

T.R.

GEBZE TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

SCALABLE ROUTING AND

RESOURCE MANAGEMENT MODEL

FOR SDN-BASED NETWORKS

MAHMUD RASİH ÇELENLİOĞLU

A THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER ENGINEERING

GEBZE

2021

T.R.

GEBZE TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

SCALABLE ROUTING AND

RESOURCE MANAGEMENT MODEL

FOR SDN-BASED NETWORKS

MAHMUD RASİH ÇELENLİOĞLU

A THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER ENGINEERING

THESIS SUPERVISOR

PROF. DR. HACI ALİ MANTAR

GEBZE

2021

T.C.

GEBZE TEKNİK ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ

YAZILIM TABANLI AĞLARDA

ÖLÇEKLENEBİLİR YÖNLENDİRME VE

KAYNAK YÖNETİM MODELİ

MAHMUD RASİH ÇELENLİOĞLU

DOKTORA TEZİ

BİLGİSAYAR MÜHENDİSLİĞİ ANABİLİM DALI

DANIŞMANI

PROF. DR. HACI ALİ MANTAR

GEBZE

2021

GTÜ Fen Bilimleri Enstitüsü Yönetim Kurulu’nun 29/01/2021 tarih ve

2021/05 sayılı kararıyla oluşturulan jüri tarafından 01/02/2021 tarihinde tez savunma

sınavı yapılan Mahmud Rasih ÇELENLİOĞLU’nun tez çalışması Bilgisayar

Mühendisliği Anabilim Dalında DOKTORA tezi olarak kabul edilmiştir.

JÜRİ

ÜYE

(TEZ DANIŞMANI) : Prof.Dr. Hacı Ali MANTAR

ÜYE : Prof.Dr. Hasari ÇELEBİ

ÜYE : Doç.Dr. M. Kemal ÖZDEMİR

ÜYE : Doç.Dr. Didem GÖZÜPEK

ÜYE : Prof.Dr. Fatih ALAGÖZ

ONAY

Gebze Teknik Üniversitesi Fen Bilimleri Enstitüsü Yönetim Kurulu’nun

…..…/…..…/..….… tarih ve ………/……... sayılı kararı.

İMZA/MÜHÜR

DOKTORA JÜRİ ONAY FORMU

v

SUMMARY

The volume and diversity of Internet traffic have increased significantly in recent

years with the proliferation of mobile devices and networking technologies. Service

Providers (SPs) are now striving to make resource management considering recent

trends in networking. In this context, Software Defined Networking (SDN) has been

alluring the attention of SPs as it provides virtualization, programmability, ease of

management, and so on. Yet, severe scalability issues are one of the key challenges of

the SDN due to its centralized architecture. First, the SDN controller may become the

bottleneck as the number of flows and switches increases. It is because routing and

admission control decisions are made per-flow basis by the controller. Second, there

is a signaling overhead between the controller and switches since the controller makes

decisions on behalf of them.

This thesis proposes an SDN-based scalable routing and energy-aware resource

management model (SRRM) for SPs. The proposed model is two-fold. Firstly, it

performs routing, admission control, and signaling operations (RASOs) in a scalable

manner. Secondly, the controller performs three resource management operations,

which are energy-saving, load balancing, route capacity resizing both to save energy

and increase bandwidth utilization. To achieve these goals, the model exploits pre-

computed routes (PCRs) between each edge pairs in the domain. Experimental results

show that the proposed model can successfully perform RASOs in a scalable way,

saves energy, and increases link utilization even under heavy traffic loads.

Key Words: Key Words: Software Defined Networking, Resource Management,

Energy Saving, Load Balancing, Pre-computed Routes, Scalability, Routing,

Optimization

vi

ÖZET

Son yıllarda mobil cihazların ve ağ teknolojilerinin yaygınlaşmasıyla İnternet

trafiğinin hacmi ve çeşitliliği önemli ölçüde artmıştır. Servis Sağlayıcılar (SS) ağ

yönetimindeki son eğilimleri göz önünde bulundurarak kaynak yönetimi yapmaya

çalışmaktadırlar. Bu bağlamda, Yazılım Tanımlı Ağlar (YTA) sanallaştırma,

programlama, yönetim kolaylığı vb. özellikleri sağladığı için SS’ın dikkatini

çekmektedir. Her ne kadar YTA’ın pek çok avantajı olsa da merkezi mimarisi

nedeniyle ciddi ölçeklenebilirlik sorunları vardır. İlk olarak, akışların ve

yönlendiricilerin sayısı arttıkça ağ yöneticisi darboğaz haline gelebilir. Bunun nedeni,

ağ yöneticisinin yönlendirme ve kabul kontrol kararlarının akış bazında almasıdır.

İkinci olarak, ağ yöneticisinin yönlendiriciler adına karar vermesi ve bu kararı anlara

iletmesi sebebiyle bu iki ağ elemanı arasında sinyalizasyon yükü oluşmaktadır.

Yukarıda bahsedilen ölçeklenebilir ağ yönetim modeli ihtiyacına istinaden bu

tez, SS için YTA ile ölçeklenebilir yönlendirme ve enerjiye duyarlı kaynak yönetimi

modeli (SRRM) önermektedir. Önerilen model iki yönlüdür. İlk olarak, önerilen model

ölçeklenebilir yönlendirme, kabul denetimi ve sinyalleşme (YKS) işlemlerini

gerçekleştirir. İkinci olarak, ağ yöneticisi enerji tasarrufu, yük dengeleme ve kapasite

boyutlandırma mekanizmalarıyla hem enerji tüketimini azaltabilir hem de bant

genişliği kullanımını artırabilir. Ağ yöneticisi bu operasyonları gerçekleştirmek için,

ağdaki giriş-çıkış yönlendirici ikilisi arasında önceden belirlenmiş yollar (ÖKY) kurar.

Deneysel sonuçlar, önerilen modelin YKS işlemlerini ölçeklenebilir bir şekilde

başarıyla gerçekleştirebildiğini, enerji tasarrufu sağladığını ve yoğun trafik yükleri

altında bile verimli kullanımını artırdığını göstermektedir.

Anahtar Kelimeler: Yazılım Tabanlı Ağlar, Ağ Kaynak Yönetimi, Enerji

Tasarrufu, Yük Dengeleme, Çoklu Kurulu Yollar, Ölçeklenebilirlik,

Yönlendirme, Optimizasyon.

vii

ACKNOWLEDGEMENTS

First of all, I would like to thank my supervisor Hacı Ali MANTAR. He has been

a great advisor throughout my studies. I will always be grateful to him for giving me

this opportunity. Without his guidance and expertise, it would have been impossible

to develop the ideas presented in this thesis.

I am also thankful to Fatih TÜYSÜZ, who shared his experiences and assistance

through the thesis. All my colleagues in the Department of Computer Engineering at

Gebze Technical University also deserve a thank you for their valuable support.

Last but not least, I want to express my greatest gratitude to my beloved wife

Şeyma ÇELENLİOĞLU. She was always there for me when I need her assistance of

any kind. I also want to express my love to my dear little son Muhammed Ali

ÇELENLİOĞLU. Although he did not make my days and nights any easier, he always

relieved my stress with his warm smiles. I want to thank Mustafa ÇELENLİOĞLU

and Abdurrahman DELİPOYRAZ for their continuous support along this journey.

They were interested in my research and helped to expand my vision. I want to thank

Semra ÇELENLİOĞLU and Şura DELİPOYRAZ for their unending patience during

taking care of me and my family while I was studying. I also thank my all brothers,

sisters, and their families. Without their support, affection, and encouragement, I am

sure I would not be here right now.

viii

TABLE of CONTENTS

Page

SUMMARY v

ÖZET vi

ACKNOWLEDGEMENTS vii

TABLE of CONTENTS viii

LIST of ABBREVIATIONS and ACRONYMS x

LIST of FIGURES xii

LIST of TABLES xiv

1. INTRODUCTION 15

2. SOFTWARE DEFINED NETWORKING 19

3. LITERATURE REVIEW 22

3.1. Control Plane Scalability 22

3.2. Control Plane Scalability and Load Balancing 25

3.3. Energy Efficiency 29

4. SCALABLE ROUTING AND RESOURCE MANAGEMENT 34

4.1. Overview of the Architecture 34

4.2. Virtual Network 36

4.3. Controller Design 38

4.4. Admission Control and Routing 39

4.5. Load Balancing 42

4.6. Route Resizing 46

4.7. Signaling 48

5. ENERGY AWARE RESOURCE MANAGEMENT 50

6. IMPLEMENTATION DETAILS 54

6.1. Databases 54

6.2. Route Management Module 54

6.2.1. Route Establishment 54

6.2.2. Packet Forwarding 56

6.3. Routing and Admission Control Module 57

6.4. Information Collection Module 57

ix

6.5. Load Balancing Module 58

6.6. Route Resizing Module 58

6.7. Energy Saving Module 60

6.8. Inter Controller Communication Module 60

7. EXPERIMENTAL RESULTS 61

7.1. Effect of Route Number on Load Balancing Performance 64

7.2. Effect of Periodic Execution on Load Balancing Performance 65

7.3. Effect of Threshold-based Execution on Load Balancing Performance 66

7.4. Load Balancing Performance under Various Traffic Loads 68

7.5. Load Balancing Performance for Various Topologies 69

7.6. Load Balancing Performance Comparison 71

7.7. Admission Control Performance 72

7.8. Effects of Route Number per Pair and Traffic Load on Energy Saving 74

……...Performance

7.9. Effect of Connectivity on Energy Saving Performance 77

7.10. Comparison of Energy Saving Performance 78

7.11. Comparison of Load Balancing Performance 81

8. CONCLUSION 83

REFERENCES 84

BIOGRAPHY 92

APPENDICES 93

x

LIST of ABBREVIATIONS and ACRONYMS

Acronyms and

Abbreviations

Descriptions

AL

CAIDA

CAPEX

CL

CSS

DPID

EP

ERMA

ESM

ESS

ETSI

FPTAS

GA

HMA

ICCM

ICM

ICT

IL

ILP

ISS

IoT

LAN

LBM

LRA

LSDB

MILP

NDF

NSFNET

OPEX

: Application Layer

: Center for Applied Internet Data Analysis

: Capital Expenditure

: Control Layer

: Core SDN Switch

: Datapath Identifier

: Edge Pair

: Energy Aware Route Management Algorithm

: Energy Saving Module

: Egress SDN Switch

: European Telecommunications Standards Institute

: Fully Polynomial Time Approximation Scheme

: Genetic Algorithm

: Hash-based Modulo-ρ Assignment Module

: Inter Controller Communication Module

: Information Collection Module

: Information and Communication Technology

: Infrastructure Layer

: Integer Linear Programming

: Ingress SDN Switch

: Internet of Things

: Local Area Network

: Load Balancing Module

: Link Rate Adaptation

: Link State Database

: Mixed Linear Integer Problem

: Network Description File

: National Science Foundation Network

: Operational Expenditure

xi

PCR

PD

PDV

PNR

PP

RACM

RID

RMM

RRM

RSDB

RUR

SDN

SP

SPN

SR

SRRM

VLAN

WAN

: Pre-computed Routes

: Power Down

: Pivot Distance Value

: Passive Neighbor Ratio

: Pivot Point

: Routing and Admission Control Module

: Route Identifier

: Route Management Module

: Route Resizing Module

: Route State Database

: Route Utilization Ratio

: Software Defined Networking

: Service Provider

: Service Provider Network

: Segment Routing

: Scalable Routing and Resource Management Model

: Virtual Local Area Network

: Wide Area Networks

xii

LIST of FIGURES

Figure No: Page

2.1: Overview of the SDN Architecture. 19

4.1: Overview of the proposed model. 35

4.2: Illustration of the virtual network obtained from the above network. 36

7.1: Illustration of NSFNET topology. 61

7.2: Illustration of Net-M. 62

7.3: Illustration of Net-L. 62

7.4: Traffic pattern of March 29-30 2015 UTC taken from CAIDA. 63

7.5 :The core link utilizations in time for different number of routes. 64

7.6: The core link utilizations of P2 in time for various load balancing periods. 65

7.7: The core link utilizations of P5 in time for various load balancing periods. 66

7.8: The core link utilizations of P2 in time for various load balancing periods. 67

7.9: The core link utilizations of P2 in time for various load balancing periods. 68

7.10: The core link utilizations for various traffic loads. 69

7.11: Equalization of route costs for NSFNET under moderate traffic load. 70

7.12: Equalization of route costs for Net-M under moderate traffic load. 70

7.13: Equalization of route costs for Net-L under moderate traffic load. 71

7.14: Comparison of load balancing performance of models. 71

7.15: Comparison of admission control time performance of models. 73

7.16: Comparison of flow acceptance rate performance of models. 73

7.17: Active link ratios for P2 under various traffic loads. 74

7.18: Active link ratios for P5 under various traffic loads. 75

7.19: Active switch ratios for P2 under various traffic loads. 75

7.20: Active switch ratios for P5 under various traffic loads. 76

7.21: Active link ratios of 3 topologies having 2 routes per pair under moderate 77

……. traffic load.

7.22: Active switch ratios of 3 topologies having 2 routes per pair under moderate 78

….….traffic load.

7.23: Comparison of energy saving performance based on active link ratio for P2. 79

7.24: Comparison of energy saving performance based on active link ratio for P5. 79

xiii

7.25: Comparison of energy saving performance based on active switch ratio for 80

…….P2.

7.26: Comparison of energy saving performance based on active switch ratio for 80

…….P5.

7.27: Comparison of load balancing performance for P2. 82

7.28: Comparison of load balancing performance for P5. 82

xiv

LIST of TABLES

Table No: Page

3.1: Comparison of the SRRM to the Existing Works with Respect to Scalability. 25

3.2: Comparison of SRRM to the Existing Works with respect to Control Plane 29

……Scalability and Load Balancing.

4.1: Summary of Notations. 37

4.2: Routing Algorithm. 41

4.3: Admission Control Algorithm. 42

4.4: Load Balancing Algorithm. 44

4.5: Load Balancing Algorithm (Contd.). 45

4.6: Load Balancing Algorithm (Contd.). 46

4.7: Route Capacity Resizing Algorithm. 47

4.8: Route Capacity Resizing Algorithm (Contd.). 48

5.1: Possible Energy State Changes of Routes. 52

5.2: Energy Saving Algorithm. 53

6.1: Route-link Matrix of Virtual Network. 59

15

1. INTRODUCTION

Advancements in both wired and wireless networks, the proliferation of mobile

devices and applications have changed the way we use the Internet. Within the last two

decades, there are applications and services such as e-commerce, on-line gaming,

social media, cloud services, and the Internet of Things (IoT). Accordingly, the volume

of Internet traffic has increased, and the Internet traffic characteristic has differentiated

dynamically [1]–[3]. Service Providers (SPs) usually serve their network resources

such as bandwidth in full capacity to satisfy diverse user demands and accommodate

traffic bursts. Network devices such as routers and switches are active all the time,

even if network traffic is relatively low compared to peak times [4]. This results in 2-

7% of the World's electricity consumption in Information and Communication

Technologies (ICTs) [5][6]. The energy consumption of ICTs has been growing by 3%

every year [7]. Besides, SPs purchase specialized hardware and software to meet the

diverse needs of customers. The management of such networks become complex and

costly. Thus, SPs need smart network management systems that not only increase

resource utilization but also decrease energy consumption.

Software-Defined Networking (SDN) [8] is a new networking paradigm that

emerged to satisfy today's networking demands. It separates control and data planes to

provide centralized management, virtualization, agility, programmability, and

efficiency. The Infrastructure Layer (data plane) is responsible for performing actions

of forwarding and dropping, but not limited to them. Control Layer (control plane) is

logically centralized and performs decision-making on behalf of the entities in the data

plane. The Application Layer contains applications and services that manage the

network. The separation of control and forwarding functions of SDN allows the

network control to be programmable, brings intelligence to the network with

centralized management, simplifies network design, and allows switch management

through open standards. Therefore, the abilities of the SDN allure the attention of SPs.

Service providers aim to increase resource utilization, decrease operational costs as

well as increase customer satisfaction.

Although SDN has many benefits, there are several scalability problems due to

the centralized control plane [9]. First of all, the SDN controller is the only entity that

16

decides on behalf of all the underlying switches. As the SDN controller makes per-

flow basis on-line decisions, it may become a bottleneck in terms of decision-making

[10], [11]. Besides, the SDN controller must communicate with all the underlying

switches to keep the network state up to date, install new rules, update, or delete the

existing rules, etc. This procedure may also result in signaling scalability issue [12].

As a result, using SDN-based network management models in SPNs is challenging

due to the scalability problems.

Several works solely address the scalability issues of the control plane in SDN-

based SPNs. In these studies, the control plane is distributed, hierarchical, or both.

