T.R.
GEBZE TECHNICAL UNIVERSITY
GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

SCALABLE ROUTING AND
RESOURCE MANAGEMENT MODEL
FOR SDN-BASED NETWORKS

MAHMUD RASIH CELENLIiOGLU
A THESIS SUBMITTED FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
DEPARTMENT OF COMPUTER ENGINEERING

GEBZE
2021

T.R.
GEBZE TECHNICAL UNIVERSITY
GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

SCALABLE ROUTING AND
RESOURCE MANAGEMENT MODEL
FOR SDN-BASED NETWORKS

MAHMUD RASIiH CELENLIOGLU
A THESIS SUBMITTED FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
DEPARTMENT OF COMPUTER ENGINEERING

THESIS SUPERVISOR
PROF. DR. HACI ALI MANTAR

GEBZE
2021

T.C.
GEBZE TEKNIiK UNIVERSITESI
FEN BILIMLERI ENSTITUSU

YAZILIM TABANLI AGLARDA
OLCEKLENEBILIR YONLENDIRME VE
KAYNAK YONETIM MODELI

MAHMUD RASIH CELENLIOGLU
DOKTORA TEZi
BIiLGISAYAR MUHENDISLIiGi ANABILIM DALI

DANISMANI
PROF. DR. HACI ALI MANTAR

GEBZE
2021

P

e

DOKTORA JURi ONAY FORMU

\

GTU Fen Bilimleri Enstitiisii Yénetim Kurulu’nun 29/01/2021 tarih ve
2021/05 sayil1 karariyla olusturulan jiiri tarafindan 01/02/2021 tarihinde tez savunma
sinavi yapilan Mahmud Rasih CELENLIOGLU’nun tez calismasi Bilgisayar
Miihendisligi Anabilim Dalinda DOKTORA tezi olarak kabul edilmistir.

JURI
UYE
(TEZ DANISMANI) : Prof.Dr. Hac1 Ali MANTAR

UYE : Prof.Dr. Hasari CELEBI

UYE : Do¢.Dr. M. Kemal OZDEMIR

UYE : Dog.Dr. Didem GOZUPEK

UYE - Prof.Dr. Fatih ALAGOZ
ONAY

Gebze Teknik Universitesi Fen Bilimleri Enstitiisi YOnetim Kurulu’nun

........ [eeeoooid ... tarth ve/......... sayil1 karar1.

IMZA/MUHUR

SUMMARY

The volume and diversity of Internet traffic have increased significantly in recent
years with the proliferation of mobile devices and networking technologies. Service
Providers (SPs) are now striving to make resource management considering recent
trends in networking. In this context, Software Defined Networking (SDN) has been
alluring the attention of SPs as it provides virtualization, programmability, ease of
management, and so on. Yet, severe scalability issues are one of the key challenges of
the SDN due to its centralized architecture. First, the SDN controller may become the
bottleneck as the number of flows and switches increases. It is because routing and
admission control decisions are made per-flow basis by the controller. Second, there
is a signaling overhead between the controller and switches since the controller makes
decisions on behalf of them.

This thesis proposes an SDN-based scalable routing and energy-aware resource
management model (SRRM) for SPs. The proposed model is two-fold. Firstly, it
performs routing, admission control, and signaling operations (RASOS) in a scalable
manner. Secondly, the controller performs three resource management operations,
which are energy-saving, load balancing, route capacity resizing both to save energy
and increase bandwidth utilization. To achieve these goals, the model exploits pre-
computed routes (PCRs) between each edge pairs in the domain. Experimental results
show that the proposed model can successfully perform RASOs in a scalable way,

saves energy, and increases link utilization even under heavy traffic loads.

Key Words: Key Words: Software Defined Networking, Resource Management,
Energy Saving, Load Balancing, Pre-computed Routes, Scalability, Routing,

Optimization

OZET

Son yillarda mobil cihazlarin ve ag teknolojilerinin yayginlagmasiyla Internet
trafiginin hacmi ve ¢esitliligi 6nemli 6l¢iide artmistir. Servis Saglayicilar (SS) ag
yonetimindeki son egilimleri géz Oniinde bulundurarak kaynak yonetimi yapmaya
calismaktadirlar. Bu baglamda, Yazilim Tanimli Aglar (YTA) sanallastirma,
programlama, yonetim kolayligi vb. ozellikleri sagladigi i¢in SS’in dikkatini
cekmektedir. Her ne kadar YTA’in pek cok avantaji olsa da merkezi mimarisi
nedeniyle ciddi olgeklenebilirlik sorunlar1 vardir. Ilk olarak, akislarin ve
yonlendiricilerin sayisi arttik¢a ag yoneticisi darbogaz haline gelebilir. Bunun nedeni,
ag yoneticisinin yonlendirme ve kabul kontrol kararlarinin akis bazinda almasidir.
Ikinci olarak, ag ydneticisinin yonlendiriciler adina karar vermesi ve bu karar1 anlara
iletmesi sebebiyle bu iki ag elemani arasinda sinyalizasyon yiikii olusmaktadir.

Yukarida bahsedilen 6lgeklenebilir ag yonetim modeli ihtiyacina istinaden bu
tez, SS i¢in YTA ile dl¢eklenebilir yonlendirme ve enerjiye duyarl kaynak yonetimi
modeli (SRRM) énermektedir. Onerilen model iki yonliidiir. i1k olarak, &nerilen model
Olceklenebilir yonlendirme, kabul denetimi ve sinyallesme (YKS) islemlerini
gerceklestirir. Tkinci olarak, ag yoneticisi enerji tasarrufu, yiik dengeleme ve kapasite
boyutlandirma mekanizmalariyla hem enerji tiilketimini azaltabilir hem de bant
genisligi kullanimini artirabilir. Ag yoneticisi bu operasyonlar1 gergeklestirmek igin,
agdaki giris-cikis yonlendirici ikilisi arasinda énceden belirlenmis yollar (OKY) kurar.
Deneysel sonuglar, onerilen modelin YKS islemlerini 6lceklenebilir bir sekilde
basariyla gerceklestirebildigini, enerji tasarrufu sagladigini ve yogun trafik yiikleri

altinda bile verimli kullanimin1 artirdigini gostermektedir.

Anahtar Kelimeler: Yazihm Tabanh Aglar, Ag Kaynak Yonetimi, Enerji
Tasarrufu, Yuk Dengeleme, Coklu Kurulu Yollar, Olgeklenebilirlik,

Yonlendirme, Optimizasyon.

Vi

ACKNOWLEDGEMENTS

First of all, I would like to thank my supervisor Hact Ali MANTAR. He has been
a great advisor throughout my studies. | will always be grateful to him for giving me
this opportunity. Without his guidance and expertise, it would have been impossible
to develop the ideas presented in this thesis.

I am also thankful to Fatih TUYSUZ, who shared his experiences and assistance
through the thesis. All my colleagues in the Department of Computer Engineering at
Gebze Technical University also deserve a thank you for their valuable support.

Last but not least, | want to express my greatest gratitude to my beloved wife
Seyma CELENLIOGLU. She was always there for me when I need her assistance of
any kind. | also want to express my love to my dear little son Muhammed Ali
CELENLIOGLU. Although he did not make my days and nights any easier, he always
relieved my stress with his warm smiles. I want to thank Mustafa CELENLIOGLU
and Abdurrahman DELIPOYRAZ for their continuous support along this journey.
They were interested in my research and helped to expand my vision. | want to thank
Semra CELENLIOGLU and Sura DELIPOYRAZ for their unending patience during
taking care of me and my family while | was studying. I also thank my all brothers,
sisters, and their families. Without their support, affection, and encouragement, I am

sure | would not be here right now.

vii

TABLE of CONTENTS

Page

SUMMARY Y
OZET Vi
ACKNOWLEDGEMENTS vii
TABLE of CONTENTS viil
LIST of ABBREVIATIONS and ACRONYMS X
LIST of FIGURES Xii
LIST of TABLES Xiv
1. INTRODUCTION 15
2. SOFTWARE DEFINED NETWORKING 19
3. LITERATURE REVIEW 22
3.1. Control Plane Scalability 22
3.2. Control Plane Scalability and Load Balancing 25
3.3. Energy Efficiency 29
4. SCALABLE ROUTING AND RESOURCE MANAGEMENT 34
4.1. Overview of the Architecture 34
4.2. Virtual Network 36
4.3. Controller Design 38
4.4. Admission Control and Routing 39
4.5. Load Balancing 42
4.6. Route Resizing 46
4.7. Signaling 48

5. ENERGY AWARE RESOURCE MANAGEMENT 50
6. IMPLEMENTATION DETAILS 54
6.1. Databases o4
6.2. Route Management Module 54
6.2.1. Route Establishment 54

6.2.2. Packet Forwarding 56

6.3. Routing and Admission Control Module 57
6.4. Information Collection Module 57

viii

6.5.
6.6.
6.7.
6.8.

Load Balancing Module
Route Resizing Module
Energy Saving Module

Inter Controller Communication Module

7. EXPERIMENTAL RESULTS

7.1.
7.2.
7.3.
7.4.
7.5.
7.6.
7.7.
7.8.

7.9.

Effect of Route Number on Load Balancing Performance

Effect of Periodic Execution on Load Balancing Performance

Effect of Threshold-based Execution on Load Balancing Performance
Load Balancing Performance under Various Traffic Loads

Load Balancing Performance for Various Topologies

Load Balancing Performance Comparison

Admission Control Performance

Effects of Route Number per Pair and Traffic Load on Energy Saving
Performance

Effect of Connectivity on Energy Saving Performance

7.10. Comparison of Energy Saving Performance

7.11. Comparison of Load Balancing Performance
8. CONCLUSION

REFERENCES
BIOGRAPHY
APPENDICES

58
58
60
60
61
64
65
66
68
69
71
72
74

77
78
81
83

84
92
93

LIST of ABBREVIATIONS and ACRONYMS

Acronyms and

Descriptions

Abbreviations
AL
CAIDA
CAPEX
CL

CSS
DPID
EP
ERMA
ESM
ESS
ETSI
FPTAS
GA
HMA
ICCM
ICM
ICT

IL

ILP

ISS

loT
LAN
LBM
LRA
LSDB
MILP
NDF
NSFNET
OPEX

. Application Layer

. Center for Applied Internet Data Analysis
. Capital Expenditure

. Control Layer

. Core SDN Switch

Datapath Identifier

Edge Pair

Energy Aware Route Management Algorithm
Energy Saving Module

Egress SDN Switch

European Telecommunications Standards Institute

Fully Polynomial Time Approximation Scheme

. Genetic Algorithm

Hash-based Modulo-p Assignment Module
Inter Controller Communication Module
Information Collection Module
Information and Communication Technology
Infrastructure Layer

Integer Linear Programming

Ingress SDN Switch

Internet of Things

Local Area Network

Load Balancing Module

Link Rate Adaptation

Link State Database

Mixed Linear Integer Problem

Network Description File

National Science Foundation Network

. Operational Expenditure

X

PCR
PD
PDV
PNR
PP
RACM
RID
RMM
RRM
RSDB
RUR
SDN
SP
SPN
SR
SRRM
VLAN
WAN

Pre-computed Routes

Power Down

Pivot Distance Value

Passive Neighbor Ratio

Pivot Point

Routing and Admission Control Module
Route Identifier

Route Management Module
Route Resizing Module
Route State Database

Route Utilization Ratio
Software Defined Networking
Service Provider

Service Provider Network
Segment Routing

Scalable Routing and Resource Management Model

. Virtual Local Area Network
. Wide Area Networks

Xi

LIST of FIGURES

Figure No: Page
2.1: Overview of the SDN Architecture. 19
4.1: Overview of the proposed model. 35
4.2: lllustration of the virtual network obtained from the above network. 36
7.1: ustration of NSFNET topology. 61
7.2: lllustration of Net-M. 62
7.3: lllustration of Net-L. 62
7.4: Traffic pattern of March 29-30 2015 UTC taken from CAIDA. 63
7.5 :The core link utilizations in time for different number of routes. 64
7.6: The core link utilizations of P2 in time for various load balancing periods. 65
7.7: The core link utilizations of P5 in time for various load balancing periods. 66
7.8: The core link utilizations of P2 in time for various load balancing periods. 67
7.9: The core link utilizations of P2 in time for various load balancing periods. 68
7.10: The core link utilizations for various traffic loads. 69
7.11: Equalization of route costs for NSFNET under moderate traffic load. 70
7.12: Equalization of route costs for Net-M under moderate traffic load. 70
7.13: Equalization of route costs for Net-L under moderate traffic load. 71
7.14: Comparison of load balancing performance of models. 71
7.15: Comparison of admission control time performance of models. 73
7.16: Comparison of flow acceptance rate performance of models. 73
7.17: Active link ratios for P2 under various traffic loads. 74
7.18: Active link ratios for P5 under various traffic loads. 75
7.19: Active switch ratios for P2 under various traffic loads. 75
7.20: Active switch ratios for P5 under various traffic loads. 76
7.21: Active link ratios of 3 topologies having 2 routes per pair under moderate 77
traffic load.
7.22: Active switch ratios of 3 topologies having 2 routes per pair under moderate 78
traffic load.
7.23: Comparison of energy saving performance based on active link ratio for P2. 79
7.24: Comparison of energy saving performance based on active link ratio for P5. 79

Xii

7.25: Comparison of energy saving performance based on active switch ratio for
P2.

7.26: Comparison of energy saving performance based on active switch ratio for
P5.

7.27: Comparison of load balancing performance for P2.

7.28: Comparison of load balancing performance for P5.

Xiii

82
82

LIST of TABLES

Table No: Page

3.1: Comparison of the SRRM to the Existing Works with Respect to Scalability. 25

3.2: Comparison of SRRM to the Existing Works with respect to Control Plane 29
Scalability and Load Balancing.

4.1: Summary of Notations. 37
4.2: Routing Algorithm. 41
4.3: Admission Control Algorithm. 42
4.4: Load Balancing Algorithm. 44
4.5: Load Balancing Algorithm (Contd.). 45
4.6: Load Balancing Algorithm (Contd.). 46
4.7: Route Capacity Resizing Algorithm. 47
4.8: Route Capacity Resizing Algorithm (Contd.). 48
5.1: Possible Energy State Changes of Routes. 52
5.2: Energy Saving Algorithm. 53
6.1: Route-link Matrix of Virtual Network. 59

Xiv

1. INTRODUCTION

Advancements in both wired and wireless networks, the proliferation of mobile
devices and applications have changed the way we use the Internet. Within the last two
decades, there are applications and services such as e-commerce, on-line gaming,
social media, cloud services, and the Internet of Things (10T). Accordingly, the volume
of Internet traffic has increased, and the Internet traffic characteristic has differentiated
dynamically [1]-[3]. Service Providers (SPs) usually serve their network resources
such as bandwidth in full capacity to satisfy diverse user demands and accommodate
traffic bursts. Network devices such as routers and switches are active all the time,
even if network traffic is relatively low compared to peak times [4]. This results in 2-
7% of the World's electricity consumption in Information and Communication
Technologies (ICTs) [5][6]. The energy consumption of ICTs has been growing by 3%
every year [7]. Besides, SPs purchase specialized hardware and software to meet the
diverse needs of customers. The management of such networks become complex and
costly. Thus, SPs need smart network management systems that not only increase
resource utilization but also decrease energy consumption.

Software-Defined Networking (SDN) [8] is a new networking paradigm that
emerged to satisfy today's networking demands. It separates control and data planes to
provide centralized management, virtualization, agility, programmability, and
efficiency. The Infrastructure Layer (data plane) is responsible for performing actions
of forwarding and dropping, but not limited to them. Control Layer (control plane) is
logically centralized and performs decision-making on behalf of the entities in the data
plane. The Application Layer contains applications and services that manage the
network. The separation of control and forwarding functions of SDN allows the
network control to be programmable, brings intelligence to the network with
centralized management, simplifies network design, and allows switch management
through open standards. Therefore, the abilities of the SDN allure the attention of SPs.
Service providers aim to increase resource utilization, decrease operational costs as
well as increase customer satisfaction.

Although SDN has many benefits, there are several scalability problems due to
the centralized control plane [9]. First of all, the SDN controller is the only entity that

15

decides on behalf of all the underlying switches. As the SDN controller makes per-
flow basis on-line decisions, it may become a bottleneck in terms of decision-making
[10], [11]. Besides, the SDN controller must communicate with all the underlying
switches to keep the network state up to date, install new rules, update, or delete the
existing rules, etc. This procedure may also result in signaling scalability issue [12].
As a result, using SDN-based network management models in SPNs is challenging
due to the scalability problems.

