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OZET

MAKINE OGRENMESiI ILE GEMi MAKINELERININ HATA
ANALIZI

Gemi sistemlerinin bakim onariminin yapilmasi ve hata olasiliklarinin tahmin edilmesi
dinamik gemi sistemleri igin 6nemli bir faktordiir. Sistemlerin kapali kalma siiresini en
aza indirmek ve maliyeti minimize etmek giincel ¢alisma alanlarindan biridir. Son
yillarda bilgi teknolojilerinin hizli gelisimi ve buna bagli olarak gelisen makine 6grenimi
yaklagimlar1 sistemlerin bakim onarimlarina makine 6grenimini entegre etmeyi miimkiin
kilmigtir. Yapilan ¢alismalarda makine 6grenmesi kullanilmasi, bu yontemin bakim
onarim ve hata analizi alanlarinda denenmesine olanak saglamistir. Sistemlerde
olusabilecek hatay1 tahmin etmek ve buna bagli olarak arizay1 onliiyor olabilmek yeni
tekniklerin ortaya ¢ikmasini saglamistir. Bu sistemlerin en dnemlilerinden biri olan akilli
gemi makine sistemleri acik denizlerdeki gemilerin yasam Omriinii artirmaktadir.
Gergeklestirilen bu ¢alismada gemi makinelerinin makine O6grenmesi yoOntemleri
kullanilarak hata durumu arastirilmistir. Geleneksel yontemlerin diginda bu ¢alismada iki
farkli analiz yapilarak makine 6grenmesi yontemleri kullanilmistir. Yapilan ilk ¢alismada
LM-2500 tipi bir gemi makinesinden alinan; gemi hizi, gaz tiirbini (GT) saft torku, gaz
tirbini devir hizi, gaz jeneratdrii devir hizi, sancak pervane torku, iskele pervane toku,
yuksek gugli (YG) tirbin ¢ikis sicakligi, GT kompresor giris hava sicakhigi, GT
kompresor ¢ikis hava sicakligi, YG turbin ¢ikis basinci, GT kompresor giris hava basinct,
GT kompresor ¢ikis hava basinci, gaz tiirbini egzoz gazi basinci, tiirbin enjeksiyon
kontrolii ve yakit akis1 verileri gemi makinelerinin hata durumunu tahmin etmek i¢in
regresyon ve yapay sinir aglart (YSA) algoritmalar1 ile analiz edilmistir. Dogrusal
Regresyon, Karar Agaci Regresyon, K-En Yakin Komsu Regresyon (K-NN), Rastgele
Orman Regresyon, Bayesian Ridge Regresyon, Ekstra Agag¢ Regresyon, Dogrusal Destek
Vektor Makineleri (DVM) Regresyonu ve YSA algoritmalarindan elde edilen sonuglar
karsilastirilmistir. Analiz sonucunda YSA yonteminin makine hatasi tahmininde

regresyon yontemlerine gore daha iyi sonuclar verdigi ortaya ¢ikmustir.

Yapilan diger ¢alismada ise bir makineden alinan akustik sinyallerden normal ve anormal

calisma durumunu gosteren veri kiimeleri olusturulmus ve spektrogram grafiklerine



cevrilmistir. Elde edilen bu goruntuler derin 6grenme yontemi ile analiz edilmistir. Bu
analiz ile akustik veri kimeleri kullanilarak gemi motorlarinin hata-arizalarinin

modellemesi ve siiflandirilmasi saglanmistir.

Vi



ABSTRACT

FAULT ANALYSIS OF SHIP MACHINES WITH MACHINE
LEARNING

Maintenance and repair of ship systems and estimation of fault probabilities are important
factors for dynamic ship systems. Minimizing the downtime of the systems and the cost
iIs one of the current study areas. Recently, the rapid development of information
technologies and machine learning approaches developed accordingly have made it
possible to integrate machine learning into maintenance and repair of systems. The use of
machine learning in the studies has enabled this method to be tested in the fields of
maintenance, repair and fault analysis. To predict the fault that may occur in the systems
and prevent the failure accordingly, has led to the emergence of new techniques. Smart
ship machine systems, one of the most important of these, increase the lifespan of ships
in open seas. In this study, fault prediction of ship machines was investigated by using
machine learning methods. Apart from traditional methods, two different analyzes were
made and machine learning methods were used in this study. Taken from a ship LM-2500
type machine; ship speed, gas turbine (GT) shaft torque, gas turbine rate of revolutions,
gas generator rate of revolutions, starboard propeller torque, port propeller torque, HP
Turbine outlet temperature, GT compressor inlet air temperature, GT compressor outlet
air temperature, HP Turbine outlet pressure, GT compressor inlet air pressure, GT
compressor outlet air pressure, gas turbine exhaust gas pressure, turbine injection control
and fuel flow data were analyzed with regression and Artificial Neural Networks (ANN)
algorithms to predict the fault prediction of ship machinery. The results obtained from
linear regression, decision tree regression, nearest neighbor regression, random forest
regression, Bayesian Ridge regression, extra-tree regression, linear SVM regression and
ANN algorithms were compared. As a result of the analysis, it was revealed that the ANN
method gave better results than the regression methods in estimating the machine fault.

In another study, data sets showing normal and abnormal operating status were created
from acoustic signals received from a machine and converted into spectrogram graphics.
These images were analyzed by deep learning method. With this analysis, modeling and
classification of ship engine faults-failures were provided by using acoustic data sets.
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1. GIRIS

Makinelerin ¢alisma durumunun takibi ve olasi arizalarin tespiti i¢in gelistirilen
yontemler son yillarda biiyiik ilgi gormekte ve bu sayede ¢esitli endiistri dallarinda biiyiik
ekonomik faydalar elde edilmektedir. Makinelerin ¢aligmasina iliskin ¢esitli durum
bilgilerinin analiz edilmesinden 6nce arizalara karsi duyarli bazi faktorler bulunabilir. Bu
faktorlere dayanarak meydana gelen hatalar, giivenilir bir sekilde belirlenebilmekte ve

makinelerin ¢aligmasina iligkin egilimler tahmin edilebilmektedir.

Makinelerin durumunu takip etmenin endiistride 6nemli etkileri oldugundan, uzman ve
pratik bakim alaninda biiyiik ilgi gérmiistiir (Widodo ve Yang, 2007). Sistem bakimi ve
proses otomasyonu diisiiniildiigiinde makinelerin ¢alisma durumunun takip edilmesi
onemlidir (Lou ve Loparo, 2004). Makinelerin ¢alisma durumunun takibi, 6zellikle
donerek ¢alisan makinelerin saglamlig1 ve bakim gereksinimleri hakkinda 6nemli bilgiler
saglamakta ve bircok endiistriyel uygulamada kullanilmaktadir (Huang, 2001). Hata
tespit sistemleri temel olarak titresim ve teknolojik parametre dlglimlerine dayanan
herhangi bir makinede kullanilabilir (Vasylius, Didziokas, Mazeika ve Barzdaitis, 2008).
Ekipmanin mekanik durumunu izlemek igin titresim, sicaklik, yaglayici kalitesi ve
akustik emisyon gibi parametreler uygulanabilir. Hata tespiti, mevcut bir sistemin
giivenilirligini ve kullanilabilirligini artirmaktadir. Cesitli arizalar nispeten yavas bir
sekilde azaldigindan, erken donemde ariza teshisi onemli bir potansiyele sahiptir

(Moosavian, Ahmadi, Tabatabaeefar ve Khazaee, 2013).

Denizcilik endiistrisi, diinya ¢apinda iiretilen mallarin toplu tasimaciligindan sorumlu
olmasina ragmen, son zamanlarda gemilerin giivenilirliginin, kullanima uygunluklarinin
ve karliligmin artirilmasini arastiran yeni yaklasimlar gelistirilmistir (Lazakis ve Olger,
2015). Denizcilik diger endiistrilerle karsilastirildiginda, farkli kosullardaki benzer
ekipmanlarin farkli ariza modelleri ortaya ¢ikmasi nedeniyle veri havuzlamasi her zaman
mimkiin olmamaktadir. Ayrica siirekli yeni ekipmanlarin ortaya c¢ikmasi ve bu
gelismenin gegmisteki kayitlar: gecersiz kilmasi da 6nemli bir sorundur. Bunun yan sira,
veriler standartlastirilmis bir sekilde toplanmamaktadir. Boylece hem daha bilingli ve
etkili karar alma saglanirken, hem de teknolojik gelismeler, siirekli ¢alisan ekipman ve
yiiksek bakim maliyeti agisindan gelismis bakim tekniklerine biiytik ilgi uyanmasina yol

acmustir (INCASS, 2015). Raza ve Liyanage (2009) gemilerde mevcut durum izleme



programlarinin bir pargasi olarak akilli tekniklerin test edilmesi ve uygulanmasi i¢in artan
bir talebin var oldugunu belirtmisglerdir. Veri miktari, tliri ve bunun ne siklikta toplanmasi
gerektigi ve nasil ortaya ¢iktigi sorusu, her ne kadar bakim semalar1 benimsenmis olsa da
kayitli operasyonel bilgilerin islenmesi, analizi ve kullaniminda sorunlar oldugunu
gostermektedir. Glinlimiizde gemi makinelerinde kullanilan sensdrler tarafindan toplanan
veriler sicaklik, basing, akis, titresim ve akim sensorleri gibi onemli miktarlarda 6l¢im
parametresi icermektedir. Uzay-zamansal veri kiimelerindeki i¢sel oriintiileri kesfetmek,
ortaya ¢ikarmak ve genellestirmek i¢in kiimeleme algoritmalar1 6nemli rol {istlenmektedir

(Hagenauer ve Helbich, 2013).

Nideerlinski’nin 1971 yilinda arizali bir sistemdeki kontrol problemini ¢ézmek ig¢in
integral kontrol yontemi teorisini ortaya atmasindan itibaren birgok hata toleransl kontrol
yontemi gelistirilmistir. Giiniimiizde hata analizlerine iliskin yapilan bu arastirmalar,
mithendislik alanindaki 6nemli aragtirma konularindan biri haline gelmistir (Tang ve Yao,
2005; Xie, Wang, He, Diallo ve Claramunt, 2020). Literatlirde kestirimci (predictive)
bakim olarak adlandirilan uygulamalar, gemilerin fiziksel durumunu kontrol etmek i¢in
denizcilik alanindaki giincel egilimler arasindadir. Burada hata analizi, durum ve stiregler
izlenerek gemilerdeki 6nemli sistemlerde uygulanmaktadir. Durum ve siire¢ izlemenin
amaci, incelenen sistemin durumunu (arizali, bozulmus vb.) degerlendirmek ve gelisen
hatalar1 tespit etmek icin belirli gemi sistemlerinden alinan bilgileri kullanmaktir
(Kobbacy, 2008; Mohanty, 2015). Bakim isleminin basarili bir sekilde uygulanmasi;
verilerin kalitesine, sistem durum degerlendirmesine ve ariza tespiti i¢in kullanilabilen
cesitli algoritmalarin uygulanabilirligine baghdir (Cheliotis, Lazakis ve Theotokatos,
2020). Ote yandan gemi bakimi, gemicilik endiistrisinin giivenilirlik ve kullanilabilirlik
dizeylerini etkilemekte ve bir geminin operasyonel giderlerinin  %20-%30’unu
olusturmaktadir. Ayrica gemi bakimi ariza siliresini en aza indirebilen ve isletme
maliyetlerini diigiirebilen O6nemli bir gemi yasam dongisi faktoridiir (Lazakis,

Raptodimos ve Varelas, 2018).

Ozellikle teknolojinin gelismesine paralel olarak makine ogrenmesine yonelik
calismalarin sayis1 artmistir. Makine 6grenmesi modeli ve modelden elde edilen verilerin
dagilimlari, ¢cogunlukla bir hatayr minimum yaparak islevini en aza indirerek modelleri
egitir. Egitilen modeller, modeldeki siniflardan benzer olan siniflara tahminde bulunmak

i¢in uygulanmaktadir (Aydin, 2018).



Son yillarda gemi makinelerinde makine 6grenmesine yonelik pek ¢ok arastirma goze
carpmaktadir. Gemi makinelerine yonelik literatiirdeki ¢aligmalarda karar agact metodu
(Saatgioglu, Goksu, Yiiksel ve Giilmez, 2017), dalgacik doniistimii (Li, Monti ve Ponci,
2014), zaman serisi (Makridis, Kyriazis ve Plitsos, 2020) ve yapay sinir aglar1 (Pantelelis,
Kanarachos ve Gotzias, 2000; Koroglu, 2007; Guoqiang, 2018; Pal, Datta, Segev ve

Yasinyac, 2019) gibi farkli yontemlere yer verilmistir.

Bu arastirmada kullanilacak Yapay Sinir Aglar1 (YSA), beyin gibi biyolojik sinir
sistemlerinin bilgiyi isleme seklinden esinlenen bir bilgi isleme paradigmasidir. Bu
paradigmanin en dnemli unsuru, bilgi isleme sisteminin yeni yapisidir (Zhongling, Ning
ve Yan, 2005). Bu sistem, belirli problemleri ¢dzmek icin birlikte galisan birbiriyle
baglantili ¢ok sayida islem elemanlarindan (ndronlardan) olusmaktadir. Sinir aglari,
karmagik veya kesin olmayan verilerden anlam c¢ikarma konusundaki gii¢lii yoniiyle
desenler/oriintiiler ¢gikarmak ve insanlar ya da diger bilgisayar teknikleri tarafindan fark
edilemeyecek kadar karmasik olan egilimleri tespit etmek i¢in kullanilmaktadir (Zhou ve
Xu, 2011). Ogrenme ve adaptasyon, belirsiz ortamlarda sistemlerin performansini
iyilestirmek amaciyla geri bildirim kontrol sistemleri i¢in Onemli becerilerdir.
Uyarlanabilir sinir ag1 kontrolii ile iliskili bir diger 6nemli konu ise, geribildirim kontrol
sistemlerinin performansini iyilestirmek i¢in “yaparak 6grenme” ve “Ggrenilen bilgilerle

yapma” anlamina gelen 6grenme becerisidir (Dai, Wang ve Wang, 2016).

Bu tez c¢alismasi, sonu¢ boliimii de dahil olmak iizere bes bolimden olusmaktadir.
Calismanin birinci boliimiinde bu tezin amaci anlatilmis ve gemi arizalari hakkinda
yapilan literatiir taramasina yer verilmistir. Ikinci bolimde gemi sistemleri hakkinda bilgi
verilmekte ve tezde kullanilan veri kiimeleri ile kullanilan yontemler agiklanmaktadir.
Uclincti bolimde Gnerilen sistemin gergeklestirilme sekli ve sonuglar sunulmustur.
Dordincu bolumde kullanilan yontemlerin karsilastirilmasi verilmistir. Besinci bolimde

sonuglar ve gelecekteki calismalara yonelik 6neriler sunulmustur.



