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Akıllı Telefon Tabanlı Kolorimetrik Glikoz Tayininde 

Yapay Zeka Yaklaşımı 

 

Öz 

Kronik bir hastalık olan diyabet, kan şekerini normal seviyede tutmayı amaçlayan ve 

yaşam boyu devam eden bir tedavi süreci gerektirir. Diyabet hastalarında gelişebilecek 

komplikasyonların önüne geçmek için glikoz seviyesinin normal sınırlar içinde 

tutulması amacıyla düzenli takip edilmelidir. Bu nedenle önemli bir sağlık problemi 

olan diyabetin araştırılmasında glikoz tayini biyomedikal uygulamalarda ilgi çeken bir 

konu olmuştur. Son yıllarda kimya ve biyomedikal alanlarında biyolojik sensörlerin 

geliştirilmesinde yapay zeka ve akıllı telefon teknolojisi yaygın olarak 

kullanılmaktadır. Akıllı telefon kamerası kullanılarak elde edilen görüntüler yapay 

zeka teknikleriyle işlenerek yüksek doğrulukta sonuçlar elde edilmektedir. Bu tez 

çalışmasında yapay zeka yaklaşımları ile akıllı telefon tabanlı kolorimetrik glikoz 

tayini üzerine odaklanılmıştır. İlk olarak, yapay tükürükteki glikoz konsantrasyonunu 

ölçmek için makine öğrenimine dayalı bir akıllı telefon uygulamasına sahip, kağıt 

tabanlı mikroakışkan cihazlar (μPAD) içeren taşınabilir bir platform geliştirilmiştir. 

μPAD’lerin algılama alanına, üç farklı algılama (potasyum iyodür (KI), potasyum 

iyodür+kitosan (KI+Chi) ve tetrametilbenzidin (TMB)) karışımı ile hapsedilmiştir. 

Algılama alanında oluşan renk değişiminin ardından μPAD’lerin görüntüleri yedi 

farklı aydınlatma koşulunda dört farklı akıllı telefon ile çekilerek aydınlatma 

varyasyonuna ve kamera optiğine karşı daha sağlam ve uyarlanabilir bir platform 

oluşturulmuştur. Farklı konsantrasyonlara bağlı olarak renk değişiminin 

gözlemlendiği μPAD veri setinden çıkarılan öznitelikler kullanılarak farklı makine 



 

iv 

 

öğrenimi sınıflandırıcıları eğitilmiş ve her algılama karışımı için en iyi sınıflandırma 

başarısı gösteren makine öğrenimi sınıflandırıcıları belirlenmiştir. μPAD’de bulunan 

üç farklı algılama karışımı arasında, TMB, en yüksek sınıflandırma doğruluğu 

göstererek lineer diskriminant analiz (LDA) sınıflandırıcısıyla %98 doğruluk elde 

edilmiştir. Önerilen sistemi kullanıcı dostu ve pratik bir hale getirmek için bir akıllı 

telefon uygulaması geliştirilmiştir. İkinci olarak, enzimatik olmayan glikoz ölçümü 

için makine öğrenmesine ve derin öğrenmeye dayalı geliştirilen akıllı telefon 

uygulamalarıyla altın (Au) ve gümüş (Ag) nanoparçacıklar (NP) içeren taşınabilir 

platformlar önerilmiştir. Au/Ag NP’lerin farklı glikoz konsantrasyonu ile 

reaksiyonundan elde edilen renk değişimi, akıllı telefon kamerasıyla çekilerek veri seti 

oluşturulmuş ardından veri setinden öznitelikler çıkarılarak makine öğrenmesi 

sınıflandırıcıları eğitilmiş ve LDA %93,63 sınıflandırma doğruluğu elde edilmiştir. 

Önerilen derin öğrenme modelinin Au/Ag NP veri setiyle eğitimi sonucunda ise 

%95,93 sınıflandırma doğruluğuna ulaşılmıştır. Au/Ag NP’lerin bir akıllı telefon 

uygulaması altında yapay zeka yaklaşımıyla birleştirilmesiyle, glikoz ölçümü ve 

enzimatik olmayan glikoz analizinin geliştirilmesi sağlık ve biyomedikal alanlarda 

ümit verici pratik uygulamaya sahip makine öğrenimi ve Au/Ag NP’lere yeni bir bakış 

açısı sunmaktadır. 

Anahtar Sözcükler: Yapay zeka, görüntü işleme, kolorimetrik analiz, akıllı telefon, 

Android uygulama, glikoz, kağıt tabanlı sensör, Au/Ag nanoparçacıklar 
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Artificial Intelligence Approach for Smartphone based 

Colorimetric Glucose Detection 

 

Abstract 

Diabetes is a chronic disease that requires lifelong treatment to keep blood sugar at a 

normal level. Monitoring blood for diabetics is essential to maintain the glucose level 

within normal limits to reduce the potential complications. For this reason, 

measurement of glucose has attracted attention in the field of biomedical for 

investigation of diabetes. In recent years, artificial intelligence and smartphone 

technology have been widely used in the development of biological sensors in the 

fields of chemistry and biomedical. Highly accurate results can be obtained with 

images that are obtained from a smartphone camera using artificial intelligence 

techniques. This thesis focuses on smartphone based colorimetric glucose detection 

using artificial intelligence approaches. Firstly, a portable platform incorporating a 

μPAD with a smartphone application based on machine learning was developed to 

quantify glucose concentration in artificial saliva. The detection zones of the paper-

based microfluidic devices (μPAD) were modified with three different detection 

mixtures (potassium iodide (KI), potassium iodide+chitosan (KI+Chi) and 

tetramethylbenzidine (TMB)). After the color change, the images of the μPADs were 

taken with four different smartphones under seven different illumination conditions. 

The images were first processed for feature extraction and then used to train machine 

learning classifiers, resulting in a more robust and adaptive platform against 

illumination variation and camera optics. Different machine learning classifiers were 

tested and the best machine learning classifier for each detection mixture was obtained. 

Among the three different detection mixtures, the mixture with TMB demonstrated the 
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highest classification accuracy (98%) with linear discriminant analysis classifier. A 

smartphone application was developed to make the proposed system user-friendly and 

practical. Secondly, Secondly, two different portable platform was proposed 

incorporating gold (Au) and silver (Ag) nanoparticles (NPs) with a smartphone 

application based on machine learning and deep learning for non-enzymatic glucose 

quantification. The color change obtained from the reaction of Au/Ag NPs with 

glucose was captured using a smartphone camera to create a dataset and then features 

were extracted from image dataset for training of machine learning classifiers. Among 

the tested classifiers, linear discriminant analysis showed the best classification 

performance with 93,63%. Besides, proposed deep learning model showed 95,93% 

classification accuracy with Au/Ag NPs. Incorporating Au/Ag NPs with artificial 

intelligence approach under a smartphone application can be used for the 

quantification of glucose and for the potential improvement of non-enzymatic glucose 

analysis, offering a new perspective of machine learning and Au/Ag NPs that has 

promising practical application in healthcare and biomedical fields. 

Keywords: Artificial intelligence, image processing, colorimetric analysis, 

smartphone, Android application, glucose, paper-based sensor, Au/Ag nanoparticles 
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Bölüm 1 

Giriş 

Giriş 

Diyabet, pankreasın yeterli insülin hormonu üretememesi veya ürettiği insülin 

hormonunun etkili bir şekilde kullanılamaması sonucu ortaya çıkan ve ömür boyu 

süren bir hastalıktır [1]. Diyabetle ilgili komplikasyonlar, sinirler, gözler, böbrekler, 

kalp ve kan damarları başta olmak üzere çeşitli organlarda uzun vadeli hasar, 

enfeksiyon ve işlev bozukluğu gibi ciddi sağlık sorunlarına neden olmaktadır [2, 3]. 

Gerekli tedavi ve kan şekeri seviyesinin değişimiyle birlikte gelişebilecek 

komplikasyonları önlemek için biyobelirteç olma potansiyeli nedeniyle glikoz seviyesi 

takip edilmektedir. Glikoz seviyesi rutin olarak izlendiğinde ve düzenlendiğinde 

gelişebilecek komplikasyonlar önlenebilmekte veya geciktirilebilmektedir. Diyabetin 

araştırılması ve diyabeti kontrol etmek için izleme sistemlerinin geliştirilmesi 

bakımından glikoz tayini önem kazanmaktadır. Bu nedenle, glikoz ölçmek için optik 

ve biyokimyasal biyosensörler önerilmiştir [4]. 

Son yıllarda kimya ve biyomedikal alanlarında kimyasal ve biyolojik sensörlerin 

geliştirilmesinde yapay zeka ve akıllı telefon uygulamalarına sıklıkla yer verilmektedir 

[5-7]. Akıllı telefonlardan elde edilen ses, görüntü ve sensör bilgileri yapay zeka 

teknikleriyle işlenerek başarılı sonuçlar alınmaktadır. Kimyasal bir reaksiyonu renk 

değişimine dayalı olarak takip etmek ve renk değişimini sayısal verilere çevirerek 

anlamlandırmak için uzmanlık gerektiren karmaşık cihazlar kullanılmaktadır. Akıllı 

telefon teknolojisindeki gelişmelerle birlikte temel kimyasal analiz yöntemlerinde biri 

olan kolorimetrik analiz, telefon kamerasıyla gerçekleştirilerek renkli fotoğrafların 

niceliksel analizi yapılmaktadır [8-13]. Kolorimetrik yöntem, hızlı analiz yeteneği, 

karmaşık ve pahalı cihazlar gerektirmemesi ve laboratuvar ortamı dışında da kolaylıkla 

uygulanabilmesi nedeniyle kullanışlı bir araç olarak öne çıkmıştır. Kolorimetrik analiz 

yöntemi, gıda alerjen testi [14], idrar analizinde albümin testi [15], kan analizi [16], 
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pH ölçümü [17] ve su kalitesinin tespiti [18] dahil olmak üzere birçok alanda 

uygulanmıştır. Kâğıt bazlı sensörlerdeki renk bilgileri RGB (Kırmızı-Yeşil-Mavi), 

HSV (Renk Özü-Doygunluk-Parlaklık) ve L*a*b* (Açıklık, Yeşil-Kırmızı, Mavi-

Sarı) gibi çeşitli renk uzaylarında elde edilmiştir [11, 17, 19, 20]. Çeşitli kimyasalların 

tespiti için yine bu renk uzayları kullanarak çok sayıda çalışma gerçekleştirilmiştir. 

Örneğin, RGB renk uzayından dönüştürülen HSV renk uzayı tükürükteki alkolün 

tespiti [12] için kullanılırken L*a*b* renk uzayı ise 1-12 pH aralığındaki hassas ölçüm 

için kullanılmıştır [10]. Renk uzay parametrelerine dayalı kolorimetrik analizin 

gerçekleştirildiği meyvelerin olgunluk tahmini ve sudaki klorun saptanması için RGB 

renk uzayı bilgileri kullanılmıştır [9, 13]. Bu çalışmalarda, kalitatif ve kantitatif 

değerlendirmeler için renk uzayı parametreleri kullanılarak analitik bir ifade 

üretilmiştir. Bununla birlikte, kamera optiği ve ortam ışığı koşulları, kolorimetrik 

analiz üzerinde olumsuz etkilere sahiptir. Bu sorunun üstesinden gelmek için 

kolorimetrik değerlendirme sürecinde makine öğrenimi gibi gelişmiş algoritmalar 

önerilmiştir [17, 21]. Otomatik karar verme ve verilerden kendi kendine öğrenme gibi 

güçlü yanlarıyla makine öğrenimi, istatistiksel analiz alanında artan bir ilgiye sahiptir. 

Ayrıca akıllı telefon tabanlı sistemler gibi yeni platformlara uyarlanabilirliği ile 

makine öğrenimi algoritmaları uygulama geliştirilmesinde avantaj sağlamaktadır. 

Akıllı telefon teknolojisindeki son gelişmelerle birlikte, hassas ve güvenilir 

kolorimetrik analiz gerçekleştirmek için karmaşık algoritmalar çalıştırabilen çok 

sayıda platform geliştirilmiştir. “SPAQ” uygulaması, histogram dağılımına dayalı 

olarak tükürükteki alkol düzeyini test etmek üzere geliştirilmiştir [12, 22]. 

“Colorimetric Test Reader” uygulaması ile pH, protein ve glikoz değerleri 

saptanmaktadır [23]. ELISA testleri için “Colorimetric Plate Reader” uygulaması 

geliştirilmiştir [24]. “PhotoMetrix”, tek değişkenli ve çok değişkenli analizleri 

kullanarak numunelerdeki analitleri ölçmek için geliştirilmiştir [25]. “FuzzyChem” 

uygulamasında önerilen bulanık mantık yaklaşımıyla kolorimetri tabanlı peroksit 

ölçümü gerçekleştirilmiştir [26]. Yakalanan görüntüyü, makine öğrenimi 

sınıflandırıcılarıyla işlemek için bulut sistemleri aracılığıyla uzak sunucuya gönderen 

“ChemTrainer” uygulaması [21]’de önerilmiştir. Artan popülariteye rağmen, akıllı 

telefon tabanlı kolorimetrik ölçümün güvenilirlik, ekipman ve basitlik gibi sorunları 

mevcuttur. Akıllı telefon uygulamasında elde edilen sonuç, her koşulda belirgin ve 

kesin olmalıdır. [23, 25]’de kontrollü bir ortamdaki ölçümlere dayalı olarak bir 
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kalibrasyon eğrisi türetilmiştir. Kontrollü bir ortamdaki ölçümlere dayalı olarak elde 

edilen kalibrasyon eğrisi kontrollü bir ortamda doğru sonuç verse bile, testin kontrollü 

ortamlardan farklı koşullarda gerçekleştirildiği sonuçlarda sapmalar olabilmektedir. 

Ayrıca farklı akıllı telefon markalarına ve kamera optiklerine karşı da hassastırlar. Bu 

nedenle dış ortamdan gelen olumsuz etkileri önlemek için, kullanıcılar için uygun 

olmayabilecek 3D yazıcıda tasarlanmış özel aksesuarlar kullanılmıştır [12, 24]. 

Bu tez çalışmasında, kolorimetrik analize dayanan glikoz tayini için makine öğrenmesi 

algoritmalarının kullanılmasıyla sağlam, aydınlatma değişikliklerine uyum sağlayarak 

aksesuar kullanımı gerektirmeyen, akıllı telefon markası ne olursa olsun doğru 

sonuçlar veren ve uzman olmayan kullanıcıların bile eğitim almadan kullanabileceği 

basit bir ara yüze sahip kullanıcı dostu platformlar önerilmiştir. Önerilen entegre 

platformlar, laboratuvar dışı ve kaynak sınırlı ortamlarda glikoz ölçümü için büyük bir 

beklentiye sahiptir. 

1.1  Yapay Tükürükteki Glikozun Akıllı Telefonla 

Eşleştirilmiş µPAD Kullanılarak Farklı Reaktiflerle 

Makine Öğrenimine Dayalı Kolorimetrik Tayini 

Önlenebilir hastalıklardan her yıl milyonlarca insan hayatını kaybetmektedir. Bu 

durumun önüne geçmek için özellikle sınırlı kaynaklara sahip ülkelere yaşam 

kalitesinin iyileştirilmesi için ucuz ve erişilebilir sağlık hizmeti alternatiflerinin 

sunulması şarttır. Dünya Sağlık Örgütü’ne (WHO) göre, özellikle gelişmekte olan 

ülkelerde kullanılacak tanı cihazlarının “ASSURED” olarak kısaltılmış uygun fiyat, 

yeterince duyarlı, tespiti yapılacak analite özel, kullanımı kolay, hızlı ve dayanıklı, 

ekipmansız kullanım ve son kullanıcılara ulaştırılabilir olma gibi belli başlı kriterlere 

sahip olması beklenmektedir [27, 28]. Kağıt tabanlı mikroakışkan cihazlar (μPAD), 

belirtilen tüm bu kriterleri karşılama potansiyeline sahiptir. Bu tip sensörlerde 

sensörün analite verdiği cevabın renk değişimine neden olmasıyla birlikte kolorimetri 

tekniği kullanılarak renk yoğunluğuna bağlı analitin konsantrasyonu ölçülmektedir 

[29, 30]. Çoğu zaman kolorimetrik biyosensörlerin sonuç için özel ekipman 

gerektirmemesi maliyeti önemli ölçüde azaltmaktadır. Tek kullanımlık, pratik, düşük 

maliyetli ve kullanıcı dostu olma gibi birçok özelliğiyle μPAD’ler klinik tanı, gıda 
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kalite kontrolü ve çevresel izleme gibi çok sayıda uygulamada kullanılmaktadır [30, 

31]. Hızlı, duyarlı ve seçici bir analiz gerçekleştirmek için μPAD’lerde 

kemilüminesans, floresan, elektrokimyasal ve kolorimetrik saptama gibi çeşitli 

saptama ilkeleri kullanılmıştır [32-34]. Bunların arasında kolorimetrik algılama, 

kalitatif analiz için karmaşık bir araç gerektirmediğinden daha fazla dikkat 

çekmektedir [35]. 

