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ÖZET 

Öncelikle, yol ihtimaliyet yöntemini kullanarak, zamanla değiĢen manyetik alan altında 

karma spin (1/2, 3/2) Ising modelinin dinamik histerisiz özelliklerine etkileĢme 

parametrelerinin etkilerini inceledik. Sonra, etkileĢme parametrelerinin dinamik 

coersive alanlar ve dinamik remanent menyetizsayona etkisini araĢtırdık. Elde edilen 

sonuçların, MST (Melt spinning tekniği) ile üretilen bazı manyetik malzemeler ve 

bunların histerisiz özellikleri hakkında hem teorik hem de deneysel olarak bulunan 

sonuçlarla oldukça uyumlu olduğu tespit edilmiĢtir. Ġkinci olarak, temel fenomenolojisi 

ve arkasındaki mekanizma henüz tam manasıyla keĢfedilmemiĢ olan dinamik faz 

geçiĢleri araĢtırılmıĢtır. Dinamik denklemlerin nümerik çözümleri, dinamik faz geçiĢ 

sıcaklıkları ve tabiatlarını (birinci dereceden veya ikinci dereceden) verir. Dört farklı 

düzlemde dinamik faz diyagramları oluĢturulmuĢ ve bunların p, i, af temel fazları ve 

i+af, p+i hibrid fazlarını sergilemelerinin yanısıra dinamik üçlü kritik nokta, dinamik 

üçlü nokta, dinamik kritik uç nokta, dinamik çift kritik uç nokta içerdiği görüldü. 

Ġlaveten, etkileĢme parametrelerine bağlı olarak re-entrant davranıĢı tespit edilmiĢtir. 

Ayrıca telafi davranıĢları incelendiğinde, sistemin zengin telafi davranıĢı sergilediği de 

bulunmuĢtur. 

 

Anahtar Kelimeler: Karma spin (1/2, 3/2) Ising modeli; Yol ihtimaliyet yöntemi; 

Dinamik faz geçiĢi; Dinamik faz diyagramı.   
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ABSTRACT 

First, within the path probability method, the influences of the interaction parameters on 

the dynamic hysteresis properties of a mixed spin (1/2, 3/2) Ising model driven a time-

varying magnetic field were investigated. We examined the effects of the interaction 

parameters on the dynamic hysteresis loops. Then, we investigated the impacts of the 

interaction parameters on the dynamic coercive fields and dynamic remanent 

magnetizations. Some of obtained results are in qualitatively good agreement with some 

theoretically reported studies as well as experimentally works in some magnetic 

materials and the hysteresis loops obtained within the melt spinning method. Second, 

we study the dynamic phase transitions (DPTs) that the mechanism behind them have 

not yet been discovered  rigorously and their basic phenomenology is still undeveloped. 

Numerical solutions of the dynamic equations give DPT temperatures and the nature (a 

first- or second-order) of the DPTs. The dynamic phase diagrams were constructed in 

four different planes and display paramagnetic (p) phase, ferrimagnetic (i) phase, 

antiferromagnetic (af) phase and the i+af and i+p mixed or hybrid phases as well as the 

dynamic tricritical point and dynamic double critical end point, dynamic critical end 

point and dynamic triple point. Moreover, the reentrant behavior was observed that 

depending on the system parameters. We also examined the compensation behaviors 

and found that the system illustrates rich dynamic compensation behaviors. 

Keywords: Mixed spin (1/2, 3/2 ) Ising model; Path probability method; Dynamic 

phase transition; Dynamic phase diagram; Reentrant behavior.  
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GĠRĠġ 

Moleküler-temelli manyetik malzemeler ve özellikle de ferrimanyetik malzemeler, ileri 

teknolojik uygulamalarda gün geçtikçe daha yoğun kullanıldıklarından dolayı bu 

malzemeler ve bunların faz davranıĢları günümüzde hem teorik hem de deneysel 

araĢtırmacıların üzerinde en fazla mesai harcadıkları araĢtırma konularından birisi 

olmuĢtur. Son yıllarda, manyetik malzemelerin teorik olarak incelenmesinde prototip 

modeller olarak tek-spin sistemlerinden ziyade karma-spin (yarım tamsayılı-tamsayılı, 

yarım tamsayılı-yarım tamsayılı ve tamsayılı-tamsayılı) sistemleri kullanılmaktadır. 

Manyetik malzemeler için en uygun ve yoğun kullanılan sistemler ise karma-spin (1/2, 

1); (1/2, 3/2) ve (2, 5/2) Ising sistemleridir. Ayrıca, karma-spin (1/2, 2); (1/2, 5/2); (1, 

3/2); (1, 2); (3/2, 5/2) gibi diğer karma-spin sistemleri de kullanılarak, manyetik 

malzemelerin denge özellikleri çok kapsamlıca incelenmiĢ ve günümüzde de 

incelenmektedir. Bu incelemeler, denge istatistiksel fizikte geliĢtirilen ve uygulanması 

çok iyi bilinen ortalama-alan teorisi (OAT), etkin-alan teorisi (EAT), renormalizasyon 

grup teorisi (RGT), Monte Carlo (MC) hesaplamaları ve bu belirtilen yöntemlerin farklı 

modifikasyonları kullanılarak yapılmıĢ ve yapılmaktadır. Karma-spin sistemleri üzerine 

yoğun çalıĢmaların yapılmasının diğer bir önemli nedeni ise tek-spin sistemlerine göre 

daha az öteleme simetrisine sahip olmaları nedeniyle çok daha zengin faz diyagramları 

elde edilmesidir. 

 Karma spin sistemleri kullanılarak manyetik malzemelerin denge özellikleri genelde 

daha kapsamlı incelendiği halde, dinamik özellikleri üzerinde aynı oranda çalıĢmalar 

yapılamamıĢtır. Bunun en büyük sebebi ise dinamik inceleme hesaplamalarının daha zor 

oluĢu ve dengesiz istatistiksel fizikte geliĢtirilen dinamik yöntemlerin veya 

modellemelerin tatminkâr olmayıĢıdır. En fazla kullanılan yöntemler olarak ortalama 

alan teorisi temelli Glauber-tipi stokhastik dinamik, kısaca dinamik ortalama alan teorisi 

(DOAT) diye adlandırılır, etkin-alan teorisi temelli Glauber-tipi stokhastik dinamik, 

kısaca dinamik etkin-alan teorisi (DEAT) diye adlandırılır, yol ihtimaliyet yöntemi 
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(YĠY) sayılabilir. Karma-spin sistemlerinin dinamikleri genelde DOAT ve DEFT 

yöntemleriyle incelenmiĢ olup YĠY ile de birkaç çalıĢma mevcuttur [1, 2]. Oysa ki bu 

tezin yöntem bölümünde ayrıntılı olarak bahsedileceği üzere YĠY ile çalıĢmak, DOAT 

ve DEFT ile çalıĢmaktan daha avantajlıdır. Çünkü DOAT ve DEFT tek oran sabiti 

içerdikleri halde YĠY iki ve üç oran sabiti içermektedir. Oran sabitleri deneysel 

çalıĢmalarda soğuma oran katsayılarına tekabül ettiğinden, YĠY ile elde edilen 

sonuçların deneysel çalıĢmalarla karĢılaĢtırılması daha uygun ve deneyci araĢtırmacılara 

daha fazla yol gösterici olacaktır. Ayrıca, basit Hamiltonyenli sistemlerde bile YĠY’nde 

düzen parametreleri (mıknatıslanma veya dipol, m ve kuadrupol, q)  çiftlenimli 

(coupling) gelmekte iken DOAT ve DEFT de gelmemektedir. Öte yandan spin 

korelasyonlarının hesaba katılmaması, YĠY’nin DEFT ye göre bir eksikliğidir. Bu 

nedenle, hem teknolojik hem de akademik araĢtırmalar bakımından önemli olan karma-

spin (1/2, 1); (1/2, 3/2) ve (2, 5/2) Ising sistemleri kullanılarak manyetik malzemelerin 

dinamiklerinin YĠY ile incelenmesi üzerine yapılacak çalıĢmalar literatürde önemli bir 

boĢluğu dolduracağı gibi manyetik ve özellikle ferrimanyetik malzemeler üzerine 

çalıĢanlara da yol gösterici/ıĢık tutucu mahiyette olacaktır.  

 

Moleküler-temelli manyetik malzemelerin dinamik özellikleri kapsamında,  histerisiz ve 

telafi (compensation) davranıĢlarının araĢtırılması, hem teknolojik uygulamalar ve hem 

de akademik çalıĢmalar bakımından önemli konular içerisinde yer almaktadır. Ayrıca, 

faz geçiĢ sıcaklıklarının incelenmesi ve faz diyagramlarının elde edilmesi ise yoğun 

madde fiziği ve istatistiksel fiziğin önemli ve güncel konularından biridir.  Sonuçlar, 

literatürdeki mevcut farklı yöntemlerle elde edilen sonuçlarla ve aynı zamanda bu 

karma-spin sistemlerinin karĢılık geldiği sistemler veya benzer sistemlerle yapılan 

deneysel sonuçlarla da karĢılaĢtırılacaktır. Böylece, hem YĠY’in karma-spin 

sistemlerinin dinamiklerinin incelenmesindeki geçerliliği test edilmiĢ olacak hem de bu 

konuda çalıĢan deneysel araĢtırmacılara daha fazla yol gösterici potansiyelde olacaktır.  
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1.  BÖLÜM 

GENEL BĠLGĠLER ve LĠTERATÜR ÇALIġMASI 

1.1 Ising Modeli 

Bir seyreltik gazın molekülleri arasındaki etkileĢmeler gibi parçacıkları arasında zayıf 

etkileĢmelerin olduğu sistemlerin incelenmesi bazı basitleĢtirmeler yapılarak kolayca 

yapılabilir. Öte yandan, parçacıklar arasında kuvvetli (Ģiddetli) etkileĢmelerin cereyan 

ettiği sistemlerde ise basitleĢtirmeler yapmak artık mümkün değildir. Ferromanyetizma 

ve faz değiĢimleri buna iyi bir örnektir. Bu tür sistemlerin hassas bir Ģekilde incelenmesi 

son derece zor olmakla beraber kuvvetli etkileĢimler nedeniyle ortaya çıkan fiziksel 

olayların temel noktalarını ortaya çıkaran çeĢitli yaklaĢımlar veya modeller 

tasarlanabilir. ĠĢte bu kooperatif olayların açıklanması, basit bir ferromanyetizma 

modeli olan Ising modeliyle [3] sağlanır. 

