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HOMOTETIK HAREKET ALTINDA BAZI OZEL EGRIi
TIPLERINE EN AZ EYLEM PRENSIBININ VE HOLDITCH
TEOREMININ UYGULANMASI UZERINE

OZET

Bu calisma bes boliimden olugmaktadir. Bu ¢aligmanin giris boliimiinde literatiir 6zeti
verilmig olup ikinci boliimde bazi temel tanimlara yer verilmistir. Calismanin tiglincii
boliimiinde baz1 6zel sikloid tipi egri tanimlar1 verilmis ve en az eylem ilkesi ifade
edilmistir. Calismanin orijinal kismi olan dordiincii ve besinci boliimde; oncelikle
ifade edilen 6zel sikloid tipi egriler diizlemsel homotetik hareketi altinda ele alinip en
az eylem prensibi uygulanarak egrilerin minimal eylem noktalarinin hesaplanabilmesi
icin hareketli diizlemin noktalarinin enerjileri hesaplanmistir. Son olarak ¢ember ve
elips kapal1 egrileri i¢in Holditch teoremi ifade ve ispat edilmistir.

Anahtar kelimeler: Diizlemsel Homotetik Hareket, Sikloid Tipi Egriler, En Az
Eylem Prensibi, Kinetik Enerji, Holditch Teoremi

VI



ON THE APPLICATION OF THE PRINCIPLE OF LEAST
ACTION AND HOLDITCH THEOREM TO THE SOME SPECIAL
CURVE TYPES UNDER THE HOMOTETIC MOTION

SUMMARY

This study consist of five chapters. In the introduction chapter, the summary of
literature is given. In the second chapter, some basic concepts are given. In the third
chapter, some specific cycloid-type curve definitions are given and the principle of
least action is expressed. The orginal part of the study are the fourth and fifth chapters.
Firstly special cycloid-type curves are expressed under closed planar homotetic motion
and the principle of least action is applied to these curves. The principle of least action
is applied to these curves and the energies of the points of the moving plane are
calculated in order to calculate the minimum action point of these curves. Finally the
Holditch theorem are obtained for circle and ellipse closed curves.

Keywords: Planar Homotetic Motion, Cycloid Type Curves, Principle of Least
Action, Kinetic Energy, Holditch Theorem
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BOLUM 1. GIRiS

Geometri, doniisiimler altinda degismezlerin teorisidir. Bir cismin sabit bir noktaya
gore zamana kars1t yer degistirmesine hareket denir. Hareketle ilgili bilim dallari
mekanik ve kinematik olarak siniflandirilabilir. Mekanikte hareketin kuvvet ve kiitle
tizerinde etkisi incelenirken, kinematikte maddenin konumu, hizi gibi nitelikler
incelenir. Hareketi doguran sebeplerin goz ardi edildigi ve hareketin nasil
gerceklestiginin ele alindigi mekanik dalina kinematik denir. Bu nedenle, kinematik

hareket geometrisi doniisiimii altinda degismezlerin teorisidir (Miiller vd, 1963).

Kinematik mekanigin bir alt dali olup, bu dalda kuvvet ve kiitle kavramlar1 dikkate
alinmadan bir noktanin veya nokta sisteminin zamana bagli olarak meydana getirdigi
yer degistirmelerini inceler (Miiller vd, 1963). Aslinda diger bir deyisle kinematik
hareketin geometrisini inceleyen bir bilim dalidir. Cismin hareket geometrisi yaninda
cisme etki eden kuvvet ve kiitle arasindaki bagintiyr ise dinamigin diger bir alt dal
olan kinetik inceler. Kinetik bilim dalinin konusu kuvvetlerin etkisiyle meydana gelen

hareketi bulmak ya da verilen hareketi meydana getiren kuvvetleri bulmaktir.

Fizik ise maddeyi, maddenin uzayda zamana kars1 hareketini, enerji ve kuvveti de i¢ine
alarak biitiin ilgili kavramlarla birlikte inceleyen doga bilimidir. Fizikte maddelerin
hareket mekanizmalarini zamana bagli hiz denklemleri ifade eder. Hiz, siddeti ve yonii
ile ifade edilen vektorel bir biiyiikliiktiir. Hiz alinan yolun zamana gore degisimi olarak
da ifade edilir. Hareket halindeki cismin yoriingesi dogrusal, dairesel, elips ya da egri
biciminde olabilir. Alinan yolun dogrusal olmasi halinde hiz ise ¢izgisel, dairesel

olmast halinde ise hiz agisal olur (Kasap, 2014).



Kayakeilarin inislerini en kisa siirede bitirebilmesi i¢in kayak pistinin egimi nasil
olmalidir? Buna benzer problem 1696°da Johann Bernoulli’nin aklina geldi. Bernoulli
“dik bir diizlemde, iki nokta arasindaki yolun sekli nasil olmaliydi ki bu noktalar
arasindaki mesafe en kisa siirede alinabilsin?”” sorusunu soruyordu. Burada, hareketin

stirtlinmesiz bir ortamda ve sadece yergekimi altinda gerceklestirilecegini anliyoruz.

Bu problem ¢ok sayida matematik¢inin ilgi odagina girmis lizerine yogun ¢aligmalar
yapilmistir. Bernoulli yaptigi ¢alismalar ve hesaplamalar neticesinde iki nokta
arasindaki mesafeyi en kisa siirede alabilecek yolun sikloid egrisi olacagi bilgisine
ulagsmistir. Aslinda bu egriyi yillar 6nce en detayli inceleyen ve ona sikloid adini veren

matematik¢i Galileo’dur.

Bu problemle alakali yogun ¢alismalar yapan matematikgiler ilk bagta bu egrinin daha
biliylik bir ¢emberin yayr oldugunu diislinmiistiir. Fakat egrinin denklemlerini
cikarmaya calistiklarinda bunun bir ¢ember yay1 olmadigini1 gérmiislerdir. Bu egri ile
ilgili kapsamli ilk ¢alismay1 Galileo ile 6grencisi Torricelli yapmistir. Bugiinkii ismini

veren ise Galileo’dur (Whitman, 1943).

Bir dogru (veya bir ¢gember) lizerinde kaymaksizin yuvarlanma hareketi yapan bir
¢cemberin lizerindeki sabit bir X noktasinin geometrik yerini olusturan egrilere sikloid
tipi egriler denir. X noktasinin ¢gemberin iizerinde, i¢inde ya da disinda olabilir. Bu X
noktasinin ¢emberin iizerinde olmasi durumunda X noktasiin geometrik yeri olan
egriye diizgiin sikloid egrisi denir. X noktasi ¢cemberin i¢inde olabilir. Bu durumda X
noktasinin geometrik yeri olan egriye ilmiksiz sikloid egrisi denir. X noktas1 gemberin
disinda olabilir. Bu durumda X noktasinin geometrik yeri olan egriye ilmikli sikloid

egrisi denir (Sekil 1.1) (Blaschke ve Miiller 1956).



Sekil 1.1. Diizgiin Sikloid Egrisi (Whitman, 1943)

Bir biri lizerinde hareket eden iki cemberin hareketiyle olusan sikloid tipi egriler de
vardir. Bir biri lizerinde distan teget kalacak sekilde kaymaksizin yuvarlanma hareketi
yapan r ve R ,r < R, yarigapl iki ¢ember verilsin. r yarigapli hareketli gember ile bu
cember iizerinde bir X noktasinin hareket esnasinda ¢izdigi yoriinge egrilerine
episikloid egrileri ad1 verilir. Bu iki ¢ember distan teget olabilir. Bu durumda olusan
sikloid egrisine episikloid egrisi denir. Iki cember igten teget olmasi durumunda olusan

sikloid egrisine hiposikloid egrisi denir (Blaschke ve Miiller 1956).

Bir ¢emberin dogru lizerinde bir tam doniisiiyle elde edilen sikloid egrisinin uzunlugu
onu c¢izen ¢emberin capinin dort kati, altinda kalan alan ise onu ¢izen ¢emberin

alaninin ti¢ katidir (Whitman, 1943).

Matematik tarihinde zaman1 6lgmede kullanildig1 gibi sanatta, mimaride ve giinliik

hayatta da sikloid egrisinin bir¢ok drnegini gorebiliriz. (Sekil 1.2., Sekil 1.3.)

Sekil 1.2. Sekil 1.3.



Enerji kisaca is yapabilme yetenegi olarak tanimlanir ve skalar bir biyiikliiktiir.
Toplamda sekiz temel enerji ¢esidi vardir. Bunlar potansiyel, kinetik, 1s1, 151k, elektrik,
kimyasal, niikleer ve ses enerjisidir. Unutmamamiz gereken ise enerjinin

kaybolmadigidir.

Cisimlerin hareket halinde olmadig1 durumlarda sahip olduklar1 enerjiye potansiyel
enerji denir. Yapilan bu is cisimde enerji olarak depolanir ve cismin is yapabilecek
duruma gelmesine neden olur. Potansiyel enerjinin birimi jouledir. m kiitlesine sahip
ve yeryliziinden h yiiksekliginde olan bir cismin potansiyel enerjisi E, = mgh ile

ifade edilir.

Hareketli cisimler ise is yapabilme yetenegine sahiptirler yani bu cisimlerin enerjileri
vardir. Cisimlerin hareketinden dolay1 sahip olduklar1 enerjiye kinetik enerji denir.
Akan su, hareket halindeki araba, firlatilan bir tagin kinetik enerjileri vardir. Duran
cisimlerin sahip olduklari potansiyel enerji, cisimlerin hareket haline geg¢meleri

halinde kinetik enerjiye doniisiir. Kinetik enerjinin birimi jouledir. m kiitleli ve V hiz1

ile hareket halindeki bir cismin kinetik enerjisi Ej, = %‘mV2 ile ifade edilir.

Kinetik kelimesi hareket olaylarini inceleyen bilim dal1 olarak kullanilmaktadir. Enerji
doniistiiriilebilen ancak yaratilamayan veya yok edilemeyen skalar bir niceliktir. Enerji
biliminde yer alan kinetik enerji kavramina baktigimizda ise isimden de anlasilacagi
lizere inceledigimiz enerji tiri hareket icermektedir. Yani bir madde hareket

halindeyse kinetik enerjiye sahiptir.