Diyabetli hastalar genellikle enfeksiyon riskini artıran ve ağrılı glukometreler 

kullanarak bir damla kandan kan şekeri düzeyini ölçmektedirler. Son yıllarda, bu 

yönteme alternatif olarak tükürük, ter ve gözyaşı gibi vücut sıvılarında glikozu 

güvenilir bir şekilde tespit eden ölçüm sistemlerinin geliştirilmesine odaklanılmıştır 

[36]. [37]’de bir kalibrasyon eğrisine dayalı olarak yapay tükürükte glikozun hızlı, 

hassas, seçici ve kantitatif tespiti için bir μPAD akıllı telefon tabanlı platforma entegre 

edilmiştir. Akıllı telefon ortam ışığının olumsuz etkilerini ortadan kaldırmak için, 

günlük kullanımda pratik olmayan özel tasarlanmış bir 3D baskı kılıf ile birlikte 

kullanılmıştır. Bu çalışmada ise platformun ortam ışığı altında herhangi bir kısıtlama 

olmaksızın kullanılması için makine öğrenmesi algoritmaları önerilmiştir. Makine 

öğrenmesi algoritmalarının kullanılmasıyla birlikte önerilen platform basitleştirilerek 

sağlamlığı ve uyarlanabilirliği geliştirilmiştir. Makine öğrenimi sınıflandırıcılarını 

eğitmek ve böylece platformu aydınlatma varyansına ve kamera optiğine karşı 

geliştirmek için dört farklı akıllı telefon kullanılarak üç ışık kaynağı altında bir veri 

seti oluşturulmuştur. Ek olarak, verileri, önerilen makine öğrenimi sınıflandırıcılarını 

çalıştıran sunucuya bir bulut sistemi aracılığıyla gönderen bir akıllı telefon uygulaması 

geliştirilmiştir. 

1.2 Akıllı Telefon Uygulamasıyla Au/Ag 

Nanoparçacıklarına Dayalı Kolorimetrik Glikoz 

Tespiti İçin Makine Öğrenimi Yaklaşımı 

Şeker hastalarında gelişebilecek potansiyel komplikasyonları ve ciddiyetini azaltmak 

için glikoz düzeyini normal sınırlarda tutmak amacıyla kan takibinin yapılması önem 

arz etmektedir. Geleneksel enzim bazlı miktar ölçüm yaklaşımları, yüksek maliyetleri, 

spesifik çalışma sıcaklıkları, kısa raf ömürleri ve zayıf stabiliteleri nedeniyle 
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uygulanabilir değildir. Bu nedenle, enzim bazlı yöntemlere alternatif olarak enzimatik 

olmayan yöntemler, düşük maliyetleri, hızlı yanıtları ve yüksek duyarlılıkları 

nedeniyle glikoz tespiti için avantaj sağlamaktadır. Enzimatik olmayan tespit için, 

nanobilim ve nano teknolojideki hızlı gelişmeler çeşitli nano yapıların ortaya 

çıkmasına neden olmuştur. Nano yapılar arasında, Ag ve Au NP’ler, biyosensör 

uygulamalarında kolay hazırlanmaları, benzersiz elektriksel ve optik özellikleri, 

algılamanın duyarlılığını ve seçiciliğini etkileyen kontrol edilebilir boyut ve 

kararlılıklarıyla avantajlar sunmaktadır [38]. Au NP’ler ve Ag NP’ler, sıvı içindeki 

dağılımlarına ve toplanmalarına bağlı olarak görünür bölgede karakteristik optik 

özelliklere sahiptir [39]. Bu özellikle birlikte NP’ler ve glikoz molekülleri arasındaki 

etkileşimin renk değişikliğine yol açmasıyla kolorimetrik yaklaşımlarla glikoz 

seviyesi ölçümü gerçekleşmesine olanak sağlanmaktadır. 

Bu çalışma ile ilk kez akıllı telefon tabanlı enzimatik olmayan glikoz algılama sistemi 

ile makine öğrenmesi algoritmalarının avantajlarının bir araya getirilmesiyle makine 

öğrenmesi sınıflandırıcılarını kullanarak glikozun kolorimetrik testine yönelik 

uygulama tabanlı bir çözüm geliştirilmiştir. İlk olarak farklı boyutlu Au/Ag NP’ler ile 

hazırlanan veri kümeleriyle makine öğrenmesi sınıflandırıcıları eğitilerek farklı 

boyutlu Au/Ag NP’lerin glikoz tespiti üzerindeki etkisi araştırılmıştır. Başarılı 

sınıflandırma algoritması daha sonra glikoz tespiti için özel tasarlanan mobil 

uygulamaya entegre edilmiştir. Glikoz konsantrasyonunu ölçmek için makine 

öğrenimi sınıflandırıcılarıyla birleştirilen önerilen metodoloji, akıllı telefon tabanlı 

kolorimetrik algılamaya nihai çözüm sağlamada büyük umut vaat etmektedir. 

Bu çalışmaya ek olarak sınıflandırma başarısını iyileştirmek için önerilen derin 

öğrenme mimarisi Au/Ag NP verisetiyle eğitilerek başarılı sonuçlar elde edilmiştir. 

Derin öğrenmenin sağladığı bir avantaj olarak eğitim sonunda elde edilen katsayılar 

makine öğrenmesinin aksine Android uygulama içine gömülebilmektedir. Böylelikle 

önerilen mobil uygulama internet erişiminin olmadığı ortamlarda dahi kullanıcılara 

kolorimetrik analiz olanağı sağlamaktadır. 
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1.3 Tez Taslağı 

Tezin geri kalanı şu şekilde düzenlenmiştir: 

- Bölüm 2 glikozun kolorimetri tabanlı analizi için kullanılan metodu 

açıklamaktadır. Makine öğrenmesi sınıflandırıcılarını eğitimi için görüntülere 

ait ayırt edici özellikleri elde etmek amacıyla görüntü veri kümesi üzerinde 

uygulanan görüntü işleme ve öznitelik çıkarımı adımları anlatılmıştır. 

Ardından farklı glikoz konsantrasyonlarını sınıflandırmak için kullanılan 

makine öğrenmesi ve derin öğrenme mimarileri, sonrasında ise bu 

algoritmaların entegre edildiği mobil uygulama açıklanmıştır. 

- Bölüm 3 yapay tükürükteki glikozun akıllı telefonla eşleştirilmiş µPAD 

kullanılarak farklı reaktiflerle makine öğrenimine dayalı kolorimetrik tayinini 

açıklamaktadır. 

- Bölüm 4’de makine öğrenmesi algoritmaları kullanılarak akıllı telefon 

uygulamasıyla Au/Ag nanoparçacıklarına dayalı kolorimetrik glikoz tespiti 

açıklanırken Bölüm 5’te glikozun Au/Ag nanoparçacıkları ile derin öğrenme 

tabanlı kolorimetrik analizi açıklanmıştır.
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Bölüm 2 

2. Yöntemler 

Yöntemler 

2.1 Öznitelik Çıkarımı 

Bir görüntünün iki önemli özelliği olan renk ve doku, görüntünün renk ve doku 

bilgilerinin matematiksel olarak yorumlanmasıyla görüntüye ait öznitelikler 

çıkarılmaktadır. Görüntüdeki özniteliklerin çıkarılacağı alanın belirlenmesi amacıyla 

öznitelik çıkarımından önce görüntü işleme algoritmaları uygulanarak ilgili alan elde 

edilmiştir.  

2.1.1  Görüntü İşleme 

2.1.1.1 Gri Tonlama Uygulaması 

Renkli görüntülerin gri tonlamalı görüntüye dönüştürülmesi, sıklıkla kullanılan 

görüntü işleme uygulamalarından biridir [40]. Gri ton görüntülerde pikseller 0 ile 255 

arasında değişen 256 farklı gri ton değerlerinden oluşmaktadır. Her piksel yoğunluk 

bilgisini taşımaktadır. 0 siyah, 255 beyaz rengi temsil ederken 0-255 arası gri tonlara 

karşılık gelir. Renkli görüntülerde ise her piksel, 0 ile 255 arasında değer alan R, G ve 

B renklerinin birleşimidir. Gri tonlamalı görüntüler, R, G ve B bileşenlerinin ağırlıklı 

toplamı ile her pikseldeki ışık yoğunluğunun ölçülmesi sonucu elde edilir (Denklem 

(2.1)). Bu çalışmada renkli görüntüler MATLAB ortamında gri tonlamalı görüntülere 

dönüştürülmüştür. 

 𝐼 = 0.2989 × 𝑅 + 0.5870 × 𝐺 + 0.1140 × 𝐵 

 

  (2.1) 
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2.1.1.2 Eşikleme ve Binarize Görüntü Oluşturma 

Görüntü işlemede, eşikleme, görüntü segmentasyonu için popüler tekniktir [41]. 

Nesneleri arka planlarından ayırmak için uygun bir eşik değer seçmek önemlidir. Gri 

tonlu bir görüntünde T, 0-255 arasında seçilmiş eşik değer olmak üzere görüntüdeki 

herhangi bir (i, j) noktası için  f (i, j) > T ise (i, j) noktası 1 (beyaz) değerini alırken       

f (i, j) < T ise 0 (siyah) değerini alır [42]. Gri tonlu görüntüde T değerinin uygun 

olamayacak şekilde büyük veya küçük seçilmesi görüntüde bilgi kaybına sebep olacağı 

için eşik değerin belirlenmesi önem taşımaktadır. Görüntü işlemede Otsu Metodu 

otomatik olarak görüntü eşikleme için kullanılmaktadır. Nabuyuki Otsu tarafından 

önerilen Otsu Metodu görüntü için en uygun eşik değeri bulmaktadır [43]. Bu metotta 

görüntü piksellerini iki sınıfa ayıran eşik değer, sınıflar arası varyans maksimum 

olacak şekilde belirlenir. Bu çalışmada Otsu Metodu kullanılarak gri tonlu görüntüler 

binarize görüntülere dönüştürülmüştür. Ardından ikili görüntü alan filtresi (bwareafilt) 

uygulanarak görüntü üzerinde en büyük alanı kaplayan şeklin tespit edilmesiyle  ana 

şekilden bağımsız pikseller kaldırılmış ve istenen alan elde edilmiştir. 

2.1.1.3 Morfolojik İşlemler 

Matematiksel morfoloji, nesnelerin şeklini analiz etmek için küme teorisine dayanan 

bir tekniktir [44]. Matematiksel morfolojideki kümeler, bir görüntüdeki nesneleri 

temsil etmektedir. Morfolojik görüntü işleme, şeklin biçimsel yapısıyla ilgilenen, 

sınırlar ve iskelet gibi şeklin tanımlanması, gürültü giderme ve segmentasyon için 

gerekli bir dizi görüntü işleme tekniğini kapsamaktadır [45].  

Morfolojik işlemenin temel işlemleri olan genişletme (dilation) ve aşındırma (erosion) 

birçok algoritmanın temel işlemleridir [42]. Kapama (closing) işleminde (Denklem 

(2.2)), genişletme (Denklem (2.3)) ve aşındırma (Denklem (2.4)) işlemleri sırasıyla 

gerçekleştirilir. Tanımlanan yapısal eleman ile görüntüdeki nesne üzerinde genişleme 

ve aşındırma işlemleri gerçekleştirilir. Yapısal eleman, yapılacak uygulamaya uygun 

olarak farklı boyutlarda ve geometrik şekillerde tanımlanmaktadır [44]. Genişleme 

işleminde görüntüdeki nesne, yapısal elemanla kesiştiği alan kadar büyüme ya da 

kalınlaşma gösterir. Aşınma işlemi genişlemenin tersidir. Aşınma işlemiyle 

görüntüdeki nesnede küçülme veya daralma gerçekleşir. Görüntüde önce aşındırma 

ardından genişletme yapılmasıyla kapama işlemi gerçekleştirilir [44]. Bu çalışmada 
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binarize görüntüye kapama morfolojik işlemi uygulanarak görüntüdeki şekil üzerinde  

fazla değişiklik gerçekleştirilmeden bozulmalar ve gürültüler (siyah alanda beyaz 

noktalar ve beyaz alandaki siyah noktalar) giderilmiştir. Yapısal eleman olarak 6 

piksellik yarıçapı olan daire kullanılmıştır. 

 𝐴 ∙ 𝐵 = (𝐴 ⊕ 𝐵)𝛳𝐵 (2.2) 

 𝐴 ⊕ 𝐵 = {𝑧|(𝐵̂)
𝑧

∩ 𝐴 ≠ ∅} (2.3) 

 𝐴𝛳𝐵 = {𝑧|(𝐵̂)
𝑧

⊆  𝐴} (2.4) 

2.1.1.4 Maskeleme 

Renkli görüntülerin gri tonlu görüntülere dönüştürülmesi ardından bu görüntülerin 

binarize görüntüye dönüştürülmesi ve son olarak binarize görüntülere morfolojik 

işlemlerin uygulanmasıyla orijinal görüntüyü maskelemek için kullanılacak görüntü 

oluşturulmuştur. Özniteliklerinin çıkarılması istenen ilgili alanın olduğu görüntüyü 

elde etmek için orijinal görüntü maskelenmiştir.  

Görüntü işleme algoritmalarıyla istenilen görüntülerin elde edilmesinin ardından bu 

görüntülerden makine öğrenmesi algoritmalarının eğitiminde kullanılacak görüntülere 

ait ayırt edici sayısal verileri elde etmek için renk ve doku özniteliklerinin çıkarılması 

aşamasına geçilmiştir. 

2.1.2 Renk Öznitelikleri 

Renk uzayı, renk bilgilerini üç veya dört farklı renk bileşeni olarak ifade eden 

matematiksel bir modeldir. Görüntü işleme, bilgisayar görüsü ve bilgisayar grafikleri, 

gibi farklı uygulamalar için farklı renk modelleri kullanılmaktadır [46-49]. Temel renk 

uzayı olan RGB renk uzayında renk, R, G ve B olmak üzere üç ana rengin birleşimi 

olarak temsil edilir [47]. Görüntüdeki her piksel, RGB bileşenleri olarak bilinen üç 

renk kanalından oluşur. RGB renk uzayı uygulamanın gerekliliğine göre farklı renk 

uzaylarına dönüştürmek mümkündür. Yoğunluk (luminance) bilgisini içeren kanalı 

(V) ve renk (chromaticity) bilgisi içeren diğer iki kanalı (H ve S) elde etmek için RGB 
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renk uzayı HSV renk uzayına dönüştürülmektedir [48]. HSV renk uzayı renkleri insan 

gözünün rengi algılama eğilimine benzer olarak tanımlamaktadır [50]. İnsan görme 

mekanizmasıyla benzerlik gösteren ve renk özü, doygunluk ve parlaklık renk 

kanallarından oluşan HSV renk uzayı görüntü yoğunluğunu renk bilgilerinden 

ayırmasıyla RGB renk uzayından farklıdır [51]. Bu özellik, ışık değişikliklerine karşı 

dayanıklılığıyla avantaj sağlamaktadır. HSV renk uzayında renk özü renkleri ayırt 

ederken doygunluk saf renge eklenen beyaz rengin yüzdesini, parlaklık ise algılanan 

ışık yoğunluğunu ifade etmektedir [47]. Görüntünün parlaklığı aydınlatma ile değişir, 

ancak renk bilgisini içeren kanalları olan renk tonu ve doygunluk, aydınlatma 

değişikliğine duyarlı değildir veya daha az duyarlıdır [47]. Bu özellikleriyle HSV renk 

uzayı renk analizi, renk tabanlı algılama ve segmentasyon için kullanılmaktadır. Renk 

uzaylarının konsantrasyon seviyesinin tayin edilmesindeki etkisini analiz etmek için 

RGB renk uzayındaki görüntüler HSV ve CIE L*a*b* renk uzaylarına 

dönüştürülmüştür. CIE L*a*b* renk uzayı RGB renk uzayından farklı olarak insan 

gözünün algılamasına yakın olacak şekilde ve cihazdan bağımsız bir renk modeli 

olarak tasarlanmıştır [50]. İnsan gözünün algıladığı tüm renkleri tanımlayarak insan 

görsel algısı açısından ifade edilebilen renk farklılıklarının ölçülmesine izin 

vermektedir. L*, a* ve b* bu renk uzayının üç koordinatıdır ve aydınlığı (lightness) 

temsil ederler. L*, siyah (L*=0) ile beyaz (L*=100) arasındaki açıklığı temsil ederken, 

a* ekseni kırmızıdan (+a*) yeşile (−a*) ve b* ekseni sarıdan (+b*) maviye (−b*) 

değişir [52].  

Farklı glikoz konsantrasyonu görüntüleri RGB renk uzayından HSV ve CIE L*a*b* 

renk uzaylarına dönüştürülmüştür ve sonra renk momenti analizi yapılarak RGB, HSV 

ve CIE L*a*b* renk uzaylarının her bir renk kanalının ortalama (mean), çarpıklık 

(skewness) ve basıklık (kurtosis) olmak üzere renk momentleri hesaplanmasıyla renk 

öznitelikleri çıkarılmıştır. Renk momenti analizi, görüntünün renk tabanlı analizi ve 

sınıflandırılması için görüntüye ait renk dağılımı karakteristiğini gösteren 

özniteliklerin çıkarıldığı popüler ve etkili bir tekniktir [53, 54]. Renk momentleri, 

görüntüyü renk dağılımına dayalı olarak diğer görüntülerden farklılaştıran özelliklerini 

ifade etmektedir. Görüntüdeki renk dağılımı bir olasılık dağılımı olarak yorumlanırsa, 

bu dağılımın momentleri görüntüyü rengine dayalı olarak tanımlayan öznitelikleridir 

[55]. Bu özniteliklerin hesaplanmasıyla görüntüler arasındaki renk benzerliğinin 

ölçüsü elde edilmektedir [56]. Renk momentleri her görüntü için RGB, HSV ve 



 

11 

 

L*a*b* uzaylarındaki tüm renk kanalları için hesaplanmıştır. Aşağıda sırasıyla birinci, 

üçüncü ve dördüncü dereceden renk momentleri olan ortalama, çarpıklık ve basıklık 

açıklanmıştır. 

2.1.2.1 Ortalama 

İlk renk momenti olan ortalama, görüntünün ortalama renk değerini verir [42, 55]. 