1.1. Amag

Denize kiyisi bulunan iilkelerin ekonomik, politik ve g¢evresel kararlari daha tutarh
alabilmesi i¢in mevcut gemiler iizerinde bulunan sistemleri hakkinda daha fazla analize
sahip olmasi gerekir. Bu sebeple biiyiik maliyetler harcadiklar1 sistemleri daha uzun siire
kullanmalarina katki saglayabilecegi diisiiniilmektedir. Bu tez calismasinin amaci;
makine O0grenmesi algoritmalarinin gemi sistemleri lizerindeki hata olasiligi tahmin
yeteneklerini degerlendirmektir. Bu tezde yapilacak c¢alisma ile gemi makinelerinin
makine 6grenmesi algoritmalarini kullanarak bir sonraki bakim onarim zamanini tahmin

edebilecek alternatif bir model gelistirmek miimkiin kilinacaktir.

Bu ¢aligmada regresyon ve siniflandirma algoritmalart kullanilmistir. Yapilan ilk analizde
en dogru algoritmanin secilmesi zor olacagi i¢in sekiz (8) farkli regresyon algoritmasi
secilmistir. Ikinci analizde ise akustik sinyallerden olusturulan spektrogram goriintiileri
evrisimsel sinir aglari algoritmasi ile analiz edilmistir. Yapilan ¢aligma ile mevcut gemi
sistemlerinin hata oranlarini tahmin ederek bakim onarimu ile ilgili bilgiye ulasilacaktir.
Boylece makine 6grenmesi algoritmasi kullanim alanlarinin genisletilmesi ve yapilacak
olan bakim onarim zamaninin gercege daha yakin olmasi hedeflenmektedir. Modelin
performansi degerlendirildikten sonra gemiler lizerindeki sistemlere entegre edilmesi
hedeflenmektedir. Sonu¢ olarak da mevcut sistemlerin hata oranlar1 belirlenecektir.
Ortaya ¢ikacak olan sonuglara bakilarak bakim onarimin zamanlar1 i¢in yorumda
bulunulacaktir. Buna bagli olarak da gemi sistemlerinde, sistemlerin bakim onarim ve

hata olasiliklarinin bilinmesi kullanilabilirligi arttiracak ve maliyet azalacaktir.
1.2. Gemi Makinelerinde Hata Analizi ve Makine Ogrenmesi

Arastirmanin girig boliimiinde belirtildigi gibi, gemi makinelerinde hata analizi ve makine
ogrenmesine iligkin son yillarda bir¢ok ¢aligmanin goze ¢arptigi tespit edilmistir. 2000°1i
yillarin basinda yapilan caligmalardan Pantetelis, Kanarachos ve Gotzias (2000)
gemilerde rotor, temel ve hidrodinamik yataklardan sinir aglar1 ve gergek titresim verileri
kullanarak hata analizi yapmak amaciyla basit sonlu eleman modelleri olusturmuslardir.
Caligmada tiim sistemin dinamik simiilasyonlarima dayanan basit ve gercek¢i sonlu

eleman modellerinin gelistirilmesi dogrultusunda, fiziksel simiilasyonlarin ve dl¢timlerin



yapay sinir aglar1 ile birlestirilmesi sayesinde fiziksel temelli ve daha detayl hata 6l¢iimii

yapilabildigi belirlenmistir.

Koroglu (2007) tarafindan yapilan arastirmada stifnerli bir panelin tasarim parametreleri
kullanilarak yapay sinir aglariyla burkulma modellemesi yapilmistir. MATLAB Neural
Networks Toolbox yazilimi kullanilarak yapilan analizde Levenberg-Marquardt yontemi
ve ag budama yaklagimi kullanilmistir. 12 ndron igeren agda 30 adet verinin ortalama
hatas1 %23 bulunurken, 350 adet veride bu oran %1,5’e diismiistiir. Noron sayisinin
performansa etkisi incelendiginde, 24 néronun hata oran1 %4,3 bulunurken 8 néron %2,1
hata orant ile en iyi performansi gostermistir. Ceyrek 2k, merkezi kompozit ve yapay sinir
aglart ortalama performanslar1 karsilastirildiginda ise, 250 veri igeren yapay sinir

aglarmin %1,90 hata orani ile en iyi sonucu verdigi tespit edilmistir.

Li, Monti ve Ponci (2014) dalgacik doniistimii coklu ¢ ziiniirliiklii analiz yontemini yapay
sinir aglar ile birlestirerek, orta gerilim DC gemi gii¢ sistemlerinde bir hata algilama ve
siiflandirma teknigi incelemislerdir. Hata sinyallerinin farkli ¢oziiniirliik seviyelerindeki
enerji degisimi Oznitelik vektorleri olarak secilmistir. Analiz ve karsilastirmalarda
Daubechies 10 (db10) dalgacik fonksiyonu ve 9. ayrigma seviyesi kullanilmistir. Hata
tirlerini ¢ikarilan 6zelliklere gore otomatik olarak siniflandirmak igin yapay sinir agi
kullanilmistir. Hem DC hem de AC i¢in kisa devre arizalar1 ve toprak arizasi gibi farkl
ariza tiirleri, 6nerilen yontemin etkinligini dogrulamak igin test edilmis, bu hatalar dijital
simiilator ile gercek zamanli olarak simiile edilerek elde edilen veriler MATLAB ile
analiz edilmistir. Calisma sonucunda benimsenen yontemin farkli frekans bantlarinda
sinyal bilesenlerini ¢ikarmak i¢in verimli oldugu, sinir aginin gemi makine 6zelliklerini
karsilastirmada daha akiler bir yontem oldugu, 6nerilen algoritmanin daha az veri girdisi
icermesi nedeniyle hesaplama yiikiinii azalttig1, yliksek dogruluga sahip olmakla birlikte
cesitli hatalara kars1 dayanikli oldugu, performansin hata direnci ve yiikler gibi elektrik

parametrelerindeki degisikliklerden etkilenmedigi belirlenmistir.

Coraddu ve ark. (2015) gemilerde gaz tlrbini tahrik sisteminde kosullara bagli bakim
acisindan makine 0grenme modeli sunmuslardir. Gaz tiirbini ve kompresorlerde 10, 25,
50, 100, 250 ve 500 6grenme degerleri i¢in diizenlenmis en kiiciik kareler ve destek vektor
regresyonu yontemleri karsilastirilmistir.  Karsilastirma sonucunda destek vektor

regresyonunun ortalama hatasi daha kiigiik bulunmus ve varyans degerleri, 6§renme seti



degistikce bu yaklasimin diizenlenmis en kiiciik kareler yonteminden daha kararl
oldugunu gostermistir. ki bozulma faktdriiniin eszamanli varyasyonlarina ragmen,
O0grenme sayisi arttik¢a hatanin egiliminin 6nemli 6l¢iide azaldigi belirlenmistir. Bunlarin
yani sira diisiik hata oranlar1 elde etmek icin yaklagik 100 veriye ihtiya¢ duyuldugu

sonucuna varilmistir.

Saatgioglu, Goksu, Yiiksel ve Giilmez (2017) yaptiklar1 arastirmada farkli tilkelerde
yayinlanmis kaza raporlarini inceleyerek, gemilerde makine dairelerinde farkli kaza
faktorlerini, kaz olusum sikliklarin1 ve nedenlerini karar agaci yontemi kullanarak
belirlemiglerdir. Arastirma bulgularina gore, tiim makine dairesi kazalarinin
%90,43’{iniin insan hatasindan kaynaklandig: tespit edilmistir. insan kaynakl1 hatalarin
ana nedenlerinin temel egitim ve deneyim eksikligi, yorgunluk ve asir1 is yiikii oldugu
belirtilmistir. Kazalara neden olan diger faktdriin ise tasarim ve iiretim hatalar1 oldugu

gorilmiistir.

Bilgili (2018) yaptig1 arastirmada kuru yiik gemilerinin raporlarina dayanarak sefer
stiresi, makine ¢alisma devri, gemi hizi, hava durumu, deniz durumu ve ortalama draft
verilerini girdi olarak kullanmis ve ¢ikt1 olarak emisyon verisini iceren yapay sinir ag1
modellemesi yapmustir. En 1yi sonucu saglayan yapay sinir ag1 modeli araciligiyla
ulagilan emisyon degerleri ile gergcek degerler arasindaki ortalama fark %1,57 olarak
bulunmustur. Bu emisyon verisi daha sonra yakit maliyet analizinde kullanilmis, boylece
gemilerin daha yumusak iklimi sartlarina sahip rotalarda daha az emisyon ortaya ¢iktig1

tespit edilmistir. Dolayisiyla cevresel ve ekonomik performans artirilmigtir.

Oztanir (2018) yapt1g1 arastirmada kestirimci bakimla kalan faydali dmriin hesaplanmasi
ve bakim takviminin planlanmasin1 amaclamistir. Kalan faydali 6miir hesaplamasinda
regresyon analizi kullanilmistir. Turbo fan jet motoruna ait agik veri kiimesinde makine
dgrenmesi ve yapay sinir ag1 yontemleri kullanilmustir. iki farkli veri kimesinin egitimi
ile modeller olusturularak, performanslar ortalama degerler ile karsilastirilmistir.
Regresyon yaklasiminda tekrarlayan sinir agi tiirevi olan Uzun Kisa Siireli Bellek
kullanilarak olusturulan model, diger yontemlere gére anlamli sekilde daha basarili

sonuglar tiretmistir.

Elidolu (2019) gemi personelinin emniyetli ¢calisma yonelimlerini makine 6grenmesiyle

tahminlemeyi amaclamistir. 115 kisiye uygulanan ¢evrimigi anketler sonrasinda ulasilan



verilere makine Ogrenmesi uygulanarak test verisini tahminlemesi hedeflenmistir.
Makine 6grenmesi kapsaminda ¢oklu dogrusal regresyon, karar agaci regresyonu, destek
vektor regresyonu ve rastgele orman regresyonu yontemleri kullanilarak performanslari
karsilastirilmistir. Emniyetli ¢alisma davranisi ve ¢alisma memnuniyeti tahminlemede
coklu dogrusal regresyon yonteminin basari orani sirasiyla %95,95 ve %90,83 bulunmus

ve diger yontemlere gore daha iyi sonug vermistir.

Pal, Datta, Segev ve Yasinyac (2019) bir firkateyn izerine monte edilmis gaz tiirbininin
kompresor bozulma katsayisini ve tiirbin bozulma durumu katsayisini modellemek ve
tahmin etmek icin yapay sinir agi ve temel bilesen analizi yapmislardir. Giris
parametreleri gaz tiirbinine ait parametreler, ¢ikis parametreleri ise gaz tlrbin kompresor
ve tlirbin bozulma durumu katsayilaridir. Cok sayida girdinin varligi nedeniyle daha fazla
gizli katmana ihtiya¢ duyulmus ve derin bir sinir aginin uygun oldugu ortaya ¢ikmaistir.
Simiilasyon sonucunda Onerilen modellerin birgogu, deniz tahrikinin gaz tlrbininin
bozulma durumu katsayilarini tahmin etmistir. Calisma sonucunda giris ve ¢ikigla orantilt
olarak siirekli azalan gizli katman boyutunun, diger sinir ag1 mimarilerinden daha iyi
performans gosterdigi belirlenmistir. Ayrica yapay sinir ag1 bulgularinin bir¢ogu, yapay

sinir ag1 ve temel bilesen analizi kombinasyonundan daha iyi performans gostermistir.

Ates (2020) gemilerde T seklindeki birlesim noktalarinda meydana gelen gerilme
yigi1lmas1 tahminini kaba ag yapis1 ve makine 6grenmesi ile gerceklestirmistir. Kaba ag
yapili analizden elde edilen gerilmelerin dagilimi, varyansi, ag boyutu, maksimum
gerilmesi gibi parametreler makineye Ogretilerek referans gerilme degeri tahmin
edilmistir. 200 veri i¢in yapilan analizlerde yaricapin degismesi hata oranini etkilemistir.
En az hata orani, 0.2 ve 0.4 yaricap degerlerinde bulunmustur. En iyi degerleri veren
yarigaplarla 2000 veri modeli ¢alistirilmis ve kullanilan yontemlerden en iyi sonucu
Gauss siireci regresyonu vermistir. Gauss siireci regresyonu ardindan en iyi sonuglar
sirasiyla gradyan artirici regresyon, rastgele orman regresyonu, karar agaci regresyonu ve

Ridge regresyonu ile elde edilmistir.

Kimera ve Nangolo (2020) makine 6grenmesi ile bir erken bakim/ariza uyari sistemine
yonelik kestirimei yaklagim saglamay1 amaglamislardir. MATLAB araciligiyla verilerden
cikarimlar elde etmek i¢in baglantt pompasi ¢alisma parametrelerini iglemek ve analiz

etmek icin bir makine 6grenimi metodolojisi kullanilmistir. Pompanin c¢alisma



parametreleri i¢in hangi parametrelerin pompa arizasini dogru bir sekilde tahmin
edecegini tanimlamak amaciyla temel bilesen analizi gergeklestirilmistir. Geri basing,
akis hizi, amper, doniis hiz1 (RPM) ve emme basinci 40 hafta siireyle izlenmis, baglanti
pompasinin 7. ve 8. haftalar arasinda arizalanabilecegi veya bakim gerektirebilecegi
Ongoriilmiistiir. Bu tahmin, baglantt pompasinin arizalanmasi igin gergek siire olan 9
haftadan farklilik gostermistir. Gergek ariza siiresinden ortaya ¢ikan %13,85°lik bu

sapmanin, kaydedilen igletim verilerinin kalitesine ve verinin az olmasina baglanmistir.

Raptodimos ve Lazakis (2020) bir geminin ana motor silindirinin egzoz gazi ¢ikis
sicakliginin gelecekteki degerlerini tahmin etmek i¢in Digsal Girdili Dogrusal Olmayan
Otoregresif (NARX) yapay sinir agi gelistirmiglerdir. NAR ve NARX modelleri
kullanilarak tahminlerde yiiksek dogrulugu saglanmistir. NAR modellerinin dogruluguna
kiyasla, NARX modellerinde digsal girdi olarak ana motor devri tanitilarak tahmin
dogrulugunun %35’e kadar artirilabilecegi goriilmiistiir. NAR modelinde 23. saat tahmini
ile gergcek egzoz gazi ¢ikis sicakligi degeri arasindaki mutlak hata %38,10’a esitken,
NARX modeli i¢in sonug %4,52°lik mutlak hata ile sonu¢lanmis, diger bir ifadeyle hata
oraninda %33,58 biiyiikliiglinde bir azalmaya yol agmistir. Modelde ortalama mutlak

yiizde hatasi %4,64°ten %1,02’ye diistiriilmistiir.