Ising modeli, ġekil 1.1’de olduğu gibi bir kristal örgü noktalarının 0  manyetik 

momentli birer atom tarafından iĢgal edildiğini kabul eder. Bu manyetik momentler 

Ising spini olarak adlandırılır. Herbir Ising spinin durumu 1 veya -1 değerini alan 
j  

değiĢkeni ( 1,2,..., ;j N N toplam atom sayısıdır)  ile temsil edilir. Kristaldeki komĢu 

spinler arasında, paralel veya anti-paralel olmalarına bağlı olarak 

 J J J    ,     J J   

Ģeklinde bir J  etkileĢimi (becayiĢ veya değiĢ-tokuĢ etkileĢmesi) vardır.  Böylece 

sistemin etkileĢme enerjisi, 

               0

1

N

i j i

ij i

J s s H s
  

   H                                                                          (1.1) 
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Ģeklinde ifade edilir ki burada toplam, etkileĢen komĢu çiftler üzerinden alınır. ġekil 1.1 

a ve b’de görüldüğü gibi, en yakın komĢu spin sayısı kare örgü ve hegzagonal örgü için 

sırayla, 4z  ve 6z  ’dır. Denklem (1.1)’de J  enerji boyutunda olup dipol-dipol 

etkileĢmesinin Ģiddetini ve cinsini belirler. Eğer 0J  ise, komĢu spinler paralel olma 

eğilimindedirler, öyle ki ferromanyetizma meydana gelme ihtimali ortaya çıkar. Eğer 

0J   ise bu kez komĢu spinler anti-paralel olma eğilimindedirler, öyle ki 

antiferromanyetizma meydana gelme ihtimali ortaya çıkacaktır. 

                            (a)            

(b)

 

Şekil 1.1. En yakın komĢu spin sayısı kare örgü ve altıgen örgü için sırayla 4z  ve 

6z  ’dır. 

Ising modeli, manyetik sistemleri çözmek için ortaya atılmıĢ fakat basit dönüĢümlerle 

çok farklı sistemlere kolayca uygulanabilen ve günümüzde çok aktif olarak 

kullanılmakta olan bir modeldir.  

 

Ising modelleri içinde en basit ve en yaygın olarak kullanılan model, spin-1/2 Ising 

modelidir. Ancak, ferrimanyetik yapıya sahip karmaĢık bileĢikler, seyreltik 

ferrimanyetik sistemler, yarı-iletken alaĢımlar, amorf yapıya sahip alaĢımlar, 

termomanyetik ve moleküler tabanlı kayıt sistemleri, moleküler tabanlı mıknatıslar, 

telafi sıcaklıklarının varlığı, ferrimanyetik düzenlilik ve düzenli-düzensiz faz geçiĢleri 

gibi daha karmaĢık fiziksel sistemlerin termodinamik davranıĢlarının üzerlerinde 

çalıĢmak için daha yüksek spinli veya karma spin Ising sistemleri gibi daha fazla 

durumlu ve birden fazla düzen parametreli bir model gerekmektedir. Dolayısıyla 1980’li 
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yıllarda, karma spin Ising sistemleri ile ilgili çalıĢmalara baĢlanmıĢ ve bu spin sistemleri 

günümüzde de kullanılan ve kullanılmaya da devam edecek olan en önemli sistemler 

olmuĢlardır. 

 

Ising modelinin bu kısa genel tanımından sonra, gelecek kesimde, yani literatür 

çalıĢması kısmında  karma spin sistemleri hakkında yapılmıĢ olan çalıĢmalar hakkında 

kısaca bilgi verilecektir. 

 

1.1. Literatür ÇalıĢması ve Motivasyon 

Karma (yarım tamsayılı-tamsayılı) spin (1/2, 1); spin (1, 3/2); spin (1/2, 2); spin (1, 

5/2); spin (3/2, 2); spin (2, 5/2) Ising sistemleri ve karma (yarım tamsayılı-yarım 

tamsayılı) spin (1/2, 3/2); spin (1/2, 5/2); spin (3/2, 5/2) Ising sistemleri; karma 

(tamsayılı-tamsayılı) spin (1, 2) Ising sistemi, önemli karma spin sistemleri olarak 

karĢımıza çıkar. Bu spin sistemlerinin kesin çözümleri, bal petegi örgüsü, karo fayans 

tipi örgü, dama örgüsü, Bethe örgüsü, iki-katlı Cayley ağacı ve dekore edilmiĢ 

düzlemsel örgülerde incelenmiĢtir. Yarım tamsayılı-yarım tamsayılı karma spin 

sistemleri,  çoklu kritik davranıĢ, manyetoelastik geçiĢler veya kararsızlık sergilemeleri 

nedeniyle üzerlerinde daha az çalıĢılmıĢ olmakla birlikte bu özellikleri sebebiyle diğer 

karma spin sistemlerinden ayrılır. En iyi bilinen ve üzerinde en çok çalıĢılan yarım 

tamsayılı-yarım tamsayılı karma spin Ising sistemlerinden birisi karma spin (1/2, 3/2) 

Ising modelidir ki bu tezde kullanacağımız modeldir. Elbette tezin özgünlüğü, giriĢ 

kısmında bahsedildiği üzere müteakip tabakalı altıgen örgü üzerinde Yol Ġhtimaliyet 

Metodu (YĠY) kullanılacak olmasıdır.  Ancak, karma spin (1/2, 3/2) Ising modeli ve 

kullanılan yöntemler hakkında kısa bir literatür bilgisi vermek uygun olacaktır.  

 

Ġlk olarak Bobák ve Jurcišin [4] EAT kullanarak karma spin (1/2, 3/2) Ising modeli 

üzerinde çalıĢmıĢlar ve telafi (compensation) sıcaklıklığının spinlerin sadece 

büyüklüğüne değil örgünün yapısına da bağlı olduğunu göstermiĢlerdir.  Bobák ve 

Jurcišin [5], bilineer ve kristal-alan etkileĢim parametreli yine seyreltik karma spin-1/2 

ve spin-3/2 Ising modelini EAT kullanarak bal peteği örgüsünde incelemiĢ ve modelin 

ikili telafi noktasına sahip olduğunu göstermiĢlerdir. Moleküler temelli amorf V 

(TCNE)x.Y (çözücü) manyetik bileĢiğinin yaklaĢık 400 K gibi bir sıcaklıkta spin-1/2-

3/2 ferrimanyetik yapı ve ferrimanyetik düzene sahip olduğu deneysel olarak tespit 
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edilmiĢtir [6-8]. Sistemin denge davranıĢları incelemesi EAT [9] ve MC yöntemi [10] 

ile kapsamlıca yapılmıĢtır. Kristal alan etkileĢimli karma spin (1/2, 3/2) enine Ising 

modelinin manyetik özellikleri, düzen parametrelerinin termal davranıĢını veren faz 

diyagramları, EAT kullanılarak detaylı bir Ģekilde incelenmiĢtir [11-13]. Karma spin 

(1/2, 3/2) Ising modeli manyetizasyonunun termal davranıĢı, manyetik alınganlığı ve faz 

diyagramları gibi manyetik özellikleri yine EAT kullanılarak boyuna manyetik alan 

varlığında da araĢtırılmıĢtır [14]. Karma spin (1/2, 3/2) Heisenberg ferrimanyetik 

sisteminde Green-fonksiyon tekniği kullanılarak en yakın ve ikinci en yakın spin 

etkileĢimleri incelenmiĢtir [15]. Ayrıca, karma spin (1/2, 3/2) Ising modelinin manyetik 

özellikleri Bethe kafesi [16], kare örgü [17], geniĢletilmiĢ Kagomé örgüsü [18], iki-katlı 

Cayley ağacı [19] ve bal peteği örgüsü [20] için incelenmiĢtir. Bunlara ilaveten 

seyreltilmiĢ karma spin-1/2 ve spin-3/2 modeli OAY ile de kapsamlıca çalıĢılmıĢtır 

[21]. Karma spin (1/2, 3/2) Ising modelinin yine denge manyetik özellikleri, son 

zamanlarda Gençaslan ve Keskin [22] tarafından kümesel değiĢim metodu kullanılarak 

araĢtırılmıĢtır. Bunların yanısıra karma spin (1/2, 3/2) Ising modeli, son yıllarda 

sistemlerin manyetik ve termal özelliklerini açıklamak için, EFT [23, 24] ve MCS ile 

[25, 26, 27] kullanılarak nanotüplere [23, 25] ve nanotellere [24, 26, 27] uygulanmıĢtır.   