There are also several works that focus on SDN-based resource management. These

works either perform traffic load balancing to increase resource utilization or energy-

saving both to decrease costs and protect the environment. The works that focus on

load balancing distribute the network traffic as fairly as possible among links. Others

that focus on energy saving aggregate network traffic to put as many links and switches

as possible into sleep mode. Therefore, these two operations are usually considered as

opposite. It is still an open issue how to perform routing, admission control, and

signaling in a scalable manner as well as energy-aware resource management.

In this dissertation, we design, implement, and evaluate our SDN-based scalable

routing and resource management model (SRRM) for SPNs. Our model relies on a

central controller and several pre-computed routes (PCRs) between edge nodes. PCRs

abstract the complex physical network to a simple virtual one. The virtual network

consists of ingress, egress switches, and PCRs. The proposed controller performs

routing, admission control, signaling, and resource management operations based on

the virtual network. In terms of routing and admission control, the controller does not

perform on-line route computation. Instead, it checks the availability of resources and

routes the flow to an available route of the corresponding edge pair. In terms of

resource management, our model utilizes the trade-off between energy saving and load

balancing. To the best of our knowledge, this is the first work in literature that energy-

saving and load balancing operations work in harmony. To make this happen, we

introduce a trade-off value that determines the importance of these two operations

against each other. If trade-off value favors energy-saving, the controller aggregates

edge traffic into fewer routes and puts unutilized network elements such as links and

switches into sleep mode. If the trade-off value favors load balancing, the controller

17

saves less energy and focuses on distributing the traffic among routes. In line with the

explanations above, we list the contributions of the dissertation below.

 The controller performs routing, admission control, signaling in a scalable

manner exploiting pre-computed routes. The controller only takes two related

edge switches into account, instead of considering all the switches in the data

plane. Also, the controller only installs flow rules to corresponding edge pairs.

Therefore, routing, admission control, and signaling become independent from

switch size.

 To the best of our knowledge, this is the first work in the literature that exploits

the trade-off between load balancing and energy saving. We show that these two

mechanisms can work together in harmony. The network administrator adjusts

the level of energy-saving concerning utilization. The energy-saving mechanism

aggregates the traffic based on this level. The controller puts the unused network

elements into sleep mode. Subsequently, it balances the pair load taking active

routes into account. Therefore, the controller both saves energy at some level

and performs load balancing at the same time.

 We propose a novel adaptive load balancing mechanism. It performs edge pair-

based load balancing. This so-called local load balancing, in turn, converges to

global (network-wide) load balancing. Besides, our load balancing mechanism

takes the current network load into account.

 We propose a novel route capacity resizing mechanism. This mechanism

improves the resource utilization further especially in the case of heavy network

load.

 The controller can communicate with data plane elements over the modified

OpenFlow [13] protocol to put them into sleep and to wake them up.

 The proposed model can be applied to non-SDN-based SPNs by replacing

switches on the edge with SDN-capable ones.

The rest of this dissertation is organized as follows. Section 2 describes SDN in

details. Section 3 discusses related works. Section 4 presents the scalable routing and

resource management mechanisms of the proposed model. Section 5 present the novel

energy saving mechanism of the proposed model. Section 6 presents implementation

18

details of the proposed model. Section 7 presents experimental results and the

evaluation. Finally, the work is concluded in Section 8.

19

2. SOFTWARE DEFINED NETWORKING

Figure 2.1: Overview of the SDN Architecture.

SDN is the new networking architecture that decouples the layers of traditional

networking architecture. The layers of SDN are Infrastructure, Control, and

Application as depicted in Figure 2.1. There are also Northbound, Southbound,

East/Westbound interfaces.

The Application Layer (AL) is the top layer in the SDN stack. A wide variety of

network management applications such as routing, load balancing, firewall, intrusion

detection/prevention, policy enforcement, etc. reside in this layer. The northbound

interface resides between application and control layer provides an abstraction.

Currently, there is no standard for this interface. Some control plane entities (a.k.a.

controllers such as ONOS [14], OpenDaylight [15], Floodlight [16]) use REST API

for communication with the top layer. Besides, there are also programming languages

such as Frenetic [17], Procera [18], Pyretic [19] that allow implementing applications

in the top layer. These applications require attention because any kind of bug, security

hole, misconfiguration, etc. may cause unintended, and severe operational cost.

20

The Control Layer (CL) resides in the middle of the SDN stack. It has a global

network view and responsible for managing the network. CL serves to the AL via the

Northbound interface as mentioned in the previous paragraph. This layer is logically

centralized, but it consists of one or more controllers. Thus, it can be both distributed

and/or hierarchical. In the distributed control layer, there are multiple controllers each

of which manages only a specified part of the network. In the hierarchical control layer,

there are at least two levels of controllers, called bottom and top level. Bottom level

controllers communicate with both the data layer elements and controllers on the upper

layer. Top-level controllers communicate with both the applications on the Application

layer and lower-level controllers. The communication between the control and

infrastructure layer happens via a signaling protocol such as OpenFlow [13], [20],

ForCES [21], and NETCONF [22]. OpenFlow is the de facto signaling protocol in

SDN. East/Westbound interfaces allow controllers to communicate with each other.

Currently, there is no standard for inter SDN controller communication. Controllers

exploit schemes [23], [24], and toolkits [25], [26] for data exchange between each

other. There is also an Internet-Draft called SDNi for inter controller communication

[27].

The Infrastructure Layer (IL) contains programmable switches. These switches

can be both software and hardware. Switches are responsible for the forwarding of the

packets as routing functionality is shifted to the control layer. They are also capable of

signaling with controllers in the upper layer via southbound interface. An OpenFlow

SDN switch has one or more flow tables. A flow table consists of match fields, priority,

counters, instructions, timeouts, and a cookie.

 Match Fields: It defines the match rules for incoming packets.

 Priority: It defines the match precedence of the rule among others.

 Counters: Switch updates it if there is a match.

 Instructions: They allow pipeline processing or performing actions on the

packet.

 Timeouts: The flow rule expires after the hard or idle timeout. The hard timeout

defines the lifetime of the flow rule no matter there are matching packets or not.

Idle timeout defines the maximum no match duration of a flow rule.

 Cookie: It is determined by the controller to filter flow statistics, modification,

and deletion.

21

 The controller creates a flow entry via sending the OFP_FLOW_MOD

OFPFC_ADD message. Upon receiving a packet from its neighbors, SDN switch

looks up for a matching rule. If there is a match, the SDN switch performs the defined

action in the table. Then, it updates the counters of the rule. Otherwise, the SDN switch

either sends the packet to the controller to learn what to do or drops the packet.

Although SDN has many benefits, there are several shortcomings in terms of

scalability [9], [28]. Firstly, as SDN switches solely forward flow packets, the SDN

controller must decide routing computations and establishment. As the number of

flows increases, the centralized control plane may become a bottleneck in terms of

decision making especially when there is a single controller. Secondly, the centralized

controller must send a request to an SDN switch to receive flow statistics. Thus, the

controller may also become a bottleneck when collecting network wide up-to-date

information in a large-scale network. Thirdly, the controller must perform per-flow

messaging with underlying switches for installing new rules, updating, or deleting the

existing rules, etc. This also may result in a control plane scalability issue especially

when there are many flows and switches. It is still a research challenge how to perform

resource management dynamically in an SPN when there is a single controller.

22

3. LITERATURE REVIEW

In this section, we review the works that address the control plane scalability

issues in terms of decision making and signaling in SDN-based works. We also review

the studies that perform load balancing and energy efficiency.

3.1. Control Plane Scalability

The works in [29] and [30] suggest a distributed control plane structure to

achieve scalability in the control plane. HyperFlow [29] aims to decrease controller

response time through a logically centralized but physically distributed control plane.

Controllers are distributed over the data plane. Authors use Publish/Subscribe model

for state distribution among controllers. In other words, whenever a state change

occurs, the associated controller (publisher) notifies other controllers (subscribers).

Onix [30] is a control platform that runs over distributed servers. It provides control

logic that allows applications to communicate with network elements. Onix also

disseminates network state for consistency among servers. Thus, Onix allows ease of

implementation for application developers using Onix API and considering

consistency, durability, and scalability trade-offs. Flow-Utility Based Routing

(FUBAR) [31] has a centralized QoS routing approach. In this model, traffic is divided

into several classes. FUBAR periodically measures the traffic matrix and finds several

suitable paths. Then, aggregated flows are divided between corresponding paths to

increase resource utilization. The Fibbing [32] approach combines the flexibility and

centralized management abilities of SDN with the distributed routing of existing

network devices and protocols. Controller fakes routers to direct traffic between paths

using faked link-state information. In this approach, the controller also creates backup

paths for fast fail-over. ZeroSDN [33] addresses the flexibility of distributed

controllers concerning the distribution of control logic. Control logic consists of

lightweight control modules that are called controllers and pushes control logic to

switches. This way they enable local processing and achieve control plane scalability.

Aside from the distributed control plane approach, works proposed in [34], [35]

and [36] provide a hierarchical structure within their control planes to achieve

scalability. ASIC [34] adopts a multi-controller approach to solve scalable intra-

23

domain routing issue in SDN-based large scale networks. The controller in this model

has a layered structure. The load balancer in the first layer only divides incoming data

flow requests to physically distributed controllers residing in the second layer. Routing

is performed in three steps by the chosen controller. First of all, the physical controller

gets the data flow initialization request and global network state. Then, it performs

routing computations to find a suitable path. In this work, routing, admission control,

and signaling are performed in a distributed fashion. Kandoo [35] has two levels of

controllers. The first level of controllers handles local events. A controller in this level

can control one or more switches, and handle frequent events. On the other hand, a

top-level logically centralized controller handles rare events that require a global

network view. In [36], the network is divided into zones, each of which has a zone

manager. A zone manager is responsible for management operations (e.g., flow setup)

within its domain. The network manager is at the top of zone managers, and

responsible for network-wide operations such as abstract topology calculation,

statistics collection, flow management, credential management for applications and

configuration. Unlike previous studies, researchers in [37] propose a network

architecture for service providers to reduce controller response time and provide

routing scalability. In the proposed architecture, incoming flows are classified into four

categories; (i) intra-routing (INR), (ii) MPLS, (iii) QoS, (iv) inter-routing (EXR).

Controller pro-actively installs rules for INR and MPLS to improve scalability.

Controller steps in only for QoS based routing. The work [38] aims to achieve

scalability on multi-domain, multi-vendor SDN-based networks. In this study, there

are several domains each of which is controlled by a local controller. There is also a

controller at the top called Coordinator Controller, which has a global network view

and allows different local controllers to cooperate. Northbound API is unified to

achieve this.

There are also works that address the signaling scalability in SDN-based

networks. DIFANE [39] is a distributed architecture for enterprise networks. There are

two types of switches. Forwarding switches are connected to intermediate switches. If

a forwarding switch receives an unknown packet, it redirects the packet to the

corresponding intermediate switch. The intermediate switch handles the packet and

sends back a response to the forwarding switch to deploy new rules. The controller is

responsible to partition rules among switches. Apart from SDN, intermediate switches

24

also make decisions. Besides, core switches have a heavy load and there is no resource

management performed by the controller or intermediate switches. BalanceFlow [40]

aims to balance signaling traffic in Wide-Area Networks (WAN) using multiple

controllers. In this multi-controller architecture, there is a Super Controller and one or

more regular controllers. Super Controller partitions control traffic load among others

to provide scalability and low delay. It obtains average number of flow requests per

switch and assigns switches to appropriate controllers so as to balance load of

controllers. In [41], authors propose a model that addresses to signaling scalability of

SDN-based networks. In this model, the controller does not install all flow rules to

each switch. Instead of that, it asks switches to propagate the message to the target

switch(es). This provides signaling scalability between controller and switches. The

model uses proactive flows to handle time-critical flows. Controller installs inactive

rules to switches. These rules become active in some cases. Though this model

provides signaling scalability, routing scalability is still an issue. The reason is that

controller must still perform many routing computations for each flow that does not

match with existing rules.

The works mentioned in this part are summarized in the 3.1. In this table, the

Ref header indicates the corresponding works. The Control Plane header indicates the

control plane arhictecture of the works. The letters S, D, and H stand for single,

distributed and hierarchical control planes, respectively. In the single type, there is just

one controller in the network. In the distributed type, there are two or more physically

distributed controllers in the network. In the hierarchical type, there are layers within

the control plane. Each layer has at least one controller. The Network Type header

indicates supported networks that are SDN and Hyrid. SDN networks solely contain

SDN switches. Hybrid works contain both traditional switches/routers and SDN

switches. The Routing header indicates the routing decision types that are online, and

offline. In Online type, the SDN controller performs per flow routing computation. In

Offline type, the SDN controller does not perform per flow routing computation.

Instead, these works usualy exploit static paths. The Signaling header indicates the

works that address to the signaling scalability issue of SDN.

25

Table 3.1: Comparison of the SRRM to the Existing Works with Respect to Scalability.

 Control Plane Network Type Routing Signaling

Ref S D H SDN Hybrid Online Offline

29 X X X

30 X X X

31 X X X

32 X X X

33 X X X

34 X X X X X

35 X X X X

36 X X X

37 X X X X

38 X X X

39 X X X X

40 X X X

41 X X X X X

SRRM X X X X X X

 As seen in the 3.1, most of the works achieve control plane scalability through

multi-controller architecture. Only the work [37] proposes a routing solution for a

single controller. In this work, however, the controller performs both online and offline

routing. In offline routing, the controller routes flows through pre-established routes

for some traffic types such as best-effort. In online routing, controller computes best

path for QoS aware flows. Thus, this work is partially scalable in terms of both routing

and signaling. In comparison, we perform offline routing per flow. Our work also

contains load balancing and energy saving mechanisms.

3.2. Control Plane Scalability and Load Balancing

Some works address both control plane scalability and resource management for

SDN-based networks.

Google reports its experience on SDN-based inter-data center resource

management (B4) in [42]. In B4, each data center site has a set of controllers. Traffic

26

engineering server on top of site controllers gathers topological data from them and

splits the traffic of source-destination site pair over k-shortest paths. The controller in

[43] allocates joint bandwidth for interactive, elastic, and background traffic classes in

inter-data center networks. Controller forces proportional fairness within the same

traffic class to increase resource utilization.

The authors in [44], [45] propose a load balancing algorithm (A4SDN) derived

from the Ant Colony Algorithm. Each packet and switch is treated like an ant and

pheromone, respectively. Ants in A4SDN do not converge to a single optimum path,

but instead, explore the paths with the weakest pheromone. Similarly, the work [46]

also aims to increase resource utilization through load balancing. To do so, the authors

modify three different routing algorithms called SWP [47], MIRA [48], and DORA

[49] for best-effort traffic. Each of these algorithms performs routing based on

estimated available bandwidth in links. MIRA and DORA are suitable for backbone

networks as they take the location of ingress and egress switches into account.

Authors in [50] propose a model for hybrid networks where SDN is partially

applied to an existing network. In this model, there are SDN and non-SDN switches in

the network. SDN switches perform traffic measurement and inform the controller.

The controller also collects network information disseminated by OSPF.

Subsequently, it leverages this information to change the SDN switch tables for traffic

engineering dynamically. To do so, the authors use Fully Polynomial Time

Approximation Scheme (FPTAS). Though the system improves resource utilization,

the controller performs complex tasks to find optimal routing. Thus, it is not scalable

in terms of decision making.

Luo et al. [51] propose a framework (ADMPCF) that computes adaptive multi-

paths for centrally controlled networks. ADMPCF uses an existing path as long as the

path satisfies the requirements of a flow request. Otherwise, it establishes a new path

by computing and assessing several disjoint multi-path finding algorithms in the

literature. ADMPCF performs parallel execution of those algorithms to achieve

scalability. ADMPCF improves resource utilization through adaptive multi-path

establishment based on topology, link cost, application traffic, and network state.

Tuncer et al. [52] propose an SDN-based management and control framework

for fixed backbone networks. The proposed framework achieves control plane

scalability due to its both hierarchical and distributed architecture. It has local

27

managers (LMs) at the top. Each LM works with one or more local controllers (LCs).

LMs are responsible for implementing the logic of management applications such as

resource utilization. LCs perform a sequence of actions based on the configurations

given by LMs. The authors also propose an adaptive load balancing mechanism by

adjusting traffic split ratios in switches.

The work in [53] aims to achieve both control plane scalability via a distributed

control plane and load balancing through switch migration. The proposed work has a

set of controllers distributed over switches. A controller is responsible for several

switches that reside in the data plane. The proposed work migrates a switch from one

controller (source) to another (destination) in the case when the source controller load

reaches its maximum capacity. Apart from most of the works in the literature, this

study also takes migration efficiency into account and provides a greedy algorithm.

The works [51]–[53] address both control plane scalability and resource

management. ADMPCF uses a number of algorithms that work in concert with an

adaptive fashion to perform global routing and optimum resource allocation. This

makes ADMPCF complex in terms of implementation. Besides, ADMPCF achieves

control plane scalability through parallel execution of algorithms used in the

framework. In other words, the control plane scalability of ADMPCF depends on the

processing power of the system (e.g., cluster of servers). ADMPCF also does not

perform admission control, and this may cause over-utilization of resources.