Uyanik, Karatug ve Arslanoglu (2020) bir konteyner gemisinde yakit tiikketimi i¢in ¢oklu
dogrusal regresyon, Ridge ve LASSO regresyonu, destek vektor regresyonu, karar agaci
algoritmasi, boosting algoritmalar1 gibi ¢esitli tahmin modelleri kurmustur. Modellerin
dogrulugu, K-katlamali capraz dogrulama ile belirlenmistir. Tahmin modellerinin
dogrulugunu degerlendirmek igin kok ortalama kare hatasi, ortalama mutlak hata, R? gibi
hata metrikleri kullanilmis ve degiskenler arasi korelasyon analizi yapilmistir. Ana motor
devri, ana motor silindir degerleri, saft gostergeleri gibi parametreler yakit tiiketimi ile
yiiksek oranda iligkili bulunmustur. Cesitli dis faktorlerin etkisi altinda gergek yakit
tiikketimi verilerine en yakin tahmin; 0.0001 ortalama karekok hata, 0.002 ortalama mutlak
hata ve R?=%99,9 katsayis1 ile ¢oklu dogrusal regresyon ve Ridge regresyon ile

saglanmustir.



2. MATERYAL VE YONTEM

Bu bolimde 6ncelikle gemi makineleri sistem modeli hakkinda bilgi verilecektir. Bolim
2.1.2’de giiriiltii modeli anlatilacaktir. Makine 6grenmesi kavrami ve yontemleri bolim
2.2°de agiklanacaktir. Arastirmada kullanilan diger yontem olan derin 6grenme modeli

ise bolim 2.3’te anlatilacaktir.

2.1 Gemi Makineleri

Bu boélimde c¢alismada kullanilan veri kiimeleri agiklanacaktir. Calismada iki tip veri

kiimesi kullanilmistir.

[k veri kiimesi dizel elektrik ve gaz makinesi ile karakterize edilmis LM-2500 tipi gemi
motorundan alinan verilerdir. Bu veriler basing, hiz, sicaklik, tork, akis ve devir hizi
verileridir. Bu veriler ile regresyon ve yapay sinir aglart modelleri kullanilarak gemi
motorunun tirbin bozulma katsayis1 tahmin edilmistir. Arastirmada kullanilan birinci veri

kilimesine ait blok sema Sekil 2.1’de gosterilmistir.

Kacar Adaclan |
Regresyon ‘

Rasgele Orman '
Regresyon

‘ K-En Yakin Komgu
‘ Regresyon o

Dofrusal Destex
Vekadr Makinelen
Regresyon

Regresyon
Bayesian Ridge
Rogresyon

‘ Yapay Sine Adlan

Sekil 2.1. Birinci Veri Kiimesine Uygulanan Islemler

Ikinci veri kiimesi havuz pompa makinesinden alinan normal ve anormal ses veri

kiimesidir. Bu veri kiimesinde ses verilerinin spektrogramlarinin grafikleri ¢ikarilmis ve



bu grafikler goriintli olarak .png formatinda kaydedilmistir. Daha sonra bu goriintiiler
ESA algoritmasi ile egitilmistir ve normal ve anormal sesler tahmin edilmistir. Havuz
pompa makine veri kiimesi ile elde edilen bu model ile gemi makinelerinin de ses
analizinde kullanilmas1 amag¢lanmaktadir. Arastirmada kullanilan ikinci veri kiimesine ait

blok sema Sekil 2.2°de gosterilmistir.

Akustik Sinyal Veri
Kimesi

Spektrogram

FFT Donisiim Goriintisii I )

Egitim Veri Kimesi Test Veri Kimesi

Gergek Verilerin ve Tahmin Edilen
Degerlerin CNN Modeli ile CNN Modeli
Dogrulugunun Belirlenmesi

Sekil 2.2. ikinci Veri Kiimesine Uygulanan Islemler

2.1.1 Gemi Makineleri Sistem Modeli

Gemi makine dairesi, tanklar, ambarlar, pik tanklari, dabilbatim, yasam mahalleri,

kopriiiistii, portug, zincirlik, kirlangi¢ ve kasaradan olusmaktadir.

Koprausta

Bas Ustu

S

Yasam Mabhalleri

Kig Ustil \

——  Zincitlik
Kig Pik Tanki —s Makine
Dairesi \
Bas Pik Tanki
Kig Gatisma
Perdesi \ ! d \ AN By Crbgma

\ \ \/ \ Perdesi

S Tol Makine Dairesi S irme
u Gegirmez u Gegirmez Dabil Batim

Dabil Batim Perdeler Catisma Perdesi  Perdeler

Sekil 2.3. Bir Geminin Yapisinda Bulunan Béliimler
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Makine dairesi, geminin makinelerinin bulundugu ana bdlmedir. Makine dairesinde ana
makineler, yardimc1 makineler, kontrol odasi, kontrol paneller ve atolyeler bulunur. Gemi
ana makinesi, gemiyi hareket ettiren giicii iireten makinelerdir. Gegmiste pervane veya
jetleri tahrik ederek tahrik saglayan gemi ana makine sistemleri, gliniimiizde gemi tipine
ve boyutuna bagli olarak buhar motoru, buhar tiirbini, i¢ten yanmali motor veya gaz
tarbini olabilmektedir. Bu ama¢ disindaki tiim sistemler yardimci makineler olarak
tamimlanir. Yardimc1 makinelere jenerattrler ve kompresorler 6rnek verilebilir. Jenerator,
geminin elektrigini iireten sistemdir. Bagimsiz makinelerde oldugu gibi, genellikle
geminin kardan saftina aktarilan giicii kullanan saft jeneratorleri kullanilir. Genellikle
alternator ve dizel motordan olusan bir sistemdir. Kompresor, genellikle hava veya diger

gazlar1 atmosfer basincindan daha yiiksek basinglara sikistirmak icin kullanilan bir

makinedir.
‘. ©))
1-Ana makine 5-Piston stkiim kaldiracy 9-Depo vinei
2-Digli kutusu (Redaksinger)  6-Kaldirag baglanti {initesi  10-Ana yatak krikosu
3-Yedek parca amban 7-Calistirma linitesi 11-Supap siikme aparati
4-Atdlye &-Piston tasima kovam 12-Makine dairesi dip sac

Sekil 2.4. Ana Makine ve Pervane Arasinda Bulunan Gemi Elemanlari

Sekil 2.4’te pervane ve devre elemanlarini bulunmaktadir. Bu goérselde bir geminin ana
makinadan pervaneye kadar olan boliimleri vardir. Gemide giiciin ana makinelerden
pervaneye kadar aktarilmasini saglayan sistemlere itici sevk sistemleri denir. itici
sistemlerinin ¢alismasi su sekilde gergeklesir; Ana makinenin ¢aligsmasi ile elde edilen
dairesel hareket krank saft ve disliler (reduction gear ya da sanziman) aracilig1 ile hareketi
srast yatagina ve ara safta, oradan da stern tiipten pervane saft1 kanaliyla pervaneye iletir.

Pervanenin hareket etmesiyle de geminin hareket etmesi saglanir.
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Bu ¢aligmada kullanilan veriler bir Gaz Tiirbini (GT) sevk tesisi ile karakterize edilen bir
deniz gemisinin (Firkateyn) sayisal bir simiilatorii vasitasiyla gergeklestirilmistir. Bu
gozlemler 15181nda, mevcut veriler olas1 gercek bir gemi ile uyum igindedir. Kullanilan
veritabani, MATLAB Simulink'te gelistirilmis, test edilmis ve dogrulanmistir.
Simiilatérde olusturulan farkli bloklar (Pervane, Muhafaza, GT, Disli Kutusu ve
Denetleyici), yil boyunca birkag benzer gercek siiriicii tesisinde gelistirilmis, ince ayar
yapilmis ve test edilmistir. Kullanilan veri tabaninin olusturuldugu gemi makine ve
pervane ornegi Sekil 2.5’te gosterilmistir. Bu sistemde LM-2500 tipi ana motor

kullanilmistir. Burada 2 adet pervane ve 1 adet gaz tlrbini bulunmaktadir.

Pervane

GT - LM2500
Elektrik

J
Motoru ‘ﬂ-llll-
Ana Rediksiyon
="M | Diglisi

Sekil 2.5. Arastirmada Kullanilan GT ve Pervane Yapilar: (Coraddu ve ark. (2015))

Arastirmada kullanilan LM-2500 gaz turbini motor gorseli Sekil 2.6’da gosterilmistir.
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Sekil 2.6. LM-2500 Motorunun Yapisi (Coraddu ve ark. (2015))
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LM-2500 motorda, hava ilk 6nce havanin basingli oldugu kompresore girer (parametre
12) ve 1sinir (parametre 9). Basingli havaya (parametre 16) yakit eklenir ve yanma, yiiksek
gucli (YG) tiirbin iginden akan daha da yiiksek basing olusturur. Burada basing ve
sicaklik (parametre 10 ve parametre 11) kaydedilir. YG tiirbini dakika basina doniis
(RPM) olarak Olculen gaz ureteci saftina giic verir ve dondurir (parametre 5). YG
tiirbinini terk eden gazlar, torkun oldugu diisiik gii¢ (DG) turbine akar (parametre 3) ve
hiz (parametre 4) izlenir. Parametre 14 itici motor i¢in yakit akis yiizdesi anlaminda
yakitla ilgilidir. Kol konumu (parametre 1) geminin hizin1 (parametre 2) kontrol ve bu
sisteme giren tek kullanicidir ve geminin hizin1 kontrol eder. Yaklasik olarak 3 kol
konumu 1 gemi hizina esittir. Parametre 17 ¢ikis parametresidir. Trbin bozulma durumu
katsayisi, 16 Oznitelik vektorii analiz edilerek dnceden belirlenir ve tirbin bozulma
durumu katsayisi hesaplanir. Tirbin bozulma durumu katsayist 0,975 ile 1 arasinda

optimize edilmistir.

Arastirmada kullanilan veri kiimesindeki model, kombine dizel elektrik ve gaz
(CODLAG) makinesi ile karakterize edilmistir. Bu modelde, bir geminin birden ¢ok
bileseni ve alt sistemi modellenmistir. Olusturulan veri kiimesi 589.223 gézlemden ve 17

ozellikten olusmaktadir. Kullanilan parametreler Tablo 2.1°de verilmistir.

Tablo 2.1. Arastirmada Kullanilan Parametreler

No. Parametreler Birim
1 Kol konumu [Ip]
2 Gemi hizi [knots]
3 Gaz tiirbini saft torku (GGT) [kN]
4 Gaz tiirbini devir hiz1 (GTn) [rpm]
5 Gaz jeneratorii devir hizi (GGn) [rpm]
6 Sancak pervane torku (Ts) [KN]
7 Iskele pervane toku (Tp) [KN]
8 Y G Tiirbin ¢ikis sicakligi (T48) [C]
9 GT kompresor giris hava sicakligi [C]
10 GT kompresor ¢ikis hava sicakligi [C]
11 Y G Tiirbin ¢ikis basinci (P48) [bar]
12 GT kompresor giris hava basinci [bar]
13 GT kompresor ¢ikis hava basinci [bar]
14 Gaz tiirbini egzoz gazi basinci [bar]
15 Turbin enjeksiyon kontroli (TIC) [%]
16 Y akit akis1 (mf) [kg/s]
17 GT tlrbin bozulma durumu katsayisi -
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Kullanilan parametrelere ait 6rnek bes (5) deger Tablo 2.2°de verilmistir.

Tablo 2.2. Arastirmada Kullanilan Ornek Parametre Degerleri

Parametreler Deger 1  Deger 2 Deger 3 Deger 4 Deger 5
Kol konumu 6.175 2.088 6.175 1.138 9.3
Gemi hiz1 18 6 18 3 27
Gaz tiirbini saft  29791.09 6441.58 29761.84 2065.65 72769.61
torku (GGT)

Gaz turbini devir  2307.427  1355.95 2306.842 1401.12 3560.4
hiz1 (GTn)

Gaz jeneratoric  8819.747 6771.17 8792.163 6678.14 9743.582
devir hiz1 (GGn)

Sancak pervane  246.271 = 24.434 246.018 10.457 645.07
torku (Ts)

Iskele pervane 246.271 24.434 246.018 10.457 645.07
toku (Tp)

YG Tiirbin ¢ikis 761.14 589.657 770.037 496.166 1052.557
sicakhigi (T48)

GT kompresor 288 288 288 288 288
giris hava sicakhg

GT kompresor 664.474  567.062 664.637 553.649 771.195
cikis hava sicakhig

YG Tiirbin cikis 2.505 1.312 2514 1.172 4531
basinci (P48)
GT kompresor 0.998 0.998 0.998 0.998 0.998
giris hava basinci
GT kompresor 13.113 7.045 13.319 6.305 22.631
cikis hava basinci
Gaz turbini egzoz 1.031 1.02 1.031 1.019 1.051
gazi basinci
Turbin enjeksiyon  33.433 18.963 34.108 0 87.417
kontrolt (TIC)
Yakat akis1 (mf) 0.662 0.256 0.675 0.121 1.73
GT turbin 0.997 0.996 0.983 0.986 0.992
bozulma durumu
katsayisi

Kullanilan veri tabaninda girdi ve ¢ikti degiskenlerinin uygun dagilim gosterdigi
goriilmektedir. Bu durum, calismada sunulan hesaplama yontemlerinin uygulanmasini

kolaylastirmaktadir. Kullanilan veri tabanindan elde edilen histogram grafikleri Sekil
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2.7°de verilmistir. Grafiklerdeki x eksenindeki her sttun verileri temsil ederken, y ekseni

ise ¢ekirdek yogunlugu tahmini igin olasilik yogunluk islevini gostermektedir. Olasilik

yogunlugu, x eksenindeki birim basina olasiliktir. Parametrelerin histogram grafikleri,

verilerin makine 6grenimi modellerine daha iyi uyum saglamasi i¢in hangi yontemin en

uygun oldugu konusunda daha iyi bir fikir vermistir.
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Sekil 2.7. Tiim Parametrelere iliskin Histogram Grafikleri

Bu galismada toplanan veriler egitim seti ve test seti olmak {izere ikiye bollnerek
modeller olusturulmustur. Nihai sonucu iiretmek i¢in egitim seti ve hata oranini tahmin
etmede modelin dogrulugunu gostermek igin test seti kullanilmigstir. Veri kiimesindeki
ozelliklerin 1s1 matrisi Sekil 2.8’de verilmistir. Is1 matrisindeki koyu siyah renk,
degiskenler arasindaki giiglii negatif iligskiyi gosterirken, beyaz renk ise gucli pozitif iliski
oldugunu gostermektedir. Degiskenler arasindaki iliskinin gilicii arttikca renk

beyazlagmaktadir.
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Sekil 2.8. Parametreler Arasindaki Korelasyona Iliskin Is1 Matrisi
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2.1.2 Gemi Makineleri Gurultti Modeli

Endstride hemen hemen her alanda ve her tir makine tzerinde endistriyel makineleri
gormek miimkiindiir. Kullanilan makineler, uygulama alanina goére farklilik
gostermektedir. Bu makinelere pompalar valfler 6rnek verilebilir. Pompa makinelerinin
en ¢ok kullanildig: alanlar havuzlardir. Havuz pompalar1 bir havuzdan suyu tahliye eden
ve havuza su tahliye eden pompalardir. Bu pompalar havuz sisteminin kalbi olarak tarif

edilir.

