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COMMUNICTION PROTOCOLS FOR NEURAL NANONETWORKS IN
CASE OF NEURON SPECIFIC FAULTS

SUMMARY

Recent developments in nanotechnology and biology allow engineering of nano scale
biocompatible machines capable of communicating with the existing biological
systems at molecular level. The development of this innovative technology will
enable to build nanomachines that can be considered as the most basic functional
units at nanoscale. Either artificially created or naturally occurring bio-nanomachines
are functional nanoscale units that can perform very simple tasks. The limited
capabilities of nanomachines can be expanded by interconnecting them to cooperate
and share information. Resulting networks of nanomachines, namely nanonetworks
can be referred as the interconnection of nanomachines that work in a collaborative
manner to carry out a common complex objective by communicating with each
other. Although nanonetworking is in its infancy, wide range of appealing
application areas of nanonetworks especially in human healthcare field draw the
attention of the scientific communities from various disciplines. Nanonetworks
cannot be considered as a simple extension of the conventional communication
networks. The differences between nanonetworks and traditional communication
networks come in view in message encoding, propagation speed, noise factors and
energy consumption.

Communication processes of nanonetworks are mostly inspired by the existing
biological systems. Although various means such as nanomechanical, acoustic,
electromagnetic methods are introduced to maintain the communication between the
nanomachines, molecular communication (MC) glitters as the most promising
approach among the others and therefore attracted the attention of many researchers
in recent years. MC is inspired by the communication mechanisms that naturally
occur among living cells and it is based on the use of molecules to encode
information. MC has some advantages over nano or micro scale components because
of the natural size of molecules and biological cells. Biocompatibility property of the
MC is the most distinctive advantage that enables the integration to medical
applications. Another important characteristic of MC is the efficiency in energy
consumption. With these appealing features of MC, it is possible to have more direct
interaction with the medical applications such as health monitoring, immune system
support, bio-hybrid implants, and drug delivery systems. One of the techniques
which is proposed for MC is the use of neural networks. This technique is inspired
by the nervous system that spreads throughout the human body to control somatic
and autonomic behaviors.

In this thesis, we study the somatosensory system that is a subnetwork of the nervous
system in detail and explore the analogies between this intra-body nanonetwork and
the conventional communication networks. The somatosensory system processes
information about the somatic perceptions that include four major sensations:
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discriminative touch, proprioception, nociception, and temperature. For the
somatosensory system, perceived stimulus converted into spike trains by the receptor
neurons (RNs) and conveyed to the somatosensory cortex via second and higher
order neurons. Brain, as the main processing unit, has a precise map for perceived
information to preserve the spatial relation of the RNs. Therefore, the location of the
sensed stimulus is determined by the pathway that transports the spikes, not by the
spike itself. This feature resembles the circuit switching in traditional communication
networks. Sensory data is coded with following three properties, the number of
spikes generated, the inter-spike intervals, and the pathway that the spikes are carried
through. During our researches, we recognized that many neurodegenerative diseases
such as Multiple Sclerosis, Alzheimer and Paralysis are caused by the interruption of
spike propagation due to the malfunctioning neurons in the pathway where the signal
is carried through. Even if the RNs function properly, a faulty relaying neuron (inter-
neuron) in the signaling pathway hinders the spikes to be delivered to the
somatosensory cortex. Thus, a fault in the pathway results in a loss of sense in the
relevant part of the human body. These irreversible impairments remind the same
problem in the transmission lines of the conventional communication networks. In
communication networks, multiplexing methods that combine more than one signal
over a shared medium are employed to solve this problem.

In this thesis, we propose three neuron specific techniques for conveying the spike
trains of RNs that have faulty pathways over a functional neighboring pathway by
using the above-mentioned analogy. For the techniques we propose, our aim is
twofold. Firstly, conveying the spikes of an RN that has faulty pathway through a
shared functional pathway. The latter is to minimize the number of spikes that can be
lost while multiplexing the spikes of RNs in order to feel the correct sensation. The
proposed techniques require the spikes of RNs to be converted to electronic domain.
This conversion can be done with neural interfaces that can detect an incoming spike
and stimulate the generation of a new spike. Therefore, we also reviewed the
competitive methods in the literature for interfacing neurons and proposed the use of
neural interfaces in our techniques. For the evaluation of a realistic performance
analysis of our studies, we employed Neural Simulation Tool in order to reflect the
electrical and chemical aspects of the neuro-spike communication channel.

Among the proposed techniques in this thesis, we firstly propose a neuron specific
Time Division Multiple Access (TDMA) based protocol for ensuring the RNs that
have the faulty pathway to communicate with the somatosensory system. For sharing
the functional pathway between the RNs, we develop a novel multiplexing and
buffering mechanism employing the Neural Delay Box (NDB) scheme that is
composed of a relay unit and a buffering unit. The relay unit can be realized as a
nanoelectronic device. The buffering unit can be implemented either by using neural
delay lines as employed in optical switching systems or by using nano scale delay
flip flops. The spikes received at the assigned time slot of RNs are directly conveyed
to the shared neural pathway by using NDBs. The spikes transmitted at the
unassigned time slots are buffered and transmitted at the next assigned time slot.
Thus, the spikes are carried through a functional pathway and they can be easily
demultiplexed according to the assigned time slots of RNs, thereafter are delivered to
corresponding destination. Furthermore, we evaluate the performance of the
proposed method under various scenarios via simulations. The results demonstrate
that significant performance improvement on the successively delivered number of
spikes is achievable when the delay lines are employed as neural buffers in NDBs.
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Secondly, we propose a neuron specific statistical multiplexing (SM) based
technique to establish the communication between an RN and somatosensory cortex
in case of an intermediate neuron failure in its own sensory pathway. The proposed
technique utilizes the multiplexer and the demultiplexer units that can be realized as
nanoelectronic devices and an addressing scheme. As we consider the traditional
packet switching networks, every packet have a header part to identify the source and
the destination addresses. Nevertheless, spikes neither have any information about
which RN generated them nor the arrival address. To employ statistical multiplexing,
the spikes of each transmitting RN must be distinguished at the demultiplexer unit
before conveying them to the related part of the somatosensory cortex. Hence, we
introduce an addressing scheme to identify the transmitting RNs by using the spikes
themselves. Actually, we establish a packet switching neural nanonetwork by
employing this addressing scheme. Furthermore, we show that a priority mechanism
can be developed for the proposed technique. We present the performance of the
proposed technique is in terms of the percentage of the spikes transmitted under
various scenarios. We also compare the performance of the SM based sensory
nanonetwork with the previously proposed TDMA based sensory nanonetwork.
Despite that the performance achieved by SM based sensory nanonetwork is lower
than the TDMA based sensory nanonetwork, the proposed SM based sensory
nanonetwork has implementation simplicity. We also examine the similarity between
the input spike generation times (spike times of the RNs) and the output spike
generation times (spike times at the demultiplexer unit). Test results demonstrate that
the input and output spike patterns have similar properties.

Finally, we propose the Switch Based Multiplexing Protocol (SBMP) to substitute a
faulty sensory neural pathway with a functional neighboring neural pathway. The
proposed multiplexing protocol depends on the multiplexer and the demultiplexer
units that can be realized as nanoelectronic devices. The spiking activity between
these units is regulated by the SBMP. The SBMP is developed to set the pathway i.e.
route where the spikes are carried through. The SBMP uses some control packets that
exploits spikes themselves to manage the spike traffic. Via the control packets of the
SBMP, the sensory pathway is alternated according to the owner of the spike to
deliver the spike to the corresponding part of the somatosensory cortex. Besides, we
also show that a priority mechanism can be developed for the proposed technique.
We evaluate the performance of the proposed protocol by simulations under various
scenarios. We also examine the similarity between the input and the output spike
firing patterns either the RNs have equal priority or different priorities. The test
results demonstrate that the input and output spike patterns have similar properties.
We assured that both the input spike generation times of the RNs and the output
spike generation times (at the demultiplexer unit) are from the same distribution.
Furthermore, we compare the input inter-spike interval distribution (inter-spike
interval times of the RNs) and output inter-spike interval distribution (inter-spike
interval times at the demultiplexer unit) when equal or various priorities are assigned
to the RNs. As the priority value assigned to the RN is increased, the output inter-
spike interval distribution of the related RN converges to the input inter-spike
distribution of the RN as expected. We also compare the obtained results with the
previously proposed multiplexing techniques. SNMP, exhibits significant
performance enhancement over the statistical multiplexing based technique and
TDMA without delay lines technique. Although a better performance is achievable
with TDMA with delay lines technique via its buffering capability, the SBMP has
lower implementation complexity.
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SINIiR HI"JCR}«:LERiNE OZGU HATA DURUMLARINDA SiNiR
NANOAGLAR ICiN HABERLESME PROTOKOLLERI

OZET

Son yillarda nanoteknoloji ve biyoloji alaninda yasanan gelismeler, molekiiler
seviyedeki mevcut biyolojik sistemlerle haberlesebilen nano 6lcekli biyo-uyumlu
makinelerin tasarlanmasini miimkiin kilmistir. Bu yenilik¢i teknolojideki gelismeler
nano seviyedeki en temel islevsel birim olarak kabul edilen nanomakinalarin
tiretilmesine olanak saglayacaktir. Hem yapay olarak iiretilen hem de dogada mevcut
olan biyo-nanomakinalar, yalmizca basit gorevleri yerine getirebilen nano Olcekli
islevsel birimlerdir. Nanomakinalarin kisith yetenekleri, birlikte calisabilmeleri ve
bilgiyi paylasmalart maksadiyla birbirleriyle haberlesmeleri saglanarak artirilabilir.
Sonucta ortaya ¢ikan ve nanoaglar olarak bilen bu aglar, birbirleriyle haberleserek
isbirligi icinde calisan, ortak ve karmasik bir gorevi yerine getirmek iizere
nanomakinalarin olusturdugu aglar olarak tanimlanabilir. Nanoaglar gelisimin
baslangi¢ evrelerinde olmasina ragmen, nanoaglarin 6zellikle insan saglig: alanindaki
uygulama alanlar1 farkli disiplinlerde calisan arastirmacilarin ilgisini ¢ekmektedir.
Nanoaglar  geleneksel haberlesme aglarinin  basit  bir uzantisi  olarak
diisiiniilmemelidir. Nanoaglar ve geleneksel haberlesme aglari arasindaki farklar
verinin kodlanmasi, propagasyon hizi, giiriiltii faktorleri ve enerji tikketiminde ortaya
cikmaktadir.

Nanoaglarin haberlesme yontemleri biiyiik Olgiide mevcut biyolojik sistemlerden
esinlenmistir. Nanomakinalar arasinda haberlesmeyi saglamak {izere nanomekanik,
akustik ve elektromanyetik yontemler gibi cesitli metotlar Onerilmesine ragmen
molekiiler haberlesme diger yontemler arasinda en ¢ok umut vadeden yaklasim
olarak one c¢ikmakta ve bu nedenle de bir¢ok arastirmacinin dikkatini cekmektedir.
Molekiiler haberlesme dogada mevcut hiicrelerde gerceklesen haberlesme
stireclerinden esinlenmistir ve bilginin kodlanmasi maksadiyla molekiillerin
kullanimina dayanmaktadir. Sistem bilesenlerinin molekiiler sevideki kontrolii ile
biyo-uyumlu ve kararli nanoaglar tasarlanabilir. Molekiiler haberlesmenin
molekiillerin ve biyolojik hiicrelerin dogal biiyiikliikleri nedeni ile nano ve mikro
Olcekli  bilesenlere gore birtakim avantajlar1  bulunmaktadir.  Molekiiler
haberlesmenin biyo-uyumluluk 6zelligi bu yontemin en ayirt edici 6zelligidir ve bu
sayede tip uygulamalar icin kullanilabilmesine olanak saglamaktadir. Diger onemli
bir karakteristik Ozelligi ise enerji tiiketimindeki verimliliktir. Bu dikkat cekici
ozellikleri sayesinde molekiiler haberlesme saglik izleme, bagisiklik sistemi destegi,
biyo-melez implantlar ve ila¢ dagitim sistemleri gibi tip uygulamalariyla dogrudan
etkilesimi miimkiin kilmaktadir. Molekiiler haberlesme yontemi olarak haberlesen
nanomakinalarin arasindaki mesafeyi dikkate alan cesitli yontemler Onerilmistir.
Onerilen metotlardan birisi de nanomakinalarin haberlesmesi icin sinir hiicrelerinin
kullanilmasidir. Bu yontem, somatik ve otomatik davranislarimizi kontrol etmek
izere insan viicuduna yayilmis olan sinir sisteminden esinlenmistir.
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Bu tez c¢alismasinda, sinir sistemimizin bir alt ag1 olan bedensel-duyusal
(somatosensoriyel) ag lizerinde detayli arastirmalar yapilmis ve sdz konusu viicut i¢i
nanoag ile geleneksel haberlesme aglar1 arasindaki benzerlikler belirlenmistir.
Bedensel-duyusal sistem, ayirt edilebilir dokunma hissi (nesnelerin biiytikligii, sekli,
yapist ve deri {izerindeki hareketinin ayirt edilmesi), viicut kistmlarinin (kas, eklem
vb.) hareketleri ve pozisyonlari, doku hasar1 veya kimyasal tahris kaynakli agri/ac1 ve
151 (sicaklik ve sogukluk) olarak bilinen dort temel duyuyu iceren bedensel algilara
yonelik bilgiyi isler. Bedensel-duyusal sistemde hissedilen uyari, algilayici sinir
hiicreleri tarafindan uyar1 katarina doniistiiriiliir ve bu uyar1 katar1 ikinci ve daha
biiyiik dereceli ara sinir hiicrelerinin olusturdugu yollar kullanilarak beyindeki
bedensel-duyusal kabuga iletilir. Beyin ana iglem birimi olarak algilanan hissin ilgili
algilayicr sinir hiicresiyle iliskilendirilebilmesi i¢in kusursuz bir eslestirme haritasina
sahiptir. Bu nedenle, algilanan uyarinin yeri uyar katar1 ile degil uyar1 katarin1 beyne
ileten yol ile belirlenir. Bu o6zellik geleneksel haberlesme aglarindaki devre
anahtarlama kavramina benzemektedir. Algilanan his, iiretilen uyar1 sayisi, uyarilar
arasindaki siire ve uyarinin beyne iletildigi yol ile kodlanmaktadir. Coklu skleroz,
Alzheimer ve fel¢ gibi bir¢ok sinir hastaligi, uyariin iletildigi yollar1 olusturan ara
sinir hiicrelerindeki fonksiyonel bozukluklardan dolayr uyari iletiminin kesintiye
ugramasindan kaynaklanmaktadir. Algilayici sinir hiicreleri diizgiin c¢aligsa bile,
uyarinin tagindig yol tizerinde bulunan hatali bir ara sinir hiicresi uyarinin bedensel-
duyusal kabuga iletilmesine engel olmaktadir. Bu nedenle, uyar1 yolu iizerindeki bir
hata viicudun ilgili bolgesinde bir his kaybi olarak sonuglanmaktadir. Uyarinin
tasindigr yol iizerindeki bozukluklar geleneksel haberlesme aglarinin iletim
hatlarindaki benzer problemleri andirmaktadir. Haberlesme aglarinda, bu tip
problemler birden ¢ok sinyalin paylasilan bir hat i{izerinden taginmasini saglayan
coklama metotlariyla ¢oziilebilmektedir.