Several works solely address the scalability issues of the control plane in SDN-
based SPNs. In these studies, the control plane is distributed, hierarchical, or both.
There are also several works that focus on SDN-based resource management. These
works either perform traffic load balancing to increase resource utilization or energy-
saving both to decrease costs and protect the environment. The works that focus on
load balancing distribute the network traffic as fairly as possible among links. Others
that focus on energy saving aggregate network traffic to put as many links and switches
as possible into sleep mode. Therefore, these two operations are usually considered as
opposite. It is still an open issue how to perform routing, admission control, and
signaling in a scalable manner as well as energy-aware resource management.

In this dissertation, we design, implement, and evaluate our SDN-based scalable
routing and resource management model (SRRM) for SPNs. Our model relies on a
central controller and several pre-computed routes (PCRs) between edge nodes. PCRs
abstract the complex physical network to a simple virtual one. The virtual network
consists of ingress, egress switches, and PCRs. The proposed controller performs
routing, admission control, signaling, and resource management operations based on
the virtual network. In terms of routing and admission control, the controller does not
perform on-line route computation. Instead, it checks the availability of resources and
routes the flow to an available route of the corresponding edge pair. In terms of
resource management, our model utilizes the trade-off between energy saving and load
balancing. To the best of our knowledge, this is the first work in literature that energy-
saving and load balancing operations work in harmony. To make this happen, we
introduce a trade-off value that determines the importance of these two operations
against each other. If trade-off value favors energy-saving, the controller aggregates
edge traffic into fewer routes and puts unutilized network elements such as links and
switches into sleep mode. If the trade-off value favors load balancing, the controller

16

saves less energy and focuses on distributing the traffic among routes. In line with the
explanations above, we list the contributions of the dissertation below.

e The controller performs routing, admission control, signaling in a scalable
manner exploiting pre-computed routes. The controller only takes two related
edge switches into account, instead of considering all the switches in the data
plane. Also, the controller only installs flow rules to corresponding edge pairs.
Therefore, routing, admission control, and signaling become independent from
switch size.

e To the best of our knowledge, this is the first work in the literature that exploits
the trade-off between load balancing and energy saving. We show that these two
mechanisms can work together in harmony. The network administrator adjusts
the level of energy-saving concerning utilization. The energy-saving mechanism
aggregates the traffic based on this level. The controller puts the unused network
elements into sleep mode. Subsequently, it balances the pair load taking active
routes into account. Therefore, the controller both saves energy at some level
and performs load balancing at the same time.

e \We propose a novel adaptive load balancing mechanism. It performs edge pair-
based load balancing. This so-called local load balancing, in turn, converges to
global (network-wide) load balancing. Besides, our load balancing mechanism
takes the current network load into account.

e We propose a novel route capacity resizing mechanism. This mechanism
improves the resource utilization further especially in the case of heavy network
load.

e The controller can communicate with data plane elements over the modified
OpenFlow [13] protocol to put them into sleep and to wake them up.

e The proposed model can be applied to non-SDN-based SPNs by replacing

switches on the edge with SDN-capable ones.

The rest of this dissertation is organized as follows. Section 2 describes SDN in
details. Section 3 discusses related works. Section 4 presents the scalable routing and
resource management mechanisms of the proposed model. Section 5 present the novel

energy saving mechanism of the proposed model. Section 6 presents implementation

17

details of the proposed model. Section 7 presents experimental results and the
evaluation. Finally, the work is concluded in Section 8.

18

2. SOFTWARE DEFINED NETWORKING

Application Layer

Applications

?

Northbound API

v

Control Layer
Y Controller

Signaling Protocol (e.g., OpenFlow)

Infrastructure Layer

Figure 2.1: Overview of the SDN Architecture.

SDN is the new networking architecture that decouples the layers of traditional
networking architecture. The layers of SDN are Infrastructure, Control, and
Application as depicted in Figure 2.1. There are also Northbound, Southbound,
East/Westbound interfaces.

The Application Layer (AL) is the top layer in the SDN stack. A wide variety of
network management applications such as routing, load balancing, firewall, intrusion
detection/prevention, policy enforcement, etc. reside in this layer. The northbound
interface resides between application and control layer provides an abstraction.
Currently, there is no standard for this interface. Some control plane entities (a.k.a.
controllers such as ONOS [14], OpenDaylight [15], Floodlight [16]) use REST API
for communication with the top layer. Besides, there are also programming languages
such as Frenetic [17], Procera [18], Pyretic [19] that allow implementing applications
in the top layer. These applications require attention because any kind of bug, security

hole, misconfiguration, etc. may cause unintended, and severe operational cost.

19

The Control Layer (CL) resides in the middle of the SDN stack. It has a global
network view and responsible for managing the network. CL serves to the AL via the
Northbound interface as mentioned in the previous paragraph. This layer is logically
centralized, but it consists of one or more controllers. Thus, it can be both distributed
and/or hierarchical. In the distributed control layer, there are multiple controllers each
of which manages only a specified part of the network. In the hierarchical control layer,
there are at least two levels of controllers, called bottom and top level. Bottom level
controllers communicate with both the data layer elements and controllers on the upper
layer. Top-level controllers communicate with both the applications on the Application
layer and lower-level controllers. The communication between the control and
infrastructure layer happens via a signaling protocol such as OpenFlow [13], [20],
ForCES [21], and NETCONF [22]. OpenFlow is the de facto signaling protocol in
SDN. East/Westbound interfaces allow controllers to communicate with each other.
Currently, there is no standard for inter SDN controller communication. Controllers
exploit schemes [23], [24], and toolkits [25], [26] for data exchange between each
other. There is also an Internet-Draft called SDNi for inter controller communication
[27].

The Infrastructure Layer (IL) contains programmable switches. These switches
can be both software and hardware. Switches are responsible for the forwarding of the
packets as routing functionality is shifted to the control layer. They are also capable of
signaling with controllers in the upper layer via southbound interface. An OpenFlow
SDN switch has one or more flow tables. A flow table consists of match fields, priority,

counters, instructions, timeouts, and a cookie.

o Match Fields: It defines the match rules for incoming packets.

« Priority: It defines the match precedence of the rule among others.

o Counters: Switch updates it if there is a match.

« Instructions: They allow pipeline processing or performing actions on the
packet.

o Timeouts: The flow rule expires after the hard or idle timeout. The hard timeout
defines the lifetime of the flow rule no matter there are matching packets or not.
Idle timeout defines the maximum no match duration of a flow rule.

o Cookie: It is determined by the controller to filter flow statistics, modification,

and deletion.
20

The controller creates a flow entry via sending the OFP_FLOW_MOD
OFPFC_ADD message. Upon receiving a packet from its neighbors, SDN switch
looks up for a matching rule. If there is a match, the SDN switch performs the defined
action in the table. Then, it updates the counters of the rule. Otherwise, the SDN switch
either sends the packet to the controller to learn what to do or drops the packet.

Although SDN has many benefits, there are several shortcomings in terms of
scalability [9], [28]. Firstly, as SDN switches solely forward flow packets, the SDN
controller must decide routing computations and establishment. As the number of
flows increases, the centralized control plane may become a bottleneck in terms of
decision making especially when there is a single controller. Secondly, the centralized
controller must send a request to an SDN switch to receive flow statistics. Thus, the
controller may also become a bottleneck when collecting network wide up-to-date
information in a large-scale network. Thirdly, the controller must perform per-flow
messaging with underlying switches for installing new rules, updating, or deleting the
existing rules, etc. This also may result in a control plane scalability issue especially
when there are many flows and switches. It is still a research challenge how to perform

resource management dynamically in an SPN when there is a single controller.

21

3. LITERATURE REVIEW

In this section, we review the works that address the control plane scalability
issues in terms of decision making and signaling in SDN-based works. We also review
the studies that perform load balancing and energy efficiency.

3.1. Control Plane Scalability

The works in [29] and [30] suggest a distributed control plane structure to
achieve scalability in the control plane. HyperFlow [29] aims to decrease controller
response time through a logically centralized but physically distributed control plane.
Controllers are distributed over the data plane. Authors use Publish/Subscribe model
for state distribution among controllers. In other words, whenever a state change
occurs, the associated controller (publisher) notifies other controllers (subscribers).
Onix [30] is a control platform that runs over distributed servers. It provides control
logic that allows applications to communicate with network elements. Onix also
disseminates network state for consistency among servers. Thus, Onix allows ease of
implementation for application developers using Onix APl and considering
consistency, durability, and scalability trade-offs. Flow-Utility Based Routing
(FUBAR) [31] has a centralized QoS routing approach. In this model, traffic is divided
into several classes. FUBAR periodically measures the traffic matrix and finds several
suitable paths. Then, aggregated flows are divided between corresponding paths to
increase resource utilization. The Fibbing [32] approach combines the flexibility and
centralized management abilities of SDN with the distributed routing of existing
network devices and protocols. Controller fakes routers to direct traffic between paths
using faked link-state information. In this approach, the controller also creates backup
paths for fast fail-over. ZeroSDN [33] addresses the flexibility of distributed
controllers concerning the distribution of control logic. Control logic consists of
lightweight control modules that are called controllers and pushes control logic to
switches. This way they enable local processing and achieve control plane scalability.

Aside from the distributed control plane approach, works proposed in [34], [35]
and [36] provide a hierarchical structure within their control planes to achieve

scalability. ASIC [34] adopts a multi-controller approach to solve scalable intra-
22

domain routing issue in SDN-based large scale networks. The controller in this model
has a layered structure. The load balancer in the first layer only divides incoming data
flow requests to physically distributed controllers residing in the second layer. Routing
is performed in three steps by the chosen controller. First of all, the physical controller
gets the data flow initialization request and global network state. Then, it performs
routing computations to find a suitable path. In this work, routing, admission control,
and signaling are performed in a distributed fashion. Kandoo [35] has two levels of
controllers. The first level of controllers handles local events. A controller in this level
can control one or more switches, and handle frequent events. On the other hand, a
top-level logically centralized controller handles rare events that require a global
network view. In [36], the network is divided into zones, each of which has a zone
manager. A zone manager is responsible for management operations (e.g., flow setup)
within its domain. The network manager is at the top of zone managers, and
responsible for network-wide operations such as abstract topology calculation,
statistics collection, flow management, credential management for applications and
configuration. Unlike previous studies, researchers in [37] propose a network
architecture for service providers to reduce controller response time and provide
routing scalability. In the proposed architecture, incoming flows are classified into four
categories; (i) intra-routing (INR), (ii) MPLS, (iii) QoS, (iv) inter-routing (EXR).
Controller pro-actively installs rules for INR and MPLS to improve scalability.
Controller steps in only for QoS based routing. The work [38] aims to achieve
scalability on multi-domain, multi-vendor SDN-based networks. In this study, there
are several domains each of which is controlled by a local controller. There is also a
controller at the top called Coordinator Controller, which has a global network view
and allows different local controllers to cooperate. Northbound API is unified to
achieve this.

There are also works that address the signaling scalability in SDN-based
networks. DIFANE [39] is a distributed architecture for enterprise networks. There are
two types of switches. Forwarding switches are connected to intermediate switches. If
a forwarding switch receives an unknown packet, it redirects the packet to the
corresponding intermediate switch. The intermediate switch handles the packet and
sends back a response to the forwarding switch to deploy new rules. The controller is
responsible to partition rules among switches. Apart from SDN, intermediate switches

23

also make decisions. Besides, core switches have a heavy load and there is no resource
management performed by the controller or intermediate switches. BalanceFlow [40]
aims to balance signaling traffic in Wide-Area Networks (WAN) using multiple
controllers. In this multi-controller architecture, there is a Super Controller and one or
more regular controllers. Super Controller partitions control traffic load among others
to provide scalability and low delay. It obtains average number of flow requests per
switch and assigns switches to appropriate controllers so as to balance load of
controllers. In [41], authors propose a model that addresses to signaling scalability of
SDN-based networks. In this model, the controller does not install all flow rules to
each switch. Instead of that, it asks switches to propagate the message to the target
switch(es). This provides signaling scalability between controller and switches. The
model uses proactive flows to handle time-critical flows. Controller installs inactive
rules to switches. These rules become active in some cases. Though this model
provides signaling scalability, routing scalability is still an issue. The reason is that
controller must still perform many routing computations for each flow that does not
match with existing rules.

The works mentioned in this part are summarized in the 3.1. In this table, the
Ref header indicates the corresponding works. The Control Plane header indicates the
control plane arhictecture of the works. The letters S, D, and H stand for single,
distributed and hierarchical control planes, respectively. In the single type, there is just
one controller in the network. In the distributed type, there are two or more physically
distributed controllers in the network. In the hierarchical type, there are layers within
the control plane. Each layer has at least one controller. The Network Type header
indicates supported networks that are SDN and Hyrid. SDN networks solely contain
SDN switches. Hybrid works contain both traditional switches/routers and SDN
switches. The Routing header indicates the routing decision types that are online, and
offline. In Online type, the SDN controller performs per flow routing computation. In
Offline type, the SDN controller does not perform per flow routing computation.
Instead, these works usualy exploit static paths. The Signaling header indicates the

works that address to the signaling scalability issue of SDN.

24

Table 3.1: Comparison of the SRRM to the Existing Works with Respect to Scalability.

Control Plane | Network Type Routing Signaling

Ref S D | H | SDN | Hybrid | Online | Offline

29 X X X

30 X X X

31 X X X

32 X X X

33 X X X

34 X | X X X X

35 X | X X X

36 X X X

37 X X X X

38 X X X

39 X X X X

40 X X X

41 X X X X X
SRRM | X X | X X X X

As seen inthe 3.1, most of the works achieve control plane scalability through
multi-controller architecture. Only the work [37] proposes a routing solution for a
single controller. In this work, however, the controller performs both online and offline
routing. In offline routing, the controller routes flows through pre-established routes
for some traffic types such as best-effort. In online routing, controller computes best
path for QoS aware flows. Thus, this work is partially scalable in terms of both routing
and signaling. In comparison, we perform offline routing per flow. Our work also

contains load balancing and energy saving mechanisms.

3.2. Control Plane Scalability and Load Balancing

Some works address both control plane scalability and resource management for
SDN-based networks.
Google reports its experience on SDN-based inter-data center resource

management (B4) in [42]. In B4, each data center site has a set of controllers. Traffic
25

engineering server on top of site controllers gathers topological data from them and
splits the traffic of source-destination site pair over k-shortest paths. The controller in
[43] allocates joint bandwidth for interactive, elastic, and background traffic classes in
inter-data center networks. Controller forces proportional fairness within the same
traffic class to increase resource utilization.

The authors in [44], [45] propose a load balancing algorithm (A4SDN) derived
from the Ant Colony Algorithm. Each packet and switch is treated like an ant and
pheromone, respectively. Ants in A4SDN do not converge to a single optimum path,
but instead, explore the paths with the weakest pheromone. Similarly, the work [46]
also aims to increase resource utilization through load balancing. To do so, the authors
modify three different routing algorithms called SWP [47], MIRA [48], and DORA
[49] for best-effort traffic. Each of these algorithms performs routing based on
estimated available bandwidth in links. MIRA and DORA are suitable for backbone
networks as they take the location of ingress and egress switches into account.

Authors in [50] propose a model for hybrid networks where SDN is partially
applied to an existing network. In this model, there are SDN and non-SDN switches in
the network. SDN switches perform traffic measurement and inform the controller.
The controller also collects network information disseminated by OSPF.
Subsequently, it leverages this information to change the SDN switch tables for traffic
engineering dynamically. To do so, the authors use Fully Polynomial Time
Approximation Scheme (FPTAS). Though the system improves resource utilization,
the controller performs complex tasks to find optimal routing. Thus, it is not scalable
in terms of decision making.

Luo et al. [51] propose a framework (ADMPCF) that computes adaptive multi-
paths for centrally controlled networks. ADMPCEF uses an existing path as long as the
path satisfies the requirements of a flow request. Otherwise, it establishes a new path
by computing and assessing several disjoint multi-path finding algorithms in the
literature. ADMPCF performs parallel execution of those algorithms to achieve
scalability. ADMPCF improves resource utilization through adaptive multi-path
establishment based on topology, link cost, application traffic, and network state.

Tuncer et al. [52] propose an SDN-based management and control framework
for fixed backbone networks. The proposed framework achieves control plane
scalability due to its both hierarchical and distributed architecture. It has local

26

managers (LMs) at the top. Each LM works with one or more local controllers (LCs).
LMs are responsible for implementing the logic of management applications such as
resource utilization. LCs perform a sequence of actions based on the configurations
given by LMs. The authors also propose an adaptive load balancing mechanism by
adjusting traffic split ratios in switches.

