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INVESTIGATION OF INTERACTING MULTIPLE FATIGUE CRACKS
PROPAGATION USING TWO-DIMENSIONAL BOUNDARY CRACKLET
METHOD

SUMMARY

Aircraft structures experience fatigue loading emanating from different sources e.g.
variation of aerodynamic loads on wings and repetitive pressurizing and
depressurizing the cabin of the aircraft etc. It is a well-known fact that fatigue loading
Is more responsible for the failure of aircraft structures as compared to static loading
because a single surface crack can lead to a catastrophic failure due to fatigue loading.
At the early stages of the life of aircraft, these surface cracks have no effect on the
structural integrity of the aircraft, but with the passage of time, environmental effect,
and nature of loading these cracks propagate and interact with each other. These cracks
propagate, up to the point where the remaining cross-section of the component is not
being capable of carrying the loads and the component will be subjected to sudden
fracture.

The failures due to fatigue usually start at small surface cracks which act as local stress
raisers and propagate and interact with each other and turn into large damage-
producing cracks. In practice, these micro surface cracks are always likely to be
present in many aircraft structural components even the newly made components can
have these cracks due to certain imperfections in machining processes during the
manufacturing of aircraft. To produce a damage tolerance design and to meet the
certain requirements of certifications applicable in the aerospace industry, it becomes
very important to know the behaviour of aerospace structures in the presence of these
inevitable surface cracks under fatigue loading. Thus, a fast and accurate method of
predicting the behaviour of these cracks under fatigue loading plays a vital role. This
fact forces engineers to develop new methods and models which can simulate the
effects of existing cracks so that they can predict the remaining useful life of aircraft
structure more accurately. Such methods and simulation techniques not only reduce
the high cost of physical testing of the aerospace structures but also play a crucial role
in producing a better design of these structures.

For the analysis of planar cracks, different commercial tools are available, which are
mostly based on the analytical formulations and different handbook solutions e.g.
NASGRO and AFGROW. These software packages can simulate the fatigue crack
growth (FCG) problems of predefined cracks under mode-I loading conditions only,
but most of the real problems in the industry are under the influence of mix mode
loading where crack tip grows under the effect of both mode-I and mode-I11 loading
conditions. Therefore, these software packages cannot handle such complex problems
of mix mode crack growth. Finite element methods are also being used from a long
time for the study of FCG. These methods can simulate the interactions of cracks with
reasonably good accuracy. But, due to the requirement of fine mesh at the crack tip,
generation of a representation of the crack advancement and regeneration of FE mesh
after each iteration of FCG, make these methods challenging to adopt. To overcome

XXV



these difficulties of FEM, in 1999, a mesh-independent method called Extended-FEM
(XFEM) with minimal re-meshing was developed and since then a continuous
improvement has been seen in the implementation of these methods. However, the
accuracy of these methods decreases as the complexity of the problem increases and
still a lot of research efforts are underway to overcome this shortcoming.

By considering the above-mentioned limitations of the conventional methods to
analyse the FCG of problems involving multiple cracks under mixed-mode conditions,
there is always room to develop such methods which can mitigate the deficiencies of
these methods. Recently, in 2006, a fast and accurate semi-analytical method called
Boundary Cracklet Method (BCM) is developed by Prof. Dr. A. K. Yavuz (co-advisor
of this study) and Prof. Dr. S. L. Phoenix at Cornell University, to find the overall
stress field and the stress intensity factor (SIF) for crack tips and crack singular wedges
at the crack kinks. This method is based on the dislocation distribution approach which
approximates the crack opening displacement profiles by using certain power series
that satisfy the traction-free condition on crack faces. Unlike the conventional mesh
dependent methods, where a very fine mesh is required to overcome the stress
singularities around crack tips, BCM takes care of crack tip singularities by including
wedge eigenvalues in power series and makes sure that all integrals necessary to
calculate stress fields are in closed form to give fast solutions. The solution of these
integrals is the most time-consuming part in other mesh-dependent methods such as
FEMs and BEMs. Moreover, only a few numbers of allocation points are used around
the crack tips to satisfy traction-free boundary conditions instead of using more
elements. These factors make the algorithm of BCM more reliable and fast as
compared to other methods and enable us to solve difficult fatigue crack growth
problems. Therefore, the main objective of this thesis is to analyse the multiple cracks
interaction under mix mode fatigue loading by using BCM in the two-dimensional
domain and to show the accuracy and versatility of the method to different fatigue
crack growth problems that are difficult to solve by using the conventional methods.

Throughout the thesis, it has been proved that the proposed scheme is a reliable and
accurate method to simulate the fatigue crack propagation (FCP) involving multiple
cracks in complex plate geometries under different conditions of fatigue loading. The
accuracy of the method is established through the results presented by different
researchers which were already available in the literature. Crack tip SIFs, fatigue crack
propagation paths and the number of loading cycles required to produce a given crack
length extension are used as a parameter for the comparison. A good agreement among
the results of each mentioned parameter is achieved for every problem.

Further, this proposed method is used to simulate the FCP in different plate geometries
involving single as well as multiple cracks under different conditions of fatigue loading
which are typical and difficult problems to solve in aerospace structural components.
For this purpose, three different studies are conducted, and the findings of each study
are published in different international prestigious forums.

In the first study, fatigue crack growth in an infinite plate having two rivet holes
separated at some distance and crack emanating from a certain location and orientation
from one hole are analyzed under three different far-field fatigue loadings i.e. loading
in X-direction, loading in Y- direction and shear loading. The maximum tangential
stress (MTS) criterion is used to predict the trajectories of crack growth. Paris’s Law
along with the approach of equivalent stress intensity factor is used to compute the
number of loading cycles to produce a required crack length. It is concluded that after
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some initial number of loading cycles, the fatigue crack growth path becomes
perpendicular to the direction of applied loading in case of far-field applied tensile
stress (whether in X or Y direction), and similarly, in the case of shear loading, cracks
propagate perpendicular to the direction of maximum principal stress. Almost ten
times fewer loading cycles are required to reach at a certain crack size under shear
loading as compared to the normal applied stress, which shows that the rate of crack
propagation is ten times higher under shear stress. Therefore, among the given three
loading conditions, cycling shear stress is the worst one and needs more attention while
designing the structures having rivet holes.

In the second study, fatigue crack growth simulations of interacting multiple cracks in
perforated plates with multiple holes are discussed. To show the versatility of the
proposed method, emphasis is given to study such complicated problems which cannot
be solved by conventional methods to analyse the FCG. Three different studies with
multiple cases of initial cracks emanating from side edges, the center of the plate and
the outer periphery of holes in the plate at different orientations are simulated. It has
been concluded that the FCG of complicated problems e.g. plate with six holes having
seven pre-cracks can be computed fast by the proposed scheme. The conventional
methods of analysing FCG have limitations in solving such complex problems.
Moreover, the effect of a newly added crack in the vicinity of already present crack is
also analyzed and concluded that when two coplanar cracks approach each other, they
exhibit an over-constraining phenomenon, which causes the near-tip stress field to be
significantly higher than that near a single crack and hence ultimately increases the
rate of crack growth. To show the efficiency of a computational method in fatigue
problems a new and very useful parameter is also introduced: Yavuz’s fatigue
computational efficiency factor, Ycr = uN/t, which is the number of computed million
loading cycles per hour (CPU time).

In the third study, FCG behaviour of symmetric cracks emanating at different locations
at the outer periphery of the hole in an infinite plate with different orientations under
in-phase tension-tension biaxial loading is presented. As the effects of initial crack
orientation under uniaxial fatigue loading are well reported in the literature but the
same under the effect of different conditions of biaxial loading has not been
investigated. The rate of FCG is computed using Walker’s equation, whereas the
direction of propagation of crack tip is predicted using the minimum strain density
(MSED) criterion. Our results show that BCM is equally effective in predicting the
FCG behaviour under complex cases of fatigue loading. It is concluded that cracks
tend to propagate perpendicular to the direction of dominant stress in the case of biaxial
load where biaxiality ratio A # 1 and there is no effect of location and orientation of
initial crack on the crack trajectory. For equibiaxial loading where A = 1, the crack
tends to propagate diagonally, and its path depends upon the location and orientation
of the initial pre-crack. As far as the number of loading cycles for a given crack
extension are concerned, equal load cycles are computed for A =0, 0.5, 1 whereas it is
concluded that for A = 1.5, the rate of crack growth increases, and fewer loading cycles
are required to produce the given crack length. It is also concluded that there is no
change in crack trajectories under different stress ratios (R). For a given effective stress
intensity factor (AKeff) the rate of crack propagation is increased with the increase in
R, but for a given value of stress, the value of AKes is lower for a higher R-value,
which results in a higher number of required loading cycles to produce the same crack
extension.
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IKI BOYUTLU SINIR CATLAK ELEMANI YONTEMI (BOUNDARY
CRACKLET METHOD) KULLANILARAK ETKILESIMLI COKLU
YORULMA CATLAKLARININ ILERLEMESININ ARASTIRILMASI

OZET

Ugak yapilari, kanatlar iizerine gelen aerodinamik yiiklerin degisimi ve kabin
basincinin degisimi gibi ¢esitli nedenlerden dolayi yorulma yiiklemesi etkisi altinda
kalir. Yorulma yiiklemesinin, statik yliklemeye kiyasla ugak yapilarinin hasar
gormesinde daha fazla sorumlu oldugu iyi bilinen bir gergektir; ¢linkii yorulma
yuklemesinin meydana getirecegi tek bir ylizey catlagi kazaya neden olabilecek bir
hasara neden olabilir. Ugagin 6mriiniin ilk agamalarinda, bu ylizey c¢atlaklarinin u¢agin
yapisal biitiinliigii izerinde higbir etkisi yoktur, ancak zamanin gegisi, cevresel etki ve
bu catlaklarin yiikkleme etkisiyle yayilmasi ve birbirleriyle etkilesime girmesi olasidir.
Bu catlaklar, yap1 bileseninin kesitinin yiikleri tasiyamayacagi noktaya kadar yayilir
ve s0z konusu bilesen ani kirilmaya maruz kalir.

Yorulmadan kaynaklanan hasarlar genellikle yerel gerilme arttiricilar olarak hareket
eden, yayilan, birbirleriyle etkilesime giren ve biiyiik hasar meydana getiren ¢atlaklara
doniisen kiicilik ylizey ¢atlaklariyla baglar. Uygulamada, bu mikro yiizey catlaklarinin
her zaman bir¢ok hava tasiti yapisal bileseninde mevcut olmast muhtemeldir, hatta
yeni imal edilen yapisal bilesenlerde bile, ucak iiretimi sirasinda isleme
proseslerindeki bazi1 kusurlar nedeniyle bu catlaklar olabilir. Bir hasar toleransi ile
tasarlanan yapiy1 imal etmek ve havacilik endiistrisinde gegerli olan sertifikalarin
belirli gereksinimlerini karsilamak i¢in, yorulma yiiklemesi altinda bu kag¢inilmaz
ylizey ¢atlaklarinin varliginda havacilik yapilarinin davranigini bilmek ¢ok dnemli hale
gelir. Bu nedenle, s6z konusu catlaklarin yorulma yiiklemesi altindaki davranigini
tahmin etmenin hizli ve dogru bir yontemi hayati bir rol oynar. Bu gercek,
miithendisleri, ucak yapisinin kalan faydali omriinii daha dogru bir sekilde tahmin
edebilmeleri i¢in mevcut ¢atlaklarin etkilerini simiile edebilen yeni yontemler ve
modeller gelistirmeye zorlamaktadir. Bu tiir yontemler ve simiilasyon teknikleri,
yalnizca havacilik ve uzay yapilarmin yiiksek fiziksel test maliyetini diisiirmekle
kalmaz, ayn1 zamanda bu yapilarin daha iyi tasarlanmasinda ¢ok énemli bir rol oynar.

Dizlemsel gatlaklarin analizi igin, ¢ogunlukla analitik formiilasyonlara ve farkli el
kitab1 ¢oziimlerine dayanan farkli ticari yazilimlar mevcuttur, 6rnegin NASGRO ve
AFGROW. Bu yazilim paketleri, yalnizca mod-I yiikleme kosulunda 6nceden
tanimlanmus bir ¢atlak ilerlemesi (FCG) sorununu simdile edebilir, ancak endustrideki
gercek sorunlarin ¢ogu, catlak ucunun her ikisinin de etkisi altinda ilerledigi karigim
modu(mod-I ve mod-II yiikleme kosullari) yiiklemesinin etkisi altindadir. Bu nedenle,
s0z konusu yazilim paketleri, karistm modu catlak ilerlemesi gibi karmasik sorunlari
¢ozemez. FCG calismasi i¢in uzun zamandan beri sonlu eleman ydntemleri de
kullanilmaktadir. S6z konusu yontemler, catlaklarin etkilesimlerini olduke¢a 1yi bir
dogrulukla simiile edebilir. Ancak, ¢atlak ucunda daha fazla eleman gereksinimi
nedeniyle, FCG'nin her yinelemesinden sonra FE aginin catlak ilerlemesi ve
rejenerasyonunun bir temsilinin olusturulmasi, bu yontemlerin benimsenmesini
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zorlagtirtr. FEM'in bu zorluklariin iistesinden gelmek igin, 1999'da, minimum
yeniden ag olusturma ile Genisletilmis-FEM (XFEM) ad1 verilen agdan bagimsiz bir
yontem gelistirilmis ve o zamandan beri bu yontemlerin uygulanmasinda siirekli bir
gelisme goriilmiistiir. Bununla birlikte, problemdeki karmasiklik arttikca bu
yontemlerin dogrulugu azalmaktadir ve s6z konusu eksikligin iistesinden gelmek i¢in
hala bir¢ok arastirma ¢alismasi devam etmektedir.

Karigik mod kosullart altinda ¢ok sayida ¢atlak iceren problemlerin FCG'sini analiz
etmek icin geleneksel yontemlerin yukarida bahsedilen sinirlamalart dikkate
alindiginda, bu yontemlerin eksikliklerini azaltabilecek yontemleri gelistirmek i¢in her
zaman bir ¢alisma alani1 vardir. Son zamanlarda, 2006 y1linda, Cornell Universitesi'nde
Prof. Dr. Abdulkadir Yavuz (bu tezin es danigsmani) ve Prof. Dr. S. L Phoenix
tarafindan, catlak uglar1 i¢in genel gerilme alani, gerilme yogunlugu faktorii (SIF) ve
catlak kivrimlarinda tekil kamalar1 hesaplamak i¢in, Boundary Cracklet Method
(BCM) ad1 verilen hizli ve guvenilir bir yari analitik yontem gelistirilmistir. Bu
yontem, catlak yiizeylerindeki ¢ekmesiz durumu saglayan belirli Ustel fonksiyon
serilerini kullanarak catlak acgilim yer degistirme profillerine yaklasan dislokasyon
yayilimi yaklasimina dayanmaktadir. Catlak uglari etrafindaki gerilme tekilliklerinin
iistesinden gelmek icin c¢ok ince bir agin gerekli oldugu geleneksel aga bagh
yontemlerin aksine, BCM, Ustel fonksiyon serilerine kama 6zdegerlerini dahil ederek
catlak ucu tekilliklerini giderir ve gerilim alanlarin1 hesaplamak igin gerekli tim
integrallerin i¢inde olmasini ve hizli ¢éziim vermek i¢in kapali formda bir ¢dziim
saglar. Bu integrallerin ¢6ziimii, FEM'ler ve BEM'ler gibi diger aga bagli yontemlerde
en ¢ok zaman alan kisimdir. Ayrica, daha fazla eleman kullanmak yerine serbest sinir
kosullarimi saglamak i¢in c¢atlak uc¢larinin ¢evresinde yalnizca birkag tahsis noktasi
kullanilir. Bu faktorler, BCM algoritmasini diger yontemlere gore daha glivenilir ve
hizli hale getirir ve zorlu yorulma catlak ilerleme problemlerini ¢6zmemizi saglar. Bu
nedenle, bu tezin temel amaci, BCM'yi iki boyutlu alanda kullanarak karisim modlu
yorulma yiiklemesi altinda ¢oklu catlak etkilesimini analiz etmek ve yontemin
dogrulugu ve cok yonliiliigiinii, geleneksel yontemleri kullanarak ¢oziilmesi zor olan
farkli yorulma catlak ilerleme problemlerinde gostermektir.

Bu c¢alismada, iki boyutlu alanda BCM kullanilarak karisim modlu yorulma yuklemesi
altinda c¢oklu catlak etkilesimini analiz eden yeni bir yontem sunulmustur. Tez
boyunca, 6nerilen yontemin, farkli yorulma ytiklemesi kosullar altinda karmasik plak
geometrilerinde coklu catlaklar1 iceren yorulma catlak ilerlemesini (FCP) simiile
etmek i¢in giivenilir ve dogru bir yontem oldugu kanitlanmistir. Yontemin dogrulugu,
literatiirde halihazirda mevcut olan farkli arastirmacilar tarafindan sunulan sonuglarla
karsilastirilarak belirlenmistir. Kargilastirma icin bir parametre olarak g¢atlak ucu
SIF'leri, yorulma gatlak yayilma yollar1 ve belirli bir ¢atlak uzunlugunda ileretmek icin
gerekli ylikleme ¢evrimlerinin sayist kullanilmistir. Her bir problem i¢in bahsedilen
her bir parametrenin sonuglar1 arasinda iyi bir uyum saglanmaistir.

