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ABSTRACT

FAST HIGH-DIMENSIONAL TEMPORAL POINT

PROCESSES WITH APPLICATIONS

Large sets of continuous-time discrete event streams are often in the focus of

seismology, neuroscience, finance, behavioral science among other scientific and engi-

neering disciplines. In this work, we explore a set of novel models and algorithms to

learn from such data at scale, in the presence of a large number of events and event

types. First, we develop two algorithms for estimating high-dimensional multivari-

ate Hawkes processes with a low-rank parameterization. The first approach leverages

a novel connection to nonnegative matrix factorization, which we use to propose a

stochastic gradient descent algorithm. We then demonstrate, via a moment-based ap-

proach, that we can reduce the parameter estimation problem to a single low-rank

approximation. Notably, both approaches require only a few scans of the data, feature

well-known matrix decompositions as subroutines, and yield fast parameter estimation.

We also propose global-local temporal point processes (TPP), multidimensional TPP

models that model self- and mutual-excitation patterns at di↵erent scales of time. One

such model, FastPoint, relies on deep recurrent neural networks to approximate the

mutual excitation pattern, and results in several orders of magnitude faster learning.

Global-local TPPs also allow for substantially faster sequential Monte Carlo sampling,

greatly accelerating the current state of the art in simulating temporal point patterns.

Finally, we propose a novel application area for TPPs, applying ideas from renewal

processes and deep learning to intermittent demand forecasting. Our contributions

aim to remove both of the main challenges—scalable learning and inference—facing

the adoption of high-dimensional TPP models.
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ÖZET

HIZLI YÜKSEK BOYUTLU ZAMANSAL NOKTA

SÜREÇLERİ VE UYGULAMALARI

Büyük ölçekli sürekli-zamanlı ayrık olay akışları deprembilim, sinirbilim, fi-

nans, davranış bilimi ve birçok diğer bilim ve mühendislik disiplininde sıkça odak

konusudur. Bu çalışmada, bu tür verilerden ölçeklenebilir bir şekilde—yüksek sayıda

olay verisi ve olay türü altında—öğrenme sağlayacak yeni bir dizi model ve algoritma in-

celenmektedir. Öncelikle yüksek-boyutlu çok-değişkenli Hawkes sürecinde düşük-ranklı

parametre kestirimi için iki algoritma önerilmiştir. İlk olarak, negatif olmayan matris

ayrışımı ile yeni bir bağlantı üzerine kurulu bir rassal eğim iniş algoritması verilmiştir.

İkinci olarak, moment-tabanlı bir yaklaşımla kestirim probleminin tek bir düşük ranklı

ayrışıma indirgenebileceği gösterilmektedir. İki yaklaşımda da verinin birkaç kez taran-

ması yeterlidir, yaygınca bilinen matris ayrışımları alt yordam olarak kullanılmaktadır,

ve hızlı ve yüksek başarımlı parametre kestirimi sağlanmaktadır. Ayrıca, öz-uyarım

ve türler arası uyarım davranışlarını farklı zaman ölçeklerinde tarif eden, global-yerel

zamansal nokta süreçleri (ZNS) adıyla yeni bir ZNS sınıfı tanımlanmıştır. Bu sınıfın

bir örneği, FastPoint, türler arası uyarım örüntülerini bir derin özyineli sinirsel ağ

ile kestirerek eşdeğerlerinden yüzlerce kat daha hızlı öğrenme sağlamaktadır. Global-

yerel ZNS modelleri, sıralı Monte Karlo yöntemleri ile çok daha hızlı örnek çekilmesini

sağlamakta ve bilinen nokta süreci benzetimi yöntemlerinin tümünden daha verimli

sonuç üretmektedir. Son olarak, ZNS modellerinin uygulama alanları, seyrek talep

tahmini problemine yenileme süreçleri ve derin öğrenme yöntemlerinin uygulanmasıyla

genişletilmiştir. Çalışmamız, yüksek boyutlu ZNS modellerinin yaygın kullanımının

önündeki iki büyük engeli—öğrenme ve çıkarımı ölçeklemenin zorluğunu—gidermeyi

amaçlamaktadır.
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1. INTRODUCTION

1.1. Motivation

Many real-world phenomena can be represented as instantaneous events in con-

tinuous time. Often, one is concerned with making sense of the underlying process

that gives rise to these events, usually when many records belonging to multiple types

of events are available. We give some examples in the next few paragraphs.

Much of quantitative financial analysis focuses on price movements in aggregated

frames of time, and analysts build models of how these time series move in sequence.

However, in modeling actual market dynamics that jointly give rise to prices, the

artifact of interest is the so-called trade-and-quote data that contains records of billions

of buy/sell orders belonging to thousands of assets, happening in continuous time [1–3].

For example, see the top row of Figure 1.1, where the timestamps of price-shifting trades

in an interbank currency market are illustrated as points in time [4].

Figure 1.1. Examples of point processes.
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The circuitry that commands human behavior is a neuronal network of 1011 cells,

in constant communication with each other. Neurons “fire” asynchronously, generat-

ing “spikes,” as they encode and convey information downstream. The middle row of

Figure 1.1 illustrates voltage readings with spikes on a neuronal membrane. Even for

model microorganisms, understanding this circuitry requires inference over millions of

such impulses, all observed in continuous time, across thousands of di↵erent neurons.

Similarly to finance, understanding the most granular level of data demands interpre-

tation of continuous time events—“spike trains”—across many entities that collectively

amass enormous data sets [5–9].

Increasingly, social media is a key source of data for studies of how people interact

and influence each other. Identifying how information, news, and opinions disseminate

through online social media can require many forms of analysis such as looking at

statistics of the network over time, or carrying out a static analysis of the social graph

structure. Again, however, zooming in and taking the full data into account requires

that one is able to model individual social interactions, happening asynchronously,

across millions of entities, and at web scale [10, 11].

Finally, accurate models of seismic systems account for relationships of individual

events across time and types (e.g., the fault lines they occurred on). In the last row of

Figure 1.1 earthquakes in and around Malatya, Turkey are shown with their timestamps

on the x-axis [12].

In this work, we deal with models aimed at learning from such data. Specifically,

we build stochastic models for discrete events—events that occur instantaneously as a

point in continuous time.

1.2. Challenges Addressed

We seek to understand the dynamics of large systems where individual phenomena

of interest occur asynchronously, i.e., they are best cast in a continuous time formalism.
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We will see that these systems are best modeled with temporal point processes (TPP),

models of random point configurations on the real line—interpreted as time. Starting

from elementary building blocks in modern machine learning and stochastic process

literatures, we will explore several directions in building new models and inference

methods.

Our first challenge was already highlighted in the previous section. Taking full

account of the granular temporal data instead of “aggregating” time, the scale of data to

be processed multiplies by orders of magnitude, greatly exacerbating the computational

challenge. As such, our work will propose approaches where scalability in the number

of events is a key concern.

We will specifically focus on cases where, beyond the continuous time formalism,

one is faced with data where events are endowed with marks, i.e., additional features.

In our examples, we referred to spikes of di↵erent neurons or buy/sell orders on mul-

tiple assets. Indeed, a common problem is scaling TPP inference when events can be

identified as one of too many such entities. Especially when relationships between these

entities are non-trivial, learning is greatly hindered by the computational requirement,

as is sampling from learned models for predictive inference. This problem, also referred

to as high-dimensionality, is the main issue which our models and inference methods

address.

Having introduced some of the key concerns of our work that appear in the title,

let us focus on the two remaining claims. Often, applications dictate that inference

occurs in the same scale of time in which observations are made, e.g., in the stock

market. As such, despite the large scale of data at hand, the importance of having

fast computational routines for processing point data is paramount. Here, we work

towards “fast” high-dimensional TPP algorithms. Finally, we will explore experiments

in a wide span of potential application domains, ending the final chapter with a rather

unusual application to retail demand forecasting.
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1.3. Objectives and Contributions

The initial research direction of this study was focused on probabilistic learning

and inference algorithms for high-frequency finance, just as in the beginning of the

previous section. Although TPP ideas had been explored in-depth in quantitative

finance, many of the techniques developed in this literature were applicable to common

application domains of data mining and machine learning. We also noted, in the light

of a series of recent papers that started in 2017, that many ideas from machine learning

could be applied in contexts traditionally addressed with TPPs. As such, our research

was greatly a↵ected by recent developments and changed tack several times. Finally,

however, it resulted in several distinct contributions in the intersection of machine

learning, TPPs, and applications. Our contributions can be summarized as follows.

(i) We explore accelerated learning of high-dimensional multivariate mutually-exciting

point processes, or multivariate Hawkes processes (MHP). Specifically, we explore

a low rank Hawkes process (HP) where we enforce low-rankness on the infectiv-

ity matrix. We show that this model is naturally related to nonnegative matrix

factorization (NMF), which leads to a set of fast learning algorithms for general

low-rank MHP.

(ii) We propose a new algorithm for learning a low-rank MHP with a symmetric ker-

nel. We show that a pass-e�cient and fast learning algorithm can be attained

by invoking the moment-matching approach to parameter estimation. Our algo-

rithm requires a single scan of the data set, and reduces parameter estimation to

a symmetric low-rank approximation problem. Interpreting the MHP kernel as

parameterizing network structure that governs how di↵erent marks excite further

events from each other, we show that our approach is closely linked to spectral

clustering, and results in a natural way to cluster large sets of asynchronous event

streams.

(iii) We propose a deep learning-driven approach to high-dimensional TPP learning.

Our model, FastPoint, leverages observations made in recent papers that fuse

deep learning and TPPs. However, instead of approximating an intensity function
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directly with a recurrent neural network, we use neural networks to approximate

mutual-excitation structures while leaving “local” TPPs to be simpler processes.

This is the first application of a “global-local” time series modeling approach to

temporal point processes, and results in two orders of magnitude faster learning

and improved predictive accuracy.

(iv) We focus on a largely underexplored area in TPP research, fast and scalable sim-

ulation (sampling). To that end, we explore sequential Monte Carlo (SMC) in

the context of multivariate TPPs. Apart from being one of the first to apply

SMC in the backdrop of TPP modeling, we show for the first time that it re-

sults in far superior speeds of inference while keeping the quality of predictions

(i.e., the e↵ective sample size) constant. We observe that certain SMC routines

are naturally parallelizable, making predictive inference significantly simpler—

conceptually and computationally—than the only approach in sampling-based

inference in TPPs, Ogata’s thinning method.

(v) We finally focus on a novel application domain for TPPs: retail demand forecast-

ing. Inspired by neural TPPs, we propose several models to tackle the “intermit-

tent demand forecasting” problem studied in the forecasting and inventory control

literature. Specifically, we show that discrete analogues of self-modulated renewal

processes, which we call discrete-time deep renewal processes, outperform previ-

ously proposed probabilistic models. Moreover, we also explore scenarios where

“timestamps” are available for each demand, casting the problem in a continuous

time formalism for the first time.

(vi) A number of open-source libraries [12] or contributions [13,14] have resulted from

our work, expanding the somewhat limited availability of tools for learning with

TPPs.

1.4. Organization of The Thesis

In Chapter 2, we start by giving general background on TPPs and their variants,

the principal theoretical devices that we use throughout this thesis. Namely, we set

up the notation through an introduction of some of the elementary TPP theory, with
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Poisson processes and renewal processes. We then introduce Hawkes processes (HP),

one of the most popular models for modeling temporal interdependencies of individual

occurrences, and its multidimensional variant, the MHP. We introduce general nota-

tion for self-modulating processes, and moment (cumulant) representations of general

weakly stationary multidimensional TPPs (MTPP). We finish by reviewing the latest

advances in the machine learning literature, giving a brief introduction to deep learning

and a review of neurally-modulated TPPs.

In Chapter 3, we focus on low-rank MHPs. After introducing previous approaches

in the same direction, we draw links between low-rank factorization methods, graph

clustering approaches, and MHPs.

In Chapter 4, we introduce FastPoint, and global-local TPPs in general. Here

we also explore predictive inference in MTPPs, and work on how SMCs apply both

for TPPs in general and in the specific context of FastPoint. We test our model and

algorithm on several popular TPP data sets.

In Chapter 5, we apply ideas from earlier chapters to intermittent demand fore-

casting. To that end, we formalize two new classes of TPP models based on deep

learning, and give experimental results on widely-used benchmark data sets. We con-

clude this thesis, discussing potential next steps, in Chapter 6.
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2. BACKGROUND

This chapter aims to equip the reader with a general understanding of the theory

on which our contributions build. Specifically, we aim to give a tutorial introduction

to TPPs, at a level that su�ces only for introducing the rest of the material. We

then introduce HPs, discuss some common properties and uses for them. Finally, we

introduce deep (or “neurally-modulated”) TPPs, recent advancements in the machine

learning community.

2.1. Temporal Point Processes

Stochastic processes are collections of random variables {Xt} where t is some

suitable index set [15, 16]. Often, the index set in which t takes values obeys a total

ordering, and is interpreted as time. If the set of t is finite or countable, the process is

referred to as a discrete time process. When Xt are indexed by the set of real numbers,

the index set is interpreted as continuous time.

A point process, on the other hand, refers to random configurations of points on

general measurable sets, with mild assumptions such as having finitely many points

on bounded subsets. Spatial point processes, for example, determine distributions of

point sets on a geodetic coordinate system. Determinantal point processes describe

random configurations of “points” on finite-dimensional spaces.

A temporal point process (TPP) obeys both definitions. Defined naively, we will

interpret TPPs as distributions of randomly allocated points on the real line [17]. The

real line, in turn, will be used to model time (hence, temporal), and the points to model

some occurrence,1 such as the arrivals of customers to a queue or order arrivals to a

stock market.

1We will interchangeably use the term event, not to be confused with the events of the underlying
sigma field.
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Figure 2.1. A draw from a TPP.

Figure 2.2. A draw from an MTPP.

Just as the random variate, i.e., a draw, from a discrete probability distribution

can be represented with an integer; a draw from a TPP can be represented as a finite

set of points on bounded measurable subsets of R. See Figure 2.1 for an illustration

of one such draw. More concretely, a point configuration on a bounded set (0, T ] is a

set of points {ti}ni=1, 0 < t1 < · · · < tn  T . Without significant loss of generality,

we will require that our point processes are simple. That is, we will require that strict

inequality holds in the timestamps of individual events, i.e., that no two points will

land on each other a.s.

Events at times ti may be equipped with marks, or features, yi 2 Y . Then, a

marked TPP determines the distribution over random point sets each identified as an

ordered pair, i.e., {(ti, yi)}ni=1. When Y is a finite set, indexed by k 2 [d], an equivalent

formalism is to refer to multidimensional (or multivariate) TPP (MTPP)—i.e., a set of

d point processes that are not necessarily independent. For example, if k were to index

users, an MTPP can be used to jointly model timestamps of their tweeting activity. Y

can also be a general feature space, e.g. R+ to denote the size of limit orders on the

stock market, or R2 to model coordinates of earthquakes.

We can now formally reiterate the focus of our work. Until the final chapter,
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we will be concerned with MTPPs in this thesis, focusing on learning and inference

problems for large number of events n, and large number of marks (types) d.

There are several equivalent ways of characterizing a TPP. Before moving to

an introduction of some popular TPPs, let us introduce an equivalent mathematical

device. A counting process is a continuous-time stochastic process, denoted {N(t)}t2R+ ,

or Nt, with two important properties: N(t) take values in nonnegative integers, and

that draws from the process are non-decreasing, i.e., N(t)  N(s) for all t < s. 2 Note

that a counting process equivalently defines a TPP, and vice versa, since N(t) could

be used to represent the count of points until time t. As such, we will use the two

notations, of random point sets and counting processes, interchangeably.

2.1.1. Poisson Process

We start with the “archetypal” TPP [17], the Poisson process [18].

Definition 2.1. (Poisson process on the real line) A Poisson process on the real line is

a random countable subset ⇧ ⇢ R such that for any disjoint subsets Ai of R, N(Ai) =

|Ai\⇧| are independent random variables, elements of ⇧ are distinct and N(Ai) finite

for bounded subsets Ai.

Our definition captures the essence of Poisson processes, described before as com-

plete randomness [18], or complete independence. It also omits one important property

that is often included in definitions of Poisson processes,

Proposition 2.1. If ⇧ obeys a Poisson process on the real line, there exists a positive

measure µ s.t. N(Ai) ⇠ PO (µ(Ai)) .

We refer the reader to [18, Section 1.4] for an elegant proof of Proposition 2.1. Let

N(a, b] be the number of points that fall between a, b in a single draw from the Poisson

2We will use the two notations, X(t) and Xt, interchangeably for stochastic processes in this work.
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process.3 It then follows that, N(a, b] is a random variable, for which E [N(a, b]] =

µ((a, b]).

Aside from µ, or the mean measure [18], let us define a measurable function, the

intensity �, such that

µ(A) =

Z

A

�(t)dt.

This function will be key to our discussions in the future and we will use it to unlock

likelihood-based inference for general TPPs. For our case, the existence of the intensity

is guaranteed by a simple application of the Radon-Nikodym theorem. The most

important interpretation of the intensity is given through the fundamental theorem of

calculus,

�(t) = lim
✏#0

✏�1E [N(t� ✏, t]] . (2.1)

In other words, the intensity function, in a loose analogy with the density function in

continuous probability distributions, specifies the probability that a point will land in

the infinitesimal interval after time t. To understand this, note that our point processes

are simple, i.e. almost surely, no two points coincide. Letting

dN(t) , lim
✏#0

N(t)�N(t� ✏)

✏
,

we have that dN(t) 2 {0, 1} by definition, and that �(t) = E [dN(t)] = P{dN(t) = 1}.

Definition 2.2. A homogeneous4 Poisson process is a Poisson process where �(t) = �,

given � 2 R,� � 0.

In other words, homogeneous Poisson processes have constant intensity, imply-

3Similar to [17], we overload the N(.) notation. when A is an arbitrary set, N(A) refers to the
number of points falling in this set. We write N((a, b]) = N(a, b] removing the redundant parentheses.
Finally, when t 2 R, N(t) = Nt = N(0, t].

4Some authors, such as [17], prefer the term stationary or uniform
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ing µ((a, b]) = �|b � a|. A property we will call stationarity holds trivially, and

N(a, b], N(a+ ⌧, b+ ⌧ ], are distributed identically 8⌧ .

Note that, by Proposition 2.1, for a homogeneous Poisson process we have

P{N(0, b] = 0} = exp(��b), (2.2)

which could also be interpreted as the probability that time of the first occurrence

exceeds ⌧ , or the survivor function P{X1 > ⌧}, letting X1 denotes the first occurrence

time. Then, P{X1  ⌧} = 1 � exp(��⌧), i.e., that the first occurrence time follows

an exponential distribution. Through stationarity, the argument above applies to an

arbitrary point on the real line, in that P{N(0, b] = 0} = P{N(⌧, b+ ⌧ ] = 0}. Finally,

invoking the independence property, both lines of

P{N(0, b] = 0} = P{N(0, b] = 0|N(�⌘, 0] = 1}

= lim
⌘#0

P{N(0, b] = 0|N(�⌘, 0] = 1}

trivially hold. That is, the time to next occurrence is distributed exponentially, inde-

pendently of when the previous occurrence was observed. This result is invariant as the

previous occurrence gets arbitrarily close to the origin. It follows that, the so-called in-

terarrival times of Poisson processes are distributed exponentially. Our argument also

hints at the well-known memoryless property of exponential waiting times, namely that

the time since last occurrence at an arbitrary point in the process yields no information

about the time to the next occurrence. This is a direct consequence of the “complete

randomness” of Poisson processes.

