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ÖZET 

ISI KONVEKS İYON MODELLER İ İÇİN KARARLILIK ANAL İZİ 

BAYAZIT, Erdeniz 

Yüksek Lisans tezi, Matematik Bölümü 

Tez Yöneticisi: Prof.Dr. Fahir Talay AKYILDIZ 

Kasım 2015, 40 sayfa 

 

 Bu tez dört bölümden oluşmaktadır. İlk bölümde önemli tanım ve teoremler, 
bir akışkanın ivme alanı kütlenin korunumu ve lineer momentum diferansiyel    
denklemi, ınvıscıd akış Euler denklemi beş ana başlık altında incelenmiştir. 

İkinci bölümde problemin tanımı, moment denklemleri, kütle enerji ve tuz 
konsantrasyonunun korunumu denklemle ifade edilmiştir. Farklı değerler için ilk 
değer problemi hesaplanmıştır. 

Üçüncü bölümde bir takım önsel yaklaşımlar yapılmıştır. Ortaya çıkan lineer 
olmayan kısmi diferansiyel denklemlerin kararlılığı incelenmiştir. 

Dördüncü bölümde reaksiyon katsayıları üzerinde sürekli bağımlılık için 
başlangıç sınır şartları belirlenmiştir. Reaksiyon katsayıları üzerinde sürekli 
bağımsızlık kurulup, evrensel sonuçlara ulaşılmıştır.  

 

 

Anahtar Kelimeler: Boussinesq yaklaşımı, Yapısal kararlılık analizi, Reaksiyon 
katsayıları üzerinde sürekli bağımlılık 

 

 

 

 

 



ABSTRACT 

STABILITY ANALYSIS FOR  A THERMAL CONVECTION 

BAYAZIT, Erdeniz    

M.Sc.Thesis, Mathematics Department 

Adviser: Prof.Dr. Fahir Talay AKYILDIZ    

November 2015, 40 pages 

 

This thesis consists of four chapters. In the first chapter, important definitions 
and theorems, conservation of momentum of a fluid mass and differential equations 
of linear momentum, Euler equation of inviscid flow are analyzed under five main 
sections. 

In the second chapter, definition of the problem, the torque equations, mass 
energy and the conservation equation for the salt concentration was expressed. The 
initial value problem is calculated for different values. 

In the third chapter, some prior approaches have been made and the stability 
of the resulting non-linear partial differential equations were studied.  

In the fourth chapter, initial boundary conditions are determined for 
continuous dependence on the reaction coefficients. Continuous independence was 
established on the reaction coefficients and universal results have been achieved. 

 

 

Key Words: Boussinesq approach, structural stability analysis, Continuous 
dependence on the reaction coefficients. 
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BÖLÜM 1 

GİRİŞ  

Bir kimyasal bileşiğin çözünürlüğünün sıcaklığa bağlı bir fonksiyonu 
olduğunda çözelti konsantrasyonu kimyasal reaksiyona bağlıyken, sıvı içindeki 
çözelti taşınımıyla   ilgili bir matematiksel problemi araştırıyoruz.Uzamsal alınan bir 
bölge 85 de sınırlandığında kimyasal denge fonksiyonu herhangi bir sıcaklık 
fonksiyonuyken çözelti için başlangıç sınır şartlarını kullanarak reaksiyon oranına 
göre  çözeltinin nasıl değiştiği incelenmiştir. 

1.1. TEMEL TANIM VE TEOREMLER 

Tanım 1.1.1 6 bir küme olmak üzere, ℳ :; 6 ‘in alt kümelerinin bir koleksiyonu 
olsun.Eğer 

1 − 6> ℳ                                                                                                                                 2 − @> ℳ ⇒  AC  ∈ ℳ                                                                                                        3 − Eğer @I > ℳ, J = 1,2,3, … , ve eğer  @ = ⋃ @I OçOJ   @ ∈ ℳ oluyor ise   ∞IVW 
 

ℳ’ ye 6′ in � cebiri adı verilir. 

Eğer ℳ, 6′ in � cebiri ise �6, ℳ
’ ye ölçülebilir uzay ve ℳ′ nin elemanlarına 6 ‘de 
ölçülebilir küme denir. 

Tanım1.1.2  Bir X vektör uzayı üzerindeki    ‖�‖ ve ‖�‖′  normları için eğer Y Z; [ 
pozitif reel sayıları için  

Y‖�‖ ≤ ‖�‖] ≤ ∆‖�‖                                                  �1
 

  

oluyor ise bu iki norm denktir denir. 

 

Tanım 1.1.3 Ω , 8I üzerinde bir alan ve ̀��
, a üzerinde tanımlı fonksiyon                1 < c < ∞ için  

d|`��
|f:� < ∞

.
	

 

dir. 
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‖`��
‖gh = id|`��
|f:�.
	

jW fk < ∞ 

Koşulunu sağlayan bütün ölçülebilir  8I  ‘deki fonksiyonların sınıfı  4c�Ω
 ile 
gösterilir,  ayrıca 4f(a)’ya  ‖`��
‖gh normuna göre bir Banach uzayı denir. 

Tanım 1.1.4 c ∈ ℝ ve 1 < c < ∞ olsun ve m:Ω → ℝ; m ölçülebilir ve                      |m|f ∈ 4W�Ω
 kümesi, aşağıdaki norm ile birlikte  

                                       ‖m‖f = qr |m��
|f:s
Ω

tW fk   şeklinde 

oluşturulan fonksiyonel uzay 4f�Ω
 ile gösterilir. 

 

Tanım 1.1.5  3 ≥ 2 bir tam sayı ve c ∈ +v1,∞
v   kabul edelim ve tümevarım ile wx,f�Ω
 kümesini: 

wx,f�Ω
 = y` ∈  wx�W,f�Ω
: z`z�� ∈ wx�W,f�Ω
  ∀O = 1,2, . . , |} 
wx,f�Ω
 ile gösterelim. Bu küme alternatif olarak 

wx,f�Ω
 = ~v` ∈ 4f�Ω
| ∀� için |�| ≤ 3, ∃�� ∈ 4f�Ω
 öyle kOr `[�� = �−1
|�|
Ω r ��� ∀� ∈ Y�∞Ω

� 
Buradaki ,  � = ��W, �5, … , �� 
  olup �� ≥ 0 , 

|�| = � ��
�

�VW  , [�� = z|�|�z�W��z�5�� …  z����   Z;  [�` = �� dır. 
Bu takdirde  wx,f�Ω
  uzayı, 

‖`‖��,h = � ‖[�`‖f��|�|�x  

Normu ile birlikte Banach uzayıdır. Özel olarak �x�Ω
 = wx,5�Ω
  ise; bu uzay 
Hilbert uzayı adını alır, buradaki iç çarpım 

 

�`, Z
�� = � �[�`, [�Z
g���|�|�x  şeklinde tanımlıdır. 
 



 

Tanım 1.1.6 (Lipschıtz ko

ki ∀��, �W
 ve ��, �5


şartını sağlıyorsa  m��
Tanım 1.1.7 (Süreklilik denklemi

miktarının akıttığı cismin içinde korunarak taşınmasını tanımlayan denklemdir. 

Kütle, enerji, elektrik yükü, momentum ve diğer doğal miktarlarda kendi uygun 

şartlarında korunmasından, farklı tür fiziksel olayla

tarif edilebilir. Sıkıştırılabilen akışkanlar için süreklilik denklemi 

 

Şekil 1.1

Burada  �: ö��ü� ; 
¡: Akışkanın hızı  
¦: Kesitsel (En kesit ) 
denklemi 

XW@W K X5@5 ‘ dir.Burada

¡: akışkanın hızı 
¦: kesitsel�En kesit

Tanım 1.1.8 Norm, 

ifadesidir. Metrik ölçüm sisteminde uzaklık birimi metredir.

fonksiyonu (ya da metrik) fiziksel uzaklık kavramının bir genelleştirmesidir.

3 

Lipschıtz koşulu) D⊂85, 85 bir bölge olsun.  ∃

 için 

|m��, �W
 = m��, �5
| \ ¨|�W = �5| 
�, �
 fonksiyonu � değişkenine göre Lipschitzdir denir.

Süreklilik denklemi) Süreklilik denklemi, akışkan maddelerin akış 

miktarının akıttığı cismin içinde korunarak taşınmasını tanımlayan denklemdir. 

