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OZET
ISI KONVEKS IYON MODELLER 11ICIiN KARARLILIK ANAL 1izi

BAYAZIT, Erdeniz
Yiksek Lisans tezi, Matematik Boliumu
Tez Yoneticisi: Prof.Dr. Fahir Talay AKYILDIZ

Kasim 2015, 40 sayfa

Bu tez dort bolimden ogmaktadir.ilk bolimde énemli tanim ve teoremler,
bir akskanin ivme alani kitlenin korunumu ve lineer mornemt diferansiyel
denklemi, inviscid akiEuler denklemi beana balik altinda incelennstir.

ikinci boluimde problemin tanimi, moment denklemiégitle enerji ve tuz
konsantrasyonunun korunumu denklemle ifade egiimiFarkli deerler icin ilk
deger problemi hesaplangtir.

Uctincii boliimde bir takim onsel yaialar yapilmstir. Ortaya cikan lineer
olmayan kismi diferansiyel denklemlerin karagilincelenmgtir.

Dordunci bolimde reaksiyon katsayilari Uzerindeeldiirbagimlilik igin
baslangic sinir sartlart belirlenmgtir. Reaksiyon katsayilari lzerinde surekli
bagimsizlik kurulup, evrensel sonuclaragulianistir.

Anahtar Kelimeler: Boussinesq yakiami, Yapisal kararlilik analizi, Reaksiyon
katsayilari Uzerinde surekli anlilik



ABSTRACT
STABILITY ANALYSIS FOR A THERMAL CONVECTION
BAYAZIT, Erdeniz
M.Sc.Thesis, Mathematics Department
Adviser: Prof.Dr. Fahir Talay AKYILDIZ

November 2015, 40 pages

This thesis consists of four chapters. In the fiteipter, important definitions
and theorems, conservation of momentum of a fluadsrand differential equations
of linear momentum, Euler equation of inviscid fl@are analyzed under five main
sections.

In the second chapter, definition of the problehg torque equations, mass
energy and the conservation equation for the saitentration was expressed. The
initial value problem is calculated for differerdlues.

In the third chapter, some prior approaches haea lbeade and the stability
of the resulting non-linear partial differentialuadgions were studied.

In the fourth chapter, initial boundary conditiorsse determined for
continuous dependence on the reaction coeffici€bsitinuous independence was
established on the reaction coefficients and usaleesults have been achieved.

Key Words: Boussinesq approach, structural stability analysontinuous
dependence on the reaction coefficients.
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SEMBOLLER L ISTES
LP(Q) Fonksiyonel uzay

llullpporxy Banach uzayi

H™(Q) Hilbert uzayi
Lp Normlu uzay
L{f(t)} Laplace donimi

L Yf(g)} TersLaplace dongimii
H{f(r)} Sonlu Hankel dégimu

H Y fn(k)} Ters sonlu Hankel dogiim

P Ygunluk
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A4 Esnetme zamani
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T Stres tensoriiniin upper convected tiirevi
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[Vv] Hiz vektdrinun gradyanti

B, (rry,) Bessel fonksiyonlari

Jm(.),Y.m(.) mnin birinci ve ikinci tar Bessel fonksiyonlari
Il L? normu

Il [ X ile X" in dual uzayini

H! Hilbert uzaylari

{w;} Feadon Galerkin yajlal



BOLUM 1
GIRIS

Bir kimyasal bilgigin ¢ozunurlgunun sicakia bah bir fonksiyonu
oldugunda cozelti konsantrasyonu kimyasal reaksiyongliydeen, sivi igindeki
cOzelti tginimiyla ilgili bir matematiksel problemi agtariyoruz.Uzamsal alinan bir
bolge R? de sinirlandiinda kimyasal denge fonksiyonu herhangi bir si&akli
fonksiyonuyken c¢ozelti icin gdangic sinirsartlarini kullanarak reaksiyon oranina
gbre ¢oOzeltinin nasil gestigi incelenmitir.

1.1. TEMEL TANIM VE TEOREMLER

Tanim 1.1.1X bir kime olmak UzereM de X ‘in alt kiimelerinin bir koleksiyonu
olsun.Eer

1—XeM
2—Ae M = A eMm

3—Egerd,e M,n=123,.., veeger A = U;_,4, i¢in A€ M oluyor ise
M’ ye X' in g cebiri adi verilir.

Eger M, X' in o cebiri ise(X, M)’ ye olculebilir uzay veM' nin elemanlarinX ‘de
Olcilebilir kime denir.

Tanim1.1.2 Bir V vektor uzayi Gzerindeki ||x|| ve ||x||" normlari icin ger C ve D
pozitif reel sayilari icin

Cllxll < [lxll” < Allxl (1)
oluyor ise bu iki norm denktir denir.

Tanim 1.1.3 Q , R™ Uzerinde bir alan veu(x), 2 Gzerinde tanimli fonksiyon
1<p<wigin

J-Iu(x)lpdx <
Q

dir.



1/p
()l = ( f |u(x>|de) <o
Q

Kosulunu sglayan buattn dlculebilir R™ ‘deki fonksiyonlarin sinifi Lp(Q) ile
gosterilir, ayricd?(2)'ya |[u(x)||,» normuna gore bir Banach uzayi denir.

Tanim 114 peR ve 1<p<ow olsun ve f:Q - R;f Ol¢llebilir ve
|f|P € L*(Q) kiimesi, aagidaki norm ile birlikte

Y
Ifll, = [f,, 1FGIPdu] ™ sekiinde

olusturulan fonksiyonel uzag? (QQ) ile gosterilir.

Tanim 1.1.5 m > 2 bir tam say! vep € [1,0) kabul edelim ve timevarim ile
W™P(Q) kiimesini:
du ]
wmp(Q) = {u e WnIP(Q): = e WP (Q) Vi = 1,2,..,N}
i

Ww™P(Q) ile gbsterelim. Bu kiime alternatif olarak

WP (Q) = Ju € LP(Q)|

Va icin |a| < m,3g, € LP(Q) byle ki
Jo uD%@ = (=D [ g, Ve € CE

Buradaki ,a = (ay,ay, ...,ay ) olupa; =0,

N

; 0"y ’
|| = a; , D% = ve D%u = g, dir.

ay az an
axl axz axN

i=1
Bu takdirde W™P (Q) uzayi,
lullyms = > ID%ull,

o<|lalsm

Normu ile birlikte Banach uzayidir. Ozel olar&k*(Q) = W™2?(Q) ise; bu uzay
Hilbert uzayi adini alir, buradaki i¢ ¢carpim

(u, v)ym = Z (D%u, D%v) 2 seklinde tanimlidir.

o<|alsm



Tanim 1.1.6 (ipschitz kosulu) DcR?, R? bir bolge olsu.13K > 0 sayisi Oyle
ki V(x,y;) ve (x,y,) igin

|f Coy1) — F(xy2)| < Kly: — yal
sartini sgliyorsa f(x, y) fonksiyonuy degiskenine gore Lipschitzdir den

Tanim 1.1.7 @ureklilik denklemi) Sireklilik denklemi, akiskan maddelerin akis
miktarinin akittigi cismin icinde korunarak tasinmasini tanimlayan denklemdir.
Kitle, enerji, elektrik yiiki, momentum ve diger dogal miktarlarda kendi uygun
sartlarinda korunmasindan, farkh tir fiziksel olaylar siireklilik denklemi kullanilarak
tarif edilebilir. Sikistirilabilen akiskanlar igin stireklilik denklemi

PV, A = PV5A,

Sekil 1.1: Surekli akgkanin hiz momentum grigi

Burada P: ozkitle
V: Akiskanin hizi

A: Kesitsel (Erkesit )vektorel alandir. Siktiriimayan akgkanlar icin ise streklik
denklemi

V1A, = V,A, “dir.Burada
V: akiskanin hizi
A: kesitsel(En kesit) vektorel alandir.