The work in [53] aims to achieve both control plane scalability via a distributed
control plane and load balancing through switch migration. The proposed work has a
set of controllers distributed over switches. A controller is responsible for several
switches that reside in the data plane. The proposed work migrates a switch from one
controller (source) to another (destination) in the case when the source controller load
reaches its maximum capacity. Apart from most of the works in the literature, this
study also takes migration efficiency into account and provides a greedy algorithm.

The works [51]-[53] address both control plane scalability and resource
management. ADMPCF uses a number of algorithms that work in concert with an
adaptive fashion to perform global routing and optimum resource allocation. This
makes ADMPCF complex in terms of implementation. Besides, ADMPCF achieves
control plane scalability through parallel execution of algorithms used in the
framework. In other words, the control plane scalability of ADMPCF depends on the
processing power of the system (e.g., cluster of servers). ADMPCF also does not
perform admission control, and this may cause over-utilization of resources.
Moreover, ADMPCEF has partial signaling scalability due to the fact that the controller
has to deploy multi-path rules to all the switches along paths if existing paths do not
satisfy flow constraints. The framework presented in [52] also has several drawbacks.
First of all, the proposed framework requires several controllers and also managers to
achieve control scalability due to both hierarchical and distributed control plane
architecture. This may increase the CAPEX and OPEX of SPs. Additionally, there
appear different communication overheads such as LMO-LCO, LMO-LM, LCO-LC,
and LM-LC apart from the controller to switch communication, although controller-
switch communication scalability is achieved by reducing the number of switches per
controller. Authors also state that communication overhead in management substrate
depends on its topology. Moreover, the proposed framework includes a simple
communication protocol, yet the details are not provided. Thus, there may appear

integration problems in the case of an environment that contains heterogeneous local

27

controllers and managers. Finally, the proposed framework requires modification of
switches for adjusting traffic split ratios based on a hashing scheme. This increases the
deployment cost of the proposed framework. In work [53], it is unclear that which
decision making entity (e.g., source controller, external server) performs switch
migration operation. In the case of a source controller, several controllers may perform
migration to a single controller at the same time. This may dramatically increase the
load of the destination controller.

The works mentioned in this part are summarized in Table 3.2. In this table, the
Ref header indicates the corresponding works. The Control Plane header indicates the
control plane architecture of the works. The letters S, D, and H stand for single,
distributed, and hierarchical control planes, respectively. In the single type, there is
just one controller in the network. In the distributed type, there are two or more
physically distributed controllers in the network. In the hierarchical type, there are
layers within the control plane. Each layer has at least one controller. The Network
Type header indicates supported networks that are SDN and Hybrid. SDN networks
solely contain SDN switches. Hybrid works contain both traditional switches/routers
and SDN switches. The Routing header indicates the routing decision types that are
online, and offline. In the Online type, the SDN controller performs per-flow routing
computation. In Offline type, the SDN controller does not perform per-flow routing
computation. Instead, these works usually exploit static paths. The Signaling header
indicates the works that address the signaling scalability issue of SDN. LB stands for
load balancing. It indicates the works that perform load balancing.

All the works in this part perform load balancing with either cost-aware routing
or a specially designed mechanism. In cost-aware routing, the controller takes the
current network cost into account for a route computation as proposed in [44]-[46].
The volume of assigned traffic may change in time, and the load becomes unbalanced.
This also may cause control plane scalability issues because the controller makes a
per-flow decision. In specially designed load balancing mechanisms, the controller
monitors the network resource utilization and balance the load by alleviating the flow
routes. We adopt both mechanisms. Our controller assigns the flow to a path based on
its capacity. We also exploit PCR to balance network load. Additionally, most of the
works described in this part have the control plane scalability through multi-controller
architecture. Only the works [46] and [50] have a single controller. Both perform

28

online routing so the controller in these works may become the bottleneck in terms of
decision making. In contrast, our model can work with one or more controllers. Even
in the case of one controller, our work performs routing, admission control, and
signaling using PCR. The works [42] and [43] differ from other works in the way that
they perform load balancing for SDN-based data center backbone networks. Our
model is suitable for SPNs. Finally, traffic splitting in switches offloads the
computation overhead of controllers as in [50] but this requires both signaling protocol
and switch support. Therefore, this mechanism necessitates modification in SDN

architecture.

Table 3.2: Comparison of SRRM to the Existing Works with respect to Control
Plane Scalability and Load Balancing.

Control) _) LB
Network Type Routing Signaling
Plane
SD ’ Onlin _
Ref S| D|H Hybrid Offline
N e
42 X X X X X X
43 X X X X
44-45 X X X X
46 X X X X
50 X X X X
51 X X X X X
52 X | X X X X
53 X X X X
SRRM | X | X X X X X X

3.3. Energy Efficiency

There are two main approaches to energy efficiency in SDN-based networks.
These are link rate adaptation (LRA) and power-down (PD) approaches. In the first
approach, the link rate is adapted according to the traffic load. In the power down
approach, ports, line cards, and integrated chassis of routers and switches are either
turned off or put into sleep mode. The link rate adaptation approach contributes less

energy saving compared to the power down approach [54], [55]. However, the power

29

down approach causes routing oscillation and delay [56]. There are also some works
that exploit both approaches.

The idea in [57] is to reroute flows on existing paths to adjust link loads in a way
that LRA-based energy saving is maximized. In the scope of this study, the idea
mentioned above is defined as a Mixed Linear Integer Problem (MILP). Then, three
greedy algorithms and one genetic algorithm-based heuristic algorithm (GA) are
proposed for redirecting flows over existing paths. Experimental results show that GA
outperforms greedy algorithms. In this work, several paths are computed per pair
before rerouting, whenever the controller executes proposed algorithms. Thus, the
control plane and signaling scalability are limited. Although two real networks are
used for the assessment of the proposed algorithms, real traffic trace is not used. In
addition, there are also no admission control and resource management in terms of
load balancing mechanisms.

The following works utilize the PD approach to perform energy saving. The
work [58] provides a 0-1 Integer Linear Programming (ILP) model that maximizes
energy saving in a global manner by taking the energy consumption of integrated
chassis, line cards, and ports of routers into account. It proposes two greedy algorithms
namely Alternative Greedy Algorithm (AGA) and Global Greedy Algorithm (GGA)
for energy saving. These two algorithms mainly reroute flows on different paths when
the network has a relatively low traffic load. This work has routing and signaling
scalability issues. The controller performs rerouting per flow. Besides, it
communicates with all the switches along the new path per flow.

The work [59] combines IEEE802.az, which is energy-efficient Ethernet and
SDN-based Segment Routing (SR) to save energy. SDN controller computes link costs
based on two metrics, which are EAGER and CARE. The EAGER metric takes link
utilization into account. The CARE metric, on the other hand, takes both link
utilization and congestion threshold into account. Two energy-saving algorithms
proposed in the work are Tunneling TE (TTE) and Non-tunneling TE (NTE),
respectively. In TTE, the controller performs path computation per source and
destination pairs in the first phase. Then, the controller establishes SR tunnels. In the
final phase, the controller puts unused links into sleep mode. In NTE, the controller
computes paths and decides links that will be put into sleep mode. In the second phase,
there is no tunnel establishment. The controller only puts the designated links into

30

sleep mode. Finally, the controller computes ECMP routes between source and
destination pairs using awake links. This work in fact has a similar idea that we
proposed in our preliminary work [60]. Routing and signaling scalabilities are
achieved via pre-determined paths. However, there is no contribution to admission
control. Although it is said that load sharing is performed, the authors do not mention
how this is achieved.

Software Defined Green Traffic Engineering (SDGTE) [61] framework
minimizes active links and switches in backbone networks without knowing the future
traffic demand. Authors provide an Integer Linear Programming definition of an
energy efficient routing problem. Whenever a flow arrives, the controller performs ILP
based routing computation. Apart from energy-efficient routing, SDGTE reroutes
flows both in under-utilized and over-utilized links to minimize energy consumption
further and to reduce link utilization. In the under-utilization case, links whose
utilization is below the predefined threshold are determined, and flows on those links
are rerouted. Then, the controller puts these links into sleep mode. In the latter case,
the controller identifies the over-utilized links and re-routes the flows on those links
to reduce link utilization. The controller performs routing computation per-flow
whenever a new flow comes. Besides, the controller also performs re-routing in case
of over and under link utilization.

Authors in [62] propose a multi-objective routing approach in a multi-controller
control plane. To achieve these objectives, a multi objective evolutionary algorithm,
called SPEA2 is developed. SPEA2 performs routing in a way that energy
consumption and traffic delay is minimized without degrading the performance.
Meanwhile, it takes both controller to switch and switch-to-switch loads into account.
Whenever the controller receives a flow request, SPEA2 calculates a path taking data
and signaling load into account. Subsequently, the controller establishes a path for the
requested flow. The control plane in this work has multiple controllers. Thus, it
satisfies routing and signaling scalability at some level.

Green Application Layer is an ETSI standard [63], which is a framework for
exchanging information between control and data planes. The work [64] integrates
GAL with SDN to exchange information regarding power management of data plane
entities with a controller. This model adopts both PD and LRA. In that sense, it
proposes an ILP model for the allocation of resources optimally based on network load

31

and actions of flow tables. The experimental network in this study is small. The
controller may become the bottleneck as the size of the network, flows, and actions in
flow tables of switches increase. Besides, the signaling scalability issue appears as
flows are rerouted.

Authors in [65] aim to minimize active links and adapt discrete link rates to
traffic load for saving energy. Firstly, they provide a mixed-integer programming
definition of the problem. Secondly, they propose a heuristic algorithm, which
identifies most energy-consuming flows and reroutes them on alternative paths for
reducing energy consumption. First, the proposed algorithm computes the shortest
path for each flow. Subsequently, it calculates the energy consumption of the whole
network. The value found at this stage is the upper bound for energy consumption. In
the third stage, the proposed algorithm removes each flow one by one to identify its
impact on energy consumption. To do so, a weighted graph is generated for each flow.
Finally, the controller computes k-shortest paths, and with the least energy
consumption is selected as a route. The scheme has routing and signaling scalability
issues since the controller performs per-flow routing and rule installation.

Researchers in [66] propose two algorithms for allocation of Virtual SDN
(VSDN) in a reliable and energy-efficient manner. Relative Disjoint Path (RDP)
generates two trees based on a redundancy factor. Then it merges the two trees to
obtain a graph where links and nodes exist in both. In this way, there is only one path
if the redundancy factor is 0. Similarly, there are two disjoint paths if the redundancy
factor is 1. Otherwise, one or more links are shared among two paths. State-Aware of
Bandwidth and Energy Efficiency (SA-BEE) algorithm allocates VSDNSs based on
available bandwidth and energy consumption factor. It adaptively increases or
decreases energy consumption factor based on the network state at first. Then it
generates a weighted graph for a source node to all other nodes. Finally, it looks for
lower energy consuming paths between the source node and all other nodes.

In GreSDN [67], the controller performs energy-efficient routing without re-
routing of flows. It maintains two topologies. The first topology is the physical
topology, which contains all the links and switches. The second topology is the virtual
topology, which contains only awake links. The controller performs per-flow routing
bearing the two topologies in mind. If there is an inactive link along the path, the
controller sends a signal to the corresponding switch to awake the link. Meanwhile,

32

the device management module within the controller periodically checks the state on
links. If a link is not used, it puts the link into sleep mode. The authors propose two
routing algorithms: Constant Weight Greedy Algorithm (CWGA) and Dynamic
Weight Greedy Algorithm (DWGA). Both algorithms perform path computation on
two graphs. These graphs are generated per request. At the time of graph generation,
the controller removes any link where the summation of the current load with
requested bandwidth exceeds its capacity on both physical and virtual graphs. Finally,
CWGA and DWGA perform routing computation based on static and dynamic link
costs, respectively. The controller performs per-flow routing. Thus, it suffers from a
severe routing scalability issue. Besides, the controller must communicate with all the
switches along the path during the path establishment process. This also results in the
signaling scalability issue.

In the work [68], the authors propose a heuristic algorithm (ETALSA) for
energy-saving via only powering up/down links. ETALSA that runs on a controller
takes energy prices into account apart from other works. During the execution of
ETALSA, the controller iteratively selects switches from the one with the highest
energy cost to the lowest. Then, it computes the utility value per link, which is
connected to the selected switch. The utility value is computed based on the
connectivity of switches, traffic demand, and energy prices. Finally, the controller
powers a link down based on the utility value if there becomes less energy
consumption. This work resembles our preliminary work [60] in a way that pre-
established multi-paths exist both for scalability and resource management. The main
differences are that the work [68] powers only the links down and it takes energy prices
into account.

Most of the works mentioned in this part solely address the energy-saving in
SDN-based networks. Some of the works address both energy and load balancing.
Even latter works perform these two operations disjointly. In contrast, to the best of
our knowledge, none of the works in the literature performs energy-saving and load
balancing in harmony. Additionally, our work proposes how energy-related
communication messages can be implemented to OpenFlow. Moreover, our model
performs routing, admission control, and signaling in a scalable manner, even there is

the only controller.

33

4. SCALABLE ROUTING AND RESOURCE
MANAGEMENT

SPNs usually have over-provisioned bandwidth to satisfy diverse user demands
and accommodate traffic bursts. They also have the link and switch/router redundancy
for hardware failures. This results in low resource utilization. In such networks,
reducing energy consumption and balancing network load among links are available
to improve resource utilization. In that sense, the SDN is an emerging network
architecture that allures the attention of SPs regarding resilience, virtualization, ease
of network resource management, reduction of costs, etc.

Although it has many benefits, a centralized control plane may cause severe
scalability issues. Firstly, the SDN controller may become the bottleneck with the
increase in the number of flows and switches. Secondly, the SDN controller must take
traffic fluctuations into account while optimizing resource utilization since today’s
network traffic is highly dynamic. Although SDN seems to be adequate for resource
management on its own, how to perform scalable routing and resource management in
SDN-based SPNs are still open issues.

In this section, we propose a scalable routing and resource management model
for SDN-based SPNs. The proposed model is two-fold. On the one hand, the proposed
model performs scalable routing, admission control, and signaling in a scalable
manner. On the other hand, the controller saves energy, balances load, and resizes
route capacities dynamically. To overcome the scalability limitations of SDN, we
exploit pre-computed routes to reduce the heavy workload on the controller. Further

details of the proposed model are presented in this section.

4.1. Overview of the Architecture

The proposed model is illustrated in Figure 1. As in traditional SPNs, the data
plane residing at the bottom consists of provider edge and core nodes. Ingress SDN
Switch (ISS), and Egress SDN Switch (ESS) are the nodes where traffic enters and
leaves the network, respectively. Any edge node is both ISS and ESS at the same time

because traffic is bidirectional. In addition to edge nodes, there are also core switches,

34

Controller
Inter Controller e e

Communication Link State Route State
Module Database Database

Route Routing & Route
Resizing Admission Control Management
Module Module Module

Load . Information
. Energy Saving .
Balancing Collection
Module
Module

Figure 4.1: Overview of the proposed model.

which we name as Core SDN Switch (CSS). A CSS connects edge switches to each
other and solely perform packet forwarding. In the upper layer, the proposed controller
resides. It is logically centralized and mainly responsible for resource management
(i.e., load balancing, route resizing, and energy saving), routing, and admission control
operations. To do so, the controller abstracts the single physical network into multiple
virtual networks using PCRs between edge switches. All operations are performed
based on these routes. The two layers in Figure 4.1 communicate with each other via
a signaling protocol (e.g., OpenFlow).

The proposed model has PCRs between each edge pair (EP), such as ISS1 - ESS1
in Figure 4.1. These routes are virtual and simplify the complex physical network. The
simpler virtual network consists of edge nodes and PCRs. For instance, the virtual
network presented in Figure 4.1 is depicted in Figure 4.2. The controller performs

resource management operations, routing, admission control, and signaling based on
35

— —P . — .y
- | E1,1,1 =
1,11 E1ﬁ~ ~
— _F"1 cssy, CSS2
@ 11,2 E1.1.2
E" ®_E1,1,2 _@
ESS
ISS 1,1 1
‘ CSSz T2 TCSSw
_________ P2'11---------
g-" Ez-113 E>" Eé-ﬂ S~s
.. E212 CSS12 CSSgg 2129@
1SS, "=l £2.12 .--""ESS;
ﬁ‘.~- ------- 21 . -"“
C881: " P88,

Figure 4.2: Illustration of the virtual network obtained from the above network.

the virtual network. Briefly, the controller aggregates flow into a smaller number of
routes adaptive to the traffic load and then puts unused links and switches into sleep
mode for energy saving. It also equalizes the cost of routes that belong to the same EP
to achieve load balancing. Controller, additionally, adjusts the capacity of PCRs with
respect to traffic load to improve resource utilization.