 

Karma spin (1/2, 3/2) Ising modelinin denge manyetik özellikleri etraflıca incelenmiĢ 

olsa da sistemin dinamik (dengede olmayan) manyetik özellikleri tam manasıyla izah 

edilebilmiĢ değildir. Bu kapsamda ilk incelemelerden biri, Deviren ve arkadaĢları [28] 

tarafından zamanla değiĢen manyetik alan varlığında kare örgü üzerinde GDY’na 

dayanan OAT ki genellikle DMFA olarak adlandırılan yaklaĢımı kullanarak sistemin 

dinamik faz geçiĢleri üzerine yapılan çalıĢmadır. Bu çalıĢmayı Keskin ve arkadaĢları 

[29], müteakip tabakalı altıgen örgü üzerine uygulayarak P ve L-tipi telafi davranıĢları 

da dâhil olmak üzere daha ilginç dinamik faz davranıĢları tespit etmiĢlerdir. Vatansever 

ve Polat [30], zamana bağlı manyetik alan varlığında sistemin dinamik faz sıcaklıklarını 

Dinamik Monte Carlo Simülasyonu (DMCS) ile incelemiĢlerdir. Son zamanlarda 

Gençaslan ve Keskin [31],  sabit manyetik alanın varlığında ve yokluğunda sistemin 

manyetizasyonunun kararlı ve kararsız davranıĢlarını YĠY ile incelemiĢlerdir.  

 

Bu tezin giriĢ kısmında da belirtildiği üzere, manyetik malzemelerin teorik olarak 

incelenmesinde prototip modeller olarak karma-spin (yarım tamsayılı-tamsayılı, yarım 
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tamsayılı-yarım tamsayılı ve tamsayılı-tamsayılı) sistemleri kullanılmaktadır. Bunların 

içinde en iyi bilinen ve üzerinde en çok çalıĢılan yarım tamsayılı-yarım tamsayılı karma 

spin Ising sistemi, karma spin (1/2, 3/2) Ising modelidir ki bu tezde, müteakip tabakalı 

altıgen örgü üzerine YĠY uygulayarak sistemin dinamik manyetik özelliklerini 

inceleyeceğiz. Yukarıda literatür bilgisinde vurgulandığı gibi karma-spin sistemlerinin 

dinamikleri genelde DOAT ve DEFT yöntemleriyle incelenmekte iken YĠY ile ancak 

birkaç çalıĢma mevcuttur [1, 2]. Oysa ki YĠY iki veya üç oran sabiti içermesi DOAT ve 

DEFT’ye göre bir avantaj teĢkil eder. Bu oran sabitleri, deneysel çalıĢmalarda soğuma 

oran katsayılarına tekabül ettiğinden, YĠY ile elde edilen sonuçların deneysel 

çalıĢmalarla karĢılaĢtırılması daha uygun ve deneyci araĢtırmacılara daha fazla yol 

gösterici olacaktır. Dolayısıyla bu tezde, zamanla değiĢen manyetik alan varlığında 

müteakip tabakalı altıgen örgü üzerinde karma spin (1/2, 3/2) Ising modelinin dinamik 

manyetik özelliklerini incelemek için YĠY tercih edilmiĢtir. 
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2.  BÖLÜM  

ALTIGEN ÖRGÜ ÜZERĠNDE KARMA SPĠN (1/2, 3/2) ISING 

SĠSTEMĠ VE DĠNAMĠK FAZ GEÇĠġLERĠ ĠÇĠN DÜZEN 

PARAMETRELERĠ 

2.1. ArdıĢık Altıgen Örgü Üzerinde Karma Spin (1/2, 3/2) Ising Modeli 

Önceki bölümde, bu tezde kullanılacak olan karma spin (1/2, 3/2) Ising modeli 

hakkında detaylı literatür bilgisi verildi. O halde ilk sorulması gereken soru bu sistem 

nasıl tasavvur edilebilir ve sistemi meydana getiren parçacıklar nasıl bir etkileĢim 

içerisinde olmalıdır? Bu kesimde, tezin ana omurgasını teĢkil eden model tanıtılmıĢ 

olacaktır. Sistemi teĢkil eden spinli parçacıklar, müteakip altıgen örgü noktalarına öyle 

yerleĢmiĢlerdir ki ġekil 2.1’de görüldüğü gibi müteakip tabakalı altıgen örgüleri 

oluĢtururlar. 

 

Şekil 2.1. Müteakip tabakalı altıgen örgüler üzerinde spinlerin yerleĢiminin taslağı. 

Örgü,   (beyaz daireler) ve S (kırmızı daireler) spinlerinin birbirini takip 

eden tabakalara yerleĢmesiyle oluĢmuĢtur. Böylece model, A ve B gibi 

birbiri içine geçmiĢ iki alt örgülü Ising sistemi olarak ele alınabilir. 
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Bu tür çalıĢmalarda düzen parametrelerinin tanımı ve tasviri çok önemlidir. O halde, 

Müteakip tabakalı altıgen örgüler üzerinde karma spin (1/2, 3/2) Ising modeli için düzen 

parametreleri aĢağıdaki gibidir: 

a) A alt örgüsü için, yani A

i  spinleri için ortalama (dipol moment) mıknatıslanma   

            A A

im                                                                                             (2.1) 

b) B alt örgüsü için, yani B

jS  spinleri için ortalama (dipol moment) mıknatıslanma                     

           B B

jm S                (2.2) 

c) B alt örgüsü için, yani B

jS  spinleri için ortalama kuadrupol moment 

           2 5
4

( )B B

jq S                                  (2.3)  

d) B alt örgüsü için, yani B

jS  spinleri için ortalama oktupolar moment 

           25 41
3 12

( )B B B

j jr S S                                                    (2.4) 

Ģeklindedir. Öte yandan A ve B alt örgüleri için, herbir spin durumunun ortalaması ki 

bunlar iç değiĢkenler veya durum ya da nokta değiĢkenler olarak da adlandırılır, 1

AX , 

2

AX  iç değiĢkenleri sırayla  1
2

 , 1
2

  değerlerini alırken 1

BX , 2

BX , 3

BX ve 4

BX iç 

değiĢkenleri sırayla 3
2

, 1
2

, 1
2

  ve 3
2

  değerlerini alırlar. Bu iç değiĢkenler 

normalizasyon Ģartına uyarlar, yani 
2

1
1A

ii
X


  ve 

4

1
1B

jj
X


 ’dir. Düzen 

parametreleri, normalizasyon Ģartlarının da kullanılmasıyla,  

1 2

A A A A

im X X  s           (2.5)  

3 1
1 4 2 32 2

( ) ( )B B B B B B

jm S X X X X             (2.6) 

1 2 3 4

B B B B Bq X X X X              (2.7) 

31
1 4 3 22 2

( ) ( )B B B B Br X X X X                       (2.8) 



10 

 

Ģeklinde iç değiĢkenler cinsinden yazılabilirler. Ayrıca iç değiĢkenleri, düzen 

parametrelerinin lineer kombinasyonu olarak da yani, 

1

1

2

A AX m 
 
ve 2

1

2

A BX = m                                                                          (2.9)  

 1

1 1
1 ( 3 ),

4 10

B B B BX = q r m                                                                      (2.10a) 

 2

1 1
1 ( 3 ),

4 10

B B B BX = q m r                                                                     (2.10b) 

 3

1 1
1 (3 ),

4 10

B B B BX = q r m                                                                     (2.10c) 

 4

1 1
1 ( 3 )

4 10

B B B BX = q r m                                                                     (2.10d) 

olarak ifade edebiliriz.  

 

Düzen parametreleri, müteakip tabakalı altıgen örgüler üzerinde karma spin (1/2, 3/2) 

Ising sistemi için üç farklı temel fazı tanımlamaktadır. Bu temel fazlar:  

1) Paramanyetik faz (p): 0A Bm m   , 

2) Antiferromanyetik faz (af): A Bm m  , ( 1 2 ve 1 2A Bm m    ) 

3) Ferrimanyetik faz (i): 0A Bm m  , ( 1 2 ve 3 2A Bm m    ) 

Ģeklindedir.                                                  

 

Müteakip tabakalı altıgen örgüler üzerinde karma spin (1/2, 3/2) Ising sistemi için 

Hamiltonyen ifademiz 

2

1 2 3

A B A A B B B A B

i j i j i j j i j

ij ij ij j i j

-J S - J - J S S - D ( S ) - H S
 

  
 

        H          (2.11) 

olacaktır ki burada 1 2 3veJ , J J  sırayla 
A B A A

i j i i- S , -    ve 
B

jS  -
B

jS  arasındaki bilineer 

etkileĢme sabitleridir. Bu aĢamada en yakın komĢu çift sayılarının da belirtilmesi 

gerekir ki bu tezde altıgen örgü kullanılacağından 1J  için 1 4z , 2 3veJ J için ise 

 2 3 2z z ’dir. Hamiltonyenimizde D, kristal alan etkileĢmesi veya tek-iyon anizotropi 

sabiti ve H ise zamanla değiĢen salınımlı dıĢ manyetik alan olup 
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0 cos( )H H t              (2.12) 

formundadır ki H0 salınımın genliği ve 2  ise açısal frekansıdır. 

 

Ġlk etapta, uzunluğuna manyetik alan altında altıgen örgü üzerinde karma spin (1/2, 

3/2) Ising ferromanyetik sistemini kümesel değiĢim metodu uygulayarak sistemin 

manyetik özelliklerini, düzen parametrelerinin yarı-kararlı, kararsız ve kararlı branĢları 

tespit edilebilir. Bunun için ise 

F E TS             (2.13) 

formunda serbest enerjinin hesap edilmesi gerekir ki burada E, iç enerji;  T, Sıcaklık ve 

S, entropidir. Toplam örgü noktası baĢına iç enerji, 

1 2 3

A B A A B B B A BE
J m m J m m J m m Dq Hm Hm

N
                       (2.14) 

olup iç değiĢkenler cinsinden ifade edilmelidir. Entropi için ağırlık faktörlerinin, yani 

2 4

1 1

ve

( ) ( )

A B
A B

A A B B

i j

i j

N ! N !
W W

X N ! X N !
 