Finally, we must introduce the likelihood function for finite realizations of a Pois-

son process. For a finite realization {ti}Ni=1 of a homogeneous Poisson process on a
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bounded interval (0, T ], we can write

L(�|{ti}) = p({ti}|�)

= lim
✏#0

"
Y

i

P{N(ti, ti + ✏] = 1}P{N(ti�1 + ✏, ti] = 0}
#
⇥ P{N(tN , T ] = 0}

=
Y

i

�

"
Y

i

exp(��(ti � ti�1))

#
exp(��(T � tN))

= �N exp(��T ),

where the first limit is by definition of the intensity function. The second limit is the

probability that no other points are observed, and follows from the independence and

stationarity of interarrival times. We will soon see that this intuition extends beyond

homogeneous Poisson processes where the intensity varies across time, or even when

the intensity is stochastic.

Let us also mention two key results for Poisson processes, the superposition and

mapping properties. For both, we refer the reader to Kingman [18] for complete proofs.

Proposition 2.2. (Superposition property) Given Poisson processes ⇧i, random sub-

sets of R with mean measures µi,
S

i
⇧i is a Poisson process with mean measure

µ =
P

i
µi assuming µ <1.

Proof. First note that the sum of two Poisson random variables is also Poisson dis-

tributed. By induction on the number of Poisson random variables, we can write

SN =
P

N

j=1 Yj is distributed PO(
P

µj). Now, noting that ({Si  r})N
i=1 is a decreas-
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ing sequence of sets (events) for fixed r, so that

P{S  r} = lim
j"1

P{Sj  r} =
rX

k=0

lim
j"1

P{Sj = k}

=
rX

k=0

lim
j"1

1

k!
exp

 
�

jX

⌫=1

µ⌫

! 
jX

⌫=1

µ⌫

!k

=
rX

k=0

1

k!
exp

 
�

1X

⌫=1

µ⌫

! 
1X

⌫=1

µ⌫

!k

proving that S is indeed distributed PO(
P

1

⌫=1 µ⌫).

For extending this argument to Poisson processes, assume for processes ⇧1,⇧2, . . . ,

the point counts on the interval A are denoted N1(A), N2(A), . . . . Note that for the

total count N(A) of the point counts of
S

⇧i, we have that N(A) =
P

i
Ni(A). This

is not a simple result, although it is intuitive that, almost surely, no two points on

di↵erent Poisson process will land on the same point in the union Poisson process (see

the Disjointness lemma in [18]). Then, from our results above, N(A) ⇠ PO(
P

i
µi(A)).

Noting that independence of disjoint sets holds trivially completes the proof.

Our first result guarantees that the union of two Poisson processes is still a Poisson

process. We now introduce the second important result, the mapping theorem. We

give a restricted form of the more general theorem, and skip the proof.

Proposition 2.3. (Mapping theorem) Let ⇧ ⇢ R be a Poisson process, with finite

mean measure µ, and f : R! R be a measurable function such that the induced mean

measure µ⇤(A) = µ(f�1(A)) is non-atomic where f�1(A) , {x 2 R|f(x) 2 A}. Then

f(⇧) is a Poisson process on R with µ⇤ as its mean measure.

Intuitively, As long as the points in f(⇧) are distinct, it follows that N(f�1(A1)),

N(f�1(A2)) are independent and Poisson distributed under the induced mean measure.

However, the distinctness condition is not obvious. See [18, p. 18] for the complete

proof. We must state one important result that derives from this theorem, namely
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that any inhomogeneous Poisson process can be generated from a homogeneous Poisson

process with unit intensity.

Proposition 2.4. Let ⇧ be a Poisson process with unit intensity, that is µ((a, b]) =

|b�a|. Then letting f : R! R be a bijection, f�1(t) =
R

t

0 �(x)dx (�(x) > 0, 8x). f(⇧)

is a non-homogeneous Poisson process with intensity �(x).

Proof. We check the induced mean measure. Note that µ⇤((a, b]) = µ(f�1(a, b])

where f�1(a, b] = {x|f(x) 2 (a, b]} = (f�1(a), f�1(b)] through monotonicity. Then,

µ⇤((a, b]) = f�1(b) � f�1(a) =
R

b

a
�(x)dx. Noting that µ⇤({x}) = 0, 8x by construc-

tion, we can invoke the mapping theorem to complete the proof.

2.1.2. Renewal Processes

The Poisson process, in many regards, is an ideal process. Its main property,

complete independence, is why it is the simplest process to work with, mathematically

and computationally. In many cases, however, this assumption is too limited. For

general TPPs, the complete independence property does not hold. In this section, we

will look at a slightly more general TPP construction.

One way to characterize a family of TPPs is to require that the time between

occurrences, interarrival times, are independent and identically distributed. Such pro-

cesses are called renewal processes. One inspiration for their name is their use in mod-

eling breakdowns in machine parts, those that have to be renewed. Here, the inherent

assumption is that the “lifetime” of the part replaced is identically distributed.

Note that the Poisson process is a renewal process. Beyond having i.i.d. in-

terarrival times, those times obey a simple exponential distribution. General renewal

processes have varying interarrival time distributions, which remove the “complete

independence” property of Poisson processes.
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Let F (x) denote the cumulative distribution function (cdf) of inter-arrival times

in a renewal process which we denote X ⇠ F i.i.d. By definition, F (x) = P{X 

x}. Then, 1 � F (x) = P{X > x}, the survivor function [17], is interpretable as the

probability that a point arrives after an interval longer than t. Finally, we denote the

probability density, pX(x) = p(x) = dF (x)/dx. Then,

P{x < X  x+ ✏|x < X} =
P{x < X  x+ ✏, x < X}

P{x < X} =
P{X  x+ ✏}� P{X  x}

1� F (x)
.

Letting ✏ # 0,

lim
✏#0

✏�1P{x < X  x+ ✏|x < X} =
dF/dx

1� F (x)
=

p(x)

1� F (x)
, (2.3)

where p(x) is the probability density function corresponding to X. In the context of

renewal processes this function �(x) = p(x)/(1 � F (x)) is called the hazard function

[19,20]. Intuitively, �(x)dx is the probability that an occurrence will arrive in (x, x+dx],

on condition that it hasn’t until time x.

Finally, note that solving the simple separable ordinary di↵erential equation

(ODE) (2.3), we have

F (x) = 1� exp

✓
�
Z

x

0

�(s)ds

◆
.

As {x < X  x + ✏|x < X} = {N(x, x + ✏] = 1|x < X}, we observe that the clash of

notation is not a coincidence, and hazard functions correspond to the intensity function

of a Poisson process, introduced above. However, through the general renewal process

construction, we lose the defining independence property of Poisson process. That is,

the occurrence counts in disjoint intervals are no longer independent. This is easily

seen by observing, after an arbitrary point ⌧ , heuristically, the expected point count

�(⌧)d⌧ explicitly depends on when the last occurrence was.

Instead, renewal processes are defined through a certain type of conditional inde-
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pendence structure such that the probability density of the i-th event at ti is dependent

only on the time of the previous occurrence. Concretely, note that the joint density of

all occurrence times factorizes as

p({ti}Ni=1) =
Y

i

p(ti|ti�1, ti�2, . . . ). (2.4)

A renewal process admits a conditional independence structure,

p(ti|ti�1, ti�2, . . . ) = p(ti|ti�1) = p(ti � ti�1).

One could extend this construction. What if the time to the next event was conditioned

not on the last, but the last two occurrences, p(ti|ti�1, ti�2, . . . ) = p(ti|ti�1, ti�2)? This

process is known as a Wold process [17], and could assume many parametric forms.

For example, one could specify that interarrival times follow an autoregressive process.

However, as we shall see, conditional densities of arrival times is not the most convenient

construction to work with. Instead, we will rely on another, namely the conditional

intensity, the first topic of the next section.

Renewal processes will be the focus of Chapter 5, where we will combine them

with deep learning to solve a practical problem.

2.2. Self-modulating Temporal Point Processes

2.2.1. Conditional Intensities and Likelihoods

The property that endows Poisson processes with ease of learning and inference

is the same property that prohibits any realistic modeling of real-world phenomena:

independence. In many discrete-event systems, one is concerned not only with inferring

an underlying intensity of individual independent occurrences, but also with modelling

how events a↵ect each other.
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For example, it is hard to explain earthquake occurrences as a Poisson process.

This is since any meaningful models would account for the fact that earthquakes, while

occurring stochastically, also excite other earthquakes (i.e., aftershocks). Moreover,

it is almost certain that earthquakes do not follow a renewal process. Likewise, stock

market orders do not happen independently, but can occur as reactions to other orders.

In other words, a fixed intensity does not capture scenarios in which random occurrences

of events change the intensity for others. One way to describe such “doubly-stochastic”

TPPs,5 is the conditional intensity, which neatly describes the e↵ect of history on future

events.

In the last section, we specified the density of each point’s time conditioned on

the last occurrence. The probability distribution governing the placement of each

consecutive point was equivalently specified by the density p or the hazard function �.

This construction already hinted at a formal and mathematically convenient way to

specify more general TPPs. In this section, we will heuristically define the conditional

intensity, note that it uniquely determines a TPP, and arrive at a general conclusion

about the form of the likelihood. The introduction of this section loosely follows [17, Ch.

7], which the reader may refer to for a thorough treatment.

Let p(t|Ht)dt denote the probability that there is an occurrence in the small

interval (t, t+ dt], conditioned on Ht—the history of all occurrences until time t. For-

mally, in stochastic process theory Ht is termed the filtration, or an increasing set of

�-algebras. In the rest of this work, however, it will su�ce to think of Ht as a (random)

point set including all points in (0, t]. In line with the notation of [17], we will denote

this conditional density as p⇤(ti) = p(ti|Hti).

Then, we can define the conditional intensity function, by analogy to renewal

processes.

5This general class of TPPs are also referred to as Cox processes.
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Definition 2.3. (Conditional intensity) function is a finite positive function such that

�⇤(t) = �(t|Ht) = lim
✏#0

E [N(t� ✏, t]|Ht]

✏
.

We also note that the relationship p(t) = �(t) exp(�
R

t

0 �(s)ds) still holds in this

case. That is,

�⇤(t) =
p⇤(t)

1� F ⇤(t)
=

d

dt
log(1� F ⇤(t)).

Concretely, the conditional intensity function gives a convenient way to specify how

arrival rate of events changes given the history of points. That is, processes described

by a conditional intensity function often yield a causality interpretation (in the sense of

Granger-causality [21]). It is also convenient since, for reasons analogous to the chain

rule of probability, the likelihood function takes a convenient form,

`(�⇤) = p({ti}Ni=1) =
Y

i

p⇤(ti) (2.5)

= exp

✓
�
Z

T

0

�⇤(s)ds

◆Y

i

�⇤(ti). (2.6)

Note also that, under mild conditions, a conditional intensity function uniquely deter-

mines a TPP (see, e.g., [22]).

We have arrived at a convenient and intuitive way to fully specify a point process

on the real line. TPPs defined in terms of their conditional intensities have been

referred to as evolutionary, or simply as conditional intensity processes, among others

[17, 20, 23, 24]. In the sequel, we will refer to such models as self-modulating TPPs as

in [24]. The next section introduces the most typical self-modulating TPP, which will

feature frequently in the rest of this thesis.
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2.2.2. Hawkes Processes

Hawkes Processes (HP) [25,26], also referred to as self-exciting processes, consti-

tute arguably the most popular class of self-modulating TPPs. Introduced in the 1970s

to study seismic event data, they have been applied in a wide variety of application

domains to date, including neuroscience [9], quantitative finance [27–29], social media

analysis [30–32], network analysis [33, 34], among others.

Definition 2.4. An HP is defined as a self-modulating TPP with the conditional in-

tensity

�⇤(t) = �⇤(t|Ht) = µ+ ↵

Z
dN(t0)g(t� t0). (2.7)

That is, the conditional intensity of the process depends on the history of events

through a linear relationship. Alternatively, put in the more familiar discrete sum

notation instead of the stochastic integral notation,

�⇤(t) = µ+ ↵
X

i|ti<t

g(t� ti), (2.8)

given data {ti}ni=1. Here, the conditional intensity depends on a positive baseline in-

tensity µ > 0 that is often constant across time. It also depends on previous point

occurrences {ti|ti < t}, through the triggering kernel, ↵g(x). Often g(x) is a causal

(i.e., g(x) = 0, 8x < 0) and positive function. It governs temporal relationships among

events, i.e., how events excite each other across time. Note that since g(x) > 0 by

definition, and events only increase the intensity and hence excite further events. For

mathematical convenience, we take
R

1

0 g(x) = 1 without loss of generality. As such,

the function g is called the delay density. The factor ↵ > 0 governs the degree of

self-excitation. Note that, for stationarity, we require that ↵ < 1. ↵ can be interpreted

as the expected number of events that are “caused” by each event, which is why it is

sometimes referred to as the branching ratio, or the infectivity ratio.
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Figure 2.3. A draw from a Hawkes process.

The most common form of the HP is with an exponential delay density, where

g(x) = � exp(��x). This choice agrees with our intuition that additive excitation

e↵ects decay in time—as the delay density g is monotonically decreasing. It also

yields significant computational benefits in computing the likelihood since the process

can now be reduced to a Markov process for reasons analogous to memorylessness of

exponential densities (see Appendix A). See Figure 2.3 for a random draw from a HP

with exponential decay, with the random intensity draw also shown in blue.

Exponential densities do not capture many of the interesting relationships one

can model. For example, one may have excitation patterns that are not necessarily

decreasing in time. In many application domains, it is known that triggering patterns

decay slowly, as in a power-law decay. In seismology, for example, this is known as

Omori’s law [35]. To tackle learning in more general settings, a variety of techniques

for estimating flexible decays have been explored [36, 37]. This function could also be

taken as bounded [4, 33], further simplifying learning and inference.

While an HP accounts for the self-exciting behavior of a single type of event, its

multidimensional extension, the multidimensional Hawkes process (MHP) also treats

mutually exciting behavior. That is, an MHP a↵ords full flexibility to cover both

temporal aspects of excitation as well as cross-mark interactions. Concretely,

Definition 2.5. An MHP, as a set of counting processes [N1(t), · · · , Nd(t)], is defined
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in terms of the conditional intensity functions

�k(t|Ht) = µk +
X

l

Z
dNl(t

0)�klgkl(t� t0).

Here, glk(t� t0) are the set of delay densities that govern the timeline for arrival

of triggered events. Although we can let this function depend on both l the source

mark and k the triggered mark, we will often share the triggering kernel across marks.

The matrix [�]kl = �kl, sometimes referred to as the infectivity matrix or kernel,

describes the self and mutual excitation behavior of the process. For example, �kl = 0.2

conveniently encodes that, in expectation, each event of type l will result in 0.2 events of

type k. We give examples of this behavior in Figure 2.4, where the “mutual-excitation”

e↵ect can be observed. The stationarity condition for MHP is given in terms of the

spectral radius ⇢(�) < 1.

Another convenient property of MHPs is that the matrix � is interpretable as

the weight matrix of a directed graph of causal influence. See, e.g., [32,34,38]. This is

why fast and stable recovery of �, and its spectral analysis, are interesting as graph

discovery and analysis problems. For example, [4] gives an application of HPs to

high-frequency currency trading, where interactions between di↵erent major pairs were

recovered (Figure 2.5).

Another important property of HP is the Poisson-cluster process interpretation

[28, Sec 2.3.7], first explored in [39]. Namely, an HP can be fully characterized in terms

of an immigrant-birth process and a set of Poisson processes. Concretely,

Proposition 2.5. (Poisson-cluster property of HPs) Let ⇧0 be a homogeneous Poisson

TPP given according to the constant baseline intensity µ. For each t(0)
i
2 ⇧0, let ⇧(i)

1

be a terminating non-homogeneous Poisson process according to the intensity function

�(t) = ↵g(t� t(0)
i
); and ⇧(i)

n a set of non-homogeneous Poisson processes according to
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Figure 2.4. Draws from MHPs.

�(t) = ↵g(t� t(n�1)
i

) in general. Then,

⇧0 [
1[

n=0

|⇧n|[

i=1

⇧(i)
n+1

is a HP as defined in (2.7).

We will not prove this proposition although it should be intuitive through the

superposition property of Poisson processes (Proposition 2.2). The Poisson-cluster

property leads to an array of useful tools. Moments of the process can be formulated

invoking the branching process interpretation [40]. The expectation-maximization al-

gorithm for learning process parameters invokes this property [31,41], as does a specific

exact sampling algorithm [42].



23

Figure 2.5. Learned MHP infectivity matrices from high-frequency currency data.

2.2.3. Moments of Weakly Stationary Processes

The fundamental di�culty in fitting HPs, or in general any point process defined

through a conditional intensity function, is that the computation of the likelihood (or

its gradient or expected su�cient statistics), takes time quadratic in the number of

events. To see this, note that each computation of �⇤(ti) is already a sum over all

{tj}j<i, and that the log likelihood computes the intensity for all points. As noted

above, this problem can be alleviated via restricted parametric forms of the delay

kernel g (e.g., exponential or hyperexponential). Another method in which HP kernels

have been estimated is through generalized methods of moments applied, either for

parametric or nonparametric kernel forms [36–38,43,44].

Yet, the definition of moments in the context of MTPPs can be counter-intuitive.

In this section, motivated by the applications above, we give heuristic definitions of

first and second moments of a TPP. We will keep MHP as a running example, and

favor brevity over a full treatment. For more details, we refer the reader to [17, Ch.

7], or the references in this section.

Formally, moment densities of an MTPP are defined as densities admitted by

moment measures [17]. Here, however, we will gloss over this detail and assume such
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densities are always well-defined.

Definition 2.6. (First moment density of an MTPP) Given counting processes {Nk(t)}dk=1,

first moments are defined

m(k)
1 (t) =

E [dNk(t)]

dt
= lim

✏#0

E [Nk(t+ ✏)�Nk(t)]

✏
.

Unpacking the notation above, we have

m(k)
1 (t) =

E [dNk(t)]

dt
=

E [E [dNk(t)|Ht]]

dt
= E [�⇤

k
(t)] ,

where the first equality is by definition, the second by the “tower property” for stochas-

tic processes and the third by the definition of the intensity function. Intuitively, the

first moment of a TPP is the expected intensity at any given point. Let us also define

the second (centered) moment density,

Definition 2.7. (Second centered moment density of an MTPP) Given a set of count-

ing processes {Nk(t)}dk=1, l 2 {1, · · · , d} second centered moments are defined

m(k,l)
2 (t) =

E [dNk(tk)dNl(tl)]� E [dNk(tk)]E [dNl(tl)]

dtkdtl
.

Again, intuitively, the second centered moment is a “covariance” of jump expec-

tations given times tk, tl.

We already referred to weakly stationary TPP above. We define such processes

(a.k.a. covariance-stationary processes) as those where the first and second moment

densities are translation-invariant. Namely, such processes have

m(k)
1 (t) = m̄(k)

1 ,

m(k,l)
2 (tk, tl) = m̄(k,l)

2 (⌧),
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for constant m̄1 and m̄2 that only depends on ⌧ = tk � tl. Assuming ⇢(�) < 1, we had

already noted that this property holds for MHPs.

We heuristically give moment densities for an MHP as,

m1 = (I��)�1µ,

where µ = [µ1, · · · , µd] is a vector of constant background intensities and m1 corre-

sponding vector of first moment densities.

We can also characterize the relationship between integrated moment matrix

[M2]kldt =
R

1

0 d⌧m(k,l)
2 (t, t+ ⌧) and MHP parameters as

M2 = (I��)�1⇤(I��T )�1.

where we define ⇤ as the matrix with µ along its diagonal.

