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SUMMARY 

 

The volume and diversity of Internet traffic have increased significantly in recent 

years with the proliferation of mobile devices and networking technologies. Service 

Providers (SPs) are now striving to make resource management considering recent 

trends in networking. In this context, Software Defined Networking (SDN) has been 

alluring the attention of SPs as it provides virtualization, programmability, ease of 

management, and so on. Yet, severe scalability issues are one of the key challenges of 

the SDN due to its centralized architecture. First, the SDN controller may become the 

bottleneck as the number of flows and switches increases. It is because routing and 

admission control decisions are made per-flow basis by the controller. Second, there 

is a signaling overhead between the controller and switches since the controller makes 

decisions on behalf of them. 

This thesis proposes an SDN-based scalable routing and energy-aware resource 

management model (SRRM) for SPs. The proposed model is two-fold. Firstly, it 

performs routing, admission control, and signaling operations (RASOs) in a scalable 

manner. Secondly, the controller performs three resource management operations, 

which are energy-saving, load balancing, route capacity resizing both to save energy 

and increase bandwidth utilization. To achieve these goals, the model exploits pre-

computed routes (PCRs) between each edge pairs in the domain. Experimental results 

show that the proposed model can successfully perform RASOs in a scalable way, 

saves energy, and increases link utilization even under heavy traffic loads. 

 

 

 

 

Key Words: Key Words: Software Defined Networking, Resource Management, 

Energy Saving, Load Balancing, Pre-computed Routes, Scalability, Routing, 

Optimization
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ÖZET 

 

Son yıllarda mobil cihazların ve ağ teknolojilerinin yaygınlaşmasıyla İnternet 

trafiğinin hacmi ve çeşitliliği önemli ölçüde artmıştır. Servis Sağlayıcılar (SS) ağ 

yönetimindeki son eğilimleri göz önünde bulundurarak kaynak yönetimi yapmaya 

çalışmaktadırlar. Bu bağlamda, Yazılım Tanımlı Ağlar (YTA) sanallaştırma, 

programlama, yönetim kolaylığı vb. özellikleri sağladığı için SS’ın dikkatini 

çekmektedir. Her ne kadar YTA’ın pek çok avantajı olsa da merkezi mimarisi 

nedeniyle ciddi ölçeklenebilirlik sorunları vardır. İlk olarak, akışların ve 

yönlendiricilerin sayısı arttıkça ağ yöneticisi darboğaz haline gelebilir. Bunun nedeni, 

ağ yöneticisinin yönlendirme ve kabul kontrol kararlarının akış bazında almasıdır. 

İkinci olarak, ağ yöneticisinin yönlendiriciler adına karar vermesi ve bu kararı anlara 

iletmesi sebebiyle bu iki ağ elemanı arasında sinyalizasyon yükü oluşmaktadır. 

Yukarıda bahsedilen ölçeklenebilir ağ yönetim modeli ihtiyacına istinaden bu 

tez, SS için YTA ile ölçeklenebilir yönlendirme ve enerjiye duyarlı kaynak yönetimi 

modeli (SRRM) önermektedir. Önerilen model iki yönlüdür. İlk olarak, önerilen model 

ölçeklenebilir yönlendirme, kabul denetimi ve sinyalleşme (YKS) işlemlerini 

gerçekleştirir. İkinci olarak, ağ yöneticisi enerji tasarrufu, yük dengeleme ve kapasite 

boyutlandırma mekanizmalarıyla hem enerji tüketimini azaltabilir hem de bant 

genişliği kullanımını artırabilir. Ağ yöneticisi bu operasyonları gerçekleştirmek için, 

ağdaki giriş-çıkış yönlendirici ikilisi arasında önceden belirlenmiş yollar (ÖKY) kurar. 

Deneysel sonuçlar, önerilen modelin YKS işlemlerini ölçeklenebilir bir şekilde 

başarıyla gerçekleştirebildiğini, enerji tasarrufu sağladığını ve yoğun trafik yükleri 

altında bile verimli kullanımını artırdığını göstermektedir. 

 

 

 

Anahtar Kelimeler: Yazılım Tabanlı Ağlar, Ağ Kaynak Yönetimi, Enerji 

Tasarrufu, Yük Dengeleme, Çoklu Kurulu Yollar, Ölçeklenebilirlik, 

Yönlendirme, Optimizasyon.
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1. INTRODUCTION 

 

Advancements in both wired and wireless networks, the proliferation of mobile 

devices and applications have changed the way we use the Internet. Within the last two 

decades, there are applications and services such as e-commerce, on-line gaming, 

social media, cloud services, and the Internet of Things (IoT). Accordingly, the volume 

of Internet traffic has increased, and the Internet traffic characteristic has differentiated 

dynamically [1]–[3]. Service Providers (SPs) usually serve their network resources 

such as bandwidth in full capacity to satisfy diverse user demands and accommodate 

traffic bursts. Network devices such as routers and switches are active all the time, 

even if network traffic is relatively low compared to peak times [4]. This results in 2-

7% of the World's electricity consumption in Information and Communication 

Technologies (ICTs) [5][6]. The energy consumption of ICTs has been growing by 3% 

every year [7]. Besides, SPs purchase specialized hardware and software to meet the 

diverse needs of customers. The management of such networks become complex and 

costly. Thus, SPs need smart network management systems that not only increase 

resource utilization but also decrease energy consumption. 

Software-Defined Networking (SDN) [8] is a new networking paradigm that 

emerged to satisfy today's networking demands. It separates control and data planes to 

provide centralized management, virtualization, agility, programmability, and 

efficiency. The Infrastructure Layer (data plane) is responsible for performing actions 

of forwarding and dropping, but not limited to them. Control Layer (control plane) is 

logically centralized and performs decision-making on behalf of the entities in the data 

plane. The Application Layer contains applications and services that manage the 

network. The separation of control and forwarding functions of SDN allows the 

network control to be programmable, brings intelligence to the network with 

centralized management, simplifies network design, and allows switch management 

through open standards. Therefore, the abilities of the SDN allure the attention of SPs. 

Service providers aim to increase resource utilization, decrease operational costs as 

well as increase customer satisfaction. 

Although SDN has many benefits, there are several scalability problems due to 

the centralized control plane [9]. First of all, the SDN controller is the only entity that 
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decides on behalf of all the underlying switches. As the SDN controller makes per-

flow basis on-line decisions, it may become a bottleneck in terms of decision-making 

[10], [11]. Besides, the SDN controller must communicate with all the underlying 

switches to keep the network state up to date, install new rules, update, or delete the 

existing rules, etc. This procedure may also result in signaling scalability issue [12]. 

As a result, using SDN-based network management models in SPNs is challenging 

due to the scalability problems. 

Several works solely address the scalability issues of the control plane in SDN-

based SPNs. In these studies, the control plane is distributed, hierarchical, or both. 

There are also several works that focus on SDN-based resource management. These 

works either perform traffic load balancing to increase resource utilization or energy-

saving both to decrease costs and protect the environment. The works that focus on 

load balancing distribute the network traffic as fairly as possible among links. Others 

that focus on energy saving aggregate network traffic to put as many links and switches 

as possible into sleep mode. Therefore, these two operations are usually considered as 

opposite. It is still an open issue how to perform routing, admission control, and 

signaling in a scalable manner as well as energy-aware resource management. 

In this dissertation, we design, implement, and evaluate our SDN-based scalable 

routing and resource management model (SRRM) for SPNs. Our model relies on a 

central controller and several pre-computed routes (PCRs) between edge nodes. PCRs 

abstract the complex physical network to a simple virtual one. The virtual network 

consists of ingress, egress switches, and PCRs. The proposed controller performs 

routing, admission control, signaling, and resource management operations based on 

the virtual network. In terms of routing and admission control, the controller does not 

perform on-line route computation. Instead, it checks the availability of resources and 

routes the flow to an available route of the corresponding edge pair. In terms of 

resource management, our model utilizes the trade-off between energy saving and load 

balancing. To the best of our knowledge, this is the first work in literature that energy-

saving and load balancing operations work in harmony. To make this happen, we 

introduce a trade-off value that determines the importance of these two operations 

against each other. If trade-off value favors energy-saving, the controller aggregates 

edge traffic into fewer routes and puts unutilized network elements such as links and 

switches into sleep mode. If the trade-off value favors load balancing, the controller 
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saves less energy and focuses on distributing the traffic among routes. In line with the 

explanations above, we list the contributions of the dissertation below. 

 

 The controller performs routing, admission control, signaling in a scalable 

manner exploiting pre-computed routes. The controller only takes two related 

edge switches into account, instead of considering all the switches in the data 

plane. Also, the controller only installs flow rules to corresponding edge pairs. 

Therefore, routing, admission control, and signaling become independent from 

switch size.  

 To the best of our knowledge, this is the first work in the literature that exploits 

the trade-off between load balancing and energy saving. We show that these two 

mechanisms can work together in harmony. The network administrator adjusts 

the level of energy-saving concerning utilization. The energy-saving mechanism 

aggregates the traffic based on this level. The controller puts the unused network 

elements into sleep mode. Subsequently, it balances the pair load taking active 

routes into account. Therefore, the controller both saves energy at some level 

and performs load balancing at the same time. 

 We propose a novel adaptive load balancing mechanism. It performs edge pair-

based load balancing. This so-called local load balancing, in turn, converges to 

global (network-wide) load balancing. Besides, our load balancing mechanism 

takes the current network load into account. 

 We propose a novel route capacity resizing mechanism. This mechanism 

improves the resource utilization further especially in the case of heavy network 

load. 

 The controller can communicate with data plane elements over the modified 

OpenFlow [13] protocol to put them into sleep and to wake them up. 

 The proposed model can be applied to non-SDN-based SPNs by replacing 

switches on the edge with SDN-capable ones. 

 

The rest of this dissertation is organized as follows. Section 2 describes SDN in 

details. Section 3 discusses related works. Section 4 presents the scalable routing and 

resource management mechanisms of the proposed model. Section 5 present the novel 

energy saving mechanism of the proposed model. Section 6 presents implementation 
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details of the proposed model. Section 7 presents experimental results and the 

evaluation. Finally, the work is concluded in Section 8.
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2. SOFTWARE DEFINED NETWORKING 

 

 
 

Figure 2.1: Overview of the SDN Architecture. 

 

SDN is the new networking architecture that decouples the layers of traditional 

networking architecture. The layers of SDN are Infrastructure, Control, and 

Application as depicted in Figure 2.1. There are also Northbound, Southbound, 

East/Westbound interfaces. 

The Application Layer (AL) is the top layer in the SDN stack. A wide variety of 

network management applications such as routing, load balancing, firewall, intrusion 

detection/prevention, policy enforcement, etc. reside in this layer. The northbound 

interface resides between application and control layer provides an abstraction. 

Currently, there is no standard for this interface. Some control plane entities (a.k.a. 

controllers such as ONOS [14], OpenDaylight [15], Floodlight [16]) use REST API 

for communication with the top layer. Besides, there are also programming languages 

such as Frenetic [17], Procera [18], Pyretic [19] that allow implementing applications 

in the top layer. These applications require attention because any kind of bug, security 

hole, misconfiguration, etc. may cause unintended, and severe operational cost. 
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The Control Layer (CL) resides in the middle of the SDN stack. It has a global 

network view and responsible for managing the network. CL serves to the AL via the 

Northbound interface as mentioned in the previous paragraph. This layer is logically 

centralized, but it consists of one or more controllers. Thus, it can be both distributed 

and/or hierarchical. In the distributed control layer, there are multiple controllers each 

of which manages only a specified part of the network. In the hierarchical control layer, 

there are at least two levels of controllers, called bottom and top level. Bottom level 

controllers communicate with both the data layer elements and controllers on the upper 

layer. Top-level controllers communicate with both the applications on the Application 

layer and lower-level controllers. The communication between the control and 

infrastructure layer happens via a signaling protocol such as OpenFlow [13], [20], 

ForCES [21], and NETCONF [22]. OpenFlow is the de facto signaling protocol in 

SDN. East/Westbound interfaces allow controllers to communicate with each other. 

Currently, there is no standard for inter SDN controller communication. Controllers 

exploit schemes [23], [24], and toolkits [25], [26] for data exchange between each 

other. There is also an Internet-Draft called SDNi for inter controller communication 

[27]. 

The Infrastructure Layer (IL) contains programmable switches. These switches 

can be both software and hardware. Switches are responsible for the forwarding of the 

packets as routing functionality is shifted to the control layer. They are also capable of 

signaling with controllers in the upper layer via southbound interface. An OpenFlow 

SDN switch has one or more flow tables. A flow table consists of match fields, priority, 

counters, instructions, timeouts, and a cookie. 

 

 Match Fields: It defines the match rules for incoming packets. 

 Priority: It defines the match precedence of the rule among others. 

 Counters: Switch updates it if there is a match. 

 Instructions: They allow pipeline processing or performing actions on the 

packet. 

 Timeouts: The flow rule expires after the hard or idle timeout. The hard timeout 

defines the lifetime of the flow rule no matter there are matching packets or not. 

Idle timeout defines the maximum no match duration of a flow rule. 

 Cookie: It is determined by the controller to filter flow statistics, modification, 

and deletion. 
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 The controller creates a flow entry via sending the OFP_FLOW_MOD 

OFPFC_ADD message. Upon receiving a packet from its neighbors, SDN switch 

looks up for a matching rule. If there is a match, the SDN switch performs the defined 

action in the table. Then, it updates the counters of the rule. Otherwise, the SDN switch 

either sends the packet to the controller to learn what to do or drops the packet. 