Giiniimiize kadar kinematik iizerine pek ¢ok calisma yapilmistir. 19. Yiizyilda
1 —parametreli kapali diizlemsel hareket altinda Holditch tarafindan ifade edilen
“Holditch Teoremi” (Holditch, 1858) ve Steiner tarafindan ifade edilen “ Steiner Alan
Formiili” (Steiner, 1881) kinematikle ilgili yapilmis ¢alismalarin bilinen en temel

orneklerindendir.

Holditch, genellestirilmisleri literatiirde “Holditch-Tipi Teoremler” olarak adlandirilan

“Klasik Holditch Teoremi”ni asagidaki sekilde ifade etmistir:



Diizlemde sabit a + b uzunluklu bir AB dogru pargasinin A ve B ug¢ noktalar1 bir k
ovali boyunca bir defa dolandirildiginda, AB dogru pargasi iizerinde tespit edilen bir
X noktas1 (AX = a,XB = b) da genellikle konveks olmasi1 gerekmeyen kapali bir k,
egrisi ¢izer. Bu k ovali ile k, egrisi arasinda kalan “Holditch Halkasi”nin F yiizey
alani,

F = mab
dir. Burada F yiizey alani, sadece X noktasinin AB dogru pargasinin u¢ noktalarina

olan uzakligina bagli olup, k ile k, egrilerinden ve hareketten bagimsizdir (Sekil 2.1.).

Sekil 1.4 Holditch Halkas1 (Miiller, 1978)

Hans Robert Miilller, 1978 yilinda 1 —parametreli kapali diizlemsel hareketlerde
yorlinge egrisinin kutupsal atalet momentini hesaplamis ve esit kutupsal atalet
momentine sahip hareketli diizlemin biitiin sabit noktalarinin merkezi Steiner noktasi

olan bir cember {izerinde bulundugunu belirtmistir (Miiller, 1978).

Daha sonra 1980 yilinda, 3 —boyutlu Oklid uzayinda hareketli uzaydaki sabit bir
noktanin 1 —parametreli kapali hareketler altinda sabit uzayda ¢izdigi kapali yoriinge
egrisinin herhangi bir diizlem iizerine diz izdlisiim egrisinin sinirladigr diizlemsel
bolgenin alanmmi bularak, Holditch Teoreminin kapali uzay egrilerine bir

genisletilmesini ifade etmistir (Miiller, 1980).



Miiller 1979 ve 1982 yillarinda ise 3 —boyutlu Oklid uzaymin 3 —parametreli uzay
hareketinde, yoriinge yiizeylerinin hacimlerini kullanarak Holditch Teoremine uzaysal

esdeger bagka bir sonug elde etmistir (Miiller, 1979; Miiller, 1982).

1987 yilinda da yoriinge ylizeylerinin bir diizlem iizerinde dik izdiisiim bolgesinin

alanin1 hesaplamis ve yine benzer bir sonu¢ vermistir (Miiller, 1987).



BOLUM 2. LITERATUR OZETIi

Tanim 2.1

A # @ bir cimle ve V; K cismi tizerinde bir vektor uzay1 olsun. Eger

FIAXA-V
P,Q) = f(P,Q)

fonksiyonu asagidaki 6zellikleri sagliyorsa A kiimesine V' vektor uzay1 ile birlesen bir

afin uzay denir.

(Al) VP,QReAiginf(P,Q)+ f(Q,R)=f(P,R)

(A2) VPeAveVac€eV igin f(P,Q) = a olacak sekilde bir tek Q € A noktasi
vardir (Hacisalihoglu, 1998)

Tanim 2.2

V, n —boyutlu reel vektor uzay1 ve A da V' ile birlesen bir afin uzay olsun. Eger V bir

i¢ carpim uzayi ise A ya Oklid Uzay1 denir ve E™ ile gosterilir (Hacisalihoglu, 1998).

Tanim 2.3

A, ve A, sirast ile V; ve V, vektor uzaylar ile birlegsen afin uzaylar olmak iizere

f:A; = A, bir doniisiim olsun. P, Q € A; olmak iizere
Yp:Vy =V,

PQ - ¥p(PQ) = fF(PYF(Q)

biciminde tanimlansin. Burada 1p doniisiimiine f ile birlesen doniisiim ad1 verilir.

Eger p doniisiimii lineer ise f ye bir afin doniisiim denir (Hacisalihoglu, 1998).



Tanim 2.4

V ve U bir F cismi iizerinde birer vektdr uzay1 ve f:V — U bir fonksiyon olsun.

Vv, v, EV veVa € F igin
D) f(wy +vy) = f(vy) + f(v2)
it) f(avy) = af (v1)

sartlar1 saglanirsa f ye V den U ya lineer doniisiim denir (Hacisalihoglu, 1998).

Tanim 2.5

ET ve EY sirasiyla, V; ve V, n —boyutlu i¢ ¢arpim uzaylari ile birlesen birer Oklid

uzay1 olsunlar. Bir
fiET > B
afin doniisiimii Va, f € V; icin
(W(a), Y (B)) = (a, B)
olacak sekilde bir
YV -V

Lineer doniisiimii ile birlesiyorsa f ye bir izometri denir (Hacisalihoglu, 1998).

Tanim 2.6
I c R acik bir aralik olmak iizere

a: - E"

t—- a(t) = (al (t)l aZ(t)) ey U (t))
seklinde diferansiyellenebilir ¢ fonksiyonuna E™ de (I, @) koordinat komsuluklu egri

denir.



Tanim 2.7

3 —boyutlu standart reel afin uzay 3 —boyutlu standart vektor uzayr R3 ile eslessin.

R3 vektdr uzaymda
(,): R*xR®*-> R

i¢ carpim1 Vr,y € R®, x = (%1 ,%5,x3) ve y = (¥1,¥2,¥3) i¢in

3

() Goy) = (e,y) = ) xiyy

i=1

seklinde tanimlansin. Bu i¢ carpima R te standart i¢ carpim veya Oklid i¢ ¢arpimi adi
verilir (Hacisalihoglu, 1998).

Tanim 2.8

(X) kapal1 bir egri ve X, R ‘de sabit bir nokta olsun.

VX=3gxxdx

vektorii (X) ‘in alan vektorii olarak adlandirilir. Burada x, R de X ° in konum

vektoriidiir ve integral kapal1 yoriinge egrisi boyunca alinmistir.

Uzaydaki kapal1 egrinin izdiislimii olan bir P kapal1 egrisi diizlemin e birim vektorti

dogrultusundadir ve Fy bu izdiisiim egrisinin alan1 olmak tizere
ZFX =<< e, VX >

dir. Burada <,> i¢ carpimu ifade ediyor.

Tanim 2.9
x = (x1,%;,%3) vey = (V1,¥2,Yy3) € E3 olmak iizere

d: E3XE®->R



(x,y) -

olarak tanimlanan d fonksiyonuna Oklid uzayinda uzaklik fonksiyonu ve d(x,y) reel

sayisma da x,y € E3 noktalar1 arasindaki uzaklik denir (Hacisalihoglu, 1998).

Tanim 2.10(Ortalama deger teoremi)

f fonksiyonu [a, b] kapali araliginda siirekli ve a < b oldugu (a, b) agik araliginda

diferansiyellenebilir bir fonksiyonsa, (a, b) agik araliginda
f:[a,b] = R vec €(a,b)

fb) = f(a)

f1(e) ===—

kosulunu saglayan bir ¢ degeri bulunur (Hacisalihoglu, 1998).

Tanim 2.11

Diizlemde M sabit bir nokta ve k € R olmak tizere P' = M + k(P — M) esitligini

saglayan P’ noktasina P nin M merkezli k oranli homotetigi denir.

Tanim 2.12
n —boyutlu bir 6klid uzayinda bir cismin homotetik hareketi
[51=0%" 0]
doniistimil ile ifade edilir. Burada A, (nxn) —tipinde ortogonal bir matris, h = hl, bir

skaler matris ve X’ , X , U birer (n x 1) tipinde matrislerdir (Hacisalihoglu, 1971).
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Tanim 2.13

E = E' = E?Oklid diizlemlerinde sirasiyla {0;e;,e,} ve {0';e], es} koordinat

sistemlerini tespit edelim. Eger t € I < R i¢in;

e; =eq(t), e; =ey(t)

ise bu takdirde {0; e, e,} koordinat sisteminin {O'; e, e;} koordinat sistemine gore
hareket ettigi kabul edilir. Bundan dolay1 {O;e;,e,} koordinat sistemine hareketli
koordinat sistemi, {O'; e1, e;} koordinat sistemine ise sabit koordinat sistemi denir.
Dolayisiyla E diizlemi E' diizlemi iizerinde hareket ediyor kabul edilir. e; ile eg
arasindaki a¢1 ¢ olmak tizere ¢ ye dénme agist denir. 00’ = u hareketin Gteleme

vektori olmak tizere;

Sekil 2.1. 1 —Parametreli Diizlemsel Hareket

00" = u =uye; + uye, yazilabilir. Eger u; = uy(t), u, = u,(t), ¢ = @(t) seklinde
reel bir t parametresinin siirekli diferansiyellenebilir fonksiyonlar1 iseler, E
diizleminin E’ diizlemine gore hareketine 1 —parametreli homotetik hareket denir

(Sekil 3.1.) (Akar, 2012).

Tanim 2.14

Uy ,uU,,0 ve h bir t reel parametresinin kafi derecede tiiretilebilen fonksiyonlari

olmak tzere
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U =u(t), uy =u,(t), 6 =06(t), h=nh(t)
fonksiyonlar1 ayni £, < t < t; aralifinda tarif edilmis olsun. Ayrica
wi(t+T)=ui(t) , G=12)
O(t+T)=0(t) +2nv,v = donme sayisi
bagintilar1 saglanacak sekilde T > 0 en kiiciik say1 ise,
X' = (hxy —up)e; + (hx, —uy)e;

denklemi ile tanimlanan harekete, T periyotlu ve v donme acil1 1 —parametreli kapali

diizlemsel homotetik hareket denir (Hacisalihoglu, 1971).

