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COMPUTER ANALYSIS OF RETINAL IMAGES FOR VESSEL 

ANOMALY DETECTION 

 

ABSTRACT 

 

     Many important eye diseases, as well as systemic diseases such as diabetes, 

hypertension and arteriosclerosis manifest themselves in the retina. An automatic 

analysis of the vascular system of the retina can assist to monitor the effects of 

corresponding diseases on the visual system. In this thesis, we have presented a 

robust method for retinal blood vessel segmentation and some automatic algorithms 

for analyzing the vessel network with regard to the vessel diameter and tortuosity. 

  

     A supervised method is presented for segmentation of retinal blood vessels using 

an ensemble classifier of random forest decision trees. A 17 dimensional feature 

vector is constructed for successfully handling the both normal and abnormal retinal 

images with different kinds of lesions. Forty retina images from DRIVE database and 

twenty images from STARE database are used to evaluate the performance of the 

method. The results of performance metrics illustrate that the proposed method 

outperforms most of the other segmentation methods. Moreover, our method needs 

fewer samples for training than other methods and it is independent to the training set 

as it offers a better performance than other methods in the cross-training section. 

 

     The automatic method for measuring the retinal vessel width and tortuosity is also 

presented based on the vessel edges and centerline in order to analysis the vessel 

network and monitor the presence of different abnormalities in the structure of 

vessels. This application may assist to quick diagnosis and treatment planning in the 

clinical procedures. 

 

Keywords: Retinal blood vessels segmentation, feature vector, ensemble classifier, 

vessel width and tortuosity measurement. 
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RETİNA GÖRÜNTÜLERİNİN DAMAR ANOMALİ BELİRLEMEK 

AMACIYLA BİLGİSAYARDA ANALİZİ 

 

ÖZ 

 

Birçok önemli göz hastalığının yanı sıra, diyabet, Hipertansiyon ve damar sertliği 

gibi sistemik hastalıklar da, retinada kendini göstermektedir. Retina vaskuler 

systemının otomatık analızı, yukardakı hastalıkların etıkısını gorsel sistemde, 

gostermeye yardımcı olmaktadır. Bu tezde, retina damar segmentasyonu için sağlam 

bir yöntem ve damar ağını analiz etmek için damar çapı ve kıvrımlarıyla ilgili 

otomatik bir algoritma sunulmustur. 

 

Denetlenen yöntem, rasgele orman karar ağaçlarının bir topluluk sınıflandırıcı 

kullanarak, retina kan damarlarının segmentasyonu için sunulmuştur. 17 boyut özelik 

vektörü, normal ve farklı tür anormal retina lezyonlarınin görüntüleri Başarıyla inşa 

edilmiştir. DRIVE veri tabanindan alinan Kırk görüntü ve STARE veritabanından 

alinan yirmi görüntü retinanın yöntem performansını değerlendirmek için 

kullanilmistir. Performans ölçümlerinin sonuçları, önerilen yöntemin diğer 

segmentasyon yöntemlerinden daha iyi sonuçlar verdiğini gostermektedir. Ayrıca, 

bizim yöntem diğer yöntemlere göre, eğitim için daha az örnege ihtiyacı vardir ve bu 

very yonteminden bağımsızdır cunku çapraz eğitim bölümünde daha iyi bir 

performans sunmaktadir. 

 

Retina damar genişliği ölçme ve eğrilik için otomatik yöntem sunulmaktadir.  

Damarı kenarı ve merkezini damar ağını analiz etmesi ve gemilerin yapısında farklı 

anormalliklerin varlığıni izlemeye goredir. Bu uygulama, klinik hızlı teşhis ve tedavi 

planlamasına yardımcı olmaktadir. 

 

Anahtar kelimeler: Retina kan damarları segmentasyonu, özellik vektörü, ensemble 

sınıflandırıcı, damar genişliği ve kıvrılma ölçümü. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Human Eye  

 

One of the most important sensory system for amassing of information, learning 

and navigation is the human visual system. The eye is the initial sensor of the 

corresponding system with different lens mapping incoming light patterns on the 

retina for transduction to neural signals. There are many diseases that have primary 

and secondary effects on the retina and human visual system, so examination of the 

eye is a momentous part of health care.  

 

1.1.1 Retinal Imaging 

 

Fluorescein angiography is an early method for taking photographs of the fundus, 

or back of the eye, required the injection of fluorescein into blood stream to enhance 

the contrast of retinal blood vessels (Michaelson, & Benezra, 1980). However, with 

regarding advances in information and communication technology during last 

decade, digital fundus photography of retina has been developed (Klein et al., 2004). 

Fundus imaging is the process of obtaining the projection of the 3-D semitransparent 

retinal tissue onto the imaging plane as a 2-D representation using the reflected light 

and the image intensities to represent the amount of a reflected quantity of light 

(Abramoff, Garvin, & Sonka, 2010). There are several reasons why digital fundus 

images have been widely used in many projects. Firstly the publicity available 

databases have used fundus photographs of patients. Secondly this kind of 

photography is very useful for population-based and diagnose various type of 

systemic diseases such as diabetics, arteriosclerosis, and hypertension. Lastly and the 

most important advantage of corresponding images is possibility of precise 

measurement and monitoring of width and tortuosity of retinal blood vessels. Figure 

1.1 illustrate an example of digital fundus image and a patient being examined with a 

digital fundus camera. 
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Figure 1.1 A general package of a digital fundus imaging includes a CR5-NM Canon retinal camera, a 

imaging software system, a database management system, a data store devise (Zhu, Rangayyan, & 

Ells, 2011). 

   

1.1.2 Eye Anatomy 

 

The eye is one of the most important sensors of the human body which gives us 

the sense of sight and allows us to see and comprehend the shapes, colors, and 

dimensions of objects by processing the amount of light they reflect or emit. An 

eyeball, illustrated in Figure 1.2, consists three concentric layers: the fibrous, the 

vascular, and the nervous layers (Wolff Eugene, 1948). The fibrous, first layer itself 

is made up of two part: the posterior part known as the sclera and the anterior part 

called the cornea. The sclera is a white nontransparent member and the outermost 

layer of the eye which covers five-sixths of global of the eye. On the other hand, 

Cornea is the transparent layer located in the front of the eye that allows lights enter 

the eye like a window. The vascular layer consists of the iris, the ciliary body, and 

the choroid. The iris is the most anterior part of the vascular layer which controls the 

amount of light entering the eye in such a way that if the light is bright, the iris 

closes, narrowing pupil, and when it is dim it opens, dilating pupil (Iqbal et al., 

2006). The ciliary body has the different property such as anchoring the lens in place, 

changing the lens shape by resting the ciliary muscle, and providing nutrition to the 

vascular ocular tissues. The most posterior part of the vascular layer is choroid that 

feeds the outer of the retina (Zhu et al., 2011). 
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Figure 1.2 Schematic of the sagittal section of the eyeball (Oloumi, 2011). 

  

The retina is a thin layer of neural cells and one of the most important part of the 

nervous layer. Its thickness is about 0.5mm and lines the inside of the eyeball (Iqbal, 

2006). The important point that could be referred is that retina is the only part of 

nervous system that can be imaged directly. Rods and cones are photoreceptor cells 

of the retina which receive visual information from the incoming light, encoding 

corresponding information into the neural signals, and transmit them to the brain for 

further processing. The corresponding signals are transferred to the brain through the 

optic nerve head, optic disc. The average diameter of the optic disc is about 1.6mm 

(Larsen 1976). The major vein and artery branches of the retinal blood vessels 

diverge away from the stem of the optic disc into the retina. Smaller blood vessels 

branch off from the parent branch and converge toward a region called the macula, at 

the center of which is an avascular spot called the fovea. The width of retinal blood 

vessels changes from 50 to 200μm, 60μm median, in 2-D retinal fundus images 

(Patton et al., 2006). The macula is located about 3.2μm to the center of the optic 

disc along the retinal raphe. Retinal raphe has known as the straight line which goes 

through the center of the optic disc and the fovea. The retinal raphe divides area into 

two parts. The first part, the area above the retinal raphe is called the superior side 
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and the second part, the area belows the retinal raphe is called inferior side (Oloumi, 

2011). Figure 1.3 shows a typical retina fundus image from DRIVE database. As can 

be seen, the macular area located in the black circle near the middle of the image 

appears darker than the background area and the fovea, black dot in the middle of the 

circle, become visible as a small bright spot in the middle of the macula. The black 

dot in the right region of the image indicates the center of the optic disc, the point of 

convergence of retinal blood vessels. The other important point is that the major 

venule branch is thicker than the corresponding arteriole and has higher background 

contrast. The inferior major vein/artery is also labeled in the corresponding figure. 

   

 

 

Figure 1.3 Image 24 of the DRIVE database. 

 

1.2 Pathologies of the Eye 

 

With regarding structure of the retina and the fact that the retina is an active 

tissue, many important diseases related to the eye, brain or the cardiovascular system 

can show themselves in the retina. In this section, a brief summary of corresponding 

diseases is given. 
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1.2.1 Diabetic Retinopathy 

 

Diabetic retinopathy (DR) is one of the most common cause of blindness and 

visual loss in the people of working age. DR is a result of diabetes mellitus which 

affects the retinal vasculature and damages the retinal structure. According to the 

current definition from the world health organization, diabetes mellitus is known as a 

disease under the condition that a patient has a fasting plasma glucose over 7.0 

mmol/l. This can lead to damage major blood vessels, kidneys, heart, brain and eye 

and results in a retinal complication of diabetes called diabetic retinopathy (Laud, & 

Shabto, 2010).  

 

There are two different kind of pathological changes in the retina due to DR; 

ischemia and blood vessel wall damage. When the retina become ischemic, the new 

blood vessels start to grow in areas of the retina which may subsequently bleed and 

cause retinal detachment, a condition called proliferative diabetic retinopathy (PDR) 

(Kanski, & Bowling, 2011). Another complication of DR is retinal blood vessel wall 

damage which lead to blood and fluid to leak on the retina, a condition called 

diabetic macular oedema (DME). According to the pathology of DME, this forms 

different features such as micro-aneurysms, haemorrhages, exudates and cotton-wool 

spots (Browing, 2010). Figure 1.4 illustrates different kinds of Symptoms of DR in 

retinal fundus images. 

 

 

(a) 
 

(b) 
 

(c) 
 

(d) 

 

(e) 

 

Figure 1.4 Symptoms of DR in retinal fundus images. a) Micro aneurysms b) Dot and blot 

haemorrhages c) Soft exudates d) Hard exudates e) Formation of new vessels in retina (Kanski, & 

Bowling, 2011). 
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1.2.2 Age Related Macular Degeneration  

 

Another most common cause of visual loss is age-related macular degeneration 

(AMD). According to the world health organization, AMD is a growing public health 

problem in most of developed countries. There are different signs of AMD such as 

drusen information, pigment changes, atrophy and choroidal neovascularization 

(CNV). Drusen is the small yellow deposits in the macula, also known as the earliest 

sign of AMD. Pigment changes in the macula is another important sign of AMD. The 

macular pigment can wither away in a process called atrophy (Chiang et al., 2011).  

 

There are two different types of AMD; dry and wet. Most of the people how have 

AMD, around 90%, have the dry form of AMD which typically leads to gradual loss 

of visual acuity. Drusen information, pigment changes, and atrophy are known as dry 

AMD. A few percent of people, around 10%, with AMD, have wet form of AMD. 

Wet AMD also known as CNV occurs when abnormal blood vessels develop 

underneath the macula which leads to leaking fluid and blood and finally cause 

scarring of the macula (Kanski, & Bowling, 2011). Figure 1.5 shows different signs 

of AMD in retinal fundus images. 

 

 

(a) 
 

(b) 

 

(c) 
 

(d) 

 

Figure 1.5 Symptoms of AMD in retinal fundus images. a) Dry AMD with drusen b) Dry AMD with 

atrophy c) Wet AMD with haemorrhages d) Wet AMD with macular scaring (Fraz, 2013).   

 

1.2.3 Glaucoma 

 

Glaucoma is specified by damaging of ganglion cells and their axons in the retina. 

It is primarily a neuropathy, not a retinopathy, which results in the cupping of the 
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optic disc as shown in Figure 1.6. One of the most important indicators for assessing 

the presence of glaucoma is the cup to disc ratio. This ratio is equal to the ratio of 

optic disc cup and neuro-retinal rim surface area (Strouthidis, & Garway, 2009).  

 

 

    (a) 

 

  (b) 

 

Figure 1.6 Symptoms of glaucoma in retinal fundus images. a) Normal optic disc b) Glaucoma 

effected optic disc. 

 

1.2.4 Cardiovascular Disease 

 

The appearance of the cardiovascular disease in the retina is seen in several ways. 