Although SDN has many benefits, there are several shortcomings in terms of 

scalability [9], [28]. Firstly, as SDN switches solely forward flow packets, the SDN 

controller must decide routing computations and establishment. As the number of 

flows increases, the centralized control plane may become a bottleneck in terms of 

decision making especially when there is a single controller. Secondly, the centralized 

controller must send a request to an SDN switch to receive flow statistics. Thus, the 

controller may also become a bottleneck when collecting network wide up-to-date 

information in a large-scale network. Thirdly, the controller must perform per-flow 

messaging with underlying switches for installing new rules, updating, or deleting the 

existing rules, etc. This also may result in a control plane scalability issue especially 

when there are many flows and switches. It is still a research challenge how to perform 

resource management dynamically in an SPN when there is a single controller. 
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3. LITERATURE REVIEW 

 

In this section, we review the works that address the control plane scalability 

issues in terms of decision making and signaling in SDN-based works. We also review 

the studies that perform load balancing and energy efficiency. 

 

3.1. Control Plane Scalability 

 

The works in [29] and [30] suggest a distributed control plane structure to 

achieve scalability in the control plane. HyperFlow [29] aims to decrease controller 

response time through a logically centralized but physically distributed control plane. 

Controllers are distributed over the data plane. Authors use Publish/Subscribe model 

for state distribution among controllers. In other words, whenever a state change 

occurs, the associated controller (publisher) notifies other controllers (subscribers). 

Onix [30] is a control platform that runs over distributed servers. It provides control 

logic that allows applications to communicate with network elements. Onix also 

disseminates network state for consistency among servers. Thus, Onix allows ease of 

implementation for application developers using Onix API and considering 

consistency, durability, and scalability trade-offs. Flow-Utility Based Routing 

(FUBAR) [31] has a centralized QoS routing approach. In this model, traffic is divided 

into several classes. FUBAR periodically measures the traffic matrix and finds several 

suitable paths. Then, aggregated flows are divided between corresponding paths to 

increase resource utilization. The Fibbing [32] approach combines the flexibility and 

centralized management abilities of SDN with the distributed routing of existing 

network devices and protocols. Controller fakes routers to direct traffic between paths 

using faked link-state information. In this approach, the controller also creates backup 

paths for fast fail-over. ZeroSDN [33] addresses the flexibility of distributed 

controllers concerning the distribution of control logic. Control logic consists of 

lightweight control modules that are called controllers and pushes control logic to 

switches. This way they enable local processing and achieve control plane scalability. 

Aside from the distributed control plane approach, works proposed in [34], [35] 

and [36] provide a hierarchical structure within their control planes to achieve 

scalability. ASIC [34] adopts a multi-controller approach to solve scalable intra-
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domain routing issue in SDN-based large scale networks. The controller in this model 

has a layered structure. The load balancer in the first layer only divides incoming data 

flow requests to physically distributed controllers residing in the second layer. Routing 

is performed in three steps by the chosen controller. First of all, the physical controller 

gets the data flow initialization request and global network state. Then, it performs 

routing computations to find a suitable path. In this work, routing, admission control, 

and signaling are performed in a distributed fashion. Kandoo [35] has two levels of 

controllers. The first level of controllers handles local events. A controller in this level 

can control one or more switches, and handle frequent events. On the other hand, a 

top-level logically centralized controller handles rare events that require a global 

network view. In [36], the network is divided into zones, each of which has a zone 

manager. A zone manager is responsible for management operations (e.g., flow setup) 

within its domain. The network manager is at the top of zone managers, and 

responsible for network-wide operations such as abstract topology calculation, 

statistics collection, flow management, credential management for applications and 

configuration. Unlike previous studies, researchers in [37] propose a network 

architecture for service providers to reduce controller response time and provide 

routing scalability. In the proposed architecture, incoming flows are classified into four 

categories; (i) intra-routing (INR), (ii) MPLS, (iii) QoS, (iv) inter-routing (EXR). 

Controller pro-actively installs rules for INR and MPLS to improve scalability. 

Controller steps in only for QoS based routing. The work [38] aims to achieve 

scalability on multi-domain, multi-vendor SDN-based networks. In this study, there 

are several domains each of which is controlled by a local controller. There is also a 

controller at the top called Coordinator Controller, which has a global network view 

and allows different local controllers to cooperate. Northbound API is unified to 

achieve this. 

There are also works that address the signaling scalability in SDN-based 

networks. DIFANE [39] is a distributed architecture for enterprise networks. There are 

two types of switches. Forwarding switches are connected to intermediate switches. If 

a forwarding switch receives an unknown packet, it redirects the packet to the 

corresponding intermediate switch. The intermediate switch handles the packet and 

sends back a response to the forwarding switch to deploy new rules. The controller is 

responsible to partition rules among switches. Apart from SDN, intermediate switches 
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also make decisions. Besides, core switches have a heavy load and there is no resource 

management performed by the controller or intermediate switches. BalanceFlow [40] 

aims to balance signaling traffic in Wide-Area Networks (WAN) using multiple 

controllers. In this multi-controller architecture, there is a Super Controller and one or 

more regular controllers. Super Controller partitions control traffic load among others 

to provide scalability and low delay. It obtains average number of flow requests per 

switch and assigns switches to appropriate controllers so as to balance load of 

controllers. In [41], authors propose a model that addresses to signaling scalability of 

SDN-based networks. In this model, the controller does not install all flow rules to 

each switch. Instead of that, it asks switches to propagate the message to the target 

switch(es). This provides signaling scalability between controller and switches. The 

model uses proactive flows to handle time-critical flows. Controller installs inactive 

rules to switches. These rules become active in some cases. Though this model 

provides signaling scalability, routing scalability is still an issue. The reason is that 

controller must still perform many routing computations for each flow that does not 

match with existing rules. 

The works mentioned in this part are summarized in the 3.1. In this table, the 

Ref header indicates the corresponding works. The Control Plane header indicates the 

control plane arhictecture of the works. The letters S, D, and H stand for single, 

distributed and hierarchical control planes, respectively. In the single type, there is just 

one controller in the network. In the distributed type, there are two or more physically 

distributed controllers in the network. In the hierarchical type, there are layers within 

the control plane. Each layer has at least one controller. The Network Type header 

indicates supported networks that are SDN and Hyrid. SDN networks solely contain 

SDN switches. Hybrid works contain both traditional switches/routers and SDN 

switches. The Routing header indicates the routing decision types that are online, and 

offline. In Online type, the SDN controller performs per flow routing computation. In 

Offline type, the SDN controller does not perform per flow routing computation. 

Instead, these works usualy exploit static paths. The Signaling header indicates the 

works that address to the signaling scalability issue of SDN. 
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Table 3.1: Comparison of the SRRM to the Existing Works with Respect to Scalability. 

 

 Control Plane Network Type Routing Signaling 

Ref S D H SDN Hybrid Online Offline  

29  X  X  X   

30  X  X  X   

31  X  X  X   

32  X   X X   

33  X  X  X   

34  X X X  X  X 

35  X X X  X   

36  X  X  X   

37 X    X X X  

38  X  X  X   

39  X  X  X X  

40  X  X    X 

41  X  X  X X X 

SRRM X X X  X  X X 

 

 As seen in the  3.1, most of the works achieve control plane scalability through 

multi-controller architecture. Only the work [37] proposes a routing solution for a 

single controller. In this work, however, the controller performs both online and offline 

routing. In offline routing, the controller routes flows through pre-established routes 

for some traffic types such as best-effort. In online routing, controller computes best 

path for QoS aware flows. Thus, this work is partially scalable in terms of both routing 

and signaling. In comparison, we perform offline routing per flow. Our work also 

contains load balancing and energy saving mechanisms. 

 

3.2. Control Plane Scalability and Load Balancing 

 

Some works address both control plane scalability and resource management for 

SDN-based networks. 

Google reports its experience on SDN-based inter-data center resource 

management (B4) in [42]. In B4, each data center site has a set of controllers. Traffic 
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engineering server on top of site controllers gathers topological data from them and 

splits the traffic of source-destination site pair over k-shortest paths. The controller in 

[43] allocates joint bandwidth for interactive, elastic, and background traffic classes in 

inter-data center networks. Controller forces proportional fairness within the same 

traffic class to increase resource utilization. 

The authors in [44], [45] propose a load balancing algorithm (A4SDN) derived 

from the Ant Colony Algorithm. Each packet and switch is treated like an ant and 

pheromone, respectively. Ants in A4SDN do not converge to a single optimum path, 

but instead, explore the paths with the weakest pheromone. Similarly, the work [46] 

also aims to increase resource utilization through load balancing. To do so, the authors 

modify three different routing algorithms called SWP [47], MIRA [48], and DORA 

[49] for best-effort traffic. Each of these algorithms performs routing based on 

estimated available bandwidth in links. MIRA and DORA are suitable for backbone 

networks as they take the location of ingress and egress switches into account. 

Authors in [50] propose a model for hybrid networks where SDN is partially 

applied to an existing network. In this model, there are SDN and non-SDN switches in 

the network. SDN switches perform traffic measurement and inform the controller. 

The controller also collects network information disseminated by OSPF. 

Subsequently, it leverages this information to change the SDN switch tables for traffic 

engineering dynamically. To do so, the authors use Fully Polynomial Time 

Approximation Scheme (FPTAS). Though the system improves resource utilization, 

the controller performs complex tasks to find optimal routing. Thus, it is not scalable 

in terms of decision making. 

Luo et al. [51] propose a framework (ADMPCF) that computes adaptive multi-

paths for centrally controlled networks. ADMPCF uses an existing path as long as the 

path satisfies the requirements of a flow request. Otherwise, it establishes a new path 

by computing and assessing several disjoint multi-path finding algorithms in the 

literature. ADMPCF performs parallel execution of those algorithms to achieve 

scalability. ADMPCF improves resource utilization through adaptive multi-path 

establishment based on topology, link cost, application traffic, and network state. 

Tuncer et al. [52] propose an SDN-based management and control framework 

for fixed backbone networks. The proposed framework achieves control plane 

scalability due to its both hierarchical and distributed architecture. It has local 
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managers (LMs) at the top. Each LM works with one or more local controllers (LCs). 

LMs are responsible for implementing the logic of management applications such as 

resource utilization. LCs perform a sequence of actions based on the configurations 

given by LMs. The authors also propose an adaptive load balancing mechanism by 

adjusting traffic split ratios in switches. 

The work in [53] aims to achieve both control plane scalability via a distributed 

control plane and load balancing through switch migration. The proposed work has a 

set of controllers distributed over switches. A controller is responsible for several 

switches that reside in the data plane. The proposed work migrates a switch from one 

controller (source) to another (destination) in the case when the source controller load 

reaches its maximum capacity. Apart from most of the works in the literature, this 

study also takes migration efficiency into account and provides a greedy algorithm. 

The works [51]–[53] address both control plane scalability and resource 

management. ADMPCF uses a number of algorithms that work in concert with an 

adaptive fashion to perform global routing and optimum resource allocation. This 

makes ADMPCF complex in terms of implementation. Besides, ADMPCF achieves 

control plane scalability through parallel execution of algorithms used in the 

framework. In other words, the control plane scalability of ADMPCF depends on the 

processing power of the system (e.g., cluster of servers). ADMPCF also does not 

perform admission control, and this may cause over-utilization of resources. 

Moreover, ADMPCF has partial signaling scalability due to the fact that the controller 

has to deploy multi-path rules to all the switches along paths if existing paths do not 

satisfy flow constraints. The framework presented in [52] also has several drawbacks. 

First of all, the proposed framework requires several controllers and also managers to 

achieve control scalability due to both hierarchical and distributed control plane 

architecture. This may increase the CAPEX and OPEX of SPs. Additionally, there 

appear different communication overheads such as LMO-LCO, LMO-LM, LCO-LC, 

and LM-LC apart from the controller to switch communication, although controller-

switch communication scalability is achieved by reducing the number of switches per 

controller. Authors also state that communication overhead in management substrate 

depends on its topology. Moreover, the proposed framework includes a simple 

communication protocol, yet the details are not provided. Thus, there may appear 

integration problems in the case of an environment that contains heterogeneous local 
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controllers and managers. Finally, the proposed framework requires modification of 

switches for adjusting traffic split ratios based on a hashing scheme. This increases the 

deployment cost of the proposed framework. In work [53], it is unclear that which 

decision making entity (e.g., source controller, external server) performs switch 

migration operation. In the case of a source controller, several controllers may perform 

migration to a single controller at the same time. This may dramatically increase the 

load of the destination controller. 

The works mentioned in this part are summarized in Table 3.2. In this table, the 

Ref header indicates the corresponding works. The Control Plane header indicates the 

control plane architecture of the works. The letters S, D, and H stand for single, 

distributed, and hierarchical control planes, respectively. In the single type, there is 

just one controller in the network. In the distributed type, there are two or more 

physically distributed controllers in the network. In the hierarchical type, there are 

layers within the control plane. Each layer has at least one controller. The Network 

Type header indicates supported networks that are SDN and Hybrid. SDN networks 

solely contain SDN switches. Hybrid works contain both traditional switches/routers 

and SDN switches. The Routing header indicates the routing decision types that are 

online, and offline. In the Online type, the SDN controller performs per-flow routing 

computation. In Offline type, the SDN controller does not perform per-flow routing 

computation. Instead, these works usually exploit static paths. The Signaling header 

indicates the works that address the signaling scalability issue of SDN. LB stands for 

load balancing. It indicates the works that perform load balancing. 

All the works in this part perform load balancing with either cost-aware routing 

or a specially designed mechanism. In cost-aware routing, the controller takes the 

current network cost into account for a route computation as proposed in [44]–[46]. 

