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COMPUTER ANALYSIS OF RETINAL IMAGES FOR VESSEL
ANOMALY DETECTION

ABSTRACT

Many important eye diseases, as well as systemic diseases such as diabetes,
hypertension and arteriosclerosis manifest themselves in the retina. An automatic
analysis of the vascular system of the retina can assist to monitor the effects of
corresponding diseases on the visual system. In this thesis, we have presented a
robust method for retinal blood vessel segmentation and some automatic algorithms

for analyzing the vessel network with regard to the vessel diameter and tortuosity.

A supervised method is presented for segmentation of retinal blood vessels using
an ensemble classifier of random forest decision trees. A 17 dimensional feature
vector is constructed for successfully handling the both normal and abnormal retinal
images with different kinds of lesions. Forty retina images from DRIVE database and
twenty images from STARE database are used to evaluate the performance of the
method. The results of performance metrics illustrate that the proposed method
outperforms most of the other segmentation methods. Moreover, our method needs
fewer samples for training than other methods and it is independent to the training set

as it offers a better performance than other methods in the cross-training section.

The automatic method for measuring the retinal vessel width and tortuosity is also
presented based on the vessel edges and centerline in order to analysis the vessel
network and monitor the presence of different abnormalities in the structure of
vessels. This application may assist to quick diagnosis and treatment planning in the

clinical procedures.

Keywords: Retinal blood vessels segmentation, feature vector, ensemble classifier,

vessel width and tortuosity measurement.



RETINA GORUNTULERININ DAMAR ANOMALI BELIRLEMEK
AMACIYLA BILGISAYARDA ANALIZi

0z

Bir¢ok 6nemli g6z hastaliginin yani sira, diyabet, Hipertansiyon ve damar sertligi
gibi sistemik hastaliklar da, retinada kendini gostermektedir. Retina vaskuler
systemimin otomatik analizi, yukardaki hastaliklarin etikisin1 gorsel sistemde,
gostermeye yardimer olmaktadir. Bu tezde, retina damar segmentasyonu i¢in saglam
bir yontem ve damar agini analiz etmek icin damar capt ve kivrimlariyla ilgili

otomatik bir algoritma sunulmustur.

Denetlenen yontem, rasgele orman karar agaglarinin bir topluluk siniflandirict
kullanarak, retina kan damarlarinin segmentasyonu i¢in sunulmustur. 17 boyut 6zelik
vektorii, normal ve farkli tiir anormal retina lezyonlarinin goriintiileri Basariyla insa
edilmistir. DRIVE veri tabanindan alinan Kirk goriintii ve STARE veritabanindan
alinan yirmi gorlintii retinanin yontem performansini degerlendirmek igin
kullanilmistir. Performans Olglimlerinin  sonuglari, Onerilen yontemin diger
segmentasyon yontemlerinden daha iyi sonuglar verdigini gostermektedir. Ayrica,
bizim yontem diger yontemlere gore, egitim i¢in daha az 6rnege ihtiyaci vardir ve bu
very yonteminden bagimsizdir cunku capraz egitim bolimiinde daha iyi bir

performans sunmaktadir.

Retina damar genisligi 6lgme ve egrilik i¢in otomatik yontem sunulmaktadir.
Damar1 kenar1 ve merkezini damar agini analiz etmesi ve gemilerin yapisinda farkli
anormalliklerin varligini izlemeye goredir. Bu uygulama, klinik hizli teshis ve tedavi

planlamasina yardimci olmaktadir.

Anahtar kelimeler: Retina kan damarlar1 segmentasyonu, 6zellik vektorii, ensemble

siniflandirici, damar genisligi ve kivrilma dl¢iimii.
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CHAPTER ONE
INTRODUCTION

1.1 Human Eye

One of the most important sensory system for amassing of information, learning
and navigation is the human visual system. The eye is the initial sensor of the
corresponding system with different lens mapping incoming light patterns on the
retina for transduction to neural signals. There are many diseases that have primary
and secondary effects on the retina and human visual system, so examination of the

eye is a momentous part of health care.

1.1.1 Retinal Imaging

Fluorescein angiography is an early method for taking photographs of the fundus,
or back of the eye, required the injection of fluorescein into blood stream to enhance
the contrast of retinal blood vessels (Michaelson, & Benezra, 1980). However, with
regarding advances in information and communication technology during last
decade, digital fundus photography of retina has been developed (Klein et al., 2004).
Fundus imaging is the process of obtaining the projection of the 3-D semitransparent
retinal tissue onto the imaging plane as a 2-D representation using the reflected light
and the image intensities to represent the amount of a reflected quantity of light
(Abramoff, Garvin, & Sonka, 2010). There are several reasons why digital fundus
images have been widely used in many projects. Firstly the publicity available
databases have used fundus photographs of patients. Secondly this kind of
photography is very useful for population-based and diagnose various type of
systemic diseases such as diabetics, arteriosclerosis, and hypertension. Lastly and the
most important advantage of corresponding images is possibility of precise
measurement and monitoring of width and tortuosity of retinal blood vessels. Figure
1.1 illustrate an example of digital fundus image and a patient being examined with a

digital fundus camera.



Figure 1.1 A general package of a digital fundus imaging includes a CR5-NM Canon retinal camera, a

imaging software system, a database management system, a data store devise (Zhu, Rangayyan, &

Ells, 2011).

1.1.2 Eye Anatomy

The eye is one of the most important sensors of the human body which gives us
the sense of sight and allows us to see and comprehend the shapes, colors, and
dimensions of objects by processing the amount of light they reflect or emit. An
eyeball, illustrated in Figure 1.2, consists three concentric layers: the fibrous, the
vascular, and the nervous layers (Wolff Eugene, 1948). The fibrous, first layer itself
is made up of two part: the posterior part known as the sclera and the anterior part
called the cornea. The sclera is a white nontransparent member and the outermost
layer of the eye which covers five-sixths of global of the eye. On the other hand,
Cornea is the transparent layer located in the front of the eye that allows lights enter
the eye like a window. The vascular layer consists of the iris, the ciliary body, and
the choroid. The iris is the most anterior part of the vascular layer which controls the
amount of light entering the eye in such a way that if the light is bright, the iris
closes, narrowing pupil, and when it is dim it opens, dilating pupil (Igbal et al.,
2006). The ciliary body has the different property such as anchoring the lens in place,
changing the lens shape by resting the ciliary muscle, and providing nutrition to the
vascular ocular tissues. The most posterior part of the vascular layer is choroid that
feeds the outer of the retina (Zhu et al., 2011).
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Figure 1.2 Schematic of the sagittal section of the eyeball (Oloumi, 2011).

The retina is a thin layer of neural cells and one of the most important part of the
nervous layer. Its thickness is about 0.5mm and lines the inside of the eyeball (Igbal,
2006). The important point that could be referred is that retina is the only part of
nervous system that can be imaged directly. Rods and cones are photoreceptor cells
of the retina which receive visual information from the incoming light, encoding
corresponding information into the neural signals, and transmit them to the brain for
further processing. The corresponding signals are transferred to the brain through the
optic nerve head, optic disc. The average diameter of the optic disc is about 1.6mm
(Larsen 1976). The major vein and artery branches of the retinal blood vessels
diverge away from the stem of the optic disc into the retina. Smaller blood vessels
branch off from the parent branch and converge toward a region called the macula, at
the center of which is an avascular spot called the fovea. The width of retinal blood
vessels changes from 50 to 200um, 60um median, in 2-D retinal fundus images
(Patton et al., 2006). The macula is located about 3.2um to the center of the optic
disc along the retinal raphe. Retinal raphe has known as the straight line which goes
through the center of the optic disc and the fovea. The retinal raphe divides area into

two parts. The first part, the area above the retinal raphe is called the superior side



and the second part, the area belows the retinal raphe is called inferior side (Oloumi,
2011). Figure 1.3 shows a typical retina fundus image from DRIVE database. As can
be seen, the macular area located in the black circle near the middle of the image
appears darker than the background area and the fovea, black dot in the middle of the
circle, become visible as a small bright spot in the middle of the macula. The black
dot in the right region of the image indicates the center of the optic disc, the point of
convergence of retinal blood vessels. The other important point is that the major
venule branch is thicker than the corresponding arteriole and has higher background

contrast. The inferior major vein/artery is also labeled in the corresponding figure.

Figure 1.3 Image 24 of the DRIVE database.

1.2 Pathologies of the Eye

With regarding structure of the retina and the fact that the retina is an active
tissue, many important diseases related to the eye, brain or the cardiovascular system
can show themselves in the retina. In this section, a brief summary of corresponding

diseases is given.



1.2.1 Diabetic Retinopathy

Diabetic retinopathy (DR) is one of the most common cause of blindness and
visual loss in the people of working age. DR is a result of diabetes mellitus which
affects the retinal vasculature and damages the retinal structure. According to the
current definition from the world health organization, diabetes mellitus is known as a
disease under the condition that a patient has a fasting plasma glucose over 7.0
mmol/l. This can lead to damage major blood vessels, kidneys, heart, brain and eye
and results in a retinal complication of diabetes called diabetic retinopathy (Laud, &
Shabto, 2010).

There are two different kind of pathological changes in the retina due to DR;
ischemia and blood vessel wall damage. When the retina become ischemic, the new
blood vessels start to grow in areas of the retina which may subsequently bleed and
cause retinal detachment, a condition called proliferative diabetic retinopathy (PDR)
(Kanski, & Bowling, 2011). Another complication of DR is retinal blood vessel wall
damage which lead to blood and fluid to leak on the retina, a condition called
diabetic macular oedema (DME). According to the pathology of DME, this forms
different features such as micro-aneurysms, haemorrhages, exudates and cotton-wool
spots (Browing, 2010). Figure 1.4 illustrates different kinds of Symptoms of DR in

retinal fundus images.

(@) (b) (© (d) O

Figure 1.4 Symptoms of DR in retinal fundus images. a) Micro aneurysms b) Dot and blot
haemorrhages c¢) Soft exudates d) Hard exudates e) Formation of new vessels in retina (Kanski, &
Bowling, 2011).



1.2.2 Age Related Macular Degeneration

Another most common cause of visual loss is age-related macular degeneration
(AMD). According to the world health organization, AMD is a growing public health
problem in most of developed countries. There are different signs of AMD such as
drusen information, pigment changes, atrophy and choroidal neovascularization
(CNV). Drusen is the small yellow deposits in the macula, also known as the earliest
sign of AMD. Pigment changes in the macula is another important sign of AMD. The

macular pigment can wither away in a process called atrophy (Chiang et al., 2011).

There are two different types of AMD; dry and wet. Most of the people how have
AMD, around 90%, have the dry form of AMD which typically leads to gradual loss
of visual acuity. Drusen information, pigment changes, and atrophy are known as dry
AMD. A few percent of people, around 10%, with AMD, have wet form of AMD.
Wet AMD also known as CNV occurs when abnormal blood vessels develop
underneath the macula which leads to leaking fluid and blood and finally cause
scarring of the macula (Kanski, & Bowling, 2011). Figure 1.5 shows different signs
of AMD in retinal fundus images.

@ (b) © (d)

Figure 1.5 Symptoms of AMD in retinal fundus images. a) Dry AMD with drusen b) Dry AMD with
atrophy c) Wet AMD with haemorrhages d) Wet AMD with macular scaring (Fraz, 2013).

1.2.3 Glaucoma

Glaucoma is specified by damaging of ganglion cells and their axons in the retina.

It is primarily a neuropathy, not a retinopathy, which results in the cupping of the



optic disc as shown in Figure 1.6. One of the most important indicators for assessing
the presence of glaucoma is the cup to disc ratio. This ratio is equal to the ratio of

optic disc cup and neuro-retinal rim surface area (Strouthidis, & Garway, 2009).

(@) (b)

Figure 1.6 Symptoms of glaucoma in retinal fundus images. a) Normal optic disc b) Glaucoma

effected optic disc.

1.2.4 Cardiovascular Disease

The appearance of the cardiovascular disease in the retina is seen in several ways.
The changes in the ratio between the diameter of retinal arteries and veins, also
called A/V ratio, is specified in the case of hypertension and arteriosclerosis. There is
special dependence between changing the A/V ratio and risk of stroke in such a way
that a decrease in the A/V ratio, i.e. thinning of the arteries and widening of the veins
Is associated with an increased risk of stroke (Wong et al., 2002). The direct retinal
ischemia can be also invoked because of hypertension which results in the retinal
infarcts visible as cotton wool spots and choroidal infarcts visible as deep retinal
white spots. Moreover, systemic vascular disease can result arterial and venous
occlusions, also called central and branch arterial occlusions (CRAO, BRAO) and
central and branch venous occlusions (CRVA, BRVO) (Kanski, & Bowling, 2011).



