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INVESTIGATION OF INTERACTING MULTIPLE FATIGUE CRACKS 

PROPAGATION USING TWO-DIMENSIONAL BOUNDARY CRACKLET 

METHOD 

SUMMARY 

Aircraft structures experience fatigue loading emanating from different sources e.g. 

variation of aerodynamic loads on wings and repetitive pressurizing and 

depressurizing the cabin of the aircraft etc. It is a well-known fact that fatigue loading 

is more responsible for the failure of aircraft structures as compared to static loading 

because a single surface crack can lead to a catastrophic failure due to fatigue loading. 

At the early stages of the life of aircraft, these surface cracks have no effect on the 

structural integrity of the aircraft, but with the passage of time, environmental effect, 

and nature of loading these cracks propagate and interact with each other. These cracks 

propagate, up to the point where the remaining cross-section of the component is not 

being capable of carrying the loads and the component will be subjected to sudden 

fracture. 

The failures due to fatigue usually start at small surface cracks which act as local stress 

raisers and propagate and interact with each other and turn into large damage-

producing cracks. In practice, these micro surface cracks are always likely to be 

present in many aircraft structural components even the newly made components can 

have these cracks due to certain imperfections in machining processes during the 

manufacturing of aircraft. To produce a damage tolerance design and to meet the 

certain requirements of certifications applicable in the aerospace industry, it becomes 

very important to know the behaviour of aerospace structures in the presence of these 

inevitable surface cracks under fatigue loading. Thus, a fast and accurate method of 

predicting the behaviour of these cracks under fatigue loading plays a vital role. This 

fact forces engineers to develop new methods and models which can simulate the 

effects of existing cracks so that they can predict the remaining useful life of aircraft 

structure more accurately. Such methods and simulation techniques not only reduce 

the high cost of physical testing of the aerospace structures but also play a crucial role 

in producing a better design of these structures. 

For the analysis of planar cracks, different commercial tools are available, which are 

mostly based on the analytical formulations and different handbook solutions e.g. 

NASGRO and AFGROW. These software packages can simulate the fatigue crack 

growth (FCG) problems of predefined cracks under mode-I loading conditions only, 

but most of the real problems in the industry are under the influence of mix mode 

loading where crack tip grows under the effect of both mode-I and mode-II loading 

conditions. Therefore, these software packages cannot handle such complex problems 

of mix mode crack growth. Finite element methods are also being used from a long 

time for the study of FCG. These methods can simulate the interactions of cracks with 

reasonably good accuracy. But, due to the requirement of fine mesh at the crack tip, 

generation of a representation of the crack advancement and regeneration of FE mesh 

after each iteration of FCG, make these methods challenging to adopt. To overcome 
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these difficulties of FEM, in 1999, a mesh-independent method called Extended-FEM 

(XFEM) with minimal re-meshing was developed and since then a continuous 

improvement has been seen in the implementation of these methods. However, the 

accuracy of these methods decreases as the complexity of the problem increases and 

still a lot of research efforts are underway to overcome this shortcoming. 

By considering the above-mentioned limitations of the conventional methods to 

analyse the FCG of problems involving multiple cracks under mixed-mode conditions, 

there is always room to develop such methods which can mitigate the deficiencies of 

these methods. Recently, in 2006, a fast and accurate semi-analytical method called 

Boundary Cracklet Method (BCM) is developed by Prof. Dr. A. K. Yavuz (co-advisor 

of this study) and Prof. Dr. S. L. Phoenix at Cornell University, to find the overall 

stress field and the stress intensity factor (SIF) for crack tips and crack singular wedges 

at the crack kinks. This method is based on the dislocation distribution approach which 

approximates the crack opening displacement profiles by using certain power series 

that satisfy the traction-free condition on crack faces. Unlike the conventional mesh 

dependent methods, where a very fine mesh is required to overcome the stress 

singularities around crack tips, BCM takes care of crack tip singularities by including 

wedge eigenvalues in power series and makes sure that all integrals necessary to 

calculate stress fields are in closed form to give fast solutions. The solution of these 

integrals is the most time-consuming part in other mesh-dependent methods such as 

FEMs and BEMs. Moreover, only a few numbers of allocation points are used around 

the crack tips to satisfy traction-free boundary conditions instead of using more 

elements. These factors make the algorithm of BCM more reliable and fast as 

compared to other methods and enable us to solve difficult fatigue crack growth 

problems. Therefore, the main objective of this thesis is to analyse the multiple cracks 

interaction under mix mode fatigue loading by using BCM in the two-dimensional 

domain and to show the accuracy and versatility of the method to different fatigue 

crack growth problems that are difficult to solve by using the conventional methods. 

Throughout the thesis, it has been proved that the proposed scheme is a reliable and 

accurate method to simulate the fatigue crack propagation (FCP) involving multiple 

cracks in complex plate geometries under different conditions of fatigue loading. The 

accuracy of the method is established through the results presented by different 

researchers which were already available in the literature. Crack tip SIFs, fatigue crack 

propagation paths and the number of loading cycles required to produce a given crack 

length extension are used as a parameter for the comparison. A good agreement among 

the results of each mentioned parameter is achieved for every problem.   

Further, this proposed method is used to simulate the FCP in different plate geometries 

involving single as well as multiple cracks under different conditions of fatigue loading 

which are typical and difficult problems to solve in aerospace structural components. 

For this purpose, three different studies are conducted, and the findings of each study 

are published in different international prestigious forums.  

In the first study, fatigue crack growth in an infinite plate having two rivet holes 

separated at some distance and crack emanating from a certain location and orientation 

from one hole are analyzed under three different far-field fatigue loadings i.e. loading 

in X-direction, loading in Y- direction and shear loading. The maximum tangential 

stress (MTS) criterion is used to predict the trajectories of crack growth. Paris’s Law 

along with the approach of equivalent stress intensity factor is used to compute the 

number of loading cycles to produce a required crack length. It is concluded that after 
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some initial number of loading cycles, the fatigue crack growth path becomes 

perpendicular to the direction of applied loading in case of far-field applied tensile 

stress (whether in X or Y direction), and similarly, in the case of shear loading, cracks 

propagate perpendicular to the direction of maximum principal stress. Almost ten 

times fewer loading cycles are required to reach at a certain crack size under shear 

loading as compared to the normal applied stress, which shows that the rate of crack 

propagation is ten times higher under shear stress. Therefore, among the given three 

loading conditions, cycling shear stress is the worst one and needs more attention while 

designing the structures having rivet holes. 

In the second study, fatigue crack growth simulations of interacting multiple cracks in 

perforated plates with multiple holes are discussed. To show the versatility of the 

proposed method, emphasis is given to study such complicated problems which cannot 

be solved by conventional methods to analyse the FCG. Three different studies with 

multiple cases of initial cracks emanating from side edges, the center of the plate and 

the outer periphery of holes in the plate at different orientations are simulated. It has 

been concluded that the FCG of complicated problems e.g. plate with six holes having 

seven pre-cracks can be computed fast by the proposed scheme. The conventional 

methods of analysing FCG have limitations in solving such complex problems. 

Moreover, the effect of a newly added crack in the vicinity of already present crack is 

also analyzed and concluded that when two coplanar cracks approach each other, they 

exhibit an over-constraining phenomenon, which causes the near-tip stress field to be 

significantly higher than that near a single crack and hence ultimately increases the 

rate of crack growth. To show the efficiency of a computational method in fatigue 

problems a new and very useful parameter is also introduced: Yavuz’s fatigue 

computational efficiency factor, YCF = µN/t, which is the number of computed million 

loading cycles per hour (CPU time).  

In the third study, FCG behaviour of symmetric cracks emanating at different locations 

at the outer periphery of the hole in an infinite plate with different orientations under 

in-phase tension-tension biaxial loading is presented. As the effects of initial crack 

orientation under uniaxial fatigue loading are well reported in the literature but the 

same under the effect of different conditions of biaxial loading has not been 

investigated. The rate of FCG is computed using Walker’s equation, whereas the 

direction of propagation of crack tip is predicted using the minimum strain density 

(MSED) criterion. Our results show that BCM is equally effective in predicting the 

FCG behaviour under complex cases of fatigue loading. It is concluded that cracks 

tend to propagate perpendicular to the direction of dominant stress in the case of biaxial 

load where biaxiality ratio 𝜆 ≠ 1 and there is no effect of location and orientation of 

initial crack on the crack trajectory. For equibiaxial loading where λ = 1, the crack 

tends to propagate diagonally, and its path depends upon the location and orientation 

of the initial pre-crack. As far as the number of loading cycles for a given crack 

extension are concerned, equal load cycles are computed for λ = 0, 0.5, 1 whereas it is 

concluded that for λ = 1.5, the rate of crack growth increases, and fewer loading cycles 

are required to produce the given crack length. It is also concluded that there is no 

change in crack trajectories under different stress ratios (R). For a given effective stress 

intensity factor (ΔKeff) the rate of crack propagation is increased with the increase in 

R, but for a given value of stress, the value of ΔKeff is lower for a higher R-value, 

which results in a higher number of required loading cycles to produce the same crack 

extension. 

.  
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İKI BOYUTLU SINIR ÇATLAK ELEMANI YÖNTEMI (BOUNDARY 

CRACKLET METHOD) KULLANILARAK ETKILEŞIMLI ÇOKLU 

YORULMA ÇATLAKLARININ İLERLEMESININ ARAŞTIRILMASI  

ÖZET 

Uçak yapıları, kanatlar üzerine gelen aerodinamik yüklerin değişimi ve kabin 

basıncının değişimi gibi çeşitli nedenlerden dolayi yorulma yüklemesi etkisi altında 

kalır. Yorulma yüklemesinin, statik yüklemeye kıyasla uçak yapılarının hasar 

görmesinde daha fazla sorumlu olduğu iyi bilinen bir gerçektir; çünkü yorulma 

yüklemesinin meydana getireceği tek bir yüzey çatlağı kazaya neden olabilecek bir 

hasara neden olabilir. Uçağın ömrünün ilk aşamalarında, bu yüzey çatlaklarının uçağın 

yapısal bütünlüğü üzerinde hiçbir etkisi yoktur, ancak zamanın geçişi, çevresel etki ve 

bu çatlakların yükleme etkisiyle yayılması ve birbirleriyle etkileşime girmesi olasıdır. 

Bu çatlaklar, yapı bileşeninin kesitinin yükleri taşıyamayacağı noktaya kadar yayılır 

ve söz konusu bileşen ani kırılmaya maruz kalır. 

Yorulmadan kaynaklanan hasarlar genellikle yerel gerilme arttırıcılar olarak hareket 

eden, yayılan, birbirleriyle etkileşime giren ve büyük hasar meydana getiren çatlaklara 

dönüşen küçük yüzey çatlaklarıyla başlar. Uygulamada, bu mikro yüzey çatlaklarının 

her zaman birçok hava taşıtı yapısal bileşeninde mevcut olması muhtemeldir, hatta 

yeni imal edilen yapısal bileşenlerde bile, uçak üretimi sırasında işleme 

proseslerindeki bazı kusurlar nedeniyle bu çatlaklar olabilir. Bir hasar toleransı ile 

tasarlanan yapıyı imal etmek ve havacılık endüstrisinde geçerli olan sertifikaların 

belirli gereksinimlerini karşılamak için, yorulma yüklemesi altında bu kaçınılmaz 

yüzey çatlaklarının varlığında havacılık yapılarının davranışını bilmek çok önemli hale 

gelir. Bu nedenle, söz konusu çatlakların yorulma yüklemesi altındaki davranışını 

tahmin etmenin hızlı ve doğru bir yöntemi hayati bir rol oynar. Bu gerçek, 

mühendisleri, uçak yapısının kalan faydalı ömrünü daha doğru bir şekilde tahmin 

edebilmeleri için mevcut çatlakların etkilerini simüle edebilen yeni yöntemler ve 

modeller geliştirmeye zorlamaktadır. Bu tür yöntemler ve simülasyon teknikleri, 

yalnızca havacılık ve uzay yapılarının yüksek fiziksel test maliyetini düşürmekle 

kalmaz, aynı zamanda bu yapıların daha iyi tasarlanmasında çok önemli bir rol oynar. 

Düzlemsel çatlakların analizi için, çoğunlukla analitik formülasyonlara ve farklı el 

kitabı çözümlerine dayanan farklı ticari yazılımlar mevcuttur, örneğin NASGRO ve 

AFGROW. Bu yazılım paketleri, yalnızca mod-I yükleme koşulunda önceden 

tanımlanmış bir çatlak ilerlemesi (FCG) sorununu simüle edebilir, ancak endüstrideki 

gerçek sorunların çoğu, çatlak ucunun her ikisinin de etkisi altında ilerlediği karışım 

modu(mod-I ve mod-II yükleme koşulları) yüklemesinin etkisi altındadır. Bu nedenle, 

söz konusu yazılım paketleri, karışım modu çatlak ilerlemesi gibi karmaşık sorunları 

çözemez. FCG çalışması için uzun zamandan beri sonlu eleman yöntemleri de 

kullanılmaktadır. Söz konusu yöntemler, çatlakların etkileşimlerini oldukça iyi bir 

doğrulukla simüle edebilir. Ancak, çatlak ucunda daha fazla eleman gereksinimi 

nedeniyle, FCG'nin her yinelemesinden sonra FE ağının çatlak ilerlemesi ve 

rejenerasyonunun bir temsilinin oluşturulması, bu yöntemlerin benimsenmesini 
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zorlaştırır. FEM'in bu zorluklarının üstesinden gelmek için, 1999'da, minimum 

yeniden ağ oluşturma ile Genişletilmiş-FEM (XFEM) adı verilen ağdan bağımsız bir 

yöntem geliştirilmiş ve o zamandan beri bu yöntemlerin uygulanmasında sürekli bir 

gelişme görülmüştür. Bununla birlikte, problemdeki karmaşıklık arttıkça bu 

yöntemlerin doğruluğu azalmaktadır ve söz konusu eksikliğin üstesinden gelmek için 

hala birçok araştırma çalışması devam etmektedir. 

Karışık mod koşulları altında çok sayıda çatlak içeren problemlerin FCG'sini analiz 

etmek için geleneksel yöntemlerin yukarıda bahsedilen sınırlamaları dikkate 

alındığında, bu yöntemlerin eksikliklerini azaltabilecek yöntemleri geliştirmek için her 

zaman bir çalışma alanı vardır. Son zamanlarda, 2006 yılında, Cornell Üniversitesi'nde 

Prof. Dr. Abdulkadir Yavuz (bu tezin eş danışmanı) ve Prof. Dr. S. L Phoenix 

tarafından, çatlak uçları için genel gerilme alanı, gerilme yoğunluğu faktörü (SIF) ve 

çatlak kıvrımlarında tekil kamaları hesaplamak için, Boundary Cracklet Method 

(BCM) adı verilen hızlı ve guvenilir bir yarı analitik yöntem geliştirilmiştir. Bu 

yöntem, çatlak yüzeylerindeki çekmesiz durumu sağlayan belirli üstel fonksiyon 

serilerini kullanarak çatlak açılım yer değiştirme profillerine yaklaşan dislokasyon 

yayılımı yaklaşımına dayanmaktadır. Çatlak uçları etrafındaki gerilme tekilliklerinin 

üstesinden gelmek için çok ince bir ağın gerekli olduğu geleneksel ağa bağlı 

yöntemlerin aksine, BCM, üstel fonksiyon serilerine kama özdeğerlerini dahil ederek 

çatlak ucu tekilliklerini giderir ve gerilim alanlarını hesaplamak için gerekli tüm 

integrallerin içinde olmasını ve hızlı çözüm vermek için kapalı formda bir çözüm 

sağlar. Bu integrallerin çözümü, FEM'ler ve BEM'ler gibi diğer ağa bağlı yöntemlerde 

en çok zaman alan kısımdır. Ayrıca, daha fazla eleman kullanmak yerine serbest sınır 

koşullarını sağlamak için çatlak uçlarının çevresinde yalnızca birkaç tahsis noktası 

kullanılır. Bu faktörler, BCM algoritmasını diğer yöntemlere göre daha güvenilir ve 

hızlı hale getirir ve zorlu yorulma çatlak ilerleme problemlerini çözmemizi sağlar. Bu 

nedenle, bu tezin temel amacı, BCM'yi iki boyutlu alanda kullanarak karışım modlu 

yorulma yüklemesi altında çoklu çatlak etkileşimini analiz etmek ve yöntemin 

doğruluğu ve çok yönlülüğünü, geleneksel yöntemleri kullanarak çözülmesi zor olan 

farklı yorulma çatlak ilerleme problemlerinde göstermektir. 

Bu çalışmada, iki boyutlu alanda BCM kullanılarak karışım modlu yorulma yüklemesi 

altında çoklu çatlak etkileşimini analiz eden yeni bir yöntem sunulmuştur. Tez 

boyunca, önerilen yöntemin, farklı yorulma yüklemesi koşulları altında karmaşık plak 

geometrilerinde çoklu çatlakları içeren yorulma çatlak ilerlemesini (FCP) simüle 

etmek için güvenilir ve doğru bir yöntem olduğu kanıtlanmıştır. Yöntemin doğruluğu, 

literatürde halihazırda mevcut olan farklı araştırmacılar tarafından sunulan sonuçlarla 

karşılaştırılarak belirlenmiştir. Karşılaştırma için bir parametre olarak çatlak ucu 

SIF'leri, yorulma çatlak yayılma yolları ve belirli bir çatlak uzunluğunda ileretmek için 

gerekli yükleme çevrimlerinin sayısı kullanılmıştır. Her bir problem için bahsedilen 

her bir parametrenin sonuçları arasında iyi bir uyum sağlanmıştır. 

Ayrıca önerilen yöntem, havacılık ve uzay yapısal bileşenlerinde çözülmesi tipik ve 

zor problemler olan farklı yorulma yüklemesi koşulları altında tekli ve çoklu çatlakları 

içeren farklı plak geometrilerinde FCP'yi simüle etmek için kullanılır. Bu amaçla üç 

farklı çalışma yapılmıştır ve her bir çalışmanın bulguları farklı uluslararası prestijli 

dergilerde yayınlanmıştır. 