The volume of assigned traffic may change in time, and the load becomes unbalanced. 

This also may cause control plane scalability issues because the controller makes a 

per-flow decision. In specially designed load balancing mechanisms, the controller 

monitors the network resource utilization and balance the load by alleviating the flow 

routes. We adopt both mechanisms. Our controller assigns the flow to a path based on 

its capacity. We also exploit PCR to balance network load. Additionally, most of the 

works described in this part have the control plane scalability through multi-controller 

architecture. Only the works [46] and [50] have a single controller. Both perform 
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online routing so the controller in these works may become the bottleneck in terms of 

decision making. In contrast, our model can work with one or more controllers. Even 

in the case of one controller, our work performs routing, admission control, and 

signaling using PCR. The works [42] and [43] differ from other works in the way that 

they perform load balancing for SDN-based data center backbone networks. Our 

model is suitable for SPNs. Finally, traffic splitting in switches offloads the 

computation overhead of controllers as in [50] but this requires both signaling protocol 

and switch support. Therefore, this mechanism necessitates modification in SDN 

architecture. 

 

Table 3.2: Comparison of SRRM to the Existing Works with respect to Control 

Plane Scalability and Load Balancing. 

 

 
Control 

Plane 
Network Type Routing Signaling 

LB 

Ref S D H 
SD

N 
Hybrid 

Onlin

e 
Offline  

 

42  X X X  X  X X 

43  X  X   X  X 

44-45  X  X  X   X 

46 X   X  X   X 

50 X    X X   X 

51  X  X  X X  X 

52  X X X  X   X 

53  X  X  X   X 

SRRM X X X  X  X X X 

 

3.3. Energy Efficiency 

 

There are two main approaches to energy efficiency in SDN-based networks. 

These are link rate adaptation (LRA) and power-down (PD) approaches. In the first 

approach, the link rate is adapted according to the traffic load. In the power down 

approach, ports, line cards, and integrated chassis of routers and switches are either 

turned off or put into sleep mode. The link rate adaptation approach contributes less 

energy saving compared to the power down approach [54], [55]. However, the power 
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down approach causes routing oscillation and delay [56]. There are also some works 

that exploit both approaches. 

The idea in [57] is to reroute flows on existing paths to adjust link loads in a way 

that LRA-based energy saving is maximized. In the scope of this study, the idea 

mentioned above is defined as a Mixed Linear Integer Problem (MILP). Then, three 

greedy algorithms and one genetic algorithm-based heuristic algorithm (GA) are 

proposed for redirecting flows over existing paths. Experimental results show that GA 

outperforms greedy algorithms. In this work, several paths are computed per pair 

before rerouting, whenever the controller executes proposed algorithms. Thus, the 

control plane and signaling scalability are limited. Although two real networks are 

used for the assessment of the proposed algorithms, real traffic trace is not used. In 

addition, there are also no admission control and resource management in terms of 

load balancing mechanisms. 

The following works utilize the PD approach to perform energy saving. The 

work [58] provides a 0-1 Integer Linear Programming (ILP) model that maximizes 

energy saving in a global manner by taking the energy consumption of integrated 

chassis, line cards, and ports of routers into account. It proposes two greedy algorithms 

namely Alternative Greedy Algorithm (AGA) and Global Greedy Algorithm (GGA) 

for energy saving. These two algorithms mainly reroute flows on different paths when 

the network has a relatively low traffic load. This work has routing and signaling 

scalability issues. The controller performs rerouting per flow. Besides, it 

communicates with all the switches along the new path per flow. 

The work [59] combines IEEE802.az, which is energy-efficient Ethernet and 

SDN-based Segment Routing (SR) to save energy. SDN controller computes link costs 

based on two metrics, which are EAGER and CARE. The EAGER metric takes link 

utilization into account. The CARE metric, on the other hand, takes both link 

utilization and congestion threshold into account. Two energy-saving algorithms 

proposed in the work are Tunneling TE (TTE) and Non-tunneling TE (NTE), 

respectively. In TTE, the controller performs path computation per source and 

destination pairs in the first phase. Then, the controller establishes SR tunnels. In the 

final phase, the controller puts unused links into sleep mode. In NTE, the controller 

computes paths and decides links that will be put into sleep mode. In the second phase, 

there is no tunnel establishment. The controller only puts the designated links into 
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sleep mode. Finally, the controller computes ECMP routes between source and 

destination pairs using awake links. This work in fact has a similar idea that we 

proposed in our preliminary work [60]. Routing and signaling scalabilities are 

achieved via pre-determined paths. However, there is no contribution to admission 

control. Although it is said that load sharing is performed, the authors do not mention 

how this is achieved. 

Software Defined Green Traffic Engineering (SDGTE) [61] framework 

minimizes active links and switches in backbone networks without knowing the future 

traffic demand. Authors provide an Integer Linear Programming definition of an 

energy efficient routing problem. Whenever a flow arrives, the controller performs ILP 

based routing computation. Apart from energy-efficient routing, SDGTE reroutes 

flows both in under-utilized and over-utilized links to minimize energy consumption 

further and to reduce link utilization. In the under-utilization case, links whose 

utilization is below the predefined threshold are determined, and flows on those links 

are rerouted. Then, the controller puts these links into sleep mode. In the latter case, 

the controller identifies the over-utilized links and re-routes the flows on those links 

to reduce link utilization. The controller performs routing computation per-flow 

whenever a new flow comes. Besides, the controller also performs re-routing in case 

of over and under link utilization. 

Authors in [62] propose a multi-objective routing approach in a multi-controller 

control plane. To achieve these objectives, a multi objective evolutionary algorithm, 

called SPEA2 is developed. SPEA2 performs routing in a way that energy 

consumption and traffic delay is minimized without degrading the performance. 

Meanwhile, it takes both controller to switch and switch-to-switch loads into account. 

Whenever the controller receives a flow request, SPEA2 calculates a path taking data 

and signaling load into account. Subsequently, the controller establishes a path for the 

requested flow. The control plane in this work has multiple controllers. Thus, it 

satisfies routing and signaling scalability at some level. 

Green Application Layer is an ETSI standard [63], which is a framework for 

exchanging information between control and data planes. The work [64] integrates 

GAL with SDN to exchange information regarding power management of data plane 

entities with a controller. This model adopts both PD and LRA. In that sense, it 

proposes an ILP model for the allocation of resources optimally based on network load 
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and actions of flow tables. The experimental network in this study is small. The 

controller may become the bottleneck as the size of the network, flows, and actions in 

flow tables of switches increase. Besides, the signaling scalability issue appears as 

flows are rerouted. 

Authors in [65] aim to minimize active links and adapt discrete link rates to 

traffic load for saving energy. Firstly, they provide a mixed-integer programming 

definition of the problem. Secondly, they propose a heuristic algorithm, which 

identifies most energy-consuming flows and reroutes them on alternative paths for 

reducing energy consumption. First, the proposed algorithm computes the shortest 

path for each flow. Subsequently, it calculates the energy consumption of the whole 

network. The value found at this stage is the upper bound for energy consumption. In 

the third stage, the proposed algorithm removes each flow one by one to identify its 

impact on energy consumption. To do so, a weighted graph is generated for each flow. 

Finally, the controller computes k-shortest paths, and with the least energy 

consumption is selected as a route. The scheme has routing and signaling scalability 

issues since the controller performs per-flow routing and rule installation. 

Researchers in [66] propose two algorithms for allocation of Virtual SDN 

(VSDN) in a reliable and energy-efficient manner. Relative Disjoint Path (RDP) 

generates two trees based on a redundancy factor. Then it merges the two trees to 

obtain a graph where links and nodes exist in both. In this way, there is only one path 

if the redundancy factor is 0. Similarly, there are two disjoint paths if the redundancy 

factor is 1. Otherwise, one or more links are shared among two paths. State-Aware of 

Bandwidth and Energy Efficiency (SA-BEE) algorithm allocates VSDNs based on 

available bandwidth and energy consumption factor. It adaptively increases or 

decreases energy consumption factor based on the network state at first. Then it 

generates a weighted graph for a source node to all other nodes. Finally, it looks for 

lower energy consuming paths between the source node and all other nodes. 

In GreSDN [67], the controller performs energy-efficient routing without re-

routing of flows. It maintains two topologies. The first topology is the physical 

topology, which contains all the links and switches. The second topology is the virtual 

topology, which contains only awake links. The controller performs per-flow routing 

bearing the two topologies in mind. If there is an inactive link along the path, the 

controller sends a signal to the corresponding switch to awake the link. Meanwhile, 
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the device management module within the controller periodically checks the state on 

links. If a link is not used, it puts the link into sleep mode. The authors propose two 

routing algorithms: Constant Weight Greedy Algorithm (CWGA) and Dynamic 

Weight Greedy Algorithm (DWGA). Both algorithms perform path computation on 

two graphs. These graphs are generated per request. At the time of graph generation, 

the controller removes any link where the summation of the current load with 

requested bandwidth exceeds its capacity on both physical and virtual graphs. Finally, 

CWGA and DWGA perform routing computation based on static and dynamic link 

costs, respectively. The controller performs per-flow routing. Thus, it suffers from a 

severe routing scalability issue. Besides, the controller must communicate with all the 

switches along the path during the path establishment process. This also results in the 

signaling scalability issue. 

In the work [68], the authors propose a heuristic algorithm (ETALSA) for 

energy-saving via only powering up/down links. ETALSA that runs on a controller 

takes energy prices into account apart from other works. During the execution of 

ETALSA, the controller iteratively selects switches from the one with the highest 

energy cost to the lowest. Then, it computes the utility value per link, which is 

connected to the selected switch. The utility value is computed based on the 

connectivity of switches, traffic demand, and energy prices. Finally, the controller 

powers a link down based on the utility value if there becomes less energy 

consumption. This work resembles our preliminary work [60] in a way that pre-

established multi-paths exist both for scalability and resource management. The main 

differences are that the work [68] powers only the links down and it takes energy prices 

into account. 

Most of the works mentioned in this part solely address the energy-saving in 

SDN-based networks. Some of the works address both energy and load balancing. 

Even latter works perform these two operations disjointly. In contrast, to the best of 

our knowledge, none of the works in the literature performs energy-saving and load 

balancing in harmony. Additionally, our work proposes how energy-related 

communication messages can be implemented to OpenFlow. Moreover, our model 

performs routing, admission control, and signaling in a scalable manner, even there is 

the only controller.
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4. SCALABLE ROUTING AND RESOURCE 

MANAGEMENT 

 

SPNs usually have over-provisioned bandwidth to satisfy diverse user demands 

and accommodate traffic bursts. They also have the link and switch/router redundancy 

for hardware failures. This results in low resource utilization. In such networks, 

reducing energy consumption and balancing network load among links are available 

to improve resource utilization. In that sense, the SDN is an emerging network 

architecture that allures the attention of SPs regarding resilience, virtualization, ease 

of network resource management, reduction of costs, etc.  

Although it has many benefits, a centralized control plane may cause severe 

scalability issues. Firstly, the SDN controller may become the bottleneck with the 

increase in the number of flows and switches. Secondly, the SDN controller must take 

traffic fluctuations into account while optimizing resource utilization since today’s 

network traffic is highly dynamic. Although SDN seems to be adequate for resource 

management on its own, how to perform scalable routing and resource management in 

SDN-based SPNs are still open issues.  

In this section, we propose a scalable routing and resource management model 

for SDN-based SPNs. The proposed model is two-fold. On the one hand, the proposed 

model performs scalable routing, admission control, and signaling in a scalable 

manner. On the other hand, the controller saves energy, balances load, and resizes 

route capacities dynamically. To overcome the scalability limitations of SDN, we 

exploit pre-computed routes to reduce the heavy workload on the controller. Further 

details of the proposed model are presented in this section. 

 

4.1. Overview of the Architecture 

 

The proposed model is illustrated in Figure 1. As in traditional SPNs, the data 

plane residing at the bottom consists of provider edge and core nodes. Ingress SDN 

Switch (ISS), and Egress SDN Switch (ESS) are the nodes where traffic enters and 

leaves the network, respectively. Any edge node is both ISS and ESS at the same time 

because traffic is bidirectional. In addition to edge nodes, there are also core switches,  
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Figure 4.1: Overview of the proposed model. 

 

which we name as Core SDN Switch (CSS). A CSS connects edge switches to each 

other and solely perform packet forwarding. In the upper layer, the proposed controller 

resides. It is logically centralized and mainly responsible for resource management 

(i.e., load balancing, route resizing, and energy saving), routing, and admission control 

operations. To do so, the controller abstracts the single physical network into multiple 

virtual networks using PCRs between edge switches. All operations are performed 

based on these routes. The two layers in Figure 4.1 communicate with each other via 

a signaling protocol (e.g., OpenFlow). 

The proposed model has PCRs between each edge pair (EP), such as ISS1 - ESS1 

in Figure 4.1. These routes are virtual and simplify the complex physical network. The 

simpler virtual network consists of edge nodes and PCRs. For instance, the virtual 

network presented in Figure 4.1 is depicted in Figure 4.2. The controller performs 

resource management operations, routing, admission control, and signaling based on 
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Figure 4.2: Illustration of the virtual network obtained from the above network. 

 

the virtual network. Briefly, the controller aggregates flow into a smaller number of 

routes adaptive to the traffic load and then puts unused links and switches into sleep 

mode for energy saving. It also equalizes the cost of routes that belong to the same EP 

to achieve load balancing. Controller, additionally, adjusts the capacity of PCRs with 

respect to traffic load to improve resource utilization. 