Bu tez c¢alismasinda, hatali bir uyar1 yoluna sahip bir algilayici sinir hiicresi
tarafindan olusturulan uyar: katarlarini, fonksiyonel komsu bir uyar1 yolu kullanarak
iletmek maksadiyla, yukarida belirtilen benzerlik yaklasimi kullanilarak sinir
hiicrelerine 6zgii iic farkli teknik onerilmistir. Onerilen tekniklerdeki amacimiz iki
yonliidiir. Birinci amacimiz, hatali bir uyar1 yoluna sahip bir algilayici sinir hiicresi
tarafindan olusturulan uyar1 katarlarin1 paylasilan bir uyart yolu kullanarak
iletmektir. Ikinci amacimiz ise, algilanan gercek duyunun hissedilebilmesi icin
coklama asamasindaki uyar1 kaybini asgari seviyeye indirmektir. Onerdigimiz
teknikler algilayici sinir hiicreleri tarafindan olusturulan uyarilarin elektronik ortama
cevrilmesine ihtiya¢ duymaktadir. S6z konusu c¢evrim, gelen bir uyariy1 tespit
edebilen ve yeni bir uyarinin olusturulmasini saglayabilen sinir arayiizleri ile
gerceklenebilmektedir. Bu nedenle, literatiirde birbiriyle yarisan sinir arayiiz
metotlar1 arastirilarak Onerilen tekniklerde bu metotlarin kullanimi Ongoriilmiistiir.
Ayrica, onerdigimiz tekniklerin gercekci basarim analizlerini yapabilmek ve sinir-
uyar1 haberlesme kanalindaki kimyasal ve elektriksel 6zelliklerin basarim iizerindeki
etkisini de yansitabilmek amaciyla Sinir Benzetim Araci (Neural Simulation Tool)
kullanilmistir.

Bu tez ¢alismasinda onerilen teknikler arasinda ilk olarak, hatali uyar1 yollarina sahip
algilayict sinir hiicrelerine ait uyarilarin duyusal-bedensel kabuga iletilmesini
saglamak amaciyla sinir hiicrelerine 6zgii Zaman Boliimlemeli Coklu Erisim
(TDMA) tabanli bir yontem Onerilmistir. Fonksiyonel uyar1 yolunun birden c¢ok
algilayici sinir hiicresi tarafindan paylasilabilmesi maksadiyla, aktarma birimi ve
tampon biriminden olusan Sinir Geciktirme Kutusu (NDB)'nu kullanan yeni bir
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coklama ve tamponlama mekanizmasi gelistirilmistir. Aktarma birimi nano
elektronik bir aygit olarak gerceklestirilebilir. Tampon birimi ise optik anahtarlama
aglarinda kullanilan optik geciktirme hatlarina benzer sekilde tasarladigimiz gercek
sinir hiicrelerinden olusan sinir geciktirme hatlar1 ya da nano 6l¢ekli kapanlar (flip-
flop) kullanarak gerceklestirilebilir. Algilayici sinir hiicreleri tarafindan kendilerine
atanmis zaman diliminde {iretilen uyarilar, NDB tarafindan dogrudan paylasilan
iletim ortamina aktarilir. Algilayici sinir hiicrelerinin kendilerine atanmis zaman
dilimleri haricinde olusturduklart uyarilar ise NDB’nin tampon birimi kullanilarak
algilayici sinir hiicrelerine atanmig bir sonraki zaman diliminde gonderilmek {izere
geciktirilir. Boylelikle, uyarilar paylasilan iletim ortami kullanilarak tasinir ve
algilayici sinir hiicrelerine ait atanmis zaman dilimi bilgisi kullanilarak ¢oklama
coziici birim (demultiplexer) tarafindan kolayca coziilerek bedensel-duyusal
kabuktaki ilgi varisa iletilir. Onerdigimiz teknigin basarim analizleri benzetim
yontemiyle bir¢cok senaryo kullanilarak degerlendirilmistir. Deneylerimizden elde
edilin sonuclar, geciktirme hatlarinin NDB’de tampon olarak kullanildigi durumda
bedensel-duyusal kabuga iletilen uyar1 sayisinda énemli bir artisin basarilabildigini
gostermektedir.

Tez calismamizda ikinci olarak, algilayici sinir hiicrelerinin uyarilarini tagiyan yol
tizerindeki ara sinir hiicrelerinde bir hata oldugu durumda, algilayici sinir hiicreleri
ile bedensel-duyusal kabuk arasindaki haberlesmenin saglanmasi amaciyla sinir
hiicrelerine 6zgii bir istatistiksel coklama teknigi onerilmistir. Onerdigimiz teknik,
nano elektronik bir aygit olarak gelistirilebilecek bir ¢coklama ve coklama ¢dzme
birimi ile bir adresleme yapisina dayanmaktadir. Geleneksel paket anahtarlamali
haberlesme aglar1 goz oniine alindiginda, her bir paketin gonderici ve alici istasyon
bilgisini iceren bir baslik kismina sahip oldugu goriilmektedir. Sinir hiicreleri
tarafindan iiretilen uyarilar ise ne hangi hiicre tarafindan iiretildigi ne de hangi varis
hiicresine teslim edilecegine iliskin bir bilgi barindirmaktadir. Istatistiksel ¢oklama
yonteminin kullanilabilmesi icin, her bir algilayici sinir hiicresine ait uyarinin
coklama ¢6zme birimi tarafindan bedensel-duyusal kabuktaki ilgili kisma iletilmesi
oncesinde ayirt edilmesi gerekmektedir. Bu nedenle, uyarilarin kendisinin
kullanildig1 bir adresleme yontemiyle uyarilar1 olusturan algilayici sinir hiicrelerinin
tanimlamasini saglayan bir adresleme yontemi gelistirilmistir. Aslinda, bu yontem ile
devre anahtarlamali haberlesme aglarina benzeyen duyusal sinir agi, paket
anahtarlamal1 bir ag yapisina doniistiiriilmektedir. Ayrica, ¢calismamizda onerdigimiz
teknik icin algilayici sinir hiicreleri arasinda bir Onceliklendirme yapisinin da
gelistirilebilecedi gosterilmistir. Onerdigimiz yapmmin basarimi, cesitli senaryolar
kullanarak benzetim yontemiyle degerlendirilmistir. Onerilen istatistiksel ¢oklama
teknigi ile ilk olarak Onerdigimiz TDMA tabanli teknigin bagsarimi da
karsilastirilmistir.  Onerdigimiz istatistiksel coklama tabanli teknigin basarimu,
TDMA tabanli teknigin basarimindan daha diisiik olmasina ragmen, istatistiksel
coklama tabanli teknigin uygulama karmasikliginin daha az oldugu goriilmektedir.
Buna ek olarak, algilayici sinir hiicreleri tarafindan iiretilen uyarilarin olusturulma
zamanlar (giris) ile ¢oklayici ¢cozme birimindeki uyar1 olusturma zamanlar1 (¢ikis)
arasindaki benzerlik de incelenmistir. Test sonuglar1 giris ve ¢ikis uyar1 zamanlarinin
benzer Ozellikler sergiledigini gostermektedir.

Bu tez calismasinda son olarak, bedensel-duyusal kabuga uyari iletiminin, hatali
uyart yolunun yerine paylasilan bir uyart yolu ile saglanmasi maksadiyla Anahtar
Tabanli Coklama Protokolii (SBMP) 6nerilmistir. Onerilen ¢oklama protokolii, nano
elektronik aygit olarak gelistirilebilecek bir ¢oklama birimi ve ¢oklama ¢bdzme
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birimine dayanmaktadir. Bu iki aygit arasinda gerceklesen uyar1 aktivitesi uyarilarin
tasinacaglr yolun belirlenmesi amaciyla gelistirilen SBMP ile diizenlenmektedir.
SBMP, uyan trafigini yonetmek maksadiyla uyarilarin kendisinden olusturulan
kontrol paketlerini kullanir. Uyarmmin bedensel-duyusal kabuktaki ilgili kisma
ulastirilmast icin, uyarinin tasindigr yol, kontrol paketleri kullanilarak uyariy1
olusturan algilayic1 sinir hiicresinin kimligine gore degistirilir. Ayrica, Onerilen
teknik icin algilayict sinir hiicrelerine yonelik bir Onceliklendirme yapisinin da
gelistirilebilecegi gosterilmistir. Onerilen teknigin basarimi benzetim metodu ile
degisik senaryolar kullanilarak degerlendirilmistir. Algilayici sinir hiicrelerin ayni ya
da farkl onceliklendirmeye tabi tutuldugu durumlarda, giris ve ¢ikista olusan uyari
oriintiilerinin benzerligi de incelenmistir. Test sonuglar1 giris ve ¢ikistaki uyari
ortintiilerinin benzer oOzellikler tasidigini gostermistir. Algilayict sinir hiicreleri
tarafindan {iretilen uyarilarin olusturulma zamanlar1 (giris) ile coklayic1i ¢6zme
birimindeki uyart olusturulma zamanlarmin (¢ikis) aym dagilimdan geldigi
ispatlanmigtir.  Algilayict  sinir  hiicrelerine atanan Onceliklendirme degeri
arttinlldiginda, cikistaki uyarilar arasindaki zaman dagiliminin giristeki uyarilar
arasindaki zaman dagilimina yakinsadigi goriilmektedir. Bu nedenle, algilayici sinir
hiicresi Onceliklendirme degeri SBMP i¢in bir servis kalitesi parametresi olarak
kullanilabilir. Ayrica, SBMP’nin basarimi, 6nerdigimiz diger iki teknigin basarimi
ile karsilastinlmigtir. SBMP, istatistiksel c¢oklama ve geciktirme hatlarinin
kullanilmadigt TDMA tabanli teknige nazaran daha iistiin sonuglar vermektedir.
Sahip oldugu tamponlama yetenegiyle geciktirme hatlarinin kullanildigt TDMA
tabanli teknik daha iyi bir basarim sergilemekte olmasina ragmen, SBMP teknigi
uygulama ac¢isindan daha az bir karmasikliga sahiptir.
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1. INTRODUCTION

1.1 Motivation

Although nanonetworking is in its infancy, wide range of appealing application
areas, especially in human healthcare field, draw the attention of scientific
community from diverse disciplines. Drug delivery systems, monitoring human
body, neural treatment via implantable engineered devices can be the envisaged

future application areas of nanonetworking.

Human body intrinsically houses different kinds of intra-body nanonetworks such as
nervous nanonetwork, cardiovascular nanonetwork and endocrine nanonetwork [1].
In this thesis, we focus on the somatosensory system that is an important branch of
sensory nervous nanonetwork and explore the analogies between the traditional
communication networks. The somatic perception includes four major sensations;
discriminative touch, proprioception, nociception and temperature [2]. For the
somatosensory system, perceived stimulus converted into spike trains by receptor
neurons (RNs) and conveyed to the somatosensory cortex via second and higher
order neurons. Sensory data is coded with following three properties: the number of
spikes generated, the inter-spike intervals, and the pathway that the spikes are carried

through.

Communication problems due to the interruption of spike propagation in this
nanonetwork emerge as neurodegenerative diseases such as Multiple Sclerosis,
Alzheimer and Paralysis. Even though the RNs function properly, a faulty relaying
neuron (inter-neuron) in the sensory pathway hinders the spikes to be delivered to the
somatosensory cortex. Thus, a fault in the pathway results in a loss of sense in the

relevant part of the human body.

Neural impairments at the sensory pathways resemble the same problem in the
transmission lines of communication networks. Therefore, in our studies, we focus
on ensuring the continuity of spike propagation in case of neuron specific faults in

the signaling pathway. In communication networks, multiplexing methods that



combine more than one signal over a shared medium are employed to solve this
problem. By using this analogy, we devise different neuron specific techniques to
convey the spike trains over a functional neighboring pathway. Our objective is to
preserve the spike firing patterns generated by the RNs and deliver the spikes to the
corresponding part of the somatosensory cortex in order to achieve the generation of

correct sensation across the perceived information.

ICT inspired techniques like the proposed techniques in this thesis, ultimately pave
the way for developing novel treatment strategies for neural diseases. One of the
major neural diseases, peripheral neuropathy is caused by the lack of communication
between the neurons in the sensory pathway. The proposed techniques that bring the
communication capability between the RNs and somatosensory cortex may be

applied to treat this kind of irreversible neural impairments in near future.

1.2 Work Done

In this thesis, we propose three techniques for conveying the spike trains of RNs
those have faulty pathways over a functional neighboring pathway by using the
multiplexing approaches in conventional communication networks. Due to the
characteristics of the somatosensory system, proposed techniques employ neuron
specific methods. For the techniques we propose, our aim is twofold. Firstly,
conveying the spikes of an RN that has faulty pathway through a shared functional
pathway. The latter is minimizing the number of spikes that can be lost while

multiplexing the spikes of RNs in order to feel the correct sensation.

In the thesis period, we firstly proposed a TDMA based neural nanonetwork with
some sources connected to a shared medium to reach a common destination. We
introduced the concept of using neurons to form the underlying communication
network infrastructure among the nanomachines. The spikes generated by these
source nanomachines are multiplexed and carried over a shared medium to be
delivered to a single destination nanomachine. In this system, the spikes generated by
a source nanomachine are transmitted at the time slot assigned to it. In order to
prevent the loss of the spikes which arrive at the unassigned time slots, we
introduced a novel multiplexing and buffering mechanism via neural delay lines as
used in optical switching systems [3,4]. We presented this work [5] in IEEE

International Conference on Communications (ICC’12).



Afterwards, we studied the somatosensory system in detail. We improved our work
[5] and proposed a neuron specific TDMA based protocol for ensuring the
communication of RNs of the somatosensory system. For the proposed neural
nanonetwork, the spikes of an RN are conveyed through a functional pathway in case
of a path fault exists in its own pathway. For sharing the functional path between the
RNs, we developed a multiplexing mechanism employing the Neural Delay Box
(NDB) technique. An NDB is composed of a relay unit and a buffering unit. The
relay unit can be realized as a nano electronic device. Buffering unit can be
implemented either by using neural delay lines as employed in optical switching
systems or by using nano scale delay flip flops. Both of these devices require the
spikes be converted to electronic domain. This conversion can be done with neural
interfaces that can detect an incoming spike and stimulate the generation of a new
spike. We reviewed the competitive methods in the literature for interfacing neurons
and proposed the use of neural interfaces in the NDBs and the demultiplexer unit.

Our study [6] is published in IEEE Transactions on NanoBioscience (SCIE).

Thereafter, we proposed a neuron specific statistical multiplexing scheme to establish
the communication between an RN and somatosensory cortex in case of intermediate
neuron failure in its sensory pathway. For sharing the functional sensory pathway,
we developed an addressing scheme that exploits spikes themselves to identify the
owner of the spikes. Furthermore, we showed that a priority mechanism can be
developed for the proposed technique. We presented this work [7] in IEEE
International Congress on Ultra Modern Telecommunications and Control Systems

(ICUMT’ 14).

Subsequently, we proposed the Switch Based Multiplexing Protocol (SBMP) to
substitute a faulty sensory neural pathway with a functional neighboring pathway.
The SBMP is developed to set the pathway i.e. route where the spikes are carried
through. The SBMP employs some control packets that utilize the spikes themselves.
Via the control packets of the SBMP, sensory pathways are alternated according to
sender RNs and the spikes are delivered to the corresponding part of the
somatosensory cortex. The proposed multiplexing protocol depends on the
multiplexer and the demultiplexer units that can be realized as nanoelectronic
devices. The spiking activity between these units is regulated by SBMP. The spike

firing patterns at the input and the output are analyzed also. We also showed that a



priority mechanism can be developed for the proposed technique and the priority
values assigned to the RNs can be used as a quality of service parameter for SBMP.

This work [8] is submitted for publication in IET Nanobiotechnology (SCIE).

1.3 Structure Of The Thesis

The outline of this thesis is as follows: Chapter 2 gives brief information about the
nanonetworks, molecular communication, neurons, the somatosensory system and
the multiplexing methods used in our techniques. In Chapter 3, we present the
proposed neuron specific TDMA protocol for the neural nanonetworks. The
proposed statistical multiplexing based technique for the neural nanonetworks is
explained in Chapter 4. The Switch Based Multiplexing Protocol is discussed in
Chapter 5. Finally, Chapter 6 concludes the thesis by giving future directions and

summarizes our main contributions.