Tanim 2.15

d@ kitle elementli kitle ortiilmesinde hareketli (P) pol egrisinin agirlik merkezine

Steiner noktasi denir. Ve kisaca S ile gosterilir.

_ $Pda
~ fda

bagintisi ile hesaplanir (Hacisalihoglu ve Ozdemir, 1998).

Tanim 2.16

M, E™ de bir hiperyiizey ve birim normal vektor alant N olsun. E™ de Riemann

konneksiyonu D olmak iizere her X € y(M) igin
S:x(M) = x(M)
X - S(X) = DxkN

seklinde tanimli S donilistimiine M iizerinde sekil operatorii denir. Sekil operatorii

lineer bir doniisiimdiir.
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Tanim 2.17
M, E™ de bir hiperyiizey ve S de M nin sekil operatorii olsun.
[1: X(M) x X(M) - C*(M,R)

X, Y) - 11(X,Y) =(S971(X),Y)
ile tanimlanan [? fonksiyonuna M nin q. temel formu denir.
q = 1i¢in 1. temel form I(X,Y) = (X,Y)
q = 2 igin 2. temel form I1(X,Y) = (§(X),Y)

q = 3 igin 3. temel form I1I(X,Y) = (S%(X),Y) = (S(X), S(Y)) dir.

Tanim 2.18

M c E3 egrisi (I, @) koordinat komsulugu ile verilsin. s € I yay parametresi olsun.
{T(s), N(s), B(s)} ortonormal sistemine M egrisinin a(s) € M deki Frenet

3 —ayaklis1 veya Frenet catis1 denir. Bu sistemdeki her bir vektore Frenet vektorii adi

verilir.
T(s) =a'(s)
B a’l(s)
NS =@l

B(s) = T(s)AN(s)

formiilleri ile bulunur. T ye a egrisinin teget vektor alani, N ye asli normal vektor alani

ve B ye de binormal vektor alani denir.

Tanim 2.19

M,N c E3 egrileri (I, a) ve (I, 8) komsuluklari ile verilsin. M ve N nin a(s) € M ve 5(s) €
N noktalarindaki Frenet-3 ayakhlari sirasi ile {T(s), N(s),B(s)} ve {T*(s),B*(s),N*(s)}
olsun. Eger Vs € I icin < T(s),T*(s) > = 0ise N ye M nin involitl, M ye N nin evoliit,

(M, N) ikilisine de involUt-evoliit egri ¢ifti denir.
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Tanim 2.20

B = E/E' 1 —parametreli kapali diizlemsel hareketi esnasinda, sabit a + b uzunluklu
AB kirisinin A ve B ug noktalar1 E’ sabit diizlemindeki bir k ovalini tam bir defa (v =
1) kat ettiginde, AB Kirisi tizerinde segilen herhangi bir X noktas1 da (a = [AX]|,b =
|XB|) genellikle konveks olmayan kapali bir k,, egrisi ¢izer. X noktasinin ¢izdigi k.,
kapali egrisi ile k ovali arasindaki bolgenin (Holditch halkasi) alani sadece X
noktasimnin dogru pargasi lizerinde secilisine bagli olup egrilerden ve hareketten

bagimsizdir (Sekil 2.2.) (Holditch, 1858).

Sekil 2.2. Holditch Halkasi (Holditch, 1858)
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BOLUM 3. MATERYAL VE YONTEM

3.1. Materyal

3.1.1.Episikloid

Bir biri tizerinde distan teget kalacak sekilde kaymaksizin yuvarlanma hareketi yapan
r ve R, (r < R) yarigaplh iki ¢ember verilsin. r yaricapli hareketli cember ile bir P
noktasinin hareket esnasinda ¢izdigi yoriinge egrisine episikloid egri denir. P = (x, y)

noktalarinin geometrik yeri olan egrinin parametrik denklemi

R+r
x=(R +r)cost—rcos( 3 t)

. _ (R+T
y=(R+r)51nt—r51n( t)

bi¢imindedir (Sekil 3.1.).

Sekil 3.1. Episikloid Egrisi
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3.1.2.Hiposikloid

Bir biri lizerinde icten teget kalacak sekilde kaymaksizin yuvarlanma hareketi yapan r
ve R, (r < R) yarigcaph iki ¢ember verilsin. r yarigapli hareketli cember ile bir
P noktasinin hareket esnasinda ¢izdigi yoriinge egrisine hiposikloid egri denir. P =

(x, ¥) noktalarinin geometrik yeri olan egrinin parametrik denklemi

R—r
x=(R—r)cost—rcos( " t)

R—r
y = (R—r)sint—rsin( " t>

bicimindedir (Sekil 3.2.).

Sekil 3.2. Hiposikloid Egrisi

3.1.3.Kardioid

r yarigapl sabit bir ¢cember lizerinde kaymaksizin yuvarlanma hareketi yapan ayn
yarigaplt ikinci bir ¢gember iizerindeki herhangi bir P noktasinin hareket esnasinda
¢izdigi yoriinge egrisine kardioid egri denir. P = (x, y) noktasinin geometrik yeri olan

egrinin parametrik denklemi
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x = 2rcost —rcos 2t
y = 2rsint —rsin2t

bigimindedir (0 < t < 2m)(Sekil3.3.).

Sekil 3.3. Kardioid Egrisi

3.1.4.Nephroid

Bir biri iizerinde distan teget kalacak sekilde kaymaksizin yuvarlanma hareketi yapan

r o ve r/z yarigapl iki ¢cember verilsin. T/z yarigapli hareketli ¢ember ile bir

P noktasinin hareket esnasinda ¢izdigi yoriinge egrisine nephroid egri denir. P =

(x, ¥) noktalarinin geometrik yeri olan egrinin parametrik denklemi

x = 3rcost —rcos(3t)
y = 3rsint — rsin(3t)
bicimindedir (Sekil 3.4.).
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Y

Sekil 3.4. Nephroid Egrisi

3.2. Yontem

3.2.1.Diizlemsel hareket icin kapal yoriingeler

E hareketli ve E' sabit olmak ftizere iki diizlemin koordinat sistemleri arasinda
t —parametreli B: E/E' direkt hareketi ele alinsin. Sistemlerin sirasiyla orijinleri
(0,0"), oteleme vektorleri (00" = U), (0’0 = U") ve toplam donme agis1 a(t)
olmak tizere, E hareketli sistemine ait bir X noktasmin E’ sabit sistemine gore

yorilingesi
X'(t) =h(@®).R®X+U'(t) (3.2.1)
seklinde tanimlanir. Burada hareket, sabit ve hareketli sistem arasinda zamana bagl

bir donilisim olarak diigiiniilebilir. X vektorii zamandan yani t parametresinden

bagimsizdir.
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(3.2.1) denkleminde a(t) toplam donme agisi, R(t) 2 X 2 tipinde donme matrisi,
U'(t) oteleme vektoriine karsilik gelen 2 X 1 tipinde Oteleme matrisi olmak iizere,

(3.2.1) denklemi matris formunda

(xi(t)) _ (cos(a(t)) - sin(a(t))) (xl) N (ui (t))

x5 (t) sin(a(t)) cos(a(t)) ) \x2 us, (t)

ve bilesen olarak ise

x1(6) = cos(a(t)) x; — sin(a(t)) x, + ui (t)
x5 (t) = sin(a(t)) x; + cos(a(t)) x, + uy(t)

seklinde yazilir (Dathe vd, 2015).
3.2.2.Diizlemsel kinematik ve en az eylem prensibi

E/E' diuzlemsel hareketinde, E hareketli diizlemine ait bir X noktasmin E' sabit

diizlemindeki X' (t) yoriinge egrisinin denklemi igin
X'(t)=R)X+U'(t)

yazilabilir. Bu denklem donme ve Otelemeden ibarettir. Burada ¢ zaman
parametresidir. Bu sisteme en az eylem prensibi uygulanirsa; bu sistemde m kiitleli bir

noktanin X'(t) yoriinge egrisi i¢in kinetik enerji formiili
1 O\
Ein = 5 m (x'®) (3.2.2)

seklindedir. (3.2.2) denklemi hareketli sistemde baslangi¢c noktasinin segiminden

bagimsiz olup, hareketli sistemin se¢ilen noktasina bagimlidir. Bu enerji,

) t2

S = f Eyindt = %f m(X’(t))zdt

t1 ty

denklemiyle verilir ve karakteristik fonksiyon veya enerji fonksiyoneli olarak

adlandirilir. . m = 1 i¢in bu fonksiyonel
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t2

S = % f (X7 %' ®) de

t1

seklinde ifade edilir.

En az eylem prensibi, S nin minimum olmasini gerektirir. Bunun i¢in § varyasyonu
gostermek iizere, 6S = 0 sart1 saglanmalidir. Bu durumu saglayan noktaya sabit nokta
veya karakteristik nokta adi verilir. Hiz kuadratik form oldugundan, S enerji
fonksiyoneli de X noktasinda bir kuadratik formdur. Bundan dolay1 X, noktasinin

minimumu tek ve hareketli sistemin karakteristigi olacaktir (Dathe vd, 2015).

En az eylem prensibi (veya minimum eylem prensibi), mekanik sistemlerdeki eylem
kavramindan hareket denklemlerinin bulunmasi esasina dayanir. “En az” kavrami
¢oziimlerde iki nokta arasindaki yollardan; ¢evre yollara gére degisimin en az oldugu
yolu bulma problemi irdelendigi i¢in kullanilir. En az eylem ilkesi ve varyasyon
prensipleri, kuantum mekanigini de gelistirmis olan doganin en kapsamli temel
davranig yasalarii icerir. Bu prensip modern fizigin ve matematigin merkezinde yer
almis ve gorelilik teorisi, kuantum mekanigi ve kuantum alan teorisi gibi genel

alanlarda etkin olarak kullanilmistur.