 

 
              (2.15) 

ifadelerinin yazılıp S k lnW  entropi tanımı ln N ! N ln N N   Stirling yaklaĢımının 

kullanılmasıyla herbir alt örgü için entropiler, 

2 4

1 1

A A A B B B

i i j j

i j

S kN X ln X ve S kN X ln X
 

           (2.16)                                                             

Ģeklinde bulunur. Böylece toplam örgü noktası baĢına serbest enerji, 

1 2 3 1 1 2 2

1 1 2 2 3 3 4 4

1
( ) + ( )

1
+ ( + )                                      (2.17)

A B A A B B B A B A A A A

B B B B B B B B

F
f J m m J m m J m m Dq Hm Hm X ln X X ln X

N

X ln X X ln X X ln X X ln X

        


 


   

olarak hesaplanır.  ġimdi öz bağlılık denklemleri, 

0 ( 1 2) ve 0 ( 1 2 3 4)
A B

i j

f f
i , j , , ,

X X

 
   

 
                (2.18)                                                                       

kullanılmasıyla bulunur. Böylece, denge faz diyagramlarında kullanılacak denklemler, 
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2

1 2
( ) 1

1

A
i

A A

i iA
A A A A

iE
i

N XA

i

X e
Z Z e e e

e e

 
 




 

  


 

              (2.19)                                                               

4

1 2 3 4
( ) 1

1

B
j

B B

j jB
B B B B B B

jE
j

N XB

j

X e
Z

Z e e e e e

e e

 
 




 

    


 

                                (2.20)                                              

olmak üzere (ki burada, 1 Bk T   ifadesinde Boltzman sabiti 1Bk   alınacaktır), 

1 2

1
( )

2

A A Am X X  = 1 2

1
( )

2

A A

A
e e

Z
         (2.21) 

1 4 2 3 1 4 2 3

3 1 1
( ) ( )= [3( )+( )]

2 2 2

B B B B B B B B B

B
m X X X X e e e e

Z
                   (2.22)

 1 2 3 4 1 2 3 4

1
( )= ( + )B B B B B B B B B

B
q X X X X e e e e

Z
          (2.23) 

1 4 3 2 1 4 3 2

1 3 1
( ) ( )= [( )+3( )]

2 2 2

B B B B B B B B B

B
r X X X X e e e e

Z
                         (2.24) 

elde edilirler. Bu denklemlerde belirtmek gerekir ki 
AZ  ve 

BZ , sırasıyla A alt örgüsü ve 

B alt örgüsü için bölüĢüm fonksiyonlarıdır. Bu denklemlerin sayısal çözümleri ise 

uygun bir FORTRAN programı ile yapılarak sonuçların bir grafik çizim programına 

aktarılmasıyla denge faz diyagramları elde edilir. 

 

2.2. YĠY kullanarak Dinamik Manyetik Faz GeçiĢleri Ġçin Düzen  

       Parametreleri 

ġimdi ise zamana bağlı salınımlı dıĢ manyetik alan altında bir altıgen kristal örgüde 

karma-spin (1/2, 3/2) Ising ferrimanyetik sisteminin dinamik faz geçiĢleri yol 

ihtimaliyet metodu ile incelemek için gerekli dinamik denklemleri elde edelim. Dinamik 

denklemleri elde etmek için Yol Ġhtimaliyet Yöntemini (YĠY) kullanılacaktır. YĠY’de iç 

değiĢkenlerin değiĢim oranı, 

( )i
ji ij

i j

dX

dt 

             (2.25) 
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dir ki burada 
ij , i durumundan j durumuna geçen sistem için yol ihtimaliyet oranı (yol 

ihtimaliyet fonksiyonu) olarak adlandırılır ve  
ij ji     denge durumunu verir. Kikuchi 

[32],  
ij  için iki adet tarife tanımı yapmıĢtır ki biz bu tezde  

( ) ( )( )
1 , ,j ji

E EE

N X N XN X

ij ij i i jk Z X e e e e e

 
 

    

 

                    (2.26) 

ile verdiği tarife II’yi kullanacağız. ġimdi bu tarifeyi kullanarak düzen parametrelerinin 

zamanla değiĢimlerini bulalım. ġöyle ki 

             1 2

1
( )

2

A A Am X X                                               

olduğundan 

          
1 21

( )
2

A AA dX dXdm

dt dt dt
                                                                                    (2.27)                                                                           

hesaplanacaktır. Bunun için yol ihtimaliyet fonksiyonu ve etkileĢimler yazılmalıdır.   A 

alt örgüsü için Denklem (2.26) ile verilen tarife II’nin uygulanmasıyla, yani 

  

1 1
21 12 21 2 1 12 1 2

2 2
12 21 12 1 2 21 2 1

( )

( )

A A
A A A A A

A A
A A A A A

dX dX
Z k X e k X e

dt dt

dX dX
Z k X e k X e

dt dt

     

     

                       (2.28) 

olup 
ij jik k  oran sabitleridir ve Tablo-2.1’de görüldüğü gibi 12 21 2k k k   ‘dir. 
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Tablo 2.1. A Alt Örgüsü için etkileĢimler. 

 

 

 

 

 

Oran sabitleri,  

1k Parçacıkların örgü boyunca ötelenmesi (translation),  

2k  Parçacıkların örgü konumundaki dönmesini (rotation), 

3 1 2k k k  Parçacığın aynı anda hem dönme hem de ötelenmesini  

temsil eder ve genellikle 2 1k k  alınır. Böylece,  

2 2 1 1 2= ( )
A

A A A A Adm
Z k X e X e

dt
                                 (2.29) 

bulunur ve iç değiĢkenlerin de yerine yazılarak düzenlenmesiyle 

2 2 1 1 2 2

1 1
=- [ ( 2 )]

2 2

A
A B Adm

k m k tanh J z m J z m H
dt T

            (2.30) 

halini alır. Salınımlı manyetik alanı 0 ( )H H cos t   alıp eĢitliğin sol tarafını   ve k  

ile çarpıp bölerek düzenleme yaparsak, 

2 2
1 1 2 2 0

1 1
- [ ( 2 cos( )]

2 2

A
A B Ak kdm

m tanh J z m J z m H
d k k T

     


              (2.31) 

elde edilir ki burada , t
k

     ve 1 2k k k  ‘dir. Benzer Ģekilde B alt örgüsü için 

de dinamik manyetizasyon, quadrupolar ve octupolar denklemleri elde edilir. Ancak bu 

kez etkileĢme oran sabitleri Tablo-2.2’deki gibi olacaktır. Böylece, 

            

           1 4 2 3

3 1
( )+ ( )

2 2

B B B B Bm X X X X           

  

 1
1 2

( )AX   1
2 2

( )AX   

A alt örgüsü 
1

1 2
( )AX   2 12( )k k  

1
2 2

( )AX 

 

2 21( )k k   
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1 2 3 4( )B B B B Bq X X X X                        

   

1 4 3 2

1 3
( ) ( )

2 2

B B B B Br X X X X            

olduğu için değiĢimleri, 

 31 4 23 1
( )+ ( )

2 2

BB B BB dXdX dX dXdm

dt dt dt dt dt
                      (2.32) 

 
31 2 4+
BB B BB dXdX dX dXdq

dt dt dt dt dt
             (2.33)            

 
31 4 21 3

( )+ ( )
2 2

BB B BB dXdX dX dXdr

dt dt dt dt dt
          (2.34) 

olacaktır ve  

Tablo 2.2. B Alt Örgüsü için etkileĢimler. 

 

1
1 2 1 1 2 2 4 1 1 4 3 3 1 1 3

2
1 1 2 2 1 2 3 2 2 3 3 4 2 2 4

3
1 4 3 3 4 2 2 3 3 2 3 1 3 3 1

4
1 3 4 4 3 2 1 4 4 1 3 2 4 4 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

B
B

B
B

B
B

B
B

dX
Z k X e X e k X e X e k X e X e

dt

dX
Z k X e X e k X e X e k X e X e

dt

dX
Z k X e X e k X e X e k X e X e

dt

dX
Z k X e X e k X e X e k X e X e

dt

     

     

     

     

            (2.35) 

   3
1 2

( )BX  1
2 2

( )BX  1
3 2

( )BX    
3

4 2
( )BX   

B alt örgüsü 

3
1 2

( )BX   1 12( )k k  3 13( )k k  2 14( )k k   

1
2 2

( )BX  1 21( )k k   2 23( )k k   3 24( )k k  

1
3 2

( )BX 

 

3 31( )k k  2 32( )k k   1 34( )k k  

3
4 2

( )BX 

  

2 41( )k k  3 42( )k k  1 43( )k k   
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değiĢimlerinin yerlerine yazılıp düzenlenmesiyle, daha önce elde ettiğimiz A alt örgüsü 

için dinamik manyetizasyon denklemini de yazarsak topluca dinamik denklemlerimiz, 

2 2
1 1 2 2 0

1 1
- [ ( 2 cos( )]

2 2

A
A B Ak kdm

m tanh J z m J z m H
d k k T

     


                                (2.31) 

1 2 2 1 1 2 2 1

1 2 2 1 1 2 2 1

1 2 2 1 1 2 2 1

1 2 2 1

1
{ [(2 9 )cosh( ) (6 3 )cosh( ) ]

5

1
[(2 )sinh( ) (2 3 )sinh( )] ]

2

1
[(2 3 )cosh( ) 3(2 )cosh( ) ]

5

1
[(2 )sinh( )

