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YÜKSEK LİSANS TEZİ
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ÖZET

CD4+T HÜCRELERİNİN HIV ENFEKSİYONU MODELLERİNİN YAKLAŞIK

ÇÖZÜMLERİ İÇİN LUCAS KOLLOKASYON YÖNTEMİ

Aslı KURT

Yüksek Lisans Tezi, Matematik Anabilim Dalı

Danışman: Doç.Dr. Şuayip YÜZBAŞI

Şubat 2021; 56 sayfa

Bu tezde, insan bağışıklık sisteminde temel bir rol oynayan T4 hücrelerinin HIV ile

enfekte olmasına ilişkin üç bilinmeyenli doğrusal olmayan iki modelin Lucas kollokas-

yon yöntemiyle yaklaşık olarak çözülmesi problemi ele alınmıştır. Söz konusu yöntemin

uygulanışı, yaklaşık çözümleri temsil eden polinomların derecesi olan N doğal sayısına

ve problemin ele alınacağı zaman aralığına karar verilmesiyle başlar. Belirlenen aralıkta

eşit aralıklı olarak N adet kollokasyon noktası oluşturulmasıyla işleme devam edilir. Ar-

dından, üç adet yaklaşık çözüm polinomuna, bu kollokasyon noktalarının her birinde di-

feransiyel denklem sistemini sağlama koşulu dayatılır. Bu işlem sonucunda elde edilen

3N adet doğrusal olmayan cebirsel denkleme t = 0 anında verilen başlangıç koşullarına

karşılık gelen denklemlerin de eklenmesiyle 3N + 3 bilinmeyenli 3N + 3 denklemden

oluşan doğrusal olmayan bir cebirsel denklem sistemi elde edilir. Bu sistemin çözülme-

siyle üç adet yaklaşık çözüm polinomunun katsayıları ve dolayısıyla söz konusu yaklaşık

çözümler elde edilmiş olur.

Elde edilen yaklaşık çözümlerin isabetliliğinin değerlendirilmesinde iki adet ölçüt kul-

lanılmıştır. İlk olarak bulunan yaklaşık çözümlerin denklemlerde yazılmasıyla oluşan re-

zidüeller, farklı N değerleri için incelenmiş ve artan N değerleriyle birlikte bu rezidüel-

lerin genel olarak azalma eğiliminde olduğu gözlemlenmiştir. İkinci olarak, elde edilen

çözümler, güvenilir oldukları bilinen mevcut bir yöntemden elde edilen sonuçlarla karşı-

laştırılmıştır. Bu karşılaştırmaların sonuçlarına göre, N parametresinin seçiminin Lucas
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kollokasyon çözümlerinin isabetliliğini nasıl etkilediğiyle ilgili sonuçlara varılmaya çalı-

şılmıştır.

ANAHTAR KELİMELER: Lineer olmayan diferansiyel denklem sistemleri, CD4+ T

hücrelerinin HIV ile enfekte olması modeli, Lucas kollokasyon yöntemi, Lucas polinom-

ları, Sayısal çözümler.
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ABSTRACT

LUCAS COLLOCATION METHOD FOR APPROXIMATE SOLUTIONS OF

HIV ENFECTION MODELS OF CD4+T CELLS

Aslı KURT

MSc Thesis in MATHEMATICS

Supervisor: Assoc.Prof.Dr. Şuayip YÜZBAŞI

February 2021; 56 pages

In this thesis, the problem of obtaining Lucas collocation solutions of two models on

the HIV infection of T4 cells, which are of central importance in the human immune sys-

tem, has been considered. The method in question begins by specifying the degree N of

the polynomials that represent the approximate solutions and the time interval over which

the problem will be considered. N equidistant collocation points on the specified interval

are then formed. Next, the condition of satisfying the differential equation system at each

of the collocation points is imposed to the three approximate solution polynomials. With

the addition of the equations corresponding to the initial conditions at t = 0 to the thus

obtained 3N nonlinear algebraic equations, a nonlinear system of 3N + 3 equations with

three unknowns is obtained. Upon solving this system the coefficients of the three appro-

ximate solution polynomials, hence the approximate solutions themselves, are obtained.

Two criteria have been employed in evaluating the accuracy of the obtained approxi-

mate solutions. First, the residuals obtained upon substituting the computed approximate

solutions in the equations have been considered and it has been observed that these residu-

als have a general tendency to decrease with increasing N values. Secondly, the obtained

solutions have been compared with those resulting from an existing method which is

known to be reliable. According to the results of these comparisons, some remarks have

been made regarding the conclusions that may be drawn as to effect of the value of the

parameter N on the accuracy of Lucas collocation solutions.
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Prof.Dr. İlham ALİYEV
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göstermesi, çalışkanlığı, örnek oluşu için teşekkürlerimi sunarım. Ayrıca Saygıdeğer Prof.
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v
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değerlerine karşılık gelen serbest virüs popülasyonu VN ’nin ilk 1500 gün için

grafikleri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
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Şekil 4.19. Örnek (4.2) için Runge-Kutta 4 yöntemiyle bulunan enfekte hücre
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bulunmuş VN yaklaşık çözümlerinin ve RK4 çözümünün bazı t günleri için
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günleri için değerleri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Çizelge 4.15. Örnek 4.3’te serbest virüs popülasyonu için çeşitliN değerleriyle
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GİRİŞ A. KURT

1. GİRİŞ

1970’lerin sonlarında CD4 molekülünün keşfedilmesi, insan bağışıklık sistemi ile il-

gili araştırmaların yönünde çığır açıcı bir değişikliğe sebep olmuştur. Bu keşiften sonra

yapılan pek çok araştırma, bu molekülün insan bağışıklık sisteminde görev yapan çeşitli

hücre türlerinde bulunduğunu ortaya çıkarmıştır. Bu hücrelerin önde gelenlerinden biri,

temel görevi bir enfeksiyon durumunda bağışıklık sisteminin bazı diğer bileşenlerine sin-

yal göndermek olan CD4+ T yardımcı hücreleridir (Bu tez boyunca T4 hücreleri olarak

anılacaktır). 1981 yılında California Üniversitesi’nde araştırmacı olan Michael S. Gott-

lieb, zatürrenin sebebi olduğu bilinen Pneumocystis carinii mikroorganizmasıyla enfekte

olmuş bir hasta üzerinde yaptığı testlerde, kandaki T4 hücrelerinin yok denilecek kadar

azaldığını fark etmiştir (Fee ve Brown 2006). Bu olay ve o yıl içinde çeşitli merkezlerde

gözlemlenen diğer bazı olaylar, doğrudan T4 hücrelerini hedef alan yeni bir mikroorga-

nizmanın keşfi ile sonuçlanmıştır. Bu organizmaya HIV (İng. "Human Immonodeficiency

Virus") adı verilmiş, hemen sonrasında HIV’ın insan bağışıklık sistemine genel olarak

CD4 molekülü, özelde T4 hücreleri vasıtasıyla giriş yaptığı keşfedilmiştir (Dalgleish vd.

1984; Klatzman vd. 1984). Devamında yapılan araştırmalar, virüsün vücuda girişinden

belli bir süre sonra bağışıklık sisteminin zayıf düştüğünü, bu zayıflığın T4 hücrelerinin

belirgin düzeyde azalmasından ileri geldiğini ortaya çıkarmıştır (Lane ve Fauci 1985; Fa-

uci 1988). Hastalığın AIDS (İng. "Acquired Human Immunodeficiency Syndrome") olarak

bilinen bu aşaması, bağışıklık sisteminin görevini yerine getiremediği ve bunun sonu-

cunda sağlıklı bireylerde kolay atlatılabilen hastalıkların bile tehlikeli olduğu bir evredir.

Hastalığın farklı bireylerde benzer şekilde gelişen bu seyri, arkada yatan mekanizmaların

matematiksel denklemlerle açıklanabileceği düşüncesini uyandırmaktadır.

A.S. Perelson, 1989 yılında yaptığı bir çalışmada, T4 hücrelerinin HIV ile enfekte ol-

masını matematiksel bir temelde açıklama iddiasında olan bir model öne sürmüştür (Pe-

relson 1989). Bu çalışmada, T4 hücrelerinin HIV ile enfekte olma mekanizması önce çok

sayıda denklem içeren karmaşık bir sistem aracılığıyla, daha sonra ise basitleştirilmiş bir

modelle açıklanmıştır. Bu modelde, sağlıklı T4 hücreleri, latent enfekte T4 hücreleri, aktif

enfekte T4 hücreleri ve ortamda serbest bulunan virüs olmak üzere dört ayrı bilinmeyen

mevcuttur. Latent enfekte hücreler, HIV ile enfekte olmuş olmalarına rağmen henüz virüs
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üretmeye başlamamışken, aktif enfekte hücreler kendilerini eşleyerek virüsün çoğalma-

sına sebep olan hücrelerdir. Söz konusu model şu şekildedir:

dT

dt
= s− µTT + rT (t)

(
1− T + T ∗ + T ∗∗

Tmax

)
− k1V T,

dT ∗

dt
= k1V T − µTT

∗ − k2T ∗,

dT ∗∗

dt
= k2T

∗ − µbT
∗∗,

dV

dt
= NvµbT

∗∗ − k1V T − µV V.

(1.1)

Bu sistemde, T, T ∗ ve T ∗∗ sırasıyla kanda bulunan sağlıklı, latent enfekte ve aktif enfekte

T4 hücrelerine ait yoğunluğu, V ise ortamda serbest halde bulunan virüs (HIV) yoğunlu-

ğunu göstermektedir. Latent enfekte olan T4 hücreleri, yaşam döngüsünün herhangi bir

anında virüsü tanıyıp kendini eşlemeye başlarsa virüsün de çoğalmasına yol açarak ak-

tif enfekte T4 hücresine dönüşmekte, aksi takdirde doğal yoldan ömrünü tamamlayarak

kendisine bağlanan virüsün de yok olmasına sebep olmaktadır. Böylece, latent enfekte T4

hücrelerine ilişkin olan
dT ∗∗

dt
= k2T

∗ − µbT
∗∗

denkleminin sistemin uzun vadeli davranışına doğrudan bir etkisinin olmadığı görülür.

Bu düşünceyle, çeşitli çalışmalarda (Kirschner ve Webb 1996; Perelson ve Nelson 1999)

latent enfekte ile aktif enfekte hücre yoğunluklarına ilişkin denklemler bir arada değer-

lendirilmiş ve
dT

dt
= s− µTT + rT

(
1− T + I

Tmax

)
− k1V T,

dI

dt
= k2V T − µII,

dV

dt
= NvµbI − k1V T − µV V.

(1.2)

ile verilen üç boyutlu model çalışılmıştır. Bu yeni modelde, enfekte olmuş T4 hücre yo-

ğunluğu I ile gösterilmektedir. Modeldeki parametrelerin açıklaması şu şekildedir: s ke-

mik iliği ve timus bezi aracılığıyla üretilip kana bırakılan T4 hücresi kaynağını göster-

mektedir ve sabit olarak alınmıştır. Hastalığın ilerleyen aşamalarında T4 hücresine ait

üretim mekanizmasının da etkilenebileceği göz önünde bulundurularak bu kaynak terimi-

nin değişken olarak alındığı çalışmalar mevcuttur (Kirschner ve Webb 1996). Sağlıklı T4

hücrelerinin doğal yolla ölüm oranı µT terimi ile, kendini yenileme oranı r ile gösteril-

mektedir. Sağlıklı T4 hücre yoğunluğuna ilişkin denklemdeki lojistik terimin paydasında
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bulunan Tmax terimi, kanda kararlı olarak bulunabilecek toplam T4 hücresi yoğunluğunu,

bir başka deyişle kanın T4 hücreleri için taşıma kapasitesini göstermektedir. Ortamda ser-

best olarak bulunan virüsün sağlıklı T4 hücrelerine bağlanma oranı k1 ile ifade edilmekte,

bu bağlanma sonucunda oluşan enfekte T4 hücrelerinin k2 terimine karşılık gelen bir oranı

aktif olarak enfekte olmaktadır. Daha açık bir ifadeyle enfekte olmuş her k1 tane T4 hüc-

resinin ortalama olarak k2 tanesi, yaşam döngüsü sona ermeden kendini hücre bölünmesi

yoluyla eşleyerek kendisine bağlanmış olan virüsün çoğalmasına sebep olmaktadır. Tipik

olarak k2 < k1’dir. Geri kalan enfekte T4 hücreleri ise bu süreci başlatamadan ömür-

lerini tamamlamaları sebebiyle ortamdaki virüs yoğunluğu üzerinde herhangi bir etkide

bulunmadıklarından (1.2) sisteminde değerlendirmeye alınmamıştır. Enfekte T4 hücrele-

rinin herhangi bir sebeple ölüm oranı µI ile, hücre bölünmesi sonucunda biriken virüslerin

hücre zarını patlatması sonucu ölüm oranı ise µb ile gösterilmektedir. Söz konusu patlama

ile ölümlerin her birinin sonucunda kana Nv adet serbest virüs saçıldığı varsayılmaktadır.

Son olarak virüsün ölüm oranı µV ile gösterilmektedir. Dikkate değer bir nokta, virüsün

hücreye bağlanması olayının hem sağlıklı hücre yoğunluğunu hem de ortamdaki serbest

virüs yoğunluğunu negatif olarak etkilemesidir. Bu durum, hem T ’ye hem de V ’ye ilişkin

denklemdeki −k1V T terimi ile ifade edilmektedir.

(Perelson 1989) ve (Perelson vd. 1993) çalışmalarında (1.2) sisteminin denge durum-

larını incelenmiş, bunun sonucunda önemsiz (0, 0, 0) durumunun dışında enfekte ve en-

fekte olmayan iki ayrı denge durumu olduğunu saptanmıştır. Enfekte olmayan denge du-

rumu,

T0 =
Tmax

2

[
1− µT

r
+

√
(1− µT

r
)2 +

4s

rTmax

]
olmak üzere (T, I, V ) = (T0, 0, 0) ile verilmektedir. Bu sebeple (1.2) sisteminin başlangıç

koşulları olarak

T (0) = T0, I(0) = 0, V (0) = V0 (1.3)

almak makuldür. Burada V0 kanda başlangıç anında tespit edilen serbest virüs yoğunlu-
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ğudur. Böylece, (1.2) sistemi (1.3) başlangıç koşulları ile birlikte

dT

dt
= s− µTT + rT

(
1− T + I

Tmax

)
− k1V T,

dI

dt
= k2V T − µII,

dV

dt
= NvµbI − k1V T − µV V,

T (0) = T0, I(0) = 0, V (0) = V0

(1.4)

başlangıç değer problemini oluşturmaktadır. Bu başlangıç değer problemi, bu tez boyunca

ele alınacak iki problemden ilkini oluşturmaktadır.