The changes in the ratio between the diameter of retinal arteries and veins, also 

called A/V ratio, is specified in the case of hypertension and arteriosclerosis. There is 

special dependence between changing the A/V ratio and risk of stroke in such a way 

that a decrease in the A/V ratio, i.e. thinning of the arteries and widening of the veins 

is associated with an increased risk of stroke (Wong et al., 2002). The direct retinal 

ischemia can be also invoked because of hypertension which results in the retinal 

infarcts visible as cotton wool spots and choroidal infarcts visible as deep retinal 

white spots. Moreover, systemic vascular disease can result arterial and venous 

occlusions, also called central and branch arterial occlusions (CRAO, BRAO) and 

central and branch venous occlusions (CRVA, BRVO) (Kanski, & Bowling, 2011).  
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1.2.5 Retinopathy of Prematurity 

 

Retinopathy of prematurity (ROP) is one of the most common cause of blindness 

in both adults and especially children which can be diagnosed and treated by laser 

surgery at early stages. The intensity of ROP can be classified by the presence of 

plus disease. Diagnosis of the plus disease is made by visual qualitative comparison 

to a standard photograph of fundus of the retina which make the definition of the plus 

disease difficult in the quantitative manner (Wilson et al., 2008). Changes in vessel 

thickness and tortuosity are important signs of the plus disease. According to the 

literature, there is a direct relationship between increasing the thickness and 

increasing the intensity of ROP and the plus disease. Moreover, tortuosity of blood 

vessels has shown the higher correlation with the presence of plus disease. The 

important point that should be referred is that the detection of small changes in vessel 

width and tortuosity require high-resolution images (Heneghan et al., 2002). Figure 

1.7 illustrates an example of retinal fundus image with tortuosity in blood vessels. 

 

 

 

Figure 1.7 Image 198 from STARE database: tortuosity in retinal blood vessels. 
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1.3 Computer Analysis of Retina for Diagnosing of Diseases 

 

Developing an automatic computer system for diagnosis of retinal diseases is an 

important task at health-care centers around the world. There are so many advantages 

of using a computer system for diagnosis several diseases in the retina by image 

processing techniques and pattern recognition methods such as reducing the 

workload, providing objective decision-making tools to ophthalmologists, facilitating 

precise measurement of difficult parameter and quantifying small changes in the 

measurements (Patton, 2006). It was proved that corresponding systems can detect 

several pathologies mentioned in section 1.2 which can then results in early 

treatment. In the most of automatic computer systems, the main features of retina 

such as blood vessels, optic nerve head, and area of macula should be segmented as 

an initial step of analyzing the retinal images and the other features like diameter of 

the blood vessel, tortuosity of blood vessels, and the positions of lesions can then be 

measured and detected automatically as a further processing for diagnosing AMD, 

DR, ROP and other pathologies conditions. 

 

Segmentation and analysis of the retinal blood vessels, retinal vasculature, plays 

an important role in further analysis of retinal images such as the implementation of 

screening program for DR (Teng et al., 2002), foveal avascular region detection 

(Haddouche et al., 2010), the evaluation of retinopathy of prematurity (Heneghan et 

al., 2002), arteriolar narrowing detection (Grisan, & Ruggeri, 2003), the 

determination of relationship between vessel tortuosity and hypertensive (Foracchia, 

2001), measurement of vessel diameter to diagnosis cardiovascular and hypertension 

diseases (Lowell et al., 2004), computer-assisted laser surgery (Pinz et al., 1998), 

identification of optic disc position (Hoover, & Goldbaum, 2003), localization of the 

fovea (Huiqi, & Chutatape, 2004), retinal image mosaic synthesis (Fritzsche et al., 

2003), tracking the optic nerve head in video sequences (Solouma et al., 2002), and 

e.t. 

 

Manual detection of retinal blood vessels and measurement the several properties 

of extracted vessels such as width and tortuosity is very difficult and time consuming 
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task which can also requires training and skill. Therefore, the automatic segmentation 

and quantification of retinal vessels is confirmed by the medical community as an 

initial step in the development of automatic computer system assisted diagnostic 

system for ophthalmologic disorders. 

 

1.4 Organization of Thesis  

 

The thesis includes five chapters. Chapter 2 describes the literature and 

background related to the vessel segmentation methods, width and tortuosity 

measurement algorithms. In chapter 3 a supervised method is introduced for 

extraction the blood vessel network by using an ensemble classifier. In the following 

chapter an automatic algorithm is presented for measuring the diameter and 

tortuosity of blood vessels and the results of the corresponding measures is analyzed 

to extract meaningful information for pathological purpose. Finally, chapter 7 

discusses the conclusions and recommendations for future work.   
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CHAPTER TWO 

BACKGROUND AND LITERATURE 

 

2.1 Literature Overview 

 

In this chapter, a brief review of retinal vessel segmentation techniques, width and 

tortuosity measurement methods are presented. Moreover, the advantages and 

disadvantages of corresponding approaches are discussed. The goal is to present a 

detailed resource of corresponding algorithms as a ready reference. This chapter 

begins by introducing the details of the publicly available databases, DRIVE and 

STARE, of retinal images and the quantitative measures of performance for vessel 

segmentation. 

 

2.2 Database of Retinal Images 

 

The proposed methods for retinal vessel segmentation, width and tortuosity 

measurement are tested with the two most popular and online available database of 

retinal fundus images from the DRIVE and the STARE database. A brief overview 

of the details of corresponding databases is presented in this section. 

 

2.2.1 The DRIVE Database 

 

The DRIVE (Digital Retinal Images for Vessel Extraction) database which is 

collected by Niemeijer et al. (2004) was gathered from a DR screening program in 

Netherland. This database consists of 40 images, 33 without any abnormal sign and 7 

with signs of mild DR, captured by a Canon CR5 3CCD camera with a 045  field of 

view (FOV). The size of each image is 768×584 pixels with 8 bits per color channel 

and the FOV is circular with 450 pixels in diameter. The format of all images is 

JPEG (Joint Photographic Expert Group). These 40 images are divided into equal 

groups, training and testing, which make this dataset very useful for supervised 

methods. All of the images have been segmented manually as a ground truth and 

FOV binary masks are also provided for all of them. The images in training set were 
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segmented once, while the images in testing set were segmented twice which result 

in two groups A and B. In set B, 12.3% of pixels were segmented as vessels against 

12.7% for set A. The performance of our vessel segmentation algorithm is measured 

on the test set using the segmentation of set A as a ground truth. Figure 2.1 shows an 

example of retinal fundus image of DRIVE database and the related ground truth and 

FOV mask for corresponding image. 

 

 

                         (a)                                                  (b)                                                (c) 

 

Figure 2.1 Retinal fundus image 02 from test set of the DRIVE database. a) original RGB image b) 

manual segmentation of blood vessels known as a ground truth c) the FOV mask of the corresponding 

image.   

 

2.2.2 The STARE Database 

 

The STARE (Structured Analysis of the Retina) database collected by Hoover et 

al. (2000), includes 20 images, 10 with pathologies and 10 without any pathologies. 

All images were captured by a TopCon TRV-50 fundus camera at 035  FOV. The size 

of each image is 700×605 pixels with 8 bits per color channel and the FOV in the 

images is approximately 650×550 pixels. Two observes manually segmented all of 

the images as a ground truth. The first observe segmented 10.4% of pixels as vessels 

against 14.9% for the second observe. The performance of our vessel segmentation 

algorithm is measured by using the segmentation of the first observe as a ground 

truth. There are no available FOV binary masks for this database, but we follow the 

approach in Azzopardi et al. (2015) to create FOV binary mask for each image by 

thresholding the luminosity plane of Lab version of the original RGB image. Figure 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Azzopardi%20G%5BAuthor%5D&cauthor=true&cauthor_uid=25240643
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2.2 illustrates an example of retinal fundus image of STARE database and the related 

ground truth and FOV mask for corresponding image.  

 

 

                        (a)                                                   (b)                                                   (c) 

 

Figure 2.2 Retinal fundus image 0255 from the STARE database. a) original RGB image b) manual 

segmentation of blood vessels known as a ground truth c) FOV mask of the corresponding image.   

 

2.3 Performance Measures 

 

In the result of retinal blood vessel segmentation methods, each pixel is classified 

as vessel pixel or background pixel. With regard to this fact, there are four 

possibility: two classifications and two misclassifications which can be seen in Table 

2.1. the two classification ones are true positive (TP) and true negative (TN), the TP 

means a pixel is classified as vessel and it is vessel also in ground truth, the TN 

means a pixel classified as a background pixel and it is a background pixel in ground 

truth correctly. As for the misclassification, the false negative (FN) means a pixel is 

classified as background pixel in segmentation result but it is a vessel pixel in ground 

truth and the false positive (FP) means a pixel is classified as a vessel pixel, but it is a 

background pixel in ground truth.  

 

Table 2.1 Vessel classification 

 Vessel (Ground truth) Nonvessel (Ground Truth) 

Vessel (Predicted) True Positive (TP) False Positive (FP) 

Nonvessel (Predicted) False Negative (FN) True Negative (TN) 
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Due to measure the performance of our method and also for comparing the 

correspond performance results with other state-of-the-art methods, several metrics 

are calculated such as accuracy (Acc), sensitivity (SN) and specificity (SP). Acc is 

one of the most important metrics which equals to the ratio of the total number of 

correctly classified pixels to the total number of pixels in the image FOV. SN reflects 

the ability of the algorithm to detect the vessel pixels and SP is the ability to detect 

non-vessel pixels, background pixels. Moreover, the receiver operating characteristic 

(ROC) curve is used to measure the performance of proposed method. An ROC 

curve is a plot of true positive rate (TPR) versus false positive rate (FPR) by 

changing the thresholds on probability map image. One of the most important 

metrics extracted from ROC curve is the value of the area under the curve (AUC) 

which is 1 for the best system. It means that the closer the curve approaches the top 

left corner, the better is the performance of the corresponding system. The important 

point that should be referred is that for the retina images, all of the metrics are 

computed considering only the pixels inside the FOV. All of the metrics described 

are summarized in Table 2.2.    

 

Table 2.2 Performance metrics of retinal vessel segmentation. 

Metrics Measurement 

SN  TP/(TP+FN) 

SP TN/(TN+FP) 

TPR TP/Vessel pixel count 

FPR FP/Non-vessel pixel count 

Acc (TP+TN)/(TP+FP+TN+FN) 

AUC Area under the ROC curve 
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2.4 Retinal Vessel Segmentation Approaches 

 

One of the most important steps in retinal image analysis procedure is the blood 

vessel segmentation, due to measuring many important properties of blood vessels, 

such as diameter and tortuosity depend on the accuracy of blood vessel segmentation. 

In this section, a brief review of previously developed methods and algorithms for 

detection of the retinal blood vessel is presented. With regarding the literature, there 

are several automatic methods for segmentation of retinal blood vessels. These 

methods can be divided in two main category; supervised methods and unsupervised 

methods. 

 

Unsupervised methods which is called rule-based methods find vessel locations 

by using presumed rules for vessels. This category itself includes five main 

subcategories; vessel tracking, matched filtering, morphological processing, multi-

scale analysis and model based algorithms.  

 

Vessel tracking methods, (Liu, & Sun, 1993), (Gao et al., 2001), (Chutatape, 

Zheng, & Krishnan, 1998), (Grisan et al., 2004), in general speaking segment a 

vessel between two points using local information. In this kind of approaches, by 

choosing a set of seed points either manually or automatically, the vascular tree is 

obtained following the vessel center lines. It means that tracking consists of 

following vessel centerlines guided by local information, usually trying to find the 

path which best matches a vessel profile model. There are some important 

advantages of using vessel tracking methods such as, providing highly accurate 

vessel widths, following a whole tree without wasting time in areas that does not 

contain vessel, giving information about structure of individual vessel such as 

branching and connectivity. The main disadvantage of these methods is the failure of 

the method to detect vessels which have no seed point and also missing and 

bifurcation points can result in undetected sub-tress. Moreover, these methods are 

very sensitive to detect the vessels with a central reflex.   
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Matched filtering techniques, (Hoover et al., 2000), (Gang et al., 2002), 

(Chaudhuri et al., 1989), (Zhang et al., 2010), (Al-Rawi et al., 2007), are based on 

the convolution of the two dimension kernel of the Gaussian or its derivatives with 

the retinal image. The segmentation of blood vessels in these methods carry out by 

convolving the retinal image with matched filter rotated in the several direction, with 

recording the maximum response of each pixel.  There are three important properties 

which must be assumed to design the matched filter kernel; vessels may be 

approximated by piecewise linear segments, the diameter of the vessels decrease as 

they move outward from the optic disc and the intensity of a vessel can be 

approximated by a Gaussian curve. This method requires several convolution kernels 

which are applied in the several rotation for capturing different features in the image 

and also specifying the standard deviation parameter of Gaussian function is an 

important task in these methods. Moreover, the number of incorrect responses may 

increase by using different kernels due to the presence of pathologies and retinal 

background variation which have same features as the vessels. 

 

Morphological image processing is a technique based on mathematical operations. 

Structure elements were applied to the image by morphological operators. The 

important point that should be noticed is that the image which is processed by the 

morphological operations must be a binary image. There are several important 

morphological operations such as dilation, erosion, closing and opening. Dilation 

expands the objects, erosion shrinks the objects, closing is a dilation followed by an 

erosion and opening is the erosion followed by a dilation. Mathematical morphology 

operations are firstly used for enhancing the retinal blood vessels and then by 

combination with curvature evaluation (Zana, & Klein, 2001) and matched filtering 

for line detection (Mendonca, & Campilho, 2006), (Fraz, & Owen, 2012), is 

deployed for retinal vessel segmentation. These methods have the advantages of 

speed and resistance to noise. On the other hand, the disadvantage of these methods 

is that they do not exploit the known vessel cross-sectional shape. Moreover, the use 

of inappropriate structure element may cause difficulty in fitting to highly tortuous 

vessels.        
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Other unsupervised method based upon scale space analysis is also multi-scale 

approach techniques, for instance, Martinez et al. (2007), proposed a multi-scale 

based method for measuring the width, size and orientation information of retinal 

blood vessels using the first and the second derivative of the intensity along the scale 

space which give information about the topology of the image. Frangi (1998) 

introduced     the multi-scale method based on the multi-scale second-order local 

structure of an image, Hessian. A vesselness measure is obtained on the basis of 

eigenvalue analysis of the Hessian. 