Tanim 1.1.8 Norm, iki noktanin birbirinden ne kadar ayri olduklarinin sayisal
ifadesidir. Metrik 6lgim sisteminde uzakhk birimi metredir. Matematikte norm
fonksiyonu (ya da metrik) fiziksel uzaklik kavraminin bir genellestirmesidir.



Bir fonksiyon 6zel kurallar kiimesine uygun davranir ve uzaydaki cisimlerin ne kadar
“birbirine yakin”ya da “birbirinden uzak”olduklarini agiklamanin agik yoludur.

xy — dizleminde iki nokta arasi normun formulu (x1,y;) ve (x,,y,) olmak uzere
norm:

d=+/(x; —x)%? + (¥, — y1)? ile bulunur.
Benzer iki nokta uzayda (x4, y1,21), (X2, ¥2,2,) olmak tizere

Euclid normu uzayda:

d=+(x;— %)%+ (V2 — y1)2 + (2, — 21)?

ile bulunur. Euclid uzayr R™ iginde iki nokta arasi verilen norm Euclid normudur.

n
1—norm = lei - il
i=1

n 1/2
2 —norm = (Z(xl- — yl-)z)
i=1

1/p

p—norm = () (x; — y)?)
i=1

1/p

n
Sonsuz norm = lim(Z(xi —y)P)
p—®©
i=1

Tanim 1.1.9 A, gercel ya da karmek sayilar cismini gostersin vekiimesiA cismi
Uzerinde bir vektdor uzayl olsun. s@&idaki 0©zelliklere sahip birP:X - R
fonksiyonuna, X vektor uzayi Uzerinde bir yari-norm denir.

Herx,y € X ve heraeK igin [N;] p(x +y) < p(x) +p(y) (alt toplumsallik)
[N,] p(ax) = |alp(x) (pozitif — homojenlik) Eger bu ikisine ek olarak
[N;] x#0 = p(x) #0 Ozelligini de séliyorsa p fonksiyonunaX vektor
uzay! tzerinde bir normdur denir.

Tanim1.1.10R™ ya da C™(n > 1) uzayina ait bir u = (uq, Uy, U3 ..... Uy)
vektorinun Euclid uzunfiu, aagidaki bainti ile tanimlanir.

1
n 2\ 2
u - |ull, = Zluil buna Euclid normu denir.
i=1



Tanim1.1.11 (Cauchy-Schwarz gtsizligi) R™ ya da C™ Euclid uzayina ait her
X = (X1 X9, ..., Xy) vehery = (y1,¥2, ..., ¥,) Vektorleri icin agagidaki sitsizlik
sglanir.

1 1
n n 2 n 2
> bl < xllaliylle < Q) 1l O il
i=1 i=1 i=1

Tanim1.1.12 (Aritmetik- Geometrik Esitsizligi) (a4, a,, ..., a,) pozitif sayilarinin
aritmetik ve geometrik ortalamalari sirasiyla

_a1+a2+"‘+an
B n

Ay (aritmetik ortalama)

G, ="/a,.a, .. .a, (geometrik ortalama) bigiminde tanimlanir.

Bu ortalamalar arasinda

A, = G, esitsizligi vardir. Esitlik durumu sadece a; = a, = -+ = a,, durumunda
gerceklesir.

Tanim 1.1.13 (Sobolev—Slobodeckij uzaylariDiger yaklgim LP-cerceveye Holder
durumu ¢gunlukla fikir olarak olgan kesirli dereceli Sobolev uzayidR” in acgik

bir Q alt kimesi icinl <p <o, 8 € (0,1) ve f € LP(Q), Slobodeckij yari
normu ile tanimlaniyor. Diyelim ks > 0 bir tamsay! olsun. Hoélder uzaylari igin
bu digtince kullaniliyor, Sobolev—-Slobodeckij uzdf? (2) olarak tarif edilir.

WeP(Q) = {f € WSP(2): sup [Dflgpo, < oo}

lal=[s]

Bu norm ig¢in Banach uzayi

If llwsecay = If lyisio gy + |S|UIl)J[Daf]6,p!2
a|=\s
Eger acik altkimeQ burada varolangiemci uzantilari, belli manaya uyan duzenli,
Banach uzayinin skagakli ise Sobolev—Slobodeckij uzayi olur.

Tanim 1.1.14 X bir kime ve P(X) de X in kuvvet kiimesi olsun.P(X) {zerinde
tanimlanan genisletilmis gercel deger alan bir u* fonksiyonu

(@) w(@®=0
(b): HerE € P(X)icinu*(E) =0
(c): AcBcXicinu*(A) < u*(B)



(d): Hern € N igin A,, € P(X) ise ,u*(U Ap) < Z w(4,)
n=1 n=1

Sartlarini saghyorsa u* fonksiyonuna X (zerinde dis 6lgi denir.
Tanim 1.1.15 (I,), R’ nin sinirli ve agik alt araliklarindan olusan bir dizisi

74 = {(Ix): A cU I,) olsun.P(R) lizerinde
2 () = inf() 10 () € 74
k=1

Seklinde tanimlanan A* bir dis 6lctidir.Bu dis Olgliye Lebesgue dis Olcisi adi verilir.
Tanim1.1.16 X bir kiime p* da X Uzerinde dis 6l¢li olsun.Eger X in her bir A alt
kiimesi igin

W) =pANE)+u (ANES)
ise X" in E alt kiimesi u* élcilebilir denir.
Teoreml.1.1 (Minkowski Esitsizligi) p > 1icin f(x), g(x) € LP(R) ise

(v scof )" (Jrowae) "]
dx) S( If(x)lpdx) +< Ig(x)lpdx>
Q Q

Teoreml1.1.2 (HOlder Kitsizlig) p>1,q9 > 1ve %+ % =1 olmak uzere
eger f(x) €ELP(R2)ve g(x) €LP(R) ise f(x)g(x) € L1(R) ve

<f 1/p f 1/q
< If(x)lde> < Ig(x)lqu>
Q Q

Teorem 1.1.31 < p < oo vegq, p'nin eslenigi olsun. Bir [a, b] aralginda tanimli
f, g surekli fonksiyonlari

1/p

f FG) + g
Q

olur.

