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OZET

CD4+T HUCRELERININ HIV ENFEKSIYONU MODELLERININ YAKLASIK
COZUMLERI ICIN LUCAS KOLLOKASYON YONTEMI

Ash KURT

Yiiksek Lisans Tezi, Matematik Anabilim Dah
Damsman: Doc.Dr. Suayip YUZBASI

Subat 2021; 56 sayfa

Bu tezde, insan bagisiklik sisteminde temel bir rol oynayan T4 hiicrelerinin HIV ile
enfekte olmasina iligkin {i¢ bilinmeyenli dogrusal olmayan iki modelin Lucas kollokas-
yon yontemiyle yaklasik olarak ¢oziilmesi problemi ele alinmistir. S6z konusu yontemin
uygulanigi, yaklagik ¢6ztimleri temsil eden polinomlarin derecesi olan /N dogal sayisina
ve problemin ele alinacagi zaman araligina karar verilmesiyle baslar. Belirlenen aralikta
esit aralikli olarak /V adet kollokasyon noktasi olusturulmasiyla isleme devam edilir. Ar-
dindan, ii¢ adet yaklasik ¢oziim polinomuna, bu kollokasyon noktalarinin her birinde di-
feransiyel denklem sistemini saglama kosulu dayatilir. Bu islem sonucunda elde edilen
3N adet dogrusal olmayan cebirsel denkleme ¢ = 0 aninda verilen baglangi¢ kosullarina
karsilik gelen denklemlerin de eklenmesiyle 3N + 3 bilinmeyenli 3V + 3 denklemden
olusan dogrusal olmayan bir cebirsel denklem sistemi elde edilir. Bu sistemin ¢oziilme-
siyle li¢ adet yaklasik ¢6ziim polinomunun katsayilar1 ve dolayisiyla soz konusu yaklasik
coziimler elde edilmis olur.

Elde edilen yaklagik ¢oziimlerin isabetliliginin degerlendirilmesinde iki adet dl¢iit kul-
lanilmugtar. 11k olarak bulunan yaklasik ¢oziimlerin denklemlerde yazilmasiyla olusan re-
zidiieller, farklt N degerleri i¢in incelenmis ve artan N degerleriyle birlikte bu rezidiiel-
lerin genel olarak azalma egiliminde oldugu gozlemlenmistir. Ikinci olarak, elde edilen
coziimler, giivenilir olduklar1 bilinen mevcut bir yontemden elde edilen sonuglarla kargi-

lastirllmistir. Bu karsilagtirmalarin sonuclarina gore, N parametresinin se¢iminin Lucas



kollokasyon ¢oziimlerinin isabetliligini nasil etkiledigiyle ilgili sonuglara varilmaya cali-

stlmistir.

ANAHTAR KELIMELER: Lineer olmayan diferansiyel denklem sistemleri, CD4+ T
hiicrelerinin HIV ile enfekte olmasi1 modeli, Lucas kollokasyon yontemi, Lucas polinom-

lar1, Sayisal ¢oziimler.
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ABSTRACT
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In this thesis, the problem of obtaining Lucas collocation solutions of two models on
the HIV infection of T4 cells, which are of central importance in the human immune sys-
tem, has been considered. The method in question begins by specifying the degree N of
the polynomials that represent the approximate solutions and the time interval over which
the problem will be considered. /V equidistant collocation points on the specified interval
are then formed. Next, the condition of satisfying the differential equation system at each
of the collocation points is imposed to the three approximate solution polynomials. With
the addition of the equations corresponding to the initial conditions at ¢ = 0 to the thus
obtained 3V nonlinear algebraic equations, a nonlinear system of 3N 4 3 equations with
three unknowns is obtained. Upon solving this system the coefficients of the three appro-
ximate solution polynomials, hence the approximate solutions themselves, are obtained.

Two criteria have been employed in evaluating the accuracy of the obtained approxi-
mate solutions. First, the residuals obtained upon substituting the computed approximate
solutions in the equations have been considered and it has been observed that these residu-
als have a general tendency to decrease with increasing N values. Secondly, the obtained
solutions have been compared with those resulting from an existing method which is
known to be reliable. According to the results of these comparisons, some remarks have
been made regarding the conclusions that may be drawn as to effect of the value of the

parameter /V on the accuracy of Lucas collocation solutions.
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GIRIS A. KURT

1. GIRIS

1970’1erin sonlarinda CD4 molekiiliiniin kesfedilmesi, insan bagisiklik sistemi ile il-
gili aragtirmalarin yoniinde ¢igir agic1 bir degisiklige sebep olmustur. Bu kesiften sonra
yapilan pek ¢ok arastirma, bu molekiiliin insan bagisiklik sisteminde gorev yapan cesitli
hiicre tiirlerinde bulundugunu ortaya ¢ikarmistir. Bu hiicrelerin 6nde gelenlerinden biri,
temel gorevi bir enfeksiyon durumunda bagisiklik sisteminin bazi diger bilesenlerine sin-
yal gondermek olan CD4" T yardimci hiicreleridir (Bu tez boyunca T4 hiicreleri olarak
amlacaktir). 1981 yilinda California Universitesi’nde arastirmaci olan Michael S. Gott-
lieb, zatiirrenin sebebi oldugu bilinen Prneumocystis carinii mikroorganizmasiyla enfekte
olmus bir hasta iizerinde yaptig1 testlerde, kandaki T4 hiicrelerinin yok denilecek kadar
azaldigini fark etmistir (Fee ve Brown 2006). Bu olay ve o yil icinde ¢esitli merkezlerde
gozlemlenen diger bazi olaylar, dogrudan T4 hiicrelerini hedef alan yeni bir mikroorga-
nizmanin kesfi ile sonuclanmustir. Bu organizmaya HIV (Ing. "Human Immonodeficiency
Virus") ad1 verilmis, hemen sonrasinda HIV’1n insan bagisiklik sistemine genel olarak
CD4 molekiilii, 6zelde T4 hiicreleri vasitasiyla giris yaptig1 kesfedilmistir (Dalgleish vd.
1984; Klatzman vd. 1984). Devaminda yapilan arastirmalar, viriisiin viicuda girisinden
belli bir siire sonra bagisiklik sisteminin zayif diistiigiinii, bu zayifligin T4 hiicrelerinin
belirgin diizeyde azalmasindan ileri geldigini ortaya ¢ikarmistir (Lane ve Fauci 1985; Fa-
uci 1988). Hastaligin AIDS (Ing. "Acquired Human Immunodeficiency Syndrome") olarak
bilinen bu agsamasi, bagisiklik sisteminin gorevini yerine getiremedigi ve bunun sonu-
cunda saglikli bireylerde kolay atlatilabilen hastaliklarin bile tehlikeli oldugu bir evredir.
Hastaligin farkli bireylerde benzer sekilde gelisen bu seyri, arkada yatan mekanizmalarin
matematiksel denklemlerle agiklanabilecegi diisiincesini uyandirmaktadir.

A.S. Perelson, 1989 yilinda yaptig1 bir calismada, T4 hiicrelerinin HIV ile enfekte ol-
masini matematiksel bir temelde agiklama iddiasinda olan bir model One siirmiistiir (Pe-
relson 1989). Bu calismada, T4 hiicrelerinin HIV ile enfekte olma mekanizmasi dnce ¢cok
sayida denklem iceren karmagik bir sistem araciligiyla, daha sonra ise basitlestirilmig bir
modelle aciklanmistir. Bu modelde, saglikli T4 hiicreleri, latent enfekte T4 hiicreleri, aktif
enfekte T4 hiicreleri ve ortamda serbest bulunan viriis olmak iizere dort ayr1 bilinmeyen

mevcuttur. Latent enfekte hiicreler, HIV ile enfekte olmus olmalarina ragmen heniiz viriis
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tiretmeye baslamamigken, aktif enfekte hiicreler kendilerini esleyerek viriisiin cogalma-

sina sebep olan hiicrelerdir. S6z konusu model su sekildedir:

dT T+T*+T*
o5 pupT +rT (t) (1 T ) -k VT,
dT*
=k VT — pup T — kT,
; :]gizf* (L.1)
i 2 Hyd s
av
% = v,LLbT** — kl‘/T — :U’VV

Bu sistemde, 7', T ve T** sirasiyla kanda bulunan saglikli, latent enfekte ve aktif enfekte
T4 hiicrelerine ait yogunlugu, V' ise ortamda serbest halde bulunan viriis (HIV) yogunlu-
gunu gostermektedir. Latent enfekte olan T4 hiicreleri, yasam dongiisiiniin herhangi bir
aninda viriisii tamy1p kendini eslemeye baslarsa viriisiin de ¢ogalmasina yol acarak ak-
tif enfekte T4 hiicresine dontismekte, aksi takdirde dogal yoldan omriinii tamamlayarak
kendisine baglanan viriisiin de yok olmasina sebep olmaktadir. Boylece, latent enfekte T4

hiicrelerine iligkin olan
dT**

dt

denkleminin sistemin uzun vadeli davranisina dogrudan bir etkisinin olmadig1 goriiliir.

— kQT* o MbT**

Bu diisiinceyle, ¢esitli calismalarda (Kirschner ve Webb 1996; Perelson ve Nelson 1999)
latent enfekte ile aktif enfekte hiicre yogunluklarina iligkin denklemler bir arada deger-

lendirilmis ve

T T+ 1
a;—t:S—MTT+7’T<1— i )—leT,
dl
v — 1 (1.2)
dt 2 Hrt,
av
E = Nvﬂb]— — kl‘/T — ,UVV

ile verilen ii¢ boyutlu model calisilmistir. Bu yeni modelde, enfekte olmus T4 hiicre yo-
gunlugu [ ile gosterilmektedir. Modeldeki parametrelerin agiklamasi su sekildedir: s ke-
mik iligi ve timus bezi araciligiyla iiretilip kana birakilan T4 hiicresi kaynagini1 goster-
mektedir ve sabit olarak alinmigtir. Hastaligin ilerleyen asamalarinda T4 hiicresine ait
iretim mekanizmasinin da etkilenebilecegi gbz oniinde bulundurularak bu kaynak terimi-
nin degisken olarak alindig1 ¢alismalar mevcuttur (Kirschner ve Webb 1996). Saglikl T4
hiicrelerinin dogal yolla 6liim oran1 s, terimi ile, kendini yenileme orani 7 ile gosteril-

mektedir. Saglikli T4 hiicre yogunluguna iliskin denklemdeki lojistik terimin paydasinda

2
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bulunan 7}, terimi, kanda kararl olarak bulunabilecek toplam T4 hiicresi yogunlugunu,
bir baska deyisle kanin T4 hiicreleri i¢in tagima kapasitesini gostermektedir. Ortamda ser-
best olarak bulunan viriisiin saglikli T4 hiicrelerine baglanma orani £, ile ifade edilmekte,
bu baglanma sonucunda olusan enfekte T4 hiicrelerinin k- terimine karsilik gelen bir orani
aktif olarak enfekte olmaktadir. Daha acik bir ifadeyle enfekte olmus her k; tane T4 hiic-
resinin ortalama olarak ks tanesi, yasam dongiisii sona ermeden kendini hiicre boliinmesi
yoluyla egleyerek kendisine baglanmig olan viriisiin cogalmasina sebep olmaktadir. Tipik
olarak ko < k;’dir. Geri kalan enfekte T4 hiicreleri ise bu siireci baglatamadan omiir-
lerini tamamlamalar1 sebebiyle ortamdaki viriis yogunlugu iizerinde herhangi bir etkide
bulunmadiklarindan (1.2) sisteminde degerlendirmeye alinmamistir. Enfekte T4 hiicrele-
rinin herhangi bir sebeple 6liim orani ; ile, hiicre boliinmesi sonucunda biriken viriislerin
hiicre zarin1 patlatmasi sonucu 6liim orani ise i, ile gosterilmektedir. S6z konusu patlama
ile 6liimlerin her birinin sonucunda kana N, adet serbest viriis sacildig1 varsayilmaktadir.
Son olarak viriisiin 6liim oranm 1, ile gosterilmektedir. Dikkate deger bir nokta, viriisiin
hiicreye baglanmasi olaymin hem saglikli hiicre yogunlugunu hem de ortamdaki serbest
viriis yogunlugunu negatif olarak etkilemesidir. Bu durum, hem 7”ye hem de 1"’ ye iliskin
denklemdeki —k; VT terimi ile ifade edilmektedir.

(Perelson 1989) ve (Perelson vd. 1993) calismalarinda (1.2) sisteminin denge durum-
larini incelenmis, bunun sonucunda 6nemsiz (0,0, 0) durumunun diginda enfekte ve en-
fekte olmayan iki ayr1 denge durumu oldugunu saptanmistir. Enfekte olmayan denge du-

rumu,

Tmax Hr M 4s
Ty = 1- £ 1— ELy2
0 2 [ r + \/( r ) T nax

olmak iizere (T, I, V') = (Ty, 0, 0) ile verilmektedir. Bu sebeple (1.2) sisteminin baglangi¢
kosullar1 olarak

T(0) = Ty, 1(0) = 0,V (0) = V4 (1.3)

almak makuldiir. Burada V[, kanda baslangi¢ aninda tespit edilen serbest viriis yogunlu-
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gudur. Boylece, (1.2) sistemi (1.3) baslangi¢ kosullar ile birlikte

T T+1

‘fl—t:s—MTT+rT(1— i )—kﬂ/T,

dl

— =k VT — 1,

dc‘lﬁ 2 Ky (14)
E = Nv,ubf — k’lVT — [LVV,

T(0) =Ty, 1(0) = 0,V (0) = V;

baglangic deger problemini olusturmaktadir. Bu baglangi¢ deger problemi, bu tez boyunca
ele alinacak iki problemden ilkini olusturmaktadir.

Enfekte denge durumu (7',1,V) ise Culshaw ve Ruan (2000) tarafindan asagidaki
sekilde belirtilmistir:

T — My p
kQNvMb - kl,“[’
— kTV
=27
Ky
|5+ (= ) T) T — 1T
V =

TlkorT + k1pt; Tnax]
HIV’in insan bagisiklik sistemi lizerindeki orta ve uzun vadeli etkileri kadar, viriisiin
T4 hiicrelerini enfekte etmesine iliskin mekanizmalarin ayrintilar1 da bir¢ok aragtirma-
cinin ilgisini ¢ceken bir konudur. Ornegin, Herz vd. (1996) viriisiin hiicreye baglanmasi
anindan hiicrenin kaynaklarini kullanarak kendini eslemesine kadar olan siireyi gbz 6niine
almanin daha gercekci sonuglar verecegini 6nermistir. Viriisiin “tutulma asamasi” olarak
da bilinen bu siirenin hesaba katildig1 asagidaki model, Culshaw ve Ruan (2000) tarafin-

dan ortaya atilmistir:

de_it) =s— upT(t)+rT(t) (1 - W) — ki V()T(1),

dI(t)

— = =V (t = T)T(t—7) = pI(2), (1.5)
d‘il_it) = NI (t) = ka V()T (t) — py V (1),

T(9) = Ty, 1(0) = 0,V (60) = Vi, 0 € [—7, 0.

