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HOMOTETİK HAREKET ALTINDA BAZI ÖZEL EĞRİ 

TİPLERİNE EN AZ EYLEM PRENSİBİNİN VE HOLDİTCH 

TEOREMİNİN UYGULANMASI ÜZERİNE 

 

 

ÖZET 

 

 
Bu çalışma beş bölümden oluşmaktadır. Bu çalışmanın giriş bölümünde literatür özeti 

verilmiş olup ikinci bölümde bazı temel tanımlara yer verilmiştir. Çalışmanın üçüncü 

bölümünde bazı özel sikloid tipi eğri tanımları verilmiş ve en az eylem ilkesi ifade 

edilmiştir. Çalışmanın orijinal kısmı olan dördüncü ve beşinci bölümde; öncelikle 

ifade edilen özel sikloid tipi eğriler düzlemsel homotetik hareketi altında ele alınıp en 

az eylem prensibi uygulanarak eğrilerin minimal eylem noktalarının hesaplanabilmesi 

için hareketli düzlemin noktalarının enerjileri hesaplanmıştır. Son olarak çember ve 

elips kapalı eğrileri için Holditch teoremi ifade ve ispat edilmiştir. 

  

 

Anahtar kelimeler: Düzlemsel Homotetik Hareket, Sikloid Tipi Eğriler, En Az 

Eylem Prensibi, Kinetik Enerji, Holditch Teoremi 
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ON THE APPLICATION OF THE PRINCIPLE OF LEAST 

ACTION AND HOLDITCH THEOREM TO THE SOME SPECIAL 

CURVE TYPES UNDER THE HOMOTETIC MOTION 

 

 

SUMMARY 

 

 

This study consist of five chapters. In the introduction chapter, the summary of 

literature is given. In the second chapter, some basic concepts are given. In the third 

chapter, some specific cycloid-type curve definitions are given and the principle of 

least action is expressed. The orginal part of the study are the fourth and fifth chapters. 

Firstly special cycloid-type curves are expressed under closed planar homotetic motion 

and the principle of least action is applied to these curves. The principle of least action 

is applied to these curves and the energies of the points of the moving plane are 

calculated in order to calculate the minimum action point of these curves. Finally the 

Holditch theorem are obtained for circle and ellipse closed curves. 

 

 

Keywords: Planar Homotetic Motion, Cycloid Type Curves, Principle of Least 

Action, Kinetic Energy, Holditch Theorem
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BÖLÜM 1. GİRİŞ 

 

 

Geometri,  dönüşümler altında değişmezlerin teorisidir. Bir cismin sabit bir noktaya 

göre zamana karşı yer değiştirmesine hareket denir. Hareketle ilgili bilim dalları 

mekanik ve kinematik olarak sınıflandırılabilir. Mekanikte hareketin kuvvet ve kütle 

üzerinde etkisi incelenirken, kinematikte maddenin konumu, hızı gibi nitelikler 

incelenir. Hareketi doğuran sebeplerin göz ardı edildiği ve hareketin nasıl 

gerçekleştiğinin ele alındığı mekanik dalına kinematik denir. Bu nedenle, kinematik 

hareket geometrisi dönüşümü altında değişmezlerin teorisidir (Müller vd, 1963). 

  

Kinematik mekaniğin bir alt dalı olup, bu dalda kuvvet ve kütle kavramları dikkate 

alınmadan bir noktanın veya nokta sisteminin zamana bağlı olarak meydana getirdiği 

yer değiştirmelerini inceler (Müller vd, 1963). Aslında diğer bir deyişle kinematik 

hareketin geometrisini inceleyen bir bilim dalıdır. Cismin hareket geometrisi yanında 

cisme etki eden kuvvet ve kütle arasındaki bağıntıyı ise dinamiğin diğer bir alt dalı 

olan kinetik inceler. Kinetik bilim dalının konusu kuvvetlerin etkisiyle meydana gelen 

hareketi bulmak ya da verilen hareketi meydana getiren kuvvetleri bulmaktır. 

 

Fizik ise maddeyi, maddenin uzayda zamana karşı hareketini, enerji ve kuvveti de içine 

alarak bütün ilgili kavramlarla birlikte inceleyen doğa bilimidir. Fizikte maddelerin 

hareket mekanizmalarını zamana bağlı hız denklemleri ifade eder.  Hız, şiddeti ve yönü 

ile ifade edilen vektörel bir büyüklüktür. Hız alınan yolun zamana göre değişimi olarak 

da ifade edilir. Hareket halindeki cismin yörüngesi doğrusal, dairesel, elips ya da eğri 

biçiminde olabilir. Alınan yolun doğrusal olması halinde hız ise çizgisel, dairesel 

olması halinde ise hız açısal olur (Kasap, 2014). 
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Kayakçıların inişlerini en kısa sürede bitirebilmesi için kayak pistinin eğimi nasıl 

olmalıdır? Buna benzer problem 1696’da Johann Bernoulli’nin aklına geldi. Bernoulli 

“dik bir düzlemde, iki nokta arasındaki yolun şekli nasıl olmalıydı ki bu noktalar 

arasındaki mesafe en kısa sürede alınabilsin?” sorusunu soruyordu. Burada, hareketin 

sürtünmesiz bir ortamda ve sadece yerçekimi altında gerçekleştirileceğini anlıyoruz. 

 

Bu problem çok sayıda matematikçinin ilgi odağına girmiş üzerine yoğun çalışmalar 

yapılmıştır. Bernoulli yaptığı çalışmalar ve hesaplamalar neticesinde iki nokta 

arasındaki mesafeyi en kısa sürede alabilecek yolun sikloid eğrisi olacağı bilgisine 

ulaşmıştır. Aslında bu eğriyi yıllar önce en detaylı inceleyen ve ona sikloid adını veren 

matematikçi Galileo’dur. 

 

Bu problemle alakalı yoğun çalışmalar yapan matematikçiler ilk başta bu eğrinin daha 

büyük bir çemberin yayı olduğunu düşünmüştür. Fakat eğrinin denklemlerini 

çıkarmaya çalıştıklarında bunun bir çember yayı olmadığını görmüşlerdir. Bu eğri ile 

ilgili kapsamlı ilk çalışmayı Galileo ile öğrencisi Torricelli yapmıştır. Bugünkü ismini 

veren ise Galileo’dur (Whitman, 1943). 

 

Bir doğru (veya bir çember) üzerinde kaymaksızın yuvarlanma hareketi yapan bir 

çemberin üzerindeki sabit bir 𝑋  noktasının geometrik yerini oluşturan eğrilere sikloid 

tipi eğriler denir. 𝑋 noktasının çemberin üzerinde, içinde ya da dışında olabilir. Bu 𝑋 

noktasının çemberin üzerinde olması durumunda 𝑋 noktasının geometrik yeri olan 

eğriye düzgün sikloid eğrisi denir. 𝑋 noktası çemberin içinde olabilir. Bu durumda 𝑋 

noktasının geometrik yeri olan eğriye ilmiksiz sikloid eğrisi denir. 𝑋 noktası çemberin 

dışında olabilir. Bu durumda 𝑋 noktasının geometrik yeri olan eğriye ilmikli sikloid 

eğrisi denir (Şekil 1.1) (Blaschke ve Müller 1956).  
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Şekil 1.1. Düzgün Sikloid Eğrisi (Whitman, 1943) 

 

Bir biri üzerinde hareket eden iki çemberin hareketiyle oluşan sikloid tipi eğriler de 

vardır. Bir biri üzerinde dıştan teğet kalacak şekilde kaymaksızın yuvarlanma hareketi 

yapan 𝑟 ve 𝑅 , 𝑟 < 𝑅, yarıçaplı iki çember verilsin. 𝑟 yarıçaplı hareketli çember ile bu 

çember üzerinde bir 𝑋 noktasının hareket esnasında çizdiği yörünge eğrilerine 

episikloid eğrileri adı verilir. Bu iki çember dıştan teğet olabilir. Bu durumda oluşan 

sikloid eğrisine episikloid eğrisi denir. İki çember içten teğet olması durumunda oluşan 

sikloid eğrisine hiposikloid eğrisi denir (Blaschke ve Müller 1956).  

 

Bir çemberin doğru üzerinde bir tam dönüşüyle elde edilen sikloid eğrisinin uzunluğu 

onu çizen çemberin çapının dört katı, altında kalan alan ise onu çizen çemberin 

alanının üç katıdır (Whitman, 1943). 

 

Matematik tarihinde zamanı ölçmede kullanıldığı gibi sanatta, mimaride ve günlük 

hayatta da sikloid eğrisinin birçok örneğini görebiliriz. (Şekil 1.2., Şekil 1.3.) 

 

              

Şekil 1.2.                                                                              Şekil 1.3.  
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Enerji kısaca iş yapabilme yeteneği olarak tanımlanır ve skalar bir büyüklüktür. 

Toplamda sekiz temel enerji çeşidi vardır. Bunlar potansiyel, kinetik, ısı, ışık, elektrik, 

kimyasal, nükleer ve ses enerjisidir. Unutmamamız gereken ise enerjinin 

kaybolmadığıdır.  

 

Cisimlerin hareket halinde olmadığı durumlarda sahip oldukları enerjiye potansiyel 

enerji denir. Yapılan bu iş cisimde enerji olarak depolanır ve cismin iş yapabilecek 

duruma gelmesine neden olur. Potansiyel enerjinin birimi jouledir. 𝑚 kütlesine sahip 

ve yeryüzünden ℎ yüksekliğinde olan bir cismin potansiyel enerjisi 𝐸𝑝 = 𝑚𝑔ℎ ile 

ifade edilir. 

 

Hareketli cisimler ise iş yapabilme yeteneğine sahiptirler yani bu cisimlerin enerjileri 

vardır. Cisimlerin hareketinden dolayı sahip oldukları enerjiye kinetik enerji denir. 

Akan su, hareket halindeki araba, fırlatılan bir taşın kinetik enerjileri vardır. Duran 

cisimlerin sahip oldukları potansiyel enerji, cisimlerin hareket haline geçmeleri 

halinde kinetik enerjiye dönüşür. Kinetik enerjinin birimi jouledir. 𝑚 kütleli ve 𝑉 hızı 

ile hareket halindeki bir cismin kinetik enerjisi 𝐸𝑘 =
1

2
𝑚𝑉2 ile ifade edilir.  

 

Kinetik kelimesi hareket olaylarını inceleyen bilim dalı olarak kullanılmaktadır. Enerji 

dönüştürülebilen ancak yaratılamayan veya yok edilemeyen skalar bir niceliktir. Enerji 

biliminde yer alan kinetik enerji kavramına baktığımızda ise isimden de anlaşılacağı 

üzere incelediğimiz enerji türü hareket içermektedir. Yani bir madde hareket 

halindeyse kinetik enerjiye sahiptir.  

 

Günümüze kadar kinematik üzerine pek çok çalışma yapılmıştır. 19. Yüzyılda 

1 −parametreli kapalı düzlemsel hareket altında Holditch tarafından ifade edilen 

“Holditch Teoremi” (Holditch, 1858) ve Steiner tarafından ifade edilen “ Steiner Alan 

Formülü” (Steiner, 1881) kinematikle ilgili yapılmış çalışmaların bilinen en temel 

örneklerindendir. 

 

Holditch, genelleştirilmişleri literatürde “Holditch-Tipi Teoremler” olarak adlandırılan 

“Klasik Holditch Teoremi”ni aşağıdaki şekilde ifade etmiştir: 
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Düzlemde sabit 𝑎 + 𝑏 uzunluklu bir 𝐴𝐵 doğru parçasının 𝐴 ve 𝐵 uç noktaları bir 𝑘 

ovali boyunca bir defa dolandırıldığında,  𝐴𝐵 doğru parçası üzerinde tespit edilen bir 

𝑋 noktası (𝐴𝑋̅̅ ̅̅ = 𝑎 , 𝑋𝐵̅̅ ̅̅ = 𝑏) da genellikle konveks olması gerekmeyen kapalı bir 𝑘𝑥 

eğrisi çizer. Bu 𝑘 ovali ile 𝑘𝑥 eğrisi arasında kalan “Holditch Halkası”nın 𝐹 yüzey 

alanı, 

𝐹 = 𝜋𝑎𝑏 

dir. Burada 𝐹 yüzey alanı, sadece 𝑋 noktasının 𝐴𝐵 doğru parçasının uç noktalarına 

olan uzaklığına bağlı olup, 𝑘 ile 𝑘𝑥 eğrilerinden ve hareketten bağımsızdır (Şekil 2.1.). 

 

 

Şekil 1.4 Holditch Halkası (Müller, 1978) 

 

Hans Robert Mülller, 1978 yılında 1 −parametreli kapalı düzlemsel hareketlerde 

yörünge eğrisinin kutupsal atalet momentini hesaplamış ve eşit kutupsal atalet 

momentine sahip hareketli düzlemin bütün sabit noktalarının merkezi Steiner noktası 

olan bir çember üzerinde bulunduğunu belirtmiştir (Müller, 1978). 

 

Daha sonra 1980 yılında, 3 −boyutlu Öklid uzayında hareketli uzaydaki sabit bir 

noktanın 1 −parametreli kapalı hareketler altında sabit uzayda çizdiği kapalı yörünge 

eğrisinin herhangi bir düzlem üzerine diz izdüşüm eğrisinin sınırladığı düzlemsel 

bölgenin alanını bularak, Holditch Teoreminin kapalı uzay eğrilerine bir 

genişletilmesini ifade etmiştir (Müller, 1980).  
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Müller 1979 ve 1982 yıllarında ise 3 −boyutlu Öklid uzayının 3 −parametreli uzay 

hareketinde, yörünge yüzeylerinin hacimlerini kullanarak Holditch Teoremine uzaysal 

eşdeğer başka bir sonuç elde etmiştir (Müller, 1979; Müller, 1982).  

 

1987 yılında da yörünge yüzeylerinin bir düzlem üzerinde dik izdüşüm bölgesinin 

alanını hesaplamış ve yine benzer bir sonuç vermiştir (Müller, 1987). 
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BÖLÜM 2. LİTERATÜR ÖZETİ 

 

 

Tanım 2.1 

𝐴 ≠ Ø bir cümle ve 𝑉;  𝐾 cismi üzerinde bir vektör uzayı olsun. Eğer 

𝑓: 𝐴 × 𝐴 → 𝑉 

    (𝑃, 𝑄) → 𝑓(𝑃, 𝑄) 

fonksiyonu aşağıdaki özellikleri sağlıyorsa 𝐴 kümesine 𝑉 vektör uzayı ile birleşen bir 

afin uzay denir. 

(A1)  ∀ 𝑃, 𝑄, 𝑅 ∈ 𝐴 için 𝑓(𝑃, 𝑄) + 𝑓(𝑄, 𝑅) = 𝑓(𝑃, 𝑅) 

(A2)  ∀ 𝑃 ∈ 𝐴 ve ∀ 𝑎 ∈ 𝑉 için 𝑓(𝑃, 𝑄) = 𝑎 olacak şekilde bir tek 𝑄 ∈ 𝐴 noktası 

vardır (Hacısalihoğlu, 1998) 

 

Tanım 2.2 

𝑉, 𝑛 −boyutlu reel vektör uzayı ve 𝐴 da 𝑉 ile birleşen bir afin uzay olsun. Eğer 𝑉 bir 

iç çarpım uzayı ise 𝐴 ya Öklid Uzayı denir ve 𝐸𝑛 ile gösterilir (Hacısalihoğlu, 1998). 

 

Tanım 2.3 

𝐴1 ve 𝐴2 sırası ile 𝑉1 ve 𝑉2 vektör uzayları ile birleşen afin uzaylar olmak üzere 

𝑓: 𝐴1 → 𝐴2 bir dönüşüm olsun. 𝑃, 𝑄 ∈ 𝐴1 olmak üzere 

   𝜓𝑃: 𝑉1 → 𝑉2  

        𝑃𝑄⃗⃗⃗⃗  ⃗ → 𝜓𝑃(𝑃𝑄⃗⃗⃗⃗  ⃗) = 𝑓(𝑃)𝑓(𝑄)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

biçiminde tanımlansın. Burada 𝜓𝑃 dönüşümüne 𝑓 ile birleşen dönüşüm adı verilir. 

Eğer 𝜓𝑃 dönüşümü lineer ise 𝑓 ye bir afin dönüşüm denir (Hacısalihoğlu, 1998). 
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Tanım 2.4 

𝑉 ve 𝑈 bir 𝐹 cismi üzerinde birer vektör uzayı ve 𝑓: 𝑉 → 𝑈 bir fonksiyon olsun. 

∀𝑣1, 𝑣2 ∈ 𝑉 ve ∀𝑎 ∈ 𝐹 için 

𝑖) 𝑓(𝑣1 + 𝑣2) = 𝑓(𝑣1) + 𝑓(𝑣2)  

𝑖𝑖) 𝑓(𝑎𝑣1) = 𝑎𝑓(𝑣1)  

şartları sağlanırsa 𝑓 ye 𝑉 den 𝑈 ya lineer dönüşüm denir (Hacısalihoğlu, 1998). 

 

Tanım 2.5 

𝐸1
𝑛 ve 𝐸2

𝑛 sırasıyla, 𝑉1 ve 𝑉2 𝑛 −boyutlu iç çarpım uzayları ile birleşen birer Öklid 

uzayı olsunlar. Bir  

 𝑓: 𝐸1
𝑛 → 𝐸2

𝑛 

afin dönüşümü ∀𝛼, 𝛽 ∈ 𝑉1 için 

 〈𝜓(𝛼),𝜓(𝛽)〉 = 〈𝛼, 𝛽〉 

olacak şekilde bir 

 𝜓: 𝑉1 → 𝑉2 

Lineer dönüşümü ile birleşiyorsa 𝑓 ye bir izometri denir (Hacısalihoğlu, 1998). 