Enfekte denge durumu (T , I, V ) ise Culshaw ve Ruan (2000) tarafından aşağıdaki

şekilde belirtilmiştir:

T =
µV µI

k2Nvµb − k1µI

,

I =
k2TV

µI

,

V =
µI

[
(s+ (r − µT )T )Tmax − rT

2
]

T [k2rT + k1µITmax]
.

HIV’in insan bağışıklık sistemi üzerindeki orta ve uzun vadeli etkileri kadar, virüsün

T4 hücrelerini enfekte etmesine ilişkin mekanizmaların ayrıntıları da birçok araştırma-

cının ilgisini çeken bir konudur. Örneğin, Herz vd. (1996) virüsün hücreye bağlanması

anından hücrenin kaynaklarını kullanarak kendini eşlemesine kadar olan süreyi göz önüne

almanın daha gerçekçi sonuçlar vereceğini önermiştir. Virüsün “tutulma aşaması" olarak

da bilinen bu sürenin hesaba katıldığı aşağıdaki model, Culshaw ve Ruan (2000) tarafın-

dan ortaya atılmıştır:

dT (t)

dt
= s− µTT (t) + rT (t)

(
1− T (t) + I(t)

Tmax

)
− k1V (t)T (t),

dI(t)

dt
= k2V (t− τ)T (t− τ)− µII(t),

dV (t)

dt
= NvµbI(t)− k1V (t)T (t)− µV V (t),

T (θ) = T0, I(0) = 0, V (θ) = V0, θ ∈ [−τ , 0].

(1.5)

Bu modelde, τ gecikme terimi virüsün tutulma süresini, bir başka deyişle, T4 hüc-

resine bağlanmasından hücrenin kaynaklarını kullanarak kendini çoğaltmaya hazır olana
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kadar geçmesi gereken süreyi göstermektedir. Dolayısıyla, sağlıklı bir T4 hücresinin belli

bir t anında enfekte olarak I(t) değerine katkı yapabilmesi için, virüsün t − τ anında

hücreye bağlanmış olması gerekir. Bu durum, (1.5) modelinde I(t)’ye ilişkin denklemde

kendini göstermektedir. Böylece, sonuçta ortaya çıkan problem bir gecikmeli diferansiyel

denklem sistemidir. Problemin başlangıç koşullarında ise, (1.4) problemine göre şöyle bir

fark bulunmaktadır: t = 0 başlangıç anında kanda bir enfekte hücre gözlemlenebilmesi

için, virüsün hücreye bağlanması olayı −τ ≤ θ ≤ 0 olmak üzere daha önceki bir t = θ

anında gerçekleşmiş olmalıdır; bu sebeple, T (t)’ye ve V (t)’ye ilişkin başlangıç koşul-

ları t = 0 yerine bu anda verilmelidir. (1.5) problemi, bu tez boyunca ele alınacak ikinci

problemi oluşturmaktadır.
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2. KAYNAK TARAMASI

T4 hücrelerinin HIV tarafından enfekte olmasına ya da genel olarak AIDS hastalığının

ve tedavi sürecinin anlaşılmasına ve geliştirilmesine ilişkin çalışmalar, birkaç sınıfta de-

ğerlendirilebilir. Bunlar arasında, hastalığın ilerlemesiyle ilgili genel kavrayışı arttırmaya

ya da tedavi süreçlerinin iyileştirilmesine yönelik tıbbi ve biyolojik çalışmalar olabildiği

gibi, bu çalışmalardan bir veya birkaçını temel alan ve ele alınan modelin dinamik özel-

liklerini incelemekle ya da sayısal çözümlerini bulmakla ilgilenen, daha çok matematik-

sel doğaya sahip çalışmalar da bulunmaktadır. Bu tezin sayısal çözümlerle ilgili olmasına

karşın, konunun daha iyi anlaşılması açısından ilk sınıfta olan çalışmalara biraz değinmek

uygun olacaktır.

Biyolojik süreçlerin matematiksel denklemlerden yararlanılarak ifade edilmesi çok

yeni bir uygulama değildir. Bu sebeple, Perelson 1989 yılında T4 hücrelerinin HIV ile

enfekte olmasına ilişkin ilk modelini (Perelson 1989) ortaya attığında, bazı araştırmacı-

lar aynı olguyu açıklayan farklı modeller önermişlerdir. Bunlar arasında, hastalığın farklı

aşamalarındaki gelişimini ayrı ayrı inceleyen Anderson (1989), T4 hücrelerini olgunluk-

larına göre iki ayrı alt sınıfta inceleyen Hraba vd. (1990) ve üç bilinmeyenli bir model

öneren Bailey vd. (1992) çalışmaları sayılabilir. Önerilen çok sayıda model bazı ayrıntı-

lar bakımından farklı olsa da, De Boer ve Perelson (1998) yaptıkları bir karşılaştırmaya

dayanarak, bunların işleyişinin genel olarak virüsün avcı, sağlıklı T4 hücrelerinin av ol-

duğu av-avcı tipi bir ilişkiyi yansıttığını tespit etmiştir. Ayrıca, on farklı hastadan gelen

verileri inceleyen Stafford vd. (2000) yaptıkları çaışmayla önerilen çok sayıda modelin

hastalığın seyrini isabetli bir şekilde kestirme kapasitesini test etmiş, bu sırada aktif en-

fekte T4 hücreleri için yaklaşık iki buçuk günlük bir yaşam süresi tespit etmiştir. Öte

yandan, elde ettikleri bulguları HIV’in tedavi süreci için yeni tespit ve önerilere dönüş-

türen çalışmalar da mevcuttur. Örneğin, Perelson’un dört bilinmeyenli orijinal modelini

temel alarak optimum bir kemoterapi stratejisi oluşturmaya odaklanan birtakım çalışma-

lar (Kirschner ve Webb 1996; Kirschner vd. 1997), kemoterapinin başlama zamanı ve

ideal uygulanma sıklığına ilişkin bazı sonuçlara ulaşmayı başarmışlardır. İlaç tedavisinin

etkinliği (Bonhoeffer vd. 1997) ve ilaç dozuyla virüsün ilaç direnci arasındaki ilişki (Kep-

ler ve Perelson 1998) de bu alanda öne çıkan konulardır. Son olarak, HIV ile T4 hücreleri
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arasındaki ilişkiyi açıklamak için kesirli türeve başvuran çalışmalar (Srivastava vd. 2009)

da giderek popülerlik kazanmaktadır.

Sözü edilen HIV enfeksiyon modellerinin sayısal çözümlerinin hesaplanması, konuya

ilişkin akademik literatürün hatırı sayılır bir kısmını teşkil etmektedir. Bu tür çalışma-

larda kullanılan yöntemler, Bessel kollokasyon yönteminden (Yüzbaşı 2012) Taylor ope-

rasyonel matris yöntemine (Yüzbaşı ve Ismailov 2017), üstel fonksiyonlara dayalı bir

pertürbasyon-iterasyon algoritmasından (Khalid vd. 2015) Hermit polinomlarına ve Lag-

range interpolasyonuna dayanan bir kollokasyon yöntemine (Parand vd. 2017) kadar uza-

nan geniş bir yelpazeyi kaplamaktadır. Bunların yanı sıra, 1990’lardan itibaren popüler

olmuş homotopi pertürbasyon yöntemi (Merdan 2007), varyasyonel iterasyon yöntemi

(Merdan vd. 2011) ve diferansiyel dönüşüm yöntemi (Srivastava vd. 2014) ile bu yön-

temin çok adımlı bir versiyonu (Kolebaje vd. 2014) da aynı amaçla kullanılmıştır. Bun-

lardan başka, üstel polinomlar ve Galerkin yöntemi gibi iki bağımsız fikri birleştiren bir

çalışma (Yüzbaşı ve Karaçayır 2017a) da mevcuttur. Perelson’un (1.4) ile verilen üç bilin-

meyenli modelinin çözümünü veren bu çalışmalara ek olarak, (1.1) ile verilen dört bilin-

meyenli modelin sayısal çözümlerini elde etmekle ilgilenen az sayıda da olsa çalışmalar

bulunmaktadır. Bunlardan biri, Ali vd. (2019) tarafından Adomian ayrıştırma yönteminin

kullanıldığı çalışmadır. Son olarak, yukarıda sözü edilen kesirli türev içeren modeller de

sayısal çözümlerin konusu olmuştur (Mirzaae ve Samadyar 2019).

Culshaw ve Roan’ın (1.5) ile verilen gecikmeli modelini çözmekle ilgilenen çalışma-

ların sayısı bariz olarak daha azdır. Bunlar arasında homotopi perturbasyon yöntemi (Yüz-

başı ve Karaçayır 2017b) ve sıradan polinomlara dayanan bir Galerkin yöntemi (Yüzbaşı

ve Karaçayır 2018) sayılabilir.

Bu noktada, tezin bir sonraki bölümünün konusunu oluşturacak Lucas kollokasyon

yönteminin kullanıldığı bazı çalışmaları anmakta yarar vardır. Örneğin, Gümgüm vd. de-

ğişken gecikmeler içeren integro-diferansiyel denklemleri çözmek için Lucas polinomla-

rını hem standart hem de Çebişev kollokasyon noktalarıyla birlikte kullanmıştır (Gümgüm

vd. 2018). Baykuş ve Sezer (2017) ise Taylor kollokasyon yöntemini yüksek mertebeden

değişken gecikmeler içeren pantograf-tipi diferansiyel denklemlere uygulamıştır. Benzer

şekilde, Şahin ve Sezer (2018) hibrit gecikmeler içeren terimlere sahip diferansiyel denk-

lemleri aynı yöntemle çözmüştür. Gecikmeli denklem sistemlerinin sayısal çözümlerini
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elde etmekle ilgilenen çalışmalara örnek olarak ise (Çetin vd. 2018a) gösterilebilir. Bun-

lara ek olarak Çetin vd. (2018b) Lucas kollokasyon yöntemini geometrik bir probleme

uygulamıştır. Aynı yöntemin kesirli türevli terimler içeren başlangıç değer problemlerine

uygulanışını görmek isteyen okuyucular (Mokhtar ve Mohammed 2019) kaynağından ya-

rarlanabilir.

Bu tezin amacı, T4 hücrelerinin HIV ile enfekte olmasına ilişkin orijinal (1.2) sistemi

ile aynı modelin gecikmeli versiyonu olan (1.5) sistemini, bir sonraki bölümde açıkla-

nacak olan Lucas kollokasyon yöntemiyle sayısal olarak çözmektir. Problem farklı para-

metre değerleriyle ele alınacak, mümkün olması durumunda elde ettiğimiz sonuçlar lite-

ratürdeki diğer sonuçlarla karşılaştırılacaktır.
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3. MATERYAL VE METOT

Bu bölüm, tez boyunca kullanılacak olan Lucas kollokasyon yönteminin açıklanma-

sına ayrılmıştır. Önce Lucas polinomları ile ilgili gerekli olan bazı bilgiler özetlenecektir.

Ardından kollokasyon yönteminin temel fikri açıklanacak ve bu fikrin Lucas polinomla-

rıyla birleştirilerek T4 hücrelerinin HIV ile enfekte olması problemine nasıl uygulanacağı

açıklanacaktır. Son olarak, elde edilmiş yaklaşık çözümler kullanılarak hatanın tahmin

edilmesine ilişkin bir yöntem tartışılacaktır.

3.1. Lucas Polinomları

Lucas Polinomları ilk olarak Bicknell (1970) tarafından Fibonacci polinomları ile iliş-

kili olarak tanımlanmıştır. İlk iki Lucas polinomu

L0(x) = 2, L1(x) = x

olmak üzere, n ≥ 2 için Lucas polinomları dizisi

Ln(x) = Ln−2(x) + xLn−1(x) (3.1)

yineleme bağıntısıyla tanımlanır. Böylece ilk birkaç Lucas polinomu

L0(x) = 2,

L1(x) = x,

L2(x) = x2 + 2,

L3(x) = x3 + 3x,

L4(x) = x4 + 4x2 + 2

(3.2)

şeklindedir. Lucas polinomlarının Fibonacci sayıları ile aynı yineleme bağıntısını sağla-

yan ve

l0 = 1, l1 = 3, ln = ln−2 + ln−1 (n ≥ 2)

ile tanımlanan sayı dizisi ile yakın ilişkisi vardır. Bu sayı dizisi “Lucas sayıları" olarak

bilinir ve Lucas polinomları ile

Ln(1) = ln

9
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şeklinde bir ilişkiye sahiptir. n’inci Lucas polinomu için Binet formülü olarak bilinen

Ln(x) = 2−n
[(
x−
√
x2 + 4

)n
+
(
x+
√
x2 + 4

)n]
bağıntısı geçerlidir (Weisstein 2019). Lucas polinomlarının bizim bu tez boyunca ilgile-

neceğimiz gösterimi ise

Ln(x) = n

bn
2
c∑

k=0

1

n− k

(
n− k
k

)
xn−2k (3.3)

biçimindedir. Bir sonraki kısım, elde edeceğimiz yaklaşık çözümlerin karşılaştırılacağı

çözümleri üretmekte kullanılacak Runge-Kutta yönteminin açklanmasına ayrılmıştır. Ar-

dından, kollokasyon yönteminin temel fikri açıklanacak, yukarıda (3.3) ile gösterilen Lu-

cas polinomlarının (1.2) ve (1.5) modellerini çözmek için bu fikirle birlikte nasıl kullanı-

lacağı Bölüm 3.4.’te ele alınacaktır.

3.2. Runge-Kutta Yönteminin Bir Özeti

Bu kısım standart Runge-Kutta yönteminin kısaca açıklanmasına ayrılmıştır. Bu yön-

temin uygulanmasıyla elde edilen çözümlerin Lucas kollokasyon yöntemiyle elde ede-

ceğimiz yaklaşık çözümlerle karşılaştırma yapmak amacıyla nasıl kullanılacağı konusu

Bölüm 3.6.’da ele alınacaktır.
dy

dt
= f(t, y), y(t0) = y0 başlangıç değer problemini ele alalım. Bu probleme h adım

boyu ile Euler yönteminin uygulanması, i = 0, 1, 2, . . . için ti = t0 + ih olmak üzere

y(ti+1) ≈ yi+1 = yi + hf(ti, yi)

yaklaşık çözüm değerlerini üretir. Euler yöntemi, Runge-Kutta yöntemleri olarak bilinen

daha geniş bir yöntem ailesinin en düşük mertebeli üyesidir. Euler yöntemi, problemin

çözümü olan y fonksiyonunun ti ≤ t ≤ ti+1 aralığındaki ortalama eğimi için y′(t) ≈

f(ti, yi) yaklaşımını kullanır ve birinci mertebeden bir yöntemdir. Söz konusu eğim değeri

için farklı yaklaşımların kullanılması farklı yöntemlerle sonuçlanır. Şimdi Runge-Kutta

yönteminin nasıl bir yaklaşım kullandığını açıklayalım. Takip eden açıklamalar konuya

ilişkin Wikipedia makalesinde ya da benzer açık kaynaklarda bulunabilir.