Bu modelde, 7 gecikme terimi viriisiin tutulma siiresini, bir bagka deyisle, T4 hiic-

resine baglanmasindan hiicrenin kaynaklarini kullanarak kendini ¢ogaltmaya hazir olana
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kadar ge¢cmesi gereken siireyi gostermektedir. Dolayisiyla, saglikli bir T4 hiicresinin belli
bir ¢ aninda enfekte olarak /(¢) degerine katki yapabilmesi i¢in, viriisiin ¢ — 7 aninda
hiicreye baglanmis olmasi gerekir. Bu durum, (1.5) modelinde /(t)’ye iliskin denklemde
kendini gostermektedir. Boylece, sonugta ortaya cikan problem bir gecikmeli diferansiyel
denklem sistemidir. Problemin bagslangic kosullarinda ise, (1.4) problemine gore sdyle bir
fark bulunmaktadir: ¢ = 0 baslangi¢c aninda kanda bir enfekte hiicre gozlemlenebilmesi
icin, viriisiin hiicreye baglanmasi olay1 —7 < # < 0 olmak iizere daha 6nceki bir ¢t = 0
aninda gerceklegsmis olmalidir; bu sebeple, 7'(t)’ye ve V (¢)’ye iliskin baglangi¢ kosul-
lar1 t = 0 yerine bu anda verilmelidir. (1.5) problemi, bu tez boyunca ele alinacak ikinci

problemi olusturmaktadir.
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2. KAYNAK TARAMASI

T4 hiicrelerinin HIV tarafindan enfekte olmasina ya da genel olarak AIDS hastaliginin
ve tedavi siirecinin anlasilmasina ve gelistirilmesine iligkin ¢aligmalar, birka¢ siifta de-
gerlendirilebilir. Bunlar arasinda, hastali§in ilerlemesiyle ilgili genel kavrayis1 arttirmaya
ya da tedavi siireclerinin iyilestirilmesine yonelik tibbi ve biyolojik caligmalar olabildigi
gibi, bu calismalardan bir veya birkacini temel alan ve ele alinan modelin dinamik 6zel-
liklerini incelemekle ya da sayisal ¢oziimlerini bulmakla ilgilenen, daha ¢cok matematik-
sel dogaya sahip ¢alismalar da bulunmaktadir. Bu tezin sayisal ¢éziimlerle ilgili olmasina
karsin, konunun daha iyi anlagilmasi ac¢isindan ilk sinifta olan calismalara biraz deginmek
uygun olacaktir.

Biyolojik siireclerin matematiksel denklemlerden yararlanilarak ifade edilmesi ¢ok
yeni bir uygulama degildir. Bu sebeple, Perelson 1989 yilinda T4 hiicrelerinin HIV ile
enfekte olmasina iligkin ilk modelini (Perelson 1989) ortaya attifinda, bazi arastirmaci-
lar ayn1 olguyu agiklayan farkli modeller 6nermislerdir. Bunlar arasinda, hastaligin farkl
asamalarindaki gelisimini ayr1 ayri inceleyen Anderson (1989), T4 hiicrelerini olgunluk-
laria gore iki ayr alt simifta inceleyen Hraba vd. (1990) ve ii¢ bilinmeyenli bir model
oneren Bailey vd. (1992) calismalari sayilabilir. Onerilen ¢cok sayida model bazi ayrinti-
lar bakimindan farkli olsa da, De Boer ve Perelson (1998) yaptiklar bir karsilastirmaya
dayanarak, bunlarin isleyisinin genel olarak viriisiin avci, saglikli T4 hiicrelerinin av ol-
dugu av-avci tipi bir iligkiyi yansittigini tespit etmistir. Ayrica, on farkl hastadan gelen
verileri inceleyen Stafford vd. (2000) yaptiklar: caigmayla onerilen ¢cok sayida modelin
hastaligin seyrini isabetli bir sekilde kestirme kapasitesini test etmis, bu sirada aktif en-
fekte T4 hiicreleri icin yaklasik iki bucuk giinliik bir yasam siiresi tespit etmistir. Ote
yandan, elde ettikleri bulgular1t HIV’in tedavi siireci icin yeni tespit ve Onerilere doniis-
tiiren calismalar da mevcuttur. Ornegin, Perelson’un dort bilinmeyenli orijinal modelini
temel alarak optimum bir kemoterapi stratejisi olusturmaya odaklanan birtakim ¢alisma-
lar (Kirschner ve Webb 1996; Kirschner vd. 1997), kemoterapinin baglama zamani ve
ideal uygulanma sikligina iligkin baz1 sonuglara ulasmayi basarmuglardir. ilag tedavisinin
etkinligi (Bonhoeffer vd. 1997) ve ila¢ dozuyla viriisiin ilag¢ direnci arasindaki iligki (Kep-

ler ve Perelson 1998) de bu alanda 6ne ¢ikan konulardir. Son olarak, HIV ile T4 hiicreleri
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arasindaki iligskiyi agiklamak i¢in kesirli tiireve bagvuran caligmalar (Srivastava vd. 2009)
da giderek popiilerlik kazanmaktadir.

Sozii edilen HIV enfeksiyon modellerinin sayisal ¢oziimlerinin hesaplanmasi, konuya
iligkin akademik literatiirtin hatir1 sayilir bir kismini teskil etmektedir. Bu tiir calisma-
larda kullanilan yontemler, Bessel kollokasyon yonteminden (Yiizbag1 2012) Taylor ope-
rasyonel matris yontemine (Yiizbas1 ve Ismailov 2017), iistel fonksiyonlara dayali bir
pertiirbasyon-iterasyon algoritmasindan (Khalid vd. 2015) Hermit polinomlarina ve Lag-
range interpolasyonuna dayanan bir kollokasyon yontemine (Parand vd. 2017) kadar uza-
nan genis bir yelpazeyi kaplamaktadir. Bunlarin yani sira, 1990’lardan itibaren popiiler
olmus homotopi pertiirbasyon yontemi (Merdan 2007), varyasyonel iterasyon yontemi
(Merdan vd. 2011) ve diferansiyel doniisiim yontemi (Srivastava vd. 2014) ile bu yon-
temin ¢cok adimli bir versiyonu (Kolebaje vd. 2014) da ayn1 amagla kullanilmistir. Bun-
lardan bagka, iistel polinomlar ve Galerkin yontemi gibi iki bagimsiz fikri birlestiren bir
calisma (Yiizbagsi ve Karacayir 2017a) da mevcuttur. Perelson’un (1.4) ile verilen ii¢ bilin-
meyenli modelinin ¢6ziimiinii veren bu ¢aligmalara ek olarak, (1.1) ile verilen dort bilin-
meyenli modelin sayisal ¢coziimlerini elde etmekle ilgilenen az sayida da olsa calismalar
bulunmaktadir. Bunlardan biri, Ali vd. (2019) tarafindan Adomian ayrigtirma yonteminin
kullanildig1 ¢alismadir. Son olarak, yukarida sozii edilen kesirli tiirev iceren modeller de
sayisal ¢oziimlerin konusu olmugtur (Mirzaae ve Samadyar 2019).

Culshaw ve Roan’in (1.5) ile verilen gecikmeli modelini ¢cozmekle ilgilenen calisma-
larin sayis1 bariz olarak daha azdir. Bunlar arasinda homotopi perturbasyon yontemi (Yiiz-
bag1 ve Karagayir 2017b) ve siradan polinomlara dayanan bir Galerkin yontemi (Yiizbasi
ve Karacgayir 2018) sayilabilir.

Bu noktada, tezin bir sonraki boliimiiniin konusunu olusturacak Lucas kollokasyon
yonteminin kullanildig1 bazi ¢alismalar1 anmakta yarar vardir. Ornegin, Giimgiim vd. de-
gisken gecikmeler iceren integro-diferansiyel denklemleri ¢cozmek icin Lucas polinomla-
rin1 hem standart hem de Cebisev kollokasyon noktalariyla birlikte kullanmistir (Glimgiim
vd. 2018). Baykus ve Sezer (2017) ise Taylor kollokasyon yontemini yiiksek mertebeden
degisken gecikmeler iceren pantograf-tipi diferansiyel denklemlere uygulamigtir. Benzer
sekilde, Sahin ve Sezer (2018) hibrit gecikmeler iceren terimlere sahip diferansiyel denk-

lemleri ayn1 yontemle ¢ozmiistiir. Gecikmeli denklem sistemlerinin sayisal ¢oziimlerini
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elde etmekle ilgilenen ¢aligmalara 6rnek olarak ise (Cetin vd. 2018a) gosterilebilir. Bun-
lara ek olarak Cetin vd. (2018b) Lucas kollokasyon yontemini geometrik bir probleme
uygulamistir. Ayn1 yontemin kesirli tiirevli terimler iceren baglangi¢ deger problemlerine
uygulanigini gormek isteyen okuyucular (Mokhtar ve Mohammed 2019) kaynagindan ya-
rarlanabilir.

Bu tezin amaci, T4 hiicrelerinin HIV ile enfekte olmasina iliskin orijinal (1.2) sistemi
ile aynm1 modelin gecikmeli versiyonu olan (1.5) sistemini, bir sonraki boliimde agikla-
nacak olan Lucas kollokasyon yontemiyle sayisal olarak ¢ozmektir. Problem farkli para-
metre degerleriyle ele alinacak, miimkiin olmas1 durumunda elde ettigimiz sonuglar lite-

ratiirdeki diger sonuglarla karsilastirilacaktir.
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3. MATERYAL VE METOT

Bu béliim, tez boyunca kullanilacak olan Lucas kollokasyon yonteminin agiklanma-
smna ayrilmistir. Once Lucas polinomlari ile ilgili gerekli olan bazi bilgiler 6zetlenecektir.
Ardindan kollokasyon yonteminin temel fikri agiklanacak ve bu fikrin Lucas polinomla-
riyla birlestirilerek T4 hiicrelerinin HIV ile enfekte olmas1 problemine nasil uygulanacagi
aciklanacaktir. Son olarak, elde edilmis yaklasik ¢oziimler kullanilarak hatanin tahmin
edilmesine iligkin bir yontem tartigilacaktir.

3.1. Lucas Polinomlar1

Lucas Polinomlari ilk olarak Bicknell (1970) tarafindan Fibonacci polinomlari ile ilig-

kili olarak tanimlanmustir. Ilk iki Lucas polinomu
Lo(z) =2, Li(x) =2z
olmak iizere, n > 2 i¢in Lucas polinomlar1 dizisi
L,(x) = Ly_o(x) + xLy_1(x) (3.1

yineleme bagintisiyla tanimlanir. Bdylece ilk birka¢ Lucas polinomu

Lo(z) = 2,

Li(z) =z,

Ly(x) = 2% + 2, (3.2)
Ls(x) = 2° + 3z,

Ly(z) = 2* + 42% + 2

seklindedir. Lucas polinomlarinin Fibonacci sayilari ile ayni yineleme bagintisim1 sagla-
yan ve

lo == 1,l1 == 3, ln == ln_2+ln_1 (TL Z 2)

ile tanimlanan sayi dizisi ile yakin iligkisi vardir. Bu say1 dizisi “Lucas sayilar1" olarak

bilinir ve Lucas polinomlari ile
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seklinde bir iligkiye sahiptir. n’inci Lucas polinomu i¢in Binet formiilii olarak bilinen
Ly(x)=2"" [(w — Va4 4) + (x + Va? + 4) ]

bagintist gecerlidir (Weisstein 2019). Lucas polinomlarinin bizim bu tez boyunca ilgile-

necegimiz gosterimi ise

! (" N k) 22k (3.3)

bicimindedir. Bir sonraki kisim, elde edecegimiz yaklasik ¢oziimlerin karsilagtirilacagi
coziimleri tiretmekte kullanilacak Runge-Kutta yonteminin acklanmasina ayrilmistir. Ar-
dindan, kollokasyon yonteminin temel fikri aciklanacak, yukarida (3.3) ile gosterilen Lu-
cas polinomlarinin (1.2) ve (1.5) modellerini ¢6zmek i¢in bu fikirle birlikte nasil kullani-

lacag1 Boliim 3.4.’te ele alinacaktir.

3.2. Runge-Kutta Yonteminin Bir Ozeti

Bu kisim standart Runge-Kutta yonteminin kisaca aciklanmasina ayrilmistir. Bu yon-
temin uygulanmasiyla elde edilen ¢oziimlerin Lucas kollokasyon yontemiyle elde ede-
cegimiz yaklasik ¢oziimlerle karsilagtirma yapmak amaciyla nasil kullanilacagi konusu
Boliim 3.6.’da ele alinacaktir.

dy

i f(t,y),y(to) = yo baslangi¢ deger problemini ele alalim. Bu probleme / adim

boyu ile Euler yonteminin uygulanmasi, ¢ = 0,1, 2, ... i¢in ¢; = ¢ 4 ¢h olmak {izere

Y(tiv1) = Yir1 = yi + hf (i, ys)

yaklasik ¢coziim degerlerini iiretir. Euler yontemi, Runge-Kutta yontemleri olarak bilinen
daha genis bir yontem ailesinin en diisiik mertebeli iiyesidir. Euler yontemi, problemin
¢6ziimii olan y fonksiyonunun ¢; < t < t;,; aralifindaki ortalama egimi igin 3/(¢) =~
f(t;, y;) yaklasimini kullanir ve birinci mertebeden bir yontemdir. S6z konusu egim degeri
icin farkli yaklagimlarin kullanilmasi farkli yontemlerle sonuglanir. Simdi Runge-Kutta
yonteminin nasil bir yaklagim kullandigim ag¢iklayalim. Takip eden ac¢iklamalar konuya
iliskin Wikipedia makalesinde ya da benzer agik kaynaklarda bulunabilir.

Runge-Kutta yonteminde, ¢,, anindaki yaklagik ¢dziim olan y,, degerinden ¢,,,; anin-

daki yaklagik ¢6ziim olan v, degerini hesaplamak icin dort farkli egim yaklagimindan

10
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yararlanilir. Bunlart ilki
kl = f(tna yn)

biciminde Euler yonteminde kullanilanin aynisidir. Ardindan, bu egim degeri kullanilarak
yartm adim atilir ve y,, + kh/2 degeri elde edilir. Bu degerin kullanilmasiyla

h h
k2 = f (tn+ §7yn+ §k1)

seklinde ikinci yaklagik egim degeri hesaplanir. Benzer iglem k- egim degeriyle de uygu-

lanarak iiclincii yaklasik egim degeri

h h
k3 - f (tn+ §7yn+ §k2)

olarak hesaplanir. Son olarak, k3 egim degerine gore bir tam adim atilir ve
ks = f(tn + h, Yy, + hks3)

seklinde dordiincii yaklasik egim degeri hesaplanir. Bu dort yaklasik e§im degerinin

1 2 2 1
k= gkl . 6k2+6k3+ 6k4

biciminde agirlikli ortalamasi alinarak tek bir £ e§im degeri olusturulur. Sonugta ¥, 1
yaklasik ¢coziimii

Ynt1 = Yn + hk

ile hesaplanir. Runge-Kutta yonteminin bir adimi bu sekilde tamamlanir.