 

Tanım 2.6 

𝐼 ⊂ ℝ açık bir aralık olmak üzere  

 𝛼 ∶  𝐼 → 𝐸𝑛 

       𝑡 → 𝛼(𝑡) = (𝛼1(𝑡), 𝛼2(𝑡), … , 𝛼𝑛(𝑡)) 

şeklinde diferansiyellenebilir 𝛼 fonksiyonuna 𝐸𝑛 de (𝐼, 𝛼) koordinat komşuluklu eğri 

denir. 
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Tanım 2.7 

3 −boyutlu standart reel afin uzay 3 −boyutlu standart vektör uzayı ℝ3 ile eşleşsin. 

ℝ3 vektör uzayında  

〈 , 〉 ∶  ℝ3 ×ℝ3 →  ℝ  

iç çarpımı ∀𝑥, 𝑦 ∈ ℝ3 ,  𝑥 = (𝑥1 , 𝑥2 , 𝑥3) ve 𝑦 = (𝑦1 , 𝑦2 , 𝑦3) için 

〈 , 〉 (𝑥, 𝑦) = 〈𝑥 , 𝑦〉 =∑𝑥𝑖𝑦𝑖

3

𝑖=1

  

şeklinde tanımlansın. Bu iç çarpıma ℝ3 te standart iç çarpım veya Öklid iç çarpımı adı 

verilir (Hacısalihoğlu, 1998). 

 

Tanım 2.8 

(𝑋) kapalı bir eğri ve 𝑋, 𝑅 ‘de sabit bir nokta olsun. 

                 𝑉𝑋 = ∮𝑥 x 𝑑𝑥                                                                                                         

vektörü (𝑋) ‘in alan vektörü olarak adlandırılır. Burada 𝑥 , 𝑅 de 𝑋 ‘ in konum 

vektörüdür ve integral kapalı yörünge eğrisi boyunca alınmıştır. 

Uzaydaki kapalı eğrinin izdüşümü olan bir 𝑃 kapalı eğrisi düzlemin 𝑒 birim vektörü 

doğrultusundadır ve  𝐹𝑋 bu izdüşüm eğrisinin alanı olmak üzere 

 2𝐹𝑋 =< 𝑒, 𝑉𝑋 >                                                                                                   

dır. Burada   < , >   iç çarpımı ifade ediyor. 

 

Tanım 2.9  

𝑥 = (𝑥1 , 𝑥2 , 𝑥3) ve 𝑦 = (𝑦1 , 𝑦2 , 𝑦3) ∈ 𝐸
3 olmak üzere 

𝑑 ∶  𝐸3 × 𝐸3 → ℝ 
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                (𝑥, 𝑦)  →  √∑(𝑦𝑖 − 𝑥𝑖)2
3

𝑖=1

 

olarak tanımlanan 𝑑 fonksiyonuna Öklid uzayında uzaklık fonksiyonu ve 𝑑(𝑥, 𝑦) reel 

sayısına da 𝑥, 𝑦 ∈ 𝐸3 noktaları arasındaki uzaklık denir (Hacısalihoğlu, 1998). 

 

Tanım 2.10(Ortalama değer teoremi) 

𝑓 fonksiyonu [𝑎, 𝑏] kapalı aralığında sürekli ve 𝑎 < 𝑏 olduğu (𝑎, 𝑏) açık aralığında 

diferansiyellenebilir bir fonksiyonsa, (𝑎, 𝑏) açık aralığında  

𝑓: [𝑎, 𝑏] → ℝ  ve 𝑐 ∈(𝑎, 𝑏) 

𝑓′(𝑐) =
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
 

koşulunu sağlayan bir 𝑐 değeri bulunur (Hacısalihoğlu, 1998). 

 

Tanım 2.11 

Düzlemde 𝑀 sabit bir nokta ve 𝑘 ∈ ℝ olmak üzere 𝑃′ = 𝑀 + 𝑘(𝑃 −𝑀)  eşitliğini 

sağlayan 𝑃′ noktasına 𝑃 nin 𝑀 merkezli 𝑘 oranlı homotetiği denir. 

 

Tanım 2.12 

𝒏 −boyutlu bir öklid uzayında bir cismin homotetik hareketi  

[
𝑥′

1
] = [

ℎ. 𝐴 𝑈
0 1

] [
𝑥
1
] 

dönüşümü ile ifade edilir. Burada 𝐴, (𝑛x𝑛) −tipinde ortogonal bir matris, ℎ = ℎ𝐼𝑛  bir 

skaler matris ve 𝑋’ , 𝑋 , 𝑈 birer (𝑛 x 1) tipinde matrislerdir (Hacısalihoğlu, 1971). 
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Tanım 2.13 

𝐸 = 𝐸′ = 𝐸2 Öklid düzlemlerinde sırasıyla {𝑂; 𝑒1, 𝑒2} ve {𝑂′; 𝑒1
′ , 𝑒2

′ } koordinat 

sistemlerini tespit edelim. Eğer 𝑡 𝜖 𝐼 ⊂ ℝ için; 

𝑒1 = 𝑒1(𝑡) ,   𝑒2 = 𝑒2(𝑡) 

ise bu takdirde {𝑂; 𝑒1, 𝑒2} koordinat sisteminin {𝑂′; 𝑒1
′ , 𝑒2

′ } koordinat sistemine göre 

hareket ettiği kabul edilir. Bundan dolayı {𝑂; 𝑒1, 𝑒2}  koordinat sistemine hareketli 

koordinat sistemi, {𝑂′; 𝑒1
′ , 𝑒2

′ } koordinat sistemine ise sabit koordinat sistemi denir. 

Dolayısıyla 𝐸  düzlemi  𝐸′  düzlemi üzerinde hareket ediyor kabul edilir. 𝑒1 ile 𝑒1
′  

arasındaki açı 𝜑 olmak üzere 𝜑 ye dönme açısı denir. 𝑂𝑂′ = 𝑢 hareketin öteleme 

vektörü olmak üzere; 

 

Şekil 2.1. 1 −Parametreli Düzlemsel Hareket 

 

𝑂𝑂′ = 𝑢 = 𝑢1𝑒1 + 𝑢2𝑒2 yazılabilir. Eğer 𝑢1 = 𝑢1(𝑡), 𝑢2 = 𝑢2(𝑡),  𝜑 = 𝜑(𝑡) şeklinde 

reel bir 𝑡 parametresinin sürekli diferansiyellenebilir fonksiyonları iseler, 𝐸  

düzleminin 𝐸′ düzlemine göre hareketine 1 −parametreli homotetik hareket denir 

(Şekil 3.1.) (Akar, 2012). 

 

Tanım 2.14 

𝑢1 , 𝑢2 , 𝜃  ve  ℎ bir 𝑡 reel parametresinin kafi derecede türetilebilen fonksiyonları 

olmak üzere  
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𝑢1 = 𝑢1(𝑡) ,   𝑢2 = 𝑢2(𝑡) ,    𝜃 = 𝜃(𝑡) ,   ℎ = ℎ(𝑡) 

fonksiyonları aynı 𝑡0 ≤ 𝑡 ≤ 𝑡1 aralığında tarif edilmiş olsun. Ayrıca  

𝑢𝑗(𝑡 + 𝑇) = 𝑢𝑗(𝑡)  ,  (𝑗 = 1,2) 

𝜃(𝑡 + 𝑇) = 𝜃(𝑡) + 2𝜋𝑣 , 𝑣 = dönme sayısı 

bağıntıları sağlanacak şekilde 𝑇 > 0 en küçük sayı ise, 

𝑋′⃗⃗  ⃗ = (ℎ𝑥1 − 𝑢1)𝑒1⃗⃗  ⃗ + (ℎ𝑥2 − 𝑢2)𝑒2⃗⃗  ⃗ 

denklemi ile tanımlanan harekete, 𝑇 periyotlu ve 𝑣 dönme açılı 1 −parametreli kapalı 

düzlemsel homotetik hareket denir (Hacısalihoğlu, 1971). 

 

Tanım 2.15 

𝑑𝜃 kitle elementli kitle örtülmesinde hareketli (𝑃) pol eğrisinin ağırlık merkezine 

Steiner noktası denir. Ve kısaca 𝑆 ile gösterilir. 

𝑆 =
∮𝑃𝑑𝑎

∮𝑑𝑎
 

bağıntısı ile hesaplanır (Hacısalihoğlu ve Özdemir, 1998). 

 

Tanım 2.16 

𝑀, 𝐸𝑛 de bir hiperyüzey ve birim normal vektör alanı 𝑁 olsun. 𝐸𝑛 de Riemann 

konneksiyonu 𝐷 olmak üzere her 𝑋 ∈ 𝜒(𝑀) için  

𝑆: 𝜒(𝑀) → 𝜒(𝑀)  

           𝑋 → 𝑆(𝑋) = 𝐷𝑋𝑁  

şeklinde tanımlı 𝑆 dönüşümüne 𝑀 üzerinde şekil operatörü denir. Şekil operatörü 

lineer bir dönüşümdür. 
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Tanım 2.17 

𝑀, 𝐸𝑛 de bir hiperyüzey ve 𝑆 de 𝑀 nin şekil operatörü olsun.  

𝐼𝑞: 𝑋(𝑀) × 𝑋(𝑀) → 𝐶∞(𝑀, 𝑅) 

                     (𝑋, 𝑌) → 𝐼𝑞(𝑋, 𝑌) = 〈𝑆𝑞−1(𝑋), 𝑌〉 

ile tanımlanan 𝐼𝑞 fonksiyonuna 𝑀 nin 𝑞. temel formu denir.  

𝑞 = 1 için 1. temel form 𝐼(𝑋, 𝑌) = 〈𝑋, 𝑌〉 

𝑞 = 2 için 2. temel form 𝐼𝐼(𝑋, 𝑌) = 〈𝑆(𝑋), 𝑌〉 

𝑞 = 3 için 3. temel form 𝐼𝐼𝐼(𝑋, 𝑌) = 〈𝑆2(𝑋), 𝑌〉 = 〈𝑆(𝑋), 𝑆(𝑌)〉 dir.  

 

 

Tanım 2.18 

𝑀 ⊂ 𝐸3 eğrisi (𝐼, 𝛼) koordinat komşuluğu ile verilsin. 𝑠 ∈ 𝐼 yay parametresi olsun. 

{𝑇(𝑠) , 𝑁(𝑠) ,   𝐵(𝑠)} ortonormal sistemine 𝑀 eğrisinin 𝛼(𝑠) ∈ 𝑀 deki Frenet 

3 −ayaklısı veya Frenet çatısı denir. Bu sistemdeki her bir vektöre Frenet vektörü adı 

verilir.  

{
 

 
𝑇(𝑠) = 𝑎′(𝑠)

𝑁(𝑠) =
𝛼′′(𝑠)

‖𝛼′′(𝑠)‖

𝐵(𝑠) = 𝑇(𝑠)˄𝑁(𝑠)

 

formülleri ile bulunur. 𝑇 ye 𝛼 eğrisinin teğet vektör alanı, 𝑁 ye asli normal vektör alanı 

ve 𝐵 ye de binormal vektör alanı denir.  

 

Tanım 2.19 

 

𝑀,𝑁 ⊂ 𝐸3 eğrileri (𝐼, 𝛼) ve (𝐼, 𝛽) komşulukları ile verilsin. 𝑀 ve 𝑁 nin 𝛼(𝑠) ∈ 𝑀 ve 𝛽(𝑠) ∈

𝑁 noktalarındaki Frenet-3 ayaklıları sırası ile {𝑇(𝑠), 𝑁(𝑠), 𝐵(𝑠)} ve {𝑇∗(𝑠), 𝐵∗(𝑠),𝑁∗(𝑠)} 

olsun. Eğer ∀𝑠 ∈ 𝐼 için < 𝑇(𝑠), 𝑇∗(𝑠) > = 0 ise 𝑁 ye 𝑀 nin involütü, 𝑀 ye 𝑁 nin evolütü, 

(𝑀,𝑁) ikilisine de involüt-evolüt eğri çifti denir. 
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 Tanım 2.20 

 

𝐵 = 𝐸/𝐸′ 1 −parametreli kapalı düzlemsel hareketi esnasında, sabit 𝑎 + 𝑏 uzunluklu 

𝐴𝐵 kirişinin 𝐴 ve 𝐵 uç noktaları 𝐸′ sabit düzlemindeki bir 𝑘 ovalini tam bir defa (𝑣 =

1) kat ettiğinde, 𝐴𝐵 kirişi üzerinde seçilen herhangi bir 𝑋 noktası da (𝑎 = |𝐴𝑋| , 𝑏 =

|𝑋𝐵|) genellikle konveks olmayan kapalı bir 𝑘𝑥 eğrisi çizer. 𝑋 noktasının çizdiği 𝑘𝑥 

kapalı eğrisi ile 𝑘 ovali arasındaki bölgenin (Holditch halkası) alanı sadece 𝑋 

noktasının doğru parçası üzerinde seçilişine bağlı olup eğrilerden ve hareketten 

bağımsızdır (Şekil 2.2.) (Holditch, 1858). 

 

 

Şekil 2.2. Holditch Halkası (Holditch, 1858) 
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BÖLÜM 3. MATERYAL VE YÖNTEM 

 

 

3.1.  Materyal 

 

3.1.1. Episikloid 

 

Bir biri üzerinde dıştan teğet kalacak şekilde kaymaksızın yuvarlanma hareketi yapan 

𝑟 ve 𝑅, (𝑟 < 𝑅) yarıçaplı iki çember verilsin. 𝑟 yarıçaplı hareketli çember ile bir 𝑃 

noktasının hareket esnasında çizdiği yörünge eğrisine episikloid eğri denir. 𝑃 = (𝑥, 𝑦) 

noktalarının geometrik yeri olan eğrinin parametrik denklemi  

𝑥 = (𝑅 + 𝑟) cos 𝑡 − 𝑟 cos (
𝑅 + 𝑟

𝑟
𝑡) 

𝑦 = (𝑅 + 𝑟) sin 𝑡 − 𝑟 sin (
𝑅 + 𝑟

𝑟
𝑡) 

biçimindedir (Şekil 3.1.). 

 

 

Şekil 3.1. Episikloid Eğrisi 
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3.1.2. Hiposikloid 

 

Bir biri üzerinde içten teğet kalacak şekilde kaymaksızın yuvarlanma hareketi yapan 𝑟 

ve 𝑅, (𝑟 < 𝑅) yarıçaplı iki çember verilsin. 𝑟 yarıçaplı hareketli çember ile bir 

𝑃 noktasının hareket esnasında çizdiği yörünge eğrisine hiposikloid eğri denir. 𝑃 =

(𝑥, 𝑦) noktalarının geometrik yeri olan eğrinin parametrik denklemi  

𝑥 = (𝑅 − 𝑟) cos 𝑡 − 𝑟 cos (
𝑅 − 𝑟

𝑟
𝑡) 

𝑦 = (𝑅 − 𝑟) sin 𝑡 − 𝑟 sin (
𝑅 − 𝑟

𝑟
𝑡) 

biçimindedir (Şekil 3.2.). 

 

 

Şekil 3.2. Hiposikloid Eğrisi 

 

3.1.3. Kardioid 

 

𝑟 yarıçaplı sabit bir çember üzerinde kaymaksızın yuvarlanma hareketi yapan aynı 

yarıçaplı ikinci bir çember üzerindeki herhangi bir 𝑃 noktasının hareket esnasında 

çizdiği yörünge eğrisine kardioid eğri denir. 𝑃 = (𝑥, 𝑦) noktasının geometrik yeri olan 

eğrinin parametrik denklemi  
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𝑥 = 2𝑟 cos 𝑡 − 𝑟 cos 2𝑡 

𝑦 = 2𝑟 sin 𝑡 − 𝑟 sin 2𝑡 

biçimindedir (0 ≤ 𝑡 < 2𝜋)(Şekil3.3.). 

 

Şekil 3.3. Kardioid Eğrisi 

 

3.1.4. Nephroid 

 

Bir biri üzerinde dıştan teğet kalacak şekilde kaymaksızın yuvarlanma hareketi yapan 

𝑟  ve  𝑟 2⁄    yarıçaplı iki çember verilsin.  𝑟 2⁄   yarıçaplı hareketli çember ile bir 

𝑃 noktasının hareket esnasında çizdiği yörünge eğrisine nephroid eğri denir. 𝑃 =

(𝑥, 𝑦) noktalarının geometrik yeri olan eğrinin parametrik denklemi  

𝑥 = 3𝑟 cos 𝑡 − 𝑟 cos(3𝑡) 

𝑦 = 3𝑟 sin 𝑡 − 𝑟 sin(3𝑡) 

biçimindedir (Şekil 3.4.). 
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Şekil 3.4. Nephroid Eğrisi 

 

 

3.2.  Yöntem 

 

3.2.1. Düzlemsel hareket için kapalı yörüngeler 

 

𝐸 hareketli ve 𝐸′ sabit olmak üzere iki düzlemin koordinat sistemleri arasında 

𝑡 −parametreli 𝐵: 𝐸/𝐸′ direkt hareketi ele alınsın. Sistemlerin sırasıyla orijinleri 

(𝑂, 𝑂′), öteleme vektörleri (𝑂𝑂′ = 𝑈), (𝑂′𝑂 = 𝑈′) ve toplam dönme açısı 𝛼(𝑡) 

olmak üzere, 𝐸 hareketli sistemine ait bir 𝑋 noktasının 𝐸′ sabit sistemine göre 

yörüngesi 

𝑋′(𝑡) = ℎ(𝑡). 𝑅(𝑡)𝑋 + 𝑈′(𝑡)                                       (3.2.1) 

 

şeklinde tanımlanır. Burada hareket, sabit ve hareketli sistem arasında zamana bağlı 

bir dönüşüm olarak düşünülebilir. 𝑋 vektörü zamandan yani 𝑡 parametresinden 

bağımsızdır. 
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(3.2.1) denkleminde 𝛼(𝑡) toplam dönme açısı, 𝑅(𝑡) 2 × 2 tipinde dönme matrisi, 

𝑈′(𝑡) öteleme vektörüne karşılık gelen 2 × 1 tipinde öteleme matrisi olmak üzere, 

(3.2.1) denklemi matris formunda  

 

(
𝑥1
′(𝑡)

𝑥2
′ (𝑡)

) = (
𝑐𝑜𝑠(𝛼(𝑡)) − sin(𝛼(𝑡))

𝑠𝑖𝑛(𝛼(𝑡)) 𝑐𝑜𝑠(𝛼(𝑡))
) (
𝑥1
𝑥2
) + (

𝑢1
′ (𝑡)

𝑢2
′ (𝑡)

) 

 

ve bileşen olarak ise 

 

𝑥1
′(𝑡) = 𝑐𝑜𝑠(𝛼(𝑡)) 𝑥1 − sin(𝛼(𝑡)) 𝑥2 + 𝑢1

′ (𝑡) 

𝑥2
′ (𝑡) = 𝑠𝑖𝑛(𝛼(𝑡)) 𝑥1 + 𝑐𝑜𝑠(𝛼(𝑡)) 𝑥2 + 𝑢2

′ (𝑡) 

 

 şeklinde yazılır (Dathe vd, 2015). 