Moreover, ADMPCF has partial signaling scalability due to the fact that the controller

has to deploy multi-path rules to all the switches along paths if existing paths do not

satisfy flow constraints. The framework presented in [52] also has several drawbacks.

First of all, the proposed framework requires several controllers and also managers to

achieve control scalability due to both hierarchical and distributed control plane

architecture. This may increase the CAPEX and OPEX of SPs. Additionally, there

appear different communication overheads such as LMO-LCO, LMO-LM, LCO-LC,

and LM-LC apart from the controller to switch communication, although controller-

switch communication scalability is achieved by reducing the number of switches per

controller. Authors also state that communication overhead in management substrate

depends on its topology. Moreover, the proposed framework includes a simple

communication protocol, yet the details are not provided. Thus, there may appear

integration problems in the case of an environment that contains heterogeneous local

28

controllers and managers. Finally, the proposed framework requires modification of

switches for adjusting traffic split ratios based on a hashing scheme. This increases the

deployment cost of the proposed framework. In work [53], it is unclear that which

decision making entity (e.g., source controller, external server) performs switch

migration operation. In the case of a source controller, several controllers may perform

migration to a single controller at the same time. This may dramatically increase the

load of the destination controller.

The works mentioned in this part are summarized in Table 3.2. In this table, the

Ref header indicates the corresponding works. The Control Plane header indicates the

control plane architecture of the works. The letters S, D, and H stand for single,

distributed, and hierarchical control planes, respectively. In the single type, there is

just one controller in the network. In the distributed type, there are two or more

physically distributed controllers in the network. In the hierarchical type, there are

layers within the control plane. Each layer has at least one controller. The Network

Type header indicates supported networks that are SDN and Hybrid. SDN networks

solely contain SDN switches. Hybrid works contain both traditional switches/routers

and SDN switches. The Routing header indicates the routing decision types that are

online, and offline. In the Online type, the SDN controller performs per-flow routing

computation. In Offline type, the SDN controller does not perform per-flow routing

computation. Instead, these works usually exploit static paths. The Signaling header

indicates the works that address the signaling scalability issue of SDN. LB stands for

load balancing. It indicates the works that perform load balancing.

All the works in this part perform load balancing with either cost-aware routing

or a specially designed mechanism. In cost-aware routing, the controller takes the

current network cost into account for a route computation as proposed in [44]–[46].

The volume of assigned traffic may change in time, and the load becomes unbalanced.

This also may cause control plane scalability issues because the controller makes a

per-flow decision. In specially designed load balancing mechanisms, the controller

monitors the network resource utilization and balance the load by alleviating the flow

routes. We adopt both mechanisms. Our controller assigns the flow to a path based on

its capacity. We also exploit PCR to balance network load. Additionally, most of the

works described in this part have the control plane scalability through multi-controller

architecture. Only the works [46] and [50] have a single controller. Both perform

29

online routing so the controller in these works may become the bottleneck in terms of

decision making. In contrast, our model can work with one or more controllers. Even

in the case of one controller, our work performs routing, admission control, and

signaling using PCR. The works [42] and [43] differ from other works in the way that

they perform load balancing for SDN-based data center backbone networks. Our

model is suitable for SPNs. Finally, traffic splitting in switches offloads the

computation overhead of controllers as in [50] but this requires both signaling protocol

and switch support. Therefore, this mechanism necessitates modification in SDN

architecture.

Table 3.2: Comparison of SRRM to the Existing Works with respect to Control

Plane Scalability and Load Balancing.

Control

Plane
Network Type Routing Signaling

LB

Ref S D H
SD

N
Hybrid

Onlin

e
Offline

42 X X X X X X

43 X X X X

44-45 X X X X

46 X X X X

50 X X X X

51 X X X X X

52 X X X X X

53 X X X X

SRRM X X X X X X X

3.3. Energy Efficiency

There are two main approaches to energy efficiency in SDN-based networks.

These are link rate adaptation (LRA) and power-down (PD) approaches. In the first

approach, the link rate is adapted according to the traffic load. In the power down

approach, ports, line cards, and integrated chassis of routers and switches are either

turned off or put into sleep mode. The link rate adaptation approach contributes less

energy saving compared to the power down approach [54], [55]. However, the power

30

down approach causes routing oscillation and delay [56]. There are also some works

that exploit both approaches.

The idea in [57] is to reroute flows on existing paths to adjust link loads in a way

that LRA-based energy saving is maximized. In the scope of this study, the idea

mentioned above is defined as a Mixed Linear Integer Problem (MILP). Then, three

greedy algorithms and one genetic algorithm-based heuristic algorithm (GA) are

proposed for redirecting flows over existing paths. Experimental results show that GA

outperforms greedy algorithms. In this work, several paths are computed per pair

before rerouting, whenever the controller executes proposed algorithms. Thus, the

control plane and signaling scalability are limited. Although two real networks are

used for the assessment of the proposed algorithms, real traffic trace is not used. In

addition, there are also no admission control and resource management in terms of

load balancing mechanisms.

The following works utilize the PD approach to perform energy saving. The

work [58] provides a 0-1 Integer Linear Programming (ILP) model that maximizes

energy saving in a global manner by taking the energy consumption of integrated

chassis, line cards, and ports of routers into account. It proposes two greedy algorithms

namely Alternative Greedy Algorithm (AGA) and Global Greedy Algorithm (GGA)

for energy saving. These two algorithms mainly reroute flows on different paths when

the network has a relatively low traffic load. This work has routing and signaling

scalability issues. The controller performs rerouting per flow. Besides, it

communicates with all the switches along the new path per flow.

The work [59] combines IEEE802.az, which is energy-efficient Ethernet and

SDN-based Segment Routing (SR) to save energy. SDN controller computes link costs

based on two metrics, which are EAGER and CARE. The EAGER metric takes link

utilization into account. The CARE metric, on the other hand, takes both link

utilization and congestion threshold into account. Two energy-saving algorithms

proposed in the work are Tunneling TE (TTE) and Non-tunneling TE (NTE),

respectively. In TTE, the controller performs path computation per source and

destination pairs in the first phase. Then, the controller establishes SR tunnels. In the

final phase, the controller puts unused links into sleep mode. In NTE, the controller

computes paths and decides links that will be put into sleep mode. In the second phase,

there is no tunnel establishment. The controller only puts the designated links into

31

sleep mode. Finally, the controller computes ECMP routes between source and

destination pairs using awake links. This work in fact has a similar idea that we

proposed in our preliminary work [60]. Routing and signaling scalabilities are

achieved via pre-determined paths. However, there is no contribution to admission

control. Although it is said that load sharing is performed, the authors do not mention

how this is achieved.

Software Defined Green Traffic Engineering (SDGTE) [61] framework

minimizes active links and switches in backbone networks without knowing the future

traffic demand. Authors provide an Integer Linear Programming definition of an

energy efficient routing problem. Whenever a flow arrives, the controller performs ILP

based routing computation. Apart from energy-efficient routing, SDGTE reroutes

flows both in under-utilized and over-utilized links to minimize energy consumption

further and to reduce link utilization. In the under-utilization case, links whose

utilization is below the predefined threshold are determined, and flows on those links

are rerouted. Then, the controller puts these links into sleep mode. In the latter case,

the controller identifies the over-utilized links and re-routes the flows on those links

to reduce link utilization. The controller performs routing computation per-flow

whenever a new flow comes. Besides, the controller also performs re-routing in case

of over and under link utilization.

Authors in [62] propose a multi-objective routing approach in a multi-controller

control plane. To achieve these objectives, a multi objective evolutionary algorithm,

called SPEA2 is developed. SPEA2 performs routing in a way that energy

consumption and traffic delay is minimized without degrading the performance.

Meanwhile, it takes both controller to switch and switch-to-switch loads into account.

Whenever the controller receives a flow request, SPEA2 calculates a path taking data

and signaling load into account. Subsequently, the controller establishes a path for the

requested flow. The control plane in this work has multiple controllers. Thus, it

satisfies routing and signaling scalability at some level.

Green Application Layer is an ETSI standard [63], which is a framework for

exchanging information between control and data planes. The work [64] integrates

GAL with SDN to exchange information regarding power management of data plane

entities with a controller. This model adopts both PD and LRA. In that sense, it

proposes an ILP model for the allocation of resources optimally based on network load

32

and actions of flow tables. The experimental network in this study is small. The

controller may become the bottleneck as the size of the network, flows, and actions in

flow tables of switches increase. Besides, the signaling scalability issue appears as

flows are rerouted.

Authors in [65] aim to minimize active links and adapt discrete link rates to

traffic load for saving energy. Firstly, they provide a mixed-integer programming

definition of the problem. Secondly, they propose a heuristic algorithm, which

identifies most energy-consuming flows and reroutes them on alternative paths for

reducing energy consumption. First, the proposed algorithm computes the shortest

path for each flow. Subsequently, it calculates the energy consumption of the whole

network. The value found at this stage is the upper bound for energy consumption. In

the third stage, the proposed algorithm removes each flow one by one to identify its

impact on energy consumption. To do so, a weighted graph is generated for each flow.

Finally, the controller computes k-shortest paths, and with the least energy

consumption is selected as a route. The scheme has routing and signaling scalability

issues since the controller performs per-flow routing and rule installation.

Researchers in [66] propose two algorithms for allocation of Virtual SDN

(VSDN) in a reliable and energy-efficient manner. Relative Disjoint Path (RDP)

generates two trees based on a redundancy factor. Then it merges the two trees to

obtain a graph where links and nodes exist in both. In this way, there is only one path

if the redundancy factor is 0. Similarly, there are two disjoint paths if the redundancy

factor is 1. Otherwise, one or more links are shared among two paths. State-Aware of

Bandwidth and Energy Efficiency (SA-BEE) algorithm allocates VSDNs based on

available bandwidth and energy consumption factor. It adaptively increases or

decreases energy consumption factor based on the network state at first. Then it

generates a weighted graph for a source node to all other nodes. Finally, it looks for

lower energy consuming paths between the source node and all other nodes.

In GreSDN [67], the controller performs energy-efficient routing without re-

routing of flows. It maintains two topologies. The first topology is the physical

topology, which contains all the links and switches. The second topology is the virtual

topology, which contains only awake links. The controller performs per-flow routing

bearing the two topologies in mind. If there is an inactive link along the path, the

controller sends a signal to the corresponding switch to awake the link. Meanwhile,

33

the device management module within the controller periodically checks the state on

links. If a link is not used, it puts the link into sleep mode. The authors propose two

routing algorithms: Constant Weight Greedy Algorithm (CWGA) and Dynamic

Weight Greedy Algorithm (DWGA). Both algorithms perform path computation on

two graphs. These graphs are generated per request. At the time of graph generation,

the controller removes any link where the summation of the current load with

requested bandwidth exceeds its capacity on both physical and virtual graphs. Finally,

CWGA and DWGA perform routing computation based on static and dynamic link

costs, respectively. The controller performs per-flow routing. Thus, it suffers from a

severe routing scalability issue. Besides, the controller must communicate with all the

switches along the path during the path establishment process. This also results in the

signaling scalability issue.

In the work [68], the authors propose a heuristic algorithm (ETALSA) for

energy-saving via only powering up/down links. ETALSA that runs on a controller

takes energy prices into account apart from other works. During the execution of

ETALSA, the controller iteratively selects switches from the one with the highest

energy cost to the lowest. Then, it computes the utility value per link, which is

connected to the selected switch. The utility value is computed based on the

connectivity of switches, traffic demand, and energy prices. Finally, the controller

powers a link down based on the utility value if there becomes less energy

consumption. This work resembles our preliminary work [60] in a way that pre-

established multi-paths exist both for scalability and resource management. The main

differences are that the work [68] powers only the links down and it takes energy prices

into account.

Most of the works mentioned in this part solely address the energy-saving in

SDN-based networks. Some of the works address both energy and load balancing.

Even latter works perform these two operations disjointly. In contrast, to the best of

our knowledge, none of the works in the literature performs energy-saving and load

balancing in harmony. Additionally, our work proposes how energy-related

communication messages can be implemented to OpenFlow. Moreover, our model

performs routing, admission control, and signaling in a scalable manner, even there is

the only controller.

34

4. SCALABLE ROUTING AND RESOURCE

MANAGEMENT

SPNs usually have over-provisioned bandwidth to satisfy diverse user demands

and accommodate traffic bursts. They also have the link and switch/router redundancy

for hardware failures. This results in low resource utilization. In such networks,

reducing energy consumption and balancing network load among links are available

to improve resource utilization. In that sense, the SDN is an emerging network

architecture that allures the attention of SPs regarding resilience, virtualization, ease

of network resource management, reduction of costs, etc.

Although it has many benefits, a centralized control plane may cause severe

scalability issues. Firstly, the SDN controller may become the bottleneck with the

increase in the number of flows and switches. Secondly, the SDN controller must take

traffic fluctuations into account while optimizing resource utilization since today’s

network traffic is highly dynamic. Although SDN seems to be adequate for resource

management on its own, how to perform scalable routing and resource management in

SDN-based SPNs are still open issues.

In this section, we propose a scalable routing and resource management model

for SDN-based SPNs. The proposed model is two-fold. On the one hand, the proposed

model performs scalable routing, admission control, and signaling in a scalable

manner. On the other hand, the controller saves energy, balances load, and resizes

route capacities dynamically. To overcome the scalability limitations of SDN, we

exploit pre-computed routes to reduce the heavy workload on the controller. Further

details of the proposed model are presented in this section.

4.1. Overview of the Architecture

The proposed model is illustrated in Figure 1. As in traditional SPNs, the data

plane residing at the bottom consists of provider edge and core nodes. Ingress SDN

Switch (ISS), and Egress SDN Switch (ESS) are the nodes where traffic enters and

leaves the network, respectively. Any edge node is both ISS and ESS at the same time

because traffic is bidirectional. In addition to edge nodes, there are also core switches,

35

Figure 4.1: Overview of the proposed model.

which we name as Core SDN Switch (CSS). A CSS connects edge switches to each

other and solely perform packet forwarding. In the upper layer, the proposed controller

resides. It is logically centralized and mainly responsible for resource management

(i.e., load balancing, route resizing, and energy saving), routing, and admission control

operations. To do so, the controller abstracts the single physical network into multiple

virtual networks using PCRs between edge switches. All operations are performed

based on these routes. The two layers in Figure 4.1 communicate with each other via

a signaling protocol (e.g., OpenFlow).

The proposed model has PCRs between each edge pair (EP), such as ISS1 - ESS1

in Figure 4.1. These routes are virtual and simplify the complex physical network. The

simpler virtual network consists of edge nodes and PCRs. For instance, the virtual

network presented in Figure 4.1 is depicted in Figure 4.2. The controller performs

resource management operations, routing, admission control, and signaling based on

36

Figure 4.2: Illustration of the virtual network obtained from the above network.

the virtual network. Briefly, the controller aggregates flow into a smaller number of

routes adaptive to the traffic load and then puts unused links and switches into sleep

mode for energy saving. It also equalizes the cost of routes that belong to the same EP

to achieve load balancing. Controller, additionally, adjusts the capacity of PCRs with

respect to traffic load to improve resource utilization.

Notice that the controller does not perform routing and admission control

operations per flow. In the case of routing, the controller simply assigns a flow to a

route. In the case of admission control, the controller decides based on the state of

routes, which are stored in both Link State Database and Route State Database. PCRs

also allow the controller to manage the whole network with less signaling. This is

because the controller does not communicate with each node along the route per flow

in routing, admission control, and resource management operations. It only

communicates with edge nodes, instead. Therefore, the proposed model achieves

scalable routing, admission control, and signaling in favor of PCRs.

4.2. Virtual Network

The physical network is represented by a graph G = (V, E). The set E contains

links indexed by i. The set V, on the other hand, contains all nodes (i.e., ISS, ESS,

CSS). We denote an ISS-ESS pair as (Vs, Vd) where Vs ≠ Vd. Note that pair (Vs, Vd) is

37

Table 4.1: Summary of Notations.

Notation Meaning

V Set of switches

E Set of links

Ps,d Set of routes between edge pair (Vs, Vd).