Notice that the controller does not perform routing and admission control
operations per flow. In the case of routing, the controller simply assigns a flow to a
route. In the case of admission control, the controller decides based on the state of
routes, which are stored in both Link State Database and Route State Database. PCRs
also allow the controller to manage the whole network with less signaling. This is
because the controller does not communicate with each node along the route per flow
in routing, admission control, and resource management operations. It only
communicates with edge nodes, instead. Therefore, the proposed model achieves

scalable routing, admission control, and signaling in favor of PCRs.

4.2. Virtual Network

The physical network is represented by a graph G = (V, E). The set E contains
links indexed by i. The set V, on the other hand, contains all nodes (i.e., ISS, ESS,
CSS). We denote an ISS-ESS pair as (Vs, Vq) where Vg # V4. Note that pair (V, Vy) is

36

Table 4.1: Summary of Notations.

Notation Meaning
\ Set of switches
E Set of links
psd Set of routes between edge pair (Vs, Vg).
pd A route belongs to P4
E; A single physical link i
L34k Virtual link of B> on physical link E;

@(...) Capacity of pair, route or link

9(C..) Load of pair, route or link

AG.Y) Cost of pair, route or link

e(...) Energy of pair, route or link

actually the same pair in the reverse direction as (Vy4, Vi) since any edge node is both
ISS and ESS at the same time. The proposed controller converts the physical network
to a virtual one. Then, it performs operations based on the virtual network. The virtual
network consists of set ESY and PS¢ of virtual links and PCRs per (Vg Vy),
respectively. We denote a route k that belongs to a pair (Vg, Vy) as Plf’d. Any two
different routes Plf’d and Pf"d of a pair (Vg, Vq) does not share a link. Thus, they are
mutually disjoint. The cardinality of routes per pair (JP$9|) must be at least 2 due to
multi-route and can be as many as network topology allows. Besides, the number of
routes for each pair can be different. The network administrator makes the decision of
which pair has how many PCRs. In the scope of this work, we assume that PCRs
already exist in the network. Routes between edge pairs can be established using
Virtual LAN (VLAN) [69], MPLS [70], or segment routing [71]. In compliance with
this, we do not develop any multi-route computation algorithm as there are several
algorithms in the literature such as [72], [51], [73], and [74] that address this subject.
|PS4| per (Vg,Vy) is defined by a network administrator. Note that PCRs can be
established regarding any cost value such as residual bandwidth, latency.

Notice that any two routes, each of which belongs to a different pair may share
one or more physical links. We name such routes and pairs as neighbor routes and
pairs, respectively. For the sake of simplicity, the controller virtualizes links based on

37

the number of neighbor routes per link. We denote a virtual link that serves a route
P as LY*¥. The capacity of a physical link, denoted as (E;), is portioned out to its
virtual links based on the load of neighbor routes. In compliance with this, a route

capacity @(PS?) becomes the capacity of its virtual link which has the minimum
capacity (min (cp(Pis’d'k))) For example, there are two routes on the physical link Eg

in Figure 4.1. Hence, its virtual links are EZ"% and EZ"", where E_>'™ serves the route

P,"! of pair ISS1 - ESS1 and EZ"" serves the route P>" of pair ISS2 - ESSL1.

4.3. Controller Design

The proposed controller has two databases, routing, admission control, resource
management modules, and three helper modules. The two databases are maintained in
the background without interfering with operations performed by modules. Routing,
admission control, and resource management modules perform main tasks, but they
can cooperate with other helper modules.

Link State Database (LSDB) keeps track of physical network elements that are
links and switches. Some of them are the identifier of the corresponding switch data-
route identifier (DPID), port numbers, maximum transfer rate, power consumption,
and link load. Note that link load is not a static value unlike others because it changes
in time depending on the network load. Route State Database (RSDB) keeps track of
PCRs and other information regarding them. This database is the virtualized version
of the physical network. Controller mostly uses this database for network management
purposes. RSDB contains both static and temporary data. Some of the static
information is route identifier (RID), data-path identifiers of edge nodes (i.e., ISS and
ESS), links that form the route. Some of the dynamic data are route capacity and route
load.

Routing and Admission Control Module (RACM) routes flow between the
associated edge nodes. In routing, the controller assigns the incoming flow to a route
of the corresponding pair. In admission control, the controller checks available
resources before deciding the routing. If there is an available resource, the controller
allows routing of flow through assigning the flow to a route. Otherwise, it simply
rejects the flow. This way, the controller prevents the overloading of resources. Load

38

Balancing Module (LBM) equalizes the cost of routes per pair. At first, it computes
the route costs of the corresponding pair and calculates the equalization cost.
Afterward, if shifts flow from overloaded routes to underloaded routes. Route Resizing
Module (RRM) updates the capacity of routes depending on the load of neighbor
routes and pairs. Whenever the load of the route exceeds a certain threshold, the
resizing procedure is invoked. Energy Saving Module (ESM) aggregates flows into a
smaller number of routes. Then, it puts unused network elements into sleep mode.
Route Management Module (RMM) establishes, updates, or removes routes
PCRs. Information Collection Module (ICM) collects data such as link rates from
underlying switches and performs necessary calculations on them to extract the
information required for routing, admission control, load balancing, route resizing, and
energy-aware resource management. Subsequently, all the information is stored in
databases. Throughout this dissertation, we assume that there is a single controller
residing on the control plane. However, there must be multiple controllers in the
control plane to avoid single point of failure. Thus, the controller has Inter Controller
Communication Module (ICCM) that is responsible for communicating with other

controllers in the control plane.

4.4. Admission Control and Routing

In an SDN-based network, the switch which receives a request f..q for a new
flow f sends a packet-in message to the controller. As soon as the controller receives
this packet, it computes the shortest route between end nodes. Subsequently, it deploys
forwarding rules off to the corresponding switches along the route. This may make the
controller bottleneck as the number of flows and switches increases. Similar to the
routing, the controller must check whether there is enough amount of resource (i.e.,
bandwidth) in the network to accept the request during the admission control process.

In the proposed model, the controller does not make per flow route computation.
It simply assigns the new flow f to a route as soon as it gets f.4. This makes the routing
decision independent from network size. Hence, routing scalability is achieved.

Similar to the routing, the controller checks available resources of route between edge

39

pairs based on the information in RSDB. If there is enough amount of resource, routing
of fis allowed. Otherwise, the controller rejects fi.qq.

The first step of both routing and admission control is the edge pair identification
step. In this step, the controller already knows about ISS due to the packet-in message.
It identifies the corresponding ESS by extracting the destination address from the
packet-in message and querying RSDB. The next step is the assignment of the flow to
one of the routes of the corresponding edge pair. We develop a flow assignment
method (hash-based modulo-p assignment operation - HMA) where the assignment of
a flow to a route is proportional to the capacity of routes. Finally, the controller deploys
forwarding rules to edge nodes for routing. Any packet after this operation is

forwarded on the assigned route.

In HMA, each route PS* has an assignment range specified with 855 and 852,

min
This range depends on the number of routes [P$9| of edge pair, the capacity of each
route (p(Plf’d), and the maximum range value p. The value of p can be any value greater
than O; that is, there is no upper limit. The network administrator can pick any positive
value for p. Note that assignment ranges of routes of a pair do not change unless their
capacity changes. Change in capacity happens in two cases. In the first case, the
controller performs the resizing operation, which we will explain later in this section.
In the second case, route re-establishment happens due to a link or switch failure.
Route re-establishment can also happen in case of the desire of the network
administrator. All of these imply that the controller does not frequently perform
assignment range computation. The computation of the assignment range is defined

below.

85,(_1,1(_ {0 . k = 1
min TSI+ 2 < k< [P (4.1)
Vsandd € V,s # d.

Ps,d *
Sfﬁ(;ij{)l((= 5;311(+ M,VS andd € V,s #d (4.2)
|PSd] s,d
k=1 @ (B

The minimum assignment value of a route is determined by its order as defined

in Equation (4.1. For the first route, it is 0. For the others, it depends on the maximum

40

assignment value of the previous route. The maximum assignment value of a route

depends on both p and proportion of the path capacity over pair capacity as defined in

Equation (4.2. To be clearer, suppose that @(P,"") and @(P,") in Figure 4.2 are 2 and

3Gbps, respectively. Total capacity (ZLP:'ld' © (Pks'd)) is 5Gbps. Assuming that p is 100,
Syt =0, and 8ue = 40. Similarly, 8% = 41, and 8,57 = 100. As it is seen in
the example, a route with the largest capacity has the highest assignment probability.
The complete HMA process works as follows. First, controller computes hash
value H(f) of f..q using fields in packet-in message such as destination IP. Any

hashing method (e.g., MD5 [75], SHA-1 [76]) can be exploited for this purpose.
Subsequently, modulus p of H(f), denoted as p(f), is computed. The result value lies

within the assignment range of a route (i.e., Sl;;jin <p <= SII;‘jaX .

Table 4.2: Routing Algorithm.

Lines | Steps

Input: f..q

Output: Routing of fi.¢q

ISS = getSwitchDPID(f.¢q)

ESS = getDestinationSwitchFromRSDB(f,¢q)

p(f) = calculateHMA(fr.¢q)

PS4 = getRoutesOfPair(ISS, ESS)
FOR Kk IN P4

| O B~ W N

IF 8, < p(f) < 87

min

7 assignToRoute(frq, peh)

END IF
9 END FOR

Both routing and admission control algorithms are presented in Table 4.2 and
Table 4.3, respectively. In Table 4.2, controller identifies edge pairs as soon as it
receives flow request f..q. Afterwards, it performs HMA operation to determine
forwarding route. Finally, controller deploys forwarding rules to edge nodes.

Admission control algorithm resembles routing algorithm. Apart from Table 4.2,

41

controller checks if there is available resource in edge pair before HMA operation in
Table 4.3. After flow assignment for both routing and admission control, forwarding
of packets starts in data plane. First, ISS marks incoming packets of f with an
associated RID. Subsequently, it forwards marked packets to the related core switch.
Then, marked packets are forwarded through the core network and they arrive to the
ESS. Finally, ESS removes marks on packets and delivers them to the destination node

or another network.

Table 4.3: Admission Control Algorithm.

Lines | Steps

Input: f.¢q

Output: Acceptance/rejection of fi.q

ISS = getSwitchDPID (freq)

ESS = getDestinationSwitchFromRSDB((f,¢q)

IF ! isResourceAvailable(f.q, ISS, ESS):

eq’

reject(freq)

END IF
p(f) = calculateHMA (fr.¢q)

PS4 = getRoutesOfPair(ISS, ESS)
FOR Kk IN P4

O 00| N| O O | W DN =

IF 8, < (D) < 87

min

(BN
o

assignToRoute(freq, peh)

-
-

END IF
END FOR

[EEN
N

4.5. Load Balancing

Load balancing is a fundamental resource utilization operation. Load balancing
aims to distribute traffic load over the network fairly. This in turn reduces both capital
expenditures (CAPEX) and operational expenditures (OPEX). In addition to this,

HMA necessitates load balancing because flows of a pair may be assigned to only

42

some of its routes. This results in the under-utilization of the remaining routes.
Therefore, overall network utilization reduces.

The proposed controller performs load balancing adaptive to the traffic for two
reasons. First, the controller has limited computational resources. Thus,
computationally intensive operations such as optimal (network-wide) load balancing
may degrade the performance of the controller in the case of scalability. Instead of
optimizing global network load, the controller performs pair-based load balancing
(local). Local load balancing converges to network-wide load balancing in time since
route costs reflect physical link costs. Secondly, optimum load balancing does not last
a long time because traffic is highly dynamic.

In our model, the controller balances load of a pair among its routes by
equalizing their costs (i.e., load, utilization, congestion level). In the first step of load
balancing, controller computes route costs and an equilibrium cost. Equilibrium cost
Is the cost that all route costs must be closer after load balancing operation. Secondly,
the controller determines route states (i.e., underloaded, balanced, overloaded) with
respect to the equilibrium cost. Finally, the controller shifts some of the flow in
overloaded routes to underloaded routes for cost equalization. Shifting is as simple as
updating the forwarding rule of the flow in edge switches.

Notice that a route consists of one or more links. In that sense, link costs must
reflect route costs. Denoting the capacity and load of a physical link as ¢(E;) and
9(E,), respectively, the controller calculates link cost based on the equation defined

below.

s, dky _ Qi . s,d k
ACE;)_—1_8(Ei)—1'VIEE ,s+d (4.3)

¢(E;)

First, link utilization is computed by dividing 9(E;) — 1 to ¢(E;). Subtracting
one from 9(E;) prevents value of denominator to be 0 in the Equation (4.3 when link
is fully loaded. After link utilization calculation, the controller subtracts the link

utilization value from 1, and divides Q; with it. Linear increment in 9(E;) results in

exponential increment in A(E

f‘d'k). In other words, link cost becomes sensitive to load

changes. This way, the model avoids overloaded links. We introduce the coefficient

Q; to the equation so that network administrators can adjust link costs just in case.

43

Also, note that the controller does not compute link cost per load balancing operation.
Instead, the controller maintains link and route costs in the LSDB, and RSDB,
respectively, distinct from all operations.

We define route cost as the summation of costs of links which form the

corresponding route. Denoting the cost of a route Plf'd as A(Plf'd), route cost

computation is defined as follows:

|ES,d,k|

B = D A(E), vk e P s = d (44)

i=1

Load Balancing Algorithm is presented in Table 4.4. In the first step, it calculates
equilibrium cost of the pair, denoted as u(Vs, Vy), considering routes. Cost of all the
routes converge to u(Vs, Vy) after load balancing process. In the second step, state of
routes is identified based on p(Vs, V). A route whose cost is greater than p(Vs, Vy) is
classified as overloaded. Similarly, a route whose value is less than u(Vg,Vy) is
classified as underloaded. If a route has the same cost as u(Vs, Vy), it is already
balanced. Thus, controller does not take this route into account. In the third step, the
algorithm obtains information such as ISS, ESS and RID regarding each flow in
unbalanced routes. Finally, some these flows are shifted in overloaded routes to
underloaded routes. Controller selects which flow to be shifted in a greedy manner

(e.g., heavily to lightly loaded flow).

Table 4.4: Load Balancing Algorithm.

Lines | Steps

Input: f .4

Output: Equalization of pair load

1 pairCost = 0
2 FOR Route Py in P4
3 IF isActive(Py):

The computation of pair equilibrium cost takes ©(n) in which n is the number
of routes per pair. Sorting flows by size takes O (f log(f)) in which f is number of flows.

Shifting flows to underutilized routes takes O(nlog(f)). Thus, time complexity of the

44

Active Load Balancing algorithm is O (n (f log(f) + (n f))) in the worst case where

all routes are active. The controller performs load balancing for all pairs denoted by B.

Therefore,

O(B n (flog(f) + nf)).

Table 4.5: Load Balancing Algorithm (Contd.).

4 pairCost = pairCost + A(Py)

5 END IF

6 END FOR

7 n((Vs, Vq)) = pairCost / |PS9|

8 FOR Route P, IN P54

9 IF lisActive(Py):

10 continue

11 END IF

12 IFA(P) < p((Vs,Vy)):

13 addRouteToList(lightlyUtilizedRouteList, Py)
14 ELSE IF A(P) > p((Vs, Vo))

15 addRouteToList(highlyUtilizedRouteList, Py)
16 END IF

17 END FOR

18 FOR Route P, IN highlyUtilizedRouteList:

19 flowPool = getFlows(P,)

20 sortFlowsByAscendingLoad (flowPool)

21 FOR Route P, IN lightlyUtilizedRouteList:

22 FOR Flow f, IN flowPool:

23 IF shifting flow f, to P, makes A(P,) < p((Vg, Vy)):
24 shiftFlow(f,, P,, P,)

25 END IF

26 IF A(P) > p((Vs, Vy)):

27 addRouteToList(routeRemovelList, P,)
28 continue

time complexity for overall network load balancing becomes

45

Table 4.6: Load Balancing Algorithm (Contd.).

29 END IF

30 END FOR

31 END FOR

32 FOR Route P, IN routeRemovelList:
33 removeRoute(routeRemovelList, P,.)
34 END FOR

35 IF A(P,) < p((Vs, V)):

36 continue

37 END IF

38 END FOR

There are two types of load balancing initiation in the proposed model. That are
periodic and threshold based. In the periodic load balancing, the controller periodically
performs load balancing such as per minute. How to determine the period is crucial.

4.6. Route Resizing

In the proposed model, PCRs are virtual, so their capacities are re-sizable.
Dynamically adjusting route capacities prevents the network from congestion and
increases resource utilization. Considering the pairs in Figure 4.1, the pair (3, V;) may
suffer from congestion while (V;,V;) is lightly loaded. However, (V,,V;) would not
suffer if (V;,V;) could give some of its capacity to its neighbor. To overcome this
problem, we propose a route resizing method to adjust route capacities whenever a
route exceeds a certain threshold (e.g., 80% of its maximum capacity). Note that, this
process is performed on RSDB, not in the data plane. For this reason, the controller
does not explicitly alter the rule of routes on switches.