Exact forms of these quantities were given in [40] where the authors rely on

Poisson-cluster interpretation of HPs to compute analytical forms for general-order

cumulants, and [36] where the authors rely on a Doob-Meyer decomposition argu-

ment and work with renewal-type integral equations that result. Recently, Achab et

al. developed a generalized method of moments routine based on the integrated mo-

ments (in their paper, cumulants) of MHP [38]. Bacry et al.demonstrated that an

MHP is fully determined by its first and second moments [45].

2.3. Sampling from a Temporal Point Process

One of the key challenges surrounding TPPs is predictive inference, i.e., charac-

terizing distributions of point occurrences in a future interval given a fitted process.

The main di�culty arises from the fact that the expectation is an integral on an un-

wieldy “point configuration space,” even when the “test function” to be evaluated is
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Algorithm 1: Ogata’s thinning sampler, for sampling in (0, T ]

for samples do in parallel

t 0

while t < T do

�̄ �⇤(t+ ")

Draw z ⇠ E(�̄)

t t+ z

Draw u ⇠ U(0, 1)

if u < �⇤(t)/�̄ then

Add t to sampled points

end

end

endfor

relatively simple. In this light, prediction tasks in TPPs almost exclusively resort to

sampling methods, often also referred to as simulation in the context of TPPs.

Sampling from Poisson or renewal processes is straightforward, one only needs to

sample a set of interarrival times. Yet, an e�cient method for drawing sample point

sets from a self-modulating TPP is not obvious. The traditional algorithm for sampling

in TPPs is Ogata’s method [46]—an adaptation of Lewis’ thinning approach [47] to

conditional-intensity processes. Pseudo-code for the sampler is given in Algorithm 1,

where we let U , E denote standard uniform and exponential distributions respectively.

An important assumption of the method is that �⇤ is non-increasing.

Intuitively, the algorithm proceeds by pointwise rejection sampling. For every

drawn point, the next point is proposed from a “faster” Poisson process, and accepted

or rejected based on the ratio of the true intensity versus the proposal intensity. For

a limited number of cases where the integrated intensity function—the compensator—

can be analytically inverted, an inversion sampler can replace the rejection sampling

substep in the algorithm.
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Input 1
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Hidden layerInput layer Output layer

Figure 2.6. A neural network.

When the process is multivariate, the “proposal” draw is made for all d marks,

and the first accepted point is taken. This results in O(nd) time complexity in sampling,

where n is the number of points drawn.

In Chapter 4, we will explore an alternative sampling approach for TPPs that

results in orders of magnitude faster computation via an approximate sampling routine.

2.4. Deep Learning

Neural networks (NN) are function approximators that are composed of smaller

computational units, called nodes or neurons. Neurons, inspired by those in biological

neural networks such as the visual cortex [48], are individual simple maps from their

inputs to outputs. When functions are composed as layers of such units that each

compute on the output of the previous layer, the networks are referred to as feedforward

NNs. One such network is illustrated in Figure 2.6. The leftmost layer is the input

layer that represents the input of the function to be approximated. The five nodes in

the middle, called hidden units, define a map from the two inputs to an intermediate

state. The two nodes on the right map this state to the outputs of the function.

Concretely, let f : R2 ! R2 be the function defined by the NN in Figure 2.6. In

one specific instantiation of the feedforward NN, the multilayer perceptron (MLP), we

choose the action of each hidden unit and output unit to be an a�ne transformation of
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its inputs, mapped through a nonlinearity. Letting ⌘(.) denote this transformation, we

define ⌘(x|w, b) = �(wTx+ b) where w 2 R2, b 2 R are parameters that are fitted with

data, and �(x) = 1/(1 + e�x) denotes the logistic function. Then, the NN is defined

via the following construction,

f(x) = [⌘(h|wo1 , bo1), ⌘(h|wo2 , bo2)]

[h]i = ⌘(x|whi , bhi).

Here, the set of all ordered pairs (w, b) constitute the parameters of the NN often

learned via a variant of the backpropagation learning algorithm.

Another popular brand of NNs is “recurrent” NNs (RNN) that allow for “self”-

connections in the network architecture, retaining some memory of their inputs. There-

fore, these networks are popular in a wide array of sequence learning tasks, such as

in natural language processing or time-series modeling [49]. One of the most popular

RNN architectures is the long short-term memory (LSTM) network [50], which uses a

gating mechanism to better represent long term interactions in a sequence.

The most important result concerning MLPs (that often extends to modern NNs)

is due to Hornik et al. [51], who showed that under the assumption of su�ciently many

hidden units, MLPs are universal function approximators. NNs were proposed as early

as the 1950s [52]. However, their adoption rose to unprecedented levels with the deep

learning revolution, centered around the widespread success of deep NNs—often used

to imply multiple hidden layers in a network architecture—in a wide array of data

mining, computer vision, speech recognition and natural language processing tasks,

among others [53].

Today, well-implemented easy-to-use software frameworks that feature optimiza-

tion routines, data processing infrastructure, and widely used network architectures, are

generally available [13, 54, 55]. Combined with their consistent performance in setting

the state-of-the-art in many artificial intelligence tasks, deep learning approaches and
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practices feature ubiquitously in machine learning research and applications [56, 57].

2.5. Neural Temporal Point Processes

Self-modulated TPPs o↵er interpretable and parsimonious statistical models of

discrete event occurrences. Statistical properties of popular examples such as HPs

have been studied in detail. However, these simple constructions pose challenges in

scalable parameter estimation and inference. Moreover, conditional intensity functions

are often too limited to capture complex inter-mark and temporal relationship patterns

in MTPP modeling.

A recent trend in the machine learning literature aims to tackle these problems

by combining TPPs with deep learning. In this section, we survey recent developments

in the machine learning literature regarding TPPs, with a special focus on deep TPPs.

Our survey will guide our contributions in Chapters 4 and 5.

In their seminal paper, Du et al. [58] proposed Recurrent Marked TPP (RMTPP),

modeling a multivariate point process via “embedding event history to a vector.” The

embedding is produced by an RNN, in their experiments an LSTM, which takes the

interarrival times and event marks as inputs. Concretely, they take the conditional

intensity

�⇤(t) = exp(v>hi + w(t� ti) + b), (2.9)

where w, b are scalar parameters, v 2 Rh where h denotes the LSTM output dimen-

sionality. hi is the output of the LSTM for point ti. That is, hi = LSTM(hi�1, ti, ki).

i = sup{j 2 N : tj < t}.

Furthermore they take,

yi+1 ⇠M(�̄(Vhi + c)),
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where we let �̄ denote the softmax function, M the categorical distribution, and V 2

Rk⇥h, c 2 Rk the weight and bias parameters of a dense NN layer that maps LSTM

outputs to the categorical likelihood.

This formulation allows bypassing expensive optimization routines in general con-

ditional intensity TPPs while leaving ample capacity for learning complex dependencies

across time. This is since the latent embedding hi and the point process N(t) jointly

constitute a Markov process. Notice how, by design, the intensity function (2.9) does

not depend on the history of points, but rather only on the last point in time. This

gives an RMTPP the same stochastic structure of a renewal process, although the pdf

of the next time point is not explicitly identified.5 Moreover, the compensator can be

computed analytically. The most important consequence of this is that exact likelihood

based computation can be carried out in linear time, in contrast to general HPs.

Let us note that this contrasts with how RNNs are generally used in time series

modeling. Often, RNNs replace classical time series models that are already based

on Markovian conditional independence assumptions, such as AR(p) processes. RNNs

serve to express a more complex conditional distribution, in exchange for additional

computational cost. In contrast, RMTPP and other examples in this section serve

to “approximate” the conditional intensity function which may depend on the entire

history. Therefore, they alleviate computational costs in likelihood-based inference,

while still providing accurate approximate intensities. This property is also highlighted

in the title of the RMTPP paper [58], as the RNN only serves to generate a vector

embedding of a past event stream, enough to accurately compute the intensity.

Mei and Eisner extend this formulation in [24]. Written simultaneously with [58],

the neural Hawkes process generates the intensity function from a continuous time

LSTM – in which it’s not the resulting intensity but the memory cell of the LSTM

that decays in time. This model, while perhaps slightly more expressive in that it

5Strictly speaking, such a probability density does not exist as the indefinite integral
R1
0 �

⇤(t)
converges. That is, there is always a nonzero probability that the next point will not be drawn. Such
processes are called terminating processes, of which RMTPP is an example.
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captures several decaying influences; results in an intractable integral that must be

approximated via a Monte Carlo trick. However, the resulting model does not bear

any of the defining properties of a HP such as additivity and linearity.

Xiao et al. [59] combine e↵ects from a “background” RNN that combines discrete-

time RNNs with a separate “event-based” RNN that captures relationships between

asynchronous events. In a later version [60], the authors extended this joint model with

overlaying “attention,” or conditioning the model intensity on several past event-based

RNN embeddings in the sequence.6 Both models yield significant improvements in

accuracy over RMTPP.

Jing and Smola’s neural survival recommender [61] combines LSTMs with survival

analysis, implicitly modeling user behaviour via self-modulating renewal processes.

Again, the intensity (in their paper, the rate) is given by an LSTM which computes

at fine-grained quanta of time. The intensity, in turn, is piecewise constant in these

small intervals, making the likelihood tractable. They demonstrate favorable results in

time-sensitive recommendation tasks.

Cao et al. propose DeepHawkes [62], where they preserve the intensity structure

of an HP, and replace the individual components with RNNs. Their model uses user

embeddings to capture cross-user interactions, and LSTMs to model the conditional

intensity added by individual cascades. They report improved performance in social

media prediction tasks. In a similar manner, Trivedi et al. [63] rely on entity embeddings

and an RMTPP type deep TPP to model knowledge graphs evolving in time.

Xiao et al. ’s Wasserstein-GAN TPP [64] combines optimal transport theory with

TPP theory, and proposes generative adversarial networks (GAN) that generate arbi-

trary TPP draws from a standard Poisson process draw. Although WGANTPP o↵ers

an elegant way to sample from arbitrary point processes approximately, it is unclear

how both learning and inference tasks scale, as they require an encoder and a decoder

6This structure is known as a Wold process in TPP literature.
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to run in linear time in generating sequences.

Sharma et al. [65] rely on a gamma Markov renewal process (MRP) to model

timestamps, and a variational autoencoder-like deep generative model to model com-

plex multivariate marks to model behavioral patterns of zebrafish larvae. Their com-

bined model requires a customized training algorithm, yet yields superior predictive

performance compared to other vanilla TPPs and MRPs.

Upadhyay et al. [66] explore the problem of deep reinforcement learning under

continuous-time feedback and actions, both of which can be cast as marked TPP. Here,

the optimal policy is characterized as the optimal intensity for the agent’s actions, which

is learned via a custom policy gradient method that draws from deep TPP learning.

In their recent paper that gave start to the area of neural di↵erential equations,

Chen et al. [67] cite asynchronous discrete event data as one of the main potential

applications of neural ODEs. This idea has already been explored, in a very recent

treatments of neural jump stochastic di↵erential equations (SDE) by Jia and Benson

[68], and latent ODE-RNN approach by Rubanova et al. [69].

Omi et al. [70] rely on a constrained NN architecture to directly approximate the

integrated hazard function—equivalently the cdf of interarrival times in a renewal pro-

cess framework. They demonstrate that monotonicity of this function can be achieved

with a network in which the weights are nonnegative. They further note that the inten-

sity itself, required for likelihood computation, comes for free as it is just the gradient

of the cdf and is readily computed during backpropagation. Their approach results in

dramatic improvements in predictive log-likelihood on real data.

Mei et al. [71] explore sequential Monte Carlo methods in the backdrop of TPP,

under a bidirectional continuous-time LSTM model in order to impute missing event

streams. Their method is unique in focusing on the imputation task, and one of the

first experimenting with SMC for TPP along with [72].
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A tutorial introduction on TPPs in machine learning can be found in a 2018

tutorial by Gomez-Rodriguez and Valera [73].



34

3. LOW RANK HAWKES PROCESSES

Among MTPP models explored in the previous chapter, we highlighted two ad-

vantages of the MHP—its interpretability and well-explored statistical properties. We

also observed that the MHP recovers a graph structure among the marks it models.

For example, modelling the timestamps of social media activity of users, one could

assume that related users act in response to each other’s activity. That is, the rate at

which they are active on social media is excited by related users. The MHP accurately

represents this assumption, and fitting MHP parameters amounts to recovering the

underlying social graph.

However, the learning problem is tricky—it requires estimating O(d2) parame-

ters. When d is large, recovering infectivity parameters is computationally challenging.

Moreover, a curse of dimensionality question is raised—on whether so many parameters

can be fit precisely from limited observations.

One way to mitigate this problem is to assume that the underlying infectivity

graph admits a “community” structure. In static analysis of social graphs, this ques-

tion is often framed as a graph partitioning problem, asking whether nodes of a graph

are gathered in partitions with sparse connections between di↵erent partitions [74].

Relationships between graph partitioning and low-rank matrix approximation prob-

lems are well known [75–77]. In this chapter, we focus on parameter estimation in

MHPs whose infectivity matrix admit this community structure, enforced via a rank-

constrained parameterization of the process.

Recall the conditional intensity function of an MHP,

�k(t) = µk +
X

l

Z
t

0

�klg(t� s)dN(s),

and that the matrix � 2 Rd⇥d is interpreted as the infectivity matrix. That is, each
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element �kl encodes the magnitude of the (directed) mutual excitation relationship, of

events of mark l on those of mark k. � has been interpreted as the weights in a directed

graph where the nodes correspond to the individual marks [10, 33, 34]. Here, we will

constrain � to be a low-rank matrix, and interpret our findings as graph clustering or

community detection.

This idea has been explored in the context of MHPs, although it has been treated

with di↵erent meanings. For example, Zhou et al. fit a “low-rank” model by regulariz-

ing the learning objective by the nuclear norm [32]. Bacry et al. [78] extend estimation

procedures for this model. Du et al. [79,80] work with “user-item” pairs—each repre-

sented as a mark—and recover a factorized set of parameters for the overall model as

is usual in recommendation tasks.

Closest to our work are those by Lemonnier et al. [81] and Tran et al. [10], both

of which directly parameterize the Hawkes model with a factorized, low-rank matrix.

Lemonnier et al. [81] propose to directly learn a factorized matrix by (i) learning

the temporal interaction kernel as a combination of a set of exponential decays and

(ii) employing alternating optimization to recover low-rank parameters. They discuss

potentially faster algorithms when the matrix is sparse, however they do not address

issues around the criticality of the process or nonnegativity of the resulting matrix.

They learn O(dr2) mutual excitation parameters—where r is the “low” rank—and

account for the weight between each dimension in the low-rank space explicitly.

Tran et al. [10] take a more direct route and work with a factorized form with

O(dr) parameters. Notably, they cite a connection to nonnegative matrix factorization

(NMF), as we do in the next section, however do not pursue the connection further.

Moreover, they give a mean-field variational Bayes algorithm for (partial) Bayesian

treatment of the infectivity parameters. Although the authors work with a fixed expo-

nential kernel, their learning algorithm has a reported O(n2d) complexity.

In the next section, we further explore the structure first introduced in [10]. We
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make connections to NMF explicit, and pursue them further to recover a low-rank

Hawkes kernel via a fast stochastic optimization routine. To arrive at this formulation

we rely on the immigrant-birth representation of MHP which leads to the EM algo-

rithm. In Section 3.2, we take a di↵erent approach for the same problem. Namely,

we demonstrate a path to low-rank MHP kernel approximation via moment-based es-

timation. We also show links to well-known spectral clustering methods, which yields

a direct path to a “spectral clustering of event streams.”

Our contributions have explicit connections to well-known low-rank matrix fac-

torization problems and spectral methods. Our proposed algorithms are conceptually

simpler, and easy to implement. Most importantly, they belong to an improved time

complexity class, yielding substantially faster computational routines.

3.1. Nonnegative Factorization of Hawkes Kernels

In this section, we develop nonnegative low-rank HP (NLRHP). We first give

the required background—on the MHP EM algorithm in Section 3.1.1, and NMF in

Section 3.1.2. We demonstrate links of our model to NMF in Section 3.1.3, the tools

of which we use to develop a generalized EM algorithm. In Section 3.1.4 we describe

our optimization algorithm inspired by stochastic gradient methods in NMF.

3.1.1. Expectation-Maximization for Multidimensional Hawkes Processes

As in most models in probabilistic machine learning, gradient-based methods can

be used for MHP parameter estimation. However, this approach brings inherent prob-

lems, especially since box constraints (nonnegativity conditions) have to be satisfied on

all parameters learned. An approach often taken in literature is to invoke the “Poisson-

cluster” characterization [39] of MHP in order to write it as a latent variable model (i.e.,

with data augmentation, see Section 2.2.2), and to perform Expectation-Maximization

(EM) [31,82, 83].
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In developing the EM algorithm, one invokes the parenthood structure among

events. Concretely, the data is “augmented,” with a set of “parenthood” latent vari-

ables, identifying the parent process each individual event belongs to. Conditioned on

these variables, the “complete data” likelihood decomposes to a set of Poisson process

likelihoods.

Let Jzi = jK denote the indicator that the event i is a child of event indexed j.

Then the likelihood would be

`(⇥, Z) = �
Z

T

0

�⇤(s)ds

+
X

k

X

i2Ik

Jzi = 0K log µk (3.1)

+
X

k

X

i2Ik

X

j<i

Jzi = jK log �k,yjg�(ti � tj).

where we let zi = 0 denote that the event i belongs to the respective background

process. The EM algorithm proceeds first by calculating P{zi = j} = E [Jzi = jK],

or rather by accumulating these quantities implicitly in expected su�cient statistics.

Then, in the maximization step one optimizes for µ,�, � the conditional maximizers

of which are easily obtained in closed form.

The main drawback of likelihood based methods is time complexity. It is evident

from (3.1) that each computation of the likelihood function, as well as related quantities

such as the gradient or the Hessian in gradient ascent or expected su�cient statistics in

EM, takes time quadratic in the number of total events. Both approaches benefit from

a reduction to linear time for the specific case of an exponential delay density—due to

the memoryless property of exponentials, detailed in Appendix A.
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3.1.2. Nonnegative Matrix Factorization

NMF [84–86] is a low-rank matrix approximation problem that has been studied

widely in machine learning. It focuses on the low-rank approximation

V ⇡WTH,

where V 2 Rk⇥m,W 2 Rr⇥k,H 2 Rr⇥m are elementwise nonnegative matrices with

r ⌧ min(k,m) and V known. The approximation is in terms of a divergence, an often

non-symmetric measure of relative distance applied elementwise. That is, cast as an

optimization problem, one seeks

min
W,H

D(V||WTH) s.t. W,H � 0.

A concrete example for a divergence is the squared Euclidean distance,

DE(V||WTH) ,
��V �WTH

��2
F
=
X

km

(vkm �wT

k
hm)

2,

or the Information (generalized Kullback-Leibler (KL)) divergence

DKL(V||WTH) ,
X

k,m

vkm log
vkm

wT

k
hm

� vkm +wT

k
hm.

The problem is non-convex in general, and achieved with the original multiplica-

tive updates derived from gradient descent [86], projected gradient [87] methods, or a

Bayesian treatment of the model [88].

The applications of matrix factorizations toward recommender systems are well-

known, where the objective is to recover a latent space which users (indexed in the

above notation with k, say) and items (resp., m) are represented in matrices W,H.

NMF has been linked to graph min-cut problems and spectral clustering [77], and is
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often interpreted as community or clique discovery in graphs. Moreover, it has been

interpreted as a soft clustering for general data [89], or tied to probabilistic latent

semantic indexing (PLSI) in text analysis [90].