Runge-Kutta yonteminin tek bir adimi, Euler yontemindeki tek fonksiyon hesaplama-
sina karsilik dort tane fonksiyon hesaplamasi igerir; bu sebeple ciddi derecede daha fazla
hesaplama zamam gerektirir. Buna karsilik, Runge-Kutta yontemi dordiincii mertebeden
bir yontemdir ve makul dlciide giivenilir kabul edilmektedir. Dordiincii mertebeden olusu
sebebiyle Runge-Kutta-4 ya da kisaca RK4 yontemi olarak da bilinir.

MATLAB programlama dilindeki gomiilii ode45 komutu, herhangi bir adi diferan-
siyel denklem sistemini, RK4 yonteminin bir varyant1 olan ve "Runge-Kutta (4,5)" ya da
"Runge-Kutta-Fehlberg" olarak bilinen sayisal yontemi kullanarak istenen aralikta ¢ozer.
Bu yontem, ilk olarak Fehlberg (1969) tarafindan ABD Ulusal Havacilik ve Uzay Da-
iresi’ne (NASA) sunulan bir teknik raporda yer almistir. Bu yontemin RK4 yonteminden

temel farki, her adiminda hata icin bir kestirimde bulunmas1 ve bu kestirime dayanarak

11
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adim boyunu duruma gore arttirmasi veya azaltmasidir. Boylece, yapilan hata problemin
ele alindig1 aralik boyunca yaklasik olarak sabit kalmaktadir.

Runge-Kutta-Fehlberg yonteminin yukarida sozii edilen hata kontroliinii nasil yapti-
gin1 kisaca acgiklamak yararli olacaktir. Bu amacin gerceklestirilmesi i¢in yukarida anlati-
landan farkli (farkli egim degerlerine ve agirliklara sahip) bir 4’lincii mertebeden Runge-
Kutta semas1 (RKF4) ve buna dayanan 5’inci mertebeden bir Runge-Kutta semas1 (RKF5)
kullanilir. Ardindan, en son elde edilmis yaklasik ¢6ziim degeri y,,"ye belli bir A adim bo-
yuyla RKF4 ve RKF5 uygulanir ve sirayla RKF4(y,,) ve RKF5(y,,) yaklagimlari elde
edilir. RKF5 5’inci mertebeden olmasi sebebiyle RKF4’ten daha iyi oldugundan, ger-
¢ek ¢oziime daha yakindir ve e, = |RKF4(y,) — RKF5(y,,)| degeri bir hata kestirimi
olarak kullanilabilir. Bu hata kestirimi izin verilen bir e, list sinirindan biiyiikse, yani
€y > €may 18€, 0 zaman adim boyu yartya indirilerek //2 adim boyuyla ayni islem tekrar-
lanir. e, < €4, 0ldugunda RKF4(y,,) degeri bu adimin sonundaki yaklagik ¢6ziim olarak
kabul edilir, yani v, 1 = RKF4(y,,) olur. Aksi durumda, eger hata kestirimi 6nceden be-
lirlenmis bir e,,;, alt sinirindan kiiglikse, yani e, < €,,,;,, 1se, adim boyu ikiyle ¢arpilarak
2h adim boyuyla bir sonraki adim boyuna gecilir. Bu sekilde, hem yaklasik hatanin izin
verilen bir iist sinirt agmamas1 hem de gereksiz yere fazla adim atilmamasi saglanmig
olur. Runge-Kutta-Fehlberg yonteminin de bir¢ok farkli varyanti bulunmaktadir. Burada
en genel hatlariyla ele alinmistir.

RK4 yontemi ve Runge-Kutta-Fehlberg yonteminin ayrintili bir incelemesi (Iserles

1996) kaynaginda bulunabilir.

3.3. Kollokasyon Yontemi

Kollokasyon yontemi, adi diferansiyel denklemlerin, integral denklemlerinin ve kismi
diferansiyel denklemlerin yaklagik ¢oziimlerini bulmak amaciyla kullanilan en popiiler
yontemlerden biridir. YOntemi uygulamak icin ilk yapilmasi gereken, olas1 ¢oziimlerden
olusan sonlu boyutlu bir fonksiyon uzay1 ve problemin ¢oziilecegi kapal bir aralik (kismi
diferansiyel denklemler icin sinirl bir bolge) se¢mektir. Temel fikir, s6z konusu uzaya
ait bir fonksiyonun denklemi yeterince ¢cok sayida noktada saglamasi durumunda gercek
cOziime yakin olacagi varsayimidir. Daha iyi agiklamak i¢in,

d
d—? =g(t,y), y(to) = yo (3.4)

12
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baglangic deger problemini ele alalim. Bu problemin tek bir siirekli 4, ¢Oziimiiniin ol-
dugunu varsayalim. IIk yapilmasi gereken sey, siirekli fonksiyonlar uzay1 icin bir ® =
{¢¢, P1, @9, - ..} tam sistemi belirlemektir. Bu tam sistem, ¢oziilmek istenen problemin
ozelligine gore degismekle birlikte genelde bir polinom ailesi olarak secilir. Weierstrass
Yaklagim Teoremi’'ne gore, siirekli bir f fonksiyonu verildiginde, her ¢ > 0 degeri icin
kapali bir [a, b] araliginda |f(z) — P(x)| < ¢ olacak sekilde bir P polinomu bulunabile-
ceginden, burada ® tam sistemi igin olasi en basit se¢imlerden biri ahsildik {1, z, 2%, ...}
tekterimli ailesidir. Sonug¢ olarak, ® fonksiyon ailesi siirekli fonksiyonlar uzayi i¢in bir

tam sistem oldugundan, her € > 0 i¢in

[Yram (1) — (0o (t) + @191 (t) +... +andy(t))| <& a <t <b, (3.5)

olacak sekilde bir IV pozitif tamsayist ve ag,ay,...,ay reel sayilart bulunabilir. (3.5)
ifadesindeki agdy(t) + a1, (t) + ... + anydy(t) dogrusal kombinasyonunun problemin

tam ¢oziimiinii € hassasiyetle temsil edebilecegine dayanilarak, kollokasyon yonteminde

yn(t) = aodo(t) + a1y (t) + azdy(t) + ... + andy(t) (3.6)

seklinde /V + 1 bilinmeyen iceren bir test fonksiyonu olusturulur. ag, aq, . . ., ay bilinme-
yenleri bulundugunda (3.6) ile tanimlanan yy fonksiyonu (3.4) baslangi¢ deger proble-
minin yaklagik ¢6ziimii olacaktir. Bir bagka deyisle, problemin ¢oziimii sonsuz boyutlu

stirekli fonksiyonlar uzay1 yerine sonlu N + 1 boyutlu

{copg + 101 + ... +cnoy  Cosc1, ..., cn € R}

uzayinda aranacaktir. S6z konusu bilinmeyenleri bulmak i¢in /V+1 tane denkleme ihtiyag
vardir. Bu denklemlerden bir tanesi yy yaklasik ¢6ziimiiniin baglangi¢ kosulunu saglama-

sindan elde edilir. Boylece

yn(to) = aody(to) + a1y (to) + azgy(to) + ... +andy(to) = yo (3.7)

ifadest, ag, ai, . . ., ay bilinmeyenlerinin saglamasi gereken ilk denklemi verir. Geri kalan
N denklemi elde etmek i¢in problemin ¢oziilecegi bir g = a < t < b kapali araligi
ve bu araligin i¢inden N tane nokta belirlenir. Bu noktalara “kollokasyon noktalar1" de-

nir ve yy yaklasik ¢oziimiiniin diferansiyel denklemi bu kollokasyon noktalarinin her
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birinde saglayacagi varsayilir. Daha agik bir ifadeyle, s6z konusu kollokasyon noktalari

ty,t9,...,ty = bile verilmek lizere,

dyn

W(tl) = g(t1, yn(t1))

d
%(tz) = g(t2, yn(t2))
(3.8)

YN 120) = glt, (1)
denklemleri olusturulur. Toplam sayis1 NV olan (3.8) denklemleri ile baslangi¢ kosulunun
saglanmasindan elde edilen (3.7) denkleminin birlikte ¢oziilmesiyle ag, a4, . . ., ay bilin-
meyenleri, dolayisiyla y yaklasik ¢6ziimii bulunmus olur. Kollokasyon yonteminin daha

ayrintili bir incelemesi icin (Iserles 1996) kaynagina bakilabilir.

3.4. T4 Hiicrelerinin HIV ile Enfekte Olmasi Problemini C6zmek Icin Lucas Kollo-

kasyon Yontemi

Boliim 3.3.’te temel fikrini a¢ikladigimiz kollokasyon yonteminin uygulanmasinda,
verilmesi gereken ilk karar, yaklagik ¢oziimiin dogrusal kombinasyonu olacagi ¢, ¢;, @5, . . .
fonksiyonlarin se¢imidir. Bu tez ¢alismasinda s6z konusu fonksiyonlar Lucas polinomlari
olarak secilecektir.Bu sekilde elde edilen yontem Lucas kollokasyon yontemi olarak bi-
linir. Lucas kollokasyon yontemi, pantograf-tipi gecikmeli diferansiyel denklemler (Bay-
kus ve Sezer 2017), dogrusal diferansiyel denklem sistemleri (Cetin vd. 2018b) ve kesirli
tirevli diferansiyel denklemler (Mokhtar ve Mohammed 2019) gibi pek ¢ok problemin
coziimiinde kullanilmigtir. Biz bu boliimde ayni yontemin T4 hiicrelerinin HIV ile en-
fekte olmasi problemine nasil uygulanacagini agiklayacagiz.

Cozmek istedigimiz problem asagidaki baslangic deger problemi idi:

T T+ 1
%;:s—wﬂwa(1— i )—hVﬂ
dl
— = ko VT — 1,
dc‘lﬁ 2 Kr (3.9)
E = Nv:u’bl — k’lVT — [LVV

T(0) = Tp, 1(0) = 0,V(0) = V%.
Kollokasyon yontemini herhangi bir probleme uygulamadan 6nce ¢oziimlerin gecerli ola-

cag1 kapali aralifa karar verilmelidir. Dolayisiyla, (3.9) problemini 0 < ¢ < T, aral-
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ginda ele alacagiz. N € Z™ olmak iizere, kollokasyon noktalari olarak [0, Tyo,] araliginin
N esit parcaya boliinmesiyle elde edilen

TSOII t 2I-VSOII

t1 = — = ..
1 Na2 Na

. >tN - Tson (310)

noktalarini kullanacagiz. Bilinmeyen fonksiyonlar olan 7', I, V"’ nin yaklagsik olarak Lucas

polinomlarinin kombinasyonlar1 bi¢ciminde ifade edilebilecegini, daha acik bir sekilde

N
TN(t) = ZakLk(t) = (CLUL(] + a1L1 + ..., aNLN)(t)
k=0

N

In(t) = ZbkLk(t) = (boLo + 1Ly +...,byIN)(2)
k=0
N

Vn(t) = Z e Li(t) = (coLo + 1Ly + ..., en V) (t)
k=0

yazilabilecegini varsayalim. Burada 6nemli bir nokta, kollokasyon noktalarinin sayist NV
ile Ty, I, Vi yaklasik coziimlerinin ifadesindeki en yiiksek dereceli Lucas polinomlari-
nin derecesinin ayni olmasidir. Yontemin amaci, ¢ = 0,1,..., NV icin yaklagik ¢oziim-
lerin ifadelerindeki a;, b;, ¢; bilinmeyen katsayilarinin bulunmasidir. Bir sonraki adim,

Tw, In,Vy yaklasik ¢oziimlerine (3.10) kollokasyon noktalarinda (3.9) sisteminin da-

yatilmasi sonucu ortaya ¢ikan denklemlerin olusturulmasidir. Boylece, i = 1,2,..., N
icin
%(m) =5 — purTn(t;) + rTu(t:) (1 - TN(t")TI;jN(tZ‘)) — IV (t) T (t:),
dIn
%(ti) = koVn(t:) T (t:) — prIn(t:), (3.11)
AV

—p (i) = Nop In(ti) = kViv (8) T (t) — py Viv (t2).
seklinde toplam 3N tane dogrusal olmayan cebirsel denklem elde edilir. Bu denklemlerde
problemin parametreleri icin belli degerler girildiginde geriye bilinmeyen olarak yalnizca
¢t =0,1,...,N i¢in a;, b;, ¢; bilinmeyen katsayilarinin kalacag1 goriiliir. Bu bilinmeyen
katsayilarinin sayist 3N + 3 oldugundan geriye kalan tic denklem yaklasik ¢oziimlerin

baglangi¢ kosullarin1 saglamasindan elde edilir. Daha acik bir ifade ile bu ii¢ denklem
TN(O) = CLOL()(O) + alLl(O) + ...+ CLNLN(()) = Tg

VN(O) = C()L()(O) + 61L1(0) + ...+ CNLN(O) = ‘/0
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seklindedir. Bu ii¢ denklem ile daha once elde edilen ve sayis1 3N olan (3.11) denk-
lemlerinin birlikte ele alinmasiyla olusan 3N + 3 denklemli cebirsel denklem sisteminin
coziilmesiyle a;, b;, ¢; katsayilari, sonug olarak Ty, I, Vi yaklasik coziimleri elde edilir.

Bu siirecin bilgisayarla programlanmasi asamasinda, gerekli islemlerin matrisler cin-
sinden ifade edilmesi belirgin kolaylik saglamaktadir. Bu yaklagim, 6rnegin (Baykus ve
Sezer 2017) calismasinda oldugu gibi 6zellikle dogrusal problemler i¢in elveriglidir. Bu
tezde calisilacak olan HIV ile enfeksiyon problemi dogrusal olmamasina kargin, tartisma-
nin tamlig1 acisindan matris islemlerinden yararlanmak uygun olacaktir. Bu esnada Lu-
cas kollokasyon yonteminin kullanildig1 diger ¢alismalarla olan benzerligin vurgulanmasi
amaciyla benzer notasyona bagvurulacaktir.

Lucas polinomlarinin bir matris ¢arpimi yardimiyla gosterilmesinde, Bolim 3.1.’de

belirtilen
5]

Ln(z) :”Znikc;k)xn% (3.13)

k=0

0zdesliginden yararlanilacaktir. Bunun i¢in standart yontem,
X(@)=[1 2z 22 ... V]

yardimc1 matrisini tanimlamakla baglar. X (x) yardimci matrisini kullanarak Lucas poli-
nomlarini elde edebilmek amaciyla, (3.13) esitligindeki Lucas katsayilarini siitun girdileri
olarak kabul eden (N 4 1) x (N + 1) boyutunda bir Lucas yardimci matrisi tanimlanur.