Havuz pompalar1 havuz igerisindeki sirkiilasyonu saglayan makinelerdir. Bu makineler
havuzdan suyu cekerek pompanin agzinda bulunan filtreler aracilifiyla suyu bocek,
yaprak, dal gibi istenmeyen maddelerden arindirir. Ayni zamanda suyu siirekli devir daim
yaptirdig1 icin bakterilere karst kullanilan havuz kimyasallar1 ve klorun suya esit
miktarlarda dagitilmasini saglar. Ornek bir havuz pompasi makinesi Sekil 2.9°da

gosterilmistir.

Sekil 2.9. Havuz Pompasi Makinesi

Bu c¢alismada makine giiriiltii modeli icin MIMII veri kiimesi kullanilmistir. Bu veri
kiimesi dort farkl tiir makinenin sesini igerir: valfler, pompalar, fanlar ve siirgiilii raylar.
Calismada havuz pompalar1 veri kiimesi kullanilmistir. Veri kiimesinde veriler normal
sesler (5000 saniyeden 10000 saniyeye kadar) ve anormal seslerden (yaklasik 1000
saniye) olugsmaktadir. Anormal seslerin olusumunda gercek hayattaki bir senaryoyu
andirmak icin, cesitli sesler kaydedilmistir (6rnegin, kirlenme, sizinti, donen dengesizlik
ve ray hasar1). Anormal seslere ek olarak gergek fabrikada kaydedilen arka plan
giiriiltiisii, makine sesleri de karistirilmistir. Sesler, 16 kHz 6rnekleme hizi ve 6rnek
basia 16 bit ile sekiz kanalli mikrofon dizisi ile kaydedilmistir. Pompa sesleri 1006

normal ve 143 anormal ses icermektedir.
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MIMII veri kiimesi, gemi motorlarinda elde edilecek akustik verilerin Yapay Zeka (YZ)
ve Makine Ogrenmesi (MO) algoritmalari ile analiz edilmesi i¢in rnek olusturmaktadir.
Bu ¢alisma ile motorun arizali/arizasiz olma durumu kestirilebilecek ve ariza cinsine gore
siniflandirabilecektir. Gemi makinelerinin arizalarinin tespit edilmesi maliyeti, zamani
azaltacaktir. Olusan arizalarinin kisa stire igerisinde tespit edilmesiyle kiikiirt ve kurum
miktarinin azaltilmasi saglanacaktir. Boylece yesil doniisim kapsaminda tilkemize
onemli katki saglanmis olacaktir. Bu durum Avrupa Birligini’nin hedeflerinden biri olan
2050’ye kadar net sera gazi emisyonlariin sifirlanmasi ve ekonomik biiylimenin kaynak
kullanimina bagliliginin sona ermesi” stratejisini desteklemektedir. Béyle bir ¢alismanin

temelini olusturacak olan ariza tespiti iilkemize yenilik getirecektir.
2.2. Makine Ogrenmesi Kavram

Yapay zekanin bir dali olan makine 6grenimi, verilerden karmasik kaliplar1 tanimlamak
ve rasyonel kararlar vermek icin istatistikleri ve bilgisayarlarin bilgi islem giiciini
kullanir. Makine 0Ogrenimi teknikleri, smiflandirma ve regresyon problemlerinde
basariyla kullanilmaktadir (Nguyen, Armitage, 2008). Bazi makine 6grenme sistemleri
insan sezgisine olan ihtiyaci tamamen ortadan kaldirmaya calisirken, bazilar1 insan ve
makine arasinda isbirlik¢i bir yaklasim benimser. Ancak sistemi tasarlayan kisinin
verilerin kodlanma sekline tamamen h@kim olmasi, insan sezgisinin tamamen ortadan
kaldirilmasin1  imkansiz hale getirir. Makine 0&grenimi deneysel algoritmanin

otomatiklestirilmesi olarak goriiliir.

Yapay zekd calismalarinda makine 6grenimi Onemli bir yere sahiptir. Bir sistemin
O0grenme yetenegi yoksa gercekten zeki oldugunu iddia etmek zordur, gecmisteki akilli
sistemler genellikle 6grenme yetenegi yoktur. Bu sistemler bir hatay1 kendi kendine
diizeltemez, deneyim yoluyla performansini iyilestiremez, gerekli bilgiyi otomatik olarak
alamaz ve kesfedemez. Bu nedenle, sadece mevcut olgu ve teoremleri ispatlayabilir,
ancak yeni teorem, kanun ve kurallar kesfedemezler. Yapay zekanin gelismesiyle birlikte,
makine Ogrenimi yapay zekd arastirmalarmin merkezi haline gelmistir. En popiiler
makine 6grenmesi uygulamalar1 dogal dil anlama, Oriintii tanima, bilgisayarla gérme,

akilli robotik ve otomatik akil yiiriitmedir (Xiao, 2015).

Bu uygulamalara ek olarak son zamanlarda yapilan g¢alismalar, gemi sistemlerinin

tahminlemesi i¢in makine 6grenmesinin en elverisli yontem oldugunu gostermistir.
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Yapilan c¢aligmalara bakildiginda hata analizinin yapay sinir aglari modelinin

kullanilmasi ile tespit edilmesini miimkiin kilmigtir.
2.2.1. Makine Ogrenmesinin Cesitleri

Makine 6grenmesi algoritmalar1 dgrenim o6zelliklerine gore Denetimli Ogrenme ve
Denetimsiz Ogrenme olmak iizere ikiye ayrilir. Bu iki grenmeye ek olarak literatiirde

kullanilan Yar1 Denetimli Ogrenme, Takviyeli Ogrenme ve Yogun Ogrenme de vardir.

Bu 6grenme tekniklerinden bazilar1 regresyon ve siniflandirma yaparken bazilari

kiimeleme yapar.

Denetimli 6grenmede, veri kiimesindeki her 6rnek ¢ifti bir giris degeri ve tahmin etmeye
calistigimiz bir ¢ikt1 degeri icerir. Denetimli bir 6grenme algoritmasi altinda egitim seti
analiz edilerek bir tahmin fonksiyonu Uretilir. Bu fonksiyon, érnekleri haritalamak veya
tahmin etmek i¢in kullanilir. Denetimli 6grenme hem siniflandirma hem de regresyon

problemlerinde kullanilir.

Denetimsiz 6grenmede, denetimli 6grenmeden farkli olarak, bir ¢ikis degeri yoktur.
Denetimsiz 6grenmede yalmizca girdi degeri vardir ve amag etiketlenmemis veri
kiimesindeki o©rnekler arasindaki benzerlikleri bulmaktir. Denetimsiz §grenmeyi
gerceklestirmenin iki yontemi vardir. Bunlardan biri, boyut kiictiltmedir. Boyut kigtltme,
cikis degerini bulmak icin degisken sayisimi azaltir. Diger yontem ise kiimelemedir.
Kimeleme, benzer verileri kiimeleyerek tahminde bulunur. Denetimsiz 6grenme, daha

cok veri madenciligi durumudur. Verilerin yapisini tanimlamak i¢in kullanilir.

Bu ¢alismada denetimsiz makine 6grenmesi teknikleri kullanilmistir. Kullanilan teknikler

asagidaki boliimlerde agiklanmistir.
2.2.2 Regresyon Yontemleri

Regresyon analizi, iki veya daha fazla degisken arasindaki baglantiy1 degerlendirmek i¢in
tanimlanan bir analiz yontemidir. Sadece bir degisken ile analiz yapildiginda tek
degiskenli regresyon, birden c¢ok degisken ile analiz yapildiginda ¢ok degiskenli
regresyon olarak isimlendirilir. Regresyon analizi ile degiskenler arasindaki iliskinin

varlig1 ve eger iliski varsa bu iligkinin giicli hakkinda bilgi elde edilir.
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2.2.2.1 Dogrusal Regresyon

Dogrusal Regresyon algoritmasi, bir veya daha fazla bagimsiz degisken ile bagka bir
bagiml degisken arasindaki iligskiyi modellemek ic¢in kullanilan bir yontemdir. Dogrusal

regresyon asagidaki formul ile ifade edilir;
Vi = Bo + B1Xix + BoXip + -+ ,BpXip + € (2.1)

Formilde her tahmin icin i = 1, ..., n kadar, y; tahmin degeridir. 8, tahmin degerinin
kesme noktasinin tahmin katsayisi, 5; X;; e§im tahmincisi katsayisi ve €; artik degerdir.

Satir vektorleri n boyutludur ve siitun vektorleri X matrisi ile ifade edilir.
2.2.2.2 Karar Agaclar1 Regresyon

Karar agaglar algoritmasi, en ¢ok kullanilan makine 6grenme ydntemlerinden biridir.
Karar agaclari, incelenen veri kiimesinin yapisina gore siniflandirma ve regresyon
algoritmasi ile bir agag¢ yapisi olustururlar (Kavzoglu, Sahin ve Colkesen, 2012). Karar
agaclari, bir sorunun ¢dzimdinde ¢ok katmanl ve sirali bir yaklasimla karmasik verileri
fazlara doniistiirerek basit bir karar verme siireci gerceklestirir (Safavian ve Landgrebe,
1991). Karar agaglari, Sekil 2.10’da goriildiigii gibi kok diigiim (dataset) ara diigiim (Agag
1, Agac 2, ...) ve son diiglim (Tahmin 1, Tahmin 2, ...) olmak iizere 3 boéliimden olusur.
Kok diigiim, ana digiimdir. Ara diigiim karar diigiimiidiir. Alinan kararlara gore agaglar
olusturulur. Ara diiglim, ilgili degiskenin sonucuna gore boliiniir. Son digliim yaprak
digliimdiir.
Veri Kiimesi

Agac 1 Agac?2 Afag 3 Agag N
()
Q‘i ~ / \\\A Q
(5/ O b () () O O
/ | !
Tahmin 1 | Tahmin2 | | Tahmin3 |

Tl

Rastgele Orman Agaglar1 Tahmini

Sekil 2.10. Karar Agaclar1 Yapisi
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Karar agaci yapist olusturmadaki temel ilke, verilerle ilgili bir dizi soru sorarak karar
kurallarin1 olusturmaktir. Bu islem i¢in aga¢ yapisinin temel 6gesi olan kok diigiimde
sorular sorulmaya baslanir ve agacin dallanmasi ile aga¢ yapisinin son 6gesi olan

yapraklara ulasilincaya kadar devam eder (Pal ve Mather, 2003).
2.2.2.3 K-En Yakin Komsular Regresyon

K-En Yakin Komsular Regresyon (K-NN) algoritmas1 1967'de T. M. Cover ve P. E. Hart
tarafindan Onerilmistir. Algoritma, siniflar1 bilinen bir 6rnek kiimeden elde edilen
verilerden yararlanilarak kullanilir. K-NN algoritmasinda egitim kiimesindeki 6rnekler n
boyutlu sayisal 6zelliklerle belirtilir. Tiim egitim ornekleri n-boyutlu bir 6rnek uzayda
tutulur ve her 6rnek n-boyutlu uzayda bir noktay1 temsil eder. Bilinmeyen bir drnekle
karsilasildiginda, egitim kiimesinden en yakin k 6rnek belirlenir ve yeni 6rnegin sinif

etiketi, en yakin k komsunun smif etiketlerinin ¢ogunluk oyu ile atanir (Kamber, Pei,

2006).

K-NN algoritmasi, siniflandirma ve regresyon i¢in basit bir yontemdir. Algoritmanin
basitligine ragmen cok iyi performans gosterir ve 6nemli bir kiyaslama yontemidir. K-
NN algoritmasi, egitim verilerini ve bu verilerin siniflarinin konumunu tutar. Yeni gelen
verinin hangi sinifta olacagina karar vermek gerektiginde sorgu verisi ile egitim ornekleri
arasindaki mesafe hesaplanir. En az mesafeli 6rnekler secilir ve daha fazla 6rnek gelen
sif sonucudur (Moosavian, Ahmadi, Tabatabaeefar ve Khazaee, 2013). Ornek veri
kiimesine dahil edilecek yeni verinin mesafesi mevcut verilere gore tek tek hesaplanir.
Ilgili mesafelerden en yakin komsular dikkate almir. Oznitelik degerlerine gore k komsu
veya komsu simnifina atanir. Secilen sinif, tahmin edilmesi beklenen gézlem degerinin
sinifi olarak kabul edilir. Bagka bir deyisle, yeni veriler etiketlenir. Sekil 2.11 bu yontemi
gostermektedir. Sekilde, 2 sinif (cember) ve 2 6zellik (liggen ve daire) iceren bir durumu
gostermektedir. Verinin ait oldugu siif, kiirenin merkezinden olan uzakliga bakilarak
bulunur. Ornegin mesafe = 3 icin bakildiginda 3 birim uzaklik hesaplanir. Bu uzaklik
icteki kicgik cemberi ifade eder ve kiicuk ¢cember 2 licgen ve 1 daire igerir. Diger bir
deyisle kiiclik ¢ember tliggen siifidir. Mesafe = 5 i¢in, biiyilk ¢embere bakilir ve bu

cemberin iginde 11 tiggen ve 9 daire vardir, dolayisiyla sonug yine tiggen sinifidir.
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Sekil 2.11. K-NN Yapis1

K-NN algoritmasi, ¢ok boyutlu bir girdi uzayinda mesafeleri hesaplamak i¢in basit ve
uygulamasi kolay bir yontemdir ve en karmasik makine O6grenimi yontemleriyle
karsilastirildiginda bile rekabetgi sonuglar verebilir (Moosavian, Ahmadi, Tabatabaeefar

ve Khazaee, 2013). K-NN algoritmasinda mesafe degeri asagidaki formiille hesaplanir:

aAB) = [BE40n - w02 2.2)
Burada A ve B mesafeyi 6lgecek noktalardir. A ve B vektor ile ifade edilir ve vektorleri,
A =x1,%5,..., X V& B=1y,,y,,...,y ile ifade edilebilir. Formulde k vektorin

boyutudur yani 6zellik alanidir.
2.2.2.4 Rastgele Orman Regresyon

Rastgele Orman (RF) algoritmasi, karar agacit smiflandiricilarindan tiiretilmekte,
smiflandirma ve regresyon agaglarini icermektedir. Rastgele agaclarin bir araya
getirilmesiyle orman yapilari elde edilmektedir (Yang, Di ve Han, 2008). Bu yontemde
ilk adim, 6zyinelemeli bdlme prosediirii ile diiglimler tarafindan olusturulan bir agaci
kapsamaktadir. Burada bir ¢ikt1 degiskenini hesaplamak igin birgok farkli karar agaci
olusturulmaktadir. Tiim terminal diigiimler belirli siniflara atanmakta ve tim ¢iktilar her
bir agactan degerlendirilmektedir. Nesne i¢in en ¢ok tahmin edilen sinif atanmaktadir.
Rastgele bir ormanin basarisi, her agacin egitim domeninden rastgele segilen verilerle
olusturuldugu, kalanlarin model dogrulugunu test etmek i¢in kullanildig1 ve ardindan
ikinci rastgele 6rneklemenin agactaki her bir diiglimiin boliinmesini belirledigi iki adima
baghdir. Kullanici veya RF algoritmasinin kendisi tarafindan segilebilen tahmin
degiskenleri, her diigiimde ikili kural olusturmak i¢in rastgele sec¢ilmektedir. Bu nedenle

rastgelelestirme, agaclar arasinda daha az korelasyon ve daha diisiik hata oranlar
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saglamaktadir (Breiman, 2001; Horning, 2010). RF’nin yapist Sekil 2.12°de
gosterilmektedir.