3.1.3. Nonnegative Low Rank Hawkes Process

We propose to learn a factorized, low rank MHP infectivity matrix,

� = WTH,

where W,H 2 Rr⇥d, and r ⌧ d. We further constrain W,H � 0 as above.

We can now formalize a link between low-rank MHP and NMF, and demonstrate

how NMF arises naturally. First recall that the EM algorithm (see Murphy [91, Section

11.4]) proceeds by maximizing the expectation of the complete data likelihood (3.1)

with respect to the posterior distributions of zi, also called the evidence lower bound

or the expected CDLL (ECDLL). We establish a link between NMF and the ECDLL

in the following proposition, the main result of this section.

Proposition 3.1. The evidence lower bound of a low-rank HP determined by the con-

ditional intensity function

�⇤

k
(t) = µk +

X

ti<t

wT

k
hyig�(t� ti), (3.2)

is maximized under the optimal NMF of expected su�cient statistics under Information

(generalized KL) divergence.

Proof. Replacing � with WTH, we write the terms of the bound function, the expec-
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tation of (3.1) under the posterior of z, that depend on W,H

B(⇥, Z) =�
X

k

Z
T

0

X

ti<s

wT

k
hyig�(s� ti)ds+

X

k

X

i2Ik

X

j<i

E [Jzi = jK] logwT

k
hyj

=�
X

k,l

wT

k
hl

X

i2Il

G�(T � ti) +
X

k,l

logwT

k
hl

X

i2Ik

X

j<i,j2Il

E [Jzi = jK] .

where G is the cdf corresponding to the delay density g. We also denote by Ik = {i 2

N|yi = k} the set of all event indices belonging to mark k.

We now introduce matrices D,E 2 Rd⇥d, where the diagonal matrix D = diag(�)

is defined where [�]k , P
i2Ik

G�(T � ti), and ekl ,
P

i2Ik

P
j<i,j2Il

E [Jzi = jK]. The

expression reduces to

B(⇥, Z) =
X

k,l

��lwT

k
hl + ekl logw

T

k
hl =

X

k,l

�[WTHD]kl + [E]kl log[W
TH]kl.

Rescaling the second term we have

B(⇥, Z) = �
X

k,l

[WTHD]kl + [E]kl log[W
THD]kl + Ekl logD

�1
kl

= �DKL(E||WTHD) + Ekl logD
�1
kl
.

where the final term does not depend on W,H. This completes our proof that the

bound maximization problem, is equivalent to finding an NMF

E ⇡WT (HD)

under I-divergence.

Having made this connection, we can invoke models, algorithms and theoretical

arguments made in the context of NMF to parameterize and learn MHP. For example,

our choice of nonnegative component matrices W,H now has a clear justification, as
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NMF is known to produce a more interpretable and parts-based representation [85]. It

is also amenable to a “clustering” interpretation, which can be one of the goals of using a

low rank MHP model [92]. Using this connection, other NMF parameterizations such as

projective NMF [93] or symmetric NMF [94] can be used to approximate the infectivity

matrix. Regularizing MHP kernels or imposing further structure can be justified on

the same footing as NMF. Well-studied algorithms such as projected gradients [87] or

multiplicative updates [86] can be used as a subroutine to MHP EM.

To invoke Proposition 3.1, one could run the MHP-EM algorithm with any NMF

algorithm in the maximization step to get the component matrices W,H for that it-

eration. This approach departs from the plain vanilla EM in one important aspect.

Primarily due to the non-convexity of the NMF problem, the global optimum factor-

ization cannot be attained. Moreover, in general, the optimal solution to NMF is not

identified as under any general nonsingular map C 2 Rr⇥r one can write WTCC�1H

to see that WTC and C�1H result in the same value of the objective function. How-

ever, our proposed approach remains valid as it is an instance of generalized EM.1That

is, NMF algorithms ensure [86] that the objective decreases monotonically under the

respective update rules. This guarantees that the EM objective is nondecreasing, and

converges to a stationary point.

We give a sketch of this “batch” generalized-EM approach in Algorithm 2, where

mep denotes the number of epochs which ⌧ indexes. The computations of �,�⇤ are

conditioned on the parameters at epoch ⌧ . s, �,E are expected su�cient statistics,

as introduced in Proposition 3.1. For brevity, we suppress expectation computations

and updates for the parameter � in the presentation of Algorithm 2. Our pseudo-

code also omits the “recursive” computation of exp(��(ti� tj))/�⇤

yi
(ti) decreasing the

complexity of the inner for loop to O(n). The derivation of this computation can be

found in Appendix A, and an implementation can be found in hawkeslib [12].

1The term generalized EM appeared in the original article by Dempster et al. [82], although it

is popular to refer to such algorithms as Majorization-Minimization approaches [95] in much of the

machine learning literature. Also see Murphy [91, pp. 368–369].
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Algorithm 2: Nonnegative Low Rank Hawkes-NMF (NLHRP-NMF)

Input: {ti, yi}ni=1, T,mep

for ⌧ 2 {1, · · · ,mep} do

ekl  0, 8k, l 2 [d]

sk  0, 8k

�k  0, 8k

for i 2 [n] do

eyi,l  eyi,l +
P

j2Il
exp(��(ti � tj))/�⇤

yi
(ti)

syi  syi +
1

�⇤
yi
(ti)

�yi  �yi +G�(T � ti)

end

µ(⌧)
k
 µ(⌧�1)

k
⇥ sµ

k

T

W(⌧),X(⌧)  NMF(E, �)

H(⌧)  X(⌧)D�1

end

The computation of the inner for-loop in Algorithm 2 requires O(nd) computa-

tions, and the NMF subroutine, which refers to any NMF algorithm, has a general com-

plexity of O(d2r). This brings the overall computational complexity to O(nd + d2r)

per epoch. However, this is a relatively ine�cient algorithm since the plain vanilla EM

algorithm would just have a complexity of O(nd + d2). Moreover, naive implementa-

tions of the algorithm inevitably result in O(d2) space complexity. We will revisit this

issue in the next section.

Before moving on to discuss more viable algorithms for low-rank MHP, let us

discuss another theoretical issue that has not been previously treated. Recall that the

stationarity condition of the MHP is given via the spectral radius of �, as ⇢(�) < 1.

Indeed, already having a low-rank �, we can “encourage” this condition in the learning

algorithm, and build it into EM via regularization. To see how, recall that

Proposition 3.2. (Perron’s theorem [96, Section 8.2]) For every nonnegative matrix
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A 2 Rd⇥d there exists a nonnegative eigenvalue r = ⇢(A) s.t. r � 0. r is called the

Perron root of the matrix A.

Proof. Omitted. See [96, Section 8.3].

Indeed, it is guaranteed that the spectral radius of � is a nonnegative number.

By definition, it is a member of the spectrum of �, which must have r nonzero elements

at most. Moreover, the spectral radius is a global lower-bound to all operator norms.

Then,

Lemma 3.1. For A 2 Rd⇥d and r = ⇢(A), r  kAk
1

= maxk
P

l
akl.

In our case, this reduces to maxk
P

l
�kl = maxk

P
r
wrk

P
l
hrl, i.e., both forward

and backward computations of the bound can be computed in O(dr) time. Then, one

can simply add a regularization term to the learning objective,

min
W,H

DKL(E||WTHD) + ⇣max(||HTW||1, 1),

to ensure consistency and stationarity. Similar regularized loss functions have been

explored in the NMF literature [92]. The bound in Lemma 3.1 may be too tight.

Sharper bounds for the Perron root have been explored, e.g., see [97].

3.1.4. Accelerating Hawkes-NMF Parameter Estimation

The connection drawn between NMF and MHP is not yet very useful, as the

naive Algorithm 2 adds to the computational requirement for learning an MHP.

In both previous works on low-rank HP, [10,81], temporal components of the delay

kernels were fixed, i.e., the rates of exponential decays were taken as hyperparameters.

Tran et al. [10] also pointed out that this could lead to important computational
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improvements, but did not pursue this avenue further. Under this assumption, it is

key to note that the “memory” of the process (see Appendix A),

Mk(t) ,
X

i2Ik|ti<t

exp(��(t� ti)),

as well as the su�cient statistic � can be precomputed. In other words, only one linear

scan through the data is required. This readily suggests that a data augmentation

scheme is no longer required. Indeed, under this assumption, a stochastic gradient

descent algorithm can be derived, as we show below.

For ease of exposition, we will first denote the precomputed su�cient statistic

mki , Mk(ti). Take the full MHP log likelihood, with respect to parameters W,H,µ

`(W,H,µ) =
X

k

X

i2Ik

log

 
µk + �

X

l

wT

k
hlmli

!
�
X

k,l

�l
X

r

wrkhrl (3.3)

Taking derivatives, we have

@`

@µk

=
X

i2Ik

�⇤

k
(ti)

�1 (3.4a)

@`

@wrk

=
X

i2Ik

�
P

l
hrlmli

�⇤

k
(ti)

�
X

l

hrl�l (3.4b)

@`

@hrl

=
X

k

X

i2Ik

�wrkmli

�⇤

k
(ti)

� �l
X

k

wrk (3.4c)

where

�⇤

k
(ti) = µk + �

X

r

wrk

X

l

mlihrl. (3.5)

It is easily verified that “batch” gradient computations (3.4) require O(ndr) time.

A batch gradient descent algorithm is now obvious, saving for the outstanding issue

of satisfying nonnegativity constraints on W,H. We will not treat these constraints
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explicitly here, however. First, as we have already made the connections to NMF we

can recognize (3.4b) and (3.4c) as “scaled” KL-NMF parameter updates. Therefore,

observations regarding projected gradient [87] and multiplicative updates [86] apply.

Moreover, the objective (3.3) is easily implemented in modern deep learning libraries.

Therefore, nonnegativity constraints can be satisfied as is now customary in the deep

learning literature—via a nonlinear projection—such as the softplus function log(1+ex).

Only one sequential scan over the data is required for the computation of M.

Individual points i 2 [n] (columns of M) can now be parallelized over or implemented

using well-tuned vectorized matrix dot product kernels, substantively accelerating the

learning algorithm in practice. Another benefit is that the memory data structure M

generalizes conveniently to non-exponential kernels. In this case, one would need to

precompute this data structure in O(n2) time, a price that would be paid only once.

A stochastic gradient descent algorithm easily derives from our observations

above. To expose this, we will benefit from a slight rearrangement of notation,

`(W,H,µ) =
X

i

 
log

 
µyi + �

X

l

wT

yi
hlmli

!
� 1

n

X

k,l

�l
X

r

wrkhrl

!
. (3.6)

From here, we can derive gradients under single event observations,

@`(⇥|(ti, yi))
@µk

= Jyi = kK�⇤

yi
(ti)

�1 (3.7a)

@`(⇥|(ti, yi))
@wrk

= Jyi = kK�
P

l
hrlmli

�⇤
yi
(ti)

�
X

l

hrl�l (3.7b)

@`(⇥|(ti, yi))
@hrl

=
�wryimli

�⇤
yi
(ti)

�
X

k

wrk�l. (3.7c)

We give pseudo-code for our proposed approach in Algorithm 3, where

[rW]rk , �
@`(⇥|(ti, yi))

@wrk
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Algorithm 3: Nonnegative Low-Rank Hawkes Process-Stochastic Gradi-

ent Descent (NLRHP-SGD)

Input: {ti, yi}ni=1, T,mep

begin

Initialize W,H,µ randomly

�l  0, 8l

mki  0, 8i 2 [n], k 2 [d]

for i 2 [n] do

mki  
P

j2Ik
exp(��(ti � tj)) // Persist the "memory"

�yi  �yi +G�(T � ti)

end

for ⌧ 2 {1, · · · ,mep} do

for sample j ⇠ U([n]) do

Compute rW,rH,rµ as per equations (3.7)

W W � ⌘⌧rW

H H� ⌘⌧rH

µ µ� ⌘⌧rµ

end

end

end

is the gradient of the negative log likelihood loss, defined mutatis mutandis for H,µ.

We also define {⌘⌧}mep

⌧=1 as a sequence of step sizes that satisfies the well-known Robbins-

Monro conditions [98], such as ⌘⌧ , c/⌧ for some positive constant c.

The NLRHP-SGD algorithm has a complexity of O(dr) per data point processed

bringing the overall complexity to O(ndr). It compares favorably to previously pro-

posed low-rank MHPs, as we show in Table 3.1. It is easily implemented on modern

deep learning libraries [13], and can benefit from their auto-di↵erentiation capabilities

as well as o↵-the-shelf stochastic optimization routines.
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Table 3.1. Comparison of Low-rank MHP algorithms.

Model Time Complexity Space Complexity Method

Sparse Low Rank HP [32] O(n2d+ d2) O(d2) ADMM-MM

NetCodec [10] O(ndr + d2r) O(dr + nr) Variational Bayes

Scalable LRHP (SLHRP) [81] O(ndr2 + r4) O(nd) MM

NLRHP-NMF (Algorithm 2) O(nd+ d2r) O(d2) EM-NMF

NLRHP-SGD (Algorithm 3) O(ndr) O(nd) SGD

Before concluding this section, we dwell on some implications that emerge from

our discussion. In many real-world cases, the infectivity parameter � is sparse, i.e., the

degrees of nodes are small. Ways in which this sparsity can be invoked were considered

in [81], and is often discussed in the MHP literature.

Here, again, we can invoke the connection to NMF. First, it is self-evident that

our batch NMF approaches could be greatly accelerated, as sparse � implies sparse

memory M. This would result in an improvement in both collecting su�cient statistics

in NLRHP-NMF, and even further dramatic speedups in the NMF subroutine. The

NLRHP-NMF algorithm would similarly benefit from the sparsity of M, bringing the

cost of parameter estimation to virtually linear time in the number of events.

Although we will not develop this idea here, note that our notation also suggests

an “online low-rank” learning algorithm as an immediate next step to our approach.

This is significant, as in many contexts where the MHP is applied, such as forecasting,

finance, and community detection at web scale; learning tasks can be naturally framed

naturally as online learning problems.

Finally, ensuring nonnegativity � � 0 and stationarity ⇢(�) < 1 have been

recurring issues in previous works—with no comprehensive treatment. Fortunately,

our links to NMF and Perron-Frobenius theory yield simple and practical solutions to

both.
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3.2. Direct Estimation of Low Rank Symmetric Kernels

In the previous section, we showed that low-rank estimation of Hawkes kernels

could be reduced to “just” an NMF problem, and proposed learning algorithms in

O(nd + d2r) or O(ndr) times. In this section, we will reduce the problem of low-rank

parameter estimation to just a factorization problem, using moment-matching type

estimators. A subset of the approach outlined in this section was published in [99].

Moment-based nonparametric estimation of HP has been explored in depth in

a series of works by Bacry et al. [36, 45, 100]. These works focus on the stationary

mean and covariance densities of the process, which they demonstrate fully determine

an MHP. The recent work by Achab et al. [38] develops this approach further by fully

abstracting away the delay density estimation, and focusing on the infectivity matrix

�. The key insight is to work directly on the integrated moment density [40] (i.e.,

moment measure or in their work, “integrated cumulants”) of the process. Yet, as

we presented in Section 2.2.2, such methods require the computation of the “kernel

inversion,” which takes O(d3) time in general.

Here, we explore extensions under two added constraints: we will assume that

the infectivity structure is symmetric (� = �T ) as in [36], and low-rank as in the

previous section. We show that these two assumptions result in a set of substantial

computational simplifications, while paving the way to other interesting connections.

Recovering the notation of Section 2.2.2, we had defined the first and second

moment densities of an MTPP as

m(k)
1 (t) = m̄(k)

1 =
E [dNk(t)]

dt
= E [�⇤(t)]

m(k,l)
2 (tk, tl) = m̄(k,l)

2 (⌧) =
E [dNk(t)dNl(t+ ⌧)]� E [dNk(t)]E [dNl(t+ ⌧)]

dtd⌧
,

where the first equalities follow from the stationarity of MHP. In other words, we now
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assume that ⇢(�) < 1 holds. We will denote,

m1 = [m̄(1)
1 , m̄(2)

1 , · · · , m̄(d)
1 ]

M1 = diag(m1)

[M2]kl =

Z
1

0

m̄(k,l)
2 (⌧)d⌧,

where [M2]kl denotes the integrated second cumulants. Their relationships to MHP

parameters are well-known and given in the references above as,

m1 = (I��)�1µ, (3.8a)

M2 = (I��)�1M1(I��T )�1. (3.8b)

Note that, by our assumption of symmetry, (I��T )�1 = (I��)�1.

Let us first highlight a set of simple properties of the quantities under consid-

eration. We will often encounter  2 Rd⇥d in this section, defined  , (I � �)�1,

which we refer to as the inverse kernel. Its main interpretation will be apparent in the

following simple lemma. Note that,

Lemma 3.2.  =  T and  � 0.

Proof. The first property should be clear as (A�1)T = (AT )
�1
. The second property

follows from the stationarity assumption ⇢(�) < 1, under which the Neumann series

(I��)�1 =
P

1

k=0�
k converges. Clearly, since � � 0,�k � 0 for all k.

Corollary 3.1. M2 � 0.

Also note that M2 is also positive semi-definite (psd), with positive definiteness

ensured by full-rank  and m1 > 0. Our approach relies on estimating low-rank �

based on moment conditions (3.8). To that end, we will estimate quantities m1,M2

from data, and work towards �.
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We first adopt estimates of the quantities m1,M2 as in [38,40],

[D]kk , [ bm1]k =
Nk(T )

T
, (3.9a)

[C]kl , [dM2]k,l =

P
i2Il

Nk(ti + ⌧)�Nk(ti � ⌧)� 2⌧m̂k

1

T
, (3.9b)

where ⌧ > 0 is a long enough stretch of time for which it is assumed
R

1

⌧
m̄(k,l)

2 (s)ds ⇡ 0.

Note that both estimates can be computed in a single pass over the data, with only

O(nd) operations.6 What remains is to show that we can get to a low-rank � from

these estimates. Concretely, we will assume that � admits the factorization

�̂ = WTW

where W 2 Rr⇥d as in the previous section. In this section, we will not assume that

W is nonnegative.

Let us highlight one important consequence of our assumption. Beyond imposing

symmetricity on �, this factorization implies that � ⌫ 0, which does not need to

hold true for general infectivity matrices. Yet, this assumption will be pivotal in our

construction below. We will also assume that the properties given above for theoretical

moments M2,m1 hold true for their empirical counterparts to avoid any trivialities.

We will use estimates and theoretical quantities related to � and  interchangeably,

as the intention should be clear from the context.

Letting A
1
2 denote the matrix square root, well-defined for psd and diagonal

matrices, we first show that,

Proposition 3.3. Let C =  D , where D is diagonal and positive and C is psd and

nonnegative. There exists a unique psd solution given

 = D�
1
2

⇣
D

1
2CD

1
2

⌘ 1
2
D�

1
2 . (3.10)

6Although this quantity was given as O(nd2) in [38], a dynamic programming approach is possible.
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Proof. Correctness of the above statement is trivial. For uniqueness, note that the sys-

tem of equations (3.8) result in a continuous-time algebraic Riccati equation (CARE),

C� D = 0.

as psd-ness of C,D are assumed. The pair [0,C], in turn, is detectable since C is

assumed full-rank. Uniqueness of a psd solution follows. See, e.g., [101].

We find that we can fix a unique  under a given C,D. Note that this also fixes

a unique �. However, the representation (3.10) is not very useful, since a full matrix

square rooting is required (in O(d3) time), which defeats the purpose of a low rank

approximation. Instead, we can directly consider the loss

L(W) = ||C�  ̂D ̂||2
F
, (3.11)

where  ̂ denotes the approximation to  when �̂ = WTW. The key trick we use is

through the Woodbury identity, by which we can write

 ̂ = I+WT (I�WWT )�1W.