Runge-Kutta yönteminde, tn anındaki yaklaşık çözüm olan yn değerinden tn+1 anın-

daki yaklaşık çözüm olan yn+1 değerini hesaplamak için dört farklı eğim yaklaşımından
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yararlanılır. Bunları ilki

k1 = f(tn, yn)

biçiminde Euler yönteminde kullanılanın aynısıdır. Ardından, bu eğim değeri kullanılarak

yarım adım atılır ve yn + kh/2 değeri elde edilir. Bu değerin kullanılmasıyla

k2 = f

(
tn +

h

2
, yn +

h

2
k1

)
şeklinde ikinci yaklaşık eğim değeri hesaplanır. Benzer işlem k2 eğim değeriyle de uygu-

lanarak üçüncü yaklaşık eğim değeri

k3 = f

(
tn +

h

2
, yn +

h

2
k2

)
olarak hesaplanır. Son olarak, k3 eğim değerine göre bir tam adım atılır ve

k4 = f(tn + h, yn + hk3)

şeklinde dördüncü yaklaşık eğim değeri hesaplanır. Bu dört yaklaşık eğim değerinin

k =
1

6
k1 +

2

6
k2 +

2

6
k3 +

1

6
k4

biçiminde ağırlıklı ortalaması alınarak tek bir k eğim değeri oluşturulur. Sonuçta yn+1

yaklaşık çözümü

yn+1 = yn + hk

ile hesaplanır. Runge-Kutta yönteminin bir adımı bu şekilde tamamlanır.

Runge-Kutta yönteminin tek bir adımı, Euler yöntemindeki tek fonksiyon hesaplama-

sına karşılık dört tane fonksiyon hesaplaması içerir; bu sebeple ciddi derecede daha fazla

hesaplama zamanı gerektirir. Buna karşılık, Runge-Kutta yöntemi dördüncü mertebeden

bir yöntemdir ve makul ölçüde güvenilir kabul edilmektedir. Dördüncü mertebeden oluşu

sebebiyle Runge-Kutta-4 ya da kısaca RK4 yöntemi olarak da bilinir.

MATLAB programlama dilindeki gömülü ode45 komutu, herhangi bir adi diferan-

siyel denklem sistemini, RK4 yönteminin bir varyantı olan ve "Runge-Kutta (4,5)" ya da

"Runge-Kutta-Fehlberg" olarak bilinen sayısal yöntemi kullanarak istenen aralıkta çözer.

Bu yöntem, ilk olarak Fehlberg (1969) tarafından ABD Ulusal Havacılık ve Uzay Da-

iresi’ne (NASA) sunulan bir teknik raporda yer almıştır. Bu yöntemin RK4 yönteminden

temel farkı, her adımında hata için bir kestirimde bulunması ve bu kestirime dayanarak
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adım boyunu duruma göre arttırması veya azaltmasıdır. Böylece, yapılan hata problemin

ele alındığı aralık boyunca yaklaşık olarak sabit kalmaktadır.

Runge-Kutta-Fehlberg yönteminin yukarıda sözü edilen hata kontrolünü nasıl yaptı-

ğını kısaca açıklamak yararlı olacaktır. Bu amacın gerçekleştirilmesi için yukarıda anlatı-

landan farklı (farklı eğim değerlerine ve ağırlıklara sahip) bir 4’üncü mertebeden Runge-

Kutta şeması (RKF4) ve buna dayanan 5’inci mertebeden bir Runge-Kutta şeması (RKF5)

kullanılır. Ardından, en son elde edilmiş yaklaşık çözüm değeri yn’ye belli bir h adım bo-

yuyla RKF4 ve RKF5 uygulanır ve sırayla RKF4(yn) ve RKF5(yn) yaklaşımları elde

edilir. RKF5 5’inci mertebeden olması sebebiyle RKF4’ten daha iyi olduğundan, ger-

çek çözüme daha yakındır ve ey = |RKF4(yn) − RKF5(yn)| değeri bir hata kestirimi

olarak kullanılabilir. Bu hata kestirimi izin verilen bir emax üst sınırından büyükse, yani

ey > emax ise, o zaman adım boyu yarıya indirilerek h/2 adım boyuyla aynı işlem tekrar-

lanır. ey ≤ emax olduğunda RKF4(yn) değeri bu adımın sonundaki yaklaşık çözüm olarak

kabul edilir, yani yn+1 = RKF4(yn) olur. Aksi durumda, eğer hata kestirimi önceden be-

lirlenmiş bir emin alt sınırından küçükse, yani ey < emin ise, adım boyu ikiyle çarpılarak

2h adım boyuyla bir sonraki adım boyuna geçilir. Bu şekilde, hem yaklaşık hatanın izin

verilen bir üst sınırı aşmaması hem de gereksiz yere fazla adım atılmaması sağlanmış

olur. Runge-Kutta-Fehlberg yönteminin de birçok farklı varyantı bulunmaktadır. Burada

en genel hatlarıyla ele alınmıştır.

RK4 yöntemi ve Runge-Kutta-Fehlberg yönteminin ayrıntılı bir incelemesi (Iserles

1996) kaynağında bulunabilir.

3.3. Kollokasyon Yöntemi

Kollokasyon yöntemi, adi diferansiyel denklemlerin, integral denklemlerinin ve kısmi

diferansiyel denklemlerin yaklaşık çözümlerini bulmak amacıyla kullanılan en popüler

yöntemlerden biridir. Yöntemi uygulamak için ilk yapılması gereken, olası çözümlerden

oluşan sonlu boyutlu bir fonksiyon uzayı ve problemin çözüleceği kapalı bir aralık (kısmi

diferansiyel denklemler için sınırlı bir bölge) seçmektir. Temel fikir, söz konusu uzaya

ait bir fonksiyonun denklemi yeterince çok sayıda noktada sağlaması durumunda gerçek

çözüme yakın olacağı varsayımıdır. Daha iyi açıklamak için,

dy

dt
= g(t, y), y(t0) = y0 (3.4)
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başlangıç değer problemini ele alalım. Bu problemin tek bir sürekli ytam çözümünün ol-

duğunu varsayalım. İlk yapılması gereken şey, sürekli fonksiyonlar uzayı için bir Φ =

{φ0, φ1, φ2, . . .} tam sistemi belirlemektir. Bu tam sistem, çözülmek istenen problemin

özelliğine göre değişmekle birlikte genelde bir polinom ailesi olarak seçilir. Weierstrass

Yaklaşım Teoremi’ne göre, sürekli bir f fonksiyonu verildiğinde, her ε > 0 değeri için

kapalı bir [a, b] aralığında |f(x) − P (x)| < ε olacak şekilde bir P polinomu bulunabile-

ceğinden, burada Φ tam sistemi için olası en basit seçimlerden biri alışıldık {1, x, x2, . . .}

tekterimli ailesidir. Sonuç olarak, Φ fonksiyon ailesi sürekli fonksiyonlar uzayı için bir

tam sistem olduğundan, her ε > 0 için

|ytam(t)− (a0φ0(t) + a1φ1(t) + . . .+ aNφN(t))| < ε, a ≤ t ≤ b, (3.5)

olacak şekilde bir N pozitif tamsayısı ve a0, a1, . . . , aN reel sayıları bulunabilir. (3.5)

ifadesindeki a0φ0(t) + a1φ1(t) + . . . + aNφN(t) doğrusal kombinasyonunun problemin

tam çözümünü ε hassasiyetle temsil edebileceğine dayanılarak, kollokasyon yönteminde

yN(t) = a0φ0(t) + a1φ1(t) + a2φ2(t) + . . .+ aNφN(t) (3.6)

şeklinde N + 1 bilinmeyen içeren bir test fonksiyonu oluşturulur. a0, a1, . . . , aN bilinme-

yenleri bulunduğunda (3.6) ile tanımlanan yN fonksiyonu (3.4) başlangıç değer proble-

minin yaklaşık çözümü olacaktır. Bir başka deyişle, problemin çözümü sonsuz boyutlu

sürekli fonksiyonlar uzayı yerine sonlu N + 1 boyutlu

{c0φ0 + c1φ1 + . . .+ cNφN : c0, c1, . . . , cN ∈ R}

uzayında aranacaktır. Söz konusu bilinmeyenleri bulmak içinN+1 tane denkleme ihtiyaç

vardır. Bu denklemlerden bir tanesi yN yaklaşık çözümünün başlangıç koşulunu sağlama-

sından elde edilir. Böylece

yN(t0) = a0φ0(t0) + a1φ1(t0) + a2φ2(t0) + . . .+ aNφN(t0) = y0 (3.7)

ifadesi, a0, a1, . . . , aN bilinmeyenlerinin sağlaması gereken ilk denklemi verir. Geri kalan

N denklemi elde etmek için problemin çözüleceği bir t0 = a ≤ t ≤ b kapalı aralığı

ve bu aralığın içinden N tane nokta belirlenir. Bu noktalara “kollokasyon noktaları" de-

nir ve yN yaklaşık çözümünün diferansiyel denklemi bu kollokasyon noktalarının her
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birinde sağlayacağı varsayılır. Daha açık bir ifadeyle, söz konusu kollokasyon noktaları

t1, t2, . . . , tN = b ile verilmek üzere,
dyN
dt

(t1) = g(t1, yN(t1))

dyN
dt

(t2) = g(t2, yN(t2))

...

dyN
dt

(tN) = g(tN , yN(tN))

(3.8)

denklemleri oluşturulur. Toplam sayısı N olan (3.8) denklemleri ile başlangıç koşulunun

sağlanmasından elde edilen (3.7) denkleminin birlikte çözülmesiyle a0, a1, . . . , aN bilin-

meyenleri, dolayısıyla yN yaklaşık çözümü bulunmuş olur. Kollokasyon yönteminin daha

ayrıntılı bir incelemesi için (Iserles 1996) kaynağına bakılabilir.

3.4. T4 Hücrelerinin HIV ile Enfekte Olması Problemini Çözmek İçin Lucas Kollo-

kasyon Yöntemi

Bölüm 3.3.’te temel fikrini açıkladığımız kollokasyon yönteminin uygulanmasında,

verilmesi gereken ilk karar, yaklaşık çözümün doğrusal kombinasyonu olacağı φ0, φ1, φ2, . . .

fonksiyonların seçimidir. Bu tez çalışmasında söz konusu fonksiyonlar Lucas polinomları

olarak seçilecektir.Bu şekilde elde edilen yöntem Lucas kollokasyon yöntemi olarak bi-

linir. Lucas kollokasyon yöntemi, pantograf-tipi gecikmeli diferansiyel denklemler (Bay-

kuş ve Sezer 2017), doğrusal diferansiyel denklem sistemleri (Çetin vd. 2018b) ve kesirli

türevli diferansiyel denklemler (Mokhtar ve Mohammed 2019) gibi pek çok problemin

çözümünde kullanılmıştır. Biz bu bölümde aynı yöntemin T4 hücrelerinin HIV ile en-

fekte olması problemine nasıl uygulanacağını açıklayacağız.

Çözmek istediğimiz problem aşağıdaki başlangıç değer problemi idi:

dT

dt
= s− µTT + rT

(
1− T + I

Tmax

)
− k1V T,

dI

dt
= k2V T − µII,

dV

dt
= NvµbI − k1V T − µV V.

T (0) = T0, I(0) = 0, V (0) = V0.

(3.9)

Kollokasyon yöntemini herhangi bir probleme uygulamadan önce çözümlerin geçerli ola-

cağı kapalı aralığa karar verilmelidir. Dolayısıyla, (3.9) problemini 0 ≤ t ≤ Tson aralı-
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ğında ele alacağız. N ∈ Z+ olmak üzere, kollokasyon noktaları olarak [0, Tson] aralığının

N eşit parçaya bölünmesiyle elde edilen

t1 =
Tson

N
, t2 =

2Tson

N
, . . . , tN = Tson (3.10)

noktalarını kullanacağız. Bilinmeyen fonksiyonlar olan T, I, V ’nin yaklaşık olarak Lucas

polinomlarının kombinasyonları biçiminde ifade edilebileceğini, daha açık bir şekilde

TN(t) =
N∑
k=0

akLk(t) = (a0L0 + a1L1 + . . . , aNLN)(t)

IN(t) =
N∑
k=0

bkLk(t) = (b0L0 + b1L1 + . . . , bNIN)(t)

VN(t) =
N∑
k=0

ckLk(t) = (c0L0 + c1L1 + . . . , cNVN)(t)

yazılabileceğini varsayalım. Burada önemli bir nokta, kollokasyon noktalarının sayısı N

ile TN , IN , VN yaklaşık çözümlerinin ifadesindeki en yüksek dereceli Lucas polinomları-

nın derecesinin aynı olmasıdır. Yöntemin amacı, i = 0, 1, . . . , N için yaklaşık çözüm-

lerin ifadelerindeki ai, bi, ci bilinmeyen katsayılarının bulunmasıdır. Bir sonraki adım,

TN , IN , VN yaklaşık çözümlerine (3.10) kollokasyon noktalarında (3.9) sisteminin da-

yatılması sonucu ortaya çıkan denklemlerin oluşturulmasıdır. Böylece, i = 1, 2, . . . , N

için

dTN
dt

(ti) = s− µTTN(ti) + rTN(ti)

(
1− TN(ti) + IN(ti)

Tmax

)
− k1VN(ti)TN(ti),

dIN
dt

(ti) = k2VN(ti)TN(ti)− µIIN(ti),

dVN
dt

(ti) = NvµbIN(ti)− k1VN(ti)TN(ti)− µV VN(ti).

(3.11)

şeklinde toplam 3N tane doğrusal olmayan cebirsel denklem elde edilir. Bu denklemlerde

problemin parametreleri için belli değerler girildiğinde geriye bilinmeyen olarak yalnızca

i = 0, 1, . . . , N için ai, bi, ci bilinmeyen katsayılarının kalacağı görülür. Bu bilinmeyen

katsayılarının sayısı 3N + 3 olduğundan geriye kalan üç denklem yaklaşık çözümlerin

başlangıç koşullarını sağlamasından elde edilir. Daha açık bir ifade ile bu üç denklem

TN(0) = a0L0(0) + a1L1(0) + . . .+ aNLN(0) = T0

IN(0) = b0L0(0) + b1L1(0) + . . .+ bNLN(0) = 0

VN(0) = c0L0(0) + c1L1(0) + . . .+ cNLN(0) = V0

(3.12)
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şeklindedir. Bu üç denklem ile daha önce elde edilen ve sayısı 3N olan (3.11) denk-

lemlerinin birlikte ele alınmasıyla oluşan 3N + 3 denklemli cebirsel denklem sisteminin

çözülmesiyle ai, bi, ci katsayıları, sonuç olarak TN , IN , VN yaklaşık çözümleri elde edilir.