Veri Kiimesi

Agag | Agag 2 Agag 3
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' \
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Sekil 2.12. Rastgele Orman Yapisi

RF algoritmasinin avantaji, bliylimenin ¢ok genis oldugu ve ¢ok kiiciik egitim verisi alt
kiimeleri ile agaci basitlestirmek i¢in muhtemelen giiriiltii iceren terminal diigiimlerin
kaldirilmasini ifade eden “budama” islemidir. Kurallar olusturuldugunda yorumlama da
kolaydir ve siniflandirma hizlidir. Liaw & Wiener’e (2002) gore RF uygulamalarinda en
yaygin parametreler girdi egitim verileri, aga¢ sayisi, tahmin degiskenlerinin sayisi, hata

ve degisken anlamliligin1 hesaplamak i¢in kullanilan parametrelerdir.
2.2.2.5 Bayesian Ridge Regresyon

Ridge regresyonu, alt kiime se¢imine karsi bir alternatiftir. Baz1 durumlarda en kiigiik
kareler yontemine gore, katsayilart daha dogru tahmin etmek i¢in kullanilmaktadir. Ridge
regresyon, regresyon modelindeki tahminci sayisinin azaltilmasina olanak saglamaktadir
(Uyanik, Karatug ve Arslanoglu, 2020). Bayesian Ridge regresyonu, regresyon
probleminin olasiliksal bir modelini tahmin etmektedir. Katsay1 tahminleri sifira daha
yakin (veya esit) Otelenmektedir (Whittaker, Thompson ve Denham, 2000). Ridge
regresyon tahmin edicisinin Bayesian yorumu asagidaki denklemde verilmistir (Samkar

Alpu ve Altan, 2011; Uyanik, Karatug ve Arslanoglu, 2020).
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y=XB+e (2.3)

Burada y degisken vektorii, X, degisken matrisi, f parametre vektorudir ve e, hata

vektorudir.

Bagimsiz degiskenler arasindaki coklu baglantt nedeniyle regresyon modelinde
parametre tahminlerinde ¢akisma olacaktir. Bu dezavantajin {istesinden gelmek ve daha
kesin regresyon parametresi tahminleri elde etmek icin Ridge regresyonu kiciik sapmaya
neden olacaktir. Bayesian Ridge modellemesi, hiyerarsik veri yapisiyla basa ¢ikmadaki
daha yulksek kabiliyeti nedeniyle tercih edilmektedir (Shi, Abdel-Aty ve Lee, 2016).
Efendi (2017) farkli esdogrusallik diizeyleri bakimindan Bayesian Ridge regresyon

modelini basaril1 bir sekilde simiile etmistir.
2.2.2.6 Ekstra Aga¢ Regresyon

Asirt diizeyde rasgele agaglar olarak da adlandirilan Ekstra Aga¢ Algoritmasi yeni bir
makine 6grenme teknigidir ve RF yonteminin bir uzantis1 olarak Geurts, Ernst &
Wehenkel (2006) tarafindan gelistirilmistir. Ekstra Aga¢ Yontemi, tahmin edicileri RF
olarak egitmek igin rastgele alt kiime kullanmaktadir. Aksine, ekstra agag regresyonunda
rasgelelestirme ile optimal kesme noktasi da elde edilmektedir. Ekstra agac, her bir agaci
egitmek i¢in tiim egitim veri kiimesini kullanmaktadir, RF ise modeli egitmek i¢in
Onytikleme kopyasi kullanmaktadir (Ahmad, Reynolds ve Rezgui, 2018; Alaiz-Moreton
vd., 2019). Baska bir deyisle, RF’de yukaridan asagiya boliinme prosediirii rastgele
prosediirle degistirilmekte ve bu da agacin yanlili§ini artirarak varyansi azaltmaktadir.
Ekstra agactaki tahmin, tiim olasilik siniflarmin ortalamasi alinarak ve ‘“gogunluk
oylamas1” olarak adlandirilan en yiiksek olasiliga sahip sinif segilerek elde edilmektedir.
Bu islemin avantajlari, karmagik problemler i¢in daha iyi sonuglar vermesi ve hesaplama

yiikiinlin azaltilmasidir (Patil ve Phalle, 2018).
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Tablo 2.3. Sayisal Nitelikler i¢in Ekstra Agaglarin Bolme Prosediirii

Diigiim S Boliinmiis

Girdi: diigtime karsilik gelir, yerel 6grenmenin alt kiimesi S
Cikt1: bol [a<ac]

DOGRU, Béliinmiis S'yi durdur

Higbir sey dondiirme;

K 6gesini secin, aksi takdirde;

K icin, nitelikler {as,.....ax}

K ¢izin;

K segimi igin {su, ... sk} boler

Rastgele bolme sec=s;;

(S, @), v=1,....K.

Boliinmiis dontis,

Puan (si,S) =maks i-1, .

Rastgele Bolme (S, a) Secimi

Girdi: 6znitelik ,S alt kime;

Cikt1: bolme

Maksimum amax , Minimum a°min , S degeri
Rastgele kesme noktasi ¢izin;

ac rastgele kesme noktasi, [@°max , @°min] tekdlize
[a<ac] doniis boliimii

Bol Durdur

Girig: S alt kime

Cikt1: boole

DOGRU, |S| < nmin,

TRUE, S'de sabit bir 6znitelik

DOGRU, S cinsinden ¢ikt1 sabiti

Aksi takdirde,

YANLIS doniis;

Tablo 2.3’teki algoritma, minimum 6rneklem boyutu (nmin) ve K gibi her bir diigiimde
rastgele secilen sayida 6zniteligi ele almaktadir. Topluluk modeli, bir¢ok kez tiim orijinal
O0grenme Ornegini olusturmaktadir. Yukaridaki parametreler, hesaplama avantajlarini ve
Ozerkligi en st diizeye cikarmak i¢in varsayilan ayarlarla manuel olarak farklh

problemlere uyarlanabilir (Nistane ve Harsha, 2018).
2.2.2.7 Dogrusal Destek Vektor Makineleri Regresyon

Dogrusal Destek Vektor Makineleri Regresyonu (DVM) yaygin kullanilan bir regresyon
yontemidir ve destek vektor siniflandirmasinin (DVS) genisletilmis halidir (Vapnik,

1995). Bu yontem, modellere ne kadar hatanin tolere edilebilecegini tanimlama ve
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verilerle uyumlu dogruyu belirleme esnekligi saglamaktadir. DVM, yapisal riski en aza
indirmekte ve asir1 uyumluluk sorununu etkin bir sekilde ¢6zmektedir (Lin, Lin, Zhou ve
Yao, 2007). DVM’de verileri daha yiiksek boyutlu bir uzaya eslemek icin g¢ekirdek
fonksiyonu kullanilmaktadir. Dogrusal DVM wTx; ‘nin en kiiciik y; degerine yakin
oldugu bir model (w) belirlemektedir. {(x;, v;,)}, x; € R™,y; €R, i =1,..., 1 gibi bir
egitim dizisi dikkate alindiginda, DVM asagidaki gibi bir diizenli optimizasyon

problemini ¢6zmektedir:
™ f(w), where fw) = swTw + C Bl Ee(w;xi, v) (2.4)

Yukaridaki denklemde, C>0 diizenleme parametresidir ve ¢, (xi, yi) ile iliskili &-
duyarsiz kayip fonksiyonudur (Ho ve Lin, 2012).

max(lwTx; — y;| — €,0) or
max(|w'x; — y;| — €,0)?

$e(w; x;, yi):{ (2.5)

DVM, L2 kaybinin tiirevlenebilir oldugu durumlarda sirastyla L1-kayip ve L2-kayip
DVM olarak her iki denklemi de kullanmaktadir. Ilk denklem minimize edildiginde,
tahmin fonksiyonu w” x olmaktadir (Ho ve Lin, 2012). Ayrica DVM’de bir bias (b)
vardir ve tahmin fonksiyonu w” x + b (bias problem) olmaktadir. Burada b bir destek
vektoriiniin yer degistirmesiyle elde edilebilir (Lin, Lin, Zhou ve Yao, 2007). Biiylik
Olcekli dogrusal smiflandirma tizerine yapilan arastirmalar, cogu veri i¢in performans
uzerindeki ihmal edilebilir etkilerden dolay: genellikle b’yi ihmal etmektedir (Ho ve Lin,
2012).

2.2.3. Yapay Sinir Aglar

Makine 6grenmesinde kullanilan temel araglardan biri yapay sinir aglaridir. Yapay sinir
aglari, insanlarin 6grenme seklini simiile etmeyi amaglayan ve insan beyninden ilham
alan sistemlerdir. Sinir aglari, girdi ve ¢ikti katmanlarindan ve ¢ogu durumda girdileri
ciktt katmaninin kullanabilece§i bir veriye doniistiiren gizli birim katmanindan
olusmaktadir. Yapay sinir aglari, karmasik Oriintiileri tanimlamak i¢in en uygun

araclardan biridir (Chouhan ve ark., 2020).

Haykin’e (1998) gore bir sinir ag1, deneysel bilgiyi depolamak ve bu bilgiyi kullanima

hazir hale getirmek i¢in dogal bir egilime sahip olan basit islem birimlerinden olusan,
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biiylik Ol¢lide paralel dagitilmis bir islemci olarak tanimlanmaktadir. Bu yap1 insan
beynine iki agidan benzemektedir. Bilgi, ag tarafindan bir 6grenme siireciyle ¢evreden
edinilmekte ve elde edilen bilgiyi depolamak i¢in sinaptik agirliklar olarak bilinen
internéron baglanti giigleri kullanilmaktadir. Sekil 2.13’te gosterildigi gibi bir yapay sinir
ag1, katmanlar halinde birlestirilmis noronlarin birbirine baglanmasindan olugmaktadir.
Her katman, sayisal agirlikli baglantilar kullanarak birbirleriyle etkilesime giren
diiglimler veya ndronlar adi verilen bir dizi basit, ndron isleme elemanina sahiptir. Ag,
sirastyla ikisi giris ve ¢ikis katmani olan n sayida noron katmanindan olusmaktadir.
Birincisi dis sinyalleri alan ve ileten ilk ve tek katmandir. Ikincisi ise hesaplamalarin
sonuglarmi gonderen son katmandir. ¢ kisimlardaki aglar gizli katmanlardir ve alinan
sinyallerden ilgili 6zellikleri veya oriintiileri gikarmaktadirlar. Onemli oldugu diisiiniilen
bu 6zellikler daha sonra ¢ikt1 katmanina yonlendirilmektedir. Gelismis sinir aglari, ilgili
ozellikleri veya oOriintiileri ayirt etmede agi miimkiin oldugunca etkili kilmak igin
tasarlanmig birkag gizli katmana, geri bildirim dongiisiine ve zaman geciktirme 6gelerine

sahip olabilir (Lazakis, Raptodimos ve Varelas, 2018).

Girdi katmani

Sekil 2.13. Yapay Sinir Ag1 Yapist

Bu aragtirmada kullanilacak Yapay Sinir Aglar1 (YSA), beyin gibi biyolojik sinir
sistemlerinin bilgiyi isleme seklinden esinlenen bir bilgi isleme paradigmasidir. Bu
paradigmanin en énemli unsuru, bilgi isleme sisteminin yeni yapisidir (Zhongling, Ning
ve Yan, 2005). Bu sistem, belirli problemleri ¢6zmek icin birlikte ¢alisan birbiriyle
baglantili ¢ok sayida islem elemanlarindan (ndronlardan) olusmaktadir. Sinir aglari,

karmagik veya kesin olmayan verilerden anlam c¢ikarma konusundaki gii¢lii yoniiyle
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desenler/oriintiiler ¢ikarmak ve insanlar ya da diger bilgisayar teknikleri tarafindan fark
edilemeyecek kadar karmasik olan egilimleri tespit etmek i¢in kullanilmaktadir (Zhou ve
Xu, 2011).

Bir yapay sinir aginda, girdi sinyalleri belirli katsayilar araciligiyla agirliklandirilmis
toplami bir esik fonksiyonundan gegirilmektedir. Her giris degerleri w ile belirtilen agirlik
katsayilar1 ile carpildiktan sonra toplam fonksiyonuna gonderilir. “Bias” olarak
adlandirilan ve giris degerlerinden bagimsiz olan sabit bir sayr da bu toplamda
bulunmaktadir. Bias i¢in genellikle “1” degeri kullanilmaktadir. Bu agirliklandirilmis
toplam “aktivasyon fonksiyonu” olarak tanimlanan ve bir esik fonksiyonu gorevi
ustlenen, genelde dogrusal olmayan bir fonksiyona tabi tutulmaktadir (Sekil 2.14)
(Koroglu, 2007).

Toplam Aktivasyon
Fonksiyonu Fonksiyonu

Sekil 2.14. YSA’da Bir Noron Modeli

Bir noronun karakteristik yapisini belirten denklemde x; girdi, y ¢ikti, i=1, 2,....m
arasindaki degerler, f aktivasyon (dogrusal olmayan doniisiim) fonksiyonu, w; ise
agirliktir. YSA’da en sik kullanilan doniisiim fonksiyonu ise sigmoid fonksiyonudur ve

fonksiyonda “c” bir sabit sayidir (Liu, 2007).

y=fIEr wix] ve f(£)=—s: (2.6)

1+ect

ReLu fonksiyonu, pozitif eksende 0 (sifir) ile + co (sonsuz) arasinda bir deger, negatif
eksende ise 0 (sifir) degerini alir. Bu durum diger aktivasyon fonksiyonlarina goére daha

hizli galismasini saglar. Diger bir aktivasyon fonksiyonu Swish, Google tarafindan
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gelistirilmistir. ReLu’dan farkli olarak negatif eksende de deger alabilir. Bu aktivasyon
fonksiyonu ReLu’dan daha iyi performans gostermesi sebebiyle ¢ok katmanli YSA’larda

kullanilir.