Note that this computation requires O(d2r) time. This suggests that the loss (3.11)

can be directly backpropagated through  ̂, laying the foundation for our algorithm.

The gradient of the loss can be computed easily on well-implemented frameworks such

as Apache MXNet. We give an illustration of the algorithm in Algorithm 4, where

TRUNC-SYM-EVD denotes the truncated symmetric eigendecomposition.

Before moving on, let us discuss two points that arise as a consequence of our

analysis. First, apart from the wide availability of computational tools for general

di↵erentiable computing, the complexity of the algorithm decreases to O(nd + d2r).

The O(nd) scan of the data has to be performed only once, in stark contrast to the

previously proposed low-rank methods and the previous section. We give a comparison
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Algorithm 4: Low-Rank Hawkes Process–Stochastic Gradient Descent

(LRHP-SGD)

Input: {ti, yi}ni=1, T, r

begin

Estimate C,D as per (3.9)

⌃,V TRUNC-SYM-EVD(D
1
2CD

1
2 , r)

⇤,U TRUNC-SYM-EVD(D
1
2V⌃�

1
2VTD

1
2 , r)

W(0)  ⇤1/2UT

for ⌧ 2 {1, · · · ,mep} do

W(⌧)  W(⌧�1) � ⌘⌧rWL

end

end

Table 3.2. Comparison of LRHP-SGD to other methods.

Model Time Complexity Space Complexity Method

NPHC (Full rank) [38] O(nd2 +md3) O(d2) AdaGrad [102]

NLRHP-NMF (Algorithm 2) O(mnd+md2r) O(d2) EM-NMF

NLRHP-SGD (Algorithm 3) O(mndr) O(nd) SGD

LRHP-SGD O(nd+md2r) O(d2r) SGD

in Table 3.2, where m denotes the “number of iterations.”

Another key constraint that can easily be enforced is � � 0, through soft map-

pings to the positive hyperquadrant widely available on auto-di↵erentiation libraries.

Enforcing the stationarity conditions ⇢(�) < 1 also takes a trivial form. As we have

access to the spectrum of �, one can easily re-normalize the spectrum to enforce that

the obtained matrix leads to a stationary MHP. Let us also emphasize that LRHP-SGD

is independent of the choice of the delay density—as it completely abstracts this choice

away.

Finally, let us note that the full inversion of  through the Woodbury identity
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may prove unstable. In this case, one can use the truncated Neumann series approxi-

mation to the inversion, defining the approximate inverse

 ̃(p) = I+�+�2 + · · ·+�p (3.12a)

= I+WTW + (WTW)2 + · · ·+ (WTW)p. (3.12b)

Indeed, we take this approach in approximately inverting the kernel in [99].

Note that this often yields a practical approximation for �, denoted �̃, with a

small enough spectral radius as,

Proposition 3.4.
����� �̃(p)

���
2
 k�kp+1

2 = ⇢(�)p+1.

Proof.

�� �̃(p) =  ̃(p) � = �p+1(I��p+1)�1(I��)

= �p+1(I+�+�2 + · · ·+�p)�1 = �p+1 ̃�1.

Therefore,

����� �̃(p)
���
2
=
����p+1 ̃�1

���
2

���p+1

��
2

��� ̃�1
���
2

=
���p+1

��
2
 k�kp+1

2 = ⇢(�)p+1,

where the the second equality is due to
��� ̃�1

���
2
=
���I� �̃

���
2
= 1, and � is low-rank

(singular) by assumption.

3.2.1. Spectral Clustering of Event Streams

Spectral clustering is a clustering method that performs dimensionality reduction

based on the spectrum of the symmetric similarity matrix of a set of data points

before clustering with well-known algorithms such as k-means [76, 103, 104]. In short,
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it proceeds by performing an eigendecomposition of the graph Laplacianmatrix, defined

below, and performing k-means clustering on the “most significant” eigenvectors. Its

connections to graph normalized-cut problems are well-known.

In the previous section, we obtained a low-rank representation of the infectivity

matrix. We also observed that this matrix was often interpreted as a graph similarity

matrix. Our construction already hints toward a spectral clustering algorithm. Indeed,

in this section, we show that a simple algorithm for performing spectral clustering on

the networks of event types are possible.

Definition 3.1. Let A 2 Rd⇥d be a symmetric similarity matrix. The (unnormalized)

graph Laplacian of A is LA , �A � A where �A is the diagonal degree matrix

[�A]kk ,
P

l
[A]kl.

Lemma 3.3. Let A,D 2 Rd⇥d, A symmetric and D diagonal. LI�A = �LA = L�A.

Proof. I��A =�B, and LA =�A �A = (I��B)� (I�B) = �LB.

This lemma allows us to compute a spectral clustering of event streams directly

by using a Laplacian-like computation on  �1. We give a description of this method in

Algorithm 5. Here, it is worth noting that the second invocation of TRUNC-SYM-EVD is

not a full eigendecomposition, and has only O(dr2) complexity in general, as does the

computation of the Laplacian. Hence, our algorithm retains its O(d2r+nd) complexity

class, and the additional computations hardly result in any further computation time

in practice.

Our algorithm provides both spectral embeddings and a clustering of the under-

lying graph structure with no explicit representation of the graph. Moreover, it does

so in a single scan of the data set. Significantly, to our knowledge, it is the first al-

gorithm that proposes a principled way of clustering high-dimensional asynchronous

event streams.
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Algorithm 5: Low-Rank Hawkes Process–Spectral Clustering (LRHP-SC)

Input: {ti, yi}ni=1, T, r

Estimate C,D as per (3.9)

⌃,V TRUNC-SYM-EVD(D
1
2CD

1
2 , r)

 �1  D
1
2V⌃�

1
2VTD

1
2

Compute L �1 according to Definition 3.1

Compute ⇤,U TRUNC-SYM-EVD(L �1 , r)

Compute a k-means clustering of the rows of U 2 Rd⇥r

3.2.2. Numerical Experiments

We validate LRHP algorithms on a set of toy experiments.

In Figure 3.1, we show low rank approximations to the infectivity matrix recovered

from tick-level price movements on an interbank currency exchange (cf. Figure 2.5) [4].

An accurate representation of the infectivity matrix is recovered with as little as 8

components. Remarkably, such a representation can be recovered from a data set of

36million individual events with 22 marks, in an average 3.2 seconds on a commodity

laptop computer—several orders of magnitude faster than a likelihood-based learning

algorithm.

We demonstrate spectral embeddings U obtained with the LRHP-SC algorithm

in Figure 3.2. Here, the pairs followed by D (resp., U) denote price jump down (resp.,

up) events. Marks are naturally clustered by shared or “close” currency pairs with as

little as two eigenvectors.

Finally, Table 3.3 gives the results of the LRHP-SC algorithm on the data. Cur-

rency pairs are naturally grouped into trades that can be interpreted as those often

bundled together. For example, cluster 5 identifies an “arbitrage,” on AUD-NZD-USD;

while cluster 6 identifies the opposite end of this trade.
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Table 3.3. Clusters of currency exchange pairs obtained with LRHP-SC.

Cluster 1 EURCHF D, EURUSD U, USDCHF U

Cluster 2 EURGBP D, EURJPY D, EURUSD D, GBPJPY D, USDJPY U

Cluster 3 USDCHF D

Cluster 4 EURCHF U

Cluster 5 AUDNZD D, AUDUSD U, NZDUSD D

Cluster 6 AUDNZD U, AUDUSD D, NZDUSD U

Cluster 7 EURGBP U, EURJPY U, GBPJPY U, USDCAD U, USDCAD D, USDJPY D

Figure 3.1. Low rank approximations to the kernel of interactions among currency

pairs.
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Figure 3.2. Spectral embeddings of currency pairs.
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4. GLOBAL-LOCAL TEMPORAL POINT PROCESSES

In the previous section, we looked at e�cient ways of working with high-dimensional

asynchronous event data. Our analysis was based on the MHP, where we sought to

exploit the well-studied statistical properties of the process to learn simple models in

a computationally e�cient manner. In this section, we change tack, and approach

the same issue from a di↵erent angle. That is, we rely on the recent approaches of

deep TPPs to study high-dimensionality. This chapter jointly addresses e�cient learn-

ing (estimation) and sampling (simulation), in the context of a novel set of models:

global-local MTPPs.

The contributions in this chapter are summarized as follows

• We explore the first “global-local” MTPP (GLMTPP), where we rely on RNNs to

model global (cross-mark) excitation patterns while local (intra-mark) excitation

is captured by a classical TPP.

• We introduce FastPoint, a specific instantiation of GLMTPPs that can scale

to millions of correlated marks in estimation and prediction tasks. The model

enables fast maximum likelihood learning two orders of magnitude faster than

previous models, while simultaneously resulting in better predictive accuracy.

• We introduce a general sequential Monte Carlo routine for GLMTPP models

that exploits the factorization structure as well as a Poisson process proposal

to massively parallelize predictive inference in MTPP. This results in dramatic

improvements in prediction time while keeping the sample variance comparable.

4.1. Global-Local Multidimensional Temporal Point Processes

In Section 2.5, we introduced neural MTPP models highlighting their main benefit

in simplifying parameter estimation. These models encode sequential dependencies

through an RNN, and perform well when the number of marks are reasonable.
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In Chapter 3, we discussed how an increasing number of marks resulted in time

and space complexity that scaled quadratically in the number of marks. In the case

of MHP, the main di�culty was the curse of dimensionality. In Neural MTPP, the

problem is slightly more elusive. Take the RMTPP [58], where each mark is governed

by a categorical distribution conditioned on the same LSTM output as the next arrival

time distribution. This construction results in several key drawbacks.

• During learning, specifically the computation of the log likelihood, the probability

mass of every mark has to be accounted for, for every point—as the partition

function of the categorical mark distribution is always needed. This results in time

complexity of O(nd) during NN training, which is achieved with pass-ine�cient

algorithms such as gradient descent. Seeing as the memory requirement also

scales as O(nd), the batch size is also limited during learning, further slowing

computation.

• In Chapter 2, we covered sampling as the only viable predictive inference mech-

anism in TPPs for non-trivial probability queries. However, MTPP sampling

algorithms also require O(nd) computation, for reasons analogous to those out-

lined above—a mark has to be drawn for every point, and every probability mass

has to be evaluated. Besides the computational complexity, simulation is also

hindered by the fact that points must be drawn in sequence, and the algorithm

only parallelizes over samples.

• Finally, note that in RMTPP-like models the entire sequence of events is fed

through a single NN. That is, regardless of marks, each event is processed in

sequence. When the number of marks d is large, however, the number of possibly

unrelated events that arrive in a sequence before a relevant mark is observed

easily grows beyond the number easily handled by RNNs—as these models are

well-known to fail in representing long-term relationships.

For example, take a financial market where individual orders of a thousand assets

are modeled with a neural MTPP. Furthermore, assume that the background

order arrival rate of these assets are similar. Then, in expectation, the number

of orders in an arrival sequence between two orders belonging to the same asset
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Figure 4.1. Model structures of RMTPP vs GLMTPP.

will be on the same scale as the number of assets. Therefore, it is highly unlikely

that an RNN-based model will be able to capture the intra-mark (or, intra-asset,

which we refer to as “local” in this chapter) behavior of the underlying process. A

similar argument follows for the individual cross-mark e↵ects. This runs contrary

to our intuition that local e↵ects probably explain much of the orderly behavior

in financial markets.

To that end, we introduce GLMTPP, models that aim to address the shortcom-

ings mentioned above while simultaneously o↵ering a parsimonious representation of

asynchronous events. GLMTPPs build on the recent success of global-local time-series

models [105, 106].

Concretely, we define a GLMTPP as a MTPP where each conditional intensity

function is defined

�⇤

k
(t) = �(g)

k
(t|H⌧ ) + �(l)

k
(t|H(k)

t ), (4.1)

where �(g)
k
,�(l)

k
refer to global and local intensity processes respectively, and H(k)

t de-

notes the “history” of events of type k. Most importantly, the time ⌧ = sup{s < t|s 2
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G} is the last point before time t along G = {0,�, 2�, · · · }—a “fixed grid” in time.

Intuitively, the “global” model is a function that “synchronizes” di↵erent processes at

fixed coarse-grained points in time, and computes an additive intensity component for

each individual process. Apart from this global e↵ect, however, each process is itself

a well-defined TPP governed by the local conditional intensity that depends only on

points of the same mark.

A stylized depiction of FastPoint’s model structure is given in Figure 4.1, where

events are shown as blue shapes, the synchronization points (intensity computation) of

the “global” model as diamonds, and explicit dependencies that are modeled as arrows.

Above, a neural MTPP computes the intensity for every mark at each event. Below, a

GLMTPP carries out this computation at only given fixed points.

The most important consequence of our model is that likelihood computation

decreases from O(nd) in the case of neural MTPPs or O(n2+nd) in the case of general

MTPPs to only O(n + d|G|) in the case of GLMTPPs. Furthermore, as the local

intensity process can be an expressive functional form, long-range dependencies ignored

by neural MTPPs can be captured e↵ectively.

4.2. FastPoint: Scalable Deep Point Processes

We introduce FastPoint [107] as a specific instantiation of GLMTPP, where the

global intensity is computed by an LSTM similar to neural MTPPs, and each local

model is a HP.

Concretely, we take

�(g)
k
(t) = ⌘(v>

k
h(H⌧ ) + bk),

�(l)
k
(t) = µk +

X

H
(k)
t

'k(t� ti).

Here, v, bk, µk are parameters of appropriate dimension. We use a slight overloading
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Table 4.1. Comparison of training and sampling time complexities of MTTPs.

Process Conditional Intensity Training

Complexity

Sampling

Complexity

Poisson �k(t) = �̄pk where pk = �̄k/�̄ O(d) O(n+ d)

Hawkes �k(t) = µk +
X

Ht

'k(t� ti, yi) O(n2 + nk) O(n2k)

RMTPP [58] �k(t) = p(k|h(Ht))f(t, h(Ht)) O(nd) O(nd)

Neural Hawkes Process [24]
�k(t) = fk(w

>

k
h(t))

h(t) = oi � (2�(2c(t))� 1)
O(nd) O(nd)

FastPoint

g(v>

k
h(H⌧ ) + bk) + µk +

X
'(t� ti)

⌧ = sup{⌧ 0 < t|⌧ 0 2 G}

G = {0,�, 2�, . . . }

O(n+ d|G|) O(n+ d|G|)

of notation here to highlight that h(H⌧ ) is an embedding of the process history up to

time ⌧ implemented by an LSTM [50], similar to [24, 58]. ⌘ : R ! R is a mapping

to the range of the intensity function. In this chapter, ⌘ is taken as the softplus

function, ⌘(x) = log(1 + ex). 'k denotes the HP exponential triggering kernel 'k(x) =

↵k�k exp(��kx), introduced in Section 2.2.2.

FastPoint features individual linearly self-exciting HPs to capture intra-mark ef-

fects. Setting �(g)
k
(t) = 0, for example, the model reduces to a set of independent

unidimensional HPs. As demonstrated in our review in Chapter 2, this model has

been explored in a wide array of application areas and yields an interpretable model of

self-excitatory phenomena. Instead, the global model is meant to capture cross-mark

e↵ects, the same ones referred to as mutual excitation in the previous chapter. In

low-rank processes, our aim was to keep the interpretable graph structure of how such

e↵ects are represented while taking advantage of computational simplifications. Here,

we rely on the global-local process idea along with deep learning to simplify computa-

tion instead of low-rank approximations. This new approach brings other benefits, such

as ease of implementation on GPU-ready deep learning libraries where RNNs feature
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as “first class citizens” while numerical algebra routines are often missing.

Shutting o↵ the local model, in turn, our model is a neural MTPP that’s con-

ditionally a homogeneous Poisson process for each individual mark in the intervals

marked by the grid.

The computational advantage comes at the price of losing temporal granularity

of how cross-mark e↵ects are represented. Indeed, if two processes “interact” heavily,

their “interaction” will have to wait until the synchronization point (the end of the

interval), to be passed o↵ to the other process. However, this is a reasonable relaxation

for many real-world phenomena. For example, in finance, this encodes the assumption

that intra-asset e↵ects can be instantaneous, while “spillover” e↵ects can take some

more time. In a social network, a person’s tweets are allowed to self-excite at high

temporal resolution while the e↵ect of influencing or triggering other users is modeled

at lower resolution.

FastPoint is amenable to scalable likelihood based computation due to the general

structure of GLMTPPs, and individual properties of the global and local model choices.

The main computational challenge in likelihood-based inference is the computation of

the compensator ⇤(t) =
R

t

0 �
⇤(s)ds (cf. Eqn. 2.5). Here due to the additive structure

we choose for GLMTPP, and the linearity of integration, this term can be computed

as long as the individual compensators of global and local models can be computed

exactly. That is,

Z
t

0

�⇤(s)ds =
X

k

Z
t

0

�⇤

k
(s)ds

=
X

k

Z
t

0

⇣
�(g)
k
(s|H⌧ ) + �(l)

k
(s|H(k)

s
)
⌘
ds

=
X

k

⇤(g)
k
(t) + ⇤(l)

k
(t).

This is the main property we exploit for an e�cient implementation of FastPoint. The

global and local models are chosen such that this property—exact computation of the
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compensator—is satisfied.

The global model (LSTM) can be changed with other deep NN architectures such

as the Transformer [108] or a simple multilayer perceptron. The local model can also

be switched with other univariate TPPs whose likelihoods can be computed in linear

time. Some examples are HPs with “hyperexponential” kernels, renewal processes,

Poisson processes, or a local univariate RMTPP. All of these choices would preserve the

favorable computational properties of FastPoint. We give a comparison of asymptotic

complexities of likelihood-based inference among di↵erent MTPPs in Table 4.1.

4.3. Sequential Monte Carlo Sampling for FastPoint

In this chapter, we describe an e�cient sampling routine for GLMTPP, and Fast-

Point in specific. Namely, we describe an SMC routine that benefits from the global-

local structure. We demonstrate that, using Poisson process proposals, we can improve

wall-clock time in MTPP simulation by several orders of magnitude.

To start our discussion, let’s focus on the main computational challenge in MTPP

inference. Predictive inference in MTPP requires that one estimates expectations of

the form

E
⇥
�
�
{(ti, yi)}(t,t+T ]

�
|Ht

⇤
,

where {(ti, yi)}(t,t+T ] denotes draws–random point sets–from an MTPP. Here, (t, t+T ]

is the forecast horizon, and � denotes some test function of the data, i.e., a query to

be evaluated. Denoting ⇧ = {(ti, yi)}(t,t+T ],

E [�(⇧)|Ht] =

Z

⇧2X

�(⇧)f(⇧|H)d⇧,

is an intractable integral over X , the point configuration space [109], even for triv-

ial functions � such as set cardinality (i.e., the number of points). Hence, MTPP
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predictions often take the Monte Carlo approach.

Algorithm 6: Sequential Monte Carlo sampling of FastPoint
Input: T , �, M , c

begin

wj  1, 8j

⌧  t0

while ⌧ < T do

for particles j = 1 to M do in parallel

Compute �̄k = �⇤

k
(⌧), 8k 2 {1, 2, . . . , K}

Draw Nj ⇠ Poisson(�⇥
P

k
�̄k)

Draw {t(j)
i
}Nj

i=1 ⇠ PP(
P

k
�̄k)

for i = 1 to Nj do in parallel

Draw y(j)
i

s.t. p(y(j)
i

= k) / �̄k

endfor

wj  wj ⇥ p({(t
(j)
i ,y

(j)
i )}|H⌧ )

q({(t
(j)
i ,y

(j)
i )}|�̄,p⇤)

endfor

⌧  ⌧ + �

ESS  kwk21/kwk22
if ESS < c then

Resample particles, s.t.