[ ragedx
Q

1/p b 1/q

b b
[ regea| <| [1r@prax | | [lgco1mas

esitsizligini saglar. Bu aitsizlige Cauchy-Schwarsitsizligi denir.



1.2 BIR AKI SKANIN IVME ALANI

Kartezyen koordinatlarda bir hiz alaninin vektornfa, uzay ve zamanin
fonksiyonu olarak;

V(rt) =iulx,y,zt) +jvix,yzt) + kw(x,y,zt) (1.1)
seklinde yazilir.

Sonsuz bir aki sistemi icin Newton’un 2. Yasasini yazmamiz gepghkde
akisin a lvme vektorini hesaplamaya ihtiyacimiz vardir.

_dV_du%+dv%+dw_> 19

T T a T A T ar 12
Buradadx/dy lokal hiz bilgeni olup:

_dx _dy _dz 13

u—dt, v_dtl W_dt (')

Ifadeyi diizenleyip yazmamiz gergfitide:

du_au_l_ 6u+ 6u+ 6u_6u+(vv)v 14
dt ot “ax " Vay "oz at (14

Toplam ivme dgisimini elde ederiz, yani;

_v_ov | v v av\‘_avﬂvv)v s
“CarT T | Y Yoy Vaz T a2 (1-5)

lokal konvektif

tme ivme
Burada ilk terinf dV /dt) lokal ivmeyi aciklamakta olup ger aks hep var ise lokal
ivme sifira gittir. Diger terim ise konvektif ivmeyi icerir. Herhangi kiraninda
hareket dg@rultusunda hizin dgsimini karakterize eder. Hareket daimi olsa dahi ilk
terim (lokal ivme) sifira @t oldugunda konvektif ivme var olacaktir.Burada
Gradyant operat6riinun kullanimi bir takim kolaldrk getirir.

0 , 0 0 -
Uu—+v—+w—=(VV) ; V=—71+—j+=—k (1.6)
X z y A



drnezin basincin zamanla ilgili turev ifadesi;

dP_0P 0P 0P 0P 0P .
dt ot Yox  Uay "oz at 1.7)

1.3 KUTLENIN KORUNUMUNUN D iFERANSIYEL DENKLEM i
Sabit denetim hacmine sahip dx, dy, dz elementsyapgl lGizerinde, genel

formda katlenin korunumunu yazacak olursak;

2P av + Z(plA W =) (A =0 (18)

clkan i giren

cy Ot

Eleman pargaginin ¢ok kiicik olmasi nedeniyle;

j —dV ~ —dxdydz (1.9
cv 0
kabul edilebilir.
y Kontrol hacmi
1;
F)

pudydz \ [pu + - (pu) dx] dydz

N 7

dy X g

/ ax

z

Sekil 1.2: Elementer parcagsn x yonundeki kitle aki grafigi



Kitle aks terimleri Ug girg U¢ ¢iks olmak Gzere kupun alti ylzeyi Uzerinde solu
Sekil 1.2 sadece kutle ainin x yonundeki igkisini gostermekte olup, ger y ve z
yonundeki ifadeleri tablo halinde gosterecek olkrsa

Yon Giren Momentum AKisi| Cikan Giren Momentum AKisi|
[ d

x pudydz pu + apudx ] dydz
[ 0

y pvdxdz pv + Epvdy ] dxdz (1.10)
[ d

x pwdydz pw + EP pwdz ] dxdy

Elemanter parcacik icerisinde zamanlagigken kutle miktarini da dikkate alip
kurdusumuzda;

ap 0 0 0
dedydz + P (puw)dxdydz + @ (pv)dxdydz + P (pw)dxdydz =0 (1.11)

Sureklilik denklemi olarak bilinir. Denklem akn, surekli veya zamana glg
viskoz veya surtinmesiz, sgirilabilir veya sikstirnlamaz olmasi halleri igin
gecerlidir. Vektor Grandyant operat@eklinde yazacak olursak;

v=2is 25 0% 1.12
~ox’ ay] 0z (112)
oldugundan;
dp
— +V(V)=0 (1.13)
at
Akis eger daimi ise;
dp
=0 (1.14)
Dolayisila sureklilik denklemi;
0 (o) + = (pv) + = (pw) = 0 115
ax P ayp” 9z PV = (115

Sikismaz ve daimi olmasi durumunda ise sureklilik demieiz;



au av aw 0
dx ay 62_

akis yaklasik olarak sikimaz kabul edilirse;

d(pu) ou _ |
0x = Pox 0x ’

=P ax|
Basing ve ygunluk arasindaki igki

5p ~ a*p

Basin¢ Bernoulli denklemi ifadegeklinde yazarsak;

ép = —pVép
VZ
— = Ma2 <1
a

sikistirllamaz akg kabuld icin Ma limiti iseMa < 0,3 yani hizin 100m/s den daha

asagl oldugu aks halleri olarak sdylenebilir.

1.4 LINEER MOMENTUM D IFERANSIYEL DENKLEM i

Eger cevre model Uzerinde net bir F kuvveti etki edda, Newton 2. Hareket

kanununun gegg;

Z F = %(LVVPdV> + Z(mivi)out - Z(mivi)in

olur.

Yine hacim integrali icerisindeki ifade, cok kicilkr elementer parcacik icin

didzenlenirse;

G d
—( | VpdV )=~ = (pdV)dxdyd
at(fcv p ) 5 (PdV)dxdydz

10

(1.16)

(1.17)

(1.18)

(1.19)

(1.20)

(1.21)

(1.22)



esitli gini kabul edip, denklemi yeniden diuzenleyebiliritukarida verilen ifade
Sekil 1.2 ¢ girg ve Uc¢ clikg olacaksekilde alti yiize sahip bir hacim elemani igin
momentum aki tablo halinde yazilir ;

Yon Giren Momentum AKIsI Cikan Giren Momentum AKIsI
0

X puVdydz [puV + F (puV)dx ] dydz
9]

y puVdxdz [va + a_y (pvV)dy ] dxdz  (1.23)
0

z puVdydz [pWV + Ep (pwV)dz ] dxdy

3 boyutlu momentum agibalans gtli ginden taraf tarafa toplanip dizenlenirse;

d 9 d 9
z F = dxdydz [& (paV) + 5 (pdV) + 5 (pdV) + 5 (pdV) (1.24)

ifadesi elde edilir. Parantezin icindeki terimlparcalarsak;

0 0 0 0
3 (pV) + ™ (puV) + 3y (pvV) + EP (pwV)

V|2 v +p(|Z+ v 1.25
= [— (o >] p([5e+u5m "3y wa) (1.25)

yukaridaki terimlerin birincisi sureklilik denklam ifade eder. Dolayisiyla bununda
sifira ait oldugunu 6nceki bolimde gostergtik. Yine yukaridaki dier ifade ise
toplam karakterize etmektedir.