Bu matris, N cift say1 ise

2 0 2() o ... 0 wrz(2)

o i) o 330 - FE(WE.) 0

o 0 2 o ... 0 oo ((n'2)2)
D=1o o o 3¢ - &53=(53) 0 ’

0 0 0 0 =1 (VoY) 0

0 0 0 0 0 ~(0)
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N tek say1 ise

2 0 2(}) o . (N2 0

0 1) o (3 ... 0 w7z (V)3)

00 3 0 .. el 0
D=|o o o 30 .. 0 i (V52

0 0 0 0o ... = (YY) 0

0 0 0 0o ... 0 %(g)

bi¢cimindedir. Boylece X (x) semboliik yardimci matrisiyle D Lucas yardimci matrisinin
carpimi, derecesi 0°dan /N’ye kadar olan Lucas polinomlarint girdi olarak iceren 1 x (/N +

1) boyutunda bir satir matrisini verir. Daha acik bir ifadeyle
XD =[ Ly(t) Li(t) Lo(t) ... Ln(t)] (3.14)

olur. Dolayisiyla,
Tn(t) = aolo(t) + arLi(t) + ..., anLn(?)
In(t) = boLo(t) + biLi(t) + ..., bNIN(t) (.15)
VN(t) = C[]L(](t) + ClLl(t) —+ ... ,CNVN(t)
yaklagik ¢oziimleri de matris carpimi yardimiyla basitce ifade edilebilir. Bunun icin tek

yapilmas1 gereken, a;, b;, c; bilinmeyen katsayilarini

Qo bo Co
ai by 8]

A= as 7B: bQ ;C: Co

an bn CN

seklinde ayr1 bilinmeyen katsay1 matrislerinde toplamaktir. Bu durumda, Ty, I, Viy yak-

lagik coziimleri
Tn(t) = X(t)DA, In(t) = X(¢)DB, Vx(t) = X(¢)DC

olarak yazilabilir.
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(1.2) modelinde bilinmeyen fonksiyonlarin birbirleriyle ¢carpimini iceren dogrusal ol-
mayan terimler de matris ¢arpimu cinsinden ifade edilmelidir. Ornegin, birinci denklemde

saglikl1 ve viriis bulagmis T4 hiicre sayilarinin ¢carpimi olan

TN(t)]N(t) :CbgboL(Q)(t) —I— (a0b1 + albo)LoLl —f- e + (CLN_le —f- CLNbN_l)LN_l(t)LN(t)
+a Nb NL?V (t)

ifadesinde hem 75’ ’ye hem de Ix’ye karsilik gelen bilinmeyen katsayilar bir arada bu-

lundugundan, bu terimin matris ¢carpimiyla ifade edilmesinde biraz farkli bir yol izlemek

gerekir. Oncelikle, derecesi 0’dan N’ye kadar olan biitiin Lucas polinomlarim girdi olarak

kabul eden, daha once elde etti§imiz

[ Lo(t) Li(t) La(t) ... Ln(t) ]

satir matrisinden yararlanarak, bu Lucas polinomlarinin olas1 biitiin ikili ¢arpimlarinin yer

aldigt (N + 1) x (N + 1) boyutunda yeni bir yardime1 matris olugturalim. Daha acik bir

ifadeyle
Lo(t) LoLo LiLy ... LyLo
L(t) LoLi ILiLi ... LyL
| Ly(t) | | LoLy LiLy ... LyLy |

yazilabilir. Kare matristeki terimler Ty (¢) I (t) ¢carpimindaki terimlere karsilik geldigin-

den, bu ¢arpimin

- - ag
LoLy LiLy ... LyLg
a1
LoLy L4Ly ... LyIy
TNIN:[bO b1 b2 bN] . . . : as
LoLy LiLy ... LyLy
L i an
ya da daha kisaca
LoLy LiLy ... LnLg
LoLy ILyL; ... LyL
TyIy = BT o' 1 1' 1 N N
LoLy LiLy ... LyLy
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olarak yazilabilecegi goriiliir. Ote yandan, (3.14) 6zdesliginden dolay1 ayni ifade D Lucas

yardimc1 matrisi ve X (¢) sembolik yardimci matrisi cinsinden yazilabilir. Sonug olarak,
Tn(t)In(t) = (X(t)DB)"X(t)DA = B'D"X ()" X (t)DA (3.16)

yazilabilir. 7’y nin kendisiyle ve Vy ile olan ¢carpimlari da benzer sekilde matris carpimi

cinsinden yazilabilir. Boylece,

T2(t) = ATD"X ()" X (t)DA, a7
T (t)Vy () = CTDTX (1) X (1) DA '

olur. Problemdeki tiirev terimlerini ifade etmenin de basit bir yolu vardir. Bunun i¢in

t=1,2,...,Nicin Bi,iﬂ = ¢ ve diger tiim girdileri ]j%i’j = 0 seklinde taniml1 olan
(010 ... 0]
002 ... 0
B =
000 ... N
_0 00 ... 0 |

yardimc1 matrisinden yararlanilir. Boylece

dTN - il dIN o ~ dVN o ~
— = X(HBDA, —* = X(#)BDB, —* = X(1)BDC

esitlikleri gecerli olur. Bu esitliklerle daha 6nce gosterdigimiz (3.16) ve (3.17) ifadelerinin
birlikte kullanilmasiyla, (1.2) modelindeki ii¢ denklem de yardimci matrisler cinsinden
asagidaki gibi ifade edilebilir:

r

X(t)BDA — (uy + )X (t)DA + —ATDTX(1)"X(t)DA

max

+TLBTDTX(t)TX(t)DA 4k CTDTX(1)TX(1)DA = s,
hx (3.18)

X(t)BDB + 1, X(t)DB — k,CTDTX(t)" X (t)DA = 0,
X(t)BDC — N1, X (t)DB + k;CTDTX (1)TX (t)DA + 11, X (t)DC = 0.
Bu ii¢ denklemdeki terimlere bakildiginda, her terimin bilinmeyen fonksiyonlar olan Ty, Iy

ve Vv nin katsayilarindan olusan A, B ve C katsay1 matrislerinden biriyle bittigi goriiliir.

Kollokasyon adimina bir hazirlik olarak, ii¢ ayr1 denklemi tek bir matris denklemi olarak

19



MATERYAL VE METOT A. KURT

ifade etmek amaciyla, A, B ve C katsay1 matrislerinin girdilerinin hepsini iceren tek bir
biiyiik katsay1 matrisi tantmlamak faydali olacaktir. Basitge biitiin bilinmeyen katsayilarin

alt alta eklenmesiyle olusturulan (3N + 3) x 1 boyutundaki

M:[ao a ... an bo bl bN Chp C1 ... CN]T

satir matrisi bu is icin uygundur. M matrisinin tartismaya nasil dahil edilecegini goster-
mek icin, (3.18) denklemlerinden ilkini g6z 6niine alalim. Tiim terimler A ile bittiginden

bu denklem,

X()BD — (up +1)X(1)D + TLATDTX(t)TX(t)D
max A = s,
+TLBTDTX(t)TX(t)D + kb CTDTX ()X (1)D

ya da parantez i¢indeki ifadeyi kisaca G4 (t) ile gosterirsek,
Gi(t)A =s (3.19)

olarak yazilabilir. 1 x (N + 1) boyutundaki G (¢) satir matrisinin her girdisi, katsayilari
a;,b;,c;; v =0,1,..., N, bilinmeyenlerinin birinci dereceden terimleri olan 2N dereceli
bir polinomdur. (3.19) denklemini M matrisini kullanarak ifade etmek i¢in, G1(¢)’nin sag
tarafina 2NV + 2 tane 0 ekleyerek 1 x (3N + 3) boyutunda yeni bir satir matrisi elde etmek
yeterlidir. Boylece, (3.19) denklemi

Gi(t) 00 ...0 ]M:s (3.20)

~—_——
2N+2 tane

olarak yazilabilir. (3.18) denklemlerinin ikincisinin ve ii¢iinciisiiniin gosteriminde de ben-
zer yola bagvurulabilir. Bunun i¢in, gosterim kolayligi olmasi agisindan, N + 1 tane 0’dan
olusan satir matrisi icin

0=00 ... 0|

~———
N+1 tane

biciminde yeni bir notasyon tamimlayalim. Bu notasyon yardimiyla, diger iki denklem

sirastyla
[ —kCTDTX(H)TX(H)D  X(t)BD 4 4, X(t)D 0 ] M =0 (3.21)

ve
| KCTDTX()TX(OD ~N,pX(O)D X()BD + 1, X(HD |[M=0 (322
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olarak yazilabilir. $imdi, (1.2) modelindeki ii¢c denklemin matris gosterimleri olan (3.20),

(3.21) ve (3.22) esitlikleri bir araya getirilerek, modelin tamami

Gl(t) 0 0 S
—k,CTDTX(H)TX(t)D X(t)BD + 4, X (¢)D 0 M= |0
ki CTDTX(8)TX(t)D ~Ny, XD X(t)BD + p,X(t)D 0

biciminde tek bir matris denklemi olarak ifade edilebilir. Bu matris denklemini, M ile
¢arpim durumunda olan 3 X (3N + 3) boyutundaki matrise ve denklemin sag tarafina yeni
isimler vererek kisaca

K{t)M =S (3.23)

ile gosterelim. Bu denklem, (1.2) modelinin matris gosterimidir.

son

Problemin ¢6ziimiine ¢ = 1,2,..., N icin t; = ! N kollokasyon noktalar1 dahil

edildiginde, (3.11) ile gosterdigimiz

T (1) = 5 — prTot) + rTi(8) <1 - TN“")TI:N(“)) — by Vi (t) T (1),
%(tl) = ko Vv (t:) T (i) — puyIn(a),
%(m) = NyppIn(t;) — ki Vi (t) T (t:) — iy Vv (t:).

cebirsel denklem sistem olusmustu. Her kollokasyon noktasi ii¢ ayr1 denklemde goziik-
tiigiinden, bu yolla toplamda 3N tane dogrusal olmayan cebirsel denklem elde edilir. Bu
denklemleri, (3.23) matris denklemi cinsinden gostermek basittir. Bu ig igin, 3 x (3N +3)
boyutundaki katsayr matrisi K(¢)’de ¢ yerine sirasiyla biitiin kollokasyon noktalarinin ya-
zilmasi ve denklemin sag tarafi olan 3 x 1 boyutundaki S siitun matrisinin alt alta yazilarak

3N x 1 boyutuna genisletilmesi yeterlidir. Boylece,

K(t)
K(t) | |8
I K(ty) | I S |

biciminde yazilabilecek 3N x (3N +3) boyutunda dogrusal olmayan bir cebirsel denklem

sistemi elde edilir. Bu sistemi, sonradan daha kolay kullanabilmek amaciyla
WM =F (3.24)
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ile gosterelim. Burada, 3N x (3N + 3) boyutundaki W katsay1 matrisinin girdilerinin
a;, b, c; bilinmeyenlerini icerdigini, dolayisiyla (3.24) sisteminin dogrusal olmadigin1 ha-
tirlatalim. Toplam sayis1 3V + 3 olan bilinmeyenleri bulmak i¢in ayni1 sayida denklem ge-
rektiginden, geriye kalan 3 denklem baslangic kosullarindan olusturulacaktir. Bu amagla,
daha Once baslangic kosullarini ifade etmek iizere (3.12) ile gosterdigimiz 3 adet denklemi

(3.24) sisteminin sonuna eklemek gerekir.
TN(O) = aoLo(O) + CLlLl(O) + ...+ CI,NLN(O) =T
VN(O) = CoLo(()) + ClL1(0> + ...+ CNLN(O) = %

seklinde ifade ettigimiz bu li¢ denklemde bilinmeyenlerle ¢carpim durumunda olan
Lo(0), Ly(0), . ., Ly (0)

katsayilarinin ayni oldugu dikkat cekmektedir. Bu sistemi bir matris ¢carpimi olarak ifade

etmek i¢in, daha once (3.14) ile gosterdigimiz
X()D =[ Lo(t) Li(t) Lao(t) ... Ly(t)]

satir matrisinden yararlanabiliriz. Bunu yapmanin en kolay yolu, Kronecker tensér ¢arpi-
min1 kullanmaktir. (N+1)x (N +1) boyutundaki birim matris Iy, ile gosterilmek iizere,

Iy ile yukaridaki X (¢) sembolik yardimci matrisinin Kronecker carpimi

X(# 0 ... 0
0 X(t) 0
I @ X(t) = .
0 0 .. X
L J (V1) (V412

olarak tanimlanir. Boylece, baslangi¢ kosullarina karsilik gelen (3.14) denklemleri

XD 0 0 To
(I; ® [X(0)D])M = 0 XO0OD o0 M= 0 (3.25)
0 0 X(0)D Vo

biciminde matris ¢arpimi olarak ifade edilebilir. Simdi, problemin kollokasyon noktala-
rinda saglanmasindan elde edilen 3N x (3N + 3)’liik (3.24) sistemi ile baslangi¢ kosulla-

rindan elde edilen 3 x (3N +3)’liik (3.25) sistemini birlestirebiliriz. Bu is i¢in, sistemlerin
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katsay1 matrislerini ve sag taraflarindaki siitun matrisleri alt alta yazmak yeterlidir. Boy-

lece, _ A
F
\)\% | To
LeXoD] | | o

L ‘/0 a

seklinde (3N + 3) x (3N + 3) boyutunda dogrusal olmayan tek bir cebirsel sistem elde
edilir. Bunu da kisaca
WM =F
ile gosterelim. Bu dogrusal olmayan sistemin ¢oziilmesiyle i = 0,1, ..., N icin a;, b;, ¢;
bilinmeyenleri ve dolayisiyla
Tn(t) = aoLo(t) + arLa(t) + ..., anLn(?)
In(t) = boLo(t) + biLa(t) + ..., bnIN(1)
VN(t) = COLO(t) + ClLl(t) I ,CNVN(t)

yaklagik ¢oziimleri elde edilir. Bu yaklasik ¢oziimler baslangi¢ kosullarin1 gercekler ve

(1.2) diferansiyel denklem sistemini kollokasyon noktalarinda saglar.

3.5. Gecikmeli Model icin Lucas Kollokasyon Yontemi

Viriisiin saglikli T4 hiicresine girdikten sonra kendisini ¢ogaltma yeterliligini elde et-

mesine kadar gecen tutulma siiresinin dikkate alindig1 (1.5) modelini hatirlayalim:

i%ﬁzs—wﬂwwaw(l_f%ifﬁ)—hva@a
dz_it) = eV (t — T)T(t — 7) — uL(2),
dv (¢

W) _ N 1) — bV OT(E) — V().
T(0) = Ty, 1(0) = 0,V(8) = Vy, 6 € [~,0].