{(t(j
0)

i
, y(j

0)
i

)}t2(t0,⌧ ] = {(t(j)
i
, y(j)

i
)}t2(t0,⌧ ] with prob. / wj, 8j0

end

end

end

Having “approximated” an arbitrary MTPP with FastPoint, we now require an

e�cient sampling routine to draw point sets, which, as outlined in Section 2.3 is itself

a computationally challenging task.

The naive approach to draw random samples from FastPoint would be to imple-

ment Ogata’s algorithm (Algorithm 1) directly. However, this would result in O(nd)
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asymptotic complexity—in the number of calls to the random number generator—as

all marks would have to be evaluated at each drawn point.

A more careful approach could invoke the conditional independence assumption

that (4.1) encodes. Let ⇧(k)
(t,s] denote the random point set of mark k in the known

interval (t, s]. It follows from our definition of GLMTPP that, given the history up to

the most recent grid point ⌧ , the draws from the individual processes are independent.

That is,

p(⇧(t,t+⌧ ]|H⌧ ) =
Y

k

p(⇧(k)
(t,t+⌧ ]|H⌧ ).

Then, one could sample individual marks in parallel using Ogata’s algorithm. Never-

theless, after individual event sets are drawn, these samples have to be “merged” for

most interesting probability queries—a generally expensive computation.

Our alternative approach also takes advantage of this conditional independence

assumption. Moreover, however, we use importance-weighted sampling in sequence

(i.e., SMC) to draw each mark. Most importantly, we draw individual marks from

a carefully selected homogeneous Poisson process proposal. Under certain conditions

that are easily enforced, we show that Poisson processes make e↵ective proposals. In

SMC terms, Poisson processes result in surprisingly high e↵ective sample sizes (ESS)

for the target distribution of a HP. Finally, the algorithm results in parallelizable

O(n + d) calls to the random number generator, greatly accelerating simulation for

MTPPs. We give pseudo-code of FastPoint-SMC in Algorithm 6. Here, wj denotes

particle weights,  the resampling threshold, and PP the Poisson process from which

timestamps are drawn. Finally, p({(t(j)
i
, y(j)

i
)}|H⌧ ), q({(t(j)i

, y(j)
i
)}|�̄, p⇤) denote point

configuration densities (i.e., likelihoods) with respect to FastPoint and the proposal.

The most important detail is the choice of �̄, the constant intensity of the Poisson

proposal. We choose �̄k =
µk + g(H⌧ )

1� ↵k

, the long-run intensity of the HP conditioned

on the last grid point. This choice partly fulfills our first claim of high ESS, as this



67

is the asymptotically (as t ! 1) optimal Poisson proposal. However, this is not the

main reason for which our sampler functions e↵ectively. The most important result of

our construction is that the sampler does not break down under high-dimensionality.

This counter-intuitive consequence is due to the fact that the number of marks that

are drawn in each grid interval are much smaller than those for which no points are

drawn. That is, marks in which no points are drawn do not contribute to the sampling

variance. Then, as long as the expected number of points in an interval is reasonable,

the algorithm can scale to arbitrarily high dimensions.

The second claim, of linear time complexity and parallelizable computation, is

due to the choice of the homogeneous Poisson proposal. First, note that homogeneity

ensures that particles do not have to be thinned or drawn in sequence. Indeed, drawing

from a homogeneous univariate Poisson process is as simple as drawing n exponential

random variables (the interarrival times) and scaling them to the appropriate time

interval in O(n) time. The Poisson mapping theorem (Theorem 2.3) ensures that

the marks of points can be drawn independently. These are drawn in parallel from

a categorical distribution proportional to the intensity of each mark. As these draws

can be achieved with an e�cient categorical sampler, such as the alias method, we can

bound the overall cost of the algorithm at O(n+ k).

4.4. Experiments

In our experiments, we compare both computational performance and accuracy

of learning and sampling routines developed in this chapter.

One of the main challenges o↵ered by working with MTPPs is the di�culty of

implementing learning, as well as sampling, algorithms. Both tasks require sequen-

tial processing of variable-length data in batches, and these operations are often not

available as first-class citizens of numerical linear algebra or deep learning libraries.

We implement neural MTPP models, FastPoint and RMTPP, on Apache MxNet [13].

Specifically, we introduce the hawkes ll operator in the MxNet backend, now available
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Table 4.2. Models compared in FastPoint learning experiments.

Model Description

Hawkes An MHP with diagonal kernel matrix (i.e., d independent univariate HP)

RMTPP Recurrent Marked TPP ( [58])

B-RMTPP A non-terminating variant of RMTPP with constant baseline intensity

FastPoint-� FastPoint with the grid interval length parameter set to �

as part of v1.5, to carry out forward and backward passes of the conditional intensity

and compensator functions of an HP.7 For learning, we use MXNet Gluon’s Adam op-

timizer. We run experiments on AWS p3 instances equipped with NVIDIA Tesla V100

GPUs. Further notes on implementation are given in Appendix B.

4.4.1. Model Performance

We compare FastPoint to the set of benchmarks described in Table 4.2. Here,

specifically, we modify RMTPP to include a background intensity, i.e.,

�k(t) = µ+ p(k|h(Htj)) exp(v
>

�
h(Htj) + b� + �(t� tj)),

and call the resulting model B-RMTPP. This is since the original RMTPP model is a

terminating TPP, a detail that appears to have been overlooked in the original paper.

Although this would only have a minor e↵ect in learning tasks, it renders sequential

sampling algorithms invalid, as the process is not absolutely continuous with respect to

the Poisson process, Poissonian proposals are invalid in general—with Ogata’s thinning,

or with importance sampling as we describe here.

We measure the performance of our models on two toy data sets, sampled from

an MHP with a full-rank kernel matrix. We also evaluate results on three large-scale

high-dimensional point data sets, from social media and an online streaming service.

7github.com/apache/incubator-mxnet/blob/master/src/operator/contrib/hawkes ll-inl.h
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Table 4.3. Data sets used in FastPoint learning experiments.

Data Set Description

HP-5K Forward draw from a 5000-dimensional MHP with a full kernel

matrix with n = 106

HP-10K Forward draw from a 10000-dimensional MHP with a full kernel

matrix with n = 106

NCEDC An event log of earthquakes collected from the Northern California

Earthquake Data Center earthquake catalog search service [110].

We assign each earthquake to one of 1000 marks based on a clus-

tering of their epicenters.

MemeTracker The MemeTracker dataset includes 71566 topic clusters and 7.6

million individual events [11].

LastFM-1K The LastFM dataset contains events belonging to 105K artists.8

We also include a data set of seismic events. Descriptions of our data sets can be found

in Table 4.3.

The number of hidden units in neural models is fixed at 50 in toy experiments

and 100 in on NCEDC, MemeTracker, and LastFM-1K. For RMTPP and FastPoint, we

conduct several runs with early stopping and choose the best model based on predictive

likelihood on a held-out validation set. Furthermore, we regularize NN parameters (i.e.,

not the local Hawkes parameters of FastPoint) with weight decay. To prevent numerical

issues, we preprocess all data sets to an average rate of 50 events per unit of time.

Our results are presented in Table 4.4, where we give the number of marks and

events in each data set, and report predictive log-likelihood on an out-of-sample test

set. We find that FastPoint categorically outperforms other models, with a significantly

higher margin in real data sets.
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Table 4.4. FastPoint predictive performance comparison.

HP-5K HP-10K NCEDC MemeTracker LastFM-1K

Events (millions) (n) 1 1 0.8 7.6 18

Marks (d) 5000 10000 1000 71566 105222

Hawkes 27009 30441 10346 42406 25087

RMTPP 27008 30491 14424 42507 30489

B-RMTPP 27008 30483 14393 42304 30474

FastPoint-5 26998 30412 10314 41007 25271

FastPoint-10 26997 30412 10287 41253 25024

FastPoint-20 26998 30412 10261 41398 24500

In Figure 4.2 we present the contrast between FastPoint and RMTPP in terms

of the wall-clock time required for computation, and how this scales in terms of di-

mensionality. To the left of the figure, we compare the change in training times as the

number of marks increases. Clearly, while computation scales linearly in both cases,

the di↵erence for computation time in, say, 500K marks is dramatic between FastPoint

and competing models. On the right, we compare how learning can be further accel-

erated, in the presence of even higher dimensionality, by increasing the grid interval

length parameter �. Combined, FastPoint results in learning times of up to two or-

ders of magnitude faster compared to baselines, while simultaneously o↵ering improved

predictive accuracy.

4.4.2. Sampling

In Figure 4.3 we start by comparing the computational performance of FastPoint-

SMC, the simulation routine outlined in Section 4.3, to the Ogata algorithm for

RMTPP. Specifically, we compare the time taken for sampling 100 points from a fitted

model. For now, we do not account for the fact that FastPoint-SMC draws importance-

weighted (hence, approximate samples). For 90K points, we can confirm that the SMC

routine produces samples 300 times faster than the baseline algorithm.
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Figure 4.2. Computational results on parameter estimation of FastPoint.

For a fair comparison, however, we must account for the variance introduced by

approximate sampling. In order to demonstrate that the claims in Section 4.3 hold

true, we penalize FastPoint-SMC by corrected sample sizes. Namely, we account for

the added sampling variance using the ESS, due to Kish [111], defined

me = ESS =
(
P

i
wi)

2

P
i
w2

i

.

To give a comparable statistic of sampling acceleration, we write the e↵ective sampling

time multiple,

ESTM =
T (s)
O

T (s)
FP

⇥ me

m
,

where m denotes the number of samples, T (s)
O

, T (s)
FP

times taken to sample from the

Ogata and FastPoint-SMC samplers respectively. Intuitively, ESTM computes the

approximate wall-clock time that would be taken by FastPoint-SMC for estimators of

“equivalent” variance with an exact sampler. In Figure 4.4 (c), we demonstrate that

even when penalized for ESS, FastPoint scales favorably with respect to the number of
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K (⇥103) Improvement

10 89.1

20 109.1

30 115.1

40 169.9

50 186.3

60 240.7

70 267.2

80 292.0

90 284.7

Figure 4.3. Results on computational performance of FastPoint-SMC.

Figure 4.4. Analysis of FastPoint sampling performance.

marks such that it outperforms the baseline by two orders of magnitude.

We owe this result to the e�cacy of Poisson proposals, which we scrutinize in

the same figure, in plots (a) and (b). In (a) we demonstrate that, as predicted, ESS

(scaled to 100) is high for short enough forecast horizons. It starts breaking down after

a reasonably high �, 5 say–or drawing 250 points in sequence. This also points to

a trade-o↵, which plot (c) also highlights, that there is an optimal � around which

the sampling time improvement best o↵sets the loss in ESS. In (b), however, we find

that the SMC algorithm fails quickly when the Hawkes branching ratio increases. In
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practice, this is rarely a problem however, as the model also learns to account for some

of the self-modulation (within mark) e↵ects also via the global model.

Overall, FastPoint—and GLMTPP in general—appear as a viable alternative

to fast and accurate learning in high-dimensional point process data. Apart from

accurate learning, FastPoint also provides a practicable solution to predictive inference,

a widely unexplored problem in the backdrop of TPPs. Our framework also provides

a demonstrably e↵ective way to fuse deep MTPPs with well-studied classical models;

retaining the favorable properties of both.
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5. INTERMITTENT DEMAND FORECASTING WITH

DEEP POINT PROCESSES

In Chapter 3, we focused on bringing high-dimensional MHP learning to scale.

Our focus was to estimate a low rank parameterization for MHP, which paved the way

to fast learning algorithms. Similarly, in Chapter 4 we approached a similar scalability

issue, this time making use of RNNs to approximate the mutual excitation kernel.

In this chapter, we change our course. In contrast to the previous sections,

we focus on a practical application of some of the fundamental ideas in Chapter 2.

Namely, we focus on the intermittent demand forecasting problem, and apply TPPs to

learn highly accurate forecasting models.

In summary, IDF is concerned with nonnegative time series characterized by long

series of consecutive zero observations [112–116]. For example, a series of daily de-

mand amounts of a product for which demand occurs sporadically. This is illustrated

in Figure 5 where an intermittent demand pattern is visible in the time series below.

Such sparse time series are well-known to render standard forecasting techniques in-

valid. They also raise new questions on how forecast accuracy is gauged [117], model

selection [118], and model ensembling [119]. Moreover, intermittency often arises in the

context of spare parts inventory management in heavy industry, airlines, maritime and

defense operations [120], which requires an emphasis on accurate estimates of forecast

uncertainty.

Figure 5.1. Intermittent vs. non-intermittent demand series.
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Here, we will build this chapter on the key observation that existing model-based

IDF approaches can be expressed as instances of renewal processes. We will then build

on this observation, proposing a new set of models including those linked to neural

MTPPs, towards IDF tasks. Our contributions in this chapter can be summarized as

follows,

• We formalize a connection between previous IDF models and renewal processes

and their self-modulated variants.

• We introduce a set of flexible and interpretable stationary renewal process mod-

els in discrete time for IDF. We also extend our models to a class of neurally-

modulated processes inspired by prior work in machine learning and IDF.

• We give continuous time extensions of our models for when exact timestamps of

demand events are available.

• We show substantial improvement of predictive performance on widely available

IDF benchmark data.

In Section 5.1 we start by introducing the literature on IDF and set up the fun-

damental IDF problem. In Section 5.2, we give an argument on why IDF tasks are

naturally expressed in the language of renewal theory. In Section 5.2.3 we give exten-

sions of Croston-type IDF models to deep MTPP-like models such as those covered

in Section 2.5. We give extensions to a continuous-time analogue of the problem in

Section 5.2.4, and numerical results in Section 5.3 concluding the chapter.

5.1. Intermittent Demand Forecasting

Large portions of inventory catalogues, especially in heavy industry, airlines, man-

ufacturing, and defense sectors exhibit intermittency—i.e., demands occur sporadically

in time. Although the exact definition of intermittent demand is a subject of de-

bate [112,113,121–123], its main characteristics are that (i) non-zero demand sizes are

observed rarely in time, and potentially (ii) these sizes exhibit overdispersion. In other

words, demand is both intermittent, and demand amounts are potentially lumped in
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time.

Many classical forecasting heuristics fail in this context, as many such models

encode an assumption on “temporal contuniuity” that IDF data does not possess. This

was the original observation made by Croston in his seminal paper that started the

IDF literature [124]. Namely, Croston observed that exponential smoothing—a staple

of forecasting literature—was especially prone to failure as it would yield the highest

forecasts just after a demand observation, and the lowest just before. In this light, he

heuristically proposed to run exponential smoothing on the demand sizes—the amount

of positive demand, and intervals—the number of intervals between consecutive points

with nonzero demand. This modeling paradigm underlies most IDF models today, with

Croston’s method being the de facto industry standard.

Since Croston’s original paper, many extensions of the method have been pro-

posed. Schultz [125] investigated whether applying di↵erent smoothing constants to

sizes and demands would yield higher predictive performance. Croston’s results were

verified by Willemain et al. [126] who also demonstrated that IDF data sets indeed

exhibit autocovariance across both size and interval series. An explicit model for in-

ventory control under Croston’s model was considered in [127].

Johnston and Boylan proposed TPP models of demand sizes and intervals [128].

Notably, they derived variability estimates of IDF data observed in discrete time, while

assuming underlying orders to follow a Poisson process.

In his thesis, Syntetos gave a thorough treatment of the IDF problem [129].

He pointed out an “inversion bias” that resulted from Croston’s model assumptions,

and gave a revised estimator, since called the Syntetos-Boylan approximation [130].

A simpler version of this approximant was also given in [131]. A similarly modified

estimate was studied by Shale et al. [132], where the authors assumed underlying

Poissonian demand arrivals as in [128]. A review of these estimators was given by [120].
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Teunter et al. [133] directly modeled the probability of observing nonzero de-

mand. A review and comparison of point-forecast methods in IDF was given by Babai

et al. [134], in a study that did not post strong evidence in favor of any point forecast

method under consideration. Extensions of point forecast methods with Holt-Winters

type estimators have been considered in [135,136].

While point forecast methods are specifically geared towards intermittent data,

they do not address another important requirement in IDF settings—accurate forecast

uncertainty estimates. Towards developing such estimates, a number of “model-based”

approaches, with fully specified generative models for intermittent demand, have been

proposed. This issue was first explored by Snyder [137] who considered learning a set of

state-space models (SSM) and computing uncertainty estimates from forward samples

drawn from the model. This approach, in their terms the “parametric bootstrap,” is

the approach we will take in this chapter. Notably, Synder drew connections between

the renewal-type model proposed by Croston as a justification to his original forecast

equations and “single-source-of-error” (SSOE) SSMs.

Shenstone and Hyndman [138] investigated stochastic models built on Croston’s

assumptions. Specifically, they pointed out that the i.i.d. assumptions made by Cros-

ton in defining his models were at odds with the exponential smoothing forecasts pro-

posed. They explored a set of “modified” models where both sizes and intervals (or,

their logarithms) followed an IMA(1,1) processes. Most importantly, they showed that

such models built on the IMA process assumption su↵ered from a “convergence prob-

lem” (see Appendix C.3), as pointed out in [139,140].

In their comprehensive article [141], Snyder et al. give an extended set of IDF

models based on the size-interval formalism. Specifically, they compare i.i.d. (in the

paper, “static”), IMA (“undamped dynamic”) and AR (“damped dynamic”) processes

for interdemand intervals. For demand sizes, they consider negative binomial and

“zero-inflated” Poisson distributions.
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Yelland considered Bayesian treatment of an SSOE SSM model, with a hierar-

chical Bayesian approach in a follow-up work [142, 143]. Seeger et al. [116] gave an

approximate Bayesian inference algorithm under a full SSM. Stochastic models for IDF

were also explored in [144, 145]. Recently, Svetunkov and Boylan reported improve-

ments with a multiplicative error SSOE SSM [146]. A review of model-based IDF is

given by Hyndman et al. [147, Ch. 16].

Several works have considered taking a NN-based approach to IDF. Gutierrez et

al. [148] experimented with feedforward NN to estimate the next period’s demand. The

network took the previous interdemand interval and size, taken through a single three-

node hidden layer. Their method reportedly outperformed Croston’s and Syntetos-

Boylan methods. These results were later challenged by Kourentzes [149] who compared

several NN architectures to Croston’s method and Gutierrez’s network. Although

NNs were not able to outperform classical methods in forecast accuracy metrics, the

paper reported improvements in terms of inventory control metrics (e.g., service levels).

RNNs were considered for the task [150, 151]. LSTMs were considered recently by Fu

et al. [152]

5.1.1. Problem Setup

We start our discussion by setting up the notation, the problem, and introducing

some of the methods on which we will base our models. We will consider univariate

time-series, initially in discrete time—in contrast to the rest of the thesis. Specifically,

we will consider nonnegative integer-valued time-series denoted {Xt}t2{1,2,··· }, Xt 2

N�0. While we keep using the variable t, we extend its definition as t 2 N. Whether t

denotes discrete or continuous time will be clear from the context. Typically, realiza-

tions of Xt will contain few cases where Xt > 0.

We will benefit from casting the problem in the “size-interval” notation, already

suggested by our review of Croston’s method in the previous section. Namely, we will

index individual points in time whereXt > 0 with index i 2 {1, 2, · · · }—also referred to
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as “issue points” in the forecasting domain. Concretely, we define the one to one map

⇠(i) = min{j | i 
P

j

t=1[Xt > 0]}. We can now formally define the demand “sizes”

Si = X⇠(i) and interdemand times Qi = ⇠(i)� ⇠(i�1). In other words, we denote by Si

the demand size at the issue point i, while Qi refers to the number of periods elapsed

since the previous issue point. By definition, we have Si � 1 and Qi � 1. Note finally

that (Si, Qi) fully determine Xt and vice versa.