İlk çalışmada, bir mesafeden ayrılmış iki perçin deliğine sahip sonsuz bir plakdaki 

yorulma çatlağı ilerlemesi ve bir delikten belirli bir yerden kaynaklanan çatlak ve 

yönelim, üç farklı uzak alan yorulma yüklemesi, yani X yönünde yükleme, Y'de 
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yükleme, basma ve kesme yükü. Çatlak büyümesinin yörüngelerini tahmin etmek için 

maksimum teğetsel gerilme (MTS) kriteri kullanılmıştır. Paris yasası ve eşdeğer 

gerilme yoğunluğu faktörü yaklaşımı, gerekli çatlak ilerleme uzunluğunu meydana 

getirmek için yükleme çevrimlerinin sayısını hesaplamak için kullanılmıştır. İlk birkaç 

yükleme çevriminden sonra, yorulma çatlağı ilerleme yolunun, uzak alana uygulanan 

çekme gerilmesi (X veya Y yönünde) durumunda ve benzer şekilde kesme yükü, 

çatlaklar durumunda uygulanan yükleme yönüne dik hale geldiği, yani maksimum 

temel gerilme yönüne dik olarak yayıldığı sonucuna varılmıştır. Uygulanan normal 

gerilme ile karşılaştırıldığında, kesme yükü altında belirli bir çatlak boyutuna ulaşmak 

için neredeyse on kat daha az yükleme döngüsü gerekmekte, bu da kayma gerilmesi 

altında çatlak yayılma hızının on kat daha yüksek olduğunu göstermektedir. Bu 

nedenle, verilen üç yükleme koşulu arasında, çevrimsel kayma gerilmesi en kötüsüdür 

ve perçin delikli yapıları tasarlarken daha fazla dikkat gerektirir. 

İkinci çalışmada, çoklu delikli perfore plaklarda çoklu çatlakların etkileştiği yorulma 

çatlağı ilerleme simülasyonu tartışılmıştır. Önerilen yöntemin çok yönlülüğünü 

göstermek amacıyla, FCG'yi analiz etmek için geleneksel yöntemlerle çözülemeyen 

bu tür karmaşık sorunların incelenmesine önem verilmektedir. Yan kenarlardan, plağın 

merkezinden ve plakdaki deliklerin dış çevresinden farklı yönelimlerde ortaya çıkan 

birden fazla ilk çatlak durumuyla üç farklı problem simüle edilmiştir. Karmaşık 

sorunların FCG'si örneğin yedi ön çatlağa sahip altı delikli plak, önerilen yöntem 

kullanılarak hızlı bir şekilde hesaplanmıştır. Geleneksel FCG analiz yöntemlerinin bu 

tür karmaşık problemleri çözmede sınırlamaları vardır. Ayrıca, halihazırda mevcut 

çatlağın yakınında yeni eklenen çatlağın etkisi de analiz edilmiş ve iki düzlemsel çatlak 

birbirine yaklaştığında aşırı sınırlayıcı bir fenomen sergiledikleri sonucuna varılmıştır. 

Yorulma problemlerinde bir hesaplama yönteminin verimliliğini göstermek için yeni 

ve çok kullanışlı bir parametre de sunulmuştur: “Yavuz” yorulma hesaplama 

verimliliği faktörü, YCF = µN / t, saat başına hesaplanan milyon yükleme çevrimi 

sayısıdır (CPU zamanı). 

Üçüncü çalışmada, faz içi gerilme-gerilme çift eksenli yükleme altında farklı 

yönelimlere sahip sonsuz bir plakda deliğin dış çevresinde farklı yerlerde ortaya çıkan 

simetrik çatlakların FCG davranışı sunulmuştur. Tek eksenli yorulma yüklemesi 

altında ilk çatlak oryantasyonunun etkileri literatürde iyi bilindiğinden, farklı çift 

eksenli yükleme koşullarının etkisi altında aynı durum araştırılmamıştır. FCG oranı, 

Walker denklemi kullanılarak hesaplanırken, çatlak ucunun yayılma yönü minimum 

gerinim yoğunluğu (MSED) kriteri kullanılarak tahmin edilmiştir. Sonuçlarımız, 

BCM'nin karmaşık yorulma yüklemesi durumlarında FCG davranışını tahmin etmede 

eşit derecede etkili olduğunu göstermektedir. Çatlakların, çift eksenlilik oranının λ ≠ 

1 olduğu ve çatlak yörüngesi üzerindeki ilk çatlağın konumu ve oryantasyonunun 

hiçbir etkisinin olmadığı çift eksenli yük durumunda, baskın gerilme yönüne dik 

yayılma eğiliminde olduğu sonucuna varılmıştır. Eş eksenli yükleme için λ = 1 

olduğunda, çatlak çapraz olarak yayılma eğilimindedir ve yolu, ilk çatlağın konumuna 

ve yönüne bağlıdır. Belirli bir çatlak uzaması için yükleme çevrimi sayısı söz konusu 

olduğunda, eşit yük çevrimleri λ = 0, 0.5, 1 için hesaplanırken, λ = 1.5 için çatlak 

ilerleme hızının arttığı ve verilen çatlak uzunluğunu meydana getirmek için daha az 

yükleme çevrimi gerektiği sonucuna varılmıştır. Ayrıca, farklı gerilme oranları (R) 

altında çatlak yörüngelerinde hiçbir değişiklik olmadığı sonucuna varılmıştır. Belirli 

bir etkili gerilme yoğunluğu faktörü (ΔKeff) için çatlak yayılma hızı R'deki artışla artar, 

ancak belirli bir gerilme değeri için ΔKeff değeri daha yüksek bir R değeri için daha 
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düşüktür ve bu da aynı çatlak uzunluğunu meydana getirmek için daha yüksek çevrim 

sayısında yükleme ile sonuçlanır. 
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 INTRODUCTION  

Aircraft structures experience fatigue loading emanating from different sources e.g. 

variation of aerodynamic loads on wings and repetitive pressurizing and 

depressurizing the cabin of the aircraft etc.  It is a well-known fact that fatigue loading 

is more responsible for the failure of aircraft structures as compared to static loading 

because a single surface crack can lead to a catastrophic failure due to fatigue loading 

[1]. At the early stages of the life of aircraft, these surface cracks have no effect on the 

structural integrity of the aircraft, but with the passage of time, environmental effect, 

and nature of loading these cracks propagate and interact with each other. These cracks 

propagate, up to the point where the remaining cross-section of the component is not 

being capable of carrying the loads and the component will be subjected to sudden 

fracture [2].  

The failures due to fatigue usually start at small surface cracks which act as local stress 

raisers and propagate and interact with each other and turn into large damage 

producing cracks [1]. In practice, these micro surface cracks are always likely to be 

present in many aircraft structural components even the newly made components can 

have these cracks due to certain imperfections in machining processes during the 

manufacturing of aircraft. To produce a damage tolerance design and to meet the 

certain requirements of certifications applicable in the aerospace industry, it becomes 

very important to know the behaviour of structures in the presence of these inevitable 

surface cracks under fatigue loading. Thus, a fast and accurate method of predicting 

the behaviour of these cracks under fatigue loading play a vital role. This fact forces 

engineers to develop new methods and models which can simulate the effects of 

existing cracks so that they can predict the remaining useful life of aircraft structure 

more accurately. Such methods and simulation techniques not only reduce the high 

cost of physical testing of the aerospace structures but also play a crucial role in 

producing a better design of these structures. 

Several two-dimensional methods and software packages are available in the literature 

to investigate fatigue crack propagation. These methods include analytical, finite 
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element methods (FEM), extended finite element methods (XFEM), boundary element 

methods (BEM) and many more. Each one has its advantages as well as limitations 

and drawbacks considering the preparation of the model, the accuracy of the method, 

capabilities to solve a complex problem and required computation time. 

For the analysis of planar cracks different commercial tools are available, which are 

mostly based on the analytical formulations and different handbook solutions e.g. 

NASGRO [3] and AFGROW [4]. These software packages can simulate the FCG 

problems of predefined cracks under mode-I loading conditions only, but most of the 

real problems in the industry are under the influence of mix mode loading where crack 

tip grows under the effect of both mode-I and mode-II loading conditions. Therefore, 

these software packages cannot handle such complex problems of mixed-mode 

loading. 

Finite element methods are also being used for a long time for the study of FCG. These 

methods can simulate the interactions of cracks with reasonably good accuracy. But, 

due to the requirement of fine mesh at the crack tip, generation of a representation of 

the crack advancement [5] and regeneration of FE mesh after each iteration [6] of FCG, 

make these methods challenging to adopt. To overcome these difficulties of FEM, in 

1999, Belytschko and Black presented a mesh-independent method with minimal re-

meshing for elastic crack growth [7]. Since then, continuous improvement has been 

seen in the implementation of these methods. However, the accuracy of these methods 

decreases as the complexity of the problem increases and still a lot of research efforts 

are underway to overcome this shortcoming [8]. 

By considering the above-mentioned limitations of the conventional methods to 

analyse the FCG of problems involving multiple cracks under mixed-mode conditions, 

there is always room to develop such methods which can mitigate the deficiencies of 

these methods. Recently in 2006, a fast and accurate semi-analytical method called 

Boundary Cracklet Method (BCM) is developed by Prof. Dr. A.K. Yavuz (co-advisor 

of this study) and Prof. Dr. S.L. Phoenix at Cornell University, to find the overall stress 

field and the stress intensity factor (SIF) for crack tips and crack singular wedges at 

the crack kinks. This method is based on the dislocation distribution approach which 

approximates the crack opening displacement profiles by using certain power series 

that satisfy the traction-free condition on crack faces. Unlike the conventional mesh 

dependent methods, where a very fine mesh is required to overcome the stress 
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singularities around crack tips, BCM takes cares of crack tip singularities by including 

wedge eigenvalues in power series and makes sure that all integrals necessary to 

calculate stress fields are in closed form to give fast solutions. The solution of these 

integrals is the most time-consuming part in other mesh dependent methods such as 

FEMs and BEMs. Moreover, only a few numbers of allocation points are used around 

the crack tips to satisfy traction free boundary conditions instead of using more 

elements. These factors make the algorithm of BCM more reliable and fast as 

compared to other methods and enable us to solve difficult fatigue crack growth 

problems. Therefore, the main objective of this thesis is to use the same method to 

analyse the multiple cracks interaction for the difficult fracture problems with complex 

geometry, orientation and number of pre-cracks in the model and nature of fatigue 

loading, in a two-dimensional domain.  

 Purpose of Thesis 

The main purpose of this thesis is to analyse and simulate the complex phenomenon 

of interacting multiple cracks under mixed-mode fatigue loading by using the 

Boundary Cracklet Method (BCM) in a two-dimensional domain. The accuracy of the 

method is established through the results presented by different researchers which 

were already available in the literature. Crack tip SIFs, fatigue crack propagation paths 

and the number of loading cycles required to produce a given crack length extension 

are used for the comparison. Further, the proposed method is used to simulate the 

fatigue crack propagation (FCP) in different plate geometries which are typical and 

difficult problems to analyse in aerospace structural components involving single as 

well as multiple cracks under different conditions of fatigue loading. For this purpose, 

three different studies are conducted, and the findings of each study are published in 

different international prestigious journals. 

 Unique Aspects of the Thesis 

Fatigue crack growth (FCG) analysis and simulation of the interaction of multiple 

cracks have been a key issue for decades. In this study, a method of simulating the 

complex phenomenon of the interaction of multiple cracks under fatigue loading is 

presented: Boundary Cracklet Method (BCM). BCM was developed as a semi-



4 

analytical method to calculate the overall stress field and the stress intensity factors 

(SIFs) for crack tips under static loads before.  

In this study, BCM is used for the first time to simulate the interacting multiple cracks 

under mix-mode fatigue loading. Further, the proposed scheme is used to analyse and 

simulate the typical and complicated FCG problems of the aerospace industry which 

cannot be solved by conventional methods of FCG analysis. For this purpose, three 

different studies were conducted, and the findings of each study are published in 

different international prestigious journals.   

In the first study, fatigue crack growth in a plate having two rivet holes separated at 

some distance and crack emanating from a certain location and orientation from one 

hole is analysed under three different far-field fatigue loadings i.e. loading in X-

direction, loading in Y- direction and shear loading. The purpose of this study was to 

determine that what are the trajectories of crack propagation under different loading 

conditions, which kind of loading is worst for these common rivet structures and what 

are the effects of initial crack length on the FCG behaviour. It is concluded that after 

some initial number of loading cycles, the FCG path becomes perpendicular to the 

direction of applied loading in the case of far-field applied loading and this path does 

not depend upon the initial size of the crack. Among the given three loading conditions, 

cycling shear stress is the worst one and needs more attention while designing the 

structures having rivet holes. 

In the second study, fatigue cracks growth simulations of the complex geometry of 

problems that cannot be solved by conventional methods to analyse the FCG. Three 

different studies with multiple cases of initial cracks emanating from side edges, the 

center of the plate and the outer periphery of holes in a plate at different orientations 

are simulated. It has been concluded that the FCG of such complicated problems e.g. 

plate with six holes having seven pre-cracks can be computed fast by the proposed 

scheme. Moreover, the effect of the newly added crack in the vicinity of the already 

present crack is also analyzed and concluded that when two coplanar cracks approach 

each other, they exhibit an over-constraining phenomenon, which causes the near-tip 

stress field to be significantly higher than that near a single crack and hence ultimately 

increases the rate of crack growth.  
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In the third study, the FCG behaviour of symmetric cracks emanating at different 

locations at the outer periphery of the hole in an infinite plate with different 

orientations under in-phase tension-tension biaxial loading is shown. The main 

objective of this study was to examine the effects of initial crack orientation on FCG 

behaviour under different conditions of biaxial loading because the effects of initial 

crack orientation under uniaxial fatigue loading are well reported in the literature but 

the same under the effect of biaxial loading has not been investigated. It is concluded 

that cracks tend to propagate perpendicular to the direction of dominant stress in the 

case of biaxial load where biaxiality ratio 𝜆 ≠ 1 and there is no effect of location and 

orientation of initial crack on the crack trajectory. For equibiaxial loading where λ = 

1, the crack tends to propagate diagonally, and its path depends upon the location and 

orientation of the initial pre-crack. As far as the number of loading cycles for a given 

crack extension are concerned, equal load cycles are computed for λ = 0, 0.5, 1 whereas 

it is concluded that for λ = 1.5, the rate of crack growth increases. It is also concluded 

that there is no change in crack trajectories under different stress ratios (R). For a given 

ΔKeff the rate of crack propagation is increased with the increase in R, but for a given 

value of maximum cyclic stress  𝜎𝑚𝑎𝑥 the value of ΔKeff is lower for a higher R-value, 

which results in a higher number of required loading cycles to produce the same crack 

extension. 

 Scope of Thesis  

The scope is of this study is limited to Linear Elastic Fracture Mechanics (LEFM) in 

the two-dimensional domain. For the analysis, elastic and isotropic materials are 

considered. The FCG behaviour is predicted by computing mode-I and mode-II stress 

intensity factors (SIFs) with the help of the Boundary Cracklet Method (BCM). 

Different criteria available in literature e.g. Maximum tangential stress (MTS) 

criterion, minimum strain energy density (MSED) criterion and maximum energy 

release rate (MERR) criterion are used to determine the direction of propagation of 

cracks, whereas to compute the fatigue lives of structures, Paris-Erdogan law and 

Walker’s model are used in this study. 

Chapter 2 begins with the literature review and details of different methods and 

techniques to simulate the interaction of multiple cracks is presented. The advantages, 

as well as the limitation of each method, are discussed in detail.  
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In chapter 3, the methodology of the boundary cracklet method (BCM) is explained in 

detail and how this method helps us to find the stress intensity factors (SIFs) at crack 

tips and stress field in the whole cracked plate. 

In chapter 4, the modelling of the geometry of the problem and the implementation of 

BCM to simulate the interaction of multiple cracks are discussed in detail.  

In chapter 5, the accuracy of the proposed method is shown by comparing computed 

FCG behaviours from different methods already mentioned in the literature. 

Chapter 6 comprises different applications of BCM in which different aspects of 

fatigue crack growth are investigated in typical aerospace structures involving single 

as well as multiple cracks. 

Conclusions drawn from this study and the relevant potential studies which can be 

performed in future are presented in chapter 7. 
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 LITERATURE REVIEW 

The phenomenon of multiple interacting cracks is very common in most engineering 

structures especially in ageing aircraft, marine hulls and composites materials. In this 

chapter, an overview of different methods available in the literature to study the 

interacting multiple cracks is presented.    

 Solution Methods Available in Literature 

There are several two-dimensional methods and techniques available to study single 

as well as multiple cracks interactions and their propagation under fatigue loading. 

Some of them are as follows: 

• Analytical methods 

• Finite element methods (FEM)  

• Extended finite element methods (XFEM) 

• Boundary Element Methods (BEM) 

• Different hybrid methods  

A brief detail of each method is given as follows: 

2.1.1 Analytical methods 

Numerous analytical or semi-analytical methods are available in the literature to study 

the fatigue cracks interaction and their propagation. Most of these analytical methods 

are based on superposition law, in which the problem is split into two sub-problems. 

The first sub-problem plate is modelled under the specified loading and study without 

any crack, this part of the problem is called the Trivial problem. In the second sub-

problem which is called the Auxiliary problem, the plate is modelled with a crack but 

without any far-field loading, and loading is applied as prescribed traction at the crack 

face. The sum of these two problems gives the results to the original problem. 
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In analytical methods, an approach of traction-based influence function method is 

often used to study crack problems. Several different forms of these methods can be 

found in the literature [9-13]. A detailed review of traction-based analytical methods 

for the multiple crack interaction in two and three -dimensional is given can be found 

in [14,15]. 

There are analytical methods based on dislocation distribution, in which crack opening 

displacements are unknown and are modelled as dislocation distributions i.e. the 

derivatives of opening displacements. These methods were first developed by Bilby 

and Eshelby in 1968 [16]. A detailed overview of dislocation-based methods is given 

in [17,18]. 

To find the stress intensity factor for the complex loading cases, a weighted function 

approach presented by Bueckner [19] can also be used. In this approach, first, a 

weighted function which is a Green function is determined for given geometry under 

a simple loading case and then to find the stress intensity factor for any arbitrary and 

relatively complex loading case this weighted function is multiplied by the applied 

traction and then integrating the whole product over the crack line. Detail of this 

approach is mentioned in [20,21]. A detailed review of analytical methods based on 

traction-based influence function method and dislocation distribution along with other 

techniques can be found in [22,23]. 