2. BACKGROUND INFORMATION

2.1 Nanonetworks

Many biological structures found in nature can be considered as nanomachines that
are the most basic functional units of nanonetworks [9]. Nanobiosensors,
nanoactuators, biological data storing components and control units which are found
in cells are the examples of these existing biological nanomachines [9,10].
Engineered biological nanomachines can be developed by using these existing
nanomachines or integrating them for creating more complicated systems such as
nano-robots [9], synthetic protocells [11], and implantable neuron devices [12].
Either those found in biological systems or artificially created, nanomachines are
capable of performing only very simple tasks such as computation, sensing, data
storing or actuation [13]. Hence, it is not possible for a nanomachine to complete a
macro-scale objective because of its limited size and complexity. As we consider the
limited abilities of a single nanomachine, the most important property of these tiny
components is the communication capability. Resulting networks of nanomachines,
namely nanonetworks can be referred as the interconnection of nanomachines that
work in a collaborative manner to carry out a common complex objective by
communicating with each other. Nanonetworks cannot be considered as a simple
extension of the conventional communication networks [9]. Communication
processes of this paradigm are mostly inspired by the existing biological systems.
The differences between nanonetworks and traditional communication networks can

be summarized as below [9];

¢ In nanonetworks, the message is represented by using molecules instead of

encoding the message in electromagnetic, acoustic or optical signals.

e The propagation speed of signals (molecules) in nanonetworks is much

slower than the propagation speed of conventional signal forms.



e [In traditional communication networks, noise can be described as undesired
overlapped energy that degrades the quality of signals. In nanonetworks,
noise occurs when unwanted reaction happens between the information

molecules themselves or with the other molecules in environment.

e Multimedia data are usually encoded and transmitted over traditional
communication networks. However, transmitted information represents a

phenomena, chemical states and processes in nanonetworks.

¢ Nanonetworks generally have chemically driven processes resulting
efficiency in energy consumption and perform more computation with less
energy dissipation than existing electrical components of traditional

communication networks [14].

Biomedical, environmental, industrial and military applications can be considered as
the potential application areas of nanonetworks [9]. By controlling, the system
components at the molecular level, biocompatible and biostable nanonetworks can be
designed. With these promising features of nanonetworks, it is possible to have more
direct interaction with medical applications such as health monitoring, immune
system support, bio-hybrid implants and drug delivery systems and genetic
engineering [9]. As an example of the envisaged medical applications, body area
networks and in-body nanonetworks can be integrated and parameters from inside
and from outside the body can be combined and analyzed in one information system
and automatic reactions will become possible according to the analysis

results [15,16].

2.2 Molecular Communication

Although various techniques are proposed to maintain the communication between
the nanomachines, molecular communication (MC) glitters as the most promising
approach among the others and therefore attracted the attention of many researchers
in recent years [9,17]. MC is inspired by the communication mechanisms that
naturally occur among living cells and it is based on the use of molecules to encode
information [13,18]. A general molecular nanonetwork system consists of three main

functional components that are transmitter, channel and receiver [1]. The transmitter



nanomachine generates a signal by encoding the information onto molecules and
releases these molecules to the communication medium. Propagation process
provides the transportation of information molecules to the receiver nanomachine.
The receiver nanomachine collects incoming molecules to decode the molecular
message and generates intended response. General molecular nanonetwork with two

nanomachines is illustrated in Figure 2.1 [1].
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Figure 2.1 : General molecular communication system with two nodes [1].

MC has some advantages over nano or micro scale components because of the
natural size of molecules and biological cells. Biocompatibility property of the MC is
the most distinctive advantage that enables the integration to medical applications.
Another important characteristics of MC is the efficiency in energy consumption.
Communications in nature is a very energy-efficient process, much less than the
bounds achieved by electrical signaling [14,19]. A single molecular reaction
representing multiple computations consumes 10,000 times less energy less than a

microelectronic transistor [13].

In literature, several means are proposed for biological and artificially created
nanomachines to communicate over short [20,21] medium [22-25] and long [19]
distances. The classification of these methods according to the transmission distances

is illustrated in Figure 2.2.
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Figure 2.2 : Means for molecular communication.
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One of the techniques which is proposed for long range MC is the use of neural
networks. This technique is inspired by the nervous system that spreads throughout
the human body to control somatic and autonomic behaviors [19]. In this thesis, we
used nerve cells, i.e., neurons as the building blocks of the underlying
communication network infrastructure. Hence, a brief information about neurons is

given in the following subsection.

2.3 Neurons

Among the other intra-body molecular communication nanonetworks, the nervous
system is the most complex and advanced system [1]. The nervous system, formed
by billions of neurons, coordinates the somatic and autonomic behaviors of human
body. A typical neuron is composed of dendrites, soma (cell body), axon and axon
terminals. Perceived information is transduced into pulse packets, i.e. spikes by
neurons. The spikes generated by a neuron propagate along the neurons (neural
medium) in two different forms, namely electrical and chemical [26]. Stimulated
dendrites trigger an electrical discharge that leads generation of an electrical pulse
called as action potential [27]. The spike propagates along the axon part of a neuron
in the form of electrical pulse. Spikes are stereotyped events and are generated
according to the all-or-none principle that states that if a stimulus is sufficiently
strong then the spike is generated at the maximum strength. Before the spike

transferred to the next neuron, it is converted to chemical form that is known as



synaptic transduction [28]. When the axon terminal is stimulated by the action
potential, vesicles that contain neurotransmitter chemicals are released to the
intercellular region. Neurotransmitter chemicals then bind to the receptors located in
the membrane of the next neuron to activate the generation of spike. However, in
order to fire the subsequent action potential, a neuron has to wait a time period
(typically just a few milliseconds) which is called as Absolute Refractory Period
(ARP) [29]. The structure of a neuron and the propagation forms of spikes are

illustrated in Figure 2.3.

dendrite
axon terminal
soma axon N
action potential neurotransmitters

Figure 2.3 : Neuron structure and propagation forms of spikes.

Since neural communication is a suitable option for long-range communication in
nanonetworks [19], there is a growing interest in the nanonetworking research
community to explore neurons [30,31]. In [32], the electrical properties of neurons
such as preferred frequencies, resonance occurrence and the effects of different
excitation signals are analyzed by simulations. A conceptual nanoscale stimulator
device called synaptic nanomachine (SnM) and an equivalent neuron-nanomachine
model (EqNN) are introduced in [33] and the interactions between SnM and EqNN
are investigated by statistical methods. In [34], the RF-induced effects on the neural
activity are described and the potential strategies for the treatment of
neurodegenerative diseases based on RF exposure are presented. In [35], a theoretical
physical channel model is introduced for the communication between an input and an
output neuron and this model is analyzed based on the error probability and delay.
Besides, Galluccio et al. [29] defined the phases of the communication between the
neurons as sequences of blocks and each of the phases are characterized by the
transfer functions, gain and delay while considering the operational frequency of

neurons. Despite the fact that the main purpose of the neurotransmitter chemicals is



to fire an action potential at the next neuron, some neurotransmitter chemicals are
inhibitory which suppress neural firing. By using excitatory and inhibitory
neurotransmitter chemicals, Balasubramaniam et al. provided an interface to initiate
and suppress the spikes in a neural nanonetwork in order to realize the
communication between nanomachines [26]. In [36], a Moore machine which
reflects the complete biological cycle of neuro-spike communication channel is
developed and a basic nano computer model is devised to perform communication

between two neurons based on the proposed Moore machine.

2.4 Somatosensory System

The nervous system can be categorized into two main parts, the central nervous
system (CNS), and the peripheral nervous system (PNS). All the behaviors of our
body are mediated by the CNS that includes the brain and the spinal cord. According
to the way of the spike transmission, PNS can be classified as peripheral sensory
nervous system (PSNS) and peripheral motor nervous system (PMNS). The
information perceived by the receptor neurons (RNs) is carried to CNS by the PSNS.
Received information is processed by the CNS and generated signals are delivered to

the corresponding body parts by the PMNS to take appropriate actions.

In this thesis, we focused on the somatosensory system that is a subnetwork of the
PSNS. The somatosensory system processes information about four major somatic

sensations:

1. discriminative touch (recognizing the size, shape, and texture of objects and

their movement across the skin),
2. proprioception (the position and movement of our body parts),
3. nociception (pain or itch caused by tissue damage or chemical irritation) and,
4. temperature (warmth and cold).

Despite the diversity of sensations, sensory information is coded with four common
attributes, modality, intensity, duration, and location [2]. Sensations happen when an
RN is stimulated by the external events. Somatosensory system has different classes

of receptors such as photoreceptor, mechanoreceptor, thermoreceptor, and
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chemoreceptor. The modality of the sensation is perceived by the receptor types.
Each receptor class holds various receptor types that react to a limited range of
stimulus energies. For the somatosensory system, touch sense is determined via
mechanoreceptor class which includes Meissner corpuscle, Merkel cells, Pacinian
corpuscle, and Ruffini endings [2,38]. The sensed stimulus is converted into spike
trains by these receptors. Intensity of the stimulus is pertinent to the amplitude of the
energy received by the receptors. Duration of the stimulus is expressed as the
beginning and end time of the stimulus and the variation in the sensed energy level.
Hence, RNs code the intensity and the time course of the stimulus by the spike firing
patterns. RNs are distributed topographically throughout our body and the resolution
of this distribution varies relevant to the part of the body. The RN is the first node in
the somatosensory system. Perceived sensory information is conveyed via second
and higher order neurons in the spinal cord to the somatosensory cortex. Brain, as the
main processing unit has a precise map for perceived information to preserve the
spatial relation of the receptors. Therefore, the location of the sensed stimulus is

determined by the pathway that transports the spikes, not by the spike itself.

The ICT literature has very few studies about the somatosensory system. In [37], a
communication channel model of somatosensory system with special interest in body
discriminative touch and proprioception information is presented and an equivalent
Moore machine is developed to represent the internal working principles of this
channel. Authors also present a linear algorithm that depicts all the processes
happening in the signaling pathway and an automaton-based nanomachine is

designed.

Each receptor class of the somatosensory system includes various receptor types that
generate different spike patterns according to the received stimulus energies. In
literature, Poisson distribution is frequently used to model the spike trains generated
by neurons [38]. It well captures the statistical properties of the real neural spike
trains. As an example, when probes of different diameters are pressed upon the
human skin with constant force, the firing rate of individual Merkel disk receptors
signals the probe diameter. The firing rate increases as the probe diameter decreases
and Merkel disk receptors exhibit spike firing rates similar to spike traffic patterns

generated by Poisson distribution [2]. However, it is important to note that the ARP
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of real neurons causes the inter-spike interval distribution to diverge from an
exponential distribution for small intervals. Besides that, some of the spike trains
generated by the mechanoreceptors show bursty traffic patterns. For example,
pressure on a receptor neuron with the tip of a needle that punctures the skin and
pinching the skin with serrated forceps produces bursty spike traffic [2,40]. Pareto
distribution which exhibits the burstiness property is one of the most commonly used

distribution in modeling self-similar network traffic and related behavior.

For the above-mentioned reasons, in our studies, we used different distributions such
as Bernoulli, Poisson, and Pareto distributions to model the generation of spike firing
patterns. We also employed Neural Simulation Tool (NEST) [40] to reflect the
electrical and chemical aspects of the neuro-spike communication channel and to
evaluate the performance analysis of our studies in a realistic manner [31]. We also
applied Gaussian noise factor to simulation environment to model the axonal and

synaptic noise in the neuro-spike communication channel.

2.5 Neural Interfaces

The proposed techniques in this thesis utilizes some nanoelectronic devises (the
neural delay box, the multiplexer and the demultiplexer unit). These devices require
the received spikes to be converted to the electronic domain. This conversion can be
done with neural interfaces that can detect an incoming spike and stimulate the
generation of a new spike. In this subsection, we briefly reviewed the competitive

methods in literature for interfacing neurons.

In order to overcome the defects of neural functions, neural interfaces are used to
enable communication links between the nervous system and the man-made modules
via detecting and/or triggering the generation of spikes in living organisms [41].
Over the past several decades, many technologies based on micropipette electrodes,
multielectrode arrays (MEAs), nano wire field effect transistor arrays (NW FETs),
carbon nano fibers (CNFs), and carbon nano tubes (CNTs) are used to develop the

neural interfaces. The brief information of these techniques is given below.
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2.5.1 Micropipette electrodes

Micropipette electrode is the conventional method for measuring the action potential
activity of a neuron. By the help of micropipette electrodes, intracellular and
extracellular potentials can be recorded and the generation of a spike can be
triggered. This method has relatively good spatial resolution, about 100um per
pipette and inter-electrode spacing is about 10 um but difficult to multiplex [42,43].

2.5.2 Multielectrode arrays

MEAs are micro scale fabricated structures that connect neurons to electronic
circuitry. Neurons of planar network systems can be recorded and stimulated
simultaneously using MEAs [44]. Despite the fact that they allow recording up to
several months, this technique prohibits single cell level detection and stimulation
due to its large intra electrode spacing (100-500um), and exhibits low spatial

resolution [45].
2.5.3 Nano wire field effect transistor arrays

Semiconductor NW FET arrays that have been developed in past decade became
prominent with the unique chemical and electronic properties among the other
techniques [46]. By integrating the arrays of NW FET with the axons and the
dendrites of neurons, it is possible to detect, stimulate and/or inhibit the neural
signals with high spatial and temporal resolution [42]. Using NW FET arrays, many

research groups achieve successful results via in vitro experiments [42,47].
2.5.4 Carbon nano fibers

The distinguished characteristics of CNFs such as bio-compability,
bio-stability, robustness and small size makes them promising candidates for
electrical and chemical neural interface development [48]. Vertically aligned carbon
nano fibers (VACNFs) are used by many researchers for electrical stimulation and
recording the electrical potential simultaneously [49,50]. VACNFs are also used as
neural-chemical interfaces for bidirectional communication [51]. Besides, single
carbon fiber microelectrodes can be used for detecting the neural signals in chemical

form in a single site [51,52].
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2.5.5 Carbon nano tubes

CNTs, another novel product of nanotechnology, have received great attention by the
researchers for interfacing neurons. As well as their salient chemical and electrical
properties, neural growth can also be directed over CNTs [53]. Mazzatenta et al.
developed an interface with single walled nanotubes (SWNTs) and showed that
neural signaling can be triggered over healthy hippocampal neurons with electrical

stimulation via these interfaces [54].

Using the information given in the above references, we composed Table 2.1 to
compare the characteristics of the neural interface methods. When sensitivity, signal
to noise ratio (SNR), spatial and temporal resolution are taken into consideration,
NW FET arrays, CNTs, and CNFs are the most appropriate methods that can be used

to implement the neural interfaces in the proposed techniques.

Table 2.1 : Characteristics of neural interfaces.

e Spatial Temporal
Methods Sensitivity  SNR Resolution  Resolution
Micropipette Medium  Medium  High Low
MEAs Low Bad Low Low
NW FET Arrays Very High Good High High
CNTs Very High Good High High
CNFs Very High Good High High

2.6 Multiplexing In Communication Networks

In this thesis, we draw an analogy between the transmission medium in
communication networks and the signaling pathways of somatosensory system. This
analogy is related to the multiplexing concept in communication networks. For the
both local and wide area communication networks, the capacity of the transmission
medium is actually over the capacity needed for the transmission of one signal. The
transmission medium that is an expensive resource can be shared by combining
multiple signals into one signal. This process is referred as multiplexing [55]. The
capacity of the communication medium 1is separated into several logical

communication channels via multiplexing techniques.

Figure 2.4 [56] depicts the multiplexing function in its basic form. In Figure 2.4.a

three stations inefficiently use the dedicated transmission medium. To the contrary,
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an efficient and inexpensive use of transmission medium is illustrated in Figure
2.4.b. The signals from tree stations are combined by a multiplexer. Demultiplexer
accepts the multiplexed signal and separates the signal according to the channel, and

delivers them to the appropriate stations [56].

Shared
Channel

Figure 2.4 : Multiplexing [56] : (a) Users have dedicated and more costly resources
(b) Users share a single transmission medium via multiplexing.