ov_ oV oV ov_dv e
ot “ax " Vay "oz dt (1.26)

11



Buradan momentum denklemimiz;

dv
Z F = pdedydz (1.27)

sekline donigur. Burada guruldigu gibi kontrol hacmine uygulanaet kuvvet
elemanin hacmi ile orantili olarak glgmektedir. Bu kuvvetler ikisekilde
siniflandinlabilir. Hacimsel kuvvetler ve ylzeyuwetleridir. Hacimsel kuvvetler
olarak yercekimi magnetik elektrik gerilimi gibi kuetler sayilabilir. Burada sadece
yergekimi kuvveti kontrol hacmi icindedxdydz kutlesinin diferansiyelidir.

dF, = pgdxdydz (1.28)

Yuzey kuvvetleri kontrol yizeyi tizerinde ¢an gerilmeler sebebiyle alnaktadir.
Yani hidrostatik basin¢ kuvveti ile viskoz gerilmghin toplamiseklinde ifade
edilir. Matris formunda gosterirsek;

P + Tyx Tyy Txz
Oij = Tyx -p+ Tyy Tzy (1.29)
Tzx Tyz —P + Tz

Sekil 1.3 elementer bir hacim elemani lzerine etkiggerilmelerin notasyonunu
gostermekte olugekil 1.4 ise sadece x ybninde etkiyen gerilmeléantezyen
koordinat eksen takiminda verilmektedir.
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Oyy

y Oyx
(02 yz
0. Xy
Oxz
___» X
z Ozy
Ozx
03zz

Sekil 1.3: Elementer bir elemanin Uzerine etkiyerilge notasyon gragi

(ayx + a;% dy) dxdz

P/

0,y dxdy
\\
Oy dydz id (ayx + ag%dy) dxdz
—

/ T g, dxdz

z (ayx + 633:5 dy) dxdz

Sekil 1.4: Elementer parcggn o;; yoninde etkiyen gerilme grafi
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xyonl icin tim ylzeylere ofan net ylizey kuvvetlerinin dengesini yazacak
olursak;

9 9 9
dFy yizey = a(a,m) + a—y(ayx) + &(azx)] dxdydz (1.30)

goruldigt gibi bu kuvvet elemanin hacmi ile orantili olugsih¢ ve vizkoz
kuvvetleri ayri ayri yazilirsa;

dE_ 0P 0 0 v 0 o
v~ ox T ox dy tay) T g N (131)

ayni slemler benzesekilde dger y ve z eksen takimi igin yazilirsa;

dF, oP

d_l;/ - _@ tox ox (Txy) + (TYY) + (sz) (1.32)
dF, oP 0
VAR PR AL R (Tyz) +. (rzz) (1.33)

her U¢ yonde okan ylzey kuvvetlerini net vektorel toplageklinde ifade edecek
olursak;

(d_F) _ 0T,y N 0Tyy N 0T,y "
dV/ izkoz Oox dy 0z

0Tyy 0Ty, 074\,
+< ox oy oz )

0z 0dt,, 0 o
+<—Z+ L4 +ﬁ>k (1.34)

dx  Jy 0z

parentezin icerisindeki her bir terim sirasiyay ve z yonindeki gerilme bilgen
vektorlerini gosterir. Kapali form diverjans opeéndt kullanilarak yazilirsa;
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(1.35)

dF
Tzy Tyy Tlzy

_ — VTi . S r—
] oty
dV)vizkoz

dolayisiyla yuzey kuvvetleri basing Grandyant yilezeydeki vizkoz gerilmelerin
toplamindan ibarettir, bunu esas diferansiyel mdoman denkleminde yerine

yazarsak;

av

=pr (1.36)

pg — VP + Vr;

burada

dv _ov. v v oV .
dt ot “ax Yoy "oz (137)

Birim hacim i(;in] [Birim hacimde] Birim hacimde]
Agirlik kuvveti Basing kuvveti vizkoz kuvveti
= [Yogunlukxivme]

kartezyen koordinatlarda 3 yondede momentum denkleagik birsekilde yazacak
olursak;

OP 0ty O0Tyy 0Ty <6u ou ou ) 138
PIx~5x T ax T oy " oz ot " Yox " Vay T3 (138)
aopP N 0Tyy N at, N 0Ty, <6v N ov N ov N av) 139
P9y =y T oy Tay T oz Pl\ac THax T Vay " (139
0P 01y, 0Ty, 0T,y <6W N ow N ow N W) 1.40
P9z =5, " oz Tay T oz P\ar THax TV T (140)



1.5 INVISCID AKI S EULER DENKLEM 1

Surtinmesiz aki olarak kabul ettigimiz taktirder;; = 0 olacaktir ve
yukaridaki denklemimizi yeniden dizenlersek;

VP = av 1.41
Pg =P (1.41)

denklemi elde edilir. Inviscid akicin Euler Denklemi olarak anilir.
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BOLUM 2
2.1.PROBLEMIN TANIMI

Calistigim temel matematiksel denklem, moment denklemidindg kuvvet
teriminde Boussinesq yaklani kulanilarak moment denge denklemleri, kuitle
dengesi, enerjinin korunumu ve tuz konsantrasyonukorunumu incelenrytir.

Es zamanli kimyasal reaksiyon ile sivinin yatay bibakasinda cift yonla diftizyon
konveksiyon sorunu incelengtir[1-3]. Aslinda bdyle bir kimyasal reaksiyon sou
icin genel denklemler ortam termodingnikullanarak dretilmgtir[4]. CozUImU
bilesenin ¢6zunurlgl sicaklgin dasrusal bir fonksiyonu oldgu bir kimyasal
tepkimeye bgli olan ¢ozelti ygunlugu, tepkime olgumuna yakin zamanlarda analiz
edilmistir[5-13]. Ortaya c¢ikan problemde lineer olmayansmki diferansiyel
denklemlerin kararhfir argtiriimistir.

Bu calsmanin amaci sividaki tepkime sklarinin etkisini argtirmaktir.
Burada sicakfia baimlilik istege bali ve yalnizca lineer @amli olarak alinir.
Sapma teoreminin uygulamasina izin vermek i R? sinirli alanindd@ siniri ile
akiskanin yeterince diuzgun vyegtaesine dikkat edilngtir. Cozeltinin  strekl
bagimhligini gbstermek icin reaksiyon hizi 0Ozellikle gmalmistir. Sdrekli
bagimhligin uygun bir tirind okturan matematiksel model de beklenmektedir. Bu
tur kararlihk sorunu yapisal kararlilik sorulanrénemli sinifina aittir. Bazi detaylari
Hirsch ve Smale tarafindan aciklagdgibi ,yapisal kararlilik veya kendi modeline
surekli b&mllik en azindan kararlgin klasik fikri kadar énemli bir kavramdir.
Yapisal kararhlik ilk deere surekli bgmhlik icerir[14].
Yapisal kararllik elastiklikte Knops ve Payne smnda mekanik sureklilik gileri
baglaminda daha derinlemesine Payne tarafindagilgaigtir[15-41].