1.2.5 Retinopathy of Prematurity

Retinopathy of prematurity (ROP) is one of the most common cause of blindness
in both adults and especially children which can be diagnosed and treated by laser
surgery at early stages. The intensity of ROP can be classified by the presence of
plus disease. Diagnosis of the plus disease is made by visual qualitative comparison
to a standard photograph of fundus of the retina which make the definition of the plus
disease difficult in the quantitative manner (Wilson et al., 2008). Changes in vessel
thickness and tortuosity are important signs of the plus disease. According to the
literature, there is a direct relationship between increasing the thickness and
increasing the intensity of ROP and the plus disease. Moreover, tortuosity of blood
vessels has shown the higher correlation with the presence of plus disease. The
important point that should be referred is that the detection of small changes in vessel
width and tortuosity require high-resolution images (Heneghan et al., 2002). Figure

1.7 illustrates an example of retinal fundus image with tortuosity in blood vessels.

Figure 1.7 Image 198 from STARE database: tortuosity in retinal blood vessels.



1.3 Computer Analysis of Retina for Diagnosing of Diseases

Developing an automatic computer system for diagnosis of retinal diseases is an
important task at health-care centers around the world. There are so many advantages
of using a computer system for diagnosis several diseases in the retina by image
processing techniques and pattern recognition methods such as reducing the
workload, providing objective decision-making tools to ophthalmologists, facilitating
precise measurement of difficult parameter and quantifying small changes in the
measurements (Patton, 2006). It was proved that corresponding systems can detect
several pathologies mentioned in section 1.2 which can then results in early
treatment. In the most of automatic computer systems, the main features of retina
such as blood vessels, optic nerve head, and area of macula should be segmented as
an initial step of analyzing the retinal images and the other features like diameter of
the blood vessel, tortuosity of blood vessels, and the positions of lesions can then be
measured and detected automatically as a further processing for diagnosing AMD,

DR, ROP and other pathologies conditions.

Segmentation and analysis of the retinal blood vessels, retinal vasculature, plays
an important role in further analysis of retinal images such as the implementation of
screening program for DR (Teng et al., 2002), foveal avascular region detection
(Haddouche et al., 2010), the evaluation of retinopathy of prematurity (Heneghan et
al., 2002), arteriolar narrowing detection (Grisan, & Ruggeri, 2003), the
determination of relationship between vessel tortuosity and hypertensive (Foracchia,
2001), measurement of vessel diameter to diagnosis cardiovascular and hypertension
diseases (Lowell et al., 2004), computer-assisted laser surgery (Pinz et al., 1998),
identification of optic disc position (Hoover, & Goldbaum, 2003), localization of the
fovea (Huiqgi, & Chutatape, 2004), retinal image mosaic synthesis (Fritzsche et al.,
2003), tracking the optic nerve head in video sequences (Solouma et al., 2002), and

e.t.

Manual detection of retinal blood vessels and measurement the several properties

of extracted vessels such as width and tortuosity is very difficult and time consuming



task which can also requires training and skill. Therefore, the automatic segmentation
and quantification of retinal vessels is confirmed by the medical community as an
initial step in the development of automatic computer system assisted diagnostic

system for ophthalmologic disorders.

1.4 Organization of Thesis

The thesis includes five chapters. Chapter 2 describes the literature and
background related to the vessel segmentation methods, width and tortuosity
measurement algorithms. In chapter 3 a supervised method is introduced for
extraction the blood vessel network by using an ensemble classifier. In the following
chapter an automatic algorithm is presented for measuring the diameter and
tortuosity of blood vessels and the results of the corresponding measures is analyzed
to extract meaningful information for pathological purpose. Finally, chapter 7

discusses the conclusions and recommendations for future work.
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CHAPTER TWO
BACKGROUND AND LITERATURE

2.1 Literature Overview

In this chapter, a brief review of retinal vessel segmentation techniques, width and
tortuosity measurement methods are presented. Moreover, the advantages and
disadvantages of corresponding approaches are discussed. The goal is to present a
detailed resource of corresponding algorithms as a ready reference. This chapter
begins by introducing the details of the publicly available databases, DRIVE and
STARE, of retinal images and the quantitative measures of performance for vessel

segmentation.

2.2 Database of Retinal Images

The proposed methods for retinal vessel segmentation, width and tortuosity
measurement are tested with the two most popular and online available database of
retinal fundus images from the DRIVE and the STARE database. A brief overview
of the details of corresponding databases is presented in this section.

2.2.1 The DRIVE Database

The DRIVE (Digital Retinal Images for Vessel Extraction) database which is
collected by Niemeijer et al. (2004) was gathered from a DR screening program in
Netherland. This database consists of 40 images, 33 without any abnormal sign and 7
with signs of mild DR, captured by a Canon CR5 3CCD camera with a 45° field of
view (FOV). The size of each image is 768x584 pixels with 8 bits per color channel
and the FOV is circular with 450 pixels in diameter. The format of all images is
JPEG (Joint Photographic Expert Group). These 40 images are divided into equal
groups, training and testing, which make this dataset very useful for supervised
methods. All of the images have been segmented manually as a ground truth and

FOV binary masks are also provided for all of them. The images in training set were
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segmented once, while the images in testing set were segmented twice which result
in two groups A and B. In set B, 12.3% of pixels were segmented as vessels against
12.7% for set A. The performance of our vessel segmentation algorithm is measured
on the test set using the segmentation of set A as a ground truth. Figure 2.1 shows an
example of retinal fundus image of DRIVE database and the related ground truth and
FOV mask for corresponding image.

(@) (b) (©

Figure 2.1 Retinal fundus image 02 from test set of the DRIVE database. a) original RGB image b)
manual segmentation of blood vessels known as a ground truth c¢) the FOV mask of the corresponding

image.

2.2.2 The STARE Database

The STARE (Structured Analysis of the Retina) database collected by Hoover et
al. (2000), includes 20 images, 10 with pathologies and 10 without any pathologies.
All images were captured by a TopCon TRV-50 fundus camera at 35° FOV. The size
of each image is 700x605 pixels with 8 bits per color channel and the FOV in the
images is approximately 650x550 pixels. Two observes manually segmented all of
the images as a ground truth. The first observe segmented 10.4% of pixels as vessels
against 14.9% for the second observe. The performance of our vessel segmentation
algorithm is measured by using the segmentation of the first observe as a ground
truth. There are no available FOV binary masks for this database, but we follow the
approach in Azzopardi et al. (2015) to create FOV binary mask for each image by
thresholding the luminosity plane of Lab version of the original RGB image. Figure
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2.2 illustrates an example of retinal fundus image of STARE database and the related
ground truth and FOV mask for corresponding image.

(@) (b) (©)

Figure 2.2 Retinal fundus image 0255 from the STARE database. a) original RGB image b) manual

segmentation of blood vessels known as a ground truth ¢) FOV mask of the corresponding image.

2.3 Performance Measures

In the result of retinal blood vessel segmentation methods, each pixel is classified
as vessel pixel or background pixel. With regard to this fact, there are four
possibility: two classifications and two misclassifications which can be seen in Table
2.1. the two classification ones are true positive (TP) and true negative (TN), the TP
means a pixel is classified as vessel and it is vessel also in ground truth, the TN
means a pixel classified as a background pixel and it is a background pixel in ground
truth correctly. As for the misclassification, the false negative (FN) means a pixel is
classified as background pixel in segmentation result but it is a vessel pixel in ground
truth and the false positive (FP) means a pixel is classified as a vessel pixel, but it is a

background pixel in ground truth.

Table 2.1 Vessel classification
Vessel (Ground truth) Nonvessel (Ground Truth)
Vessel (Predicted) True Positive (TP) False Positive (FP)

Nonvessel (Predicted) False Negative (FN) True Negative (TN)
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Due to measure the performance of our method and also for comparing the
correspond performance results with other state-of-the-art methods, several metrics
are calculated such as accuracy (Acc), sensitivity (SN) and specificity (SP). Acc is
one of the most important metrics which equals to the ratio of the total number of
correctly classified pixels to the total number of pixels in the image FOV. SN reflects
the ability of the algorithm to detect the vessel pixels and SP is the ability to detect
non-vessel pixels, background pixels. Moreover, the receiver operating characteristic
(ROC) curve is used to measure the performance of proposed method. An ROC
curve is a plot of true positive rate (TPR) versus false positive rate (FPR) by
changing the thresholds on probability map image. One of the most important
metrics extracted from ROC curve is the value of the area under the curve (AUC)
which is 1 for the best system. It means that the closer the curve approaches the top
left corner, the better is the performance of the corresponding system. The important
point that should be referred is that for the retina images, all of the metrics are
computed considering only the pixels inside the FOV. All of the metrics described

are summarized in Table 2.2.

Table 2.2 Performance metrics of retinal vessel segmentation.

Metrics Measurement
SN TP/(TP+FN)
SP TN/(TN+FP)
TPR TP/Vessel pixel count
FPR FP/Non-vessel pixel count
Acc (TP+TN)/(TP+FP+TN+FN)
AUC Area under the ROC curve
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2.4 Retinal Vessel Segmentation Approaches

One of the most important steps in retinal image analysis procedure is the blood
vessel segmentation, due to measuring many important properties of blood vessels,
such as diameter and tortuosity depend on the accuracy of blood vessel segmentation.
In this section, a brief review of previously developed methods and algorithms for
detection of the retinal blood vessel is presented. With regarding the literature, there
are several automatic methods for segmentation of retinal blood vessels. These
methods can be divided in two main category; supervised methods and unsupervised
methods.

Unsupervised methods which is called rule-based methods find vessel locations
by using presumed rules for vessels. This category itself includes five main
subcategories; vessel tracking, matched filtering, morphological processing, multi-

scale analysis and model based algorithms.

Vessel tracking methods, (Liu, & Sun, 1993), (Gao et al., 2001), (Chutatape,
Zheng, & Krishnan, 1998), (Grisan et al., 2004), in general speaking segment a
vessel between two points using local information. In this kind of approaches, by
choosing a set of seed points either manually or automatically, the vascular tree is
obtained following the vessel center lines. It means that tracking consists of
following vessel centerlines guided by local information, usually trying to find the
path which best matches a vessel profile model. There are some important
advantages of using vessel tracking methods such as, providing highly accurate
vessel widths, following a whole tree without wasting time in areas that does not
contain vessel, giving information about structure of individual vessel such as
branching and connectivity. The main disadvantage of these methods is the failure of
the method to detect vessels which have no seed point and also missing and
bifurcation points can result in undetected sub-tress. Moreover, these methods are

very sensitive to detect the vessels with a central reflex.
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Matched filtering techniques, (Hoover et al., 2000), (Gang et al., 2002),
(Chaudhuri et al., 1989), (Zhang et al., 2010), (Al-Rawi et al., 2007), are based on
the convolution of the two dimension kernel of the Gaussian or its derivatives with
the retinal image. The segmentation of blood vessels in these methods carry out by
convolving the retinal image with matched filter rotated in the several direction, with
recording the maximum response of each pixel. There are three important properties
which must be assumed to design the matched filter kernel; vessels may be
approximated by piecewise linear segments, the diameter of the vessels decrease as
they move outward from the optic disc and the intensity of a vessel can be
approximated by a Gaussian curve. This method requires several convolution kernels
which are applied in the several rotation for capturing different features in the image
and also specifying the standard deviation parameter of Gaussian function is an
important task in these methods. Moreover, the number of incorrect responses may
increase by using different kernels due to the presence of pathologies and retinal

background variation which have same features as the vessels.

Morphological image processing is a technique based on mathematical operations.
Structure elements were applied to the image by morphological operators. The
important point that should be noticed is that the image which is processed by the
morphological operations must be a binary image. There are several important
morphological operations such as dilation, erosion, closing and opening. Dilation
expands the objects, erosion shrinks the objects, closing is a dilation followed by an
erosion and opening is the erosion followed by a dilation. Mathematical morphology
operations are firstly used for enhancing the retinal blood vessels and then by
combination with curvature evaluation (Zana, & Klein, 2001) and matched filtering
for line detection (Mendonca, & Campilho, 2006), (Fraz, & Owen, 2012), is
deployed for retinal vessel segmentation. These methods have the advantages of
speed and resistance to noise. On the other hand, the disadvantage of these methods
is that they do not exploit the known vessel cross-sectional shape. Moreover, the use
of inappropriate structure element may cause difficulty in fitting to highly tortuous

vessels.
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Other unsupervised method based upon scale space analysis is also multi-scale
approach techniques, for instance, Martinez et al. (2007), proposed a multi-scale
based method for measuring the width, size and orientation information of retinal
blood vessels using the first and the second derivative of the intensity along the scale
space which give information about the topology of the image. Frangi (1998)
introduced the multi-scale method based on the multi-scale second-order local
structure of an image, Hessian. A vesselness measure is obtained on the basis of

eigenvalue analysis of the Hessian.