Besides, the multiplexing is an efficient way of connecting stations. It is also
compulsory when only a single connection is available between two stations. By this
approach, we adapted the multiplexing techniques of the conventional
communication networks in the following subsections for neural signaling and

employed them to overcome the failures in the sensory neural pathways.
2.6.1 Time division multiplexing

In Time Division Multiplexing (TDM), the multiplexed connections share the
transmission medium by means of a time period. Each station periodically gain
control of the full capacity of the shared transmission medium for a short instance of
time i.e. time slot. Multiplexer and demultiplexer devices works synchronously and
both of them switch to next channel simultaneously. For example, in Figure 2.5.a
each stations generates a signal that produces one unit of data in every 37 seconds.
Generally, transmitted information separated into frames that in turn are divided into
equal sized slots. On the other hand, in Figure 2.5.b transmission medium is three
times faster and can transmit one unit of data in in every 7 seconds. Please note that,
the frame structure of the combined signal consists of three time slots for each station
[56]. The combined signal is demultiplexed quite easily with respect to time slots

assignment information.
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Figure 2.5 : Time Division Multiplexing [56] (a) Each signal generates 1 unit of
information in every 3T seconds. (b) Combined signal transmit 1 unit of information
in every T seconds.

2.6.2 Statistical multiplexing

Current communication networks support various applications that generate traffic in
highly bursty fashion. Bursty traffic mostly has long idle periods and this makes
statistical multiplexing (SM) is a good method for cost-effective resource sharing
[56]. In the packet switching networks, information is formatted into packets that are
variable in size. The packets have a header to identify the source and the destination
stations and the data payload (information). SM dynamically allocates transmission
medium to each stations on an as-needed basis. This is in contrast to TDM
techniques, in which stations that have no information to send also waste a time slot.
Statistical multiplexing allocates bandwidth only to the stations that are currently
transmitting. Overlapping packet generation times of stations necessity a buffering
mechanism for the SM. When simultaneous packets are received, the multiplexer
buffers and delays some of the packets while serving the one. Typically, received
packets are sent according to first in first out (FIFO) fashion. However, priority
mechanism and scheduling of various types are used in multiplexers nowadays. At
the other end, demultiplexing is done according to the destination address
information in the header of the packet. The concept of SM of data is illustrated in

Figure 2.6 [56].
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3. EMPLOYING TDMA PROTOCOL IN NEURAL NANONETWORKS IN
CASE OF NEURON SPECIFIC FAULTS

Peripheral neuropathy arises from the malfunctioning neurons in the pathway where
the signal is carried. In this chapter, we propose neuron specific Time Division
Multiple Access (TDMA)/multiplexing and demultiplexing mechanisms to convey
the spikes of a receptor neuron (RN) over a neighboring path in case of an
irreversible path fault existing in its original path. The multiplexing mechanism
depends on Neural Delay Box (NDB) that is composed of a relay unit and a buffering
unit. The relay unit can be realized as a nanoelectronic device. The buffering unit can
be implemented either via neural delay lines as employed in optical switching
systems or via nanoelectronic delay lines i.e. delay flip flops. Demultiplexing is
realized by a demultiplexer unit according to the time slot assignment information.
Besides, we propose the use of neural interfaces in the NDBs and the demultiplexer
unit for detecting and stimulating the generation of spikes. The objective of the
proposed mechanisms is to substitute a malfunctioning path, increase the number of
spikes delivered and correctly deliver the spikes to the intended part of the
somatosensory cortex. We evaluate the performance of the proposed method under
various scenarios via simulations. The results demonstrate that significant
performance improvement on the successively delivered number of spikes is

achievable when the delay lines are employed as neural buffers in NDBs.

The preliminary results of this study are presented in IEEE International Workshop
on Molecular and Nanoscale Communications, International Conference on
Communications (ICC’12) [5]. The extended version of this work is published in

IEEE Transactions on NanoBioscience (SCIE) [6].

3.1 The Proposed TDMA Based Neural Nanonetwork

The interruption of spike propagation in the nervous system due to the
malfunctioning neurons in the signaling pathway causes many functional disorders

such as multiple sclerosis, Alzheimer and paralysis. The RNs of the somatosensory
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system perceive the stimulus, convert it into spike trains and convey to the
somatosensory cortex via second and higher order neurons in the sensory pathway.
Even if the RN senses the stimulus and generates the spike trains, a faulty relaying
neuron (inter-neuron) in the signaling pathway interrupts the communication
between the RNs and the somatosensory cortex. Thus, a fault in the pathway results
in a loss of sense in the relevant part of the human body. We propose that these
irreversible impairments can be coped with by conveying the spike trains over a
functional neighboring pathway. Our aim is to form a neuron specific TDMA based
neural nanonetwork in order to convey the spikes of an RN over a neighboring path
in case of an irreversible path fault exists in its original path. The spikes generated by
the RNs are multiplexed and carried through a functional path and demultiplexed
according to the assigned time slots of the RNs. After demultiplexing, spikes are
delivered to the corresponding part of the somatosensory cortex. Under the light of
the information given in Chapter 2.4, sensory data is coded with following three
properties, the number of spikes generated, the inter-spike intervals, and the pathway
that the spikes are carried through. As a consequence, spike patterns and the pathway
that the spike travels defines the meaning of the perceived sensory information.
Accordingly, if we can convey the spike trains of RN via an alternative path and
deliver the spikes to the intended destination in the somatosensory cortex, we can
achieve to generate correct sensation. By using this approach, we propose a neuron
specific TDMA protocol to share the functional neural pathway between more than
one RN. We devised NDB and the demultiplexer unit to implement the proposed
mechanism. Both of these devices use neural interfaces. As explained in Chapter 2.5,
neural interfaces can record an incoming spike and have the capability to stimulate
the generation of a new spike. NDBs are used for the multiplexing the sensory
information of RNs. An NDB is composed of a relay unit and a buffering unit. Here,
the spikes are transmitted at the time slots assigned to them. Buffering is required to
resolve the contention when successive packets destined to the same outlet are
received. In order to prevent the loss of the spikes that arrive at the unassigned time
slots, we propose two delay based buffering mechanisms to be employed in NDBs.
We followed two approaches to realize the buffering unit in an NDB. The first
approach is based on the neural delay lines concept which is inspired by the use of
delay lines in the optical switching systems and the latter utilizes nano electronic

delay lines for buffering. In the first option, ordinary neurons are used to form neural
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delay lines analogous to the fiber delay lines (FDLs) in optical domain. Since the
capability of storing packets has not been realized for optical switching systems,
FDL is the only way to delay the colliding optical packets for the required time slots
[3,4]. Advances in nanotechnology enable the development of nanoelectronic devices
in many application domains such as medical diagnosis, nanocomputers and
nanosensors. After the spikes are converted to electronic domain via neural
interfaces, they can be easily delayed for the required time slots by using nanoshift
registers made of nano delay flip-flops. Both of the buffering approaches also need
neural interfaces for the transfer of a spike to an NDB. Demultiplexer unit is used
just before the signal delivered to the somatosensory cortex in order to convey the

spikes to the correct destinations.

The scenario of alternating two faulty sensory pathways to a functional path is
illustrated in Figure 3.1. This scenario is based on the dorsal column-medial
lemniscal pathway where tactile sensation and limb proprioception are conveyed to
somatosensory cortex [2,38]. The malfunctioning sensory pathways are represented
as dashed red lines and continuous blue line symbolizes the functional sensory
pathway. As it can be seen in Figure 3.1, the TDMA based multiplexing is done after
the spikes are generated by RNs. The multiplexed spikes are conveyed through the
functional pathway and demultiplexing is carried out just before the spikes conveyed
to the relevant part of the somatosensory cortex. Following subsections give the

detailed information about the proposed protocol.
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Figure 3.1 : Sensory pathway alternation, adapted from [2].

3.2 Multiplexing

Consider a neural nanonetwork that is composed of three RNs that share a common

medium in order to transmit their spikes to the corresponding part of the
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somatosensory cortex. When any of the RNs stimulated, it generates spikes. Such a
neural nanonetwork system is shown in Figure 3.2. This system which enables the
use of a common medium cannot be used because of the destination address of
spikes cannot be determined. However, when multiple spikes are generated
simultaneously by the multiple RNs, only one spike is transferred through the shared
neurons. Hence, the other spikes will be lost and the perceived sensation cannot be

processed at the somatosensory cortex.

AR N\ :

b shared neuron ' " shared neuron

direction of spikes

Figure 3.2 : Neural nanonetwork system using a common transmission medium.

In order to achieve a better performance by using a common transmission medium, a
TDMA based approach could be employed. When such a system is used the RNs
shown in Figure 3.3, will have assigned time slots on the shared medium. As stated
in Chapter 2.3, it is impossible to fire a subsequent spike before ARP is completed.
Therefore, for the successful generation of received spikes the time slot duration is
taken greater than the ARP of the RNs. Hence, the transmitting RNs which are active
(have spikes to transfer) in their assigned time slots will transmit all spikes
successfully. As illustrated in Figure 3.3, the proposed TDMA based neural
nanonetwork system can be realized by the use of NDBs connecting transmitting

RN to the shared medium.
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Figure 3.3 : Proposed TDMA based neural nanonetwork.

We assume that all the neurons that form the network have the same transmission
capacity. Neurons which have the same properties such as axonal length can be
grown in vitro to assure same transmission capacity. Cell culture medium conditions,
in which the cells are incubated, could be tailored to control the neuron growth.
Guided neural growth can be achieved by using different patterning techniques such
as polylysine patterning [42]. However, we assume that the transmitting neurons are
not active all the time. Here, we also assume that an RN generates spikes covering
1/3 of the total transmission capacity of a neuron. If the number of RNs is n then
each source RN generates the //n of the total transmission capacity of the system.
Otherwise, losing some of the spikes at the multiplexing stage will be inevitable
which is still possible. For the network topology shown in Figure 3.3, the RNs a, b,
and c are assigned to the specific time slots to transmit their spikes. If multiple spikes
arrive simultaneously, contention occurs. Moreover, when a transmitting neuron is
active in a time slot which is not assigned to it, the spike will not be transferred.
Hence, we observe that a time slot assignment for each single transmitter RN in the

system is not sufficient.

As stated before, the proposed TDMA based neural nanonetwork system could be
realized by the use of NDBs. An NDB consists of a relay unit and a buffering unit.
The spikes that arrive at the unassigned time slots will be forwarded to buffering unit
by the relay unit. The relay unit can be thought as a switch and can be realized as a

nanoelectronic device. Synchronization of the NDBs can be easily maintained by the
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relay units using a common clock signal. As a nanoelectronic device, the assigned
time slot of the transmitter RN can be set to its relay node. The relay unit detects the
incoming spike via neural interface in the inlet compartment. Then, it forwards the
spike directly to the shared medium if it is arrived at the assigned time slot. If not, the
relay unit relays the spike to the proper buffer and the spike is delayed until the next
assigned time slot. Afterward, the spike is generated in the shared medium via the
neural interface in the corresponding outlet. For the implementation of the buffering
unit, we propose two buffering mechanisms which utilizes neural delay lines as in
optical switching systems [3,4] and nanoelectronic delay lines which exploits nano
delay flip flops. The following two subsections explain these mechanisms,

respectively.

3.3 Buffering With Neural Delay Lines

Internal structure of an NDB that utilizes neural delay lines for buffering is illustrated
in Figure 3.4. Neural delay lines are composed of the same type of neurons in the
network. An NDB for three-source RNs system has one inlet and three outlets. The
inlet is connected to the transmitting neuron of the corresponding RNs. The outlets
are connected to the shared medium, one-neural-delay-line, and two-neural-delay-
line, respectively, since a spike either arrives at the assigned slot or at one of the
unassigned slots. The inlet and outlet connections are realized by the use of neural
interfaces. An incoming spike is detected as a change in the electrical potential by the
neural interface and forwarded to the inlet compartment of the relay unit. If this
variation in the electrical potential is above a predetermined threshold, the relay unit
figures out that a spike is received. Thereafter, the relay unit triggers the
corresponding neural interface for the generation of the spike according to the time

slot information of the received signal.
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Figure 3.4 : Internal structure of NDB with neural delay lines.

Let’s show the implementation of the proposed technique having three source RNs.
Spikes are relayed to the appropriate neural delay lines according to the slots that
they arrive. If a spike arrives at the assigned slot, the relay unit transmits it directly to
the shared medium. If a spike is one slot late, it is transmitted to the two-neural-
delay-line. Otherwise, (meaning that the spike arrives two slots later) it is transmitted
to the one-neural-delay-line. For n sources RNs network, there will be n-/ neural
delay lines in the NDBs. The working logic of this mechanism is shown as a flow

chart in Figure 3.5.

Researches on the transmission speed of the neuron signaling demonstrate that speed
of the spikes varies according to the density of the myelin sheath which is the
dielectric material around the axon of a neuron. The transmission speed of a spike
can reach up to 120 m/s in a densely myelinated axon whereas the transmission
speed remains only 1 m/s in a poorly myelinated axon [57]. This property of neurons
can be used to obtain required delay time. Instead of using multiple similar neurons
to form a neural delay line, a single hop neural delay line can be formed by only one
neuron with a corresponding myelin sheath density needed to maintain appropriate

delay.
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Figure 3.5 : Flow chart employed by the relay unit.
3.4 Buffering With Nanoelectronic Delay Lines

After the conversion of the spike into the electrical domain via neural interface,
buffering can easily be implemented via nanoelectronic circuits [58]. Nano scale
shift registers made up of delay flip flops can be viewed as memory or a delay line.
An NDB that utilizes nano scale shift registers for a three source RNs system is
illustrated in Figure 3.6. The relay unit fulfills the same task as stated in the previous
buffering mechanism. Shifting the spikes in the time domain is maintained by the
nanoelectronic delay lines. The relay unit detects the spikes via neural interface.
When a spike detected at the assigned time slot of the RN, the relay unit forwards it
directly to the shared medium. If the spike arrives at the unassigned time slots, it will
be forwarded to appropriate nano shift registers by the relay unit in NDBs. When the
spike is delayed until the next assigned time slot, the shared medium is stimulated via

output neural interface for the spike generation. Thus, the potentially colliding spikes
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are aligned in the time domain and more spikes are delivered to the somatosensory

cortex.
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Figure 3.6 : Internal structure of NDB with delay flips flops.

In accordance with the above-mentioned information, conceptual diagram of an NDB

for a generic source RN system is illustrated in Figure 3.7.
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Figure 3.7 : Conceptual diagram of an NDB.

28



3.5 DeMultiplexing

After the spikes of RNs are multiplexed and carried through a functional neighboring
pathway, they should be demultiplexed before delivered to the somatosensory cortex.
The demultiplexer unit that is a nanoelectronic device does this process. The
demultiplexer unit also uses neural interfaces at the input and at the output for the
conversion of the spikes into electronic domain and vise versa. The inlet of the
demultiplexer unit is connected to the shared medium. The outlets of the
demultiplexer unit are connected to the inter-neurons of the sensory pathway that
ends in the somatosensory cortex. Here, the spikes of RNs are already aligned to
their assigned time slots by delay lines. Hence, demultiplexing can be done quite
easily with respect to their time slots. After demultiplexing, spikes are delivered to
the corresponding part of the somatosensory cortex. If the spike firing patterns
generated by the RNs can be preserved and delivered to the corresponding part of the
somatosensory cortex, the correct sensation can be sensed across the perceived

information.

3.6 Performance Analysis

The performance of the proposed multiplexing mechanism is mainly based on the
generation of spikes in the unused assigned time slots. If a spike of an RN is detected
in an unassigned time slot by the NDBs, the spike is delayed until the next assigned
time slot of the related RN. Therefore, we analytically modeled the performance of

an outgoing slot P(S) as follows:
P(S)=1- (PCD)" 3.1)

where P(X) is the probability of an incoming slot being idle and n is the number of
time slots (also the number of the RNs). We used Bernoulli distribution to model the
generation of spike traffic and repeated our experiment according with various
success rates in order to compare with the results of analytical studies. The analytical
results and the simulation results are consistent with each other and they are given in

Table 3.1.
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Table 3.1 : Performance of the TDMA based multiplexing technique under Bernoulli

traffic.