Bu sürecin bilgisayarla programlanması aşamasında, gerekli işlemlerin matrisler cin-

sinden ifade edilmesi belirgin kolaylık sağlamaktadır. Bu yaklaşım, örneğin (Baykuş ve

Sezer 2017) çalışmasında olduğu gibi özellikle doğrusal problemler için elverişlidir. Bu

tezde çalışılacak olan HIV ile enfeksiyon problemi doğrusal olmamasına karşın, tartışma-

nın tamlığı açısından matris işlemlerinden yararlanmak uygun olacaktır. Bu esnada Lu-

cas kollokasyon yönteminin kullanıldığı diğer çalışmalarla olan benzerliğin vurgulanması

amacıyla benzer notasyona başvurulacaktır.

Lucas polinomlarının bir matris çarpımı yardımıyla gösterilmesinde, Bölüm 3.1.’de

belirtilen

Ln(x) = n

bn
2
c∑

k=0

1

n− k

(
n− k
k

)
xn−2k (3.13)

özdeşliğinden yararlanılacaktır. Bunun için standart yöntem,

X(x) = [ 1 x x2 . . . xN ]

yardımcı matrisini tanımlamakla başlar. X(x) yardımcı matrisini kullanarak Lucas poli-

nomlarını elde edebilmek amacıyla, (3.13) eşitliğindeki Lucas katsayılarını sütun girdileri

olarak kabul eden (N + 1) × (N + 1) boyutunda bir Lucas yardımcı matrisi tanımlanır.

Bu matris, N çift sayı ise

D =



2 0 2
1(

1
1) 0 . . . 0 N

N/2(
N/2
N/2)

0 1
1(

1
0) 0 3

2(
2
1) . . . N−1

N/2 (
N/2

(N−2)/2) 0

0 0 2
2(

2
0) 0 . . . 0 N

(N+2)/2(
(N+2)/2
(N−2)/2)

0 0 0 3
3(

3
0) . . . N−1

(N+2)/2(
(N+2)/2
(N−4)/2) 0

...
...

...
...

...
...

...

0 0 0 0 . . . N−1
N−1(

N−1
0 ) 0

0 0 0 0 . . . 0 N
N (

N
0 )


,
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N tek sayı ise

D =



2 0 2
1(

1
1) 0 . . . N−1

(N−1)/2(
(N−1)/2
(N−1)/2) 0

0 1
1(

1
0) 0 3

2(
2
1) . . . 0 N

(N+1)/2(
(N+1)/2
(N−1)/2)

0 0 2
2(

2
0) 0 . . . N−1

(N+1)/2(
(N+1)/2
(N−3)/2) 0

0 0 0 3
3(

3
0) . . . 0 N

(N+3)/2(
(N+3)/2
(N−3)/2)

...
...

...
...

...
...

...

0 0 0 0 . . . N−1
N−1(

N−1
0 ) 0

0 0 0 0 . . . 0 N
N (

N
0 )


biçimindedir. Böylece X(x) sembolük yardımcı matrisiyle D Lucas yardımcı matrisinin

çarpımı, derecesi 0’danN ’ye kadar olan Lucas polinomlarını girdi olarak içeren 1×(N+

1) boyutunda bir satır matrisini verir. Daha açık bir ifadeyle

X(t)D = [ L0(t) L1(t) L2(t) . . . LN(t) ] (3.14)

olur. Dolayısıyla,

TN(t) = a0L0(t) + a1L1(t) + . . . , aNLN(t)

IN(t) = b0L0(t) + b1L1(t) + . . . , bNIN(t)

VN(t) = c0L0(t) + c1L1(t) + . . . , cNVN(t)

(3.15)

yaklaşık çözümleri de matris çarpımı yardımıyla basitçe ifade edilebilir. Bunun için tek

yapılması gereken, ai, bi, ci bilinmeyen katsayılarını

A =



a0

a1

a2
...

aN


, B =



b0

b1

b2
...

bN


, C =



c0

c1

c2
...

cN


şeklinde ayrı bilinmeyen katsayı matrislerinde toplamaktır. Bu durumda, TN , IN , VN yak-

laşık çözümleri

TN(t) = X(t)DA, IN(t) = X(t)DB, VN(t) = X(t)DC

olarak yazılabilir.
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(1.2) modelinde bilinmeyen fonksiyonların birbirleriyle çarpımını içeren doğrusal ol-

mayan terimler de matris çarpımı cinsinden ifade edilmelidir. Örneğin, birinci denklemde

sağlıklı ve virüs bulaşmış T4 hücre sayılarının çarpımı olan

TN(t)IN(t) =a0b0L
2
0(t) + (a0b1 + a1b0)L0L1 + . . .+ (aN−1bN + aNbN−1)LN−1(t)LN(t)

+ aNbNL
2
N(t)

ifadesinde hem TN ’ye hem de IN ’ye karşılık gelen bilinmeyen katsayılar bir arada bu-

lunduğundan, bu terimin matris çarpımıyla ifade edilmesinde biraz farklı bir yol izlemek

gerekir. Öncelikle, derecesi 0’danN ’ye kadar olan bütün Lucas polinomlarını girdi olarak

kabul eden, daha önce elde ettiğimiz

[ L0(t) L1(t) L2(t) . . . LN(t) ]

satır matrisinden yararlanarak, bu Lucas polinomlarının olası bütün ikili çarpımlarının yer

aldığı (N + 1)× (N + 1) boyutunda yeni bir yardımcı matris oluşturalım. Daha açık bir

ifadeyle
L0(t)

L1(t)
...

LN(t)

 · [ L0(t) L1(t) L2(t) . . . LN(t) ] =


L0L0 L1L0 . . . LNL0

L0L1 L1L1 . . . LNL1

...
... . . .

...

L0LN L1LN . . . LNLN


yazılabilir. Kare matristeki terimler TN(t)IN(t) çarpımındaki terimlere karşılık geldiğin-

den, bu çarpımın

TNIN = [ b0 b1 b2 . . . bN ]·


L0L0 L1L0 . . . LNL0

L0L1 L1L1 . . . LNL1

...
... . . .

...

L0LN L1LN . . . LNLN

 ·



a0

a1

a2
...

aN


ya da daha kısaca

TNIN = BT ·


L0L0 L1L0 . . . LNL0

L0L1 L1L1 . . . LNL1

...
... . . . ...

L0LN L1LN . . . LNLN

 ·A
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olarak yazılabileceği görülür. Öte yandan, (3.14) özdeşliğinden dolayı aynı ifade D Lucas

yardımcı matrisi ve X(t) sembolik yardımcı matrisi cinsinden yazılabilir. Sonuç olarak,

TN(t)IN(t) = (X(t)DB)TX(t)DA = BTDTX(t)TX(t)DA (3.16)

yazılabilir. TN ’nin kendisiyle ve VN ile olan çarpımları da benzer şekilde matris çarpımı

cinsinden yazılabilir. Böylece,

T 2
N(t) = ATDTX(t)TX(t)DA,

TN(t)VN(t) = CTDTX(t)TX(t)DA
(3.17)

olur. Problemdeki türev terimlerini ifade etmenin de basit bir yolu vardır. Bunun için

i = 1, 2, . . . , N için B̃i,i+1 = i ve diğer tüm girdileri B̃i,j = 0 şeklinde tanımlı olan

B̃ =



0 1 0 . . . 0

0 0 2 . . . 0
...

...
... . . . ...

0 0 0 . . . N

0 0 0 . . . 0


yardımcı matrisinden yararlanılır. Böylece

dTN
dt

= X(t)B̃DA,
dIN
dt

= X(t)B̃DB,
dVN
dt

= X(t)B̃DC

eşitlikleri geçerli olur. Bu eşitliklerle daha önce gösterdiğimiz (3.16) ve (3.17) ifadelerinin

birlikte kullanılmasıyla, (1.2) modelindeki üç denklem de yardımcı matrisler cinsinden

aşağıdaki gibi ifade edilebilir:

X(t)B̃DA− (µT + r)X(t)DA +
r

Tmax
ATDTX(t)TX(t)DA

+
r

Tmax
BTDTX(t)TX(t)DA + k1C

TDTX(t)TX(t)DA = s,

X(t)B̃DB + µIX(t)DB− k2CTDTX(t)TX(t)DA = 0,

X(t)B̃DC−NvµbX(t)DB + k1C
TDTX(t)TX(t)DA + µvX(t)DC = 0.

(3.18)

Bu üç denklemdeki terimlere bakıldığında, her terimin bilinmeyen fonksiyonlar olan TN , IN

ve VN ’nin katsayılarından oluşan A,B ve C katsayı matrislerinden biriyle bittiği görülür.

Kollokasyon adımına bir hazırlık olarak, üç ayrı denklemi tek bir matris denklemi olarak
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ifade etmek amacıyla, A,B ve C katsayı matrislerinin girdilerinin hepsini içeren tek bir

büyük katsayı matrisi tanımlamak faydalı olacaktır. Basitçe bütün bilinmeyen katsayıların

alt alta eklenmesiyle oluşturulan (3N + 3)× 1 boyutundaki

M = [ a0 a1 . . . aN b0 b1 . . . bN c0 c1 . . . cN ]T

satır matrisi bu iş için uygundur. M matrisinin tartışmaya nasıl dahil edileceğini göster-

mek için, (3.18) denklemlerinden ilkini göz önüne alalım. Tüm terimler A ile bittiğinden

bu denklem, X(t)B̃D− (µT + r)X(t)D +
r

Tmax
ATDTX(t)TX(t)D

+
r

Tmax
BTDTX(t)TX(t)D + k1C

TDTX(t)TX(t)D

A = s,

ya da parantez içindeki ifadeyi kısaca G1(t) ile gösterirsek,

G1(t)A = s (3.19)

olarak yazılabilir. 1× (N + 1) boyutundaki G1(t) satır matrisinin her girdisi, katsayıları

ai, bi, ci, i = 0, 1, . . . , N, bilinmeyenlerinin birinci dereceden terimleri olan 2N dereceli

bir polinomdur. (3.19) denklemini M matrisini kullanarak ifade etmek için, G1(t)’nin sağ

tarafına 2N +2 tane 0 ekleyerek 1× (3N +3) boyutunda yeni bir satır matrisi elde etmek

yeterlidir. Böylece, (3.19) denklemi[
G1(t) 0 0 . . . 0︸ ︷︷ ︸

2N+2 tane

]
M = s (3.20)

olarak yazılabilir. (3.18) denklemlerinin ikincisinin ve üçüncüsünün gösteriminde de ben-

zer yola başvurulabilir. Bunun için, gösterim kolaylığı olması açısından, N+1 tane 0’dan

oluşan satır matrisi için

0 =
[

0 0 . . . 0︸ ︷︷ ︸
N+1 tane

]
biçiminde yeni bir notasyon tanımlayalım. Bu notasyon yardımıyla, diğer iki denklem

sırasıyla [
−k2CTDTX(t)TX(t)D X(t)B̃D + µIX(t)D 0

]
M = 0 (3.21)

ve [
k1C

TDTX(t)TX(t)D −NvµbX(t)D X(t)B̃D + µvX(t)D
]

M = 0 (3.22)
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olarak yazılabilir. Şimdi, (1.2) modelindeki üç denklemin matris gösterimleri olan (3.20),

(3.21) ve (3.22) eşitlikleri bir araya getirilerek, modelin tamamı
G1(t) 0 0

−k2CTDTX(t)TX(t)D X(t)B̃D + µIX(t)D 0

k1C
TDTX(t)TX(t)D −NvµbX(t)D X(t)B̃D + µvX(t)D

M =


s

0

0


biçiminde tek bir matris denklemi olarak ifade edilebilir. Bu matris denklemini, M ile

çarpım durumunda olan 3× (3N+3) boyutundaki matrise ve denklemin sağ tarafına yeni

isimler vererek kısaca

K(t)M = S (3.23)

ile gösterelim. Bu denklem, (1.2) modelinin matris gösterimidir.

Problemin çözümüne i = 1, 2, . . . , N için ti =
iTson

N
kollokasyon noktaları dahil

edildiğinde, (3.11) ile gösterdiğimiz

dTN
dt

(ti) = s− µTTN(ti) + rTN(ti)

(
1− TN(ti) + IN(ti)

Tmax

)
− k1VN(ti)TN(ti),

dIN
dt

(ti) = k2VN(ti)TN(ti)− µIIN(ti),

dVN
dt

(ti) = NvµbIN(ti)− k1VN(ti)TN(ti)− µV VN(ti).

cebirsel denklem sistem oluşmuştu. Her kollokasyon noktası üç ayrı denklemde gözük-

tüğünden, bu yolla toplamda 3N tane doğrusal olmayan cebirsel denklem elde edilir. Bu

denklemleri, (3.23) matris denklemi cinsinden göstermek basittir. Bu iş için, 3× (3N+3)

boyutundaki katsayı matrisi K(t)’de t yerine sırasıyla bütün kollokasyon noktalarının ya-

zılması ve denklemin sağ tarafı olan 3×1 boyutundaki S sütun matrisinin alt alta yazılarak

3N × 1 boyutuna genişletilmesi yeterlidir. Böylece,
K(t1)

K(t2)
...

K(tN)

M =


S

S
...

S


biçiminde yazılabilecek 3N×(3N+3) boyutunda doğrusal olmayan bir cebirsel denklem

sistemi elde edilir. Bu sistemi, sonradan daha kolay kullanabilmek amacıyla

WM = F (3.24)
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ile gösterelim. Burada, 3N × (3N + 3) boyutundaki W katsayı matrisinin girdilerinin

ai, bi, ci bilinmeyenlerini içerdiğini, dolayısıyla (3.24) sisteminin doğrusal olmadığını ha-

tırlatalım. Toplam sayısı 3N+3 olan bilinmeyenleri bulmak için aynı sayıda denklem ge-

rektiğinden, geriye kalan 3 denklem başlangıç koşullarından oluşturulacaktır. Bu amaçla,

daha önce başlangıç koşullarını ifade etmek üzere (3.12) ile gösterdiğimiz 3 adet denklemi

(3.24) sisteminin sonuna eklemek gerekir.