Pk
s,d

 A route belongs to Ps,d

Ei A single physical link i

Li
s,d,k

 Virtual link of Pk
s,d

 on physical link Ei

φ(. . .) Capacity of pair, route or link

ϑ(. . .) Load of pair, route or link

λ(. . .) Cost of pair, route or link

ε(. . .) Energy of pair, route or link

actually the same pair in the reverse direction as (Vd, Vs) since any edge node is both

ISS and ESS at the same time. The proposed controller converts the physical network

to a virtual one. Then, it performs operations based on the virtual network. The virtual

network consists of set Es,d and Ps,d of virtual links and PCRs per (Vs, Vd),

respectively. We denote a route k that belongs to a pair (Vs, Vd) as Pk
s,d

. Any two

different routes Pk
s,d

 and Pl
s,d

 of a pair (Vs, Vd) does not share a link. Thus, they are

mutually disjoint. The cardinality of routes per pair (|Ps,d|) must be at least 2 due to

multi-route and can be as many as network topology allows. Besides, the number of

routes for each pair can be different. The network administrator makes the decision of

which pair has how many PCRs. In the scope of this work, we assume that PCRs

already exist in the network. Routes between edge pairs can be established using

Virtual LAN (VLAN) [69], MPLS [70], or segment routing [71]. In compliance with

this, we do not develop any multi-route computation algorithm as there are several

algorithms in the literature such as [72], [51], [73], and [74] that address this subject.

|Ps,d| per (Vs, Vd) is defined by a network administrator. Note that PCRs can be

established regarding any cost value such as residual bandwidth, latency.

Notice that any two routes, each of which belongs to a different pair may share

one or more physical links. We name such routes and pairs as neighbor routes and

pairs, respectively. For the sake of simplicity, the controller virtualizes links based on

38

the number of neighbor routes per link. We denote a virtual link that serves a route

Pk
s,d

 as Li
s,d,k

. The capacity of a physical link, denoted as φ(Ei), is portioned out to its

virtual links based on the load of neighbor routes. In compliance with this, a route

capacity φ(Pk
s,d) becomes the capacity of its virtual link which has the minimum

capacity (min (φ(Pi
s,d,k))). For example, there are two routes on the physical link E6

in Figure 4.1. Hence, its virtual links are E6
1,1,2

 and E6
2,1,1

, where E6
1,1,2

 serves the route

P2
1,1

 of pair ISS1 - ESS1 and E6
2,1,1

 serves the route P1
2,1

 of pair ISS2 - ESS1.

4.3. Controller Design

The proposed controller has two databases, routing, admission control, resource

management modules, and three helper modules. The two databases are maintained in

the background without interfering with operations performed by modules. Routing,

admission control, and resource management modules perform main tasks, but they

can cooperate with other helper modules.

Link State Database (LSDB) keeps track of physical network elements that are

links and switches. Some of them are the identifier of the corresponding switch data-

route identifier (DPID), port numbers, maximum transfer rate, power consumption,

and link load. Note that link load is not a static value unlike others because it changes

in time depending on the network load. Route State Database (RSDB) keeps track of

PCRs and other information regarding them. This database is the virtualized version

of the physical network. Controller mostly uses this database for network management

purposes. RSDB contains both static and temporary data. Some of the static

information is route identifier (RID), data-path identifiers of edge nodes (i.e., ISS and

ESS), links that form the route. Some of the dynamic data are route capacity and route

load.

Routing and Admission Control Module (RACM) routes flow between the

associated edge nodes. In routing, the controller assigns the incoming flow to a route

of the corresponding pair. In admission control, the controller checks available

resources before deciding the routing. If there is an available resource, the controller

allows routing of flow through assigning the flow to a route. Otherwise, it simply

rejects the flow. This way, the controller prevents the overloading of resources. Load

39

Balancing Module (LBM) equalizes the cost of routes per pair. At first, it computes

the route costs of the corresponding pair and calculates the equalization cost.

Afterward, if shifts flow from overloaded routes to underloaded routes. Route Resizing

Module (RRM) updates the capacity of routes depending on the load of neighbor

routes and pairs. Whenever the load of the route exceeds a certain threshold, the

resizing procedure is invoked. Energy Saving Module (ESM) aggregates flows into a

smaller number of routes. Then, it puts unused network elements into sleep mode.

Route Management Module (RMM) establishes, updates, or removes routes

PCRs. Information Collection Module (ICM) collects data such as link rates from

underlying switches and performs necessary calculations on them to extract the

information required for routing, admission control, load balancing, route resizing, and

energy-aware resource management. Subsequently, all the information is stored in

databases. Throughout this dissertation, we assume that there is a single controller

residing on the control plane. However, there must be multiple controllers in the

control plane to avoid single point of failure. Thus, the controller has Inter Controller

Communication Module (ICCM) that is responsible for communicating with other

controllers in the control plane.

4.4. Admission Control and Routing

In an SDN-based network, the switch which receives a request freq for a new

flow f sends a packet-in message to the controller. As soon as the controller receives

this packet, it computes the shortest route between end nodes. Subsequently, it deploys

forwarding rules off to the corresponding switches along the route. This may make the

controller bottleneck as the number of flows and switches increases. Similar to the

routing, the controller must check whether there is enough amount of resource (i.e.,

bandwidth) in the network to accept the request during the admission control process.

In the proposed model, the controller does not make per flow route computation.

It simply assigns the new flow f to a route as soon as it gets freq. This makes the routing

decision independent from network size. Hence, routing scalability is achieved.

Similar to the routing, the controller checks available resources of route between edge

40

pairs based on the information in RSDB. If there is enough amount of resource, routing

of f is allowed. Otherwise, the controller rejects freq.

The first step of both routing and admission control is the edge pair identification

step. In this step, the controller already knows about ISS due to the packet-in message.

It identifies the corresponding ESS by extracting the destination address from the

packet-in message and querying RSDB. The next step is the assignment of the flow to

one of the routes of the corresponding edge pair. We develop a flow assignment

method (hash-based modulo-ρ assignment operation - HMA) where the assignment of

a flow to a route is proportional to the capacity of routes. Finally, the controller deploys

forwarding rules to edge nodes for routing. Any packet after this operation is

forwarded on the assigned route.

In HMA, each route Pk
s,d

 has an assignment range specified with δmin
s,d,k

 and δmax
s,d,k

.

This range depends on the number of routes |Ps,d| of edge pair, the capacity of each

route φ(Pk
s,d), and the maximum range value ρ. The value of ρ can be any value greater

than 0; that is, there is no upper limit. The network administrator can pick any positive

value for ρ. Note that assignment ranges of routes of a pair do not change unless their

capacity changes. Change in capacity happens in two cases. In the first case, the

controller performs the resizing operation, which we will explain later in this section.

In the second case, route re-establishment happens due to a link or switch failure.

Route re-establishment can also happen in case of the desire of the network

administrator. All of these imply that the controller does not frequently perform

assignment range computation. The computation of the assignment range is defined

below.

δmin
s,d,k = {

0  k = 1

δmax
s,d,k−1 + 1  2 ≤ k ≤ |Ps,d|
∀s and d ∈ V, s ≠ d.

 (4.1)

δmax
s,d,k = δmin

s,d,k +
φ(Pk

s,d) ∗ ρ

∑ φ
|Ps,d|
k=1 (Pk

s,d)
, ∀s and d ∈ V, s ≠ d (4.2)

The minimum assignment value of a route is determined by its order as defined

in Equation (4.1. For the first route, it is 0. For the others, it depends on the maximum

41

assignment value of the previous route. The maximum assignment value of a route

depends on both ρ and proportion of the path capacity over pair capacity as defined in

Equation (4.2. To be clearer, suppose that φ(P1
1,1) and φ(P2

1,1) in Figure 4.2 are 2 and

3Gbps, respectively. Total capacity (∑ φ
|Ps,d|
k=1 (Pk

s,d)) is 5Gbps. Assuming that ρ is 100,

δmin
1,1,1 = 0, and δmax

1,1,1 = 40. Similarly, δmin
1,1,2 = 41, and δmax

1,1,2 = 100. As it is seen in

the example, a route with the largest capacity has the highest assignment probability.

The complete HMA process works as follows. First, controller computes hash

value H(f) of freq using fields in packet-in message such as destination IP. Any

hashing method (e.g., MD5 [75], SHA-1 [76]) can be exploited for this purpose.

Subsequently, modulus ρ of H(f), denoted as ρ(f), is computed. The result value lies

within the assignment range of a route (i.e., δmin
k,j

≤ ρ(f) ≤ δmax
k,j

).

Table 4.2: Routing Algorithm.

Lines Steps

 𝐈𝐧𝐩𝐮𝐭: freq

 𝐎𝐮𝐭𝐩𝐮𝐭: Routing of freq

1 ISS = getSwitchDPID(freq)

2 ESS = getDestinationSwitchFromRSDB(freq)

3 ρ(f) = calculateHMA(freq)

4 Ps,d = getRoutesOfPair(ISS, ESS)

5 𝐅𝐎𝐑 k 𝐈𝐍 Ps,d:

6 𝐈𝐅 δmin
s,d,k ≤ ρ(f) ≤ δmax

s,d,k

7 assignToRoute(freq, Pk
s,d)

8 𝐄𝐍𝐃 𝐈𝐅

9 𝐄𝐍𝐃 𝐅𝐎𝐑

Both routing and admission control algorithms are presented in Table 4.2 and

Table 4.3, respectively. In Table 4.2, controller identifies edge pairs as soon as it

receives flow request freq. Afterwards, it performs HMA operation to determine

forwarding route. Finally, controller deploys forwarding rules to edge nodes.

Admission control algorithm resembles routing algorithm. Apart from Table 4.2,

42

controller checks if there is available resource in edge pair before HMA operation in

Table 4.3. After flow assignment for both routing and admission control, forwarding

of packets starts in data plane. First, ISS marks incoming packets of f with an

associated RID. Subsequently, it forwards marked packets to the related core switch.

Then, marked packets are forwarded through the core network and they arrive to the

ESS. Finally, ESS removes marks on packets and delivers them to the destination node

or another network.

Table 4.3: Admission Control Algorithm.

Lines Steps

 𝐈𝐧𝐩𝐮𝐭: freq

 𝐎𝐮𝐭𝐩𝐮𝐭: Acceptance/rejection of freq

1 ISS = getSwitchDPID(freq)

2 ESS = getDestinationSwitchFromRSDB(freq)

3 𝐈𝐅 ! isResourceAvailable(freq, ISS, ESS):

4 reject(freq)

5 𝐄𝐍𝐃 𝐈𝐅

6 ρ(f) = calculateHMA(freq)

7 Ps,d = getRoutesOfPair(ISS, ESS)

8 𝐅𝐎𝐑 k 𝐈𝐍 Ps,d:

9 𝐈𝐅 δmin
s,d,k ≤ ρ(f) ≤ δmax

s,d,k

10 assignToRoute(freq, Pk
s,d)

11 𝐄𝐍𝐃 𝐈𝐅

12 𝐄𝐍𝐃 𝐅𝐎𝐑

4.5. Load Balancing

Load balancing is a fundamental resource utilization operation. Load balancing

aims to distribute traffic load over the network fairly. This in turn reduces both capital

expenditures (CAPEX) and operational expenditures (OPEX). In addition to this,

HMA necessitates load balancing because flows of a pair may be assigned to only

43

some of its routes. This results in the under-utilization of the remaining routes.

Therefore, overall network utilization reduces.

The proposed controller performs load balancing adaptive to the traffic for two

reasons. First, the controller has limited computational resources. Thus,

computationally intensive operations such as optimal (network-wide) load balancing

may degrade the performance of the controller in the case of scalability. Instead of

optimizing global network load, the controller performs pair-based load balancing

(local). Local load balancing converges to network-wide load balancing in time since

route costs reflect physical link costs. Secondly, optimum load balancing does not last

a long time because traffic is highly dynamic.

In our model, the controller balances load of a pair among its routes by

equalizing their costs (i.e., load, utilization, congestion level). In the first step of load

balancing, controller computes route costs and an equilibrium cost. Equilibrium cost

is the cost that all route costs must be closer after load balancing operation. Secondly,

the controller determines route states (i.e., underloaded, balanced, overloaded) with

respect to the equilibrium cost. Finally, the controller shifts some of the flow in

overloaded routes to underloaded routes for cost equalization. Shifting is as simple as

updating the forwarding rule of the flow in edge switches.

Notice that a route consists of one or more links. In that sense, link costs must

reflect route costs. Denoting the capacity and load of a physical link as φ(Ei) and

ϑ(Ei), respectively, the controller calculates link cost based on the equation defined

below.

λ(Ei
s,d,k) =

Qi

1 −
ϑ(Ei) − 1
φ(Ei)

, ∀i ∈ Es,d,k, s ≠ d
(4.3)

First, link utilization is computed by dividing ϑ(Ei) − 1 to φ(Ei). Subtracting

one from ϑ(Ei) prevents value of denominator to be 0 in the Equation (4.3 when link

is fully loaded. After link utilization calculation, the controller subtracts the link

utilization value from 1, and divides 𝑄𝑖 with it. Linear increment in ϑ(Ei) results in

exponential increment in λ(Ei
s,d,k). In other words, link cost becomes sensitive to load

changes. This way, the model avoids overloaded links. We introduce the coefficient

𝑄𝑖 to the equation so that network administrators can adjust link costs just in case.

44

Also, note that the controller does not compute link cost per load balancing operation.

Instead, the controller maintains link and route costs in the LSDB, and RSDB,

respectively, distinct from all operations.

We define route cost as the summation of costs of links which form the

corresponding route. Denoting the cost of a route Pk
s,d

 as λ(Pk
s,d), route cost

computation is defined as follows:

λ(Pk
s,d) = ∑ λ(Ei

s,d,k)

|Es,d,k|

i=1

, ∀k ∈ Ps,d, s ≠ d (4.4)

Load Balancing Algorithm is presented in Table 4.4. In the first step, it calculates

equilibrium cost of the pair, denoted as μ(Vs, Vd), considering routes. Cost of all the

routes converge to μ(Vs, Vd) after load balancing process. In the second step, state of

routes is identified based on μ(Vs, Vd). A route whose cost is greater than μ(Vs, Vd) is

classified as overloaded. Similarly, a route whose value is less than μ(Vs, Vd) is

classified as underloaded. If a route has the same cost as μ(Vs, Vd), it is already

balanced. Thus, controller does not take this route into account. In the third step, the

algorithm obtains information such as ISS, ESS and RID regarding each flow in

unbalanced routes. Finally, some these flows are shifted in overloaded routes to

underloaded routes. Controller selects which flow to be shifted in a greedy manner

(e.g., heavily to lightly loaded flow).

Table 4.4: Load Balancing Algorithm.

Lines Steps

 𝐈𝐧𝐩𝐮𝐭: freq

 𝐎𝐮𝐭𝐩𝐮𝐭: Equalization of pair load

1 pairCost = 0

2 𝐅𝐎𝐑 Route Pk in P
s,d:

3 𝐈𝐅 isActive(Pk):

The computation of pair equilibrium cost takes Θ(n) in which n is the number

of routes per pair. Sorting flows by size takes O(f log(f)) in which f is number of flows.

Shifting flows to underutilized routes takes O(n log(f)). Thus, time complexity of the

45

Active Load Balancing algorithm is O(n (f log(f) + (n f))) in the worst case where

all routes are active. The controller performs load balancing for all pairs denoted by B.

Therefore, time complexity for overall network load balancing becomes

O(B n (f log(f) + n f)).

Table 4.5: Load Balancing Algorithm (Contd.).

4 pairCost = pairCost + λ(𝑃𝑘)

5 𝐄𝐍𝐃 𝐈𝐅

6 𝐄𝐍𝐃 𝐅𝐎𝐑

7 μ((Vs, Vd)) = pairCost / |P
s,d|

8 𝐅𝐎𝐑 Route Pk 𝐈𝐍 P
s,d:

9 𝐈𝐅 ! isActive(Pk):

10 continue

11 𝐄𝐍𝐃 𝐈𝐅

12 𝐈𝐅 λ(Pk) < μ((Vs, Vd)):

13 addRouteToList(lightlyUtilizedRouteList, Pk)

14 𝐄𝐋𝐒𝐄 𝐈𝐅 λ(Pk) > μ((Vs, Vd)):

15 addRouteToList(highlyUtilizedRouteList, Pk)

16 𝐄𝐍𝐃 𝐈𝐅

17 𝐄𝐍𝐃 𝐅𝐎𝐑

18 𝐅𝐎𝐑 Route Po 𝐈𝐍 highlyUtilizedRouteList:

19 flowPool = getFlows(Po)

20 sortFlowsByAscendingLoad(flowPool)

21 𝐅𝐎𝐑 Route Pu 𝐈𝐍 lightlyUtilizedRouteList:

22 𝐅𝐎𝐑 Flow fa 𝐈𝐍 flowPool:

23 𝐈𝐅 shifting flow fa to Pu makes λ(Pu) < μ((Vs, Vd)):

24 shiftFlow(fa, Po, Pu)

25 𝐄𝐍𝐃 𝐈𝐅

26 𝐈𝐅 λ(Pu) > μ((Vs, Vd)):

27 addRouteToList(routeRemoveList, Pu)

28 continue

46

Table 4.6: Load Balancing Algorithm (Contd.).