Arrival Rate 3-RNs 4-RNs 5-RNs
/RN System System System
0.20 0.49 0.59 0.67
0.25 0.58 0.68 0.76
0.30 0.66 0.76 0.83
0.33 0.71 0.80 0.87

In our studies, we employ Neural Simulation Tool (NEST) [40] in order to reflect the
electrical and chemical aspects of the neural communication channel. For the
evaluation of a realistic performance analysis of the proposed system, we also
applied Gaussian noise factor to simulation environment to model the axonal and
synaptic noise in the neuro-spike communication channel. The simulation setup is
presented in Appendix A. Except stated otherwise; spikes are generated by source
RNs according to the Poisson distribution with various mean arrival rates. We
evaluate the percentage of the successfully transmitted spikes for the total of 3000
incoming spikes. In the related literature, the upper limit on the firing rate of neurons
is defined about 1200 spikes/s [2]. Therefore, the capacity of the proposed system is
assumed as 1200 spikes/s.

In the proposed scheme, delay lines are used for buffering. We compare the results of
this method with a TDMA based multiplexing method without buffering ability that
is called as “TDMA without delay lines”. The TDMA without delay lines method
can only relay the spikes that are generated in the assigned time slots of the RNs to

the shared functional pathway, otherwise spikes are dropped.

Figure 3.8 illustrates the performance of the system under the best and the worst
cases for the various mean arrival rates when the number of source RNs in the
network is equal to three. For the best-case analysis, every spike is generated at the
assigned time slots of the transmitting RN. In this case, 94% of all spikes are
successfully transmitted to the intended destination. As shown in Figure 3.8, neural
channel dynamics and the Gaussian noise applied to simulation environment affects
successful delivery of all the spikes. For the worst-case analysis, all of the spikes
generated by a specific source RN arrive continuously in the consecutive time slots
(in the assigned and unassigned ones). Under the best and the worst-case scenarios,

unfortunately delay lines do not have any effect on the performance of the system.
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However, if the spikes arrive randomly at the assigned/unassigned time slots, we
observe the effect of delay lines. The performance of the multiplexed system
with/without delay lines for arrival rate A=200, A=300 and A=400 spikes/s are also
given in Figure 3.8. The decrease in A values results in the increase in the inter-
arrival times of the spikes. When the inter-arrival times of the spikes are sparse, it is
more probable for a spike that is generated in an unassigned time slot to find the
shared medium idle in the next assigned time slot. Hence, the spike arrives at the
unassigned time slot successively shifted to the next assigned time slot by using
buffering capability of the NDBs. For the TDMA without delay lines method, only
the spikes that are generated in the assigned time slots can be relayed and this causes
nearly fixed performance independent from the variation in the arrival rates. It can
easily be seen in Figure 3.8, the performance of the proposed scheme is enhanced

significantly as the inter-arrival times of the spikes get longer.
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Figure 3.8 : Performance of the TDMA based multiplexing technique with/without
neural delay lines for n=3.

In Figure 3.9, we show the effects of variation in the number of source RNs on the
performance of the proposed scheme. As we assumed the capacity of the system
1200 spikes/s, the results are given for the mean arrival rates of A=400, A=300 and
A=240 spikes/s, and the number of source RNs in the network is equal to 3, 4 and 5,
respectively. Although the total arrival rate is the same for all three networks, the

proposed scheme exhibits a better performance for the small sized source RN
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networks. For the greater number of source RNs, the probability of a spike of a
source RN to be generated in an assigned time slot gets lower. Therefore, small sized
source RN networks exhibit a better performance than the greater number of source

RNSs networks.
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Figure 3.9 : Performance of the TDMA based multiplexing technique with/without
delay lines for various RNs and various Poisson arrival rates (A) are employed.

For the system given in Figure 3.3, the response of the neuron just after the NDBs
during the first 350 ms of the simulated time is shown in Figure 3.10. Whenever the
membrane potential of the neuron reaches the firing threshold potential at -55 mV,
because of the incoming Poisson spike trains, the neuron spikes and the membrane

potential is reset to -70 mV that is the reset potential.
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We also study the performance of the proposed technique under the Pareto
distribution considering the spike arrival pattern which is similar to the spike
generation patterns of mechanoreceptors [2,40]. As we know, Pareto distribution is
employed to generate self-similar sequences [59]. Figure 3.11 illustrates the
performance of the two systems when various shape parameters («) are employed.
When the shape parameter value increases, inter-arrival times of the spikes
decreases. This decrease results in generation of bursty spike traffic. As it can be
seen in the Figure 3.11, when low a values are employed, the performance of the
proposed system becomes significantly better than the system without delay lines.
However, as the higher values of a are employed, the spike traffic becomes bursty
and the multiple spikes arriving at the consecutive unassigned time slots cannot be
shifted to the next assigned time slot and lost. Hence, delay lines do not have any
impact on the performance of the system and the performance of proposed system

converges to the worst-case performance.
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Figure 3.11 : The impact of the shape parameter, Pareto Distribution, to the
performance of the TDMA based multiplexing technique with/without neural delay
lines for n=3.

We also observe the effect of number of transmitter RNs on the performance of the
proposed system when Pareto distribution is used to generate spikes. Figure 3.12
shows the performance when the number of transmitting RNs is equal to 3, 4, and 5
while keeping a = 1. For all three networks, each RN generates the same amount of
spike traffic. As the number of transmitting RNs increases, total amount of spike
traffic over the shared medium is also increases. As a result, the number of spikes
which are generated in unassigned time slots are increased. For the proposed system,
only one spike that is received in one of the unassigned time slots can be shifted to
next assigned time slot. Therefore, when we increase the number of transmitting RNs
that generate bursty spike traffic, the performance of the proposed system is

decreased as expected.
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Figure 3.12 : Performance of the TDMA based multiplexing technique with/without
delay lines for various RNs (a0 = 1).

In Figure 3.13, the effect of the variation of ARP is shown when the number of
source RNs in the network is equal to 3 and the spikes are generated by RNs
according to the Poisson distribution with the mean arrival rate A=300 spikes/s. As
stated in Chapter 2.3, when a neuron is in this period, it is impossible to trigger a
subsequent spike. When ARP value is increased, neurons could not generate a spike
before this period is finished. Therefore, for the bigger values of ARP the number of
transmitted spikes decreases and this result in a performance decrease of the

proposed scheme.
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Figure 3.13 : The effect of ARPs to the performance of the TDMA based
multiplexing technique with/without neural delay lines.
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3.7 Conclusion

In this chapter, we proposed a neuron specific TDMA based protocol for ensuring
the communication in neural nanonetworks. For the proposed protocol, the spikes of
an RN are conveyed through a functional pathway in case of a path fault exists in its
own pathway. For sharing the functional pathway between the RNs, we developed a
multiplexing mechanism employing the NDB technique. An NDB is composed of a
relay unit and a buffering unit. The relay unit can be realized as a nanoelectronic
device. Buffering unit can be implemented either by using neural delay lines as
employed in optical switching systems or by using nano scale delay flip flops. We
also proposed the use of neural interfaces in the NDBs and the demultiplexer unit for
detecting and triggering the generation of the spikes. By using NDBs, the spikes that
are transmitted at the unassigned time slots are buffered and transmitted at the
consecutive assigned time slot. Thus, the spikes are carried through a functional
pathway and they can be easily demultiplexed according to the assigned time slots of

RN, thereafter are delivered to corresponding destination.

The objective of the proposed protocol is twofold. Firstly, conveying the spikes of an
RN that has faulty pathway, through a shared functional pathway. The latter is to
minimize the number of spikes that can be lost while multiplexing the spikes of RNs
in order to feel the correct sensation. Although the proposed technique enables RNs
that have faulty pathways to send their spikes to the somatosensory cortex, it also
introduces some delay for the spikes that are generated in unassigned time slots due
to the buffering phase in NDBs. Since the spikes are already generated by RNs, they
are not affected by this delay while they are moving along the sensory pathway. The
delay period gains importance in decoding the spikes. Apart from the single RN
based sensations, some stimuli i.e. touching the texture of an object activate
combination of RNs. In this chapter, we focused on single RN based sensations and
the impact of the delay to coordinated sensory information is beyond the scope of

this study.

We evaluated the performance of the proposed technique by using spike patterns
generated according to Bernoulli, Poisson, and Pareto distributions. Simulation
results show that significant improvement on the successively delivered number of

spikes is achievable when delay lines are employed as neural buffers in NDBs. We
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also analytically modeled the performance of an outgoing slot and compared the
analytical results with the simulation results. We observed that both results are

consistent with each other.

ICT inspired techniques ultimately pave the way for developing promising curing
strategies for neural diseases [31]. One of the major neural diseases, peripheral
neuropathy is caused by the lack of communication between the neurons in the
sensory pathway. The proposed technique that brings the communication capability
between the RN and somatosensory cortex may be applied to treat this kind of

irreversible neural impairments in near future.
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4. STATISTICAL MULTIPLEXING FOR NEURAL NANONETWORKS IN
CASE OF NEURON SPECIFIC FAULTS

In this chapter, we propose a neuron specific statistical multiplexing (SM) scheme to
substitute a faulty sensory neural pathway with a neighboring functional one. The
proposed technique depends on the multiplexer and the demultiplexer units that can
be realized as nanoelectronic devices and an addressing scheme. Since the spikes are
stereotyped events and they have no addressing information, we developed an
addressing scheme utilizing the spikes themselves. A functional neural pathway is
shared with the both of the RNs of the two pathways i.e. functional and faulty
pathways. The objective of the proposed mechanism is to utilize a functional
pathway instead of a malfunctioning pathway, increase the number of spikes
delivered while preserving the spike firing patterns and correctly deliver the spikes to
the intended part of the sensory cortex. We evaluate the performance of the proposed
technique is in terms of the percentage of the spikes transmitted under various
scenarios. We also compared the performance of the SM based sensory nanonetwork
with the TDMA based sensory nanonetworks proposed in the previous chapter.
Despite that the performance achieved by SM based sensory nanonetwork is lower
than the TDMA based sensory nanonetwork, proposed SM based sensory
nanonetwork has implementation simplicity. Additionally, we evaluated the

performance of the proposed technique when a priority mechanism is employed.

We presented this work [7] in IEEE International Congress on Ultra Modern
Telecommunications and Control Systems (ICUMT’ 14).

4.1 Proposed Statistical Multiplexing Based Neural Nanonetwork

Under the light of the information given in Chapter 2.4, our objective is to convey
the sensory information, namely, spike trains to the somatosensory cortex via
functional neighboring pathway in case that a path fault exists. To overcome this
deficiency, we propose a neuron specific SM protocol to share the functional neural

pathway between more than one RN. The proposed SM based neural nanonetwork
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system can be realized by the use of multiplexer and demultiplexer units as

illustrated in Figure 4.1.

receptor neurons higher order neurons sensory cortex

Figure 4.1 : Proposed SM based neural nanonetwork.

As we consider the traditional packet switching networks, every packet has a header
part to identify the source and the destination addresses. On the contrary, spikes
neither have any information about which RN generated them nor the arrival address.
To employ statistical multiplexing, the spikes of each transmitting RNs must be
distinguished at the demultiplexer unit before conveying them to the related part of
the somatosensory cortex. Hence, we introduce an addressing scheme to identify the
transmitting RNs by using the spikes themselves. Actually, we establish a packet

switching neural nanonetwork by employing this addressing scheme.

We assume that the transmitting neurons are not active all the time. For the topology
given in Figure 4.1, we also assume that an RN generates spikes covering 1/2 of the
total transmission capacity of shared neurons. If the number of RNs is n then each
source RN generates the //n of the total transmission capacity of the system shown in
Figure 4.1. Otherwise, losing some of the spikes at the multiplexing stage will be

inevitable which is still possible.

Both of the multiplexer and the demultiplexer units utilize neural interfaces for the
spikes to be converted to the electronic domain. As explained in Chapter 2.5, the
communication links between the nervous system and the nanoelectronic devices can
be established via neural interfaces that can detect and/or trigger the generation of
spikes. By using the neural interfaces, multiplexing or demultiplexing logic can be
easily performed by nanoelectronic multiplexing and demultiplexing circuitry [58].
The following subsections give details about the components of the proposed SM

based neural nanonetwork system.
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4.2 Spike Based Addressing Scheme

Consider a neural nanonetwork that is composed of two RNs that share a common
medium in order to transmit their spikes to the relevant part of the somatosensory
cortex. When any of the RNs is stimulated, it generates spikes. We can assume the
spiking activity between two neurons as binary communication [12]. Two different
cases that are bit “1” and bit “0” can be expressed by the presence or absence of a
spike, respectively. We use this approach to develop the addressing scheme. Spikes
are used to encode the identities (Ids) of the transmitting RNs. For the given topology
in Figure 4.1, two spikes are used to denote the Id of an RN. Therefore, one spike is
expressed with two spikes in this scheme. (2" — 1) number of RNs can be addressed
with n spikes. In Table 4.1, the coding information of the proposed addressing

scheme is given when the number of RN is 2.

Table 4.1 : Coding information of the SM based addressing scheme.

Spike Code Meaning
00 No spike
01 RN A
10 RN B
11 Reserved

According to the inlet of the multiplexer unit where the spike is received, two spike
periods are used to express the Id of the source RN. An incoming spike from RN “A”
is expressed with the spike sequence “0/” which consists of an empty spike slot “0”
and a spike event “/”. Similarly, an incoming spike from RN “B” is encoded with the
spike sequence “/0” which consists of a spike event “/” and an empty spike slot “0”.
In Figure 4.2, an example spike stream and its meaning are given as the output of the

proposed addressing scheme.

outpt 1 '9 11 100|011 /0|1]|0

spike stream

‘ meaning RN B |NoSpike RNB | RNA | RNA

Figure 4.2 : Example output of the spike based addressing scheme.
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4.3 Multiplexing

Multiplexer unit concentrates spike traffic from multiple RNs onto a shared neural
pathway. It is a simple nanoelectronic device and has no buffer space to arrange the
spikes arrived. Therefore, when simultaneous packets are received, one of these
spikes is dropped. According to the inlet where the spike is received, multiplexer unit
employs the addressing scheme introduced above. Since the spikes are generated in a
bursty fashion, it is possible to combine spike trains onto a shared neural pathway.
Multiplexer unit transmits the spikes in first-in, first-out (FIFO) basis. By using the
proposed addressing scheme, a priority mechanism can also be employed. According
to the priority values assigned to the RNs, multiplexer unit can yield precedence to
the spikes of the prioritized RN when simultaneous spikes arrived. The conceptual

diagram of multiplexer unit is illustrated in Figure 4.3.
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Figure 4.3 : Conceptual diagram of the multiplexer unit for a generic source RN
system.

4.4 Demultiplexing

Demultiplexer unit can be realized as nanoelectronic device. It separates the spike
traffic by decoding spike trains via employing the introduced addressing scheme.
After the source of the spike is determined by the demultiplexer unit, spikes are

conveyed to the intended part of the somatosensory cortex by relaying the spike to
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the proper outlet. The conceptual diagram of demultiplexer unit is shown in

Figure 4.4.
INPUT NEURAL  DEMULTIPLEXING OUTPUT NEURAL
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Figure 4.4 : Conceptual diagram of the demultiplexer unit for a generic source RN
system.

If the spike firing patterns generated by the RNs can be preserved and delivered to
the relevant part of the somatosensory cortex, the correct sensation can be achieved

across the perceived information.

4.5 Performance Analysis

The performance of the proposed multiplexing mechanism is mainly based on the
utilization of idle time of the shared medium i.e. signaling pathway. Contrary to the
traditional statistical multiplexers, the proposed multiplexer unit has no capability to
buffer and arrange the simultaneous spikes of different RNs. Thus, if more than one
spike arrives at the multiplexer unit at the same time, only one of them is conveyed

to the shared medium and the others are dropped.

In our studies, we employ Neural Simulation Tool (NEST) [40] in order to reflect the
electrical and chemical aspects of the neural communication channel. We use the
two-source RNs topology that is given in Figure 4.1 and the source RNs are named
as the Primary RN and the Secondary RN, respectively. The Primary RN has the
functional signaling pathway and shares its pathway with the Secondary RN that has

43



the malfunctioning signaling pathway. The spikes are generated by the source RNs
according to the Poisson distribution with various mean arrival rates. Since it is
impossible to for an RN to fire a subsequent spike in the ARP, we adapted the spike
generation times for an RN to exhibit this characteristics. We evaluate the percentage
of the successfully transmitted spikes for the total of 1000 incoming spikes of each

RNs. The setup we used in our simulations is given in Appendix A.