TN(0) = a0L0(0) + a1L1(0) + . . .+ aNLN(0) = T0

IN(0) = b0L0(0) + b1L1(0) + . . .+ bNLN(0) = 0

VN(0) = c0L0(0) + c1L1(0) + . . .+ cNLN(0) = V0

şeklinde ifade ettiğimiz bu üç denklemde bilinmeyenlerle çarpım durumunda olan

L0(0), L1(0), . . . , LN(0)

katsayılarının aynı olduğu dikkat çekmektedir. Bu sistemi bir matris çarpımı olarak ifade

etmek için, daha önce (3.14) ile gösterdiğimiz

X(t)D = [ L0(t) L1(t) L2(t) . . . LN(t) ]

satır matrisinden yararlanabiliriz. Bunu yapmanın en kolay yolu, Kronecker tensör çarpı-

mını kullanmaktır. (N+1)×(N+1) boyutundaki birim matris IN+1 ile gösterilmek üzere,

IN+1 ile yukarıdaki X(t) sembolik yardımcı matrisinin Kronecker çarpımı

IN+1 ⊗X(t) =


X(t) 0 . . . 0

0 X(t) . . . 0
...

... . . . ...

0 0 . . . X(t)


(N+1)×(N+1)2

olarak tanımlanır. Böylece, başlangıç koşullarına karşılık gelen (3.14) denklemleri

(
I3 ⊗ [X(0)D]

)
M =


X(0)D 0 0

0 X(0)D 0

0 0 X(0)D

M =


T0

0

V0

 (3.25)

biçiminde matris çarpımı olarak ifade edilebilir. Şimdi, problemin kollokasyon noktala-

rında sağlanmasından elde edilen 3N × (3N +3)’lük (3.24) sistemi ile başlangıç koşulla-

rından elde edilen 3×(3N+3)’lük (3.25) sistemini birleştirebiliriz. Bu iş için, sistemlerin
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katsayı matrislerini ve sağ taraflarındaki sütun matrisleri alt alta yazmak yeterlidir. Böy-

lece,

 W

I3 ⊗ [X(0)D]

M =


F

T0

0

V0


şeklinde (3N + 3) × (3N + 3) boyutunda doğrusal olmayan tek bir cebirsel sistem elde

edilir. Bunu da kısaca

W̃M = F̃

ile gösterelim. Bu doğrusal olmayan sistemin çözülmesiyle i = 0, 1, . . . , N için ai, bi, ci

bilinmeyenleri ve dolayısıyla

TN(t) = a0L0(t) + a1L1(t) + . . . , aNLN(t)

IN(t) = b0L0(t) + b1L1(t) + . . . , bNIN(t)

VN(t) = c0L0(t) + c1L1(t) + . . . , cNVN(t)

yaklaşık çözümleri elde edilir. Bu yaklaşık çözümler başlangıç koşullarını gerçekler ve

(1.2) diferansiyel denklem sistemini kollokasyon noktalarında sağlar.

3.5. Gecikmeli Model İçin Lucas Kollokasyon Yöntemi

Virüsün sağlıklı T4 hücresine girdikten sonra kendisini çoğaltma yeterliliğini elde et-

mesine kadar geçen tutulma süresinin dikkate alındığı (1.5) modelini hatırlayalım:

dT (t)

dt
= s− µTT (t) + rT (t)

(
1− T (t) + I(t)

Tmax

)
− k1V (t)T (t),

dI(t)

dt
= k2V (t− τ)T (t− τ)− µII(t),

dV (t)

dt
= NvµbI(t)− k1V (t)T (t)− µV V (t),

T (θ) = T0, I(0) = 0, V (θ) = V0, θ ∈ [−τ , 0].

Lucas kollokasyon yönteminin bu modele uygulanışı bir önceki kısımda ele alınan gecik-

mesiz modele uygulanışı ile hemen hemen aynıdır. O problemde olduğu gibi gecikmeli
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modelde de yaklaşık çözüm polinomları belli bir N parametresi için yine

TN(t) =
N∑
k=0

akLk(t) = (a0L0 + a1L1 + . . . , aNLN)(t)

IN(t) =
N∑
k=0

bkLk(t) = (b0L0 + b1L1 + . . . , bNIN)(t)

VN(t) =
N∑
k=0

ckLk(t) = (c0L0 + c1L1 + . . . , cNVN)(t)

biçiminde N ’inci dereceye kadar olan bütün Lucas polinomlarının doğrusal kombinas-

yonu olarak bulunacaktır. Dikkat edilmesi gereken başlıca nokta, enfekte T4 hücrelerine

karşılık gelen denklemdeki gecikme teriminden dolayı, bu yaklaşık çözümlere kollokas-

yon noktalarının dayatılmasıyla elde edilen cebirsel denklemlerde IN ’ye karşılık gelen-

lerde VN ’nin ve TN ’nin argümanlarının ti kollokasyon noktalarının değil, ti−τ biçiminde

olmalarıdır. Böylece, bu cebirsel denklemler i = 1, 2, . . . , N için

dTN
dt

(ti) = s− µTTN(ti) + rTN(ti)

(
1− TN(ti) + IN(ti)

Tmax

)
− k1VN(ti)TN(ti),

dIN
dt

(ti) = k2VN(ti − τ)TN(ti − τ)− µIIN(ti),

dVN
dt

(ti) = NvµbIN(ti)− k1VN(ti)TN(ti)− µV VN(ti).

(3.26)

cebirsel denklemleri elde edilecektir. Ayrıca 0 ≤ t ≤ τ için sistemin davranışı −τ ≤ t ≤

0 aralığınının tamamı boyunca davranışının bilgisini gerektirdiğinden, başlangış koşulla-

rının yalnızca t = 0 anında değil [−τ , 0] aralığının tamamı boyunca verildiğini hatırlaya-

lım. Öte yandan N ’inci dereceden bir polinom bir aralık boyunca sabit bir değere sahip

olamaz. Bu sebeple, başlangıç koşulları basitçe TN(0) = T0, IN(0) = 0, VN(0) = V0

olarak kabul edilecektir. Böylece, başlangıç koşullarına karşılık gelen denklemler, gecik-

mesiz modelde olduğu gibi

TN(0) = a0L0(0) + a1L1(0) + . . .+ aNLN(0) = T0

IN(0) = b0L0(0) + b1L1(0) + . . .+ bNLN(0) = 0

VN(0) = c0L0(0) + c1L1(0) + . . .+ cNLN(0) = V0

şeklinde olacaktır. Bu üç denklemin (3.26) ile verilen 3N adet denkleme eklenmesiyle

elde edilen 3N + 3 denklemlik sistemin çözülmesiyle ai, bi, ci bilinmeyenleri ve dolayı-

sıyla yaklaşık çözümler elde edilecektir.
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3.6. Sonuçların Değerlendirilmesinde İzlenecek Yöntem

Bu bölümde, yaklaşık çözümler elde edildikten sonra bu çözümlerin isabet oranının

ölçülmesi sırasında nasıl bir yol izleneceği tartışılacaktır. Bu tez boyunca ele alınacak

problemlerin çözümleri MATLAB programlama dili kullanılarak yapılacaktır. Bu iş için,

MATLAB programlama dilindeki gömülü yordamlardan biri olan fsolve komutu kulla-

nılacaktır. Bu komut, seçilen belli bir N değerine karşılık gelen doğrusal olmayan sistemi

bir vektörel fonksiyon içeren ayrı bir dosya olarak kabul eder ve sistemi istenen hassa-

siyetle çözer. Bizim problemimizde, (3.15) yaklaşık çözümlerinin kollokasyon noktala-

rında denklem sistemini sağlaması koşulunun ortaya çıkardığı (3.11) ile verilen doğrusal

olmayan cebirsel denklemleri ve başlangıç koşullarına karşılık gelen (3.12) denklemlerini

içeren bir MATLAB dosyası oluşturulmuştur. Ardından, fsolve komutunun uygun bir

başlangıç tahminiyle bu MATLAB dosyası üzerinde çalıştırılmasıyla ai, bi, ci katsayıları

ve dolayısıyla TN , IN , VN yaklaşık çözümleri elde edilmiştir. Burada dikkat edilmesi gere-

ken bir nokta, oluşan 3N+3 bilinmeyenli cebirsel denklem sisteminin doğrusal olmaması

sebebiyle birden fazla çözüme sahip olabileceği hususudur. Eğer sistemin bütün çözüm-

leri bulunmak isteniyorsa, oluşturulan MATLAB dosyasına fsolve yerine vpasolve

komutu uygulanabilir.

Herhangi bir problemin herhangi bir sayısal yöntemle elde edilen çözümlerinin ne ka-

dar isabetli olduğunu ölçmeye yarayan en doğrudan yöntem, p tam çözümü p∗ yaklaşık

çözümü göstermek üzere, |p − p∗| ile hesaplanan mutlak hatadır. Öte yandan bu tezin

konusunu oluşturan HIV ile enfekte olma probleminin tam çözümü bilinmemektedir. Bu

durumda elde ettiğimiz yaklaşık çözümlerin gerçek çözüme ne kadar yakın olduğunu an-

lamak için bunları orijinal problemde bilinmeyen fonksiyonların yerine yazdığımızda ge-

riye kalan ifadelerin büyüklüğünü göz önüne alacağız. Daha açık bir ifadeyle, TN , IN , VN

elde ettiğimiz yaklaşık çözümler olmak üzere,

R[TN ](t) =
dTN
dt

(t)− s+ µTTN(t)− rTN(t)
(
1− TN(t) + IN(t)

Tmax

)
+ k1VN(t)TN(t),

R[IN ](t) =
dIN
dt

(t)− k2VN(t)TN(t) + µIIN(t),

R[VN ](t) =
dVN
dt

(t)−NvµbIN(t) + k1VN(t)TN(t) + µV VN(t)

ifadelerini inceleyeceğiz. Buradaki R[TN ](t), R[IN ](t) ve R[VN ](t) fonksiyonlarına, sıra-
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sıyla TN , IN ve VN fonksiyonlarına ilişkin “rezidüel (fonksiyon)" denir. Böylece, belli bir

N değeri için elde ettiğimiz TN , IN , VN yaklaşık çözümlerinin isabet oranını değerlendir-

mek için bu rezidüellerin mutlak değerleri olan |R[TN ](t)|, |R[IN ](t)|, |R[VN ](t)| fonk-

siyonlarının büyüklüğüne bakacağız. Problemin tam çözümlerinin mutlak rezidülleri 0’a

eşit olacağından, belli bir yaklaşık çözümün mutlak rezidüeli ne kadar küçük ise o yak-

laşık çözümün o kadar isabetli olacağını varsayacağız. Ayrıca, N parametresinin değerini

yükselttikçe artan hesap süresine karşılık olarak bu yeni değere karşılık gelen yaklaşık

çözümlerin daha isabetli olmasını beklemek gerekir. Bu durumu daha açık bir şekilde gö-

rebilmek için farklı N değerleriyle elde edilen yaklaşık çözümlerin mutlak rezidüellerini

aynı grafikte çizecek ve daha büyük N değerlerine karşılık gelen mutlak rezidüellerin

daha küçük olup olmadığını kontrol edeceğiz.

(1.4) probleminin tam çözümü bilinmemekle beraber, elde edeceğimiz yaklaşık çö-

zümleri mutlak rezidüellerine bakmanın yanı sıra belli bir referans noktası ile karşılaştır-

mak da faydalı olacaktır. Bu iş için MATLAB programlama dilindeki gömülü ode45 ko-

mutunu kullanacağız. Bu komut, herhangi bir adi diferansiyel denklem sistemini Runge-

Kutta-Fehlberg yöntemini kullanarak istenen aralıkta çözer. Sonuç olarak, ode45 komu-

tuyla bulunan yaklaşık çözümler sırasıyla TRK(t), IRK(t), VRK(t) ile gösterilmek üzere,

bu yaklaşık çözümlere kıyasla yapılan

eRK [TN(t)] := |TN(t)− TRK(t)|, eRK [IN(t)] := |IN(t)− IRK(t)|,

eRK [VN(t)] := |VN(t)− VRK(t)|

yaklaşık hataların değeri de bize yaklaşık çözümlerin isabet oranı hakkında fikir verecek-

tir. Söz konusu karşılaştırma işi, Runge-Kutta-Fehlberg çözümleri ile farklıN değerleriyle

elde edilen yaklaşık çözümlerin her birinin belli t anlarındaki değerlerinin farklı sütunlara

yazıldığı tablolar yardımıyla yapılacaktır.
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4. BULGULAR VE TARTIŞMA

Bu bölüm, Perelson’un orijinal (1.4) modeli ile bu problemin gecikmeli versiyonu

olan (1.5) modeline ilişkin olarak elde ettiğimiz uygulama sonuçlarının incelenmesine

ayrılmıştır. Bu yapılırken Perelson vd. (1993) ve Culshaw ve Ruan (2000) çalışmalarında

kullanılan iki ayrı parametre seti baz alınacaktır.

4.1. Gecikmesiz Modele İlişkin Uygulama Sonuçları

Bu alt bölümde T4 hücrelerinin HIV ile enfekte olmasına ilişkin (1.4) problemi iki

farklı parametre seti kullanılmasıyla elde edilen yaklaşık çözümler incelenecektir.

Örnek 4.1. Bu örnekte şu parametre değerleri kullanılacaktır: s = 10 gün−1mm−3, µT =

0.02 gün−1, r = 0.03 gün−1, Tmax = 1500 mm−3, k1 = 2.4 × 10−5mm3gün−1, k2 =

2 × 10−5mm3gün−1, µI = 0.26 gün−1, Nv = 1000, µb = 0.24 gün−1, µV = 2.4 gün−1.

Böylece, problem aşağıdaki gibi olur:

dT

dt
= 10− 0.02T + 0.03T

(
1− T + I

1500

)
− 0.000024V T,

dI

dt
= 0.00002V T − 0.26I,

dV

dt
= 1000· (0.24)I − 0.000024V T − 2.4V,

T (0) = 1000, I(0) = 0, V (0) = 0.001.