 

3.2.2. Düzlemsel kinematik ve en az eylem prensibi 

 

𝐸/𝐸′ düzlemsel hareketinde, 𝐸 hareketli düzlemine ait bir 𝑋 noktasının 𝐸′ sabit 

düzlemindeki 𝑋′(𝑡) yörünge eğrisinin denklemi için  

 

𝑋′(𝑡) = 𝑅(𝑡)𝑋 + 𝑈′(𝑡) 

 

yazılabilir. Bu denklem dönme ve ötelemeden ibarettir. Burada 𝑡 zaman 

parametresidir. Bu sisteme en az eylem prensibi uygulanırsa; bu sistemde 𝑚 kütleli bir 

noktanın 𝑋′(𝑡) yörünge eğrisi için kinetik enerji formülü 

𝐸𝑘𝑖𝑛 =
1

2
𝑚 (𝑋̇′(𝑡))

2

                                           (3.2.2) 

şeklindedir. (3.2.2) denklemi hareketli sistemde başlangıç noktasının seçiminden 

bağımsız olup, hareketli sistemin seçilen noktasına bağımlıdır. Bu enerji, 

𝑆 = ∫ 𝐸𝑘𝑖𝑛𝑑𝑡

𝑡2

𝑡1

= 
1

2
∫ 𝑚(𝑋̇′(𝑡))

2

𝑑𝑡

𝑡2

𝑡1

 

denklemiyle verilir ve karakteristik fonksiyon veya enerji fonksiyoneli olarak 

adlandırılır. . 𝑚 = 1 için bu fonksiyonel 
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𝑆 =
1

2
∫ (𝑋̇′(𝑡)𝑇 . 𝑋̇′(𝑡)) 𝑑𝑡

𝑡2

𝑡1

 

şeklinde ifade edilir. 

 

En az eylem prensibi, 𝑆 nin minimum olmasını gerektirir. Bunun için 𝛿 varyasyonu 

göstermek üzere, 𝛿𝑆 = 0 şartı sağlanmalıdır. Bu durumu sağlayan noktaya sabit nokta 

veya karakteristik nokta adı verilir. Hız kuadratik form olduğundan, 𝑆 enerji 

fonksiyoneli de 𝑋 noktasında bir kuadratik formdur. Bundan dolayı 𝑋0 noktasının 

minimumu tek ve hareketli sistemin karakteristiği olacaktır (Dathe vd, 2015). 

 

En az eylem prensibi (veya minimum eylem prensibi), mekanik sistemlerdeki eylem 

kavramından hareket denklemlerinin bulunması esasına dayanır. “En az” kavramı 

çözümlerde iki nokta arasındaki yollardan; çevre yollara göre değişimin en az olduğu 

yolu bulma problemi irdelendiği için kullanılır. En az eylem ilkesi ve varyasyon 

prensipleri, kuantum mekaniğini de geliştirmiş olan doğanın en kapsamlı temel 

davranış yasalarını içerir. Bu prensip modern fiziğin ve matematiğin merkezinde yer 

almış ve görelilik teorisi, kuantum mekaniği ve kuantum alan teorisi gibi genel 

alanlarda etkin olarak kullanılmıştır.  

 

En az eylem ilkesi tam olarak Pierre Louis Maupertuis tarafından tanımlanmıştır. 

Maupertuis doğanın herhangi bir olay sırasında tutumlu davrandığını düşünmüş ve bu 

düşüncesini genelleştirmiştir: 

 

Hareket yasaları ve ondan türetilenler veya başka şekilde gözlenenler esasında 

doğanın aynı esaslarına dayanır. Hayvanların hareketlerini, bitkilerin büyümelerini 

gözlemlediğimizde hepsi en az eylem ihtiyacının bir sonucudur. 

 

Maupertuis prensibi: 

𝛿 ∫  2 𝑇(𝑡) 𝑑𝑡 = 0 

Bu, kinetik enerji ve zamanın çarpımının iki kere integrale alınmasından ibarettir 

(Beşergil, 2019). 



 

 

21 
 

 

 

 

BÖLÜM 4. ARAŞTIRMA BULGULARI 

 

 

4.1.  Episikloid için uygulaması 

 

𝐸 hareketli ve 𝐸′ sabit olmak üzere iki düzlemin koordinat sistemleri arasında 

𝑡 −parametreli kapalı düzlemsel homotetik hareketi ele alınsın. 𝐸 hareketli düzleminin 

𝐸′ sabit düzlemine göre hareketi 𝐵: 𝐸/𝐸′ direkt hareketi olsun. Sistemlerin sırasıyla 

orijinleri (𝑂, 𝑂′), öteleme vektörleri (𝑂𝑂′ = 𝑈), (𝑂′𝑂 = 𝑈′) ve toplam dönme açısı 

𝛼(𝑡) olmak üzere, 𝐸 hareketli sistemine ait bir 𝑋 noktasının 𝐸′ sabit sistemine göre 

yörüngesi 

𝑋′(𝑡) = ℎ(𝑡). 𝑅(𝑡)𝑋 + 𝑈′(𝑡)                                        (4.1.1) 

olarak ifade edilir. ℎ, 𝑡 reel parametresinin sürekli diferansiyellenebilir fonksiyonudur. 

Hareket sabit ve hareketli sistemde zamana bağlı dönüşüm olarak düşünülebilir.  

(4.1.1) denkleminde 𝑅(𝑡) 2 × 2 tipinde dönme matrisi, 𝛼(𝑡) toplam dönme açısı,  

𝑈(𝑡) ve 𝑈′(𝑡) öteleme vektörlerine karşılık gelen 2 × 1 tipinde matrisler, 𝑋′ ve 

𝑋 sırasıyla sabit ve hareketli düzleme ait bir nokta olmak üzere, 

𝑋′(𝑡) = (
𝑥1
′(𝑡)

𝑥2
′ (𝑡)

)    ,   𝑋(𝑡) = (
𝑥1(𝑡)

𝑥2(𝑡)
)   ,   𝑈′(𝑡) = (

𝑢1
′ (𝑡)

𝑢2
′ (𝑡)

)    ,   𝑈(𝑡) = (
𝑢1(𝑡)

𝑢2(𝑡)
) 

𝑅(𝑡) = (
(𝑅 + 𝑟) 𝑐𝑜𝑠(𝛼(𝑡)) 𝑟 sin(𝛼(𝑡))

(𝑅 + 𝑟) 𝑠𝑖𝑛(𝛼(𝑡)) −𝑟𝑐𝑜𝑠(𝛼(𝑡))
) 

ifadeleriyle matris formunu 

(
𝑥1
′ (𝑡)

𝑥2
′ (𝑡)

) = ℎ(𝑡) (
(𝑅 + 𝑟)𝑐𝑜𝑠(𝛼(𝑡)) 𝑟 sin(𝛼(𝑡))

(𝑅 + 𝑟) 𝑠𝑖𝑛(𝛼(𝑡)) −𝑟 𝑐𝑜𝑠(𝛼(𝑡))
) (
𝑥1
𝑥2
) + (

𝑢1(𝑡)

𝑢2(𝑡)
)  

şeklinde ifade edebiliriz. 

Sırf öteleme ve sırf dönme durumlarından kaçınmak için 𝑎 ≠ 0 ve ℎ = ℎ(𝑡) ≠ 𝑠𝑎𝑏𝑖𝑡 

kabul edilecektir. Öteleme vektörleri arasında 
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𝑈′(𝑡) = −𝑅(𝑡). 𝑈(𝑡) 

bağıntısı vardır. Bu bağıntı (4.1.1) eşitliğinde yerine yazılırsa yörünge denklemi  

𝑋′(𝑡) = 𝑅(𝑡). (ℎ(𝑡)𝑋 − 𝑈(𝑡))                                    (4.1.2) 

olarak elde edilir. (4.1.2) ‘de vektörlerin ifadeleri yerine yazılıp 𝑋(𝑥1, 𝑥2) bileşenleri 

ile ifade edilirse 

𝑥1
′(𝑡) = (𝑅 + 𝑟) 𝑐𝑜𝑠(𝛼(𝑡)) . (ℎ(𝑡)𝑥1 − 𝑢1(𝑡)) + 𝑟 sin(𝛼(𝑡)) . (ℎ(𝑡)𝑥2 − 𝑢2(𝑡)) 

𝑥2
′ (𝑡) = (𝑅 + 𝑟) 𝑠𝑖𝑛(𝛼(𝑡)) . (ℎ(𝑡)𝑥1 − 𝑢1(𝑡)) − 𝑟𝑐𝑜𝑠(𝛼(𝑡)) . (ℎ(𝑡)𝑥2 − 𝑢2(𝑡)) 

olarak elde edilir. 

Düzlem kinematiğine en az eylem prensibini uygulayalım. Bu sistemde 𝑚 kütleli bir 

noktanın yörüngesi 𝑋′(𝑡) olmak üzere kinetik enerji formülü 

𝐸𝑘𝑖𝑛 =
1

2
𝑚 (𝑋̇′(𝑡))

2

                                               (4.1.3) 

şeklindedir. 

Bu ifadede belirtilen enerji fonksiyonu karakteristik fonksiyon veya enerji fonksiyonu 

olarak adlandırılan  

𝑆 = ∫ 𝐸𝑘𝑖𝑛𝑑𝑡

𝑡2

𝑡1

= 
1

2
∫ 𝑚(𝑋̇′(𝑡))

2

𝑑𝑡

𝑡2

𝑡1

 

ifadesine karşılık gelir. 𝑚 = 1 olması durumunda bu ifade  

𝑆 =
1

2
∫ (𝑋̇′(𝑡)𝑇 . 𝑋̇′(𝑡)) 𝑑𝑡

𝑡2

𝑡1

                                      (4.1.4) 

halini alır. 

𝐸/𝐸′ düzlemsel hareketinde minimal eylem noktasının elde edilebilmesi için 𝐸 

hareketli düzleminin noktalarının enerjisi hesaplanmalıdır.  Öyleyse  

𝑋′(𝑡) = ℎ(𝑡). 𝑅(𝑡)𝑋 − 𝑈′(𝑡) 
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denkleminin 𝑡 parametresine göre türevi alınırsa  

𝑋′̇ (𝑡) = 𝑅̇(𝑡)(ℎ(𝑡)𝑋 − 𝑈′(𝑡)) + 𝑅(𝑡) (ℎ̇(𝑡)𝑋 − 𝑈̇′(𝑡))             (4.1.5) 

elde edilir. Bu denklemi bileşen formunda ifade edersek 

𝑥̇1
′(𝑡) = −(ℎ(𝑡)𝑥1 − 𝑢1

′ (𝑡))(𝑅 + 𝑟) sin(𝛼(𝑡)). 𝛼̇(𝑡) 

           + (ℎ̇(𝑡)𝑥1 − 𝑢̇1
′ (𝑡)) (𝑅 + 𝑟) 𝑐𝑜𝑠(𝛼(𝑡)) 

       +(ℎ(𝑡)𝑥2 − 𝑢2
′ (𝑡))(𝑅 + 𝑟) 𝑐𝑜𝑠(𝛼(𝑡)). 𝛼̇(𝑡) + (ℎ̇(𝑡)𝑥2 − 𝑢̇2

′ (𝑡)) 𝑟 sin(𝛼(𝑡)) 

𝑥̇2
′ (𝑡) = (ℎ(𝑡)𝑥1 − 𝑢1

′ (𝑡))(𝑅 + 𝑟) 𝑐𝑜𝑠(𝛼(𝑡)). 𝛼̇(𝑡) 

           + (ℎ̇(𝑡)𝑥1 − 𝑢̇1
′ (𝑡)) (𝑅 + 𝑟) sin(𝛼(𝑡)) 

        +(ℎ(𝑡)𝑥2 − 𝑢2
′ (𝑡))(𝑅 + 𝑟) 𝑠𝑖𝑛(𝛼(𝑡)) . 𝛼̇(𝑡) − (ℎ̇(𝑡)𝑥2 − 𝑢̇2

′ (𝑡)) 𝑟𝑐𝑜𝑠(𝛼(𝑡)) 

olur. (4.1.5) ifadesi (4.1.4) denkleminde yerine yazılırsa  

2𝑆(𝑋) = ∫ {
[𝑅̇(𝑡)(ℎ(𝑡)𝑋 − 𝑈′(𝑡)) + 𝑅(𝑡) (ℎ̇(𝑡)𝑋 − 𝑈̇′(𝑡))]

𝑇

[𝑅̇(𝑡)(ℎ(𝑡)𝑋 − 𝑈′(𝑡)) + 𝑅(𝑡) (ℎ̇(𝑡)𝑋 − 𝑈̇′(𝑡))]
}

𝑡2

𝑡1

 

ve böylece 

2𝑆(𝑋) = ∫[(ℎ2𝑋𝑇𝑋 − ℎ𝑋𝑇𝑈′ − 𝑈′𝑇ℎ𝑋 + 𝑈′𝑇𝑈′)𝐼𝑎̇2

𝑡2

𝑡1

 

       +(ℎℎ̇𝑋𝑇𝑋 − ℎ̇𝑈̇𝑋𝑇 + 𝑈̇′𝑇𝑈̇′)𝐼

                       +(ℎℎ̇𝑋𝑇𝑋 − ℎ𝑋𝑇𝑈̇ − 𝑈′𝑇ℎ̇𝑋 + 𝑈′𝑇𝑈̇′)

                     +(ℎ̇ℎ𝑋𝑇𝑋 − ℎ̇𝑋𝑇𝑈′ − 𝑈̇′𝑇𝑈′)𝑅̇𝑇𝑅̇]𝑑𝑡

𝑅̇𝑇𝑅                (4.1.6) 

olur. Diğer yandan 

𝑅(𝑡) = (
(𝑅 + 𝑟)𝑐𝑜𝑠(𝛼(𝑡)) 𝑟 sin(𝛼(𝑡))

(𝑅 + 𝑟) 𝑠𝑖𝑛(𝛼(𝑡)) −𝑟 𝑐𝑜𝑠(𝛼(𝑡))
) 

𝑅̇(𝑡) = (
−(𝑅 + 𝑟) sin(𝛼(𝑡)). 𝛼̇(𝑡) 𝑟 𝑐𝑜𝑠(𝛼(𝑡)). 𝛼̇(𝑡)

(𝑅 + 𝑟) 𝑐𝑜𝑠(𝛼(𝑡)). 𝛼̇(𝑡) 𝑟 sin(𝛼(𝑡)). 𝛼̇(𝑡)
) 

[𝑅̇(𝑡)]
𝑇
= (

−(𝑅 + 𝑟) sin(𝛼(𝑡)). 𝛼̇(𝑡) (𝑅 + 𝑟) 𝑐𝑜𝑠(𝛼(𝑡)). 𝛼̇(𝑡)

𝑟 𝑐𝑜𝑠(𝛼(𝑡)). 𝛼̇(𝑡) 𝑟 sin(𝛼(𝑡)). 𝛼̇(𝑡)
) 

olacağından 
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[𝑅̇(𝑡)]
𝑇
𝑅(𝑡)

= (
−(𝑅 + 𝑟)2 𝑐𝑜𝑠(𝛼(𝑡)) . sin(𝛼(𝑡)). 𝛼̇(𝑡) + (𝑅 + 𝑟)2 𝑐𝑜𝑠(𝛼(𝑡)). 𝑠𝑖𝑛(𝛼(𝑡)) . 𝛼̇(𝑡)

𝑟2 sin(𝛼(𝑡)) . 𝑐𝑜𝑠(𝛼(𝑡)). 𝛼̇(𝑡) − 𝑟2 𝑐𝑜𝑠(𝛼(𝑡)) sin(𝛼(𝑡)). 𝛼̇(𝑡)
)

= 𝛼̇(𝑡) 

ve 

[𝑅̇(𝑡)]
𝑇
𝑅̇(𝑡) = (

(𝑅 + 𝑟)2 (sin(𝛼(𝑡)). 𝛼̇(𝑡))
2

+ (𝑅 + 𝑟)2 (𝑐𝑜𝑠(𝛼(𝑡)). 𝛼̇(𝑡))
2

𝑟2 (𝑐𝑜𝑠(𝛼(𝑡)). 𝛼̇(𝑡))
2

+ 𝑟2 (sin(𝛼(𝑡)). 𝛼̇(𝑡))
2 )    

= 𝛼̇(𝑡) 

bulunur. Böylece  

𝑈(𝑡) = (
𝑢1(𝑡)

𝑢2(𝑡)
)    ,    [𝑈(𝑡)]𝑇 = (𝑢1(𝑡) 𝑢2(𝑡)) 

𝑈̇(𝑡) = (
𝑢̇1(𝑡)

𝑢̇2(𝑡)
)    ,     [𝑈̇(𝑡)]

𝑇
= (𝑢̇1(𝑡) 𝑢̇2(𝑡)) 

𝑈′(𝑡) = (
𝑢1
′ (𝑡)

𝑢2
′ (𝑡)

)    ,    [𝑈′(𝑡)]𝑇 = (𝑢1
′ (𝑡) 𝑢2

′ (𝑡)) 

𝑈̇′(𝑡) = (
𝑢̇1
′ (𝑡)

𝑢̇2
′ (𝑡)