In Figure 4.5, the behavior of the SM based neural nanonetwork is given for various
Poisson arrival rates (=200, /=400 and A=600 spikes/s). The decrease in A values
results in the increase in the inter-arrival times of the spikes. Hence, it is more
probable for a spike to find the shared medium idle. It can easily be seen from
Figure 4.5, the performance of the proposed technique is enhanced significantly

when the inter-arrival times of the spikes are sparse.
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Figure 4.5 : Performance of the SM based multiplexing technique when Poisson
distribution with various arrival rates (A) are employed.

In Chapter 3, we introduced two TDMA based techniques (TDMA with delay lines
and TDMA without delay lines) for neural nanonetworks [6]. Briefly, TDMA with
delay lines based multiplexing scheme utilizes neural delay lines for buffering the
spikes that are received in unassigned time slots. The TDMA without delay lines
based multiplexing scheme does not have buffering capability. According to this
scheme, only the spikes received at the assigned time slots can be transmitted, other

spikes are dropped. The performance of the proposed SM based neural nanonetwork
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and the previously proposed TDMA based techniques are compared in Figure 4.6 for
various Poisson arrival rates (A=200, A=400 and A=600 spikes/s). Since the SM based
technique does not have the buffering capability, only one of the incoming spikes is
conveyed to the shared medium among the simultaneous spikes of the both
transmitting RNs. Despite that, the increase in the inter-arrival times of the spikes
improves the performance of the three schemes; TDMA with delay lines based
technique outperforms the other techniques via its buffering ability. Please remember
that, TDMA based techniques always reserve a time slot for each RNs even if an RN
has no spike to transmit, and causes poor utilization of shared medium. For such
cases, SM based technique outperforms the others since it employs the FIFO logic.
Besides, SM based technique has lower implementation complexity than both of the

TDMA based techniques.
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Figure 4.6 : Performance comparison of the SM and TDMA based multiplexing
techniques when Poisson distribution with various arrival rates (A) are employed.

A priority mechanism can be developed for the introduced SM based neural
nanonetwork. In Figure 4.7, we evaluated the performance of the proposed SM based
technique for various priority values of the Primary RN when the arrival rate is 400
spikes/s. As it can be seen in Figure 4.7, when the priority value of the selected RN
i.e. the Primary RN is increased, the blocking probability of the selected RN
decreases. Hence, the increase in the priority value results in the performance
improvement of the prioritized RN. When the highest priority value (priority=1) is
given to the Primary RN, the multiplexer units generates spikes for the Secondary

RN if and only if there is no spike transmitted by the Primary RN. Pease note that,
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even the highest priority value (priority=1) is given the Primary RN, about 30% of

the spikes of the Secondary RN is transmitted successfully.
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Figure 4.7 : Performance of the priority mechanism of the SM based neural
nanonetwork.

In Figure 4.8, the performance of the priority mechanism is evaluated under various
Poisson arrival rates when the highest priority value (priority=1) is given to the
Primary RN. Whenever the Primary RN has a spike to send, it is transmitted directly
to the shared medium, the simultaneous spikes of the Secondary RN are dropped.
The decrease in the traffic load increases the probability of the shared medium being
idle and gives an opportunity to the multiplexer unit to transmit the spikes of the
Secondary RN. As it can be seen in Figure 4.8, as the /1 values decreases the

performance of the Secondary RN increases.
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Figure 4.8 : Performance of the priority mechanism of the SM based neural
nanonetwork when priority=1 for the Primary RN.

We also examine the similarity between the input spike generation times (spike times
of the RNs) and the output spike generation times (spike times at the demultiplexer
unit) when the Primary and the Secondary RN has the same priority. The Two
Sample Kolmogorov-Smirnov test is one of the most useful and general
nonparametric method to test whether two samples come from the same distribution
[60]. This statistic quantifies a distance between the empirical distribution functions
of two samples. The null distribution of this statistic is calculated under the null
hypothesis that the samples are drawn from the same distribution. The Two Sample
Kolmogorov-Smirnov is sensitive to differences in both location and shape of the
empirical cumulative distribution functions of the two samples. This statistic test
reports an asymptotic p value by calculating the differences between the two
cumulative distributions. If the asymptotic p value is small, the test concludes that the
two groups are sampled from populations with different distributions. If the
asymptotic p value is bigger than 0.05, the null hypothesis stating that both samples
come from a population with the same distribution is accepted. In this case, the test
result reveals that there is no significant difference between the distributions of the
two samples. Therefore, we employ the Two Sample Kolmogorov-Smirnov test to
measure the similarity between the input and the output spike generation times under
various Poisson mean arrival rates. The test results are given in Table 4.2. For all the
mean arrival rates, the asymptotic p values are over 0.97 and it shows that both of the

input and output spike generation times of the Primary and the Secondary RNs are
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from the same distribution. Hence, we can assume that the input and output spike
patterns have similar properties. Since the spike generation times are random and
follow a Poisson distribution, the inter-arrival times are also random and follow a
negative-exponential distribution. However, the input spike generation times are
adapted to exhibit the ARP characteristics as denoted at the beginning of this section.
The mean input and the mean output inter-arrival times of spikes are also shown in
Table 4.2. Although, the input and output inter-arrival times of spikes are from the
same distribution for the both RNs, the mean output inter-arrival times differs from
the corresponding mean input inter-arrival times due to sharing the functional

sensory pathway between two RNs and the protocol overhead of SM.

Table 4.2 : Two Sample Kolmogorov-Smirnov test results of the SM based
multiplexing technique.

Arrival Asymptotic p-values Input/Output I/O from same distribution?
Rates Mean Inter-Arrival Times (ms)
(spikes/s)  Primary  Secondary Primary Secondary Primary Secondary
RN RN RN RN RN RN
200 0.9811 0.9891 5.328/11.66 5.328/11.66 Yes Yes
400 0.9929 0.9979 2.477/6.141 2.477/6.141 Yes Yes
600 0.9799 0.9896 1.923/5.294 1.923/5.294 Yes Yes

4.6 Conclusion

Many neurodegenerative diseases are eventuated when the spike propagation is
interrupted due to a failure in the signaling pathway. In this chapter, we proposed a
neuron specific SM technique to establish the communication between an RN and

somatosensory cortex in case of intermediate neuron failure in the sensory pathway.

Our aim is to share a functional pathway between the RN of the faulty pathway and
the owner RN of the functional pathway. To this purpose, we devised two
nanoelectronic devices namely the multiplexer and the demultiplexer units and
developed an addressing scheme to distinguish the owner of the spikes that exploits

spikes themselves.

We evaluated the performance of the proposed technique by simulations. We also
compared the obtained results with the TDMA based multiplexing protocol
introduced in Chapter 3. The proposed SM based technique has lower

implementation complexity than the previously introduced TDMA based techniques.
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We also showed that a priority mechanism can be applied for the proposed

technique.

Besides, we examined the similarity of the input and the output spike patterns and the
test results demonstrated that the input and the output spike patterns have similar

properties.

The obtained results reveal new opportunities in neural communication and may
pave the way to the advancement of the real healthcare applications of neural

nanonetworking in the near future.
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5. SWITCH BASED MULTIPLEXING PROTOCOL FOR NEURAL
NANONETWORKS IN CASE OF NEURON SPECIFIC FAULTS

In this chapter, we propose the Switch Based Multiplexing Protocol (SBMP) to
substitute a faulty sensory neural pathway with a functional neighboring pathway.
The SBMP employs some control packets that utilize the spikes themselves. The
proposed multiplexing protocol depends on the multiplexer and the demultiplexer
units that can be realized as nanoelectronic devices. The spiking activity between
these units is regulated by SBMP. Thus, a functional neural pathway is shared with
the both of the RNs of the two pathways i.e. functional and faulty pathways. The
objective of the proposed SBMP is twofold. Firstly, conveying the spikes of an RN
that has faulty pathway through a shared functional pathway. The latter is to
minimize the number of spikes that can be lost while multiplexing the spikes of RNs
in order to feel the correct sensation. The performance achieved by SBMP is
evaluated by simulations and obtained results are also compared with the techniques
that we proposed in Chapter 3 and Chapter 4. Since the SBMP employs smarter
algorithms than the SM based neural nanonetwork, the results demonstrate
significant improvements on the successively delivered number of spikes is
achievable when SBMP is employed. Despite that, the performance achieved by
SBMP is lower than the TDMA based neural nanonetwork, the proposed SBMP has
implementation simplicity. Furthermore, we evaluated the performance of SBMP
when a priority mechanism is employed. Besides, we analyzed the similarity between
the input inter-spike interval distribution (inter-spike interval times of the RNs) and
output inter-spike interval distribution (inter-spike interval times at the demultiplexer

unit) when the various priority values are assigned to the RNs.

After we concluded this study, we submitted for publication in IET

Nanobiotechnology (SCIE).
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5.1 The Proposed Switch Based Multiplexing Protocol

The SBMP is developed to set the pathway i.e. route where the spikes are carried
through. The scenario of alternating a faulty sensory pathway to a functional pathway
is illustrated in Figure 5.1. This scenario is based on the dorsal column-medial
lemniscal pathway where tactile sensation and limb proprioception are conveyed to
somatosensory cortex [38]. The malfunctioning sensory pathway is represented as
the dashed red line and the continuous blue line symbolizes the functional sensory
pathway. As it can be seen in Figure 5.1, the multiplexing is done after the spikes are
generated by RNs. The multiplexed spikes are conveyed through the functional
pathway and demultiplexing is carried out just before the spikes are conveyed to the
corresponding part of the somatosensory cortex. Please note that, we utilize the
functional pathway as it is, but just adding the multiplexing unit and the

demultiplexing unit for sharing it.
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Figure 5.1 : Sensory pathway alternation, adapted from [2].
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Under the light of the information given in Chapter 2.4, our objective is to share the
functional neighboring pathway for conveying the spikes of more than one RN and
maintain the communication of the RN that has the faulty pathway with the
somatosensory cortex. The SBMP is proposed to overcome this deficiency. The
proposed neural nanonetwork system can be realized by the use of the multiplexer

and the demultiplexer units as illustrated in Figure 5.2.

receptor neurons higher order neurons somatosensory cortex

Figure 5.2 : The proposed SBMP based neural nanonetwork.

As stated in Chapter 2.3, spikes are identical events and they do not include any
information about the sender or receiver. To employ a multiplexing scheme, the
spikes of each transmitting neuron must be determined at the demultiplexer unit
before conveying them to the corresponding part of the somatosensory cortex.
Hence, we introduce a switch based communication mechanism to regulate the
spiking activity between the multiplexer and demultiplexer units. Consider the neural
nanonetwork in Figure 5.2, the RNs shares the common medium in order to transmit
their spikes to the corresponding part of the somatosensory cortex. When any of the
RNs is stimulated, it generates spikes. The spiking activity between two neurons can
be assumed as binary communication [12]. As stated in Chapter 4.1, two different
cases which are bit “1”” and bit “0” can be expressed by the presence or absence of a
spike, respectively. The SBMP is developed by using this approach. The proposed

protocol is based on the control packets that utilize the spikes themselves.

We assume that the transmitting neurons i.e. RNs are not active all the time. For the
system given in Figure 5.2, we also assume that an RN generates spikes covering 1/2
of the total transmission capacity of the shared neuron. In the related literature, the

upper limit on the firing rate of neurons is defined about 1200 spikes/s [2].
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Therefore, the capacity of the proposed system is assumed as 1200 spikes/s. If the
number of the RNs is n then each source RN generates the I/n of the total
transmission capacity of the system shown in Figure 5.2. Otherwise, losing some of

the spikes at the multiplexing stage will be inevitable which is still possible.

Firstly, an inlet of the multiplexer unit and the relevant outlet of the demultiplexer
unit are set as the default inlet and outlet. The multiplexer unit sends the proper
control packets that are shown in Figure 5.3 to the demultiplexer unit to encode the
spiking activity and the source RN of the incoming spikes. The multiplexer unit
keeps on silence unless it receives a spike. Whenever the multiplexer unit receives
spikes from the default source RN (the default inlet), it simply generates a spike to be
carried through the default pathway. When the other source RN generates a spike, the
multiplexer unit transmits the change outlet control packet “07” to denote the source
of the spike traffic is changed. When the demultiplexer unit receives the change
outlet control packet, it switches to the other outlet. From now on, the spikes are
routed to the other pathway. Actually, the outlets of demultiplexer units are altered
via the change outlet packets. Changing the outlet of the demultiplexer unit
determines which of the inter-neurons that ends in the somatosensory cortex is used.
The following subsections give details about the components of the proposed SBMP

based neural nanonetwork system.

Spike 1
Mo Splke ]
Change Outlet 0 1

Figure 5.3 : The control packets of the SBMP.
5.2 Multiplexing

The spike traffic from multiple RNs is multiplexed onto a shared neural pathway via
the multiplexer unit that is a simple nanoelectronic device. Contrary to conventional

multiplexers, the multiplexer unit has no buffer capability to arrange the spikes
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arrived. Therefore, when simultaneous spikes are received, one of these spikes is

dropped. The conceptual diagram of the multiplexer unit is illustrated in Figure 5.4.

Primary | . . ~ .
RN
- INPUTNEURAL | \yieri1 OUTPUT
INTERFACE #1 PROCESSING NEURAL -
INPUT NEURAL UNIT INTERFACE shared
Secondary|| INTERFACE#2 | NLET#2 "l pathway
RN ' i i A i
POWER UNIT

Figure 5.4 : The conceptual diagram of the multiplexer unit.

The input and output connections of the multiplexer unit are realized by the use of
neural interfaces explained in Chapter 2.5. Neural interfaces detect and convert
incoming spikes to electronic domain. After the spikes are converted to the electronic
domain, the processing unit can easily employ the multiplexing logic. Thereafter, the

spikes are generated onto the shared pathway via the output neural interface.

The processing unit employs the working logic of SBMP that is shown as a flow
chart in Figure 5.5. The processing unit has a one-bit counter. Every spike cycle this
counter is incremented. Hence, the even or odd cycle information is known by the
processing unit. For the demultiplexer unit, the change outlet control packet (a spike
following an idle spike period) means the alternation of the outlet. Therefore, the idle
periods are important for SBMP. If no spikes arrives in an even cycle, a register (C)
is set as “I” by the processing unit. While the register value is “/”, an incoming

spike is discarded to prevent to mislead the demultiplexer unit to change the outlet.

Whenever an incoming spike is received via the default inlet of the multiplexer unit
and the register value is “0”, the multiplexer unit generates a spike onto the shared
medium. If the incoming spike is received via the other inlet and the register value is
“0”, change outlet control packet “01” is generated by the multiplexer unit. Besides,
this inlet is set as the default inlet of the multiplexer unit. Unless the multiplexer unit

receives any spike, it does not initiate a spiking activity.

Since the spikes are generated in a bursty fashion, it is possible to combine spike
trains into a shared neural pathway. The multiplexer unit generates the spikes in
FIFO basis. With the proposed protocol, the functional neural pathway is shared with

an RN that has a malfunctioning pathway. Therefore, a priority mechanism can also
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be employed between the owner RN and the RN which shares the functional

pathway.
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Figure 5.5 : The flow chart employed by the multiplexer unit.

5.3 Demultiplexing

The demultiplexer unit can also be realized as nanoelectronic device. The objective
of this unit is to separate the spike traffic according to the control packets given in
Figure 5.3. Similar to the multiplexer unit, neural interfaces are used to realize the
input and output connections of the demultiplexer unit. After the spikes are converted

to the electronic domain by the input neural interface, the processing unit employs
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the demultiplexing logic. The conceptual diagram of the demultiplexer unit is shown

in Figure 5.6.
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Figure 5.6 : The conceptual diagram of the demultiplexer unit.