En az eylem ilkesi tam olarak Pierre Louis Maupertuis tarafindan tanimlanmistir.
Maupertuis doganin herhangi bir olay sirasinda tutumlu davrandigini diistinmiis ve bu

diisiincesini genellestirmistir:

Hareket yasalar: ve ondan tiiretilenler veya baska sekilde goézlenenler esasinda
dogamn aym esaslarina dayamr. Hayvanlarin hareketlerini, bitkilerin biiyiimelerini

gozlemledigimizde hepsi en az eylem ihtiyacinin bir sonucudur.

Maupertuis prensibi:

S[2T(@)dt =0

Bu, kinetik enerji ve zamanin ¢arpiminin iki kere integrale alinmasindan ibarettir

(Besergil, 2019).
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BOLUM 4. ARASTIRMA BULGULARI

4.1. Episikloid icin uygulamasi

E hareketli ve E' sabit olmak tizere iki diizlemin koordinat sistemleri arasinda
t —parametreli kapali diizlemsel homotetik hareketi ele alinsin. E hareketli diizleminin
E' sabit diizlemine gore hareketi B: E /E’ direkt hareketi olsun. Sistemlerin sirasiyla
orijinleri (0, 0"), 6teleme vektorleri (00" = U), (0’0 = U") ve toplam dénme agisi
a(t) olmak iizere, E hareketli sistemine ait bir X noktasinin E’ sabit sistemine gore

yorilingesi
X'(t)=h®).RX+U'(t) (4.1.1)

olarak ifade edilir. h, t reel parametresinin siirekli diferansiyellenebilir fonksiyonudur.

Hareket sabit ve hareketli sistemde zamana bagli doniisiim olarak diisiiniilebilir.

(4.1.1) denkleminde R(t) 2 X 2 tipinde donme matrisi, a(t) toplam dénme agisi,
U(t) ve U'(t) oteleme vektorlerine karsilik gelen 2 X 1 tipinde matrisler, X' ve

X sirastyla sabit ve hareketli diizleme ait bir nokta olmak tiizere,

v0=(19)  x0=(29) |, vo=(49) , vo=(19)

x5(t) x2(0) u, (t) u, (t)

R(D) = <(R +7)cos(a(t)) rsin(a(t)) )
B (R+71) sin(a(t)) —rcos(a(t))

ifadeleriyle matris formunu

x1(0)\ (R +r)cos(a(t)) rsin(a(t)) \ x1 uy (t)
(xé (t)) = h®) ((R + r)sin(a(t)) -r cos(a(t))) (xz) + <u2 (t))

seklinde ifade edebiliriz.

Sirf 6teleme ve sirf donme durumlarindan kaginmak i¢in a # 0 ve h = h(t) # sabit

kabul edilecektir. Oteleme vektorleri arasinda
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U'(t) =—R().U(t)
bagintisi vardir. Bu bagint1 (4.1.1) esitliginde yerine yazilirsa yoriinge denklemi
X'@®) =R@®).(h®OX-U®) (4.1.2)

olarak elde edilir. (4.1.2) ‘de vektdrlerin ifadeleri yerine yazilip X (x4, x,) bilesenleri

ile ifade edilirse
x1(t) = R+ 1) cos(a(®)) . (h()x; —uy () + rsin(a(d)) . (h()x, — uy(t))
x5() = R+ 1) sin(a(®). (h(O)x; —us(t)) — recos(a(t)) . (R(E)x; — uz (1))
olarak elde edilir.

Diizlem kinematigine en az eylem prensibini uygulayalim. Bu sistemde m Kkiitleli bir

noktanin yoriingesi X'(t) olmak iizere kinetik enerji formiilii

1 . N2
Ejin = 5 (x'®) (4.1.3)
seklindedir.

Bu ifadede belirtilen enerji fonksiyonu karakteristik fonksiyon veya enerji fonksiyonu

olarak adlandirilan

1 2
S_fEkmdt_ Efm(X (®) at

ifadesine karsilik gelir. m = 1 olmas1 durumunda bu ifade

ta
S = % J (X'(t)T.X'(t)) dt (4.1.4)

halini alir.

E/E' diizlemsel hareketinde minimal eylem noktasinin elde edilebilmesi igin E

hareketli diizleminin noktalarinin enerjisi hesaplanmalidir. Oyleyse

X'(t) =h(@®).R®OX-U'(t)
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denkleminin t parametresine gore tiirevi alinirsa

X'(©) = RO)(h@®X = U'()) + R(®) (A(DX = U'(0)) (4.1.5)

elde edilir. Bu denklemi bilegen formunda ifade edersek
%10 = —(h(®x; — w1 (©)(R + ) sin(a (D). a(t)

+ (h(t)x, = 4y (8)) (R +7) cos(a(r))

+(h(6)x; — up (1)) (R + 1) cos (a(t)). a(t) + (A(t)x, — w3 (t) ) 7 sin(a(t))
%5(6) = (h(©x; — ui(®)(R + 1) cos(a(t)). a(t)

+ (h(B)x; = 44 (©)) (R + 1) sin(a(t))

+(A(6)xz — u(8)) (R + 1) sin(a(®)) . a(t) — (A(6)x, — (1) ) reos(a(t))

olur. (4.1.5) ifadesi (4.1.4) denkleminde yerine yazilirsa

». j R (r©X - U'®) + R© (X - 0'©®)]
(RO (hO)X - U'©®) + R®) (hOX = U'®))]

ty
ve boylece
t2
25(X) = f [(R2XTX — hXTU' — U'ThX + U'TU")14?

%1
+(hAXTX — RUXT + U'TU")I
+(hhXTX — hXTU —U'ThX + U'TU")RTR (4.1.6)
+(hhXTX — AXTU' — U'TU")RTR]dt

olur. Diger yandan

R(D = <(R +1)cos(a(t))  rsin(a(d)) )
B (R+71) sin(a(t)) -r cos(a(t))

. <—(R +7)sin(a(t)).a(t) 7cos(a(t)). d(t))
R(t) = . . .
(R+71) cos(a(t)). a(t) r sm(a(t)). a(t)

. T —(R+71) sin(a(t)). at) (R+r) cos(a(t)). a(t)
[R@®)] = < . . . )
r cos(a(t)). a(t) rsm(a(t)). a(t)

olacagindan
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[R®] R
_(—R+7)? cos(a(t)).sin(a(®)).a(®) + (R + r)? cos(a(t)).sin(a(t)).a(t)
B ( r2sin(a(t)).cos(a(t)). a(t) — r? cos(a(t))sin(a(t)). a(t) >

= a(t)

Ve

. (R + )% (sin(a(t)).a(t) : + (R +71)%(cos(a(t)).a(t) ’

[R(t)] R(t) — ( ( ) )2 ( ( )2 )
r2 (cos(a(t)). d(t)) + 72 (sin(a(t)). d(t))

= ()

bulunur. Boylece

)
(ul(t

u

U [U@®] = @©® o)

u'(t) [U'®]" = i (®) uz(©)

0 =(19) . WO =@® )

()

0'© = (i) - O = @O o)

ifadelerini (4.1.6) denkleminde yerine yazarsak

- whcrad () e

2

t2
25(X) = j KhZXTX — hXT (Zl
t1

2
<thTX th( )+(u; i) (Zl)>1
2
v T T (W1 ’ IAY / / ui 5T
+<th X —hX ( >—(u1 u)hX + (u; uy) <u,>>R R

2 2
) (i, ug)(Zi))RTRldt

-

u

+ (hthx — hXT (u

N~ R~

ve buradan
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tz

2500 = [ (e ) () =nea ) () - wn () + @y

2
t1

+ (u;)Z) 142

+(hh(x1 %) () - hx xz)(.1)+(u;)2+(ug)2)1

2

S 2

Uy

. X ) . (X .
+ (hh(xl ) () — ke %) ( ) — @ uph () + s + u;u;> RR

Uy

N

. X1 . 1 L o o\ T
+ (hh(xl xZ) (xz) - h('xl xZ) (ué) - u’lu'l - uzuz) R R] dt
elde ederiz.
Bu esitligi bilesen formunda

t .
25(xy, %) = (x2 +x2) | (h?a® + h?)dt
t1

t
+ 2[(u;2 +up?)a? +ul’ + uy’)dt
(%1

t2 . .
+x4 j [-2huia? — hiy — hiya — 2hujalde
t

L

t2 . .
+x2] [—2huba? — hi, — hu,a — 2hubalde
t

1

seklinde ifade edebiliriz.
(4.1.7) denkleminde

t
He= [ (h2a2+i?)dt

t1

t
Hy = f 2[(u12 +uy?)a? + 0y’ +up’de
t1

tz . .
H,, = f [-2huia? — hiy — hiya — 2hujaldt
t

1

[
Hy, = f [-2huja? — hat, — hi,a — 2huyaldt
t

1

esitlikleri yerine yazilirsa

28(x1,x2) = (xf + x5)Hg + Hp + x1Hy | + x,Hy,

25
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seklinde elde edilir.

(4.1.8) denklemi, t zaman parametresine bagl ifade edilirse, aranan X, noktasinin

koordinatlar1 minimal eylem prensibi yardimiyla asagidaki gibi hesaplanir.

(4.1.8) denkleminin X e gore tiirevi alinir ve sinifa esitlenirse,

928
—| =0 (4.1.9)
X Iy,

elde edilir. (4.1.9) esitligini saglayan noktalar karakteristik noktalardir. Karakteristik
noktay bilesenleri seklinde elde etmek icin (4.1.7) denkleminin x; ve x, ye gore

tirevleri alinir ve diizenlenirse

025 (x4, x t2 '
025(xy, 1) 2x1f (h2d? + h?)dt
0x, t
tZ . .
+ f [-2huja? — hiy — hiy @ — 2hujd]de (4.1.10)
t1
Ve
025(x4, x t2 )
0250, x;) _ 2x, | (h?a? + h?)dt
0x; t
tz . .
+ | [-2huja? — hi, — hiyd — 2hujaldt (4.1.11)
t1
elde edilir.