Model based approaches are classified in three categories; vessel profile models,
active contour models and geometric models. Vessel profile models, (Li, Bhalerao, &
Wilson, 2007), (Narasimha et al., 2007), based on the structure of the vessels. For
instance, vessel cross-section intensity profiles approximate a Gaussian shape or a
mixture of Gaussian in the case of central reflex in blood vessels. There are also
other profiles such as second order derivative Gaussian and the cubic spline which
can be replaced. Moreover, there are more complex profiles include the non-vessel
features like bright or dark lesions and other background features which increase the
accuracy of the segmentation. Active contour models, (Al-Diri, Hunter, & Steel,
2009), known as snakes are the curves defined within an image domain that can
move under the influence of the internal forces within the curve itself and external
forces derived from the image data. The corresponding snake will conform to
different features within an image due to the external and internal definition. The
internal forces give tension and stiffness features to the behavior of the snake and the
external forces are fixed by a supervised process or human user. Geometric models,
(Sum, & Cheung, 2008), are performed by especial algorithms known as level-based
numerical algorithms. These algorithms are numerical methods for tracking
interfaces and shapes.

Supervised methods called pixel feature classification methods are machine
learning techniques that assign labels, vessel or non-vessel, to each pixel. Pixel
feature classification methods utilizing ground truth data usually consist of two

stages: feature extraction and classification. In the first stage different kind of
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features of each pixel and its neighborhood such as, Gabor wavelet (Soares et al.,
2006), line operators (Ricci, & Perfetti, 2007), vesselness (Frangi et al., 1998), is
extracted for further processing. In the next stage, classification stage, each pixel is
classified as a vessel or non-vessel using different kind of classifiers or multi-
classifiers such as, multilayer neural network (Sinthanayothin et al., 1999), support
vector machine (SVM) (Ricci, & Perfetti, 2007), random forest (Cheng et al., 2014),
bagging and boosting (Fraz, & Barman, 2012), Bayesian (Soares et al., 2006).
Classification stage itself consists of two distinct parts: training, learning, and testing.
The algorithm is statistically learned to correctly classify pixels from known
classifications in the training stage. Then in the next stage, testing, the algorithm
classifies previously unseen pixels. For proper assessment of supervised
classification method functionality, training data and performance testing data sets

must be completely disjointed (Abramoff, Garvin, & Sonka, 2010).

According to the literature, there are different kinds of supervised methods to
segment blood vessels. Soares et al. (2006) utilized supervised classification method
for detecting the blood vessels in retinal fundus images by applying different scales
of two dimension complex Gabor wavelet in the feature extraction stage and then a
Bayesian classifier was used in classification stage. Ricci et al. (2007) proposed a
computationally simple but more effective supervised method by using two line
operators which have been modified to take into account the peculiarities of retinal
vessel structures for computing the feature vectors, while a linear support vector
machine (SVM) was chosen as a classifier. Fraz et al. (2012) performed multi feature
analysis using the features such as; gradient orientation analysis, morphological
transformation with linear structuring element, line strength measures and Gabor
wavelet response which encodes information to successfully handle both normal and
pathological retinas with bright and dark lesions simultaneously. They used
supervised method for the segmentation of blood vessels by a multi-classifier of
boosted and bagged decision trees. Lupascu et al. (2010) also performed multi-
feature analysis using a feature vector containing 41 features obtained at different
scales to train a classifier which was then applied to the test set. All of these features

in further processing were used for classification using an Ada boost classifier. Staal
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et al. (2004) used a system that is based on extraction of image ridges as feature,
which coincide approximately with vessel centerlines and then the corresponding
features were used for classification using a k-nearest-neighbor (KNN) classifier.
Cheng et al. (2014) used a supervised method for the segmentation the blood vessels
by extracting a set of features and applying local context path to some of them for
creating the hybrid feature vector. As a result of the feature extraction more than 200
features were extracted and then a random forest classifier by taking advantage of its
strong discriminative power and its flexibility of fusing heterogeneous features was

used for classification stage.

2.5 Retinal Vessel Width Measurement Algorithms

Accessing the accurate value of blood vessels width is one of the ultimate goal of
the retinal blood vessel analysis due to the diameter changes in retinal blood vessels
are important factor of presence of many diseases such as plus diseases, diabetic
mellitus and cardiovascular diseases, as described in section 1.2. According to the
literature, there are many different methods for measuring the diameter of the retinal
blood vessels which most of them based on the idea of measuring a vessel

perpendicular to its local longitudinal orientation.

Brinchmann-Hansen et al. (1986) introduced a method called Full Width Half
Maximum (FWHM) for measuring blood vessel width from an intensity profile
orthogonal to a retinal blood vessel. FWHM method is based on the recognizing the
minimum and maximum intensity levels on either side of initial estimated mid-point
of the profile. Using the mean value of the maximum and minimum points on the left
and right side of the profile the half maximum is determined. The width is then
estimated by measuring the distance between the half maximums. Another method
which is proposed by Gregson et al. (1995) consists of a rectangle profile with a
fixed height that is fitted to the profile data. In order to measure the value of the high
of the corresponding rectangular the minimum value of the intensity subtracted from
the maximum value of the intensity. The width of the rectangular profile is then

manipulated until the area under the rectangular profile is equal to the area under the
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profile data. Lowell et al. (2004) proposed an algorithm for measuring retinal blood
vessel width by fitting a two-dimension model on green channel of original RGB
fundus retinal image. The corresponding method looks like an idealized cross section
profile running along the length of the vessel in a small region. Al-Diri et al, (2009)
introduced a technique for segmentation and measurement of retinal blood vessels
based on the Ribbon of Twins active contour model which two pair of contours were
used to achieve each vessel edge. Most recently, an algorithm is proposed by Nguyen
et al. (2013) to segment retinal blood vessel and measure the diameter of segmented
blood vessels. In the corresponding method after segmentation of the retinal blood
vessels obtained, the pair of edge points around the specific center point identified.
The distance between these two edge points is considered as a vessel width at the

corresponding center point.

2.6 Retinal Vessel Tortuosity Measurement Algorithms

According to the recent developments in medical image processing techniques,
several features in retinal vasculature have identified. One of these important features
Is retinal vascular tortuosity. Normal retinal blood vessels are straight, however, they
became tortuous in the presence of several diseases such as, plus diseases as referred
in section 1.2. With regarding the literature, there are several different methods for

measuring the retinal vasculature tortuosity.

The simplest and the most widely utilized method, known as arc length over chord
length ratio, is firstly proposed by Lotmar et al. (1979) for measuring the vessel
tortuosity. This method provides a simple measurement under the assumptions that
the non-tortuous vessels are straight line and the radius of curvature is much larger
than the chord. Hart et al. (1997, 1999) proposed a number of methods for tortuosity
measurement includes the integral of the absolute curvature, squared curvature
integral, the ratio between the absolute curvature integral (or the squared curvature
integral) and chord length (or vessel length). Mean direction angle change is a
method that is proposed by Chandrinos et al. (1998). This method is based on the

local direction variation of the vessel. Goh et al. (2001) introduced a method based
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upon the local direction variation called absolute direction angle change for measure
vessel tortuosity. In this method the local direction change is measured for each
center point of a vessel and the tortuosity then is computed as the number of times
the corresponding angel at each center point is above the fixed threshold. Inflection
count metric method for measuring the tortuosity of vessel is proposed by Bullitt et
al. (2003). In the corresponding method, Bullitt et al. (2003) claimed that the Lotmar
et al. (1979) method may not distinguish between the smoothly curved vessels and
vessels that have abrupt changes in their directions. Therefore, a new method based
on the number of inflection points (twists) is proposed to overcome the
corresponding problem. Grisan et al. (2008) proposed a semi-automated method
system to grade tortuosity of retinal vessels. The corresponding method is based on
partitioning each vessel in segments of constant-sign curvature and then combining
together each evaluation of such segments and their number. Most recently, an
algorithm based on the chain code called slope chain code (SCC) was proposed by
Bribiesca (2013). In this method, the SCC of a curve is measured by placing straight-
line segments of constant length around the curve and calculating the slope changes

between contiguous straight-line segments scaled to a continuous range.
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CHAPTER THREE
RETINAL VESSEL SEGMENTATION

3.1 Overview of Proposed Method

According to the literature, the important point that should be referred is that
supervised methods for retinal vessels segmentation in contrast to unsupervised
methods are time-consuming and computationally expensive since different kinds of
feature extraction methods and complex classifiers are used for extracting blood
vessels. But interesting results have been obtained by pixel classification based on
supervised learning on the other hand. The results of blood vessel segmentation in
supervised methods in most cases are more accurate than unsupervised methods.
Nonetheless there are a number of supervised methods for retinal blood vessel
segmentation, automatic segmentation of blood vessels remains as a challenging task
due to the presence of numerous problems such as, the variation in vessel
appearance, shape and orientations, the low contrast between vasculature and
background, the presence of noise, large abnormal regions due to the presence of
lesions, exudates and other pathological regions (Ricci et al., 2007). Therefore, it is
hard to use a single feature and to address all of these problems.

In this work, we present a supervised method that is based upon the multi-feature
analysis of retinal images and using an ensemble random forest (RF) classifier
(Breiman, 2001) for retinal blood vessel segmentation. In this section, the summary
of the method will be briefly explored. We treat vessel segmentation problem as a
pixel feature classification task, in which the most probable class of an unknown
pixel, described by a set of its features, is inquired to a machine learning system
trained to assign class labels to image pixels. In the first stage of such a method, a
feature vector, consisting of different types of strong features, for each pixel in an
input image is extracted. The idea behind constructing such a hybrid feature vector is
to fuse supportive and complementary local information, provided individually by a
set of distinguished feature extraction algorithms, from image data. In the next stage,

classification, two classes are considered for each pixel, vessel or non-vessel. A

22



training set including the pixels that are manually labeled through observation is
lined up for the learning stage of the classification. Then, for measuring the
performance of the classifier and also for achieving the segmentation of blood
vessels in unseen data, a test set is applied to the classifier. We select the RF
classifier because of its acknowledged advantages in image analysis applications
Figure 3.1 depicts our method in a supervised classification framework

» Feature Extraction

Classifier

Testing 8 Training ) 8 Train Data Test Data

Figure 3.1 General framework of the proposed method for retinal vessel segmentation.

In the following sections, first the different kind of features of each pixel is
individually described and then the details of RF classifier algorithm are presented.
Consequently, the experimental evaluation of proposed method and a brief

conclusion are given in the next sections.

3.2 The Feature Vector

The feature vector containing the quantifiable measurement for each pixel is
presented in order to increase the classifier successfully. We have used a
heterogeneous set of features to create a robust feature pool. The seventeen

dimension feature vector was used which includes the intensity (one feature),
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vesselness measure (one feature), morphological transformation (one feature), multi-
scale Gabor wavelet (thirteen features), B-COSFIRE filter (one feature). We describe

in the following subsections each component of the feature vector.
3.2.1 Intensity Feature

As described in section 2.2, all of the images in both DRIVE and STARE
databases are color images represented using the RGB color space. Therefore, each
image consists of three scalar valued images; the red, the green, and the blue. Figure
3.2 illustrates the grayscale version for each RGB components. It can be observed
that the blood vessels are darker than background in green change than red and blue

ones which make the green channel suitable for the purpose of detection of blood

(d)

Figure 3.2 Grayscale representation of image 0082 of the STARE database (second row) and image 05
of DRIVE test dataset (first row). a) original RGB images b) the R ¢) the G d) the B. It should be

noticed that blood vessels have negative contrast all individual channels.

vessels.

@) (b) (©

Several methods and algorithms have used the G component for analysis since it
provides the best vessel-to-background contrast among the R and the B component.

However, it can be claimed that there is still useful information in the G component.
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Despite the intensity is an important feature, the enhancing algorithm called contrast
limited adaptive histogram equalization (CLAHE) (Pizer et al., 1987) is applied to
increase the contrast of blood vessels. CLAHE is a window based enhancement
technique which partitions the image into regions and applies the histogram
equalization to each one. This process is commonly used as a preprocessing step in
most of the analysis of retinal images (Azzopardi et al., 2015) for the improvement
of local contrast by avoiding the over-amplification of noise in relatively
homogeneous regions. By applying the CLAHE to the intensity image, both bright
and dark regions are contrast-enhanced equally well as can be seen in Figure 3.3. In
this work, a window size of 8x8 pixels is used. The point that should be referred is
that the intensity image enhanced by CLAHE is inverted before using as a feature for

further processing.