(4.1)

Bu parametre setinde dikkat edilmesi gereken bir nokta zaman birimi olarak gün se-

çilmiş olmasıdır. Problem (4.1)’in Lucas kollokasyon yöntemiyle çözülmesinde zaman

aralığını t = 0 ile t = 1500 günleri arası olarak belirleyeceğiz. Böylece, yöntemin uy-

gulanışındaki Tson parametresi Tson = 1500 olarak belirlenmiştir. Yöntem N = 2’den

N = 10’a kadar bütün N değerleri için uygulanmıştır. Örneğin N = 2 için elde edilen

doğrusal olmayan denklem sistemi aşağıdaki gibidir:

0.02a0 + 5.5a1 + 4125.02a2 − 0.00008a20 − 0.06a0a1 − 45.00016a0a2 − 16875.06a1a2 − 11.25a21

−6328170a22 − 0.00008a0b0 − 0.03a0b1 − 22.50000008a0b2 − 0.03a1b0 − 11.25a1b1 − 8437.53a1b2

−22.500008a2b0 − 8437.53a2b1 − 6328170a2b2 − 0.000096a0c0 − 0.036a0c1 − 27.00009a0c2 − 0.036a1c0

−13.5a1c1 − 10125.03a1c2 − 27.00009a2c0 − 10125.03a2c1 − 7593804a2c2 = −10
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−0.52b0 − 197b1 − 147750.5b2 + 0.00008a0c0 + 0.03a0c1 + 22.50008a0c2 + 0.03a1c0 + 11.25a1c1

+8437.53a1c2 + 22.50008a2c0 + 8437.53a2c1 + 6328170a2c2 = 0

480b0 + 180000b1 + 135000480b2 − 4.8c0 − 1802c1 − 1351504c2 − 0.000096a0c0 − 0.036a0c1

−27.000096a0c2 − 0.036a1c0 − 13.5a1c1 − 10125.03a1c2 − 27.00009a2c0 − 10125.03a2c1 − 7593804a2c2 = 0

0.02a0 + 13a1 + 19500.02a2 − 0.00008a20 − 0.12a0a1 − 180.0001a0a2 − 135000.1a1a2 − 45a21

−101250180a22 − 0.00008a0b0 − 06a0b1 − 90.00008a0b2 − 0.06a1b0 − 45a1b1 − 67500.06a1b2

−90.00008a2b0 − 67500.06a2b1 − 101250180a2b2 − 0.000096a0c0 − 0.072a0c1 − 108a0c2 − 0.072a1c0

−54a1c1 − 81000.07a1c2 − 108a2c0 − 810000.07a2c1 − 121500216a2c2 = −10

−0.52b0 − 392b1 − 588000.5b2 + 0.00008a0c0 + 0.06a0c1 + 90.00008a0c2 + 0.06a1c0 + 45a1c1

+67500.06a1c2 + 90.00008a2c0 + 67500.06a2c1 + 101250180a2c2 = 0

480b0 + 360000b1 + 540000480b2 − 4.8c0 − 3602c1 − 5403004c2 − 0.000096a0c0 − 0.072a0c1

−108a0c2 − 0.072a1c0 − 54a1c1 − 81000.07a1c2 − 108a2c0 − 81000.07a2c1 − 121500216a2c2 = 0

2a0 + 2a2 = 1000

2b1 + 2b3 = 0

2c1 + 2c3 = 0.001

Denklemlerin yazılmasında 7 anlamlı figür kullanılmıştır. İlk 3 denklem t1 = 750 kol-

lokasyon noktasına, ikinci 3 denklem t2 = 1500 kollokasyon noktasına, son 3 denklem

ise başlangıç koşullarına karşılık gelmektedir. Bu doğrusal olmayan denklem sisteminin

çözülmesiyle, bilinmeyen katsayılar

a0 = 499.9987, a1 = −2.317731, a2 = 0.001286996, b0 = 0.00005212386, b1 = 0.0935302,

b2 = −0.00005212386, c0 = 0.005706582, c1 = 9.342034, c2 = −0.005206582

olarak bulunur. Bu katsayılar kullanılarak, N = 2 seçimine karşılık gelen yaklaşık çö-
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Şekil 4.1. Örnek (4.1) için (a) N = 3, (b) N = 5, (c) N = 8, (d) N = 10 değerlerine

karşılık gelen sağlıklı hücre popülasyonu TN ’nin ilk 1500 gün için grafikleri

zümler
T2(t) = a0L0(t) + a1L1(t) + a2L2(t)

= 0.001286996t2 − 2.317731t+ 1000,

I2(t) = b0L0(t) + b1L1(t) + b2L2(t)

= −0.00005212386t2 + 0.09353022t,

V2(t) = c0L0(t) + c1L1(t) + c2L2(t)

= −0.005206582t2 + 9.342034t+ 0.001

olarak elde edilir. Aynı işlemleri 10’a kadar olan diğerN değerleri için de gerçekleştirdik.

Sonuçta elde edilen yaklaşık çözümlerin bazı N değerleri için grafikleri Şekil 4.1., 4.2.

ve 4.3.’te gösterilmiştir.

Şekil 4.4.’te ilk 50 gün için sağlıklı ve enfekte hücre ile serbest virüs popülasyonları

birlikte gösterilmiştir. Beklendiği gibi serbest virüsle birlikte enfekte hücre popülasyonu

da artmakta, sağlıklı hücre popülasyonu ise azalmaktadır. Belli bir noktadan sonra bu

durumu grafik üzerinde gözlemlemek zorlaştığı için ilk 50 günden sonrasına yer verilme-

miştir.

Elde ettiğimiz çözümlerin gerçeğe ne kadar uygun olduğunu ölçmek için Bölüm 3.6.’da
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Şekil 4.2. Örnek (4.1) için (a) N = 3, (b) N = 5, (c) N = 8, (d) N = 10 değerlerine

karşılık gelen enfekte hücre popülasyonu IN ’nin ilk 1500 gün için grafikleri

Şekil 4.3. Örnek (4.1) için (a) N = 3, (b) N = 5, (c) N = 8, (d) N = 10 değerlerine

karşılık gelen serbest virüs popülasyonu VN ’nin ilk 1500 gün için grafikleri
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Şekil 4.4. Örnek (4.1) için sağlıklı, enfekte hücre yoğunlukları ve serbest virüs popülas-

yonunun ilk 50 gün için birlikte grafikleri

tanımladığımız R[TN ], R[IN ] ve R[VN ] rezidüellerinden yararlanacağız. Bunlar farklı N

değerleriyle elde ettiğimiz TN ,IN ve VN yaklaşık çözümlerinin sistem (1.4)’te yazılma-

sıyla elde edilen fonksiyonlardır. Dolayısıyla bu rezidüellerin mutlak değerleri ne kadar

küçük olursa karşılık gelen yaklaşık çözümler o kadar isabetli kabul edilecektir. Şekil

4.5., 4.6. ve 4.7.’de söz konusu mutlak rezidüellerin grafikleri N = 3, 5, 8, 10 değerleri

için görülmektedir. Genel olarak N değeri arttıkça (Serbest virüs popülasyonuna karşı-

lık gelen rezidüellerin N = 8’den N = 10’a çıkarken sergilediği davranış hariç) mutlak

rezidüel değerlerinin sıfıra yaklaştığı görülmektedir. Aynı durum, söz konusu değerlerin

listelendiği Çizelge 4.1., 4.2. ve 4.3.’ten de anlaşılmaktadır. Çizelgeler yorumlanırken,

seçilen t değerinin belli bir N için kollokasyon noktasına denk gelmesi durumunda, o N

değerine karşılık gelen mutlak rezidüel değerinin daha büyük N değerlerlerine karşılık

gelene kıyasla daha küçük olmasının kollokasyon yönteminin doğasından kaynaklandığı

göz önünde bulundurulmalıdır. Örneğin, t = 500 değeri N = 3 için bir kollokasyon nok-

tası olduğundan, |R[T3](500)| değeri, çizelgede bu değerin sağında kalan |R[T5](500)|,

|R[T8](500)| ve |R[T10](500)| değerlerine göre daha küçük olmaktadır. Aynı zamanda şe-

killerde de göze çarpan bu durum, genel olarak daha büyük N değerlerine daha küçük

mutlak rezidüel değerlerinin karşılık geldiği gerçeğini değiştirmemektedir. Dolayısıyla,

N değerini arttırdıkça bulunan yaklaşık çözümlerin daha isabetli olduğu anlaşılmaktadır.

Bulduğumuz yaklaşık çözümlerin gerçeğe uygunluğunu ölçmenin bu çözümlerin mut-

lak rezidüellerini göz önüne almaktan başka yöntemleri de vardır. Bu yöntemlerden biri,
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Şekil 4.5. Örnek (4.1) için N = 3, 5, 8, 10 değerlerine karşılık gelen yaklaşık sağlıklı

hücre popülasyonu TN ’nin ilk 1500 gün için mutlak rezidüelleri

Şekil 4.6. Örnek (4.1) için N = 3, 5, 8, 10 değerlerine karşılık gelen yaklaşık enfekte

hücre popülasyonu IN ’nin ilk 1500 gün için mutlak rezidüelleri

Şekil 4.7. Örnek (4.1) içinN = 3, 5, 8, 10 değerlerine karşılık gelen yaklaşık serbest virüs

popülasyonu VN ’nin ilk 1500 gün için mutlak rezidüelleri
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Çizelge 4.1. Örnek 4.1 için çeşitli N değerleriyle bulunmuş sağlıklı T4 hücresi popülas-

yonunun |R[TN ](t)| mutlak rezidüelinin bazı t günleri için değerleri

t N = 3 N = 5 N = 8 N = 10

0 2.4× 10−5 2.4× 10−5 2.401× 10−5 2.401× 10−5

250 7.5× 10−6 1.109× 10−6 3.86× 10−7 1.46× 10−7

500 8.834× 10−10 4.63× 10−7 4.924× 10−8 1.102× 10−8

750 1.501× 10−6 2.794× 10−7 3.229× 10−8 6.485× 10−8

1000 8.95× 10−10 2.24× 10−7 1.081× 10−7 1.546× 10−7

1250 1.499× 10−6 2.563× 10−7 3.981× 10−7 1.646× 10−7

1500 1.018× 10−9 8.486× 10−8 6.005× 10−7 1.642× 10−7

Çizelge 4.2. Örnek 4.1 için çeşitli N değerleriyle bulunmuş enfekte T4 hücresi popülas-

yonunun |R[IN ](t)| mutlak rezidüelinin bazı t günleri için değerleri

t N = 3 N = 5 N = 8 N = 10

0 2× 10−5 2× 10−5 2× 10−5 2× 10−5

250 6.25× 10−6 9.261× 10−7 3.18× 10−7 1.158× 10−7

500 9.087× 10−11 3.845× 10−7 4.281× 10−8 1.314× 10−8

750 1.25× 10−6 2.34× 10−7 1.229× 10−9 2.189× 10−9

1000 9.087× 10−11 1.924× 10−7 2.325× 10−8 3.286× 10−9

1250 1.25× 10−6 1.849× 10−7 6.212× 10−8 2.054× 10−8

1500 9.087× 10−11 3.579× 10−10 1.229× 10−9 2.189× 10−9

Çizelge 4.3. Örnek 4.1 için çeşitliN değerleriyle bulunmuş serbest virüs popülasyonunun

|R[VN ](t)| mutlak rezidüelinin bazı t günleri için değerleri

t N = 3 N = 5 N = 8 N = 10

0 2.42× 10−3 2.416× 10−3 2.409× 10−3 2.404× 10−3

250 7.589× 10−4 1.192× 10−4 2.341× 10−5 6.009× 10−6

500 3.668× 10−6 3.864× 10−5 1.978× 10−5 1.825× 10−5

750 1.474× 10−4 3.584× 10−5 1.451× 10−5 1.956× 10−5

1000 3.668× 10−6 1.551× 10−5 1.188× 10−5 2.021× 10−5

1250 1.547× 10−4 2.993× 10−5 2.21× 10−5 2.226× 10−5

1500 3.668× 10−6 7.616× 10−6 1.451× 10−5 1.956× 10−5
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Şekil 4.8. Örnek (4.1) için Runge-Kutta 4 yöntemiyle bulunan sağlıklı hücre popülasyo-

nunun ilk bir yıl için grafiği

Şekil 4.9. Örnek (4.1) için Runge-Kutta 4 yöntemiyle bulunan enfekte hücre popülasyo-

nunun ilk bir yıl için grafiği

çözülmek istenen tipte problemler için güvenilir sonuçlar verdiği bilinen bir sayısal yön-

temden yararlanmaktır. Biz bu amaçla 4’üncü mertebeden Runge-Kutta(RK4) yöntemini

seçtik ve MATLAB’ın standart kütüphanesinde bulunan ode45 komutunu kullanarak sis-

tem (1.4)’i RK4 yöntemiyle ilk 1500 gün için çözdük. Elde edilen sonuçlar Şekil 4.8., 4.9.

ve 4.10.’da sunulmuştur. Yaklaşık 100’üncü günden itibaren sağlıklı ve enfekte hücre po-

pülasyonlarının sırasıyla 130 ve 35 değerlerinde sabitlendiği görülmektedir. Serbest virüs

popülasyonu ise aynı zamandan itibaren yaklaşık olarak 3500’de sabitlenmektedir.

RK4 yöntemiyle elde edilen TRK , IRK ve VRK çözümleri tam çözümler olmamakla

beraber, elde ettiğimiz yaklaşık çözümleri bunlarla karşılaştırmak N ’nin büyüyen değer-

leri için hatanın nasıl değiştiğiyle ilgili olarak bize fikir verebilir. Daha açık bir ifadeyle,
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Şekil 4.10. Örnek (4.1) için Runge-Kutta 4 yöntemiyle bulunan serbest virüs popülasyo-

nunun ilk bir yıl için grafiği

Çizelge 4.4. Örnek 4.1’de sağlıklı T4 hücresi popülasyonu için çeşitli N değerleriyle

bulunmuş TN yaklaşık çözümlerinin ve RK4 çözümünün bazı t günleri için değerleri

t N = 3 N = 5 N = 8 N = 10 RK4

300 157.56 15.095 183.78 133.48 130.167
600 −8.3358 198.22 99.416 152.31 130.169
900 138.43 104.02 145.29 127.07 130.168
1200 234.02 128.04 138.36 112.87 130.167
1500 −85.399 −9.6794 212.69 186.36 130.170

yaklaşık çözümlerle RK4 çözümleri arasındaki fark şeklinde tanımlanan

eRK [TN(t)] := |TN(t)− TRK(t)|, eRK [IN(t)] := |IN(t)− IRK(t)|,

eRK [VN(t)] := |VN(t)− VRK(t)|

yaklaşık hatalarına bakacağız. Bu hatalar, N = 3, 5, 8, 10 seçimleriyle elde edilmiş olan

yaklaşık çözümlerin ve RK4 çözümlerinin seçilmiş t günlerindeki değerlerinin birlikte

verildiği Çizelge 4.4., 4.5. ve 4.6.’ya bakılarak anlaşılabilir. Çizelgelerde sağa doğru gi-

dildikçe, yani N değeri büyüdükçe yaklaşık çözümlerin genel olarak RK4 çözümlerine

yaklaştığı görülüyor. Dolayısıyla, kollokasyon noktası sayısıN arttıkça, bulduğumuz yak-

laşık çözümlerin daha isabetli hale geldiği yorumu yapılabilir. Bu durum, bu yaklaşık

çözümlerin mutlak rezidüellerinden yola çıkarak vardığımız sonuçla uyumludur.