Hareketli diizlemin X noktasinin aksine, X, noktasi integral smirlarini temsil eden
baslangi¢ ve bitis zamanlari olan t; ve t, zamanlarinin bir fonksiyonudur. (4.1.10) ve

(4.1.11) denklemleri sifira esitlenir ve karakteristik noktanin bilesenleri

ft’f[—Zhu;aZ — Ity — hily & — 2hu}d)de H

X1
X, = — - = —
' 2 f2(h2a? + h2)dt 2Hp
ve
t , . . o C o,
o ftf[—Zhuzaz — hii, — hi,d — 2hubaldt _Hy

2 [;(h2a? + h?)dt 2Hp
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.. .. 92
olarak bulunur. Ayrica X, noktasinin minimal nokta olmasi i¢in a_xi > 0 olmalidir. O

halde

625—11f 24t = L1
oxz 2 ¥4t TWR

ifadesi her zaman 0 ‘dan biiyiik oldugundan X, bir karakteristik noktadir.

Karakteristik noktanin bilesenleri (4.1.7) ifadesinde yerine yazilirsa

Hy\? Hy,\? Hy Hy
2S,(t;, t,) = (— 1) (— 2) Hy+H——H,k ——2H
o(t1, t2) l H, + H, r T Hdr Hy o T, e

bulunur.
Buradan da minimal eylem
280(ty, t2) = Hr(ty,t3)

olarak ifade edilir.

4.2. Hiposikloid i¢in uygulamasi

E hareketli ve E’ sabit olmak iizere iki diizlemin koordinat sistemleri arasinda
t —parametreli kapal1 diizlemsel homotetik hareketi ele alinsin. E hareketli diizleminin
E’ sabit diizlemine gore hareketi B: E /E' direkt hareketi olsun. Sistemlerin orijinleri
sirastyla (0, 0"), oteleme vektorleri (00" = U) ve (0’0 = U"), toplam dénme agisi

B (t) olmak iizere, hareketli sisteme ait bir X noktasinin sabit sisteme gore yoriingesi
X'(t) =h(®).RX+U'(t) (4.2.1)

olarak ifade edilir. h, t reel parametresinin siirekli diferansiyellenebilir fonksiyonudur.

Hareket sabit ve hareketli sistemde zamana bagli doniisiim olarak diisiiniilebilir.

(4.2.1) denkleminde R(t) 2 X 2 tipinde donme matrisi, toplam dénme agis1 S(t),
U(t) ve U'(t) oteleme vektorlerine karsilik gelen 2 X 1 tipinde matrisler, X’ ve

X sirasiyla sabit ve hareketli diizleme ait bir nokta olmak {izere,
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co= () w0 -() - vo-(i) - xo-()

(R—=7)cos(B(®)) rsin(B(D)) >

RO = <(R —n)sin(f(®) —rcos(f(0)

ifadeleriyle matris formunu

x1 (0 _ (R-1) cos(ﬁ(t)) rsin(ﬁ(t)) > X uy ()
(xé(t)) = h(®) ((R —1)sin(B(t)) —rcos(B(1)) (x2) * <u2 (t)>

seklinde ifade edebiliriz.

Sirf 6teleme ve sirf donme durumlarindan kaginmak icin 8 # 0 ve h = h(t) # sabit

kabul edilecektir. Oteleme vektorleri arasinda
U'(t) =—R().U(t)
bagintisi vardir. Bu baginti (4.2.1) esitliginde yerine yazilirsa yoriinge denklemi
X'(@®) =R®).(RM®X -U®)) (4.2.2)

olarak elde edilir. (4.2.2) ‘de vektorlerin ifadeleri yerine yazilip X (x4, x,) bilesenleri

ile ifade edilirse
x1(8) = (R =71) cos(B(D)). (R()x; —us(®)) + rsin(B(®)) . (R(D)x; — uz (1))
x5(6) = (R —7)sin(B(8)) . (h(O)x1 — us (1)) — rcos(B®)) . (R()x; — uy (1))
olarak elde edilir.

Diizlem kinematigine en az eylem prensibini uygulayalim. Bu sistemde m Kkiitleli bir

noktanin yoriingesi X' (t) olmak tizere kinetik enerji formiilii

1 . 2
Ein = 5 m (x ®) (4.2.3)
seklindedir.

Bu ifadede belirtilen enerji fonksiyonu karakteristik fonksiyon veya enerji fonksiyonu

olarak adlandirilan
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ifadesine karsilik gelir. m = 1 olmas1 durumunda bu ifade

ty

S = % f (X @T.x®)adt (4.2.4)

tq
halini alir.

E/E' diizlemsel hareketinde minimal eylem noktasinin elde edilebilmesi i¢in E

hareketli diizleminin noktalarinin enerjisi hesaplanmalidir. Oyleyse
X'(t) = h(t).R()X =U'(t)

denkleminin ¢ parametresine gore tiirevi alinmahdir.
X'(1) = RO(A®X = U' (1)) + R(©) (A(DX — U’ (©)) (4.2.5)
Bu denklemi X'(t) = (k1 (t), %3(t)) bilesen formunda ifade edersek
x1(t) = —(R(®)x; — ui(£))(R — ) sin(B(t)) B(t)
+(h(t)x; = 4y (1)) (R = ) cos(B (1))
+(h()x; — w5 () cos(B(0)) . f(t) — (h(t)x, — 1 (t)) rsin(B(t))
1) = (h(®)x; — i (O)(R = 1) cos(B®)). B(D)
+ (h(Ox; = 4y (1) (R =) sin(B (1))
+(h(®)x; — up(0))r sin(B()) . f(©) = (h(O)x; — (1)) reos(B (1))

elde ederiz. (4.2.5) ifadesi (4.2.4) denkleminde yerine yazilirsa

. j (2O (r©x - v'©) + RO (R©X - 0©)]
[RO(r®X - V' ®) + RO (h©X - U'®)|

t1
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ve boylece
t2
25(X) = f [(R2XTX — hXTU' — U'ThX + U'TU")1a?
t1
+(hhXTX — RUXT + U'TU")I
+(hhXTX — hXTU —U'ThX + U'TU")RTR (4.2.6)
+(hhXTX — RXTU' — U'TU")RTR]dt

olur. Diger yandan

R(D = ((R —1)cos(B(t)) rsin(B(t)) >
(R—r) sin(/j‘ (t)) —rcos(/j‘(t))

) (—(R —7r)sin(B(®)).6(t) r cos(ﬁ(t)).ﬁ(t))
(t) = . _ i
(R—r1) cos(,B(t)). p) r sm(ﬁ(t)).ﬁ(t)

[RD]" = (‘(R —r)sin(B(®)). () (R—71) cos(ﬁ(t)),g(t)>
rcos(B (D). B(t) rsin(B(¢)). B(t)
olacagindan
[R®O] R

_ <—(R —1)2 cos(B (1)) .sin(ﬁ(t)).[?(t) + (R —1)? sin(ﬁ(t)) . cos(ﬁ(t)).ﬁ(t))
r2sin(B (1)) . cos(B(¢)). () — 2 cos(B(¢)) sin(B(1)). £ (E)

= B(¢)
A%~

m_nqm@m»ﬁ@f+m_nqwqmgnmﬂv

R@Tmo=< . .
Lol r2(cos(B(®))- () +r2(sin(BD). £(®))"

=B
bulunur. Boylece

v = () - WO = wuo)

00 = () 0O =G© e
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v'© = () - 0OF = @O v

0@ = () + 00 =6@O o)

ifadelerini (4.2.6) ifadesinde yerine yazarsak

!

25(X) = f KhZXTX — hXT (Zl) — W)X+ @, u) (Z:)) 182
t1

2

+ <thTX — hxT (1.‘1) + () 1) (Zl)> I
2

<
N)

- !

+ <thTX — hXT (1> S, WX+ w) <Z}>>RTR

S 2
N)

2

+( hRXTX — hXT (”1) — @ W) (u1>> RTRl dt
U, U,
ve buradan
ts
_ X1 ui ’ ’ X1 N2
2500 = [ (e () -hen %) () -ea wn(l)+ @
%1

+()?) 17

+<hh(x1 x2) (1) - h xz)(?‘l)+(u;)2+(ug)2)1

Uy

<.

+(rhea 2 () =hea ) ()= i uph(3)) +uiis + wis ) R7R

e

N

. X . ! o
+ <hh(x1 %) (i) —hea x2) (u:> — i) — ugu;) RTR] dt
elde ederiz.

Bu esitligi bilesen formunda ifade edersek

t2 . .
25(xy, %) = (x} +x3) | (R?B? + h?)dt

ty
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t
+f 2[(u12 +up)B% + 14? + 1wy ?]dt
iy
t2

+x;, | [-2huif? — hiy — hiy B — 2huip]dt (4.2.7)

t1

tz . . . . .
t

1

elde edilir.

(4.2.7) denkleminde

[
Hg = j (h2B? + h?)dt
t

1

t
5 - j T + w22 + i + i2]de
ty

t2 . . . . .
H,, = j [—2huif? — hat, — hiy f — 2huiB]de
t

1

t2 . . . . .
H,, = j [—2hu}B? — hi, — hi,f — 2husf]dt
t

1

esitlikleri yerine yazilirsa
ZS(Xl, xZ) = (Xlz + x%)HR + HT + lexl + xZsz (4‘28)
seklinde elde edilir.

(4.2.8) eylemi, t zaman parametresine bagl ifade edilirse, aranan X, noktasinin

koordinatlar1 minimal eylem prensibi yardimiyla asagidaki gibi hesaplanir.

(4.2.8) denkleminin X e gore tiirevi alinir ve sinifa esitlenirse,

925
—| =0 (4.2.9)
X Iy,

elde edilir. (4.2.9) esitligini saglayan noktalar karakteristik noktalardir. Karakteristik
noktay1 bilesenleri seklinde elde etmek i¢in (4.2.7) denkleminin x; ve x, ye gore

tirevleri alinir ve diizenlenirse
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925 (x4, tz .
(e 22) lef (R242 + i?)dt
0x, t
tz . . . . .
+ | [-2huip? — huy — hiy B — 2huiB]de (4.2.10)
ty
Ve
925 (x4, tz .
025Ca %) _ g [ (h2 + 2)ar
0x, t
tz . . . . .
+ | [-2hu}B? — hi, — hi,p — 2huyBdt (4.2.11)
t1
elde edilir.