Ayrica Onerilen yontem, havacilik ve uzay yapisal bilesenlerinde ¢oziilmesi tipik ve
zor problemler olan farkli yorulma yiiklemesi kosullart altinda tekli ve ¢oklu ¢atlaklari
iceren farkli plak geometrilerinde FCP'yi simiile etmek i¢in kullanilir. Bu amagla {i¢
farkli ¢alisma yapilmistir ve her bir ¢alismanin bulgular1 farkli uluslararasi prestijli
dergilerde yayinlanmistir.

Ik galigmada, bir mesafeden ayrilmis iki pergin deligine sahip sonsuz bir plakdaki
yorulma catlag: ilerlemesi ve bir delikten belirli bir yerden kaynaklanan catlak ve
yonelim, ii¢ farkli uzak alan yorulma yiiklemesi, yani X yoniinde yiikleme, Y'de
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yukleme, basma ve kesme yiki. Catlak buyumesinin yorungelerini tahmin etmek igin
maksimum tegetsel gerilme (MTS) kriteri kullanilmistir. Paris yasasi ve esdeger
gerilme yogunlugu faktorii yaklasimi, gerekli catlak ilerleme uzunlugunu meydana
getirmek icin yiikleme ¢evrimlerinin sayisini hesaplamak i¢in kullanilmstir. i1k birkag
yiikleme ¢evriminden sonra, yorulma ¢atlagi ilerleme yolunun, uzak alana uygulanan
¢cekme gerilmesi (X veya Y yoniinde) durumunda ve benzer sekilde kesme yiikii,
catlaklar durumunda uygulanan yikleme yoniine dik hale geldigi, yani maksimum
temel gerilme yoniine dik olarak yayildig1 sonucuna varilmistir. Uygulanan normal
gerilme ile karsilastirildiginda, kesme yiikii altinda belirli bir ¢atlak boyutuna ulasmak
icin neredeyse on kat daha az yikleme dongust gerekmekte, bu da kayma gerilmesi
altinda catlak yayilma hizinin on kat daha yiiksek oldugunu goéstermektedir. Bu
nedenle, verilen ii¢ yiikleme kosulu arasinda, ¢evrimsel kayma gerilmesi en kotiistidiir
ve per¢in delikli yapilari tasarlarken daha fazla dikkat gerektirir.

Ikinci ¢alismada, coklu delikli perfore plaklarda ¢oklu catlaklarin etkilestigi yorulma
catlag1 ilerleme simiilasyonu tartistimistir. Onerilen yontemin c¢ok yénliiliigiinii
gostermek amactyla, FCG'yi analiz etmek igin geleneksel yontemlerle ¢oziilemeyen
bu tiir karmasik sorunlarin incelenmesine 6nem verilmektedir. Yan kenarlardan, plagin
merkezinden ve plakdaki deliklerin dis ¢evresinden farkli yonelimlerde ortaya ¢ikan
birden fazla ilk c¢atlak durumuyla ii¢ farkli problem simiile edilmistir. Karmasik
sorunlarin FCG'si 6rnegin yedi on ¢atlaga sahip alt1 delikli plak, onerilen yontem
kullanilarak hizli bir sekilde hesaplanmistir. Geleneksel FCG analiz yontemlerinin bu
tiir karmasik problemleri ¢6zmede sinirlamalar1 vardir. Ayrica, halihazirda mevcut
catlagin yakininda yeni eklenen catlagin etkisi de analiz edilmis ve iki diizlemsel ¢atlak
birbirine yaklastiginda asir1 sinirlayici bir fenomen sergiledikleri sonucuna varilmistir.
Yorulma problemlerinde bir hesaplama yonteminin verimliligini géstermek i¢in yeni
ve ¢ok kullaniglht bir parametre de sunulmustur: “Yavuz” yorulma hesaplama
verimliligi faktorii, YCF = uN / t, saat bagina hesaplanan milyon yiikleme ¢evrimi
sayisidir (CPU zamani).

Uciincii ¢alismada, faz i¢i gerilme-gerilme cift eksenli yiikleme altinda farkl
yonelimlere sahip sonsuz bir plakda deligin dis ¢evresinde farkl yerlerde ortaya ¢ikan
simetrik catlaklarin FCG davranisi sunulmustur. Tek eksenli yorulma ytiklemesi
altinda ilk catlak oryantasyonunun etkileri literatiirde iyi bilindiginden, farkli ¢ift
eksenli yiikleme kosullarinin etkisi altinda aynt durum arastirilmamistir. FCG orant,
Walker denklemi kullanilarak hesaplanirken, ¢atlak ucunun yayilma yonii minimum
gerinim yogunlugu (MSED) kriteri kullanilarak tahmin edilmistir. Sonuglarimiz,
BCM'nin karmagik yorulma yiiklemesi durumlarinda FCG davranisini tahmin etmede
esit derecede etkili oldugunu gdstermektedir. Catlaklarin, ¢ift eksenlilik oraninin A +
1 oldugu ve ¢atlak yoriingesi lizerindeki ilk catlagin konumu ve oryantasyonunun
hicbir etkisinin olmadig: cift eksenli ylik durumunda, baskin gerilme yoniine dik
yayllma egiliminde oldugu sonucuna varilmistir. Es eksenli yiikleme i¢in A = 1
oldugunda, ¢atlak capraz olarak yayilma egilimindedir ve yolu, ilk ¢atlagin konumuna
ve yoniine baghdir. Belirli bir ¢atlak uzamasi igin yiikleme ¢evrimi sayist s6z konusu
oldugunda, esit yiik ¢cevrimleri A = 0, 0.5, 1 i¢in hesaplanirken, A = 1.5 i¢in ¢atlak
ilerleme hizinin arttig1 ve verilen catlak uzunlugunu meydana getirmek icin daha az
yiikleme ¢evrimi gerektigi sonucuna varilmistir. Ayrica, farkli gerilme oranlari (R)
altinda catlak yoriingelerinde hi¢bir degisiklik olmadigi sonucuna varilmistir. Belirli
bir etkili gerilme yogunlugu faktorii (AKesr) icin catlak yayilma hizi R'deki artisla artar,
ancak belirli bir gerilme degeri i¢in AKesr degeri daha yiiksek bir R degeri i¢in daha
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diistiktiir ve bu da ayni ¢atlak uzunlugunu meydana getirmek i¢in daha yiiksek ¢evrim
sayisinda yiikleme ile sonuglanir.
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1. INTRODUCTION

Aircraft structures experience fatigue loading emanating from different sources e.g.
variation of aerodynamic loads on wings and repetitive pressurizing and
depressurizing the cabin of the aircraft etc. It is a well-known fact that fatigue loading
Is more responsible for the failure of aircraft structures as compared to static loading
because a single surface crack can lead to a catastrophic failure due to fatigue loading
[1]. At the early stages of the life of aircraft, these surface cracks have no effect on the
structural integrity of the aircraft, but with the passage of time, environmental effect,
and nature of loading these cracks propagate and interact with each other. These cracks
propagate, up to the point where the remaining cross-section of the component is not
being capable of carrying the loads and the component will be subjected to sudden
fracture [2].

The failures due to fatigue usually start at small surface cracks which act as local stress
raisers and propagate and interact with each other and turn into large damage
producing cracks [1]. In practice, these micro surface cracks are always likely to be
present in many aircraft structural components even the newly made components can
have these cracks due to certain imperfections in machining processes during the
manufacturing of aircraft. To produce a damage tolerance design and to meet the
certain requirements of certifications applicable in the aerospace industry, it becomes
very important to know the behaviour of structures in the presence of these inevitable
surface cracks under fatigue loading. Thus, a fast and accurate method of predicting
the behaviour of these cracks under fatigue loading play a vital role. This fact forces
engineers to develop new methods and models which can simulate the effects of
existing cracks so that they can predict the remaining useful life of aircraft structure
more accurately. Such methods and simulation techniques not only reduce the high
cost of physical testing of the aerospace structures but also play a crucial role in
producing a better design of these structures.

Several two-dimensional methods and software packages are available in the literature

to investigate fatigue crack propagation. These methods include analytical, finite



element methods (FEM), extended finite element methods (XFEM), boundary element
methods (BEM) and many more. Each one has its advantages as well as limitations
and drawbacks considering the preparation of the model, the accuracy of the method,

capabilities to solve a complex problem and required computation time.

For the analysis of planar cracks different commercial tools are available, which are
mostly based on the analytical formulations and different handbook solutions e.g.
NASGRO [3] and AFGROW [4]. These software packages can simulate the FCG
problems of predefined cracks under mode-I loading conditions only, but most of the
real problems in the industry are under the influence of mix mode loading where crack
tip grows under the effect of both mode-I and mode-II loading conditions. Therefore,
these software packages cannot handle such complex problems of mixed-mode

loading.

Finite element methods are also being used for a long time for the study of FCG. These
methods can simulate the interactions of cracks with reasonably good accuracy. But,
due to the requirement of fine mesh at the crack tip, generation of a representation of
the crack advancement [5] and regeneration of FE mesh after each iteration [6] of FCG,
make these methods challenging to adopt. To overcome these difficulties of FEM, in
1999, Belytschko and Black presented a mesh-independent method with minimal re-
meshing for elastic crack growth [7]. Since then, continuous improvement has been
seen in the implementation of these methods. However, the accuracy of these methods
decreases as the complexity of the problem increases and still a lot of research efforts

are underway to overcome this shortcoming [8].

By considering the above-mentioned limitations of the conventional methods to
analyse the FCG of problems involving multiple cracks under mixed-mode conditions,
there is always room to develop such methods which can mitigate the deficiencies of
these methods. Recently in 2006, a fast and accurate semi-analytical method called
Boundary Cracklet Method (BCM) is developed by Prof. Dr. A.K. Yavuz (co-advisor
of this study) and Prof. Dr. S.L. Phoenix at Cornell University, to find the overall stress
field and the stress intensity factor (SIF) for crack tips and crack singular wedges at
the crack kinks. This method is based on the dislocation distribution approach which
approximates the crack opening displacement profiles by using certain power series
that satisfy the traction-free condition on crack faces. Unlike the conventional mesh

dependent methods, where a very fine mesh is required to overcome the stress



singularities around crack tips, BCM takes cares of crack tip singularities by including
wedge eigenvalues in power series and makes sure that all integrals necessary to
calculate stress fields are in closed form to give fast solutions. The solution of these
integrals is the most time-consuming part in other mesh dependent methods such as
FEMs and BEMs. Moreover, only a few numbers of allocation points are used around
the crack tips to satisfy traction free boundary conditions instead of using more
elements. These factors make the algorithm of BCM more reliable and fast as
compared to other methods and enable us to solve difficult fatigue crack growth
problems. Therefore, the main objective of this thesis is to use the same method to
analyse the multiple cracks interaction for the difficult fracture problems with complex
geometry, orientation and number of pre-cracks in the model and nature of fatigue

loading, in a two-dimensional domain.

1.1 Purpose of Thesis

The main purpose of this thesis is to analyse and simulate the complex phenomenon
of interacting multiple cracks under mixed-mode fatigue loading by using the
Boundary Cracklet Method (BCM) in a two-dimensional domain. The accuracy of the
method is established through the results presented by different researchers which
were already available in the literature. Crack tip SIFs, fatigue crack propagation paths
and the number of loading cycles required to produce a given crack length extension
are used for the comparison. Further, the proposed method is used to simulate the
fatigue crack propagation (FCP) in different plate geometries which are typical and
difficult problems to analyse in aerospace structural components involving single as
well as multiple cracks under different conditions of fatigue loading. For this purpose,
three different studies are conducted, and the findings of each study are published in

different international prestigious journals.

1.2 Unique Aspects of the Thesis

Fatigue crack growth (FCG) analysis and simulation of the interaction of multiple
cracks have been a key issue for decades. In this study, a method of simulating the
complex phenomenon of the interaction of multiple cracks under fatigue loading is

presented: Boundary Cracklet Method (BCM). BCM was developed as a semi-



analytical method to calculate the overall stress field and the stress intensity factors

(SIFs) for crack tips under static loads before.

In this study, BCM is used for the first time to simulate the interacting multiple cracks
under mix-mode fatigue loading. Further, the proposed scheme is used to analyse and
simulate the typical and complicated FCG problems of the aerospace industry which
cannot be solved by conventional methods of FCG analysis. For this purpose, three
different studies were conducted, and the findings of each study are published in

different international prestigious journals.

In the first study, fatigue crack growth in a plate having two rivet holes separated at
some distance and crack emanating from a certain location and orientation from one
hole is analysed under three different far-field fatigue loadings i.e. loading in X-
direction, loading in Y- direction and shear loading. The purpose of this study was to
determine that what are the trajectories of crack propagation under different loading
conditions, which kind of loading is worst for these common rivet structures and what
are the effects of initial crack length on the FCG behaviour. It is concluded that after
some initial number of loading cycles, the FCG path becomes perpendicular to the
direction of applied loading in the case of far-field applied loading and this path does
not depend upon the initial size of the crack. Among the given three loading conditions,
cycling shear stress is the worst one and needs more attention while designing the

structures having rivet holes.

In the second study, fatigue cracks growth simulations of the complex geometry of
problems that cannot be solved by conventional methods to analyse the FCG. Three
different studies with multiple cases of initial cracks emanating from side edges, the
center of the plate and the outer periphery of holes in a plate at different orientations
are simulated. It has been concluded that the FCG of such complicated problems e.g.
plate with six holes having seven pre-cracks can be computed fast by the proposed
scheme. Moreover, the effect of the newly added crack in the vicinity of the already
present crack is also analyzed and concluded that when two coplanar cracks approach
each other, they exhibit an over-constraining phenomenon, which causes the near-tip
stress field to be significantly higher than that near a single crack and hence ultimately

increases the rate of crack growth.



In the third study, the FCG behaviour of symmetric cracks emanating at different
locations at the outer periphery of the hole in an infinite plate with different
orientations under in-phase tension-tension biaxial loading is shown. The main
objective of this study was to examine the effects of initial crack orientation on FCG
behaviour under different conditions of biaxial loading because the effects of initial
crack orientation under uniaxial fatigue loading are well reported in the literature but
the same under the effect of biaxial loading has not been investigated. It is concluded
that cracks tend to propagate perpendicular to the direction of dominant stress in the
case of biaxial load where biaxiality ratio 4 # 1 and there is no effect of location and
orientation of initial crack on the crack trajectory. For equibiaxial loading where A =
1, the crack tends to propagate diagonally, and its path depends upon the location and
orientation of the initial pre-crack. As far as the number of loading cycles for a given
crack extension are concerned, equal load cycles are computed forA=0, 0.5, 1 whereas
it is concluded that for A = 1.5, the rate of crack growth increases. It is also concluded
that there is no change in crack trajectories under different stress ratios (R). For a given
AKesr the rate of crack propagation is increased with the increase in R, but for a given
value of maximum cyclic stress o,,,, the value of AKes is lower for a higher R-value,
which results in a higher number of required loading cycles to produce the same crack

extension.

1.3 Scope of Thesis

The scope is of this study is limited to Linear Elastic Fracture Mechanics (LEFM) in
the two-dimensional domain. For the analysis, elastic and isotropic materials are
considered. The FCG behaviour is predicted by computing mode-I and mode-11 stress
intensity factors (SIFs) with the help of the Boundary Cracklet Method (BCM).
Different criteria available in literature e.g. Maximum tangential stress (MTS)
criterion, minimum strain energy density (MSED) criterion and maximum energy
release rate (MERR) criterion are used to determine the direction of propagation of
cracks, whereas to compute the fatigue lives of structures, Paris-Erdogan law and

Walker’s model are used in this study.

Chapter 2 begins with the literature review and details of different methods and
techniques to simulate the interaction of multiple cracks is presented. The advantages,

as well as the limitation of each method, are discussed in detail.



In chapter 3, the methodology of the boundary cracklet method (BCM) is explained in
detail and how this method helps us to find the stress intensity factors (SIFs) at crack

tips and stress field in the whole cracked plate.

In chapter 4, the modelling of the geometry of the problem and the implementation of

BCM to simulate the interaction of multiple cracks are discussed in detail.

In chapter 5, the accuracy of the proposed method is shown by comparing computed

FCG behaviours from different methods already mentioned in the literature.

Chapter 6 comprises different applications of BCM in which different aspects of
fatigue crack growth are investigated in typical aerospace structures involving single

as well as multiple cracks.

Conclusions drawn from this study and the relevant potential studies which can be

performed in future are presented in chapter 7.



2. LITERATURE REVIEW

The phenomenon of multiple interacting cracks is very common in most engineering
structures especially in ageing aircraft, marine hulls and composites materials. In this
chapter, an overview of different methods available in the literature to study the

interacting multiple cracks is presented.

2.1 Solution Methods Available in Literature

There are several two-dimensional methods and techniques available to study single
as well as multiple cracks interactions and their propagation under fatigue loading.