Ayrıca 4.1’de sağlıklı T4 hücrelerinin mutlak rezidüellerini yorumlarken bazı aralık-

larda küçük N değerleri için iyi sonuçların geldiğini görmekteyiz. Yine de, istenmesi

durumunda basit bir prosedüre başvurularak bütün zaman dilimlerinde en isabetli çözüm-
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Çizelge 4.5. Örnek 4.1’de enfekte T4 hücresi popülasyonu için çeşitli N değerleriyle

bulunmuş IN yaklaşık çözümlerinin ve RK4 çözümünün bazı t günleri için değerleri

t N = 3 N = 5 N = 8 N = 10 RK4

300 34.352 40.756 28.804 36.231 34.851
600 40.738 31.042 37.761 30.831 34.846
900 34.356 36.458 33.535 35.014 34.847
1200 30.408 34.830 33.787 38.070 34.848
1500 44.095 42.406 30.188 31.284 34.843

Çizelge 4.6. Örnek 4.1’de serbest virüs popülasyonu için çeşitli N değerleriyle bulunmuş

VN yaklaşık çözümlerinin ve RK4 çözümünün bazı t günleri için değerleri

t N = 3 N = 5 N = 8 N = 10 RK4

300 3431.8 4072.4 2872.7 3617.5 3478.19
600 4069.1 3098.6 3773.0 3077.6 3480.24
900 3430.9 3641.9 3348.3 3497.2 3479.66
1200 3036.4 2818.4 3130.8 3703.5 3478.44
1500 3197.3 3786.1 3321.7 3560.5 3482.63

ler birleştirilerek şimdiye kadar bulunan bütün yaklaşık çözümlerden daha isabetli olan

tek bir çözüm elde edilebilir. Bunu Şekil 4.5. üzerinden açıklayalım. Şekilde, yaklaşık ilk

600 gün boyunca hemen hemen her zaman T10 çözümünün rezidüelinin en iyi, yaklaşık

600 < t < 850 için hemen hemen her zaman T8 çözümünün yaklaşık 850 < t < 1250

için T5 çözümünün, 1250 < t < 1500 için de tekrar T10 çözümünün en iyi olduğu görül-

mektedir. Bu sebeple, T5, T8 ve T10 yaklaşık çözümlerinden

yT (t) =



T10(t), 0 ≤ t < 600

T8(t), 600 ≤ t < 850

T5(t), 850 ≤ t < 1250

T10(t), 1250 ≤ t ≤ 1500

şeklinde oluşturulan yT çözümü bu üç çözümden de daha isabetlidir. Benzer prosedür

enfekte hücre popülasyonu ve serbest virüs popülasyonu için bulunan yaklaşık çözümlere

de uygulanarak parçalı yI ve yV geliştirilmiş çözümleri elde edilebilir.

Örnek 4.2. Bir önceki örnekte RK4 yöntemiyle elde edilen yaklaşık çözümler, çözümle-

rin yaklaşık 100’üncü günden itibaren hemen hemen sabitlendiğini düşündürmektedir. Bu

sebeple, bu örnekte çözümleri bulacağımız aralığı ilk 1500 gün yerine yaklaşık olarak ilk
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bir yıla, yani ilk 360 güne kısıtlayacağız. Ayrıca, enfekte hücrelerin patlaması sonucu or-

tama saçılan virüs sayısını gösteren Nv parametresinin değerini 1000 yerine 500 alacağız.

Diğer parametre değerleri aynı kalacaktır. Böylece, problem aşağıdaki gibi olur:

dT

dt
= 10− 0.02T + 0.03T

(
1− T + I

1500

)
− 0.000024V T,

dI

dt
= 0.00002V T − 0.26I,

dV

dt
= 500· (0.24)I − 0.000024V T − 2.4V,

T (0) = 1000, I(0) = 0, V (0) = 0.001.

(4.2)

Bu problem de çeşitli N seçimleri ile çözülerek sağlıklı T4 hücreleri,enfekte T4 hüc-

releri ve serbest virüs popülasyonuna karşılık gelen yaklaşık çözümler elde edilmiştir.

Örneğin N = 3 seçimi ile elde edilen bilinmeyen katsayılar şu şekildedir:

a0 = 499.9285, a1 = −13.68112, a2 = 0.07147391, a3 = −0.0001115531,

b0 = 0.006057289, b1 = 0.9790768, b2 = −0.006057289, b3 = 0.00001038347,

c0 = 0.3027868, c1 = 48.85848 c2 = −0.3022868, c3 = 0.0005181590.

Böylece N = 3 seçimine karşılık gelen yaklaşık çözümler

T3(t) = a0L0(t) + a1L1(t) + a2L2(t) + a3(t)L3(t)

= −0.0001115531t3 + 0.07147391t2 − 13.68146t+ 1000,

I3(t) = b0L0(t) + b1L1(t) + b2L2(t) + b3L3(t)

= 0.00001038347t3 − 0.006057289t2 + 0.9791080t,

V3(t) = c0L0(t) + c1L1(t) + c2L2(t) + c3L3(t)

= 0.0005181590t3 − 0.3022868t2 + 48.86004t+ 0.001

olarak bulunur. İlk örnek problemde olduğu gibi N = 4, 5, 6, 7, 8, 9, 10 seçimleri için de

yaklaşık çözümler elde ettik. Seçilen bazı N değerleri için elde edilen yaklaşık çözümle-

rin grafikleri Şekil 4.11., 4.12. ve 4.13.’te gösterilmiştir. Bu yaklaşık çözümlerin isabetli-

liğini değerlendirmek için ilk örnek problemde olduğu gibi bu çözümlerin rezidüellerini

göz önüne alacağız. Bu rezidüellerin grafikleri Şekil 4.15., 4.16. ve 4.17.’de görülmekte-

dir. Bu örnekte de rezidüel değerlerinin N değeri arttıkça kayda değer düzeyde azaldığı

anlaşılmaktadır. Aynı mutlak rezidüel değerleri seçilmiş günler için Çizelge 4.7., 4.8. ve
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Şekil 4.11. Örnek (4.2) için (a) N = 3, (b) N = 5, (c) N = 7, (d) N = 10 değerlerine

karşılık gelen sağlıklı hücre popülasyonu TN ’nin ilk bir yıl için grafikleri

Şekil 4.12. Örnek (4.2) için (a) N = 3, (b) N = 5, (c) N = 7, (d) N = 10 değerlerine

karşılık gelen enfekte hücre popülasyonu IN ’nin ilk bir yıl için grafikleri
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Şekil 4.13. Örnek (4.2) için (a) N = 3, (b) N = 5, (c) N = 7, (d) N = 10 değerlerine

karşılık gelen serbest virüs popülasyonu VN ’nin ilk bir yıl için grafikleri

Şekil 4.14. Örnek (4.2) için sağlıklı, enfekte hücre yoğunlukları ve serbest virüs popülas-

yonunun ilk 50 gün için birlikte grafikleri
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Şekil 4.15. Örnek (4.2) için N = 3, 5, 7, 10 değerlerine karşılık gelen yaklaşık sağlıklı

hücre popülasyonu TN ’nin ilk bir yıl için mutlak rezidüelleri

Şekil 4.16. Örnek (4.2) için N = 3, 5, 7, 10 değerlerine karşılık gelen yaklaşık enfekte

hücre popülasyonu IN ’nin ilk bir yıl için mutlak rezidüelleri

4.9.’da listelenmiştir. N değeri arttıkça rezidüellerin küçüldüğü gözlemimiz çizelgeler ta-

rafından doğrulanmaktadır.

Şekil 4.14.’te ilk 50 gün için sağlıklı ve enfekte hücre ile serbest virüs popülasyonları

birlikte gösterilmiştir.

Bu örnek problemde de elde ettiğimiz yaklaşık çözümlerle karşılaştırmak amacıyla

dördüncü mertebeden Runge-Kutta(RK4) yöntemini sistem 4.2’ye uyguladık. Sonuçta

elde edilen yaklaşık çözümlerin grafikleri Şekil 4.18.,4.19. ve 4.20.’de görülmektedir.

Aşağı yukarı 100’üncü günden itibaren sağlıklı ve enfekte T4 hücre popülasyonlarının

sırasıyla 260 ve 35 dolaylarında seyrettiği anlaşılmaktadır. Serbest virüs popülasyonu ise

NV = 1000 durumuna göre yaklaşık yarıya inerek 1800 dolaylarında sabitlenmiştir.

RK4 yaklaşık çözümlerini, çeşitli N değerleri için TN , IN ve VN Lucas kollokasyon
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Şekil 4.17. Örnek (4.2) için N = 3, 5, 7, 10 değerlerine karşılık gelen yaklaşık serbest

virüs popülasyonu VN ’nin ilk bir yıl için mutlak rezidüelleri

Çizelge 4.7. Örnek 4.2 için çeşitli N değerleriyle bulunmuş sağlıklı T4 hücresi popülas-

yonunun |R[TN ](t)| mutlak rezidüelinin bazı t günleri için değerleri

t N = 3 N = 5 N = 7 N = 10

0 2.4× 10−5 2.401× 10−5 2.401× 10−5 2.402× 10−5

72 5.375× 10−6 4.982× 10−7 2.622× 10−7 2.349× 10−8

144 1.154× 10−6 1.61× 10−7 1.26× 10−8 5.027× 10−8

216 7.702× 10−7 7.535× 10−8 2.164× 10−7 2.826× 10−7

288 1.342× 10−6 3.174× 10−6 7.243× 10−7 3.723× 10−7

360 2.408× 10−9 5.334× 10−7 1.434× 10−6 3.949× 10−7

Çizelge 4.8. Örnek 4.2 için çeşitli N değerleriyle bulunmuş enfekte T4 hücresi popülas-

yonunun |R[IN ](t)| mutlak rezidüelinin bazı t günleri için değerleri

t N = 3 N = 5 N = 7 N = 10

0 2× 10−5 2× 10−5 2× 10−5 2× 10−5

72 4.48× 10−6 4.1× 10−7 2.098× 10−7 5.256× 10−9

144 9.602× 10−7 1.384× 10−7 2.22× 10−8 5.256× 10−9

216 6.402× 10−7 9.457× 10−8 9.908× 10−9 5.256× 10−9

288 1.12× 10−6 1.008× 10−7 4.878× 10−8 5.256× 10−9

360 2.15× 10−10 1.378× 10−9 2.937× 10−9 5.256× 10−9
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Çizelge 4.9. Örnek 4.2 için çeşitliN değerleriyle bulunmuş serbest virüs popülasyonunun

|R[VN ](t)| mutlak rezidüelinin bazı t günleri için değerleri

t N = 3 N = 5 N = 7 N = 10

0 2.42× 10−3 2.414× 10−3 2.409× 10−3 2.404× 10−3

72 5.45× 10−4 3.93× 10−5 1.023× 10−5 1.96× 10−5

144 1.123× 10−4 2.662× 10−5 1.223× 10−5 1.96× 10−5

216 7.366× 10−5 1.384× 10−6 1.607× 10−5 1.96× 10−5

288 1.39× 10−4 2.21× 10−5 2.073× 10−5 1.96× 10−5

360 3.67× 10−6 9.82× 10−6 1.453× 10−5 1.96× 10−5

Şekil 4.18. Örnek (4.2) için Runge-Kutta 4 yöntemiyle bulunan sağlıklı hücre popülasyo-

nunun ilk bir yıl için grafiği

Şekil 4.19. Örnek (4.2) için Runge-Kutta 4 yöntemiyle bulunan enfekte hücre popülasyo-

nunun ilk bir yıl için grafiği
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Şekil 4.20. Örnek (4.2) için Runge-Kutta 4 yöntemiyle bulunan serbest virüs popülasyo-

nunun ilk bir yıl için grafiği

Çizelge 4.10. Örnek 4.2’de sağlıklı T4 hücresi popülasyonu için çeşitli N değerleriyle

bulunmuş TN yaklaşık çözümlerinin ve RK4 çözümünün bazı t günleri için değerleri

t N = 3 N = 5 N = 7 N = 10 RK4

60 412.32 322.07 263.08 183.79 174.83
120 194.68 236.10 261.59 288.51 210.50
180 202.51 268.47 284.70 257.59 245.40
240 291.23 267.42 227.50 254.94 257.08
300 316.27 253.49 294.44 268.94 260.06
360 133.06 269.96 248.23 258.58 260.66

çözümleriyle karşılaştırarak bu yaklaşık çözümlerin isabetliliğiyle ilgili fikir sahibi olabi-

liriz. Böylece, ilk örnekte olduğu gibi, elde ettiğimiz yaklaşık çözümlerin çeşitli t anla-

rındaki değerlerini RK4 çözümlerinin değerleriyle bir arada görmek işe yarayabilir. Bu iş

Çizelge 4.10., 4.11. ve 4.12.’de yerine getirilmiştir.

4.2. Gecikmeli Modele İlişkin Uygulama Sonuçları

Örnek 4.3. Bu örnekte bir önceki kısmın ilk örneğindeki parametre değerleri kullanıla-

caktır. Gecikme parametresi τ = 5 alınacaktır. Böylece, problem aşağıdaki gibi olur:

dT

dt
= 10− 0.02T + 0.03T

(
1− T + I

1500

)
− 0.000024V T,

dI

dt
= 0.00002V (t− 5)T (t− 5)− 0.26I,

dV

dt
= 1000· (0.24)I − 0.000024V T − 2.4V,

T (0) = 1000, I(0) = 0, V (0) = 0.001.

(4.3)
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Çizelge 4.11. Örnek 4.2’de enfekte T4 hücresi popülasyonu için çeşitli N değerleriyle

bulunmuş IN yaklaşık çözümlerinin ve RK4 çözümünün bazı t günleri için değerleri

t N = 3 N = 5 N = 7 N = 10 RK4

60 39.183 60.981 54.193 56.787 11.198
120 48.210 31.271 30.051 41.609 36.484
180 40.539 29.860 38.143 26.144 38.315
240 29.627 42.339 34.380 45.662 36.792
300 28.930 32.182 36.123 29.985 35.933
360 51.905 52.045 41.485 32.231 35.603

Çizelge 4.12. Örnek 4.2’de serbest virüs popülasyonu için çeşitliN değerleriyle bulunmuş

VN yaklaşık çözümlerinin ve RK4 çözümünün bazı t günleri için değerleri

t N = 3 N = 5 N = 7 N = 10 RK4

60 1955.2 3037.0 2721.1 2878.3 578.80
120 2405.6 1567.8 1499.5 2056.9 1856.6
180 2022.6 1490.5 1893.9 1314.8 1921.0
240 1477.7 2105.7 1725.9 2269.8 1836.2
300 1442.4 1608.7 1789.9 1496.5 1792.7
360 2588.4 2581.9 1777.0 1608.1 1775.6

Daha önceki gecikmesiz modele ilişkin iki örnekte yaptığımız gibi, bu gecikmeli mo-

deli de N = 3, 4, 5, 6, 7, 8, 9, 10 seçimleri için de yaklaşık olarak çözdük. Seçilen bazı

N değerleri için elde edilen yaklaşık çözümlerin grafikleri Şekil 4.21., 4.22. ve 4.23.’te

gösterilmiştir. Sağlıklı hücre sayısı, gecikmesiz modelin aksine, N = 3 durumu hariç,

yaklaşık ilk 60 gün boyunca başlangıç değeri olan 1000’in üzerinde seyretmekte, aşağı

yukarı bu süre zarfında enfekte hücre ve serbest virüs popülasyonu negatif değerlere düş-

mektedir. Bu durumun 5 günlük tutulma süresinin etkisi olduğu değerlendirilebilir. Uzun

vadede ise bu tutulma süresinin etkisi kalmamakta, üç bilinmeyen fonksiyon da gecikme-

nin olmadığı Örnek 4.1’deki limit değerlerine yaklaşmaktadırlar.