Kütle, enerji, elektrik yükü, momentum ve diğer doğal miktarlarda kendi uygun 

şartlarında korunmasından, farklı tür fiziksel olaylar süreklilik denklemi kullanılarak 

tarif edilebilir. Sıkıştırılabilen akışkanlar için süreklilik denklemi  

©WXW@W K ©5X5@5 

Şekil 1.1: Sürekli akışkanın hız momentum  grafi

 

kesit ) vektörel alandır. Sıkıştırılmayan akışkanlar  için ise süreklili

‘ dir.Burada 


 vektörel alandır. 
Norm, iki noktanın birbirinden ne kadar ayrı olduklarının sayısal 

ölçüm sisteminde uzaklık birimi metredir. Matematikte norm 

(ya da metrik) fiziksel uzaklık kavramının bir genelleştirmesidir.

∃¨ ª 0 sayısı öyle 

kenine göre Lipschitzdir denir. 

Süreklilik denklemi, akışkan maddelerin akış 

miktarının akıttığı cismin içinde korunarak taşınmasını tanımlayan denklemdir. 

Kütle, enerji, elektrik yükü, momentum ve diğer doğal miktarlarda kendi uygun 

r süreklilik denklemi kullanılarak 

 

kanın hız momentum  grafiği  

şkanlar  için ise süreklilik 

iki noktanın birbirinden ne kadar ayrı olduklarının sayısal 

Matematikte norm 

(ya da metrik) fiziksel uzaklık kavramının bir genelleştirmesidir.  
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Bir fonksiyon özel kurallar kümesine uygun davranır ve uzaydaki cisimlerin ne kadar 

“birbirine yakın”ya da “birbirinden uzak”olduklarını açıklamanın açık yoludur. 

�� = düzleminde iki nokta arası normun  formülü ��W, �W
 ve ��5, �5
  olmak üzere 

norm:  

: = «��5 − �W
5 + ��5 − �W
5   ile  bulunur.  
Benzer iki nokta uzayda ��W, �W, �W
, ��5, �5, �5
   olmak üzere 

 Euclid  normu uzayda : 

: = «��5 − �W
5 + ��5 − �W
5 + ��5 − �W
5 

İle bulunur. Euclid uzayı 8I içinde iki nokta arası verilen norm Euclid normudur.  

1 − norm  = �|�� − ��|I
�VW  

2 − norm  = ����� − ��
5
I
�VW

W 5k  
c − norm = ����� − ��
f
I

�VW
W fk  

Sonsuz norm =  O3f→∞����� − ��
f
I
�VW

W fk
 

Tanım 1.1.9   @, gerçel ya da karmaşık sayılar cismini göstersin ve 6 kümesi @ cismi 
üzerinde bir vektör uzayı olsun. Aşağıdaki özelliklere sahip bir ©: 6 → 8   

fonksiyonuna,  6 vektör uzayı üzerinde bir yarı-norm denir. 

Her �, � ∈ 6 ve her �>¨ için   +|W-   c�� + �
 ≤ c��
 + c��
   �® � �¯c `3°®  ı�
    +|5- c���
 = |�|c��
   �c¯�O�Om − ℎ¯3¯²;J O�
 Eğer bu ikisine ek olarak   +|³-    � ≠ 0 ⇒  c��
 ≠ 0   Özelliğini de    sağlıyorsa c fonksiyonuna 6  vektör 
uzayı üzerinde bir normdur denir. 

Tanım1.1.10 8I �® :® YI�J ≥ 1
 uzayına ait bir ` = �`W, `5, `³ … . . `I
   
vektörünün Euclid uzunluğu,  aşağıdaki bağıntı ile tanımlanır. 

` → ‖`‖5 = µ�|`�|I
�VW

5¶
W5 buna Euclid normu denir. 
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Tanım1.1.11 (Cauchy-Schwarz eşitsizliği) 8I ya da  YI  Euclid uzayına ait her 
� K ��W,�5, … , �I
 ve her � = ��W, �5, … , �I
   vektörleri için aşağıdaki eşitsizlik 
sağlanır. 

�|����| ≤ ‖�‖5‖�‖5
I

�VW ≤ ��|��|5
I
�VW

W5 ��|��|5
I
�VW

W5
 

 

Tanım1.1.12 (Aritmetik- Geometrik Eşitsizliği) �®W, ®5, … , ®I
 pozitif sayılarının 
aritmetik ve geometrik ortalamaları sırasıyla  

 @I = ®W + ®5 + ⋯ + ®IJ    �aritmetik ortalama
     
 ¹I = «®W. ®5 …    . ®Iº    �geometrik ortalama
      biçiminde  tanımlanır.              

 Bu ortalamalar arasında  

   @I ≥ ¹I  eşitsizliği vardır. Eşitlik durumu sadece ®W = ®5 = ⋯  =  ®I   durumunda 

gerçekleşir. 

Tanım 1.1.13 (Sobolev–Slobodeckij uzayları) Diğer yaklaşım Lp-çerçeveye Hölder 
durumu çoğunlukla fikir olarak oluşan kesirli dereceli Sobolev uzayıdır. Rn in açık 
bir Ω alt kümesi için, 1 ≤ c < ∞, ¾ ∈ �0,1
 ve   m ∈  4¿�Ω
,   Slobodeckij yarı 
normu ile tanımlanıyor. Diyelim ki  ° >  0  bir tamsayı olsun. Hölder uzayları için 
bu düşünce kullanılıyor, Sobolev–Slobodeckij uzayı wÀ,f�a
 olarak tarif edilir. 

 

wÀ,f�a
 = Ám ∈ wÀ,f�a
: sup|�|VÃÀÄ+[�m-Å,fÆ, < ∞ Ç 

 

Bu norm için  Banach uzayı 

 ‖m‖�È,h�Æ
 = ‖m‖�ÃÈÄ,h�Æ
 + sup|�|VÃÀÄ+[�m-Å,fÆ 

Eğer açık altküme Ω burada varolan işlemci uzantıları, belli manaya uyan düzenli, 

Banach uzayının  skala şekli ise  Sobolev–Slobodeckij uzayı olur.  

Tanım 1.1.14  X bir küme ve P(X) de X’ in kuvvet kümesi olsun.P(X)  üzerinde 

tanımlanan  genişletilmiş gerçel değer alan bir μ*  fonksiyonu  �®
:      s∗�∅
 = 0 �Ë
:      �;Ì Í ∈ ©�6
OçOJ s∗�Í
 ≥ 0 �Ï
:     @ ⊂ Ð ⊂ 6 OçOJ s∗�@
 ≤ s∗�Ð
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�:
:  �;Ì J ∈ | OçOJ @I ∈ ©�6
 O°; s∗�Ñ @I
 ≤ � s∗�@I
Ò
IVW

Ò
IVW  

Şartlarını sağlıyorsa s∗ fonksiyonuna 6  üzerinde  dış ölçü denir. 

Tanım 1.1.15  �ÓÔ
 , R’ nin sınırlı ve açık alt aralıklarından oluşan bir dizisi  ÕÖ = ��ÓÔ
: @ ⊂∪ ÓÔ
 olsun.P(R)  üzerinde  

Ø∗�@
 = OJm��  �ÓÔ
: �ÓÔ
 ∈ ÕÖ
Ò

ÔVW  

Şeklinde  tanımlanan Ø∗ bir dış ölçüdür.Bu dış ölçüye Lebesgue dış ölçüsü adı verilir. 

Tanım1.1.16 X bir küme s∗ da X üzerinde  dış ölçü olsun.Eğer X in her bir A alt 

kümesi için s∗�@
 = s∗�@ ∩ Í
 + s∗�@ ∩ Í�
 

İse X’ in E alt kümesi s∗  ölçülebilir  denir. 

Teorem1.1.1 (Minkowski Eşitsizliği)  c > 1 için m��
, ���
  ∈ 4f�Ú
 O°; 

iÛd m��
 + ���
.
	

Ûf :�jW fk ≤ id|m��
|f:�.
	

jW fk + id|���
|f:�.
	

jW fk
 

  olur . 
Teorem1.1.2 (Hölder Eşitsizliği) c > 1 , Ü > 1 ve Wf + WÝ = 1  olmak üzere                            eğer m��
  ∈ 4f�Ú 
 ve ���
  ∈ 4f�Ú 
  ise m��
���
  ∈ 4W�Ú
  ve 

Ûd m��
���
:�.
	