Some of them are as follows:
e Analytical methods
e Finite element methods (FEM)
e Extended finite element methods (XFEM)
e Boundary Element Methods (BEM)
¢ Different hybrid methods

A brief detail of each method is given as follows:

2.1.1 Analytical methods

Numerous analytical or semi-analytical methods are available in the literature to study
the fatigue cracks interaction and their propagation. Most of these analytical methods
are based on superposition law, in which the problem is split into two sub-problems.
The first sub-problem plate is modelled under the specified loading and study without
any crack, this part of the problem is called the Trivial problem. In the second sub-
problem which is called the Auxiliary problem, the plate is modelled with a crack but
without any far-field loading, and loading is applied as prescribed traction at the crack

face. The sum of these two problems gives the results to the original problem.



In analytical methods, an approach of traction-based influence function method is
often used to study crack problems. Several different forms of these methods can be
found in the literature [9-13]. A detailed review of traction-based analytical methods
for the multiple crack interaction in two and three -dimensional is given can be found
in [14,15].

There are analytical methods based on dislocation distribution, in which crack opening
displacements are unknown and are modelled as dislocation distributions i.e. the
derivatives of opening displacements. These methods were first developed by Bilby
and Eshelby in 1968 [16]. A detailed overview of dislocation-based methods is given
in[17,18].

To find the stress intensity factor for the complex loading cases, a weighted function
approach presented by Bueckner [19] can also be used. In this approach, first, a
weighted function which is a Green function is determined for given geometry under
a simple loading case and then to find the stress intensity factor for any arbitrary and
relatively complex loading case this weighted function is multiplied by the applied
traction and then integrating the whole product over the crack line. Detail of this
approach is mentioned in [20,21]. A detailed review of analytical methods based on
traction-based influence function method and dislocation distribution along with other

techniques can be found in [22,23].

2.1.2 Finite element methods

Finite element methods are often used for the study of multiple crack growth and
interaction, but due to the requirement of the fine-meshed crack tip, generation of a
representation of the crack advancement and regeneration of FE mesh after each
iteration make this method challenging to adopt. But the technique suggested by
Kantorovich and Krylov in 1964 tries to solve these problems [24]. In this method, a

linear superposition technique is used to solve multiple cracks interaction.

In 1969, Watwood predicted the crack propagation behaviour of cantered and side
crack plate using FEM [25], and in 1970, Chan et al. studied fracture behaviour of
compact tension and rotating specimen using FEM [26]. [25,26] are considered as the
early applications and utilization of FEM in linear fracture mechanics, they also
showed that stress singularity at the crack tip cannot be achieved by using linear

elements. So, to overcome this difficulty, Byskov in 1970 [27] developed a triangular



crack tip element containing necessary shape functions to accurately model the
singularity at the crack tip, and later on, in 1973 Wilson [28] used circular element and
Hardy [29] used rectangular element for this purpose. The singular tip elements are
also very common in solving crack problems [30], but these elements also require a
very fine mesh near the crack tips and wedges and hence increase the computational
requirement. A review by Banks-Sills [31]also compares some other methods based
on finite element methods e.g. M -integral and displacement extrapolation methods to

determine the stress intensity factors for mixed-mode deformation.

2.1.3 Extended finite element methods

The extended finite element method (XFEM), also known as generalized finite element
method (GFEM) or partition of unity method (PUM) is a numerical technique that
evolved in the last two decades, makes it easier to solve problems with localized
features that are not efficiently resolved by mesh refinement and need re-meshing by
using standard FEM. There are many applications of this method but one of the initial
applications was the modelling of cracks in homogeneous materials by Belytschko and
Black [7] in 1999. Soon after this, Moés et al. [32] developed a method based on FEM
to study the crack growth without re-meshing with an enriched displacement field near
the crack tip. Many enrichment functions are developed with time for crack
propagation in isotropic material [33]. Réthoré gave an energy-conserving scheme for
dynamic crack growth using the extended finite element method [34]. Later on, in 2007
Grégoire presented a comparison between experiments and X-FEM simulations of
dynamic crack propagation under mixed-mode loading [35].

In the recent past, several investigations have been carried out to study crack
propagation using XFEM [36,37]. Multiple crack propagation in linear elastic and
homogeneous material based on minimum potential energy concept using XFEM is
presented in [38-40]. In 2017, to improve the computational speed of XFEM, a novel
computational method called decomposed updating reanalysis (DUR) method is
developed by Zhenxing et al. [41]. Thus, nowadays, XFEM is considered the most
popular numerical method for crack propagation simulation due to its superiority in
modelling both strong and weak discontinuities within a standard FE framework. A
detailed review of fatigue crack propagation modelling techniques using FEM and
XFEM can also be found [8].



2.1.4 Boundary Element Method (BEM)

Boundary Element Method is a widely used numeric technique for simulation of crack
propagation problems because it is better than domain-type methods such as the finite
element method (FEM) since in these methods only the boundary of the problem is
meshed rather than the whole domain. As a result, BEM requires less computational
resources to generate new elements for the modelling of crack propagation. In fracture
mechanics problem due to the overlapping of upper and lower crack surfaces results
in the degenerated formulation of BEM [42,43]. However, many researchers have
developed several special methods for handling stress singularities at the cracked
surfaces, such as the Green’s function method [44,45], the sub-regional method [46-
49], and the displacement discontinuity method [50-52]. A dual boundary element
method (DBEM) is given by Portela et al., in which singular and hyper-singular
integral equations are written for collocation points positioned at the opposite crack
surfaces [53]. Simulations of multiple crack-hole interactions and multiple cracks
interaction using BEM are presented in [54,55] and [56-59] respectively. Recently,
nonlinear crack propagation solution techniques based on the use of tangent operators
have been proposed in [60-62]. These nonlinear solution techniques take a smaller
number of iteration and are more stable and accurate than the classical techniques. Due
to the limitation of the displacement discontinuity method where every boundary
element has approximately equal length, a proper selection of minimum crack growth
increment is key for effectively modelling multiple-crack growth. To overcome this
difficulty a useful technique was developed by Yan [63], which enabled the user to
automatically select a desired crack length increment at the beginning of each

simulation.

2.1.5 Different hybrid methods

In addition to the above-mentioned methods, there are some meshless methods to
simulate the crack propagation problems. Some of them are the combination of the
above-mentioned method. A hybrid between finite and boundary element methods,
e.g. the Symmetric Galerkin Boundary Element Method — Finite Element Method
(SGBEM-FEM) [64] and the Scaled Boundary Finite Element Method (SBFEM)
[65,66]. Some of the other numerical methods to simulate the crack propagation
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process are the meshless methods [67-69], edge-based finite element method (ES-
FEM) [70,71] and numerical manifold method (NMM) [72,73].

2.2 Crack Propagation Criteria

All the above-mentioned methods need a certain criterion to determine the direction
of crack propagation. In literature variety of fatigue crack propagation criterion are
present. One can divide them into three different categories i.e. energy-based criteria,
stress-based criteria, and strain-based criteria. Energy-based criteria are accurate as
compared to the other groups of criteria [74] as they use the energy dissipated around
the crack tip to determine the crack growth direction and give more consistent results
with the experimental results. In 1920, Griffith proposed the first energy-based
criterion [75-76]. According to this criterion, the crack will propagate when the
decrease in elastic strain energy that occurs due to crack growth is at least equal to the
increase in surface energy due to the creation of cracks. In 1957, Irwin generalized the
theory proposed by Griffith by introducing a term i.e. energy release rate G, which
represents the energy available for a unit extension of the crack and is responsible for
the crack growth [77]. Hussain et al. [90] proposed the Maximum Energy Release Rate
(MERR) criterion to determine crack paths under combine mode | and mode Il loading.
The minimum Strain Energy Density (SED) criterion proposed by Sih [89] is also a

very commonly used energy-based criterion.

Once the stress intensity factors and the stress fields are known around a crack tip, one
can find the direction of crack propagation by implementing any of the stress-based
criteria. Among the stress-based criteria, the Maximum Tangential Stress (MTS),
proposed by Erdogan and Sih [88] is the simplest and most widely used criterion.
According to this, it is considered that the crack will propagate from its tip in the
direction along which the maximum tangential or hoop stress. In this study, Maximum
Tangential Stress (MTS) and Minimum Strain Energy Density (SED) criteria are used
to predict the fatigue crack growth paths. The details of these two criteria and their
implementation in the analysis are discussed in chapter 4 of this thesis. In addition to
energy-based and stress-based criteria, there are strain-based criteria available in the
literature that also provide a better representation of fracture in certain materials.
Maximum tangential strain (MTSN) by Chang [77] and its modified form proposed by

Mirsayar as extended maximum tangential strain criterion (EMTSN) [74] by
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including the effect of T-strain can be consider some examples of strain-based

criterion.

2.3 Fatigue Crack Growth Models

To compute the rate of fatigue crack propagation, mostly Paris’s law proposed by Paris
and Erdogan [84] is used. Forman et al. improved the theory presented by Paris and
Erdogan by including the variation in the crack-growth rate owing to the load ratio and
the instability of the crack growth when the value of the maximum stress-intensity
factor approaches the fracture toughness of the material [85]. It was further proved that
crack propagation is influenced by the stress ratio of the applied load, therefore in
1970, Walker proposed the modified form of the Paris equation by incorporate the
effect of stress ratio R on FCG rate [86]. All these models are used in this study and
are discussed in chapter 4. NASGRO equation [3] is the most common fatigue crack
growth equation and can be applied to all the regions of crack growth. For the cases
where a large-scale yielding is produced, and the SIF does not remain valid, a different
model based on J-integral is used which is proposed by Dowling and Begley [79]. One
can find different model available in the literature for constant as well as variable

amplitude fatigue loading [6].
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3. METHODOLOGY OF BOUNDARY CRACKLET METHOD (BCM)

In this chapter, the details of the methodology of the Boundary cracklet method (BCM)
will be discussed. The basic concepts and different terminologies used in the

implementation of the method are also explained.

3.1 History of Boundary Cracklet Method (BCM)

The boundary cracklet method (BCM) is a dislocation-based semi-analytical method
to find the overall stress field and the stress intensity factor (SIF) for crack tips and
crack singular wedges at the crack kinks. This method was developed by Dr. A. K.
Yavuz (co-advisor of this thesis study) and Dr. S. L. Phoenix at Cornell University,
back in 2006. Through several publications by Yavuz et. al, it is proven that BCM is a
fast and accurate method to compute the SIFs and stress field at crack tips and crack
singular wedges at the crack kinks [80-82]. Like most of the other analytical
techniques, BCM is also based on superposition law, in which the problem is split into
two sub-problems: one is called Trivial problem (TP) and the other is called
Auxiliary problem (AP). The first sub-problem plate is modelled under the specified
loading and analyse without any crack, this part of the problem is called the Trivial
problem. In the second sub-problem which is called the Auxiliary problem, the plate
is modelled with a crack but without any far-field loading, and loading is applied as
prescribed traction at the crack face. The sum of these two problems gives the results
to the original problem. In the application of this method, all the external boundaries

and internal cracks are represented by certain lines and are called “Cracklets”.

BCM is based on a dislocation distribution approach that approximates the crack
opening displacement profiles by using certain power series that satisfy the traction-
free condition on crack faces. Unlike the conventional mesh dependent methods,
where a very fine mesh is required to overcome the stress singularities around crack
tips, BCM takes care of crack tip singularities by including wedge eigenvalues in
power series and makes sure that all integrals necessary to calculate stress fields are in

closed form to give fast solutions. The solution of these integrals is the most time-
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consuming part in other mesh dependent methods such as FEMs and BEMs. Moreover,
only a few numbers of allocation points are used around the crack tips to satisfy
traction free boundary conditions instead of using more elements. These factors make
the algorithm of BCM more reliable and fast as compared to other methods and enable

us in this study to solve difficult fatigue crack growth problems.

3.2 Cracklet Types and Construction of ODP

To understand the basic of BCM, three types of cracklets are shown in Figure 3.1. In
the 2-D problems, these cracklets have their own Opening Displacement Profiles
(ODPs) i.e. a vectorial display of top to the bottom distance between points originally
coinciding on the faces of the undeformed crack segment under given boundary
conditions. ODP of each cracklet type is represented by an opening profile
approximation function (b). These ODPs are considered in both for tangential and
normal direction and denoted, respectively, as bl and b}, and also called Burger’s
vectors, corresponding to the individual crack segments i=1.....C. These functions are
approximated by some rational-power series i.e. polynomial series P (tN, N =0,1,2,...)
and wedge series W (™, 0<p <1, and M =0,1,2,...) where t is a local coordinate
directed along the crack line from a tip, a kink, or a branch point and N and M are
degrees of polynomial and wedge series respectively. These rational powers are
eigenvalues (p) and are calculated from Williams Wedge Analysis [83]. The number
of eigen values used for the analysis is depicted by the wedge angle (®) as shown in
Figure 3.1. As discussed earlier that it becomes a boundary value problem (BVP) with
two sub-problems; Trivial problem and Auxiliary problem. To solve this BVP the
common approach of super-position of the solution discussed in [22] is implied. The
key to select the terms of polynomial and wedge series and their exponents lies in the
fact that the tractions on the crack faces are virtually zero as compared to the far-field
loading. By applying the mentioned method, we got a set of linear algebraic equations
to solve for the weighting coefficients of the terms in the ODP power series. The fact
that these eigenvalues are approximated by a ratio to evaluate all integrals analytically
instead of calculating them numerically makes this algorithm fast as compared to the

other analytical methods.

The three typical cracklets (shown in Figure 3.1) and the details of their approximation

functions of opening displacement profiles (ODP) are given below.
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Figure 3.1 : Cracklet types; (A) C1 Cracklet, (B) C2 Cracklet, (C) C3 Cracklet.

3.2.1 Cracklet type C1

The configuration of C1 type cracklet is shown in Figure 3.2 and it is represented by a
single straight line. At the tip of the crack, the value of eigenvalue remains %z, so two
wedge functions (one for each tip end at point A and B) with the power of % are used
and are given in equation (3.1).

bj(i)(t) _ g(i) (ail) n W;(i) (1 _ail) (3.1)
where wedge subfunction family (each has M-1 coefficients) for the crack tip end is
given by equation (3.2).

Wi, () = Sz w, [0 — o — ) w - 1-pnGEM)] 32)

Figure 3.2 : Cracklet type C1 and its representation by a straight line.

3.2.2 Cracklet type C2

In Figure 3.3, the configuration of the C2 type cracklet and its simple representation
as a straight line is shown. It is represented with one wedge end and one tip end. At
the tip of the crack at point B, the value of the wedge eigenvalue is %2, so one wedge
subfunction family is required. For crack end at point A, one polynomial subfunction
values and two wedge subfunction families are required, each with M-1 coefficients is

used. The ODP for C2 type cracklet is given in equation (3.3)
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where polynomial and wedge subfunctions family for C2 cracklet type are in equations
(3.4) and (3.5) respectively.

Pi(m) = ZR=5 P [n® = (N = k)n®™ =D + (N =k — 1)n™] (34)

W,;(m) = I W, [nPHD — (M — D™D + (M — 1 — DnP*™]  (3.5)
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Figure 3.3 : Cracklet type C2 configuration and is represented by an orange straight
line with another green line representing C2 type cracklet.

3.2.3 Cracklet type C3

Figure 3.4 shows the configuration of the C3 type cracklet which is a kinked crack and
is represented by three cracklets. It’s opening profile approximation (b) may have three
to five subfunction families depending on the wedge angle at the end points A and B
and is given by equation (3.6), where the polynomial subfunction family for cracklet
type C3 with each one having (N+1) coefficients has the form mentioned in equation
(3.7).

b0 (£) = P50 (ai) +w:1(]‘)( )< WA(I) (ai)> w:(;>(1

) (+WED (1- a_)) (3.6)

PAE() = Thoo P [n% = (N — k)n@=Y + (N — k — D] +

3.7
Zk=0 Pjte+2) (A =m* = (N = k)A -=m"' + (N -k = 1) (1-)n"] G0
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Figure 3.4 : Cracklet type C3 configuration and is represented by an orange straight
line with another two green lines representing C2 type cracklets.

The most general form of these ODPs for a crack segment i can be written in the form
mentioned in equation (3.8) in terms of distance t along the crack length when
distances are measured from the left end of the crack.

bj(i)(t) — [}1(1') (t) i Wli((ii))j (L) + Wl;((ii))j (i) d sz(i) (1 _ il) n

ai

p a; p a;
. ; (3.8)
2) (4t 20) (1 _t
Wi, (1 ai) tWES, (1 ai)

Where Pjr(i) represents the polynomial series and W;r((ii))j represents either a tip series
k

(p = 1/2) or a wedge series (1/2 < p < 1) for the i crack segment. Here j represents
the direction of the ODP, j = 1 represents the ODP in tangential, whereas J = 2
represents the normal opening. r = 1, 2 shows that whether the series will start from
the left or the right end of the crack segment, respectively as adjusted by replacing t

with a; — t.