29 𝐄𝐍𝐃 𝐈𝐅

30 𝐄𝐍𝐃 𝐅𝐎𝐑

31 𝐄𝐍𝐃 𝐅𝐎𝐑

32 𝐅𝐎𝐑 Route Pr 𝐈𝐍 routeRemoveList:

33 removeRoute(routeRemoveList, Pr)

34 𝐄𝐍𝐃 𝐅𝐎𝐑

35 𝐈𝐅 λ(Po) < μ((Vs, Vd)):

36 continue

37 𝐄𝐍𝐃 𝐈𝐅

38 𝐄𝐍𝐃 𝐅𝐎𝐑

There are two types of load balancing initiation in the proposed model. That are

periodic and threshold based. In the periodic load balancing, the controller periodically

performs load balancing such as per minute. How to determine the period is crucial.

4.6. Route Resizing

In the proposed model, PCRs are virtual, so their capacities are re-sizable.

Dynamically adjusting route capacities prevents the network from congestion and

increases resource utilization. Considering the pairs in Figure 4.1, the pair (𝑉2, 𝑉1) may

suffer from congestion while (𝑉1, 𝑉1) is lightly loaded. However, (𝑉2, 𝑉1) would not

suffer if (𝑉1, 𝑉1) could give some of its capacity to its neighbor. To overcome this

problem, we propose a route resizing method to adjust route capacities whenever a

route exceeds a certain threshold (e.g., 80% of its maximum capacity). Note that, this

process is performed on RSDB, not in the data plane. For this reason, the controller

does not explicitly alter the rule of routes on switches.

As aforementioned, neighbor routes may share physical links. A physical link is

split into one or more virtual links where each of which serves a different route from

point of view of the controller. Each virtual link 𝐸𝑖
𝑠,𝑑,𝑘

 is a part of a route 𝑃𝑘
𝑠,𝑑

, where

the triple (s, d, and k) of each virtual link is different. We denote a route 𝑃𝑘
𝑠,𝑑

 on a link

𝐸𝑖 as 𝑃𝑠,𝑑,𝑘
𝑖 . RRM computes new virtual link capacity 𝜑(𝐸𝑖

𝑠,𝑑,𝑘) for all routes 𝑃𝑠,𝑑,𝑘
𝑖

47

proportional to their loads, denoted as 𝜗(𝑃𝑠,𝑑,𝑘
𝑖). The corresponding equation is

provided below.

𝜑(𝐸𝑖
𝑠,𝑑,𝑘) = 𝜑(𝐸𝑖) ×

𝜗(𝑃𝑘
𝑖)

𝜗(𝐸𝑖)
, ∀𝑠 𝑎𝑛𝑑 𝑑 ∈ 𝑉, 𝑘 ∈ 𝑃𝑠,𝑑 , 𝑖 ∈ 𝐸, 𝑠 ≠ 𝑑 (4.5)

As soon as the controller performs this computation per virtual link, the new

route capacity becomes the capacity of one of its virtual links which have the minimum

capacity. To be clearer, consider a scenario based on the network illustrated in Figure

4.2. Let 𝜑(𝑃2
1,1) and 𝜑(𝑃1

2,1) be 6 and 4Mbps, respectively. Let also 𝜗(𝑃2
1,1) and

𝜗(𝑃1
2,1) be 5.7 and 1Mbps, respectively. In this case, 𝑃2

1,1
 exceeds the threshold,

assuming that it is 80%, and the controller initiates the resizing process. Therefore,

new 𝜑(𝑃2
1,1) and 𝜑(𝑃1

2,1) become 8.5 and 1.5Mbps, respectively.

Table 4.7: Route Capacity Resizing Algorithm.

Lines Steps

 𝐈𝐧𝐩𝐮𝐭: Links

 𝐎𝐮𝐭𝐩𝐮𝐭: New capacities of all virtual links

1 𝐅𝐎𝐑 Link Ei in E:

2 𝐈𝐅 isActive(𝐸𝑖):

3 φ(Ei) = getLinkCapacityFromLSDB(Ei)

4 ϑ(Ei) = getCurrentLinkLoadFromLSDB(Ei)

5 𝐅𝐎𝐑 Route Pk
i < 𝐈𝐍 getRoutesFromRSDB(Ei):

6 𝐈𝐅 isActive(Pk
i):

7 ϑ(Pk
i) = getCurrentRouteLoadFromRSDB(Pk

i)

8 𝜑(𝐸𝑖
𝑠,𝑑,𝑘) = 𝜑(𝐸𝑖) 𝜗(𝑃𝑘

𝑖) / 𝜗(𝐸𝑖)

9 𝐄𝐍𝐃 𝐈𝐅

10 𝐄𝐍𝐃 𝐅𝐎𝐑

11 𝐄𝐍𝐃 𝐈𝐅

12 𝐄𝐍𝐃 𝐅𝐎𝐑

13 𝐅𝐎𝐑 Route Pk 𝐈𝐍 P
s,d:

48

Table 4.8: Route Capacity Resizing Algorithm (Contd.).

14 𝐈𝐅 ! isActive(Pk):

15 continue

16 𝐄𝐍𝐃 𝐈𝐅

17 linksOfRouteList = getLinksFromRSDB(Pk
s,d)

18 temporaryMinimumCapacity = Maximum Link Capacity

19 𝐅𝐎𝐑 Link Ei
𝑠,𝑑,𝑘 𝐈𝐍 linksOfRouteList:

20 𝐈𝐅 isActive(Ei
𝑠,𝑑,𝑘) 𝐀𝐍𝐃 temporaryMinimumCapacity > φ(Ei

s,d,k):

21 temporaryMinimumCapacity = φ(Ei
s,d,k)

22 𝐄𝐍𝐃 𝐈𝐅

23 ϖ(Pk
s,d) = temporaryMinimumCapacity

24 𝐄𝐍𝐃 𝐅𝐎𝐑

25 𝐄𝐍𝐃 𝐅𝐎𝐑

Although the computation of the new 𝜑(𝐸𝑖
𝑠,𝑑,𝑘) is simple, the time complexity

of the resizing algorithm is 𝑂(|𝐸||𝑃|2). However, RRM does not perform this

operation frequently unless the overall network is heavily loaded. In a heavily loaded

network (e.g., 80% of its total capacity) the controller performs consecutive resizing

operations because the threshold is exceeded even after the resizing operation. This

infers that route resizing must be avoided when the network load is high. To handle

this problem, the proposed controller stops performing on-demand resizing if the

number of on demand resizing operation exceeds a predefined threshold in a

predefined time interval such as 3 times in 3 minutes. It simply waits for some back-

off time and then starts on-demand resizing. As it is noticed, RRM works on a virtual

network during this operation because routes and their capacities are virtual. It does

not communicate with underlying network elements.

4.7. Signaling

In SDN-based networks, the controller must communicate with underlying

switches to manage the whole network in SDN. The number of control messages

increases as the size of the network increases. Thus, heavy control traffic may occur

49

between controller and switches, especially in the case of a high number of flows and

switches in a network.

In terms of routing and admission control signaling, usually, an SDN controller

sends forwarding rules to all the switches along the route per flow. Therefore, the

number of messages to be sent becomes the number of switches along the route per

flow. Compared to this, the proposed controller sends only two messages independent

of the number of switches along the route, that are ingress and egress switches. Thus,

signaling scalability is achieved regarding routing and admission control.

As the proposed controller requires an up-to-date network state to manage the

whole network, it updates link states periodically. Edge switches are busy with sending

flow requests to the controller, inserting new flow rules to their tables, and updating

existing rules during the load balancing process. For these reasons, the proposed

controller does not communicate with edge switches to get link states. Instead, it

collects link states from the corresponding core switches.

Considering the load balancing process, suppose that there are no PCRs, the

controller treats the flow to be shifted as a new flow and sends forwarding rules to new

switches between source and destination. Besides, old flow rules are deleted to

maintain switch tables. Therefore, signaling scalability issues may arise as the number

of flows to be shifted, and network size increases. In the proposed model, the controller

sends a flow update message to an ingress switch for shifting a flow from one route to

another during the load balancing process. Edge switches only update their output

ports to shift a flow from one route to another.

50

5. ENERGY AWARE RESOURCE

MANAGEMENT

There occurs a trade-off between optimal energy saving and computation

overhead. In today’s highly dynamic Internet traffic, the controller may become a

bottleneck while computing optimal energy saving. Additionally, the optimal energy

state may not last long due to the traffic fluctuations. Thus, we prioritize scalability

over optimal energy saving. To do so, our controller makes edge pair-based energy-

saving computation. Upon completion of pair-based optimization, the controller

aggregates pair traffic into designated routes. Subsequently, it deactivates idle links

and switches in the whole network. This local energy saving converges to a global

energy saving in time.

To be clearer about how energy can be saved with traffic aggregation over a

smaller number of routes, consider the network illustrated in Figure 4.1. The routes

𝑃2
1,1

 and 𝑃1
2,1

 are neighbors because they share the links E6 and E9. Assuming that these

routes have large enough capacity to carry their pair loads, the controller aggregates

whole network traffic to 𝑃2
1,1

 and 𝑃1
2,1

. Then, it deactivates the remaining 4 core

switches and 6 links to save energy.

The first step of energy-aware route management is determination of the most

energy efficient subset of routes of a pair 𝑃𝑠,𝑑 while total capacity of 𝑃𝑠,𝑑 (𝜑(𝑃𝑠,𝑑)) is

greater than or equal to its load (𝜗(𝑃𝑠,𝑑)). Time complexity of the brute force solution

(generation of all combinations (𝜃(2𝑛)) and searching for the best combination

(𝜃(𝑛))) is exponential. In this regard, we propose a polynomial time algorithm called

Energy-aware Route Management Algorithm (ERMA) defined in Table 5.2: Energy

Saving Algorithm.

Let 𝜑(𝑃𝑠,𝑑) denote the pair capacity, 𝜗(𝑃𝑠,𝑑) denote the pair load and 𝑉[𝑖, 𝑐]

(1 ≤ 𝑖 ≤ 𝑛 and 𝜗(𝑃𝑠,𝑑) ≤ 𝑐 ≤ 𝜑(𝑃𝑠,𝑑)) denote the minimum energy consumption for

a subset of routes for number of i route and 𝑐 capacity. Assuming that all the routes

are initially active, ERMA decides if the i-th route should be active or passive, at each

step. In the former case, 𝑉[𝑖, 𝑐] is equal to 𝑉[𝑖 − 1, 𝑐]. This means energy consumption

and capacity stays the same. In the latter case, 𝑉[𝑖, 𝑐] becomes 𝑉[𝑖 − 1, 𝑐 − 𝑐𝑖] − 𝑒𝑖.

More clearly, current capacity 𝑐 reduces by 𝑐𝑖 and energy consumption reduces by 𝑒𝑖.

51

We can find the optimal solution by filling the table 𝑉[0. . 𝑛, 0. . 𝜑(𝑃𝑠,𝑑)]. In this sense,

entry 𝑉[𝑛, 𝜗(𝑃𝑠,𝑑)] becomes the optimal solution. According to our problem, 𝑉[𝑖, 𝑐] =

∞ for 0 ≤ 𝑐 ≤ 𝜗(𝑃𝑠,𝑑) and 𝑉[0, 𝑐] is equal to maximum energy consumption for 0 ≤

𝑐 ≤ 𝜗(𝑃𝑠,𝑑).

𝑃𝐷𝑉(𝑃𝑘
𝑠,𝑑) =

{

 2

(𝑃𝑃−𝑅𝑈𝑅(𝑃𝑘
𝑠,𝑑))∗

10
𝑃𝑃, if 𝑅𝑈𝑅(𝑃𝑘

𝑠,𝑑) ≤ 𝑃𝑃

2(𝑅𝑈𝑅(𝑃𝑘
𝑠,𝑑)−𝑃𝑃)∗

10
100−𝑃𝑃, if 𝑅𝑈𝑅(𝑃𝑘

𝑠,𝑑) > 𝑃𝑃

, ∀𝑠 𝑎𝑛𝑑 𝑑 ∈ 𝑉, 𝑠 ≠ 𝑑, 𝑘 ∈ 𝑃𝑠,𝑑

 (5.1)

The controller computes the energy consumption value of a route 𝑃𝑘
𝑠,𝑑

 by

multiplication Passive Neighbor Ratio (PNR), and Pivot Distance Value (PDV). PNR

and PDV of a route 𝑃𝑘
𝑠,𝑑

 is indicated as PNR(𝑃𝑘
𝑠,𝑑

) and PDV(𝑃𝑘
𝑠,𝑑

), respectively.

PNR(𝑃𝑘
𝑠,𝑑

) is the ratio of passive neighbor routes over all of its routes. PDV(𝑃𝑘
𝑠,𝑑

),

however, depends on both route utilization ratio (𝑅𝑈𝑅(𝑃𝑘
𝑠,𝑑) = 𝜗(𝑃𝑘

𝑠,𝑑) ∗
100

𝜑(𝑃𝑘
𝑠,𝑑)
)

and pivot point (PP) as defined in Equation (5.1. PP is a predefined utilization ratio

(e.g., 70%). It allows the controller to aggregate the desired amount of load to the route

as much as possible. For instance, defining PP as 70% forces the controller to make

the route utilization around 70% but at the same time prevent it from over-utilization.

According to the Equation (5.1, PDV(𝑃𝑘
𝑠,𝑑

) changes exponentially from the distance

between route utilization and PP. The reason is to force the controller to reach the

desired utilization as fast as possible.

Time complexity of ERMA is 𝒪(𝑛 ∗ |𝜑(𝑃𝑠,𝑑) − 𝜗(𝑃𝑠,𝑑)|). Notice that we

design ERMA for a single pair. Therefore, total time complexity for the whole network

becomes 𝒪(𝑛 ∗ |𝜑(𝑃𝑠,𝑑) − 𝜗(𝑃𝑠,𝑑)| ∗ 𝐵) where 𝐵 is number of pairs. As soon as the

controller determines future active and passive routes, it may need to shift flows from

the routes that will be passive to the routes that will remain active or just have been

activated. In such cases, the controller determines current and new states of the routes

first. To be clear, there are four states which are defined in Table 5.1. If there are routes

52

Table 5.1: Possible Energy State Changes of Routes.

States Current State Next State

State 0 Active Active

State 1 Active Passive

State 2 Passive Active

State 3 Passive Passive

in State 1, the controller shifts the flows in these routes to the routes that are either in

State 0 or State 2.

After the shifting process, the controller tries to deactivate all the network

devices along the routes that do not share switches and links along their way with other

routes. Since the whole route is passive, energy-saving increases dramatically. If this

is not the case, the controller tries to deactivate the switches and links along its way

that does not carry traffic. Before deactivating a switch, the controller makes sure that

all the links coming and leaving the switch does not carry traffic.

ERMA finds the optimum route combination per pair assuming that all the routes

are active. However, some of the routes may be in passive mode in reality and their

capacity may be taken by neighbor routes. To handle this problem, ESM computes

future capacities of passive routes because a passive route can be selected as a result

of ERMA. To do so, it calculates the unused capacity of each link by subtracting load

from its capacity and share this unused capacity equally among the passive routes that

the link serves. The capacity of the passive route becomes the capacity of the link

which has the minimum capacity compared to other links that serve the same passive

route. Let us show this procedure in an example for clarification purposes. Suppose

that ESM executes ERMA for the pair ISS1-ESS1 as illustrated in Figure 4.1. Also,

suppose that capacities of all links are 1Gbps and routes except 𝑃2
1,1

 and 𝑃1
2,1

 are active.

The controller must find the future capacity of Route2 in case ERMA selects it. There

are 1, 2 and 2 passive routes on links 𝐸2, 𝐸6 and 𝐸9, respectively. Load of E2, E6 and

E9 are all 0 because 𝑃2
1,1

 and 𝑃1
2,1

 do not carry traffic. Unused capacities of 𝐸2, 𝐸6 and

𝐸9 are 1Gbps for each. In this case, capacity share of 𝑃2
1,1

 for the links 𝐸2, 𝐸6 and 𝐸9

are 1, 0.5 and 0.5Gbps, respectively. The minimum of these capacities is 0.5Gbps.

Therefore, the future capacity of 𝑃2
1,1

 becomes 0.5Gbps.

53

Table 5.2: Energy Saving Algorithm.

Lines Steps

 𝐈𝐧𝐩𝐮𝐭: Pair load ϑ(Ps,d), pair capacity φ(Ps,d), pair energy ε(Ps,d)

 𝐎𝐮𝐭𝐩𝐮𝐭: new states for paths of the pair

1 𝐅𝐎𝐑 i = 1 𝐈𝐍 n:

2 V[i, φ(Ps,d)] ⇐ ε(Ps,d)

3 𝐄𝐍𝐃 𝐅𝐎𝐑

4 𝐅𝐎𝐑 i = 1 𝐈𝐍 n:

5 𝐅𝐎𝐑 c = φ(Ps,d) 𝐓𝐎 ϑ(Ps,d):

6 𝐈𝐅 c − ci ≥ ϑ(Ps,d) 𝐀𝐍𝐃 (V[i − 1, c − ci] − ei) ≤ (V[i − 1, c]):

7 V[i, c] ⇐ V[i − 1, c − ci] − ei

8 𝐄𝐋𝐒𝐄:

9 V[i, c] ⇐ V[i − 1, c]

10 𝐄𝐍𝐃 𝐈𝐅

11 𝐄𝐍𝐃 𝐅𝐎𝐑

12 𝐄𝐍𝐃 𝐅𝐎𝐑

54

6. IMPLEMENTATION DETAILS

6.1. Databases

The proposed controller maintains Link-state Database to keep track of links and

the whole network topology. Basically, they are identifier of Li, switch data-path

identifiers (DPID) and ports that Li connects, 𝜑(Li) , rate of Li and 𝜆(𝐿𝑖
𝑘). The latter

two information changes in time-based on the traffic passes through the link.