Burada hiz, basing, sicaklik ve tuz konsantrasyorasiylav;(x,t), p(x,t),
T (x,t) ve C(x,t) olarak gosterilir.

Burada x e Q ve (T < o) zamanin sonsuzdan kicik ofdu ve
0 <t < T belirtilen aralikta zamani ifade eder.

Sonra moment denklemleri, kitle, enerji ve tuz lorikasyonunun korunumu
asagidaki denklemle ifade edilir.

av; dv;  Op

ot " Uax T Tox
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avi

o = 0, (2.2)
or + ot = AT 2.3
ot T Viox, (23)
ac+b aC—AC+L(T) KC 2.4
“or T ox, / ' @4
burada genellik bozulmadan
lgl,Ih] <1 (2.5)

gi ve h; yercekimi vektorlerini gosterir.

Standart indeks gosterimi(2.1) — (2.4) ve (2.6) uzerinde tekrarlanan dizinin
belirtilen toplami boyunca kullanilwe a, b, L ve K pozitif sabitlerdir.

Denklem (2.1) — (2.4) sikstirmazlik kaulunu durdurmaya yaraydf(x,t)
desisken hesaplari Boussinesq yakhal kullanilarak yapilir[42].

Pritchard ve Richardson , Wang ile Tan ve Maltdghbe arkadalari da bu
yazarlarin hepsinic,,(T)" yi T’ nin dgsrusal bir fonksiyonu olarak kabul etmesine
ragmen f fonksiyonu en az' dir veLf(T) terimi kimyasal denge terimin&,,
benzerdir.

Morro ve Straughan dé€2.4) denklemindeki Lf(T)-KC terimleri kutle
kayna terimim,’y! ifade eder.

Lf(T) —KC =K(Ceq — C)
yazilmasina gerekce Pitchard ve Richardson tatafimcelennsiir.

Ceq bir kimyasal denge terimidikimyasal dengedeki mantik , kimyasal reaksiyon
yalnizca K(Coq(T) —C)  terimi nedeniyle ortaya ¢ikmistir. Geneldea =b =1

olur.(2.4) Ancak bu katsayllar her denklem icin dgdiilec&ginden a ve b
alinmstir.

Denklem(2.1) — (2.4) in ilk durumlari ile birlikte2 X (0, T) alanini belirtmektedir.
vi(x, 0) = vio(x)
T(x,0) =To(X) (2.6)

C(X,0) = Co(X)
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her x € Qigin ve sinir kgullarinda

v;(x,t) =0

T(x,t) =g(x1) (2.7)
C(x,t) = h(x,t)

xel , te[0,T)

burada reaksiyon orative K tzerinde surekli gamlilik ¢alismasini argtiriyoruz;

o haldeLveK (u;p;,Ty.C1) ve (u;p, T,.C,) ayni ilk ve sinirsartlari igin
{(2.1), (2.2),(2.3),(2.4) ve (2.7)} ifadelerinin iki ¢cozimu oldgunu kabul edelim.
Fakat (L, K;) ve (L, K,) farkh reaksiyon katsayilari olmak tzere ¢ozime
ulasmak icin farkh dgiskenler (w;,m, 8, ®), olmak tzerd ve k' y1 ele alahm.

wi=u—v; T=p—p; 0=T1-T, (2.9)
@ZCl—CZ l:Ll_LZ K:Kl_KZ (2.10)

nitekim gagidaki gibi farkli degerler icin sinirl ve ilk dger problemi
(2.2) - (2.4) den hesaplayabiliriz.

an' aui aWi _ o

Wi o QM Wi O e o —h, 211
ae TWigy, TUGx T o TAWITEOhid (210
Wi _ 2.12
ox, (2.12)

9 w590 2.13
ot Viax, T Viox, T (213)

9] act 00
a—¢+b< >=

Ap + Li[f(TH) = fF(TH] + If(T?) — K19 —kC,  (2.14)
egerQ x (0,T) ile
w;(x,0)=0, 8(x,0)=0  ¢(x,0)=0 (2.15)

X € N ile birlikte

w;(x,0) =0, 0(x,00=0  ¢(x,0) =0 (2.15)
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x €T ,t €[0,T]icinT,, C; ve C, benzer durumlar gerektigghdenT, = T* olarak
yazabiliriz.

| ve k terimleriw; ,6, @ ‘nin cinsinden uygun ol¢cimleri i¢in strekli ianhlik
yaklasimi denklemi elde etmeyi hedefliyoruz. Ancak sadesenin icerdgi | vekile
ilgili goriinen katsayilar anlaminda gercek bir dngaklasim olmasini bekleriz.
Bizim sudrekli bg&mhlik sonucumuza ukmadan once { (2.1), (2.2), (2.3), (2.4) ve
(2.7) }Ye ¢6zUm olmasi i¢in bazi Pangi¢ sinigartlarini kullaniriz.
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BOLUM 3
3.1.ONSEL YAKLA SIMLAR

Bu bdlimde yapisal kararlgh yapmamiz icin bir takim 6nsel yakienlara
ihtiyacimiz vardir. Yine bu bdlimde parca parceegnéllemeyle ve Cauchy —
Schwarz, aritmetik — geometrik ortalama ve Poincaegtsizliklerinden
yararlaniimgtir.f(T) iceren terimde Young sisizligi ek olarak kullaniimytir.
Rellich benzerligi ve 6nsel yallanlar sayesinde sirekli panlihlk sonucumuza
ulasmayi hedefliyoruz.

L?(2) tzerinde i¢ carpim ve norfn,.) ve || || ile gosterilmitir ve sonrasinda
II. o L?(£2) normu olmasi ileL?(2) tizerinde |. ||, normu olacak T, miktari
asagidaki denklemle belirlenir.

Ty = maX{HTO”oo : Sur)llglloo} (3.1)
[0.4]

Payne ve arkadgkri fonksiyonunun nasil kullanilagan gosterir[43].
p = [T=Tul* = sup (T—-T;,,0) (3.2)
Bunu (2.1)-(2.4), (2.6) ve (2.7)’ den gostermekici

sup |T(x,t)| < Ty, (3.3)
2 x[0,T]

Asagidaki durumlar sicaklik icin baslangi¢ sinir sartlari cok 6nemlidir.

V ve C Dbelirli normlari icin baslangic sinir sartlarini belirlemeye ihtiyacimiz
vardir ve bunu yapmak icin su teoremleri hatirlayalim: Payne ve Weinberger
tarafindan kullanilan Rellich benzerliginden ortaya cikar.

Payne ve Straughan {4} acikca verilmgtir[44-45].
Lemma 3.1: ®, Q sinirl dgerleriyle Q da bir harmonik fonksiyon olsun. Oie
® agagidakini kagllar.
AP =0 ise Q (3.3)
®=Q eger I (3.4)

Sonrasinda bunun gils ve C, sabitleri tiretilebilir.
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9]
1ol +e § Ghraasc§ wsoraa (36)

BuradaV tanjant tlrevini ifade eder.