The general form of approximated polynomial and the wedge series are given in
equations (3.9) and (3.10) respectively, with 7 is equal to either t/a or 1 — t/a, when
used in equation (3.8). More details of these ODPs, analytical and computational
aspects of the method can be found in [80-82].

Pi(m) = INZE Py [n® — (N — k)WY + (N — k — 1)n"] (3.9)
M-2

W,;(m) = Z W, [n®tD — (M — Dn®*M=0 + (M — 1 — DnP*™]  (3.10)
=0
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3.3 Dislocation Based Influence Fields

The derivatives of ODPs are called edge dislocation distributions (EDDs), as
discussed earlier that these ODPs are selected such that the generated crack-face
tractions should almost satisfying those prescribed in the AP. To understand, consider
an infinite plate as shown in Figure 3.5 and imagine a local Cartesian x-y coordinate
system along the crack segment. Consider an edge dislocation ED formed along a slit
coincident with the positive x-axis, which causes a relative displacement (u*- u’) in
both tangential (along x-axis) and normal (along y-axis) directions. These ED are
defined by a Burger’s vector (b) at the origin, with tangential (b1) and normal (b2)
components representing glide and climb dislocation components, respectively. The
stress (o) and displacement (u)fields induced by these EDs are given in [17] and are
represented by equations (3.11) and (3.12).

bir) b)+db()

b |
6 | /T

9 bz //b _ \ X

b =u (+)-u (-)
b2 =u.1' (+)-u_v (-)

Figure 3.5 : EDD concept: (Left) a single ED producing an OPD (b) and (Right) a
distribution of ED in an infinite plate under far-field loading.

Orex Gx*+yHy  —(*-y)x]
Stress field: {Uyy} =—20 | _(x?2- y3)y —(x?+3y*)x { 1} (3.11)
T (k+1)r+ bz
Oxy —(x?—yHx —(x* —yDy

u
Displacement Field : {u;} =

21 (k+1)r4

) k+Dr—0) -2 —(c—1D)In@r/ry +2 (5)2 {bl} (3.12)

—(kc = 1) In(r/ryy + 2 (%)2 (k+D—0)+22 [Pz

r2

_ 2 2 — 2 _ i _3v i
where r = /x2 + y2 and k = 3 — 4v for plane strain, k 0 for plane stress in

terms of Poisson’s ratio v and G is the shear modulus.
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The infinitesimal distribution of Burgers vectors is captured in the dislocation
distribution weighting function defined as:

uo) =52 (3.13)

Replacing b by db(t) in equations (3.11) and (3.12) and integrating it in t along the
crack segment, gives the stress and displacement fields resulting from the crack
segment ODP and are given in the complex form (z = x + iy) in equations (3.14) and

(3.15) respectively.

Oxx 26 Re{Z%}'i'ylm{le}_yRe{le}
{Uyyl - Re{Z3} + yIm{Z3} — yRe{Z?} (3.14)
Txy YRe{Z3} + Re{Z}} — yIm{Z}}

fuy) =

(1= ORe{ZY — (i + DIm{Z®} + 2yIm{z2} — 2yRe(z}]  C1D)
2n (1) | (e — 1)Re{Z3} — (e + DIm{Z3} + 2yRe{Z;3} + 2yIm{Z;}
where
0 _ (ab® 1 _ ran® 2 ca wi®
zZ) = [y Lrdt, Z} = [ S rde, 7 = [ Lt (3.16)
wherej=1, 2

The integrals given in equation (3.16) can be calculated in closed form and are given
in [22,23].

3.4 Satisfaction of Traction Boundary Conditions (BCs)

The unknown coefficients mentioned in equations (3.9) and (3.10) are found by
satisfying the traction-free condition at the carefully chosen points on each crack in
the actual boundary value (scheme to choose points is discussed in section 2.5). The
tractions arising in the trivial problem (TP) of an infinite plate under far-field loading
and the auxiliary problem (AP) of an infinite plate consisting of dislocation

distributions along cracks must sum to zero along all crack surfaces.

Tl + T =0, THP + T2 =0 (3.17)
The tractions in the TP are given as:

1 oo oo 2 o oo
Trp = nyoxx + nyoyy, Trp = nxoxy + Nyoyy (3.18)
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Where T! and T2 denote the tangential and normal crack-face tractions, respectively,
andi = 1.....C,where Cis the total number of crack segments that can be of different
length and orientation. o is the far-field stress applied to the plate and ny and ny are

the components of the crack surface normal.

3.5 Point Allocation Scheme

To satisfy the boundary conditions mentioned in equations (3.17) and (3.18), a point
allocation scheme shown in Figure 3.6 is used. According to this, points are
concentrated near wedge tips and their density is less away from the crack tip. The
spacings between these allocated points are affected by the strengths of the
singularities to which they are associated. These sets of points are chosen according to
the distances described by Eq. (18). Figure 3.7 shows the actual location of 20 points
for each set of points described by different formulations described in equation (3.17).
There are 60 points in total along the crack length and it can be observed that the
concentration of these points is higher at the tip of the crack as compared to the center.
More details of this point allocation scheme and how unknown coefficients are
determined using MATLAB can be found in [80,81].

b= a () k=12 N
ki — al Ni+1 ) 1 — L,4) w1V

4
te, = a [1—( ) ] ky =12, .., N, (3.19)

Np+1

I..{ ai :I

Figure 3.6 : Point allocation scheme.

20



Yi

e S A B S8 A A «* A & OA A® A A * A®A ¢ Q4 SA® aeed

A B X

tk1 formulation - tk2 formulation a tk3 formulation

Figure 3.7 : Actual location of points along the crack line for different formulations.

3.6 Stress and Stress Intensity Factor (SIF) calculations

Once the unknown coefficients mentioned in equations (3.9) and (3.10) are calculated,
all stress and displacement fields and all SIFs for crack tips and singular wedges at

crack kinks can be determined. All stresses and stress intensity factors (SIFs) for mode
1 and mode 2 at the crack tip (p = 23) can be found from equation (3.20) and (3.21)

respectively, whereas SIFs for crack kinks are given in equation (3.22).

Oxx (X, Y)
Stresses: { Oyy (X,Y) ¢ = ¥ [T;][S;1{U}® (3.20)
Oxy (X, Y)
W1
SIFs for tip ends: {II(?I} = fTGK\/g{WzZ} (3.21)
2
SIFs for kinks : {11((1} =
11
p1(1+py) (py—1) sin[L1=RE-0)]
son | (2maypisin[L1=UET-0))  (pr+D) sin[(plﬂ)zﬂ]l @p120 (3.22)
Lo p2(1+p3) (p2-1) Sin[(pz_l)zﬂ _ pz—ll
(2ma)P2 sin[(pz_l)zﬂ] (pa+1) Sin[(pz"'l)zﬂ] pat+1| P210
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4. ANALYSIS PROCEDURE

The purpose of this chapter is to explain the complete analysis procedure of the
proposed scheme to study the FCG using BCM. Different steps involved in modelling
the geometry of the problem along with the implementation of BCM to the multiple
cracks problems under fatigue loading are discussed. This chapter also describes that
how the new position of the crack tip is determined after the application of cyclic loads
and how the number of loading cycles required for a given crack extension are

computed.

4.1 Implementation of BCM for Fatigue Crack Growth Problems

4.1.1 Modelling of the geometry

As it is mentioned in chapter 3 that in the implementation of BCM all the external
boundaries of the plates and internal holes are modelled as a straight line, which are
called “Cracklets”. The approximation of the holes can be adjusted by the number of
sides of the polygon used to model the holes. In the following chapters, the effect of
the number of sides of the polygon on the accuracy of predicting the fatigue crack
growth path will be discussed in detail. To model the geometry, the coordinates of the
end points of each straight line (cracklet) are entered as input. After defining the
geometry of the problem, the type of cracklets is set for each straight line. For this
purpose, the eigen values corresponding to the given cracklets are directly entered as
input in the MATLAB codes.

4.1.2 Introduction of initial pre-cracks

After modelling the geometry, the pre-cracks are introduced into the model. The size
and the orientation of each pre-crack along with their locations in the geometry are
entered as input. These initial pre-cracks are inserted as C2 cracklets.

4.1.3 Estimation of SIFs and determination of new crack tip position

After the introduction of initial pre-cracks, a known stress range (Ao) is applied, and
mode-1 and mode-I1 stress intensity factors (SIFs) are computed for each crack tip
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using BCM. This calculation of SIFs for each crack tip is done iteratively and only
SIFs of one certain crack tip is calculated in each iteration. In the first iteration, SIFs
for crack tip 1 are computed and in the second iteration SIFs for crack tip 2 are solved
and this process goes on up to the last crack tip. These calculated stress intensity factors
for mode-1 and mode-11 at each crack tip are used to predict the new crack kink angle
by selecting a suitable criterion for the crack propagation. The details of the criteria
used to predict the crack propagation angle will be discussed in section 4.3. Using the
new crack kink angle the new position of the crack tip is added for a fixed crack
increment size Ac. This iterative process goes on until the cracks reach up to a required

crack length extension.

4.1.4 Calculation of number of loading cycles

The calculated stress intensity factor range in each iteration is used to determine the
crack growth rate by applying a suitable crack growth model as discussed in section
4.2. Using this crack growth rate together with the initial cycle step size Ac, the number
of cycles required for a given iteration is determined by (26). This simulation goes on
incrementally with a constant incremental crack length Ac as in (27). The total fatigue
life of the structure can be calculated by summing up the number of loading cycles

required in each iteration.

4.2 Solution of an Example FCG Problem

The most important point in implementing the BCM to fatigue crack growth problem
Is that after the calculation of the initial crack orientation angle, a new small cracklet
of type C2 of length Ac is added which enables us to determine the next crack
orientation angle. When a new cracklet is added according to the new crack orientation
angle, the type of the previous cracklet is to be changed from C2 to C3 and always the
new cracklet is added with C2 cracklet type. This same technique is also explained in
[90] to implement the BCM for a single crack in an infinite plate under fatigue loading.

To understand this concept, let us consider an example FCG problem in which there
are two holes of radius R, separated at a distance S from each other are present in the
plate and two cracks are emanating at angle +6 from a certain location at each hole (as
shown in Figure 4.1). A constant amplitude cyclic stress o is applied in the normal

direction at the outer edges of the plate. Figure 4.2 shows the modelled geometry of
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the problem. The external boundary of the plate and the holes within the plate are
modelled as straight lines. In this example, 16 sided polygons are used to model each

hole. The corresponding cracklet types are assigned to these cracklets.

Figure 4.3 shows different iterations of the simulation. Figure 4.1(A) shows the
iteration no.1 in which the first initial pre-crack is added at the given location at hole
no. 1, similarly, Figure 4.3(B) shows iteration no. 2 of the simulation, and the second
pre-crack is added to the model at the given location. Cracklet type C2 is given to each
of these initial pre-cracks. Figure 4.3(C) shows iteration no.3 of the simulation, in
which the angle of propagation for crack tip A is determined, and a new position of
crack tip A is added with the given crack increment. Here, the new cracklet is added
as C2 type, whereas the type of the previous cracklet is changed from C2 to C3. In
Figure 4.3(D), the same procedure is shown for crack tip B. The new cracklet is always
added as a C2 cracklet and the type of already present cracklet is changed from C2 to
C3. The simulation goes on in a similar manner and finally, both crack tips reach up
to the opposite holes and the simulation is set to be stopped. Figure 4.4 shows the FCG

path after the final iteration.

! I ! f I 1 I !

Figure 4.1 : Geometry of example problem.
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Figure 4.2 : Modelled geometry of the problem.
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Figure 4.3 : Different iteration of FCG simulation; (A) Iteration no.1, (B) Iteration

no.2, (C) Iteration no.3, (D) Iteration no.4.
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Figure 4.4 : FCG path after final iteration.

26




Different steps involved in the analysis of fatigue crack propagation by the proposed

scheme are summarized as follows:
(1) Model the geometry using straight lines called “Cracklets”.

(2) Assign the cracklet type of each straight line and input the corresponding eigen

values for the given cracklet.

(3) Add the size and orientation of every pre-crack along with their location in the

model.

(4) Compute the SIFs using the boundary cracklet method for every crack tip
iteratively.

(5) Determine the crack propagation angle based on the criterion mentioned in

section 4.4.

(6) Add the crack extension of fixed increment along the direction computed in

step 5.

(7) Using the crack growth model (mentioned in section 4.3) compute the number

of loading cycles required for given crack extension.

(8) Repeat the step 4 to 7 for each crack tip until the crack reaches up to the
required length.

4.3 Crack Growth Models

There is always a need of a crack growth model for calculating the size of a crack
growing with the applied fatigue loading. In linear elastic fracture mechanics (LEFM),
usually, the stress intensity approach is used to determine the crack-tip stress
conditions in a linear elastic material. All the components of stresses at the crack tip
are proportional to a constant quantity i.e. called stress intensity factor K. This SIF is
a function of nominal applied stress, initial crack size and depends upon some
geometric factors. Under cyclic loading, a concept of SIF range AK is used i.e. AK =
Kimax — Kmin- Kmax and Kmin are the SIFs values corresponding to maximum and
minimum values of applied stress in a loading cycle. Figure 4.5 shows the typical curve
of crack growth rate versus the stress intensity range for metals [6]. This curve is
consisting of three different regions: Region I, Il and Il1. Region I show the initiation

of crack growth, here the FCG is very slow. There is a threshold value of AKw and no
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crack growth is possible for AK< AKw. Region Il shows the propagation of the crack,
where the FCG is stable and linear relation can be observed between FCG rate AK.
Region 111 is the unstable region and the FCG rate rapidly increased as Kmax reaches
the K¢ fracture toughness of the material.

4

\

Fracture

|

Log da
& dN

Threshold

— >
s Log AK K

AK

Figure 4.5 : Typical FCG curve for metals [6].

In literature, different crack growth models have been proposed to predict the rate of
fatigue crack growth. Most of these crack growth models are based on Paris’s law [84]
proposed by Paris and Erdogan in 1960. Over time, many improvements have been
made to Paris’s law by different researchers. Forman et al. [85] further improved the
theory presented by Paris and Erdogan by including the variation in the crack-growth
rate owing to the load ratio and the instability of the crack growth when the value of
the maximum stress-intensity factor approaches the fracture toughness of the material.
Walker [86] modified the Paris equation to incorporate the effect of stress ratio R in
the linear region of the rate of crack propagation vs crack length plot. Finally, the most
general equation named NASGRO equation is developed and used in the crack growth
programs AFGROW [4] and NASGRO [3] software to predict FCG behaviour in all
regions of fatigue rate vs crack length plot. This model includes the stress ratio effect

along with the crack closure effect.

All the above-mentioned models apply to the constant amplitude fatigue loading which
is the most general type of fatigue loading in FCG analysis. In this study, the constant
amplitude fatigue loading is also considered for all the studied cases. Figure 4.6 shows

a constant amplitude cyclic loading having the stress ratio R = 0,15/ 0max Where
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Omax and o, are the maximum and minimum values of applied cyclic stress,

_ (Omax* Omin)

respectively. The mean stress o,,cqn = > , the stress range Ag = 00 —

omin and the stress amplitude (o,) are also shown in Figure 4.6. In this study, Paris-
Erdogan law, Walker’s model and Forman’s Law are used to predict the FCG

behaviour and are discussed in the following sections.
Stress

amax

0171 n

Figure 4.6 : Constant amplitude cyclic loading.

4.3.1 Paris-Erdogan’s law

In 1960, Paris and Erdogan proposed that there is a linear relationship between the SIF
range and the rate of fatigue crack growth on a log-log scale [84]. According to the
Paris-Erdogan law, the fatigue crack growth rate can be determined by the equation
4.1).

da

— = m 4.1

v =C (AK) (4.1)
AK = Kmax - Kmin (42)

Where da/dN represents crack growth rate, AK is stress intensity range, C and m are

Paris equation constants that depend on the material of the specimen.

To incorporate the mixed-mode conditions and the effect of stress ratio R, the approach
of effective SIF range is used. For this purpose, a criterion proposed by Tanaka [87] is
used. According to this criterion, the equivalent stress intensity factor (SIF) can be
computed by the equation (4.3), and AK is used in place of AK in equation (4.1) and

the equation (4.4) is used to compute the rate of FCG rate.
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AKer = (AK;* + 8AK;*)025 (4.3

da
aN C (AKee)™ (4.4)

4.3.2 Forman’s Law

In 1967, Forman et al. [85] improved the theory presented by Paris and Erdogan by
including the variation in the crack-growth rate owing to the stress ratio and the
instability of the crack growth in region Il of the FCG rate curve when the value of
the maximum stress-intensity factor approaches the fracture toughness of the material.
Forman proposed the relationship mentioned in equation (4.5) to determine the FCG
rate.

da C (AK)™
dN (1 -R)K.—AK

(4.5)

Where da/dN represents crack growth rate, AK is stress intensity range, R is the stress
ratio, and m is the slope of crack growth rate v/s AK plot on a log-log scale and K. is

the fracture toughness of the material.