Û ≤    id|m��
|f:�.
	

jW fk id|���
|Ý:�.
	

jW Ýk
 

Teorem 1.1.3 1 < c < ∞ ve Ü, c’nin eşleniği olsun. Bir +®, Ë- aralığında tanımlı m, � sürekli fonksiyonları  

ßd m��
���
:�à
á

ß ≤ µd|m��
|f:�à.
á

¶
W fk µd|���
|Ý:�à

á
¶

W Ýk
 

 

eşitsizliğini sağlar. Bu eşitsizliğe Cauchy-Schwarz eşitsizliği denir. 
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1.2 BİR AKI ŞKANIN İVME ALANI 

Kartezyen koordinatlarda bir hız alanının vektör formu, uzay ve zamanın 
fonksiyonu olarak; 

X�Ì, �
 = O`��, �, �, �
 + ²Z��, �, �, �
 + �â��, �, �, �
                           �1.1
 

şeklinde yazılır. 

 Sonsuz bir akış sistemi için Newton’un 2. Yasasını yazmamız gerektiğinde  
akışın & İvme vektörünü hesaplamaya ihtiyacımız vardır.  

® = :X:� = ::̀� ãä + :Z:� åä + :â:�  �æä                                        �1.2
 

Burada :�/:� lokal hız bileşeni olup: 

 

` = :�:� ,                   Z = :�:� ,                     â = :�:�                              �1.3
 

İfadeyi düzenleyip yazmamız gerektiğinde: 

 

::̀� = zz̀� + ` z`z� + Z z`z� + â z`z� = zz̀� + �X∇
X                 �1.4
 

 Toplam ivme değişimini elde ederiz, yani; 

® = :X:� = zXz�êëìÔíë �îxï
+  

ð
ñò` zXz� + Z zXz� + â zXz�óôôôôôõôôôôôöÔìIîïÔ÷�ø �îxï ù

úû = zXz� + �X∇
X               �1.5
 

Burada ilk terim� zX/z�
 lokal ivmeyi açıklamakta olup, eğer akış hep var  ise lokal 
ivme sıfıra eşittir. Diğer terim ise konvektif ivmeyi içerir. Herhangi bir t anında 
hareket doğrultusunda hızın değişimini karakterize eder. Hareket daimi olsa dahi ilk 
terim (lokal ivme) sıfıra eşit olduğunda konvektif ivme var olacaktır.Burada 
Gradyant operatörünün kullanımı  bir takım kolaylıkları getirir.  

 

` z`z� + Z z`z� + â z`z� = �X∇
                   ;              ∇= zz� ãä + zz� åä + zz� kæä        �1.6
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örneğin basıncın zamanla  ilgili türev ifadesi; 

 

:©
:� K z©

z� + ` z©
z� + Z z©

z� + â z©
z� K z©

z� + �X∇
©               �1.7
 

 

1.3 KÜTLENİN KORUNUMUNUN D İFERANSİYEL DENKLEM İ 

Sabit denetim hacmine sahip dx, dy, dz elementer parçacığı üzerinde, genel 
formda kütlenin korunumunu  yazacak olursak; 

d z�z� :X
��

+ ����@�X�
� ç�ÔíI
−�(��@�X�


� ���ïI
K 0                         �1.8) 

Eleman parçaçığının çok küçük olması nedeniyle; 

 

d z�
z� :X��

≈ z©
z� :�:�:�                                              (1.9) 

 

kabul edilebilir. 

                                      y                       Kontrol hacmi 

 

�`:�:�                                                                                            q�` + 

� (�`):�t :�:�                                             
   

                                                                                                  

                                                                                 dy         x                                                                                     

                                       dx 

                 z 

Şekil 1.2: Elementer parçacığın � yönündeki  kütle akışı grafiği 

 

 



9 

 

Kütle akış terimleri üç giriş üç çıkış olmak üzere küpün altı yüzeyi üzerinde oluşur. 
Şekil 1.2 sadece kütle akışının x yönündeki ilişkisini göstermekte olup, diğer  y ve z 
yönündeki ifadeleri tablo halinde gösterecek olursak; 

Yön               Giren Momentum Akısı                     Çıkan Giren Momentum Akısı      

�                             �`:�:�                                                 ��` + zz� �`:� 
:�:� 

�                              �Z:�:�                                                ��Z + zz� �Z:� 
:�:�     (1.10) 
�                              �â:�:�                                               ��â + zz� �â:� 
:�:� 

Elemanter parçacık içerisinde zamanla değişen kütle miktarını da dikkate alıp  
kurduğumuzda; 

 

z�z� :�:�:� + zz� (�`):�:�:� + zz� (�Z):�:�:� + zz� (�â):�:�:� = 0       (1.11) 
 

Süreklilik denklemi olarak bilinir.  Denklem akışın, sürekli veya zamana bağlı, 
viskoz veya sürtünmesiz, sıkıştırılabilir veya sıkıştırılamaz olması halleri için 
geçerlidir. Vektör Grandyant operatörü şeklinde yazacak olursak; 

∇= zz� ãä + zz� åä + zz� �æä                                            (1.12) 
olduğundan; 

z�
z� + ∇(�X) = 0                                                  (1.13) 

Akış eğer daimi ise; 

z�
z� = 0                                                         (1.14) 

Dolayısıla süreklilik denklemi; 

 

zz� (�`) + z
z� (�Z) +

z
z� (�â) = 0                                    (1.15) 

Sıkışmaz ve daimi olması durumunda ise süreklilik denklemimiz; 
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z`z� + zZz� + zâz� = 0                                                  (1.16) 
akış yaklaşık olarak sıkışmaz kabul edilirse; 

 

z(�`)z� ≅ � z`z�                  ;                  �` z�z�� ≤ �� z`z��                    (1.17) 
 

Basınç ve yoğunluk arasındaki ilişki 

 

�c ≈ ®5�c                                                     (1.18) 
 

Basınç Bernoulli denklemi ifadesi şeklinde yazarsak; 

�c ≈ −�X�c                                                    (1.19) 
 

X5
®5 = �®5 ≤ 1                                                  (1.20) 

sıkıştırılamaz akış kabulü için Ma limiti ise �® ≤ 0,3 yani hızın 100m/s den daha 
aşağı olduğu akış halleri olarak söylenebilir. 

 

1.4 LİNEER MOMENTUM D İFERANSİYEL DENKLEM İ 

Eğer çevre model üzerinde net bir F kuvveti etki ediyorsa; Newton 2. Hareket 
kanununun gereği; 

�� =  zz� �d X�:X
��

�+ �(3�X�)ì�÷ −�(3�X�)�I                        (1.21) 
olur.  

Yine hacim integrali içerisindeki ifade, çok küçük bir elementer parçacık için 
düzenlenirse; 

 

z
z� �d X�:X

��
� ≈ z

z� (�:X):�:�:�                             (1.22) 
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eşitli ğini kabul edip, denklemi yeniden düzenleyebiliriz. Yukarıda verilen ifade  
Şekil 1.2  üç giriş ve üç  çıkış olacak şekilde altı yüze sahip bir hacim elemanı için 
momentum akışı tablo halinde yazılır ; 

 

Yön           Giren Momentum Akısı                Çıkan Giren Momentum Akısı      

�                       �`X:�:�                                        ��`X + zz� (�`X):� 
:�:� 

�                         �`X:�:�                                     ��ZX + zz� (�ZX):� 
:�:�        (1.23) 
�                           �`X:�:�                                    ��âX + zz� (�âX):� 
:�:� 

 

3 boyutlu momentum akışı balans eşitli ğinden taraf tarafa toplanıp düzenlenirse; 

 

�� = :�:�:� � zz� (�:X) + zz� (�:X) + z
z� (�:X) +

z
z� (�:X)
                (1.24) 

 

ifadesi elde edilir. Parantezin içindeki terimleri parçalarsak; 

 

z
z� (�X) +

zz� (�`X) + z
z� (�ZX) +

z
z� (�âX) 

= X �z�z� + ∇(�X)
 + � ��
zX
z� + `

zXz� + Z zXz� + â zXz�
�                 (1.25) 
 

yukarıdaki terimlerin  birincisi süreklilik denklemini ifade eder. Dolayısıyla bununda 
sıfıra eşit olduğunu önceki bölümde göstermiştik. Yine yukarıdaki diğer ifade ise 
toplam karakterize etmektedir. 

 

zX
z� + `

zXz� + Z zXz� + â zXz� = :X:�                                 (1.26) 
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Buradan momentum denklemimiz; 

 

� � = � :X:� :�:�:�                                       (1.27) 
 

şekline dönüşür. Burada gürüldügü gibi kontrol hacmine uygulanan net kuvvet 
elemanın hacmi ile orantılı olarak değişmektedir. Bu kuvvetler iki şekilde 
sınıflandırılabilir. Hacimsel kuvvetler ve yüzey  kuvvetleridir. Hacimsel kuvvetler 
olarak yerçekimi magnetik elektrik gerilimi gibi kuvvetler sayılabilir. Burada sadece 
yerçekimi kuvveti kontrol hacmi içinde �:�:�:� kütlesinin diferansiyelidir. 