Lucas kollokasyon yonteminin bu modele uygulanisi bir 6nceki kisimda ele alinan gecik-

mesiz modele uygulanisi ile hemen hemen aynidir. O problemde oldugu gibi gecikmeli
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modelde de yaklasik ¢oziim polinomlart belli bir /N parametresi i¢in yine

N
Tn(t) =) arLi(t) = (aoLo + a1 Ly + ... ,axLy)(t)
k=0

N

In(t) = biLi(t) = (boLo + b1 L1 + ... .byIy)(t)
k=0

N
Vv(t) =) enli(t) = (coLo + 1Ly + ..., ex Vi) (1)
k=0

biciminde /V’inci dereceye kadar olan biitiin Lucas polinomlarinin dogrusal kombinas-
yonu olarak bulunacaktir. Dikkat edilmesi gereken baslica nokta, enfekte T4 hiicrelerine
karsilik gelen denklemdeki gecikme teriminden dolayi, bu yaklasik ¢oziimlere kollokas-
yon noktalarinin dayatilmasiyla elde edilen cebirsel denklemlerde /y’ye karsilik gelen-

lerde V' nin ve T’ nin argiimanlarinin ¢; kollokasyon noktalarinin degil, ¢; — 7 biciminde

olmalaridir. Boylece, bu cebirsel denklemler ¢ = 1,2,..., N i¢in
dT Trn(t;) + In(t;
d—;v(ti) =5 — ppTn(t:) + rTw(t) (1 _ T) + In )) — ky Vv ()T (t:),
dl 3.26
W@i) = koVy(ti — 7)Tn(ti — 7) — prln(ti), (3.26)
dVy

— (ta) = Nopy In(ti) — ki Viv (8) T (t:) — py Vi (82).

cebirsel denklemleri elde edilecektir. Ayrica 0 < ¢ < 7 icin sistemin davranigt —7 < ¢ <
0 araligininin tamami boyunca davraniginin bilgisini gerektirdiginden, baslangis kosulla-
rinin yalnizca ¢ = 0 aninda degil [—7, 0] araliginin tamami boyunca verildigini hatirlaya-
lim. Ote yandan N’inci dereceden bir polinom bir aralik boyunca sabit bir degere sahip
olamaz. Bu sebeple, baslangi¢ kosullari basitce Ty (0) = Ty, In(0) = 0,Vn(0) = Vo
olarak kabul edilecektir. Boylece, baslangic kosullarina karsilik gelen denklemler, gecik-

mesiz modelde oldugu gibi

Tn(0) = agLlo(0) + a1 L1(0) + ...+ anLn(0) = Tj
In(0) = boLo(0) + b1 L1(0) + ...+ byLn(0) =0
Vn(0) = coLo(0) + c1L1(0) + ... + ey Ly (0) = Vj
seklinde olacaktir. Bu ii¢ denklemin (3.26) ile verilen 3V adet denkleme eklenmesiyle

elde edilen 3N + 3 denklemlik sistemin ¢oziilmesiyle a;, b;, ¢; bilinmeyenleri ve dolayi-

styla yaklasik coziimler elde edilecektir.
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3.6. Sonuclari Degerlendirilmesinde izlenecek Yontem

Bu boliimde, yaklasik ¢coziimler elde edildikten sonra bu ¢oziimlerin isabet oraninin
Olciilmesi sirasinda nasil bir yol izlenecegi tartisilacaktir. Bu tez boyunca ele alinacak
problemlerin ¢oziimleri MATLAB programlama dili kullanilarak yapilacaktir. Bu is i¢in,
MATLAB programlama dilindeki gémiilii yordamlardan biri olan fso1ve komutu kulla-
nilacaktir. Bu komut, secilen belli bir /V degerine karsilik gelen dogrusal olmayan sistemi
bir vektorel fonksiyon iceren ayri bir dosya olarak kabul eder ve sistemi istenen hassa-
siyetle ¢ozer. Bizim problemimizde, (3.15) yaklasik ¢oziimlerinin kollokasyon noktala-
rinda denklem sistemini saglamasi kosulunun ortaya cikardigi (3.11) ile verilen dogrusal
olmayan cebirsel denklemleri ve baglangi¢ kosullarina karsilik gelen (3.12) denklemlerini
iceren bir MATLAB dosyasi olusturulmustur. Ardindan, fsolve komutunun uygun bir
baglangi¢ tahminiyle bu MATLAB dosyasi iizerinde calistirilmasiyla a;, b;, ¢; katsayilari
ve dolayisiyla T, I, Vi yaklasik ¢coziimleri elde edilmistir. Burada dikkat edilmesi gere-
ken bir nokta, olusan 3V 43 bilinmeyenli cebirsel denklem sisteminin dogrusal olmamasi
sebebiyle birden fazla ¢oziime sahip olabilecegi hususudur. Eger sistemin biitiin ¢6ziim-
leri bulunmak isteniyorsa, olusturulan MATLAB dosyasina £solve yerine vpasolve
komutu uygulanabilir.

Herhangi bir problemin herhangi bir sayisal yontemle elde edilen ¢oziimlerinin ne ka-
dar isabetli oldugunu 6l¢cmeye yarayan en dogrudan yontem, p tam ¢oziimii p* yaklasik
¢oziimii gostermek iizere, |p — p*| ile hesaplanan mutlak hatadir. Ote yandan bu tezin
konusunu olusturan HIV ile enfekte olma probleminin tam ¢6ziimii bilinmemektedir. Bu
durumda elde ettigimiz yaklasik ¢oziimlerin gercek coziime ne kadar yakin oldugunu an-
lamak i¢in bunlar1 orijinal problemde bilinmeyen fonksiyonlarin yerine yazdigimizda ge-
riye kalan ifadelerin biiyiikliigiinii goz oniine alacagiz. Daha acik bir ifadeyle, Ty, Iy, Vv

elde ettigimiz yaklasik ¢coziimler olmak iizere,

RITWI0) = S0 = s+ Tite) = rivte) (1= P v
RIN)(E) = S50 — Wy (OTw(0) + I (1),
dVy

RIVN(t) = —=(t) = Nop I (8) + ka Ve ()T (8) + 1y Vi (2)

ifadelerini inceleyecegiz. Buradaki R[T|(t), R[Ix](t) ve R[Vy](t) fonksiyonlarina, sira-
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styla Ty, In ve Vi fonksiyonlarina iligskin “rezidiiel (fonksiyon)" denir. Boylece, belli bir
N degeri i¢in elde ettigimiz Ty, Iy, Vi yaklagik ¢oziimlerinin isabet oranini degerlendir-
mek icin bu rezidiiellerin mutlak degerleri olan |R[Ty](¢)|, |R[In](t)|, |R[VN](t)| fonk-
siyonlarinin biiyiikliigiine bakacagiz. Problemin tam c¢oziimlerinin mutlak rezidiilleri 0’a
esit olacagindan, belli bir yaklagik ¢6ziimiin mutlak rezidiieli ne kadar kiiciik ise o yak-
lagik ¢6ziimiin o kadar isabetli olacagini varsayaca8iz. Ayrica, N parametresinin degerini
yiikselttik¢e artan hesap siiresine karsilik olarak bu yeni degere karsilik gelen yaklasik
coziimlerin daha isabetli olmasini beklemek gerekir. Bu durumu daha acik bir sekilde go-
rebilmek i¢in farkli NV degerleriyle elde edilen yaklasik ¢oziimlerin mutlak rezidiiellerini
aymi grafikte cizecek ve daha biiyilk N degerlerine karsilik gelen mutlak rezidiiellerin
daha kii¢iik olup olmadigini kontrol edecegiz.

(1.4) probleminin tam ¢oziimii bilinmemekle beraber, elde edecegimiz yaklasik ¢o-
ziimleri mutlak rezidiiellerine bakmanin yan sira belli bir referans noktasi ile kargilastir-
mak da faydali olacaktir. Bu is icin MATLAB programlama dilindeki gomiilii ode 45 ko-
mutunu kullanacagiz. Bu komut, herhangi bir adi diferansiyel denklem sistemini Runge-
Kutta-Fehlberg yontemini kullanarak istenen aralikta ¢ozer. Sonug olarak, ode 45 komu-
tuyla bulunan yaklagik ¢oziimler sirasiyla Tri (t), Irk (t), Vri (t) ile gosterilmek iizere,

bu yaklagik ¢oziimlere kiyasla yapilan

eri[In(t)] := [T (t) — Tri ()], erx[In(t)] = [In(t) — Irk (1)],
eri[Va(t)] := [V (t) — Vri(1)]
yaklagik hatalarin degeri de bize yaklagik ¢oziimlerin isabet oran1 hakkinda fikir verecek-
tir. S6z konusu karsilastirma isi, Runge-Kutta-Fehlberg ¢oziimleri ile farkli NV degerleriyle

elde edilen yaklasik ¢oziimlerin her birinin belli ¢ anlarindaki degerlerinin farkl siitunlara

yazildig1 tablolar yardimiyla yapilacaktir.
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4. BULGULAR VE TARTISMA

Bu boliim, Perelson’un orijinal (1.4) modeli ile bu problemin gecikmeli versiyonu
olan (1.5) modeline iligkin olarak elde ettigimiz uygulama sonuglarinin incelenmesine
ayrilmigtir. Bu yapilirken Perelson vd. (1993) ve Culshaw ve Ruan (2000) calismalarinda

kullanilan iki ayr1 parametre seti baz alinacaktir.

4.1. Gecikmesiz Modele Iliskin Uygulama Sonuclar

Bu alt boliimde T4 hiicrelerinin HIV ile enfekte olmasina iligkin (1.4) problemi iki

farkli parametre seti kullanilmasiyla elde edilen yaklasik ¢coziimler incelenecektir.

1 -3 —
mm -, by =

Ornek 4.1. Bu érnekte su parametre degerleri kullanilacaktir: s = 10 giin™
0.02 giin™', 7 = 0.03 giin™", Thaxe = 1500 mm~—3, k1 = 2.4 x 10>mm>giin ', ky =
2 x 10 mm?3giin ', p; = 0.26 giin ™, N, = 1000, y, = 0.24 giin™*, juy, = 2.4 giin™.

Boylece, problem asagidaki gibi olur:

drT T+1

— =10-0.027T"+0.037T"|1 — —— | — 0. 24VT

7 0—0.027"+0.03 ( 1500) 0.000024V'T,

a = 0.00002VT — 0.261,

dc{ﬁ 4.1
o 1000- (0.24)1 — 0.000024V'T" — 2.4V,

T(0) = 1000, I(0) = 0, V(0) = 0.001.

Bu parametre setinde dikkat edilmesi gereken bir nokta zaman birimi olarak giin se-
cilmis olmasidir. Problem (4.1)’in Lucas kollokasyon yontemiyle ¢oziilmesinde zaman
araligm ¢t = 0 ile ¢ = 1500 giinler1 aras1 olarak belirleyecegiz. Boylece, yontemin uy-
gulamigindaki 7., parametresi 75,, = 1500 olarak belirlenmistir. Yontem N = 2’den
N = 10’a kadar biitiin N degerleri i¢in uygulanmustir. Ornegin N = 2 i¢in elde edilen

dogrusal olmayan denklem sistemi asagidaki gibidir:

0.02ag + 5.5a; + 4125.02a; — 0.00008a2 — 0.06a9a; — 45.00016apas — 16875.06a1a5 — 11.25a3
—6328170a2 — 0.00008apby — 0.03agh; — 22.50000008a0by — 0.03a1by — 11.25a,b; — 8437.53a;1 by
—22.500008a2by — 8437.53a2b; — 6328170asby — 0.000096a¢cy — 0.036a¢c; — 27.00009a¢c2 — 0.036a41 ¢y

—13.5a;¢; — 10125.03a;1¢c2 — 27.00009a2¢; — 10125.03a2¢; — 7593804azcy = —10
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—0.52by — 197b; — 147750.5b5 + 0.00008apcy + 0.03agc; 4+ 22.50008agcs + 0.03a1¢o + 11.25a1 ¢4
+8437.53a1¢co + 22.50008aqc) + 8437.53as¢1 + 6328170a5¢o = 0
4800y + 1800000, + 135000480b5 — 4.8¢o — 1802¢; — 1351504¢5 — 0.000096a¢co — 0.036a0c1
—27.000096agcs — 0.036a1co — 13.5a1¢; — 10125.03a,¢o — 27.00009a5¢) — 10125.03a¢; — 7593804as¢c0 = 0
0.02a¢ + 13a; 4+ 19500.02a5 — O.OOOOSa(Q) — 0.12aga, — 180.0001agas — 135000.1a a0 — 45(1%
—101250180a2 — 0.00008apby — 06agb; — 90.00008agby — 0.06a;by — 45a,b1 — 67500.06a; by
—90.00008asbg — 67500.06a2b; — 101250180a2b2 — 0.000096a¢cy — 0.072agc; — 108agce — 0.072a1 ¢y
—54aic; — 81000.07aica — 108ascy — 810000.07aqc; — 121500216a5¢5 = —10
—0.52by — 392b; — 588000.5b2 + 0.00008aco + 0.06agc; + 90.00008agc + 0.06a1co + 45a;1¢q
+67500.06a;c2 + 90.00008a2cy + 67500.06a2c; + 101250180az¢ce = 0
480bg 4 3600006, + 540000480b5 — 4.8¢co — 3602¢; — 5403004¢c5 — 0.000096a¢cy — 0.072agcy
—108agco — 0.072a1¢o — 54aic; — 81000.07a1c2 — 108ascy — 81000.07asc; — 121500216a9¢0 = 0
2ay + 2a, = 1000
2b; +2b3 =10
2¢1 + 2¢3 = 0.001
Denklemlerin yazilmasinda 7 anlamli figiir kullamlmistir. Ik 3 denklem ¢, = 750 kol-
lokasyon noktasina, ikinci 3 denklem #; = 1500 kollokasyon noktasina, son 3 denklem
ise baglangi¢ kosullarina karsilik gelmektedir. Bu dogrusal olmayan denklem sisteminin
cOziilmesiyle, bilinmeyen katsayilar

ag = 499.9987, a; = —2.317731, as = 0.001286996, by = 0.00005212386, b; = 0.0935302,

by = —0.00005212386, ¢y = 0.005706582, c¢; = 9.342034, co = —0.005206582

olarak bulunur. Bu katsayilar kullamilarak, N = 2 se¢imine karsilik gelen yaklagik ¢o-
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1000 1000
—T,() —T.
750 750
500 500
250 _—
0
0
0 500 ¢ (4iin)1000 1500 0 500 ¢ (i) 1000 1500
c d
1000 (c) 1000 (d)
—T, — T
750 750
500 500
250 250
0 0
0 500 ¢ (1 in) 1000 1500 0 500 ¢ (5iin)1000 1500

Sekil 4.1. Ornek (4.1) icin (a) N = 3, (b) N = 5, (¢) N = 8, (d) N = 10 degerlerine
karsilik gelen saglikli hiicre popiilasyonu 7’5 nin ilk 1500 giin i¢in grafikleri

zlimler
TQ(t) = aoLg(t) -+ CL1L1 (t) + CZQLQ(t)

= 0.001286996t> — 2.317731t + 1000,
I(t) = boLo(t) + b1 L1(t) + baLo(t)
= —0.00005212386¢ + 0.09353022t,
Vo(t) = coLo(t) + c1L1(t) 4+ coLo(t)
= —0.005206582t* + 9.342034¢ + 0.001
olarak elde edilir. Ayni islemleri 10’a kadar olan diger /V degerleri i¢in de gerceklestirdik.
Sonugta elde edilen yaklasik coziimlerin bazi NV degerleri i¢in grafikleri Sekil 4.1., 4.2.
ve 4.3.’te gosterilmistir.

Sekil 4.4.’te ilk 50 giin i¢in saglikli ve enfekte hiicre ile serbest viriis popiilasyonlari
birlikte gosterilmistir. Beklendigi gibi serbest viriisle birlikte enfekte hiicre popiilasyonu
da artmakta, saglikli hiicre popiilasyonu ise azalmaktadir. Belli bir noktadan sonra bu
durumu grafik iizerinde gézlemlemek zorlastig1 icin ilk 50 giinden sonrasina yer verilme-
misgtir.