As aforementioned, neighbor routes may share physical links. A physical link is

split into one or more virtual links where each of which serves a different route from

s,d,k

S4X s a part of a route P>, where

point of view of the controller. Each virtual link E

the triple (s, d, and k) of each virtual link is different. We denote a route P,f'd on a link

s,d,k
i

E; as P!, . RRM computes new virtual link capacity ¢(E;**") for all routes P!, ,

46

proportional to their loads, denoted as ﬂ(PSi,d,k). The corresponding equation is

provided below.

9(Pi)

Vsandd eV, ke PS¢ i€E,s+d (4.5)
9(E;)

p(ESY) = o(E) x

As soon as the controller performs this computation per virtual link, the new
route capacity becomes the capacity of one of its virtual links which have the minimum

capacity. To be clearer, consider a scenario based on the network illustrated in Figure
4.2. Let (P and @(P>") be 6 and 4Mbps, respectively. Let also 9(P,"") and
(P> be 5.7 and 1Mbps, respectively. In this case, P,*' exceeds the threshold,
assuming that it is 80%, and the controller initiates the resizing process. Therefore,

new @(P,") and @ (P>") become 8.5 and 1.5Mbps, respectively.

Table 4.7: Route Capacity Resizing Algorithm.

Lines | Steps

Input: Links

Output: New capacities of all virtual links
FOR Link E; in E:
IF isActive(E)):
©(E;) = getLinkCapacityFromLSDB(E;)
9(E;) = getCurrentLinkLoadFromLSDB(E;)

FOR Route P} < IN getRoutesFromRSDB(E;):

IF isActive(P}):

S(Pli) = getCurrentRouteLoadFromRSDB(Pli)
o(ES™") = o(E) 9(PL) / 9(Ey)
END IF
END FOR
END IF
END FOR

O 00| N o o B W N

[EN
o

[EEY
[EEY

[EEN
N

[EEN
w

FOR Route P, IN P5¢:

47

Table 4.8: Route Capacity Resizing Algorithm (Contd.).

14 IF lisActive(Py):

15 continue

16 END IF

17 linksOfRouteList = getLinksFromRSDB(P9)

18 temporaryMinimumCapacity = Maximum Link Capacity
19 FOR Link E>** IN linksOfRouteList:

20 IF isActive(EP**) AND temporaryMinimumCapacity > @(EF®*):
21 temporaryMinimumCapacity = (p(EiS’d’k)

22 END IF

23 w(Plf’d) = temporaryMinimumCapacity

24 END FOR

25 END FOR

Although the computation of the new <p(EiS'd'k) is simple, the time complexity
of the resizing algorithm is O(|E||P|?). However, RRM does not perform this
operation frequently unless the overall network is heavily loaded. In a heavily loaded
network (e.g., 80% of its total capacity) the controller performs consecutive resizing
operations because the threshold is exceeded even after the resizing operation. This
infers that route resizing must be avoided when the network load is high. To handle
this problem, the proposed controller stops performing on-demand resizing if the
number of on demand resizing operation exceeds a predefined threshold in a
predefined time interval such as 3 times in 3 minutes. It simply waits for some back-
off time and then starts on-demand resizing. As it is noticed, RRM works on a virtual
network during this operation because routes and their capacities are virtual. It does

not communicate with underlying network elements.

4.7. Signaling

In SDN-based networks, the controller must communicate with underlying
switches to manage the whole network in SDN. The number of control messages

increases as the size of the network increases. Thus, heavy control traffic may occur
48

between controller and switches, especially in the case of a high number of flows and
switches in a network.

In terms of routing and admission control signaling, usually, an SDN controller
sends forwarding rules to all the switches along the route per flow. Therefore, the
number of messages to be sent becomes the number of switches along the route per
flow. Compared to this, the proposed controller sends only two messages independent
of the number of switches along the route, that are ingress and egress switches. Thus,
signaling scalability is achieved regarding routing and admission control.

As the proposed controller requires an up-to-date network state to manage the
whole network, it updates link states periodically. Edge switches are busy with sending
flow requests to the controller, inserting new flow rules to their tables, and updating
existing rules during the load balancing process. For these reasons, the proposed
controller does not communicate with edge switches to get link states. Instead, it
collects link states from the corresponding core switches.

Considering the load balancing process, suppose that there are no PCRs, the
controller treats the flow to be shifted as a new flow and sends forwarding rules to new
switches between source and destination. Besides, old flow rules are deleted to
maintain switch tables. Therefore, signaling scalability issues may arise as the number
of flows to be shifted, and network size increases. In the proposed model, the controller
sends a flow update message to an ingress switch for shifting a flow from one route to
another during the load balancing process. Edge switches only update their output
ports to shift a flow from one route to another.

49

5. ENERGY AWARE RESOURCE
MANAGEMENT

There occurs a trade-off between optimal energy saving and computation
overhead. In today’s highly dynamic Internet traffic, the controller may become a
bottleneck while computing optimal energy saving. Additionally, the optimal energy
state may not last long due to the traffic fluctuations. Thus, we prioritize scalability
over optimal energy saving. To do so, our controller makes edge pair-based energy-
saving computation. Upon completion of pair-based optimization, the controller
aggregates pair traffic into designated routes. Subsequently, it deactivates idle links
and switches in the whole network. This local energy saving converges to a global
energy saving in time.

To be clearer about how energy can be saved with traffic aggregation over a
smaller number of routes, consider the network illustrated in Figure 4.1. The routes
P* and P> are neighbors because they share the links Es and Es. Assuming that these
routes have large enough capacity to carry their pair loads, the controller aggregates
whole network traffic to P>* and P>". Then, it deactivates the remaining 4 core
switches and 6 links to save energy.

The first step of energy-aware route management is determination of the most
energy efficient subset of routes of a pair PS¢ while total capacity of PS¢ (¢ (P5%)) is
greater than or equal to its load (9(P>%)). Time complexity of the brute force solution
(generation of all combinations (8(2™)) and searching for the best combination
(6(n))) is exponential. In this regard, we propose a polynomial time algorithm called
Energy-aware Route Management Algorithm (ERMA) defined in Table 5.2: Energy
Saving Algorithm.

Let @(P>%) denote the pair capacity, 9(P>%) denote the pair load and Vi, c]
(1 <i<nandI(P>?) < ¢ < @(P>%)) denote the minimum energy consumption for
a subset of routes for number of i route and ¢ capacity. Assuming that all the routes
are initially active, ERMA decides if the i-th route should be active or passive, at each
step. In the former case, V[i, c] isequal to V[i — 1, c]. This means energy consumption
and capacity stays the same. In the latter case, Vi, c] becomes V[i — 1,c — ¢;] — e;.
More clearly, current capacity c reduces by c¢; and energy consumption reduces by e;.

50

We can find the optimal solution by filling the table V[0..n, 0.. @ (PS®)]. In this sense,
entry V[n, 9(PS%)] becomes the optimal solution. According to our problem, V[i,c] =
oo for 0 < ¢ < 9(P%) and V[0, c] is equal to maximum energy consumption for 0 <

c < 9(P5Y).

rz(PP—RuR(Pi'd))*% if RUR(P;) < PP

PDV(PS) = 5.1)

2 (RUR(F")~PP) 10555, if RUR(PS) > PP

\
Vsandd €V,s # d, k € pS¢

The controller computes the energy consumption value of a route P,f'd by
multiplication Passive Neighbor Ratio (PNR), and Pivot Distance Value (PDV). PNR
and PDV of a route B¢ is indicated as PNR(PS?) and PDV(PS>?), respectively.

PNR(PkS’d) is the ratio of passive neighbor routes over all of its routes. PDV(P,f'd),

however, depends on both route utilization ratio (RUR(P,f’d) =9(P>%) *ﬂ>
@

(Pe)
and pivot point (PP) as defined in Equation (5.1. PP is a predefined utilization ratio
(e.g., 70%). It allows the controller to aggregate the desired amount of load to the route
as much as possible. For instance, defining PP as 70% forces the controller to make
the route utilization around 70% but at the same time prevent it from over-utilization.
According to the Equation (5.1, PDV(PkS'd) changes exponentially from the distance
between route utilization and PP. The reason is to force the controller to reach the
desired utilization as fast as possible.

Time complexity of ERMA is O(n * |@(PS%) — 9(P$%)|). Notice that we
design ERMA for a single pair. Therefore, total time complexity for the whole network
becomes O(n * |p(PS%) — 9(PS%)| * B) where B is number of pairs. As soon as the
controller determines future active and passive routes, it may need to shift flows from
the routes that will be passive to the routes that will remain active or just have been
activated. In such cases, the controller determines current and new states of the routes

first. To be clear, there are four states which are defined in Table 5.1. If there are routes

51

Table 5.1: Possible Energy State Changes of Routes.

States Current State Next State
State 0 Active Active
State 1 Active Passive
State 2 Passive Active
State 3 Passive Passive

in State 1, the controller shifts the flows in these routes to the routes that are either in
State O or State 2.

After the shifting process, the controller tries to deactivate all the network
devices along the routes that do not share switches and links along their way with other
routes. Since the whole route is passive, energy-saving increases dramatically. If this
Is not the case, the controller tries to deactivate the switches and links along its way
that does not carry traffic. Before deactivating a switch, the controller makes sure that
all the links coming and leaving the switch does not carry traffic.

ERMA finds the optimum route combination per pair assuming that all the routes
are active. However, some of the routes may be in passive mode in reality and their
capacity may be taken by neighbor routes. To handle this problem, ESM computes
future capacities of passive routes because a passive route can be selected as a result
of ERMA. To do so, it calculates the unused capacity of each link by subtracting load
from its capacity and share this unused capacity equally among the passive routes that
the link serves. The capacity of the passive route becomes the capacity of the link
which has the minimum capacity compared to other links that serve the same passive
route. Let us show this procedure in an example for clarification purposes. Suppose
that ESM executes ERMA for the pair 1SS1-ESS; as illustrated in Figure 4.1. Also,
suppose that capacities of all links are 1Gbps and routes except P, and P> are active.
The controller must find the future capacity of Route2 in case ERMA selects it. There
are 1, 2 and 2 passive routes on links E,, E¢ and Eq, respectively. Load of E», Es and
Es are all 0 because P,"" and P> do not carry traffic. Unused capacities of E,, E¢ and
E, are 1Gbps for each. In this case, capacity share of P,* for the links E,, E¢ and Eq
are 1, 0.5 and 0.5Gbps, respectively. The minimum of these capacities is 0.5Gbps.

Therefore, the future capacity of P,"* becomes 0.5Gbps.
52

Table 5.2: Energy Saving Algorithm.

Lines

Steps

Input: Pair load 9(P4), pair capacity ¢(P*%), pair energy £(P$4)

Output: new states for paths of the pair

FORi=1INn:

V[i, p(P5%)] < g(Ps9)

END FOR

FORi=1INn:

FORc = ¢(P*9) TO 9(PS9):

IFc—c; =9(PSY) AND (V[i— 1, c—¢] — ;) < (V[i— 1,c]):

V[icJeV[i—1,c—c¢] —¢g

ELSE:

O 00| N| o O B W DN B

V][i,c] € V[i—1,c]

=
o

END IF

-
-

END FOR

=
N

END FOR

53

6. IMPLEMENTATION DETAILS

6.1. Databases

The proposed controller maintains Link-state Database to keep track of links and
the whole network topology. Basically, they are identifier of L;, switch data-path
identifiers (DPID) and ports that L; connects, ¢(L;) , rate of L; and A(L¥). The latter
two information changes in time-based on the traffic passes through the link.

In addition to LSDB, the proposed controller maintains Route-state Database to
keep track of PCRs. In the proposed model, we assume that routes are pre-established.
For this reason, we provide route information to the controller via a network definition
file NDF instead of performing a multi-route routing algorithm. During the lifetime of
PCRs, the controller maintains this database whenever any route related information
changes such as route costs. Since we determine route cost based on link costs, the
controller updates RSDB whenever link costs in LSDB are updated. Some static
information of a route maintained in RSDB s its identifier (RID), DPIDs of ISS and
ESS, links that form the route. RSDB also has dynamic data that are route capacity

and 1(P/).
6.2. Route Management Module

We implemented the Route Management Module so that the proposed controller
can create, update, and remove them. In this part of the section, we will explain

implementation details of PCRs and packet forwarding over routes in the data plane.
6.2.1. Route Establishment

At the beginning of the route establishment process, the controller parses NDF
to learn about the details of routes. In our implementation, we used Virtual LAN
(VLAN) to establish routes using OpenFlow v1.0 [20]. Each VLAN has a globally
distinct RID. The RID is just an integer value. After parsing the definition file, the

controller sends OFP_FLOW_MOD_ADD messages to the corresponding core
54

switches using the Static Flow Pusher Module of Floodlight. Note that there are 4094
unique routes because VLANSs in 802.1Q use 12 bits in which 0 and 4095 are reserved.
MPLS can be used for routes instead of VLAN but this requires OpenFlow v1.3 [77]
or higher versions.

Controller populates only tables of core switches with route rules during the
route establishment process. In other words, there is no specific rule for a single flow
in a CSS. For instance, consider the route Routel in the Figure 4.1. It consists of ISS,
CSS11, CSS21, and ESS. According to this example, the controller sends route
establishment messages only to CSS11 and CSS21. Edge switches (e.g., 1ISS1 and
ESS) are empty. Thus, there is no full route.

Let us explain how we create a complete route for a flow f. Suppose that f comes

to ISS; for the first time and it should depart the network from ESS;. In this case, the

establishment of full route for f occurs as follows:

1) ISS; receives the first packet of flow f.

i) ISS; looks for a match with the packet regarding to existing forwarding rules.
Since flow is new, incoming packets do not match with any of the existing flow
rules.

iii) ISS; prepares an OFP_PACKET _IN message and sends it to the controller

iv) The controller extracts destination address of packets from the
OFP_PACKET_IN message and determines the corresponding egress switch
which is ESS;.

v) The controller queries the RSDB to obtain routes of the pair ISS; - ESS;.

vi) The controller determines the route for f in HMA step.

vii) The controller prepares OFP_FLOW_MOD_ADD message for ISS;. In the
match part of the OF message, there are source and destination IP addresses. In
the action part of the same message, there are two actions. The first action marks
the packet with associated RID specified in OFPAT_SET_VLAN_VID action.
The second action sends the packet to the core switch from the physical port
defined in the OFP_ACTION_OUTPUT action. The same applies for egress, but
this time, the controller exchanges source and destination addresses.

viii) The controller prepares another OFP_FLOW_MOD_ADD message for ESS;. In

the match part of the OF message, source and destination IP addresses are

55

swapped compared to the message described in the previous step. In the action
part of this message, there are two actions. The first action removes the RID with
OFPAT_STRIP_VLAN action. The second action sends the packet out of
network from the physical port defined in the OFP_ACTION_OUTPUT action.

Note that distance between an edge pair can be one hop. Even in this case, controller

generate and install routing rules described as above.

6.2.2. Packet Forwarding

Packet forwarding starts in an 1SS and ends in an ESS after the controller installs
flow rules to the corresponding edge switches. Forwarding of a packet of a flow f

coming from ISS; and destined to ESS; is performed as follows:

i) The packet arrives at ISS; and ISS; looks for a matching rule regarding f.

ii) ISS; sets VID part of the 802.1Q header (within Ethernet frame) of the packet
with OFP_SET_VLAN_VID action of the associated rule to assign the packet to
a route.

iii) ISS; forwards the packet from the out-port specified in the actions of the same
rule.

iv) The first core switch, which is the neighbor of ISS;, receives the packet. It finds
the matching route rule by checking the RID of the packet. Subsequently, it
forwards the packet to the next core switch along the route.

v) Each core switch along the route forwards the packet the same way as the first

core switch and the packet eventually reaches ESS;.
vi) ESS; takes the packet and removes the VID of the packet by OFP_STRIP_VLAN

action. Finally, it forwards the packet out of the network over the specified out-
port.

The response message for the packet is routed back in the same way. However,

this time, egress acts as ingress and vice versa.

56

6.3. Routing and Admission Control Module

If a packet does not match with any rules in an OF switch, the packet is called
unknown. As soon as an OF switch receives such a packet, it sends a message, namely
OFP_PACKET _IN, to the controller as a default action in OF v1.0. As soon as the
controller receives the OFP_PACKET _IN message, it takes an action such as creating
a new route or rejecting the request.