Hareketli diizlemin X noktasinin aksine, X, noktasi integral sinirlarini temsil eden
baslangi¢ ve bitis zamanlar1 olan t; ve t, zamanlarmin bir fonksiyonudur. Bu

denklemler sifira esitlenir ve karakteristik noktanin bilesenleri

ft’f[—Zhugﬁz — hiy — hiy f — 2hu} Bde H

X1
X; = — iy —
' 2 f2(h2f? + h?)d 2Hp
Ve
o fttlz[—Zhué,Bz — hit, — hi,p — 2husf]dt H,,
2 — = = -

2 [*(h2f? + h?)dt 2Hp

.. .. 0%S
olarak bulunur. Ayrica X, noktasinin minimal nokta olmasi i¢in e 0 olmalidir. O

halde

625_1If 'Zdt—llﬂ
0X2 2 B T2 R

ifadesi her zaman 0 ‘dan biiyiik oldugundan X, bir karakteristik noktadir.

Karakteristik noktanin bilesenleri (4.2.7) ifadesinde yerine yazilirsa

2

H H, \? H H
250(ty,tp) = l(— Hg:) + (— Hi:) lHR + Hr _H_leHxl _H_x;sz
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bulunur.

Buradan da minimal eylem

25o(ty,tp) = Hp(ty, t3)

olarak ifade edilir.

4.3. Kardioid icin uygulamasi

E hareketli ve E' sabit olmak tlizere iki diizlemin koordinat sistemleri arasinda
t —parametreli kapal1 diizlemsel homotetik hareketi ele alinsin. E hareketli diizleminin
E' sabit diizlemine gore hareketi B: E/E’ direkt hareketi olsun. Sistemlerin orijinleri
sirastyla (0, 0"), oteleme vektorleri (00" = U) ve (0'0 = U"), toplam dénme agis1

0(t) olmak tizere, hareketli sisteme ait bir X noktasinin sabit sisteme gore yoriingesi
X'(t) =h(®).R(X+U'(t) (4.3.1)

olarak ifade edilir. h, t reel parametresinin siirekli diferansiyellenebilir fonksiyonudur.

Hareket sabit ve hareketli sistemde zamana bagli doniisiim olarak diisiiniilebilir.

(4.3.1) denkleminde R(t) 2 X 2 tipinde donme matrisi, toplam donme agis1 6 (t); U(t)
ve U’ (t) oteleme vektorlerine karsilik gelen 2 X 1 tipinde matrisler; X' ve X sirasiyla

sabit ve hareketli diizleme ait bir nokta olmak {izere,

v0=(19)  vo=("9) . vo=(49) . xo=(29)

x5 (t) u, (t) Uy (t) x(t)

R(E) = 2rcos(9(t)) rsin(@(t))
® = <2r sin(@(t)) —rcos(@(t)))

ifadeleriyle matris formunu

(xi(t)) — h®) <2r cos(@(t)) rsin(@(t)) >(x1) N (u1(t))

x5(t)) 2rsin(0(t)) —rcos(8(t))) \¥2 u,(t)

seklinde ifade edebiliriz.
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Sirf 6teleme ve sirf donme durumlarindan kaginmak icin 8 # 0 ve h = h(t) # sabit

kabul edilecektir. Oteleme vektorleri arasinda
U'(t) = —R(t).U(t)
bagintis1 vardir. Bu bagint1 (4.3.1) esitliginde yerine yazilirsa yoriinge denklemi
X'(t) =R(@®).(h(OX-U®)) (4.3.2)

olarak elde edilir. (4.3.2) denkleminde vektorlerin ifadeleri yerine yazilip X (x4, x3)

bilesenleri ile ifade edilirse
x1(6) = 2rcos(8(t)) . (h(®)x; — uy (©)) + rsin(8(t)) . (R(t)x; — uy(t))
x5 () = 2r5in(6(¢)) . (h(O)xy — us () — 7 cos(6(0)) . (R(D)x, — uz (1))
olarak elde edilir.

Diizlem kinematigine en az eylem prensibini uygulayalim. Bu sistemde m Kkiitleli bir

noktanin yoriingesi X'(t) olmak tizere kinetik enerji formiilii

Eyin = %m (X ’(t))2 (4.3.3)

seklindedir.

Bu ifadede belirtilen enerji fonksiyonu karakteristik fonksiyon veya enerji fonksiyonu

olarak adlandirilan

t2 tz
1 N
S = J Epindt = EJ m(X (t)) dt
tl tl

ifadesine karsilik gelir. m = 1 olmas1 durumunda bu ifade

)

S = % f (X'(t)T.X'(t))dt (4.3.4)

ty
halini alir.

E/E' diizlemsel hareketinde minimal eylem noktasinin elde edilebilmesi igin E

hareketli diizleminin noktalarinin enerjisi hesaplanmalidir. Oyleyse
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X'(t) =h(@).R()X-U'(t)

denkleminin t parametresine gore tlirevi alinmalidir.

X'(®) = RO(®X = U'(©) + R(®) (A(DX = U (D)) (4.3.5)
Bu denklemi X' (¢) = (%1 (£), %3(¢)) bilesen formunda ifade edersek
#(6) = —(h(®)x; — uf(6))2r sin(0()). 6(t) + (h(t)x; — 24 (2)) 27 cos(8(t))
(h(®)xz — u3(0))r cos(0(0))- 6(t) + (A(6)x, — (1) ) sin(6(2))
%5() = (h(O)x, — uj(t))2r cos(68(t)) 8(t) + (h(t)x1 - u;(t)) 2rsin(0(t))
+(h(6)x; — u(8) ) sin(6()). O(t) — (A(0)x, — 3 (8) ) reos(6())

elde ederiz. (4.3.5) ifadesi (4.3.4) denkleminde yerine yazilirsa

N j [R(t)(h(t)x —U'(®) +R(®) (h(OX - U ’(t))]T
(RO (X - V' ®) + RO (h©X - 0'®))

t1
ve boylece
ty
25(X) = J [(R2XTX — hXTU' — U'ThX + U'TU")I4?
t1
+(hAXTX — RUXT + U'TU")I
+(hhXTX — hXTU —U'ThX + U'TU")RTR (4.3.6)
+(hhXTX — AXTU' — U'TU")RTR]dt
olur. Diger yandan

R(t) = <2rcos(9(t)) rsin(8(t))
® = 2r sin(@(t)) —rcos(@(t)))

RO = <—2r sin(8(t)).6(t) rcos(0(t)).6(¢)
B 2rcos(9(t)).9(t) rsin(@(t)).é(t))

) T —2rsin(8(t)).6(t) 2r cos(H(t)). 6(t)
kol = ( . o))
r cos(@(t)). 6(t) rsin(6(t)).6(t)

olacagindan
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[R®] R(®)
_(—(@r)? cos(8(t)).sin(8(¢)).0(t) + (2r)?sin(6(1)). cos(8(t)).0(t)
B < r25in(0(t)). cos(8(t)).0(t) — 2 cos(6(t)) .sin(6(r)). 6(t) >
=0(t)
ve
2
N (2r)2(sin(8(0). 6(6))” + (2r)2 (cos(8(D)). 6 (t) ,
(RO R() = ( . ) ) (cost _) , ) = 6(t)
72 (cos(@(t)). H(t)) + 72(sin(8(t)). 6(1))

bulunur. Boylece

v = () - WOF = wuo)
00 =(30) WO =wo we)
v'© = () - 0OF = @O o)
@ =(3i) - O = @O o)

ifadelerini (4.3.6) esitliginde yerine yazarsak

ty
25(X) = j KhZXTX—hXT(ZD—(u{ Wb X + (i ”5)(2))’92
t1

+ (thTX — hXT (Z;) W) ('.‘}))1

2) (u, u)hX + (U} u2)<u,>>RTR

2

<thTX hXxT

+( hrxTx — RXT (M) = @) @) (1)) RTR|dt
U, U,

ve buradan
25(X) = jz[(h?(xl ) () —hes =) (1) - @ wpn () + @2

+ (u;)Z) 162
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+ (hh(x1 X2) (;l

2

=

+ (hfl(x1 X2) (xl) —h(*1 Xx2) (

2

X1

+ (flh(x1 X2) (xz) —h(x1 x2) (

elde ederiz.

) —h(x1 Xp) (

N

e

u

u

N

u

Y+ @)+ @)1

2

2

!
}) — i — u;u'z) RTR] dt
2

Bu esitligi bilesen formunda ifade edersek

tz .
25(xy, %) = (x2 +x2) | (R?62 + h?)dt

t1

t
+ 2[(u;2 +up?)0? + uf? + wy®]dt
t1

t2
+x4 f
%1
t2
+x5 ]
t

1

elde edilir.
(4.3.7) denkleminde

—2hu6? — hiyy, — hi, 6 — 2hu}8]de

—2hu}6?% — hii, — hi, 6 — 2hulé]dt

t2
Hp = | (h?6%+ h?)dt

t1

[
Hp = f [(uiz +u
t1

H

1

2)6% + i + uy?|dt

t2 . . . .
o = j [—2hui6? — Ay — hu, 6 — 2hu;0]de
t

t2 . . . .
H,, = j [—2hu}6? — hat, — hi,0 — 2hu}0]dt
t

1

ifadeleri yerine yazilirsa

28(x1,x2) = (xf + x5)Hg + Hy + x1Hy | + x,H,,

seklinde elde edilir.

’ i (X1 roet 1\
1) —(uy uj)h (xz) +ujug + u2u2> RTR

(4.3.7)

(4.3.8)

(4.3.8) eylemi, t zaman parametresine bagl ifade edilirse, aranan X, noktasinin

koordinatlar1 minimal eylem prensibi yardimiyla asagidaki gibi hesaplanir.