Denklem (2.5)’de görüntünün ortalaması tanımlanmıştır. 

 𝑂𝑟𝑡𝑎𝑙𝑎𝑚𝑎 (µ) =
1

𝑚𝑛
∑ ∑ 𝑝𝑖𝑘𝑠𝑒𝑙𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

 (2.5) 

Burada, mxn görüntüdeki 𝑝𝑖𝑘𝑠𝑒𝑙𝑖𝑗 i’inci satır j’inci sütundaki pikselin değeridir. 

2.1.2.2 Çarpıklık 

Çarpıklık, bir dağılımdaki asimetrinin ölçüsüdür [57]. Merkez noktasının sağ tarafı ve 

sol tarafı aynıysa veri kümesi simetriktir. Çarpıklık pozitifse (sağa çarpık), veriler 

ortalamanın soluna yayılır. Çarpıklık negatifse (sola çarpık), veriler ortalamanın 

sağına doğru yayılır. Görüntü hakkında bilgi edinilmesi açısından daha koyu ve daha 

parlak yüzeyler, daha açık ve mat yüzeylere göre pozitif çarpıklık eğilimindedir [58]. 

Çarpıklık, piksel değerlerinin dağılımının ne derece asimetrik olduğunu ölçerek renk 

dağılımı hakkında bilgi verir. Denklem (2.6)’da çarpıklık tanımlanmıştır.  

 𝑆 = √
1

𝑚𝑛
∑ ∑(𝑝𝑖𝑘𝑠𝑒𝑙𝑖𝑗 − 𝜇)3

𝑛

𝑗=1

𝑚

𝑖=1

3

 
(2.6) 

 

2.1.2.3 Basıklık 

Basıklık, bir dağılımın dördüncü merkezi momentinin normalleştirilmiş formu olarak 

tanımlanmaktadır [59]. Bir dağılımın tepe noktasının keskinliğinin ölçüsü olarak da 

tanımlanır. Yüksek basıklık genellikle daha keskin bir tepe noktasına sahipken düşük 

basıklık dağılımı genellikle daha yuvarlak tepe noktasına sahiptir [58]. Denklem 

(2.7)’de basıklık tanımlanmıştır. 
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 𝐾 = √
1

𝑚𝑛
∑ ∑(𝑝𝑖𝑘𝑠𝑒𝑙𝑖𝑗 − 𝜇)4

𝑛

𝑗=1

𝑚

𝑖=1

4

 (2.7) 

 

2.1.3 Doku Öznitelikleri 

Görüntünün renk özniteliklerine ek olarak doku, görüntüye ait ayırt edici bilgiler 

taşımaktadır. Bu nedenle görüntüdeki piksel yoğunluğunun istatiksel özellikleri olarak 

ifade edilen doku, görüntülerin yorumlanması için önemli bir özelliktir [60]. [48]’de 

renk özniteliklerine ek olarak doku özniteliklerinin dahil edilmesiyle birlikte meyve 

tanıma performansının iyileştiği görülmektedir. Renk özelliklerinin yanı sıra, 

sınıflandırıcıların doğruluğunu artırmak için doku özellikleri de çıkarılmıştır. Doku 

incelemenin istatiksel bir yöntemi olan gri seviye eş oluşum matrisinin 

istatistiklerinden doku öznitelikleri çıkarılır [61, 62]. Gri seviye eş oluşum matrisi, her 

bir gri seviyenin birbirine göre sabit bir geometrik konumda bulunan bir pikselde ne 

sıklıkta oluştuğunu gösteren matristir [62]. Görüntünün doku öznitelikleri olarak 

kontrast, korelasyon, homojenlik ve enerji elde edilmiştir. 

2.1.3.1 Kontrast 

Kontrast, referans piksel ile komşusu arasındaki yoğunluk veya gri seviye 

varyasyonlarının bir ölçüsüdür [62]. Büyük kontrast, büyük yoğunluk farklılıklarını 

göstergesidir. Sabit bir görüntünün kontrast değeri 0’dır. Denklem (2.8)’de kontrast 

tanımlanmıştır. 

 𝐾𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑ ∑(𝑖 − 𝑗)2𝑝(𝑖, 𝑗)

𝑗𝑖

 (2.8) 

Burada, p (i, j), (i, j) koordinatındaki pikselin gri seviye değeridir. 

2.1.3.2 Korelasyon 

Korelasyon, gri seviye değerlerinin doğrusal bağımlılığının ölçüsüdür [62]. Bir 

pikselin komşusuyla ne kadar ilişkili olduğunun bir ölçüsünü verir. 𝜇𝑖 , 𝜇𝑗  (Denklem 
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(2.9)) ortalama, 𝜎𝑖 , 𝜎𝑗 (Denklem (2.10) standart sapma olmak üzere Denklem (2.11)’de 

korelasyon hesaplanmıştır. 

 𝜇𝑖 = ∑ ∑ 𝑖𝑝(𝑖, 𝑗)𝑗𝑖 , 𝜇𝑗 = ∑ ∑ 𝑗𝑝(𝑖, 𝑗)𝑗𝑖  (2.9) 

 𝜎𝑖
2 = ∑ ∑ (𝑖 − 𝜇𝑖)2𝑝(𝑖, 𝑗)𝑗𝑖 , 𝜎𝑗

2 = ∑ ∑ (𝑗 − 𝜇𝑗)2𝑝(𝑖, 𝑗)𝑗𝑖  (2.10) 

 𝐾𝑜𝑟𝑒𝑙𝑎𝑠𝑦𝑜𝑛 = ∑ ∑
(𝑖 − 𝜇𝑖)(𝑗 − 𝜇𝑗)𝑝(𝑖, 𝑗)

𝜎𝑖𝜎𝑗
𝑗𝑖

 (2.11) 

2.1.3.3 Homojenlik 

Homojenlik, gri seviye eş oluşum matrisindeki öğelerin dağılımının matrisin 

köşegenine ne kadar yakın olduğunun ölçüsüdür [63]. Homojenliğin artışıyla, kontrast 

azalır. Denklem (2.12)’de homojenlik tanımlanmıştır. 

 𝐻𝑜𝑚𝑜𝑗𝑒𝑛𝑙𝑖𝑘 = ∑ ∑
𝑝(𝑖, 𝑗)

1 + |𝑖 − 𝑗|
𝑗𝑖

 (2.12) 

2.1.3.4 Enerji 

Açısal ikinci moment özelliği (ASM) olarak da ifade edilen enerji özelliği, görüntünün 

homojenliğinin ölçüsüdür [62]. Matrisin elemanlarının karelerinin toplamı olarak ifade 

edilir (Denklem (2.13)). Sabit bir görüntüde enerji değeri 1’dir. 

 𝐸𝑛𝑒𝑟𝑗𝑖 = ∑ ∑ 𝑝(𝑖, 𝑗)2

𝑗𝑖

 (2.13) 

2.1.4  Entropi ve Yoğunluk 

Entropi, girdi görüntüsünün dokusunu karakterize etmek için kullanılabilen 

istatistiksel bir ölçü olup görüntüde bulunan rastgelelik ve düzensizliğin ölçüsüdür 

[63]. Renkli giriş görüntüsü gri seviye görüntüye çevrilerek entropi değeri 

hesaplanmıştır. p normalleştirilmiş histogram sayı olmak üzere görüntünün entropisi 

Denklem (2.14)’de hesaplanmıştır. 
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 𝐸𝑛𝑡𝑟𝑜𝑝𝑖 = − ∑ 𝑝 log2 𝑝 (2.14) 

 

Görüntünün yoğunluğu, görüntüdeki tüm piksellerin yoğunluğunun ortalaması 

alınarak hesaplanır. Görüntünün ortalamasını hesaplamak için renkli görüntü, her 

pikselin yoğunluk bilgisi içerdiği gri seviye görüntüye çevrilir. Bu görüntüdeki 

piksellerin ortalaması Denklem (2.5) ile hesaplanarak görüntünün yoğunluğu 

hesaplanır. 

2.2 Makine Öğrenmesi Sınıflandırma Algoritmaları ve  

Performans Metrikleri 

Makine öğrenmesi bir eğitim verisini kullanarak eğitilmiş bir sistemin, önceden 

karşılaşmadığı durumlar için karar vermeyi öğrenmesini amaçlayan bir araştırma 

alanıdır [64]. Uygun ve yeterli miktardaki eğitim verisiyle makine öğrenmesi 

teknikleri kullanılarak başarılı tahminler yapılabilmektedir [65]. Eğitim verisi ile 

eğitilen modelin başarısı test verisi kullanılarak test edilir. Bu bölümde tez 

çalışmasında kullanılan makine öğrenmesi sınıflandırma algoritmaları ve bu 

algoritmaların eğitimi sonucunda başarılarının değerlendirilmesinde kullanılan 

performans metrikleri açıklanacaktır. 

2.2.1 Doğrusal Diskriminant Analizi (Linear Discriminant 

Analysis) 

LDA, her sınıf için verilerden ortalama ve varyansı tahmin eden denetimli bir 

sınıflandırma tekniğidir [66]. Tahmin yapmak için, Bayes kuralı, tüm sınıfların eşit 

varyansa sahip olduğu varsayımı altında diskriminant işlevi kullanan tüm sınıflar 

arasında girdi verilerinin en yüksek olasılığını hesaplamak için kullanılır. Bu 

varsayım, tekniğe LDA olarak isim veren diskriminant fonksiyonda doğrusal terimlere 

sahip olmasına yol açar. 
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2.2.2 Gradyan Arttırma (Gradient Boosting) 

Topluluk yaklaşımı (ensemble), daha güçlü bir topluluk tahmini elde etmek için çok 

sayıda nispeten zayıf modeli birleştirmeye dayanır [67]. Artırma (boosting) 

algoritmaları, zayıf öğrenenleri yenilemeli bir şekilde güçlü bir öğrenen olarak 

birleştirir [68]. Bir topluluk öğrenme algoritması olan gradyan artırma (GA), karar 

ağaçlarına dayalı gelişmiş bir tahmin oluşturmak için bir grup zayıf tahmin modeli 

kullanır. Modellerin neden olduğu tahmin hataları en aza indirilerek karar ağaçlarının 

tahmini iyileştirilir. Gradyan artırmada, öğrenme prosedürü, yanıt değişkeninin daha 

doğru bir tahminini sağlamak için yeni modellere art arda uyar. 

2.2.3 Rastgele Orman (Random Forest) 

Rastgele orman (RO), Karar ağacı (KA) algoritması temel alınarak oluşturulmuş 

topluluk tipi makine öğrenme yöntemidir [69]. KA, sınıfların tümevarım yöntemi 

kullanılarak öğrenildiği denetimli bir öğrenme yöntemidir [70]. KA modeli, 

özniteliklere göre verilerin sınıflandırma sürecini tanımlayabilen bir ağaç yapısına 

sahiptir [71]. KA algoritması, veri özniteliklerinden çıkarılan basit karar kurallarını 

öğrenerek yeni verinin sınıfını tahmin eden bir model oluşturmayı amaçlamaktadır. 

Ağaç, entropi veya gini indeksi gibi bir rasgelelik ölçüsü kullanılarak girdi uzayındaki 

en belirleyici değerleri yinelemeli olarak belirleyerek büyütülür. KA’nın her düğümü, 

bir öznitelik değerinin test edilmesi anlamına gelir ve çeşitli girdilere göre ağaç 

dallanabilir, yaprak ise bir sınıfı temsil eder. Ağaç, eğitim örneklerini temsil eden tek 

bir düğümle başlar. Örneğin tüm girdileri aynı sınıftaysa, düğüm yaprak olur aksi 

takdirde çeşitli girdilere göre ağaç dallanır. Süreç, bir yaprakla karşılaşılana kadar 

devam eder. RO daha doğru ve kararlı tahminler yapabilmek amacıyla birden çok KA 

modelinden oluşan topluluk tipi tahmin modeli oluşturmaktadır [72]. RO’da tahmin, 

rastgele seçilen veri örneklerine karar ağaçlarının uygulanmasıyla üretilen çıktıların 

oylanmasına dayanır. Rastgele özellik seçimiyle doğruluğun artması ve 

genelleştirilmiş hataların hesaplanması için RO’da torbalama yöntemi (bagging-

bootstrap aggregating) kullanılır [69]. Önyüklemeli setteki örnek sayısı orijinal veri 

setindeki örnek sayısına eşit olana kadar orijinal veri setinde rastgele seçilen örnekler 

yer değiştirmeli eklenerek önyüklemeli veri seti oluşturulur. Oluşturulacak 

önyüklemeli set sayısı, RO’da kullanılacak KA sayısına eşittir. Her bir KA, önyükleme 



 

16 

 

veri setinden rastgele özellik seçimi kullanılarak geliştirilir. M toplam değişken sayısı 

olmak üzere, eğitim aşamasında en iyi bölünme m≤M olacak şekilde rastgele m sayıda 

değişken kullanılarak belirlenir. Etiketlenmemiş bir örneğin sınıfına, KA’ların 

çoğunluk oyu ile karar verilir. Torbalama tekniğinin kullanılmasıyla RO algoritması 

aşırı uyuma karşı dirençlidir ve daha kararlı tahmin modeli oluşturur. 

2.2.4 Torbalama Sınıflandırıcısı (Bagging Classifier) 

Birkaç sınıflandırıcı kullanan ve sonuçlarını bir araya getiren topluluk tipi öğrenme 

yöntemleri, makine öğreniminde sıklıkla tercih edilmektedir. Topluluk öğrenme 

yöntemleri genellikle torbalama ve artırma olarak ayrılmaktadır. Torbalama 

sınıflandırıcısı (TS), nihai tahmini elde etmek için oylama veya ortalama alma yoluyla 

bireysel tahminleri bir araya getiren topluluk öğrenme yöntemlerinden biridir [73]. 

1994 yılında Leo Breiman tarafından önerilen TS, sınıflandırma ve regresyonda 

kullanılan makine öğrenimi algoritmalarının kararlılığını ve doğruluğunu artırmak için 

tasarlanmıştır. Bir torbalama sınıflandırıcısı, son bir tahmin oluşturmak için bootstrap 

örnekleme ile rastgele parçalara bölünmüş eğitim setleriyle oluşturulan modellerin 

bireysel tahminlerini oylamayla eler ya da ortalama alır. Bu topluluk tipi öğrenmenin 

temel fikri, bir grup zayıf öğrenicinin birlikte güçlü bir öğrenen oluşturabilmesidir. 

Torbalama birçok karar ağacını büyütür. Her bir karar ağacı zayıf öğrenenken birlikte 

güçlü öğreniciyi oluştururlar. Yeni bir örnek sınıflandırıldığında her ağaç bir sınıf için 

oy verir. Maksimum oyu olan sınıf yeni örneğin sınıfıdır. Bu teknik, rastgelelik ve 

ardından topluluk oluşturma ile tahmin edicinin varyansını azaltma tekniği olarak 

kullanılabilir. Torbalama sınıflandırıcı, basit uygulaması ve artan doğruluğu nedeniyle 

büyük ilgi görmektedir.  

2.2.5 K-katlamalı Çapraz Doğrulama 

Çapraz doğrulama sınıflandırıcı performansını ve kararlılığını değerlendirmek için son 

derece önemli bir yöntemdir [74]. K-kat çapraz doğrulama, veri setindeki tüm 

örnekleri kullanması ve veri setinin boyutunun küçük olup olmadığına bakılmaksızın 

uygulanabilirliği nedeniyle popüler bir tekniktir [75]. K-kat çapraz doğrulama veri 

setini k sayısı kadar eşit parçaya böler. Model k-1 parça ile eğitilir, kalan parça ile 

eğitilen model test edilir. Bu işlem k sayısı kadar tekrarlanarak her tekrarda farklı bir 
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parça test için kullanılır ve işlem sonunda k tane doğruluk değeri elde edilir. Bu 

değerlerin ortalaması alınarak sınıflandırıcının doğrulama doğruluğu hesaplanır (Şekil 

2.1). Her tekrarda test için ayrılan veri üzerinde yapılan tüm tahminler saklanır 

ardından depolanan bu tahminler ve gerçek sonuçlar arasında performans 

değerlendirmesi yapılır [76]. K-kat çapraz doğrulama yönteminde veri setinin tamamı 

hem test hem eğitim için kullanılmasıyla doğruluk tüm veri setinin tamamı 

kullanılarak hesaplanır. Böylelikle bu yöntem, modelin gerçek tahmin yeteneğini 

yüksek derecede yanlılık (bias) ve değişkenliğin (variance) önüne geçerek gösterir 

[77]. Bu tez çalışmasında önerilen modellerin eğitim ve test performanslarını 

değerlendirmek için k-kat çapraz doğrulama kullanılmıştır ve literatürde 

çalışmalardaki güvenilirliği nedeniyle 𝑘 sayısı 10 olarak seçilmiştir [78, 79]. 