2.1.2 Finite element methods 

Finite element methods are often used for the study of multiple crack growth and 

interaction, but due to the requirement of the fine-meshed crack tip, generation of a 

representation of the crack advancement and regeneration of FE mesh after each 

iteration make this method challenging to adopt. But the technique suggested by 

Kantorovich and Krylov in 1964 tries to solve these problems [24]. In this method, a 

linear superposition technique is used to solve multiple cracks interaction.  

In 1969, Watwood predicted the crack propagation behaviour of cantered and side 

crack plate using FEM [25], and in 1970, Chan et al. studied fracture behaviour of 

compact tension and rotating specimen using FEM [26]. [25,26] are considered as the 

early applications and utilization of FEM in linear fracture mechanics, they also 

showed that stress singularity at the crack tip cannot be achieved by using linear 

elements. So, to overcome this difficulty, Byskov in 1970 [27] developed a triangular 
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crack tip element containing necessary shape functions to accurately model the 

singularity at the crack tip, and later on, in 1973 Wilson [28] used circular element and 

Hardy [29] used rectangular element for this purpose. The singular tip elements are 

also very common in solving crack problems [30], but these elements also require a 

very fine mesh near the crack tips and wedges and hence increase the computational 

requirement. A review by Banks-Sills [31]also compares some other methods based 

on finite element methods e.g. M -integral and displacement extrapolation methods to 

determine the stress intensity factors for mixed-mode deformation. 

2.1.3 Extended finite element methods 

The extended finite element method (XFEM), also known as generalized finite element 

method (GFEM) or partition of unity method (PUM) is a numerical technique that 

evolved in the last two decades, makes it easier to solve problems with localized 

features that are not efficiently resolved by mesh refinement and need re-meshing by 

using standard FEM. There are many applications of this method but one of the initial 

applications was the modelling of cracks in homogeneous materials by Belytschko and 

Black [7] in 1999. Soon after this, Moës et al. [32] developed a method based on FEM 

to study the crack growth without re-meshing with an enriched displacement field near 

the crack tip. Many enrichment functions are developed with time for crack 

propagation in isotropic material [33]. Réthoré gave an energy-conserving scheme for 

dynamic crack growth using the extended finite element method [34]. Later on, in 2007 

Grégoire presented a comparison between experiments and X-FEM simulations of 

dynamic crack propagation under mixed-mode loading [35].  

In the recent past, several investigations have been carried out to study crack 

propagation using XFEM [36,37]. Multiple crack propagation in linear elastic and 

homogeneous material based on minimum potential energy concept using XFEM is 

presented in [38-40]. In 2017, to improve the computational speed of XFEM, a novel 

computational method called decomposed updating reanalysis (DUR) method is 

developed by Zhenxing et al. [41]. Thus, nowadays, XFEM is considered the most 

popular numerical method for crack propagation simulation due to its superiority in 

modelling both strong and weak discontinuities within a standard FE framework. A 

detailed review of fatigue crack propagation modelling techniques using FEM and 

XFEM can also be found [8]. 
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2.1.4 Boundary Element Method (BEM) 

Boundary Element Method is a widely used numeric technique for simulation of crack 

propagation problems because it is better than domain-type methods such as the finite 

element method (FEM) since in these methods only the boundary of the problem is 

meshed rather than the whole domain. As a result, BEM requires less computational 

resources to generate new elements for the modelling of crack propagation. In fracture 

mechanics problem due to the overlapping of upper and lower crack surfaces results 

in the degenerated formulation of BEM [42,43]. However, many researchers have 

developed several special methods for handling stress singularities at the cracked 

surfaces, such as the Green’s function method [44,45], the sub-regional method [46-

49], and the displacement discontinuity method [50-52]. A dual boundary element 

method (DBEM) is given by Portela et al., in which singular and hyper-singular 

integral equations are written for collocation points positioned at the opposite crack 

surfaces [53]. Simulations of multiple crack-hole interactions and multiple cracks 

interaction using BEM are presented in [54,55] and [56-59] respectively. Recently, 

nonlinear crack propagation solution techniques based on the use of tangent operators 

have been proposed in [60-62]. These nonlinear solution techniques take a smaller 

number of iteration and are more stable and accurate than the classical techniques. Due 

to the limitation of the displacement discontinuity method where every boundary 

element has approximately equal length, a proper selection of minimum crack growth 

increment is key for effectively modelling multiple-crack growth. To overcome this 

difficulty a useful technique was developed by Yan [63], which enabled the user to 

automatically select a desired crack length increment at the beginning of each 

simulation. 

2.1.5 Different hybrid methods  

In addition to the above-mentioned methods, there are some meshless methods to 

simulate the crack propagation problems. Some of them are the combination of the 

above-mentioned method. A hybrid between finite and boundary element methods, 

e.g. the Symmetric Galerkin Boundary Element Method – Finite Element Method 

(SGBEM-FEM) [64] and the Scaled Boundary Finite Element Method (SBFEM) 

[65,66]. Some of the other numerical methods to simulate the crack propagation 
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process are the meshless methods [67-69], edge-based finite element method (ES-

FEM) [70,71] and numerical manifold method (NMM) [72,73]. 

 Crack Propagation Criteria 

All the above-mentioned methods need a certain criterion to determine the direction 

of crack propagation. In literature variety of fatigue crack propagation criterion are 

present. One can divide them into three different categories i.e. energy-based criteria, 

stress-based criteria, and strain-based criteria. Energy-based criteria are accurate as 

compared to the other groups of criteria [74] as they use the energy dissipated around 

the crack tip to determine the crack growth direction and give more consistent results 

with the experimental results. In 1920, Griffith proposed the first energy-based 

criterion [75-76]. According to this criterion, the crack will propagate when the 

decrease in elastic strain energy that occurs due to crack growth is at least equal to the 

increase in surface energy due to the creation of cracks. In 1957, Irwin generalized the 

theory proposed by Griffith by introducing a term i.e. energy release rate G, which 

represents the energy available for a unit extension of the crack and is responsible for 

the crack growth [77]. Hussain et al. [90] proposed the Maximum Energy Release Rate 

(MERR) criterion to determine crack paths under combine mode I and mode II loading. 

The minimum Strain Energy Density (SED) criterion proposed by Sih [89] is also a 

very commonly used energy-based criterion. 

Once the stress intensity factors and the stress fields are known around a crack tip, one 

can find the direction of crack propagation by implementing any of the stress-based 

criteria. Among the stress-based criteria, the Maximum Tangential Stress (MTS), 

proposed by Erdogan and Sih [88] is the simplest and most widely used criterion. 

According to this, it is considered that the crack will propagate from its tip in the 

direction along which the maximum tangential or hoop stress. In this study, Maximum 

Tangential Stress (MTS) and Minimum Strain Energy Density (SED) criteria are used 

to predict the fatigue crack growth paths. The details of these two criteria and their 

implementation in the analysis are discussed in chapter 4 of this thesis. In addition to 

energy-based and stress-based criteria, there are strain-based criteria available in the 

literature that also provide a better representation of fracture in certain materials. 

Maximum tangential strain (MTSN) by Chang [77] and its modified form proposed by 

Mirsayar as extended maximum tangential strain criterion ((EMTSN) [74] by 
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including the effect of T-strain can be consider some examples of strain-based 

criterion. 

 Fatigue Crack Growth Models 

To compute the rate of fatigue crack propagation, mostly Paris’s law proposed by Paris 

and Erdogan [84] is used. Forman et al. improved the theory presented by Paris and 

Erdogan by including the variation in the crack-growth rate owing to the load ratio and 

the instability of the crack growth when the value of the maximum stress-intensity 

factor approaches the fracture toughness of the material [85]. It was further proved that 

crack propagation is influenced by the stress ratio of the applied load, therefore in 

1970, Walker proposed the modified form of the Paris equation by incorporate the 

effect of stress ratio R on FCG rate [86]. All these models are used in this study and 

are discussed in chapter 4.  NASGRO equation [3] is the most common fatigue crack 

growth equation and can be applied to all the regions of crack growth. For the cases 

where a large-scale yielding is produced, and the SIF does not remain valid, a different 

model based on J-integral is used which is proposed by Dowling and Begley [79]. One 

can find different model available in the literature for constant as well as variable 

amplitude fatigue loading [6]. 
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 METHODOLOGY OF BOUNDARY CRACKLET METHOD (BCM) 

In this chapter, the details of the methodology of the Boundary cracklet method (BCM) 

will be discussed. The basic concepts and different terminologies used in the 

implementation of the method are also explained. 

 History of Boundary Cracklet Method (BCM) 

The boundary cracklet method (BCM) is a dislocation-based semi-analytical method 

to find the overall stress field and the stress intensity factor (SIF) for crack tips and 

crack singular wedges at the crack kinks. This method was developed by Dr. A. K. 

Yavuz (co-advisor of this thesis study) and Dr. S. L. Phoenix at Cornell University, 

back in 2006. Through several publications by Yavuz et. al, it is proven that BCM is a 

fast and accurate method to compute the SIFs and stress field at crack tips and crack 

singular wedges at the crack kinks [80-82]. Like most of the other analytical 

techniques, BCM is also based on superposition law, in which the problem is split into 

two sub-problems: one is called Trivial problem (TP) and the other is called 

Auxiliary problem (AP). The first sub-problem plate is modelled under the specified 

loading and analyse without any crack, this part of the problem is called the Trivial 

problem. In the second sub-problem which is called the Auxiliary problem, the plate 

is modelled with a crack but without any far-field loading, and loading is applied as 

prescribed traction at the crack face. The sum of these two problems gives the results 

to the original problem. In the application of this method, all the external boundaries 

and internal cracks are represented by certain lines and are called “Cracklets”.  

BCM is based on a dislocation distribution approach that approximates the crack 

opening displacement profiles by using certain power series that satisfy the traction-

free condition on crack faces. Unlike the conventional mesh dependent methods, 

where a very fine mesh is required to overcome the stress singularities around crack 

tips, BCM takes care of crack tip singularities by including wedge eigenvalues in 

power series and makes sure that all integrals necessary to calculate stress fields are in 

closed form to give fast solutions. The solution of these integrals is the most time-
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consuming part in other mesh dependent methods such as FEMs and BEMs. Moreover, 

only a few numbers of allocation points are used around the crack tips to satisfy 

traction free boundary conditions instead of using more elements. These factors make 

the algorithm of BCM more reliable and fast as compared to other methods and enable 

us in this study to solve difficult fatigue crack growth problems. 

 Cracklet Types and Construction of ODP  

To understand the basic of BCM, three types of cracklets are shown in Figure 3.1. In 

the 2-D problems, these cracklets have their own Opening Displacement Profiles 

(ODPs) i.e. a vectorial display of top to the bottom distance between points originally 

coinciding on the faces of the undeformed crack segment under given boundary 

conditions. ODP of each cracklet type is represented by an opening profile 

approximation function (b). These ODPs are considered in both for tangential and 

normal direction and denoted, respectively, as 𝐛1
I  and 𝐛2

I  and also called Burger’s 

vectors, corresponding to the individual crack segments i=1.....C. These functions are 

approximated by some rational-power series i.e. polynomial series P (tN, N = 0,1,2,...) 

and wedge series W ( tρ +M, 0 < ρ < 1, and M = 0,1,2,...) where t is a local coordinate 

directed along the crack line from a tip, a kink, or a branch point and N and M are 

degrees of polynomial and wedge series respectively. These rational powers are 

eigenvalues (ρ) and are calculated from Williams Wedge Analysis [83]. The number 

of eigen values used for the analysis is depicted by the wedge angle (ω) as shown in 

Figure 3.1. As discussed earlier that it becomes a boundary value problem (BVP) with 

two sub-problems; Trivial problem and Auxiliary problem. To solve this BVP the 

common approach of super-position of the solution discussed in [22] is implied. The 

key to select the terms of polynomial and wedge series and their exponents lies in the 

fact that the tractions on the crack faces are virtually zero as compared to the far-field 

loading. By applying the mentioned method, we got a set of linear algebraic equations 

to solve for the weighting coefficients of the terms in the ODP power series. The fact 

that these eigenvalues are approximated by a ratio to evaluate all integrals analytically 

instead of calculating them numerically makes this algorithm fast as compared to the 

other analytical methods. 

The three typical cracklets (shown in Figure 3.1) and the details of their approximation 

functions of opening displacement profiles (ODP) are given below. 
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Figure 3.1 : Cracklet types; (A) C1 Cracklet, (B) C2 Cracklet, (C) C3 Cracklet. 

3.2.1 Cracklet type C1  

The configuration of C1 type cracklet is shown in Figure 3.2 and it is represented by a 

single straight line. At the tip of the crack, the value of eigenvalue remains ½, so two 

wedge functions (one for each tip end at point A and B) with the power of ½ are used 

and are given in equation (3.1). 
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where wedge subfunction family (each has M-1 coefficients) for the crack tip end is 

given by equation (3.2). 
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Figure 3.2 : Cracklet type C1 and its representation by a straight line. 

3.2.2 Cracklet type C2  

In Figure 3.3, the configuration of the C2 type cracklet and its simple representation 

as a straight line is shown. It is represented with one wedge end and one tip end. At 

the tip of the crack at point B, the value of the wedge eigenvalue is ½, so one wedge 

subfunction family is required. For crack end at point A, one polynomial subfunction 

values and two wedge subfunction families are required, each with M-1 coefficients is 

used. The ODP for C2 type cracklet is given in equation (3.3) 
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where polynomial and wedge subfunctions family for C2 cracklet type are in equations 

(3.4) and (3.5) respectively.  

𝑃𝑗(𝜂) = ∑ 𝑃𝑗𝑘
𝑁−2
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Figure 3.3 : Cracklet type C2 configuration and is represented by an orange straight 

line with another green line representing C2 type cracklet. 

3.2.3 Cracklet type C3 

Figure 3.4 shows the configuration of the C3 type cracklet which is a kinked crack and 

is represented by three cracklets. It’s opening profile approximation (b) may have three 

to five subfunction families depending on the wedge angle at the end points A and B 

and is given by equation (3.6), where the polynomial subfunction family for cracklet 

type C3 with each one having (N+1) coefficients has the form mentioned in equation 

(3.7). 
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Figure 3.4 : Cracklet type C3 configuration and is represented by an orange straight 

line with another two green lines representing C2 type cracklets. 

The most general form of these ODPs for a crack segment i can be written in the form 

mentioned in equation (3.8) in terms of distance t along the crack length when 

distances are measured from the left end of the crack. 
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Where 𝑃𝑗
𝑟(𝑖)

 represents the polynomial series and 𝑊
𝑃𝑘
𝑟(𝑖)

 𝑗

𝑟(𝑖)
 represents either a tip series 

(𝜌 = 1/2) or a wedge series (1/2 < 𝜌 < 1) for the 𝑖th crack segment. Here j represents 

the direction of the ODP, j = 1 represents the ODP in tangential, whereas J = 2 

represents the normal opening. r = 1, 2 shows that whether the series will start from 

the left or the right end of the crack segment, respectively as adjusted by replacing 𝑡 

with 𝑎𝑖 − 𝑡.  

The general form of approximated polynomial and the wedge series are given in 

equations (3.9) and (3.10) respectively, with η is equal to either 𝑡/𝑎 or 1 − 𝑡/𝑎, when 

used in equation (3.8). More details of these ODPs, analytical and computational 

aspects of the method can be found in [80-82]. 

𝑃𝑗(𝜂) = ∑ 𝑃𝑗𝑘
𝑁−1
𝑘=0 [𝜂(𝑘) − (𝑁 − 𝑘)𝜂(𝑁−1) + (𝑁 − 𝑘 − 1)𝜂𝑁]   (3.9) 

  

𝑊𝜌𝑗(𝜂) = ∑𝑊𝜌𝑗𝑙

𝑀−2

𝑙=0

[𝜂(𝜌+𝑙) − (𝑀 − 1)𝜂(𝜌+𝑀−𝑙) + (𝑀 − 𝑙 − 1)𝜂(𝜌+𝑀)] (3.10) 
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 Dislocation Based Influence Fields 

The derivatives of ODPs are called edge dislocation distributions (EDDs), as 

discussed earlier that these ODPs are selected such that the generated crack-face 

tractions should almost satisfying those prescribed in the AP. To understand, consider 

an infinite plate as shown in Figure 3.5 and imagine a local Cartesian x-y coordinate 

system along the crack segment. Consider an edge dislocation ED formed along a slit 

coincident with the positive x-axis, which causes a relative displacement (u+- u-) in 

both tangential (along x-axis) and normal (along y-axis) directions.  These ED are 

defined by a Burger’s vector (b) at the origin, with tangential (b1) and normal (b2) 

components representing glide and climb dislocation components, respectively. The 

stress (σ) and displacement (u)fields induced by these EDs are given in [17] and are 

represented by equations (3.11) and (3.12). 

 

Figure 3.5 : EDD concept: (Left) a single ED producing an OPD (b) and (Right) a 

distribution of ED in an infinite plate under far-field loading. 

Stress field: {

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

} =
2𝐺

𝜋 (𝜅+1)𝑟4
[

(3𝑥2 + 𝑦2)𝑦 −(𝑥2 − 𝑦2)𝑥

−(𝑥2 − 𝑦2)𝑦 −(𝑥2 + 3𝑦2)𝑥

−(𝑥2 − 𝑦2)𝑥 −(𝑥2 − 𝑦2)𝑦

] {
𝑏1
𝑏2
} (3.11) 

  

     Displacement Field : {
𝑢𝑥
𝑢𝑦
} =

1

2𝜋 (𝜅+1)𝑟4
[

(𝜅 + 1)(𝜋 − 𝜃) −
2𝑥𝑦

𝑟2
−(𝜅 − 1) ln(𝑟/𝑟𝑐) + 2(

𝑥

𝑟
)
2

−(𝜅 − 1) ln(𝑟/𝑟𝑐) + 2(
𝑦

𝑟
)
2

(𝜅 + 1)(𝜋 − 𝜃) +
2𝑥𝑦

𝑟2

] {
𝑏1
𝑏2
} 

(3.12) 

where r =  √𝑥2 + 𝑦2 and 𝑘 = 3 − 4𝑣 for plane strain, 𝑘 =
3−𝑣

1+𝑣
  for plane stress in 

terms of Poisson’s ratio 𝑣 and G is the shear modulus. 
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The infinitesimal distribution of Burgers vectors is captured in the dislocation 

distribution weighting function defined as: 

𝜇(𝑡) =
𝑑𝑏(𝑡)

𝑑𝑡
  (3.13) 

Replacing b by db(t) in equations (3.11) and (3.12) and integrating it in t along the 

crack segment, gives the stress and displacement fields resulting from the crack 

segment ODP and are given in the complex form (𝑧 = 𝑥 + 𝑖𝑦) in equations (3.14) and 

(3.15) respectively. 