)    ,    [𝑈̇′(𝑡)]
𝑇
= (𝑢̇1

′ (𝑡) 𝑢̇2
′ (𝑡)) 

ifadelerini (4.1.6) denkleminde yerine yazarsak 

2𝑆(𝑋) = ∫ [(ℎ2𝑋𝑇𝑋 − ℎ𝑋𝑇 (
𝑢1
′

𝑢2
′ ) − (𝑢1

′ 𝑢2
′ )ℎ𝑋 + (𝑢1

′ 𝑢2
′ ) (

𝑢1
′

𝑢2
′ )) 𝐼𝑎̇

2

𝑡2

𝑡1

 

    + (ℎℎ̇𝑋𝑇𝑋 − ℎ̇𝑋𝑇 (
𝑢̇1
𝑢̇2
) + (𝑢̇1

′ 𝑢̇2
′ ) (

𝑢̇1
′

𝑢̇2
′ )) 𝐼

                             + (ℎℎ̇𝑋𝑇𝑋 − ℎ𝑋𝑇 (
𝑢̇1
𝑢̇2
) − (𝑢1

′ 𝑢2
′ )ℎ̇𝑋 + (𝑢1

′ 𝑢2
′ ) (

𝑢̇1
′

𝑢̇2
′ ))

                 + (ℎ̇ℎ𝑋𝑇𝑋 − ℎ̇𝑋𝑇 (
𝑢1
′

𝑢2
′ ) − (𝑢̇1

′ 𝑢̇2
′ ) (

𝑢1
′

𝑢2
′ )) 𝑅̇

𝑇𝑅̇] 𝑑𝑡

𝑅̇𝑇𝑅 

ve buradan 
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2𝑆(𝑋) = ∫ [(ℎ2(𝑥1 𝑥2) (
𝑥1
𝑥2
) − ℎ(𝑥1 𝑥2) (

𝑢1
′

𝑢2
′ ) − (𝑢1

′ 𝑢2
′ )ℎ (

𝑥1
𝑥2
) + (𝑢1

′ )2

𝑡2

𝑡1

+ (𝑢2
′ )2) 𝐼𝑎̇2 

+(ℎℎ̇(𝑥1 𝑥2) (
𝑥1
𝑥2
) − ℎ̇(𝑥1 𝑥2) (

𝑢̇1
𝑢̇2
) + (𝑢̇1

′ )2 + (𝑢̇2
′ )2) 𝐼 

+(ℎℎ̇(𝑥1 𝑥2) (
𝑥1
𝑥2
) − ℎ(𝑥1 𝑥2) (

𝑢̇1
𝑢̇2
) − (𝑢1

′ 𝑢2
′ )ℎ̇ (

𝑥1
𝑥2
) + 𝑢1

′ 𝑢̇1
′ + 𝑢2

′ 𝑢̇2
′ ) 𝑅̇𝑇𝑅 

+(ℎ̇ℎ(𝑥1 𝑥2) (
𝑥1
𝑥2
) − ℎ̇(𝑥1 𝑥2) (

𝑢1
′

𝑢2
′ ) − 𝑢̇1

′𝑢1
′ − 𝑢̇2

′ 𝑢2
′ ) 𝑅̇𝑇𝑅̇] 𝑑𝑡 

elde ederiz. 

Bu eşitliği bileşen formunda  

2𝑆(𝑥1, 𝑥2) = (𝑥1
2 + 𝑥2

2)∫ (ℎ2𝑎̇2 + ℎ̇2)𝑑𝑡
𝑡2

𝑡1

 

+∫ [(𝑢1
′ 2 + 𝑢2

′ 2)𝑎̇2 + 𝑢̇1
′ 2 + 𝑢̇2

′ 2]𝑑𝑡
𝑡2

𝑡1

                                                                

+𝑥1∫ [−2ℎ𝑢1
′ 𝑎̇2 − ℎ̇𝑢̇1 − ℎ𝑢̇1𝑎̇ − 2ℎ̇𝑢1

′ 𝑎̇]𝑑𝑡       
𝑡2

𝑡1

                           (4.1.7)

+𝑥2∫ [−2ℎ𝑢2
′ 𝑎̇2 − ℎ̇𝑢̇2 − ℎ𝑢̇2𝑎̇ − 2ℎ̇𝑢2

′ 𝑎̇]𝑑𝑡 
𝑡2

𝑡1

                                             

 

şeklinde ifade edebiliriz. 

(4.1.7) denkleminde 

                           𝐻𝑅 = ∫ (ℎ2𝑎̇2 + ℎ̇2)𝑑𝑡
𝑡2

𝑡1

 

                           𝐻𝑇 = ∫ [(𝑢1
′ 2 + 𝑢2

′ 2)𝑎̇2 + 𝑢̇1
′ 2 + 𝑢̇2

′ 2]𝑑𝑡
𝑡2

𝑡1

 

                          𝐻𝑥1 = ∫ [−2ℎ𝑢1
′ 𝑎̇2 − ℎ̇𝑢̇1 − ℎ𝑢̇1𝑎̇ − 2ℎ̇𝑢1

′ 𝑎̇]𝑑𝑡       
𝑡2

𝑡1

 

                         𝐻𝑥2 = ∫ [−2ℎ𝑢2
′ 𝑎̇2 − ℎ̇𝑢̇2 − ℎ𝑢̇2𝑎̇ − 2ℎ̇𝑢2

′ 𝑎̇]𝑑𝑡       
𝑡2

𝑡1

 

eşitlikleri yerine yazılırsa  

2𝑆(𝑥1, 𝑥2) = (𝑥1
2 + 𝑥2

2)𝐻𝑅 + 𝐻𝑇 + 𝑥1𝐻𝑥1 + 𝑥2𝐻𝑥2                   (4.1.8) 
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şeklinde elde edilir. 

(4.1.8) denklemi, 𝑡 zaman parametresine bağlı ifade edilirse, aranan 𝑋0 noktasının 

koordinatları minimal eylem prensibi yardımıyla aşağıdaki gibi hesaplanır.  

(4.1.8) denkleminin 𝑋 e göre türevi alınır ve sınıfa eşitlenirse, 

𝜕2𝑆

𝜕𝑋
|
𝑋0

= 0                                                       (4.1.9) 

elde edilir. (4.1.9) eşitliğini sağlayan noktalar karakteristik noktalardır. Karakteristik 

noktayı bileşenleri şeklinde elde etmek için (4.1.7) denkleminin 𝑥1 ve 𝑥2 ye göre 

türevleri alınır ve düzenlenirse  

   
𝜕2𝑆(𝑥1, 𝑥2) 

𝜕𝑥1
= 2𝑥1∫ (ℎ2𝛼̇2 + ℎ̇2)𝑑𝑡

𝑡2

𝑡1

+∫ [−2ℎ𝑢1
′ 𝛼̇2 − ℎ̇𝑢̇1 − ℎ𝑢̇1𝛼̇ − 2ℎ̇𝑢1

′ 𝛼̇]𝑑𝑡 
𝑡2

𝑡1

                           (4.1.10) 

ve 

   
𝜕2𝑆(𝑥1, 𝑥2) 

𝜕𝑥2
= 2𝑥2∫ (ℎ2𝛼̇2 + ℎ̇2)𝑑𝑡

𝑡2

𝑡1

+∫ [−2ℎ𝑢2
′ 𝛼̇2 − ℎ̇𝑢̇2 − ℎ𝑢̇2𝛼̇ − 2ℎ̇𝑢2

′ 𝛼̇]𝑑𝑡
𝑡2

𝑡1

                            (4.1.11) 

elde edilir. 

Hareketli düzlemin 𝑋 noktasının aksine, 𝑋0 noktası integral sınırlarını temsil eden 

başlangıç ve bitiş zamanları olan 𝑡1 ve 𝑡2 zamanlarının bir fonksiyonudur. (4.1.10) ve 

(4.1.11) denklemleri sıfıra eşitlenir ve karakteristik noktanın bileşenleri  

𝑥1 = −
∫ [−2ℎ𝑢1

′ 𝛼̇2 − ℎ̇𝑢̇1 − ℎ𝑢̇1𝛼̇ − 2ℎ̇𝑢1
′ 𝛼̇]𝑑𝑡 

𝑡2
𝑡1

2∫ (ℎ2𝛼̇2 + ℎ̇2)𝑑𝑡
𝑡2
𝑡1

= −
𝐻𝑥1
2𝐻𝑅

 

ve 

𝑥2 = −
∫ [−2ℎ𝑢2

′ 𝛼̇2 − ℎ̇𝑢̇2 − ℎ𝑢̇2𝛼̇ − 2ℎ̇𝑢2
′ 𝛼̇]𝑑𝑡

𝑡2
𝑡1

2 ∫ (ℎ2𝛼̇2 + ℎ̇2)𝑑𝑡
𝑡2
𝑡1

= −
𝐻𝑥2
2𝐻𝑅
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olarak bulunur. Ayrıca 𝑋0 noktasının minimal nokta olması için  
𝜕2𝑆

𝜕𝑋2
> 0 olmalıdır. O 

halde  

𝜕2𝑆

𝜕𝑋2
=
1

2
I∫ 𝛼̇2𝑑𝑡 =

1

2
I𝐻𝑅 

ifadesi her zaman 0 ‘dan büyük olduğundan 𝑋0 bir karakteristik noktadır.  

Karakteristik noktanın bileşenleri (4.1.7) ifadesinde yerine yazılırsa  

2𝑆0(𝑡1, 𝑡2) = [(−
𝐻𝑥1
𝐻𝑅
)

2

+ (−
𝐻𝑥2
𝐻𝑅
)

2

]𝐻𝑅 + 𝐻𝑇 −
𝐻𝑥1
𝐻𝑅

𝐻𝑥1 −
𝐻𝑥2
𝐻𝑅

𝐻𝑥2 

bulunur. 

Buradan da minimal eylem  

2𝑆0(𝑡1, 𝑡2) = 𝐻𝑇(𝑡1, 𝑡2) 

olarak ifade edilir. 

 

4.2.  Hiposikloid için uygulaması 

 

𝐸 hareketli ve 𝐸′ sabit olmak üzere iki düzlemin koordinat sistemleri arasında 

𝑡 −parametreli kapalı düzlemsel homotetik hareketi ele alınsın. 𝐸 hareketli düzleminin 

𝐸′ sabit düzlemine göre hareketi 𝐵: 𝐸/𝐸′ direkt hareketi olsun. Sistemlerin orijinleri 

sırasıyla (𝑂, 𝑂′), öteleme vektörleri (𝑂𝑂′ = 𝑈) ve (𝑂′𝑂 = 𝑈′), toplam dönme açısı 

𝛽(𝑡) olmak üzere, hareketli sisteme ait bir 𝑋 noktasının sabit sisteme göre yörüngesi 

𝑋′(𝑡) = ℎ(𝑡). 𝑅(𝑡)𝑋 + 𝑈′(𝑡)                                      (4.2.1) 

olarak ifade edilir. ℎ, 𝑡 reel parametresinin sürekli diferansiyellenebilir fonksiyonudur. 

Hareket sabit ve hareketli sistemde zamana bağlı dönüşüm olarak düşünülebilir.  

(4.2.1)  denkleminde 𝑅(𝑡) 2 × 2 tipinde dönme matrisi, toplam dönme açısı 𝛽(𝑡), 

𝑈(𝑡) ve 𝑈′(𝑡) öteleme vektörlerine karşılık gelen 2 × 1 tipinde matrisler, 𝑋′ ve 

𝑋 sırasıyla sabit ve hareketli düzleme ait bir nokta olmak üzere, 
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𝑋′(𝑡) = (
𝑥1
′ (𝑡)

𝑥2
′ (𝑡)

)    ,    𝑈(𝑡) = (
𝑢1(𝑡)

𝑢2(𝑡)
)    ,    𝑈′(𝑡) = (

𝑢1
′ (𝑡)

𝑢2
′ (𝑡)

)    ,    𝑋(𝑡) = (
𝑥1(𝑡)

𝑥2(𝑡)
)   

𝑅(𝑡) = (
(𝑅 − 𝑟) 𝑐𝑜𝑠(𝛽(𝑡)) 𝑟 sin(𝛽(𝑡))

(𝑅 − 𝑟) 𝑠𝑖𝑛(𝛽(𝑡)) −𝑟 𝑐𝑜𝑠(𝛽(𝑡))
) 

ifadeleriyle matris formunu 

(
𝑥1
′(𝑡)

𝑥2
′ (𝑡)

) = ℎ(𝑡) (
(𝑅 − 𝑟) 𝑐𝑜𝑠(𝛽(𝑡)) 𝑟 sin(𝛽(𝑡))

(𝑅 − 𝑟) 𝑠𝑖𝑛(𝛽(𝑡)) −𝑟𝑐𝑜𝑠(𝛽(𝑡))
) (
𝑥1
𝑥2
) + (

𝑢1(𝑡)

𝑢2(𝑡)
) 

şeklinde ifade edebiliriz. 

Sırf öteleme ve sırf dönme durumlarından kaçınmak için 𝛽 ≠ 0 ve ℎ = ℎ(𝑡) ≠ 𝑠𝑎𝑏𝑖𝑡 

kabul edilecektir. Öteleme vektörleri arasında 

𝑈′(𝑡) = −𝑅(𝑡). 𝑈(𝑡) 

bağıntısı vardır. Bu bağıntı (4.2.1) eşitliğinde yerine yazılırsa yörünge denklemi 

𝑋′(𝑡) = 𝑅(𝑡). (ℎ(𝑡)𝑋 − 𝑈(𝑡))                                   (4.2.2) 

olarak elde edilir. (4.2.2) ‘de vektörlerin ifadeleri yerine yazılıp 𝑋(𝑥1, 𝑥2) bileşenleri 

ile ifade edilirse 

𝑥1
′(𝑡) = (𝑅 − 𝑟) 𝑐𝑜𝑠(𝛽(𝑡)) . (ℎ(𝑡)𝑥1 − 𝑢1(𝑡)) + 𝑟 sin(𝛽(𝑡)) . (ℎ(𝑡)𝑥2 − 𝑢2(𝑡)) 

𝑥2
′ (𝑡) = (𝑅 − 𝑟) 𝑠𝑖𝑛(𝛽(𝑡)) . (ℎ(𝑡)𝑥1 − 𝑢1(𝑡)) − 𝑟 𝑐𝑜𝑠(𝛽(𝑡)) . (ℎ(𝑡)𝑥2 − 𝑢2(𝑡)) 

olarak elde edilir. 

Düzlem kinematiğine en az eylem prensibini uygulayalım. Bu sistemde 𝑚 kütleli bir 

noktanın yörüngesi 𝑋′(𝑡) olmak üzere kinetik enerji formülü 

𝐸𝑘𝑖𝑛 =
1

2
𝑚 (𝑋̇′(𝑡))

2

                                              (4.2.3) 

şeklindedir. 

Bu ifadede belirtilen enerji fonksiyonu karakteristik fonksiyon veya enerji fonksiyonu 

olarak adlandırılan  
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𝑆 = ∫ 𝐸𝑘𝑖𝑛𝑑𝑡

𝑡2

𝑡1

= 
1

2
∫ 𝑚(𝑋̇′(𝑡))

2

𝑑𝑡

𝑡2

𝑡1

 

ifadesine karşılık gelir. 𝑚 = 1 olması durumunda bu ifade  

𝑆 =
1

2
∫ (𝑋̇′(𝑡)𝑇 . 𝑋̇′(𝑡)) 𝑑𝑡

𝑡2

𝑡1

                                    (4.2.4) 

halini alır. 

𝐸/𝐸′ düzlemsel hareketinde minimal eylem noktasının elde edilebilmesi için 𝐸 

hareketli düzleminin noktalarının enerjisi hesaplanmalıdır. Öyleyse  

𝑋′(𝑡) = ℎ(𝑡). 𝑅(𝑡)𝑋 − 𝑈′(𝑡) 

denkleminin 𝑡 parametresine göre türevi alınmalıdır. 