 

Model based approaches are classified in three categories; vessel profile models, 

active contour models and geometric models. Vessel profile models, (Li, Bhalerao, & 

Wilson, 2007), (Narasimha et al., 2007), based on the structure of the vessels. For 

instance, vessel cross-section intensity profiles approximate a Gaussian shape or a 

mixture of Gaussian in the case of central reflex in blood vessels. There are also 

other profiles such as second order derivative Gaussian and the cubic spline which 

can be replaced. Moreover, there are more complex profiles include the non-vessel 

features like bright or dark lesions and other background features which increase the 

accuracy of the segmentation. Active contour models, (Al-Diri, Hunter, & Steel, 

2009), known as snakes are the curves defined within an image domain that can 

move under the influence of the internal forces within the curve itself and external 

forces derived from the image data. The corresponding snake will conform to 

different features within an image due to the external and internal definition. The 

internal forces give tension and stiffness features to the behavior of the snake and the 

external forces are fixed by a supervised process or human user. Geometric models, 

(Sum, & Cheung, 2008), are performed by especial algorithms known as level-based 

numerical algorithms. These algorithms are numerical methods for tracking 

interfaces and shapes. 

 

Supervised methods called pixel feature classification methods are machine 

learning techniques that assign labels, vessel or non-vessel, to each pixel. Pixel 

feature classification methods utilizing ground truth data usually consist of two 

stages: feature extraction and classification. In the first stage different kind of 
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features of each pixel and its neighborhood such as, Gabor wavelet (Soares et al., 

2006), line operators (Ricci, & Perfetti, 2007), vesselness (Frangi et al., 1998), is 

extracted for further processing. In the next stage, classification stage, each pixel is 

classified as a vessel or non-vessel using different kind of classifiers or multi-

classifiers such as, multilayer neural network (Sinthanayothin et al., 1999), support 

vector machine (SVM) (Ricci, & Perfetti, 2007), random forest (Cheng et al., 2014), 

bagging and boosting (Fraz, & Barman, 2012), Bayesian (Soares et al., 2006). 

Classification stage itself consists of two distinct parts: training, learning, and testing. 

The algorithm is statistically learned to correctly classify pixels from known 

classifications in the training stage. Then in the next stage, testing, the algorithm 

classifies previously unseen pixels. For proper assessment of supervised 

classification method functionality, training data and performance testing data sets 

must be completely disjointed (Abramoff, Garvin, & Sonka, 2010).  

 

According to the literature, there are different kinds of supervised methods to 

segment blood vessels. Soares et al. (2006) utilized supervised classification method 

for detecting the blood vessels in retinal fundus images by applying different scales 

of two dimension complex Gabor wavelet in the feature extraction stage and then a 

Bayesian classifier was used in classification stage. Ricci et al. (2007) proposed a 

computationally simple but more effective supervised method by using two line 

operators which have been modified to take into account the peculiarities of retinal 

vessel structures for computing the feature vectors, while a linear support vector 

machine (SVM) was chosen as a classifier. Fraz et al. (2012) performed multi feature 

analysis using the features such as; gradient orientation analysis, morphological 

transformation with linear structuring element, line strength measures and Gabor 

wavelet response which encodes information to successfully handle both normal and 

pathological retinas with bright and dark lesions simultaneously. They used 

supervised method for the segmentation of blood vessels by a multi-classifier of 

boosted and bagged decision trees. Lupascu et al. (2010) also performed multi-

feature analysis using a feature vector containing 41 features obtained at different 

scales to train a classifier which was then applied to the test set. All of these features 

in further processing were used for classification using an Ada boost classifier. Staal 
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et al. (2004) used a system that is based on extraction of image ridges as feature, 

which coincide approximately with vessel centerlines and then the corresponding 

features were used for classification using a k-nearest-neighbor (KNN) classifier. 

Cheng et al. (2014) used a supervised method for the segmentation the blood vessels 

by extracting a set of features and applying local context path to some of them for 

creating the hybrid feature vector. As a result of the feature extraction more than 200 

features were extracted and then a random forest classifier by taking advantage of its 

strong discriminative power and its flexibility of fusing heterogeneous features was 

used for classification stage. 

 

2.5 Retinal Vessel Width Measurement Algorithms 

 

Accessing the accurate value of blood vessels width is one of the ultimate goal of 

the retinal blood vessel analysis due to the diameter changes in retinal blood vessels 

are important factor of presence of many diseases such as plus diseases, diabetic 

mellitus and cardiovascular diseases, as described in section 1.2. According to the 

literature, there are many different methods for measuring the diameter of the retinal 

blood vessels which most of them based on the idea of measuring a vessel 

perpendicular to its local longitudinal orientation.  

 

Brinchmann-Hansen et al. (1986) introduced a method called Full Width Half 

Maximum (FWHM) for measuring blood vessel width from an intensity profile 

orthogonal to a retinal blood vessel. FWHM method is based on the recognizing the 

minimum and maximum intensity levels on either side of initial estimated mid-point 

of the profile. Using the mean value of the maximum and minimum points on the left 

and right side of the profile the half maximum is determined. The width is then 

estimated by measuring the distance between the half maximums. Another method 

which is proposed by Gregson et al. (1995) consists of a rectangle profile with a 

fixed height that is fitted to the profile data. In order to measure the value of the high 

of the corresponding rectangular the minimum value of the intensity subtracted from 

the maximum value of the intensity. The width of the rectangular profile is then 

manipulated until the area under the rectangular profile is equal to the area under the 
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profile data. Lowell et al. (2004) proposed an algorithm for measuring retinal blood 

vessel width by fitting a two-dimension model on green channel of original RGB 

fundus retinal image. The corresponding method looks like an idealized cross section 

profile running along the length of the vessel in a small region. Al-Diri et al, (2009) 

introduced a technique for segmentation and measurement of retinal blood vessels 

based on the Ribbon of Twins active contour model which two pair of contours were 

used to achieve each vessel edge. Most recently, an algorithm is proposed by Nguyen 

et al. (2013) to segment retinal blood vessel and measure the diameter of segmented 

blood vessels. In the corresponding method after segmentation of the retinal blood 

vessels obtained, the pair of edge points around the specific center point identified. 

The distance between these two edge points is considered as a vessel width at the 

corresponding center point. 

 

2.6 Retinal Vessel Tortuosity Measurement Algorithms 

 

According to the recent developments in medical image processing techniques, 

several features in retinal vasculature have identified. One of these important features 

is retinal vascular tortuosity. Normal retinal blood vessels are straight, however, they 

became tortuous in the presence of several diseases such as, plus diseases as referred 

in section 1.2.  With regarding the literature, there are several different methods for 

measuring the retinal vasculature tortuosity. 

 

The simplest and the most widely utilized method, known as arc length over chord 

length ratio, is firstly proposed by Lotmar et al. (1979) for measuring the vessel 

tortuosity. This method provides a simple measurement under the assumptions that 

the non-tortuous vessels are straight line and the radius of curvature is much larger 

than the chord. Hart et al. (1997, 1999) proposed a number of methods for tortuosity 

measurement includes the integral of the absolute curvature, squared curvature 

integral, the ratio between the absolute curvature integral (or the squared curvature 

integral) and chord length (or vessel length). Mean direction angle change is a 

method that is proposed by Chandrinos et al. (1998). This method is based on the 

local direction variation of the vessel. Goh et al. (2001) introduced a method based 
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upon the local direction variation called absolute direction angle change for measure 

vessel tortuosity. In this method the local direction change is measured for each 

center point of a vessel and the tortuosity then is computed as the number of times 

the corresponding angel at each center point is above the fixed threshold. Inflection 

count metric method for measuring the tortuosity of vessel is proposed by Bullitt et 

al. (2003). In the corresponding method, Bullitt et al. (2003) claimed that the Lotmar 

et al. (1979) method may not distinguish between the smoothly curved vessels and 

vessels that have abrupt changes in their directions. Therefore, a new method based 

on the number of inflection points (twists) is proposed to overcome the 

corresponding problem. Grisan et al. (2008) proposed a semi-automated method 

system to grade tortuosity of retinal vessels. The corresponding method is based on 

partitioning each vessel in segments of constant-sign curvature and then combining 

together each evaluation of such segments and their number. Most recently, an 

algorithm based on the chain code called slope chain code (SCC) was proposed by 

Bribiesca (2013). In this method, the SCC of a curve is measured by placing straight-

line segments of constant length around the curve and calculating the slope changes 

between contiguous straight-line segments scaled to a continuous range.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



22 
 

CHAPTER THREE 

RETINAL VESSEL SEGMENTATION 

 

3.1 Overview of Proposed Method 

 

According to the literature, the important point that should be referred is that 

supervised methods for retinal vessels segmentation in contrast to unsupervised 

methods are time-consuming and computationally expensive since different kinds of 

feature extraction methods and complex classifiers are used for extracting blood 

vessels. But interesting results have been obtained by pixel classification based on 

supervised learning on the other hand. The results of blood vessel segmentation in 

supervised methods in most cases are more accurate than unsupervised methods. 

Nonetheless there are a number of supervised methods for retinal blood vessel 

segmentation, automatic segmentation of blood vessels remains as a challenging task 

due to the presence of numerous problems such as, the variation in vessel 

appearance, shape and orientations, the low contrast between vasculature and 

background, the presence of noise, large abnormal regions due to the presence of 

lesions, exudates and other pathological regions (Ricci et al., 2007). Therefore, it is 

hard to use a single feature and to address all of these problems.        

 

In this work, we present a supervised method that is based upon the multi-feature 

analysis of retinal images and using an ensemble random forest (RF) classifier 

(Breiman, 2001) for retinal blood vessel segmentation. In this section, the summary 

of the method will be briefly explored. We treat vessel segmentation problem as a 

pixel feature classification task, in which the most probable class of an unknown 

pixel, described by a set of its features, is inquired to a machine learning system 

trained to assign class labels to image pixels. In the first stage of such a method, a 

feature vector, consisting of different types of strong features, for each pixel in an 

input image is extracted. The idea behind constructing such a hybrid feature vector is 

to fuse supportive and complementary local information, provided individually by a 

set of distinguished feature extraction algorithms, from image data. In the next stage, 

classification, two classes are considered for each pixel, vessel or non-vessel. A 
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training set including the pixels that are manually labeled through observation is 

lined up for the learning stage of the classification. Then, for measuring the 

performance of the classifier and also for achieving the segmentation of blood 

vessels in unseen data, a test set is applied to the classifier. We select the RF 

classifier because of its acknowledged advantages in image analysis applications 

Figure 3.1 depicts our method in a supervised classification framework  

 

 

 

Figure 3.1 General framework of the proposed method for retinal vessel segmentation.  

 

In the following sections, first the different kind of features of each pixel is 

individually described and then the details of RF classifier algorithm are presented. 

Consequently, the experimental evaluation of proposed method and a brief 

conclusion are given in the next sections.   

 

3.2 The Feature Vector 

 

The feature vector containing the quantifiable measurement for each pixel is 

presented in order to increase the classifier successfully. We have used a 

heterogeneous set of features to create a robust feature pool. The seventeen 

dimension feature vector was used which includes the intensity (one feature), 
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vesselness measure (one feature), morphological transformation (one feature), multi-

scale Gabor wavelet (thirteen features), B-COSFIRE filter (one feature). We describe 

in the following subsections each component of the feature vector.  

 

3.2.1 Intensity Feature  

 

       As described in section 2.2, all of the images in both DRIVE and STARE 

databases are color images represented using the RGB color space. Therefore, each 

image consists of three scalar valued images; the red, the green, and the blue. Figure 

3.2 illustrates the grayscale version for each RGB components. It can be observed 

that the blood vessels are darker than background in green change than red and blue 

ones which make the green channel suitable for the purpose of detection of blood 

vessels.  

 

 

(a) 

 

 

(b) 

 

 

(c) 
 

              (d) 

 

Figure 3.2 Grayscale representation of image 0082 of the STARE database (second row) and image 05 

of DRIVE test dataset (first row). a) original RGB images b) the R c) the G d) the B. It should be 

noticed that blood vessels have negative contrast all individual channels.   

 

Several methods and algorithms have used the G component for analysis since it 

provides the best vessel-to-background contrast among the R and the B component. 

However, it can be claimed that there is still useful information in the G component. 
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Despite the intensity is an important feature, the enhancing algorithm called contrast 

limited adaptive histogram equalization (CLAHE) (Pizer et al., 1987) is applied to 

increase the contrast of blood vessels. CLAHE is a window based enhancement 

technique which partitions the image into regions and applies the histogram 

equalization to each one. This process is commonly used as a preprocessing step in 

most of the analysis of retinal images (Azzopardi et al., 2015) for the improvement 

of local contrast by avoiding the over-amplification of noise in relatively 

homogeneous regions. By applying the CLAHE to the intensity image, both bright 

and dark regions are contrast-enhanced equally well as can be seen in Figure 3.3. In 

this work, a window size of 8×8 pixels is used. The point that should be referred is 

that the intensity image enhanced by CLAHE is inverted before using as a feature for 

further processing.   

 

 

(a)  
 

(b) 

 

                (c) 

 

Figure 3.3 Contrast enhanced images using CLAHE method, first row image 05 from DRIVE 

database and second row image 0082 from STARE database. a) original RGB images b) intensity 

images c) images after applying CLAHE method.  