As it is in the multiplexer unit, the processing unit of the demultiplexer has a one-bit
counter also. Every spike cycle, this counter is incremented. If no spike is received in
an even cycle, the register (C) is set as “1”. Otherwise, the register (C) is set as “0”.
Whenever the demultiplexer unit receives a spike while the register value (C) is “0”,
a spike is generated onto the inter-neuron via the default outlet. The register value
gets importance for changing the default outlet. If a spike is received and the register
value (C) is “17, the processing unit detects that it received a change outlet control
packet. Afterward, it switches to the other outlet i.e. disables the current outlet and
enables the other outlet. Then, a spike is generated onto the corresponding inter-
neuron via output neural interface. Actually, the change outlet control packet
determines the source RN of the spiking activity. After the source of the spikes is
identified, they are conveyed to the corresponding part of the somatosensory cortex
by relaying the spikes to the proper outlet. The working principles of the

demultiplexer unit are given as a flowchart in Figure 5.7.
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Figure 5.7 : The flow chart employed by the demultiplexer unit.

Let us explain the working logic of the multiplexer unit by using an example spike
train given in Figure 5.8. Firstly, we assume that the inlet for the Primary RN set as
the default inlet of the multiplexer unit and the corresponding outlet for the Primary
RN set as the default outlet of the demultiplexer unit, respectively. We assume that
both of the RNs have equal priority. The register value of the multiplexer unit and
the demultiplexer unit is set as “I” according to the absence of a spike in an even

spike cycle of the one-bit counter.
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Time 0 1 2 3 4 5 6 7 8 9
Default Inlet P P P S S S S S S P
Primary RN 1 1 0 0 0 0 0 . 1 0
Secondary RN 0 1 1 1 0 0 0 0
Output 1 1 0 1 1 0 0 0 0 1
Meaning

et P 1| Gue | SN NN | omer
N (No Spike)

Figure 5.8 : Explanation of the working logic of the multiplexer unit by using an
example input spike train.
e At time 0, only the Primary RN generates a spike. Since the spike is received
from the default inlet of the multiplexer unit, the multiplexer unit generates a spike

onto the shared medium.

e At time 1, both of the RNs generate a spike. Because of the each RN has the
same priority and the multiplexer unit has no buffer capability, one of the incoming
spike is dropped. For this case, let’s assume that the spike of the Primary RN is

conveyed to the shared medium.

e At time 2, only the Secondary RN generates a spike. For this case, the
multiplexer unit receives a spike from the other inlet not from the default inlet. Since
the register value is not set as “/”, the multiplexer unit generates a change outlet

control packet and set this inlet as the default inlet.

e At time 3, the Secondary RN generates a spike again. Since the change outlet
control packet “0I”, consumes two spike periods, the multiplexer unit discards this
spike. This case can be considered as the protocol overhead of the SBMP and

denoted as red filled box in Figure 5.8.

e At time 4, only the Secondary RN generates a spike. Since the spike is
received from the new default inlet of the multiplexer unit, the multiplexer unit

generates a spike onto the shared medium.
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e At time 5, neither the Primary RN nor the Secondary RN generates a spike.
This is an example case of silence period. Since it is and odd period, the register

value is not set as “I”. Consequently, the multiplexer unit does not generate a spike.

e At time 6, neither the Primary RN nor the Secondary RN generates a spike
again. Apart from the above case, this is an even cycle, so the register values of the
multiplexer unit and the demultiplexer unit are set as “/”. Thereafter, the multiplexer

unit keeps silence, no spike is generated by the multiplexer unit.

e At time 7, only the Secondary RN generates a spike. Since the register value
of the multiplexer unit was set as “/”. This spike is discarded in order not to mislead
the demultiplexer unit. In this manner, the demultiplexer unit is prevented from
changing its the default outlet erroneously. This case can be thought as the protocol
overhead also, and denoted as red filled box in Figure 5.8. Consequently, no spike is

generated by the multiplexer unit.

e At time 8, only the Primary RN generates a spike. For this case, the
multiplexer unit receives the spike from the other inlet, not from the default inlet.
Since the register value is set as “0”, the multiplexer unit generates a change outlet
control packet and set this inlet as the default inlet. Consequently, no spike is

generated by the multiplexer unit.

At time 9, the Secondary RN generates a spike. Since the change outlet control
packet “0I” consumes two spike periods, this spike is not taken into consideration
and discarded by the multiplexer unit. This spike period is used for the change outlet
control packet and the multiplexer unit generates a spike in order to transmit the
change control packet. This is a similar case with the case at time 3, and can be
considered as the protocol overhead of the SBMP and denoted as red filled box in
Figure 5.8.

Similarly, let us explain the working logic of the demultiplexer unit by using the
example spike train generated by the multiplexer unit that is given in Figure 5.9. As
stated before, we assume that the inlet for the Primary RN set as the default inlet of
the multiplexer unit and the corresponding outlet for the Primary RN set as the
default outlet of the demultiplexer unit, respectively. We also assume that both of the

RNs have equal priority. The multiplexer unit processes the incoming spike train two
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by two. The explanation of the working logic of the demultiplexer unit is given

according the time steps that is shown in Figure 5.9.

Time 0 1 2 3 4 5 6 7 8 9
Default Outlet P P 0 S S N N N N P
Input 1 1 0 1 1 0 0 0 0 1
Ouput 1 1 0 1 1 0 0 0 0 1
Meaning
P (Prima

( ") P P N ) S N N N N P
S (Secondary)
N (No Spike)

Figure 5.9 : Explanation of the working logic of the demultiplexer unit by using an
example input spike train from shared medium.
e Attime 0 and 1, the demultiplexer unit receives consecutive two spikes “11”.
The demultiplexer unit generates two sequential spikes and conveys these spikes to
the default outlet. Consequently, the spikes are delivered to the corresponding

destination address for the Primary RN in the somatosensory cortex.

e At time 2 and 3, the demultiplexer unit receives “01” spike stream which is a
change outlet control packet. When the demultiplexer unit receives this control
packet, it switches the other outlet i.e. the outlet for the Secondary RN and set this
outlet as the new default outlet. As shown in Figure 5.9, it generates and conveys a
spike onto this outlet at time 3. Consequently, the spike is delivered to the
corresponding destination address for the Secondary RN in the somatosensory

cortex.

e Attime 4 and 5, the demultiplexer unit receives “10” spike stream. When the
demultiplexer unit receives the spike, it generates a spike and conveys the spike to
the default outlet at time 4. Consequently, the spike is delivered to the corresponding
destination address for the Secondary RN in the somatosensory cortex. Since no

spike is received at time 5, the demultiplexer unit does not generate a spike.

e At time 6 and 7, the demultiplexer unit receives no spike. This is an example
case of silence period. Consequently, the demultiplexer unit does not generate a

spike.
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e Attime 8 and 9, the demultiplexer unit receives “01” spike stream which is a
change outlet control packet. When the demultiplexer unit receives this control
packet, it switches the other outlet i.e. the outlet for the Primary RN and set this
outlet as the default outlet. As shown in Figure 5.9, it generates and conveys a spike
onto this outlet at time 9. Consequently, the spike is delivered to the corresponding

destination address for the Primary RN in the somatosensory cortex.

If the spike firing patterns generated by the RNs can be preserved and delivered to
the corresponding part of the somatosensory cortex, the correct sensation can be

sensed across the perceived information.

5.4 Performance Analysis

The performance of the proposed multiplexing mechanism is based on the utilization
of idle time of the shared medium i.e. signaling pathway. Contrary to the traditional
multiplexers, the proposed multiplexer unit has no capability to buffer and arrange
the simultaneous spikes of different RNs. Thus, if more than one spike arrives at the
multiplexer unit at the same time, only one of them is conveyed to the shared

medium and the others are dropped.

In order to evaluate the performance of the proposed protocol, we employ Neural
Simulation Tool (NEST) [40] to reflect the electrical and chemical aspects of the
neural communication channel. For the evaluation a realistic performance analysis of
the proposed system, we also applied Gaussian noise factor to the simulation
environment to model the axonal and synaptic noise in the neuro-spike
communication channel. The details about the simulation setup are given in

Appendix A.

We use the two-source RNs topology which is given in Figure 5.2 and the source
RNs are named as the Primary RN and the Secondary RN, respectively. The Primary
RN has the functional signaling pathway and shares its pathway with the Secondary
RN that has the malfunctioning signaling pathway. Spikes are generated by source
RNs according to the Poisson distribution with various mean arrival rates. Since it is
impossible for an RN to fire a subsequent spike in the ARP, we adapted the spike
generation times for an RN to exhibit this characteristics. We evaluate the percentage

of the successfully delivered spikes for the total of 1000 incoming spikes of each RN.
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In Figure 5.10, the behavior of the proposed neural nanonetwork is given for various
Poisson arrival rates (4=200, 4=400 and 4=600 spikes/s). The decrease in 4 values
results in the increase in the inter-arrival times of the spikes. Hence, it is more
probable for a spike to find the shared medium idle. In consequence of equal priority
values are given to the RNs, the results do not vary for both of the RNs. It can easily
be seen from Figure 5.10, the performance of the proposed scheme is enhanced

significantly as the inter-arrival times of the spikes get longer.
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Figure 5.10 : Performance of the SBMP when Poisson distribution with various
arrival rates (A) are employed.

The performance of the proposed SBMP based neural nanonetwork and the other
proposed techniques which are introduced in Chapter 3 and Chapter 4 are compared
in Figure 5.11 for various Poisson arrival rates (A=200, A=400 and A=600 spikes/s).
For this analysis, equal priority values (priority=0.5) are given to the Primary and
the Secondary RN. Since the results do not change for the Primary and the Secondary
RN when the same priority values are applied, the results illustrated in Figure 5.11
are valid for the both of the RNs. For a brief reminding, we proposed two TDMA
based techniques (TDMA with delay lines and TDMA without delay lines) for neural
nanonetworks in Chapter 3. The TDMA with delay lines based multiplexing scheme
utilizes neural delay lines for buffering the spikes that are received in unassigned
time slots. The TDMA without delay lines based multiplexing scheme does not have

a buffering capability. According to this scheme, only the spikes that are generated in
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the assigned time slots of the RNs can be relayed to the functional path, otherwise
the spikes are dropped. The SM scheme introduced in Chapter 4, encodes a spike as
two spikes to denote the identity of the source RN. Please note that, the SBMP and
the SM based techniques do not have a buffering capability, only one of the
incoming spikes is conveyed to the shared medium among the simultaneous spikes of
the transmitting RNs. SBMP does not encodes a single spike with two spikes for
every spike generated. Only a spike period is consumed for an idle time or a spike
generation. Furthermore, SBMP utilizes change outlet control packet for encoding
the destination addresses. Therefore, significant performance improvement on the
successively delivered number of spikes is achievable when SBMP is used. As
shown in Figure 5.11, the TDMA with delay lines based technique outperforms the
other techniques via its buffering ability. Please remember that, the TDMA based
techniques always reserve a time slot for each RNs even if an RN has no spike to
transmit and causes poor utilization of shared medium. For such cases, the SBMP
outperforms the TDMA with delay lines technique due to the FIFO logic it employs.
Besides, the SBMP has lower implementation complexity than the TDMA based

techniques.
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Figure 5.11 : Performance comparison of the SBMP and the other proposed
techniques when Poisson distribution with various arrival rates (A) are employed.

We also compare the performance of the proposed SBMP based neural nanonetwork
and the other proposed techniques which are introduced in Chapter 3 and Chapter 4

when spikes are generated according to the Pareto distribution with various shape
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parameters (o) are employed. When the shape parameter (o) value decreases, inter-
arrival times of the spikes increase. As it can be seen in the Figure 5.12, when low
shape parameters (o) values are employed, the performance of the proposed
techniques becomes significantly better. As the higher shape parameter (o)) values are
employed, inter-arrival times of the spikes decrease and the performance of the
proposed techniques decreases due to the bursty spike traffic. For the TDMA with
delay lines technique, when the inter-arrival times of the spikes decreases it is less
probable for a spike received at the unassigned time slots to find the shared medium
idle in the next assigned time slot. Hence, the spikes arrives at the unassigned time
slots cannot be shifted to the next assigned time slot by using buffering capability of
the NDBs. For the TDMA without delay lines method, only the spikes that are
generated in the assigned time slots can be conveyed to the shared medium and this
causes nearly fixed performance independent from the variation in the inter-arrival
times of the spikes. For the SBMP, the performance degrades due to protocol
overhead caused by the change outlet control packets and the discarded spikes that
are generated in odd spike slots following a no spike event in an even slot. As the
inter-arrival times of the spikes decreases SM based technique exhibits the worst
performance due to the protocol overhead caused by encoding every single spike

with two spikes.
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Figure 5.12 : Performance comparison of the SBMP and the other proposed
techniques when Pareto distribution with various shape parameters (o) are employed.
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A priority mechanism can easily be developed for the introduced SBMP based neural
nanonetwork. In Figure 5.13, we evaluate the performance of the proposed protocol
for various priority values of the Primary RN when the arrival rate is 400 spikes/s.
As it can be seen in Figure 5.13, when the priority value of the selected RN i.e. the
Primary RN is increased the blocking probability of the selected RN decreases.
Hence, the increase in the priority value results in the performance improvement of
the prioritized RN. When the highest priority value (priority=1) is given to one of
the RNs, the spikes of the other RN are relayed by the multiplexer unit unless the
prioritized RN does not transmits a spike. Pease note that, even the highest priority
value (priority=1) is given to one of the RNs, about 40% of the spikes of the other

RN is delivered successfully.
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Figure 5.13 : The performance of the priority mechanism of the SBMP.

In Figure 5.14, the performance of the priority mechanism is evaluated under various
Poisson arrival rates (1=200, 4=400 and A=600 spikes/s) when the highest priority
value (priority=1) is given to the Primary RN. As the arrival rate of the prioritized
RN increases, the overhead of the proposed protocol caused by the change outlet
control packet decreases. Whenever the Primary RN has a spike to send, it is
transmitted directly to the shared medium, simultaneous spikes of the Secondary RN
are dropped. The decrease in the traffic load increases the probability of the shared

medium being idle and gives an opportunity to the Secondary RN to transmit its
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spikes. As it can be seen in Figure 5.14, as the A values decreases, the performance of

the Secondary RN increases.
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Figure 5.14 : The performance of the priority mechanism of the SBMP when
priority=1 for the Primary RN.

We also examine the similarity between the input spike generation times (spike times
of the RNs) and the output spike generation times (spike times at the demultiplexer
unit) when the Primary and the Secondary RN has the same priority (priority=0.5).
As explained in Chapter 4.5, Two-Sample Kolmogorov-Smirnov test is employed to
measure the similarity between input and output spike generation times under various
Poisson mean arrival rates. This statistic is one of the most useful and general
nonparametric method to test whether two samples come from the same distribution
[60]. The test results given in Table 5.1 shows that both input and output spike
generation times of the Primary and Secondary RNs are from the same distribution
and the asymptotic p-values of the test results are over 0.98. Hence, we can assume
that the input and output spike patterns have similar properties. Since the spike
generation times are random and follow a Poisson distribution, the inter-arrival times
are also random and follow a negative-exponential distribution. However, the input
spike generation times are adapted to exhibit the ARP characteristics as denoted at
the beginning of this section. The mean input and the mean output inter-arrival times
of spikes are also shown in Table 5.1. Although, the input and output inter-arrival

times of spikes are from the same distribution for the both RNs, the mean output
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inter-arrival times differs from the corresponding mean input inter-arrival times due
to sharing the functional sensory pathway between two RNs and the protocol

overhead of SBMP.

Table 5.1 : Two Sample Kolmogorov-Smirnov test results of the SBMP when equal
priority value (0.5) is assigned to the RNs.