𝑋′̇ (𝑡) = 𝑅̇(𝑡)(ℎ(𝑡)𝑋 − 𝑈′(𝑡)) + 𝑅(𝑡) (ℎ̇(𝑡)𝑋 − 𝑈̇′(𝑡))           (4.2.5) 

Bu denklemi 𝑋′̇ (𝑡) = (𝑥̇1
′(𝑡), 𝑥̇2

′ (𝑡)) bileşen formunda ifade edersek 

𝑥̇1
′(𝑡) = −(ℎ(𝑡)𝑥1 − 𝑢1

′ (𝑡))(𝑅 − 𝑟) sin(𝛽(𝑡)) 𝛽̇(𝑡) 

                + (ℎ̇(𝑡)𝑥1 − 𝑢̇1
′ (𝑡)) (𝑅 − 𝑟) 𝑐𝑜𝑠(𝛽(𝑡)) 

      +(ℎ(𝑡)𝑥2 − 𝑢2
′ (𝑡))𝑟 𝑐𝑜𝑠(𝛽(𝑡)) . 𝛽̇(𝑡) − (ℎ̇(𝑡)𝑥2 − 𝑢̇2

′ (𝑡)) 𝑟 sin(𝛽(𝑡)) 

𝑥̇2
′ (𝑡) = (ℎ(𝑡)𝑥1 − 𝑢1

′ (𝑡))(𝑅 − 𝑟) 𝑐𝑜𝑠(𝛽(𝑡)). 𝛽̇(𝑡) 

+(ℎ̇(𝑡)𝑥1 − 𝑢̇1
′ (𝑡)) (𝑅 − 𝑟) sin(𝛽(𝑡)) 

+(ℎ(𝑡)𝑥2 − 𝑢2
′ (𝑡))𝑟 𝑠𝑖𝑛(𝛽(𝑡)) . 𝛽̇(𝑡) − (ℎ̇(𝑡)𝑥2 − 𝑢̇2

′ (𝑡)) 𝑟𝑐𝑜𝑠(𝛽(𝑡)) 

elde ederiz. (4.2.5) ifadesi (4.2.4) denkleminde yerine yazılırsa 

2𝑆(𝑋) = ∫ {
[𝑅̇(𝑡)(ℎ(𝑡)𝑋 − 𝑈′(𝑡)) + 𝑅(𝑡) (ℎ̇(𝑡)𝑋 − 𝑈̇′(𝑡))]

𝑇

[𝑅̇(𝑡)(ℎ(𝑡)𝑋 − 𝑈′(𝑡)) + 𝑅(𝑡) (ℎ̇(𝑡)𝑋 − 𝑈̇′(𝑡))]
}

𝑡2

𝑡1
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ve böylece 

2𝑆(𝑋) = ∫[(ℎ2𝑋𝑇𝑋 − ℎ𝑋𝑇𝑈′ − 𝑈′𝑇ℎ𝑋 + 𝑈′𝑇𝑈′)𝐼𝑎̇2

𝑡2

𝑡1

 

       +(ℎℎ̇𝑋𝑇𝑋 − ℎ̇𝑈̇𝑋𝑇 + 𝑈̇′𝑇𝑈̇′)𝐼

                       +(ℎℎ̇𝑋𝑇𝑋 − ℎ𝑋𝑇𝑈̇ − 𝑈′𝑇ℎ̇𝑋 + 𝑈′𝑇𝑈̇′)

                     +(ℎ̇ℎ𝑋𝑇𝑋 − ℎ̇𝑋𝑇𝑈′ − 𝑈̇′𝑇𝑈′)𝑅̇𝑇𝑅̇]𝑑𝑡

𝑅̇𝑇𝑅                 (4.2.6) 

olur. Diğer yandan 

𝑅(𝑡) = (
(𝑅 − 𝑟) 𝑐𝑜𝑠(𝛽(𝑡)) 𝑟 sin(𝛽(𝑡))

(𝑅 − 𝑟) 𝑠𝑖𝑛(𝛽(𝑡)) −𝑟𝑐𝑜𝑠(𝛽(𝑡))
) 

𝑅̇(𝑡) = (
−(𝑅 − 𝑟) sin(𝛽(𝑡)). 𝛽̇(𝑡) 𝑟 𝑐𝑜𝑠(𝛽(𝑡)). 𝛽̇(𝑡)

(𝑅 − 𝑟) 𝑐𝑜𝑠(𝛽(𝑡)). 𝛽̇(𝑡) 𝑟 sin(𝛽(𝑡)). 𝛽̇(𝑡)
) 

[𝑅̇(𝑡)]
𝑇
= (

−(𝑅 − 𝑟) sin(𝛽(𝑡)). 𝛽̇(𝑡) (𝑅 − 𝑟) 𝑐𝑜𝑠(𝛽(𝑡)). 𝛽̇(𝑡)

𝑟 𝑐𝑜𝑠(𝛽(𝑡)). 𝛽̇(𝑡) 𝑟 sin(𝛽(𝑡)). 𝛽̇(𝑡)
) 

olacağından 

[𝑅̇(𝑡)]
𝑇
𝑅(𝑡)

= (
−(𝑅 − 𝑟)2 𝑐𝑜𝑠(𝛽(𝑡)) . sin(𝛽(𝑡)). 𝛽̇(𝑡) + (𝑅 − 𝑟)2 𝑠𝑖𝑛(𝛽(𝑡)) . 𝑐𝑜𝑠(𝛽(𝑡)). 𝛽̇(𝑡)

𝑟2 sin(𝛽(𝑡)) . 𝑐𝑜𝑠(𝛽(𝑡)). 𝛽̇(𝑡) − 𝑟2 𝑐𝑜𝑠(𝛽(𝑡)) sin(𝛽(𝑡)). 𝛽̇(𝑡)
)

= 𝛽̇(𝑡) 

ve 

[𝑅̇(𝑡)]
𝑇
𝑅̇(𝑡) = (

(𝑅 − 𝑟)2(sin(𝛽(𝑡)). 𝛽̇(𝑡))
2
+ (𝑅 − 𝑟)2(𝑐𝑜𝑠(𝛽(𝑡)). 𝛽̇(𝑡))

2

𝑟2(𝑐𝑜𝑠(𝛽(𝑡)). 𝛽̇(𝑡))
2
+ 𝑟2(sin(𝛽(𝑡)). 𝛽̇(𝑡))

2 )       

= 𝛽̇(𝑡) 

bulunur. Böylece 

𝑈(𝑡) = (
𝑢1(𝑡)

𝑢2(𝑡)
)    ,    [𝑈(𝑡)]𝑇 = (𝑢1(𝑡) 𝑢2(𝑡)) 

𝑈̇(𝑡) = (
𝑢̇1(𝑡)

𝑢̇2(𝑡)
)    ,     [𝑈̇(𝑡)]

𝑇
= (𝑢̇1(𝑡) 𝑢̇2(𝑡)) 
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𝑈′(𝑡) = (
𝑢1
′ (𝑡)

𝑢2
′ (𝑡)

)    ,    [𝑈′(𝑡)]𝑇 = (𝑢1
′ (𝑡) 𝑢2

′ (𝑡)) 

𝑈̇′(𝑡) = (
𝑢̇1
′ (𝑡)

𝑢̇2
′ (𝑡)

)    ,    [𝑈̇′(𝑡)]
𝑇
= (𝑢̇1

′ (𝑡) 𝑢̇2
′ (𝑡)) 

ifadelerini (4.2.6) ifadesinde yerine yazarsak 

2𝑆(𝑋) = ∫ [(ℎ2𝑋𝑇𝑋 − ℎ𝑋𝑇 (
𝑢1
′

𝑢2
′ ) − (𝑢1

′ 𝑢2
′ )ℎ𝑋 + (𝑢1

′ 𝑢2
′ ) (

𝑢1
′

𝑢2
′ )) 𝐼𝛽̇

2

𝑡2

𝑡1

 

    + (ℎℎ̇𝑋𝑇𝑋 − ℎ̇𝑋𝑇 (
𝑢̇1
𝑢̇2
) + (𝑢̇1

′ 𝑢̇2
′ ) (

𝑢̇1
′

𝑢̇2
′ )) 𝐼

                             + (ℎℎ̇𝑋𝑇𝑋 − ℎ𝑋𝑇 (
𝑢̇1
𝑢̇2
) − (𝑢1

′ 𝑢2
′ )ℎ̇𝑋 + (𝑢1

′ 𝑢2
′ ) (

𝑢̇1
′

𝑢̇2
′ ))

                 + (ℎ̇ℎ𝑋𝑇𝑋 − ℎ̇𝑋𝑇 (
𝑢1
′

𝑢2
′ ) − (𝑢̇1

′ 𝑢̇2
′ ) (

𝑢1
′

𝑢2
′ )) 𝑅̇

𝑇𝑅̇] 𝑑𝑡

𝑅̇𝑇𝑅 

ve buradan 

2𝑆(𝑋) = ∫ [(ℎ2(𝑥1 𝑥2) (
𝑥1
𝑥2
) − ℎ(𝑥1 𝑥2) (

𝑢1
′

𝑢2
′ ) − (𝑢1

′ 𝑢2
′ )ℎ (

𝑥1
𝑥2
) + (𝑢1

′ )2

𝑡2

𝑡1

+ (𝑢2
′ )2) 𝐼𝛽̇2 

+(ℎℎ̇(𝑥1 𝑥2) (
𝑥1
𝑥2
) − ℎ̇(𝑥1 𝑥2) (

𝑢̇1
𝑢̇2
) + (𝑢̇1

′ )2 + (𝑢̇2
′ )2) 𝐼 

+(ℎℎ̇(𝑥1 𝑥2) (
𝑥1
𝑥2
) − ℎ(𝑥1 𝑥2) (

𝑢̇1
𝑢̇2
) − (𝑢1

′ 𝑢2
′ )ℎ̇ (

𝑥1
𝑥2
) + 𝑢1

′ 𝑢̇1
′ + 𝑢2

′ 𝑢̇2
′ ) 𝑅̇𝑇𝑅 

+(ℎ̇ℎ(𝑥1 𝑥2) (
𝑥1
𝑥2
) − ℎ̇(𝑥1 𝑥2) (

𝑢1
′

𝑢2
′ ) − 𝑢̇1

′𝑢1
′ − 𝑢̇2

′ 𝑢2
′ ) 𝑅̇𝑇𝑅̇] 𝑑𝑡 

elde ederiz. 

Bu eşitliği bileşen formunda ifade edersek 

2𝑆(𝑥1, 𝑥2) = (𝑥1
2 + 𝑥2

2)∫ (ℎ2𝛽̇2 + ℎ̇2)𝑑𝑡
𝑡2

𝑡1
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+∫ [(𝑢1
′ 2 + 𝑢2

′ 2)𝛽̇2 + 𝑢̇1
′ 2 + 𝑢̇2

′ 2]𝑑𝑡
𝑡2

𝑡1

                                                                

+𝑥1∫ [−2ℎ𝑢1
′ 𝛽̇2 − ℎ̇𝑢̇1 − ℎ𝑢̇1𝛽̇ − 2ℎ̇𝑢1

′ 𝛽̇]𝑑𝑡       
𝑡2

𝑡1

                           (4.2.7)

+𝑥2∫ [−2ℎ𝑢2
′ 𝛽̇2 − ℎ̇𝑢̇2 − ℎ𝑢̇2𝛽̇ − 2ℎ̇𝑢2

′ 𝛽̇]𝑑𝑡                                               
𝑡2

𝑡1

 

elde edilir. 

(4.2.7) denkleminde  

                           𝐻𝑅 = ∫ (ℎ2𝛽̇2 + ℎ̇2)𝑑𝑡
𝑡2

𝑡1

 

                           𝐻𝑇 = ∫ [(𝑢1
′ 2 + 𝑢2

′ 2)𝛽̇2 + 𝑢̇1
′ 2 + 𝑢̇2

′ 2]𝑑𝑡
𝑡2

𝑡1

 

                          𝐻𝑥1 = ∫ [−2ℎ𝑢1
′ 𝛽̇2 − ℎ̇𝑢̇1 − ℎ𝑢̇1𝛽̇ − 2ℎ̇𝑢1

′ 𝛽̇]𝑑𝑡       
𝑡2

𝑡1

 

                         𝐻𝑥2 = ∫ [−2ℎ𝑢2
′ 𝛽̇2 − ℎ̇𝑢̇2 − ℎ𝑢̇2𝛽̇ − 2ℎ̇𝑢2

′ 𝛽̇]𝑑𝑡       
𝑡2

𝑡1

 

eşitlikleri yerine yazılırsa  

2𝑆(𝑥1, 𝑥2) = (𝑥1
2 + 𝑥2

2)𝐻𝑅 + 𝐻𝑇 + 𝑥1𝐻𝑥1 + 𝑥2𝐻𝑥2                     (4.2.8) 

şeklinde elde edilir. 

(4.2.8) eylemi, 𝑡 zaman parametresine bağlı ifade edilirse, aranan 𝑋0 noktasının 

koordinatları minimal eylem prensibi yardımıyla aşağıdaki gibi hesaplanır.  

(4.2.8) denkleminin 𝑋 e göre türevi alınır ve sınıfa eşitlenirse, 

𝜕2𝑆

𝜕𝑋
|
𝑋0

= 0                                                        (4.2.9) 

elde edilir. (4.2.9) eşitliğini sağlayan noktalar karakteristik noktalardır. Karakteristik 

noktayı bileşenleri şeklinde elde etmek için (4.2.7) denkleminin 𝑥1 ve 𝑥2 ye göre 

türevleri alınır ve düzenlenirse  
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𝜕2𝑆(𝑥1, 𝑥2) 

𝜕𝑥1
= 2𝑥1∫ (ℎ2𝛽̇2 + ℎ̇2)𝑑𝑡

𝑡2

𝑡1

+∫ [−2ℎ𝑢1
′ 𝛽̇2 − ℎ̇𝑢̇1 − ℎ𝑢̇1𝛽̇ − 2ℎ̇𝑢1

′ 𝛽̇]𝑑𝑡 
𝑡2

𝑡1

                           (4.2.10) 

ve 

𝜕2𝑆(𝑥1, 𝑥2) 

𝜕𝑥2
= 2𝑥2∫ (ℎ2𝛽̇2 + ℎ̇2)𝑑𝑡

𝑡2

𝑡1

+∫ [−2ℎ𝑢2
′ 𝛽̇2 − ℎ̇𝑢̇2 − ℎ𝑢̇2𝛽̇ − 2ℎ̇𝑢2

′ 𝛽̇]𝑑𝑡
𝑡2

𝑡1

                            (4.2.11) 

elde edilir. 

Hareketli düzlemin 𝑋 noktasının aksine, 𝑋0 noktası integral sınırlarını temsil eden 

başlangıç ve bitiş zamanları olan 𝑡1 ve 𝑡2 zamanlarının bir fonksiyonudur. Bu 

denklemler sıfıra eşitlenir ve karakteristik noktanın bileşenleri  

𝑥1 = −
∫ [−2ℎ𝑢1

′ 𝛽̇2 − ℎ̇𝑢̇1 − ℎ𝑢̇1𝛽̇ − 2ℎ̇𝑢1
′ 𝛽̇]𝑑𝑡 

𝑡2
𝑡1

2 ∫ (ℎ2𝛽̇2 + ℎ̇2)𝑑𝑡
𝑡2
𝑡1

= −
𝐻𝑥1
2𝐻𝑅

 

ve 

𝑥2 = −
∫ [−2ℎ𝑢2

′ 𝛽̇2 − ℎ̇𝑢̇2 − ℎ𝑢̇2𝛽̇ − 2ℎ̇𝑢2
′ 𝛽̇]𝑑𝑡

𝑡2
𝑡1

2∫ (ℎ2𝛽̇2 + ℎ̇2)𝑑𝑡
𝑡2
𝑡1

= −
𝐻𝑥2
2𝐻𝑅

 

olarak bulunur. Ayrıca 𝑋0 noktasının minimal nokta olması için  
𝜕2𝑆

𝜕𝑋2
> 0 olmalıdır. O 

halde  

𝜕2𝑆

𝜕𝑋2
=
1

2
I∫ 𝛽̇2𝑑𝑡 =

1

2
I𝐻𝑅 

ifadesi her zaman 0 ‘dan büyük olduğundan 𝑋0 bir karakteristik noktadır.  

Karakteristik noktanın bileşenleri (4.2.7) ifadesinde yerine yazılırsa  

2𝑆0(𝑡1, 𝑡2) = [(−
𝐻𝑥1
𝐻𝑅
)
2

+ (−
𝐻𝑥2
𝐻𝑅
)
2

]𝐻𝑅 + 𝐻𝑇 −
𝐻𝑥1
𝐻𝑅

𝐻𝑥1 −
𝐻𝑥2
𝐻𝑅

𝐻𝑥2 
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bulunur. 

Buradan da minimal eylem  

2𝑆0(𝑡1, 𝑡2) = 𝐻𝑇(𝑡1, 𝑡2) 

olarak ifade edilir. 

 

4.3.  Kardioid için uygulaması 

 

𝐸 hareketli ve 𝐸′ sabit olmak üzere iki düzlemin koordinat sistemleri arasında 

𝑡 −parametreli kapalı düzlemsel homotetik hareketi ele alınsın. 𝐸 hareketli düzleminin 

𝐸′ sabit düzlemine göre hareketi 𝐵: 𝐸/𝐸′ direkt hareketi olsun. Sistemlerin orijinleri 

sırasıyla (𝑂, 𝑂′), öteleme vektörleri (𝑂𝑂′ = 𝑈) ve (𝑂′𝑂 = 𝑈′), toplam dönme açısı 

𝜃(𝑡) olmak üzere, hareketli sisteme ait bir 𝑋 noktasının sabit sisteme göre yörüngesi 

𝑋′(𝑡) = ℎ(𝑡). 𝑅(𝑡)𝑋 + 𝑈′(𝑡)                                      (4.3.1) 

olarak ifade edilir. ℎ, 𝑡 reel parametresinin sürekli diferansiyellenebilir fonksiyonudur. 

Hareket sabit ve hareketli sistemde zamana bağlı dönüşüm olarak düşünülebilir. 

(4.3.1) denkleminde 𝑅(𝑡) 2 × 2 tipinde dönme matrisi, toplam dönme açısı 𝜃(𝑡); 𝑈(𝑡) 

ve 𝑈′(𝑡) öteleme vektörlerine karşılık gelen 2 × 1 tipinde matrisler; 𝑋′ ve 𝑋 sırasıyla 

sabit ve hareketli düzleme ait bir nokta olmak üzere, 

𝑋′(𝑡) = (
𝑥1
′(𝑡)

𝑥2
′ (𝑡)

)    ,    𝑈(𝑡) = (
𝑢1(𝑡)

𝑢2(𝑡)
)    ,    𝑈′(𝑡) = (

𝑢1
′ (𝑡)

𝑢2
′ (𝑡)

)    ,    𝑋(𝑡) = (
𝑥1(𝑡)

𝑥2(𝑡)
)   

𝑅(𝑡) = (
2𝑟 𝑐𝑜𝑠(𝜃(𝑡)) 𝑟 sin(𝜃(𝑡))

2𝑟 𝑠𝑖𝑛(𝜃(𝑡)) −𝑟𝑐𝑜𝑠(𝜃(𝑡))
) 

ifadeleriyle matris formunu 

(
𝑥1
′ (𝑡)

𝑥2
′ (𝑡)

) = ℎ(𝑡) (
2𝑟 𝑐𝑜𝑠(𝜃(𝑡)) 𝑟 sin(𝜃(𝑡))

2𝑟 𝑠𝑖𝑛(𝜃(𝑡)) −𝑟𝑐𝑜𝑠(𝜃(𝑡))
) (
𝑥1
𝑥2
) + (

𝑢1(𝑡)

𝑢2(𝑡)
) 

 

şeklinde ifade edebiliriz. 
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Sırf öteleme ve sırf dönme durumlarından kaçınmak için 𝜃 ≠ 0 ve ℎ = ℎ(𝑡) ≠ 𝑠𝑎𝑏𝑖𝑡 

kabul edilecektir. Öteleme vektörleri arasında 

𝑈′(𝑡) = −𝑅(𝑡). 𝑈(𝑡) 

bağıntısı vardır. Bu bağıntı (4.3.1) eşitliğinde yerine yazılırsa yörünge denklemi  

𝑋′(𝑡) = 𝑅(𝑡). (ℎ(𝑡)𝑋 − 𝑈(𝑡))                                    (4.3.2) 

olarak elde edilir. (4.3.2) denkleminde vektörlerin ifadeleri yerine yazılıp 𝑋(𝑥1, 𝑥2) 

bileşenleri ile ifade edilirse 

𝑥1
′(𝑡) = 2𝑟 𝑐𝑜𝑠(𝜃(𝑡)) . (ℎ(𝑡)𝑥1 − 𝑢1(𝑡)) + 𝑟 sin(𝜃(𝑡)) . (ℎ(𝑡)𝑥2 − 𝑢2(𝑡)) 

𝑥2
′ (𝑡) = 2𝑟 𝑠𝑖𝑛(𝜃(𝑡)) . (ℎ(𝑡)𝑥1 − 𝑢1(𝑡)) − 𝑟 𝑐𝑜𝑠(𝜃(𝑡)) . (ℎ(𝑡)𝑥2 − 𝑢2(𝑡)) 

olarak elde edilir. 