Notice that the controller does not perform routing and admission control 

operations per flow. In the case of routing, the controller simply assigns a flow to a 

route. In the case of admission control, the controller decides based on the state of 

routes, which are stored in both Link State Database and Route State Database. PCRs 

also allow the controller to manage the whole network with less signaling. This is 

because the controller does not communicate with each node along the route per flow 

in routing, admission control, and resource management operations. It only 

communicates with edge nodes, instead. Therefore, the proposed model achieves 

scalable routing, admission control, and signaling in favor of PCRs. 

 

4.2. Virtual Network 

 

The physical network is represented by a graph G = (V, E). The set E contains 

links indexed by i. The set V, on the other hand, contains all nodes (i.e., ISS, ESS, 

CSS). We denote an ISS-ESS pair as (Vs, Vd) where Vs ≠ Vd. Note that pair (Vs, Vd) is 
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Table 4.1: Summary of Notations. 

 

Notation Meaning 

V Set of switches 

E Set of links 

Ps,d Set of routes between edge pair (Vs, Vd). 

Pk
s,d

 A route belongs to Ps,d 

Ei A single physical link i 

Li
s,d,k

 Virtual link of Pk
s,d

 on physical link Ei 

φ(. . . ) Capacity of pair, route or link 

ϑ(. . . ) Load of pair, route or link 

λ(. . . ) Cost of pair, route or link 

ε(. . . ) Energy of pair, route or link 

 

actually the same pair in the reverse direction as (Vd, Vs) since any edge node is both 

ISS and ESS at the same time. The proposed controller converts the physical network 

to a virtual one. Then, it performs operations based on the virtual network. The virtual 

network consists of set Es,d and Ps,d of virtual links and PCRs per (Vs, Vd), 

respectively. We denote a route k that belongs to a pair (Vs, Vd) as Pk
s,d

. Any two 

different routes Pk
s,d

 and Pl
s,d

 of a pair (Vs, Vd) does not share a link. Thus, they are 

mutually disjoint. The cardinality of routes per pair (|Ps,d|) must be at least 2 due to 

multi-route and can be as many as network topology allows. Besides, the number of 

routes for each pair can be different. The network administrator makes the decision of 

which pair has how many PCRs. In the scope of this work, we assume that PCRs 

already exist in the network. Routes between edge pairs can be established using 

Virtual LAN (VLAN) [69], MPLS [70], or segment routing [71]. In compliance with 

this, we do not develop any multi-route computation algorithm as there are several 

algorithms in the literature such as [72], [51], [73], and [74] that address this subject. 

|Ps,d| per (Vs, Vd) is defined by a network administrator. Note that PCRs can be 

established regarding any cost value such as residual bandwidth, latency. 

Notice that any two routes, each of which belongs to a different pair may share 

one or more physical links. We name such routes and pairs as neighbor routes and 

pairs, respectively. For the sake of simplicity, the controller virtualizes links based on 
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the number of neighbor routes per link. We denote a virtual link that serves a route 

Pk
s,d

 as Li
s,d,k

. The capacity of a physical link, denoted as φ(Ei), is portioned out to its 

virtual links based on the load of neighbor routes. In compliance with this, a route 

capacity φ(Pk
s,d) becomes the capacity of its virtual link which has the minimum 

capacity (min (φ(Pi
s,d,k))). For example, there are two routes on the physical link E6 

in Figure 4.1. Hence, its virtual links are E6
1,1,2

 and E6
2,1,1

, where E6
1,1,2

 serves the route 

P2
1,1

 of pair ISS1 - ESS1 and E6
2,1,1

 serves the route P1
2,1

 of pair ISS2 - ESS1. 

 

4.3. Controller Design 

 

The proposed controller has two databases, routing, admission control, resource 

management modules, and three helper modules. The two databases are maintained in 

the background without interfering with operations performed by modules. Routing, 

admission control, and resource management modules perform main tasks, but they 

can cooperate with other helper modules. 

Link State Database (LSDB) keeps track of physical network elements that are 

links and switches. Some of them are the identifier of the corresponding switch data-

route identifier (DPID), port numbers, maximum transfer rate, power consumption, 

and link load. Note that link load is not a static value unlike others because it changes 

in time depending on the network load. Route State Database (RSDB) keeps track of 

PCRs and other information regarding them. This database is the virtualized version 

of the physical network. Controller mostly uses this database for network management 

purposes. RSDB contains both static and temporary data. Some of the static 

information is route identifier (RID), data-path identifiers of edge nodes (i.e., ISS and 

ESS), links that form the route. Some of the dynamic data are route capacity and route 

load. 

Routing and Admission Control Module (RACM) routes flow between the 

associated edge nodes. In routing, the controller assigns the incoming flow to a route 

of the corresponding pair. In admission control, the controller checks available 

resources before deciding the routing. If there is an available resource, the controller 

allows routing of flow through assigning the flow to a route. Otherwise, it simply 

rejects the flow. This way, the controller prevents the overloading of resources. Load 
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Balancing Module (LBM) equalizes the cost of routes per pair. At first, it computes 

the route costs of the corresponding pair and calculates the equalization cost. 

Afterward, if shifts flow from overloaded routes to underloaded routes. Route Resizing 

Module (RRM) updates the capacity of routes depending on the load of neighbor 

routes and pairs. Whenever the load of the route exceeds a certain threshold, the 

resizing procedure is invoked. Energy Saving Module (ESM) aggregates flows into a 

smaller number of routes. Then, it puts unused network elements into sleep mode. 

Route Management Module (RMM) establishes, updates, or removes routes 

PCRs. Information Collection Module (ICM) collects data such as link rates from 

underlying switches and performs necessary calculations on them to extract the 

information required for routing, admission control, load balancing, route resizing, and 

energy-aware resource management. Subsequently, all the information is stored in 

databases. Throughout this dissertation, we assume that there is a single controller 

residing on the control plane. However, there must be multiple controllers in the 

control plane to avoid single point of failure. Thus, the controller has Inter Controller 

Communication Module (ICCM) that is responsible for communicating with other 

controllers in the control plane. 

 

4.4. Admission Control and Routing 

 

In an SDN-based network, the switch which receives a request freq for a new 

flow f sends a packet-in message to the controller. As soon as the controller receives 

this packet, it computes the shortest route between end nodes. Subsequently, it deploys 

forwarding rules off to the corresponding switches along the route. This may make the 

controller bottleneck as the number of flows and switches increases. Similar to the 

routing, the controller must check whether there is enough amount of resource (i.e., 

bandwidth) in the network to accept the request during the admission control process. 

In the proposed model, the controller does not make per flow route computation. 

It simply assigns the new flow f to a route as soon as it gets freq. This makes the routing 

decision independent from network size. Hence, routing scalability is achieved. 

Similar to the routing, the controller checks available resources of route between edge 
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pairs based on the information in RSDB. If there is enough amount of resource, routing 

of f is allowed. Otherwise, the controller rejects freq. 

The first step of both routing and admission control is the edge pair identification 

step. In this step, the controller already knows about ISS due to the packet-in message. 

It identifies the corresponding ESS by extracting the destination address from the 

packet-in message and querying RSDB. The next step is the assignment of the flow to 

one of the routes of the corresponding edge pair. We develop a flow assignment 

method (hash-based modulo-ρ assignment operation - HMA) where the assignment of 

a flow to a route is proportional to the capacity of routes. Finally, the controller deploys 

forwarding rules to edge nodes for routing. Any packet after this operation is 

forwarded on the assigned route. 

In HMA, each route Pk
s,d

 has an assignment range specified with δmin
s,d,k

 and δmax
s,d,k

. 

This range depends on the number of routes |Ps,d| of edge pair, the capacity of each 

route φ(Pk
s,d), and the maximum range value ρ. The value of ρ can be any value greater 

than 0; that is, there is no upper limit. The network administrator can pick any positive 

value for ρ. Note that assignment ranges of routes of a pair do not change unless their 

capacity changes. Change in capacity happens in two cases. In the first case, the 

controller performs the resizing operation, which we will explain later in this section. 

In the second case, route re-establishment happens due to a link or switch failure. 

Route re-establishment can also happen in case of the desire of the network 

administrator. All of these imply that the controller does not frequently perform 

assignment range computation. The computation of the assignment range is defined 

below. 

 

δmin
s,d,k = {

0  k = 1

δmax
s,d,k−1 + 1  2 ≤ k ≤ |Ps,d|
∀s and d ∈ V, s ≠ d.

 (4.1) 

 

δmax
s,d,k = δmin

s,d,k +
φ(Pk

s,d) ∗ ρ

∑ φ
|Ps,d|
k=1 (Pk

s,d)
, ∀s and d ∈ V, s ≠ d (4.2) 

 

The minimum assignment value of a route is determined by its order as defined 

in Equation (4.1. For the first route, it is 0. For the others, it depends on the maximum 
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assignment value of the previous route. The maximum assignment value of a route 

depends on both ρ and proportion of the path capacity over pair capacity as defined in 

Equation (4.2. To be clearer, suppose that φ(P1
1,1) and φ(P2

1,1) in Figure 4.2 are 2 and 

3Gbps, respectively. Total capacity (∑ φ
|Ps,d|
k=1 (Pk

s,d)) is 5Gbps. Assuming that ρ is 100, 

δmin
1,1,1 = 0, and δmax

1,1,1 = 40. Similarly, δmin
1,1,2 = 41, and δmax

1,1,2 = 100. As it is seen in 

the example, a route with the largest capacity has the highest assignment probability. 

The complete HMA process works as follows. First, controller computes hash 

value H(f) of freq using fields in packet-in message such as destination IP. Any 

hashing method (e.g., MD5 [75], SHA-1 [76]) can be exploited for this purpose. 

Subsequently, modulus ρ of H(f), denoted as ρ(f), is computed. The result value lies 

within the assignment range of a route (i.e., δmin
k,j

≤ ρ(f) ≤ δmax
k,j

). 

 

Table 4.2: Routing Algorithm. 

 

Lines Steps 

 𝐈𝐧𝐩𝐮𝐭: freq 

 𝐎𝐮𝐭𝐩𝐮𝐭: Routing of freq 

1 ISS = getSwitchDPID(freq) 

2 ESS = getDestinationSwitchFromRSDB(freq) 

3 ρ(f) = calculateHMA(freq) 

4 Ps,d = getRoutesOfPair(ISS, ESS) 

5 𝐅𝐎𝐑 k 𝐈𝐍 Ps,d: 

6    𝐈𝐅 δmin
s,d,k ≤ ρ(f) ≤ δmax

s,d,k
 

7       assignToRoute(freq, Pk
s,d) 

8    𝐄𝐍𝐃 𝐈𝐅 

9 𝐄𝐍𝐃 𝐅𝐎𝐑 

 

Both routing and admission control algorithms are presented in Table 4.2 and 

Table 4.3, respectively. In Table 4.2, controller identifies edge pairs as soon as it 

receives flow request freq. Afterwards, it performs HMA operation to determine 

forwarding route. Finally, controller deploys forwarding rules to edge nodes. 

Admission control algorithm resembles routing algorithm. Apart from Table 4.2, 
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controller checks if there is available resource in edge pair before HMA operation in 

Table 4.3. After flow assignment for both routing and admission control, forwarding 

of packets starts in data plane. First, ISS marks incoming packets of f with an 

associated RID. Subsequently, it forwards marked packets to the related core switch. 

Then, marked packets are forwarded through the core network and they arrive to the 

ESS. Finally, ESS removes marks on packets and delivers them to the destination node 

or another network. 

Table 4.3: Admission Control Algorithm. 

 

Lines Steps 

 𝐈𝐧𝐩𝐮𝐭: freq 

 𝐎𝐮𝐭𝐩𝐮𝐭: Acceptance/rejection of freq 

1 ISS = getSwitchDPID(freq) 

2 ESS = getDestinationSwitchFromRSDB(freq) 

3 𝐈𝐅 ! isResourceAvailable(freq, ISS, ESS): 

4    reject(freq) 

5 𝐄𝐍𝐃 𝐈𝐅 

6 ρ(f) = calculateHMA(freq) 

7 Ps,d = getRoutesOfPair(ISS, ESS) 

8 𝐅𝐎𝐑 k 𝐈𝐍 Ps,d: 

9    𝐈𝐅 δmin
s,d,k ≤ ρ(f) ≤ δmax

s,d,k
 

10       assignToRoute(freq, Pk
s,d) 

11    𝐄𝐍𝐃 𝐈𝐅 

12 𝐄𝐍𝐃 𝐅𝐎𝐑 

 

4.5. Load Balancing 

 

Load balancing is a fundamental resource utilization operation. Load balancing 

aims to distribute traffic load over the network fairly. This in turn reduces both capital 

expenditures (CAPEX) and operational expenditures (OPEX). In addition to this, 

HMA necessitates load balancing because flows of a pair may be assigned to only 
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some of its routes. This results in the under-utilization of the remaining routes. 

Therefore, overall network utilization reduces. 

The proposed controller performs load balancing adaptive to the traffic for two 

reasons. First, the controller has limited computational resources. Thus, 

computationally intensive operations such as optimal (network-wide) load balancing 

may degrade the performance of the controller in the case of scalability. Instead of 

optimizing global network load, the controller performs pair-based load balancing 

(local). Local load balancing converges to network-wide load balancing in time since 

route costs reflect physical link costs. Secondly, optimum load balancing does not last 

a long time because traffic is highly dynamic. 