We will use N ,G,PO,NB, E to denote normal, geometric, Poisson, negative bi-

nomial, and exponential distributions respectively. These distributions will be param-

eterized in terms of their means. This is often not the case for the negative binomial

distribution, for which we use the mean-dispersion parameterization, introduced in Ap-

pendix C.1. Furthermore, we use shifted versions of Poisson, geometric, and negative

binomial distributions to accommodate that Si, Qi � 1. The notation X̂t refers to a

(conditional) estimator of Xt while xt refers to a specific instantiation.

The main aim of our discussion in this chapter is to characterize predictive distri-

butions such as P{Xt+1:t+m|X1:t = x1:t}. However, we will do so by relying on explicit

models of the bivariate process (Si, Qi), instead of direct modeling of sequences Xt. Let

us start by introducing Croston’s method [124] in our notation. In his original paper,

Croston proposed to model demand series by the forecast estimates

Q̂i = g↵(Q1:i�1) Ŝi = g↵(S1:i�1), (5.1a)

where g↵ denotes

g↵(x1:i) = ↵xi + (1� ↵)g↵(x1:i�1),

the EWMA function. Croston also discussed potential models that would give rise to
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the forecast functions (5.1)

Si ⇠ N (µ, �2) i.i.d., (5.2a)

Qi ⇠ G(1/⇡) i.i.d. (5.2b)

The paper also considers {Si} ⇠ ARIMA(0, 1, 1) with Gaussian innovations.

The discrepancy between the model assumptions, which imply a stationary i.i.d.

process and forecast functions which model nonstationarity have been the subject of

discussion in IDF works that followed. However, most works relied on the forecast

functions (5.1) instead of using the model directly. Specifically, the Syntetos-Boylan

method corrects for a bias that results from this discrepancy [130]. Yet, it should

be pointed out that the bias pertaining to the interdemand times could be handled

by a model assumption on the probability of demand occurrence as in [153]. The

discrepancy for demand sizes, on the other hand, is often not an issue as

Proposition 5.1. For {Si} ⇠ N (µ, .), i.i.d., the EWMA series {Ŝi} is an asymptoti-

cally unbiased estimator of the conditional mean.

Proof.

E
h
Ŝi|S1:i�1

i
= E [g↵(S1:i�1)] �! µ = E [Si] = E [Si|S1:i�1] , as i " 1.

However, in this chapter, we take the opposite approach. We base our estima-

tions directly on a learned generative model. For example, working directly with the

model proposed in (5.2), we could learn the parameters µ, �2, ⇡ simply by principle of

maximum likelihood. For forecast estimates, we would simply write

E [Xt] = E [Sj+1]E [Qj+1] = µ/⇡,
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Table 5.1. Baseline models for intermittent demand forecasting.

Model Qi Si

Static G-Po [124] G(µq), i.i.d. PO(µm), i.i.d.

Static G-NB [141] G(µq), i.i.d. NB(µm, ⌫m), i.i.d.

EWMA G-Po [138]
G(Q̂i)

Q̂i = g↵(Q1:i�1)

PO(Ŝi)

Ŝi = g↵(S1:i�1)

EWMA G-NB
G(Q̂i)

Q̂i = g↵(Q1:i�1)

NB(Ŝi, ⌫m)

Ŝi = g↵(S1:i�1)

where j = max{i|⇠(i) < t}. However, this would not be a very useful model in several

respects. First, the Gaussian distribution on Si assigns density to all real values,

including negative ones. Second, our model will fail to capture any autocorrelation, an

e↵ect that is well-known to be present in IDF data [126]. Finally, the distribution of Qi

imply a Bernoulli process of demand arrivals, i.e., they encode complete independence

of demand arrivals across time as a Poisson process would do in continuous time. In

our experiments, following the nomenclature of [141], we call such models with i.i.d.

Si, Qi static models.

As introduced in the previous section, the models of Shenstone and Hyndman

[138,147] aim to address some of these shortcomings. Their “modified Croston” mod-

els directly parameterize the conditional distributions of size and interval distributions

of Si, Qi by the EWMA of the observed sequences S1:i�1, Q1:i�1 respectively. We call

these methods EWMA models. We give an overview of static and EWMA models

in Table 5.1, where, e.g., “Static G-NB” refers to a static model with the geomet-

ric (resp. negative binomial) distribution assumed for interdemand time (resp. size)

distributions.
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5.2. Discrete Time Renewal Processes

5.2.1. Marked Discrete Time Models

We can now draw a parallel between TPPs and IDF models introduced so far.

Above, we noted that for static models, the “arrival process” of nonzero demand fol-

lowed a stationary Bernoulli process—the discrete analogue of Poisson processes (see,

e.g., the argument in [18]). One way in which we can extend IDF models is to view

them as marked temporal “point” processes in discrete time, where nonzero demand

points can be viewed as point occurrences and the demand sizes as their marks. Let us

note that, although this can appear like an unacceptable stretch of terminology, this is

the sense in which modern determinantal point processes [154–156] are used today.

Next, we will observe that we can extend Bernoulli processes in the same way

that Poisson processes were extended to renewal processes in 2.1.2. As such, we can

define marked discrete-time renewal processes (DTRP). Letting Qi, Si, Xt be defined

as above,

Definition 5.1. (Discrete-time renewal process) Qi defines a DTRP if Qi S(.) i.i.d.

where S denotes any probability distribution with support in positive integers.

Definition 5.2. (Marked DTRP) Qi, Si jointly define a marked DTRP if Qi defines

a DTRP and Si are distributed according to some mark distribution (not necessarily

i.i.d.). When this distribution is independent of Qi and Sj, j 6= i, we will refer to a

marked DTRP with independent marks.

Once again, our use of the term renewal process may appear to bend well-

established definitions. However, a short review of early introductions of renewal theory

yield that until Cox’s introduction of renewal theory in continuous time [19], it was

customary to introduce the theory in a discrete-time formalism. See, e.g., Feller [157,

Ch.13].

Apart from serving our purposes for introducing new IDF models, the reader may
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find it of interest that much of the fundamental insights from general renewal theory

carry over nicely to a discrete-time setting. Another important connection to IDF is

that renewal processes were conceived to determine when machine parts would fail

and have to be “renewed,” i.e., they were developed toward a nearly identical problem

setting to IDF.

This connection also justifies the interpretation of interarrival time distributions

in renewal-type models. To make this connection, let us introduce the hazard rate1

h(k) = P{Q = k|Q � k} = P{Q = k}/P{Q � k} =
P{Q = k}

1� P{Q  k � 1} ,

where we suppress the index of the interdemand time. Intuitively, the hazard rate

defines the probability that a demand will occur in time step k, given that it has not

occurred in the previous k � 1 steps. For geometric interdemand times, it is easy to

show that the hazard rate is constant. In other words, the geometric distribution is

memoryless, and the probability of a demand occurring is independent of the time since

the last occurrence. By a simple change of this distribution assumption, we can encode

more interesting behavior such as aging—the probability of demand increases as time

passes, clustering—demand points are lumped together in time, or quasi-periodicity.

In this paper, we explore DTRP models with a negative binomial interdemand time

distribution. We demonstrate that the negative binomial can capture all of these

temporal patterns in Figure 5.2. In our experiments, we will replace the geometric

distribution in Static models with the negative binomial. We will call these models

Static DTRPs.

5.2.2. Self-modulating Discrete Time Models

In Table 5.1, our EWMA models di↵ered from their Static counterparts by how

the means of conditional size and interval distributions were parameterized. By a

similar analogy to the one pointed out in the previous section, we note that these

1This is a discrete-time analogue of the hazard function of Section 2.1.2
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Figure 5.2. Probability functions and hazard rates of negative binomial distributions.

models can be viewed as self-modulating DTRPs, just like self-modulating TPPs (see

Section 2.2).

For comparison, we consider a natural extension EWMA models to their general

DTRP counterparts. Namely, we consider EWMA DTRP models, as presented in

Table 5.2.

Before moving on, let’s give a theoretical justification of our argument in favor

of self-modulating DTRPs. These models are closely related to another extended class

of renewal processes—Markov renewal processes (MRP) [158] (see, also, [16, Ch. 10]).

Although we will not develop rigorous connections here, our self-modulating DTRP

models can be cast as discrete-time Markov renewal processes where the state transi-

tions are deterministic. Stated in terms used widely in the forecasting literature; MRPs

could be viewed as multiple source of error models where our self-modulated models

correspond to SSOE processes.
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Table 5.2. Discrete Time Renewal Process Models.

Model Qi Si

Static DTRP NB-Po NB(µq, ⌫q), i.i.d. PO(µm), i.i.d.

Static DTRP NB-NB NB(µq, ⌫q), i.i.d. NB(µm, ⌫m), i.i.d.

EWMA DTRP NB-Po
NB(Q̂i, ⌫q)

Q̂i = g↵(Q1:i�1)

PO(Ŝi)

Ŝi = g↵(S1:i�1)

EWMA DTRP NB-NB
NB(Q̂i, ⌫q)

Q̂i = g↵(Q1:i�1)

NB(Ŝi, ⌫m)

Ŝi = g↵(S1:i�1)

Deep DTRP NB-Po
NB(Q̂i, ⌫q)

Q̂i = f (LSTM✓(hi�1, Qi�1, Si�1))

PO(Ŝi)

Ŝi = f (LSTM✓(hi�1, Qi�1, Si�1))

Deep DTRP NB-NB
NB(Q̂i, ⌫q)

Q̂i = f (LSTM✓(hi�1, Qi�1, Si�1))

NB(Ŝi, ⌫m)

Ŝi = f (LSTM✓(hi�1, Qi�1, Si�1))

5.2.3. Deep Renewal Processes

Our analogies to TPPs, both renewal processes and their self-modulating variants,

suggest one final step. We can now recognize that the EWMA is just one of many

possible functions that could be used to parameterize conditional distributions of the

next size and interval. The EWMA is special only in that it can be computed recursively

over the sequence of past observations. A natural replacement for the EWMA is the

LSTM [50], which satisfies this property as well as being able to approximate a much

wider class of functions.

As such, we define Deep DTRP models analogously to EWMA DTRPs, by re-

placing the EWMA by an LSTM network. While doing this, we also introduce one

important change. Namely, we give both the sequence of past sizes and intervals to the

LSTM, and let it jointly compute an embedding shared by the next size and interval’s

distribution. Given the computational requirement of computing through an LSTM,

this introduces negligible added computational cost. However, as we will see, it yields
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significant benefits and addresses a key shortcoming in previous models.

Concretely, we define Deep DTRPs via the following relations,

Q̂i = fq(hi), Ŝi = fs(hi),

hi = LSTM⇥(hi�1, Qi�1, Si�1).

Here, fq(x) (resp., fs) is a suitably defined projection from the LSTM output hi at

time i to the parameter domain of the respective distributions. For example, we can

define fq as the shifted softplus of an a�ne combination of the LSTM output layer,

fq(h) = 1 + log
⇥
1 + exp(wT

q
h+ bq)

⇤
,

where wq, bs are the so-called weight and bias terms for the projection. Note that we

shift the result of the softplus function to the interval [1,1) to match the parameter

domain. Finally, LSTM denotes the LSTM network transformation function introduced

in Section 2.4.

In our experiments, we learn parameters ⇥ of the LSTM network by backprop-

agating negative log likelihood loss through time. Finally, let us point out that our

models can be seen as discrete-time analogues of neural MTPP models [24,58,107], as

introduced in Section 2.5.

Our RNN di↵ers from previous attempts in IDF in one important aspect. Instead

of approximating the sequence in squared error, our NNs only serve to determine the

mean of conditional size and interval distributions. This is similar to the approach taken

in recent neural forecasting methods [49]. Second, when multiple intermittent series are

available, we learn the parameters ⇥ globally—across di↵erent time series [159, 160].

That is, instead of potentially overfitting a model to each individual time series, we

attempt to learn a universal function that parameterizes IDF conditional distributions.
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Table 5.3. Continuous Time Renewal Processes.

Model Q0

i
S 0

i

Static CTRP E-Po E(µq0), i.i.d. PO(µs0), i.i.d.

Static CTRP E-NB E(µq0), i.i.d. NB(µs0 , ⌫s0), i.i.d.

Deep CTRP E-Po
E(Q̂0

i
)

Q̂0
i
= f

�
LSTM✓(hi�1, Q

0

i�1, S
0

i�1)
�

PO(Ŝ 0
i)

Ŝ 0
i = f

�
LSTM✓(hi�1, Q

0

i�1, S
0

i�1)
�

Deep CTRP E-NB
E(Q̂0

i
)

Q̂0
i
= f

�
LSTM✓(hi�1, Q

0

i�1, S
0

i�1)
�

NB(Ŝ 0
i)

Ŝ 0
i = f

�
LSTM✓(hi�1, Q

0

i�1, S
0

i�1)
�

5.2.4. Extensions to Continuous Time

As Croston also observed in his original paper [124], IDF data often arises as

a result of “aggregating” individual demand instances, e.g., purchase orders, across a

grid in time that is too dense. Moreover, the individual data points for these orders

are often themselves available with granular timestamps. This suggests the final set

of models which we propose in this chapter, connecting it to the earlier chapters, and

modeling intermittent demand with TPPs.

Luckily, our setup and terminology so far make this switch very simple—as easy

as changing the support of interval distributions from integers to real numbers. We

give these models in Table 5.3, where introduce two main changes. First, we introduce

the random sequences Q0

i
, S 0

i
that are analogous to their discrete-time counterparts.

However, we stress here that these sequences now index individual demand events,

and not only non-zero demand review periods. Our second change carries our models

from being DTRPs to TPPs, or continuous-time renewal processes (CTRP). We do

this simply by changing the conditional distribution of Q0

i
from negative binomial to

exponential.



88

5.3. Empirical Results

We evaluate the proposed models on three data sets collected from numerous IDF

scenarios. The Parts data set is the standard common task in IDF [120], consisting

of 1046 time series of 50 time steps each. Each time series represents the demand for

automobile spare parts. The UCI retail data set is constructed from real-time demand

events [161]. Finally, the Kaggle data set includes product-level retail demand data.

For the Kaggle data set, we only include demand records since 2017, and train on time

series samples with 2 points in the conditioning range and 1 in the prediction range.

Our models are implemented on Apache MXNet [13]. We use the MXNet Gluon

Adam optimizer to learn single hidden layer LSTMs with 10 hidden units. We map

network outputs to the respective parameter ranges via the softplus activation function.

Our models are learned globally. That is, a single set of weights is learned across

the di↵erent time series (e.g., products). In other words, we seek to fulfill the aim

set out in the previous section—of learning a generic EWMA-like function to predict

intermittent demand across di↵erent individual entities.

For evaluation, we use the quantile loss to evaluate probabilistic forecasts. For

quantile ⇢ 2 (0, 1) and time series yt, the ⇢-quantile loss is defined as

QL
⇢
(yt, byt(⇢)) = 2 [⇢ · (yt � byt(⇢))Jyt � byt(⇢) > 0K + (1� ⇢) · (byt(⇢)� yt)Jyt � byt(⇢) 6 0K] ,

where yt(⇢) denotes the quantile estimate from the model. In our experiments, we

evaluate such estimates by taking forward samples from fitted models, i.e., by the

parametric bootstrap. We compare our models to static and modified Croston models.

Table 5.4 summarizes our results.

Deep renewal process models categorically outperform both static and EWMA

model variants. The static DTRP idea, of assuming a more flexible interarrival distri-
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bution, appears to work at least in work comparably well in most cases. Our numbers

regarding Croston-type models (EWMA) are the worst in terms of predictive perfor-

mance, and our findings echo those of Snyder et al. [141].

Finally, continuous-time models can only be tested on the UCI data set, where we

directly model the underlying demand timestamps instead of rolling demand events up

to a temporal grid. Here, we can observe tangible benefit compared to other models.

However, the simpler Deep DTRP G-Po model appears to perform favorably in these

cases. As such, our numerical results for CTRP models are inconclusive.

Our numerical findings are promising. We can report measurable benefit benefit

in using deep RNNs for IDF, contrary to previous attempts. The main di↵erences

in the approach, of using a model-based method and using a well-implemented deep

learning library, both appear to make a di↵erence. Our results are currently incon-

clusive about the use of generalized renewal processes, however. Both expanding the

set of experiments, and the classes of RNN-based models used in this exercise remain

exciting directions for research.
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Table 5.4. Results on benchmark IDF datasets.

P50QL P90QL

Model Parts Kaggle UCI Parts Kaggle UCI

Static G-Po [124] 3.643 5.909 12.278 2.495 2.362 7.979

Static G-NB [141] 3.673 5.659 12.282 2.491 2.486 6.651

Static DTRP NB-NB 3.665 5.591 9.469 2.151 2.490 7.382

EWMA G-Po [138,147] 4.218 6.736 13.453 3.507 2.796 8.371

EWMA G-NB 4.274 7.870 12.242 3.662 3.818 9.779

Deep DTRP G-Po 2.835 5.511 8.404 1.601 2.182 4.295

Deep DTRP G-NB 2.593 5.467 9.146 1.517 2.450 5.380

Deep CTRP G-Po N/A N/A 8.817 N/A N/A 4.727

Deep CTRP G-NB N/A N/A 8.847 N/A N/A 4.863
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6. CONCLUSION

Temporal point processes (TPP) are ubiquitous probabilistic models, used for

a diverse set of applications from modeling packet arrivals in computer networks to

earthquakes. These devices, initially seen as one of the more advanced topics of classical

statistics, have been increasingly featured in recent machine learning literature. TPPs

not only provide parsimonious and powerful models of “timestamped” data, the object

of many tasks in machine learning, they also often yield an interpretable representation.

High-dimensionality is another aspect of large timestamped data that is frequent

in machine learning. Indeed, in this context, the “big data” colloquialism not only

refers to the number of timestamped “events,” but also to their heterogeneity—i.e.,

the number of di↵erent types that they can assume. When examining the logs of a

large social media platform, for example, the objective is not to solely understand what

temporal patterns drive social media activity. Instead, one seeks to understand how

individual “users” collectively give rise to the collection of social interactions.

Nevertheless, both aspects of “big data” pose scalability challenges for learning

TPP-based models. General TPPs account for interactions between each pair of events

and pair of marks explicitly, leading to a quadratic time complexity in the cardinalities

of both sets. This is likely one of the main issues that have hindered the mainstream

adoption of TPPs in machine learning. Moreover, predictions from TPPs are almost

only available through sampling algorithms, which su↵er from the same challenge. In

this dissertation, we attempted to bring simple solutions to this challenge.

In our first set of propositions, we looked for a fast learning algorithm for approx-

imating infectivity parameters in high-dimensional MHPs. We proposed two separate

approaches, under di↵erent constraints and relaxations, that reduce the problem of

learning a low-rank MHP to just a low-rank matrix approximation problem.
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Our first set of algorithms, NLRHP, leveraged a surprising connection to non-

negative matrix approximation problems. Building on this connection, we proposed

a simple stochastic gradient descent algorithm—easily implemented on modern deep

learning frameworks—to learn a low-rank Hawkes model in linear time. In the sec-

ond approach, we demonstrated that low-rank MHP learning could be reduced to just

a general factorization problem, with a single pass over the data. As such, we were

able to accelerate low-rank learning problems—with millions of events and hundreds

of marks—to a matter of seconds.