Düzlem kinematiğine en az eylem prensibini uygulayalım. Bu sistemde 𝑚 kütleli bir 

noktanın yörüngesi 𝑋′(𝑡) olmak üzere kinetik enerji formülü 

𝐸𝑘𝑖𝑛 =
1

2
𝑚 (𝑋̇′(𝑡))

2

                                              (4.3.3) 

şeklindedir. 

Bu ifadede belirtilen enerji fonksiyonu karakteristik fonksiyon veya enerji fonksiyonu 

olarak adlandırılan  

𝑆 = ∫ 𝐸𝑘𝑖𝑛𝑑𝑡

𝑡2

𝑡1

= 
1

2
∫ 𝑚(𝑋̇′(𝑡))

2

𝑑𝑡

𝑡2

𝑡1

 

ifadesine karşılık gelir. 𝑚 = 1 olması durumunda bu ifade  

𝑆 =
1

2
∫ (𝑋̇′(𝑡)𝑇 . 𝑋̇′(𝑡)) 𝑑𝑡

𝑡2

𝑡1

                                      (4.3.4) 

halini alır. 

𝐸/𝐸′ düzlemsel hareketinde minimal eylem noktasının elde edilebilmesi için 𝐸 

hareketli düzleminin noktalarının enerjisi hesaplanmalıdır. Öyleyse  
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𝑋′(𝑡) = ℎ(𝑡). 𝑅(𝑡)𝑋 − 𝑈′(𝑡) 

denkleminin 𝑡 parametresine göre türevi alınmalıdır. 

𝑋′̇ (𝑡) = 𝑅̇(𝑡)(ℎ(𝑡)𝑋 − 𝑈′(𝑡)) + 𝑅(𝑡) (ℎ̇(𝑡)𝑋 − 𝑈̇′(𝑡))            (4.3.5) 

Bu denklemi 𝑋′̇ (𝑡) = (𝑥̇1
′(𝑡), 𝑥̇2

′ (𝑡)) bileşen formunda ifade edersek 

  𝑥̇1
′(𝑡) = −(ℎ(𝑡)𝑥1 − 𝑢1

′ (𝑡))2𝑟 sin(𝜃(𝑡)). 𝜃̇(𝑡) + (ℎ̇(𝑡)𝑥1 − 𝑢̇1
′ (𝑡)) 2𝑟 𝑐𝑜𝑠(𝜃(𝑡)) 

     (ℎ(𝑡)𝑥2 − 𝑢2
′ (𝑡))𝑟 𝑐𝑜𝑠(𝜃(𝑡)). 𝜃̇(𝑡) + (ℎ̇(𝑡)𝑥2 − 𝑢̇2

′ (𝑡)) 𝑟 sin(𝜃(𝑡)) 

   𝑥̇2
′ (𝑡) = (ℎ(𝑡)𝑥1 − 𝑢1

′ (𝑡))2𝑟 𝑐𝑜𝑠(𝜃(𝑡)) 𝜃̇(𝑡) + (ℎ̇(𝑡)𝑥1 − 𝑢̇1
′ (𝑡)) 2𝑟 𝑠𝑖𝑛(𝜃(𝑡)) 

     +(ℎ(𝑡)𝑥2 − 𝑢2
′ (𝑡))𝑟 sin(𝜃(𝑡)). 𝜃̇(𝑡) − (ℎ̇(𝑡)𝑥2 − 𝑢̇2

′ (𝑡)) 𝑟𝑐𝑜𝑠(𝜃(𝑡)) 

elde ederiz. (4.3.5) ifadesi (4.3.4) denkleminde yerine yazılırsa 

2𝑆(𝑋) = ∫ {
[𝑅̇(𝑡)(ℎ(𝑡)𝑋 − 𝑈′(𝑡)) + 𝑅(𝑡) (ℎ̇(𝑡)𝑋 − 𝑈̇′(𝑡))]

𝑇

[𝑅̇(𝑡)(ℎ(𝑡)𝑋 − 𝑈′(𝑡)) + 𝑅(𝑡) (ℎ̇(𝑡)𝑋 − 𝑈̇′(𝑡))]
}

𝑡2

𝑡1

 

ve böylece 

2𝑆(𝑋) = ∫[(ℎ2𝑋𝑇𝑋 − ℎ𝑋𝑇𝑈′ − 𝑈′𝑇ℎ𝑋 + 𝑈′𝑇𝑈′)𝐼𝑎̇2

𝑡2

𝑡1

 

       +(ℎℎ̇𝑋𝑇𝑋 − ℎ̇𝑈̇𝑋𝑇 + 𝑈̇′𝑇𝑈̇′)𝐼

                       +(ℎℎ̇𝑋𝑇𝑋 − ℎ𝑋𝑇𝑈̇ − 𝑈′𝑇ℎ̇𝑋 + 𝑈′𝑇𝑈̇′)

                     +(ℎ̇ℎ𝑋𝑇𝑋 − ℎ̇𝑋𝑇𝑈′ − 𝑈̇′𝑇𝑈′)𝑅̇𝑇𝑅̇]𝑑𝑡

𝑅̇𝑇𝑅                (4.3.6) 

olur. Diğer yandan 

𝑅(𝑡) = (
2𝑟 𝑐𝑜𝑠(𝜃(𝑡)) 𝑟 sin(𝜃(𝑡))

2𝑟 𝑠𝑖𝑛(𝜃(𝑡)) −𝑟𝑐𝑜𝑠(𝜃(𝑡))
) 

𝑅̇(𝑡) = (
−2𝑟 sin(𝜃(𝑡)). 𝜃̇(𝑡) 𝑟 𝑐𝑜𝑠(𝜃(𝑡)). 𝜃̇(𝑡)

2𝑟 𝑐𝑜𝑠(𝜃(𝑡)). 𝜃̇(𝑡) 𝑟 sin(𝜃(𝑡)). 𝜃̇(𝑡)
) 

[𝑅̇(𝑡)]
𝑇
= (

−2𝑟 sin(𝜃(𝑡)). 𝜃̇(𝑡) 2𝑟 𝑐𝑜𝑠(𝜃(𝑡)). 𝜃̇(𝑡)

𝑟 𝑐𝑜𝑠(𝜃(𝑡)). 𝜃̇(𝑡) 𝑟 sin(𝜃(𝑡)). 𝜃̇(𝑡)
) 

olacağından 
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[𝑅̇(𝑡)]
𝑇
𝑅(𝑡)

= (
−(2𝑟)2 𝑐𝑜𝑠(𝜃(𝑡)) . sin(𝜃(𝑡)). 𝜃̇(𝑡) + (2𝑟)2 𝑠𝑖𝑛(𝜃(𝑡)). 𝑐𝑜𝑠(𝜃(𝑡)). 𝜃̇(𝑡)

𝑟2 𝑠𝑖𝑛(𝜃(𝑡)). 𝑐𝑜𝑠(𝜃(𝑡)). 𝜃̇(𝑡) − 𝑟2 𝑐𝑜𝑠(𝜃(𝑡)) . sin(𝜃(𝑡)). 𝜃̇(𝑡)
) 

                           = 𝜃̇(𝑡) 

ve 

[𝑅̇(𝑡)]
𝑇
𝑅̇(𝑡) = (

(2𝑟)2(sin(𝜃(𝑡)). 𝜃̇(𝑡))
2
+ (2𝑟)2 (𝑐𝑜𝑠(𝜃(𝑡)). 𝜃̇(𝑡))

2

𝑟2 (𝑐𝑜𝑠(𝜃(𝑡)). 𝜃̇(𝑡))
2

+ 𝑟2(sin(𝜃(𝑡)). 𝜃̇(𝑡))
2

) = 𝜃̇(𝑡) 

bulunur. Böylece  

𝑈(𝑡) = (
𝑢1(𝑡)

𝑢2(𝑡)
)    ,    [𝑈(𝑡)]𝑇 = (𝑢1(𝑡) 𝑢2(𝑡)) 

𝑈̇(𝑡) = (
𝑢̇1(𝑡)

𝑢̇2(𝑡)
)    ,     [𝑈̇(𝑡)]

𝑇
= (𝑢̇1(𝑡) 𝑢̇2(𝑡)) 

𝑈′(𝑡) = (
𝑢1
′ (𝑡)

𝑢2
′ (𝑡)

)    ,    [𝑈′(𝑡)]𝑇 = (𝑢1
′ (𝑡) 𝑢2

′ (𝑡)) 

𝑈̇′(𝑡) = (
𝑢̇1
′ (𝑡)

𝑢̇2
′ (𝑡)

)    ,    [𝑈̇′(𝑡)]
𝑇
= (𝑢̇1

′ (𝑡) 𝑢̇2
′ (𝑡)) 

 

ifadelerini (4.3.6) eşitliğinde yerine yazarsak 

2𝑆(𝑋) = ∫ [(ℎ2𝑋𝑇𝑋 − ℎ𝑋𝑇 (
𝑢1
′

𝑢2
′ ) − (𝑢1

′ 𝑢2
′ )ℎ𝑋 + (𝑢1

′ 𝑢2
′ ) (

𝑢1
′

𝑢2
′ )) 𝐼𝜃̇

2

𝑡2

𝑡1

 

+(ℎℎ̇𝑋𝑇𝑋 − ℎ̇𝑋𝑇 (
𝑢̇1
𝑢̇2
) + (𝑢̇1

′ 𝑢̇2
′ ) (

𝑢̇1
′

𝑢̇2
′ )) 𝐼

                        + (ℎℎ̇𝑋𝑇𝑋 − ℎ𝑋𝑇 (
𝑢̇1
𝑢̇2
) − (𝑢1

′ 𝑢2
′ )ℎ̇𝑋 + (𝑢1

′ 𝑢2
′ ) (

𝑢̇1
′

𝑢̇2
′ ))

             + (ℎ̇ℎ𝑋𝑇𝑋 − ℎ̇𝑋𝑇 (
𝑢1
′

𝑢2
′ ) − (𝑢̇1

′ 𝑢̇2
′ ) (

𝑢1
′

𝑢2
′ )) 𝑅̇

𝑇𝑅̇] 𝑑𝑡

𝑅̇𝑇𝑅 

ve buradan 

2𝑆(𝑋) = ∫ [(ℎ2(𝑥1 𝑥2) (
𝑥1
𝑥2
) − ℎ(𝑥1 𝑥2) (

𝑢1
′

𝑢2
′ ) − (𝑢1

′ 𝑢2
′ )ℎ (

𝑥1
𝑥2
) + (𝑢1

′ )2

𝑡2

𝑡1

+ (𝑢2
′ )2) 𝐼𝜃̇2 
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+(ℎℎ̇(𝑥1 𝑥2) (
𝑥1
𝑥2
) − ℎ̇(𝑥1 𝑥2) (

𝑢̇1
𝑢̇2
) + (𝑢̇1

′ )2 + (𝑢̇2
′ )2) 𝐼 

+(ℎℎ̇(𝑥1 𝑥2) (
𝑥1
𝑥2
) − ℎ(𝑥1 𝑥2) (

𝑢̇1
𝑢̇2
) − (𝑢1

′ 𝑢2
′ )ℎ̇ (

𝑥1
𝑥2
) + 𝑢1

′ 𝑢̇1
′ + 𝑢2

′ 𝑢̇2
′ ) 𝑅̇𝑇𝑅 

+(ℎ̇ℎ(𝑥1 𝑥2) (
𝑥1
𝑥2
) − ℎ̇(𝑥1 𝑥2) (

𝑢1
′

𝑢2
′ ) − 𝑢̇1

′𝑢1
′ − 𝑢̇2

′ 𝑢2
′ ) 𝑅̇𝑇𝑅̇] 𝑑𝑡 

elde ederiz. 

Bu eşitliği bileşen formunda ifade edersek 

2𝑆(𝑥1, 𝑥2) = (𝑥1
2 + 𝑥2

2)∫ (ℎ2𝜃̇2 + ℎ̇2)𝑑𝑡
𝑡2

𝑡1

 

+∫ [(𝑢1
′ 2 + 𝑢2

′ 2)𝜃̇2 + 𝑢̇1
′ 2 + 𝑢̇2

′ 2]𝑑𝑡
𝑡2

𝑡1

                       +𝑥1∫ [−2ℎ𝑢1
′ 𝜃̇2 − ℎ̇𝑢̇1 − ℎ𝑢̇1𝜃̇ − 2ℎ̇𝑢1

′ 𝜃̇]𝑑𝑡       
𝑡2

𝑡1

                        +𝑥2∫ [−2ℎ𝑢2
′ 𝜃̇2 − ℎ̇𝑢̇2 − ℎ𝑢̇2𝜃̇ − 2ℎ̇𝑢2

′ 𝜃̇]𝑑𝑡       
𝑡2

𝑡1

                         (4.3.7) 

elde edilir. 

(4.3.7) denkleminde  

                           𝐻𝑅 = ∫ (ℎ2𝜃̇2 + ℎ̇2)𝑑𝑡
𝑡2

𝑡1

 

                           𝐻𝑇 = ∫ [(𝑢1
′ 2 + 𝑢2

′ 2)𝜃̇2 + 𝑢̇1
′ 2 + 𝑢̇2

′ 2]𝑑𝑡
𝑡2

𝑡1

 

                          𝐻𝑥1 = ∫ [−2ℎ𝑢1
′ 𝜃̇2 − ℎ̇𝑢̇1 − ℎ𝑢̇1𝜃̇ − 2ℎ̇𝑢1

′ 𝜃̇]𝑑𝑡       
𝑡2

𝑡1

 

                         𝐻𝑥2 = ∫ [−2ℎ𝑢2
′ 𝜃̇2 − ℎ̇𝑢̇2 − ℎ𝑢̇2𝜃̇ − 2ℎ̇𝑢2

′ 𝜃̇]𝑑𝑡       
𝑡2

𝑡1

 

ifadeleri yerine yazılırsa  

2𝑆(𝑥1, 𝑥2) = (𝑥1
2 + 𝑥2

2)𝐻𝑅 + 𝐻𝑇 + 𝑥1𝐻𝑥1 + 𝑥2𝐻𝑥2                   (4.3.8) 

şeklinde elde edilir. 

(4.3.8) eylemi, 𝑡 zaman parametresine bağlı ifade edilirse, aranan 𝑋0 noktasının 

koordinatları minimal eylem prensibi yardımıyla aşağıdaki gibi hesaplanır.  

(4.3.8) denkleminin 𝑋 e göre türevi alınır ve sınıfa eşitlenirse, 
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𝜕2𝑆

𝜕𝑋
|
𝑋0

= 0                                                       (4.3.9) 

elde edilir. (4.3.9) eşitliğini sağlayan noktalar karakteristik noktalardır. Karakteristik 

noktayı bileşenleri şeklinde elde etmek için (4.3.7) denkleminin 𝑥1 ve 𝑥2 ye göre 

türevleri alınır ve düzenlenirse  

𝜕2𝑆(𝑥1, 𝑥2) 

𝜕𝑥1
= 2𝑥1∫ (ℎ2𝜃̇2 + ℎ̇2)𝑑𝑡

𝑡2

𝑡1

+∫ [−2ℎ𝑢1
′ 𝜃̇2 − ℎ̇𝑢̇1 − ℎ𝑢̇1𝜃̇ − 2ℎ̇𝑢1

′ 𝜃̇]𝑑𝑡 
𝑡2

𝑡1

                            (4.3.10) 

ve  

𝜕2𝑆(𝑥1, 𝑥2) 

𝜕𝑥2
= 2𝑥2∫ (ℎ2𝜃̇2 + ℎ̇2)𝑑𝑡

𝑡2

𝑡1

+∫ [−2ℎ𝑢2
′ 𝜃̇2 − ℎ̇𝑢̇2 − ℎ𝑢̇2𝜃̇ − 2ℎ̇𝑢2

′ 𝜃̇]𝑑𝑡
𝑡2

𝑡1

                             (4.3.11) 

elde edilir. 

Hareketli düzlemin 𝑋 noktasının aksine, 𝑋0 noktası integral sınırlarını temsil eden 

başlangıç ve bitiş zamanları olan 𝑡1 ve 𝑡2 zamanlarının bir fonksiyonudur. Bu 

denklemler sıfıra eşitlenir ve karakteristik noktanın bileşenleri  

𝑥1 = −
∫ [−2ℎ𝑢1

′ 𝜃̇2 − ℎ̇𝑢̇1 − ℎ𝑢̇1𝜃̇ − 2ℎ̇𝑢1
′ 𝜃̇]𝑑𝑡 

𝑡2
𝑡1

2∫ (ℎ2𝜃̇2 + ℎ̇2)𝑑𝑡
𝑡2
𝑡1

= −
𝐻𝑥1
2𝐻𝑅

 

ve  

𝑥2 = −
∫ [−2ℎ𝑢2

′ 𝜃̇2 − ℎ̇𝑢̇2 − ℎ𝑢̇2𝜃̇ − 2ℎ̇𝑢2
′ 𝜃̇]𝑑𝑡

𝑡2
𝑡1

2∫ (ℎ2𝜃̇2 + ℎ̇2)𝑑𝑡
𝑡2
𝑡1

= −
𝐻𝑥2
2𝐻𝑅

 

olarak bulunur. Ayrıca 𝑋0 noktasının minimal nokta olması için  
𝜕2𝑆

𝜕𝑋2
> 0 olmalıdır. O 

halde  

𝜕2𝑆

𝜕𝑋2
=
1

2
I∫ 𝜃̇2𝑑𝑡 =

1

2
I𝐻𝑅 
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ifadesi her zaman 0 dan büyük olduğundan 𝑋0 bir karakteristik noktadır.  