In our model, the controller balances load of a pair among its routes by 

equalizing their costs (i.e., load, utilization, congestion level). In the first step of load 

balancing, controller computes route costs and an equilibrium cost. Equilibrium cost 

is the cost that all route costs must be closer after load balancing operation. Secondly, 

the controller determines route states (i.e., underloaded, balanced, overloaded) with 

respect to the equilibrium cost. Finally, the controller shifts some of the flow in 

overloaded routes to underloaded routes for cost equalization. Shifting is as simple as 

updating the forwarding rule of the flow in edge switches. 

Notice that a route consists of one or more links. In that sense, link costs must 

reflect route costs. Denoting the capacity and load of a physical link as φ(Ei) and 

ϑ(Ei), respectively, the controller calculates link cost based on the equation defined 

below. 

 

λ(Ei
s,d,k) =

Qi

1 −
ϑ(Ei) − 1
φ(Ei)

, ∀i ∈ Es,d,k, s ≠ d 
(4.3) 

 

First, link utilization is computed by dividing ϑ(Ei) − 1 to φ(Ei). Subtracting 

one from ϑ(Ei) prevents value of denominator to be 0 in the Equation (4.3 when link 

is fully loaded. After link utilization calculation, the controller subtracts the link 

utilization value from 1, and divides 𝑄𝑖 with it. Linear increment in ϑ(Ei) results in 

exponential increment in λ(Ei
s,d,k). In other words, link cost becomes sensitive to load 

changes. This way, the model avoids overloaded links. We introduce the coefficient 

𝑄𝑖 to the equation so that network administrators can adjust link costs just in case. 
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Also, note that the controller does not compute link cost per load balancing operation. 

Instead, the controller maintains link and route costs in the LSDB, and RSDB, 

respectively, distinct from all operations. 

We define route cost as the summation of costs of links which form the 

corresponding route. Denoting the cost of a route Pk
s,d

 as λ(Pk
s,d), route cost 

computation is defined as follows: 

 

λ(Pk
s,d) = ∑ λ(Ei

s,d,k)

|Es,d,k|

i=1

, ∀k ∈ Ps,d, s ≠ d (4.4) 

 

Load Balancing Algorithm is presented in Table 4.4. In the first step, it calculates 

equilibrium cost of the pair, denoted as μ(Vs, Vd), considering routes. Cost of all the 

routes converge to μ(Vs, Vd) after load balancing process. In the second step, state of 

routes is identified based on μ(Vs, Vd). A route whose cost is greater than μ(Vs, Vd) is 

classified as overloaded. Similarly, a route whose value is less than μ(Vs, Vd) is 

classified as underloaded. If a route has the same cost as μ(Vs, Vd), it is already 

balanced. Thus, controller does not take this route into account. In the third step, the 

algorithm obtains information such as ISS, ESS and RID regarding each flow in 

unbalanced routes. Finally, some these flows are shifted in overloaded routes to 

underloaded routes. Controller selects which flow to be shifted in a greedy manner 

(e.g., heavily to lightly loaded flow). 

 

Table 4.4: Load Balancing Algorithm. 

 

Lines Steps 

 𝐈𝐧𝐩𝐮𝐭: freq 

 𝐎𝐮𝐭𝐩𝐮𝐭: Equalization of pair load 

1 pairCost = 0 

2 𝐅𝐎𝐑 Route Pk in P
s,d: 

3    𝐈𝐅 isActive(Pk): 

  

The computation of pair equilibrium cost takes Θ(n) in which n is the number 

of routes per pair. Sorting flows by size takes O(f log(f)) in which f is number of flows. 

Shifting flows to underutilized routes takes O(n log(f)). Thus, time complexity of the 
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Active Load Balancing algorithm is O(n (f log(f) + (n f))) in the worst case where 

all routes are active. The controller performs load balancing for all pairs denoted by B. 

Therefore, time complexity for overall network load balancing becomes 

O(B n (f log(f) + n f)). 

 

Table 4.5: Load Balancing Algorithm (Contd.). 

 

4       pairCost = pairCost + λ(𝑃𝑘) 

5    𝐄𝐍𝐃 𝐈𝐅 

6 𝐄𝐍𝐃 𝐅𝐎𝐑 

7 μ((Vs, Vd)) = pairCost / |P
s,d| 

8 𝐅𝐎𝐑 Route Pk 𝐈𝐍 P
s,d: 

9    𝐈𝐅 ! isActive(Pk): 

10       continue 

11    𝐄𝐍𝐃 𝐈𝐅 

12    𝐈𝐅 λ(Pk)  < μ((Vs, Vd)): 

13       addRouteToList(lightlyUtilizedRouteList, Pk) 

14    𝐄𝐋𝐒𝐄 𝐈𝐅 λ(Pk) > μ((Vs, Vd)): 

15       addRouteToList(highlyUtilizedRouteList, Pk) 

16    𝐄𝐍𝐃 𝐈𝐅 

17 𝐄𝐍𝐃 𝐅𝐎𝐑 

18 𝐅𝐎𝐑 Route Po 𝐈𝐍 highlyUtilizedRouteList: 

19    flowPool = getFlows(Po) 

20    sortFlowsByAscendingLoad(flowPool) 

21    𝐅𝐎𝐑 Route Pu 𝐈𝐍 lightlyUtilizedRouteList: 

22       𝐅𝐎𝐑 Flow fa 𝐈𝐍 flowPool: 

23          𝐈𝐅 shifting flow fa to Pu makes λ(Pu) < μ((Vs, Vd)): 

24             shiftFlow(fa, Po, Pu) 

25          𝐄𝐍𝐃 𝐈𝐅 

26          𝐈𝐅 λ(Pu) > μ((Vs, Vd)): 

27             addRouteToList(routeRemoveList, Pu) 

28             continue 
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Table 4.6: Load Balancing Algorithm (Contd.). 

 

29          𝐄𝐍𝐃 𝐈𝐅 

30       𝐄𝐍𝐃 𝐅𝐎𝐑 

31    𝐄𝐍𝐃 𝐅𝐎𝐑 

32    𝐅𝐎𝐑 Route Pr 𝐈𝐍 routeRemoveList: 

33       removeRoute(routeRemoveList, Pr) 

34    𝐄𝐍𝐃 𝐅𝐎𝐑 

35    𝐈𝐅 λ(Po) < μ((Vs, Vd)): 

36       continue 

37    𝐄𝐍𝐃 𝐈𝐅 

38 𝐄𝐍𝐃 𝐅𝐎𝐑 

 

There are two types of load balancing initiation in the proposed model. That are 

periodic and threshold based. In the periodic load balancing, the controller periodically 

performs load balancing such as per minute. How to determine the period is crucial.  

 

4.6. Route Resizing 

 

In the proposed model, PCRs are virtual, so their capacities are re-sizable. 

Dynamically adjusting route capacities prevents the network from congestion and 

increases resource utilization. Considering the pairs in Figure 4.1, the pair (𝑉2, 𝑉1) may 

suffer from congestion while (𝑉1, 𝑉1) is lightly loaded. However, (𝑉2, 𝑉1) would not 

suffer if (𝑉1, 𝑉1) could give some of its capacity to its neighbor. To overcome this 

problem, we propose a route resizing method to adjust route capacities whenever a 

route exceeds a certain threshold (e.g., 80% of its maximum capacity). Note that, this 

process is performed on RSDB, not in the data plane. For this reason, the controller 

does not explicitly alter the rule of routes on switches. 

As aforementioned, neighbor routes may share physical links. A physical link is 

split into one or more virtual links where each of which serves a different route from 

point of view of the controller. Each virtual link 𝐸𝑖
𝑠,𝑑,𝑘

 is a part of a route 𝑃𝑘
𝑠,𝑑

, where 

the triple (s, d, and k) of each virtual link is different. We denote a route 𝑃𝑘
𝑠,𝑑

 on a link 

𝐸𝑖 as 𝑃𝑠,𝑑,𝑘
𝑖 . RRM computes new virtual link capacity 𝜑(𝐸𝑖

𝑠,𝑑,𝑘) for all routes 𝑃𝑠,𝑑,𝑘
𝑖  
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proportional to their loads, denoted as 𝜗(𝑃𝑠,𝑑,𝑘
𝑖 ). The corresponding equation is 

provided below. 

 

𝜑(𝐸𝑖
𝑠,𝑑,𝑘) = 𝜑(𝐸𝑖) ×

𝜗(𝑃𝑘
𝑖)

𝜗(𝐸𝑖)
, ∀𝑠 𝑎𝑛𝑑 𝑑 ∈ 𝑉, 𝑘 ∈ 𝑃𝑠,𝑑 , 𝑖 ∈ 𝐸, 𝑠 ≠ 𝑑 (4.5) 

 

As soon as the controller performs this computation per virtual link, the new 

route capacity becomes the capacity of one of its virtual links which have the minimum 

capacity. To be clearer, consider a scenario based on the network illustrated in Figure 

4.2. Let 𝜑(𝑃2
1,1) and 𝜑(𝑃1

2,1) be 6 and 4Mbps, respectively. Let also 𝜗(𝑃2
1,1) and 

𝜗(𝑃1
2,1) be 5.7 and 1Mbps, respectively. In this case, 𝑃2

1,1
 exceeds the threshold, 

assuming that it is 80%, and the controller initiates the resizing process. Therefore, 

new 𝜑(𝑃2
1,1) and 𝜑(𝑃1

2,1) become 8.5 and 1.5Mbps, respectively. 

 

Table 4.7: Route Capacity Resizing Algorithm. 

 

Lines Steps 

 𝐈𝐧𝐩𝐮𝐭: Links 

 𝐎𝐮𝐭𝐩𝐮𝐭: New capacities of all virtual links 

1 𝐅𝐎𝐑 Link Ei in E: 

2    𝐈𝐅 isActive(𝐸𝑖): 

3       φ(Ei)  =  getLinkCapacityFromLSDB(Ei) 

4       ϑ(Ei)  =  getCurrentLinkLoadFromLSDB(Ei) 

5       𝐅𝐎𝐑 Route Pk
i < 𝐈𝐍 getRoutesFromRSDB(Ei): 

6          𝐈𝐅 isActive(Pk
i): 

7             ϑ(Pk
i) = getCurrentRouteLoadFromRSDB(Pk

i) 

8             𝜑(𝐸𝑖
𝑠,𝑑,𝑘) = 𝜑(𝐸𝑖) 𝜗(𝑃𝑘

𝑖) / 𝜗(𝐸𝑖) 

9          𝐄𝐍𝐃 𝐈𝐅 

10       𝐄𝐍𝐃 𝐅𝐎𝐑 

11    𝐄𝐍𝐃 𝐈𝐅 

12 𝐄𝐍𝐃 𝐅𝐎𝐑 

13 𝐅𝐎𝐑 Route Pk 𝐈𝐍 P
s,d: 
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Table 4.8: Route Capacity Resizing Algorithm (Contd.). 

14    𝐈𝐅 ! isActive(Pk): 

15       continue 

16    𝐄𝐍𝐃 𝐈𝐅 

17    linksOfRouteList = getLinksFromRSDB(Pk
s,d) 

18    temporaryMinimumCapacity = Maximum Link Capacity 

19    𝐅𝐎𝐑 Link Ei
𝑠,𝑑,𝑘 𝐈𝐍 linksOfRouteList: 

20       𝐈𝐅 isActive(Ei
𝑠,𝑑,𝑘) 𝐀𝐍𝐃 temporaryMinimumCapacity > φ(Ei

s,d,k): 

21          temporaryMinimumCapacity = φ(Ei
s,d,k) 

22       𝐄𝐍𝐃 𝐈𝐅 

23       ϖ(Pk
s,d) = temporaryMinimumCapacity 

24    𝐄𝐍𝐃 𝐅𝐎𝐑 

25 𝐄𝐍𝐃 𝐅𝐎𝐑 

 

Although the computation of the new 𝜑(𝐸𝑖
𝑠,𝑑,𝑘) is simple, the time complexity 

of the resizing algorithm is 𝑂(|𝐸||𝑃|2). However, RRM does not perform this 

operation frequently unless the overall network is heavily loaded. In a heavily loaded 

network (e.g., 80% of its total capacity) the controller performs consecutive resizing 

operations because the threshold is exceeded even after the resizing operation. This 

infers that route resizing must be avoided when the network load is high. To handle 

this problem, the proposed controller stops performing on-demand resizing if the 

number of on demand resizing operation exceeds a predefined threshold in a 

predefined time interval such as 3 times in 3 minutes. It simply waits for some back-

off time and then starts on-demand resizing. As it is noticed, RRM works on a virtual 

network during this operation because routes and their capacities are virtual. It does 

not communicate with underlying network elements. 

 

4.7. Signaling 

 

In SDN-based networks, the controller must communicate with underlying 

switches to manage the whole network in SDN. The number of control messages 

increases as the size of the network increases. Thus, heavy control traffic may occur 
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between controller and switches, especially in the case of a high number of flows and 

switches in a network. 

In terms of routing and admission control signaling, usually, an SDN controller 

sends forwarding rules to all the switches along the route per flow. Therefore, the 

number of messages to be sent becomes the number of switches along the route per 

flow. Compared to this, the proposed controller sends only two messages independent 

of the number of switches along the route, that are ingress and egress switches. Thus, 

signaling scalability is achieved regarding routing and admission control. 

As the proposed controller requires an up-to-date network state to manage the 

whole network, it updates link states periodically. Edge switches are busy with sending 

flow requests to the controller, inserting new flow rules to their tables, and updating 

existing rules during the load balancing process. For these reasons, the proposed 

controller does not communicate with edge switches to get link states. Instead, it 

collects link states from the corresponding core switches. 