We took a di↵erent approach in proposing global-local TPPs. Namely, instead of

relaxing the fidelity of the interaction kernel among marks; we relaxed the assumption

of temporal granularity in cross-mark interactions. In FastPoint, we showed that one

could make up for this relaxation by employing deep RNNs for cross-mark interactions,

ubiquitously across a wide range of di↵erent real-world data.

Predictive inference in TPPs rely on Monte Carlo methods that require e�cient

samplers to draw from the fitted process. Alas, the most popular approach—thinning—

is a sequential rejection sampler that hardly scales to high-dimensional data. We

argued that global-local TPPs naturally suggested a sequential importance sampling

approach—not only to significantly improve the time complexity of simulation but also

to yield massive parallelizability. We proposed FastPoint-SMC as one of many possible

sequential importance sampling algorithms to accelerate the simulation of a general

approximate TPPs, and empirically demonstrated that samples of equivalent variance

could be obtained at orders of magnitude faster rates.

Collectively, our approaches comprise a set of methods to accelerate learning and

inference tasks in general, flexible TPP-based models. They are founded in the well-

established theory of TPPs, are categorically faster by multiple orders of magnitude

than competing methods, and are easily extensible to more expressive models. They

represent relaxations of classical MTPP approaches that preserve predictive power

while solving the important challenge of scaling to high dimensions.
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The e�cacy of our methods were illustrated on a number of numerical examples,

with data collected from applications in high-frequency finance, seismology, online

social media, and music streaming. While these represent only a fraction of domains

where TPP data is pervasive, we dedicated the last chapter to a novel application of

ideas that naturally carry over from TPPs. That is, we developed a set of models

inspired by renewal processes and neural MTPPs to tackle the intermittent demand

forecasting problem. The wide set of models proposed all outperform their classical

counterparts that have been the go-to models in forecasting for the last half-century.

We hope that our contributions will help further the adoption of TPPs in ma-

chine learning, especially in a wide class of applications where “time” is considered an

essential variable.

A number of research directions are natural next steps to this work.

The models proposed in Chapter 3 warrant further experimentation. Our initial

computational results have been illustrative of their superior computational perfor-

mance and interpretable results. However, our analysis of computational complexity

must be backed by further numerical results. Likewise, the predictive accuracy obtained

with low-rank parameters must be tested in real-world prediction tasks.

Global-local TPPs of Chapter 4 yield a flexible framework, and FastPoint’s cur-

rent structure barely scratches the surface of possible combinations of global and local

models. Most novel RNN architectures and renewal-type TPPs could replace the global

and local components of the framework, yielding powerful domain-specific adaptations.

The sampler, FastPoint-SMC, relies on both the GLMTPP approach, and a surprising

finding about importance sampling in temporal point processes. A stronger theoretical

result could yield more general sampling routines for TPPs, by constructing e�cient

proposals to arbitrary processes.

The application of both low rank HP and FastPoint to specific domains, especially
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with web-scale data, remains an exciting pursuit. Examples include time-sensitive

collaborative filtering [79], social graph analysis, and community detection [10]. We

also believe there will be benefit in applying our models to domains in which TPPs

have been considered traditionally, such as high-frequency finance [1, 3] or analysis of

neural spike trains [6, 7].

Finally, in Chapter 5, we worked with discrete-time analogues of self-modulating

renewal processes for demand forecasting. These models could be applied in other

domains where temporally sparse discrete-time series are available. Our models were

tested only on benchmark data sets for the intermittent demand task. Testing them on

real industrial data sets, where longer contexts are available, remains as a next step.
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APPENDIX A: Computational Details on Hawkes Processes

Below, we give a tutorial introduction to computing the “memory” of the HP

in linear time. Our observations apply in the context of the EM algorithm—when

collecting su�cient statistics as well as when computing gradients. Recall the log

likelihood of a MHP,

log p(⇧(k)|H⌧ ) = �
Z

T

0

�⇤

k
(s)ds+

X

i2Ik

log �⇤

k
(ti).

Focusing on the first term, the compensator, we have

Z
T

0

0

@µk +
X

i|ti<s

'k(s� ti)

1

A ds,

where the first summand is constant w.r.t. s, and the triggering kernel is defined

X

i|ti<s

'k(s� ti) ,
X

l

�kl

X

ti2⇧
(l)
(0,s]

� exp(��(s� ti)).

For taking the integral of the second term, we invoke the well-known memoryless

property of exponential decays. First let us introduce the “memory” process, defined

Mk(t) ,
X

i2⇧
(k)
(0,t]

exp (��(t� ti)) ,

which can be interpreted as the e↵ect—added intensity—of all events of mark k on

time t. Note that the following two recursions hold,

Mk(t) = exp (��(t� ti))Mk(ti), (A.1a)

Mk(ti) = exp (��(ti � ti�1)) (1 +Mk(ti�1)) , (A.1b)



114

where ti�1, ti 2 ⇧(k)
(0,t] are the timestamps of two consecutive points. Moreover, note

that

Z
ti

⌧

Mk(s)ds = Mk(ti)

Z
ti

⌧

exp (��(s� ti)) ds

=
Mk(ti)

�
[1� exp (��(ti � ⌧))] .

Therefore, invoking (A.1), the compensator can be computed recursively in linear time

as

Z
T

0

�⇤

k
(s)ds = µkT +

X

l

�lk�

Z
T

0

Ml(s)ds.

The same idea applies to the computation of the log intensities as

X
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APPENDIX B: Additional Details on Global-Local Temporal

Point Processes

B.1. Likelihood Computation

First note that 'k only depends on points in H(k)
t , i.e., only points of the same

mark. The conditional intensity �⇤

k
(t) depends on points of other marks l 6= k only

through the intensity term contributed by the global model g(v>

k
h(H⌧ ) + bk). Then,

letting ⇧(k)
(⌧,⌧+�] denote the point process observation between two consecutive points

on the grid ⌧ 2 G, it follows that

p

 
[

k

⇧(k)
(⌧,⌧+�]

�����H⌧

!
=
Y

k

p(⇧(k)
(⌧,⌧+�]|H⌧ ).

Indeed, it is this conditional independence assumption that FastPoint exploits in train-

ing and sampling.

RMTPP [58] adds an exponential decay to the first term, which still leads to an

integral that can be computed analytically. Other non-trivial parameterizations of the

RNN, such as in Neural Hawkes Processes [24] lead to an intractable integral requiring

a costly numerical approximation. However, since local information is encoded by

the Hawkes self-excitation, we take the contribution of the global model as constant

between two LSTM epochs.

B.2. Additional Details on FastPoint

The log likelihood of a multivariate point process is

`(⇥�⇤) =
X

k

X

i2H(k)

log �⇤

k
(ti)�

X

k

Z
T

0

�⇤

k
(s)ds. (B.1)
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In Section 3.1, we defined FastPoint based on the conditional intensity

�⇤

k
(t) = g(v>

k
h(H⌧ ) + bk) + µk +

X

H
(k)
t

'k(t� ti), (B.2)

where h(.) denoted the global model, µk > 0 the background intensity, and 'k(x) =

↵k�k exp (��k(x)) the scaled exponential delay density. We also defined ⌧ = sup{⌧ 0 2

G|⌧ 0 < t}, and G = {0,�, 2� . . . } as some uniform “grid” in time, on which the

global model (RNN) “clocks” and syncs local processes. In our experiments, we set

g as the softplus function for numerical stability, although other options, such as the

exponential, are possible and have been used before.

Hawkes parameterization. We take Hawkes parameters µk,↵k, and �k as constant.

A simple extension is conditioning these parameters on h(H⌧ ), and having them vary

with respect to the history. However, apart from introducing additional computational

cost, this results in losing the interpretability associated with these parameters.

Note that for a well-defined point process we must have µk, �k,↵k > 0. We ensure

these by parameterizing µk and �k through a nonlinear mapping of a real parameter,

e.g., µk = g(⌘k) where, again, g(.) denotes the softplus function and ⌘k 2 R.

Another concern we must address is the issue of stationarity. For HPs defined

on an unbounded event space, the stationarity condition is given via the branching

ratio as ↵ < 1. One cannot argue that the stochastic process defined by FastPoint is

stationary in the weak sense, since the global intensity leads to nontrivially changing

mean measures for every interval defined by the grid G. However, it is not hard to

show that ↵ > 1 results in nonstationarity through supercritical (explosive) branching

and can easily lead to numerical problems in practice. To avoid this, we set

↵k = (1� ")�(⇣k),

where � = 1/(1 + e�x) denotes the sigmoid function, " some small positive number,
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and ⇣k 2 R parameters to be fitted. This modification ensures the interpretability of

↵ as branching ratios, and ensures stationarity when setting the e↵ect of the global

model to zero. Cast as an immigration-birth process, FastPoint can be interpreted as

a stochastic process with a constant birth rate and delay density, along with a variable

immigration rate that depends nonlinearly on other processes.

Although nonlinear mappings of Hawkes parameters work well in practice, learn-

ing them with gradient-based optimization is sensitive to initializations. Luckily, it

is easy to compute initial estimates of these quantities from data. We initialize with

↵k = 0.05, µk = (1�↵k)|N (k)|/T (i.e., the moment-based estimate of µk), and �k = µk,

where N (k) denotes the number of points with mark k in an interval of length T .

Notes on Implementation. Implementing point processes presents a unique chal-

lenge with modern deep learning frameworks such as MXNet or TensorFlow: data

representation.

Note that a point process observation {(ti, yi)} is a variable length list of times-

tamps and discrete marks. In practice, much of the computation on this list is of a

sequential nature (scans) (e.g., when computing the likelihood of an HP). To imple-

ment these scans in a data parallel manner we operate on point process observations

in mini-batches. This results in working with data structures commonly referred to as

ragged tensors, on which one of the dimensions has a variable length of valid entries. In

practice we represent a batch of point process observations as 3-way tensors of dimen-

sions (T,N, 2) where the first dimension refers to the sequence, the second dimension

indexes the batch and the last two are “interarrival times” and marks. Note that we do

not represent temporal information as absolute points in time, but only as interarrival

times in reference to the previous point in the sequence.

Having marks represented in their natural sequence, it is di�cult now to reap one

of the key computational benefits of FastPoint: the ability to parallelize over marks.

Take a partition of the set of marks {1, 2, . . . , K}. If one represents sequences belonging
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to each mark partition in separate tensors, this introduces the di�culty of carrying

out an optimal merge when a sequential representation of all marks is needed. If

represented in the same tensor, one needs an index structure to address di↵erent marks

in constant time. Both approaches require nontrivial implementations. For invoking

both parallelisms (over batch and over marks) at the same time during training, we

introduce a custom operator to the MXNet backend that carries out forward and

backward computations of HP log likelihoods for K-many independent processes.

B.3. Choices of Global and Local Models

Global Model. In FastPoint, we work with an LSTM with H hidden units (H ⌧ K),

that takes each point (interarrival time and a vector embedding of the mark) as an

input. Although this requires an LSTM computation at each point, note that it doesn’t

contribute an O(NK) term to the computational complexity since the LSTM output

is mapped to intensity parameters only at the beginning of each interval (i.e., points

in G).

On the other hand, FastPoint’s general construction allows for easy modification

of the global model. Although we do not pursue them in our experiments, we give

two simple modifications here. First, one could always feed the representations of

individual points (interarrival times and mark embeddings) directly into an encoder

network, perhaps with positional encodings and attention as in Transformer networks

[25]. The resulting point sequence embedding could be projected to parameterize each

mark’s added intensity in the next interval.

Simpler yet, we can observe that the vector A(⌧) 2 RK comes “for free”, and is a

natural embedding of the state of the point process. This vector could be transformed

to parameterize the global model, for example with dense multilayer networks. This

would result in significant computational advantages, and remains an exciting direction

for further exploration.
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Local Model. Our first choice as a local model in FastPoint is the HP. Specifically, we

use a univariate HP with exponential decays, for its favorable properties in likelihood

computation. In general, the key computational trick of linear-time likelihood compu-

tation exploits the fact that the joint stochastic process followed by (�⇤, ti) is a Markov

process. While this holds for exponential-decay HPs, it could easily be extended to the

hyperexponential (mixture of exponentials) case setting

'k(x) = ↵k

MX

m=1

exp
⇣
��(m)

k
(x)
⌘
.

Unfortunately for general delay densities ', the Markov property does not hold.

One other case where the Markov property would hold trivially is with a (homo-

geneous) Poisson process as the local model, reducing the intensity function to

�⇤

k
(t) = g(v>

k
h(H⌧ ) + bk) + µk. (B.3)

This simplification leads to no significant computational advantages, although it would

likely fail to capture many of the interesting self-excitatory behavior within each mark.

However, one possible advantage is that in this trivial case, our SMC routine reduces

to exact sampling.

Finally, let us note that RMTPP itself satisfies the Markov assumption in the

extended state space {(hi, ti)}. Indeed, one could have an RNN as the local model in

addition to the global model. However, in practice, this setup introduces di�culties in

implementation, as discussed above.
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APPENDIX C: Appendices to Chapter 5

C.1. Negative Binomial Distribution

Here we briefly recover the mean-dispersion parameterization of the negative

binomial distribution. The negative binomial distribution is often defined via a random

variable X, with the probability mass function

P{X = k} =

✓
k + r � 1

k

◆
(1� ⇡)r⇡k,

where k 2 {0, 1, 2, . . . }, r > 0, ⇡ 2 [0, 1]. Note that this case, where r 2 R>0 has been

referred to as the Pòlya distribution, or the generalized negative binomial distribution.

We first consider “shifting” the distribution to ensure consistency with the rest of our

notation, and define Y 2 {1, 2, · · · } such that Y = X + 1. We then have,

P{Y = k} =

✓
k + r � 2

k � 1

◆
(1� ⇡)r⇡(k�1).

We also reparameterize the distribution via the mean, and “dispersion.” Namely, we

define

µ =
⇡r

1� ⇡
+ 1 ⌫ =

1

1� ⇡
,

with µ > 1, ⌫ > 1. It is easy to show that E [Y ] = µ and that V[Y ]/(E [Y ] � 1) =

V[X]/E [X] = ⌫, justifying the “dispersion” interpretation. By the negative binomial

distribution Y ⇠ NB(µ, ⌫), we refer to the random variable determined by the proba-

bility mass function

p(k) = P{Y = k} =

✓
k + µ�1

⌫�1 � 2

k � 1

◆✓
1

⌫

◆µ�1
⌫�1
✓
1� 1

⌫

◆(k�1)

.
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The cdf of Y is

FY (k) = P{Y  k} = 1� I1�1/⌫

✓
k,

µ� 1

⌫ � 1

◆
,

where Ix(a, b) is the regularized incomplete Beta function.

We can then write the hazard rate implied by negative binomial interarrival times,

h(k) =
p(k)

1� F (k � 1)
=

F (k)� F (k � 1)

1� F (k � 1)
=

I1�1/⌫(k � 1, r)� I1�1/⌫(k, r)

I1�1/⌫(k � 1, r)

= 1�
I1�1/⌫(k, r)

I1�1/⌫(k � 1, r)
,

where we keep r = (µ� 1)/(⌫ � 1) and take F (0) = 0.

C.2. Forecast Functions for Static NB Models

Here we characterize the one-step-ahead forecast of static NB models. We are

looking to obtain an analytical expression for E [Yn+1|Hn], where we assume information

up to time n, denoted Hn, is known. Let Zn = JYn > 0K be a binary r.v. that is 1

when time step n is an issue point. We denote the number of demand points in Hn as

i, i.e., i =
P

n

⌫=0 Z⌫ . Then,

E [Yn+1|Hn] = E [Zn+1Si+1|Hn] = E [Zn+1|Hn]E [Si+1|Hn] = E [Zn+1|Hn]E [Si+1] .

Here, the second and third equalities follow from our model assumptions: demand sizes

and times are conditionally independent and demand sizes are independent of the past.

Focusing on the first term,

E [Zn+1|Hn] = P{Zn+1 = 1|Hn} = P{Zn+1 = 1|Ti}.
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Note that by definition of renewal processes, the probability of the next issue point

depends only on the time of the last demand, here Ti =
P

i

j=0 Qj. We can rewrite

P{Zn+1 = 1|Ti} = P{Qi+1 = n� Ti + 1|Qi+1 > n� Ti} = hQ(n� Ti)

where hQ is the hazard rate derived in the previous section. Finally, we have

E [Yn+1|Hn] = hQ(n� Ti)E [Si+1] .

Conditioning on the moving averages (the “levels”), similar expressions can easily be

derived for EWMA-type Markov renewal processes. Finally, tools from renewal theory

can be used to characterize multi-step forecasts, see e.g., discussions in [157].

C.3. Convergence Problem

For nonnegative EWMA models, sample paths converge to zero almost surely.

This introduces a significant source of bias, especially in tasks where longer lead times

need to be forecasted. In this section, we revisit this issue—the “convergence problem”

as it is referred to in literature.

In our introduction of the “size-interval” notation {(Si, Qi)}, we implicitly defined

both sequences on the state space of positive integers {1, 2, · · · }. We will first explore

how this problem manifests in the backdrop of a nonnegative EWMA model defined

on Si. Let

Si � 1 ⇠ PO(Ŝi�1 � 1), (C.1a)

Ŝi = (1� �)Ŝi�1 + �Si, (C.1b)

where 0 < �  1. In other words, we define the conditional distribution of Si via its

EWMA parameterizing a (shifted) Poisson distribution. Below, we give a statement

of the convergence problem and an argument that follows [139] albeit with a slightly
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more accessible proof for our special case.

Proposition C.1. Let Si be defined as above. Si �! 1 as i " 1 almost surely.

Proof. First note that (C.1b) implies the Markov property on Si. We have E[Ŝi|S1:i�1] =

E[Ŝi|Ŝi�1] = Ŝi�1, i.e., {Ŝi} is a positive martingale. By the martingale convergence

theorem [162, Sec 7.4], Ŝi ! X a.s. for some random variable X. Naturally, as

Ŝi 2 [1,1), X 2 [1,1). Moreover, it should also follow through (C.1b) that Si ! X

a.s. as well. Then, Si � Ŝi�1 = Si � E[Si] ! 0 a.s., i.e., Si converges to a degenerate

random variable X. X is degenerate if and only if V[X] = X � 1 = 0 where the first

equality follows from the variance of a Poisson distribution, i.e., Si ! 1 a.s.

For our model definition, the convergence problem takes a di↵erent form. Namely,

the demand on issue points converges to 1 (and not 0), over long terms. However, note

that Qi ⇠ G(Q̂i�1) with Q̂i defined analogously to (C.1b),

Corollary C.1. Qi �! 1 as i " 1 a.s.

For the proof, one only needs to note that the variance argument (for a geometric

distribution parameterized via its mean) becomes V[X] = X(X � 1) = 0 =) X = 1

as X > 0 by definition.

Over long forecast horizons, EWMA model assumptions result in sample paths

that converge to dense trajectories (interarrival times of 1 a.s.) with demand sizes 1.

It should be intuitive that Static models do not su↵er from this issue. Moreover, [141]

discusses a set of models with stationary mean processes that mitigate the convergence

problem. Namely, he redefines the recurrence relation (C.1b) as

Ŝi = (1� '� �)µ+ �Ŝi�1 + 'Si,

where ' + � < 1, ', �, µ 2 R+. In other words, the mean follows a stationary autore-

gressive process with mean µ, a parameter which is estimated via maximum likelihood.
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Finally, note that the RNNs can approximate an autoregressive recurrence as

they can approximate the EWMA. That is, although the network is a black-box, there

is no reason to believe that it results inevitably in a convergence issue. Moreover, in

theory, they can capture nonstationarities such as trend and seasonality that neither

model accommodates.