(@) (b) (©

Figure 3.3 Contrast enhanced images using CLAHE method, first row image 05 from DRIVE
database and second row image 0082 from STARE database. a) original RGB images b) intensity
images c) images after applying CLAHE method.

3.2.2 Multi-scale Gabor Wavelet

Gabor wavelet is one of the most important filters that is widely used for multi-
scale and multi-directional edge detection. In this thesis, we used multi-scale Gabor
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wavelet transformation to enhance vessels contrast and filter out the noises. Before
extracting Gabor wavelet responses, a preprocessing method including two step is
carried out as following. As the first step, the image extending algorithm introduced
by Soares et al. (2006) is implemented for removing the border effect of retinal
fundus images and reducing the false detection of Gabor filters. This algorithm starts
with a region of interest (ROI) specified by the camera’s aperture and iteratively
grows this ROI. Firstly the set of pixels of exterior border of the ROI is selected,
pixels that are outside of the ROl and are neighbors (using four-neighborhood) to
pixels inside ROI. Then, the value of each pixel in the corresponding set is replaced
with the mean value of its neighbors (using eight-neighborhood). This process is
repeated and it can be seen that the ROI is increased as shown in Figure 3.4. As a
second step in the preprocessing stage, for increasing the contrast of the blood
vessels and the response of the Gabor wavelet filters, the CLAHE algorithm which is
explained in section 3.2.1 is applied to the extended image. The result of the CLAHE

algorithm can be seen in Figure 3.4.

.

(a) (b) ()

Figure 3.4 Fundus image preprocessed for removing border effects and enhancing the blood vessels,
first row image 05 from DRIVE database and second row image 0082 from STARE database. a) the
green channels of colored fundus images b) images with extended border c) the result of applying

CLAHE method on extended images.
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The Gabor wavelet filter used in our method can be expressed as below;

XI2 + 2y . XI
9(X; 2,0,0,7) =exp(-=—L L yexp(j27 )
20 A

X = xcos(8) +ysin(6) (3.1)
y =—xsin(8) + ycos(6)

Where x = (x,y) is a 2-D point, A represents the wavelength of the sinusoidal
factor, @ is the angle of the normal to the parallel stripes of a Gabor function, o is

the standard deviation of Gaussian envelope and y is the aspect ratio that depicts the

elliptic shape by which the Gabor function is supported. The ratio o/, denoted by
b, is known as the bandwidth of the Gabor filter. Then, our Gabor filter is
parameterized as G(L;A,0,b,») . With regarding to each pixel position and
considered scale value (1,b,) , maximum response of real, imaginary and

magnitude over all orientation was extracted as features as follows;

M°(X;A,b,y)=arg max|G°(X;|/1,¢9, b,;/)” (3.2)
OcA

Where A={k7r/18, k :0,...,17}, determined with a relatively small angle step size
for a better match to any arbitrary orientation of a vessel point at which the filter is
applied, Ce{r,i,m}, and G", G', G™ are real, imaginary and the magnitude
components of G(X;A4,0,b, ). Therefore, a Gabor filter bank consisting of multiple
scales is applied to the retinal fundus images. The value of the parameters that are
specified in our method include, b {1}, 1€{2,4,6,8,10,12}, y €{0.25,0.5,0.75}

. So this combination results in 1x6x3=18 different configurations of the filter, and a
54-D Gabor feature vector, considering the real, imaginary and magnitude parts of
the filter response. The extended image is inverted before the application of wavelet
transformation to it, so that the vessels appear brighter than the background. Such a
representation provides positive contrast for the blood vessels, which is required by

the Gabor filters used for filtering. An example of Gabor filter response for
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b=1, 2=6, »=0.50 can be seen in Figure 3.5. The important point that should
be noticed is that after applying Gabor filter to the extended image, the

corresponding image is converted the same size of ROI.

) (b) (c)

Figure 3.5 The Gabor filter response, first row image 05 from DRIVE database and second row image
0082 from STARE database. a) extended image of green channels b) extended image is inverted

before applying Gabor filter c) the cropped image of Gabor filter response for scales

b=1 A=6, »=0.50.

According to the high dimensionality of the Gabor feature vector for each pixel,
54-D, a feature selection algorithm, correlation-based feature selection (CFS),
introduced by Hall et al. (1998) is used as the post processing step to select a subset
of features that are highly correlated with the corresponding class. As a result of
applying this feature selection algorithm, 13 out of 54 number of features are
selected as the best subset for further processing. The interesting point is that all of
the features selected by corresponding feature selection algorithm are related to the
real part of Gabor filter response. Among the real parts of all responses, a subset

specified in Equation (3.3) is also excluded. The feature subsetwm,, selected for our

method, from the entire Gabor filter responses is given by;
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{Ms(x;ﬂ,b,y)={Mr(X;/1,1,7)|(1,7)‘7E B} (33)

B={(2, 0.25),(2, 0.5),(2, 0.75),(4, 0.25),(4, 0.75)}

3.2.3 Vesselness Measure

This is a measure, first proposed by Frangi et al. (1998) based on the eigenvalues
of Hessian matrix computed at every pixel in an image. Vesselness measure provides
a good enhancement of vessel-like structures in images, using a scale space analysis

with Gaussian kernels. The Hessian matrix of image at each point |(x,y)can be

calculated by formula below;

o o
ox> oxoy | |l |
H X, v _| Xy (34)
(x,y) o2 ﬂ Lyx |y}
oxoy  oy*

Which contains partial derivatives computed by convolving the image | (X, y)
with the first derivatives of a Gaussian kernel. The 2-D vesselness measure is defined

by below formula;

0 A, >0
V, = R? s? : (3.5)
exp(—=)(L-exp(-— otherwise
Pl 7)o )
Where R; is the ridgeness score and can be computed by A, and A, |

eigenvalues of the Hessian matrix in predefined order |4,| <|4,|, in such a way that

R; =4,/ A4, and S is the Frobenius norm of the Hessian matrix;

S=|H|, =L +2L + ) = A + 2 (3.6)
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In Equation (3.4), c is equal to half of the maximum Frobenius norm of the
Hessian over all Frobenius norms computed on the entire image and we assume

£ =05 as Frangi et al. (1998). In the regions containing vessel like structures in an

image, the norm value becomes larger compared to the background since at least one
of the eigenvalues in those high contrast regions will be large. Because of this fact,
the norm of Hessian is used to distinguish between vessel pixels from background.
Although the vesselness measure in Equation (3.5) is analyzed at different scales, by
varying the spread of Gaussian filter within a range, we select to compute the
measure at an optimized single scale. As the number of scales increase, the multi-
scale vesselness analysis tends to give a rise in false detections (spurious vessel
pixels) in the background region of retinal images. We fix the value of the scale
factor in Gaussian filter at 1.5 for both DRIVE and STARE dataset. The example of
application of vesselness measure for inverted green channel of colored retinal

fundus images can be seen in Figure 3.6.

(@) (b)

Figure 3.6 Applying vesselness method on retinal fundus images, first row image 05 from DRIVE
database and second row image 0082 from STARE database. a) inverted green channel of colored

images b) vessel enhanced images using vesselness measure method.
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3.2.4 Morphological Transformation

Morphological top-hat transformation is one of the most important morphological
operations and is generally used as a powerful tool in image processing for noise
reduction and extracting useful and meaningful information in small regions of
images. Structuring element plays an important role in the operation of
morphological top-hat transform. For instance, in a blood vessel enhancement
application, if a structuring element is not oriented at a suitable angle or is not large
enough, a vessel or part of it can be eradicated by the transform. A linear structuring
element is rotated at incremental angles through an arc of 180 and the obtained set is
applied to image in the morphological opening operations of the top-hat

transformations. Morphological top-hat transform is defined by;
ly=1-(1 0S,) (37)

Where | is the image to be enhanced, | is the top hat transformed image, S’ is

the structure element, o is the morphological opening operation and & is the
angular rotation of structure elements for morphological opening. A sum of these
top-hat transformed images, defined by Equation (3.8), can brighten all of the vessels
regardless of their orientation, width, length, and tortuosity as long as the length of

the structuring elements is larger than the vessel with the largest diameter.

I, =2 la (3.8)

OeA

A linear structuring element with 21 pixel long (taking into account the diameter
of the largest vessel in the databases) and 1 pixel wide, and the rotation at an angle
spanning [o, ~] in steps of /8 are selected for opening operations as suggested by
Fraz et al. (2012). Therefore, in Equation (3.8), A can be defined as
{kz/8, k=04,...,7} . The same parameters of the morphological top-hat
transformation as referred to above are valid for both DRIVE and STARE datasets.
The important point that should be noticed is that the corresponding morphological

operation is applied to the green channel of the colored fundus images. The result of
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this operation on green channel of colored retinal fundus images can be seen in
Figure 3.7.

(a) (b)

Figure 3.7 Morphological transformation on retinal images, first row image 05 from DRIVE database
and second row image 0082 from STARE database. a) the inverted green channel of colored images

b) images after applying morphological operation.

3.2.5 B-COSFIRE Filter

Azzopardi et al. (2015) propose a bar-selective combination of shifted filter
responses (B-COSFIRE) to detect bar-shaped patterns in digital images. They
successfully detect retinal blood vessels in fundus images by applying their B-
COSFIRE filters configured for a prototype bar pattern. A B-COSFIRE filter can be
configured to achieve orientation selectivity by multiplying outputs of a group of
Difference-of-Gaussians (DoG) filters, whose responses are aligned collinearly.
Symmetric and asymmetric B-COSFIRE filters that are selective for bars and bar-

endings, respectively, can be configured (Azzopardi et al., 2015) and it is reported
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that the best performance can be obtained by summing responses of symmetric and
asymmetric B-COSFIRE filters.

Azzopardi et al. (2015) utilized an appropriate DoG filter for detection of intensity

changes of retinal images. The corresponding filter is defined by,

2 2 2 2

Yy XY
2 ) 27(0.50)° Xt 2(0.50)2)

DoG(x,y) = > ! > exp(- X

3.9
o 20 (39)

Where O is the standard deviation of the Gaussian function. The response
C, (x,y) of a DoG filter to an image (X, Y) is obtained by convolving the image
with DoG(x,y) followed by negative values suppression (setting negative
responses to zero). Figure 3.8 shows how to configure a B-COSFIRE filter to detect
a vertical bar (or vessel) as prototype pattern. When the DoG filter responses
c,(x,y) along a number of concentric circles around the center point (denoted by ‘1’
in Figure 3.8) of a B-COSFIRE filter are considered, significant responses to
dominant intensity changes exist at the points labelled from ‘1’ to ‘5’ (assume a
circle of zero radius at the center). The positions of such are points are gathered in a
set S={(p;,#)|i=1...n} where n denotes the number of considered DoG filter
responses while p; and ¢; represent the polar coordinates with respect to the
center point. For the example in Figure 3.8,
S ={(0,0),,(2, 7/2),,(2.37/2),,(4, z/2),.,(4,37/2);} Where each subscript denotes
the label of the point for which its position is included in S. This configuration
process provides a B-COSFIRE filter that is selective for the collinear alignment of

significant intensity changes such as vessel-like patterns in an image.
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Figure 3.8 Configuration of a vertical bar-selective B-COSFIRE filter. The points with strongest DoG
responses along the circles of given radii are labelled by numbers. The filter center point is denoted by
13 1 "

The output of the B-COSFIRE filter at the center points is computed by using the

DoG filter responses in the positions in S. The responses in positions (p;, ) are

brought into the center point after the DoG filter responses are blurred to allow for
some tolerance in the position of the concerned points. The blurring is performed by
taking the maximum value of the weighted DoG filter responses in a neighborhood

of each position (p;,#,) . For the weighting, a Gaussian function G_.(x,y) with
variable standard deviation o' is used, such that ¢’ = o, + ap;, Where o, and a are

constants. The blurred and shifted (to the center point) DoG filter response

Sp.d (X,Y) in each position (p;, ¢.) is defined by,

S5 (6 Y) = M| €5 (X =A% =X,y =AY = y) G, (X, Y)]

(3.10)

Where —3c’ < x’,y’' <30’ while the required shift values Ax, =—p, cosg and

Ay, =—p;sing . The weighted geometric mean of all the blurred and shifted

responses S, 4 (x,y) yields the output r (x,y) of the B-COSFIRE filter:

1

s (x y>=‘(H?1<spi,¢. o) 7

(3.12)

t
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Pi
L =EXP—— 12
; = exp( 202) (3.12)
L1
¢ =3 maxip) (3.13)

The operator ||t represents thresholding the weighted geometric mean at a

fractiont (0 <t <1) of its maximum value. The weighting allows the contribution of

the blurred and shifted responses to decrease with an increasing distance from the
center point of the B-COSFIRE filter.