 

3.2.2 Multi-scale Gabor Wavelet 

 

Gabor wavelet is one of the most important filters that is widely used for multi-

scale and multi-directional edge detection. In this thesis, we used multi-scale Gabor 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Azzopardi%20G%5BAuthor%5D&cauthor=true&cauthor_uid=25240643
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wavelet transformation to enhance vessels contrast and filter out the noises. Before 

extracting Gabor wavelet responses, a preprocessing method including two step is 

carried out as following. As the first step, the image extending algorithm introduced 

by Soares et al. (2006) is implemented for removing the border effect of retinal 

fundus images and reducing the false detection of Gabor filters. This algorithm starts 

with a region of interest (ROI) specified by the camera’s aperture and iteratively 

grows this ROI. Firstly the set of pixels of exterior border of the ROI is selected, 

pixels that are outside of the ROI and are neighbors (using four-neighborhood) to 

pixels inside ROI. Then, the value of each pixel in the corresponding set is replaced 

with the mean value of its neighbors (using eight-neighborhood). This process is 

repeated and it can be seen that the ROI is increased as shown in Figure 3.4. As a 

second step in the preprocessing stage, for increasing the contrast of the blood 

vessels and the response of the Gabor wavelet filters, the CLAHE algorithm which is 

explained in section 3.2.1 is applied to the extended image. The result of the CLAHE 

algorithm can be seen in Figure 3.4. 

 

 

 

  

 

(a) 

 

(b) 

 

(c) 

 

Figure 3.4 Fundus image preprocessed for removing border effects and enhancing the blood vessels, 

first row image 05 from DRIVE database and second row image 0082 from STARE database. a) the 

green channels of colored fundus images b) images with extended border c) the result of applying 

CLAHE method on extended images.  
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The Gabor wavelet filter used in our method can be expressed as below;  
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Where (x, y)X   is a 2-D point,  represents the wavelength of the sinusoidal 

factor,   is the angle of the normal to the parallel stripes of a Gabor function,   is 

the standard deviation of Gaussian envelope and   is the aspect ratio that depicts the 

elliptic shape by which the Gabor function is supported. The ratio /  ,  denoted by 

b , is known as the bandwidth of the Gabor filter. Then, our Gabor filter is 

parameterized as ( ; , , , )G L b   . With regarding to each pixel position and 

considered scale value ( ,b, )  , maximum response of real, imaginary and 

magnitude over all orientation was extracted as features as follows; 
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Where  /18, 0,...,17A k k  , determined with a relatively small angle step size 

for a better match to any arbitrary orientation of a vessel point at which the filter is 

applied,  , ,c r i m , and ,  , r i mG G G   are real, imaginary and the magnitude 

components of ( ; , ,b, )G X    . Therefore, a Gabor filter bank consisting of multiple 

scales is applied to the retinal fundus images. The value of the parameters that are 

specified in our method include,  1b ,  2,4,6,8,10,12 ,  0.25,0.5,0.75 

. So this combination results in 1×6×3=18 different configurations of the filter, and a 

54-D Gabor feature vector, considering the real, imaginary and magnitude parts of 

the filter response. The extended image is inverted before the application of wavelet 

transformation to it, so that the vessels appear brighter than the background. Such a 

representation provides positive contrast for the blood vessels, which is required by 

the Gabor filters used for filtering. An example of Gabor filter response for 
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1,  6,  =0.50b     can be seen in Figure 3.5. The important point that should 

be noticed is that after applying Gabor filter to the extended image, the 

corresponding image is converted the same size of ROI. 

 

   
(a) (b)                    (c) 

 

Figure 3.5 The Gabor filter response, first row image 05 from DRIVE database and second row image 

0082 from STARE database. a) extended image of green channels b) extended image is inverted 

before applying Gabor filter c) the cropped image of Gabor filter response for scales

1,  6,  =0.50b    . 

 

According to the high dimensionality of the Gabor feature vector for each pixel, 

54-D, a feature selection algorithm, correlation-based feature selection (CFS), 

introduced by Hall et al. (1998) is used as the post processing step to select a subset 

of features that are highly correlated with the corresponding class. As a result of 

applying this feature selection algorithm, 13 out of 54 number of features are 

selected as the best subset for further processing. The interesting point is that all of 

the features selected by corresponding feature selection algorithm are related to the 

real part of Gabor filter response. Among the real parts of all responses, a subset 

specified in Equation (3.3) is also excluded. The feature subset
sM , selected for our 

method, from the entire Gabor filter responses is given by; 



29 
 

            
 

 

( ; , , ) ( ; ,1, ) | ( , )

(2,  0.25), (2,  0.5), (2,  0.75), (4,  0.25), (4,  0.75)

r

sM b M B

B

       




x x
                           (3.3) 

 

3.2.3 Vesselness Measure 

 

This is a measure, first proposed by Frangi et al. (1998) based on the eigenvalues 

of Hessian matrix computed at every pixel in an image. Vesselness measure provides 

a good enhancement of vessel-like structures in images, using a scale space analysis 

with Gaussian kernels.  The Hessian matrix of image at each point (x, y)I can be 

calculated by formula below; 

 

                           

2 2

2

2 2

2

(x, y)
xx xy

yx y

I I

I Ix x y
H

I II I

x y y

  
 

   
    
    
 
   

                                          (3.4) 

 

Which contains partial derivatives computed by convolving the image ),( yxI  

with the first derivatives of a Gaussian kernel. The 2-D vesselness measure is defined 

by below formula; 
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Where BR  is the ridgeness score and can be computed by 1 and 2 , 

eigenvalues of the Hessian matrix in predefined order 1 2  , in such a way that

2 1/BR    and S is the Frobenius norm of the Hessian matrix; 

 

                               2 2 2 2 2

1 22xx xy yyF
S H L L L                                         (3.6) 
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In Equation (3.4), c is equal to half of the maximum Frobenius norm of the 

Hessian over all Frobenius norms computed on the entire image and we assume 

0.5   as Frangi et al. (1998). In the regions containing vessel like structures in an 

image, the norm value becomes larger compared to the background since at least one 

of the eigenvalues in those high contrast regions will be large. Because of this fact, 

the norm of Hessian is used to distinguish between vessel pixels from background. 

Although the vesselness measure in Equation (3.5) is analyzed at different scales, by 

varying the spread of Gaussian filter within a range, we select to compute the 

measure at an optimized single scale. As the number of scales increase, the multi-

scale vesselness analysis tends to give a rise in false detections (spurious vessel 

pixels) in the background region of retinal images. We fix the value of the scale 

factor in Gaussian filter at 1.5 for both DRIVE and STARE dataset. The example of 

application of vesselness measure for inverted green channel of colored retinal 

fundus images can be seen in Figure 3.6. 

 

 

   
(a)                       (b) 

 

Figure 3.6 Applying vesselness method on retinal fundus images, first row image 05 from DRIVE 

database and second row image 0082 from STARE database. a) inverted green channel of colored 

images b) vessel enhanced images using vesselness measure method. 
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3.2.4 Morphological Transformation 

 

Morphological top-hat transformation is one of the most important morphological 

operations and is generally used as a powerful tool in image processing for noise 

reduction and extracting useful and meaningful information in small regions of 

images. Structuring element plays an important role in the operation of 

morphological top-hat transform. For instance, in a blood vessel enhancement 

application, if a structuring element is not oriented at a suitable angle or is not large 

enough, a vessel or part of it can be eradicated by the transform. A linear structuring 

element is rotated at incremental angles through an arc of 180 and the obtained set is 

applied to image in the morphological opening operations of the top-hat 

transformations. Morphological top-hat transform is defined by; 

 

                                                     (   )th eI I I S                                                  (3.7) 

 

Where I  is the image to be enhanced, thI   is the top hat transformed image, eS
 is 

the structure element,   is the morphological opening operation and   is the 

angular rotation of structure elements for morphological opening. A sum of these 

top-hat transformed images, defined by Equation (3.8), can brighten all of the vessels 

regardless of their orientation, width, length, and tortuosity as long as the length of 

the structuring elements is larger than the vessel with the largest diameter. 

 

                                                      
thS th

A

I I



                                                      (3.8) 

 

A linear structuring element with 21 pixel long (taking into account the diameter 

of the largest vessel in the databases) and 1 pixel wide, and the rotation at an angle 

spanning  ,0  in steps of 8  are selected for opening operations as suggested by 

Fraz et al. (2012). Therefore, in Equation (3.8), A can be defined as

 7,,1,0  ,8 kk . The same parameters of the morphological top-hat 

transformation as referred to above are valid for both DRIVE and STARE datasets. 

The important point that should be noticed is that the corresponding morphological 

operation is applied to the green channel of the colored fundus images. The result of 
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this operation on green channel of colored retinal fundus images can be seen in 

Figure 3.7. 

 

  
(a)                        (b) 

 

Figure 3.7 Morphological transformation on retinal images, first row image 05 from DRIVE database 

and second row image 0082 from STARE database. a) the inverted green channel of colored images 

b) images after applying morphological operation. 

  

3.2.5 B-COSFIRE Filter 

  

Azzopardi et al. (2015) propose a bar-selective combination of shifted filter 

responses (B-COSFIRE) to detect bar-shaped patterns in digital images. They 

successfully detect retinal blood vessels in fundus images by applying their B-

COSFIRE filters configured for a prototype bar pattern. A B-COSFIRE filter can be 

configured to achieve orientation selectivity by multiplying outputs of a group of 

Difference-of-Gaussians (DoG) filters, whose responses are aligned collinearly. 

Symmetric and asymmetric B-COSFIRE filters that are selective for bars and bar-

endings, respectively, can be configured (Azzopardi et al., 2015) and it is reported 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Azzopardi%20G%5BAuthor%5D&cauthor=true&cauthor_uid=25240643
http://www.ncbi.nlm.nih.gov/pubmed/?term=Azzopardi%20G%5BAuthor%5D&cauthor=true&cauthor_uid=25240643
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that the best performance can be obtained by summing responses of symmetric and 

asymmetric B-COSFIRE filters. 

 

Azzopardi et al. (2015) utilized an appropriate DoG filter for detection of intensity 

changes of retinal images. The corresponding filter is defined by, 
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Where   is the standard deviation of the Gaussian function. The response 

),( yxc  of a DoG filter to an image ),( yxI is obtained by convolving the image 

with ),( yxDoG  followed by negative values suppression (setting negative 

responses to zero). Figure 3.8 shows how to configure a B-COSFIRE filter to detect 

a vertical bar (or vessel) as prototype pattern. When the DoG filter responses 

),( yxcσ  along a number of concentric circles around the center point (denoted by ‘1’ 

in Figure 3.8) of a B-COSFIRE filter are considered, significant responses to 

dominant intensity changes exist at the points labelled from ‘1’ to ‘5’ (assume a 

circle of zero radius at the center). The positions of such are points are gathered in a 

set  niS ii ,1|) ,(    where n denotes the number of considered DoG filter 

responses while i  and i  represent the polar coordinates with respect to the 

center point. For the example in Figure 3.8, 

 54321 )2/3 ,4(,)2/ ,4(,)2/3 ,2(,)2/ ,2(,)0 ,0( S  where each subscript denotes 

the label of the point for which its position is included in S. This configuration 

process provides a B-COSFIRE filter that is selective for the collinear alignment of 

significant intensity changes such as vessel-like patterns in an image. 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Azzopardi%20G%5BAuthor%5D&cauthor=true&cauthor_uid=25240643
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Figure 3.8 Configuration of a vertical bar-selective B-COSFIRE filter. The points with strongest DoG 

responses along the circles of given radii are labelled by numbers. The filter center point is denoted by 

‘1’. 

 

The output of the B-COSFIRE filter at the center points is computed by using the 

DoG filter responses in the positions in S. The responses in positions ) ,( ii   are 

brought into the center point after the DoG filter responses are blurred to allow for 

some tolerance in the position of the concerned points. The blurring is performed by 

taking the maximum value of the weighted DoG filter responses in a neighborhood 

of each position ) ,( ii  . For the weighting, a Gaussian function ),( yxG  with 

variable standard deviation    is used, such that i  0  where 0  and   are 

constants. The blurred and shifted (to the center point) DoG filter response 

),(, yxs
ii   in each position ) ,( ii   is defined by, 

  

        ),( ),( max),(
 ,

, yxGyyyxxxcyxs ii
yxii

 
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                            

(3.10) 

 

Where   3,3 yx  while the required shift values iiix   cos  and

iii sy  in  . The weighted geometric mean of all the blurred and shifted 

responses ),(, yxs
ii   yields the output   ),( yxrS  of the B-COSFIRE filter: 
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The operator 
t

    represents thresholding the weighted geometric mean at a 

fraction t )10(  t  of its maximum value. The weighting allows the contribution of 

the blurred and shifted responses to decrease with an increasing distance from the 

center point of the B-COSFIRE filter. 

 

A B-COSFIRE filter requires as many blurred DoG filter responses as the number 

of unique 
i  values used in the configuration of the filter. For the given 

configuration in Figure 3.8, only three blurred responses (images) are computed 

using the Gaussian functions with 01   ,  202  , and  403  . Then, 

each of the five (n=5 in Figure 3.8) different responses ),(, yxs
ii   are obtained by 

choosing the corresponding blurred response and shifting it by ),( ii yx  . 