In our implementation, only ingress switches send such requests to the controller
due to the structure of SPNs. As soon as the controller receives a request from an ISS,
RACM steps in. Briefly, RACM handles admission control in two steps. First, it
determines the corresponding ingress-egress pair based on source and destination IP
addresses. Secondly, RACM queries RSDB to check if there exists enough amount of
bandwidth. If so, the controller assigns the flow to a route and sends new rules to

associated edge switches. Otherwise, the request is rejected.

6.4. Information Collection Module

The controller only needs link loads for resource management operations. In
OpenFlow, port statistics provide cumulatively transmitted and received byte counts.
The Information Collection Module periodically sends OF port statistics message to
related core switches per link. Upon receiving OF reply messages from the CSSs, the

controller computes rates of links as follows:

i) Controller subtracts previously obtained byte counts from current ones.
i) The result of subtraction is divided by the time interval between consecutive

measurements.

Therefore, ICM obtains approximate link rates. Consequently, the controller calculates
link costs as described in the Equation (4.3. Finally, ICM updates LSDB in the
background.

57

6.5. Load Balancing Module

In the proposed model, load balancing has a key role to increase resource
utilization. The controller can initiate the load balancing process in two ways. In one
way, LBM periodically balances each pair (e.g., every 5 minutes). In another way, the
controller checks the cost difference between all routes of a pair. If the difference
between any two routes exceeds a certain threshold, LBM initiates the load balancing
process. The threshold value can be constant or adaptive. LBM follows the steps below

during the load balancing process of a pair.

i) LBM retrieves route costs from RSDB.

ii) LBM calculates average pair cost.

iii) LBM calculates difference between average pair cost and route costs per route.

iv) If the result is positive for a route, LBM marks the route as heavily loaded. If
not, it marks the route as lightly loaded.

v) LBM obtain flow statistics from the corresponding ISS for overloaded routes.

vi) LBM selects subset of flows in a greedy manner (i.e., lightly loaded to heavily
loaded). It stops when cost of lightly loaded route is equal or within the pre-
defined distance by the network administrator from the average pair load.

vii) LBM sends route update message for each flow in the subset.

6.6. Route Resizing Module

Route Resizing Module is responsible for updating virtual route capacities. RRM
periodically accesses RSDB to check route utilization. If a route exceeds a certain
threshold, RRM invokes the resizing process.

RRM does this operation in three steps. First, it computes virtual route capacity
portions for each link. Results are stored in a matrix called Route-Link Matrix. In this
matrix, rows are routes and columns are links. As soon as RRM fills the whole matrix,
it sets the virtual capacity of each route to the minimum value of the row which is the

minimum virtual capacity portion.

58

Table 6.1: Route-link Matrix of Virtual Network.

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

P11 10 0 0 0 10 ®© 0 10 0 0

P; o0 10 | = o0 o | 625 | o o | 625 | o

P} o0 o 10 o0 w |375 | o w | 375 | w

PZZ 00 00 0 10 00 00 10 00 00 10

To be clearer, consider the Table 6.1. There is a Route-Link Matrix for the
topology illustrated in Figure 4.2. In this topology, there are 10 links and 4 routes.
Whenever RRM invokes the resizing process, it iteratively calculates each cell in the
matrix. In this example, the capacity of P! and P? does not change because there is no
link shared with other routes. Thus, the controller does not perform any calculation for
them. However, P# and PZ shares L6 and L9. Suppose that capacity of all the links are
10Mbps and loads of P; and P# are 5 and 3, respectively. New capacities of P; and P?
for L6 and L9 becomes 6.25 and 3.75, respectively.

Route resizing enables to increase admissions of more flow requests and reduces
congestion. However, it becomes heavier as the number of links and routes in the
network increase. For this reason, our controller resizes routes on demand (e.g.,
exceeding 80% of route size). Although this prevents the controller to perform resizing
more than necessary, the controller may perform resizing consecutively. This happens
when the threshold is exceeded even after the previous route resizing operation. To
avoid this case, we introduce a periodic resizing parameter. If the number of on-
demand resizing exceeds a certain threshold in a specific time interval (e.g., 3 times in
a minute), the controller switches to periodic resizing mode. In this mode, the
controller performs resizing periodically (e.g., 3 minutes). In periodic resizing mode,
the controller continues to access RSDB to check whether it is still necessary to
perform periodic resizing. If there is no need to perform periodic resizing, the
controller switches to on-demand resizing mode. Additionally, notice that route
resizing is a virtual operation. Thus, the controller and databases are the parts of this
operation. Physical links are not affected by route resizing so signaling protocol is not

used.

59

6.7. Energy Saving Module

Energy Saving Module is responsible for activating/deactivating links and
switches if possible. To do so, the controller obtains required data from databases and
computes route states. Accordingly, it activates or deactivates links or switches.
Currently, OpenFlow is not capable of commanding a switch to sleep or wake up any
of its ports. We propose to modify the OFPT_PORT_MOD message and
OFP_PORT_CONFIG flag for this purpose. OFP_PORT_CONFIG has an
OFPPC_PORT_ACTIVE flag that commands the switch to deactivate its
corresponding physical port. By default, the flag OFPPC_PORT_ACTIVE on the
switch port is set to 1. This implies that the corresponding physical port is active. The
controller sends OFPT_PORT_MOD to toggle (active to passive or vice versa) the

state of a port.

6.8. Inter Controller Communication Module

This module is responsible for communicating with other controllers in the
control plane. This module is required for preventing the network from a single point
of failure issue. This is the issue when there is a single controller in the whole control
plane. When the single controller stops working, all the routing, admission control,
and resource management operations stop. In this work, we do not address this issue
as there are proposed works mentioned in [51] regarding this. A simple solution for
our model is that there can be two or more controllers within the control plane. One of
them is the master. The other controllers, a.k.a. backup controllers, periodically check
if the master controller is alive. In case of failure of the master controller, one of the
backup controllers takes over. As the proposed model maintains network state in
databases, the backup controller can directly connect to LSDB and RSDB to manage
the whole network. Thus, there is a minimal overhead of taking control in case of

controller failure.

60

/. EXPERIMENTAL RESULTS

This section presents the experimental results of our model. We have
implemented modules of our model upon Floodlight v0.91 [16]. For creating test
networks, we have used both Mininet v2.1 [78] and Open vSwitch v2.5 [79].
Controller and switches communicate via OpenFlow v1.0 [20]. We used TG [80] as a
traffic generator. Throughout this section, several scenarios under three topologies are
tested to evaluate the proposed model. These topologies are NSFNET T3, Net-M, and
Net-L as illustrated in Figure 7.1, Figure 7.2, and Figure 7.3. NSFNET T3 is a real
network and is chosen as it provides connectivity to several regional networks [81],
[82]. Apart from the NSFNET T3, two custom topologies, namely Net-M and Net-L
are also used to test the proposed model in terms of topology size, the number of

disjoint routes, connectivity among edge and core switches.

Seattle, WA

Salt Lk Clty,
uT Boulder;
co

’

San Diego,
CA

GA

Figure 7.1: Illustration of NSFNET topology.

61

Figure 7.3: Illustration of Net-L.

62

In order to create a realistic test environment, several real-time traffic traces are
taken from the Center for Applied Internet Data Analysis (CAIDA) [83]-[86] as
depicted in Figure 7.4. We have generated various traffic loads (i.e., light, moderate,
heavy) by scaling these traffic traces and assigned one of four traffic patterns

arbitrarily to each pair in each test run.

5 Y : —
: T Ghicago A
—Chicago B
4 -‘I“II““““““““““E““I”“““““““II“”g““““““”““ :'“'“S.Ié.hnl‘]aélé“ﬁl
: : “'San Jose B
2] :
._5 . H * ., .”" ‘,:"‘
g '-"\‘- -) ‘,3,: ': ““
O puriei
-I baiie
0

Sun 12:00 Sun 18:00 Mon 00:00 Mon 06:00
Time (Hours)

Figure 7.4: Traffic pattern of March 29-30 2015 UTC taken from CAIDA.

The test scenarios are performed to analyze; (1) effect of route number on load
balancing performance, (2) periodic load balancing, (3) threshold-based load
balancing, (4) load balancing performance under various traffic loads, (5) load
balancing for different topologies, (6) comparison of the proposed model with the
work proposed in [87], (7) admission control time, (8) effect of route number and
traffic load on energy-saving performance, (9) effect of node connectivity on energy-
saving performance, (10) comparison of the proposed model with existing work in
terms of energy saving, and (11) effect of energy-aware resource management on

network utilization.

63

7.1. Effect of Route Number on Load Balancing

Performance
100 ' ? ! : '
: : : 5 P2
- -P3
. 80" E =Y}
> :
= ‘ [=P5
(- :
S 60l :
©
=) ’
— 40
©
D
= <
2071+
O i i i i i
0 100 200 300 400 500 600
Time

Figure 7.5: The core link utilizations in time for different number of routes.

Load balancing performance of the proposed framework depends on the number
of routes. In this context, we have investigated the performance of load balancing
under various route numbers, namely P2, P3, P4, and P5. P2, P3, P4, and P5 have 2,

3, 4, and 5 routes per pair, respectively.

Load balancing performance of the proposed framework depends on the number
of routes. In this context, we have investigated the performance of load balancing
under various route numbers, namely P2, P3, P4, and P5. P2, P3, P4, and P5 have 2,
3, 4, and 5 routes per pair, respectively. Net-M is chosen as the test topology since it
allows creation of 5 disjoint routes, unlike others. The same traffic trace combination
is applied to the same pairs of Net-M for 10 minutes. There are three test runs. During
each test run, maximum core link utilizations are measured and the average of them is
calculated per measurement time. The result is illustrated in Figure 7.5.

We have observed that performing load balancing with 2 routes has the worst
performance as it has the highest utilization. In the P2 case, the controller performs

load balancing among two routes per pair. As the proposed framework performs

64

adaptive load balancing, the convergence of cost equalization among pairs takes more
time. As the route number increases, max utilization decreases. For the same reason,

P5 has better performance since more pairs are neighbors.

7.2. Effect of Periodic Execution on Load Balancing

Performance
100 : : ! : .
5 Sec@nds
?10 Se@:onds
Q 80 ';g“’QO"S'é'e;jb'ﬁd'é“"
°7:/ 30 Seconds
©
5 . *‘:.'..‘...'.‘.I.L. e :\
c 40 : Nelpd
(4]
GJ N H H : H H
= S : : : : :
20 - Y R R R R R R R R R R R TR R R TR R T R TR TR EE PR R TR R R ER SRR R TR TR
ol : : ; : :
0 100 200 300 400 500 600
Time

Figure 7.6: The core link utilizations of P2 in time for various load balancing
periods.

We have investigated the performance of load balancing under various periods
to understand how frequently the load balancing should be performed depending on
the route number. Load balancing periods are set to 5, 10, 20, and 30 seconds. Net-M
is chosen as the test topology since it allows to creation of 5 disjoint routes, unlike
others. The same traffic trace combination is applied to the same pairs of Net-M for
10 minutes. There are three test runs for both P2 and P5. During each test run,
maximum core link utilizations are measured and the average of them is calculated per

measurement time. The results are illustrated in Figure 7.6 and Figure 7.7.

65

100 ; ; : : :
: : : '5'5 Secgmds
?10 Se@;onds
Q 80" "'§“’20"S'é'§56'ﬁ6"s'""
QE 30 Seconds
(4]
N
))
— 40
©
D
=
20T.4
O i i i i i
0 100 200 300 400 500 600
Time

Figure 7.7: The core link utilizations of P5 in time for various load balancing

periods.

We have observed that performing load balancing in short (e.g., 5 seconds) or
large (e.g., 30 seconds) intervals both for P2 and P5 causes performance degradation.
Performing load balancing with short period shifts flows from one route to another
frequently. This causes unnatural fluctuation in traffic. Load balancing with a large
period has low performance as it equals costs infrequently. This implies that load
balancing with larger periods makes the case like there is no load balancing, especially

for highly dynamic network traffic.

7.3. Effect of Threshold-based Execution on Load Balancing
Performance

The proposed load-balancing method can also be initiated depending on the cost
difference among routes of pairs. In this context, we have investigated the performance
of load balancing under various cost differences, in other words, threshold-based load
balancing (TLB), whichare 0.1, 0.25, 0.5, and 1.0. Net-M is chosen as the test topology

66

100 g ! ' ! :
: : : : ;"‘0_1
+0.25
80 '%“‘"()"_'5"""
> :
— 1.0
c
__.g 60- wh I
(4]
LN
=)
_ 40
©
) : : : : :
= : : : : :
0 i i i i i
0 100 200 300 400 500 600
Time

Figure 7.8: The core link utilizations of P2 in time for various load balancing
periods.

since it allows to creation of 5 disjoint routes. The same traffic trace combination is
applied to the same pairs of Net-M for 10 minutes. There are three test runs for both
P2 and P5. During each test run, maximum core link utilizations are measured and the
average of them is calculated per measurement time. The results are illustrated in
Figure 7.8 and Figure 7.9.

Similar to the periodic load balancing case, we have observed that large TLBs
(e.g., 1.0) has little impact on cost equalization. TLB with 1.0 has the lowest
performance as the controller has initiated the load balancing process a few times.
Additionally, performing load balancing for very small cost differences (e.g., 0.1)
causes lower utilization compared to TLB with 0.25 and 0.5. This is because the
controller frequently performs flow shifting among routes of pairs. We have observed
that TLB with 0.25 has the best performance regardless of route numbers among the
threshold values we chose. Similar to the periodic load balancing, the proposed model
achieves better utilization with a larger number of routes. It must be noted that TLB

should be adjusted based on the traffic fluctuation.

67

100 ' ' ' ! :
A [
. [0z
—— 801" ClEEGETT
2 é é : §
— 1.0
c : : :
S 60["
(4] : : :
© N FraseR bl
=
20.;.'
O i i i i i
0 100 200 300 400 500 600
Time

Figure 7.9: The core link utilizations of P2 in time for various load balancing
periods.

7.4. Load Balancing Performance under Various Traffic
Loads

We have investigated how the proposed framework performs under various
traffic loads (eg., 20% - light, 50% - moderate, 80% - heavy). To do this, the same set
of traffic traces are applied on Net-M with two routes per pair by scaling them. There
are three test runs. The duration of the test run is set to 10 minutes and periodic (i.e.,
10 seconds) load balancing is performed by the controller. During each test run per
traffic load, maximum core link utilizations are measured and the average of them is
calculated per measurement time. The result is illustrated in Figure 7.10.

To generate a light traffic load flows with small sizes are generated by clients.
In case of the moderate traffic load generation, there is a mixture of flows with small
and large sizes. In the heavy traffic load case, almost all flows are large. Under these

68

100 — ; ! : ?
"‘ngh:i : é § :
—I\/Iodgerate : : ; :

/a 80 -I'I.":H"e“é:i/.v"”““”. ..g...................g....'...;.'....,......‘E:.-..I.....'.....'......é..‘.‘.\..‘.l....:..-.....
o~ : : O voait
c
2 60[" gt
4y}
N
5 i
— 40
(4v}
(]
= R :
20 F : 3 "'__..__'":;"'""'"'-é'.";'.";'.".".";'.'E.".";'-"-"-""""'
0 ; : s : :
0 100 200 300 400 500 600
Time

Figure 7.10: The core link utilizations for various traffic loads.

circumstances, we have observed that shifting flows from one route to another causes
small cost changes in light traffic load case. Fluctuation in the moderate traffic load
case is more compared to the previous case. In heavy traffic load case, the impact of
shifting flows from one route to another causes greater fluctuation. In the real world,
there are many flows of various sizes. Hence, load balancing can be achieved more

smoothly.

7.5. Load Balancing Performance for Various Topologies

We have investigated the performance of the proposed model for different
networks. In this context, we applied the same set of traffic traces to all test topologies
for 10 minutes. The applied traffic load is moderate. We have measured the change in
costs of two randomly chosen routes. The obtained results, illustrated in Figure 7.11,
Figure 7.12, and Figure 7.13, show that route costs get close to each other after the
cost equalization process. Therefore, the proposed model successfully balances loads

regardless of topology in an adaptive manner.

69

10 : : ! : ;
. | "Path 1 ‘
- cPan

Path Costs

0 100 200 300 400 500
Time (Seconds)

Figure 7.11: Equalization of route costs for NSFNET under moderate traffic load.

10

Path Costs

0 100 200 300 400 500
Time (Seconds)

Figure 7.12: Equalization of route costs for Net-M under moderate traffic load.

70

10

Path Costs

0 100 200 300 400 500
Time (Seconds)

Figure 7.13: Equalization of route costs for Net-L under moderate traffic load.

7.6. Load Balancing Performance Comparison

100 :
—SRRM - P5

B (o)) (0]
o o o

Mean Utilization (%)

N
o

0 100 200 300 400 500 600
Time

Figure 7.14: Comparison of load balancing performance of models.