A B-COSFIRE filter requires as many blurred DoG filter responses as the number

of unique p, values used in the configuration of the filter. For the given

configuration in Figure 3.8, only three blurred responses (images) are computed

using the Gaussian functions with o] = o, o), = 6, +2a, and o} = o, + 4« . Then,

each of the five (n=5 in Figure 3.8) different responses S, 4 (X,Y) are obtained by

choosing the corresponding blurred response and shifting it by (Ax; , Ay, ) .

Rotation invariance of a B-COSFIRE filter is achieved by considering rg (X, Y)

outputs obtained from a set of configurations for bar prototypes oriented at angles

spanning from 0 to 7. In order to detect bars at any arbitrary orientation 6, , a new

set R, (S) is generated from S by,
Ry, (5)=1{(1, 4 +6.)1¥(p1. 4) € S} (3.14)

The weighted geometric mean of the blurred and shifted responses Is, (X, y) for
orientation ¢, is obtained in the same manner as explained above for rq(x,y) except
that the new set Ry (S) is used instead of S. The set of shift vectors (Ax;,Ay;)

essentially only differ in computing a new response for a different orientation of the
bar. In implementations, 12 angles with equal intervals are used so that

0, ={kx112|0<k <12} . Thus, rotation invariant response fs(x,y) of a B-
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COSFIRE filter can be obtained by taking the maximum responses fs (X,Y) for

k={0,1,..,11} at every position (x,y).

Figure 3.9 Configuration of an asymmetric vertical bar-selective B-COSFIRE filter. The center point

of the filter lies on the end of the line.

A B-COSFIRE filter gives much lower response at bar endings than the response
that is obtained in the middle of bar. This drawback is overcome by configuring a
new B-COSFIRE filter by the prototype bar ending shown in Figure 3.9. The filter
center point this time settles on the end of the line and this filter is called asymmetric
B-COSFIRE filter in contrast to symmetric B-COSFIRE filter that is described
previously. An asymmetric B-COSFIRE filter is much more responsive at the end of

a vessel.

We use the summation of responses of symmetric and asymmetric B-COSFIRE
filters as a feature in our method. The responses are obtained from the retinal images
by setting the parameters (o, o, , @, p;, and t) of both symmetric and asymmetric B-
COSFIRE filters as suggested in [28] for the DRIVE and STARE databases. An
example of B-COSFIRE filter response can be seen in Figure 3.10.
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(@) (b)

Figure 3.10 B-COSFIRE filter response on retinal images, first row image 05 from DRIVE database
and second row image 0082 from STARE database. a) inverted green channel of colored images b)

images after applying B-COSFIRE filter.
3.2.6 Feature Normalization

We have applied the normal transformation known as mean and standard
deviation normalization to each feature in such a way that each feature is normalized
by its own means and standard deviations which help to compensate for inherent

variation between images such as illumination.

For achieving the new variables with zero mean and unit standard deviations in
order to reduce the errors in the classification process, the normal transformation is

applied to the feature space which is defined in below formula.

. V. — UL
v = £ (3.15)

O;
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Where V; isthe i" feature, 44 is the average value of thei™, and O; is the

standard deviation.

3.3 Ensemble Classification

Ensemble learning methods are an approach used to improve the performance of
learning. The main principle of ensemble learning methods is the combination of the
weak group of learners to create a strong learner for solving particular machine
learning problems. The most important advantages of using ensemble systems are the

reduction of variance and an increase in confidence of the decision.

Random forest (RF) is an ensemble method that is very suitable for nonlinear
classification in high dimensionality space. RF classifier is based on a learning
technique known as decision trees with each tree is constructed via some randomized
configuration. The advantage of this randomized configuration is that firstly it makes
the classifier very flexible when a large number of heterogeneous features are
available since it choose only a subset of features in each tree node. Secondly it
makes the classifier useful if there is a huge number of samples available in training
stage by selecting a random subset of whole training dataset in each tree. Other

benefits of using RF is the easy selection of parameters and the training time is fast.

According to the fundamental of decision trees, there are two different types of
nodes in each tree: leaf node which encodes the class distribution for samples that
reach it and internal nodes which perform the binary test to split the samples to its
child node. The splitting process continuous until a leaf node is reached. A stump can
be used to select the best threshold to split samples for minimizing the miss-
classification error. The important point that should be noticed is that at each leaf
node the posterior probability is learned as the proportion of the training samples
labeled as vessels at the corresponding leaf node. In the testing step, the feature of
each pixel is first fed into the root of each tree and then it follows the splitting rule

until it reaches a leaf. Each tree returns a posterior probability that x belongs to a
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vessel. The mean of leaf distributions from all trees is used for the final decision.
Specifically, the probability that x is a vessel pixel is estimated by:

Pr(vessel | x) = Tii p, (vessel | ¢(x)) (3.16)

t=1

Where P, is the output from the t™ tree, T is the number of trees in the forest and

#(x) is feature of a pixel x.

The parameters of RF can be manipulated to achieve the best result of
performance. These parameters include; the number of trees, the training dataset
sample size for building each decision tree and a number of random features which

determine the partitioning of the training dataset at each node.
3.4 Experimental Evaluation

The proposed method has been evaluated using two groups of the online available
database, DRIVE and STARE. For measuring the performance of the algorithm,
several metrics is measured such as sensitivity, specificity, accuracy, positive
predictive value and area under ROC curve. The detail of the metric is described in

section 2.3.
3.4.1 Implementation Detalil

As described in section 2.2, DRIVE database consists 40 images that are divided
into two subsets, training set and testing set. The training set which includes 20
images was used to train the classifier such a way that 300,000 samples, pixels, were
randomly selected from corresponding images, 15000 per image. The performance of

the proposed method for blood vessel segmentation is measured on the testing set.

Because of the STARE database which includes 20 colored retinal images does

not have any separate training and testing sets, different kinds of methods were
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utilized to implement the classifier training and testing stages, for instance, Ricci et
al. (2007) and Cheng et al. (2014) randomly selected 0.5% and 6% of samples of the
entire dataset for training the classifiers and for performing the test stage, all of the
images with entire pixels was used. Soares et al. (2006) and Staal et al. (2004)
implemented leave-one-out algorithm in this dataset in such a way that every image
is classified by using samples from the other 19 images. We followed the method
that is implemented by Ricci et al. (2007) on this dataset. We used 60,000 manually
segmented pixels which are randomly selected form 20 images, 3000 per image, for
training the classifier on this dataset. Due to the small size of training set, 1% of the
entire dataset, the performance was evaluated on the whole set of 20 images. The
important point that should be referred is that the only pixels located inside the FOV

was used for all of processing.

A Random forest classifier was constructed for classification using 150 decision
trees in which each decision tree is of depth 15 and built in parallel fashion and also
5 out of 17 features are randomly selected to train an internal node. The output of
classifier is a vessel probability map obtained by the voting of all the trees.
Accordingly, a simple threshold (0<T, <1) is applied to the probability map for
achieving the vessel segmentation. For measuring the performance of results as a
further process, the value of threshold must be the same for all images in each
dataset. We selected the optimal threshold value for both DRIVE and STARE as

T, =0.60.

3.4.2 Vessel Segmentation Results

Binary vessel segmentation image is obtained by threshold the probability map
image. All of the performance metrics are computed regarding the first human
observer as ground truth. Performance results for individual image in each database

can be seen in Tables 3.1 and 3.2.
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Table 3.1 Performance results on DRIVE database images. The best case, the worst case and the

average value of metrics is highlighted.

Image SN SP ACC AUC
1 0.7965 0.9759 0.9524 0.979
2 0.8035 0.9795 0.9531 0.979
3 0.7106 0.9760 0.9374 0.960
4 0.7653 0.9824 0.9535 0.964
5 0.7524 0.9816 0.9505 0.960
6 0.7227 0.9799 0.9436 0.958
7 0.7308 0.9827 0.9494 0.959
8 0.6814 0.9807 0.9431 0.959
9 0.7540 0.9805 0.9539 0.967
10 0.7477 0.9802 0.9524 0.966
11 0.7350 0.9800 0.9482 0.958
12 0.7698 0.9762 0.9504 0.970
13 0.7439 0.9777 0.9445 0.965
14 0.7808 0.9761 0.9530 0.976
15 0.7766 0.9800 0.9589 0.972
16 0.7553 0.9832 0.9533 0.975
17 0.7134 0.9806 0.9476 0.961
18 0.7424 0.9820 0.9544 0.974
19 0.8302 0.9878 0.9688 0.982
20 0.7789 0.9798 0.9584 0.980

Average 0.7545 0.9801 0.9513 0.9682
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Table 3.2 Performance results on STARE database images. The best case, the worst case and the

average value of metrics is highlighted.

Image SN SP ACC AUC
1 0.7640 0.9661 0.9441 0.971
2 0.6593 0.9861 0.9562 0.963
3 0.7006 0.9850 0.9618 0.974
4 0.6868 0.9833 0.9531 0.968
5 0.6547 0.9758 0.9362 0.966
6 0.7641 0.9851 0.9657 0.984
7 0.8436 0.9831 0.9678 0.989
8 0.8355 0.9829 0.9679 0.990
9 0.8463 0.9842 0.9694 0.989
10 0.6991 0.9852 0.9538 0.979
11 0.7953 0.9848 0.9662 0.986
12 0.8750 0.9874 0.9763 0.992
13 0.8246 0.9804 0.9614 0.986
14 0.8168 0.9847 0.9638 0.987
15 0.6916 0.9880 0.9548 0.975
16 0.7496 0.9784 0.9464 0.973
17 0.8164 0.9845 0.9638 0.985
18 0.7643 0.9921 0.9762 0.979
19 0.7261 0.9899 0.9743 0.982
20 0.5977 0.9871 0.9516 0.961

Average 0.7556 0.9837 0.9605 0.9789

The best case in DRIVE database includes the values 0.9688, 0.8302, 0.9878, and
0.9820 for the accuracy, sensitivity, specificity, and AUC, respectively, the worst
case measures are, 0.9374, 0.7106, 0.9760, and 0.9600. Regarding the STARE

database, the best case includes the accuracy value of 0.9763, sensitivity, specificity,
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and AUC are 0.8750, 0.9874, and 0.9920. The worst case accuracy is 0.9362,
sensitivity, specificity, and AUC are 0.6547, 0.9758, and 0.9660. Vessel
segmentation result for the best and the worst case in DRIVE and STARE database

are illustrated in Figure 3.11 and Figure 3.12.

@ (b)

Figure 3.11 Segmentation results for DRIVE database, first row: Input images, second row:

segmentation results, third row: first human observer. a) best case accuracy b) worst case accuracy.
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@) (b)

Figure 3.12 Segmentation results for STARE database, first row: Input images, second row:

segmentation results, third row: first human observer. a) best case accuracy b) worst case accuracy.

With respect to Table 3.3, which illustrates average performance measures for
both DRIVE and STARE database, the average value of accuracy and precision rates
incurred by the proposed method are higher than the second human observer in both
databases. The average value of specificity for our algorithm are also higher than the
second human observer for both databases which means that in the proposed method,
few numbers of pixels that belong to the background or pathological regions are

identified as part of a vessel than the second human observer. The average values of
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area under ROC curve for both DRIVE and STARE database are 0.9682 and 0.9789

as illustrated in Figure 3.13.

Table 3.3 Performance measures on DRIVE and STARE database.

Database Segmentation SN SP ACC AUC
DRIVE 2" Human Observer 0.7796 0.9717 0.9464 _
Proposed Method 0.7545 0.9801 0.9513 0.9682
STARE 2" Human Observer 0.8955 0.9382 0.9347 -
Proposed Method 0.7556 0.9837 0.9605 0.9789
1 s = o

0.7

0.65

True Positive Rate (Sensitivity)
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Figure 3.13 ROC curves for DRIVE and STARE database.

False Positive Rate (1-Specificity)

As can be seen in Figure 3.13, the ROC curves indicate that the performance of

proposed method on DRIVE and STARE database is better than the second human

observers.
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3.4.3 Cross Training Result

For measuring the robustness of the proposed method for the training set, the
cross-training method was used in such a way that the classifier trained on STARE
(or DRIVE) database images is tested on DRIVE (or STARE) database images. The
performance metrics for cross-training method were measured and Table 3.4
illustrates the value of these metrics. As can be seen, there is a small decrease for all
of the metrics in both dataset in comparison to the Table 3.3, for instance, the value
of accuracy is decreased from 0.9513 to 0.9496 for DRIVE database since the images
in STARE database are different from DRIVE database.