Gecikmesiz modele ilişkin örnek problemlerde olduğu gibi, elde edilen yaklaşık çö-

zümlerin isabetliliğini değerlendirmek amacıyla ilk olarak bu çözümlerin rezidüellerini

göz önüne alacağız. Bu rezidüellerin grafikleri Şekil 4.24., 4.25. ve 4.26.’da görülmekte-

dir. Bu örnekte de rezidüel değerlerinin N değeri arttıkça kayda değer düzeyde azaldığı

anlaşılmaktadır.

Bulduğumuz yaklaşık çözümlerin isabetliliğini değerlendirmek için alternatif yol ola-

rak yine bilgisayar tarafından hesaplanan bir nümerik çözüme başvuralım. Bu iş için,
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Şekil 4.21. Örnek (4.3) için (a) N = 3, (b) N = 5, (c) N = 7, (d) N = 9 değerlerine

karşılık gelen sağlıklı hücre popülasyonu TN ’nin ilk bir yıl için grafikleri

Şekil 4.22. Örnek (4.3) için (a) N = 3, (b) N = 5, (c) N = 7, (d) N = 9 değerlerine

karşılık gelen enfekte hücre popülasyonu IN ’nin ilk bir yıl için grafikleri
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Şekil 4.23. Örnek (4.3) için (a) N = 3, (b) N = 5, (c) N = 7, (d) N = 9 değerlerine

karşılık gelen serbest virüs popülasyonu VN ’nin ilk bir yıl için grafikleri

Şekil 4.24. Örnek (4.3) için N = 3, 5, 7, 9 değerlerine karşılık gelen yaklaşık sağlıklı

hücre popülasyonu TN ’nin ilk bir yıl için mutlak rezidüelleri
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Şekil 4.25. Örnek (4.3) için N = 3, 5, 7, 9 değerlerine karşılık gelen yaklaşık enfekte

hücre popülasyonu IN ’nin ilk bir yıl için mutlak rezidüelleri

Şekil 4.26. Örnek (4.3) içinN = 3, 5, 7, 9 değerlerine karşılık gelen yaklaşık serbest virüs

popülasyonu VN ’nin ilk bir yıl için mutlak rezidüelleri
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Şekil 4.27. Örnek (4.3) için Runge-Kutta (2,3) yöntemiyle bulunan sağlıklı hücre popü-

lasyonunun ilk bir yıl için grafiği

Runge-Kutta (RK) (2,3) yöntemine dayanan ve MATLAB’daki dde23 komutuyla çalış-

tırılan bir algoritmayla bulunmuş çözümler Şekil 4.27., 4.28., ve 4.29.’da sunulmuştur.

Gecikme teriminin etkisi söz konusu nümerik çözümlerde de kendini göstermektedir. Tu-

tulmanın olmaması dışında tamamen aynı parametre değerlerine sahip Örnek 4.1’de sağ-

lıklı hücre popülasyonu t = 0 anından itibaren büyük bir hızla düşmekte iken, bu kez

uzunca bir süre (yaklaşık 50 gün) sabit kalmaktadır. Benzer sabit kalma durumu enfekte

hücre ve serbest virüs popülasyonları için de gözlenmektedir; çünkü tutulma süresi bo-

yunca ortamdaki serbest virüs yoğunluğu azalmasına karşın enfekte hücrelerin sayısında

bir artış gözlenmez. Bizim bulduğumuz yaklaşık çözümler ise polinomlar olduğundan,

belli bir aralık boyunca hemen hemen sabit kalma davranışını gösterememekte ve aşağı

ya da yukarı yönlü hızlı bir değişim sergilemektedir. Elde ettiğimiz yaklaşık çözümlerle

RK (2,3) çözümlerinin seçilmiş t anları için aldıkları değerler Çizelge 4.13., 4.14. ve

4.15.’te bir araya getirilmiştir. Çizelgedeki değerlerden, N değeri arttıkça Lucas kollo-

kasyon çözümlerinin genel olarak RK (2,3) çözümlerine yaklaştığı görülmektedir.
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Şekil 4.28. Örnek (4.3) için Runge-Kutta (2,3) yöntemiyle bulunan enfekte hücre popü-

lasyonunun ilk bir yıl için grafiği

Şekil 4.29. Örnek (4.3) için Runge-Kutta (2,3) yöntemiyle bulunan serbest virüs popülas-

yonunun ilk bir yıl için grafiği
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Çizelge 4.13. Örnek 4.3’te sağlıklı T4 hücresi popülasyonu için çeşitli N değerleriyle

bulunmuş TN yaklaşık çözümlerinin ve RK (2,3) çözümünün bazı t günleri için değerleri

t N = 3 N = 5 N = 7 N = 9 RK (2,3)

60 500.01 594.61 525.88 567.14 681.91
120 222.46 96.024 82.937 61.745 191.37
180 107.82 67.937 147.98 171.69 142.00
240 96.568 195.92 126.89 102.70 130.30
300 129.18 110.46 130.91 132.64 129.28
360 146.14 210.04 126.09 137.00 129.89

Çizelge 4.14. Örnek 4.3’te enfekte T4 hücresi popülasyonu için çeşitli N değerleriyle

bulunmuş IN yaklaşık çözümlerinin ve RK (2,3) çözümünün bazı t günleri için değerleri

t N = 3 N = 5 N = 7 N = 9 RK (2,3)

60 39.096 44.249 60.704 64.856 47.07
120 49.211 49.962 46.003 40.470 27.76
180 42.612 36.040 26.574 32.256 30.54
240 31.569 29.026 42.247 36.783 33.63
300 28.350 37.841 28.046 36.009 34.77
360 45.224 28.502 31.388 34.536 34.86

Çizelge 4.15. Örnek 4.3’te serbest virüs popülasyonu için çeşitliN değerleriyle bulunmuş

VN yaklaşık çözümlerinin ve RK (2,3) çözümünün bazı t günleri için değerleri

t N = 3 N = 5 N = 7 N = 9 RK (2,3)

60 3889.4 4379.2 6016.0 6395.2 4269.2
120 4902.1 5003.3 4619.0 4091.3 2717.4
180 4254.0 3612.1 2657.4 3198.1 3044.5
240 3160.8 2888.1 4207.7 3688.6 3364.9
300 2838.3 3781.5 2813.8 3592.5 3478.7
360 4502.4 2834.1 3144.5 3445.5 3482.7
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5. SONUÇLAR

Bu çalışmada, ilk olarak Perelson (1989) tarafından ortaya atılan T4 hücrelerinin HIV

ile enfekte olmasına ilişkin doğrusal olmayan bir modelin iki farklı varyantının Lucas

kollokasyon yöntemiyle sayısal çözümlerinin bulunması konusu çalışılmıştır. Söz konusu

varyantlar, Culshaw ve Ruan (2000) tarafından orijinal modelin boyutunun bir düşürül-

düğü üç boyutlu bir sistemin ve yine aynı yazarlar tarafından virüsün tutulma süresinin

hesaba katılarak gecikmeli bir modelin ortaya atılmasıyla ortaya çıkmıştır. Bu tezde, ge-

cikmesiz sistem iki farklı parametre setiyle, gecikmeli sistem ise tek parametre setiyle

olmak üzere toplam üç adet örnek probleme Lucas kollokasyon yöntemi uygulanmıştır.

Birinci örnek problem için ilk 1500 günlük zaman aralığında yapılan uygulama so-

nuçlarına göre, N parametresini arttırmanın elde edilen çözümlerin mutlak rezidüellerini

belirgin bir şekilde küçülttüğü anlaşılmıştır. Bu durum, N arttıkça elde edilen çözümle-

rin daha isabetli hale geldiği şeklinde yorumlanabilir. Ayrıca, aynı problem 4’üncü mer-

tebeden bir yöntem olan Runge-Kutta 4 (RK4) yöntemiyle de çözülmüş, elde ettiğimiz

yaklaşık çözümlerin RK4 çözümlerine göre hatası da incelenmiştir. Rezidüllerde görü-

len durum bu karşılaştırma sonucunda da gerçekleşmiş, N parametresi arttıkça Lucas

kollokasyon çözümleri RK4 çözümlerine genel olarak yaklaşmıştır. Bu hataları daha da

küçültmek amacıyla problemin daha dar bir aralıkta çözülmesinin etkili olabileceği de-

ğerlendirilmiş, bu sebeple incelediğimiz ikinci örnekte Lucas kollokasyon yöntemi ilk bir

yıllık zaman aralığında uygulanmıştır. Bu örnekte ayrıca, enfekte bir hücrenin patlayarak

ölmesi sırasında ortama saçılan virüs sayısı olan Nv parametresi de yarıya düşürülmüş-

tür. Gerek rezidüeller gerekse RK4 çözümleriyle yapılan karşılaştırma, bu örnekte de N

parametresini arttrımanın çözümleri belirgin bir şekilde daha isabetli hale getirdiğini gös-

termiştir. Ayrıca, RK4 çözümleri problemin enfekte denge durumuna yakınsadığından,

denge durumuna yaklaşma davranışının Lucas kollokasyon çözümleri tarafından da N

arttıkça belli bir derecede sergilendiği düşünülebilir.

Gecikmeli modelde ise, temel olarak τ gecikme parametresinin etkisi gözlemlenmeye

çalışılmıştır. Bu kez, söz konusu gecikmeli sistem Runge-Kutta (2,3) yöntemine dayanan

bir sayısal yöntemle (DDE23) de çözülerek Lucas kollokasyon çözümleri için fazladan bir

kontrol ölçütü sağlanmıştır. Çalışılan parametre setinde, bir virüsün sağlıklı bir T4 hüc-
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resine girdikten sonra onu aktif bir şekilde enfekte etmesi için geçmesi gereken tutulma

süresi τ = 5 gün olarak alınmıştır. Bu kadarlık bir gecikme terimi, DDE23 çözümlerinin

gösterdiğine göre sistemin total davranışında kabaca 50 günlük bir gecikme oluşturmuş-

tur. Lucas kollokasyon çözümlerinde N = 3 durumu hariç benzer bir davranış gözlem-

lenmiştir. Bu durum Lucas kollokasyon yöntemininin gecikme teriminin etkisini belli bir

derecede yansıttığı biçiminde yorumlanabilir.

Bu tezde ele alınan Lucas kollokasyon yönteminin, T4 hücrelerinin HIV ile enfekte

olması modelinin uzun vadeli davranışını tam olarak yansıtamama şeklinde bir zayıflığı

olduğu yorumu yapılabilir. Bu zayıflık, ele alınan bazı örneklerde karşılaşıldığı gibi N

arttığı halde Lucas kollokasyon çözümlerinin iyileşmemesi şeklinde de kendini göstere-

bilir. Bu durum, Lucas kollokasyon çözümlerinin N ’inci dereceden bir polinom olması

ve dolayısıyla N ’nin artması sonucu oluşan yüksek dereceli polinomların sergileyebildiği

dalgalanma davranışından kaynaklanıyor olabilir. Bu sorunun üstesinden gelmek için,

kollokasyon yönteminin söz konusu probleme farklı fonksiyon tabanlarıyla uygulanması

yoluna gidilebilir.

Bunlara ek olarak, bu tezin tamamlandığı 2021 yılı şubat ayı itibarıyla tüm dünyayı bir

yıla yakın bir süredir etkisi altına almış bulunan COVID-19 pandemisinin, bulaşıcı has-

talıkların yayılımına ilişkin matematiksel modellerin ne kadar hayati bir önem taşıdığını

gösterdiğini belirtmek isteriz. Bu tezin problemi bir virüsün nüfus içindeki yayılımından

ziyade bireydeki gelişimiyle ilgili olmakla birlikte, bu iki problemin matematiksel olarak

benzer tipte modellere yol açtığı bir gerçektir. Bu durum, bu tezde ele alınan yöntemin

gerek COVID-19 gerekse diğer bulaşıcı hastalıklara ilişkin yayılma süreçlerinin anlaşıl-

masına katkı sağlayabilecek potansiyelde olduğunu düşündürmektedir.

Sonuç olarak, bu tezde elde edilen sonuçlar, çalışılan sayısal yöntemin, sadece ele

alınan problemde değil, benzer özellikteki diğer problemlerde de ümit verici sonuçlar

doğuracağını düşünmemiz için yeterli bir çıkış noktası sağlamaktadır. Bu bakımdan, bu

tez çalışmasının, sayısal yöntemlerle ilgili literatüre bir katkı sunduğu kanaatini taşıyoruz.
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Çetin M., Kocayiğit H. ve Sezer M. 2018. Lucas Collocation method to determination

spherical curves in Euclidean 3-Space. Communication in Mathematical Mode-

ling and Applications, 3(3): 44-58.

Dalgleish, A.G., Beverley, P.C.L., Clapham, P.R., Crawford, D.H., Greaves, M.F. ve We-

iss, R.A. 1984. The CD4(T4) antigen is an essential component of the receptor

for the AIDS retrovirus. Nature, 312: 763-767.

53



KAYNAKLAR A. KURT

De Boer, R.J. ve Perelson, A.S. 1998. Target cell limited and immune control models of

HIV infection: a comparison. J. Theor. Biol., 190(3): 201-214.

Fauci, A.S. 1988. The human immunodeficiency virus: infectivity and mechanisms of

pathogenesis. Science, 238: 800-802.

Fee, E. ve Brown, T.M. 2006. Michael S.Gottlieb and the Identification of AIDS. Am. J.

Public Health, 96(6): 982-983.

Fehlberg, E. 1969. Low-order classical Runge-Kutta formulas with step size control and

their application to some heat transfer problems. NASA Technical Report 315.
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