Considering the load balancing process, suppose that there are no PCRs, the 

controller treats the flow to be shifted as a new flow and sends forwarding rules to new 

switches between source and destination. Besides, old flow rules are deleted to 

maintain switch tables. Therefore, signaling scalability issues may arise as the number 

of flows to be shifted, and network size increases. In the proposed model, the controller 

sends a flow update message to an ingress switch for shifting a flow from one route to 

another during the load balancing process. Edge switches only update their output 

ports to shift a flow from one route to another. 
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5. ENERGY AWARE RESOURCE 

MANAGEMENT 

 

There occurs a trade-off between optimal energy saving and computation 

overhead. In today’s highly dynamic Internet traffic, the controller may become a 

bottleneck while computing optimal energy saving. Additionally, the optimal energy 

state may not last long due to the traffic fluctuations. Thus, we prioritize scalability 

over optimal energy saving. To do so, our controller makes edge pair-based energy-

saving computation. Upon completion of pair-based optimization, the controller 

aggregates pair traffic into designated routes. Subsequently, it deactivates idle links 

and switches in the whole network. This local energy saving converges to a global 

energy saving in time. 

To be clearer about how energy can be saved with traffic aggregation over a 

smaller number of routes, consider the network illustrated in Figure 4.1. The routes 

𝑃2
1,1

 and 𝑃1
2,1

 are neighbors because they share the links E6 and E9. Assuming that these 

routes have large enough capacity to carry their pair loads, the controller aggregates 

whole network traffic to 𝑃2
1,1

 and 𝑃1
2,1

. Then, it deactivates the remaining 4 core 

switches and 6 links to save energy. 

The first step of energy-aware route management is determination of the most 

energy efficient subset of routes of a pair 𝑃𝑠,𝑑 while total capacity of 𝑃𝑠,𝑑 (𝜑(𝑃𝑠,𝑑)) is 

greater than or equal to its load (𝜗(𝑃𝑠,𝑑)). Time complexity of the brute force solution 

(generation of all combinations (𝜃(2𝑛)) and searching for the best combination 

(𝜃(𝑛))) is exponential. In this regard, we propose a polynomial time algorithm called 

Energy-aware Route Management Algorithm (ERMA) defined in Table 5.2: Energy 

Saving Algorithm. 

Let 𝜑(𝑃𝑠,𝑑) denote the pair capacity, 𝜗(𝑃𝑠,𝑑) denote the pair load and 𝑉[𝑖, 𝑐] 

(1 ≤ 𝑖 ≤ 𝑛 and 𝜗(𝑃𝑠,𝑑) ≤ 𝑐 ≤ 𝜑(𝑃𝑠,𝑑))  denote the minimum energy consumption for 

a subset of routes for number of i route and 𝑐 capacity. Assuming that all the routes 

are initially active, ERMA decides if the i-th route should be active or passive, at each 

step. In the former case, 𝑉[𝑖, 𝑐] is equal to 𝑉[𝑖 − 1, 𝑐]. This means energy consumption 

and capacity stays the same. In the latter case, 𝑉[𝑖, 𝑐] becomes 𝑉[𝑖 − 1, 𝑐 − 𝑐𝑖] − 𝑒𝑖. 

More clearly, current capacity 𝑐 reduces by 𝑐𝑖 and energy consumption reduces by 𝑒𝑖. 
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We can find the optimal solution by filling the table 𝑉[0. . 𝑛, 0. . 𝜑(𝑃𝑠,𝑑)]. In this sense, 

entry 𝑉[𝑛, 𝜗(𝑃𝑠,𝑑)] becomes the optimal solution. According to our problem, 𝑉[𝑖, 𝑐] =

∞ for 0 ≤ 𝑐 ≤ 𝜗(𝑃𝑠,𝑑) and 𝑉[0, 𝑐] is equal to maximum energy consumption for 0 ≤

𝑐 ≤ 𝜗(𝑃𝑠,𝑑). 

 

𝑃𝐷𝑉(𝑃𝑘
𝑠,𝑑) =

{
 
 

 
 2

(𝑃𝑃−𝑅𝑈𝑅(𝑃𝑘
𝑠,𝑑))∗

10
𝑃𝑃, if 𝑅𝑈𝑅(𝑃𝑘

𝑠,𝑑) ≤ 𝑃𝑃

2(𝑅𝑈𝑅(𝑃𝑘
𝑠,𝑑)−𝑃𝑃)∗

10
100−𝑃𝑃, if 𝑅𝑈𝑅(𝑃𝑘

𝑠,𝑑) > 𝑃𝑃

, ∀𝑠 𝑎𝑛𝑑 𝑑 ∈ 𝑉, 𝑠 ≠ 𝑑, 𝑘 ∈ 𝑃𝑠,𝑑

 (5.1) 

 

The controller computes the energy consumption value of a route 𝑃𝑘
𝑠,𝑑

 by 

multiplication Passive Neighbor Ratio (PNR), and Pivot Distance Value (PDV). PNR 

and PDV of a route 𝑃𝑘
𝑠,𝑑

 is indicated as PNR(𝑃𝑘
𝑠,𝑑

) and PDV(𝑃𝑘
𝑠,𝑑

), respectively. 

PNR(𝑃𝑘
𝑠,𝑑

) is the ratio of passive neighbor routes over all of its routes. PDV(𝑃𝑘
𝑠,𝑑

), 

however, depends on both route utilization ratio (𝑅𝑈𝑅(𝑃𝑘
𝑠,𝑑) = 𝜗(𝑃𝑘

𝑠,𝑑) ∗
100

𝜑(𝑃𝑘
𝑠,𝑑)
) 

and pivot point (PP) as defined in Equation (5.1. PP is a predefined utilization ratio 

(e.g., 70%). It allows the controller to aggregate the desired amount of load to the route 

as much as possible. For instance, defining PP as 70% forces the controller to make 

the route utilization around 70% but at the same time prevent it from over-utilization. 

According to the Equation (5.1, PDV(𝑃𝑘
𝑠,𝑑

) changes exponentially from the distance 

between route utilization and PP. The reason is to force the controller to reach the 

desired utilization as fast as possible. 

Time complexity of ERMA is 𝒪(𝑛 ∗ |𝜑(𝑃𝑠,𝑑) − 𝜗(𝑃𝑠,𝑑)|). Notice that we 

design ERMA for a single pair. Therefore, total time complexity for the whole network 

becomes 𝒪(𝑛 ∗ |𝜑(𝑃𝑠,𝑑) − 𝜗(𝑃𝑠,𝑑)| ∗ 𝐵) where 𝐵 is number of pairs. As soon as the 

controller determines future active and passive routes, it may need to shift flows from 

the routes that will be passive to the routes that will remain active or just have been 

activated. In such cases, the controller determines current and new states of the routes 

first. To be clear, there are four states which are defined in Table 5.1. If there are routes  
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Table 5.1: Possible Energy State Changes of Routes. 

 

States Current State Next State 

State 0 Active Active 

State 1 Active Passive 

State 2 Passive Active 

State 3 Passive Passive 

 

in State 1, the controller shifts the flows in these routes to the routes that are either in 

State 0 or State 2. 

After the shifting process, the controller tries to deactivate all the network 

devices along the routes that do not share switches and links along their way with other 

routes. Since the whole route is passive, energy-saving increases dramatically. If this 

is not the case, the controller tries to deactivate the switches and links along its way 

that does not carry traffic. Before deactivating a switch, the controller makes sure that 

all the links coming and leaving the switch does not carry traffic.  

ERMA finds the optimum route combination per pair assuming that all the routes 

are active. However, some of the routes may be in passive mode in reality and their 

capacity may be taken by neighbor routes. To handle this problem, ESM computes 

future capacities of passive routes because a passive route can be selected as a result 

of ERMA. To do so, it calculates the unused capacity of each link by subtracting load 

from its capacity and share this unused capacity equally among the passive routes that 

the link serves. The capacity of the passive route becomes the capacity of the link 

which has the minimum capacity compared to other links that serve the same passive 

route. Let us show this procedure in an example for clarification purposes. Suppose 

that ESM executes ERMA for the pair ISS1-ESS1 as illustrated in Figure 4.1. Also, 

suppose that capacities of all links are 1Gbps and routes except 𝑃2
1,1

 and 𝑃1
2,1

 are active. 

The controller must find the future capacity of Route2 in case ERMA selects it. There 

are 1, 2 and 2 passive routes on links 𝐸2, 𝐸6 and 𝐸9, respectively. Load of E2, E6 and 

E9 are all 0 because 𝑃2
1,1

 and 𝑃1
2,1

 do not carry traffic. Unused capacities of 𝐸2, 𝐸6 and 

𝐸9 are 1Gbps for each. In this case, capacity share of 𝑃2
1,1

 for the links 𝐸2, 𝐸6 and 𝐸9 

are 1, 0.5 and 0.5Gbps, respectively. The minimum of these capacities is 0.5Gbps. 

Therefore, the future capacity of 𝑃2
1,1

 becomes 0.5Gbps. 
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Table 5.2: Energy Saving Algorithm. 

 

Lines Steps 

 𝐈𝐧𝐩𝐮𝐭: Pair load ϑ(Ps,d), pair capacity φ(Ps,d), pair energy ε(Ps,d) 

 𝐎𝐮𝐭𝐩𝐮𝐭: new states for paths of the pair 

1 𝐅𝐎𝐑 i = 1 𝐈𝐍 n: 

2    V[i, φ(Ps,d)] ⇐ ε(Ps,d) 

3 𝐄𝐍𝐃 𝐅𝐎𝐑 

4 𝐅𝐎𝐑 i = 1 𝐈𝐍 n: 

5    𝐅𝐎𝐑 c = φ(Ps,d) 𝐓𝐎 ϑ(Ps,d): 

6       𝐈𝐅 c − ci ≥ ϑ(Ps,d) 𝐀𝐍𝐃 (V[i − 1, c − ci] − ei) ≤ (V[i − 1, c]): 

7          V[i, c] ⇐ V[i − 1, c − ci] − ei 

8       𝐄𝐋𝐒𝐄: 

9          V[i, c] ⇐ V[i − 1, c] 

10       𝐄𝐍𝐃 𝐈𝐅 

11    𝐄𝐍𝐃 𝐅𝐎𝐑 

12 𝐄𝐍𝐃 𝐅𝐎𝐑 
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6. IMPLEMENTATION DETAILS 

 

6.1. Databases 

 

The proposed controller maintains Link-state Database to keep track of links and 

the whole network topology. Basically, they are identifier of Li, switch data-path 

identifiers (DPID) and ports that Li connects, 𝜑(Li) , rate of Li and 𝜆(𝐿𝑖
𝑘). The latter 

two information changes in time-based on the traffic passes through the link. 

In addition to LSDB, the proposed controller maintains Route-state Database to 

keep track of PCRs. In the proposed model, we assume that routes are pre-established. 

For this reason, we provide route information to the controller via a network definition 

file NDF instead of performing a multi-route routing algorithm. During the lifetime of 

PCRs, the controller maintains this database whenever any route related information 

changes such as route costs. Since we determine route cost based on link costs, the 

controller updates RSDB whenever link costs in LSDB are updated. Some static 

information of a route maintained in RSDB is its identifier (RID), DPIDs of ISS and 

ESS, links that form the route. RSDB also has dynamic data that are route capacity 

and 𝜆(𝑃𝑘
𝑗
). 

 

6.2. Route Management Module 

 

We implemented the Route Management Module so that the proposed controller 

can create, update, and remove them. In this part of the section, we will explain 

implementation details of PCRs and packet forwarding over routes in the data plane. 

 

6.2.1. Route Establishment 

 

At the beginning of the route establishment process, the controller parses NDF 

to learn about the details of routes. In our implementation, we used Virtual LAN 

(VLAN) to establish routes using OpenFlow v1.0 [20]. Each VLAN has a globally 

distinct RID. The RID is just an integer value. After parsing the definition file, the 

controller sends OFP_FLOW_MOD_ADD messages to the corresponding core 
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switches using the Static Flow Pusher Module of Floodlight. Note that there are 4094 

unique routes because VLANs in 802.1Q use 12 bits in which 0 and 4095 are reserved. 

MPLS can be used for routes instead of VLAN but this requires OpenFlow v1.3 [77] 

or higher versions. 

Controller populates only tables of core switches with route rules during the 

route establishment process. In other words, there is no specific rule for a single flow 

in a CSS. For instance, consider the route Route1 in the Figure 4.1. It consists of ISS, 

CSS11, CSS21, and ESS. According to this example, the controller sends route 

establishment messages only to CSS11 and CSS21. Edge switches (e.g., ISS1 and 

ESS) are empty. Thus, there is no full route.  

Let us explain how we create a complete route for a flow f. Suppose that f comes 

to ISSi for the first time and it should depart the network from ESSj. In this case, the 

establishment of full route for f occurs as follows: 

 

i) ISSi receives the first packet of flow f. 

ii) ISSi looks for a match with the packet regarding to existing forwarding rules. 

Since flow is new, incoming packets do not match with any of the existing flow 

rules. 

iii) ISSi prepares an OFP_PACKET_IN message and sends it to the controller 

iv) The controller extracts destination address of packets from the 

OFP_PACKET_IN message and determines the corresponding egress switch 

which is ESSj. 

v) The controller queries the RSDB to obtain routes of the pair ISSi - ESSj. 

vi) The controller determines the route for f in HMA step. 

vii) The controller prepares OFP_FLOW_MOD_ADD message for ISSi. In the 

match part of the OF message, there are source and destination IP addresses. In 

the action part of the same message, there are two actions. The first action marks 

the packet with associated RID specified in OFPAT_SET_VLAN_VID action. 