 

Rotation invariance of a B-COSFIRE filter is achieved by considering ),( yxrS  

outputs obtained from a set of configurations for bar prototypes oriented at angles 

spanning from 0 to π. In order to detect bars at any arbitrary orientation k , a new 

set )(SR
k

 is generated from S by, 

 

                          SSR iikiik
 ) ,(|) ,()(                                           (3.14)                                                                                                                   

 

The weighted geometric mean of the blurred and shifted responses ),( yxr
kS  for 

orientation 
k  is obtained in the same manner as explained above for ),( yxrS  except 

that the new set )(SR
k is used instead of S. The set of shift vectors ),( ii yx   

essentially only differ in computing a new response for a different orientation of the 

bar. In implementations, 12 angles with equal intervals are used so that 

 120|12/  kkk  . Thus, rotation invariant response ),(ˆ yxrS  of a B-
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COSFIRE filter can be obtained by taking the maximum responses ),( yxr
kS for 

k={0,1,..,11} at every position ),( yx . 

 

 

Figure 3.9 Configuration of an asymmetric vertical bar-selective B-COSFIRE filter. The center point 

of the filter lies on the end of the line. 

 

A B-COSFIRE filter gives much lower response at bar endings than the response 

that is obtained in the middle of bar. This drawback is overcome by configuring a 

new B-COSFIRE filter by the prototype bar ending shown in Figure 3.9. The filter 

center point this time settles on the end of the line and this filter is called asymmetric 

B-COSFIRE filter in contrast to symmetric B-COSFIRE filter that is described 

previously. An asymmetric B-COSFIRE filter is much more responsive at the end of 

a vessel.  

 

We use the summation of responses of symmetric and asymmetric B-COSFIRE 

filters as a feature in our method. The responses are obtained from the retinal images 

by setting the parameters ( , 0 , , i , and t) of both symmetric and asymmetric B-

COSFIRE filters as suggested in [28] for the DRIVE and STARE databases. An 

example of B-COSFIRE filter response can be seen in Figure 3.10. 
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(a)                        (b) 

 

Figure 3.10 B-COSFIRE filter response on retinal images, first row image 05 from DRIVE database 

and second row image 0082 from STARE database. a) inverted green channel of colored images b) 

images after applying B-COSFIRE filter. 

 

3.2.6 Feature Normalization 

 

We have applied the normal transformation known as mean and standard 

deviation normalization to each feature in such a way that each feature is normalized 

by its own means and standard deviations which help to compensate for inherent 

variation between images such as illumination. 

 

For achieving the new variables with zero mean and unit standard deviations in 

order to reduce the errors in the classification process, the normal transformation is 

applied to the feature space which is defined in below formula. 
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Where iv  is the thi  feature, i  is the average value of the thi , and i  is the 

standard deviation.   

 

3.3 Ensemble Classification 

 

Ensemble learning methods are an approach used to improve the performance of 

learning. The main principle of ensemble learning methods is the combination of the 

weak group of learners to create a strong learner for solving particular machine 

learning problems. The most important advantages of using ensemble systems are the 

reduction of variance and an increase in confidence of the decision. 

 

Random forest (RF) is an ensemble method that is very suitable for nonlinear 

classification in high dimensionality space. RF classifier is based on a learning 

technique known as decision trees with each tree is constructed via some randomized 

configuration. The advantage of this randomized configuration is that firstly it makes 

the classifier very flexible when a large number of heterogeneous features are 

available since it choose only a subset of features in each tree node. Secondly it 

makes the classifier useful if there is a huge number of samples available in training 

stage by selecting a random subset of whole training dataset in each tree. Other 

benefits of using RF is the easy selection of parameters and the training time is fast.  

 

According to the fundamental of decision trees, there are two different types of 

nodes in each tree: leaf node which encodes the class distribution for samples that 

reach it and internal nodes which perform the binary test to split the samples to its 

child node. The splitting process continuous until a leaf node is reached. A stump can 

be used to select the best threshold to split samples for minimizing the miss-

classification error. The important point that should be noticed is that at each leaf 

node the posterior probability is learned as the proportion of the training samples 

labeled as vessels at the corresponding leaf node. In the testing step, the feature of 

each pixel is first fed into the root of each tree and then it follows the splitting rule 

until it reaches a leaf. Each tree returns a posterior probability that x belongs to a 
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vessel. The mean of leaf distributions from all trees is used for the final decision. 

Specifically, the probability that x is a vessel pixel is estimated by: 

  

                             
1
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t
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Pr p
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 x x                                 (3.16) 

 

 Where tP  is the output from the tht tree, T is the number of trees in the forest and

( ) x  is feature of a pixel x. 

 

The parameters of RF can be manipulated to achieve the best result of 

performance. These parameters include; the number of trees, the training dataset 

sample size for building each decision tree and a number of random features which 

determine the partitioning of the training dataset at each node. 

 

3.4 Experimental Evaluation     

 

The proposed method has been evaluated using two groups of the online available 

database, DRIVE and STARE. For measuring the performance of the algorithm, 

several metrics is measured such as sensitivity, specificity, accuracy, positive 

predictive value and area under ROC curve. The detail of the metric is described in 

section 2.3. 

 

3.4.1 Implementation Detail 

 

As described in section 2.2, DRIVE database consists 40 images that are divided 

into two subsets, training set and testing set. The training set which includes 20 

images was used to train the classifier such a way that 300,000 samples, pixels, were 

randomly selected from corresponding images, 15000 per image. The performance of 

the proposed method for blood vessel segmentation is measured on the testing set. 

 

Because of the STARE database which includes 20 colored retinal images does 

not have any separate training and testing sets, different kinds of methods were 
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utilized to implement the classifier training and testing stages, for instance, Ricci et 

al. (2007) and Cheng et al. (2014) randomly selected 0.5% and 6% of samples of the 

entire dataset for training the classifiers and for performing the test stage, all of the 

images with entire pixels was used. Soares et al. (2006) and Staal et al. (2004) 

implemented leave-one-out algorithm in this dataset in such a way that every image 

is classified by using samples from the other 19 images. We followed the method 

that is implemented by Ricci et al. (2007) on this dataset. We used 60,000 manually 

segmented pixels which are randomly selected form 20 images, 3000 per image, for 

training the classifier on this dataset. Due to the small size of training set, 1% of the 

entire dataset, the performance was evaluated on the whole set of 20 images. The 

important point that should be referred is that the only pixels located inside the FOV 

was used for all of processing. 

 

A Random forest classifier was constructed for classification using 150 decision 

trees in which each decision tree is of depth 15 and built in parallel fashion and also 

5 out of 17 features are randomly selected to train an internal node. The output of 

classifier is a vessel probability map obtained by the voting of all the trees. 

Accordingly, a simple threshold ( 0 1thT  ) is applied to the probability map for 

achieving the vessel segmentation. For measuring the performance of results as a 

further process, the value of threshold must be the same for all images in each 

dataset. We selected the optimal threshold value for both DRIVE and STARE as

0.60thT  .  

 

3.4.2 Vessel Segmentation Results 

 

Binary vessel segmentation image is obtained by threshold the probability map 

image. All of the performance metrics are computed regarding the first human 

observer as ground truth. Performance results for individual image in each database 

can be seen in Tables 3.1 and 3.2. 
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Table 3.1 Performance results on DRIVE database images. The best case, the worst case and the 

average value of metrics is highlighted. 

Image SN SP ACC AUC 

1 0.7965 0.9759 0.9524 0.979 

2 0.8035 0.9795 0.9531 0.979 

3 0.7106 0.9760 0.9374 0.960 

4 0.7653 0.9824 0.9535 0.964 

5 0.7524 0.9816 0.9505 0.960 

6 0.7227 0.9799 0.9436 0.958 

7 0.7308 0.9827 0.9494 0.959 

8 0.6814 0.9807 0.9431 0.959 

9 0.7540 0.9805 0.9539 0.967 

10 0.7477 0.9802 0.9524 0.966 

11 0.7350 0.9800 0.9482 0.958 

12 0.7698 0.9762 0.9504 0.970 

13 0.7439 0.9777 0.9445 0.965 

14 0.7808 0.9761 0.9530 0.976 

15 0.7766 0.9800 0.9589 0.972 

16 0.7553 0.9832 0.9533 0.975 

17 0.7134 0.9806 0.9476 0.961 

18 0.7424 0.9820 0.9544 0.974 

19 0.8302 0.9878 0.9688 0.982 

20 0.7789 0.9798 0.9584 0.980 

Average 0.7545 0.9801 0.9513 0.9682 
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Table 3.2 Performance results on STARE database images. The best case, the worst case and the 

average value of metrics is highlighted.  

Image SN SP ACC AUC 

1 0.7640 0.9661 0.9441 0.971 

2 0.6593 0.9861 0.9562 0.963 

3 0.7006 0.9850 0.9618 0.974 

4 0.6868 0.9833 0.9531 0.968 

5 0.6547 0.9758 0.9362 0.966 

6 0.7641 0.9851 0.9657 0.984 

7 0.8436 0.9831 0.9678 0.989 

8 0.8355 0.9829 0.9679 0.990 

9 0.8463 0.9842 0.9694 0.989 

10 0.6991 0.9852 0.9538 0.979 

11 0.7953 0.9848 0.9662 0.986 

12 0.8750 0.9874 0.9763 0.992 

13 0.8246 0.9804 0.9614 0.986 

14 0.8168 0.9847 0.9638 0.987 

15 0.6916 0.9880 0.9548 0.975 

16 0.7496 0.9784 0.9464 0.973 

17 0.8164 0.9845 0.9638 0.985 

18 0.7643 0.9921 0.9762 0.979 

19 0.7261 0.9899 0.9743 0.982 

20 0.5977 0.9871 0.9516 0.961 

Average 0.7556 0.9837 0.9605 0.9789 

 

The best case in DRIVE database includes the values 0.9688, 0.8302, 0.9878, and 

0.9820 for the accuracy, sensitivity, specificity, and AUC, respectively, the worst 

case measures are, 0.9374, 0.7106, 0.9760, and 0.9600. Regarding the STARE 

database, the best case includes the accuracy value of 0.9763, sensitivity, specificity, 
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and AUC are 0.8750, 0.9874, and 0.9920. The worst case accuracy is 0.9362, 

sensitivity, specificity, and AUC are 0.6547, 0.9758, and 0.9660. Vessel 

segmentation result for the best and the worst case in DRIVE and STARE database 

are illustrated in Figure 3.11 and Figure 3.12. 

 

 
 

  

  

              (a)                        (b) 

 

Figure 3.11 Segmentation results for DRIVE database, first row: Input images, second row: 

segmentation results, third row: first human observer. a) best case accuracy b) worst case accuracy. 
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                             (a)                             (b) 

 

Figure 3.12 Segmentation results for STARE database, first row: Input images, second row: 

segmentation results, third row: first human observer. a) best case accuracy b) worst case accuracy. 

 

With respect to Table 3.3, which illustrates average performance measures for 

both DRIVE and STARE database, the average value of accuracy and precision rates 

incurred by the proposed method are higher than the second human observer in both 

databases. The average value of specificity for our algorithm are also higher than the 

second human observer for both databases which means that in the proposed method, 

few numbers of pixels that belong to the background or pathological regions are 

identified as part of a vessel than the second human observer. The average values of 
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area under ROC curve for both DRIVE and STARE database are 0.9682 and 0.9789 

as illustrated in Figure 3.13. 

 

Table 3.3 Performance measures on DRIVE and STARE database.  

Database Segmentation SN SP ACC AUC 

DRIVE 2
nd 

Human Observer 0.7796 0.9717 0.9464 _ 

 Proposed Method 0.7545 0.9801 0.9513 0.9682 

STARE 2
nd 

Human Observer 0.8955 0.9382 0.9347 
_ 

 Proposed Method 0.7556 0.9837 0.9605 0.9789 

 

 

 

 

 

Figure 3.13 ROC curves for DRIVE and STARE database. 

 

As can be seen in Figure 3.13, the ROC curves indicate that the performance of 

proposed method on DRIVE and STARE database is better than the second human 

observers. 
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3.4.3 Cross Training Result   

 

For measuring the robustness of the proposed method for the training set, the 

cross-training method was used in such a way that the classifier trained on STARE 

(or DRIVE) database images is tested on DRIVE (or STARE) database images. The 

performance metrics for cross-training method were measured and Table 3.4 

illustrates the value of these metrics. As can be seen, there is a small decrease for all 

of the metrics in both dataset in comparison to the Table 3.3, for instance, the value 

of accuracy is decreased from 0.9513 to 0.9496 for DRIVE database since the images 

in STARE database are different from DRIVE database.  

 

Table 3.4 Cross-training result on DRIVE and STARE database. 

Dataset SN SP ACC AUC 

DRIVE (Trained on STARE) 0.7308 0.9740 0.9496 0.9595 

STARE (Trained on DRIVE) 0.7453 0.9760 0.9545 0.9719 

 

3.4.4 Comparison to Other Methods 

 

For comparing the performance result of our method with other state-of-the-art 

methods, some metrics such as sensitivity, specificity, accuracy and area under ROC 

curve were used for evaluating this comparison. Tables 3.5 and 3.6 illustrates the 

value of the metrics for both DRIVE and STARE databases regarding the state-of-

the-art algorithms published previously. 
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Table 3.5 Performance comparison of vessel segmentation methods on DRIVE database. 