Lemma3.1: R? de sadece bunun icin gecerligddir, genel etki alan€ icin ise
gecerlidir. Mevcut durumda iki boyutlu alanda gidmuzdandA integral elemani
egri boyunca bir integrali temsil egii anlagiimalidir. Sdrekli bu garet gosterimi
(notasyon) kullanilmaktadiikinci Teori (A12) Payne ve Straughanitsizligi gibi

verilir.

Lemma 3.2: y sinir dger problemini kagpilayan burma (torsion) fonksiyonu olsun.
MY = —1 ise Q (3.7)
Y=0 eger I (3.8)

Sonrasinda Q day > 0 maximum prensibi kullanilarak v& fonksiyonu denklem

(3.4), (3,5)’i karsilayan bir fonksiyonsasagidaki sitsizligi elde ederiz.

2V, V) + 111 swlf 02dA 3,9)
r

Burada Y, = max || (3.10)
Sonra L?(Q) Uzerindey; ile denklem(2.1) — (2.4)" in i¢ carpimi alinir vé2.7) deki
baslangic sinir dgerleri kullanilarak parca parca integrallemeyle @auchy —

Schwarz, aritmetik — geometrik ortalama ve Poinoawtsizliklerinden gagidaki
(3.11) aitsizligi elde edilir.

42 Iwll? + 1Ivell? < ITHIVIE+ ISV
dt 2 v v =

a 1
< (ITN* + IICIIZ)E to 45

1
<AITI* + IICIIZ)%+0{—MIIVVII2 (3.11)

Buradaa > 0 olarak segilir ve 1; Membrene problemind@ icin ilk 6zdezerdir.
Simdi
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a = % alinir ise gagidakini bulmak icin (3.11)'in integralini algimizda (3.12)

1

ifadesini elde ederiz.
t t t
2 2
||V||2+j ||\7V||2dss||vo||2+—] ||T||2ds+—f IclZds  (3.12)
0 /11 0 Al 0

Yaklasik hesaplama(3.3) denkleminden vyararlanarak3.12) ssitsizliginin sg
tarafindaki ilk iki terimi veri terimi ile yer d@stirebiliriz.

2mTT2

ds = ||V, ||I? +
IV ll N

(3.13)

Buradam = m(£2) 2’'nin Lebesque olcimund gosteririz. Boyle@@12), (3.13)
denklemlerinden yararlanarakagidaki (3.14) denklemini buluruz.

t 2 t
V|2 +f IVV]|?ds < +ds +A_f IC|I*ds (3.14)
0 170

Bundan Poincaressizligi yardimiyla (3.15)'i elde ederiz.

t 2 t

4E +/11f IV]I?ds < +ds +—f ICl|%ds (3.15)
0 A Jo

AH = 0Oise 2 .A8)

H = hegerl’ (3.17)

Buradah(x,t) denklemi (2.7)" de verilef icin sinirli veri fonksiyonudur.

Simdi denklem (2.1)-(2.4) C-H ile carpilir ve integrali alinarak (3.18) denklemi
bulunur.

a t Cs(C — H)dxds = —b t 1,C;(C — H)dxds
L, [
* jotfn AC(C — H)dxds + L f:]ﬂ £(T)(C — H)dxds

—Kftf C.(C — H)dxds (3.18)
0 Jo
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Denklem(3.18)'de be terimI; — I5 ile gOsterelim ve bu ifadeleri inceleyelim.

integral kullanilirsa
t
a
L = E(llCIl2 —ICol1?) — af HCdx + af HyCodx + af f CH (dxds (3.19)
0 0

buradal maximiun prensibini kullanardk,, ile sinirlandirabiliriz.

fon = Fr}gl[gl)% IAl.

Sonra

t t t
I, = +bj j v;CiHdxd s < bhm\/j ||V||2dsf [IVC||?ds
0 Jn 0 0

< bh j flICllzdsf IVC||2ds (3.20)

Burada (3.20) denklemi ve Cauchy-Schwargtsezligi kullaniimis ve (3.16)
yaklasik olarak hesaplanmtir.

I3 icin parca parca integral alinz veagidakini elde etmek icgin (3.15)-(3.16)'yi
kullaniriz.

t t
= —j ||VC||2d5+f (VC,VH)ds
0 0

t t OH
—f ||VC||2d5+f3€ h—dAds  (3.21)
0 0oJr on

Ayrica Cauchy-Schwarzsisizligi kullanilir ve sonrasindasagidakini bulmak igin
Lemma3.1 den yararlanarak

t c t t
—f IVC||%ds + —Zf f thAdejg |V h|2dAds (3.22)
0 C1Jo Jr 0 Jr

elde edilir.

I, ' Un yaklgik degerini bulmak icin aritmetik-geometrik ortalamaitsizligi ve
pozitif y; vey, sabitleri kullanilmgtir.

L ot Ly, (¢ Ly, (t
<507+ [ fieds + =% lelds + =% [ s
0 0 0
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Simdi f biliniyor ve f = f(T) bu yizden sinir (3,3)’0 kullanarakf|| ‘i verilerle
sinirlandirabiliriz. Bunad, diyebiliriz. Ayrica ||H|| terimi Uzerinde lemma3.2
kullanilarak, sonrasindgagidaki denklemi elde ederiz.

L t L t
<Oty Dde + 1] ICl12ds + y;‘bljf h2dAdS — (3.22)
0 0 Jr

Bu islem sonunda aritmetik- geometrik ortalam@sgzligi £;>0 icin Lemma3.2 ile
birlikte kullanarak gagidaki (3.23) elde edilir.

15S—< X jIICII ds + 2K 53f3§ h2dAdS (3.23)
3

Simdi denklem (3,17) de (3.18)-(3.23) grubuyla lidi ve amacimiz kapsaminda
aritmetik-geometrik ortalama sisizliginin ilave kullanimiyla pozitif A, w,
ve w, sabitleri icin (3.24) denklemi elde edilir.

Zlicn? +f||v 12dS < @ ICol1% + = || HolI? + =— [|H|I2
2 ¢ = =0 210 2.1

w1.d. b.h
+1_¢1 j ff h2, sdAdS + —Tds
2. wo4

t

Ld K

+74(y +y2 1)+ ( )/22"’1+l/)1 f3)fj€h2dAdS
or

t
hmbwz hmb L]/1 K
+——=2|||VC||*ds + d K+—+ +—+— 3.24
2 f” I ds +ds 201 w2 T 2 2.4 (3:24)

sonraki adimdd|H|| terimine (3.15)-(3.16) ve Lemma 3.2 kullanilaradkhgsilir,
sonrasmdéFzl Vew2=ﬁ olarak alinirN sabiti ved, veri terimini gagidakiyle

belirleriz.
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ve

hmd5+L.d4<i+i>

= al|C ||2+ 1,0 fhsz
de 0 ! 2. w3y, 2 \y1 v

r

t t ¢
w c
“““H h?,sdAdS + C—fohszdeflvshlszdS
0T ‘or 0r

t

_I_(L-Y;Elﬁ Py K§3j

j h2dAdS. (3.25)
or

Sonrasinda (3.25)' den diuzenlenerek (3.26) elde.ed

t t
a 1 N,
z”C”Z +§j||l7C||2dS < dg +T_[”C”2d5' (3.26)

(3.26)'nin integrali alindiinda (3.27) denklemini elde edebiliriz.
fncuz dS < dg(t) (3.27)
buradad veri terimidir.
t
= f eNt=9) d,(s)ds ifadesini
0

(3.26),(3.27)" de kullanilarak bgdangic sinirlarindan(3.28) ve (3.29) elde
edilebilir.