2

B
c c B

c c B

c c B

c

dm
k k k k a e k k k k b e m

d

k k k k b e k k k k a e q

k k k k b e k k k k a e r

k k k k b e









       

     

     

  

x

1 2 2 1(2 3 )sinh( ) ]}

/ 2 [cosh( ) cosh( ) ],

c

c c

k k k k a e

k a e b e

  



     (2.36) 

1 2 1

1 2 1

1 2 1

1 2 1

1
{ ( )[6sinh( ) 2sinh( ) ]
5

( )[cosh( ) cosh( ) ]

2
( )[3sinh( ) sinh( ) ]

5

( )[cosh( ) cosh( ) ]}

/ 2 [cosh( ) cosh( ) ],

B

c c B

c c B

c c B

c c

c c

dq

d

k k k b e a e m

k k k a e b e q

k k k a e b e r

k k k a e b e

k a e b e











 

 

  

  

  



x

                                         (2.37) 

1 2 2 1 1 2 2 1

1 2 2 1 1 2 2 1

1 2 2 1 1 2 2 1

1 2 2 1

1
{ [( 3 2 )cosh( ) 3( 2 )cosh( ) ]
5

1
[( 2 )sinh( ) ( 3 2 )sinh( ) ]

2

1
[(3 6 )cosh( ) ( 9 2 )cosh( ) ]

5

1
[( 2 )sinh( ) (

2

B

c c B

c c B

c c B

c

dr

d

k k k k a e k k k k b e m

k k k k a e k k k k b e q

k k k k a e k k k k b e r

k k k k a e k







 

    

     

     

   

x

1 2 2 13 2 )sinh( ) ] }

/ 2 [cosh( ) cosh( ) ],

c

c c

k k k b e

k a e b e





 



                  (2.38)                         
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halinde elde edilirler ki (2.36)-(2.38)’de 1 1 3 3 0

3
( 2 cos( )) /

2

A Ba J z m J z m H T    ,  

1 1 3 3 0

1
( 2 cos( )) /

2

A Bb J z m J z m H T    , /c D T , and 1 2k k k kullanılmıĢtır. 

Bu tür dinamik sistem çözümleri genelde, Adams-Moulton kestirme düzeltme yöntemi, 

Runge-Kutta yöntemleri, Euler yöntemi vb. gibi nümerik yöntemler ile elde edilebilir. 

Bu tezde Adams-Moulton kestirme düzeltme yöntemi kullanılmıĢtır. 

Ġkinci önemli basamak olarak, 
A,BM  dinamik mıknatıslanma düzen parametrelerinin 

elde edilmesi ve sıcaklığa göre davranıĢlarının incelenmesidir. Dinamik düzen 

parametreleri,  

 



 
 
1

( )
2

2

A,B A,B

0

M = m d ,       (2.39)     

                                                                                

Ģeklinde tanımlanır [33] ki burada   t ’dir. Bu integraller, Adams-Moulton kestirme 

düzeltme yöntemi ve Romberg integrasyon yönteminin kullanılmasıyla çözülerek, 

dinamik düzen parametrelerinin sıcaklıkla olan değiĢimleri incelenir. Bu incelemeler 

sonucunda DFG sıcaklıkları tespit edilir. DFG sıcaklıkları kullanılarak her bir sistem 

için, farklı düzlemlerde dinamik faz diyagramları elde edilir. 

 

Önemli bir manyetik özellik olan dinamik manyetik histerisiz (DMH) davranıĢlarını 

elde etmek için, dinamik histerisiz döngü alanı (loop area) tanımlanması gerekir ve bu 

ise  

             , ,

0( ) ( )sin( )A B A BA m t dH H m t t dt                                                    (2.40) 

Ģeklinde tanımlanır [34]. Son olarak, diğer bir önemli manyetik özellik olan dinamik 

telafi sıcaklığı davranıĢları ise  

             
    

  
  

2

0

1 ( ) ( )

2 2

A B
T m m

M d                                                                        (2.41)                                                                                                   

integrali nümerik olarak çözülerek elde edilir. Burada 
TM , toplam mıknatıslanmadır. 
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Gelecek bölümde, moleküler-temelli manyetik malzemelerin dinamik manyetik 

özelliklerinin incelenmesi kapsamında, zamana bağlı salınımlı dıĢ manyetik alan altında 

bir altıgen kristal örgüde karma-spin (1/2, 3/2) Ising ferrimanyetik sisteminin dinamik 

faz geçiĢleri yol ihtimaliyet metodu ile bulduğumuz sonuçlar verilecektir. Bunlar, 

sistemin hysterisiz davranıĢları, telafi (compensation) davranıĢları, dinamik faz geçiĢleri 

ve faz diyagramları baĢlıkları altında sunulacaktır. 
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3.  BÖLÜM  

MOLEKÜLER-TEMELLĠ MANYETĠK MALZEMELERĠN 

DĠNAMĠK MANYETĠK ÖZELLĠKLERĠNĠN ĠNCELENMESĠ 

3.1. Histerisiz Eğrileri 

Sistem parametrelerinin, zamana bağlı salınımlı dıĢ manyetik alan altında bir altıgen 

kristal örgüde karma-spin (1/2, 3/2) Ising meodelinin YĠY kullanılarak elde edilen 

dinamik histerisiz eğrilerine etkileri hesaplanmıĢtır. Dinamik histerisiz eğrilere sırayla 

sıcaklığın, açısal frekansın, oran sabitinin ve etkileĢme sabitlerinin etkisi incelenip 

dinamik coersive ve dinamik remanent manyetizasyonlar da incelenmiĢtir. 

3.1.1. Histerisiz Eğrilerine Sıcaklık Etkisi 

Bu kesimdeki hesaplamalarda, sırayla A alt örgüsü, B alt örgüsü ve toplam 

manyetizasyon yani  Am , Bm  ve Tm  için bilineer etkileĢme sabitleri 1 1.0J   , 

2 5.0J  , 3 2.0J  ; 1 1 0k . , 2 2 0k .  olarak, kristal alan sabiti 0.25D  , manyetik 

alanın genliği 0 1.50H   ve frekans 0.30   olarak alınmıĢ ve sekiz farklı sıcaklık 

için hesap yapılmıĢtır. Sonuçlar Am , Bm  ve Tm  için ayrı Ģıklar halinde sunulmuĢtur. 

ġekil 3.1’de dikkat edilirse Am  için döngü alanı (loop area) T=1.50’de maksimum 

olmakta, yani malzeme sert mıknatıs (hard magnet) özellik göstermekte ve artan 

sıcaklıkla döngü alanları azalmakta; malzeme yumuĢak mıknatıs (soft magnet) özellik 

göstermektedir. T=7.0’den sonra döngü alanı çok az değiĢmektedir.  Bm  için durum 

tersidir; döngü alanı T=1.50’de minimumdur ve artan sıcaklıkla sert mıknatıslık özellik 

artmakta ancak T=2.55’den sonra döngü alanının azaldığı görülür. 
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Şekil 3.1. Dinamik manyetik histerisiz eğrilerinin sıcaklıkla değiĢimi. 1 1.0J   , 

2 5.0J  , 3 2.0J  ; 1 1 0k . , 2 2 0k .  olarak, 0.25D  , 0 1.50H   ve 

0.30   alınmıĢtır. 
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Şekil 3.2. ġekil 3.1’deki durum için, faz geçiĢ sıcaklığı ve dinamik coersive alan ve 

dinamik remanent manyetizasyon. 

 

ġekil 3.1’de görüldüğü üzere, Am için döngü alanı T’nin düĢük değerleri için dar 

olmakta T=1.50’de döngü alanı maksimum olmakta ve sonra tedricen azalmaktayken 

Bm için T=1.50’de döngü alanı en az olmakta ve artan sıcaklıkla tedricen artmaktadır. 

Aslında bu durum sistemin T=1.50’de bir faz geçiĢ noktasına sahip olduğunu 

göstermektedir ki ġekil 3.2’den bu durum net bir Ģekilde görülmektedir. 
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3.1.2. Histerisiz Eğrilerine Frekans Etkisi 

           

Şekil 3.3. Dinamik manyetik histerisiz eğrilerinin frekansla değiĢimi. 1 1.0J   , 

2 5.0J  , 3 2.0J  ; 1 1 0k . , 2 2 0k .  olarak, 0.25D  , 0 1.50H   ve 

T=2.0 alınmıĢtır. 
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ġekil 3.3’e dikkat edilirse, düĢük frekanslarda Am  için döngüler çift döngü veya ona 

yakın gibi ilginç özellikler gösterirken, Bm için düĢük frekanslarda oldukça büyük 

döngü alanı gözlenmekte ve frekans artıkça da önce elips sonra da bu elips alanı 

küçülmektedir. Bu durum için corsive alan ve remananet manyetizasyon ise ġekil 3.4’te  

olduğu gibidir. Bu Ģekilde de görüldüğü gibi corsive alan ve remananet manyetizasyon  

 

Şekil 3.4. ġekil 3.3’deki durum için dinamik coersive alan ve dinamik remanent 

manyetizasyon.  

frekans yaklaĢık 0.7 civarında iken en büyük olmakta ve azalan frekansla 

küçülmektedirler ki frekans 0.8’e yaklaĢırken yok olmaktadırlar. 

3.1.3. Histerisiz Eğrilerine 2k  Oran Sabiti Etkisi 

Histerisiz eğrilerine 2k  oran sabiti etkisini görmek için 1 1.0J   , 2 5.0J  , 3 2.0J  ; 

1 1 0k .  olarak alınmıĢ ve 0.25D  , 0 1.50H   ve 0.30   ve T=2.0 kullanılmıĢ ve 

ġekil 3.5 teĢkil edilmiĢtir. 