Elde ettigimiz ¢oziimlerin gercege ne kadar uygun oldugunu 6l¢mek icin Boliim 3.6.’da
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(@) (€)

40
40
30 %
20 o
10 — 1l 10 el T8
0 0
0 500 ¢ (gin) 1000 1500 0 500 ¢ (5iin) 1000 1500
(b) (d)
40 | &0
|
30 | 40
|
20 |
- | 20
— L] — 1M
0 ' 0
0 500 1000 1500 0 500 1000 1500
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Sekil 4.2. Ornek (4.1) icin (a) N = 3, (b) N = 5, (c¢) N = 8, (d) N = 10 degerlerine
karsilik gelen enfekte hiicre popiilasyonu /x’nin ilk 1500 giin i¢in grafikleri

(@)

4000

4000
3000 3000
2000 2000

1000
0 1000 — A0
0 0
0 500 ¢ (4in)1000 1500 0 500 ¢ (i) 1000 1500
(b) (d)
4000
4000
2000
2000
—V, () —V¥i5\d
0 0
0 500 1000 0 500 1000 1500
t (gun) t (glin)

Sekil 4.3. Ornek (4.1) icin (a) N = 3, (b) N = 5, (c) N = 8, (d) N = 10 degerlerine

karsilik gelen serbest viriis popiilasyonu Vy nin ilk 1500 giin icin grafikleri
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10*
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Sekil 4.4. Ornek (4.1) icin saglikli, enfekte hiicre yogunluklar1 ve serbest viriis popiilas-

yonunun ilk 50 giin i¢in birlikte grafikleri

tanimladigimiz R[Ty], R[Iy] ve R[Vy] rezidiiellerinden yararlanacagiz. Bunlar farkli NV
degerleriyle elde ettigimiz 7Ty,/ ve Vy yaklasik ¢oziimlerinin sistem (1.4)’te yazilma-
styla elde edilen fonksiyonlardir. Dolayisiyla bu rezidiiellerin mutlak degerleri ne kadar
kiiciik olursa karsilik gelen yaklasik ¢oziimler o kadar isabetli kabul edilecektir. Sekil
4.5., 4.6. ve 4.7.’de soz konusu mutlak rezidiiellerin grafikleri N = 3,5, 8, 10 degerleri
icin goriilmektedir. Genel olarak N degeri arttikca (Serbest viriis popiilasyonuna karsi-
lik gelen rezidiiellerin N = 8’den N = 10’a cikarken sergiledigi davranis hari¢) mutlak
rezidiiel degerlerinin sifira yaklasti§1 goriilmektedir. Aynt durum, s6z konusu degerlerin
listelendigi Cizelge 4.1., 4.2. ve 4.3.’ten de anlasilmaktadir. Cizelgeler yorumlanirken,
secilen ¢ degerinin belli bir /V i¢in kollokasyon noktasina denk gelmesi durumunda, o N
degerine karsilik gelen mutlak rezidiiel degerinin daha biiyiik N degerlerlerine karsilik
gelene kiyasla daha kiigiik olmasinin kollokasyon yonteminin dogasindan kaynaklandigi
g6z oniinde bulundurulmalidir. Ornegin, ¢+ = 500 degeri N = 3 icin bir kollokasyon nok-
tas1 oldugundan, |R[73](500)| degeri, ¢izelgede bu degerin saginda kalan |R[75|(500)],
|R[T3)(500)| ve | R[T10)(500)| degerlerine gore daha kiiciik olmaktadir. Ayn1 zamanda se-
killerde de goze carpan bu durum, genel olarak daha biiyiik /N degerlerine daha kiiciik
mutlak rezidiiel degerlerinin karsilik geldigi gercegini degistirmemektedir. Dolayisiyla,
N degerini arttirdikca bulunan yaklasik ¢éziimlerin daha isabetli oldugu anlasilmaktadir.

Buldugumuz yaklasik ¢éziimlerin gercege uygunlugunu dlgmenin bu ¢éziimlerin mut-

lak rezidiiellerini goz Oniine almaktan baska yontemleri de vardir. Bu yontemlerden biri,
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Saghkh T4 hiicreleri icin bulunan ¢oziimlerin mutlak rezidieli

10% Y %
IE. “"-I; 54l
10 i % &
10—10 L E i
‘—IR[TSI(UI v IRIT 10l IRITGI(O)] oo IRIT, 50
0 500 t (guin) 1000

1500

Sekil 4.5. Ornek (4.1) i¢cin N = 3,5, 8,10 degerlerine karsilik gelen yaklagik saglikli

hiicre poptilasyonu 7’5 ’nin ilk 1500 giin i¢cin mutlak rezidiielleri

Enfekte T4 hiicreleri i¢in bulunan ¢éziimlerin mutlak rezidiieli

___\\ o
ooyl
T
ol .1;\ / 4
TN i
Vi Va Y |
10 | RH E'i li‘. E : :
10 E : ! s il 1§ . i 1 4
[ IRUJO -~~~ RO~ RGO rrm [RI IO
0 500 t(gtn) 1000 1500

Sekil 4.6. Ornek (4.1) icin N = 3,5,8,10 degerlerine karsilik gelen yaklagik enfekte

hiicre popiilasyonu 7/ ’nin ilk 1500 giin i¢in mutlak rezidiielleri

Serbest viriis icin bulunan ¢éziimlerin mutlak rezidiieli

~ e
i e

L v Xy

] \ Vi
10 i f }f 'ui i i
il |l i i i {
it [l I ! i i 8
! | | | | | &
il I I ! 1 ..

|—]R[V3](l){ === RIV_JI)| — == |RIV )] =mmrememe IRV, o] )J|
_10-3 | T L I I I I 1 =
0 500 t(gun) 1000 1500

Sekil 4.7. Ornek (4.1) icin N = 3, 5, 8, 10 degerlerine karsilik gelen yaklasik serbest viriis

popiilasyonu V nin ilk 1500 giin i¢in mutlak rezidiielleri
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Cizelge 4.1. Ornek 4.1 icin cesitli N degerleriyle bulunmus saglikli T4 hiicresi popiilas-

yonunun |R[Ty](t)| mutlak rezidiielinin baz1 ¢ giinleri i¢in degerleri

t N=3 N=5 N=28 N =10

0 2.4 x 1075 2.4 x 1075 2.401 x 1075 2.401 x 10~°
250 7.5 x 1076 1.109 x 107¢ 3.86 x 1077  1.46 x 10~
500 8.834x 10710 4.63x1077 4924 x10°% 1.102 x 10~%
750 1501 x 107%  2.794 x 10~7 3.229 x 10~® 6.485 x 1078
1000 895 x 10710 224x1077 1.081 x10~7 1.546 x 10~7
1250 1.499 x 1076  2.563 x 10=7 3.981 x 10~7 1.646 x 10~7
1500 1.018 x 1072  8.486 x 1078  6.005 x 10~7 1.642 x 10~7

Cizelge 4.2. Ornek 4.1 igin cesitli N degerleriyle bulunmus enfekte T4 hiicresi popiilas-

yonunun | R[Iy](t)| mutlak rezidiielinin bazi1 ¢ giinleri i¢in degerleri

t N=3 N=5 N=38 N =10

0 2x10°° 2x10°° 2x107° 2x107°
250  6.25 x 1076 9.261 x 1077 318 x 1077 1.158 x 1077
500  9.087 x 10711 3.845 x 1077 4.281x 1078 1.314 x 10~8
750 1.25 x 1076 2.34 x 1077 1.229 x 1072  2.189 x 10~?
1000 9.087 x 1011 1.924 x 10~7 2.325 x 108 3.286 x 10~?
1250 1.25 x 1076 1.849 x 10~7  6.212x 10~8 2.054 x 10~8
1500 9.087 x 10711 3579 x 10719 1229 x 1079 2.189 x 10~?

Cizelge 4.3. Ornek 4.1 icin ¢esitli N degerleriyle bulunmus serbest viriis popiilasyonunun

| R[V|(t)| mutlak rezidiielinin bazi ¢ giinleri i¢in degerleri

t N=3 N=5 N =28 N =10

0 242 x 1073 2416 x 1073 2.409 x 103 2.404 x 103
250  7.589 x 1074 1.192 x 10~* 2.341 x 10~® 6.009 x 10~
500 3.668 x 107% 3.864x107° 1.978 x 107°> 1.825 x 107°
750 1.474 x 10~* 3.584 x 107° 1.451 x 10~° 1.956 x 10~5
1000 3.668 x 107% 1.551 x 1075 1.188 x 10™° 2.021 x 10~°
1250 1.547 x 107* 2993 x 107° 2.21 x 107®  2.226 x 1075
1500 3.668 x 1076  7.616 x 1076 1.451 x 107° 1.956 x 10~°
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Sekil 4.8. Ornek (4.1) i¢in Runge-Kutta 4 yontemiyle bulunan saglikli hiicre popiilasyo-
nunun ilk bir y1l icin grafigi

&5 Enfekte T4 hiicre popiilasyonu igin RK4 ¢éziimi

400
300 -
200

100 -

0 100 t (giin) 200 300

Sekil 4.9. Ornek (4.1) i¢in Runge-Kutta 4 yontemiyle bulunan enfekte hiicre popiilasyo-

nunun ilk bir y1l i¢in grafigi

coziilmek istenen tipte problemler i¢in giivenilir sonuglar verdigi bilinen bir sayisal yon-
temden yararlanmaktir. Biz bu amagla 4’{incii mertebeden Runge-Kutta(RK4) yontemini
sectik ve MATLAB 1n standart kiitiiphanesinde bulunan ode 4 5 komutunu kullanarak sis-
tem (1.4)’1 RK4 yontemiyle ilk 1500 giin i¢in ¢ozdiik. Elde edilen sonuglar Sekil 4.8., 4.9.
ve 4.10.’da sunulmustur. Yaklasik 100’iincii giinden itibaren saglikli ve enfekte hiicre po-
piilasyonlarimin sirasiyla 130 ve 35 degerlerinde sabitlendigi goriilmektedir. Serbest viriis
popiilasyonu ise ayn1 zamandan itibaren yaklasik olarak 3500’de sabitlenmektedir.

RK4 yontemiyle elde edilen Trx, gk ve Vi ¢Ozlimleri tam ¢oziimler olmamakla
beraber, elde ettigimiz yaklagik ¢oziimleri bunlarla karsilagtirmak N’nin biiyliyen deger-

eue

leri i¢in hatanin nasil degistigiyle ilgili olarak bize fikir verebilir. Daha acik bir ifadeyle,
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«10% Serbest viriis popiilasyonu i¢in RK4 ¢éziimii

0 100 t (gun) 200 300

Sekil 4.10. Ornek (4.1) icin Runge-Kutta 4 yontemiyle bulunan serbest viriis popiilasyo-

nunun ilk bir y1l i¢in grafigi

Cizelge 4.4. Ornek 4.1°de saghkli T4 hiicresi popiilasyonu igin cesitli N degerleriyle

bulunmus 7’y yaklagik ¢oztimlerinin ve RK4 ¢6ziimiiniin bazi ¢ giinleri i¢in degerleri

t N=3 N =5 N=8 N=10 RK4

300  157.56 15.095 183.78 133.48  130.167
600  —8.3358 198.22 99.416 152.31 130.169
900  138.43 104.02 145.29 127.07  130.168
1200 234.02 128.04 138.36  112.87  130.167
1500 —85.399 —-9.6794 212.69 186.36  130.170

yaklagik ¢oziimlerle RK4 ¢oziimleri arasindaki fark seklinde tanimlanan

erx[Tn(t)] == [Tn(t) — Trx ()|, erx[In(t)] == [IN(t) — IrK(t)],
erx[Vn(t)] :== [Vn(t) = Ver (t)]

yaklagik hatalarina bakacagiz. Bu hatalar, N = 3, 5, 8, 10 se¢imleriyle elde edilmis olan
yaklagik coziimlerin ve RK4 ¢oziimlerinin se¢ilmis ¢ giinlerindeki degerlerinin birlikte
verildigi Cizelge 4.4., 4.5. ve 4.6.”ya bakilarak anlagilabilir. Cizelgelerde saga dogru gi-
dildikce, yani N degeri biiylidiik¢ce yaklagik ¢oziimlerin genel olarak RK4 ¢oziimlerine
yaklastig1 goriilityor. Dolayisiyla, kollokasyon noktasi sayisi NV arttikca, buldugumuz yak-
lagik ¢oziimlerin daha isabetli hale geldigi yorumu yapilabilir. Bu durum, bu yaklagik
cOziimlerin mutlak rezidiiellerinden yola ¢ikarak vardigimiz sonucla uyumludur.

Ayrica 4.1°de saglikli T4 hiicrelerinin mutlak rezidiiellerini yorumlarken bazi aralik-
larda kiiciik NV degerleri icin iyi sonuglarin geldigini gormekteyiz. Yine de, istenmesi

durumunda basit bir prosediire bagvurularak biitiin zaman dilimlerinde en isabetli ¢6ziim-
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Cizelge 4.5. Ornek 4.1°de enfekte T4 hiicresi popiilasyonu igin cesitli N degerleriyle

bulunmus 7 yaklasik ¢oziimlerinin ve RK4 ¢oziimiiniin bazi ¢ giinleri i¢in degerleri

t N=3 N=5 N=8 N=10 RK4

300 34.352 40.756 28.804 36.231  34.851
600  40.738 31.042 37.761 30.831  34.846
900  34.356 36.458 33.535 35.014  34.847
1200 30.408 34.830 33.787 38.070  34.848
1500 44.095 42.406 30.188 31.284  34.843

Cizelge 4.6. Ornek 4.1°de serbest viriis popiilasyonu icin ¢esitli N degerleriyle bulunmus

Vi yaklagik ¢coziimlerinin ve RK4 ¢oziimiiniin bazi ¢ giinleri i¢in degerleri

t N=3 N=5 N=8 N=10 RK4

300  3431.8 40724 2872.7 3617.5  3478.19
600  4069.1 3098.6 3773.0 3077.6  3480.24
900 34309 3641.9 3348.3 3497.2  3479.66
1200 3036.4 2818.4 3130.8 3703.5 3478.44
1500 3197.3 3786.1 3321.7 3560.5  3482.63

ler birlestirilerek simdiye kadar bulunan biitiin yaklasik ¢coziimlerden daha isabetli olan
tek bir ¢oziim elde edilebilir. Bunu Sekil 4.5. iizerinden agiklayalim. Sekilde, yaklasik ilk
600 giin boyunca hemen hemen her zaman 7}, ¢oziimiiniin rezidiielinin en iyi, yaklagik
600 < t < 850 i¢in hemen hemen her zaman 75 ¢oziimiiniin yaklagik 850 < ¢ < 1250
icin 75 ¢6ziimiiniin, 1250 < ¢ < 1500 i¢in de tekrar 7 ¢oziimiiniin en iyi oldugu goriil-
mektedir. Bu sebeple, 75,75 ve T}, yaklasik ¢oziimlerinden

;

Tio(t), 0 < t < 600

Ty(t), 600 < t < 850
yr(t) =
T5(t), 850 <t < 1250

| Tio(t), 1250 < t < 1500

seklinde olusturulan y; ¢6ziimii bu ii¢ ¢oziimden de daha isabetlidir. Benzer prosediir
enfekte hiicre popiilasyonu ve serbest viriis popiilasyonu icin bulunan yaklasik ¢éziimlere

de uygulanarak parcali y; ve yy gelistirilmis ¢oziimleri elde edilebilir.