IC|I* < Ndg (3.29)

N,.d
jIIVCIIZdS s—“z 8 (3.30)
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(3.29) ve (3.30) ssitsizlikleri ||C|| icin balangic sinirsartlarina ihtiyac vardir ve
[IC]|, U iceren benzer yaldek deserler kullanarak devam edilir.

Cozum olarak I(x,t) fonksiyonu gosterilir.
Al =0 ise Q (3.31)
I =h3(xt) egerl (3.32)

benzerlik olgturulur.

t

t
ajf C,(C3—1)dxds = —bf J- v; C;(C3 — 1)dxds
0 0

0 n

+OfﬂfAC(C3—1)dxds+LOfbff(T)(C3—1)dxds

—Koj![ C(C? - 1)dxds (3.33)

sonrasinda denkleii3.33)’ de bg terimT; ... Ts ile gosterilir. Benzer mantikld
terimi icerenler icin devam edilir. @rlikli aritmetik-geometrik ortalamasisizligi
Lemma 3.1 ve Lemma 3.2 kullanilir. Burafi@) iceren terimde Youngsisizligi
ek olarak kullanilmytir.

t
Ji= %. AICly = NColID) — a. (1, €) + a. (o, Co) + f(l,SC)ds (3.34)
0

Sonra

t t t
I, = bf f v;C jldxds < hfnb\/f ||v||2dsf IVC||%ds (3.35)
0 /o 0 0
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ayrica

-3t t al
13=—f ||VCZ||2dS+fj£ h.— dAdS
4 J, o Jr on

_3 t t C2
S—j ||l7C2||2dS+j 3€ hsz—é |V.h|2dAdS (3.36)
4 Jy 0 r C1Jr

Ja ve Js icin

L
4. g4

4
t o 3.L.e3 (* .
Ji+Js < g [ fltas + 25 [ lchids
0 0

I ftn 12ds + k4 X ntnZd
25, ) WPds + (=450 | ITlFds

+

K.e [t s
> f [IC||“ds —Kf [ICllsds (3.37)
0 0

(3.34) ve (3.37)y1 (3.33) de birlikte gruplandui sonrasinda ayrica aritmetik-
geometrik ortalamasésizligi ve Lemma 3.2 de kullanilstir.

a 3 t t
—.||C||2+—f ||vc2||2ds+1<.j ICllds
4 4 0 0

a a

3.a t
<2 el + ¢ +—)w1f hOdA + [ f Icl 3§ | (h2[2dA dS
4 2.5, " 2] . g

+ éft thdAf |Vh3|2dAds+Lft||f||4d5
C1 ), R 4et. ),

pt ftll s + (Gt 4+ & jtjg hSdAdS
25, ) WIPds + (4570w | 9
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4
Ke, (1 t ds 2 (¢ 3.Le3 (t
=2 ||C||2ds+h$nbjj ||vcn2dsjl—5+ﬁj Iclizas == [ ehids
0 0 1 170 0

(3.38)
_ 2K 41 I
€= (3L) secelim
Bu (3.38) ‘in sagindaki son terimi kaldiralim.

Simdi, T Uzerindeki bglangi¢ sinirsartlari kullanilarak (3,27)-(3,28) ‘e yaklar,
(3.38) aitsizliginin sg tarafinda veri ile gevrilebilen kismi kagaigoraltr.

Bu terimi %dg ile gosterelim.

Sonra
a . 3 t - K (¢t . a
Siens+2 f I7C2|2ds + = f ICll2ds < 2 do(0) (3.39)
4 4, 2 ), 4

(3.39) aitsizligi icin||C||, ve f0t||C||j ds V., ds icin bglangi¢ sinisartlari (3,14)
ve (3,27) kullanilarak bgangi¢ sinigartlari kullanilarak (3.40) elde edilir .

t
V1 +f IVV|%2ds < dq, (3.40)
0

Denklemin oldgu yerded,, = ds + %dg dir.
1
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BOLUM 4
4.1. REAKSIYON KATSAYILARI UZER iINDEKIi SUREKLi BAGIMLILIK

Bu bolimde reaksiyon katsayilari Gzerinde streddimlilig1 elde etmek icin
baslangic sinirsartlarina ihtiya¢ duyulmaktadir. Yine bu bolimde #oyutlu
Sobolev  eitsizligi, Cauchy-Schwarz, aritmetik-geometrik ve  Poincare
esitsizliklerinden faydalanilngtir. Carpanlari integralleme yoluyla denklemler
integrallenmgtir. Lagrange teoreminden vyararlanigim.Ayrica benzer dgrular
arasinda 3 boyutlu Payne ve Straughanstgcikullaniimistir.Reaksiyon katsayilari
Uzerinde surekli gamsizlik kurularak evrensel sonuclarasatay! hedefliyoruz.

Biz (2,11)-(2,16) fark denklemleri icin sinieger problemine geri dénelim.

Bu bdlumde ihtiya¢ duyaganiz 6zel, dnsel sinirlari hatirlayalim.
t
[ ovirds < ds,
0

ICIIZ < do

ICII* < N.dj (4.1)

Ayrica iki boyutta Sobolev sésizligine ihtiya¢ duyariz. Aagidaki formda
yazabiliriz.Bunun i¢in Payne ‘nin bakiniz[46].

f|W|4dxsnlf |w|2dxf |7w|2dx (4.2)
n n n

Buradaf2,; pozitif sabit sayidir. Payne [46] * da verilennuma3.1, sayfa 132 ‘de
bulunan®, = % alinarak tahmin edilngiir.

Teorem3.1: 2x(0.T) baziT ' lerin «o dan kigik dgeri icin y = (V;,p,T,C) sinir
deger problemi (2.1)-(2.4) ve (2.7)' nin ¢6zimu alsu

Daha sonray ¢6zumu sdrekli olarak,’deki L veK reaksiyon katsayilarina
baghdir.
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0 verilen aitsizligi saglayan (2.1)-(2.4) ve (2.7) w( m, 6, ¢) farkh ¢oziimler
demektir.