The second action sends the packet to the core switch from the physical port 

defined in the OFP_ACTION_OUTPUT action. The same applies for egress, but 

this time, the controller exchanges source and destination addresses. 

viii) The controller prepares another OFP_FLOW_MOD_ADD message for ESSj. In 

the match part of the OF message, source and destination IP addresses are 
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swapped compared to the message described in the previous step. In the action 

part of this message, there are two actions. The first action removes the RID with 

OFPAT_STRIP_VLAN action. The second action sends the packet out of 

network from the physical port defined in the OFP_ACTION_OUTPUT action. 

 

Note that distance between an edge pair can be one hop. Even in this case, controller 

generate and install routing rules described as above. 

 

6.2.2. Packet Forwarding 

 

Packet forwarding starts in an ISS and ends in an ESS after the controller installs 

flow rules to the corresponding edge switches. Forwarding of a packet of a flow f 

coming from ISSi and destined to ESSj is performed as follows: 

 

i) The packet arrives at ISSi and ISSi looks for a matching rule regarding f. 

ii) ISSi sets VID part of the 802.1Q header (within Ethernet frame) of the packet 

with OFP_SET_VLAN_VID action of the associated rule to assign the packet to 

a route. 

iii) ISSi forwards the packet from the out-port specified in the actions of the same 

rule. 

iv) The first core switch, which is the neighbor of ISSi, receives the packet. It finds 

the matching route rule by checking the RID of the packet. Subsequently, it 

forwards the packet to the next core switch along the route. 

v) Each core switch along the route forwards the packet the same way as the first 

core switch and the packet eventually reaches ESSj. 

vi) ESSj takes the packet and removes the VID of the packet by OFP_STRIP_VLAN 

action. Finally, it forwards the packet out of the network over the specified out-

port. 

 

The response message for the packet is routed back in the same way. However, 

this time, egress acts as ingress and vice versa. 
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6.3. Routing and Admission Control Module 

 

If a packet does not match with any rules in an OF switch, the packet is called 

unknown. As soon as an OF switch receives such a packet, it sends a message, namely 

OFP_PACKET_IN, to the controller as a default action in OF v1.0. As soon as the 

controller receives the OFP_PACKET_IN message, it takes an action such as creating 

a new route or rejecting the request.  

In our implementation, only ingress switches send such requests to the controller 

due to the structure of SPNs. As soon as the controller receives a request from an ISS, 

RACM steps in. Briefly, RACM handles admission control in two steps. First, it 

determines the corresponding ingress-egress pair based on source and destination IP 

addresses. Secondly, RACM queries RSDB to check if there exists enough amount of 

bandwidth. If so, the controller assigns the flow to a route and sends new rules to 

associated edge switches. Otherwise, the request is rejected. 

 

6.4. Information Collection Module 

 

The controller only needs link loads for resource management operations. In 

OpenFlow, port statistics provide cumulatively transmitted and received byte counts. 

The Information Collection Module periodically sends OF port statistics message to 

related core switches per link. Upon receiving OF reply messages from the CSSs, the 

controller computes rates of links as follows: 

 

i) Controller subtracts previously obtained byte counts from current ones. 

ii) The result of subtraction is divided by the time interval between consecutive 

measurements. 

 

Therefore, ICM obtains approximate link rates. Consequently, the controller calculates 

link costs as described in the Equation (4.3. Finally, ICM updates LSDB in the 

background. 
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6.5. Load Balancing Module 

 

In the proposed model, load balancing has a key role to increase resource 

utilization. The controller can initiate the load balancing process in two ways. In one 

way, LBM periodically balances each pair (e.g., every 5 minutes). In another way, the 

controller checks the cost difference between all routes of a pair. If the difference 

between any two routes exceeds a certain threshold, LBM initiates the load balancing 

process. The threshold value can be constant or adaptive. LBM follows the steps below 

during the load balancing process of a pair. 

 

i) LBM retrieves route costs from RSDB. 

ii) LBM calculates average pair cost. 

iii) LBM calculates difference between average pair cost and route costs per route. 

iv) If the result is positive for a route, LBM marks the route as heavily loaded. If 

not, it marks the route as lightly loaded. 

v) LBM obtain flow statistics from the corresponding ISS for overloaded routes. 

vi) LBM selects subset of flows in a greedy manner (i.e., lightly loaded to heavily 

loaded). It stops when cost of lightly loaded route is equal or within the pre-

defined distance by the network administrator from the average pair load. 

vii) LBM sends route update message for each flow in the subset. 

 

6.6. Route Resizing Module 

 

Route Resizing Module is responsible for updating virtual route capacities. RRM 

periodically accesses RSDB to check route utilization. If a route exceeds a certain 

threshold, RRM invokes the resizing process.  

RRM does this operation in three steps. First, it computes virtual route capacity 

portions for each link. Results are stored in a matrix called Route-Link Matrix. In this 

matrix, rows are routes and columns are links. As soon as RRM fills the whole matrix, 

it sets the virtual capacity of each route to the minimum value of the row which is the 

minimum virtual capacity portion. 
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Table 6.1: Route-link Matrix of Virtual Network. 

 

 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 

𝐏𝟏
𝟏 10 ∞ ∞ ∞ 10 ∞ ∞ 10 ∞ ∞ 

𝐏𝟐
𝟏 ∞ 10 ∞ ∞ ∞ 6.25 ∞ ∞ 6.25 ∞ 

𝐏𝟏
𝟐 ∞ ∞ 10 ∞ ∞ 3.75 ∞ ∞ 3.75 ∞ 

𝐏𝟐
𝟐 ∞ ∞ ∞ 10 ∞ ∞ 10 ∞ ∞ 10 

 

To be clearer, consider the Table 6.1. There is a Route-Link Matrix for the 

topology illustrated in Figure 4.2. In this topology, there are 10 links and 4 routes. 

Whenever RRM invokes the resizing process, it iteratively calculates each cell in the 

matrix. In this example, the capacity of P1
1 and P2

2 does not change because there is no 

link shared with other routes. Thus, the controller does not perform any calculation for 

them. However, P2
1 and P1

2 shares L6 and L9. Suppose that capacity of all the links are 

10Mbps and loads of P2
1 and P1

2 are 5 and 3, respectively. New capacities of P2
1 and P1

2 

for L6 and L9 becomes 6.25 and 3.75, respectively. 

Route resizing enables to increase admissions of more flow requests and reduces 

congestion. However, it becomes heavier as the number of links and routes in the 

network increase. For this reason, our controller resizes routes on demand (e.g., 

exceeding 80% of route size). Although this prevents the controller to perform resizing 

more than necessary, the controller may perform resizing consecutively. This happens 

when the threshold is exceeded even after the previous route resizing operation. To 

avoid this case, we introduce a periodic resizing parameter. If the number of on-

demand resizing exceeds a certain threshold in a specific time interval (e.g., 3 times in 

a minute), the controller switches to periodic resizing mode. In this mode, the 

controller performs resizing periodically (e.g., 3 minutes). In periodic resizing mode, 

the controller continues to access RSDB to check whether it is still necessary to 

perform periodic resizing. If there is no need to perform periodic resizing, the 

controller switches to on-demand resizing mode. Additionally, notice that route 

resizing is a virtual operation. Thus, the controller and databases are the parts of this 

operation. Physical links are not affected by route resizing so signaling protocol is not 

used. 
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6.7. Energy Saving Module 

 

Energy Saving Module is responsible for activating/deactivating links and 

switches if possible. To do so, the controller obtains required data from databases and 

computes route states. Accordingly, it activates or deactivates links or switches. 

Currently, OpenFlow is not capable of commanding a switch to sleep or wake up any 

of its ports. We propose to modify the OFPT_PORT_MOD message and 

OFP_PORT_CONFIG flag for this purpose. OFP_PORT_CONFIG has an 

OFPPC_PORT_ACTIVE flag that commands the switch to deactivate its 

corresponding physical port. By default, the flag OFPPC_PORT_ACTIVE on the 

switch port is set to 1. This implies that the corresponding physical port is active. The 

controller sends OFPT_PORT_MOD to toggle (active to passive or vice versa) the 

state of a port. 

 

6.8. Inter Controller Communication Module 

 

This module is responsible for communicating with other controllers in the 

control plane. This module is required for preventing the network from a single point 

of failure issue. This is the issue when there is a single controller in the whole control 

plane. When the single controller stops working, all the routing, admission control, 

and resource management operations stop. In this work, we do not address this issue 

as there are proposed works mentioned in [51] regarding this. A simple solution for 

our model is that there can be two or more controllers within the control plane. One of 

them is the master. The other controllers, a.k.a. backup controllers, periodically check 

if the master controller is alive. In case of failure of the master controller, one of the 

backup controllers takes over. As the proposed model maintains network state in 

databases, the backup controller can directly connect to LSDB and RSDB to manage 

the whole network. Thus, there is a minimal overhead of taking control in case of 

controller failure. 
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7. EXPERIMENTAL RESULTS 

 

This section presents the experimental results of our model. We have 

implemented modules of our model upon Floodlight v0.91 [16]. For creating test 

networks, we have used both Mininet v2.1 [78] and Open vSwitch v2.5 [79]. 

Controller and switches communicate via OpenFlow v1.0 [20]. We used TG [80] as a 

traffic generator. Throughout this section, several scenarios under three topologies are 

tested to evaluate the proposed model. These topologies are NSFNET T3, Net-M, and 

Net-L as illustrated in Figure 7.1, Figure 7.2, and Figure 7.3. NSFNET T3 is a real 

network and is chosen as it provides connectivity to several regional networks [81], 

[82]. Apart from the NSFNET T3, two custom topologies, namely Net-M and Net-L 

are also used to test the proposed model in terms of topology size, the number of 

disjoint routes, connectivity among edge and core switches. 

 

 
 

Figure 7.1: Illustration of NSFNET topology. 
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Figure 7.2: Illustration of Net-M. 

 

 
 

Figure 7.3: Illustration of Net-L. 
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In order to create a realistic test environment, several real-time traffic traces are 

taken from the Center for Applied Internet Data Analysis (CAIDA) [83]–[86] as 

depicted in Figure 7.4. We have generated various traffic loads (i.e., light, moderate, 

heavy) by scaling these traffic traces and assigned one of four traffic patterns 

arbitrarily to each pair in each test run. 

 

 
 

Figure 7.4: Traffic pattern of March 29-30 2015 UTC taken from CAIDA. 

 

The test scenarios are performed to analyze; (1) effect of route number on load 

balancing performance, (2) periodic load balancing, (3) threshold-based load 

balancing, (4) load balancing performance under various traffic loads, (5) load 

balancing for different topologies, (6) comparison of the proposed model with the 

work proposed in [87], (7) admission control time, (8) effect of route number and 

traffic load on energy-saving performance, (9) effect of node connectivity on energy-

saving performance, (10) comparison of the proposed model with existing work in 

terms of energy saving, and (11) effect of energy-aware resource management on 

network utilization. 
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7.1. Effect of Route Number on Load Balancing 

Performance 

 

 
 

Figure 7.5: The core link utilizations in time for different number of routes. 

 

Load balancing performance of the proposed framework depends on the number 

of routes. In this context, we have investigated the performance of load balancing 

under various route numbers, namely P2, P3, P4, and P5. P2, P3, P4, and P5 have 2, 

3, 4, and 5 routes per pair, respectively. 

Load balancing performance of the proposed framework depends on the number 

of routes. In this context, we have investigated the performance of load balancing 

under various route numbers, namely P2, P3, P4, and P5. P2, P3, P4, and P5 have 2, 

3, 4, and 5 routes per pair, respectively. Net-M is chosen as the test topology since it 

allows creation of 5 disjoint routes, unlike others. The same traffic trace combination 

is applied to the same pairs of Net-M for 10 minutes. There are three test runs. During 

each test run, maximum core link utilizations are measured and the average of them is 

calculated per measurement time. The result is illustrated in Figure 7.5. 

We have observed that performing load balancing with 2 routes has the worst 

performance as it has the highest utilization. In the P2 case, the controller performs 

load balancing among two routes per pair. As the proposed framework performs 
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adaptive load balancing, the convergence of cost equalization among pairs takes more 

time. As the route number increases, max utilization decreases. For the same reason, 

P5 has better performance since more pairs are neighbors. 

 

7.2. Effect of Periodic Execution on Load Balancing 

Performance 
 

 
 

Figure 7.6: The core link utilizations of P2 in time for various load balancing 

periods. 

 

We have investigated the performance of load balancing under various periods 

to understand how frequently the load balancing should be performed depending on 

the route number. Load balancing periods are set to 5, 10, 20, and 30 seconds. Net-M 

is chosen as the test topology since it allows to creation of 5 disjoint routes, unlike 

others. The same traffic trace combination is applied to the same pairs of Net-M for 

10 minutes. There are three test runs for both P2 and P5. During each test run, 

maximum core link utilizations are measured and the average of them is calculated per 

measurement time. The results are illustrated in Figure 7.6 and Figure 7.7. 
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Figure 7.7: The core link utilizations of P5 in time for various load balancing 

periods. 

 

We have observed that performing load balancing in short (e.g., 5 seconds) or 

large (e.g., 30 seconds) intervals both for P2 and P5 causes performance degradation. 

Performing load balancing with short period shifts flows from one route to another 

frequently. This causes unnatural fluctuation in traffic. Load balancing with a large 

period has low performance as it equals costs infrequently. This implies that load 

balancing with larger periods makes the case like there is no load balancing, especially 

for highly dynamic network traffic. 