 

Şekil 2.1: K-kat çapraz doğrulama görsel anlatımı 

 

Python her çalıştırıldığında rastgele sayı üreteci tohumu (random number generator 

seed) değişmektedir. Bu durum belli bir veri seti üzerinde önerilen makine öğrenmesi 

algoritması tekrar çalıştırıldığında performansın yeniden üretilebilirliğinin önüne 

geçmektedir. Aynı veri seti ve algoritma kullanıldığında aynı sonuçların elde edilmesi 

anlamına gelen yeniden üretilebilirlik, araştırma bulgularının güvenilirliğini 

doğrulamak için gerekli bir adımdır. Yeniden üretilebilir sonuçlar elde etmek için 

verilen bir tamsayı tarafından tohumlanan rastgele sayı üreticisi kullanılır. Kullanılan 

rastgele sayı üreticisi rastgele durum (random_state) parametresiyle kontrol edilir. Bu 

çalışmada rastgele durum parametresi 1’den 100’e kadar sırasıyla tam sayı değerleri 

alacak şekilde belirlenmiştir. Önerilen sınıflandırma modellerinin her biri sırasıyla bu 

rastgele durum parametrelerini alacak şekilde 100 kez eğitilmiş ardından en yüksek 

performansın gözlemlendiği parametre değeri ve performans belirlenmiştir. 
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2.2.6 Performans Metrikleri 

Glikoz miktarının ölçülmesi için LDA, GA ve RO ve TS sınıflandırıcıları önerilmiştir 

ve önerilen sınıflandırıcılarının performans değerlendirmeleri sırasında, sınıflandırma 

doğruluğu (accuracy) (Denklem (2.15)), hassasiyet (precision) (Denklem (2.16)), 

duyarlılık (recall) (Denklem (2.17)) ve F1 puanı (FI score) (Denklem (2.18)) 

hesaplanmıştır. 

 𝐷𝑜ğ𝑟𝑢𝑙𝑢𝑘 =
𝐷𝑃 + 𝐷𝑁

𝐷𝑃 + 𝐷𝑁 + 𝑌𝑃 + 𝑌𝑁
 (2.15) 

 𝐻𝑎𝑠𝑠𝑎𝑠𝑖𝑦𝑒𝑡 =
𝐷𝑃

𝐷𝑃 + 𝑌𝑃
 (2.16) 

 𝐷𝑢𝑦𝑎𝑟𝑙𝚤𝑙𝚤𝑘 =
𝐷𝑃

𝐷𝑃 + 𝑌𝑁
 (2.17) 

 𝐹1 𝑃𝑢𝑎𝑛𝚤 = 2 ×
𝐻𝑎𝑠𝑠𝑎𝑠𝑖𝑦𝑒𝑡 × 𝐷𝑢𝑦𝑎𝑟𝑙𝚤𝑙𝚤𝑘

𝐻𝑎𝑠𝑠𝑎𝑠𝑖𝑦𝑒𝑡 + 𝐷𝑢𝑦𝑎𝑟𝑙𝚤𝑙𝚤𝑘
 (2.18) 

DP ve DN, sırasıyla doğru tahmin edilen doğru pozitif ve doğru negatif çıktıların 

miktarını tanımlarken, YP ve YN sırasıyla yanlış tahmin edilen yanlış pozitif ve yanlış 

negatif çıktıların miktarlarıdır. Hassasiyet, duyarlılık ve F1 puanı ile tahmin edilen 

pozitif ve negatif çıktıların oranı hesaplanarak sınıflandırıcının performansı 

istatistiksel olarak değerlendirilir. 

Hassasiyet, doğru tahmin edilen pozitiflerin toplam pozitif tahminlere oranıyken geri 

çağırma ise doğru tahmin edilen pozitiflerin toplam gerçek pozitiflere ve yanlış 

negatiflere oranıdır. Son olarak, hassasiyet ve duyarlılığın harmonik ortalaması 

alınarak, 1 en iyi ve 0 en kötü olmak üzere [0, 1] arasında bir değere sahip F1 puanı 

hesaplanır. Tüm metrikler sonuçları 1 en iyi olmak üzere 0 ile 1 arasında değişir [80]. 

2.3 Derin Öğrenme Mimarileri 

Bir makine öğrenmesi yöntemi olan derin öğrenme, yapay sinir ağlarının birden çok 

katmandan oluşan ağları kullanarak öğrenme görevlerine uygulanmasıdır. Derin 

öğrenme doğrusal olmayan bilgi işlemenin çoklu katmanlarına veya aşamalarına 
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dayanan çok seviyeli özellik temsillerini hiyerarşik bir şekilde öğrenmeyi sağlar [81]. 

Evrişimli sinir ağı (Convolutional Neural Network-CNN) bilgisayar görüsü alanında 

kullanılan ileri beslemeli sinir ağıdır [82]. Yüksek öğrenme kapasitesiyle görsel tabanlı 

problemleri çözmede CNN yapıları başarılı performans göstermektedir [83]. Son 

yıllarda, CNN mimarisiyle, görüntü sınıflandırma [83-86], nesne tanıma [87], yüz 

tanıma [88] gibi görüntü tabanlı çalışmalar gerçekleştirilmiştir. İnsan görme 

yeteneğinden esinlenerek geliştirilen CNN mimarisi, her biri görsel korteksteki 

hücreler tarafından gerçekleştirilen işlevi yerine getiren çok sayıda evrişimli 

katmandan oluşmaktadır [82]. CNN genellikle evrişim, havuzlama (pooling) ve 

tamamen bağlı (fully connected) katmanlardan oluşan derin öğrenme modelidir. 

Evrişim katmanı, haritaların (feature map) sayısı ve boyutu, filtre boyutları (kernel 

size), adım (stride) sayısı ve aktivasyon fonksiyonuyla parametrelendirilir. 

Konvolüsyon işlemi gerçekleştiren filtreler, adım değerine göre girdi üzerinde kayarak 

girdiyi boyutlarına göre tarar ve öznitelik ya da aktivasyon haritası çıkarılır. 

Havuzlama katmanı öznitelik haritasının uzamsal boyutunu aşamalı olarak azaltan bir 

örnekleme katmanıdır. Bu sayede, özellik sayısı ve ağın hesaplama karmaşıklığı 

azaltılmaktadır. Tamamen bağlı katman bir önceki katmandan gelen tüm girdilere 

bağlı olarak çıktı üretir. Tamamen bağlı katmandan sonra sınıflandırma katmanı 

(classification layer) gelir. 

2.4 Akıllı Telefon Tabanlı Glikoz Tayini 

Glikozun hızlı ve kolay kolorimetrik tespiti için akıllı telefon tabanlı entegre bir 

platform geliştirilmiştir. Bir akıllı telefon uygulaması geliştirirken dikkat edilecek 

başlıca konulardan biri geliştirilecek telefon uygulamasını destekleyecek işletim 

sistemini seçilmesidir. Android işletim sistemi, kolay programlanması ve diğer işletim 

sistemlerine göre (örneğin IOS ve BlackBerry OS) ücretsiz lisans sağlaması gibi 

avantajlarıyla bu çalışmada kullanılacak işletim sistemi olarak belirlenmiştir. Ek 

olarak Android sistemler akıllı telefonlarda (yaklaşık %75’inde) yaygın olarak 

kullanılmaktadır [11]. Geliştirilen Android tabanlı akıllı telefon uygulaması kullanıcı 

dostu basit bir ara yüzü olacak şekilde tasarlanmıştır. Uygulama, kullanıcının telefon 

kamerası kullanarak yeni bir görüntü çekmesine ya da galeriden görüntü yüklemesini 

desteklemektedir. Seçilen görüntüde analizi yapılacak ilgili alanı ayarlanabilir bir 

kırpma kutusu kullanılarak kırpılabilmektedir. Geliştirilen uygulama görüntünün renk 
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yoğunluğuna ve doku özelliklerine dayalı olarak kolorimetrik değerlendirme 

yapabilmesi için seçilen görüntüde görüntü işleme algoritmaları çalışacak şekilde 

tasarlanmıştır. Akıllı telefon uygulamasında makine öğrenmesinin avantajlarından 

yararlanabilmek için uzak sunucu ile bulut bağlantısı üzerinden iletişim kurulmuştur. 

Uygulamada kırpılmış ve görüntü işleme algoritmaları uygulanmış görüntü sunucuya 

gönderilir ve sunucudaki makine öğrenimi modeli, renk ve doku özniteliklerine göre 

konsantrasyon sınıfına karar vermek için çalışır. Derin öğrenme modelinin akıllı 

telefona entegre edilmesiyle ise işlem internet bağlantısı olmadan gerçekleştirilmiştir. 

Eğitilmiş bir modeli telefon uygulamasında çalıştırmak için geliştirilmiş bir araç seti 

olan “TensorFlow-Lite” kullanılmıştır [89]. Böylece sunucuya gereksinim 

duyulmadan konsantrasyon sınıfına karar verilmiştir. 
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Bölüm 3 
3. Yapay Tükürükteki Glikozun Akıllı Telefonla Eşleştirilmiş µPAD Kullanılarak Farklı Reaktiflerle Makine Öğrenmesine Dayalı Kolorimetrik Tayini  

Yapay Tükürükteki Glikozun Akıllı 

Telefonla Eşleştirilmiş µPAD 

Kullanılarak Farklı Reaktiflerle Makine 

Öğrenmesine Dayalı Kolorimetrik 

Tayini  

Bu çalışmada, yapay tükürükteki glikoz konsantrasyonunu ölçmek için makine 

öğrenimine dayalı bir akıllı telefon uygulamasına sahip, μPAD içeren taşınabilir bir 

platform geliştirilmiştir. Potasyum iyodür (KI) ve 3,3’, 5,5’-tetrametilbenzidin (TMB), 

glikoz tayini için μPAD’lerde kromojenik ajanlar olarak sıklıkla kullanılmaktadır. 

Peroksidaz benzeri aktiviteye sahip olan kitosan (Chi) bir kromojenik ajan ile birlikte 

kullanıldığında μPAD’lerin analitik performansını iyileştirmektedir. Üç farklı 

algılama karışımı ((i) KI, (ii) KI+Chi ve (iii) TMB) μPAD’lerin algılama alanına 

hapsedilmiştir. Glikoz konsantrasyonuna bağlı olarak μPAD’lerin algılama alanında 

oluşan renk değişimlerinin görüntüleri yedi farklı aydınlatma koşulunda dört farklı 

akıllı telefon ile çekilerek aydınlatma varyasyonuna ve kamera optiğine karşı daha 

sağlam ve uyarlanabilir bir platform oluşturulmuştur. Öncelikle görüntülerden görüntü 

işleme algoritmaları ile öznitelikler çıkartılmış daha sonra bu öznitelikler makine 

öğrenimi sınıflandırıcılarını eğitmek için kullanılmıştır. On yedi farklı makine 

öğrenimi sınıflandırıcısı eğitilmiş ve her algılama karışımı için en iyi sınıflandırma 

başarısı gösteren makine öğrenimi sınıflandırıcıları belirlenmiştir. Ardından, sistemin 

basit ve kullanıcı dostu olması için görüntü yakalama, kırpma ve işleme yeteneğine 

sahip "GlucoSensing" adlı özel bir uygulama geliştirilmiştir. Uygulamada, makine 

öğrenimi sınıflandırıcılarını çalıştıran uzak bir sunucuyla iletişim kurmak için bir bulut 

sistemi kullanılmıştır.  
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3.1 Veri Seti  

3.1.1 Materyal 

μPAD’ler balmumu baskı kullanılarak yapılmıştır [90, 91]. Microsoft-PowerPoint 

2013 Yazılımında bir desen tasarlanmış ve bir balmumu yazıcı (Xerox ColorQube 

8900, Xerox Corporation, ABD) kullanılarak Whatman filtre kağıdına basılmıştır. 

Ardından, tasarlanan desenlere sahip kağıt, baskılı balmumu eritmek ve kanalları ve 

algılama alanını tanımlayan hidrofobik bariyerleri oluşturmak için işlemlerden 

geçirilmiştir. pH 7'de fosfat tamponlu salin (PBS)'de 180 U/ml glikoz oksidaz (GOx) 

ve 50 U/ml yaban turpu peroksidaz enzimi (HRP) içeren bir enzim karışımı 

hazırlanmıştır. Hazırlanan karışım 1 μl alikotları μPAD’lerin her üç algılama alanına 

yavaşça damlatılmıştır. (Şekil 3.1). Daha sonra, algılama alanlarının ikisine 1 μl 3 mM 

KI ve geri kalan algılama alanına 1 μl 10 mM TMB damlatılmıştır. Çözeltiler, oda 

sıcaklığında yaklaşık 5 dakika kurumaya bırakılmış, ardından 1 μl %1 (w/v) Chi, KI 

içeren iki algılama alanından birine damlatılmıştır. Ardından, solüsyon sızıntısını 

önlemek için μPAD’lerin bir tarafı şeffaf bir bantla kapatılmıştır. μPAD’lerin 

kolorimetrik davranışı glikozlu yapay tükürük kullanılarak değerlendirilmiştir. Temel 

olarak, değişen konsantrasyonlarda (0,1, 0,25, 0,5, 0,75, 1, 5 ve 10) glikoz içeren test 

çözeltilerinin 15 μl alikotları, μPAD’lerin numune yerleştirme bölgelerine 

yerleştirilmiş ve yanal akış altında üç algılama alanının tamamına ulaşmasına izin 

verilmiştir. Elde edilen renk değişimi Şekil 3.2’de gösterilmiştir. 

 

Şekil 3.1: Glikoz tayini için veri seti oluşturma aşamalarının şematik gösterimi. 

μPAD’in algılama alanındaki renk değişikliği, floresan, halojen ve güneş ışığı 

aydınlatma kaynaklarının değişken olmayan kombinasyonları bir akıllı telefon 

kamerası kullanılarak görüntülenmiştir. 



 

23 

 

 

 

Şekil 3.2: μPAD’de farklı glikoz konsantrasyon seviyelerinde gözlenen renk 

değişiklikleri (üst: GOx+HRP+TMB, sol alt: GOx+HRP+KI, sağ alt: 

GOx+HRP+Chi+KI) 

3.1.2 Görüntü Yakalama 

Yüksek sınıflandırma performansı elde etmek için makine öğrenimi 

sınıflandırıcılarının bir veri kümesiyle eğitilmesi gerekmektedir. Sınıflandırıcı 

performansı, veri kümesinin içeriği ile doğrudan bağlantılıdır. Ortam aydınlatma 

koşulları ve kamera optiği gibi olumsuz etkiler de dahil olmak üzere giriş veri sayısı 

ile sınıflandırıcının performansı kolayca geliştirilebilmektedir. Bu nedenle, olumsuz 

etkileri veri setine dahil etmek için halojen (H), floresan (F) ve güneş ışığı (S) ampul 

kaynakları kullanılarak kontrollü aydınlatma koşullarında birden fazla akıllı telefon 

kullanılarak bir veri seti oluşturulmuştur. Yedi farklı aydınlatma koşulu oluşturmak 

için ışık kaynaklarının ayrı ayrı ve kombinasyonları (H, F, S, HF, HS, FS, HFS) 

kullanılmıştır ve her bir µPAD konsantrasyonu yedi farklı aydınlatma altında 

fotoğraflandırılmıştır. Halojen (Osram 60 W) ampul sıcak (2700 K) renkler sağlarken, 

floresan (Klite 6 W) ve güneş ışığı (Philips 5.5 W) ampuller sırasıyla nötr (4000 K) ve 

soğuk renkler (6500 K) yaymaktadır. Veri setini genişletmek için daha fazla 

aydınlatma kaynağı dahil edilebilir fakat kapsamlı deneysel çalışmalara dayanarak üç 

kaynağın yeterli olduğu kararlaştırılmıştır. Görüntüler, 35º geliş açısında homojen 



 

24 

 

olarak aydınlatılmış bir alan altında, akıllı telefon ve μPAD arasında 9 cm’lik sabit bir 

mesafe olacak şekilde çekilmiştir (Şekil 3.1). 

Akıllı telefonlar ayırt edici bir kamera, optik ve görüntüleme yazılımı ile donatıldıkları 

için kontrollü aydınlatma koşullarında bile oldukça çeşitli görüntüler elde 

edilmektedir. Tablo 3.1’de bu çalışmada kullanılan iki Android (Reeder P10 ve 

Samsung J7) ve iki iOS (iPhone 6S ve iPhone 7) akıllı telefonun kamera özellikleri 

verilmiştir. Her μPAD konsantrasyonun görüntüsünün yakalanması sırasında, tüm 

aydınlatma koşulları altında akıllı telefonların konumu ve yüksekliği aynı tutulmuştur. 

Gömülü görüntüleme yazılımının renk sıcaklığı, ISO, pozlama süresi ve deklanşör hızı 

gibi ayarları için otomatik mod kullanılmıştır. Akıllı telefonların her biri ile sekiz 

konsantrasyon yedi farklı aydınlatma koşulu altında çekilerek 56 görüntü, tüm veri 

kümesinde ise toplamda 224 görüntü elde edilmiştir. 

Tablo 3.1: Akıllı telefoların kamera özellikleri. Akıllı telefonlar, makine öğrenimi 

sınıflandırıcılarında kullanılmak üzere µPAD görüntüleriyle bir veri kümesi 

oluşturmak için kullanılmıştır. 

Akıllı Telefon 

Markası 
Çözünürlük Optik Odak Uzaklığı 

iPhone 6s 4032 x 3024 f/2.2 4 mm 

iPhone 7 4032 x 3025 f/1.8 4 mm 

Reeder P10 4160 x 3120 f/2 4 mm 

Samsung J7 4128 x 2322 f/1.9 4 mm 

3.2 Öznitelik Çıkarımı 

Oluşturulan veri kümesi daha sonra MATLAB ortamında (R2019a, MathWorks Inc.) 

görüntü işleme algoritmalarıyla işlemek üzere bilgisayara aktarılmıştır. İlk olarak 

görüntüler µPAD’de öznitelikleri çıkarılacak algılama alanını kapsayacak şekilde 

kırpılmıştır. Ardından farklı konsantrasyonlardaki karışımların reaksiyonu sonucu 

algılama alanında renk değişikliğinin gözlemlendiği ilgili bölgeyi elde etmek için, gri 

tonlama uygulaması, eşikleme, binarize görüntü oluşturma, maskeleme, kontur 

algılama ve gürültü giderme dahil olmak üzere görüntü işleme yöntemlerinin sırasıyla 

uygulanması gerekmektedir. 
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Sınıflandırıcıları eğitmek için, görüntü işleme adımlarından sonra renk ve doku, 

entropi ve yoğunluk öznitelikleri çıkarılmıştır (Tablo 3.2). Öncelikle renk uzaylarının 

konsantrasyon düzeyine etkisini analiz etmek için RGB renk uzayındaki görüntü HSV 

ve L*a*b* renk uzaylarına dönüştürülmüştür. Daha sonra R, G, B, H, S, V, L*, b*, a* 

renk kanallarının her biri için renk momentleri olan ortalama, çarpıklık ve basıklık 

hesaplanarak 27 renk özniteliği çıkarılmıştır. Renk özniteliklerinin yanı sıra, 

sınıflandırıcıların doğruluğunu arttırmak için görüntülerin doku öznitelikleri olan 

kontrast, korelasyon, homojenlik ve enerji çıkartılmıştır. Renk ve doku özelliklerine 

ek olarak görüntülerin entropi ve yoğunluk değerlerinin de hesaplanmasıyla birlikte 

öznitelik çıkarımı tamamlanmıştır. Elde edilen 33 öznitelik kullanılarak makine 

öğrenmesi sınıflandırıcıları Python programlama dilinde eğitilmiştir. 