No Type Method SN SP ACC AUC 

1.  2
nd

 Human Observer 0.7796 0.9717 0.9470 _ 

2. Unsupervised Methods Zana (2001) 0.6971 N.A 0.9377 0.8984 

3.  Jiang (2003) N.A N.A 0.9212 0.9114 

4.  Mendonca (2006) 0.7344 0.9764 0.9452 N.A 

5.  Al-Diri (2009) 0.7282 0.9551 N.A N.A 

6.  Lam (2010) N.A N.A 0.9472 0.9614 

7.  Miri (2011) 0.7352 0.9795 0.9458 N.A 

8.  Fraz (2012) 0.7152 0.9759 0.9430 N.A 

9.  You (2011) 0.7410 0.9751 0.9434 N.A 

10.  Azzopardi (2015) 0.7656 0.9704 0.9442 0.9614 

11. Supervised Methods Niemeijer (2004) N.A N.A 0.9416 0.9294 

12.  Soares (2006) 0.7332 0.9782 0.9461 0.9614 

13.  Staal (2004) N.A N.A 0.9441 0.9520 

14.  Ricci (2007) N.A N.A 0.9559 0.9558 

15.  Lupascu (2010) 0.7200 N.A 0.9597 0.9561 

16.  Marin (2011) 0.7067 0.9801 0.9452 0.9588 

17.  Fraz (2012) 0.7406 0.9807 0.9480 0.9747 

18.  Cheng (2014) 0.7252 0.9798 0.9474 0.9648 

19.  Proposed Method 0.7545 0.9801 0.9513 0.9682 

 

 

 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Azzopardi%20G%5BAuthor%5D&cauthor=true&cauthor_uid=25240643
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Table 3.6 Performance comparison of vessel segmentation methods on STARE database. 

No Type Method SN SP ACC AUC 

1.  2
nd

 Human Observer 0.8951 0.9384 0.9348 _ 

2. Unsupervised Methods Hoover (2000) 0.6747 0.9565 0.9264 N.A 

3.  Jiang (2003) N.A N.A 0.9009 N.A 

4.  Mendonca (2006) 0.6996 0.9730 0.9440 N.A 

5.  Al-Diri (2009) 0.7521 0.9681 N.A N.A 

6.  Lam (2010) N.A N.A 0.9567 0.9739 

7.  Fraz (2012) 0.7311 0.9680 0.9442 N.A 

8.  You (2011) 0.7260 0.9756 0.9497 N.A 

9.  Azzopardi (2015) 0.7716 0.9701 0.9497 0.9563 

10. Supervised Methods Soares (2006) 0.7207 0.9747 0.9479 0.9671 

11.  Staal (2004) N.A N.A 0.9516 0.9614 

12.  Ricci (2007) N.A N.A 0.9584 0.9602 

13.  Marin (2011) 0.6944 0.9819 0.9526 0.9769 

14.  Fraz (2012) 0.7548 0.9763 0.9534 0.9768 

15.  Cheng (2014) 0.7813 0.9843 0.9633 0.9844 

16.  Proposed Method 0.7556 0.9837 0.9605 0.9789 

 

As can be seen in both Tables 3.5 and 3.6, the value of metrics in the proposed 

method is better than the most of the other methods. According to the Table 3.6, it 

can be seen that the only method that has better results than the proposed method 

with regard to the value of accuracy and AUC is the Cheng et al. (2014) method. 

Cheng et al. (2014) used 6% of random samples of entire dataset for training its 

classifier in STARE database while we used only 1%. Moreover, the feature vector 

that is extracted for each pixel is 17 dimension in the proposed method while Cheng 

(2014) used 280 dimension feature vector. Despite the high dimensionality of Cheng 

et al. (2014) method, for proving the fact that our method has the better performance 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Azzopardi%20G%5BAuthor%5D&cauthor=true&cauthor_uid=25240643
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than Cheng et al. (2014) method, we evaluate the performance of our method by 

using the 6% of entire samples in training stage just like Cheng et al. (2014) method. 

And we could achieve the value 0.9650 and 0.9855 for accuracy and AUC which 

shows that the proposed method has the higher performance than Cheng et al. (2014) 

method. Moreover, the leave one out method is also applied in the STARE database. 

As a result of this implementation, we could achieve the values of 0.9579 and 0.9772 

for accuracy and AUC metrics which shows that our method has the better result 

than Soares et al. (2006) and Staal et al. (2004) method as can be seen in Table 3.6. 

Therefore, it can be claimed that the value of accuracy and area under ROC curve 

achieved by the proposed method has better results than all of the state-of-the-art 

methods in STARE database. 

 

As the Table 3.7 illustrates, in the case of cross-training of classifier our method 

has the average value of accuracy higher than all of the other state-of-the-art methods 

in both DRIVE and STARE databases. 

 

Table 3.7 Performance comparison of results with cross-training in terms of average accuracy. 

Method DRIVE( Trained on STARE) STARE( Trained on DRIVE) 

Soares (2006) 0.9397 0.9327 

Ricci (2007) 0.9266 0.9464 

Marin (2011) 0.9448 0.9528 

Fraz (2012) 0.9456 0.9493 

Cheng (2014) 0.9384 0.9476 

Proposed Method 0.9496 0.9545 

 

In order to compare the performance of proposed method on the pathological 

images, 10 images of STARE database that are pathological images, as described in 

section 2.2, were used for comparison. The average value of sensitivity, specificity 

and accuracy for 10 pathological images were computed. As can be seen in Table 

3.8, the average value of accuracy by the proposed method has the highest value than 
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other methods which shows that our algorithm is robust in the case of segmentation 

of abnormal images. 

 

Table 3.8 Performance comparison of results on pathological images (STARE database). 

Method SN SP ACC 

2
nd

 Human Observer 0.8719 0.9384 0.9324 

Hoover (2000) 0.6587 0.9565 0.9258 

Soares (2006) 0.7181 0.9765 0.9500 

Fraz (2012) 0.7262 0.9764 0.9511 

Proposed Method 0.7017 0.9836 0.9573 

 

3.5 Summary 

 

In chapter, we proposed an effective method for the segmentation of the retinal 

blood vessels based on supervised learning method. We constructed 17 dimensional 

feature vector consisting of CLAHE contrast enhancement feature, vesselness 

measurement, morphological transformation, multi-scale response of Gabor wavelet 

and also B-COSFIRE filter response which are used for the first time in supervised 

learning based methods. Random forest classifier which is very flexible for fusing 

the inharmonious features was utilized for classifying each pixel as vessel or 

nonvessel pixel. 

 

The proposed method is tested on the two public online available database, 

DRIVE and STARE database. The performance of the proposed method was also 

compared against more than 15 other methods on STARE and DRIVE dataset 

respectively. The results shows that the performance of a proposed method is better 

than other state-of-arts methods with respect to the accuracy and area under ROC 

curve. 
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CHAPTER FOUR 

WIDTH AND TORTUOSITY MEASUREMENT OF RETINAL VESSEL 

 

4.1 Overview of Proposed Method 

 

Extraction of retinal blood vessels gives a suitable opportunity to the analysis of 

the vascular system directly. There are several important abnormalities of the retinal 

related to the vascular system as described in first chapter, for instance, diameter 

changes in the retinal vessels according to entire vascular system are associated with 

the cardiovascular diseases, A/V ratio, and the unusual changes in diameter along a 

single vessel are also one of the important predictors of proliferate diabetic 

retinopathy. Moreover, identifying the thin blood vessels and the percentage of them 

with regarding the entire vasculature system is an important task for prediction the 

diabetic retinopathy diseases. Also, the tortuosity of retinal blood vessels has been 

associated with a number of established risk factors for cardiovascular outcomes.  

Thereby measuring the diameter and tortuosity of the retinal blood vessels, both 

arteries and veins, and analyzing the vessels according to the corresponding metrics 

gives significant information about pathology.  

 

In this chapter, we establish an automatic system for measuring the diameter and 

tortuosity of the blood vessels in retinal fundus images and analyzing the vasculature 

system according to various metrics. The corresponding system includes the three 

main stages. In the first stage, the retinal blood vessels extracted using the method 

proposed in chapter 3. The following stage is a preprocessing stage which itself 

consists of four steps to prepare vessels for further processing. As the last stage, two 

important algorithms are utilized for measuring the diameter and tortuosity of retinal 

blood vessels. The schematic of the proposed method can be seen in Figure 4.1.  
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Figure 4.1 General framework of proposed automatic method for measuring the width and tortuosity 

of retinal blood vessels. 

  

4.2 Retinal Vessel Width Measurement  

 

In this section, first the methodology of the proposed method for automatic width 

measurement of retinal blood vessels is introduced in the first subsection and 

different analysis based on the diameter of retinal blood vessels is presented in the 

next subsection. 

 

4.2.1 The Methodology  

 

For measuring the diameter of retinal blood vessels, an initial vessel segmentation 

stage is needed to extract the vessel segment profiles. The method proposed in 

chapter 3 is utilized to extract retinal blood vessels tree. It is important to be noticed 

that all the parameters in the feature extraction stage and classification stage in the 

corresponding vessel extraction method are the same as referred previously. As it 

was mentioned in section 3.4.1, the output of classifier is a vessel probability map. A 

simple threshold must be applied to the probability map for achieving the vessel 

segments. The smaller you choose the value of threshold, the more vessels will be 

extracted. Therefore, small threshold value is selected in compare to the section 3.4, 

in order to extract more thin blood vessels. 

 

With regard to the fact that the diameter measurement algorithm is based on the 

vessel center line, after achieving the vessel network in the previous stage, a 

preprocessing algorithm includes four steps is applied to the binary image of vessel 

network to extract the vessels center lines and make the corresponding network 
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reliable for further processing. In the first step, all of the connected components, 

eight connectivity, in the vessel network are identified. It means that the connectivity 

between the vessel pixels is identified and the small connected components are then 

emitted from vessel network for removing the small false detected regions and the 

very small and short blood vessels created in the vessel extraction stage. With regard 

to the fact that the method utilized for width measuring is based on the centerline of 

the vessels, in the second step, a simple thinning method called morphological 

sequential thinning operation (Lam et al., 1992) is applied to the binary image for 

achieving the centerline of blood vessels. This operation results in one pixel wide 

connected skeletons and piecewise linear skeleton of blood vessels. In the next step, 

all of the crossing and bifurcation points in the vessel centerline image are identified 

by a simple definition of connectivity of centerline pixels and they are removed for 

extracting the vessel centerline fragments. A bifurcation point is defined as a 

centerline pixel with three or more connected neighbors. As the last step, the 

corresponding vessel centerline fragments image is scanned with regarding the 

connectivity of each centerline pixels for finding the end points of each centerline 

fragments. An end point is defined as a centerline pixel with only one connected 

neighbor. After finding both end points of each fragment in vessel centerline, the 

corresponding points is deleted and this action is repeated for five or six times in 

order to prevent the interface of the endpoints of different fragments in the further 

processing, width measurement. The fragmented vessel centerlines obtained from 

this algorithm are illustrated in Figure 4.2.  

 

After achieving the vessel centerline fragments image in the preprocessing stage, 

one of most popular method introduced by Nguyen et al. (2013) is utilized for 

measuring the diameter of retinal blood vessels. According to the literature, there are 

several methods for measuring the diameter of blood vessels in retinal fundus 

images. In this work, Nguyen et al. (2013) method is used since this algorithm is 

very simple and more precise than other methods with regarding the results in the 

corresponding paper. The proposed method by Nguyen et al. (2013) is based on the 

vessel edges and vessel centerline in such a way that a pair of edge points is 

identified at a specific center point that the distance between the corresponding edge 
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points represents the vessel width with regarding the specific center point. The 

simple algorithm is introduced for extracting the edge image of vessels. After 

extracting the vessel network in the first stage, the corresponding image is scanned 

with regarding the connectivity of each vessel pixels for finding the edge pixels of 

vessels. An edge point is defined as a vessel pixel with at least one non vessel pixel 

in eight neighborhood. Figure 4.3 illustrates an example of edge detection. 
 

(a) 

(d) 

(b) 

 

(e) 

(c) 

 

(f) 

 

Figure 4.2 Fragmented vessel centerlines obtained in preprocessing stage. a) cropped region from 

original RGB image b) vessel network tree extracted by proposed method in chapter 3 c) removing 

small connected component d) the result of applying the thinning algorithm e) identifying the crossing 

and bifurcation points specified by red points and deleting them f) identifying the end points in each 

segment and deleting them iteratively.    

(a)                 (b) 

 

Figure 4.3 Vessel edge detection. a) vessel image after extrction process b) edge image after applying 

edge detection algorithm. 
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     With regarding the vessel centerline fragments image and the vessel edge image, 

the Nguyen et al. (2013) algorithm is designed in such a way that at each center 

point, all edge points (points in edge image) that are within a certain mask centered 

on the corresponding center point are determined. After that, for each edge point, its 

mirror point located in the other edge side and forms 0180  angle with current edge 

point is identified. In order to detect the correct mirror point for all the edge points, 

the angle ia  is defined for each edge point iE  by the vector pointing from the center 

point to the corresponding edge point and the vector representing the horizontal line 

is computed. Thereby, an edge point jE  is defined as the mirror point of iE  if: 

 

                                               180i ja a                                                    (4.1) 

 

     Where   is the difference between the angle formed by two edge points and the 

difference in the ideal case, 0180 , which is set to 05  as referred by Nguyen (2013). 