ġekil 3.5 incelenirse, yüksek 2k ‘lerde Am  için döngüler çift döngü veya çifte yakın gibi 

ilginç özellikler gösterdikten sonra azalan 2k  ile birlikte elips tipi döngüler oluĢmaktadır. 

Bm için yüksek 2k ‘lerde oldukça büyük ve diktörgen biçiminde döngü alanı 

gözlenmekte ve 2k  küçüldükçe de önce elips sonra da bu elips alanı küçülmektedir. 
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Şekil 3.5. Dinamik manyetik histerisiz eğrilerinin 2k  oran sabiti ile değiĢimi. 1 1.0J   , 

2 5.0J  , 3 2.0J  ; 1 1 0k . , 0.30   olarak, 0.25D  , 0 1.50H   ve 

T=2.0 alınmıĢtır. 
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3.1.4. Histerisiz Eğrilerine D Kristal Alan Sabiti Etkisi 

              

Şekil 3.6. Dinamik manyetik histerisiz eğrilerinin D kristal alan sabiti ile değiĢimi. 

1 1.0J   , 2 5.0J  , 3 2.0J  ; 1 1 0k . , 2 2 0k . , 0.30   olarak, 

0 1.50H   ve T=2.5 alınmıĢtır. 
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3.1.5. Histerisiz Eğrilerine 2J Bilineer EtkileĢme Sabiti Etkisi 

           

Şekil 3.7. Dinamik manyetik histerisiz eğrilerinin 2J bilineer etkileĢme sabiti ile 

değiĢimi. 1 1.0J   , 3 2.0J  ; 1 1 0k . , 2 2 0k . , 0.30   olarak, 

D=0.25, 0 1.50H   ve T=2.0 alınmıĢtır. 
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3.1.6. Histerisiz Eğrilerine 3J Bilineer EtkileĢme Sabiti Etkisi 

           

Şekil 3.8. Dinamik manyetik histerisiz eğrilerinin 2J bilineer etkileĢme sabiti ile 

değiĢimi. 1 1.0J   , 3 2.0J  ; 1 1 0k . , 2 2 0k . , 0.30   olarak, 

D=0.25, 0 1.50H   ve T=2.0 alınmıĢtır. 
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3.2. Dinamik Manyetizasyon ve Faz Diyagramları 

Nümerik hesaplamalarımızda bilineer etkileĢim sabitlerinden 1J ’i, 1 1.0J   ; oran 

sabitlerini 1 1.0k  , 2 2.0k  ; Boltzman sabitini 1.0Bk   ve frekansı ω 2  olarak sabit 

aldık.  

AM ve 
BM  dinamik mıknatıslanma düzen parametrelerinin sıcaklığa göre davranıĢları 

bu kesimde ele alındı ki Kesim 2.2’de dinamik mıknatıslanmalar, 

 



 
 
1

( )
2

2

A,B A,B

0

M = m d                                                                                   (2.39) 

olarak verilmiĢ [33] ve buradaki 
, (ξ)A Bm  ise sırayla (2.31) ve (2.36)-(2.38) denklemleri 

ile elde edilmiĢti. Bu integraller, Adams-Moulton kestirme düzeltme yöntemi ve 

Romberg integrasyon yönteminin kullanılmasıyla çözüldü, dinamik düzen 

parametrelerinin sıcaklıkla olan değiĢimleri bulundu. Böylece, dinamik faz geçiĢ 

sıcaklıkları ve bunları birinci dereceden veya ikinci dereceden olup olmadıkları tespit 

edildi. 

 Denklem (2.39)’un çözülmesiyle bulunan sonuçlardan ilginç olan altı tanesi ile Ģekil 

3.9 teĢkil edilmiĢtir. ġekil 3.9 (a), 2 0.5J  , 3 1.5J  , 0 3.9H  ve 3.0D  için elde 

edilmiĢ olup sistemin 6.81cT  ’de i (ferrimanyetik) fazdan p (paramanyetik) faza olan 

dinamik ikinci-dereceden bir faz geçiĢine sahip olduğu görülür. Zira, bu sıcaklıkta 

,A BM  sıfıra gider ve artan sıcaklıkla birlikte sürekli sıfır olarak kalır. 2 0.5J  , 3 1.5J  , 

0 1.5H  ve 3.0D   için elde edilen ġekil 3.9 (b)’de sistemin T = 8.30’da birinci 

dereceden bir faz geçiĢine sahip olduğu görülmektedir. Çünkü
,A BM  , kesikli olarak 

sıfıra gitmekte ki i fazdan p faza bir dinamik geçiĢ söz konusudur. ġekil 3.9 (c), 

2 0.5J  , 3 1.5J  , 0 4.7H   , 3.0D   ve 0.5AM  , 0.5BM   baĢlangıç değerleri 

kullanılarak elde edildi ki bu kez sistem birincisi 1tT = 0.50’de i fazdan af 

(antiferromanyetik) faza ve ikincisi 2tT =4.15’de i fazdan p faza geçiĢ olmak üzere 

ardıĢık iki dinamik birinci dereceden faz geçiĢi sergilediği görülür. Öte yandan, ġekil 

3.9 (c)’deki etkileĢme parametrelerinin aynısı alıp sadece baĢlangıç değerlerini 

0.5AM  , 1.5BM   olarak  değiĢtirdiğimiz  takdirde ġekil 3.9 (c`)’yü elde ederiz ki bu  



29 

 

  

Şekil 3.9. Dinamik faz geçiĢ sıcaklıkları ve tabiatları. Parametreler, 2 0.5J  , 

3 1.5J  olmak üzere, (a) 0 3.9H   ve 3.0D  . (b) 0 1.5H   ve 3.0D  . 

(c) 0 4.7H  , 3.0D   ve 0.5AM  , 0.5BM  . (c`) Önceki Ģıkla aynı 

fakat 0.5AM  , 1.5BM  . (d) 0 1.0H   , 0.1D   ve 0.5AM  , 0.5BM  . 

(d`) Önceki Ģıkla aynı fakat 0.5AM  , 1.5BM  . 
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durumda sistem 2tT = 4.15’de i fazdan p faza bir dinamik birinci dereceden faz geçiĢi 

gerçekleĢtirir. Bu son iki Ģekil birlikte değerlendirilirse sistemin 1tT = 0.50 ve 2tT = 4.15 

aralığında i+af formunda bir hibrit veya karma faza sahip olduğu anlaĢılır. Ayrıca, 1tT = 

0.50’in altında i faz, 2tT = 4.15’ün üstünde ise p faz görülür. Son olarak 2 0.5J  , 

3 1.5J  , 0 1.0H   , 0.1D   ve 0.5AM  , 0.5BM   baĢlangıç değerleri için elde 

edilen Ģekil 3.9 (d)’de 1tT  = 5.62 noktasında i fazdan p faza dinamik faz geçiĢi meydana 

geldiği görülürken aynı parametreleri kullanıp fakat baĢlangıç değerlerini 0.5AM  , 

1.5BM  alıp Ģekil 3.9 (d`) çizildiğinde i fazdan p faza dinamik faz geçiĢin 2tT  = 6.13 

noktasında meydana geldiği görülür. Yine bu son iki Ģekil birlikte değerlendirildiğinde 

sistemin 1tT  = 5.62 ve 2tT  = 6.13 arasında p+i formunda bir hibrid fazın varlığı görülür 

ki 1tT  = 5.62 altında i fazı, 2tT  = 6.13’ün üzerinde ise p fazı teĢekkül eder. 

Dinamik faz geçiĢ sıcaklıklarını ve tabiatlarını belirlediğimiz için Ģimdi dinamik faz 

diyagramlarını oluĢturabiliriz. Dinamik faz diyagramlarını 0( , )T H , ( , )T D , 2( , )T J ve 

3( , )T J düzlemleri olmak üzere dört farklı düzlemde oluĢturduk ve Ģekil 3.10-13 ile 

sunduk. ġekil 3.10 (a) dinamik faz diyagramı 2 0.5J  , 3 1.5J   ve 3.0D   için 

0( , )T H düzleminde elde edilmiĢtir.  Bu faz diyagramında yüksek sıcaklıklarda ve dıĢ 

manyetik alan genliğinde p fazı görülürken söz konusu parametrelerin düĢük 

değerlerinde i fazı görülür. Dinamik i ve p fazı arasındaki sınır çizgisi 0H ’ın yüksek 

değerleri için ikinci dereceden gaz geçiĢ (ĠDFG) çizgisi ve 0H ’ın düĢük değerleri için 

birinci dereceden gaz geçiĢ (BDFG) çizgisidir. DüĢük sıcaklıklarda, i ve p’nin mevcut 

olduğu bölgede, i+af  karma veya hibrit fazının yer aldığı  bir 0H değer aralığı vardır. 

Sistem ayrıca iki tane dinamik üçlü kritik nokta (ÜKN) sergiler. Bunlardan biri, i+af 

hibrit fazı i ve p fazından ayıran iki BDFG çizgisini ĠDFG çigisine bağlar. Diğeri 

nispeten küçük 0H ’da gerçekleĢir ve ĠDFG çizgisini BDFG’ne bağlar. Yine 2 0.5J  , 

3 1.5J   alınıp bu kez 3.5D   kullanıldığında elde edilen
 
ġekil 3.10 (b)’ye dikkat 

edilirse i+af  hibrit fazının kaybolmasının yanısıra 0H ’ın yüksek değerlerinde reentrant 

davranıĢı gözlenir. Aynı bilineer etkileĢim sabitlerini kullanıp krsital alan sabiti D’yi 

biraz daha artırdığımızda, yani 4.0D  alındığında Ģekil 3.10 (c) elde edilir. Bu Ģekile 
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 Şekil 3.10. 0( , )T H düzleminde faz diyagramı. EtkileĢme parametreleri  2 0.5J  , 

3 1.5J   olmak üzere (a) 3.0D 
, 
(b) 3.5D 

, 
ve (c) 4.0D  alınmıĢtır.  
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dikkat edildiğinde Ģekil 3.10 (c)’ye benzer ancak düĢük sıcaklık bölgesindeki BDFG 

çizgisi iki parçaya bölünerek ortaya iki tane dinamik çift kritik uç nokta (B) çıkar. Bu 

ise yeni bir dinamik faz davranıĢıdır ve sadece bu sistemde gözlenmiĢtir. 