{

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

} =
2𝐺

𝜋 (𝜅+1)𝑟4
[

𝑅𝑒{𝑍2
1} + 𝑦𝐼𝑚{𝑍1

1} − 𝑦𝑅𝑒{𝑍1
2}

𝑅𝑒{𝑍2
1} + 𝑦𝐼𝑚{𝑍2

2} − 𝑦𝑅𝑒{𝑍1
2}

𝑦𝑅𝑒{𝑍2
2} + 𝑅𝑒{𝑍1

1} − 𝑦𝐼𝑚{𝑍1
2}

]  (3.14) 

  

{
𝑢𝑥
𝑢𝑦
} =

1

2𝜋 (𝜅+1)
[
(1 − 𝜅)𝑅𝑒{𝑍2

0} − (𝜅 + 1)𝐼𝑚{𝑍1
0} + 2𝑦𝐼𝑚{𝑍2

1} − 2𝑦𝑅𝑒{𝑍1
1}

(𝜅 − 1)𝑅𝑒{𝑍2
0} − (𝜅 + 1)𝐼𝑚{𝑍2

0} + 2𝑦𝑅𝑒{𝑍2
1} + 2𝑦𝐼𝑚{𝑍1

1}
]  

(3.15) 

where  

𝑍𝑗
0 = ∫

𝑏𝑗(𝑡)

𝑧−𝑡
𝑑𝑡

𝑎

0
, 𝑍𝑗

1 = ∫
𝜇𝑗(𝑡)

𝑧−𝑡
𝑑𝑡

𝑎

0
, 𝑍𝑗

2 = ∫
𝜇𝑗(𝑡)

(𝑧−𝑡)2
𝑑𝑡

𝑎

0
  (3.16) 

where j = 1, 2 

The integrals given in equation (3.16) can be calculated in closed form and are given 

in [22,23]. 

 Satisfaction of Traction Boundary Conditions (BCs) 

The unknown coefficients mentioned in equations (3.9) and (3.10) are found by 

satisfying the traction-free condition at the carefully chosen points on each crack in 

the actual boundary value (scheme to choose points is discussed in section 2.5). The 

tractions arising in the trivial problem (TP) of an infinite plate under far-field loading 

and the auxiliary problem (AP) of an infinite plate consisting of dislocation 

distributions along cracks must sum to zero along all crack surfaces. 

𝑇𝑇𝑃
1(𝑖) + 𝑇𝐴𝑃

1(𝑖) = 0,    𝑇𝑇𝑃
2(𝑖) + 𝑇𝐴𝑃

2(𝑖) = 0  (3.17) 

The tractions in the TP are given as:  

𝑇𝑇𝑃
1 = 𝑛𝑋𝜎𝑋𝑋

∞ + 𝑛𝑌𝜎𝑌𝑌
∞ ,     𝑇𝑇𝑃

2 = 𝑛𝑋𝜎𝑋𝑌
∞ + 𝑛𝑌𝜎𝑌𝑌

∞   (3.18) 
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Where T1 and T2 denote the tangential and normal crack-face tractions, respectively, 

and 𝑖 = 1… . . 𝐶 , where C is the total number of crack segments that can be of different 

length and orientation. σ∞ is the far-field stress applied to the plate and 𝑛𝑋 and 𝑛𝑌  are 

the components of the crack surface normal. 

 Point Allocation Scheme 

To satisfy the boundary conditions mentioned in equations (3.17) and (3.18), a point 

allocation scheme shown in Figure 3.6 is used. According to this, points are 

concentrated near wedge tips and their density is less away from the crack tip. The 

spacings between these allocated points are affected by the strengths of the 

singularities to which they are associated. These sets of points are chosen according to 

the distances described by Eq. (18). Figure 3.7 shows the actual location of 20 points 

for each set of points described by different formulations described in equation (3.17). 

There are 60 points in total along the crack length and it can be observed that the 

concentration of these points is higher at the tip of the crack as compared to the center. 

More details of this point allocation scheme and how unknown coefficients are 

determined using MATLAB can be found in [80,81]. 

𝑡𝑘1 =  𝑎𝑖  (
𝑘1

𝑁1+1
)
4

, 𝑘1 = 1,2, … ,𝑁1  

𝑡𝑘2 = 𝑎𝑖  [1 − (
𝑘2

𝑁2+1
)
4

] , 𝑘2 = 1,2, … ,𝑁2  

𝑡𝑘3 =  𝑎𝑖  (
𝑘3

𝑁3+1
)
1

, 𝑘3 = 1,2, … ,𝑁3  

(3.19) 

 

 

Figure 3.6 : Point allocation scheme. 
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Figure 3.7 : Actual location of points along the crack line for different formulations. 

 Stress and Stress Intensity Factor (SIF) calculations 

Once the unknown coefficients mentioned in equations (3.9) and (3.10) are calculated, 

all stress and displacement fields and all SIFs for crack tips and singular wedges at 

crack kinks can be determined. All stresses and stress intensity factors (SIFs) for mode 

1 and mode 2 at the crack tip (𝜌 =
1

2 
 ) can be found from equation (3.20) and (3.21) 

respectively, whereas SIFs for crack kinks are given in equation (3.22).  

Stresses:    {

𝜎𝑥𝑥(𝑋, 𝑌)

𝜎𝑦𝑦  (𝑋, 𝑌)

𝜎𝑥𝑦(𝑋, 𝑌)
}  =  ∑ [𝑇𝑖][𝑆𝑖]{𝑈}

(𝑖)𝑛𝑐
𝑖=1  (3.20) 

  

SIFs for tip ends:  {
KI
KII
} =

2G

1+κ
√
π

2a
{
w1

2
20

w1

2
10
} (3.21) 

  

SIFs for kinks ∶  {
𝐾𝐼
𝐾𝐼𝐼
} =

  
4𝐺𝜋

1+𝜅
 

{
 
 

 
 𝜌1(1+𝜌1)

(2𝜋𝑎)𝜌1 sin[
(𝜌1−1)(2𝜋−𝜔)

2
]
[1 −

(𝜌1−1)sin[
(𝜌1−1)(2𝜋−𝜔)

2
]

(𝜌1+1)sin[
(𝜌1+1)(2𝜋−𝜔)

2
]
]𝜔𝜌120

𝜌2(1+𝜌2)

(2𝜋𝑎)𝜌2 sin[
(𝜌2−1)(2𝜋−𝜔)

2
]
[
(𝜌2−1) sin[

(𝜌2−1)(2𝜋−𝜔)

2
]

(𝜌2+1) sin[
(𝜌2+1)(2𝜋−𝜔)

2
]
−
𝜌2−1

𝜌2+1
]𝜔𝜌210

}
 
 

 
 

  

(3.22) 
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 ANALYSIS PROCEDURE 

The purpose of this chapter is to explain the complete analysis procedure of the 

proposed scheme to study the FCG using BCM. Different steps involved in modelling 

the geometry of the problem along with the implementation of BCM to the multiple 

cracks problems under fatigue loading are discussed. This chapter also describes that 

how the new position of the crack tip is determined after the application of cyclic loads 

and how the number of loading cycles required for a given crack extension are 

computed. 

 Implementation of BCM for Fatigue Crack Growth Problems 

4.1.1 Modelling of the geometry 

As it is mentioned in chapter 3 that in the implementation of BCM all the external 

boundaries of the plates and internal holes are modelled as a straight line, which are 

called “Cracklets”. The approximation of the holes can be adjusted by the number of 

sides of the polygon used to model the holes. In the following chapters, the effect of 

the number of sides of the polygon on the accuracy of predicting the fatigue crack 

growth path will be discussed in detail. To model the geometry, the coordinates of the 

end points of each straight line (cracklet) are entered as input. After defining the 

geometry of the problem, the type of cracklets is set for each straight line. For this 

purpose, the eigen values corresponding to the given cracklets are directly entered as 

input in the MATLAB codes. 

4.1.2 Introduction of initial pre-cracks 

After modelling the geometry, the pre-cracks are introduced into the model. The size 

and the orientation of each pre-crack along with their locations in the geometry are 

entered as input. These initial pre-cracks are inserted as C2 cracklets.  

4.1.3 Estimation of SIFs and determination of new crack tip position 

After the introduction of initial pre-cracks, a known stress range (Δσ) is applied, and 

mode-I and mode-II stress intensity factors (SIFs) are computed for each crack tip 
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using BCM. This calculation of SIFs for each crack tip is done iteratively and only 

SIFs of one certain crack tip is calculated in each iteration. In the first iteration, SIFs 

for crack tip 1 are computed and in the second iteration SIFs for crack tip 2 are solved 

and this process goes on up to the last crack tip. These calculated stress intensity factors 

for mode-I and mode-II at each crack tip are used to predict the new crack kink angle 

by selecting a suitable criterion for the crack propagation. The details of the criteria 

used to predict the crack propagation angle will be discussed in section 4.3. Using the 

new crack kink angle the new position of the crack tip is added for a fixed crack 

increment size Δc.  This iterative process goes on until the cracks reach up to a required 

crack length extension. 

4.1.4 Calculation of number of loading cycles 

The calculated stress intensity factor range in each iteration is used to determine the 

crack growth rate by applying a suitable crack growth model as discussed in section 

4.2. Using this crack growth rate together with the initial cycle step size Δc, the number 

of cycles required for a given iteration is determined by (26). This simulation goes on 

incrementally with a constant incremental crack length Δc as in (27). The total fatigue 

life of the structure can be calculated by summing up the number of loading cycles 

required in each iteration. 

 Solution of an Example FCG Problem  

The most important point in implementing the BCM to fatigue crack growth problem 

is that after the calculation of the initial crack orientation angle, a new small cracklet 

of type C2 of length Δc is added which enables us to determine the next crack 

orientation angle. When a new cracklet is added according to the new crack orientation 

angle, the type of the previous cracklet is to be changed from C2 to C3 and always the 

new cracklet is added with C2 cracklet type. This same technique is also explained in 

[90] to implement the BCM for a single crack in an infinite plate under fatigue loading. 

To understand this concept, let us consider an example FCG problem in which there 

are two holes of radius R, separated at a distance S from each other are present in the 

plate and two cracks are emanating at angle ±θ from a certain location at each hole (as 

shown in Figure 4.1). A constant amplitude cyclic stress σ is applied in the normal 

direction at the outer edges of the plate. Figure 4.2 shows the modelled geometry of 
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the problem. The external boundary of the plate and the holes within the plate are 

modelled as straight lines. In this example, 16 sided polygons are used to model each 

hole. The corresponding cracklet types are assigned to these cracklets. 

Figure 4.3 shows different iterations of the simulation. Figure 4.1(A) shows the 

iteration no.1 in which the first initial pre-crack is added at the given location at hole 

no. 1, similarly, Figure 4.3(B) shows iteration no. 2 of the simulation, and the second 

pre-crack is added to the model at the given location. Cracklet type C2 is given to each 

of these initial pre-cracks. Figure 4.3(C) shows iteration no.3 of the simulation, in 

which the angle of propagation for crack tip A is determined, and a new position of 

crack tip A is added with the given crack increment. Here, the new cracklet is added 

as C2 type, whereas the type of the previous cracklet is changed from C2 to C3. In 

Figure 4.3(D), the same procedure is shown for crack tip B. The new cracklet is always 

added as a C2 cracklet and the type of already present cracklet is changed from C2 to 

C3. The simulation goes on in a similar manner and finally, both crack tips reach up 

to the opposite holes and the simulation is set to be stopped. Figure 4.4 shows the FCG 

path after the final iteration. 

 

Figure 4.1 : Geometry of example problem. 
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Figure 4.2 : Modelled geometry of the problem. 

 

(A)                                                             (B) 

 

(C)                                                              (D) 

Figure 4.3 : Different iteration of FCG simulation; (A) Iteration no.1, (B) Iteration 

no.2, (C) Iteration no.3, (D) Iteration no.4. 

 

Figure 4.4 : FCG path after final iteration. 
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Different steps involved in the analysis of fatigue crack propagation by the proposed 

scheme are summarized as follows: 

(1) Model the geometry using straight lines called “Cracklets”. 

(2) Assign the cracklet type of each straight line and input the corresponding eigen 

values for the given cracklet. 

(3) Add the size and orientation of every pre-crack along with their location in the 

model. 

(4) Compute the SIFs using the boundary cracklet method for every crack tip 

iteratively. 

(5) Determine the crack propagation angle based on the criterion mentioned in 

section 4.4. 

(6) Add the crack extension of fixed increment along the direction computed in 

step 5. 

(7) Using the crack growth model (mentioned in section 4.3) compute the number 

of loading cycles required for given crack extension. 

(8) Repeat the step 4 to 7 for each crack tip until the crack reaches up to the 

required length. 

 Crack Growth Models 

There is always a need of a crack growth model for calculating the size of a crack 

growing with the applied fatigue loading. In linear elastic fracture mechanics (LEFM), 

usually, the stress intensity approach is used to determine the crack-tip stress 

conditions in a linear elastic material. All the components of stresses at the crack tip 

are proportional to a constant quantity i.e. called stress intensity factor K. This SIF is 

a function of nominal applied stress, initial crack size and depends upon some 

geometric factors. Under cyclic loading, a concept of SIF range ∆𝐾 is used i.e. ∆𝐾 =

 𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛. Kmax and Kmin are the SIFs values corresponding to maximum and 

minimum values of applied stress in a loading cycle. Figure 4.5 shows the typical curve 

of crack growth rate versus the stress intensity range for metals [6]. This curve is 

consisting of three different regions: Region I, II and III. Region I show the initiation 

of crack growth, here the FCG is very slow. There is a threshold value of ΔKth and no 
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crack growth is possible for ΔK< ΔKth. Region II shows the propagation of the crack, 

where the FCG is stable and linear relation can be observed between FCG rate ΔK. 

Region III is the unstable region and the FCG rate rapidly increased as Kmax reaches 

the Kc fracture toughness of the material.  

 

Figure 4.5 : Typical FCG curve for metals [6]. 

In literature, different crack growth models have been proposed to predict the rate of 

fatigue crack growth. Most of these crack growth models are based on Paris’s law [84] 

proposed by Paris and Erdogan in 1960. Over time, many improvements have been 

made to Paris’s law by different researchers. Forman et al. [85] further improved the 

theory presented by Paris and Erdogan by including the variation in the crack-growth 

rate owing to the load ratio and the instability of the crack growth when the value of 

the maximum stress-intensity factor approaches the fracture toughness of the material. 

Walker [86] modified the Paris equation to incorporate the effect of stress ratio R in 

the linear region of the rate of crack propagation vs crack length plot. Finally, the most 

general equation named NASGRO equation is developed and used in the crack growth 

programs AFGROW [4] and NASGRO [3] software to predict FCG behaviour in all 

regions of fatigue rate vs crack length plot. This model includes the stress ratio effect 

along with the crack closure effect. 

All the above-mentioned models apply to the constant amplitude fatigue loading which 

is the most general type of fatigue loading in FCG analysis. In this study, the constant 

amplitude fatigue loading is also considered for all the studied cases. Figure 4.6 shows 

a constant amplitude cyclic loading having the stress ratio 𝑅 = 𝜎𝑚𝑖𝑛/𝜎𝑚𝑎𝑥 where 
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𝜎𝑚𝑎𝑥 and 𝜎𝑚𝑖𝑛  are the maximum and minimum values of applied cyclic stress, 

respectively. The mean stress 𝜎𝑚𝑒𝑎𝑛  =
(𝜎𝑚𝑎𝑥+ 𝜎𝑚𝑖𝑛)

2
 , the stress range ∆𝜎 = 𝜎𝑚𝑎𝑥  −

 𝜎𝑚𝑖𝑛 and the stress amplitude (𝜎𝑎) are also shown in Figure 4.6. In this study, Paris-

Erdogan law, Walker’s model and Forman’s Law are used to predict the FCG 

behaviour and are discussed in the following sections. 

 

Figure 4.6 : Constant amplitude cyclic loading. 

4.3.1 Paris-Erdogan’s law  

In 1960, Paris and Erdogan proposed that there is a linear relationship between the SIF 

range and the rate of fatigue crack growth on a log-log scale [84]. According to the 

Paris-Erdogan law, the fatigue crack growth rate can be determined by the equation 

(4.1). 

𝑑𝑎

𝑑𝑁
= 𝐶 (∆𝐾)𝑚 (4.1) 

  

∆K = Kmax  −  Kmin (4.2) 

Where da/dN represents crack growth rate, ΔK is stress intensity range, C and m are 

Paris equation constants that depend on the material of the specimen. 

To incorporate the mixed-mode conditions and the effect of stress ratio R, the approach 

of effective SIF range is used. For this purpose, a criterion proposed by Tanaka [87] is 

used. According to this criterion, the equivalent stress intensity factor (SIF) can be 

computed by the equation (4.3), and ∆Keff is used in place of ∆𝐾 in equation (4.1) and 

the equation (4.4) is used to compute the rate of FCG rate. 
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∆Keff = (∆KI
4 +  8∆KII

4)0.25  (4.3) 

da

dN
= C (∆Keff)

m (4.4) 

4.3.2 Forman’s Law 

In 1967, Forman et al. [85] improved the theory presented by Paris and Erdogan by 

including the variation in the crack-growth rate owing to the stress ratio and the 

instability of the crack growth in region III of the FCG rate curve when the value of 

the maximum stress-intensity factor approaches the fracture toughness of the material. 

Forman proposed the relationship mentioned in equation (4.5) to determine the FCG 

rate.   

𝑑𝑎

𝑑𝑁
=

𝐶 (∆𝐾)𝑚

(1 − 𝑅)𝐾𝑐 − ∆𝐾
 (4.5) 

Where da/dN represents crack growth rate, ΔK is stress intensity range, R is the stress 

ratio, and m is the slope of crack growth rate v/s ΔK plot on a log-log scale and 𝐾𝑐  is 

the fracture toughness of the material. 