After identifying the pairs of edge points around the corresponding center point, the 

edge points with the shortest length is defined as the goal edge points that the 

distance between these points represents the vessel width at the corresponding center 

point. This algorithm repeated for all of the center points along a vessel and the 

average value of corresponding widths represents the diameter of the vessel. The 

schematic of the algorithm can be seen in Figure 4.4. 

 

 

 

Figure 4.4 algorithm for deretmining the vessel ege points representing vessel width at a specific 

center point. 
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The width of each fragmented vessel can be calculated by below formula, 

 

                                                    
1

1 N

i j

ji

W W
N 

                                                    (4.2) 

 

Where iW  is the average width value of i-th vessel, iN  is the totall number of 

center points along ith vessel and jW is the width of vessel with respect to the jth 

center point. 

 

4.2.2 Retinal Vessel Width Analysis      

 

In this subsection, the results of width measurement algorithm are analyzed with 

regard to the some parameters. There are three important outputs of width 

measurement algorithm applied to the retinal fundus image such as the number of 

center points along each fragmented vessel ( N ), width (W ) and standard deviation  (

 ) of each fragmented vessel with regarding the widths of all center points along the 

corresponding fragmented vessel. The value of width can be measured using the 

Equation (4.2) for each fragmented vessel and the standard deviation also can be 

calculated by below formula also, 

 

                                                     
2

1

1 N

i j i

ji

W W
N




                                         (4.3) 

 

The images of STARE database without any pathologies are utilized for 

analyzing. The example of the output of width measurement algorithm for one of 

these images can be seen in Table 4.1. 

 

 

 

 

Table 4.1 Output of the width measurement algorithm for image 0120 from STARE database.  
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Number of  

Vessel  

Number of center 

points  ( N ) 

Width   

(W ) 

Standard deviation 

( ) 

1 23 1 0 

2 

 

9 

 

1 

 

0 

 

33 

 

88 

 

2.3 

 

0.20 

 

88 110 3.35 0.46 

110 10 1.6 0.01 

111 

 

98 

 

2.62 

 

0.02 

 

139 19 1 0 

 

As can be seen in above table, there are four columns which the first column 

refers the number of the fragmented vessel, the second one is the total number of 

center points located along the corresponding fragmented vessel, the third column 

indicates the width value of the corresponding vessel and the last column is the 

standard deviation. 

 

With respect to the results of the width measurement algorithm, the histogram 

analysis is done for determining the percentage of the thin vessels in the entire vessel 

network with regarding the vessel widths. The image 0120 from STARE database is 

used for this analysis. As a first step, the corresponding width measurement 

algorithm is applied to the image. Table 4.1 is the result of this application. After 

achieving the results, the histogram of the vessels width is plotted with regard to the 

number of vessels and the diameter of the vessels. Figure 4.5 illustrates the histogram 

of vessels width. 
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Figure 4.5 Histogram of vessels width related to the image 0120 from STARE database. 

 

As can be seen in Figure 4.5, the number of thin vessels is more than thick 

vessels. As it was referred in section 1.2, identifying the thin blood vessels and the 

percentage of them with regarding the entire vasculature system is an important task 

for prediction the diabetic retinopathy diseases. Therefore, it is very easy to calculate 

the percentage of the thin vessels using the corresponding histogram. For instance, in 

Figure 4.4, a total number of the vessels is 139 and a total number of the thin vessels 

with diameter value of 1 or lower is 82, so by this way the corresponding percentage 

can be calculated easily. Another important application of this histogram is that if 

there are two different histograms related to the two different fundus images captured 

in different period of times from the same patient, it is very easy to determine the 

presence of new thin blood vessel by comparing the corresponding two histograms 

which refers the presence of diabetic retinopathy diseases also. 

 

Standard deviation is another parameter that gives the meaningful information 

about the presence of diabetic retinopathy and plus diseases introduced in section 

1.2. Normal fragmented blood vessel should has the constant value of width along 

the different center points of corresponding vessel, but sometimes the diameter of 

blood vessel alters along the center points of the vessel because of the presence of 

several diseases. According to the fact that our width measurement method is based 

on the mean value of the widths of individual center points along vessel, it is also 
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possible to measure the standard deviation of widths along the vessel using Equation 

(4.3). The important point that should be noticed is that vessel that has no diameter 

changes along center points must have the zero or low value of standard deviation 

with respect to the Equation (4.3). On the other hand, the vessel that has diameter 

changes along center points should have high value of standard deviation. Thereby, 

the corresponding parameter is very important factor for determining the 

abnormalities in vessels. Some of these abnormalities can be seen in Figure 4.6.  

 

 

 

Figure 4.6 Diameter changes along the vessel. Left one is a normal vessel with low or zero value of 

standard deviation. Right one is an abnormal vessel with high value of standard deviation.        

  

For analyzing the standard deviation values of vessels in image 0120 of STARE 

database, the histogram of corresponding vessel with regarding the values of 

standard deviation is plotted. The result of the histogram is illustrated in Figure 4.7. 

As can be seen, the values of the standard deviation for all of the vessels are low 

which means that there is no abnormalities related to the vessels width changes.    

 

 

 

Figure 4.7 Histogram of the vessels with regarding the value of standard deviation.  
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Moreover, if the detail of the fragmented vessels is available, it means that all of 

the vessels can be separated into two groups as arteries and veins, one of the most 

important metrics that is called A/V ratio can be calculated easily. It should be 

referred that the changes in the ratio between the diameter of retinal arteries and 

veins, also called A/V ratio, is specified in the case of hypertension and 

atherosclerosis.      

 

4.3 Retinal Vessel Tortuosity Measurement 

 

As a first step, the methodology of the proposed algorithm for automatic 

tortuosity measurement of retinal blood vessels is described and in the following 

step, different images are analyzed by applying the proposed method on 

corresponding images. 

 

4.3.1 The Methodology  

 

The proposed method for automatic measurement of the retinal blood vessels 

tortuosity include three main stages, vessel segmentation stage, preprocessing stage 

and tortuosity measurement stage. 

 

For measuring the tortuosity of the retinal blood vessels, an initial vessel 

segmentation stage is needed to extract the vessel segment profiles. The method 

proposed in chapter 3 is utilized to extract retinal blood vessels tree. It is important to 

be noticed that all the parameters in the feature extraction stage and classification 

stage in the corresponding vessel extraction method are the same as referred 

previously. 

      

According to the fact that the tortuosity measurement algorithm is based on the 

vessel centerline, after achieving the vessel network in the previous stage, a 

preprocessing algorithm described in the subsection 4.2.1 is utilized for achieving the 

vessel centerline network. The only difference here is that the end points are not 

deleted in the last step of the preprocessing stage. It means that the tortuosity 
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measurement algorithm is applied on the fragmented vessels without deleting the end 

points of the corresponding vessels. The result of applying vessel segmentation 

algorithm and preprocessing technique can be seen in Figure 4.2. 

 

After achieving the vessel centerline fragments image in the preprocessing stage, 

one of the most popular methods, known as Slop Chain Code (SCC), introduced by 

Bribiesca (2013) is utilized for measuring the tortuosity of the retinal blood vessels. 

According to the literature, there are several methods for measuring the tortuosity of 

the blood vessels in the retinal fundus images. Due to the several advantages, the 

SCC algorithm is constructed for measuring the tortuosity of the retinal blood 

vessels. The most important advantages of the SCC is that the corresponding 

algorithm is very simple, independent of translation, rotation and optionally of 

scaling and more precise than other methods with regarding the results in the 

corresponding paper. 

 

 If we define a vessel centerline as a curve, The SCC of a curve is achieved by 

placing straight lines segments of constant length around the curve and measuring 

the slope changes between contiguous straight line segments scaled to a continuous 

range from -1 to 1. The slope changes scaled to lie within (-1, 1) can be seen in 

Figure 4.8. 

 

 

Figure 4.8 Range of slope changes (Bribiesca, 2013). 

 

With regard to the fact that a fragmented vessel centerline is a continuous curve, 

to convert a continuous curve into a discrete curve the length of the straight line 

segments is selected for describing such a curve. After fixing the length of the 
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straight line segment, a point of a curve is selected as an origin point or start point 

and an endpoint of one of the straight line segments is set to coincide with this origin. 

The opposite endpoint is set over the corresponding curve, determining the starting 

point of next segment, and so on. With regard to the graphically description, this 

process achieves to superimposing the sequence of circles traveling around curve that 

the intersections of the circles determine the points of the discrete shape and the 

radius of each circle represents the length of the segment as can be seen in Figure 4.9 

 

 

 

Figure 4.9 Conversion of a continuous curve into a discrete curve. The left shape: a continuous curve 

with a selected origin and a straight line segment. The right shape: traversing the curve using circles to 

determine slope changes. 

 

A chain a  is defined as an ordered sequence of n  elements that can be represented 

by, 

 

                                            1 2  .... :1n ia a a a a i n                                    (4.4) 

 

The sequence of slope changes is the chain that defines the discrete shape of the 

continuous curve. Therefore, the chain code of the curve shown in Figure 4.10 is as 

follows: -0.05  -0.04  -0.27  -0.20  -0.10  0  0  0.05  0.12  0.023  0.1  0  0.05. The 

important point that should be noticed is that the number of straight line segments is 

equal to the number of slope changes plus one.  

 

Figure 4.10 Discrete curve and its ordered sequence of slope changes.                                                                                                                                                                                                                     
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The length (L) of each straight line segment is equal to the perimeter of the curve 

(P) divided by the number of the straight line segments (m), i.e., L=P/m.  For 

instance, in Figure 4.10, m=14 is selected and P=15.30, therefore, L=1.09. The 

tortuosity of a curve represented by a chain is the sum of all absolute values of the 

chain elements as can be seen in below formula, 

 

                                                            
1

n

i

i

a


                                                  (4.5) 

 

For any curve the minimum and maximum values of tortuosity belong to the 

range  0,n . For instance, in the Figure 4.10, the tortuosity value of the corresponding 

curve is 1.11 as follows, 

  

                            1 2 13... a 0.05 0.04 ... 0.05 1.11a a                           (4.6) 

      

There are some important properties about the SCC of a curve that should be 

referred. One of these important points is that the inverse of a chain of a curve is 

another chain with opposite sign elements of the first chain in inverse order. It means 

that changing the start point in the curve for obtaining a chain of the slope changes 

does not change the tortuosity value as can be seen in Figure 4.11. 

 

 

Figure 4.11 the inverse of a chain. The left curve: the curve and its chain. The right curve: the inverse 

of the chain. As can be seen, both curve have the same tortuosity value (1.11).  

 

4.3.2 Retinal Vessel Tortuosiy Analysis      

 

In this subsection, the results of tortuosity measurement algorithm are analyzed 

with regard to the some parameters. There are two important outputs of tortuosity 
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measurement algorithm applied to the retinal fundus image includes the length of the 

fragmented vessels ( L ) and the tortuosity ( ) of the corresponding fragmented 

vessels. The perimeter of a fragmented vessel can be measured by summation of the 

distances between each pixel along the vessel. The important point that should be 

referred is that the Euclidean distance is utilized for measuring the distance between 

centerline pixels. Also, the value of tortuosity for each fragmented vessel can be 

measured using Equation (4.5). Moreover, the width of each fragmented vessel is 

calculated in order to further analysis using Equation (4.2). 

 

Eight images of STARE database are utilized for analyzing, four images with                                                                                                                                                                                                                                             

vessel tortuosity and four images without any pathologies. The example of the output 

of tortuosity measurement algorithm for the image 0199 from STARE database can 

be seen in Table 4.2. 

 

Table 4.2 Output of the tortuosity measurement algorithm for image 0199 from STARE database. 

Number of 

Vessel  

Length   

 ( L ) 

Tortuosity   

( ) 

Width 

(W ) 

1 160.19 1.07 1 

2 

 

81.87 

 

0.88 

 

3.07 

 

 

 

56.11 

 

1.48 

 

2.66 

 

47 40.04 1.52 1.45 

48 104.66 1.74 1.50 

49 

 

124.95 

 

3.92 

 

1.46 

 

109 59.87 1.81 3.04 
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Figure 4.12 Tortuosity value of the fragmented vessels in the image 0018 from STARE database.   

 

As can be seen in above table, there are four columns which the first column 

refers the number of the fragmented vessel, the second one is the length of the 

corresponding fragmented vessel, the third and fourth columns indicates the 

tortuosity and width value of the corresponding vessel. Figure 4.12 illustrates the 

tortuosity value of the different vessels with regard to the Table 4.2. The fundus 

retinal image 0018 from STARE database also can be seen in Figure 4.14. 

 

With regard to the results of the tortuosity measurement algorithm, the histogram 

analysis is done for determining the percentage of the tortuous vessels in the entire 

vessel network. The image 0199 from STARE database is used for this analysis. As a 

first step, the corresponding tortuosity measurement algorithm is applied to the 

image 0199. Table 4.1 and Figure 4.12 are the results of this application. After 

achieving the results, the histogram of the vessels tortuosity is plotted with regard to 

the number of vessels. Figure 4.13 illustrates the histogram of vessels tortuosity. 
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Figure 4.13 Histogram of vessels tortuosity related to the image 0199 from STARE database. 

 

As can be seen in Figure 4.13 the percentage of the vessels with the high value of 

tortuosity can be measured by an expert. For instance, if the tortuosity value of a 

vessel can be classified in three classes by an expert includes normal vessel, low 

tortuous vessel, and high tortuous vessel, the percentage of each class can be 

measured easily from the above histogram. Moreover, if there are two different 

histograms related to the two different fundus images captured in the different period 

of times from the same patient, it is very easy to determine the presence of tortuous 

vessel by comparing the corresponding two histograms which refers the presence of 

plus diseases also. 