. . Input/Output I/O from Same
Arrival Asymptotic p-values Mean Inter-Arrival Times (ms) Distribution?
Rates . . .
(spikes/s) Primary Secondary Primary Secondary Primary  Secondary
P RN RN RN RN RN RN
200 0.9981 0.9951 5.082/9.059 4.936/8.83 Yes Yes
400 0.9987 0.9919 2.635/4.972 2.613/4.968 Yes Yes
600 0.9881 0.9804 1.89/4.049 1.937/3.806 Yes Yes

After ensuring that both the input and the output spike generation times of the
Primary and the Secondary RNs are from the same distribution, in Figure 5.15 and
Figure 5.16 we analyzed the spike generation patterns of the Primary RN and the
Secondary RN, respectively. For this purpose, we used the probability plot analysis
for assessing whether or not the input and output inter-spike interval times follows a
given distribution [61]. The input and output inter-spike interval times are plotted
against a theoretical distribution in such a way that the points should form
approximately a straight line. Since the spike generation (arrival) rate is random and
follows a Poisson distribution, then the inter-arrival time is also random and follows
a negative-exponential distribution. As we denoted at the beginning of this section,
we adapted the spike generation times which are drawn from the Poisson distribution
to exhibit the ARP characteristics. Therefore, the input inter-spike interval
distribution slightly departure the theoretical input exponential distribution. When
the equal priority is assigned to the RNs and the input arrival rate is 400 spikes/s,
Figure 5.15 and Figure 5.16 compares the input inter-spike interval distribution
(inter-spike interval times of the RNs) and output inter-spike interval distribution
(inter-spike interval times at the demultiplexer unit) for the Primary and Secondary
RN, respectively. For the both Figure 5.15 and Figure 5.16, the solid lines denote the
theoretical exponential distribution curves for the corresponding inter-spike interval
data (circles). As shown in the Figures 5.15 and Figure 5.16, the output inter-spike
interval distribution differs from the corresponding input inter-spike interval
distribution and the arrival rate is about 202 spikes/s for the both of the RNs. Since
the functional pathway is shared between two RNs with equal priorities, the spike

generation rates at the output decreases nearly half of the input spike generation rates
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for both of the RNs. Although, the all of spikes of the Primary RN could not
delivered, the RN which has a faulty pathway successfully sends its spikes to the
corresponding destination according to the same distribution with the half of the

original spike generation rate via the proposed protocol.
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Figure 5.15 : Probability plot analysis of the input and output inter-spike intervals of
the Primary RN.
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Figure 5.16 : Probability plot analysis of the input and output inter-spike intervals of
the Secondary RN.
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When the equal priority is assigned to the RNs and the input arrival rate is 400
spikes/s for the both RNs, histogram plots of input and output spike times of the
Primary and the Secondary RNs are given in Figure 5.17 and Figure 5.18,
respectively. These plots visually compare the number of spikes generated by the
RNs with the number of the spikes generated at the output (at the demultiplexer unit).
Since the equal priority value (priority=0.5) is given to both of the RNs, the number
of the spikes generated at the demultiplexer unit for both of the RNs shows similar

trends.
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Figure 5.17 : Histogram plot of the spike times of the Primary RN.
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Figure 5.18 : Histogram plot of the spike times of the Secondary RN.

In Figure 5.19 and Figure 5.20, we analyzed the effect of the priority values assigned
to the RNs to the output inter-spike interval distribution of the Primary and the
Secondary RN, respectively when the input arrival rate is 400 spikes/s. We used the
probability plot analysis as well to compare the variation of the inter-spike interval
times at the demultiplexer unit. For the both Figure 5.19 and Figure 5.20, solid lines
denote the theoretical exponential distribution curves for the corresponding inter-
spike interval data (circles). As the priority value assigned to the Primary RN is
increased, the output inter-spike interval distribution of the Primary RN converges to
the input inter-spike interval distribution of the Primary RN, as shown in Figure 5.19.
When the highest priority value (priority=1) is given to the Primary RN, output spike
arrival rate at the demultiplexer unit approaches 243 spike/s. On the other hand,
Figure 5.20 illustrates the effect of the priority values assigned to the Primary RN to
the output inter-spike interval distribution of the Secondary RN at the demultiplexer
unit. As the priority values for the Secondary RN are decreased, the output inter-
spike interval distribution divergences from the input inter-spike interval distribution
of the Secondary RN. Even though, the lowest priority value (priority=0) is given to
the Secondary RN i.e. spikes of the Secondary RN are not transmitted unless the
shared pathway is idle, the output spike arrival rate at the demultiplexer unit is

approaches 156 spike/s by employing the proposed protocol.
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Figure 5.19 : The effect of the priority values to the input and output inter-spike
intervals of the Primary RN.
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We also examine the similarity between the input spike generation times (spike times
of the RNs) and the output spike generation times (spike times at the demultiplexer
unit) when various priority values are assigned to the Primary and the Secondary RN.
We employed Two-Sample Kolmogorov-Smirnov test as well to evaluate the
similarity between the input and output spike generation times when the input arrival
rate is 400 spikes/s. The test results are given in Table 5.2 and the results show that
the both input and output spike generation times of the Primary and the Secondary
RNs are from the same distribution. However, the priority values affect the similarity
between the input and the output inter-spike interval distributions of the RNs. As it
can be figured out from the variation of the asymptotic p-values of the test results, as
the assigned priorities get higher the similarity between the input and output inter-
spike interval distributions of the prioritized RN gets better. We also show the mean
input and the mean output inter-arrival times of spikes in Table 5.2. Similarly, as the
priority given to the RN is increased, the mean output inter-arrival times of spikes
convergences to the corresponding input inter-arrival times of spikes. Hence, we can
assume that the priority mechanism can be used as a quality of service parameter for

the proposed protocol.

Table 5.2 : Two Sample Kolmogorov-Smirnov test results of the SBMP when
various priority values assigned to the RNs.

Priority values Asymptotic p-values Input/Output VO from Same
y val ymp p-valu Mean Inter-Arrival Times (ms) Distribution?
Primary  Secondary  Primary  Secondary Primary Secondary Primary  Secondary

RN RN RN RN RN RN RN RN
0.5 0.5 0.9987 0.9919 2.635/4.972 2.639/4.968 Yes Yes
0.6 0.4 0.9899 0.9709 2.635/4.793 2.639/4.976 Yes Yes
0.8 0.2 0.9999 0.8982 2.635/4.598 2.639/6.138 Yes Yes
1.0 0.0 1.0 0.8216 2.635/4.069 2.639/6.443 Yes Yes

5.5 Conclusion

In this chapter, we proposed a neuron specific SBMP to establish the communication
between an RN and somatosensory cortex in case of intermediate neuron failure in
the its sensory pathway. Actually, our aim is twofold. Firstly, conveying the spikes of
an RN that has the faulty pathway by sharing a functional neighboring pathway. The
letter is minimizing the number of spikes that can be lost while employing proposed

protocol to obtain the correct sensation.
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The SBMP which exploits spikes themselves is developed to set the pathway i.e.
route where the spikes are carried through. Via the control packets of the SBMP, the
sensory pathway is alternated according to the owner of the spikes. Besides, we also

showed that a priority mechanism can be developed for the proposed technique.

We evaluated the performance of the proposed protocol by simulations under various
scenarios. We also examined the similarity between the input and the output spike
firing patterns either the RNs have the equal priority or different priorities are given
to the RNs. The test results indicate that the input and output spike patterns have
similar properties. Furthermore, we compared the input inter-spike interval
distribution (inter-spike interval times of the RNs) and output inter-spike interval
distribution (inter-spike interval times at the demultiplexer unit) when the various
priority values are assigned to the RNs. As the priority value assigned to the RN is
increased, the output inter-spike interval distribution of the related RN converges to
the input inter-spike interval distribution of the RN. Hence, the priority value can be

used as a quality of service parameter for SBMP.

We also compared the performance of SBMP with the performance of proposed
techniques introduced in Chapter 3 and Chapter 4. As well as the significant
performance improvement of SBMP, it has lower implementation complexity than

the previously introduced techniques.

ICT inspired techniques like the SBMP, reveal new opportunities in neural
communication and may pave the way for the advancement of treatment techniques

for neural diseases.
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6. CONCLUSIONS AND RECOMMENDATIONS

Although nanonetworking is in its infancy, wide range of appealing application areas
especially in human healthcare field draw the attention of the scientific communities
from various disciplines. Human body intrinsically houses different kinds of intra-
body nanonetworks. We perceive the external world by the somatosensory system
that is an important branch of sensory nervous nanonetwork. In this study, we
investigate the somatosensory system in detail and explore the analogies between the
conventional communication networks. By this in-body nanonetwork, perceived
stimulus is converted into spike trains via the receptor neurons (RNs) distributed
topographically throughout our body and conveyed to the somatosensory cortex. The

somatosensory system has below three characteristics:

1. The information flow in this nanonetwork is one-way, from the RNs to the

somatosensory cortex in the brain

2. There exist dedicated neural pathways between the RNs and the

somatosensory cortex.

3. The spikes generated by RNs are identical events and they do not include

source and destination addressing information.

With these major features, the somatosensory system resembles the circuit switching
networks. Communication problems such as interruption of spike propagation in this
nanonetwork emerge as neurodegenerative diseases in human body. Even though the
RNs function properly, a faulty relaying neuron in the sensory pathway hinders the
spikes to be delivered to the somatosensory cortex. Therefore, in our studies, we
focus on ensuring the continuity of spike propagation in case of neuron specific
faults in the signaling pathway. These impairments remind the same problem in the
transmission lines of the conventional communication networks. In communication
networks, multiplexing methods that combine more than one signal over a shared

medium are employed to solve this problem.
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In this thesis, we propose three techniques for conveying the spike trains of RNs
those have faulty pathways over a functional neighboring pathway by using the
above-mentioned analogy. Due to the characteristics of the somatosensory system,

our techniques employ neuron specific methods.
For the techniques we propose, our aim is twofold:

e Conveying the spikes of an RN that has faulty pathway through a shared

functional pathway.

e Minimizing the number of spikes that can be lost while multiplexing the

spikes of RNs in order to feel the correct sensation.

We evaluated the performance of the proposed techniques by simulations under
various scenarios. For the evaluation a realistic performance analysis of the proposed
system, we employed Neural Simulation Tool (NEST) in order to reflect the
electrical and chemical aspects of the neural communication channel. We also

compared the obtained results of the proposed techniques with each other.

6.1 Unique Contributions

The proposed techniques in this thesis bring the communication capability between
the RNs that have malfunctioning pathways and the somatosensory cortex. In
literature, there is no study analogous to our work yet. This thesis may lead to new
studies on ICT inspired techniques for the nervous nanonetworks. The obtained
results show that the techniques proposed in this thesis may reveal new opportunities
in neural communication and may pave the way for the advancement of novel
treatment techniques for the neural diseases. Following sections describes our

contributions.

e We proposed a neuron specific TDMA based protocol for ensuring the RNs
that have the faulty pathway to communicate with the somatosensory system. For
sharing the functional pathway between the RNs, we developed a novel multiplexing
and buffering mechanism employing the Neural Delay Box (NDB) scheme that is
composed of a relay unit and a buffering unit. The relay unit can be realized as a
nanoelectronic device. The buffering unit can be implemented either by using neural
delay lines as employed in optical switching systems or by using nano scale delay

flip flops. The spikes received at the assigned time slot of RNs are directly conveyed
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to the shared neural pathway by using NDBs. The spikes transmitted at the
unassigned time slots are buffered and transmitted at the consecutive assigned time
slot. Thus, the spikes are carried through a functional pathway and they can be easily
demultiplexed according to the assigned time slots of RNs, thereafter are delivered to

corresponding destination in the somatosensory system.

e We introduced a neuron specific statistical multiplexing based technique to
establish the communication between an RN and somatosensory cortex in case of
intermediate neuron failure in its own sensory pathway. The proposed technique
utilizes the multiplexer and the demultiplexer units that can be realized as
nanoelectronic devices and an addressing scheme. To employ statistical
multiplexing, the spikes of each transmitting RNs must be distinguished at the
demultiplexer unit before conveying them to the related part of the somatosensory
cortex. Hence, we introduced an addressing scheme to identify the transmitting RN's
by using the spikes themselves. Actually, we established a packet switching neural
nanonetwork by employing this addressing scheme. Furthermore, we showed that a
priority mechanism can be developed for the proposed technique. We also examined
the similarity between the input spike generation times (spike times of the RNs) and
the output spike generation times (spike times at the demultiplexer unit). Test results

demonstrate that the input and output spike patterns have similar properties.

e We proposed the Switch Based Multiplexing Protocol (SBMP) to substitute a
faulty sensory neural pathway with a functional neighboring pathway. The proposed
multiplexing protocol depends on the multiplexer and demultiplexer units that can be
realized as nanoelectronic devices. The spiking activity between these units is
regulated by the SBMP. The SBMP is developed to set the pathway i.e. route where
the spikes are carried through. The SBMP uses some control packets that exploits
spikes themselves to manage the spike traffic. Via the control packets of the SBMP,
the sensory pathway is alternated according to the owner of the spike to deliver the
spike to the corresponding part of the somatosensory cortex. Besides, we also
showed that a priority mechanism can be developed for the proposed technique. We
also examined the similarity between the input and the output spike firing patterns
when the RNs have either the equal priority or different priorities. The test results
demonstrate that the input and output spike patterns have similar properties.

Furthermore, we compared the input inter-spike interval distribution (inter-spike
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interval times of the RNs) and output inter-spike interval distribution (inter-spike
interval times at the demultiplexer unit) when the equal or various priorities are
assigned to the RNs. We observed that as the priority value assigned to the RN is
increased, the output inter-spike interval distribution of the related RN converges to
the input inter-spike distribution of the RN. Therefore, the priority value can be used

as a quality of service parameter for the SBMP.

6.2 Future Work

As the future work, we plan to study on following topics in our research field.

¢ In this thesis, we focused on single RN based somatic sensations. Apart from
the single RN based sensations, some stimuli i.e. touching the texture of an object
activate combination of RNs. The performance of the proposed techniques can be
examined over the coordinated sensory information of the multiple RNs that have
malfunctioning pathways. The proposed techniques can be improved or new
communication techniques can be developed to feel the correct sensation across the

perceptions via combinations of RNs.

¢ In literature, Poisson and Pareto distribution is frequently used to model the
spike trains generated by neurons [38]. Although, they well captures the statistical
properties of the real neural spike trains, there is no information for the real somatic
sensations including the spike trains with inter-spike interval data. If the real spike
firing patterns (spike trains with inter-spike intervals) for the exact somatic
sensations such as itch, pain, warmth and cold can be determined via in vivo
experiments, the performance of the proposed techniques can be examined in detail

by using these real spike firing patterns.

e By using the above-mentioned real spike firing patterns, a database for
somatic sensations can be formed. This database can be loaded to the multiplexer and
the demultiplexer units. Instead of transferring as many as possible spikes between
these nanoelectronic devises, smarter coding strategies can be designed. For instance,
when the multiplexer unit receives a spike train that fits a somatic sensation in the
database, it encodes this perception in a smarter way i.e. encoding it with lower
number of spikes. The demultiplexer decodes this code by using the database,

generates the same spike train for the encoded stimulus, and relays it to the
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somatosensory cortex. By using the somatic database, according to the type of the

perceptions novel priority mechanisms can also be devised.
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APPENDIX A : Simulation Setup

In our studies, we employ Neural Simulation Tool (NEST) [40] in order to reflect the
electrical and chemical aspects of the neuro-spike communication channel. NEST is
a simulator for spiking neural network models that focuses on the dynamics, size and
structure of neural systems.

Different neuron models are provided in NEST. In our experiments, we used
integrate-and-fire neuron model which can be used for the simulation of
somatosensory system [62,63]. The neuron that we have simulated has generic
parameters. Whenever the membrane potential of the neuron reaches the firing
threshold potential at -55mV, the neuron spikes and the membrane potential is reset
to -70mV that is the reset potential. Thereafter, the membrane potential is then
clamped to the resting value for 1 ms, the ARP of the neuron. After the ARP, the
membrane continues to depolarize due to the continuing input stimulation.

For the evaluation of a realistic performance analysis of the proposed system, we
also applied Gaussian noise factor to simulation environment to model the axonal
and synaptic noise in the neuro-spike communication channel.

The simulation setup is given in Table A.1.

Table A.1 : Simulation setup.

Type Description
Integrate-and-fire, fixed voltage

Neuron Model threshold, fixed ARP
Synapse model Static Synapse
Refractory period t,, 1 ms
Firing threshold V, -55 mV
Membrane capacitance C,, 250 pF
Resting potential Vg -70 mV
Reset potential V., -70 mV
Synaptic delay D 1.0 ms
. Gaussian (mean 300 pA standard
Noise

deviation 150 pA)
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