Ogrenme ve adaptasyon, belirsiz ortamlarda sistemlerin performansini iyilestirmek
amaciyla geri bildirim kontrol sistemleri i¢in 6nemli becerilerdir. Uyarlanabilir sinir ag1
kontrolii ile iligkili bir diger O6nemli konu ise, geribildirim kontrol sistemlerinin
performansini iyilestirmek i¢in “yaparak Ogrenme” ve “Ogrenilen bilgilerle yapma”

anlamina gelen 6grenme becerisidir (Dai, Wang ve Wang, 2016).
2.3. Derin Ogrenme Modelleri

YSA’dan gelistirilen derin 6grenme, glinimiizde makine 6grenmesi alaninda yaygin
kullanilan bir tekniktir. Derin 6grenme modelleri genellikle katmanlar1 birbirine baglayan
hiyerarsik yapilar1 benimsemektedir. Bir alt katmanin ¢iktisi, basit dogrusal veya dogrusal
olmayan hesaplamalarla yiiksek bir katmanin girdisi olarak kabul edilmektedir. Bu
modeller, verilerin diisiik seviyeli Ozelliklerini yiliksek seviyeli soyut ozelliklere
dontistiirebilir. Boylece derin 6grenme modelleri 6zelliklerin sunumu agisindan diger
yontemlere gore daha giigliidiir. Derin 6grenmenin kullanici deneyimi yerine veriye
dayali olmas1 sayesinde kullaniciya duyulan ihtiyaci azalttig1 soylenebilir (Du vd., 2016).
Derin 6grenme kapsaminda kullanilan teknikler otomatik kodlayicilar (autoencoders),
evrisimsel sinir aglart (ESA) ve tekrarlayan sinir aglarn  (TSA) olarak

siiflandirilmaktadir.
2.3.1 ESA Modeli

Son 10 yilda ESA’nin arastirma ve uygulama alanlarinda artis gozlemlenmistir. ESA’nin
glinlimiizde {iretilen biliyilk miktarlardaki verilerle calisabilmesi bunu saglamistir.
Uydular tarafindan iiretilen resimler, videolar ve diger verilerle siiflandirma islemi,

yiiksek dogrulukla ESA kullanilarak ger¢eklestirilir (Kurt, 2018).

ESA, canlilarin dogal gorsel algilama mekanizmasindan esinlenerek ortaya atilan bir
derin o6grenme mimarisidir. 1959 yilinda Hubel ve Wiesel, hayvanlarin gorsel
korteksindeki hiicrelerin, alici alanlardaki 15181 algilamaktan sorumlu oldugunu

bulmuslardir. Bu kesiften ilham alan Kunihiko Fukushima, 1980 yilinda ESA’nin 6ncil
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olarak kabul edilebilecek “neocognitron”u dnermistir. 1990 yilinda LeCun ve arkadaslari,
ESA’nin modern c¢ergevesini olusturan eseri yayinlamiglar ve daha sonra mimariyi
gelistirmislerdir. Burada LeNet-5 adli el yazis1 rakamlar1 siniflandirabilen ¢ok katmanli
bir yapay sinir ag1 gelistirmislerdir. Diger sinir aglar1 gibi LeNet-5 de ¢coklu katmanlara
sahiptir ve geri yayilim algoritmasi ile egitilebilir. LeNet-5, orijinal gortntunin cesitli
gosterimlerini olusturmakta, ¢ok az On isleme ile ham piksellerden gorsel kaliplari

dogrudan tanimay1 miimkiin kilmaktadir (Gu vd., 2018).

ESA’lar ii¢ tip katmandan olugmaktadir. Bunlar evrisim katmanlari, havuzlama
katmanlar1 ve tam baglagimli katmanlardir. Bu katmanlarin bir araya gelmesiyle ESA

mimarisi olusturulmustur. Temel ESA mimarisi Sekil 2.15’te gosterilmektedir.

Evrisim
w/Relu Havuzlama Tam baglagimh

f’l‘ufl'i (J_\

0 Uew el

Girdi

Tam baglasmmh
w/Relu

Sekil 2.15. ESA Mimarisi

Yukaridaki ESA mimarisinin temel islevselligi dort temel alanda siniflandirilmaktadir

(O’Shea ve Nash, 2015):

1. Diger YSA formlarinda oldugu gibi, giris katmaninda goriintiiniin piksel degerleri

tutulmaktadir.

2. Evrisim katmani, agirliklar ile giris hacmine bagl bolge arasindaki skaler carpimi
hesaplayarak, girisin yerel bolgelerine bagli nodronlarin ¢ikisint  belirlemektedir.
Dogrultulmus lineer birim (genellikle ReLu olarak kisaltilmaktadir), 6nceki katman
tarafindan iiretilen aktivasyonun c¢iktisina sigmoid gibi bir aktivasyon fonksiyonunu

uygulamay1 amaglamaktadir.
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3. Havuzlama katmani daha sonra verilen girdinin uzamsal boyutlulugu boyunca basitce
alt ornekleme gerceklestirecek ve bu aktivasyon icindeki parametre sayisini daha da

azaltacaktir.

4. Tam baglagimli katmanlar daha sonra standart YSA’larda bulunan ayni gorevleri yerine
getirecek ve aktivasyonlardan simiflandirma i¢in kullanilmak iizere sinif puanlari
tiretmeye c¢alisacaktir. Performansi artirmak i¢in bu katmanlar arasinda ReLu

kullanilmasi da onerilmektedir.

Iyi bir derin 6grenme yontemi olan evrisimli sinir ag1 (ESA), daha az hesaplama kaynagi
ve egitim verisi kullanarak ESA parametrelerinin egitilmesine yardimci olmakta ve ortak
filtreler kullanilarak daha az baglantiyla olusturulmaktadir. Ariza teshis problemlerini
cozmek icin etkili bir arac olan ESA’lar, girdilerin temsili 6zellikleri otomatik olarak
cikarmak icin egitilebilir bir “6zellik 6grenici” olarak yaygin bir sekilde kullanilmistir ve
ardindan arizay1 gerceklestirmek igin lojistik regresyon gibi bir makine 6grenmesi
algoritmas: uygulanmistir. Xia vd. (2018) ariza teshisi i¢in kaynasmis ¢oklu sensor
sinyallerinden ariza Ozelliklerini belirlemek igin kullanilan ESA tabanli bir yontem
onermislerdir. Jiang vd. (2019) cok 6lgekli sinyallerden temsili 6zellikleri ¢ikarmak ve
hata smiflandirmasin1 gergeklestirmek i¢in kullanilan ¢ok Olcekli bir ESA modeli
tasarlamislardir. Yang vd. (2019) doner makinelerin ariza teshisi igin hiyerarsik sembolik
analiz ve ESA’dan olusan bir ariza teshis yontemi gelistirmislerdir. Bununla birlikte bu
ESA modellerinin girdi verilerinin olusturulmasi gerekmekte ve sig makine 6grenmesi
algoritmalarinin yalnizca sinirli bir tanilama kapasitesi bulunmaktadir. Bu nedenle sinyal
on isleme olmadan dogrudan ham sinyallerden hata 6zelliklerini kesfetmek i¢in uygun bir

hata 6zelligi ¢ikarma yonteminin gelistirilmesi gereklidir (Li vd., 2021).
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BOLUM 3 - BULGULAR VE TARTISMA

Calismada tasarlanan makine 6grenmesi modelleri AMD Ryzen 5 4600H islemci 64 GB
bellekli Windows 10 isletim sistemi bulunan bilgisayar iizerinden egitilmis ve test
edilmistir. Egitilen modellerin performansini1 degerlendirmek icin sistemin Ortalama
Kare Hata (Mean Squared Error) (MSE), Korelasyon Katsayis1 (R2), Ortalama Mutlak
Hata (Mean Absolute Error) (MAE), Ortalama Mutlak Yuzde Hata (Mean Absolute
Percentage Error) (MAPE), ve dogruluk degerlerine bakilmistir. Modellerde kullanilan
gercek degerler ile tahmin edilen degerler arasindaki fark azaldik¢a tahmin edilen
degerlerin gergek degerlere gore dogru tahmin edildigi bilinmektedir. Diger basliklarda,
kullanilan modellerin analiz sonuglar1 ve bu sonuglarin dogrulugunu degerlendirmek

amaciyla hata metrikleri agiklanacaktir.

3.1. Modelin Degerlendirilmesinde Kullanilan Metrikler

Gaz tlirbini hata orani i¢in tahmin edilen degerler 4 farkli metrik kullanilarak
degerlendirilmistir. Bu metrikler Ortalama Kare Hata (MSE), Korelasyon Katsayisi (R?),
Ortalama Mutlak Hata (MAE) ve Ortalama Mutlak Ylizde Hata (MAPE)’dr.

3.1.1. Hata Metrikleri

MAE ve MSE, 0 ile oo aras1 degerler alabilir. Bu oranlarin hesaplamalarindan elde edilen
degerler ne kadar diisiikse tahmin algoritmasi o kadar basarilidir. Modellerin dogruluk
oran1 R? ile degerlendirilir. R? degeri bir (1)’e ne kadar yakinsa tahmin modelinin basarisi

artar. Bu metriklerin formllerinde bulunan semboller asagida a¢iklanmustir.
y = Gergek Degerler

y = Gergek Degerlerin Ortalamast

¥ = Tahmin Edilen Degerler

n="Veri Sayist

Akustik igaretlerin ariza durumu siniflandirilmasi i¢in tahmin edilen degerler dogruluk
metrigi kullanilarak degerlendirilmistir. Dogruluk metrigi gercek pozitif, gercek negatif,

yanlis pozitif ve yanlis negatif degerlerinin oranlanmasi ile hesaplanir. O ile 1 arasinda
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degerler alir. Bu degerin 1’e yakin olmasi tahmin basarisinin yiiksek oldugu anlamina

gelir.
3.1.1.1. Korelasyon Katsayis1 (R?)

Korelasyon katsayisi, degiskenler arasindaki iliskiyi belirtmek i¢in kullanilan katsayidir.
Formil 4.1 de g0sterildigi sekilde hesaplanir ve -1 ile 1 arasinda bir deger alir. Degerlerin
negatif olmas1 degiskenler arasinda negatif bir iligkinin oldugunu, pozitif olmasi degisken
arasinda pozitif bir iliskinin oldugunu gosterir. Degerler 1 veya -1 oldugunda degiskenler
arasinda miikemmel bir iliski vardir. Degerler 0'a yaklastiklarinda degiskenlerin
aralarindaki iligki de azalir.

2 _ yn Oizy)®
R - Zl:l (y_yi)z (4'1)

3.1.1.2. Ortalama Mutlak Hata (MAE)

Ortalama Mutlak Hata (MAE), gercek veriler ile tahmin edilen veriler arasindaki mutlak
ortalama mesafeyi dlger. MAE, ger¢ek deger ile tahmin edilen deger arasindaki ortalama
dikey ve yatay mesafedir. MAE, regresyon ve zaman serisi problemlerinde degeri kolay
yorumlanabilir oldugu i¢in sik¢a kullanilmaktadir. MAE, tiim tekil hatalarin ortalamada
esit olarak agirliklandirildigi, yonlerini dikkate almadan bir dizi tahmindeki hatalarin
ortalama bilytlikliginii 6l¢cen dogrusal bir skordur. MAE degeri 0’dan oo’a kadar
degisebilir. Daha diisiik degerlere sahip yani negatif yonelimli tahminleyiciler daha iyi

performans gosterir.

1 — ~
MAE = - X5 yi— 9l (4.2)
3.1.1.3. Ortalama Kare Hata (MSE)

Ortalama Kare Hata (MSE), ger¢ek veriler ile tahmin edilen veriler arasindaki kare
ortalama mesafeyi Olcer. Burada blylk hatalar MSE’e gore daha iyi not edilir. MSE, bir
regresyon egrisinin bir dizi noktaya yakimligini belirler. MSE, her zaman pozitif
degerlidir, tahminleyicinin ve makine 6grenmesi algoritmasinin performansimi Olcer.
MSE, tahminleyicilerin performansi agisindan degerlendirildiginde MSE degeri sifira

yakin olanlarin daha basarili oldugu soylenebilir.
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1 — ~
MSE = — X5 (i — 9)° (4.3)
3.1.1.4. Ortalama Mutlak YUzde Hata (MAPE)

Ortalama mutlak yizde hata (MAPE), regresyon ve zaman serileri modellerinde
tahminlerin dogrulugunu 6l¢mek icin sik¢a kullanilmaktadir. Gergek degerler arasinda
sifir igerenler varsa, sifir ile boliinme olacagi i¢in MAPE hesaplanamaz. Cok diisiik
tahmin degerleri icin ylizde hatas1 %100°1 gecemez, ancak c¢ok yiiksek tahmin degerleri
oldugunda yiizde hatasinin ist smirt yoktur. MAPE, tahminleyicilerin dogrulugunu
karsilagtirmak i¢in kullanildiginda, tahminleri ¢ok diisiik olan bir yontemi sistematik
olarak se¢gmesi nedeniyle dnyargilidir. Bu ufak ama ciddi problemin, tahmin degerlerin
gercek degerlerine oranini bulan bir dogruluk o6lciitii ile tistesinden gelinebilir. Bu

yaklagim geometrik ortalama ag¢isindan yorumlanabilen tahminlere yol agar.

100 |yi— Pil
MAPE = —= Y,~ Wy (4.4)

3.1.1.5. Dogruluk

Dogruluk, genel olarak modelin tiim siniflarda nasil performans gdsterdigini tanimlayan
bir dl¢limdiir. Tiim siniflar esit oneme sahip oldugunda yararlidir. Dogru tahmin sayisinin

toplam tahmin sayisina orani olarak hesaplanir.

Gercekyozitif + Gerceknegatif (4 5)
Gercekyozitir + GerceKnegqatir + Yanlispozitir + Yanlisnegatif .

Dogruluk =
Formuldeki ifadeler asagida agiklanmustir.

Gergek Pozitif: Model pozitif 6rnegi kag kez pozitif olarak siniflandirdigini gosterir.
Yanhs Negatif: Model, pozitif bir 6rnegi kac kez negatif olarak siniflandirdigini gosterir.

Yanhs Pozitif: Model, negatif bir 6rnegi kag kez pozitif olarak siniflandirdigini gosterir.