4.3.3 Walker’s Model  

In 1970, Walker proposed the modified form of the Paris equation by incorporate the 

effect of stress ratio R on FCG rate [86]. Equation (4.6) represents the proposed model 

of Walker, which compute the FCG rate by introducing a new parameter ∆𝐾̅̅ ̅̅  that is 

related with the SIF range ∆𝐾 through equation (4.7). 

𝑑𝑎

𝑑𝑁
= 𝐶 (∆𝐾̅̅ ̅̅  )𝑚 (4.6) 

Where   

∆𝐾̅̅ ̅̅ =  
∆𝐾

(1 − 𝑅)𝛾
 (4.7) 

After inserting the value of  ∆𝐾̅̅ ̅̅ , Equation (4.6) takes the following form:  

𝑑𝑎

𝑑𝑁
= 𝐶 (

1

(1 − 𝑅)1−𝛾
 ∆𝐾)

𝑚

 (4.8) 



31 

where da/dN represents crack growth rate, ΔK is stress intensity range, R is the stress 

ratio, and m is the slope of crack growth rate v/s ΔK plot on a log-log scale. The 

value γ is a material constant that indicates how strongly the stress ratio R affects the 

crack growth rate in the material. For most of the metals, its typical value is taken as 

0.5 [6]. For R = 0, Walker’s equation mentioned in equation (4.8) takes the form of 

Paris’s equation. 

 Determination of Crack Growth Angle 

In literature, various stress or energy-based criteria are described for crack growth 

direction but maximum tangential stress (MTS) criterion [88], minimum strain energy 

density (MSED) criterion [89] and maximum energy release rate (MERR) criterion 

[90] are most popular among them. In this study, MTS and MSED are used to predict 

the direction of crack growth angle, and the same are explained below in detail. 

4.4.1  Maximum tangential stress (MTS) criterion  

In this criterion, it is considered that the crack will propagate from its tip in the 

direction along which the maximum tangential or hoop stress 𝜎𝜃𝜃 will produce, so the 

stresses around the crack tip in polar coordinates should meet the conditions mentioned 

in equation (4.9). 

𝜕𝜎𝜃𝜃
𝜕𝜃

= 0 ;  
𝜕2𝜎𝜃𝜃
𝜕𝜃2

< 0 (4.9) 

By using the stress determining equations [6] around a crack tip, differentiating it with 

respect to 𝜃 and applying the conditions mentioned in equation (4.9), results in 

equations (4.10) and (4.11), which can be solved to get the kinking angle (θ) of the 

propagating crack. Different forms of equations can be obtained by solving the 

equation (4.10), one of those forms is mentioned in equation (4.12). 
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θ = 2 tan−1

[
 
 
 ∆KI −√∆KI

2 + 8∆KII
2

4∆KII
]
 
 
 

 (4.12) 

4.4.2 Minimum strain energy density (MSED) criterion 

According to the minimum strain energy density (MSED) criterion, it is considered 

that the crack will propagate from its tip in the direction of minimum strain energy 

density S and it will initiate when the strain-energy-density factor reaches a critical 

value Scr. These two conditions are given in equations (4.13) and (4.14) respectively. 

𝜕𝑆(𝜃)

𝜕𝜃
|
𝜃= 𝜃0

= 0,
𝜕2𝑆(𝜃)

𝜕𝜃2
|
𝜃= 𝜃0

≥ 0 (4.13) 

where 𝜃0 is the angle of crack extension and  −𝜋 ≤ 𝜃0 ≤ 𝜋 

𝑎11𝐾𝐼
2 + 2𝑎12𝐾𝐼𝐾𝐼𝐼 + 𝑎22𝐾𝐼𝐼

2 = 𝑆𝑐𝑟  𝑓𝑜𝑟  𝜃 =  𝜃0 (4.14) 

where  

𝑎11 =  
1

16𝐺𝜋
[(𝜅 − cos 𝜃)(1 + cos 𝜃)] (4.15) 

𝑎12 = 
1

16𝐺𝜋
sin 𝜃 [2 cos 𝜃 −  𝜅 + 1] (4.16) 

𝑎22 = 
1

16𝐺𝜋
sin 𝜃 [(𝜅 + 1)(1 − cos 𝜃) + (1 + cos 𝜃)(3 cos 𝜃 − 1)] (4.17) 

where G is shear modulus, 𝜅 is elastic constant and equal to (3 − 𝜐) (1 + 𝜐)⁄  for plane 

stress and 3 − 4𝜐 for plane strain, where υ is the Poisson's ratio.   

 Estimation of Number of Loading Cycles 

During the FCG analysis by the proposed method, an initial crack of known size is 

implemented in structure and a known stress range is applied and an effective stress 

intensity range ΔKeff is calculated. Using that calculated stress intensity range value 

and crack growth model, the crack growth rate is calculated. Using this crack growth 

rate together with the initial cycle step size, the number of cycles required for that 
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iteration is determined by equation (4.18). This simulation goes on incrementally with 

a constant incremental crack length, for the calculation of new crack length by equation 

(4.19) in the direction of the new angle of crack front in each iteration which is 

determined by suitable criterion. The total number of loading cycles required for a 

given crack length can be calculated by equation (4.20). 

∆Ni =
ci

(da/dN)i
 (4.18) 

ci+1 = ci + ∆c (4.19) 

Ni+1 = Ni + ∆N (4.20) 

Where i = 1,2,3, …. up to number of iterations. 
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 VALIDATION OF THE PROPOSED SCHEME 

In this chapter, the accuracy of the proposed scheme to analyse the FCG behaviour of 

single and as well as multiple cracks under mixed-mode loading conditions is 

discussed. For this purpose, different FCG problems involving single and multiple 

cracks in simple to relatively complex plate geometries are selected from the literature 

and reanalysed by the proposed method. To show the effectiveness and accuracy of 

the presented scheme, three different aspects of fatigue crack growth are considered 

for this purpose, i.e. calculation of SIFs, prediction of fatigue crack growth paths and 

estimation of the required number of loading cycles to produce a given crack length.  

 Calculation of SIFs  

In this section, different problems are discussed in which mode-I and mode-II SIFs are 

calculated by the proposed method and computed values of SIFs are compared with 

those calculated by analytical methods and with those which are mentioned in the 

available literature. 

5.1.1 An infinite plate having inclined crack under different loading conditions 

Consider an infinite plate having an inclined central crack is undergoes different 

loading scenarios i.e. uniaxial tensile loading, shear loading and biaxial loading with 

different biaxiality stress ratio. Mode-I and mode-II SIFs are calculated for each case 

by using BCM and results are compared with the analytical results. 

5.1.1.1 Under uniaxial tensile loading 

The first example deals with the mixed-mode crack problem in an infinite plate with 

an inclined center crack under uniaxial tensile stress 𝜎 as shown in Figure 5.1. Let us 

assume that 2a = 1 unit is the length of the central crack and θ is the angle between the 

crack and the horizontal axis. Close-formed analytical solutions [7] of mode-I and 

mode-II SIFs for this case are given by (5.1) and (5.2) respectively. 
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Figure 5.1 : Infinite plate having central inclined crack under uniaxial tensile stress. 

Figure 5.2 shows the comparison of normalized mode-I and mode-II SIFs computed 

analytically with those computed by BCM for different values of crack inclination 

angle θ for uniaxial tension, whereas Table 5.1 shows the same comparison in tabular 

form. The normalized SIFs are obtained by dividing KI and KII with the term “ σ√𝜋 𝑎 ". 

The result shows that calculated SIFs for both mode-1 and mode-2 are very close to 

those calculated through analytical relationships. 

 

Figure 5.2 : Variation of the normalized SIFs calculated by the presented BCM in 

comparison with exact solution for uniaxial tensile loading. 
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𝐾1 = σ√𝜋 𝑎 𝑐𝑜𝑠
2(𝜃) (5.1) 

𝐾2 = σ√𝜋 𝑎 𝑐𝑜𝑠(𝜃)𝑠𝑖𝑛(𝜃) (5.2) 
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Table 5.1 : Comparison of mode-I and mode-II SIFs (KI, KII) under uniaxial tension. 

Crack angle Mode-I SIF (KI)  Mode-II SIF (KII) 

θ Analytical BCM  Analytical BCM 

0 1.253 1.252  0 0 

10 1.216 1.214  0.214 0.214 

20 1.107 1.106  0.403 0.402 

30 0.940 0.939  0.543 0.542 

45 0.627 0.626  0.627 0.626 

60 0.313 0.313  0.543 0.542 

70 0.147 0.146  0.403 0.402 

80 0.038 0.038  0.214 0.214 

90 0 0  0 0 

5.1.1.2 Under shear loading 

Figure 5.3 shows an infinite plate with an inclined central crack under shear stress τ. 

The length of the central crack is 2a = 1 and θ is the angle between the crack and the 

horizontal axis. Close-formed solutions of mode-I and mode-II SIFs for shear loading 

are given in Equations (5.3) and (5.4), respectively. 

𝐾1 = − τ√𝜋 𝑎 𝑠𝑖𝑛(2𝜃)  (5.3) 

𝐾2 = τ√𝜋 𝑎 𝑐𝑜𝑠(2𝜃)  (5.4) 

 

Figure 5.3 : Infinite plate having central inclined crack under shear stress. 

Figure 5.4 shows the variation of normalized mode-I and mode-II SIFs (normalized 

SIFs are obtained by dividing KI and KII with the term “ τ√𝜋 𝑎 ") with inclined angle 
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θ, which are computed by analytical formulation and proposed BCM. Table 5.2 shows 

the comparison of computed SIFs by proposed BCM with those found out by analytical 

formulation for different values of crack inclination angle θ for shear loading. Results 

show that the computed SIFs are very close to those found by analytical formulation. 

 

Figure 5.4 : Variation of the normalized SIFs calculated by the presented BCM in 

comparison with the exact solution for shear loading. 

Table 5.2 : Comparison of mode-I and mode-II SIFs (KI, KII) for shear loads. 

Crack angle Mode-I SIF (KI)  Mode-II SIF (KII) 

Θ Analytical BCM  Analytical BCM 

0 0 0  1.253 1.252 

10 -0.429 -0.428  1.178 1.177 

20 -0.806 -0.805  0.960 0.959 

30 -1.085 -1.084  0.627 0.626 

45 -1.253 -1.252  0 0 

60 -1.085 -1.084  -0.627 -0.626 

70 -0.806 -0.805  -0.960 -0.959 

80 -0.429 -0.428  -1.178 -1.177 

90 0 0  -1.253 -1.252 
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5.1.1.3 Under biaxial loading 

This is a benchmark problem for the calculation of mode-1 and mode-2 SIFs for an 

infinite plate having an inclined crack under biaxial tensile loading of 𝜎𝑦 and 𝜎𝑥 =

 𝜆𝜎𝑦, where λ is the biaxiality stress ratio. Let us assume that 2𝑎 =  1 is the length of 

the central crack and θ is the angle between the crack and the horizontal axis (as shown 

in Figure 5.5). Close-formed solutions of mode-I and mode-II SIFs for an infante plate 

having central inclined crack under biaxial loading [92] are given by equation 5.5) and 

(5.6). Table 5.3 shows the comparison of mode-I and mode-II SIFs (KI, KII) computed 

using BCM with those found out analytically under different values of biaxiality stress 

ratio (λ = -1, -0.5, 0, 0.5, 1). Results show that the computed values of SIFs by BCM 

under different conditions of biaxial loading are very close to those computed 

analytically. 

 

Figure 5.5 : Geometry of infinite plate having inclined crack under biaxial loading 

with biaxiality stress ratio λ. 

 

 

 

 

 

𝐾1 = σ√𝜋 𝑎 (𝑐𝑜𝑠2𝜃 +  𝜆 𝑠𝑖𝑛2𝜃)  (5.5) 

𝐾2 = σ√𝜋 𝑎 (1 − 𝜆) 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 (5.6) 
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Table 5.3 : Comparison of mode-I and mode-II SIFs (KI, KII) under biaxial loading 

for different values of λ. 

Biaxiality 

ratio (λ) 

  Inclined 

angle (θ) 

  KI   KII 

    Analytical BCM   Analytical BCM 

-1 

  0   1.2533 1.2535   0 0 
 15  1.0854 1.0856  0.6267 0.627 
 30  0.6267 0.6268  1.0854 1.086 

  45   0 0   1.2533 1.254 

-0.5 

  0   1.2533 1.2535   0 0 
 15  1.1274 1.1276  0.47 0.47 
 30  0.7833 0.7835  0.8141 0.814 

  45   0.3133 0.3134   0.94 0.94 

0 

  0   1.2533 1.2535   0 0 
 15  1.1694 1.1696  0.3133 0.313 
 30  0.94 0.9402  0.5427 0.543 

  45   0.6267 0.6268   0.6267 0.627 

0.5 

  0   1.2533 1.2535   0 0 
 15  1.2113 1.2116  0.1567 0.157 
 30  1.0966 1.0968  0.2714 0.271 

  45   0.94 0.9402   0.3133 0.313 

1 

 0  1.2533 1.2535  0 0 
 15  1.2533 1.2535  0 0 
 30  1.2533 1.2535  0 0 

  45   1.2533 1.2535   0 0 

 

5.1.2 Crack growth in an aircraft wing lug 

In this problem, a relatively complex problem is solved for the determination of SIFs. 

A crack emanating from a circular hole from an aircraft wing lug presented in [93] is 

reanalysed by using the proposed method. Three different geometries of lug are 

considered, all dimensions of lugs are the same except ‘H’ and are shown in Figure 

5.6 whereas dimension ‘H’ is mentioned in Table 5.4. The comparison of values of 

effective stress intensity factor (Keff) calculating using FE solution [93], analytical 

method [5] and BCM is shown in Table 5.4. Results show that the estimated values of 

the stress intensity factor are very close to the analytical values as well as the values 

determined by FEA for different geometry of lugs. 
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Figure 5.6 : Geometry of the aircraft wing lug [93]. 

Table 5.4 : Comparison of values of effective SIFs calculated using FEM, analytical 

approach and proposed BCM. 

Lug 

No. 

 
Dimension 

‘H’ (mm) 

 
a0 

(mm) 

 Eff. SIF value (MPa.mm1/2) using 

   FEM [93] 
Analytical 

[86] 
BCM 

2  44.4  5  68.78 65.62 65.91 

6  57.1  5.33  68.12 70.24 71.23 

7  33.3  4.16  94.72 93.64 93.39 

 Prediction of FCG Paths  

In this section, the accuracy of the proposed method is shown by comparing the 

trajectories of FCG of different problems with the results presented by different 

researchers which were already available in the literature. Several benchmark 

problems are analyzed, in which single and multiple cracks in simple to relatively 

complex plate geometry are discussed under mixed-mode fatigue loading.  

5.2.1 Crack growth from riveted holes  

As a first example, FCG behaviour in a riveted plate having an initial crack emanating 

from one of the rivet holes is study. The geometry, material properties and other 

parameters are shown in Figure 5.7. Previously the same problem was solved by using 

the finite element method [93]. Polygons with straight lines as their sides are used to 

model the rivet holes in the plate. For this study, polygons with two different numbers 
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of sides (n_pol) are used i.e. 16 and 24, to study its effect on the accuracy of the 

proposed method. Figure 5.8 shows the comparison of crack growth path obtained 

from FE solution [93] with those predicted by BCM by using 24 sides to model the 

holes, whereas Figure 5.9 shows the crack propagation paths obtained by using n_pol 

= 16 and 24. The comparison of the location of the crack tip after each solution step is 

given in the tabular form in Table 5.5. Results show that there is a close agreement 

between the crack path described by the proposed method and that is described in [93] 

and the accuracy of BCM can be adjusted by selecting different numbers of sides to 

model the holes. 

 

Figure 5.7 : Geometry of plate having riveted holes [93]. 

 

Figure 5.8 : Comparison of crack growth path for n_pol = 24. 
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Figure 5.9 : Fatigue crack growth path with different n_pol values. 

Table 5.5 : Comparison of crack tip location. 

FE solution [93] 
  Boundary cracklet method (BCM) 

  (n_pol = 16)    (n_pol = 24) 

X (mm) Y (mm)  X (mm) Y (mm)  X (mm) Y (mm) 

54.458 64.618  54.446 64.607  54.446 64.606 

59.525 64.287  59.452 64.599  59.332 64.315 

64.605 64.247  64.500 64.559  64.326 64.360 

69.685 64.27   69.562 64.502   69.325 64.331 

 

5.2.2 FCG behaviour of cruciform specimen having central inclined crack under 

biaxial loading 

To validate the model for the prediction of fatigue crack path under complex loading 

scenarios, FCG behaviour of a cruciform specimen made of aluminium alloy 7075-

T651, having an inclined crack at 450 with the horizontal axis at the centre of the 

specimen is analysed under in phase biaxial loading as shown in Figure 5.10. Fatigue 

crack propagation paths are predicted using BCM for different values of biaxiality 

ratios (λ) i.e. 0, 0.5, 1, 1.5 and results are compared with the experimental results 

reported in [94]. Figure 5.11 shows that a good agreement is obtained between the 

paths predicted by BCM and experimental results [94]. 
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Figure 5.10 : Geometry of the problem [94] (all dimensions are in mm). 

 

Figure 5.11 : Comparison of FCG path in cruciform specimen with a central crack at 

450 under different values of λ; (A) Experimental results [5], (B) BCM. 

5.2.3 An edge crack in a plate having a hole  

In this problem, the deflection of crack propagation path due to an offset hole in a plate 

is discussed for two different geometries. As of 1st geometry, a plate having a hole 

with a radius of 0.2 m and a pre-crack of a0 = 0.1 m is discussed under tensile stress 

applied at the top and bottom edge of the plate (as shown in Figure 5.12). The plane 

stress conditions are assumed to be applied for this analysis. The material properties 

are given as follows: E = 30 GPa and ν = 0.3. In past, the same problem has been 

solved by many researchers e.g. Huyhn et al. [96] used polyXFEM to analyse this 

problem and Leonel et al. [97] solved it by using BEM formulation. Figure 5.13 shows 
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the predicted crack propagation path using BCM and its comparison with the results 

proposed by Huyhn et. al. A good agreement among the paths predicted by both 

methods can be found. 