Tablo 3.2: Makine öğrenmesi sınıflandırıcılarını eğitmek için çıkarılan öznitelikler 

Renk Öznitelikleri Doku Öznitelikleri Entropi Yoğunluk 

• Ortalama • Kontrast   

• Çarpıklık • Korelasyon   

• Basıklık • Homojenlik   

 • Enerji   

3.3 Sınıflandırıcılar 

Renk değişimi ile konsantrasyon arasındaki ilişkiyi belirlemek ve tespit etmek için on 

yedi makine öğrenimi sınıflandırıcısı eğitilmiş ve farklı reaktiflerin kolorimetrik 

özellikleri glikoz konsantrasyonunu kesin olarak tahmin etme performansları 

açısından değerlendirilmiştir. Eğitilen sınıflandırıcılar arasından her karışım için en iyi 

performansa sahip olan sınıflandırıcılar belirlenmiştir. TMB için LDA, KI+Chi için 

GA ve KI için RO en iyi performansı göstermiştir. Her modelin başarısının elde 

edilmesinde 10-kat çapraz doğrulama tekniği kullanılmıştır. Yüksek derecede yanlılık 

ve değişkenliğin neden olduğu sorunları önlemek için k değeri 10 alınmıştır. Makine 

öğrenmesi sınıflandırıcılarının eğitim yöntemi Şekil 3.3’te gösterilmektedir. 
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Şekil 3.3: Makine öğrenmesi sınıflandırıcılarının eğitim yöntemi 

3.4 Akıllı Telefon Uygulaması: GlucoSensing 

Eğitilmiş makine öğrenmesi sınıflandırıcıları glikoz konsantrasyonunu hesaplamak 

için özel olarak tasarlanmış Android tabanlı GlucoSensing uygulamasıyla entegre 

edilmiştir. GlucoSensing uygulamasıyla eğitilmiş makine öğrenimi modellerini 

çalıştırabilmek için uzak sunucu ile bulut bağlantısı üzerinden iletişim kurulmaktadır. 

İletişim, GlucoSensing ile sunucu arasında hem Android hem de Python platformlarını 

destekleyen Firebase bulut sistemi ile sağlanmıştır. Firebase, iletişim ayarlarını JSON 

(Javascript Object Notation) formatında depolamaktadır. JSON dosyaları, aralarındaki 

iletişim protokollerini ayarlamak için hem Android hem de Python kütüphanelerine 

eklenmiştir. Geliştirilen uygulama, sunucu olarak Python 3.6 sürümünü çalıştıran 

herhangi bir işletim sistemini (Windows, Mac OSX veya Linux) desteklemektedir. 

Python’da çalışan önerilen sınıflandırıcılar, görüntüleri almak veya sınıflandırma 

sonuçlarını iletmek için Firebase ile iletişim kurar. GlucoSensing, 8. (Oreo) sürümünü 

ve üstünü destekleyen Android Studio’da geliştirilmiştir. GlucoSensing 

uygulamasında kullanıcının akıllı telefon kamerasını kullanarak yeni bir görüntü 

çekebilmesi veya Şekil 3.4a’da gösterildiği gibi galeriden bir görüntü yükleyebilmesi 

sağlanmıştır. Seçilen görüntü, reaksiyon sonucu renk değişikliği gözlemlenen 

bölgenin arama alanını daraltmak için ayarlanabilir bir kırpma kutusu kullanılarak 

dairesel olarak kırpılabilmektedir. (Şekil 3.4b ve c). "TMB, KI veya KI+Chi" 

düğmelerine dokunulduğunda, kırpılmış görüntüdeki renk değişikliği gösteren alan, 

görüntü işleme ile elde edilir (Şekil 3.4d ve e). GlucoSensing, elde edilen yeni 

görüntüyü sunucuya gönderir ve sunucudaki makine öğrenimi sınıflandırıcıları, renk 

ve doku özelliklerine göre konsantrasyon sınıfına karar verir. Sonuç, Şekil 3.4f’de 

gösterildiği gibi ekranda görüntülenmek üzere Firebase üzerinden GlucoSensing’e geri 

gönderilir. 
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(a) (b) (c) 

   

(d) (e) (f) 

Şekil 3.4: GlucoSensing uygulaması kullanılarak kolorimetrik glikoz ölçümü 

adımları 

3.5 Sonuç ve Tartışma 

Sınıfı bilinmeyen yeni bir verinin sınıfının belirlenebilmesi için makine öğrenimi 

yöntemlerinin, benzer verilerden oluşan veri kümesindeki görüntülerden çıkarılan 

özniteliklerle önceden eğitilmesi gerekmektedir. Görüntülerden öznitelikleri 

çıkarmanın bir yolu, görüntü işleme ile elde edilebilen renk bilgilerini kullanmaktır. 

Bu çalışmada, ilk olarak görüntü işleme yöntemiyle µPAD’in algılama alanında 

karışımın oluşturduğu renkli alan elde edilmiş, ardından bu renkli alanın öznitelikleri 

çıkartılmıştır. KI ve KI+Chi, TMB'den farklı olarak algılama bölgelerinin sınırları 

içinde zayıf renk bütünlüğüne sahiptir. Bu iki algılama karışımını içeren algılama 

alanlarında homojen renk dağılımı gözlemlenmemektedir. Bu nedenle homojen 

dağılım gösteren TMB  algılama alanın tamamından öznitelik çıkarılırken KI ve 

KI+Chi algılama karışımlarını içeren algılama alanlarında, özniteliklerin çıkarılacağı 

ilgili bölge görüntü işleme algoritmaları uygulanarak elde edilmiştir.  
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Giriş görüntüsü, ilk olarak kullanıcının GlucoSensing’de yaptığı gibi görüntü 

boyutunu azaltmak için kırpılmıştır (Şekil 3.4b, c ve d),  kırpma işlemi sonucunda 

Şekil 3.5b’deki görüntü elde edilir. Kırpılan görüntüdeki renkli alanın sonraki 

adımlarda özniteliklerin çıkarılması için elde edilmesi gerekmektedir. Bu nedenle, 

kırpılan görüntü gri seviye bir görüntüye dönüştürülmüştür (Şekil 3.5c) ardından Otsu 

metodu kullanılarak binarize görüntü oluşturulmuştur (Şekil 3.5d). Bununla birlikte, 

Şekil 3.5e ve f’de sırasıyla gösterildiği gibi ikili görüntü alan filtresi ve morfolojik 

işlemlerle görüntüdeki bozulmalar (siyah alanda beyaz noktalar ve beyaz alanda siyah 

noktalar) giderilmiştir. Şekil 3.4f’de gösterilen renkli alanı elde edebilmek için Şekil 

3.5f’deki görüntü Şekil 3.5b ile maskelenmiştir. Şekil 3.5a-g ve Şekil 3.5i-n güneş ışığı 

altında yakalanan 10 mM glikoz görüntülerine uygulanan görüntü işleme adımlarını 

göstermektedir. Şekil 3.5b ve i, sırasıyla KI ve KI+Chi içeren karışımların görüntüsü 

kırpılarak elde edilmiştir. Renkli alanın olduğu görüntüler elde edildikten sonra, 

makine öğrenimi sınıflandırıcılarında kullanılmak üzere bu görüntülerin HSV ve 

L*a*b* renk uzaylarına çevrilmesiyle birlikte her bir görüntü için 27 renk özniteliği, 

4 doku özniteliği, entropi ve yoğunluk değerleri hesaplanarak 33 öznitelik 

çıkarılmıştır. Bu çalışmada sınıflandırma için on yedi makine öğrenmesi modeli 

eğitilmiştir. Her model için 10-kat çapraz doğrulama tekniği kullanılmıştır. Eğitilen 

sınıflandırıcılardan TMB, KI+Chi ve KI için sırasıyla LDA, GA ve RO 

sınıflandırıcılarının en iyi performansı gösterdiği Tablo 3.3’te görülmektedir. Tablo 

3.4’de LDA, GA ve RO sınıflandırıcılarının her karışım için performanslarının 

karşılaştırması verilmiştir. Bu tabloda her bir sınıflandırıcının farklı karışımlarda 

diğerinden daha iyi performans gösterdiğini görülmektedir. TMB için %98,24 

doğrulukla LDA en yüksek performans gösterirken, KI+Chi karışımında GA %83,04, 

KI karışımında ise RO %76,85 sınıflandırma başarısı göstermiştir. KI karışımına 

Chi’nin eklenmesi sonucu konsantrasyonlar arası renk geçişlerinin daha belirgin 

olmasıyla birlikte her sınıflandırıcının performansının arttığı gözlemlenmiştir. Fakat 

TMB karışımına göre ardışık glikoz konsantrasyonları arasındaki daha az belirgin renk 

geçişi nedeniyle KI ve KI+Chi karışımları için en iyi performans sırasıyla %76,83 ve 

%83,04 ile sınırlı kalmıştır. 
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Şekil 3.5: Görüntü işleme adımları. iPhone 6S ile güneş ışığı altında çekilen 10 mM 

konsantrasyonlu görüntüler için görüntü işleme adımları gösterilmiştir. Üst sıra KI 

için görüntüleri ve alt sıra KI+Chi için görüntüleri göstermektedir. 

Tablo 3.3: Eğitilen onyedi makine öğrenmesi sınıflandırıcıları ve başarıları 

TMB (%) KI+Chi (%) KI (%) 

Sınıflandırıcı Başarı Sınıflandırıcı Başarı Sınıflandırıcı Başarı 

LDA 98,24 GA  83,04 RO 76,83 

RO 96,46 TS 80,37 GA 75,98 

TS 95,12 RO 78,64 LDA 74,13 

KA 93,32 LDA 75,45 TS  73,32 

GA 93,30 KA 73,81 KA 70,04 

NB 89,80 EAS 71,93 EAS 68,33 

Lineer DVM 87,98 KNN 61,10 
Lineer 

DVM 
59,37 

LR 87,89 LR 60,36 LR 58,95 

EAS 87,55 Lineer DVM 59,49 KNN 54,11 

KNN 83,89 BNB 49,60 NB 49,57 

BNB 62,98 NB 48,66 AdaBoost 41,90 

PAS 54,84 PAS 38,32 PAS 41,60 

KDA 36,99 AdaBoost 35,89 KDA 34,88 

AdaBoost 30,35 KDA 33,00 BNB 29,86 

GS 12,65 GS 12,65 GS 12,65 

Nu DVM 10,26 Nu DVM 8,91 Nu DVM 9,76 

RBF DVM 9,39 RBF DVM 8,46 
RBF 

DVM 
7,11 
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Tablo 3.4: Makine öğrenimi sınıflandırıcılarının glikoz sınıflandırmasına ilişkin 

performans karşılaştırması 

 LDA (%) GA (%) RO (%) 

TMB 98,24 93,30 96,46 

KI+Chi 75,45 83,04 78,63 

KI 74,13 75,98 76,83 

Sınıflandırıcıların performansı sınıflandırma başarısı, hassasiyet, duyarlılık ve F1 

puanı sonuçlarıyla değerlendirilmiştir. Tablo 3.5, Tablo 3.6 ve Tablo 3.7’de sırasıyla 

RF, GA ve LDA için bu metriklerin sonuçları verilmiştir. Tablo 3.8’de verilen TMB 

için LDA sınıflandırma algoritmasına ait metriklerin ortalaması 0,98 olmasına rağmen 

sınıf bazında incelendiğinde bu değerler değişkenlik göstermektedir. 

Sınıflandırıcıların performansını daha anlaşılır bir şekilde incelemek amacıyla KI, 

KI+Chi ve TMB karışımları için sırasıyla RF, GA ve LDA sınıflandırıcılarının 

performansını sınıf bazında görselleştiren karmaşıklık matrisleri Şekil 3.6a, b ve c’de 

verilmiştir. Karmaşıklık matrisi, doğru sınıf ile tahmin edilen sınıf arasındaki ilişkiyi 

gösteren bir tablodur. Örneğin, Tablo 3.8’de 1mM’a ait hassasiyet, duyarlılık ve F1 

puanı ortalama puanlarından (0,98) daha düşüktür. Bu durumun nedeni Şekil 3.6c’de 

verilen karmaşık matrisiyle anlaşılabilmektedir. 28 örnekten 26’sı 1mM olarak doğru 

şekilde sınıflandırılırken 2 örnek 0,5 mM olarak tahmin edilmiştir. TMB, KI+Chi ve 

KI karışımları ile en yüksek başarı elde edildiği diğer iki sınıflandırıcının karmaşıklık 

matrisleri ve sınıflandırıcıların sınıf bazında performans metrikleri sonuçları Ek A’da 

verilmiştir. 

Tablo 3.5: KI için sınıflandırma algoritmalarının sınıflandırma başarısı, hassasiyet, 

duyarlılık ve F1 puanı ile analizi 

 
Sınıflandırma 

Başarısı 
Hassasiyet Duyarlılık F1-Puanı 

LDA 0,741 0,747 0,741 0,743 

GA 0,759 0,760 0,759 0,758 

RO 0,768 0,784 0,768 0,770 
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Tablo 3.6: KI+Chi için sınıflandırma algoritmalarının sınıflandırma başarısı, 

hassasiyet, duyarlılık ve F1 puanı ile analizi 

 
Sınıflandırma 

Başarısı  
Hassasiyet Duyarlılık F1-Puanı 

LDA 0,755 0,772 0,754 0,755 

GA 0,830 0,829 0,830 0,829 

RO 0,786 0,784 0,786 0,785 

 

Tablo 3.7: TMB için sınıflandırma algoritmalarının sınıflandırma başarısı, hassasiyet, 

duyarlılık ve F1 puanı ile analizi 

 
Sınıflandırma 

Başarısı  
Hassasiyet Duyarlılık F1-Puanı 

LDA 0,982 0,982 0,982 0,982 

GA 0,933 0,935 0,933 0,933 

RO 0,964 0,964 0,964 0,964 

 

Tablo 3.8: TMB için LDA sınıflandırma algoritmasının sınıf bazında hassasiyet, 

duyarlılık ve F1 puanı ile değerlendirilmesi 

Konsantrasyon 

(mM) 
Hassasiyet Duyarlılık F1-Puanı 

0 1 1 1 

0,1 1 1 1 

0,25 1 1 1 

0,5 0,931 0,964 0,947 

0,75 1 1 1 

1 0,963 0,929 0,945 

5 0,966 1 0,982 

10 1 0,964 0,982 

Ortalama 0,982 0,982 0,982 
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(a) (b) 

 

(c) 

Şekil 3.6: RO, GA ve LDA sınıflandırıcılar için sırasıyla KI, KI+Chi ve TMB’nin 

karışıklık matrisleri 

 

Son olarak, kullanıcının glikoz konsantrasyonu testi gerçekleştirmesine olanak 

sağlamak için önerilen yöntem, özel tasarlanmış Android uygulama olan 

GlucoSensing ile entegre edilmiştir. Görüntü sunucuya gönderilmeden önce görüntü 

işleme algoritmalarıyla renk değişiminin gerçekleştiği alan elde edilir. Ardından elde 

edilen görüntü sınıflandırma için Firebase aracılığıyla sunucuya gönderilir ve 

konsantrasyon seviyesi sınıflandırıldıktan sonra sonuç GlucoSensing ekranında 

görüntülenir. Makine öğrenmesi sınıflandırıcılarına dayalı olarak çalışan akıllı telefon 

uygulamasının yapay tükürükteki glikoz seviyesini başarıyla ölçtüğü gözlemlenmiştir. 
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Ek olarak, önerilen yöntemin seçiciliği, sükroz (0,5 mM), üre (0,5 mM) ve laktat (0,5 

mM) olmak üzere 28 görüntü (dört akıllı telefonla yedi aydınlatma koşulu) ile test 

edilmiştir. Önerilen yöntem, tüm görüntüler için glikoz konsantrasyon seviyesini 0 

mM olarak belirleyebilmiştir. Diğer bir deyişle, seçicilik testi %100 doğrulukla 

tamamlanarak önerilen yöntemin sağlamlığı kanıtlanmıştır. 
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Bölüm 4  
4. Akıllı Telefon Uygulamasıyla Au/Ag Nanoparçacıklarına Dayalı Kolorimetrik Glikoz Tespiti İçin Makine Öğrenimi Yaklaşımı 

Akıllı Telefon Uygulamasıyla Au/Ag 

Nanoparçacıklarına Dayalı 

Kolorimetrik Glikoz Tespiti İçin 

Makine Öğrenimi Yaklaşımı 

Bu çalışmada, enzimatik olmayan glikoz ölçümü için makine öğrenmesine dayalı bir 

akıllı telefon uygulamasıyla Au ve Ag NP’ler içeren taşınabilir bir platform 

önerilmiştir. Küçük (s) ve büyük (l) Au/Ag NP’lerin glikoz ile reaksiyonundan elde 

edilen renk değişimi, makine öğrenimi sınıflandırıcılarının eğitimi için bir veri kümesi 

oluşturmak üzere bir akıllı telefon kamerası kullanılarak fotoğraflandırılmıştır. Elde 

edilen görüntü veri kümesi üzerinde görüntü işleme algoritmaları uygulanarak 

öznitelikler çıkarılmıştır. Daha sonra bu öznitelikler ile makine öğrenmesi 

sınıflandırıcıları eğitilmiş ardından en iyi performansı gösteren sınıflandırıcılar 

belirlenmiştir. En iyi performansı gösteren LDA sınıflandırıcısı kolorimetrik analiz 

için tasarlanan "GlucoQuantifier" adlı kullanıcı dostu akıllı telefon uygulamasıyla 

entegre edilmiştir.  