 

:�� = ��:�:�:�                                                   (1.28) 
Yüzey kuvvetleri  kontrol yüzeyi üzerinde oluşan gerilmeler sebebiyle oluşmaktadır. 
Yani hidrostatik basınç kuvveti ile viskoz gerilmelerinin toplamı şeklinde ifade 
edilir. Matris formunda gösterirsek; 

 

 

��� = ß−c + Õ�� Õ�� Õ��Õ�� −c + Õ�� Õ��Õ�� Õ�� −c + Õ��ß                            (1.29) 
 

 

Şekil 1.3 elementer bir hacim elemanı üzerine etkiyen gerilmelerin notasyonunu 
göstermekte olup Şekil 1.4  ise sadece x yönünde etkiyen gerilmelerin kartezyen 
koordinat eksen takımında verilmektedir. 
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                                                                                            ���                                                                                       

                                                                   y                                  ���    

                                                                                  ��� 

                                                                                                                           ���  

��� 

            ���                  
                                                            X                                                           x 

 

                                                      z                    ���    
                                                                                     ���       

                                                                     ���                                                                        
Şekil 1.3: Elementer bir elemanın üzerine etkiyen gerilme notasyon grafiği 

 

 

                                                                                    ���� + 
���
÷ :�� :�:� 

                                                              y                                             

 

                         ���:�:� 

 

                              ���:�:�                                                                 ���� + 
���
÷ :�� :�:� 

 

                                                                                                                       x 

                                                                                                               

                                                                                                �÷�:�:�                 

                                               z                            ���� + 
���
÷ :�� :�:�  

Şekil 1.4: Elementer parçacığın   ���   yönünde etkiyen gerilme grafiği 
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� yönü için tüm yüzeylere oluşan net yüzey kuvvetlerinin  dengesini yazacak 
olursak; 

 

:��,�ü�ï� = � zz� (���) + z
z� ���� + zz� (���)
 :�:�:�                 (1.30) 

 

görüldüğü gibi bu kuvvet elemanın hacmi ile orantılı olup basınç ve vizkoz  
kuvvetleri ayrı ayrı yazılırsa; 

 

:��:X = −z©z� + zz� (Õ��) + z
z� �Õ�� + z

z� (Õ��)                       (1.31) 
 

aynı işlemler benzer şekilde diğer y ve z eksen takımı için yazılırsa; 

 

:��:X = −z©z� +
zz� �Õ�� + zz� �Õ�� + zz� �Õ��                           (1.32) 

:��:X = −z©z� +
zz� (Õ��) + z

z� �Õ�� + z
z� (Õ��)                        (1.33) 

 

her üç yönde oluşan yüzey kuvvetlerini net vektörel toplam şeklinde ifade edecek 
olursak; 

 

�:�
:X�î��Ôì� = �zÕ��z� + zÕ��z� + zÕ��z� � ãä 

                      + �zÕ��z� + zÕ��z� + zÕ��z� � åä 
                + �z�z� + zÕ��z� + zÕ��z� � �æä                             (1.34) 

 

parentezin içerisindeki her bir terim sırasıyla �, � ve � yönündeki gerilme bileşen 
vektörlerini gösterir. Kapalı form diverjans operatörü kullanılarak yazılırsa; 
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�:�:X�î��Ôì� = ∇Õ��                         ;   Õ�� = ÛÕ�� Õ�� Õ��Õ�� Õ�� Õ��Õ�� Õ�� Õ�� Û             (1.35) 
 

dolayısıyla yüzey kuvvetleri basınç  Grandyantı ile yüzeydeki vizkoz gerilmelerin 
toplamından ibarettir, bunu esas diferansiyel momentum denkleminde yerine 
yazarsak; 

 

�� − ∇© + ∇Õ�� = � :X:!                                           (1.36) 
 

burada 

 

:X
:� =

zX
z� + `

zXz� + Z zXz� + â zXz�                                   (1.37) 
 

�ÐOÌO3 ℎ®ÏO3 OçOJ@ğıÌ ı� �`ZZ;�O 
 + �ÐOÌO3 ℎ®ÏO3:;Ð®°ıJç �`ZZ;�O
 + qÐOÌO3 ℎ®ÏO3:;ZO��¯� �`ZZ;�Ot
= +"¯ğ`J `��OZ3;- 

 

kartezyen koordinatlarda 3 yöndede momentum denklemini açık bir şekilde yazacak 
olursak; 

 

��� − z©z� + zÕ��z� + zÕ��z� + zÕ��z� = � �zz̀� + ` z`z� + Z z`z� + â z`z��         (1.38) 
 

��� − z©z� +
zÕ��z� + zÕ�z� + zÕ��z� = � �zZz� + `

zZz� + Z zZz� + â zZz��              (1.39) 
 

��� − z©z� +
zÕ��z� + zÕ��z� + zÕ��z� = � �zâz� + `

zâz� + Z zâz� + â zâz� �             (1.40) 
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1.5 INVISCID AKI Ş EULER DENKLEM İ 

Sürtünmesiz akış olarak kabul ettigimiz taktirde Õ�� = 0 olacaktır ve 

yukarıdaki denklemimizi yeniden düzenlersek; 

�� − ∇© = � :X:�                                                          (1.41) 
 

denklemi elde edilir. Inviscid akış için Euler Denklemi olarak anılır. 
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BÖLÜM 2 

2.1.PROBLEMİN TANIMI 

Çalıştığım temel matematiksel denklem, moment denkleminin gövde kuvvet 
teriminde Boussinesq yaklaşımı kulanılarak moment denge denklemleri, kütle 
dengesi, enerjinin korunumu ve  tuz konsantrasyonunun korunumu incelenmiştir.    
Eş zamanlı kimyasal reaksiyon ile sıvının yatay bir tabakasında çift yönlü difüzyon 
konveksiyon sorunu incelenmiştir[1-3].  Aslında böyle bir kimyasal reaksiyon sorunu 
için genel denklemler ortam termodinamiği kullanarak üretilmiştir[4]. Çözülmüş 
bileşenin çözünürlüğü sıcaklığın doğrusal bir fonksiyonu olduğu bir kimyasal 
tepkimeye bağlı olan çözelti yoğunluğu, tepkime oluşumuna yakın zamanlarda analiz 
edilmiştir[5-13]. Ortaya çıkan problemde lineer olmayan kısmi diferansiyel 
denklemlerin kararlılığı araştırılmıştır. 

.Bu çalışmanın amacı sıvıdaki tepkime koşullarının etkisini araştırmaktır. 
Burada sıcaklığa bağımlılık isteğe bağlı ve yalnızca lineer bağımlı olarak alınır. 
Sapma teoreminin uygulamasına izin vermek için Ω ⊂ 85 sınırlı alanında Г sınırı ile 
akışkanın yeterince düzgün yerleşmesine dikkat edilmiştir. Çözeltinin sürekli 
bağımlılığını göstermek için reaksiyon hızı özellikle araştırılmıştır. Sürekli 
bağımlılığın uygun bir türünü oluşturan matematiksel model de beklenmektedir. Bu 
tür kararlılık sorunu yapısal kararlılık sorularının önemli sınıfına aittir. Bazı detayları 
Hirsch ve Smale tarafından açıklandığı gibi ,yapısal kararlılık veya kendi modeline 
sürekli bağımlılık en azından kararlılığın klasik fikri kadar önemli bir kavramdır. 
Yapısal kararlılık ilk değere sürekli bağımlılık içerir[14].                        
Yapısal kararlılık elastiklikte Knops ve Payne sonrasında mekanik süreklilik çeşitleri 
bağlamında daha derinlemesine Payne tarafından çalışılmıştır[15-41].  

Burada hız, basınç, sıcaklık ve tuz konsantrasyonu sırasıyla Z�(�, �), c(�, �),!(�, �) ve Y(�, �) olarak gösterilir.           

 Burada    �  є  Ω  ve  (  ! <  ∞  )  zamanın sonsuzdan küçük olduğu ve                                   
0 < � < !  belirtilen aralıkta t zamanı ifade eder. 

Sonra moment denklemleri, kütle, enerji ve tuz konsantrasyonunun korunumu 
aşağıdaki denklemle ifade edilir. 