Figure 5.14 shows a comparison of mode-2 SIF value at different crack lengths 

calculated using presented BCM and with the values computed by FRANC2D and 

BEM by Leonel et al. [97]. The results obtained from the BCM are in good agreement 

with those that were predicted in the reference study. Variation of KII value with crack 

length (as shown in Figure 5.14) shows that initially, the crack grows horizontally 

(perpendicular to the applied normal stress), mode-1 effects are dominating and KII 

value is very small. But when the crack propagates and deviates due to the presence of 

the hole (approximately at a crack length of 0.5 m), mode-II effects also start to appear 

and the value of KII increases gradually and crack grows under mixed-mode conditions 

until it reaches near the hole.  

 

Figure 5.12 : An edge crack in a plate having a hole (1st Geometry). 
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Figure 5.13 : Comparison between FCG paths predicted by BCM and that with 

polyXFEM [96] (green).  

 

Figure 5.14 : Comparison of KII using BCM, FRANC2D and BEM [97]. 

To study the effect of the number of sides (n) used to model the hole in the plate over 

the accuracy of the analysis, the same problem is repeated with different numbers of 

sides of the polygon (i.e. n = 4, 8, 12, 16) with fixed crack increment length of 0.02 m. 

Figure 5.15(A) shows a comparison of the crack propagation paths for different 

numbers of sides used to model the hole. The result shows that when a remarkable 

accuracy in predicting the FCG path is achieved, after that there is no significant effect 

of a further increase in the number of sides to model the hole. Table 5.6 shows the 
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elapsed solution time for different n-values. Results mentioned in Figure 5.15(A) and 

Table 5.6 suggest that one can achieve reasonably good accuracy with n = 8 without 

compromising on solution time because the selection of n becomes critical for complex 

geometric problems where multiple holes are present in the model.  

To investigate the effect of crack increment size (Δc) on crack propagation, the 

problem is also repeated with different values of Δc (i.e. 0.01 m, 0.02 m, 0.03 m, 0.04 

m) using an 8-sided polygon to model the hole. Figure 5.15(B) shows crack 

propagation paths for different values of Δc. Results show a converged pattern of crack 

growth path which is also consistent with the reference path. 

 

 

 

(A) 

 

(B) 

Figure 5.15 : Comparison of FCG paths predicated using BCM and polyXFEM [96]; 

(A) using different numbers of sides of polygon “n” used to model the hole in the 

plate, (B) for n = 8 with different crack increment sizes (Δc). 
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Table 5.6 : Solution time comparison for different numbers of sides of the polygon. 

No. of sides of the 

polygon to model hole (n) 

CPU* time (t) 

(sec) 
CPU time comparison 

4 343 t 

8 464 1.35t 

12 603 1.76t 

16 773 2.25t 

     *Analyses are performed on PC of dual-core Intel Core i3-4010U with 4.00 GB 

RAM. 

For the 2nd geometry, a rectangular plate of 15 x 20 mm in size having an offset hole 

of a radius of 3.45 mm with a side edge having a pre-crack length of 2.75 mm (as 

shown in Figure 5.16(A)) is studied. The material is assumed to be purely elastic with 

Young’s modulus, E = 98 GPa and ν = 0.3. Paris material constants are m = 2.39; C = 

3.0e-7. The plate is subjected to uniaxial stress of 100 MPa with constant amplitude 

with stress ratio R = 0. Plane stress conditions are assumed. An eight-sided polygon is 

used to model the hole in the plate. Uniform normal stress is applied in the vertical 

direction at the top and bottom edge of the plate and a uniform crack incremental length 

of 0.55 mm (20% of a0) is used. In past, many researchers solved the same problem, 

e.g. Bouchard et al. [99] used FEM with a local remeshing technique to solve it, and 

in 2015, Ooi et al.[100] adapted quadtree meshes in the scaled boundary finite element 

method to study this problem. Figure 5.16(B) shows the comparison of the predicted 

crack trajectory using BCM with different references. It can be observed that the crack 

path is deflected towards the hole initially and after it went straight towards the right 

edge of the plate. A close agreement is achieved in the predicted crack paths between 

BCM and references. The problem is solved in 23 steps and stress contours along Y-

direction at different steps along with the number of loading cycles required are given 

in Figure 5.17. 
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(A)                                                              (B) 

Figure 5.16 : An edge crack in a plate with a hole (2nd geometry); (A) Geometry of 

the problem (all dimensions are in mm), (B) Comparison of FCP paths predicted by 

BCM and reference studies (green [99], magenta [100]). 

 

Figure 5.17 : Stress contours along Y-direction (MPa) for different loading cycles. 

5.2.4 A cracked plate with four holes 

In this example, the deviation of the crack propagation path due to multiple holes in a 

relatively complex plate geometry is discussed. For this purpose, a square plate having 

four holes of equal radii of 5 mm is considered. A pre-crack of a0 = 6 mm is present at 

the middle of one edge of the plate as shown in Figure 5.18. Uniform stress of σ = 10 

MPa is applied at the top and bottom edge of the plate. 8-sided polygons are used to 

model the holes in the plate. Plane stress conditions are assumed to be applied and a 

uniform crack increment of Δc = 1.2 mm (20% of a0) is used to predict the crack growth 

path. The material properties are as follows: E = 72 GPa and ν = 0.33. The same 

problem is previously analyzed by Liu et al. [98] by using a fast multipole boundary 

element method (BEM). Figure 5.19 shows the comparison of crack propagation path 
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using BCM and reference study [98]. A close agreement is observed between both 

paths. The crack path first goes towards the nearest hole then it becomes slightly 

horizontal and finally it goes towards the second hole. 

 

Figure 5.18 : Geometry of a cracked plate with four holes (dimensions are in mm). 

 

Figure 5.19 : Comparison of BCM FCG path with multipole BEM [98]. 

5.2.5 Double edge cracked plate with two holes 

For the next problem, another classical multiple crack propagation problem is 

discussed which involves a plate with two holes and having two edge cracks. The 

geometry of the plate used for the analysis is shown in Figure 5.20. 8-sided polygons 

are used to model the holes. A constant crack increment of Δc = 0.5 mm is used for 

the crack propagation prediction. Normal traction in Y-direction is applied on the top 

and bottom edge of the plate. Plane stress condition is assumed to be applied in this 

example.  
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Figure 5.20 : Geometry of double edge cracked plate with two holes (all dimensions 

are in mm). 

Previously many researchers solved the same problem using different numerical 

methods, e.g. Bouchard et al. [99] used a local remeshing technique with FEM and 

E.T. Ooi et al. [100] used a scaled boundary finite element method to solve it. Figure 

5.21 shows the comparison of the predicted crack propagation path with the reference 

studies. Results show that a reasonably close agreement is achieved however there is 

slight variation even among both references but BCM shows closer interaction 

between crack paths which is very important to know.  

 

Figure 5.21 : Comparison of FCG path by BCM (blue) with reference studies; 

Bouchard et al. [99] (green) and Ooi et al. [100] (magenta). 

 Prediction of Loading Cycles  

In this section, the estimation of loading cycles required for a given crack extension 

length is discussed. For this purpose, an example of multiple crack propagation process 

of two parallel cracks emanating from the outer periphery of two holes is considered 
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from literature. Fatigue crack growth paths and the number of loading cycle required 

to produce the given crack length extension is compared with the reference study. 

The geometry of the problem is shown in Figure 5.22.  A plate having two holes, each 

having a radius of 2 mm separate at 25.4 mm from each other are studied using BCM 

under cyclic loading with two initial cracks of 5 mm emanating at ±450 from the outer 

edge of each hole. Constant amplitude force of 5 kN (stress ratio R = 0) is applied in 

the vertical direction as far-field loading. The elastic modulus and Poisson’s ratio are 

71.7 GPa and 0.3, respectively. The same problem is also studied by Zhang et al. [101] 

using numerical methods involving the finite element codes and results are compared 

with experimental ones. Plane stress conditions are assumed to be applied for the 

analysis. A constant crack increment ∆c = 1 mm (20% of a0) is used. Figure 5.23 shows 

the crack propagation path predicted using BCM in comparison with results calculated 

by Zhang et al. [101]. A good agreement is observed, particularly a better agreement 

is shown between the BCM and experimental results given in the reference study. 

  

Figure 5.22 : Geometry of two parallel cracks emanating from two holes in a plate 

(all dimensions are in mm). 

   

Figure 5.23 : Comparison of FCG paths by BCM with experiment and FEM[101]. 
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For the estimation of the number of loading cycles, Paris’s law is used as a crack 

growth model. The variation of the number of loading cycles N with the crack length 

computed is mentioned in Figure 5.24. Curves for both crack tips i.e. crack tip A and 

Crack tip B are mentioned for BCM in comparison with the average number of cycles 

required as computed by reference experimental and FE study [101] is also presented 

in Figure 5.24. Results show that implemented BCM is predicting the loading cycles 

very close to the reference results. 

 

Figure 5.24 :  Variation of the number of loading with crack length. 

 Table 5.7 shows the comparison of computed N by BCM with reference results for 

different crack length extensions. Percentage error for both crack tips is given in 

comparison of experimental as well as simulated FE results. Percentage error with 

experimental results is within 17 % for each crack tip, and for the simulated FE results 

the percentage error is within 15% for a crack length up to 15.4 mm for both crack 

tips, whereas for the crack length of 17.5 mm, the percentage error for crack tip B is 

25.57%, which is relatively higher, this can be because at this point the crack extension 

is so much large and it enters in an unstable region and can give different results. 
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Table 5.7 : Comparison of computed N for given crack length by BCM with 

reference results [101]. 

Crack 

length 

(mm) 

Reference Loading cycles 

using BCM 

% Error with 

ref exp.[101] 

% Error with 

ref FEM [101] loading cycles 

Exp. FEM Tip A Tip B Tip A Tip B Tip A Tip B 

8.8 57282 64562 67310 63130 17.51 10.21 4.26 -2.22 

10.6 71152 73815 77660 75550 9.15 6.18 5.21 2.35 

12.4 80696 81530 82600 83980 2.36 4.07 1.31 3.01 

15.4 93583 90791 97280 104120 3.95 11.26 7.15 14.68 

17.4 130372 96783 111970 121530 -14.1 -6.78 15.69 25.57 
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 APPLICATIONS OF PROPOSED SCHEME TO FATIGUE CRACK 

GROWTH PROBLEMS 

In this chapter, different applications of the proposed scheme to simulate the FCG 

behaviour in different plate geometries are investigated. For this purpose, three 

different studies are conducted to analyse and simulate the typical and complicated 

FCG problems of the aerospace industry which are difficult to solve by conventional 

methods of FCG analysis. These studies are named Study-A, Study-B and Study-C in 

this thesis. The findings of each study are published in different international 

prestigious journals. 

 Study-A: FCG in Plates having Rivet Holes Under Different Loading 

Conditions  

In this problem, fatigue crack growth in a plate having two rivet holes separated at 

some distance and crack emanating from a certain location and orientation from one 

hole is analysed under three different far-field fatigue loadings i.e. loading in X-

direction, loading in Y- direction and shear loading. The purpose of this study is to 

determine that what are the trajectories of crack propagation under different loading 

conditions, which kind of loading is worst for these common rivet aerospace structures 

and what are the effects of initial crack length on the FCG behaviour. 

Figure 6.1 shows the geometry of an infinite plate having two rivet holes. The 

maximum tangential stress (MTS) criterion is used to predict the trajectories of crack 

growth. Paris’s Law along with the approach of equivalent stress intensity factor is 

used to compute the number of loading cycles to produce a required crack length. 16-

sided straight lines polygon are used to model the hole in the plate.  

Following parameters are used for the analysis; E = 71200 MPa, υ = 0.3, diameter of 

each hole = 4mm, spacing between holes = s = 6 mm, initial crack length = a0 = 0.5 

mm, angle of initial crack with central horizontal axis of hole = 33.6o , Stress amplitude 

= 212 MPa and material constants are m = 3.545; C = 2.22x10-10 [93]. 
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Figure 6.1 : Geometry of Infinite plate having two rivet holes. 

6.1.1 Case-1: Infinite Plate under Stress in X-direction 

As case-1 uniform stress is applied along X-direction. The estimated fatigue crack 

growth path by the proposed scheme is shown in Figure 6.2. It can be observed that 

the path of the crack propagation becomes perpendicular to the applied load direction 

after some loading cycles.  

 

Figure 6.2 : FCG path for loading in X-direction (case-1). 

6.1.2 Case-2:  Infinite Plate under Shear Loading 

In case-2 uniform shear load is applied as a far-field loading. The predicted fatigue 

crack growth path is shown in Figure 6.3.  
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Figure 6.3 : FCG path for shear loading (case-2). 

6.1.3 Case-3: Infinite Plate under uniform Stress in Y-Direction 

In case-3, uniform stress is applied in Y-direction as a far-field loading. It can be 

observed from Figure 6.4 that similarly to the loading case-1 the crack propagation 

path becomes perpendicular to the far-field applied loading after some number of 

loading cycles.  

 

Figure 6.4 : FCG path for loading in Y-direction (case-3). 

6.1.4 Discussion of results 

Figure 6.5 and Figure 6.8 show the comparison of the path of fatigue crack growth 

under different types of loading for initial crack lengths of 0.5 mm and 1 mm, 

respectively. Results show that for both cases, the crack growth path becomes 

perpendicular to the applied loading for the tensile load whether it is in X or Y direction 

and similarly for the shear load it becomes perpendicular to the direction of maximum 
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normal stress, so we can conclude that the crack growth path does not depend upon 

the initial length of the crack for the given loading cases at the macroscopic scale. 

 

Figure 6.5 : Comparison of FCG paths under different loadings for a0 = 0.5 mm. 

In Figure 6.6, variation of ΔKeff against crack length is given for each case of loading 

for an initial crack length of 0.5 mm. It can be observed that the highest value of ΔKeff 

is obtained in the case of shear stress, whereas ΔKeff for loading in X and Y direction 

are slightly different from each other. 

 

Figure 6.6 : ΔKeff vs crack length plot for each loading case with a0 = 0.5 mm. 
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In Figure 6.7, the variation of the number of loading cycles with the crack length for 

each loading case for an initial crack length of 0.5 mm is presented. It can be observed 

that a small number of loading cycles are required to achieve a given crack length in 

case of shear loading as compared to the loading either in X-direction or in the Y-

direction and the rate of propagation under shear stress is almost ten times higher than 

that of normal stress cases.  

 

Figure 6.7 : Number of loading cycles vs crack length plot for different loading 

conditions for a0 = 0.5 mm. 

 

Figure 6.8 : Comparison of FCG paths under different loadings for a0 = 1 mm. 

 



60 

Figure 6.9 shows the values of Δkeff as a function of distance from the initial crack tip 

and Figure 6.10 shows the number of loading cycles for a given crack length, for two 

different initial crack sizes of 0.5 mm and 1 mm for loading along X-direction. The 

result shows that values of Δkeff  do not depend upon the initial crack size, whereas the 

rate of crack propagation is slightly higher in the case of small initial crack length, but 

this effect is not seen after a certain number of loading cycles.  

 

Figure 6.9 : Variation of ΔKeff with the location of crack tip for loading in X-

direction for different lengths of initial crack. 

 

Figure 6.10 : Number of loading cycles for loading in X-direction for different 

initial crack lengths. 

6.1.5 Conclusion of Study-A 

In this study, fatigue crack growth analysis under three different far-field loading 

conditions with the two-dimensional Boundary Cracklet Method (BCM) is presented. 
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Prediction of crack growth paths and the required number of loading cycles under each 

loading case is done using the maximum tangential stress (MTS) criterion and the 

approach of equivalent stress intensity factor following Paris-Erdogan Law.  

After some initial number of loading cycles, the fatigue crack growth path becomes 

perpendicular to the direction of applied loading in case of far-field applied tensile 

stress (whether in X or Y direction), and similarly, in case of shear loading, crack 

propagate perpendicular to the direction of maximum principal stress. 

For a given geometry, the fatigue crack growth path, stress intensity factors and the 

number of loading cycles required for a given crack length depend only on the type of 

loading and do not depend upon the initial size of the crack at the global level. Effective 

∆K has a higher value when uniform shear stress is applied to the plate and it has 

relatively less value for the loading along X or Y direction. 

Almost ten times fewer loading cycles are required to reach at a certain crack size 

under shear loading as compared to the normal applied stress, which shows that the 

rate of crack propagation is ten times higher under shear stress. Therefore, it can be 

concluded that among the given three loading conditions shear stress is the worst case 

of loading for the given configuration, whereas the number of cycles for loading along 

X or Y direction required to reach a certain crack size is almost the same. 

 Study-B: Simulations of Interaction of Multiple Fatigue Cracks Growth 

In this section, simulation of FCP for different cases of multiple initial cracks in a plate 

geometry (as shown in Figure 6.11) is discussed by using the proposed scheme. The 

main purpose of this study is to investigate the effects of a newly added crack in the 

vicinity of already present cracks on the rate of crack propagation in complex plate 

geometries, which are difficult to solve by conventional methods. Three different 

studies are conducted for this purpose and named study 1, study 2 and study 3. In study 

1, cracks emanating at the different locations from the edges and middle of the given 

plate geometry are discussed. In study 2, two different cases of initial cracks emanating 

from different locations and orientations from the holes of the given geometry are 

presented. Finally, a combination of study 1 and study 2 is discussed as study 3, in 

which initial cracks are emanating from sides, middle and the outer periphery of the 

holes with different orientations are studied. 
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The used parameters for the analysis are as follows: Length and width of the plate are 

100 mm and 140 mm respectively and the diameter of each hole is 10 mm. 8-sided 

polygon is used to model the holes. The initial length of each crack is a0 = 6 mm. 

Constant amplitude cyclic loading in Y-direction with σmax = 50 MPa, σmin = 0 MPa 

and R = 0 is applied. The material properties are as follows: E = 200 GPa, ν = 0.3. 

Paris material constants are m = 3.73; C = 4.47e-10. Plane stress conditions are 

assumed to be applied in each case. 

 

Figure 6.11 : Geometry of the problem (all dimensions are in mm). 