4.3.3 Walker’s Model

In 1970, Walker proposed the modified form of the Paris equation by incorporate the
effect of stress ratio R on FCG rate [86]. Equation (4.6) represents the proposed model
of Walker, which compute the FCG rate by introducing a new parameter AK that is
related with the SIF range AK through equation (4.7).

da _

— = m 4.6

N C (AK) (4.6)
Where

g = 2K 47

After inserting the value of AK, Equation (4.6) takes the following form:

Z—; —C ((1—# AK)m (4.8)
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where da/dN represents crack growth rate, AK is stress intensity range, R is the stress
ratio, and m is the slope of crack growth rate v/s AK plot on a log-log scale. The
value y is a material constant that indicates how strongly the stress ratio R affects the
crack growth rate in the material. For most of the metals, its typical value is taken as
0.5 [6]. For R = 0, Walker’s equation mentioned in equation (4.8) takes the form of

Paris’s equation.

4.4 Determination of Crack Growth Angle

In literature, various stress or energy-based criteria are described for crack growth
direction but maximum tangential stress (MTS) criterion [88], minimum strain energy
density (MSED) criterion [89] and maximum energy release rate (MERR) criterion
[90] are most popular among them. In this study, MTS and MSED are used to predict

the direction of crack growth angle, and the same are explained below in detail.

4.4.1 Maximum tangential stress (MTS) criterion

In this criterion, it is considered that the crack will propagate from its tip in the
direction along which the maximum tangential or hoop stress g Will produce, so the
stresses around the crack tip in polar coordinates should meet the conditions mentioned

in equation (4.9).

60'99 _ ] 620-69
90 ' 0962

<0 (4.9)

By using the stress determining equations [6] around a crack tip, differentiating it with
respect to 6 and applying the conditions mentioned in equation (4.9), results in
equations (4.10) and (4.11), which can be solved to get the kinking angle (6) of the
propagating crack. Different forms of equations can be obtained by solving the

equation (4.10), one of those forms is mentioned in equation (4.12).

an?o -t K a9 1 (4.10)
an“-——-—tan-—- = .
2 2K, 2 2

3{(1 5 0 0 29>+KH<_ ;0 7 .6 3(9)} <0 411
5 \5 €0s” 5 — cos 5 sin® o K, sin® 5 — > sin>cos® 5 (4.11)
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(4.12)

=2t ‘1[
an e

4.4.2 Minimum strain energy density (MSED) criterion

According to the minimum strain energy density (MSED) criterion, it is considered
that the crack will propagate from its tip in the direction of minimum strain energy
density S and it will initiate when the strain-energy-density factor reaches a critical
value S¢r. These two conditions are given in equations (4.13) and (4.14) respectively.

aS(6) 325(6)

=0, >0 4.13
30 lg_s, 267 |,_, (4.13)

where 6, is the angle of crack extensionand —Tt <6, <7

allKlz + zalzKIK” + azzKHZ = SCT‘ fOT' 0 == 90 (414)
where

= — 4.15
A = T [(k — cos8)(1 + cos 6)] (4.15)
= i — 4.16
aiz 16Gﬂsm0[2cos€ K+ 1] (4.16)

1
(22 = Tpr— sin@ [(k + 1)(1 —cos8) + (1 + cosB)(3cos —1)] (4.17)

where G is shear modulus,  is elastic constant and equal to (3 — v)/(1 + v) for plane

stress and 3 — 4v for plane strain, where v is the Poisson's ratio.

4.5 Estimation of Number of Loading Cycles

During the FCG analysis by the proposed method, an initial crack of known size is
implemented in structure and a known stress range is applied and an effective stress
intensity range AKes is calculated. Using that calculated stress intensity range value
and crack growth model, the crack growth rate is calculated. Using this crack growth

rate together with the initial cycle step size, the number of cycles required for that
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iteration is determined by equation (4.18). This simulation goes on incrementally with
a constant incremental crack length, for the calculation of new crack length by equation
(4.19) in the direction of the new angle of crack front in each iteration which is
determined by suitable criterion. The total number of loading cycles required for a

given crack length can be calculated by equation (4.20).

G
AN; = ————
i = {da/dn), (4.18)
Ciz1 = ¢+ Ac (4.19)
Niy+1 = N; + AN (4.20)

Where i=1,2,3, .... up to number of iterations.
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5. VALIDATION OF THE PROPOSED SCHEME

In this chapter, the accuracy of the proposed scheme to analyse the FCG behaviour of
single and as well as multiple cracks under mixed-mode loading conditions is
discussed. For this purpose, different FCG problems involving single and multiple
cracks in simple to relatively complex plate geometries are selected from the literature
and reanalysed by the proposed method. To show the effectiveness and accuracy of
the presented scheme, three different aspects of fatigue crack growth are considered
for this purpose, i.e. calculation of SIFs, prediction of fatigue crack growth paths and

estimation of the required number of loading cycles to produce a given crack length.

5.1 Calculation of SIFs

In this section, different problems are discussed in which mode-1 and mode-11 SIFs are
calculated by the proposed method and computed values of SIFs are compared with
those calculated by analytical methods and with those which are mentioned in the

available literature.

5.1.1 An infinite plate having inclined crack under different loading conditions

Consider an infinite plate having an inclined central crack is undergoes different
loading scenarios i.e. uniaxial tensile loading, shear loading and biaxial loading with
different biaxiality stress ratio. Mode-1 and mode-I1 SIFs are calculated for each case

by using BCM and results are compared with the analytical results.

5.1.1.1 Under uniaxial tensile loading

The first example deals with the mixed-mode crack problem in an infinite plate with
an inclined center crack under uniaxial tensile stress ¢ as shown in Figure 5.1. Let us
assume that 2a = 1 unit is the length of the central crack and 0 is the angle between the
crack and the horizontal axis. Close-formed analytical solutions [7] of mode-I and

mode-I1 SIFs for this case are given by (5.1) and (5.2) respectively.
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K, = ovm a cos?(6) (5.1)

K, = ovm a cos(8)sin(0) (5.2)

}
S
:
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Figure 5.1 : Infinite plate having central inclined crack under uniaxial tensile stress.

Figure 5.2 shows the comparison of normalized mode-1 and mode-II SIFs computed
analytically with those computed by BCM for different values of crack inclination
angle 0 for uniaxial tension, whereas Table 5.1 shows the same comparison in tabular
form. The normalized SIFs are obtained by dividing K, and Ky with the term “ovm a ".
The result shows that calculated SIFs for both mode-1 and mode-2 are very close to

those calculated through analytical relationships.

1.2
— Analytical K1
1 — Analytical K2
0.8 O K1 (BCM)
X K2 (BCM)

Normalized SIFs
© o o
N EaN D

o

0 10 20 30 40 50 60 70 80 90
Crack inclined angle 0 (deg)

Figure 5.2 : Variation of the normalized SIFs calculated by the presented BCM in
comparison with exact solution for uniaxial tensile loading.
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Table 5.1 : Comparison of mode-I and mode-11 SIFs (K,, Ki) under uniaxial tension.

Crack angle Mode-I SIF (Ki) Mode-11 SIF (Ki)
0 Analytical BCM Analytical BCM
0 1.253 1.252 0 0
10 1.216 1.214 0.214 0.214
20 1.107 1.106 0.403 0.402
30 0.940 0.939 0.543 0.542
45 0.627 0.626 0.627 0.626
60 0.313 0.313 0.543 0.542
70 0.147 0.146 0.403 0.402
80 0.038 0.038 0.214 0.214
90 0 0 0 0

5.1.1.2 Under shear loading

Figure 5.3 shows an infinite plate with an inclined central crack under shear stress T.
The length of the central crack is 2a =1 and 0 is the angle between the crack and the
horizontal axis. Close-formed solutions of mode-I and mode-I1 SIFs for shear loading

are given in Equations (5.3) and (5.4), respectively.

K, = — tmasin(26) (5.3)
K, = W/ a cos(26) (5.4)

_-_— . - - - - - -

Figure 5.3 : Infinite plate having central inclined crack under shear stress.

Figure 5.4 shows the variation of normalized mode-1 and mode-11 SIFs (normalized

SIFs are obtained by dividing K; and Ky, with the term “ tvm a ") with inclined angle
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0, which are computed by analytical formulation and proposed BCM. Table 5.2 shows
the comparison of computed SIFs by proposed BCM with those found out by analytical
formulation for different values of crack inclination angle 6 for shear loading. Results

show that the computed SIFs are very close to those found by analytical formulation.

15
— Analytical K1
1 -\\\ — Analytical K2
*\ O K1 (BCM)
0.5

\\ K2 (BCM)

Normalized SIFs

Crack inclined angle 0 (deg)

Figure 5.4 : Variation of the normalized SIFs calculated by the presented BCM in
comparison with the exact solution for shear loading.

Table 5.2 : Comparison of mode-I and mode-11 SIFs (K, Ky) for shear loads.

Crack angle Mode-I SIF (K) Mode-11 SIF (Ki)
0 Analytical BCM Analytical BCM
0 0 0 1.253 1.252
10 -0.429 -0.428 1.178 1.177
20 -0.806 -0.805 0.960 0.959
30 -1.085 -1.084 0.627 0.626
45 -1.253 -1.252 0 0
60 -1.085 -1.084 -0.627 -0.626
70 -0.806 -0.805 -0.960 -0.959
80 -0.429 -0.428 -1.178 -1.177
90 0 0 -1.253 -1.252
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5.1.1.3 Under biaxial loading

This is a benchmark problem for the calculation of mode-1 and mode-2 SIFs for an
infinite plate having an inclined crack under biaxial tensile loading of o, and o, =
Aoy, where A is the biaxiality stress ratio. Let us assume that 2a = 1 is the length of
the central crack and 0 is the angle between the crack and the horizontal axis (as shown
in Figure 5.5). Close-formed solutions of mode-1 and mode-I11 SIFs for an infante plate
having central inclined crack under biaxial loading [92] are given by equation 5.5) and
(5.6). Table 5.3 shows the comparison of mode-1I and mode-I1 SIFs (K, Kii) computed
using BCM with those found out analytically under different values of biaxiality stress
ratio (A = -1, -0.5, 0, 0.5, 1). Results show that the computed values of SIFs by BCM

under different conditions of biaxial loading are very close to those computed

analytically.
K, = ovma (cos?0 + Asin?0) (5.5)
K, = ovma (1 —A) cosO sinf (5.6)

oy = Aoy

Ty

Figure 5.5 : Geometry of infinite plate having inclined crack under biaxial loading
with biaxiality stress ratio A.

39



Table 5.3 : Comparison of mode-I and mode-11 SIFs (K,, Ki) under biaxial loading
for different values of A.

Biaxiality Inclined Ki Ki
ratio (A) angle (0) Analytical BCM Analytical BCM
0 1.2533 1.2535 0 0
1 15 1.0854  1.0856 0.6267  0.627
30 0.6267  0.6268 1.0854  1.086
45 0 0 1.2533 1.254
0 1.2533 1.2535 0 0
05 15 1.1274 1.1276 0.47 0.47
30 0.7833  0.7835 0.8141 0.814
45 0.3133 0.3134 0.94 0.94
0 1.2533 1.2535 0 0
0 15 1.1694  1.1696 0.3133 0.313
30 0.94 0.9402 0.5427 0.543
45 0.6267 0.6268 0.6267  0.627
0 12533 1.2535 0 0
05 15 1.2113 1.2116 0.1567  0.157
30 1.0966  1.0968 0.2714 0.271
45 0.94 0.9402 0.3133 0.313
0 1.2533 1.2535 0 0
1 15 1.2533 1.2535 0 0
30 1.2533 1.2535 0 0
45 1.2533 1.2535 0 0

5.1.2 Crack growth in an aircraft wing lug

In this problem, a relatively complex problem is solved for the determination of SIFs.
A crack emanating from a circular hole from an aircraft wing lug presented in [93] is
reanalysed by using the proposed method. Three different geometries of lug are
considered, all dimensions of lugs are the same except ‘H” and are shown in Figure
5.6 whereas dimension ‘H’ is mentioned in Table 5.4. The comparison of values of
effective stress intensity factor (Kefr) calculating using FE solution [93], analytical
method [5] and BCM is shown in Table 5.4. Results show that the estimated values of
the stress intensity factor are very close to the analytical values as well as the values

determined by FEA for different geometry of lugs.
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Figure 5.6 : Geometry of the aircraft wing lug [93].

Table 5.4 : Comparison of values of effective SIFs calculated using FEM, analytical
approach and proposed BCM.

Eff. SIF value (MPa.mm2) using

Lug Dimension ao Analviical

No. ‘U’ (mm)  (mm) FEM [93] ”?8%]'0"" BCM
2 44.4 5 68.78 65.62 65.91
6 57.1 5.33 68.12 70.24 71.23
7 33.3 4.16 94.72 93.64 93.39

5.2 Prediction of FCG Paths

In this section, the accuracy of the proposed method is shown by comparing the
trajectories of FCG of different problems with the results presented by different
researchers which were already available in the literature. Several benchmark
problems are analyzed, in which single and multiple cracks in simple to relatively

complex plate geometry are discussed under mixed-mode fatigue loading.

5.2.1 Crack growth from riveted holes

As a first example, FCG behaviour in a riveted plate having an initial crack emanating
from one of the rivet holes is study. The geometry, material properties and other
parameters are shown in Figure 5.7. Previously the same problem was solved by using
the finite element method [93]. Polygons with straight lines as their sides are used to

model the rivet holes in the plate. For this study, polygons with two different numbers
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of sides (n_pol) are used i.e. 16 and 24, to study its effect on the accuracy of the
proposed method. Figure 5.8 shows the comparison of crack growth path obtained
from FE solution [93] with those predicted by BCM by using 24 sides to model the
holes, whereas Figure 5.9 shows the crack propagation paths obtained by using n_pol
=16 and 24. The comparison of the location of the crack tip after each solution step is
given in the tabular form in Table 5.5. Results show that there is a close agreement
between the crack path described by the proposed method and that is described in [93]
and the accuracy of BCM can be adjusted by selecting different numbers of sides to

model the holes.
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b =0.0508 m
1 =0.0254m
e H = 0.0635 m

r r = 0.00198 m
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Figure 5.7 : Geometry of plate having riveted holes [93].
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Figure 5.8 : Comparison of crack growth path for n_pol = 24.
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Figure 5.9 : Fatigue crack growth path with different n_pol values.

Table 5.5 : Comparison of crack tip location.
Boundary cracklet method (BCM)

FE solution [93]

(n_pol = 16) (n_pol = 24)
X (mm) Y (mm) X (mm) Y (mm) X (mm) Y (mm)
54.458 64.618 54.446 64.607 54.446  64.606
59.525 64.287 59.452 64.599 59.332  64.315
64.605 64.247 64.500 64.559 64.326  64.360
69.685 64.27 69.562 64.502 69.325  64.331

5.2.2 FCG behaviour of cruciform specimen having central inclined crack under
biaxial loading

To validate the model for the prediction of fatigue crack path under complex loading
scenarios, FCG behaviour of a cruciform specimen made of aluminium alloy 7075-
T651, having an inclined crack at 45° with the horizontal axis at the centre of the
specimen is analysed under in phase biaxial loading as shown in Figure 5.10. Fatigue
crack propagation paths are predicted using BCM for different values of biaxiality
ratios (A) i.e. 0, 0.5, 1, 1.5 and results are compared with the experimental results
reported in [94]. Figure 5.11 shows that a good agreement is obtained between the
paths predicted by BCM and experimental results [94].

43



393

< 133 - 127 i 133 >

3

133 —»

25R

—» & 38

393
127

(in mm)
(2.3 mm thick)

— 133

Figure 5.10 : Geometry of the problem [94] (all dimensions are in mm).
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Figure 5.11 : Comparison of FCG path in cruciform specimen with a central crack at
45° under different values of A; (A) Experimental results [5], (B) BCM.

5.2.3 An edge crack in a plate having a hole

In this problem, the deflection of crack propagation path due to an offset hole in a plate
is discussed for two different geometries. As of 1%t geometry, a plate having a hole
with a radius of 0.2 m and a pre-crack of ap = 0.1 m is discussed under tensile stress
applied at the top and bottom edge of the plate (as shown in Figure 5.12). The plane
stress conditions are assumed to be applied for this analysis. The material properties
are given as follows: E = 30 GPa and v = 0.3. In past, the same problem has been
solved by many researchers e.g. Huyhn et al. [96] used polyXFEM to analyse this
problem and Leonel et al. [97] solved it by using BEM formulation. Figure 5.13 shows
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the predicted crack propagation path using BCM and its comparison with the results
proposed by Huyhn et. al. A good agreement among the paths predicted by both

methods can be found.

Figure 5.14 shows a comparison of mode-2 SIF value at different crack lengths
calculated using presented BCM and with the values computed by FRANC2D and
BEM by Leonel et al. [97]. The results obtained from the BCM are in good agreement
with those that were predicted in the reference study. Variation of Kj; value with crack
length (as shown in Figure 5.14) shows that initially, the crack grows horizontally
(perpendicular to the applied normal stress), mode-1 effects are dominating and Ky
value is very small. But when the crack propagates and deviates due to the presence of
the hole (approximately at a crack length of 0.5 m), mode-I1 effects also start to appear
and the value of Kj; increases gradually and crack grows under mixed-mode conditions

until it reaches near the hole.

o
A A A
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Y

Figure 5.12 : An edge crack in a plate having a hole (1% Geometry).
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Figure 5.13 : Comparison between FCG paths predicted by BCM and that with
polyXFEM [96] (green).
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Figure 5.14 : Comparison of K using BCM, FRANC2D and BEM [97].