 

7.3. Effect of Threshold-based Execution on Load Balancing 

Performance 
 

The proposed load-balancing method can also be initiated depending on the cost 

difference among routes of pairs. In this context, we have investigated the performance 

of load balancing under various cost differences, in other words, threshold-based load 

balancing (TLB), which are 0.1, 0.25, 0.5, and 1.0. Net-M is chosen as the test topology 
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Figure 7.8: The core link utilizations of P2 in time for various load balancing 

periods. 

 

since it allows to creation of 5 disjoint routes. The same traffic trace combination is 

applied to the same pairs of Net-M for 10 minutes. There are three test runs for both 

P2 and P5. During each test run, maximum core link utilizations are measured and the 

average of them is calculated per measurement time. The results are illustrated in 

Figure 7.8 and Figure 7.9.  

Similar to the periodic load balancing case, we have observed that large TLBs 

(e.g., 1.0) has little impact on cost equalization. TLB with 1.0 has the lowest 

performance as the controller has initiated the load balancing process a few times. 

Additionally, performing load balancing for very small cost differences (e.g., 0.1) 

causes lower utilization compared to TLB with 0.25 and 0.5. This is because the 

controller frequently performs flow shifting among routes of pairs. We have observed 

that TLB with 0.25 has the best performance regardless of route numbers among the 

threshold values we chose. Similar to the periodic load balancing, the proposed model 

achieves better utilization with a larger number of routes. It must be noted that TLB 

should be adjusted based on the traffic fluctuation. 
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Figure 7.9: The core link utilizations of P2 in time for various load balancing 

periods. 

 

7.4. Load Balancing Performance under Various Traffic 

Loads 
 

We have investigated how the proposed framework performs under various 

traffic loads (eg., 20% - light, 50% - moderate, 80% - heavy). To do this, the same set 

of traffic traces are applied on Net-M with two routes per pair by scaling them. There 

are three test runs. The duration of the test run is set to 10 minutes and periodic (i.e., 

10 seconds) load balancing is performed by the controller. During each test run per 

traffic load, maximum core link utilizations are measured and the average of them is 

calculated per measurement time. The result is illustrated in Figure 7.10. 

To generate a light traffic load flows with small sizes are generated by clients. 

In case of the moderate traffic load generation, there is a mixture of flows with small 

and large sizes. In the heavy traffic load case, almost all flows are large. Under these  

 



 

69 

 

 
 

Figure 7.10: The core link utilizations for various traffic loads. 

 

circumstances, we have observed that shifting flows from one route to another causes 

small cost changes in light traffic load case. Fluctuation in the moderate traffic load 

case is more compared to the previous case. In heavy traffic load case, the impact of 

shifting flows from one route to another causes greater fluctuation. In the real world, 

there are many flows of various sizes. Hence, load balancing can be achieved more 

smoothly. 

 

7.5. Load Balancing Performance for Various Topologies 

 

We have investigated the performance of the proposed model for different 

networks. In this context, we applied the same set of traffic traces to all test topologies 

for 10 minutes. The applied traffic load is moderate. We have measured the change in 

costs of two randomly chosen routes. The obtained results, illustrated in Figure 7.11, 

Figure 7.12, and Figure 7.13, show that route costs get close to each other after the 

cost equalization process. Therefore, the proposed model successfully balances loads 

regardless of topology in an adaptive manner. 
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Figure 7.11: Equalization of route costs for NSFNET under moderate traffic load. 

 

 
 

Figure 7.12: Equalization of route costs for Net-M under moderate traffic load. 
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Figure 7.13: Equalization of route costs for Net-L under moderate traffic load. 

 

7.6. Load Balancing Performance Comparison 

 

 
 

Figure 7.14: Comparison of load balancing performance of models. 

The works [51] and [52] address both resource management and control plane 

scalability in SDN-based networks. However, they are complex to implement due to 

their both hierarchical and distributed structures. They also contain multiple 

controllers. Therefore, instead of comparing our model with the proposed works in 
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[51] and [52], we compare our model with the WPF, which is implemented in [87]. 

WPF also has a single controller that performs both resource utilization and routing. 

In this test scenario, we applied the same set of traffic traces to both models for 10 

minutes. Net-M is chosen as the test topology. The applied traffic load is moderate. 

There are three test runs. During each test run, maximum core link utilizations are 

measured and the average of them is calculated per measurement time. The result is 

illustrated in Figure 7.14. We have investigated performance. 

Note that WPF calculates the shortest route in a graph where both links and 

nodes have had weighted. WPF establishes a route once for a flow and does not change 

the route in time. Thus, link utilization does not change drastically in time. However, 

the proposed model, where each pair has 5 routes, successfully performs resource 

utilization and outperforms WPF. 

 

7.7. Admission Control Performance 

 

In this test scenario, we have investigated the performance of the admission 

control mechanism implemented in the proposed model. In the first part of this test 

case, we have measured the admission control time for both SRRM and WPF and 

illustrated the results in Figure 7.15. We have observed that WPF consumes more time 

to find a suitable route as the network load increases. The proposed model, on the other 

hand, performs admission control very quickly. Besides, the increase in admission 

control time for increasing traffic load is negligible. This proves that our model 

performs admission control in a scalable manner. 

We have conducted another test on Net-M to examine the effect of resource 

management operations on flow acceptance rate. We sent periodic flow requests to 

only one arbitrarily chosen pair and measured the rate of flow acceptance and run this 

scenario  
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Figure 7.15: Comparison of admission control time performance of models. 

 

both for P2 and P5. Our controller has distributed network load among routes and 

performed resizing to reduce congestion, if necessary. Thus, flow acceptance rates of 

SRRM is close to WPF as illustrated in Figure 7.16 even P2 case. 

 

 
 

Figure 7.16: Comparison of flow acceptance rate performance of models. 
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7.8. Effects of Route Number per Pair and Traffic Load on 

Energy Saving Performance 
 

In this test scenario, we have investigated the energy-saving performance of the 

proposed model for a various number of routes per pair under light, moderate, and 

heavy traffic loads. Route number per pair is 2 (P2) and 5 (P5). Net-M is chosen as the 

test topology. There are three test runs. During each run, active link and switch ratios 

are recorded and the average of each run is calculated. Figure 7.17, Figure 7.18, Figure 

7.19, and Figure 7.20 illustrate the energy-saving performance of P2 and P5 in terms 

of link and switch. 

 

 
 

Figure 7.17: Active link ratios for P2 under various traffic loads. 
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Figure 7.18: Active link ratios for P5 under various traffic loads. 

 
 

Figure 7.19: Active switch ratios for P2 under various traffic loads. 
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Figure 7.20: Active switch ratios for P5 under various traffic loads. 

 

We have observed that the active link ratio drops down to around 50-60% in P2 

for all traffic loads as illustrated in Figure 7.17. This experiment results in lower power 

consumption in P5 for light and moderate traffic loads as illustrated in Figure 7.18 

since the active link ratio drops down to around 35-45% at the end of the experiment. 

Note that, the energy-saving performance of both P2 and P5 is the closest to each other 

under heavy traffic load because the controller needs more resources to carry the heavy 

load. Also, notice that the active link ratio of P2 decreases to around 60-70% in almost 

50 seconds compared to P5. This ratio does not change much since then. The reason 

is that the controller has less choice in terms of route number per pair. However, the 

energy-saving performance of P5 is better after 300 seconds. The difference between 

the active switch ratio of P2 and P5 is much more apparent as shown in Figure 7.19, 

and Figure 7.20 for all traffic loads. P2 shows poorer performance even under light 

traffic load. In case of heavy traffic load, the controller fails to make any switch 

passive. However, this is not the case for P5. The active switch ratio of P5 drops down 

to around 60% for light and moderate traffic loads. Although its energy-saving 

performance under heavy traffic load is not as good as others, the controller 

successfully makes a few amounts of the switches passive. 
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7.9. Effect of Connectivity on Energy Saving Performance 

 

In this test scenario, we have investigated the energy-saving performance of the 

proposed model for different topologies. The average degree of connectivity for 

NSFNET, Net-M, and Net-L are 3, 6, and 3.53, respectively. Route number per pair is 

2 and a moderate traffic load is applied. There are three test runs. During each run, 

active link and switch ratios are recorded and the average of each run is calculated. 

We have observed that the degree of connectivity does not affect the energy-

saving performance of the proposed model on links as illustrated in Figure 7.21, and 

Figure 7.22. The active link ratio in all topologies is close to each other. On the other 

hand, this is not  

 

 
 

Figure 7.21: Active link ratios of 3 topologies having 2 routes per pair under 

moderate traffic load. 
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Figure 7.22: Active switch ratios of 3 topologies having 2 routes per pair under 

moderate traffic load. 

 

the case for switches. NSFNET has the best performance among other topologies 

because routes in this topology have more common links and switches. Net-L has the 

worst performance among others because routes in Net-L are more diverse than others 

due to the high connectivity. This test case shows that the establishment of routes 

affects the energy-saving performance of the proposed model. 

 

7.10. Comparison of Energy Saving Performance 

 

In this test case, we have investigated the energy-saving performance of the 

proposed model by comparing it with the approach defined in [59]. In our model, as 

aforementioned, we define route energy consumption as the multiplication of PNR and 

PDV. In [59], authors define energy consumption based on link utilization and a 

congestion threshold, that is 80%. We call this model the CARE model. In this test 

case, we run ERMA both for the proposed method and CARE model. Route number 

per pair is 2 (P2) and 5 (P5). Net-M is chosen as the test topology. Moderate traffic is 

applied in all 3 test runs. During each run, active link and switch ratios are recorded 

and the average of each run is calculated. Figure 7.23, Figure 7.24, Figure 7.25, and 

Figure 7.26 illustrate energy-saving performance of the proposed and CARE models 

in terms of link and switch. 
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On one hand, the two models have almost the same performance for P2 in terms 

of active link ratio case as depicted in Figure 7.23. On the other hand, the proposed 

model outperforms the CARE model in the P5 case as shown in Figure 7.24. Similarly, 

the results of the active switch ratio test resemble active link ratio test. The two models 

have almost the same performance for P2 as illustrated in Figure 7.25, and the 

proposed model outperforms the CARE model for P5 as depicted in Figure 7.26. 

 

 
 

Figure 7.23: Comparison of energy saving performance based on active link ratio for 

P2. 

 

 
 

Figure 7.24: Comparison of energy saving performance based on active link ratio for 

P5. 
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Figure 7.25: Comparison of energy saving performance based on active switch ratio 

for P2. 

 

 
 

Figure 7.26: Comparison of energy saving performance based on active switch ratio 

for P5. 
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7.11. Comparison of Load Balancing Performance 

 

In this test case, we have compared the load balancing performance when the 

controller performs energy saving and load balancing in harmony (Energy-Aware: 

EA) or it only performs load balancing (Energy-Unaware: EU). In EA, load balancing 

is performed among active routes. In EU, routes are always active. Route number per 

pair is 2 (P2) and 5 (P5). Net-M is chosen as the test topology. Moderate traffic is 

applied in all 3 test runs. During each run, load rates are recorded, and the average of 

each run is calculated. Figure 7.27, and Figure 7.28 illustrate load balancing 

performance of both models for P2 and P5. 

In both P2 and P5, the utilization of links is higher in EA compared to EU. This 

is because the same load is distributed over less capacity due to passive routes in EA. 

Additionally, utilization increases in line with energy-saving. In previous test cases, 

we have observed that energy-saving performance increases conforming to route 

number per pair. Hence, load utilization of P2 as in Figure 7.27 is lower than P5 as in 

Figure 7.28. The trade-off between energy saving and load balancing indicates that 

high energy saving may cause over-utilization. Thus, this may result in significant 

network congestion. Finally, this test case shows that an adequate route number per 

pair and PDV selection allows efficient usage of network resources in terms of both 

energy saving and resource utilization. 
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Figure 7.27: Comparison of load balancing performance for P2. 

 

 
 

Figure 7.28: Comparison of load balancing performance for P5. 
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8. CONCLUSION 

 

To put it in a nutshell, we propose a scalable routing and energy-aware resource 

management model for SDN-based SPNs. In the proposed model, routes are pre-

computed between each pair of edge switches. These routes convert a complex 

physical network to a simple and virtual network. The controller performs scalable 

routing, admission control, and signaling based on these routes. It also performs 

energy-aware resource management. The controller saves energy via aggregating 

flows to a smaller number of routes per edge pair and deactivating unused routes. 

During this process, it takes neighbor routes and load level into account. Pair-based 

power-saving converges to global power-saving in time. In line with this, the controller 

also performs adaptive load balancing by equalizing active route costs per pair. In the 

case of high network load, the controller adjusts route capacities for further resource 

utilization. 

The proposed model either accepts or rejects flow requests upon receiving 

requests due to its pre-computed route structure. Instead of computing flow routes per 

request, routes that are established in off-line mode prevent the controller to become a 

bottleneck. Thus, the proposed model shows that even if there is a single controller at 

the top of the network, it can successfully perform routing, and admission control in a 

scalable manner. We also witness that the amount of signaling between controller and 

data plane is also reduced both in statistic collection and route establishment processes. 

In addition to these, our model can save energy and balances the pair load among its 

routes successfully. Moreover, we observe that route resizing is a heavy process, but 

the controller performs this operation rarely. Therefore, it does not affect the scalability 

of the controller significantly. Finally, obtained results prove that load balancing and 

route resizing increase the flow acceptance rate dramatically. 

As future work, controller can perform load balancing by estimating incoming 

traffic. Also, the controller can utilize a hybrid version of periodic and threshold-based 

load balancing. In this version, the controller can estimate the time to perform load 

balancing. Apart from these, the controller can increase the energy-saving performance 

of the proposed model using deep learning techniques.
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