 

zZ�z� + Z� . zZ�z�� = − zcz�� + &Z� + ��! − ℎ�Y                                   (2.1) 



18 

 

zZ�z�� = 0,                                                                   (2.2) 
z!
z� + Z� z!z�� = ∆!                                                           (2.3) 

® zYz� + ËZ� zYz�� = ∆Y + 4m(!) − ¨Y,                                          (2.4) 
     

burada genellik bozulmadan 

|�|, |ℎ| ≤ 1                                                            (2.5) 
 

 ��  ve ℎ' yerçekimi vektörlerini gösterir.   
Standart indeks gösterimi  (2.1) − (2.4) ve (2.6) üzerinde tekrarlanan dizinin 
belirtilen toplamı boyunca kullanılır ve ®, Ë, 4 ve ¨ pozitif sabitlerdir.          

Denklem (2.1) − (2.4) sıkıştırmazlık koşulunu durdurmaya yarayan Y(�, �)  
değişken hesapları  Boussinesq yaklaşımı kullanılarak yapılır[42]. 

Pritchard ve Richardson ,  Wang ile Tan  ve Malashatty ile arkadaşları da bu 
yazarların hepsinin YïÝ(!)′ yi !′ nin doğrusal bir fonksiyonu olarak kabul etmesine 

rağmen  m fonksiyonu en az YW dir ve 4m(!)  terimi kimyasal denge terimine YïÝ 

benzerdir. 

Morro ve Straughan de (2.4) denklemindeki   4m(!) – ¨Y terimleri kütle 
kaynağı terimi 3)’yı ifade eder. 

4m(!) − ¨Y = ¨(YïÝ − Y) 
yazılmasına gerekçe Pitchard ve Richardson  tarafından incelenmiştir. 

Y*+ bir kimyasal denge terimidir. Kimyasal  dengedeki mantık , kimyasal reaksiyon    

yalnızca ¨(YïÝ(!) − Y)   terimi nedeniyle ortaya çıkmıştır. Genelde ® = Ë = 1 

olur. (2.4)   Ancak bu katsayılar her denklem için degişebileceğinden ® ve Ë 
alınmıştır. 

Denklem (2.1) − (2.4) in  ilk durumları ile birlikte a ⨉(0,!) alanını belirtmektedir.  

Z�(�, 0) = Z��(�) 
!(�, 0) = !�(6)                                                                                                      (2.6) 

 Y(6, 0) = Y�(6)   



19 

 

her � ∈  Ω için ve sınır koşullarında  

 Z�(�, �) = 0  

!(�, �) = �(�, �)                                                                                                                  (2.7) 
Y(�, �) = ℎ(�, �)                                   
� ∈ Г   ,     � ∈  +0, !) 
burada reaksiyon oranı 4 ve ¨ üzerinde  sürekli bağımlılık çalışmasını araştırıyoruz; 
o halde 4 ve ¨   (`�, cW, !W. YW)  ve  (`� , c5, !5. Y5)  aynı ilk ve sınır şartları için {(2.1), (2.2), (2.3), (2.4) ve (2.7)}  ifadelerinin iki çözümü olduğunu kabul edelim.  
Fakat    �4W, Ẅ)  ve (45, 5̈)  farklı reaksiyon katsayıları olmak üzere çözüme 
ulaşmak için farklı değişkenler  (â� ,-, ¾,.), olmak üzere   Z; �′ �ı  ele alalım. 

â� = `� − Z�     - = cW − c5       ¾ = !W − !5                        (2.9) 
. = YW − Y5      = 4W − 45       ¨ = Ẅ − 5̈                        (2.10) 

nitekim aşağıdaki gibi farklı değerler için sınırlı ve ilk değer problemi                    
(2.2) - (2.4)  den hesaplayabiliriz. 

 

zâ�z� + â� z`�z�� + Z� zâ�z�� = − z-z�� + ∆w' + g'θ − h'ϕ                              (2.11) 
zâ�z�� = 0                                                  (2.12) 

z¾ z� + â�. z!Wz�� + Z� . z¾z�� = ∆¾                        (2.13) 
                                    

® z2
z� + Ë �â� zYWz6İ + Z� z¾z��� = 

∆2 + 4W+m(!W) − m(!5)- +  m(!5) − Ẅ2 − �Y5       (2.14) 
eğer a � ( 0, !) ile    

â�(�, 0) = 0,    ¾(�, 0) = 0         2(�, 0) = 0                              (2.15)                                                        

x ∈ a ile birlikte  

 

â�(�, 0) = 0,    ¾(�, 0) = 0         2(�, 0) = 0                              (2.15) 
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� ∈ 4 , � ∈ +0, T- için !5, YW ve Y5  benzer durumlar gerektirdiğinden !W ≡ !W  olarak 
yazabiliriz.               

l ve k terimleri wi ,θ, Φ ‘nin cinsinden uygun ölçümleri için sürekli bağımlılık 
yaklaşımı denklemi elde etmeyi hedefliyoruz. Ancak sadece verinin içerdiği l ve k ile 
ilgili görünen katsayılar anlamında gerçek bir önsel yaklaşım olmasını bekleriz. 
Bizim sürekli bağımlılık sonucumuza ulaşmadan önce { (2.1), (2.2), (2.3), (2.4) ve 
(2.7) }’e çözüm olması için bazı başlangıç sınır şartlarını kullanırız. 
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BÖLÜM 3 

3.1.ÖNSEL YAKLA ŞIMLAR     

 Bu bölümde yapısal kararlılığı yapmamız için bir takım önsel yaklaşımlara 
ihtiyacımız vardır. Yine bu bölümde parça parça integrallemeyle ve Cauchy –
Schwarz, aritmetik – geometrik ortalama ve Poincare eşitsizliklerinden 
yararlanılmıştır.m(!) içeren terimde Young eşitsizliği ek olarak kullanılmıştır. 
Rellich benzerligi ve önsel yaklaşımlar sayesinde sürekli bağımlılık sonucumuza 
ulaşmayı hedefliyoruz. 

45(a) üzerinde iç çarpım ve norm (. , . ) ve ‖ ‖   ile gösterilmiştir  ve sonrasında  
‖. ‖Ò   45�a
 normu olması ile  45�a
 üzerinde  ‖. ‖f normu olacak  !x miktarı 

aşağıdaki denklemle belirlenir.  

!x K max Á‖!�‖Ò   ,      sup+�,8-‖�‖ÒÇ                                                (3.1) 

Payne ve arkadaşları fonksiyonunun nasıl kullanılacağını gösterir[43]. 

ψ: K [!=!x]; K sup (!−!x , 0 )                                                    (3.2) 

Bunu (2.1)-(2.4), (2.6) ve (2.7)’ den göstermek için  

     supÆ � +�,<-|T(x, t)| ≤ !x                                                                 (3.3) 

Aşağıdaki durumlar sıcaklık için başlangıç sınır şartları çok önemlidir. 

          X ve Y   belirli normları için başlangıç sınır şartlarını belirlemeye ihtiyacımız 

vardır ve bunu yapmak için şu teoremleri hatırlayalım: Payne ve Weinberger 

tarafından kullanılan Rellich benzerliğinden ortaya çıkar. 

Payne ve Straughan  (A10) açıkça verilmiştir[44-45]. 

Lemma 3.1: Φ,  Q sınırlı değerleriyle Ω da bir harmonik fonksiyon olsun. Örneğin 

Φ aşağıdakini karşılar.   

&. = 0     ise     Ω                                                   (3.3)                   . = =        eğer   4                                                  (3.4)                                          

Sonrasında bunun gibi YW ve  Y5   sabitleri türetilebilir. 
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 ‖∇2‖5 + ÏW > �z2
zJ
5:@ \ Y5 > |∇?=|5:@                   �3.6)@@  

             

Burada ∇A tanjant türevini ifade eder. 

Lemma3.1:   85 de sadece bunun için geçerli değildir, genel etki alanı Ω için ise 
geçerlidir. Mevcut durumda iki boyutlu alanda olduğumuzdan, :@  integral elemanı 
eğri boyunca bir integrali temsil ettiği anlaşılmalıdır. Sürekli bu işaret gösterimi 
(notasyon) kullanılmaktadır. İkinci Teori (@12) Payne ve Straughan eşitsizliği gibi 
verilir. 

Lemma 3.2:  ψ sınır değer problemini karşılayan burma (torsion) fonksiyonu  olsun. &B =  −1   ise  Ω                                                             (3.7) C = 0   eğer  4                                                                      (3.8) 
Sonrasında   Ω  da B > 0 maximum prensibi kullanılarak ve . fonksiyonu  denklem 
(3.4), (3,5)’i karşılayan bir fonksiyonsa aşağıdaki eşitsizliği elde ederiz. 