To study the effect of the number of sides (n) used to model the hole in the plate over
the accuracy of the analysis, the same problem is repeated with different numbers of
sides of the polygon (i.e. n =4, 8, 12, 16) with fixed crack increment length of 0.02 m.
Figure 5.15(A) shows a comparison of the crack propagation paths for different
numbers of sides used to model the hole. The result shows that when a remarkable
accuracy in predicting the FCG path is achieved, after that there is no significant effect

of a further increase in the number of sides to model the hole. Table 5.6 shows the
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elapsed solution time for different n-values. Results mentioned in Figure 5.15(A) and
Table 5.6 suggest that one can achieve reasonably good accuracy with n = 8 without
compromising on solution time because the selection of n becomes critical for complex

geometric problems where multiple holes are present in the model.

To investigate the effect of crack increment size (Ac) on crack propagation, the
problem is also repeated with different values of Ac (i.e. 0.01 m, 0.02 m, 0.03 m, 0.04
m) using an 8-sided polygon to model the hole. Figure 5.15(B) shows crack
propagation paths for different values of Ac. Results show a converged pattern of crack

growth path which is also consistent with the reference path.
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___:1\\
n=28§
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Figure 5.15 : Comparison of FCG paths predicated using BCM and polyXFEM [96];
(A) using different numbers of sides of polygon “n” used to model the hole in the
plate, (B) for n = 8 with different crack increment sizes (Ac).

47



Table 5.6 : Solution time comparison for different numbers of sides of the polygon.

No. of sides of the CPU" time (t) _ _
CPU time comparison
polygon to model hole (n) (sec)
4 343 t
8 464 1.35t
12 603 1.76t
16 773 2.25t

*Analyses are performed on PC of dual-core Intel Core i3-4010U with 4.00 GB
RAM.

For the 2nd geometry, a rectangular plate of 15 x 20 mm in size having an offset hole
of a radius of 3.45 mm with a side edge having a pre-crack length of 2.75 mm (as
shown in Figure 5.16(A)) is studied. The material is assumed to be purely elastic with
Young’s modulus, E =98 GPa and v = 0.3. Paris material constants are m = 2.39; C =
3.0e-7. The plate is subjected to uniaxial stress of 100 MPa with constant amplitude
with stress ratio R = 0. Plane stress conditions are assumed. An eight-sided polygon is
used to model the hole in the plate. Uniform normal stress is applied in the vertical
direction at the top and bottom edge of the plate and a uniform crack incremental length
of 0.55 mm (20% of ap) is used. In past, many researchers solved the same problem,
e.g. Bouchard et al. [99] used FEM with a local remeshing technique to solve it, and
in 2015, Ooi et al.[100] adapted quadtree meshes in the scaled boundary finite element
method to study this problem. Figure 5.16(B) shows the comparison of the predicted
crack trajectory using BCM with different references. It can be observed that the crack
path is deflected towards the hole initially and after it went straight towards the right
edge of the plate. A close agreement is achieved in the predicted crack paths between
BCM and references. The problem is solved in 23 steps and stress contours along Y -
direction at different steps along with the number of loading cycles required are given
in Figure 5.17.
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Figure 5.16 : An edge crack in a plate with a hole (2" geometry); (A) Geometry of

the problem (all dimensions are in mm), (B) Comparison of FCP paths predicted by
BCM and reference studies (green [99], magenta [100]).
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Figure 5.17 : Stress contours along Y-direction (MPa) for different loading cycles.
5.2.4 A cracked plate with four holes

In this example, the deviation of the crack propagation path due to multiple holes in a
relatively complex plate geometry is discussed. For this purpose, a square plate having
four holes of equal radii of 5 mm is considered. A pre-crack of ag = 6 mm is present at
the middle of one edge of the plate as shown in Figure 5.18. Uniform stress of ¢ = 10
MPa is applied at the top and bottom edge of the plate. 8-sided polygons are used to
model the holes in the plate. Plane stress conditions are assumed to be applied and a
uniform crack increment of Ac = 1.2 mm (20% of ao) is used to predict the crack growth
path. The material properties are as follows: E = 72 GPa and v = 0.33. The same
problem is previously analyzed by Liu et al. [98] by using a fast multipole boundary
element method (BEM). Figure 5.19 shows the comparison of crack propagation path
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using BCM and reference study [98]. A close agreement is observed between both
paths. The crack path first goes towards the nearest hole then it becomes slightly

horizontal and finally it goes towards the second hole.
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Figure 5.18 : Geometry of a cracked plate with four holes (dimensions are in mm).
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Figure 5.19 : Comparison of BCM FCG path with multipole BEM [98].
5.2.5 Double edge cracked plate with two holes

For the next problem, another classical multiple crack propagation problem is
discussed which involves a plate with two holes and having two edge cracks. The
geometry of the plate used for the analysis is shown in Figure 5.20. 8-sided polygons
are used to model the holes. A constant crack increment of Ac = 0.5 mm is used for
the crack propagation prediction. Normal traction in Y-direction is applied on the top
and bottom edge of the plate. Plane stress condition is assumed to be applied in this

example.
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Figure 5.20 : Geometry of double edge cracked plate with two holes (all dimensions
are in mm).

Previously many researchers solved the same problem using different numerical
methods, e.g. Bouchard et al. [99] used a local remeshing technique with FEM and
E.T. Ooi et al. [100] used a scaled boundary finite element method to solve it. Figure
5.21 shows the comparison of the predicted crack propagation path with the reference
studies. Results show that a reasonably close agreement is achieved however there is
slight variation even among both references but BCM shows closer interaction

between crack paths which is very important to know.

Bouchard et al
=+=0oi et al
=&—Presented BCM
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Figure 5.21 : Comparison of FCG path by BCM (blue) with reference studies;
Bouchard et al. [99] (green) and Ooi et al. [100] (magenta).

5.3 Prediction of Loading Cycles

In this section, the estimation of loading cycles required for a given crack extension
length is discussed. For this purpose, an example of multiple crack propagation process

of two parallel cracks emanating from the outer periphery of two holes is considered
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from literature. Fatigue crack growth paths and the number of loading cycle required
to produce the given crack length extension is compared with the reference study.

The geometry of the problem is shown in Figure 5.22. A plate having two holes, each
having a radius of 2 mm separate at 25.4 mm from each other are studied using BCM
under cyclic loading with two initial cracks of 5 mm emanating at +45° from the outer
edge of each hole. Constant amplitude force of 5 kN (stress ratio R = 0) is applied in
the vertical direction as far-field loading. The elastic modulus and Poisson’s ratio are
71.7 GPa and 0.3, respectively. The same problem is also studied by Zhang et al. [101]
using numerical methods involving the finite element codes and results are compared
with experimental ones. Plane stress conditions are assumed to be applied for the
analysis. A constant crack increment Ac = 1 mm (20% of ao) is used. Figure 5.23 shows
the crack propagation path predicted using BCM in comparison with results calculated
by Zhang et al. [101]. A good agreement is observed, particularly a better agreement
is shown between the BCM and experimental results given in the reference study.
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Figure 5.22 : Geometry of two parallel cracks emanating from two holes in a plate
(all dimensions are in mm).
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Figure 5.23 : Comparison of FCG paths by BCM with experiment and FEM[101].
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For the estimation of the number of loading cycles, Paris’s law is used as a crack
growth model. The variation of the number of loading cycles N with the crack length
computed is mentioned in Figure 5.24. Curves for both crack tips i.e. crack tip A and
Crack tip B are mentioned for BCM in comparison with the average number of cycles
required as computed by reference experimental and FE study [101] is also presented
in Figure 5.24. Results show that implemented BCM is predicting the loading cycles

very close to the reference results.
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Figure 5.24 : Variation of the number of loading with crack length.

Table 5.7 shows the comparison of computed N by BCM with reference results for
different crack length extensions. Percentage error for both crack tips is given in
comparison of experimental as well as simulated FE results. Percentage error with
experimental results is within 17 % for each crack tip, and for the simulated FE results
the percentage error is within 15% for a crack length up to 15.4 mm for both crack
tips, whereas for the crack length of 17.5 mm, the percentage error for crack tip B is
25.57%, which is relatively higher, this can be because at this point the crack extension

is so much large and it enters in an unstable region and can give different results.
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Table 5.7 : Comparison of computed N for given crack length by BCM with
reference results [101].

Crack Reference Loading cycles % Error with % Error with
length |0ading cycles using BCM ref exp[lOl] ref FEM [101]

(MM)  Exp. FEM TipA TipB TipA TipB TipA TipB

8.8 57282 64562 67310 63130 1751 1021 426 -2.22
106 71152 73815 77660 75550 9.15 6.18 521 235
124 80696 81530 82600 83980 236 4.07 131 3.01
154 93583 90791 97280 104120 3.95 1126 7.15 14.68
174 130372 96783 111970 121530 -141 -6.78 15.69 25.57
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6. APPLICATIONS OF PROPOSED SCHEME TO FATIGUE CRACK
GROWTH PROBLEMS

In this chapter, different applications of the proposed scheme to simulate the FCG
behaviour in different plate geometries are investigated. For this purpose, three
different studies are conducted to analyse and simulate the typical and complicated
FCG problems of the aerospace industry which are difficult to solve by conventional
methods of FCG analysis. These studies are named Study-A, Study-B and Study-C in
this thesis. The findings of each study are published in different international

prestigious journals.

6.1 Study-A: FCG in Plates having Rivet Holes Under Different Loading

Conditions

In this problem, fatigue crack growth in a plate having two rivet holes separated at
some distance and crack emanating from a certain location and orientation from one
hole is analysed under three different far-field fatigue loadings i.e. loading in X-
direction, loading in Y- direction and shear loading. The purpose of this study is to
determine that what are the trajectories of crack propagation under different loading
conditions, which kind of loading is worst for these common rivet aerospace structures

and what are the effects of initial crack length on the FCG behaviour.

Figure 6.1 shows the geometry of an infinite plate having two rivet holes. The
maximum tangential stress (MTS) criterion is used to predict the trajectories of crack
growth. Paris’s Law along with the approach of equivalent stress intensity factor is
used to compute the number of loading cycles to produce a required crack length. 16-

sided straight lines polygon are used to model the hole in the plate.

Following parameters are used for the analysis; E = 71200 MPa, v = 0.3, diameter of
each hole = 4mm, spacing between holes = s = 6 mm, initial crack length = ap = 0.5
mm, angle of initial crack with central horizontal axis of hole = 33.6°, Stress amplitude
= 212 MPa and material constants are m = 3.545; C = 2.22x1071° [93].
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Figure 6.1 : Geometry of Infinite plate having two rivet holes.
6.1.1 Case-1: Infinite Plate under Stress in X-direction

As case-1 uniform stress is applied along X-direction. The estimated fatigue crack
growth path by the proposed scheme is shown in Figure 6.2. It can be observed that
the path of the crack propagation becomes perpendicular to the applied load direction

after some loading cycles.

= |nitial crack

[==FCG path ||

rrrrrt
R
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Figure 6.2 : FCG path for loading in X-direction (case-1).
6.1.2 Case-2: Infinite Plate under Shear Loading

In case-2 uniform shear load is applied as a far-field loading. The predicted fatigue

crack growth path is shown in Figure 6.3.
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Figure 6.3 : FCG path for shear loading (case-2).

6.1.3 Case-3: Infinite Plate under uniform Stress in Y-Direction

In case-3, uniform stress is applied in Y-direction as a far-field loading. It can be
observed from Figure 6.4 that similarly to the loading case-1 the crack propagation

path becomes perpendicular to the far-field applied loading after some number of

loading cycles.

—Initial crack|
m—FCG path | ]
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oyl b
Figure 6.4 : FCG path for loading in Y-direction (case-3).

6.1.4 Discussion of results

Figure 6.5 and Figure 6.8 show the comparison of the path of fatigue crack growth
under different types of loading for initial crack lengths of 0.5 mm and 1 mm,
respectively. Results show that for both cases, the crack growth path becomes
perpendicular to the applied loading for the tensile load whether it is in X or Y direction

and similarly for the shear load it becomes perpendicular to the direction of maximum
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normal stress, so we can conclude that the crack growth path does not depend upon
the initial length of the crack for the given loading cases at the macroscopic scale.
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Figure 6.5 : Comparison of FCG paths under different loadings for ap = 0.5 mm.

In Figure 6.6, variation of AKeffagainst crack length is given for each case of loading
for an initial crack length of 0.5 mm. It can be observed that the highest value of AKest
Is obtained in the case of shear stress, whereas AKess for loading in X and Y direction

are slightly different from each other.
70

&0

50
40
30

20 /’/_

10

Efl. kK MPamm~1/2

0
05 06 o7y 0B 09 1 1.1 1.2 1.3 1.4 15 1.6 1.7 1.8 19 2

Crack Length (mm)

s X -direction loading s Shear loading Y-direction loading

Figure 6.6 : AKefs Vs crack length plot for each loading case with ap = 0.5 mm.
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In Figure 6.7, the variation of the number of loading cycles with the crack length for
each loading case for an initial crack length of 0.5 mm is presented. It can be observed
that a small number of loading cycles are required to achieve a given crack length in
case of shear loading as compared to the loading either in X-direction or in the Y-
direction and the rate of propagation under shear stress is almost ten times higher than
that of normal stress cases.
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Figure 6.7 : Number of loading cycles vs crack length plot for different loading
conditions for ag= 0.5 mm.
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Figure 6.8 : Comparison of FCG paths under different loadings for ag =1 mm.
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Figure 6.9 shows the values of Akefr as a function of distance from the initial crack tip
and Figure 6.10 shows the number of loading cycles for a given crack length, for two
different initial crack sizes of 0.5 mm and 1 mm for loading along X-direction. The
result shows that values of Akess do not depend upon the initial crack size, whereas the
rate of crack propagation is slightly higher in the case of small initial crack length, but
this effect is not seen after a certain number of loading cycles.
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Figure 6.9 : Variation of AKeff with the location of crack tip for loading in X-
direction for different lengths of initial crack.
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Figure 6.10 : Number of loading cycles for loading in X-direction for different
initial crack lengths.

6.1.5 Conclusion of Study-A

In this study, fatigue crack growth analysis under three different far-field loading
conditions with the two-dimensional Boundary Cracklet Method (BCM) is presented.
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Prediction of crack growth paths and the required number of loading cycles under each
loading case is done using the maximum tangential stress (MTS) criterion and the

approach of equivalent stress intensity factor following Paris-Erdogan Law.

After some initial number of loading cycles, the fatigue crack growth path becomes
perpendicular to the direction of applied loading in case of far-field applied tensile
stress (whether in X or Y direction), and similarly, in case of shear loading, crack

propagate perpendicular to the direction of maximum principal stress.

For a given geometry, the fatigue crack growth path, stress intensity factors and the
number of loading cycles required for a given crack length depend only on the type of
loading and do not depend upon the initial size of the crack at the global level. Effective
AK has a higher value when uniform shear stress is applied to the plate and it has

relatively less value for the loading along X or Y direction.

Almost ten times fewer loading cycles are required to reach at a certain crack size
under shear loading as compared to the normal applied stress, which shows that the
rate of crack propagation is ten times higher under shear stress. Therefore, it can be
concluded that among the given three loading conditions shear stress is the worst case
of loading for the given configuration, whereas the number of cycles for loading along
X or'Y direction required to reach a certain crack size is almost the same.

6.2 Study-B: Simulations of Interaction of Multiple Fatigue Cracks Growth

In this section, simulation of FCP for different cases of multiple initial cracks in a plate
geometry (as shown in Figure 6.11) is discussed by using the proposed scheme. The
main purpose of this study is to investigate the effects of a newly added crack in the
vicinity of already present cracks on the rate of crack propagation in complex plate
geometries, which are difficult to solve by conventional methods. Three different
studies are conducted for this purpose and named study 1, study 2 and study 3. In study
1, cracks emanating at the different locations from the edges and middle of the given
plate geometry are discussed. In study 2, two different cases of initial cracks emanating
from different locations and orientations from the holes of the given geometry are
presented. Finally, a combination of study 1 and study 2 is discussed as study 3, in
which initial cracks are emanating from sides, middle and the outer periphery of the
holes with different orientations are studied.
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The used parameters for the analysis are as follows: Length and width of the plate are
100 mm and 140 mm respectively and the diameter of each hole is 10 mm. 8-sided
polygon is used to model the holes. The initial length of each crack is ap = 6 mm.
Constant amplitude cyclic loading in Y-direction with omax = 50 MPa, omin= 0 MPa
and R = 0 is applied. The material properties are as follows: E = 200 GPa, v = 0.3.
Paris material constants are m = 3.73; C = 4.47e-10. Plane stress conditions are

assumed to be applied in each case.
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Figure 6.11 : Geometry of the problem (all dimensions are in mm).