(4.3.8) denkleminin X e gore tiirevi alinir ve sinifa esitlenirse,
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928
—| =0 (4.3.9)
X Iy,

elde edilir. (4.3.9) esitligini saglayan noktalar karakteristik noktalardir. Karakteristik
noktay bilesenleri seklinde elde etmek icin (4.3.7) denkleminin x; ve x, ye gore

tirevleri alinir ve diizenlenirse

925 (x4, tz
025G x) _ o [ (h262 + 2)ae
dxq t
tz . . . . .
+ j [-2hui6? — haty — hi, 6 — 2hu;6]de (4.3.10)
t1
vE
025 (x4, x t2 4 .
0250, ;) _ 2, | (h?6% + h?)dt
0x; t
tz . . . . .
+ | [-2hu}60? — ha, — hu,0 — 2hu}6]dt (4.3.11)
t1
elde edilir.

Hareketli diizlemin X noktasinin aksine, X, noktasi integral sinirlarini temsil eden
baslangi¢c ve bitis zamanlar1 olan t; ve t, zamanlarmin bir fonksiyonudur. Bu
denklemler sifira esitlenir ve karakteristik noktanin bilesenleri

ft’f[—Zhugéz — Iy — hi1,6 — 2hu}]dt H,,

X = — —

2 [7(h26 + h?)dt 2Hg

Ve

t ;A . L. C

. ftf[_Zhuzgz — hu, — hu,0 — 2hu29]dt _ H,,
2=~ T - - = _

2 ftf(hzez + h?)dt 2Hp

.. . . 0%
olarak bulunur. Ayrica X, noktasinin minimal nokta olmasi i¢in a—Xi > 0 olmalidir. O

halde

9% 1

Ifézdt—llH
0X2 2 T2 R
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ifadesi her zaman 0 dan biiylik oldugundan X, bir karakteristik noktadir.

Karakteristik noktanin bilesenleri 25 (x;, x,) de yerine yazilirsa

Ho\? | ( Ho)’ Hy H
zso(tl,t2)=[(— ) () | He b= =

bulunur. Buradan da minimal eylem

25o(ty,tp) = Hr(ty, t3)

olarak ifade edilir.

4.4. Nephroid icin uygulamasi

E hareketli ve E' sabit olmak tizere iki diizlemin koordinat sistemleri arasinda
t —parametreli kapali diizlemsel homotetik hareketi ele alinsin. E hareketli diizleminin
E’ sabit diizlemine gore hareketi B: E/E’ direkt hareketi olsun. Sistemlerin orijinleri
sirastyla (0,0"), oteleme vektorleri (00" = U) ve (0'0 = U"), toplam dénme agisi

6 (t) olmak iizere, hareketli sisteme ait bir X noktasinin sabit sisteme gore yorlingesi
X'(t) =h(®).RX+U'(t) (4.4.1)

olarak ifade edilir. h, t reel parametresinin siirekli diferansiyellenebilir fonksiyonudur.

Hareket sabit ve hareketli sistemde zamana bagli doniisiim olarak diisiiniilebilir.

(4.4.1) denkleminde R(t) 2 X 2 tipinde donme matrisi, toplam donme agis1 §(t) ;
U(t) ve U'(t) oteleme vektorlerine karsilik gelen 2 X 1 tipinde matrisler; X' ve

X sirasiyla sabit ve hareketli diizleme ait bir nokta olmak tizere,

v0=(39) 1o =("9) . ro=(49) . x0=(29)

x3(t) u, (t) u, (t) x5 (6)

_ (3rcos(6(t)) rsin(8(t))
R(®) = (Sr sin(8(t)) —rcos(6(t)))

ifadeleriyle matris formunu
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HO) 3 (6(t)) in(6(t)) ()
(iﬁ;é) =ho (3, 2?2(5(;) Irscltr)ls((Y(t))) () + (Zl (t))

seklinde ifade edebiliriz.

Sirf 6teleme ve sirf donme durumlarindan kaginmak icin § # 0 ve h = h(t) # sabit

kabul edilecektir. Oteleme vektorleri arasinda
U'(t) =—R().U(t)
bagintisi vardir. Bu bagint1 (4.4.1) esitliginde yerine yazilirsa yoriinge denklemi
X'(@®) =R(@®.(h®OX-U®) (4.4.2)

olarak elde edilir. (4.4.2) denkleminde vektorlerin ifadeleri yerine yazilip X (x4, x)

bilesenleri ile ifade edilirse
x1(£) = 3r cos(8(t)) . (R(t)x; — uy () + rsin(8(t)) . (h(D)x; — uz (1))
x5(t) = 3rsin(8(t)) . (R(E)xy — uy (£)) — rcos(8(8)) . (h(D)x; — uz (1))
olarak elde edilir.

Diizlem kinematigine en az eylem prensibini uygulayalim. Bu sistemde m Kkiitleli bir

noktanin yoriingesi X'(t) olmak iizere kinetik enerji formiilii

Eyin = %m (% ’(t))2 (4.4.3)

seklindedir.

Bu ifadede belirtilen enerji fonksiyonu karakteristik fonksiyon veya enerji fonksiyonu

olarak adlandirilan

ifadesine karsilik gelir. m = 1 olmas1 durumunda bu ifade

S = % J (X'(t)T.X'(t)) dt (4.4.4)
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halini alir.

E/E' diizlemsel hareketinde minimal eylem noktasinin elde edilebilmesi igin E

hareketli diizleminin noktalarinin enerjisi hesaplanmalidir. Oyleyse
X'(t) =h(®).R(O)X-U'(t)

denkleminin t parametresine gore tlirevi alinmalidir.

X'(©) = RO)(h@®X = U'()) + R(®) (A(DX = U'(D)) (4.4.5)
Bu denklemi X' (¢) = (%1 (), %3(¢)) bilesen formunda ifade edersek
2 (t) = —(h(D)x, — u}(£))3rsin(8(t)) 8(t) + (h(t)x1 - u;(t)) 37 cos(8(t))
(h(6)x; — u5(©))r cos(8(1)) 8(t) + (h()x, — 1 (t)) r sin(8(t))
#5(6) = (A(6)x, — 14 ()37 cos(8(6)) 8(t) + (A(B)x; — (1)) 37 sin(8(t))

+(h(6)x; — up(8))r sin(8()) §(t) — (A(t)x, — 13 (8) ) 7 cos(8(£))

elde ederiz. (4.4.5) ifadesi (4.4.4) denkleminde yerine yazilirsa

. j (2O (r©x - v'©) + RO (ROX - 0©)]
(RO (X - U'©) + R®) (ROX —U'®))]

ty
ve boylece
ta
25(X) = f [(W*XTX — hXTU' — UThX + U'TU")I14?
21
+(hhXTX — RUXT + U'TU")I
+(hhXTX — hXTU — U'ThX + U'TU")RTR (4.4.6)
+(hhXTX — RXTU' — U'TU")RTR]dt
olur. Diger yandan

_ (3rcos(6(t)) rsin(8(t))
RO = (Sr sin(6(t)) -r cos(6(t))>

R0 — (—3rsin(5(t))8(t) rcos(d(t))d'(t)>

3rcos(8(t)) 6(t)  rsin(8(t)) 8(t)
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I (t)]T _ <—3r sin(6(t)) 6(t) 3rcos(8(t)) 8(t)>
“\ rcos(8(0)8()  rsin(8(6)) 8(0)

olacagindan

[R@®)] R

B (—(3r)2 sin(8(t)) 6(t) cos(8(t)) + (3r)% cos(8(1)) 8(¢) Sin((S(t)))
B r2 cos(8(t)) §(t)r sin(8(t)) — r?sin(8(t)) 6(t) cos(5(t))

=6(t)

ve
(RO R = <<3r>2(sin<6<t)) §®)" + (3r)2(605(5(t))8(t))2) _ s
r2(cos(8(£)) 5(0)° + r2(sin(8(t)) §(t))°

bulunur. Boylece

v =) - WOF=wO wo)
00 =(0) WO =wo we)
v'© = () - 0OF = @O o)
0'© = (i) - O = @O o)

ifadelerini (4.4.6) esitliginde yerine yazarsak

!

25(X) = j KhZXTX hXT(u2>—(u1 uy)hX + (u} g)(Zi))zSz

+ <thTX — hXT ) u DX + () ub) (Z}))RTR
2

<thTX hXT ( ) @) (Z:>>I
(i
+ (thTX — hXT (“z) @ ) (Z;)) RTRl dt

ve buradan
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4

25(X) = f[(hzm %) () —hea (1) - ah upn(Rl) + @2

2
+ ()?) 187

+ (hfl(x1 X2) (il) — h(xl X2) (Z;) + ()2 + (ué)z) I
+ (hfl(x1 X2) (i;) — h(Xx1 xz) (Z;) — (ui ulz)h (;C;) + uiui + u'2u12> RTR

N

. X . ! N
4 (hh(x1 %) () —hea x2) (u:) _ il — ugu'z) RTR] dt

elde ederiz.

Bu esitligi bilesen formunda ifade edersek

t2 .
25(x, %) = (x2 +x3) | (R?62 + h?)dt

t1

t
1 2[(u12 +uy?)0% + 4% + 1wy dt
t1

t2
+x1 f
t1

[
b

—2hu;6? — huy — hu, 6 — 2huif]de (4.4.7)

+x, | [-2hu}60? — hat, — hu,0 — 2huy6]dt

t1

elde edilir.
(4.4.7) denkleminde

t2
Hp = | (h?6%+ h?)dt

t1
[

Hp = f [(wi?® +up?)0? + g ® + uy?]de
t1

tz . . . .
H,, = f [—2hui6? — Ay — hu, 6 — 2hu;0]de
t

1

tz . . . .
H,, = f [—2hu}6? — hit, — hi,0 — 2hu}0]dt
t

1

ifadeleri yerine yazilirsa
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28(x1, %) = (x{ + x5)Hg + Hr + x,H,, + x,H,, (4.4.8)
seklinde elde edilir.

(4.4.8) eylemi, t zaman parametresine bagl ifade edilirse, aranan X, noktasinin

koordinatlar1 minimal eylem prensibi yardimiyla asagidaki gibi hesaplanir.