4.1 Veri Seti 

4.1.1  Au/Ag Nanoparçacık Sentezi ve Karakterizasyonu 

Au nanoparçacıkların sentezi, HauCl4’ün Turkevich yöntemi ile indirgenmesine 

dayanır [92]. Bu sentezde 200 ml 0,24 mM HauCl4 sulu çözeltisi tek boyunlu balona 

Na3C6H5O7 aktarılır ve manyetik karıştırmayla geri akışa kadar ısıtılır. Ardından 1 ml 

0,34 M eklenir ve çözelti 30 dakika geri akışa bırakılır. Bu sırada çözeltinin rengi 
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sarıdan yakut kırmızıya döner. Nihai karışım 6000 rpm devirde 1 saat santrifüjde 

bekletilir ve 2 ml saf su ile yeniden dağıtılır. Kolloidleri stabilize etmek için Au 

nanoparçacık dispersiyonuna 0,5 ml PVP (10 µL, 0,166 mg/ml) solüsyonu ilave edilir. 

Ag nanoparçacık  nişastanın stabilizatör olarak kullanılması ve  AgNO3’ün NaBH4 ile 

indirgenmesiyle hazırlanır [93, 94]. İlk olarak 100 ml kaynar suya 2 gram nişasta yavaş 

yavaş eklenerek %2 (w/v) nişasta çözeltisi hazırlanır. İlave sonrası 30 dakika daha 

kaynadıktan sonra çözelti oda sıcaklığına getirilir. Ardından çözelti ikiye ayrılır. 

Ayrılan çözeltinin 50 ml’sine 0,063 gram AgNO3 karıştırma ortamında yavaş yavaş 

eklenir. Diğer 50 ml çözeltiye indirgeyici olarak kullanılacak olan 0,021 gram NaBH4 

karıştırma ortamında yavaş yavaş ilave edilir ve çözelti hazırlanır. Daha sonra kuvvetli 

karıştırma ortamında NaBH4 çözeltisi AgNO3 çözeltisi içerisine 0,2 mL/s olacak 

şekilde ilave edilir. Renksiz çözelti küçük boyutlu Ag nanoparçacıkların oluşumunu 

gösteren koyu kahverengi kolloid haline dönüşür. Çözeltinin toplam hacmi 130 ml’ye 

tamamlanır ve 30 dakika daha karıştırılır. Daha sonra Ag nanoparçacık kolloidi 2 saat 

kaynatılır. Ardından oda sıcaklığında soğutulur ve 12 saat bekletilir. Çözelti hacmi 100 

ml’ye tamamlanır.  

200 µL Au nanoparçacık çözeltisi, cam şişelerdeki 700 µL oksijene doyurulmuş suya 

ilave edilmiştir. Bu karışıma farklı konsantrasyonlarda (0,5, 1, 2, 3, 4, 5, 6, 7, 8 ve 9 

mM) 300 µL glikoz çözeltisi eklenmiş ve 5 dakika inkübe edilmiştir. Daha sonra 

karışıma 800 µL Ag nanoparçacık solüsyonu ilave edildikten sonra 1 saat inkübe 

edilmiştir. 

4.2 Deneysel Tasarım 

Farklı boyutlardaki Au/Ag NP’ların kolorimetrik glikoz tespiti üzerindeki etkisini 

araştırmak için iki veri seti hazırlanmıştır. Küçük boyutlu nanoparçacıklarla (s-Au/Ag 

NP) ve büyük boyutlu nanoparçacıklarla (l-Au/Ag NP) hazırlanmış 0 ile 9 mM 

arasında değişen glikoz konsantrasyon seviyelerine sahip çözeltiler tek kullanımlık 

küvetlere doldurulmuştur (Şekil 4.2 ve Şekil 4.3). Çözeltilerin her biri Şekil 4.1’de 

gösterilen 40×40×25 cm boyutundaki laboratuvar tipi karton fotoğraf stüdyosunda 

çekilmiştir. Fotoğraf stüdyosu ortamdan kaynaklı ışık değişimlerini en aza indirmek 

için içi beyaz, dışı siyah boyalı olarak tasarlanmıştır. Stüdyonun tavanına yerleştirilmiş 
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beyaz ledler çözeltilerin 22,5 cm üzerinde olacak şekilde aydınlatma için 

kullanılmıştır. Çözeltilerin görüntüleri, bir tripod kullanılarak örneklerden 11,5 cm 

uzakta bulunan bir akıllı telefon kamerasıyla (LG G6, 1/3,06 inc. Sensör boyutu 

1440×2880 çözünürlüklü, 1,12 µm piksel boyutu) çekilmiştir. Her konsantrasyon 

görüntüsünün 10 tekrar olacak şekilde çekilmesiyle veri seti 110 tane görüntüden 

oluşmaktadır. Bu veri seti, MATLAB (MathWorks, MA, USA) ortamında görüntü 

işleme ve ardından öznitelik çıkarımı için bilgisayara aktarılmıştır.  

 

Şekil 4.1: Laboratuvar tipi fotoğraf stüdyosu 

 

Şekil 4.2: Farklı glikoz konsantrasyonlarında s-Au/Ag NP’lerin renk değişimi 

 

Şekil 4.3: Farklı glikoz konsantrasyonlarında l-Au/Ag NP’lerin renk değişimi 
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4.3 Öznitelik Çıkarımı 

Veri kümesi akıllı telefon kamerasıyla fotoğraflandırılarak 4160 x 3120 boyutunda 

JPEG formatındaki görüntüler elde edilmiştir. Görüntünün boyutunun büyük olmasına 

rağmen çözelti görüntüde küçük bir alan kaplamaktadır. Bu nedenle görüntüde 

kolorimetrik tayinin yapılacağı bölge öznitelik çıkarımı için kırpılmıştır. Renk 

değişimine dayalı olarak glikoz konsantrasyon seviyesini makine öğrenmesi 

algoritmaları ile sınıflandırmak için kırpılmış görüntüden renk ve doku öznitelikleri 

çıkarılmıştır. Konsantrasyon seviyesine bağlı olarak farklı renklerin gözlemlendiği 

RGB formatındaki görüntülerin, HSV ve L*a*b* renk uzaylarına da 

dönüştürülmesiyle bu üç renk uzayının her bir kanalının renk momentleri hesaplanarak 

renk öznitelikleri çıkartılmıştır. Ardından sınıflandırma başarısını arttırmak için veri 

setindeki her görüntünün doku öznitelikleri, entropisi ve yoğunluğu hesaplanmıştır. 

Böylelikle veri setindeki 110 görüntünün her biri için toplam 33 öznitelik makine 

öğrenimi sınıflandırıcılarının eğitiminde kullanılmak üzere çıkarılmıştır. 

4.4 Sınıflandırıcılar 

Glikoz konsantrasyonunu Au/Ag NP’larının farklı glikoz konsantrasyonlarındaki renk 

değişimine dayalı olarak sınıflandırmak için makine öğrenmesi algoritmaları 

kullanılmıştır. Farklı boyutlardaki Au/Ag NP’lar kullanılarak hazırlanan çözeltilerden 

oluşan veri setleriyle makine öğrenmesi modelleri eğitilmiştir. Modellerin başarısının 

değerlendirilmesinde k-kat çapraz doğrulama tekniği kullanılmış olup k değeri 10 

olarak belirlenmiştir. Glikoz konsantrasyonlarını sınıflandırmak için 16 farklı makine 

öğrenmesi modeli eğitilmiştir. Eğitilen modellerden en başarılı üç sonucu sırasıyla 

LDA, TS ve RO göstermiştir. Şekil 4.4’te veri setlerinin her biri ile modellerin 

eğitildiğini ve en başarılı sınıflandırıcının belirlendiğini gösteren şema verilmiştir. 
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Şekil 4.4: Makine öğrenmesi sınıflandırıcılarının eğitim yöntemi 

 

4.5 Akıllı Telefon Uygulaması: GlucoQuantifier 

Bu çalışmada kullanıcının görüntüleri kamera veya galeriden seçerek glikoz 

konsantrasyonunun ölçebilmesi için özel olarak tasarladığımız ve GlucoQuantifier 

adını verdiğimiz bir akıllı telefon uygulaması geliştirdik. Basit ve kullanıcı dostu bir 

arayüze sahip olan GlucoQuantifier görüntüleri akıllı telefondan makine öğrenmesi 

sınıflandırıcılarını çalıştıran uzak sunucuya göndererek glikoz konsantrasyonunu 

sınıflandırır. Akıllı telefon ile uzak sunucu arasındaki iletişimi sağlamak amacıyla hem 

Android (akıllı telefon) hem de Python’ı (uzak sunucu) desteklediği için Firebase bulut 

sistemi kullanılmıştır.  

Test edilen sınıflandırıcılar arasında LDA sınıflandırıcı, eğitim aşamasında diğer 

sınıflandırıcılardan daha iyi performans gösterdiği için yeni görüntünün glikoz 

konsantrasyonunu tahmin etmek için GlucoQuantifier ile entegre edilmiştir. Kullanıcı 

çözeltinin glikoz konsantrasyonunu hesaplamak için GlucoQuantifier uygulamasını 

çalıştırdığında ilk sayfa kullanıcıya akıllı telefon kamerasını kullanarak yeni bir 

görüntü çekmesi için veya Şekil 4.5a ve b’de gösterildiği gibi galeriden bir görüntü 

seçmesi için olanak sağlar. Görüntü seçildikten sonra renkli alan ayarlanabilir bir 

kırpma kutusu kullanılarak kırpılır (Şekil 4.5c). Daha sonra kullanıcı yükle düğmesine 

dokunarak kırpılmış görüntüyü sunucuya gönderir (Şekil 4.5d). Sunucudaki LDA 

sınıflandırıcısı, çıkarılan özniteliklere göre glikoz konsantrasyonu sınıfına karar 

vermek için çalışır (Şekil 4.5e). Sonuç, Firebase aracılığıyla GlucoQuantifier 

uygulamasına geri gelir ve Şekil 4.5f’de gösterildiği gibi ekranda görüntülenir. 
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(a) (b) (c) 

   

(d) (e) (f) 

Şekil 4.5: GlucoQuantifier ile kolorimetrik glikoz konsantrasyonu ölçümü adımları. 

Kullanıcı (a)’da gösterildiği gibi galeriden yada akıllı telefon kamerasını kullanarak 

görüntüyü seçer ve (b)’deki gibi ekranda görüntülenir. Ayarlanabilir kırpma kutusu 

(c)’de ve (d)’de verilen ROI’yi çıkarmak için kullanılır. ROI, (e)’de glikoz ölçümü 

için uzak sunucuya yüklenir ve sonuç (f)’de görüntülenir. 

 

4.6 Sonuç ve Tartışma 

Bu çalışmada, bir akıllı telefon kullanarak farklı boyutlu Au/Ag NPlara dayalı 

kolorimetrik glikoz tespiti için bir makine öğrenimi yaklaşımı önerilmiştir. Farklı 

konsantrasyonlardaki glikoz çözeltileri ile etkileşimden önce ve sonra Au/Ag NPların 

görüntülerinin akıllı telefon kamerası kullanılarak fotoğraflandırılmasıyla veri seti 

oluşturulmuştur. Çözeltilerde bekleme süresiyle birlikte gözlemlenen renk geçişlerinin 

glikoz konsantrasyonunun sınıflandırılması üzerindeki başarısını incelemek için 

çözeltiler hazırlandıkları 1. gün (çözeltilerin hazırlanmasından sonraki 1. saat) ve 

hazırlandıktan sonraki 2. gün (çözeltilerin hazırlanmasından sonraki 24’üncü saat) 
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fotoğraflandırılmıştır. Farklı glikoz konsantrasyonları içeren çözeltilerin 

görüntülerinden makine öğrenmesi sınıflandırıcılarını eğitmek için kullanılacak ayırt 

edici öznitelikler çıkarılmıştır. LDA, TS ve RO algoritmalarının glikoz 

konsantrasyonlarını sınıflandırma başarısı, farklı boyutlu Au/Ag NP veri kümeleri 

kullanılarak elde edilmiştir. LDA, TS ve RO sınıflandırıcılarının l-Au/Ag NPlar ve s-

Au/Ag NP veri setlerindeki performansları sırasıyla Tablo 4.1’de verilmiştir. Farklı 

boyutlu nanoparçacıklarla hazırlanmış veri setleriyle eğitilen sınıflandırıcıların 

performansları değerlendirildiğinde s-Au/Ag NPlara dayalı olarak glikoz tayinin daha 

yüksek performans gösterdiği, ayrıca ikinci gün fotoğraflandırılmış çözeltilerdeki renk 

geçişlerinin daha belirgin olmasına bağlı olarak ayırt ediciliğin artmasıyla birlikte 

sınıflandırıcı performanslarının iyileştiği gözlemlenmiştir. 1. gün çözelti 

görüntüleriyle yapılan glikoz konsantrasyonu sınıflandırma çalışmasında s-Au/Ag NP 

ve l-Au/Ag NP veri setlerinin her ikisi için de LDA en iyi performansı gösteren 

sınıflandırma algoritması olup sırasıyla %90,00 ve %88,18 sınıflandırma doğruluğu 

göstermiştir. Aynı şekilde 2. gün çözeltilerinin görüntüleriyle yapılan çalışmada LDA 

sınıflandırıcısı en iyi performansı gösterirken s-Au/Ag NP ve l-Au/Ag NP veri setleri 

için sırasıyla %93,63 ve %90,00 sınıflandırma doğruluğu elde edilmiştir. 

Tablo 4.1: LDA, TS ve RO sınıflandırıcılarınnın 1. ve 2. gün l-Au/Ag NP ve s-

Au/Ag NP veri setleri ile eğitilmesi sonucunda sınıflandırıcıların başarı tablosu 

 Sınıflandırma Başarısı (%) 

  s-Au/Ag NP  l-Au/Ag NP 

 1.Gün 2.Gün 1.Gün 2.Gün 

LDA 90,00 93,63 88,18 90,00 

TS 85,45 90,00 80,00 80,90 

RO 79,09 88,18 79,09 76,36 

Sınıflandırıcıların performansı sınıflandırma başarısı, hassasiyet, duyarlılık ve F1 

puanı sonuçlarıyla değerlendirilmiştir. l-Au/Ag NP ve s-Au/Ag NP veri setleriyle 

eğitilen LDA, TS ve RO sınıflandırıcılarının hassasiyet, duyarlılık ve F1 puanı 

sırasıyla Tablo 4.2 ve Tablo 4.3’te gösterilmektedir. En iyi performansın 

gözlemlendiği LDA sınıflandırma algoritmasının hassasiyet, duyarlılık ve F1 puanı 

metriklerinin sınıf bazında değerlendirilmesi 1. gün ve 2. gün l-Au/Ag NP veri seti için 

sırasıyla Tablo 4.4 ve Tablo 4.5’te verilirken 1. gün ve 2. gün s-Au/Ag NP için Tablo 
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4.6 ve Tablo 4.7’de verilmiştir. Ayrıca Şekil 4.6’da verilen karmaşıklık matrisleriyle 

LDA sınıflandırıcısının performansları görselleştirilerek değerlendirilmiştir. l-Au/Ag 

NP ve s-Au/Ag NP veri setleriyle en yüksek başarının elde edildiği diğer iki 

sınıflandırıcının karmaşıklık matrisleri ve sınıflandırıcıların sınıf bazında performans 

metrikleri EK B’de verilmiştir. 