ġekil 3.11, 2 0.5J  , 3 1.5J   ve 0 0.1H   değerleri için hesaplanan ve ( , )T D  

düzleminde ifade edilen dinamik faz diyagramıdır. Bu dinamik faz diyagramı p, i ve p+i 

fazlarının yanısıra iki tane dinamik üçlü kritik nokta ihtiva eder. D’nin küçük 

değerlerinde, p ve i dinamik fazlarını BDFG çizgisi ile ayıran bir  p+i  hibrit fazı yer 

alır. D’nin biraz artmasıyla, zaten dar olan p+i  hibrit fazı iyice daralır ve bunu 

sınırlayan iki BDFG çizgisi bir dinamik üçlü kritik nokta ile ĠDFG çizgisi ile birleĢir. 

Yine D biraz daha büyüdüğünde ĠDFG çizgisi bir ikinci dinamik üçlü kritik nokta ile bir 

diğer BDFG çizgisine bağlanır. Burada Ģunu da belirtmekte fayda vardır ki H0’ın daha 

farklı değerleri için de hesaplama yapıldığında mevcut dinamik topolojik yapının pek 

değiĢmediği görülmüĢtür.  

                  

Şekil 3.11. ( , )T D düzleminde faz diyagramı. EtkileĢme parametreleri  2 0.5J  , 

3 1.5J   ve 0 0.1H  alınmıĢtır.  
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Şekil 3.12. 3 1.5J   olmak üzere muhtelif 0H ve D değerleri için hesaplanan dinamik faz 

diyagramının 2( , )T J düzleminde görünüĢü. 0 4.5H  değeri için 

(a) 1.0D  , (b) 2.0D   (c) 3.0D  , (d) 4.0D   ve (e) 0 5.0H  , 1.0D  . 

 

ġekil 3.12, 3 1.5J   olmak üzere muhtelif 0H ve D değerleri için hesaplanan dinamik 

faz diyagramını 2( , )T J düzleminde ifade eder. BeĢ temel farklı topolojik dinamik faz 

diyagramı bulunmuĢtur. 0 4.5H   ve 1.0D  için elde edilen ġekil 3.12 (a)’ya bakılırsa 
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dinamik faz diyagramının p, i ve i+af fazlarını ve bir dinamik üçlü kritik nokta, iki tane 

de çift kritik uç nokta (B) içerdiği görülür. 2J ’ün küçük değerlerinde i temel fazı ve i+af  

hibrid fazı arasındaki dinamik sınır BDFG çizgisi iken 2J ’ün büyük değerlerinde p ve i 

fazları arasındaki dinamik sınır ĠDFG çizgisidir. 0 4.5H   Ģeklinde aynı kalırken ve 

kristal alan sabiti 2.0D  olarak artırıldığında bulunan Ģekil 3.12 (b) dinamik faz 

diyagramı, B’nin kaybolması ve ĠDFG eğrisinin uzaması haricinde Ģekil 3.12 (a)’ya 

benzer. 3.0D  olarak biraz daha artırılırsa elde edilen Ģekil 3.12 (c) dinamik faz 

diyagramı, p ve i fazları arasındaki BDFG çizgisinin mevcut olmaması ve dolayısıyla 

dinamik üçlü kritik noktanın kaybolması ve ayrıca 2J ’ün küçük, T ’nin büyük 

değerlerinde bir E kritik son noktanın ortaya çıkması dıĢında Ģekil 3.12 (a) gibidir. 

Kristal alan sabiti 4.0D  olarak artırıldığında daha da artırıldığında hesaplanan Ģekil 

3.12 (d) dinamik faz diyagramında,  2J ’ün küçük değerleri için BDFG ve 2J ’ün büyük 

değerleri için ĠDFG çizgilerini içerdiğini görürüz. Ayrıca, dinamik üçlü nokta (TP) 

gözlenir. Bu kez manyeik alan genliği artırılıp kristal alan sabiti düĢük alınırsa, yani 

0 5.0H  ve 1.0D  değerleri kullanılırsa ġekil 3.12 (e) elde edilir. Bu dinamik faz 

diyagramında, T ’nin yüksek değerlerinde p fazı i faz ve i+af’dan ayıran sadece BDFG 

çizgisi vardır. 2J ’ün küçük değerleri için i+af’faz ve i fazı birbirinden ayıran dinamik 

sınır BDFG çizigisi iken 2J ’ün büyük değerleri için p fazı i fazdan ayıran dinamik sınır 

ĠDFG çizgisidir. Ayrıca dinamik üçlü kritik nokta, kritik son nokta ve iki tane de çift 

kritik son nokta bulunur. 

ġekil 3.13 ise 2 0.5J   kullanılarak muhtelif 0H ve D değerleri için 3( , )T J düzleminde 

sunulan üç adet dinamik faz diyagramından oluĢur. ġekil 3.13 (a), 0 1.0H  ve 4.0D   

için hesaplanmıĢtır ve p, i ve i+af fazları içermesinin yanısıra iki tane üçlü kritik nokta 

ve bir tane çift kritik nokta (B) ihtiva eder. p, i ve i+af fazları arasındaki dinamik sınırlar 

BDFG eğrisidir. 3J ’ün küçük değerleri için p ve i fazları arasındaki sınır ĠDFG çizgisi 

iken 3J ’ün büyük değerleri için BDFG çizgisidir. 0 1.0H  ve 6.0D  için elde edilen 

Ģekil 3.13 (b), çift kritik son noktanın kaybolması ve bu yüzden i+af ve p fazları  

arasındaki BDFG çizgisinin bir dinamik üçlü kritik noktaya bağlanması dıĢında Ģekil 

3.13 (a) ile aynıdır. ġekil 3.13 (c), 0 1.0H  ve 8.0D  için çizilmiĢtir ki (b) Ģıkkına 

benzemekle birlikte farkı, T’nin küçük değerlerinde dinamik bir üçlü noktanın mevcut 
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olmasıdır. (c) Ģıkkına kadar sadece D’yi artırmıĢtık, eğer 0 2.0H  ve 9.0D   Ģeklinde 

her ikisini de artırırsak ġekil 3.13 (d) dinamik faz diyagramını elde ederiz ki 3J  ve 

T’nin küçük değerleri için çift kritik son noktanın meydana gelmesi haricinde (c) Ģıkkı 

ile aynı karakterde olduğu görülür.  

         

  

Şekil 3.13.  2 0.5J   olmak üzere muhtelif 0H ve D değerleri için hesaplanan dinamik 

faz diyagramının 3( , )T J düzleminde görünüĢü. 0 1.0H 
 

değeri için 

(a) 4.0D  , (b) 6.0D   (c) 8.0D   ve (d) 0 2.0H  , 9.0D  . 
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Son olarak, ferrimanyetik materyallerin telafi davranıĢları manyeto-optik kayıt 

alanlarında önemli uygulamaları olduğu için sistemin telafi davranıĢı üzerinde de 

durduk. Telafi davranıĢları, toplam dinamik manyetizasyonun yani 

(| | | |) 2T A BM M M   ifadesinin sıcaklığın bir fonksiyonu olarak hesaplanması ile 

elde edilir. Böylece Ģekil 3.14 (a)-(f) bulundu ki Neel sınıflandırmasına göre [35] 

sistemin sırayla L-, N-, P-, Q-, R-, S-, ve W– tipi davranıĢ sergilediği tespit etmiĢ oldu. 

Burada (a), (b) ve (g) Ģıklarındaki tipler dar bir aralıkta gözlendiğinden | |AM ve | |BM  

davranıĢları ayrıca çizilmeyip sadece tipi gösteren | |TM verilmiĢtir. 
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 Şekil 3.14. (a)-(f) bulundu ki Neel sınıflandırmasına göre  sistemin sırayla L-, N-, P-, 

Q-, R-, S-, ve W– tip davranıĢ sergilediği tespit etmiĢ oldu. 
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4.  BÖLÜM 

SONUÇ ve TARTIġMA, ÖNERĠLER 

4.1. Sonuç ve TartıĢma 

Manyetik malzemelerin teorik olarak incelenmesinde prototip modeller olarak karma-

spin (yarım tamsayılı-tamsayılı, yarım tamsayılı-yarım tamsayılı ve tamsayılı-tamsayılı) 

sistemleri kullanılmaktadır. Bunların içinde en iyi bilinen ve üzerinde en çok çalıĢılan 

yarım tamsayılı-yarım tamsayılı karma spin Ising sistemi, karma spin (1/2, 3/2) Ising 

modelidir ki bu tezde, müteakip tabakalı altıgen örgü üzerine YĠY uygulayarak sistemin 

dinamik manyetik özellikleri incelendi. Karma-spin sistemlerinin dinamikleri genelde 

DOAT ve DEFT yöntemleriyle incelenmekte iken YĠY ile ancak birkaç çalıĢma 

mevcuttur [1, 2]. Oysa ki YĠY iki veya üç oran sabiti içermesi DOAT ve DEFT’ye göre 

bir avantaj teĢkil eder. Bu oran sabitleri, deneysel çalıĢmalarda soğuma oran 

katsayılarına tekabül ettiğinden, YĠY ile elde edilen sonuçlar, deneysel çalıĢmalarla 

karĢılaĢtırılması daha uygun olduğundan bu alanda çalıĢanlara daha fazla yol 

göstericidir. Dolayısıyla bu tezde, zamanla değiĢen manyetik alan varlığında müteakip 

tabakalı altıgen örgü üzerinde karma spin (1/2, 3/2) Ising modelinin dinamik manyetik 

özelliklerini incelemek için YĠY tercih edilmiĢtir. 