6.2.1 Study 1:  Side edge cracks at different locations and inclined cracks at the 

middle of the plate  

In this study, three different cases of initial pre-cracks are discussed. In the first case, 

a two symmetric cracks system is considered, and pre-cracks are emanating from the 

middle of the side edge of the plate. The geometry and loading conditions are shown 

in Figure 6.12(A), whereas the predicted crack propagation path using BCM is shown 

in Figure 6.12(B). It can be observed that both crack propagation paths are symmetric 

and initially they propagate horizontally, then they interact with the nearest hole and 

tend to bend towards it, then they tend to go towards the hole of the other row in their 

path and finally interact with the middle hole of each row and reach up to it.  

To validate the results, the same problem is also solved using the SMART crack 

growth module of commercial FE code ANSYS Workbench V19.2. As multiple crack 

interaction is not possible using ANSYS Workbench and since these two cracks are 

symmetric and far apart from each other and there is no interaction among them, so a 
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single crack is modelled in ANSYS Workbench, and the trajectory of fatigue crack 

propagation is simulated using the adaptive re-meshing procedure. Crack growth is 

obtained using program-controlled incremental extensions of the crack. As the result 

of the crack propagation path also depends upon the mesh size used at the crack tip 

and different crack paths are obtained for differently used mesh size, however, strongly 

converging characteristics are obtained with the refinement of mesh at the crack tip. A 

meshed model of given geometry is shown in Figure 6.13(A) and the predicted crack 

propagation path is shown in Figure 6.13(B). A similar analysis is also performed for 

the crack on the right side edge. A comparison between the predicted crack 

propagation paths by BCM and ANSYS Workbench is shown in Figure 6.14. 

     
(A)                                                                      (B) 

Figure 6.12 : Study 1, case-1 (BCM); (A) Geometry of problem, (B) Predicted FCG 

path using BCM. 

             
(A)                                                                    (B) 

Figure 6.13 : Study 1, case-1 (ANSYS Workbench); (A) Meshed model, (B) FCG 

path using ANSYS Workbench. 
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Figure 6.14 : Comparison between FCG paths using BCM and ANSYS Workbench 

(Study 1, case-1). 

In the second case, a similar two cracks system as mentioned in the previous example 

is analyzed but using the initial cracks at a different location on the edges of the plate 

as shown in Figure 6.15(A), crack propagation path using BCM can be seen from 

Figure 6.15(B), whereas a comparison of crack propagation paths using BCM and 

ANSYS workbench is shown in Figure 6.16. It can be observed that for both these 

cases, the predicted crack propagation paths agree well with the FEM simulations. 

     
(A)                                                                    (B) 

Figure 6.15 : Study 1, case-2 (BCM); (A) Geometry of the problem, (B) Predicted 

FCG path using BCM. 
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Figure 6.16 : Comparison between FCG paths using BCM and ANSYS Workbench 

(Study 1, case-2). 

In case 3, a single crack at the middle of the plate for three different orientations i.e. 

00, 150 and 450 is discussed. The geometry of the crack at the middle of the plate at 00 

is shown in Figure 6.17(A), whereas Figure 6.17(B) shows the predicted crack 

propagation path using BCM.  

        
(A)                                                                    (B) 

Figure 6.17 : Study 1, case-3a (BCM); (A) Geometry of the problem, (B) Predicted 

FCG path using BCM. 

The result of this study is also verified using ANSYS Workbench. The meshed model 

of the corresponding geometry of the problem is shown in Figure 6.18(A). As there is 

a limitation in ANSYS Workbench that only crack propagation can be simulated on 

one tip of the cracks, so two separate analyses are conducted to verify the crack 

propagation in either side of the crack. Figure 6.18(B) shows a close agreement 

between the crack propagation paths predicted by both methods. The geometry of the 

crack at the middle of the plate at θ0 is shown in Figure 6.19, whereas Figure 6.20(A) 

and Figure 6.20(B) show the comparison of predicted crack propagation path using 
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BCM with that of ANSYS Workbench for crack inclination angle of 150 and 450 

respectively. 

      
(A)                                                                    (B) 

Figure 6.18 : Study 1, case-3a; (A) Meshed model, (B) FCG paths comparison using 

BCM and ANSYS Workbench. 

 

Figure 6.19 : Geometry of the problem at an angle θ0 (study 1, case-3b). 

 
(A)                                                                    (B) 

Figure 6.20 : FCG paths comparison by BCM and ANSYS Workbench; (A) θ = 150, 

(B) θ = 450. 
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6.2.2 Study 2: Cracks emanating from holes 

In this study, two different cases of initial cracks emanating from outer peripheries of 

holes of the given geometry are discussed under loading in the Y- direction. In case 1, 

cracks from 1st two holes of row 1 of the holes are emanating at -450, whereas the 

cracks from the 2nd and 3rd holes of row 2 are emanating at 450 (as shown in Figure 

6.21(A)). The predicted crack propagation path using BCM is shown in Figure 6.21(B) 

for case -1. In case -2, initial cracks from 1st and 3rd holes of row 1 of the holes are 

emanating at -450, whereas the cracks from 1st and 3rd holes of row 2 are emanating at 

450 (as shown in Figure 6.22(A)). The predicted crack propagation path using BCM 

for case 2 is shown in Figure 6.22(B).  

  
(A)                                                                    (B) 

Figure 6.21 : Study 2 case -1; (A) Geometry of the problem, (B) Predicted FCG path 

using BCM. 

 
(A)                                                                    (B) 

Figure 6.22 : Study 2 case -2; (A) Geometry of the problem, (B) Predicted FCG path 

using BCM. 
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6.2.3 Study 3: (Crack emanating from edges and holes) 

In the first three cases of this study, initial cracks emanating at different orientations 

from edges and holes of the plate of given geometry are discussed under loading in Y-

direction. In case-1, there are four initial cracks in which two cracks are emanating 

from a given location on the edge of the plate and two cracks are originating from the 

two holes of the given geometry as shown in Figure 6.23(A). The crack propagation 

trajectory for this case is given in Figure 6.23(B). As the two cracks merge, it is 

assumed that failure has occurred, and simulation is set to stop.  

  

(A)                                                                    (B) 

Figure 6.23 : Study 3, case-1; (A) Geometry of the problem, (B) Predicted FCG path 

using BCM. 

In case-2, there are six initial cracks in which two cracks are emanating from two 

opposite edges of the plate and the remaining four cracks are originating from certain 

origination from four different holes of given geometry (as shown in Figure 6.24(A)). 

Figure 6.24(B) shows the crack growth path for case 2 of study 2. In case 3, one more 

crack is added to the 2nd case of this study at the centre of the plate at 00 as shown in 

Figure 6.25(A). The crack propagation path of case-3 is shown in Figure 6.25(B).  
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(A)                                                                    (B) 

Figure 6.24 : Study 3 case -2; (A) Geometry of the problem, (B) Predicted FCG path 

using BCM. 

   

(A)                                                                    (B) 

Figure 6.25 : Study 3, case -3; (A) Geometry of the problem, (B) Predicted FCG 

path using BCM. 

Figure 6.26 (A) to (C) represents the crack growth rate of different crack tips for cases 

1 to 3 of study3. Although a constant crack increment is used for each crack tip in each 

case, the rate of crack growth for each crack is different, therefore different loading 

cycles are required for each crack tip to grow for the same crack length. In each case, 

there are symmetric cracks in the model and therefore only one set of cracks is shown 

in the plots. Figure 6.27(A) to (C) shows the comparison of the crack growth rate of 

crack tip A, B for case-1 and crack tip A, B and C for the case-2 and case-3 of study 3 

respectively. These plots show that how the crack growth rate of a certain crack tip is 

affected by the addition of other nearby cracks to the system. In case-1 there is only 

one crack near the crack tip A, but in case 2 and 3 there are more cracks to interact 

with crack tip A, therefore the growth rate of crack tip A is relatively higher in those 

cases (Figure 6.27(A)). A similar effect is also observed for crack tip B and C in Figure 
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6.27(B) and Figure 6.27(C) respectively. It shows that when two coplanar cracks 

approach each other, they exhibit an over-constraining phenomenon [94], which 

causes the near-tip stress field to be significantly higher than that near a single crack 

and hence ultimately increases the rate of crack growth. 

 

Figure 6.26 : Fatigue life curves for cracks tip A, B and C for different cases of 

study 2, (A) Case 1, (B) Case 2, (C) Case 3. 

 

Figure 6.27 : Fatigue life curves for different cases of study 2 for different crack 

tips; (A) Crack tip A, (B) Crack tip B, (C) Crack tip C. 

To show the versatility of the proposed method, the geometry of case-3 of study 3 is 

also solved for loading in X-direction and the shear and discussed as case-4 and case 

-5 respectively. Figure 6.28(A) shows the geometry of and the crack propagation path 

for loading applied in X-direction, whereas Figure 6.28(B) shows the crack 

propagation path of the same geometry as mentioned in case 3 under the shear loading. 

  

(A)                                                                    (B) 

Figure 6.28 : BCM Simulation of FCP (study 3, case 4 and 5); (A) under loading in 

X-direction (study 3, case-4), (B) under shear loading (study 3, case-5). 



71 

To show the computational efficiency of a numerical method in fatigue problems a 

new and very useful parameter is introduced: Yavuz’s fatigue computational efficiency 

factor, YCF = µN/t, which is the number of computed million cycles per hour (CPU 

time). Table 6.1 shows the CPU time and fatigue life of each case of study 2 and study 

3. Simulations are conducted on PC of dual-core Intel Core i3-4010U with 4.00 GB 

RAM using MATLAB R2017b. As expected, more complexity in the problem results 

in lower YCF because it will take more time to solve, and the number of computed life 

cycles will be much less per unit CPU time. BCM takes almost 15 hours to solve Study 

3-case 3 with YCF = 1.66e-3 which is a very complicated problem (plate with 6 holes 

having 7 pre-cracks).  

Table 6.1 : CPU time and fatigue life for each case. 

Study 
Case 

No. 

Δc 

(% of a0) 

Solution 

time* 

(hours) 

µN 

(No. of loading 

cycles/106) 

YFC = µN/t 

x 103 

2 
1 30 3.88 0.062 16.0 

2 30 3.95 0.057 14.6 

3 

1 30 8.13 0.103 12.6 

2 40 8.58 0.032 3.79 

3 40 14.9 0.025 1.66 

4 40 1.46 0.019 13.3 

5 40 2.39 0.0018 0.78 

*Analyses are conducted on PC of dual-core Intel Core i3-4010U with 4.00 GB 

RAM using MATLAB R2017b. 

6.2.4 Conclusion of the Study-B 

In this study, fatigue crack growth simulation of interacting multiple cracks in 

perforated plates with multiple holes is discussed. To show the versatility of the 

proposed method, emphasis is given to study such complicated problems which cannot 

be solved by conventional methods. Three different studies with multiple cases of 

initial cracks emanating from side edges, the centre of the plate and the outer periphery 

of holes in the plate at different orientation are simulated and crack growth path and 

fatigue lives are estimated for each case. Paris’s law is used as a fatigue crack growth 

model and the MTS criterion along with the approach of equivalent stress intensity 
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factor is used to predict the crack tip location during crack propagation in each step 

under fatigue loading. The effect of a newly added crack in the vicinity of already 

present crack is also analyzed and concluded that when two coplanar cracks approach 

each other, they exhibit an over-constraining phenomenon [94], which causes the near-

tip stress field to be significantly higher than that near a single crack and hence 

ultimately increases the rate of crack growth. To show the computational efficiency of 

a method in fatigue problems a new and very useful parameter is suggested: Yavuz’s 

fatigue computational efficiency factor, YCF = µN/t, which is the number of computed 

million cycles per hour (CPU time). For two computational methods, the one with 

higher YCF is computationally more powerful.  

It is also concluded through this study that the proposed scheme is an accurate tool to 

simulate the real cases of multiple fatigue cracks interaction in two dimensions which 

are the typical aerospace structures experiencing fatigue crack growth and the 

conventional methods of analysing FCG have limitations in solving such complex 

problems. 

 Study-C: FCG Analysis of Biaxially Loaded Hole-Edge Cracks  

Aerospace structures experience different types of loading during their service life; 

biaxial loading is also one of them and needs significant attention for the designing of 

these structures. Repetitive pressurizing and depressurizing the cabin of the aircraft is 

one of the examples of a biaxial state of fatigue loading.  

The failures due to fatigue loading usually start at small surface cracks which act as 

local stress raisers and propagate and interact with each other and turn into large 

damage-producing cracks [1]. In practice, these micro surface cracks are always likely 

to be present in many aircraft structural components, which are produced due to certain 

imperfections due to the machining processes during the manufacturing of aircraft. To 

produce a damage tolerance design, the most important thing is to make sure that these 

micro-surface cracks will not propagate and not turn into large damage-producing 

cracks under different loading and environmental conditions suffered by the aircraft 

[102]. The orientation of the micro-surface cracks specially around holes in machined 

structures and the nature of loading conditions can affect or even increase the rate of 

propagation of cracks. In such cases, the orientation of the cracks describes that 

whether the crack will grow in mode I, mode II or fatigue crack will grow in a mixed-
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mode manner. The effects of initial crack orientation under uniaxial fatigue loading 

are well reported in the literature but the same under the effect of different conditions 

of biaxial loading needs more discussion.  

In the early findings of fatigue crack growth under biaxial loading, different 

inconsistent observations were reported. According to some researchers, in linear 

elastic fracture mechanics, the component of stress parallel to the crack does not affect 

the fatigue crack growth, whereas some others reported that the propagation rate of a 

fatigue crack under biaxial load is affected by stress biaxiality [103-107]. Hopper and 

Miller reported that compressive stress on a plane parallel to the direction of crack 

propagation can increase and tensile stress on the same plane can decrease the crack 

propagation rate [103]. In 1978, Liu and Dittmer [104] while performing different 

experimental tests on Al- alloys i.e. 7075-T7351 and  2024-T351 reported that crack 

will grow straight in a biaxial stress field when the stress component parallel to the 

crack is equal to or smaller than the stress component normal to the crack and biaxiality 

has no effect on the crack growth rates under constant amplitude loading. Anderson 

and Garrett [105] reported that equibiaxial tension reduces the rate of fatigue crack 

growth, while compressive stresses parallel to the direction of crack propagation cause 

a considerable increase in fatigue crack propagation rate in comparison to the uniaxial 

loading conditions. In 1989, Yuuki et al. [106] performed fatigue tests on stainless 

steel SUS 304 under various biaxial stress conditions and concluded that biaxiality 

ratio can affect crack growth rates only at high stresses and in the case of low stresses 

there is no effect of biaxiality ratio on fatigue crack growth rate. Y.C. Lam [107] 

investigated the fatigue crack growth of long cracks under biaxial loads and reported 

that when the biaxial stress ratio is much less than one, the crack grows in the direction 

perpendicular to the dominant stress. However, when the biaxial stress ratio is close to 

one then the trajectory of the growing crack depends upon the initial crack angle and 

is more difficult to predict. 

Taylor and Lee [94] investigate the biaxiality ratio effects on the fatigue behaviour by 

employing cruciform specimens of aluminium alloys 1100-H14 and 7075-T651 and 

concluded that non-singular stress parallel to a crack affects the trajectory of crack 

growth and fatigue life of the structures made of mentioned aluminium alloys under 

both in-phase and out-of-phase biaxial loading. Misak et. al. [108] studied the crack 

growth behaviour of 7075-T6 under biaxial tension–tension fatigue loading. He 
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reported that crack initiation and growth is coplanar with the initial notch under 

equibiaxial loading with λ = 1 and non-coplanar under λ = 1.5 [108], whereas the rate 

of fatigue crack growth would be higher in case of higher biaxiality ratio i.e. λ = 1.5 

relative to the counterpart under uniaxial fatigue i.e. λ = 0 or biaxial fatigue with lower 

biaxiality ratio i.e.  λ = 0.5 or 1 at a given crack driving force level in air environment 

[109]. Baptista et. al. [110] studied the in-plane biaxial fatigue crack growth on an 

optimal cruciform specimen for different initial length and angle of crack under 

different phase shift angle loadings of 30º, 45º, 60º, 90º and 180º and suggested that 

the loading phase shift angle effects the crack propagation angle. A fracture response 

of a finite plate having a circular hole with radial cracks emanating at different angles 

under biaxial loading with biaxiality ratio of 0, 1 and -1 is presented and showed how 

biaxiality ratio affects the mixed mode stress intensity factors (KI and KII) [111]. 

Recently, a complex fatigue failure under biaxial cyclic loadings where fatigue crack 

paths interact in complicated ways is studied using peridynamic theory and fatigue 

crack growth paths and fatigue lives for different initial angle of crack are predicted 

and verified with experimental results for different biaxiality ratios [112].  

There are different possible cases of biaxial loading conditions but in this study, in-

phase biaxial tension–tension cyclic loading is discussed. Fatigue crack growth 

behaviour of an infinite plate having two symmetric cracks emanating from certain 

location and orientation around a hole under far field in phase biaxial tension-tension 

loading is analyzed and the effects of biaxiality ratio λ, stress ratio R along with the 

effects of orientation of initial pre-cracks on fatigue crack growth under biaxial loads 

is also discussed.  

6.3.1 Symmetric cracks around a hole in an infinite plate under biaxial loads 

To study the effect of initial crack orientation on the FCG behaviour under fatigue 

loading, two symmetric cracks emanating at different locations at the outer periphery 

of the hole in an infinite plate are considered under in-phase tension-tension biaxial 

loading (as shown in Figure 6.29). The location of the initial crack is described by 

“crack position angle (α)” and its initial angle is determined by “crack orientation angle 

(β)”. Analyses are done for different values of α i.e.  00 and 450 with different values 

of β i.e. 00, 150, 300, 450. FCG paths and the number of loading cycles for given crack 

length are estimated for different biaxiality stress ratio i.e. λ = 0, 0.5, 1, 1.5. The 
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geometry of the plate is as follows: diameter of the hole is 17.5 mm and symmetric 

cracks of initial length a0 = 2 mm is considered, and material properties are as follows: 

E = 73.1 GPa, ν = 0.33, m = 3, C=9.45e-11 [114]. Walker’s equation is used as FCG 

model and MSED criterion along with the approach of equivalent stress intensity factor 

is used to predict the crack tip location. 

6.3.2 Effect of biaxiality ratio (λ) on FCG  

In this section, the effect of biaxiality ratio λ on FCG is presented for the given 

geometry. For this purpose, analyses with different values of λ i.e. 0, 0.5, 1, 1.5 are 

repeated and fatigue crack growth paths, SIFs and number of loading cycles N for a 

given crack length are computed for different orientations of initial pre-cracks using 

the proposed scheme. 