Gergek Negatif: Model, negatif bir 6rnegi kag¢ kez negatif olarak siniflandirdiginm

gosterir.
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3.2 Makine Ogrenmesi Yontemleri ile Sonuglarin Degerlendirilmesi

Caligmanin bu bolimiinde Dogrusal Regresyon, Rasgele Orman Regresyon, K-En Yakin
Komsu Regresyon, Karar Agaglar1 Regresyon, Dogrusal Destek Vektor Makineleri
Regresyon, Ekstra Aga¢ Regresyon, Bayesian Ridge Regresyon ve Yapay Sinir Aglari
algoritmalarinin veri kiimesine uygulanarak analiz edilmesi ve elde edilen sonuglara yer
verilmistir. Calismalar Google Colab yazilimi ile yiritiilmistiir. Modelin egitilmesi i¢in
Python programlama dilinin Scikit-learn kitliphanesi, keras kitliphanesi ve tensorflow
kituphanesi  kullanilmistir. Calismada kullanilan yOntemlerin  parametrelerinin
ayarlanmasi bilgisayar simiilasyonlari ile saglanmistir. Her makine 6grenimi teknigi igin
bir makine 6grenimi prosediirii uygulanmigtir. Modellerin dogru egitimi i¢in, veri KUmesi
egitim olarak %75 ve test olarak %25 olarak boliinmiistiir. Bu nedenle, veri kiimesinin
ozelliklerini 6grenmek icin toplam 11934 ornekten yaklasik 9000 ornek rastgele
belirlenmistir ve modelleri egitmek i¢in kullanilmigtir. Modelleri test etmek icin yaklagik

3000 6rnek kullanilmistir.

Modellerin egitim sirasinda kullanilan parametre degerleri Tablo 3.1°de verilmistir.

Tablo 3.1. Regresyon ve YSA Modellerinin Egitim Parametreleri

Model Parametre 1 Parametre 2 Parametre 3
Dogrusal - - -
Regresyon

Karar Agaci Random state=0 Random state=20 Random state=30
Regresyonu
K-NN Regresyon N neighbors=3 N neighbors=10 N neighbors=20
Rastgele Orman N estimators =1 N estimators=2 N estimators=3
Regresyon
Bayesian Ridge Compute Compute -
Regresyon score=True score=False
Ekstra Agac Random state=0 Random state=20 Random state=40
Regresyon
Dogrusal DVM  Random state=10  Random state=20 Random state=30’
Regresyon
YSA Modeli Input dim=16, Input dim=16, Input dim=16,

activation="relu’ activation="sigmoid’ activation="swish’

Tablo 3.1°de koyu olarak verilen parametre 1 degerleri ¢alismada referans alinan
degerlerdir. Parametre 1, parametre 2 ve parametre 3 degerleri ile modeller egitilmis

optimum deger olarak parametre 1 secilmistir. Makine 6grenmesi algoritmalarindan 8
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tanesi karsilastirilmistir ve en iyi basart oran1 %98’lik bir dogruluk ile YSA modelinde
elde edilmistir. Tiim algoritmalarin korelasyon matrisine gore karsilastirilmasi Sekil
3.1’de verilmistir. Grafikte yatay x ekseni, ¢alismada kullanilan makine 0grenmesi
algoritmalarin1 gostermektedir. Dikey y ekseni ise, bu algoritmalarin dogruluk oranini

gostermektedir.

98%
96%
94%
92%
90%
88%
86%
84%
82%

80%

Dogrusal  Rasgele K-EnYakin  Karar Dogrusal Ekstra Bayesian Yapay Sinir
Regresyon  Orman Komsu Agaclari Destek Agag Ridge Aglari
Regresyon Regresyon Regresyon Vektor Regresyon Regresyon
Makineleri
Regresyon

B Makine Ogrenmesi Algoritmalari

Sekil 3.1. Makine Ogrenmesi Algoritmalart

Dogrusal regresyon algoritmasini yonteminin formiil ile belirtilmis hali asagida

gosterilmistir.
Yi :ﬁo + ﬁlXil + ﬁz XiZ + ... + ﬁle'p + ¢ (31)
Bu formilde B, kesim noktasi, ; dogrunun egimi, & hata terimidir.

Model egitilirken dogrusal regresyon algoritma parametresi olarak farkli bir parametre
uygulanmamustir. Algoritmanin basart oram1 %91 olarak bulunmustur. Bu modelin
dogruluk grafigi Sekil 3.2°de verilmistir. Modelin gergek ve tahmin edilen ariza analizleri
grafikte gorsellestirilmistir. Grafikte y ekseninde gosterilen noktalar, gercek ariza analizi
degerlerini gosterir ve x ekseninde gosterilen noktalar, tahmin edilen ariza analizi
degerlerini gosterir. Kirmizi ile gosterilen cizgi diiz bir ¢izgidir. Bu satirdaki gercek
degerler ve tahmin edilen degerler birbirine yakinsa, bu durum dogrulugun ytiksek

oldugunu gosterir.
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Dogrusal Regresyon
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Sekil 3.2. Dogrusal Regresyon Analizine Gore Gergek ve Tahmin Edilen Degerler

Karar Agaci Regresyon algoritmasi kullanilan veri kimesinde en yiiksek dogruluk degeri
buldugumuz algoritmalardan biridir. Karar agaci algoritmasinda random state degeri 0,
20 ve 30 olarak secilmistir. Sirayla, bu degerler i¢in deneme yapilmistir. Bu degerler
arasindan en iyi basari oranini 0 degerinin verdigi gézlemlenmistir. Calismada Karar
agaclar1 algoritmasi icin Max_depth degeri kullanilmamistir. Max_depth degeri karar
agacimin azami blyume uzunlugudur. Parametre olarak tanimlanmadigi durumda karar
agact tim digiimler sonuca ulagana kadar bliyimeye devam eder. Random_state degeri
agacin son bulma noktasidir. Random state degeri modelin hizini arttirir ve ayn1 egitim
verisi ve parametreleri oldugunda her zaman ayni1 veriyi vermesine olanak saglar. Karar
agaciin random state 0 parametresi ile buldugu dogruluk oranit %97°dir. Karar agaci
algoritmasinin dogruluk grafigi Sekil 3.3’te verilmistir. Grafikte gercek degerler ile
tahmin edilen degerler arasindaki mesafenin ne kadar az oldugu yani dogruluk oraninin

yuksek oldugu goriilmektedir.
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Karar Adaclan Regresyon
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Sekil 3.3. Karar Agac1 Regresyonuna Gore Gergek ve Tahmin Edilen Degerler

K-NN algoritmasinda n_neigbours degeri komsu sayisini belirler ve n_neigbours degeri
kadar komsu ile islem yapildigini ifade eder. K-NN algoritmasinda n_neigbours degeri 3,
10 ve 20 olarak se¢ilmistir. Sirayla, bu degerler i¢in deneme yapilmistir. Bu degerler
arasindan veri klimesine en uygun n_neighbours degerinin 3 oldugu tespit edilmistir.
Calisgmada K-NN algoritmasimnin n _jobs parametresi kullanmilmamistir. Bu deger
algoritmada paralel olarak c¢alistirilacak olan gérev sayisini belirler. K-NN algoritmasinin
n_neigbours 3 parametresi ile buldugu dogruluk orani %91°dir. K-NN algoritmasinin
dogruluk grafigi Sekil 3.4’te verilmistir. Grafikte bu algoritmada gergek degerler ile
tahmin edilen degerler arasindaki mesafenin biiylidiigiinii etrafa sagilan degerler oldugu

goriilmektedir. Bu sacilmalar ve mesafe algoritmanin dogruluk oranini diistirmiistiir.

K-NMN Regresyon
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Sekil 3.4. K-NN Regresyonuna Gore Gergek ve Tahmin Edilen Degerler



Rastgele ormanlar algoritmasi model {izerinde asir1 6grenmeyi engellemek igin birden
fazla karar araci olusturarak bu agaclarin ortalamasini alir. Algoritmada n_estimators
degeri temel veri kiimesinden ne kadar alt veri kiimesi olusturulup, rastgele ormanlar
algoritmasina verilecegini belirler. Rastgele ormanlar algoritmasinda n_estimators degeri
1, 2 ve 3 olarak se¢ilmis ve sirastyla bu degerler i¢in deneme yapilmistir. Bu degerler
arasindan veri kiimesine en uygun n_estimators degerinin 1 oldugu tespit edilmistir.
Calismada algoritmanin max_features parametresi kullanilmamistir. Bu  deger
algoritmanin tek bir agag¢ ile ¢alismasimi saglar. Rastgele ormanlar algoritmasinin
n_estimators 1 parametresi ile buldugu dogruluk oran1 %97°dir. Algoritmanin dogruluk
grafigi Sekil 3.5’te verilmistir. Grafikte bu algoritmada ger¢ek degerler ile tahmin edilen

degerler arasindaki mesafenin ne kadar az ve uyum iginde oldugu goriilmektedir.

Rastgele Orman Regrasyon
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Sekil 3.5. Rastgele Orman Regresyonuna Gore Gergek ve Tahmin Edilen Degerler

Bayesian Ridge algoritmasi, dogrusal regresyon algoritmasinin farklilasmis bir
versiyonudur. Algoritmada compute_score degeri “True” ve “False” se¢ilmistir. Bu deger
model agirliklarinin azalmasini saglar. Sirayla, bu degerler icin deneme yapilmistir. Bu
degerler arasindan veri kiimesine en uygun compute score degeri “True” oldugu tespit
edilmistir. Bayesian Ridge algoritmasimin bu parametre ile buldugu dogruluk oram
%91°dir. Bayesian Ridge algoritmasi ile ayni dogruluk oranini vermistir. Algoritmanin
dogruluk grafigi Sekil 3.6’da verilmistir. Grafikte gercek degerler ile tahmin edilen

degerler arasindaki mesafenin uzak oldugu goriilmektedir.
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Bayesian Ridge Regresyon
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Sekil 3.6. Bayesian Ridge Regresyonuna Gore Gergek ve Tahmin Edilen Degerler

Ekstra Agac algoritmasi, rastgele orman algoritmasinin farkli bir ¢esididir. Bu iki
algoritma arasinda modellerin egitilmesi aynidir fakat diiglimlerin dallara ayrilmasi
farklilik gosterir. Ekstra Agac algoritmasi karar kriteri olarak rastgele dallanma yapar.
Algoritmada random_state degeri 0, 20 ve 40 se¢ilmis ve sirasiyla bu degerler i¢in
deneme yapilmistir. Bu degerler arasindan veri klimesine en uygun random_state degeri
0 oldugu tespit edilmistir. Ekstra Aga¢ algoritmasinin bu parametre ile buldugu dogruluk
oran1 %97°dir. Algoritmanin dogruluk grafigi Sekil 3.7°de verilmistir. Grafikte bu
algoritmanin ger¢ek degerler ile tahmin edilen degerler arasindaki mesafesi

gorulmektedir.

Ekstra Agjag Regresyon
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Sekil 3.7. Ekstra Agac Regresyonuna Gore Gergek ve Tahmin Edilen Degerler
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Dogrusal destek vektor makinesi algoritmasinda model iizerinde random_state degeri 10,
20 ve 30 secilmistir. Sirayla, bu degerler i¢in deneme yapilmistir. Bu degerler arasindan
veri klimesine en uygun random_ state degeri 10 oldugu tespit edilmistir. Dogrusal destek
vektor makinesi algoritmasinin bu parametre ile buldugu dogruluk orami %86°dir.
Algoritmanin dogruluk grafigi Sekil 3.8’de verilmistir. Grafikte bu algoritmanin gergek

degerler ile tahmin edilen degerler arasindaki mesafesi goriilmektedir.
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Sekil 3.8. Dogrusal DVM Regresyonuna Gore Gergek ve Tahmin Edilen Degerler

YSA algoritmasinda bir giris katman, iki gizli katmani ve bir ¢ikis katmani kullanilmastir.
Iki gizli katman kullanilmasinin sebebi gizli katman sayisin1 degistirdigimizde elde edilen
sonucun mevcuttaki sonuctan daha kot olmasidir. Giris katmaninda ve gizli
katmanlarinda kullanilan ndron sayist 32, aktivasyon fonksiyonu “RelLu”dur.
Katmanlardaki noron sayilar1 degistirilerek performans Olctimleri yapilmigtir. NoOron
sayilart arttirildiginda dogruluk sonuglar1 azalmistir. Olusturulan ag Sekil 3.9°da

gosterilmistir.
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Sekil 3.9. YSA Modeline iliskin Sonuglar

Bu denemelere ek olarak YSA algoritmasinda model aktivasyon fonksiyonlar1 “sigmoid”
ve “swish” ile deneme yapilmistir. Bu fonksiyonlar arasinda veri kiimesine en uygun
aktivasyon fonksiyonu “ReLu” se¢ilmistir. YSA algoritmasinin bu parametre ile buldugu
dogruluk oran1 %98’dir. Algoritmanin dogruluk grafigi Sekil 3.10’da verilmistir. Grafikte
bu algoritmanin ger¢cek degerler ile tahmin edilen degerler arasindaki mesafesi

gorulmektedir.
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Sekil 3.10. YSA Modeline Gore Gergek ve Tahmin Edilen Degerler

Yapilan ¢alismaya ait tahmin edilen degerlerin karsilastiriimasi Tablo 3.2’de verilmistir.
Bu karsilastirma, R2, MAE, MAPE ve MSE performanslarina bakilarak yapilmustir. Tablo
3.2°de R? degeri 1'e yakin olan modellerin veri kiimesini iyi tahmin edebildigi
anlasilmistir. Calismada birden fazla yontemle hata analizi tahmin edilerek modeller
arasinda en iy1 performans gosteren yontemin belirlenmesi amaglanmistir. Bu baglamda
klasik yontem olarak Dogrusal Regresyon, Karar Agaci Regresyon, K-NN Regresyon,
Rastgele Orman Regresyon, Bayesian Ridge Regresyon, Ekstra Aga¢ Regresyon,
Dogrusal DVM Regresyon ve farkli bir model olarak YSA kullamlmistir. R? degerleri
incelendiginde, tiim algoritmalarin dogruluk degerleri %90'n tizerinde tahmin edilmistir.
Algoritmalari birbirleriyle karsilastirdigimizda YSA modelinin diger algoritmalara gore

daha iyi deger verdigi goriilmiistiir.
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Tablo 3.2. Regresyon ve YSA Modellerine iliskin MAE, MAPE, MSE ve R2

Degerlerinin Karsilagtirmasi

Model MAE MSE R? MAPE
Dogrusal Regresyon 0.0017 5.09 0.91 0.16
Karar Agaci 0.00052 1.075 0.97 0.053
Regresyon
K-NN Regresyon 0.0010 5.09 0.91 0.011
Rastgele Orman 0.00038 5.27 0.97 0.038
Regresyon
Bayesian Ridge 0.0016 5.09 0.91 0.16
Regresyon
Ekstra Agac 0.00058 1.67 0.97 0.05
Regresyon
Dogrusal DVM 0.0021 7.54 0.86 0.21
Regresyon
YSA Model 0.0008 9.59 0.98 0.87

Tablo 3.2’ye gore YSA %98 ile en yiiksek tahmin oranina sahip olmustur. Dogrusal DVM
Regresyon %86 korelasyon katsayisi tahmini ile en diisiik tahmin oranina sahip olmustur.
Calismada MAE degerleri incelendiginde, analiz yapilan biitiin algoritmalar i¢in gergek

deger ile tahmin edilen deger arasindaki farkin ¢ok az oldugu goriilmektedir.