2(BD2, D2) + ‖2‖5 \ BW > =5E :@                                  �3,9) 
  

Burada                                         BW = 3®� F
G
IF                                             (3.10) 

Sonra  45(Ω) üzerinde Z� ile denklem (2.1) − (2.4)′ in iç çarpımı alınır ve (2.7) deki 
başlangıç sınır değerleri kullanılarak parça parça integrallemeyle ve Cauchy –
Schwarz, aritmetik – geometrik ortalama ve Poincare eşitsizliklerinden aşağıdaki 
(3.11) eşitsizligi elde edilir.  

:
:�
1
2 ‖Z‖5 + ‖∇Z‖5 \ ‖!‖‖X‖ + ‖Y‖‖X‖ 

\ �‖!‖5 + ‖Y‖5
 �
2 + 1

� ‖X‖5 

  \ �‖!‖5 + ‖Y‖5
 �
5 + W

�H� ‖∇X‖5                                �3.11)                                                                             

 

Burada � >  0 olarak seçilir ve  ØW Membrene probleminde a için ilk özdeğerdir.    
Şimdi     
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� = 
5
H�   alınır ise aşağıdakini bulmak için (3.11)’in integralini aldığımızda (3.12) 

ifadesini elde ederiz. 

 

‖X‖5 + d ‖∇X‖5:° \ ‖X�‖5 + 2
ØW d ‖!‖5:° + 2

ØW d ‖Y‖5:°          �3.12)÷
�

÷
�

÷
�

 

 

Yaklaşık hesaplama (3.3) denkleminden yararlanarak (3.12) eşitsizliğinin sağ 
tarafındaki ilk iki terimi veri terimi ile yer değiştirebiliriz.                

:I = ‖X�‖5 + 23!!x5ØW                                               �3.13) 
 

Burada 3 = 3(a)   a’nın Lebesque ölçümünü gösteririz. Böylece (3.12), (3.13) 
denklemlerinden yararlanarak aşağıdaki (3.14) denklemini buluruz. 

‖X‖5 + d ‖∇X‖5:°÷
�

\   +:J + 2
ØW d ‖Y‖5:°÷

�
            �3.14) 

Bundan Poincare eşitsizliği yardımıyla (3.15)’i elde ederiz. 

‖X‖5 + ØW d ‖X‖5:°÷
�

\   +:J + 2
ØW d ‖Y‖5:°÷

�
            �3.15) 

∆� = 0 ise a                                                 (3.16) 

� = ℎ eger 4                                                      (3.17) 
 

Burada h(x,t)  denklemi (2.7)’ de verilen C için sınırlı veri fonksiyonudur. 

Şimdi denklem (2.1)-(2.4)  C-H ile çarpılır ve integrali alınarak (3.18) denklemi 
bulunur.  

®d d Y,À(Y − �):�:° = −Ë d d Z�Y,�(Y − �):�:°Æ
÷

�Æ
÷

�  

+ d d ∆Y(Y − �):�:° + 4 d d m(!)(Y − �):�:°                      Æ
÷

�Æ
÷

�  

−¨ d d Y. (Y − �):�:°          (3.18)
Æ

÷
�
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Denklem (3.18)’de beş terim ÓW − ÓJ ile gösterelim ve bu ifadeleri inceleyelim.  

 İntegral kullanılırsa  

ÓW = ®
2 (‖Y‖5 = ‖Y�‖5
 = ® d �Y:�

Æ
+ ® d ��Y�:�

Æ
+ ® d d Y�,À:�:°          (3.19)

Æ

÷

�
 

     burada � maximıun prensibini kullanarak ℎx ile sınırlandırabiliriz. 

ℎx =  maxE�+�,<-|ℎ|.  

Sonra 

Ó5 = +Ë d d Z�Yİ�:�:Æ °÷
� ≤ ËℎxKd ‖X‖5:° d ‖∇Y‖5:°÷

�
÷

�  

\ ËℎxK:JØW + 2
ØW5

d ‖Y‖5:° d ‖∇Y‖5:°÷
�

÷
�

                 �3.20) 
 

Burada (3.20)  denklemi ve Cauchy-Schwarz eşitsizliği kullanılmış ve (3.16) 
yaklaşık olarak hesaplanmıştır. 

I3 için parça parça integral alırız ve aşağıdakini elde etmek için (3.15)-(3.16)’yı  
kullanırız.  

Ó³ = −d ‖∇Y‖5:° + d �∇Y, ∇�):°÷
�

÷
�  

= −d ‖∇Y‖5:° + d > ℎ. z�zJ :@:°E
÷

�
÷

�          (3.21) 
 Ayrıca Cauchy-Schwarz eşitsizliği kullanılır ve sonrasında aşağıdakini bulmak için 
Lemma3.1 den yararlanarak  

   Ó³ ≤ − d ‖∇Y‖5:° +÷
�

KÏ5ÏW d > ℎ5:@:IE
÷

�
d > |∇Àℎ|5:@:°E

÷
�

                �3.22) 
elde edilir. 

ÓL ‘ ün yaklaşık değerini bulmak için  aritmetik-geometrik  ortalama eşitsizliği ve 
pozitif   MW ve M5 sabitleri kullanılmıştır.  

ÓL ≤ 4
2 (MW�W + M5�W
 d ‖m‖5:° + 4. MW2 .d ‖Y‖5:°÷

�
+ 4. M52 d ‖�‖5:°÷

�
÷

�  
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 Şimdi m biliniyor ve m = m(!)  bu yüzden sınır (3,3)’ü kullanarak ||m|| ′O verilerle 
sınırlandırabiliriz. Buna :L diyebiliriz. Ayrıca ||�||  terimi üzerinde lemma3.2 
kullanılarak, sonrasında aşağıdaki denklemi elde ederiz. 

 

 

ÓL ≤ 4
2 (MW�W + M5�W
:L + 4MW2 d ‖Y‖5:°÷

�
+ 4M5BW2 d > ℎ5:@:I          �3.22)E

÷
�

 

  

Bu işlem sonunda aritmetik- geometrik ortalama eşitsizliği N³>0 için Lemma3.2 ile 
birlikte kullanarak aşağıdaki (3.23) elde edilir. 

 ÓJ ≤ − �¨ − ¨
2. N³�d‖Y‖5:° + B¨N³2 d > ℎ5:@:IE

÷
�

÷

�
               �3.23) 

Şimdi denklem (3,17) de (3.18)-(3.23) grubuyla birlikte ve amacımız kapsamında 
aritmetik-geometrik ortalama eşitsizliğinin ilave kullanımıyla pozitif λ, OW  
ve  O5  sabitleri için (3.24) denklemi elde edilir.  

®
2 ‖Y‖5 + d‖D�‖5:I÷

�
\ ®. ‖Y�‖5 + ®

2 ‖��‖5 + ®
2. Ø ‖�‖5 

+ OW. ®. BW2 d>ℎ5, °:@:I +÷
�

Ë. ℎxPQ2.O5ØW 

+4:L2 (MW�W + M5�W
 + �4. M5G�2 + BW¨N³2 )d> ℎ5:@:IE
÷

�
 

+ℎxàR�2 d‖DY‖5
÷

�
ds + :° �−¨ + ®

2OW +
ℎxËO5ℎW5 +

4MW2 + ¨
2. N³�           (3.24) 

    

sonraki adımda ‖�‖ terimine (3.15)-(3.16) ve Lemma 3.2 kullanılarak yaklaşılır, 

sonrasında λ= W
5   ve O5= W

àS�  olarak alınır. |  sabiti ve :T   veri terimini aşağıdakiyle   

belirleriz. 

|Ö4 K =¨ + ®
2. OW + �ℎxËØW �5 + 4MW2 + ¨

2. N³ 
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 ve  

:T = ®‖Y�‖5 + 3
2BW > ℎ5

E :@ + Ë. ℎxPQ2.O5H� +
4. :L2 � 1MW + 1M5� 

+OW.í.G�2 d> ℎ5E , °:@:I +÷
�

UÏ5ÏW d d ℎ5:@:I d d |DÀℎ|5:@:IE
÷

�E
÷

�
 

 

+ �4. V5BW2 + BW. ¨N³2 �dd ℎ5:@:I.E
÷

�
              (3.25) 

 

 Sonrasında (3.25)’ den düzenlenerek (3.26) elde edilir. 