 

For achieving the single value of the tortuosity of the entire vessel network, the 

mean value of the tortuosity of individual fragmented vessels measured using below 

formula, 
 

                                                      
1

N

i

i
m

N



 


                                                       (4.7) 

  

Where N is the total number of vessels in the entire network. The goal of 

measuring the corresponding parameter is that the tortuosity value of the entire 

vessel network in different images can be easily compared using single value for 
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determining the pathologies like plus diseases. The value of m  is 1.32 for image 

0199 from STARE database shown in Figure 4.14. 

 

For comparing the above parameter in different images, the small subset includes 

eight images of STARE database are utilized. The corresponding images can be seen 

in Figure 4.14. Four number of images are normal image without any pathologies 

and four of them are images with tortuous vessels. The corresponding algorithm for 

tortuosity measurement is applied to the images and the value of m  is measured for 

all images. The result of the corresponding measurement is illustrated in Table 4.3 

 

Table 4.3 Vessel tortuosity based on the entire image area in tortuous and non tortuous images. 

No.      Non tortuous       Tortuous   

 Image 
Tortuosity( m )  

 Image 
Tortuosity( m ) 

1 0120 0.6538  0018 1.0784 

2 0162 0.7403  0027 1.0689 

3 0163 0.7344  0217 1.0977 

4 0255 0.7067  0199 1.3165 

 

As can be seen in above table, the corresponding values of tortuosity in the 

images with tortuous vessels are higher than the images with non tortuous vessels 

which indicates that the corresponding parameter of tortuosity is a reliable parameter 

for comparing or classifying the images as tortuous or non tortuous images. The 

classification approach can be done by specifying the constant value of tortuosity as 

a threshold value by an expert. Moreover, after separating the corresponding images 

as a tortuous or non tortuous images, the images placed in the tortuous group also 

can be classified in the different levels with regarding the value of tortuosity as low 

tortuous, normal tortuous and high tortuous levels.  
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(a) 

 

(b) 

 

Figure 4.14 Small subset of images of STARE database includes eight images. a) images without any 

pathologies, from up to bottom, image 0120, 0162, 0163 and 0255 b) images with tortuous vessels, 

from up to bottom: image 0018, 0027, 0217 and 0199.  
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Figure 4.15 Vessel tortuosity histogram of images 0120, 0162, 0163, 0255, 0018, 0027, 0217 0199 

from STARE database.   

 

The histogram of vessel tortuosity for all of the images also is plotted in order to 

compare the tortuosity value of vessels in different images. The result of this 

application is shown in Figure 14.15. 

 

With respect to the corresponding histograms in the Figure 4.15, all of the images 

categorized as normal images without any pathologies have a compacted or 
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centralized distribution of vessel tortuosity in such a way that the range of tortuosity 

for all of the vessels alters from 0 to 1.8. Therefore, as can be seen in the histogram 

of normal images the bars gathered in the left side of the graph.  

 

In contrast to the histogram of the normal images, the distribution of the vessels 

with regard to the value of tortuosity in the images with tortuous vessels is more 

spread. As can be seen in the histogram of images with tortuous vessels the range of 

tortuosity alters from 0 to 4.5 which indicates the presence of specific diseases.  

 

The important point that should be noticed is that for specifying the image as a 

pathologies image with regard to the corresponding value of tortuosity in the 

histogram, the constant value of tortuosity must be determined as a threshold value 

by an expert. It means that the image that has vessels with tortuosity values more 

than the threshold value is specified as a pathology image.     

 

4.4 Summary 

 

In this chapter, an automatic system was developed for analyzing the vasculature 

system by measuring the diameter and tortuosity of the retinal blood vessels. The 

corresponding system includes three main stages, vessel extraction, preprocessing, 

and vessel properties measurements. The hybrid feature vector and ensemble 

classifier was utilized for extracting the network of blood vessels. In the following 

step, a preprocessing algorithm is introduced for preparing the correspond network 

for further analysis. In the last stage, the two important algorithms based on the 

edges and centerline of fragmented vessels were utilized for measuring and analyzing 

the diameter and tortuosity of blood vessels.  

 

Different kind of analysis was done based on the histograms of vessels with 

regard to diameter and tortuosity values for identifying the abnormal structures in the 

retinal images. Moreover, several parameters such as the means value of tortuosity 

and standard deviation of vessel width were introduced in order to compare different 

images with normal and abnormal blood vessels.    
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CHAPTER FIVE 

DISCUSSION AND CONCLUSION 

 

The aim of this thesis is to develop an automatic computer system for diagnosis of 

several diseases by analyzing the retinal fundus images. As a first step, we proposed 

a robust and reliable method for retinal blood vessel segmentation based on the pixel 

feature classification algorithm. The strong experimental results are achieved by 

testing the proposed method on different databases and comparing the corresponding 

results with existing methods in the literature. The results have shown that our 

method is robust and efficient in the segmentation of retinal blood vessel compare to 

the other methods. In the next step, we developed an automatic system for measuring 

the two important properties of extracted vessels, diameter and tortuosity, in order to 

analysis the vasculature system according to the various parameters. The results 

shows that the corresponding parameters are reliable and powerful for detecting 

abnormalities in the different images. 

 

5.1 Blood Vessel Segmentation  

 

In this thesis, we provide the novel method for retinal blood vessel segmentation. 

The proposed method is based on the classification algorithm known as pixel feature 

classification. We constructed 17 dimensional feature vector consisting of CLAHE 

contrast enhancement feature, vesselness measurement, morphological 

transformation, multi-scale response of Gabor wavelet and also B-COSFIRE filter 

response which are used for the first time in supervised learning based methods. 

Random forest classifier which is very flexible for fusing the inharmonious features 

was utilized for classifying each pixel as vessel or nonvessel pixel. The classifier was 

trained by selecting the 300,000 samples randomly from DRIVE database and 60,000 

sample from STARE database. Despite that number of samples which are used for 

training stage on STARE database for the proposed method are less than other multi-

feature supervised methods, Soares et al. (2006), Fraz et al. (2012) and Cheng et al. 

(2014) in order used 1 million, 200,000 and 75,000 samples, the average value of 



72 
 

accuracy (0.9606) and area under ROC curve (0.9789) for our method are higher 

than all of the state-of-the-art methods. 

 

With regarding the cross training results, the proposed method has the highest 

value of average accuracy in both DRIVE (0.9496) and STARE (0.9545) databases 

compared to other methods which show that the proposed method is very robust to 

training set used while other methods are more dependent on the training set. This 

training set robustness allows our algorithm to be used on multiple datasets without 

retraining, which is very useful for large-scale screening programs.  

 

Moreover, the performance of the proposed method on the pathological images is 

better than other state-of-the-art methods. The average value of accuracy in proposed 

method for 10 abnormal images from STARE database is 0.9573 which is the highest 

value among other methods. This result shows that our method is very robust for 

segmentation of abnormal images. 

 

In order to achieve the better result of segmentation, more than 10 classifiers also 

is used in the classification stage instead of the RF classifier such as support vector 

machine (SVM), multi-layer perceptron (MLP), bayesian classifier, adaboost, 

bagging and boosting and random subspace (RS). The important point that should be 

noticed about the result of the corresponding implementation is that the performance 

of the RF classifier is better than all of the other classifiers. Moreover, different kind 

of features of each pixel also is extracted in order to increase the performance of RF 

classifier. These features include line strength (Ricci et al., 2007), weber local 

description (WLD) (Cheng et al., 2014), local binary pattern feature (LBP) and e.t. 

But according to the fact that these features have not effected to the performance of 

the classifier, we refused to use them.    

 

As described previously, one of the disadvantages of supervised learning methods 

for vessel segmentation is that they are time-consuming. Among other state-of-the-

art methods, our method is not an exception. In this work, the time required for 

segmenting an input image is built of two parts: feature extraction and random forest 
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classifier. The first part is composed of extracting five different kinds of features. For 

random forest classifier, the calculation time depends on the number of the decision 

trees (150 is selected) and the value of depth for each decision tree (15 is selected). 

In both DRIVE and STARE database images, the average time for segmenting an 

image including feature extraction and classification is around 120 seconds. We have 

used MATLAB for implementing all experiments on an Intel(R) Core(TM) i7 CPU 

(1.73GHz) with 8GB memory.    

 

5.2 Width and Tortuosity Measurement  

 

In this thesis, an automatic system was developed in order to analysis vascular 

system with regard to the special properties of the vessel such as diameter and 

tortuosity. The proposed system includes three main stages, vessel extraction, 

preprocessing, and vessel properties measurements. The hybrid feature vector and 

ensemble classifier was utilized for extracting the network of blood vessels. In the 

following step, a preprocessing algorithm is introduced for preparing the correspond 

network for further analysis. In the last stage, the two important algorithms based on 

the edges and centerline of fragmented vessels were utilized for measuring and 

analyzing the diameter and tortuosity of blood vessels. 

 

In the diameter measurement step, one of the most popular method introduced by 

Nguyen et al. (2013) was utilized for measuring the diameter of retinal blood vessels. 

The corresponding algorithm for measuring the diameter of vessels is based on the 

edges and centerline of the fragmented vessels. The different analysis was proposed 

for extracting the meaningful information from the results of the width measurement 

algorithm. For instance, the histogram of the vessels width was plotted in order to 

determine the percentage of the thin vessels with respect to the entire network, since 

identifying the thin blood vessels and the percentage of them with regarding the 

entire vasculature system is an important task for prediction the diabetic retinopathy 

diseases. Moreover, the standard deviation of the each fragmented vessels with 

respect to the diameter of the each center points along the corresponding vessel is 

explored in the entire network for determining the presence of different diseases such 
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as diabetic retinopathy and plus disease. The vessel with a higher value of standard 

deviation than threshold value indicates the presence of several abnormalities. The 

important point that should be referred is that choosing the specific value of standard 

deviation as a threshold is an important task which can be determined by an expert. 

The other disadvantage of the corresponding analysis with regard to the standard 

deviation is that the corresponding parameter is very sensitive in such a way that any 

false detection of edges and center points along the fragmented vessels results in the 

wrong value of standard deviation. For accurate measuring the standard deviation of 

each fragmented vessel a local analysis can be introduced in such a way that in each 

fragmented vessel a set of standard deviations can be measured with respect to the 

specific connected components along vessel. And the mean value of the 

corresponding values can be considered as an accurate standard deviation. 

 

An algorithm based on the chain code known as SCC was utilized for measuring 

the retinal blood vessels tortuosity. The different analysis was introduced with regard 

to the results of tortuosity measurements algorithm. For instance, in order to identify 

the vessels with a high value of tortuosity, the histogram of vessels tortuosity is 

plotted with respect to the entire vessel network. Moreover, a single value of 

tortuosity is defined by measuring the mean value of tortuosity in the network. The 

goal of measuring the corresponding mean value is that the tortuosity value of the 

entire vessel network in different images can be easily compared using a single value 

correspond analysis is that the specifying the constant value of tortuosity as a 

threshold value for separating different images as normal or abnormal images is very 

difficult task that can be determined by an expert. 

 

The important point that should be noticed is that the proposed method for 

measuring the width and tortuosity of blood vessel in different images depends on 

the several conditions. The most important and necessary condition for comparing 

the two images with regard to the diameter and tortuosity values is that the images 

must be captured in the same scale. However, there is no suitable available database. 
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5.3 Feature Work  

    

The automatic software tool for retinal blood vessel analysis can be developed as 

a future work. The goal of this work is to create a computer assisted diagnostic 

system by gathering or combining different kind of measurements. These 

measurements includes artery and vein classification, identifying artery-vein-cross 

sections, measures the diameter of arteries and veins separately in order to achieve 

A/V ratio. Moreover, a general tortuosity value can be introduced with regard to the 

diameter and length of vessels by specifying different weights.           
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APPENDICES 

 

LIST OF ABBRIVIATIONS 

 

DR .................................................................................................. Diabetic retinopathy 

PDR .......................................................................... Proliferative diabetic retinopathy 

DME ....................................................................................... Diabetic macular edema 

AMD ........................................................................ Age related macular degeneration  

CNV ................................................................................ Choroidal neovascularization  

ROP .................................................................................... Retinopathy of prematurity 

DRIVE ......................................................... Digital retinal image for vessel extraction 

STARE ......................................................................  Structured analysis of the retina 

FOV .......................................................................................................... Field of view 

TP .............................................................................................................. True positive 

TN ............................................................................................................ True negative 

FP ............................................................................................................. False positive 

FN ........................................................................................................... False negative 

Acc .................................................................................................................. Accuracy 

SN .................................................................................................................. Sensitivity 

SP .................................................................................................................. Specificity 

PPV ......................................................................................... Positive predictive value 

ROC ........................................................................... Receiver operating characteristic  

AUC .............................................................................................. Area under the curve 

TPR .................................................................................................... True positive rate 

FPR ................................................................................................... False positive rate 

SVM ......................................................................................... Support vector machine 

KNN ................................................................................................. K-nearest neighbor 

MLP ............................................................................................ Multilayer perceptron 

RS .....................................................................................................  Random subspace 

RF ........................................................................................................... Random forest 

WLD ........................................................................................ Weber local description 

LBP ................................................................................................ Local binary pattern 
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SCC ..................................................................................................... Slope chain code 

ROI .................................................................................................... Region of interest 

DoG .......................................................................................... Difference of Gaussians 
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