The works [51] and [52] address both resource management and control plane
scalability in SDN-based networks. However, they are complex to implement due to
their both hierarchical and distributed structures. They also contain multiple
controllers. Therefore, instead of comparing our model with the proposed works in

71

[51] and [52], we compare our model with the WPF, which is implemented in [87].
WPF also has a single controller that performs both resource utilization and routing.
In this test scenario, we applied the same set of traffic traces to both models for 10
minutes. Net-M is chosen as the test topology. The applied traffic load is moderate.
There are three test runs. During each test run, maximum core link utilizations are
measured and the average of them is calculated per measurement time. The result is
illustrated in Figure 7.14. We have investigated performance.

Note that WPF calculates the shortest route in a graph where both links and
nodes have had weighted. WPF establishes a route once for a flow and does not change
the route in time. Thus, link utilization does not change drastically in time. However,
the proposed model, where each pair has 5 routes, successfully performs resource

utilization and outperforms WPF.

7.7. Admission Control Performance

In this test scenario, we have investigated the performance of the admission
control mechanism implemented in the proposed model. In the first part of this test
case, we have measured the admission control time for both SRRM and WPF and
illustrated the results in Figure 7.15. We have observed that WPF consumes more time
to find a suitable route as the network load increases. The proposed model, on the other
hand, performs admission control very quickly. Besides, the increase in admission
control time for increasing traffic load is negligible. This proves that our model
performs admission control in a scalable manner.

We have conducted another test on Net-M to examine the effect of resource
management operations on flow acceptance rate. We sent periodic flow requests to
only one arbitrarily chosen pair and measured the rate of flow acceptance and run this

scenario

72

Admission Control Time (msec)

—
o
o

(0]
o

(o))
o

N
(e»]

N
o

0 5 10

-
-
-
-
-
-
-
am® H

-

150 200

Number of Flow Requests/Second

Figure 7.15: Comparison of admission control time performance of models.

both for P2 and P5. Our controller has distributed network load among routes and

performed resizing to reduce congestion, if necessary. Thus, flow acceptance rates of

SRRM is close to WPF as illustrated in Figure 7.16 even P2 case.

Rate of Flow Acceptance

120

—
o
o

Qo
o

o)]
o

N
o

N
o

T T T Ty R T T P N N A S T PP PP PP TR

-~ [rweF
S Lt ORBM. P2
. [=SRRM-P5

0 20 40 60 80

100

Network Load (%)

Figure 7.16: Comparison of flow acceptance rate performance of models.

73

7.8. Effects of Route Number per Pair and Traffic Load on
Energy Saving Performance

In this test scenario, we have investigated the energy-saving performance of the
proposed model for a various number of routes per pair under light, moderate, and
heavy traffic loads. Route number per pair is 2 (P2) and 5 (P5). Net-M is chosen as the
test topology. There are three test runs. During each run, active link and switch ratios
are recorded and the average of each run is calculated. Figure 7.17, Figure 7.18, Figure
7.19, and Figure 7.20 illustrate the energy-saving performance of P2 and P5 in terms

of link and switch.

120

100

& 80

e |

S goHaf2— =

&*3 40

— Light
20 —Moderate
0 Heavy
0 100 200 300 400 500 600
Time (Seconds)

Figure 7.17: Active link ratios for P2 under various traffic loads.

74

120
— Light
100 —Moderate
- e —Heavy
\O N \—\
o= 80 — ‘\
'
E \— A\ ™
— 60 \—\1:_1 —~ —
(O]
2> I P e
2 40 "]
1
20
0
0 100 200 300 400 500 600

Time (Seconds)

Figure 7.18: Active link ratios for P5 under various traffic loads.

120
100
— L/ _\ \'V\
o~ TA!
= 80 f
2
> 60
2
= 40
< — Light
20 — Moderate
0 —Heavy
0 100 200 300 400 500 600

Time (Seconds)

Figure 7.19: Active switch ratios for P2 under various traffic loads.

75

120
10017 W
R 5
— 80 ‘-
5 0 |
B [\ LT J1 L
%) | W A AV iu
o L/
Z 40
0
< — Light
20 —Moderate
0 Heavy
0 100 200 300 400 500 600
Time (Seconds)

Figure 7.20: Active switch ratios for P5 under various traffic loads.

We have observed that the active link ratio drops down to around 50-60% in P2
for all traffic loads as illustrated in Figure 7.17. This experiment results in lower power
consumption in P5 for light and moderate traffic loads as illustrated in Figure 7.18
since the active link ratio drops down to around 35-45% at the end of the experiment.
Note that, the energy-saving performance of both P2 and P5 is the closest to each other
under heavy traffic load because the controller needs more resources to carry the heavy
load. Also, notice that the active link ratio of P2 decreases to around 60-70% in almost
50 seconds compared to P5. This ratio does not change much since then. The reason
is that the controller has less choice in terms of route number per pair. However, the
energy-saving performance of P5 is better after 300 seconds. The difference between
the active switch ratio of P2 and P5 is much more apparent as shown in Figure 7.19,
and Figure 7.20 for all traffic loads. P2 shows poorer performance even under light
traffic load. In case of heavy traffic load, the controller fails to make any switch
passive. However, this is not the case for P5. The active switch ratio of P5 drops down
to around 60% for light and moderate traffic loads. Although its energy-saving
performance under heavy traffic load is not as good as others, the controller

successfully makes a few amounts of the switches passive.

76

7.9. Effect of Connectivity on Energy Saving Performance

In this test scenario, we have investigated the energy-saving performance of the
proposed model for different topologies. The average degree of connectivity for
NSFNET, Net-M, and Net-L are 3, 6, and 3.53, respectively. Route number per pair is
2 and a moderate traffic load is applied. There are three test runs. During each run,

active link and switch ratios are recorded and the average of each run is calculated.

We have observed that the degree of connectivity does not affect the energy-
saving performance of the proposed model on links as illustrated in Figure 7.21, and
Figure 7.22. The active link ratio in all topologies is close to each other. On the other
hand, this is not

120
100
> 80
A
S e W |1 2
— 60 \ 71 \ ‘=-\‘ 7
[}
= -
S 40
—NSFNET
20 —Net-M
0 Net-L
0 100 200 300 400 500 600
Time (Seconds)

Figure 7.21: Active link ratios of 3 topologies having 2 routes per pair under
moderate traffic load.

77

120

- L\ 4 \V\;\/\P

(00)
o
q

Active Switch (%)
()]
(@]

40
—NSFNET
20 —Net-M
Net-L
0

0 100 200 300 400 500 600
Time (Seconds)

Figure 7.22: Active switch ratios of 3 topologies having 2 routes per pair under
moderate traffic load.
the case for switches. NSFNET has the best performance among other topologies
because routes in this topology have more common links and switches. Net-L has the
worst performance among others because routes in Net-L are more diverse than others
due to the high connectivity. This test case shows that the establishment of routes
affects the energy-saving performance of the proposed model.

7.10. Comparison of Energy Saving Performance

In this test case, we have investigated the energy-saving performance of the
proposed model by comparing it with the approach defined in [59]. In our model, as
aforementioned, we define route energy consumption as the multiplication of PNR and
PDV. In [59], authors define energy consumption based on link utilization and a
congestion threshold, that is 80%. We call this model the CARE model. In this test
case, we run ERMA both for the proposed method and CARE model. Route number
per pair is 2 (P2) and 5 (P5). Net-M is chosen as the test topology. Moderate traffic is
applied in all 3 test runs. During each run, active link and switch ratios are recorded
and the average of each run is calculated. Figure 7.23, Figure 7.24, Figure 7.25, and
Figure 7.26 illustrate energy-saving performance of the proposed and CARE models

in terms of link and switch.
78

On one hand, the two models have almost the same performance for P2 in terms
of active link ratio case as depicted in Figure 7.23. On the other hand, the proposed
model outperforms the CARE model in the P5 case as shown in Figure 7.24. Similarly,
the results of the active switch ratio test resemble active link ratio test. The two models
have almost the same performance for P2 as illustrated in Figure 7.25, and the
proposed model outperforms the CARE model for P5 as depicted in Figure 7.26.

120

100
g 80
E A e
— 60 ‘—-—-w 1
E — LA
g 40

20 —Proposed Model

0 — CARE Model

0 100 200 300 400 500 600
Time (Seconds)

Figure 7.23: Comparison of energy saving performance based on active link ratio for

P2.

120

100
S N
< _Qd‘:(-’_u-\ﬁ'—'—_l
= 1
3 40 L~ |~ {

20 — Proposed Model

0 — CARE Model

0 100 200 300 400 500 600
Time (Seconds)

Figure 7.24: Comparison of energy saving performance based on active link ratio for
P5.
79

120

100

(0}
o

Active Switch (%)
S 3

)]
o

‘ |,

—Proposed Model
— CARE Model

100

200 300 400 500
Time (Seconds)

600

Figure 7.25: Comparison of energy saving performance based on active switch ratio

for P2.

120

100

(0]
o

Active Switch (%)
= ()]
o (&)

N
o

nEm

| —in

J

—Proposed Model
— CARE Model

100

200 300 400 500
Time (Seconds)

600

Figure 7.26: Comparison of energy saving performance based on active switch ratio

for P5.

80

7.11. Comparison of Load Balancing Performance

In this test case, we have compared the load balancing performance when the
controller performs energy saving and load balancing in harmony (Energy-Aware:
EA) or it only performs load balancing (Energy-Unaware: EU). In EA, load balancing
Is performed among active routes. In EU, routes are always active. Route number per
pair is 2 (P2) and 5 (P5). Net-M is chosen as the test topology. Moderate traffic is
applied in all 3 test runs. During each run, load rates are recorded, and the average of
each run is calculated. Figure 7.27, and Figure 7.28 illustrate load balancing

performance of both models for P2 and P5.

In both P2 and P5, the utilization of links is higher in EA compared to EU. This
is because the same load is distributed over less capacity due to passive routes in EA.
Additionally, utilization increases in line with energy-saving. In previous test cases,
we have observed that energy-saving performance increases conforming to route
number per pair. Hence, load utilization of P2 as in Figure 7.27 is lower than P5 as in
Figure 7.28. The trade-off between energy saving and load balancing indicates that
high energy saving may cause over-utilization. Thus, this may result in significant
network congestion. Finally, this test case shows that an adequate route number per
pair and PDV selection allows efficient usage of network resources in terms of both

energy saving and resource utilization.

81

100
—Energy Aware
—Energy Unaware
80
S
= 60
O
T I
= 40K ————
) ____//_
20
0
0 100 200 300 400 500 600
Time (Seconds)

Figure 7.27: Comparison of load balancing performance for P2.

100
—Energy Aware
—Energy Unaware
80
S
= 60
@] L |
5 4 —1 |
20
0
0 100 200 300 400 500 600

Time (Seconds)

Figure 7.28: Comparison of load balancing performance for P5.

82

8. CONCLUSION

To put it in a nutshell, we propose a scalable routing and energy-aware resource
management model for SDN-based SPNs. In the proposed model, routes are pre-
computed between each pair of edge switches. These routes convert a complex
physical network to a simple and virtual network. The controller performs scalable
routing, admission control, and signaling based on these routes. It also performs
energy-aware resource management. The controller saves energy via aggregating
flows to a smaller number of routes per edge pair and deactivating unused routes.
During this process, it takes neighbor routes and load level into account. Pair-based
power-saving converges to global power-saving in time. In line with this, the controller
also performs adaptive load balancing by equalizing active route costs per pair. In the
case of high network load, the controller adjusts route capacities for further resource
utilization.

The proposed model either accepts or rejects flow requests upon receiving
requests due to its pre-computed route structure. Instead of computing flow routes per
request, routes that are established in off-line mode prevent the controller to become a
bottleneck. Thus, the proposed model shows that even if there is a single controller at
the top of the network, it can successfully perform routing, and admission control in a
scalable manner. We also witness that the amount of signaling between controller and
data plane is also reduced both in statistic collection and route establishment processes.
In addition to these, our model can save energy and balances the pair load among its
routes successfully. Moreover, we observe that route resizing is a heavy process, but
the controller performs this operation rarely. Therefore, it does not affect the scalability
of the controller significantly. Finally, obtained results prove that load balancing and
route resizing increase the flow acceptance rate dramatically.

As future work, controller can perform load balancing by estimating incoming
traffic. Also, the controller can utilize a hybrid version of periodic and threshold-based
load balancing. In this version, the controller can estimate the time to perform load
balancing. Apart from these, the controller can increase the energy-saving performance

of the proposed model using deep learning techniques.

83

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

REFERENCES

Web 1, (2015), https://blogs.cisco.com/sp/the-history-and-future-of-
internettraffic, (Accessed: 15/01/2021).

Web 2, (2019), https://www.itu.int/ en/ITU-D/Statistics/Documents/facts/Facts
Figures2019.pdf, (Accessed: 15/01/20 21).

Web 3, (2020), https://www.sandvine.com/hubfs/Sandvine_Redesign 2019/
Downloads/2020/Phenomena/COVID Internet Phenomena Report 20200507
.pdf, (Accessed: 15/01/2021).

Chabarek J., Sommers J., Barford P., Estan C., Tsiang D., Wright S., (2008),
"Power Awareness in Network Design and Routing", The 27th Conference on
Computer Communications IEEE INFOCOM, 457-465, Phoenix, AZ, 13-18
April.

Awad M. K., Neama G., Rafique Y., (2015), "The impact of practical network
constraints on the performance of energy-aware routing schemes", 2015 IEEE
International Conference on Service Operations And Logistics and Informatics
(SOLI), 77-81, Hammamet, Tunisia, 15-17 November.

Tuysuz M. F., Ankarali Z. K., G6zupek D., (2017), "A survey on energy
efficiency in software defined networks"”, Computer Networks, 113 (C), 188—
204.

Van Heddeghem W., Lambert S., Lannoo B., Colle D., Pickavet M., Demeester
P., (2014), "Trends in Worldwide ICT Electricity Consumption from 2007 to
2012", Computer Communications, 50, 64—76.

Web 4, (2009), https://www.cs.odu.edu/~cs752/papers/sdr-
infocom_brazil 2009 _v1-1.pdf, (Accessed: 15/01/2021).

Yeganeh S. H., Tootoonchian A., Ganjali Y., (2013), "On scalability of
software-defined networking", IEEE Communications Magazine, 51 (2), 136-
141.

Luo H., Cui J., Chen G., Chen Z., Zhang H., (2014), "On the applicability of
software defined networking to large scale networks", 23rd International
Conference on Computer Communication and Networks (ICCCN), 1-6,
Shanghai, China, 4-7 August.

Leguay J., Maggi L., Draief M., Paris S., Chouvardas S., (2016), "Admission
control with online algorithms in SDN", IEEE/IFIP Network Operations and
Management Symposium (NOMS), 718-721, Istanbul, Turkey, 25-29 April.

Bianco A., Giaccone P., Mahmood A., Ullio M., Vercellone V., (2015),
84

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

"Evaluating the SDN control traffic in large ISP networks", IEEE International
Conference on Communications (ICC), 5248-5253, London, UK, 8-12 June.

McKeown N., Anderson T., Balakrishnan H., Parulkar G., Peterson L., Rexford
J., Shenker S., Turner J., (2008), "OpenFlow: Enabling Innovation in Campus
Networks", ACM SIGCOMM Computer Communication Review, 38 (2), 69-
74.

Berde P., Gerola M., Hart J., Higuchi Y., Kobayashi M., Koide T., Lantz B.,
O’Connor B., Radoslavov P., Snow W., Parulkar G., (2014), "ONOS: Towards
an Open, Distributed SDN OS", Proceedings of the Third Workshop on Hot
Topics in Software Defined Networking, 1-6.

Medved J., Varga R., Tkacik A., Gray K., (2014), "OpenDaylight: Towards a
model-driven SDN controller architecture”, IEEE International Symposium on
a World of Wireless, Mobile and Multimedia Networks, 1-6, Sydney, NSW,
Australia, 19 June.

Web 5, (2014), https://floodlight.atlassian.net/wiki/spaces/ floodlightcontroller/
pages/1343555/Floodlight+v1.0, (Accessed: 15/01/2021).

Foster N., Harrison R., Freedman M. J., Monsanto C., Rexford J., Story A,
Walker D., (2011), "Frenetic: A Network Programming Language”, SIGPLAN
Notices, 46 (9), 279-291.

Otoshi T., Ohsita Y., Murata M., Takahashi Y., Ishibashi K., Shiomoto K.,
(2013), "Traffic prediction for dynamic traffic engineering considering traffic
variation", IEEE Global Communications Conference (GLOBECOM), 1570
1576, Atlanta, GA, USA, 9-13 December.