Table 3.4 Cross-training result on DRIVE and STARE database.

Dataset SN SP ACC AUC
DRIVE (Trained on STARE) 0.7308 0.9740 0.9496 0.9595
STARE (Trained on DRIVE) 0.7453 0.9760 0.9545 0.9719

3.4.4 Comparison to Other Methods

For comparing the performance result of our method with other state-of-the-art
methods, some metrics such as sensitivity, specificity, accuracy and area under ROC
curve were used for evaluating this comparison. Tables 3.5 and 3.6 illustrates the
value of the metrics for both DRIVE and STARE databases regarding the state-of-
the-art algorithms published previously.
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Table 3.5 Performance comparison of vessel segmentation methods on DRIVE database.

No

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Type Method

2" Human Observer

Unsupervised Methods Zana (2001)
Jiang (2003)
Mendonca (2006)
Al-Diri (2009)
Lam (2010)
Miri (2011)
Fraz (2012)
You (2011)
Azzopardi (2015)
Supervised Methods Niemeijer (2004)
Soares (2006)
Staal (2004)
Ricci (2007)
Lupascu (2010)
Marin (2011)
Fraz (2012)

Cheng (2014)

Proposed Method
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SN

0.7796

0.6971

N.A

0.7344

0.7282

N.A

0.7352

0.7152

0.7410

0.7656

N.A

0.7332

N.A

N.A

0.7200

0.7067

0.7406

0.7252

0.7545

SP

0.9717

N.A

N.A

0.9764

0.9551

N.A

0.9795

0.9759

0.9751

0.9704

N.A

0.9782

N.A

N.A

N.A

0.9801

0.9807

0.9798

0.9801

ACC

0.9470

0.9377

0.9212

0.9452

N.A

0.9472

0.9458

0.9430

0.9434

0.9442

0.9416

0.9461

0.9441

0.9559

0.9597

0.9452

0.9480

0.9474

0.9513

AUC

0.8984

0.9114

N.A

N.A

0.9614

N.A

N.A

N.A

0.9614

0.9294

0.9614

0.9520

0.9558

0.9561

0.9588

0.9747

0.9648

0.9682
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Table 3.6 Performance comparison of vessel segmentation methods on STARE database.

No

10.
11.
12.
13.
14.
15.

16.

method is better than the most of the other methods. According to the Table 3.6, it
can be seen that the only method that has better results than the proposed method
with regard to the value of accuracy and AUC is the Cheng et al. (2014) method.
Cheng et al. (2014) used 6% of random samples of entire dataset for training its
classifier in STARE database while we used only 1%. Moreover, the feature vector
that is extracted for each pixel is 17 dimension in the proposed method while Cheng
(2014) used 280 dimension feature vector. Despite the high dimensionality of Cheng

et al. (2014) method, for proving the fact that our method has the better performance

Type

Unsupervised Methods

Supervised Methods

Method
2" Human Observer
Hoover (2000)
Jiang (2003)
Mendonca (2006)
Al-Diri (2009)
Lam (2010)
Fraz (2012)
You (2011)
Azzopardi (2015)
Soares (2006)
Staal (2004)
Ricci (2007)
Marin (2011)
Fraz (2012)
Cheng (2014)

Proposed Method
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SN

0.8951

0.6747

N.A

0.6996

0.7521

N.A

0.7311

0.7260

0.7716

0.7207

N.A

N.A

0.6944

0.7548

0.7813

0.7556

SP

0.9384

0.9565

N.A

0.9730

0.9681

N.A

0.9680

0.9756

0.9701

0.9747

N.A

N.A

0.9819

0.9763

0.9843

0.9837

ACC

0.9348

0.9264

0.9009

0.9440

N.A

0.9567

0.9442

0.9497

0.9497

0.9479

0.9516

0.9584

0.9526

0.9534

0.9633

0.9605

AUC

N.A

N.A

N.A

N.A

0.9739

N.A

N.A

0.9563

0.9671

0.9614

0.9602

0.9769

0.9768

0.9844

0.9789

As can be seen in both Tables 3.5 and 3.6, the value of metrics in the proposed
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than Cheng et al. (2014) method, we evaluate the performance of our method by
using the 6% of entire samples in training stage just like Cheng et al. (2014) method.
And we could achieve the value 0.9650 and 0.9855 for accuracy and AUC which
shows that the proposed method has the higher performance than Cheng et al. (2014)
method. Moreover, the leave one out method is also applied in the STARE database.
As a result of this implementation, we could achieve the values of 0.9579 and 0.9772
for accuracy and AUC metrics which shows that our method has the better result
than Soares et al. (2006) and Staal et al. (2004) method as can be seen in Table 3.6.
Therefore, it can be claimed that the value of accuracy and area under ROC curve
achieved by the proposed method has better results than all of the state-of-the-art
methods in STARE database.

As the Table 3.7 illustrates, in the case of cross-training of classifier our method
has the average value of accuracy higher than all of the other state-of-the-art methods

in both DRIVE and STARE databases.

Table 3.7 Performance comparison of results with cross-training in terms of average accuracy.

Method DRIVE( Trained on STARE) STARE( Trained on DRIVE)
Soares (2006) 0.9397 0.9327
Ricci (2007) 0.9266 0.9464
Marin (2011) 0.9448 0.9528
Fraz (2012) 0.9456 0.9493
Cheng (2014) 0.9384 0.9476
Proposed Method 0.9496 0.9545

In order to compare the performance of proposed method on the pathological
images, 10 images of STARE database that are pathological images, as described in
section 2.2, were used for comparison. The average value of sensitivity, specificity
and accuracy for 10 pathological images were computed. As can be seen in Table

3.8, the average value of accuracy by the proposed method has the highest value than
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other methods which shows that our algorithm is robust in the case of segmentation

of abnormal images.

Table 3.8 Performance comparison of results on pathological images (STARE database).

Method SN SP ACC
2" Human Observer 0.8719 0.9384 0.9324
Hoover (2000) 0.6587 0.9565 0.9258
Soares (2006) 0.7181 0.9765 0.9500
Fraz (2012) 0.7262 0.9764 0.9511
Proposed Method 0.7017 0.9836 0.9573

3.5 Summary

In chapter, we proposed an effective method for the segmentation of the retinal
blood vessels based on supervised learning method. We constructed 17 dimensional
feature vector consisting of CLAHE contrast enhancement feature, vesselness
measurement, morphological transformation, multi-scale response of Gabor wavelet
and also B-COSFIRE filter response which are used for the first time in supervised
learning based methods. Random forest classifier which is very flexible for fusing
the inharmonious features was utilized for classifying each pixel as vessel or

nonvessel pixel.

The proposed method is tested on the two public online available database,
DRIVE and STARE database. The performance of the proposed method was also
compared against more than 15 other methods on STARE and DRIVE dataset
respectively. The results shows that the performance of a proposed method is better
than other state-of-arts methods with respect to the accuracy and area under ROC

curve.
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CHAPTER FOUR
WIDTH AND TORTUOSITY MEASUREMENT OF RETINAL VESSEL

4.1 Overview of Proposed Method

Extraction of retinal blood vessels gives a suitable opportunity to the analysis of
the vascular system directly. There are several important abnormalities of the retinal
related to the vascular system as described in first chapter, for instance, diameter
changes in the retinal vessels according to entire vascular system are associated with
the cardiovascular diseases, A/V ratio, and the unusual changes in diameter along a
single vessel are also one of the important predictors of proliferate diabetic
retinopathy. Moreover, identifying the thin blood vessels and the percentage of them
with regarding the entire vasculature system is an important task for prediction the
diabetic retinopathy diseases. Also, the tortuosity of retinal blood vessels has been
associated with a number of established risk factors for cardiovascular outcomes.
Thereby measuring the diameter and tortuosity of the retinal blood vessels, both
arteries and veins, and analyzing the vessels according to the corresponding metrics
gives significant information about pathology.

In this chapter, we establish an automatic system for measuring the diameter and
tortuosity of the blood vessels in retinal fundus images and analyzing the vasculature
system according to various metrics. The corresponding system includes the three
main stages. In the first stage, the retinal blood vessels extracted using the method
proposed in chapter 3. The following stage is a preprocessing stage which itself
consists of four steps to prepare vessels for further processing. As the last stage, two
important algorithms are utilized for measuring the diameter and tortuosity of retinal
blood vessels. The schematic of the proposed method can be seen in Figure 4.1.
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Figure 4.1 General framework of proposed automatic method for measuring the width and tortuosity

of retinal blood vessels.

4.2 Retinal Vessel Width Measurement

In this section, first the methodology of the proposed method for automatic width
measurement of retinal blood vessels is introduced in the first subsection and
different analysis based on the diameter of retinal blood vessels is presented in the

next subsection.

4.2.1 The Methodology

For measuring the diameter of retinal blood vessels, an initial vessel segmentation
stage is needed to extract the vessel segment profiles. The method proposed in
chapter 3 is utilized to extract retinal blood vessels tree. It is important to be noticed
that all the parameters in the feature extraction stage and classification stage in the
corresponding vessel extraction method are the same as referred previously. As it
was mentioned in section 3.4.1, the output of classifier is a vessel probability map. A
simple threshold must be applied to the probability map for achieving the vessel
segments. The smaller you choose the value of threshold, the more vessels will be
extracted. Therefore, small threshold value is selected in compare to the section 3.4,

in order to extract more thin blood vessels.

With regard to the fact that the diameter measurement algorithm is based on the
vessel center line, after achieving the vessel network in the previous stage, a
preprocessing algorithm includes four steps is applied to the binary image of vessel

network to extract the vessels center lines and make the corresponding network

52



reliable for further processing. In the first step, all of the connected components,
eight connectivity, in the vessel network are identified. It means that the connectivity
between the vessel pixels is identified and the small connected components are then
emitted from vessel network for removing the small false detected regions and the
very small and short blood vessels created in the vessel extraction stage. With regard
to the fact that the method utilized for width measuring is based on the centerline of
the vessels, in the second step, a simple thinning method called morphological
sequential thinning operation (Lam et al., 1992) is applied to the binary image for
achieving the centerline of blood vessels. This operation results in one pixel wide
connected skeletons and piecewise linear skeleton of blood vessels. In the next step,
all of the crossing and bifurcation points in the vessel centerline image are identified
by a simple definition of connectivity of centerline pixels and they are removed for
extracting the vessel centerline fragments. A bifurcation point is defined as a
centerline pixel with three or more connected neighbors. As the last step, the
corresponding vessel centerline fragments image is scanned with regarding the
connectivity of each centerline pixels for finding the end points of each centerline
fragments. An end point is defined as a centerline pixel with only one connected
neighbor. After finding both end points of each fragment in vessel centerline, the
corresponding points is deleted and this action is repeated for five or six times in
order to prevent the interface of the endpoints of different fragments in the further
processing, width measurement. The fragmented vessel centerlines obtained from

this algorithm are illustrated in Figure 4.2.

After achieving the vessel centerline fragments image in the preprocessing stage,
one of most popular method introduced by Nguyen et al. (2013) is utilized for
measuring the diameter of retinal blood vessels. According to the literature, there are
several methods for measuring the diameter of blood vessels in retinal fundus
images. In this work, Nguyen et al. (2013) method is used since this algorithm is
very simple and more precise than other methods with regarding the results in the
corresponding paper. The proposed method by Nguyen et al. (2013) is based on the
vessel edges and vessel centerline in such a way that a pair of edge points is

identified at a specific center point that the distance between the corresponding edge
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points represents the vessel width with regarding the specific center point. The
simple algorithm is introduced for extracting the edge image of vessels. After
extracting the vessel network in the first stage, the corresponding image is scanned
with regarding the connectivity of each vessel pixels for finding the edge pixels of
vessels. An edge point is defined as a vessel pixel with at least one non vessel pixel
in eight neighborhood. Figure 4.3 illustrates an example of edge detection.

(d) (€) ()

Figure 4.2 Fragmented vessel centerlines obtained in preprocessing stage. a) cropped region from
original RGB image b) vessel network tree extracted by proposed method in chapter 3 ¢) removing
small connected component d) the result of applying the thinning algorithm e) identifying the crossing
and bifurcation points specified by red points and deleting them f) identifying the end points in each

segment and deleting them iteratively.