6.2.1 Study 1: Side edge cracks at different locations and inclined cracks at the

middle of the plate

In this study, three different cases of initial pre-cracks are discussed. In the first case,
a two symmetric cracks system is considered, and pre-cracks are emanating from the
middle of the side edge of the plate. The geometry and loading conditions are shown
in Figure 6.12(A), whereas the predicted crack propagation path using BCM is shown
in Figure 6.12(B). It can be observed that both crack propagation paths are symmetric
and initially they propagate horizontally, then they interact with the nearest hole and
tend to bend towards it, then they tend to go towards the hole of the other row in their
path and finally interact with the middle hole of each row and reach up to it.

To validate the results, the same problem is also solved using the SMART crack
growth module of commercial FE code ANSYS Workbench VV19.2. As multiple crack
interaction is not possible using ANSYS Workbench and since these two cracks are

symmetric and far apart from each other and there is no interaction among them, so a
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single crack is modelled in ANSYS Workbench, and the trajectory of fatigue crack
propagation is simulated using the adaptive re-meshing procedure. Crack growth is
obtained using program-controlled incremental extensions of the crack. As the result
of the crack propagation path also depends upon the mesh size used at the crack tip
and different crack paths are obtained for differently used mesh size, however, strongly
converging characteristics are obtained with the refinement of mesh at the crack tip. A
meshed model of given geometry is shown in Figure 6.13(A) and the predicted crack
propagation path is shown in Figure 6.13(B). A similar analysis is also performed for
the crack on the right side edge. A comparison between the predicted crack
propagation paths by BCM and ANSYS Workbench is shown in Figure 6.14.
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Figure 6.12 : Study 1, case-1 (BCM); (A) Geometry of problem, (B) Predicted FCG
path using BCM.
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Figure 6.13 : Study 1, case-1 (ANSYS Workbench); (A) Meshed model, (B) FCG
path using ANSY'S Workbench.
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Figure 6.14 : Comparison between FCG paths using BCM and ANSY'S Workbench
(Study 1, case-1).

In the second case, a similar two cracks system as mentioned in the previous example
is analyzed but using the initial cracks at a different location on the edges of the plate
as shown in Figure 6.15(A), crack propagation path using BCM can be seen from
Figure 6.15(B), whereas a comparison of crack propagation paths using BCM and
ANSYS workbench is shown in Figure 6.16. It can be observed that for both these
cases, the predicted crack propagation paths agree well with the FEM simulations.
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Figure 6.15 : Study 1, case-2 (BCM); (A) Geometry of the problem, (B) Predicted
FCG path using BCM.
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Figure 6.16 : Comparison between FCG paths using BCM and ANSY'S Workbench
(Study 1, case-2).

In case 3, a single crack at the middle of the plate for three different orientations i.e.

0°, 15%and 45° is discussed. The geometry of the crack at the middle of the plate at 0°

is shown in Figure 6.17(A), whereas Figure 6.17(B) shows the predicted crack

propagation path using BCM.
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Figure 6.17 : Study 1, case-3a (BCM); (A) Geometry of the problem, (B) Predicted
FCG path using BCM.

The result of this study is also verified using ANSYS Workbench. The meshed model
of the corresponding geometry of the problem is shown in Figure 6.18(A). As there is
a limitation in ANSYS Workbench that only crack propagation can be simulated on
one tip of the cracks, so two separate analyses are conducted to verify the crack
propagation in either side of the crack. Figure 6.18(B) shows a close agreement
between the crack propagation paths predicted by both methods. The geometry of the
crack at the middle of the plate at 6° is shown in Figure 6.19, whereas Figure 6.20(A)

and Figure 6.20(B) show the comparison of predicted crack propagation path using
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BCM with that of ANSYS Workbench for crack inclination angle of 15° and 45°

respectively.
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Figure 6.18 : Study 1, case-3a; (A) Meshed model, (B) FCG paths comparison using
BCM and ANSY'S Workbench.
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Figure 6.19 : Geometry of the problem at an angle 6° (study 1, case-3b).
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Figure 6.20 : FCG paths comparison by BCM and ANSYS Workbench; (A) 6 = 15°,

(B) 6 =45°,
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6.2.2 Study 2: Cracks emanating from holes

In this study, two different cases of initial cracks emanating from outer peripheries of
holes of the given geometry are discussed under loading in the Y- direction. In case 1,
cracks from 1% two holes of row 1 of the holes are emanating at -45°, whereas the
cracks from the 2" and 3" holes of row 2 are emanating at 45° (as shown in Figure
6.21(A)). The predicted crack propagation path using BCM is shown in Figure 6.21(B)
for case -1. In case -2, initial cracks from 1% and 3™ holes of row 1 of the holes are
emanating at -45°, whereas the cracks from 1%t and 3™ holes of row 2 are emanating at
45° (as shown in Figure 6.22(A)). The predicted crack propagation path using BCM

for case 2 is shown in Figure 6.22(B).
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Figure 6.21 : Study 2 case -1; (A) Geometry of the problem, (B) Predicted FCG path
using BCM.
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Figure 6.22 : Study 2 case -2; (A) Geometry of the problem, (B) Predicted FCG path
using BCM.

67



6.2.3 Study 3: (Crack emanating from edges and holes)

In the first three cases of this study, initial cracks emanating at different orientations
from edges and holes of the plate of given geometry are discussed under loading in Y-
direction. In case-1, there are four initial cracks in which two cracks are emanating
from a given location on the edge of the plate and two cracks are originating from the
two holes of the given geometry as shown in Figure 6.23(A). The crack propagation
trajectory for this case is given in Figure 6.23(B). As the two cracks merge, it is
assumed that failure has occurred, and simulation is set to stop.
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Figure 6.23 : Study 3, case-1; (A) Geometry of the problem, (B) Predicted FCG path
using BCM.

In case-2, there are six initial cracks in which two cracks are emanating from two
opposite edges of the plate and the remaining four cracks are originating from certain
origination from four different holes of given geometry (as shown in Figure 6.24(A)).
Figure 6.24(B) shows the crack growth path for case 2 of study 2. In case 3, one more
crack is added to the 2" case of this study at the centre of the plate at 0°as shown in

Figure 6.25(A). The crack propagation path of case-3 is shown in Figure 6.25(B).
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Figure 6.24 : Study 3 case -2; (A) Geometry of the problem, (B) Predicted FCG path
using BCM.
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Figure 6.25 : Study 3, case -3; (A) Geometry of the problem, (B) Predicted FCG
path using BCM.

Figure 6.26 (A) to (C) represents the crack growth rate of different crack tips for cases
1 to 3 of study3. Although a constant crack increment is used for each crack tip in each
case, the rate of crack growth for each crack is different, therefore different loading
cycles are required for each crack tip to grow for the same crack length. In each case,
there are symmetric cracks in the model and therefore only one set of cracks is shown
in the plots. Figure 6.27(A) to (C) shows the comparison of the crack growth rate of
crack tip A, B for case-1 and crack tip A, B and C for the case-2 and case-3 of study 3
respectively. These plots show that how the crack growth rate of a certain crack tip is
affected by the addition of other nearby cracks to the system. In case-1 there is only
one crack near the crack tip A, but in case 2 and 3 there are more cracks to interact
with crack tip A, therefore the growth rate of crack tip A is relatively higher in those

cases (Figure 6.27(A)). A similar effect is also observed for crack tip B and C in Figure
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6.27(B) and Figure 6.27(C) respectively. It shows that when two coplanar cracks
approach each other, they exhibit an over-constraining phenomenon [94], which
causes the near-tip stress field to be significantly higher than that near a single crack

and hence ultimately increases the rate of crack growth.

Crack Length (mm)

12 0 0.5 1 15 2 2 1 1.5 2
Number of Cycles 10* Number of Cycles 10t Number of Cycles

Figure 6.26 : Fatigue life curves for cracks tip A, B and C for different cases of
study 2, (A) Case 1, (B) Case 2, (C) Case 3.

Figure 6.27 : Fatigue life curves for different cases of study 2 for different crack
tips; (A) Crack tip A, (B) Crack tip B, (C) Crack tip C.
To show the versatility of the proposed method, the geometry of case-3 of study 3 is
also solved for loading in X-direction and the shear and discussed as case-4 and case
-5 respectively. Figure 6.28(A) shows the geometry of and the crack propagation path
for loading applied in X-direction, whereas Figure 6.28(B) shows the crack

propagation path of the same geometry as mentioned in case 3 under the shear loading.
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Figure 6.28 : BCM Simulation of FCP (study 3, case 4 and 5); (A) under loading in
X-direction (study 3, case-4), (B) under shear loading (study 3, case-5).
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To show the computational efficiency of a numerical method in fatigue problems a
new and very useful parameter is introduced: Yavuz’s fatigue computational efficiency
factor, Ycr = uN/t, which is the number of computed million cycles per hour (CPU
time). Table 6.1 shows the CPU time and fatigue life of each case of study 2 and study
3. Simulations are conducted on PC of dual-core Intel Core i13-4010U with 4.00 GB
RAM using MATLAB R2017b. As expected, more complexity in the problem results
in lower Ycr because it will take more time to solve, and the number of computed life
cycles will be much less per unit CPU time. BCM takes almost 15 hours to solve Study
3-case 3 with Ycr = 1.66e-3 which is a very complicated problem (plate with 6 holes
having 7 pre-cracks).

Table 6.1 : CPU time and fatigue life for each case.

Solution UN

Case Ac _ _ Yrc = uN/t
Study time* (No. of loading
No. (% of ag) x 10°
(hours) cycles/10°)
, 1 30 3.88 0.062 16.0
2 30 3.95 0.057 14.6
1 30 8.13 0.103 12.6
2 40 8.58 0.032 3.79
3 3 40 14.9 0.025 1.66
4 40 1.46 0.019 13.3
5 40 2.39 0.0018 0.78

*Analyses are conducted on PC of dual-core Intel Core i3-4010U with 4.00 GB
RAM using MATLAB R2017b.

6.2.4 Conclusion of the Study-B

In this study, fatigue crack growth simulation of interacting multiple cracks in
perforated plates with multiple holes is discussed. To show the versatility of the
proposed method, emphasis is given to study such complicated problems which cannot
be solved by conventional methods. Three different studies with multiple cases of
initial cracks emanating from side edges, the centre of the plate and the outer periphery
of holes in the plate at different orientation are simulated and crack growth path and
fatigue lives are estimated for each case. Paris’s law is used as a fatigue crack growth

model and the MTS criterion along with the approach of equivalent stress intensity
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factor is used to predict the crack tip location during crack propagation in each step
under fatigue loading. The effect of a newly added crack in the vicinity of already
present crack is also analyzed and concluded that when two coplanar cracks approach
each other, they exhibit an over-constraining phenomenon [94], which causes the near-
tip stress field to be significantly higher than that near a single crack and hence
ultimately increases the rate of crack growth. To show the computational efficiency of
a method in fatigue problems a new and very useful parameter is suggested: Yavuz’s
fatigue computational efficiency factor, Ycr = pN/t, which is the number of computed
million cycles per hour (CPU time). For two computational methods, the one with
higher Ycr is computationally more powerful.

It is also concluded through this study that the proposed scheme is an accurate tool to
simulate the real cases of multiple fatigue cracks interaction in two dimensions which
are the typical aerospace structures experiencing fatigue crack growth and the
conventional methods of analysing FCG have limitations in solving such complex

problems.

6.3 Study-C: FCG Analysis of Biaxially Loaded Hole-Edge Cracks

Aerospace structures experience different types of loading during their service life;
biaxial loading is also one of them and needs significant attention for the designing of
these structures. Repetitive pressurizing and depressurizing the cabin of the aircraft is

one of the examples of a biaxial state of fatigue loading.

The failures due to fatigue loading usually start at small surface cracks which act as
local stress raisers and propagate and interact with each other and turn into large
damage-producing cracks [1]. In practice, these micro surface cracks are always likely
to be present in many aircraft structural components, which are produced due to certain
imperfections due to the machining processes during the manufacturing of aircraft. To
produce a damage tolerance design, the most important thing is to make sure that these
micro-surface cracks will not propagate and not turn into large damage-producing
cracks under different loading and environmental conditions suffered by the aircraft
[102]. The orientation of the micro-surface cracks specially around holes in machined
structures and the nature of loading conditions can affect or even increase the rate of
propagation of cracks. In such cases, the orientation of the cracks describes that

whether the crack will grow in mode I, mode 1 or fatigue crack will grow in a mixed-
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mode manner. The effects of initial crack orientation under uniaxial fatigue loading
are well reported in the literature but the same under the effect of different conditions

of biaxial loading needs more discussion.

In the early findings of fatigue crack growth under biaxial loading, different
inconsistent observations were reported. According to some researchers, in linear
elastic fracture mechanics, the component of stress parallel to the crack does not affect
the fatigue crack growth, whereas some others reported that the propagation rate of a
fatigue crack under biaxial load is affected by stress biaxiality [103-107]. Hopper and
Miller reported that compressive stress on a plane parallel to the direction of crack
propagation can increase and tensile stress on the same plane can decrease the crack
propagation rate [103]. In 1978, Liu and Dittmer [104] while performing different
experimental tests on Al- alloys i.e. 7075-T7351 and 2024-T351 reported that crack
will grow straight in a biaxial stress field when the stress component parallel to the
crack is equal to or smaller than the stress component normal to the crack and biaxiality
has no effect on the crack growth rates under constant amplitude loading. Anderson
and Garrett [105] reported that equibiaxial tension reduces the rate of fatigue crack
growth, while compressive stresses parallel to the direction of crack propagation cause
a considerable increase in fatigue crack propagation rate in comparison to the uniaxial
loading conditions. In 1989, Yuuki et al. [106] performed fatigue tests on stainless
steel SUS 304 under various biaxial stress conditions and concluded that biaxiality
ratio can affect crack growth rates only at high stresses and in the case of low stresses
there is no effect of biaxiality ratio on fatigue crack growth rate. Y.C. Lam [107]
investigated the fatigue crack growth of long cracks under biaxial loads and reported
that when the biaxial stress ratio is much less than one, the crack grows in the direction
perpendicular to the dominant stress. However, when the biaxial stress ratio is close to
one then the trajectory of the growing crack depends upon the initial crack angle and
is more difficult to predict.

Taylor and Lee [94] investigate the biaxiality ratio effects on the fatigue behaviour by
employing cruciform specimens of aluminium alloys 1100-H14 and 7075-T651 and
concluded that non-singular stress parallel to a crack affects the trajectory of crack
growth and fatigue life of the structures made of mentioned aluminium alloys under
both in-phase and out-of-phase biaxial loading. Misak et. al. [108] studied the crack

growth behaviour of 7075-T6 under biaxial tension—tension fatigue loading. He
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reported that crack initiation and growth is coplanar with the initial notch under
equibiaxial loading with A = 1 and non-coplanar under A = 1.5 [108], whereas the rate
of fatigue crack growth would be higher in case of higher biaxiality ratio i.e. A = 1.5
relative to the counterpart under uniaxial fatigue i.e. A = 0 or biaxial fatigue with lower
biaxiality ratio i.e. A =0.5or 1 at a given crack driving force level in air environment
[109]. Baptista et. al. [110] studied the in-plane biaxial fatigue crack growth on an
optimal cruciform specimen for different initial length and angle of crack under
different phase shift angle loadings of 30°, 45°, 60°, 90° and 180° and suggested that
the loading phase shift angle effects the crack propagation angle. A fracture response
of a finite plate having a circular hole with radial cracks emanating at different angles
under biaxial loading with biaxiality ratio of 0, 1 and -1 is presented and showed how
biaxiality ratio affects the mixed mode stress intensity factors (K; and Kj) [111].
Recently, a complex fatigue failure under biaxial cyclic loadings where fatigue crack
paths interact in complicated ways is studied using peridynamic theory and fatigue
crack growth paths and fatigue lives for different initial angle of crack are predicted

and verified with experimental results for different biaxiality ratios [112].

There are different possible cases of biaxial loading conditions but in this study, in-
phase biaxial tension—tension cyclic loading is discussed. Fatigue crack growth
behaviour of an infinite plate having two symmetric cracks emanating from certain
location and orientation around a hole under far field in phase biaxial tension-tension
loading is analyzed and the effects of biaxiality ratio A, stress ratio R along with the
effects of orientation of initial pre-cracks on fatigue crack growth under biaxial loads

is also discussed.

6.3.1 Symmetric cracks around a hole in an infinite plate under biaxial loads

To study the effect of initial crack orientation on the FCG behaviour under fatigue
loading, two symmetric cracks emanating at different locations at the outer periphery
of the hole in an infinite plate are considered under in-phase tension-tension biaxial
loading (as shown in Figure 6.29). The location of the initial crack is described by
“crack position angle (a)” and its initial angle is determined by “crack orientation angle
(B)”. Analyses are done for different values of a i.e. 0° and 45° with different values
of Bi.e. 0°, 15° 300, 45° FCG paths and the number of loading cycles for given crack
length are estimated for different biaxiality stress ratio i.e. A = 0, 0.5, 1, 1.5. The
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geometry of the plate is as follows: diameter of the hole is 17.5 mm and symmetric
cracks of initial length ap=2 mm is considered, and material properties are as follows:
E =73.1 GPa, v=0.33, m = 3, C=9.45e-11 [114]. Walker’s equation is used as FCG
model and MSED criterion along with the approach of equivalent stress intensity factor

Is used to predict the crack tip location.