Tablo 4.2: 1. ve 2. gün l-Au/Ag veri setleriyle eğitilen LDA, TS ve RO sınıflandırma 

algoritmalarının hassasiyet, duyarlılık ve F1 puanı ile değerlendirilmesi 

Veri Seti Sınıflandırıcılar 
Sınıflandırma 

Başarısı 
Hassasiyet Duyarlılık F1-Puanı 

 LDA 0,882 0,883 0,882 0,881 

1.Gün TS 0,800 0,807 0,800 0,798 

 RO 0,791 0,841 0,791 0,797 

 LDA 0,900 0,906 0,900 0,900 

2.Gün TS 0,809 0,804 0,809 0,801 

 RO 0,764 0,771 0,764 0,763 

 

Tablo 4.3: 1. ve 2. gün s-Au/Ag veri setleriyle eğitilen LDA, TS ve RO sınıflandırma 

algoritmalarının hassasiyet, duyarlılık ve F1 puanı ile değerlendirilmesi 

Veri Seti Sınıflandırıcılar 
Sınıflandırma 

Başarısı 
Hassasiyet Duyarlılık F1-Puanı 

 LDA 0,900 0,889 0,900 0,897 

1.Gün TS 0,855 0,856 0,855 0,850 

 RO 0,791 0,807 0,791 0,787 

 LDA 0,936 0,950 0,940 0,930 

2.Gün TS 0,900 0,910 0,900 0,900 

 RO 0,882 0,890 0,880 0,880 
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Tablo 4.4: 1. gün l-Au/Ag veri setiyle eğitilen LDA algoritmalarının başarısının sınıf 

bazında hassasiyet, duyarlılık ve F1 puanı ile değerlendirilmesi 

mM Hassasiyet Duyarlılık F1-Puanı 

0 1 1 1 

0,5 0,778 0,700 0,737 

1 1 1 1 

2 0,909 1 0,952 

3 0,889 0,800 0,842 

4 0,636 0,700 0,667 

5 1 1 1 

6 1 0,900 0,947 

7 0,778 0,700 0,737 

8 0,909 1 0,952 

9 0,818 0,900 0,857 

Ortalama 0,883 0,882 0,881 
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Tablo 4.5: 2. gün l-Au/Ag veri setiyle eğitilen LDA algoritmalarının başarısının sınıf 

bazında hassasiyet, duyarlılık ve F1 puanı ile değerlendirilmesi 

 

 

 

 

 

 

 

 

 

 

mM Hassasiyet Duyarlılık F1-Puanı 

0 0,900 0,900 0,900 

0,5 0,889 0,800 0,842 

1 0,700 0,700 0,700 

2 1 1 1 

3 0,750 0,900 0,818 

4 0,889 0,800 0,842 

5 1 1 1 

6 1 1 1 

7 0,883 1 0,909 

8 1 1 1 

9 1 0,800 0,889 

Ortalama 0,906 0,900 0,900 
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Tablo 4.6: 1. gün s-Au/Ag veri setliyle eğitilen LDA algoritmalarının başarısının 

sınıf bazında hassasiyet, duyarlılık ve F1 puanı ile değerlendirilmesi 

 

 

 

 

 

 

mM Hassasiyet Duyarlılık F1-Puanı 

0 1 1 1 

0,5 0,692 0,900 0,783 

1 1 0,900 0,947 

2 1 1 1 

3 1 1 1 

4 1 1 1 

5 1 1 1 

6 1 1 1 

7 0,625 0,500 0,556 

8 0,667 0,600 0,632 

9 0,909 1 0,952 

Ortalama 0,889 0,900 0,897 
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Tablo 4.7: 2. gün s-Au/Ag veri setliyle eğitilen LDA algoritmalarının başarısının 

sınıf bazında hassasiyet, duyarlılık ve F1 puanı ile değerlendirilmesi 

 

mM Hassasiyet Duyarlılık F1-Puanı 

0 1 1 1 

0.5 0,910 1 0.950 

1 1 1 1 

2 1 1 1 

3 0,900 0,900 0,900 

4 1 1 1 

5 1 0,600 0,.500 

6 0,910 1 0,950 

7 0,690 0,900 0,780 

8 1 0,900 0,950 

9 1 1 1 

Ortalama 0,950 0,940 0,930 
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(a) (b) 

  

(c) (d) 

Şekil 4.6: 1. gün l-Au/Ag NP (a), 2. gün l-Au/Ag NP (b), 1. gün s-Au/Ag NP (c) ve 2. 

gün s-Au/Ag NP (d) veri setleriyle eğitilen LDA sınıflandırıcısı performansının 

karmaşıklık matrisiyle değerlendirilmesi 
Ek olarak önerilen sistem, glikoz konsantrasyonunu ölçmek için basit ve kullanıcı 

dostu bir mobil uygulama olan GlucoQuantifier ile entegre edildi. Resim galeriden 

seçilir veya kamera kullanılarak çekilir, ardından renkli alan kırpılır ve konsantrasyon 

seviyesini ölçmek için Firebase aracılığıyla makine öğrenimi sınıflandırıcısını 

çalıştıran sunucuya gönderilir, sonuç geri gelir ve GlucoQuantifier’da görüntülenir. 

Makine Öğrenmesi yaklaşımını kalibrasyon eğrisi yöntemiyle karşılaştırmak için 2. 

gün s-Au/Ag NP görüntü veri seti işlenerek her renk kanalı için kalibrasyon eğrisi elde 

edilmiştir. Şekil 4.7a, b ve c’de R, G, B, H, S, V, L*, a*, b* renk kanallarının 

kalibrasyon eğrileriyle birlikte her renk kanalı için sırasıyla 0,0512, 0,2447, 0,3389, 
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0,2932, 0,3267, 0,0722, 0,2677, 0,0845 ve 0,3178 R2 değerleri verilmiştir. Maksimum 

lineerlik B kanalında (R2: 0,3389) elde edilmiştir fakat bu lineerliğin kalibrasyon eğrisi 

tabanlı kolorimetrik glikoz saptamasında düşük performans gösterdiği 

gözlemlenmiştir. Bununla birlikte, makine öğrenimine dayalı yaklaşımlar bu sorunun 

üstesinden kolayca gelerek lineer olmayan durumlarda üstün performans 

göstermektedir, bu da kolorimetrik analizde makine öğrenimi kullanmanın avantajını 

kanıtlamaktadır. Ayrıca, makine öğrenimi, çeşitli akıllı telefon markalarıyla farklı ışık 

kaynakları altında yakalanan görüntüler de dahil olmak üzere genişletilmiş veri 

kümeleri ile eğitilebilmektedir. Böylelikle aydınlatma varyansına ve kamera optiğine 

karşı daha uyarlanabilir, hassas ve sağlam bir sistem geliştirilerek akıllı telefon 

markası ve aydınlatma varyasyonu ne olursa olsun kolaylıkla yüksek sınıflandırma 

doğruluğu elde edilebilmektedir. 

  
(a) (b) 

 
(c) 

Şekil 4.7: RGB (a), HSV (b) ve L*a*b* (c) kalibrasyon eğrileri 
Ayrıca, önerilen sistemin özgüllüğünü değerlendirmek için glikoz, galaktoz, maltoz ve 

ksiloz örnekleriyle s-Au/Ag NP’ler kullanılarak kolorimetrik testler 
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gerçekleştirilmiştir. Şekil 4.8’de gösterildiği gibi, glikozun doğruluk değeri, galaktoz, 

maltoz ve ksiloza kıyasla önemli ölçüde daha yüksektir. s-Au/Ag NP’ler, glikozu bu 

çalışmada kullanılan diğer şekerlerden ayırmak için oldukça spesifik olduğu sonucuna 

varılmaktadır. 

 

 

 

 

 

 

 

 

 

 

 

Şekil 4.8: Glikoz tespiti için s-Au/Ag NP’nin özgüllük incelemesi sonucunda farklı 

analitlerin 3 mM numunelerine yanıtının doğruluk değerleri 
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Bölüm 5 

5. Glikozun Au/Ag Nanoparçacıklar İle Akıllı Telefon Kullanılarak Derin Öğrenme Tabanlı Kolorimetrik Sınıflandırılması 

Glikozun Au/Ag Nanoparçacıklar İle 

Akıllı Telefon Kullanılarak Derin 

Öğrenme Tabanlı Kolorimetrik 

Sınıflandırılması 

Bu çalışmada glikoz konsantrasyonun akıllı telefon kullanılarak derin öğrenme tabanlı 

kolorimetrik sınıflandırılması amaçlanmıştır. Derin öğrenme modelini eğitmek için 

veri seti, Au-Ag nanoparçacıkların farklı konsantrasyonlarda glikoz ile reaksiyonu 

neticesinde elde edilen renk değişimleri akıllı telefon kamerasıyla fotoğraflandırarak 

oluşturulmuştur. Önerilen derin öğrenme modeli bu veri setiyle eğitilerek 

sınıflandırma yapılmış ve %95,93 başarı elde edilmiştir. Derin öğrenme modeli 

Android tabanlı DeepGlucose ile entegre edilerek glikoz konsantrasyonu akıllı telefon 

kullanılarak hesaplanmıştır. 

5.1 Metaryal ve Metot 

5.1.1 Veri Seti ve Deneysel Tasarım 

Bu çalışmada kullanılan veri seti Bölüm 4.1’de açıklanmıştır. Önerilen derin öğrenme 

mimarisi Şekil 4.2’de verilen s-Au/Ag NP veri seti ile eğitilmiştir. Bölüm 4.2’de veri 

setinin fotoğraflarının çekilmesi için tasarlanan fotoğraf stüdyosunun (Şekil 4.1) ve 

akıllı telefon kamerasının özellikleri açıklanmıştır. Elde edilen görüntüler 

incelendiğinde 4160×3120 boyutundaki görüntüde ilgili bölge fotoğrafta küçük bir 

alanı kaplamaktadır. Bu nedenle veri setindeki görüntülerin boyutu Şekil 5.2c’de 

görüldüğü gibi kırpılarak 627×2184 boyutunda görüntüler hazırlanmıştır. 
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5.1.2 Önerilen Derin Öğrenme Mimarisi 

Derin öğrenmede CNN, görüntü sınıflandırmak için yaygın olarak kullanılan sinir 

ağıdır. CNN yapıları yüksek öğrenme kapasiteleri sayesinde çok sayıda görüntüden 

oluşan veri kümelerinden özellik çıkarırlar. CNN çok sayıda evrişimli katmandan 

oluşan derin öğrenme modelidir. Önerilen derin öğrenme mimarisi, 6 evrişimli katman 

(convolutional layer+ReLu) ve softmax aktivasyonlu bir çıktı üreten sınıflandırma 

katmanı olmak üzere 7 katman içerir. Evrişimli katmanlar, sonunda bir havuzlama 

(pooling) katmanı olacak şekilde 3 gruba ayrılmıştır. Evrişim katmanında evrişim 

işlemi gerçekleştiren filtreler ile resim taranarak özellik haritası çıkarılır. Havuzlama 

katmanı öznitelik sayısı ve ağın hesaplama karmaşıklığını azaltan bir katmandır. 

Maksimum, minimum veya ortanca birleştirme yöntemleri kullanılarak bir sonraki 

evrişim katmanı için giriş boyutu küçültülür. Düzleştirme katmanında (flatten layer), 

evrişimli katman ve havuzlama katmanından gelen çıktı tamamen bağlı katmanın girişi 

için tek boyutlu diziye çevrilir. Tamamen bağlı katman, bir önceki katmandan gelen 

tüm girdilere bağlı olarak çıktı üretir. Tamamen bağlı katmandan sonra sınıflandırma 

katmanı gelir. Glikozun kolorimetrik sınıflandırılması için önerilen derin öğrenme 

mimarisi Şekil 5.1’de verilmiştir. 

 

Şekil 5.1: Kolorimetrik glikoz sınıfllandırılması için önerilen derin öğrenme 

mimarisi 

5.1.3  Akıllı Telefon Uygulaması: DeepGlucose 

Önerilen yöntem, özel tasarladığımız Android uygulamayla entegre edilmiştir. Glikoz 

konsantrasyonunun hızlı kolorimetrik tayini için Android Studio’da yazılmış 
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DeepGlucose adlı basit ve kullanıcı dostu bir akıllı telefon uygulaması geliştirilmiştir. 

Bu çalışmada eğitilmiş bir modeli telefon uygulamasında çalıştırmak için geliştirilmiş 

bir araç seti olan "TensorFlow-Lite" kullanılmıştır. Böylece sunucuya gereksinim 

duyulmadan sınıflandırma gerçekleştirilmiştir. Şekil 5.2’de verilen DeepGlucose 

uygulamasının ekran görüntüleri, glikoz konsantrasyonunun kolorimetrik tayini 

sürecinin adımlarını göstermektedir. Kullanıcı, DeepGlucose uygulamasını 

çalıştırdığında, ilk önce glikoz konsantrasyonu hesaplanacak çözeltinin fotoğrafı 

telefon kamerası kullanılarak çekilir ya da galeriden seçilir (Şekil 5.2a). Görüntü 

seçildikten sonra sadece şişenin görüntüsü kalacak şekilde ayarlanabilir bir kırpma 

kutusu kullanılarak kırpılır (Şekil 5.2b ve c). Daha sonra kullanıcı Şekil 5.2d’deki 

hesapla butonuna bastığında derin öğrenme yöntemiyle glikoz konsantrasyonu 

hesaplanır ve sonuç Şekil 5.2e’de gösterildiği gibi ekranda görüntülenir. 

   

(a) (b) (c) 

  

 

(d) (e)  

Şekil 5.2: DeepGlucose uygulamasında glikoz konsantrasyonu tayini  
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5.2 Sonuç ve Tartışma 

Deneysel çalışmaların yapıldığı veri setinde her bir konsantrasyon için 30 fotoğraf 

bulunmaktadır. Ancak az sayıdaki veri derin öğrenme modelinin eğitimi için yeterli 

değildir. Modelin farklı durumlardaki çok sayıda veriyle eğitilmesi gerekmektedir. Bu 

nedenle fotoğrafların sıcaklık, kontrast ve parlaklığı değiştirilerek veri seti 

genişletilmiştir. Her bir konsantrasyon için 627×2184 boyutunda 7530 fotoğraf elde 

edilmiştir. Veri setinin %80’i eğitim, %20’si test için kullanılmıştır.  

  

(a) (b) 

 

(c) 

Şekil 5.3: Eğitim ve doğrulama başarımı grafiği (a)’da verilmişken, eğitim kaybı ve 

doğrulama kaybı grafikleri (b)’de gösterilmiştir, karmaşıklık matrisi (c)’de 

verilmiştir.  
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Sınıflandırıcının başarısını değerlendirmek için Şekil 5.3a’da doğruluk, Şekil 5.3b’de 

kayıp grafiği ve Şekil 5.3c’de ise karmaşıklık matrisi verilmiştir. Bu çalışmada model 

eğitilirken eğitim tur sayısı (epoch) 151 ve mini-batch 512 olarak belirlenmiştir. 

Önerilen derin öğrenme modeli ile yapılan kolorimetrik sınıflandırmada %95,93 başarı 

elde edilmiştir. Android tabanlı DeepGlucose uygulamasıyla önerilen model entegre 

edilerek glikoz konsantrasyonu akıllı telefon kullanılarak hesaplanmıştır.
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Bölüm 6 

Vargılar 

Vargılar 

Bu tez çalışmasında μPAD’deki renk değişimine dayalı glikoz tespiti ve Au/Ag 

NP’larla enzimatik olmayan glikoz tespiti için yapay zeka yaklaşımları uygulanarak 

akıllı telefon tabanlı kolorimetrik glikoz tayini gerçekleştirilmiştir. Bölüm 3‘te yapay 

tükürükteki glikoz seviyesini sınıflandırmak için μPAD’lerdeki renk değişikliğine 

dayalı bir makine öğrenimi sınıflandırıcı uygulaması önerilmiştir. Algılama alanına üç 

farklı algılama karışımı (KI, KI+Chi ve TMB) hapsedilmiş μPAD’lerin kolorimetrik 

davranışı glikoz içeren yapay tükürük kullanılarak değerlendirilmiştir. Farklı glikoz 

konsantrasyonlarına bağlı olarak algılama alanlarında görülen renk değişimlerinin 

yedi farklı aydınlatma koşulunda dört farklı akıllı telefon kamerasıyla fotoğrafı 

çekilerek veri seti hazırlanmıştır. Böylelikle makine öğrenimi sınıflandırıcıları, farklı 

akıllı telefonlarla ve aydınlatma koşulunda çekilen görüntülerle eğitilerek platformun 

aydınlatma varyansına ve kamera optiğine karşı sağlamlığını artırılmıştır. Diğer bir 

deyişle, mevcut platform, akıllı telefonun markası, analizin zamanı ve yeri ne olursa 

olsun, belirli bir numunedeki glikoz miktarını çok yüksek doğrulukla 

belirleyebilmektedir. Ek olarak, çeşitli makine öğrenimi sınıflandırıcılarını çalıştıran 

uzak sunucu ile iletişim kurmak için görüntü işleme özelliğine sahip özel tasarlanmış 

bir akıllı telefon uygulaması (GlucoSensing) geliştirilmiştir. Önerilen platformu daha 

kullanıcı dostu ve hassas hale getirmek için, GlucoSensing’deki yerleşik görüntü 

işleme aracı, insan hatalarını en aza indirmeyi amaçlayarak fotoğraftaki renk değişimin 

görüldüğü ilgili alanı otomatik olarak bulmaktadır. Test edilen algılama karışımları 

arasında en yüksek doğruluk %98 ile TMB karışımında LDA sınıflandırıcısıyla elde 

edilmesi kolorimetrik analizde önerilen platformun başarısını göstermektedir. Yapılan 

literatür araştırması sonucunda bilindiği kadarıyla makine öğrenmesi 

sınıflandırıcılarını ve μPAD teknolojisini glikoz ölçümü için akıllı telefon platformu 

altında birleştiren ilk çalışma olma özelliği taşımaktadır. Bölüm 4’te bir akıllı telefon 
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kullanarak farklı boyutlu Au/Ag NP’lere dayanan enzim içermeyen kolorimetrik 

glikoz tespiti için bir makine öğrenimi yaklaşımı önerilmektedir. Au/Ag NP’lerin 

kolorimetrik algılama için genel mekanizması, NP’lerin yüzey fonksiyonel grupları ile 

glikoz molekülleri arasındaki etkileşime ve NP’lerin boyuta bağlı yüzey yükü 

yoğunluğuna dayanır. Bu çalışmada, tahlillerin kalitatif ve kantitatif kolorimetrik 

değerlendirmesi için büyük ve küçük boyutlu Au/Ag NP’ler kullanılmıştır. Makine 

öğrenimi sınıflandırıcılarını eğitmek için farklı boyutlarda Au/Ag NP’ler ve çeşitli 

konsantrasyonlarda glikoz çözeltileri içeren testlerin görüntüleriyle bir veri kümesi 

oluşturulmuştur. Ayrıca, testin glikoz konsantrasyonunu belirlemek için makine 

öğrenimi sınıflandırıcılarını çalıştıran uzak sunucu ile iletişim kurmak için özel olarak 

tasarlanmış bir akıllı telefon uygulaması (GlucoQuantifier) geliştirilmiştir. Test edilen 

sınıflandırıcılar arasında, kolorimetrik testlerin ölçümü için geniş bir olasılık gösteren 

s-Au/Ag NP’ler ile LDA sınıflandırıcısında %93,63 sınıflandırma doğruluğuna 

ulaşılmıştır. Bilinen kadarıyla bu çalışma, hızlı ve taşınabilir yerinde gözetim için 

glikozun enzimatik olmayan kantitatif bir analizini sağlayan bir akıllı telefon 

uygulamasına dayanan, makine öğrenimi sınıflandırıcılarını Au/Ag NP’lerle 

birleştiren ilk çalışmadır. Bölüm 5’te akıllı telefon kullanarak kolorimetrik glikoz 

tayini için derin öğrenme modeli önerilmiştir. Önerilen derin öğrenme mimarisi s-