® 4 ‖Y‖5 + 1
2 d‖DY‖5:I \ :T + |í4

÷

�
d‖Y‖5

÷

�
:I.                (3.26) 

                                          

(3.26)’nin integrali alındığında (3.27) denklemini elde edebiliriz. 

d‖Y‖5
÷

�
:I \ :W��
                                                               �3.27) 

    burada  : veri terimidir. 

:W = d;�(÷�À

÷

�
:T�°
:°  ifadesini  

(3.26) , (3.27)′ de kullanılarak başlangıç  sınırlarından (3.28) ve (3.29)  elde 
edilebilir. 

 

‖Y‖5 \ |:W                                                  �3.29)       
 d‖DY‖5:I \

÷

�
|í . :W2                                          (3.30) 
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 (3.29) ve (3.30) eşitsizlikleri ‖Y‖  için başlangıç sınır şartlarına  ihtiyaç vardır ve 
‖Y‖L  ü içeren benzer yaklaşık değerler kullanarak devam edilir. 

Çözüm olarak    Ó��, �)  fonksiyonu gösterilir. 

&Ó = 0  O°; Ω                                                         (3.31)       
Ó = ℎ³(�, �)   eğer Г                                                 (3.32) 

benzerlik oluşturulur. 

 

 

® d d Y.À(Y³ − 1):�:° = −Ë d d Z�Æ
÷

�Æ
÷

�
Y,�(Y³ − 1):�:° 

 

+ d d &Y(Y³ − 1):�:° + 4 d d m(!)(Y³ − 1):�:°
Æ

÷
�Æ

÷
�

 

−¨ d d Y(Y³ − 1):�:°
Æ

÷
�

                            (3.33) 
 

sonrasında denklem (3.33)′ de beş terim !W  …  !J  ile gösterilir. Benzer mantıkla � 
terimi içerenler için devam edilir. Ağırlıklı aritmetik-geometrik ortalama eşitsizliği 
Lemma 3.1 ve Lemma 3.2 kullanılır. Burada m(!) içeren terimde Young eşitsizliği 
ek olarak kullanılmıştır. 

YW = ®
4 . (‖Y‖LL = ‖Y�‖LL
 = ®. (Ó, Y) + ®. (Ó�, Y�) + d(Ó.ÀY):°

÷

�
           (3.34) 

                             

Sonra 

Y5 = Ëd d Z�Y.İ :�:° ≤ ℎx³ ËKd ‖Z‖5:° d ‖DY‖5:°÷
ì

÷
�Æ

÷
�

               �3.35) 
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ayrıca 

 

Ó³ = −34 d ‖DY5‖5:I + d > ℎ. zÓzJГ

:@:I÷
�

÷
�  

 

≤ −34 d ‖DY5‖5:I + d K> ℎ5:@ Ï5ÏW > |DÀℎ|5:@:IEE
÷

�
÷

�
           �3.36) 

 

    YL  ve   YJ   için  

YL + YJ ≤ 44. ZL d ‖m‖LL:° + 3. 4. ZL³4÷
� d ‖Y‖LL:°÷

�
 

           

+ 4
2. ZW d ‖m‖5:° +÷

�
�ZW. 4
2 + ¨

2. Z5)d ‖Ó‖5:°÷
�

 

+ ¨. Z52 d ‖Y‖5:°÷
�

= ¨ d ‖Y‖LL:°           �3.37)÷
�

 

 

(3.34) ve (3.37)’yı (3.33)’ de birlikte gruplandırıp, sonrasında ayrıca aritmetik-
geometrik ortalama eşitsizliği ve Lemma 3.2  de kullanılmıştır. 

®
4 . ‖Y‖LL + 3

4 d ‖DY5‖5:° + ¨. d ‖Y‖LL:°÷
�

÷
�

 

\ 3. ®4 ‖Ï�‖5 + � ®
2. �W + ®

2)BW > ℎT:@ + «BWd ‖Y‖K> |ℎ.Àℎ5|5:@E
÷

� :IE  

 

+KY5YW d K> ℎ5:@ > |DÀℎ³|5E :@ :I + 44ZL. d ‖m‖L:I÷
�

÷
�

 

+ 4
2. ZW d ‖m‖5:° + �ZW4

2 + ¨
2. Z5)BWd > ℎT:@:IE

÷
�

÷
�
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¨Z52 d ‖Y‖5:I + ℎx³ ËKd ‖DY‖5:°÷
�

÷
�

K:JØW + 2
ØW5

d ‖Y‖5:I÷
�

3. 4ZL³4 d ‖Y‖LL:°÷
�

 

  (3.38)     

ε K �2¨
34 
 ³L       seçelim 

Bu (3.38) ‘in sağındaki  son terimi kaldıralım. 

Şimdi, ! üzerindeki başlangıç sınır şartları kullanılarak  (3,27)-(3,28) ‘e  yaklaşılır, 
(3.38) eşitsizliğinin sağ  tarafında veri ile çevrilebilen kısmı kaldığı görülür. 

    Bu terimi íL :\ ile gösterelim. 
Sonra 

®4 ‖Y‖LL + 3
4 d ‖DY5‖5:° + ¨

2 d ‖Y‖LL:° \ ®
4 :\��
                   �3.39÷

�
÷

� ) 
(3.39) eşitsizliği için‖Y‖L  Z; r ‖Y‖LL÷

� :°  X� , ds   için başlangıç sınır şartları  �3,14) 
ve (3,27) kullanılarak  başlangıç sınır şartları kullanılarak (3.40)  elde edilir . 

‖X‖5 + d ‖DX‖5:° \ :W�                                    �3.40)÷
�

 

                

 Denklemin olduğu yerde  :W� = :J + 5
H� :W         dir.  
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BÖLÜM 4 

4.1. REAKSİYON KATSAYILARI ÜZER İNDEKİ SÜREKLİ BAĞIMLILIK 

Bu bölümde reaksiyon katsayıları üzerinde sürekli bağımlılığı elde etmek için 
başlangıç sınır şartlarına ihtiyaç duyulmaktadır. Yine bu bölümde iki boyutlu 
Sobolev eşitsizliği, Cauchy-Schwarz, aritmetik-geometrik ve Poincare 
eşitsizliklerinden faydalanılmıştır. Çarpanları integralleme yoluyla denklemler 
integrallenmiştir. Lagrange teoreminden yararlanılmıştır.Ayrıca benzer doğrular 
arasında 3 boyutlu Payne ve Straughan geçişleri kullanılmıştır.Reaksiyon katsayıları 
üzerinde sürekli bağımsızlık kurularak evrensel sonuçlara ulaşmayı hedefliyoruz. 

    Biz (2,11)-(2,16) fark denklemleri için sınır değer problemine geri dönelim. 

Bu  bölümde ihtiyaç duyacağımız özel, önsel sınırları hatırlayalım. 

d ‖DX‖5:° \ :W�
÷

�
 

‖Y‖LL \ :\  
‖Y‖5 \ |. :À                                                          (4.1) 

    

  Ayrıca iki boyutta Sobolev eşitsizliğine ihtiyaç duyarız. Aşağıdaki formda 
yazabiliriz.Bunun için Payne ‘nin bakınız[46]. 

 

d |w|L:� ≤ aW d |â|5:� d |Dâ|5:�                     (4.2)
ÆÆÆ

 

 

 Burada aW  pozitif sabit sayıdır. Payne [46] ‘ da verilen Lemma3.1, sayfa 132 ‘de 

bulunan aW = W
5  alınarak tahmin edilmiştir. 

Teorem3.1:  a�(0.!) bazı ! ′ lerin ∞ dan küçük değeri için ] = (Xİ, c,!, Y)   sınır 
değer problemi  (2.1)-(2.4)  ve (2.7)’ nin çözümü olsun. 

 Daha sonra χ  çözümü sürekli olarak ℎ5′ deki 4 ve ¨  reaksiyon katsayılarına 
bağlıdır. 
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 a verilen  eşitsizliği sağlayan (2.1)-(2.4)  ve (2.7)  (â� ,-, ¾,2)  farklı çözümler 
demektir. 

‖â��
‖5 + ‖¾��
‖5 + ‖2��
‖5 \ mW��
 5 + m5��
�5         � ∈ �0, ^)  
 

  ve  � (2.9)-(2.10) denkleminde tanımlanmış mW  ve m5   a′ ya bağlı katsayılardır ve 

veri fonksiyonları     Z�� ,!� ,Y�, � Z; ℎ  ‘dır.  

İspat 3.1: (2.11)-(2.13)’ deki  â�  ‘ li  çarpım denkleminin a üzerinde integralini 
alalım ve gösterelim. 