Karakteristik noktanın bileşenleri 2𝑆(𝑥1, 𝑥2) de yerine yazılırsa  

2𝑆0(𝑡1, 𝑡2) = [(−
𝐻𝑥1
𝐻𝑅
)
2

+ (−
𝐻𝑥2
𝐻𝑅
)
2

]𝐻𝑅 + 𝐻𝑇 −
𝐻𝑥1
𝐻𝑅

𝐻𝑥1 −
𝐻𝑥2
𝐻𝑅

𝐻𝑥2 

bulunur. Buradan da minimal eylem  

2𝑆0(𝑡1, 𝑡2) = 𝐻𝑇(𝑡1, 𝑡2) 

olarak ifade edilir. 

 

4.4.  Nephroid için uygulaması 

 

𝐸 hareketli ve 𝐸′ sabit olmak üzere iki düzlemin koordinat sistemleri arasında 

𝑡 −parametreli kapalı düzlemsel homotetik hareketi ele alınsın. 𝐸 hareketli düzleminin 

𝐸′ sabit düzlemine göre hareketi 𝐵: 𝐸/𝐸′ direkt hareketi olsun. Sistemlerin orijinleri 

sırasıyla (𝑂, 𝑂′), öteleme vektörleri (𝑂𝑂′ = 𝑈) ve (𝑂′𝑂 = 𝑈′), toplam dönme açısı 

𝛿(𝑡) olmak üzere, hareketli sisteme ait bir 𝑋 noktasının sabit sisteme göre yörüngesi 

𝑋′(𝑡) = ℎ(𝑡). 𝑅(𝑡)𝑋 + 𝑈′(𝑡)                                      (4.4.1) 

olarak ifade edilir. ℎ, 𝑡 reel parametresinin sürekli diferansiyellenebilir fonksiyonudur. 

Hareket sabit ve hareketli sistemde zamana bağlı dönüşüm olarak düşünülebilir. 

(4.4.1) denkleminde 𝑅(𝑡) 2 × 2 tipinde dönme matrisi, toplam dönme açısı 𝛿(𝑡) ; 

𝑈(𝑡) ve 𝑈′(𝑡) öteleme vektörlerine karşılık gelen 2 × 1 tipinde matrisler; 𝑋′ ve 

𝑋 sırasıyla sabit ve hareketli düzleme ait bir nokta olmak üzere, 

𝑋′(𝑡) = (
𝑥1
′(𝑡)

𝑥2
′ (𝑡)

)    ,    𝑈(𝑡) = (
𝑢1(𝑡)

𝑢2(𝑡)
)    ,    𝑈′(𝑡) = (

𝑢1
′ (𝑡)

𝑢2
′ (𝑡)

)    ,    𝑋(𝑡) = (
𝑥1(𝑡)

𝑥2(𝑡)
)   

𝑅(𝑡) = (
3𝑟 𝑐𝑜𝑠(𝛿(𝑡)) 𝑟 sin(𝛿(𝑡))

3𝑟 𝑠𝑖𝑛(𝛿(𝑡)) −𝑟𝑐𝑜𝑠(𝛿(𝑡))
) 

ifadeleriyle matris formunu 
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(
𝑥1
′(𝑡)

𝑥2
′ (𝑡)

) = ℎ(𝑡) (
3𝑟 𝑐𝑜𝑠(𝛿(𝑡)) 𝑟 sin(𝛿(𝑡))

3𝑟 𝑠𝑖𝑛(𝛿(𝑡)) −𝑟𝑐𝑜𝑠(𝛿(𝑡))
) (
𝑥1
𝑥2
) + (

𝑢1(𝑡)

𝑢2(𝑡)
) 

şeklinde ifade edebiliriz. 

Sırf öteleme ve sırf dönme durumlarından kaçınmak için 𝛿 ≠ 0 ve ℎ = ℎ(𝑡) ≠ 𝑠𝑎𝑏𝑖𝑡 

kabul edilecektir. Öteleme vektörleri arasında 

𝑈′(𝑡) = −𝑅(𝑡). 𝑈(𝑡) 

bağıntısı vardır. Bu bağıntı (4.4.1) eşitliğinde yerine yazılırsa yörünge denklemi  

𝑋′(𝑡) = 𝑅(𝑡). (ℎ(𝑡)𝑋 − 𝑈(𝑡))                                    (4.4.2) 

olarak elde edilir. (4.4.2) denkleminde vektörlerin ifadeleri yerine yazılıp 𝑋(𝑥1, 𝑥2) 

bileşenleri ile ifade edilirse 

𝑥1
′(𝑡) = 3𝑟 𝑐𝑜𝑠(𝛿(𝑡)) . (ℎ(𝑡)𝑥1 − 𝑢1(𝑡)) + 𝑟 sin(𝛿(𝑡)) . (ℎ(𝑡)𝑥2 − 𝑢2(𝑡)) 

𝑥2
′ (𝑡) = 3𝑟 𝑠𝑖𝑛(𝛿(𝑡)) . (ℎ(𝑡)𝑥1 − 𝑢1(𝑡)) − 𝑟 𝑐𝑜𝑠(𝛿(𝑡)) . (ℎ(𝑡)𝑥2 − 𝑢2(𝑡)) 

olarak elde edilir. 

Düzlem kinematiğine en az eylem prensibini uygulayalım. Bu sistemde 𝑚 kütleli bir 

noktanın yörüngesi 𝑋′(𝑡) olmak üzere kinetik enerji formülü 

𝐸𝑘𝑖𝑛 =
1

2
𝑚 (𝑋̇′(𝑡))

2

                                              (4.4.3) 

şeklindedir. 

Bu ifadede belirtilen enerji fonksiyonu karakteristik fonksiyon veya enerji fonksiyonu 

olarak adlandırılan  

𝑆 = ∫ 𝐸𝑘𝑖𝑛𝑑𝑡

𝑡2

𝑡1

= 
1

2
∫ 𝑚(𝑋̇′(𝑡))

2

𝑑𝑡

𝑡2

𝑡1

 

ifadesine karşılık gelir. 𝑚 = 1 olması durumunda bu ifade  

𝑆 =
1

2
∫ (𝑋̇′(𝑡)𝑇 . 𝑋̇′(𝑡)) 𝑑𝑡

𝑡2

𝑡1

                                      (4.4.4) 
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halini alır. 

𝐸/𝐸′ düzlemsel hareketinde minimal eylem noktasının elde edilebilmesi için 𝐸 

hareketli düzleminin noktalarının enerjisi hesaplanmalıdır. Öyleyse  

𝑋′(𝑡) = ℎ(𝑡). 𝑅(𝑡)𝑋 − 𝑈′(𝑡) 

denkleminin 𝑡 parametresine göre türevi alınmalıdır. 

𝑋′̇ (𝑡) = 𝑅̇(𝑡)(ℎ(𝑡)𝑋 − 𝑈′(𝑡)) + 𝑅(𝑡) (ℎ̇(𝑡)𝑋 − 𝑈̇′(𝑡))            (4.4.5) 

Bu denklemi 𝑋′̇ (𝑡) = (𝑥̇1
′(𝑡), 𝑥̇2

′ (𝑡)) bileşen formunda ifade edersek 

  𝑥̇1
′(𝑡) = −(ℎ(𝑡)𝑥1 − 𝑢1

′ (𝑡))3𝑟 sin(𝛿(𝑡)) 𝛿̇(𝑡) + (ℎ̇(𝑡)𝑥1 − 𝑢̇1
′ (𝑡)) 3𝑟 𝑐𝑜𝑠(𝛿(𝑡)) 

     (ℎ(𝑡)𝑥2 − 𝑢2
′ (𝑡))𝑟 𝑐𝑜𝑠(𝛿(𝑡)) 𝛿̇(𝑡) + (ℎ̇(𝑡)𝑥2 − 𝑢̇2

′ (𝑡)) 𝑟 sin(𝛿(𝑡)) 

   𝑥̇2
′ (𝑡) = (ℎ(𝑡)𝑥1 − 𝑢1

′ (𝑡))3𝑟 𝑐𝑜𝑠(𝛿(𝑡)) 𝛿̇(𝑡) + (ℎ̇(𝑡)𝑥1 − 𝑢̇1
′ (𝑡)) 3𝑟 sin(𝛿(𝑡)) 

     +(ℎ(𝑡)𝑥2 − 𝑢2
′ (𝑡))𝑟 sin(𝛿(𝑡)) 𝛿̇(𝑡) − (ℎ̇(𝑡)𝑥2 − 𝑢̇2

′ (𝑡)) 𝑟 𝑐𝑜𝑠(𝛿(𝑡)) 

elde ederiz. (4.4.5) ifadesi (4.4.4) denkleminde yerine yazılırsa 

2𝑆(𝑋) = ∫ {
[𝑅̇(𝑡)(ℎ(𝑡)𝑋 − 𝑈′(𝑡)) + 𝑅(𝑡) (ℎ̇(𝑡)𝑋 − 𝑈̇′(𝑡))]

𝑇

[𝑅̇(𝑡)(ℎ(𝑡)𝑋 − 𝑈′(𝑡)) + 𝑅(𝑡) (ℎ̇(𝑡)𝑋 − 𝑈̇′(𝑡))]
}

𝑡2

𝑡1

 

ve böylece 

2𝑆(𝑋) = ∫[(ℎ2𝑋𝑇𝑋 − ℎ𝑋𝑇𝑈′ − 𝑈′𝑇ℎ𝑋 + 𝑈′𝑇𝑈′)𝐼𝑎̇2

𝑡2

𝑡1

 

       +(ℎℎ̇𝑋𝑇𝑋 − ℎ̇𝑈̇𝑋𝑇 + 𝑈̇′𝑇𝑈̇′)𝐼

                       +(ℎℎ̇𝑋𝑇𝑋 − ℎ𝑋𝑇𝑈̇ − 𝑈′𝑇ℎ̇𝑋 + 𝑈′𝑇𝑈̇′)

                     +(ℎ̇ℎ𝑋𝑇𝑋 − ℎ̇𝑋𝑇𝑈′ − 𝑈̇′𝑇𝑈′)𝑅̇𝑇𝑅̇]𝑑𝑡

𝑅̇𝑇𝑅                (4.4.6) 

olur. Diğer yandan 

𝑅(𝑡) = (
3𝑟 𝑐𝑜𝑠(𝛿(𝑡)) 𝑟 sin(𝛿(𝑡))

3𝑟 𝑠𝑖𝑛(𝛿(𝑡)) −𝑟 𝑐𝑜𝑠(𝛿(𝑡))
) 

𝑅̇(𝑡) = (
−3𝑟 sin(𝛿(𝑡)) 𝛿̇(𝑡) 𝑟 𝑐𝑜𝑠(𝛿(𝑡)) 𝛿̇(𝑡)

3𝑟 𝑐𝑜𝑠(𝛿(𝑡)) 𝛿̇(𝑡) 𝑟 sin(𝛿(𝑡)) 𝛿̇(𝑡)
) 
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[𝑅̇(𝑡)]
𝑇
= (

−3𝑟 sin(𝛿(𝑡)) 𝛿̇(𝑡) 3𝑟 𝑐𝑜𝑠(𝛿(𝑡)) 𝛿̇(𝑡)

𝑟 𝑐𝑜𝑠(𝛿(𝑡)) 𝛿̇(𝑡) 𝑟 sin(𝛿(𝑡)) 𝛿̇(𝑡)
) 

olacağından  

[𝑅̇(𝑡)]
𝑇
𝑅(𝑡)      

= (
−(3𝑟)2 sin(𝛿(𝑡)) 𝛿̇(𝑡) 𝑐𝑜𝑠(𝛿(𝑡)) + (3𝑟)2 𝑐𝑜𝑠(𝛿(𝑡)) 𝛿̇(𝑡) 𝑠𝑖𝑛(𝛿(𝑡))

𝑟2 𝑐𝑜𝑠(𝛿(𝑡)) 𝛿̇(𝑡)𝑟 sin(𝛿(𝑡)) − 𝑟2 sin(𝛿(𝑡)) 𝛿̇(𝑡) 𝑐𝑜𝑠(𝛿(𝑡))
) 

                           = 𝛿̇(𝑡) 

ve  

[𝑅̇(𝑡)]
𝑇
𝑅̇(𝑡) = (

(3𝑟)2(sin(𝛿(𝑡)) 𝛿̇(𝑡))
2
+ (3𝑟)2(𝑐𝑜𝑠(𝛿(𝑡)) 𝛿̇(𝑡))

2

𝑟2(𝑐𝑜𝑠(𝛿(𝑡)) 𝛿̇(𝑡))
2
+ 𝑟2(sin(𝛿(𝑡)) 𝛿̇(𝑡))

2 ) = 𝛿̇(𝑡) 

bulunur. Böylece 

𝑈(𝑡) = (
𝑢1(𝑡)

𝑢2(𝑡)
)    ,    [𝑈(𝑡)]𝑇 = (𝑢1(𝑡) 𝑢2(𝑡)) 

𝑈̇(𝑡) = (
𝑢̇1(𝑡)

𝑢̇2(𝑡)
)    ,     [𝑈̇(𝑡)]

𝑇
= (𝑢̇1(𝑡) 𝑢̇2(𝑡)) 

𝑈′(𝑡) = (
𝑢1
′ (𝑡)

𝑢2
′ (𝑡)

)    ,    [𝑈′(𝑡)]𝑇 = (𝑢1
′ (𝑡) 𝑢2

′ (𝑡)) 

𝑈̇′(𝑡) = (
𝑢̇1
′ (𝑡)

𝑢̇2
′ (𝑡)

)    ,    [𝑈̇′(𝑡)]
𝑇
= (𝑢̇1

′ (𝑡) 𝑢̇2
′ (𝑡)) 

ifadelerini (4.4.6) eşitliğinde yerine yazarsak 

2𝑆(𝑋) = ∫ [(ℎ2𝑋𝑇𝑋 − ℎ𝑋𝑇 (
𝑢1
′

𝑢2
′ ) − (𝑢1

′ 𝑢2
′ )ℎ𝑋 + (𝑢1

′ 𝑢2
′ ) (

𝑢1
′

𝑢2
′ )) 𝐼𝛿̇

2

𝑡2

𝑡1

 

    + (ℎℎ̇𝑋𝑇𝑋 − ℎ̇𝑋𝑇 (
𝑢̇1
𝑢̇2
) + (𝑢̇1

′ 𝑢̇2
′ ) (

𝑢̇1
′

𝑢̇2
′ )) 𝐼

                             + (ℎℎ̇𝑋𝑇𝑋 − ℎ𝑋𝑇 (
𝑢̇1
𝑢̇2
) − (𝑢1

′ 𝑢2
′ )ℎ̇𝑋 + (𝑢1

′ 𝑢2
′ ) (

𝑢̇1
′

𝑢̇2
′ ))

                 + (ℎ̇ℎ𝑋𝑇𝑋 − ℎ̇𝑋𝑇 (
𝑢1
′

𝑢2
′ ) − (𝑢̇1

′ 𝑢̇2
′ ) (

𝑢1
′

𝑢2
′ )) 𝑅̇

𝑇𝑅̇] 𝑑𝑡

𝑅̇𝑇𝑅 

ve buradan 
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2𝑆(𝑋) = ∫ [(ℎ2(𝑥1 𝑥2) (
𝑥1
𝑥2
) − ℎ(𝑥1 𝑥2) (

𝑢1
′

𝑢2
′ ) − (𝑢1

′ 𝑢2
′ )ℎ (

𝑥1
𝑥2
) + (𝑢1

′ )2

𝑡2

𝑡1

+ (𝑢2
′ )2) 𝐼𝛿̇2 

+(ℎℎ̇(𝑥1 𝑥2) (
𝑥1
𝑥2
) − ℎ̇(𝑥1 𝑥2) (

𝑢̇1
𝑢̇2
) + (𝑢̇1

′ )2 + (𝑢̇2
′ )2) 𝐼 

+(ℎℎ̇(𝑥1 𝑥2) (
𝑥1
𝑥2
) − ℎ(𝑥1 𝑥2) (

𝑢̇1
𝑢̇2
) − (𝑢1

′ 𝑢2
′ )ℎ̇ (

𝑥1
𝑥2
) + 𝑢1

′ 𝑢̇1
′ + 𝑢2

′ 𝑢̇2
′ ) 𝑅̇𝑇𝑅 

+(ℎ̇ℎ(𝑥1 𝑥2) (
𝑥1
𝑥2
) − ℎ̇(𝑥1 𝑥2) (

𝑢1
′

𝑢2
′ ) − 𝑢̇1

′𝑢1
′ − 𝑢̇2

′ 𝑢2
′ ) 𝑅̇𝑇𝑅̇] 𝑑𝑡 

 

elde ederiz. 

Bu eşitliği bileşen formunda ifade edersek 

2𝑆(𝑥1, 𝑥2) = (𝑥1
2 + 𝑥2

2)∫ (ℎ2𝜃̇2 + ℎ̇2)𝑑𝑡
𝑡2

𝑡1

 

+∫ [(𝑢1
′ 2 + 𝑢2

′ 2)𝜃̇2 + 𝑢̇1
′ 2 + 𝑢̇2

′ 2]𝑑𝑡
𝑡2

𝑡1

                       +𝑥1∫ [−2ℎ𝑢1
′ 𝜃̇2 − ℎ̇𝑢̇1 − ℎ𝑢̇1𝜃̇ − 2ℎ̇𝑢1

′ 𝜃̇]𝑑𝑡       
𝑡2

𝑡1

                        +𝑥2∫ [−2ℎ𝑢2
′ 𝜃̇2 − ℎ̇𝑢̇2 − ℎ𝑢̇2𝜃̇ − 2ℎ̇𝑢2

′ 𝜃̇]𝑑𝑡       
𝑡2

𝑡1

                         (4.4.7) 

 

elde edilir. 