In addition to LSDB, the proposed controller maintains Route-state Database to

keep track of PCRs. In the proposed model, we assume that routes are pre-established.

For this reason, we provide route information to the controller via a network definition

file NDF instead of performing a multi-route routing algorithm. During the lifetime of

PCRs, the controller maintains this database whenever any route related information

changes such as route costs. Since we determine route cost based on link costs, the

controller updates RSDB whenever link costs in LSDB are updated. Some static

information of a route maintained in RSDB is its identifier (RID), DPIDs of ISS and

ESS, links that form the route. RSDB also has dynamic data that are route capacity

and 𝜆(𝑃𝑘
𝑗
).

6.2. Route Management Module

We implemented the Route Management Module so that the proposed controller

can create, update, and remove them. In this part of the section, we will explain

implementation details of PCRs and packet forwarding over routes in the data plane.

6.2.1. Route Establishment

At the beginning of the route establishment process, the controller parses NDF

to learn about the details of routes. In our implementation, we used Virtual LAN

(VLAN) to establish routes using OpenFlow v1.0 [20]. Each VLAN has a globally

distinct RID. The RID is just an integer value. After parsing the definition file, the

controller sends OFP_FLOW_MOD_ADD messages to the corresponding core

55

switches using the Static Flow Pusher Module of Floodlight. Note that there are 4094

unique routes because VLANs in 802.1Q use 12 bits in which 0 and 4095 are reserved.

MPLS can be used for routes instead of VLAN but this requires OpenFlow v1.3 [77]

or higher versions.

Controller populates only tables of core switches with route rules during the

route establishment process. In other words, there is no specific rule for a single flow

in a CSS. For instance, consider the route Route1 in the Figure 4.1. It consists of ISS,

CSS11, CSS21, and ESS. According to this example, the controller sends route

establishment messages only to CSS11 and CSS21. Edge switches (e.g., ISS1 and

ESS) are empty. Thus, there is no full route.

Let us explain how we create a complete route for a flow f. Suppose that f comes

to ISSi for the first time and it should depart the network from ESSj. In this case, the

establishment of full route for f occurs as follows:

i) ISSi receives the first packet of flow f.

ii) ISSi looks for a match with the packet regarding to existing forwarding rules.

Since flow is new, incoming packets do not match with any of the existing flow

rules.

iii) ISSi prepares an OFP_PACKET_IN message and sends it to the controller

iv) The controller extracts destination address of packets from the

OFP_PACKET_IN message and determines the corresponding egress switch

which is ESSj.

v) The controller queries the RSDB to obtain routes of the pair ISSi - ESSj.

vi) The controller determines the route for f in HMA step.

vii) The controller prepares OFP_FLOW_MOD_ADD message for ISSi. In the

match part of the OF message, there are source and destination IP addresses. In

the action part of the same message, there are two actions. The first action marks

the packet with associated RID specified in OFPAT_SET_VLAN_VID action.

The second action sends the packet to the core switch from the physical port

defined in the OFP_ACTION_OUTPUT action. The same applies for egress, but

this time, the controller exchanges source and destination addresses.

viii) The controller prepares another OFP_FLOW_MOD_ADD message for ESSj. In

the match part of the OF message, source and destination IP addresses are

56

swapped compared to the message described in the previous step. In the action

part of this message, there are two actions. The first action removes the RID with

OFPAT_STRIP_VLAN action. The second action sends the packet out of

network from the physical port defined in the OFP_ACTION_OUTPUT action.

Note that distance between an edge pair can be one hop. Even in this case, controller

generate and install routing rules described as above.

6.2.2. Packet Forwarding

Packet forwarding starts in an ISS and ends in an ESS after the controller installs

flow rules to the corresponding edge switches. Forwarding of a packet of a flow f

coming from ISSi and destined to ESSj is performed as follows:

i) The packet arrives at ISSi and ISSi looks for a matching rule regarding f.

ii) ISSi sets VID part of the 802.1Q header (within Ethernet frame) of the packet

with OFP_SET_VLAN_VID action of the associated rule to assign the packet to

a route.

iii) ISSi forwards the packet from the out-port specified in the actions of the same

rule.

iv) The first core switch, which is the neighbor of ISSi, receives the packet. It finds

the matching route rule by checking the RID of the packet. Subsequently, it

forwards the packet to the next core switch along the route.

v) Each core switch along the route forwards the packet the same way as the first

core switch and the packet eventually reaches ESSj.

vi) ESSj takes the packet and removes the VID of the packet by OFP_STRIP_VLAN

action. Finally, it forwards the packet out of the network over the specified out-

port.

The response message for the packet is routed back in the same way. However,

this time, egress acts as ingress and vice versa.

57

6.3. Routing and Admission Control Module

If a packet does not match with any rules in an OF switch, the packet is called

unknown. As soon as an OF switch receives such a packet, it sends a message, namely

OFP_PACKET_IN, to the controller as a default action in OF v1.0. As soon as the

controller receives the OFP_PACKET_IN message, it takes an action such as creating

a new route or rejecting the request.

In our implementation, only ingress switches send such requests to the controller

due to the structure of SPNs. As soon as the controller receives a request from an ISS,

RACM steps in. Briefly, RACM handles admission control in two steps. First, it

determines the corresponding ingress-egress pair based on source and destination IP

addresses. Secondly, RACM queries RSDB to check if there exists enough amount of

bandwidth. If so, the controller assigns the flow to a route and sends new rules to

associated edge switches. Otherwise, the request is rejected.

6.4. Information Collection Module

The controller only needs link loads for resource management operations. In

OpenFlow, port statistics provide cumulatively transmitted and received byte counts.

The Information Collection Module periodically sends OF port statistics message to

related core switches per link. Upon receiving OF reply messages from the CSSs, the

controller computes rates of links as follows:

i) Controller subtracts previously obtained byte counts from current ones.

ii) The result of subtraction is divided by the time interval between consecutive

measurements.

Therefore, ICM obtains approximate link rates. Consequently, the controller calculates

link costs as described in the Equation (4.3. Finally, ICM updates LSDB in the

background.

58

6.5. Load Balancing Module

In the proposed model, load balancing has a key role to increase resource

utilization. The controller can initiate the load balancing process in two ways. In one

way, LBM periodically balances each pair (e.g., every 5 minutes). In another way, the

controller checks the cost difference between all routes of a pair. If the difference

between any two routes exceeds a certain threshold, LBM initiates the load balancing

process. The threshold value can be constant or adaptive. LBM follows the steps below

during the load balancing process of a pair.

i) LBM retrieves route costs from RSDB.

ii) LBM calculates average pair cost.

iii) LBM calculates difference between average pair cost and route costs per route.

iv) If the result is positive for a route, LBM marks the route as heavily loaded. If

not, it marks the route as lightly loaded.

v) LBM obtain flow statistics from the corresponding ISS for overloaded routes.

vi) LBM selects subset of flows in a greedy manner (i.e., lightly loaded to heavily

loaded). It stops when cost of lightly loaded route is equal or within the pre-

defined distance by the network administrator from the average pair load.

vii) LBM sends route update message for each flow in the subset.

6.6. Route Resizing Module

Route Resizing Module is responsible for updating virtual route capacities. RRM

periodically accesses RSDB to check route utilization. If a route exceeds a certain

threshold, RRM invokes the resizing process.

RRM does this operation in three steps. First, it computes virtual route capacity

portions for each link. Results are stored in a matrix called Route-Link Matrix. In this

matrix, rows are routes and columns are links. As soon as RRM fills the whole matrix,

it sets the virtual capacity of each route to the minimum value of the row which is the

minimum virtual capacity portion.

59

Table 6.1: Route-link Matrix of Virtual Network.

 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

𝐏𝟏
𝟏 10 ∞ ∞ ∞ 10 ∞ ∞ 10 ∞ ∞

𝐏𝟐
𝟏 ∞ 10 ∞ ∞ ∞ 6.25 ∞ ∞ 6.25 ∞

𝐏𝟏
𝟐 ∞ ∞ 10 ∞ ∞ 3.75 ∞ ∞ 3.75 ∞

𝐏𝟐
𝟐 ∞ ∞ ∞ 10 ∞ ∞ 10 ∞ ∞ 10

To be clearer, consider the Table 6.1. There is a Route-Link Matrix for the

topology illustrated in Figure 4.2. In this topology, there are 10 links and 4 routes.

Whenever RRM invokes the resizing process, it iteratively calculates each cell in the

matrix. In this example, the capacity of P1
1 and P2

2 does not change because there is no

link shared with other routes. Thus, the controller does not perform any calculation for

them. However, P2
1 and P1

2 shares L6 and L9. Suppose that capacity of all the links are

10Mbps and loads of P2
1 and P1

2 are 5 and 3, respectively. New capacities of P2
1 and P1

2

for L6 and L9 becomes 6.25 and 3.75, respectively.

Route resizing enables to increase admissions of more flow requests and reduces

congestion. However, it becomes heavier as the number of links and routes in the

network increase. For this reason, our controller resizes routes on demand (e.g.,

exceeding 80% of route size). Although this prevents the controller to perform resizing

more than necessary, the controller may perform resizing consecutively. This happens

when the threshold is exceeded even after the previous route resizing operation. To

avoid this case, we introduce a periodic resizing parameter. If the number of on-

demand resizing exceeds a certain threshold in a specific time interval (e.g., 3 times in

a minute), the controller switches to periodic resizing mode. In this mode, the

controller performs resizing periodically (e.g., 3 minutes). In periodic resizing mode,

the controller continues to access RSDB to check whether it is still necessary to

perform periodic resizing. If there is no need to perform periodic resizing, the

controller switches to on-demand resizing mode. Additionally, notice that route

resizing is a virtual operation. Thus, the controller and databases are the parts of this

operation. Physical links are not affected by route resizing so signaling protocol is not

used.

60

6.7. Energy Saving Module

Energy Saving Module is responsible for activating/deactivating links and

switches if possible. To do so, the controller obtains required data from databases and

computes route states. Accordingly, it activates or deactivates links or switches.

Currently, OpenFlow is not capable of commanding a switch to sleep or wake up any

of its ports. We propose to modify the OFPT_PORT_MOD message and

OFP_PORT_CONFIG flag for this purpose. OFP_PORT_CONFIG has an

OFPPC_PORT_ACTIVE flag that commands the switch to deactivate its

corresponding physical port. By default, the flag OFPPC_PORT_ACTIVE on the

switch port is set to 1. This implies that the corresponding physical port is active. The

controller sends OFPT_PORT_MOD to toggle (active to passive or vice versa) the

state of a port.

6.8. Inter Controller Communication Module

This module is responsible for communicating with other controllers in the

control plane. This module is required for preventing the network from a single point

of failure issue. This is the issue when there is a single controller in the whole control

plane. When the single controller stops working, all the routing, admission control,

and resource management operations stop. In this work, we do not address this issue

as there are proposed works mentioned in [51] regarding this. A simple solution for

our model is that there can be two or more controllers within the control plane. One of

them is the master. The other controllers, a.k.a. backup controllers, periodically check

if the master controller is alive. In case of failure of the master controller, one of the

backup controllers takes over. As the proposed model maintains network state in

databases, the backup controller can directly connect to LSDB and RSDB to manage

the whole network. Thus, there is a minimal overhead of taking control in case of

controller failure.

61

7. EXPERIMENTAL RESULTS

This section presents the experimental results of our model. We have

implemented modules of our model upon Floodlight v0.91 [16]. For creating test

networks, we have used both Mininet v2.1 [78] and Open vSwitch v2.5 [79].

Controller and switches communicate via OpenFlow v1.0 [20]. We used TG [80] as a

traffic generator. Throughout this section, several scenarios under three topologies are

tested to evaluate the proposed model. These topologies are NSFNET T3, Net-M, and

Net-L as illustrated in Figure 7.1, Figure 7.2, and Figure 7.3. NSFNET T3 is a real

network and is chosen as it provides connectivity to several regional networks [81],

[82]. Apart from the NSFNET T3, two custom topologies, namely Net-M and Net-L

are also used to test the proposed model in terms of topology size, the number of

disjoint routes, connectivity among edge and core switches.

Figure 7.1: Illustration of NSFNET topology.

62

Figure 7.2: Illustration of Net-M.

Figure 7.3: Illustration of Net-L.

63

In order to create a realistic test environment, several real-time traffic traces are

taken from the Center for Applied Internet Data Analysis (CAIDA) [83]–[86] as

depicted in Figure 7.4. We have generated various traffic loads (i.e., light, moderate,

heavy) by scaling these traffic traces and assigned one of four traffic patterns

arbitrarily to each pair in each test run.

Figure 7.4: Traffic pattern of March 29-30 2015 UTC taken from CAIDA.

The test scenarios are performed to analyze; (1) effect of route number on load

balancing performance, (2) periodic load balancing, (3) threshold-based load

balancing, (4) load balancing performance under various traffic loads, (5) load

balancing for different topologies, (6) comparison of the proposed model with the

work proposed in [87], (7) admission control time, (8) effect of route number and

traffic load on energy-saving performance, (9) effect of node connectivity on energy-

saving performance, (10) comparison of the proposed model with existing work in

terms of energy saving, and (11) effect of energy-aware resource management on

network utilization.

64

7.1. Effect of Route Number on Load Balancing

Performance

Figure 7.5: The core link utilizations in time for different number of routes.

Load balancing performance of the proposed framework depends on the number

of routes. In this context, we have investigated the performance of load balancing

under various route numbers, namely P2, P3, P4, and P5. P2, P3, P4, and P5 have 2,

3, 4, and 5 routes per pair, respectively.

Load balancing performance of the proposed framework depends on the number

of routes. In this context, we have investigated the performance of load balancing

under various route numbers, namely P2, P3, P4, and P5. P2, P3, P4, and P5 have 2,

3, 4, and 5 routes per pair, respectively. Net-M is chosen as the test topology since it

allows creation of 5 disjoint routes, unlike others. The same traffic trace combination

is applied to the same pairs of Net-M for 10 minutes. There are three test runs. During

each test run, maximum core link utilizations are measured and the average of them is

calculated per measurement time. The result is illustrated in Figure 7.5.

We have observed that performing load balancing with 2 routes has the worst

performance as it has the highest utilization. In the P2 case, the controller performs

load balancing among two routes per pair. As the proposed framework performs

65

adaptive load balancing, the convergence of cost equalization among pairs takes more

time. As the route number increases, max utilization decreases. For the same reason,

P5 has better performance since more pairs are neighbors.

7.2. Effect of Periodic Execution on Load Balancing

Performance

Figure 7.6: The core link utilizations of P2 in time for various load balancing

periods.

We have investigated the performance of load balancing under various periods

to understand how frequently the load balancing should be performed depending on

the route number. Load balancing periods are set to 5, 10, 20, and 30 seconds. Net-M

is chosen as the test topology since it allows to creation of 5 disjoint routes, unlike

others. The same traffic trace combination is applied to the same pairs of Net-M for

10 minutes. There are three test runs for both P2 and P5. During each test run,

maximum core link utilizations are measured and the average of them is calculated per

measurement time. The results are illustrated in Figure 7.6 and Figure 7.7.

66

Figure 7.7: The core link utilizations of P5 in time for various load balancing

periods.

We have observed that performing load balancing in short (e.g., 5 seconds) or

large (e.g., 30 seconds) intervals both for P2 and P5 causes performance degradation.

Performing load balancing with short period shifts flows from one route to another

frequently. This causes unnatural fluctuation in traffic. Load balancing with a large

period has low performance as it equals costs infrequently. This implies that load

balancing with larger periods makes the case like there is no load balancing, especially

for highly dynamic network traffic.

7.3. Effect of Threshold-based Execution on Load Balancing

Performance

The proposed load-balancing method can also be initiated depending on the cost

difference among routes of pairs. In this context, we have investigated the performance

of load balancing under various cost differences, in other words, threshold-based load

balancing (TLB), which are 0.1, 0.25, 0.5, and 1.0. Net-M is chosen as the test topology

67

Figure 7.8: The core link utilizations of P2 in time for various load balancing

periods.

since it allows to creation of 5 disjoint routes. The same traffic trace combination is

applied to the same pairs of Net-M for 10 minutes. There are three test runs for both

P2 and P5. During each test run, maximum core link utilizations are measured and the

average of them is calculated per measurement time. The results are illustrated in

Figure 7.8 and Figure 7.9.