Monsanto C., Reich J., Foster N., Rexford J., Walker D., (2013), "Composing
Software Defined Networks", 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 1-13, Lombard, IL, USA, 2-5
April.

Web 6, (2009), https://www.opennetworking.org/images/stories/downloads
/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf,
(Accessed: 15/ 01/2021).

Web 7, (2010), http://www.rfc-editor.org/rfc/rfc5810.txt, (Accessed:
15/01/2021).

Web 8, (2011), https://rfc-editor.org/rfc/ rfc6241.txt, (Accessed: 15/01/2021).

Ongaro D., Ousterhout J., (2014), "In Search of an Understandable Consensus
Algorithm”, USENIX Annual Technical Conference, 305-320, Philadelphia,
PA, USA, 19-20 June.

Mugaddas A. S., Bianco A., Giaccone P., Maier G., (2016), "Inter-controller
traffic in ONOS clusters for SDN networks", IEEE International Conference on

85

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Communications (ICC), 1-6, Kuala Lumpur, Malaysia, 22-27 May.

Whyatt D., (2013), "Akka Concurrency: Building Reliable Software in a Multi-
Core World", 1st Edition, Artima Incorporation.

Zhang T., Giaccone P., Bianco A., De Domenico S., (2017), "The Role of the
Inter-Controller Consensus in the Placement of Distributed SDN Controllers",
Computer Communications, 113 (C), 1-13.

Web 9, (2012), https://datatracker.ietf.org/doc/html/draft-yin-sdn-sdni-00,
(Accessed: 15/01/2021).

Akyildiz I. F., Lee A., Wang P., Luo M., Chou W., (2016), "Research challenges
for traffic engineering in software defined networks"”, IEEE Network, 30 (3),
52-58.

Tootoonchian A., Ganjali Y., (2010), "HyperFlow: A Distributed Control Plane
for OpenFlow", Internet Network Management Conference on Research on
Enterprise Networking, 1-3, San Jose, CA, USA, 28-30 April.

Koponen T., Casado M., Gude N., Stribling J., Poutievski L., Zhu M.,
Ramanathan R., lwata Y., Inoue H., Hama T., Shenker S., (2010), "Onix: A
Distributed Control Platform for Large-scale Production Networks", 9th
USENIX Conference on Operating Systems Design and Implementation, 351
364, Vancouver, BC, Canada, 4-6 October.

Agarwal S., Kodialam M., Lakshman T. V, (2013), "Traffic engineering in
software defined networks", IEEE INFOCOM, 2211-2219, Turin, Italy, 14-19
April.

Gvozdiev N., Karp B., Handley M., (2014), "FUBAR: Flow Utility Based
Routing", 13th ACM Workshop on Hot Topics in Networks, 1-7, Los Angeles,
CA, USA, 27-28 October.

Vissicchio S., Vanbever L., Rexford J., (2014), "Sweet Little Lies: Fake
Topologies for Flexible Routing”, Proceedings of the 13th ACM Workshop on
Hot Topics in Networks, 1-7, Los Angeles, CA, USA, 27-28 October.

Kohler T., Durr F., Rothermel K., (2017), "ZeroSDN: A Highly Flexible and
Modular Architecture for Full-Range Network Control Distribution”,
ACM/IEEE Symposium on Architectures for Networking and Communications
Systems (ANCS), 25-37, Beijing, China, 18-19 May.

Lin P., BiJ., Hu H., (2012), "ASIC: An Architecture for Scalable Intra-Domain
Control in OpenFlow", 7th International Conference on Future Internet
Technologies, 21-26, Seoul, Korea, 11-12 September.

Hassas Yeganeh S., Ganjali Y., (2012), "Kandoo: A Framework for Efficient
and Scalable Offloading of Control Applications”, First Workshop on Hot
Topics in Software Defined Networks, 19-24, Helsinki Finland, 13 August.

86

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Ahmed R., Boutaba R., (2014), "Design considerations for managing wide area
software defined networks", IEEE Communications Magazine, 52 (7), 116-
123.

Lopez-Rodriguez F., Campelo D. R., (2014), "A robust SDN network
architecture for service providers”, IEEE Global Communications Conference
(GLOBECOM), 1903-1908, Austin, TX, USA, 8-12 December.

Wang J., Shou G., Hu Y., Guo Z., (2016), "A Multi-Domain SDN Scalability
Architecture Implementation Based on the Coordinate Controller”,
International Conference on Cyber-Enabled Distributed Computing and
Knowledge Discovery (CyberC), 494-499, Chengdu, Sichuan, China, 13-15
October.

Yu M., Rexford J., Freedman M. J., Wang J., (2010), "Scalable flow-based
networking with DIFANE", SIGCOM Computer Communication Review, 40
(4), 351-362.

Hu Y., Wang W., Gong X., Que X., Cheng S., (2012), "BalanceFlow: Controller
load balancing for OpenFlow networks", 2nd IEEE International Conference on
Cloud Computing and Intelligence Systems, 780-785, Hangzhou, China, 30
October-1 November.

Othman M. M. O., Okamura K., (2013), "Enhancing Control Model to Ease Off
Centralized Control of Flow-Based SDNs", 37th Annual IEEE Computer
Software and Applications Conference, 467-470, Kyoto, Japan, 22-26 July.

Jain S., Kumar A., Mandal S., Ong J., Poutievski L., Singh A., Venkata S.,
Wanderer J., Zhou J., Zhu M., Zolla J., Hélzle U., Stuart S., Vahdat A., (2013),
"B4. Experience with a Globally-deployed Software Defined Wan",
SIGCOMM Computer Communications Review, 43 (4), 3-14.

Wang J. M., Wang Y., Dai X., Bensaou B., (2014), "SDN-based multi-class
QoS-guaranteed inter-data center traffic management"”, 3rd IEEE International
Conference on Cloud Networking (CloudNet), 401-406, Luxembourg, 8-10
October.

Stefano A. D., Cammarata G., Morana G., Zito D., (2015), "A4SDN - Adaptive
Alienated Ant Algorithm for Software-Defined Networking", 10th International
Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC),
344-350, Krakow, Poland, 4-6 November.

Cammarata G., Stefano A. D., Morana G., Zito D., (2016), "Evaluating the
Performance of A4SDN on Various Network Topologies”, 2016 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), 801-808, Chicago, IL, USA, 23-27 May.

Tomovic S., Lekic N., Radusinovic I., Gardasevic G., (2016), "A new approach
to dynamic routing in SDN networks", 18th Mediterranean Electrotechnical

87

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Conference (MELECON), 1-6, Lemesos, Cyprus, 18-20 April.

Wang Z., Crowcroft J., (1996), "Routing algorithms for supporting resource
reservation”, Computer Networks, 52 (15), 2988-3006.

Kodialam M., Lakshman T. V, (2000), "Minimum interference routing with
applications to MPLS traffic engineering”, Nineteenth Annual Joint Conference
of the IEEE Computer and Communications Societies, 884-893, Tel Aviv,
Israel, 26-30 March.

Boutaba R., Szeto W., Iraqi Y., (2002), "DORA: Efficient Routing for MPLS
Traffic Engineering”, Journal of Network and Systems Management, 10 (3),
309-325.

Luo M., Zeng Y., Li J., Chou W., (2015), "An adaptive multi-path computation
framework for centrally controlled networks", Computer Networks, 83, 30-44.

Tuncer D., Charalambides M., Clayman S., Pavlou G., (2015), "Adaptive
Resource Management and Control in Software Defined Networks", IEEE
Transactions on Network and Service Management, 12 (1), 18-33.

Wang C., Hu B., Chen S., Li D., Liu B., (2017), "A Switch Migration-Based
Decision-Making Scheme for Balancing Load in SDN", IEEE Access, 5, 4537-
4544,

Tucker R., Baliga J., Ayre R. W. A., Hinton K., Sorin W. V, (2008), "Energy
consumption in IP networks”, 34th European Conference on Optical
Communication (ECOC), 1, Brussels, Belgium, 21-25 September.

Heller B., Seetharaman S., Mahadevan P., Yiakoumis Y., Sharma P., Banerjee
S., McKeown N., (2010), "ElasticTree: Saving Energy in Data Center
Networks", 7th USENIX Conference on Networked Systems Design and
Implementation, 249-264, San Jose, CA, USA, 28-30 April.

Gupta M., Singh S., (2003), "Greening of the Internet”, Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communications, 19-26, Karlsruhe, Germany, 25-29 August.

Zemmouri S., Vakilinia S., Cheriet M., (2016), "Let’s adapt to network change:
Towards energy saving with rate adaptation in SDN", 12th International
Conference on Network and Service Management (CNSM), 272-276,
Montreal, QC, Canada, 31 October-4 November.

Wang R., Jiang Z., Gao S., Yang W., Xia Y., Zhu M., (2014), "Energy-aware
routing algorithms in Software-Defined Networks", 15th IEEE International
Symposium on A World of Wireless, Mobile and Multimedia Networks
(WoWMoM), 1-6, Sydney, NSW, Australia, 19 June.

Thaenchaikun C., Jakllari G., Paillassa B., Panichpattanakul W., (2016),
"Mitigate the load sharing of segment routing for SDN green traffic

88

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

engineering”, 2016 International Symposium on Intelligent Signal Processing
and Communication Systems (ISPACS), 1-6, Phuket, Thailand, 24-27 October.

Celenlioglu M. R., Goger S. B., Mantar H. A., (2011), "An SDN-based energy-
aware routing model for intra-domain networks"”, 2014 22nd International
Conference on Software, Telecommunications and Computer Networks
(SoftCOM), 61-66, Split, Croatia, 17-19 September.

Razmnoush R., Bakhshi B., (2016), "Green traffic engineering in SDN", 24th
Iranian Conference on Electrical Engineering (ICEE), 693-698, Shiraz, Iran,
10-12 May.

Fernandez-Ferndndez A., Cervell6-Pastor C., Ochoa-Aday L., (2017), "A
Multi-Objective Routing Strategy for QoS and Energy Awareness in Software-
Defined Networks", IEEE Communications Letters, 21 (11), 2416-2419.

Bolla R., Bruschi R., Davoli F., Gregorio L. Di, Donadio P., Fialho L., Collier
M., Lombardo A., Recupero D. R., Szemethy T., (2013), "The Green
Abstraction Layer: A Standard Power-Management Interface for Next-
Generation Network Devices", IEEE Internet Computing, 17 (2), 82-86.

Bruschi R., Lombardo A., Morabito G., Riccobene V., Bolla R., Davoli F.,
Lombardo C., (2014), "Green extension of OpenFlow", 26th International
Teletraffic Congress (ITC), 1-6, Karlskrona, Sweden, 9-11 September.

Awad M. K., Rafique Y., Alhadlag S., Hassoun D., Alabdulhadi A., Thani S.,
(2016), "A greedy power-aware routing algorithm for software-defined
networks"”, IEEE International Symposium on Signal Processing and
Information Technology (ISSPIT), 268-273, Limassol, Cyprus, 12-14
December.

Gomes R. L., Bittencourt L. F., Madeira E. R. M., Cerqueira E., Gerla M.,
(2016), "State-aware allocation of reliable Virtual Software Defined Networks
based on bandwidth and energy”, 13th IEEE Annual Consumer
Communications Networking Conference (CCNC), 411-416, Las Vegas, NV,
USA, 9-12 January.

Hu Y., Luo T., Wang W., Deng C., (2016), "GreSDN: Toward a green software
defined network", 18th Asia-Pacific Network Operations and Management
Symposium (APNOMS), 1-6, Kanazawa, Japan, 5-7 October.

Rahnamay-Naeini M., Baidya S. S., Siavashi E., Ghani N., (2016), "A traffic
and resource-aware energy-saving mechanism in software defined networks",
2016 International Conference on Computing, Networking and
Communications (ICNC), 1-5, Kauai, HI, USA, 15-18 February.

IEEE802.1Q, (1999), "IEEE Standards for Local and Metropolitan Area
Networks: Virtual Bridged Local Area Networks", IEEE.

MPLS, (2001), "Multiprotocol Label Switching Architecture™, "Multiprotocol
89

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

Label Switching Architecture”, IETF.
SEGROU, (2018), "Segment Routing Architecture”, IETF.

Eppstein D., (1999), "Finding the K Shortest Paths", SIAM J. Comput., 28 (2),
652-673.

Abe J. O., Mantar H. A., Yayimli A. G., (2015), "k-Maximally Disjoint Path
Routing Algorithms for SDN", IEEE International Conference on Cyber-
Enabled Distributed Computing and Knowledge Discovery (CyberC), 499-508,
Xi'an, China, 17-19 September.

Fleszar K., Mnich M., Spoerhase J., (2016), "New Algorithms for Maximum
Disjoint Paths Based on Tree-Likeness", 24th Annual European Symposium on
Algorithms (ESA), 433461, Aarhus, Denmark, 22-24 August.

Ciampa M., (2009), "CompTIA Security+ 2008 in Depth", 1st Edition, Cengage
Learning PTR.

SHS, (2012), "Secure Hash Standard - SHS: Federal Information Processing
Standards Publication 180-4", National Institute of Standards and Technology.

Web 10, (2013), "OpenFlow Specifications v.1.3.3", https://www.
opennetworking. org/images/stories/downloads/sdn-resources/onf-specifica
tions /openflow/open flow-spec-v1.3.3.pdf, (Accessed: 15/01/2021).

Lantz B., Heller B., McKeown N., (2010), "A Network in a Laptop: Rapid
Prototyping for Software-defined Networks", 9th ACM SIGCOMM Workshop
on Hot Topics in Networks, 1-6, Monterey, California, USA, 20-21 October.

Pfaff B., Pettit J., Koponen T., Jackson E. J., Zhou A., Rajahalme J., Gross J.,
Wang A., Stringer J., Shelar P., Amidon K., Casado M., (2015), "The Design
and Implementation of Open vSwitch”, 12th USENIX Conference on
Networked Systems Design and Implementation, 117-130, Oakland, CA, USA,
4-5 May.

Web 11, (2002), http://www.postel.org/tg/, (Accessed: 15/01/2021).

Mills D. L., Braun H., (1987), "The NSFNET Backbone Network", SIGCOMM
Computer Communication Review, 17 (5), 191-196.

Claffy K. C., Braun H.-W., Polyzos G. C., (1994), "Tracking Long-term Growth
of the NSFNET", Communications of the ACM, 37 (8), 34-45.

Web 12, (2015), http://www.caida.org/data/realtime/passive/?monitor=eq
uinix-chicago-dirA/, (Accessed: 29/03/2015).

Web 13, (2015), http://www.caida.org/data/realtime/passive/?monitor=eq
uinix-chicago-dirB/, (Accessed: 29/03/2015).

90

[85]

[86]

[87]

Web 14, (2015), http://www.caida.org/data/realtime/passive/?monitor=eq
uinix-sanjose-dirA/, (Accessed: 29/03/2015).

Web 15, (2015), http://www.caida.org/data/realtime/passive/?monitor=eq
uinix-sanjose-dirB/, (Accessed: 29/03/2015).

Jiang J. R., Huang H. W., Liao J. H., Chen S. Y., (2014), "Extending Dijkstra’s
shortest path algorithm for software defined networking", The 16th Asia-Pacific
Network Operations and Management Symposium, 1-4, Hsinchu, Taiwan, 17-
19 September.

91

APPENDICES

Appendix A: Publications Based on this Thesis
International Journal Publications

Celenlioglu M. R., Tuysuz M. F., Mantar H. A., (2018), “An SDN-based scalable
routing and resource management model for service provider networks”, International
Journal of Communication Systems, 31 (8), 1-22.

Celenlioglu M. R., Mantar H. A., (2021), “Energy aware adaptive resource
management model for software-defined networking-based service provider
networks”, IET Network, 1-13.

International Conference Publications

Celenlioglu M. R., Goger S. B., Mantar H. A., (2014), "An SDN-based energy-aware
routing model for intra-domain networks"”, 22nd International Conference on
Software, Telecommunications and Computer Networks (SoftCOM), 61-66, Split,
Croatia, 17-19 September.

Celenlioglu M. R., Mantar H. A., (2014), "A scalable routing and admission control
model in SDN-based networks", ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS), 231-232, Marina del Rey, CA,
20-21 October.

Celenlioglu M. R., Mantar H. A., (2015), "An SDN Based Intra-Domain Routing and
Resource Management Model", IEEE International Conference on Cloud Engineering,
347-352, Tempe, AZ, USA, 9-13 March.

Celenlioglu M. R., Alsadi M., Mantar H. A., (2015), "Design, implementation and

evaluation of SDN-based resource management model™, 7th International Conference
on New Technologies, Mobility and Security (NTMS), 1-5, Paris, France, 27-29 July.

93