Ornek 4.2. Bir onceki 6rnekte RK4 yontemiyle elde edilen yaklasik ¢coziimler, ¢oziimle-
rin yaklagik 100’iincii giinden itibaren hemen hemen sabitlendigini diisiindiirmektedir. Bu

sebeple, bu ornekte ¢coziimleri bulacagimiz aralig1 ilk 1500 giin yerine yaklagsik olarak ilk
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bir yila, yani ilk 360 giine kisitlayacagiz. Ayrica, enfekte hiicrelerin patlamasi sonucu or-
tama sacilan viriis sayisin1 gésteren N, parametresinin degerini 1000 yerine 500 alacagiz.

Diger parametre degerleri ayni kalacaktir. Boylece, problem asagidaki gibi olur:

dr T+1

— =10-0.02T"+0.037T |1 — ——— | — 0. 24VT
7 0—0.027"+0.03 ( 1500> 0.000024V'T,
dl

— =0.00002VT — 0.261,
= (4.2)

dv
— = 500- (0.24)1 — 0.000024V'T — 2.4V

T(0) = 1000, I(0) = 0, V(0) = 0.001.

Bu problem de ¢esitli /V se¢imleri ile ¢oziilerek saglikli T4 hiicreleri,enfekte T4 hiic-
releri ve serbest viriis popiilasyonuna karsilik gelen yaklasik ¢oziimler elde edilmistir.

Ornegin N = 3 secimi ile elde edilen bilinmeyen katsayilar su sekildedir:

ap = 499.9285, a; = —13.68112, as = 0.07147391, a3 = —0.0001115531,
by = 0.006057289, by = 0.9790768, by = —0.006057289, b3 = 0.00001038347,

co = 0.3027868, c; = 48.85848 ¢y = —0.3022868, c3 = 0.0005181590.

Boylece NV = 3 secimine karsilik gelen yaklasik ¢oziimler

T5(t) = aogLo(t) + a1 Ly (t) + agLa(t) + as(t)Ls(t)

= —0.0001115531¢ + 0.07147391¢> — 13.68146t + 1000,
I3(t) = boLo(t) + by Ly(t) + baLa(t) + by Ls(t)

= 0.00001038347¢* — 0.006057289¢* + 0.9791080¢,
Va(t) = coLo(t) + c1 L1 (t) 4+ cala(t) + c3L3(t)

= 0.0005181590t* — 0.3022868t* + 48.86004¢ 4 0.001

olarak bulunur. IIk 6rnek problemde oldugu gibi N = 4,5,6,7,8,9, 10 secimleri icin de
yaklagik coziimler elde ettik. Secilen baz1 N degerleri icin elde edilen yaklasik ¢éziimle-
rin grafikleri Sekil 4.11., 4.12. ve 4.13.’te gosterilmistir. Bu yaklagik ¢oziimlerin isabetli-
ligini degerlendirmek i¢in ilk 6rnek problemde oldugu gibi bu ¢oziimlerin rezidiiellerini
g0z Oniine alacagiz. Bu rezidiiellerin grafikleri Sekil 4.15., 4.16. ve 4.17.’de goriilmekte-
dir. Bu 6rnekte de rezidiiel degerlerinin N degeri arttik¢a kayda deger diizeyde azaldigi

anlagilmaktadir. Ayn1 mutlak rezidiiel degerleri secilmis giinler icin Cizelge 4.7., 4.8. ve
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(@)

(b)
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Sekil 4.11. Ornek (4.2) igin () N = 3, (b)) N = 5, (¢) N = 7, (d) N = 10 degerlerine

karsilik gelen saglikli hiicre popiilasyonu 7'y nin ilk bir yil i¢in grafikleri

(@)

(b)

50 60
40 40
30
20 20
10 — (1) — L)
0 0
0 120 . 240 360 0 120 . 2 360
t(giin) t(gin)
(c) (d)
100
60 80
60
40 40
20 23
—1(t — 1L,
0
0 120 240 360 0 120 240 360
t (gun) t (gln)

Sekil 4.12. Ornek (4.2) icin (a) N = 3, (b)) N = 5, (c) N = 7, (d) N = 10 degerlerine

kargilik gelen enfekte hiicre popiilasyonu [ nin ilk bir yi1l i¢in grafikleri
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(a) (b)
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2000
2000
1000
1000
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(c) (d)
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Sekil 4.13. Ornek (4.2) i¢in (a) N = 3, (b) N = 5, (c) N = 7, (d) N = 10 degerlerine

karsilik gelen serbest viriis popiilasyonu Vy nin ilk bir y1l i¢in grafikleri

10 . . . .
102 .
100 -
Tyl
15(t)
V(1)
5
10_2 1 1 1
0 10 20 t(gin) 30 40 50

Sekil 4.14. Ornek (4.2) icin saglikli, enfekte hiicre yogunluklari ve serbest viriis popiilas-
yonunun ilk 50 giin i¢in birlikte grafikleri
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Saghkli T4 hiicreleri igin bulunan g¢éziimlerin mutlak rezidieli
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Sekil 4.15. Ornek (4.2) icin N = 3,5, 7,10 degerlerine karsilik gelen yaklasik saglikli

hiicre popiilasyonu 7'y nin ilk bir y1l i¢in mutlak rezidiielleri

3 Enfekte T4 hiicreleri icin bulunan ¢éziimlerin mutlak rezidiieli
— RIIOI -~ — - RIJO] === RI,)OI o= RI ;10

S

10-8 L

1071D L

0 120 t (glin) 240 360

Sekil 4.16. Ornek (4.2) icin N = 3,5,7,10 degerlerine karsilik gelen yaklasik enfekte

hiicre popiilasyonu [ ’nin ilk bir yil icin mutlak rezidiielleri

4.9.°da listelenmistir. NV degeri arttik¢a rezidiiellerin kii¢iildiigii gézlemimiz ¢izelgeler ta-
rafindan dogrulanmaktadir.

Sekil 4.14.’te ilk 50 giin i¢in saglikli ve enfekte hiicre ile serbest viriis popiilasyonlari
birlikte gosterilmistir.

Bu 6rnek problemde de elde ettigimiz yaklasik ¢oziimlerle karsilastirmak amaciyla
dordiinci mertebeden Runge-Kutta(RK4) yontemini sistem 4.2’ye uyguladik. Sonucta
elde edilen yaklagsik ¢oziimlerin grafikleri Sekil 4.18.,4.19. ve 4.20.’de goriilmektedir.
Asag1 yukar1 100’{incii giinden itibaren saglikli ve enfekte T4 hiicre popiilasyonlarinin
sirastyla 260 ve 35 dolaylarinda seyrettigi anlasilmaktadir. Serbest viriis popiilasyonu ise
Ny = 1000 durumuna gore yaklasik yartya inerek 1800 dolaylarinda sabitlenmistir.

RK4 yaklagik ¢oziimlerini, gesitli NV degerleri icin T, Iy ve Vv Lucas kollokasyon
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Serbest viriis i¢in bulunan ¢éziimlerin mutlak rezidiieli

120 t (gin)

240
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Sekil 4.17. Ornek (4.2) icin N = 3,5,7,10 degerlerine karsilik gelen yaklasik serbest

viriis popiilasyonu V nin ilk bir yi1l i¢cin mutlak rezidiielleri

Cizelge 4.7. Ornek 4.2 igin cesitli N degerleriyle bulunmus saglikli T4 hiicresi popiilas-

yonunun |R[Ty|(t)| mutlak rezidiielinin bazi ¢ giinleri igin degerleri

N =3

N =5

N=T7

N =10

72

144
216
288
360

2.4 x 1075

5.375 x 10~
1.154 x 106
7.702 x 1077
1.342 x 106
2.408 x 1079

2.401 x 1075
4.982 x 10~ 7
1.61 x 1077

7.535 x 1078
3.174 x 1076
5.334 x 10~ 7

2.401 x 1075
2.622 x 10~ 7
1.26 x 1078

2.164 x 10~7
7.243 x 1077
1.434 x 106

2.402 x 1075
2.349 x 10~8
5.027 x 1078
2.826 x 1077
3.723 x 1077
3.949 x 10~ 7

Cizelge 4.8. Ornek 4.2 icin cesitli N degerleriyle bulunmus enfekte T4 hiicresi popiilas-

yonunun |R[/y](t)| mutlak rezidiielinin bazi ¢ giinleri i¢in degerleri

t N=3 N=5 N=7 N =10

0 2x107° 2% 1075 2% 1075 2x 1075

72 448 x107% 4.1x1077 2.098 x 10°7  5.256 x 10~
144 9.602 x 1077 1.384x 1077 222x10"%  5.256 x 1079
216 6.402 x 10~7  9.457 x 108 9.908 x 10~° 5.256 x 10~?
288 1.12x107%  1.008 x 1077 4.878 x 1078 5.256 x 107?
360 2.15x 10710 1378 x 1072 2.937 x 1079 5.256 x 10~?
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Cizelge 4.9. Ornek 4.2 i¢in ¢esitli N degerleriyle bulunmus serbest viriis popiilasyonunun

| R[Vn](t)| mutlak rezidiielinin bazi ¢ giinleri i¢in degerleri

t N=3 N=5 N=7 N =10

0 242 x 1073 2414 x 1072 2.409 x 1073  2.404 x 1073
72 545x107* 393 x107° 1.023x107° 1.96 x 107°
144 1123 x107% 2662x107° 1.223x107° 1.96 x 10~°
216 7.366 x 107° 1.384 x 1076 1.607 x 10~5 1.96 x 10~5
288 1.39x107% 221 x107° 2.073x107° 1.96x 107°
360 3.67x107% 9.82x10% 1.453x107° 1.96 x 10~°

i Saglikh T4 hiicre popiilasyonu i¢in RK4 ¢éziimii

800 |

600 [

400

200

0 . .
0 100 t (giin) 200

3[I)0
Sekil 4.18. Ornek (4.2) icin Runge-Kutta 4 yontemiyle bulunan saglikli hiicre popiilasyo-

nunun ilk bir y1l i¢in grafigi

- Enfekte T4 hiicre popiilasyonu igin RK4 ¢goziimii

300
250
200
150
100

50

0 100 200 300

t{gln)

Sekil 4.19. Ornek (4.2) icin Runge-Kutta 4 yontemiyle bulunan enfekte hiicre popiilasyo-

nunun ilk bir y1l i¢in grafigi
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Sekil 4.20. Ornek (4.2) i¢in Runge-Kutta 4 yontemiyle bulunan serbest viriis popiilasyo-

nunun ilk bir y1l i¢in grafigi

Cizelge 4.10. Ornek 4.2°de saglikli T4 hiicresi popiilasyonu icin cesitli N degerleriyle

bulunmus 7’y yaklagik ¢coziimlerinin ve RK4 ¢6ziimiiniin bazi1 ¢ giinleri i¢in degerleri

t N=3 N=5 N=7 N=10 RK4

60  412.32 322.07 263.08 183.79 174.83
120 194.68 236.10 261.59 288.51  210.50
180 202.51 268.47 284.70 257.59  245.40
240 291.23 267.42 227.50 254.94  257.08
300 316.27 253.49 294.44 268.94  260.06
360 133.06 269.96 248.23 258.58  260.66

coziimleriyle karsilagtirarak bu yaklasik ¢oziimlerin isabetliligiyle ilgili fikir sahibi olabi-
liriz. Boylece, ilk ornekte oldugu gibi, elde ettifimiz yaklagik ¢oziimlerin ¢esitli ¢ anla-
rindaki degerlerini RK4 ¢6ziimlerinin degerleriyle bir arada gérmek ise yarayabilir. Bu ig

Cizelge 4.10., 4.11. ve 4.12.°de yerine getirilmistir.

4.2. Gecikmeli Modele Iliskin Uygulama Sonuclar

Ornek 4.3. Bu rnekte bir dnceki kismun ilk 6rnegindeki parametre degerleri kullanila-

caktir. Gecikme parametresi 7 = 5 alinacaktir. Bdylece, problem asagidaki gibi olur:

dr T+1

— =10—0.027 +0.037 [ 1 — —— ) — 0.000024V T

- = 10— 0.027+0.03 ( 1500) 0.000024V'T,

dI

— =0.00002V (¢t — 5)T(t — 5) — 0.261,

dt (4.3)
dv

— = 1000 (0.24)] — 0.000024V T — 2.4V

T(0) = 1000, I(0) = 0, V(0) = 0.001.
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Cizelge 4.11. Ornek 4.2°de enfekte T4 hiicresi popiilasyonu icin cesitli N degerleriyle

bulunmus 7 yaklasik ¢oziimlerinin ve RK4 ¢oziimiiniin bazi ¢ giinleri i¢in degerleri

t N=3 N=5 N=7 N=10 RK4

60  39.183 60.981 54.193 56.787  11.198
120 48.210 31.271 30.051 41.609  36.484
180 40.539 29.860 38.143 26.144  38.315
240 29.627 42.339 34.380 45.662  36.792
300 28.930 32.182 36.123 29.985  35.933
360 51.905 52.045 41.485 32.231  35.603

Cizelge 4.12. Ornek 4.2’de serbest viriis popiilasyonu icin cesitli IV degerleriyle bulunmus

Vi yaklasik ¢coziimlerinin ve RK4 ¢oziimiiniin bazi ¢ giinleri i¢in degerleri

t N=3 N=5 N=7 N=10 RK4

60  1955.2 3037.0 2721.1 2878.3  578.80
120 2405.6 1567.8 1499.5 2056.9  1856.6
180 2022.6 1490.5 1893.9 1314.8 1921.0
240 14777 2105.7 17259 2269.8  1836.2
300 14424 1608.7 1789.9 1496.5  1792.7
360 2588.4 25819 1777.0 1608.1 1775.6

Daha onceki gecikmesiz modele iligkin iki 6rnekte yaptigimiz gibi, bu gecikmeli mo-
delide N = 3,4,5,6,7,8,9,10 secimleri i¢in de yaklasik olarak ¢ozdiik. Secilen bazi
N degerleri icin elde edilen yaklasik ¢coziimlerin grafikleri Sekil 4.21., 4.22. ve 4.23.’te
gosterilmigtir. Saglikli hiicre sayisi, gecikmesiz modelin aksine, N = 3 durumu haric,
yaklasik ilk 60 giin boyunca baslangic degeri olan 1000’in iizerinde seyretmekte, asagi
yukar1 bu siire zarfinda enfekte hiicre ve serbest viriis popiilasyonu negatif degerlere diis-
mektedir. Bu durumun 5 giinliik tutulma siiresinin etkisi oldugu degerlendirilebilir. Uzun
vadede ise bu tutulma siiresinin etkisi kalmamakta, ii¢ bilinmeyen fonksiyon da gecikme-
nin olmadig1 Ornek 4.1°deki limit degerlerine yaklasmaktadirlar.