(4.4.7) denkleminde  

                           𝐻𝑅 = ∫ (ℎ2𝜃̇2 + ℎ̇2)𝑑𝑡
𝑡2

𝑡1

 

                           𝐻𝑇 = ∫ [(𝑢1
′ 2 + 𝑢2

′ 2)𝜃̇2 + 𝑢̇1
′ 2 + 𝑢̇2

′ 2]𝑑𝑡
𝑡2

𝑡1

 

                          𝐻𝑥1 = ∫ [−2ℎ𝑢1
′ 𝜃̇2 − ℎ̇𝑢̇1 − ℎ𝑢̇1𝜃̇ − 2ℎ̇𝑢1

′ 𝜃̇]𝑑𝑡       
𝑡2

𝑡1

 

                         𝐻𝑥2 = ∫ [−2ℎ𝑢2
′ 𝜃̇2 − ℎ̇𝑢̇2 − ℎ𝑢̇2𝜃̇ − 2ℎ̇𝑢2

′ 𝜃̇]𝑑𝑡       
𝑡2

𝑡1

 

ifadeleri yerine yazılırsa  
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2𝑆(𝑥1, 𝑥2) = (𝑥1
2 + 𝑥2

2)𝐻𝑅 + 𝐻𝑇 + 𝑥1𝐻𝑥1 + 𝑥2𝐻𝑥2                   (4.4.8) 

şeklinde elde edilir. 

(4.4.8) eylemi, 𝑡 zaman parametresine bağlı ifade edilirse, aranan 𝑋0 noktasının 

koordinatları minimal eylem prensibi yardımıyla aşağıdaki gibi hesaplanır.  

(4.4.8) denkleminin 𝑋 e göre türevi alınır ve sınıfa eşitlenirse, 

𝜕2𝑆

𝜕𝑋
|
𝑋0

= 0                                                       (4.4.9) 

elde edilir. (4.4.9) eşitliğini sağlayan noktalar karakteristik noktalardır. Karakteristik 

noktayı bileşenleri şeklinde elde etmek için (4.4.7) denkleminin 𝑥1 ve 𝑥2 ye göre 

türevleri alınır ve düzenlenirse  

𝜕2𝑆(𝑥1, 𝑥2) 

𝜕𝑥1
= 2𝑥1∫ (ℎ2𝜃̇2 + ℎ̇2)𝑑𝑡

𝑡2

𝑡1

+∫ [−2ℎ𝑢1
′ 𝜃̇2 − ℎ̇𝑢̇1 − ℎ𝑢̇1𝜃̇ − 2ℎ̇𝑢1

′ 𝜃̇]𝑑𝑡 
𝑡2

𝑡1

                            (4.4.10) 

ve  

𝜕2𝑆(𝑥1, 𝑥2) 

𝜕𝑥2
= 2𝑥2∫ (ℎ2𝜃̇2 + ℎ̇2)𝑑𝑡

𝑡2

𝑡1

+∫ [−2ℎ𝑢2
′ 𝜃̇2 − ℎ̇𝑢̇2 − ℎ𝑢̇2𝜃̇ − 2ℎ̇𝑢2

′ 𝜃̇]𝑑𝑡
𝑡2

𝑡1

                             (4.4.11) 

elde edilir. 

Hareketli düzlemin 𝑋 noktasının aksine, 𝑋0 noktası integral sınırlarını temsil eden 

başlangıç ve bitiş zamanları olan 𝑡1 ve 𝑡2 zamanlarının bir fonksiyonudur. Bu 

denklemler sıfıra eşitlenir ve karakteristik noktanın bileşenleri  

𝑥1 = −
∫ [−2ℎ𝑢1

′ 𝜃̇2 − ℎ̇𝑢̇1 − ℎ𝑢̇1𝜃̇ − 2ℎ̇𝑢1
′ 𝜃̇]𝑑𝑡 

𝑡2
𝑡1

2∫ (ℎ2𝜃̇2 + ℎ̇2)𝑑𝑡
𝑡2
𝑡1

= −
𝐻𝑥1
2𝐻𝑅

 

ve  
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𝑥2 = −
∫ [−2ℎ𝑢2

′ 𝜃̇2 − ℎ̇𝑢̇2 − ℎ𝑢̇2𝜃̇ − 2ℎ̇𝑢2
′ 𝜃̇]𝑑𝑡

𝑡2
𝑡1

2∫ (ℎ2𝜃̇2 + ℎ̇2)𝑑𝑡
𝑡2
𝑡1

= −
𝐻𝑥2
2𝐻𝑅

 

olarak bulunur. Ayrıca 𝑋0 noktasının minimal nokta olması için  
𝜕2𝑆

𝜕𝑋2
> 0 olmalıdır. O 

halde  

𝜕2𝑆

𝜕𝑋2
=
1

2
I∫ 𝜃̇2𝑑𝑡 =

1

2
I𝐻𝑅 

ifadesi her zaman 0 dan büyük olduğundan 𝑋0 bir karakteristik noktadır.  

Karakteristik noktanın bileşenleri 2𝑆(𝑥1, 𝑥2) de yerine yazılırsa  

2𝑆0(𝑡1, 𝑡2) = [(−
𝐻𝑥1
𝐻𝑅
)
2

+ (−
𝐻𝑥2
𝐻𝑅
)
2

]𝐻𝑅 + 𝐻𝑇 −
𝐻𝑥1
𝐻𝑅

𝐻𝑥1 −
𝐻𝑥2
𝐻𝑅

𝐻𝑥2 

bulunur. Buradan da minimal eylem  

2𝑆0(𝑡1, 𝑡2) = 𝐻𝑇(𝑡1, 𝑡2) 

olarak ifade edilir. 

 

4.5.  Holditch Teoremi 

 

Teorem: 𝑘, 𝐸´ sabit düzleminde bir oval (kapalı dışbükey bir eğri) ve 𝑂𝑄, 𝑞 sabit 

uzunluğunda kiriş olsun. Varsayalım ki bu kiriş 𝑋 noktası tarafından 𝑥 ve 𝑦 

uzunluğunda parçalara bölünsün. 𝐸/𝐸´ kapalı düzlemsel homotetik hareketi boyunca, 

eğer 𝑂𝑄 kirişi 𝑘 ovali etrafında bir turunu tamamlarsa burada 𝑥 , 𝑦  ve  ℎ 

parametrelerine bağlı 𝑋 noktası 𝑘 ovali ile kapalı eğri arasını çizer. Burada ℎ, 𝐸/𝐸´ 

homotetik hareketinin homotetik ölçeğidir. 

 

İspat: 𝑂𝑄, 𝑒1 ekseni yönünde ve 𝑂, {𝑂 ; 𝑒1, 𝑒2} dik koordinat sisteminin başlangıç 

noktası olsun. O halde 𝑋 = (𝑥, 0) ve 𝑄 = (𝑞, 0) noktalarını elde ederiz. 𝑋 noktasının 

yörünge alanı için dönme sayısı 𝑣 = 1 olduğundan Steiner alan formülünden 
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𝑓𝑥 = 𝜋ℎ
2(𝑡0)[𝑥

2 − 2𝑠1𝑥] + 𝑓𝑂 = 𝑥𝜇1                            (4.5.1) 

elde ederiz. 

Burada 𝑓𝑂,  𝑘 ovalinin alanı ile 𝑂 noktasının çizdiği alanı ifade ediyor.  

𝑂  ve 𝑄 noktalarının çizdiği alan ile 𝑘 ovalinin alanı aynı olduğundan ve özel olarak 

𝑋 = 𝑄 = (𝑞, 0) alınırsa (4.5.1) eşitliğinden  

𝑓𝑄 = 𝑓𝑂 = 𝜋ℎ2(𝑡0)[𝑞
2 − 2𝑠1𝑞] + 𝑓𝑂 + 𝑞𝜇1                  (4.5.2) 

elde ederiz. 

 

Şekil 4.1. Holditch Halkası 

 

(4.5.2) eşitliğinden  

{𝜋ℎ2(𝑡0)(𝑞 − 2𝑠1) + 𝜇1}𝑞 = 0                                       (4.5.3) 

elde edilir. Eğer bu ifadede 𝑠1 çekilip (4.5.1) eşitliğinde yerine yazılırsa 

𝑓𝑥 = 𝜋ℎ
2(𝑡0)[𝑥

2 − 𝑞𝑥] + 𝑓𝑂 

elde edilir. 

Eğer bu ifadede 𝑋 noktasının yörünge alanı için 𝑞 = 𝑥 + 𝑦 yazarsak 

𝑓𝑥 = 𝑓𝑂 − ℎ
2(𝑡0)𝜋𝑥𝑦 

elde ederiz. 

𝐹, 𝑋 noktasının çizdiği kapalı yörünge eğrisi ve 𝑘 ovali arasındaki alan olsun. O halde 
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𝐹 = 𝑓𝑥 − 𝑓𝑂 = ℎ2(𝑡0)𝜋𝑥𝑦 

elde ederiz. Bu durumda teoremin ispatı tamamlanır. 

Özel Durum: ℎ(𝑡) ≡ 1  olması özel durumuda Müller tarafından ifade edilen  

𝐹 = 𝜋𝑥𝑦 

eşitliğini elde ederiz (Holditch, 1858). 

 

4.5.1.  Çember üzerine Holditch Teoremi uygulaması 

 

𝑘, sabit öklid koordinat düzleminde 𝑟 yarıçaplı bir çember ve 𝑂𝑄 = 𝑞 = 𝑟 sabit 

uzunluğunda çember üzerinde kiriş olsun. Varsayalımki bu kiriş  𝑋  noktası tarafından 

𝑥  ve  𝑦  uzunluğunda parçalara bölünsün. Koordinat düzleminde sabit 𝑥 + 𝑦 uzunluklu 

kirişin 𝑂 ve 𝑄 uç noktaları bir 𝑘 çemberi boyunca bir defa dolandırıldığında, 𝑂𝑄 doğru 

parçası üzerinde tespit edilen 𝑋 noktası (𝑂𝑋̅̅ ̅̅ = 𝑥, 𝑋𝑄̅̅ ̅̅ = 𝑦) da 𝑥, 𝑦 ve ℎ 

parametrelerine bağlı kapalı bir 𝑘𝑥 eğrisi çizer. Burada ℎ, homotetik hareketinin 

homotetik ölçeğidir Bu 𝑘 çemberi ile 𝑘𝑥 eğrisi arasında kalan “Holditch Halkası”nın 

𝐹 yüzey alanı, 

𝐹 = 𝜋𝑥𝑦 

 

dir. Burada 𝐹 yüzey alanı, sadece 𝑋 noktasının 𝑂𝑄 doğru parçasının uç noktalarına 

olan uzaklığına bağlı olup, 𝑘 ile 𝑘𝑥 eğrilerinden ve hareketten bağımsızdır. 

𝑂𝑄, 𝑥 ekseni yönünde ve 𝑂,  {𝑂;𝑥 𝑦} dik koordinat sisteminin başlangıç noktası olsun. 

O halde 𝑋 = (𝑥, 0) ve 𝑄 = (𝑞, 0) noktalarını elde ederiz. 
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Şekil 4.2. Çember üzerine Holditch Teoremi uygulaması 

 

(Şekil 4.2.) de 𝑂𝑋 = 𝑥, 𝑋𝑄 = 𝑦 ve 𝑞 = 𝑥 + 𝑦 ile ifade edilen 𝑟1 =
𝑥+𝑦

2
 yarıçaplı 𝑘 

çemberi ile 𝑋 noktasının çizdiği kapalı yörünge eğrisi 𝑟2 =
𝑦−𝑥

2
 yarıçaplı 𝑘𝑥 

çemberinin arasındaki alanı hesaplarsak; 

𝑓𝑂 = 𝑓𝑄 çemberin alanı 

𝑓𝑄 = 𝑓𝑂 = 𝜋ℎ2(𝑡0) (
𝑥 + 𝑦

2
)
2

 

ve 𝑓𝑋 , 𝑋 noktasının çizdiği çemberin alanı 

𝑓𝑋 = 𝜋ℎ
2(𝑡0) (

𝑦 − 𝑥

2
)
2

 

olur. 

𝐹, 𝑋 noktasının çizdiği kapalı yörünge eğrisi 𝑘𝑥 ve 𝑘 çemberi arasındaki alan olmak 

üzere, 

𝐹 = 𝑓𝑋 − 𝑓𝑂 

𝐹 = 𝜋ℎ2(𝑡0) (
𝑦 − 𝑥

2
)
2

− 𝜋ℎ2(𝑡0) (
𝑥 + 𝑦

2
)
2
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𝐹 =  𝜋ℎ2(𝑡0)𝑥𝑦 

elde ederiz. Bu durumda Öklid düzleminde verilen 𝑘 çemberi için Holditch Teoreminin 

ispatı tamamlanır. 

ℎ(𝑡) ≡ 1  olması özel durumuda Müller tarafından ifade edilen  

𝐹 = 𝜋𝑥𝑦 

eşitliğini elde ederiz. 

 

4.5.2.  Elips üzerine Holditch Teoremi uygulaması 

 

𝑘, sabit öklid koordinat düzleminde 𝑟1 = 2𝑎 ve 𝑟2 = 2𝑏 yarıçaplı bir elips ve 𝑂𝑄 =

𝑞 = 2𝑎 sabit uzunluğunda elips üzerinde kiriş olsun. Varsayalım ki bu kiriş  𝑋  noktası 

tarafından 𝑥  ve  𝑦  uzunluğunda parçalara bölünsün. Koordinat düzleminde sabit 𝑥 +

𝑦 uzunluklu kirişin 𝑂 ve 𝑄 uç noktaları 𝑘 elipsi boyunca bir defa dolandırıldığında, 

𝑂𝑄 doğru parçası üzerinde tespit edilen 𝑋 noktası (𝑂𝑋̅̅ ̅̅ = 𝑥, 𝑋𝑄̅̅ ̅̅ = 𝑦) da 𝑥, 𝑦 ve ℎ 

parametrelerine bağlı kapalı bir 𝑘𝑥 eğrisi çizer. Burada ℎ, homotetik hareketinin 

homotetik ölçeğidir. Bu 𝑘 elipsi ile 𝑘𝑥 eğrisi arasında kalan “Holditch Halkası”nın 𝐹 

yüzey alanı, 

𝐹 = 𝜋𝑥𝑦 

dir. Burada 𝐹 yüzey alanı, sadece 𝑋 noktasının 𝑂𝑄 doğru parçasının uç noktalarına 

olan uzaklığına bağlı olup 𝑘 ile 𝑘𝑥 eğrilerinden ve hareketten bağımsızdır. 

𝑂𝑄, 𝑥 ekseni yönünde ve 𝑂,  {𝑂;𝑥 𝑦} dik koordinat sisteminin başlangıç noktası olsun. 

O halde 𝑋 = (𝑥, 0) ve 𝑄 = (𝑞, 0) noktalarını elde ederiz. 
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Şekil 4.3. Elips üzerine Holditch Teoremi uygulaması 

 

(Şekil 4.3.) de 𝑂𝑋 = 𝑥, 𝑋𝑄 = 𝑦 ve 𝑞 = 𝑥 + 𝑦 = 2𝑎 ile ifade edilen 𝑟1 = 𝑎, 𝑟2 = 2 

yarıçaplı 𝑘 elipsi ile 𝑋 noktasının çizdiği  𝑘𝑥 kapalı yörünge eğrisi arasındaki alanı 

hesaplarsak; 

𝑓𝑂 = 𝑓𝑄 elipsin alanı 

𝑓𝑄 = 𝑓𝑂 = 𝜋ℎ2(𝑡0)𝑎𝑏 

ve 𝑓𝑋 , 𝑋 noktasının çizdiği 𝑘𝑥 eğrisinin alanı Steiner alan formülünden 

𝑓𝑥 = 𝜋ℎ2(𝑡0)[𝑥
2 − 𝑞𝑥] + 𝑓𝑂 

                𝑓𝑥 = 𝜋ℎ2(𝑡0)[𝑥
2 − 2𝑎𝑥] + 𝜋ℎ2(𝑡0)𝑎𝑏 

 𝑓𝑥 = 𝜋ℎ2(𝑡0)[𝑥
2 − 2𝑎𝑥 + 𝑎𝑏] 

olur. 

𝐹, 𝑋 noktasının çizdiği 𝑘𝑥  kapalı yörünge eğrisi ve 𝑘 elipsi arasındaki alan olmak 

üzere, 

             𝐹 = 𝑓𝑋 − 𝑓𝑂 

𝐹 = 𝜋ℎ2(𝑡0)[𝑥
2 − 2𝑎𝑥 + 𝑎𝑏] − 𝜋ℎ2(𝑡0)𝑎𝑏 

𝐹 = 𝜋ℎ2(𝑡0)[𝑥
2 − 2𝑎𝑥] 
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 𝐹 = 𝜋ℎ2(𝑡0)[𝑥(𝑥 − 2𝑎)] 

𝐹 =  𝜋ℎ2(𝑡0)𝑥𝑦 

elde ederiz. Bu durumda Öklid düzleminde verilen 𝑘 elipsi için Holditch Teoreminin 

ispatı tamamlanır. 

ℎ(𝑡) ≡ 1  olması özel durumuda Müller tarafından ifade edilen  

𝐹 = 𝜋𝑥𝑦 

eşitliğini elde ederiz. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

53 
 

 

 

 

BÖLÜM 5. TARTIŞMA VE SONUÇ 

 

 

Sonuç olarak bu çalışmada Dathe ve Gezzi tarafından düzlemsel hareketler için ifade 

edilen en az eylem prensibi, 1 −parametreli düzlemsel homotetik hareket altında bazı 

özel sikloid tipi eğrileri için ifade edilmiştir. Ek olarak  Holditch tarafından ifade edilen 

Holditch Teoremi çember ve elips kapalı eğrileri için ifade ve ispat edilmiştir.  

Elde edilen sonuçlar ters homotetik hareket ve diğer hareket türleri altında 

incelenebilir. Holditch Teoremi de farklı eğriler üzerine uygulanıp ifade edilebilir. 
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