6.3.2 Effect of biaxiality ratio () on FCG

In this section, the effect of biaxiality ratio A on FCG is presented for the given
geometry. For this purpose, analyses with different values of A i.e. 0, 0.5, 1, 1.5 are
repeated and fatigue crack growth paths, SIFs and number of loading cycles N for a
given crack length are computed for different orientations of initial pre-cracks using

the proposed scheme.
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Figure 6.29 : Geometry of the infinite plate with a hole having symmetric cracks.
6.3.2.1 Effect of biaxiality ratio on fatigue crack growth trajectory

Figure 6.30 and Figure 6.31 show the FCG trajectories for symmetric cracks emanating
at crack position angles a = 0% and 45° respectively for different crack orientation
angles p = 0°, 15°, 30°, 45° for A = 0 and 0.5. Results show that for the case of uniaxial
stress with A = 0, where only o, is applied and o, is zero, cracks propagate
perpendicular to the direction of the o;, in each case of crack orientation. Similarly, for

A = 0.5, gy is the dominant stress among both the stress as o, = 0.50,, and crack
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propagate perpendicular to direction of g,,. Results show that there is no effect of the
position and orientation of the pre-cracks on the trajectory of the crack growth path for
A =0, 0.5 and it can be concluded that the FCG path is independent of initial crack

location and orientation at the hole for the biaxiality ratio 0 to 0.5.
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Figure 6.30 : FCG trajectories for A =0 and 0.5 at a = 0% (A) p = 0°, (B) B = 15°,
(C) B=30°, (D) B = 45°.
Figure 6.32 and Figure 6.33 show the FCG trajectories for crack position angle o = 0°
and 45° respectively for different crack orientation angles p = 0°, 15°, 30°, 45° for A =
1. For A = 1 i.e. equibiaxial loading case, results show that cracks tend to propagate
diagonally in each case and their paths are sensitive with the location as well as the
orientation of the initial pre-crack. In this case, there is no dominant stress direction

and both stresses are equal, so crack tries to grow under the effect of both g, and o,,.
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Figure 6.31 : FCG trajectories for A =0 and 0.5 at a = 45% (A) B = 45°, (B) B = 0°,
(C)B=15° (D) B =30°
Figure 6.34 and Figure 6.35 show the FCG trajectories for crack position angle o = 0°
and 45° respectively for different crack orientation angles p = 0°, 15°, 30°, 45° for A =
1.5. As in this case L = 1.5 and o, is 1.5 times a,, therefore clearly o, is the
predominant stress among both applied stresses, so the cracks propagate perpendicular
to the direction of o, in each case. It is important to notice that for case where o = 45°
and B = 0° (as shown in Figure 6.35(B), the crack tends to propagate perpendicular to
the o, but due to position and orientation of the pre-crack, it interacts with the hole
and inclines towards the hole. If we keep on increasing the crack orientation angle 3
and when it reaches to value of 6° or more, then crack propagates perpendicular to o,
like other cases e.g. as shown in Figure 6.35(C). Therefore, for this case position and
orientation of the pre-crack is important and the trajectory of the path is affected by it.
Results suggest that the trajectory of the FCG path under biaxial loading mainly

depends upon the biaxiality ratio ().
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Figure 6.32 : FCG trajectories for L= 1 at a = 0% (A) p = 0°, (B) B =15° (C) B =
30°, (D) B = 45°,
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Figure 6.33 : FCG trajectories for A =1 at a = 45% (A) p = 45° (B) B =0°, (C) B =
15°, (D) B = 30°.
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Figure 6.34 : FCG trajectories for A= 1.5 at a = 0% (A) p=0°, (B) B =15° (C) B =
30°, (D) B = 45°.
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Figure 6.35 : FCG trajectories for A= 1.5 at a = 45% (A) p =45°, (B) B =0° (C) B =
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6.3.2.2 Effect of biaxiality ratio on initial crack tip propagation angle

Figure 6.36 shows the variation of crack tip propagation angle (with reference from
the initial crack angle) of the first step of the analysis with A for different crack
orientation angles B for a = 0° and 45°, respectively. Results show that the value of the
initial crack propagation angle depends upon the position as well as the orientation of
the pre-crack. For crack position angle a = 0° (Figure 6.36(A)), the initial crack
propagation angle converges to the same value for A = 0.5 regardless of the orientation
angle of the crack, but the crack propagation angle varies with the orientation of the
initial pre-crack for A # 0.5. A less variation in initial crack propagation angle is
observed for 0 < A < 0.5 among different crack orientation angles but for 0.5 < 1 <
1.5 this variation is relatively high. Similarly, for crack position angle o = 45° (Figure
6.36(B)) the initial crack propagation angle strongly depends upon the biaxiality ratio,
but in this case, variation in initial crack propagation angle for crack orientation angles
decreases as the A approaches from 1 to 1.5. From the results, it can be concluded that
the initial crack propagation angle depends upon the biaxiality ratio as well as the
orientation and the position of the initial pre-crack.
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Figure 6.36 : Variation of initial crack tip angle with A; (A) a = 0°, (B) o= 45°.

6.3.2.3 Effect of biaxiality stress ratio on initial crack tip SIFs ratio

Figure 6.37 shows the variation of the ratio of crack tip SIFs (Ki/ Kj) of the first step
of the analysis with A for different crack orientation angles B for a = 0° and 45°,
respectively. Results show that the initial crack tip SIFs ratio depends upon the position

and orientation of the pre-crack and it also depends upon the biaxiality ratio. SIFs ratio

increased with the crack orientation angle B at a given value of A for both cases of

80



crack positions (a), which means that crack tends to move

conditions for a higher crack orientation angle.
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Figure 6.37 : Variation of the ratio of mode-I1 to mode-I SIFs (K2/K1) with A.

6.3.2.4 Effect of biaxiality stress ratio on No. of loading cycles

Figure 6.38 shows the number of loading cycles required for the given crack length for

each case of crack orientation angle P for a = 0° and 45°, respectively. Results show

that in both cases of a, the number of loading cycles are same for A = 0, 0.5 and 1 for

each value of angle B, but for A = 1.5 the rate of crack propagation increases, and a

smaller number of loading cycles are required for the given crack length. Therefore, it

can be concluded that the number of loading cycles are independent of the biaxiality

ratio for 0 < A < 1 for each case of crack propagation angle and orientation, but for

A = 1.5, the rate of crack propagation increases regardless of the position and

orientation of the pre-crack. Figure 6.39 also shows the same results, where a

comparison of the no. of loading cycles required for a crack length of 17 mm is

presented for each orientation of initial pre-crack for a. = 0° and o = 45°, respectively.
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Figure 6.38 : Comparison of loading cycles required for given crack length for
different orientations of initial pre-crack; (A) o= 0°, (B) o = 45°.
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Figure 6.39 : Comparison of loading cycles required for a crack length of 17 mm for
different biaxiality ratio; (A) a = 0°, (B) o= 45°.,

6.3.3 Effect of stress ratio (R) on FCG

In this section, the effect of stress ratio (R = ynin/ Omax) ON FCG is presented for
the given geometry. Analyses with different values of stress ratio i.e. 0, 0.2, 0.4 are
performed. Figure 6.40 shows the crack growth path for different values of R for the
case where a = 0, = 0, results show that there is no effect of R ratio on fatigue crack
growth path. The same result is observed for every case of crack position and
orientation angle for the given geometry.
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Figure 6.40 : FCG paths for different values of R fora=0,3=0; (A)R=0,(B)R =
0.2, (C)R=04.

Figure 6.41 shows the effect of R-ratio on the rate of crack growth rate for different
values of biaxiality ratio for the geometry with oo = 0, = 0. Results show that the rate
of crack growth is higher for a higher value of R ratio for a given value of AK,, but

for a given o4, the value of AK, is low for a higher value of R-ratio and more

loading cycles are required for a given crack length.

(A) (B)

(€ D)

Figure 6.41 : Effect of R on FCG rates for o = 0, = 0 for different biaxiality ratios;
(A)A=0,(B)A=0.5,(C)r=1,(D)r=L.5.
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Figure 6.42(A) and Figure 6.42(B) show the comparison of number of loading cycles
required for a given crack length for the geometry a = 0°, B = 45° and o = 45°, B = 45°,
respectively. More loading cycles are required for a higher value of R ratio in each
case of initial crack geometry. This is because at a higher R the variation of stress from
maximum to minimum value is relatively less as compared to the lower value of R and

it results in a lower value of AK, (¢ and therefore, more loading cycles are required to

produce the same crack growth.
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Figure 6.42 : Effect of R on fatigue life of different cases; (A) a=0° B =
45° (B) 0. =450, p =45,

6.3.4 Conclusion of the Study-C

In this study, the analysis of fatigue crack growth in an infinite plate under biaxial
loads is presented using the boundary cracklet method (BCM) in the 2-dimensional
domain. Walker equation is used for the fatigue crack growth and MSED criterion
along with the approach of equivalent stress intensity factor is used to predict the crack
tip location during crack propagation in each step under biaxial fatigue loading. The
FGC for an infinite plate having symmetric cracks, at different orientations at the hole
is studied for different biaxiality stress ratios (A = 0, 0.5, 1, 1.5) and their effect on
crack propagation paths and the number of loading cycles required for given crack
extension is studied. Results show that crack tends to propagate perpendicular to the
direction of dominant stress in the case of biaxial load where A # 1 and there is no
effect of location and orientation of initial crack on the crack trajectory. For equibiaxial
loading where A =1, the crack tends to propagate diagonally, and its path depends upon
the location and orientation of the initial pre-crack. As far as the number of loading

cycles for a given crack extension are concerned, equal load cycles are computed for
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A =0, 0.5, 1 whereas it is concluded that for A = 1.5, the rate of crack growth increases,
and fewer loading cycles are required to produce the given crack length. To observe
the effect of R-ratio on FCG, analysis with R = 0, 0.2, 0.4 are performed. It is also
observed that there is no effect on crack trajectories under different R-ratio. For a given
AKes the rate of crack propagation is increased with the increase of R-ratio, but for a
given value of g,,,, the value of AKes is lower for a higher R ratio value, which results
in a higher number of required loading cycles to produce the same crack extension.
The verification of the proposed method is done by comparing the mode-1 and mode-
2 SIFs and crack growth paths computed by BCM for an inclined crack in an infinite
plate under different biaxial loading conditions with those computed by the analytical
formulation presented in the literature. A close agreement is achieved between the

values predicted by BCM and those by the analytical method.
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7. CONCLUSION AND FUTURE WORK

In this chapter conclusions drawn from this study are presented in detail. The most

relevant potential studies are mentioned as well.

7.1 Conclusion

Fatigue crack growth (FCG) analysis and simulation of the interaction of multiple
cracks have been a key issue for decades. There are several two-dimensional methods
to investigate fatigue crack propagation such as analytical methods, finite element
methods (FEM), extended finite element methods (XFEM), boundary element
methods (BEM) and many more. Each one has some advantages as well as limitations
and drawbacks considering the preparation of the model, the accuracy of the analysis
and required computation time. Therefore, there is always room to develop new tools

or schemes to simulate the FCG phenomenon accurately and efficiently.

In this study, the complex phenomenon of multiple cracks interaction under mix mode
fatigue loading is analysed by using a newly developed method i.e. Boundary Cracklet
Method (BCM). BCM was developed by Prof. Dr. Yavuz (co-advisor of this study)
and Prof. Dr. Phoenix at Cornell University. It was developed as a semi-analytical
method to calculate the overall stress field and the stress intensity factor (SIF) for crack
tips under static loads before. BCM is based on a dislocation distribution approach that
approximates the crack opening displacement profiles by using certain power series
that satisfy the traction-free condition on crack faces. In this study, BCM is used for

the first time to simulate the interacting multiple cracks under fatigue loading.

Throughout the thesis, it has been proved that BCM is an accurate method to simulate
fatigue crack propagation (FCP) involving multiple cracks in complex plate
geometries under different conditions of fatigue loading. The accuracy of the method
was established through the results presented by different researchers which were
already available in the literature. Crack tip SIFs, fatigue crack propagation paths and
the number of loading cycles required to produce a given crack length extension were
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used as a parameter for the comparison. A good agreement among the results of each

mentioned parameter was achieved for every problem.

Further, the proposed scheme is used to simulate the FCP in different plate geometries
involving single as well as multiple cracks under different conditions of fatigue loading
which are typical and difficult problems to solve in aerospace structural components.
For this purpose, three different studies were conducted, and the findings of each study

were published in different international prestigious journals.

In the first study, fatigue crack growth in an infinite plate having two rivet holes
separated at some distance and crack emanating from a certain location and orientation
from one hole were analysed under three different far-field fatigue loadings i.e. loading
in X-direction, loading in Y- direction and shear loading. It is concluded that after
some initial number of loading cycles, the fatigue crack growth path becomes
perpendicular to the direction of applied loading in case of far-field applied tensile
stress (whether in X or Y direction), and similarly, in the case of shear loading, cracks
propagate perpendicular to the direction of maximum principal stress and there is no
effect of size of initial crack on FCG behaviour. Almost ten times fewer loading cycles
are required to reach a certain crack size under shear loading as compared to the normal
applied stress, which shows that the rate of crack propagation is ten times higher under
shear stress. Therefore, among the given three loading conditions, cycling shear stress
is the worst one and needs more attention while designing the structures having rivet

holes.

In the second study, fatigue crack growth simulation of interacting multiple cracks in
perforated plates with multiple holes is discussed. To show the versatility of the
proposed method, emphasis is given to study such complicated problems which cannot
be solved by conventional methods to analyse the FCG. Three different studies with
multiple cases of initial cracks emanating from side edges, the centre of the plate and
the outer periphery of holes in the plate at different orientations are simulated. It has
been concluded that the FCG of complicated problems e.g. plate with six holes having
seven pre-cracks can be computed fast by the proposed scheme. The conventional
methods of analysing FCG have limitations in solving such complex problems.
Moreover, the effect of a newly added crack in the vicinity of already present crack is
also analyzed and concluded that when two coplanar cracks approach each other, they

exhibit an over-constraining phenomenon, which causes the near-tip stress field to be
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significantly higher than that near a single crack and hence ultimately increases the
rate of crack growth. To show the efficiency of a computational method in fatigue
problems a new and very useful parameter is also introduced: Yavuz’s fatigue
computational efficiency factor, Ycr = uN/t, which is the number of computed million

loading cycles per hour (CPU time).

In the third study, the FCG behaviour of symmetric cracks emanating at different
locations at the outer periphery of the hole in an infinite plate with different
orientations under in-phase tension-tension biaxial loading is shown. As the effects of
initial crack orientation under uniaxial fatigue loading are well reported in the literature
but the same under the effect of different conditions of biaxial loading has not been
investigated. Our results show that BCM is equally effective in predicting the FCG
behaviour under complex cases of fatigue loading. It is concluded that cracks tend to
propagate perpendicular to the direction of dominant stress in the case of biaxial load
where biaxiality ratio 4 # 1 and there is no effect of location and orientation of initial
crack on the crack trajectory. For equibiaxial loading where A = 1, the crack tends to
propagate diagonally, and its path depends upon the location and orientation of the
initial pre-crack. As far as the number of loading cycles for a given crack extension
are concerned, equal load cycles are computed for A =0, 0.5, 1 whereas it is concluded
that for A = 1.5, the rate of crack growth increases, and fewer loading cycles are
required to produce the given crack length. It is also concluded that there is no change
in crack trajectories under different stress ratios (R). For a given AKesf the rate of crack
propagation is increased with the increase in R, but for a given value of a,,,, the value
of AKes is lower for a higher R-value, which results in a higher number of required

loading cycles to produce the same crack extension.

7.2 Future Work
Following are some of the recommendations for future studies.

7.2.1 Development of a BCM software to predict the FCG

As the accuracy of the proposed scheme of analysing the interaction of multiple cracks
under different conditions of fatigue loads is well established with the examples
available in the literature through this study, a BCM software can be developed to

simulate the fatigue crack growth behaviour of complex problems having multiple
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cracks under mix-mode fatigue loading. Currently, most of the available software are
either limited to the mode-I and mode-I1 loading cases only or capable of analysing a

single crack only.

7.2.2 Analysing a large array of cracks

In this study, the interaction of a maximum of seven pre-cracks is simulated, but BCM
can be applied to a large number of arrays of cracks. With the help of parallel

computing, such problems can be solved efficiently by using supercomputers.
7.2.3 Analysing X-shaped (starred), V-shaped (kinked), Y-shaped (branched)
and Z-shaped (zig-zagged) cracks

In the future, studies can be performed to study the FCG behaviour of V and Z-shaped
kinked or X and Y-shaped branched cracks. There is a strong need to explore a

criterion of crack branching to simulate the dynamic crack branching with BCM.
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