_Callback(hObject, eventdata, handles)

global P

P=21;

set(handles.SelectYourLocation,'String',num2str('Your Selected

Location: RoboZoo in Hall C'));

% --- Executes on button press in ProjectOffice.

function ProjectOffice_Callback(hObject, eventdata, handles)

global P

P=22;

set(handles.SelectYourLocation,'String',num2str('Your Selected

Location: Projects Office in Hall C'));

% --- Executes on button press in MechatronicsSystems.

function MechatronicsSystems_Callback(hObject, eventdata, handles)

global P

P=23;

set(handles.SelectYourLocation,'String',num2str('Your Selected

Location: Mechatronics Systems Laboratory in Hall C'));

% --- Executes on button press in RobotsTown.

function RobotsTown_Callback(hObject, eventdata, handles)

global P

P=24;

set(handles.SelectYourLocation,'String',num2str('Your Selected

Location: Robots Town in Hall C'));

% --- Executes on button press in Corridor.

function Corridor_Callback(hObject, eventdata, handles)

global P

P=25;

set(handles.SelectYourLocation,'String',num2str('Your Selected

Location: Right Corridor'));

143

% --- Executes on button press in UndergraduateMechatronics.

function UndergraduateMechatronics_Callback(hObject, eventdata,

handles)

global P

P=26;

set(handles.SelectYourLocation,'String',num2str('Your Selected

Location: Undergraduate Mechatronics Engineering Education

Laboratory'));

% --- Executes on button press in FESTO.

function FESTO_Callback(hObject, eventdata, handles)

global P

P=27;

set(handles.SelectYourLocation,'String',num2str('Your Selected

Location: FESTO Pneumatic Systems Laboratory'));

% --- Executes on button press in MechatronicsEngSponsored.

function MechatronicsEngSponsored_Callback(hObject, eventdata,

handles)

global P

P=28;

set(handles.SelectYourLocation,'String',num2str('Your Selected

Location: Mechatronics Engineering Sponsored Research Laboratory'));

% --- Executes on button press in connect.

function connect_Callback(hObject, eventdata, handles)

handles.output = hObject;

global s

handles.s=s;

handles.s=serial('COM4','BAUD', 9600);

fopen(handles.s);

guidata(hObject, handles);

% --- Executes on button press in Go.

function Go_Callback(hObject, eventdata, handles)

handles.output = hObject;

global P

fprintf(handles.s,P);

guidata(hObject, handles);

% --- Executes on button press in Stop.

function Stop_Callback(hObject, eventdata, handles)

global s

handles.s=s;

handles.s=serial('COM4','BAUD', 9600);

fclose(handles.s);

% --- Executes on button press in Close.

function Close_Callback(hObject, eventdata, handles)

close all

144

Appendix 13

145

Appendix 14

146

Appendix 15

% This function performs the task of the Wheels Situ Spin Controller

function [RMSP,LMSP]= fcn(RMS,LMS,ARMS,ALMS)

if RMS>=0
 if ARMS<RMS
 if ARMS<0.8
 RMSR=0.8;
 else
 RMSR=ARMS+0.3333;
 end
 else
 RMSR=RMS;
 end
else
 if ARMS>RMS
 if ARMS>-0.8
 RMSR=-0.8;
 else
 RMSR=ARMS-0.3333;
 end
 else
 RMSR=RMS;
 end
end
RMSP=RMSR*100/9;

if LMS>=0
 if ALMS<LMS
 if ALMS<0.8
 LMSR=0.8;
 else
 LMSR=ALMS+0.3333;
 end
 else
 LMSR=LMS;
 end
else
 if ALMS>LMS
 if ALMS>-0.8
 LMSR=-0.8;
 else
 LMSR=ALMS-0.3333;
 end
 else
 LMSR=LMS;

 end
end
 LMSP=LMSR*100/9;

end