::� 1
2 ‖â‖5 K = d `�,�â�â�:� − ‖Dâ‖5 + ���¾, â�) − (ℎ�¾, â�)Æ

 

≤ ‖D`‖‖â‖L5 = ‖Dâ‖5 + ‖¾‖‖â‖ + ‖2‖‖â‖ 

\ √a‖D`‖‖â‖‖Dâ‖ = ‖Dâ‖5 + ‖¾‖‖â‖ + ‖2‖‖â‖ 

 

burada Caucahy- Schwarz    ve Sobolev eşitsizlikleri kullanılmıştır. 

Şimdi ` ª 0  için aritmetik geometrik eşitsizliklerini kullanalım. 

::� 1
2 ‖â‖5 + ‖Dâ‖5 

\ 2̀ ‖â‖5‖D`‖5 + aW2` ‖Dâ‖5 + �
2 ‖¾‖5 + M

2 ‖2‖5 + ‖â‖5� 1
2. � + 1

2. M) 
 a = aW olmak üzere y=b üzerinde Poincare eşitsizliğini kullanalım. 

 

::� 1
2 ‖â‖5 + 1

2 ‖Dâ‖5 

\ aW2 ‖â‖5‖D`‖5 + �
2 �‖¾‖5 + ‖2‖5
 + 1

�ØW
‖Dâ‖5 

  şimdi  α = LH�  seçelim.     
 

::� ‖â‖5 + 1
2 ‖Dâ‖5 \ aW‖D`‖5. ‖â‖5 + 4

ØW
�‖¾‖5 + ‖2‖5
                 �4.3) 
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denklem (2.11)-(2.13)’ ü θ üzerinde çarparak ve a üzerinde integralleyerek  
aşağıdaki ifade elde  edilir. 

  

::� 1
2 ‖¾‖5 K =‖D¾‖5 + d â�!W¾,�:�Æ  

≤ −‖D¾‖5 + !x‖â‖‖D¾‖ \ !x54 ‖â‖5                         �4.4) 
 

bundan sonraki adım, denklem (2.11)-(2.13)’ ü  2 üzerinde çarpıp ve a üzerinde 
integrallersek 

®
2
:
:� ‖2‖5 K Ë d â�YW¾�:� = ‖D2‖5 = Ẅ‖2‖5

Æ
 

=��Y5,2) + 4W(m(!W) − m(!5),2) +  . (m(!5),2)       (4.5) 
elde edilir.                                                

Lagrange teoremini kullanarak  ξ ∈(!W,!5)   için m(!W) − m(!5) = ¾. m](N)    
denklemi oldugunu biliyoruz. 

Daha sonra !x   |!|  için sınırlı ve m ∈ YW olduğundan bazı :W ve :5 veri terimleri 
için  

dm ′(N)d ≤ :W, |m(!5)| ≤ :5’   dir. 

 

yani (3.45)′ in son iki terimi � , ` > 0  olarak seçildiğinde   

 

4W:W �‖¾‖5
2� + �

2 ‖2‖5� +  5‖m�!5
‖5
2` + 2̀ ‖2‖5                        �4.6) 

elde edilir. 

aynı şekilde   M > 0 için  

−¨(Y5, ∅) ≤ ¨5 ‖Y5‖5
2M + M

2 ‖2‖5                             �4.7) 
sınırlı olmalıdır. 
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Kübik terim için bizim e , s > 0  için  aşağıdaki  eşitsizliğimiz vardır. 

Ë d â�YW¾�:� ≤ Ë
2Nd |â|5YW5:� + NË

2 ‖∇2‖5
ÆÆ

 

\ Ë
2. N ‖â‖L5‖YW‖L5 + N. Ë

2 ‖∇2‖5 

\ Ë. «aW2. N ‖YW‖L5‖w‖‖∇â‖ + N. Ë
2 ‖∇2‖5 

\ ËaW4Ns ‖YW‖LL‖â‖5 + Ë. s4. N ‖Dâ‖5 + NË
2 ‖D2‖5                   �4.8) 

 

 (4.6) − (4.8) denklemi ̀ = M = f�5  ,   � = f�g�P�  ve N = 5à  olarak (4.5)′  de yerine 

yazılmıştır. 

 ®
2
:
:� ‖2‖5 \ 4W5:W52 Ẅ

‖¾‖5 + ‖m�!5
‖5
Ẅ  5 + ‖Y5‖5

Ẅ �5 

+ aW. Ë5
8. s ‖YW‖LL‖â‖5 + Ë5s

8 ‖∇â‖5      �4.9) 
 (4.9 )   denklemi elde edilir.  

 

yani (4.3), (4.4) ve (4.9) denklemlerinden  

 

:
:� (‖â��
‖5 + ‖¾��
‖5 + ‖2��
‖5
 + 1

2 ‖∇â‖5 

\ �!x52 + aWË5
4. ®. s ‖YW‖LL + aW‖∇`‖5
 

+ Ë5s
4® ‖∇â‖5 + � 4

ØW + 4W5:W5® Ẅ � ‖¾‖5 + 4
ØW

‖2‖5 

2
® Ẅ

‖m�!5
‖5.  5 + 2. ‖Y5‖5
® Ẅ �5                   �4.10) 

 µ = 5g
h�   olarak   ‖CW‖L   üzerindeki �3.1) denklemindeki sınır şartlarını kullanarak 
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� = 3®� ÁaWËL:\8. ®5 + !x52 , 4ØW + 4W5 . :W5® Ẅ Ç   ‖m�!5
‖     
terimi başlangıç sınır şartlarını sağladığından dolayı  

�W K 2
® Ẅ

‖m�!5
‖5,   �5 = 2
® Ẅ

‖Y5‖5                  
yazılabilir. 

���
 K ‖â��
‖5 + ‖¾��
‖5 + ‖2��
‖5   bağıntısıyla  �4.10)’ dan  

�′ − (aW‖∇`‖5 + �
� \ �W 5 + �5�5                    �4.11)                                        
 çarpanları integralleme yoluyla (4.11)   integrallenebilir ve  (4.11)’i kullanarak  

 

‖â��
‖5 + ‖¾��
‖5 + ‖2��
‖5 \ 8��
��W 5 + �5�5
                �4.12) 
elde edilir. 

 8(�) veri terimi olsun. 

8(�) = d exp +�(� − °) + aWd :W�(�):�-:°÷
À

÷
�                           (4.13) 

                    

reaksiyon katsayıları üzerinde sürekli bağımsızlık kurulup (4.12)’ deki eşitsizlik 
gösterildi. 

 

Hatırlatma:  a′ nın 85  deki sınırlı tanım kümesinde sürekli bağımsızlığını elde ettik 
ispatı Soboleve bağlıdır. 

 

(3.41)′ deki eşitsizlik a  ,С Z; 8³   olduğunda sağlamaz.  

 

onun yerine  aşağıdaki formda Sobolev eşitsizliğine ihtiyacımız vardır. 

 

     ‖â‖LL \ aW‖â‖‖∇â‖³ 
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Bu durumda  sürekli bağımsızlıklar kurulamaz;  analog   metodu   burada iş görür 
açıkça benzer doğrular arasında 3 boyutlu Payne ve Straughan geçişleri 
kullanılır[47]. 

Fakat � sınırlıdır. Biz burada evrensel sonuçlarla ilgilendiğimiz için yerel 
sonuçların detayları verilmemiştir. 
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BÖLÜM  5  

SONUÇ 

        Bu çalışmada reaksiyon katsayıları üzerinde sürekli bağımsızlık kurulup, R2 de 
sınırlı tanım kümesinde sürekli bağımsızlığını elde ettik. Isı konveksiyon 
modellerinin kararlılığı analiz edilirken, ortaya çıkan lineer olmayan kısmi 
diferansiyel denklemlerin kararlılığı incelenmiştir. Evrensel sonuçlarla 
ilgilenildiğinden yerel sonuçların detayları verilmemiştir. 

        4.Bölümde reaksiyon katsayıları üzerinde sürekli bağımlılığı elde etmek için 
başlangıç sınır şartları kullanılmıştır. Fark denklemleri için sınır değer problemi 
verilmiş, çözümü sürekli olarak reaksiyon katsayılarına bağlı olduğundan farklı 
çözümlere ulaşılmıştır. Başlangıç sınır şartlarını sağladığı anlaşılmış, Lagrange 
teoremi ve Sobolev eşitsizliği kullanılarak sürekli bağımsızlık ispatlanmıştır.  
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