Iw@®I? + 118117 + ¢ OII* < AOF + f(Ok*  t€(0,7)

lve k (2.9)-(2.10) denkleminde tanimlarymyfi; ve f, 2’ ya ba&l katsayilardir ve
veri fonksiyonlari v? T, ,Co, g ve h ‘dir.

Ispat 3.1:(2.11)-(2.13)’ deki w; ‘ li carpim denkleminin? uzerinde integralini
alalim ve gosterelim.

AL = - f g jwow;dx — 7w + (9,8, wp) — (6, wy)
dt 2 ;
< [I7alliwliz = 17wz + 61wl + g lliwl

< Vallvulllwlllvwll = I7wli® + lelllwll + lllliwll

burada Caucahy- Schwarz ve Sobokgtsilikleri kullaniimistir.

Simdi 8 > 0 igin aritmetik geometrik gigtsizliklerini kullanalim.

d1l
__ 2 2
72 [lw]l* + [|[Vw]]

ﬂ 0, Y 1 1
= Vul|? +— vwliz + = 1611 + = llpll> + [Iwl*(z— + =—
< 5 IWIEI7al? + 52 1P + S 012 + S IP + Il G+ 5-)
B = 2, olmak Uzereg/=a lizerinde Poincaresisizligini kullanalim.

d1

- 2 v 2
oIl + 2 7wl

<—IIWII I7ull® + (IIt9|I2 +o1%) +—- ||\7W|I2

L 4 .
simdi a = = secelim.
1

d 2 1 2 2 2 4 2 2
—lwll* + 5 [[vw(* < 2.IVull* llwll* +—Io]I* + 1) (4.3)
dt 2 X
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denklem (2.11)-(2.13)' U6 Uzerinde carparak ve? Uzerinde integralleyerek
asagidaki ifade elde edilir.

d 1I|6’I|2 Vel +f T,0,;d
—= = — w;T;0;dx
dt 2 ,

2 Tr% 2
< —IVoll” + Tuliwlilivell < = liwll (4.4)

bundan sonraki adim, denklem (2.11)-(2.13)'¢litizerinde carpip v& Uzerinde
integrallersek

2Ll = b 6:d 4 ’
Fat 197 =b | wiciodx — 1781 - Killg)
k(G ) + L(FTD ~ T, + LT, ) (45)

elde edilir.

Lagrange teoremini kullanarak & €(Ty,T,)  icin f(TY) — f(T?) =6.f'(¢)
denklemi oldugunu biliyoruz.

Daha sonrd, |T| icin sinirli vef € €' oldugundan bazd, ve d, veri terimleri
icin

I ©] <dy, IfTHI<dy dir,

yani(3.45)" in son iki terimia , > 0 olarak segildiinde

e o O\, CIFTIN? B,
Lyd,y (W‘*‘EW’” +T+E”¢“ (4.6)
elde edilir.
aynisekilde y > 0 igin
G117 v
—K(C,,0) < K* ==+ [l (4.7)

sinirh olmalidir.
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Kubik terim igin bizim{ ,u > 0 i¢in gagidaki sitsizligimiz vardir.

b L, &b
bj w;C,0;dx < —j lw|2CEdx + = ||V¢||?
Q 28 Jg 2

b &b
< 5. g IWIRICAIIG + 2= 7811

b. [0, &b

X ICEIW VW + == IVI?

N

b, b.u &b
—||C1|| Iwll? +—lvw||* + 7|I|7¢>II2 (4-8)

45 4.8

(4.6) — (4.8) denklemip =y = % a= LK; veé = % olarak(4.5)" de yerine
1“1
yazilmstir.
LI Bd o2 WA, IGIE
2dt ~ 2K, K, K,
0,.b an 1z . DM 5
g Gl IwIE +=g=Ivwli? 49)

(4.9) denklemi elde edilir.

yani (4.3), (4.4) ve (4.9) denklemlerinden

d 2 2 2 l 2
E(IIW(t)II + @O + llo@l )+2I|VWI|

2

T2
= (—én vy a.HIIClllit + 0 11Vull?)
b?u 4 L3d? 4
+— wwll> +(—+ 011 + —lloll?
Ivwli (/11 K1>|I I N ol
2 2.]IC,|I1?
— I (THI2 1> + ——k? 4.10
oK, IF T ok, (4.10)

= b_: olarak ||C4|l, Uzerindeki(3.1) denklemindeki sinigartlarini kullanarak
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0,b*dy +%,i+ 13.d?
8.a? 21 ak;

M= max{ } IF T

terimi balangi¢ sinigartlarini sgladigindan dolayi

2 2 2 2
a; = a—K1||f(Tz)|| , Q= a—K1||Cz||

yazilabilir.
F(@t) = lw®I? + 10@®1% + llp®)]I>? bazintisiyla (4.10)’ dan
F' — (2|IVul|? + M)F < ay1? + a,k? (4.11)

carpanlari integralleme yoluyla (4.11) integrabbilir ve (4.11)'i kullanarak
w12 + 118117 + lpONI? < RO (ay1? + a2k?) (4.12)

elde edilir.

R(t) veri terimi olsun.

R(t) = j exp [M(t —s) + '(21_[ dio(y)dylds (4.13)

reaksiyon katsayilari Uzerinde strekligbasizlik kurulup (4.12)" deki gtsizlik
gosterildi.

Hatirlatma: 2’ nin R? deki sinirli tanim kiimesinde sureklignasizlgini elde ettik
ispatl Soboleve tghdir.

(3.41)' deki sitsizlik 2 ,Cve R® oldusunda sglamaz.
onun yerine gagidaki formda Sobolevsésizligine ihtiyacimiz vardir.

Iwllz < 2 liwlllivw]l®
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Bu durumda surekli Bamsizliklar kurulamaz; analog metodu buradgdrur
aclkca benzer dwular arasinda 3 boyutlu Payne ve Straughan slgeci
kullanihr[47].

Fakatt sinirhdir. Biz burada evrensel sonuclarla ilgdgmiz icin yerel
sonugclarin detaylari verilmentir.
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BOLUM 5
SONUC

Bu cakmada reaksiyon katsayilari tizerinde siirekfiitvesizlik kurulup, R de
sinirl tanim  kimesinde surekli @ansizlgini  elde ettik. Isi  konveksiyon
modellerinin kararhig analiz edilirken, ortaya c¢ikan lineer olmayan nkiis
diferansiyel  denklemlerin  kararlgh incelenmgtir.  Evrensel  sonuclarla
ilgilenildi ginden yerel sonuclarin detaylari verilmatini

4.Bolumde reaksiyon katsayilari Uzerindeeklii bazimliligi elde etmek icin
baslangic sinirsartlart kullaniimgtir. Fark denklemleri icin sinir ger problemi
verilmis, ¢ozumi surekli olarak reaksiyon katsayilaringlibaldugundan farkli
cbzimlere ulglmistir. Baslangic sinirsartlarini sgladigi anlaiimis, Lagrange
teoremi ve Sobolewsgsizligi kullanilarak sirekli baamsizlik ispatlanngtir.
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