AN

Figure 4.3 Vessel edge detection. a) vessel image after extrction process b) edge image after applying

edge detection algorithm.
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With regarding the vessel centerline fragments image and the vessel edge image,
the Nguyen et al. (2013) algorithm is designed in such a way that at each center
point, all edge points (points in edge image) that are within a certain mask centered
on the corresponding center point are determined. After that, for each edge point, its
mirror point located in the other edge side and forms 180° angle with current edge

point is identified. In order to detect the correct mirror point for all the edge points,

the angle &; is defined for each edge point E; by the vector pointing from the center

point to the corresponding edge point and the vector representing the horizontal line

Is computed. Thereby, an edge point Ej is defined as the mirror point of E; if:
—¢<[a —a;|-180<¢ (4.1)

Where & is the difference between the angle formed by two edge points and the
difference in the ideal case, 180°, which is set to 5° as referred by Nguyen (2013).
After identifying the pairs of edge points around the corresponding center point, the
edge points with the shortest length is defined as the goal edge points that the
distance between these points represents the vessel width at the corresponding center
point. This algorithm repeated for all of the center points along a vessel and the
average value of corresponding widths represents the diameter of the vessel. The
schematic of the algorithm can be seen in Figure 4.4.

Two edge points
representing vessel width

Figure 4.4 algorithm for deretmining the vessel ege points representing vessel width at a specific

center point.
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The width of each fragmented vessel can be calculated by below formula,
1
W, =—>"W, (4.2)

Where Wi is the average width value of i-th vessel, Ni is the totall number of

center points along ith vessel and Wj is the width of vessel with respect to the jth

center point.
4.2.2 Retinal Vessel Width Analysis

In this subsection, the results of width measurement algorithm are analyzed with
regard to the some parameters. There are three important outputs of width
measurement algorithm applied to the retinal fundus image such as the number of
center points along each fragmented vessel (N ), width (W ) and standard deviation (
o) of each fragmented vessel with regarding the widths of all center points along the
corresponding fragmented vessel. The value of width can be measured using the
Equation (4.2) for each fragmented vessel and the standard deviation also can be

calculated by below formula also,

N

o= [ 2w, W) 43)

i j=l

The images of STARE database without any pathologies are utilized for
analyzing. The example of the output of width measurement algorithm for one of

these images can be seen in Table 4.1.

Table 4.1 Output of the width measurement algorithm for image 0120 from STARE database.
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Number of Number of center Width Standard deviation

Vessel . o
points ( N ) (W) (G)

1 23 1 0

2 9 1 0
33 88 2.3 0.20
88 110 3.35 0.46
110 10 1.6 0.01
111 98 2.62 0.02

139 19 1 0

As can be seen in above table, there are four columns which the first column
refers the number of the fragmented vessel, the second one is the total number of
center points located along the corresponding fragmented vessel, the third column
indicates the width value of the corresponding vessel and the last column is the
standard deviation.

With respect to the results of the width measurement algorithm, the histogram
analysis is done for determining the percentage of the thin vessels in the entire vessel
network with regarding the vessel widths. The image 0120 from STARE database is
used for this analysis. As a first step, the corresponding width measurement
algorithm is applied to the image. Table 4.1 is the result of this application. After
achieving the results, the histogram of the vessels width is plotted with regard to the
number of vessels and the diameter of the vessels. Figure 4.5 illustrates the histogram

of vessels width.
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Figure 4.5 Histogram of vessels width related to the image 0120 from STARE database.

As can be seen in Figure 4.5, the number of thin vessels is more than thick
vessels. As it was referred in section 1.2, identifying the thin blood vessels and the
percentage of them with regarding the entire vasculature system is an important task
for prediction the diabetic retinopathy diseases. Therefore, it is very easy to calculate
the percentage of the thin vessels using the corresponding histogram. For instance, in
Figure 4.4, a total number of the vessels is 139 and a total number of the thin vessels
with diameter value of 1 or lower is 82, so by this way the corresponding percentage
can be calculated easily. Another important application of this histogram is that if
there are two different histograms related to the two different fundus images captured
in different period of times from the same patient, it is very easy to determine the
presence of new thin blood vessel by comparing the corresponding two histograms
which refers the presence of diabetic retinopathy diseases also.

Standard deviation is another parameter that gives the meaningful information
about the presence of diabetic retinopathy and plus diseases introduced in section
1.2. Normal fragmented blood vessel should has the constant value of width along
the different center points of corresponding vessel, but sometimes the diameter of
blood vessel alters along the center points of the vessel because of the presence of
several diseases. According to the fact that our width measurement method is based

on the mean value of the widths of individual center points along vessel, it is also
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possible to measure the standard deviation of widths along the vessel using Equation
(4.3). The important point that should be noticed is that vessel that has no diameter
changes along center points must have the zero or low value of standard deviation
with respect to the Equation (4.3). On the other hand, the vessel that has diameter
changes along center points should have high value of standard deviation. Thereby,
the corresponding parameter is very important factor for determining the

abnormalities in vessels. Some of these abnormalities can be seen in Figure 4.6.

Center Points

Figure 4.6 Diameter changes along the vessel. Left one is a normal vessel with low or zero value of

standard deviation. Right one is an abnormal vessel with high value of standard deviation.

For analyzing the standard deviation values of vessels in image 0120 of STARE
database, the histogram of corresponding vessel with regarding the values of
standard deviation is plotted. The result of the histogram is illustrated in Figure 4.7.
As can be seen, the values of the standard deviation for all of the vessels are low
which means that there is no abnormalities related to the vessels width changes.
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Figure 4.7 Histogram of the vessels with regarding the value of standard deviation.
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Moreover, if the detail of the fragmented vessels is available, it means that all of
the vessels can be separated into two groups as arteries and veins, one of the most
important metrics that is called A/V ratio can be calculated easily. It should be
referred that the changes in the ratio between the diameter of retinal arteries and
veins, also called A/V ratio, is specified in the case of hypertension and
atherosclerosis.

4.3 Retinal Vessel Tortuosity Measurement

As a first step, the methodology of the proposed algorithm for automatic
tortuosity measurement of retinal blood vessels is described and in the following
step, different images are analyzed by applying the proposed method on

corresponding images.

4.3.1 The Methodology

The proposed method for automatic measurement of the retinal blood vessels
tortuosity include three main stages, vessel segmentation stage, preprocessing stage

and tortuosity measurement stage.

For measuring the tortuosity of the retinal blood vessels, an initial vessel
segmentation stage is needed to extract the vessel segment profiles. The method
proposed in chapter 3 is utilized to extract retinal blood vessels tree. It is important to
be noticed that all the parameters in the feature extraction stage and classification
stage in the corresponding vessel extraction method are the same as referred

previously.

According to the fact that the tortuosity measurement algorithm is based on the
vessel centerline, after achieving the vessel network in the previous stage, a
preprocessing algorithm described in the subsection 4.2.1 is utilized for achieving the
vessel centerline network. The only difference here is that the end points are not

deleted in the last step of the preprocessing stage. It means that the tortuosity
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measurement algorithm is applied on the fragmented vessels without deleting the end
points of the corresponding vessels. The result of applying vessel segmentation

algorithm and preprocessing technique can be seen in Figure 4.2.

After achieving the vessel centerline fragments image in the preprocessing stage,
one of the most popular methods, known as Slop Chain Code (SCC), introduced by
Bribiesca (2013) is utilized for measuring the tortuosity of the retinal blood vessels.
According to the literature, there are several methods for measuring the tortuosity of
the blood vessels in the retinal fundus images. Due to the several advantages, the
SCC algorithm is constructed for measuring the tortuosity of the retinal blood
vessels. The most important advantages of the SCC is that the corresponding
algorithm is very simple, independent of translation, rotation and optionally of
scaling and more precise than other methods with regarding the results in the

corresponding paper.

If we define a vessel centerline as a curve, The SCC of a curve is achieved by
placing straight lines segments of constant length around the curve and measuring
the slope changes between contiguous straight line segments scaled to a continuous
range from -1 to 1. The slope changes scaled to lie within (-1, 1) can be seen in
Figure 4.8.

Figure 4.8 Range of slope changes (Bribiesca, 2013).

With regard to the fact that a fragmented vessel centerline is a continuous curve,
to convert a continuous curve into a discrete curve the length of the straight line

segments is selected for describing such a curve. After fixing the length of the

61



straight line segment, a point of a curve is selected as an origin point or start point
and an endpoint of one of the straight line segments is set to coincide with this origin.
The opposite endpoint is set over the corresponding curve, determining the starting
point of next segment, and so on. With regard to the graphically description, this
process achieves to superimposing the sequence of circles traveling around curve that
the intersections of the circles determine the points of the discrete shape and the

radius of each circle represents the length of the segment as can be seen in Figure 4.9

Ny

Figure 4.9 Conversion of a continuous curve into a discrete curve. The left shape: a continuous curve
with a selected origin and a straight line segment. The right shape: traversing the curve using circles to
determine slope changes.

A chain 4 is defined as an ordered sequence of N elements that can be represented
by,

a=aa, ...a,={g:1<i<n} (4.4)

The sequence of slope changes is the chain that defines the discrete shape of the
continuous curve. Therefore, the chain code of the curve shown in Figure 4.10 is as
follows: -0.05 -0.04 -0.27 -0.20 -0.10 0 0 0.05 0.12 0.023 0.1 0 0.05. The
important point that should be noticed is that the number of straight line segments is
equal to the number of slope changes plus one.

Figure 4.10 Discrete curve and its ordered sequence of slope changes.
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The length (L) of each straight line segment is equal to the perimeter of the curve
(P) divided by the number of the straight line segments (m), i.e., L=P/m. For
instance, in Figure 4.10, m=14 is selected and P=15.30, therefore, L=1.09. The
tortuosity of a curve represented by a chain is the sum of all absolute values of the

chain elements as can be seen in below formula,

T= Z_l:|ai| (4.5)

For any curve the minimum and maximum values of tortuosity belong to the

range[0,n). For instance, in the Figure 4.10, the tortuosity value of the corresponding

curve is 1.11 as follows,
r=|a|+]ay|+...+[as| = 0.05+0.04+...+0.05 =111 (46)

There are some important properties about the SCC of a curve that should be
referred. One of these important points is that the inverse of a chain of a curve is
another chain with opposite sign elements of the first chain in inverse order. It means
that changing the start point in the curve for obtaining a chain of the slope changes

does not change the tortuosity value as can be seen in Figure 4.11.

027 0.2

Figure 4.11 the inverse of a chain. The left curve: the curve and its chain. The right curve: the inverse

of the chain. As can be seen, both curve have the same tortuosity value (1.11).

4.3.2 Retinal Vessel Tortuosiy Analysis

In this subsection, the results of tortuosity measurement algorithm are analyzed

with regard to the some parameters. There are two important outputs of tortuosity
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measurement algorithm applied to the retinal fundus image includes the length of the
fragmented vessels ( L) and the tortuosity ( 7 ) of the corresponding fragmented
vessels. The perimeter of a fragmented vessel can be measured by summation of the
distances between each pixel along the vessel. The important point that should be
referred is that the Euclidean distance is utilized for measuring the distance between
centerline pixels. Also, the value of tortuosity for each fragmented vessel can be
measured using Equation (4.5). Moreover, the width of each fragmented vessel is

calculated in order to further analysis using Equation (4.2).

Eight images of STARE database are utilized for analyzing, four images with
vessel tortuosity and four images without any pathologies. The example of the output
of tortuosity measurement algorithm for the image 0199 from STARE database can

be seen in Table 4.2.

Table 4.2 Output of the tortuosity measurement algorithm for image 0199 from STARE database.

Number of Length Tortuosity Width
Vessel (L) (7) (W)
1 160.19 1.07 1

2 81.87 0.88 3.07
56.11 1.48 2.66

47 40.04 1.52 1.45

48 104.66 1.74 1.50

49 124.95 3.92 1.46
109 59.87 1.81 3.04
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Figure 4.12 Tortuosity value of the fragmented vessels in the image 0018 from STARE database.

As can be seen in above table, there are four columns which the first column
refers the number of the fragmented vessel, the second one is the length of the
corresponding fragmented vessel, the third and fourth columns indicates the
tortuosity and width value of the corresponding vessel. Figure 4.12 illustrates the
tortuosity value of the different vessels with regard to the Table 4.2. The fundus
retinal image 0018 from STARE database also can be seen in Figure 4.14.

With regard to the results of the tortuosity measurement algorithm, the histogram
analysis is done for determining the percentage of the tortuous vessels in the entire
vessel network. The image 0199 from STARE database is used for this analysis. As a
first step, the corresponding tortuosity measurement algorithm is applied to the
image 0199. Table 4.1 and Figure 4.12 are the results of this application. After
achieving the results, the histogram of the vessels tortuosity is plotted with regard to

the number of vessels. Figure 4.13 illustrates the histogram of vessels tortuosity.
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Figure 4.13 Histogram of vessels tortuosity related to the image 0199 from STARE database.