Ġlk olarak sıcaklık, açısal frekans, bilineer etkileĢim sabitleri, kristal alan sabiti, oran 

sabitleri gibi etkileĢme parametrelerinin dinamik histerisiz döngülere etkileri 

incelenmiĢtir. Daha sonra, etkileĢme paramatrelerinin dinamik coersive alan ve dinamik 

remanent manyetizasyona etkileri araĢtırılmıĢtır. Oran sabitlerinden 2k , deneysel olarak 

soğutma katsayısına karĢılık gelmektedir. Melt-spinning tekniğiyle (MST) yapılan hızlı 

katılaĢtırma deneylerindeki teker hızı gibi çoğu zaman yüksek soğutma katsayılarına 

çıkmak deneysel olarak mümkün olmayan çalıĢmalarda histerisiz davranıĢlarının nasıl 
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olabileceği hakkında deneycilere yol gösterici niteliktedir. Manyetik histerisiz 

özellikler, bilgi depolama aygıtları geliĢtirmede, AC indüktörler, yüksek frekans 

cihazları, manyetik kalkanlar, daimi mıknatıslar, manyetik yükselteçler, hard diskler, 

manyetik bantlar ve kredi kartları gibi ileri teknolojik uygulamalar açısından çok 

önemlidir. Tezin bu kısmında bulunan sonuçlar, MST ile üretilen bazı manyetik 

malzemeler ve bunların histerisiz özellikleri hakkında hem teorik hem de deneysel 

olarak bulunan sonuçlarla oldukça uyumlu olduğu tespit edilmiĢtir.  Bu alanda hem 

deneysel hem de teorik çalıĢanlara ıĢık tutacağını ümit ederiz. 

 

Manyetik malzemelerin, zamanla değiĢen manyetik alan varlığında müteakip tabakalı 

altıgen örgü üzerinde karma spin (1/2, 3/2) Ising modelinde YĠY kullanarak dinamik 

histerisiz özelliklerinin incelenmesi, bu tezin danıĢmanı Gençaslan’ın araĢtırmacı 

olduğu ve Keskin’in yönetici olduğu 119F129 nolu TUBĠTAK projesi kapsamında 

yapılmıĢ ve sonuçlar International Journal of Modern Physics B dergisine sunulmuĢ 

olup basım aĢamasındadır [36]. Ancak, ele aldığımız sistemin manyetik dinamik 

özelliklerinin incelenmesindeki bütünlük bozulmasın düĢüncesiyle bu tezde de ele 

alınmıĢtır. 

Tezin diğer önemli ayağı, zamanla değiĢen manyetik alan varlığında müteakip tabakalı 

altıgen örgü üzerinde karma spin (1/2, 3/2) Ising modelinde YĠY kullanarak manyetik 

malzemeler için bir protip olarak dinamik faz geçiĢ sıcaklıklarının bulunması ve farklı 

sistem parametreleri uzayında faz diyagramlarının elde edilmesidir. Dinamik faz geçiĢ 

sıcaklıklarının arkasındaki mekanizma tam olarak keĢfedilmediği ve temel 

fonomenolojisi tam manasıyla izah edilemediği için bu alandaki çalıĢma önemlidir. 

Dolayısıyla önce, sinüssel bir dıĢ manyetik alan altındaki sistem için YĠY kullanılarak 

dinamik denklemler elde edildi. Dinamik denklemlerin nümerik çözümleri yapılarak 

dinamik faz geçiĢ sıcaklıkları tespit edildi. Sonra da farklı düzlemlerde faz diyagramları 

oluĢturuldu. Bu faz diyagramlarına bakıldığında p, i, af temel fazları ve i+af, p+i hibrid 

fazlarını sergilediğinin yanısıra dinamik üçlü kritik nokta, dinamik üçlü nokta, dinamik 

kritik uç nokta, dinamik çift kritik uç nokta içerdiği görüldü. Sonuçların, bu konuda 

farklı metotlarla 0( , )T H , ( , )T D  düzlemlerinde hesaplanan birçok dinamik manyetik 

faz diyagramlarıyle uyum içinde oldukları görülürken bazı ilginç kritik olaylar veya 

manyetik davranıĢlar da tespit edilmiĢtir. EtkileĢme parametrelerine bağlı olarak mesela 



40 

 

0( , )T H  düzleminde, 3.10 (b) gibi re-enrant davranıĢı tespit edilmiĢ, ġekil 3.10 (c) gibi 

yeni bir dinamik faz diyagramı bulunmuĢtur. Ayrıca dinamik faz diyagramları, 

2( , )T J ve 3( , )T J  düzlemlerinde de verilmiĢ ve bu düzlemlerde üç ilginç dinamik faz 

davranıĢı tespit edilmiĢtir. 

Bu tezde son olarak zamanla değiĢen manyetik alan varlığında müteakip tabakalı altıgen 

örgü üzerinde karma spin (1/2, 3/2) Ising modelinde YĠY kullanarak manyetik 

malzemelerin telafi davranıĢları incelenmiĢtir. Sonuçlara bakıldığında, sistemin Néel 

sınıflandırmasına göre [35] sırayla L-, N-, P-, Q-, R-, S-, ve W– tipi davranıĢ sergilediği 

görülmüĢtür. 

Tezin zamanla değiĢen manyetik alan varlığında müteakip tabakalı altıgen örgü 

üzerinde karma spin (1/2, 3/2) Ising modelinde YĠY kullanarak manyetik malzemeler 

için bir protip olarak dinamik faz geçiĢ sıcaklıklarının bulunması ve farklı sistem 

parametreleri uzayında faz diyagramlarının elde edilmesi ile ilgili bulunan sonuçlar 

Alhameri, Gençaslan ve Keskin [37] tarafından makale haline getirilmiĢ ve Indian 

Journal of Physics dergisine sunulmuĢtur. 

4.2. Öneriler 

Karma spin sistemleri kullanılarak manyetik malzemelerin dinamik özelliklerinin 

incelenmesinde en fazla kullanılan yöntemler dinamik ortalama alan teorisi (DOAT), 

dinamik etkin-alan teorisi (DEAT) ve yol ihtimaliyet yöntemi (YĠY) sayılabilir. Karma-

spin sistemlerinin dinamikleri genelde DOAT ve DEFT yöntemleriyle incelenmiĢ olup 

YĠY ile de birkaç çalıĢma mevcuttur [1, 2]. Oysa ki bu tezin yöntem bölümünde 

ayrıntılı olarak bahsedildiği üzere YĠY ile çalıĢmak, DOAT ve DEFT ile çalıĢmaktan 

daha avantajlıdır. Çünkü DOAT ve DEFT tek oran sabiti içerdikleri halde YĠY iki ve üç 

oran sabiti içermektedir. Oran sabitleri deneysel çalıĢmalarda soğuma oran katsayılarına 

tekabül ettiğinden, YĠY ile elde edilen sonuçların deneysel çalıĢmalarla karĢılaĢtırılması 

daha uygun ve deneyci araĢtırmacılara daha fazla yol göstericidir. Bu nedenle, hem 

teknolojik hem de akademik araĢtırmalar bakımından önemli olan karma-spin (1/2, 1); 

(1/2, 3/2) ve (2, 5/2) Ising sistemleri kullanılarak manyetik malzemelerin dinamiklerinin 

YĠY ile incelenmesi üzerine yapılacak çalıĢmalar literatürde önemli bir boĢluğu 
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dolduracağı gibi manyetik ve özellikle ferrimanyetik malzemeler üzerine çalıĢanlara da 

yol gösterici/ıĢık tutucu mahiyette olacaktır.  

Sonuç itibarıyla, bir öneri veya ileri çalıĢma konuları olarak daha farklı karma spin 

sistemleri için YĠY kullanılarak sistemin dinamik manyetik özellikleri incelenebilir ve 

bu tezde olduğu gibi ilginç dinamik faz geçiĢ sıcaklıkları ve faz diyagramları elde 

edilebilir. 

Moleküller-temelli manyetik malzemelerin dinamik özellikleri kapsamında,  histerisiz 

ve telafi (compensation) davranıĢlarının araĢtırılması, hem teknolojik uygulamalar ve 

hem de akademik çalıĢmalar bakımından önemli konular içerisinde yer almaktadır. 

Ayrıca, faz geçiĢ sıcaklıklarının incelenmesi ve faz diyagramlarının elde edilmesi ise 

yoğun madde fiziği ve istatistiksel fiziğin önemli ve daima güncel konularından biridir.  

Sonuçlar, literatürdeki mevcut farklı yöntemlerle elde edilen sonuçlarla ve aynı 

zamanda bu karma-spin sistemlerinin karĢılık geldiği sistemler veya benzer sistemlerle 

yapılan deneysel sonuçlarla da karĢılaĢtırılacaktır. Böylece, hem YĠY’in karma-spin 

sistemlerinin dinamiklerinin incelenmesindeki geçerliliği test edilmiĢ olacak hem de bu 

konuda çalıĢan deneysel araĢtırmacılara daha fazla yol gösterici potansiyelde olacağını 

ümit etmekteyiz.  
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