Similar to the periodic load balancing case, we have observed that large TLBs

(e.g., 1.0) has little impact on cost equalization. TLB with 1.0 has the lowest

performance as the controller has initiated the load balancing process a few times.

Additionally, performing load balancing for very small cost differences (e.g., 0.1)

causes lower utilization compared to TLB with 0.25 and 0.5. This is because the

controller frequently performs flow shifting among routes of pairs. We have observed

that TLB with 0.25 has the best performance regardless of route numbers among the

threshold values we chose. Similar to the periodic load balancing, the proposed model

achieves better utilization with a larger number of routes. It must be noted that TLB

should be adjusted based on the traffic fluctuation.

68

Figure 7.9: The core link utilizations of P2 in time for various load balancing

periods.

7.4. Load Balancing Performance under Various Traffic

Loads

We have investigated how the proposed framework performs under various

traffic loads (eg., 20% - light, 50% - moderate, 80% - heavy). To do this, the same set

of traffic traces are applied on Net-M with two routes per pair by scaling them. There

are three test runs. The duration of the test run is set to 10 minutes and periodic (i.e.,

10 seconds) load balancing is performed by the controller. During each test run per

traffic load, maximum core link utilizations are measured and the average of them is

calculated per measurement time. The result is illustrated in Figure 7.10.

To generate a light traffic load flows with small sizes are generated by clients.

In case of the moderate traffic load generation, there is a mixture of flows with small

and large sizes. In the heavy traffic load case, almost all flows are large. Under these

69

Figure 7.10: The core link utilizations for various traffic loads.

circumstances, we have observed that shifting flows from one route to another causes

small cost changes in light traffic load case. Fluctuation in the moderate traffic load

case is more compared to the previous case. In heavy traffic load case, the impact of

shifting flows from one route to another causes greater fluctuation. In the real world,

there are many flows of various sizes. Hence, load balancing can be achieved more

smoothly.

7.5. Load Balancing Performance for Various Topologies

We have investigated the performance of the proposed model for different

networks. In this context, we applied the same set of traffic traces to all test topologies

for 10 minutes. The applied traffic load is moderate. We have measured the change in

costs of two randomly chosen routes. The obtained results, illustrated in Figure 7.11,

Figure 7.12, and Figure 7.13, show that route costs get close to each other after the

cost equalization process. Therefore, the proposed model successfully balances loads

regardless of topology in an adaptive manner.

70

Figure 7.11: Equalization of route costs for NSFNET under moderate traffic load.

Figure 7.12: Equalization of route costs for Net-M under moderate traffic load.

71

Figure 7.13: Equalization of route costs for Net-L under moderate traffic load.

7.6. Load Balancing Performance Comparison

Figure 7.14: Comparison of load balancing performance of models.

The works [51] and [52] address both resource management and control plane

scalability in SDN-based networks. However, they are complex to implement due to

their both hierarchical and distributed structures. They also contain multiple

controllers. Therefore, instead of comparing our model with the proposed works in

72

[51] and [52], we compare our model with the WPF, which is implemented in [87].

WPF also has a single controller that performs both resource utilization and routing.

In this test scenario, we applied the same set of traffic traces to both models for 10

minutes. Net-M is chosen as the test topology. The applied traffic load is moderate.

There are three test runs. During each test run, maximum core link utilizations are

measured and the average of them is calculated per measurement time. The result is

illustrated in Figure 7.14. We have investigated performance.

Note that WPF calculates the shortest route in a graph where both links and

nodes have had weighted. WPF establishes a route once for a flow and does not change

the route in time. Thus, link utilization does not change drastically in time. However,

the proposed model, where each pair has 5 routes, successfully performs resource

utilization and outperforms WPF.

7.7. Admission Control Performance

In this test scenario, we have investigated the performance of the admission

control mechanism implemented in the proposed model. In the first part of this test

case, we have measured the admission control time for both SRRM and WPF and

illustrated the results in Figure 7.15. We have observed that WPF consumes more time

to find a suitable route as the network load increases. The proposed model, on the other

hand, performs admission control very quickly. Besides, the increase in admission

control time for increasing traffic load is negligible. This proves that our model

performs admission control in a scalable manner.

We have conducted another test on Net-M to examine the effect of resource

management operations on flow acceptance rate. We sent periodic flow requests to

only one arbitrarily chosen pair and measured the rate of flow acceptance and run this

scenario

73

Figure 7.15: Comparison of admission control time performance of models.

both for P2 and P5. Our controller has distributed network load among routes and

performed resizing to reduce congestion, if necessary. Thus, flow acceptance rates of

SRRM is close to WPF as illustrated in Figure 7.16 even P2 case.

Figure 7.16: Comparison of flow acceptance rate performance of models.

74

7.8. Effects of Route Number per Pair and Traffic Load on

Energy Saving Performance

In this test scenario, we have investigated the energy-saving performance of the

proposed model for a various number of routes per pair under light, moderate, and

heavy traffic loads. Route number per pair is 2 (P2) and 5 (P5). Net-M is chosen as the

test topology. There are three test runs. During each run, active link and switch ratios

are recorded and the average of each run is calculated. Figure 7.17, Figure 7.18, Figure

7.19, and Figure 7.20 illustrate the energy-saving performance of P2 and P5 in terms

of link and switch.

Figure 7.17: Active link ratios for P2 under various traffic loads.

75

Figure 7.18: Active link ratios for P5 under various traffic loads.

Figure 7.19: Active switch ratios for P2 under various traffic loads.

76

Figure 7.20: Active switch ratios for P5 under various traffic loads.

We have observed that the active link ratio drops down to around 50-60% in P2

for all traffic loads as illustrated in Figure 7.17. This experiment results in lower power

consumption in P5 for light and moderate traffic loads as illustrated in Figure 7.18

since the active link ratio drops down to around 35-45% at the end of the experiment.

Note that, the energy-saving performance of both P2 and P5 is the closest to each other

under heavy traffic load because the controller needs more resources to carry the heavy

load. Also, notice that the active link ratio of P2 decreases to around 60-70% in almost

50 seconds compared to P5. This ratio does not change much since then. The reason

is that the controller has less choice in terms of route number per pair. However, the

energy-saving performance of P5 is better after 300 seconds. The difference between

the active switch ratio of P2 and P5 is much more apparent as shown in Figure 7.19,

and Figure 7.20 for all traffic loads. P2 shows poorer performance even under light

traffic load. In case of heavy traffic load, the controller fails to make any switch

passive. However, this is not the case for P5. The active switch ratio of P5 drops down

to around 60% for light and moderate traffic loads. Although its energy-saving

performance under heavy traffic load is not as good as others, the controller

successfully makes a few amounts of the switches passive.

77

7.9. Effect of Connectivity on Energy Saving Performance

In this test scenario, we have investigated the energy-saving performance of the

proposed model for different topologies. The average degree of connectivity for

NSFNET, Net-M, and Net-L are 3, 6, and 3.53, respectively. Route number per pair is

2 and a moderate traffic load is applied. There are three test runs. During each run,

active link and switch ratios are recorded and the average of each run is calculated.

We have observed that the degree of connectivity does not affect the energy-

saving performance of the proposed model on links as illustrated in Figure 7.21, and

Figure 7.22. The active link ratio in all topologies is close to each other. On the other

hand, this is not

Figure 7.21: Active link ratios of 3 topologies having 2 routes per pair under

moderate traffic load.

78

Figure 7.22: Active switch ratios of 3 topologies having 2 routes per pair under

moderate traffic load.

the case for switches. NSFNET has the best performance among other topologies

because routes in this topology have more common links and switches. Net-L has the

worst performance among others because routes in Net-L are more diverse than others

due to the high connectivity. This test case shows that the establishment of routes

affects the energy-saving performance of the proposed model.

7.10. Comparison of Energy Saving Performance

In this test case, we have investigated the energy-saving performance of the

proposed model by comparing it with the approach defined in [59]. In our model, as

aforementioned, we define route energy consumption as the multiplication of PNR and

PDV. In [59], authors define energy consumption based on link utilization and a

congestion threshold, that is 80%. We call this model the CARE model. In this test

case, we run ERMA both for the proposed method and CARE model. Route number

per pair is 2 (P2) and 5 (P5). Net-M is chosen as the test topology. Moderate traffic is

applied in all 3 test runs. During each run, active link and switch ratios are recorded

and the average of each run is calculated. Figure 7.23, Figure 7.24, Figure 7.25, and

Figure 7.26 illustrate energy-saving performance of the proposed and CARE models

in terms of link and switch.

79

On one hand, the two models have almost the same performance for P2 in terms

of active link ratio case as depicted in Figure 7.23. On the other hand, the proposed

model outperforms the CARE model in the P5 case as shown in Figure 7.24. Similarly,

the results of the active switch ratio test resemble active link ratio test. The two models

have almost the same performance for P2 as illustrated in Figure 7.25, and the

proposed model outperforms the CARE model for P5 as depicted in Figure 7.26.

Figure 7.23: Comparison of energy saving performance based on active link ratio for

P2.

Figure 7.24: Comparison of energy saving performance based on active link ratio for

P5.

80

Figure 7.25: Comparison of energy saving performance based on active switch ratio

for P2.

Figure 7.26: Comparison of energy saving performance based on active switch ratio

for P5.

81

7.11. Comparison of Load Balancing Performance

In this test case, we have compared the load balancing performance when the

controller performs energy saving and load balancing in harmony (Energy-Aware:

EA) or it only performs load balancing (Energy-Unaware: EU). In EA, load balancing

is performed among active routes. In EU, routes are always active. Route number per

pair is 2 (P2) and 5 (P5). Net-M is chosen as the test topology. Moderate traffic is

applied in all 3 test runs. During each run, load rates are recorded, and the average of

each run is calculated. Figure 7.27, and Figure 7.28 illustrate load balancing

performance of both models for P2 and P5.

In both P2 and P5, the utilization of links is higher in EA compared to EU. This

is because the same load is distributed over less capacity due to passive routes in EA.

Additionally, utilization increases in line with energy-saving. In previous test cases,

we have observed that energy-saving performance increases conforming to route

number per pair. Hence, load utilization of P2 as in Figure 7.27 is lower than P5 as in

Figure 7.28. The trade-off between energy saving and load balancing indicates that

high energy saving may cause over-utilization. Thus, this may result in significant

network congestion. Finally, this test case shows that an adequate route number per

pair and PDV selection allows efficient usage of network resources in terms of both

energy saving and resource utilization.

82

Figure 7.27: Comparison of load balancing performance for P2.

Figure 7.28: Comparison of load balancing performance for P5.

83

8. CONCLUSION

To put it in a nutshell, we propose a scalable routing and energy-aware resource

management model for SDN-based SPNs. In the proposed model, routes are pre-

computed between each pair of edge switches. These routes convert a complex

physical network to a simple and virtual network. The controller performs scalable

routing, admission control, and signaling based on these routes. It also performs

energy-aware resource management. The controller saves energy via aggregating

flows to a smaller number of routes per edge pair and deactivating unused routes.

During this process, it takes neighbor routes and load level into account. Pair-based

power-saving converges to global power-saving in time. In line with this, the controller

also performs adaptive load balancing by equalizing active route costs per pair. In the

case of high network load, the controller adjusts route capacities for further resource

utilization.

The proposed model either accepts or rejects flow requests upon receiving

requests due to its pre-computed route structure. Instead of computing flow routes per

request, routes that are established in off-line mode prevent the controller to become a

bottleneck. Thus, the proposed model shows that even if there is a single controller at

the top of the network, it can successfully perform routing, and admission control in a

scalable manner. We also witness that the amount of signaling between controller and

data plane is also reduced both in statistic collection and route establishment processes.

In addition to these, our model can save energy and balances the pair load among its

routes successfully. Moreover, we observe that route resizing is a heavy process, but

the controller performs this operation rarely. Therefore, it does not affect the scalability

of the controller significantly. Finally, obtained results prove that load balancing and

route resizing increase the flow acceptance rate dramatically.

As future work, controller can perform load balancing by estimating incoming

traffic. Also, the controller can utilize a hybrid version of periodic and threshold-based

load balancing. In this version, the controller can estimate the time to perform load

balancing. Apart from these, the controller can increase the energy-saving performance

of the proposed model using deep learning techniques.

84

REFERENCES

[1] Web 1, (2015), https://blogs.cisco.com/sp/the-history-and-future-of-

internettraffic, (Accessed: 15/01/2021).

[2] Web 2, (2019), https://www.itu.int/ en/ITU-D/Statistics/Documents/facts/Facts

Figures2019.pdf, (Accessed: 15/01/20 21).

[3] Web 3, (2020), https://www.sandvine.com/hubfs/Sandvine_Redesign_2019/

Downloads/2020/Phenomena/COVID Internet Phenomena Report 20200507

.pdf, (Accessed: 15/01/2021).

[4] Chabarek J., Sommers J., Barford P., Estan C., Tsiang D., Wright S., (2008),

"Power Awareness in Network Design and Routing", The 27th Conference on

Computer Communications IEEE INFOCOM, 457-465, Phoenix, AZ, 13-18

April.

[5] Awad M. K., Neama G., Rafique Y., (2015), "The impact of practical network

constraints on the performance of energy-aware routing schemes", 2015 IEEE

International Conference on Service Operations And Logistics and Informatics

(SOLI), 77–81, Hammamet, Tunisia, 15-17 November.

[6] Tuysuz M. F., Ankarali Z. K., Gözüpek D., (2017), "A survey on energy

efficiency in software defined networks", Computer Networks, 113 (C), 188–

204.

[7] Van Heddeghem W., Lambert S., Lannoo B., Colle D., Pickavet M., Demeester

P., (2014), "Trends in Worldwide ICT Electricity Consumption from 2007 to

2012", Computer Communications, 50, 64–76.

[8] Web 4, (2009), https://www.cs.odu.edu/~cs752/papers/sdr-

infocom_brazil_2009_ v1-1.pdf, (Accessed: 15/01/2021).

[9] Yeganeh S. H., Tootoonchian A., Ganjali Y., (2013), "On scalability of

software-defined networking", IEEE Communications Magazine, 51 (2), 136-

141.

[10] Luo H., Cui J., Chen G., Chen Z., Zhang H., (2014), "On the applicability of

software defined networking to large scale networks", 23rd International

Conference on Computer Communication and Networks (ICCCN), 1–6,

Shanghai, China, 4-7 August.

[11] Leguay J., Maggi L., Draief M., Paris S., Chouvardas S., (2016), "Admission

control with online algorithms in SDN", IEEE/IFIP Network Operations and

Management Symposium (NOMS), 718–721, Istanbul, Turkey, 25-29 April.

[12] Bianco A., Giaccone P., Mahmood A., Ullio M., Vercellone V., (2015),

85

"Evaluating the SDN control traffic in large ISP networks", IEEE International

Conference on Communications (ICC), 5248–5253, London, UK, 8-12 June.

[13] McKeown N., Anderson T., Balakrishnan H., Parulkar G., Peterson L., Rexford

J., Shenker S., Turner J., (2008), "OpenFlow: Enabling Innovation in Campus

Networks", ACM SIGCOMM Computer Communication Review, 38 (2), 69-

74.

[14] Berde P., Gerola M., Hart J., Higuchi Y., Kobayashi M., Koide T., Lantz B.,

O’Connor B., Radoslavov P., Snow W., Parulkar G., (2014), "ONOS: Towards

an Open, Distributed SDN OS", Proceedings of the Third Workshop on Hot

Topics in Software Defined Networking, 1–6.

[15] Medved J., Varga R., Tkacik A., Gray K., (2014), "OpenDaylight: Towards a

model-driven SDN controller architecture", IEEE International Symposium on

a World of Wireless, Mobile and Multimedia Networks, 1–6, Sydney, NSW,

Australia, 19 June.

[16] Web 5, (2014), https://floodlight.atlassian.net/wiki/spaces/ floodlightcontroller/

pages/1343555/Floodlight+v1.0, (Accessed: 15/01/2021).

[17] Foster N., Harrison R., Freedman M. J., Monsanto C., Rexford J., Story A.,

Walker D., (2011), "Frenetic: A Network Programming Language", SIGPLAN

Notices, 46 (9), 279–291.

[18] Otoshi T., Ohsita Y., Murata M., Takahashi Y., Ishibashi K., Shiomoto K.,

(2013), "Traffic prediction for dynamic traffic engineering considering traffic

variation", IEEE Global Communications Conference (GLOBECOM), 1570–

1576, Atlanta, GA, USA, 9-13 December.

[19] Monsanto C., Reich J., Foster N., Rexford J., Walker D., (2013), "Composing

Software Defined Networks", 10th USENIX Symposium on Networked

Systems Design and Implementation (NSDI), 1–13, Lombard, IL, USA, 2-5

April.

[20] Web 6, (2009), https://www.opennetworking.org/images/stories/downloads

/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf,

(Accessed: 15/ 01/2021).