(4.4.8) denkleminin X e gore tiirevi alinir ve sinifa esitlenirse,

il I 0 4.49
oX Iy, = (4.4.9)
elde edilir. (4.4.9) esitligini saglayan noktalar karakteristik noktalardir. Karakteristik
noktay bilesenleri seklinde elde etmek icin (4.4.7) denkleminin x; ve x, ye gore

turevleri alinir ve diizenlenirse

025(x4, x t2 48 .
025y x;) _ 2x; | (h%6% + h?)dt
0x, t
tz . . . . .
+ | [-2hui6? — hiy — ha, 0 — 2hu;f]dt (4.4.10)
t1
Ve
025 (x4, x tz | .
0250, ;) _ 2x2J (h?62 + h?)dt
0x; t
tz . . . . .
+ f [-2hu}6? — hu, — hi,0 — 2hu}0)dt (4.4.11)
t1
elde edilir.

Hareketli diizlemin X noktasinin aksine, X, noktasi integral sinirlarini temsil eden
baslangi¢ ve bitis zamanlar1 olan t; ve t, zamanlarmin bir fonksiyonudur. Bu

denklemler sifira esitlenir ve karakteristik noktanin bilesenleri

ft’f[—Zhugéz — Ity — hi1,6 — 2hu}6]dt H,,
xl = — = —

2 [7(h26 + h?)dt 2Hg

Ve
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fttf[—Zhu'ze'Z — hiiy — hily6 — 2hus6]de  p,

X2=— -

2 [7(h26 + h?)dt 2Hp

.. .. 92
olarak bulunur. Ayrica X, noktasinin minimal nokta olmasi i¢in a_xi > 0 olmalidir. O

halde

625—1If92dt—11H
0X? 2 2

ifadesi her zaman 0 dan biiyilik oldugundan X, bir karakteristik noktadir.

Karakteristik noktanin bilesenleri 25 (x4, x,) de yerine yazilirsa

Hy\’ Hiv H, H,
2S,(ty,ty) = (— 1) (— 2) Hy+H ——H, ——2H
o(t1, t2) l H, + H, r T Hdr Hy o T, e

bulunur. Buradan da minimal eylem

Zso(tp tz) = HT(tl' tz)

olarak ifade edilir.

4.5. Holditch Teoremi

Teorem: k, E’ sabit diizleminde bir oval (kapali digbiikey bir egri) ve 0Q, q sabit
uzunlugunda kiris olsun. Varsayalim ki bu kiris X noktas: tarafindan x ve y
uzunlugunda pargalara boliinsiin. E /E” kapali diizlemsel homotetik hareketi boyunca,
eger O0Q kirisi k ovali etrafinda bir turunu tamamlarsa burada x,y ve h
parametrelerine bagli X noktasi k ovali ile kapali egri arasini gizer. Burada h, E/E’

homotetik hareketinin homotetik 6lgegidir.

Ispat: 0Q, e; ekseni yoniinde ve O, {0 ; e, e,} dik koordinat sisteminin baslangig
noktasi olsun. O halde X = (x,0) ve Q = (g, 0) noktalarini elde ederiz. X noktasinin

yoOriinge alani i¢in donme sayis1 v = 1 oldugundan Steiner alan formiiliinden
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fe = mh*(to)[x* — 25:x] + fo = xpy (4.5.1)
elde ederiz.
Burada f;, k ovalinin alani ile O noktasinin ¢izdigi alan1 ifade ediyor.

O ve Q noktalarinin ¢izdigi alan ile k ovalinin alan1 ayn1 oldugundan ve 6zel olarak

X = Q = (q,0) alinirsa (4.5.1) esitliginden
fo = fo = mh*(to)lq® — 25191 + fo + qus (4.5.2)

elde ederiz.

(0 Q

Sekil 4.1. Holditch Halkas1

(4.5.2) esitliginden
{mh?(ty)(q —251) +11}q =0 (4.5.3)

elde edilir. Eger bu ifadede s, ¢ekilip (4.5.1) esitliginde yerine yazilirsa

f =mh®(to)[x* — qx] + fo
elde edilir.
Eger bu ifadede X noktasinin yoriinge alani i¢in ¢ = x + y yazarsak

fr = fo — R*(to)mxy
elde ederiz.

F, X noktasinin ¢izdigi kapal1 yoriinge egrisi ve k ovali arasindaki alan olsun. O halde
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F = f; — fo = h*(to)mxy
elde ederiz. Bu durumda teoremin ispati tamamlanir.
Ozel Durum: h(t) = 1 olmasi 6zel durumuda Miiller tarafindan ifade edilen
F = nxy

esitligini elde ederiz (Holditch, 1858).

4.5.1. Cember iizerine Holditch Teoremi uygulamasi

k, sabit oklid koordinat diizleminde r yaricapli bir ¢ember ve 0Q = q = r sabit
uzunlugunda ¢ember tizerinde kiris olsun. Varsayalimki bu kiris X noktasi tarafindan
x ve y uzunlugunda parcalara boliinsiin. Koordinat diizleminde sabit x + y uzunluklu
kirisin O ve Q ug noktalar1 bir k cemberi boyunca bir defa dolandirildiginda, OQ dogru
parcas1 iizerinde tespit edilen X noktas1 (0X =x, XQ=vy) da x,yveh
parametrelerine bagli kapali bir k, egrisi cizer. Burada h, homotetik hareketinin
homotetik dlgegidir Bu k ¢emberi ile k, egrisi arasinda kalan “Holditch Halkasi”nin
F yiizey alani,
F = nxy

dir. Burada F ylizey alani, sadece X noktasinin OQ dogru pargasinin u¢ noktalarina

olan uzakligina bagli olup, k ile k,, egrilerinden ve hareketten bagimsizdir.

0Q, x ekseni yoniinde ve 0, {0;x y} dik koordinat sisteminin baslangi¢ noktasi olsun.

O halde X = (x,0) ve Q = (q, 0) noktalarini elde ederiz.
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Sekil 4.2. Cember iizerine Holditch Teoremi uygulamasi

(Sekil 4.2.) de 0X = x, XQ =y ve q = x + y ile ifade edilen r; = % yarigaph k
cemberi ile X noktasinin ¢izdigi kapali yoriinge egrisi r, = yz;x yarigaplt k,
¢cemberinin arasindaki alan1 hesaplarsak;

fo = fo ¢emberin alani

x + y\2

fo = fo = mh*(t) (=5%)

ve fy, X noktasinin ¢izdigi gemberin alani

o= mh2eo) (2

olur.

F, X noktasinin ¢izdigi kapali yoriinge egrisi k, ve k ¢gemberi arasindaki alan olmak

lizere,

F=fx—/fo

F = mh?(t,) (%)2 — h2(ty) (x ;’ 24 )2
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F = mh?(ty)xy

elde ederiz. Bu durumda Oklid diizleminde verilen k gemberi igin Holditch Teoreminin

ispat1 tamamlanur.
h(t) =1 olmasi dzel durumuda Miiller tarafindan ifade edilen
F = nxy

esitligini elde ederiz.

4.5.2. Elips iizerine Holditch Teoremi uygulamasi

k, sabit 0klid koordinat diizleminde r; = 2a ve r, = 2b yarigcapl bir elips ve 0Q =
q = 2a sabit uzunlugunda elips iizerinde kiris olsun. Varsayalim ki bu kiris X noktasi
tarafindan x ve y uzunlugunda parcalara boliinsiin. Koordinat diizleminde sabit x +
y uzunluklu kirisin O ve Q u¢ noktalar1 k elipsi boyunca bir defa dolandirildiginda,
0Q dogru pargas iizerinde tespit edilen X noktas1 (0X =x, XQ =y) dax,yveh
parametrelerine bagli kapali bir k, egrisi c¢izer. Burada h, homotetik hareketinin
homotetik dlgegidir. Bu k elipsi ile k, egrisi arasinda kalan “Holditch Halkas1i”nin F
yiizey alani,
F = nxy
dir. Burada F ylizey alani, sadece X noktasinin OQ dogru pargasinin u¢ noktalarina

olan uzakligina bagli olup k ile k, egrilerinden ve hareketten bagimsizdir.

0Q, x ekseni yoniinde ve 0, {0;x y} dik koordinat sisteminin baslangi¢ noktasi olsun.

O halde X = (x,0) ve Q = (q, 0) noktalarini elde ederiz.
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Sekil 4.3. Elips iizerine Holditch Teoremi uygulamasi

(Sekil 43.)de OX =x, XQ=yveq=x+y = 2aileifade edilenr, =a, r, =2
yarigapl k elipsi ile X noktasinin ¢izdigi k, kapali yoriinge egrisi arasindaki alani

hesaplarsak;
fo = fo elipsin alani
fo = fo = mh*(ty)ab
ve fx, X noktasinin ¢izdigi k, egrisinin alani Steiner alan formiiliinden
fr = mh®(to)[x* — qx] + fo
f. = mh?(ty)[x? — 2ax] + wh?(ty)ab
f. = mh%(ty)[x? — 2ax + ab]
olur.

F, X noktasinin ¢izdigi k, kapali yoriinge egrisi ve k elipsi arasindaki alan olmak

lizere,
F=fy—fo
F = mwh?(ty)[x? — 2ax + ab] — wh?(ty)ab

F = mh?(ty)[x? — 2ax]
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F = mh?(ty)[x(x — 2a)]
F = mwh?(ty)xy

elde ederiz. Bu durumda Oklid diizleminde verilen k elipsi i¢in Holditch Teoreminin

ispat1 tamamlanur.
h(t) =1 olmasi dzel durumuda Miiller tarafindan ifade edilen
F = nxy

esitligini elde ederiz.

52



BOLUM 5. TARTISMA VE SONUC

Sonug olarak bu ¢aligmada Dathe ve Gezzi tarafindan diizlemsel hareketler i¢in ifade
edilen en az eylem prensibi, 1 —parametreli diizlemsel homotetik hareket altinda bazi
0zel sikloid tipi egrileri i¢in ifade edilmistir. Ek olarak Holditch tarafindan ifade edilen
Holditch Teoremi ¢gember ve elips kapali egrileri i¢in ifade ve ispat edilmistir.

Elde edilen sonuglar ters homotetik hareket ve diger hareket tiirleri altinda

incelenebilir. Holditch Teoremi de farkli egriler lizerine uygulanip ifade edilebilir.
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