Gecikmesiz modele iligkin ornek problemlerde oldugu gibi, elde edilen yaklasik ¢6-
ziimlerin isabetliligini degerlendirmek amaciyla ilk olarak bu ¢oziimlerin rezidiiellerini
g6z Oniine alacagiz. Bu rezidiiellerin grafikleri Sekil 4.24., 4.25. ve 4.26.’da goriilmekte-
dir. Bu ornekte de rezidiiel degerlerinin /V degeri arttikca kayda deger diizeyde azaldig
anlasilmaktadir.

Buldugumuz yaklagik ¢éziimlerin isabetliligini degerlendirmek i¢in alternatif yol ola-

rak yine bilgisayar tarafindan hesaplanan bir niimerik ¢6ziime bagvuralim. Bu is i¢in,
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(@)

(b)

1000 1000
— T4 — T,
750 750
500 500
250 250 /—\/
0 120 240 360 120 240 360
t (gun) t (gun)
(c) (d)
1000 —T, @] 1000 —T,
750 =0
& 500
250 250 [P
0 120 240 360 120 240 360
t (gln) t (gln)

Sekil 4.21. Ornek (4.3) icin (a) N = 3, (b) N = 5, (c) N = 7, (d) N = 9 degerlerine

kargsilik gelen saglikli hiicre popiilasyonu 7 nin ilk bir yil i¢in grafikleri

(@)

(b)

40 40
20 20
— 1) — ()
0 0
0 120 240 360 120 24 360
t (gun) t (gun)
(c) (d)
60 60
40 40
20 20
0 0
— L —1,
0 120 L.240 360 20 . .240 360
t (gln) t (gun)

Sekil 4.22. Ornek (4.3) icin (a) N = 3, (b) N = 5, (c) N = 7, (d) N = 9 degerlerine

karsilik gelen enfekte hiicre popiilasyonu /x’nin ilk bir y1l icin grafikleri
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(a) (b)
4000 4000
2000 2000
—V,() — V()
0 0
0 120 240 360 0 120 240 360
t (giin) t (gin)
(c) (d)
6000 6000
4000 4000
2000 2000
0 0
— V.t — V(1)
0 120 . 240 360 0 120 . 240 360
t(gun) t (gun)

Sekil 4.23. Ornek (4.3) icin (a) N = 3, (b) N = 5, (c) N = 7, (d) N = 9 degerlerine

karsilik gelen serbest viriis popiilasyonu Vi 'nin ilk bir y1l i¢in grafikleri

_x107° Saghkh T4 hiicreleri igin bulunan géziimlerin mutlak rezidiieli
— - |RIT,1(t)
—o [RITJt)
— IRIT, 1)
- —-IRIT, )

0 100 t (gin) 200 300

Sekil 4.24. Ornek (4.3) icin N = 3,5,7,9 degerlerine karsilik gelen yaklasik saglikli

hiicre popiilasyonu 7'y nin ilk bir y1l i¢in mutlak rezidiielleri
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x10® Enfekte T4 hiicreleri igin bulunan géziimlerin mutlak rezidiieli

- —-IR[;](t)
— R[]
—e— R ](t)]
- RO

0 100 t (giin) 200 300

Sekil 4.25. Ornek (4.3) icin N = 3,5,7,9 degerlerine karsilik gelen yaklasik enfekte

hiicre popiilasyonu 7 ’nin ilk bir y1l icin mutlak rezidiielleri

X 10  Serbest viriis i¢cin bulunan ¢éziimlerin mutlak rezidiieli

\~ — [RIV,](t)
i | - IRIV] (1)
I —— RV, (1)
e S VAT
1 ks
05
0 =
0 100 t(gln) 200 300

Sekil 4.26. Ornek (4.3) icin N = 3,5, 7, 9 degerlerine karsilik gelen yaklagik serbest viriis

popiilasyonu V) nin ilk bir yil i¢in mutlak rezidiielleri
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it Saghkh T4 hiicre popiilasyonu igin RK (2,3) ¢oéziimii

800

600

400

200 -

O 1 1 1 1 1 1 1
0 50 100 150 | ()20 250 300 350
Sekil 4.27. Ornek (4.3) icin Runge-Kutta (2,3) yontemiyle bulunan saglikli hiicre popii-

lasyonunun ilk bir y1l i¢in grafigi

Runge-Kutta (RK) (2,3) yontemine dayanan ve MATLAB’daki dde2 3 komutuyla calis-
tirtlan bir algoritmayla bulunmus c¢oziimler Sekil 4.27., 4.28., ve 4.29.’da sunulmustur.
Gecikme teriminin etkisi sz konusu niimerik ¢oziimlerde de kendini géstermektedir. Tu-
tulmanin olmamasi disinda tamamen ayn1 parametre degerlerine sahip Ornek 4.1°de sag-
likl1 hiicre popiilasyonu ¢ = 0 anindan itibaren biiyiik bir hizla diismekte iken, bu kez
uzunca bir siire (yaklasik 50 giin) sabit kalmaktadir. Benzer sabit kalma durumu enfekte
hiicre ve serbest viriis popiilasyonlar: icin de gozlenmektedir; ¢iinkii tutulma siiresi bo-
yunca ortamdaki serbest viriis yogunlugu azalmasina karsin enfekte hiicrelerin sayisinda
bir artis gozlenmez. Bizim buldu§umuz yaklasik ¢oziimler ise polinomlar oldugundan,
belli bir aralik boyunca hemen hemen sabit kalma davranisin1 gdsterememekte ve asagi
ya da yukar1 yonlii hizli bir degisim sergilemektedir. Elde ettigimiz yaklasik ¢coziimlerle
RK (2,3) ¢oziimlerinin se¢ilmis ¢ anlar i¢in aldiklar1 degerler Cizelge 4.13., 4.14. ve
4.15.’te bir araya getirilmistir. Cizelgedeki degerlerden, /N degeri arttikca Lucas kollo-

kasyon ¢oziimlerinin genel olarak RK (2,3) coziimlerine yaklastig1 goriilmektedir.
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Enfekte T4 hiicre popiilasyonu i¢in RK (2,3) ¢oziimii

250

200

150

100
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0 50 100 150 . . 200 250 300 350
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Sekil 4.28. Ornek (4.3) icin Runge-Kutta (2,3) yontemiyle bulunan enfekte hiicre popii-

lasyonunun ilk bir y1l i¢in grafigi

SE X 104 Serbest viriis popiilasyonu igin RK (2,3) ¢oziimii
2 -
15
-1 -
0.5 F
O I I I I I I
0 50 100 150 . 200 250 300 350
t (giin)

Sekil 4.29. Ornek (4.3) icin Runge-Kutta (2,3) yontemiyle bulunan serbest viriis popiilas-
yonunun ilk bir y1l i¢in grafigi
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Cizelge 4.13. Ornek 4.3’te saglikli T4 hiicresi popiilasyonu icin cesitli N degerleriyle

bulunmus 7’y yaklasik ¢oztimlerinin ve RK (2,3) ¢coziimiiniin bazi ¢ giinleri i¢in degerleri

N =3

N =5

N=T7

N=9

RK (2,3)

60

120
180
240
300
360

500.01
222.46
107.82
96.568
129.18
146.14

594.61
96.024
67.937
195.92
110.46
210.04

525.88
82.937
147.98
126.89
130.91
126.09

567.14
61.745
171.69
102.70
132.64
137.00

681.91
191.37
142.00
130.30
129.28
129.89

Cizelge 4.14. Ornek 4.3’te enfekte T4 hiicresi popiilasyonu icin gesitli N degerleriyle

bulunmus [ yaklasik ¢oziimlerinin ve RK (2,3) ¢6ziimiiniin baz1 ¢ giinleri icin degerleri

N =3

N =5

N=T7

N =9

RK (2,3)

60

120
180
240
300
360

39.096
49.211
42.612
31.569
28.350
45.224

44.249
49.962
36.040
29.026
37.841
28.502

60.704
46.003
26.574
42.247
28.046
31.388

64.856
40.470
32.256
36.783
36.009
34.536

47.07
27.76
30.54
33.63
34.717
34.86

Cizelge 4.15. Ornek 4.3 te serbest viriis popiilasyonu i¢in cesitli N degerleriyle bulunmus

Vi yaklasik coziimlerinin ve RK (2,3) ¢6ziimiiniin baz1 ¢ giinleri icin degerleri

N =3

N =5

N=T7

N=9

RK (2,3)

60

120
180
240
300
360

3889.4
4902.1
4254.0
3160.8
2838.3
4502.4

4379.2
5003.3
3612.1
2888.1
3781.5
2834.1

6016.0
4619.0
2657.4
4207.7
2813.8
3144.5

6395.2
4091.3
3198.1
3688.6
3592.5
3445.5

4269.2
27174
3044.5
3364.9
3478.7
3482.7
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5. SONUCLAR

Bu ¢alismada, ilk olarak Perelson (1989) tarafindan ortaya atilan T4 hiicrelerinin HIV
ile enfekte olmasina iliskin dogrusal olmayan bir modelin iki farkli varyantinin Lucas
kollokasyon yontemiyle sayisal ¢oziimlerinin bulunmasi konusu ¢alisilmistir. S6z konusu
varyantlar, Culshaw ve Ruan (2000) tarafindan orijinal modelin boyutunun bir diisiiriil-
diigii tic boyutlu bir sistemin ve yine aymi yazarlar tarafindan viriisiin tutulma siiresinin
hesaba katilarak gecikmeli bir modelin ortaya atilmasiyla ortaya ¢ikmistir. Bu tezde, ge-
cikmesiz sistem iki farkli parametre setiyle, gecikmeli sistem ise tek parametre setiyle
olmak iizere toplam ii¢ adet 6rnek probleme Lucas kollokasyon yontemi uygulanmistir.

Birinci 6rnek problem i¢in ilk 1500 giinliik zaman araliginda yapilan uygulama so-
nuglarina gore, N parametresini arttirmanin elde edilen ¢oziimlerin mutlak rezidiiellerini
belirgin bir sekilde kiigiilttiigii anlasilmistir. Bu durum, NV arttik¢ca elde edilen ¢oéziimle-
rin daha isabetli hale geldigi seklinde yorumlanabilir. Ayrica, ayn1 problem 4’{incii mer-
tebeden bir yontem olan Runge-Kutta 4 (RK4) yontemiyle de ¢oziilmiis, elde ettigimiz
yaklagik ¢oziimlerin RK4 ¢oziimlerine gore hatasi da incelenmistir. Rezidiillerde gorii-
len durum bu karsilastirma sonucunda da gerceklesmis, N parametresi arttikca Lucas
kollokasyon ¢oziimleri RK4 ¢oziimlerine genel olarak yaklagsmistir. Bu hatalar1 daha da
kiictiltmek amaciyla problemin daha dar bir aralikta ¢oziilmesinin etkili olabilecegi de-
gerlendirilmis, bu sebeple inceledigimiz ikinci 6rnekte Lucas kollokasyon yontemi ilk bir
yillik zaman aralifinda uygulanmistir. Bu 6rnekte ayrica, enfekte bir hiicrenin patlayarak
Olmesi sirasinda ortama sagilan viriis sayisi olan N, parametresi de yariya diisiiriilmiis-
tiir. Gerek rezidiieller gerekse RK4 coziimleriyle yapilan karsilagtirma, bu 6rnekte de NV
parametresini arttrimanin ¢oziimleri belirgin bir sekilde daha isabetli hale getirdigini gos-
termistir. Ayrica, RK4 ¢oziimleri problemin enfekte denge durumuna yakinsadigindan,
denge durumuna yaklagsma davranisinin Lucas kollokasyon ¢oziimleri tarafindan da N
arttikca belli bir derecede sergilendigi diisiiniilebilir.

Gecikmeli modelde ise, temel olarak 7 gecikme parametresinin etkisi gozlemlenmeye
calisilmistir. Bu kez, s6z konusu gecikmeli sistem Runge-Kutta (2,3) yontemine dayanan
bir sayisal yontemle (DDE23) de ¢oziilerek Lucas kollokasyon ¢oziimleri i¢in fazladan bir

kontrol olciitii saglanmugtir. Calisilan parametre setinde, bir viriisiin saglikli bir T4 hiic-
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resine girdikten sonra onu aktif bir sekilde enfekte etmesi i¢in ge¢mesi gereken tutulma
stiresi 7 = 5 giin olarak alinmistir. Bu kadarlik bir gecikme terimi, DDE23 ¢oziimlerinin
gosterdigine gore sistemin total davraniginda kabaca 50 giinliik bir gecikme olusturmus-
tur. Lucas kollokasyon ¢oziimlerinde N = 3 durumu hari¢ benzer bir davranig gozlem-
lenmisgtir. Bu durum Lucas kollokasyon yontemininin gecikme teriminin etkisini belli bir
derecede yansitti§1 biciminde yorumlanabilir.

Bu tezde ele alinan Lucas kollokasyon yonteminin, T4 hiicrelerinin HIV ile enfekte
olmas1 modelinin uzun vadeli davranisin1 tam olarak yansitamama seklinde bir zayiflig1
oldugu yorumu yapilabilir. Bu zayiflik, ele alinan baz1 6rneklerde karsilagildigi gibi NV
arttig1 halde Lucas kollokasyon ¢oziimlerinin iyilesmemesi seklinde de kendini gostere-
bilir. Bu durum, Lucas kollokasyon ¢oziimlerinin /V’inci dereceden bir polinom olmasi
ve dolayisiyla N ’nin artmasi sonucu olusan yiiksek dereceli polinomlarin sergileyebildigi
dalgalanma davranisindan kaynaklaniyor olabilir. Bu sorunun iistesinden gelmek igin,
kollokasyon yonteminin s6z konusu probleme farkli fonksiyon tabanlariyla uygulanmasi
yoluna gidilebilir.

Bunlara ek olarak, bu tezin tamamlandig1 2021 yil1 subat ay1 itibartyla tiim diinyay1 bir
yila yakin bir siiredir etkisi altina almig bulunan COVID-19 pandemisinin, bulagict has-
taliklarin yayilimina iligkin matematiksel modellerin ne kadar hayati bir 6nem tagidigini
gosterdigini belirtmek isteriz. Bu tezin problemi bir viriisiin niifus i¢indeki yayilimindan
ziyade bireydeki gelisimiyle ilgili olmakla birlikte, bu iki problemin matematiksel olarak
benzer tipte modellere yol actig1 bir gercektir. Bu durum, bu tezde ele alinan yontemin
gerek COVID-19 gerekse diger bulasici hastaliklara iligkin yayilma siireclerinin anlagil-
masina katki saglayabilecek potansiyelde oldugunu diisiindiirmektedir.

Sonug olarak, bu tezde elde edilen sonuclar, ¢alisilan sayisal yontemin, sadece ele
alinan problemde degil, benzer 6zellikteki diger problemlerde de iimit verici sonuglar
doguracagini diistinmemiz i¢in yeterli bir ¢ikis noktas1 saglamaktadir. Bu bakimdan, bu

tez ¢alismasinin, sayisal yontemlerle ilgili literatiire bir katki sundugu kanaatini tagiyoruz.
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