[21] Web 7, (2010), http://www.rfc-editor.org/rfc/rfc5810.txt, (Accessed:

15/01/2021).

[22] Web 8, (2011), https://rfc-editor.org/rfc/ rfc6241.txt, (Accessed: 15/01/2021).

[23] Ongaro D., Ousterhout J., (2014), "In Search of an Understandable Consensus

Algorithm", USENIX Annual Technical Conference, 305–320, Philadelphia,

PA, USA, 19-20 June.

[24] Muqaddas A. S., Bianco A., Giaccone P., Maier G., (2016), "Inter-controller

traffic in ONOS clusters for SDN networks", IEEE International Conference on

86

Communications (ICC), 1–6, Kuala Lumpur, Malaysia, 22-27 May.

[25] Wyatt D., (2013), "Akka Concurrency: Building Reliable Software in a Multi-

Core World", 1st Edition, Artima Incorporation.

[26] Zhang T., Giaccone P., Bianco A., De Domenico S., (2017), "The Role of the

Inter-Controller Consensus in the Placement of Distributed SDN Controllers",

Computer Communications, 113 (C), 1-13.

[27] Web 9, (2012), https://datatracker.ietf.org/doc/html/draft-yin-sdn-sdni-00,

(Accessed: 15/01/2021).

[28] Akyildiz I. F., Lee A., Wang P., Luo M., Chou W., (2016), "Research challenges

for traffic engineering in software defined networks", IEEE Network, 30 (3),

52-58.

[29] Tootoonchian A., Ganjali Y., (2010), "HyperFlow: A Distributed Control Plane

for OpenFlow", Internet Network Management Conference on Research on

Enterprise Networking, 1-3, San Jose, CA, USA, 28-30 April.

[30] Koponen T., Casado M., Gude N., Stribling J., Poutievski L., Zhu M.,

Ramanathan R., Iwata Y., Inoue H., Hama T., Shenker S., (2010), "Onix: A

Distributed Control Platform for Large-scale Production Networks", 9th

USENIX Conference on Operating Systems Design and Implementation, 351–

364, Vancouver, BC, Canada, 4-6 October.

[31] Agarwal S., Kodialam M., Lakshman T. V, (2013), "Traffic engineering in

software defined networks", IEEE INFOCOM, 2211–2219, Turin, Italy, 14-19

April.

[32] Gvozdiev N., Karp B., Handley M., (2014), "FUBAR: Flow Utility Based

Routing", 13th ACM Workshop on Hot Topics in Networks, 1–7, Los Angeles,

CA, USA, 27-28 October.

[33] Vissicchio S., Vanbever L., Rexford J., (2014), "Sweet Little Lies: Fake

Topologies for Flexible Routing", Proceedings of the 13th ACM Workshop on

Hot Topics in Networks, 1–7, Los Angeles, CA, USA, 27-28 October.

[34] Kohler T., Dürr F., Rothermel K., (2017), "ZeroSDN: A Highly Flexible and

Modular Architecture for Full-Range Network Control Distribution",

ACM/IEEE Symposium on Architectures for Networking and Communications

Systems (ANCS), 25–37, Beijing, China, 18-19 May.

[35] Lin P., Bi J., Hu H., (2012), "ASIC: An Architecture for Scalable Intra-Domain

Control in OpenFlow", 7th International Conference on Future Internet

Technologies, 21–26, Seoul, Korea, 11-12 September.

[36] Hassas Yeganeh S., Ganjali Y., (2012), "Kandoo: A Framework for Efficient

and Scalable Offloading of Control Applications", First Workshop on Hot

Topics in Software Defined Networks, 19–24, Helsinki Finland, 13 August.

87

[37] Ahmed R., Boutaba R., (2014), "Design considerations for managing wide area

software defined networks", IEEE Communications Magazine, 52 (7), 116-

123.

[38] Lopez-Rodriguez F., Campelo D. R., (2014), "A robust SDN network

architecture for service providers", IEEE Global Communications Conference

(GLOBECOM), 1903–1908, Austin, TX, USA, 8-12 December.

[39] Wang J., Shou G., Hu Y., Guo Z., (2016), "A Multi-Domain SDN Scalability

Architecture Implementation Based on the Coordinate Controller",

International Conference on Cyber-Enabled Distributed Computing and

Knowledge Discovery (CyberC), 494–499, Chengdu, Sichuan, China, 13-15

October.

[40] Yu M., Rexford J., Freedman M. J., Wang J., (2010), "Scalable flow-based

networking with DIFANE", SIGCOM Computer Communication Review, 40

(4), 351-362.

[41] Hu Y., Wang W., Gong X., Que X., Cheng S., (2012), "BalanceFlow: Controller

load balancing for OpenFlow networks", 2nd IEEE International Conference on

Cloud Computing and Intelligence Systems, 780–785, Hangzhou, China, 30

October-1 November.

[42] Othman M. M. O., Okamura K., (2013), "Enhancing Control Model to Ease Off

Centralized Control of Flow-Based SDNs", 37th Annual IEEE Computer

Software and Applications Conference, 467–470, Kyoto, Japan, 22-26 July.

[43] Jain S., Kumar A., Mandal S., Ong J., Poutievski L., Singh A., Venkata S.,

Wanderer J., Zhou J., Zhu M., Zolla J., Hölzle U., Stuart S., Vahdat A., (2013),

"B4: Experience with a Globally-deployed Software Defined Wan",

SIGCOMM Computer Communications Review, 43 (4), 3-14.

[44] Wang J. M., Wang Y., Dai X., Bensaou B., (2014), "SDN-based multi-class

QoS-guaranteed inter-data center traffic management", 3rd IEEE International

Conference on Cloud Networking (CloudNet), 401–406, Luxembourg, 8-10

October.

[45] Stefano A. D., Cammarata G., Morana G., Zito D., (2015), "A4SDN - Adaptive

Alienated Ant Algorithm for Software-Defined Networking", 10th International

Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC),

344–350, Krakow, Poland, 4-6 November.

[46] Cammarata G., Stefano A. D., Morana G., Zito D., (2016), "Evaluating the

Performance of A4SDN on Various Network Topologies", 2016 IEEE

International Parallel and Distributed Processing Symposium Workshops

(IPDPSW), 801–808, Chicago, IL, USA, 23-27 May.

[47] Tomovic S., Lekic N., Radusinovic I., Gardasevic G., (2016), "A new approach

to dynamic routing in SDN networks", 18th Mediterranean Electrotechnical

88

Conference (MELECON), 1–6, Lemesos, Cyprus, 18-20 April.

[48] Wang Z., Crowcroft J., (1996), "Routing algorithms for supporting resource

reservation", Computer Networks, 52 (15), 2988-3006.

[49] Kodialam M., Lakshman T. V, (2000), "Minimum interference routing with

applications to MPLS traffic engineering", Nineteenth Annual Joint Conference

of the IEEE Computer and Communications Societies, 884–893, Tel Aviv,

Israel, 26-30 March.

[50] Boutaba R., Szeto W., Iraqi Y., (2002), "DORA: Efficient Routing for MPLS

Traffic Engineering", Journal of Network and Systems Management, 10 (3),

309–325.

[51] Luo M., Zeng Y., Li J., Chou W., (2015), "An adaptive multi-path computation

framework for centrally controlled networks", Computer Networks, 83, 30-44.

[52] Tuncer D., Charalambides M., Clayman S., Pavlou G., (2015), "Adaptive

Resource Management and Control in Software Defined Networks", IEEE

Transactions on Network and Service Management, 12 (1), 18-33.

[53] Wang C., Hu B., Chen S., Li D., Liu B., (2017), "A Switch Migration-Based

Decision-Making Scheme for Balancing Load in SDN", IEEE Access, 5, 4537-

4544.

[54] Tucker R., Baliga J., Ayre R. W. A., Hinton K., Sorin W. V, (2008), "Energy

consumption in IP networks", 34th European Conference on Optical

Communication (ECOC), 1, Brussels, Belgium, 21-25 September.

[55] Heller B., Seetharaman S., Mahadevan P., Yiakoumis Y., Sharma P., Banerjee

S., McKeown N., (2010), "ElasticTree: Saving Energy in Data Center

Networks", 7th USENIX Conference on Networked Systems Design and

Implementation, 249-264, San Jose, CA, USA, 28-30 April.

[56] Gupta M., Singh S., (2003), "Greening of the Internet", Conference on

Applications, Technologies, Architectures, and Protocols for Computer

Communications, 19–26, Karlsruhe, Germany, 25-29 August.

[57] Zemmouri S., Vakilinia S., Cheriet M., (2016), "Let’s adapt to network change:

Towards energy saving with rate adaptation in SDN", 12th International

Conference on Network and Service Management (CNSM), 272–276,

Montreal, QC, Canada, 31 October-4 November.

[58] Wang R., Jiang Z., Gao S., Yang W., Xia Y., Zhu M., (2014), "Energy-aware

routing algorithms in Software-Defined Networks", 15th IEEE International

Symposium on A World of Wireless, Mobile and Multimedia Networks

(WoWMoM), 1–6, Sydney, NSW, Australia, 19 June.

[59] Thaenchaikun C., Jakllari G., Paillassa B., Panichpattanakul W., (2016),

"Mitigate the load sharing of segment routing for SDN green traffic

89

engineering", 2016 International Symposium on Intelligent Signal Processing

and Communication Systems (ISPACS), 1–6, Phuket, Thailand, 24-27 October.

[60] Celenlioglu M. R., Goger S. B., Mantar H. A., (2011), "An SDN-based energy-

aware routing model for intra-domain networks", 2014 22nd International

Conference on Software, Telecommunications and Computer Networks

(SoftCOM), 61–66, Split, Croatia, 17-19 September.

[61] Razmnoush R., Bakhshi B., (2016), "Green traffic engineering in SDN", 24th

Iranian Conference on Electrical Engineering (ICEE), 693–698, Shiraz, Iran,

10-12 May.

[62] Fernández-Fernández A., Cervelló-Pastor C., Ochoa-Aday L., (2017), "A

Multi-Objective Routing Strategy for QoS and Energy Awareness in Software-

Defined Networks", IEEE Communications Letters, 21 (11), 2416-2419.

[63] Bolla R., Bruschi R., Davoli F., Gregorio L. Di, Donadio P., Fialho L., Collier

M., Lombardo A., Recupero D. R., Szemethy T., (2013), "The Green

Abstraction Layer: A Standard Power-Management Interface for Next-

Generation Network Devices", IEEE Internet Computing, 17 (2), 82-86.

[64] Bruschi R., Lombardo A., Morabito G., Riccobene V., Bolla R., Davoli F.,

Lombardo C., (2014), "Green extension of OpenFlow", 26th International

Teletraffic Congress (ITC), 1–6, Karlskrona, Sweden, 9-11 September.

[65] Awad M. K., Rafique Y., Alhadlaq S., Hassoun D., Alabdulhadi A., Thani S.,

(2016), "A greedy power-aware routing algorithm for software-defined

networks", IEEE International Symposium on Signal Processing and

Information Technology (ISSPIT), 268–273, Limassol, Cyprus, 12-14

December.

[66] Gomes R. L., Bittencourt L. F., Madeira E. R. M., Cerqueira E., Gerla M.,

(2016), "State-aware allocation of reliable Virtual Software Defined Networks

based on bandwidth and energy", 13th IEEE Annual Consumer

Communications Networking Conference (CCNC), 411–416, Las Vegas, NV,

USA, 9-12 January.

[67] Hu Y., Luo T., Wang W., Deng C., (2016), "GreSDN: Toward a green software

defined network", 18th Asia-Pacific Network Operations and Management

Symposium (APNOMS), 1–6, Kanazawa, Japan, 5-7 October.

[68] Rahnamay-Naeini M., Baidya S. S., Siavashi E., Ghani N., (2016), "A traffic

and resource-aware energy-saving mechanism in software defined networks",

2016 International Conference on Computing, Networking and

Communications (ICNC), 1–5, Kauai, HI, USA, 15-18 February.

[69] IEEE802.1Q, (1999), "IEEE Standards for Local and Metropolitan Area

Networks: Virtual Bridged Local Area Networks", IEEE.

[70] MPLS, (2001), "Multiprotocol Label Switching Architecture", "Multiprotocol

90

Label Switching Architecture", IETF.

[71] SEGROU, (2018), "Segment Routing Architecture", IETF.

[72] Eppstein D., (1999), "Finding the K Shortest Paths", SIAM J. Comput., 28 (2),

652–673.

[73] Abe J. O., Mantar H. A., Yayimli A. G., (2015), "k-Maximally Disjoint Path

Routing Algorithms for SDN", IEEE International Conference on Cyber-

Enabled Distributed Computing and Knowledge Discovery (CyberC), 499–508,

Xi'an, China, 17-19 September.

[74] Fleszar K., Mnich M., Spoerhase J., (2016), "New Algorithms for Maximum

Disjoint Paths Based on Tree-Likeness", 24th Annual European Symposium on

Algorithms (ESA), 433–461, Aarhus, Denmark, 22-24 August.

[75] Ciampa M., (2009), "CompTIA Security+ 2008 in Depth", 1st Edition, Cengage

Learning PTR.

[76] SHS, (2012), "Secure Hash Standard - SHS: Federal Information Processing

Standards Publication 180-4", National Institute of Standards and Technology.

[77] Web 10, (2013), "OpenFlow Specifications v.1.3.3", https://www.

opennetworking. org/images/stories/downloads/sdn-resources/onf-specifica

tions /openflow/open flow-spec-v1.3.3.pdf, (Accessed: 15/01/2021).

[78] Lantz B., Heller B., McKeown N., (2010), "A Network in a Laptop: Rapid

Prototyping for Software-defined Networks", 9th ACM SIGCOMM Workshop

on Hot Topics in Networks, 1-6, Monterey, California, USA, 20-21 October.

[79] Pfaff B., Pettit J., Koponen T., Jackson E. J., Zhou A., Rajahalme J., Gross J.,

Wang A., Stringer J., Shelar P., Amidon K., Casado M., (2015), "The Design

and Implementation of Open vSwitch", 12th USENIX Conference on

Networked Systems Design and Implementation, 117–130, Oakland, CA, USA,

4-5 May.

[80] Web 11, (2002), http://www.postel.org/tg/, (Accessed: 15/01/2021).

[81] Mills D. L., Braun H., (1987), "The NSFNET Backbone Network", SIGCOMM

Computer Communication Review, 17 (5), 191–196.

[82] Claffy K. C., Braun H.-W., Polyzos G. C., (1994), "Tracking Long-term Growth

of the NSFNET", Communications of the ACM, 37 (8), 34-45.

[83] Web 12, (2015), http://www.caida.org/data/realtime/passive/?monitor=eq

uinix-chicago-dirA/, (Accessed: 29/03/2015).

[84] Web 13, (2015), http://www.caida.org/data/realtime/passive/?monitor=eq

uinix-chicago-dirB/, (Accessed: 29/03/2015).

91

[85] Web 14, (2015), http://www.caida.org/data/realtime/passive/?monitor=eq

uinix-sanjose-dirA/, (Accessed: 29/03/2015).

[86] Web 15, (2015), http://www.caida.org/data/realtime/passive/?monitor=eq

uinix-sanjose-dirB/, (Accessed: 29/03/2015).

[87] Jiang J. R., Huang H. W., Liao J. H., Chen S. Y., (2014), "Extending Dijkstra’s

shortest path algorithm for software defined networking", The 16th Asia-Pacific

Network Operations and Management Symposium, 1–4, Hsinchu, Taiwan, 17-

19 September.

93

APPENDICES

Appendix A: Publications Based on this Thesis

International Journal Publications

Celenlioglu M. R., Tuysuz M. F., Mantar H. A., (2018), “An SDN‐based scalable

routing and resource management model for service provider networks”, International

Journal of Communication Systems, 31 (8), 1-22.

Celenlioglu M. R., Mantar H. A., (2021), “Energy aware adaptive resource

management model for software‐defined networking‐based service provider

networks”, IET Network, 1-13.

International Conference Publications

Celenlioglu M. R., Goger S. B., Mantar H. A., (2014), "An SDN-based energy-aware

routing model for intra-domain networks", 22nd International Conference on

Software, Telecommunications and Computer Networks (SoftCOM), 61–66, Split,

Croatia, 17-19 September.

Celenlioglu M. R., Mantar H. A., (2014), "A scalable routing and admission control

model in SDN-based networks", ACM/IEEE Symposium on Architectures for

Networking and Communications Systems (ANCS), 231-232, Marina del Rey, CA,

20-21 October.

Celenlioglu M. R., Mantar H. A., (2015), "An SDN Based Intra-Domain Routing and

Resource Management Model", IEEE International Conference on Cloud Engineering,

347-352, Tempe, AZ, USA, 9-13 March.

Celenlioglu M. R., Alsadi M., Mantar H. A., (2015), "Design, implementation and

evaluation of SDN-based resource management model", 7th International Conference

on New Technologies, Mobility and Security (NTMS), 1-5, Paris, France, 27-29 July.