Au/Ag NP veri setiyle eğitilerek, %95,93 sınıflandırma başarısı elde edilmiştir. Ayrıca 

akıllı telefon kullanarak kolorimetrik analiz yapabilmek için önerilen mimari akıllı 

telefon uygulamasıyla (DeepGlucose) entegre edilerek internet bağlantısı olmadan 

glikoz ölçümü yapabilen bir platform geliştirilmiştir. Glikozun, yapay zeka metotları 

ve akıllı telefon uygulaması gibi uygulanabilir yöntemler ile tayin edilebilmesi klinik 

ve laboratuvarlarda hızlı tanı için geliştirilebilecek çalışmalar için zemin 

niteliğindedir. 
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Ek A 
KI, KI+Chi ve TMB karışımlarının içerdiği glikoz konsantrasyonunun 

sınıflandırılmasında LDA, GA ve RO sınıflandırma algoritmalarının hassasiyet, 

duyarlılık ve F1 puanı ile analizi: 

Tablo A.1: KI için LDA sınıflandırma algoritmasının sınıf bazında hassasiyet, 

duyarlılık ve F1 puanı ile değerlendirilmesi 

 

 

 

 

 

 

 

mM Hassasiyet Duyarlılık F1-Puanı 

0 
0,593 0,571 0,582 

0,1 
0,545 0,643 0,590 

0,25 
0,556 0,536 0,545 

0,5 
0,643 0,643 0,643 

0,75 
0,724 0,750 0,737 

1 
0,917 0,786 0,846 

5 
1 1 1 

10 
1 1 1 

Ortalama 
0,747 0,741 0,743 
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Tablo A.2: KI için GA sınıflandırma algoritmasının sınıf bazında hassasiyet, 

duyarlılık ve F1 puanı ile değerlendirilmesi 

 

Tablo A.3: KI için RO sınıflandırma algoritmasının sınıf bazında hassasiyet, 

duyarlılık ve F1 puanı ile değerlendirilmesi 

 

 

mM Hassasiyet Duyarlılık F1-Puanı 

0 
0,571 0,571 0,571 

0,1 
0,700 0,750 0,724 

0,25 
0,727 0,571 0,640 

0,5 
0,688 0,786 0,733 

0,75 
0,786 0,786 0,786 

1 
0,643 0,643 0,643 

5 
1 0,964 0,982 

10 
0,966 1 0,982 

Ortalama 
0,760 0,759 0,758 

mM Hassasiyet Duyarlılık F1-Puanı 

0 
0,556 0,714 0,625 

0,1 
0,639 0,821 0,719 

0,25 
0,630 0,607 0,618 

0,5 
0,708 0,607 0,654 

0,75 
0,905 0,679 0,776 

1 
0,833 0,714 0,769 

5 
1 1 1 

10 
1 1 1 

Ortalama 
0,784 0,768 0,770 
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Tablo A.4: KI+Chi için LDA sınıflandırma algoritmasının sınıf bazında hassasiyet, 

duyarlılık ve F1 puanı ile değerlendirilmesi 

 

Tablo A.5: KI+Chi için GA sınıflandırma algoritmasının sınıf bazında hassasiyet, 

duyarlılık ve F1 puanı ile değerlendirilmesi 

 

 

 

mM Hassasiyet Duyarlılık F1-Puanı 

0 
0,941 0,571 0,711 

0,1 
0,60 0,536 0,566 

0,25 
0,553 0,75 0,636 

0,5 
0,656 0,75 0,70 

0,75 
0,720 0,643 0,679 

1 
0,710 0,786 0,746 

5 
1 1 1 

10 
1 1 1 

Ortalama 
0,772 0,754 0,755 

mM Hassasiyet Duyarlılık F1-Puanı 

0 
0,923 0,857 0,889 

0,1 
0,759 0,786 0,772 

0,25 
0,692 0,643 0,667 

0,5 
0,680 0,607 0,642 

0,75 
0,710 0,786 0,746 

1 
0,871 0,964 0,915 

5 
1 1 1 

10 
1 1 1 

Ortalama 
0,829 0,83 0,829 
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Tablo A.6: KI+Chi için RO sınıflandırma algoritmasının sınıf bazında hassasiyet, 

duyarlılık ve F1 puanı ile değerlendirilmesi 

 

Tablo A.7: TMB için GA sınıflandırma algoritmasının sınıf bazında hassasiyet, 

duyarlılık ve F1 puanı ile değerlendirilmesi 

 

 

 

mM Hassasiyet Duyarlılık F1-Puanı 

0 
0,786 0,786 0,786 

0,1 
0,679 0,679 0,679 

0,25 
0,655 0,679 0,667 

0,5 
0,615 0,571 0,593 

0,75 
0,741 0,714 0,727 

1 
0,800 0,857 0,828 

5 
1 1 1 

10 
1 1 1 

Ortalama 
0,784 0,786 0,785 

mM Hassasiyet Duyarlılık F1-Puanı 

0 1 1 1 

0,1 0,931 0,964 0,947 

0,25 0,963 0,929 0,945 

0,5 0,867 0,929 0,897 

0,75 0,867 0,929 0,897 

1 0,926 0,893 0,909 

5 0,964 0,964 0,964 

10 0,960 0,857 0,906 

Ortalama 0,935 0,933 0,933 
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Tablo A.8: TMB için RO sınıflandırma algoritmasının sınıf bazında hassasiyet, 

duyarlılık ve F1 puanı ile değerlendirilmesi 

 

 

 

 

 

 

 

 

 

 

 

mM Hassasiyet Duyarlılık F1-Puanı 

0 
1 1 1 

0,1 
0,964 0,964 0,964 

0,25 
0,964 0,964 0,964 

0,5 
0,893 0,893 0,893 

0,75 
0,964 0,964 0,964 

1 
0,963 0,929 0,945 

5 
0,966 1 0,982 

10 
1 1 1 

Ortalama 
0,964 0,964 0,964 
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KI, KI+Chi ve TMB karışımlarının içerdiği glikoz konsantrasyonunun 

sınıflandırılmasında LDA, GA ve RO sınıflandırma algoritmalarının karmaşıklık 

matrisi: 

 

Şekil A.1: KI karışımının içerdiği glikoz konsantrasyonunun LDA ile 

sınıflandırılması sonucu karmaşıklık matrisi  

 

Şekil A.2: KI karışımının içerdiği glikoz konsantrasyonunun GA ile sınıflandırılması 

sonucu karmaşıklık matrisi 
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Şekil A.3: KI+Chi karışımının içerdiği glikoz konsantrasyonunun LDA ile 

sınıflandırılması sonucu karmaşıklık matrisi 

 

 

Şekil A.4: KI+Chi karışımının içerdiği glikoz konsantrasyonunun RO ile 

sınıflandırılması sonucu karmaşıklık matrisi 
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Şekil A.5: TMB karışımının içerdiği glikoz konsantrasyonunun GA ile 

sınıflandırılması sonucu karmaşıklık matrisi 

 

 

Şekil A.6: TMB karışımının içerdiği glikoz konsantrasyonunun RO ile 

sınıflandırılması sonucu karmaşıklık matrisi 
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Ek B 

l-Au/Ag NP ve s-Au/Ag NP karışımlarının içerdiği glikoz konsantrasyonunun 

sınıflandırılmasında LDA, TS ve RO sınıflandırma algoritmalarının hassasiyet, 

duyarlılık ve F1 puanı ile analizi: 

Tablo B.1: 1. gün l-Au/Ag veri setiyle eğitilen TS algoritmalarının başarısının sınıf 

bazında hassasiyet, duyarlılık ve F1 puanı ile değerlendirilmesi 

 

 

 

 

 

mM Hassasiyet Duyarlılık F1-Puanı 

0 1 1 1 

0,5 0,900 0,900 0,900 

1 1 1 1 

2 0,692 0,900 0,783 

3 0,778 0,700 0,737 

4 0,556 0,500 0,526 

5 1 1 1 

6 0,750 0,600 0,667 

7 0,727 0,800 0,762 

8 0,615 0,800 0,696 

9 0,857 0,600 0,706 

Ortalama 0,807 0,800 0,798 
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Tablo B.2: 1. gün l-Au/Ag veri setiyle eğitilen RO algoritmalarının başarısının sınıf 

bazında hassasiyet, duyarlılık ve F1 puanı ile değerlendirilmesi 

  

 

 

 

 

 

 

 

 

 

mM Hassasiyet Duyarlılık F1-Puanı 

0 
1 1 1 

0,5 
0,900 0,900 0,900 

1 
1 1 1 

2 
0,818 0,900 0,857 

3 
0,417 0,500 0,455 

4 
0,412 0,700 0,519 

5 
1 1 1 

6 
0,889 0,800 0,842 

7 
0,818 0,900 0,857 

8 
1 0,500 0,667 

9 
1 0,500 0,667 

Ortalama 
0,841 0,791 0,797 
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Tablo B.3: 2. gün l-Au/Ag veri setiyle eğitilen LDA algoritmalarının başarısının sınıf 

bazında hassasiyet, duyarlılık ve F1 puanı ile değerlendirilmesi 

 

 

 

 

 

 

 

 

 

 

mM Hassasiyet Duyarlılık F1-Puanı 

0 
0,900 0,900 0,900 

0,5 
0,889 0,800 0,842 

1 
0,700 0,700 0,700 

2 
1 1 1 

3 
0,750 0,900 0,818 

4 
0,889 0,80 0,842 

5 
1 1 1 

6 
1 1 1 

7 
0,883 1 0,909 

8 
1 1 1 

9 
1 0,800 0,889 

Ortalama 
0,906 0,900 0,900 
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Tablo B.4: 2. gün l-Au/Ag veri setiyle eğitilen TS algoritmalarının başarısının sınıf 

bazında hassasiyet, duyarlılık ve F1 puanı ile değerlendirilmesi 

 

 

 

 

 

 

 

 

 

 

mM Hassasiyet Duyarlılık F1-Puanı 

0 
0,833 1 0,909 

0,5 
0,727 0,800 0,762 

1 
0,286 0,200 0,235 

2 
1 0,900 0,947 

3 
0,750 0,600 0,667 

4 
0,692 0,900 0,783 

5 
1 1 1 

6 
0,750 0,900 0,818 

7 
0,800 0,800 0,800 

8 
1 1 1 

9 
1 0,800 0,889 

Ortalama 
0,804 0,809 0,801 
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Tablo B.5: 2. gün l-Au/Ag veri setiyle eğitilen RO algoritmalarının başarısının sınıf 

bazında hassasiyet, duyarlılık ve F1 puanı ile değerlendirilmesi 

 

 

 

 

 

 

 

 

 

 

mM Hassasiyet Duyarlılık F1-Puanı 

0 
0,909 1 0,952 

0,5 
0,800 0,800 0,800 

1 
0,455 0,500 0,476 

2 
1 0,900 0,947 

3 
0,700 0,700 0,700 

4 
0,667 0,600 0,632 

5 
0,875 0,700 0,778 

6 
0,643 0,900 0,750 

7 
0,750 0,600 0,667 

8 
0,909 1 0,952 

9 
0,778 0,700 0,737 

Ortalama 
0,771 0,764 0,763 
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Tablo B.6: 1. gün s-Au/Ag veri setiyle eğitilen TS algoritmalarının başarısının sınıf 

bazında hassasiyet, duyarlılık ve F1 puanı ile değerlendirilmesi 

 

 

 

 

 

 

 

 

 

 

mM Hassasiyet Duyarlılık F1-Puanı 

0 
1 1 1 

0,5 
0,700 0,700 0,700 

1 
0,692 0,900 0,783 

2 
1 0,900 0,947 

3 
1 1 1 

4 
0,909 1 0,952 

5 
0,909 1 0,952 

6 
1 0,800 0,889 

7 
0,571 0,400 0,471 

8 
0,750 0,900 0,818 

9 
0,889 0,800 0,842 

Ortalama 
0,856 0,855 0,850 
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Tablo B.7: 1. gün s-Au/Ag veri setiyle eğitilen RO algoritmalarının başarısının sınıf 

bazında hassasiyet, duyarlılık ve F1 puanı ile değerlendirilmesi 

 

 

 

 

 

 

 

 

 

 

mM Hassasiyet Duyarlılık F1-Puanı 

0 
0,833 1 0,909 

0,5 
0,571 0,800 0,667 

1 
0,600 0,600 0,600 

2 
0,714 1 0,833 

3 
0,909 1 0,952 

4 
1 0,600 0,750 

5 
1 0,900 0,947 

6 
1 0,800 0,889 

7 
0,571 0,400 0,471 

8 
0,900 0,900 0,900 

9 
0,778 0,700 0,730 

Ortalama 
0,807 0,791 0,787 
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Tablo B.8: 2. gün s-Au/Ag veri setiyle eğitilen LDA algoritmalarının başarısının sınıf 

bazında hassasiyet, duyarlılık ve F1 puanı ile değerlendirilmesi 

 

 

 

 

 

 

 

 

 

 

mM Hassasiyet Duyarlılık F1-Puanı 

0 
1 1 1 

0,5 
0,910 1 0,950 

1 
1 1 1 

2 
1 1 1 

3 
0,900 0,900 0,900 

4 
1 1 1 

5 
1 0,600 0,500 

6 
0,910 1 0,950 

7 
0,690 0,900 0,780 

8 
1 0,900 0,950 

9 
1 1 1 

Ortalama 
0,950 0,940 0,930 
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Tablo B.9: 2. gün s-Au/Ag veri setiyle eğitilen TS algoritmalarının başarısının sınıf 

bazında hassasiyet, duyarlılık ve F1 puanı ile değerlendirilmesi 

 

 

 

 

 

 

 

 

 

 

mM Hassasiyet Duyarlılık F1-Puanı 

0 
1 0,900 0,950 

0,5 
0,890 0,800 0,840 

1 
0,910 1 0,95 

2 
1 1 1 

3 
0,710 1 0,830 

4 
1 1 1 

5 
0,750 0,600 0,670 

6 
0,910 1 0,950 

7 
0,800 0,800 0,800 

8 
1 0,900 0,950 

9 
1 0,900 0,950 

Ortalama 
0,910 0,900 0,900 
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Tablo B.10: 2. gün s-Au/Ag veri setiyle eğitilen RO algoritmalarının başarısının sınıf 

bazında hassasiyet, duyarlılık ve F1 puanı ile değerlendirilmesi 

 

 

 

 

 

 

 

 

 

 

mM Hassasiyet Duyarlılık F1-Puanı 

0 
1 0,900 0,950 

0,5 
0,900 0,900 0,900 

1 
0,910 1 0,950 

2 
1 1 1 

3 
0,900 0,900 0,900 

4 
1 1 1 

5 
0,700 0,700 0,700 

6 
0,820 0,900 0,860 

7 
0,640 0,700 0,670 

8 
0,900 0,900 0,900 

9 
1 0,800 0,890 

Ortalama 
0,890 0,880 0,880 
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l-Au/Ag NP ve s-Au/Ag NP veri setlerinin içerdiği glikoz konsantrasyonunun 

sınıflandırılmasında LDA, TS ve RO sınıflandırma algoritmalarının karmaşıklık 

matrisi: 

 

Şekil B.1: 1. gün l-Au/Ag NP veri setiyle eğitilen TS algoritmasının karmaşıklık 

matrisi 
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Şekil B.2: 1. gün l-Au/Ag NP veri setiyle eğitilen RO algoritmasının karmaşıklık 

matrisi 

 

 

Şekil B.3: 2. gün l-Au/Ag NP veri setiyle eğitilen LDA algoritmasının karmaşıklık 

matrisi 
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Şekil B.4: 2. gün l-Au/Ag NP veri setiyle eğitilen TS algoritmasının karmaşıklık 

matrisi 

 

 

Şekil B.5: 2. gün l-Au/Ag NP veri setiyle eğitilen RO algoritmasının karmaşıklık 

matrisi 

 



 

85 

 

 

Şekil B.6: 1. gün s-Au/Ag NP veri setiyle eğitilen TS algoritmasının karmaşıklık 

matrisi 

 

 

Şekil B.7: 1. gün s-Au/Ag NP veri setiyle eğitilen RO algoritmasının karmaşıklık 

matrisi 
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Şekil B.8: 2. gün s-Au/Ag NP veri setiyle eğitilen LDA algoritmasının karmaşıklık 

matrisi 

 

 

Şekil B.9: 2. gün s-Au/Ag NP veri setiyle eğitilen TS algoritmasının karmaşıklık 

matrisi 
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Şekil B.10: 2. gün s-Au/Ag NP veri setiyle eğitilen RO algoritmasının karmaşıklık 

matrisi 
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