Bu tez calismasinda YSA modeli ayrintili bir sekilde incelenmis, uygulama alanlar
arastirilmis ve sik kullanilan bazi YSA algoritmalar1 veriler iizerinde test edilmistir.
Deneysel caligmalarda ise en uygun olan YSA modeli kullanilarak tahmine yonelik bir

model egitilmistir.

Sonuglar karsilastirildiginda YSA modelinin basitligi, modeli gerceklestirme hizi ve
yiiksek dogruluk oranlari ile diger regresyon modellerine gore daha basarili oldugu
goriilmiistiir. Ayrica YSA modeli, istatistik formiillerini  kullanan regresyon
modellerinden farkli olarak, veri kiimesini kullanarak matematiksel hesaplamalar ile
model gelistirmeye ihtiyagc duymaz. Veri kiimesi igindeki iligkileri ve baglantilari
egitilerek Ogrenir. Bir kez Ogrendikten sonra model veri kiimesindeki Ogrenilmek
istenilen bilgiyi hemen verir. Veri kiimesi i¢indeki bilinmeyen iliskisel baglantilar1 agiga
cikarir. Bu sebeple YSA modeli agik, anlasilabilir ve esnektir. Regresyon modelleri
olusacak hataya karsi ¢ok miisaittir. Modelde olusacak en kiiciik bir hata sonuglarda

blyuk hatalara sebep olabilir. Fakat yapay sinir aglarinda ndronlardan birinin zarar
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gormesi sonucu regresyon modellerindeki gibi ok etkilemez. Ozellikle ariza teshisinde
makine arizasina uygun olarak egitilmis bir YSA modeli ¢ok daha giizel sonuglar

verecektir.
3.3. ESA Yontemi ile Sonucun Degerlendirilmesi

Bu ¢alismada bir havuz pompa makinesinin ¢ikardigi normal ve anormal akustik isaretler
tizerinden makinenin arizasiz / arizali ¢alisma durumu siiflandirilmistir. Bu tiir bir
siniflandirma yapmak igin literatiirde son yillarda yogun olarak tercih edilen ESA
algoritmasi kullanilmistir. Bu sekilde makinenin kestirimci bakimi gerceklestirilerek,
motor durma noktasina gelmeden arizanin anlasilmast saglanmaya caligilacaktir.
Yapilacak calismanin iiretecegi c¢iktilar gemi makinelerinin ariza tahminlerinin

yapilmasina olanak saglayacagi diisliniilmektedir.

Bu asamada MIMII veri kiimesi lizerinden alinan akustik sinyallere ait veriler Google
Colab Uzerinden Python yazilimi kullanilarak islenmistir. Burada sinyal oncelikle FFT
algoritmasi kullanilarak frekans domenine doniistiiriilmiistiir. Fourier doniisiimii spektral
analizde kullanilan en 6nemli doniisiimlerden birisidir. Bu doniisiim sayesinde sinyallerin
spektrumlar1 analiz edilebilmekte, frekans domeninde sistemlerin ve 6zelliklerinin

betimlenmesi saglanabilmektedir (Jones vd., 1987).

Fourier Doniisiimii ile ses sinyalleri, siniis ve kosiniis dalgalarinin dogrusal birlesimine

ayrigirlar. Fourier doniistimii FD ile ifade edilir. Herhangi bir f (t) fonksiyonunun Fourier

Déniistimii (FD),
+ oo
F(f) = f x (t) e 2™tqt
ile ifade edilir. (2.7)
Burada;

o F(f), frekans alaninda Fourier Doniisiimiiniin ¢iktisidir.
¢ X(t), zaman alan1 fonksiyonudur.

e 27f, saniyede radyan cinsinden frekanstir.
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Fourier doniisimii sonrasi normal ve anormal akustik sinyallerin zaman-frekans

domenine doniismiis 6rnek ¢iktilart Sekil 3.11°de ve Sekil 3.12°de verilmistir.
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Frekans (Hz)
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Sekil 3.11. Normal Akustik Sinyaller
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Anormal Akustik Sinyal
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Sekil 3.12. Anormal Akustik Sinyaller

Elde edilen bu akustik sinyaller ayrica zaman-frekans domenine doniistiiriilmiis ve benzer
spektrogram  goriintiisii  elde edilmistir. Spektrogram, Fourier Doniisiimiiniin
gorsellestirilmis halidir. Spektrogram grafiginde giris sinyalinin parcalar1 alinir ve her bir
parcaya bir Fourier Doniisiimii uygulanir. Her parganin belirli bir genisligi vardir ve bu
parcaya bir Fourier Doniisiimii uygulanir. Her parca bir frekans dagilimina sahiptir.
Zaman sinyalinde her parca i¢in bir dizi frekans bileseni elde edilir. Her bir pargadaki tim

bu frekans bilesenlerinin toplanmasi ve birlikte ¢izilmesi spektrogram grafigini olusturur.

Spektrogram grafigi, yatay eksenin sinyalin zamanini ve dikey eksenin frekans eksenini
temsil ettigi bir 2D gorsel 1s1 haritasidir. Grafik {izerinde frekans bileseninin biiytikligi

ne kadar yiiksekse, renk o kadar acik olur. Spektrogram grafiginin elde edilmesi i¢in
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kullanilan parametreler NFFT, Fs, Noverlap, Fc, Scale (dB), Mod ve Side’dir. Burada
NFFT, her bir parcanin FFT'sidir. N sinyalin uzunlugudur, boliinen blok uzunlugudur. Fs,
sinyalin Ornekleme frekansidir. Noverlap, bloklar arasindaki oOrtiisme noktalarinin
sayisini tanimlar. Fc, y’nin merkez frekansidir. Bir sinyal elde edildiginde kullanilan
frekans araligini yansitmak i¢in grafigin x uzantilarim1 kaydirir, ardindan filtrelenir ve
temel banda alt 6rneklenir. Scale (dB), degerlerin 6l¢eklendirilmesidir. ‘dB’, degerleri dB
Olgegine dondiiriir. Mode, ne tiir bir spektrum kullanilacagini gosterir. Side, spektrumun
hangi taraflarinin donecegini goOsterir. Spektrogram grafigi ornek c¢iktilar1 asagida

verilmigtir.
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Sekil 3.13. Normal Ses Spektrogrami
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Sekil 3.14. Anormal Ses Spektrogrami

Akustik verilerden elde edilen spektrogram goriintiilerin siniflandirilmast igin Evrigimli
Sinir Aglar1 (ESA) kullanilmistir. ESA algoritmasi kullanilarak elde edilen spektrogram
grafikleri izerinden normal ve anormal akustik sinyallerin tespit edilmesi amaglanmustir.
Spektrogram grafik goriintiileri egitilmeden 6nce on isleme yapilmistir. Bu asamada
goriintii biiylitme yapilmistir. Model, ¢ok resimle egitilmek yerine daha az resimle ve

modeli farkl agilarla ¢ekilmis resimleri degistirerek egitilmistir.

0-255 arasindaki tiim piksel degerleri 0-1 arasina yeniden Ol¢eklendirilmistir ve 0.2
yakinlastirma uygulanmistir. Biiyiitme islemi i¢in Keras’in ImageDataGenerator sinifi

kullanilmastir.
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ImageDataGenerator sinifi, biiyiik bir sayisal diziden ve goriintiileri igeren klasorlerden

goruntuleri okumak icin flow(), flow_from_directory() ve flow_from_dataframe() olmak

lizere lic yonteme sahiptir. Bu ¢alismada sadece flow from directory() kullanilmistir.

Modellerin dogru egitimi igin, veri Klmesi egitim olarak %80 ve test olarak %20

boliinmiistiir. Gergeklestirilen modelde sirali katmanlardan olusan sequential model

kullanilmigtir. Modelde 1 girdi katmani, 2 gizli katman, 1 flatten katman, 1 fully

connected katman ve 1 ¢ikis katmani1 bulunmaktadir. Ara katmanlar i¢in “RelLu”, ¢ikis

katmani i¢in “softmax” aktivasyon fonksiyonu kullanilmistir. Olusturulan model Sekil

3.15’te verilmistir.

Model: "sequential 1"

Layer (type) Output Shape Param #
convzd 3 (ConvzD)  (Neme, 31, 31, 32) 896
average pooling2d 3 (Average (None, 15, 15, 32) 0
activation 5 (Activation) (None, 15, 15, 32) 0
convZd 4 (Conv2D) (None, 15, 15, 64) 18496
average pooling2d 4 (Average (None, 7, 7, 64) 0
activation 6 (Activation) (None, 7, 7, 64) o]
conv2d 5 (Conv2D) (None, 7, 7, 64) 36928
average pooling2d 5 (Average (None, 3, 3, 64) 0
activation 7 (Activation) (None, 3, 3, 64) o]
flatten 1 (Flatten) (None, 576) o]
dropout_2 (Dropout) (None, 576) 0
dense_2 (Dense) (None, 64) 36928
activation 8 (Activation) (None, 64) 0
dropout_3 (Dropout) (None, 64) 0
dense_3 (Dense) (None, 2) 130
activation 9 (Activation) (None, 2) 0

Sekil 3.15. ESA Modeli

Olusturulan modelde tahmin degeri dogruluk performansina bakilarak yapilmistir. Sekil

3.16 incelendiginde test verileri ile dogrulugun %92 oldugu goériilmektedir. Test verileri

icin karsitlik matrisi Sekil 3.17 ve Sekil 3.18’de gosterilmistir.
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model.evaluate_generator(test_set, steps=12)

[0.2681077718734741, 0.9244791865348816)

Sekil 3.16. ESA Modeli Dogruluk Degeri

Sekil 3.17 ve Sekil 3.18’de Filename siitunu gergek degerleri, Predictions stitunu tahmin
edilen degerleri gosterir. Burada 6rnek olarak sadece 20 satir gosterilmistir. Sekil 3.17
incelendiginde, bu modelde 10 anormal akustik sinyal gorintiden hepsi anormal olarak
smiflandirilmistir. Benzer sekilde 3.18 incelendiginde, 10 normal veriden 2 tane veri
normal 8 tane veri anormal olarak siniflandirilmistir.

40 girigten 1-10 araligindakiler | Filtre |

Filename Predictions
abnormal/00000013.png abnormal
abnormal/00000021.png abnormal
abnermal/00000026.png abnormal
abnormal/00000039.png abnormal
abnormal/00000042.png abnormal
abnormal/00000046.png abnormal
abnormal/00000049.png abnormal
abnormal/00000050.png abnormal
abnermal/00000051.png abnormal
abnormal/00000054.png abnormal

Her sayfada [10_+| satir gbster 1] 2 3 s

Sekil 3.17. Anormal Verilere Iliskin Sinyal Gériintiilerinin Siniflandirilmas:

Sekil 3.18 incelendiginde verilerin ¢ogu normal verilerdir ve anormal olarak tahmin

edilmistir. Bunlar modelde yanlis tahmin edilen degerlerdir.

Filename Predictions

normal/00000627.png abnormal
normal/00000632.png abnormal
normal/00000633.png normal
normal/00000638.png abnormal
normal/00000640.png abnormal
normal/00000643.png abnormal
normal/00000647 png abnormal
normal/00000649.png abnormal
normal/00000652.png normal
normal/00000655.png abnormal
Her sayfada[10_v| satir goster 1 2 3 [a

Sekil 3.18. Normal Verilere iliskin Sinyal Gériintiilerinin Siniflandirilmasi

Bu calisma ile ESA modelinin, ariza tahmini i¢in uygun bir alternatif yontem oldugu
gosterilmistir. Ortaya ¢ikan sonug, akustik verilerin icsel 0Ozelliklerinin gdrintu
verilerinin Gzelliklerine benzer oldugunu gostermistir. ESA modelinin, ylksek dizeyde
Olceklenebilir oldugu sonucu ortaya ¢ikmustir. Genisletilmis bir veri kiimesi ile cok daha

verimli sonuglar alinabilir.
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BOLUM 4 - SONUCLAR

Bu ¢alismada, gemi sistemlerinin ariza olasiliklarinin tahmin edilmesine yonelik iki farkl
analiz yapilmstir. Ilk analizde gemi makinelerinden elde edilen verilerle tiirbin bozulma
durum Kkatsayisim1 tahmin etmek i¢in YSA'lar ve regresyon analizi yodntemleri
kullanilmistir. Gemi motor sisteminden toplanan veriler, regresyon ve YSA modellerinin
girdilerini belirlemek i¢in kullanilmis ve gemi makinelerinin ariza analizi i¢in en uygun
yontem belirlenmistir. Incelenen yontemlerde kullanilan veri sayis1 ve verilerin birbitleri
ile olan iligkisi, yontemlerin sonug¢larinin dogrulugunu 6nemli 6l¢iide etkilemistir. YSA
algoritmasi ile elde edilen sonuglar, regresyon analizi ile elde edilen sonuglara gore daha
basarili olmustur. Bu sonuglardan YSA modelinin birbiri ile iligkili verilerle tahmin
edilen modellerde regresyon modeline kiyasla daha iyi sonuglar verdigi anlasilmistir.
YSA'lar, diger algoritmalara gore daha guvenilir sonuglar verdikleri icin tercih
edilmektedir. Caligma kapsaminda YSA tasarimmda gizli katman sayist ve gizli
katmandaki ndron sayist gibi ag parametreleri, sinirli sayida deney sonucunda
belirlenmistir. Ag topolojisinde, gizli katmanlarin sayisinin arttirtlmasi, katmanlardaki
noronlarin sayisinin degistirilmesi ve agda kullanilan transfer fonksiyonlarinin
degistirilmesi gibi bazi degisikliklerle, YSA ile elde edilen tahminler daha da
gelistirilmistir. Sonug olarak, YSA ile hazirlanan modelin kavramsal ve fiziksel tabanl
modellere kiyasla dogrusal olmayan gemi-makine ariza iligkisini basarili bir sekilde
modelleyebildigi, yogun veri ve kalibrasyon islemlerine ihtiya¢ duymadan hizli bir

modellemeye olanak sagladig gortilmiistiir.

Ikinci calismada ise bir motorunun ¢ikardig1 akustik isaretlerin ariza durumu
siniflandirilmigtir. Calismada elde edilen goriintii verileri derin 6grenme algoritmasi ile
egitilmistir. Egitilen veriler test edildiginde %92’lik dogruluk orani bulunmustur. Yapilan
caligmanin {iretecegi ¢iktilar gemi sistemlerin ariza tahminlerinin yapilmasina olanak
saglayacagi  disiiniilmektedir. ~ Ulkemizin  cografi konumu g6z  Oniinde
bulunduruldugunda denizcilik alaninda yapilan g¢aligmalar sistemlerin ariza yapma

olasiligini en aza indirerek hata-ariza tespitini hizli ve 6nceden yapilmasi saglanabilir.
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