 

Figure 6.29 : Geometry of the infinite plate with a hole having symmetric cracks. 

6.3.2.1 Effect of biaxiality ratio on fatigue crack growth trajectory 

Figure 6.30 and Figure 6.31 show the FCG trajectories for symmetric cracks emanating 

at crack position angles α = 00 and 450 respectively for different crack orientation 

angles β = 00, 150, 300, 450 for λ = 0 and 0.5. Results show that for the case of uniaxial 

stress with λ = 0, where only 𝜎𝑦 is applied and 𝜎𝑥 is zero, cracks propagate 

perpendicular to the direction of the 𝜎𝑦 in each case of crack orientation. Similarly, for 

λ = 0.5, 𝜎𝑦 is the dominant stress among both the stress as 𝜎𝑥 =  0.5𝜎𝑦 and crack 
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propagate perpendicular to direction of 𝜎𝑦. Results show that there is no effect of the 

position and orientation of the pre-cracks on the trajectory of the crack growth path for 

λ = 0, 0.5 and it can be concluded that the FCG path is independent of initial crack 

location and orientation at the hole for the biaxiality ratio 0 to 0.5. 

  
 

   

Figure 6.30 : FCG trajectories for λ = 0 and 0.5 at α = 00; (A) β = 00, (B) β = 150, 

(C) β = 300, (D) β = 450. 

Figure 6.32 and Figure 6.33 show the FCG trajectories for crack position angle α = 00 

and 450 respectively for different crack orientation angles β = 00, 150, 300, 450 for λ = 

1. For λ = 1 i.e. equibiaxial loading case, results show that cracks tend to propagate 

diagonally in each case and their paths are sensitive with the location as well as the 

orientation of the initial pre-crack. In this case, there is no dominant stress direction 

and both stresses are equal, so crack tries to grow under the effect of both 𝜎𝑥  and 𝜎𝑦.  

 

(A) 

(B) (C) (D) 



77 

 

   

Figure 6.31 : FCG trajectories for λ = 0 and 0.5 at α = 450; (A) β = 450, (B) β = 00, 

(C) β = 150, (D) β = 300. 

Figure 6.34 and Figure 6.35 show the FCG trajectories for crack position angle α = 00 

and 450 respectively for different crack orientation angles β = 00, 150, 300, 450 for λ = 

1.5. As in this case λ = 1.5 and 𝜎𝑥  is 1.5 times 𝜎𝑦 , therefore clearly 𝜎𝑥 is the 

predominant stress among both applied stresses, so the cracks propagate perpendicular 

to the direction of 𝜎𝑥 in each case. It is important to notice that for case where α = 450 

and β = 00 (as shown in Figure 6.35(B), the crack tends to propagate perpendicular to 

the 𝜎𝑥 , but due to position and orientation of the pre-crack, it interacts with the hole 

and inclines towards the hole. If we keep on increasing the crack orientation angle β 

and when it reaches to value of 60 or more, then crack propagates perpendicular to 𝜎𝑥 

like other cases e.g. as shown in Figure 6.35(C). Therefore, for this case position and 

orientation of the pre-crack is important and the trajectory of the path is affected by it. 

Results suggest that the trajectory of the FCG path under biaxial loading mainly 

depends upon the biaxiality ratio (λ). 

(A) 

(B) (C) (D) 
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Figure 6.32 : FCG trajectories for λ = 1 at α = 00; (A) β = 00, (B) β = 150, (C) β = 

300, (D) β = 450. 

       

       

Figure 6.33 : FCG trajectories for λ = 1 at α = 450; (A) β = 450, (B) β = 00, (C) β = 

150, (D) β = 300. 

(A) (B) 

(C) (D) 

(A) (B) 

(C) (D) 
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Figure 6.34 : FCG trajectories for λ = 1.5 at α = 00; (A) β = 00, (B) β = 150, (C) β = 

300, (D) β = 450. 

       

      

Figure 6.35 : FCG trajectories for λ = 1.5 at α = 450; (A) β = 450, (B) β = 00, (C) β = 

150, (D) β = 300. 

 

(A) (B) 

(C) (D) 

(A) (B) 

(C) (D) 
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6.3.2.2 Effect of biaxiality ratio on initial crack tip propagation angle 

Figure 6.36 shows the variation of crack tip propagation angle (with reference from 

the initial crack angle) of the first step of the analysis with λ for different crack 

orientation angles β for α = 00 and 450, respectively. Results show that the value of the 

initial crack propagation angle depends upon the position as well as the orientation of 

the pre-crack. For crack position angle α = 00
 (Figure 6.36(A)), the initial crack 

propagation angle converges to the same value for λ = 0.5 regardless of the orientation 

angle of the crack, but the crack propagation angle varies with the orientation of the 

initial pre-crack for λ ≠ 0.5. A less variation in initial crack propagation angle is 

observed for 0 ≤ 𝜆 ≤ 0.5 among different crack orientation angles but for 0.5 ≤ 𝜆 ≤

1.5 this variation is relatively high. Similarly, for crack position angle α = 450 (Figure 

6.36(B)) the initial crack propagation angle strongly depends upon the biaxiality ratio, 

but in this case, variation in initial crack propagation angle for crack orientation angles 

decreases as the λ approaches from 1 to 1.5. From the results, it can be concluded that 

the initial crack propagation angle depends upon the biaxiality ratio as well as the 

orientation and the position of the initial pre-crack. 

 
(A)                                                            (B) 

Figure 6.36 : Variation of initial crack tip angle with λ; (A) α = 00, (B) α = 450. 

6.3.2.3 Effect of biaxiality stress ratio on initial crack tip SIFs ratio 

Figure 6.37 shows the variation of the ratio of crack tip SIFs (KII / KI) of the first step 

of the analysis with λ for different crack orientation angles β for α = 00 and 450, 

respectively. Results show that the initial crack tip SIFs ratio depends upon the position 

and orientation of the pre-crack and it also depends upon the biaxiality ratio. SIFs ratio 

increased with the crack orientation angle β at a given value of λ for both cases of 
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crack positions (α), which means that crack tends to move under mixed-mode 

conditions for a higher crack orientation angle.  

 
(A)                                                                     (B) 

Figure 6.37 : Variation of the ratio of mode-II to mode-I SIFs (K2/K1) with λ. 

6.3.2.4 Effect of biaxiality stress ratio on No. of loading cycles  

Figure 6.38 shows the number of loading cycles required for the given crack length for 

each case of crack orientation angle β for α = 00 and 450, respectively. Results show 

that in both cases of α, the number of loading cycles are same for λ = 0, 0.5 and 1 for 

each value of angle β, but for λ = 1.5 the rate of crack propagation increases, and a 

smaller number of loading cycles are required for the given crack length. Therefore, it 

can be concluded that the number of loading cycles are independent of the biaxiality 

ratio for  0 ≤ 𝜆 ≤ 1 for each case of crack propagation angle and orientation, but for 

λ = 1.5, the rate of crack propagation increases regardless of the position and 

orientation of the pre-crack. Figure 6.39 also shows the same results, where a 

comparison of the no. of loading cycles required for a crack length of 17 mm is 

presented for each orientation of initial pre-crack for α = 00 and α = 450, respectively. 
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(A)                                                                    (B) 

Figure 6.38 : Comparison of loading cycles required for given crack length for 

different orientations of initial pre-crack; (A) α = 00, (B) α = 450. 

 
(A)                                                                    (B) 

Figure 6.39 : Comparison of loading cycles required for a crack length of 17 mm for 

different biaxiality ratio; (A) α = 00, (B) α = 450. 

6.3.3 Effect of stress ratio (R) on FCG  

In this section, the effect of stress ratio (𝑅 =  𝜎𝑚𝑖𝑛/ 𝜎𝑚𝑎𝑥)  on FCG is presented for 

the given geometry. Analyses with different values of stress ratio i.e. 0, 0.2, 0.4 are 

performed. Figure 6.40 shows the crack growth path for different values of R for the 

case where α = 0, β = 0, results show that there is no effect of R ratio on fatigue crack 

growth path. The same result is observed for every case of crack position and 

orientation angle for the given geometry.  
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Figure 6.40 : FCG paths for different values of R for α = 0, β = 0; (A) R = 0, (B) R = 

0.2, (C) R = 0.4. 

 Figure 6.41 shows the effect of R-ratio on the rate of crack growth rate for different 

values of biaxiality ratio for the geometry with α = 0, β = 0. Results show that the rate 

of crack growth is higher for a higher value of R ratio for a given value of ∆𝐾𝑒𝑓𝑓, but 

for a given 𝜎𝑚𝑎𝑥 the value of ∆𝐾𝑒𝑓𝑓 is low for a higher value of R-ratio and more 

loading cycles are required for a given crack length.  

 

Figure 6.41 : Effect of R on FCG rates for α = 0, β = 0 for different biaxiality ratios; 

(A) λ = 0, (B) λ = 0.5, (C) λ = 1, (D) λ = 1.5. 
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Figure 6.42(A) and Figure 6.42(B) show the comparison of number of loading cycles 

required for a given crack length for the geometry α = 00, β = 450 and α = 450, β = 450, 

respectively. More loading cycles are required for a higher value of R ratio in each 

case of initial crack geometry. This is because at a higher R the variation of stress from 

maximum to minimum value is relatively less as compared to the lower value of R and 

it results in a lower value of ∆𝐾𝑒𝑓𝑓 and therefore, more loading cycles are required to 

produce the same crack growth. 

 
(A)                                                                    (B) 

Figure 6.42 : Effect of R on fatigue life of different cases; (A) α = 00, β = 

450, (B) α = 450, β = 450. 

6.3.4 Conclusion of the Study-C 

In this study, the analysis of fatigue crack growth in an infinite plate under biaxial 

loads is presented using the boundary cracklet method (BCM) in the 2-dimensional 

domain. Walker equation is used for the fatigue crack growth and MSED criterion 

along with the approach of equivalent stress intensity factor is used to predict the crack 

tip location during crack propagation in each step under biaxial fatigue loading. The 

FGC for an infinite plate having symmetric cracks, at different orientations at the hole 

is studied for different biaxiality stress ratios (λ = 0, 0.5, 1, 1.5) and their effect on 

crack propagation paths and the number of loading cycles required for given crack 

extension is studied. Results show that crack tends to propagate perpendicular to the 

direction of dominant stress in the case of biaxial load where 𝜆 ≠ 1 and there is no 

effect of location and orientation of initial crack on the crack trajectory. For equibiaxial 

loading where λ =1, the crack tends to propagate diagonally, and its path depends upon 

the location and orientation of the initial pre-crack. As far as the number of loading 

cycles for a given crack extension are concerned, equal load cycles are computed for 
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λ = 0, 0.5, 1 whereas it is concluded that for λ = 1.5, the rate of crack growth increases, 

and fewer loading cycles are required to produce the given crack length. To observe 

the effect of R-ratio on FCG, analysis with R = 0, 0.2, 0.4 are performed. It is also 

observed that there is no effect on crack trajectories under different R-ratio. For a given 

ΔKeff the rate of crack propagation is increased with the increase of R-ratio, but for a 

given value of 𝜎𝑚𝑎𝑥 the value of ΔKeff is lower for a higher R ratio value, which results 

in a higher number of required loading cycles to produce the same crack extension. 

The verification of the proposed method is done by comparing the mode-1 and mode-

2 SIFs and crack growth paths computed by BCM for an inclined crack in an infinite 

plate under different biaxial loading conditions with those computed by the analytical 

formulation presented in the literature. A close agreement is achieved between the 

values predicted by BCM and those by the analytical method. 
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 CONCLUSION AND FUTURE WORK 

In this chapter conclusions drawn from this study are presented in detail. The most 

relevant potential studies are mentioned as well. 

 Conclusion 

Fatigue crack growth (FCG) analysis and simulation of the interaction of multiple 

cracks have been a key issue for decades. There are several two-dimensional methods 

to investigate fatigue crack propagation such as analytical methods, finite element 

methods (FEM), extended finite element methods (XFEM), boundary element 

methods (BEM) and many more. Each one has some advantages as well as limitations 

and drawbacks considering the preparation of the model, the accuracy of the analysis 

and required computation time. Therefore, there is always room to develop new tools 

or schemes to simulate the FCG phenomenon accurately and efficiently. 

In this study, the complex phenomenon of multiple cracks interaction under mix mode 

fatigue loading is analysed by using a newly developed method i.e. Boundary Cracklet 

Method (BCM). BCM was developed by Prof. Dr. Yavuz (co-advisor of this study) 

and Prof. Dr. Phoenix at Cornell University. It was developed as a semi-analytical 

method to calculate the overall stress field and the stress intensity factor (SIF) for crack 

tips under static loads before. BCM is based on a dislocation distribution approach that 

approximates the crack opening displacement profiles by using certain power series 

that satisfy the traction-free condition on crack faces. In this study, BCM is used for 

the first time to simulate the interacting multiple cracks under fatigue loading.  

Throughout the thesis, it has been proved that BCM is an accurate method to simulate 

fatigue crack propagation (FCP) involving multiple cracks in complex plate 

geometries under different conditions of fatigue loading. The accuracy of the method 

was established through the results presented by different researchers which were 

already available in the literature. Crack tip SIFs, fatigue crack propagation paths and 

the number of loading cycles required to produce a given crack length extension were 
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used as a parameter for the comparison. A good agreement among the results of each 

mentioned parameter was achieved for every problem. 

Further, the proposed scheme is used to simulate the FCP in different plate geometries 

involving single as well as multiple cracks under different conditions of fatigue loading 

which are typical and difficult problems to solve in aerospace structural components. 

For this purpose, three different studies were conducted, and the findings of each study 

were published in different international prestigious journals.  

In the first study, fatigue crack growth in an infinite plate having two rivet holes 

separated at some distance and crack emanating from a certain location and orientation 

from one hole were analysed under three different far-field fatigue loadings i.e. loading 

in X-direction, loading in Y- direction and shear loading. It is concluded that after 

some initial number of loading cycles, the fatigue crack growth path becomes 

perpendicular to the direction of applied loading in case of far-field applied tensile 

stress (whether in X or Y direction), and similarly, in the case of shear loading, cracks 

propagate perpendicular to the direction of maximum principal stress and there is no 

effect of size of initial crack on FCG behaviour. Almost ten times fewer loading cycles 

are required to reach a certain crack size under shear loading as compared to the normal 

applied stress, which shows that the rate of crack propagation is ten times higher under 

shear stress. Therefore, among the given three loading conditions, cycling shear stress 

is the worst one and needs more attention while designing the structures having rivet 

holes. 

In the second study, fatigue crack growth simulation of interacting multiple cracks in 

perforated plates with multiple holes is discussed. To show the versatility of the 

proposed method, emphasis is given to study such complicated problems which cannot 

be solved by conventional methods to analyse the FCG. Three different studies with 

multiple cases of initial cracks emanating from side edges, the centre of the plate and 

the outer periphery of holes in the plate at different orientations are simulated. It has 

been concluded that the FCG of complicated problems e.g. plate with six holes having 

seven pre-cracks can be computed fast by the proposed scheme. The conventional 

methods of analysing FCG have limitations in solving such complex problems. 

Moreover, the effect of a newly added crack in the vicinity of already present crack is 

also analyzed and concluded that when two coplanar cracks approach each other, they 

exhibit an over-constraining phenomenon, which causes the near-tip stress field to be 
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significantly higher than that near a single crack and hence ultimately increases the 

rate of crack growth. To show the efficiency of a computational method in fatigue 

problems a new and very useful parameter is also introduced: Yavuz’s fatigue 

computational efficiency factor, YCF = µN/t, which is the number of computed million 

loading cycles per hour (CPU time).  

In the third study, the FCG behaviour of symmetric cracks emanating at different 

locations at the outer periphery of the hole in an infinite plate with different 

orientations under in-phase tension-tension biaxial loading is shown. As the effects of 

initial crack orientation under uniaxial fatigue loading are well reported in the literature 

but the same under the effect of different conditions of biaxial loading has not been 

investigated. Our results show that BCM is equally effective in predicting the FCG 

behaviour under complex cases of fatigue loading. It is concluded that cracks tend to 

propagate perpendicular to the direction of dominant stress in the case of biaxial load 

where biaxiality ratio 𝜆 ≠ 1 and there is no effect of location and orientation of initial 

crack on the crack trajectory. For equibiaxial loading where λ = 1, the crack tends to 

propagate diagonally, and its path depends upon the location and orientation of the 

initial pre-crack. As far as the number of loading cycles for a given crack extension 

are concerned, equal load cycles are computed for λ = 0, 0.5, 1 whereas it is concluded 

that for λ = 1.5, the rate of crack growth increases, and fewer loading cycles are 

required to produce the given crack length. It is also concluded that there is no change 

in crack trajectories under different stress ratios (R). For a given ΔKeff the rate of crack 

propagation is increased with the increase in R, but for a given value of 𝜎𝑚𝑎𝑥 the value 

of ΔKeff is lower for a higher R-value, which results in a higher number of required 

loading cycles to produce the same crack extension. 

 Future Work 

Following are some of the recommendations for future studies. 

7.2.1 Development of a BCM software to predict the FCG  

As the accuracy of the proposed scheme of analysing the interaction of multiple cracks 

under different conditions of fatigue loads is well established with the examples 

available in the literature through this study, a BCM software can be developed to 

simulate the fatigue crack growth behaviour of complex problems having multiple 
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cracks under mix-mode fatigue loading. Currently, most of the available software are 

either limited to the mode-I and mode-II loading cases only or capable of analysing a 

single crack only. 

7.2.2 Analysing a large array of cracks 

In this study, the interaction of a maximum of seven pre-cracks is simulated, but BCM 

can be applied to a large number of arrays of cracks. With the help of parallel 

computing, such problems can be solved efficiently by using supercomputers. 

7.2.3 Analysing X-shaped (starred), V-shaped (kinked), Y-shaped (branched) 

and Z-shaped (zig-zagged) cracks 

In the future, studies can be performed to study the FCG behaviour of V and Z-shaped 

kinked or X and Y-shaped branched cracks. There is a strong need to explore a 

criterion of crack branching to simulate the dynamic crack branching with BCM. 
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