As can be seen in Figure 4.13 the percentage of the vessels with the high value of
tortuosity can be measured by an expert. For instance, if the tortuosity value of a
vessel can be classified in three classes by an expert includes normal vessel, low
tortuous vessel, and high tortuous vessel, the percentage of each class can be
measured easily from the above histogram. Moreover, if there are two different
histograms related to the two different fundus images captured in the different period
of times from the same patient, it is very easy to determine the presence of tortuous
vessel by comparing the corresponding two histograms which refers the presence of

plus diseases also.

For achieving the single value of the tortuosity of the entire vessel network, the
mean value of the tortuosity of individual fragmented vessels measured using below

formula,

Tn = 4.7)
Where N is the total number of vessels in the entire network. The goal of

measuring the corresponding parameter is that the tortuosity value of the entire

vessel network in different images can be easily compared using single value for
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determining the pathologies like plus diseases. The value of 7, is 1.32 for image

0199 from STARE database shown in Figure 4.14.

For comparing the above parameter in different images, the small subset includes
eight images of STARE database are utilized. The corresponding images can be seen
in Figure 4.14. Four number of images are normal image without any pathologies
and four of them are images with tortuous vessels. The corresponding algorithm for

tortuosity measurement is applied to the images and the value of 7, is measured for

all images. The result of the corresponding measurement is illustrated in Table 4.3

Table 4.3 Vessel tortuosity based on the entire image area in tortuous and non tortuous images.

No. Non tortuous Tortuous
VR Tortuosity(7,,) IEaE Tortuosity(7,,)
1 0120 0.6538 0018 1.0784
2 0162 0.7403 0027 1.0689
3 0163 0.7344 0217 1.0977
4 0255 0.7067 0199 1.3165

As can be seen in above table, the corresponding values of tortuosity in the
images with tortuous vessels are higher than the images with non tortuous vessels
which indicates that the corresponding parameter of tortuosity is a reliable parameter
for comparing or classifying the images as tortuous or non tortuous images. The
classification approach can be done by specifying the constant value of tortuosity as
a threshold value by an expert. Moreover, after separating the corresponding images
as a tortuous or non tortuous images, the images placed in the tortuous group also
can be classified in the different levels with regarding the value of tortuosity as low

tortuous, normal tortuous and high tortuous levels.
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(@) (b)

Figure 4.14 Small subset of images of STARE database includes eight images. a) images without any
pathologies, from up to bottom, image 0120, 0162, 0163 and 0255 b) images with tortuous vessels,
from up to bottom: image 0018, 0027, 0217 and 0199.
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Figure 4.15 Vessel tortuosity histogram of images 0120, 0162, 0163, 0255, 0018, 0027, 0217 0199
from STARE database.

The histogram of vessel tortuosity for all of the images also is plotted in order to
compare the tortuosity value of vessels in different images. The result of this

application is shown in Figure 14.15.

With respect to the corresponding histograms in the Figure 4.15, all of the images

categorized as normal images without any pathologies have a compacted or
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centralized distribution of vessel tortuosity in such a way that the range of tortuosity
for all of the vessels alters from 0 to 1.8. Therefore, as can be seen in the histogram

of normal images the bars gathered in the left side of the graph.

In contrast to the histogram of the normal images, the distribution of the vessels
with regard to the value of tortuosity in the images with tortuous vessels is more
spread. As can be seen in the histogram of images with tortuous vessels the range of

tortuosity alters from 0 to 4.5 which indicates the presence of specific diseases.

The important point that should be noticed is that for specifying the image as a
pathologies image with regard to the corresponding value of tortuosity in the
histogram, the constant value of tortuosity must be determined as a threshold value
by an expert. It means that the image that has vessels with tortuosity values more

than the threshold value is specified as a pathology image.

4.4 Summary

In this chapter, an automatic system was developed for analyzing the vasculature
system by measuring the diameter and tortuosity of the retinal blood vessels. The
corresponding system includes three main stages, vessel extraction, preprocessing,
and vessel properties measurements. The hybrid feature vector and ensemble
classifier was utilized for extracting the network of blood vessels. In the following
step, a preprocessing algorithm is introduced for preparing the correspond network
for further analysis. In the last stage, the two important algorithms based on the
edges and centerline of fragmented vessels were utilized for measuring and analyzing

the diameter and tortuosity of blood vessels.

Different kind of analysis was done based on the histograms of vessels with
regard to diameter and tortuosity values for identifying the abnormal structures in the
retinal images. Moreover, several parameters such as the means value of tortuosity
and standard deviation of vessel width were introduced in order to compare different

images with normal and abnormal blood vessels.
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CHAPTER FIVE
DISCUSSION AND CONCLUSION

The aim of this thesis is to develop an automatic computer system for diagnosis of
several diseases by analyzing the retinal fundus images. As a first step, we proposed
a robust and reliable method for retinal blood vessel segmentation based on the pixel
feature classification algorithm. The strong experimental results are achieved by
testing the proposed method on different databases and comparing the corresponding
results with existing methods in the literature. The results have shown that our
method is robust and efficient in the segmentation of retinal blood vessel compare to
the other methods. In the next step, we developed an automatic system for measuring
the two important properties of extracted vessels, diameter and tortuosity, in order to
analysis the vasculature system according to the various parameters. The results
shows that the corresponding parameters are reliable and powerful for detecting

abnormalities in the different images.

5.1 Blood Vessel Segmentation

In this thesis, we provide the novel method for retinal blood vessel segmentation.
The proposed method is based on the classification algorithm known as pixel feature
classification. We constructed 17 dimensional feature vector consisting of CLAHE
contrast enhancement  feature, vesselness measurement, morphological
transformation, multi-scale response of Gabor wavelet and also B-COSFIRE filter
response which are used for the first time in supervised learning based methods.
Random forest classifier which is very flexible for fusing the inharmonious features
was utilized for classifying each pixel as vessel or nonvessel pixel. The classifier was
trained by selecting the 300,000 samples randomly from DRIVE database and 60,000
sample from STARE database. Despite that number of samples which are used for
training stage on STARE database for the proposed method are less than other multi-
feature supervised methods, Soares et al. (2006), Fraz et al. (2012) and Cheng et al.
(2014) in order used 1 million, 200,000 and 75,000 samples, the average value of
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accuracy (0.9606) and area under ROC curve (0.9789) for our method are higher
than all of the state-of-the-art methods.

With regarding the cross training results, the proposed method has the highest
value of average accuracy in both DRIVE (0.9496) and STARE (0.9545) databases
compared to other methods which show that the proposed method is very robust to
training set used while other methods are more dependent on the training set. This
training set robustness allows our algorithm to be used on multiple datasets without

retraining, which is very useful for large-scale screening programs.

Moreover, the performance of the proposed method on the pathological images is
better than other state-of-the-art methods. The average value of accuracy in proposed
method for 10 abnormal images from STARE database is 0.9573 which is the highest
value among other methods. This result shows that our method is very robust for

segmentation of abnormal images.

In order to achieve the better result of segmentation, more than 10 classifiers also
is used in the classification stage instead of the RF classifier such as support vector
machine (SVM), multi-layer perceptron (MLP), bayesian classifier, adaboost,
bagging and boosting and random subspace (RS). The important point that should be
noticed about the result of the corresponding implementation is that the performance
of the RF classifier is better than all of the other classifiers. Moreover, different kind
of features of each pixel also is extracted in order to increase the performance of RF
classifier. These features include line strength (Ricci et al., 2007), weber local
description (WLD) (Cheng et al., 2014), local binary pattern feature (LBP) and e.t.
But according to the fact that these features have not effected to the performance of
the classifier, we refused to use them.

As described previously, one of the disadvantages of supervised learning methods
for vessel segmentation is that they are time-consuming. Among other state-of-the-
art methods, our method is not an exception. In this work, the time required for

segmenting an input image is built of two parts: feature extraction and random forest
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classifier. The first part is composed of extracting five different kinds of features. For
random forest classifier, the calculation time depends on the number of the decision
trees (150 is selected) and the value of depth for each decision tree (15 is selected).
In both DRIVE and STARE database images, the average time for segmenting an
image including feature extraction and classification is around 120 seconds. We have
used MATLAB for implementing all experiments on an Intel(R) Core(TM) i7 CPU
(1.73GHz) with 8GB memory.

5.2 Width and Tortuosity Measurement

In this thesis, an automatic system was developed in order to analysis vascular
system with regard to the special properties of the vessel such as diameter and
tortuosity. The proposed system includes three main stages, vessel extraction,
preprocessing, and vessel properties measurements. The hybrid feature vector and
ensemble classifier was utilized for extracting the network of blood vessels. In the
following step, a preprocessing algorithm is introduced for preparing the correspond
network for further analysis. In the last stage, the two important algorithms based on
the edges and centerline of fragmented vessels were utilized for measuring and

analyzing the diameter and tortuosity of blood vessels.

In the diameter measurement step, one of the most popular method introduced by
Nguyen et al. (2013) was utilized for measuring the diameter of retinal blood vessels.
The corresponding algorithm for measuring the diameter of vessels is based on the
edges and centerline of the fragmented vessels. The different analysis was proposed
for extracting the meaningful information from the results of the width measurement
algorithm. For instance, the histogram of the vessels width was plotted in order to
determine the percentage of the thin vessels with respect to the entire network, since
identifying the thin blood vessels and the percentage of them with regarding the
entire vasculature system is an important task for prediction the diabetic retinopathy
diseases. Moreover, the standard deviation of the each fragmented vessels with
respect to the diameter of the each center points along the corresponding vessel is
explored in the entire network for determining the presence of different diseases such
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as diabetic retinopathy and plus disease. The vessel with a higher value of standard
deviation than threshold value indicates the presence of several abnormalities. The
important point that should be referred is that choosing the specific value of standard
deviation as a threshold is an important task which can be determined by an expert.
The other disadvantage of the corresponding analysis with regard to the standard
deviation is that the corresponding parameter is very sensitive in such a way that any
false detection of edges and center points along the fragmented vessels results in the
wrong value of standard deviation. For accurate measuring the standard deviation of
each fragmented vessel a local analysis can be introduced in such a way that in each
fragmented vessel a set of standard deviations can be measured with respect to the
specific connected components along vessel. And the mean value of the

corresponding values can be considered as an accurate standard deviation.

An algorithm based on the chain code known as SCC was utilized for measuring
the retinal blood vessels tortuosity. The different analysis was introduced with regard
to the results of tortuosity measurements algorithm. For instance, in order to identify
the vessels with a high value of tortuosity, the histogram of vessels tortuosity is
plotted with respect to the entire vessel network. Moreover, a single value of
tortuosity is defined by measuring the mean value of tortuosity in the network. The
goal of measuring the corresponding mean value is that the tortuosity value of the
entire vessel network in different images can be easily compared using a single value
correspond analysis is that the specifying the constant value of tortuosity as a
threshold value for separating different images as normal or abnormal images is very

difficult task that can be determined by an expert.

The important point that should be noticed is that the proposed method for
measuring the width and tortuosity of blood vessel in different images depends on
the several conditions. The most important and necessary condition for comparing
the two images with regard to the diameter and tortuosity values is that the images

must be captured in the same scale. However, there is no suitable available database.
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5.3 Feature Work

The automatic software tool for retinal blood vessel analysis can be developed as
a future work. The goal of this work is to create a computer assisted diagnostic
system by gathering or combining different kind of measurements. These
measurements includes artery and vein classification, identifying artery-vein-cross
sections, measures the diameter of arteries and veins separately in order to achieve
A/V ratio. Moreover, a general tortuosity value can be introduced with regard to the

diameter and length of vessels by specifying different weights.
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APPENDICES

LIST OF ABBRIVIATIONS

DR e Diabetic retinopathy
PDR Proliferative diabetic retinopathy
DIME ..o Diabetic macular edema
AMD ... Age related macular degeneration
CNV s Choroidal neovascularization
ROP Retinopathy of prematurity
DRIVE ... Digital retinal image for vessel extraction
STARE ..ottt Structured analysis of the retina
FOVEES. ... W0 .. B0 e ... Field of view
TP ... ... ... .. .................... True positive
TN . A ... .. T ....... True negative
FP..ceeo ... 0 . . . . A0 ... .. False positive
FN .. ... ... . . . ... . ... False negative
AACC e Accuracy
SN e Sensitivity
S e e e e be e e reere e Specificity
PPV s Positive predictive value
ROC . Receiver operating characteristic
AUC e Area under the curve
LI 2 SO S RURSPPSPI True positive rate
PR e False positive rate
SVIM e Support vector machine
KONIN e K-nearest neighbor
IMILLP .t Multilayer perceptron
RS e Random subspace
R bbb res Random forest
WD .o Weber local description
LB . e Local binary pattern
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.Slope chain code

Region of interest

.......................................................................................... Difference of Gaussians
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